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Abstract

Quantum mechanics is characterised by several strange features, which include
quantum uncertainty, quantum measurements, and entanglement. This thesis
involves all three of these. The quantum uncertainty poses a fundamental stan-
dard quantum limit (SQL) in applications where quantum systems are used to
gauge some quantity. A prime example is that of atomic frequency standards,
which with unprecedented precision measure an atomic quantum state. Quan-
tum measurements in the form of Quantum Non-Demolition (QND) measure-
ments can be engineered so as to overcome the SQL by redistributing quantum
uncertainty amongst different variables of the system. Such squeezed spin-states
rely on inter-atomic correlation, which goes by the name of entanglement.
In this work we present a detailed description of how we have implemented a
QND measurement with laser pulses in a Mach-Zehnder Interferometer (MZI)
and demonstrate that we can engineer a squeezed state in a cold trapped en-
semble of Cs atoms. We verify that the squeezing is useful for improving the
precision of atomic clocks. Along the way, we also investigate several remark-
able features of the interaction, by which atoms and light-particles (photons)
exchange phase-shifts.

Sammendrag

Karakteristisk for den kvantemekaniske beskrivelse af verden er en række besyn-
derlige fænomener såsom kvanteubestemthed, kvante-målinger samt kvante-
sammenfiltring. Ubestemthedsprincippet sætter en grundlæggende standard
kvantegrænse (SQL) for præcisionen med hvilken et kvantesystem kan måle en
eller anden størrelse. Et fremtrædende eksempel påen kvantestøjs begrænset
måling er frekvens-standards eksperimenter, ogsåkendt som atomure, hvor evo-
lutionen af en atomar kvantetilstand måles med uovertruffen præcision. Ved
hjælp af ikke-destruktive kvantemålinger er det muligt at omfordele ubestemthe-
den mellem systemets forskellige variable og derved frembringe kvante-tilstande
som kan bruges til at overskride standard kvantegrænsen i f.eks. atomure. Disse
såkaldte klemte kvante-tilstande afhænger af atomernes indbyrdes korrelation,
hvilken i kvante-sprog går under navnet sammenfiltring.
I dette væk giver vi en uddybende beskrivelse af vores implementering af en
QND måling ved brug af laser pulser i et Mach-Zehnder Interferometer (MZI),
hvormed vi har frembragt klemte spin-tilstande i et ensemble af kolde Cs atomer.
Vi efterprøver tillige at kvante-tilstanden er tilstrækkeligt klemt til at ville kunne
forbedre præcisionen af et atomur. I den forbindelse undersøger vi grundigt en
hel række egenskaber QND vekselvirkningen som gør at atomer of lys-partikler
(fotoner) udveksler faseskift.



Sažetak

Kvantna mehanika se odlikuje sa nekoliko osobitih mogućnosti, koje uključuju
kvantne neodred̄enosti, kvantna mjerenja, i sprezanja. U ovom radu su opisane
sve tri. U koristi gdje su kvantni sustavi mjerač neke količine, kvantna neo-
dred̄enost je temeljno ograničenje. Jedan primjer je, mjerenje frekvencije atoma
kao standard (atomski satovi), u kojem se odred̄uje kvantno stanje atoma s nev-
idjenom preciznošću. Kvantna mjerenja u obliku ne-rušenja kvantnih stanja
(QND), mogu se shvatiti i izvesti tako da se može preći standardna kvantne
granica, po preraspodjeli kvantnih neodred̄enosti med̄u različitim varijablama
sustava. Takva stisnuta spin-stanja oslanjaju se na med̄u-atomske korelacije, koje
nazivamo sprezanje.
U ovom radu ćemo predstaviti detaljan opis kako smo proveli QND mjerenja
sa laserskim pulsevima u Mach-Zehnder Interferometru (MZI) i pokazati da
možemo postići stisnuto stanje u ansamblu hladnih i zarobljenih Cs atoma.
Potvrdili smo da su stisnuta stanja korisna za poboljšanje preciznosti atomskih
satova. U isto vrijeme, takod̄er smo istraživali nekoliko izvanrednih mogućnosti
interakcije, po kojoj atomi i čestice svjetla (fotoni) izmenjuju smjene faza.
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Preface

Genesis of an experiment In the beginning vast public funding created heav-
enly lab-space on earth. Now the labs were formless and empty and the spirited
physicists were contemplating over their future experiments. And they said let
there be light and they built a grating stabilised external cavity diode laser. And
they said let there be an optical table to separate the floor from the ceiling. And
it was bought. And they browsed through catalogues from Thorlabs, MiniCir-
cuits, and Farnell and populated the optical table and the racks above it and
the entire floor-space below it. And they said let us invite some graduate stu-
dents who are like us and let them screw, turn, solder, align, and calibrate all
the equipment on the optical table, the racks above it and the entire floor-space
below it. They saw all that they had made and it was very good; so they tried
to optimise it to make it even better and at the end nothing worked as it should.
Finally, they rested with a cup of coffee conversing about all the time they had
spent, sang and played merry tunes, while at the back of their minds a certain
guilt of missed-publication arose.

Once upon a time farther west The quantum optics lab under the auspices
of Eugene Polzik have been the frame for most of my research life ever since
a long time ago in Aarhus I opted for a Bachelor’s project with the famed cell
experiment. As this experience did not scare me away, I decided that quantum
optics, besides its catchy name, might be an interesting field to spend a year of
my Master’s thesis on. One year became two and Aarhus was exchanged for
Copenhagen, but at the end of it all I produced a thesis on the preliminary steps
of spin squeezing on the Cs clock transition. As my lab efforts did not scare off
Eugene, I was encouraged by him to continue my work on the experiment until
in the future — one that turned out to be rather distant — it would demonstrate
spin squeezing. By now, I have been a part of the quantum optics lab endeavour
for so long that I’m only a few months short of making it onto the inventory
list. Over this time I have worked alongside over a dozen colleagues mostly
in a pattern where I have been part of a lab tripod with periods of overlap and
increased lab population. I believe the many years spent on the clock-experiment
grants me a privileged insight into its evolution. Though this insight may also
be considered rather pointless I decided that it should not part with me and
consequently at the end of the Introduction chapter I include what I have named
an experimental timeline (sec. 1).

Thank’ya all Physics has been just one of the blessing of being part of the
Quantop gang. The many outings, activites and daily coffee breaks has turned
the research group into a group of friends. So it has been during all the years
I have been a member and it is surely a thing I will miss. Alas, I will meet
some again and some maybe not. To all the people I have worked and during
some of the extended experimental runs almost lived with... thanks for your

vii
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company =;). It is always nice to see ones name following a ”thanks” so as a
token of appreciation to my co-workers on the experiment I wish to thank Wolf-
gang Tittel, Jens Lykke Sørensen, Plamen Petrov, Carlos Gariddo Alzar, Niels
Kjærgaard, Patrick Windpassinger, Marcin Kubasik, Mark Saffman, Jürgen Ap-
pel, Anne Lauchet-Chauvet, and Jelmer Renema. On the inner title page I have
accredited Carlos Garrido Alzar, Jörg Helge Müller, Niels Kjærgaard, Anders
Sørensen, Jürgen Appel as ”additional academic advisors”. These nominations
are based on my overall professional relationship with them being characterised
by me having a question and them having the answer. Particularly I thank Niels
Kjærgaard for his camera expertise on the cover photo, his Mathematica code on
which the Bloch-sphere drawings are based, and his large role in the preparation
of several of my manuscripts. In addition I am grateful for all the clues and as-
sistance I have received from all my colleagues. For more specialised assistance
I thank my office mate Andrew Hilliard for serving as a live English dictionary,
and Inge Florjančič for editing of the Croatian abstract. Likewise the technical
and administrative support staff at the NBI deserve credit for facilitating all the
aspects of experimental endeavour.

I’ve had the privilege to visit the quantum optics group at the Australian Na-
tional University in Canberra. I wish to extend my thanks to Hans Bachor for
granting me this opportunity and to my lab-mates Ping Koy Lam, Ben Buchler,
Magnus Hsu, Oliver Glöckl, and Gabriel Hètet. A special note of gratitude to
Massimiliano Colla, whom I shared an office with, for his nearly unlimited prac-
tical support during my stay in Canberra. Both professionally and personally
my visit to Australia was a great experience and I will always have the fondest
memories of that time and the people there — unbelievably I also terribly miss
cockatoos!

All physicist need to be extremely thankful to their families, who are forced to
allot so much patience for a cause they often do not see any point in. I thank for
the love, encouragement and understanding of my wife Suratsawadee ”Emma”
and my daughter Anais Thima I thank for just being herself. I will end my
credits in the same way as in my master’s thesis by proclaiming ”thank God I
made it!”
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Chapter 1

Introduction

This account brings together some of the most intriguing quantum mechani-
cal concepts, quantum uncertainty, (non-destructive) quantum measurements, and
entanglement. The quantum uncertainty reflects that the outcome of a measure-
ment of a quantum variable Â can generally only be predicted with a certain
probability. This is an intrinsic property of the quantum mechanical description
of systems in terms of wave-functions, which represent a form of probability
distribution in the generalised variable space, the Hilbert space. It is possible
for a wave function of a system to prescribe a single well defined value of a
variable, whereby we say that the system is in an eigen-state of that variable.
So, quantum uncertainty should be viewed in a broader sense, which brings
one to Heisenberg’s uncertainty relation. The uncertainty relation states that
〈(∆Â)2〉〈(∆B̂)2〉 ≥ |〈[Â, B̂]〉|/4 , i.e., the product of the variances of a set of
operators must be equal to or exceed the norm-squared value of their mutual
commutator. Hence, the relation does not limit the uncertainty of a variable by
itself, but only relative to any other non-commuting variable. As it happens, any
straight forward preparation of a quantum system tends to produce states that
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Figure 1.1: Quantum uncertainty in spec-
troscopy

are symmetric in the distribution of un-
certainty, in the sense that they have
〈(∆Â)2〉 = 〈(∆B̂)2〉.1 A good exam-
ple is that of the three components of
an angular momentum operator F̂ =
F̂x, F̂y, F̂z. For these the uncertainty

relation prescribes 〈(∆ ˆ̂
iF)2〉〈(∆ ˆ̂

jF)2〉 ≥
|〈F̂k〉|/4. If one defines the coordinates
such that the F̂k is the only compo-
nent with non-zero mean value then
〈(∆ ˆ̂

iF)2〉 = 〈(∆ ˆ̂
jF)2〉. This state, often

referred to as Coherent Spin State (CSS),
can be depicted as in fig. 1.1 with a cir-
cular uncertainty blob at the tip of the
spin-vector. The blob signifies that one
does not know with certainty exactly in
which direction the spin points, only
that it is most likely to be somewhere
within the blob.

1for the moment, please accept this somewhat ambiguous statement

1
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Besides being of fundamental interest the uncertainty of the quantum state has
implications for various applications. In extremely sensitive measurements, such
as performed in gravitational wave detectors, atomic clocks and other forms of
spectroscopy, the quantum uncertainty appears as a noise in the quantity than
one is measuring. Thus, in spectroscopic measurements the ultimate precision
obtainable using classical resources is the standard quantum limit (SQL). At this
limit, the measurement precision is limited only by the quantum noise of the
system. This point is also illustrated in fig. 1.1: In many cases an atomic spin
is used to measure some perturbation, as in magnetometers, or as a reference
to some external sources. In clock experiments the atoms act as a reference to
an external frequency source. The difference between the atomic and external
frequency ∆ is gauged by the angle φ that the atomic spin precesses during
some interrogation time τ. The quantum mechanical expectation value of this
precession angle is of course well determined, but the outcome of a single mea-
surement is contaminated by an uncertainty δφ, which arises from the pointing
uncertainty of the spin.
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Figure 1.2: Quantum uncertainty in spec-
troscopy using a SSS.

The SQL can, however, be surpassed
by using spin states which have the
uncertainty of one of its components
smaller than the SQL. This class of
states is referred to as squeezed spin
states (SSS) — a prime example is de-
picted in fig. 1.2, where the uncertainty
blob has been drawn as an ellipse. Due
to the smaller angular uncertainty of
the SSS the precision of the spectro-
scopic measurement is improved.

The problem of squeezed states is that
they are not off-the-shelf quantum states.
Whether the squeezing be of optical or
atomic systems, e.g. of spins, consider-
able effort goes in to engineering them.
Squeezed states can be created by vari-
ous non-linear interactions of the differ-
ent variables within the system it self or it can be generated by coupling to an
auxiliary system. The latter is what brings us to the topic of non-destructive quan-
tum measurements. This squeezing approach involves quantum non-demolition
(QND) measurements where a variable of a target quantum system is coupled to
a meter variable. The understanding of what makes a measurement is probably
one of the most contended in quantum theory. Non-demolition measurements
are particularly interesting because they require a proper and fully quantum
mechanical treatment and thus open to a host of quantum phenomena. With re-
lation to spectroscopy at the SQL, a QND measurement of the before mentioned
meter variable increases the knowledge about the target variable and reduces
its quantum uncertainty. Obviously, it is essential that the meter does not cou-
ple back to the measured target variable — termed back-action evasion — as this
would yield the knowledge gained about it obsolete. It is also essential that the
target variable is coupled with sufficient strength that its value can be discerned
in the meter detection. Thus, if a QND measurement can achieve a sensitivity at
the SQL the target system ends up in a squeezed state.

In fig. 1.3 we draw a small cartoon of a QND measurement between spins of a
light/photonic and an atomic quantum system. In the figure the moving photons
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Figure 1.3: QND interaction between light and atomic pseudo-spin

are described by Ŝ = {Ŝx, Ŝy, Ŝz} and the stationary atoms by F̂ = {F̂x, F̂y, F̂z},
where we take F̂z as the target variable. Before the QND interaction the quantum
uncertainty of F̂z and Ŝz may result in them being displaced by some small
amount given by the green and orange line segments respectively (fig. 1.3a).
During the interaction the two systems exchange information about each others’
quantum states (fig. 1.3b). This is done in a way that the the target variable F̂z
is unaffected but Ŝx is perturbed by the value of F̂z (fig. 1.3c). This evolution
follows from an interaction Hamiltonian on the form Ĥint = κ̃Ŝz F̂z, which in the
literature is often referred to as a QND Hamiltonian. In this way Ŝx records
the value of F̂z and if subsequently Ŝx is detected (either destructively or non-
destructively) we can gain knowledge on F̂z and as argued above reduce its
uncertainty. Heisenberg’s uncertainty relation demands that the uncertainty in
F̂x be increased simultaneously. This is indeed a natural result of the light-atom
interaction which also involves F̂x recording Ŝz. Since the value of Ŝz is uncertain
it will add to the uncertainty of F̂x. This embodies the back-action of the QND
measurement.

The above picture is convenient for illustrating what we require from the QND
measurement, but at the same time it is misleading because it gives the impres-
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sion that from the beginning the spins actually had some well determined values
F̂z and Ŝz. We as observes, just didn’t know theses values beforehand, but by the
QND measurement they were revealed to us. This picture is referred to as the
hidden variable assumption, which is not the essence of quantum mechanics. In
the correct picture the values of F̂z and Ŝz are completely undetermined before
the QND measurement. When the two systems interact they exchange some of
their quantum variables whereby the systems become correlated a.k.a. entan-
gled. It is in fact not until the very measurement that the SSS is created and a
particular measurement value is realised.

This leads us to the concept of entanglement, which actually appears in two
respects. First of all, the QND interaction entangles the target and meter systems
so that the two are no longer separable. Hence, the detection of the light involves
tracing out the photonic part of the entangled quantum state, which again results
in the remaining atomic part ending up in a squeezed sate. The second way
that entanglement enters the discussion is in the squeezed state it self. The
only way that atomic state can have less fluctuations in one variable is if the
atoms are mutually correlated, that is, entangled. Being entangled means that
the individual atoms do not behave independently, but the ”action” of one atoms
entails the some ”action” of other atoms. We now turn to reflect on some more
practical aspects of how to implement a QND measurement in order to engineer
an SSS.

Practical considerations for SSSs engineered by QND measurements

From a pragmatic perspective there are three main experimental tasks to per-
form in order to claim that one has engineered a squeezed spin-state by a QND
measurement:

1. Establishing the standard quantum limit (SQL).

2. Verifying quantum correlation of a spin component.

3. Determining the level of spin vector demolition.

This point-by-point structure also dictates the composition of [Appel09], where
we report our spin-squeezing demonstration. As it turns out the second tasks,
though it may appear complicated, is in fact the most straight forward to perform
as we ”just” have to measure correlation between two subsequent measurement
of a spin component. The key to the ease of this task, is the fact that it re-
quires establishment of the statistics of a relative measurement i.e. the difference
between to measurements. Thereby, one automatically avoids many technical
sources of noise that would otherwise mask the statistics of the quantum state.
To establish the projection noise we need to measure the statistics of the quan-
tum state w.r.t. to an absolute reference level. Hereby, the measurement becomes
highly susceptible to classical sources of noise and only by arduous perfection
of the experimental setup and sequences is it possible to resolve the projection
noise. The third and final task of deducing the spin-vector is marred by a host of
complications, which depending on the experimental setup may be of varying
significance. In our case the AC Stark shift or light-shift of the atomic energy lev-
els additionally perturbs the atomic state, and only by eliminating this effect are
we able to faithfully measure the irreversible demolition of the quantum state. In
the literature of claimed spin-squeezing experiments one of these tasks is often
neglected — typically ascertaining the level of spontaneous-scattering is missed
(see chapt. 16).
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Returning to the demanding task of stabilising the absolute reference for mea-
surement of the initial atomic state and thereby being able to see the quantum
projection noise of it. Experimentally, the main factor characterising the mea-
surement is its signal to noise ratio (SNR), which depends on both the achievable
coupling strength as well as the level of limiting noise influences. In systems,
such as ours, where a light meter reads out an atomic target variable, large cou-
pling can be achieved by using dense ensembles or invoking cavity enhanced
measurements. Owing to the general direction of research in our group we fol-
low the ensemble path. The feat of stabilising the meter variable detection to
the required level can be approached from various angles. One may focus on
the inherent stability to ensure that no elements source noise to the meter and
its detection. Alternatively, instead of eliminating the noise one can try to trace
the fluctuations and compensate for them in the data analysis. Finally, one may
construct a system which is immune to particular limiting sources of noise. The
two alternative configurations discussed in this thesis embody the second and
third approach, respectively.

Theses

Below I state the main theses that I aim to demonstrate in the remainder of this
account. Since this is an experimental investigation it is understood that the
successful demonstration should be based on empirical evidence, though the
derivation of a theoretical basis is to be seen as an important attribute.

• A spin squeezed state can be engineered by means of a quantum non-
demolition measurement.

• Probing in 2-input Mach-Zehnder interferometer configuration has several
practical advantages for MZI stability

• Probing in 2-input Mach-Zehnder interferometer configuration affords the
most effective cancellation of inhomogeneous light shift due to probing

• Dichromatic probing near cycling transitions suppresses the effect of spon-
taneous scattering

Our results put in context

The notion that it should be possible to measure a quantum system without
actually destroying it surfaced already in the early days of quantum mechan-
ics [Landau31, Neumann32, Bohm51]. However, the concept was given lim-
ited attention until it was seen to have prospects for application to gravity
wave detection. Thus much of the early work on QND was devoted to gravity
wave detection [Braginsky74, Braginsky77, Unruh78, Thorne78, Braginsky80],
however much of this work also included general considerations about the na-
ture of QND measurements coupled with attempts to define what they are.
Comprehensive reviews of the QND measurement concept and the, to that
date, limited number of experimental realisations can be found in [Braginsky80,
Poizat94, Braginsky96]. More recent experimental developments are reviewed
in [Bachor04, chapt. 11]. The initial experimental realisations were indeed not
performed in relation to gravity-wave detection, but in non-linear optical ma-
terials [Braginsky77, Imoto85, Friberg92, Levenson93, Schiller96]. In these the
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information about a target beam is relayed to a meter beam whilst they prop-
agate through a medium with non-linear refractive index. A similar coupling
has been achieved in Na in a room temperature vapour or in a laser cooled
cloud [Grangier91, Poizat93, Roch97]. Another, approach to QND is to take a
beam of light and split off half of the light on a beamsplitter. If the other input
of the beamsplitter is ”illuminated” with a squeezed vacuum field one can avoid
adding vacuum noise to the target quadrature of the output fields which should
thus be perfectly correlated. Detecting one output amounts to a QND measure-
ment of the other output [Shapiro80, Bruckmeier97]. All these demonstrations
have involved purely optical target and meter systems. Performing QND mea-
surements in a mixed atom-photon system has taken longer to realise. A neat
result comes from an experiment where atoms propagate through a microwave
cavity and depending on the number of photons inside the cavity the atom re-
ceive a certain phase shift but do not permanently absorb any of the photons.
Then detection of the atoms after passing the cavity can reveal the phase-shift
and thus the photon number [Varcoe00, Bertet02]. This puts us at the edge of
discussing the generation of squeezed states in atoms, but before jumping into
that we review the experimental development towards squeezing in general.

Squeezing of quantum uncertainties hinges upon the Heisenberg relation only
limiting the value of the product of a set of uncertainties. Thus, squeezed states
of a set of conjugate operators can be prepared in both optical, atomic or any
other quantum system. Nevertheless, the way to generate squeezing depends
strongly on the type of system. Squeezed states have a far longer track record
in optical than in atomic systems. The earliest modest demonstration of squeez-
ing used four-wave-mixing in atomic beams [Slusher85]. These were followed
by demonstrations of somewhat larger noise reduction by degenerate paramet-
ric down-conversion in OPO/OPA operated below threshold thus generating
squeezed vacuum states [Wu86]. The Kerr-effect has also provided a path to
generate squeezed states either inside optical fibres [Levenson85, Milburn87]
or in a cold atomic cloud [Lambrecht95]. Atomic systems have been used to
generate squeezed light by other means such as polarisation self rotation in
vapours [Ries03] or through the non-linear interaction of atoms inside cavities
[Orozco87]. Amplitude squeezed light can be generated by second harmonic
generation (SHG) [Pereira88] or in the difference intensity of twin beams output
from an OPO either in CW [Heidmann87] or pulsed [Aytür90, Nabors90] oper-
ation. Finally, regular diode lasers can become sources of amplitude squeezed
light by driving them with a sub-Poissonian current. This has been used to
produce intensity squeezed laser beams [Richardson91, Inoue92] and later also
operating in single mode [Freeman93, Wang93].

Squeezing of angular momentum or spins was treated in [Wódkiewicz85b] with
an implementation in Josephson junctions discussed in [Wódkiewicz85a]. More
elaborate treatment of the requirements for a spins to be squeezed was done
in [Yurke86, Wineland92, Kitagawa93, Wineland94] where the focus was put on
applications in spectroscopy/interferometry. These papers will form the back-
bone for our approach to verify and gauge the spin squeezing in the experi-
ment. There are two main currents in the approach to generate the squeezed
states. The first relies on some form of non-linear interaction between differ-
ent spin-components [Kitagawa93] while the other is based on QND measure-
ments [Kuzmich99]. The first experimental demonstration of spin-squeezing
actually falls outside the two approaches, as it was achieved by illuminating
a Rb MOT sample with a beam of squeezed light [Hald99]. In line with the
non-linear interaction approach, specific theoretical suggestions for generating
squeezed atomic states started to develop. Initial proposals dealt with the usual
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suspects namely the position and momentum observables of trapped and laser
cooled ions [Heinzen90, Cirac93]. Other proposals involve the dipole interac-
tion between Rydberg atoms [Bouchoule02b] or collisional interactions in BECs
[Sørensen01a]. Experimental reports have shown increased sensitivity in Ram-
sey measurements using squeezed state of two 9Be+ ions [Meyer01]. This re-
sult was extended to three ions in two simultaneous demonstrations [Roos04,
Leibfried04]. There have been a number of experiments in BECs showing ei-
ther increased fluctuations [Jo07] in the phase or suppression of atom number
fluctuations between BEC separated in potential wells [Orzel01, Gerbier06]. A re-
cent experimental report [Estève08] showed how squeezing of the atom-number
difference between two BECs in separate potential wells could be achieved by
means of the tunnelling interaction between the wells (see chapt. 16).

The other basic idea is that of inducing a partial projection of the particle wave-
function and thereby reduce the statistics of the state. To induce this partial
wave-function collapse without destroying the atomic coherence is no easy feat,
and only possible if the projection is done in a non-destructive fashion. This
brings us back to the QND measurements. Kuzmich et al. in [Kuzmich98,
Kuzmich99] introduced different forms of QND interactions between light and
atomic spins that would result in a the creation of a spin-squeezed state. This
was followed by the first demonstration of QND measurement induced spin-
squeezing in a room-temperature vapour cell [Kuzmich00]. The light-atom in-
teraction in that experiment was in the form of the Faraday rotation of the probe
beam polarisation by a spin polarised atomic sample in a static magnetic field.
The Faraday interaction was also used to squeeze the combined collective spin
of two Cs vapour cells [Julsgaard01]. The potentially long coherence times and
high atomic densities possible for cold trapped atomic samples has resulted in
a large interest to create spin squeezed states in such systems. A publication
[Geremia04] seemed to demonstrate very impressive amount of spin-squeezing
in a Rb MOT again by using the Faraday interaction. This article has, how-
ever, later been retracted [Geremia08]. Another QND measurement based on
the Faraday rotation of the probe beam during passage through a Rb MOT was
demonstrated in [Smith06]. In [Chaudhury07] squeezing induced by a non-
destructive Faraday rotation measurement was reported in the same experimen-
tal setup. The squeezing did however not involve any inter-atomic correlation,
but relied on correlation between the atomic sub-levels. Recent Faraday rota-
tion experiments documented in [Takano09b, Takano09c] have shown signs of
spin-squeezing in cold 171Yb atoms.

Outside the realm of Faraday rotation measurements an alternative scheme in-
volves the measurement of the optical phase-shift of a probe beam. This phase-
shift is caused by the index of refraction of an atomic medium. Since the phase-
shift depends on the internal atomic state the probe will be able to detect this
state. The phase-shift can be detected either by the resonance-shift in an opti-
cal cavity or by a interferometer. A detailed analysis of the QND interaction in
an interferometric setup was performed in [Bouchoule02a]. Subsequently this
proposal has been taken up in [Oblak05, Saffman09]. The non-destructive atom
detection capabilities of a Mach-Zehnder Interferometer (MZI) were established
in [Petrov07, Windpassinger08c], with the latter report indicating sensitivity of
the measurement at the SQL. These reports were followed by an article demon-
strating spin-squeezing by a dichromatic MZI based measurement [Appel09]. Si-
multaneously, the results from two independent experiments using cavity based
phase-shift measurements were released. The first [Schleier-Smith08, Leroux09]
gives a clear demonstration of spin-squeezing in a FORT of Rb atoms. The phase-
shift is measured by the change in the cavity mode with resulting perturbation of
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the cavity transmission. The other [Teper08] only uses the cavity to enhance the
coupling between the probe light and the Rb MOT. The report shows significant
noise reduction and anti-squeezing that agrees with the prediction. However, the
experiment comes just short of showing actual spin squeezing. In chapt. 16 we
go in to some of the details of a number of key experimental results connected
to squeezing in atomic systems.

At the very beginning of this introduction we emphasised the limitations that
the quantum noise sets in spectroscopic applications [Wineland94] — referred
to as the Standard Quantum Limit (SQL). At the time when this issue was fore-
seen, clock experiments were not yet operating at the SQL, but by 1999 they
were [Santarelli99]. This boosted the interest in spin squeezing as a means to
overcome the SQL. Hence, spin-squeezing and clock (transition) have featured to-
gether as catch-phrases in several publication titles and/or abstracts [Oblak05,
Windpassinger08c, Meiser08, Teper08, Leroux09]. As noted above the clock-
transition spin-squeezing was only realised by 2008 [Appel09, Schleier-Smith09]
and still later the first results of applying the squeezed states in a clock-sequence
were announced [Louchet-Chauvet09]. By now much of the focus within the
frequency-standards field is moving towards optical clocks, and the spin squeez-
ing between the hyperfine ground states is perhaps not at the top of the agenda.
On the other hand spin-squeezing can be equally relevant for frequency stan-
dards based on optical transitions [Meiser08]. At the moment, the optical clocks
are several orders of magnitude away from the SQL, but this is much like the
state of microwave clocks when spin-squeezing was first suggested for spectro-
scopic applications. We would emphasise, that the particular configuration in
our experiment where we rely on two lasers each probing a separate hyper-
fine level makes it in principle independent of the splitting of the probed levels.
Thus, levels separated by an optical wavelength could equally well be squeezed
in this setup. Finally, we note a very important advantage of the non-destructive
probing that does not require squeezing. The non-destructiveness of the state de-
tection simply means that the repetition rate of a frequency comparison between
the atomic reference and the external microwave oscillator can be increased. This
is expected to decrease the influence of the Dick effect [Dick90] and it has been
demonstrated to work in a 87Sr optical clock [Lodewyck09].

Since interferometers are so dear to our heart we reserve a few lines to note
other MZI based experiments in quantum optics. In [Lye03] various approaches
for non-destructive detection of BEC was investigated with the aim of being
able to do feedback to the BEC. The MZI for that purpose was realised and
characterised in [Figl06], but without demonstration of atomic detection. An
MZI has also been used to detect the phase-shift of a single atom in a tightly
focused Far of Resonant Trap (FORT) [Tey08].

Layout of thesis

I might be accused of adhering to the naive assumption that making the thesis
comprehensive it cannot at the same time be incomprehensible. Certainly, I for
my own part tend to prefer accounts to be as detailed as for all ambiguity to be
removed. Another, concern is pedagogy. It has been my aim to structure the
thesis in a logical order clearly highlighting the rationale and progression from
one section to the other. furthermore, the reader may be either delighted or dis-
pleased with the thorough cross-referencing of sections, figures, and equations.
To be sure of reaching both the target of clarity and pedagogy, I may state the
same facts or elucidate the same points more than once, thereby adding to the
length of this work.
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The body of the thesis is divided in to three parts covering the theoretical ba-
sis, the experimental demonstration, and the ramifications of our work. The
theory progressively involves all the aspects needed to understand how a QND
measurement arises from our system and how the result, under the right cir-
cumstances, should be the creation of a spins squeezed state. To that end, I
first introduce the two main players, the optical probe pulses in chapt. 2 and
the atomic sample in chapt. 3. A crux in these sections is to cast the photonic
and atomic variables in the form of ”angular momentum like” operators and
to make some simple concessions for the spatial distribution of the systems. In
these sections I also look at the quantum statistical properties as incarnated by
the shot noise of light and projection noise of atoms. W.r.t. the latter I introduce
the concept of squeezed states and very importantly determine how they should
be gauged. I also start developing the rather intricate theory of how the cor-
relation is impacted by decoherence. The first step to make these two systems
truly interesting is to let them interact, and that is exactly the topic of chapt. 4.
From a very basic description of the dipole interaction I develop a formulation
of the effective interaction which relates to the pseudo-spin operators. I also
relate the interaction directly to more intuitive features such as the phase-shift
and absorption of the light and the light-shift and spontaneous scattering of the
atoms. I draw a parallel from the spontaneous scattering to the decoherence of
the atomic state. In chapt. 5 I commence the discussion on QND measurements
aiming to explain the foundations of the concept. This naturally leads to the
engineering of spin-squeezed states by QND measurements and I present two
related proofs of principle. A substantial number of pages is then devoted to a
complete integration of the QND measurement induced spin-squeezing concept
with the MZI based detection of the atomic pseudo-spin. In this treatment I go
in depth with the parameters determining the amount of squeezing generated,
be it the arrangement of the MZI, probe detunings, spontaneous scattering and
more. In the final part of the theory chapt. 6 we already start transitioning to the
experimental section, in that we discuss the various imperfections of the MZI
based QND detection. This will lead to a number of pragmatic insights, which
will be of great value for the design of the experimental setup.

In the experimental part the various elements of the setup are subjects of ded-
icated chapters. The treatment in these follows somewhat in line with theory,
going from properties of the probe, over the preparation of the atomic ensemble,
and finally indulging with their mutual interaction. In more detail, the chapters
go through, first, a round up of the computer based control system, which regu-
lates the operation and timing of all the other parts (chapt. 7). Hence, the control
system inter-links the whole setup. Secondly, in chapt. 8 we detail the intrinsic
properties of the MZI setup without any explicit reference to the atomic sample.
The preparation of the atomic ensemble is discussed in the following chapters
starting with the sample trapping in the MOT and dipole trap (chapt. 9). This
involves the non-destructive MZI based characterisation of a number of trap pa-
rameters. Next, in chapt. 10 we discuss the two steps in the state preparation
namely the optical pumping (sec. 10.1) and microwave rotations of the pseudo-
spin vector (sec. 10.2). Both steps are characterised, and we put particular atten-
tion to the microwave interaction since it is a crucial tool for manipulating the
atomic state also for other purposes than the state preparation. Moreover, the
Rabi and Ramsey spectroscopy experiments that we perform reveal much about
the various sources of decoherence of the atomic state. The following chapter
(chapt. 11) gives a detailed account of the many precautionary measures needed
to make the QND measurement usable for engineering spin-squeezed states. The
key issue will be the AC-stark/light shift of the atomic state including methods
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to revert or completely cancel the shift. With that in hand we proceed in the
remaining chapt. 12 to discuss actual QND experiments in the framework of the
QND atom-light interaction described in the theory. In the QND measurement
chapter I have tried to present the data in a consistent form both in terms of
the parameters presented and the visual layout. Admittedly, not all the figures
are strictly necessary to understand the data. Then again, my aim has been to
facilitate an easy comparison between the data.

In the last part, I sum up the results reported in this work and give some sugges-
tions for desirable improvements to the setup. This is closely linked to the future
fate of the experiment. I top off with a discussion of how the work is related to
various applications and also draw parallels to similar results.

Scattered around the thesis pages are a few yellow boxes, which contain non-
essential/anecdotal data or theoretical results and representations. Since the
boxes can all be fitted into a single page I found it excessive to put them in to
proper appendices. Nevertheless, the boxes may be treated as appended ma-
terial. Lastly, the actual date of acquiring the experimental data presented in
the figures is noted in the list of figures on 313. This chronological information
in combination with the timeline below should make it a bit easier to track the
changes and experimental setups corresponding to a given data set.

Notation

I afford a few lines to clarify some principles of the notation. I use the Dirac
bra-ket notation for quantum states. Though it is quite tedious at times I have
stuck to the convention of giving all quantum mechanical operators hats, i.e., ·̂.
Expectation values without are written as bra-kets, e.g. 〈n̂ph〉 = nph, where the
be-hatted symbol should automatically be taken as an expectation value. Vectors
are in bold e.g. r for the Cartesian coordinate. Notationally, I do not distinguish
between between an experimental estimate of the variance 〈(∆·)2〉 and the actual
variance 〈(∆·)2〉 nor whether it is the result of a classical probability distribution
or of the quantum uncertainty inherent in the wave-function. To avoid some of
the most common mistakes, I have tried — but probably failed in places — to
keep all formulas involving frequencies in angular units, i.e., ω instead of ν.

Oh, and I use British spelling conventions so don’t be alarmed when bumping
into colours, synthesisers, fibres, centres, caesium and many more. Come to think
of it one should be alarmed by an encounter with caesium... and preferably seek
medical treatment.

Experimental timeline

Here comes a timeline of the experimental developments over the time the I have
been a part of the clock spin squeezing endeavour. To structure the timeline the
entries are colour coded according to

Human
resources

Setup and
equipment

Observations and
measurements

Publica-
tions

I include only important revisions or improvements of the setup. The same
applies to measurements and observations and generally only the first instance
is given an entry.
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1-Nov-2000 Anton Vershovski joins the lab team
1-Jan-2002 Plamen Georgiev Petrov joins the lab team
1-Jan-2002 Wolfgang Tittel joins the lab team
1-Jan-2002 Jens Christian Mikkelsen joins the lab team
29-Aug-2002 New MOT coils of water cooled hollow copper wire made

and put on chamber
1-Sep-2002 Daniel Oblak joins the lab team
20-Sep-2002 Fakuli (PC) enters service
5-Sep-2002 CCD camera for observing MOT set up
31-Oct-2002 Anton Vershovski leaves the lab team
1-Dec-2002 Fibre MZI built and white-light aligned
12-Dec-2002 Absorption imaging of MOT fails to work
20-Dec-2002 Wolfgang Tittel leaves the lab team
1-Jan-2003 Change from counter to co-propagating probe/lock and to

equal polarisation with chromatic filtering
1-Jan-2003 Carlos Leonardo Garrido Alzar joins the lab team
20-Jan-2003 Shot noise operation of MZI up to 1000 nW (maximal power

used) 2 µs pulses on 7 µs timescale
23-Jan-2003 Observing MOT phase-shift and atomic noise
29-Jan-2003 Observation of atomic noise (presumably classical MOT

loading statistics)
4-Feb-2003 Move to NBI
4-Feb-2003 Jens Christian Mikkelsen leaves the lab team
4-Feb-2003 Jens Lykke Sørensen leaves the lab team
1-Mar-2003 Attempts to vacuum seal titanium chamber windows fail
2-Mar-2003 Attempts to un-mount titanium chamber windows fail
1-Apr-2003 Decision taken to shift to free-space MZI and quartz-cell

MOT setup
1-May-2003 Free space MZI frame and base-plate setup done
11-Jul-2003 MOT anti-Helmholtz coils installed in MZI setup
23-Jul-2003 MOT collimators installed on MZI base-plate
1-Aug-2003 MOT observed in quartz-cell setup
29-Oct-2003 First noise measurement in free-space MZI setup with LeCroy
11-Nov-2003 FORT laser (ELS VersaDisk) arrives and is mounted on MZI

table
2-Dec-2003 Replace LeCroy scope with integrator chip and acquire on PC

card
9-Dec-2003 Shot noise operation of free-space MZI on short timescale
11-Dec-2003 White light alignment by minimisation of MZI signal variance

induced by modulation of probe frequency
16-Jan-2004 Saturation absorption set up to monitor MOT slave lasers
10-Feb-2004 First observation of MOT phase-shift in free-space MZI
20-Feb-2004 First observation of atomic noise in free-space MZI setup
20-Mar-2004 Discovery of huge MOT-coil switching induced noise in MZI

signal
24-May-2004 MOT/FORT imaging camera arrives
1-Jun-2004 FORT laser pulsing enabled by insertion of AOM
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2-Jul-2004 Effect of MOT-coil switching removed
5-Sep-2004 Camera set up for observing FORT installed
20-Sep-2004 Microwave phase-shifter arrives
28-Sep-2004 FORT laser moved to separate table because of vibrations
9-Nov-2004 Attempts to gauge Stark shift from MOT cooler and repump
10-Nov-2004 Synchronising PC-card counters
18-Dec-2004 Fluorescence from FORT trapped atoms observed
4-Feb-2005 First observation of phase-shift from FORT trapped atoms
7-Mar-2005 PRA 71, 033803: Diffraction effects on light-atomic ensemble

quantum interface
6-Apr-2005 First try on microwave spectroscopy with horn-antenna
11-Apr-2005 PRA 71, 043807: Quantum-noise-limited interferometric

measurement of atomic noise: Towards spin squeezing on the
Cs clock transition

13-Apr-2005 Niels Kjærgaard joins the lab team
20-Apr-2005 Carlos Leonardo Garrido Alzar leaves the lab team
15-Jul-2005 Narda microwave amplifier arrives
9-Sep-2005 Ukfuto (PC) enters service
20-Sep-2005 Horn antenna replaced by sawed-off wave-guide
20-Sep-2005 Patrick Joachim Windpassinger joins the lab team
11-Oct-2005 Optical pumping implemented (only 4 → 4′)
17-Oct-2005 Apply bias field along z-axis
19-Oct-2005 Full optical pumping implemented (adding the 3 → 4′

re-pump)
5-Feb-2006 Doku-Wiki initialised
21-Feb-2006 Novel shutters (based on stripped PC hard-drives) tested and

installed
27-Feb-2006 Bias field switching implemented
6-Mar-2006 3 → 2′ probe adjusted to the right frequency
30-Mar-2006 First dichromatic probe measurement of atomic superposition

state noise: mostly quadratic noise above a large electronic
noise floor

11-May-2006 DIO-64 card enters service with new control program
1-Jun-2006 First acquisition with scope (borrowed LeCroy)
20-Jun-2006 Plamen Georgiev Petrov leaves the lab team
14-Jul-2006 Agilent scope arrives
2-Aug-2006 Hyperfine level cleaning (blow-away) implemented
16-Nov-2006 Noise measurement using parallel scope channels
22-Nov-2006 FORT laser collimation - telescope in beam
11-Dec-2006 Direct measurement of optical depth via probe-beam

absorption
13-Dec-2006 First noise measurement with up-down-superposition scheme
12-Jan-2007 AMC microwave switch enters operation
31-Jan-2007 Gamera (PC) enters service
7-Feb-2007 First clear observation of quantum projection noise in u-d-sp

scheme
6-Mar-2007 PRA 75, 033803: Nondestructive interferometric

characterization of an optical FORT
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13-Apr-2007 Changing MZI cat-eye and output coupler (on Meier mount)
1-May-2007 Fakuli (PC) becomes Godzilla
1-May-2007 New lock for MZI installed
9-May-2007 New QND detector installed (3.44 times gain + lower

electronic noise)
1-Jun-2007 Jürgen Appel joins the lab team
1-Aug-2007 Ulrich Busk Hoff joins the lab team
17-Aug-2007 New power reference detector (lower noise than original

Thorlabs)
23-Aug-2007 Discovery of incoherent background light on 4 → 5′ probe -

insert filter
1-Sep-2007 New MZI locking scheme implemented (modulated lock

beam co-propagating with probe and detected on QND
detector)

18-Sep-2007 Second Cs dispenser enters service
25-Sep-2007 Thorough investigation and characterisation of probe light

shift
8-Oct-2007 First noise measurement with reference pulses
9-Nov-2007 Thorough Ramsey spin-echo investigation of decoherence
14-Nov-2007 Increase to four state preparations per FORT loading
16-Nov-2007 AMC microwave switch breakdown
27-Nov-2007 Kahuna (PC) enters service
28-Nov-2007 Optical pump derived from 0’th order of MOT cooler slave
29-Jan-2008 Kuhne 4 W microwave amplifier installed - π pulse from

28 µs → 8 µs
30-Jan-2008 Trap dynamics and light shift phase imprints studied

thoroughly
10-Feb-2008 Probe frequencies doubled (to see if probe frequency noise

influence goes down)
12-Feb-2008 Measuring FORT light shift of probe transitions
18-Feb-2008 First measurements to find magical probe frequency

combination
14-Mar-2008 PRL 100, 103601: Nondestructive Probing of Rabi Oscillations

on the Cesium Clock Transition near the Standard Quantum
Limit

1-Apr-2008 New formulation of experimentalist life-time using atomic
destiny operators

3-Apr-2008 Power reference detector placed in probe arm
14-Apr-2008 Probe arm attenuated
8-May-2008 Minimising RF noise in pulsing AOMs shot noise operation

in 2 input configuration is achieved
20-May-2008 Discovery of beat signal between probe lasers (due to 9 GHz

sideband)
28-May-2008 NJP 10 053032: Inhomogeneous light shift effects on atomic

quantum state evolution in non-destructive measurements
8-Jun-2008 D1 line optical pumping tried out (5% better efficiency)
10-Jun-2008 First noise measurement in 2-input scheme
30-Jun-2008 First noise measurement indicating spin squeezing (∼ 3dB)
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7-Jul-2008 3rd observation of squeezing, now with setup re-aligned from
scratch

1-Aug-2008 Squeezing observed with stronger attenuation on probe arm
1-Sep-2008 Anne Marie Marthe Louchet joins the lab team
14-Oct-2008 Clock-frequency with GPS referenced synthesiser -Ramsey

spectr
18-Oct-2008 EJPD 50, 67: Echo Spectroscopy of Atomic Dynamics in a

Gaussian Trap via Phase Imprints
31-Oct-2008 Attempts on state tomography fail due to excess noise in

either mw-source or clock level splitting
11-Nov-2008 Thorough characterisation of decoherence in 2-input

configuration
10-Dec-2008 First observation of 2-photon ∆m = 2 microwave transitions
20-Dec-2008 Patrick Joachim Windpassinger leaves the lab team
4-Feb-2009 Frequency chain from 500 MHz to 9.2 GHz incorporating the

DDS is assembled and tested
4-Feb-2009 500 MHz OXCO source assembled
9-Feb-2009 Noise of CSS with/without π/2 rotation around pseudo-spin

axis using new frequency chain and Rohde-Schwarz 500 MHz
source. Classical MW phase-noise with π/2 rotation.

18-Feb-2009 Noise of CSS with/without π/2 rotation around pseudo-spin
axis using new frequency chain and OXCO 500 MHz source.
Both resolving projection noise.

3-Mar-2009 Phase-noise of OXCO based MW source measured by Ramsey
sequence. Large excess classical noise for τR > 10 µs.

11-Mar-2009 First SSS tomography attempt (0-π/2) showing huge noise
increase when state is rotated.

25-Mar-2009 Reconfigure MZI to 2-input equivalent configuration of
orthogonally polarised probe lasers entering same input and
phase-shifted by π/2 by PBS at MZI input.

1-Apr-2009 Ulrich Busk Hoff leaves the lab team
1-Apr-2009 Observation of torroidial FORT laser transverse mode
15-Apr-2009 FORT laser setup re-alignment. FORT waist 23 µm.
16-Apr-2009 Enclosure and setup for single photon detection assembled

and aligned.
24-Apr-2009 Align FORT to probe by observing FORT AC-Stark shift

when probe is set on resonance of MOT cloud (MOT turned
off briefly during probing)

7-May-2009 First clock measurement for up to 40 µs interrogation time,
showing noise reduction though not spectroscopic squeezing.

15-May-2009 Niels Kjærgaard leaves the lab team
22-May-2009 MZI balancing by feedback to memory-wire attached to

wave-plate
1-Jun-2009 Homebuilt automatic refilling of FORT laser chiller water

supply installed
10-Jun-2009 Align and test polarisation filtering and fibre link for

detection of single photon from decay of single atomic
excitation.
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26-Jun-2009 Switching between profiles stored in DDS RAM incorporated
in to scope program.

26-Jun-2009 Tomography of CSS with random switching between rotation
angles. Signal mean value oscillates with angle due to MW
intensity inhomogeneity.

1-Jul-2009 J. Mod. Opt.: Squeezing of Atomic Quantum Projection Noise
8-Jul-2009 French flag analysis of MW intensity inhomogeneity influence

on spin rotations.
23-Jul-2009 FORT waist changed to 35 µm
5-Aug-2009 First laser with Axcel laser diode (orange probe).
19-Aug-2009 MZI changed to frequency-based displacement of probe

colour fringes (path-length difference set to 1.6 cm).
2-Sep-2008 First SSS tomography with alternative 3 π/2 pulse sequence.
4-Sep-2009 FORT waist changed to 28 µm
16-Sep-2009 Incorporate DRO in to MW frequency source
30-Sep-2009 Observation of MZI fringe change with temperature in MZI

enclosure
1-Oct-2009 Jelmer Jan Renema joins the lab team
1-Oct-2009 Experimental test of composite pulses. Marred by coupling to

m′
F = ±1 levels.

2-Oct-2009 FORT laser chiller pump burns down
7-Oct-2009 Thorough comparison of frequency stability of microwave

sources
19-Oct-2009 FORT laser chiller pump replaced
10-Nov-2009 Projection noise limited Ramsey fringe section
27-Nov-2009 Squeezing lifetime measurement
30-Nov-2009 Squeezed atomic clock measurement
19-Dec-2009 arXiv: Entanglement-assisted atomic clock beyond the

projection noise limit
20-Dec-2009 Anne Marie Marthe Louchet-Chauvet leaves the lab team
1-Jan-2010 arXiv: Establishing the projection noise in a quantum

non-demolition measurement on the caesium clock transition
1-Jun-2010 Daniel Oblak leaves the lab team
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Chapter 2

Probe light pulses

We now set the stage for the great quantum play where diverse actors interact
and undergo subtle yet significant changes. The first task is to introduce the main
actors namely the optical field and the atomic ensemble, before we can proceed
to a description of their interplay. The descriptions of the optical field and the
atoms will set out with brief summaries of the main concepts and definitions
relating to these so as to provide a coherent point of departure and hopefully
rule out any notational ambiguities.

Figure 2.1: Drawing of the probe light beam
geometry: A probe beam pulse with trans-
verse Gaussian profile passing through a fo-
cal point.

The first party to the interaction is the
pulsed laser beam. As such, the op-
tical mode is characterised by a di-
rection of propagation along the wave
vector k and a transverse intensity dis-
tribution given by a Gaussian func-
tion. This complicates matters slightly
for the quantum description where a
mode is only localizable within the
quantisation volume. However, as
will be shown, the gap can be bridged
by introduction of a spatial weighing
of the field. Thereafter, the path is
open for definition of a range of useful
variables.

2.1 Photonic operators

One of the hallmarks of quantum optics is the treatment of light quantum me-
chanically rather than as a classical electromagnetic (EM) field. With the quanti-
sation of the EM field many new and intriguing properties emerge in particular
the intrinsic fluctuations related to measurements of the field properties, that
will be elaborated in Sec. 2.2. To get the quantum laser-light show on the road
we introduce the EM field potential as

Â(r, t) =
1√
v ∑

k,s

√
h̄

2ωε0

[
âk,sεk,sei(k·r−ωt) + â†

k,sε
∗
k,se

−i(k·r−ωt)
]

.

Here âk,s (â†
k,s) is the annihilation (creation) operator for a photon in the mode

characterised by the wave-vector k and polarisation εk,s. The oscillation fre-
quency of the field ω = |k|c, where c is the speed of light. The sums are over
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all allowed wave-vectors k for which there is a further sum over the two pos-
sible orthogonal polarisations s = 1, 2. The v denotes the quantisation volume,
h̄ is Planck’s-constant (divided by 2π), and ε0 is the vacuum electric permittiv-
ity. The quantum description of light and the notion of photons are inherently
connected through the operators âk,s and â†

k,s. When calculating the energy of
the EM field one gets Ĥ = h̄ω(â†

k,s âk,s + 1
2 ), where the zero-point energy h̄ω/2

will be neglected in the ensuing discussion. With the association of h̄ω with the
single photon energy it is apparent to identify n̂ph,k,s ≡ â†

k,s âk,s as the photon
number operator.

With the main field operators in place we next need to find a way to specify
the photonic state. There are a couple of suitable bases for the representa-
tion. The basis of eigen-states for n̂ph is called the Fock-basis [Fock28]. Such
a Fock state is denoted according to the expectation value of 〈n̂ph〉 = nph so that
n̂ph,k,s|n̂ph〉k,s = nph,k,s|n̂ph〉k,s. An alternative basis is spanned by the eigen-
states of the photon annihilation operator again labelled by the eigen-value
â|α〉 = α|α〉. It immediately follows that the mean photon number of a such
a coherent state [Glauber63a, Glauber63b] is k,s〈α|n̂ph,k,s|α〉k,s = |α|2, however as
will be shown in Sec 2.2 a coherent state has no definite photon number i.e. the
outcome of photon detection measurement will fluctuate around the expectation
value.

To measure the number of photons in a all modes within some volume v one
would detect the photons by some process which annihilates them i.e. what
could be described by the operator [Mandel95]

â(r, t) =
1√
v ∑

k,s
âk,sεk,sei(k·r−ωt)

We take this as a generalisation of the annihilation operator. The local photon
density operator is then n̂ph(r, t) = â†(r, t)â(r, t). Performing the integral of the
local photon density over all space it is easily verified that

∫
R3 n̂ph(r, t)δ3r = N̂ph

is fulfilled. The state vector corresponding to â(r, t) and n̂ph(r, t) is the direct
product of the states of all included modes i.e. |·〉 = ∏k,s |·〉k,s.

While the summation over all modes in a local volume is the most correct formal
procedure it is however not a particularly feasible formulation of the optical field
when examining its spatially inhomogeneous interaction with an atomic ensem-
ble. In our experimental configuration we deal with (pulsed) beams of light that
have certain limited spatial intensity distributions. Therefore, we promote an
alternative rendition of the photon number density again via the local photon
detection operator

âk,s(r) = uk,s(r)âk,sεk,s .

So that
âk,s(r, t) = âk,s(r)ei(k·r−ωt) = uk,s(r)âk,sεk,sei(k·r−ωt) . (2.1)

This introduces a time independent spatial intensity distribution of the mode
uk,s(r), which must satisfy the normalisation condition

∫
R2 |uk,s(r)|2d2r = 1 so

that 〈n̂at〉 corresponds to the number of photons within a cross-sectional slice
of the probe beam. To account for more than one mode we simply sum up
the modes i.e. â(r, t) = ∑k âk,s(r, t) and let the total state be the product of the
single mode states |·〉 = ∏k,s |·〉k,s. The local photon density is still n̂ph,k,s(r) =
â†

k,s(r)âk,s(r) with the total photon number

N̂ph,k,s =
∫

R3
|uk,s(r)|2n̂ph,k,s(r)δ3r
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Inspired by this definition we construct the total photon annihilation operator

Âk,s =
∫

R3
âk,s(r)δ3r ei(k·r−ωt) =

∫
R3

uk,s(r)âk,sδ
3r ei(k·r−ωt) , (2.2)

from which the total creation operator Â†
k,s also follows.

The intensity distribution uk,s(r) is as yet unspecified, but since we will use it to
describe laser pulses of duration tp and a Gaussian transverse profile the typical
form in radial coordinates is

uk,s(φ, r) =

√
2

πw2
p

e−r2/w2
p , (2.3)

where wp is the beam spot size. Under this condition the total photon number
for a pulse of duration tp can be expressed as

N̂ph,k,s = c
∫

R2

∫ tp

t=0
|uk,s(r)|2n̂ph,k,s(r)δ2r dt = lpn̂ph , (2.4)

which is interpreted as the photon density times an effective probe volume Vp =
πω2

a lp/2, lp = ctp being the pulse length. Clearly, the norm-square of the mode
function represents the intensity profile of the beam and we define

Ûk,s(r) ≡ |uk,s(r)|2 (2.5)

2.1.1 Schwinger operators

When light is used as a meter it is often convenient to derive a signal from some
comparison between two optical modes, be it different polarisation, spatial, or
frequency modes. In Sec. 2.3 a number of particular configurations are treated in
depth. The state of such a dual mode optical system has a favourable representa-
tion in terms of Schwinger angular momentum operators [Schwinger52], whose
components are defined in terms of the creation and annihilation operators1

ŝx ≡
1
2

(
â†b̂ + b̂† â

)
(2.6a)

ŝy ≡ − i
2

(
â†b̂ − b̂† â

)
(2.6b)

ŝz ≡
1
2

(
â† â − b̂†b̂

)
. (2.6c)

In the case of â and b̂ corresponding to orthogonal polarisation modes, ŝ =
{ŝx ŝy ŝz} is the quantum Stokes vector [Stokes52, Collett70]. In the general case
we shall refer to ŝx, ŝy, and ŝz as Schwinger operators or light pseudo-spin. The
z-component measures the photon number difference between the two fields,
while the x and y-components parametrise the phase difference between the
fields 2. We supplement the Schwinger operators with the photon number oper-
ator n̂ph ≡ n̂ph,a + n̂ph,b = â† â + b̂†b̂. Based on the commutation of â and b̂ it is
simple to determine the commutation relations for ŝ as[

ŝi, ŝj
]

= iεijl ŝl , (2.7)

1here we omit the spatial coordinate r for notational convenience and rather than indexing the
two modes by {k, s} we let them be denoted by â and b̂.

2i.e. for phases φa and φb, ŝx ∝ cos(φa − φb) and ŝy ∝ sin(φa − φb).
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while n̂ph commutes with all the ŝ components. Thus, ŝ belongs to the special-
unitary (SU2) group, indeed behaving as an angular momentum or spin opera-
tor.

Lastly, the extension of the Schwinger operators to embrace all space is analo-
gous to eq. (2.2) and may also be accomplished by substituting â → Â and b̂ → B̂
etc. in eq. (2.6). Since, e.g. ŝz ∝ â† â the integration over space will be weighed by
the square norm |uk,s|2. The components of the macroscopic Schwinger operator
Ŝ also comply with the commutations relation of eq. (2.7).

2.2 Quantum shot noise

As for any quantum system the measurement on a photonic state may be subject
to a certain quantum uncertainty or as some prefer to phrase it quantum inde-
terminacy. This is associated with the description of quantum states in terms of
wave functions which interpret as a sort of probability distribution. Thus out-
come of the measurement of a particular observable will vary according to the
width of the wave function in the basis of the corresponding operator. Generally
a lower bound for the uncertainty product of a set of operators can be inferred
from their commutation relation via the Heisenberg uncertainty inequality

〈(∆Ô1)2〉〈(∆Ô2)2〉 ≥ 1
4

∣∣∣〈[Ô1, Ô2
]〉∣∣∣2 . (2.8)

By the variance 〈(∆Ô)2〉 we mean the quantity 〈Ô2〉 − 〈Ô〉2. Quantum states for
which the product of the operator variances on the l.h.s. is equal to the r.h.s. are
appropriately named minimal uncertainty states.

Using the commutators in eq. (2.7), we find the uncertainty inequality for the
Schwinger operators to be

〈(∆Ŝi)2〉〈(∆Ŝj)2〉 ≥ 1
4

∣∣∣〈[Ŝi, Ŝj
]〉∣∣∣2 = ε2

ijl
〈Ŝl〉2

4
, (2.9)

Without any specification of the expectation values of the various components
this is a rather weak limit. Fortunately the actual uncertainties are easily cal-
culated for almost any photonic states. For coherent photonic states the uncer-
tainties of the the Schwinger operator components may directly calculated using
the fact that the coherent state is an eigen-state of the creation and annihilation
operators and the relation â â† = â† â + 13. The result obtained is plainly

〈(∆Ŝi)2〉 =
1
4

Nph . (2.10)

Hence, the coherent state is a minimum uncertainty state for the spin compo-
nents on the l.h.s. if the r.h.s. is equal to Nph/16, which is only the case if the
remaining spin component attains the maximal expectation value 〈Ŝl〉 = N̂ph/2.

The uncertainty relation Eq. (2.9) allows for other (unbalanced) distributions of
the uncertainty. Examples of states generating such distributions are squeezed
states that fulfil eq. (2.9), but which have smaller uncertainty of one component
at the expense of more uncertainty in another. Further, examples and discussion
are given in sec. 3.5

3which demonstrates the non-Hermitian nature of the photon counting operator
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2.3 Mode configurations

We will now examine particular configurations of the two-mode photonic system
expressed in terms of Schwinger operators. For this treatment it is not necessary
to keep track of the spatial mode distribution owing to which we will phrase the
discussion in terms of the total field operators Â, B̂, etc. In the next section we
examine a Mach-Zehnder interferometer (MZI) setting where the two modes are
spatially separated in the MZI arms. In sec. A.6 we study two separate frequency
modes propagating along the same geometric path. The two configurations serve
the common purpose of being able to measure changes in the differential phase
of the two fields, thus relating to the Ŝx and Ŝy Schwinger operator components.

2.3.1 Mach-Zehnder interferometer configuration

We will go through the MZI in two steps; first outlining the behaviour of an
ideal MZI and subsequently including imperfection such as losses and mode-
mismatch. This procedure may seem a bit cumbersome, however the purpose is
first to develop an intuitive understanding of the MZI in the Schwinger operator
formalism and only then adding all the relevant effects that result in a more
complex and realistic description.

2̂c

1̂c
b̂

1̂d

r2,t2â

i-
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D2
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Figure 2.2: Sketch of the MZI configuration.

The MZI configuration is sketched in fig. 2.2. At any given stage of propagation
through the MZI we may identify pairs of fields from which we can construct
Schwinger operators cf. Eq. (2.6). From the input fields Ĉ1 and Ĉ2 we get Ŝin,
from Â and B̂ we get Ŝ, finally D̂1 with D̂2 yield Ŝout. As sketched on fig. 2.2 the
photo-currents impinging on the two output detectors D1 and D2 are subtracted
from one another generating a difference signal ı̂− that is proportional to Ŝout

z .4

Obviously the Schwinger operators at different stages are interrelated through
the well known transformation of the field operators e.g. at a BS Â = tĈ1 + irĈ2,
where the BS reflection r and transmission t must fulfil r2 + t2 = 1. A thorough
derivation of the transformations is presented in Appendix A. In the below we
present the essential equations and draw out the most important observations.

4In this section we highlight the quantum nature of the photo-current by adding the ·̂. In
later sections we will not be so stringent and indeed when classical noise influences the signal the
”quantumnes” is but one feature.
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It turns out that in the ideal case of a loss-less interferometer with perfectly spa-
tially overlapped modes at the output, the evolution of the Schwinger operator
Ŝ as it propagate through the MZI can be described by a set of rotations. The
effect of a BS can be described by the matrix Mβ which turns out to represent a
rotation

Ŝ′ = MβŜ , Mβ =


1 0 0

0 r2 − t2 2rt

0 −2rt r2 − t2

 =


1 0 0

0 cos β sin β

0 − sin β cos β

 (2.11)

The last equality comes about by defining the angle β

β = arctan
(

2rt
r2 − t2

)
= arctan

(
2r
√

(1− r2)
2r2 − 1

)
, (2.12)

from which we see that if r = 1 or r = 0 then β = 0, but when r = t = 1/
√

2 ⇒
β = π/2. That is to say that a 50/50 BS has the effect of rotating Ŝ by 90o around
the x-axis, effectively interchanging the Ŝy and Ŝz components. For any other
beam-splitter the rotation will result in a mixing of the incident Ŝy and Ŝz, but
still leaving Ŝx unaffected

Going a step further one may recall that spin components belonging to the SU2
group (spin 1

2 systems) are generators of rotations [Sakurai94] in the sense that
we can write up a unitary operator Ûβ corresponding to Mβ, which transforms
the operators in the Heisenberg picture

Ŝ′ = Û†
βŜÛβ = eiβŜx Ŝe−iβŜx , (2.13)

When phrased in terms of unitary operators it is undemanding to investigate
how subsequent transformations commute.

Similarly as for the BS, we can create a transformation matrix for the propagation
of two fields with a definite phase relationship, such as the fields Â and B̂ in the
two arms of the MZI. The result is

Ŝ′x
Ŝ′y
Ŝ′z

 =


cos φ sin φ 0

− sin φ cos φ 0

0 0 1




Ŝx

Ŝy

Ŝz

 = MφŜ . (2.14)

This transformation matrix has the same properties as Mβ and can clearly also
be regarded as rotation of Ŝ by an angle φ = k∆l. However, this time around the
z-axis [fig. 2.3c)]. Therefore, the unitary transformation operator is given by

Ŝ′ = Û†
φŜÛφ = eiφŜz Ŝe−iφŜz , (2.15)

With this in hand we can now model the whole interferometer in the Schwinger
operator formalism. we use the notation that β1 together with r1 and t1 are
parameters of the first beam-splitter, whilst β2, r2 and t2 are related to the second
beam-splitter and ∆l is the path-length difference between the two arms. We can
calculate the full interferometer transformation as

Ŝout = MMZIŜin = Mβ2MφMβ1Ŝin , (2.16)

Needles to say, the general transformation matrix is rather bulky and not par-
ticularly informative. Hence, it will not be written out here, but it is stated in



2.3 Mode configurations 25

eq. (A.4). It suffices to state the transformation in the case of a symmetrical
interferometer i.e. with 50/50 splitting ratios on both beamsplitters

M(50/50)
MZI =


cos φ 0 sin φ

0 1 0

sin φ 0 − cos φ

 (2.17)

The detected difference signal is thus given by ı̂− = 2εŜout
z = −2ε cos φŜin

z with
ε the detector’s quantum efficiency. Hence, the mean expectation value of the
signal is 〈ı̂−〉 = ±ε cos φNph, where the sign depends on whether Ĉ2 or Ĉ1 is in
the vacuum state. As we anticipated, the difference signal provides a measure
for the phase difference between the probe and reference MZI fields. Suppose we
wish to gauge a small displacement of the phase difference φ0 + φδ and assume
we can peg the mean shift φ0 = π/2. It follows that, the phase-displament can
be determined from the signal as φδ = ± arcsin(ı̂−/(εNph)) ≈ ±ı̂−/(εNph).
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za) b) c)

Figure 2.3: Schwinger operator transformation in the MZI. a: π/2 rotation around x-
axis on first BS. b: rotation by φ around z-axis during free propagation in MZI. c: π/2
rotation around x-axis on second BS.

Now to utilise the representation of the MZI as a set of rotations of a vector we
will illustrate the evolution of the Schwinger operator. At the input all photons
are in one of the input arms, say in Ĉ1, and 〈Ŝin〉 is oriented along the positive
z-axis. Upon passage through the first 50/50 BS the vector is rotated by π/2
around the x-axis so that 〈Ŝ〉 becomes aligned along the y-axis. Next the fields
propagate through the interferometer arms acquiring a phase difference φ which
causes a equivalent rotation around the z-axis with the result that 〈Ŝx〉 ∝ sin φ

and 〈Ŝy〉 ∝ cos φ, while 〈Ŝz〉 = 0. The final π/2 rotation around the x-axis
by the output BS maps Ŝy onto Ŝout

z , and vice versa, so that 〈Ŝout
z 〉 ∝ cos φ and

〈Ŝout
y 〉 = 0. Hence the output difference photo current ı̂− = 2εŜout

z effectively
measures the phase difference accumulated between the fields in the probe and
reference arms of the interferometer. Thus any change of physical path-length or
refractive index in either of the arms will be detectable as a change in the output
signal. Since an atomic sample can affect the refractive index in the probe arm
this will provide the way to measure properties of the atomic sample.

An important limitation to the measurement capability of the MZI is the quan-
tum shot noise of the light. As investigated in Sec. 2.2 the shot noise is pro-
portional to the combined number of photons in the two fields and, since we
have yet to consider losses, that is simply equal to one fourth of the number of
photons entering the input port of the MZI

〈(∆ı̂−)2〉SN

4
= ε2〈(∆Ŝout

z )2〉SN = ε2 Nph

4
. (2.18)
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In Appendix A.4.1 a the output shot noise is explicitly written in terms of the
input fields and Eq. 2.18 is verified. The highest sensitivity for measuring a
phase displacement φδ is achieved by setting φ0 = π/2. The shot noise, on the
other hand, is as required independent of the MZI phase φ with 〈(∆φ)2〉SN =
〈(∆ı̂−)2〉/(εNph)2 = N−1

ph , implying that the phase-resolution of the MZI in-
creases with the photon number. The optimal signal to noise ratio for determin-
ing the phase-shift is thus

SNR =
〈φ2

δ〉
〈(∆φ)2〉SN

= Nph〈φ2
δ〉 , (2.19)

i.e. increasing linearly with Nph.

Two colour MZI

In most of the theoretical and experimental investigation of the interaction with
atoms we will require two sets of modes, which are distinguishable by having
different frequencies. This frequency difference we will often refer to as different
colours. Hence, at input one we will have the modes Ĉ1,3 and Ĉ1,4, where the
3 and 4 subscript indicates the frequency mode of the field. Since, the modes
are separated in frequency the two colours do not interfere at the output and
the output Schwinger operator is simply the sum Ŝout

z = Ŝout
z3 + Ŝout

z4 , which by
eq. (2.17) becomes

Ŝout
z = − cos φ(Ŝin

z,3 + Ŝin
z,4) (2.20)

If 〈Ŝin
z,3〉/〈Ŝin

z,4〉 > 0 the output signal from the two modes will add, but if oppo-
sitely the 〈Ŝin

z3〉/〈Ŝin
z,4〉 < 0 they will subtract. In the latter case if 〈Ŝin

z,3〉 = −〈Ŝin
z,4〉

the output fringe will actually be cancelled. This case corresponds to a coher-
ent part of each colour entering different ports, i.e. 〈Ĉ†

1,4Ĉ1,4〉 = Nph/2 and
〈Ĉ†

2,3Ĉ2,3〉 = Nph/2.

It turns out that the fringe cancellation is worth achieving and we will come
with a few more suggestions as to how it can be generated. The above equation
is only valid if the MZI path-length difference is small, otherwise on would have
to write

Ŝout
z = − cos(ω3∆l/c)Ŝin

z,3 − cos(ω4∆l/c)Ŝin
z,4 (2.21)

= − cos[(ω3 + ω4)∆l/c] cos[(ω3 −ω4)∆l/c]Nph (2.22)

where for the last equality we set 〈Ŝin
z3〉 = 〈Ŝin

z4〉. This reveals that we can cancel
the signal for small displacements of the phase if we misalign the MZI by ∆l =
cπ/(ω3 − ω4). In that case the last cosine factor suppresses the fringe. The
frequency difference between the two colours is in our case around 9.192 GHz,
which prescribes the path-length difference to be set to ∆l = 16 mm. As long as
the phase or path-length displacements around ∆l are small this configuration
is equivalent to the 2-input configuration and the output signal behaves as if
〈Ŝin

z3〉 = −〈Ŝin
z4〉. Consequently, we coin the configuration 2-input equivalent.

Another 2-input equivalent configuration relies on the two colours being in or-
thogonal polarisation modes. Since, we have only used this method briefly, we
will only sketch the idea. The essence is that upon reflection on a mirror s and
p-polarised light will acquire different phase-shifts. If we input two orthogonal
circular polarisations on a PBS we can ensure that half of the light from each
probe goes into each MZI arm. Moreover, the polarisation of the two colours
will be the same in both arms, however the optical oscillations will be π out of
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phase. The resulting fringes at the output will also be out of phase by π and we
have recreated the condition 〈Ŝin

z,3〉 = −〈Ŝin
z,4〉.

All three 2-input type configurations rely on the modes achieving a phase-shift
of π w.r.t. each other. In the first, where the modes are spatially separated at
the input, and the second, where the modes are separable by their polarisation,
the π phase-shift is supplied by the input BS. In the final we use that the modes
can be separated by virtue of their different colour and the π phase is acquired
through propagation in the MZI arms.

MZI with imperfections

The analysis of the MZI has so far not taken into account the many imperfec-
tions of the setup from losses in the arms to imperfect mode overlap at the output
beamsplitter. Equipped with a basic understanding of the MZI description it is,
however, time to include these imperfections and thereby approach a more real-
istic description. Unfortunately, the simple representation of the MZI in terms
of rotations on the 〈Ŝ〉 is no longer strictly possible as additional fields come in
to play.
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2̂d
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v̂â â’
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D2

Figure 2.4: Sketch of the MZI configuration with losses and imperfect mode overlap.

Figure 2.4 outlines the amended picture. Following the splitting in the first BS
the fields encounter various losses. We restrict our attention to losses in the
probe arm only as these are consistently larger than those in the reference arm.
The losses are modelled by a beamsplitter with reflection ρ and transmission τ,
thus adding a vacuum component to the probe arm field Â′ = τÂ + iρV̂. With
the reference arm field unaltered, B̂′ = B̂, we find the loss transformation of the
Schwinger vector to be (Appendix A.3.3)

Ŝ′x =τŜx + ρŜvb
y

Ŝ′y =τŜy − ρŜvb
x (2.23)

Ŝ′z =τ2Ŝz + ρ2Ŝvb
z + ρτŜva

y ,

where we resort to the vacuum admixed operators defined as Ŝvb
x = 1

2 (V̂†B̂ +
B̂†V̂), Ŝvb

y = −i
2 (V̂†B̂ − B̂†V̂), Ŝvb

z = 1
2 (V̂†V̂ − B̂†B̂), and similarly for the combi-

nation of V̂ and Â. The effect of the losses on 〈Ŝ〉 is depicted on fig. 2.5a), where
we assume that the first BS is symmetric such that the incident Schwinger vector
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Figure 2.5: Schwinger operator transformation in the MZI. a: . b: rotation by φ around
z-axis during free propagation in MZI. c: π/2 rotation around x-axis on second BS.

is representation by fig. 2.3a). As 〈Ŝvb
x 〉 = 〈Ŝvb

y 〉 = 0, the expectation values of Ŝx

and Ŝy are simply scaled down by τ i.e. 〈Ŝ′x〉 = 0, still, while 〈Ŝ′y〉 = τNph/2.
The component 〈Ŝz〉 attains an extra contribution ρ2〈Ŝvb

z 〉 = −(1− τ2)〈B̂†B̂〉/2.
Explicitly writing out the fields one discovers 〈Ŝ′z〉 = τ2〈Â† Â − B̂†B̂〉/2− (1−
τ2)〈B̂†B̂〉/2 = (τÂ† Â + B̂†B̂)/2, which, in fact, is proportional to the photon
number difference after the probe arm attenuation.

During free propagation the probe and reference fields pick up a phase differ-
ence φ resulting in the Schwinger operator illustrated in fig. 2.5b at the input of
the final BS. The imperfect mode overlap on the output BS5 is modelled as an
equal loss R of each of the incoming fields. The transmitted part of the fields are
taken to be perfectly overlapped on the output BS while the lost parts are taken to
be overlapped with vacuum fields on the output BS (fig. 2.4). Hence, each output
comprises three fields e.g. in one output D̂1 = t2(T Â′+ iRV̂a)+ r2(iT B̂−RV̂b) ,
D̂(a)

1 = t2(iRÂ′ + T V̂a), and D̂(b)
1 = r2(−RB̂ + iT V̂b). Accordingly, three output

Schwinger vectors are required to describe the transformation in the imperfectly
mode overlapped BS. All the components are written out in eq. (A.3) of Ap-
pendix A.3.4. At this point it is adequate to present the expectation values in the
symmetric output BS case. In this case, 〈Ŝout

x 〉 = T 2〈Ŝx〉, 〈Ŝout
y 〉 = T 2〈Ŝy〉, and

〈Ŝout
z 〉 = T 2〈Ŝy〉, which is merely the normal BS eq. (2.11) multiplied by T 2. Of

the additional non-interfering (mode mismatched) output Schwinger operators
only the y-components are non-zero in the symmetric BS case. These, however,
are not detected and thus of little interest. The main observation is that the z-
components of the non-interfering parts have zero expectation values and thus
do not add any offset to the signal. In fig. 2.5c) the outcome of the non-perfect
mode overlap on a symmetric output BS is illustrated.

The output signal ı̂−/2 = ε(Ŝout
z + Ŝout,a

z + Ŝout,b
z ) can now be traced back to the

input fields and for the expectation value we attain

〈ı̂−〉
2

= ε(〈Ŝout
z 〉+ 〈Ŝout,a

z 〉+ 〈Ŝout,b
z 〉) = −εT 2τ cos φ〈Ŝin

z 〉 . (2.24)

One notes that the signal is more sensitive to mode mismatch than losses in
one of the arms. We shall see, the fact that the losses occur in the probe arm
actually means that they do not compromise the measurement sensitivity. Again
we suppose that we wish to measure a phase-shift φδ which will be reflected in
the output as 〈ı̂−〉 = ±T 2τ cos(φ0 + φδ)Nph. Locking φ0 = π/2 we achieve the

5Since at the input BS on incident field is in a coherent mode and the in the vacuum mode
these are always perfectly mode matched.
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optimal sensitivity to the phase-shift and from the detected signal we may infer
φδ =≈ ±ı̂−/(εT 2τNph).

The signal is to be compared with the shot noise in the detected output difference
signal. This now depends on the losses in the probe arm ρ and the amount of the
input light split into the probe arm, that is on t1. Depending on the fraction of
the total photon number lost into undetected modes the output shot-noise will
decrease. More precisely the shot-noise is given by

〈(∆ı̂−)2〉SN

4
= ε2〈(∆Ŝout

z )2〉SN = ε2 (1− ρ2t2
1
) Nph

4
. (2.25)

Which is — fortunately — exactly the number of photons surviving to the out-
put.

In phase-shift units, at the maximal sensitivity and specialising to the case of
t1 = 1/

√
2, the shot-noise becomes

〈(∆φ)2〉SN ≈
〈(∆ı̂−)2〉

(εT 2τNph)2 =
1 + τ2

2ε2τ2T 4
1

Nph
. (2.26)

One may rightfully ponder why the phase-noise scales with the MZI mode over-
lap, when in eq. (2.25) we affirmed that the shot-noise is proportional to the total
number of photons reaching the detectors, a quantity that does not depend on
the MZI visibility. The reason is that by translating the noise in to phase-units
we assume that all shot-noise has come in the form of phase fluctuations. This
is, however, only true if the mode overlap is T = 1. In the case of non-perfect
mode overlap some shot-noise will come as intensity noise and by translating in
to phase-units we artificially boost the phase fluctuations. As luck would have
it, this is of no major concern because irrespective of the form the shot noise has
it limits the phase-sensitivity of the MZI. We convey this by the signal to noise
ratio which becomes

SNR =
〈φ2

δ〉
〈(∆φ)2〉 SN

=
2τ2T 4

1 + τ2 Nph〈φ2
δ〉 (2.27)

This expression however does not truly reveal the implications of probe arm
losses. An experimental limitation that will be discussed in great detail subse-
quently (see sec. 4.1 and sec. 5.2.2) is that there is a limit to the tolerable number
of photons in the probe arm due to the destruction of the atomic state they cause.
Typically, one can work out an optimal number of photons Nph,a,0 for the inter-
action with the atomic sample. If then, the probe arm losses are inflicted prior to
the passage through the atomic sample the losses offer an additional degree of
freedom. By increasing the losses it is possible to increase the overall input pho-
ton number of the MZI while maintaining the number of photons passing the
atomic sample. If for τ = 1 the probe arm photon number is the desired Npha,0

then the the input photon number is fixed to τ by 1
2 τ2Nph = Nph,a,0. Including

this relation in to eq. (2.27) we can express the shot noise level as

〈(∆ı̂−)2〉SN

4
= ε2〈(∆Ŝout

z )2〉SN = ε2
(

1 +
1
τ2

)
Nph,a,0

4
(2.28)

Similarly by eq. (2.27) we get for the SNR

SNR =
4T 4

1 + τ2 Nph,a,0〈φ2
δ〉 , (2.29)
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Figure 2.6: Scaling of factor in SNR as
function of probe arm transmission.

The factor making up the fraction is plot-
ted on fig. 2.6. This highlights one ad-
vantage of attenuating the probe arm that
it is possible to achieve up to a factor of
two increase in the SNR as compared with
the loss-less MZI. Note that to compare
with the SNR expression for the symmet-
ric loss-less interferometer eq. (2.19), one
has to replace Nph = 1

2 Nph,a,0 so as to ap-
ply the condition of fixed probe arm pho-
ton number. Equation eq. (2.29) is equiv-
alent to the familiar result of applying a
local oscillator to amplify the quantum
properties of a probe beam. Naturally,
there will be technical limitations to the
possible input probe power, due to classi-

cal noise sources (see sec. 6.1) and detector saturation (see sec. 8.2.1). From a
practical perspective it is worth noting that for a balanced input BS the probe
arm transmission is equal to the power ratio between the probe and reference
MZI arms.

Phase fluctuations in output signal We will now look at the phase-noise ex-
pression above from a slightly different perspective. As noted above the aim of
constructing a MZI is the phase φ as precisely as possible. The phase φ arises
from a difference in the optical path-length between the two arms. This can be
influenced by e.g. physical displacements of the path-length or changes in the
index of refraction in the beam path. The latter is essentially how we will detect
the properties of the atomic sample placed in the probe arm (sec. 4). Because
of the range of possible perturbations, φ will fluctuate around some mean value
i.e. we again write φ = φ0 + φδ, where the mean of φδ is zero. This will naturally
add noise to the MZI output signal, which according to eq. (A.9) amounts to

〈(∆Ŝout
z )2〉 = 〈(∆Ŝout

z )2〉SN + 〈(∆Ŝout
z )2〉φδ

=
(
1− ρ2t2

1
) Nph

4
+ T 4τ2 sin2 φ sin2 β1

N2
ph

4
〈(∆φδ)2〉 , (2.30)

The mode overlap has a profound influence on the sensitivity to phase fluctua-
tions. The first beamsplitter ratio and the probe arm loss also dampen the phase
fluctuations but at the same time the shot noise is reduced by a factor which is of
the same order. Finally, the phase-fluctuations propagate most effectively to the
output signal when the mean interferometer phase is set to φ0 = π/2 such that
sin2 φ = 1. If we consider consider the shot-noise to be an unwanted noise which
masks our signal in the form of the noise resulting from phase fluctuations the
we can write a SNR as

SNR =
T 4τ2 sin2 β1

1− ρ2t2
1

sin2 φ Nph〈(∆φδ)2〉 , (2.31)

which to our great content is the equivalent to eq. (2.29) when we set t1 = 1/
√

2
and φ0 = π/2 and noting that since per definition 〈φδ〉 = 0 we have 〈(∆φδ)2〉 =
〈φ2

δ〉.
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Atomic ensemble

Now enter the other party to the interaction, the atomic ensemble in the form of
a dipole trapped cold sample of caesium atoms. The geometry of the sample,

Figure 3.1: Drawing of the atomic ensemble
and the light beam geometry.

illustrated by fig. 3.1, resembles a
cucumber1 with radially symmetric
Gaussian density distribution. The
actual aspect ratio of the sample is
around 10-15. The aim of this sec-
tion is to find the most useful formu-
lation for the continuous atomic op-
erators for the whole ensemble to be
conveniently utilised in the descrip-
tion of the quantum interaction with
light pulses. This involves consider-
ing the spatial profile of the sample
and the probe light and combining the
internal atomic operators.

3.1 Atomic variables

We start out with some geometric considerations, which apply to any operator
of the atoms. An operator belonging to a specific atom (k) we denote as ô(k)

and rk specifies its position. From this one can construct continuous atomic
operators [Sørensen08, Hammerer09]

ô(r) = ∑
k

ô(k)δ(r− rk) , (3.1)

where the sum is over all atoms k in the ensemble. Along these lines, the classical
atomic number density is defined as

nat(r) = ∑
k

δ(r− rk) . (3.2)

This number density is specified for a specific set of atomic positions. However,
the position of a particular atom in the sample is in general random. Hence, we
can specify a the number density nat(r) averaged over the random locations of

1That is one that meets the steepest straightness requirements according to the EU quality
standards for cucumbers [EU88]
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the atoms and since this is now a continuous distribution we can ascribe some
functional dependence N (r) to it

N (r) = nat(r) (3.3)

Generally there is no practical need to distinguish between nat(r) and nat(r) and
we will not hesitate to substitute nat(r) for the density distribution N (r) when
this is convenient. To obtain operators for the whole ensemble of atoms it seems
natural to integrate the continuous operators over all space i.e.

Ôtot =
∫

R3
d3r ô(r) =

∫
R3

d3r ∑
k

ô(k)δ(r− rk) = ∑
k

ô(k) . (3.4)

The total ensemble operators can also be specify using the number density dis-
tribution N (r). If the operator refers to some internal atomic degree of freedom
that is without spatial dependence one can simply pull ôr out and perform the
volume integral over N .

In our experiment the atomic density distribution may be approximated with a
cylindrically symmetric Gaussian distribution (see appendix E.1) that extends a
length l along the z-axis

N (φ, r, z) = N0 e−2r2/w2
a 1[−la/2,la/2](z) , (3.5)

where wa is the Gaussian width and la the length of the sample and the in-
dicator function 1[−la/2,la/2](z) is 1 for −la/2 � z � la/2 and is 0 elsewhere.
As a sample operator we take the single atom identity operator Îk which has
expectation value 1 for any and all atoms. The continuous operator where
n̂at(r) = ∑k Îkδ(r − rk) is then logically the operator for the atomic density i.e.
〈n̂at(r)〉 = N (r). Completing the integral in eq. (3.4) we get

Ntot =
∫

R3
d3r〈n̂at(r)〉 =

∫
R3

d3rN0 e−2r2/w2
a 1[−l

2 , l
2 ](z) = N0

π

2
ω2

a la , (3.6)

which indeed corresponds to the total number of atoms within a Gaussian dis-
tribution of width ωa and a peak density of N0.

However intuitive the above definition may be, it is not well suited for the exper-
imental conditions. The main issue is that the ensemble operator from eq. (3.4)
weighs all atoms equally, whereas in the experiment atoms at different points
in space are observed with different weights due to the spatial profile of the
probe (fig. 3.2). To account for this one may introduce a mode function Um(r)
proportional and substitute ô(r) → ô(r)Um(r), so that an amended definition of
the ensemble operator becomes [Sørensen08, Hammerer09]

Ôm =
∫

R3
d3r ô(r) Um(r) . (3.7)

which we coin the mode-restricted operator. In the case where the the mode m is
that of the probe beam we merely refer to it as an effective atomic operator. Hereby,
the atoms interacting most with the probe, and thus contributing more to the
detected probe signal, are also contributing most to the ensemble operator. The
virtues of this definition will become more clear when we calculate the effects of
the atom-light interaction (see discussion at the end of sec. 4.2). Unfortunately,
there is no simple way to expand the total ensemble operator in terms of mode
restricted operators. Even though the mode-functions Um(r) form a complete set
it is unfortunately so that

∑
m

Ôm = ∑
m

∫
R3

d3r ô(r) Um(r) 6= Ôtot . (3.8)



3.2 The atom 33

Only if N (r) is independent of the transverse coordinates can the last negation
be replaced by an equality. When dealing with the interaction of the probe with
the atoms this restriction poses some difficulties. Particularly, the atoms will
interact with other field modes, and though these will be vacuum modes they
couple noise into the atomic variables. We will return to this issue in sec. 4.1.
Lastly, though the definition eq. (3.7) is quite natural it is by no means the only
imaginable one [Kjærgaard08].

Figure 3.2: Atom and probe geometry - non-exaggerated.

An example that relates to the experimental configuration is of a probe with
Gaussian profile in the x and y directions and to a reasonable approximation a
constant strength in the z direction (eq. (2.3)). Thus, in cylindrical coordinates
the mode function is

U(φ, r, z) = e−2r2/w2
p , (3.9)

where, again, wp is the characteristic width of the probe. Thus, operators receive
a weight from 0 to 1. It is not appropriate to normalise U(φ, r, z) as is evident in
the limit where the probe profile is much broader than the atomic ensemble and
all atoms should be weighed by unity. Hence, from eq. (3.7) the corresponding
ensemble operator is

Nat = 〈N̂at〉 =
∫

R3
d3r〈n̂at〉 U(r)

=
∫ 2π

0
dφ
∫ ∞

0
dr
∫ ∞

−∞
dzN0 r e−2r2(1/w2

p+1/w2
a)1[−la

2 , la
2 ](z) (3.10)

= N0
π

2
w2

a la
w2

p

w2
p + w2

a
.

The operator N̂at represents an effective atomic number. If we introduce a the
ratio rw = wp/wa it is clear that N̂at equals the atomic density times an effective

probed volume of the ensemble V = πla
w2

a
2

r2
w

1+r2
w

. The total number of atoms in

the ensemble is related to the effective atom number simply by N̂at = N̂tot
r2

w
1+r2

w
.

3.2 The atom

To take the definition a step deeper and specify relevant operators ô(k) we will
investigate the internal degrees of freedom of the atoms, namely the energy lev-
els corresponding to different electronic states. The alkali metal caesium has a
single valence electron in the h-shell making it a comparatively simple system
to study. We are almost exclusively concerned with the 62S1/2 ground level and
the fine-structure level 62P3/2 though we will also touch upon the fine-structure
level 62P1/2 (fig. 3.3). The optical transition between the ground state and the
62P3/2 and 62P1/2 levels are called the D1 and D2-lines. Each of these 3 levels
are further split by the hyperfine structure according alignment of the electron
with the total nuclear spin characterised by the F quantum number. The hy-
perfine splitting between the levels ranges from ≈ 100 MHz to almost 10 GHz
between the two ground levels. Indeed it is the hyperfine ground level pair
which makes Cs especially interesting, as the energy splitting between them cor-
responds to the photon frequency that has been chosen as a universal reference
frequency. Hence, all timekeeping relies on the precise measurement of the tran-
sition frequency between these ”clock levels” of Cs. Application of a magnetic
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field will cause the degeneracy of the Zeeman sub-levels to be lifted as the level
energies are shifted by the linear Zeeman effect according to the mF quantum
number [Steck08]

δlωF,mF = µB gF mFB = ±2π 350
kHz

Gauss
mFB , (3.11)

where µB is the Bohr magneton, and the Landé hyperfine-structure factors gF=3 =
−gJ/8 and gF=4 = gJ/8, where gJ is the Landé fine-structure factors. The ± is
due to gF=4 = −gF=3 which gives rise to the level shifts illustrated in the subfig-
ure of fig. 3.3. With mF = 0 the clock levels are exempt from the linear Zeeman
shift, and only experience a quadratic shift and are therefore more resilient to
magnetic field fluctuations

δqωclock = δqω4,0 − δqω3,0 =
µ2

B(gJ − gI)2

2ωhfs
B2 = ±2π 427.45

Hz
Gauss2 B2 (3.12)

The atomic state corresponding to an energy level follows the conventional
”bra” 〈·| ”ket” |·〉 notation [Dirac58] with e.g. the lower clock state written
as |F = 3, mF = 0〉 ≡ |3, 0〉 where ’k’ indexes the atom. When the Zeeman
level is apparent from the context the mF index will sometimes be excluded
for notational convenience. The quantum state of an atom is written as linear
combination of the basis states (levels) |ψ〉k = ci|i〉k + cj|j〉k + .... The atomic
state will, furthermore, be conveniently characterised by the state matrix ele-
ment ρ̂

(k)
ij = |i〉k〈j|. The expectation value of the diagonal matrix elements are

k〈ψ|ρ̂
(k)
ii |ψ〉k = |ci|2, which are the probabilities that a measurement of the atom

will return the atom in the i’th level. For an ensemble of uncorrelated atoms
all in the same state the extension to a continuous density matrix operators ρ̂i,j
operator follows directly from eq. (3.1). The collective atomic state is then said
to be pure. A mixed collective state refers to the case where atoms are in some
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statistical mixture of single atom states, i.e., each atom is in the state |ψα〉 with a
probability vα, the density matrix definition is augmented

ρ̂i,j(r) = ∑
α

∑
k

vαρ̂
(k)
ij δ(r− rk) . (3.13)

The diagonal elements still represent the local-ensemble average probability to
measure the atom in the respective levels. The extension to the density operator
for the whole ensemble obeys eq. (3.7), with no added remarks.

3.3 Pseudo-spin

In this section we introduce a set of operators that conveniently describe a gen-
eral system of 2 levels, which in our case will be the clock levels |3〉 and |4〉.
The four density matrix elements of the two level system in reality only contain
three degrees of freedom since ∑i=3,4 〈i|ρ̂ii|i〉 = 1. Thus, it is not surprising that
the atomic state is equally well characterised by a set of three operators. To keep
the notation simple we suppress the spatial coordinates of the operators. The
operators defined in terms of the density matrix elements are

f̂x =
1
2

(ρ̂34 + ρ̂43) , (3.14a)

f̂y = − i
2

(ρ̂34 − ρ̂43) , (3.14b)

f̂z =
1
2

(ρ̂44 − ρ̂33) . (3.14c)

From these definitions and the fact that we take {|3〉, |4〉} to be an ortho-normal
basis for the system, we easily get the commutation relations[

f̂i(r), f̂ j(r′)
]

= iεijl f̂l δ(r− r′) , (3.15)

where εijl is the Levi-Civita tensor.2 The commutation relations show the equiva-
lence of the operators of eq. (3.14) with the Cartesian components of a spin [Feynman57,
Itano93]. Thus the vector f̂ = f̂x, f̂y, f̂z is coined a pseudo-spin vector. Addition-
ally, we (re)define the population operator as n̂at = ρ̂44 + ρ̂33. A mixed state is
equally well represented by the pseudo-spin with the density operator defined
according to eq. (3.13). Finally, the collective total ensemble pseudo-spin vector
F̂ and population operator N̂at are defined according to eq. (3.7).

3.3.1 Bloch sphere representation

A convenient way to illustrate the atomic state is with the generalised Bloch
sphere [Bloch46], which basically is the mapping of the pseudo-spin vector. Why
we refer to this as a sphere is not immediately evident, but later in Sec. 15.1
we will argue that under unitary transformations the length of the pseudo-spin
vector remains unchanged. However, the individual components can alter, and
the pseudo-spin vector will trace out a path on the surface of a sphere. To
illustrate this picture we treat a few collective atomic states.

2εijl = 1 for (i, j, l) = (x, y, z), (y, z, x), (z, x, y), εijl = −1 for (i, j, l) = (y, x, z), (z, y, x), (x, z, y)
and 0 otherwise.
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Figure 3.4: Bloch sphere representation of a) single atom or collective coherent states
corresponding to pseudo-spin alignment along the axes and b) collective atomic Dicke
states corresponding to a couple of illustrative parameter choices.

Coherent states One set of collective states are product states where the ensem-
ble state is simply a product of identical single atom states, i.e., |ψ〉 = ∏k |ψ〉k.
The product states are a subset of the atomic Coherent states, which we will
return to below. A general superposition state of 〈n̂at〉 = nat atoms3 written as
|ψ〉k = cos θ

2 |4〉k + eiφ sin θ
2 |3〉k, produces the expectation values

〈 f̂x〉 =
nat

2
sin θ cos φ , 〈 f̂y〉 =

nat

2
sin θ sin φ , 〈 f̂z〉 =

nat

2
cos θ . (3.16)

Thus, the product state is conveniently characterised by the two angles φ of the
projection in the equatorial plane and θ. Alternatively, the state can be denoted
by the projection of f̂ on the z-axis and the complex phase φ in the equatorial
plane. These two values can be condensed into a complex number z ≡ cot θ

2 eiφ

where 〈 f̂z〉 = (|z|2 − 1)/(1 + |z|2) and the state is then labelled | 12 , z〉. The first
index allows for a generalisation to all coherent states written as |l, z〉, where
l = 0, ..., nat prescribes the length of the vector4. In general we avoid writing
specific states in the |l, z〉 form as the significance of z is not particularly con-
spicuous.5 When referring to product states we will usually just specify the
single atom state as is done on fig. 3.4a.

Now, a few examples of coherent states with l = nat/2 of which some are ren-
dered on fig. 3.4a. Setting θ = 0 (π) gives the state where all atoms are in the up-
per (lower) clock level |4〉 (|3〉) with 〈 f̂x〉 = 〈 f̂y〉 = 0 and 〈 f̂z〉 = nat/2 (−nat/2)
i.e. a pseudo-spin vector pointing to the north (south) pole of the Bloch sphere.
With θ = π/2 we get the state |4〉+ eiφ|3〉 having 〈 f̂x〉 = nat

2 cos φ, 〈 f̂y〉 = nat
2 sin φ

and 〈 f̂z〉 = 0 i.e. a vector on the equator of the Bloch Sphere. Finally, if
φ = 0 (π/2) we get f̂ aligned in the xz (yz) plane. In contrast to the prod-
uct states, the statistical mixture of atoms in |4〉 and |3〉 with equal probability
of 1/2 produces the expectation values 〈 f̂x〉 = 〈 f̂y〉 = 〈 f̂z〉 = 0, which could be
represented by a point at the origin of the coordinates system.

3we chose to express 〈n̂at〉 as nat rather than N (r) to underline that the representation applies
equally well to the the total ensemble operators for which we write 〈N̂at〉 = Nat.

4The length of the vector refers to the expectation value of f̂
2
, which can take on the values

〈 f̂
2〉 = l(1 + l), again with l = 0, 1, ..., nat − 1, nat.

5the value of z is related to the argument of the displacement operator that is applied to the
|l,−l〉 Dicke state to generate the coherent state |l, z〉.
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Dicke states Another relevant set of collective states are the Dicke states [Dicke54]
which characterise collective excitation of the local (or total) ensemble. It can be
shown that Dicke states are eigen-states of the commuting operators f̂z and f̂

2

and may thus be labelled with reference to the eigen-values |l, m〉 where

f̂z|l, m〉 = m|l, m〉 , f̂
2|l, m〉 = l(l + 1)|l, m〉 . (3.17)

The value m thus refers to the number of excitations and l is again a measure
of the length of the pseudo-spin vector. The two quantum numbers thus ful-
fil the intuitive condition |m| ≤ l ≤ nat/2. Dicke states are not eigen-states
of the two other pseudo-spin components, which actually have 〈l, m| f̂x|l, m〉 =
〈l, m| f̂y|l, m〉 = 0. A reasonable way to illustrate a Dicke state is thus as a hor-
izontal band on the Bloch-Sphere where the projection on the z-axis is equal to
the m quantum number and the radius equal to the l number (fig. 3.4b). In many
ways the Dicke states are atomic equivalents to the photon Fock states (Sec. 2.1),
in that they both are states of definite excitation and carry no phase information.
It is important to realise that not all collective atomic states are Dicke states as for
example the collective state of single atom equal super-positions (|3〉+ |4〉)/

√
2.6

An immediate consequence is also that not all pure states are Dicke states.

Total ensemble extension When determining the expectation values of the to-
tal ensemble pseudo spin it is worth recalling the twist in the definition of these
operators in eq. (3.7). For the atomic density and probing weight functions we
take the experimentally relevant Gaussian distributions, eqs. (3.5 and 3.9) respec-
tively. For the atomic state we take the product states. From eq. (3.16) we see
that the spatial dependence of expectation values are all contained in the atomic
number density distribution, whereby the total ensemble expectation values fol-
low directly from eq. (3.10)

〈F̂i〉 = 〈 f̂ (1)
i 〉N̂tot

1
2

r2
w

1 + r2
w

= 〈 f̂ (1)
i 〉Nat . (3.18)

Here we have made a small manoeuvre, in which we drag out the dependence
on the internal atomic degree of freedom by means of the single-atom pseudo-
spin expectation value 〈 f̂ (1)

i 〉. Hence, the spectrum of this operator is exclusively
± 1

2 . No surprises in eq. (3.18), 〈F̂i〉 corresponds to our definition of the effective
atom number. Yet, the below section will highlight the importance of dealing
with the extension to total ensemble expectation values in a thorough manner.

Now, we have seen how the expectation values of the pseudo-spin vector compo-
nents for various atomic states have certain interpretation on the Bloch sphere.
Next, we will turn to investigate the uncertainty on these expectation values and
thus summon the quantum noise of the atomic states.

3.4 Quantum projection noise

Although the expectation value of the 〈 f̂ 〉 pseudo-spin is completely determined
by the atomic state, this is not to say that one may always exactly predict the
outcome of a particular measurement on one of the spin-components. This is of
course a direct consequence of the probabilistic nature of quantum mechanics, by
which the quantum state describes a certain probability distribution in whatever

6e.g. for two atoms 1
2
(
|3〉k + |4〉k

)(
|3〉j + |4〉j

)
= 1

2
(
|3〉k|3〉j + |4〉k|3〉j + |3〉k|4〉j + |4〉k|4〉j

)
,

which clearly does not correspond to a definite excitation of the atoms.
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measurement basis is chosen. The uncertainty is coined projection noise as it can
be interpreted to arise ”from the random projection of the state vector into one of
the states compatible with the measurement process” [Itano93]. To quantify the
quantum uncertainty of the operator one can specify its variance 〈(∆ô)2〉, defined
as 〈(∆ô)2〉 = 〈ô2〉 − 〈ô〉2. The well known, uncertainty relation by Heisenberg
demands that the variances of two operators ôi and ôj fulfil

〈(∆ôi)2〉〈(∆ôj)2〉 ≥ 1
4

∣∣∣〈[ôi, ôj
]〉∣∣∣2 . (3.19)

Heisenberg’s relation plays a central role to the main aim of the experiments
described in this thesis. Since, eq. (3.19) only prescribes a limit to the certainty
one may have on the product of two operators, there is no restriction on how
the variances are distributed among these two operators. In a case where one
is particularly interested in predicting the measurement outcome of only one
operator in the pair it one could attempt to reduce its uncertainty at the expense
of an increased uncertainty on the other operator. Naturally, the r.h.s. may be
an operator too, and it is crucial to take into account that it may also be affected
by the attempts redistribute the uncertainty among the operators on the l.h.s.
For the pseudo-spin operators the commutation relations eq. (3.15) show that
the uncertainties of the various components are limited by mean values of the
others. This leaves ample room for interesting configurations to be discussed
below.

We now have a look at the PN of f̂ for two realisations of the atomic ensemble
that are of relevance to the experiment. In both cases the atoms are in uncor-
related states. In sec. 3.6 we will discuss the very interesting case of correlated
atoms. First we take the product state in which the single atom states are in su-
perpositions of the two ground states eiφ sin(θ/2)|3〉 + cos(θ/2)|4〉. We assume
that exchanging two atoms will not change the value of the local operators so
long as these refer to internal atomic degrees of freedom. In this case, we can
first express the second moment of f̂i as (c.f. eq. (B.2))

〈 f̂i(r)2〉 =
〈 (

f̂ (1)
i

)2 〉
nat(r) +

〈
f̂ (1)
i f̂ (2)

i

〉
nat(r) (nat(r)− 1) , (3.20)

where for uncorrelated states 〈 f̂ (1)
i f̂ (2)

i 〉 = 〈 f̂ (1)
i 〉2. Hereby, we have an expression

where we base the expectation values on the single atom values and then extend
to the continuos picture. We can now calculate the exact values for the pseudo-
spins. The expectation values 〈 f̂ (k)

i 〉 easily follow from eq. (3.16) and for all three

components we get ( f̂ (k)
i )2 = 1

4 (ρ̂
(k)
33 + ρ̂

(k)
44 ) and so 〈( f̂ (k)

i )2〉 = 1/4. This finally
allows us to extract the variances e.g. for f̂z we get

〈(∆ f̂z(r))2〉 =
nat(r)

4
sin2 θ . (3.21)

Similarly we get for the other components

〈(∆ f̂x(r) f̂x(r′))〉 =
nat

4
(1− sin2 θ cos2 φ)

〈(∆ f̂y(r) f̂y(r′))〉 =
nat

4
(1− sin2 θ sin2 φ) . (3.22)

The uncertainty of the pseudo-spin vector can in an intuitive way be illustrated
as a sphere at the tip of and normal to the vector (fig. 3.5). Since the disc does
not extend along the direction of the pseudo-spin the quantum uncertainty of
the vector’s length is zero. This equivalent to conservation of the atom num-
ber, which differs from the case of the Schwinger vector for photons whose
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Figure 3.5: The Bloch sphere represen-
tation of the collective atomic state with
projection noise. Sample vectors corre-
sponding to product states are shown
where in a all atoms are in the upper
ground level and in b they are in an
equal superposition of the two ground
levels

x

y

z

numbers are generally not fixed. Eq. (3.21) further reveals that compared to
the spin magnitude (= nat/2) the uncertainty or standard deviation of the spin
∝
√

nat grows slower with the number of atoms within the local volume. Hence,
more atoms allows the outcome of a measurement of a spin component to be
predicted more precisely. Again a parallel may be drawn to the Schwinger op-
erators where in eqs. (2.26 and A.11) we observed that the uncertainty of the
phase-difference of the two fields decreases with the photon number. If we fo-
cus on the z-component, it evidently has no quantum noise associated with it
when the atoms are in either of the ground-levels. For θ = π/2 the atoms are in
equal superpositions of |4〉 and |3〉 and the quantum projection noise reaches it
maximal value of 〈(∆ f̂z)2〉 = nat/4. The states at the equator of the Bloch-sphere
are exactly the states that provide the largest sensitivity for spectroscopy and the
projection noise has a direct influence of the performance of such measurements.

As a second example we take a symmetric mixed state with half of the atoms
in the |3〉 state and half in the |4〉 state. The density matrix for this state is di-
agonal with ρ̂

(k)
33 = ρ̂

(k)
44 = 1/2, which renders the expectation values of all the

f̂ components zero. As for the product state all components ( f̂ (k)
i )2 have expec-

tation value 1/4, hence from eq. (3.20) all variances are 〈(∆ f̂x)2〉 = 〈(∆ f̂y)2〉 =
〈(∆ f̂z)2〉 = nat/4. We make the important observation that the projection noise of
f̂z is the same for the symmetric superposition product state and the symmetric
mixed state.

Projection noise decomposed into distribution of Dicke states: The PN of the
coherent states, of which the product states are a subgroup, has a neat relation
to their representation in terms of Dicke states. Just as coherent photonic states
could be expanded in terms of Fock states, the atomic coherent states have rep-
resentation in terms of Dicke states. This becomes especially useful since Dicke
states being eignen-states of f̂z have 〈(∆ f̂z)2〉DS = 0. Restricting our attention to
the product states we can write [Mandel95, Itano93]

| 12 , z〉 =
1

(1 + |z|2)
nat
2

nat
2

∑
m=− nat

2

(
nat

nat
2 + m

) 1
2

z
nat
2 +m | 12 , m〉 (3.23)

Further specialising to the state | 12 , eiφ〉 corresponding to the product state of the
equal superposition |4〉 + eiφ|3〉 we write out the expectation value of f̂z in an
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alternative fashion

〈 1
2 , eiφ| f̂z| 12 , eiφ〉 =

nat
2

∑
m=− nat

2

〈 1
2 , eiφ| 12 , m〉〈 1

2 , m| f̂z| 12 , eiφ〉

=

nat
2

∑
m=− nat

2

m
∣∣∣〈 1

2 , m| 12 , eiφ〉
∣∣∣2 (3.24)

=
1

2nat

nat
2

∑
m=− nat

2

m

(
nat

nat
2 + m

)
,

where we use eq. (3.23) along with the fact that the Dicke states form a complete
set. It is only natural to interpret

P(m) ≡ 1
2nat

(
nat

nat
2 + m

)
(3.25)

as the probabilities for the measurement of f̂z on a coherent state to return a
projection m corresponding to the Dicke state | nat

2 , m〉. Thus eq. (3.23) straight-
away reveals the distribution of measurement outcomes of a coherent state from
which it is possible to determine the width 〈(∆ f̂z)2〉CSS in terms of m-values. In
fig. 3.6 we show samples plots of P(m) for a range of nat values. For nat = 10
there are only 11 allowed values of m over which the measurement results are
distributed. As nat increases and the set of m values increases the relative dis-
tribution over P(m) narrows, corresponding to a more well-defined mean value
f̂z. The final plot for nat = 20 000 illustrates the precision required to distin-
guish the measurement outcomes in a real experimental condition. Eq. (3.24)
is a special case of the binomial distribution.7 The width of the distribution is
〈(∆P(m))2〉 = 〈(∆ f̂z)2〉 = nat/4 in agreement with the above findings (eq. (3.21)).

The above recasting of the projection noise may seem unwarranted as it has
revealed nothing that wasn’t already known. Nonetheless, it will prove very
useful for describing how spin squeezing is generated by a QND measurement
(sec. 5.1.1).

7The general binomial distrib.

(
nat

nat
2 + m

)
p

nat
2 +m(1− p)

nat
2 −m reduces to eq. (3.24) for p = 1

2 .
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tion factor relating
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Total ensemble projection noise As is custom we revert to eq. (3.7) with eqs. (3.5 and 3.9)
defining Gaussian atomic density and probing weight functions respectively. We
concentrate on the product states, which have the variances according to eq. (B.3)
— the general form of eq. (3.21). Thus,

〈(∆F̂z)2〉 =
∫

R3

∫
R′3
〈(∆ f̂z(r) f̂z(r′))〉 U(r)U(r′) d3r d3r′

=
1
4

sin2 θ
∫

R3
U(r)2 N (r) d3r

=
Ntot

4
sin2 θ

1
2

r2
w

1 + 2r2
w

(3.26)

=
Nat

4
sin2 θ

1 + r2
w

1 + 2r2
w

.

And likewise from eq. (B.4) we get

〈(∆F̂x)2〉 =
N̂at

4
(1− sin2 θ cos2 φ)

1 + r2
w

1 + 2r2
w

(3.27)

〈(∆F̂y)2〉 =
N̂at

4
(1− sin2 θ sin2 φ)

1 + r2
w

1 + 2r2
w

. (3.28)

The projection noise for a coherent atomic state is, thus, characterised by scaling
linearly with the effective (or total) atom number, similarly to the shot noise
of a coherent state of the light scaling linearly with the probe photon number
(eq. (2.10)). This linear scaling is the essential indicator that distinguishes the
quantum noise from other classical noise influences. The apparent atom number
from the projection noise, however, differs from that inferred from the mean
values of the pseudo-spins. The factor connecting the two numbers is plotted in
fig. 3.7 as a function of the probe beam to the atomic sample waists. It shows
that the projection noise tends to underestimate the atom number by up to a
factor of two in the limit of a large probe beam compared to the atomic sample.
Only if the sample is much larger than the probe beam, i.e., the atomic density
is constant throughout the probing volume, does the projection noise reflect the
defined effective atom number N̂at.

3.5 Squeezed states

Squeezing of quantum uncertainties hinges upon the Heisenberg relation only
limiting the value of the product of a set of uncertainties. Thus, squeezed states
of a set of conjugate operators can be prepared in both optical, atomic or any
other quantum system. As it happens, any straight forward preparation of a
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Figure 3.8: Squeezed pseudo-spin state on
the Bloch-sphere. In this case 〈(∆ f̂z)2〉 is
squeezed while 〈(∆ f̂x)2〉 is anti-squeezed.

quantum system tends to produce non-squeezed states in the sense that the un-
certainties are in some sense equally distributed between conjugate operators.
This is perhaps not surprising, as squeezing equivalates some form of inter par-
ticle correlation (see sec. 3.6), which one would not expect to be immediately
present. For example coherent atomic and photonic states do not exhibit any
squeezing.

3.5.1 Spin squeezed states

As mentioned, one would require that a Squeezed Spin State (SSS) is one that
has a reduced noise in some spin component as compared to some standard
limiting value of the noise, what is called the SQL. However, there exist several
specifications of both terms in this equation, i.e., the squeezed noise and the SQL.
The various definitions lead to more or less broad sets of collective quantum
states acquiring the label SSS, but as we shall see only one definition ensures
that this set is strictly made up of states containing quantum correlation.

Simple definition The natural definition of squeezing comes from the obser-
vation of the uncertainty relation

〈(∆ f̂i)2〉〈(∆ f̂ j)2〉 ≥ 1
4
〈 f̂k〉2 . (3.29)

One is enticed to define a squeezed state according to this relation as a state
where one spin component on the l.h.s. has variance which is smaller than the
square root of the r.h.s. i.e. |〈 f̂k〉|. The degree of squeezing would be quantified
as

ξsimp =
2〈(∆ f̂ j)2〉
|〈 f̂k〉|

(3.30)

However, because the definition is so liberal w.r.t. the choice of components it
is possible to get ξsimp < 1 for a product state of uncorrelated atoms by making
a clever choice of pseudo-spin orientation. This is illustrated for 〈(∆ f̂x)2〉 in a
comparison with |〈 f̂z〉| in fig. 3.9 where we plot |〈 f̂z〉| − 〈(∆ f̂x)2〉 (if this is less
than 0 then ξsimp < 1). By choosing φ = 0 or π we are in a situation where
we have squeezing in the sense of eq. (3.30) for all θ 6= 0, π/2, π. In conclusion
a squeezing criterion according to eq. (3.30) is insufficient to prove any atomic
correlation and thus inappropriate for our purpose.
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Kitagawa and Ueda definition An obvious extension to the definition, which
will overcome some ambiguity, is to specify more strictly the spin components
that one must verify the squeezing on. Since we know that the quantum un-
certainty is represented as a disk perpendicular to the mean spin direction a
proper gauging of the projection noise should be done along a direction perpen-
dicular to the mean spin. We denote such a direction by f⊥ and the mean spin
magnitude is |〈 f̂ 〉|. For the product state the variance of the spin along any per-
pendicular direction is 〈(∆ f⊥)2〉SQL = |〈 f̂ 〉|/2, which in this connection becomes
the SQL. A squeezed state may then be said be one that has a variance less than
the SQL along some direction perpendicular to the mean spin and the degree of
squeezing is [Kitagawa93]

ξueda =
〈(∆ f⊥)2〉
〈(∆ f⊥)2〉SQL

=
2〈(∆ f⊥)2〉
|〈 f̂ 〉|

(3.31)

For any coherent state this definition of squeezing ensures that ξueda < 1 entails
atomic correlation, however for mixed states this inference no longer holds.

Wineland et. al definition Eq. (3.31) still falls short of defining a squeezed
state in a way that guarantees atomic correlation so we proceed with a third
and, thankfully, final approach. Some of the most valuable applications of spin
squeezed states are in spectroscopy where one measures the angle of rotation of
the pseudo-spin under some external influence or reference. In such an appli-
cation the main drawback of the projection noise is the uncertainty it produces
on the angle of the pseudo-spin and for a squeezed state to be of use it need to
improve on this angular uncertainty.

f̂

∆ϕ⊥∆f̂⊥

Figure 3.10: illustration of the deter-
minants of the phase sensitivity of the
pseudo-spin vector to rotations.

Consider the situation outlined in fig. 3.10
where a Bloch vector of length |〈 f̂ 〉| has an
uncertainty disc of ”size” 〈(∆ f⊥)〉 along
all directions perpendicular to the mean
spin direction. This yields an uncertainty
on the ability to determine the rotation an-
gle 〈(∆φ)〉, which has the value

〈(∆φ)〉 = tan

(
〈(∆ f⊥)〉
|〈 f̂ 〉|

)
≈ 〈(∆ f⊥)〉

|〈 f̂ 〉|
,

(3.32)
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where the approximation holds for large
atom numbers. Based on this and
eqs. (3.26 and 3.27) we can establish the SQL of the phase noise to be
〈(∆φ)2〉SQL = 1/nat. Thus we define the parameter ξwineland for degree of spec-
troscopically relevant quantum noise reduction [Wineland92, Wineland94]

ξwineland =
〈(∆φ)2〉

〈(∆φ)2〉SQL
=

nat〈(∆ f⊥)2〉
〈 f̂ 〉2

(3.33)

Beyond gauging the squeezing in a fashion that is relevant for applications
the definition of eq. (3.33) does in fact also ensure that only quantum states
that contain quantum correlation actually qualify as SSS [Hald00, Appendix D].
Throughout the remainder of the thesis we will use eq. (3.33) as the definition of
the squeezing parameter. Any use of the squeezing parameter ξ will implicitly
refer to this definition, unless it specifically stated to be otherwise.

3.6 Entanglement and squeezing

We have been beating around the bush on the matter of squeezing and quantum
correlation a.k.a. entanglement. It is also beyond the scope of this thesis to
go in depth with the topic but it seems directly relevant to comment on it. As
noted a state with below unity squeezing factor by eq. (3.31) is guaranteed to be
squeezed in as long as the state is pure. For mixed and pure states we need the
factor by eq. (3.33) to be below one in order for atoms to be entangled. This raises
questions about the nature of the entanglement especially how many atoms need
to be entangled for the pseudo-spin means and variances to attain the values
measured. Fortunately, this question has been answered in [Sørensen01b].8 The
work presents an inequality which any separable, i.e., non-entangled, ensemble
state will satisfy. Violation of the inequality implies inter-particle entanglement.
The depth of the entanglement is defined by the minimal number of particles
that cannot be written as a linear combination of products of Nat single particle
density matrices. Say the depth is 3 then at least 3 particles are described by a
non-separable density matrix, and thus they form a tripartite entangled state.

In order to determine the depth of the entanglement we must supply two mea-
sured parameters. Given a measured macroscopic mean spin, which in our
case is 〈F̂y〉, the first parameter is its ratio with the maximal value it can at-
tain, which is Nat/2 because we are dealing with a spin- 1

2 pseudo-spin. The
value of 2〈F̂y〉/Nat is exactly the coherence of the squeezed state and since it is
necessary to find the squeezing eq. (3.31)eq:sqwineland it is always measured in
the experiments. The second parameter is then the variance of the squeezed spin
component again normalised to the maximal spin magnitude, i.e., 2〈(∆F̂z)2〉/Nat.
In this case Nat/2 signifies a normalisation to the coherent state projection noise
level making up the SQL. If we take a reasonable example where 2〈F̂y〉/Nat = 0.8
and 2〈(∆F̂z)2〉/Nat = 1/8 the underlying quantum state exhibits four-partite en-
tanglement [Sørensen01b, fig. 1]. One word of caution, is that the implications
of the spatial distribution of the atoms and the probing has yet to be resolved.9

Hence, we can use the above estimate of the entanglement depth as a probable
estimate, but not as a fact.

Now we have established the measures for squeezed spin states and we have
determined how the squeezing relates to particle entanglement, which through

8the answer being in a form where an experimentalist, like the author of this account, can
plug in numbers and read off a value!

9we have a theorist on the case!
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the factor 2〈F̂y〉/Nat crucially depended on the coherence of the atomic state.
Ideally the atoms are prepared in a fully coherent state hence the decoherence is
something that is inflicted upon the state at some point. Later we shall see that
the process causing the noise reduction of 〈(∆F̂z)2〉 is the same that decoheres
the atoms. In the upcoming section we will first investigate how decoherence
effects the noise of the atomic state.

3.7 Decoherence and squeezing

Coherence is a key aspect of the ”quantumnes” of a system that is essentially de-
scribed by the density matrix. Decoherence can by and large be seen as a result
of leakage of information about the density matrix or wave-function. By leakage
we mean that part of the wave-function of the atomic ensemble travels beyond
the spatial confines of the atomic system initially. The system wave-function can
leak as a result of atoms being physically removed from the ensemble or because
photons that have interacted and become entangled with the atoms escape de-
tection. Since the photons are entangled with the atoms the combined state is no
longer separable and the loss of a photon is equivalent to the leaking of the wave-
function. Of course the aim of the probe-atom interaction is that the probe record
information about the atomic state and carry this information onwards to an ap-
propriate detection setup. The key point is that the probe-photon is collected on
a detector and thus will not cause any decoherence, because the information it
carried is salvaged. Decoherence of the atomic state arises from photons scat-
tered by the atoms so that they evade detection. Thus the final atomic state will
be an incoherent mixture of states that could have been determined if the lost
photons had been detected. If the atoms were initially correlated, then part of
the correlation is also lost [Bouchoule02b]. When evaluating the effect of scat-
tering it is thus essential to determine exactly what information is lost. In the
treatment of the decoherence caused by the atoms interacting with the probe we
will rely heavily on the above principle.

3.7.1 Coherence time

Often decoherence is gauged by the, so called, coherence times. These reflect the
characteristic time scales for certain decohering processes. It is conventional to
specify two such times, namely T1 and T2, where the former refers to the time of
decay of the level population i.e. the diagonal density matrix elements and the
latter refers to the decay time of the atomic phase i.e. the off-diagonal density
matrix elements. Hence, T2 is indeed the proper decoherence time. T1 decay is a
result inelastic scattering, either of another atom or a photon. We determine the
T1 time for our atomic sample in sec. 10.2.4. Since decay of the population ran-
domises the atomic phase it follows that T2 decay can result from both inelastic
and elastic scattering of atoms or photons. Thus T2 ≤ T1 must hold. However,
T2 decay need not stem from scattering events. Since, coherence refers to the
degree of atomic phase agreement between atoms in an ensemble T2 decay may
also stem from variations in this phase over the spatial extent of the ensemble.
Essentially, one ought not call this effect decoherence, but rather dephasing since
it is a fully deterministic process. Thereby, it should in principle always be possi-
ble to revert the dephasing in what could be called a re-phasing of the ensemble.
Scattering events on the other hand are random and it is generally not possible
to retrieve the initial state whereby the decoherence would be reverted. The re-
sulting decoherence time after applying various techniques to avoid dephasing is
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coined T∗2 . A substantial part of the experimental section is devoted to methods
for characterising and circumventing dephasing — see sec. 10.2.4 and 11.2. As
a teaser it is noted, that in relation to the QND interaction, decoherence causes
a destruction of the system correlation that one would wish to preserve. The
decoherence can be due to the interaction itself or the free evolution. However,
since decoherence often arises from experimental imperfections10 they are often
not described by the carefully engineered QND Hamiltonian.

3.7.2 Squeezing affected by generic loss and decoherence

Decoherence is important for squeezing in a number of ways which we will
discuss here. Firstly when an atom decoheres its correlation with all other atoms
is erased; one can say that the atom is reset. Since squeezing is a result of
inter-atomic correlation this means that overall the degree of squeezing of the
ensemble is reduced. Secondly, the decoherence process is statistical and thus
the randomness of the outcome of the decoherence process can add extra noise
to the ensemble state. Finally, the decoherence affects the magnitude of the mean
spin vector. This is because decohered atoms typically end up in a mixed state
which has no mean spin amplitude. The first two effects that affect the noise of
the ensemble state will be treated together, whereas the last effect regarding the
pseudo-spin magnitude can be treated independently.

Decoherence is modelled as an effect which takes a fraction e−η of the atoms into
another state than the original one. Here as in the remainder of the theoretical
treatment of the decoherence we will assume that η is relatively small, say η <
0.5, whereby we are allowed to use the approximate expression e−η ≈ 1 − η.
Thus an initial density matrix ρ̂ transforms into (1− η)ρ̂ + ηρ̂′, where the latter
term is the density matrix for the decohered atom. We begin with the effect of
decoherence on the mean spin 〈 f̂ 〉 with f̂

∗
denoting the pseudo-spin following

the decoherence. We have the rather obvious equation c.f. eq. (B.5)

〈 f̂ ∗i (r)〉 = (1− η)〈 f̂i(r)〉+ η〈 f̂ ′i (r)〉 , (3.34)

where f̂i(r) refers to the unaffected atoms and f̂i(r) refers to the decohered
atoms. In many cases the decohered atoms will have 〈 f̂i(r)〉 = 0.

Now we turn to the variance of the pseudo-spin components when some of
the atoms decohere. The derivations in appendix B.0.3 follow the approaches
of [Mølmer03, Echaniz05, Saffman08] and is consistent with the results from [Madsen04].
First we recap eq. (3.20)

〈 f̂i(r)〉 =
〈 (

f̂ (1)
i

)2 〉
nat(r) +

〈
f̂ (1)
i f̂ (2)

i

〉
nat(r) (nat(r)− 1) .

The term 〈 f̂ (1)
i f̂ (2)

i 〉 contains the information on the inter-atomic correlation. For

an uncorrelated state it can be re-written as 〈 f̂ (1)
i 〉2 and thus the value of the

cross-term is exclusively determined by the mean value of the spin-component.
If 〈 f̂ (1)

i 〉 = 0 then the term is zero for any uncorrelated state. Conversely, for a
squeezed state the cross-term may be non-zero even if the mean spins is zero,
therein lies the inter-atomic correlation (see eq. (B.7)). The expression for the
variance of f̂

∗
contains two terms of the above form, but for the states after the

decoherence. Hence, 〈(∆ f̂
∗
)2〉 is determined by the effect of the decoherence on

10background gas scattering, field inhomogeneities, leak light, etc.
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the inter-atomic correlation. The formula derived in appendix B.0.3 is

〈(∆ f̂ ∗i (r))2〉 = (1− η)2〈(∆ f̂i(r))2〉+
[

η(1− η)
〈 (

f̂ (1)
i

)2 〉
+ η

〈 (
f̂ (1)′
i

)2 〉]
nat(r)

+
[

η2
(〈

f̂ (1)′
i f̂ (2)′

i

〉
− 〈 f̂ (1)′

i 〉2
)

(3.35)

+ 2η(1− η)
(〈

f̂ (1)
i f̂ (2)′

i

〉
− 〈 f̂ (1)

i 〉〈 f̂ (1)′
i 〉

) ]
nat(r)2 ,

Up till this point, we have made no assumptions and the above expression is
completely general in that it is valid for any initial and final expectation values of
f̂i and f̂ 2

i . We note a few reductions that will be applied at various stages below.
First, as mentioned earlier, the values of 〈( f̂ (1)

i )2〉 and 〈( f̂ (1)′
i )2〉 are both equal to

1/4 in as long as the probing is only sensitive to two atomic levels i.e. we have
a spin 1

2 system. Secondly, if the decohered atoms are uncorrelated 〈 f̂ (1)′
i f̂ (2)′

i 〉 =
〈 f̂ (1)′

i 〉2 and 〈 f̂ (1)
i f̂ (2)′

i 〉 = 〈 f̂ (1)
i 〉〈 f̂ (1)′

i 〉 so that the last terms proportional to nat(r)2

in eq. (3.35) cancel. Under these, quite lenient, assumptions eq. (3.35) becomes

〈(∆ f̂ ∗i (r))2〉 = (1− η)2〈(∆ f̂i(r))2〉+ η(2− η)
1
4

nat(r) (3.36)

If the input state is a coherent state with variance 〈(∆ f̂i(r))2〉 = nat(r)/4 the
output variance will be

〈(∆ f̂ ∗i (r))〉 =
nat(r)

4
. (3.37)

It is worth emphasising that the decay of a coherent state does not add any ad-
ditional noise to the system. This also underlines that if there are no inter atomic
correlation the decoherence is immaterial for the variance. The magnitude of the
pseudo-spin will of course be reduced according to eq. (3.34) so that the result-
ing state provides a poorer angular resolution in spectroscopic applications (see
eq. (3.32)). In appendix B.0.3 we provide a few examples of types of decay that
may aid in understanding the equations.





Chapter 4

Atom light interaction

The two preceding chapters have elaborated on two very distinct quantum sys-
tems namely a pulse of light in two separate modes and a sample of cold Cs
atoms populating the two hyperfine clock levels. In this chapter we will exam-
ine how these two systems interact and bring about interesting effects on one
another. The treatment will attempt to illustrate how the whole rich system dy-
namics can be derived from basic principles. Thus, the initial step is to state the
applicable Hamiltonian for the combined atom-light system and deduced the
evolution of the constituent operators. The final goal is to reformulate the inter-
action part of the Hamiltonian in terms of the atomic pseudo-spin and photonic
angular momentum operators.

g

g’

e

ω
ωeg’

ωeg γeg’

γeg

ωgg’

Figure 4.1: Diagram of the a single
probe light field interacting with a 3-
level atomic system. The probe with
optical frequency ω interacts with the
dipole moment of the |g〉 → |e〉 tran-
sition at a detuning of ∆ ge, while the
detuning from the |g′〉 → |e〉 is so
large that the interaction can be ne-
glected. The excited level can decay
spontaneously to either the |g〉 or |g′〉
ground-levels with the rates γeg = regγe
and γeg = regγe given by the respective
branching ratios.

When formulating the interaction we will take into account the spatial field and
atomic density distribution. To that end, we express the problem in terms of
the local photonic and atomic operators and only at the end integrate up the
results to arrive at expressions for the whole ensembles. Figure 4.1 outlines the
interaction, where we will focus on three atomic levels and a single EM-field.
The atomic levels comprise the two hyperfine ground levels |g〉 and |g′〉 as well
as an excited level |e〉 belonging to either the 62P3/2 or the 62P1/2 hyperfine
manifold. The photon energy h̄ω of probe light field is close to the energy
spacing h̄ωeg between the |g〉 and |e〉 levels. The Hamiltonian of this system
includes the contributions of the independent/non-interacting field and atoms
(See e.g. [Mandel95, Ch. 14]). The former is given by Ĥph = h̄ωâ† â and the latter
by Ĥat = h̄ωeg′ ρ̂ee + h̄ωgg′ ρ̂gg , where we exclude the energy contribution from
the |g′〉 level by re-normalising the energy to be zero for that ground level1. The

1According to the diagram in fig. 4.1 the level |g′〉 indeed has the lowest energy, however even
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final term in the Hamiltonian describes the interaction of the electric field of the
light with the atomic dipole moment. In the rotating wave approximation this
term has the form

Ĥdip = h̄
(

gge âσ̂eg + g∗ge â†σ̂ge

)
, (4.1)

where gge = iωgeε · d̂ge/
√

2h̄Vωε0 is the coupling strength expressed in terms
of the field polarisation vector ε and the dipole matrix element d̂ij (see ap-
pendix D.1). The first âσ̂eg term of eq. (4.1) describes the possibility of a photon
to be absorbed by an atom in the ground level |g〉 thereby exciting it to the |e〉
level while the second â†σ̂ge term corresponds to the inverse process resulting in
the generation of a photon and the atom decaying to the ground level |g〉. The
complete system Hamiltonian is then Ĥtot = Ĥph + Ĥat + Ĥdip.

4.1 Effective Interaction Hamiltonian

The time evolution of the E.M. field and atomic operators is found by Heisen-
berg’s equation dô/dt = (ih̄)−1 [ô, Ĥtot

]
, which yields the set of Maxwell-Bloch

equations

˙̂a = −iωâ + ig∗gσ̂ge (4.2a)
˙̂σgg = rgγeσ̂ee − ig∗g â†σ̂ge + igg âσ̂eg (4.2b)

˙̂σg′g′ = rg′γeσ̂ee (4.2c)
˙̂σee = −γeσ̂ee + ig∗g â†σ̂ge − igg âσ̂eg (4.2d)
˙̂σge = (−γe

2 − iωge)σ̂ge − igg â(σ̂gg − σ̂ee) , (4.2e)

with ˙̂σeg immediately available by complex conjugation of the last equation. We
have manually added the relevant decay rates to describe the processes of spon-
taneous emission of photons from the excited level (see fig. 4.1). The branching
ratios rg and rg′ are given by the ratio of the Clebsch-Gordan coefficients (listed in
sec. D.2) for the two decay channels and must fulfil rg + rg′ = 1. The decay of the
upper ground-level is sufficiently slow that it is completely negligible compared
to all other processes. We proceed by introducing slowly varying operators

ã = âeiωt , σ̃ge = σ̂geeiωt . (4.3)

It is readily seen that this eliminates the fast oscillating term of the field operator
eq. (2.1), and likewise the field induced fast oscillations of the atomic dipole are
cancelled in σ̃ge. Taking the time derivative of the slowly varying operators, ˙̃a =
˙̂aeiωt + iωâeiωt and ˙̃σge = ˙̂σgeeiωt + iωσ̂geeiωt, we may rewrite the corresponding
Maxwell-Bloch equations

˙̃a = ig∗gσ̃ge (4.4a)
˙̃σge = (−γe

2 −i∆ge)σ̃ge − igg ã(σ̂gg−σ̂ee) (4.4b)

Next we apply the adiabatic-approximation that the time derivatives of the slowly
varying operators are zero. Hence, the dipole matrix element can be expressed
as

σ̃ge = −
gg ã

∆ge − i γe
2

(σ̂gg − σ̂ee) (4.5)

We are now in a position where we can replace the dipole matrix elements in
the dipole interaction Hamiltonian Ĥdip with expressions that refer only to level

if this is not the case the |g′〉 energy can be set to zero whereby the frequency ωgg′ just becomes
negative.
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populations. The key advantage of this is that the populations are measurable.
The effective interaction Hamiltonian is

Ĥint = −h̄
2â† â|gg|2∆ge

∆2
ge + (γe

2 )2 (ρ̂gg − ρ̂ee) = −h̄2â† âKge(ρ̂gg − ρ̂ee) , (4.6)

where we have introduced

Kge =
|gg|2∆ge

∆2
ge +

(γe
2

)2 . (4.7)

To obtain eq. (4.6) we have neglected the term ∆ge − iγe/2 in the numerator2 as
its expectation value is small compared to that of â† â. Furthermore, since the
term commutes with all field operators it does not affect their time evolution.

Finally, the description must be extended to cover the complete level structure of
the caesium atom as sketched in fig. 3.3. Firstly, the classification of one ground
levels as being on resonance and the other passive is merely dependent on the
detuning of the probe. Hence, both levels can be viewed as interacting with the
probe. Since the description of the 3-level atom has only considered a single
dipole moment it is possible to accommodate interaction with both levels sim-
ply by adding another term to the interaction Hamiltonian. Likewise, there are
either 2 or 4 excited levels depending on whether we probe the D1 or D2 line re-
spectively. Summing over all possible ground to excited state dipole interaction
terms results in the complete picture

Ĥeff = −h̄
4

∑
g=3

5(4)

∑
e=2(3)

2â† âKge(ρ̂gg − ρ̂ee) (4.8)

where the summation limits in brackets apply to the D1 line.

We may now adapt an additional approximation pertaining to the choice of
detuning. For large ∆ (� γe, nph,a|gg|2) the transition is far from saturated
and the excited state population ρ̂ee will be very small, so much as to be dis-
regarded from the effective interaction Hamiltonian eq. (4.8). Moreover, one
can freely rewrite ρ̂44 = 1

2 (ρ̂44 + ρ̂33) + 1
2 (ρ̂44 − ρ̂33) = 1

2 n̂at + f̂z and likewise
for ρ̂33. Similarly, we can introduce a second light field b̂ and recast â† â =
1
2 (â† â + b̂†b̂) + 1

2 (â† â− b̂†b̂) = 1
2 n̂ph + ŝz. All combined this allows one to formu-

late the interaction Hamiltonian as

Ĥeff = −h̄2
(

n̂ph

2
+ ŝz

) 5(4)

∑
e=2(3)

[
K3e

(
n̂at

2
− f̂z

)
+K4e

(
n̂at

2
+ f̂z

)]
, (4.9)

whereby only Schwinger and pseudo-spin operators along with the total atom
and photon numbers appear.

The Hamiltonian for the interaction of the whole ensemble is found, similarly to
eq. (3.7), by integration over all space weighted by the spatial mode function of
the field. With a Gaussian mode function (eq. (3.9)) the Hamiltonian becomes

Ĥeff =
∫

R3
Ĥeff(r)U(r)d3r (4.10)

=
−4h̄
πw2

p

(
n̂ph

2
+ ŝz

) 5(4)

∑
e=2(3)

[
K3e

(
N̂at

2
− F̂z

)
+K4e

(
N̂at

2
+ F̂z

)]

=
−4h̄

π(w2
a + w2

p)

(
n̂ph

2
+ ŝz

) 5(4)

∑
e=2(3)

[
K3e

(
N̂tot

2
− F̂z,tot

)
+K4e

(
N̂tot

2
+ F̂z,tot

)]
.

2arising from the commutator of â and â†
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The bottom equality only holds for a Gaussian atomic density distribution eq. (3.5).
We make a few remarks on the interaction strength, which is set by the factor
1/(w2

a + w2
p) and the functions Kge. The former illustrates that given a certain

number of atoms and photons it is advantageous to confine the sample and the
probing volume to as small a cross-sectional area as possible. If however, either
the sample or the probe width is larger this will tend to determine the interac-
tion strength. Hence there is no advantage from having a narrow dense atomic
sample if the probe beam is much wider. The function Kge is proportional to
1/∆ge in the limit of large detunings. Thus the interaction falls as the detuning
is increased, however in a QND perspective this must be weighed against the de-
structiveness of the interaction that will be introduced in sec. 4.2. Additionally,
the mutual signs and magnitude of K3e and K4e appearing in the Hamiltonian
can be adjusted so as to make certain terms cancel. This tunability of the inter-
action will be of crucial importance for implementing the QND measurement in
sec. 5.2.

As we shall see the Hamiltonian eq. (4.9) comes very close to fulfilling the criteri-
ons for a QND Hamiltonian. Particularly, it is unitary and thus does not predict
any losses of any operators. However, this result was only achieved by some de-
liberate oversight. The losses were manually added as spontaneous decay rates
in the Maxwell-Bloch equations eq. (4.2) from which we deduced the time evo-
lution of the dipole matrix elements. However these were then reinserted into
the interaction Hamiltonian eq. (4.1), which makes no reference to spontaneous
decay, and hence it is hardly surprising that the effective interaction Hamiltonian
does not predict any losses. Intuitively, light passing through an optically thick
medium will experience a certain degree of absorption along with the above pre-
dicted phase-shift. Indeed the connection is demanded by the Kramers-Kronig
relation whereby the absorption and dispersion of the field may be formulated
as a real and imaginary part of the index of refraction.

4.2 Phase-shift and absorption

The index of refraction is related to the field frequency by n = |k|c/ω and the
field absorption and phase shift3 are found respectively as α̃′ = |k|la=(n− 1)
and φ̃ = |k|la<(n− 1). We can relate this to our interaction by working out the
time development of the field operators from eq. (4.4b). Inserting the adiabatic
solution eq. (4.5) into eq. (4.4b) we get the differential equation

˙̃a = ã
−i|gg|2

∆ge − i γe
2

(σ̂gg − σ̂ee) = ã|gg|2
−i∆ge + γe

2

∆2
ge +

(γe
2

)2 (σ̂gg − σ̂ee) (4.11)

Thus if for a moment we assume the populations to be quasi-steady the solution
to the field propagation is simply

â(t) = ã(t)e−iωt = â(0)e
−iωt+|gg|2

−i∆ge+ γe
2

∆2
ge+( γe

2 )2 (σ̂gg−σ̂ee)t
= â(0)e−i(ωt+φ̃)−α̃′ (4.12)

This describes the field evolution as it is passing through the sample. In the
absence of an atomic medium the evolution would purely be e−iωt. Thus the
phase-shift imparted by the medium is

φ̃ = |gg|2
∆ge

∆2
ge + (γe

2 )2 (σ̂gg − σ̂ee)t = Kge(σ̂gg − σ̂ee)t (4.13)

3by phase-shift we mean the displacement of the field oscillation due to the passing through
the atomic medium as compared to the oscillations of a freely propagating field.
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and the absorption coefficient α̃′ of the field amplitude is then the real part of
the exponent in eq. (4.12). Usually, though, we are interested in the absorption
of the field intensity i.e. of â† â which has the absorption coefficient α̃ = 2α̃′

α̃ = 2|gg|2
γe
2

∆2
ge + (γe

2 )2 (σ̂gg − σ̂ee))t = Lge(σ̂gg − σ̂ee))t , (4.14)

where we have defined Lge = 2|gg|2 γe
2 /(∆2

ge + (γe
2 )2). The resonant absorption

coefficient turns out to have a special importance for the squeezing and we will
afford it an individual symbol α̃0 ≡ α̃(∆ = 0).

On figs. 4.2 and 4.3 we plot the phase-shift and absorption as function of the
probe detuning. The plots assume that both ground levels are equally populated'
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Figure 4.2: Phase-shift and absorption on D1-line.
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Figure 4.3: Phase-shift and absorption on D2-line.

i.e. 〈 f̂z〉 = 0. It is striking that the absorption is peaked much narrower around
the transitions than is the phase-shift. Comparing eqs. (4.13 and 4.14) we see
that this behaviour is due to the 1/∆ dependence of the phase shift as opposed
to the stronger 1/∆2 dependence of the absorption. This property of the non-
destructive phase-shift vis-Ã -vis the destructive absorption is a key ingredient
for the feasibility of performing a QND measurement by dispersive probing.

Full ensemble phase-shift and absorption The extension to the phase-shift
from the full atomic ensemble starts by specifying the interaction time t in
eqs. (4.13 and 4.14). This is the time it takes the probe to pass the atomic sample
i.e. tint = la/c. Next step is to consider the influence of the radial distribution
of the of the probe intensity and atom density. This is achieved by integrating
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the phase-shift over the transverse dimensions weighed by the radial intensity
distribution of the probe. In other ”words”

φ =
1
c
Kge(σ̂

(1)
gg − σ̂

(1)
ee )la

∫
R2
N (r)U(r) d̂2r

=
1
c
Kge

N0w2
a la

w2
p + w2

a
(σ̂

(1)
gg − σ̂

(1)
ee )

=
3λ2

2π2 (2Je + 1)SFg Fe

∆ge
γe
2

∆2
ge + (γe

2 )2
1

w2
p + w2

a
(N̂tot,gg − N̂tot,ee) (4.15)

=
3λ2

2π2 (2Je + 1)SFg Fe

∆ge
γe
2

∆2
ge + (γe

2 )2
1

w2
p
(N̂at,gg − N̂at,ee) .

To reach the last two lines we have expand the coupling constant according to
eq. (D.8). We also assume that the populations σ̂ii are independent of the radial
coordinate allowing us to take the single atom equivalent out of the integral and
integrate over the atomic density distribution. This approximation is not always
valid e.g. if the atomic populations are pumped over the duration of the probe
pulse as discussed in sec. 4.3. This could be modelled by yet another radial
weighing factor on the level population, however, we will mercifully abstain
from such measures here. By the same procedure we find the absorption due to
the ensemble

α =
3λ2

π2 (2Je + 1)SFgFe

(γe
2 )2

∆2
ge + (γe

2 )2
1

w2
p + w2

a
(N̂tot,gg − N̂tot,ee) (4.16)

=
3λ2

π2 (2Je + 1)SFgFe

(γe
2 )2

∆2
ge + (γe

2 )2
1

w2
p
(N̂at,gg − N̂at,ee)

As noted already when defining the atomic operators in sec. 3.1 the effective
atomic operators relate directly to the observed signal either in terms of a phase-
shift or absorption of the probe beam. For example the effective atomic number
can be derived from the observed phase shift N̂atgg ∝ w2

pφ, where the probe
waist is easily determined experimentally. On the other hand, when relating
the phase-shift or absorption to the total ensemble operators we need to specify
an additional geometric factor, the atomic sample waist, which by and large is
not known with particularly good precision. Thus the total ensemble operators
will be assigned quite arbitrary values depending on ones estimate on the sam-
ple size. Using the effective ensemble operators we avoid this ambiguity and
also ensure that we only reckon atoms that actually interact with the probe. A
shortcoming of this restricted scope is in the case where atomic motion becomes
relevant. When atoms move about in the trap, they can move in an out of the ”ef-
fective probe area” and thus be counted in or out at various times. Furthermore,
it can be advantageous to express equations as functions of the total atom (and
photon) number when attempting to optimise the experimental parameters. For
example, the third line of eq. (4.15) clearly shows that given a certain number of
trapped atoms the maximal signal is reached by adjusting the probe beam waist
to be no larger than the estimated atomic sample size. This conclusion is not
easy to gather from the bottom line, which is phrased in terms of the effective
atom number.

4.3 Evolution of the atomic population

The atomic populations were assumed to be constant or at least in a quasi-
steady-state. This can be a good approximation for the duration it takes a photon
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to pass the sample ∼ ps. However, if the probe couples stronger to one ground
level than the other the population of the stronger coupled level might diminish
during the duration of the whole light pulse ∼ µs. If such level depumping
occurs the apparent effect of the level on the light is reduced. To take this ef-
fect in to account we consider the evolution of the atomic populations. Inserting
eq. (4.5) in to the Maxwell-Bloch equations eq. (4.2b-d)

˙̂σgg ≈ rgγeσ̂ee −
|gg|2 â† âγe

∆2
ge + (γe

2 )2 (σ̂gg − σ̂ee) (4.17a)

˙̂σee ≈ − γeσ̂ee +
|gg|2 â† âγe

∆2
ge + (γe

2 )2 (σ̂gg − σ̂ee) (4.17b)

˙̂σg′g′ = rg′γeσ̂ee (4.17c)

The approximation ”≈” comes from neglecting the term |gg|2(i∆ge + γe
2 )/(∆ge +

(γe
2 )2) which is multiplied with the population inversion.4 Eq. (4.17) effectively

casts the population evolution as rate equations, in which case we can freely
add up the rate-equation terms that correspond to the roles of |g〉 and |g′〉 be-
ing interchanged. The resulting first order differential equations can be solved
by standard methods, but we will not state the rather lengthy analytical expres-
sions here. One assumption needed to solve them is that the photon number
is constant d(â† â)/dt = 0. As the photon number is typically at least one or-
der of magnitude larger than the atom number the photon absorption is usually
rather small and the approximation is well founded. In fig. 4.4 we plot the
level populations as function of the interaction time for a relevant set of exper-
imental parameters. Given the time evolution of the populations it is possible
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Figure 4.4: Evolution of the
atomic level populations dur-
ing interaction with a single
probe.

to compute an averaged population of each level during the probe pulses e.g.
σ̂gg = τ−1

∫ tp
0 σ̂gg(t)dt. This averaged value may then be applied to calculate the

phase-shift eq. (4.13) and — hopefully small — absorption eq. (4.14) of the probe
light. When expanding to the full ensemble eqs. (4.15 and 4.16) one must con-
sider spatial variations in the population evolution due to varying probe light
intensities.

4.3.1 Rate of excitations

Though it’s possible to derive the number of atoms scattering probe photons
from the solution to the above rate-equations it is desirable to have a more com-
pact expression for this number. To this end, we assume that the excited state

4The term arises from the commutator [ã†, ã], and for any appreciable light intensity it is much
smaller than the remaining term, which includes ã† ã.
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population is negligible which requires the probe intensity to be below the sat-
uration intensity of the atoms. With this approximation we can easily solve
eq. (4.17a) for the population of the coupled level

σ̂gg(t) = σ̂gg(0)e
−
|gg |2 n̂ph,aγe

∆2
ge+( γe

2 )2 t
.

The exponent of this solution is what we will coin the excitation rate and denote
with an η̃g

η̃g =
|gg|2n̂ph,aγe

∆2
ge + (γe

2 )2 t =
1
2
Lgen̂ph,at

To get the total excitation rate of the atoms we must account for both ground
levels. The total population in the initial state evolves as

n̂at(t) = σ̂gg(t) + σ̂g′g′(t) = σ̂gg(0)e−
1
2Lge n̂ph,at + σ̂g′g′(0)e−

1
2Lg′e n̂ph,at

For small values of the exponents, corresponding to a low excitation probability,
one may expand the above equation. Furthermore we can chose the expectation
values of σ̂gg(0) σ̂g′g′(0) e.g. to be both equal to n̂at/2. In this case

n̂at(t) = n̂at(0)e−
1
2 (Lge+Lg′e)n̂ph,at ≈ n̂at(0)(1− 1

2
(Lge + Lg′e)n̂ph,at) ,

with a combined excitation rate defined as

η̃ =
1
2
(Lge + Lg′e)n̂pht (4.18)

For more than a single excited state one simply sums over the contributions
from each i.e. η̃ = 1

2 ∑5(4)
2(3)(Lge + Lg′e)n̂ph,at. The factor of 1/2 stems from the

definition of Lge.

The excitation probability will be central for the evaluation how non-destructive
the QND measurement is and we will show that the noise reduction achieved by
the measurement can be expressed as a function of η̃ (see sec. 5.2.2).

4.4 Input-output relations

Here we will investigate how the interaction Hamiltonian of eq. (4.9) affects the
atomic pseudo-spin and photonic Schwinger operators. To save on page-turning
we reprint the Hamiltonian here

Ĥeff = −h̄2
(

n̂ph

2
+ ŝz

) 5(4)

∑
e=2(3)

[
K3e

(
n̂at

2
− f̂z

)
+K4e

(
n̂at

2
+ f̂z

)]
,

The operator transformation due to the interaction again found as dô/dt =
(ih̄)−1 [ô, Ĥeff

]
. For the photon operators

dŝz

dt
= 0

dŝx

dt
= 2ŝy

5(4)

∑
e=2(3)

[
(K4e +K3e)

n̂at

2
+ (K4e −K3e) f̂z

]
(4.19)

dŝy

dt
= − 2ŝx

5(4)

∑
e=2(3)

[
(K4e +K3e)

n̂at

2
+ (K4e −K3e) f̂z

]
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and for the atomic operators

d f̂z

dt
= 0

d f̂x

dt
= 2

(
n̂ph

2
+ ŝz

)
f̂y

5(4)

∑
e=2(3)

[K4e −K3e] (4.20)

d f̂y

dt
= − 2

(
n̂ph

2
+ ŝz

)
f̂x

5(4)

∑
e=2(3)

[K4e −K3e]

The first crucial observation is that the z-components of both vectors do not
change by the interaction. This property is worth having in mind when we
begin our discussion of non-demolition measurements of quantum observables
in the below sec. 5.1. Furthermore the evolution of the x and y components are
described by a set of coupled differential equations that refer only to the constant
z-component of the opposite system. Hence, the solution to the equations are
rotations around the z-axes

ŝ(out) = M(Ωpht)ŝ
(in) (4.21)

f̂
(out)

= M(Ωatt) f̂
(in)

(4.22)

where the rotation matrix is defined as in eq. (2.14)

M(Ωt) =


cos Ωt sin Ωt 0

− sin Ωt cos Ωt 0

0 0 1

 . (4.23)

and the angular frequencies are defined as

Ωph ≡ 2
5(4)

∑
e=2(3)

[
(K4e +K3e)

n̂at

2
+ (K4e −K3e) f̂z

]
(4.24)

Ωat ≡ 2
(

n̂ph

2
+ ŝz

) 5(4)

∑
e=2(3)

[K4e −K3e] (4.25)

The two pseudo-spin systems affect one another by exchanging a phase-shift.
The phase shift imparted on one vector is for both proportional to a vector
component plus the total number of particles of the other system. Hence the
interaction exchanges information about the coupled vector components from
one system to the other. If we look at the photonic pseudo-spin phase-shift
φ̃ph = Ωphta, with ta = la/c the time it takes the probe to pass the atomic sam-
ple, it is effectively proportional to the populations in the two levels with the
respective coupling strengths K3e and K4e. Hence, this amounts to the usual
dispersion of light in a dielectric medium. In exchange the atomic pseudo-spin
receives a phase-shift φ̃at = Ωattp from the probe, where tp = lp/c is the duration
of the probe pulse. which is the usual light shift caused by the dynamic Stark
effect. The effect comes from the electric field component of the light shifting the
energy levels of the ground states thus slightly altering the transition frequency
ω′

0. In fig. 5.5 and fig. 5.6 in the below section we plot the the light-shift φ̃at and
phase-shift φ̃ph as function of the probe laser detuning. In that section we will
discuss more about the different avenues for selecting the probing parameters in
light of these complementary shifts.
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Finally, we can for small values of Ωpht and Ωatt expand the equations to first
order

ŝ(out)
z = ŝ(in)

z f̂ (out)
z = f̂ (in)

z

ŝ(out)
x = ŝ(in)

x + ŝ(in)
y φ̃ph f̂ (out)

x = f̂ (in)
x + f̂ (in)

y φ̃at (4.26)

ŝ(out)
y = − ŝ(in)

y + ŝ(in)
x φ̃ph f̂ (out)

y = − f̂ (in)
y + f̂ (in)

x φ̃at

This will become useful later for the description of the QND measurements.

Full ensemble input-output relations We are now able to express the total
ensemble output operators following the interaction. In accordance with eq. (2.4)
the photonic operators need to be integrated over the pulse length lp and over
the transverse intensity profile |u(r)|2 = U(r), assumed to be Gaussian. The
simple case of Ŝz becomes

Ŝ(out)
z =

∫
R2

∫ lp

z=0
ŝ(in)

z (r) U(r) d2r dz = Ŝ(in)
z , (4.27)

For Ŝx the coupling to the atomic pseudo-spin generates a more involved expres-
sion

Ŝ(out)
x =

∫
R2

∫ lp

z=0

(
ŝ(in)

x (r) + ŝ(in)
y (r)Ωph(r)

la

c

)
U(r) d2r dz (4.28)

= Ŝ(in)
x +

4
πc

1
w2

a + w2
p

5(4)

∑
e=2(3)

[
(K4e +K3e)

N̂tot

2
+ (K4e −K3e) F̂z,tot

]
Ŝ(in)

y (r)

= Ŝ(in)
x +

4
πc

1
w2

p

5(4)

∑
e=2(3)

[
(K4e +K3e)

N̂at

2
+ (K4e −K3e) F̂z

]
Ŝ(in)

y (r)

A similar expression can be found for Ŝ(out)
y . For the atomic operators we take the

weighed integral over the atomic density, assumed to be of the form of eq. (3.9),
as prescribed by eq. (3.7)

F̂(out)
z,tot =

∫
R3

f̂ (in)
z U(r) d3r = F̂(in)

z,tot , (4.29)

and for F̂y

F̂(out)
x,tot =

∫
R3

(
f̂ (in)
x + f̂ (in)

y Ωat(r)
lp

c

)
U(r)d3r (4.30)

m

= F̂(in)
x,tot +

4
πc

1
w2

a + w2
p

5(4)

∑
e=2(3)

[K4e −K3e] F̂(in)
y,tot

(
N̂ph

2
+ Ŝz

)

F̂(out)
x = F̂(in)

x +
4

πc
1

w2
a + w2

p

5(4)

∑
e=2(3)

[K4e −K3e] F̂(in)
y

(
N̂ph

2
+ Ŝz

)
,

Again a similar expression can be found for F̂(out)
x .

4.5 Decoherence due to probing

Here we will focus on the decoherence or loss caused by the interaction with
the probe beam. The interaction induced decoherence is caused by scattering
of photons on atoms. A scattering event involves the excitation of the atom by
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absorption of a probe photon and a subsequent decay of the atom in conjunction
with the re-emission of a photon [Loudon73]. The excitation follows the coher-
ent interaction of the probe and the atomic sample and is thus included in the
description of the interaction in sec. 4.3. On the other hand, the atomic decay
and photon emission is a spontaneous process. For this reason, the treatment of
the spontaneous scattering goes in parallel with the treatment of the interaction.
Scattering processes are commonly described by a transition rate or a scatter-
ing cross-section. Since, the excitations are already expressed as a rate we will
mainly use the former description. Given an excitation rate c.f. eq. (4.18), what
remains is to determine the spontaneous decay channels and hence determine
the effect on the pseudo-spin moments and correlation. It is particularly im-
portant to determine what decay channels result in elastic or inelastic scattering
events. By elastic we mean that the atomic state following the excitation and
subsequent spontaneous decay is the same as the initial state. What exactly is
required for the state to qualify as being the same is something we will come
back to. Elastic scattering does not require the spontaneously emitted photon
to be in the same mode as the exciting photon, however by energy conservation
it must have the same frequency and, thus, only the direction of propagation is
left undetermined. Inelastic scattering refers to the opposite case where the final
atomic state is not the same as the initial state. By the same token, the frequency
of the emitted photon will differ from the incident photon by the energy differ-
ence between the initial and final atomic states. We note that, elastic scattering
is sometimes termed Raleigh scattering and inelastic scattering Raman scattering.

Due to selection rules for photon light absorption and spontaneous decay we
can usually predict the excitation and decay channels. Combining this with
the resulting expectation values of the pseudo-spin moments we can compute
eq. (3.35). For the moment we use a heuristic picture sketched on fig. 4.5 to

Figure 4.5: Excitation and
decay channels (see fig. 3.3)
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find the branching rations of the various decay channels. Each ground level
labelled by F and mF can be excited to a range of excited hyperfine-manifolds
F′. The excitation will only go to a specific magnetic sub-level m′

F of each excited
hyperfine level determined by the polarisation of the probe light. The fraction of
atoms excited through this channel is labelled ηF,F′ . From the excited states the
is a number of channels through which the atom is allowed decay. The decay
rates are labelled by γF′m′

F ,F′′mF′′
and from each excited level we can determine

the branching ratios of the allowed channels as

rF′m′
F ,F′′mF′′

= γF′m′
F ,F′′mF′′

/
∑

F∗,mF∗

γF′m′
F ,F∗mF∗

(4.31)

Hence the transition rate from an initial state |F, mF〉 to a final state |F′′, mF′′〉 is
given by ηFF′rF′m′

F ,F′′mF′′
, which can be computed from the data in tables D.4-D.10.

If there are more than one excitation channel by which the atom can reach the
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same final state the correct transition rates must be calculated by the Kramers-
Heisenberg formula, which includes a sum over the coupling to all intermedi-
ate levels |F′, mF′〉. Fortunately, for the experimentally relevant parameters the
Kramers-Heisenberg formula yields nearly the same results as what is achieved
by summing the transition rates ηFF′rF′m′

F ,F′′mF′′
that share the same excited state

|F′, mF′〉.

By summing over the two ground levels, the allowed excited manifolds and the
possible magnetic sub-levels in both ground-levels we calculate the effect of the
decay on the pseudo-spin components. The mean spin component transforms
as

〈 f̂ ∗i (r)〉 = (1− η)〈 f̂i(r)〉+ ∑
F,F′

ηFF′ ∑
m′

F ,mF′′

rF′mF′ ,F′′mF′′
〈 f̂ (1)′′

i 〉nat(r) , (4.32)

where the value of 〈 f̂ (1)′′
i 〉 is fully determined by F′′ and mF′′ . We recall that

we invoke the first order approximation e−η ≈ 1− η for small η. One reason
for making this approximation is to lighten the notation, but later when we ex-
press the spontaneous scattering as a sum of different contribution the 1st order
approximation enables us to calculate analytical expressions. For the second
moment the expression based on eq. (B.8) is somewhat more cumbersome

〈 f̂ ∗i (r)2〉 = (1− η)2〈 f̂i(r)2〉+ η(1− η)
〈 (

f̂ (1)
i

)2 〉
nat(r)

+ ∑
F,F′

ηFF′ ∑
m′

F ,mF′′

rF′mF′ ,F′′mF′′

〈 (
f̂ (1)′′
i

)2 〉
nat(r) (4.33)

+ ∑
F,F′

∑
F,F8

ηFF′ηFF8 ∑
mF′ ,mF′′

∑
mF8 ,mF88

rF′mF′ ,F′′mF′′
rF8mF8 ,F88mF88

〈
f̂ (1)′′
i f̂ (2)88

i

〉
nat(r)2

+ (1− η) ∑
F,F′

ηFF′ ∑
mF′ ,mF′′

rF′mF′ ,F′′mF′′

〈
f̂ (1)
i f̂ (2)′′

i

〉
2nat(r)2 ,

In most circumstances we may focus on a limited number of excitation and decay
channels since many ηFF′ and rF′mF′ ,F′′mF′′

are zero or negligible.

Instead of including all the channels it may be possible to calculate the decay in
terms of elastic (Raleigh) and inelastic (Ramsey) scattering rates. Then the sum-
mation above can be reduced to a sum over the hyperfine changing scattering
events and the hyperfine conserving events. In the latter case one has to argue
that the final f̂z is the same as the initial because no information is gained about
the f̂z of the individual atoms. For the inelastic events the appropriate terms
must be calculated.

4.5.1 Experimental examples

In this section we seek to simplify the expression in eq. (B.16) by specifying
particular coupling schemes that resemble the experimental conditions. This will
allow us to reduce the number of terms in the equation and make it easier to plug
in numbers when we need to get the final result. The first step is, however, to pin
down the particular spin component that we want to investigate. We recall that
the goal of this grand exercise is to obtain spin squeezing of the pseudo-spin
and the only component that has a direct physical meaning is the population
difference in the two level system. Thus we will direct our attention to f̂z. This
entails that the pseudo spin be oriented on the equator of the Bloch sphere and
the preceding investigation of the projection noise will have prepared the reader
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for the fact that we pick an initial state with f̂y as the only component with
non-zero expectation value.

As noted above, we need to distinguish elastic from inelastic scattering and to
that end we must define in what cases the atom returns to its initial level. This
appears to be a trivial exercise, since the atomic pseudo-spin was defined in the
basis of the two clock-levels |F = 4, mF = 0〉 and |F = 3, mF = 0〉, only real tran-
sitions which take the atom to the same hyperfine level and magnetic sub-level
will be elastic. Nevertheless, this strict definition does not capture one important
feature of the state detection, that the probe can not distinguish between atoms
populating different magnetic sub-levels. In other words, the probe laser line-
width exceeds the combined magnetic sub-level splitting of a hyperfine level.
Thus all sub-levels are coupled to the probe, though the coupling strengths are
not the same for all sub-levels. Hence, it is to a certain extent possible to distin-
guish the sub-levels by their different coupling to the probe, but for the relevant
sub-levels which have |mF| ≤ 1 the difference in the coupling strengths to lin-
ear probe light is only on the order of 1-2% for the mono-chromatic probing of
the D-lines and typically 2-4% for the dichromatic probing depending on the
detuning. In conclusion the mF = 0 and ±1 sub-levels remain effectively indis-
tinguishable to the probe despite their differential coupling. Based on the above,
we propose the term quasi-elastic scattering to describe the real transitions that
preserve the hyperfine level of the atom i.e. |F, mF = 0〉 → |F, mF = {0,±1}〉.

Effect of quasi-elastic and inelastic scattering

In order for the distinction between (quasi-)elastic and inelastic scattering to be
of any use, we must investigate the difference in their effect on the pseudo-spin
components initially focusing on f̂z. Much of this examination hinges on the
principle information leakage and especially the fact that a scattering event may
not reveal anything about certain atomic operators.

We first sort out the inelastic scattering events. In this case an atom starting
in the ground state |4, 0〉 (|3, 0〉) ends up in the other hyperfine ground state
|3, {0,±1}〉 (|4, {0,±1}〉) and the spontaneously emitted photon has the fre-
quency ωs = ω + ω0 (ω − ω0), where ω is the frequency of the incident photon
and ω0 is the hyperfine splitting of the ground levels. From ωs it is then possible
to infer the excitation and decay channels, which in turn projects the final state
on to one of the ground levels. Thus if the initial atomic state was a superposition
state (|4, 0〉 + i|3, 0〉)/

√
2 the final state would either |4, {0,±1}〉 or |3{0,±1}〉

depending on ωs. Thus, any correlation of the scattering atom with other atoms
is lost and the final state is completely uncorrelated with other atoms.

It is important to note that since we deal with collective variables for the atoms
and the photons a scattering event cannot be pinned down to a specific atom –
there is no straight forward way to tell which atom scattered the photon.5 There-
fore, the decoherence is effectively distributed over the whole ensemble which
is only minimally affected by the single inelastic scattering event. This robust-
ness the decoherence is one of the advantages of systems that are expressed as
collective operators.

Now we turn to the case of a photon being scattered elastically off an atom
whereby the spontaneously emitted photon will have exactly the same frequency

5to determine the position of the scattering atom one would have to detect the spontaneously
emitted light e.g. by a CCD camera at the resolution of the inter-atomic separation ≈ 1µm. If
the scattering atom were detected it is likely that this would also reveal ωs, in which case the
information on the projection of f̂z would not be lost .
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as the incoming photon. This holds irrespectively of which transition the incom-
ing photon was actually absorbed on. Hence, even if the scattering event caused
the atom to be excited and spontaneously decay, there is no way to tell from
the emitted photon which transition was excited. We take a practical exam-
ple of an atom in a coherent superposition (|4, mF〉 + i|3, mF〉)/

√
2 excited by

probe photons of frequency ω near resonance with the D1-line.6 A probe pho-
ton may be absorbed for the atom to make the transition |4, mF〉 → |3′, m′

F〉
or |3, mF〉 → |4′, m′

F〉, however since both transitions involve the absorption
photon with the same frequency there is no way to determine which excited
state the atom is taken to. As a result, the excited state is also a superposition
(|3′, mF〉 + i|4′, m′

F〉)/
√

2. By spontaneous emission of a photon with frequency
ω the atoms relaxes to the ground levels, but since the photon still does not
disclose any knowledge about the decay channel the atom returns to its initial
state i.e. the coherent superposition (|4, m′

F〉 + eiφ|3, m′
F〉)/

√
2, albeit with a ran-

dom phase φ. Since the final and identical states are identical, any correlation of
the scattering atom with other atoms is preserved meaning that elastic scatter-
ing does not degrade the noise reduction imparted by a QND measurement. In
quasi-elastic scattering events where the final state is in the m′

F = ±1 level, the
polarisation of the emitted photon will give away the final magnetic sub-level
but not the hyperfine level. Because of this, quasi-elastic scattering does also
not perturb f̂z. For the dichromatic probing the pictures becomes slightly more
elaborate as we shall see shortly below.

As argued above the central task is to determine the transition rates for quasi-
elastic and inelastic scattering rather than keeping track of the transition rates for
all individual real-transition channels. Whether a real-transition is quasi-elastic
or inelastic is solely determined by the initial and final hyperfine states i.e. by F
and F′′ in eqs. (B.15 and B.16). Thus we compress the expressions by summing
over all transition rates with shared initial and final hyperfine states

ηF,F′′ = ∑
F′

∑
m′′

F

ηFF′rF′m′
F ,F′′m′′

F
(4.34)

We also introduce quasi-elastic and inelastic scattering rates as ηqel = ∑F ηFF and
ηinel = ∑F 6=F′′ ηFF′′ respectively. This allows us to simplify eq. (B.15) to

〈 f̂ ∗z (r)〉 = (1− ηinel)〈 f̂z(r)〉+ ∑
F 6=F′′

〈 f̂ (1)′′
z 〉nat(r) , (4.35)

which shows that only inelastic scattering affects the f̂z expectation value. The
expectation value 〈 f̂z(r)〉 following a QND measurement depends on the mea-
surement outcome c.f. eq. (5.10), wherefore we cannot specify a value for it in
the above equation. Of course we can approximate it to be zero as for the initial
equal superposition state. We will use this approximation below as we plot the
theoretical curves for 〈 f̂ ∗z (r)〉.

From eq. (B.16) together with the above discussion we gain an even larger sim-
plification of the second moment

〈 f̂ ∗z (r)2〉 =
(
1− (1− ε)(1− ηinel)2) nat(r)

4
(4.36)

+ ∑
F 6=F′′

∑
F0 6=F88

ηF,F′′ηF0F88

〈
f̂ (1)′′
z f̂ (2)88

z

〉
nat(r)2 ,

6The D2-line behaves similarly, but since it involves four possible excitation channels the
treatment is unnecessarily complicated to make a good example.
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where ε is a possible noise reduction of the initial state w.r.t. the projection
noise level. We neglect contributions from the terms ηF(F′′ 6=F)〈 f̂ (1)

z f̂ (2)′′
z 〉 in that

we firstly note that f̂ (1)
z and f̂ (2)′′

z are uncorrelated and in that case we approxi-
mate the input state with the initial equal superposition.7 Without hesitation we
combine eqs. (4.35 and 4.36) to evaluate the variance

〈(∆ f̂ ∗z (r))2〉 =
(
1− (1− ε)(1− ηinel)2) nat(r)

4
. (4.37)

This result relies on the mutual cancellation of the sum terms in 〈 f̂ ∗z (r)〉2 and
〈 f̂ ∗z (r)2〉8 as can be verified by inserting all possible combinations of F and F′′.
It also requires setting the initial f̂z mean value to zero. This simplification is
concurs with the earlier approximation of setting ηF(F′′ 6=F)〈 f̂ (1)

z f̂ (2)′′
z 〉 = 0. This

restriction does not influence the prediction of the variance, since 〈 f̂z〉 can always
be set to zero by performing a classical rotation (see sec. 10.2.1) around the x-
axis by the angle derived from the QND measurement outcome c.f. eq. (5.10).9

The implications of eq. (4.37) agree well with what we anticipated. Firstly, only
the inelastic scattering causes a degradation of the noise reduction. Secondly,
for for input states with ε ≤ 1 the noise never exceeds the SQL and in the case
of ε = 1 the scattering has no effect. Hence, scattering on a product state does
not increase the noise as we already saw in eq. (B.11). All that remains is to get
some values for ηqel and ηinel. These depend on the atomic level structure and
the probe detuning and intensity. In the next sections we will illustrate the cases
of the D1-line and D2-line, respectively. To that end, we plot the branching of
excitations resulting in quasi-elastic and inelastic scattering, the output 〈 f̂ ∗z 〉, and
the output variance 〈(∆ f̂ ∗z )2〉.

Cs D1-line with one probe

On the D1-line the probe couples each hyperfine ground state to only one excited
level as opposed to two for the D2-line. From each excited state there are five
decay channels three of which return the atom to the same hyperfine while two
take it to another hyperfine ground level. From the decay rates and coupling
constants we compute the quasi-elastic and inelastic decay rates and plot these
normalised to the total excitation rate as a function of the probe detuning For the'
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Figure 4.6: Proportions of quasi-elastic (green) and inelastic scattering (red) to total
scattering on D1-line (yellow).

probe on resonance with either the |4, mF〉 → |3′, m′
F〉 or |3, mF〉 → |4′, m′

F〉 the

7then we get 〈 f̂ (1)
z f̂ (2)′′

z 〉 ∝ ( 1
2 −

1
2 )(± 1

2 ) = 0
8by which we mean ∑F 6=F′′ ∑F0 6=F88 ηF,F′′ηF0 F88

〈
f̂ (1)′′
z f̂ (2)88

z

〉
−
(

∑F 6=F′′ 〈 f̂ (1)′′
z 〉nat(r)

)2

9The author strongly believes that if the excluded terms were instead retained they would
cancel each other, anyway.
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ratio ηqel/ηinel is given almost exclusively by the branching ratio of the respective
excited level i.e. 7/3(= 2.33) and 9/5(= 1.8), respectively. Since, these are not
vastly different the ratio does not vary much for probe detunings over the entire
D1-line. In the limit of |∆ | � ω0 the ratio ηqel/ηinel → 66/31 ≈ 2 which is the
average of the ratio of the elastic to inelastic decay probabilities for the whole
D1-line.

In sec. 5.2.2 we accentuate that the QND measurement strength was propor-
tional to the total excitation rate η, which for constant photon number is strongly
peaked around the transition frequencies. As, we wish to examine the influence
of scattering on the pseudo-spin under constant ”QND conditions” the below
curves of 〈 f̂ ∗z 〉 and 〈(∆ f̂ ∗z )2〉 are plotted with the photon number varied so as
to hold η constant. To moderately exaggerate the curves we hold η = 1. First,'
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Figure 4.7: Mean pseudo-spin change due to inelastic scattering for constant total photon
scattering on D1-line.

we examine the change in the pseudo-spin z-component, which can be seen as
optical pumping by the probe. Thus, 〈 f̂ ∗z 〉 depends on the ratio of inelastic scat-
tering from the two ground levels. When the probe is near resonant with the
|4, mF〉 → |3′, m′

F〉 transition the excitation predominantly occurs on this tran-
sition and thus the inelastic scattering tends to depopulate the F = 4 ground
level causing 〈 f̂ ∗z 〉 < 0. Near resonance with the |3, mF〉 → |4′, m′

F〉 transition the
probe induces the opposite effect. Achieving, 〈 f̂ ∗z 〉 = 0 is only possible when the
probe is detuned about halfway between the two allowed transitions. For large
detunings the pseudo-spin change is proportional to the ratio of the inelastic
scattering rates from the two excited states ηinel,34/ηinel,43 = 5/3.'
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Figure 4.8: Variance of pseudo-spin after photon scattering on D1-line.

Next we look at the variance following decoherence of an input state with var-
ious degrees of QND-measurement induced noise-reduction ε. Since, we fix η

one can imagine the different ε to arise from different optical densities of the
atomic sample. We observe that the lower the input noise the larger is the noise
increase due to scattering. For input noise at the SQL decoherence has no effect.
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The noise increase is slightly lower at the 4 → 3′ transition than the 3 → 4′ due
to the more favourable ratio of ηqel/ηinel (fig. 4.6).

Cs D2-line with one probe

To take a positive stance this is a very rich system. The probe can excite an atom
from either ground state to two excited levels and from each of these there are
either 3 or 5 decay channels producing a total sum of 16 decay channels. Of
particular interest, will be the quasi-cycling transitions 4 → 5′ and 3 → 2′ on
which an excited atom can only decay back to the same hyperfine ground level.
On the D2-line, the ratios of quasi-elastic and inelastic scattering to the total scat-'
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Figure 4.9: Proportions of quasi-elastic and inelastic scattering to total scattering on
D2-line.

tering rate exhibit some very sharp features as compared with the D1-line case.
The most noteworthy feature is that at two detunings we get ηqel/η ≈ 1 and
thus ηinel/η ≈ 0. These detunings correspond to the probe being on resonance
with the quasi-cycling transitions, which consequently are the dominant excita-
tion channels. Hence, for probe frequencies in the vicinity of the quasi-cycling
transitions we obtain a favourable ratio ηqel/ηinel � 1. Oppositely, near the two
remaining transitions the inelastic scattering rate predominates. For |∆ | � ω0
the ratio ηqel/ηinel → 7497/1889 ≈ 4, which is somewhat better than that of the
D1-line.'
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Figure 4.10: Mean pseudo-spin change due to inelastic scattering for constant total pho-
ton scattering on D2-line.

The lively detuning dependence of the scattering rates carries over to the pseudo-
spin expectation values. Since on the quasi-cycling transitions the scattering is
almost exclusively quasi-elastic, 〈 f̂z〉 does not experience any change an thus
remains at 0. As for the D1-line 〈 f̂ ∗z 〉 = 0 is also achieved for a probe detuning
about half way between the hyperfine ground-levels where inelastic scattering
rates from each ground level are equal. The largest 〈 f̂ ∗z 〉 change happens when
the probe is resonant with the two non-quasi-cycling transitions. In the limit of
large detunings 〈 f̂ ∗z 〉 → ηinel,34/ηinel,43 = 66/91.
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Figure 4.11: Variance of pseudo-spin after photon scattering on D2-line.

Finally, we plot the curves for 〈(∆ f̂ ∗z )2〉 for the probe frequency tuned over the
D2-line. Because, for probe frequencies on resonance with the quasi-cycling
transition, almost all scattering is elastic the variance does not experience any
increase. In contrast, probe frequencies near the two other transitions cause a
great deal of noise increase and thus degradation of the QND-measurement.
Besides, these special frequencies near the transitions, the probing on the D2-
line causes a noise increase that overall is smaller than that of the D1-line. This
is a direct consequence of the larger ηqel/ηinel ratio for the D2-line as a whole.

Now we have investigated how squeezing and atomic correlation are affected by
decoherence, and even before that we developed the scales by which we measure
the degree of squeezing. Yet, we have not seen how correlation and squeezing
might at all appear in the atomic ensemble. This short coming will be thoroughly
amended by the following sections. This can be taken as an encouragement or a
threat depending on ones disposition.



Chapter 5

QND measurements and
squeezing

5.1 QND measurements

Up till this point we have loosely used the term QND, implicitly assuming some
common understanding of what it means. Obviously, QND implies that a target
system is measured by some amount of interaction an that this does not in some
sense disturb the quantum state of the target system. On the other hand, any
interaction will leave the quantum state affected in some way, so it is essential
that we specify exactly in what sense the interaction must be non-destructive in
order to be awarded the distinction of QND. Before stating any definition let us
attempt to motivate it by an example.

A, by now, standard example is that of the position x̂ and momentum p̂ of a
target system comprising a single particle. The expectation values and variances
of these operators can both be deduced from the particle’s wave-function. They
fulfil the, so called, canonical commutation relation [x̂, p̂] = ih̄. Thus, the un-
certainty product is limited by a constant value 〈(∆x̂)2〉〈(∆p̂)2〉 ≥ h̄2/4. The
time evolution of the particle is described by ˙̂x = (ih̄)−1 [x̂, Ĥfree

]
= p̂/m. If

there is no external influence on the particle p̂ is a constant of motion1 and
we are allowed to write x̂(t) = x̂0 + p̂t/m. Now we apply a QND interaction
which measures one of the observables and thereby determine its value with
some precision, resulting in a reduction of its variance. Say, one choses x̂ as
the target variable and measure it without destroying the particle. The variance
of x̂ is then reduced by ε so that 〈(∆x̂′0)

2〉 = ε〈(∆x̂0)2〉, then from the uncer-
tainty relation the variance of the momentum is at least 〈(∆p̂′)2〉 ≥ 〈(∆p̂0)2〉/ε.
This is all fine, but a problem arises if we look at the position after some time
〈(∆ ˆx′(t))2〉 ≥ ε〈(∆(x̂′0 + p̂0t/m))2〉 = ε〈(∆x̂0)2〉+ 〈(∆p̂0)2〉t/(εm) ≥ ε〈(∆x̂0)2〉+
h̄2t/(4εm〈(∆x̂0)2〉). This shows that even though we initially pinned down the
particles position this information quickly becomes useless because the particle
moves and it even does so more unpredictably than before the measurement.
The time it takes for the variance of a particle’s position after a QND measure-
ment to exceed that of the non-measured particle is t = ε4m〈(∆x0)2〉2/h̄2, which
naturally depends on the initial variance 〈(∆x0)2〉2 and in relation to this the
time is proportional to the noise reduction i.e. the smaller ε the shorter the time
until the position measurement is scrambled by the particle’s movement. If on
the other hand we had measured p̂ and recorded some value we would reduce

1Expressed otherwise
[
p̂, Ĥfree

]
=
[
p̂, p̂2/2m

]
= 0

67
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its variance p̂′ = ε p̂. Even if the particle’s position becomes more uncertain this
would not influence p̂ and thus not compromise the credibility of the measured
value. The key here is that p̂ is a constant of motion, which means that it com-
mutes with the Hamiltonian for the free evolution or non-interacting system. In
this example we have not specified how to measure the system, but in general
this is done by an indirect measurement [Neumann32] where the target system
interacts with a quantum meter system, which thence acquires some information
about the target variable. By a subsequent classical measurement of the meter
system the recorded information about the meter variable can be harnessed.

Inspired by the above example we can construct requirements for a measurement
to be QND. A sufficient though not strictly necessary requirement for a variable
of a target ôT and a meter ôM system to comprise a QND interaction is that
the target variable commute with the time evolution operator of the combined
system ÛM+T(t). This is clearly satisfied if the following two conditions are
simultaneously met

• The target variable commutes with the interaction Hamiltonian[
ôT, Ĥint

]
= 0 (5.1)

• The target variable commutes with the free evolution Hamiltonian[
ôT, Ĥ0

]
= 0 (5.2)

The simplest form of interaction Hamiltonian fulfilling eq. (5.1) and coupling the
system and meter variables is of the form

ĤQND = KôM ôT (5.3)

where K is the characteristic coupling constant of the interaction. The above
conditions are surely appropriate to gauge whether or not an interaction de-
serves to be designated as QND, but it does not question what the effect of
the interaction should be on the meter nor establish any figures of merit for
the QND interaction. Indeed, the easiest approach to meet them is to identify
a variable that is a constant of motion and then do nothing. This evidently
is not in the spirit of what QND is meant to describe. As a result, one must
include some measures for the usefulness of the measurement in establishing
some knowledge about the target system. A possible set of measures has been
suggested [Holland90, Poizat94] as

Measurement efficiency – The degree of correlation between the meter and the
value of the target variable prior to the interaction

Degree of non-demolition – The degree of correlation between the value of the
target variable before and after the interaction

Quantum state preparation ability – The degree of correlation between the me-
ter and the value of the target variable after the interaction

The commutation based QND criteria eqs. (5.1 and 5.2) are mainly concerned
with the second measure i.e. ensuring that the interaction does not cause ex-
cessive disturbance of the target system. The first measure obviously rules out
the do nothing approach since that will not enable any prediction of the target
variable. The third measures is to a large extent a merger of the preceding two.
It seeks to establish the extent to which the information gained by detection of
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the meter variable reveal the value of target variable after the interaction. Hence
a fully destructive measurement would not contradict the first measure, but be-
cause it violates the second the it also fails to fulfil the third measure. The idea
of spin squeezing by QND measurement is very much an embodiment of the the
third measure, in that an SSS, having a reduced variance of the target variable,
is also closer to being in a well-defined eigen-state of the target variable.

5.1.1 Squeezing by QND measurements

The requirements for a QND measurement are to a large extent similar to those
for creating a squeezed state. 2 By performing a QND of the target operator one
partially projects the state on to an eigen-state of the operator that is compati-
ble with the measurement outcome. An eigen-state by nature yields a uniquely
specified value when measured in the basis of the same operator, thus it is in-
tuitively clear that a partial projection will result in a more certain prediction of
a subsequent measurement outcome. This reduction of the quantum measure-
ment uncertainty is exactly the essence of a squeezed state (sec. 3.5). It turns out
that a complete projection is not really interesting in squeezing circles since the
resulting complete randomisation of the conjugate variable inevitably disturbs
the system beyond the point where it is useful for applications.

We will illustrate the effect of the Generic QND interaction eq. (5.3) on the cou-
pled system using basic concepts from classical probability theory of conditional
probability distributions. Actually, the conditioning is not due to the QND
Hamiltonian itself, but due to the subsequent measurement of the light system
revealing some value. To link this discussion to the variables discussed in other
chapters we let the QND Hamiltonian be of the form h̄K ŝz f̂z where it couples
atomic and photonic pseudo-spins. We further specialise to the case where the
spin is aligned along one of the components — we pick f̂y. We will not demand
that 〈 f̂z〉 and 〈 f̂x〉 are exactly zero, however the preceding assumption dictates
that they be rather small compared to nat. We make a similar requirement for
the photon pseudo-spin whereby we get

ŝ(out)
z = ŝ(in)

z , ŝ(out)
x = ŝ(in)

x +K ŝy f̂ (in)
z ta (5.4)

f̂ (out)
z = f̂ (in)

z , f̂ (out)
x = f̂ (in)

x +K f̂y ŝ(in)
z tp (5.5)

Since f̂y and ŝy are large we take them to be equal to their mean values fy ≡
〈 f̂y〉 = nat/2 and sy ≡ 〈ŝy〉 = nph/2. As required for a QND measurement
f̂z is unchanged. At this point, it is advantageous to complicate the description
slightly. The above equations are asymmetric as they contain either ta = la/c and
tp = lp/c, that under normal circumstances are not the same. A straightforward
solution is to multiply the top equation by lp and the bottom one by la and
introduce the operators f̂i ≡ f̂ila and ŝi ≡ ŝilp so that

ŝ
(out)
z = ŝ

(in)
z , ŝ

(out)
x = ŝ

(in)
x +

K
c

ŝy f̂
(in)
z (5.6)

f̂
(out)
z = f̂

(in)
z , f̂

(out)
x = f̂

(in)
x +

K
c

f̂yŝ
(in)
z . (5.7)

The operators f̂i and ŝi represent the column atom and photon number respec-
tively. Now all equations are made up of the product of the atomic and photonic
operators multiplied by their respective spatial extent along the z-axis. How,

2which is not the same as saying that the creation of a squeezed state requires QND measure-
ments.
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then, do these expressions bestow us any advantages? Firstly, our measurements
are not continuous, but pulsed. The signal acquired from the measurement is
that of the whole duration of the probe pulse.3 It, thus, makes perfect sense to
include the whole column photon density of the probe pulse. We may still leave
out the transverse probe intensity distribution as concentrate on the local trans-
verse intensity as it would be possible to block all but a small part of the probe
beam and detect only this. As for the atomic operators, the probe interacts with
all atoms at the corresponding x, y along the z-axis. From the detected probe sig-
nal there is no way to deduce how atoms at different z-coordinates contributed to
the signal.4 Therefore, it only makes sense to consider the entire column density
of the atoms in the sample. Since, f̂i and ŝi describe column density operators
we must also treat the variances accordingly e.g. 〈(∆f̂i)2〉 = 〈(∆ f̂i)2〉la and not
〈(∆ f̂i)2〉l2

a . If this is not convincing we refer to the derivation of eq. (3.26) as well
as the rigourous explanation in sec. B.

We need to decide which ŝ component to measure. It makes little sense to mea-
sure ŝz since it is also constant, thus we measure ŝ(out)

x which yields some value
xs. Now we can compute the moments of the atomic pseudo-spins conditioned
upon the measurement of ŝx. These are given by [Hammerer09]

〈f̂(out)
i 〉

∣∣
{ŝ(out)

x =xs}
= 〈f̂(out)

i 〉 −
〈f̂(out)

i ŝ
(out)
x 〉

〈(ŝ(out)
x )2〉

xs

〈(∆f̂
(out)
i )2〉

∣∣
{ŝ(out)

x =xs}
= 〈(∆f̂

(out)
i )2〉 −

〈f̂(out)
i ŝ

(out)
x 〉2

〈(ŝ(out)
x )2〉

′

where
∣∣
{ŝ(out)

x =xs}
denotes that the preceding expression is conditioned upon the

measurement outcome of ŝx. The mean values and variances are thus computed
by inserting the output terms of eq. (5.6). The term 〈(ŝ(out)

x )2〉 appears in all the
expressions and we find it to be

〈(ŝ(out)
x )2〉 =

nph

4
+
K2

c2

(nph)2

4
nat

4
= (1 + κ2)

nph

4
,

where we introduced the compound coupling constant κ2 = K2nphnat/(4c2). If

we take 〈ŝ(in)
x 〉 = 05 then the noise in the detected meter variable is 〈(∆ŝ

(out)
x )2〉 =

(1 + κ2) nph
4 , where the first term is the shot noise and the second term comes

from the phase-fluctuations introduced by the projection noise of the atomic
target variable. The SNR of the measurement, understood as the projection noise
imprint divided by the shot noise (see sec. 2.3), becomes

SNR = κ2 , (5.8)

which means that the compound coupling constant can be found by observing
the ratio of the projection noise imprint to shot noise in the detected output
signal. This gives us a simple and direct access to the coupling constant.

3we do in fact have some temporal resolution of the recorded probe signal and the total pulse
signal is only reached after digitally integrating up the signal. Thus, one could imagine dividing
a pulse into segments and considering these as individual pulses. Nevertheless, the detector
bandwidth always sets a lower limit to the temporal resolution and it makes no sense to talk
about a signal on a time-scale shorter than this. The bottom line is that for our description it is
practical though not strictly required to integrate over the whole pulse duration.

4this principle is strictly true
5we earlier already required it to be small
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Based on the above, we first compute the conditioned mean values of the atomic
pseudo-spin components

〈f̂(out)
x 〉

∣∣
{ŝ(out)

x =xs}
= 〈f̂(in)

x 〉+ κ

√
nat

nph
〈ŝ(in)

z 〉 (5.9)

〈f̂(out)
z 〉

∣∣
{ŝ(out)

x =xs}
= 〈f̂(in)

z 〉 − κ

1 + κ2

√
nat

nph
xs (5.10)

The mean value of f̂x is affected solely by the interaction itself and not by the
measurement result. Thus if for the generic QND interaction we have 〈ŝz〉 = 0
then the mean of f̂x does not change. In sec. 5.2 we will elaborate on how to
ensure that the interaction leaves f̂x unaffected. The z-component’s expectation
value is on the contrary unaffected by the interaction itself but does change based
upon the measurement result. This was expected since the detected meter vari-
able carries information about the value of ŝz, the result should also influence our
prediction of its mean value. Next step is to deduce the variances conditioned
on the measurement result.

〈(∆f̂
(out)
x )2〉

∣∣
{ŝ(out)

x =xs}
= 〈(∆ f̂ (in)

x lp)2〉+ κ2 nat

nph
〈(∆ŝ

(in)
z )2〉

=
(
1 + κ2) nat

4
(5.11)

〈(∆f̂
(out)
z )2〉

∣∣
{ŝ(out)

x =xs}
=

〈(∆f̂
(in)
z )2〉+ κ2

(
〈(∆f̂

(in)
z )2〉 − nat

4

)
1 + κ2

=
1

1 + κ2
nat

4
(5.12)

To reach the final simple form, we have taken 〈(∆ŝ
(in)
z )2〉 = nph/4 as well as

〈(∆f̂
(in)
x )2〉 = 〈(∆f̂

(in)
x )2〉 = nat/4, in agreement with the initial assumption about

the pseudo-spin y-orientations. The above set of equations confirms that the
generic QND interaction followed by destructive detection of the meter system
does produce a target system state which has a reduced uncertainty of the tar-
get variable as compared to the SQL. In return the noise in the conjugate target
variable is above the SQL. It is equally interesting that the post-detection uncer-
tainty product remains at 〈(∆f̂

(out)
x )2〉〈(∆f̂

(out)
z )2〉

∣∣
{ŝ(out)

x =xs}
= (nat)2/16 ratifying

that the target system continues to be in a minimal uncertainty state. A profound
observation is that the additional back-action noise on f̂x arises from the actual
QND interaction, whereas the noise reduction of f̂z only comes about when the
conditional term from the measurement is included. This is similar to what
was found for the expectation values and underlines that generation of a SSS
requires both an interaction to entangle the target with the meter as well as a
subsequent precise detection of the meter variable. These roughly correspond
to the. In essence the strong coupling and quantum noise-limited detection are
two independent experimental objectives for a setup. A third practical objective
relates to the non-demolition character, that is closely tied to the strong coupling
requirement.

In sec. 5.2.1 we give a supplementary derivation of the QND measurement in-
duced noise reduction, that is based on the full probability distribution of the
coupled operators. A third approach on the derivation due to [Zoller03], that
involves the Schrödinger picture evolution of the wave-function caused by the
QND interaction and the tracing out of photonic system caused by the mea-
surement. Though it may appear as an overkill to provide this range of distinct
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derivations of the same result, there are, nevertheless, two clear aims of this.
Firstly, it varies from person to person, which derivation is found to be the most
enlightening. Hence, the ample supply of derivations should be seen as a way
to cater to readers’ individual preferences. Secondly, the form of the noise re-
duction eq. (5.12) is often stated and applied, yet there seems to have been some
confusion as to its origin and validation. Hence, this is a deliberate attempt to
collect thorough treatments of a number of approaches to disclose this form.

Experimental context Experimentally the verification of QND measurements
discussed in the previous section are somewhat linked to proving squeezing.
As the meter measurement outcome is correlated with the expectation value
of the squeezed target variable so any subsequent meter measurement of the
target value will be correlated with the initial squeezing measurement outcome.
What limits this correlation of the subsequent meter measurement outcomes is
the noise of the meter it self. For the squeezing measurement the fact that the
QND interaction has to partially leave intact the target state limits how precise
the measurement can be. Essentially, this is because high precision is a result of
stronger coupling which entails greater destruction of the target state. For sub-
sequent squeezing verification measurements there is no restriction on the target
state destruction and one can thus increase the measurement precision whereby
the relative correlation of this measurement with the squeezing measurement is
strengthened. These considerations form the basis of the data analysis described
in sec. 12.2.1.

5.2 Atom light interaction and QND measurement
squeezing

We have yet to substantiate our claim that we actually realise a QND interaction
let alone are able to squeeze anything with the atom-light interaction described
in chapt. 4. By the end of this section we hope to have convinced all but the most
sceptical readers that we are in fact able, at least in theory, to do both. To achieve
this we will investigate our interaction Hamiltonian in light of the QND criteria
of the above section and in parallel trace out the rationale behind our choice of
QND target and meter variables.

When one compares the generic QND Hamiltonian eq. (5.3) with the interaction
Hamiltonian that was derived eq. (4.9) there are clearly similarities though the
latter contains some extra terms. For obvious reasons the stationary atomic en-
semble is the target system and the travelling probe beam makes up the meter
system. As for the choice of target variables we first put our attention on the pop-
ulation terms n̂ph and n̂at. These do commute with the interaction Hamiltonian,
however, they have very large mean values, which would make a precise mea-
surement of fluctuations around their mean values at the level of the quantum
noise very difficult. Since they are also highly susceptible to classical sources of
noise the population variables are not suitable as QND variables. The remain-
ing variables in the Hamiltonian contains the z-components of the photonic and
atomic pseudo-spins, where the latter is our candidate for QND target variable.
During free evolution f̂z is in principle a constant of motion, but collisions and
inhomogeneities will cause it to decay with some characteristic time (see dis-
cussion in sec. 3.7.1). Depending on the quantum states of the ensemble and
the probe ŝz and f̂z can attain large or small mean values. Hence, to be able to
relate the interaction described by the Hamiltonian eq. (4.9) to a QND measure-
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ment we must be specific about the initial quantum states. Since, we wish to
measure minute fluctuations of f̂z it is desirable that the initial atomic state has
〈 f̂z〉 = 0, which is for example fulfilled for the product state of equal superpo-
sitions (|4〉 + i|3〉)/

√
2 (see eq. (3.16)). We have made an, in principle arbitrary,

choice of the phase of the product state that results in 〈 f̂x〉 = 0 and 〈 f̂y〉 = nat/2.
Because of the large mean value of f̂y we make the replacement f̂y → n̂at/2. For
the probe we will only require that 〈ŝx〉 = 0, which is fulfilled if e.g. ŝ is com-
prised of the output of a BS with one input in a coherent state and the other in
a vacuum state (see eq. (2.11) or fig. 2.3). Though we don’t demand that 〈ŝz〉 = 0
we will add the condition that ŝy is large and may be replaced by ŝy → ±nph/2
— the sign is deliberately, and for a good reason, left unspecified. With these
initial properties at hand we re-cap the linearly expanded input output relations
eqs. (4.26 and ??) leaving out the macroscopic y-components

ŝ(out)
z = ŝ(in)

z , ŝ(out)
x = ŝ(in)

x + ŝyφ̃ph (5.13)

f̂ (out)
z = f̂ (in)

z , f̂ (out)
x = f̂ (in)

x + f̂yφ̃at (5.14)

where φ̃ph ∝ f̂z and φ̃at ∝ ŝz c.f. eq. (4.24). As a QND target variable f̂z fulfils
the non-demolition criterion in that the output value is correlated with the input
value. Though eq. (5.14) suggests that this correlation is perfect it is actually
limited by decoherence due to photon absorption as discussed in sec. 4.5. We see
that ŝx is correlated with the target variable, thus, qualifying as a meter variable.
The measurement efficiency criterion hinges on the coupling strength, which in
turn depends on a whole range of experimental parameters discussed in later
chapters. Hence, conditioned on the measurement strength and the degree of
photon scattering, the interaction and subsequent detection meet the criterion
of being able to engineer the quantum state of f̂z. As a final note on the meter
variable, we must verify that we indeed have a means of measuring it. As photo-
detectors only ”count” photons and not fields it is in fact not possible to measure
ŝx directly. Fortunately, all the investigated probe configurations circumvent this
catch either by transformation of ŝx into ŝz at the output BS in the MZI (sec. 2.3.1)
or by lock-in detection of the field-sum in the SBI (sec. A.6). Hence, it is sufficient
to be able to encode the information about f̂z in ŝx. All together, the atom-light
interaction measures up to the QND criteria, but how this actually results in a
SSS being generated is the topic of the next section.

5.2.1 QND measurement as projection on Dicke-state basis

We will now view the QND measurement from an angle, which might appeal to
some for being more intuitive than the treatment in sec. 5.1.1. This treatment is
by and large the same as in [Windpassinger09b]. We make use of the fact that
we actually know the initial atomic and photonic distributions and not only their
mean values and variances. Moreover, we explicitly utilise that the light meter
variable records the value of f̂z and if this were done with infinite strength and
without noise, the QND measurement would project the atomic state onto an
eigen-state of f̂z i.e. a Dicke-state as described in sec. 3.3.1. The starting point is
a measurement outcome xs of ŝz (ŝx) at the MZI (SBI) output corresponding to
ŝx interacting with the atomic ensemble. Because of the shot noise of light we
cannot determine exactly the f̂z value corresponding to this measurement. Still,
we know that the shot-noise of ŝx has a Gaussian distribution in the Fock-basis
i.e. not accounting for the interaction or the measurement (See appendix A.2)

P(ŝx = n
2 ) = |〈nph, n

2 |ŝx|
nlp
2 , nph〉| = 2

πnph
e
− (〈ŝx〉− n

2 )2

2nph .
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We assume that MZI or SBI is adjusted so that in the absence of atoms we would
have 〈ŝx〉 = 0. With atoms present the value changes according to eq. (5.13)
and ŝ

(out)
x = ŝ

(in)
x + K

c ŝy f̂z. Presuming that the atoms are in a Dicke-state with
〈f̂z〉 = m the resulting 〈ŝx〉 = K

c ŝym. Thus the distribution of ŝx conditioned on
the atoms being in the Dicke-state | nat

2 , m〉 becomes

P(ŝ(out)
x = n

2 )
∣∣
{f̂z=m} = |〈nph, n

2 |ŝ
(out)
x | n

2 , nph〉|
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{| nat

2 ,m〉} = 2
πnph

e
− (Kc ŝym− n

2 )2

2nph

On the other hand we found in sec. 3.3.1 that a product state of equal superpo-
sitions can be written in the basis of Dicke-states according to eq. (3.24), which
in the limit of large atom numbers can be approximated by the Gaussian distri-
bution

P(f̂z = m) = |〈nat

2
, 0|nat

2
, m〉|2 =

2
πnat

e−
(〈f̂z〉−m)2

2nat ,

where for an exact equal superposition 〈f̂z〉 = 0. In an experiment we let the
meter variable interact with the target variable whereupon we detect the meter
and based on the result want to predict the value of the target variable to better
than the SQL. Thus we wish to learn about the distribution of f̂z values, e.g. in
the Dicke-state basis, given a certain measurement result. In other words we
seek the distribution P(f̂z = m)

∣∣
{ŝ(out)

x = n
2 }

. With Bayes’ rule (see e.g. ) and the

above distributions at hand we are actually able to express this as
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x = n
2 }
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P(ŝ(out)

x = n
2 )
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{f̂z=m}P(f̂z = m)
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x = n

2 )

The probability that ŝ
(out)
x obtains a certain value is not immediately known but

we can use that P(ŝ(out)
x = n

2 ) =
∫ ∞
−∞ P(ŝ(out)

x = n
2 )
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{f̂z=m}P(f̂z = m) dm. In other

words the probability of measuring a certain output ŝ
(out)
x is the same as the

probability to measure a certain ŝ
(out)
x given a certain Dicke state multiplied by

the likelihood to have that Dicke state and then integrating over all Dicke states.
Performing the integration yields
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4 + nph
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with the coupling constant now defined as

κ =
K
c

ŝy

√
nat

nph
= ±1

2
K
c
√

natnph . (5.15)

The sign depends on the expectation value 〈ŝy〉 = ±nph/2, and except for a
factor 1/4 this agrees with the definition given in the above sec. 5.2. With this
in hand we derive an expression for the probability of the atomic state to be in a
Dicke state given a particular measurement outcome

P(f̂z = m)
∣∣
{ŝ(out)

x = n
2 }
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x = n
2 )
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κ
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n
2
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2 nat
4

1
1+κ2 . (5.16)
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The final distribution still has a Gaussian functional dependence, however with
different mean value and variance than the original one. As compared to the ini-
tial zero mean value, eq. (5.16) has the mean at 〈f̂z〉

∣∣
{ŝ(out)

x = n
2 }

=
√

nat
nph

κ
1+κ2

n
2 i.e. it

is shifted towards a value which corresponds better with the measurement. The
variance on the other hand becomes 〈(∆f̂z)2〉

∣∣
{ŝ(out)

x = n
2 }

= nat
4

1
1+κ2 , which is smaller

than the uncorrelated spin state variance of nat/4 by the factor ε = 1/(1 + κ2).
Note that since the variance depends on κ2 ∝ ŝ2

y it does not depend on the sign
of 〈ŝy〉. To our luck, this result is exactly equivalent to eqs. (5.10 and 5.12),
which were found be slightly different — and probably simpler — means. Nev-
ertheless, the representation in this section has the advantage that it is possible
to visualise the QND squeezing process. On fig. 5.1 we plot the numerator of'
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Figure 5.1: Joint distribution of ŝx and f̂z after the QND interaction in terms of pho-
ton number difference (Fock basis) and level-population difference (Dicke basis), re-
spectively. Distributions are conditioned on the measurement outcome a n/2 = 0, b
n/2 = −3.

eq. (5.16) i.e. P(ŝ(out)
x = n

2 )
∣∣
{f̂z=m}P(f̂z = m).6 This plot is the joint probability

distribution of ŝx and f̂z after their interaction but before the measurement. The
green dashed curve represents the distribution of f̂

(in)
z and the red dashed line is

the distribution of ŝ
(in)
x . A measurement corresponds to taking a slice at a mea-

sured value xs of ŝx as indicated by the green line overlaid the surface plot. The
resulting distribution along the f̂z-axis is then the resulting un-normalised condi-
tional probability of f̂z in the Dicke state basis. For κ2 > 0 this distribution (green
curve on fig. 5.1) will be narrower than the initial coherent state f̂z-distribution
(dashed green line on fig. 5.1). This is in essence what makes up a SSS. The
Red curve would be the distribution of ŝ

(out)
x for a subsequent measurement on

a perfectly projected atomic state i.e. following a measurement with κ2 � 1.
Fig. 5.1a and b illustrate the change in mean-value of the f̂

(out)
z depending on the

ŝx measurement outcome. The width of the distribution is, however, indepen-
dent of the outcome. The width of the atomic distribution conditioned on the
measurement is determined by three factors. Trivially, the projection noise of the
initial distribution is the first of these. Secondly, the interaction strength κ2 gov-
erns the strength with which the atomic state is recorded and thus also to what
degree the measurement outcome conditions the atomic state. This is illustrated
by fig. 5.2 together with fig. 5.1a, where the difference between the dashed and
the full green line increases the larger κ2 is. Finally, the ratio of the projection to

6the fully normalised conditional distribution eq. (5.16) would not be overly instructive as it
would fail to illustrate that some measurement outcomes are more likely than others. A plot of
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Figure 5.2: Joint distribution of ŝx and f̂z after the QND interaction in the Fock and
Dicke bases respectively for different coupling strengths. a κ2 = 1, b κ2 = 3. Compare
also with fig. 5.1a with κ2 = 2.
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Figure 5.3: Joint distribution of ŝx and f̂z after the QND interaction in the Fock and
Dicke bases respectively for different SNL. a nph/nat = 1/5, b nph/nat = 5. Compare
also with fig. 5.1a with nph/nat = 1.

the shot noise determines how precise the probe is at measuring the atomic state
and thus again the degree that the measurement conditions the atomic state. On
fig. 5.3 along with fig. 5.1a this is seen as an increased noise reduction of f̂

(out)
z .

Hence, the degree of noise reduction is dictated by the combined influence of the
coupling K and the projection noise to shot noise ratio. These, factors determine
the SNR defined in eqs. (2.19 and 2.29).

5.2.2 Relation between coupling strength and real transitions

Here we will introduce an illuminating relation between the QND coupling
strength κ2, the excitation probability η, and the absorption coefficient α. In
the preceding section we expressed the coupling strength as c.f. eq. (5.15)

κ2 =
1
4
K2

c2 natnph =
1
4
K2nattanphtp .

Here we wish to get a simple picture of the factors determining the squeezing
so we will not specify the levels involved in K. In the same vein we take the

eq. (5.16) would just have an infinite width along the n/2 axis.
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spontaneous excitation rate to be

η̃ =
1
2
Ln̂ph,at =

1
4
Ln̂pht

where in the rightmost equality we have assumed that only half of the photons
interact with the atomic sample as is the case for a symmetric MZI. In the case of
the asymmetric MZI and SBI this does not hold, however we shall write out the
exact expressions in the following sections and reserve this space for a simplified
illustration. Substituting η̃ into the equation for κ2 we get

κ2 =
K2

L natta η̃ ≈ 1
2
|g|2

γe/2
natta η̃ . (5.17)

The approximation comes from writing out K and L explicitly and cancelling
terms. It is not completely clear, which coupling constant |g|2 is referred to here,
but from eq. (5.27) it will be clear that it is the sum of all transition strengths
|g|2 = ∑5(4)

e=2(3)(|g3e|2 + |g4e|2). If the probe is far detuned ∆ � γe then the whole

thing reduced to ≈ 1
2 . The last simplification proceeds from eq. (4.14) for the

absorption coefficient. On resonance this condenses to

α̃0 ≡ α̃(∆ = 0) = 4
|g|2
γe

n̂atta ,

which is the far-detuned equivalent resonant optical depth of the atomic sam-
ple7. Inserting expression for the α̃0 into eq. (5.17) yields the simple relation

κ2 ≈ 1
4

α̃0 η̃ . (5.18)

Because this formula relates the interaction strength to two easily comprehended
quantities it proves to very useful for getting an intuitive understanding of the
limiting factors in the QND spin-squeezing process. It highlights that the achiev-
able noise-reduction depends on one quantity, α̃0, which is entirely a property
of the atomic sample and another, η̃, which depends on the intensity, detuning,
and geometry of the probe beam. Admittedly, η̃ does covertly depend on the
atoms via the choice of transitions and their coupling strengths.

Eq. (5.18) leads to two observations. Firstly, a large optical depth of the sample
is essential if one wishes to achieve a large degree of spins squeezing. The noise
reduction can be increased simply increasing the excitations η̃, but since these
produce decoherence of the output state, this will not necessarily increase the
squeezing as it is defined in eq. (3.33). Hence, there is a limit on the size off η̃

and only an increase of α̃0 will help. Secondly, as a contradiction in terms, it
is not possible to create a spin-squeezed state by a QND measurement unless
it partly demolishes the atomic state. That is, η̃ = 0 ⇒ κ2 = 0. Fortunately, if
we recall the discussion of sec. 4.5.1, not all excitations necessarily add noise to
the output state. Thus, the unavoidability of η̃ is not always as bad as it initially
appears.

Assuming the optimal case where the decoherence does not add any noise to the
output state of the QND measurement we get the squeezing parameter as

ξwineland =
〈(∆f̂

(out)
z )2〉

(1− η)2〈(∆f̂
(in)
z )2〉

=
1

(1− η)2
1

1 + 1
4 α̃0η̃

(5.19)

7far off resonance the detuning dependence of all levels are equal and they all couple equally
but weighed by their coupling strength. Hence the optical depth appears as if it was caused by a
single transition with coupling strength equal to the sum of all hyperfine coupling strengths, i.e.,
|g|2
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where we take e−η ≈ 1− η. The minimal ξwineland can easily be found from the
r.h.s. and we get the optimal ηopt yielding the maximal squeezing ξ

(opt)
wineland to be

ηopt =
−8 + α̃0

3α̃0
, ξ

(opt)
wineland =

27α̃2
0

(4 + α̃0)3 (5.20)

It is rather interesting that in the limit of α̃0 → ∞ this prescribes an optimal
η̃ = 1/3, which is independent of the optical depth. It is also clear that the
optical depth needs to be α̃0 > 8 before any squeezing can be achieved. Finally,
the optimal squeezing value for large α̃0 will tend towards 33/α̃0 [Saffman09]. In
fig. 5.4 the optimal values are plotted as function of α̃0.
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Figure 5.4: Optimal deco-
herence and squeezing pa-
rameter for simplified rela-
tion κ2 = 1

4 α̃0η̃ between
coupling constant κ2, opti-
cal depth α̃0, and decoher-
ence η̃.

In the following sections we will return to the local ensemble operator picture
and discuss the QND measurement in the configurations outlined in sec. 2.3.
This will lead to three spin squeezing scenarios, two of which will be subject to
investigation in the experimental part of this dissertation.

5.3 QND and squeezing in experimental probing
configurations

The procedure of the next three sections will be as follows: First we specify the
states of the atoms and the light just before the interaction in order to deduce
the values of the pseudo-spin operators. Next step is to analyse the interaction
given the specific input operator values and finally we will transform the probe
operators to the stage where the probe is detected. Based on this we can find
the correlation of the measured photonic meter variable with the atomic target
variable and using the intrinsic noise in the measured signal we can deduce
the SNR of that particular configuration. Unlike, the simplified analysis of the
squeezing in the previous sections we will here include all imperfections that
affect the quality of the measurement.

5.3.1 Monochromatic MZI

The monochromatic MZI experimental configuration refers to the case where a
single probe beam enters the interferometer at one of the outputs 〈ĉ†

1 ĉ1〉 = nph
while the other input contains the vacuum field 〈ĉ†

2 ĉ2〉 = 0 (see fig. 5.5). After
the input BS we thus have 〈ŝy〉 = nph/2 and 〈ŝx〉 = 〈ŝz〉 = 0. Losses in the probe
arm would cause 〈ŝ′y〉 = τnph/2, 〈ŝ′z〉 = (τ2 − 1)nph/2 and 〈ŝ′x〉 = 0 as described
in sec. 2.3.1. Given these input states we get the following interaction rotation
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Figure 5.5: Phase-shift (green dashed curve) and light-shift (red curve) as function of
probe detuning on D2-line. For atomic state with 〈 f̂z〉 = 0 the phase-shift vanishes at
det 45′ = 4.3117 GHz, however the light-shift is not zero. Upper insert: monochromatic
MZI sketch. Lower insert: Interference fringe in difference output signal as function of
MZI path-length. For det 45′ = 4.3117 GHz the output signal is unaffected by the atoms
and only projection noise causes fluctuations around zero.
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Figure 5.6: Phase-shift (green dashed curve) and light-shift (red curve) as function of
probe detuning on D1-line. For atomic state with 〈 f̂z〉 = 0 the phase-shift vanishes at
det 44′ = 4.0125 GHz, however the light-shift is not zero.

angles

φ̃ph =
2
c

5(4)

∑
e=2(3)

[
(K4e +K3e)

n̂at

2
+ (K4e −K3e) f̂z

]
la (5.21)

φ̃at =
2
c

(
n̂ph

2
+ ŝz

)
lp

5(4)

∑
e=2(3)

[K4e −K3e] (5.22)

In order for φ̃ph to be sensitive to f̂z but not nat we must have K1 = ∑e K4e =
−∑e K3e. From the form of the coupling constants and the involved resonant
coupling constants listed in appendix D.2 we find a probe detuning ∆0 where
this is fulfilled. The detuning corresponds to the point on the curve where fig. ??
where the net phase-shift is zero. Obviously, this is the point were the probe is
equally sensitive to populations in both ground levels, and if these are equally
populated the phase shifts should rightfully be zero. With this setting of the
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probe detuning the input output relations become

ŝ
(out)
z = ŝ

(in)
z , ŝ

(out)
x = ŝ

(in)
x + τ2 n̂ph

2
4
K1

c
f̂z (5.23)

f̂
(out)
z = f̂

(in)
z , f̂

(out)
x = f̂

(in)
x +

n̂at

2
4
K1

c

(
n̂ph

2
+ ŝz

)
, (5.24)

where we again summon the column photon and atom operators. Exclusively
considering the transformation of the meter variable ŝx this correctly records the
value of the target variable ŝz, which is a constant of the interaction. Thus we
expect ŝz to be squeezed by a measurement of ŝy. On the other hand we observe
that f̂x receives a non-zero light shift from the n̂ph term as well as from the ŝz
term if there are losses τ < 1. This is not really desired because this coupling
may risk feeding of excess noise into the target system or in other words though
ŝz is squeezed ŝx can become excessively anti-squeezed. From the form of φ̃ph
and φ̃at it is clear that the light shift is unavoidable in the single probe MZI
configuration.

Atomic noise in output signal There are two approaches to calculate the noise
in the detected output MZI output. Either we can use the input output rela-
tions to calculate the noise of the output operator eq. (5.23) and then apply the
appropriate adjustments to account for the mode mismatch of the output. Al-
ternatively, we can use the eq. (A.9) and then compute and insert 〈(∆φ̃at)2〉 from
eq. (5.21). Whichever way we chose to do it, the result we get for the monochro-
matic MZI is

〈(∆ŝout
z )2〉 = 〈(∆ŝout

z )2〉SN + 〈(∆ŝout
z )2〉φ̃at

=
(
1− ρ2t2

1
) nph

4
+ T 4τ2 sin2 φ̃ sin2 β1

n2
ph

4
16
K2

1
c2 〈(∆f̂z)2〉

=
nph

4

[(
1− ρ2t2

1
)
+ T 4τ2 sin2 φ̃ sin2 β1

nph

4
4
K2

1
c2

nat

4

]
, (5.25)

Here a central formula makes its first appearance; the output noise expressed as
a sum of a shot noise and a projection noise term. A crucial property of the terms
contributing to the noise is their scaling with the particle numbers. The shot
noise, of course, scales linearly with the photon number and is independent of
atom number. The projection noise term sales linearly with nat but quadratically
with nph. This whether experimentally observed noise in the signal is shot noise,
projection noise, or something else. One just has to vary either nph or nat and
observe the effect on the noise. Only requirement is that we have an independent
way to determine nph and nat.

By use of eq. (5.25) we calculate the SNR as the ratio of projection noise term to
the shot noise term (see eq. (2.31))

SNR =
1
4T 4τ2 sin2 φ̃ sin2 β1

K2
1

c2

1− ρ2t2
1

nphnat = κ2
1 , (5.26)

Which is maximal for φ̃ = β1 = π/2 and T = τ = 1. As pointed out in eq. (5.8)
the SNR is equivalent to the coupling strength relevant for the squeezing, which
the reason for the last equality in eq. (5.26). The noise of the output pseudo-spin
z-component is then 〈(∆f̂

(out)
z )2〉 = nat/(4(1 + κ2

1))

In the below sections we will find equivalent expressions to eq. (5.25) for the
output noise in the other experimental configurations.
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Squeezing and decoherence In sec. 5.2.2 we found a simple relation between
a simplified coupling constant and a simplified spontaneous scattering rate (see
eq. (5.17)). If we now include the more complete coupling constant that is a sum
over all coupled transitions and likewise for the spontaneous scattering, keeping
in mind that η̃ ∝ nph,a = t2

1τ2nph, we get

κ2
1 =

T 4 sin2 φ̃ sin2 β1

4t2
1(1− ρ2t2

1)
∑

e

(K4e +K3e)2

(L4e + L3e)
natta η̃

=
T 4 r2

1 sin2 φ̃

(1− ρ2t2
1)

rDi
|g|2

γe/2
natta η̃ . (5.27)

If we first take the part pertaining to the MZI we note that a number of factors
will benefit the SNR. Firstly, high visibility/mode overlap T ≈ 1 is crucial since
it scales with the fourth power. Secondly, losses in the probe arm ρ > 0 (before
the atoms!) such that (1 − ρ2t2

1) is small. This signifies the fact that we can
increase the total power nph at the MZI input and thus the fringe amplitude
without increasing η̃ if we just attenuate the probe beam before the atoms. If
the nph,4 is kept constant the fringe height, will still increase by increasing nph.
Thirdly, the same effect as losses in the probe arm comes from increasing the
reflection of the MZI input BS so that less light passes in the probe arm. When
we go to configurations where light enters both inputs to the MZI, this is not a
feasible method, since t1 and r1 are interchanged for the two inputs.

Advancing, now to the atomic part we will for the sake of the analysis assume a
balanced MZI without imperfections, whereby the factor before the sum reduces
to 1/2. In eq. (5.27) we have introduced rD1 = 0.67 and rD2 = 1.33 and the
coupling constant |g|2 = ∑e(|g4e|2 + |g3e|2). With this at hand we can state a
similar expression for the SNR as in eq. (5.18) and thereby deduce a formula for
the noise reduction

〈(∆f̂
(out)
z )2〉

〈(∆f̂
(in)
z )2〉

=


1− (1− 0.14η̃)2

(
1− 1

1 + 1
4 rD2η̃ α̃0

)
+

η̃(1− η̃)
5323

, (D2)

1− (1− 0.33η̃)2

(
1− 1

1 + 1
4 rD1η̃ α̃0

)
+

η̃(1− η̃)
4891

, (D1)

(5.28)
where we include the noise added to the state by the inelastic scattering (the
rightmost term). The D2 line is clearly preferable not only because of the stronger
coupling giving a large QND noise reduction, but also because the inelastic scat-
tering causes less added noise, albeit the latter is only slightly different for the
two lines. As a numerical example, an optical depth of α̃0 = 50 and η = 0.2
gives on the D2(D1) line 0.27(0.45) for the above, which again gives a squeezing
of ξwineland = 0.42(0.70).

In all this, we have silently taken over the approximation of sec. 3.7.2 that the
noise reduction and the decoherence can be treated as if they operate in se-
quence: First the state is squeezed, then spontaneous scattering adds noise, and
finally we make the comparison to corrected projection noise level 〈(∆f̂

(in)
z )2〉/(1−

e−η)2 c.f. eq. (3.33).

5.3.2 Dichromatic 1 and 2-input MZI

The monochromatic MZI setup has two major drawbacks; the detuning ∆0 is
pegged by the condition that the coupling to both ground-levels must have the
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same magnitude; there is no way to avoid the light shift on the atomic pseudo-
spin x-component. If one allows for a second probe we can adjust the detunings
of these and we will show that it is also possible to cancel the light shift. What’s
more it turns out that to a good approximation the decoherence effect of atomic
excitations is greatly reduced. The frequency of the probes will be adjusted
such that they predominantly couple to a single ground states and are labelled
accordingly. As before one probe enters the input 〈ĉ†

1,4ĉ1,4〉 = nph4 while the
other input contains the vacuum field 〈ĉ†

2,4ĉ2,4〉 = 0 (see fig. 2.2). Hence we get
〈ŝz,4〉 = nph,4/2 at the MZI input. The second probe can be chosen to enter either
the same or the opposite MZI input port i.e. either 〈ĉ†

1,3ĉ1,3〉 = nph,3 or 〈ĉ†
2,3ĉ2,3〉 =

nph,3 resulting in either 〈ŝz,3〉 = nph,3/2 or 〈ŝz,3〉 = −nph,3/2, respectively. We will
hereafter refer to the former case as the 1-input configuration and the latter as the
2-input configuration. Upon the transformation on the first MZI beamsplitter we
have then have 〈ŝy,4〉 = nph,4/2 and 〈ŝy,3〉 = ±nph,3/2, with a plus for the 1-input
and a minus for the 2-input configuration. For the interaction we assume that
the probe detunings are arranged such that they couple much stronger to one
ground-level than the other. We thus neglect the contributions to the interaction
angles that refer to the weakly coupled ground-level and thus write

φ̃ph,4 =
2
c

5(4)

∑
e=3(3)

[
K4e

n̂at

2
+K4e f̂z

]
la , φ̃ph,3 =

2
c

4(4)

∑
e=2(3)

[
K3e

n̂at

2
−K3e f̂z

]
la

φ̃at,4 =
2
c

(
n̂ph,4

2
+ ŝz,4

) 5(4)

∑
e=3(3)

K4elp , φ̃at,3 = − 2
c

(
n̂ph,3

2
+ ŝz,3

) 4(4)

∑
e=2(3)

K3elp

where φ̃ph,4 (φ̃ph,3) refers to the phase-shift of probe P4 (P3) and φ̃at,4 (φ̃at,3) is the
light shift of the atoms caused by P4 (P3). Before we can start to engineer the
coupling we need to look at the combined effect off/on the two probe beams.
Obviously, the light shifts just add up to a combined light shift φ̃at,4+3 = φ̃at,4 +
φ̃at,3

8. As for the probes, we detect the sum of the two fields thus the combined
input output relations become

ŝ
(out)
z,3+4 = ŝ

(in)
z,4 + ŝ

(in)
z,3 = ŝ

(in)
z,3+4

ŝ
(out)
x,3+4 = ŝ

(in)
x,4 + ŝ

(in)
x,3 + τ2 n̂ph,4

2
φ̃ph,4 ± τ2 n̂ph,3

2
φ̃ph,3 (5.29)

= ŝ
(in)
x,4+3 +

τ2

c

5(4)

∑
e=2(3)

(
n̂at

2

[
n̂ph,4

2
K4e ±

n̂ph,3

2
K3e

]
+ f̂z

[
n̂ph,4

2
K4e ∓

n̂ph,3

2
K3e

])

f̂
(out)
z = f̂

(in)
z

f̂
(out)
x = f̂

(in)
x +

n̂at

2
(φ̃at,4 + φ̃at,3) (5.30)

= f̂
(in)
x +

n̂at

2
2
c

4(4)

∑
e=2(3)

(
n̂ph,4

2
K4e −

n̂ph,3

2
K3e + ŝz,4K4e − ŝz,3K3e

)
Where we simplify the notation by introducing the sum probe operators ŝz,4+3
and ŝx,4+3 (see footnote on page 82). Now we can begin to make some qualified
choices for the coupling strengths so as to achieve a QND measurement. Due
to the ± and ∓ in eq. (5.29) we need to treat the 1-input and 2-input cases
separately

8As a general notational principle we let the the sum of operators of each probe be denoted
by the subscript 4 + 3 e.g. n̂ph,4+3 = n̂ph,4 + n̂ph,3. Likewise the difference between operators of
each probe are denoted by the subscript 4− 3 e.g. n̂ph,4−3 = n̂ph,4 − n̂ph,3
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Figure 5.7: Phase-shift (green dashed curve) and light-shift (red curve) as function of
probe detuning on D2-line. In the 1-input dichromatic configuration (upper insert) the
probe detunings are chosen such that for 〈 f̂z〉 = 0 the phase-shifts of each probe are
equal in magnitude but with opposite signs. Sample detunings are marked by orange
(P4) and purple (P3) arrows. In this case the combined signal of the probes remains zero
(lower insert). However, the light shifts from each probe add up.

Dichromatic 1-input MZI In this case it is the upper sign in eq. (5.29) that
applies. Thus, for ŝ

(out)
x,3+4 to be sensitive to f̂z and not n̂at we must demand that

K21 ≡ ∑5(4)
e=3(3)K4e = − nph,3

nph,4
∑4(4)

e=2(3)K3e. To simplify matters we take the input
photon numbers to be equal for the two beams whereby the requirement be-
comes K21 ≡ ∑5(4)

e=3(3)K4e = −∑4(4)
e=2(3)K3e. This is not strictly necessary at this

point, but sec. 6.1 will uncover that this is actually a wise to impose this condi-
tion.

ŝ
(out)
z,3+4 = ŝ

(in)
z,3+4 (5.31)

ŝ
(out)
x,3+4 = ŝ

(in)
x,4+3 + τ2K21

c

(
n̂at

2
n̂ph,4−3

2
+ f̂z

n̂ph,4+3

2

)

f̂
(out)
z = f̂

(in)
z (5.32)

f̂
(out)
x = f̂

(in)
x +

n̂at

2
2
K21

c

(
n̂ph,4+3

2
+ ŝz,4+3

)
Since 〈n̂ph,4−3〉 = 0 eq. (5.31) predicts the coveted recording of f̂z onto ŝx. Nev-
ertheless, the terms n̂ph,4−3n̂at/2 does appear unlike for the monochromatic con-
figuration eq. (5.23) where the choice of coupling constants eliminated this term.
This will also cause an extra term the noise in the ŝx output. With respect
to the atomic operators we see that the light shift is proportional to the com-
bined pseudo-spin z-component 〈ŝz,4+3〉 = (τ2 − 1)nph/2 and photon number
〈n̂ph,4+3〉 > 0. Hence, the light shift has a nonzero value, which is not ideal for
the same reasons as mentioned for the monochromatic configuration. As output
noise is independent of the signs between the output operator terms we compute
the output noise after first treating the 2-input configuration.

Dichromatic 2-input MZI By inputting the probes through different input
ports of the interferometer we can harness the full potential of the dichromatic
probe setup. For this configuration the lower signs in eq. (5.29) apply and in
order to record f̂z we must now demand K21 ≡ ∑5(4)

e=3(3)K4e = ∑4(4)
e=2(3)K3e, still as-

suming equal photon numbers 〈n̂ph,4〉 = 〈n̂ph,3〉. Plugging this into eqs. (5.29 and 5.30)
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Figure 5.8: Phase-shift (green dashed curve) and light-shift (red curve) as function of
probe detuning on D2-line. In the 1-input dichromatic configuration (upper insert) the
probe detunings are chosen such that for 〈 f̂z〉 = 0 the phase-shifts of each probe are
equal in magnitude and with equal signs. Sample detunings are marked by orange (P4)
and purple (P3) arrows. In this case the combined signal of the probes remains zero
(lower insert). Moreover, the light shifts from each probe cancel if nph,3 = nph,4.

arrive at

ŝ
(out)
z,3+4 = ŝ

(in)
z,3+4 (5.33)

ŝ
(out)
x,3+4 = ŝ

(in)
x,4+3 + τ2K22

c

(
n̂at

2
n̂ph,4−3

2
+ f̂z

n̂ph,4+3

2

)

f̂
(out)
z = f̂

(in)
z (5.34)

f̂
(out)
x = f̂

(in)
x +

n̂at

2
2
K22

c

(
n̂ph,4−3

2
+ ŝz,4−3

)
This is naturally very similar to what we got in the 1-input configuration, with
the only difference in the f̂x output. The small, but significant difference is that
the light shift is now proportional to n̂ph,4−3 and ŝz,4−3 both having zero mean
value. Thus there is no mean9 light-shift of the atomic pseudo-spin. By all
means, f̂x now records information about ŝz,4−3 and no longer about the sum
of ŝz,4+3, however, this is just the back-action term whose origin we care little
about. Altogether, the 2-input configuration seems to be superior. This will be
further backed by observations on the classical noise behaviour of the setup in
sec. 6.1. On the downside the 2-input configuration is also the most demanding
to implement in practice.

Atomic noise in output signal We now investigate the output noise in the
dichromatic MZI. These calculations will be valid for both the 1 and 2-input
configurations.

〈(∆ŝout
z )2〉 = 〈(∆ŝout

z )2〉SN + 〈(∆ŝout
z )2〉φ̃at

(5.35)

=
(
1− ρ2t2

1
) nph,4+3

4

+ T 4τ2 sin2 φ̃ sin2 β14
K2

2i
c2

(
(nat)2

4
〈(∆n̂ph,4−3)2〉

4
+ 〈(∆f̂z)2〉

(n̂ph,4+3)2

4

)

=
nph,4+3

4

[(
1− ρ2t2

1
)
+ T 4τ2 sin2 φ̃ sin2 β14

K2
2i

c2
nat

4
nph,4+3

(
nat

nph,4+3
+ 1
)]

,

9here mean takes on a double meaning...
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This expression is qualitatively the same as eq. (5.25) for the monochromatic
MZI, except for the term nat/(nph,4+3) stemming from 〈(∆n̂ph,4−3)2〉. This term
is interpreted as coming from the shot noise of the photon number of two probe
beams. Though the mean value 〈n̂ph,4−3〉 = 0, as required, this relies on the com-
bined phase-shift of the two probes to cancel and is thus sensitive to variations
in the relative intensity between the probes. Hence, shot noise fluctuations in
the photon number will translate into different fluctuations in the signal from
each probe and the difference will fluctuate around zero. Fortunately, this term
is proportional to ratio nat/(nph,4+3), which under usual experimental condi-
tions is ≈ 1/100.10 Although this means that the term can usually be neglected
we must keep in mind that we cannot tolerate too low photon numbers. If we
want to reach a certain coupling constant this in return means that we the probe
detunings should not be too low. We get the SNR

SNR =
T 4τ2 sin2 φ̃ sin2 β14K

2
2i

c2
nat
4 nph,4+3

1− ρ2t2
1

= κ2
2 , (5.36)

which very much resembles eq. (5.26) except for K2i.

Squeezing and decoherence Here we will follow the procedure in sec. 5.2.2 of
relating the coupling strength to the optical depth and the spontaneous scatter-
ing rate. We note in the same treatment for the mono-chromatic probing scheme
that the simple relation in eq. (5.17) should be amended slightly. In the dichro-
matic probing scheme the frequencies of the two probe colours are not fixed to
an absolute value, but only mutually dependent. It turns out that the correction
to the simple relation in eq. (5.17) can be significant if the probes are put near a
transition. We can generally write the transition strength for the probes as

κ2
2∓ =

1
2 ∑

e

(K4e ∓K3e)2

(L4e + L3e)
natta η̃ =

1
2

rDi∓(∆)
|g−|2
γe/2

natta η̃ . (5.37)

Here η̃ is the combined spontaneous scattering due to both probe colours. Since
we add the coupling strengths of the probes it is implicit in this equation that
the probes couple with equal strength. The ∓ refers to the the 1-input (-) and
the 2-input (+) configuration, respectively. We plot the fraction for the D2-line
in fig. 5.10 where green goes for the 1-input and red for the 2-input MZI and
likewise for the D1-line in fig. 5.9 How to interpret these curves? Well, we will'
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Figure 5.9: Coupling constant factor vs. probe detunings on D1-line in the 1 and 2-input
MZI

give it a try, though admittedly the arguments are very intricate for someone
not very familiar with the experiment. First of all we notice that right on reso-
nance the ratio goes to zero. This is clear because the Kge changes sign and at

10if we take the whole atomic ensemble and probe pulse.
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Figure 5.10: Coupling constant factor vs. probe detunings on D2-line in the 1 and 2-
input MZI

the same time Lge becomes very large. Thus we completely loose sensitivity to
the ground level coupling to that transition. For the D2-line we see that there
is a broad region around the hyperfine excited state transition pairs where the
coupling strength is also suppressed by the factor. This is because in between
the transitions to the hyperfine transitions the probe receives opposite phase
shifts due to the two transitions. E.g. a probe detuned red to |4〉 → |5′〉 but
blue to |4〉 → |3′〉 will be phase-shifted in one direction by the former and the
opposite by the latter. Finally, we see that for the 1-input configuration (green
curves) the factor is maximal in between the transitions at the point where we set
the monochromatic probe. This is because at this point each of the dichromatic
probes detect population fluctuations from both ground states. I.e. they basi-
cally act as two monochromatic probes. Hence it is no shame that the coupling
strength is lower near the transitions because we are actually utilising twice the
number of photons, i.e., nph ≡ nph,3 + nph,4. When going red or blue detuned
from both transitions we see that the coupling starts to drop, hence we must
stay close to the transitions and with a slight preference for the probes being in
between ground level transitions. In the 2-input case the picture is reversed since
right in between the ground level hyperfine transitions the two probes would see
the opposite effect of population changes and thus the signal from the projection
noise would cancel. In this case it is better to be red detuned to the lower or blue
detuned to the upper, however just sticking close to the transitions will suffice.

Because the probe detunings are not pinned down we cannot state a formula
for the noise reduction and squeezing. This was possible in the simple rela-
tion eq. (5.19), which makes no reference to the probe detuning, and for the
monochromatic the set detuning allowed us to calculate eq. (5.28). Instead we
will plot the noise reduction and squeezing as a function of the probe detuning.
Note that the detuning refers to one of the probes, where the other probe’s de-
tuning follows from the condition that the magnitude of the coupling strengths
be equal. We omit the plots of the D1-line, since, it they add no understanding
beyond what we can learn from the D2-lines. Furthermore our experiments are
all performed on the D2-line In all graphs we set the optical depth to be α̃0 = 40.

The noise reduction fig. 5.11 and fig. 5.12 depend highly on the probe frequency.
The projection noise level 〈(∆f̂z)2〉(in) is marked by the green line where η̃ = 0.
Near the non-cycling transitions where the inelastic scattering dominates the
〈(∆f̂z)2〉(out) is initially decreased by having a small η̃, but quickly starts growing
again as η̃ is increased further. Hence, the optimal η is rather low. Near the cy-
cling transitions were quasi-elastic decay channels dominate the noise reduction
keeps improving as η̃ is increased, and the optimal e−η rather very large. Again
this signifies that the spontaneous decay process adds very little noise to the
output f̂z variance. The behaviour of the noise reduction in between the ground
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Figure 5.11: Noise of output state vs. probe detunings on the D2-line for different
spontaneous scattering rates in dichromatic 1-input MZI
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Figure 5.12: Noise of output state vs. probe detunings on the D2-line for different
spontaneous scattering rates in dichromatic 2-input MZI

state transitions and for very large detunings reflect the coupling constants plot-
ted in fig. 5.10. When the coupling constants are low in either the 1 or 2-input
configuration the noise reduction is also absent.'
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Figure 5.13: Squeezing vs. probe detunings on the D2-line for different spontaneous
scattering rates in dichromatic 1-input MZI

For the squeezing (see fig. 5.13 and fig. 5.14) the decoherence of the spin-vector
sets further limit to the desirable amount of spontaneous decay. Hence, the
detunings for which the noise reduction was low will result in the squeezing
factor ξwineland being large (small is good!). On the non cycling transition the
optimal spontaneous decay rate is low, around 0.1. Near the cycling transition
the optimal values is around 0.2-0.3. The latter is fairly close to the ηopt = 1/3
for the idealised case from sec. 5.2.2.

As a final remark, in eq. (5.37) we omitted the part related solely to the MZI. For
an unbalanced MZI with losses one factor 1/2 must be replaced by the pre-factor
in eq. (5.27). In the 2-input configuration it becomes exceedingly complicated if
one does not assume equal splitting at the MZI input, i.e., t1 = r1 = 1/

√
2.
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Figure 5.14: Squeezing vs. probe detunings on the D2-line for different spontaneous
scattering rates in dichromatic 2-input MZI

When evaluating the noise reduction and excitations for the entire ensemble we
must keep in mind that α̃0 and η̃ vary over the transverse dimension of the
interaction region. In the next section we will point to this issue.

5.4 Full ensemble squeezing

The derivations so far have been phrased in terms of the local ensemble opera-
tors. Since the coupling constant κ2, which governs the noise reduction, is pro-
portional to the atomic and photon densities it too will be spatially dependent.
Moreover, the photon absorption is logically larger where the photon density
is high, hence making the decoherence spatially dependent. All together, the
noise reduction and squeezing will vary over the width of the sample according
to the particle densities. The effective noise reduction and squeezing are thus
only found by integrating the local noise over the ensemble dimensions. we be-
lieve that these geometric considerations are not unimportant, although they also
should not cause any conclusions made so far to be changed drastically.11 Un-
fortunately, we have not yet developed the treatment completely. Some sketches
and ideas on the point can be found in sec. C, while here we take a short-cut.

Let us first examine the basic approach of finding a total ensemble coupling
strength and a resulting estimate of the noise reduction. Here we simply define
the coupling constant as the transverse spatial integral over the ensemble using
the mode function of the probe

κ2
uni =

∫
R2

K2

c2 N (r)U(r)la n̂phlpd3r = K2NatNph , (5.38)

from which we get an effective uniform noise reduction εuni = 1/(1 + κ2
uni).

Using eq. (3.26) the reduced projection noise of the ensemble after the QND
measurement is

〈(∆F̂(out)
z )2〉 = εuni〈(∆F̂(in)

z )2〉 =
1

1 + κ2
uni

Nat

4
1 + r2

w

1 + 2r2
w

(5.39)

The above approach effectively simplifies the treatment to a one-dimensional
case where the squeezing and decoherence are uniform over the whole ensemble,
in which case the density distribution of the atoms is also irrelevant.

A full understanding of the geometric intricacies of the coupling is as yet beyond
the comprehension of this text’s author. There have been serious theoretical
investigations most comprehensively in [Raymer81, Sørensen08], but with many
of the important points of the latter conveyed in [Hammerer09].

11a careful statement



Chapter 6

Noise sensitivity

Following the mostly theoretical considerations on the QND measurement in
terms of the achievable SNR it is now time to start bridging to the experimen-
tal part of the thesis by treating slightly more empirical aspects of the system.
This entails considering so called classical noise that is not rooted in the quan-
tum uncertainty of the states. Among the classical sources are for example laser
frequency and intensity noise, acoustic noise. Before looking at these sources
in detail we will clarify the significance of additional ”non-quantum” noise in
the quest for creating squeezed spin states. Intuitively, the ability of the QND
measurement result to inform us about the quantum state of the atoms is re-
duced when the measurement becomes less precise. Thus all noise will tend
to wash out the entanglement of the measured Ŝz with F̂z and thus reduce the
spin-squeezing achieved by the measurement. In eqs. (5.8 and 5.26) we already
explicated that the ratio of atomic to shot noise is a measure of the coupling
strength in the QND measurement and thus sets the limit for the achievable
spin squeezing c.f. eq. (5.12) or eq. (5.16). That, the SNR was equated with K2

d
was only due to us not yet accounting for any other noise influences in the mea-
surement. However, when classical noise disturbs the QND measurement we
will have SNR < K2

d and thus the squeezing will drop. In the following sections
we will express the output signal in terms the MZI output difference current
i− = 2Ŝout

z .1 We then amend eqs. (5.25 and 5.35) by

〈(∆i−)2〉 = 〈(∆i−)2〉SN + 〈(∆i−)2〉φ̃at
+ 〈(∆i−)2〉classical

where 〈(∆i−)2〉classical is a compound of several contributions, which we will now
describe one by one after a couple of definitions. A more fundamental account
of classical noise sources pertaining to an MZI can be found in [Oblak04].

6.1 Classical interferometer noise

As an overall approximation we do not consider second order effects. In other
words, we neglect the fact that noise from one source will give rise to varying
noise from another source. As long as the noise contributions are small (less than
a few percent) this is a safe assumption. An exception to this, is that we will need
to discuss some second order effects in the section about atomic noise ??.

1In this sense it would be more appropriate to write ı̂− rather than i−, but here we need to
compromise with the operator notation. The reason is that we will investigate influences on the
signal which are both quantum and classical origin such as shot noise and acoustic fluctuations.
To accommodate both we suppress the .̂

89
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To find the noise contributions we linearise i−(t) around its mean value classically
defined as 〈i〉 = limt′→∞

∫ t′

0 i(t)dt or for quantum fluctuations as the expectation
value 〈ı̂〉 ∝ 〈nph〉. The photocurrent is thus expressed as i−(t) = 〈i〉 + δi−(t)
where by definition 〈δi(t)〉 = 0. Often we possess knowledge of the spectral
distribution of the fluctuations. To exploit this we write δi−(t) in terms of its
Fourier decomposition

δi−(t) =
1

2π

∫ ∞

−∞
δi−(ω)ei−ωtdω (6.1)

with the Fourier components δi−(w).2 From the spectrum we can always com-
pute the variance by employing Parseval’s

〈(∆i−(t))2〉 =
∫ ∞

−∞
〈|(∆i−(ω))2|〉dω

2π
=
∫ ∞

−∞
Wi−(ω)dω , (6.2)

we have defined the spectral power density of fluctuations in i(t) as Wi−(ω) =
〈|(∆i−(ω))2|〉/2π. To account for the limited frequency response of the detection
system we introduce the transfer function g(ω), which is normalised to 1 at the
frequency of maximum responsivity. We define the detection bandwidth ωBW
as ωBW =

∫ ∞
0 |g(ω)|2dω. In sec. 8.2.2 we shall see that the pulsed detection

naturally imposes a detection transfer function Mint(ω). Taking the detection
limitation into account, the proper expression for the photo current variance
becomes

〈(∆i−(t))2〉 =
∫ ∞

−∞
|g(w)|2Wi−(ω)dω . (6.3)

The framework is now ready for the treatment of the individual noise sources in
the interferometer signal. As a teaser we can take a look at the shot noise. Since
it is white noise, i.e., it has a constant spectral power density, we can pull Wi− out
of the integral whereby

〈(∆i−(t))2〉SN = Wi−

∫ ∞

−∞
|g(ω)|2dω = 2Bε

(
1− ρ2t2

1
) Nph

4
(6.4)

where ε denotes the detector’s quantum efficiency, ρ the probe arm losses, and
t1 the reflection of the MZI input BS c.f. eq. (2.25). We introduce a visualisation
of the shot-noise in fig. 6.1. Since the shot noise is independent of the fringe'
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Figure 6.1: Illustration of the shot noise influence on the MZI fringe.

phase it does not appear very action-packed, but shown as a point of reference
for subsequent noise illustrations. What regards the atomic quantum projection
noise, we have no a priori insight in its spectral power density. Hence we will
assume that it is also constant over our detection bandwidth, and as a result
eqs. (5.8 and 5.26) is not altered. Now we move on to classical noise sources.

2Note that even though we use the same symbol δi(·) for the photo current fluctuation and
its Fourier components, the two functions are not the same. The two functions can only be
distinguished by the dependent variable in the brackets, i.e., (t) or (ω). When we don’t write any
variable δi we implicitly mean δi(t).
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6.1.1 Laser intensity noise

To gauge the effect of classical fluctuations we turn to the classical MZI output
signal eq. (2.24), which is equivalent to

i− = −2εT 2τ cos φ̃Nph/tp (6.5)

Thereupon we deduce the effect of classical fluctuations of the laser intensity,
i.e., of Nph,

〈(∆i−)2〉I =
(

2εT 2τ cos φ̃
Nph

tp

)2 ∫ ∞

−∞
|g(ω)|WA(ω)d̂ω (6.6)

The crux of this expression is that the classical intensity noise scales with the
square of the photon number and it depends as cos2 on the MZI phase. The
former attribute enables us to distinguish classical noise from shot noise, and
the latter means that we can suppress laser intensity noise by adjusting the MZI
path-length difference so that φ̃ = (n + 1/2)π We refer to this setting as the
balanced position of the MZI. In pictorial representation (fig. 6.2) the intensity'
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Figure 6.2: Illustration of laser intensity noise influence on the MZI fringe.

noise is identified as a fluctuating fringe amplitude. So we conclude, that in
the balanced setting the power, including its fluctuations, is the same in both
MZI outputs, hence subtracting the signals in the two outputs also eliminates
the fluctuations. On 112 we measure the probe lasers’ intensity noise spectrum.

6.1.2 Laser frequency/phase noise

The MZI fringe phase in the absence of atoms3 can be expressed as φ̃ = ω∆l,
where ∆l is the path-length difference between the probe and reference arms.
Variation of the MZI phase are written as δφ̃ = δω∆l/c + ω/c δ(∆l).The former
is the effect of laser frequency noise whereas the latter is rooted in acoustic noise,
which we shall discuss in the next section. In light of laser frequency noise we
can write the output signal as

i− = −2εT 2τ cos(φ̃ + δω∆l/c)Nph/tp (6.7)

where we could also have written φ̃ in terms of the nominal frequency φ̃ =
ωdl/c.4 For small δφ̃ we can expand the cosine to first order cos φ̃ + δω ∆l/c sin φ̃,

3this remark allows us to neglect the index of refraction, which for the remaining elements
ought to be constant.

4this expression only holds for spectral components of the noise that are well below 2πc/∆l,
which in our case will be no less than 2π15 GHz. Higher components will be uncorrelated at the
MZI output BS due to the relative time delay between the fields in the two arms arising from MZI
path-length difference. This is a result of the laser phase noise only being visible when there is
interference.
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by which

〈(∆i−(t))2〉δω = (2εT 2τ
∆l
c

Nph

tp
sin φ̃)2

∫ ∞

−∞
|g(w′)|Wδω(ω′)dω′ , (6.8)

This expression has three highlights. Firstly, the noise arising from laser phase
noise will scale quadratically with the Nph — the hallmark of classical noise.
Secondly, it vanishes when the sine is zero i.e. when φ̃ = nπ. This is exactly
opposite to the laser intensity noise, and for this reason it is not possible to cancel
both intensity and frequency noise by adjusting φ̃. In any case, setting φ̃ = nπ

would leave us insensitive to small phase-displacements e.g. by the atoms. We
are rescued by the (∆l/c) factor, which tells us that the frequency noise can
be suppressed by aligning the MZI close to zero path-length position, what is
called the white-light position. In sec. 8.4.1 we describe the procedure for aligning
the MZI to white-light. A graphical representation of the frequency noise (see'
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Figure 6.3: Illustration of laser frequency noise influence on the MZI fringe.

fig. 6.3) illustrates how the fluctuations changes the period of the interference
fringes causing the whole fringe pattern to stretch like an accordion around the
white-light position.

In eq. (6.8) we naturally used the frequency noise power spectrum Wδω. As it is
sometimes simpler to detect the laser-phase noise we give the relation between
the frequency and phase noise spectra [Petermann91]

Wδω(ω′) =
(ω′/2)2

sin2(ω′∆l/(2c))
Wδφ(ω′) . (6.9)

emphasising that φ in this equation refers to the phase of laser field and not that
of the MZI. In sec. 8.1.2 we measure the frequency spectrum and in sec. 8.1.3
the phase-noise spectrum for two separate locking schemes for the probe laser
frequencies.

Laser diodes are known to have a large frequency noise in the output, which
is true even in the case of grating stabilisation. For most low frequencies the
spectral density will be larger than that of the quantum Shawlow-Townes limit,
growing as 1/ω towards zero frequency [Petermann91, Telle93].

6.1.3 Acoustic noise

The acoustic noise is probably the most unpredictable of all the noise sources in
the experiment. In general any effect that perturbs the path-length difference is
what we will call acoustic noise. The sources can be anything from vibrations or
sounds created by pieces of equipment, air fluxes around the interferometer, or
loud lab staff members.
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Box 6.1: Examples of laser phase noise affecting MZI output

It is appropriate to study a couple of special cases of frequency noise distri-
butions. As always we first take a white noise distribution Wδω(w′) = ∆ω so
that when we remember to account for the detection bandwidth

〈(∆i−(t)δω)2〉 = (eηT〈Nph〉∆t sin φ̃/tp)22B∆ω .

The quantity ∆ω can be referred to as the line-width of the
laser [Petermann91].
Another example is where the frequency noise is dominated by a compo-
nent at one particular frequency ωµ. The corresponding spectral density is
Wδω(ω′) = µ2δ(ω − ωµ) where δ(ω − ωµ) is Dirac’s Delta function and µ is
called the modulation depth. Since we neglect noise at other frequencies we
will not have to account for the bandwidth as long as the modulation fre-
quency ωµ lies within the bandwidth. Hence we have

〈〈(∆i−(t))2〉φ〉 = (eηT〈Nph〉µ∆t sin φ̃/tp)2 .

Experimentally it is easy to apply a harmonic oscillation to the laser fre-
quency, e.g. by modulating the laser current or the cavity grating. Mon-
itoring and minimising the MZI noise induced by the applied laser fre-
quency modulation provides one practical way of finding the white light po-
sition [Oblak04, Oblak05].

Since path-length variations affect the MZI phase we go back to the expression
just above eq. (6.7) stating that δφ̃ = δω∆l/c + ω/c δ(∆l). Hence, for the acoustic
noise we have

i− = −2εT 2τ cos(φ̃ + ω/c δ(∆l))Nph/tp (6.10)

and exactly as the procedure in the previous section we expand the cosine to
arrive at

〈(∆i−(t))2〉∆(δl) = (2εT 2τω
Nph

tp
sin φ̃)2

∫ ∞

−∞
|g(ω′)|W∆(δl)(ω′)dω′ . (6.11)

Besides the, by now, trivial quadratic dependence on Nph, we see that the noise
scales with the light frequency squared. This is expected since the smaller ω

is, the longer is the spatial periodicity of the fringe. However, this information
is of no use since ω is a fixed experimental parameter. Moreover, the balanced
position is where the output signal is most vulnerable to acoustic noise, as is
easy to see from the portrayal in fig. 6.4. It is difficult to determine the exact'
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Figure 6.4: Illustration of acoustic noise influence on the MZI fringe.

spectral power density of the acoustic fluctuations W∆t(ω′) except by measuring
the effect on the MZI. We are left with two complementary ways to reduce the
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acoustic noise. The first is to actively hold the path-length difference by way of
various locking methods (see sec. 8.6). The other, which we will put forward
below, relies on the clever arrangement of the modes of two probe beam.

Acoustic noise cancellation

We saw in sec. 2.3.1 three different configurations where two probes are arranged
in the MZI such that their fringes are π out of phase. Because one of these config-
urations requires the two probes to have different frequencies and we concluded
in sec. 5.3.2 that a dichromatic probe would benefit the QND measurement, we
consider here the two-colour probe case. We assumed an equal number of pho-
tons in the two colours, and if now we stipulate that the fringe amplitudes be
equal, as well, we get the combined signal to be

i− ∝ cos
[
φ̃ + cos[

ω3

c
δ(∆l))

]
+ cos

[
(−φ̃ + cos[

ω4

c
δ(∆l))

]
expanding this to first order we see that

〈(∆i−(t))2〉∆(δl) ∝
[
sin φ̃(cos[

ω3

c
δ(∆l)− cos[

ω4

c
δ(∆l))

]2
.

This reveals that the acoustic noise influence is reduced by 2(ω3 − ω4)/(ω3 +
ω4) ≈ 2.5 · 10−5 compared to that in the single probe fringe case. It is essential
that the acoustic fluctuations δ(∆l) are shared between the two probes. This
requires their spatial modes to be fairly well overlapped. In this case we say that
the fluctuations are common mode. How much the noise cancellation means in
real life we will show in sec. 8.7.

6.2 Classical noise in atomic state measurement

The noise considered above was due to the MZI alone, and we could charac-
terise them as the noise of the passive detection system. When measuring the
atomic sample we aim to see the influence of the projection noise of the pre-
pared atomic state. The projection noise imprint on the MZI output noise was
given by eqs. (5.25 and 5.35). However, imperfections in the way we prepare
or detect the atomic state can also add noise to the atomic phase imprint. This
we will call classical atomic noise and as for the classical MZI noise it will scale
quadratically, not with the photon number, but with the atom number. To derive
the influence of the various sources we need focus on the part of the output sig-
nal resulting from the atoms. Leaving out correction factors due to sample and
probe geometry,5 the atomic signal in the output current is given by

i− ∝ εT 2τ sin φ̃ sin β14
K2

c

(
N̂at

2
N̂ph,4−3

2
+ F̂z

N̂ph,4+3

2

)
, (6.12)

which can be derived from the eq. (5.23) for a monochromatic probe and eq. (5.31)
or eq. (5.33) for the dichromatic probe.In the above we state the expression for
the dichromatic probe, since it is easily reduced to the monochromatic probe
case.

5in the final expression these would anyhow cancel.
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6.2.1 Atom number fluctuations

The atomic population N̂at in the sample will fluctuate between each preparation
of the ensemble. We let Nat signify the mean atomic number and δNat deviations
from the mean. Fluctuations in the atomic population can enter the atomic signal
through either of the two terms in the brackets of eq. (6.12). The first term
relies on Nph,4−3 6= 0, i.e., misbalancing of the probe powers,6 while the other
relies on 〈F̂z〉 6= 0, i.e., the initial state not being an exact equal superposition
state. If we take the balancing of both values to be off by some fraction so that
Nph,4−3 = ϑphNph,4+3 and 〈F̂z〉 = ϑat(Nat + δNat) we can specify the influence of
atom number fluctuations as

〈(∆i−)2〉δNat ∝

(
εT 2τ sin φ̃ sin β14

K2

c
N̂ph,4+3

2

)2 (
ϑph

2
+ ϑat

)2

〈(∆δNat)2〉 ,

We want to compare the classical noise with the quantum projection noise eq. (5.35).
When we neglect the small Nat/Nph,4+3 term we get the ratio of the two noise
contributions.

〈(∆i−)2〉δNat

〈(∆i−)2〉PN
=

(
ϑph
2 + ϑat

)2
4〈(∆δNat)2〉

Nat
1

,

Realistically we can only hold the atom number from shot to shot within a 10%
margin, so if we presume 〈(∆δNat)2〉 = Nat/10 we can determine the require-
ments on the balancing. As minimum we want the above ratio to be below unity,
in which case we demand

ϑph

2
+ ϑat <

5√
Nat

(6.13)

The inequality must be fulfilled up to the highest atom numbers, which routinely
reach a few 105. Taking a moderately more demanding estimate of 106 we must
be able to balance ϑph/2 + ϑat to better than 0.5%. This is fairly demanding, espe-
cially w.r.t keeping the balancing constant over a measurement run lasting days.
To keep the probe power balancing within range we had to implement methods
to actively stabilise them (see sec. 8.6.3). For the state preparation the prime
task is to precisely make the superposition state equal (see fig. 12.1). Eq. (6.13)
indicates that we can compensate an offset of one of the balancing parameters
with the other. This constitutes a significant easing of the absolute balancing
requirement of Nat/Nph,4−3 and 〈F̂z〉 individually.

6.2.2 Coupling strength fluctuations

The final noise influence comes indirectly from the probe laser frequency noise,
which causes a fluctuating coupling constant. To uncover the connection we
must go back to eq. (4.7) for the coupling strength. In this section we aim not at
producing exact measures but at giving qualitative estimates. In line with this,
we approximate the detuning dependence7 by 1/∆ge where ∆ge = ω−ωge is the
probe’s detuning from the nearest transition |g〉 → |e〉. As in sec. 6.1.2 we let

6this is a result of implicitly assuming the same visibility of both probe colours. If this was
not assumed the condition would be that the fringe amplitudes must be equal.

7which in full is Kge = |gg |2∆ge

∆2
ge+( γe

2 )2
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the frequency noise be modelled by a ω = 〈ω〉+ δω. The resulting noise in the
coupling constant will be

δKge ∝ δ

(
1

∆ge

)
= δ

(
1

ω−ωge

)
= −Kge

δω

∆ge
(6.14)

Based on this it is straight forward to calculate the ratio of classical atomic noise
to the quantum projection noise

〈(∆i−)2〉δK1

〈(∆i−)2〉PN
=
(

δω

∆ge

)2

Nat

As earlier we must at least demand that this ratio be no larger than one, which
means that

δω

∆ge
<

1√
Nat

(6.15)

In words the fractional noise of the detuning should be less than 1/
√

Nat, which
would typically be no smaller than 10−3. We get a clue for the optimal choice
of detuning by the fact that the inequality is harder to fulfil for small detunings.
Thus if the laser frequency noise is visible one should tune the probe further off
resonance.

The above equation only reveals the stability requirement for a single probe
laser and is thus only directly applicable to the monochromatic MZI. For the
dichromatic probe it is not the individual coupling constants that matter but,
depending on the input configuration , their sum or difference. In sec. 5.3.2 we
determined that we must choose the probe detunings such that K2 ≡ K4 = ∓K3,
where we only account for the coupling on the nearest resonance. Throughout
this section the upper sign applies to the 1-input configuration and the lower
sign to the 2-input configuration. Holding K4 +K3 = 0 requires stabilising the
sum frequency while K4 −K3 = 0 requires stabilising the difference frequency,
which experimentally is more expedient. We will come back to the practical
realisation below, but first we formalise the requirements.

Based on eq. (5.29) we can similar to above find the variation in the output
current due to probe frequency fluctuations

δi− ∝
Nat

2
Nph

(
−K4

δω4

∆4
∓K3

δω3

∆3

)
+ F̂zNph

(
−K4

δω4

∆4
±K3

δω3

∆3

)
NphK2

[
Nat

2

(
−δω4

∆4
+

δω3

∆3

)
+ F̂z

(
−δω4

∆4
− δω3

∆3

)]
The requirement K4 = −K3 for the 1-input MZI requires ∆4/∆3 < 0, i.e. the
detunings have opposite signs. In contrast, the 2-input MZI K4 = K3 necessitates
∆4/∆3 > 0, i.e. the detunings have the same sign. If we approximately say that
the detunings have the same magnitude |∆ | = |∆4| ≈ |∆3| we can reach further
simplify the expression for the photo-current variation

δi− ∝ NphK2
1
|∆ |

[
Nat

2
(−δω4 ∓ δω3) + F̂z (−δω4 ± δω3)

]
The latter term in the brackets has zero mean because 〈F̂z〉 = 0. This term
only contributes through fluctuating coupling strength to the projection noise
〈(∆F̂z)2〉, but this will always be dominated by the former term. If we keep
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only the former term we get a simple formula for the probe frequency induced
classical atomic noise to the quantum projection noise

〈(∆i−)2〉δK2

〈(∆i−)2〉PN
=
〈(∆(δω4 ± δω3))2〉

|∆ |2 Nat

Again demanding the ratio to be below one we get the condition

〈(∆i−)2〉δK2

〈(∆i−)2〉PN
=
〈(∆(δω4))2〉+ 〈(∆(δω3))2〉 ± 2〈(∆(δω3 δω4))〉

|∆ |2 <
1

Nat
(6.16)

where we have factorised the variance. If the two laser frequencies are statisti-
cally independent the covariance 〈(∆(δω3 δω4))〉 vanishes and we are left with
a twice as strict condition as eq. (6.15). If the two laser frequencies are correlated
it makes a big difference whether we set the coupling constants to accommodate
the 1-input or 2-input configuration. For the 1-input MZI the correlation add to
the noise while in the 2-input MZI they reduce the noise.

Is it at all relevant to consider frequency correlation?... Yes. On the slow to
medium time-scale the probe lasers experience the same thermal and mechan-
ical perturbations and may share some electronic influences in case of shared
supplies for drivers and locking circuits etc. These external influences are likely
to correlate or anti-correlate the laser frequencies. Of course this give no appar-
ent clue to which MZI input configuration we should advocate. A much clearer
preference can be made for different laser frequency locking schemes. If the
locking of the two probes is independent no or only random correlation is an-
ticipated (see sec. 8.1.2). If however the two probe frequencies are locked to one
another (see sec. 8.1.3) or derived from the same laser source [Buchkremer00] the
correlation can be considerable and in that case the 2-input MZI is by all means
favourable.
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Chapter 7

Overview of setup

There are a number of reasons why a career in experimental physics is not suited
for all. One, that is commonly overlooked, is the deliberate effort of senior
experimentalists to create an experimental setup that is so complex and messy
that no one without access to their unique insight can possible figure out how
to operate the setup. Nevertheless, with the risk of endangering the positions of
colleagues, this chapter constitutes an honest attempt to unveil the many hidden
mysteries of our setup.

From a practical point of view the setup can be structured into a number of
vaguely distinct parts. First is the MOT setup comprising optical elements and
vacuum parts that are mainly controlled by the LabView programme CAMOT
via DAC/ADC computer interface cards. The optical pumping is incorporated
into this part as the beams are derived from the MOT lasers. Closely related is
the second setup with the high power VersaDisk laser for the Far Off-Resonant
Trap (FORT). The microwave elements for state preparation and manipulating
the pseudo-spin make up the third part. Fourth is the QND probe and interfer-
ometer setup – including a locking laser – that are chiefly handled by the DIO-64
LabView programme via the DIO-64 computer interface card. The DSO and data
processing is also viewed as a belonging to the fourth part. None of the parts
can really be viewed independently but the division serves as a rough tool to
provide some structure for the uninitiated.

7.1 Layout, instrumentation and control system

More and more tweaks and degrees of freedom have been added to the setup in
order to exterminate the vast number of bugs, which have materialised in an all
too regular pace. In parallel with the progression of the experiment the degree
of automation has steadily grown so as to simplify the increasingly complex and
time consuming measurements. Not surprisingly, the result is a rather mod-
ular experimental setup littered with small units that each make a small, but
indispensable, contribution to the overall functionality.

Figure 7.2 on the following pages outlines the interconnections between the
various elements of the setup. Evidently, the diagram is by no means easy to
overview and it is presented here mainly to gain a grand overview and to be a
point of reference when the various subparts are introduced in later sections. The
computer based control system is the central element, which oversees and inter-
links the whole setup. Most of the computer control is executed by one com-
puter (”Godzilla”) fitted with three analogue input/output (ADC/DAC) cards
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from National Instruments 1 and a single digital output card from ViewPoint
Systems 2. The operation of ADC/DAC cards is handled by the LabView pro-
gramme CAMOT (see sec. 9.1 for a screen-shot and a thorough introduction to
the software). The cards are synchronised by exchanging the analogue output start
trigger and the analogue output update triggers over the inter-card Real Time Sys-
tem Integration (RTSI) bus. The update frequency is set to 1 kHz giving output
a 1 ms temporal resolution, which is suitable for controlling the MOT and the
shutters.

Previously the 1 MHz counter signals from the the ADC/DAC were used as
sources for generating fast pulse trains of the probe lasers. However, this method
is very restrictive allowing only for evenly spaced trains of pulses of equal du-
ration. To allow for more versatile pulse configurations we procured a FPGA-
based 64 channel digital output card with 50 ns time resolution controlled by
the dio-64 Labview programme shown in fig. 7.1. Whereas the ADC/DAC cards
require the output values for all channels to be specified for each update trig-
ger the DIO64 can be programmed with time-stamps and values only for the
event that the output on a channel changes. Hence, the data transfer load from
the PC to the on-board FIFO memory is significantly reduced and it is possi-
ble to generate complex output patterns at a fast rate. Since the FIFO memory
size of 512 bits is too small to hold all time-stamps and associated channel up-
dates for a whole experimental cycle it is not possible to loop over the FIFO.
Instead time-stamps and values must be input to the FIFO memory at regular
intervals [Windpassinger08a]. To ensure synchronisation with the CAMOT pro-
gramme the output of the DIO64 is triggered by the output from one of the
DAC/ADC cards.

Figure 7.1: Screen-shot of DIO64 pulse timing program. Main lesson from this figure is
that we need to set a lot of values.

1Product names: PCI-MIO16E-4, PCI-6713, and PCI-6711.
2Product name: PCI-DIO64.
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Chapter 8

MZI performance

8.1 Probe laser layout

Before describing the MZI as such we take a glance at the setup for generating
the MZI probe and locking laser fields. Following a rundown of the probe lasers
themselves, we describe two general versions of the probe-laser setup charac-
terised by the lasers’ frequencies being locked by either absorption-saturation
spectroscopy or beat-note locking. Naturally, the actual experimental setup
evolved from one to the other version through a number of steps and certain
experiments were performed with each probe laser locked by a separate method.

8.1.1 Frequency locked grating stabilised diode lasers

Our probe lasers are based on a general design which has proven to work in
several labs and commercially [Ricci95]. The specific design was developed by
Jörg H. Müller and has been optimised gradually. The design and alignment
of the laser is described in detail in [Petrov06] and here we just outline a few
features. The laser is based on an AR-coated ridge-waveguide laser-diode from
EagleYard (formerly Ferdinand Braun Institute).1 The laser cavity is bounded
by the back face of the laser diode at one end and a diffraction grating at the
other. The frequency of the light that is reflected from the grating back in to
the cavity mode depends on the grating line separation and its angle w.r.t the
cavity axis. Thus, the grating angle is used to tune the laser frequency. This
is of course only possible as long as the frequency of the reflected order lies
within the diode’s gain profile. The direct reflection off the grating is the laser
output. The laser frequency can be further fine-tuned by the diode current and
temperature. When locking the laser we stabilise the frequency by feedback to
the laser current for fast fluctuations and to a piezo-actuator attached to the
grating for slow fluctuations.

Background light The properties of the laser output depend heavily on the
specific diode used. The EagleYard diodes from a single batch are fairly consis-
tent in terms of gain-profile and output power. However, different batches can
come with quite different specifications. A problem we encountered with the
batch used for most of the measurements presented here, was that the D2-line

1due to short lifetime that we we experienced for the EagleYard diodes, we have recently
changed to use non AR-coated diodes from Axcel Photonics.
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frequency of 852 nm was on the very edge of the gain profile. Firstly, this compli-
cated the laser alignment and forced us to use rather high drive currents. More
seriously, we found that the diode produced a broad incoherent background of
light spread out over 20 nm towards the centre of the gain profile (see fig. 8.1).
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4→ 5’ laser @ 852 nm
3→ 2’ laser @ 852 nm
3→ 2’ laser @ 834 nm
3→ 2’ laser @ 852 nm w. filter
3→ 2’ laser gain profile

Figure 8.1: Output power frequency spectrum probe of lasers tuned to different lasing
frequencies. The spectrum is measured in the reflection off a 1200 lines/mm diffraction
grating. Orange and purple lines: When tuned to 852 nm both probe laser diodes
produce a significant amount of background light with broad spectrum towards the
centre of the gain profile. Red line: Lasing at 834 nm where the gain is maximal the
background vanishes. Green line: Lasing at 852 nm with a 860 nm band-pass filter at
a small angle the background light is greatly attenuated. Grey line: laser diode output
when not lasing – adapted from EagleYard data-sheet

Side modes Some times random circumstances seem to collude in disrupting
ones experiment. One such instance relates to the modes of the probe laser
cavity. The length of the laser cavity is typically around lcav = 3.5 cm, which
results in a free-spectral-range of c/(2lcav) ≈ 4.3 GHz. Only one carrier mode is
lasing strongly, but other side modes will compete with it and contain a small
fraction of the overall laser power. The trouble comes from the fact that in the
dichromatic MZI configuration the frequency difference between the probe lasers
is around 8.5 GHz i.e. two free spectral ranges. Thus, when the two probe
lasers are mixed a side-mode of each laser will interfere with carrier mode of
the other laser. The result is interference intensity modulation in the combined
signal at relatively low frequencies 100-1000 kHz. On fig. 8.2 the interference is
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4→ 5’ laser
3→ 2’ laser
dichromatic beam

Figure 8.2: Intensity noise spec-
trum of individual probe lasers (or-
ange and purple lines) and dichro-
matic beam (green line) normalised
to the sum noise of the individ-
ual lasers. The noise is recorded
on a spectrum analyser (SA) as the
4 → 5′ laser frequency is scanned
over ≈ 1 Ghz centred at ∆45′ = 0.
The SA is set in 0-span mode at
500 kHz with video BW 100 kHz
of and resolution BW 1 MHz.

manifested as an excess noise in the intensity of the combined dichromatic laser
beam when the detuning of one laser is tuned. Two distinct noise peaks are
visible corresponding to the side-modes of one and the other laser respectively.
Since in this measurement the 3 → 2 laser detuning is fixed to ∆32 = −86 MHz
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and ∆32 = ∆45 + 8589.2 MHz we infer that twice the free spectral range of the
lasers is≈ 8.5 GHz and≈ 8.4 GHz corresponding to cavity lengths lcav = 3.53 cm
and lcav = 3.57 cm respectively.

The issue of side modes was manifested in unpredictable changes to the MZI
shot-noise performance (see sec. 8.7), seemingly changing from day to day. In
fact we did not realise the issue for a long time as most of the measurements
were performed with ∆45 ≥ 100 MHz where the side-mode interference noise is
minimal. However, when we needed to lock the laser to ∆45 ≈ −100 MHz (see
table 12.2) we were no longer able to reach the shot-noise limited performance
of the MZI. Fig. 8.2 clearly explains what went wrong. We mend the problem
by changing the position of the diffraction grating, thus shortening the cavity
length to 2.5 cm. The resulting free spectral range of 6 GHz no longer causes
any side-modes to be resonant with any probe laser carriers.

8.1.2 Absorption saturation locking
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Figure 8.3: Probe laser layout for absorption saturation locking and 1-input MZI.

The setup is sketched on fig. 8.3. The probe lasers are independently locked by
absorption saturation spectroscopy using a Pound-Drever-Hall locking scheme
pioneered in [Bjorklund80, Hall81, Bjorklund83, Drever83] and also elaborated
in [MacAdam92, Schmidt94]. For the implementation in our experiment refer
to [Petrov06]. In the sketched setup we generate 4 MHz sidebands for the locking
by modulating the AOM (L-AOM) drive frequencies in the lock branches of the
setup. Hereby, we avoid inducing sidebands in the lasers themselves and thus in
the probe beams that enter the MZI. Introducing the sidebands via modulation
of the laser currents has a serious effect on the amount of classical noise in a
detector signal, as is documented in [Windpassinger08a]. We shall point out
that for the trap characterisations presented in sec. 9.2.1 -9.2.3 the lasers were
directly locked to the absorption saturation signal with the 4 MHz modulation
applied to the laser drive currents. On fig. 8.4 we illustrate the three different
frequencies associated with each probe laser. The L-AOM shifts are chosen so as
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Figure 8.4: Probe detunings/frequencies at various
points in the absorption saturation locking scheme
illustrated in fig. 8.3. The pulsing AOM shift is
2δνP−AOM = 160 MHz throughout all experiments.
The 4 → 5′ probe laser is locked to the 4 → (4×
5)′ cross-over and the MZI probe detuning is thus
∆45′ = 2δνL−AOM + (160− 125) MHz. For many
experiments we chose 2δνL−AOM = 125 so that the
MZI probe detuning was 160 MHz while the probe
laser was on resonance, i.e ∆45′ = 0. The 3 →
2′ probe laser is locked to the 3 → (2× 3)′ cross-
over and the MZI probe detuning is thus ∆32′ =
−2δνL−AOM + (160 + 75) MHz. To mach the ∆45′ =
160 MHz probe we must chose 2δνL−AOM = 370 so
that the MZI probe detuning was 135 MHz
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to generate a the desired probe frequency when accounting for the shift of the
probe pulsing AOM (see fig. 8.4 caption for examples).

The two probe laser beams are overlapped on a PBS and coupled into a single-
mode fibre so as to ensure perfect spatial mode overlap. After the fibre the
dichromatic probe beam takes two passes through the final AOM (P-AOM)
which generates the probe pulses. A very important note on the AOM is that
we ensure that the AOM is driven by the RF power, which gives the optimal
diffraction efficiency. At this power the optical power in the diffracted order is
not sensitive to intensity noise in the RF source. We have seen that the RF in-
tensity noise significantly increases the noise in the probe powers if we drive the
AOM in a range where it responds more linearly to drive power changes. As the
last step, the probe can be overlapped with the locking beam and all modes are
then coupled into the fibre-link to the MZI input.

The locking laser is not frequency stabilised but by monitoring the laser in a
scanned Fabry-Perot cavity we ensure that the laser operates in a single fre-
quency mode. For the DC locking scheme the locking laser is simply coupled in
to a fibre link which takes the beam to the back-input of the MZI (see sec. 8.6.1).
For the AC-locking the lock-modulation AOM (LM-AOM) creates the intensity
modulation of the locking beam, which is mixed with the probe on a PBS before
entering the fibre-link to the MZI input.

Power spectrum of probe beat signal

To gauge the frequency stability of the probe lasers we measure the linewidth of
the beat-note signal achieved by mode-matching two independently absorption
saturation locked probe lasers on a detector. We take the detector output to a
spectrum analyser (SA) and obtain a power spectrum of the beat-signal (fig. 8.5).
For the data presented here we utilised the two MOT master lasers, which are
identical in construction and locked by the same method as the probe lasers.2

The 4 MHz sidebands are due to the current-modulation of the lasers for the
locking. Since for the probe laser we apply the modulation to the AOMs in the
locking branch, these sidebands are absent in the beat-signal. The FWHM of the

2This is not an attempt to cover up anything, but merely due to the oversight that we did
not properly record data for the probe-lasers before changing to the beat-note locking scheme
described in sec. 8.1.3.
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Figure 8.5: Power spectrum of beat-
note signal of two lasers indepen-
dently locked by absorption saturation
spectroscopy (see fig. 8.3). Trace ac-
quired on Infiniium SA with 100 kHz
resolution BW, 1 MHz video BW and
5 dB of attenuation on input. The
line-width of the beat-note is around
450 kHz. 5 10 15 20 25
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beat-note is approximately 450 kHz and assuming that the lasers have the same
linewidth this yields individual linewidths of

√
2 · 450 kHz ≈ 650 kHz i.e. below

1 MHz.

8.1.3 Beat-note locking

In the absorption saturation frequency locking scheme it is rather cumbersome
to change the probe frequencies by more than about 10 MHz, because the AOMs
have a limited bandwidth ∼ 20 MHz. Furthermore the beam paths are changed
slightly and the locking scheme must be realigned for every significant change in
frequency. To make the probe laser setup more versatile we employ a beat-note
locking scheme developed in [Appel07, Appel08] similar to schemes described in
[Santarelli94, Schünemann99]. In simple terms the lock relies on the beat-notes
generated when lasers of two different frequencies, say ωp and ωl, are mixed
into the same mode. The beat-notes will occur at ωp ± ωl. For lasers operating
on the Cs D2-lines the difference frequency ωl−p is in the range of Mhz-Ghz
depending on which hyperfine levels they address. If the dichromatic beam is
detected the photo-current will only display the difference frequency beat-note
as the PHz oscillations of the sum frequency are way beyond the detector band-
width. This electronic beat-note may subsequently be mixed with a reference
frequency oscillator signal and the resulting side-bands/beat-notes are used to
lock the frequency difference of the lasers to that of the reference oscillator. The
feedback to the lasers has both a DC (0-100 Hz) and an AC component (100 Hz-
1 MHz). The DC component is fed to the piezo stack supporting the diffraction
grating. The AC component is set to modulate the laser drive current, which has
a modulation bandwidth of ≈ 1 MHz.

Ideally, a truly versatile lock should be able to stabilise two lasers in the whole
frequency range, however with the analogue techniques utilised in [Santarelli94,
Schünemann99, Oblak04, Petrov06] this is challenging. Resorting to digital sig-
nal processing proves to overcome the challenge and with the locking system
built for our setup we are able to lock the frequency difference of two lasers
from 1 MHz to 12 GHz [Appel08].

Lock performance

We test the lock stability with the setup sketched in fig. 8.6. We use the MOT
master re-pump laser as the reference optical frequency that we admix the two
probe lasers and detect on fast-photo diodes. The detector beat-signals are am-
plified and fed to the PLL, where they are scaled by some set factors and com-
pared to the same reference frequency. The scaling can be different for the two
PLLs, so that the lasers can be locked to different frequencies. We also detect the
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Figure 8.6: Beat-note locking
scheme and test setup.

3→2’ probe 4→5’ probe

OI OI

λ/2 λ/2

MOT
re-pump

beat
signal

beat
signal

λ/2 λ/2

+
+
+

PLL

+
+
+

PLL

st
ab

le
 f

re
q
u
en

cy
re

fe
re

n
ce

AC

DC

AC

DC

Oscilloscope/
Spectrum Analyser

beat-note of the two lasers with each other and send the signal to a spectrum
analyser or oscilloscope, depending on the measurement.

Frequency stability First we wish to determine the frequency stability of the
locked lasers. This is done by locking the two probe lasers to the same frequency
whereby their mutual beat-note will be at DC (0 Hz). Thus, the magnitude of
the beat signal depends on the phase-offset between the lasers at the mixing PBS.
Essentially, the beat note detection constitutes an interferometer albeit with two
different but mutually phase-locked sources. Thus, by tapping a mirror in one
of the beam paths one can generate an interference fringe in the mixed signal
(see insert in fig. 8.7). A measurement of the laser phase-stability is done by
adjusting the beat signal to about 50% of the interference fringe and then just
recording the signal over some duration of time. Phase-fluctuations in the laser
frequencies will be manifested as intensity fluctuations in the beat signal. Nor-
malising the measured signal to the fringe amplitude directly yields the phase-
fluctuations between the lasers. We quantify the noise in terms of the modified
Allan-variance [Allan81]. Briefly the Allan variance quantifies the frequency sta-
bility of an oscillating signal source on different time-scales. The modified Allan
variance is particularly useful for unambiguously determining the type of noise
influencing the stability of an oscillator signal. For definitions and a brief sum-
mary of the properties of the Allan variance refer to appendix F. Here we will
merely focus on the magnitude of the noise on the relevant time-scales for our
experiments.

Figure 8.7: Green circles: Modi-
fied Allan deviation of beat-note
phase of two lasers locked to
the same frequency using com-
mon optical and RF frequency
references (see fig. 8.6). Red
line: smoothed data. Raw traces
corresponding to six time-scale
ranges were recorded on Infini-
ium DSO with appropriate sam-
pling rates. Insert: Interfer-
ence of beat-signal when chang-
ing the path-length of one laser.
The fringe amplitude is used to
convert amplitude fluctuations
in to phase fluctuations.
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On fig. 8.7 we plot the modified Allan deviation, i.e. the square-root of the vari-
ance, for sample times from around 1 ns to 10 s. As discussed in appendix F
we multiply the variance with the nominal beat frequency in order to get the
deviation in frequency units. The different slopes are a result of different dom-
inating noise sources, and on time-scales from around 100 ns to 10 ms the the
laser-noise is dominated by white-phase noise [Appel08]. Since increasing the
integration time of the phase signal obviously averages out the phase fluctua-
tions, the Allan deviation will thus be monotonously decreasing over this range
(see also eq. (F.4)). The time relevant for our experiment ranges from 1-100 µs
where the modified Allan deviation is at 0.1-10 kHz. This is a significant im-
provement over the absorption saturation locking scheme. The laser frequency
noise is important for the fluctuations it induces in the coupling of the probes to
the atoms (see sec. 6.2.2).

Lastly, we note that for the measurement we use about 1 mW of power per probe
so that the photon-flux is around 4 · 109 µs−1, wherefore the shot-noise will be
negligible. We also verify that laser intensity noise is not of importance in this
measurement.

Power spectrum of probe beat signal So that we can compare with the power
spectrum of the beat-signal of the lasers locked by absorption saturation spec-
troscopy (fig. 8.5) we present a similar plot for the beat-note locked lasers. For
this measurement the two probe lasers are again locked to the MOT master re-
pump but the PLL scaling factors are set so that the laser frequencies differ by
20 MHz. The power spectrum of the beat signal can now be recorded away from
DC, as shown on fig. 8.8. We find that the line-width of the spectrum ≈ 1 kHz,

Figure 8.8: Power spectrum of beat-
note signal of two lasers locked
8.16 GHz apart using the same op-
tical and RF references but with dif-
ferent PLL frequency scaling factors
(see fig. 8.6). Trace acquired on In-
finiium SA with 1 kHz resolution BW,
10 kHz video BW and 5 dB of attenua-
tion on input. The beat-note FWHM is
1.1 kHz, which is a result of the reso-
lution BW. 159 160 161 162 163 164 165 166 167 168
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resolution BW: 1 kHz

which is limited by the set resolution bandwidth of the scope. Thus, we are
unable to resolve the actual width of the beat-note. In any case, the line-width
is drastically smaller than that recorded in fig. 8.5. The shoulder on the spec-
trum is due to the locking bandwidth and gain settings. We recap, that the
narrow linewidth refers to the laser frequency difference, whereas the absolute
laser frequencies will have a significantly larger linewidth set by that of the MOT
master re-pump. As we noted in sec. 6.2.2 for certain probing configurations it
is precisely the difference frequency that counts.

Probe intensity noise induced by the lock Typically, the intensity noise spec-
trum of laser diodes has a 1/ω behaviour at low frequencies. In the MHz range
the fluctuations remain at a fairly constant level and can be compared to white
noise, but still at a level above the shot noise level [Petermann91, Telle93]. An-
other feature of the characterisation setup (fig. 8.6) is that a noisy RF-frequency
reference may add noise to the absolute probe laser frequencies without it being
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visible in their beat signal. The PLL interprets the RF-reference frequency fluc-
tuations as laser frequency fluctuations and thus attempts to correct for them
with feedback to the lasers. Since the feedback is applied to both lasers their fre-
quency difference is unaffected, however, the AC-feedback to the laser currents
inevitably also causes perturbation of the laser intensities. To gauge this effect we
successively block the two probe lasers before the mixing PBS and obtain power
spectrums of the intensities (fig. 8.9). We obtain spectra for a number of different

Figure 8.9: Power spectrum of
the intensity noise of a probe
laser for different reference fre-
quency sources and settings. We
use 1 mW of laser power and
normalise the noise to the corre-
sponding shot-noise level. Yel-
low line: 10 MHz RF-reference
derived from Infiniium DSO.
Red line: 20 MHz RF-reference
derived from PPG20 unit. Green
line: 10 MHz RF-reference de-
rived from Infiniium DSO and
with AC gain on MOT re-pump
locking turned off. 0 100 200 300 400 500
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3->2’ probe locked using xx RF-reference with 
no AC-lock gain on MOT re-pump laser lock

lock parameters and by varying the probe intensities we extract the shot-noise
and classical intensity noise (the procedure is thoroughly explained in sec. 8.7).
Hence, we normalise the observed noise to the shot noise. Using a 10 MHz
RF-reference from the Infiniium digital oscilloscope the intensity noise spectrum
(yellow line) has a very large peak at 25 Hz and a broad peak at around 480 Hz.
Changing the RF-reference to a home-built 20 MHz Programmable Phase Gen-
erator (PPG20) (red line) the 25 Hz peak remains and additionally about 2 dB of
noise is added to the entire spectrum above 100 Hz. Evidently, the PPG20 based
source has significant frequency noise, thereby compromising the intensity sta-
bility of the laser. Finally, we revert to the 10 MHz scope RF-reference and lower
the AC-gain on the MOT re-pumper absorption saturation locking, causing the
25 Hz peak to vanish. It turns out that the AC-lock of the MOT re-pumper
induces oscillations in the re-pump frequency and the beat-note lock, in an at-
tempt to correct for this, transfers the modulation to the probe-lasers. Following
these measurements we initially kept the AC-gain of the MOT re-pumper low,
but finally we adjusted the locking parameters and got rid of the modulation
altogether.

In the setup used for the actual squeezing experiments the two probe lasers are
locked to each other and not to a common reference laser. In this configuration
noise in the RF-source directly translates into noise in the beat frequency of
the two probes. We have confirmed that the probe beat-signal is not significantly
increased by noise in the RF-reference, and that the intensity noise is comparable
to that shown in fig. 8.9.

Application to probe laser setup

The way we employ the beat-note lock to our setup is outlined in fig. 8.10. We
need one laser for absolute frequency reference and pick the MOT re-pump
master laser, which is locked by absorption saturation spectroscopy. We then
first lock the 3 → 2′ probe since its frequency is already close to that of the MOT
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Figure 8.10: Probe laser layout for beat-note locking and 1 or 2-input MZI. To simplify
the figure we omit explicitly drawing the lock feedback loop (refer to fig. 8.6) and focus
on the optical fields.

re-pumper. Instead of also locking the 4 → 5′ probe laser to the MOT re-pumper
we lock it to the 3 → 2′ probe laser. This ensures that the frequency difference
of the two probes is locked as tightly as possible — something that will be of
importance for the QND measurement (see sec. 6.2.2). Since the probes couple
to different ground levels the beat-note frequency is 8-10 GHz. A sketch of and
formulas for the involved frequencies is given in fig. 8.11.

Figure 8.11: Probe detunings/frequencies at vari-
ous points in the beat note locking scheme illus-
trated in fig. 8.10. MOT re-pump master laser pro-
viding the optical reference frequency, is locked
by absorption saturation spectroscopy to the 3 →
(2× 3)′ cross-over. Accounting for the probe puls-
ing AOM shift δνP−AOM = 80 MHz the final probe
detuning is ∆32′ = 75.6 MHz + 80 MHz + νbn3.
For νbn3 = 241.6 MHz one gets ∆32′ = 86 MHz.
The final detuning of the 4 → 5′ probe, again ac-
counting for the pulse-generating AOM, becomes
∆45′ = 8664 MHz − 80 MHz − νbn3 − νbn4. For
νbn4 = 8243 MHz one gets ∆45′ = 100 MHz.
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We regularly monitor the intensity noise of the probe lasers on an auxiliary probe
detector and all three lasers involved in the locking can be monitored in a Fabry-
Perot cavity or in an absorption saturation spectroscopy setup. Engaging the
beat-note locks and slowly scanning the frequency of the MOT master re-pump
laser, the absorption saturation spectroscopy allows us to verify that all lasers
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are locked correctly.

Following the P-AOMs the probe beams are attenuated and a set of λ/2-plates
on motorised rotation stages in combination with PBSs allow for adjustment of
the probe powers. Another set of λ/2-plates align the probe polarisations to
the PM-axis of the fibres that carry the probes over to the two MZI input ports.
Since wave-plates tend to pollute the beam polarisation we insert high-quality
PBS cubes3 aligned to the fibre PM-axes as the final elements before the fibres.
The MZI locking laser is intensity modulated by the LM-AOM and mixed with
the 4 → 5′ probe that goes to the input port 1 of the MZI. For mode matching
of the two MZI input port we enable the 4 → 5′ probe to be coupled in to both
fibre-links and thus enter the MZI from both inputs (see sec. 8.4.2).

8.2 Pulsed acquisition

Efficient and noise-less acquisition of the information contained in the probe
pulses is an absolutely crucial element of the experiment. The first step is the
conversion and amplification of the photon signal into an electronic signal in a
photo-detector. Next step is the digital recording and storage of the electronic
signal on a computer for further analysis. In this section we treat the two steps
successively, starting with the photo-detection.

8.2.1 Pulsed photo-detector

To distinguish this detector from subordinate ones we coin it the QND-detector.
The experiment has seen several version of the QND-detector, though all have
been developed from the blueprint described in [Hansen01]. The first QND-
detector (QND1-detector) was used in for the measurements described in [Oblak04,
Oblak05, Petrov06, Petrov07]. For the experiments documented in [Windpassinger08a,
Windpassinger08c, Windpassinger08b, Oblak08, Appel09, Windpassinger09b]
the second generation (QND2) detector was used. In sec. 8.2.2 we describe the
gain and electronic noise of the detectors and it will be clear why the QND2
detector replaced the QND1 detector.

8.2.2 Digitisation and storage

Once converted into an electronic signal the next task is to record the pulse so
that the data can be stored on a computer for further processing. For the mea-
surements documented in [Oblak04, Oblak05, Petrov06, Petrov07] we used an
analogue integration circuit based on a commercial sample-and-hold chip4 to
first integrate the detector signal over the duration of the pulses. This involved
supplying the integrator with a gating-pulse so that only the actual pulse sig-
nal was integrated. The integrator output voltage was read out by a NI ADC
computer interface card and stored on the hard drive of the computer. Though
this method did not seem to compromise the detector signal it also proved to
be rather inflexible, in that we did not have access to other, possibly interesting,
sections of the signal that lie outside the actual probe pulse. Thus the acquisition
was redesigned to be based on the Infiniium 54832D Digital Storage Oscilloscope
(DSO). The detector signal is directly input to the DSO which records data from

3from Bernhard-Halle Nachf.
4Burr-Brown IVC102
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selected time-segments in its memory and then stores it in a binary-format5 on
a hard-drive. The DSO is controlled via an ethernet link by the LabView pro-
gramme handling the acquisition. There has been two versions of this program.
We will focus on the second generation version named scope program. The DSO is
set to segment mode where it acquires a preset number of segments in its memory
before writing to the file. The sample rate, span, voltage-scale, output file-name
etc. is likewise set by the LabView interface. The actual trigger signals for the
acquisition and the segments are programmed in the DIO64-control LabView
programme and supplied by the PCI-DIO64 card (see fig. 7.2).

Figure 8.12: Raw detector traces
recorded on DSO and integration
matrices. Pulse integral found by
multiplying integration matrix val-
ues with the DSO traces and sum-
ming up all samples correspond-
ing to a pulse. a) QND detec-
tor usually hooked up to channel 1
on DSO. Pulse integration window
chosen so that the whole pulse is
covered. b) Reference detector for
probe power determination usually
input on DSO channel 2. Integra-
tion window chosen narrower than
pulse so as to determine only the
pulse height. Background windows
chosen to be as close to yet clear of
the pulse. The integral of the inte-
gration matrix is zero, i.e. the area in
the pulse window and the two back-
ground windows are equal.
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The binary data-files are processed in a couple of steps in MatLab using a selec-
tion of code-scripts6. Each binary file contains data about all segments acquired
on a single channel, and on fig. 8.12 we plot a section of traces from two channels
contained in a single segment. We next need to sum up over all samples that
were taken during a probe-pulse. This is done by defining windows of lengths
t∗p around the pulses and constructing a matching integration matrix depicted as
a black line in fig. 8.12. One integration matrix simply takes the value 1/t∗p for
all sample points inside the window and 0 outside it i.e.

Mint(t) =
1
t∗p

1[
−

t∗p
2 ,

t∗p
2

] (8.1)

When multiplied with and summed over the data it returns the integral over the
pulse. An added feature is that we can define background windows in some
range of samples close to the pulse-window

Mint(t) =
1
t∗p

(
1[
−

t∗p
2 ,

t∗p
2

]
)
− 1

t∗bg

1[
−

t∗bg+t∗p
2 −tdel,−

t∗p
2 −tdel

] + 1[ t∗p
2 +tdel,

t∗bg+t∗p
2 +tdel

]

(8.2)

which is shown in fig. 8.12. By assigning the value 1/t∗bg to all matrix elements
inside the background window we automatically subtract any detector offset.

5file extension ”.bin”
6file extension ”.m”
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When this is done over all pulses of each segment, all segments of each experi-
mental cycle, and all channels we store the data in a four dimensional array and
write this to a MatLab data file7. In many cases we actually define a number of
integration windows corresponding to different probe or reference pulses (see
sec. 12.4.1). In these cases we store the different pulse integral under different
variable names in the MatLab data-files. Further analysis of the data stored in
the MatLab data-files is performed by dedicated Matlab scripts.

Pulse bandwidth The pulsed detection allows us to detect signals only on cer-
tain time-scales. This may be expressed through a decomposition of the signal
into its Fourier components whereby it is simpler to see that e.g. a 1 µs pulse will
easily sense a signal component at 1 Hz whereas a 1 MHz component will av-
erage out over the pulse. To formalise these statements we calculate the Fourier
spectrum of the pulse or rather the integration matrix8, which defines the detec-
tion time. The spectrum is only approximately equal to the detection transfer
function g(ω) (see sec. 6.1), which also accounts for the frequency response of
other elements i.e. the detector, cables, DSO, etc. For the matrix eq. (8.1) the
Fourier components are

Mint(ω) =
sin
[

t∗p
2 ω
]

t∗p
2 ω

, (8.3)

which shows that by using the integration matrix of eq. (8.1) the value of the
integrated pulse area is sensitive to frequency components in the detected signal
up to a bandwidth frequency of ωBW ∼ 2π/t∗p (see red curve in fig. 8.13). The
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Figure 8.13: Pulse detection power spec-
trum |Mint(ω)|2 for symmetric integra-
tion windows. The red curve corre-
sponds to eq. (8.3), while the green
curve corresponds to eq. (8.4) with no
spacing between pulse and background
window t∗del = 0 and the same total du-
ration of the two integration windows
t∗p = t∗bg.

signal is ergo sensitive to DC components in the signal. As we commonly see
a more or less pronounced offset of the detector baseline [Windpassinger08a]
the DC sensitivity is disadvantageous. As stated above, this is circumvented
by constructing a background-subtraction windows as in eq. (8.2). The Fourier
spectrum of this integration matrix is

Mint(ω) =
sin
[

t∗p
2 ω
]

t∗p
2 ω

+
sin
[(

t∗p
2 + t∗del

)
ω
]
− sin

[( t∗p+t∗bg
2 + t∗del

)
ω
]

t∗bg
2 ω

, (8.4)

which is plotted as the green curve in fig. 8.13. The plot shows the special
case where there is no separation between the pulse and background windows
t∗del = 0 and the two have the same duration t∗p = t∗bg, so that eq. (8.4) simplifies
to Mint(ω) = 2 sin[t∗p/2 ω]/(t∗p/2 ω)− 2 sin[t∗pω]/(t∗bgω). The important things
to notice are that the pulse integral is no longer sensitive to DC-components
of the detector signal and the peak sensitivity is at the frequency ∼ π/t∗p. In

7file extension ”.mat”
8defined as Mint(ω) =

∫ ∞
0 e−iωtMint(t) dt.
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fig. 8.14 we show how the spectrum of eq. (8.4) changes as t∗del 6= 0 and t∗bg ≤ t∗p.
A common setting for the experiment would be t∗del ≈ t∗p/10 and t∗bg ≈ t∗p/2

0 π/tp* 2π/tp* 3π/tp*
0.0

0.1

0.2

0.3

0.4

0.5

0 π/tp* 2π/tp* 3π/tp*N
o
rm

al
is

ed
 p

o
w

er
 d

en
si

ty

Fourier frequency ω

a)          b)

Figure 8.14: Pulse detection power spectrum |Mint(ω)|2 for non-symmetric integration
windows, meaning that there can be a delay t∗del 6= 0 between pulse and background
window and the total duration of the two windows may differ t∗p 6= t∗bg. Specifically in
a) we vary t∗del and in b) we vary t∗bg.

corresponding to orange curve in fig. 8.14 (see figure legend).

In the following discussion on electronic noise, light noise, and later atomic
noise it is important to keep in mind that the noise from each source may have
different intrinsic noise spectra and that the overlap of these spectra with the
detection bandwidth should be considered. Electronic noise for example can be
assumed to have a fairly flat spectrum and spectral response of the detection is
exactly as in eq. (8.4). Shot noise from the light is only present during the actual
pulse signal and thus has a bandwidth more resembling eq. (8.3). Other classical
noise sources in the light will influence the signal in yet another way.

Electronic noise

Large portions of the analysis presented in this dissertation concerns the de-
termination of the noise level of the integrated pulse signals. To get off to a
slow start, we will investigate the electronic noise of the detector and the DSO.
Determining the electronic noise we block all optical beams and define pulse
windows corresponding to typical probe-pulse settings. The electronic noise of
the different QND-detector versions is summarised in table 8.1

detector version detector gain electronic noise P3dB n3dB

QND1 9 V/µW 7 · 10−6 V2 1.5 µW 6 · 105 µs−1 · tp

QND2 32 V/µW 1.12 · 10−6 V2 0.02 µW 8 · 104 µs−1 · tp

Table 8.1: QND detector gain and noise characteristics. The electronic noise level is the
variance of the detector voltage on the 1 MΩ terminated DSO input. The P3dB value
states the optical power resulting in a shot-noise level equal to the electronic noise.
Likewise the (n3dB) value states the number of photons in a 1 µs pulse required for the
shot-noise level to equal the electronic noise level.

Since the noise is almost perfectly white, the level is very close to constant for all
time-scales i.e. size of the integration window. We see that the QND2 detector
has about 75 times lower electronic noise than the first version. This improve-
ment has been one of the essential factors allowing us to proceed with the ex-
periment. For the data presented in this thesis the old detector was used for all
of the sample characterisation measurements and some of the optical pumping
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efficiency and microwave Rabi oscillation measurements. However, all character-
isations of the coherence times, light-atom interaction, and QND measurements
employed the QND2 detector. A more thorough description and characterisation
of the detector is found in [Windpassinger08a, Windpassinger09a]

digitisation noise For a short period of time one cause of confusion was that
the electronic noise estimate appeared to had grown much larger than normal.
At that point we had needed to set the DSO voltage scale quite large so as to
to accommodate rather large signal fluctuations/decays. We then would use the
background data to estimate the electronic-noise. As the voltage value has a
fixed bit-depth the coarseness of the digitisation increases with the voltage scale.
It turned out that the large voltage scale meant that the electronic noise was
barely resolvable and thus the background signal appeared to jump in discrete
steps. This again resulted in an apparent increased electronic noise level. We
have established that the voltage span should not exceed 200 mV/div for the
electronic noise not to be artificially amplified by too coarse digitisation. The
blow-up of the noise from 200 mV/div to 500 mV/div is extremely sharp and
related to the DSO internally switching to a different set of electronics.9

In order to fit the signal on the scope without amplifying the electronic noise we
have some times attenuated the detector signal by a factor of 4-5 with a simple
voltage divider so as to avoid going to the 500 mV/div. At other times we
have used different DSO channels to record different parts of the data. We have
verified that neither of these procedures add noise to the output signal. When
we use low probe powers we do not have trouble fitting the signal (including
fluctuations) on the 200 mV DSO scale.

Notation for different signal values

We end the section on pulsed acquisition with a table of the various representa-
tions of the detector signal. Not all entries have been defined yet. Even so we
put the table here as a reference in later sections.

8.3 MZI layout

The Mach-Zehnder interferometer is a key element in the experimental setup. It
has been subjected to numerous revisions since the first incarnation with opti-
cal fibres [Oblak04, Oblak05]. The current free-space realisation is situated on
an elevated aluminium optical breadboard so that the laser beam heights match
that of the vacuum components viz. the quartz glass-cell containing the atomic
sample. The whole MZI setup including the vacuum parts and MOT optics are
enclosed in a box which is lined with a special sound absorbing magic fleece10

that serves to reduce acoustic disturbances of the MZI. Though several optical
elements have been exchanged and added a number of core elements have re-
tained their position. We will describe the basic MZI make-up of these core
components (Fig. 8.15) before discussing the variations to the setup.

The various laser beams are carried to the MZI from the main optical breadboard
by polarisation maintaining (PM) fibres. Initially oval-cladding fibres from Thor-
labs were used, but due to poor PM properties, causing large drifts in the probe

9we clearly hear some relays in the DSO switching when we go from the 200 mV/div to the
500 mV/div scale.

10this is used in luxury cars to reduce engine and tyre noise in the passenger cabin.
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Box 8.1: FORT laser intensity noise

Because of reflections on optical elements some amount of FORT laser light
will scatter into the probe-beam path and thus into the QND detector. As
discussed in sec. 9.1.2 we have inserted an ever increasing number of dichroic
mirrors in the probe beam to filter away the scattered FORT light. In the be-
low figure we show the raw detector output in the absence of probe light just
before installing yet another dichroic mirror. One can clearly see an oscillating
behaviour, which also shows up in the power spectrum of the data. A com-
parison with the intensity noise spectrum of the FORT laser convinced us that
the scattered FORT laser light entered the QND detector. Thus, the addition
of another dichroic mirror. The FORT laser light increased the detector back-
ground noise level by 3 to 4 times above the electronic noise level. Moreover,
the period of the relaxation oscillations that contaminate the probe signal are
on exactly the time-scale of the probe pulse separation. As a result, we at
some point observed that consecutive probe pulses were anti-correlated, be-
cause the pulse separation happened to be exactly half a relaxation oscillation
period.
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Box 8.2: Contamination of QND detector signal by FORT laser classical intensity
noise. Figures to the left correspond to the photo-detector signal measuring the FORT
laser intensity while those to the right correspond to the QND detector. a) Raw de-
tector signal of FORT intensity clearly showing oscillations. b) QND and reference
detector signals (see sec. 8.3) during a pulse sequence with no atoms in the trap. The
plotted QND signal is that of two subsequent cycles’ raw data-traces subtracted (see
sec. 12.2.2) and thus is completely dominated by noise — no DC level. The reference
detector signal is averaged over 500 cycles. c) Auto-correlation and e) Power spectrum
of FORT intensity revealing a 20 kHz modulation corresponding to relaxation oscilla-
tions of the laser cavity. d) Auto correlation of a particular time-sample (indicated by
a dashed line) with the remaining time-samples averaged over 500 cycles. The chosen
sample contains no photons and for white electronic and probe shot-noise should not
be correlated with other time samples. The modulation indicates contamination of
the electronic noise. f) Power-spectrum of QND signal auto-correlation that evidently
resembles that of the FORT intensity.
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Description Relation to other properties
tp Probe pulse duration -
t∗p Probe pulse integration window

time-width
QND-detector: ≈ tp + 1 µs

t∗bg Background/baseline integration
window time-width

-

N̂ph− Photon number (difference) incident
on diode(s)

QND-detector:
N̂ph− = 2Ŝ(out)

z , (eq. (2.24))
i− Photo-current from detector diodes i− = εN̂ph−/tp (eq. (2.24))
q− Photo-charge from detector diodes q− = tpi− = εN̂ph−
a Detector output signal a = Gi−
p Pulse integral of detector signal p ∼ t∗pa ≈ Gq−
φ Phase-shift of fringe on

QND-detector
φ = p/Ap = p/(GAp)
(eq. (8.5))

Table 8.2: Symbols, Descriptions, and mutual relationship of different signal representa-
tions.
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Figure 8.15: Basic layout of 1-input MZI.

power in to the MZI, they have been replaced by panda-fibres, also from Thor-
labs. The probe and lock beams are coupled into free space through Thorlabs
F220FC-B f = 11 mm aspheric lens collimators. Adding an f = 750 mm lens
yields collimated beams with a spot size of 1 mm. In the basic configuration of
the MZI the input probe beam is s-polarised w.r.t. the input BS. In later con-
figurations the input probe polarisation may be slightly tilted or even circular,
however by polarising optical elements we ensure that the probe in the MOT cell
is always s-polarised i.e. vertically linearly polarised.

The input non-polarising BS, used in the MZI as the input BS and in some of
the experiments also as the output BS, would ideally have equal reflection and
transmission i.e. r2 = t2 = 0.5. Needles to say, any real optical element is not
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Figure 8.16: Basic layout of 2-input MZI.

ideal and the BS from Eksma is no exemption. As expected the measured r2 and
t2 values shows a large dependence on the incident angle for both s-polarised
and p-polarised input beams. At the intended 45◦ angle of incidence the reflec-
tion and transmission are, however, not equal for any of the polarisations. In
the setup the angle is around 40◦, which for the s-polarised light utilised yields
r2 ≈ 0.6 and t2 ≈ 0.4. Since, for the initial MZI setup the reflected input went
into the probe arm the intensity misbalance was to a large extent rebalanced
at the output BS by the losses in the probe arm from the lenses and quarts-cell
walls. In the 2-input setup this unequal splitting was problematic and eventually
had to be undone by inducing additional polarisation dependent losses in both
interferometer arms.

8.4 Alignment

The MZI alignment consists of two to three steps depending on the configura-
tion: overlapping the reference and probe arm modes on the output BS (mode-
matching MZI), adjusting the optical path-lengths of the probe and reference
arms to be equal (white light alignment), and in the 2-input configuration the
two input modes must be overlapped on the input BS (mode-matching inputs).

The MZI mode-matching is simply done by measuring the visibility of the in-
terference fringe in one of the outputs. This was done either using a CW probe
signal on a standard detector or using a pulsed signal on the QND detector. The
former has the advantage of tolerating a larger probe intensity thus enabling
a visual inspection of the beams during the process. The latter allows simul-
taneous detection of different light sources (e.g. probe from different inputs
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and the locking laser) if these are temporally separated into different pulses (see
fig. 8.17). Typically, we achieve a visibility of 96% with an all time maximum of
98%. When we measure this ”optimal” visibility Vis0 we make sure to have equal
intensities in the probe and reference arms. In the case where the probe arm is
attenuated the actual visibility during a measurement will be smaller by

Vis =
2
√

PpPr

Pp + Pr
Vis0

where Pp and Pr refer to the power in the probe and reference arms respectively.

The visibility of the MZI should change only due to misalignment of the probe
and reference arm mode overlap on the output BS. Naively, one would not ex-
pect this to change much in a rigid construction as our MZI setup. Nevertheless,
it turns out that over the duration of a long experimental run the visibility can
vary by as much as 10%, though more commonly it is a few percent. The cause of
this change, is apparently the thermal expansion/contraction of the MZI setup
in particular the base-plate. We have tested this inference by placing a heat
source (a 100 W lamp) inside the MZI enclosure while simultaneously detect-
ing the air temperature and fringe amplitude. As the temperature increased the
fringe amplitude was seen to drop and switching off the heat source we saw the
fringe amplitude rise again, though not returning completely to the initial value.
During the regular experimental operation the sources heating the MZI enclo-
sure are chiefly the FORT laser light dumping and the MOT trapping coils. The
visibility drift does not pose a serious problem and we have not made further
efforts to stabilise the temperature around the setup.

8.4.1 White light positioning

Before describing the procedure let us ponder the question of "why white-light?"
Whereas, not all questions have an answer, this one has two. First, reason is
the immunity of the MZI to classical laser frequency noise as was discussed
in sec. 6.1.2. Though, this is of course a valid point, we need to consider the
order of magnitude of the laser noise and thus the influence on the MZI. Our
diode lasers all have a bandwidth of less than δω = 2π MHz (see sec. 8.1). The
resulting classical phase-noise is then δφ̃ω = 2

3 π10−2∆l. We require this to be
less than the shot-noise, which depends on the probe power. As we typically use
107 photons we can set the benchmark of δφ̃sn = 1

3 10−3. Invoking the condition
δφ̃ω < δφ̃sn results in the requirement ∆l < 1.5 cm. In other words for classical
frequency noise suppression the white light alignment need not be particularly
precise.

The second reason relates to the ability to tune the probe frequencies. Aligning
the MZI to the white-light position means that we are free to tune the laser
frequencies without changing the signal balancing i.e. the fringe zero crossing
remains fixed at the offset phase φ0 (≈ 0). This is particularly important when
two probe lasers are used simultaneously. For the phase-offset between two
probe lasers separated by 9.2 GHz to be negligible, that is less than the precision
set by the shot-noise, we must demand that ∆l < 1.5 µm. Though, a small
detectable discrepancy in the offset of the two probe fringes is acceptable the
requirement is a good indicator for the degree of white-light alignment we need
to achieve. Finally, we note that the locking laser is detuned by more than 10 nm
equivalent to 4 THz. In this case the condition ∆l < 3.5 nm becomes unduly
small. However, since the locking offset is adjustable we need not be concerned
with the locking fringe offset. I conclusion aligning the MZI to within a few
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µm of the white light position gives us freedom to tune and use multiple probe
lasers and ensures a more than adequate suppression of classical laser frequency
noise.

We developed a number of procedures for the white-light alignment two of
which were described in [Oblak04]. Here we focus our attention on the ap-
proaches that are used currently. The equalisation of the probe and reference arm
path-lengths of course starts out with a ruler. Once a rough equalisation, taking
in to account the added optical path-length through glass elements, has been
done we replace the probe-laser input with a weak broadband light source11.
The MZI output is detected on a sensitive detector while the length of the probe
arm is adjusted until an interference signal appears. From the spectral width
of the white-light source a interference region of around πλ2

0/δλ = 60 µm is
expected.12 With some care it is also possible to observe the interference pattern
of the white light source on a camera. This is advantageous when the mode
overlap at the output is not optimal, which is easily the case after changing the
probe arm length.

For greater precision in the white light alignment we use the pulsed detection
of weak laser pulses of two different wavelengths. By spatially separating the
pulses from each laser one can simultaneously observe the interference fringes
of both beams (fig. 8.17). If the two lasers have frequencies corresponding to the'
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Figure 8.17: Interference fringe in MZI with path-length of reference arm scanned. The
plot shows the raw scope trace of the pulses derived from the 4 → 5′ probe and the
locking beam. For both beams the pulse repetition period is 100 µs, but the locking
pulses are have a delay of 50 µs w.r.t the probe pulses.

probes that we use in the dichromatic MZI i.e. λ0 ≈ 852 nm separated by δν ≈
9 GHz ⇒ δλ ≈ 0.024 nm , their interference fringes will be out of phase when the
path-length difference is ∆l = 1.6 cm. This is of course not more precise than the
previous method, but it reveals that a rough adjustment of the path length could
also be performed by observing the fringe displacement of the probe lasers. If
instead one laser is at 852 nm and another is at 835 nm then the two will come
out of phase when ∆l = 134 µm. It is possible to determine whether the fringes
are out of phase by only a few degrees, say 5◦, which allows one to locate the
white light position to within ±2µm, corresponding to only 2 fringes. Fig. 8.17
shows the recorded fringes of the the two probe lasers (λ = 852 nm) and the
locking laser (λ = 830− 40 nm). One can clearly pick out exactly which fringe
corresponds to the white light position.

11FOD fibre coupled LED. Centre wavelength λ0 = 850 nm, spectral FWHM δλ = 35 nm,
output power -17 dBm in multimode fibre coupled (-30 dBm in single-mode fibre coupled)

12Simplified expression differs from the exact π(λ0 + δλ)(λ0 − δλ)/δλ by only 4%.
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8.4.2 Mode overlap in 2-input configuration

The task very much resembles that of aligning the probe and reference arms of
the interferometer. The main difference is that the two modes to be overlapped
originate from two different fibre outputs. Even when using fibre-patchcords
manufactured from the same piece of raw fibre and identical fibre collimators
the output modes are far from the same. The solution is to add a 1:1 telescope
in one of the input arms so that the beam size and divergence can be matched
to that of the other input (fig. 8.18a). We gauge the overlap in two ways. The'
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Figure 8.18: Mode matching MZI inputs. a) Sketch of setup used to image the input
beam waists on FireI camera with pixel-size of 5.6× 5.6 µm. b) image of mode-matched
input beams at focus of 400 mm lens. c) Intensity profiles of horizontal and vertical
cross-section through the beam centres.

first and more qualitative is to image the two inputs after the input BS on a
camera (see fig. 8.18a). We insert a 400 mm focal length lens to ensure that the
two inputs have both the same spot size and divergence. If the beams from both
inputs are derived from the same laser it is possible to observe and maximise
the interference in their overlap. This provides a very precise way to adjust the
modes to one another, and the resulting individual spot images are shown in
fig. 8.18b. The cross sections of the spot images can be plotted and compared
as is done in fig. 8.18c. The overlap is clearly very good. The second way to
measure the overlap is to detect the interference on a detector and deduce the
fringe visibility. Typically we measure Vis = 0.97− 0.98, which is about as good
as one can expect. As we shall see in sec. 11.2.3. Fig. 8.19 shows the fringes
ensuing from a good alignement of the MZI arm modes and two MZI input
modes. As compared to fig. 8.17 we now include both probe colours (purple
and orange traces) along with the locking pulses (green traces). As a small
interactive feature, we invite the reader to pin-point the white-light position.

8.5 Fringe calibration

The fringe calibration measurement establishes the factor between the power
reference detector voltage and the amplitude of the MZI interference fringes
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Figure 8.19: Interference fringe for two probe colours in 2-input MZI with path-length
of reference arm scanned. The plot shows the raw scope trace of the pulses derived from
the 3 → 2′ (pruple) and 4 → 5′ (orange) probe and the locking beam. For all beams the
pulse repetition period is 100 µs, but their pulses are delayed w.r.t to one another.

as detected by the QND detector. The aim is that the factor is the same for
both probe colours, but this is not always possible due to differences in the
fringe visibility of the probe fringe.13 Hence, we always acquire a separate
calibration for each probe colour. Ideally, when the fringe visibility is close
to unity the QND fringe amplitude (in integrated pulse-signal units) is Ap =
GQNDεQND

√
Nph,aNph,b, where GQND and εQND are the gain and quantum effi-

ciency of the QND detector while Nph,a and Nph,b are the photons in the probe
and reference arms, respectively. The signal on the power reference detector
is similarly p = Gpowε,pow K Nph,a, where K is the ratio between the photons
impinging on the power reference detector and the photons in the probe arm
passing through the atoms. Finally, the sought after ratio can be expressed as

GA ≡ Ap/p =
GQND εQND

KGpow ε,pow

√
Nph,b

Nph,a
(8.5)

Usually, we will not be concerned with the above equation and just rely on the
experimental determination of GA. With GA in hand we are able to convert QND
detector probe pulse integrals into phase-shifts as φ = p/Ap = p/(GAp). This
of course assumes that p = 0 corresponds to φ = 0.

8.6 Locking MZI path-length

Once the interferometer is aligned to a certain position yielding a certain probe
power difference between the outputs, it is necessary to lock the path-length
difference so that the probe signal remains at a constant level. To be able to
detect the atomic noise we require a stability of the path-length that corresponds
to less than 0.5% change of a fringe equivalent to 5 nm. This can obviously only
be achieved with some form of active stabilisation. To that end we deduce an
error signal from an auxiliary laser, a so called locking laser, which propagates
through the MZI in parallel with the probe pulses. As path-length variations
affect the probe and locking laser alike the error signal for the MZI locking is
simply the detected fringe of the locking laser. It is, however, required that the
locking laser is unaffected by the atomic ensemble and therefore its frequency
is chosen to be more than 10 nm from the D2 lines. We have implemented

13this has only been a problem when the probes enter different inputs. In this case it can be
caused by the unequal splitting at the MZI input BS or differences in the polarisation purity.
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two variations of the locking initially with a counter-propagating CW beam and
subsequently with a co-propagating modulated laser.

8.6.1 Counter propagating CW laser

Figure 8.20: Locking scheme
with counter-propagating off-
resonant CW locking laser

+
 I

|

+
 I

PID

The most straight forward method to apply the locking laser is to let it propagate
through the interferometer in the opposite direction of the probes. By having
the lock beam p-polarised it is possible to separate it from the s-polarised probes
with PBSs in one of the input and output arms (see fig. 8.20).14 The optical power
of the lock laser on the MZI input side are detected by a S1337-66BR Si photo-
diode from Hamamatsu and the photo-signals are subtracted with adjustable
gain for each detector so as to permit a tuneable locking offset. The difference
voltage is passed on to a PLL box with adjustable gain settings. An output error
signal is fed through a high-voltage amplifier to a piezo-actuator supporting one
of the mirrors in the MZI probe arm.

Though this locking configuration enabled us to measure shot noise limited op-
eration of the MZI [Oblak05] it proved unable to stabilise the MZI sufficiently
on long time-scales. The principal cause of this instability is that the lock and
probe beams enter the interferometer at opposite ends of the MZI. This means
that if the alignment of e.g. the probe beam from the input-fibre changes slightly
the other will not follow and thus the phase between the probe and lock fringes
will drift. Hence, the probe fringe offset phase tended to drift causing large
swings in the output signal at the end making it hard to keep the QND detector
signal from saturating. Another constant difficulty was the disturbance of the
lock signal by the co-propagating FORT laser light even if it was only that leak-
ing through two dichroic mirrors. On a less fundamental level, the components
in terms of the photo-diodes, the initial amplification, the PLL lock, and piezo
actuator were severely limited in terms of their bandwidth. At some point, we
decided to opt for a new lock that would overcome most of these difficulties.

8.6.2 Co propagating modulated laser

An ideal lock for the MZI should trace out the same path as the probe beams,
i.e. the two should co-propagate in the same mode. Since we do not wish the
locking light to be present in the probe signal it is necessary somehow to sep-
arate the two. Such separation could be done on basis of the beams having
orthogonal polarisations or by temporally segregating the beams in pulses. The
polarisation approach suffers from the inevitable contamination of the the probe
beam by leaking lock light.15 Moreover slight polarisation drifts at the inputs
would translate into power fluctuations that would cause the locking point of

14In principle it would be possible to have the CW lock laser co-propagating as well, but this
would require a near perfect separation of the probe and lock beams on the PBS.

15the polarisation cannot be kept purely linear after passage through the numerous elements
in the MZI arms.
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one fringe to drift w.r.t the other. To keep the probe and locking beams tempo-
rally separated also presents a number of problems. As the first, the time that
we can keep the lock off is limited to very short time and thus we are limited
in the timing of the probe pulses. Secondly, the scheme implies detecting the
probe and locking laser on the same photo-detector. The QND detector does,
however, not maintain a DC level, which means that it would have no way of
detecting the drift of a DC locking laser — the QND detector output would al-
ways be pulled to zero [Windpassinger08a, Windpassinger09a]. To circumvent
the problem with the QND detector we opted for a AC-modulated lock laser.
The diagram of this locking is shown in fig. 8.21, with numbered elements. The

Figure 8.21: Locking scheme with
co-propagating off-resonant mod-
ulated locking laser. The 100 kHz
lock beam modulation is done by
an AOM in single-pass and it is
mixed with the probe beam on a
PBS before entering the fibre-link
to the MZI setup. The QND de-
tector signal is divided so that one
part goes to the DSO for data ac-
quisition while the other part goes
to the locking setup (9). In the
locking device the signal is de-
modulated (10) — by a lock-in
with the local oscillator for the
AOM modulation — and a DC er-
ror signal is forwarded to a PID.
There is an option (1) to dump the
demodulated error signal and in-
stead input a ground signal to the
PID (11). In this case the lock-laser
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is also gated off (8). This is relevant in cases where the error signal contains probe
pulses, which because of their intensity would kick the lock if not blocked. There is an
option of adding an offset to the PID feedback signal before it goes to the piezo in the
MZI (15). Refer to fig. 8.22 for signal properties at the different numbered stages in the
diagram.

locking light is switched on and off with a 100 kHz frequency and the error
signal from the QND detector is then demodulated to obtain a DC error signal,
which via a PID generates a feedback to the MZI piezo. The locking light is
gated off around probe pulses so that the probe phase-shift measurement will
not be disturbed. The electronic signals at the different points in the diagram
are sketched in fig. 8.22. During the periods where the locking is switched off
the piezo output is frozen and we rely on the passive stability of the MZI to
suppress fluctuations. In sec. 8.7 we will characterise the MZI noise perfor-
mance, but some hints are already available from the theoretical considerations
in sec. 6.1. From this we anticipate the 2-input MZI configuration to have su-
perior passive stability because of its immunity to path-length variations. This
however requires the fringes of both colours to have exactly the same amplitude.
By ingenuity, it turns out that this demand can be turned in to a tool.

8.6.3 Power stabilisation and path-length wiggling

The power stability of the probe lasers proved to be a serious problem, especially
when using a dichromatic probe, where the signal strengths must be kept equal
over a long time. If the relative power of the probes changes, the phase-shift
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Figure 8.22: Signal properties in
MZI AC-locking circuits sketched in
fig. 8.21 and fig. 8.24. Numeric labels
correspond to the labels in the figures
(with the reservation that in fig. 8.21
not all signals appear). The signals
shown are constructed renderings of
the signals as they are know to look
like. Real records of signals (2), (11),
(3), and (9) are in that order plotted in
fig. 8.25.
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arising from an equal atomic superposition state will no longer be zero. If this
offset is constantly some small value it would not be an issue for concern as it
could be compensated by a slight adjustment of probe detunings. The problem
is precisely that the powers drift, so that the initially balanced atomic phase-shift
signal will end up being larger than the saturation voltage on the QND detector.
We also do not have any way to measure the probe powers in the MZI with the
precision required to implement any form of feed-back. The solution to fix the
relative probe powers is to be derived from fig. 8.23. Our attention is on the

πλ 2πλ
∆l

πλ 2πλ ∆l

a              b

i-i-
i-i-

Figure 8.23: Comparing the sum output signal in the 1 and 2-input MZI. a) In the 1-
input configuration the two probe fringes (orange and purple) interfere constructively
and their combined signal (red) has double the fringe amplitude. b) In the 2-input con-
figuration the two fringes interfere destructively and the combined signal is constantly
zero. Thus, small wiggles of the MZI path-length difference (indicated by grey arrows)
will result in a change of the combined signal in the 1-input MZI but will be camou-
flaged in the 2-input MZI.

2-input configuration fig. 8.23b, where due to the π phase-difference of the two
probes’ output signals their sum signal will always be zero. This gives rise to
the immunity to acoustic vibrations in the MZI setup. However, if the probe
powers are not equal — assuming that the fringe visibilities are equal for both
colours — any path-length excursions will give rise to a change in the combined
probe signal. We decided to use this property and deliberately offset the MZI
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path-length, and if we observe some signal modulation we correct the probe-
powers until the signal is unaffected by the path-length changes. Even if the
fringe visibilities are unequal or drift the wiggling method works because both
the acoustic noise immunity as well as the balancing of the probe phase-shifts
depend on the fringe amplitude. On the other hand, we can easily accept a
certain change in the absolute power of the probes e.g. in the probe arm passing
the samples as this will only cause a corresponding small uncertainty on the
spontaneous scattering rate. In this sense the wiggling method compensates
exactly the properties which are most sensitive and crucial to our measurements.

The practical realisation of this principle is depicted on fig. 8.24 In the sketch as
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Figure 8.24: Locking scheme with MZI path-length wiggling built as an extension to
the AC-locking setup in fig. 8.21. To place the locking in the greater context it is drawn
as the MZI lock on fig. 7.2. The demodulated error signal is still passed to a PID to
provide feedback to the piezo. However, the wiggler gating (1) quenches the locking
pulses and the error signal and adds an ≈ 0.5 kHz square modulated offset (2) to the
piezo voltage (15). At the same time the wiggler initiates a train of probe pulses (4)
with the same ≈ 0.5 kHz repetition period as the offset modulation. The QND detector
signal is further split with a part entering the a micro-processor unit. The probe pulses
applied just after the piezo voltage offset has caused a change in the MZI path-length
reveal if the probe powers are misbalanced. The using the modulation signal the micro-
processor computes an error value to be passed to the PC. The signal numbered values
are sketched in fig. 8.22 and in fig. 8.25 recorded traces of the most important signals
are plotted. The locking offset feature is explained in sec. 8.6.4.

in reality we add another box to the AC-locking system of fig. 8.21. In short we
apply a wiggling-modulation to the MZI piezo and thus the MZI path-length
(fig. 8.25 green), while at the same time disabling the lock for a while (fig. 8.25
yellow). Just after applying the offset we fire a dichromatic probe pulse and after
the MZI offset has been shifted in the opposite direction we fire another probe
pulse (fig. 8.25 orange). If the two pulse signals are not equal it means that their
powers are different (fig. 8.25 red). Thus we compute a power-balancing value
as the difference of the pulse signals for one and the other offset direction. A
digitised power-balancing signal is forwarded via the USB bus to the PC (Gam-
era) and handled by a LabView script (see fig. 7.2). This power-balancer calculates
a feedback, which is via another LabView script (wave-plate controller) is output
over the USB bus to the driver unit for the set of motorised rotation mounts
each holding a λ/2 plate. These are drawn on fig. 8.10, where it is seen that
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the action of turning these λ/2 plate will change the probe powers going to the
MZI fibre-link. The power-balancer feedback is applied to the 3 → 2 probe laser
wave-plate, while the 4 → 5 probe laser is used as reference.16 In the power-
balancer script one can set the sign and magnitude of the gain used to adjust the
λ/2 plate.
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Figure 8.25: Probe power balancing by MZI path-length wiggling. The red numbers refer
to the location of the signals in fig. 8.24 Green curve: the piezo offset voltage modulated
by a square function. Due to a high-pass filter the offset slowly decreases. Yellow curve:
The error signal which is grounded for a while as the probe pulses are fired. Orange
curve: the gating signal for the probe pulse AOM. Red curve: Raw QND detector signal.
Initially, no light impinges on the detector until a dichromatic probe pulse is fired. After
the probe pulse the locking-pulses are turned on again and the error signal is no longer
grounded. Thus the PID tries to null the error signal, which effectively means applying
a voltage to counteract the offset voltage added for the wiggling. After ≈ 1 ms the offset
changes sign and the sequence is repeated starting with the probe pulse. If the powers
in the probe colours is not balanced the QND detector signal will be different for this
pulse compared with the first.

8.6.4 Lock-point offset

As one final element we allow for the MZI locking point to be offset. That
is we set the PID to level the error signal not to zero but to some externally
input offset voltage. In fig. 8.24 we set the offset voltage Vos at (13) and added
to the error signal (14) so that the PID effectively adjusts the piezo so as to
level the error signal (11) to −Vos. The offset voltages are determined by the
values stored in a shift register inside the wiggler unit. The elements of this shift
register are programmed over a USB bus and are incremented by an external
offset increment trigger. By this method we can quickly step the MZI path-length
– and thus the MZI fringe phase – by forcing the locking point to different values.
The speed at which the offset can be adjusted is set by the piezo. At the moment
the offset stepping may seem rather futile but in sec. 12.4.3 it turns out to be a
central last improvement towards the successful spin-squeezing experiment.

We have now done our utmost to make the locking of the MZI as comprehensive
and versatile as possible. This elaborate amalgamation of elements did not come
about by sheer foresight, but has been developed on a need to solve-a-problem
basis. Therefore, when we now turn to characterise the MZI performance and

16it is sufficient to adjust only on probe power as the main objective is to stabilise the probe
powers relative to one another.
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later use it for QND measurements on the atomic sample, we will present results
from various stages of the optimisation process.

8.7 Quantum and classical noise characteristics

The noise of the MZI determines the noise floor for our QND measurement; the
lower the noise of the ”MZI measurement device” the higher the SNR of the
QND measurement. The ultimate goal for the SNR is that it be limited only by
the unavoidable quantum shot noise of the probe light (see chapt. 6). The aim of
this section is thus to investigate how successful we have been at suppressing all
classical noise sources that were described in sec. 6.1. We separate this treatment
in to sections on the 1 and 2-input MZI configurations.

Before, describing the measurements we consider how we arrive at an experi-
mentally determined shot noise level and how we can compare this to the an-
ticipated level. For both we need to know the calibration of the MZI fringe and
power reference detector so that from the measured signals we can compute the
MZI phase variances. The experimental shot-noise is given by the relations in
sec. 8.5

〈(∆φ̃)2〉(exp)
SN =

〈(∆p−)2〉
A2

p
(8.6)

where the superscript signifies that it is based on the experimental determination
of the signal fluctuations. On the other hand we get from eqs. (2.27 and 2.28) that
in theory the output signal fluctuations due to shot noise should be 〈(∆p−)2〉 =
GQNDεQND(1 + τ−2)Nph,a. Combining this with the expression for the fringe

amplitude Ap = GQNDεQND N(a)
ph /τ we can arrive at a ”theoretical” prediction

for the shot noise

〈(∆φ̃)2〉(theo)
SN =

1 + τ2

4T 4Nph,a
(8.7)

Where Nph,a in this case is deduced from the calibration of the power reference
detector. In the below sections we will use these two estimates to verify that the
measured shot noise is at the right level. Instead of using 〈(∆φ̃)2〉SN directly we
multiply the phase-noise by the photon number so as that the shot-noise can be
plotted against the Nph,a in the same units.

8.7.1 1-input configuration

In the 1-input MZI (see fig. 8.15) the output signal is maximally sensitive to
acoustic/vibrational noise of the MZI setup and we rely heavily on the MZI lock
to compensate this classical noise. For the counter-propagating locking scheme it
is possible to have the lock engaged constantly during the QND measurements.
However, as hinted earlier, the performance of this lock was sub-optimal due to
the locking detector and feedback electronics as well as to the propagation of
the probe and locking beams in slightly different spatial modes (see sec. 8.6.1).
Since, this locking scheme was only used for some of the characterisation mea-
surements and not for any of the presented QND measurements we will not
detail the noise characteristics of the MZI with this locking configuration. An
elaborate account of the noise properties is found [Oblak04], where the conclu-
sion is that the MZI can be kept shot-noise limited up to ∼ 108 photons for
pulses separated by < 10 µs and up to ∼ 107 photons for pulses separated by
100 µs. This is not quite as good as we want and thus the locking was changed
to the co-propagating modulated laser scheme.
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The main disadvantage of the co-propagating locking laser scheme is that the
lock must be disengaged during the probing leaving the MZI to drift freely.
This limits the allowable duration of the QND measurements sequence. Before,
characterising the 1-input setup with the co-propagating locking laser, we dis-
cuss a method for compensating the MZI drift during the lock-off period. After
the discussion we can then analyse the 1-input MZI both with and without this
compensation.

Reference pulses One way to ensure a stable phase-reference for the probe
measurements using the 1-input MZI is to track the MZI phase. This can best
be done by observing the MZI fringe phase of an auxiliary laser beam traversing
the MZI alongside the probe beam. A requirements for this auxiliary reference
is that is not on simultaneously with the probe-pulses and that its fringe is not
shifted by the atomic sample. Since, tracking the MZI baseline is essentially what

Figure 8.26: Setup for generat-
ing reference pulses from lock-
ing laser beam. This is an ex-
tension to the setup in fig. 8.21.
The 80 MHz VCO (1) signal is
divided in two arms, one for ref-
erence pulses and one for lock-
ing pulses/modulation. In each
arm the amplitude is controlled
by mixing (2,3) with a DC set
voltage and switched on-and-off
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PBS

AOMmixer
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lock pulse
modulation

lock pulse
power set

ref. pulse
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(4,5) for pulse generation. The combined signal is amplified (6) to 2 W and input to the
locking beam AOM (7). We note that the MZI-lock off signal (see fig. 8.21 and fig. 8.24),
which is set to zero in the vicinity of the probe pulses, ensures that the signal at (5) in
the above figure ensues from the reference pulse arm (4). Since, the reference pulses are
put as close as possible to the probe pulses, this also ensures that locking modulation
does happen during the reference pulses.

the locking pulses do, we derive the reference pulses from the locking laser as
shown on fig. 8.26. The sceptic might ask why we do not use the locking pulses
themselves and this question actually has two answers. Firstly, the modulation of
the locking-pulse is un-synchronised with the probe-pulse generation. Thus we
can not control the arrival of a locking pulse w.r.t to the probe pulses. Secondly,
the intensity of the locking modulation is kept very low so as not to saturate the
QND detector. Thus the individual locking pulses are far to weak to serve as
MZI phase-reference for the probe pulses and moreover their relative shot-noise
content is much higher. Hence, we need to control the power of the reference
pulses independently from the locking pulses. More precisely, we require the
reference pulses to be as intense as possible in order to suppress their shot-noise
fluctuations. In other words we want the reference pulse noise to be dominated
by classical fluctuations because only these fluctuations can be correlated with
probe pulse fluctuations. The reference signal amplitude is only limited by the
saturation of the QND detector.

To test the 1-input MZI performance we acquire pulse trains without any atoms
in the probe arm. Sample traces of the raw data from the QND and power
reference detectors are shown on fig. 8.27. Each QND probe pulse pj

qnd,i (tinted

green) is followed by an intense reference pulse (tinted red), which we label pj
ref,i.

Here j indexes the pulse train and i the pulse’s position in that train. Initially, we
disregard the reference pulses and just extract the noise of the uncompensated
probe pulses. We compute the variance between pulses within the same train or
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Figure 8.27: Raw detector traces of
probe pulses (tinted green) with ref-
erence pulses (tinted red). The QND
detector signal plot a) shows a single
sample trace, with the entire 200 train
measurement set at the given probe
power shown as stacked grey traces.
The power reference signal plot a)
shows the average over the 200 trains
for the given probe power, which in
this case is at the maximal measured
value. The slightly increased noise
of the QND detector signal right at
the start of the trace is caused by
the locking laser modulation, which is
switched off 5 µs before the first probe
pulse.

between pulses in subsequent trains, that is

〈(∆pii′,∆j)
2〉 =

1
2
〈
(pj

i − pj+∆j
i′ )2〉 (8.8)

where the expectation value is to be understood as the mean over all pulse trains
acquired, i.e., the index j. The factor of 1/2 is due to the subtraction of two
pulses from one another. Since the indices correspond to pulses separated by
a certain time, the variances will reflect the noise on the time-scale of the pulse
separation c.f. sec. 8.2.2. For the measurement data shown in fig. 8.27 probe
pulses are 4 µs long and within a train they are separated by 16 µs, whilst the
trains containing 5 pulses are separated by 100 µs. To learn about the sources
of light noise we vary the power of the probes using the wave-plates before the
optical fibre-links (see fig. 8.10). At each set power we acquire about 200 trains
so as to compute the variance plotted in fig. 8.28a. The objective is to deter-
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Figure 8.28: Shot noise in 1-input MZI without a) and with b) reference pulses. In both
cases we plot 〈(∆p1i′ ,∆j=0)

2〉 as full lines with i′ = 2 in green, i′ = 5 in red, and i′ = 3, 4

in intermediate hues. We plot 〈(∆pii,∆j=1)
2〉 as dashed lines with i′ = 1 in green, i′ = 5

in red, and i′ = 2, 3, 4 in intermediate hues. The corresponding time scales are given by
the figure legend. For this data the MZI fringe amplitude was not measured and the
noise in phase units cannot be computed. Thus the absolute value of the noise cannot
be verified.

mine to what extent the variances scale linearly with the probe photon number
as this is the signature of the quantum shot-noise. Classical noise on the other
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hand will induce a quadratic scaling of the noise (see sec. 6.1). In fig. 8.28a
the variance of the pulse differences increases rapidly with the temporal sepa-
ration of the pulses, and only the variance of the neighbouring pulse difference
〈(∆p12,∆j=0)

2〉 shows a proportionally large linear scaling. This is backed up by
the fit shown in fig. 8.29, which we will elaborate on farther below. That the
variance 〈(∆p1i′,∆j=0)

2〉 increases with i′ is also clearly visible from the stacked
grey raw-data traces in fig. 8.27. This indicates that the added classical noise
mainly stems from acoustic fluctuations, which cause the MZI phase to drift as
the MZI lock is switched off during the probe pulse train. The same explanation
predicts the increase of 〈(∆pii,∆j=1)

2〉 with i in fig. 8.28a i.e. the farther the delay
of the pulse w.r.t. time the lock is disengaged to more it’s value will fluctuate.
We also find that 〈(∆pii,∆j)

2〉 for a given i is roughly constant for all ∆j > 0, e.g.
〈(∆p11,∆j=1)

2〉 ≈ 〈(∆p11,∆j=150)
2〉. This further establishes that the main cause of

classical (acoustic) noise perturbing the MZI is due to the switching off of the
MZI lock during the probing.

We can correct the drift of the probe pulses by use of the reference pulses. As
introduced above, the idea is that the reference pulse signal is affected in the
same way by acoustic fluctuations as the probe pulse signal, and by subtracting a
weighed proportion of the reference pulse signal these fluctuations can be traced
out of the probe pulse signal. As noted, not all fluctuations of the probe and
reference pulses need be correlated. Examples of such are shot noise, classical
probe laser noise, or acoustic noise with characteristic time scales less than the
probe and reference pulse separation. Hence, we compute the compensated
pulse value

pj
qnd,i − ζref p

j
ref,i → pj

qnd,i , (8.9)

where the correlation factor ζref is given by

ζref =
〈(∆pj

qnd,i pj
ref,i)〉

〈(∆pj
qnd,i − pj

ref,i)
2〉

, (8.10)

The size of the correlation ζref varies considerably depending chiefly on the
probe to reference pulse power ratio but also to some extent on the MZI noise-of-
the-day. For a measurement dominated by classical fluctuations of the interfer-
ometer ζref will be large whereas a shot-noise limited interferometer would give
ζref ≈ 0. For this measurement, the reference pulse power is twice as large as the
highest probe power value (this is the situation shown in fig. 8.27).

We find the variances of the pulse differences as directed by eq. (8.8) and plot
these on fig. 8.28b. The variances for any pulse pair difference are all equal and
the scaling is very close to being linear. How close is given by the coefficients
of the polynomial in fig. 8.29. To reduce the data scatter we fit to the average
〈(∆p1i′,∆j=0)

2〉 over i′ = 2, 3, 4, 5. The variance is dominated by the linear scaling
and the residual quadratic scaling is partly due to insufficient suppression of
the reference pulse shot-noise as the probe to reference power ratio becomes
. 1. At the highest measured probe photon number 15 · 107 the classical noise
amounts to about 20% of the total quantum shot-noise level. The grey points
show the uncompensated neighbouring pulse difference variance 〈(∆p12,∆j=0)

2〉,
which clearly is as shot-noise limited as the reference pulse corrected probe pulse
variance.

Though the reference pulse compensation of the acoustic noise seems to deliver
the sought after stability, the discussion of the QND measurements in sec. 12.4.2
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Figure 8.29: Shot noise scaling with
photon number in 1-input MZI with
reference pulses. A second or-
der polynomial (yellow line) is fit-
ted to the noise of the mean dif-
ference of pulses within a train,
i.e., to 1

4 ∑5
i′=2〈(∆p1i′ ,∆j=0)

2〉 (red cir-
cles). The linear part of the fit
(yellow dashed line) corresponds
to the shot noise. Grey circles
mark the variances of the uncompen-
sated neighbouring pulse difference
〈(∆p12,∆j=0)

2〉 ,i.e., the green line in
fig. 8.28a.

unveils that the presence of the reference pulses becomes an obstacle for the free-
dom to chose probe powers and detunings in order to minimise other classical
noise sources. Hence, we turn to a MZI configuration where the reference pulses
are unnecessary.

8.7.2 2-input configuration

In the 2-input MZI the combined probe signal should to 1st order be unaffected
by acoustic/vibrational perturbations of the MZI and we anticipate no longer
to need the reference pulse compensation. To characterise the noise we again
acquire pulse trains without any atoms in the probe arm. However, the pulse
trains used differ somewhat from those described in the preceding section. The
individual pulses in the train are 4-10 µs long and separated by some 10-20 µs,
while the trains are now spaced by 2-4 s. In sec. 12.2.2 we shall illustrate how
such trains are an integral part of the QND measurement sequence, but for
now the above information will suffice. The fact that we deduce the shot-noise
performance from the same data as used for the QND measurement analysis is
exactly why we choose to present it in this way.

To evaluate how much of the detected noise is shot-noise and how much stems
from other sources we must vary the photon number and observe the scaling of
the noise. Experimentally, we change the number of photons by merging more
and more neighbouring pulses in the trains. As a consequence we see different
spectral components of the noise for the different total photon numbers (see
sec. 8.2.2). For the white shot-noise the pulse merging poses no problems, but it
might make it more tricky to deduce the source of some classical noise. Now we
compute the variance between pulses within the same train or between pulses in
subsequent trains. That is, if i is the index of the pulse position within the train
and j is the index of the train then we calculate

〈(∆pii′(Ki))2〉 =
1

Kh

1
Ki

〈
Kh/2

∑
h=0

(
Ki

∑
i=1

(pj
h+i − pj

h+Ki+i)

)2〉
(8.11a)

〈(∆pjj′(Ki))2〉 =
1

2Kh

1
Ki

〈
Kh

∑
h=0

(
Ki

∑
i=1

(pj
h+i − pj+1

h+i)

)2〉
(8.11b)

where the expectation values 〈·〉 are to be understood as the mean over all pulse
trains acquired, i.e., the index j. The sum over all displacements h within the
train ensures maximal utility from the acquired data. Kh gives the number of
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pulses within a train. The grouping Ki becomes the parameter which determines
the photon number. For the variance 〈(∆pii′(Ki))2〉 between pulses within a train
Ki < Kh/2, while for the variance 〈(∆pjj′(Ki))2〉 between trains Ki < Kh.

The above procedure is in principle also possible for the 1-input MZI data with
reference pulses, however in practice the problem is that the reference pulse
power is set at the highest possible value, where the QND detector tends to
saturate after the first couple of pulses. Hence, combining pulses in the train,
comes at the expense of a large amount of data being discarded due to detector
saturating. For that reason we refrain from the method of combining pulses in
the 1-input MZI and instead make independent measurement runs for different
probe laser intensities (see sec. 8.7.1).

Returning to the 2-input configuration we expect a significant reduction of the
classical light noise, especially on the time-scale between pulse trains. The data
points in fig. 8.30 confirm this prediction. Within the pulse train the scaling of
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Figure 8.30: Shot noise scaling with
photon number in 2-input MZI. Red
and orange circles is the variance of
the difference between pulses within
a train (eq. (8.11a)) and in sub-
sequent trains (eq. (8.11b)) respec-
tively. The translation into phase-
units is done by eq. (8.6). The dashed
grey line is the shot-noise level pre-
dicted by the photon number de-
tected by the power reference detec-
tor c.f. eq. (8.7). The probe to ref-
erence arm power ratio is ∼1:12 and
Nph,a = 0.37 · 107 for a single probe
pulse

the light-noise (red circles) is now perfectly linear and coincides beautifully with
the theoretical prediction (grey dashed line). In between the pulse trains the light
noise (orange circles) stays very close to the SNL up till 4 · 107 photons. Within
the range of Nph,a shown on the graph, the shot-noise is the dominating noise,
hence we say that the MZI is shot noise limited.

We also verify the light noise in the 2-input equivalent version of the MZI where
we misbalance the arms to have about 1.6 cm path-length difference. This is
shown on fig. 8.31. Again more or less the same conclusions can be drawn as for
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Figure 8.31: Shot noise scaling with
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the difference between pulses within
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8.7 Quantum and classical noise characteristics 137

the ”true” 2-input MZI. The two curves actually look conspicuously similar. We
take this as an indication that the two configurations, at least on time-scales up
to a couple of seconds, behave the same.

The fact that we record the shot noise only on two specific time-scales is not
really a deficiency, since the two time-scales are exactly the ones relevant for the
QND measurement. We have established now that at least with the proper sta-
bilisation the MZI in both the 1-input and 2-input configurations is as sensitive
as to be limited by the shot-noise of the probe light. This of course is only true
up to a certain probe power, but it turns out that the powers needed for the QND
measurement are well within the range where the MZI is shot-noise limited.





Chapter 9

Sample preparation and
characterisation

9.1 Atom trapping setup and control
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Figure 9.1: Vacuum setup.

vacuum setup The vacuum setup is sketched in fig. 9.1. At the heart of it all
is a quartz-cell from Hellma with dimensions 5× 5× 15 cm and glass thickness
of 0.5 mm. The cell is AR-coated on the external faces but un-coated on the
inside. The cell is attached to a cross-piece via a glass-metal transition. The Cs-
dispencers from SAES Getters1 are attached to one of the branches and protrude
into the centre of the cross. The vacuum is maintained by a Varian StarCell ion-
pump. Since we have no vacuum-gauge attached permanently to the setup the
ion-pump current is the main measure of the pressure. However, due to age and
exposure to Cs the pump current is dominated by leakage through Cs deposits
in the pump, that do, however, not affect the pumping efficiency [gam06]. Thus,
the FORT lifetime is the only indicator of the vacuum quality. The setup can

1CS/NF/16/50 FT10+10
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be attached to a Varian turbo-pump via a vacuum-valve. The turbo-pump has a
vacuum gauge mounted to it and while connected to the setup it reads a pressure
of 1-4 ·10−9 Torr.

computer interface As discussed in sec. 7.1 the experimental sequence is au-
tomated through a PC. Whereas sec. 7.1 focused on the setup of the hardware,
we will here introduce the software which controls the sample trapping and a
number of other functions discussed in later sections. Fig. 9.2 shows a screen-
shot of the main programme for operating the sample preparation. The front

Figure 9.2: Screen-shot of a reasonably recent and representative version of the LabView
programme CAMOT, which controls the National Instruments PCI cards and numerous
other PC output busses.

panel consists of columns of values which are set in stages on the relevant DAC
output channels as sketched on fig. 7.2. On the very top is a row of green mark-
ers, which sets a boolean on/off for that stage. If the program encounters an
off-stage, it will return to the first column and make another cycle. The first row
with numerical values determines the duration of the stage and the row under-
neath sets a transition time during which the values of two subsequent stages
are linearly interpolated. The remaining rows set all the parameters for the MOT
loading. As not all of these have been introduced we will not explain them all
here. Furthermore, the labels should make the identification quite intuitive.

9.1.1 Magneto-optical trap

The first stage in preparing the atomic ensemble is the MOT. The main in-
gredients for the MOT are a six laser beams, two magnetic coils in an anti-
Helmholz configuration and a set of compensating coils in a Helmholz configu-
ration. The laser beams contain two frequencies, one for cooling and the other
for re-pumping, and both are generated in a similar fashion. A diagram of the
MOT laser setup and the frequencies at different stages is shown on fig. 9.3.
The master lasers are frequency locked by means of absorption saturation spec-
troscopy. The master lasers double-pass in AOMs allowing for tuning of the
frequency input to the injection locked slave lasers. The slave laser beams pass
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Figure 9.3: MOT laser setup. Details given in the body text.

another pair of AOMs, which are used for switching the beams on or off. This
switch is not perfect and in order to block the beams completely we installed
home-made shutters, which close in a few ms [Windpassinger08a]. The cooler
and re-pump slave beams are mixed on a BS and subsequently distributed over
7 optical fibre inputs, 6 of which go to the vacuum and MZI setup, which is
outlined on fig. 9.4. Not shown on the outline are the three pairs of Helmholz
compensating coils which surround the whole trapping and MZI setup.
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Figure 9.4: Trapping setup of combined MOT and FORT. Mot Collimators (MC), Imaging
Lenses (IL), Achromat Lenses (AL), Dichroic Mirrors (DM), Acousto-Optical Modulator
(AOM), FORT laser Reference Detector (DRD).
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9.1.2 Far Off Resonant Trap

Back of envelope trapping principles

After cooling and spatially concentrating the atoms in the MOT we transfer them
into a conservative trap formed by an off resonant focused laser beam [Chu86].
If the laser frequency is red detuned w.r.t. the dominant transitions from the
ground levels, the AC-Stark shift (a.k.a. light shift) of the levels will cause atoms
to experience a potential through in the electric field of the laser beam. For a
focused Gaussian beam the potential has the form [Grimm00, Petrov06]

V(r, z) = V0
w2

t
w(z)2 e2r2/w(z)2

(9.1)

where wt is the trapping beam waist, and the spot-size w(z) = w2
t

√
1 + z2/z2

r
is a function of the Raleigh-range zr = πw2

t /λt which in turn depends on the
wavelength λt. The potential minimum for a linearly polarised and Far Off-
Resonant Trapping (FORT) beam is given by [Grimm00]

V0 =
P

8π3cw2
t

(
γD1 λ3

D1
∆D1

+ 2
γD2 λ3

D2
∆D2

)
≈ PγD λ3

D
8π3cw2

t

(
1

∆D1
+

2
∆D2

)
(9.2)

where γD1 is the decay rate of the P3/2 excited state, λD1 is the D1-line transition
wavelength coupling it to the S1/2 ground level, and ∆D1 is the detuning to the
trapping laser i.e. ∆D1 = 2πc(1/λt − 1/λD1) (see table D.2 for values). Similarly
for the D2-line. For the last equality we have used that (γD1 λ3

D1)/(γD2 λ3
D2) =

1.02 ≈ 1 to take the product as a common factor. For a red detuned laser the
potential is thus negative i.e. confining the atoms. Eq. (9.1) can also be derived
from the above studied QND interaction by appropriate approximations for the
far detuned limit of eq. (4.21). The QND property of that interaction was linked
to the light-shift scaling as ∆−1 and the excitation rate scaling as ∆−2. This same
property, is precisely what makes it feasible to trap atoms using the light shift of
a laser beam, in that excitations can be made negligible by detuning far enough.
Inserting the values from table D.2 in to eq. (9.2) the potential depth for the
Gaussian λt = 1032 nm laser utilised in our setup was calculated to be

V0 =
PkB

w2
t

0.173
K µm2

W
(9.3)

where kB is Boltzmann’s constant and it is understood that the trapping beam
waist be entered in µm and the beam power in Watts. Standard parameters for
the FORT power P = 3.5W and the trap waist wt = 40 µm give a potential depth
of 380 µK.

Though the trapping beam detuning is 6700 times larger than the ground level
hyperfine splitting ω0 there will be a small difference in the light-shift and thus
the potential depth for the two ground levels. This differential light shift can be
expressed as

∆V0 = V0,Fg=3 −V0,Fg=4 =
3PγD λ3

D

8π3cw2
t

(
1

∆D,eff
− 1

∆D,eff + ω0

)

= V0
ω0

∆D,eff + ω0
, (9.4)

where the effective D-line detuning is defined as

1
∆D,eff

=
1
3

(
1

∆D1
+

2
∆D2

)
(9.5)
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Again, inserting the atomic constants and the trapping laser wavelength 1032 nm
we get

∆V0 =
Pkb

w2
t

28.9
µK
W

(9.6)

=
Ph̄
w2

t
2π 601

Hz
W

(9.7)

Typical values for the FORT power P = 3.5W and the trap waist wt = 40 µm give
a differential light-shift of ∆V0 = kb 0.063 µK/W = h̄ 2π 1300 Hz/W. In terms
of trapping, the potential difference for the two levels is negligible, however the
effect that the ground level energies are shifted w.r.t. each other is clearly visible
when performing microwave spectroscopy on transitions between the ground
levels. We describe the hypothesised influence in sec. 10.2.1 and in sec. 10.2.3
show empirical evidence thereof.

For small radial and axial excursion the potential eq. (9.1) is approximately har-
monic with characteristic trap frequencies

ω⊥ =

√
4V0

mCsw2
t

, ω‖ =

√
2V0

mCsz2
r

=
λt√
2πwt

ω⊥ (9.8)

for the transverse and axial directions respectively. In secs. 9.2.2 and 11.2.1 we
experimentally determine the radial trap frequency.

Experimental setup

The setup for the FORT trapping is sketched on fig. 9.4. The FORT beam gener-
ated by a ELS VersaDisk laser has a wavelength of 1032 nm and a specified power
of 40 W though we never managed to output more than about 10 W. The cavity
mirrors and filters are cleaned regularly with solvents to remove dirt-coatings.
The laser can be made to lase in a single frequency mode by tuning the internal
etalon. However, mode jumps tend to occur at intervals of some minutes at best
and in the worst case constantly. To improve on the mode stability an active
feed-back to the piezo mounted etalon has been implemented. This works on
a quite simple principle. We monitor the frequency mode of the FORT laser by
injecting the leak-light through the first mirror in to a simple Fabry-Perot cavity,
that we lock on resonance. If the FORT laser jumps to a different single fre-
quency mode the cavity will just re-lock to a new displacement. If however, the
FORT laser begins to lase on multiple frequencies the cavity peak will decrease.
Via the data acquisition programme this triggers the etalon angle to be offset by
a small amount whereupon the peak height in the Fabry-Perot is rechecked. This
continues until the cavity can be locked to a resonance with a height above the
set threshold value. In every experimental cycle we actually proactively check
if it is worth displacing the etalon, by offsetting it slightly to both sides. If the
Fabry-Perot signal decreases for one of the etalon offsets the etalon is adjusted
to the opposite direction.

We measured the relative intensity noise (RIN) of the laser by impinging the
beam on a detector and performing a Fourier transform. The RIN is at a base
level of -120 dB/Hz, which is significantly higher than the specified value of -
150 dB/Hz2. The noise peak at around 21 kHz is caused by relaxation oscillations
that unexpectedly showed up in measurements of the MZI noise (see box 8.1).

2According to ELS this ”over-specification” is due to a erroneous method used in their mea-
surement.
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At first the laser was situated on the same table as the MZI setup, however we
found that the cooling water flow for the laser caused excessive acoustic noise in
the MZI signal. Consequently, the laser was moved to a separate table, with the
risk of compromising the pointing stability of the beam w.r.t. the MZI. Attempts,
were made to transport the FORT laser beam from the laser table to the MZI table
through optical fibres. Because of poor coupling efficiencies or transverse mode
contamination these attempts were unsuccessful. Fortunately, we never saw any
adverse affects of having the laser on a separate table.

From the laser, the beam is reflected on a mirror. The residual transmission
through the initial mirror is input into the above described Fabry-Perot cavity.
The reflected beam goes through a λ/2-plate and into a PBS, whereby it is possi-
ble to attenuate the beam for alignment purposes. A telescope adjusts the spot-
size before the beam passes through an AOM from IntraAction, which serves as
an optical switch. A second telescope has been installed so as to fine tune the
beam collimation and adjust the spot size (see fig. 9.5). The beam is elevated up
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Figure 9.5: Alignment of FORT beam waist. Using the 50 mm lens mounted on the xyz-
translation stage we step the FORT beam waist and sweep it in the transverse direction
to gauge the maximal achievable phase-shift. The maximum phase-shift not occurring
at a fixed x-displacement is a result of a slight misalignment of the translation stage.
Due to the numerous lenses that follow it is not straightforward quantitatively to relate
the lens y-displacement with a corresponding z-displacement of the FORT waist. We
observe that the signal is not particularly sensitive to the lens’ y-position.

to the MZI base-plate by a periscope consisting of two mirrors, which are also
used for overlapping the FORT with the probe beam. The overlap with the MZI
beams is done on a custom coated dichroic mirror from VLOC, which for 45◦

AOI reflects 99.99% at 1030 nm while it transmits 98% at 852 nm. The beam
is focused to a waist of around 40-60 µm by a 100 mm Thorlabs achromatic-
lens. At the output an identical achromat re-collimates the beam and a second
dichroic mirror reflects the FORT beam out of the MZI. The beam is finally put
to a beam-dump or incident on a thermal power detector. In the former case a
small part of the beam is directed to a reference detector for gauging the power.
The total losses in the beam-path from the AOM to the dump amounts to about
30%.

Power Stabilisation We actively stabilise the FORT laser power by detecting
the leak light through one of the periscope mirrors and in a feedback loop adjust
the RF power of the FORT beam AOM. The stabilisation levels out the typical
10% power drifts of the laser over the course of a day, but also smoothes the
intensity noise. Improving the feedback loop to achieve a maximal noise sup-
pression of 25 dB with ∼ 40 kHz bandwidth we actually see an extension to the
trap lifetime (see sec. 9.2.1).
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FORT imaging As a supplement to the MZI detection of the sample we have
installed a CCD imaging system which consists of a 1:1 image displacement lens-
pair a microscope objective and a Hitachi CCD camera (see fig. 9.4). The FORT
is viewed from the end face of the vacuum cell and an example of a fluorescence
image of the sample is shown on fig. 9.6. For more details on the imaging setup

Figure 9.6: CCD camera fluorescence image of FORT with fake-colours representing
intensity. The image width and height correspond to 991 µm and 374 µm respectively
(648× 243 pixels). To expose the cloud the MOT cooling detuned by ≈ −16 MHz and
the MOT re-pump are switched on for 1 ms and simultaneously the camera is triggered
to charge the CCD. The FORT laser scatters almost no light into the camera and is kept
on during the exposure. Due to heating by the MOT lasers the sample size in the image
is somewhat larger than the actual undisturbed sample size.

refer to [Petrov06]. The possibility of imaging the MOT and the FORT has proven
particularly valuable for rough alignment of the probe and FORT laser beams.
The first observations and optimisations of our FORT were indeed done using
the camera.

FORT transverse mode The mode of the FORT beam has been a source of
some unpleasant surprises. When the setup was first aligned we ensured that
the beam was collimated when hitting the achromat before the vacuum cell.
Probably, due to subsequent alignment of the laser cavity the beam was found
at a later time not to be collimated any longer and in order to amend this we
inserted extra lenses in the beam-path. Unfortunately, we did not notice the
fault for some time since we were able to measure decent atomic phase-shifts
with the MZI. Hence, we believe it is the cause of some deviating experimental
trap characteristics in sec. 9.2.2 and sec. 9.2.3. Furthermore, more recently we
discovered that the beam mode depended heavily on the power in the beam. At
the maximum powers it even developed a toroidal shape. This we found was
due thermal lensing in the AOM, and by re-collimating the beam in the AOM
the effect disappeared. Since, this was also linked to the beam collimation going
bad it is not clear how long this effect had been present. Since, most data seems
consistent with predictions we assume that the transverse mode of the FORT
had mostly been in ”good shape”.

influence on MZI The trapping beam propagates in the opposite direction of
the MZI probe beam in order to minimise the amount of trapping light on the
QND detectors. Nevertheless, some trapping light makes it into the QND detec-
tor mainly from reflections on the (un-coated) vacuum cell walls (see box 8.1).
To block the reflected trapping light we insert additional dichroic mirrors in the
probe beam and in front of the MZI lock-beam detectors when using the CW
locking configuration (see fig. 9.4). Moreover, one can often move the reflections
away from the QND detector by slightly adjusting the FORT laser path.
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A more indirect influence the FORT laser comes from the heat deposited in
the optical elements. When the FORT laser intensity is changed the resulting
temperature change affects the optical path length of the MZI probe arm. This is
visible as shift in the MZI phase over a time-scale of 50 ms. Hence, if the FORT
laser is switched off only shortly this thermal effect can be neglected.

9.2 Non-destructive trap characterisation

We are now set to make use of the MZI to detect the trapped atoms and thus
characterise the trap properties. The characterisation is still only of classical
properties, i.e., not relying on a specific quantum state of the atoms and the
QND character of the probing. Nevertheless, we have an advantage from the
probing being near the 4 → 5′ and/or 3 → 2′ transitions, so that there is lit-
tle reshuffling between the hyperfine ground levels. In this sense the probing
is classically non-destructive. The non-destructive measurements of the trap
properties have previously been treated thoroughly in the thesis work by Pla-
men G. Petrov [Petrov06] and in a publication [Petrov07]. As a consequence, we
will only present a short overview of the trap properties here, however, using
the opportunity to introduce a method of numerical simulation of the atomic
motion, that will be used in subsequent sections.

When characterising the trap we found it preferable to probe on the 4 → 5′

transition rather than on 3 → 2′ transition. The reason is that the spontaneous
decay from 3 → 2′ tends to pump the atoms into the |F = 3, mF = ±3〉 dark
state. Consequently, the phase-shift when probing the 3 → 2′ transition rapidly
decreases to zero. No similar dark state exists for the 4 → 5′ transition, which is
why it is favoured. We note that for the QND measurements because the atoms
are prepared in |F = 3, mF = 0〉 and the excitation rate is sufficiently slow the
dark state is not significantly populated.

9.2.1 Loading and lifetime

The FORT loading and decay are governed by the MOT parameters and the
background pressure. Various loading procedures yield different loading times
as described in great detail in [Petrov07, Petrov06]. We typically need a couple of
seconds of MOT trapping to load the maximal number of atoms into the FORT.
For all parameters optimised and a very large MOT we achieve a signal of more
than half the fringe height, which equates to a phase-shift of π/6 rad. More
commonly the phase-shift is in the range 0− π/10 rad i.e. the detector signal
corresponds to 1/3 of the fringe amplitude. The phase-shift is found to depend
more or less linearly on the trapping power.

Since the background pressure is not very low the lifetime of the trap is limited.
The decay of the FORT is easily monitored by weakly probing the sample at in-
tervals (fig. 9.7). An exponential fit to an optimally probed sample (grey dashed
line and green dots) yields a e−1 decay constant of around 320 ms. When the
probe is slightly misaligned with the sample one sees slow fluctuations of the
signal, which are due to the longitudinal motion of the sample. We elaborate
on these in sec. 9.2.2, but note that they suggest that the sample is slightly off
centre w.r.t the trapping-laser waist. With an optimal stabilisation of the FORT
laser power we have seen the lifetime increase up to 450 ms.
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Figure 9.7: Dipole trap lifetime continuously measured with train of 1000 pulses, 2 µs
long and separated by 1000 µs. The probe detuning is ∆45 = −100 MHz and the power is
0.07 µW so that each pulse contains 0.6 · 106 photons. The FORT laser power is ≈ 3.5 W.
The MOT re-pumper is kept on so as to ensure that all atoms reside in |(〉F = 4) and
are detected. The green dots show the phase-shift signal when the probe is aligned
with the sample while the red dots show what happens when the probe is misaligned.
The exponential decay fits yield decay constants of 321 ms and 318 ms for the two
traces respectively. At t = 480 ms the MOT cooler is lit on resonance, thus causing the
immediate removal of the trap and establishing the empty trap reference phase-shift.
The insert shows the non-optimal trace with the exponential decay subtracted so as to
highlight the signal oscillation. A damped cosine fit returns an oscillation period of
152 ms.

Optical depth

The principle of the optical depth measurements is very simple: shine a laser
pulse through the atomic ensemble and compare the output intensity I(∆) with
that of a reference pulse generated while there are no atoms in the trap. A few
things need to be noted, though. Firstly, the probe intensity must be well below
the saturation intensity. Secondly, the absorption can be very difficult to deter-
mine precisely for samples of large optical depth, hence it is advantageous to
measure the absorption near but not on resonance and then extrapolate to de-
rive the resonant optical depth. Thirdly, any extrapolation will rely on correctly
estimating the FORT laser light shift of the probe transition. This will intro-
duce some uncertainty. To measure the absorption we block the MZI reference
arm as well as one detector input. Using the sensitive QND detector has the
advantage of making it possible to use very low probe intensity that does not
exceed the saturation intensity. In fig. 9.8 we present the measurements of the
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optical depth as α̃ = − log(I(∆)/I0) c.f. eq. (4.12), where I0 is the transmitted
intensity without the atomic sample. The theoretical dependence of α̃ follows
from eq. (4.14), which allows us to deduce the resonant optical depth α̃45′,0 cor-
responding to each of the measurements. As mentioned above the FORT laser
light shift influences the detuning and thus the estimate of α̃45′,0. If we assume
a 20-MHz shift as evaluated in sec. 9.3.1, we can with some uncertainty arrive at
α̃45′,0 = 15− 30. We have deliberately added the 45′ subscript to specify that it
is the optical depth for the 4 → 5′ resonance. This is distinct from the effective
far-detuned resonant optical depth α̃0. By the transition strengths we can relate
α̃0 = 2.4 · α̃45′,0 = 35− 70. From the phase-shift measurement we deduce φ̃ph,0 =,
which by virtue of eqs. (4.13 and 4.14) corresponds to α̃45′,0 = 30. Though this
is not exactly a textbook example of experimental agreement it confirms the
ballpark estimate of the resonant optical depth.

One explanation for the large variation in the α̃0 estimates is that at the time
that the measurements were taken the tuning of the probe-laser frequency was
still performed with an AOM. This method of tuning results in the overall probe
power changing as the coupling to the fibre-link goes on-and-off. Hence, tuning
this way is cumbersome when we wish to measure the sample in time for the
overall atom number to remain constant. To avoid power fluctuations the probe
frequency was instead changed by locking it to different peaks in the absorption-
saturation error signal. In hindsight, this gives an error on the probe frequency
as the exact locking point depends on the shape and offset of the locking signal.
Thus we believe an uncertainty in frequency axis of up to a natural line-width
5.2 MHZ is possible.

9.2.2 Trap frequency

The characteristic frequency of atomic oscillation determines the relevant time-
scale for atomic motion in the trap. The trap frequency is directly related to the
degree of confinement, c.f. eq. (9.8), and is thus substantially different from the
transverse and longitudinal dimensions of the trap. Here we will concentrate on
the radial oscillations, but at the end of the section we take up the observation
of axial oscillations in fig. 9.7. We developed two methods for determining the
radial trap frequency. In this section we will investigate one, while the other
will surface in the below treatment of the differential light shift imprinted on the
sample by the probe (see sec. 11.2.1). The trap frequency stated in eq. (9.8) relies
on the trap potential being approximately harmonic. However, a significant
portion of the atoms will experience the anharmonic regions of the Gaussian
trapping potential, causing damping of any collective motional effects. To model
the atomic motion in an anharmonic potential we employ computer simulations
of random ensembles of atoms as described in detail in appendix E. For each
of the Ntot atoms in the ensemble we pick random initial positions rk(t0) and
momenta pk(t0) with appropriately chosen distributions. We then propagate
these in time so that we for atoms determine rk(t) and pk(t). The equations of
motion may be solved with different potentials at various stages of the evolution
e.g. allowing us to model changes in trap power. When probing the phase-shift
of the atoms we must numerically calculate

φ̃ph = φ̃ph,0

Ntot

∑
k=1

U(rk(t)) (9.9)

where φ̃ph,0 = 3λ2

2π3 (2Je + 1)SFgFe
∆ge

γe
2

∆2
ge+( γe

2 )2 (σ̂
(1)
gg − σ̂

(1)
ee ) is the phase-shift imparted

on the probe by a single atom c.f. eq. (4.15). This way one can simply deduce the
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time dependent phase-shift from the ensemble. In later sections we will again
use the numerical simulation to track effects of atomic motion (see sec. 9.2.3 and
11.2.1).

The atomic ensemble is initially at rest in the FORT — all collective motion has
been damped — and the probe phase-shift will not show any signature of the
trap frequency. Thus, it is necessary to induce some form of collective motion
of the trap, such that the atomic density in the probe volume is modulated. In
fig. 9.9 we illustrate how this is most easily done by reducing or completely
switching off the FORT laser, whereby the ensemble will start to expand and
drop under the influence of gravity. After a short time the FORT laser power is'
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Figure 9.9: Trap oscillations induced by releasing the sample for trel = 500 µs and
subsequently recapturing it as illustrated by the pulse sequence at the top. The phase-
shift is probed by a train of 100 pulses each 2 µs long and separated by 100 µs. The
probe detuning is ∆45′ = −100 MHz and the power is 0.15 µW, so that there are 1.2 · 106

photons per pulse. The FORT laser power is 3.5 W. The green circles are the observed
phase-shift corrected for the FORT laser light shift on the probing transitiona (also see
sec. 9.3.1). As no measurement of the empty trap was performed the absolute phase-
shift is not completely determined. The points are averaged over 50 experimental runs.
The red curve in plot a) shows the result of the simulation scaled to adjust for coupling
parameters and data point off-set. On plot b) the red curve shows the fit of a damped
sine function.

aThe yellow circles are the actually observed phase-shift during the off-time of the FORT laser.
Due to the light shift that the FORT laser induces on the probing transition the phase-shift jumps
when the FORT laser is turned back on. This shift is compensated by linear extrapolation of the
subsequent two pulses.

turned up and the force acting on the expanding ensemble will induce breathing
oscillations, where the cross-sectional area of the ensemble grows and contracts.
If the atoms have dropped significantly due to gravity there will also be sloshing
oscillations where the ensemble moves up and down in the potential. For an
atomic temperature of say T = 15 (50) µK with a resulting characteristic velocity
of vrms =

√
kBT/mCs = 0.0306 (0.0559) µm/µs [Metcalf99] the cloud expands
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roughly 15 (28) µm during the toff = 500µs the trap is switched off. This is
to be compared with the 1

2 gt2
off = 1.2 µm that an atom initially at rest drops

during the same time. Consequently, the breathing motion will be vastly domi-
nant. The density modulation of the atomic sample is clearly recognised in the
phase-shift signal and is modelled reasonably well by the simulation (fig. 9.9).
The oscillation frequency in the experimental data appears to increase slightly
as the atoms are damped. The simulation does not quite manage to trace this
behaviour. This irregularity may be due to axial oscillations of the atoms or
the non-unity beam quality factor3. The simulation returns an optimal value
(see sec. E.2) for the harmonic oscillation frequency ωFORT, which according to
eq. (9.8) together with eq. (9.2) should scale with the square root of the FORT
trapping power. On fig. 9.10 (green points) we plot ω⊥ extracted for measure-'
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Figure 9.10: Trap oscillation frequency ω⊥ vs. trapping laser power I0. Green dots and
circles are optimal parameters from the simulation where the latter are optimised with
the re-scaled first five data points excluded. Clearly, compensating for the FORT light
shift does not introduce significant errors. Red dots are fitted values of an exponentially
damped cosine multiplied by two. Due to the form of the equations used for the simu-
lation the optimal parameter is expected to, and more or less does, differ from the fitted
values by a factor of

√
2.

ment at different I0. Though the trap frequency does drop with lower powers
the scaling is not exactly as

√
I0. As a comparison we fit the data with an ex-

ponentially damped sine function (fig. 9.9b) and plot twice the fitted frequency
as red dots on fig. 9.10. These points fit more convincingly with the square-root
of FORT power. For typical trapping powers we thus expect a trap frequency
around 200 Hz. By eq. (9.8) we get a theoretical prediction of ω⊥ = 2π 1220 Hz.
We will refrain from using any exclamations to describe the agreement with the
experiment and rather attempt to uncover some clues in the other simulation pa-
rameters. First, we will bring up the longitudinal oscillations visible on fig. 9.7.
We assume that the oscillations are due to sloshing rather than breathing be-
cause the trap is loaded slightly off-centre. Thus the period of 152 ms translates
directly to a frequency of ω‖ = 2π 6.5 Hz. In comparison the theoretical value
using eq. (9.8) is ω‖ = 2π 7.03 Hz. At last a matching set! How, it is possible
for ω‖ to be as anticipated while ω⊥ turns out very fishy, we will try to uncover
below.

The simulation optimisation additionally yields a value of 0.4 for the probe to
trapping beam waist ratio. With a FORT laser waist size of 40 µm and a probe

3the quality factor M2 is a measure for the radial symmetry of the beam. We measured
M2 = 1.34 indicating a slightly oval beam.
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waist of 27 µm the experimental value is 0.62. We presume that the error is
mainly due to imperfect estimate of the trapping laser size. Hence, if alter-
natively we put our faith in the simulation, the trapping waist ought to be
27µm/0.4 = 68 µm instead. The resulting theoretical trap frequency would
then be 420-kHz, which is closer but still off by a factor of 2. Finally, the optimal
value for β = 1/(kBT) gives us an estimate of the sample temperature. In the
subsequent section we elaborate on the temperature measurement.

9.2.3 Temperature

The temperature of the atoms has a profound effect on a whole range of en-
semble parameters and therefore also appears in the context of several measure-
ments. The most direct way to independently determine the temperature is to
release the trap from the confines of the FORT and measure the rate of expan-
sion. The expansion can be gauged from CCD camera images of the trap or as
done here from the phase-shift imparted on the probe beam (fig. 9.11). The data
is normalised to the initial phase-shift and the offset is set so that the phase-
shift goes towards zero. To model the observed phase-shift we may construct'

&

$

%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t0 tprobing

Time from FORT off, [µs]

N
o
rm

al
is

ed
 p

h
as

e-
sh

if
t 

si
g
n
al

β = 6 V0

Figure 9.11: Trap temperature measured the decay of phase-shift during free expansion
os sample. The phase-shift is probed by a train of 50 pulses each 2 µs long and separated
by 100 µs. The probe detuning is ∆45′ = −100 MHz and the power is 0.15 µW, so that
there are 1.2 · 106 photons per pulse. The FORT laser power is ≈3.5 W. The green circles
are the observed phase-shift averaged over 50 experimental runs.

a simple analytical model as done in [Petrov06, Petrov07] but here we employ
our ensemble simulation. The red curve on fig. 9.11 shows the simulation curve
that closest matches the data and it corresponds to a value of β = 6/V0. Af-
ter ≈ 3000 µs the phase-shift is nearly at zero, whereas the simulation predicts
a small residual phase-shift. This discrepancy arises from the effect of gravity,
which is not included in the simulation. For a 40 µm trapping beam waist and
a power of 3.5 W we get from eq. (9.3) that V0 = kB380 µK, and thus the esti-
mated trap temperature is T = 380/6 µK ≈ 60 µK. We note that β = 6/V0 was
also the optimal found in the trap-oscillation measurements. The main uncer-
tainty on the temperature estimate stems from the measurement of the trapping
waist. To investigate this point a bit deeper, we use eq. (E.6) to relate β to the
sample size. In the limit of β � V0 the effective Gaussian size of the sample is
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wa = wt/
√

βV0 = wt/
√

6. Thus for a trapping waist of wt = 40 µm we predict
the sample to have wa = 16 µm. This appears to be rather small sample size.
Alternatively we can try to rely on the probe to trapping size beam estimate,
which in the temperature simulation is 0.1. This is again different from the esti-
mate of 0.4 in the preceding section. Let us give both a try in order to sort out
the confusion. From the wp/wt = 0.1 we get wt = 270 µm and wa = 110 µm
whereas from wp/wt = 0.4 we get wt = 68 µm and wa = 28 µm. We also
note that wt = 270 µm gives a radial oscillation frequency of ω⊥ = 2π170 Hz,
which is significantly closer to the observed frequency. Thus the value of wp/wt
is likely to be somewhere between 0.1 and 0.4 and the trap size is a whole lot
bigger than the 40 µm stated in [Petrov06] and [Petrov07]. Since, in sec. 9.1.2
we also found that the initial collimation of the FORT beam had been poor, we
believe that the discrepancy in trap size is due to the trapping beam waist not
coinciding with the MOT position. In other words the FORT is loaded off-centre
where the trapping beam is wider. This conclusion is supported by the fact that
after re-collimation measurements of ω⊥ by an alternative method yields fre-
quencies much closer to those anticipated for a 40 µm waist trapping beam (see
sec. 11.2.1). The axial trap frequency ought not to be affected by the off-centre
loading as the Raleigh-range is unaffected i.e. wt(z = 0) is actually determined
correctly.

9.3 Effects from FORT

The whole point of preparing the atomic sample in a FORT is that the atoms
being held in a conservative potential are not significantly disturbed. This is
of course not the same as saying that some of the atomic properties of interest
will not be perturbed by the trapping potential. Mainly, the very effect that
traps the atoms, the AC-Stark shift, is also the one perturbing the parameters
that we measure. In subsequent sections, we will treat several ramifications
of this perturbation in various experimental investigations (see sec. 10.2.4 and
sec. 10.2.3). Here, we will look at the AC-Stark shift on the probe transitions.

9.3.1 Light-shift and dephasing

The resonance frequencies of the D-lines will be shifted according to the AC-
stark/light shift on the ground and excited fine-states. In sec. 9.1.2 we already
found the light shift of the ground-states causing these to be trapped by the
FORT laser. The excited states experience an equivalent shift, which in the ab-
sence of other excited levels would be equal in magnitude but with opposite
sign of the ground state shift. However, the host of higher excited levels reduces
the excited state shift. The ground state trap depth for 3.5 W FORT power is
equivalent to the frequency shift V0 = kB · 380 K = h̄ · 2π · 7.92 MHz where we
assume a trapping beam waist of 40 µm.4. Thus we expect the D-line transitions
to shift by roughly twice this frequency i.e. δνLS . 16 MHz.

We experimentally determine the light-shift of the D2-line in two ways, which
we will outline below. First, method is to sweep the frequency of the probe
laser and simultaneously record the absorption-saturation error signal and MZI
phase-shift of a weak probe (fig. 9.12a). The transition frequencies do not occur
at the same time in the sweeps because of the frequency shifts added by the

4since this agrees with the value of the axial oscillation frequency (p. 151) and the radial
oscillation frequency found in sec. 11.2.1
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Figure 9.12: FORT laser light-shift on Probe transitions. a) Absorption saturation error
signal (green) and MZI atomic phase-shift of the probe swept across the 4 → e hyperfine
manifold of the D2-line. We deduce the frequency scale by scaling it to the known
frequency separation between lines in the absorption saturation spectrum. The atoms
are initially prepared in |F = 4, m f = 0〉 and the sweep starts from the key 4 → 5′

transition. The 4 → 4′ transition is faint because the phase shift relies on atoms pumped
into |F = 4, m f 6= 0〉. b) The light shift calculated from the frequency difference between
the 4 → (4× 5)′ and 4 → 5′ in the absorption saturation and MZI signal respectively.
From fig. 8.4 we deduce that the light shift is equal to this difference minus 160 MHz.
c) Atomic phase-shift as probe laser is stepped across the 3 → 2 transition for the case
where the FORT is on (red points) and off (green points) during the probing. The light-
shift is visible as a shift of the transition frequency between the two curves. d) The light
shift of the 3 → 2 transition for different FORT powers with a linear fit.

absorption saturation AOM ∆νL−AOM and the pulsing AOM ∆νPAOM c.f. fig. 8.3.
However, by comparing the position of prominent transitions in both sweeps
and accounting for the known shifts of the AOM’s we can deduce the additional
frequency shift due to the FORT. We choose to compare the 4 → (4× 5)′ line in
the error signal with the 4 → 5′ line in the MZI signal at different FORT powers
and plot their difference in fig. 9.12b). The linear fit indicates a mean light-shift
of 2.56 MHz/W.

In principle the same procedure should be applicable to the 3 → e transitions,
however, it turned out not to be possible to sweep the frequency across the 3 → 2′

line because the atoms quickly shelved into the |F = 3, mF = ±3〉 dark state thus
no longer giving rise to any atomic phase-shift in the MZI. As an alternative
method we used the versatility of the beat-note locking method (see sec. 8.1.3
and fig. 8.10) to precisely step the locking point of the probe laser so as to acquire
the atomic phase-shift signal across the transition piece wise (fig. 9.12c). Thus
determining the transition frequency for different FORT trapping powers we
extract the light-shift and fit the linear dependence 3.88 MHz/W (fig. 9.12c). This
value is somewhat larger than that achieved by the sweep method. We believe
that the method of stepping the lock point is more reliable. Mainly the reason
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is that the absorption saturation signal, used to determine the both frequency
scale and the frequency shift, is not completely regular and even a small error
on the order of a natural line-width would cause a grave mistake in the light-
shift estimate. In conclusion we subscribe to the FORT light shift estimate of
3.88 MHz/W so that at maximum 3.5 W of FORT laser power the light shift is
about 13.5 MHz. We note that this estimate conforms to the theoretical estimate
of δνLS . 16 MHz.





Chapter 10

State preparation and
characterisation

The state preparation consists of two stages namely an optical pumping se-
quence followed by a microwave pulse. To increase the state purity the two are
actually combined in what we call a blow away sequence described in sec. 10.2.3.
The two state preparation elements are implemented in the MZI/trapping setup
as shown on fig. 10.1. We will use this figure as reference in the following more
detailed discussions on the two stages.

10.1 Optical pumping

10.1.1 Principles and theory

When the atoms are loaded into the FORT they will be distributed more or less
randomly among the Zeeman sub-levels of the ground states. The goal of the
optical pumping is to localise all atoms in a single |F, mF〉 state — preferably
|F, 0〉. Fortunately, the importance of optical pumping for atomic clock oper-
ation has spurred a wide selection of studies on the topic [Arditi78, Clercq84,
Avila87, Audoin92, Jau04]. Nearly all schemes rely on the inhibition of transi-
tions which have F′ − F = 0 and m′

F = mF = 0, as for example |3, 0〉 → |3′, 0′〉 or
|4, 0〉 → |4′, 0′〉 on the D2-line. If a pumping laser resonant with either of these
transitions is applied to the atomic sample it will excite atoms in all mF levels
but the mF = 0 level and thus by spontaneous decay and several excitations the
population of the hyperfine level will end up in the mF = 0 level. Naturally,
atoms may decay to the hyperfine level not coupled by the pumping laser, so a
re-pump laser is required to return these to the pumped hyperfine level. Sev-
eral, combinations of pump and re-pump configurations are possible and we
pick a linearly polarised optical pump on the |4, mF〉 → |4′, m′

F〉 transition and
a linearly polarised re-pumper on the |3〉 → |4′〉 transition (see fig. 10.2) that
is among those yielding the highest efficiency [Avila87]. In this configuration
the |4, 0〉 is not coupled by the optical pump laser and thus the atomic popula-
tion in this level will steadily increase by spontaneous decay from the |4′,±1〉
excited states. In the ideal limit this scheme should allow for up to ≈ 80% of
the atomic population to be pumped into the |4, 0〉 level. The reason for this
and other schemes not reaching 100% efficiency is mainly due to coupling of the
pump laser to other hyperfine excited states. The effect has been coined leak-
age [Avila87] and an example is the |4, mF〉 → |4′, m′

F〉 optical pump laser which

157



158 State preparation and characterisation

'

&

$

%

DM

µ-wave
antenna

H
ita

ch
i C

C
D

Philips
camera

MCMC

MC MC

AL AL DMDM

Cs dispensers

MC

ΙL

m
ic

ro
sc

op
e

BS

probe
input

LD2

LD1

PZT

λ/2

λ/2 PRD

PRD

DRD

optical
pumps
(front)

optical pumps
(back)

GTP λ/2

BS

lock
input

PZT

λ/2

moving
cateye

QND
detector

λ/2

ΑΟΜ

ELS VersaDisk
dipole laser

λ/2

Figure 10.1: State preparation setup (optical pumping beam and microwave antenna).
Optical pumping beams carried by PM optical fibres and filtered before incident on
the atomic sample from two sides so as to avoid sloshing in the trap. Properties and
construction of microwave antenna are described in detail in sec. 10.2.2 and box 10.1

4

3

4’

4

3

4’

4

3

4’
-4   -3   -2   -1   0    1    2    3    4 -4   -3   -2   -1   0    1    2    3    4 -4   -3   -2   -1   0    1    2    3    4

optical pump optical re-pump sponatneous decaya) b) c)

Figure 10.2: Principle of optical pumping scheme. a) The strength that optical pump
on the |4, mF〉 → |4′, m′

F〉 transition couples to the different mF levels (see table D.9) is
indicated by the opacity of the lines connecting the levels. b) The optical re-pumper with
transition strengths indicated (see table D.7). c) Selected spontaneous decay channels
highlighting that the |4, 0〉 level is populated only by spontaneous decay of elliptically
polarised photons from the |4′,±1〉 levels

also couples to the F′ = 5 excited state. Thus transitions on |4, 0〉 → |5′, 0′〉 will
tend to degrade the optical pumping.

We have also implemented an optical pumping laser on |4, 0〉 → |4′, 0′〉 on the
D1-line as discussed in more detail in [Windpassinger08a]. Since the P1/2 hyper-
fine splitting is somewhat larger than that of the P3/2 we expect the leakage to be
correspondingly smaller. Indeed we observed an increase in pumping efficiency
to 87%. This was, however, not deemed to be significant enough to merit the



10.1 Optical pumping 159

introduction of yet another (potentially troublesome) laser.

10.1.2 Optical pumping setup

The optical pump beams have been derived from a range laser sources. Initially,
we split off part of the probe laser light and further shifted the frequencies by
AOMs so as to come on resonance with the desired transitions. This was done
while the probe lasers were locked in the rather inflexible absorption saturation
setup (see sec. 8.1.2). However, with the probe lasers locked by the beat-note
detection (see sec. 8.1.3), maintaining the optical pump laser frequencies on res-
onance would interfere with the objective of being able to tune the probe fre-
quencies. Thus we turned to tapping the optical pumping beams from the MOT
slave lasers (see fig. 10.3), with the added advantage of gaining in optical pump
intensity.
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Figure 10.3: a) Optical pumping setup based on MOT slave lasers and b) diagram of
beam frequencies and shifts. The optical pump beam comes from the 0th order of the
MOT cooler, which is ≈ 90 MHz red detuned from the 4 → 5′ transition. Since optical
pumping is done when the MOT is off, we have all 100+ mW of cooler power available
for the optical pumping. The beam is passed through a fibre, double-passed through an
AOM to shift the frequency by ≈ 2 · 80 MHz on to resonance with the 4 → 4′ transition.
Following a mechanical shutter the optical pump beam is overlapped with the optical
re-pump beam on a (non-polarising) BS and both outputs are coupled into PM-fibres.
The optical re-pump is similarly derived from the 1st order of the MOT re-pumper and
via a fibre-link injected through an AOM before being coupled in to the fibre link to
the MZI setup. fig. 10.4 for the time sequence of switching of the various AOMs and
shutters.

As illustrated on fig. 10.3 the 0th order from the MOT cooler switching AOM
and the 1st order from MOT re-pumper switching AOM are used for the optical
pumping on the |4〉 → |4′〉 and optical re-pumping on |3〉 → |4′〉 transitions,
respectively (See fig. 10.3 caption for details). On fig. 10.4 we sketch the time
sequence for the many AOMs and shutters, with the resulting optical pumping
pulses on the sample shown at the bottom. The spot-size of the optical pump
beam is ≈ 1.5 mm. For the optical pump beams derived from the probe lasers
we typically get 0.5-1.5 mW incident on the atoms. The resulting peak intensity
of 14-42 mW/cm2 is an order of magnitude above the saturation intensity for
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Figure 10.4: Optical pumping
sequence. The top three dia-
grams show the timing and ef-
fect of the elements in the path
of the MOT cooler that is used as
the optical pump light. The 0th
order of the MOT cooler AOM is
incident on the opt. pump shut-
ter. When the shutter is open
the opt. pump AOM generates
the short pumping pulse. The
1st order of the MOT re-pump is
used as optical re-pump, but to
block it from the MOT collima-
tors the MOT re-pump shutter is
switched closed. When the op-

tical re-pump shutter is open the optical re-pump light goes to the sample. The re-pump
light is kept on for a while after the optical pump pulse in order to ensure all atoms are
in F = 4. This will be important for the blow-away described in sec. 10.2.3.

the transition (see table D.2). In the case where the optical pump beams are
derived from the MOT slave lasers the incident power is even 5-10 mW, which
corresponds to a peak intensity of 140-280 mW/cm2.

On the MZI/trapping setup the two optical pumping beams are cleaned by high-
quality polarisation splitting elements and sent counter propagating in to the
vacuum cell where they hit the trapped atoms (see fig. 10.1). Besides the mixing
of the optical pump and re-pump automatically generating two beams, there
is another reason for having optical pumping beams incident on the trap from
opposite directions. This is illustrated on fig. 10.5 where we show the atomic
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Figure 10.5: Sloshing atomic sample after op-
tical pumping. All traces show phase-shift of
atoms in |4〉 right after an optical pumping
stage and at a later time when atoms have been
removed from the trap. Grey trace: No op-
tical pumping applied and the sample slowly
decays. Yellow and red traces: Optical pump-
ing applied from front or back fibre output, re-
spectively. This causes the sample to oscillate
at the trap frequency ≈ 0.2 kHz (see fig. 9.10
and discussion in sec. 9.2.2). Green trace: Opti-
cal pumping applied from both fibre outputs so
that the oscillations are significantly damped.

phase-shift following optical pumping with either one or two beams incident on
the trap. When only one beam is used we clearly see that the optical pumping
photons give a momentum kick to the atomic sample. Though this effect is not
devastating it is neither particularly attractive, and as evidenced by fig. 10.5 it is
easy to avoid by using two pumping beams.1

1Retro-reflecting a single optical pump beam is not feasible, due to high loss of intensity at
the angle of incidence on the quartz-cell. At 62◦ only 82% of the power is transmitted through
the air-quartz surface. Experimentally we measured the transmission through the whole cell to be
0.5, implying a transmission of 0.82 and 0.86 for the un-coated inner surface and AR-coated outer
surface of the cell, respectively.
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10.1.3 Efficiency and dependence on parameters

In this section we will investigate to which extent the optical pumping is in-
fluenced by a number of parameters. Since the optical fields are unable to re-
solve the Zeeman sub-levels we rely on the microwave interaction described in
sec. 10.2.1 to gauge the distribution among the different mF levels. Since, we
have not yet treated the microwave interaction we will merely state that it allows
us selectively to move the population of a single |F, mF〉 level to an mF level of
the other ground state F′ 6= F. For more details we refer to sec. 10.2.3.

Optical pumping time

The optical pumping time hinges on the pump intensity together with and the
spontaneous decay rate. For the Cs D2-line the lifetime of the excited state is
below one µs and we expect the pumping time to be on the order of tens of µs, in
as long as the pump intensity is above the saturation intensity for the pumping
transition. Theoretical models [Avila87] also predict the equilibrium pumping
efficiency to be reached after some 10 µs. Our experimental investigation of the
pumping efficiency shows that the pumping time is close to 150 µs (see fig. 10.6).
It is not clear why even with very large optical pumping powers we do not reach
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Figure 10.6: Optical pumping effi-
ciency vs. pumping time. The popu-
lation in |4, 0〉 (green) is deduced by
observing the change in phase-shift
of the 4 → 5′ probe when the |4, 0〉
atoms are moved to |3, 0〉 by the mi-
crowave interaction. The total num-
ber of atoms (yellow) is determined
from the phase-shift of the 4 → 5′

probe when next the atoms are re-
pumped into |4, mF〉. The atoms not
in |4, 0〉 after optical pumping (red)
is simply derived from the difference
of the previous two populations.

an equilibrium pumping efficiency faster, but we believe it may be related to
radiation trapping of the spontaneously emitted resonant photons. Since some
of these photons are circularly polarised they would couple the |4, 0〉 state and
thus disrupt the pumping. On the other hand, any pumping time below 1 ms is
perfectly acceptable for our purposes. We note the positive fact that the pumping
efficiency seems to reach the theoretical optimum of 81% [Avila87]. As, the
optical pumping also causes some amount of loss of atoms (c.f. the yellow curve
on fig. 10.6) we find an optimal pumping time 150-200 µs, where the absolute
number of atoms in |4, 0〉 is the largest. At that point the pumping efficiency is
75-80%.

Optical pump laser detuning

Ideally the optical pump laser should be on resonance with the pumping tran-
sitions. Going away from resonance causes the coupling strength to decrease
and thus the pumping time to increase. At the same time ’leakage’ to other ex-
cited levels will grow. Both effects cause the optical pumping efficiency to drop.
For pumping intensities above saturation we, however, expect the efficiency only
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to decrease slowly with increasing detuning. Experimentally, we step the op-
tical pump laser detuning by setting different values for the MOT slave laser
frequency in the CAMOT programme, and for each setting we determine the
optical pumping efficiency and the total number of atoms remaining in the trap
after the optical pumping (see fig. 10.7a). The number of atoms pumped in to
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Figure 10.7: Optical pumping efficiency vs. optical pump laser detuning. a) The pop-
ulations in |4, 0〉 (green), |4, mF 6= 0〉 (red), and the total number of atoms (yellow) are
measured in the same fashion as that described in the fig. 10.6 caption. The curves are
used for finding the optimal optical pumping detuning. The data is somewhat noisy,
because all are proportional to the total number of atoms which fluctuates from loading
cycle to loading cycle. b) The shift in optimal pumping frequency due to the FORT
trapping laser.

|4, 0〉 is more or less constant over 5 MHz around the optimal detuning. The
reason for the optimal detuning not being 0 is likely caused by a calibration er-
ror of the MOT slave detuning and by the FORT laser light shift (see paragraph
below). We also note that the total atom number drops slightly around the opti-
mal detuning. By subtracting the atoms in |4, 0〉 from the total number we also
determine the fraction of atoms in other magnetic sub-levels, i.e. mF 6= 0.

As noted the FORT laser shifts the F = 4 → F′ = 4 transition frequency and
thus the optimal detuning for the optical pumping. Switching the FORT off dur-
ing the optical pumping and performing the frequency scan as above, we can
determine the non-shifted optimal detuning. As seen on fig. 10.7b) the average
light-shift is around −5 MHz. In this case the FORT laser power was some 4-
5 W. Furthermore, there appears to be a slight increase in the optical pumping
efficiency when the FORT is off. This is because the inhomogeneous broadening
of the line due the spatial intensity distribution of the FORT beam is removed.
Thus, when atoms at different radial positions in the trap have the same reso-
nance frequency, the optical pump frequency can be adjusted to zero detuning
for all atoms.

Optical pump polarisation

The pumping scheme relies on the optical pumping laser to be π polarised, and
as the magnetic bias-field defines the quantisation axis parallel to the probe light
polarisation this translates into the pump light also being linearly polarised par-
allel to the probe light. Since, the probe polarisation is perpendicular to the MZI
plane it is always possible to set the optical pump polarisation parallel. We deter-
mine the sensitivity of the pumping to the polarisation by rotating the polarising
cubes that filter the pump light before the atoms. On fig. 10.8 the results from
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Figure 10.8: Optical pumping efficiency vs. optical
pumping beam polarisations from back-output. The
polarisation is rotated by simultaneously turning the
wave-plate and polariser after the fibre output. Note,
that the optical pumping efficiency was not optimal
due to insufficient pumping power, which again was
caused by loss of coupling into the fibre-link to the
MZI. [21/7/06]

the back input — i.e. front input is blocked — show that pumping efficiency
does not change significantly in a range of ±2◦ from the optimal setting of the
polariser. Thus, we conclude that it is fairly easy to set the polariser. Similar
results apply to the front polariser.

Magnetic bias-field-strength

The magnetic bias-field defines the quantisation axis along the probe polarisa-
tion and and lifts the degeneracy of the magnetic sub-levels c.f. eq. (3.11). If
the bias field is too weak one would expect the optical pumping to be rather
inefficient because of the level degeneracy. We use the top-and-bottom pair of
the Helmholtz configured compensation coils to generate the bias-field. Using
a simple transistor circuit we can switch the compensation coil to have a cur-
rent that compensates the external fields or a current that adds a large bias-field
component along the quantisation-axis. We denote the latter the bias-current.
The switching between the two states is handled by the CAMOT programme.
To ensure that the applied bias field is of a sufficient magnitude we measure
the optical pumping efficiency at different magnetic bias field strengths i.e. at
different bias-currents (see fig. 10.9). We normally use around 600 mA bias-
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Figure 10.9: Optical pumping efficiency vs. magnetic
bias field strength, which is proportional to the cur-
rent in the top-and-bottom compensating coils. The
optical pumping efficiency is constant over all the
measured coil currents. As for the absolute values
in fig. 10.8, the optical pumping efficiency was not
optimal due to insufficient pumping power.

current, which appears to be ample for good optical pumping. Though, lower
currents of say 200 mA would suffice for the optical pumping it is desirable for
the microwave-interaction described in sec. 10.2 to have a large separation of the
magnetic sub-levels.

10.2 Microwave interaction

Following the optical pumping, atoms are prepared in the mF = 0 level of the
F = 4 hyperfine manifold. The final step is to prepare all atoms in the same
coherent superposition of the two clock-levels, so that we achieve the desired
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ensemble product state 1
2Nat ∏Nat

(|3, 0〉 + |4, 0〉). Clearly, the final state prepara-
tion step will rely on the coherent interaction of the two levels and some driving
force, which in our case is a near resonant EM-field. In the next section we will
derive the equations that prescribe the coherent interaction before describing the
experimental realisation and experiments in the subsequent sections.

10.2.1 Principles and theory

As a point of departure we take what we already studied in chapt. 4 about the
interaction of an EM-field with an atom. We simplify the treatment by focusing
on only the two ground levels. Since, for all practical purposes, their natural
lifetime is infinite we may for the time being assume complete absence of decays.
Thus, from eqs. (4.2 and 4.4) we take only the equations describing the levels
directly coupled by the field and erase all decay terms.2. Combining these we
can write up the following

˙̃σ34 + ˙̃σ43 = −i∆0(σ̃34 − σ̃43)−=(χ)(σ̂44−σ̂33)
−i( ˙̃σ34 − ˙̃σ43) = −∆0(σ̃34 + σ̃43) +<(χ)(σ̂44−σ̂33) (10.1)

˙̂σ44 − ˙̂σ33 = i<(χ)(σ̃34 − σ̃43) +=(χ)(σ̃34 + σ̃43)

In these equations we have substituted the operator-coupling strength product
with the classical Rabi-frequency χ. This substitution is merely a generalisation,
which also allows us to specify a different interaction than that of the electric-
dipole Hamiltonian eq. (4.1). Indeed, the hyperfine ground levels are coupled
through their magnetic moment interacting with a harmonically varying mag-
netic field B̂(t) = B̂0e−iω0t. The microwave interaction Hamiltonian is

Ĥµw = −µ̂ · B̂ , (10.2)

The magnetic field will usually be the magnetic part of an EM-field, which is be
perpendicular to the EM-field polarisation defined from the electric field part.
The Rabi-frequency is identified as χ = 2〈µ̂ · B̂0〉/h̄. Firstly, it is simplified
in that we only consider expectation values. This simplifications is justified as
the number of photons used is too large for quantum effects to matter. For
example 1 W of power at the clock-frequency ω0 ≈ 9 GHz corresponds to 1.5 ·
1017 microwave photons per µs and thus a mere 2.5 · 10−9 relative photon shot-
noise. As for the vector product we apply the strong static magnetic bias field
to quantise the system along the z-axis and we also align B0 along the z-axis.
Thus, if we decompose the magnetic moment into its spherical components in
the z-basis, µ = {µ−1, µ0, µ1}, what remains is µ · B0 = µ0B0. This implies that
only ∆mF = 0 transitions occur. Unlike, for the electric-dipole transitions we do
not list the theoretical χ since we will anyhow be able to directly measure the
Rabi frequency.

We also note, that the problem has been termed in slowly varying operators,
which equates to observing the evolution in a frame rotating with the frequency
of the EM-field. Eq. (10.1) are written so that the relationship to the atomic
pseudo-spin f̂ defined in eq. (3.14) is immediately visible. The equations actually
describe the evolution of the pseudo-spin components and can be expressed as

d
dt

f̂ = f̂ ×Ω, Ω =


<(χ)

=(χ)

∆0

 (10.3)

2that is we disregard the equations that refer to the passive ground state g′ and assign the
ground-level index g to the lower clock level |3, 0〉 while the excited-level index e is assigned to
the upper clock level |4, 0〉
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This is the familiar result that the action of an EM-field on a two level atomic
system can be expressed as a torque-axis vector acting on the corresponding
atomic pseudo-spin [Milonni88]. Eq. (10.3) shows that the change of f̂ is only
in the direction of Ω × f̂ , which is always perpendicular to f̂ as well as Ω.
Thus the pseudo-spin is rotated around Ω and the length of f̂ is unchanged.
Moreover, since Ω× f̂ = |Ω|| f̂ | sin θ, where θ is the angle between the Ω and f̂ ,
the rotation is not accelerated. The constant rotation frequency is proportional

to the magnitude of the torque-axis vector Ω = |Ω| =
√

∆2
0 +<(χ)2 +=(χ)2 =√

∆2
0 + |χ|2, which one calls the generalised Rabi frequency. All together, it is no

surprise that the solution to eq. (10.3) can be expressed as a rotation matrix

Mµw(t, |χ|, ∆0) =


∆2

0 cos(Ωt)+|χ|2
Ω2

∆0 sin(Ωt)
Ω − |χ|∆0(cos(Ωt)−1)

Ω2

−∆0 sin(Ωt)
Ω cos(Ωt) |χ| sin(Ωt)

Ω

− |χ|∆0(cos(Ωt)−1)
Ω2 − |χ| sin(Ωt)

Ω
|χ|2 cos(Ωt)+∆2

0
Ω2

 (10.4)

so that

f̂ (t) = Mµw(t, |χ|, ∆0) f̂ (0) (10.5)

Since the microwave field is (or is supposed to be) homogeneous over the atomic
sample the extension to effective or total ensemble expectation values is straight-
forward, F̂(t) = Mµw(t, |χ|, ∆0) F̂(0). At the point, where we start to consider
light-shift of the energy levels due to FORT and/or probe light the extension
is no longer as simple (see sec. 10.2.1 and sec. 11.1). The above rotation matrix
actually presumes a real Rabi frequency. Fortunately, incorporating the a com-
plex phase is simple. From eq. (10.3) we learned that |Ω| determined the axis of
rotation of f̂ and writing χ = |χ| eiθχ we see that θχ sets the angle of the rotation
in the equatorial plane. This simply converts in to a transformation of f̂ by the
matrix

Mµw(θχ) =


cos(θχ) sin(θχ) 0

− sin(θχ) cos(θχ) 0

0 0 1

 . (10.6)

For a complex Rabi frequency we can thus compute action on the pseudo-spin
as

Mµw(t, χ, ∆0) = Mµw(t, |χ|, ∆0) Mµw(θχ) (10.7)

The choice of complex phase of χ is linked to the phase of the electromagnetic
field w.r.t. to the phase of the atomic state. For an atom in one of the ground
levels the phase relationship between the two levels is irrelevant (as is also re-
flected by eq. (10.6)). Thus it is only when the atom is put in a superposition
state that the phase takes on any meaning. The phase of the atomic superposi-
tion is determined by the phase of the microwave field w.r.t the initial state of all
atoms in the lower ground level. Since, the initial atomic phase is arbitrary we
may as well choose it so that =(χ) = 0. Subsequently, we may wish the phase
of the microwave field to differ from the initial phase, whereby the pseudo-spin
rotates around a different angle. This is phase-change is achieved either by di-
rectly shifting the phase of the field (see sec. 10.2.2) or by letting the atomic state
accumulate the phase φ∆0 = τ∆0 during a free evolution time τ. This is the
essence of Ramsey spectroscopy discussed below.
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Rabi oscillations

A few illustrations of the f̂ evolution are instructive. The microwave interaction
is applied after the optical pumping has aligned the pseudo-spin along the z-
axis. If, thus, we let the initial pseudo-spin be aligned to have 〈 f̂z〉 = −nat/23

and we assume a real Rabi-frequency (=(χ) = 0) the pseudo-spin will evolve as

〈 f̂x(t)〉 =
nat

2
χ∆0(cos(Ωt)− 1)

Ω2

〈 f̂y(t)〉 =
nat

2
χ sin(Ωt)

Ω
(10.8)

〈 f̂z(t)〉 = −nat

2
χ2 cos(Ωt) + ∆2

0
Ω2

The evolution is also depicted on fig. 10.10. The special case of resonant coupling
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Figure 10.10: Pseudo-spin vector rotations on the Bloch-sphere due to interaction with
microwaves for different detunings. The Bloch-vector, initially aligned to the south-
pole of the Bloch-sphere, rotates in circles around the torque-axis vector resulting in
Rabi-oscillations of the atomic populations as shown by the plot of 〈 f̂z(t)〉. Only if
the microwave field is resonant (∆0 = 0) do the Rabi-oscillations result in complete
population transfer at the time tint = π/χ. The change is z-projection for constant pulse
length and varying detunings leads to the curves shown on fig. 10.24)

(∆0 = 0) is of particular interest since according to eq. (10.8) the pseudo-spin tra-
jectory follows the yz-meridian. Consequently, at the time tint = τπ/2 = ( 1

2 +
n)π/χ the atomic population has been put in an equal coherent-superposition
of the two ground levels and at tint = τπ = (1 + 2n)π/χ it has been com-
pletely transferred to the to the other ground-level. Pulsed microwave fields
with these durations are coined π/2 and π-pulses. Most importantly, our ob-
jective of preparing the equal coherent superposition state is met by the π/2
pulse.

For some of the measurements it is useful to write up the evolution of the pop-
ulation in a single hyperfine level. If atoms are initially in the F = 3 level the
population in the other ground level is

nat,4 = 〈 f̂z(t)〉+
nat

2
= nat

χ2 sin2 ( 1
2 Ωt

)
Ω2

3due to the state purification (blow-away) sequence described in sec. 10.2.3 this is indeed the
initial state of the atoms.
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Ramsey spectroscopy

Ramsey spectroscopy is a work-horse in precision measurements of frequencies.
The main requirement for the Ramsey method is that the system (atomic state
and microwave field) behaves coherently during the whole spectroscopy experi-
ment. Conversely, the the degradation of the Ramsey spectroscopy can be used
to estimate the time-scale that coherence is maintained i.e. what is referred to
as the decoherence time (see sec. 10.2.4). First, we explain what Ramsey spec-
troscopy is about.

π
2

π
2

tµ,1 tµ,2 tp,s

µ-w

Ps PNA

τR

optical
re-pump

Figure 10.11: Ramsey spectroscopy experimental sequence. In most cases τint � τR.

The basic Ramsey method sketched on fig. 10.11 embodies the atomic sample
interacting with the microwave field during two interaction periods that each last
τint and are separated by a non-interaction time τR. We assume that by optical
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Figure 10.12: Bloch vector rotations in a Ramsey sequence.

pumping the atomic pseudo-spin has been aligned along to the south-pole of
Bloch-sphere and the interaction time is set so that the first microwave pulse
performs a π/2 rotation of 〈 f̂z〉 to the Bloch-sphere equator (see fig. 10.12a).4

During τR the microwave field is absent and the atomic state evolves freely, which
according to eq. (10.4) is prescribed by the matrix

Mµw(τR, 0, ∆0) =


cos(∆0τR) sin(∆0τR) 0

− sin(∆0τR) cos(∆0τR) 0

0 0 1

 , (10.9)

which merely describes a rotation of 〈 f̂ 〉 around the z-axis (see fig. 10.12b). Fol-
lowing the application of the second π/2 pulse we get a complete Ramsey rota-

4it may seem contradicting that the microwave-pulses constitute π/2 pulses even when ∆0 6= 0
in contrast to the requirement we set earlier. However, the offset of 〈 f̂z〉 from the equator after the
π/2 pulse scales as cos(∆0τint), which to zeroth order in ∆0 ≈ 0 is just 1. Thus, the offset error on
the π/2 pulse is small. If |∆0| � 0 the basic microwave pulses will not make a full π/2 rotation
causing the contrast of the Ramsey spectroscopy to be reduced.
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tion matrix

MR(τR, χ, ∆0) = Mµw(τπ/2, χ, ∆0) Mµw(τR, 0, ∆0) Mµw(τπ/2, χ, ∆0) , (10.10)

which we generously avoid writing out in full. We may add one twist to the
Ramsey fringes by allowing the atomic coherence to decay during the Ramsey
interrogation time. For the moment, we will just phenomenologically add an
exponential decay to eq. (10.9), but in sec. 10.2.1 we are going to partially justify
this. We write

Mµw(τR, 0, ∆0, T2) =


e−

τR
T2 cos(∆0τR) e−

τR
T2 sin(∆0τR) 0

−e−
τR
T2 sin(∆0τR) e−

τR
T2 cos(∆0τR) 0

0 0 1

 , (10.11)

where T2 is the dephasing time (see sec. 3.7.1 or sec. 10.2.1). We note that,
dephasing of the atomic state has no effect on the level populations and thus
〈 f̂z〉, hence the 1 in eq. (10.11).

Now, to take up our favourite initial state 〈 f̂ (0)〉 = −nat/2 z as an example
and as before set =(χ) = 0 then after the first π/2 pulse 〈 f̂x(τint)〉 = 0 and
〈 f̂y(τint)〉 = nat/2. The atomic state after the free evolution is 〈 f̂x(tµ,2)〉 =

nat/2 e−
τR
T2 sin(∆0τR), 〈 f̂y(tµ,2)〉 = nat/2 e−

τR
T2 cos(∆0τR), and 〈 f̂z(tµ,2)〉 = 0.

The application of the second π/2 pulse, thus creates the final pseudo-spin state

〈 f̂ (tµ,2 + τint)〉 = e−
τR
T2

nat

2


sin(∆0τR)

0

cos(∆0τR)

 . (10.12)

as illustrated on fig. 10.12c for T2 = ∞. Hereby, the phase accumulated between
the microwave field and the atomic state during the Ramsey-interrogation time is
related to the projection of the pseudo-spin z-component. This is a crucial point,
as f̂z the population number difference of the clock-levels is directly measur-
able. In fig. 10.13 we plot 〈 f̂z(tµ,2 + τint)〉 as function of the microwave detunings
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Figure 10.13: Pseudo-spin z-
component in frequency domain
Ramsey spectroscopy. We take
|χ| = 2π 25 kHz, T2 = 0.5 ms
and τR = 0.025, 0.05, 0.1, 0.5 ms.
The parameter values are some-
what deliberately chosen in order
to recreate fig. 10.26

∆0 for a set of interrogation times. The plot incorporates the loss of efficiency
of the π/2 pulses and thus shows the non-approximated version of eq. (10.12).
Clearly, the Ramsey fringes can also be achieved as function of the interrogation
time by keeping a constant detuning. To distinguish the two Ramsey experi-
ments we name the former frequency domain and the latter time domain Ramsey
spectroscopy.

Again, as reference for the experimental data where we detect only one hyperfine
level population, we write out the population in the F = 4 level assuming the
same initial conditions as for eq. (10.12)

nat,4(tµ,2 + τint) = 〈 f̂z(tµ,2 + τint)〉+
nat

2
= nat cos2

(
1
2

∆0τR

)
, (10.13)
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where, to keep the equation simple, we have neglected the decay due to deco-
herence.

The angle of 〈 f̂ 〉 w.r.t the z-axis, φz = ∆0τR provides a measure for the devia-
tion of the microwave frequency w.r.t. the universal atomic transition frequency.
Moreover, the angle is proportional to the Ramsey-interrogation time τR and by
making this large the sensitivity of φ to the ∆0 is increased. In the Bloch-sphere
picture this is because the longer time the pseudo-spin precesses freely on the
equator the smaller rotation frequencies one is able to detect. Altogether, Ram-
sey spectroscopy is a powerful method for clock experiments where an oscillator
frequency is locked to an atomic transition frequency. The limit to the interro-
gation time τR and thus to the precision of the measurement is ultimately set
by the time that it is possible to maintain the sample and the coherence of the
atomic state. Degrading of the atomic state causes a reduction in the amplitude
of the Ramsey fringes, which thereby offer a way to gauge the state degrada-
tion/decoherence.

Ramsey spin-echo spectroscopy

The coherence time of the Ramsey method can nearly always be extended by
compensating some of the decoherence mechanism. In order to understand this
we must recap the various forms of atomic state decoherence. In sec. 3.7.1 we
noted that decoherence can be separated in to a contribution from temporally
constant and spatially inhomogeneous dephasing of the atomic state and a con-
tribution from temporally random phase-perturbations. Since the latter occurs as
a random process there is no way to reverse it, however the former is in principle
and in practice reversible. The distinction between reversible dephasing and irre-
versible dephasing/decoherence will be important. The practical way of revert-
ing the dephasing is called Hahn-echo or spin-echo and uses that it is possible to
induce an effective time inversion of the pseudo-spin evolution by application of
a microwave π-pulse [Hahn50]. In this way, spatial inhomogeneity of the atomic
state phase accumulated during some period is re-phased in an period of equal
duration following the spin-echo (π) pulse [Kaplan02, Andersen04, Kuhr05].
In fig. 10.14 we present the experimental sequence for the Ramsey spin-echo
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tµ,1 tµ,2 tp,3
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Ps PNA

τrams1 τrams2

optical
re-pump

tµ,echo

Figure 10.14: Ramsey spin-echo spectroscopy experimental sequence.

method, which differs from the pure Ramsey sequence (see fig. 10.11) only by
the addition of a spin-echo pulse in between the two Ramsey π/2-pulses. Start-
ing from the expression of the pseudo-spin after a free evolution time (just above
eq. (10.12)) we can write the pseudo-spin state right after the spin-echo π pulse

〈 f̂ (tµ,echo + tπ)〉 =


nat
2 sin(∆0τR,1)

nat
2 cos(π) cos(∆0τR,1)

sin(π) 0

 =
nat

2


− sin(−∆0τR,1)

− cos(−∆0τR,1)

0

 (10.14)
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The effect of the π-pulse can be described as a transposition (reflection in the z×
f̂ − z plane) of the pseudo-spin and inversion of the preceding interrogation time
(see fig. 10.15c). As the pseudo-spin keeps evolving freely during the second
Ramsey interrogation time τR,2 it accumulates an additional phase so that the
final pseudo-spin phase is ∆0(τR,2 − τR,1) and the state after the second π/2
pulse becomes

〈 f̂ (tµ,2 + τπ/2)〉 =
nat

2


− sin [∆0(τR,2 − τR,1)]

0

− cos [∆0(τR,2 − τR,1)]

 . (10.15)

This reveals that if τR,2 = τR,1 the pseudo-spin is put back to its original state
before the first π/2 pulse. Other than this, 〈 f̂z〉 after the Ramsey spin-echo
sequence will trace out a Ramsey fringe pattern with a period ∆0/2π in a time-
domain measurement and a period (τR,2− τR,1) in a frequency-domain measure-
ment. Manifestly, the frequency-domain Ramsey spin-echo measurement is not
particularly useful for precise frequency measurement unless τR,2 and τR,1 are
vastly different.
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Figure 10.15: Bloch vector rotations in a Ramsey sequence with Hahn-echo pulse.

In terms of the population in the F = 4 level assuming the same initial conditions
as for eq. (10.15) we get

nat,4(tµ,2 + τπ/2) = 〈 f̂z(tµ,2 + τπ/2)〉+
nat

2
= nat sin2

(
1
2

∆0τR

)
(10.16)

The merits of the spin-echo scheme is uncovered when incorporating some spa-
tial distribution of the accumulated phase, which can be due to inhomogeneous
light shift from the trapping or probe laser. The former was expressed as shift
of resonance frequency in eq. (9.4) while the latter was framed as a phase-shift
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to the pseudo-spin in eq. (4.24). Naturally, the two formulations are equiva-
lent and allow us some freedom of expressing the issue at hand. Since the
FORT light-shift is present throughout the evolution of the atomic state while
the sample is trapped, it is simpler to let the inhomogeneity enter as an off-
set to the microwave detuning. Hereby, we express the phase-perturbation
as a spatially dependent detuning deviation with the total phase accruing to
φ̃at(r) = (∆0 + δ∆ (r))τR. Suppose ∆0τR = mπ and δ∆ (r))τR � π, we can
express the final 〈 f̂z(tµ,2 + τπ/2)〉 ≈ 1

2 nat(1− mδ∆ (r))τR). Integrating over the
spatial extent of the sample we get

〈F̂(tot)
z (tµ,2 + τπ/2)〉 =

∫
R3

d̂3rN (r)(1−mδ∆ (r)τR)

=
Ntot

2

(
1−

∫
R3

d̂3r
N (r)mδ∆ (r)τR

Ntot

)
(10.17)

Below and in sec. 11.1 we will make an attempt at specifying the distribution of
δ∆ (r), however, at present it suffices to note that the inhomgeneous spread of
the pseudo-spin phase causes a reduction of the Ramsey fringe amplitude. For
the Ramsey spin-echo sequence we found that it was equivalent to the Ramsey
sequence except for the change of sign of the final state and replacement of
τR → (τR,2 − τR,1). We then deduce the total ensemble pseudo-spin to be

〈F̂(tot)
z (tµ,2 + τπ/2)〉 = −Ntot

2

(
1 +

∫
R3

d̂3r
N (r)mδ∆ (r)(τR,2 − τR,1)

Ntot

)
, (10.18)

where the integral over the phase inhomogeneity goes to zero when τR,2 = τR,1,
which we will refer to as a symmetric spin-echo sequence. In sum, the Ramsey
spin echo sequence causes a re-phasing of the spatially inhomogeneous phase
that would otherwise reduce the Ramsey fringe amplitude.

To get an analytical expression for the Ramsey (spin-echo) signal we refer to the
treatment made in [Kuhr05], where the thesis is that inhomogeneous dephasing
ensues from the differential light shift from FORT trapping laser. Since, we know
the cross-section of the FORT potential to be Gaussian the first impulse would be
to incorporate this distribution of δ∆ (r) in to eqs. (10.17 and 10.18), however the
atomic density distribution N (r) is also determined by the trapping potential
along with the sample temperature c.f. sec. E.1. Thus, the approach of [Kuhr05]
is rather to term the problem in atomic energy distributions. This analysis results
in equations for 〈F̂(tot)

z 〉 in a Ramsey experiment

〈F̂(tot)
z (tµ,2 + τπ/2)〉 = −1

2
α(τR, T′2) cos

[
(∆0 + δ∆ )τR + κ(τR, T′2)

]
(10.19)

where δ∆ is the average light-shift and

α(τR, T′2) =
[

1 + 0.95
(

τR

T′2

)]−3/2

κ(τR, T′2) = −3 arctan
(

0.97
τR

T′2

)
are the Ramsey fringe amplitude and a conspicuous supplementary phase. In
this description the Ramsey amplitude α(τR, T′2) does not exactly decay expo-
nentially with τR, thus the time T′2 constant is deliberately chosen to resemble an
exponential decay time in that α(T′2, T′2)/α(0, T′2) = 1/e. The phase κ(τR, T′2) is an
artefact of the atomic density being biased towards the central and flatter part of
the trapping potential. Additionally, the reversible dephasing can be predicted
from the sample temperature [Kuhr05]

T′2 = 0.97
2h̄∆D,eff

ω0kBT
(10.20)
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where the effective detuning ∆D,eff was defined in eq. (9.5). Our take is to use the
expression in reverse and estimate the sample temperature from the measured
T′2 time.

In as long as irreversible dephasing is negligible, the corresponding equations
for the Ramsey spin-echo sequence are attained by simple substitution of τR →
(τR,2 − τR,1). When irreversible dephasing starts to play a role, the fringe ampli-
tude should include an exponential decay factor

α(τR,1, τR,2, T′2, T∗2 ) = e−(τR,1+τR,2)/T∗2

[
1 + 0.95

(
τR

T′2

)]−3/2

(10.21)

The description here concerns the total ensemble evolution and thus does not
take into account that the ensemble is probed inhomogeneously according to the
probe beam intensity distribution. This flaw is not sufficient ground to disavow
eqs. (10.19 and 10.21), merely something to keep in mind should there be a
discrepancy between theory and data. In sec. 11.1 we amend the expression for
the light-shift by avoiding the reference to the energy distribution of the atoms.
Nevertheless, we chose to harness the treatment of [Kuhr05] so as to bridge our
results with those in the literature. This concludes the theoretical overview of
the microwave interaction and we proceed with a description of the microwave
setup.

10.2.2 Microwave Setup
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Figure 10.16: Layout of the microwave setup. 1 Source, microwave synthesiser HP8341B
(see sec. 10.2.2). 2 Morion MV87-A50I-500MHz-G oven controlled oscillator. 3 phase-
shifter MCE/KDI PQ-1867 (optional). 4 microwave amplifier Narda DBS-0411N630 ei-
ther as stand-alone or pre-amplifier. 5 Directional coupler 780-30-9.700 to split off power
for 6 HP33330B Shottky diode power detector used as reference to stabilise synthesiser
output power. Microwave pulse generator as either 7 pulse modulator HP11720A or
7* SPDT switch AMC SWN-RRA-2DRH-COMDEV (not shown). 8 Variable attenuator
HP8496B (optional) mainly used during characterisations of setup. 9 microwave power
amplifier Kuhne KU PA 922 XL-226 (optional). 10 Circulator ATM ATc8-12.4 mounted
with 11 50 Ω resistor ATM TO516 as protection of amplifier from antenna reflections.
12 Low loss cable ATM CF-300-30-SM-SMR connecting the amplifier with 13 SMA to
wave-guide adaptor. For details refer to Tab. G.1

The microwave setup (fig. 10.16) consists of 4 main elements, a frequency source,
a switch, an amplifier, and an antenna. The amplification may occur in a single
stage or in two stages with a pre-amplifier and a power amplifier (on fig. 10.16
the latter configuration is sketched). Additional elements such as a phase-shifter,
a directional coupler for feedback, an attenuator, and and a protective circulator
add functionality. In the below sections we will discuss and characterise aspects
related to the different elements.
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Antenna design In order to generate microwave radiation that couples to the
atomic sample we must construct an antenna. There are various forms of an-
tenna designs that each fit a specific application. In our case we need the ra-
diation to have only a short range, but have well defined polarisation. For this
purpose a horn antenna is well suited. However, we found that our self made
antennae were very inefficient at coupling the microwave power from the cable
to free space. Finally, we decided to use a commercial wave-guide coupler with
one end-face open. The construction of the antenna is detailed in Box 10.1. The
small dimensions of the wave-guide has the added advantage that it can be put
very close to the vacuum cell and thus irradiate the atoms with high power. In
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Figure 10.17: Microwave antenna radiation pattern. The microwave radiation power was
measured at different positions. The measurements were only done to one side of the
antenna and the two sided intensity plot is generated by mirroring the data around the
antenna axis. We wish to induce magnetic-dipole transitions with the microwave field.
Thus, the radiation should have its magnetic component parallel to the quantisation axis
of the atoms given by the magnetic bias field along the z-axis of the setup. Since, the
electric field component is given by the direction of the diode inside the wave-guide, the
wave-guide must be oriented with the diode in the plane of the MZI as illustrated on
fig. 10.1. Therefore, fig. 10.17a) shows the radiation in the (horizontal) MZI plane and
fig. 10.17b) shows that along the (vertical) z-axis.

fig. 10.17 we show the measured radiation pattern of the antenna. The location
of the atomic sample can be envisioned from the postion of the antenna in the
MZI setup on fig. 10.1.

Microwave pulses We need to precisely control the interaction time of the mi-
crowave radiation with the atoms. Since, in our setup the atomic sample is
stationary and the microwave radiation is not spatially localised inside a wave-
guide, as is typically the case in clock-experiments [Vanier89, Audoin01], the
only way to control the interaction time is by pulsing the microwave radiation.
To that end we have employed a range of switching devices. Initially, we made
use of the built-in modulation capability of the synthesiser, however, the output
amplitude of the resulting pulses turned out to vary significantly (5-10%) over
the duration of the pulse. As a consequence, we acquired an independent pulse
modulation unit (HP11720A) with 80 dB isolation and 6 dB insertion loss (IL).
The high IL limited the achievable microwave output power, and in order to
boost the power we procured a low loss switch from AMC with 50 dB isolation
and only ≈ 0.8 dB IL. Unfortunately, the AMC switch broke after about one year
of operation5 and we reemployed the HP modulator. Rather, than investing in a

5i.e. just past the warranty period!
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Box 10.1: Construction of ”sawn-off” wave-guide antenna

In order to get the best efficiency of the free-space coupling, the wave-guide
length should correspond to an odd half number of wavelengths. To achieve
this we simply measure the power reflected from the antenna. By use
of a circulator we ensure that the reflected power does not return to the
synthesizer/amplifiers, but is dumped in a termination resistor or a spectrum
analyser.

-15 -10 -5 0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

-12.41933 mm

F :  0.114(3)
 L :  0.0107(17)

l :  46.9(3) mm
d0 : -12.6(1.9) mm

Transmitted microwave power

Pt

Pin

=
1

1+ L + F ⋅ sin2 2π (d−d0 )
l( )

m
ic

ro
w

av
e 

an
te

n
n
a 

tr
an

sm
is

si
o
n

 P
t/P

in

waveguide length (arb. offset), [mm]

fi
n
al

 c
u
t

circulator

1

10

13

14

microwave synthesizer

µ-wave
antenna

spectrum analyser









Box 10.2: Open-ended wave-guide
transmission to free-space as func-
tion of the wave-guide antenna
length. Inset shows the setup
for measuring the power reflected
by the antenna Pr. To establish
the input power Pin we simply
connect the synthesiser directly to
the spectrum analyser input. The
transmission (Pin − Pr)/Pin as a
function of the wave-guide length
(red points) corresponds to that of
a poor cavity and a fit to the theo-
retical model [Milonni88] (green
line) yields a microwave wave-
length of 46.9 mm in the wave-
guide. The wave-guide dimen-
sions set the cut-off frequency
of the (lowest) TE-01 mode at
ν01 = c/(2a) = 6.58 GHz,
where a = 22.8 cm is the trans-
verse wave-guide size. From this
we can predict the frequency of
the microwave radiation in the
wave-guide νc =

√
ν2

0 − ν2
01 =

6.41 GHz [Jackson99]. This in turn
gives a predicted wavelength of λc = c/νc = 46.73 cm, which agrees well with the
value extracted from the fit to the measured data.

The figure shows the reflected power at 9.192 GHz measured on a spectrum
analyser. Each measurement point corresponds to a different wave-guide
length as achieved by milling off short sections of the end face. Since the
minimal reflection indicates the best free-space coupling we stop shortening
the wave-guide at -12.6 cm on the length-scale of the figure.

new switch we decided to purchase a second high-power amplifier (22 dB gain,
max. output power 41 dBm) from Kuhne. Since the HP modulator doesn’t stand
more than 20 dBm the power amplifier is placed after the switch. The main gain
of the low IL switch and power amplifier reconfiguration is the shortening of the
Rabi oscillation period, which we generally desire to be short and especially so
in cases were trap dynamics are important (see sec. 11.2.2).

phase-shifter When we treated the microwave interaction we saw that the mi-
crowave field induces a rotation of the pseudo-spin around a vector in the equa-
torial plane of the Bloch-sphere. By eq. (10.6) the azimuthal angle of the rotation
vector is determined by the phase of the microwave field. It is possible to change
the phase of the synthesiser by changing the phase of the 10 MHz reference sig-
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nal, however it takes a little less than 10 ms befor the synthesiser output adjusts
to a phase-shift of π. This is much too long. In order to change the microwave
phase rapidly we acquired a phase-shifter, which depending on an applied bias
voltage displaces the phase of its output w.r.t the input. We use the simple test
setup drawn in fig. 10.18a to characterise the phase-shift dependence on the bias
voltage. This basically constitutes an interferometric measurement in which the
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Figure 10.18: Phase shift of output of microwave phase-shifter vs. applied bias voltage.
a) test setup for measuring phase-shift. b) output signal normalised to the maximal
signal amplitude v/v0 in insert. In main plot the nπ + arccos(v/v0). The colours cor-
respond to different integer multiples of π that are added to make a smooth plot. The
grey line is the insertion loss of the phase-shifter, which has been taken into account for
the phase-shift measurement.

output detector voltage will be v = v0cos(δθ). The phase-difference is set by the
cable length difference from the point where the signal is split until the mixer,
plus the additional phase-shift from the phase-shifter. The insert of fig. 10.18b
shows the signal we observe. If we define δθ = 0 for 0 V bias we can determine
δθ = arccos(v/v0). Thus, we get the phase-shift dependence on the bias voltage
shown in fig. 10.18b. The phase-shifter bias voltage is set by the DIO card via the
DIO-64 LabView program. The DIO can only set TTL values on its outputs, so in
order to set a particular voltage we use 12 DIO outputs and convert the logical
values by a 12-bit DAQ to an analogue voltage. The DIO-64 program can in turn
be set to receive values from the stepping LabView programme and thereby the
phase-shift can be automatically stepped through a parameter range so as to e.g.
observe a full Ramsey-fringe. The phase-shifter has been used for the character-
isation of the dephasing and decoherence e.g. in sec. 11.2.3 and sec. 11.3. For the
later measurements with squeezing and clock sequences we used a new setup
described in the below section.

One unfortunate property of the phase-shifter is that besides shifting the phase
it also induces losses, which are dependent on the bias voltage. In fig. 10.18
we plot the measured insertion loss (grey line) and see that it varies from about
Pout/Pin = 0.87 attenuation at 0 phase-shift to Pout/Pin = 0.70 at 5π/2 phase-
shift. These phase-shift dependent losses are not particularly welcome as they
will change the interaction parameters with the atoms, i.e. the Rabi frequency
and thus τπ. To prevent the losses in changing the microwave power at the
atoms, we make sure that the microwave source provides enough power that the
NARDA amplifier output is saturated. In this case changes in the amplifier input
power will translate into minor variations at the output. Secondly, we actively
stabilise the power as close as possible to the atoms (see sec. 10.2.2 below).
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Revamped microwave source

In cases where the microwave frequency needs to be kept very stable over long
periods we found that the synthesiser did not suffice. This point will be elab-
orated in sec. 10.2.2 where we characterise the frequency stability of different
sources. Hence we constructed 6 an alternative frequency source which we will
outline now.
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Besides the elements drawn on the figure the setup contains a number of amplifiers and
filters. The frequency multiplication and division is for the most part also done stepwise
so as to generate the final values indicated. The output signal at 9.192 GHz is passed to
the Narda pre-amplifier and the signal passes the same components as in the old setup
from fig. 10.16. For details of the schematic we refer to the body text.

The source is made in a modular design so that we can build the complete
source as a chain (see fig. 10.19). The first stage is, as with the synthesiser based
source, a GPS receiver that generates a 10 MHz reference signal. The GPS signal
ensures the absolute calibration of the later stages and in this respect keeps the
frequency deviations low on the long time-scale. The 10 MHz signal is passed to
an Oven Controlled Crystal Oscillator (OCXO) from Morion. The OCXO outputs
a 500 MHz signal which is specified to have a high phase stability up to around
10-20 kHz.7

At this point we have two options. One is to multiply the OCXO first by a factor
of two up to 1 GHz and then up to 9 GHz with a chain of frequency multipliers.
The other option is not to use the OCXO signal directly, but as reference to
which we lock another 9 GHz source. This other source is a Dielectric Resonance
Oscillator from Poseidon Scientific Instruments (PSI) outputting a 9 GHz signal.
This is specified to have a very low phase noise in the MHz range, whereas in
the kHz and Hz range it is more noisy than the OCXO.8 Thus we have the option
of locking the DRO by mixing its signal down to the 500 MHz of the OCXO and
via frequency comparison tune the DRO via its VCO control input. Since we
have 500 MHz and 9 GHz signals derived from both the OCXO and the DRO we
can compare their noise with either of the two frequency signals.

We still need to bridge the last 192 MHz from 9 GHz to the Cs clock transi-
tion. This is done by a key element of the setup, a Direct Digital Synthesiser
(DDS), which derives an output frequency by sampling a 1 GHz reference sig-
nal. The DDS from Analog Devices, that we use, delivers output frequencies up
to 400 MHz with < 0.23 MHz resolution, and less than −125 dB phase-noise

6the chief responsibility for the implementation was taken by Jürgen Appel.
7at 10 kHz the phase-noise is stated to be -140 dB/Hz below the carrier. above 10 kHz the

phase noise is not specified
8above 1 MHz the phase noise is specified to be at ∼ −160 dB below the carrier. At 10 kHz

the same figure is -112 dB while for the OCXO it is -140.
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w.r.t. the carrier. The 1 GHz reference signal is taken from the first frequency
multiplication of the OCXO output. The 192 MHz signal from the DDS is mixed
with the 9 GHz signal, derived from the either the DRO or the OXCO directly,
resulting in a 9 GHz carrier signal with sidebands at 9± 0.192 Ghz. The upper
sideband is resonant with the Cs clock transition, while the other sideband and
the carrier are so far detuned that they have no influence on the atoms. How-
ever, the carrier and lower sideband are unwanted since they would saturate the
amplifiers and thus limit the power in the upper sideband. Hence the signal is
filtered in a wave-guide cavity designed to pass frequencies of 9.2± 0.05 GHz
with 3 dB insertion loss. The attenuation at the carrier frequency is -63 dB and
similar at the lower sideband.

The great advantage of the DDR is the flexibility of choosing both the amplitude
and frequency/phase of the output. The DDR generates its output by running
through a pre-stored signal sequence. Thus we can modify the pulse shape
and phase precisely as we need them. The DDR can hold up to eight signal
profiles and it can switch between them in a few ns. This allows us to switch
the microwave pulses on and off by using the DDR instead of the HP pulse
modulator. When the DDR output is set to zero the 9.192 GHz sideband is absent
and all the microwave power is absorbed in the filter cavity. Hence to generate
a microwave pulse we open the HP pulse-modulator and simply modulate the
amplitude of the DDR output. Because if the limited number of profiles that
can be stored on the DDR we only switch the demanding pulses, i.e., those
that require a phase-change or complicated amplitude envelope. For the more
regular pulses, such as those used in the optical pumping blow-away and state
preparation, we keep the DDR amplitude in DC mode and switch the pulses in
the standard way with the HP pulse-modulator.

Microwave power stability

We will discuss our observations of instability in the microwave output power
along with the measures taken to stabilise the power. In the synthesiser based
configuration, the predominant cause of slow fluctuations in the output power
is thermal and spatial changes in the cables carrying the microwave signal. Our
placement of the microwave synthesiser in an enclosed cooling cabinet9 and the
ensuing long cable path only accentuates this source of power fluctuations. In
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Figure 10.20: Microwave power drifts in cables.
Green curve is power measured at synthesiser out-
put. Red curve is power measured after long
stretch of cable while twisting it.

fig. 10.20 we illustrate the difference in the power stability at the synthesiser
output and following a lengthy stretch of cable. We amended the setup by im-
plementing a feedback loop. The synthesiser output is by default levelled to an
internal calibrated detector, but it is also possible to level it to an external volt-
age signal. Thus, we split off one tenth of the power just before the switch and
detect it with a HP33330B Shottky diode detector. The synthesiser output is then

9this placement was chosen in order to keep the noise level in the lab at a tolerable level.
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levelled to the detector voltage, with a feedback bandwidth of 80 kHz mainly
determined by the synthesiser input. The levelling mode and value are set along
with the synthesiser frequency in the LabView programme instrumentstepper.vi
through a GPIB or ethernet interface.

Another measure that ensures more higher power stability of the output is to
drive the amplifiers into moderate saturation. When this is done, modest fluc-
tuations in the amplifier input power will be suppressed in the amplifier out-
put. To state some numbers, the synthesiser output power is around −4 dBm
(∼ 0.4 mW) of which about 80%, i.e. −5 dBm, reaches the Narda amplifier input.
The amplification is 43.5 dB, but the output power is limited to 31.5 dBm (1.4 W).
When only the Narda amplifier is used we utilise the AMC switch and loose no
more than 1 dB so that including losses in cables we estimate 30 dBm (1 W) to
reach the antenna. In the two stage amplification setup the Kuhne input power
is limited to 25 dBm. Using the HP8496B variable attenuator for the switching
exactly induces a 6 dB loss which reduces the input to 25.5 dBm. With 22 dB
gain and 41 dBm maximal output power the Kuhne amplifier is also saturated
and we estimate around 40 dBm (10 W) power for the antenna.

A second major perturbation on the microwave radiation power is caused by the
environment of the MZI/trapping setup, specifically the thin aluminium sheets
to which the acoustic damping fleece is mounted. These make up an enclosure
of the whole setup that turns out to act as a giant and very imperfect microwave
cavity. Any changes to the physical location of one the sheets visibly alters the
interaction of microwave with the sample. Presumably, the perturbation is not
only in the absolute microwave power but also in the polarisation of the field.
Thus a simple measurement of the field amplitude would not reveal the full ex-
tent of the effect. We tried to fix the problem by use of microwave absorption
material. Unfortunately and indeed very surprisingly, the absorber proved to
generate such quantities of fine dust to be incompatible with an optical setup.
In conclusion, the MZI/trapping enclosure should not be touched after the mi-
crowave parameters (power, pulse length, frequency) have been set and when
the sheets are removed/reinserted these parameters must be re-calibrated.

With the above measures and precautions the microwave power was sufficiently
stable to perform the vast majority of the measurements. Since, in the new mi-
crowave setup, we shape the some of the pulses with the DDS we do not have
a constant power before the HP pulse modulator and therefore cannot generate
any feedback. On the other hand, the new microwave sources are located much
closer to the setup and thus cable losses play a lesser role. Still, we observe
slow drifts of the microwave power. These drifts are very likely caused by the
thermally induced changes in the efficiency of the power amplifier. We chose
to monitor the pulse power measured by the internal detector of the Kuhne
power amplifier. The microwave pulse powers are stored on a DSO channel and
an average microwave pulse power is computed using an appropriate integra-
tion window as described in sec. 8.2.2. In a very recent move the measured
microwave power is used for a feed back to the amplitude of the DDS.

Microwave frequency stability

Stabilising the microwave frequency is a somewhat demanding task and as our
measurements have steadily increased in complexity we have had to perfect the
frequency precision and accuracy10. First we discuss the accuracy.

10in clock terminology accuracy of an oscillator is the closeness of its mean frequency to the
reference frequency and the precision is the standard deviation of the oscillator frequency around
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Accuracy of microwave frequency source Performing spectroscopy of the Cs
clock transition we realised that the calibration of the synthesiser frequency was
off by ≈ 30 kHz corresponding to 3 · 10−6 relative off-set (see fig. 10.22-10.27). To
improve on the accuracy we employed the GPS based frequency reference, where
we locked a 10 MHz Oven-Controlled Crystal Oscillator (OXCO) to the signal
from a GPS-antenna (see fig. 10.16). First we used the 10 MHz reference for
a spectrum analyser and acquired the spectrum of the synthesiser output. We
found that due to expected ageing of the internal time-base the un-referenced
synthesiser frequency was off by 30.841 kHz. With the 10 MHz GPS reference
fed to the synthesiser we get good correspondence between the set and tabulated
clock-frequency (≈ 0.5 kHz ≡ 5 · 10−8 relative offset). At this point, we believe,
the accuracy is limited by the perturbations of the clock-transition in the sample.

Precision of microwave frequency source At first we relied solely on the syn-
thesiser and saw no effect on the state preparation from the imprecision of the
microwave radiation. Only, when using several subsequent pulses as needed for
Ramsey spectroscopy and state tomography (see sec. 12.6) we observed excess
noise due to the synthesiser’s frequency instability.

To characterise the phase-noise of an oscillator one should ideally look at the
phase coherence of the same oscillator signal at different points in time. How-
ever, to do so one would need to split the signal and then mix the split parts
after travelling through delay lines of different lengths. A slightly less ambi-
tious strategy to determine the source’s stability is by comparing it with another
source. Unless, one source has significantly higher precision the comparison
will, however, not be able to completely characterise either source. One could
first compare a pair of essentially identical sources and thereafter deduce the
precision of other sources. Since we do not have to identical sources (at least
not at the right frequency) we must compare. We characterise the sources by
the Allan variance in basically the same way as was done for two probe lasers
in fig. 8.7. The Allan deviations for different combinations of sources at 9 GHz
are shown in fig. 10.21. The data below 100 ns is at the limits of the amplifier
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compares the OXCO (multiplied up to 9 GHz) with the HP8341B synthesiser,

the mean frequency.
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and we see that the noise is consistently higher than all the other combinations.
We conclude that this is due to the phase noise of synthesiser, which in the
experimentally most relevant range from 1 µs-1 ms shows about one order of
magnitude more noise than the rest. The yellow curve compares the 500 MHz
signals from two identical OXCO sources and the calculated Alan deviation is
then scaled to allow comparison. For the most part the noise of this combination
is as good as that which contains a DRO. Only in the range below 10 µs does it
seem that the OXCO noise is slightly higher than that from the comparison of
the OXCO (multiplied up to 9 GHz) and the DRO. This indicates that on short
time-scales the DRO is superior, as was expected from the data-sheets. On time
scales longer than 10 µs the DRO is locked to the other OXCO and we expect
the noise to be the same as for the direct comparison of the OXCOs. Finally, we
compare the frequency multiplied OXCO signal with that from the DRO locked
to the same OXCO. On short time-scales there is no difference between the pre-
vious comparison, since the DRO is effectively free running, i.e., the lock to the
OCXO is slower than 10 µs. On intermediate time-scales the DRO is locked to
the OCXO, and the signal shows the same level of noise as when two different
OXCOs are used. On long time-scales all signals are locked to the GPS, but evi-
dently the lock is not so very strong, as the signal derived from the same OCXO
still has the lowest noise.

In sum the new source(s) show a much better phase stability than the synthesiser
especially in the range of times relevant for our measurements. Moreover, the
bandwith of the DRO-OCXO lock seems to be set reasonably appropriate.

10.2.3 Rabi, Ramsey, and spin echo sequences

Having described the theory of microwave interaction between hyperfine ground
levels and presented the experimental setup, we are now in a position to display
the experimental observations on the final state preparation step. Already at
this stage, the experiments will begin to reveal some of the great advantages of
our MZI based probing, in particular its ability to extract information about the
atomic state without destroying the state. The degree of state destruction caused
by the probing will be the main topic in chapt. 11.3 and we shall not dwell in it
here. However, in sec. 10.2.4 we will try and grasp the rate of state disruption,
i.e. decoherence, caused by other effects. Before we get to that, we must calibrate
the microwave interaction starting with the tuning of the microwave source to
the atomic transition frequency. We recap that the probes detect the phase-
shift from all atoms in a particular hyperfine ground level irrespective of their
magnetic sub-level. Thus, the probes cannot themselves detect the distribution
of atoms in the different sub-levels. What they can detect is, however, the effect
on the overall hyperfine level population that the microwaves have by interacting
with a particular sub-level.

We follow the experimental cycles illustrated by fig. 10.11 and fig. 10.14, where
following optical pumping and optionally a state purification we perform a Rabi
or Ramsey type microwave pulse sequence and measure the phase-shift with
either single or two colour probe pulses. To normalise the measurement to the
total atom number we may re-pump all atoms to the F = 4 level and again
measure the phase-shift (also shown in fig. 10.11 and fig. 10.14). Finally, to
establish the MZI phase offset we make one measurement with no atoms in
the FORT once every loading cycle. When using the single colour probe we
effectively gauge the population in one hyperfine level while the two colour
probe is equivalent to a direct measurement of the pseudo-spin z-component.
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Since, for historical and practical reasons we use both one and two colours for
different measurements we just bear in mind to use the appropriate equations in
sec. 10.2.1.

Determining transition frequency

The task of tuning the microwave frequency on resonance with the clock transi-
tion should be a standard task, but for a number of reasons it required several
months of perfection before we could nail it down with confidence. The first
difficulty arose when no apparent effect was visible at the expected microwave
transition frequency of ω0 = 9192.631770 GHz. Thus to locate the resonance
frequency we turned to a sweep of the microwave frequency over a certain range
centred at ω0. The red curve in fig. 10.22 gives a good idea of our observations,
where we see the population of one hyperfine level being depleted as the mi-
crowave radiation crosses the transition frequency. Making exact predictions as
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to what one should observe is, however, difficult as it requires prior knowledge
of the microwave field intensity, background magnetic field, etc. Nevertheless,
assuming that the width of the population depletion range is due to Zeeman
splitting of the magnetic sub-levels, we are able roughly estimate clock-transition
frequency corresponding to the the centre of the range at ωµw = 9191.600 MHz,
i.e. ≈ 30 kHz off from the tabulated value. As pointed out in sec. 10.2.2 we later
found this to correspond almost precisely with the synthesiser calibration offset.
With this first estimate at hand, we could narrow the scan and try to calibrate
and see some effect of optical pumping (see sec. 10.1.3), which in turn enabled us
to pick out the clock-transition more easily. Crucial to optical pumping is a bias
field strong enough to overshadow stray background magnetic fields, and addi-
tionally the sub-level splitting brought about by the bias field neatly isolates the
clock-transition from adjacent sub-level transitions (green curve in fig. 10.22).
By observing the frequency separation of the transitions we infer the Zeeman
splitting and thus compute the bias field strength using eq. (3.11) (see fig. 10.22
caption). Similarly, when turning the bias field off, the width of the population
depletion range is a measure of the total splitting of the hyperfine level due to
background magnetic fields. Based on this relation we adjust the magnetic field
compensation coils to minimise the background field around the atoms - the
procedure is described in detail in sec. H.0.1.
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Rabi oscillation measurements

With an optically pumped ensemble and a good estimate of the clock-transition
frequency the ensuing goal was to observe Rabi-oscillations of the population
in mF = 0. In fig. 10.23 (green curve) we indeed see that the F = 4 hyperfine
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Figure 10.23: Rabi oscillation amplitude and frequency vs. microwave frequency.
We use the synthesiser as source, with only the Narda amplifier and a the HP
switch (see fig. 10.16). a) Example traces of Rabi oscillations observed in the F = 4
atomic phase-shift for different microwave drive frequencies ωµw. The microwave
field is applied after 300 µs and in order to find the reference phase-shift the atomic
sample is destroyed by resonant MOT cooling light after 3500 µs. b) Plot of the
Rabi oscillation frequency derived from a simple sine fit to the F = 4 phase-shift

observed in a). The fit to Ω =
√

(ωµw −ω0)2 + χ2 gives a clock transition frequency of
ω0 = 2π · 9192.601182 MHz.

population oscillates during the time that the microwave field is present. The
oscillations do not remove all atoms from |F = 4〉, since only atoms successfully
pumped in to the mF = 0 level interact with the microwaves. Thus the ratio
of the Rabi-oscillation amplitude to the initial phase-shift from all atoms in the
hyperfine level gives the fraction of atoms which are optically pumped. This
fraction was used as a measure of the optical pumping efficiency in sec. 10.1.3.
We expect the Rabi-oscillation amplitude and frequency to depend on the mi-
crowave frequency ωµw according to eq. (10.8). From fig. 10.23a we confirm
that the Rabi oscillation amplitude decreases as ωµw is turned farther from the
atomic resonance. At the same time, the Rabi oscillation frequency increases,
and a plot of the Rabi oscillation frequency Ω vs. microwave frequency ωµw is

neatly fitted by a Ω =
√

(ωµw −ω0)2 + χ2 (see fig. 10.23b). The fitted resonance
frequency ω0 = 2π · 9192.601182 MHz agrees well with the initial estimate. The
resonant Rabi frequency χ of 2π · 3.5 kHz, corresponding to a π-pulse dura-
tion of tπ = 142 µs, is rather slow. This prompted us to boost the microwave
power by getting a switch with lower losses and later a second power amplifier
(see sec. 10.2.2). Mostly we do not fine tune the ωµw by observing Rabi oscilla-
tion amplitude or frequency, but instead rely on Ramsey spectroscopy discussed
below.

We show one further characterisation of the Rabi oscillation, firstly because it
is really neat, secondly because it confirms an assumption made in the theory
of the microwave interaction, and finally because it will serve as a reference to
explain an observation made below in sec. 12.6. By optical pumping and purifi-
cation (see next section) the atoms are initially prepared in F = 3, mF = 0 and
for a given Rabi frequency χ we apply a π pulse (tπ = 2π/χ) and observe the
population transfer to F = 4, mF = 0. On resonance, the whole population is
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transferred but for detunings ∆0 6= 0 the π pulse will only transfer a fraction
of the atoms — this is evident from fig. 10.10. We usually say that the π pulse
efficiency is reduced. On fig. 10.24 we plot the fractional population transfer as
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Figure 10.24: Rabi spec-
troscopy of microwave tran-
sition. We use the syn-
thesiser as source, with the
Narda amplifier, the HP
switch and for the 8.1, 12, 25,
and 50 µs π-pulse traces ad-
ditionally the Kuhne power
amplifier (see fig. 10.16). We
vary the microwave field
power by changing the syn-
thesiser output power and
then adjust the duration of
the pulse so that on reso-
nance it makes up a π-pulse.

With all atoms starting in F = 3, mF = 0, we detune the microwave field and ob-
serve the normalised population transfer to F = 4, mF = 0, which will be on the form
nat,4/nat = χ2(sin2( 1

2 Ωtπ))/Ω2 c.f. eq. (10.8). We the data to this with χ, tπ , and ω0 as
free parameters curve. In the insert we plot the fitted tπ,fit against the set tπ,set and from
a linear fit get a nice 1:1 correspondence.

a function of ωµw for a few Rabi frequencies. The data is fitted with a slightly
modified eq. (10.8) where the pulse duration tπ, the Rabi frequency χ and res-
onance frequency ω0 are fitting parameters. As a check of consistency we see
that there is a one-to-one correspondence between the set and fitted π-pulse
durations (see inset in fig. 10.24).

The fact that the data fits with eq. (10.8) for all of the chosen Rabi frequencies
bolsters the assumption in sec. 10.2.1 that decays do not play a role on any of
the chosen time-scales. In other words the coherence time is (and better be)
safely above the maximal tπ ≈ 100 µs. The shape of the population transfer can
be seen as measure of the frequency spectrum of the microwave pulse as seen
by the atoms. In this sense, even an off-resonant atom will interact with the
microwaves with some strength. The duration of the microwave pulse sets the
width of the atomic frequency response ∼ 1/tπ. This very much resembles the
Fourier spectrum of the pulse as written in eq. (8.1) and shown on fig. 8.13 for
the probe pulses. Hence we refer to this result as the microwave pulses being
Fourier limited, though strictly the two concepts differ.11 To restate what we
said above, this also means that we do not resolve the natural line-width of the
transition as it is much smaller than 1/tπ. In sec. 12.6 we shall see that the
width of the spectral response causes other transitions than the desired one to
be addressed.

State purification (blow-away)

We make a short interjection on how to improve the ratio of the atomic popula-
tion in the mF = 0 level to that of the whole hyperfine level. As stated in sec. 10.1
there is no way to optically pump the entire population in to the mF = 0-level.
Therefore, we need to selectively expel the atoms in mF 6= 0. The procedure for

11in the Fourier decomposition the minima occur at ω = n 2π/tπ whereas in the Rabi
spectroscopy they appear at |ωµw − ω0| =

√
n(n + 1/2) 2π/tπ , which differ by the factor√

1 + 1/(2n). For n = 1 this factor is
√

3/2 = 0.86, while for large n it becomes insignificant.
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this is sketched in fig. 10.25. After the optical pumping the atomic population

ππ

4

3

µ-w
bias

optical
pumps

MOT cooler
(blow away)

Figure 10.25: Optical pumping and state-purification by blow-away. The top part shows
the distribution of the atomic population among the sub-levels of the hyperfine ground
states while the lower part sketches the time sequence of the method. The optical pump-
ing concentrates the evenly distributed population in to the |4, 0〉 level with some resid-
ual population in the nearby |4, 6= 0〉 levels, but no population in any |3, mF〉 levels. A
microwave π-pulse transfers the |4, 0〉 population to |3, 0〉, and subsequently a pulse of
MOT cooler light on resonance with the 4 → 5′ cycling transition expels the |4, 6= 0〉
atoms from the FORT, and only the |3, 0〉 population remains in the sample. If desired,
a final π-pulse may transfer the atoms back to |4, 0〉.

is distributed in a single hyperfine level — say F = 4 — with the bulk-part
in the mF = 0 level. With a microwave π-pulse we can selectively move the
mF = 0 population to the F = 3 hyperfine level, whereafter MOT cooling light
on resonance heats F = 4 atoms out of the FORT — a process we have coined
blow-away. Since the cooler is on the F = 4 → F′ = 5 cycling transition there is
only a small probability for an atom to relax to the F = 3 ground level before it
is expelled from the trap. The atoms remaining in the trap are now ideally all in
the F = 3, mF = 0 state. Experimentally, we can pump > 99% of the population
into mF = 0. In some cases even a small contamination of mF 6= 0 atoms is
disrupting, and in that case the blow-away sequence can be repeated a couple of
times.

Ramsey spectroscopy

Next stage of the rocket is to investigate the Ramsey spectroscopy, focusing on
frequency domain measurements. That is to say, we pick a Ramsey interroga-
tion time τR and then vary the microwave frequency ωµw to observe Ramsey
fringes as given by eq. (10.12). On fig. 10.26a we show the Ramsey fringes for
a number of τR. We use the fact that the overlap of the fringes for different τR
only occurs at ωµw = ω0 as yet another way to locate the clock-frequency. The
narrowing of the oscillation period for large τR manifests the increased sensitiv-
ity of the Ramsey fringe to the microwave detuning. We mark that the Ramsey
fringe amplitude is not unity in all cases. There are two causes for this, the first
one being atomic state decoherence, which explains why the amplitude (even on
resonance) drops the larger τR (see theoretical curve in fig. 10.13). In sec. 10.2.4
we quantify this observation. Secondly, for large detunings the π/2 pulse effi-
ciency drops considerably and it is no longer possible to transfer the population
from one hyperfine state to the other. We notice a more surprising dependence
of the resonance frequency ω0 on Ramsey interrogation time (see fig. 10.26b). In
fig. 10.26c we plot the resonance frequency as function of τR. We believe the shift
of ω0 to be related to the light-shift of the clock transition by the FORT, which
consequently we set out to characterise.

FORT light shift of clock-transition Usually, we leave the FORT trapping laser
on during the Ramsey sequence as we would other-wise loose atoms from the
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Figure 10.26: Ramsey fringes in frequency domain for different interrogation times. We
use the synthesiser as source, with the Narda pre-amplifier, the HP switch and the
Kuhne power amplifier (see fig. 10.16) giving a π/2 pulse duration τπ/2 = 4.15 µs ⇔
χ = 2π 60 kHz. a) A wide frequency scan of the Ramsey fringes thus resembling fringes
obtained from atomic microwave clock experiments [Vanier89]. b) A narrow frequency
scan enables precise determination of ω0, however we note that ω0 drifts slightly due
to inhomogeneous FORT light-shift in combination with atomic motion. The lines show
the fit of eq. (10.12) to the data (only data in a 40 kHz range around ω0 is used for the
fit). c) A plot of the fitted transition frequency ω0 vs. the interrogation time τR highlights
the drift of ω0.

trap. The longer τR the fewer atoms would remain and the worse the SNR of the
fringe. For the sake of investigating the FORT laser differential light shift of the
two hyperfine ground states we can naturally anyhow switch off the FORT laser
during the Ramsey sequence. In fig. 10.27 we compare the Ramsey fringe with
the FORT on and off. From the difference of the resonance frequency we extract
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Figure 10.27: FORT light-shift of Ramsey
fringe phase. We use the synthesiser as
source, with the Narda pre-amplifier, the HP
switch and the Kuhne power amplifier (see
fig. 10.16). We perform frequency domain
Ramsey spectroscopy for four different inter-
rogation times either with the FORT laser on
or off during the interrogation. The shift of
resonance frequency equals the FORT light-
shift δωls,FORT = 2 kHz. In the upper plot
(FORT on) the reduction of Ramsey fringe
amplitude is due to decoherence. For the
lower plot (FORT off) the reduction in am-
plitude is additionally affected by the loss
of atoms during the off-time of the trap.
Though, this is to some extent compensated
by the normalisation to the remaining total
atom number, the small population and thus
size of the atomic phase-shift, means that the
points scatter significantly more and some
offsets in the signal cause the fringes to shift
below zero atomic phase-shift.

the FORT light-shift of δωls,FORT = 2 kHz. This shift is more or less insignificant
compared to the spectral response for the π pulses fig. 10.24 but for any Ramsey
type measurement it must be accounted for. There is little point in quantifying
the shift e.g. in terms of FORT power, because δωls,FORT heavily depends on the
exact FORT and the probe modes. Thus, even if some approximate relationship
between δωls,FORT and the FORT power was established, an experimental deter-
mination of ω0 would still be required. Alas, the location of the exact transition
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frequency by the Ramsey method is a standard calibration step each time a mea-
surement run is started. Because, of the ease of implementation and analysis we
prefer the Ramsey method over the Rabi oscillation method for determining ω0.

We take the opportunity to elaborate on sec. 10.2.2 and establish the accuracy of
the atomic frequency measurement in the absence of trap light-shift. The Ram-
sey fringes with the FORT off prescribe a Ramsey frequency of 9192601.8 kHz,
and adding the known off-set of 30.841 kHz we arrive at a clock-frequency of
9192632.6 kHz. The discrepancy with the defined value is 0.87 kHz. Some of
this is explained by the quadratic Zeeman shift, which for an 800 mGauss bias
field (see fig. 10.22) amounts to only 0.27 kHz c.f. eq. (3.12). The remaining
discrepancy of 0.6 kHz is probably due to imperfect estimation of the resonance
frequency in the fit – having the trap off during the Ramsey interrogation causes
a big loss in contrast of the fringe.

We return to the shifting light shift observed in fig. 10.26b+c. With some good
will, a similar effect may be seen on fig. 10.27a while being absent on fig. 10.27b.
We attribute the changing shift to the movement of the atoms within the FORT.
We recall that the FORT light shift is inhomogeneous. For short τR compared
to the trap oscillation period, the atoms do not have time to move significantly
inside the FORT potential and the atoms probed have been in the same position
in the FORT the whole time. For longer τR the atoms will have moved about
and sampled regions of different δωls,FORT. The apparent increase of δωls,FORT
with time indicates that the transverse mode of the probe is not perfectly aligned
to the FORT mode12 or the atomic sample is slightly displaced from the FORT
waist and thus moves longitudinally. The time-scale of the light-shift drift on
fig. 10.26c agrees well with the transverse oscillation period of ≈ 0.5 ms found
in sec. 11.2.113. We rest the case for the FORT light shift here, but take it as a
warm-up for sec. 11.1 where we shall be confronted with a clear effect of the
probe light-shift coupled with atomic motion.

10.2.4 Relationship with coherence measurements

The microwave interaction is essential for the state preparation, but as seen in
the preceding sections also reveals a great deal of information about the atomic
state. In the following sections we will use the Rabi and Ramsey oscillation
measurements to characterise the time-scales that the sample maintains certain
characteristics from sub-level population to state coherence.

Sub-level population lifetime - T1 time

The atoms optically pumped to F = 4, mF = 0 may decay to other mF levels in
either hyperfine level or to the mF = 0 of the F = 3 level. Since the former does
not interact resonantly with the microwaves and the latter is out of phase by π

on the Bloch-sphere, both cause a reduction of the Rabi oscillation amplitude.
Hence, the lifetime of the mF = 0 magnetic sub-level population — the T1 time
— is found by measuring the decrease of Rabi oscillation amplitude as the mi-
crowave is applied with increasing delay. On fig. 10.28a we show a few examples
of the Rabi oscillations for different delays between the optical pumping and the
microwave field application. The decay of the initial offset (total population of
all F = 4 sub-levels) and the decay of the Rabi fringe amplitude (population of

12If the probe beam is well mode matched with the FORT the probe always detects the atoms in
the centre of the trap where the FORT intensity and thus δωls,FORT is large. Hence, total ensemble
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Figure 10.28: T1 time for decay of sub-level population measured as decay of Rabi fringe
amplitude. We use the synthesiser as source, with the Narda pre-amplifier, and the HP
switch (see fig. 10.16) giving a Rabi frequency of χ = 2π13.3 kHz. a) Sample traces
of Rabi oscillations in the F = 4 population observed at different delays w.r.t to the
end of the optical pumping stage. The probing is done with a train of 100 pulses of
1.5 µs duration and spaced by 37.7 µs. After the first 3 probe pulses the microwave field
is turned on continuously so that the measurement is thus done on the state during its
evolution. The probe pulse separation is adjusted so that probing occurs when the mF =
0 atoms pass the upper or lower hyperfine levels where the probe light shift has no effect
(see box 11.1). The decay of the individual Rabi oscillation traces is due to scattering
of probe photons. b) Population in |4, mF〉 (red circles) measured as the average phase-
shift of the first two probe pulses and fit yielding a 83 ms lifetime. Population in |4, 0〉
measured as the difference between the first 3 top and bottom phase-shifts of the Rabi
oscillations. The T1 lifetime is fitted to 60 ms.

F = 4, mF = 0) are plotted on fig. 10.28b. The exponential decay fits show a
hyperfine level population decay time of 83 ms and a T1 time of 60 ms. Since,
the decay to another hyperfine level necessarily also changes the sub-level the
T1 time should indeed be the smaller of the two. The fact that it is not much
smaller indicates that most of the T1 losses are due to hyperfine changing events
such as background gas collisions. The trap lifetime was found to be somewhat
longer TFORT = 300 ms, indicating that not all hyperfine changing events cause
the atom to be expelled from the FORT. Thus, the hyperfine population decay is
very likely aided by leak light from the probes, MOT, and/or optical pumping.
This hypothesis is backed by the fact that the T1 time improved when we in-
serted RF-switches to the pulsing AOM input and shutters in to all the relevant
beam paths.

Dephasing time - T2 times

To extract the T2 coherence time we analyse the decay of the Ramsey fringe
amplitudes in fig. 10.26. These are plotted as a function of τR in fig. 10.29 and
fitted to an exponential decay. Since, the state is only sensitive to decoherence
while in the superposition state, the interrogation time is the relevant time factor
and we infer T2 = 0.4 ms. The conjecture in sec. 3.7.1 that T2 < T1 surely
holds. Assuming irreversible decay is much slower (T′2 � T∗2 ⇐ T2 ≈ T′2) we use
eq. (10.20) to estimate the sample temperature of T = 220 µK, which is on the
high end compared with the ∼ 60 µ we got in sec. 9.2.3. The discrepancy may
be due to leaking probe light.

The T2 is a measure of both reversible and irreversible state dephasing. As said in
sec. 10.2.1 we can eliminate the effect of reversible dephasing by means of a spin-

light-shift should decrease as atoms probe regions of the FORT with lower δωls,FORT .
13for the reasons explained in sec. 9.2.2 we put more faith in the radial trap frequency estimated

in sec. 11.2.1 than that found in sec. 9.2.2.
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Figure 10.29: T2 time measured as decay of
Ramsey fringe amplitude with increasing in-
terrogation time τR. We use the synthesiser as
source, with the Narda pre-amplifier, the HP
switch and the Kuhne power amplifier (see
fig. 10.16). The plot is based on the data and
fits shown in fig. 10.26a+b. The exponential
decay fit gives T2 = 0.41 ms.

echo pulse in the Ramsey sequence. We perform the spin-echo measurement in
the time domain and pick a suitable microwave detuning, which allows us to
see at least a couple of full oscillations within the T2 decay time. Changing,
the interrogation time τR,1 we are able to observe the changing amplitude of the
Ramsey spin-echo fringe centred on τµ,2 = 2τR,1 + τπ (see fig. 10.30). We fit the
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Figure 10.30: T′2 (reversible dephasing) and T2∗ (irreversible dephasing) times measured
as decay of Ramsey spin-echo fringe amplitudes. We use the synthesiser as source, with
the Narda pre-amplifier, the HP switch and the Kuhne power amplifier (see fig. 10.16).
The microwave detuning is set to ∆0 = 3 kHz. For 8 different τR,1 we probe the F = 4
population over a scan of τR,2 over τR,1 ± 1 ms. We fit the Ramsey spin-echo fringe with
A0α(τR, T′2)

(
1− cos

[
(∆0 + δ∆ )τR + κ(τR, T′2)

])
c.f. eq. (10.19). From these fits we extract

the T′2 = 1.90 ms. A0 is a fitting parameter that accounts for irreversible dephasing and
fitting A0 to and exponential decay, c.f. eq. (10.21), we get T∗2 = 55.9 ms. The exponential
T∗2 decay is indicated by the grey envelope.

Ramsey echo-fringes with eq. (10.19) and thus get and estimate of a number of
parameters. The decay of the envelope of each individual Ramsey spin-echo
fringe is caused by the reversible dephasing, for which the average over all the
fitted fringes is T′2 = 1.9 ms. The value of the peak amplitude is related to
the time-scale of irreversible dephasing fitting these to an exponential decay c.f.
eq. (10.21) we estimate T∗2 = 55.9 ms. This value is not far below T1 time of
60 ms, whereby we may conclude that irreversible decoherence is caused by
the same process that induces population decay. We also note that the total
dephasing time T2 = (1/T′2 + 1/T∗2 )−1 = 1.84 ms is in acceptable agreement
with the estimate of T2 = 0.41 ms from the pure Ramsey method. Again the
sample temperature is estimated from eq. (10.20) to be T = 59 µK, which is in
perfect agreement with ∼ 60 µ from sec. 9.2.3. We note that the T′2 and thus the
temperature is the same for all the fringes and thus does not seem to change
with loading time. We believe that the variations in the measured temperatures
from experiment to experiment is partly due to ”mood swings” of our cooling
laser, but probably even more due to different cooling efficiencies for large and
small initial MOTs [Drewsen94]. This is, however, not a proposition we have
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investigated in detail.

To conclude the treatment of decoherence/dephasing times we have established
that T1 decay and irreversible T2 decay are of little importance on time-scales
below 1 ms. If we require less than 1% (2%) irreversible dephasing we must
perform all measurements within ∼ 0.5 ms (∼ 1 ms). Reversible dephasing is
relevant even on short time-scales, but we show that we can efficiently compen-
sate them by spin-echo techniques. Without these, the benchmark of 1% (2%)
T′2 dephasing would entail all measurements to be performed within ∼ 10 µs
(∼ 20 µs), something that is not realistic. The short T′2 time is a consequence of
the FORT trapping and in presents a technical limitation to the usability of the
QND measurements characterised in the next chapter. On the other hand, the
principle of the QND measurements is not rocked by the FORT dephasing. The
dephasing could of course be eliminated by turning of the FORT during the mea-
surement, but this would seriously limit the trap life-time and not add anything
to the achievable interrogation time/frequency sensitivity. A better approach
would be to pick the FORT wavelength and polarisation so that it shifts both
ground states by an equal amount [Katori99, McKeever03, Targat06, Ludlow06,
Choi07, Ludlow08, Flambaum08, Rosenbusch09]14 At this wavelength, coined
the magic wavelength, and/or polarisation setting the clock transition is not light-
shifted and thus also the inhomogeneous and reversible dephasing would dis-
appear. In both [Choi07, Flambaum08, Rosenbusch09] that deal specifically with
the problem of cancelling the differential light shift in the hyperfine ground lev-
els of Cs the conclusion seems to be that for the 0 → 0′ transition there exists no
setting that will eliminate the differential light-shift. For other clock-like transi-
tions i.e. on the form |3, mF = α〉 → |4′, m′

F = −α〉 [Flambaum08] demonstrates
that when applying a magnetic field (as we already do) nearly perpendicular to
the k-vector of a circularly polarised FORT beam it is possible to cancel the light
shift of that transition. On the other hand in [Schleier-Smith08] they claim to
have done exactly what we want, namely eliminating the differential light shift
on the 0 → 0′ clock-transition, albeit in Rb. With all this confusion the most
fruitful course of action would probably be to simply try out changing the FORT
polarisation and observing the resulting light-shift on the Ramsey fringes.

14Most of these papers actually deal with the concept of magic wavelength w.r.t the ground
and excited levels i.e. where these two levels are shifted by the same amount. This is relevant for
optical clocks.





Chapter 11

Atomic interaction and
characterisation

At last we have reached the point where we study the interaction of the probe
light with the atomic sample. For us to be able to interpret the results of the
QND interaction faithfully we must first understand the interplay between the
light and the atoms and amend a number of defects that would disturb the QND
measurements. The defects are predominantly related to the light shift term in
the interaction Hamiltonian eq. (4.9). We also seek to characterise the intrinsic
side-effect of the probing, namely the decoherence caused by real excitations.
As these degrade the non-demolition nature of our measurement and limit the
achievable spin-squeezing it is important that we are able to measure the deco-
herence very precisely. Especially, we must be able to distinguish decoherence
from the dephasing caused by the light-shift. To that end we make use of the fact
that dephasing by the probe, as it is due to spatial inhomogeneity, is in principle
reversible by spin-echo techniques. The reversibility is, unluckily, limited by the
atomic motion and we are prompted to find ways to eliminate the light-shift
all-together.

Before diving in to the imperfections of the interaction we take the chance in
fig. 11.1 to present what the dispersive interaction does enable us to measure
even with the influence of the light-shift. By using very low probe powers 0.2 µW
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Figure 11.1: Long time non-destructive observation observation of Rabi oscillations,
using 1 µs pulse of 0.2 µW (Nph =∼ 105) with 2.3 µs repetition period. a) Average over
50 experimental cycles. b) Single cycle data for the first ms. c) Averaged data for the
first ms.

and short pulse-lengths ≈ 1 µs we were able to probe the Rabi oscillating atomic
state for several ms with almost 4000 pulses. The pulse repetition period is 2.3 µs

191
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so that the each Rabi cycle is probed nearly 50 times. Even without averaging
over experimental cycles the RAbi oscillations are clear during the first couple of
ms and would enable the determination of the Rabi frequency. This result is the
central result of [Windpassinger08c].

11.1 Probe light shift observations

We begin our treatment with a short recap of the probe light-shift in order also
to introduce a few relevant parameters. We learnt in eq. (4.23) that the probe
light-shift induces a rotation of the pseudo-spin around the z-axis

Mφls = Mµw(tp, 0, Ωat) =


cos φls sin φls 0

− sin φls cos φls 0

0 0 1

 . (11.1)

The middle expression illustrates the before mentioned equivalence of the light-
shift to a microwave detuning eq. (10.11). By eq. (4.24) or equivalently eq. (5.21)
the phase-shift assuming 〈ŝz〉 = 0 is

φls(r) ≡ 〈φ̃at(r)〉 = nphtp 2K1(r) = φls,0 e−2r2/w2
p (11.2)

where φls,0 = 2I0tpK1 is the maximal light shift (which is in the probe centre),

K1 = ∑5(4)
e=2(3) [K4e −K3e] is the atomic-coupling constant, I0 is the peak probe

intensity, and tp is the pulse length. The above expression underlines the spa-
tial dependence of the light-shift magnitude. For the present, we considering
monochromatic probe light, but the extension to dichromatic light follows easily
by substituting K1 by either K21 or K22 (see sec. 5.3.2).

If the probe-light shift were the same over the whole atomic ensemble it would
be a nuisance perhaps affecting the classical noise infused in to the equatorial
pseudo-spin components, but it would not make up a fundamental problem.
As it happens, the probe dimensions are similar to those of the sample and the
light-shift will be anything but homogeneous. Using eqs. (3.7 and 3.10) we get
the effective ensemble pseudo-spin as

〈F̂〉 =
∫

R3

[
Mφls 〈 f̂

(1)
(0)〉

]
nat(r) U(r) d3r

= 2πla

∫ ∞

0

[
Mφls 〈 f̂

(1)
(0)〉

]
N0 e−2r2/w2

a e−2r2/w2
p r dr

=
πlaN0w2

p

2φ
(1+rw )
ls,0

∫ φls,0

0

[
Mφls 〈 f̂

(1)
(0)〉

]
φ

r2
w

ls dφls (11.3)

where we conveniently express the initial spatially independent pseudo-spin

state in terms of the single atom operator f̂
(1)

(refer to sec. B) and incorporate
the probe to sample waist ratio rw . Eq. (11.3) reveals the fortunate circumstance
that it suffices to integrate over light-shifts instead of the radial coordinate. The
expression states that the light-shift transformation must be integrated with a

weighing factor φ
r2

w
ls over all shifts from zero to the maximal shift φls,0. For a

large probe waist compared to that of the sample, rw � 1, the light-shift values
close to φls,0 receive a strong weight, in that all atoms are located in the centre of
the probe-beam. In the opposite case, rw � 1, the probe samples the centre of the
sample and atoms within a region of similar density experience from zero to the
maximal light-shift. Thus, the weighing is almost constant for all φls. The case of
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rw = 1, gives a linear dependence of the weighing. Altogether, depending on the
distribution of light-shifts the magnitude of the effective ensemble pseudo-spin
will be reduced. As we shall see in the upcoming sections, this dephasing of
the atomic state reduces the contrast and thus the useful application of any sort
of coherent evolution of the atomic state e.g. as in Rabi oscillations or Ramsey
fringes. We now consider the specific measurement sequences in detail.

11.1.1 Rabi oscillations

First we look at the effect of the probe light shift on the evolution of the Rabi
oscillations. In a chronological perspective, the perturbation of the Rabi oscillat-
ing atomic state when we tried to observe it gave us the first indication of the
rather serious effect that the light-shift has on our system (see fig. 11.2). Here we

Figure 11.2: Probe light-shift pertur-
bation of Rabi oscillations. Rabi fre-
quency |χ| = 2π 17 kHz. Traces made
from 50 averages using 145 pulses of
0.5 µs duration separated by 7 µs. A
two-fold increase of the probe power
has a dramatic effect on the state evo-
lution not explainable by spontaneous
emission. Moreover, the high probe
power trace shows evidence of a re-
vival of the oscillations, not compati-
ble with irreversible decoherence.
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discuss a very typical scenario where we prepare the collective atomic state in
the |3, 0〉 level, turn on a continuous microwave field and observe the population
in |4, mF〉 at some intervals (see fig. 11.3). In essence we monitor the state during
its evolution under the influence of the microwaves, however, in the following
we will split the effect of the microwaves and the probing as if they appear in-
terchangeably. This, is not a serious limitation in as long as one effect happens
on a very short time-scale compared to that of the other. In our case the probe
pulses are a few micro-seconds long, which is much shorter than the typical Rabi
period of around 50 µs.

Theoretical evolution

tµ,1

µ-w

PNA

optical
re-pump

τint

Ps , 1 Ps ,  2 Ps , 3 Ps , 4 Ps , 5 Ps , 6 Ps , 7 Ps , 8 Ps , 9 Ps , 10 ...

Figure 11.3: Sequence for Rabi oscillations of atomic state driven by continuous mi-
crowave field and perturbed by monochromatic probe pulse train.

To merge the light-shift effect with the atomic evolution in a microwave field
we take the rotation matrix in eq. (10.4) and simplify to the case of a resonant
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microwave field

Mµw(τµw, |χ|, 0) =


1 0 0

0 cos(|χ|τµw) sin(|χ|τµw)

0 − sin(|χ|τµw) cos(|χ|τµw)

 . (11.4)

We will always commence the microwave interaction when the pseudo-spin
f̂ (0) is aligned to one of the poles of the Bloch-sphere, whereby, as asserted
in sec. 10.2.1, we can overlook the complex phase of the Rabi frequency χ. The
combined effect on the pseudo-spin of a microwave pulse of duration τµw fol-
lowed by a probe pulse of duration tp is summarised by

f̂ (tf) =
[
Mφls Mµw(τµw, |χ|, 0)

]
f̂ (0) (11.5)

where tf is the time that the probe-pulse ends and tp is related to φls by eq. (11.2).
A number of k subsequent microwave and probe pulses will result in the com-
bined matrix

Mµw,p(τµw, |χ|, φls, k) =
[
Mφls Mµw(τµw, |χ|, 0)

]⊗k (11.6)

When depicted on the Bloch-sphere the pseudo-spin evolution consists of series
of alternating rotations around the x-axis and the z-axis as shown on fig. 11.4a.
When plotting 〈 f̂z〉 we see a clear resemblance with the Rabi oscillations for an

z

x y
φLS

χτµw

a

π 2π 3π
0.5

0.4
0.3
0.2
0.1

0.1
0.2
0.3
0.4
0.5

0

b

microwave interaction time tint χ  

p
se

u
d
o
-s

p
in

 z
-p

ro
je

ct
io

n
   

  f
z

Figure 11.4: Theoretical pseudo-spin evolution during probed Rabi oscillations. a)
On the Bloch-sphere, the resonant microwave-field drives Rabi-oscillations (green seg-
ments), which are interrupted/perturbed by the light-shift of the probe pulses. The
probe 〈 f̂z〉 measurement outcome are indicated as yellow dots on the Bloch-sphere and
plotted on b) as a function of time.

off-resonant microwave field (compare fig. 11.4b and fig. 10.10b). As we show
in Box 11.1 the evolution described by Mµw,p(τµw, |χ|, φls, 1) and the microwave
Mµw(τµw, |χ|, ∆0) (see eq. (10.4)) are, indeed, to first order the same.

So far, the norm of 〈 f̂ 〉 is preserved, but this changes as we consider the whole
atomic ensemble where atoms located at different radial positions within the
probe beam experience different light-shifts. In a measurement we observe the
effective ensemble operator F̂z. Thus, we need to compute the evolution of the
effective ensemble pseudo-spin, and by the same method as applied in eq. (11.3)

〈F̂(t(k)
f )〉 =

∫
R3

[
Mµw,p(τµw, |χ|, φls, k) 〈 f̂

(1)
(0)〉

]
nat(r) U(r) d3r

=
πlaN0w2

p

2φ
(1+rw )
ls,0

∫ φls,0

0

[
Mµw,p(τµw, |χ|, φls, k) 〈 f̂

(1)
(0)〉

]
φ

r2
w

ls dφls (11.8)
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Box 11.1: Equivalence between microwave detuning and average light-shift

Looking at fig. 11.4 we surmise that for two probe pulse sequences, where
one has half the probe power but twice the repetition period, the pseudo-spin
evolution will be the same. What matters is the average probe power over the
whole repetition period. This spurs the definition of an effective light-shift
average detuning

∆ ls ≡
φls

τµw
= Ωat

tp

τµw
(11.7)

Substituting ∆ lsτµw for φls in the microwave-probe evolution matrix and mak-
ing a polynomial expansion of the sine and cosine factors to first non-zero
order we get

Mµw,p(τµw, |χ|, ∆ ls, 1)

≈


1− (∆ lsτµw)2 ∆ lsτµw

[
1− (|χ|τµw)2] ∆ ls|χ|τ2

µw

−∆ lsτµw
[
1− (∆ lsτµw)2] [1− (|χ|τµw)2] [

1− (∆ lsτµw)2] |χ|τµw

0 −|χ|τµw 1− (|χ|τµw)2


This expression is to be compared with the off-resonant microwave evolution
matrix eq. (10.4), which after polynomial expansion reads

Mµw,p(τµw, |χ|, ∆0)

≈


1− (∆0τµw)2 ∆0τµw ∆0|χ|τ2

µw

−∆0τµw 1− (∆0τµw)2 − (|χ|τµw)2 |χ|τµw

∆0|χ|τ2
µw −|χ|τµw 1− (|χ|τµw)2


To first order in |χ| and ∆0 ↔ ∆ ls the matrices now agree. Additionally,
several elements agree even to second order. In sum, it is not surprising that
the microwave-probe evolution closely mimics the Rabi oscillations.
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Evolution of 〈 f̂z〉 described by
(red) Mµw,p(τπ , |χ|, ∆ ls, k) when
probing only as 〈 f̂z〉 passes the
bloch-vector poles and (green)
Mµw,p(τµw, |χ|, ∆ ls) correspond-
ing to the influence of mi-
crowave field detuned by ∆ ls.

The above figure shows a case of the two descriptions being vastly different.
Using a resonant microwave field and probing only at integer increments of
τπ when the pseudo-spin vector passes the Bloch-sphere poles means that the
evolution of 〈 f̂z〉 is unaffected by the probe light-shift. In particular the Rabi
frequency remains the same. If we set a light-shift of φls = 100◦ = 5π/9 and
we get ∆ ls = 5π/(9τπ) and for the off-resonant an generalised Rabi frequency
of Ω =

√
106π/(9τπ) ≈ 8π/7, wherefore the off-resonant Rabi oscillations

re-phase with the pole-probed oscillations after 8 periods.
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This prescribes a rather complex evolution of the pseudo-spin, with change in
the oscillation frequency and the possibility of revivals of the oscillation am-
plitude. Fortunately, the evolution is determined by only two free parameters,
the maximal light-shift φls,0 and the probe beam to atomic sample waist ratio
rw = w2

p/w2
a, which are easily implemented as fitting parameters to experimen-

tal data.

Experimental observations

We now come to the point where we see if the theoretical models are able
to explain the observed data. The results shown here are covered in the pa-
per [Windpassinger08b]. In fig. 11.5a we plot the measured F = 4 population
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Figure 11.5: Probe light shift perturbation of Rabi oscillations. The un-perturbed Rabi
frequency is |χ| = 2π 17 kHz. a) Rabi oscillation of the F = 4 population for different
4 → 5′ probe powers. The 145 probe pulses are 0.5 µs long, separated by 7 µs and the
traces are averages of 50 experimental runs. The combined effect of the microwave field
and the probe light-shift is fitted by eq. (11.8) (grey curves). b) the fitted φls,0 vs. the
photon-number per pulse as deduced from the power reference detector signal.

normalised to the total number of atoms as function of the time the atoms have
interacted with a resonant microwave field. For the different probe-powers used
in the four traces the state evolution changes significantly as expected. To fit the
data we slightly modify the theoretical expression in eq. (11.8) to account for ir-
reversible, homogeneous dephasing mainly caused by spontaneous scattering of
probe photons. Since, we probe with a monochromatic probe, spontaneous pho-
ton scattering will tend to bias the Rabi-oscillations towards the F = 4 level as
the atoms decay in to |4, mF 6= ±1〉 sub-levels. As these atoms no longer couple
to the microwave radiation they remain and are detected in the F = 4 mani-
fold. The best fits, shown as grey curves in fig. 11.5a, are very satisfactory. The
fitted probe to sample waist ratio is rw = 0.8, which is entirely reasonable. On
fig. 11.5b The maximal light-shift value is plotted against the photon-number per
pulse. The scaling of the light-shift is clearly linear, as anticipated. We will not
elaborate further on the light-shift influence on the Rabi oscillation, as this is not
really directly applicable to the effect that we would see in a QND measurement.
Instead, we turn to a new section...
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11.1.2 Ramsey fringes

The perturbation of the Rabi fringes do not yield a particularly intuitive measure
for the exact magnitude and inhomogeneity of the probe light shift. Resorting to
Ramsey spectroscopy in the frequency domain provides a much clearer relation
between observable parameters and the characteristics of the light shift. To be
specific, the offset of the resonance frequency is exactly equal to the light-shift
and the decrease of Ramsey fringe amplitude is proportional to the light-shift
inhomogeneity. The treatment found here is to a large extent corresponding to
that of [Windpassinger08b].

Theoretical evolution

π
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tµ,1 tµ,2 tp,s

µ-w

Ps PNA

optical
re-pump

τR

Pl  s

Figure 11.6: Ramsey spectroscopy experimental sequence with monochromatic probe
pulse light-shift.

We consider the Ramsey sequence depicted in fig. 11.6 where a probe pulse is
fired right after the first π/2 pulse. As before, we start with expressing the
transformation matrix for the present case. The only difference between this and
the Ramsey sequence in eq. (10.10) is the addition of a light-shift matrix eq. (11.1)
so that

MR,ls(τR, χ, ∆0, φls) = Mµw, π
2

Mµw(τR, 0, ∆0) Mφls Mµw, π
2

where use the short-hand notation Mµw, π
2
≡ Mµw(τπ

2
, χ, 0) and neglect any effect

of the microwave being off resonant during the π/2 pulses (i.e. |χ| � ∆0).
Applying the transformation to the initial pseudo-spin at the Bloch-sphere south
pole, 〈 f̂ (0)〉 = −nat/2 z, we compute the output value

〈 f̂ (tp,s)〉 = MR,ls(τR, χ, ∆0, φls)
[
−nat

2
z
]

=
nat

2


sin(φls −∆0τR)

0

cos(φls −∆0τR)

 ,

To relate this to effective ensemble observable we proceed exactly as in eq. (11.8)
only with the matrix for the Ramsey sequence instead of that for the Rabi oscil-
lations

〈F̂(tf)〉 =
πlaN0w2

p

2φ
(1+rw )
ls,0

∫ φls,0

0

[
MR,ls(τR, χ, ∆0, φls) 〈 f̂ (0)〉

]
φ

r2
w

ls dφls (11.9)

The essence of the above equation was already introduced in eq. (10.17), but now
we have an expression with physical parameters to which we can fit our data.

Experimental observations

To confirm our model we obtain frequency domain Ramsey fringes as prescribed
by fig. 11.6, varying the light-shift probe pulse power. A similar experiment with
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a homogeneous light-shift was documented in [Featonby98]1. Sample fringes
are shown in fig. 11.7a, and by fitting a cosine to the data we obtain the Ram-
sey fringe amplitude and the light-shift as the cosine frequency offset. Thus
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Figure 11.7: Probe light shift influence on Ramsey fringes. in a) we plot sample Ramsey
fringes for different probe powers/photon numbers in the light shifting pulse (green,
yellow, orange, and red squares). For the ak’th figure (k = 1, 2, 3, 4) the photon number
is nph(k) = k · 5.12 · 106. The solid lines of corresponding colours are cosine fits to the
data. The grey circles and accompanying fit shown in all sample traces is the reference
Ramsey fringe with no light-shifting probe pulse. The arrows indicate the light-shift
phase and fringe amplitude reduction. In b) we plot the the Ramsey fringe amplitude
(red circles) and light-shift phase (green squares), given by the cosine fits, as function of
the photon number in the light-shifting pulse. The solid lines relay the model predictions
for optimised parameters rw = 0.6. The dashed line illustrates the light-shift phase if it
were homogeneous over the sample as in [Featonby98].

we are able to plot both the light-shift phase and the Ramsey fringe amplitude
as a function of the probe-power on fig. 11.7b. The interesting news is that
both parameters follow non-trivial curves, which actually have fairly intuitive
explanations. If first we take the light-shift, it makes a jump approximately as
it reaches 2π and 4π. A 2π light shift means that the atomic pseudo-spin has
made a full rotation around the equator of the Bloch-sphere. What then happens
as the mean light-shift reaches 2π is that the atoms with the largest light shift
come in phase with atoms that have received the least light-shift. This phase-
overlap will cause an increase in the Ramsey amplitude, which also acts to give
an apparent jump in the light-shift. Both effects are easily distinguishable in the
experimental data.

We use the model given by eq. (11.9) to plot curves to both the Ramsey fringe
light-shift and amplitude, using the light-shift per photon and the sample to
probe beam waist ratio rw as free parameters. The model curves on fig. 11.7b
confirm the experimental data remarkably well.

11.2 Light shift cancellation

The first step to solving a problem is to know it. The preceding sections relate
to the first step and we now move on to the solution to the problem of the
probe light-shift dephasing of the pseudo-spin. We suggest and characterise two
possible solutions. The first relies on compensating the light shift by applying
it twice but with different signs as enabled by a spin-echo pulse. The second
approach relies on the mutual cancellation of the light-shift from the two colours

1in that experiment the light-shift was induced in a MOT by a large diameter beam.
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in a dichromatic probe beam. Both, approaches have limitations, but we find that
for one they are more fundamental than for the other.

11.2.1 Ramsey spin-echo re-phasing method

We learnt from eq. (10.14) that the effect of the spin-echo pulse could be de-
scribed as inverting or changing the sign of all phase accumulated prior to the
echo pulse, this irrespective of it being due to a the microwave detuning or
the probe induced light shift2. In line with this, we decided to try out a pulse

π
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π
2

π

tµ,1 tp,2tp,1 tµ,2 tp,s

µ-w

P2P1 Ps PNA

τp1p2

τR1 τR2

optical
re-pump

tµ,echo

Figure 11.8: Re-phasing of probe induced light-shift using Ramsey spin-echo technique.

sequence sketched in fig. 11.8 where the light-shift induced by a probe pulse
before the spin-echo pulse is exactly compensated by a second probe pulse after
the spin-echo pulse. This sequence is easily constructed out of our repository of
transformation matrices

MRπ,ls(τR1, τR2, χ, ∆0, φls,1, φls,2)
= Mµw, π

2
Mµw(τR2, 0, ∆0) Mφls,2 Mµw,π Mφls,1 Mµw(τR1, 0, ∆0) Mµw, π

2

Applied to our pet post-optical pumping pseudo-spin 〈 f̂ (0)〉 = −nat/2 z we
arrive at

〈 f̂ (tp,s)〉 = MRπ,ls(τR1, τR2, χ, ∆0, φls,1, φls,2)
[
−nat

2
z
]

=
nat

2


sin [(φls,2 − φls,1)−∆0(τR,2 − τR,1)]

0

cos [(φls,2 − φls,1)−∆0(τR,2 − τR,1)]


Just as choosing the Ramsey interrogation times equal, τR,1 = τR,2, applying
two probe pulse with the same light-shift, φls,1 = φls,2, will cause the pseudo-
spin not to acquire any phase. Furthermore, it implies that the magnitude of
the light-shift is unimportant as long as it is the same for both pulses. Hence,
inhomogeneity in the light-shift will not dephase the final pseudo-spin.

We test our method by comparing the Ramsey spin-echo fringe for different po-
sitions of the light-shifting pulse w.r.t. the spin-echo pulse (see fig. 11.9 also
featured in [Windpassinger08b]). From eq. (??) we expect that applying a single
probe pulse either before or after the spin-echo will cause the fringe to shift in
opposite directions. This is indeed what we observe in fig. 11.9b2+3). The result
of the re-phasing shown on the bottom plot is that the light-shift is completely
compensated to within the resolution of the measurement and the dephasing is
substantially reduced compared to the single pulse traces. The latter statement

2again, the two are in principle equivalent.
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Figure 11.9: Probe light
shift and re-phasing in
Ramsey spin-echo se-
quence. a) Sketch of
the pulse-sequence with
emphasis on the posi-
tion of the light-shifting
probe pulse. The Ram-
sey interrogation time is
τR1 = 1500 µs, and
the Rabi-frequency is
|χ| = 24.1 kHz and
the microwave detun-
ing is ∆0 ≈ 3 kHz.
We use only the 4 →
5′ probe for the light-
shifting pulses that are
tp = 4 µs long, sep-
arated by 50 µs (when
there are two), and each
contain nph ≈ 10 · 106.
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b) Ramsey spin-echo fringe data points for the different sequences (averaged over 4
data sets). Data points are fitted (solid curves) to eq. (10.19) with fringe amplitude and
phase-offset as free parameters. a+b1) Reference sequence and fringe with no light-shift
pulse (the reference fringe fit is redrawn as a grey curve on all subsequent plots). a+b2)
probe-pulse before spin-echo pulse resulting in fringe phase to be light-shifted neg-
atively and amplitude reduced by dephasing. a+b3) probe-pulse after spin-echo pulse
resulting in fringe phase to be light-shifted positively and amplitude reduced by dephas-
ing. a+b4) probe-pulses before and after spin-echo pulse so that there is no light-shift
of the fringe phase and amplitude reduced only slightly due to spontaneous scattering
and imperfections of the re-phasing.

should be seen in light of the photon-number in the two-pulse trace being twice
that of the single pulse traces. There is still a small amount of fringe amplitude
reduction, which is ascribed to spontaneous photon scattering and imperfect
re-phasing. The ability to measure the irreversible decoherence due to spon-
taneous photon scattering is a key factor for estimating the spin-squeezing c.f.
eqs. (3.33, 3.34, and 5.18) and exactly why the ability to re-phase the dephasing is
so important. Imperfections in the re-phasing will limit our ability to establish
the spontaneous scattering rate and thus wrongfully estimate the parameters for
the spin-squeezing measurements. In the following section we reveal the source
of this imperfection, which at the end will limit the applicability of the spin-echo
re-phasing method.

11.2.2 Light-shift re-phasing in light of atomic motion

The mutual cancellation of the light-shifts of the probe-pulses P1 and P2 relied
on the light shifts being equal for each atom at the time that the probe-pulses
are applied. The implicit assumption is that the atoms are stationary, however,
the earlier characterisation of the FORT trap frequency should convince even
the sceptic that, despite being cold, the atoms in the sample do move about.
Whether, this is of any concern for the re-phasing is a matter of time-scales.
For the atomic motion the characteristic time is given by the trap oscillation
period ≈ 2 ms, whereas the typical QND and squeezing measurements will be
performed within 100 µs. However, atoms need not perform a full oscillation
to, depending on the probe beam size, experience a huge change in the probing
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conditions. In only a quarter of the oscillation period ≈ 0.5 µs atoms at the
trap centre will move to the maximal radial distance allowed by their energy
viz. temperature. The results related to the re-phasing in light of atomic motion
correspond to a somewhat elaborated version of [Oblak08].

Initially, observations of the sort in fig. 11.11 prompted us to characterise the
effect of trap dynamics on the reversibility of the probe light-shift by the re-
phasing method. To get an understanding of what was happening we acquired
Ramsey spin-echo fringes for various separations τp1p2 of the probe light-shift
re-phasing pulses. The sequence, drawn on fig. 11.10a) along with the experi-
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Figure 11.10: Ramsey spin-echo sequences and fringes for different light-shift re-phasing
pulse configurations and separations. a) light-shift pulses placed one before and one
after the spin-echo pulse at separations of 12, 250, and 500 µs. b) both light-shift pulses
placed before the spin-echo pulse at 12, 250, and 500 µs separations. The behaviour of
the fringes is explained in the body text.

mental data, reveals some striking effects. Firstly, if the light-shifting pulses are
applied right before and after the echo pulse with 12 µs separation the atoms
have hardly moved and the re-phasing works very well (as already illustrated
by fig. 11.9). If τp1p2 is increased the re-phasing efficiency rapidly decreases
and at a separation of 250 µs, corresponding to roughly a quarter of the trap
period, no Ramsey fringe is visible. The fringes are washed out, because the
atoms imprinted with a light shift from the first pulse have been replaced by an-
other subset of atoms that receive the ”opposite” light-shift of the second pulse,
whereby no re-phasing occurs. Increasing the light-shift pulse delay to half a
trap period results in a miraculous revival of the Ramsey fringe. At this time the
atoms will have the same radial distance as during the first light-shifting pulse,
hence the the two light shift imprints again cancel each other. The above argu-
ments presuppose that atoms move in a harmonic potential, which is of course
not exactly the case. We expect the anharmonicity to be the cause of the imper-
fect revival of the Ramsey fringe. The re-phasing in light of the trap dynamics
has a neat visualisation in a phase-space representation of the atomic position
and momentum variables. We refer to Box 11.2.

Fig. 11.10b) shows a very gratifying though not particularly useful measurement
sequence. Based on the observation in Fig. 11.10a) we were inspired to look if
imprinting the same light shift twice but allowing the atoms to maximally ex-
change, i.e. evolve during a quarter of a trap period, would undo some amount
of the dephasing. The notion is that if the light shift is distributed more evenly
over all atoms they will be more in phase than if the light-shift were applied
twice to exactly the same subset of the atoms. Thus we apply both light-shifting
pulses before the spin-echo pulse and vary their time separation. The resulting
fringes recorded at τp1p2 ≈ 0, 1/4, and 1/2 trap period separation confirm our
suspicion. Again, we refer to Box 11.2 for a pictorial illustration of the principles
at play.
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Box 11.2: Phase-imprints and atomic motion in phase-space
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The phase-imprints and degree of
re-phasing can be visualised in the
momentum-position phase-space of the
atoms. On the sketch we draw atoms
at various points in phase-space and re-
late them to their physical position and
trajectories in the trap. The phase-space
density is represented by the darkness of

plot. For now, we disregard angular motion as it is not essential for the
discussion. The light shift is imprinted on atoms as a function of r, which
is the horizontal phase-space axis. We represent the light-shift by a reddish
tint of the phase-space distribution. As the ensemble evolves the light-shift
imprint rotates counter-clock-wise in phase-space. Applying a spin-echo
pulse effectively inverts the light-shift imprint, thus we give it a greenish
tint. The second light-shift imprint adds another reddish tint and depending
on the evolution in phase-space of the first imprint the two either add con-
structively, destructively, or somewhere in between. The Ramsey spin-echo
fringe is larger the more uniform the atomic phase is over the ensemble. Thus
the fringe is largest when the phase-imprints add destructively and smallest
when they add constructively.
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π

P2P1

τp1p2

τR1 τR2

Light shift pulses before and after spin-echo and separated by 1/4 trap period
add destructively but out of phase causing a large phase gradient over the
ensemble. Thus the fringe amplitude is small.
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P2P1

τp1p2

τR1 τR2

Light shift pulses before and after spin-echo and separated by 1/2 trap period
add destructively in phase causing a uniform phase over the ensemble. Thus
the fringe amplitude is large.
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τR

Light shift pulses without spin-echo and separated by 1/4 trap period add
constructively but out of phase causing a distribution of the light-shift phase
over the ensemble. Thus the fringe amplitude is not completely washed out.

π
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π
2

P2P1

τp1p2

τR1

Light shift pulses without spin-echo and separated by 1/2 trap period add
constructively in phase causing huge phase gradient over the ensemble. Thus
the fringe amplitude is very small.
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phase-imprint for trap-oscillation

In light of the above described revivals of the Ramsey spin-echo fringes, an obvi-
ous digression is to use the light-shift imprints to extract the trap-frequency. To
that end, we need not record the full fringe, merely the value at τR2 = τR1 equal
to the maximal fringe amplitude. Varying τp1p2 we then measure the variation in
the Ramsey fringe amplitude (see fig. 11.11a). We pick the probe power so that
the dephasing is significant but never complete, in which case it turns out that
the curves can be closely fit by a damped cosine (see fig. 11.11a) legend). Acquir-
ing curves for different FORT trapping powers and fitting a damped harmonic
we can plot the revival frequency against the FORT laser power on fig. 11.11b).
In accordance with the discussion above the trap frequency is equal to half the
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Figure 11.11: Light-shift re-phasing for
determining trap-oscillation frequency.
a) Ramsey spin-echo amplitude vs.
light-shift pulse separation for different
relative FORT trapping powers (red and
green points). For both the light-shift
pulses and the final state detection the
3 → 2′ probe is used. In the Ram-
sey spin-echo sequence τR1 = 1500 µs
and we peg τR2 = τR1 in order to mea-
sure the fringe amplitude given by nat,3.
The revival frequencies of the observed
Ramsey amplitude oscillations are ex-
tracted by fitting exponentially damped
cosines (grey lines). b) The revival fre-
quencies vs. relative FORT trapping
power. The revival frequency corre-
sponds to twice the characteristic trap
oscillation frequency ω⊥. A square-root
fit (red curve) to the revival frequency
yields near perfect agreement.

revival frequency. To our great satisfaction a square-root dependence is a good
fit to the revival frequency, thus confirming the relation to the trap frequency
(see eq. (9.8)). The trap frequencies predicted from fig. 11.11b) are in the range
0.3− 1.2 kHz, which is markedly larger than the measured values of 0.1− 0.2
from fig. 9.10. However, for a FORT laser waist size of 40 µm and typical trap-
ping powers 4 W we noted in sec. 9.2.2 that we indeed expect ω⊥ ≈ 2π 1.2 kHz
(see p. 151). An interesting remark to the damping time is that it seems to in-
crease with increased trap period. If the damping is due to anharmonicity of the
trapping potential, this is also what one would expect, since the dephasing is
proportional to the rate that atoms move in to the anharmonious (outer) parts of
the trap. For lower trap frequencies this happens at a slower rate, thus the lower
damping.

As pointed out in [Oblak08], a highlight of this method of determining the trap
frequency is that we are able to determine it without perturbing any external
degrees of freedom of the atoms. Effectively, the probe pulses via the imprinted
light-shift tag each atom and the second probe pulse by imprinting another light
shift tags the atoms in a way that later can be measured. In contrast the method
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in sec. 9.2.2 required us to induce collective motion that was measured from the
resulting atomic density modulation.

phase-imprint simulations

The method of fitting a damped harmonic function to the Ramsey spin-echo
fringe amplitude works fine for moderate photon-numbers, which do not cause
complete dephasing of atoms as for the data in fig. 11.11a). For larger probe
intensities the fringe amplitude is zero over a whole range of pulse separations,
such as around τp1p2 = 250 µs in fig. 11.10a), and is consequently no longer ap-
proximate to a cosine. In order to recreate the fringe amplitudes for completely
general experimental settings we are impelled to use simulations of the atomic
evolution. These, were introduced in sec. 9.2.2 and described in sec. E. We as-
sume that the FORT and probe laser beams are Gaussian and maximally mode
overlapped, i.e. their radial centres overlap, and neglect the axial trap dynamics.
The variable parameters for the simulation are the ensemble temperature, trap
frequency, probe to FORT laser beam ratio, and the peak light-shift at the probe-
beam centre. For a suitable range of the parameters we generate simulated data
of the Ramsey fringe amplitude versus the light-shifting pulse separation. Cal-
culating the squared error between the experimental and simulated data we can
pin down the optimal combination of simulation parameters. In fig. 11.12 we
plot the experimental Ramsey fringe amplitude (circles) together with the those
corresponding to the optimal simulation parameters (black lines) for a suitable
range of probe-powers. The qualitative correspondence between the experiment
and simulations is outstanding, and certainly underlines our understanding of
the dephasing mechanism.

Figure 11.12: Ramsey
spin-echo amplitude vs.
light-shift pulse separa-
tion for different light-
shift pulse photon num-
bers. The measurement
principle is identical to
that described in fig. 11.11
except the FORT trapping
power being constant and
the light-shifting probe
power being varied. The
data is compared by simu-
lation based on sec. E.3, by
which we extract the op-
timal simulation parame-
ters that yield the best
agreement with the data
(grey curves). The opti-
mised maximal light-shift
is plotted vs. the probe
power in fig. 11.13.
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It is very pertinent to inspect the optimal simulation parameters. For trap tem-
perature the optimal value lies around β = 2/V0 which given a FORT beam waist
of wt = 40 µm 3 entails a atomic sample radius of wa = wt/

√
βV0 = 28 µm. On

3estimated from the spot-size of the collimated beam together with the focal length of the
achromats.
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the other hand the optimal ratio of probe to FORT beam waists is wp/wt = 0.7-
0.8 and given a wp = 27 µm this predicts wt = 34-39 µm in good agreement with
the anticipated value. The optimisation yields a radial trap oscillation frequency
of Ω⊥ = 1.1-1.2 kHz, which in a FORT potential of 40 µm width accords with
3.36 W of FORT laser power (see eqs. (9.3 and 9.8)), perfectly in line with that
measured on a power detector. Finally, the maximal light-shift phase should
be proportional to the probe power measured on the reference detector. On
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Figure 11.13: Optimal simulation light-shift
phase versus probe power from fig. 11.12. The
fit (red line) shows a nice linear relation.

fig. 11.13 we plot the optimal light-shift parameter against the probe power and
the two are clearly linearly proportional.

11.2.3 2-input method and equivalents

It is time to harness some of the great advantages of the dichromatic probing
scheme. One of these, highlighted in sec. 5.3.2, was the possibility of having
each probe contribute with a light-shift of equal magnitude but opposite sign so
that their combined light-shift is zero. In the picture of box 11.2 this corresponds
to the simultaneous imprint of a light-shift of each sign. This required the two
probe detunings to have same sign, i.e. either both red or both blue detuned.
Since in that case the phase-shift of the probes due to the atomic sample have the
same sign we need to configure the MZI so that the fringes of the two probes are
π rad out of phase, whereby the imprints of the two ground level populations
in the detected output signal would still have opposite signs. We discovered
three different configuration that cause a π rad shift between the probes (see
also sec. 2.3.1): firstly the the probes may enter a different input port of the MZI
(phase-displacement due to spatial splitting of input); secondly the probes may
enter the same input port but be orthogonally circularly polarised and split on a
PBS at the MZI input (phase-displacement due to polarisation splitting of input),
and thirdly the probes enter the same input and the MZI probe and reference
arm may have a path-length difference of ≈ 1.5 cm (phase-displacement due to
frequency splitting of input).

In the below we will characterise how well the light-shift cancellation by the
dichromatic probe works. To get from one of the above configurations to the
other it is necessary to restructure the MZI. Hence, we are not able to succes-
sively compare their efficiency at light-shift cancellation. On the other hand, the
polarisation split input only causes the optical oscillation of the probes in the
MZI arms to be the out-of-phase and neither this nor the mutual path-length dis-
placement of the MZI arms has any influence on the light-shift from the probes
on the atoms. Thus, the essential characteristics relate to the ability to tune the
correct frequency of the probes and align them to the same spatial mode. We
expect the latter to be trivial when the probes enter the same spatial input but



206 Atomic interaction and characterisation

somewhat difficult when the input are spatially separated. Hence, we take as a
starting point the 2-input configuration, which we first characterise in a Ramsey
type sequence. Subsequently we couple the probes through the same input fi-
bre4 and after characterising this we compare with the previous configuration.
Needless, to say the 1-input configuration in this form cannot be used for a QND
measurement since the imprints of the ground-levels on the output signal add
up. However, this is de-coupled from the ability to cancel the light-shift, and we
also make sure to detect the final state in the Ramsey sequence with only one
probe (see fig. 11.14).

Figure 11.14: Ramsey spin-echo sequence for char-
acterising dichromatic probe light-shift cancella-
tion (coloured circles refer to data in fig. 11.15 and
fig. 11.16). a/grey, Unperturbed reference mea-
surement; and b/yellow, spin-echo re-phasing of
probe light-shift irrespective of dichromatic probe
cancellation. c/red and green, the actual char-
acterisation of the light-shift by the dichromatic
probe. The microwave radiation is on resonance
and the interrogation times are fixed τR2 = τR1.
To obtain Ramsey fringes we vary the phase of
the microwave field by use of the phase-shifter.
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To characterise the light-shift cancellation we use a Ramsey spin-echo measure-
ment where two dichromatic probe-pulses are fired in quick succession before
the spin-echo microwave pulse (see fig. 11.14c). We use a spin-echo type mea-
surement to remove other inhomogeneous dephasing and because it allows us
to perform a re-phasing measurement (where the two probe pulses surround the
spin-echo pulse), which we use as a minimal light-shift dephasing benchmark.
In fig. 11.15a the Ramsey spin-echo fringe with the re-phasing is plotted in yel-
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Figure 11.15: a) Ramsey fringes in 2-input configuration for different detunings of 4 →
5′ probe with 3 → 2′ probe detuned by ∆32′ = −84.3 MHz. Grey curve, no light
reference; Yellow curve, spin-echo re-phasing reference; Red curves, different 4 → 5′

probe detunings. b) Fitted Ramsey fringe parameters as function of ∆45′ . b1) Fringe
phase-shift in sequence with re-phasing echo (red) and without (green). b2) Fringe
amplitude with (red) and without (green) re-phasing

low and the reduction in amplitude w.r.t. to the grey fringe, without perturbing
probe-pulses, is due to spontaneous scattering events. We note that the yellow

4without changing the input polarisation and displacing the MZI arms.
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fringe, which we will refer to as the re-phased fringe, is in phase with the grey
fringe, which we refer to as the unperturbed fringe.

With both probe pulses before the echo pulse we peg the detuning of the 3 → 2′

probe and vary the 4 → 5′ probe detuning to record the light-shift cancella-
tion fringes. We see that the phase and amplitude of the cancellation fringes
(data in shades of red) change depending on ∆45, indicating different degrees of
light-shift cancellation, and at a certain ∆45 the fringe is in phase with the un-
perturbed fringe, i.e. the mean light-shift is cancelled. In fig. 11.15b1 we plot the
fitted phase of the cancellation fringe against ∆45 for a large set of measurements
and inspired by eqs. (11.2 and 4.7) we fit the phase with a 1/∆45 function with
convincing result. The phase of the re-phased fringes is assumed to be constant
and accordingly we plot the mean phase value. In fig. 11.15b2 we also plot the
fitted fringe amplitude of both the re-phasing and the cancellation fringes. Un-
fortunately, the amplitude of the cancellation fringe where the mean light shift
is cancelled is below the amplitude of the re-phased fringe, revealing that some
amount of inhomogeneous light-shift remains. We are convinced that this is due
to imperfect mode-matching of the probes from the two inputs. By tweaking
the alignment of one of the inputs we have confirmed that the cancellation is
extremely sensitive to mode-mismatching of the inputs. The re-phased fringe
amplitude is reduced by spontaneous scattering of the probe and is neatly fitted
to a a · e−b/∆45 function c.f. sec. 4.3.1. To model the amplitude of the cancellation
fringes we make use of the findings in sec. 11.1.2. There we expressed the Ram-
sey fringe amplitude and the mean light shift as a function of the probe to sam-
ple ratio and the maximal phase shift. Hence, we can interpolate the mean light
shift, e.g. as plotted in fig. 11.7, and the fringe amplitude curves and relate them
to each other. Using the mean light shift from the fit in fig. 11.15b1, subtracting
the small offset deduced from re-phased fringe and scaling the amplitude down
by the spontaneous scattering (red curve), we can plot the predicted cancellation
fringe amplitude (green curve). Since, the maximal cancellation fringe ampli-
tude does not coincide with the cancellation of the mean light-shift the curve
obviously does not predict the data very well. By allowing an offset to the mean
light-shift phase and a scaling of the fringe amplitude it is possible to fit a curve
(yellow) to the data, however, this is not particularly useful. Finally, we plot
the fringe amplitude offset, which ought to be constant at 0.5. The reason for it
being slightly larger is due to pumping to mF 6= 0 levels by the probe pulses.
As expected this should increase for ∆45 → 0. The offset at large detuning is a
technical artefact, connected to the choice of probing the final state by the 4 → 5′

probe. As ∆45 is increased the detector output signal decreases and becomes
more susceptible to off-set errors in the detector baseline.

Now we compare with the cancellation achievable for probes entering the MZI
through same spatial input mode with the detunings set for the 2-input MZI
configuration. As above, we record an unperturbed fringe and a number of re-
phased fringes one of each show on fig. 11.16. The phase of the cancellation
fringes again shifts according to the 4 → 5′ probe detuning and for the greenest
fringe on fig. 11.16 the mean light-shift is approximately cancelled. Fortunately
it appears that the cancellation fringe amplitude is also maximal and as large as
that of the re-phased fringe for the same detuning. We extract the average re-
phased fringe phase and fit the cancellation fringe by a 1/∆45 dependence. Using
these together with a fit of the spontaneous scattering, we again generate a curve
for the predicted cancellation fringe amplitude. With quite some contentment we
conclude that the prediction fits the recorded data very well. One can spot the
slight revival of the amplitude at ∆45 = 50-60MHz that corresponds to the revival
at 2π phase-shift in fig. 11.7. We emphasise that there are no free parameters,
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Figure 11.16: a) Ramsey fringes in 1-input configuration for different detunings of 4 → 5′

probe with 3 → 2′ probe detuned by ∆32′ = −84.3 MHz. Grey curve, no light reference;
Yellow curve, spin-echo re-phasing reference; Green curves, different 4 → 5′ probe
detunings. b) Fitted Ramsey fringe parameters as function of ∆45′ . b1) Fringe phase-
shift in sequence with re-phasing echo (red) and without (green). b2) Fringe amplitude
with (red) and without (green) re-phasing echo. b3) Fringe voltage offset.

except for the choice of rw . In the plot we pick rw = 0.75 according to the re-
phasing simulations in sec. 11.2.2 in place of the rw = 0.6 that was optimal for
the light-shift dephasing curves in sec. 11.1.2, simply because the former gives
better correspondence between the prediction and the data.

Finally, in fig. 11.17 and fig. 11.18 we plot a neat 3-dimensional representation
of the light-shift re-phasing/cancellation data for the probes at different or the
same inputs of the MZI, respectively. To conclude the treatment of the dichro-
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Figure 11.17: Surface plot of Ramsey fringes showing the dichromatic probe cancella-
tion of light-shift as function of the 4 → 5′ probe detuning in the configuration where
the probe colours enter through different MZI input ports. The fitted parameters in
fig. 11.15b are based on the fringes in this figure of which a subset are presented in
fig. 11.15a.

matic probe cancellation of the light-shift, we have demonstrated that we are
able to cancel the mean light-shift in either the configuration using two or one
inputs for the probes. Completely cancelling the inhomogeneous light-shift, thus
recovering the Ramsey fringe to the level limited by spontaneous scattering, is
only possible when the probes enter the same MZI input, in which case they are
spatially mode-matched in an optical fibre. Though, we try our very best we are
simply not able to outperform the quality of the mode-matching by the coupling
through a fibre.
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Figure 11.18: Surface plot of Ramsey fringes showing the dichromatic probe cancellation
of light-shift as function of the 4 → 5′ probe detuning in the configuration where the
probe colours enter through the same MZI input port. The fitted parameters in fig. 11.16b
are based on the fringes in this figure of which a subset are presented in fig. 11.16a.

11.3 Spontaneous scattering decoherence

In the preceding section we have focused on the light-shift imparted by the
probe, while sidelining spontaneous scattering as an add-on effect. The atten-
tion given to the light-shift is merely due to the elaborate measures needed to
eliminate it. In a grander perspective spontaneous scattering is really the central
effect and unlike the light-shift it cannot be eliminated, at least not without si-
multaneously stamping out the interaction strength. Thus the raison d’être of this
section is to measure how large the spontaneous scattering rate η is as a function
of relevant parameters. As the η depends only on the number of photons N(a)

ph
that impinge on the atomic sample, we state this photon-number in the present
section.5

The spontaneous scattering rate is most faithfully measured in a Ramsey se-
quence as the reduction of the fringe amplitude due to probe pulse fired during
the interrogation time. Fig. 11.16 illustrates how we can bypass the light-shift,
either by re-phasing method or advantageously by the dichromatic probe cancel-
lation, in order to get the fringe reduction exclusively due to spontaneous scat-
tering.6 In fig. 11.19 we present the Ramsey fringes using the re-phasing method
recorded at different probe-powers. The surface-plot gives a good intuitive im-
pression of how spontaneous scattering washes out the atomic coherence and
consequently also the Ramsey fringe contrast. We fit the Ramsey fringes (black
lines) and plot the fitted fringe amplitudes in fig. 11.20. The Ramsey fringe am-
plitude ought to decay exponentially as function of the photon number used,
however, an exponential decay does not seem to agree perfectly with the fitted
amplitudes. The yellow dashed line is not a fit, but only a guide-to-the-eye ex-
ponential decay, which is offset by 20 · 106 along the x-axis. The deviation from
a purely exponential decay is due to the atomic motion between the re-phasing
pulses. Part of the reason, for presenting the above data is exactly to highlight
the various difficulties of estimating the spontaneous scattering rate using the
re-phasing method. This again is relevant, because a substantial amount of the
spin-squeezing experiments in the next chapter were performed using the 1-

5earlier we have denoted photon operators in the probe by â, thus we use N(a)
ph for the probe-

arm photon number.
6In truth, the application of the squeezed spin-state resulting from the QND measurement

would involve a Ramsey sequence, and thus measuring the fringe contrast, the ratio of the ampli-
tude to the noise in the signal, is immediately the relevant parameter.
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Figure 11.19: Ramsey spin-
echo fringes for different
probe powers. The probe
and microwave pulse pa-
rameters are given in the
insert of fig. 11.20. We
phase-shift the second Ram-
sey π/2 pulse to trace out
the fringes. We emphasise
that the we state N(a)

ph the
photon number in the probe
arm i.e. passing through
the atomic sample. For this
measurement this number
is about 60% of the total in-
put photon number.
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Figure 11.20: Estimating spontaneous
scattering rate inferred from the Ramsey
spin-echo fringe amplitude as function of
the probe power. The photon number is
varied by changing the pulse power, and
it is equally distributed with half of the
photons in each probe colour. The probe
detunings are ∆45 = 320 MHz and ∆32 =
−298.8 MHz. The decay is not com-
pletely exponential (yellow dashed line)
because atomic motion slightly spoils the
re-phasing.

input MZI configuration, where the light shifts of the two probes add up. The
fact that functional dependence of the spontaneous scattering 1− e−η deviates
from an exponential does not result in wrong estimates of the decoherence in
the spin-squeezing measurement, because we always measure 1 − e−η for the
specific photon-number used in the spin-squeezing measurement. However, it
does mean that the fringe reduction measured in the Ramsey spin-echo re-phasing
measurement gives an upper bound to the spontaneous scattering decoherence.

In a move to underline the above statement we show the amplitude of the Ram-
sey spin-echo fringe varying the probe detuning for a range of re-phasing separa-
tions τp1p2 (see fig. 11.21). By and large, this is a replication of the red data-points
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Figure 11.21: Estimating spontaneous scat-
tering rate inferred from the Ramsey spin-
echo fringe amplitude as function of the
probe detuning. We use only the 3 → 2′

probe in two 2 µs pulses, one before and one
after spin-echo pulse. The larger the separa-
tion of the probe-pulses the poorer the re-
phasing works and the higher the estimated
decoherence. Solid curves represent fits to

shown on fig. 11.15b2 and fig. 11.16b2 and indeed the points in fig. 11.21 can be
fitted with a similar model. The key point we wish to make is that the shorter
the separation of the probe pulses around the spin-echo pulse the lower the es-
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timated decoherence level will be. The best estimate is thus achieved by making
the separation as short as possible. The key to this requirement is to perform
the spin-echo π pulse fast, which is why we acquired a power-amplifier for the
micro-waves.7

Not relying on the light-shift re-phasing by switching to the 2-input MZI (or
an equivalent) configuration should tighten the bound from our estimate of to
the actual spontaneous scattering decoherence of the state. We have not quan-
titatively studied this conjecture, but we do see that the measured decoherence
as function of the probe power is very convincingly fitted by an exponential
decay (compare fig. 11.22 with fig. 11.20).8 Based on a series of measurements
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Figure 11.22: Estimating spontaneous
scattering rate inferred from the Ramsey
spin-echo fringe amplitude as function of
the probe power. The fringe amplitude
is normalised to the phase-shift from the
atom-number measurement. The pho-
ton number is varied by changing the
pulse length, and it is equally distributed
with half of the photons in each probe
colour. The probe detunings are ∆45 =
−100 MHz and ∆32 = −87.6 MHz.

performed over the range of a half a year we arrive at the following very approx-
imate relation for the spontaneous scattering rate

η ≈ 1.8 · 10−4N(a)
ph

(
3
7

1
∆2

32
+

5
9

1
∆2

45

)
, (11.10)

which is only valid when ∆32, ∆45 � γe = 5.2 MHz. The fractions multiply-
ing the detuning dependence are proportional to the transition-strengths of the
|F, 0〉 → |F′, 0′〉 probe transitions c.f. table D.5 and D.10.

7the shorter τπ ∼ 10 µs in fig. 11.20 compared with the τπ ∼ 25 µs in fig. 11.21 is a direct
consequence of the Kuhne amplifier being installed.

8We note that the fringe-amplitude in fig. 11.22 exceeds unity when no probe-photons are
present. This is due to the normalisation of the fringe to the signal in the atom number measure-
ment. Since the atom number is measured some time after the Ramsey experiment and following
re-pumping to the F = 4 state some atoms will be lost, with the result that the Ramsey fringe
is normalised to a slightly too low signal. Hence, the above unity value, which does, however,

not affect the estimate of η. Usually, we normalise the fringes to the amplitude of the N(a)
ph = 0

fringe, whereby the error is removed. Taught by fig. 11.22, we keep in mind that whenever using
the atom number measurement to gauge the Nat at an earlier time, we need to extrapolate the
measured Nat to that point in time (see sec. 12.1.1).





Chapter 12

QND measurements and
squeezing

Much like Moses we have now arrived at the promised land, but rather than in-
dulging in a feast of milk and honey we shall outline our experimental demon-
strations of QND measurements and spin squeezing. We will venture in to a
rugged noise landscape and our principal task will be to map the different kinds
of noise so that ultimately we may tell one from the other. In earlier sections
(sec. 8.2.2 and 8.7) we have already characterised the topography of the elec-
tronic, classical and quantum noise of the probe and detection system. What
remains is to chart the atomic fluctuations that via the interaction with the probe
appear in the detected signal. Our anticipation is to detect the signature of the
quantum uncertainty of the atomic state in terms of atomic projection noise. As
outlined in the Introduction the detection of the projection noise is the most de-
manding task in the path towards the goal of demonstrating spin-squeezing. We
remind ourselves that the other main tasks towards the goal are to gauge the
degree of quantum-state demolition by the QND measurement1 and the detec-
tion of correlation between subsequent measurements of the atomic state. The
former task has already been taken care of in sec. 11.3 of the previous chapter
while the latter, as the highlight of this chapter, will be treated in parallel with
the establishment of the projection noise level.

12.1 General procedures

To ease the understanding of the chapter we first establish the usual procedures,
which we follow when commencing a measurement run. We will not mention
here the various calibrations and alignments that are performed only at long
intervals. Instead we focus on the calibrations required prior to a measurement
run

• align MZI to optimise visibility (sec. 8.4)

• balance power in MZI outputs for probe and reference arms separately.

• engage MZI lock and adjust offset to balanced position for probes.

• determine the clock transition resonance frequency (sec. 10.2.3)

1almost a contradiction in terms — masked by the use of an acronym.
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• determine the π/2 pulse duration (fig. 12.1)

• balance powers in each probe colour — if applicable locking their relative
power.

• adjust probe detuning of one colour for equal coupling strength

As the MZI visibility drifts due mainly to thermal expansion/contraction of the
MZI base-plate the fringe visibility should be checked once every so often. It is
necessary to determine the clock frequency regularly because depending on the
FORT laser power it experiences a slightly different light-shift. Since the local
microwave power and thus the Rabi-frequency is affected by the physical envi-
ronment of the setup the π/2-pulse calibration should be done every time the
MZI shielding is opened. It is important that we set τπ/2 precisely as it deter-
mines how close we prepare the atoms in an equal superposition state. Fig. 12.1
illustrates the procedure we use for finding τπ/2.

τµw<τπ/2 τµw=τπ/2 τµw>τπ/2

π/2

3π/2

Figure 12.1: Determining the π/2 pulse duration.
we use the fact that all pulses with duration that
are an odd integer multiples of τπ/2 will create an
equal superposition state. Thus we compare the
atomic phase-shift when doing a single π/2 pulse
and e.g. three π/2 pulses adjusting τπ/2 until both
result in the same QND detector signal. The traces
illustrate the pulse signals for microwave pulse du-
rations that are either shorter than (red), equal to
(yellow), or longer than (green) τπ/2.

After taking some or all of the above courses of action, we are set to start a
measurement run. This should comprise the following measurements

• fringe calibration (sec. 8.5)

• atom number decay measurement (sec. 12.1.1)

• decoherence measurement (sec. 11.3)

• QND squeezing measurement or similar (sec. 12.1.1)

The fringe calibration as described in sec. 8.5 enables us to translate the inte-
grated pulse signals in to phase-shifts of the MZI fringe using the power ref-
erence detector signal. The MZI phase-shift, unlike the detector voltage, is an
absolute physical quantity to which we can compare theoretical predictions. The
measurement of the atom number decay will enable us to compensate for the loss
of atoms from the time of the QND measurement till the atom number measure-
ment. This will be elaborated in sec. 12.1.1. The decoherence estimate obtained
by the procedure in sec. 11.3 allows us to compute the squeezing parameter ξ

according to the criteria given in sec. 3.5.1. Finally, the squeezing measurements
puts us in a position where we can publish papers and on account of that secure
our future career.

12.1.1 General QND measurement sequence

The QND measurement sequence sketched on fig. 12.2 very much follows the
order of the previous chapters. The first step is to prepare the cold atomic sample
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sample preparation sample destruction and 
shot noise measurement

π
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π
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j+1

P1
j  P2

j  ...Pi   
j  ...

Figure 12.2: Experimental sequence for the QND measurement. The elements of the
sequence are explained in the body text.

in the FORT as described in chapt. 9. This step defines a trap-loading cycle.
After preparing the sample we prepare its quantum state by optical pumping
and interaction with microwave field as covered in sec. 10. We then perform
the actual QND measurement and acquire a train of pulse data values. After
each QND pulse train we re-pump the atoms to the F = 4 hyperfine level and
acquire an atom-number measurement pulse train. Since, the time-scale for the
state preparation is considerably shorter than for the sample preparation (10-
20 ms vs. 1-2 s) we optimise the data acquisition rate by recycling the sample a
number of times (a 3 time recycling measurement is shown in fig. 12.3). For this
we repeat the tasks collected in the green shaded area of fig. 12.2, i.e. the state-
preparation, QND and atom-number measurement, and so within each trap-
cycle acquire a number of data segments. Finally, we discard all atoms using
resonant MOT cooling light and in what we coin the empty MZI we acquire one
or more segments of QND and atom number measurements, which we use for
gauging the shot-noise and tracing the drift of the interferometer. The whole
cycle-sequence is repeated an unspeakable number of times with the aim of
collecting enough data that we can produce statistically significant predictions.
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Figure 12.3: Recycling the atomic
sample. Signal from 4 → 5′

probe showing Rabi-oscillations
(green) — so as to illustrate that a
coherent state has been prepared
— and the atom number mea-
surement following optical re-
pumping (red). The two mea-
surement types are repeated four
times with steadily decreasing
atom-numbers due to the limited
efficiency of the optical pumping

and decay of the sample. As the last, an empty MZI shot-noise/MZI baseline measure-
ment is taken (yellow). Here the same optical power is used in all probe pulses, but for
the actual QND measurement the probing of the coherent superposition will employ
much higher probe powers than the atom number measurement. We not that due to the
sample decay, the initial amplitude of the Rabi oscillations tend to surpass the signal
from the atom number measurement.

Varying the atom number We will be concerned with the noise properties of
the QND measurement as a function of different parameters most notably the
photon and atom numbers. To vary the former we may increase the probe power,
pulse length or group pulses together as described in sec. 12.2.2. As for the atom-
number we can vary this by several means. The segmented acquisition shown on
fig. 12.3 already produces QND measurements for several atom number values.
The inevitable variation of the initially trapped number of atoms also serves to
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vary the parameter. In particular, the number varies with the changing back-
ground Cs pressure as the Cs dispensers are off or turned on. We do not change
any other trapping parameters that affect the sample size, such as the FORT laser
intensity, MOT cooler intensity and detuning, or optical pumping power, as this
will affect the sample geometry, temperature or initial state in a way that would
change the properties of the QND measurement. Nevertheless, as mentioned
in sec. 10.2.4 the size of the MOT may influence the temperature of the atomic
sample in the FORT and thus the dimensions of the sample. It would be difficult
to account for such an effect and we assume that it can be neglected.

Correcting for atom number decay

The slight drop in the atom-number from the Rabi-oscillations to the atom num-
ber measurement in fig. 12.3 is due either to the natural decay of the sample size
or a small inefficiency of the re-pumping process. Whatever the reason, the drop
should be taken into account when we use the atom number measurement to
estimate Nat at the time of the QND measurement. This correction is relevant
when we want to make comparisons of the absolute magnitude of the projec-
tion noise as compared with the size of the mean atomic phase-shift. Thus in
each measurement run with incorporate a measurement where we perform op-
tical pumping and re-pumping as in the QND measurement sequence, but only
measure the atom number at the different measurement times. When thus get a
factor Cφ,h by which we multiply the phase-shift of the atom number measure-
ment of the h’th segment. The determination of Cφ,h can be combined with a
spontaneous scattering measurement where an atom-number measurement at
the time of the QND measurement is extracted from the amplitude of the refer-
ence Ramsey spin-echo fringe (e.g. the value at the origin of fig. 11.22, that as
argued is above unity exactly because of the error in the atom number estimate.).

12.2 Analysis methods

When presented with a bulk of useful information it is crucial to handle it in a
productive fashion. Failure to do so will at best lead to nothing and at worst
cause numerous setbacks. If we accept this wisdom, it seems only fair to devote
ample space for discussing our methods of data analysis. In doing so, we take up
the baton from sec. 8.2.2 where we discussed how the measurement traces were
stored as integrated pulse values on a PC (it may be useful to refer to table 8.2).
In this section we will explain the initial steps to extract fruitful information out
of these stored data values. Throughout the treatment, it is understood that we
are endowed with a large set of measurements so that we are able to compute
meaningful estimates of the statistical distribution of the data, predominantly
in terms of variances and covariances. From a conceptual point of view it is
important to bear in mind that all our measurement data allows us, is to estimate
the distributions of the stochastic processes that influence the stored data values.
When based on the data we claim a certain variance 〈(∆p)2〉 it is in fact only our
best estimate of the underlying variance 〈(∆P(x))2〉, where P(x) is the stochastic
function of some parameter vector x responsible for the measured pulse values.
This best estimate is naturally defined as

〈p〉 =
1
K

K

∑
j=1

pj , 〈(∆p)2〉 =
1

K− 1

K

∑
j=1

(pj − 〈p〉)2
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where we have included the mean-value as well. The pj are individual measure-
ment results and K is the size of the data set. In this case the bra-ket 〈·〉 has
the meaning of a sum over the data-set. This again is distinct from the quan-
tum expectation value or ensemble average, which 〈·〉 was set to represent in
the Theory. There the bra-ket revealed the underlying statistics of the quantum
state of the system/ensemble. To summarise, though the distinction exists be-
tween estimated and actual quantum and/or classical statistical properties of a
the measurements we will not convey it in our notation, in that we write our
empirical variance as just 〈(∆·)2〉.

12.2.1 Correlation

As a result of the discussion at the end of sec. 5.1.1 we understand that a key
exercise in the data analysis is to extract the correlation between measurements.
This is how we can claim squeezing of the measured atomic state, but it will
also be a crucial element of several ”data correction” steps in the analysis. The
question of correlation boils down to the situation where, given two measure-
ment results p1 and p2 which both have zero mean we must find the value ζ that
minimises

〈(∆(p2 − ζ p1))
2〉 = 〈(∆p2)

2〉+ ζ2〈(∆p1)
2〉 − 2ζ〈(∆p2 p1)〉 (12.1)

where we recall that 〈(∆p2 p1)〉 =
〈
(p1−〈p1〉)(p2−〈p2〉)

〉
is the covariance. The

above expression is minimal for

ζ =
〈(∆p2 p1)〉
〈(∆p1)2〉 , (12.2)

which is of course just the correlation coefficient of the two measurements. The
fact that it is the first-pulse variance that appears in the numerator, underlines
that in the formulation we implicitly presumed to be interested in the correlation
of the first pulse with the second and not vice-versa. To rephrase, we determined
that we want to deduce how much information the first pulse has on the value
of the second pulse. This is indeed the relevant question to ask in the QND
measurement. Quite often, though, we find the variances of both pulses to be
equal. Given a sequence of measurements p1, p2, ...pk eq. (12.2) hints that we
would benefit greatly from computing the covariance matrix

C =


〈(∆p1)

2〉 〈(∆p1 p2)〉 ... 〈(∆p1 pk)〉
〈(∆p2 p1)〉 〈(∆p2)

2〉 ... 〈(∆p1 pk)〉
...

...
. . .

...

〈(∆pk p1)〉 〈(∆pk p2)〉 ... 〈(∆pk)
2〉

 (12.3)

whereby the correlation coefficient between two pulses may be defined as ζαβ =
Cαβ/Cαα. The covariance matrix has the important property that it is symmetric,
i.e. CT = C, in that clearly 〈(∆p1 p2)〉 = 〈(∆p2 p1)〉.2

2this has a number if interesting consequences namely that the covariance matrix can be
diagonalised by D = E−1CE, where D is the diagonal matrix and E is an orthogonal matrix.
Furthermore, the diagonal elements of D are the eigenvalues of C and E is made up of the
corresponding eigenvectors, which can be proven to be real and orthogonal [Fraleigh95].
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Correlated and uncorrelated signal components

We now take further steps to develop a framework for understanding our mea-
surement results. Given two pulse values pj

1 and pj
2 we can, generally, split each

of them into a part cj that is shared or correlated between the two and parts uj
1

and uj
2, which are different or uncorrelated. Hence we write pj

1 = cj + uj
1 and

pj
2 = cj + uj

2. The fact that cj is correlated among the pulses and uj
i not, dic-

tates that cj and uj
i are uncorrelated and we can simply derive the variances and

covariance between the two pulses over many realisations (j)

〈(∆p1)
2〉 = 〈(∆c)2〉+ 〈(∆u1)2〉 (12.4a)

〈(∆p2)
2〉 = 〈(∆c)2〉+ 〈(∆u2)2〉 (12.4b)

〈(∆p1 p2)〉 = 〈(∆c)2〉 (12.4c)

whereby the correlation factor eq. (12.2) can be written as ζ = 〈(∆c)2〉/[〈(∆c)2〉+
〈(∆u1)2〉]. Applying our new insight to eq. (12.1) we get to the expression

〈(∆p2 − ζ p1)
2〉 = (1− ζ)〈(∆c)2〉+ 〈(∆u2)2〉

= 〈(∆c)2〉+ 〈(∆u2)2〉 − 〈(∆c)2〉2

〈(∆c)2〉+ 〈(∆u1)2〉 . (12.5)

In fig. 12.4 we have plotted (red curve) the above variance as a function of
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Figure 12.4: Predictions for the variances
of various pulse combinations and the
correlation factor. Green - is correlated
noise. Red - Optimally reduced noise of
second pulse using the first pulse. Yel-
low - noise of pulse difference. Grey -
correlation factor ζ. Ideally, the classical
noise is due to atomic projection noise in
which case the x-axis would be equiva-
lent to Nat.

〈(∆c)2〉 for an uncorrelated noise variance 〈(∆u)2〉 ≡ 〈(∆u1)2〉 = 〈(∆u2)2〉 =
1. If we take the limit of ζ = 0, i.e., no correlation, then it is not surprising
that we get 〈(∆(p2 − ζ p1))

2〉 = 〈(∆u2)2〉. In the interesting limit of perfectly
correlated pulses 〈(∆c)2〉 � 〈(∆u)2〉 ⇒ ζ ≈ 1 it is a bit trickier to see that
〈(∆p2 − ζ p1)

2〉 = 〈(∆u2)2〉+ ζ2〈(∆u1)2〉.3 This also makes sense, in that we can
never reduce the variance below the level of the uncorrelated noise, which we
have no way of predicting. The yellow curve show the result of subtracting the
two pulses without taking ζ in to account

〈(∆p2 − p1)
2〉 = 〈(∆u2)2〉+ 〈(∆u1)2〉 (12.6)

This tells us that just subtracting the two pulses we remove all the correlated
noise and end up with twice the level of the uncorrelated noise, one half from
the p1 and the other half from p2.

Scaling with atom and photon number

Drawing on all the predictions we have made in the theory for the types of fluc-
tuations influencing the signal, we should be in a good position to assign certain

3For ζ → 1 the factor 1− ζ in eq. (12.5) goes to 0, but ζ → 1 also implies 〈(∆c)2〉 → ∞ and we
are left to determine 0 ·∞.
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sources to the noise depending on it being correlated or uncorrelated. Further-
more, the scaling with the atom and photon number will reveal something about
the origin of the noise. As a good approximation we assume all noise sources
to be statistically independent and we will write the correlated and uncorrelated
noise in terms of its scaling with the atom number

〈(∆c)2〉 = 〈(∆c(0))2〉+ 〈(∆c(1))2〉+ 〈(∆c(2))2〉 (12.7a)

〈(∆u)2〉 = 〈(∆u(0))2〉+ 〈(∆u(1))2〉+ 〈(∆u(2))2〉 (12.7b)

so that 〈(∆c(0))2〉 ∝ N0
at, 〈(∆c(1))2〉 ∝ N1

at, 〈(∆c(2))2〉 ∝ N2
at, and likewise for the

uncorrelated noise terms. Any higher order terms are unphysical and — with
the risk of making a tautology — don’t show up in the experimental data. As
a reference when we analyse our data we list the noise terms and their possible
sources

〈(∆c(0))2〉 All noise with no dependence on the number of atoms stems from
fluctuations of the detection system. Signal components that are correlated
between pulses within a train but not between different experimental re-
alisations are rooted in slow drifts of the MZI. This could be due to drifts
in the probe powers (see sec. 6.1.1) and acoustic noise of the MZI (see
sec. 6.1.3).

〈(∆u(0))2〉 Ideally the only source of signal components that are uncorrelated
between two pulses within a segment is the quantum shot-noise of the
probe (see eq. (2.25)). Additionally they can be caused by fast frequency
fluctuations of the probes (see sec. 6.1.2) and high frequency acoustic noise
in the MZI (see sec. 6.1.3).

〈(∆c(1))2〉 Correlated signal components scaling linearly with the atom number
are a signature of quantum projection noise (see eqs. (5.25 and 5.35)).

〈(∆u(1))2〉 If the atomic state has not been modified in between the two probe
pulses there is no sensible explanation for uncorrelated noise scaling as
Nat. Classical noise necessarily scales quadratically in Nat. If the atomic
state has been modified, e.g. by rotation of the pseudo-spin so that the
probes detect two different initial spin components, this could also be a
sign of projection noise (see sec. 12.6).

〈(∆c(2))2〉 Correlated classical atomic noise will be induced by slow drifts of the
probe powers, total atom numbers and the state preparation (see sec. 6.2.1).
The latter effectively means drifts in the microwave power.

〈(∆u(2))2〉 Uncorrelated classical atomic noise can be caused by fast fluctuations
of the probe frequencies (see sec. 6.2.2). The probe power drifts, mainly
caused by thermal drifts in relation to the fibres, should not appear on short
time-scales except RF-intensity noise transferred by the pulsing AOMs (see
sec. 8.1.2).

When based on a set of data we have calculated the variances and covariances
we can fit them with 2nd order polynomials (quadratic fits) where according to
eq. (12.4) the coefficients of the three terms in the polynomial should be related

〈(∆pi)2〉 = 〈(∆c)2〉+ 〈(∆u)2〉

= [a(0)
c + a(0)

u ] + [a(1)
c + a(1)

u ]Nat + [a(2)
c + a(2)

u ]N2
at (12.8a)

〈(∆pi pj)〉 = 〈(∆c)2〉

= a(0)
c + a(1)

c Nat + a(2)
c N2

at . (12.8b)
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This approach will be a key tool for analysing the extracted noise.

Gauging the noise reduction In the best case scenario the signal variance is
composed of only shot noise (〈(∆u(0))2〉) and atomic projection noise (〈(∆c(1))2〉).
In this case any noise reduction by eq. (12.5) can truly be ascribed to squeezing
of the atomic projection noise. Yet, it is more than likely that other sources of
noise also add variance to the signal. The most care must be taken when the
variance has a contribution from light noise that is correlated between the pulse.
In this case the correlation factor ζ0 6= 0 even when no atoms are present. This
is acceptable, but the problem arises when atoms add correlated atomic noise,
thereby increasing ζ. When ζ grows with the number of atoms we not only sub-
tract more and more correlated atomic noise, but also the correlated part of the
light-noise. If the light-noise is dominated by the non-shot-noise contribution,
one is given the impression that the noise reduction grows considerably, though
essentially a large part of the reduction is unrelated to the squeezing of the pro-
jection noise. If the added noise is classical atomic noise which is correlated
between the pulses the noise reduction is only affected slightly and as a crucial
point it can only cause 〈(∆(p2 − ζ p1))

2〉 to increase. Thus it does not create
any conceptual misunderstandings. What regards uncorrelated noise influences,
these, again, can only add to 〈(∆(p2 − ζ p1))

2〉. The bottom line is that correlated
classical light-noise must be kept low and when quantifying the squeezing we
should compare the level of 〈(∆(p2− ζ p1))

2〉 at the given atom number with that
when no atoms in the trap, i.e.

〈(∆[p2(Nat)− ζNat p1(Nat)])2〉 − 〈(∆[p2(0)− ζ0 p1(0)])2〉
〈(∆p2(Nat))2〉 − 〈(∆p2(0))2〉 (12.9)

Linking different noise components with real numbers

We will use the symbols c and u a bit loosely to refer to either the actual probe
signals or after the signals have been converted to phase-shifts. The exact mean-
ing should be conveyed by the context of the analysis. Say that we have found
the variances for the phase shift signal and have identified the part 〈(∆c(1))2〉
scaling linearly with Nat. Since, we equate this contribution with the projection
noise we can express it together with the mean atomic phase-shift by

〈(∆c(1))2〉 = 〈(∆φqnd,1,2)
2〉PN =

〈(∆p1,2)
2〉PN(

1
Kh
GA ∑Kh

i pj
qnd,i

)2 = G2 1 + r2
w

1 + 2r2
w

Nat

〈φph〉 =
〈pat,〉

1
Kh
GA ∑Kh

i pj
at,i

= GNat

where G is a common proportionality factor which in the expression for the
variance is multiplied by the geometric factor from eq. (3.26). The factor G= 4

cK1
.... We will use the above to estimate of the projection noise from the atomic
phase shift through the reformulation

〈(∆φqnd,1,2)
2〉PN = G 1 + r2

w

1 + 2r2
w
〈φph〉 (12.10)

There is a neat trick for calculating the effective atom number without troubling
ones mind to compute G. We simply divide the square of the phase-shift with



12.2 Analysis methods 221

the noise so that the factors cancel and we are left with

Nat =
1 + r2

w

1 + 2r2
w

〈φph〉2

〈(∆c(1))2〉
(12.11)

To compute the atom number this way one needs to analyse the noise to find
the projection noise 〈(∆φqnd,1,2)

2〉PN, and one must know the gain GA as well as
the probe pulse powers measured on the power reference detector. To get the
numbers exact we must also estimate the sample to probe beam waist ratio rw ,
however for an order of magnitude estimate of Nat one can safely ignore the
geometric factor replacing it by 1/2.

In sec. 8.7 we already discussed that extracting the photon number is related to
the uncorrelated light noise part of the noise. Therefore, we will quickly move
on to the very involved pulse labelling conventions.

12.2.2 Data organisation and correction

Understanding the steps of the analysis (unfortunately) requires some insight
in to how we organise our data. In line with the pulse labelling of fig. 12.2 we
index the integrated pulse signals as pj

i , where j denotes the cycle number and
i the position in the pulse train. Some confusion arises from the fact that we
repeat the QND and atom number measurements for a number of times as we
recycle the atomic sample and take repeated projection-noise measurements. We
accommodate this feature by allowing a double sub-index as in pj

i,h. We term
j the cycle index, h the segment index, and i the pulse index. When possible we
restrict the number of indices to a minimum.

We already see in fig. 12.2 that we employ light pulses of different power de-
pending on whether we perform a QND measurement or an atom number mea-
surement. Later we will even have a few more pulse ”types” join the zoo. It will
be to our advantage to distinguish between the different pulse types, which can
only be done by adding yet another label. As a start, we write QND measure-
ment pulses as pj

qnd,i,h and Nat measurement pulses as pj
at,i,h.

Having now created, stored and named our data we need to rear it for some
productive outcome.

two-point pulses As a general procedure the next step is that we subtract the
QND probe pulses from two consecutive experimental cycles making the substi-
tution

1
2
(pj

qnd,i,h − pj+1
qnd,i,h) −→ pj

qnd,i,h . (12.12)

We keep the same symbol for the modified pulse, but when wishing to underline
this step we refer to the substituted pulse as the two-point pulse. The reason for
doing the substitution is to cancel slow drifts (> 2 s) of the MZI and probe
power balancing. This procedure is normally acceptable since in determining
the projection noise one is interested in the fluctuations of pj

qnd,i,h rather than
the mean values. On the other hand, this procedure is problematic for certain
applications as we will discuss in sec. 12.6. We must also keep in mind that this
procedure effectively doubles the level of all variances, hence the factor of 1/2
in the equation. We find the corresponding Nat probe pulse value by averaging
over two consecutive cycles

1
2
(pj

at,i,h + pj+1
at,i,h) −→ pj

at,i,h . (12.13)
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Here we take the average value, because the very point of the atom number
measurement is to measure the absolute phase-shift of the MZI phase due to the
atoms (this is exactly what eq. (12.12) erases)

”Empty” MZI baseline subtraction We take another step to minimise drifts of
the MZI. This involves subtracting the mean QND-pulse values over the shot-
noise measurement segment hSN, where the MZI is empty i.e. there are no atoms
in the sample. We define the MZI baseline as

pj
BL = ∑

h=hSN

Kh

∑
i=1

pj
qnd,i,h . (12.14)

where Kh is the number of pulses in the shot-noise measurement segment. Next
we find the degree of correlation between the above baseline and the baseline in
each QND measurement segment defined as above but with a particular h.

ζBL,h =
〈(∆(pj

qnd,h pj
BL))〉

〈(∆pj
BL)2〉

, (12.15)

which finally allows us to remove the appropriate amount of baseline from each
QND measurement pulse

pj
qnd,i,h − ζBL,h pj

BL −→ pj
qnd,i,h , (12.16)

The aim of eq. (12.16) is again to compensate for drifts of the MZI baseline. By
going to the two-point pulses we cancelled drifts on the cycle time-scale, and
now the baseline-subtraction will cancel drifts on the ∼ 100 ms time-scale4. In
other words we remove noise that is correlated over ∼ 100 ms but not over
∼ 3 s. We subtract the mean pulse value over all available shot-noise pulses in
order to minimise the amount of shot-noise that we add to the QND pulses. This
leads to one note of caution, that the amount of correlated noise removed by the
procedure should be less than the amount of shot noise added. For the atom
number pulses we subtract the signal in the empty interferometer measurement
from the pulse values measured in the four realisations of the atomic measure-
ment. Again we subtract the MZI offset and thus ensure the atomic probe signal
pj

at, to be proportional to Nat.

Converting to phase-shift We want to convert the integrated detector signals
into a meaningful physical quantity, namely the phase-shift of the MZI fringe.
The transformation of the pulse signals into phase-shifts is prescribed by

φ
j
qnd,i =

pj
qnd,i

1
Kh
GA ∑Kh

i pj
qnd,i

, φ
j
ph,h =

∑Kh
i pj

at,i

GA ∑Kh
i pj

at,i

(12.17)

for the QND and atomic phase-shift measurements respectively. Kh is the num-
ber of pulses per segment and GA relates the reference power signal to the fringe
amplitude on the QND detector c.f. sec. 8.5. Within a segment the atom-number
should be pretty constant, which is why for the atom-number estimate we take
the average value within a segment. To relate the atomic phase shift to the value
it would have had at the time of the QND measurement we use the compen-
sation factor from sec. 12.1.1 and substitute Cφ,h φ

j
ph,h → φ

j
ph,h. As a note, we

use the ”ph” subscript for the atomic-phase shift φ
j
ph,h to be consistent with the

theoretical treatment where in sec. 4.4 we assigned φ̃ph to the phase-shift of the
probe and φ̃at to the phase-shift of the atomic state.

4on average the duration from the QND measurements to the shot-noise measurement
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Combining pulses A final pulse operation is to create composite pulses by
combining subsequent probe pulses within a segment

φ̃
j
qnd,i,h =

g·i

∑
i′=g·(i−1)+1

φ
j
qnd,i′,h (12.18)

This provides an easy way to vary the effective probe photon number and thus
the interaction strength in order to explore the optimal experimental parameters.
However, it is important to keep in mind that combining several pulses modifies
the detection bandwidth of the measurement. Hence, the increase of effective
pulse duration may also impact the measurement’s sensitivity to classical noise
sources.

Sorting and binning We now need to make use of the expected behaviour of
the noise in our data, so that we can intelligently sort it and find the statistical
properties over appropriate subsets of the data. This intelligent choice of course
depends on which parameters we chose to vary in a given measurement run,
but for the moment we focus on the situation where it is only the number of
atoms that is (deliberately) varied (see sec. 12.1.1).5 Therefore, the probe phase-
shifts φ̃

j
qnd,i,h are sorted according to the corresponding atom number given by

the value of φ
j
ph,h. As we sort the phase-shifts we may finally toss out the seg-

ment index h and just expand the sorted cycle dimension j. To determine the
statistical properties for different atom numbers we compute 〈(∆φ̃qnd,i)

2〉 and
〈(∆φ̃qnd,iφ̃qnd,j)〉 over a subset of Kj data points in ascending bins according to

φ
j
ph,h. We shall refer to Kj as the bin-size. We treat the empty-interferometer

segments like all the other and naturally they all have Nat ≈ 0. When we bin
the data we stack all the Nat ≈ 0 traces into a single bin, which consequently
can contain more data points than Kj. As a final remark, it does not matter
whether we first combine pulses, as described in the preceding paragraph, or
first sort and bin pulses, because the atom number is calculated as a mean over
all atom-number measurement pulses.

12.2.3 Conditioning data

Conditioning and discarding portions of the experimental data is always a con-
tentious issue, but with very few exceptions it is an important and necessary
task [Ravetz05]. Rather than sweeping it under the rug we shall be open about
this step. The crucial stipulation is that data is evaluated and discarded with
criteria that do not directly reflect the quantity that is considered the final out-
come. In our case, this means that we should be very careful to condition data
based on the value of the QND measurement phase-shift. Corresponding to ev-
ery QND measurement phase-shift we do, luckily, have at our disposal a number
of supplementary measurements that disclose most of the information relevant
for determining irregular operation of the experimental apparatus.

DSO range saturation When the QND or power reference detector signals ex-
ceed the set y-ranges the DSO simply stores a not-a-number NaN value in the
recorded file. When the traces are integrated the NaN value will carry over to
the calculated pulse integral. Thus we start the data conditioning by sorting out
all the NaN values and then discarding all data in the same segment.

5When sorting we mix pulses acquired at vastly different times and it is crucial that all long
term drifts of the pulse values are compensated by the preceding measures.
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Probe powers The probe powers are recorded on the power reference detector
either in terms of the combined power or if programmed in the control program
we can choose to monitor the individual powers (see e.g. fig. 12.8ai). We condi-
tion the probe powers by demanding that the average within a segment should
not deviate from the corresponding mean over the 100 neighbouring cycles by
more than a fixed number, typically 2-3 standard deviations. This discards all
cycles where the probe laser mode has jumped in one or more segments. In the
case where the probe laser settles to a new stable mode the procedure will fail
to remove the points. The procedure will also fail if the whole measurement
is marred by an unstable laser such that the standard deviation is very large.
In both cases we put our faith in the presiding human interface to step in and
condition the data instead.

Atom numbers The conditioning on the atom numbers works in almost the
same way as the probe power filtering. The averaged atom number over the
segment is compared with the mean over a set of 100 neighbouring values and if
the current value deviates from the mean by more than 2-3 standard deviations
all data in the cycle is discarded.

FORT laser mode With the Fabry-Perot described in sec. 9.1.2 we continuously
monitor if the FORT laser is lasing on a single frequency. In the acquisition
program we store the resonance peak amplitude of the Fabry-Perot and if this
falls below a set threshold all data from the corresponding measurement cy-
cle is discarded. This monitoring was not implemented during the first QND
measurements, but only from the measurements described in sec. 12.4.3 and
onwards.

MZI signal balancing We can measure how balanced the MZI is i.e. how far
the individual probe colour fringes are offset from zero. In the 1-input MZI we
can test how far the mean of the QND measurement pulses are off-set from zero.
In the 2-input MZI the dichromatic probe pulses will always be balanced and the
test can only be performed if the QND pulse train contains pulses of the individ-
ual probe colours as in fig. 12.8a. In both the 1 and 2-input MZI the balancing
can be shifted by sudden changes in the probe powers or frequencies. Likewise,
jumps in the number or collective state of atoms will misbalance the MZI.6 The
data is conditioned on being balanced to better than a certain threshold fraction
of the fringe amplitude — typically 2.5%.

Excessive noise Now we risk being evicted from Eden. Since the measurement
noise is precisely the quantity we are interested in we must be very careful about
what limits we impose on it. Necessarily, we impose a very generous limit of
a particular two-point norm not being larger than six standard deviations as
computed over all two-point data values. The probability of a real data point
exceeding this value is e−62 ≈ 2 · 10−16. Thus it seems fair to assume that all data
failing this test are truly contaminated by some experimental glitch not detected
by any of the above. Such glitches could be the probe laser frequency jumping
with the result that the atomic phase-shift changes drastically, but still so that the
QND detector signal remains within the range of the DSO channel. When the

6why the individual probe colours of the 2-input MZI should be balanced even in the presence
of atoms will be explained in sec. 12.4.3.
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MZI is aligned to white light such frequency jumps will not cause a significant
change in the baseline of that probe.

Buffering If something causes a data point to be discarded it is not unlikely
that the same something has influenced the experiment right before and after the
discarded data was acquired. This may have been too small a disturbance of the
data values to be caught by the above conditions, but to be sure we also remove
all data in the cycles before and after a discarded cycle.

Manual exclusion When we have observed some parts of the experiment per-
forming badly, e.g. probe or MOT lasers out of lock or multi-moding, for a
period we often manually exclude the corresponding data points because we
know they are polluted.

12.3 State destruction

We reserve a few lines to remind ourselves that the spontaneous scattering has
a number of consequences for the squeezed spin-state envisaged as the outcome
of a QND measurement. Firstly, spontaneous scattering of an equal coherent
superposition product-state reduces the pseudo-spin magnitude, thus reducing
the output state’s usefulness for improving the resolution in spectroscopic mea-
surements. This is captured by the spin squeezing criterion of eq. (3.33). Sec-
ondly, spontaneous scattering, being a random process, may add statistical noise
to the final pseudo-spin state, thus counter-acting the noise reduction from the
QND measurement. This effect can, however, be almost eliminated by intelligent
choice of the probe detunings as hypothesised in sec. 4.5.1.

12.4 Spin squeezing experiments - approaches and
results

The focus of this part will revolve around how high a SNR we can achieve in
the measurement. By virtue of its name, the SNR depends on two factors, firstly
the amount of signal which equates to the achievable coupling strength. The
coupling is closely linked to the atomic density and the probe detunings and
powers. On the other hand, these parameters also affect the other inherent part
of the SNR, namely the noise contributions that limit the measurement’s sen-
sitivity. In the Introduction we enrolled some more or less distinct approaches
to the task of stabilising the MZI detection. One was to do everything to make
the inherent stability of the MZI so that the detection system becomes noise-less.
An alternative is to construct a system which is immune to particular limiting
sources of noise. Hence, the MZI may be noisy in several regards, but without
affecting the actual QND measurement. The final approach, is to trace any fluc-
tuations, instead of removing them, and then compensate for them in the data
analysis. In the following chapter we treat the last of these approaches, which
chronologically was the second that we tried out. By this we admit that we had
hoped the setup to be sufficiently well constructed so as to achieve full inherent
stability. Alas, life is a learning experience.
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12.4.1 One-input MZI with reference pulses

In sec. 8.7.1 we established that the 1-input MZI could be made to operate shot-
noise limited if the QND probe pulses were compensated for MZI phase drifts by
use of a train of reference pulses. Thus, for the 1-input MZI QND measurement
we apply the pulse sequence shown on fig. 12.5. Each QND probe pulse (tinted
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Figure 12.5: Raw detec-
tor signals for 1-input MZI
configuration with reference
pulses. a) QND measure-
ment pulses train reflected
in i) power reference de-
tector and ii) QND detec-
tor. Time slices surround-
ing probe pulses are in green
while those around reference
pulses are in red. b) atom-
number measurement pulse
train signal on the two detec-
tors.

green) is surrounded by a set of intense reference pulses (tinted red), which we
label pj

ref,i,h. Using two instead of a single reference pulse for the compensation
should result in a better compensation. Before the transformation of the probe
pulses in to two-point pulses sec. 12.2.2 we correct the probe pulses by use of
the reference pulses. As noted, shot noise, classical probe laser noise, and fast
acoustic noise are not correlated with reference pulses. Hence, to achieve the
optimal compensation we subtract only a fraction of the reference pulse value

pj
qnd,i,h − ζre f

1
2
(pj

ref,i,h + pj
ref,i+1,h) → pj

qnd,i,h , (12.19)

where the correlation factor

ζre f =
〈(∆pj

qnd,i,h
1
2 (pj

ref,i,h + pj
ref,i+1,h))〉

〈(∆pj
qnd,i,h −

1
2 (pj

ref,i,h + pj
ref,i+1,h))

2〉
, (12.20)

is computed by taking the average value of the reference pulses flanking each
probe pulse. One caveat is that each reference pulse — except the first and last
ones — is used to compensate two neighbouring probe pulses, thus possibly
giving rise to a small amount of correlation between neighbouring compensated
probe pulses. We remind, that a measurement dominated by classical fluctua-
tions of the MZI results in a large ζre f whereas a shot-noise limited MZI yeilds
ζre f ≈ 0. Following the reference pulse correction we proceed with all the steps
described in sec. 12.2.2. We are in principle able to combine pulses in the train,
however doing so comes at the expense of a large amount of data being dis-
carded as the detector saturates. After a few reference pulses just a small fluctu-
ation can drive the QND detector in to saturation. Hence, we make independent
measurement runs for different probe laser intensities.

As we sort and bin the QND measurement pulse trains according to atom num-
ber, we construct the covariance matrix between the different pulses in the train,
over all the pulse trains within a bin. In fig. 12.6 we plot selected variances as
function of the bin’s mean atom number. The variance of the first and second
pulses (green open and filled circles respectively) are almost equal indicating
no change in noise due to the probing. A second order polynomial fit (green
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∆32 ∆45 tp trep Nph,a Npha/Nphb τπ/2 1− e−η Nph,re f ,a

MHz MHz µs µs – – µs – –
135 -160 4 16 1.15 · 107 0.65 43* 0.35 41 · 107

Table 12.1: Experimental parameters and probe settings for 1-input MZI measurement
with reference pulses. The photon number and decoherence correspond to a single
probe pulse. *During this measurement the low insertion loss switch from AMC had
just broken, but we could still use it to switch one output off, though with half the power
constantly lost to the other output.
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Figure 12.6: Plot of variances
for different pulses and com-
binations in 1-input MZI. The
variance of the first and second
pulses (green open and filled cir-
cles respectively) is fitted to a
polynomial and the linear part is
plotted as green dashed line.

line) to the atomic noise shows a comparable influence of quadratical classical
and linear quantum projection noise (green dashed line). The light noise (grey
line) is given by the variance of the Nat = 0 bin. The variance of the difference
of pulse 1 and 2 (yellow points) is a little bit lower than twice the light-noise.
Since 〈(∆φ̃qnd,2− φ̃qnd,1)

2〉 only reflects uncorrelated noise, this means that in the
light noise there is some correlated component added to the shot noise. Ad-
ditionally, the increase of 〈(∆φ̃qnd,2 − φ̃qnd,1)

2〉 with larger Nat is another mark
of uncorrelated classical atomic noise. The SNR, i.e., the ratio of projection to
light noise, nearly reaches 3/2. All this, means that the reduced noise points
〈(∆(φ̃qnd,2 − ζφ̃qnd,1))

2〉 (red diamonds) do fall below the believed projection
noise level, but not significantly. The fact that we can lower the noise shows
that much of the classical atomic noise is correlated between subsequent pulses.

To get a better grasp of the noise sources we fit the average variance (〈(∆φ̃qnd,1)
2〉+

〈(∆φ̃qnd,2)
2〉)/2 and the covariance 〈(∆φ̃qnd,1φ̃qnd,2)

2〉 with interdependent coef-
ficients as explained in sec. 12.2.1. In fig. 12.7 we plot the average pulse variance
(green circles) along with the squeezed variances 〈(∆(φ̃qnd,2 − ζφ̃qnd,1))

2〉 (red
diamonds). The fits confirm that most of the classical atomic noise is correlated
between the pulses (yellow area). Thus, according to eq. (12.5) it will not disturb
the noise reduction much. We also see a small amount of uncorrelated classical
atomic noise (orange area). Therefore the classical atomic noise stems mainly
from slow drifts, e.g. of the relative probe powers or frequencies. As expected,
the light noise contains a component, which is correlated between the pulses,
though most of the light noise is still uncorrelated shot-noise, meaning that we
have not added much shot-noise by the reference pulse correction. As for the
noise reduction, we already mentioned that 〈(∆(φ̃qnd,2 − ζφ̃qnd,1))

2〉 falls below
the projection noise level, here by 1.8 dB. When taking the decoherence into ac-
count, this reduction is no longer effective. The squeezing w.r.t. the ”Kitagawa
criterion” eq. (3.31) is basically ξueda = 0, while according the the ”Wineland
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Figure 12.7: Plot of correlated and uncorrelated pulse variances with different atom-
number scaling in 1-input MZI. The atom number is calculated from the mean bin phase-
shift 〈φ̃ph〉 c.f. eq. (12.10).

criterion” the reduced noise is anti-squeezed by ξwineland = 1.5 (2 dB). In sum,
the QND measurement does reduce the uncertainty of F̂z to below the projec-
tion noise level, but the amount of spontaneous scattering means that reduced
noise is still larger than the noise of the coherent part of the final state. As a
consolation, the measured reduced variances agree well with that expected (red
curve) from the amounts of correlated and uncorrelated noise c.f. eq. (12.5). This
agreement demonstrates that we perform our statistical data analysis properly
and consistently.

One explanation for the cause of the correlated classical atomic noise is that it is
an indirect effect of the atomic phase-shift. If without atoms the probe signal is
balanced, the atoms will shift the fringe so that the signal becomes unbalanced.
Since the signals from each probe is opposite this does not affect their combined
signals and we had presumed this to be a sufficient condition. However, we recall
from sec. 6.1.1 that an unbalanced probe signal allows classical laser intensity
noise to affect the output signal. Since the intensity noise of the two probe
colours in not correlated it will contaminate the combined signal as soon as the
probe signals individually become unbalanced. The larger Nat the larger the
misbalancing and thus the larger the feed-through of classical laser intensity
noise. To generate signal fluctuations corresponding to a phase variance of 10−7

at a phase-shift of 0.3 rad we only need about 0.1% intensity noise in both probe
lasers. For low frequencies this level of intensity noise is not unreasonable. As
indicated by fig. 8.9 in the relevant 10-100 kHz range corresponding to the typical
duration of a pulse train the intensity noise is rather low, in agreement with the
near absence of uncorrelated atomic noise in fig. 12.7. It is worth remembering
that fig. 12.7 did not account for the intensity noise that the pulsing AOM —
despite our best efforts — may add to the probe. To round off, it is quite a
subtle how pure noise in the MZI in this way masks as atomic noise. In the 2-
input configuration it turns out there is a way to overcome this dummy classical
atomic noise.
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12.4.2 One input MZI — what now?

Another, cause of the classical atomic noise may be classical probe laser fre-
quency noise. The influence of frequency noise can be reduced by increasing
the probe detunings c.f. eq. (6.14). Hence, we decided to perform another se-
ries of measurements at double the probe detunings, i.e., ∆45′ = −320 MHz and
∆32′ = −198.8 MHz. To maintain the SNR of the QND measurement the in-
crease of detuning must be accompanied by a quadrupling of the probe powers
(see eq. (5.18)).7 As most considerations are unchanged, we do not make a de-
tailed account of that measurement, but draw out the main lessons from it. First
of all, we did see reduction, roughly by one half, of the classical atomic noise,
indicating that part of it is indeed rooted in probe frequency drifts and fluctua-
tions. Nevertheless, a significant amount of classical atomic noise remained and
on top of that the light noise was increased considerably above the shot noise
level. The reason for this is twofold. Firstly all classical noise scales quadratically
(see sec. 6.1) with the power and eventually can come to dominate the linearly
scaling shot-noise. To understand the second cause we must recall that the ref-
erence pulses only pay off in is as long as subtracting them does not add too
much of their own shot noise. The requirement for the reference pulse power
to be higher than the probe power becomes difficult to meet when the latter is
increased and the former is limited by the QND detector saturation. For the
optimal probe power the reference power could only be set 3-5 times higher.
Hence the shot-noise level of the compensated probe pulses was increased by
about 15-30%. A curious detail is that since each reference pulse is shared for
two probe pulses, some of the added light-noise will turn up as noise that is
correlated between subsequent pulses.

The above measurements had come within a hair’s breath of demonstrating spin
squeezing but to improve the results we needed to root out the remaining clas-
sical noise. When increasing the powers proved unfeasible we decided to recon-
figure the MZI to the 2-input version. Except for the actual task of re-building
parts of the setup the 2-input MZI seemed to offer many advantages. The acous-
tic noise would be suppressed (see sec. 6.1.3) and we would not need the added
trouble of having reference pulses. The probe laser frequencies could be locked
tightly by the beat-note locking (see sec. 8.1.3) so that their difference frequency,
which is crucial in the 2-input configuration, would be very stable. Additionally,
the correlated classical atomic noise caused by the drifts of the relative probe
powers could be minimised by use of the precise relative power measurement
ingrained in the path-length wiggling method (see sec. 8.6.3). Finally, the light-
shift of the atomic state could be cancelled, so that the re-phasing procedure
would no longer be required (see sec. 11.2.1). This was a pertinent issue, because
all attempts to insert an spin-echo pulse in between two probe pulses resulted
in extreme growth of classical atomic noise, which made any projection noise
completely undetectable.8 Much of this effect was due to the microwave pulses
seeding noise in the QND detector electronics — a displacement of the detector
baseline was quite clear. Later experiment also revealed a notable intensity noise
in the microwave power (see sec. 12.6). The case seemed clear...

7the reason is that the coupling strength roughly scales with the decoherence η ∝ Nph∆−2.
Hence, doubling ∆ must be accompanied by a four-fold increase of Nph.

8it is not trivial exercise to find the space for a π pulse in between two probe pulses when that
is also where a reference pulse should be located.
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12.4.3 Two-input MZI

The setup for the 2-input MZI is sketched in fig. 8.16. In the 2-input MZI con-
figuration the rejection of common mode acoustic noise should eliminate the
need for reference pulses to trace the interferometer baseline. We thus rely on
the empty-MZI trace to correct drifts of the probe pulse phase as described in
sec. 12.2.2. The raw QND and power reference detector signals are shown in
fig. 12.8. In the QND measurement pulse train the actual QND pulses are tinted
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Figure 12.8: raw QND and
power reference detector sig-
nal for 2-input MZI configu-
ration.

green while the purpose of the two red tinted pulses are to balance the individual
probe signals. In the analysis of the 1-input MZI results we noted that the mis-
balancing of the individual probes would allow classical laser intensity noise to
mask as classical atomic noise. Thus, to avoid classical amplitude noise we wish
both probes individually to be in the balanced position during the QND mea-
surement. Since in the 2-input case the mean atomic phase-shifts have the same
signs for both colours it is possible to offset the MZI locking point to cancel this
mean shift. Notice that this would not be achievable in the 1-input configuration
where the atoms shift the two probes by opposite mean phases. To determine
the offset locking point we make use of the additional pulse pair (pj

21,h and pj
22,h)

at the end of the probe train, marked red in figure 12.8a. Each of these pulses
contain only one probe colour and for a given atomic phase-shift will result in
the signal indicated on fig. 12.9. The locking point is found by demanding that

Figure 12.9: Phase offset in to balance probe
signals in 2-input MZI. For an MZI bal-
anced without atoms the atoms shift both
probe fringes by φ̃ph, which results in the

individual signals pj
21,h and pj

22,h of equal
magnitudes but opposite signs. Displacing
the MZI fringe by −φ̃ph by adjusting the ∆l
causes the probe signals to be re-balanced,
i.e., pj

21,h = pj
22,h = 0.

∆lϕph

p22

p21

the signal difference between them be zero i.e. pj
21,h − pj

22,h = 0, as is the case in
figure 12.8aii. Thus this difference serves as an error signal, which is fed forward
to adjust the MZI offset in the subsequent experimental cycle. An important note
is that within a cycle the offset during all atom number measurements is fixed
to the value set for the pulse train recording the empty MZI noise at the end of
the cycle. Hence, it is only during the QND probe pulses that the phase is offset.
The offset values for each segment are transferred to the locking unit fig. 8.24
shift-register, which is incremented by a trigger pulse right after each pulse train
has ended (sketched in fig. 8.22 trace 12 and 13).
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Measurement settings The probe settings are given by table 12.2.

∆32 ∆45 tp trep Nph,a Npha/Nphb τπ/2 1− e−η

MHz MHz µs µs – – µs –
-85 -160 10 20 0.37 · 107 12 4.1 0.054

Table 12.2: Probe settings for 2-input MZI measurement. The photon number and deco-
herence correspond to a single probe pulse.

Now that we can use all probe pulses in the trains without having to discard
data, we start the analysis by computing the correlation matrix between all the
pulses (c.f. note below eq. (12.3)) and visualise it in fig. 12.10. The correlation

h =1 h = 2 h = 3 h = 4 hSN = 5, 6, 7

Figure 12.10: Correlation matrix for pulses within each segment. The diagonal elements
are by nature 1 while the off-diagonal elements give the correlation factor ζ between the
pulses. Red indicates positive values while green indicates negative values and white
corresponds to 0.

is computed for the pulses after going to two-point values, subtracting the base-
line, and conditioning, but before combining and sorting according to Nat (see
sec. 12.2.2 and sec. 12.2.3). The diagonal elements are all 1 while the off-diagonal
elements reveal the correlation between pulses. Focusing on the first 20 pulses,
for which a dichromatic probe was used, we see clear correlation. The high Nat
segments yield the strongest correlation. A slight amount of correlation is also
visible in the shot-noise segment, indicating some remaining drifts in the MZI.
Since this correlation is much smaller than that of the atomic noise, we can re-
affirm that the 2-input interferometer in the balanced position operates at the
shot noise limit up to the time scale of the experimental cycles ≈ 2s. As we ex-
pect, the two offset detecting pulses p21,h and p22,h are strongly anti-correlated.
This is because any acoustic noise in the MZI affects the two pulses oppositely.
For the dichromatic pulses the 2-input configuration removes their susceptibility
to acoustic noise altogether. The fact that p21,h and p22,h are completely uncor-
related with the other pulses, shows the the two last pulses are dominated by
acoustic MZI noise. In the 2-input MZI the baseline subtraction has only a small
noise reducing effect and it is possible to leave it out. This again indicates that
the MZI baseline only drifts on slow time-scales above a few seconds where.
These slow fluctuations are removed by the two point procedure of subtracting
pulses in subsequent cycles.

From this point on we will analyse the data after sorting and binning according
to atom number. Hence, all information on the segments is erased and the
different QND measurement pulse trains are ordered according value from the
corresponding atom number measurement. For pulse trains falling within a bin9

we construct the covariance matrix between the different pulses in the train, and
plot selected variances as function of the mean bin atom number fig. 12.11. For

9in fig. 12.10 the matrix was calculated for pulses in the same segments.
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Figure 12.11: Plot of variances
for different pulses and com-
binations in 2-input MZI. The
variance of the first and second
pulses (green open and filled cir-
cles respectively) is fitted to a
polynomial and the linear part is
plotted as green dashed line.

the variances shown we have specified 11 bins and combined 4 pulses in φ̃qnd,i,
for a reason that will become clear shortly. The variance of the first and second
pulses (green open and filled circles respectively) are almost equal indicating no
change in noise due to the probing. The polynomial fit (green line) returns a
large linear component (green dashed line), which means that classical atomic
noise is relatively small. The light noise (grey line) is given by the variance of
the Nat = 0 bin. As for the 1-input MZI, 〈(∆φ̃qnd,2 − φ̃qnd,1)

2〉 (yellow points) is
slightly lower than twice the light-noise, which therefore must contain a small
correlated part. The SNR, i.e., the ratio of projection to light noise, goes up to
almost 2. Achieving this SNR despite the fact that we reach a smaller atomic
phase-shift than in the 1-input MZI, is mostly a result of the unequal power in
the probe and reference arms. For this measurement the power ratio is 12, so
that shot-noise form the reference arm is suppressed by a factor of 1/12. The
combination of all these factors results in a noteworthy reduction of 〈(∆(φ̃qnd,2−
ζφ̃qnd,1))

2〉 (red diamonds) w.r.t. the projection noise level. We will quantify the
statement following the next figure.

We now account for the covariances and make interdependent quadratic fits to
the variances and covariances (see eq. (12.8)). In fig. 12.12 we again plot the av-
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Figure 12.12: Plot of cor-
related and uncorrelated
pulse variances with different
atom-number scaling in 2-
input MZI. The atom number
is calculated from the mean
bin phase-shift 〈φ̃ph〉 c.f.
eq. (12.10).

erage variance of the 2 first pulses (〈(∆φ̃qnd,1)
2〉+ 〈(∆φ̃qnd,2)

2〉)/2 (green circles)
along with the squeezed variances 〈(∆(φ̃qnd,2 − ζφ̃qnd,1))

2〉 (red diamonds). We
see that the remaining classical atomic noise (yellow area) is correlated between
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the pulses and thus does not affect the noise reduction, c.f. eq. (12.5), nor cause
〈(∆(φ̃qnd,2 − φ̃qnd,1))

2〉 to increase with Nat c.f. eq. (12.6). There is no indica-
tion of uncorrelated classical atomic noise, whereby we conclude that only slow
drifts, e.g. of the relative probe powers, matter. This seems to indicate that the
MZI offset adjustment has indeed helped to remove the effect of laser intensity
noise caused by the signal misbalancing for large Nat. It is hard to determine
exactly which sources of noise were subdued to get the improvement, since the
2-input configuration effectively suppresses a whole range. We believe, that in-
hibition of classical frequency noise in the coupling to the atoms, balancing of
the probe signals during the QND measurement, and immunity to acoustic noise
have all played a role in eliminating the classical atomic noise in the measure-
ment. The fits also confirm that part of the light noise is correlated between
the pulses, though the major part is still uncorrelated shot-noise. We shall not
forget the pièce de résistance, which is the ”squeezed noise” points. The variance
〈(∆(φ̃qnd,2 − ζφ̃qnd,1))

2〉 of the bin with the highest atom number is reduced to
0.29 of the projection noise level, i.e., a 5.3 dB reduction.10 The decoherence was
measured at 1− e−η = 0.80± 0.02, so that we can claim ξueda = 0.36± 0.015
(-4.4 dB) and ξwineland = 0.46± 0.03 (-3.4 dB). This result formed the centerpiece
of [Appel09]. The red curve is a plot of the level of the reduced noise based on
eq. (12.5). Again, the agreement of the curve with the data points merely shows
that we perform our statistical data analysis properly and consistently. In con-
tinuation of the discussion on the relation between squeezing and inter-particle
entanglement in sec. 3.6 we can estimate by [Sørensen01b] that we have achieved
four-particle entanglement.

We decided to combine 4 probe pulses for the plots above. The insert of fig. 12.12
illustrates this choice. The green points show the noise reduction and the red
the squeezing ξwineland as a function the number of pulses combined. The more
pulses are combined the higher the number of photons in the combined pulse
and the higher the measurements signal to noise. Effectively the larger number
of photons reduces the shot-noise fluctuations of the MZI phase and therefore
increases the sensitivity of the detection. One would expect the noise reduction
to increase but in fig. 12.12 it seems to level off after 5-6 pulses are combined. The
increase in Nph also intensifies the spontaneous scattering whereby the projection
noise level of the coherent part of the finals state fall. In fig. 12.12 this means that
the slope of the dashed grey line goes down and eventually the line will pass
below the reduced noise points. This feature is apparent from the squeezing for
different pulse combinations. When the decoherence grows beyond about 20%
the squeezing starts to degrade. For the probe powers and detunings used in
this experiment it seems that combining 4 pulses gives the largest squeezing.
The state decoherence of 0.2 is lower than the 0.33 predicted in the limit of
high optical depth (see eq. (5.20)). To make a more accurate comparison we
use the relation between the coupling constant κ2, decoherence η, and optical
depth α̃0 given by eq. (5.37). Moreover we shall use the derivations in sec. 4.5.1
to account for the noise increase due to the non-elastically scattered photons.
This allows us to plot the expected squeezing as a function of the decoherence
for the probe detunings used in the experiment. In fig. 12.13 we plot curves
for different optical depths along with the experimentally measured squeezing.
All things considered, the qualitative agreement is rather good and we would
give an estimate of the optical depth between α̃0 = 60-90. This is not too far
off the previous estimates. The squeezing seems to reduce quicker after the first

10To root out any confusion what we calculate is
〈(∆(φ̃qnd,2−ζφ̃qnd,1))

2〉−[〈(∆c(0))2〉+〈(∆u(0))2〉]
[〈(∆c(1))2〉 . In the

figure this means we take the ratio of the distance between the light noise (top of red area) to the
squeezed noise point to the size of the projection noise (height of the green area).
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Figure 12.13: Experimental squeezing vs.
decoherence. The data points are the
same as in the insert of fig. 12.12 and the
theoretical curves are plotted for different
optical depths α̃0

four pulses. This is likely due to the influence of classical noise sources, which
seem to increase as more pulses are combined, thereby increasing the effective
duration of the combined pulse.

Data consistency check – atom number comparison One important check of
the results is to see how well the measured pulse variances conform with what
one would expect. In the case of the projection noise we can calculate it indepen-
dently from the measured mean phase-shift. In fig. 12.14 we reproduce the pulse
variance (〈(∆φ̃qnd,1)

2〉+ 〈(∆φ̃qnd,2)
2〉)/2 along with the quadratic fit and the lin-

ear part. The yellow line represents the atomic noise expected from the mean
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Figure 12.14: Plot of shot-noise
and projection noise derived
from pulse variances and phase-
shift.

phase shift taking the geometric correction factor in to account, while the dotted
line is without the correction. It suffices to say that the projection noise level ob-
served experimentally agrees very well with that predicted from the phase-shift.
This reinforces the claim that the atomic noise scaling linear with Nat is indeed
the quantum projection noise.

Effect of spontaneous scattering on correlations In sec. 4.5.1 we accentuated
that the dichromatic probing on the two quasi-cycling transitions was very ben-
eficial to the aim of squeezing the pseudo-spin. We have still to elaborate on this
prediction in the experimental data. The data shows several clear interrelated
signs of it. Firstly, the scaling of the variance and covariance do not produce
any uncorrelated noise scaling linear with Nat. In other words the quasi-elastic
spontaneous scattering does not reduce the correlation between the two pulses.
Uncorrelated noise proportional to Nat could only arise from part of the atoms
being in different and uncorrelated quantum states during the first and second
probe pulse. The second piece of evidence is that the level of the reduced noise
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Box 12.1: Binning issues

When binning the data one must weigh two opposite concerns. Firstly,
it is important that each bin contains enough data that the calculated
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variances are statistically sig-
nificant. From this one
would advocate data to be
put in few bins containing
big portions of measurement
data. On the other hand
the fitting procedure requires
bins to be spread out over
a range of atom numbers.
This then would speak for
more bins, which unwill-
ingly would contain fever
data. We have confirmed
that within, a reasonable
range of bin numbers the
results of the fitting proce-
dure agree. In the figures to
the left we plot the reduced
noise and degree of squeez-
ing for different number of
bins and pulse combinations.
The noise reduction and
squeezing obtained for dif-
ferent pulse combinations
only varies a bit for the dif-
ferent number of bins. More-
over the variation is evi-
dently not random. If in-
stead we look at the depen-

dence on the number of bins there is a tendency of more noise reduction and
squeezing the more bins we use. This is not due to any systematic change in
the fitting, but due to the evaluation of the noise reduction at the bin with the
largest Nat. The above figure shows that
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the more bins are used the higher is the
mean atom number for the highest atom
number bin. Hence, the noise reduction
and squeezing increase because we eval-
uate it at a larger mean atom number.
For the figures in the body text we use 11
bins as this number seemed to be the best
match between having data points dis-
tributed well and them not being overly
scattered because of too little statistical
weight.

〈(∆(φ̃qnd,2 − ζφ̃qnd,1))
2〉 is exactly at the level predicted by eq. (12.5). when to

calculate the prediction we assumed that the linear scaling part of the atomic
noise was all correlated. Finally, the correlation plot in fig. 12.10 reveals that the
correlation is not reduced if we compare non-neighbouring pulses. That is, the
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covariance 〈(∆(φ̃qnd,j, φ̃qnd,j))〉 is more or less independent of which pulses i and
j in the train one computes it for. To found this statement better, we plot the
correlation between the first and all subsequent pulses, i.e., 〈(∆(φ̃qnd,1, φ̃qnd,i))〉,
vs. the pulse index i (see fig. 12.15). The spontaneous scattering is calculated
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Figure 12.15: Correlation factor be-
tween first and subsequent pulses
〈(∆(φ̃qnd,1, φ̃qnd,i))〉 together with spon-
taneous scattering rate. The 0.054
scattering rate per probe pulse is mea-
sured from a the reduction of the fringe
in a Ramsey sequence.

as that occurring before the i’th pulse, since this will gauge the degree to which
the initial state has been ”destroyed” at the point when it is measured by the i’th
pulse. The exponential fit to the correlation factors unveils that for every probe
pulse about 1.5% of the correlation is lost. In contrast the spontaneous scatter-
ing affects about 5.5% of the atoms. This means that the spontaneous scattering
only perturbs the mean value and second moment of the measured quantum
state weakly. This was exactly the claim in sec. 4.5.1. The reduction in the cor-
relation is partly due to the atoms being pumped in to high mF levels which
couple weaker to the probe. This supposition is supported by the single pulse
variances also reducing moderately with the number of probe pulses. The effect
of reduced coupling to the probe due to sub-level pumping was not included in
the derivation in sec. 4.5.1.

Spontaneous scattering and dephasing The correct determination of the de-
phasing and decoherence of the pseudo-spin is essential for any claim of spin-
squeezing. Therein lies also the rationale for devoting such a lengthy part of
this work (chapt. 11) to the investigation of dephasing and decoherence. In the
review of other experiments in sec. 16 we shall expatiate a bit on this issue. The
values stated for the decoherence in this section were found by Ramsey spin-
echo measurements with a probe pulse pair placed either both before or around
the spin-echo pulse. The pulses power was set so that the two pulses combined
would contain as close to the photon number as that used in the squeezing
experiment. The measurements with pulses before or around the spin-echo al-
ways agreed within a 1-2%, which is the number stated as an uncertainty to the
squeezing. Though, the two values agreed within the fit uncertainty, the lower
Ramsey fringe amplitude was consistently obtained for the sequence with both
pulses before, i.e., not being helped by re-phasing. This made it clear to us that
the 2-input MZI is frightfully sensitive to the mode matching of the inputs — a
task to be performed before every measurement run. From the careful, investi-
gation of the cancellation in sec. 11.2.3 we were again enticed to re-configure the
MZI to have the probes mode-matched in an optical fibre whereby they would
enter the same input. Fortunately, we found in sec. 2.3.1 that the probes and the
MZI could be set up so that even when entering the same port to the MZI, the
probe fringes could be made to behave equivalent to the 2-input configuration.
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That is, the probe fringes are out of phase. This we will investigate in the next
section.

Correlation visualised As a conclusion to the 2-input MZI measurement sec-
tion fig. 12.16 shows the plot that seems to have become a standard visualisation
of pulse correlations [Takano09b, Appel09].11 Admittedly a scatter plot gives a
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Figure 12.16: Correlation plot. a) scatter plot of φ̃
j
qnd,1 vs. φ̃

j+1
qnd,1 for ∼ 800 data points

with the highest atom number, revealing the atomic noise. b) scatter plot of φ̃
j
qnd,1 vs.

φ̃
j
qnd,2 for ∼ 800 data points with the highest atom number, revealing the correlation

between subsequent measurements of the same atomic state. c) scatter plot of φ̃
j
qnd,1 vs.

φ̃
j
qnd,2 for for ∼ 800 data points with no atoms in the sample, revealing the uncorrelated

shot noise floor.

good feeling of what the QND measurement squeezing is all about. We include
the shot noise plot, which neatly visualises the lower limit for the reduced noise.

12.4.4 Two-input equivalent MZI

Following the successful demonstration of spin-squeezing the aim was to charac-
terise the squeezed state more carefully and attempt to introduce it in a clock-like
sequence. All of these involve the experiment to be performed using different
some set of sequences e.g. to observe the noise of the the different pseudo-spin
components after the QND measurement so as to detect both squeezing and
anti-squeezing. The ensuing experimental runs lasting up to one week, in turn,
put even stronger demands on the stability of the experiment. In this respect,
the 2-input configuration proved to fall short in a couple of ways. Firstly, the
spatial separation of the probe inputs means that probe powers and fringe vis-
ibilities can drift independently and though the wiggler constantly ensures the
fringe amplitudes to be equal, the optical power in the atoms can be different for
the two probes. Secondly, a more seriousl effect arises when the spatial modes
of the two probe colours do not match in the atomic sample. As a result the
probes will couple differently to the sample. Say both are initially optimally
overlapped with the atomic sample, but during the experiment the mode of one
probe colour is misaligned. In this case the atomic signal from the probe that
drifted will decrease and the atomic phase-shifts of the probes will no longer be
equal. This makes the measurement sensitive to atom number fluctuations and
laser frequency noise sec. 6.2. Moreover, the QND measurement signal will not
be easily accommodated within the DSO range and may even become sufficiently

11some version of this would also have appeared on the front page of this thesis if it were not
for the many hours spent on the ”PNAS cover attempt”, which now adorns this work instead.
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misbalanced to saturate the QND detector. Finally, there is the concern of the
light-shift cancellation that we alluded to in the end of sec. 6.2. The aggregate of
these problems provided enough impetus to launch yet another reconfiguration
of the MZI to one of the setups equivalent to a 2-input MZI.

The first configuration took us to the setup where the probe colours were put
in the same fibre with orthogonal polarisation modes. This is possible since in
a single mode fibre the polarisation should be maintained for light on both the
slow and fast fibre axis. We split half of each of the two polarisation into each
of the MZI arms on the input BS, which in this case was a PBS. Because we
can turn the probe polarisations with a wave-plate we can fine tune the splitting
ratio so that the powers of the probes are exactly equal in the each arm. We then
attenuate the probe arm using a polariser and split off part of the probe powers
on to the power reference detector with a PBS. In the reference arm the probe
polarisations are also purified with a polariser.

Ultimately this configuration suffered from many of the same problems as the
configuration with two spatially separated inputs. By nature the spatial modes
of the probe colours are perfectly matched, but the relative powers can drift
because the polarisations are contaminated in the fibre. Only a little admixing
of circular polarised light will change the splitting ratio on the MZI input PBS
so that the fringe visibilities change. The wiggler compensates by the adjusting
the probe powers, but this makes the powers in the probe arm slightly different.
What is worse, is that the polarisation contamination causes small changes in
the phases that the probe beams acquire upon reflection and transmission on the
mirrors and BSs. Eventually, this can spoil the very fine balancing of the probe
signals on the QND detector and force us to redo the balancing. This is possible,
by using the memory wire attached to the wave-plate before the PBS that splits
probes on to the two detector channels, but it is generally not desirable to make
such an adjustment in the course of a measurement run.

Fortunately we were not out of options. In the, to date, final re-configuration
we made use of the fact that by having different frequencies the two probes
are already separated in two modes, which can be separated in the output sig-
nal by misaligning the MZI to a path-length difference of cπ/(ω45′ − ω32′))
(see sec. 8.3). The probe polarisations can be set equal so all power drifts are
almost perfectly in tune. With this configuration we are finally in a position to
carry out detailed investigations.

Due to some major problems with the FORT trapping laser we had to re-align
the optics for the FORT. One problem we noticed regarded the spatial mode
of the FORT beam, which at certain powers developed a toroidal shape. This
seemed to be a thermal lensing effect in the FORT switching AOM, and after
re-alignment the FORT mode regained a Gaussian shape. We believe the FORT
mode has been contaminated only for a short time following a re-alignment of
the FORT laser cavity. In connection with solving the mode issue, we made
some adjustments to the FORT beam spot-size in order to try different trapping
confinements. After some trials, we decided that where we started out was not
so bad, and the FORT beam was adjusted for a beam waist size of about 40 µm.
However, after making these adjustments we have not characterised the trap
size and thus we have only vague idea of the sample to probe beam waist ratio.
This will affect the absolute estimates of the noise, via the uncertainty on the
appropriate geometric correction factor (see eq. (3.26)).
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12.5 Squeezing lifetime

As with so many things in life, one of the most pressing questions about the gen-
erated squeezed is how long it lasts. From a pragmatic point of view we must
examine if the correlation of the atomic noise between pulses degrades as the
pulses are put farther apart. A hint to the answer may be drawn from fig. 12.15
where we saw that the correlation between the first QND measurement pulse
and subsequent pulses did not reduce considerably. The temporal separation of
the first and last pulse in that train was already 400 µs. Of course, we cannot
definitely state the lifetime of the squeezing until we have performed a measure-
ment where we compare pulses of different separation without any intermediate
pulses.

experimental settings The pulse sequence the same as in fig. 12.8 except for
some of the QND pulses being absent. We set the probe powers so that they the
coupling strength and spontaneous scattering in a single 10 µs pulse is close to
optimal for the squeezing. To compare the lifetime over longer periods we skip
a number of pulses after the first QND pulse e.g. skipping 4 pulses will allow us
to compare the first QND pulse with one (4 + 1)trep = 100 µs later. We take this
approach of skipping pulses instead of displacing all the pulses after the first,
because it allows us to use the same integration matrix for all the data. Besides
removing some systematic errors due to small mismatches of the matrices’ in-
tegration windows, the unified integration also makes it simple to analyse the
data within the same analysis script. Another important step towards avoiding
systematic biases of the data is to randomise the pulse skipping. That is to say,
the acquisition program randomly picks a value from a preset range, passes this
value to the relevant experiment control program (in this case the DIO-64 Lab-
View program), which then configures its output to the given value. The value is
held for 50-100 experimental cycles — so that we can do the subtraction of sub-
sequent cycles c.f. sec. 12.2.2 — before being changed to another random value.
Like this, the data for any particular setting will originate from cycles distributed
over the whole duration of the experimental run, thereby hopefully eliminating
any biases. To distinguish the data sets acquired for different settings we save
the control value along with the data and use this value for selecting certain
parameter values in the analysis. The remaining key parameters for the run are
listed in table 12.3.

∆32 ∆45 tp trep Nph,a Npha/Nphb τπ/2 1− e−η

MHz MHz µs µs – – µs –
-84 -92 10 20* 0.66 · 107 ∼ 12 5.6 0.135

Table 12.3: Probe settings for squeezing lifetime measurement with 2-input equivalent
MZI. The photon number and decoherence correspond to a single probe pulse. *The
repetition period corresponds to the pulse train with no pulses skipped.

Dissecting the noise To lay the ground for the analysis of the squeezing life-
time we will take a brief look at the noise scaling and establish the most impor-
tant issues. As a starting point we pick the data where no QND pulses were
skipped and chose to the combine pulses 2 to 20 in to a compound second QND
pulse. The variances for this data are shown in fig. 12.17. The effect of combining
pulses is to lower the shot-noise level, which in phase-units scales as 1/Nph. This
constitutes an experimental demonstration of the increase of phase-resolution
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Figure 12.17: Plot of variances for differ-
ent pulses and combinations in 2-input
MZI. The variance of the first and second
pulses (green open and filled circles re-
spectively) is fitted to polynomial expres-
sions and the linear part of the second
pulse variance is plotted as green dashed
line.

with increased photon numbers (see sec. 2.3.1). In the data this reduction causes
the atomic noise 〈(∆p1)

2〉 and 〈(∆p2)
2〉 to be displaced, with the ratio of 1/19

between the shot-noise levels. Both 〈(∆p1)
2〉 and 〈(∆p2)

2〉 scale almost linearly
with the atom number, as a sign being limited by the atomic projection noise.
The reduced variance 〈(∆(p2 − ζ p1))

2〉 reflects what we found in eq. (12.5), that
combining the second pulse, which in some sense only verifies the squeezing
induced by the first pulse, does not improve the noise reduction. We also re-
mind, that the SNR in this plot should be found as the ratio of the first pulse
shot noise and atomic noise, and not from the second pulse variance. The SNR
in this measurement approaches 1.5 for the highest Nat bin.

Moving to the combined analysis of the variances and covariances we plot the
〈(∆(p2 − ζ p1))

2〉 and 〈(∆p2)
2〉 together with the fitted noise contributions. The

ns, Nov20091127_squeezing_lifetime1| 6e+06 photons| 14 bins| 1 combined pulses| 28705 total

-2.3 dB

-3.6 dB

0 2 4 6 8 10 12 14
0

2

4

6

8

10

p
h
as

e 
va

ri
an

ce
s,

 [
1
0

-7
 r

ad
2
]

Number of Atoms Nat  , [104]

ns, Nov20091127_squeezing_lifetime1| 6e+06 photons| 14 bins| 1 combined pulses| 28705 tota

−2.2 dB

−3.4 dB

0 2 4 6 8 10 12 14
0

2

4

6

8

10

p
h
as

e 
va

ri
an

ce
s,

 [
1
0

-7
 r

ad
2
]

Number of Atoms Nat  , [104]

Figure 12.18: Plot of correlated and uncorrelated pulse variances with different atom-
number scaling in 2-input MZI. The atom number is calculated from the mean bin phase-
shift 〈φ̃ph〉 c.f. eq. (12.10).

left hand plot of fig. 12.18 depicts the same data as in fig. 12.17 except for the
second pulse being composed of 4 pulses now. We notice a small contribution
of correlated classical noise which reduces the achievable noise reduction to 0.44
(-3.6 dB) and the squeezing to ξwineland = 0.59 (-2.3 dB). However, we also notice
that both the 〈(∆p2)

2〉 and 〈(∆(p2 − ζ p1))
2〉 values scatter quite a bit. The

scattering is reduced by combining more pulses so clearly it is a result of a few
bad second pulse measurement points that throw off the variances for some of
the bins. The figure quite well illustrates the difficulties involved in sensibly
analysing the data.
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On the right hand plot we show the data from traces where 15 pulses have been
skipped. The separation between the first and second measurement pulse is thus
320 µs. The length of the total pulse train being 20 (also counting the skipped
pulses), we are limited to combine only 4 pulses for the second compound pulse.
The atomic noise is influenced by some amount of uncorrelated classical noise.
Despite this, the fit predicts about 0.46 (-3.4 dB) noise reduction and ξwineland =
0.60 (-2.2 dB).

Altogether, the results derived from the two data sets agree rather convincingly,
with special remarks to the projection noise slopes. However, we have had to
impose some constraints on the fitting parameters for the r.h.s. data set. What
we do is to let the fitting parameters for the covariance be limited to be no higher
than those obtained from the fit to the first pulse variance. The rationale behind
this constraint should be reasonably clear from eq. (12.8), but we will make a
few comments. W.r.t. the Nat independent light-noise contribution the restraint
makes no difference and we actually omit it. The linear scaling part of the
variance is due to the projection noise, and there is no reason why it should be
different for any of the traces. If the data-set is contaminated by some classical
noise influence then that can only add quadratic noise. The correlation could
decrease below the projection noise, whereby we would see some uncorrelated
projection linear scaling noise. This we allow for since the lower bound on all
parameters is just zero.

As a check of the fitted projection noise slope 〈(∆p1)2〉 for the data-set with
no skipped pulses and using the maximal combination for the second pulse
we get the slope in fig. 12.19. We compare this with the theoretical estimate
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Figure 12.19: Plot of shot-noise and pro-
jection noise derived from pulse vari-
ances (green dashed) and phase-shift
(yellow curves). The full yellow curve ac-
counts for the geometry with a probe to
sample waist ratio of rw = 0.6, while the
yellow dashed curve uses rw = 1, and the
yellow dotted line is without geometric
correction.

as prescribed by eq. (12.10). The agreement of the measured projection noise
variance (green dashed) with that expected for the measured phase-shift (yellow
full line) is reasonable but not nearly as convincing as in fig. 12.14. The reason
for the discrepancy can be due to a different sample size after the FORT re-
alignment. If we take the disagreement at face value, we would predict the
atomic sample to be narrower than before. As an indicator for this hypothesis
we plot the expected noise for a sample to probe waist ratio of 1 (yellow dashed
line). In any case, we are almost sure that the sample size is not exactly as
before, since no matter how much we optimise we seem to get lower atomic
phase-shifts now. On the other hand, the discrepancy may also be a sign of
the fitted projection noise being too large. This can certainly not be ruled out,
though the slope of the linear scaling part of the noise is similar to that obtain
over several different squeezing measurements including some with larger and
more unblemished data sets.
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projection noise and squeezing for different pulse separations We have now
presented some of the concern w.r.t. the analysis of the individual data sets and
proceed with a more systematic comparison. When comparing the noise reduc-
tion for different pulse-separation we conventionally evaluate the number at the
mean atomic phase-shift of the bin with the highest atom number. Since the
data accumulated for different pulse-separation settings will comprise different
distribution of atomic phase shifts, we risk adding noise to the estimated noise
reduction (see box 12.1). To check the effect we plot the maximal mean atom
number for the different pulse separation data sets in fig. 12.20, and verify that
the variation is rather small.
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Figure 12.20: Highest mean atom number for dif-
ferent pulse separation data sets using 11 bins.

Now we plot the fitted projection noise level evaluated at the maximal Nat bin
value in fig. 12.21. The three subfigures correspond to different pulse combining
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Figure 12.21: Projection noise for different pulse separations. The three plots correspond
to different fitting constraints applied to the same data-set.

methods and fitting strategies. We also always show the outcome of the fits for
different numbers of bins. In fig. 12.21a we do not make any constraints and
the values are quite scattered. In fig. 12.21b we still do not make any constraints
on the fit but combine as many pulses as possible for the second probe pulse.
The resulting projection noise tends to be lower than that fitted for the other
methods. Lastly, in fig. 12.21c we constrain the fit parameters as described above
though this does not seem reduce the scattering.

We are now in a position to calculate the squeezing, with the result shown in
fig. 12.22. Again the three figures correspond to imposing different constraints
and pulse combination schemes. The error bars are calculated as the square-sum
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Figure 12.22: Squeezing for different pulse separations. The three plots correspond to
different fitting constraints applied to the same data-set.

of several contributions; The first is the standard deviation of the projection noise
value obtained for different binnings and three more account for the uncertainty
in the atom number and decoherence measurements. The values in fig. 12.22
scatter considerably although one could possibly claim that the values up to
around 200 µs lie at a reasonably constant level. We fit the squeezing to an expo-
nential decay and achieve lifetimes of 367 µs and 818 µs for the fits in fig. 12.22a
and b respectively. Due to the large scattering of the data these values should be
taken with a handsome portion of scepticism. The last plot in fig. 12.22c displays
a much more constant squeezing. It would appear that imposing the restrictions
on the fit gives a more steady result, though this need not be taken as a proof
of the procedure’s validity. The decay constant of the squeezing in the last plot
is fitted to 2806 µs. We would like to believe this value, but when taking the
squeezing life-time measurement as a whole we cannot yet make any definite
claims. We see both in this section and from looking at the decay of the correla-
tion in fig. 12.15 that the squeezing does not seem to degrade with time. In other
less systematic measurements we have not observed any significant degrading
of the squeezing. Sadly, we have not yet managed to make an experimental run
that has been stable enough to get clear results on the lifetime — and we have
made a number of attempts.

We should of course keep in mind that the inhomogeneous dephasing in the
FORT happens at a rapid pace of around 1 ms. Hence, the noise reduction of the
F̂z component may be preserved over long times but in the equatorial plane the
spin-vector is washed out. Fortunately, a simple spin echo pulse could re-phase
the broadening, but this on the other hand would not be useful in a spectroscopic
measurement.

12.6 State tomography and anti-squeezing

When characterising the spin-squeezing in the preceding sections we only mea-
sure the spin component that was squeezed, but this is not sufficient to disclose
the whole atomic state. Essentially, we have no knowledge of the statistics of
the pseudo-spin along the equator. This spin component is presumably anti-
squeezed and it would be advantageous to measure the degree of anti-squeezing.
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This is very relevant, since even for squeezing of one spin component if the
anti-squeezed component is excessively noisy the state cannot be used for spec-
troscopy. Thus we want to characterise the complete statistics of the squeezed
quantum state by performing a state tomography. In future applications where
we propose the generation of more exotic quantum states we crucially rely on
being able to faithfully reconstruct the atomic state by tomography. Hence, it
pays off to get a good grasp of this type of measurement. There is one major
catch, in that the manipulations of the quantum state, that are needed to ob-
serve the other spin components, can themselves introduce additional classical
noise. Hence, the tomography of a squeezed state may very well show anti-
squeezing well above the actual anti-squeezing. However, classical noise in the
measurement of the anti-squeezed quadrature can also be a result of additional
noise in that spin component. For example, classical laser intensity noise adds
back-action noise to the atoms above the level set by the shot-noise of the probes.

Tomography approach 1 - simple The immediate idea for the tomography
measurement of the squeezed state is to rotate the state by an angle θ around
the y-axis after the first squeezing pulse (see fig. 12.23). This simple approach

Figure 12.23: Intuitive
tomography approach.
a) A squeezed state is
prepared by a QND
measurement. b) A
subsequent microwave
pulse of varying du-
ration and π/2 out of
phase with the state
preparing π/2 pulse,
rotates the pseudo-spin

x

y

z

x

y

z

around its own axis so that the a following measurement gives the squeezed or anti-
squeezed pseudo-spin component.

turned out to suffer from a problem with the microwave coupling strength. As
we increased the rotation angle, by making longer microwave pulses, we noticed
that the mean of the signal oscillates (see fig. 12.24). These oscillations could not
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Figure 12.24: Oscillating mean population number difference in intuitive tomography
sequence for different rotations of the Bloch-vector as shown in fig. 12.23.

be explained by power or frequency drifts during the microwave pulse. Rather
it turned out to be rooted in an inhomogeneous distribution of microwave cou-
pling strengths over the sample. This inhomogeneous spread of the coupling
is partially explained by the FORT light shift, but the actual spatial intensity
distribution of the microwaves seem also to play a role. The effect of this in-
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homogeneous coupling is that the atoms actually experience different rotation
angles when they are prepared in the coherent superposition along the y-axis.
As illustrated in fig. 12.25, the result is that atoms at one spatial location have

y y

a           b
Figure 12.25: Illustration of mi-
crowave intensity spread influ-
ence on tomography. a) The inho-
mogeneous coupling smears out
the atomic state in that atoms lo-
cated in regions of low field in-
tensity perform less than a π/2
rotation (red shade) while those
located in high field-intensity re-
gions perform more than a π/2
rotation (green shade). The mi-
crowave pulse length is thus cho-
sen so that the spatial average of
〈F̂z〉 over the effective sample is 0.

b) The second, tomography microwave pulse causes the F̂ distribution to be twisted
around the y-axis as the rotation angle of atoms in low field intensity lags behind that for
atoms in high field intensity. We emphasise that the drawn distribution is deterministic
and thus not the same as the uncertainty disk drawn on most other Bloch spheres in this
thesis.

their pseudo-spin below the bloch sphere equator, while others at a different
place have the pseudo-spin mean above the equator. The average pseudo-spin
projection over atoms at all positions is of course set to be zero. When the sec-
ond tomography microwave pulse is applied the atoms located at the place of
strongest coupling again rotate more than those at low coupling locations. This,
causes a sort of spiral effect on the pseudo-spins where atom in the one side
rotate more than those at the other side.
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Tomography approach 2 - involved

a             b
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Figure 12.26: Alternative tomography approach de-
scribed in text.

To overcome the problem of inhomogeneous
coupling we needed to construct a sequence
where 〈F̂z〉 = 0 is always preserved, irrespective
of inhomogeneities. The sequence we propose is
outlined in fig. 12.26. After preparing the atomic
state by the first microwave π/2 pulse we per-
form the squeezing measurement and then a
second π/2 pulse takes the atomic state back
to the south-pole of the Bloch sphere. Since this
perfectly inverts any spread of the state caused
by inhomogeneous coupling to the microwaves
the state at this point is almost perfectly re-
aligned. To make the tomography we apply a
third microwave pulses which can have differ-
ent phases so as to rotate the spin around dif-
ferent axes. Say the microwave phase is 0, i.e.,
the same as in the first two pulses, then the spin
is rotated back up along the y-axis (fig. 12.26a)
and a measurement at this point should disclose
the reduced variance of the squeezed spin com-
ponent. If the microwave phase of the third
pulse is shifted by π/2 then the pseudo-spin is
rotated up along the x-axis (fig. 12.26c) and a
measurement at this point should reflect the in-
creased variance of the anti-squeezed spin com-
ponent. At intermediate phase displacements
the third π/2 pulse results in tomography at
various rotations of the squeezing uncertainty
ellipse (fig. 12.26b,d). A final note on the phase
displacement of π where the pseudo-spin is
aligned along the −y-axis. In this case a mea-
surement should be anti-correlated with the first
QND measurement and the noise should ap-
proach the projection noise. However, as we
shall discuss more formally in sec. 15.1 the fact
that atoms scattered into mF 6= 0 levels by the
probing, do not partake in the microwave rota-
tions causes extra noise when the mF = 0 atoms
are not returned to their original value.
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∆32 ∆45 tp trep Nph,a Npha/Nphb τπ/2 1− e−η

MHz MHz µs µs – – µs –
-84.3 -94.3 10 20 0.483 · 107 ∼ 12 5.72 0.123

Table 12.4: Probe settings for tomography measurement with 2-input equivalent MZI.
The photon number and decoherence correspond to a single probe pulse.

Now we shall present some preliminary tomography measurements using the
sequence of fig. 12.26. The experimental settings are summarised in table 12.4.
We randomly change the microwave phase between a set of phase values so that
we avoid adding systematic effects. We take chunks of 50 experimental cycles
for each phase-setting so that we can subtract subsequent cycles without loss of
much data. The raw data for the first tomography probe pulse, i.e., the second
pulse that follows after the squeezing pulse, is shown in fig. 12.27. We see that
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Figure 12.27: Raw high-atom number data points for tomography measurement. The
data for each tomography angle is distributed over a small region to visualise the scat-
tering. The number of points plotted at each setting varies from 100-500 for most angles
except 0 and π where 2000-3000 points are plotted.

the mean value depends on the rotation angle. The cause of this can be that the
cancellation of the inhomogeneous microwave field coupling is only perfect if
atoms remain at the same position during the first and second π/2 pulses. Since
the atoms are not stationary it is possible that they experience a slightly different
coupling strength during the first and second pulses. We remove the harmonic
dependency from the mean value by subtracting a sine function from all pulses.
We will not show any of the noise-scaling curves as they do contribute with any
new wisdom. Instead we focus on the data-point for the highest atom number
bin where the SNR is highest and thus any effects should be most pronounced.
First we plot the pulse variances 〈(∆pi)

2〉 normalised to the average projection
noise, which is calculated as the mean variance of the first QND probe pulse
〈(∆p1)2〉 (see fig. 12.28). We plot histograms of the variance of all 20 pulses in
the train at all 24 rotation angles. A first observation is that the noise of the
first (squeezing) pulse is constant and we take this as a sign of it being due
to the quantum projection noise. This is supported by the first pulses always
showing linear scaling with Nat. At the 0 rad angle the first half of the pulses
stay projection noise limited, whereas at all other angles the noise is significantly
increased. The noise is the largest at the angles where we should be probing the
anti-squeezed spin component and achieves a local minimum when it is rotated
by π. The apparent systematic change of the variance over the duration of the
train is somewhat more confounding. We will seek for some answers shortly.
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Figure 12.28: Total noise level of high atom number probe pulse trains for different
tomography angles. Each coloured bar-plot corresponds to the pulse train at a given
tomography angle.
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Figure 12.29: Noise reduction of high atom number probe pulse trains for different
tomography angles. Each coloured bar-plot corresponds to the pulse train at a given
tomography angle.

Our next move is to plot the noise reduction as a function of the rotation angle
and pulse index within the train (see fig. 12.29). The overall pattern of course
resembles that for the projection noise, and we see that a ∼ 0.65 (∼ 2 dB) reduc-
tion of the noise is only achieved at the zero rad angle. Since, the decoherence
for a single pulse is 12% the squeezing is a modest ∼ 0.8 (∼ 0.9 dB). However,
this noise reduction does not seem to survive the duration of the pulse train. The
local minimum of the noise at the π angle corresponds to probing the squeezed
pseudo-spin component. However, we actually do not expect the noise reduc-
tion to be as large as at zero rad angle. This is because not all scattered atoms
end up back in the mF = 0 levels. The atoms that end up in mF = ±1 are not
affected by the microwaves and thus do not make rotations around the Bloch
sphere. For that reason, we always probe the mF = ±1 atoms as if they were
rotated around zero rad. Now, the scattering process is stochastic and though
we may approximately take all atoms to decay back to their initial hyperfine
level the fraction going in to mF = 0 and mF = ±1 fluctuates. When the mF = 0
atoms rotated around a zero rad angle this is not important because all scat-
tered atoms are put back in to the hyperfine state they spontaneously decayed
in to. When the mF = 0 atoms are rotated around a π rad we effectively inter-
change the hyperfine state of all mF = 0 atoms. Hence, the fluctuations in the
scattering process will now be amplified because the scattered mF = 0 are not
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only removed from their original hyperfine level but also add to the ”opposite”
signal from the other hyperfine level. This explanation is merely a qualitative ac-
count of scattering loss types in sec. 3.7.2 and quasi-elastic scattering in sec. 4.5.
with approximately 10% spontaneously scattered atoms about half end up in
the mF = 0 level and we thus very roughly expect these to remove 0.05 units of
projection noise from the noise reduction and add another 0.05 projection noise
units of noise. This should still give a modest noise reduction whereas the data
shows a noise increase.
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Figure 12.30: Mean values of high atom number probe pulse trains for different to-
mography angles. Each coloured bar-plot corresponds to the pulse train at a given
tomography angle.

Finally, we take a look at the pulse mean values to see if they reveal anything
about the peculiarities of the data (see fig. 12.30). Firstly, the mean values are
well balanced for all pulses except the first one. The reason for the first pulse
to be off is probably related to the MZI offsetting that compensates the mean
atomic phase-shift and ensures the probes individually to be balanced during
the QND measurement (see fig. 12.9).

A more serious concern is the change in mean values over the 400 µs duration
of the pulse train. It almost appears as if the mean is performing some sort of
oscillation. We have observed that the pattern of this mean value drift changes
when the separation between the train and the microwave pulse is changed.
Thus we conclude that the effect is connected to the microwave transitions. The
relative change in atomic phase-shift as compared to the total atomic shift is
about 2%. Very little power is needed to drive the microwave transition that
little over such a long time. So we first ruled out that the DDS and filter cavity
conspired to let a small amount of radiation pass through to the atoms. This
we did by additionally gating the DDS pulses by the HP modulator, but it made
no difference. At this point we believe that the fluctuations are caused by co-
herences between the atoms in mF ± 1 levels. To generate such coherences we
need a coherent process of transferring the atoms to these levels. The process is
of course just the microwaves. How this can be should be clear from fig. 10.24
showing the Rabi spectroscopy of microwave pulses of different duration. The
figure shows that even non-resonant transitions are driven by the microwave
radiation, albeit weakly. When we have 8 µs microwave π pulse durations the
Fourier width of the pulse is roughly 125 kHz, which is not to far off from the
∼ 350 kHz splitting between the 0 → 0′ clock transition and the 0 → ±1′ transi-
tions. The latter requires circularly polarised microwave radiation, which ideally
is not generated by the microwave antenna. However, as discussed in sec. 10.2.2
the metal enclosure of the setup along with the many metallic elements of the
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setup it self, means that we very likely have anything but a pure microwave field
polarisations. Hence, the 0 → ±1′ transitions are possible and can induce co-
herences between mF levels. The way to suppress such transitions is to arrange
the microwave power so that the pi pulse duration gives a minimum in the Rabi
spectrum in fig. 10.24 at the detuning corresponding to the 0 → ±1′ transition.
This will be considered when we resume the tomography measurements.
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Outlook and Applications
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Chapter 13

Conclusion

It is time to wrap up the results presented up to now. We have investigated
the possibilities of engineering squeezed states by QND measurements of the
atomic ensemble pseudo-spin constructed from the two clock-levels in Cs. The
QND measurement has been implemented in several configurations of an MZI.
We have concluded that in order to achieve the required coupling we must em-
ploy a dichromatic probe scheme in order to keep the optical power within the
range where the MZI is shot-noise limited. We have thoroughly investigated the
dephasing and decoherence of the pseudo-spin and come to a clear understand-
ing of their dependence on trapping and probing parameters. We have found
that the 2-input configuration affords better stability of the MZI detection and
additionally enables almost perfect cancellation of the probe induced light-shift.
Thus, we see a clear noise reduction of ∼ 2 dB in a 1-input configuration, but
even larger so (∼ 6 dB) in a 2-input configuration where we also demonstrate
spectroscopically relevant squeezing of ∼ 3 dB. The observed projection noise
level agrees well with that estimated from the atom number derived from the
mean atomic phase-shift and the coupling parameters. The degree of squeez-
ing is in fairly good agreement with that predicted from an optimal case theory
where classical noise is absent. This supports the theoretical treatment where
we argued the importance of correctly accounting for quasi-elastic photon scat-
tering events. We have made preliminary investigations of the lifetime of the
squeezing that indicate a decay in the ms range. We have hinted results of a
full tomography of the squeezed state that show large noise in the anti-squeezed
spin-components. With these conclusions the theses that formed the basis of this
account have been affirmed.
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Chapter 14

Next steps and improvements

14.1 What to improve

Several parts of the setup are now in a form that we find optimal. The MZI
has been reconfigured to enable light-shift cancellation and make it immune to
acoustic noise. We have incorporated a host of features, such as probe power
balancing by the wiggler and phase-offsetting the MZI to balance probes indi-
vidually. The balanced QND detector delivers fully in terms of a high bandwidth
and a low electronic noise level. The locking of the MZI is very stable and all
together the MZI detection system seems to work extremely well.

FORT light shift The light-shift of the FORT trapping beam is a problem be-
cause it dephases the collective atomic state. From the observation that the ir-
reversible dephasing time T∗2 is roughly 100 times longer than the reversible
(inhomogeneous) dephasing time T2, there is really a lot to gain by reducing the
FORT light shift. In most of the experiments shown in this thesis it is possible
to interpose a spin-echo pulse to achieve coherence lifetimes given by T∗2 (see
sec. 10.2.4). However, for a clock sequence this is not an option, as it also cancels
the sensitivity to the microwave detuning that one wants to measure. Estab-
lishing, whether there exists a FORT polarisation setting which together with a
certain bias magnetic field orientation cancels or, more likely, reduces the FORT
light shift would be an important step. It would actually not be to hard to get
some qualitative experimental observations of the light-shift dependence on the
FORT polarisation, and we expect to commence some trials soon.

Removing the FORT light shift would also have an effect on the T∗2 as well as
the reproducibility of the measurements. This is because the current VersaDisk
FORT laser has a rather high intensity noise level. The T∗2 is affected by the ir-
reversible fluctuations of the light-shift. Moreover, the light-shift on the probe
transitions will also fluctuate, and since this translates in to variations of the
effective probe laser detuning it adds noise to the output signal. Magic frequen-
cies that cancel the differential light shift on the D2-line have been proven to
exist [McKeever03] at 935.6 nm. Because of the specification on our dichroic
mirrors it would, however, not be possible with our current setup to separate a
laser at this frequency from the probe beams in the MZI. Another, option would
simply be to acquire a new and less noisy laser at a frequency around the cur-
rent 1030 nm. In light of the multiple breakdowns of either the VersaDisk power
supply, and chiller we have investigated this option and are aware of several
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concrete opportunities. All of these come at a steep cost, and for the moment we
will see how far the current FORT laser will take us.

analysis Our data analysis works well as long as we have large data sets and
are able to avoid spurious data points. For more moderate data set sizes the anal-
ysis is very vulnerable, mainly because we allow so many degrees of freedom.
This freedom endows us with a lot of information on the origin of various noise
sources, and as such has been a powerful tool for deciding where to improve
the setup. On the other hand, we have in some cases had to impose certain re-
straints on the parameters in order to get sensible outcomes. The analysis of our
measurements by making interdependent polynomial fits to the variances and
covariances of the data binned with varying mean atom numbers basically at-
tempts to pin down the statistical distribution of different noise sources. Another
way of doing this is to specify certain distributions with different characteristics
in terms of the dependence on atom number. From the distributions we can
generate dummy data sets and test how close the dummy data resembles the
recorded data. By iterating the parameters of the distributions of the different
noise contributions we will at the end determine which parameter sets is the
most likely to have generated the measured data. This type of maximum like-
lihood analysis has been implemented and tested on selected data sets. So far
the results of the maximum likelihood analysis has agreed perfectly with our
standard fitting analysis. An added advantage of this approach is that on can
in principle add an infinite number of distributions that depend on various ex-
perimental parameters, e.g. the pulse-separation, spin-rotation angle etc. Thus
a whole measurement can be analysed in one coherent process. The maximum
likelihood analysis is unfortunately more computationally demanding and for
that reason not a particularly versatile tool - at least not for now. We have not
used the maximum likelihood analysis in this account, because the method has
not been fully developed and so far has not added to our understanding of the
results. In the future, we anticipate that we will be able to use the method for
more reliable and coherent analysis of the complex measurements that we are
attempting.

14.1.1 Limitations

Whereas, some issues are open for improvements, there are other that are be-
yond our capability to improve — at least without a complete refurbishing of
the setup. We have found that the environment of the MZI setup is not very
”microwave-friendly”. Due to reflections on the elements in the setup we have
limited control over the polarisation and local intensity of the microwave field.
This gives rise to spatially and temporally varying coupling strength and causes
the field to drive transitions that should be forbidden with the intended pure
polarisation.

We have worked hard on the microwave source and on stabilising the power
fluctuations in the microwave field. We believe, we have come very close to the
setup that is optimal, considering the cost that we can accept. However, when
running a clock this is at most half of the equation. The other part is the isolation
of the atomic sample from perturbations of the clock-levels. Some effects, such
as the FORT intensity noise and light-shift, leave room for improvement, but
other influences, such as background magnetic field fluctuations, are not easily
amended.
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Finally, we would love to have lasers that never make mode-jumps and never
fall out of lock. This greatly reduce the amount of time spent unusable data and
the amount of data discarded. It seems, however, that we must wait some time
before such lasers come about.

14.2 What to do next

14.2.1 Running a squeezed clock

The first measurements with a full Ramsey clock sequence were taken almost
one year from now. These showed excessive noise, which made it completely
intractable to analyse the data meaningfully. This was one of the key reasons
for upgrading the microwave source to a more stable version. With the new
source, a couple of experiments have now been performed and the results of
those have recently been documented in [Louchet-Chauvet09]. Due to time and
space constraints the results of these measurements have not made it in to this
thesis.

14.2.2 Single atom excitations

In the not so distant future the setup is supposed to be modified slightly so
as to allow for the creation and detection of a single atomic excitation. This
highly exotic quantum state is created by pumping atoms in to one of the hyper-
fine ground states and subsequently the detection of single photon created by
spontaneous decay. The spontaneous decay is induced by a weak ”write” beam
coupling the populated ground state to an excited state and should take an ex-
cited atom to the non-populated ground state. Hence, the experiment involves
setting up single photon detection. Parts of this setup has been built and the
current MZI configuration is compatible with the single excitation experiment
up to rotations of probe polarisations and the bias magnetic field. A thorough
discussion of this topic is far beyond the scope of this thesis.





Chapter 15

Applications

15.1 Atomic clocks

It has been a general theme of this thesis that the generated spin squeezing
would have applications for atomic microwave clocks. We found that according
to the squeezing measure ξwineland we had generated a spin-squeezed state with
improved spectroscopic resolution. Nevertheless, there is a bit more to the story
than that. We need to account for the change in the mean value of the squeezed
state. According to eqs. (5.10 and 5.16) the mean of the state changes according
to the result of the QND measurement. This is of course obvious since that is
exactly what makes the second measurement correlated with the first measure-
ment. It is, however, not immediately clear how this effects the operation of the
Ramsey clock sequence.
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Figure 15.1: Ramsey clock-sequence with coherent pseudo-spin state

First we show a sketch of the standard clock sequence (fig. 15.1), in which a mi-
crowave π/2 pulse prepares the pseudo-spin in an equal superposition state
along the Bloch-sphere y-axis (fig. 15.1b). If the microwave field is slightly
detuned from the atomic clock frequency the pseudo-spin vector will precess
around the equator and acquire a phase (fig. 15.1c). After waiting for as long as
possible another π/2 pulse swaps the F̂y and F̂z components (fig. 15.1d) so that a
measurement of the population difference on the two levels can reveal the phase
acquired by the pseudo-spin during the precession. This is exactly the same as
the Ramsey sequence describe by eq. (10.11) with the resulting fringes plotted in
fig. 10.13.

Now we construct a clock sequence for the squeezed state. We start with the
equal superposition state in fig. 15.1b. At this stage the QND measurement is
performed and the resulting state has reduced noise in F̂z and increased noise in
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Figure 15.2: Ramsey clock-sequence with spin-squeezed state

F̂x (fig. 15.2b). Additionally, the measurement displaces the expectation value of
F̂z slightly (marked by yellow line) so that it better agrees with the measurement
outcome. We will tag this expectation value 〈F̂(start)

z 〉. Then next step differs from
the normal clock sequence. We make another π/2 pulse, which is phase-shifted
by θ = π/2 w.r.t. the first π/2 pulse. Hence, the pseudo-spin is rotated around
the y-axis and the measurement conditioned displacement 〈F̂(start)

z 〉 is converted
in to a displacement along the equator of the Bloch sphere. At the same time
this takes F̂z to zero. Now follow only standard steps in the Ramsey sequence:
free precession and a final π/2 pulse around the x-axis. The key feature is that
the displacement of 〈F̂(start)

z 〉 is directly transferred into a displacement of the
final 〈F̂(end)

z 〉 as compared to the value it would have attained without the QND
measurement. In other words the described sequence of rotations preserves the
correlation between the QND measurement result and the final state measure-
ment following the Ramsey clock sequence.

written in terms of rotation matrices the sequence is described by

MR,clock(τR, ∆0) = Mµw, π
2

Mµw(τR, 0, ∆0) Mµw, π
2

Mµw(θχ)

=


−F̂(start)

z cos(∆0τR) + F̂(start)
y sin(∆0τR)

F̂(start)
x

sin(∆0τR)F̂(start)
z + cos(∆0τR)F̂(start)

y

 , (15.1)

where Mµw(θχ) ensures the rotation about the y-axis of the first π/2 pulse (see

eq. (10.6)). Again this confirms that F̂(end)
z is proportional to F̂(start)

y and F̂(start)
z

and not F̂(start)
x . At the precession angle ∆0τR where the Ramsey sequence is

most sensitive to frequency displacements we actually get F̂(start)
z = F̂(start)

z as we
said above. This invariance of F̂z means that all correlation induced in the atomic
state just after the QND measurement are transferred to the end state.

The invariance of F̂z in the proposed clock sequence has another crucial im-
plication bearing on the influence of the atoms that have been decohered by
spontaneous scattering of QND probe photons. To recap the key point, that in
our QND scheme each of the two probes couples predominantly to one ground
level population. The selection rules restrict spontaneously scattered atoms to
mostly decay back to the hyperfine level they were initially in. Since the two
probes measure the populations in the whole hyperfine manifolds, i.e. one de-
tects Nat,4(F = 4, all mF sub-levels) while the other detects Nat,3(F = 3, all mF
sub-levels), the measured value of F̂z = 1

2 (Nat,4 − Nat,3) is, to some extent, im-
mune to spontaneous scattering. That is if the probes are closest to a cycling
transition the spontaneous scattering will be mainly elastic and quasi-elastic,
where the latter returns the atoms to the same hyperfine state but with mF 6= 0.
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The clock sequence for the squeezed state only affects atoms in mF = 0 levels
because atoms in all other mF levels are shifted (by the bias field) w.r.t the mi-
crowave field frequency and thus do not perform any of the rotations. Therefore
the contribution of these atoms to the measured F̂z is also invariant under the
clock sequence. In order to maintain the correlation between the atoms scattered
elastically in to mF = 0 and those in mF 6= 0 it is crucial that both sets of atoms
transform equally under the clock sequence. In our case they actually do not
transform, which is even more perfect. If instead the final rotation were a 3π/2
pulse F̂(start)

z = −F̂(start)
z and we would add anti-correlation between the atoms

in mF = 0 and in mF 6= 0. The conclusion is that the total F̂z measured by the
dichromatic QND method is invariant under the clock sequence eq. (15.1) irre-
spectively of the spontaneous emission, and hence its contribution to the noise
of the clock measurement can be effectively reduced by this approach.

A deviation from the above description comes from the fact that the π-polarised
probes couple slightly differently to mF = 0 and mF = ±1 levels. This adds some
small extra noise to the spin squeezed state, which in principle could even be
avoided by re-pumping all atoms with mF 6= 0 into the according mF = 0 state.

In our first illustration of the clock sequence [Oblak05] we had proposed a more
involved sequence where we suggested to first do feedback with a microwave
rotation around the x-axis so that the pseudo-spin would be put back in the
equatorial plane along the y-axis. This would correspond to the creation of a
unconditionally squeezed state1, but as we have shown above this is not required
for the clock measurement.

1by this one simply means that one creates a specific pre-determined squeezed state, which
does not depend on the QND measurement outcome as in our case (see eq. (5.10)).





Chapter 16

Review of experiments

In this chapter we go into a bit extra detail with some of the experimental pub-
lications that have the closest relevance to the results treated in this work. Most
of these turned up in the pre-print archive in the cold atom spin-squeezing paper
wave of 2008.

Geremia et al. 2004 (Mabuchi group) The article [Geremia04] was the first
publication to present an experimental realisation of spin-squeezing in a cold
atomic sample. Moreover, the squeezing was obtained by a QND measurement,
and thus seemed to beat our own efforts to reach the same goal. To make things
worse it seemed unlikely that we would ever come close their whopping 10 dB of
squeezing. By the end of 2007 we heard some rumours that doubts had been cast
on the results and in the spring of 2008 article was retracted [Geremia08]. Care-
fully going through the experimental parameters part of the original authors had
found the degree squeezing claimed in [Geremia04] to require an atomic density
orders of magnitude above what had ever been achieved in any MOT setup. Ad-
ditionally, all their subsequent attempts to reproduce the published results had
been fruitless [Stockton07]. To date they have not found any explanation for the
effect causing the apparent noise reduction1 but in the note to the retraction they
state ”We now have a technical understanding sufficient to rule out any possibility of
spin-squeezing under the conditions of our 2004 experiment”.

Esteve et. al. 2008 (Oberthaler group) In [Estève08] atom number squeez-
ing is achieved between spatially separated BECs via the tunnelling interac-
tion. Accounting for the phase-coherence between the squeezed BEC clouds
they reach a spectroscopically relevant squeezing of ξwineland = 0.42+0.12

−0.17, includ-
ing all their stated statistical and systematic errors. The squeezing obtained in
their experiment is different from our demonstration in two main ways. Firstly,
the squeezing is generated by the coupling of the two BEC modes which re-
sults in atom number difference Na − Nb being evened out over time, and thus
reducing Na − Nb variations between experimental realisations. Secondly, the
squeezing is done with respect to number and phase of the entire BEC in two
spatially separated modes a and b located in the potential wells of an optical
lattice. This means that there is no direct dependence of the squeezing on the

1In the words of [Geremia08], Extensive efforts with revamped apparatus to reproduce the results
published in our 2004 Science Report, "Real-time quantum feedback control of atomic spin-squeezing",
have failed, as have attempts to develop a quantitative understanding of how those results could have arisen
spuriously. We must therefore retract the Report.
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internal atomic state. As a final important note, the atom numbers Na + Nb used
in the experiment are at most 2500 with a resulting relative projection noise
〈(∆Na − Nb)2〉/(Na + Nb)2 ≈ 0.5 · 10−3. Thus in a spectroscopic application the
squeezing improves the sensitivity to atom numbers from 2% to 1%, neither of
which are particularly impressive. With these remarks, the results documented
in [Estève08] are fascinating from a fundamental perspective and the experimen-
tal feat of producing them deserves high esteem.

Takano et al. 2009 (Takahashi group) In [Takano09b] they perform a QND
measurement on a MOT cloud of 171Yb, which is one of the potential candi-
dates for an optical atomic frequency standard [Barber08] . Their setup is based
on Faraday rotation of a beam linearly polarised along the x-direction by the
collective spin of the atomic ensemble, which is optically pumped also to be
polarised along the x-axis. The probe is detuned halfway between the hyper-
fine levels of the 1S0 ↔1 P1 line. The interaction is described in terms of Stokes
operators Ŝ = {Ŝx, Ŝy, Ŝz} for light and collective spin-operators Ĵ = { Ĵx, Ĵy, Ĵz}
for the atomic ensemble. These are normalised such that the input noise of all
〈(∆Ŝi)2〉 = 〈(∆Ĵi)2〉 = 1/2. The interaction transforms the Stokes vectors in
much the same fashion as the Schwinger operators are affected in our experi-
ment i.e. Ŝout

y = Ŝin
y + κYb Ĵz while Ŝout

z = Ŝin
z is unchanged. Two QND pulses are

fired where the first serves to generate the squeezing and the second is to ver-
ify the noise reduction. For both pulses the output variances follow trivially as
〈(∆Ŝout

yj )2〉 = (1 + κ2
Yb)/2 and 〈(∆Ŝout

yj )2〉 = 1/2, where j refers to the two pulses.
When adding the results of the two successive measurements on the same en-
semble they predict the variance 〈(∆Ŝy,1+2)2〉 ≡ 〈(∆Ŝout

y1 + Ŝout
y2 )2〉 = (1 + 2κ2

Yb)/2
because the atomic signal is essentially two times the same projected value
whereas the shot noise is uncorrelated. For that same reason the variance of the
subtracted signal is expected to be merely 〈(∆Ŝy,1−2)2〉 ≡ 〈(∆Ŝout

y1 − Ŝout
y2 )2〉 =

1/2. Finally, when the ensemble is reinitialised in between the two pulses
all noise contributions are uncorrelated and the noise becomes 〈(∆Ŝy,1+2)2〉 =
〈(∆Ŝy,1−2)2〉 = (1 + κ2

Yb)/2.

Experimentally, the coupling strength is varied by changing the photon number,
whereas the atom number is assumed to be roughly constant during the mea-
surement sequence. For the maximal coupling strength κYb = 0.62 achieved2 a
photon number of NL = 3.2 · 106 and a total MOT atom number of NA = 106 are
stated. With a probe beam waist of 58 µm it is however unlikely that the whole
MOT is sampled. With this setting the paper reports the observation of the ap-
propriate scaling of 〈(∆Ŝy,1+2)2〉 and 〈(∆Ŝy,1−2)2〉 with κYb, notably the lack of
any increase in the noise of the latter beyond the shot noise level. Utilising the
experimental parameters and presumably an approximation of the number of
atoms they calculate κYb directly and use this to generate theoretical curves for
the variances that fit nicely with the experimental data. Finally, the correlation
between the two pulses are extracted and they arrive at a squeezing of 1.8+2.4

−1.5 dB,
which in more transparent units reads 34± 28%.

The pivotal shortcoming of this result is that the noise reduction is equated
with squeezing without accounting for the measurement induced decoherence.
Claiming spin squeezing either by Ueda’s Eq. eq. (3.31) or Wineland’s crite-
rion Eq. eq. (3.33) is not well founded without direct inclusion of the decoher-
ence.3 A theoretical estimate of the degree of the atomic state decoherence is
obtained from the declared loss parameter εL = 9.3 · 10−2 equalling e−0.093 ≈9%

2note this is κYb so that κ2
Yb = 0.38.

3To be fair, nowhere in the article is the squeezing actually denoted by a ξ.
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loss of spin polarisation. A subsequent experimental investigation yielded 9.8%
spin depolarisation [Takano09a], thereby verifying the theoretical estimate. By
Ueda’s measure the squeezing is thus 26.8± 31.1% and by Wineland’s measure
18.9± 34.4%. According to both measures the result is thus not strictly statis-
tically significant to claim spin squeezing. In conclusion, the reported experi-
ment shows a significant noise reduction in repeated QND measurement with a
strong, albeit not conclusive, indication of spin squeezing.

Schleier-Smith et al. 2009 (Vuletić group) The discussion of [Schleier-Smith08] is
in preparation

Teper et al. 2008 (Kasevich group) In [Teper08] they make a cavity based
QND measurement of the phase-shift from a MOT cloud of rubidium and ob-
serve anti-squeezing that agrees with their theoretical prediction. The probe
mode is constituted by a sideband of an EOM modulated laser and the atomic
phase-shift of the probe is detected by demodulating the beat note of the probe
and the carrier in a similar fashion to what suggest in [Saffman09] (see sec. A.6).
Compared with the proposal in [Saffman09] the use of a cavity increases the in-
teraction strength of the QND measurement but also presents some additional
complication in that it needs to be locked by reference to a locking laser. With
the chosen probe detuning of 1.5 GHz the phase-shift will be have a component
proportional to the total ground level population and thus be sensitive to fluctu-
ations in the number of atoms loaded into the MOT. By recycling the MOT the
atom number can presumably be kept more constant than in our setup. In the
experimental sequence they fire one probe pulse of duration τsq, wait, make a mi-
crowave spin-echo π pulse, fire another probe pulse τsq long another π/2 pulse
with a variable phase and then read out the result with a long probe pulse. The
use of two probe pulses split by a spin-echo pulse overcomes the probe-induced
light-shift as we also describe in [Windpassinger08c, Oblak08] (see sec. 11.2.1).
The analyse the statistics of the fluctuations between the combined probe pulses
and the read-out pulse for different phase of the final microwave pulse and
thus establish the statistics of the different rotations angles of the spin state (see
fig. 12.26). For 0 and π microwave phase-offsets the noise is at the projection
noise level while at π/2 the noise is increased. Since the ratio of this increased
noise w.r.t. the projection noise scales linearly with atom number they infer that
the noise increase is caused by anti-squeezing c.f. eq. (5.11). Though they are
unable to resolve a reduction in noise at 0 and π degrees from the anti-squeezing
data one can infer a noise reduction of up to 0.02. They deserve much kudos for
taking great care to characterise the loss of state-coherence due to spontaneous
scattering and dephasing. This is done by looking at the loss of Rabi fringe
amplitude. For the presented data the reduced amplitude amounts to 76% of
the non-perturbed amplitude, which is somewhat less than what should be ex-
pected for the theoretically calculated ≤ 6% decoherence due to spontaneous
scattering. Comparing the inferred noise reduction with the loss of coherence
one could estimate the inferred squeezing to be 0.026. These numbers are not
spelled out in the paper, probably because they seem experimentally unattain-
able4. They state that for longer probe pulse duration they are able to directly
observe a 3.8 dB noise reduction but without giving a number they write that
the loss of coherence exceeds the noise reduction and thus squeezing cannot
be claimed. In sum, [Teper08] outlines an experiment with some similarities

4compare with [Schleier-Smith08] where the inferred squeezing is also orders of magnitude
higher than what they can observe.
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with [Schleier-Smith08] but due to technical limitations can only claim indirect
observation of spin-squeezing.
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Appendix A

Optical �eld and operator
transformations

A.1 Fields and operators

We introduce the field operators â, b̂, etc., and v̂. All fields, except those labelled
v̂, may be coherent fields i.e. with 〈â〉 = α, 〈b̂〉 = β etc., where α and β are
the coherent amplitudes of the fields such that |α|2 and |β|2 are the respective
photon number expectation values. Fields denominated v̂i are vacuum fields
which have zero mean photon number, hence 〈v̂〉 = 0. We define the following
Scwhinger angular momentum operators

Ŝx ≡
1
2

(
â†b̂ + b̂† â

)
, Ŝy ≡

−i
2

(
â†b̂ − b̂† â

)
, Ŝz ≡

1
2

(
â† â − b̂†b̂

)
Ŝ

aibj
x ≡ 1

2

(
â†

i b̂j + b̂†
j âi

)
, Ŝ

aibj
y ≡ −i

2

(
â†

i b̂j − b̂†
j âi

)
, Ŝ

aibj
z ≡ 1

2

(
â†

i âi − b̂†
j b̂j

)
,

where a convenient shorthand notation, omitting the field indexing, is chosen
for the â, b̂ combination. For other combinations the Schwinger operator symbol
reflects the constituent fields e.g. Ŝvac1

x ≡ 1
2 (v̂†

a ĉ1 + ĉ†
1 v̂a).

A.2 Distribution in Fock-basis

A.3 Ellements

Next we derive the transformations due to various elements that the modes may
encounter.

A.3.1 Beamsplitter

â

b̂

ta+irb̂ˆ

ira+tb̂ˆ

Figure A.1: Fields incident on
a beamsplitter

The field operator transformations on a beam-
splitter (Fig. A.1) with field transmission t and
reflection r are given by

â′ = tâ + irb̂

b̂′ = irâ + tb̂
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This can alternatively be expressed by the
Schwinger operator transormation Ŝ′ = MβŜ
with the transformation matrix

Mβ =


1 0 0

0 r2 − t2 2rt

0 −2rt r2 − t2

 =


1 0 0

0 cos β sin β

0 − sin β cos β

 ,

with the angle β = arctan
(

2rt
r2−t2

)
=

arctan
(

2r
√

(1−r2)
2r2−1

)
. The beasmplitter rotates the Schwinger operator around

the x-axis.

A.3.2 Free propagation

â

b̂

âei  /2

b̂e-i  /2

φ

φ

Figure A.2: Fields propagating without disturbance

Free propagation results in accumulation of a phase difference φ̃ between the
fields

â′ = eiφ̃/2 â

b̂′ = e−iφ̃/2b̂

In terms of Schwinger operators this is expressed with the transformation ma-
trix.

Mφ̃ =


cos φ̃ sin φ̃ 0

− sin φ̃ cos φ̃ 0

0 0 1

 .

Hence, the phase accumulated by free propagation rotates the Schwinger opera-
tor by the angle corresponding to this phase.

A.3.3 Losses

â

b̂

â’

b̂’
v̂

ρ,τ

Figure A.3: Losses in one of a
pair of fields

The customary way to model losses of a light
mode is by reflection on an imaginary beam-
splitter. The fact that the vacuum field of
the other beamsplitter input is admixed to the
transmitted field ensures that the commuta-
tion relations are preserved correctly. If we
start out with two modes â and b̂ and only
one of these are subjected to losses of magni-
tude ρ the resulting transformation is

â′ = τâ + iρv̂

b̂′ = b̂
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where τ =
√

1− ρ2 is the transmission of the imagined beamsplitter and v̂ is the
vacuum field operator with 〈v̂〉 = 0. The ”lost” part of the mode v̂′ = iρâ + τv̂ is
not of interest as this is not necessarily in any mode one can detect. This results
in the transformation

Ŝ′x = τŜx + ρŜvb
y

Ŝ′y = τŜy − ρŜvb
x

Ŝ′z = τ2Ŝz + ρτŜva
y + ρ2Ŝvb

z ,

which alternatively can be expressed by the extended transformation matrix

Ŝ′x
Ŝ′y
Ŝ′z

Ŝ′va
x

Ŝ′va
y

Ŝ′va
z

Ŝ′vb
x

Ŝ′vb
y

Ŝ′vb
z


=



τ 0 0 0 0 0 0 ρ 0
0 τ 0 0 0 0 −ρ 0 0
0 0 τ2 0 ρτ 0 0 0 ρ2

− − − − − − − − −
− − − − − − − − −
− − − − − − − − −
− − − − − − − − −
− − − − − − − − −
− − − − − − − − −





Ŝx

Ŝy

Ŝz

Ŝva
x

Ŝva
y

Ŝva
z

Ŝvb
x

Ŝvb
y

Ŝvb
z


(A.1)

The expectation values of Ŝx and Ŝy are simply scaled down by τ because 〈Ŝvb
x 〉 =

〈Ŝvb
y 〉 = 0. On the other hand, 〈Ŝz〉 attains an extra contribution ρ2〈Ŝvb

z 〉 =
−(1− τ2)〈b̂†b̂〉/2. Hence, we have the consistent result 〈Ŝ′z〉 = τ2〈â† â− b̂†b̂〉/2−
(1− τ2)〈b̂†b̂〉/2 = (τ2 â† â + b̂†b̂)/2, which is indeed proportional to the photon
number difference after the probe arm attenuation.

A.3.4 Mode overlap

â

b̂

a’bˆ
a’ˆ
a’aˆ

b’aˆ b’bˆb’̂

R,T

R,T

r,t
vâ

vb̂

v̂

v̂

Figure A.4: Model of the imperfect mode over-
lap of two modes on a beamsplitter

The overlap of the modes at
the output beamsplitter of the
MZI is rather good but not
perfect. To model the im-
perfection we say that a frac-
tion R =

√
1− T 2 of the

fields â and b̂ are lost to an-
other mode which are inde-
pendently split on the beam-
splitter and thus admixed
with the vacuum field. Thus
in each output we have three
modes from the overlapped
modes, the reflection of the
non-overlapped part of one
mode and the transmission
of the non-overlapped part of
the other mode. Written out
this gives

â = t(T â + iRv̂a) + r(iT b̂ −Rv̂b) b̂ = t(T b̂ + iRv̂b) + r(iT â −Rv̂a)

âa = t(iRâ + T v̂a) + irv̂ b̂a = r(−Râ + iT v̂a) + tv̂
(A.2)

âb = r(−Rb̂ + iT v̂b) + tv̂ b̂b = t(iRb̂ + T v̂b) + irv̂
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Having only a small spatial separation, all three modes in each output impinge
on the respective detector. Hence, it is indeed important to account for all six
output modes. We combine the pairs of fields in Eq. eq. (A.2) into Schwinger
operators and deduce the following transformations

Ŝ′x = T 2Ŝx +RT
(

Ŝ(vba)
y + Ŝ(vab)

y

)
Ŝ′y = T 2 (sin β2Ŝz − cos β2Ŝy

)
+RT

(
sin β2

(
Ŝ(vaa)

y − Ŝ(vbb)
y

)
+ cos β2

(
Ŝ(vab)

x − Ŝ(vba)
x

))
(A.3a)

Ŝ′z = − T 2 (cos β2Ŝz + sin β2Ŝy
)

+RT
(

cos β2

(
Ŝ(vbb)

y − Ŝ(vaa)
y

)
+ sin β2

(
Ŝ(vab)

x − Ŝ(vba)
x

))

Ŝ(a)′
x = −RŜ(va)

y

Ŝ(a)′
y = − sin β2

(
RT Ŝ(vaa)

y +R2Ŝ(va)
z

)
+ cos β2RŜ(va)

x (A.3b)

Ŝ(a)′
z = cos β2

(
RT Ŝ(vaa)

y +R2Ŝ(va)
z

)
+ sin β2RŜ(va)

x

Ŝ(b)′
x = −RŜ(vb)

y

Ŝ(b)′
y = sin β2

(
RT Ŝ(vbb)

y +R2Ŝ(vb)
z

)
− cos β2RŜ(vb)

x (A.3c)

Ŝ(b)′
z = − cos β2

(
RT Ŝ(vbb)

y +R2Ŝ(vb)
z

)
− sin β2RŜ(vb)

x .

Here we have neglected all terms which exclusively contain vacuum fields. In
the limit of perfect visibility (R → 0) the Ŝ(a), Ŝ(b) → 0 and the expression for Ŝ
goes to the that of Eq. eq. (A.3.1) for a loss-less BS. For two detectors placed at
the BS outputs the difference signal is thus given by p− = 2(Ŝ′z + Ŝ(a)′

z + Ŝ(b)′
z ).

A.4 Full MZI

Now that all transformations due to the single elements are known we combine
them into MZIs of various complexities. For simplicity the Schwinger operators
corresponding to the input fields ĉ1, ĉ2 and the output fields d̂1, d̂2 are termed
Ŝin and Ŝout respectively. We get underway with the textbook case.

A.4.1 Ideal loss-less MZI

The transformation matrix for the full MZI without losses and with perfect mode
overlap is found by matrix multiplication MMZI = Mβ2Mφ̃Mβ1 which results in

MMZI = (A.4) cos φ̃ sin φ̃ cos β1 sin φ̃ sin β1

− sin φ̃ cos β2 cos φ̃ cos β2 cos β1 − sin β2 sin β1 cos φ̃ cos β2 sin β1 + sin β2 cos β1

sin φ̃ sin β2 − cos φ̃ sin β2 cos β1 − cos β2 sin β1 − cos φ̃ sin β2 sin β1 + cos β2 cos β1


The balanced detector signal p− is equal to twice Ŝout

z , which is the bottom row
of the matrix. If we take the expectation value 〈p−〉 assuming only ĉ1 in a non-
vacuum state we find

〈p−〉
2

= 〈Ŝout
z 〉 = (− cos φ̃ sin β2 sin β1 + cos β2 cos β1) 〈Ŝin

z 〉 ,
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The symmetric MZI, β1 = β2 = π/2, is most sensitive to phase-shifts between
the probe and reference arms. Unequal splitting ratios of either of the beamsplit-
ters will cause a reduction of the fringe amplitude. For there to be a DC offset
of the output signal both BS must be non symmetric.

Using Eq. eq. (A.4) and eq. (2.10) the shot noise of Ŝout
z is easily calculated to be

〈(∆Ŝout
z )2〉 = (sin φ̃ sin β2)

2 〈(∆Ŝin
x )2〉

+ (cos φ̃ sin β2 cos β1 + cos β2 sin β1)
2 〈(∆Ŝin

y )2〉

+ (− cos φ̃ sin β2 sin β1 + cos β2 cos β1)
2 〈(∆Ŝin

z )2〉

=
nph

4
,

It is useful for later calculation to note that contribution from the cross-terms
〈Ŝin

i Ŝin
j + Ŝin

j Ŝin
i 〉 = 0, (i 6= j).

A.4.2 Loss-less MZI with imperfect mode overlap

We use Eqs. (A.3a-c) in place of the standard loss-less beamsplitter transforma-
tion to calculate the full MZI transformation matrix. As a change, I will stick to
the necessary and state only the z-components output operators as this is what
we measure at the end. First the mode matched output fields

Ŝout
z = T 2

{
sin φ̃ sin β2Ŝin

x + (cos φ̃ sin β2 cos β1 + cos β2 sin β1) Ŝin
y

− (cos φ̃ sin β2 sin β1 − cos β2 cos β1) Ŝin
z

}
+RT

{
− (t1 cos β2 + r1 sin β2) Ŝ(vac1)

y + (r1 cos β2 − t1 sin β2) Ŝ(vbc1)
x

− (r1 cos β2 − t1 sin β2) Ŝ(vac2)
x + (t1 cos β2 + r1 sin β2) Ŝ(vbc2)

y

}
Non-interfering modes

Ŝout,a
z = R2 cos β2

{
1
2

sin β1Ŝin
y + t2

1Ŝ(vc1)
z + r2

1Ŝ(vc2)
z

}
+RT cos β2

{
t1Ŝ(vac1)

y + r1Ŝ(vac2)
x

}
+R sin β2

{
t1Ŝ(vc1)

x − r1Ŝ(vc2)
y

}

Ŝout,b
z = R2 cos β2

{
1
2

sin β1Ŝin
y − t2

1Ŝ(vc2)
z − r2

1Ŝ(vc1)
z

}
−RT cos β2

{
r1Ŝ(vbc1)

y + t1Ŝ(vbc2)
x

}
+R sin β2

{
r1Ŝ(vc1)

y − t1Ŝ(vc2)
x

}

Note, that the expressions make no reference to the interferometer phase-shift φ̃

as is expected for the non-interfering part of the fields. We may further wish to
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combine all the operators that

p−
2

=Ŝout
z + Ŝout,a

z + Ŝout,b
z

= T 2
{

sin φ̃ sin β2Ŝin
x + (cos φ̃ sin β2 cos β1 + cos β2 sin β1) Ŝin

y

− (cos φ̃ sin β2 sin β1 − cos β2 cos β1) Ŝin
z

}
(A.5)

−RT sin β2

{
r1

(
Ŝ(vac1)

y − Ŝ(vbc2)
y

)
+ t1

(
Ŝ(vbc1)

x − t1Ŝ(vac2)
x

)}
+R sin β2

{
t1

(
Ŝ(vc1)

x − Ŝ(vc2)
x

)
+ r1

(
Ŝ(vc1)

y − Ŝ(vc2)
y

)}
+R2 cos β2

{
sin β1Ŝin

y + cos β1Ŝin
z
}

Most of the terms in this expression have expectation value zero and thus do
not alter the detected mean output. On the other hand these terms do add shot
noise to the detected signal. Taking the expectation value of Eq. eq. (A.5) and
assuming that only one of the inputs, say ĉ1, are in a (non-vacuum) coherent
state we get the measured output difference photo-current to be

〈p−〉
2

= 〈Ŝout
z 〉+ 〈Ŝout,a

z 〉+ 〈Ŝout,b
z 〉

=T 2 (− cos φ̃ sin β2 sin β1 + cos β2 cos β1) 〈Ŝin
z 〉+R2 cos β2 cos β1〈Ŝvc1

z 〉

The interference fringe amplitude scales with T 2 and if at least one of the beam-
splitters has equal splitting ratio the fringe has no DC offset. Thus a balanced
output, 〈p−〉 = 0 is achieved by setting the interferometer phase to φ̃ = π/2.

A.4.3 Near real life MZI

Alas, it is time to deal with the full interferometer setup with losses and im-
perfect mode overlap. To keep the expressions reasonably tidy we will make
the assumption that we have an equal splitting ratio at the output BS such that
β2 = π/2. This is usually fulfilled as we need to have a balance signal in the
outputs in order not to saturate the detector. As before we restrict our attention
to Ŝout

z , which can be traced back to the input Schwinger operators as

Ŝout
z = T 2

{
τ sin φ̃Ŝin

x + τ cos φ̃ cos β1Ŝin
y

− τ cos φ̃ sin β1Ŝin
z

− ρ
(

r1Ŝ(vc1)
y − t1Ŝ(vc2)

x

)}
+RT

{
τr1

(
Ŝ(vbc2)

y − Ŝ(vac1)
y

)
+ t1

(
Ŝ(vac2)

x − Ŝ(vbc1)
x

)}

Ŝout,a
z = Rτ

{
t1Ŝ(vc1)

x − r1Ŝ(vc2)
y

}

Ŝout,b
z = R

{
r1Ŝ(vc1)

y − t1Ŝ(vc2)
x

}
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Adding these modes up we get the combined output signal

p−
2

= Ŝout
z + Ŝout,a

z + Ŝout,b
z

= T 2
{

τ sin φ̃Ŝin
x + τ cos φ̃

(
cos β1Ŝin

y − sin β1Ŝin
z

)
− ρ

(
r1Ŝ(vc1)

y − t1Ŝ(vc2)
x

)}
+RT

{
τr1

(
Ŝ(vbc2)

y − Ŝ(vac1)
y

)
+ t1

(
Ŝ(vac2)

x − Ŝ(vbc1)
x

)}
(A.6)

+R
{

t1

(
τŜ(vc1)

x − Ŝ(vc2)
x

)
+ r1

(
Ŝ(vc1)

y − τŜ(vc2)
y

)}
Finally, we may take the expectation value again assuming that only ĉ†

1 ĉ1 6= 0,
whereby we reach the very simple expression

〈p−〉
2

= 〈Ŝout
z 〉+ 〈Ŝout,a

z 〉+ 〈Ŝout,b
z 〉 = −T 2τ cos φ̃ sin β1〈Ŝin

z 〉 (A.7)

As discussed above, the equal splitting of the output coupler ensures that the
difference signal has no DC-offset. For completeness the expectation value in
the general case of arbitrary output BS rotation angle β2 is

〈p−〉
2

= 〈Ŝout
z 〉+ 〈Ŝout,a

z 〉+ 〈Ŝout,b
z 〉

= T 2
([
− cos φ̃ sin β2 sin β1τ + cos β2 cos β1τ2] 〈Ŝin

z 〉 − cos β2ρ2r2
1〈Ŝ

(vc1)
z 〉

)
.

The interference fringe amplitude scales with the mode mismatch squared T 2

but importantly only goes linearly with the probe arm transmission τ. A non-
offset interference fringe can still be achieved by an equal output BS ratio, how-
ever an equal splitting at the input BS is no longer sufficient.

The shot noise of the system is slightly more complicated than the for the pre-
viously examined configurations, the reason for this being that light is lost from
the system in the probe arm. From Eq. eq. (A.6) we calculate

〈(∆Ŝout
z )2〉 =

(
1− ρ2t2

1
) nph

4
. (A.8)

The shot noise in the output is thus proportional to the photon number trans-
mitted through the interferometer independent of the phase-difference φ̃ and the
mode overlap τ. Naturally, Eq. eq. (A.8) is also valid for any output beamsplitter
ratio.

A.5 MZI sensitivity to phase displacements

Interferometric spectroscopy is all about measuring the phase φ̃ with as good a
precision as possible. The phase φ̃ is due to a difference in the optical path-length
between the two arms — with emphasis on optical. This can be influenced by a
whole range of things from physical displacements of the path-length to changes
in the index of refraction in the beam path. The latter is essentially how an
atomic sample placed in the probe arm will affect the φ̃. For the moment we will
not be concerned with the origin of the phase-shift, but just note that due to its
origin it may fluctuate around some mean value i.e. we can write φ̃ = φ̃0 + ∆φ̃,
where the mean of ∆φ̃ is zero. This will naturally add noise to the MZI output
signal. How much this is, we can derive from eq. (A.6). Since the photon shot
noise is completely uncorrelated we can neglect cross terms between the shot
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noise and fluctuations ∆φ̃. The phase noise thus translates into noise in the
output as

〈(∆Ŝout
z )2〉 = 〈(∆Ŝout

z )2〉SN + 〈(∆Ŝout
z )2〉∆φ̃

=
(
1− ρ2t2

1
) nph

4
+ T 4τ2

[
cos2 φ̃〈Ŝin

x 〉2 + sin2 φ̃
(

cos β1〈Ŝin
y 〉 − sin β1〈Ŝin

z 〉
)2
]
〈(∆φ̃)2〉

=
(
1− ρ2t2

1
) nph

4
+ T 4τ2 sin2 φ̃ sin2 β1

n2
ph

4
〈(∆φ̃)2〉 , (A.9)

where we have used that 〈Ŝin
x 〉 = 〈Ŝin

y 〉 = 0. Thus the ability of the MZI to
detect phase-fluctuations depends heavily on the mode overlap. The sensitivity
is affected by the first beamsplitter ratio and the probe arm loss to the same
order as the shot noise is. Another observation is that the magnitude of phase-
fluctuations scales with n2

at, whereas the shot noise only scales with nat. Finally,
the phase-fluctuations propagate most effectively to the output signal when the
mean interferometer phase is set to φ̃0 = π/2 such that sin2 φ̃ = 1. This is of
course because at φ̃0 = π/2 the MZI has the largest derivative w.r.t. changes to
the phase (see eq. (A.7)).

A.6 Sideband interferomer configuration

x

Ω

AOM BS

p
iez

o
vo

ltag
e

Piezo

probe detector

x

ω − Ω/2

phase reference

ω + Ω/2

ω− = ω − Ω/2
ω+ = ω + Ω/2

Ω

LPF

LPF

p

Figure A.5: Principle of the sideband interferometer setup.

From spatially separated modes we now turn our attention to the case of modes
Â+ and Â−, which are only separated by frequency i.e. they have k+ ‖ k− but
|k+| 6= |k−|. The two frequencies correspond to sideband frequencies ω± ≡
ω±Ω, hence the mode labelling by plus/minus and the term sideband interfer-
ometer (SBI). The specific choice of frequencies will be discussed in a subsequent
section (Sec. A.6.1). The setup including the way to generate the two fields is out-
lined in fig. A.5. A field with frequency ω−Ω/2 is incident on an AOM driven
by a RF frequency Ω so that the 0’th and 1’st refracted orders obtain the fre-
quencies ω− = ω −Ω/2 and ω+ = ω + Ω/2 respectively. We assume that the
two fields have equal coherent amplitudes α− + α+ = α. The fields are, then,
put into the same spatial mode by mixing them on a 50/50 BS with the option
of adjusting the phase-difference φ̃ between the fields by tuning the path length
difference of the two orders from the AOM to the BS. From the BS one output
(probe output) goes to the probe detector while the other (reference output) goes
to a phase-reference detector that is essentially the same as the probe detector,
and which provides a feedback for locking the relative phase φ̃ of the two orders.
In the probe output we later wish to incorporate an atomic ensemble which may
add an additional phase-shift between the two fields.
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This case is significantly simpler to treat in the Schwinger operator picture as all
optical elements affect the two modes equally and thus there are no transforma-
tions to account for. We simply define

Ŝx ≡
1
2

(
Â†

+ Â− + Â†
− Â+

)
= cos(Ωt + φ̃)Ŝx(0)− sin(Ωt + φ̃)Ŝy(0)

Ŝy ≡ − i
2

(
Â†

+ Â− − Â†
− Â+

)
= − sin(Ωt + φ̃)Ŝx(0) + cos(Ωt + φ̃)Ŝy(0)

Ŝz ≡
1
2

(
Â†

+ Â+ − Â†
− Â−

)
=

1
2
(

N̂ph+ − N̂ph−
)

Since the frequencies of the two fields differ the oscillating terms do not triv-
ially cancel as in the MZI. As a consequence we explicitly draw out the time
dependence of the fields and include the initial phase-difference φ̃. Thus the
〈Ŝx(0)〉 = Nph/2, 〈Ŝy(0)〉 = 0 and, 〈Ŝz〉 = 0. Additionally, we define the pho-
ton numbers N̂ph− = Â†

− Â−, N̂ph+ = Â†
+ Â+, and N̂ph = N̂ph− + N̂ph+. The

advantage of resorting to the Schwinger operators in this setup is not immedi-
ately clear and indeed will not add much understanding until we commence our
study of the interaction with the atomic ensemble.

After their merger on the BS the two fields propagate a distance before impinging
on the probe detector generating a signal

p = (Â†
+ + Â†

−)(Â− + Â+)

= N̂ph + 2Ŝx

= N̂ph + 2 cos(Ωt + φ̃)Ŝx(0)− 2 sin(Ωt + φ̃)Ŝy(0) .

This signal is subsequently mixed with the RF source of the AOM at Ω so that
the output becomes

p′ = p sin Ωt

= N̂ph sin Ωt + Ŝx(0) [sin(2Ωt + 2φ̃)− sin 2φ̃]− Ŝy(0) [cos(2Ωt + 2φ̃) + cos 2φ̃]

The low pass filter removes most terms except for the DC signal −Ŝx(0) sin 2φ̃−
Ŝy(0) cos 2φ̃, which is passed on from the QND detector. The signal has the
expectation value

〈p′〉 = −Nph sin 2φ̃ (A.10)

As for the MZI, the detector signal measures the phase-difference between the
two fields. When wishing to measure a small phase-shift φδ it is now advanta-
geous to set φ̃ = 0 mod π/2. The phase-displacement then is computed from
the signal as

φδ = −1
2

arcsin
(

2p′

Nph

)
≈ − p′

Nph
(A.11)

The phase-reference detection only differs from the probe detection by the ab-
sence of any atomic ensemble in the beam path before the detector, ensuring
sensitivity only to φ̃.

The quantum shot-noise in the detector signal is simply equal to the combined
photon number of the two impinging frequency modes 〈(∆p′)2〉 = Nph− +
Nph+ = Nph. From Eq eq. (A.11) one easily calculates the corresponding phase-
noise 〈(∆φ)2〉 at the optimal phase-difference and the SNR becomes

SNR =
〈(∆φ)2〉
〈(∆φ)2〉SN

= Nph〈(∆φ)2〉

which is the same value as for the loss-less symmetric MZI (eq. (2.19)) with one
extra twist; since now the modes are spatially degenerate they both pass through
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the sample. Imposing a limit to the photon number interacting with the sample
leads to the condition Nph = Nph0, which differs from the MZI case by a factor
of two. In consequence the applicable photon number, and so the SNR, is half of
what it is for the MZI. This drawback will be outweighed by the fact that both
fields also interact with the atomic sample (Sec. A.6.1).

A.6.1 QND and squeezing in sideband interferometer



Appendix B

Atomic operator variances,
correlations, and decoherence

B.0.2 Quantum projection noise

We now have a look at the PN for two realisations of the atomic ensemble that are
of relevance to the experiment. First we take the product state in which the sin-
gle atom states are in superpositions of the two ground states eiφ sin(θ/2)|3〉 +
cos(θ/2)|4〉. To deduce the variance we must find 〈(∆ f̂i(r) f̂i(r′))〉 = 〈 f̂i(r) f̂i(r′)〉−
〈 f̂i(r)〉〈 f̂i(r′)〉. The former term may be expanded as

〈 f̂i(r) f̂i(r′)〉 =
〈(

∑
k

f̂ (k)
i δ(r− rk)

)(
∑

l
f̂ (l)
i δ(r′ − rl)

)〉
(B.1)

= ∑
k

〈 (
f̂ (k)
i

)2 〉
δ(r− rk)δ(r′ − rk) + ∑

l 6=k

〈
f̂ (k)
i f̂ (l)

i

〉
δ(r− rk)δ(r′ − rl)

= ∑
k

〈 (
f̂ (k)
i

)2 〉
δ(r− rk)δ(r− r′) + ∑

l 6=k

〈
f̂ (k)
i

〉〈
f̂ (l)
i

〉
δ(r− rk)δ(r′ − rl) .

Where in the last equality only holds when the atoms are uncorrelated as is the
case for the product state. In sec. 3.6 we will discuss the very interesting case
of correlated atoms. Note that the summation over l is done over one atom
fewer than that over k. It is very reasonable to assume that the particles locally
have identical properties or in other words exchanging two atoms would not
change the value of the local operators so long as these refer to internal degrees
of freedom. In this case we can simplify the expression

〈 f̂i(r) f̂i(r′)〉 = ∑
k

〈 (
f̂ (k)
i

)2 〉
δ(r− rk)δ(r′ − rk) + ∑

l 6=k

〈
f̂ (k)
i f̂ (l)

i

〉
δ(r− rk)δ(r′ − rl)

=
〈 (

f̂ (1)
i

)2 〉
∑

k
δ(r− rk)δ(r′ − rk) +

〈
f̂ (1)
i f̂ (2)

i

〉
∑
l 6=k

δ(r− rk)δ(r′ − rl)

=
〈 (

f̂ (1)
i

)2 〉
nat(r)δ(r− r′) +

〈
f̂ (1)
i f̂ (2)

i

〉
nat(r)

(
nat(r′)− 1

)
, (B.2)

where for uncorrelated states we can write 〈 f̂ (1)
i f̂ (2)

i 〉 = 〈 f̂ (1)
i 〉2. Hereby, we

have an expression where we base the expectation values on the single atom
values and then extend to the continuos picture. We can now calculate the exact
values for the pseudo-spins. The expectation values 〈 f̂ (k)

i 〉 easily follow from

eq. (3.16) and for all three components we get ( f̂ (k)
i )2 = 1

4 (ρ̂
(k)
33 + ρ̂

(k)
44 ) and so

279
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〈( f̂ (k)
i )2〉 = 1/4. This finally allows us to extract the variances e.g. for f̂z we get

〈(∆ f̂z(r) f̂z(r′))〉 =
nat(r′)

4
δ(r− r′) +

nat(r)(nat(r′)− 1)
4

cos2 θ − nat(r)nat(r′)
4

cos2 θ

=
nat(r)

4
sin2 θ δ(r− r′) . (B.3)

Similarly we get for the other components

〈(∆ f̂x(r) f̂x(r′))〉 =
nat

4
(1− sin2 θ cos2 φ)δ(r− r′)

〈(∆ f̂y(r) f̂y(r′))〉 =
nat

4
(1− sin2 θ sin2 φ)δ(r− r′) . (B.4)

We can now compare these product state uncertainties to the limit set by the
uncertainty relation. We pick the uncertainty product for f̂x and f̂y. For these
components the uncertaitny relation forecasts

〈(∆ f̂x)2〉〈(∆ f̂z)2〉 =
n2

at
16

(1− sin2 θ cos2 φ) sin2 θ ≥ n2
at

16
sin2 θ ,

So, the product state of any superposition is not always a minimal uncertainty
state for a particular combination of vector components [Wódkiewicz85a]. The
difference between the actual and minimal uncertainty product is shown on
fig. B.1. We see that the product state is, nevertheless, a minimal uncertainty
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Figure B.1: Actual uncertainty mi-
nus the minimum uncertainty.

state when the pseudo-spin is aligned towards the poles or on the equator
(θ = 0, π/2, π) or when it is aligned in the yz-plane (φ = π/2, 3π/2) of the
Bloch sphere.

B.0.3 Squeezing affected by generic loss and decoherence

Decoherence is important for squeezing in a number of ways which we will
discuss here. Firstly when an atom decoheres its correlation with all other atoms
is erased; one can say that the atom is reset. Since squeezing is a result of
interatomic correlations this means that overall the degree of squeezing of the
ensemble is reduced. Secondly, the decoherence process is statistical and thus
the randomness of the outcome of the decoherence process can add extra noise
to the ensemble state. Finally, the decoherence affects the magnitude of the mean
spin vector. This is because decohered atoms typically end up in a mixed state
which has no mean spin amplitude. The first two effects that affect the noise of
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the ensemble state will be treated together, whereas the last effect regarding the
pseudo-spin magnitude can be treated independently.

Decoherence is modelled as an effect which takes a fraction η of the atoms into
another state than the original one. Thus an initial density matrix ρ̂ transforms
into (1− η)ρ̂ + ηρ̂′, where the latter term is the density matrix for the decohered
atom. We begin with the effect of decoherence on the mean spin 〈 f̂ 〉. We have
the rather obvious equation

〈 f̂ ∗i (r)〉 = ∑
k

(1− η)〈 f̂ (k)
i 〉δ(r− rk) + ∑

k
η〈 f̂ (k)′

i 〉δ(r− rk)

= (1− η)〈 f̂ (1)
i 〉nat(r) + η〈 f̂ (1)′

i 〉nat(r) (B.5)

= (1− η)〈 f̂i(r)〉+ η〈 f̂ ′i (r)〉 ,

where f̂i(r) refers to the unaffected atoms and f̂i(r) refers to the decohered
atoms. The middle line is not required for reaching the last line, however,
the form will be helpful below. In many cases the decohered atoms will have
〈 f̂i(r)〉 = 0.

Now we turn to the variance of the pseudo-spin components when some of the
atoms decohere. Our treatment follows the approaches of [Mølmer03, Echaniz05,
Saffman08] which is consistent with the results from [Madsen04]. First we recap
eq. (B.2)

〈 f̂i(r) f̂i(r′)〉 =
〈 (

f̂ (1)
i

)2 〉
nat(r)δ(r− r′) +

〈
f̂ (1)
i f̂ (2)

i

〉
nat(r)

(
nat(r′)− 1

)
.

The term 〈 f̂ (1)
i f̂ (2)

i 〉 contains the information on the inter-atomic correlations.

For an uncorrelated state it can be re-written as 〈 f̂ (1)
i 〉2 and thus the value of the

cross-term is exclusively determined by the mean value of the spin-component.
For a squeezed state the cross-term may be non-zero even if the mean spins is
zero, therein lies the inter-atomic correlations. We can isolate the correlation
term and for nat � 1 we get

〈
f̂ (1)
i f̂ (2)

i

〉
=
〈 f̂i(r) f̂i(r′)〉 −

〈 (
f̂ (1)
i

)2 〉
nat(r)δ(r− r′)

nat(r)nat(r′)
. (B.6)

For a product state of equal superpositions 〈 f̂i(r) f̂i(r′)〉 = natδ(r− r′)/4 and for
a spin 1

2 system 〈( f̂ (1)
i )2〉 = 1/4, so the numerator in eq. (B.6) is zero and thus

there are no correlations as predicted. If on the other hand the collective spin has
been squeezed the variance is reduced by ξ and the correlation term becomes

〈
f̂ (1)
i f̂ (2)

i

〉
ξ

=
ξ〈 f̂i(r) f̂i(r′)〉 −

〈 (
f̂ (1)
i

)2 〉
nat(r)δ(r− r′)

nat(r)nat(r′)
< 0 . (B.7)

If then a fraction η decoheres to another state we can rework eq. (B.2) in to

〈 f̂ ∗i (r) f̂ ∗i (r′)〉 = (1− η)
〈 (

f̂ (1)
i

)2 〉
nat(r)δ(r− r′) + η

〈 (
f̂ (1)′
i

)2 〉
nat(r)δ(r− r′)

+ (1− η)2
〈

f̂ (1)
i f̂ (2)

i

〉
nat(r)nat(r′) + η2

〈
f̂ (1)′
i f̂ (2)′

i

〉
nat(r)nat(r′)

+ 2η(1− η)
〈

f̂ (1)
i f̂ (2)′

i

〉
nat(r)nat(r′) ,

Here we have again used symmetry under particle exchange in the relation
〈 f̂ (1)

i f̂ (2)′
i 〉 = 〈 f̂ (1)′

i f̂ (2)
i 〉. still taking nat � 1. Inserting eq. (B.6) this can be
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further rewritten

〈 f̂ ∗i (r) f̂ ∗i (r′)〉 = (1− η)2〈 f̂i(r) f̂i(r′)〉

+
[

η(1− η)
〈 (

f̂ (1)
i

)2 〉
+ η

〈 (
f̂ (1)′
i

)2 〉]
nat(r)δ(r− r′)

+
[
η2
〈

f̂ (1)′
i f̂ (2)′

i

〉
+ 2η(1− η)

〈
f̂ (1)
i f̂ (2)′

i

〉]
nat(r)nat(r′) , (B.8)

Hereby, we can calculate the post decoherence variance of the continuous pseudo-
spin

〈(∆ f̂ ∗i (r) f̂ ∗i (r′))〉 = 〈 f̂ ∗i (r) f̂ ∗i (r′)〉 − 〈 f̂ ∗i (r)〉2

= (1− η)2〈(∆ f̂i(r) f̂i(r′))〉

+
[

η(1− η)
〈 (

f̂ (1)
i

)2 〉
+ η

〈 (
f̂ (1)′
i

)2 〉]
nat(r)δ(r− r′)

+
[

η2
(〈

f̂ (1)′
i f̂ (2)′

i

〉
− 〈 f̂ (1)′

i 〉2
)

(B.9)

+ 2η(1− η)
(〈

f̂ (1)
i f̂ (2)′

i

〉
− 〈 f̂ (1)

i 〉〈 f̂ (1)′
i 〉

) ]
nat(r)nat(r′) ,

Up till this point, we have made no assumptions and the above expression is
completely general in that it is valid for any initial and final expectation values
of f̂i and f̂ 2

i . We note a few reductions that will be applied at various stages
below. First, as mentioned earlier, the values of 〈( f̂ (1)

i )2〉 and 〈( f̂ (1)′
i )2〉 are both

equal to 1/4 in as long as the probing is only sensitive to two atomic levels i.e.
we have a spin 1

2 system. Secondly, if the decohered atoms are uncorrelated

〈 f̂ (1)′
i f̂ (2)′

i 〉 = 〈 f̂ (1)′
i 〉2 and 〈 f̂ (1)

i f̂ (2)′
i 〉 = 〈 f̂ (1)

i 〉〈 f̂ (1)′
i 〉 the last terms proportional

to nat(r)2 in eq. (B.9) cancel. Under these, quite lenient, assumptions eq. (B.9)
becomes

〈(∆ f̂ ∗i (r) f̂ ∗i (r′))〉 = (1− η)2〈(∆ f̂i(r) f̂i(r′))〉+ η(2− η)
1
4

nat(r)δ(r− r′) (B.10)

If the input state is a coherent state with variance 〈(∆ f̂i(r) f̂i(r′))〉 = nat
4 δ(r − r′)

the output variance will be

〈(∆ f̂ ∗i (r) f̂ ∗i (r′))〉 =
nat(r)

4
δ(r− r′) . (B.11)

It is certainly worth noting that the decay of a coherent state does not add any
additional noise to the system. The magnitude of the pseudo-spin will of course
be reduced according to eq. (B.5) so that the resulting state provides a poorer
angular resolution in spectroscopic applications (see eq. (3.32)). We now take a
few examples of types of decay to aid the understanding of the equations.

Decay out of the system By this we mean that the atoms are lost out of the two
level system either because the atoms leave the ensemble or because the decay
goes to states that do not interact with the probe. In either case the decayed
atoms are uncorrelated and 〈 f̂ ′i 〉 = 〈( f̂ ′i )

2〉 = 0. We get the simple result

〈(∆ f̂ ∗i (r) f̂ ∗i (r′))〉 = (1− ηl)2〈(∆ f̂i(r) f̂i(r′))〉+
ηl(1− ηl)

4
nat(r)δ(r− r′) ,

where the subscript ’l’ on ηl testifies that we are specifically considering the
loss process. Let f̂i = f⊥ be the direction perpendicular to the mean spin that
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has the smallest variance and 〈 f̂ 〉 = 〈 f̂ j〉 i.e. the vector be aligned along the j-
direction. The input state may be squeezed by ξ whereby the modified squeezing
parameter following the decoherence is

ξ ′l =
nat(r)〈(∆ f̂ ∗i (r) f̂ ∗i (r′))〉

〈 f̂ ∗j 〉2
= ξ +

ηl

(1− ηl)
(B.12)

Decay to uncorrelated symmetric state As the decayed atoms are uncorrelated
all correlation terms containing decay states are zero and since the state is sym-
metric w.r.t f̂i we have 〈 f̂ ′i 〉 = 0. This process, though not necessarily symmetric,
is really what one refers to by the term decoherence, hence we label the frac-
tion of atoms subjected to this process ηdc. Thus the variance after decoherence
becomes

〈(∆ f̂ ∗i (r) f̂ ∗i (r′))〉 = (1− ηdc)2〈(∆ f̂i(r) f̂i(r′))〉+
ηdc(1− ηdc) + ηdc

4
nat(r)δ(r− r′) ,

from which we deduce the surviving degree of squeezing of the input to be

ξ ′dc =
nat(r)〈(∆ f̂ ∗i (r) f̂ ∗i (r′))〉

〈 f̂ ∗j 〉2
= ξ +

ηdc

(1− ηdc)
+

ηdc

(1− ηdc)2 (B.13)

We observe that ξ ′dc > ξ ′l , which leads to the conclusion that decoherence is a
more damaging effect than pure loss of atoms. This is perhaps not surprising
because atoms lost out of the system no longer add any noise to the pseudo-
spin, whereas decohered atoms sustainedly affect the noise of the total combined
pseudo-spin.

B.0.4 Decoherence due to probing

Due to selection rules for photon light absorption and spontaneous decay we
can usually predict the excitation and decay channels. Combining this with
the resulting expectation values of the pseudo-spin moments we can compute
eq. (3.35). For the moment we use a heuristic picture sketched on fig. 4.5 to

Figure B.2: Excitation and
decay channels (see fig. 3.3)

mF

F

ηFF’

γFmFF’mF’

find the branching rations of the various decay channels. Each ground level
labelled by F and mF can be excited to a range of excited hyperfine-manifolds
F′. The excitation will only go to a specific magnetic sublevel m′

F of each excited
hyperfine level determined by the polarisation of the probe light. The fraction of
atoms excited through this channel is labelled ηF,F′ . From the excited states the
is a number of channels through which the atom is allowed decay. The decay
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rates are labelled by γF′m′
F ,F′′mF′′

and from each excited level we can determine
the branching ratios of the allowed channels as

rF′m′
F ,F′′mF′′

= γF′m′
F ,F′′mF′′

/
∑

F∗,mF∗

γF′m′
F ,F∗mF∗

(B.14)

Hence the transition rate from an initial state |F, mF〉 to a final state |F′′, mF′′〉 is
given by ηFF′rF′m′

F ,F′′mF′′
. If there are more than one excitation channel by which

the atom can reach the same final state the correct transition rates must be calcu-
lated by the Kramers-Heisenberg formula, which includes a sum over the cou-
pling to all intermediate levels |F′, mF′〉. Fortunately, for the experimentally rele-
vant parameters the Kramers-Heisenberg formula yields nearly the same results
as what is achieved by summing the transition rates ηFF′rF′m′

F ,F′′mF′′
that share the

same excited state |F′, mF′〉.

By summing over the two ground levels, the allowed excited manifolds and the
possible magnetic sublevels in both groundlevels we calcullate the effect of the
decay on the pseudo-spin components. The mean spin component transforms
as

〈 f̂ ∗i (r)〉 = (1− η)〈 f̂i(r)〉+ ∑
F,F′

ηFF′ ∑
m′

F ,mF′′

rF′mF′ ,F′′mF′′
〈 f̂ (1)′′

i 〉nat(r) , (B.15)

where the value of 〈 f̂ (1)′′
i 〉 is fully determined by F′′ and mF′′ . For the second

moment the expression based on eq. (B.8) is somewhat more cumbersome

〈 f̂ ∗i (r) f̂ ∗i (r′)〉 = (1− η)2〈 f̂i(r) f̂i(r′)〉+ η(1− η)
〈 (

f̂ (1)
i

)2 〉
nat(r)δ(r− r′)

+ ∑
F,F′

ηFF′ ∑
m′

F ,mF′′

rF′mF′ ,F′′mF′′

〈 (
f̂ (1)′′
i

)2 〉
nat(r)δ(r− r′) (B.16)

+ ∑
F,F′

∑
F,F8

ηFF′ηFF8 ∑
mF′ ,mF′′

∑
mF8 ,mF88

rF′mF′ ,F′′mF′′
rF8mF8 ,F88mF88

〈
f̂ (1)′′
i f̂ (2)88

i

〉
nat(r)nat(r′)

+ (1− η) ∑
F,F′

ηFF′ ∑
mF′ ,mF′′

rF′mF′ ,F′′mF′′

〈
f̂ (1)
i f̂ (2)′′

i

〉
2nat(r)nat(r′) ,

In most circumstances we may focus on a limited number of excitation and decay
channels since many ηFF′ and rF′mF′ ,F′′mF′′

are zero or negligible.

Instead of including all the channels it may be possible to calculate the decay in
terms of elastic (Raleigh) and inelastic (Ramsey) scattering rates. Then the sum-
mation above can be reduced to a sum over the hyperfine changing scattering
events and the hyperfine conserving events. In the latter case one has to argue
that the final f̂z is the same as the initial because no information is gained about
the f̂z of the individual atoms. For the inelastic events the appropriate terms
must be calculated.



Appendix C

Full ensemble squeezing �
in�uence of geometry

How can one say that the squeezing has a spatial distribution? After all we deter-
mine an atomic ensemble value of the operator F̂z based on the measurement of
Ŝx, which yields a single value. The reason is that the measured Ŝx does not con-
tain the same information about all sections of the atomic ensemble. Specifically
the areas where the probe intensity is higher contribute more to the detected
signal. Likewise the denser the atomic sample the more information is disclosed
about the local operator. In sec. 5.4 we made a 1-D approximation and got the
uniform coupling constant κ2

uni and squeezing factor εuni.

We now turn to the more rigourous approach where we the local squeezing is
weighed by the local atomic density and probing intensity. Firstly, the noise
reduction depends on the local densities such that

ε(r) =
1

1 + K2

c2 N (r)U(r)la n̂phlp
(C.1)

On fig. C.1 we plot the noise reduction either as the uniform εuni or the spatially'
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Figure C.1: Distribution of noise reduction and atomic, probe and weighted atomic
densities. Grey curve on l.h.s. is atomic density for wa = 1.0. Grey dashed curve is probe
intensity with waist wp = 0.75. Grey curve on r.h.s. is atomic density weighted with
square of probe intensity according to eq. (3.26). Green line is uniform noise reduction
εuni while red curve is the radially dependent noise reduction.

dependent ε(r) and compare them to the pure or the weighted atomic density
distributions. Obviously, ε(0) > εuni since this is where the probe and atomic
densities are the largest thus maximising the coupling strength. As this means
that ε(r) tends to be larger where the atomic density is largest we would expect
that when integrating over the total (or effective) ensemble the estimate given by
this method would be larger than that given by applying εuni. The reduced noise
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of the effective ensemble F̂z is found as

〈(∆F̂(out)
z )2〉 =

∫
R3

∫
R3′
〈(∆ f̂ (out)

z (r) f̂ (out)
z (r′))〉U(r)U(r′)d3r d3r′

=
∫

R3

∫
R3′

1
1 + κ2(r)

〈(∆ f̂ (in)
z (r) f̂ (in)

z (r′))〉U(r)U(r′)d3r d3r′

=
∫

R3

1
1 + κ2(r)

〈(∆ f̂ (in)
z (r))2〉U(r)2d3r

=
1
4

∫
R2

1

1 + K2

c2 N (r)U(r)la n̂phlp
N (r)U(r)2la d2r (C.2)

We attempt to illustrate this formula in fig. C.2 by plotting the argument of the
integral and compare it to the projection noise of the uncorrelated ensemble.
Strictly speaking this is done on fig. C.2b,d while on fig. C.2a,c we plot the total
ensemble variant that is the argument of eq. (C.2) excluding the factor U(r)2. For'

&

$

%

-1.5 -1.0 -0.5 0.5 1.0 1.5

0.1

0.2

0.3

0.4

0.5

0.6

Reduced atomic noise

-1.5 -1.0 -0.5 0.5 1.0 1.5

0.1

0.2

0.3

0.4

0.5

0.6

Reduced weighted atomic noise

Figure C.2: Distribution of projection noise before and after QND measurement for
wa = 1.0, wp = 0.75, and κ2(r = 0) = 14.4 that is κ2

uni = 20. a+b: Radial dependence
of (grey curve) projection noise of original uncorrelated state, (Green curve) projection
noise after QND measurement uniformly reduced by εuni and (red curve) projection
noise after QND measurement reduced by radially varying factor ε(r). a: corresponds
to total ensemble operators while b: is for effective ensemble operators.
c+d: density plots of projection noise before (left half) and after (right half) the QND
measurement, which are analogous to the grey and red curves in a and b. c: corresponds
to total ensemble operators while d: is for effective ensemble operators.

the illustration we chose a atomic sample to probe beam waist ratio of rw = 4/3
so that the probing region is slightly smaller than the size of the sample. By
this we wish to highlight the difference between the effective and total ensemble
operators. Comparing fig. C.2a and b we see that the noise reduction is more
pronounced when when utilising the effective ensemble operators. The total
ensemble operators also count atoms that are not probed and thus never detected
let alone noise-reduced.

Like the coupling strength the spontaneous scattering has a radial dependence
according to the probe mode function. Using Wineland’s criterion eq. (3.33) we
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know that the SQL with which to compare the noise of the post-QND measure-
ment ensemble is (1 − η(r))2〈(∆F̂(in)

z )2〉, where η(r) ∝ nphU(r). This may be
compared to the uniform spontaneous scattering probability ηuni given above.
On fig. C.3 we plot the reduced SQL as dashed lines. The remaining curves just
reproduce the noise reduction fig. C.2. From both the effective and total ensem-'
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Figure C.3: a+b: full lines same as in fig. C.2 where a: is for total ensemble opera-
tors and b: for effective atomic operators. Dashed green curve is the projection noise
level of uncorrelated ensemble (i.e. as the grey line) reduced by a uniformly distributed
decoherence 1 − ηuni according to Wineland’s squeezing criterion. Dashed red curve
is the uncorrelated projection noise now reduced by a radially dependent decoherence
(1− η(r))2. To extract the squeezing the green and red full curves should be compared
with the dashed lines of the same colour. c+d: density plots of the reduced SQL due to
decoherence (left half) and the reduced projection noise level due to the QND measure-
ment (right half). The r.h.s. are the same as those on fig. C.2c+d. The density plots are
analogous to the red dashed and red curves in a and b. c: corresponds to total ensemble
operators while d: is for effective ensemble operators.

ble picture it is clear that the spatially dependent treatment (red curves) predicts
a larger squeezing (ratio of dashed to full lines) than the uniform treatment
(green curves). By the same token, the effective ensemble operators, by account-
ing only for the atoms actually probed, foretell a larger squeezing. The combined
effects of noise reduction and decoherence are synthesized in the squeezing fac-
tor which we define as

Ξ =

∫
R2

1
1+ 1

c2K2N (r)U(r)la n̂phlp
N (r)U(r)2la d2r∫

R2 e−2η0U(r)n̂phlpN (r)U(r)2la d2r
, (C.3)

or in terms of the total ensemble operators.

Ξtot =

∫
R2

1
1+ 1

c2K2N (r)U(r)la n̂phlp
N (r)la d2r∫

R2 e−2η0U(r)n̂phlpN (r)la d2r
, . (C.4)

At this point we have defined all the quantities that we need to characterise the
squeezing and it is time to perform the integrals and discuss the observed noise
behaviour. We chose not to print analytical expressions for the solved integrals,
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not the least because several of them have no simple solution. The plots are
mostly based on numerical integration. We chose to investigate the noise for
different ratios of the waists of the atomic sample and the probe beam. From
this we can draw some conclusions about the optimal combination of sample
and probe sizes. In accordance with the above expressions, the total number of
atoms and photons is kept constant, whereby the peak atomic density and probe
intensity will vary with the respective waists sizes. Naturally, in the limit of very
small waist sizes the predictions become unrealistic and unphysical.

We first treat the effective ensemble noise and squeezing for different wa and wp,
with all curves normalised to Nat/4. On fig. C.4a we plot the projection noise of
the uncorrelated (input) state 〈(∆F̂(in)

z )2〉 c.f. eq. (3.26). For rw � 1 only a small
fraction of the atoms are probed and thus the projection noise in the detected
meter is small. Fig. C.4b shows the projection noise of the input state reduced by
the decoherence 〈(∆F̂(out)

z )2〉SQL. According to eq. (3.33) this defines the SQL to
which the noise reduced state should be compared in order to uncover if it is also
a squeezed state. For wa large there is little decoherence and 〈(∆F̂(out)

z )2〉SQL is
close to 〈(∆F̂(in)

z )2〉. For wp � wa the sample is probed by only a small fraction of
the photons and thus the decoherence is also small, though this is hard to discern
since the effective number of atoms probed is already small. Only when both
waist sizes become sufficiently small, and thus the photon density and overlap
becomes large, does the decoherence play a role. The projection noise reduced
by the QND measurement 〈(∆F̂(out)

z )2〉QND as given by eq. (C.2) is shown on
fig. C.4c. The output state noise is small when either of the waists are small, but
it is only for small wa that this noise is actually lower than the input noise. This
is reflected in fig. C.4d where we plot the difference between the projection noise
of the output state and the output SQL i.e. 〈(∆F̂(out)

z )2〉QND − 〈(∆F̂(out)
z )2〉SQL. It

is clearly seen that the noise reduction is significant for small ωa i.e. for large
atomic densities. Perhaps it is a bit surprising that, in the limit of infinitely dense
atomic sample the noise reduction is always complete irrespective of the probe
beam size. This is, however, a consequence of the noise reduction eq. (C.1) being
proportional to the atomic density. From the above we are in a position to de-
duce the squeezing measures. We start out on fig. C.4e with the simple squeezing
parameter ξsimp = 〈(∆F̂(out)

z )2〉QND/〈(∆F̂(in)
z )2〉 c.f. eq. (3.30). This criterion basi-

cally gauges the noise reduction normalised to the input projection noise level.
The plot reveals that the simple squeezing is large for either wa or wp small.
Again this is rooted in the coupling strength’s proportionality with both the
atomic density and the probe intensity together with the fact that we discount the
atoms outside of the probe volume. Finally, we gauge the squeezing according
to Wineland’s criterion ξwineland = 〈(∆F̂(out)

z )2〉QND/〈(∆F̂(out)
z )2〉SQL c.f. eq. (3.33).

The plot on fig. C.4f goes to infinity in the limit of small probe waist size where
the output state is completely decohered. The maximal squeezing is achieved in
the limit of small wa. Since the atomic sample size is in physical reality bounded
from below, it is worth noting that the requirement for small wa is more strict for
large wp. Hence, the limit of wp � wa is not to feasible. In essence it is desirable
to combine the waist sizes so as to be located somewhere in the "trench" going
in along the wa axis on fig. C.4f. The position along the wp axis of this "trench"
depends on what might be called the overall coupling and decoherence. The for-
mer can be adjusted by changing probe detuning and the total number of atoms
and photons. The latter depends only on the detuning and the photon number.
Since a large number of atoms only contributes constructively to the squeezing
it is always a goal to maximise this. Then the probe detuning and power can be
used to facilitate an optimal choice of waists that is physically realisable.
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Figure C.4: effective ensemble noise and squeezing for different probe beam and atomic
sample waists. All curves are normalised to Nat/4. a: Projection noise of uncorrelated
(input) state 〈(∆F̂(in)

z )2〉 =
∫

R2〈(∆f̂
(in)
z )2〉U(r)2 d2r. b: Projection noise of input state re-

duced by the decoherence 〈(∆F̂(out)
z )2〉SQL =

∫
R2 e−2η(r)〈(∆f̂

(in)
z )2〉U(r)2 d2r. c: Projection

noise reduction by the QND measurement 〈(∆F̂(out)
z )2〉QND =

∫
R2〈(∆f̂

(in)
z )2〉U(r)2/(1 +

κ2)d2r. d: Projection noise difference between output state and output SQL
〈(∆F̂(out)

z )2〉QND − 〈(∆F̂(out)
z )2〉SQL. e: Squeezing according to simple criterion

〈(∆F̂(out)
z )2〉QND/〈(∆F̂(in)

z )2〉 c.f. eq. (3.30). f: Squeezing according to Wineland’s cri-

terion 〈(∆F̂(out)
z )2〉QND/〈(∆F̂(out)

z )2〉SQL c.f. eq. (3.33). Expanded formulae highlighting
the spatial dependence of the local ensemble operators are printed on the individual
figures.
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Figure C.5: Total ensemble noise and squeezing for different probe beam and atomic
sample waists. All curves are normalised to Nat/4. a: Projection noise of uncorre-
lated (input) state 〈(∆F̂(in)

z )2〉 =
∫

R2〈(∆ f̂ (in)
z )2〉U(r)2la d2r. b: Projection noise of in-

put state reduced by the decoherence 〈(∆F̂(out)
z )2〉SQL =

∫
R2 e−2η〈(∆ f̂ (in)

z )2〉U(r)2la d32.

c: Projection noise reduction by the QND measurement 〈(∆F̂(out)
z )2〉QND =∫

R2〈(∆ f̂ (in)
z )2〉U(r)2la/(1 + κ2)d2r. d: Projection noise difference between output state

and output SQL 〈(∆F̂(out)
z )2〉QND − 〈(∆F̂(out)

z )2〉SQL. e: Squeezing according to sim-

ple criterion 〈(∆F̂(out)
z )2〉QND/〈(∆F̂(in)

z )2〉 c.f. eq. (3.30). f: Squeezing according to

Wineland’s criterion 〈(∆F̂(out)
z )2〉QND/〈(∆F̂(out)

z )2〉SQL c.f. eq. (3.33). Expanded formulae
highlighting the spatial dependence of the local ensemble operators are printed on the
individual figures.



Full ensemble squeezing – influence of geometry 291

We will now recap the above in the picture of total ensemble operators. Since
we chose to fix the total number of atoms the total ensemble projection noise
of the uncorrelated (input) state 〈(∆F̂(in)

z )2〉 is constant (fig. C.5a). On fig. C.5b
shows the input projection noise reduced by the decoherence 〈(∆F̂(out)

z )2〉SQL. If
wa is large the decoherence only affects a small part of the atomic sample. If
wp is large the probe intensity is low. In either case the result is a small de-
coherence. There is, however, always a certain size of the probe and atomic
sample size where the probe intensity is so large that any atoms contained in
the probe area will experience complete decoherence. The projection noise re-
duced by the QND measurement 〈(∆F̂(out)

z )2〉QND (fig. C.5c), demonstrates that
a high atomic density is essential to achieve large noise reduction. Again, for
small probe waist sizes the requirement on the atomic waist size is less strict.
The difference between the projection noise of the output state and output SQL
〈(∆F̂(out)

z )2〉QND − 〈(∆F̂(out)
z )2〉SQL, shows that the disadvantage of a small probe

beam size is the large decoherence. However, given a certain realisable atomic
sample size the optimal probe waist size may be at a finite value. Because of
the constant input projection noise the squeezing according to simple criterion
〈(∆F̂(out)

z )2〉QND/〈(∆F̂(in)
z )2〉 (fig. C.5e) is identical to 〈(∆F̂(out)

z )2〉QND (fig. C.5c).
Lastly the squeezing of the total ensemble operators according to Wineland’s
criterion 〈(∆F̂(out)

z )2〉QND/〈(∆F̂(out)
z )2〉SQL gives a very similar picture as for the

effective atomic operators. The main difference is that for the total ensemble op-
erators ξwineland only tends to infinity for the waist combinations were all atoms
decohere i.e. not only those inside the effective probing volume. Note, that this
region of the plot has been cut out so that it is easier to see the surface behind it.

Hereby, we conclude the somewhat lengthy discussion of the interaction geom-
etry and its influence on the QND squeezing process.





Appendix D

Atomic constants and
properties

D.1 Expressing the coupling-strength

In this section we will elaborate a bit on the expression for the coupling constant
gge of the dipole interaction Hamiltonian eq. (4.1). This is a standard result of
atomic physics and we do not find it necessary to go through all steps of the
derivation. Detailed treatments can be found in e.g. [Loudon73, Sobelman06,
Bransden83]. Based on these and [Steck08, Windpassinger08a] we will illustrate
how the coupling constant can be expressed in terms of constants and the tran-
sition strengths tabulated in the below sections.

We want an expression for the per-photon Rabi frequency gge which was defined
to be

gge = iωgeε · d̂ge/
√

2h̄Vωε0 (D.1)

where ωge is the transition frequency, the magnitude of which will be very close
to the frequency ω of the field.1 The quantity ε0 is the vacuum permittivity
and V is the interaction volume [Duan02], which we take to be the effective
interaction volume V = πla

w2
a

2
r2

w
1+r2

w
defined at the end of sec. 3.1. The remaining

factor is ε · d̂ge the vector product of the field polarisation and the atomic dipole
moment d̂ge. We will account for the polarisation shortly, but first focus on d̂ge.
To find it we need to specify the states |g〉 and |e〉 a bit more carefully. From
Sec. 3.2 we know that the states are fully determined by their F and mF quantum
number for the total atomic spin and it’s projection respectively. Thus, the dipole
matrix element can be expressed as d̂ge = 〈Fg mFg|e0r|Fe m′

Fe〉, where e0 is the
elementary charge and g marks the ground and e the excited state.

The atoms are spherically symmetric, so we conclude that |d̂|2 = e2(|x̂|2 + |ŷ|2 +
|ẑ|2) = 3|d̂z|2 = 3|d̂q|2, where the q is the index of the irreducible vector opera-
tor [Sobelman06, Bransden83]. However, when we account for the light polari-
sation ε, we must take the rotational average which cancels the factor of 3.

Since all final expressions involve the |gge|2, we are only concerned with the
norm-squared of the dipole matrix elements, and using the Wigner-Eckart theo-
rem [Sobelman06, Bransden83], we can expand it as the product

|dq|2 = e2
0|〈Fg mFg|rq|Fe mFe〉|2 = e2

0|〈Fg||r||Fe〉|2|〈Fg mFg|Fe 1 mFe q〉|2 (D.2)
1For a red detuning of twice the hyperfine splitting their relative magnitude is |ωge/ω| ≈

1.0000261, so we will not hesitate to substitute ω for ωge
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where the Clebsch-Gordan coefficient 〈Fg mFg|Fe 1 mFe q〉 will vanish unless
mFe = mFg − q. If the atoms are unpolarised we can

For linearly polarised light we only have q = 0 transitions.

∑
mFg,mFe

|dq|2 = ∑
mFg,mFe

|〈Fg||e0r||Fe〉|2|〈Fg mFg|Fe 1 mFe 0〉|2 =
1
3
|〈Fg||er||Fe〉|2

(D.3)
which follows from the properties of the Clebsch-Gordan coefficients.

The reduced dipole matrix element can be further expanded. The first factor is

|〈Fg||er||Fe〉|2 = (2Fg + 1)

{
Jg Fg I

Fe Je 1

}2

|〈Jg||er||Je〉|2 (D.4)

written in terms of Wigner 6-j symbols [Sobelman06] while the second factor is
the Clebsh-Gordan coefficient which can be written as

|〈Fg mFg|Fe 1 mFe q〉|2 = (2Fe + 1)

(
Fg 1 Fe

mFg q mFe

)2

(D.5)

written in terms of Wigner 3-j symbols. As in Sec. 3.2 Jg = 1/2 and Je = 3/2
(Je = 1/2) for D2-line (D1-line) are the orbital angular momenta plus spin of
the ground and excited state and I = 7/2 is the nuclear spin. We define the
transition strength factor as

SFg,Fe ≡ (2Fg + 1)(2Fe + 1)

{
Jg Fg I

Fe Je 1

}2(
Fg 1 Fe

mFg q mFe

)2

, (D.6)

so that |dq|2 = SFg,Fe |〈Jg||er||Je〉|2. In table D.5-refAPPcgcoeff-D2-45 and D.4
below the Clebsch-Gordan coefficients and transition strength factors SFg Fe are
listed, respectively.

The dipole matrix elements are proportional to the natural linewidth through
the formula from [Sobelman06, Loudon73]

|〈Jg||er||Je〉|2 = (2Je+1)
3h̄cε0λ2

2πω

γe

2
(D.7)

If we collect the results and insert into Eq. eq. (D.1) we are able to write up a
practical expression for the coupling constant gge

|gge|2 = (2Je+1) (2Fg + 1)(2Fe + 1)

{
Jg Fg I

Fe Je 1

}2(
Fg 1 Fe

mFg q mFe

)2
λ2c

4πV
γe

2

= (2Je+1)SFg Fe

3λ2c
4πV

γe

2
(D.8)

For the D1-line with Je = 1/2 the prefactor (2Je+1) is 2 while for the D2-line
with Je = 3/2 it is 4. If we also express the interaction volume in terms of the
probe and sample waists and the sample length we altogether get

|gg|2 = SFg Fe

3λ2c
π2law2

a

1 + r2
w

r2
w

γe

2
D1− line (D.9)

|gg|2 = SFg Fe

6λ2c
π2law2

a

1 + r2
w

r2
w

γe

2
D2− line (D.10)
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property symbol Value
Atomic number Z 55
Nuclear number Z + N 133

Relative isotope abundance - 100%
Atomic mass mCs 2.207 10−25 kg
Density at 25◦ NCs 1.93 g/cm3

Melting point TM 28.44◦

Boiling point TB 671◦

Vapour pressure at 25◦ PV 1.3 10−6 torr
Nuclear spin I 7/2

Valence electrons 1

Table D.1: Dlines

D.2 Cs atom constants

D.2.1 D-line constants

The data presented is based on [Steck08] and is provided here mainly as a practi-
cal reference. The saturation intensity is the effective far detuned for π-polarised
light i.e. corresponding to π-polarised light coupling to all hyperfine transitions
simultaneously. Likewise the cross section is the effective for π-polarised light.

property symbol D1-line D2-line
Wavelength λ 894. nm 852. nm
Decayrate γ 4.6 MHz 5.2 MHz

Saturation Intensity Isat 2.4981 mW/cm2 1.6536 mW/cm2

Resonant cross-section σ0 0.1531 µm2 0.2313 µm2

Table D.2: Dlines

Transition frequencies

Fg \ Fe 2 3 4 5

3 8589.18 MHz 8740.39 MHz 8941.63 MHz –
4 – −452.24 MHz −251.00 MHz 0 MHz

Table D.3: Detunings relative to ∆45 [Steck08]

Interaction strength matrix elements

Fg \ Fe 2 3 4 5

3 5
14

3
8

15
56 0

4 0 7
72

7
24

11
18

Table D.4: Dipole transition strengths SFg Fe for the D2-line [Steck08]
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mFg\ mFe −2 −1 0 1 2

−3
√

5
14 0 0 0 0

−2
√

5
42

√
5
21 0 0 0

−1
√

1
42

√
4
21

√
1
7 0 0

0 0
√

1
14

√
3

14

√
1
14 0

1 0 0
√

1
7

√
4
21

√
1

42

2 0 0 0
√

5
21

√
5

42

3 0 0 0 0
√

5
14

Table D.5: Clebsh-Gordans: D2-line 3-2

mFg\ mFe −3 −2 −1 0 1 2 3

−3 −
√

9
32

√
3

32 0 0 0 0 0

−2
√
− 3

32 −
√

1
8

√
5

32 0 0 0 0

−1 0 −
√

5
32 −

√
1
32

√
3
16 0 0 0

0 0 0 −
√

3
16 0

√
3

16 0 0

1 0 0 0 −
√

3
16

√
1

32

√
5
32 0

2 0 0 0 0 −
√

5
32

√
1
8

√
3
32

3 0 0 0 0 0 −
√

3
32

√
9
32

Table D.6: Clebsh-Gordans: D2-line 3-3

mFg\ mFe −4 −3 −2 −1 0 1 2 3 4

−3
√

5
24 −

√
5

96

√
5

672 0 0 0 0 0 0

−2 0
√

5
32 −

√
5
56

√
5

224 0 0 0 0 0

−1 0 0
√

25
224 −

√
25
224

√
5

112 0 0 0 0

0 0 0 0
√

25
336 −

√
5
42

√
25
336 0 0 0

1 0 0 0 0
√

5
112 −

√
25

224

√
25
224 0 0

2 0 0 0 0 0
√

5
224 −

√
5
56

√
5
32 0

3 0 0 0 0 0 0
√

5
672 −

√
5

96

√
5
24

Table D.7: Clebsh-Gordans: D2-line 3-4
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mFg\ mFe −3 −2 −1 0 1 2 3

−4
√

7
72 0 0 0 0 0 0

−3
√

7
228

√
7
96 0 0 0 0 0

−2
√

1
288

√
1

24

√
5
96 0 0 0 0

−1 0
√

1
96

√
5
96

√
5

144 0 0 0

0 0 0
√

1
48

√
1
18

√
1
48 0 0

1 0 0 0
√

5
144

√
5
96

√
1

96 0

2 0 0 0 0
√

5
96

√
1

24

√
1

228

3 0 0 0 0 0
√

7
96

√
7

228

4 0 0 0 0 0 0
√

7
72

Table D.8: Clebsh-Gordans: D2-line 4-3

mFg\ mFe −4 −3 −2 −1 0 1 2 3 4

−4 −
√

7
30

√
7

120 0 0 0 0 0 0 0

−3 −
√

7
120 −

√
21

160

√
49
480 0 0 0 0 0 0

−2 0 −
√

49
480 −

√
7

120

√
21
160 0 0 0 0 0

−1 0 0 −
√
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160 −

√
7
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√
7
48 0 0 0 0
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√

7
48 0

√
7
48 0 0 0
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√

7
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√
7
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√
21
160 0 0

2 0 0 0 0 0 −
√
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√
7
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√
49
480 0

3 0 0 0 0 0 0 −
√
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√
21
160

√
7

120

4 0 0 0 0 0 0 0 −
√

7
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√
7
30

Table D.9: Clebsh-Gordans: D2-line 4-4

mFg\ mFe −5 −4 −3 −2 −1 0 1 2 3 4 5
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√
1
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−3 0
√

2
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√
8
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√
1
30 0 0 0 0 0 0 0
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√
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√
7
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√
1
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√

7
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√
4
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√
1
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√

1
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√
5
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√
1
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√

1
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√
4
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√
7
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2 0 0 0 0 0 0
√

1
15 −

√
7
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√
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3 0 0 0 0 0 0 0
√

1
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√
8
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√
2
5 0

4 0 0 0 0 0 0 0 0
√

1
90 −

√
1

10

√
1
2

Table D.10: Clebsh-Gordans: D2-line 4-5





Appendix E

Simulations of trapped atomic
ensemble

In this section we will present the background and methods for simulating the
time evolution of the individual atoms in the trapped sample. We need to dis-
cuss some result from statistical physics in order to derive expressions that are
needed for the simulation. Thereby, we actually end up verifying some assump-
tions made in above chapters. This section is not without assumptions and ap-
proximations of its own. The most significant approximation is that we consider
only the transverse motion and thus only express equations in this plane. This
approximation is of course already implicitly included in the atomic density dis-
tribution eq. (3.5) stated above. The defect of the 2D approximation stems from
the fact that any Gaussian beam will propagate with some divergence. As the
atomic sample is centred in a location where all the relevant laser beams are
focused, the task is to determine over which distance the radial beam profiles do
not change too much. To this end, we calculate the Raleigh range which for the
probe beam will be around zl,0 = x mm and for the trapping beam zt,0 ≈ x mm.
In comparison, images of the dipole trap show it to be no longer than 1 mm. The
corresponding fractional change in beam-width of the laser beam is then x and x
for the probe and trapping lasers respectively. We take this as a justification for
reducing the scope to a 2D model. Finally, we point to [Oblak08] where some
parts of the simulations have been presented.

E.1 Initial distribution

We describe the (external) motional state of the atom in terms of imax gener-
alised coordinates qi and momenta pi, which together form a set of canonical
variables in phase-space. Since our system is radially symmetric we parametrize
the position in terms of the atom’s radial r and angular φ positions with the
corresponding radial pr and angular pφ momenta. Using these, we express the
total energy of particle H(q1, p1, ..., qimax , pimax), which for a radially symmetric
potential U(r) becomes

H(r, φ, pr, pφ) =
1

2mCs

(
p2

r +
p2

φ

r2

)
+ V(r) (E.1)

From statistical physics it is known that the probability of finding an atom in
a state with phase-space coordinates in the range qi, qi+dqi and pi, pi+dpi for
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i = 1, ..., imax is given by [Mandl88]

P(q1, p1, ..., qimax , pimax) =
1
Z

e−
H(q1,p1,...,qimax ,pimax )

kBT (E.2)

where kB is Boltzmann’s constant, T the atom’s thermodynamic temperature and

the partition function Z =
∫

R2imax e−
H(q1,p1,...,qimax ,pimax )

kBT dimax q dimax p. In the case of the
radially symmetric potential we write

P(r, φ, pr, pφ) =
1
Z

e
− 1

kBT

[
1

2mCs

(
p2

r +
p2

φ

r2

)
+V(r)

]
(E.3)

We are of course free to find the probability distribution only in terms of one or
a few of the phase-space coordinates by integrating over the remaining degrees
of freedom. For example we may wish to find the position distribution of the
atoms in a trap and this becomes

P(r, φ) =
N (r)
Ntot

=
1
Zr

e−
V(r)
kBT (E.4)

where the marginal partition function Zr =
∫ ∞

r=0 r e−
1

kBT V(r)dr.

Let is further specialise to the case of a Gaussian potential V(r) = V0e−2r2/w2
t c.f.

eq. (9.1). The resulting marginal particle position distribution is then

P(r, φ) =
N (r)
Ntot

=
1
Zr

e−
V0

kBT e−2r2/w2
t

(E.5)

In the limit of V0 � kBT the density is negligible for r > wt and we may expand
the second exponential to second order

P(r, φ) =
N (r)
Ntot

≈ kBT2
πw2

t V0
e
− V0

kBT
2r2

w2
t (E.6)

This is the limit where the trapping potential is approximately harmonic and the
resulting density distribution is Gaussian with a width wa = w2

t kBT/V0 propor-
tional to the width of the trapping potential width — The colder the ensemble
the narrower the spatial extent of ensemble in the trap. In the opposite limit of
V0 � kBT the distribution becomes

P(r, φ) =
N (r)
Ntot

≈ 2
πw2

t
e
− 2r2

w2
t . (E.7)

This is still a Gaussian, but it makes no explicit reference to the ensemble tem-
perature.

Generating ensemble for simulation When generating an ensemble for the
simulations of the time evolution we first pick random radial positions according
to the marginal distribution for r i.e.

P(r) =
kBT2

πw2
t V0

r e
− V0

kBT
2r2

w2
t , (E.8)

in analogous to the low temperature limit given by eq. (E.6). The angular dis-
tribution of particles is uniform from 0 ≤ φ ≤ 2π, but usually we will not be
concerned with the angular coordinate as it does not affect any of the other
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coordinates (see sec. E.2). The atoms are also given random momentum coor-
dinates corresponding to the respective marginal distributions. These are both
Gaussian and with widths

√
kBT and r

√
kBT for pr and pφ respectively. Com-

putationally, the Gaussian-like distributed random values are selected by the
rejection method [Press02]. For this to work we must specify cut-off values for
the distributions, typically slightly bigger than the natural width of the distri-
bution. If we use the radial coordinate as a an example then we pick a cut-off
value rmax ≈ 2ωa. Then we use standard algorithms to chose a pair of random
numbers between 0 and 1, {x, y}. Next we multiply 2x − 1 by rmax and y by√

2
πwa

e−1 which is the maximal value of P(r) attained at r = wa/
√

2. The final
step is to determine if the rescaled values {x′, y′} lie below the curve P(r) i.e.
if y′ < P(x′). If they do the points are accepted, otherwise they are rejected
and another random pair is selected. When random positions and momenta are
selected for an atom it is tested that the total energy H(r, φ, pr, pφ) < V(r), that
is the atom is trapped in the potential. If the atom turns out to be untrapped it is
discarded and another random coordinate attempt is made. At the end we have
generated a set of Ntot atoms characterised by their positions rk and momenta
pk.

E.1.1 Detection

The atoms are detected by the phase-shift they impose on a probe beam. Since
the probe beam has an inhomogeneous transverse profile the strength of the
influence of each atom on the probe beam depends on that atom’s transverse
position within the probe beam. Since, both the probe and the atomic sample
display cylindrical symmetry it is in fact only the radial position of the atom
which matters. The probe intensity profile is described by the Gaussian U(r) =

2
πw2

p
e−2r2/w2

p . Thus, the phase-shift from the atomic ensemble is given by

φ̃ph = φ̃ph,0

Ntot

∑
k=1

U(rk) (E.9)

where φ̃ph,0 = 3λ2

2π3 (2Je + 1)SFgFe
∆ge

γe
2

∆2
ge+( γe

2 )2 (σ̂
(1)
gg − σ̂

(1)
ee ) is the phase-shift imparted

on the probe by a single atom c.f. eq. (4.15). In cases where we can specify an
analytical form for N (r) we may of course perform an integral instead of the
sum as e.g. the case of a Gaussian atomic density distribution in eq. (4.15). The
shortcoming of the analytical approach is that it is difficult to express the time
evolution of the ensemble except in a Harmonic trap limit. In several cases the
movement of the individual

E.2 Single atom phase-space trajectories

The dynamics of an atom is easily deduced from the energy description in canon-
ical phase-space variables. The evolution is described by the following differen-
tial equations [Hamilton34, Hamilton35].

dr
dt

=
∂H
∂pr

=
pr

m
dφ

dt
=

∂H
∂pφ

=
pφ

mr2 (E.10)

dpr

dt
=

∂H
∂r

= −
p2

φ

mr3 +
∂V(r)

∂r
dpφ

dt
=

∂H
∂φ

= 0 (E.11)
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where for convenience we have omitted the Cs-subscript from the mass. We see
that the angular momentum is a constant of motion and that the angular position
is completely de-coupled from the radial equations. Since at the same time, the
angular position has no influence on any of the dynamics we observe we will
concentrate our efforts to trace the radial degrees of freedom. Two potentials
relevant for our experiment. First there is V(r) = C, where C is some constant
value. This corresponds to untrapped atoms and the radial equations in this case
reduces to

dr
dt

=
pr

m
dpr

dt
= −

p2
φ

mr3 (E.12)

The other important potential is that generated by a Gaussian trapping laser
beam V(r) = V0

πw2
t
e−2r2/w2

t

dr
dt

=
pr

m
dpr

dt
= −

p2
φ

mr3 +
4V0r
w2

0
e
− 2r2

w2
0 (E.13)

The numerical simulation is performed in MatLab c© using the Størmer-Verlét
velocity method [Størmer21, Verlet67], which we will not describe extensively
here. It requires the velocity vr = pr/m and acceleration ar = dpr

dt /m at a given
time-step so as to calculate the position at the subsequent time-step. We note that
the simulation will introduce some errors that result in alteration of the atom’s
energy. This is likely to occur when an atom crosses the origin r = 0 where
the equation for the radial momentum diverges. Hence, If the atomic energy
at the end of the simulation differs too much from the energy at the beginning
(> 5%) the atom is disregarded. At the end of the simulation we get a triplet-
array {rk(ti), pr,k(ti), ti} of computed values for different increments 0 ≤ i ≤ imax
for each atom k. The simulation allows us to specify a different potentials for
different times. Thereby, in sec. 9.2.2 we compute the evolution of an ensemble
of atoms for which the potential is switched off and re-applied after some time,
in order to model the observation of damped breathing oscillations at twice the
characteristic trap frequency. Similarly, in sec. 9.2.3 we model the decrease in
phase-shift as atoms are released from the trapping potential, so as to determine
the sample’s temperature. Finally, for use in sec. 11.2.1 we model the evolution
of atoms that are imprinted with a spatially inhomogeneous light-shift phase
that is subsequently detected in a Ramsey experiment.

We use a ”manual” optimisation method to find the simulation parameters to
that best reproduce the experimental data. We first simulate and store theore-
tical curves for a range of parameters. Following this, we compare the square
deviation of the theoretical data points from the experimental. The set of simula-
tion parameters that yield the smallest square deviation are taken to be optimal.
One can refine the optimisation by calculating another set of simulations with
smaller increments between the parameter values. Fig. E.1 is a plot of the errors
associated with the trap oscillation data presented in fig. 9.10. The optimal set
β = 6, ωp/wa = 0.6, and ωt = 1/3800 µs of parameter values stated for the data
in the fig. 9.10 should be apparent from the above plot of the errors.

E.3 Light-shift phase imprints

Now we will study the situation where the atomic state receives a phase-shift
from the energy perturbation by the probe field. Since the probe intensity is
inhomogeneous over the atomic sample this light-shift will also be inhomoge-
neous. In Ramsey spectroscopy we exactly measure the time evolution of the
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Figure E.1: Norm squared error between simulated and experimental trap oscillation
data for different values of simulation parameters. The temperature parameter β =
1/(kbT) is stated in units of the trapping potential.

phase between the two ground-levels. the fringe amplitude is maximal when all
atomic superposition states have an equal phase. Any distribution of the phases
— coined dephasing — will decrease the Ramsey fringe amplitude. Hence, the
Ramsey spectroscopy signal is direct related to the degree of light-shift dephas-
ing.

To model the light shifts we simply add an additional degree of freedom to the
atoms namely a state-phase φ′. We note that φ′ is related to the internal state
of the atoms and thus usually decoupled from the external motional degrees of
freedom. The spatially inhomogeneous light shift thus couples the internal and
external states of the atom. In the previous section we found the time evolution
of the atomic position rk(t). The light shift imparted on the atom by a probe
pulse at time t1 is given by

φ̃′at,k = φ̃at,0U(rk) (E.14)

where φ̃′at,k = is the light shift induced by Nph photons c.f. eq. (4.24). We
note that if we have more probe colours the light shifts from these may add
up or cancel depending on the probe frequencies. The combined light-shift from
several pulses at times ti is then φ̃′at,k = ∑i φ̃at,0U(rk(ti)). However, if a microwave
π-pulse has been applied at some point the all the atomic phases will be inverted.
This is equivalent to assigning the opposite sign to all light shifts imprinted after
the π-pulse. Thus, for a pulse sequence as depicted in fig. E.2 the combined
light-shift of the two probe pulses becomes

φ̃′at,k = φ̃at,0
(
U(rk(tp,1))−U(rk(tp,2))

)
(E.15)

We now take the Ramsey echo-spectroscopy into consideration starting with
a single atom (a thorough explanation of Ramsey spectroscopy is provided in
sec. 10.2.3). The microwave field is detuned by ∆µw from the clock transition
frequency and the time evolution of the atomic state is after the first π/2 pulse
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Figure E.2: Light shift re-phasing sequence.

is |ψk〉 = (|3〉e−i∆µwt + |4〉)/
√

2. The two probe pulses surrounding the echo-π-
pulse add a phase according to the state such that at the time of the final Ramsey
π/2-pulse the state has evolved to (|3〉e−i∆µw(tµ,1+tµ,2)+φ′k + |4〉)/

√
2. The Ramsey

signal of the atom is then

φ̃ph,0U(rk(tp,3)) cos
(

∆µwδtµ + φ̃at,0
[
U(rk(tp,1))−U(rk(tp,2))

] )
(E.16)

where tp,3 is the time of the detection pulse, δtµ = tµ,1 + tµ,2, and we have written
out φ′k. Thus the Ramsey signal depends on five different times ow which three
are linked to the position of the atom at the given moments. For the whole
ensemble of atoms we simply sum over all atoms.

The simulation first calculates the particle trajectories according to sec. E.2 and
then compute the phase-imprints at times tp,1 and tp,2. Next we calculate the
Ramsey fringe from the the combined phase-imprint φ′k and the time separation
tµ,1 + tµ,2. Lastly, the atomic position at the detection moment is used to compute
the Ramsey signal. In sec. 11.2.1 we present the experimental results of the mea-
surement sequence in fig. E.2 and use the simulations to generate a theoretical
comparison. The values of wt, T, φ̃at,0, wp that produce the best simulation are
found by the method described in sec. E.2.



Appendix F

Measures of oscillator
(in)stability

In spectroscopy applications such as atomic clocks it is crucial to have a broadly
recognised method to characterise the quality of the experiment. Here we aim
to summarise some definitions and conventions that are relevant for our work.
The treatment largely follows that found in [Barnes71].

An oscillator signal is a signal on the general form

A(t) = [A0 + α(t)] sin [ω0t + φ(t)]

where A0 is the signal’s mean amplitude in the units of the signal, e.g. volts,
current, intensity etc., and α(t) is the instantaneous departure of the amplitude
from the mean value. Similarly, ω0 = 2πν0 is the nominal (angular) frequency
and φ(t) the instantaneous phase-offset. Thus, the instantaneous signal phase is
simply the argument ω0t + φ(t) while the instantaneous frequency is its deriva-
tive

ω(t) = ω0 +
dφ(t)

dt
(F.1)

so that the frequency deviation plainly becomes ω(t)−ω0 = dφ(t)/dt. One then
defines a fractional frequency deviation y(t) as

y(t) =
ω(t)−ω0

ω0
=

1
ω0

dφ(t)
dt

(F.2)

Time domain - Allan variance The integral of y(t) over some time τ starting
at tk represents the average frequency deviation over this time. From the defini-
tion eq. (F.2) we easily express this integral as

yk =≡ 1
τ

∫ tk+τ

tk

y(t) dt =
φ(tk + τ)− φ(tk)

ω0τ

By measuring the phase of a signal at various times, thus, allows one to compute
yk. The Allan or two-point variance is then defined as1 [Allan66]

σ2(τ) =
1
2

〈
(yk+1 − yk)

2
〉

(F.3)

1the Allan variance is the N = 2 variant of the more general N-point variance σ2(τ, N) ≡〈
1

N−1 ∑n=1 N
(

yn − 1
N ∑N

k=1 yk

)2 〉
.
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Here the 〈·〉 represents a temporal average over all possible values of tk. The
Allan variance thus characterises the oscillator stability over certain averaging
times and is thus closely related to the power spectrum of the noise. The Allan
variance is defined as a dimensionless measure, however, it is straight forward to
relate it to e.g. (angular) frequency fluctuations ν0σ2(τ) (ω0σ2(τ)). Additionally,
by virtue of eq. (F.1) we can easily compute the expected phase-excursion on a
certain time-scale as ∆φ(τ) = ω0τσ2(τ). It is worth noting that using eq. (F.2)
we can re-write the Allan variance in terms of the instantaneous phase-offset

σ2(τ) =
1

2ω2
0τ2

〈
[φ(tk + 2τ)− 2φ(tk + τ)− φ(tk)]

2
〉

(F.4)

This leads us to point to the connection of the Allan variance to the auto-
covariance of the phase-signal defined as C(τ) = 〈φ(tk + τ)φ(tk)〉. Thereby,
we can write

σ2(τ) =
2

2ω2
0τ2 [3C(0)− 4C(τ) + C(2τ)] (F.5)

This can verified by expanding the square in eq. (F.3), noting that for stationary
signals 〈φ(tk)2〉 = 〈φ(tk + τ)2〉 etc.

In an actual experimental situation one can not perform an infinite time average
as prescribed by eq. (F.3) or eq. (F.4). An estimate of σ2(τ) can be found by
averaging (yk+1 − yk)

2 a set of experimentally measured yk values. Specifically,
the data acquisition will have a certain bandwidth ωBW and a corresponding to
the temporal resolution of the equipment τBW = 1/ωBW . In this case the ac-
quired phase-values are discretised as φk = φ(tk) and adjacent indices indicating
a time separation tk+1 = tk + τBW . This intrinsic bandwidth of the apparatus is
can be tuned by summing/combining the values of n successive values and, via
eq. (F.4), this leads to the definition of a modified Allan variance [Allan81]

σ2
M(τ) =

1
2ω2

0τ2

1
n2

〈[
n

∑
i=1

(φi+2n − 2φi+n + φi)

]2〉

Since, much of our experiment deals with pulsed measurements the modified
Allan variance is indeed the most relevant for our analysis.
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Appendix H

Experimental techniques

H.0.1 Background field nulling

We have tried two methods for cancelling or nulling the background magnetic
field from the earth and magnetic elements in the setup. In both cases we mon-
itor the splitting of the mF levels of the F = 4 ground-state at various settings
of the compensating coils along each spatial direction. The first approach is to
monitor the frequency shift of particular microwave transition w.r.t. the clock
frequency for different compensating coil currents and then deduce when the
shift is minimal. At this coil setting the field is optimally compensated. Practi-
cally, we sweep the microwave frequency over some range (≡ 300 kHz) where
we expect the shifted transition frequency to be and mark the time during the
sweep that the phase-shift makes a step. The step indicates that a fraction of
the atoms have been transferred to the F = 3 ground level and from the time
that it occurs we can infer the frequency of the transition. Ideally, we would
observe transitions between high mF states as these experience that largest shift
δν ∝ mF, however these couple weakly and are hard to resolve. Instead we rely
on π transitions between either mF = ±1 or ±2 levels. This in turn means that
the frequency resolution is rather low and since the steps are still quite weak the
method gives only a rough estimate of the compensation current.

We get a more precise estimate of the coil currents for the B-field nulling, by
sweeping the microwave frequency over a somewhat larger range (≡ 1 MHz)
covering the whole multiplet of microwave transitions. The phase-shift of F = 4
atoms steadily reduces during the a period of the sweep as different mF π tran-
sitions come into resonance (see fig. H.2). The duration of the ”F = 4 depletion
period” indicates the frequency spread of the magnetic sub-levels, hence the
shorter the period the smaller the B-field. We approximate the phase-shift step
by an error-function1.

1erf(
√

2(x− x0)/w) = 2a√
2π

∫ x
0 e2(u−x0)2/w2

du
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Quantum mechanics is characterised by several strange features, which include  quantum 
uncertainty, quantum measurements, and entanglement. This thesis involves all three of 
these. The quantum uncertainty poses a fundamental standard quantum limit (SQL) in app-
lications where quantum systems are used to gauge some quantity. A prime example is that
of atomic frequency standards, which with unprecedented precision measure an atomic
quantum state. Quantum measurements in the form of Quantum Non-Demolition (QND) 
measure-ments can be engineered so as to overcome the SQL by redistributing quantum 
uncertainty amongst different variables of the system. Such squeezed spin-states rely on 
inter-atomic correlation, which goes by the name of entanglement.  
In this work we present a detailed description of how we have implemented a QND mea-
surement with laser pulses in a Mach-Zehnder Interferometer (MZI) and demonstrate that
we can engineer a squeezed state in a cold trapped ensemble of Cs atoms. We verify that 
the squeezing is useful for improving the precision of atomic clocks. Along the way, we also
 investigate several remark-able features of the interaction, by which atoms and light-par-
ticles (photons) exchange phase-shifts.

(Sammendrag på dansk forefindes på side iii )

(Sažetak na hrvatskom jeziku se nalazi na iv.  stranici)
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