

U N I V E R S I T Y O F C O P E N H A G E N

This thesis has been submitted to the PhD School of The Faculty of Science,

University of Copenhagen

MEOW
Enabling Dynamic Scheduling of Scientific Analysis

David Marchant
d.marchant@ed-alumni.net

Supervisors: Brian Vinter, Kenneth Skovhede, James Avery

May 31st, 2021

A C K N O W L E D G E M E N T S

First and foremost I would like to thank Brian Vinter, James Avery, and Kenneth Skovhede who have
each acted as supervisors during this project. Throughout my time at university I have heard constant
horror stories of supervisors who were never seen or offered no help, and I am glad to say that I can
share in none of these. You have each provided consistent, valuable guidance without which this
project would definitely not have succeeded.

I am deeply indebted to Rasmus Munk, with whom I have worked almost constantly. More than
anyone you have helped guide me through life in Denmark and have been extremely patient in putting
up with my distracting comments in our time working together. I would also like to thank the other
members of the eScience group, Carl Johannes-Johnsen, Alberte Thegler, Rene Lowe Jacobsen, Jonas
Bardino, and Martin Rehr. Each of you have been so welcoming and made the eScience group a
wonderful place to work.

I would also like to thank Erik Lauridsen and Hans Fangohr, who supervised my secondments
to Xnovo and EuXFEL respectively. You and your teams were each a pleasure to work with. Jon
Kerridge and Kevin Chalmers also deserve thanks for helping me find and accept this PhD position,
without your input I’d still be in Scotland.

Special thanks should also go to my friends Corrie Gibb, Alex Kiker, Vic Hutchinson, Angus
Ruddick, and Angus Barker, along with my family Iain, Clive and Diana. Thank you all for your help
and support, I’ve really appreciated the regular contact despite moving to a new country.

Finally I would like to thank Laura Murray and TJ Marsden. The help and support you’ve both
provided through thick and thin has been invaluable to me. Every difficulty I’ve encountered you’ve
helped me overcome, and I truly am indebted to you both. Thank you.

This project is developed as part of Multiscale, Multimodal and Multidimensional imaging for
Engineering (MUMMERING)[66]. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement
No 765604.

ii

A B S T R A C T

To manage complex scientific data processing, the concept of workflows has been adapted from the
world of business. This is not a recent innovation, and so a vast range of different tools have arisen
to the point that all manner of specialised needs and use-cases can be accommodated by one tool or
another. However, one requirement that has been recently identified as lacking in the current crop
of workflow management tools is the need to be adaptable at runtime. This could be for a variety of
reasons, such as the exploratory nature of scientific workflows, error handling, or human-in-the-loop
interactions.

This lack of dynamic support is caused by most workflow systems being built in a static, top-down
paradigm where all of the constituent parts of a workflow are identified and scheduled before any
processing takes place. Therefore, to meet the need to be dynamic a new, bottom-up paradigm of
scientific analysis is proposed. This new system is known as Managing Event Oriented Workflows
(MEOW), and uses file system events to schedule scientific analysis on a continuous basis. An
implementation is provided within the Python package mig meow. This provides definitions for a
variety of MEOW constructs, as well as widgets for use within Jupyter Notebooks. The aim of this is
to make an accessible system for new users to manage their analysis, as well as provide a variety of
provenance about whatever processing has occurred. MEOW is designed to work primarily with the
Minimum intrusion Grid system to enable shareable, repeatable, and completely dynamic scientific
analysis. However, it is also capable of working in a reduced manner as an independent system in its
own right.

As well as MEOW, a variety of supplementary teaching materials are presented to make the learning
of new users easier. Supporting work, such as an investigation into converting between Static and
Dynamic workflows is also presented, as is a system for integrating remote cloud resources into
existing scientific applications.

Ultimately this thesis acts as support to the scientific work of researchers, by providing a tool for
automating large amounts of scientific processing in an adaptable manner.

iii

R E S U M É

Workflow konceptet blev introduceret med inspiration fra erhvervslivet for at kunne håndtere kompleks
videnskabelig databehandling. Dette er ikke en ny opfindelse, hvilket medfører at der allerede
eksisterer en lang række workflow værktøjer, der hver især dækker forskellige behov og brugstilfælde.
For nylig er der blevet identificeret særligt ét krav i de foreliggende værktøjer til styring af workflow,
hvilket er kravet om at kunne tilpasse sig undervejs i workflow eksekveringen. Dette krav kan
opstå på baggrund af adskillige årsager, såsom en udforskende tilgang i videnskabelige workflows,
fejlhåndtering, eller human-in-the-loop interaktioner.

Manglen på dynamisk understøttelse skyldes, at de fleste workflow-systemer bygges i et statisk
top-down paradigme, hvor de enkelte dele identificeres og planlægges før databehandling finder sted.
Vi designer og implementerer et nyt system til at dække dette dynamiske behov. Systemet benytter sig
af et bottom-up paradigme til at beskrive og håndtere videnskabelige analyser. Dette nye system bliver
kaldt Managing Event Oriented Workflows (MEOW) og gør brug af filsystemhændelser til løbende at
planlægge videnskabelige analyser. En implementering gøres tilgængelig i Python pakken mig meow,
der eksponerer definitioner for adskillige MEOW-konstruktioner såvel som widgets der kan benyttes i
Jupyter Notebooks. Hensigten er at lave et forståeligt system for nye brugere til at administrere deres
analyser og levere en oversigt over hvilke databehandlingsopgaver der er blevet foretaget. MEOW
er primært beregnet til at interagere med Minimum intrusion Grid (MiG) systemet, for at muliggøre
reproducerbar og helt igennem dynamisk videnskabelig analyse, som kan deles mellem brugere og
organisationer. MEOW kan anvendes som et selvstændigt værktøj i en reduceret form.

Udover MEOW præsenteres der også en vifte af supplerende undervisningsmateriale, som er de-
signet til at gøre det lettere at undervise nye brugere i at benytte MEOW. Hertil følger en undersøgelse
for hvordan man kan omlægge mellem statiske og dynamiske workflows, samt et system til at integrere
eksterne cloud-ressourcer ind i eksisterende videnskabelige programmer.

Ultimativt fungerer den her afhandling som støtte til forskeres videnskabelige arbejde, ved at
præsentere et værktøj til at automatisere store mængder videnskabelig databehandling med en tilpas-
ningsdygtig tilgang.

iv

T H E S I S O U T L I N E

This thesis is presented as part of the final submission for the PhD of David Marchant at Niels Bohr
Institute (NBI), part of Københavns Universitet(University of Copenhagen) (KU). The main piece
of work it presents is Managing Event Oriented Workflows (MEOW), a framework for designing
inherently dynamic analysis systems, and mig meow, an implementation of that framework. This is
a novel approach, and differs significantly from other common tools for running scientific analysis
which usually rely on static workflows. Other notable work in this thesis is the development of corc,
a tool for allowing cloud scheduling to be integrated into existing scientific applications.

This thesis has been broken down into several parts. The main ones are:

• Part i introduces the aims and objectives of the thesis. MEOW as a design framework is
introduced and explained.

• Part ii addresses the implementation of mig meow. A users ability to run their own scheduling
system is described, using either the MiG or an inbuilt WorkflowRunner.

• Part iii illustrates the functionality and correctness of MEOW and mig meow through a number
of examples and tests.

• Part iv considers the other work relevant to the thesis not already covered. This includes
integrating a cloud orchestration tool into existing x-ray simulation software, a converter
between the Common Workflow Language and into MEOW, as well as several teaching
materials developed during the project.

• Part v bring together and evaluates all of the work within the thesis. This is also where the
successes and failures of the project are identified, and a number of use cases are put forward
for where I expect MEOW to be most useful in the future.

v

C O N T R I B U T I O N S

This section lists the various contributions made to science outlined within the thesis. Each is briefly
summarised, along with details on where to find out more. The core contributions of this thesis are:

1. MEOW - Created a framework for designing an event-driven scheduling system for scientific
analysis. Users define Patterns and Recipes to identify processing to be perform, and events
under which said processing should be undertaken. This processing can then trigger further
processing in a non-predetermined manner to achieve an extremely dynamic structure. See Part
i.

2. mig meow - Created a python package for designing MEOW systems. These can be run locally
on a users machine or on the Minimum intrusion Grid (MiG), a grid computing manager. Also
contains a variety of Jupyter Notebook widgets to assist in MEOW construct creation. See Part
ii.

3. MEOW on the MiG - Added support for MEOW constructs to the MiG, along with the ability
to take provenance reports. Completed in collaboration with Rasmus Munk. See Part ii.

The following additional significant contributions were made in support of the above listed core
contributions:

1. ‘Managing Event Oriented Workflows’ - Wrote a paper first outlining MEOW and mig meow,
along with a use case from MUMMERING. Completed in collaboration with Rasmus Munk,
Elise Brenne and Brian Vinter. Presented by me at the XLOOP workshop[99], part of SC20[85].
See Appendix A.

2. ‘Further Developments in Event Oriented Workflows’ - Wrote a paper describing the addi-
tional developments of the WorkflowRunner, and provenance reporting through the MiG.
Completed in collaboration with Rasmus Munk, and Brian Vinter. See Appendix B.

3. CWL to MEOW - Created a translator between CWL workflows and MEOW, and vice versa.
See Chapter 21.4.

4. MEOW teaching materials - Wrote teaching materials for MEOW and mig meow, both for
workshops and for self-study. See Chapter 20.6.

5. corc with McStas - Integrated corc, a tool for scheduling processing on cloud resources,
into McWeb, a GUI for use with both McStas and McXtrace, x-ray and neutron simulation
software. Completed in collaboration with Rasmus Munk. See Chapter 23.4.

6. ‘Cloud enabling educational platforms with corc’ - Co-wrote a paper outlining the use of
corc in an academic context. Completed in collaboration with Rasmus Munk and Brian Vinter.
See Appendix D.

7. Supervision - Supervised Masters Project of Niels Andreas Tyndeskov Voetmann. Completed
in collaboration with Kenneth Shovhede, Carl-Johannes Johnsen. See Part 22.3.

vi

N O TAT I O N W I T H I N T H I S D O C U M E N T

Throughout this thesis, some consistent notation has been adopted so as to help make reading it easier.
These notation decisions have been highlighted here.

• Programming constructs have been highlighted in a console font. For example, ‘copy’ would
refer to a library known by that name, whilst ‘copy’ would refer to the act of replicating
something.

• The MEOW constructs Patterns and Recipes are always referred to with capital letters to
highlight that they are specific definitions. When they are implemented within mig meow they
are referred to as Patterns and Recipes as these are an implementation of the abstract
definitions.

• Within code samples, ellipsis are used to show where code has been cut for brevity, but where it
is important to show that some processing is taking place in that spot.

• When the contents of a Jupyter Notebook is being displayed, only the contents of the code cells
will be shown. This is as none of the Jupyter Notebooks shown in this thesis have significant
markdown contents, and the non-code contents can effectively be ignored.

vii

C O N T E N T S

I I N T RO D U C T I O N A N D D E S I G N I N G M E O W

1 I N T RO D U C T I O N 2
2 M OT I VAT I O N A N D O B J E C T I V E S 3

2.1 An introduction to MUMMERING . 3
2.2 Objectives for My Project . 4
2.3 Summary . 6

3 B AC K G RO U N D 7
3.1 Scientific Workflows . 7
3.2 A Need for Dynamic . 9

4 R E L AT E D W O R K 10
4.1 Requirements for Scientific Workflows . 10

4.1.1 Automatic Optimisation . 11
4.1.2 Clarity . 11
4.1.3 Predictability . 11
4.1.4 Recordability . 12
4.1.5 Reportability . 12
4.1.6 Responsiveness . 12
4.1.7 Reusability . 13
4.1.8 Scientific . 13
4.1.9 Well-formedness . 13

4.2 Current Workflow Management Tools . 13
4.3 Commonly Used Non-workflow Tools . 17
4.4 DAGs, and A False Dichotomy . 18
4.5 The limits of Static, and the possibilities of Dynamic 20

5 DY N A M I C W O R K F L O W S 23
5.1 Workflows without DAGs . 23
5.2 MEOW: Monitoring, not Controlling . 26

5.2.1 Recipes: Defining what work is scheduled . 26
5.2.2 Patterns: Defining when to schedule . 26
5.2.3 First Forays in MEOW . 27
5.2.4 Attempts at an Implementation . 28

6 M E O W 31
6.1 A Framework For Emergent Workflows . 31
6.2 Final Requirements . 32

7 S U M M A RY 35

II T O O L S F O R E M E R G E N T W O R K F L O W S

8 I N T RO D U C T I O N 37
9 B AC K G RO U N D A N D D I R E C T I O N 38

9.1 Minimum intrusion Grid . 38
9.2 Essential Packages . 40

9.2.1 watchdog . 41
9.2.2 papermill . 41
9.2.3 notebook-parameterizer . 41

10 M I G M E O W 42

viii

C O N T E N T S ix

10.1 A Python Package for MEOW . 42
10.2 Patterns Within mig meow . 42
10.3 Recipes Within mig meow . 45
10.4 Widgets and Design Aids . 46
10.5 The Local Runner . 49

10.5.1 CSP in multiprocessing . 49
10.5.2 Outlining the Local Runner . 52
10.5.3 Using the WorkflowRunner . 56

11 M I G 59
11.1 MEOW definitions on the MiG . 59
11.2 Identifying MEOW Outputs on the MiG . 62
11.3 Foundational Interactions . 64
11.4 Interacting via Widgets . 65

12 S U M M A RY 69

III E X A M P L E S A N D T E S T S

13 I N T RO D U C T I O N 71
14 A F O U N DAT I O N A L E X A M P L E 72

14.1 Problem Outline . 72
14.2 Defined Recipes . 73
14.3 Defined Patterns . 73
14.4 Using WorkflowRunner . 75

14.4.1 Setting up . 75
14.4.2 Running the WorkflowRunner . 76

14.5 Using the MiG . 77
14.6 Concluding The Foundational Example . 79

15 A S C I E N T I F I C E X A M P L E 80
15.1 Problem Outline . 80
15.2 Defined Recipes . 81
15.3 Defined Patterns . 83
15.4 Using WorkflowRunner . 84
15.5 Using the MiG . 85
15.6 Concluding The Scientific Example . 87

16 A S E L F M O D I F Y I N G E X A M P L E 88
16.1 Problem Outline . 88
16.2 Defined Recipes . 89
16.3 Defined Patterns . 90
16.4 Using WorkflowRunner . 91
16.5 Using the MiG . 93
16.6 Concluding The Self-Modifying Example . 95

17 T E S T I N G M E O W 97
17.1 Unit Tests . 97
17.2 User Testing . 97
17.3 Investigating watchdog . 98
17.4 Overheads when using MEOW . 98

17.4.1 Overheads in Slurm . 99
17.4.2 Overheads in mig meow . 101
17.4.3 Overheads on the MiG . 104
17.4.4 Evaluating the MEOW overheads . 106

18 S U M M A RY 108

C O N T E N T S x

IV S U P P O RT I N G W O R K

19 I N T RO D U C T I O N 110
20 T E AC H I N G M E O W 111

20.1 The Need to be Taught . 111
20.2 Technical Reporting And Word Choice . 112
20.3 Documentation . 112
20.4 Examples and Use Cases . 113
20.5 Workshops . 114
20.6 Results . 114

21 M E O W T O C W L 115
21.1 Motivation . 115
21.2 A Universal Language For Workflows . 115
21.3 Translating Between Paradigms . 116
21.4 Stopping Development . 118

22 F U R 119
22.1 The Need For An Uploading Framework . 119
22.2 FUR . 119
22.3 Relating to MEOW . 120

23 M C S TA S 121
23.1 McStas and McXtrace, and Xnovo . 121
23.2 corc . 122
23.3 McWeb . 123
23.4 Relating to MEOW . 123

24 S U M M A RY 125

V D I S C U S S I O N

25 I N T RO D U C T I O N 127
26 A S S E S S I N G T H E P RO J E C T 128

26.1 Rating Feasibility . 128
26.2 Meeting SWMS requirements with MEOW . 130

26.2.1 Automatic Optimisation . 130
26.2.2 Clarity . 132
26.2.3 Predictability . 133
26.2.4 Recordability . 133
26.2.5 Reportability . 134
26.2.6 Responsiveness . 134
26.2.7 Reusability . 134
26.2.8 Scientific . 135
26.2.9 Well-formedness . 135

27 U S E C A S E S 136
27.1 Exploratory Workflows . 136
27.2 Trivially Repeatable Jobs . 137
27.3 Continuous Monitoring Systems . 138
27.4 Heterogeneous Systems . 139

28 S U M M A RY 142

VI C O N C L U S I O N A N D F U T U R E W O R K

29 F U T U R E W O R K 144
29.1 Expanding MEOW Definitions . 144
29.2 Limiting Infinite Scheduling . 145
29.3 Improving the WorkflowRunner . 145

C O N T E N T S xi

29.4 Investigating and Supporting HDF5 and FUR . 146
29.5 Unifying Language . 146
29.6 A Library for Tomography in MEOW . 147

30 C O N C L U S I O N 149

VII B I B L I O G R A P H Y

Bibliography 152

VIII A P P E N D I C E S

A M A N AG I N G E V E N T O R I E N T E D W O R K F L O W S 159
B D E V E L O P M E N T S I N E V E N T- O R I E N T E D , E M E R G E N T W O R K F L O W S 174
C T E AC H I N G C O N C U R R E N T A N D D I S T R I B U T E D P RO G R A M M I N G 189
D C L O U D E N A B L I N G E D U C AT I O N A L P L AT F O R M S W I T H C O R C 199
E R E S O U R C E S U S E D W I T H I N T H I S T H E S I S 217
F M U M M E R I N G G R A N T AG R E E M E N T E X T R AC T S 218
G C O D E C O N T E N T S O F add.ipynb 220
H M I G B A S E D M E O W J O B T E M P L AT E 221
I C O D E C O N T E N T S O F initial porosity check.ipynb 223
J C O D E C O N T E N T S O F segment foam data.ipynb 224
K C O D E C O N T E N T S O F foam pore analysis.ipynb 225
L C O D E C O N T E N T S O F generator.ipynb 227
M P Y T H O N S C R I P T initial generation.py 228
N C O D E C O N T E N T S O F pattern maker recipe mig.ipynb 229
O T E S T I N G W A T C H D O G 230
P R E S U LT S F RO M OV E R H E A D I N V E S T I G AT I O N 233
Q R E Q U I R E D F I L E S F O R C W L W O R K F L O W E X A M P L E 241
R C O N T E N T S O F A C O R C C O N F I G U R AT I O N F I L E 243
S M E O W W O R K S H E E T 245

L I S T O F F I G U R E S

2.1 The MUMMERING work packages. 3
3.1 Taxonomy of a workflow. 8
3.2 A sample tomography workflow. 8
4.1 Overview of the basic Apache Airflow architecture. 15
4.2 Overview of the basic Slurm architecture. 17
4.3 An example DAG. 18
4.4 A top-down workflow structure. 19
4.5 An illegal DAG . 20
5.1 A bottom-up workflow structure. 24
5.2 General design of an event based scientific analysis system. 25
5.3 Initial MEOW mockup . 28
5.4 Secondary MEOW mockup . 29
6.1 MEOW hierarchy . 31
9.1 Architecture of the MiG. 39
9.2 Design overview of the MiG trigger system. 40
10.1 Overview of the WorkflowWidget. 47
10.2 Pattern feedback within the WorkflowWidget visualisation. 48
10.3 The form used to create a Pattern with the WorkflowWidget. 49
10.4 Process structure of the WorkflowRunner. 52
11.1 Internal structural hierarchy of the MiG, with added MEOW constructs. 60
11.2 MEOW job processing on the MiG. 61
11.3 An example of the mig meow MonitorWidget main view. 66
11.4 An example of the mig meow ReportWidget with full report DAG. 67
11.5 A example of a filtered ReportWidget DAG. 67
14.1 The structure of the foundational example. 72
14.2 The file structure of the foundational example before the WorkflowRunner is started.

Files for defining the MEOW system are shown in blue, whilst the starting state of the
data is shown in yellow. 76

14.3 The file structure of the foundational example once all WorkflowRunner processing
according to Pattern One has completed. 76

14.4 The file structure of the foundational example once all WorkflowRunner processing
has completed. 77

14.5 The WorkflowWidget visualisation of the foundational example. 78
14.6 The foundational example provenance report generated as part of the ReportWidget. 78
15.1 The structure of the revised scientific example. 81
15.2 The WorkflowWidget visualisation of the scientific example. 86
15.3 The ReportWidget for the jobs scheduled from foam data 15 datasets. 86
16.1 The structure of the self-modifying example. 89
16.2 The file structure of the self-modifying example before any configuration files are added

to the WorkflowRunner. 92
16.3 Comparison of the input and output Patch.jpg data, used in the self-modifying example. 93
17.1 Slurm scheduling durations on the Threadripper. 100
17.2 MEOW scheduling durations on the Threadripper. 103
17.3 Logarithmic MEOW scheduling durations on the Threadripper. 103
17.4 Logarithmic MiG scheduling durations on the Threadripper. 104
17.5 MiG scheduling durations on the Threadripper. 105

xii

L I S T O F F I G U R E S xiii

17.6 Delta in per-job MiG scheduling durations on the Threadripper. 106
21.1 The structure of CWL and MEOW, and how they may translate. 117
21.2 A visualisation of a basic CWL workflow. 118
22.1 Process diagram showing the architecture of FUR. 120
23.1 Cloud Orchestrator Framework Overview . 122
26.1 The possibility of a race condition within MEOW. 131
27.1 A heterogeneous analysis. 140
P.1 Slurm scheduling durations on the Laptop. 235
P.2 Per-job Slurm scheduling durations on the Laptop. 235
P.3 Slurm scheduling durations on the Threadripper. 236
P.4 Per-job Slurm scheduling durations on the Threadripper. 236
P.5 mig meow WorkflowRunner scheduling durations on the Laptop. 237
P.6 Per-job mig meow WorkflowRunner scheduling durations on the Laptop. 237
P.7 mig meow WorkflowRunner scheduling durations on the Threadripper. 238
P.8 Per-job mig meow WorkflowRunner scheduling durations on the Threadripper. . . 238
P.9 MiG with MEOW scheduling durations on the Laptop. 239
P.10 Per-job MiG with MEOW scheduling durations on the Laptop. 239
P.11 MiG with MEOW scheduling durations on the Threadripper. 240
P.12 Per-job MiG with MEOW scheduling durations on the Threadripper. 240

L I S T O F TA B L E S

2.1 Core thesis objectives . 6
5.1 Initial sketch of MEOW design in EBNF . 27
6.1 MEOW Recipe requirements. 33
6.2 MEOW Pattern requirements. 33
6.3 MEOW general requirements . 33
10.1 Variable keywords available in MEOW. 44
10.2 Selected Pattern method signatures. 45
17.1 Results of the watchdog test. 98
E.1 Resources used throughout for testing, timing, and benchmarking. 217
P.1 Selected timings for scheduling durations tests. 234

xiv

L I S T I N G S

10.1 Code sample showing the constructor for a Pattern within mig meow. 43
10.2 An abridged ALT-like wait statement. 51
10.3 An example of the WorkflowRunner created with Patterns and Recipes. . . 57
10.4 An example of the WorkflowRunner created with previously made Patterns

and Recipes. 57
10.5 The YAML file ‘Add 5’ expressing a Pattern object. 57
10.6 The abridged YAML file ‘addition’ expressing a Recipe object. 57
11.1 MEOW job execution lines example. 62
14.1 The append text.ipynb code cell contents. 73
14.2 Pattern One file contents. 74
14.3 Pattern Two file contents. 74
14.4 The Python script foundational example.py used to run the foundational example

within a WorkflowRunner. 75
14.5 The contents of the output file first/Alpha.txt. 76
14.6 The contents of the output file second/Alpha.txt. 77
15.1 Abridged contents of the generator.ipynb code cells. 82
15.2 Function generate foam used to generate foam data. 83
15.3 pattern check file contents. 83
15.4 pattern segment file contents. 84
15.5 pattern analysis file contents. 84
15.6 textitpattern regenerate file contents. 84
15.7 The Python script scientific example.py used to run the scientific example within a

WorkflowRunner. 85
16.1 Contents of the filter recipe.ipynb code cells. 89
16.2 Contents of the pattern maker recipe.ipynb code cells. 90
16.3 pattern maker file contents. 91
16.4 The Python script run self modifying example.py used to run the self-modifying

example within a WorkflowRunner. 91
16.5 input.yml file contents. 92
16.6 pattern maker file contents. 93
16.7 pattern maker mig file contents. 94
16.8 New code used in pattern maker recipe mig.ipynb. 94
20.1 Function definition and documentation string for generate id, part of mig meow. 113
23.1 Starting a cluster with corc from the command line. 122
26.1 An example Pattern showing the inconsistent path levels in different variables. 132
29.1 A mock-up of what a python library for Tomography constructs in MEOW might look

like. 147
F.1 MUMMERING WP2 T2.1 . 218
F.2 MUMMERING WP2 T2.2 . 218
F.3 MUMMERING WP2 T2.3 . 218
G.1 Code contents of add.ipynb Jupyter Notebook. 220
H.1 The MEOW job template used within the MiG. 221
I.1 Code contents of initial porosity check.ipynb Jupyter Notebook. 223
J.1 Code contents of segment foam data.ipynb Jupyter Notebook 224
K.1 Code contents of foam pore analysis.ipynb Jupyter Notebook 225
L.1 Code contents of generator.ipynb Jupyter Notebook. 227

xv

L I S T I N G S xvi

M.1 Python script initial generation.py . 228
N.1 Code contents of pattern maker recipe mig.ipynb Jupyter Notebook. 229
O.1 Testing the event identification rate of watchdog. 230
Q.1 1st-workflow.cwl. 241
Q.2 1st-workflow-job.yml. 241
Q.3 tar-param.cwl. 241
Q.4 arguments.cwl. 242
Q.5 CWL workflow example commands. 242
R.1 Contents of a corc configuration file. 243

A C R O N Y M S

corc Cloud Orchestrator. v, vi, 110, 121–123, 125, 150, 243, 244

AEC2 Amazon Elastic Cloud Compute. 122
API Application Programming Interface. 41
ASIC Application-Specific Integrated Circuit. xix
AWS Amazon Web Services. 121

CPU Central Processing Unit. 39, 139
CSP Communicating Sequential Processes. 49–52
CWL Common Workflow Language. v, vi, 110, 115–118, 125, 241, 242

DAG Directed Acyclic Graph. xx, 5, 14–21, 23–25, 32, 35, 67, 68, 77, 79, 108, 116, 128, 149
DTU Danmarks Tekniske Universitet(Technical University of Denmark). 123

EBNF Extended Bachus-Naur Form. 27, 34
ESR Early Stage Researcher. 3, 4, 6, 97, 129, 147

FPGA Field-Programmable Gate Array. xix
FUR Framework for Uploading research data. 110, 119–121, 123, 125, 129, 135, 140, 141, 146, 150

GPU Graphics Processing Unit. 4, 39, 140
GUI Graphical User Interface. vi, 14, 15, 18, 24, 25, 123

HDF5 Hierarchical Data Format 5. 13, 120, 135, 140, 146
HITL Human-in-the-loop. 9
HPC High Performance Computing. 3, 4, 121, 130, 139
HTTP HyperText Transfer Protocol. 64, 65

ITN Initial Training Network. 3

JSON JavaScript Object Notation. xix, 28, 45, 58, 64, 65, 94

KU Københavns Universitet(University of Copenhagen). v, 5, 6, 37

McStas Monte Carlo Simulation of Triple Axis Spectrometers. vi, xvii, 121, 123
McWeb Not a true acronym, but a web UI for running McStas and McXtrace. vi, 110, 123, 125
McXtrace Not a true acronym, but the X-ray version of McStas. vi, xvii, 121, 123
MEOW Managing Event Oriented Workflows. v–vii, xii, xx, 2, 16, 17, 22, 26–35, 37, 38, 40–44, 46,

49, 56, 58–67, 69, 71–73, 76–80, 85, 87, 88, 90, 93–99, 101, 103–108, 110–120, 123, 125,
127–142, 144–150, 174, 221, 234, 239, 240, 245

MiG Minimum intrusion Grid. v, vi, xx, 5, 37–40, 42, 44, 46, 49, 53, 55, 58–66, 69, 74, 77–79, 85,
87, 91, 93–95, 97–99, 101, 104–108, 110, 114, 116, 119, 120, 123–125, 128–131, 133–135,
139–142, 144–147, 149, 150, 221, 222, 234, 239, 240

MPI Message Passing Interface. 17
MUMMERING Multiscale, Multimodal and Multidimensional imaging for Engineering. ii, vi, xix,

3–6, 40, 97, 114, 129, 147, 149, 218, 219

NBI Niels Bohr Institute. v

OCI Oracle Cloud Interface. 121, 122, 217

xvii

Acronyms xviii

PyPI Python Package Index. 42

regex REGular EXpression. 28, 41, 43, 105

SFTP Secure File Transfer Protocol. 62
SSH Secure SHell. 63, 95, 145
SSHFS Secure SHell File System. 62–64, 66
SWMS Scientific Workflow Management System. 5, 6, 9–14, 16–18, 20–23, 32, 34, 35, 56, 63, 69,

96, 99, 114, 115, 127–130, 134, 142, 150

UI User Interface. xvii, 13, 16, 123
UNICORE UNiform Interface to COmputing REsources. 18
URL Unique Resource Locator. xix, 64

WP2 work package 2. 3, 4, 6, 218, 219

YAML YAML Ain’t Markup Language. 48, 54, 57, 61, 73, 90, 92, 115, 117, 122, 123

G L O S S A R Y

checksum A mechanism to validate if data has been modified or is inconsistent with a previous state.
Some algorithm is used to reduce a large amount of data down to a single number or string,
with the same data input always resulting in the same result. If different data is used a
different result will be produced, so this can be used as a quick check on if data has changed
between calculations. 12

cURL A command line tool for transferring data between resources, using a URL syntax. 39

deadlock A term used with concurrent and parallel computing for a multi-process program that cannot
progress as all processes require action from some other process. In this scenario, the system
will never progress and is stuck as no part is able to act first. xix, 11, 13, 49–52, 55

dynamic A term used within this thesis to refer to workflows not created from a pre-defined structure.
Instead the workflow is an emergent property of a series of connected jobs. v, vi, 2, 5, 6,
9–12, 16, 19–23, 25, 28, 34, 35, 37, 42, 56, 59, 69, 80, 95, 107, 108, 111–113, 115, 116, 118,
119, 125, 128, 137, 142, 145, 149, 150

FPGA Stands for Field-Programmable Gate Array. An integrated circuit board comprised of a collec-
tion of configurable logic blocks. These can be reconfigured repeatedly after manufacture in
contrast to dedicated hardware such as an ASIC. 139, 140

job An singular piece of processing, either done in isolation or as a constituent part of a step, and the
atomic part of a workflow. A job is collection of processing code, along with the necessary
input data for it to be processed. Output is expected to be produced from this analysis. As
an atomic unit of the workflow, each job can be completed in isolation, though their inputs
and outputs are often managed according to steps. xix, xx, 5–9, 11, 12, 14, 16–21, 23–28,
32–35, 38–40, 43, 44, 46, 49, 54–56, 58, 61–68, 72, 76–79, 84–88, 91, 92, 94, 95, 97–102,
104, 106–108, 110, 115, 116, 118, 122, 123, 128–134, 136–142, 144–146, 149, 150, 221,
222, 234–240

Jupyter Notebook A JSON document that can express a mix of runable code, text, and rich media.
Allows for very easily sharing and presentation of scientific data. Execution environments
can be provided in many languages, most notably in Python. Can also refer to older Jupyter
implementations, that have now been superseded by JupyterLab and so within this thesis
Jupyter Notebook will only refer to the documents themselves. vi, vii, xix, xx, 28–31, 37, 41,
45, 46, 54–56, 58, 61, 62, 64, 65, 69, 73, 75, 77, 79, 82, 88–90, 92, 94–96, 129, 134, 135,
141, 144, 147, 149, 220, 223, 224, 226, 227, 229

JupyterHub A server service for spawning instances of Jupyter Notebook or JupyterLab. 40
JupyterLab A web based environment and interface for hosting a number of Jupyter Notebooks.

Allows for easy extension of the interface through the use of plugins. xix, 29, 30, 40, 41, 64,
77, 94

livelock Both similar and opposite to deadlock. livelock occurs when a multi-process program will
not progress as each process is consistently giving up control to other processes. In this
scenario, the system will never progress as no part is willing to act first. xix, 49–51

Marie Skłodowska-Curie Actions An EU funding scheme for researchers, with a focus on fostering
international collaboration between different universities, research facilities and private com-
panies. It is most relevant here as the sole funder of this project as part of the MUMMERING
project. 3

xix

Glossary xx

parameter sweep A common scientific use case, where multiple otherwise identical jobs are required,
each with a different instance across a range of parameter values. 44

Pattern A MEOW workflow construct. Defines the conditions under which processing should be
triggered. The is done by defining a path against which file events are matched. Also defines
the parameters for the processing itself, including which Recipe is to be used. vi, vii, xx,
26–29, 31–34, 38, 42, 45, 46, 48, 53, 56–66, 68, 69, 72–77, 79–81, 83–85, 88–91, 95, 101,
102, 106, 115–117, 120, 129, 131–137, 144–149

race condition A problem within multi-processed systems where an invalid state is reached by
multiple processes acting on the same data at the same time. Each process acts as though they
alone are using the data, and so the final result does not account for the multiple processes
that have. 11, 13, 45, 49, 50, 65, 130, 131, 142, 150

Recipe A MEOW workflow construct. Defines the processing itself. This is done within mig meow
using Jupyter Notebooks. vi, vii, xx, 26–34, 38, 42, 43, 45, 46, 48, 53, 56–62, 64–66, 68, 69,
72, 73, 75–77, 79, 81, 83–85, 88–92, 95, 96, 101, 117, 129, 131–134, 136, 137, 139, 141,
144, 146–149

Rule A MEOW workflow construct. Not directly made by a user, a Rule is created when a Pattern is
registered, along with the Recipe stated in said Pattern. It is the list of currently created Rules
against which events are compared, and in the event of matches that jobs are scheduled. xx,
31–34, 53, 54, 59, 74–79, 92, 101, 102, 105, 131, 146

static A term used within this thesis to refer to DAG based workflows, where the structure is defined
ahead of time and kept to through the workflow run. v, 2, 10, 19, 21, 23, 24, 32, 35, 56, 67,
87, 108, 110, 112–115, 117, 125, 128, 129, 137, 149, 150, 174

step A constituent part of a workflow. Each step represents one phase of the processing. It may
consist of one, or more jobs scheduled in parallel. Each job scheduled as part of the step
must have the same processing code, though may have different input parameters and so may
produce different, but related output. xix, xx, 7, 9, 13–16, 18, 19, 23, 24, 27, 34, 35, 67, 69,
79, 81, 87, 115–117, 129, 133, 137, 140

sub-workflow A constituent part of a workflow that is itself a workflow. 15, 16

tomography The science of non-destructively imaging a 3D object by taking a series of 2D slices
through the object using penetrating waves, most commonly X-rays. These slices can then
be reassembled into a 3D model to be used in further scientific analysis. 3–6, 8, 9, 26, 80, 87,
110, 137, 147–150

VGrid Legacy term for a workgroup. xx

workflow An ordered progression of analysis conducted on data. Made up of one or more steps. v,
vi, xix, xx, 2–25, 27, 34, 35, 37, 42, 46, 49, 59, 67, 69, 87, 107, 110–119, 128–130, 132,
136–138, 142, 146, 149, 150, 241, 242

workgroup A term within the MiG for a structure within the file system. This is a shared location
in which numerous users can enrol and share data, or access to resource. Membership
can be controlled and so workgroups are an effective way for projects, departments or just
individuals to organise their work. Also sometimes referred to as a VGrid. xx, 39, 53, 59,
61–67, 74, 77, 78, 85, 87, 96, 132, 145

Part I

I N T R O D U C T I O N A N D D E S I G N I N G M E O W

1

I N T R O D U C T I O N

This is the first of the three main parts of this thesis. In it, we will establish the motivations and

objectives for the thesis as a whole. We then go on to discuss the background and theoretical

underpinning for the work presented in the subsequent two parts. By the end of this part, we will have

completed the necessary research into the first objective of this thesis, ’design a framework to express

automated, dynamic workflows’(see Section 2.2).

The main work presented in this thesis is Managing Event Oriented Workflows (MEOW), and

is fundamentally created as a response to a perceived deficiency in existing scientific workflow

management tools. As such, we will start by considering what a scientific workflow is, and what

currently available tools there are for managing them. These tools will be considered in the context of

a series of requirements that have been set out by a number of authors, with slight modifications made

and presented here. The reason for these modifications is that a shortcoming has been identified in

many of these tools, that being that they are static.

Static here means that any workflows designed in these systems is difficult to adapt at runtime, and

so a new system is needed that better accommodates change. In other words, we need a workflow

system that is dynamic. Exactly what this means, and how we might achieve this is outlined at length

in the later half of this part. In addition, some of the initial implementation work is presented so that

we may better understand the final requirements set out for a dynamic system. By the end of this part,

readers should have a full understanding of why MEOW was designed, what context it is operating in,

and what requirements we will be using to judge its success in later parts.

2

2

M O T I VAT I O N A N D O B J E C T I V E S

2.1 A N I N T RO D U C T I O N T O M U M M E R I N G

The work presented within this document is presented as part of the Multiscale, Multimodal and

Multidimensional imaging for Engineering (MUMMERING) project[66]. MUMMERING is an Initial

Training Network (ITN), part of the European Union’s Marie Skłodowska-Curie Actions for funding

research and fellowships. As such, any discussion of objectives should first be put in the context of

MUMMERING, and its motivations. As stated on the front page of the mummering.eu website, the

MUMMERING mission statement is:

’The overarching goal of MUMMERING is to create a research tool that encompasses
the wealth of new 3D imaging modalities that are surging forward for applications in
materials engineering, and to create a doctoral programme that trains 15 Early Stage
Researchers (ESRs) in this tool.’

MUMMERING is a tomography focused ITN, with positions offered to improve certain aspects of

data retrieval or analysis. Even within the relatively small area of tomography, it is still possible to be

highly specialised, as demonstrated by the fifteen ESR positions available as part of MUMMERING.

These specialists were divided into five different work packages, as shown in Figure 2.1.

I was part of work package 2 (WP2), titled ’Data Management and HPC’. This work package

was intended to support the other work packages by developing and providing a platform for large

amounts of data analysis and storage in a collaborative, robust manner. This is as data from scientific

experiments has been increasing exponentially within the last decade[104]. For example, CERN[13]

is already producing more than 115 PB annually[15]. Processing this volume of data demands the

WP1
Data acquisition,

electron and
X-ray tomography

WP2
Data Management

and HPC

WP3
3D Reconstruction

WP4
Segmentation

WP5
Modelling

Figure 2.1: The MUMMERING work packages, and where they relate to a tomography workflow. Note that
work packages 6-10 are not shown as they were administrative in nature.

3

2.2 O B J E C T I V E S F O R M Y P RO J E C T 4

use of dedicated hardware, such as GPUs, clouds, or grids. This can in turn lead to a demand for

specialist HPC knowledge and so WP2 is tasked to provide a platform allowing for others within

MUMMERING to access and use dedicated hardware without needing an obstructive amount of

previous knowledge.

As well as providing access to HPC resources, the platform should foster collaboration. That even a

relatively small subject like tomography can be divided into fifteen distinct ESRs demonstrates a need

for specific tools to support collaboration amongst tomography specialists. This demonstrates a need

for tools to support collaboration amongst tomography specialists, so that they can share their data,

work and results effectively. Although not a concern at the start of the project, in light of Covid-19

and the frequency with-which researchers are being asked to work from home, this is only becoming

a more urgent need.

It is also worth noting that collaboration is not just conducted between individual researchers. It

can also be between institutions and organisations such as is frequently the case in MUMMERING.

For instance, several universities, research facilities and private companies all contribute in some way

to MUMMERING, providing support for ESRs, research, resources, data, and/or teaching. Therefore,

these tools should allow specialists across disciplines and institutions to share their data, work and

results effectively.

The use of such a platform should not be constrained to just MUMMERING however. For instance,

facilities such as CERN, EuXFEL, or MAX IV[57] provide experimental apparatus to external

researchers. These researchers may only be physically present at the facility relatively briefly, but will

require access to data or processing for some time, perhaps even remotely. In light of this, it should be

taken that these needs for greater collaboration and easier HPC access is not unique to MUMMERING

or tomography, and is expected to be broadly applicable to any scientific field. Therefore, a central

motivating factor in WP2 was to enable easy collaboration across specialisms and organisations.

2.2 O B J E C T I V E S F O R M Y P RO J E C T

At its inception, this project and its goals were set out in the MUMMERING grant agreement, with

the two relevant to me being:

Deliverable 2.1: Basic workflow framework, expected month 18.
Deliverable 2.2: Training Materials for the workflow, expected month 20.

The expected resultant work from these deliverables is summed up within the MUMMERING

grant agreement as Task 2.1, ’Automating data analysis through workflows’ and Task 2.3 ’Total data

management’. These tasks will now be summarised, though a full description of both as presented in

2.2 O B J E C T I V E S F O R M Y P RO J E C T 5

the MUMMERING Grant Agreement and are shown in F. Task 2.3 is to provide a platform capable of

supporting big data analysis and storage in a collaborative manner, such as the Minimum intrusion

Grid (MiG). This is a grid management solution for, among other things, managing compute resources

at KU. As the university gains more resources, they can be enrolled in the MiG to be used either

for storing, processing data or both. This has proven to be an effective way of granting users access

to all manner of specialised hardware, as well as assisting them in their collection, management,

processing and storage of large amounts of data. A one stop-shop for storage and processing is

especially necessary thanks to stories like the one occasionally told story within the eScience group.

This concerns scientists running long-running, expensive experiments at facilities such as CERN or

MAX IV that produced terabytes of data. This data would then be retrieved from the facility on a

collection of hard disks or USB drives, that would be simply carried home in a plastic bag which does

nothing to ensure it was kept securely, completely, or correctly. A solution that would remove this

would be highly sought after. For instance, letting users access their data at their home machine whilst

keeping it within a grid system such as the MiG would be an effective solution to this, and a highly

motivating example for this work.

In addition to this, Task 2.1 is to automate the creation and execution of scientific analysis that

requires several individual stages of processing. This is the case within tomography, but is broadly

applicable to any complex scientific analysis. To aid in this processing researchers will frequently

use scientific workflows, with them being managed by a Scientific Workflow Management System

(SWMS). Commonly, they use a Directed Acyclic Graph (DAG) to define a workflow, with the nodes

representing jobs and edges dependencies between them. This dependency can be many things, but

most commonly it is a data dependency such as the input to one job depending on the output of

another. This is elaborated in more depth in Section 4.4. For now we can content ourselves with the

knowledge that a Scientific Workflow Management System (SWMS) derives from the DAG all of the

constituent jobs and what resources they should be mapped to before any processing has taken place.

This is sufficient for many workflows, though in some scientific use cases there is a specific need for

the workflow structure to be dynamic[56], [102].

Of note here, is that prior to this project event-driven triggers were added to the file system within

the MiG. This allows for some MiG interactions to be automated following defined file events[7]

using a construct called a Trigger. A feature of these Triggers, was that it allowed for new jobs

to be scheduled on the MiG. These Triggers could be used for a new workflow system that was

much more dynamic than a traditional, DAG-based SWMS. This is as it would be possible to use the

Triggers to schedule a job which produces output directly back into the MiG file system, which

could in turn trigger further events. Several jobs could then combine to form a complete workflow.

2.3 S U M M A RY 6

Objective 1 Design a framework to express automated, dynamic workflows
Objective 2 Implement an automated, dynamic workflow system

Objective 3
Integrate the automated, dynamic workflow system into the collaborative big data

platform developed within WP2
Objective 4 Create training material for the automated, dynamic workflow system

Table 2.1: Core thesis objectives. These objectives are listed approximately chronologically, and so this should
not be taken as an order of priority.

Where this differs from the traditional SWMS is that each individual job is scheduled in isolation, and

so can be scheduled, skipped, cancelled, or modified at any time without it affecting other jobs. This

would be a very good basis for a workflow that could meet the needs set out in [56] and so was one of

the core motivations for my work.

Of course I was not the only ESR within WP2, Rasmus Munk was also a part of it and also based at

KU. His research was derived from Task 2.2, to create a framework big data platform on which to host

the workflow system, whilst I took Task 2.1 as my own starting point. Meanwhile both of us worked

on Task 2.3, to integrate the results of Tasks 2.1 and 2.2 together. Whilst the cold reality of funding a

project through the EU meant that these deliverables and tasks were unmovable, they were ultimately

only a framework for my work. Following the initial investigations and background research that will

be discussed in Chapter 3.2, I aimed to answer the following core research question:

Is it feasible to create a tool for the automatic creation of dynamic scientific workflows,
available within a big data capable platform?

In order to properly answer this broad question, four core research objectives for this thesis were

derived, as shown in Table 2.1.

2.3 S U M M A RY

This work exists within the MUMMERING project, which aims to create a tool for facilitating

tomography analysis. Within that aim, my project aims to create a tool for the automatic creation of

dynamic scientific workflows, available within a big data capable platform. As will be explained in

the following chapters, such a system does not currently exist outside of this project, so this will be an

active investigation into the feasibility of such a system. This research goal was also expressed as four

core objectives, shown in Table 2.1. These objectives were inspired by the initial MUMMERING

Grant Agreement, but filtered through my own research into current workflow management systems

and their shortcomings. They will be the criteria against which this project is judged. Therefore we

will use this within this thesis to assess the completeness of the final submission.

3

B A C K G R O U N D

3.1 S C I E N T I F I C W O R K F L O W S

It is no secret that the size of scientific experiments have been increasing exponentially in recent

decades[104]. This involves both an increase in the size of data sets, and the amount of processing

required during analysis. As of 2019, CERN[13] was storing roughly 330 petabytes (PB) of data

from its experiments[14], and generating around 115 PB additionally every year[15]. While CERN

is an extreme example, the broader trend is supported by other facilities such as EuXFEL[33], who

generated 3 PB of data in 2019 and anticipate an increase to 100 PB in 2023[83]. Similarly, ESRF[31]

generated 8 PB in 2019, which is expected to increase to 50 PB by 2023[83].

Managing all of this data and processing it is no small feat. This has led to the adoption of workflows

as a concept within science. Workflows are traditionally a business concept, where certain small tasks

are linked together to achieve a greater goal. These smaller tasks will usually need to be completed

in a certain order, and can almost be repeated by rote. This gives us the traditional taxonomy of a

workflow, shown in Figure 3.1. Here we can see that a workflow exists at the top of the hierarchy and

is comprised of one or more steps. Each step may be comprised of one or more jobs, which would be

the atomic unit of a workflow.

An example of a workflow could be the hiring of new staff. This might consist of posting adverts

for a new position, waiting for responses, filtering applications, conducting interviews, and making

offers of employment. Each of those items would be a step in the larger hiring workflow. Each step

is dependently linked, and cannot be completed out of order. In contrast to the steps, jobs are often

not interdependent and can be completed in any order within the step, such as interviewing several

candidates. Obviously this workflow may differ wildly from organisation to organisation, but all

new hires will need to go through it, and any manager can automatically carry it out it correctly by

simply following the steps of the workflow. This property of automation is what has proved useful to

7

3.1 S C I E N T I F I C W O R K F L O W S 8

Workflow

Step

Job

Figure 3.1: Taxonomy of a workflow.

Data
Gathering

Data
Cleanup

Collection

VisualisationSegmentation

Analysis

Figure 3.2: A sample tomography workflow.

researchers, who can use workflows to manage the analysis of their data without having to manually

set up each individual job on each individual data file.

For instance, within tomography a researcher will usually take multiple scans of a physical object

as the starting point for their analysis. Once the scans have been taken, there are still multiple steps

that must be undertaken before the researcher can start drawing conclusions and publishing their work.

At this point, they can identify a workflow. A series of individual tasks have been dependently linked

together, as is shown in Figure 3.2.

Creating such a workflow has many benefits for a researcher. Most obviously, it is a handy way of

organising work, and formalising the process undertaken in the same manner as is done in business

workflows. It also allows for easier sharing of analysis techniques, both between data sets and between

different researchers. Constructing a workflow also allows for the identification of jobs. For instance,

in the tomography workflow cleaning each individual raw data file into a usable format would be

many jobs, one for each file. This is as each file can be cleaned independently, e.g. they have no

dependency on each other.

3.2 A N E E D F O R DY N A M I C 9

3.2 A N E E D F O R DY N A M I C

Workflows may well be a useful import from the world of business, but there is one key difference in

their use in science. Within business they are usually rigid constructs with little need for adaption.

This is not necessarily the case with a scientific workflow. Though it may be that certain predictable

analysis is sometimes carried out, a far more common characteristic of scientific workflows is that

they are exploratory in nature[23]. By this is meant that the researcher running the workflow will

not have a complete understanding of the experiment space, and so is running their workflow as an

experiment to gain more knowledge.

This exploration of the experiment space means that scientific workflows have the unique need to be

dynamic. In the tomography example it may be that a researcher decides their segmentation algorithm

needs to be replaced, or that different parameters are needed. In this case any jobs scheduled as part

of the segmentation step would need to be replaced. A researcher could also decide that the final

visualisation step is not needed, and so those jobs could be cancelled, or that they want to conduct

further analysis so more jobs are added.

This is something of a contrived example as a researcher is unlikely to have so many drastic changes

during some relatively simple tomography analysis, but many scientists are now requesting more

Human-in-the-loop (HITL) interaction[56]. This is where a human become a necessary step within the

workflow, such as by identifying significant data sets to examine further, or to continuously monitor

output to check results are valid. In this sort of setup jobs may be added, re-run, changed, or removed

at any point in the workflow.

A further need to be dynamic is error handling. As in an exploratory workflow we do not yet have a

complete understanding of the problem space, there is a much higher likelihood of errors occurring

within jobs. There could be a variety of responses here such as, the job being re-run, edited to remove

the error, re-scheduled on a different resource, or just forgotten about and ignored. No matter the

strategy undertaken to address the error, the workflow will need to be altered at runtime. This need to

accommodate change is why the word dynamic was added to the objectives in Section 2.2. Users have

made repeated requests for it and modern SWMS are expected to adopt it. As no system seemingly has

been made from the ground up to accommodate this new paradigm, it has become a central motivation

for this project.

4

R E L AT E D W O R K

We have established the importance of workflows to the scientific community, and explained their

specific need to be dynamic. We will now begin to look at some of the current tools available to

researchers for constructing their workflows. These are usually referred to as a Scientific Workflow

Management System (SWMS). Before we get onto examining some of the prominent options currently

available, it will be worth first quickly considering what it is that such a system is required to do.

4.1 R E Q U I R E M E N T S F O R S C I E N T I F I C W O R K F L O W S

Just as there are many competing projects to develop SWMS tools, there are also many different

suggestions for the formal requirements of such a system. Some of these are intended as a complete

list of requirements such as [104], [58], [56] and [81]. Others are intended as more specific requests,

outlining individual features they feel are currently missing or under served, such as [56] or [12].

The most complete requirements found were those presented by McPhillips et al in [58]. These

requirements cover the general behaviour of a SWMS, as well as many of the edge cases presented in

other papers. Though the requirements are stated as applicable to any SWMS, they are presented in

the context of the specific Kepler[1] SWMS. As Kepler is designed very much in the static paradigm

elaborated in Section 4.2, it does not have any real accounting for the need to be dynamic. Therefore,

though the work of McPhillips et al will form the basis of the requirements presented here, they have

been modified slightly and other contributions have been brought in. These modified requirements are

here presented in alphabetical order, as they are not hierarchical, and should all be adhered to.

The most complete requirements found were those presented by McPhillips et al in [58], though

they still have certain limitations. McPhillips et als requirements are stated as applicable to any

SWMS, and so cover the general behaviour of a SWMS, as well as many of the edge cases presented

in other papers. However, they are presented in the context of the specific Kepler[1] SWMS, and are

designed to demonstrate Kepler’s utility and completeness. Kepler is designed very much in the static

10

4.1 R E Q U I R E M E N T S F O R S C I E N T I F I C W O R K F L O W S 11

paradigm elaborated in Section 4.2, and so it is unsurprising that the requirements it is shown to meet

does not include any significant mention of a need to be dynamic. Regardless, the work of McPhillips

et al will form the basis of the requirements presented here, and all of their requirements have been

adopted. However, the explicit need to be dynamic, as explained in Section 3.2, has been introduced.

Several smaller points, clarifications and influences have also been brought in from [104], [56], [81],

and [12] to form a complete list of requirements. These complete requirements are here presented in

alphabetical order, as they are not hierarchical, and should all be adhered to equally for a SWMS to be

considered complete.

4.1.1 Automatic Optimisation

A SWMS should be able to take advantage of the hardware available to it without the user having to

possess a deep knowledge of concurrent and parallel computing. For instance, if multiple processing

cores are available, the SWMS should be able to automatically identify what jobs can be run in parallel

and processes them accordingly. These jobs must be able to complete without then causing concurrent

and parallel problems such as deadlock or race conditions. Though a user may be able to provide

detailed guidance on how this is done if they are sufficiently expert, it should not be required.

4.1.2 Clarity

It should be easy to create workflows using a SWMS, such that the workflow becomes self explanatory.

The tools provided to create a workflow should make as much sense as the produced workflow. Clarity

should not be confused with confinement however, and a solution here should not be to enable a clear

workflow only by so restricting the possible options. This would make for a clear, but overly rigid

system and so should be avoided.

4.1.3 Predictability

Somewhat related to clarity, it should be easy for a user to be able to anticipate what the output of

their workflow will be, before any processing has started. This does not mean that we will know

what the outcome itself is, only that they can predict what outcomes will be reached. It should also

be clear what data and processing is needed at each stage so that collaborators working on the same

workflow can easily identify how their work should link together. It is worth remarking that part of the

need for dynamic systems is that sometimes workflows are inherently unpredictable in their outcome.

4.1 R E Q U I R E M E N T S F O R S C I E N T I F I C W O R K F L O W S 12

Nevertheless, the unpredictable or non-deterministic elements should be contained in a predictable

manner. For example, it may be that a researcher is running a workflow on a large set of inputs and

does not know which inputs are valid. It is unpredictable which jobs for which input will complete,

but it is still predictable that jobs will run on each data set and their contents will determine their

success or not, rather than the alignment of the sun.

4.1.4 Recordability

A SWMS should provide a record of a workflow once it has run. The record should also include any

changes made to the workflow at runtime, and what caused those changes. Additional details such

as a record of what hardware was used to run the processing, may also be of use. This is especially

true due to the requirement for Automatic Optimisation, which can mean that parallel processing is

commonly used. This can muddy simple reporting such as logs, with different processes logging

interspersed in a manner that can be hard to parse for those not familiar with parallel processing. For

this reason any records provided should be presented in a manner that users can easily understand.

4.1.5 Reportability

The record of a workflow should allow users to check the scientific validity of their results. For

instance, the record should clearly show what processing has taken place on what data, and produced

what output from what input. As part of any good science is being able to show where your results

came from, and how they were calculated, the SWMS should support this fully. This may also mean

providing some form of check on the data through mechanisms such as checksums, to provide users

with a way of verifying if data has been modified since the workflow has been completed.

4.1.6 Responsiveness

A SWMS should respond accordingly to changes within its state, even as the workflow continues. This

can cover a fully dynamic system such as the one presented in this thesis, or simple error handling

within a more traditional workflow system. Where such responses are made, they should be made

correctly so as change the appropriate part of the workflow without affecting irrelevant parts. For

instance, if multiple jobs are run in parallel and one fails, that failed job should be handled without

necessarily cancelling or modifying all parallel jobs. The SWMS should also be able to alert a user to

important developments such as processing completing or errors being encountered. It is especially

4.2 C U R R E N T W O R K F L O W M A N AG E M E N T T O O L S 13

important as scientific workflows can run for days or more, and so simply having a UI that requires

constant monitoring is not sufficient. The ability to send texts, emails or some other remote notification

is therefore required.

4.1.7 Reusability

It should be straightforward to use a workflow repeatedly on related problems. This can mean the

ability to run it on different input data, or on a different hardware setup. It can also mean that it should

be easy to construct a new workflow from an old one, without having to start from scratch each time.

Individual elements should be easy to add, modify and remove between runs, or during runs where

appropriate.

4.1.8 Scientific

Somewhat obviously, though often overlooked in formal requirements is that a good SWMS should

support science. This means that it should be possible for researchers to be able to process their data

using the SWMS, using data formats, processing techniques and workflow structures they are familiar

with. However, in contrast to this it should also take some steps to help ensure good practices in

data formatting, processing and workflow structuring. For instance, it should make sure to support

commonly used scientific formats such as HDF5[42].

4.1.9 Well-formedness

The SWMS should make it easy to create a valid workflow. That is, that as well as being clear, its

structure should be sound and avoid common concurrent and distributed problems such as deadlock or

race conditions. This structure should also be clear, so that it is easy for a user to see what steps flow

into which other steps. This relates closely to requirements for clarity and predictability. Problems

within the workflow should also be highlighted, or be easily identifiable.

4.2 C U R R E N T W O R K F L O W M A N AG E M E N T T O O L S

Unsurprisingly, a large number of tools for constructing and managing scientific workflows already

exist. Though many dedicated SWMSs exist, a number of ad-hoc solutions are also commonly used

4.2 C U R R E N T W O R K F L O W M A N AG E M E N T T O O L S 14

and will also be briefly examined. These workflows are not presented in any particular order, other

than to group similarly constructed systems together.

One commonly used system is Apache Airflow[41]. This is a very mature system, with a complex

feature set that can be used for either relatively simple workflows, all the way up to hugely complex

structures. Though it is not designed primarily to work with scientific problems, it is designed to

process large data sets and so is generally appropriate. Apache Airflow is typical of many SWMSs, in

that it relies on a user constructing their workflow through the use of one or more Directed Acyclic

Graphs (DAGs). A DAG is a type of linked graph, in which nodes are directionally connected such

that a loop is never formed. Thus, a DAG is an easy analogue for a workflow, with a defined start and

end, and with the dependencies between the different steps trivial to identify. The DAGs themselves

are constructed by the user either through a web interface, or programatically. More than one DAG

may be provided as individual steps within the workflow may be smaller workflows themselves.

Apache Airflow is also typical of Scientific Workflow Management Systems (SWMSs), in that

it uses a data-flow model. This is a method of structuring a workflow and is contrasted with a

control-flow model. In a control-flow model, data is kept in place, and control of that data is passed

to a series of processes. These processes may make decisions to alter the flow. It is possible that

processes do not even modify the data before passing on control. This is analogous to the flow of

control within a linear script. In a data-flow model, a pipeline of processing is constructed and data is

passed from process to process. Each process will have defined inputs and outputs, and should always

perform some modification on the input data. The data-flow model is a very good fit for a DAG based

system such as Apache Airflow, and is in fact used by all of the systems talked about in this section.

A number of GUI interfaces are provided by Apache Airflow so that a user can see the overall

structure of the workflow and verify how individual steps link together. A number of reports can

be generated both before and after the workflow has run, showing how the processing progressed

and to get real-time feedback about the status of the workflow. Workflow computation takes place

on a number of workers, with a separate scheduler identifying the constituent jobs of the workflow.

The overall structure of the system is shown in Figure 4.1. This system is designed to be used in

conjunction with a web server, and can be easily integrated with applications such as Kubernetes[51]

for the scheduling of jobs on remote resources. Despite this, it is possible to deploy an Apache Airflow

workflow on a local machine, with individual processes acting as the server, scheduler and workers.

The ability of Apache Airflow to integrate with remote processing, relatively easy to use workflow

construction, and wide ranging reporting and visualisation make it one of the best available systems

for workflows operating at scale. It is also easy to see how Apache Airflow meets the requirements set

out in Section 4.1, especially regarding the ease-of-use requirements.

4.2 C U R R E N T W O R K F L O W M A N AG E M E N T T O O L S 15

Figure 4.1: Overview of the basic Apache Airflow architecture. This diagram was taken from
https://airflow.apache.org/docs/apache-airflow/stable/start.html.

Another commonly used system, and one more specifically targeted at scientists is Kepler[1].

Outwardly, Kepler operates in a similar manner to Apache Airflow, though a user in Kepler will

primarily construct their DAGs using a drag-and-drop GUI. This makes for a very intuitive way

of constructing workflows through the use of actors. An actor is a processing component, used to

represent a step in a workflow. These can be user defined though over 350 come packaged with Kepler

as a quick-start aide. An actor can be placed into the GUI, at which point connections can be made

to other actors, denoting a data transfer. As these actors are placed and connected a workflow DAG

begins to form. Much like Apache Airflow, processing can be scheduled either locally, or remotely

using Kepler’s integration with Globus[37], or other available grid technologies.

An important feature of Kepler is that its actors can be workflows themselves, allowing for the

nesting of workflows. This means that extremely complex workflows can very easily be broken

down into digestible, re-usable chunks for easy understanding and re-use. Collaboration is another

key feature of Kepler, which also provides a component repository for easy publishing and sharing

of workflows. Though Kepler’s GUI provides an easy way to construct and view the workflow, it

provides far less reporting than is available in Apache Airflow.

Although many workflow systems, such as Keplar allow for sub-workflows, few have specific

accommodation for sub-workflows not written in the same system as themselves. An exception to this

is the ambiguously named Hybrid Workflows system built on COMPS[6], presented in [102] and [80].

This presents two types of workflow, in-situ and task-based. In-situ workflows are run within a single

resource. This resource may be anything up to a supercomputer, but the point is that external data

transfer does not occur within the workflow. Task-based workflows however are large, task parallel

4.2 C U R R E N T W O R K F L O W M A N AG E M E N T T O O L S 16

batches of processing that may take place over all manner of remote resources, or be processed locally.

Hybrid Workflows uses Decaf[29] to run in-situ workflows on performance systems, in their case

a supercomputer. These in-situ workflows are managed by PyCOMPS[87], which runs each Decaf

workflow as a step in a larger task-based workflow. This allows for a large chain of analysis, with

individual steps tailored to their specific hardware needs, and allows users to exploit the benefits of

both types of workflow.

Pegasus[22] is another research focused workflow system, with a strong feature set and robust

implementation. It is also a DAG based system in which a user can programmatically define processing

tasks. Pegasus will then automatically identify dependencies between tasks and construct a DAG

automatically. As in other systems, tasks may be individual workflows allowing for very complex

workflows to be formed. There is slightly more emphasis in Pegasus on error recovery and fault-

tolerance as more reporting is provided to help debug and manage errors. Running jobs will emit

workflow events which can form the basis of custom monitoring systems, showing that Pegasus does

the most to meet the requirement for responsiveness of the systems presented so far.

As with Apache Airflow and Kepler, Pegasus is designed as an end to end workflow management

tool. It will manage your data from the very beginning of the workflow, and will manage the sending of

any required data to resources, as well as the retrieval of any output data. These resources may be local

to a user machine, or more commonly could be remote resources such as cloud or grid infrastructure.

Other similar systems include but are not limited to Taverna[72], Dask[82], DagOn*[64], Askalon[35],

DVega[89], and Condor[17]. These are all reasonably similar to those discussed already, and all are

DAG based systems which allow for complex interactions and dependencies between jobs. Most are

designed as complete workflow management solutions. Where they tend to differ most is in the level

of reporting and feedback provided to users, though these differences often seem to be more down to

UI design rather than as a function of radically different underlying systems.

One final workflow system that is worth considering is WED-flows[36]. WED-flows is interesting

as it is an event-driven workflow system, that is perhaps the most similar example to the MEOW

system presented in this thesis. In WED-flows, data is processed according to user defined trigger

conditions. From one of these triggers a series of processing activities are started, in a control-flow

fashion. The descriptions of WED-flows[36] are unclear on whether a DAG is specifically used or

not in the creation and scheduling of processing tasks. It would certainly be a task appropriate for

a DAG, and there is no more dynamic scheduling within those processing tasks than in any other

SWMS. These sub-workflows themselves are not event-driven, and it is only the scheduling of the

entire workflow itself that is undertaken in response to an event. For this reason we can conclude

4.3 C O M M O N LY U S E D N O N - W O R K F L O W T O O L S 17

Figure 4.2: Overview of the basic Slurm architecture. This diagram was taken from
https://slurm.schedmd.com/overview.html.

that although outwardly similar, WED-flows in fact share more characteristics with the previously

discussed workflow systems than it does with MEOW.

4.3 C O M M O N LY U S E D N O N - W O R K F L O W T O O L S

As well as SWMS systems, there are also a number of smaller utilities used by researchers to automate

their analysis to a lesser degree. Many of these smaller systems can be grouped together as workload

managers, as they can be used to schedule large amounts of jobs on large computation systems such as

grids or cloud resources. Examples of these include Slurm[103], WLM[97], Torque[90], and OGE[74].

As Slurm is broadly representative of these systems and we will be using it for benchmarking later, we

will only consider it in further detail. Slurm consists of a variety of daemon processes, with a single

main controller referred to as slurmctld as shown in Figure 4.2. Users can contact this controller

daemon through command line tools to add jobs to the queue. Meanwhile, additional compute

daemons can be started on whatever resource are available. These will also contact slurmctld and

request one or more jobs from the queue. A large variety of optional extras and overheads can be

provided to this system such as MPI support[88], job accounting or database integration.

What Slurm does not do is support complex workflow structures such as a DAG. For this reason it

is not counted as a SWMS, though is commonly used by researchers to manage the execution of large

amount of processing data on their resources. It is also commonly used within the already described

4.4 DAG S , A N D A F A L S E D I C H OT O M Y 18

A B

D

C

E

Figure 4.3: An example DAG.

SWMS systems as a way of managing their own execution. Other examples of these systems include

Globus[37], Kubernetes[51], UNICORE[9], Decaf[29], parsl[5], cwltool[20], MapReduce[21], as

well as running manually constructed workflows in custom scripts. Obviously this is quite a range of

tools that are unified more by not being a SWMS rather than by sharing any specific quality. Unlike

the dedicated workflow tools previously discussed these will usually, though not always, lack any sort

of GUI and provenance reporting. They also often provide little inbuilt error handling, or automatic

data management. Nevertheless, they are often used by researchers to conduct large scale analysis

that could be automated with a workflow.

4.4 DAG S , A N D A F A L S E D I C H OT O M Y

Throughout all this discussion of the available workflow systems, DAGs have been mentioned time

and again. These were briefly explained, but are worthy of a more extensive examination. A DAG is a

type of graph containing one or more nodes. As in other graphs, these nodes can be linked via edges.

In a DAG, these edges are directed, in that the specify a single direction. So for instance in Figure 4.3,

we can see that the edges have arrows showing a clear direction from node to node. This gives each

node a hierarchy, and creates dependencies between the nodes. For example, in Figure 4.3 we can see

that node A logically must come first as it alone has no dependencies, and that node E must come last

as it depends directly or indirectly on all other nodes.

Hopefully, it should be apparent how a DAG is a useful tool for managing workflows, as if a series

of steps can be mapped to nodes it becomes trivial to identify dependencies and data links between

jobs. A DAG used in this way is constructed before any processing has taken place, as part of the job

identification and scheduling stage. The limitation of this is that the processing then needs to keep to

this DAG structure, and jobs cannot be added or removed without altering the DAG, which cannot be

done without restarting the workflow. For this reason, this method of workflow construction will be

4.4 DAG S , A N D A F A L S E D I C H OT O M Y 19

Controller

Resources

JobJobJob

DAG

Step Step Step

Job JobJob

User
definitions

Results

Figure 4.4: A top-down workflow structure. Not shown is any data transfer or dependency between jobs.

referred to throughout this paper as static. This reflects their structure being entirely defined ahead of

time, with no scope for change.

Formally, this approach could also be referred to as a top-down approach as a central workflow

controller is determining the entire structure ahead of time and dictating it to individual jobs, as is

shown in Figure 4.4. Here we can see that a user submits their workflow definitions to the system,

either via a DAG, or something that from which a DAG can be derived. In either case the workflow

controller will use this DAG to derive the steps. These steps in turn become the basis for identifying

jobs, which are scheduled on resources. No data transfer or dependency between jobs has been shown

in Figure 4.4, but at some point the final job will complete and any output will become part of the

workflow results. The DAG will also form part of the results, independent of any job processing, as it

is a very informative and crucial part of the workflow construction.

This static nature conflicts with the stated desire for scientific workflows to be dynamic outlined

in 3.2. Another annoying feature of a DAG is that it cannot loop. Observe an example in Figure 4.5.

This shows a loop of dependencies and so cannot by considered a DAG, and would instead be known

as a Cyclic Graph. Semantically, what this means is that if a workflow system were to be based on a

DAG, then it will always be defined ahead of time, must have a defined beginning and end, and can

only progress for a finite amount of time. It must also never repeat a step or go backwards.

As a final note, this contrast between static and dynamic is not intended as a statement per-se about

the capabilities of either approach. As will be seen below, various static workflows are capable of

being dynamic to some degree, and it is similarly possible to construct a static, unchanging workflow

in a dynamic system. These terms have merely been adopted to demonstrate the base assumptions and

4.5 T H E L I M I T S O F S TAT I C , A N D T H E P O S S I B I L I T I E S O F DY N A M I C 20

A B

E

C

D

Figure 4.5: An illegal DAG. Note that the loop displayed here means this is not a DAG, and would instead be a
Cycle Graph.

approaches used in the workflow construction. For this reason I have noted that it is a false dichotomy,

but a useful one nonetheless.

4.5 T H E L I M I T S O F S TAT I C , A N D T H E P O S S I B I L I T I E S O F DY N A M I C

The semantic limitations of a DAG laid out in Section 4.4 are obviously ridiculously strict, and were a

SWMSs to implement all of them as so written, scientific workflows would be extremely limited and

definitionally incapable of meeting either the responsiveness or scientific requirements of a SWMSs,

as outlined in Section 4.1. This is due to the exploratory nature of scientific workflows and their

need to be dynamic. However, the use of DAGs does allow for the answering of all of the other

requirements. Though individual systems may focus on some over others, as a field all requirements

have been met in principle, even if debate is still be ongoing as to how well each individual system

does so. The only major hole is this need to be dynamic and so we could conclude that we need a new

solution to meet this need.

However, before we do so it is worth considering that although all examined SWMSs use a DAG,

they do not always keep to all of the strict semantic restrictions. For instance, a common feature is

for some degree of error handling within workflows at runtime. As an example, DVega[89] allows

for swapping in and out of jobs in response to errors. This tends to be of fairly limited use to an

exploratory workflow however as errors may be unpredictable.

Many workflows also make frequent use of loops or continuous processes. This is often represented

within the DAG by simply unrolling the loop, so that if a process is to run 10 times it is simply

represented by 10 single processes. Such an approach inherently means that only loops of determinate

length can be scheduled. There are a few examples of seemingly infinite workflows such as in the

Wifire[2] system. This is something of a hybrid system, with finite workflows repeatedly being

4.5 T H E L I M I T S O F S TAT I C , A N D T H E P O S S I B I L I T I E S O F DY N A M I C 21

scheduled and output. These can then be used as the input for the next. In a manner similar to

WED-flows, Wifire schedules smaller, static workflows repeatedly. Where WED-flows uses an event

driven system to schedule this analysis, Wifire uses a variety of systems such as events, timers and

manual input to schedule their analysis. This can give the appearance of infinite loops of workflow

processing, but it is loops of static systems and has only solved this problem through a large, bespoke

manager above the underlying workflow management.

As well as this, a common feature within existing SWMSs is the ability to branch or make decisions.

This would be a case where depending on if condition A is met or not, either processing B or processing

C will be scheduled. Often in the larger systems this is an explicit feature, such as Apache Airflow

which provides a BranchPythonOperator specifically to enable this. Even in systems that do

not offer branches as an option, such as cwltool, it is not hard to create similar functionality through

cleverly made jobs.

What the prevalence of looping and branching show is that even those SWMSs that explicitly state

they use DAGs as the basis of their system, are not bound by the limitations of the DAG. This is

as presumably to do so would be massively limiting, and not allow a SWMS to properly address

the rest of the requirements set out in Section 4.1. The two relevant requirements here are to be

Responsive(Section 4.1.6) and Scientific(Section 4.1.8) which together express a need to be dynamic.

This need is relatively new within workflows and yet we have seen that the current crop of tools have

managed to implement some of the key aspects, such as the ability to handle errors at runtime, and

create looped or branching workflow structures.

These accommodations to dynamic structuring are by no means standard features however, with

many systems not implementing them at all, and no system going further than the three areas of error

handling, loops or branching. For example, no current SWMS has the means to properly assemble

a workflow at runtime in response to some ongoing events or analysis. No current system will

automatically reschedule jobs if the input data is updated at a later date. No current system truly

accommodates the ongoing structure of a live analysis system. There is no doubt that there exist

cunning ways around all of these problems with the use of existing SWMS, along with various tools

and tricks such as scripting, cron jobs[19], careful user management or other such solutions. We will

not get into any of these as solution will each be as esoteric as they are inherently bespoke.

We can conclude from this that the provision of dynamic structures is a gap in the existing crop of

SWMSs. Though it is partially met, the use of DAGs and their inherently static nature means that

any provision of dynamic workflow structures is very much an after-thought within a SWMS, applied

as a patch to a system that would rather operate in a constant, unchanging manner. An alternative

to this model would be a dynamic model, where flux is accepted as a fundamental characteristic of

4.5 T H E L I M I T S O F S TAT I C , A N D T H E P O S S I B I L I T I E S O F DY N A M I C 22

a scientific workflow. The next chapter will outline MEOW, which demonstrates such a dynamic

workflow structure. It will allow for the need to be dynamic to be fully met, allowing for users to

create all manner of weird and wonderful structures in their workflows. Users will be able from the

ground up to create systems that run forever, assembling a workflow at runtime, and rescheduling

analysis automatically. None of these features are inherently supported by existing systems. As well

as this, the accommodation of branching and looping structures will be inherently supported from the

ground up, rather than being an inconvenient fit to a rigid, linear model. This is expressed in the core

research question of this thesis, is it feasible to create a tool for the automatic creation of dynamic

scientific workflows (Section 2.2). By then end of this thesis we will see that indeed it is feasible to

do so, through the use of an event driven model the responds to changes in both data files and its own

internal state. This contrasts strongly with existing SWMSs and so we can say that the state of the art

has been extended, through such a dynamic system.

5

D Y N A M I C W O R K F L O W S

In Section 3.2 we established that researchers require dynamic workflow management tools to assist

in their research. Then, in Section 4.5 we saw that the existing SWMSs are insufficient in this area, it

is time to set out a possible alternative. This alternative will reject the use of static DAGs as a starting

point, and instead create a new structure designed from the ground up to be dynamic. This is as DAGs

are inherently static, and so would make an odd choice as the foundation of what is supposed to be

a completely dynamic system. The hope is that this will allow researchers to create fully dynamic

systems for exploring experiment spaces.

5.1 W O R K F L O W S W I T H O U T DAG S

As identified in Section 4, a SWMS has an inherent need to be responsive to ongoing workflows, as

well as an increasing need to be adapted at runtime by users. Although some of the more mature

systems have some capacity for dynamic structuring, this is often a later feature patched onto an

inherently static model. A different approach is needed to design a system that fully enables dynamic

analysis in all its forms, with steps, jobs and data being added, removed, or modified at runtime. These

are all use cases in the need to be dynamic as outlined in Section 3.2, and so we need a base that

accommodate such fundamental changes at runtime. Here, an event based system for constructing

emergent workflows is proposed as one such solution.

This new solution will use a bottom-up approach as the foundation for its design. Rather than a

singular controller identifying, scheduling and assigning all workflow jobs, this responsibility should

be done in isolation. By this it is meant that the system does not actively construct an entire workflow

ahead of time, merely that it identifies individual jobs, as is shown in Figure 5.1. In this Figure we

can see that as before, a user provides some definitions. These are not reduced to a DAG but, and are

instead used as the basis for individual job scheduling. Once jobs have completed, they may be linked

together into steps. These steps, along with any output from the jobs can then form the results of the

23

5.1 W O R K F L O W S W I T H O U T DAG S 24

Controller

Resources

JobJobJob

Trigger

Step Step Step

Job JobJob

User
definitions

Results

Trigger Trigger

DAG

Figure 5.1: A bottom-up workflow structure.

emergent workflow. The word emergent has been highlighted as it is central to this new approach, and

is fundamental to understanding it. To re-iterate, in a bottom-up workflow system, a user does not

actually construct a workflow directly, they merely create the conditions such that individual jobs can

be scheduled.

A core difficulty in a bottom-up system is how to identify and start individual jobs according to a

set of steps without a DAG. Recall that one of the key benefits of a DAG is that it becomes extremely

easy to identify and schedule jobs in a clear, dependent order. This will not be possible in a bottom-up

approach as the jobs are created in isolation. Within a static system is makes sense that the inception

of a new workflow is user input, either by running a script or pressing a button in a GUI. This is as the

DAG gives the workflow all the necessary knowledge to schedule the jobs in order.

In contrast to this, in a bottom-up approach the controller will only be able to schedule individual

jobs on an ongoing basis, as is shown in Figure 5.1. A good way of doing this would be to use events,

as demonstrated by WED-flows in [36]. WED-flows uses a small set of trigger conditions, under

which static workflow are processed. We can use a similar concept, only rather than scheduling small,

static workflows, only individual jobs will be scheduled. Events are a good option here as they can be

continuously responded to in real-time, with no prior determination or necessary knowledge of what

order they will occur in. This is analogous to event handling in more traditional programming, were

code will wait for some trigger either from a user or some underlying process. Events also have the

advantage of not needing continuous user monitoring or input, as would be necessary if a user was to

manually schedule individual jobs one after another in response to ongoing developments.

5.1 W O R K F L O W S W I T H O U T DAG S 25

Resources

Monitor

Storage

writes output to

schedules
jobs on

events are
seen by

Figure 5.2: General design of an event based scientific analysis system.

To facilitate the change from a centrally controlled workflow, to an event-based system, the

workflow system itself has to function as an event monitor. This means that the system will not have

an easily defined beginning and end, as would be the case in a top-down workflow. In an event based

system, we have no way of knowing when events will occur, and so the system has to run continuously.

Jobs will produce output, which will be written back into the monitored system. This may trigger

further events and so the processing continues. Note that the actual events have not been defined

here, and could be anything. Examples include file events such as files being created or modified, or

streaming events such as data arriving across a network. They could be GUI events such as button

presses or hardware events such as switches being flipped. In each case some software monitor could

listen for these events, and respond to them by scheduling some appropriate processing. A high level

view of such a system is shown in Figure 5.2.

This is a simple structure but means that we can’t now use any of the benefits of a DAG, namely

the easy identification of a complete workflow. As will be discussed in the following chapters and

into Part ii, we have not thrown the baby out with the bathwater, and it will still be possible to meet

the requirements set out in Section 4.1. It will more difficult to meet some of these than it would

have been with a DAG, as we will see. However, this shift is still justified as this prior knowledge

and predictability is exactly what we may need to fight against to implement a truly dynamic system.

By throwing out all of the utility of a DAG it is hoped not that we have needlessly thrown away an

extremely useful tool. Instead it may be that we have escaped a potential progress trap, where the

utility of DAGs in solving certain problems has meant we cannot solve others that are just as valid.

5.2 M E O W : M O N I T O R I N G , N OT C O N T RO L L I N G 26

5.2 M E O W : M O N I T O R I N G , N OT C O N T RO L L I N G

An architecture such as that presented in Figure 5.2 would be fundamentally different to those

discussed in Section 4.2. As a result, before we can implement such an event based system, we need

to define a framework that such an implementation can be built on. This framework has been given

the straightforward name of Managing Event Oriented Workflows, referred to simply as MEOW. It

would allow users the means to match events to processing code. These matches would be managed

by a MEOW system and from them, jobs would be scheduled.

To do this we will adopt two core concepts, Patterns and Recipes. These are at the very heart of

how this system is designed and so will now be defined. These can been created as part of MEOW as

a way of describing what we need to do within an event based scheduling system. We need to be able

to flag what events should be triggers for some job scheduling, and we need to define what processing

will actually take place in those jobs. These could both be done at the same time, but intuitively it

was felt that job code would often be long, complex, and probably shared across a variety of job.

Therefore, having it as a separate, shareable object would be of use.

5.2.1 Recipes: Defining what work is scheduled

Within MEOW, a Recipe is quite simply some code that will be used to define job processing. It could

be an algorithm, routine or any other set of instructions used to express scientific analysis. In the

context of tomography this might be an segmentation algorithm, or 3D reconstruction script. Any

single, sequential code file could in theory be a MEOW Recipe. As a final clarification, this does

not mean that a Recipe could not start scheduling threads or other non-sequential elements, or that it

could not utilise extensions such as libraries. It only means that at the highest level, the analysis needs

to expressed by a single code file, which we will refer to as a Recipe.

5.2.2 Patterns: Defining when to schedule

Whilst a Recipe defines job processing, a Pattern defines the conditions under which a job will be

scheduled, and the necessary inputs given to any jobs that are scheduled as a result of said Pattern.

This means that a Pattern defines the selection criteria for what events will lead to jobs, and which

ones can be ignored. How this is done is a matter of implementation, and not is not tied to this

conceptual definition of a Pattern. However, in the implementations that will be presented in the

coming chapters we will be using file events as the basis for our system. These are events broadcast

5.2 M E O W : M O N I T O R I N G , N OT C O N T RO L L I N G 27

1 <meow>::={<pattern>}
2 <pattern>::=<event> <recipe> <input> <output> <age> <variables>
3 <event>::=“some event identifier”
4 <recipe>::=“some/recipe.file”
5 <input>::=<directory> | <file>
6 <output>::=<directory> | <file>
7 <directory>::=“some/directory/location”
8 <file>::=“some/file.path” | “some/file.path” <file>
9 <age>::=“old” | “new” | “all”
10 <variables>::={<variable>}
11 <variable>::=“some variable = some value”

Table 5.1: Initial sketch of MEOW design in EBNF.

by the operating system when a file is created, modified, moved or deleted. In this case the role of the

Pattern is to identify which file paths should act as triggers, so if any files events occur at that path,

some processing is scheduled. As well as the scheduling conditions, a Pattern also defines what goes

into the scheduled job. Which Recipe to use is therefore included within a Pattern, along with any

variables to be passed to Recipe to create some distinct and meaningful output.

5.2.3 First Forays in MEOW

In order to schedule a job from an event, a user needs to be able to identify events to MEOW, identify

processing code to MEOW, and to link them together. In general workflow terms, each of these links

would represent a step. To help plan out the initial design a design sketch was made in Extended

Bachus-Naur Form (EBNF)[96]. The produced notation is available in Table 5.1. As this sketch

later needed to be revised, it will not be covered in extensive detail, with the same applying to the

implementation details in the following section.

The initial sketch presented in Table 5.1, is somewhat abridged EBNF, as it lacks proper definitions

for an event, recipe, directory, file, and variable. We can see that two key concepts in MEOW

have already been identified, the Pattern and the Recipe. These will remain core to Managing Event

Oriented Workflows (MEOW) throughout, though will be expressed differently going forward. At their

most basic, a Recipe is the processing code used in a job, whilst the Pattern is a construct for matching

events to Recipes thereby scheduling jobs. A user defines several Patterns, each of which contains a

number of attributes. Definitions in the sketch that contain strings, such as “some event identifier”

in definition 3, are meant to denote implementation specific items, rather than a specific string to be

matched. For instance, based on what sort of events an implementation of MEOW is built on, the

manner of identifying matching events may differ and so is left ambiguous within this sketch.

5.2 M E O W : M O N I T O R I N G , N OT C O N T RO L L I N G 28

Name: my_recipe_example

some python code

Name: my_pattern_example

Recipe: my_recipe_example

Event: event_description

Figure 5.3: Initial MEOW mockup. There are two new cell types, a Recipe cell in green, and a Pattern cell in
red.

5.2.4 Attempts at an Implementation

With this rough plan as a guide, thoughts were turned to how to start implementing MEOW. It was

decided that file events would be a potential candidate for the system. File events include files being

created, modified, moved, and deleted. These are intuitive events that can easily be understood by a

user, making the system easier to comprehend and plan for, as per the requirements in Section 4.1. File

events would also match well to a dynamic system for scientific analysis, as analysis is fundamentally

going to be run on input data. Users are going to require new jobs when they either get new data

(create a new data file) or update their data (modify a data file). They may also expect new jobs when

they create or modify analysis algorithms but these can also be saved as files and responded to in the

same way as input data. Therefore all of the relevant changes that might need to be monitored can be

expressed through file events. For these reasons, event identification was whittled down to paths. This

made matching somewhat easy as users could define a REGular EXpression (regex), and any events

that occurred at a path that matched that regex would result in a job being scheduled.

Having settled on file events, a first attempt at implementation was made. This design was later

discarded, with later implementations borrowing little from it, though is worth quickly going through

as it illustrates how the later design was derived. To provide both a platform for implementation,

as well as a familiar interface, it was decided to use Jupyter Notebooks[48]. These are already an

extremely common form of writing scientific analysis[95]. Jupyter Notebooks are JSON documents

that are organised into cells. These cells can express code, output from running said code, or

accompanying text and images. The code itself can be written in many different languages, though

5.2 M E O W : M O N I T O R I N G , N OT C O N T RO L L I N G 29

@recipe
def my_first_recipe(a, b):

c = a + b
return c

@pattern
name = my_first_pattern
recipe = my_first_recipe
event = event_description

Figure 5.4: Secondary MEOW mockup. Here there are two new decorators inserted into code cells, with a
Recipe decorator in the green cell, and a Pattern decorator in the red cell.

the mostly commonly used kernels are Python 3, Python 2 or R. The JupyterLab interface provides a

web based interface for creating Jupyter Notebooks, and can be extended with relative ease through

the use of extensions. Therefore, it was decided that the creation of a JupyterLab extension could

expand the utility provided by Jupyter Notebook to allow for the creation of MEOW constructs. This

would be by expanding the types of cells to include specific cells for Patterns and Recipes. Here a

recipe cell would contain code in the same manner as a regular code cell, but contain an additional

field for a name so that a Pattern could refer to it. Meanwhile a pattern cell would contain a Pattern

definition according to the grammar proposed in Table 5.1. A mockup of what this might look like is

presented in Figure 5.3. Aside being astoundingly ugly, this mockup is not fully complete, as many of

the Pattern attributes from Table 5.1 have not been included.

However, creating different cell types would be a fundamental change to the operation of Jupyter

Notebooks and would require far more than a simple JupyterLab extension. This would firstly not

be a insignificant amount of work to achieve, but would also mean the Notebooks themselves would

not be usable with non-MEOW systems, as they would contain custom cell types that would make

them incompatible with the standard Jupyter Notebooks format. For these reasons, this idea was

abandoned. A quick followup was created, that did not need a JupyterLab extension, but instead

would use decorators within code cells to flag them as either Patterns or Recipes. The entire Notebook

would then be read by the MEOW system and the relevant constructs extracted. Another mockup of

this design is shown in Figure 5.4.

Again, this idea was abandoned in fairly short order as it would somewhat alter the use of a Jupyter

Notebook. Jupyter Notebooks are intended as easily shared platforms for running code and viewing

5.2 M E O W : M O N I T O R I N G , N OT C O N T RO L L I N G 30

their output. They use a standard format and most commonly created, displayed, edited and run

through JupyterLab. They are so common mainly as a function of their utility, and ease of sharing.

Any decrease to that shareability would have to overwhelmingly increase the utility to be of value.

Introducing decorators on cells would only be correctly interpreted by a MEOW based system, and

would potentially break any non-MEOW based system. Therefore we would have massively decreased

the shareability. Whilst I am a great proponent of MEOW, I do not think the added utility of its use is

enough to cast aside the Jupyter Notebooks ability to be shared so easily, and so it was once again

back to the drawing board.

During a conversation with several researchers at the MAX IV Laboratory, Zdenek Matej suggested

that rather than individual code cells, Recipes would be far better suited to being whole Jupyter

Notebook files. This is as researchers will already have most of their analysis expressed in Jupyter

Notebooks, and so being able to use those directly would significantly decrease the barrier to entry.

Entire files rather than just cells would also be more fitting, as most scientific analysis will require

more code than is often written in a single cell. Recall also that in the definition given in Section 5.2.1,

Recipes are just collection of code. This could just as easily be an entire Jupyter Notebook as a single

cell. Because of the previous misgivings about using decorators breaking the shareability of Jupyter

Notebooks, and with the user request for Jupyter Notebooks-as-Recipes, a third and final approach to

implementing MEOW was created.

6

M E O W

Having gone through two significant design iterations, a third approach was finally settled on for

MEOW. This approach would implement a Python 3 library that could be added to a Jupyter Notebook

kernel, providing necessary MEOW constructs for creating Patterns and Recipes.

6.1 A F R A M E W O R K F O R E M E R G E N T W O R K F L O W S

It may seem counter-intuitive to go back a step now and talk about the theoretical underpinning of

MEOW at this point, when we are just about to get into the meat of the implementation. However,

over the last two iterations of the MEOW design, it was still relatively up in air as to how Patterns and

Recipes would actually interact. Although some conceptual definitions for both were presented in

Sections 5.2.1 and 5.2.1, we need to start defining how they will be implemented. As a starting point,

the hierarchy of a MEOW system is shown in Figure 6.1.

From this we can see that a MEOW system is still comprised of Patterns and Recipes, and that

they are still separate constructs. Recall from the conceptual definitions in sections 5.2.1 and 5.2.2

that Recipes define what code to schedule, whilst Patterns define when to schedule it. However, as a

Pattern can refer to a Recipe that does not exist, a new construct has also been introduced, the Rule. A

Rule will be created any time a Pattern exists and refers to a Recipe that also exists, and will take its

attributes from both the Pattern and Recipe used to create it. Any events will then be compared against

MEOW

Rules

Patterns Recipes

Figure 6.1: MEOW hierarchy.

31

6.2 F I N A L R E Q U I R E M E N T S 32

all existing Rules with any matches leading to the scheduling of the defined processing. Logically,

this is not completely necessary as Patterns on their own can be used to filter which events should

lead to processing. However, the filtering of events is expected to be a computationally expensive

operation and so we only want to check filters that we know can be used to actually schedule jobs.

By this we mean that an associated Recipe exists, and so we have this additional construct where we

know if any event matches occur against a Rule, by necessity, a job can be scheduled.

Together, Patterns, Recipes and Rules form the basis of MEOW, as was shown in Figure 6.1. Within

an implementation, the basic premise is still that users will only define Patterns and Recipes. Recipes

are users analysis code, and should be the same algorithms that they already been work with. Patterns

define what Recipes are used to create jobs according to what data files. When defined correctly these

combine to form a Rule. Meanwhile, the MEOW system will listen to a file system for any events.

Any events in the monitored system are compared against the current list of Rules. If an event matches

one of the Rules, then one or more jobs are scheduled. The composition of these job is determined by

the Pattern and Recipe used to create the Rule. These jobs will be processed and may produce output

that may in turn trigger further job scheduling. In this way a chain of scientific analysis is formed

without the use of a static DAG. For example, if a user had some segmentation algorithm and then

needed to apply it to some raw data, they would put the segmentation algorithm into a Recipe. They

would then construct a Pattern which would match to the storage locations of all the data files. The

system would then automatically schedule a job for each data file using the segmentation algorithm.

6.2 F I N A L R E Q U I R E M E N T S

To achieve such a system, specific requirements were derived from our original Pattern and Recipe

conceptual definitions, as well as from the requirements for a SWMS outlined in Section 4.1. Most

importantly was the requirement to for Responsiveness. This meant that the system had to be able to

not just respond to events by scheduling new processing, but that it should respond to internal state

events. For instance, if a Pattern is deleted by a user then we should cancel any scheduled jobs that

have not completed as we can assume they are no longer needed. Equally, if a Pattern or Recipe is

ever modified then we should assume this means that any jobs created is now outdated and should be

replaced by new scheduling using the updated Pattern or Recipe. These simple ideas were logically

thought through until the system of requirements presented in the three tables were arrived at. The

hope is that any system that implements all of these, would by necessity be capable of meeting that

requirement for Responsiveness that static systems struggled so much with.

6.2 F I N A L R E Q U I R E M E N T S 33

R1 A MEOW Recipe has a name that is uniquely identifiable between Recipes.
R2 A MEOW Recipe expresses some runnable code.

R3
Whenever a MEOW Recipe is created, if any previously created Patterns stated the
Recipe name, then a MEOW Rule must be created for every stating Pattern.

R4
If a MEOW Recipe is ever deleted, any MEOW Rules created from it must also be
deleted immediately.

R5
If a MEOW Recipe is ever modified, it should be treated in the system as though the
original MEOW Recipe was deleted and a brand new one has been created.

Table 6.1: MEOW Recipe requirements.

P1 A MEOW Pattern has a name that is uniquely identifiable between Patterns.
P2 A MEOW Pattern states the name of a Recipe to be used for processing jobs.
P3 A MEOW Pattern describes a filter against which events can be applied.
P4 A MEOW Pattern defines any variables to be passed to the Recipe.

P5
Whenever a MEOW Pattern is created, if a Recipe with the name stated in the Pattern
has already been created then a MEOW Rule must be created.

P6
If a MEOW Pattern is ever deleted, any MEOW Rule created from it must also be
deleted immediately.

P7
If a MEOW Pattern is ever modified, it should be treated in the system as though the
original MEOW Pattern was deleted and a brand new one has been created.

Table 6.2: MEOW Pattern requirements.

M1 A MEOW Rule must be uniquely identifiable.

M2
A MEOW Rule must inherit the event filter parameter from the MEOW Pattern that
caused its creation.

M3 A MEOW Rule must link the MEOW Pattern and MEOW Recipe that caused its creation.
M4 A MEOW system must monitor a single file system or single subset of a file system.
M5 All subsets of the monitored system must also be monitored.
M6 To monitor means to identify any and all events within the monitored system.
M7 Any identified events must be compared against every currently created MEOW Rule.

M8
Events are matched to MEOW Rules by comparing the event properties to the MEOW
Rule event filter.

M9
Any matching events must schedule one or more jobs, according to the MEOW Pattern
definition.

M10
Whenever a MEOW Rule is created, it must be able to check within the system, would any
existing event sources match the MEOW Rule, were they created now. If so, the source
must be treated as though they were just created.

M11 If a MEOW Rule is ever deleted, any jobs scheduled from it must be cancelled.

Table 6.3: MEOW general requirements.

6.2 F I N A L R E Q U I R E M E N T S 34

The individual requirements for Recipes and Patterns are shown in Tables 6.1 and 6.2 respectively.

General requirements for Rules, as well as the rest of the system are shown in Table 6.3. They have

not been expressed in EBNF as they are expressing more defined, contextual objects than is really

suitable to EBNF.

Of note are some significant differences since the first attempts at defining MEOW. Firstly, it is

worth noting that whilst any file event that matches the Patterns trigger filter is an implied input, output

is not defined at all. This is deliberate as to define an output is to limit results to easily predicted

outcomes. This would be counter to the exploratory nature of scientific workflows, and is ill suited to

a dynamic system. This contrasts strongly with the previously discussed SWMSs, where outputs are a

necessary part of defining any workflow.

A second major difference is that we have introduced specific requirements for the updating and

deletion of Patterns and Recipes. This is actually an essential step in making the resultant workflow as

responsive as possible. Previously it was made possible for individual jobs to be created, deleted, or

modified at any point due to their isolated nature within the event driven system. However, this is

a lower scope than what is actually possible within MEOW. By applying the requirements R3, R4,

R5, P5, P6, P7, M10 and M11 in combination, we can also make it so that entire steps can be created,

modified or deleted at any time. As the emergent workflow is derived directly from the steps, we can

now run a workflow system that is completely dynamic, where the very structure of the workflow

itself can be changed at runtime by the jobs within it.

Of final note is that the presented MEOW requirements meet the first objective of this Thesis,

as presented in Section 2.2. By defining the MEOW requirements, along with the accompanying

structure in Figure 6.1, we obtain a design for an automated, dynamic workflows. This is important as

such as design was the first objective from Table 2.1, and the first part of addressing the core research

question of investigating the creation of an dynamic workflow system. Though the described design

perhaps goes beyond the requests for a dynamic workflow as stated in [56] and [102], it doubles down

on the possibilities of an event driven system as presented in [36]. This makes MEOW a truly novel

SWMS, as it allows for the possibility of a self-modifying workflow, truly addressing for the first time

the requirement for SWMSs to be responsive.

7

S U M M A R Y

This part has set out the theoretical foundation for MEOW, and the requirements for such a system.

This has been presented as, and is, a dynamic alternative to the existing static SWMSs. Many of

these systems use DAGs, or some other equivalent to structure their workflows before any processing

can progress. Though changes are sometimes possible at runtime, they are often limited in scope or

require tedious management. MEOW is designed in a new bottom-up paradigm that rejects the static

definition of complete workflows in favour of identifying individual steps and scheduling those jobs in

isolation. By doing this, each job is free to be executed in isolation and so can succeed or fail without

affecting subsequent steps.

The requirements of a dynamic system have been outlined, as has the initial attempt at imple-

menting it. Together, these should contextualise the subsequent part of this thesis, in which the final

implementation is presented. Recall that the first objective for this thesis was to ’design a framework

to express automated, dynamic workflows’(see Table 2.1). This has been achieved via the definition of

MEOW, and so we can conclude that the first objective has been met. We are now ready to progress

to implementing MEOW in accordance with later thesis objectives.

35

Part II

T O O L S F O R E M E R G E N T W O R K F L O W S

8

I N T R O D U C T I O N

This is the second of the three main parts in this thesis. By the end of this part, it will be shown how

the second and third thesis Objectives (see Section 2.2) were addressed. These were to ’Implement an

automated, dynamic workflow system’ and to ’Integrate the automated, dynamic workflow system into

a collaborative big data platform’. This is primarily done through a newly created python package,

mig meow. This is designed primarily to work with KU’s grid solution, the Minimum intrusion

Grid (MiG). As such this will first be explained, along with a number of essential packages used

throughout the implementation. Once this last bit of background is out of the way we can finally

consider mig meow more fully, and how a user can use it to establish MEOW constructs.

To help users design these constructs, mig meow has been designed to work with Jupyter Note-

books, and so a number of widgets designed specifically to work within them are also presented.

Users can create MEOW systems to function locally, or on the MiG. First we will consider how a user

can use the WorkflowRunner to construct and run their analysis on their local machine. Secondly

we will expand the context to include the MiG, and shall demonstrate how the widgets have been

designed to interact with it.

37

9

B A C K G R O U N D A N D D I R E C T I O N

We will now turn to how MEOW was implemented. The first implementation we will be looking at is

the Python package mig meow. This was created from scratch for this project, and is designed as

a tool for users to create MEOW Patterns and Recipes within a Python environment. These could

then be used to run analysis on a users local machine. In addition, mig meow was also intended as a

front-end for how users would create Patterns and Recipes for use on the MiG. As the same constructs

would be used for both the local analysis and on the MiG, it followed that the local system should

mimic the relevant functionality of the MiG.

9.1 M I N I M U M I N T RU S I O N G R I D

We will return to talking about mig meow in the following chapters, but first we should fully establish

what the MiG is and how the relevant sections operate. The MiG is a mature, stand-alone grid

solution. It connects users to disparate storage and processing resources. The core goal of the MiG

is, as the name suggests, minimum intrusion[49]. This means minimal requirements for both users

and resources to enrol and start using the grid. For users they only require an X.509 certificate[98]

accepted by the grid, and a web browser to access it. Enrolled resources also only require an X.509

certificate and a local grid user. These are very small requirements compared to other grid solutions

and ensure ease of use even across large institutions.

A sketch of the overall architecture of the MiG can be seen in Figure 9.1. It shows how users

connect to a central ’black-box’ server which administers the entire grid. By centralising in this way it

is relatively easy to manage a large amount of disparate resources and access to them. Any significant

software installs can be kept to the server itself, as resources are essentially just given jobs to execute.

This also ensures that maintaining or updating the grid is relatively simple as only the central server

needs to be updated without having to wrangle a myriad of different resources administrators to update

together. What can also be seen in this Figure is the variety of ways in which a user can interact

38

9.1 M I N I M U M I N T RU S I O N G R I D 39

Figure 9.1: Architecture of the MiG. Taken from [10].

with the MiG. The scripting possibilities are of particular note as they allow for the connection of

scientific instruments to the MiG via a user account. This means that instruments can be set up to

directly output their data onto the MiG.

Job execution on the MiG is done via the resources. Resources may be all manner of hardware,

with recent innovations even meaning remote cloud systems may be usable as resources[69]. More

regularly, resources will be more traditional compute nodes running several CPUs, or GPUs. As part

of their enrolment on the grid, these resources will loop through a simple script that will regularly

poll the central server for jobs. The server will identify a suitable job, if there is one, and send the

necessary files for its execution out to the resource via cURL. Once the files are transferred, the job is

executed and the output files are sent back.

Of course some jobs may require additional software or libraries to be present on the resource. These

may be installed by the resource administrator at any time, and the grid alerted to the presence through

Runtime Environments. These are a MiG construct, where installed software, tools or libraries are

flagged as being present on the resource. Jobs may be setup with Runtime Environment requirements,

and so will only be scheduled on resources that match those requirements.

From a user perspective all data uploaded to the MiG by them is accessible from within their own

user directory. As well as this, users can setup workgroups, to share their data[10]. A workgroup

is a collection of data, to which access can be controlled on a per-user basis. Access to resources

can also be controlled on a per-user basis, but this could quickly become an exhaustive process, so

access to resources can be granted on a per-workgroup basis as well. This helps make workgroups an

effective way of managing projects as any user can share their data across institutions and all share

access to the same resources. Workgroups can also be organised in a hierarchical manner, for further

granularity in access to data and resources.

Another significant feature on the MiG is the addition of a trigger system[7]. This was added

shortly before this project and allows for automatic responses to MiG file events, such as data being

9.2 E S S E N T I A L PAC K AG E S 40

Monitors

launches

Shared StorageUsers

Trigger
Database

Trigger Monitor

File Monitor
Job

input/output

Figure 9.2: Design overview of the MiG trigger system.

created, updated or deleted. Possible responses are common MiG tasks such as scheduling jobs or

manipulating files directly. The design for this trigger system is shown in Figure 9.2. Users can create

triggers, which are stored within the MiG. A monitor will track any changes within the trigger storage

and keep an up to date collection of triggers in memory. At the same time the file system is monitored

for events. These events are compared against the triggers in the MiG and in appropriate cases, some

task is undertaken. In the diagram this is shown as job scheduling though other command line tasks

such as moving data are also possible at this stage.

Of final relevance here, is that the MiG integrates JupyterHub[67], [69], a service for spawning

Jupyter instances for a number of users. Using this, users can spawn their own JupyterLab instance.

This is especially useful here as an invaluable tool for supporting users research on the MiG. It also

provides for a useful platform for MEOW integration. As noted in Section 5.2.4, JupyterLab is

designed as an extendable environment and so is well suited to any additions deemed necessary.

9.2 E S S E N T I A L PAC K AG E S

Three non-standard Python 3 packages were necessary to achieve essential functionality for MEOW.

These are already present within the MiG project. However, we will now discuss them individually

to see if they are still suitable for the mig meow package. These packages are watchdog[93],

papermill[76], and notebook-parameterizer[71], and each will be briefly explained here.

Note that both watchdog and papermill are previously existing packages, whilst

notebook-parameterizer was developed within MUMMERING by Rasmus Munk.

9.2 E S S E N T I A L PAC K AG E S 41

9.2.1 watchdog

In order to identify system events in the MEOW implementation, the Python package watchdog

can be used. It uses the inotify[46] API for listening to file events within given directories. This

allows for efficient identification of events, without having to repeatedly conduct some form of

manual scan. Functions for handling on created, on modified, on moved, and on deleted

events are all exposed by the PatternMatchingEventHandler, though it itself offers no

actual implementation and relies on being overridden by a specific implementation. This suits our

requirements perfectly as we can exactly implement how the event path matching actually occurs.

9.2.2 papermill

The Python package papermill is a tool for executing Jupyter Notebooks either from the command

line or within a Python script. Every code cell will be run, in order, with any generated output

saved into the Jupyter Notebook in exactly the same way as if it was run manually be a user through

the JupyterLab interface. It is also possible to execute a Jupyter Notebook with different input

parameters which can passed at runtime. This parameterization means that Jupyter Notebooks can be

run repeatedly with different inputs, making papermill an important tool in automating their use.

9.2.3 notebook-parameterizer

One potential limitation of papermill is that it requires a user to identify parameters ahead of

time, by grouping them together into a single, tagged cell. Whilst this is not the greatest barrier

to entry, it was seen as preferable if users could get away with making no specific preparations to

their Jupyter Notebooks. To solve this the package notebook-parameterizer could be used. This is

a Python based command line tool to replace parameter definitions within Jupyter Notebooks. It

does this by reading in a Jupyter Notebook and looking at each line in turn within code cells. If

the line contains a parameter definition, then it is replaced with a new value. This avoids having to

specifically define new cell tags, and means that almost any Jupyter Notebook as is, can be used as

input for papermill. One limitation of this system is that parameter definitions in the original

Jupyter Notebook are identified using regex. This means that matches are potentially fickle, and

though they have been extensively tested there is always the possibility that some unusual parameter

definition will not be replaced. That is not expected to happen with any regularity though, and so this

potential problem will be tolerated for now.

10

M I G M E O W

The central part of implementing MEOW was in a Python library called mig meow which provides

an implementation of MEOW. In this chapter we will examine and explain some of this package, with

particular focus on how you can use it to define MEOW constructs, and use them at a local level. This

will also lead to the completion of the second thesis objective, to ’Implement an automated, dynamic

workflow system’(see Table 2.1).

10.1 A P Y T H O N PAC K AG E F O R M E O W

With all the definitions, motivations, and first explorations out of the way it is finally time to talk about

the core implementation of MEOW, mig meow. This is a Python 3 package, containing definitions for

MEOW constructs, as well as functions allowing for their export to the MiG. This makes it compatible

with existing MiG code, and usable as a module in in regular Python environments. It is available on

PyPI[63], as well GitHub[62].

As the name implies, mig meow is primarily intended as a tool for users to design MEOW

workflows and deploy them on the MiG. For this reason it will inherit some behaviour and internal

structure from the MiG, most notably it will use the same file event system as its basis. What

mig meow is not, is an internal part of the MiG. The MiG functionality is contained entirely within

the MiG code itself, available as part of its own repository[61]. These internal MiG alterations will be

explained more in Chapter 11.4.

10.2 PAT T E R N S W I T H I N M I G M E O W

The most basic job of mig meow is to provide users with a way of defining Patterns and Recipes.

Patterns are implemented as a Python class, as a user-friendly way of modelling the MEOW construct.

It would also allow for a number of helper functions to be bundled in with the class definition as will

be shown shortly. A sample of the Pattern constructor is shown in Listing 10.1. This shows that

42

10.2 PAT T E R N S W I T H I N M I G M E O W 43

either a str or a dict can be used as input. A str is used as the name of a new Pattern, whilst

a dict is used to input a complete Pattern definition. We can see on lines 7 and 17 that this input

is verified so that non-sensible data is not read in. Of note are the various properties of the Pattern

object that are assigned. These are only shown for the str input, but the same ones are used in the

case of the dict, only with more verification and checking. These parameters are taken directly from

the requirements set out in Section 6.1, Table 6.2. Most obviously this gives us the name, which all

Patterns must be given as part of their instantiation as a means of identification. The uniqueness

is not covered here per se, but all Patterns are stored in a dict with the names as keys, thereby

enforcing uniqueness within mig meow.

1 class Pattern:
2 ...
3 def __init__(self, parameters):
4 # if given only a string use this as a name, it is the basis of a
5 # completely new pattern
6 if isinstance(parameters, str):
7 valid_pattern_name(parameters)
8 self.name = parameters
9 self.trigger_file = None

10 self.trigger_paths = []
11 self.recipes = []
12 self.outputs = {}
13 self.variables = {}
14 self.sweep = {}
15 # if given dict we are importing from a stored pattern object
16 elif isinstance(parameters, dict):
17 valid, msg = is_valid_pattern_dict(parameters)
18 ...

Listing 10.1: Code sample showing the constructor for a Pattern within mig meow.

The trigger paths parameter is the filter against which events will be matched. It is a complete

path, expressed as a literal string, with one wildcard, the ‘*’ character. This character is used to denote

any number of other non-separator characters and would be equivalent to ‘\S*’ in regex. Although

the trigger paths are stored as a list, and the name implies that there is more than one, currently

only the first of these paths is used to match file events. The list is a legacy structure, when it was

thought that multiple paths may be used within the same Pattern. This may be returned to in the

future and so has not been completely removed. Similarly to this is the recipes property, which

lists by name the Recipes to be used by the Pattern. It was envisioned that multiple Recipes may be

somehow combined into one meta-recipe but this was never implemented and so the property remains

named recipes. Only the first Recipe will be used.

The rest of the properties shown in Listing 10.1 are different forms of variables to pass to the

resultant jobs. The variables to be passed to any scheduled jobs are given by the variables property,

which is stored as a dict. The outputs property is similar to this, though these variables are used to

identify potential job outputs for the visualisation in the WorkflowWidget, discussed in Section

10.4. As outputs are not required by MEOW, and in fact would go against the spirit of the system,

10.2 PAT T E R N S W I T H I N M I G M E O W 44

MEOW keyword MiG keyword example
PATH +TRIGGERPATH+ ‘workgroup/dir1/dir2/file.ext’

VGRID +TRIGGERVGRIDNAME+ ‘workgroup’
DIR +TRIGGERDIRNAME+ ‘workgroup/dir1/dir2’

REL PATH +TRIGGERRELPATH+ ‘dir1/dir2/file.ext’
REL DIR +TRIGGERRELDIRNAME+ ‘dir1/dir2’

FILENAME +TRIGGERFILENAME+ ‘file.ext’
PREFIX +TRIGGERPREFIX+ ‘file’

EXTENSION +TRIGGEREXTENSION+ ‘.ext’
JOB +JOBID+ *some job id*

Table 10.1: Variable keywords available in MEOW. All examples given are for a triggering file at the ‘work-
group/dir1/dir2/file.ext’ path, within the ‘workgroup’ workgroup. Note that the job id is not
dependent on the triggering path and so cannot be predicted from it.

these outputs are not used for anything other than the visualisation. Therefore, we can say there is

in fact no semantic difference between the outputs and the variables.

To increase the usability of MEOW, support was added for certain keywords in the variables

and outputs. These are mostly the keywords present in the MiG trigger system, though have

been renamed to be more usable. Using them enables runtime variable construction within jobs,

using parameters from MEOW definitions. A complete list of keywords are shown in Table 10.1.

These keywords can be inserted either on their own, or within larger strings. In either case, they will

be replaced at runtime with a string based on how the job was scheduled according to its MEOW

defintions. For example, a user could create a variable A, with a value of ‘some/path/{FILENAME}’.

If a resultant job was triggered by a file at ‘input/data.txt’, then at runtime A would have the value

‘some/path/data.txt’. This allows for the construction of variables without a user being able to predict

the exact value at the start of processing. This is especially useful for outputs, where output paths can

be created based on the input.

As well as conventional variables, users can also use the sweep property to define a parameter

sweep of variables. A parameter sweep is a term for scheduling multiple otherwise identical jobs,

who each have a different value for the same parameter. This parameter is usually taken from a range

of values, such as to try multiple values within a simulation to see which ones give accurate results.

Within the Pattern they are stored as a specific property as they require more information than a

standard variable. Namely, they store a dict that defines the name of the variable, as well as the

complete range of values over which shall be swept.

Finally is the trigger file property. This acts as a variable name for the triggering file, that

being the file that caused an event which matches the path in the trigger paths property. The

triggering file itself is passed as a variable to the job, and so the trigger file is required to act

as a variable name with the job. Although the attributes outlined over the last few paragraphs are

10.3 R E C I P E S W I T H I N M I G M E O W 45

1 add single input(input file, regex path, output path=None)
2 add param sweep(name, sweep dict)
3 add variable(variable name, variable value)
4 add recipe(recipe)
5 integrity check()

Table 10.2: Selected Pattern method signatures.

far from the most complex properties ever defined in a Python class, it is still unlikely that a user

will be able to correctly guess the expected format to store them all without some help. For this

reason a number of methods are also provided within the Pattern. These are not described in

detail, though some of their signatures are shown in Table 10.2. Each comes with the appropriate

checks and verification so that only values which make sense can be assigned, and provides feedback

when this is not the case. The fifth function, integrity check is different in that is checks all

defined properties within the Pattern for errors, and checks that values are given for essential

properties such as the trigger paths. If there are no errors, and all necessary parts are defined

then integrity check will return a Tuple of the form (True, None). If there are problems

it will return a Tuple of the form (False, str), with the str being a debug message explaining

what had failed the check.

10.3 R E C I P E S W I T H I N M I G M E O W

Recipes are in some ways much simpler than Patterns, as they can already be expressed by a Jupyter

Notebook. This is as according to the requirements set out in Section 6.1, Table 6.1, only two

properties are actually necessary in a Recipe. Those are that it has a name, and some code. These

properties are entirely covered by a Jupyter Notebook, which has a filename and can, by its very

nature, express runable code in its dedicated code cells.

To register a Jupyter Notebook with the mig meow, the function register recipe(source,

name=None) has been provided. This takes a Jupyter Notebook as a source, given by a path to the

Notebook document itself. Optionally a name can be provided, else the filename is used as a name.

The JSON within the notebook is read in and saved alongside the source path, and Recipe name in a

new dict.

The reason we need these additional steps of reading in the document and saving their state

separately to the file system, is that the Jupyter Notebook is still ‘live’ in file system and can be

modified or run at any time. This would potentially make quite a mess of race conditions, as the same

document could then be saved, read, or modified by several processes at the same time. By saving a

10.4 W I D G E T S A N D D E S I G N A I D S 46

separate copy of the Jupyter Notebook we can avoid this completely, even if it does mean a certain

amount of data replication.

10.4 W I D G E T S A N D D E S I G N A I D S

So far we have discussed how a user may define Patterns and Recipes through the use of specific

functions and classes. However, as has been mentioned previously the main intended method for users

to do so is within a Jupyter Notebook. This allows for the possibility of using ipywidgets[47] to

create custom widgets that can be run in the Jupyter Notebook. These are graphical objects available

within the notebook browser itself that can express, modify, and respond to the current state of the

running code. Naturally, this makes them perfect as a user friendly way for creating Patterns and

Recipes, as the definitions could be accompanied with visualisations.

To accomplish this, three widgets are defined as part of mig meow. These are used to define

MEOW objects and send them to the MiG, to monitor MiG jobs, and to provide final reporting on

MiG workflows. As the MiG interactions will not be considered until Chapter 11.4, the later two

widgets will not be examined until then. This leaves the first, and largest widget for now, that being

the WorkflowWidget.

The WorkflowWidget is designed as a complete environment for creating, reading, updating

and deleting both Patterns and Recipes, both at a local level and on the MiG. As can be seen in

Figure 10.1, it has a large area for visualising the currently defined Patterns and Recipes. Below this

is an area for modifying the internal state of the widget. Forms can be accessed to create, modify or

delete Patterns and Recipes, with any changes immediately reflected in the visualisation. This

gives users up to date feedback on what they are defining, and how it is expected to behave.

Do note that the visualisation is just an intelligent guess at what Patterns will link. It makes

assumptions such as if one Pattern outputs to a directory and one is triggered by that same directory

then they are linked. This seems like a plausible assumption and so we can construct a visualisation of

some expected emergent workflows, if users use the system in a straightforward, predictable manner.

However, users are fully capable of creating more complex structures such as a Pattern that only

triggers on certain file types within a given directory. Depending on how this is set up this may appear

as a link or may not. This is only highlighted here to demonstrate that this visualisation is just that. It

is not used to identify or schedule jobs, and should be treated only as a rough guide to what has been

defined.

The visualisation contains two types of node. Firstly are the coloured circles. These express

Patterns, with their name labelling them so that they can be identified. If a user scrolls over them

10.4 W I D G E T S A N D D E S I G N A I D S 47

Figure 10.1: Overview of the WorkflowWidget. In this example some Patterns and Recipes have
already been defined.

a pop-up will appear showing the internal details of the Pattern, as can be seen in Figure 10.2. The

colour of the circle denotes if the Recipe defined in the Patterns recipes property is currently

defined or not. If no Recipe sharing the specified name exists then the circle is coloured red, and if

it does, it is green. This is to clearly highlight what Patterns in the currently displayed system are

actually capable of triggering or not. In a potentially difficult to debug system like this, where working

out why an event did not produce processing can be unclear, a user needs all the help they can get and

this colouring is of clear assistance. The second type of node are grey rounded rectangles. There show

file locations both as input and as output. The directed edges, or arrows show potential routes through

the system, with file locations connected via Patterns. The connections are possible due to the

outputs defined as part of a Pattern. Because those outputs are only a user provided guide,

this visualisation should also only be taken as an expectation, and not as gospel for what will actually

happen.

An example form used in the widget is shown in Figure 10.3. It shows the form for creating a

new Pattern, with similar ones being present for registering new Recipes, or modifying existing

definitions. Each parameter is shown on the left, with values entered on the right. Observe that the top

parameter to be entered, the name, has had the help button on the far right clicked. This is available for

each parameter and in each case will toggle the display of some text explaining what the parameter is

along with an example value. For parameters that can accept more than one value, there are additional

buttons on the right to add or remove additional input boxes as necessary. There are two buttons at

the bottom of each form, one to apply all changes and one to cancel the creation/modification with

10.4 W I D G E T S A N D D E S I G N A I D S 48

Figure 10.2: Pattern feedback within the WorkflowWidget visualisation.

no changes applied. The only significant difference between the creation and modification forms

is that the modification form features a drop-down list at the top. This is used to select from all of

the currently created Patterns and Recipes. Once a Pattern or Recipe has been selected

a form will be generated that is identical to the one used for creation, save that the name input is

missing, and the form is pre-populated with the existing parameter values.

Once created, Patterns and Recipes can be saved into the local file system, where they are

saved as YAML[101] dictionaries into files. YAML was picked here as it is a robust, commonly

used format that users are probably already familiar with. These files can be freely copied, modified,

or even created from scratch by a user as they would any other file. The files can be read in by

mig meow, making this another way for users to create Patterns and Recipes, or to share their

definitions with others. Both reading and writing can be done through the WorkflowWidget or

programmatically. If done through the WorkflowWidget, the widget will first identify any Pattern

and Recipe files it could import and inform the user what it is has found. They are then given the

choice to continue with the import or not, as unique naming means any currently defined constructs

by the same name will be overwritten.

10.5 T H E L O C A L RU N N E R 49

Figure 10.3: The form used to create a Pattern with the WorkflowWidget.

10.5 T H E L O C A L RU N N E R

As a final significant point when talking about mig meow at the local level, it is worth looking at

the WorkflowRunner. This is a means for a user to run a MEOW system on their local machine.

The WorkflowRunner was actually a fairly late addition to the project and had the specific goal of

mimicking the functionality of the MiG, so that readers without access to the MiG could run their

own analysis and see how the MiG would behave. It will be presented here as it can of course be

used entirely independently of the MiG, and as it implements all of the previously mentioned MEOW

definitions, is a simple but functional workflow processing system in its own right.

10.5.1 CSP in multiprocessing

The MiG uses a central queue to manage all jobs within the grid, with multiple processes able to

add jobs. Any number of different resources can poll the queue for a suitable job, and so multiple

processes may also read and remove jobs. To mimic this functionality the WorkflowRunner will

need to be composed of multiple processes running concurrently. This will however present a number

of design challenges, such as avoiding deadlock or race conditions.

To avoid these problems, a design model was used as this could act as a guide for good practice. In

this case, the Communicating Sequential Processes (CSP)[43] model was used. This is as CSP can

provide guarantees against deadlocks, livelocks and certain race conditions by rigidly sticking to the

client-server design pattern, first presented in [40], and slightly updated [94] and [55]. This design

pattern defines two types of communicating processes:

10.5 T H E L O C A L RU N N E R 50

1. A client process. In any communication, this is the process that instigates the communication.

If the server responds to this initial communication, then the client guarantees that it will handle

this reply immediately.

2. A server process. A server process will never instigate communication. If it receives a request

from a client and is expected to respond, the server commits to responding within a finite

amount of time.

It is possible for a single processes to act as a client and server at the same time, but they must

remain consistent in their behaviour within their communication to any other single process. Any

communications can be plotted in a graph, and labelled so that we can see which end is acting as a

clients and which a server. As long as no continuous circle of clients and servers oriented the same

way is formed, then according to the model outlined in [55], deadlock and livelock can never occur.

A Python based implementation of CSP exists, called PyCSP[11], but it has not been maintained

for several years and so was not deemed acceptable. To get a CSP based implementation within

Python, without building the whole framework from the ground up meant using some lower level

constructs in a CSP-like manner. This was achieved by using the multiprocessing[65]. This

lets us start multiple processes concurrently, and offers constructs for them to communicate. It is part

of the Python Standard Library, and so it is reasonable to expect it to be both widely supported and

maintained. Despite not using an actual CSP implementation, the CSP model is still of use to us. This

is as it can provide some of the core design principles used to assess the correctness of our design.

For instance, according to CSP, no processes should share access to data, so by definition, we will

avoid all race conditions on the underlying data. As we will see later in Section 26.2.1, this does not

eliminate all race conditions, only those on in-memory values.

Any communication of data between processes in CSP is done via the Channels construct. In

multiprocessing this can be done through Pipes or Queues, though they both function some-

what differently to Channels. Where a Channel is intended as a synchronous, one way means of

communication, both Pipes and Queues are asynchronous, and can be used bi-directionally. The

main difference between Pipes and Queues is that a Pipe is much quicker, though is limited to

linking two processes, whilst a Queue can be shared amongst many. As all inter process communica-

tions will be defined ahead of time, and can be expressed as one to one connections, Pipes stand

out as the better choice due to the increased performance. As they are a stand in for Channels,

Pipes shall be used in a strictly one-way fashion. This means that the only conceptual difference

between Pipes and Channels is if they are synchronous or not. However, note that in the process

definitions outlined above, synchronicity was never a required feature for us to guarantee freedom

from deadlock or livelock, and so this difference can be tolerated.

10.5 T H E L O C A L RU N N E R 51

A very useful property of CSP is that if process interactions are setup appropriately, then the system

is guaranteed to be free of deadlock and livelock. Although we are not using CSP directly, we can

apply its principles to achieve the same result. The key way in CSP to avoid deadlock, is to avoid a

circular loop of dependent communication[50]. As can be seen in Figure 10.4, this has been done

as there is a linear hierarchy of primary processes communication. There are in fact only two types

of communication within the runner system. Firstly, there is one-way communication such as from

the State Monitor to Admin. Secondly, there is two-way communication with an expected response,

such as between a Worker and a Timer. In these cases a response is always given by the queried

process, and that response is generated as soon as a query is received. We have therefore stuck to the

requirements set out in [55] and so can state that this system will not suffer from deadlock or livelock.

As a final note, CSP systems often use an ALT construct to make a choice between several

input channels. The multiprocessing.connection package contains the very similar wait

function, though it must be used precisely so as to replicate the necessary characteristics of an ALT.

The wait function will hang a process until one or more input connections have a message ready

to be received. This differs from an ALT, which should only ever return one connection. If multiple

connections are ready in an ALT at the same time, it will make a choice between them. This priority

system will be useful within our WorkflowRunner design, so we need to use the wait function

deliberately to replicate this CSP feature. An example of how this was done is shown in Listing 10.2.

In this example there are three potential input Pipes, from the state monitor, user and file monitor

processes. In the unlikely event that two or more readers are available at the same time, they will be

prioritised in that order. The key part to note is the use of the elif statements, so that only one of the

inputs is selected.

1 def administrator(...):
2 ...
3 while True:
4 ready = wait([
5 from_state,
6 from_user,
7 from_file
8])
9

10 if from_state in ready:
11 input_message = from_state.recv()
12 ...
13 elif from_user in ready:
14 input_message = from_user.recv()
15 ...
16 elif from_file in ready:
17 input_message = from_file.recv()
18 ...

Listing 10.2: An abridged ALT-like wait statement.

Using a CSP based approach to design the WorkflowRunner means we can create a well formed,

multi-process system. It will avoid common pitfalls of concurrent and parallel computing such as

10.5 T H E L O C A L RU N N E R 52

... ...

Admin
State

monitor

File
monitor

LoggerQueue

User

Worker 1 Timer 1

Worker n Timer n

Figure 10.4: Process structure of the WorkflowRunner, showing individual processes and their interactions.
Note that in addition, the admin, state monitor, file monitor, queue and worker processes also can
send messages to the logger process, though these connections have not been shown for brevity.
Secondary connections used only for replies are shown in dotted lines. Zero to n workers are
created based on user input. Taken from [53].

deadlock, and each process should be free to respond in a short amount of time to any messages,

helping to ensure the system is responsive and predictable.

10.5.2 Outlining the Local Runner

Using the CSP design principles, a multiple process structure was devised, as shown in Figure 10.4.

Each process will be explained fully in the following paragraphs. These descriptions are an expanded

version of the text first presented in Appendix B.

10.5.2.1 The USER process:

The User process is the base process in which the constructor for the WorkflowRunner is called,

and from which the WorkflowRunner object is returned. Within the constructor, all other processes

are setup and started. The WorkflowRunner object is then used as the entry point for any user

interaction, with each sending an appropriate message to the Admin process. A response is always

expected from the Admin. An exhaustive list of all provided functions will not be provided here,

though they include all necessary functions for the creation, updating and deleting of Patterns and

Recipes, and for monitoring the continued status of the WorkflowRunner.

10.5.2.2 The STATE MONITOR process:

Both the State Monitor and File Monitor implement classes that inherit from the watchdog[93] class,

PatternMatchingEventHandler. The PatternMatchingEventHandler responds to

system events, according to given sub-paths from a watched directory. In the case of the State Monitor,

10.5 T H E L O C A L RU N N E R 53

this is the hidden ‘.workflow runner data/’ directory, with the sub directories ‘patterns/’ and ‘recipes/’.

These locations are used to store files defining Patterns and Recipes, in a manner similar to how

they are stored on the MiG. These files can be altered and updated at any time either by direct user

interaction, or through using functions from the User process. In either case, this monitor will catch

any changes and send any updates to the Admin process. No response is ever expected from the

Admin, so the State Monitor process should never be blocked, and is therefore always able to process

new events in a timely fashion.

10.5.2.3 The FILE MONITOR process:

The File Monitor is very similar to the State Monitor process, though its monitors the base data

directory. The base directory is equivalent to a workgroup on the Minimum intrusion Grid (MiG).

As the File Monitor does not know what Patterns and Recipes have been established, it can

do relatively little processing of events itself. All it can do is filter out irrelevant events, such as

’delete’ events, or bunch together repeated events at the same file location so as to not spam the

Admin process. Whenever an appropriate event is identified, it is sent to the Admin to be checked

against the registered Patterns and Recipes. This differs from the MiG, where a more complex,

overlapping structure is achieved through careful use of some shared state and locks. This complexity

is not necessary here as the WorkflowRunner is not intended to manage a whole grid systems

worth of events, so sending all events is sufficient for the scale of a local problem.

10.5.2.4 The ADMIN process:

By far the most complex process is the Admin. It maintains the in-memory state of the runner, in

which all currently registered Patterns and Recipes are stored. Updates to this state are provided

by the State Monitor process, ensuring that the in-memory state is up to date with the saved state

expressed in the Pattern and Recipe files. Patterns and Recipes can also be added, removed,

or modified via user interaction from the User process. Any changes will result in the appropriate

update to the file state, with files being added, removed, or updated. This will in turn generate more

updates from the State Monitor. To prevent a circular loop of events creating file writes which are

interpreted as events, files are strictly only written by the Admin process if a change has occurred to

its in-memory state.

As Patterns and Recipes are received from the State Monitor, appropriate Rules are main-

tained in accordance with the requirements set out in Section 6.2. This means the Admin will always

have an up to date list of Rules. This is important as the Admin process will also receive input from

the File Monitor. These events will be compared against the current list of Rules. If the event path

10.5 T H E L O C A L RU N N E R 54

matches the event filter attribute of a Rule, then the Admin will create a new job, and send its ID to

the Queue, so that it may be processed. Creating a new job consists of creating a unique ID, with a

corresponding job directory created to store job files. These files are a new Jupyter Notebook file,

created as a copy of the appropriate Recipe, along with two YAML files. The first of these files is

the parameters file, which contains the variables defined by the appropriate Pattern, such as the

triggering path. The second of these contains and the jobs meta information, such as when it was

scheduled, and its current running status.

As well as this core functionality, the Admin deals with requests from the the User process. Aside

from the previously mentioned adding or modifying Patterns and Recipes, users may also query

the current state, or running status of the WorkflowRunner. Some requests, such as to query the

current queue composition require further messages to be sent to the Queue before a response can be

generated, but a response is inevitable and provided as soon as possible. The Admin process utilises a

wait statement to stand by until receiving input from either the State monitor, User, or File Monitor

processes. These three inputs are prioritised in the order given, so that if multiple are available at the

same time, only the first is read and processed.

Messages from the State Monitor are always of the highest priority as a fresh state will always

be needed by the Admin. Changes in the state file system will also be finite in nature, as a user is

incredibly unlikely to make so many changes to Patterns and Recipes so as to swamp the runner

whilst it is ongoing. Secondly, are messages from the User process. These are secondary as they will

be requests from a human, and so will be conducted on a human time-frame. This means that they do

not need to be responded to within nanoseconds and so can wait behind any State Monitor updates.

Lastly, this leaves the File Monitor. This may produce a theoretically infinite number of messages

as there is no limit on the number of files created or updated by jobs or users. Despite this being an

unlikely use case, it is nevertheless a possibility and should be accounted for, therefore it must be the

lowest priority as anything behind it could be eternally starved in this scenario.

10.5.2.5 The WORKER process:

Jobs are executed within the Worker processes. The amount of Workers to be spawned is determined

by the user, and at least one is needed if the workflow runner is to process jobs. Each Worker has

its own Pipes from the Admin and to the Queue. By default a Worker starts in a stopped state, and

will only start when told to do so by the Admin. This allows users to setup and experiment with

Patterns and Recipes before any processing takes place. Once a worker is started, it will request

a job from the Queue process. If a job is available, the ID will be sent to the Worker, and its definition

files are read from the job directory created by the Admin.

10.5 T H E L O C A L RU N N E R 55

The job itself is processed by first parameterising the input notebook using the python mod-

ule notebook-parameterizer[71]. Parameters are extracted from the parameters file, cre-

ated by the Admin during job creation. The parameterised Jupyter Notebook is then run using

papermill[76] in the same manner as is done on the MiG. Once execution has been completed,

the job files are copied into a separate job output directory where they can be individually inspected.

Jobs may produce output directly into the data directory, monitored by the File Monitor, in the same

manner as can be done within the MiG.

If no job was available in the Queue, the Worker sends a notification to its Timer process to start

sleeping. If a job completes, or the Worker is notified by the Timer that its sleep is over, it will poll the

Queue for another job. This polling of the Queue will loop until the Worker is manually stopped by

user input.

10.5.2.6 The TIMER process:

To prevent spamming the Queue process with requests for new jobs, each Worker has its own Timer

process. This process will wait for a start signal from their Worker and then sleep. Once the sleep

is over, it will send a signal to the Worker as a prompt to request a job again from the Queue. Each

Timer will sleep for a different length of time, so that if multiple Workers are waiting at the same time,

they should not all wake together and spam the Queue. By having the timer in a separate process

rather than internal to the Worker, the Worker is still free to receive messages from the Admin, which

would not be the case if it itself were sleeping.

10.5.2.7 The QUEUE process:

The Queue process acts as a buffer for all jobs that have not yet been processed by a Worker. It

accepts messages either from the Admin or any of the Worker processes. From the Admin, the Queue

will either receive the identity of a new job to be added to the queue, or a request for the current

composition of the queue. Alternatively, any of the Workers may request the identity of a new job

to execute. In any case, a response is always immediately generated and sent. It was necessary to

separate the queue into its own process, rather than having it stored within the Admin, as otherwise

there would be a risk of deadlock between Workers and the Admin. This is as each could potentially

be the source of new communication and so a circular loop of interaction would occur. A separate

queue solves this problem.

10.5 T H E L O C A L RU N N E R 56

10.5.2.8 The LOGGER process:

Every non-Logger process except the Timer processes has a Pipe to send messages to the Logger.

These are messages to be written to a log file for debugging, and/or printed to the console if the

appropriate flags are set during WorkflowRunner creation.

10.5.3 Using the WorkflowRunner

The WorkflowRunner can be created either within a Jupyter Notebook, or as part of a regular

Python 3 script. In either case it can be run as daemon process, meaning it will not block further

processing in the containing script. This is significant as unlike in a static SWMS, a MEOW system

is continuous and lacks a defined end. By being able to run as a daemon, users can start the

WorkflowRunner, and then run additional commands. These could then for instance, interact

directly with the WorkflowRunner itself, or could be used to setup new files to trigger MEOW

events.

Feedback from the system can be gained mostly from regular messages to sys.stdout, which

will usually take the form of print messages in a terminal or Jupyter Notebook output cell. More in

depth debug messages can also be produced to a log file, though this is not enabled by default and

will require a user to set a flag during WorkflowRunner creation. Other arguments that can be set

during creation as the WorkflowRunner, are the locations for the different state, job and data files.

These can be changed to be whatever the user needs, and so could be within each other, or even the

same directory. This is not advised behaviour for a beginner, but is highlighted at this point as by

doing something like this it would be possible to create very interesting, self modifying systems. For

example, it would be possible to create a system where certain jobs create or modify Patterns, and so

create even more dynamic analysis algorithms.

A more regular use case would be to use the WorkflowRunner to run a simple MEOW system.

This could be done by creating some Patterns and Recipes programmatically within a script and then

calling the WorkflowRunner, as is shown in Listing 10.3. This has the advantage of being an

almost entirely contained script, in that it has all of the Pattern and Recipe definitions contained

within one document that can easily be re-run, shared, or modified as needed. In this example

the Recipe is registered directly from a separate Jupyter Notebooks, shown in Appendix G. This

Jupyter Notebook would need to be kept alongside the script for it to work. However, this could be

avoided by constructing the relevant Jupyter Notebooks also within the script using a package such as

nbformat[70]. For brevity, this has not been shown.

10.5 T H E L O C A L RU N N E R 57

1 import mig_meow as meow
2

3 add5 = meow.Pattern(’Add_5’)
4 add5.add_single_input(
5 ’infile’,
6 ’initial_data/*’)
7 add5.add_output(
8 ’outfile’,
9 ’{VGRID}/int_1/{FILENAME}’)

10 add5.add_variable(
11 ’extra’,
12 5)
13 add5.add_recipe(’addition’)
14

15 patterns = {
16 ’Add_5’: add5
17 }
18

19 recipes = {
20 ’addition’: meow.register_recipe(’add.ipynb’, ’addition’),
21 }
22

23 meow.WorkflowRunner(’Test’, 1, patterns=patterns, recipes=recipes)

Listing 10.3: An example of the WorkflowRunner created with Patterns and Recipes.

1 import mig_meow as meow
2

3 patterns = {
4 ’Add_5’: meow.read_dir_pattern(’Add_5’)
5 }
6

7 recipes = {
8 ’addition’: meow.read_dir_recipe(’addition’),
9 }

10

11 meow.WorkflowRunner(’Test’, 1, patterns=patterns, recipes=recipes)

Listing 10.4: An example of the WorkflowRunner created with previously made Patterns and
Recipes.

1 input_file: infile
2 input_paths:
3 - initial_data/*
4 output:
5 outfile: ’{VGRID}/int_1/{FILENAME}’
6 parameterize_over: {}
7 recipes:
8 - addition
9 variables:

10 extra: 5

Listing 10.5: The YAML file ‘Add 5’ expressing a Pattern object.

1 recipe:
2 *Jupyter notebook code not shown for brevity*
3 source: add.ipynb

Listing 10.6: The abridged YAML file ‘addition’ expressing a Recipe object.

An alternative approach when using the WorkflowRunner is to use pre-defined Patterns and

Recipes, such as from the WorkflowWidget. An example of this is shown in Listing 10.4, with the

10.5 T H E L O C A L RU N N E R 58

Pattern and Recipe files in 10.5 and 10.6 respectively. Note that in the case of the Recipe file,

the actual file is much longer as it contains the entire source Jupyter Notebook JSON definition within

the recipe entry. This has again been excluded for brevity.

Regardless of how the WorkflowRunner is set up, it can be used to easily run a MEOW system

on users local machine. This will be demonstrated in detail throughout Part iii. It is intended primarily

as a tool for testing Patterns and Recipes before they are deployed to the MiG. For this reason it

closely mimics the behaviour and setup of the MiG. This means that the WorkflowRunner will

have some delays thanks to the jobs not being processed until a worker process signals that it is

ready to start executing. It is also noteworthy that the WorkflowRunner has very limited job

reporting in its current state. This is as it is somewhat simplistic, only giving real-time feedback via

printing to console, or via logging. Currently there is no way for a user to get a complete report of the

analysis carried out. This contrasts heavily with the tools available for running processing on the MiG.

Regardless, the WorkflowRunner can be used to effective run a MEOW based system, both as a

test bed for MiG interactions, and as an analysis platform in its own right.

11

M I G

Despite the utility of the WorkflowRunner, it was never intended as the primary provider of

MEOW systems. That duty falls to the MiG. As previously discussed, some of the groundwork

was already in place on the MiG at the beginning of the project, most notably the trigger system[7].

However, new developments needed to be created to accommodate the creation of Patterns and

Recipes, and to interact with mig meow. In addition, further considerations such as security and

authorisation would also need to considered on a shareable, widely accessible system. However,

once implemented, these could then be considered an answer to the thesis objectives to ’Integrate the

automated, dynamic workflow system into the collaborative big data platform’, as stated in Section

2.2.

11.1 M E O W D E F I N I T I O N S O N T H E M I G

The MiG already has several features that will be of use to a MEOW system. The workgroups already

act as an online, shareable, collaborative space for storing and processing data. Secondly, the system

of triggers recently added to the MiG would be an ideal foundation for the MEOW implementation.

These are created on a per-user, per-workgroup basis. By that, it is meant that all triggers must be

created within a workgroup and always act within that workgroup, but that triggers are not shared

between users of that workgroup. This is not a perfect fit for the Rules as described in Section 6.2 and

so some modifications are needed. Ideally, we need a trigger system that is based within a workgroup,

but that is shareable by all users within that workgroup

An abridged section of the MiG structure is shown Figure 11.1. It shows that the MiG is comprised

of workgroups which each in turn contain triggers. Between these two concepts have been inserted the

MEOW constructs of Patterns and Recipes. This would directly mirror the definition shown in Figure

6.1, with the MiG triggers acting as MEOW Rules. Note that within some papers and documentation,

MiG triggers are referred to as rules, and that this is what the MEOW construct was named after. For

59

11.1 M E O W D E F I N I T I O N S O N T H E M I G 60

MiG

Workgroups

Patterns

Triggers

Recipes

Figure 11.1: Internal structural hierarchy of the MiG, with added MEOW constructs. Structures added by this
project are shown with a dotted border. Note that only the parts directly relevant to this project are
shown.

clarity, within this thesis the word rule will always be used to refer to the MEOW construct, while the

constructs previously existing on the MiG will always be referred to as triggers.

Before we get to explaining how Patterns and Recipes would be added to the MiG, it is worth

mentioning how they were not. The most obvious way one would assume would be to import

mig moew and use the definitions it provides. However, mig meow was actually only started some

time into the MiG implementation of MEOW and so was not available at the start to provide any

definitions. For this reason, the implementation of Patterns and Recipes on the MiG are different to

those explained in Chapter 10.5.3, though they share the same requirements and characteristics.

The main significant difference is that Patterns on the MiG are not modelled as a class object,

but by a dict. This was as the use of dicts over custom classes was preferred within the MiG

project. However, the MiG Pattern dicts express all of the same parameters as the mig meow

Pattern class. Recipes are a much closer match as in both the MiG and mig meow they are dicts,

expressing the same parameters. Both Patterns and Recipes on the MiG contain a number of additional

parameters to those specified in the MEOW requirements. These are for characteristics such as the

type of object they represent, or recording who first registered them. All of these parameters are used

internally to the MiG and are mostly just used for internal validation so shall not be considered further.

Within the MiG, Patterns and Recipes are defined along with the rest of the MEOW code in a single

module at mig.shared.workflows. This is in accordance with previous conventions within the

MiG project, where similar functionality is grouped into modules, and definitions that are used in

numerous places are contained within the mig.shared package.

First and foremost mig.shared.workflows allows for the creation of Patterns and Recipes.

This is done in accordance with the requirements set out in Section 6.2, and so once appropriate

Patterns and Recipes have been created, triggers will also be created. As well as a standard MiG

11.1 M E O W D E F I N I T I O N S O N T H E M I G 61

Resource

job

Workgroup

storage

monitor

trigger

recipe

pattern

MiG

scheduler
creates
trigger

events

schedules job

creates
job

writes
output

Figure 11.2: MEOW job processing on the MiG.

trigger, two additional files are also created. These are the parameters file and the task file. The

parameters file is the same as the one created within the mig meow WorkflowRunner, in that it

is a YAML file containing the variables defined within the appropriate Pattern. Meanwhile, the task

file is a new Jupyter Notebook file, used to execute any resultant jobs. This was created for the same

reasons as the job file in the WorkflowRunner, to avoid users directly altering the job code after

registering a Recipe and so producing unexpected output. An additional reason in this case is that

when the Recipe implementation was first created on the MiG, it was seem as an option that they

may be defined in multiple ways. For instance, a Python script may be registerable as a recipe, but

would be run as a Jupyter Notebook. Some automatic conversion would have to take place, which

would be done be the creation of the task file. It could also be possible for a Pattern to specify multiple

Recipes, which would then be sewn together into a single task file. To be clear, none of this has

been implemented and currently the task file is a straight copy of the Recipe specified during trigger

creation.

The job identification, scheduling and processing using the WorkflowRunner can be taken as a

guide for the same on the MiG. Although the MiG does include a number of additional steps, these

are mostly validation and authorisation steps that are not needed on the WorkflowRunner due to

its local nature. The additional steps do not significantly alter the functionality to an authorised user,

so the process for creating MEOW jobs can be expressed as shown in Figure 11.2. This shows how

within a MiG workgroup, a user can create Patterns and Recipes. From these definitions, MiG triggers

are created which will monitor the workgroup file structure for events. If an event occurs at a path that

matches a trigger, then it will create a new job and place it in the MiG job queue.

11.2 I D E N T I F Y I N G M E O W O U T P U T S O N T H E M I G 62

Any resources currently available to the MiG will be periodically polling the MiG queue for potential

jobs, and if any are available they will be claimed by the resource and executed. During job execution

the job task file is parameterised according the parameter file using the notebook parameterizer

package. The resultant Jupyter Notebook is then run using papermill. To achieve this, all jobs

created from MEOW based triggers, will be created using the same template, shown in Appendix H.

This template is a single, multi-line string into which variables will be substituted using the template

dict. This dict contains a number of variables to substitute in, but the most significant here are the

execute lines. These are the actual lines of code that are executed to run a job. In most MEOW jobs

there are two of these, with an example of them shown in Listing 11.1

1 notebook_parameterizer task_file -o job_notebook.ipynb -e
2 papermill job_notebook.ipynb job_result.ipynb

Listing 11.1: MEOW job execution lines example.

A significant difference in job execution between the WorkflowRunner and the MiG, is how

access to the storage file system is achieved. Within the MiG, the file storage can be mounted within a

resource using SSHFS. This allows for the acces to and management of the workgroup files from a

resource via an SFTP connection. This means that if a user needs to access other files or directories,

they do not have to manually copy them across to the resource, but can instead navigate to them

relative to the base workgroup. Similarly, output can be written straight into the file system without

having to be predefined, in accordance with the requirements of MEOW.

The trigger functionality was not directly altered during MEOW development as the MiG is a live

system, and users may be using the triggers as they are. For this reason any triggers created from

MEOW definitions are still locked to their user, and so are only visible to their creator. When Patterns

and Recipes are created on the MiG they are stored on a per-workgroup basis, and can be retrieved by

anyone who has access to that workgroup. Workgroups already have different levels of users, known

as owners and members. Owners can view and edit and Patterns and Recipes in a workgroup, whilst

members can only view any, but only edit their own. In either case, all other currently created Patterns

and Recipes within the workgroup are used for trigger identification and creation whenever a Pattern

or Recipe is created or modified on the MiG.

11.2 I D E N T I F Y I N G M E O W O U T P U T S O N T H E M I G

Whilst it has been mentioned that some logging of MEOW jobs takes place, additional reporting

functionality needs to be added to the MiG. This is used to address a fundamental shortcoming of the

event driven model MEOW has adopted. That is, that it is hard to say with certainty what processing

has taken place, and what jobs have triggered further jobs. Whilst it can be easy to see which job has

11.2 I D E N T I F Y I N G M E O W O U T P U T S O N T H E M I G 63

been triggered by exactly what Pattern in the first step in a chain of processing, it can be difficult

to see which subsequent jobs were triggered from what outputs. This is compounded by the lack of

a requirement for a Pattern to identify any output ahead of time. Furthermore, a specific need for

provenance reporting was identified in the requirements of any SWMS in Section 6.2.

To address this a report would need to be assembled by the MiG, or at least enough information

kept so that one could be assembled by mig meow. As the MiG already keeps an abundance of data

about jobs and their makeup, the only significant information that needs to be identified for such a

report to be composed is the output of a MEOW job. If this could be found out, then it would become

a trivial task to match the output one job up to the triggering event of another.

Identification of outputs from a specific job was at first complicated by the design decision to allow

resources to mount the MiG workgroup file storage within the resource. Whilst this would allow

for the easy input and output of workgroup data, it would also mean that output could be produced

anywhere within the workgroup. A solution such as regular walks through the workgroup was very

quickly rejected as unworkable, because it would have to be conducted extremely often to catch all

changes. It would also take a very long time to run even once in any significant data storage, such

as is often the case in a scientific data store like the MiG. It was also seen as unworkable to use the

existing event monitors built into the MiG as the amount of processing they need to do should be kept

to a minimum. This is as they should be quickly responding to any events, and by conducting some

extensive analysis of each event to determine the specific provenance of what actually caused it would

add considerable slowdown to even handling.

The eventual solution came from the very problem itself. By mounting the MiG file system into

the resources using SSHFS, the resource and job gained access to the entire workgroup file system

and could output anywhere within it. However, any writes back to the MiG would be over SSH. If

these writes could be identified somehow, then any outputs from a job could be identified. In order to

accommodate some SSH functionality on the MiG, the Python package paramiko[77] was already

in use. This is a package implementing SSH, and provided decorators for several SSH operations,

most relevantly the write operation. By using this decorator, any write operations through the SSHFS

mount could be intercepted.

As well as this, the mounts themselves would also help solve the problem. This is as, as part of the

setup for the mount, an ID is created by the MiG which is used to authenticate the resources eventual

request for the mount. This means that each time a resource makes a mount request, it is possible

to trace back which job it is that is making the request. In combination with the paramiko write

decorators, it is therefore possible for the MiG to identify any write operations through SSHFS and

see if they came from a MEOW job. These writes could then be saved into a log, and so a record of

11.3 F O U N DAT I O N A L I N T E R AC T I O N S 64

MEOW job interactions could be assembled. To facilitate this, during the scheduling of a MEOW

job, a log file was created under the name of the SSHFS connection ID. When a write was carried out

through an SSHFS connection it is then a very quick to see if a log file by that connections ID exists.

If so then log the write in that file. Regardless of if a log file is present, the normal write operation will

always take place uninhibited. This quick check is a handy feature as it means only relevant writes are

logged, and without unduly slowing down any other writes via SSHFS connections.

11.3 F O U N DAT I O N A L I N T E R AC T I O N S

So far we have described in detail various points of the MEOW implementation on the MiG, but have

danced around how a user actually creates Patterns and Recipes. It is also not clear how a user would

see what MEOW constructs are currently defined in a workgroup, if they are only capable of seeing

their own triggers. Nor is it apparent how they could accurately track what jobs have been scheduled

from the shared Patterns and Recipes, or see how they interact and link. All of this is achieved through

the interactions with mig meow.

The MiG can already act as a host for the JupyterLab service, and so can provide any user with

access to a powerful Python environment, with pre-installed software to provide an interface for

MEOW definitions. As the Jupyter service runs separately to the MiG server code, a method of

interaction will need to be developed. The most apparent way of doing this was via JSON based HTTP

requests to the MiG. These requests could be sent by mig meow itself, and so should require minimal

user interaction. Fortunately, as part of the spawning of Jupyter Notebooks, it is possible to provide

environment variables, so it is easy to define and provide the URL to which requests can be made. A

token is also generated during the spawning process which is tied to the user spawning the notebook.

This is refered to as the WORKFLOWS SESSION ID, and is sent with all requests to the MiG. It is

used to authenticate any received requests, as only those with a valid WORKFLOWS SESSION ID

will be responded to. Through the use of these environment variables, it is possible to make requests

from mig meow within a Jupyter Notebook spawned by the MiG, to the MiG itself without any

additional input from the user.

This system is not without its flaws. As the URL and WORKFLOWS SESSION ID are both

passed as environment variables, it is not difficult for a user to find and copy them to other lo-

cations than just MiG spawned Jupyter Notebooks. This is seen as a small problem however as

only authorised users are able to get to a point where they can spawn a Jupyter Notebook, and

can only access data that they would otherwise have access to. Therefore the the unauthorised

sharing of a WORKFLOWS SESSION ID or URL is not seen as a potential avenue for a malicious

11.4 I N T E R AC T I N G V I A W I D G E T S 65

attack. Another possibility worth considering is that a malicious actor could guess another users

WORKFLOWS SESSION ID and so gain access to data they are not authorised to access. This is

also seen as being a minimal risk, as the WORKFLOWS SESSION ID is a series of 32 random

alpha-numeric characters making it very unlikely that it would be randomly guessed.

Requests themselves would be received and handled on the MiG by a new module, known as

mig.shared.functionality.jsoninterface. This is again, a location appropriate within

the established structure of the MiG, and provides a generic interface for receiving and handling

incoming JSON requests. The jsoninterface module provides functionality for users to remotely

create, read, update and delete Patterns and Recipes. Requests for these operations can then be made

by users within a Jupyter Notebook, using mig meow functions, and with a response generated by

the MiG. This means that Patterns and Recipes can be read from the MiG by various users at once, or

that a user could delete a Pattern while another edits it. To help avoid any potential race conditions

here, and to properly track individual MEOW constructs, persistence ids are used. These are

additional properties in both the Pattern and Recipe dicts and are used to track MEOW constructs on

the MiG, but also when they are read out by a user. When MEOW constructs are read back in, it is the

persistence id that is used to map them to any existing definition, rather than the name. As the

persistence id is never exposed to the user it should never be manually altered and so is a much

better way of tracking persistent objects across potential race conditions. The persistence id

is much like the WORKFLOWS SESSION ID, in that it is a long series of random alpha numeric

numbers so will be extremely difficult for a user to guess and overwrite the wrong object.

As well as Pattern and Recipe operations, the jsoninterface also supports the reading of

individual job data, as well as the reading of provenance reporting from MEOW jobs. These will be

explained more fully in Section 11.4.

11.4 I N T E R AC T I N G V I A W I D G E T S

With response mechanisms for HTTP JSON requests built onto the MiG, and the necessary environ-

ment variables automatically loaded into spawned Jupyter Notebooks, all that remains is for a user

to have some easy way of making requests. This is primarily intended to be done through widgets,

provided by mig meow. The main widget is the WorkflowWidget, has been introduced in Section

10.4. As well as the functionality already described in that section, it also contains the ability to load

in Patterns and Recipes defined on a given MiG workgroup. This is done by providing the name of

the workgroup during the creation of the WorkflowWidget. The WorkflowWidget can then be

used to view, update or delete existing Patterns and Recipes, or to create entirely new ones. As the

11.4 I N T E R AC T I N G V I A W I D G E T S 66

Figure 11.3: An example of the mig meow MonitorWidget main view.

WorkflowWidget reads a copy of the MEOW constructs in the workgroup, any changes made will

have to be manually written back to the MiG for changes to take effect on the system. This can be

done via a simple write button. As mentioned, a user can use the WorkflowWidget to view any

and all Patterns and Recipes in any workgroup they are a member of, and can view visualisations such

as Figure 10.2 to get a complete view of the potential job scheduling.

The other two significant widgets provided by mig meow are the MonitorWidget and the

ReportWidget. These are both widgets designed to make it easier for users to see how the MEOW

system is behaving/has behaved. Specifically, they allow users to identify the jobs that have been

scheduled, and to see how they interact within a MEOW context. The MonitorWidget is perhaps

more straightforward, with an example of it shown in Figure 11.3. This widget will simply provide

the user with the details of all jobs scheduled according to MEOW within a given workgroup.

The MonitorWidget itself shows a list of all jobs scheduled according to Patterns and Recipes

in a given workgroup. These can be sorted to display only those between certain intervals, so that a

potentially huge list can be managed in a reasonable manner. Individual jobs can be then displayed in

detail, so that specifics of its composition can be inspected. Jobs that are still to run, or ongoing can

also be cancelled, whilst jobs that have already been completed can be re-run if necessary. In contrast

to the WorkflowWidget, the MonitorWidget is designed as a real-time reflection of the current

MiG status. To achieve this a polling method is adopted, where every 60 seconds an updated list of

jobs will be sought from the MiG. This means that the job list can be taken as a reasonable reflection

of the current job status.

The final widget provided by mig meow is the ReportWidget. This is a proof of concept

implementation for displaying a report demonstrating the provenance of all MEOW processing within

a workgroup. As described in Section 11.2, using the log of all MEOW job writes via SSHFS, it

is possible to determine each jobs output. When combined with the file event that triggered it, it

11.4 I N T E R AC T I N G V I A W I D G E T S 67

Figure 11.4: An example of the mig meow ReportWidget with full report DAG.

Figure 11.5: A example of a filtered ReportWidget DAG.

becomes easy to construct a DAG of the MEOW processing. Despite being a DAG, this is very

different to the type of DAG used in static workflow systems. This is because it shows specific job

dependencies rather than generalised steps, but also because it can only be constructed a posteriori of

the job processing actually taking place.

The report itself is assembled by the ReportWidget, which will read the job logging from a

given workgroup and construct a DAG. Figure 11.4 shows a complete report, showing a complete

emergent workflow for a large amount of interacting jobs. Though it is hard to make out any job details

in the final image, it shows that three files within the ‘Patch/initial data/’ directory were catalysts for

three separate chains of processing. These triggered three jobs, which each produced output. This

triggered further jobs until eventually 115 jobs were completed. From this report is easy to see how

the different jobs relate to one another, and what caused them to be scheduled.

One limitation of the large report is just that, its size. The report has quickly become unwieldy. For

this reason the abilty to edit it down to something more manageable has been added to the widget.

Above the report are six filters, with which a user can edit down the displayed report. This can be done

11.4 I N T E R AC T I N G V I A W I D G E T S 68

by filtering jobs by name, triggering path, Pattern, Recipe, or before/after given times. These can be

used in combination, so a user could for instance display all jobs triggered by a particular Pattern after

a certain time. A filtered example is shown in Figure 11.5. In this case only a singular job has been

selected, so that we can get some idea of what information is displayed. In this case it is the catchily

named job ‘1418 1 26 2021 20 20 25 test.idmc.dk.0’, displayed in the middle of the DAG. We can

see that it was triggered by output from a previous job, ‘413 1 26 2021 20 19 27 test.idmc.dk.0’,

and that the triggering file was ‘Patch/int 2/data 0.npy’. We can also see that one output file was

proudced, but that it triggered two separate jobs.

Regardless of filtering or size of report, the ReportWidget will always produce the report as a

.png or .pdf file, depending on user input. This allows the report to be easily saved by users for their

own reading, or inclusion in any reports of their own. The produced report looks identical to those

shown in Figures 11.4 and 11.5, save the absence of the filtering inputs at the top. In addition, a text

based report is also generated which could be used to decode job interactions if that is a preferred way

of working, though it is somewhat dense and not the advised technique. In any case, all of the most

important information about each job is included, so that a user can quickly see what processing was

triggered and why, and what each job produced.

12

S U M M A R Y

This part has outlined how MEOW was implemented. This was done in a new python package,

mig meow, along with additions to the larger MiG project. These allow users to create and edit

Patterns and Recipes, the essential building blocks of any MEOW analysis. This can be done

programmatically, or can be done through a number of helper widgets if a user is using Jupyter

Notebooks. The main widget is the WorkflowWidget, which also integrates with the MiG so that

any MEOW constructs in a given workgroup can be created, viewed, edited or removed. This also

includes a visualisation of how it is expected that the various steps derived from Pattern and Recipe

definitions will interlink.

Another significant aspect that has been presented is the WorkflowRunner. This is a construct

within mig meow that allows for users to run their MEOW analysis without using the MiG. This is

intended only as a learning tool, and for illustration purposes for those who do not have access to the

MiG. It is still capable of running a complete analysis system, it just lacks some of the MiGs more

specific features. One of these is the ability to produce a MEOW provenance report, detailing all of

the analysis undertaken according to MEOW definitions.

We have now answered most of the thesis objectives first presented in Section 2.2. Both the

WorkflowRunner and the MiG implementation can be taken as answers to the second thesis

objective, to ’Implement an automated, dynamic workflow system’. By integrating MEOW into the

MiG the third objective to ’Integrate the automated, dynamic workflow system into a collaborative big

data platform’, was also met. This is significant as it goes some way to answering the core research

question of the thesis. As we have managed to create a tool for the automatic creation of dynamic

scientific workflows within the MiG it seems only sensible to conclude that this was feasible. A

system has been constructed that can meet all of the requirements of a SWMS first set out in 4.1. This

will now be demonstrated in the Part iii, along with with a variety of investigations and benchmarks

demonstrating the utility and cost of using such a system.

69

Part III

E X A M P L E S A N D T E S T S

13

I N T R O D U C T I O N

This is the last of the three main parts of this thesis. In it, three examples of how MEOW might be

used as presented, along with a description of the testing undertaken to ensure the correctness of the

system. The first example to be presented here is a very basic one, with no scientific value. It is

presented as a complete and thorough explanation the various stages of a MEOW analysis and how it

behaves. The second example is an actual scientific use case adapted to make use of MEOW in its

analysis. Lastly is a hypothetical example showcasing MEOWs ability to modify itself at runtime.

These are then followed by a short description of some of the tests that were carried out during

development. Most significantly is a small investigation into the watchdog package, to confirm that

it is indeed sufficient for the needs of MEOW. By the end of this part, readers should have a more

grounded understanding of MEOW and the sorts of problems it is capable of solving. The ideas and

implementations outlined in the previous two parts should be reinforced by the concrete examples set

out in this.

All of the source code used in the examples in this part is available within [34].

71

14

A F O U N D AT I O N A L E X A M P L E

This chapter will demonstrate MEOW scheduling on some very basic processing. This purpose of

this is to allow us to demonstrate the key functionality of MEOW, and to do so at such a fundamental

level that there is little room for misunderstanding. Apologies in advance if this chapter seems trivial,

or dwells too long in explaining a system that you the reader have already understood. However,

from experience, a great many people when encountering MEOW for the first time do not grasp the

actual sequence of processing, or how jobs causally relate to one another. Therefore, this example is

presented in as complete a form as possible.

14.1 P RO B L E M O U T L I N E

The processing that will take place within this example is trivial, as the processing itself is not the

focus here. Therefore, what we will be doing is taking a simple text file in a .txt format, and append

another line of text to it in each job.

The focus of this example is to demonstrate the structure of MEOW analysis, and how defined

Patterns and Recipes will result in job processing. To do this we will create an initial Pattern that will

schedule some processing on some raw data that has been created ahead of time. A second Pattern

will also be created, which will take the output of the first Pattern as input. The final output produceed

by the second Pattern will therefore have been processed by both Patterns. A single Recipe will be

created, and will be used by both of the Patterns. The desired ordering of processing is shown in

Figure 14.1.

Input
data

Intermediate
data

Output
data

First
append

Second
append

Figure 14.1: The structure of the foundational example. Directories are shown as folders, while Patterns are
shown as circles.

72

14.2 D E F I N E D R E C I P E S 73

14.2 D E F I N E D R E C I P E S

Only a single Recipe was needed for this analysis. This was defined in a Jupyter Notebook called

append text.ipynb. The code from this Jupyter Notebook is shown in Listing 14.1. This code is a very

simple algorithm for reading in a text file, appending a line, and writing the output to a new file.

By default, when the append text.ipynb Jupyter Notebook is registered with MEOW to form a

Recipe, the Recipe would be given the name append text. In this case we will overrule this,

and give the Recipe the name Append. This is done in Listing 14.4, and is not part of the Jupyter

Notebook itself.
1 import os
2

3 # Default parameters values
4 # Data input file location
5 infile = ’in_dir/default.txt’
6 # The line to append
7 extra = ’This line comes from a default pattern’
8 # Output file location
9 outfile = ’out_dir/default.txt’

10

11 # load in dataset. This should be a text file
12 with open(infile) as input_file:
13 data = input_file.read()
14

15 # Append the line
16 appended = data + ’\n’ + extra
17

18 # Create output directory if it doesn’t exist
19 output_dir_path = os.path.dirname(outfile)
20 if output_dir_path:
21 os.makedirs(output_dir_path, exist_ok=True)
22

23 # Save added array as new dataset
24 with open(outfile, ’w’) as output_file:
25 output_file.write(appended)

Listing 14.1: The append text.ipynb code cell contents.

14.3 D E F I N E D PAT T E R N S

A pair of Patterns will need to be defined to implement the structure shown in Figure 14.1. These will

simply be named Pattern One and Pattern Two as this nicely shows in what order they will apply to

the data, and are shown in Listings 14.2 and 14.3 respectively.

Both Patterns are defined in YAML files, with their names taken from the filenames.. Pattern One

uses the Append Recipe, which from Listing 14.1 uses infile as its input, which should be whatever

file caused the event seen by MEOW. Therefore, we need to set the input file parameter in

Pattern One to be infile, as this is the name of the variable in the Append Recipe used to define its

14.3 D E F I N E D PAT T E R N S 74

input. Related to this we need to define the actual path to read in our input file, that being the value

assigned to infile. This gives us the input paths parameter being set to start/*. The use of the

wildcard ‘*’ character here means that our Rule will trigger on any file within the start/ directory.

Setting the extra variable is done using the variables parameter, and is set to ‘This line was added

by Pattern One’.

1 input_file: infile
2 input_paths:
3 - start/*
4 output:
5 outfile: ’{VGRID}/first/{FILENAME}’
6 parameterize_over: {}
7 recipes:
8 - Append
9 variables:

10 extra: This line was added by Pattern_One

Listing 14.2: Pattern One file contents.

The outfile variable was added using the output parameter so that if this Pattern was loaded

into the mig meow WorkflowWidget a visualisation could be derived. It could alternatively have

been added within the variables parameter and the Pattern would function exactly the same with

regards to processing, but the visualisation would not show an output location. To define a new output

location at runtime, we will use the keywords set out in Table 10.1. As we want our output to be

written back into the file storage, we should start our path with the {VGRID} keyword. This is the

base directory within the WorkflowRunner, and the base directory of a MiG workgroup. Within

that base directory we shall output to the hardcoded first/ directory, but shall use the {FILENAME}

keyword so that different input files will produce different output files. This gives us the final value

for outfile as {VGRID}/first/{FILENAME}, which completes Pattern One.

Pattern Two is very similar to Pattern One, though the input paths is now set to first/*. This

will overlap with the output of Pattern One, so any output from Pattern One will automatically

trigger Pattern Two. The outfile and extra variable values are also updated in Pattern Two, so that the

appended line actually reflects who processed it, and it is output to a new location. This means that

our final result will be available within the second directory.

1 input_file: infile
2 input_paths:
3 - first/*
4 output:
5 outfile: ’{VGRID}/second/{FILENAME}’
6 parameterize_over: {}
7 recipes:
8 - Append
9 variables:

10 extra: This line was added by Pattern_Two

Listing 14.3: Pattern Two file contents.

14.4 U S I N G W O R K F L O W R U N N E R 75

14.4 U S I N G W O R K F L O W R U N N E R

To run the analysis we use the defined Patterns and Recipe in conjunction with the WorkflowRunner.

We will now provide an exhaustive description of how this is done, and the changes that will happen

in the system as it progresses.

14.4.1 Setting up

The WorkflowRunner can be setup and run as a single script, with the Pattern and Recipe definitions

read in directly from the previously displayed files, as is shown in Listing 14.4. Pattern definitions

are read in and stored in a single dict in lines 4-9. We have not constructed a definition file for the

Append Recipe, as it is registered directly from a Jupyter Notebook directly.

1 import mig_meow as meow
2

3 # Read in the Pattern definitions and setup Patterns dict
4 first = meow.read_pattern(’Pattern_One’)
5 second = meow.read_pattern(’Pattern_Two’)
6 patterns = {
7 ’Pattern_One’: first,
8 ’Pattern_Two’: second
9 }

10

11 # Register the Recipe notebook and setup Recipes dict
12 append = meow.register_recipe(’append_text.ipynb’, name=’Append’)
13 recipes = {
14 ’Append’: append
15 }
16

17 # Start the local runner
18 runner = meow.WorkflowRunner(
19 ’basic’, # Base directory to monitor
20 1, # Number of worker processes
21 patterns=patterns,
22 recipes=recipes
23)

Listing 14.4: The Python script foundational example.py used to run the foundational example within a
WorkflowRunner.

The final part of the script sets up and starts the WorkflowRunner itself. In this case we can

see the base directory for our analysis is called basic, and that only a single worker will be started.

We also pass our Pattern and Recipe dicts to the WorkflowRunner so that it can construct the

relevant Rules from the very beginning. All files used and produced in this running are available at

[34], within the foundational/WorkflowRunner/ directory.

Before running this script Pattern definition files, as well as the append text.ipynb Jupyter Notebook.

These will all be placed next to the script, whilst a base directory ´basic’ will also be created. This

is the directory that the WorkflowRunner will be monitoring. Before we run the script, we will

14.4 U S I N G W O R K F L O W R U N N E R 76

basic

Pattern_One

basic start

Pattern_Two

foundational_example.py

append_text.ipynb

Alpha.txt

Bravo.txt

Figure 14.2: The file structure of the foundational example before the WorkflowRunner is started. Files for
defining the MEOW system are shown in blue, whilst the starting state of the data is shown in
yellow.

basicbasic start

Alpha.txt

Bravo.txt

first

Alpha.txt

Bravo.txt

Figure 14.3: The file structure of the foundational example once all WorkflowRunner processing according
to Pattern One has completed. Note that the files used to create the WorkflowRunner, shown
in blue in Figure 14.2 are still present but have been removed from this diagram for brevity.

creeate two data files, start/Alpha.txt and start/Bravo.txt. These will each contain a single line of text

stating This is the starting state of Alpha or This is the starting state of Bravo. This structure can be

seen in Figure 14.2. The structure shown can be placed anywhere within a users local machine, and

would only require a Python environment with mig meow to run.

14.4.2 Running the WorkflowRunner

The WorkflowRunner can be started by invoking the foundational example.py script shown in

Listing 14.4. From the given Patterns and Recipe, the WorkflowRunner will create two Rules. As

part of creating these Rules, the runner will check if any existing files would trigger them, were they

created now. The two files, start/Alpha.txt and start/Bravo.txt are two such files, as they would trigger

Pattern One according to its input path of start/*. This will result in two jobs being scheduled,

one in response to each. The job triggered by the Alpha.txt will produce an output file at first/Alpha.txt.

This file will contain two lines, as shown in Listing 14.5. The second job will have output a similar

file at first/Bravo.txt, with the contents showing that it has also been modified by Pattern One.

1 This is the starting state of Alpha
2 This line was added by Pattern_One

Listing 14.5: The contents of the output file first/Alpha.txt.

14.5 U S I N G T H E M I G 77

basicbasic start

Alpha.txt

Bravo.txt

first

Alpha.txt

Bravo.txt

second

Alpha.txt

Bravo.txt

Figure 14.4: The file structure of the foundational example once all WorkflowRunner processing has com-
pleted. Note that the files used to create the WorkflowRunner, shown in blue in Figure 14.2
are still present but have been removed from this diagram for brevity.

The state of the system after the first round of processing is shown in Figure 14.3. As the two

output files of the first two jobs are written, they will trigger the Rule created from the second Pattern,

Pattern Two. This will schedule two further jobs, one for each of the two files first/Alpha.txt and

first/Bravo.txt. These will produce output in the same way as the first two jobs, though as defined by

the parameters in Pattern Two, they will output to the second/ directory. Once these two jobs are

complete, the file structure will appear as shown in Figure 14.4.

The state of the second/Alpha.txt file is shown in Listing 14.6. This clearly shows that the file shown

in Listing 14.5 has now also been processed by Pattern Two. This will conclude the job processing, as

no further Patterns have been created to respond to these final files. The WorkflowRunner itself is

still running however, so if new files were added to either the start/ or first/ directory then new jobs

would be scheduled.

1 This is the starting state of Alpha
2 This line was added by Pattern_One
3 This line was added by Pattern_Two

Listing 14.6: The contents of the output file second/Alpha.txt.

14.5 U S I N G T H E M I G

To run the example on the MiG the WorkflowWidget was used. This was run within a Jupyter

Notebook started using the MiGs DAG service[67]. The same Patterns and Recipe definitions were

used as in the previous example, so will not be re-explained here. A workgroup was set up to host

the files and act as a base for the MEOW system. The newly created workgroup was given the name

basic, so that no modifications would need to be made to our existing definitions.

A JupyterLab instance was started on the MiG, and within a Jupyter Notebook, an instance of

the MEOW WorkflowWidget was started. This will be used to manage the MEOW analysis.

14.5 U S I N G T H E M I G 78

Figure 14.5: The WorkflowWidget visualisation of the foundational example.

Figure 14.6: The foundational example provenance report generated as part of the ReportWidget.

Rather than using it to create new Patterns and Recipes from scratch, the definition files used

in the WorkflowRunner were used. Once the Pattern and Recipes definitions used in the

WorkflowRunner were loaded into the WorkflowWidget, they created the visualisation shown

in Figure 14.5. As both Pattern nodes are green, we can see that the necessary Recipe has been

registered, and so the appropriate Rules will be created as soon as we register these definitions with

the workgroup.

To trigger processing on the MiG, the Export to VGrid button was pressed in the WorkflowWidget.

This will register each MEOW construct in turn, and give a feedback message to the widget which

will be displayed. Unlike in the WorkflowRunner, merely registering the MEOW constructs is

enough for the system to begin, as the MiG is a live system. Therefore, if the input data had already

been placed in the start directory, jobs would already have been scheduled. To start scheduling we

need to upload the files start/Alpha.txt and start/Bravo.txt to the workgroup. By uploading these files,

we will trigger two jobs as expected, which will output and trigger two more.

14.6 C O N C L U D I N G T H E F O U N DAT I O N A L E X A M P L E 79

Once these jobs have completed, we are able to view a provenance report using the ReportWidget.

Such a report can be seen in Figure 14.6. As expected, this shows the four jobs which have been

scheduled on the MiG. The method of identifying job outputs outlined in Section 11.2 currently is

only implemented within the MiG, so such a report is not possible within the WorkflowRunner.

The same analysis structure will have been kept to, and the two DAGs shown could represent either

system.

14.6 C O N C L U D I N G T H E F O U N DAT I O N A L E X A M P L E

This example has shown how MEOW can be setup in a basic fashion to schedule analysis jobs on

data through the use of Patterns and Recipes. These can be easily defined by a user, and when done

so appropriately will overlap and cause chains of processing. In this case a chain of two steps was

demonstrated but there is no upwards limit on how long the chain of processing can go, just as there is

no requirement that any chain is formed at all.

This example has also demonstrated the event driven nature of the system, with jobs being scheduled

in direct response to files being created or modified. This is especially true of the MiG which is

a continuous, live system and so any additional data added to either the start/ or first/ directories

will schedule new processing until the appropriate Patterns or Recipes are unregistered. This shows

that MEOW is especially suited to continuous, repeated tasks such as are often present in scientific

analysis.

Lastly, this example has shown an exhaustive account of how a user can setup and use a MEOW

system both locally and in conjunction with the MiG. This methodology can be applied and adapted to

any processing that takes input data as files, and produces further output. Patterns may be defined

through definition files as has been shown here. Meanwhile Recipes can be simply defined through

Jupyter Notebooks that are then registered. In both cases these simple definitions are combined by the

underlying MEOW system to create Rules to manage file events.

15

A S C I E N T I F I C E X A M P L E

This second example will show a potential use case for a MEOW system in a scientific setting. It is

a modification of the example first shown in the paper Managing Event Oriented Workflows. This

paper is available in full in Appendix A, or can be viewed as originally published at [54]. Some

modifications have been made to the start of the analysis to better illustrate the dynamic nature of

MEOW. The example presented here will also be a demonstration of the ease with which branching

or looping structures can be included, as well as the possibility for scheduling new data retrieval from

within the MEOW system.

15.1 P RO B L E M O U T L I N E

This analysis processes artificial tomography scans of aluminium foam[86]. This foam contains a large

amount of unevenly sized pores. Each scan image will be segmented into aluminium and air, with this

then used to conduct some analysis of the composition of the foam. However, the segmentation and

analysis are computationally taxing tasks, which we only want to conduct on valid datasets. For this

reason we can add an initial check, to make an educated guess as to if the data is valid or not. This

will be done for each dataset individually, without prior knowledge of which datasets are valid and

which are not.

Unlike in the original example, we will not use pre-generated data but will generate artificial input

data as the MEOW system is running. This is to simulate a physical experiment producing data on an

ongoing basis. This data will still be read in by our initial porosity check, which will either accept or

deny each data file in the same manner as before. A random uncertainty was introduced to our data

generation, so each generated data file will have a one in three chance of containing too many pores.

We can therefore expect roughly a third of initially generated data to be rejected. Where previously

this rejected data was ignored, a Pattern will be added that will schedule the generation of new data to

replace this rejected data. This new dataset is generated in the same manner as the initial generation,

80

15.2 D E F I N E D R E C I P E S 81

foam
data

accepted
data

Initial
generator

Initial
check

Regenerate
data rejected

data

segmented
data

analysed
data

segment analysis

Figure 15.1: The structure of the revised scientific example. Directories are shown as folders, while Patterns are
shown as circles.

and so will also have a one in three of being too small. It will therefore also be checked in the same

manner as the initially generated data. If it is accepted then it will be segmented and analysed in the

same manner as any other data, but if rejected then it will re-generated again and again until a suitable

data file has been generated.

The resulting structure is shown in Figure 15.1. Note that the initial data generation and the

secondary re-generation of rejected data are separate steps. Both of these will use the same processing

to generate individual datasets, so the difference is not too important.

15.2 D E F I N E D R E C I P E S

Although four distinct Recipes would be needed for this analysis, three of them could be lifted straight

from the example presented in [54]. These are the Recipes for checking the data, segmenting it, and

the final analysis. As they are unaltered from their previous incantation, they will not be examined in

depth and a simple recap of their purpose is provided here.

The first of these we will call recipe check. It uses a two-component Gaussian Mixture Model, fitted

to a small sample (around 1%) of the intensity data. This provides a rough idea of the air-to-aluminium

ratio through the model component weights. This data will then be output to one of two locations

depending on the found ratio. This is shown in Appendix I.

The second Recipe is called recipe segment. In the first step of the segmentation process, noise is

reduced using a Gaussian filter. The filter kernel size is defined as a variable whose value is set in the

corresponding Pattern. Thereafter, the image is segmented using Otsu thresholding [75]. Finally, a

morphological closing operation is performed to remove possible remaining single-voxel noise. This

is shown in Appendix J.

The third reused Recipe is called recipe analysis. It investigates the pore size distribution. The

individual pores are identified using the watershed algorithm [24] with local peaks in a distance

transform of the segmented data as seeds. This is shown in Appendix K. The fourth Recipe to be used

is a completly new Recipe. This is the Recipe to generate new datasets using the Python package

15.2 D E F I N E D R E C I P E S 82

foam ct phantom [78] as well as the ASTRA toolbox [91]. As the code in this notebook is quite

long, an abridged view of it is shown in Listing 15.1, though the full code can be seen in Appendix L.

This Jupyter Notebook is used to create individual datasets as replacements for ones rejected within

recipe check.

1 # Variables to be overridden
2 dest_dir = ’foam_ct_data’
3 discarded = ’discarded/foam_data_0-big-.npy’
4 utils_path = ’idmc_utils_module.py’
5 gen_path = ’generate_foam_module.py’
6

7 ...
8

9 # Randomly determine if dataset will be ok, or have too few pores
10 def get_dataset_type(name):
11 num = random.randint(1, 3)
12 if num == 1:
13 name = name.replace(’--’, ’X-few-’)
14 return (gen.generate_foam, nspheres_per_unit_few, name)
15 else:
16 name = name.replace(’--’, ’X-ok-’)
17 return (gen.generate_foam, nspheres_per_unit_ideal, name)
18

19 # Create a dataset for a given filename
20 def create_random_dataset(name):
21 generator, spheres, filename = get_dataset_type(name)
22 dataset = generator(spheres, vx, vy, vz, res)
23 os.makedirs(dest_dir, exist_ok=True)
24 np.save(os.path.join(dest_dir, filename+’.npy’), dataset)
25

26 ...
27

28 # Generate replacement dataset
29 create_random_dataset(filename)

Listing 15.1: Abridged contents of the generator.ipynb code cells.

Datasets are generated by first determining randomly if the dataset that will be generated is going

to contain pores that are either too small, or ideally distributed. The random determination is done on

lines 9 to 17. Of note is that on lines 13 and 16 we update the filename of the generated file to reflect

the suitability of the data. This is never used in the actual calculations and is only so that we can

quickly check if the algorithm is functioning as expected. The actual process of creating the dataset

itself is on lines 21 to 24, where it is generated and saved. The implementation of this function is

provided in an ancillary module, generate foam module.py. The relevant function, generate foam

is shown in Listing 15.2. This uses a random seed to generate datasets, using part of the Astra

tooldbox.

15.3 D E F I N E D PAT T E R N S 83

1 def generate_foam(nspheres_per_unit, vx, vy, vz, res):
2 def maxsize_func(x, y, z):
3 return 0.2 - 0.1*np.abs(z)
4

5 random_seed=random.randint(0,4294967295)
6 foam_ct_phantom.FoamPhantom.generate(’temp_phantom_info.h5’,
7 random_seed,
8 nspheres_per_unit=nspheres_per_unit,
9 maxsize=maxsize_func)

10

11 geom = foam_ct_phantom.VolumeGeometry(vx, vy, vz, res)
12 phantom = foam_ct_phantom.FoamPhantom(’temp_phantom_info.h5’)
13 phantom.generate_volume(’temp_phantom.h5’, geom)
14 dataset = foam_ct_phantom.load_volume(’temp_phantom.h5’)
15

16 return dataset

Listing 15.2: Function generate foam used to generate foam data.

The code shown in Listing 15.1 is for the re-generation of data following a dataset being rejected by

the recipe check. However, exactly the same algorithm, functions and variables are used to generate

the initial datasets, as is shown in Appendix M. The only difference is that rather than creating a single

dataset on line 29, a loop is added to create a given number of datasets, each with an individual name.

The other minor change is on lines 13 and 16. Within the regeneration code, an X character is added

to the filename as a way of tracking how many times a dataset has been regenerated. By doing this, we

can quickly count how many times a file has been regenerated. As with the note about data suitability

in the filenames, this will have no effect within the actual processing itself and is only there for quick

and easy verification of results.

15.3 D E F I N E D PAT T E R N S

Much like the Recipes, there is no need for change in the three Patterns inherited from the earlier

example. As such, the definitions shown in Listings 15.3, 15.4, and 15.5 are all identical to those used

in [54].
1 input_file: input_filename
2 input_paths:
3 - foam_ct_data/*
4 output:
5 output_filedir_accepted: ’{VGRID}/foam_ct_data_accepted/’
6 output_filedir_discarded: ’{VGRID}/foam_ct_data_discarded/’
7 parameterize_over: {}
8 recipes:
9 - recipe_check

10 variables:
11 porosity_lower_threshold: 0.8
12 utils_path: ’{VGRID}/idmc_utils_module.py’

Listing 15.3: pattern check file contents.

15.4 U S I N G W O R K F L O W R U N N E R 84

1 input_file: input_filename
2 input_paths:
3 - foam_ct_data_accepted/*
4 output:
5 output_filedir: ’{VGRID}/foam_ct_data_segmented/’
6 parameterize_over: {}
7 recipes:
8 - recipe_segment
9 variables:

10 input_filedir: ’{VGRID}/foam_ct_data/’
11 utils_path: ’{VGRID}/idmc_utils_module.py’

Listing 15.4: pattern segment file contents.

1 input_file: input_filename
2 input_paths:
3 - foam_ct_data_segmented/*
4 output:
5 output_filedir: ’{VGRID}/foam_ct_data_pore_analysis/’
6 parameterize_over: {}
7 recipes:
8 - recipe_analysis
9 variables:

10 utils_path: ’{VGRID}/idmc_utils_module.py’

Listing 15.5: pattern analysis file contents.

The Pattern, pattern regenerate, is a new Pattern to schedule new data generation following a dataset

being discarded. As such, it has an input path of foam ct data discarded/*. This will allow it to

trigger for every single discarded dataset. As the resultant job will output to the foam ct data directory,

a loop will form between pattern regenerate and pattern check. This may go on infinitely but as each

track through the loop only has a one in three chances of occurring, this can be tolerated.

1 input_file: discarded
2 input_paths:
3 - foam_ct_data_discarded/*
4 output:
5 dest_dir: ’{VGRID}/foam_ct_data’
6 parameterize_over: {}
7 recipes:
8 - recipe_generator
9 variables:

10 gen_path: ’{VGRID}/generate_foam_module.py’
11 utils_path: ’{VGRID}/idmc_utils_module.py’

Listing 15.6: textitpattern regenerate file contents.

15.4 U S I N G W O R K F L O W R U N N E R

Once the Patterns and Recipes have each been defined, we can construct a script to use them in a

WorkflowRunner. This script is shown in Listing 15.7.

The final results of the analysis are available in [34]. From this we can see that a total of 71 jobs were

identified and run throughout the WorkflowRunners lifetime. Of the 20 initially created datasets,

15.5 U S I N G T H E M I G 85

13 were acceptable results. Each of the seven rejected results were then re-generated and three were

then accepted. All of the four twice rejected results were accepted on the second regeneration. This

resulted in 20 valid segmentation jobs and a further 20 analysis jobs being conducted as required.

15.5 U S I N G T H E M I G

The MEOW system was set up on the MiG as before, though this time the workgroup Patch was

used to run it. This is simply as it was already set up, and had pre-existing access to processing

resources with the necessary software dependencies installed. The WorkflowWidget produces the

visualisation shown in Figure 15.2.

1 import mig_meow as meow
2

3 # Setup dict of all Patterns
4 patterns = {
5 ’pattern_check’: meow.read_dir_pattern(’pattern_check’),
6 ’pattern_segment’: meow.read_dir_pattern(’pattern_segment’),
7 ’pattern_analysis’: meow.read_dir_pattern(’pattern_analysis’),
8 ’pattern_regenerate’: meow.read_dir_pattern(’pattern_regenerate’)}
9

10 # Setup dict of all Recipes
11 recipes = {
12 ’recipe_check’: meow.register_recipe(
13 ’scientific/initial_porosity_check.ipynb’, ’recipe_check’),
14 ’recipe_segment’: meow.register_recipe(
15 ’scientific/segment_foam_data.ipynb’, ’recipe_segment’),
16 ’recipe_analysis’: meow.register_recipe(
17 ’scientific/foam_pore_analysis.ipynb’, ’recipe_analysis’),
18 ’recipe_generator’: meow.register_recipe(
19 ’scientific/generator.ipynb’, ’recipe_generator’)}
20

21 # Start the local runner
22 runner = meow.WorkflowRunner(
23 ’scientific’, 1, patterns=patterns, recipes=recipes)

Listing 15.7: The Python script scientific example.py used to run the scientific example within a
WorkflowRunner.

Once all of the Patterns and Recipes had been set up, the initial generation.py script was uploaded

to the workgroup. This is shown in Appendix M. In this case, 15 of the initial data files were generated

acceptably on the first try. Of the remaining five, four were accepted on the first re-generation whilst

the last was only accepted after three re-generations.

As displaying all of these on a single report would make it rather large, a select dataset has been

shown. This is in Figure 15.3 and shows the path taken for the foam data 15 datasets. We can see that

the initial dataset triggered the pattern check, which we can tell if failed as the output was written to

the foam ct data discarded/ directory. This has triggered pattern regenerate, which created a new

dataset which was output to the foam ct data directory. This time the check was passed and the

segmentation and analysis were performed on the data as expected.

15.5 U S I N G T H E M I G 86

Figure 15.2: The WorkflowWidget visualisation of the scientific example.

Figure 15.3: The ReportWidget for the jobs scheduled from foam data 15 datasets.

15.6 C O N C L U D I N G T H E S C I E N T I F I C E X A M P L E 87

As in the case of all previous examples, the full output of this experiments are available in [34].

Additionally, the full report produced by the ReportWidget has also been provided as a reference

for all the job scheduling that took place on the MiG.

15.6 C O N C L U D I N G T H E S C I E N T I F I C E X A M P L E

This example has demonstrated a number of MEOW features and use cases. Most obviously, it has

demonstrated how a MEOW system can be used to automate a complicated series of scientific analysis

tasks. Although only a tomography example has been presented, it should be apparent how similar

workflows in other data analysis disciplines could also use MEOW as a basis. This example has

also demonstrated how easy it is to accommodate branching analysis paths. Consider that when

each dataset is checked within the pattern check step. It is unpredictable as to if each dataset will be

accepted or rejected, yet the system can easily accommodate each. No special definition needs to be

inserted, or errors managed.

In addition, the example has shown how we can use loops in our scheduling to great effect. In

particular, it is worth noting that these loops can be infinite in nature. This contrasts strongly with

many of the loop implementations of the static systems described in Section 4.2. Obviously this

should be used with care, as unwanted infinite loops will consume resources. This will be mitigated

somewhat on the MiG, which already has a number of features to limit how many resources each

workgroups can access, and how long individual jobs can run for. No such management exists within

the WorkflowRunner, and so it is perfectly possible to make an infinite loop of processing. Despite

this being seen as a desirable feature in MEOW, one potential improvement in future work would be a

warning system so that a user does not create such a system accidentally. As this is by no means a

trivially discarded problem we will return to discussing it in further detail in Section 26.2.1.

16

A S E L F M O D I F Y I N G E X A M P L E

As a final example, we will examine one possibility for new analysis structures enabled by MEOW.

Namely, the ability for a MEOW system to be self-modifying, and construct, modify or remove

MEOW constructs at runtime. A toy example is presented as a demonstration of the core functionality

and as a potential inception for further ideas in the reader.

16.1 P RO B L E M O U T L I N E

In this example a user wishes to apply a filter to image data. However, the particular filters regularly

change, even though the fundamental process does not. The users needs can be met with MEOW, by

designing a system that will take configuration inputs to create new Patterns. Each of these Patterns

will apply different filters to different data, according to their configuration. In this system the user

only needs to manually write a single Pattern, and any subsequent requirements will be met by the

MEOW system itself.

This problem will therefore demonstrate how we can construct MEOW Patterns from within

a MEOW system. While Recipes perform the actual analysis, assembling a Jupyter Notebook

programmatically has been demonstrated numerous times before[18], and so will be omitted here.

What we will create is a single Pattern and Recipe, which will construct new Patterns, based on

user provided configurations. The structure for this system is shown in Figure 16.1. Here we can

see that our single Pattern will respond to any configuration files placed in the confs directory. This

Pattern will trigger jobs that will construct new Patterns, which will monitor different locations for

data. These subsequent Pattern will then schedule jobs as would be expected in any other Pattern.

88

16.2 D E F I N E D R E C I P E S 89

basicdata

Jobs

Pattern
Maker basicconfs

New
Pattern

monitors

monitors

creates

schedules

Figure 16.1: The structure of the self-modifying example.

16.2 D E F I N E D R E C I P E S

Before we define a Jupyter Notebook for assembling new Patterns, let us define the Recipe which the

assembling Pattern will use. The code cell contents of this Jupyter Notebook is shown in Listing 16.1.

In this Jupyter Notebook, image data is read in, a filter is applied to this image, and the filtered image

is saved as a new file. The key part is on lines 15-17. Here is where the filter command is created from

the arguments provided to the Jupyter Notebook. A valid filter command will be any of the filters

available as part of the Python ImageFilter module[45], part of Pillow[79].

1 # Variables to be overridden
2 input_image = ’Patch.jpg’
3 output_image = ’Blurred_Patch.jpg’
4 args = {}
5 method = ’BLUR’
6

7 from PIL import Image, ImageFilter
8 import yaml
9 import os

10

11 # Read in image to apply filter to
12 im = Image.open(input_image)
13

14 # Construct the filter command as a string from provided arguments
15 exec_str = ’im.filter(ImageFilter.%s’ % method
16 args_str = ’, ’.join("{!s}={!r}".format(key,val) for (key,val) in args.items())
17 exec_str += ’(’ + args_str + ’))’
18

19 # Apply constructed command as python code
20 filtered = eval(exec_str)
21

22 # Create output directory if it doesn’t exist
23 output_dir_path = os.path.dirname(output_image)
24 if output_dir_path:
25 os.makedirs(output_dir_path, exist_ok=True)
26

27 # Save output image
28 filtered = filtered.save(output_image)

Listing 16.1: Contents of the filter recipe.ipynb code cells.

16.3 D E F I N E D PAT T E R N S 90

To construct the Pattern that will use the Recipe defined by filter recipe.ipynb, we will need a

second Jupyter Notebook. This is shown in Listing 16.2. This Jupyter Notebook also has a relatively

simple progression of processing, with a configuration YAML file being read in. The contents of

the YAML file are then parsed and used to constuct a new Pattern programmatically. Once this

new Pattern is complete, it is written to a specified directory. This is the directory where the

WorkflowRunner will store the MEOW constructs, and is monitored by its State Monitor process.

By writing a new Pattern directly to this location, we can insert it directly into the state of the

WorkflowRunner.
1 # Variables to be overridden
2 meow_dir = ’meow_directory’
3 filter_recipe = ’recipe_filter’
4 input_yaml = ’input.yml’
5

6 # Names of the variables in filter_recipe.ipynb
7 recipe_input_image = ’input_image’
8 recipe_output_image = ’output_image’
9 recipe_args = ’args’

10 recipe_method = ’method’
11

12 # Imports
13 import yaml
14 import mig_meow as meow
15

16 # Read in configuration data
17 with open(input_yaml, ’r’) as yaml_file:
18 y = yaml.full_load(yaml_file)
19

20 # Assemble a name for the new Pattern
21 name_str = ’%s_%s’ % (
22 y[’filter’],
23 ’_’.join("{!s}_{!r}".format(key,val) for (key,val) in y[’args’].items()))
24

25 # Create the new Pattern
26 new_pattern = meow.Pattern(name_str)
27 new_pattern.add_recipe(filter_recipe)
28 new_pattern.add_single_input(recipe_input_image, y[’input_path’])
29 new_pattern.add_output(recipe_output_image, y[’output_path’])
30 new_pattern.add_variable(recipe_method, y[’filter’])
31 new_pattern.add_variable(recipe_args, y[’args’])
32

33 # Register the new Pattern with the system.
34 meow.write_dir_pattern(new_pattern, directory=meow_dir)

Listing 16.2: Contents of the pattern maker recipe.ipynb code cells.

16.3 D E F I N E D PAT T E R N S

At the start of the experiment, only a single Pattern is defined. This is shown in Listing 16.3.

Mostly, it is just defining variable names expected within the pattern maker recipe.ipynb Jupyter

Notebook.

16.4 U S I N G W O R K F L O W R U N N E R 91

1 input_file: input_yaml
2 input_paths:
3 - confs/*.yml
4 output: {}
5 parameterize_over: {}
6 recipes:
7 - recipe_maker
8 variables:
9 filter_recipe: recipe_filter

10 meow_dir: self-modifying
11 recipe_args: args
12 recipe_input_image: input_image
13 recipe_method: method
14 recipe_output_image: output_image

Listing 16.3: pattern maker file contents.

16.4 U S I N G W O R K F L O W R U N N E R

In order to use the defined Pattern and Recipes with a WorkflowRunner, the script shown in Listing

16.4 was used. The only significant difference to previous WorkflowRunner instances is that on

line 16, the state directory for the WorkflowRunner is manually set to the self-modifying directory,

which is the same that the base file directory given on line 15. Putting the state directory in the same

place as the base file directory makes it easiest to access from within the jobs, which makes updating

the WorkflowRunner state easier. This does mean there will be two monitors listening to the same

file structure, so there may be some slowdown in responding to events due to each event being caught

and processed twice. For a small example like this on a local system, this will not create a significant

overhead, though the problem will become more pronounced if used on something larger such as the

MiG, and so is not generally advised.

1 import mig_meow as meow
2

3 # Setup dict of all Patterns
4 patterns = {
5 ’pattern_maker’: meow.read_dir_pattern(’pattern_maker’)}
6

7 # Setup dict of all Recipes
8 recipes = {
9 ’recipe_filter’: meow.register_recipe(

10 ’self-modifying/filter_recipe.ipynb’, ’recipe_filter’),
11 ’recipe_maker’: meow.register_recipe(
12 ’self-modifying/pattern_maker_recipe.ipynb’, ’recipe_maker’)}
13

14 # Start the local runner
15 runner = meow.WorkflowRunner(’self-modifying’, 1, patterns=patterns,
16 recipes=recipes, meow_data=’self-modifying’)

Listing 16.4: The Python script run self modifying example.py used to run the self-modifying example within
a WorkflowRunner.

When the WorkflowRunner is initially created, no additional data is present within the self-

modifying/ directory, and so no jobs are scheduled. A user can also easily see the Patterns and

16.4 U S I N G W O R K F L O W R U N N E R 92

data

run_self_modifying_example.py

basicconfs

Patch.jpg

recipes

patterns

run_self_modifying_example.py

pattern_maker

recipe_filter

recipe_maker

pattern_maker_recipe.ipynb

filter_recipe.ipynb

Figure 16.2: The file structure of the self-modifying example before any configuration files are added to the
WorkflowRunner.

Recipes that are registered in the system as they will each be in a patterns/ and recipes/ directory

within self-modifying/. Before we start initiating jobs, we can also create a directory, confs, which

pattern maker will be monitoring for configuration files for new filters. We can also add some image

data in a data/ directory. Just as in the previous examples, we could have done this after starting

the WorkflowRunner, but this will mean processing can start immediately. This will give us the

overall structure shown in Figure 16.2.

To start scheduling a job we will need a configuration file to place in the confs directory. Such a file

is shown in Listing 16.5. This file is a YAML file containing a number of variable defintions, which

match up to the expected inputs in the pattern maker.ipynb Jupyter Notebook. If this file is placed into

the confs directory, then the Rule created by pattern maker will trigger, and a job will be scheduled.

1 input_path: data/*.jpg
2 output_path: ’{VGRID}/GaussianBlurred/{FILENAME}’
3 filter: GaussianBlur
4 args:
5 radius: 2

Listing 16.5: input.yml file contents.

This newly scheduled job will use the parameters specified in input.yml to create a new Pattern,

which will be given the name GaussianBlur radius 2. This will be saved into the self-modifying/patterns/

directory and is shown in Listing 16.6. As the Rule derived from this pattern will monitor the

data/ directory, and we have already placed an image file, Patch.jpg in said directory, a job will be

16.5 U S I N G T H E M I G 93

Figure 16.3: Comparison of the input and output Patch.jpg data, used in the self-modifying example. Input data
from data/Patch.jpg is shown on the left, with output data at GaussianBlurred/Patch.jpg on the
right.

immediately scheduled. In accordance with the already presented definitions, this will produce output

which will be saved into the GaussianBlur directory. The sample input and output data used in this

example are shown in Figure 16.3.

1 input_file: input_image
2 input_paths:
3 - data/*.jpg
4 output:
5 output_image: ’{VGRID}/GaussianBlurred/{FILENAME}’
6 parameterize_over: {}
7 recipes:
8 - recipe_filter
9 variables:

10 args:
11 radius: 2
12 method: GaussianBlur

Listing 16.6: pattern maker file contents.

16.5 U S I N G T H E M I G

Unlike the previous examples, we will need to make some modifications to the presented code before

we can get this analysis running on the MiG. This is as we cannot simply manipulate the MEOW state

storage location on the MiG, as this part of the system is entirely hidden from the user. This is an

intentional security feature, so that users do not manipulate data they do not have access to, or corrupt

the state of a live system.

16.5 U S I N G T H E M I G 94

To gain access to the MEOW state through the JSON messaging used in the WorkflowWidget,

we need a WORKFLOWS URL a valid WORKFLOWS SESSION ID. The WORKFLOWS URL can be

manually entered for now, as this is unchanging, but the WORKFLOWS SESSION ID is only generated

within JupyterLab instances spawned on the MiG. To achieve this, slight modifications will need to

be made to the pattern maker, which we will now call pattern maker mig. It is shown in Listing

16.7. Mostly it is the same as before, but with the addition of the workflows session id, workflows url

and workgroup variables. These will all be used in the modified pattern maker recipe.ipynb Jupyter

Notebook so that it can communicate directly with the MiG. As the WORKFLOWS SESSION ID is a

security feature within the MiG, it has not been shown here, but was used in the actual example run.

1 input_file: input_yaml
2 input_paths:
3 - confs/*.yml
4 output: {}
5 parameterize_over: {}
6 recipes:
7 - recipe_maker_mig
8 variables:
9 filter_recipe: recipe_filter

10 meow_dir: self-modifying
11 recipe_args: args
12 recipe_input_image: input_image
13 recipe_method: method
14 recipe_output_image: output_image
15 workflows_session_id: *redacted*
16 workflows_url: https://test-sid.idmc.dk/cgi-sid/jsoninterface.py?output_format=

json
17 workgroup: ’{VGRID}’

Listing 16.7: pattern maker mig file contents.

An abridged section of the recipe Jupyter Notebook, pattern maker recipe mig.ipynb is shown in

Listing 16.8. The full code contents is shown in Appendix N. All of these changes are to enable line

14, where the newly created Pattern is sent to the MiG via a JSON request.

1 # Variables to be overridden
2 workflows_url = ’https://test-sid.idmc.dk/cgi-sid/jsoninterface.py?output_format=

json’
3 workflows_session_id = ’*redacted*’
4

5 import mig_meow as meow
6

7 . . .
8

9 # Setup environment variables for meow to workgroup communication
10 os.environ[’WORKFLOWS_URL’] = workflows_url
11 os.environ[’WORKFLOWS_SESSION_ID’] = workflows_session_id
12

13 # Register the new Pattern with the system.
14 meow.export_pattern_to_vgrid(workgroup, new_pattern)

Listing 16.8: New code used in pattern maker recipe mig.ipynb.

As expected, once the Pattern and Recipes have been registered with the MiG, no jobs were

scheduled until a file was added to the confs directory. The same data file was added as before, and the

16.6 C O N C L U D I N G T H E S E L F - M O D I F Y I N G E X A M P L E 95

Pattern GaussianBlur radius 2 was created on the MiG. This itself did not schedule any processing

until the file data/Patch.jpg was added, at which point a second job was scheduled. This produced

identical results to those shown in Figure 16.3, and so will not be repeated again here. As in other

examples, all results are available at [34].

This is not an ideal solution however, as it depends on exposing security features of the MEOW

system. This problem is limited in scope, as in order for a user to get to this stage they will need

to have access to the MiG in order to spawn a Jupyter Notebook with the WORKFLOWS URL and

WORKFLOWS SESSION ID. Therefore, as long as users are sensible with this credentials they will

not be exposing data that would otherwise be secure. It is suspected that drawing attention to these

variables which are otherwise hidden may encourage users to share them and so exacerbate the

problem.

From a usability perspective though, the pressing problem is that Patterns and Recipes created in

this manner will only be valid for as long as the WORKFLOWS SESSION ID remains valid. This is as

only a WORKFLOWS SESSION ID will ever be registered for a user, and they will be regenerated

throughout the lifetime of the MiG. However, creating a new WORKFLOWS SESSION ID will not

update the variables passed in these Patterns and so when the resultant jobs try to send a message to

the MiG they will be rejected. This means that the Patterns and Recipes will need to be re-registered

each time a new WORKFLOWS SESSION ID is created. For this reason this solution is not suggested

as a final implementation, but merely as a stop-gap demonstration of potential future functionality.

A more robust implementation would be additional functionality within mig meow such as each

job creating its own WORKFLOWS SESSION ID, thus allowing Patterns and Recipes interactions to

be verified without having to share hard-coded credentials across jobs. A similar system is already

in place on the MiG for SSH users within jobs, which allows individual job mount requests to be

similarly authenticated, so it is not expected to be a significant challenge to do that same for MEOW

interactions.

16.6 C O N C L U D I N G T H E S E L F - M O D I F Y I N G E X A M P L E

Although this was somewhat of a toy example, with a simple configuration file taken as input, this is

not the limit of the possibilities. Any input file could be taken in and parsed so as to produce new or

modified MEOW constructs. Although only the dynamic creation of Patterns has been shown, it is

perfectly possible for new Recipes to be constructed at runtime in the same manner, it would just take

considerably more lines of code to create a new Jupyter Notebook from scratch.

16.6 C O N C L U D I N G T H E S E L F - M O D I F Y I N G E X A M P L E 96

It is worth noting that we are not limited to merely adding new constructs, but can modify existing

ones if we used some of the functions included in mig meow for reading the current state of the

workgroup. Here we could read in definitions, and write modified values back in the same manner

as if we were altering them programatically within a Jupyter Notebook. This means that a MEOW

system can create, modify and delete itself, or its parts at runtime. It can also make decisions about

when to do so within a suitably written Recipe, and so we can conclude that MEOW analysis is Turing

complete at runtime. Whilst it would be bold claim to state that this is unique, none of the currently

encountered SWMS have come close to this level of self modification.

17

T E S T I N G M E O W

This chapter will briefly explain what testing was carried out during the development of MEOW and

mig meow. These are unit tests to ensure basic functionality, user tests to check a real world system,

and the specific investigation into watchdog and the overheads of using MEOW.

17.1 U N I T T E S T S

As is good practice in any software development, a number of unit tests were written for mig meow

and the MiG. To go through each would not be especially useful or interesting, but all can be found

either as part of mig meow at [62] within mig meow/tests/, or the MiG at [61] at mig/unittest/test-

workflows.py. Collectively, these test the creation, removal and modification of the various MEOW con-

structs. Attention is drawn to the tests for the WorkflowRunner at mig meow/tests/testLocalRunner.py.

These test the ongoing behaviour of a live system, checking that events are identified and jobs are

scheduled. Chains of progression are confirmed, so we can be confident that the requirements as set

out in Section 6.2 have been correctly implemented.

17.2 U S E R T E S T I N G

The other common way of testing functionality was by user testing. This could either be by running

the WorkflowRunner, or using the development server of the MiG to test the performance of a live

system. Often times this was carried out on small modifications, or in conjunction with logging to

ascertain exactly what happened and what state has been reached. Although a great deal of this testing

was carried out by me, additional testing was provided by other MUMMERING ESRs, both during

the MEOW workshop presented in Section 20.5 and during their own analysis using MEOW.

97

17.3 I N V E S T I G AT I N G W A T C H D O G 98

Events Made Events Seen Duration (s) Events (per s)
1,000 1,000 0.35 2857.28

10,000 10,000 3.00 3328.19
100,000 100,000 31.69 3155.38

1,000,000 1,000,000 352.94 2833.31

Table 17.1: Results of the watchdog test. All results are averages of 20 runs and rounded to 2 decimal places.
Run on the Desktop resource, shown in Appendix E.

17.3 I N V E S T I G AT I N G W A T C H D O G

Any implementation of MEOW depends on the ability to detect events. Within the MiG this is already

done through the use of the watchdog[93] package, which was introduced in Section 9.2. To check

if it did indeed catch all file events, a number of specific tests were carried out. To do this a test was

created that would start a monitoring process that would increment a count every time it registered

an event. A number of writer threads were then spawned that would simultaneously create as many

events as they could within the file system. This test was run a number of times in different variations.

It was discovered that simply creating an empty file as an event was faster than repeatedly appending

to the same file. It was also discovered that on the machine running the test, four writer processes was

the quickest configuration. This gives us the final test code shown in Appendix O. Results of this test

are shown in Table 17.1, having been run on the Desktop resource shown in Appendix E. This table

shows the results for four different tests, with differing numbers of events produced in each. For each

test the number of seen events was recorded, along with the time taken for all events to be produced.

From these numbers we can calculate how many events were produced per second.

These results show that all events have been identified by watchdog. As watchdog is capable

of identifying thousands of events per second, we can conclude that it is fit for purpose as a means of

programatically identifying all system events.

17.4 OV E R H E A D S W H E N U S I N G M E O W

Whilst the tests presented so far have focused on verifying correct behaviour in MEOW, it is also

important to measure the performance of the system. One significant difficulty here is that MEOW is

an event based system. As discussed in Section 4.2, there are few comparable event-based scheduling

systems to test against, and certainly none that enjoy mass-adoption. However, several systems exists

that are widely used and have a similar system for queuing and executing jobs. One such system is

17.4 OV E R H E A D S W H E N U S I N G M E O W 99

Slurm, which although not a dedicated SWMS, is a tool for the mass scheduling of jobs on distributed

clusters of resources and so has a similar use case to the MiG.

Each of the following test were run in a dedicated Docker[25] container. This was as a container

system was required in order to run a testable instance of the MiG. In order to make the tests as

comparable as possible, Docker was therefore also used in the Slurm and mig meow tests cases. This

would hopefully ensure that any overheads from the use of Docker in the MiG tests would also be

present in all other tests, and so a more even conclusion can be drawn. All tests were repeated 10

times to get an averaged result, and each test was run from 10 to 500 jobs. These tests were not run

evenly however, with the amount of jobs increasing at an accelerated rate at the jobs increase. This

was as it was expected that smaller trends would be visible with low amounts of jobs, whilst with large

amounts the general trend should already be visible. Each test was also run on both the laptop and

threadripper resources outlined in Appendix E. The laptop is a small machine, representative of the

lower powered machines most researchers have as a personal workstation. Meanwhile the threadripper

is a custom built machine designed for massive processing of scientific problems. As many of the

tests are not explicitly parallelised, there will not be a massive performance difference between the

two, but the threadripper will be less prone to being swamped by new threads or context switching.

17.4.1 Overheads in Slurm

Slurm has two basic methods of scheduling jobs, srun and sbatch. Both will schedule one or more

jobs, though srun is a blocking operation, where a user must wait for all jobs to schedule and execute

before their script or terminal can progress. In contrast, sbatch schedules jobs in the background

and so is a non-blocking operation. This means that whatever foreground process is creating jobs can

continue on to other things without needing to wait for any jobs to actually complete. This is more

akin to how the MiG, mig meow’s WorkflowRunner and most SWMS’s work and so sbatch

will be used for the baseline tests as well.

To get a baseline for Slurm’s performance, srun and sbatchwere used to schedule large numbers

of jobs at once and how long it took the scheduling to complete was timed. Note that this does not

include the execution time. As MEOW can also be used for continuous analysis we should also

investigate the overhead of an ongoing system. Another tests was therefore developed where jobs

were scheduled individually, with each job scheduling a new job. This forms a chain of processing

akin to how MEOW is expected to be used. Note that this second test includes execution times as each

job needs to be executed to schedule the next. The test code itself is visible within a Github repository

at [28]. The results of all three tests on the Threadripper are shown in Figure 17.1. For each test the

17.4 OV E R H E A D S W H E N U S I N G M E O W 100

10
20

30
40

50
60

70
80

90
100

125 150 175 200 250 300 400 500

Number of jobs scheduled

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

Slurm scheduling overheads on the Threadripper
scheduling sbatch_sequential
execution sbatch_sequential
combined sbatch_sequential
scheduling srun
execution srun
combined srun
scheduling sbatch
execution sbatch
combined sbatch

Figure 17.1: Slurm scheduling durations on the Threadripper. Each result is an average of 10 runs.

scheduling time, execution time, and a combination of both are shown. In the case of the srun and

sbatch tests, the scheduling time is the pertinent part to look at and has been highlighted. In the case

of the continuous scheduling test it is the combined time, which has also been highlighted. This is as

the scheduling is in fact only the timing for scheduling the initial job and so shows an inaccurately

fast time, whilst the combined time is the actual time for all jobs to be scheduled.

As Slurm is a relatively bare-bones system, where work to be done is split into a number of

separate jobs then enrolled in a queue, there is not much scope for overhead. This is reflected in the

demonstrated very quick scheduling by sbatch, which was the best performing and so will be taken

as the baseline to beat. As the test was run with only a single Slurm worker, srun must wait for

jobs to complete before scheduling the next, leading to the much larger overhead. Running sbatch

sequentially runs is effectively doing the same thing, as each jobs needs to execute to schedule the

next, but the use of sbatch means that some concurrency can happen between the scheduler and

the processor, hence the slightly decreased overhead. Significantly, in all three tests the scheduling

time per job is increasing linearly, meaning the Slurm will scale very well with larger job submissions.

This is true of both the Threadripper and Laptop tests. Despite the larger core count and clock size of

the Threadripper over the Laptop, the relative linearity of the test means that no great performance

difference is found between the two. Results for both resources, and graphs showing the per-job

scheduling duration are shown in Appendix P, with raw results available at [8].

17.4 OV E R H E A D S W H E N U S I N G M E O W 101

17.4.2 Overheads in mig meow

To isolate some of the MiG overheads, we will first time the WorkflowRunner within mig meow.

This will then be compared against similar tests in the MiG. Some of the same overheads will be

present in both, as the structure of the WorkflowRunner was designed to mimic the MiG.

Within both the MiG and the the WorkflowRunner, the overheads will consist of the sum of the

following components: Event identification in watchdog, Rule lookup, creating one or more new

jobs, as well as any associated overhead caused by running the rest of the MiG or WorkflowRunner.

To help identify how much each of these components contribute to the total overhead, as well as to

identify additional overheads, five different experiments were created. Unless otherwise noted the

Recipe in each is some inconsequential execution. The five experiments would are as follows:

• Single Pattern, Multiple Files (SPMF). In this experiment a single Pattern would be created

that would trigger on any file event within a directory. N files would then be created within

the directory, causing the parallel scheduling of N jobs. This should allow us to identify the

aggregate overheads of MEOW scheduling. This test can be directly compared against the

Slurm sbatch test.

• Single Pattern, Single Files, Parallel Scheduling (SPSFP). In this experiment a single Pattern

would be created that would trigger on any file event within a directory. This Pattern would

include an N wide parameter sweep over some variable. A single file would then be created

within the directory, causing the parallel scheduling of N jobs. By comparing this to SPMF

we should be able to identify the overhead caused by watchdog and event identification, by

minimising it within this experiment. This test can be directly compared against the Slurm

sbatch test.

• Single Pattern, Single Files, Sequential Scheduling (SPSFS). In this experiment a single

Pattern would be created that would trigger on any file event within a directory. The Recipe used

by this Pattern would create another file in the same directory, so triggering the Pattern again.

A variable will also be included so that a file is only created by the first N-1 jobs. This will

result in sequential scheduling of N jobs. This test should illustrate the overhead in continuous

looping scheduling, the most anticipated use-case for a MEOW system. This test can be directly

compared against the Slurm sequential sbatch test.

• Multiple Patterns, Single File (MPSF). In this experiment N Patterns would be created that

would trigger on any file event within a directory. A single file would then be created within

the directory, causing the parallel scheduling of N jobs. When compared against the SPMF

17.4 OV E R H E A D S W H E N U S I N G M E O W 102

experiment, this can isolate the overhead in Rule lookup. This test can be directly compared

against the Slurm sbatch test.

• Multiple Patterns, Multiple Files (MPMF). In this experiment N Patterns would be created

that would each trigger on a different specific file within a directory. N files would then be

created within the directory, each matching to a single Pattern causing the parallel scheduling of

N jobs. By comparing this to the other tests we should be able to identify the expected general

overhead in a live system, where many differing events may happen at once, as well as the

overhead for Pattern lookup in a larger memory construct compared to the SPMF test. This test

can be directly compared against the Slurm sbatch test.

The source code for each of these tests is available within [26], and the results for the tests run on

the Threadripper are shown in Figure 17.2 and again in Figure 17.3 on a logarithmic scale. As with the

Slurm tests, complete results and more in depth results are shown in Appendix P. In the SPMF, MPSF

and SPSFP tests the WorkflowRunner actually comes out ahead of the Slurm tests, with a speedup

of roughly 2.5, though this obviously varies with experiment and the amount of jobs. In each case

the per-job scheduling time is reasonably constant demonstrating good scalability in these situations.

The MPMF does not scale well however, with it being slower than the Slurm past roughly 100 jobs at

once. This is down to two parts. Firstly, each file event is identified and processed separately, and it

takes time for the WorkflowRunner to navigate the stored Patterns. These overheads each occur in

the SPMF or MPSF without adding any noticeable slowdown, and so at least for up to 500 jobs we

can conclude that they are negligible in isolation, but have a quadratic effect on the per-job time when

they both increase.

The performance of the SPSFS test was roughly 100 times slower than the sequential tests. This

is down to three key overheads, settling, querying, and executing. Firstly, each event has a ‘settle

time’, where to prevent the WorkflowRunner getting swamped by multiple events from the same

location any events that occur at the same location and very close time are represented as a single

event. This means after any single event the File Monitor process will wait for one second to catch

any subsequent events at the same location. By definition, this will add at least 1 second of overhead

to processing each event. This will occur in all tests, but in all others it will occur only once no matter

how many jobs will be eventually scheduled, whilst in the SPSFS test it will occur for each sequential

job. There is also the additional overhead of waiting for each job to be executed in turn. Aside from

the raw time taken to execute the code, which is more complex in the WorkflowRunner jobs than

in the Slurm testing, there will also be a delay inherent in the Worker process requesting a job from the

Queue process. In these tests the Worker was set to query for new jobs every second. From all this we

can conclude that in these tests at least the overhead from each of these was roughly 1s, and totalled

17.4 OV E R H E A D S W H E N U S I N G M E O W 103

10
20

30
40

50
60

70
80

90
100

125 150 175 200 250 300 400 500

Number of jobs scheduled

0

200

400

600

800

1000

1200

1400

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

mig_meow WorkflowRunner scheduling overheads on the Threadripper
scheduling single_Pattern_multiple_files
scheduling single_Pattern_single_file_parallel_jobs
scheduling single_Pattern_single_file_sequential_jobs
scheduling multiple_Patterns_single_file
scheduling multiple_Patterns_multiple_files

Figure 17.2: MEOW scheduling durations on the Threadripper. Each result is an average of 10 runs. This shows
the same information as Figure 17.3, except in a linear scale.

10
20

30
40

50
60

70
80

90
100

125 150 175 200 250 300 400 500

Number of jobs scheduled

10 1

100

101

102

103

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

mig_meow WorkflowRunner scheduling overheads on the Threadripper

scheduling single_Pattern_multiple_files
scheduling single_Pattern_single_file_parallel_jobs
scheduling single_Pattern_single_file_sequential_jobs
scheduling multiple_Patterns_single_file
scheduling multiple_Patterns_multiple_files

Figure 17.3: Logarithmic MEOW scheduling durations on the Threadripper. Each result is an average of 10
runs. This shows the same information as Figure 17.2, except in a logarithmic scale.

17.4 OV E R H E A D S W H E N U S I N G M E O W 104

10
20

30
40

50
60

70
80

90
100

125 150 175 200 250 300 400 500

Number of jobs scheduled

100

101

102

103

104

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

MiG scheduling overheads on the Threadripper

total single_Pattern_multiple_files
total single_Pattern_single_file_sequential
total multiple_Patterns_single_file
total multiple_Patterns_multiple_files
total single_Pattern_single_file_parallel

Figure 17.4: Logarithmic MiG scheduling durations on the Threadripper. Each result is an average of 10 runs
This shows the same information as Figure 17.5, except in a logarithmic scale.

3s. This is significantly slower that the approximately 0.035s achieved by the sequential sbatch

test. However, it is worth highlighting that was in the case of the SPMF, MPSF and SPSFP tests, the

SPSFS demonstrates very good scalability as it has a constant per-job overhead of approximately 3s.

This overhead should remain constant even across a larger system of multiple users operating MEOW

analysis at the same time.

17.4.3 Overheads on the MiG

Exactly the same tests were run on the MiG as on the WorkflowRunner. The test code itself is

available at [27], with the complete results shown in Appendix P. As can be seen in Figure 17.4,

performance from these tests is worse across the board, but this is to be expected. The MiG is a large

grid management system rather than a lightweight scheduling system, so will always run much slower

than either Slurm or the WorkflowRunner. With this in mind we shouldn’t be too surprised that

generally the MiG is roughly 25-50 time slower than sbatch. The sequential test is even slower at

roughly 500 times slower than the sequential sbatch test. That being said, it is worth remembering

here what this is a timing actually of. It is worth noting that whilst the SPSFS test demonstrates linear

scalability, all others were quadratic in nature, as is shown in Figure 17.5. This is demonstrated in

Figure 17.6 where we can see that the difference in per-job timings is linear as the total number of

scheduled jobs increases, which results in a quadratic increase in total scheduling time.

17.4 OV E R H E A D S W H E N U S I N G M E O W 105

10
20

30
40

50
60

70
80

90
100

125 150 175 200 250 300 400 500

Number of jobs scheduled

0

100

200

300

400

500

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

MiG scheduling overheads on the Threadripper
total single_Pattern_multiple_files
total multiple_Patterns_single_file
total multiple_Patterns_multiple_files
total single_Pattern_single_file_parallel

Figure 17.5: MiG scheduling durations on the Threadripper. Each result is an average of 10 runs. Note that the
SPSFS result have been excluded as it has a much greater scale that crushes the rest of the results.
This shows the same information as Figure 17.4, except in a linear scale.

This increase is due to the nature of event processing on the MiG. As each event occurs the

watchdog monitor will catch the event by performing some initial processing such as attaching a

timestamp to it, and then matching it against the current list of Rules. This ‘pre-processing’ is kept

to a minimum, and so any actions from a Rule match being carried out in a threaded function that

must wait for processing resources to be available. This is done to keep the monitor process free to

catch further events, but means that if many events happen at once then many different threads will

be started. On the MiG this ‘pre-processing’ is quite extensive, with a number of authentication and

robustness checks needed to be carried. Matching has been sped up through the use of regex, but the

overheads are unavoidable. As many different matching events occur at the same time in these tests,

more and more overheads are added by starting so many different threads at the same time. Note that

this does not occur on the WorkflowRunner as this uses the multiprocessing architecture described

in Section 10.5, which does not require starting a new thread for each event.

Whilst it was expected that the MiG would run slowly, it was not expected that it would run quite

as slowly as it has. Nevertheless, when we look at the results for the WorkflowRunner we can

at least conclude that this is down to underlying issues within the MiG rather than with the MEOW

system itself. If MEOW was the issue then the same lack of scalability would be present in the

WorkflowRunner.

17.4 OV E R H E A D S W H E N U S I N G M E O W 106

20
30

40
50

60
70

80
90

100
125 150 175 200 250 300 400 500

Number of jobs scheduled

0.004

0.002

0.000

0.002

0.004

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

Difference in per-job MiG scheduling overheads on the Threadripper
total single_Pattern_multiple_files
total multiple_Patterns_single_file
total multiple_Patterns_multiple_files
total single_Pattern_single_file_parallel

Figure 17.6: Delta in per-job MiG scheduling durations on the Threadripper. Each result is an average of 10
runs. Note that the SPSFS result have been excluded as it has a much greater scale that crushes the
rest of the results.

17.4.4 Evaluating the MEOW overheads

In light of all these tests we can conclude that MEOW itself is not inherently problematic. Under

certain conditions it can be used to schedule large amounts of jobs at once, with a minimum of user

definitions. This scaling can be linear in nature when either a large amount of files or Patterns are

in use at one moment. However, when both are in use at the same time the system can begin to

experience greater and greater overheads. This is especially true in the MiG implementation. Even

in the slowest non-sequential test (500 Laptop MPMF jobs) it must be remembered that only 0.97s

was spent on scheduling each job and most tests ran considerably quicker than that. It does not seem

unreasonable to expect that most scientific analysis of significance would take longer than this to

complete, and so the scheduling would fade into the background compared to any execution time.

Although the scaling on sequential jobs is linear, a considerable amount of time can be spent before

all required jobs are scheduled, as by definition then all but one of them must be executed before

they will all have been scheduled. We also see ever increasing overheads in both the MPMF test on

the WorkflowRunner and across the board in the MiG, except with the sequential tests. This is

concerning, as the MPMF is probably the closest test to how a large grid system would be used, with

many unique events occurring and being compared against many unique Patterns. If a sufficiently

large enough number of users were using the system to schedule MEOW analysis, such that several

17.4 OV E R H E A D S W H E N U S I N G M E O W 107

hundred events were supposed to be triggering several jobs within the same few second then each user

would begin to see increased overheads in line with the results presented in Figure 17.5. However, as

will be expanded upon later in Section 26.1, this is seen as unlikely to occur as only a low amount

of users are expected for the foreseeable future. As the request for such dynamic workflows is still

relatively niche compared to the overwhelmingly linear amount of processing undertaken, it does not

currently seem likely that this will occur. However, this will remain an issue until further work is spent

on improving the efficiency of the MiG in this regard. MEOW is of course also entirely appropriate

for local use such as through the WorkflowRunner thanks to its consistently low overheads and

efficient scaling.

18

S U M M A R Y

This part has demonstrated three examples of MEOW in action. This should demonstrate the

functionality and ideas outlined in the previous two parts. Each example was run on both the

MiG and using the WorkflowRunner and can be taken as guides when designing new MEOW

analysis systems. Within these examples, it has been shown how we can use MEOW to create branches

or loops in our processing. We can also schedule analysis across a wide range of parameters or data

files which are free to fail or succeed in isolation. The degree to which this is possible is unique to

MEOW, and so analysis structures that make use of that are best suited to it.

With the end of this section, we conclude the parts that are dedicated to MEOW within this thesis.

Taken together, they should give a complete view of the reasons for its creation, how it was actually

implemented, and what a user could expect to do with it. By rejecting a static DAG paradigm, in

favour of a completely dynamic event-based one, we can individually schedule jobs. These are then

free to complete in isolation and so we can adopt structures in our analysis that were not previously

possible. A fuller evaluation of MEOW and its merits is presented within Part v, although with that of

many of the supplementary work presented in Part iv.

108

Part IV

S U P P O R T I N G W O R K

19

I N T R O D U C T I O N

In this part, all of the supporting work to MEOW will be presented. These are items that are relevant

to the development or future direction of MEOW despite not being part of actual job scheduling. First,

various teaching and dissemination works are presented as educating others in the use of MEOW

formed an important secondary role through the project. Secondly is a translator between MEOW and

the static workflow language, CWL. This work was undertaken as part of a secondment to EuXFEL,

but was abandoned fairly early in development due to it lacking both feasibility and utility. Thirdly

is a project I helped supervise during my studies. This is for FUR, an automated uploader between

scientific instruments and the MiG. Although MEOW does not feature in the project it is may be of

direct use in future plans for MEOW and so is briefly presented here. Finally we have work completed

in collaboration with Xnovo Technology during secondment there. This is to integrate corc, a tool

for scheduling processing on cloud resources, and McWeb, a tool for creating tomography analysis.

This provided users at Xnovo with a means to easily access commercially available cloud resources

for their analysis.

110

20

T E A C H I N G M E O W

This chapter will examine how MEOW and mig meow were made easier to understand and pick up

through a variety of teaching materials. These will be implemented in a variety of fashions, and cover

all aspects of MEOW. The hope is that by the presence of these additions, new users are more likely

to successfully design their own analysis solutions using MEOW. The work presented here will also

form a direct fulfilment of the fourth thesis objective, to ’create training material for the automated,

dynamic workflow system’(see Section 2.2).

20.1 T H E N E E D T O B E TAU G H T

In projects such as MEOW and mig meow, there is a specific need to teach others how to use them.

Without doing this new users will be unwilling, or even unable to learn something that has taken a

not insignificant amount of effort to create. This need for supportive teaching materials is especially

acute with the event driven system, as it has proven hard for new users to understand. Throughout

this project, I have given numerous formal presentations, but also a number of informal talks and

introductions to colleagues, researchers and friends. In the majority of these situations I was not left

with the impression that the purpose of MEOW had been properly understood, or that the structure of

an event driven system could be replicated by them. This was even sometimes the case after talks and

presentations specifically about MEOW, and so presented a real problem for expected users of the

system.

Now it is always a possibility that both myself and my talks are simply terrible, and the fault lies

entirely with them rather than the subject. Although this cannot be outright rejected, it would be one

of the first subjects I have encountered that has had such consistent difficulty in getting communicated

to others. This leads to the problem being one primarily with the subject of an event-driven system for

processing scientific research. So far this thesis, and the papers written throughout this project have

focused solely on communicating the theoretical underpinning of how MEOW was designed, what

problems it was intended to address, and what the use cases might be going forward. Whilst that is all

111

20.2 T E C H N I C A L R E P O RT I N G A N D W O R D C H O I C E 112

worthy stuff, dedicated materials will be needed to help people looking to actually use the system as it

is clearly not enough. To help new users learn how to use MEOW in their scientific analysis, a number

of approaches were adopted. These approaches can be broadly characterised as technical reporting,

documentation, workshops and examples. These will now each be examined in turn.

20.2 T E C H N I C A L R E P O RT I N G A N D W O R D C H O I C E

Obviously the first and foremost means of communicating to others about MEOW is through the use

of papers such as those shown in Appendices A and B, as well as this very thesis. Within scientific

reports, which are read to gain new understanding, word choice is important in a way it is not in

other forms of text. We are usually not trying to communicate emotion, or quality, but technical

facts or defined concepts. These are not novel observations, but should contextualise that as the

project progressed I increasingly found the use of the word workflow to be unhelpful in creating

understanding in listeners. Although workflows were a starting point of this project, and MEOW was

created in direct response to the requirements for a more dynamic workflow, the concept comes with

too many overtly unhelpful connotations to aide understanding of MEOW.

For example, workflows are often first explained as A leads to B leads to C. There is a good deal

more to workflows than that, and many domain specific definitions that could be baked in on top, but

that is the basic introduction to workflows, and is fundamentally what seems to be understood by

listeners grappling with what MEOW means. Put another way, the use of the word workflow seems to

make people immediately imagine a rigidly static system, with then any explanation after this having

to work against this first assumption. For this reason I have tried to avoid using the word workflow to

describe MEOW. Unfortunately this decision was taken after the naming of MEOW and so to some

extent we’re stuck with this problem. However, where possible alternative descriptions of MEOW

will be used, though a standout alternative has yet appeared. For this reason throughout the reports

and papers, MEOW is described as an event driven scheduler. This is hopefully more descriptive of

what it actually does, or at least, less unhelpful in its connotations.

20.3 D O C U M E N TAT I O N

As well as the more technical documentation such as reports, there is also the documentation within

mig meow to consider. All code developed through this project, but especially mig meow has been

documented through frequent comments and annotations, and each function or class has a descriptive

documentation string. An example of this is shown in Listing 20.1. There is not much to say about

20.4 E X A M P L E S A N D U S E C A S E S 113

this, as it is a standard part of any well maintained project but it is worth noting that particular effort

has been made to ensure that this aspect of documentation has been addressed. This is as it is the

documentation most likely to be used first by actual users of mig meow, as well as by any developers

in future who may be expanding or using it themselves.

1 def generate_id(length=16):

2 """

3 Generates a random id by using randomly generated alphanumeric strings.

4 Uniqueness is not guaranteed, but is a reasonable assumption.

5 :param length: (int) [optional] The length of the id to be generated.

6 Default is 16

7 :return: (str) A random collection of alphanumeric characters.

8 """

9 charset = CHAR_UPPERCASE + CHAR_LOWERCASE + CHAR_NUMERIC

10 return ’’.join(SystemRandom().choice(charset) for _ in range(length))

Listing 20.1: Function definition and documentation string for generate id, part of mig meow.

20.4 E X A M P L E S A N D U S E C A S E S

A favoured way of getting new users to understand how MEOW operates is with real-world examples.

The trouble with this is that like the use of the word workflow, this can give the wrong impression

about the utility and best use case for MEOW. This is as common use cases for chaining together

various pieces of scientific processing together are usually best expressed with a static, linear workflow.

Therefore, even if a user has understood the dynamic possibilities of MEOW they will not be illustrated

by a linear analysis as is often demonstrated by existing use cases.

Another problem with using existing use cases has been that often times the scientific understanding

needed to comprehend what is going on has often obscured the structure of the processing that

has taken place. This has meant that although they have understood the example, when asked to

demonstrate what they have learned they report more often on the algorithms and calculations, and

would not be able to apply the MEOW structure to other problems. This is not to say that scientific

use cases do not have a place. However, I have found that generally more understanding is gained by

using abstract examples such as in Chapters 14.6 and 16.6. In both of these cases, the analysis that is

being undertaken is trivial, but it serves to focus the attention onto the makeup of the system and how

the structure makes the analysis possible.

20.5 W O R K S H O P S 114

20.5 W O R K S H O P S

One of the deliverables within the MUMMERING project was the provision of training in the new

system developed for scientific analysis. Providing these materials will conclude the fourth thesis

Objective from Section 2.2. Specific teaching materials were designed to be used in workshops

introducing MEOW. These materials are available at [34], within the teaching/ directory.

The structure of this workshop is designed as individual exercises for students, where they follow

along some worked examples contained in a worksheet, shown in Appendix S. This will take the

students from setting up an environment for running MEOW either on their local machine or using

the MiG, all the way to running a complete system of analysis. It is intended that students are started

on this with minimal introduction so that they can start to explore what it is they are doing. Once 15

minutes or so has elapsed they should have been able to start and begin to setup and run the early

examples. At this point a small lecture can be given lasting roughly 30 minutes. This will explain the

concepts of MEOW and more of how it can be used in particular situations. Once the lecture is done

the students should return to the worksheet.

It is hoped that this structure will act as a better introduction to MEOW than the more rigid structure

of a scientific paper, and avoid some of the problems already discussed through this section. For

instance, by not mentioning static workflows at the very beginning, or any other SWMS that MEOW

contrasts with, it may be that students are better positioned to understand the unique structure of

MEOW. Also, by playing around a little bit with the actual MEOW structures before hand, it provides

more context for the lectures and so makes them more understandable.

20.6 R E S U LT S

Unfortunately, no meaningful quantitative evaluation of any of these approaches is possible, due to

the very small number of people who have taken part in learning MEOW. This is not just due to only

about 14 students attending the workshop, but that most of those who have learned to use MEOW

have been doing so on an individual basis for their own personal experiments. Because of this, any

assessment of results and the effectiveness is highly subjective. These subjective assessments are

mostly what have guided the developments outlined through this section, especially the shift away

from the word workflow, and the move to more abstract examples. In either case, I get the impression

that they are both positive developments as since these were adopted it has seemed easier to get

students to understand what an event based scheduling system really is, and how they could use it in

their own research.

21

M E O W T O C W L

This section will present a small piece of work done in collaboration with the Data Analysis group at

EuXFEL. It will demonstrate a converter between the dynamic MEOW and the static CWL.

21.1 M OT I VAT I O N

Part of the problem of creating MEOW as a new tool to support the work of researchers, is that it

can be difficult to get anyone to use a system they are not already familiar with. The problem is

compounded by the fact that MEOW is structured very differently to a more traditionally made SWMS.

Therefore, the objective of this secondment was to create a converter between a SWMS, and MEOW.

This objective supports the work of Objective 1 to design a framework to express automated, dynamic

workflows, as presented in Section 2.2. Though any of the static systems presented in Section 4.2

could be used, it was decided to use Common Workflow Language (CWL). This is as CWL aims to

be a ubiquitous way of defining a traditional workflow, which can then be interpreted for use in any

workflow system.

21.2 A U N I V E R S A L L A N G UAG E F O R W O R K F L O W S

Common Workflow Language (CWL)[3] is an open standard for describing data analysis workflows.

In particular, CWL is designed as a unified standard to be used across many different tools and

hardware setups, so that users can define their analysis in a manner that is easily written, repeated and

shared.

CWL is based on YAML files, which can be used to define either individual steps, or a workflow of

one or more steps. For any step file to be run, an accompanying parameters file is also required to

define any variables. Within MEOW, these two files in combination are analogous to a Pattern, in that

they define the inputs and variables of an individual job. In a similar manner, a workflow is defined

within CWL in a single file which will reference a number of individual step files, though will only

115

21.3 T R A N S L AT I N G B E T W E E N PA R A D I G M S 116

need a single parameter file for the whole workflow. Due to the independent nature of MEOW there is

no equivalent to this level of definition, and so this part of CWL cannot be directly translated.

This fundamental difference of approach was the main problem encountered in translating from

CWL to MEOW and vice versa. As MEOW focuses solely on the step level, then a whole workflow

layer would need to be constructed in any CWL definitions translated from MEOW. Another problem

is that CWL and MEOW do not agree on the importance of outputs. As previously discussed in

Section 6.2, outputs are not necessary for a MEOW definition, and in fact actively distract from its

dynamic nature. In contrast, CWL makes a strict requirement for output to be declared at the beginning

of any analysis. This is not a problem when translating from CWL to MEOW as we can simply ignore

the definition in CWL, or at least treat it as any other variable definition. However, converting from

MEOW to CWL will be next to impossible without defined outputs. As some non-binding outputs are

specified within the WorkflowWidget it was not seen as too problematic to say that if you wish to

translate between MEOW and CWL then you must declare any MEOW job outputs in a non-optional

manner.

In a similar manner, CWL is a rigidly DAG-based system. By this it is meant that it does not

overtly support branching, nor does it support looping of processing. This means that many of the

analysis structures that are specifically enabled by MEOW will not be easily supported by CWL. A

final difficulty will be that CWL has far more overt support for additional job definitions, such as

environment requirements and the like. As MEOW was designed primarily with the MiG, it can leave

most of this to be handled by the MiG and so makes no definitions itself. This means that if this

information is required in the CWL workflow then it will be lost in a direct MEOW translation.

21.3 T R A N S L AT I N G B E T W E E N PA R A D I G M S

Despite the already discussed difficulties, an attempt was still made at translating CWL into MEOW.

This was added as part of mig meow, and incorporated into the WorkflowWidget. This would

hopefully be a user-friendly way of converting between the two paradigms, and could provide

a visualisation of each system to allow for greater understanding. A top level approach to how

translation would work is shown in Figure 21.1. In this we can see CWL constructs on the left, with

MEOW on the right. The CWL structures of workflows, steps as well as the parameter files which

instantiate them are all functionality that is taken care of by Patterns within MEOW. By this it is

meant that each CWL step would be expected to become a single MEOW Pattern. These Patterns

would overlap in their inputs and outputs according to the CWL workflow definition. Conversely,

when translating from MEOW to CWL each Pattern will become a CWL step. The Patterns will

21.3 T R A N S L AT I N G B E T W E E N PA R A D I G M S 117

Workflow

CWL

Step

Arguments

Pattern

MEOW

RecipeScripts

Figure 21.1: The structure of CWL and MEOW, and how they may translate.

also need to be analysed as a complete set and a CWL workflow constructed from their possible

interactions. Separately to all of this are the Scripts and Recipes. Within CWL, Scripts are not a

defined construct and have been introduced here only as a way of formulating how Recipes fit into the

translation. Scripts here refer the code run from the baseCommand parameter.

As the WorkflowWidget was seen as a good place to base any translations, the ability for

mig meow to read in CWL needed to be added. To do this they will simply be kept as dictionaries,

in the same manner as Recipes are stored. This is as they are already stored like this within CWL

thanks to the YAML format they are saved in. It also means that the helper and validation functions

already developed for use with Recipes can easily be adapted to also be of use with CWL constructs.

Three constructs will be used in mig meow, Workflows, Steps and Arguments. Each can be

constructed either within the WorkflowWidget itself, read in from file based definitions, or passed

to the WorkflowWidget as part of the constructor in the same manner as Patterns and Recipes.

The WorkflowWidget was modified so as to work in two distinct modes, either MEOW or CWL.

In each mode it is possible to translate any existing definitions present in the other system into the

currently selected one. As in MEOW, a visualisation of any CWL definitions is made, as is shown in

Figure 21.2. This will show individual steps and how they interact, in the same visual language as the

MEOW visualisation.

If we are to translate from MEOW to CWL we need to be much more rigorous in how we are

defining our Patterns. Every output should be declared as part of the outputs parameter, and all

declared outputs will always be present. Any Recipes should only take a single input, that being

the triggering input. This obviously limits the potential quite drastically of any convertible MEOW

definitions, but it does make it possible to fit them into a static definition.

21.4 S T O P P I N G D E V E L O P M E N T 118

Figure 21.2: A visualisation of a basic CWL workflow. This is the Writing Workflows example taken from [44].

21.4 S T O P P I N G D E V E L O P M E N T

Despite these initial explorations, development on the translator was abandoned before our objective

of creating a tool to translate between CWL and MEOW was achieved. Both paradigms would need to

be reduced to such a small subset in order to be translated, that any translator would be of no real use

at all. Any MEOW system that is to be converted from cannot have any branches, loops, or dynamic

structuring at all. Equally, any MEOW generated from CWL will be as linear as the starting CWL,

only significantly slower thanks to the overhead of identifying and responding to individual jobs. Any

CWL systems are equally limited as many of the definitions supported by them cannot be translated

to MEOW as it currently stands.

All of these limitations meant that continued development for the translator became untenable.

Although not an impossibility, it would be significantly larger piece of work than was first recognised

to create a translator that functioned as expected. Enough compromises needed to be made to

both systems that it was only useful to workflows that could not properly utilise the strengths of

either system. This secondment was intended to strengthen the result for the MEOW framework in

accordance with Objective 1 (Section 2.2), which it has not done due to the simplistic implementation.

Nevertheless, development could be theoretically resumed in future as many of the limitations

discussed through this section could be solved with enough thought and effort.

22

F U R

This chapter will introduce the Framework for Uploading research data (FUR), developed by Niels

Voetmann as part of his Masters[92]. Though this chapter has been written by myself, all of the

underlying work presented in this section was carried out by Niels Voetmann under my supervision.

22.1 T H E N E E D F O R A N U P L O A D I N G F R A M E W O R K

FUR was developed to address a need amongst researchers for a tool to automatically upload research

data to a centralised storage system. This is as many scientific instruments such as microscopes have

limited storage space, and very limited processing capabilities. Therefore, there is an inherent need for

any retrieved data to be moved off of the instrument or accompanying system. We should also recall

Objective 3 of this thesis, to integrate the automated dynamics workflows system into the collaborative

big data platform outlined in Section 2.2. Following the work presented in Chapter 11.4, it is possible

to create MEOW workflows on the MiG using data already present in the system. With an automated

tool for uploading large amounts of experiment data directly from instruments, users could create

MEOW workflows directly from their measurements.

22.2 F U R

FUR is designed to work primarily with image based scientific instruments, such as microscopes,

where a multitude of images are taken within a single experiment run. The core function of FUR is to

automate the uploading of these individual data files to the MiG, and cleanup the local data once it has

been uploaded. To do this FUR runs as two processes on whatever storage the scientific instrument

outputs to, as is shown in Figure 22.1.

The first process is the Runner function, which will establish a connection to the remote storage.

Once the connection is established, the local end is sent to a new process, the Upload function.

This process uploads data to the remote storage. The Runner function will now collect data as it is

119

22.3 R E L AT I N G T O M E O W 120

Figure 22.1: Process diagram showing the architecture of FUR. This diagram was drawn by Niels Voetmann.

produced by the scientific instrument and gather it into HDF5[42] collections. Individual data files

are sequentially collected into batches of a given size. Once a batch has been filled, a shared buffer

is notified. The upload function will pick up any batches in the buffer and upload them. The actual

uploading of data can be done in three different ways within FUR. Firstly, HDF5 can be completely

ignored and a straight upload of data files could occur. Secondly, each batch can be uploaded as

separate HDF5 files. Thirdly, A fresh HDF5 can be created before any uploading, and each batch can

be appended to it as they are uploaded. This is the primary intended method for most users to upload

their data.

22.3 R E L AT I N G T O M E O W

FUR is of direct relevance to this thesis as it could be used to more completely integrates the MEOW

scheduler into big data solutions on the MiG, whilst also expanding the core utility of the MiG itself.

FUR is a fully working prototype system, which only needs refined into a more usable system than

the individual scripts it currently exists as. It directly addresses Objective 3 of the thesis. Recall the

scientific example presented in Chapter 15.6. In this example, a scientific instrument generated data

which was processed according to MEOW Patterns. For an example like this to be practically possible

there needs to be some capacity for instrument data to be directly uploaded automatically to the MiG.

This can be done by FUR, which does so in an efficient, ongoing and non-blocking manner.

23

M C S TA S

During this project, work was also carried out as part of a secondment to Xnovo Technology[100].

This work was carried out in collaboration with Rasmus Munk, with parts of it forming the basis for a

followup paper[69]. A fuller explanation of corc is also available within [68]. Much like the work

on FUR in Chapter 22.3, this work will support Objective 3.

23.1 M C S TA S A N D M C X T R AC E , A N D X N OVO

Xnovo Technology is a small company specialising in 3D crystallographic X-ray technology and

making access to these specialist techniques easier for companies and research institutions. One piece

of software that is commonly used in Xnovo projects is McStas, and its sister McXtrace. These are

simulation packages for ray tracing neutrons and X-rays respectively. They function on instrument

files, which are used to define scientific detectors through which either neutrons or X-rays are fired.

Each simulation can be given a variety of inputs and can be extremely computationally heavy, which

means that HPC resources are necessary. As the resources of Xnovo are naturally limited, it is

impractical for Xnovo to run their own cluster, which would be extremely costly to setup and run.

Luckily for companies like Xnovo, a range of cloud resources have recently become available such

as AWS[4], Microsoft Azure[60], Google Cloud[38] or OCI[73]. These systems allow for relatively

easy access to HPC resources which can be deployed when needed and can be wound down when

not. Such cloud resources would be ideal for running McStas and McXtrace analysis. As Xnovo does

not want to be tied to a particular cloud provider, they require the ability to switch with a minimum

of fuss each time. This is an especially pressing need as each provider has its own requirements and

tools for interacting with the remote resources which can be taxing for non specialists.

121

23.2 C O R C 122

23.2 C O R C

To address the main problem would require the development of a tool for scheduling jobs on a given

cloud provider. Unlike existing tools for doing this, this new tool could be shared by any supported

cloud provider, unlike the bespoke tools that are usually provided. This new tool would be known

as Cloud Orchestrator (corc) and be written as a Python package by Rasmus Munk. The package

was comprised of a number of sub-components, with the overall structure shown in Figure 23.1.

Each of the shown parts expose abstract interfaces, which can be implemented for a specific provider.

These implementations will be created by developers ahead of time, with users only needing to fill in

configuration files for their own services. Currently, the only supported providers are OCI and AEC2.

This is as AEC2 already supports a wide range of existing cloud providers, increasing the utility of

corc with relatively little implementation. Meanwhile, OCI was chosen as it was also a commonly

used cloud provider, and Oracle had kindly donated a number of compute hours which could be used

to test the system during development.

Provider

Orchestrator

Compute Configurer

AuthenticatorSchedulerStorage Job

Figure 23.1: Cloud Orchestrator Framework Overview. Taken from [68].

The two most interesting components are the orchestrator and the scheduler, which allow users

to create, update, read and delete cluster or job instances. The actual specifics of how this is done

depends on the implementation of the of the various sub-components, but the parameters used in any

corc query are read from a variety of YAML files. The main YAML file is used for global corc

configurations, though others may also exist for individual services as needed. These configuration

files need only be set up once by a user ahead of time. An individual user can then repeatedly create

new cluster instances, or schedule new jobs using relatively simple commands such as that shown in

Listing 23.1. An example of a corc configuration file is shown in Appendix D.

1 corc oci orchestration cluster start

Listing 23.1: Starting a cluster with corc from the command line.

23.3 M C W E B 123

23.3 M C W E B

As well as developing corc, Xnovo also asked for the creation of a GUI to setup their experiments,

rather than as a command line tool. Therefore corc was integrated into McWeb[59], a web interface

used at DTU as part of their own research and teaching using McStas and McXtrace. This was the

part of the project I carried out. Most of this work is not directly relevant to the core objectives of this

thesis though and so will not be elaborated on here, though we will look at how corc was integrated

into this system.

Before this project, X-ray analysis within McWeb was scheduled by the backend calling McStas

or McXtrace directly. This means that any processing is carried out locally to wherever Not a true

acronym, but a web UI for running McStas and McXtrace (McWeb) is hosted, and will probably not

be terribly efficient. To integrate corc into McWeb was a simple matter of altering the job execution

code. This runs in a similar fashion to the already presented MiG, with a job being written to a queue

by the frontend, and then picked up by a worker process which then executes it. Jobs are written

to the queue as a copy of the appropriate instrument file, which is then executed by the worker by

invoking either McStas and McXtrace as a system call. This was simply replaced with corc system

call instead. The actual parameters for the corc scheduling are kept in the YAML configuration files,

so relatively little needs to be added to the McWeb GUI to make this possible. A simple checkbox

was added so that users could toggle if the job was to be scheduled locally on a remote resource, as

well as a box for entering the paths of any additional files that would need to be copied to the remote

resource as part of a job.

23.4 R E L AT I N G T O M E O W

Although corc was developed for Xnovo, it is not tied to any one programme or problem, and could

be used on any currently application. This was demonstrated by integrating it into McWeb, allowing

for McStas and McXtrace analysis to be run on disparate cloud resources. Much like FUR, corc

could be used in future to expand the utility of the MiG.

Another potential use for corc is to integrate it into the mig meow WorkflowRunner to

radically increase the utility of running a non-MiG based analysis. This is especially true in light

of the overheads identified in Section 17.4. The MiG may be a complete grid solution, but if users

just wish to schedule some MEOW analysis quickly and efficiently then the WorkflowRunner

would be better suited. Currently though, the WorkflowRunner is limited by only using local

resources to process and scheduled jobs. Some means of easily accessing remote resources would

23.4 R E L AT I N G T O M E O W 124

mean that the runner is able to process much larger problems without having to be physically run

on a supercomputer. This began to make the WorkflowRunner itself a simple big data analysis

platform for those without MiG access.

24

S U M M A R Y

This part has presented all of the ancillary material that does not fit into the main work presented

within this thesis. Some of this work is supplementary to MEOW. For instance, FUR is an framework

for automating the uploading of data from scientific instruments to the MiG. Although this does not

feature MEOW directly, this may be of use in future use cases such as that presented in Chapter 15.6.

Similarly, corc was integrated into McWeb to improve its performance by accessing cloud resources.

In future, this could be directly integrated into MEOW systems, either via the WorkflowRunner or

the MiG itself.

Another related work piece was that of the CWL-MEOW translator. This was intended as a way of

translating between static and dynamic systems, though was quickly abandoned as it proved to be

rather a large amount of work for a very small amount of use. The reason this was first considered

as worthwhile endeavour was that MEOW was proving hard for new users to understand, and so a

translator from something familiar could be of assistance. As the translator did not work out, other

methods of teaching were considered. The resultant learning aids and documentation were presented.

All together in combination with the previous 3 parts, this should now give a complete view of all

of the relevant research, development, testing, teaching and documentation that has taken place during

the development of MEOW.

125

Part V

D I S C U S S I O N

25

I N T R O D U C T I O N

In this part, we will discuss the work that has already been presented. We will evaluate its successes

and its failures, and tie it all together into a unified project. In order to evaluate the success of the work,

we will consider the objectives presented back in Chapter 2.3. MEOW and mig meow in particular

will be considered, in reference to the requirements for a SWMS set out in Section 4.1. This is where

we will expand on some of the problems that may already be apparent in MEOW, and consider how

we might fix them with further development.

In light of this, we will also consider use cases for MEOW, and where I think it is most likely to be

applicable. We will consider a whole range of use cases, from the original motivation ones, to where

it could be used as it currently stands, to where it may be used in the future with further work. By the

end of this part, readers should understand my own evaluations of the work carried out in this project,

as well as my recommendations for what work is worth carrying on in subsequent projects.

127

26

A S S E S S I N G T H E P R O J E C T

In this chapter we will judge the successes and failures of the work presented in this thesis by

considering it against the core research question. As a refresher, this was:

Is it feasible to create a tool for the automatic creation of dynamic scientific workflows,
available within a big data capable platform?

26.1 R AT I N G F E A S I B I L I T Y

The main goal of a dynamic workflow system is in direct contrast to the static fashion outlined

in Section 4.4, with scientific processing traditionally conducted as part of a linear, unchanging

workflow, managed by a SWMS. To address this, MEOW has been introduced as a framework for

scheduling jobs in response to events. Rather than adopting a top-down approach such as is typified by

a workflow constructed from a DAG, MEOW only allows for a bottom-up identification of individual

jobs. These may causally ‘link’ together, creating a workflow as an emergent property whilst still

allowing complete independence of each individual job. This allows for dynamic structures to emerge

such as loops or branching analysis that can progress completely automatically. Of particular note are

the implementation requirements for such a system described in Section 6.2. These outline exactly

what needs to be implemented in a event driven system so that up to date jobs will always be scheduled.

This was then demonstrated through Part ii and demonstrated in Part iii using both the MiG and

WorkflowRunner included within mig meow.

Of course designing the system is only half of the problem, with the other being tying it into a

big data platform. Here we have used used the MiG, which was a suitable system as an existing

platform for facilitating scientific processing. Extensive work has taken place over prior years to

ensure that this system can manage large amounts of concurrent and parallel job processing on a

collection of heterogeneous resources. By integrating MEOW, the most significant improvement to

the MiG is probably that it is so much easier for users to schedule repeated processing on remotely

accessible data using the MiGs resources. This is in keeping with scientific use cases, which often

128

26.1 R AT I N G F E A S I B I L I T Y 129

require repeated processing of the similar data sets. At the same time, access to resources and setting

up inputs and outputs no longer need to be laboriously done on a per job basis, as it can be taken care

of automatically as part of MEOW scheduling. This could increase the usability of the MiG. As was

noted earlier, with few users it is difficult to get a definitive answer, though early users have managed

to schedule large numbers of job with relative ease.

Many of the tools presented within this thesis support collaborative working practices. The MiG

is already a platform designed to store and present data in a collaborative manner, and the MEOW

integration only increases this. MEOW systems are designed to be a collaborative effort, as one of

the early ideas for a use case is that different members of an eclectic team, such as the ESRs within

MUMMERING, could each create and maintain their own Patterns and Recipes. These would overlap

and so a complete chain of analysis could be created by individual specialists, with data flowing

naturally from one step to the next. To help foster this, Patterns and Recipes on the MiG have been

designed to be shareable, unlike most constructs on the MiG which are strictly on a per-user basis.

Avenues for further work exist within this area however. By implementing FUR within the MiG,

and using that as a starting point for analysis, it would be possible to directly connect scientific

instruments to the MiG. These could then be used as continuous input for all manner of automatic

analysis, which would be stored, processed and viewable all through the MiG. Additional development

could also be focused on increased interaction with the MiG from within a Python script or Jupyter

Notebook that is not spawned by the MiG. This would extend the utility of MEOW by allowing users

to utilise the MiG to upload their data and trigger processing without having to somehow upload it

separately to the MEOW definitions.

However, despite the success of this investigation, I am not convinced that this is yet a pressing

research question. As will be expanded upon in the following Section 27.1, I am unconvinced that

MEOW solves a problem that currently exists. It is a significant departure from static systems and

there is a degree to which it may be throwing a baby out with the bath water. As demonstrated

by Section 4.2, there are already a large amount of SWMSs available, and that section is by no

means an exhaustive list. Adding a further tool to an already crowded market may not have been a

wise move. That being said, MEOW does offer something unique, and is can definitely construct

analysis structures that would be difficult or even impossible to replicate in a static workflow. I

anticipate that in the coming years there will only be more demand for humain-in-the-loop interaction,

and scientific facilities will need to develop higher throughput systems for storing, managing and

processing their data. This highlights that I am not saying that MEOW is useless. Although I do not

expect it to be commonly used tomorrow, I do think that it may be worthwhile research for future

systems development.

26.2 M E E T I N G S W M S R E Q U I R E M E N T S W I T H M E O W 130

26.2 M E E T I N G S W M S R E Q U I R E M E N T S W I T H M E O W

As a system for running scientific workflows, MEOW should be capable of meeting the requirements

set out in full in Section 4.1. These will now be considered in turn with regards to MEOW, mig meow,

and the MiG.

26.2.1 Automatic Optimisation

This requirement relates the need for a SWMS to automatically make use of parallel hardware, and

run the workflow in an efficient manner without requiring in depth HPC knowledge. Through the

independent nature of jobs, MEOW is well suited to automatic optimisation both when run with

the mig meow WorkflowRunner, and also when run on the MiG. In both cases, it is trivial for

multiple jobs to be executed in parallel, with the number of processing nodes automatically pulling

single jobs from the queue and executing them. However, two significant limitations occur. These are

that there exists the possibility of a race condition within the current MEOW implementations, and

that they also currently lack any limitations on the number of scheduled jobs.

First let us consider the possibility of a race conditions by looking to Figure 26.1. This diagram

shows the varying state of three components within a MEOW system across five different points in

time. At the first point in time, shown in the horizontal band A, a data file shown in yellow is created,

which schedules a job, also shown in yellow. At point B, this job is executed on the resource, which

will expect the original triggering file as an input. This is the system working as expected. Point C

progresses much like the first, with the data file being modified to now be in a new state, shown in red.

This will trigger a new job. However before the execution resources can request a new job from the

queue, the data file is updated again in point D to a new blue state. This will as expected, schedule a

new job, with two jobs now in the queue each expecting a file at the same place to act as their input,

but expecting that file to be at a different state. At point E when the red job is finally executed, it will

now execute on the blue state, rather than the red state that it was first scheduled off of.

Such a scenario could occur in a few other ways, and it is not clear how exactly this could be

remedied. Some care should be taken so that such a situation does not occur, such as by avoiding

overwriting triggering files when it is still likely that a job is still to be processed from the old one.

Regardless, this is still a potential issue that a casual user may not expect, though it would be unlikely

that such a user would design a MEOW system that could cause such a problem. Therefore this is

determined to be unlikely to occur in a real system, but a rare possibility does not mean it has been

correctly managed. Future work will be needed to properly address this problem.

26.2 M E E T I N G S W M S R E Q U I R E M E N T S W I T H M E O W 131

File System Job Queue Execution Resource

T
IM

E

A

B

C

D

E

Figure 26.1: The possibility of a race condition within MEOW.

Now we should consider the potential problem of infinite processing. For an example of this we

can see the scientific example presented in Chapter 15.6. In this example a loop exists between the

two Patterns initial check and regenerate check. Although statistically unlikely, there is

nothing here that says that this will not go on forever in an infinite loop. There is no current limiter in

the WorkflowRunner or on the MiG that will limit the number of jobs scheduled here. Even in

non-looping code there is always the possibility that users can create Patterns that swamp a system by

scheduling massive amounts of jobs at once.

Within the MiG this is somewhat mitigated as resource access is managed in a variety of ways to

help prevent a single user claiming an entire grid system, with there being limits on how long jobs can

last, what resources a users jobs can access, and how much of any single resource each job can claim.

Within both the WorkflowRunner and the MiG job scheduling is also limited to the lifetime of

a Rule, in accordance with the requirements set out in Section 6.2. Whenever a Pattern or Recipe

is deleted the corresponding Rule will automatically be removed, which will lead to the cancelling

of any jobs from that Rule still in the queue. This means that if a user sees an unnecessary amount

of processing has been scheduled they can remove the appropriate Pattern to automatically clear the

queue whilst still maintaining the live system. This is aided by the JobMonitor widget, the MiGs

existing job monitoring tools, or the WorkflowRunner feedback options.

No inbuilt tools for throttling jobs scheduling currently exist. As the use cases for a MEOW based

system are varied in scope and nature, the solution to this problem will probably not be a one-size fits

all solution. Many different user configurable options would be desirable, with possibilities including

setting an expected number of jobs not to exceed, or a limit on how many new jobs to be scheduled

26.2 M E E T I N G S W M S R E Q U I R E M E N T S W I T H M E O W 132

per second. Regardless, exactly what all these limits may be, where to implement them, and how to

ensure they effectively limit unwanted behaviour without hindering unpredicted potential may be a

substantial piece of work in its own right. For example, if we placed a simplistic limit such as no

single Pattern could schedule more than 100 total jobs, then we would make it impossible to create a

loop more than 100 iterations long. Therefore this is perhaps the largest avenue for future work.

Recall that one of the main motivations for MEOW was to be used to explore unknown workflow

structures, and so setting hard edge limits was consciously avoided.

26.2.2 Clarity

Creating individual Patterns and Recipes is certainly easy with mig meow, and checking if they will

link together can also be simply checked through the use of the WorkflowWidget visualisation.

By providing the variable keywords outlined in 10.1 it is possible to create varying overlapping paths

that are still predictable without being overly limiting. This utility to extended to the overall structure

of any analysis chains, which can be as varied as a user can design, thanks to the independent nature

of jobs.

One shortcoming in terms of clarity is that there is an inconsistency in the current parameter

definitions. As it stands, the trigger path is defined relative to the base workgroup directory, whilst

any variable path for an output file must contain the workgroup in the path. This is highlighted in the

Pattern shown in Table 26.1. It shows a Pattern that is triggered by a file called file1.txt, located within

the base workgroup directory. A variable, outfile is given which is to be used as an output path for a

new file, which will be placed next to file1.txt. However, to get file2.txt to be placed next to file1.txt we

need to prepend the {VGRID} keyword, or use the specific name of whatever workgroup this Pattern

is opperating within.

1 input_file: some_input_file

2 input_paths:

3 - file1.txt

4 output:

5 outfile: ’{VGRID}/file2.txt’

6 parameterize_over: {}

7 recipes:

8 - some_recipe

9 variables: {}

Listing 26.1: An example Pattern showing the inconsistent path levels in different variables.

26.2 M E E T I N G S W M S R E Q U I R E M E N T S W I T H M E O W 133

This is a relatively minor issue however, and could be solved by asking users to prepend a workgroup

to the triggering path as well. As this is the only significant issue affecting the clarity of constructing a

long chain of analysis, we can confidently claim that the need for clarity has been met by mig meow.

26.2.3 Predictability

A MEOW system is eminently predictable at each stage thanks to the explicit trigger path variable

which makes it clear exactly what each step will be triggered by. Even with a wildcard character in

a, trigger path, it is not hard to predict what files will match to what Patterns. It is therefore easy

to predict what processing will take place as a Pattern also explicitly ties a trigger path to a Recipe.

The visualisation provided as a part of the WorkflowWidget also makes it very easy to predict

how different Patterns and Recipes will link together, and the overall structure of analysis that will be

undertaken.

26.2.4 Recordability

The need for recordability is not well met by MEOW systems, run either locally through mig meow,

or through the MiG. In both cases it is possible for a user to individually inspect job records for an

exact record of what processing took place, with what definitions. However there is no easy way of

accessing these records in a collective manner, so as to get an overview or some such. In addition,

although extensive logs and records are kept as to what processing is undertaken, no specific logs are

kept as to what hardware resources were used to process these jobs.

Some headway has been made on showing how individual jobs relate to one another, through

the provision of the ReportWidget. This is currently only available for the MEOW on the MiG.

It manages to effectively show how jobs fit together, which along with the visualisation in the

WorkflowWidget can make for a clear report on the the overall structure. Obviously this is

somewhat limited, as it is not currently part of the WorkflowRunner.

To address these shortcomings more provision should be made for the reporting of sets of jobs,

rather than just as individual elements. In the same manner as the ReportWidget visualisation,

some report detailing issues encountered throughout the analysis could be provided, or some way of

highlighting individual jobs that a user may need to closer inspect. Finally, it would be of great utility

if the ReportWidget could be made to work with the WorkflowRunner.

26.2 M E E T I N G S W M S R E Q U I R E M E N T S W I T H M E O W 134

26.2.5 Reportability

This is somewhat met or not in the same manner as recordability. Tracing what processing was done

on what data is possible on a per job basis, but it is difficult to access, and come be improved upon.

There is currently no inbuilt support for checksumming or the like to validate that data has not been

modified since processing was completed. This could be addressed with relatively ease in future

updates both on the MiG and with the WorkflowRunner

26.2.6 Responsiveness

This requirement is directly met by MEOW in a way that is unmatched by existing SWMSs. Obviously,

a MEOW system will operate in response to changes in a file structure so as to schedule new jobs as

new files are created. However, as demonstrated by the example in Chapter 16.6, MEOW systems are

also capable of responding to changes in their own structure. This is a feature that is as far I am aware,

unique to MEOW as no pause or shutdown is required for changes to be made.

Some functionality from the MiG can also be leveraged here, as if jobs are scheduled using that

then it can alert the user as jobs complete. This email contains little information itself, but does have a

direct link to the logs on the MiG so that a user can view the results and any error logs if a problem

was encountered. Error handling within MEOW is inherently well managed due to the independent

nature of jobs. Any job can fail without affecting others in any way., making for a very resilient system

that can effectively manage a mix of valid and invalid inputs as has been shown in the examples in

Part iii. For these reasons, the requirement for responsiveness has easily been met by MEOW.

26.2.7 Reusability

Reusability is another requirement that is easily met by MEOW. Most obviously, as MEOW systems

are live systems, they will automatically apply to any new data that appears. For instance, the example

shown in Chapter 15.6 could be left running indefinitely so that data cleanup is applied to any data

produced by an instrument automatically with only one setup ever required. This obviously makes the

analysis extremely re-usable.

Aside from this, Patterns and Recipes are reusable between systems. Each Recipe is really just a

Jupyter Notebook, and Jupyter Notebooks already come with a whole host of features allowing for

easily shared and understandable code. Similarly, Patterns can also be understood and adapted with

relative ease, or just reused directly in a different system entirely if need be.

26.2 M E E T I N G S W M S R E Q U I R E M E N T S W I T H M E O W 135

26.2.8 Scientific

MEOW and mig meow have actively tried to support existing scientific practices through many of

the development choices made. Most prominently is the use of Jupyter Notebooks as the basis for

processing, as these are commonly used within science already, as a means both of defining processing

and of presenting findings[95].

One potential short coming that was discovered, is that the common scientific data storage format,

HDF5 is unsuited to event handling in the manner used by MEOW. This has not been fully investigated,

but it appears that the act of reading a HDF5 file creates a modification event, and so could trigger

processing of a MEOW Pattern. This could result in an undesired cascade of processing, even if no

data has ever actually been changed. It is currently unclear how this would be managed, and so for

the time being it is recommended that HDF5 files are not used as a the basis for processing. This

obviously somewhat limits their functional use within MEOW. To address this, work will be needed

within the event listener itself, both in the MiG and the WorkflowRunner. Specific implementation

will be needed to respond to events with HDF5 files, and to somehow either mask or ignore the event

as appropriate. This would especially be an issue if FUR is to be implemented with MEOW in some

manner, as its primary output is HDF5 files.

26.2.9 Well-formedness

This requirement overlaps a fair bit with clarity and predictability, and as such inherits the strengths

and weaknesses listed for them. A number of helper functions and points of feedback are provided

within mig meow and the MiG to assist users in creating MEOW constructs. Patterns are probably

the most complex single part of MEOW and so a specific integrity check function was created

specifically to check the definition for common mistakes or inconsistencies. Individual functions

consistently try to provide useful feedback as to what has gone wrong, if something has. This applies

to both mig meow and the MiG.

27

U S E C A S E S

Within this chapter we will consider the main identified use cases that the work presented in this thesis

could be used for. Some of these will require further work, in which case it is highlighted, but there

are also examples of whatMEOW could be used for right now.

27.1 E X P L O R AT O RY W O R K F L O W S

One of the originally motivating examples for developing MEOW was the exploratory workflow.

This means that the analysis is undertaken to gain new understanding of the experiment space, and

so by definition it is not completely understood at the beginning. For example, consider a use case

within oceanography. Various simulations have been created over the years, such as Veros[39]. This

can simulate various ocean states, with a user defining a large range of input parameters and the

simulation progressing from there. If some state is observed in an actual ocean, one technique to

investigate it is to try various input parameters in Veros and see which ones produce similar outputs

to those observed. In such a use case, numerous simulations will need to be run across a range of

input parameters. Scheduling all of the analysis in such a situation demands automation, as to do so

for each individual parameter value would be extremely time consuming. Because this experiment

space is not completely understood, there is always the chance that some of these inputs are invalid, or

produce unexpected results.

MEOW offers a clear solution to these problems as the event driven nature, in combination with

parameter sweeping, allows for the mass scheduling of jobs from only a few inputs. In addition,

even if some values produce incorrect results or encounter an error, the rest of the processing can

continue without interruption. With some clever Recipes writing, and modifying the Patterns as was

shown in the example in Chapter 16.6, it would be possible to create analysis that would discard those

results that were further from the expected output. You could setup a system that through repeated

iterations could zero in on appropriate starting parameters in manner similar to a machine learning

136

27.2 T R I V I A L LY R E P E ATA B L E J O B S 137

algorithm. Such a system is outside of the scope of this project, as it would require considerable more

development for it to be feasible within MEOW.

Another potential use case for MEOW is long running, many staged analysis, such as . Even

with relatively simple workflows, such as that presented way back in Figure 3.2, if the analysis is

sufficiently complex then computing each individual step can take hours or even days. In cases such

as this it may be that some analysis changes, either by some parameters being changed, or a whole

algorithm being swapped out for another. In a static system this would usually mean running the

whole analysis again from scratch, even if the changes only occurred half way through the complete

workflow. As each job is independent, in MEOW you can change an individual Pattern or Recipe

and only the jobs from that step and later will be scheduled, completely saving re-running the earlier

processing that has not changed.

It is worth noting that currently these use cases do not seem to be that common. By this I mean that

during my PhD most researchers I have interacted with have simple, linear workflows on reduced data

sets. They test their workflows in this manner until they have a working implementation which then

then run the complete data set on. Until now, setting up exploratory workflows in the manner described

above would be time consuming using only static systems. Therefore it might seem oblivious to say

that no-one currently works in a dynamic manner, whilst also stating that the tools to do so haven’t

existed till now. Nevertheless, the concern remains that due to the tools not being present, researchers

are already used to working in a static fashion, and so some small amount of work may be needed

by others to convert their analysis workflows into ones that better take advantage of the dynamic

possibilities of MEOW.

27.2 T R I V I A L LY R E P E ATA B L E J O B S

A use case that I expect is more likely to occur is that of the trivially repeatable job. By this it is

meant the sort of processing that has to be done time and again on different data sets. It is not hard to

predict the outcome, nor is it especially taxing to set up individually, but the difficulty comes from the

sheer repetitiveness of the task. Such tasks can be easily automated through the use of MEOW, so

as to be taken care of with minimal human input required. For an example let us consider scientific

instruments, and collecting data from them.

Many scientific instruments produce data that needs some sort of cleaning, formatting or calibrating.

This is not especially complicated. It is however repeated every time the instrument is run. Within

large facilities such as EuXFEL, external researchers come from all manner of other organisations

to use the highly specialised instruments available there. These external researchers require support

27.3 C O N T I N U O U S M O N I T O R I N G S Y S T E M S 138

from internal specialists in the particular instruments, who will assist in the running of the experiment

and the retrieval of the data. Some of the tasks these internal specialists have to perform are complex,

requiring a good deal of time and effort to resolve. Others meanwhile are simple, repetitive tasks that

require a good deal of local knowledge to set up but no real technical expertise. For instance, when

on secondment as EuXFEL I observed that specialists were required to clean up the data and get it

usable before external researchers could being to use it within their analysis. This cleanup was trivial

for the internal specialists, as it was mostly a matter of applying scripts with parameters they could

easily retrieve. However, in a 24 hour facility such as EuXFEL, they were often not around and so

delays were inevitable as external researchers needed to wait for the internal specialists to be on hand

to trigger something trivial to them, but unknowable to anyone else.

Such small jobs that are easily created with local knowledge would be ideal candidates for automa-

tion through MEOW. They could be performed immediately, reducing delays which is is important as

experiment time is a valuable commodity at such large facilities. Additionally, it will free up the time

of internal specialists who can now concentrate on the complex, bespoke problems that emerge, rather

than having to set up simple, repetitive tasks. Although we have mostly talked about large facilities

here, even small instruments could benefit from MEOW used in this way.

27.3 C O N T I N U O U S M O N I T O R I N G S Y S T E M S

Another use case that MEOW would be well suited to is in continuous systems, such as typified by

WIFIRE[2]. This is as MEOW is designed to be run as part of a live systems, and can easily cope with

infinite loops of processing. WIFIRE is a system for monitoring wild fire risks in the USA. It does this

by running a continuous loop of smaller workflows, which create a predicted state of fire risk. This

state is monitored, but also used as input for subsequent runs. As well as just simulated data, large

amounts of real world data are used as input. The range of data that is available as inputs is not always

the same, with sensors being added, moved, or removed on a continuous basis. Additional sources

such as twitter can also be brought in at times, to get a more complete picture of whatever situation is

developing on the ground, an important feature in what can be an important disaster response tool.

Although WIFIRE itself is a large, and complex enough system that I would not recommend

that it itself get retooled into using MEOW, it does demonstrate a type of system that could benefit

from MEOW. A live system such as MEOW, which is continuously monitoring for changes in a file

structure can respond immediately to any changes in the file state, so as new data comes in or old data

is overwritten new analysis can be conducted. The looping nature of WIFIRE is also easily replicated

within MEOW. Another aspect that would suit this well is the ease with which errors are handled

27.4 H E T E RO G E N E O U S S Y S T E M S 139

within MEOW. As jobs can fail individually without crashing the whole system, it would be a robust

foundation to build a continuous system onto.

One shortcoming in the current setup however is that within MEOW as it currently exists, it is

impossible to respond where no event has occurred. By this it is meant that there is nothing like a

timer, or such like to trigger a new job if not new data has been produced in a certain amount of time,

or to respond to a failed job that did not produce any data. These would be important features in a

monitoring system as responding to what has not occurred but should have, can be as essential as

responding to what has. That being said, if this functionality was needed, it would be possible to

create Recipes which replicated them. However, specific implementations of these would still be

desirable within MEOW.

27.4 H E T E RO G E N E O U S S Y S T E M S

Finally, MEOW systems are especially suited to heterogeneous systems that are disparate in type,

timing and space. Often times within computing heterogeneous systems refers to a collection of

hardware of differing sizes, such as a collection of processors operating at different clock speeds or

with differing amounts of memory. Here we are talking about systems that are even more disparate

than that, such as the difference between a CPU running a Python script, an FPGA processing sensor

data, and a user sorting files. These are all run in completely different ways but all all produce or

respond to file events.

For example, consider the analysis presented in Figure 27.1. It has six different resources of varying

types witihn it. Our first resource is the scientific instrument itself, which is tightly coupled with the

second resource, the instruments own storage. The instrument itself will be used to produce raw data,

which will need to be cleaned. This could be done according to MEOW definitions, as described in

the earlier Section 27.2. Space will always be limited in this local storage, and so data will be moved

to a more permanent home. This may be an online grid solution such as the MiG, but could also be a

facilities central storage server such as is used in beamline facilities.

Once data is sent to the centralised storage, there is not the same urgent need for instant processing

of data. This is where a researchers analysis will start to be conducted. In this example the first

stage is some simple analysis like creating an image from the data, along with some basic statistical

analysis so as to inform the next stage. This initial analysis would only require a relatively small

amount of processing, and would take only a few minutes to complete on a small HPC resource

such as a single-digit multi-core processor. The output of this initial analysis would then be assessed

by a human in some way. This could be through manual inspection of image files, with the user

27.4 H E T E RO G E N E O U S S Y S T E M S 140

Instrument

Small HPC Resource Human Large HPC Resource

Instrument Storage Centralised Storage

Raw
Data

Accepted
Data

Output
Data

Gather
Data

Cleanup
Data

Check
Data

Initial
Analysis

Identify
Points of
Interest

Initial
Results

Interesting
Data

Thorough
Analysis

Interesting
Results

Figure 27.1: A heterogeneous analysis. Note that solid lines show where all data inputs will produce output,
whilst dotted lines show where only some inputs will produce outputs.

looking for particular results of interest that will require further investigation. Unlike the other steps

in this analysis, this on is not conducted automatically as a human needs to interact with the system.

Therefore it will almost certainly be much slower than the other parts as humans go home for the

night, or get distracted by other important issues. It could be that this identification takes minutes,

or potentially weeks for the human to get round to it. When they do identify the regions of interest,

further detailed analysis is done on the data. This is extremely complex processing, that requires a

large amount of computing resources to complete in a reasonable time, such as a cluster of GPUs, or a

grid of cloud compute resources. Even with these resources the processing is expected to take several

days to complete before the final, presentable results are produced.

Throughout this analysis, a variety of jobs have been scheduled or set up, which have each been

processed on different resources, and will each take a radically different amount of time. MEOW

is obviously well suited to this style of system as it can automatically respond to each job and data

input as they emerge, with each stage able to be completed in parallel on their respective resources.

Here, each resource can complete its processing in its own fashion, without central management,

and so can operate as differently as it likes. The only condition is that it can request jobs from the

MEOW system running on the central storage, and that it can produce output back into the system.

Even this is not a formal requirement however, and it would be perfectly possible to have a series

of completely independent storage locations each with their own MEOW system, such as is shown

between the instrument and centralised storage. This would mean that even more differences could be

accommodated such as FPGAs, or other dedicated hardware. However, such a system would become

so decentralised that managing it and tracking both results and errors would become very arduous.

Nevertheless, this style of heterogeneous analysis is very well suited to MEOW systems, and strikes

me as the most apparent use case for future implementations.

The beginnings of such a system are already in place, as demonstrated by the scientific example in

Chapter 15.6. However, proper support for communication between instruments and the MiG storage

would assist greatly if a user was to create such a system. FUR goes some way to address this by

creating a managed way of uploading large amounts of data, but it relies on appending to HDF5 files

27.4 H E T E RO G E N E O U S S Y S T E M S 141

to be most efficient, which is currently unsuited to watchdog event management as every opening,

read or write operation is read as a modification of the file and so triggers an unwanted cascade of job

scheduling. Modifications to the event listener on the MiG would therefore be required for FUR to

be considered integrate-able into such a system. We are also currently limited in what jobs can be

scheduled using MEOW, with all Recipes being Jupyter Notebooks. This is currently sufficient for

scientific analysis, but in a heterogeneous system such as the one presented here, a broader range of

processing and job definition would be of great use. For these reasons, I conclude that though MEOW

makes possible heterogeneous analysis, further work is still possible to increase the utility of such a

system.

28

S U M M A R Y

This part has evaluated the work presented within this thesis. This was done by comparing it against

the core research question. It has been demonstrated that it is indeed feasible to create a system for

automatic dynamic workflow construction. This enables a whole host of new analysis structures that

were either not possible before, or have been made considerably easier with this innovation. Most

notably is the potential for more exploratory workflows, repeatable analysis or continuous system.

Therefore we can state that this project is a success and has demonstrated the feasibility of such a

system.

As a new SWMS, it was only appropriate that MEOW was rated against the stated requirements

for such as system. This was as these are the direct competition for MEOW and so users will also be

using these requirements in their judgements. In this regard MEOW was less successful. Although it

met many of the goals, it had two shortcomings in there exists the possibility of race conditions within

jobs as well as few limits on runaway job creation. Together these mean that MEOW is not yet fully

complete as a SWMS. It is still capable of running scientific analysis in conjunction with the MiG or

on its own in the WorkflowRunner in mig meow, but could do with more development before it

is considered robust enough for widespread adoption.

142

Part VI

C O N C L U S I O N A N D F U T U R E W O R K

29

F U T U R E W O R K

In this chapter we will consider some of the potential future work that could be carried out to continue

the project. As well as the specific examples that will be considered here, there of course also exists

the myriad of bugs and polishing that could take place on a large project such as this. These will not

be considered as they are not seen as overly interesting.

29.1 E X PA N D I N G M E O W D E F I N I T I O N S

Perhaps the most obviously point of future work is to expand the definitions possible within MEOW,

both for use within mig meow and the MiG. Some way of defining environment requirements or the

like would be of help. This should be added to the Recipe definitions as it is there that actual software

requirements will be most applicable. For example, having some new property of a Recipe that listed

the packages required by the Jupyter Notebook it is based off of would be of use.

Additionally, there are currently a number of job parameters used by the MiG that are not possible

to edit for MEOW jobs. For example, in Appendix H we can see that properties such as CPUTIME,

NODECOUNT and MAXFILL are always set to the same values when part of a MEOW job. Expand-

ing the definitions of either Patterns or Recipes to allow for the additional definition of values such

as these would be of use. This would allow a user to better tailor their jobs, so the MiG can better

manage them.

This is perhaps the avenue for future development that would provide the most utility. It would

not be overly difficult to achieve as many of the definitions stated already exist in various parts of

the system, they just need some way of being declared in the front-end and matched to the back-end.

Therefore, if any work is to continue on MEOW it is recommended first and foremost that at least

some of these additions are made.

144

29.2 L I M I T I N G I N F I N I T E S C H E D U L I N G 145

29.2 L I M I T I N G I N F I N I T E S C H E D U L I N G

Perhaps the biggest area of future work is regarding the limitation of infinite scheduling. Currently

there is no limit on how many jobs may be scheduled on a MEOW system, either at once or in

aggregate. This can lead to swamping a system or unwanted infinite chains of processing. As outlined

in Section 26.2.1 this was not totally unintentional, but unfortunately there was not the time to properly

investigate a real solution to the problem. For MEOW to be deployed at scale this would need to be

solved however. It is suspected that this may require considerable investigation to see which of the

dynamic possibilities enabled by MEOW are unwanted behaviours to be closed off and what should

be encouraged, but managed carefully.

Some possibilities for the sorts of limits to be put in place might include placing a lifetime on

Patterns, so that they automatically delete after X hours or days. Even simple limits like being able to

say that you do not expect a Pattern to be triggered more than Y times may be of considerable use here.

More extensive options might also be adding more attributes to the Pattern themselves. For instance it

may be that we could want to be more selective on what events are responded to such as by ignoring

events at a path we have already responded to, or only scheduling jobs whilst some flag somewhere

else on the system is set. These possibilities deserve to be investigated as potential scalable solutions

to this infinite scheduling problem.

29.3 I M P ROV I N G T H E W O R K F L O W R U N N E R

Another avenue for fruitful future development is to improve the WorkflowRunner. In its current

inception it was designed as a learning tool, and an illustration of how MEOW would work for those

without access to the MiG. This means that it is quite simplistic in some regards, with no environment

management or support for anything other than local execution. However, there is much potential for

this to be expanded in future work to allow for a much more robust platform for scientific analysis.

This would be of especial use in a heterogeneous system such as that described in Section 27.4. An

improved WorkflowRunner would be able to run as a central scheduler for any sort of MEOW

analysis in such a system. Therefore, this is another high priority for future development.

One particular avenue for development would be to enable provenance reporting within the

WorkflowRunner. The solution outlined in Section 11.2 won’t work as no SSH communica-

tion is taking place. It may be possible to adapt the WorkflowRunner so as to use SSH mounts

of local workgroup directories, thereby enabling logging with paramiko. However, this is not

anticipated to work as expected. This is due to some work carried out by me on the MiG that is

29.4 I N V E S T I G AT I N G A N D S U P P O RT I N G H D F 5 A N D F U R 146

was not otherwise relevant to this thesis. It was discovered that watchdog does not pick up events

through symlinks as the underlying file system only generates events at their absolute paths. When

locally mounting directories, it is expected that a similar issue may arise, and so some new solution

will probably be needed.

29.4 I N V E S T I G AT I N G A N D S U P P O RT I N G H D F 5 A N D F U R

During testing of watchdog and h5py, it was noted that merely the act of reading a HDF5 file

would be interpreted by watchdog as a modification event. This is not desirable as any job scheduled

on some data may then trigger further jobs just from reading in its own input. This matter should

be addressed, especially as it would be of worth to be able to use FUR in conjunction with MEOW

to properly support scientific analysis. Although the matter has not been fully investigated yet, it

is suspected that a programming solution can be found within the current framework. For instance,

currently both the MiG and the WorkflowRunner bundle together events at the same path that

occur at a very similar time, to prevent multiple jobs being scheduled off of minute edits. A similar

system could potentially be developed, so that the monitor itself distinguishes between read and write

operations within HDF5 files. In addition, other popular meta-formats should also be investigated to

see if this problem is universal or unique to HDF5.

29.5 U N I F Y I N G L A N G UAG E

Mostly, the language of MEOW is unified with words like Pattern, Recipe and Rule used consistently

to refer to individual constructs within MEOW. The glaring exception to this is the use of the word

workflow. As mentioned in Sections 4.4 and 20.3, the use of the word workflow was inherited from

the systems that MEOW was designed in response to, but was found to be increasingly unhelpful for

new learners.

Later materials deliberately avoid using workflow completely, if possible though this is somewhat

undercut by its use in constructs such as the WorkflowWidget and WorkflowRunner. Most

prominently, workflow also features in the acronym, MEOW. It would be of considerable help to

new users to avoid confusion by removing the word workflow from MEOW. This is perhaps a much

simpler task that the others presented here, but with much more indeterminate results. Therefore this

would not be a task worth conducting on its own, but should be done in conjunction with something

else.

29.6 A L I B R A RY F O R T O M O G R A P H Y I N M E O W 147

29.6 A L I B R A RY F O R T O M O G R A P H Y I N M E O W

The main goal of MUMMERING was to make a unified tool for tomography. What we have provided

is a platform for designing tomography analysis, with MEOW and the MiG. This does meet the needs

of such a tool, but may not be the specific implementation that the project planners first envisioned.

If a specific tool for tomography was needed then one suggested format for this would be to collect

a variety of tomography Jupyter Notebooks from ESRs and package them into a python library. These

Jupyter Notebooks could be formatted so as to be directly importable as Recipes for analysis, and

appropriate Patterns could also be included alongside them. New tomography users could then use

this library of tomography analysis Patterns and Recipes to construct a MEOW system to process their

own data. A mock-up of how this might look from a user perspective is presented in Listing 29.1.

1 import mig_meow as meow

2 import tomo_meow as tomo

3

4 # Read in the Pattern definitions

5 p_segment = tomo.patterns.Segmentation(

6 name=’segment’, input_dir=’raw’, output_dir=’segmented’)

7 p_analysis = tomo.patterns.Analysis(

8 name=’analysis’, input_dir=’segmented’, output_dir=’final’)

9

10 # Setup dict of all Patterns

11 patterns = {

12 ’segment’: p_segment,

13 ’analysis’: p_analysis,}

14

15 # Setup dict of all Recipes

16 recipes = {

17 ’segmentation’: tomo.recipes.Segmentation(name=’segmentation’),

18 ’analysis’: tomo.recipes.Analysis(name=’analysis’)}

19

20 # Start the local runner

21 runner = meow.WorkflowRunner(’example’, 1, patterns=patterns, recipes=recipes)

Listing 29.1: A mock-up of what a python library for tomography constructs in MEOW might look like.

In a real example, more specific implementations would be made than simply ‘analysis’, with each

Recipe being an implementation of some specific algorithm or technique. A standardised format of

data would need to be established between Recipes, to allow for such plug-and-play possibilities,

though this is not an impossible task. By creating such a library, MUMMERING would finally have a

specific tool for the analysis of tomography. It would also perhaps make it easier for new users, who

29.6 A L I B R A RY F O R T O M O G R A P H Y I N M E O W 148

could immediately plug-and-play different Patterns and Recipes as a way of learning either MEOW

or tomography. This work would also be relatively easy to achieve, though perhaps time consuming

to gather a wide range of suitable processing for Recipes. Each would also potentially have to be

converted to an appropriate format, and some effort made to make them cross-compatible with one

another. Therefore it is concluded that this work is feasible, but would not be quick.

30

C O N C L U S I O N

This thesis has presented a body of work undertaken by myself as part of the MUMMERING project.

The main goal was to create a dynamic way of processing tomography data in a shareable manner.

To meet this goal, I developed MEOW as a framework for dynamic job scheduling. This would use

file events as a catalyst in a live system, in contrast to static workflows which will often use a DAG

or some other form of a priori definitions to identify jobs. The key advantage of doing this is that

each job is completely independent of every other job, and so can be scheduled concurrently with any

other, making good use of any available resources. In addition, it is trivial for jobs to fail or succeed

and so we can schedule mass amounts of jobs without being concerned about one error scuppering the

whole analysis. This also means that the output for each job can be completely optional, which only

increases the dynamic nature of the system.

In order for users to create such a system the MEOW framework was outlined, with users creating

Patterns and Recipes. These match events to processing, and define the processing itself respectively.

As the inputs and outputs for Patterns overlap, they link together with a workflow becoming an

emergent property of the system rather than a specific user definition. In order to actually define

these constructs, a python package mig meow was created. This can be used in isolation to run a

local analysis system, but is primarily designed to interact with the MiG. A number of functions are

provided within mig meow to allow for the easy creation, reading, updating and deleting of MEOW

constructs on the MiG. This can be somewhat complex for a user to understand and debug, and so

a number of helper Jupyter Notebook widgets have been created. These provide features such as

visualisations of the expected analysis from given Patterns and Recipes, as well as reporting on what

jobs have been scheduled, and showing how those jobs link together in a provenance report.

In support of MEOW, a number of learning materials and documentation have been presented, along

with some exploratory examples of how it might be used in a scientific context. Most prominently,

MEOW would be of use as a system where continuous scheduling is necessary such as in a live

monitoring system, or those with often repeated analysis. It is also well suited to exploratory workflow

with unpredictable results. Finally I also think it would be a of use in heterogeneous analysis

149

C O N C L U S I O N 150

systems, with processing spread over many resources disparate in both architecture and timing. This

is especially true as there is more demand for human-in-the-loop interactions in traditional SWMS.

As it currently stands, MEOW is already suited to many of these applications, especially if used in

conjunction with the MiG. However, there is still plenty of capacity for further work. There is much

scope for the MEOW definitions to be expanded to make specific demands of the environment each

job is to be run in. This could easily be integrated with the existing systems for doing this on the

MiG, but would require a more bespoke solution for the WorkflowRunner. It would also be of

significant help if the WorkflowRunner was expanded to be a robust analysis tool in its own right,

perhaps by integrating corc or FUR into its use.

In conclusion this project has successfully demonstrated the feasibility of a tool for the automatic

creation of dynamic scientific workflows. This is true both for tomography specifically as well as

science more generally. It has prompted enough novel research to be published and presented at

conferences, and has provided fruitful collaboration with a number of partners. Additional supporting

work has also been completed, such as efficient uploading of research data to the MiG as well as

demonstrating integration of cloud scheduling into existing applications. Several avenues of future

work remain however, most notably in fully integrating these supporting works into either mig meow

or the MiG. In addition, time should be taken to address the potential shortcomings of few job

scheduling controls and a potential race condition in MEOW. Despite these gaps, we can conclude

that MEOW was successful as it can currently be used to automate the scheduling of scientific analysis

in a novel, dynamic structure. This enables workflow structures that would be difficult to implement

in an old, static system such as exploratory workflows, repeatable analysis, or heterogeneous systems.

Thank you for reading.

Part VII

B I B L I O G R A P H Y

B I B L I O G R A P H Y

[1] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock, “Kepler: An Extensible
System for Design and Execution of Scientific Workflows,” in Proceedings. 16th International
Conference on Scientific and Statistical Database Management, 2004, IEEE, 2014.

[2] I. Altintas, J. Block, R. de Callafon, D. Crawl, C. Cowart, A. Gupta, M. Nguyen, H.-W. Braun,
J. Schulze, M. Gollner, A. Trouve, and L. Smarr, “Towards an Integrated Cyberinfrastructure
for Scalable Data-driven Monitoring, Dynamic Prediction and Resilience of Wildfires,”
Procedia Computer Science, vol. 51, pp. 1633–1642, 2015, International Conference On
Computational Science, ICCS 2015, ISSN: 1877-0509.

[3] P. Amstutz, M. R. Crusoe, N. Tijanić, B. Chapman, J. Chilton, M. Heuer, A. Kartashov,
D. Leehr, H. Ménager, M. Nedeljkovich, and et al., Common workflow language, v1.0, Jul.
2016. DOI: 10.6084/m9.figshare.3115156.v2. [Online]. Available: https:
//figshare.com/articles/Common_Workflow_Language_draft_3/
3115156/2.

[4] Amazon Web Services, https://aws.amazon.com/, 2021.

[5] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar, L. Lacinski, R. Chard,
J. M. Wozniak, I. Foster, M. Wilde, and K. Chard, “Parsl: Pervasive parallel programming in
python,” in Proceedings of the 28th International Symposium on High-Performance Parallel
and Distributed Computing, ser. HPDC ’19, Phoenix, AZ, USA: Association for Computing
Machinery, 2019, pp. 25–36, ISBN: 9781450366700. DOI: 10.1145/3307681.3325400.
[Online]. Available: https://doi.org/10.1145/3307681.3325400.

[6] R. M. Badia, J. Conejero, C. Diaz, J. Ejarque, D. Lezzi, F. Lordan, C. Ramon-Cortes,
and R. Sirvent, “Comp superscalar, an interoperable programming framework,” SoftwareX,
vol. 3-4, pp. 32–36, 2015, ISSN: 2352-7110. DOI: https://doi.org/10.1016/j.
softx.2015.10.004. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2352711015000151.

[7] J. Bardino, M. Rehr, and B. Vinter, “Event-driven, collaborative and adaptive scientific
workflows on the grid,” English, in Communicating Process Architectures 2017 and 2018,
WoTUG-39 and WoTUG-40 - Proceedings of CPA 2017 (WoTUG-39) and Proceedings of
CPA 2018 (WoTUG-40), J. Pedersen, K. Chalmers, J. Broenink, B. Vinter, K. Vella, P. Welch,
M. Smith, and K. Skovhede, Eds., ser. Concurrent Systems Engineering Series, 39th WoTUG
Conference on Communicating Process Architectures, CPA 2017 and 40th WoTUG Confer-
ence on Communicating Process Architectures, CPA 2018 ; Conference date: 19-08-2018
Through 22-08-2018, IMIA and IOS Press, 2019, pp. 61–80. DOI: 10.3233/978-1-
61499-949-2-61.

[8] Benchmarking raw results, https://sid.idmc.dk/sharelink/a4K7ZbzOyy, 2022.

[9] K. Benedyczak, B. T. Schuller, M. Sayed, J. Rybicki, and R. Grunzke, “Unicore 7 — mid-
dleware services for distributed and federated computing,” Jul. 2016, pp. 613–620. DOI:
10.1109/HPCSim.2016.7568392.

[10] J. Berthold, J. Bardino, and B. Vinter, “A principled approach to grid middleware: Status report
on the minimum intrusion grid,” in Algorithms and Architectures for Parallel Processing,
Y. Xiang, A. Cuzzocrea, M. Hobbs, and W. Zhou, Eds., Springer, 2011, pp. 409–418.

[11] J. Bjørndalen, B. Vinter, and O. Anshus, “Pycsp - communicating sequential processes for
python.,” vol. 65, Jan. 2007, pp. 229–248.

152

https://doi.org/10.6084/m9.figshare.3115156.v2
https://figshare.com/articles/Common_Workflow_Language_draft_3/3115156/2
https://figshare.com/articles/Common_Workflow_Language_draft_3/3115156/2
https://figshare.com/articles/Common_Workflow_Language_draft_3/3115156/2
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/3307681.3325400
https://doi.org/https://doi.org/10.1016/j.softx.2015.10.004
https://doi.org/https://doi.org/10.1016/j.softx.2015.10.004
https://www.sciencedirect.com/science/article/pii/S2352711015000151
https://www.sciencedirect.com/science/article/pii/S2352711015000151
https://doi.org/10.3233/978-1-61499-949-2-61
https://doi.org/10.3233/978-1-61499-949-2-61
https://doi.org/10.1109/HPCSim.2016.7568392

B I B L I O G R A P H Y 153

[12] S. Bowers and B. Ludäscher, “Actor-oriented design of scientific workflows,” vol. 3716, Oct.
2005, pp. 369–384, ISBN: 978-3-540-29389-7. DOI: 10.1007/11568322_24.

[13] CERN, https://home.cern, 2021.

[14] CERN Data preservation, https://home.cern/science/computing/data-preservation, 2021.

[15] CERN Storage, https://home.cern/science/computing/storage, 2021.

[16] Cloud Technologies in Education, https://cte.ccjournals.eu/cte2020/, 2020.

[17] P. Couvares, T. Kosar, A. Roy, J. Weber, and K. Wenger, “Workflow management in condor,”
Workflows for e-Science, pp. 357–375, Jan. 2007. DOI: 10.1007/978-1-84628-757-
2_22.

[18] Creating an IPython Notebook programatically, https://gist.github.com/fperez/9716279, 2016.

[19] crontab, https://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html, 2018.

[20] cwltool, https://github.com/common-workflow-language/cwltool, 2021.

[21] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,” in Pro-
ceedings of the 6th Conference on Symposium on Operating Systems Design & Implementation
- Volume 6, ser. OSDI’04, San Francisco, CA: USENIX Association, 2004, p. 10.

[22] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman, “Pegasus: Planning for execution in
grids,” GriPhyN, Tech. Rep. Technical Report 2002-20, 2002. [Online]. Available: http:
//pegasus.isi.edu/publications/ewa/pegasus%5C_overview.pdf.

[23] J. Dias, G. Guerra, F. Rochinha, A. L. Coutinho, P. Valduriez, and M. Mattoso, “Data-centric
iteration in dynamic workflows,” Future Generation Computer Systems, vol. 46, pp. 114–126,
2015.

[24] H. Digabel and C. Lantuéjoul, “Iterative algorithms,” in Proc. 2nd European Symp. Quantita-
tive Analysis of Microstructures in Material Science, Biology and Medicine, Stuttgart, West
Germany: Riederer Verlag, vol. 19, 1978, p. 8.

[25] Docker, https://www.docker.com/, 2021.

[26] D. Marchant, MIG MEOWDOCKER CONTAINER, https://github.com/PatchOfScotland/docker-
meow, 2022.

[27] D. Marchant, MiG docker container, https://github.com/PatchOfScotland/docker-migrid, 2022.

[28] D. Marchant, Slurm docker container, https://github.com/PatchOfScotland/docker-slurm,
2022.

[29] M. Dreher and T. Peterka, “Decaf: Decoupled dataflows for in situ high-performance work-
flows,” Argonne National Laboratory, Lemont, IL, Tech. Rep. ANL/MCS-TM-371, Jul. 2017.

[30] EduHPC-19, https://tcpp.cs.gsu.edu/curriculum/?q=eduhpc19, 2019.

[31] ESRF, https://www.esrf.eu/, 2021.

[32] Euro-Par 2021, https://2021.euro-par.org/, 2021.

[33] EuXFEL, https://www.xfel.eu, 2021.

[34] Example file data, https://sid.idmc.dk/cgi-sid/ls.py?share id=FocgdzkyBf, 2021.

[35] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. Junior, and H.-L. Truong, “Askalon: A tool
set for cluster and grid computing,” Concurrency and Computation: Practice and Experience,
vol. 17, Feb. 2005. DOI: 10.1002/cpe.929.

[36] J. E. Ferreira, Q. Wu, S. Malkowski, and C. Pu, “Towards flexible event-handling in workflows
through data states,” in 2010 6th World Congress on Services, 2010, pp. 344–351. DOI:
10.1109/SERVICES.2010.60.

https://doi.org/10.1007/11568322_24
https://doi.org/10.1007/978-1-84628-757-2_22
https://doi.org/10.1007/978-1-84628-757-2_22
http://pegasus.isi.edu/publications/ewa/pegasus%5C_overview.pdf
http://pegasus.isi.edu/publications/ewa/pegasus%5C_overview.pdf
https://doi.org/10.1002/cpe.929
https://doi.org/10.1109/SERVICES.2010.60

B I B L I O G R A P H Y 154

[37] I. Foster, “Globus Toolkit Version 4: Software for Service-Oriented Systems,” in IFIP In-
ternational Conference on Network and Parallel Computing, Springer-Verlag, 2006, pp. 2–
13.

[38] Google Cloud, https://cloud.google.com/, 2021.

[39] D. Häfner, R. L. Jacobsen, C. Eden, M. R. B. Kristensen, M. Jochum, R. Nuterman, and B.
Vinter, “Veros v0.1 – a fast and versatile ocean simulator in pure python,” Geoscientific Model
Development, vol. 11, no. 8, pp. 3299–3312, 2018. DOI: 10.5194/gmd-11-3299-2018.
[Online]. Available: https://gmd.copernicus.org/articles/11/3299/
2018/.

[40] P. B. Hansen, Operating system principles. Prentice-Hall, Inc., 1973.

[41] B. P. Harenslak and J. R. de Ruiter, Data Pipelines with Apache Airflow, 1st ed. Manning,
2021, ISBN: 978-16-172-9690-1.

[42] HDF5, https://www.hdfgroup.org/solutions/hdf5/, 2021.

[43] C. A. R. Hoare, “Communicating sequential processes,” Communications of the ACM, vol. 21,
no. 8, pp. 666–677, 1978.

[44] T. Hodges and M. R. Crusoe, “Common workflow language user guide,” Aug. 2017, Based off
of the excellent Software/Data Carpentry templates: https://github.com/swcarpentry/styles/.
DOI: 10.5281/zenodo.840663.

[45] ImageFilter, https://pillow.readthedocs.io/en/5.1.x/reference/ImageFilter.html, 2022.

[46] inotify(7) Linux manual page, https://man7.org/linux/man-pages/man7/inotify.7.html, 2020.

[47] ipywidgets documentation, https://ipywidgets.readthedocs.io/en/latest/, 2021.

[48] Project Jupyter, https://jupyter.org/, 2021.

[49] H. Karlsen and B. Vinter, “Minimum intrusion grid - the simple model,” Jul. 2005, pp. 305–
310, ISBN: 0-7695-2362-5. DOI: 10.1109/WETICE.2005.46.

[50] J. Kerridge, Using Concurrency and Parallelism Effectively, 2nd ed. Bookboon, 2014, ISBN:
978-87-403-1038-2.

[51] Kubernetes, https://kubernetes.io/, 2021.

[52] D. Marchant, C.-J. Johnsen, B. Vinter, and K. Skovhede, “Teaching concurrent and distributed
programming with concepts over mathematical proofs,” English, in 2019 IEEE/ACM Workshop
on Education for High-Performance Computing (EduHPC), IEEE, 2019. DOI: 10.1109/
EduHPC49559.2019.00012.

[53] D. Marchant, R. Munk, and B. Vinter, “Developments in event-oriented, emergent workflows.”

[54] D. Marchant, R. Munk, B. Vinter, and E. Brenne, “Managing event oriented workflows,”
English, Dec. 2020, pp. 23–28. DOI: 10.1109/XLOOP51963.2020.00009.

[55] J. M. Martin and P. H. Welch, “A design strategy for deadlock-free concurrent systems,”
Transputer Communications, vol. 3, no. 4, pp. 215–232, 1997.

[56] M. Mattoso, J. Dias, K. A.C.S.Ocaña, E. Ogasawara, F. Costa, F. Horta, V. Silva, and D.
de Oliviera, “Dynamic steering of HPC scientific workflows: A survey,” Future Generation
Computer Systems, vol. 46, pp. 100–113, 2015.

[57] MAX IV, https://www.maxiv.lu.se, 2021.

[58] T. McPhillips, S. Bowers, D. Zinn, and B. Ludäscher, “Scientific workflow design for mere
mortals,” Future Generation Computer Systems, vol. 25, pp. 541–551, 2008.

[59] P. K. Willendrup, McWeb, https://github.com/McStasMcXtrace/McWeb, 2020.

[60] Microsoft Azure, https://azure.microsoft.com/en-us/, 2021.

https://doi.org/10.5194/gmd-11-3299-2018
https://gmd.copernicus.org/articles/11/3299/2018/
https://gmd.copernicus.org/articles/11/3299/2018/
https://doi.org/10.5281/zenodo.840663
https://doi.org/10.1109/WETICE.2005.46
https://doi.org/10.1109/EduHPC49559.2019.00012
https://doi.org/10.1109/EduHPC49559.2019.00012
https://doi.org/10.1109/XLOOP51963.2020.00009

B I B L I O G R A P H Y 155

[61] J. Bardino, M. Rehr, R. Munk, and D. Marchant, MiG on SourceForge,
https://sourceforge.net/projects/migrid/, 2021.

[62] D. Marchant, mig meow on GitHub, https://github.com/PatchOfScotland/mig meow, 2022.

[63] D. Marchant, mig meow on PyPi, https://pypi.org/project/mig-meow, 2021.

[64] R. Montella, D. Di Luccio, and S. Kosta, “DagOn*: Executing Direct Acyclic Graphs as
Parallel Jobs on Anything,” in Proceedings of WORKS 2018: 13th Workshop on Workflows
in Support of Large-Scale Science, Held in conjunction with SC 2018: The International
Conference for High Performance Computing, Networking, Storage and Analysis, 2019,
pp. 64–73, ISBN: 9781728101965. DOI: 10.1109/WORKS.2018.00012.

[65] multiprocessing, https://docs.python.org/3/library/multiprocessing.html, 2021.

[66] Mummering Project website, http://www.mummering.eu, 2021.

[67] R. Munk and B. Vinter, “Mummering platform idea’s & ubiquitous data analysis,” 2018,
pp. 323–333. DOI: 10.3233/978-1-61499-949-2-323.

[68] R. Munk, “Grid of clouds: A model for how resources can be shared amongst organisations,”
Ph.D. dissertation, Niels Bohr Institute, University of Copenhagen, Feb. 2021.

[69] R. Munk, D. Marchant, and B. Vinter, “Cloud enabling educational platforms with corc,”
in Proceedings of the 8th Workshop on Cloud Technologies in Education (CTE 2020), 2020,
ISBN: 0000000239479.

[70] nbformat, https://github.com/jupyter/nbformat, 2021.

[71] notebook-parameterizer, https://pypi.org/project/notebook-parameterizer/, 2021.

[72] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver, K. Glover,
M. R. Pocock, A. Wipat, and P. Li, “Taverna: A tool for the composition and enactment of
bioinformatics workflows,” Bioinformatics, vol. 20, no. 17, pp. 3045–3054, 2004.

[73] Oracle Cloud Infrastructure, https://www.oracle.com/cloud/, 2021.

[74] Oracle Grid Engine, https://www.oracle.com/technetwork/oem/host-server-mgmt/twp-gridengine-
overview-167117.pdf, 2010.

[75] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE transactions on
systems, man, and cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[76] papermill, https://github.com/nteract/papermill, 2021.

[77] paramiko, http://www.paramiko.org/, 2020.

[78] D. M. Pelt, K. J. Batenburg, and J. A. Sethian, “Improving tomographic reconstruction from
limited data using mixed-scale dense convolutional neural networks,” Journal of Imaging,
vol. 4, no. 11, p. 128, 2018.

[79] Pillow, https://pillow.readthedocs.io/en/stable/, 2021.

[80] C. Ramon-Cortes, F. Lordan, J. Ejarque, and R. M. Badia, “A programming model for hybrid
workflows: Combining task-based workflows and dataflows all-in-one,” Future Generation
Computer Systems, vol. 113, pp. 281–297, Dec. 2020, ISSN: 0167-739X. DOI: 10.1016/
j.future.2020.07.007. [Online]. Available: http://dx.doi.org/10.1016/
j.future.2020.07.007.

[81] S. Rinderle, M. Reichert, and P. Dadam, “Correctness criteria for dynamic changes in workflow
systems––a survey,” Data & Knowledge Engineering, vol. 50, no. 1, pp. 9–34, 2004, Advances
in business process management, ISSN: 0169-023X. DOI: https://doi.org/10.1016/
j.datak.2004.01.002. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0169023X04000035.

https://doi.org/10.1109/WORKS.2018.00012
https://doi.org/10.3233/978-1-61499-949-2-323
https://doi.org/10.1016/j.future.2020.07.007
https://doi.org/10.1016/j.future.2020.07.007
http://dx.doi.org/10.1016/j.future.2020.07.007
http://dx.doi.org/10.1016/j.future.2020.07.007
https://doi.org/https://doi.org/10.1016/j.datak.2004.01.002
https://doi.org/https://doi.org/10.1016/j.datak.2004.01.002
https://www.sciencedirect.com/science/article/pii/S0169023X04000035
https://www.sciencedirect.com/science/article/pii/S0169023X04000035

B I B L I O G R A P H Y 156

[82] M. Rocklin, “Dask: Parallel computation with blocked algorithms and task scheduling,”
in Proceedings of the 14th python in science conference, Jan. 2015, pp. 126–132. DOI:
10.25080/Majora-7b98e3ed-013.

[83] R. Rosca and H. Fangohr. (). “Jupyter for reproducible science at photon and neutron facilities,”
PaNOSC - Photon and Neutron Open Science Cloud, [Online]. Available: https://
www.panosc.eu/wp- content/uploads/2019/07/PaNOSC_20190611-
13_ROSCA_Berkeley_JupiterForScience.pdf.

[84] SC19, https://sc19.supercomputing.org/, 2019.

[85] SC20, https://sc20.supercomputing.org/, 2020.

[86] F. Simancik, J. Jerz, J. Kovacik, and P. Minar, “Aluminium foam-a new light-weight structural
material,” METALLIC MATERIALS, vol. 35, pp. 187–194, 1997.

[87] E. Tejedor, Y. Becerra, G. Alomar, A. Queralt, R. M. Badia, J. Torres, T. Cortes, and J. Labarta,
“PyCOMPSs: Parallel computational workflows in Python,” International Journal of High
Performance Computing Applications, vol. 31, no. 1, pp. 66–82, 2017, ISSN: 17412846. DOI:
10.1177/1094342015594678.

[88] C. The MPI Forum, “Mpi: A message passing interface,” in Proceedings of the 1993 ACM/IEEE
Conference on Supercomputing, ser. Supercomputing ’93, Portland, Oregon, USA: Association
for Computing Machinery, 1993, pp. 878–883, ISBN: 0818643404. DOI: 10.1145/169627.
169855. [Online]. Available: https://doi.org/10.1145/169627.169855.

[89] R. Tolosana-Calasanz, J. Bañares, P. Álvarez, and J. Ezpeleta, “On interlinking of grids: A
proposal for improving the flexibility of grid service interactions,” Jul. 2008, pp. 714–720,
ISBN: 978-0-7695-3163-2. DOI: 10.1109/ICIW.2008.39.

[90] Torque Resource Manager, https://adaptivecomputing.com/cherry-services/torque-resource-
manager/.

[91] W. Van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K. J. Batenburg, and
J. Sijbers, “The astra toolbox: A platform for advanced algorithm development in electron
tomography,” Ultramicroscopy, vol. 157, pp. 35–47, 2015.

[92] N. A. T. Voetmann, “Framework for Uploading Research data (FUR),” M.S. thesis, Niels Bohr
Institute, University of Copenhagen, Mar. 2021. [Online]. Available: https://sid.idmc.
dk/sharelink/hZjJ5NSvlb.

[93] watchdog, https://pypi.org/project/watchdog/, 2021.

[94] P. H. Welch, G. R. Justo, and C. J. Willcock, “Higher-level paradigms for deadlock-free
high-performance systems,” in Transputer Applications and Systems”93, Proceedings of the
1993 World Transputer Congress, IOS Press, Netherlands, vol. 2, 1993, pp. 981–1004.

[95] J. M. Perkel, Why Jupyter is data scientists’ computational notebook of choice,
https://www.nature.com/articles/d41586-018-07196-1, Oct. 2018.

[96] N. Wirth, “What can we do about the unnecessary diversity of notation for syntactic defini-
tions?” Commun. ACM, vol. 20, pp. 822–823, 1977.

[97] Workload Manager, https://www.ibm.com/docs/en/aix/7.2?topic=management-workload-manager,
2021.

[98] I. T. Union, X.509 technical specification, https://www.itu.int/rec/T-REC-X.509, 2019.

[99] XLOOP 20, https://wordpress.cels.anl.gov/xloop-2020/about-xloop/, 2020.

[100] Xnovotech, https://xnovotech.com/, 2021.

[101] The Official YAML Web Site, https://yaml.org/, 2011.

https://doi.org/10.25080/Majora-7b98e3ed-013
https://www.panosc.eu/wp-content/uploads/2019/07/PaNOSC_20190611-13_ROSCA_Berkeley_JupiterForScience.pdf
https://www.panosc.eu/wp-content/uploads/2019/07/PaNOSC_20190611-13_ROSCA_Berkeley_JupiterForScience.pdf
https://www.panosc.eu/wp-content/uploads/2019/07/PaNOSC_20190611-13_ROSCA_Berkeley_JupiterForScience.pdf
https://doi.org/10.1177/1094342015594678
https://doi.org/10.1145/169627.169855
https://doi.org/10.1145/169627.169855
https://doi.org/10.1145/169627.169855
https://doi.org/10.1109/ICIW.2008.39
https://sid.idmc.dk/sharelink/hZjJ5NSvlb
https://sid.idmc.dk/sharelink/hZjJ5NSvlb

B I B L I O G R A P H Y 157

[102] O. Yildiz, J. Ejarque, H. Chan, S. Sankaranarayanan, R. M. Badia, and T. Peterka, “Heteroge-
neous hierarchical workflow composition,” Computing in Science Engineering, vol. 21, no. 4,
pp. 76–86, 2019. DOI: 10.1109/MCSE.2019.2918766.

[103] A. Yoo, M. Jetter, and M. Grondona, “Slurm: Simple linux utility for resource management,”
Lecture Notes in Computer Science, vol. 2862, pp. 44–60, 2015.

[104] Y. Zhao, I. Raicu, and I. Foster, “Scientific workflow systems for the 21st century, new bottle
or new wine?” In Proceedings of the 2008 IEEE Congress on Services - Part I, SERVICES

’08, Washington, DC, USA, 2008, pp. 467–471.

https://doi.org/10.1109/MCSE.2019.2918766

Part VIII

A P P E N D I C E S

A
M A N A G I N G E V E N T O R I E N T E D W O R K F L O W S

This paper, and a presentation describing it were originally presented at the 2nd Annual Workshop on
Extreme-Scale Experiment-in-the-Loop Computing[99], part of SC20: The International Conference
for High Performance Computing, Networking, Storage and Analysis[85]. It was first published as
part of the proceedings[54].

159

Managing Event Oriented Workflows?

David Marchant1[0000−0003−4262−7138], Rasmus Munk1[0000−0003−0333−4295],
Elise O. Brenne2[0000−0003−2424−4117], and Brian Vinter1[0000−0002−3947−9878]

1 Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen,
Denmark {david.marchant, rasmus.munk, vinter}@nbi.ku.dk

2 Department of Energy Conversion and Storage, Technical University of Denmark,
Fysikvej, 2800 Kgs. Lyngby, Denmark elbre@dtu.dk

Abstract. This paper introduces an event-driven solution for modern
scientific workflows. This approach enables truly dynamic workflows by
splitting workflows into their constituent parts and expressing them us-
ing combinations of Patterns and Recipes. This system is implemented
on the MiG and examples are presented. Different users use cases are
considered to asses the feasibility of the design, and it is found to be
sufficient. Finally, further developments are considered with particular
attention put towards more user friendly providence reporting and pa-
rameter sweeping.

Keywords: workflow, event-driven, adaptive, dynamic, Jupyter, MiG

1 Introduction

Scientific workflows systems are an essential part of modern research. They are
used to process large datasets on numerous heterogeneous resources. Traditional
scientific workflow systems adopt a so-called static structure, where all process-
ing, data and outcomes are set at the beginning of the workflow. This is sufficient
for a number of use cases, but some have identified a need for a dynamic struc-
ture to their workflows, where the outcomes of any processing are unknown at
the start of the workflow [17].

To address this, this paper proposes MEOW, a system for defining event-
driven workflows. This is done by splitting workflows into separate Patterns and
Recipes. These can be defined by users, with the workflow emerging from several
overlapping Patterns. The paper also describes a prototype implementation of a
MEOW based event-driven workflow scheduler on the Minimum Intrusion Grid
(MiG) [7, 8]. This dynamic workflow environment enables new workflow struc-
tures, impossible in a static system such as optional outputs or cyclic execution
of processes. Furthermore, this system is suitable for a whole range of users,
right down to HPC amateurs and so could be applied to a wide range of use
cases.

? This project has received funding from the European Unions Horizon 2020 research
and innovation programme under the Marie Skodowska-Curie grant agreement No
765604.

M A N AG I N G E V E N T O R I E N T E D W O R K F L O W S 160

2 D. Marchant et al.

This project is developed as part of the MUMMERING3 research project
with the aim of providing researchers with a generic tool of the management
and processing of scientific sets of data.

2 Background

2.1 Scientific Workflows

To explore the growing collection of scientific data, the use of automated analysis
techniques is required. To meet the needs of scientists, workflows as a concept
have been adapted from the more ‘traditional’ models used within business.
The specific implementations of workflow systems designed for scientists are
referred to as ‘scientific workflows’ with examples such as Kepler [4], Pegasus [10],
Taverna [19], and Globus Workflow [15], among others. These efforts usually
employ a top-down model when defining how the set of tasks should be processed,
which in turn produces workflows that defines an entire chain of steps through
a simple scripting language, a textual based graph, or a mathematical based
definition [11]. The resulting jobs are then scheduled automatically. However, for
tasks such as exploring large datasets [12], it is unlikely that the initial defined
assumptions will produce a successful result without having first explored several
workflow permutations. In this situation, the workflow execution would benefit
from being able to make adaptions during runtime and make task scheduling
decisions based on the intermediate results of the experiment at hand while also
allowing human-in-the-loop interactions during the initial analysis and iterations
of the workflow. [17]

Once a worklfow is activated, typically it will take the defined tasks and
chain them together for subsequent scheduling. The activation itself is normally
conducted in a data, control or hybrid driven manner. The choice among these
depends on the implementation of the engine itself. In the area of scientific
workflow systems, the approach has most often been to schedule workflows in a
data-driven/data-flow manner, the reason being that in most scientific experi-
ments suitable for workflow execution the task often involves some complex chain
of data processing and transformation tasks which naturally maps themselves to
a data-driven model.

Beyond the ability to process workflows, the historically successful scientific
workflow systems have also provided a wide range of additional features to com-
plement the workflow. These are often data management of the input and output
generated from the workflows, task failure management, integration with grid
and cloud resources for distributed task scheduling, and enabling collaboration
between users across data management and workflow features [17,27].

3 MU ltiscale, Multimodal, and Multidimensional imaging for EngineeRING (MUM-
MERING)

M A N AG I N G E V E N T O R I E N T E D W O R K F L O W S 161

Managing Event Oriented Workflows 3

2.2 Static and Dynamic Workflows

Scientific workflows tend to be data oriented and exploratory in nature [9]. This
is as scientists are often running workflows as part of their experiments, and so
may be running the same workflow repeatedly to fully explore an experiment
space. The nature of these repeated runs may be unknown at the start of a
scientists investigation, unlike in more traditional business workflows where it is
expected that a user will already have a full understanding of the workflow and
the work to be carried out. This means that scientific workflows have a specific
need to be dynamic, as identified by [9,12,16,17], amongst others. Note that for
a workflow to be dynamic it must be alterable at runtime. This could mean that
parameters within a job can be changed, jobs can be cancelled, or any other user
interaction should be possible without having to restart the whole workflow.

Many recent scientific workflow developments such as Dask [22], PyCOMPs
[24], and DagOn [18] employ a data-driven model for their workflows. This has
led them to a common way of representing the overall workflow, namely as a
static Directed Acyclic Graph (DAG) [14]. Static in this regard means that, once
the workflow is defined it is set and not subject to change during runtime exe-
cution, which obviously does not address the need for scientific workflows to be
dynamic. As highlighted by [9, 12], this possesses several constraints when the
experiment at hand involves the exploration of large datasets. Several workflow
systems currently exist that allow for varying degrees of runtime adaption. For
example DVega [25], which allows for exception handling in individual workflow
steps. These exceptions are caught by the workflow system, which can recover
by replacing the step with a new one. Other solutions in other workflow sys-
tems also use a similar method for workflow alteration at runtime, with steps
replaced or rescheduled on different resources. However, these adaptions require
the user to define the possible changes ahead of time and so are limited to ex-
pected outcomes. It is suspected that this limitation comes from workflows still
being defined in a static paradigm, with adaptions applied later within a model
that does not sufficiently support such changes. Consider the work of work-
flow standards such as CWL [6], which has no inbuilt functionality for defining
adaptability within a workflow, even though its ambition is to be the univer-
sal standard for expressing scientific workflows. A different approach would be
to design workflows from the ground up to be dynamic. The proposed MEOW
system is intended as such a system.

2.3 Scientific Workflow Requirements

Whatever type of workflow manager is implemented, it must adhere to the re-
quirements of any scientific workflow system (SWFS) as outlined in [28]. Zhao,
Raicu and Foster describe a SWFS as having four defining characteristics. Firstly
it should be possible within the system to implement complicated data analysis
according to the requirements of a given researcher. Secondly, the system will
make possible the automation of data processing tasks. Thirdly, the system will
utilize parallel computation to improve the workflows performance regarding

M A N AG I N G E V E N T O R I E N T E D W O R K F L O W S 162

4 D. Marchant et al.

throughput and execution time. Lastly, the system should provide a capability
to trace data through the system, with metadata being maintained about any
given result to show exactly where it came from and what processing has taken
place upon it. These four requirements sufficiently describe all SWFS’s and the
functionality expected from them. These shall be used as the base requirements
for the proposed MEOW system presented within this paper.

3 The Proposed Solution

3.1 Designing MEOW

To create an event-driven workflow we will adopt the bottom up approach first
demonstrated in [7]. This means that users define individual components and
a workflow becomes an emergent property of the system, rather than being
explicitly defined by the user. This bottom up, event-driven approach shall be
referred to as Managing Event-Oriented Workflows, or MEOW for short.

To define what MEOW means it is necessary to break a workflow down into
its constituent parts, which can then individually be defined by a user. Workflows
are made up of several steps, with each step being a self contained block of
processing. An example workflow is shown in Figure 1. This workflow is typical
in that it has several steps, shown as the light grey boxes, each representing some
processing. Data is passed from step to step, as is shown by the linking arrows.

Fig. 1: A sample workflow showing various processing steps some data would undergo.
In this diagram the focus is on the processing, with the data being passed from step
to step.

Workflows are usually shown in this manner, but could also be expressed
with each step representing the data, and the arrows showing the processing
happening on said data. This can be seen in Figure 2 and is usually referred
to as a dataflow, due to its focus on how the data is used between steps. Both
Figure 1 and 2 show the same workflow, but the data-centric method on display
in Figure 2 is better suited to an event-driven model. This is as the driving events
for such as system will be data being created or modified rather than processes
starting or finishing.

This leads us to what it actually is that user will define, namely Patterns and
Recipes. Patterns are, at their most basic, a description of what events should

M A N AG I N G E V E N T O R I E N T E D W O R K F L O W S 163

Managing Event Oriented Workflows 5

Fig. 2: A sample dataflow showing various states some data would exist in as it un-
dergoes various processing. In this diagram the focus is on the data, with it being
processed by different functions in turn.

result in the processing of a Recipe. This event description can be as broad
or specific as the user requires, so may define a specific file path, or may be
broad enough to cover any instance of a certain file type. The processing that
is triggered by a Pattern match is defined in a Recipe. A Recipe should (but
is not required to) take some input data, perform some set of instructions, and
then should (but is not required to) produce some output. As well as the event
description, a Pattern must also declare a Recipe as the processing that shall
be triggered in the event of a match. Taken together, a Pattern and Recipe
define one ‘step’ of a workflow. As a user defines multiple Patterns and Recipes,
a workflow emerges from the collection of individual steps. Note that Patterns
are unique, in that each one will correspond to one step in a workflow, but that
Recipes may be shared by multiple Patterns.

The advantage of breaking down the workflows into these Patterns and
Recipes is that each step of the workflow is now completely independent. This
contrasts with traditional workflows, where the entire workflow is processed to-
gether4. As a result, individual steps could be said to lack meaningful inter-
dependencies and are scheduled and completed in isolation. This isolation is
what enables the emergent workflow to be completely dynamic, as any Pattern
or Recipe may be changed at any point, and so any job at any stage can be
changed, cancelled or added. As each step is completely independent this can
be done without limitation, and regardless of what other jobs have already been
scheduled, completed or ignored.

3.2 MEOW Requirements

To properly define a MEOW system, the following definitions for Patterns and
Recipes have been constructed. These would be the minimum that would need
to be defined in a Pattern or Recipe by a user for them to create a functioning
system as described. For a Recipe the requirements are:

– Name: This is the identifier of the Recipe. It is used by Patterns to identify
the linked Recipe, and by the implementation to keep track of changes to an
already registered Recipe. The name must be unique.

4 This may in practice be done in several batches of processing running in parallel, or
sequentially. It is nevertheless defined as one holistic system

M A N AG I N G E V E N T O R I E N T E D W O R K F L O W S 164

6 D. Marchant et al.

– Recipe: The processing code itself. This is the core job code that contains,
for example, a user’s analysis algorithm. It may rely on input data or vari-
ables, provided by a Pattern.

The Recipe requirements are currently fairly light and are open to being
expanded in future. For instance, it may make more sense for a Recipe to de-
fine what variables or input it needs, rather than simply hoping that a Pattern
provides the expected variables. This is not currently a requirement as it is not
necessary within the current implementation. The requirements for a Pattern
are:

– Name: This is the identifier of the Pattern. Must be unique.
– Triggering Event: This is an event description, used to match against

system events. In case of a match then a job should be scheduled according to
the definition of the Pattern. This job will take the file creating the triggering
event as input, along with other defined variables.

– Outputs: A list of any and all data to be retrieved from the job as output.
These outputs may not always be produced, but all possible outputs should
be listed.

– Recipe: The name of a Recipe, used to define the processing taking place
in a job.

– Variables: A set of variables to be passed to the Recipe by this Pattern at
job creation. These could be any data structure understood by the Recipe
and may include additional input files or possible output locations.

As in the case of the Recipe, these requirements may expand as the imple-
mentation is further explored. Further requirements must be met for a MEOW
based scheduler to be truly event-driven. These are:

– New Recipes must seek existing Patterns. When the system registers a
Recipe, the system must check to see if any already registered Patterns have
stated this Recipe as their target. If any Patterns have stated the Recipe,
then they are linked to the Recipe.

– New Patterns must seek existing Recipes. When the system registers
a new Pattern, the system must check to see if the Patterns stated Recipe
is already registered in the system. If the Recipe is present, the Pattern is
linked to it.

– Patterns and Recipes that are linked, must create a trigger. If any
links from Patterns to Recipes are established, then the system must create
an appropriate event trigger.

– New triggers must be able to apply retroactively. If a new trigger
is created, it must be able to check within the system, would any already
existing files activate the trigger, were they created now. If any appropriate
files are present they must be treated as though they were just created and
so activate the trigger.

– Deleting a Pattern or Recipe must be able to remove any associ-
ated trigger. If a Pattern or Recipe is deleted, then any triggers created
from it must be immediately deleted.

M A N AG I N G E V E N T O R I E N T E D W O R K F L O W S 165

Managing Event Oriented Workflows 7

– Deleting a trigger must be able to cancel any associated jobs. If
a trigger is ever deleted then any jobs that were scheduled as a result of
activating that trigger should be cancelled. This is not strictly necessary but
without it the system may quickly bloat with jobs that could now have been
superseded.

– Updating a Pattern or Recipe will delete the old version and create
a new one. If a Pattern/Recipe is ever updated then it should be processed
in the system by the existing Pattern/Recipe being deleted, and a new one
being registered as though it was created for the first time.

The presented requirements, when taken together ensure that the resulting
workflow is adaptive to changes in Patterns, Recipes, and the underlying data
files. It ensures that jobs will be rescheduled if a Pattern or Recipe is updated,
and that no data is missed. If each requirement is implemented correctly then
a workflow will, by necessity, be an emergent property of Pattern and Recipe
definitions.

4 Implementing MEOW within MiG

4.1 MiG

To both test and demonstrate a MEOW system in action, an implementation
was developed on the MiG [8]. This is a take on providing a middleware system
for a set of distributed compute resources. It does this while requiring only a
minimum amount of integration or configuration of the committed grid resources
to join the overall organisation, thereby seeking to eliminate much of the failures
of previous grid developments due to their complex and high administrative de-
pendent architectures. Because the MiG is already a mature system it will act
as a good basis for the MEOW workflow implementation. A distinct attribute to
the MiG system is that the committed grid resources are mostly manged inde-
pendently of the managing grid server, for instance when a job is submitted by
a user to the managing grid server, the grid resources themselves are responsible
for de-queuing and accepting a job for processing. A managing grid server will
therefore never dictate a resource to process a job or conduct a similar task, it
simply makes them available for a suitable resource to process.

The heart of the MiG system from a user’s perspective, is the concept of
Virtual Grids (VGrids). These are a super-set of a typical grid organisation.
The grid organisation and its internal permission constraints are defined by the
creators themselves. This is an invaluable tool across many research projects at
the University of Copenhagen, both for sharing data but also to provide cross
organisational collaboration at scale.

The ability to provide runtime adaptable workflows was recently also intro-
duced in [7]. It introduced this as a part of a generic event-driven workflow
system that defines an alternative to the DAG workflow model. It does this by
not defining the complete set of workflow tasks in its entirety as a graph, but
instead adopts a bottom up perspective on the individual tasks. The workflow

M A N AG I N G E V E N T O R I E N T E D W O R K F L O W S 166

8 D. Marchant et al.

tasks are instead defined as independent and disjointed pieces of work that can
be adapted and managed at runtime.

While this notion is suitable for providing runtime adaptability, the initial
implementation suffers from being highly complex in terms of being able to
define individual trigger rules correctly and organising these independent rules
to produce fully fledged workflows. For examples, and a fuller explanation of
how event management works on the MiG please consult [7].

4.2 mig meow: A Package for Defining MEOW Workflows

A Python package was developed allowing users to define Patterns and Recipes,
called mig meow [1]. This package contains the definition of a Pattern object,
along with a number of helper functions for defining event paths, Recipes, out-
puts5, and variables. It is primarily intended to be used within a Jupyter Note-
book [2]. This is as they are already commonly used in scientific computing, and
hopefully can offer a more user-friendly and maintainable interface than using a
web based or custom made application.

Although it is possible to construct Patterns programmatically, mig meow
provides a Jupyter Notebook widget which also allows for Pattern and Recipe
construction. This widget is intended as the primary method for users to do
so, and also provides a visualisation of the emergent workflow from the defined
Patterns and Recipes. This is especially important due to the separated nature
of the individual workflow steps, as they are not definitionally linked like in
a traditional workflow. Having a method of checking that the outputs of one
Pattern leads into the inputs of another Pattern is therefore helpful. Each defined
input and output location is attached to a Pattern via arrows, showing the path
along which data is processed. Where these inputs and outputs overlap they will
point to the same location, such as in Figure 3.

4.3 mig meow on the MiG

Recipes are defined by Jupyter Notebooks. All they require according to the
specification is a name and some code, which Notebooks already have with their
filename, and the code cells within them. Parameters can be passed to a Recipe
by a Pattern allowing the same Recipe to be used by multiple jobs/Patterns with
different results. Patterns are modelled as objects using mig meow, as it is hoped
that objects should be at least passingly familiar to anyone using this system.
Objects also make it easier to define a number of functions that could correctly
configure the Pattern variables so as to comply with the requirements set out
in Section 3.2, and to accommodate different input types without appearing too
confusing to the user. When Patterns and Recipes are created using mig meow,

5 Note that a Patterns outputs can be defined in mig meow, despite this not being
necessary according to MEOW. These do not have any effect other than aiding
workflow visualisation, and actual outputs are not limited to those defined, nor are
the defined outputs expected.

M A N AG I N G E V E N T O R I E N T E D W O R K F L O W S 167

Managing Event Oriented Workflows 9

they can be exported to a VGrid, whereupon the necessary triggers are created,
updated or deleted as appropriate and job scheduling can begin.

5 A Fully Worked Example

To illustrate MEOW in use, an example workflow is presented here. This exam-
ple examines the size and distribution of the pores within an artificial dataset
representing 3D X-ray computed tomography (CT) data of 100 samples of alu-
minium foam [23]. The goal is to analyze the pore radius distribution in all
samples. Some samples have very few pores, or very large pores. We want to
discard these samples and exclude them from the final analysis. This can be
done effectively in a dynamic system, meaning we can setup the whole workflow
at once and not need to pre-sort our data sets as would often be required in a
static system.

The main steps in the image processing workflow are as follows. Firstly,
we need to segment the data, i.e. label the image voxels according to the two
phases present; aluminium and air. Secondly, we identify the individual pores and
estimate their radii. This is a time consuming process, so before we attempt these
two steps we can perform an initial check to ensure that the porosity is within
the desired range. This will exclude defect samples from the time consuming
analysis.

The Recipes: The following items of processing were required before any work-
flow could be constructed. Each was written as a Jupyter Notebook and regis-
tered under the given name. Recipe code is available in [3].

– Recipe ‘porosity check’ linked to Pattern ‘initial porosity check’: A
two-component Gaussian Mixture Model is fitted to a small sample (around
1 %) of the intensity data, providing a rough idea of the air-to-aluminium
ratio through the model component weights.

– Recipe ‘segmentation’ linked to Pattern ‘segment foam data’: In
the first step of the segmentation process, noise is reduced using a Gaussian
filter. The filter kernel size is defined as a variable whose value is set in the
Pattern. Thereafter, the image is segmented using Otsu thresholding [20].
Finally, a morphological closing operation is performed to remove possible
remaining single-voxel noise.

– Recipe ‘pore analysis’ linked to Pattern ‘foam pore analysis’: To
investigate the pore size distribution, the individual pores are identified using
the watershed algorithm [13] with local peaks in a distance transform of the
segmented data as seeds.

The Foam Analysis Workflow: The final implementation of the workflow is
illustrated in Figure 3. Each of the three created Patterns show in green circles.
Each Pattern has as an input path a file type in a directory, as shown by the
white rounded rectangles with arrows pointing to the Pattern. Any optional

M A N AG I N G E V E N T O R I E N T E D W O R K F L O W S 168

10 D. Marchant et al.

output locations are shown with the arrows leading out of the Pattern. Each
Pattern specifies the corresponding Recipe, as stated in the previous paragraph.

The 100 artificial CT datasets to be analysed were generated using the
Python package foam ct phantom [21] and the ASTRA toolbox [26]. 20 phan-
toms were generated with insufficient porosity compared to the remaining 80
phantoms. To start processing using the workflow, these datasets were uploaded
to the ‘foam ct data’ directory in the ‘.npy’ NumPy array format. This triggers
the first Pattern, ‘initial porosity check’. The Recipe linked to this Pattern clas-
sifies each dataset as either accepted or discarded depending on some predefined
porosity threshold, and accordingly, a text file with the dataset filename is cre-
ated in one of the directories ‘foam ct data accepted’ or ‘foam ct data discarded’.
This was done to avoid copying the whole dataset needlessly, as this would re-
sult in gigabytes of additional space being used up. The creation of each text
file triggers the next Pattern, ‘segment foam data’. The segmentation method
described in the linked Recipe is applied to the accepted datasets and the result
stored in the directory ‘foam ct data segmented’. Finally, the pore analysis is
performed on the segmented data, producing the final plots stored in the di-
rectory ‘foam ct data pore statistics’ as determined by the ‘foam pore analysis’
Pattern.

.txt.txt*.txt

foam_pore_analysis
segment_foam_data

inital_porosity_check

.txt.txt

foam_ct_data_discarded/*.txt

*.txt

foam_ct_data_accepted/*.txt

foam_ct_data/*.npy

foam_ct_data_pore_analysis/*.png

foam_ct_data_segmented/*.npy

Fig. 3: The foam analysis workflow. Note that this image is based on the visualisation
described in Section 4.2, but additional file images have been added to make the data
state clearer at the different stages.

Suitability: The toy workflow presented here demonstrates how an event-driven
workflow may be constructed, and a scenario in which it would be advantageous
to do so. This is as we can setup one continuous workflow without any prior
sorting of the data. In addition, individual job scheduling is completely separated
so one dataset may be sorted, segmented and analysed before all datasets have
been sorted. This could lead to more efficient use of concurrent hardware setups,

M A N AG I N G E V E N T O R I E N T E D W O R K F L O W S 169

Managing Event Oriented Workflows 11

as we don’t need to wait for a group of jobs to finish before starting the next
ones.

6 Users and Use Cases

When using MEOW to define a dynamic workflow rather than a static workflow
system, different design paradigms are possible. Some possibilities and use cases
are presented here as inspiration. These are not intended as improvements per
se over any other methodology, but merely as possibilities within MEOW that
are either not possible in other systems or very difficult to achieve.

An event-driven, dynamic workflow system such as MEOW is ideally suited
to repeatable jobs, especially if they have unpredictable outputs. This could
be extremely useful for facilities such as CERN, MAX IV or EuXFEL, where
external users can book experiment time. These users are often an eclectic mix
of specialists in their own field but may have little to no technical understanding
of HPC. Some of these user’s only concern is with the final produced data on
which they shall perform their analysis, and they are largely unconcerned with
any data cleanup or such like that must be performed on the raw data produced
by the experiment. This could be scheduled automatically by a dynamic system,
so that even ‘novice’ users can use a MEOW workflow if a more experienced user
has set up the appropriate Patterns.

Similarly, a dynamic workflow would be suited to continuous monitoring
systems such as WIFIRE [5], a system for simulating, monitoring and predict-
ing wildfires in southern California. WIFIRE uses Kepler [4], a static workflow
system to create workflows where heterogeneous data from cameras, satellites,
weather stations and previous data sets is used to predict/simulate fire risks.
Notably, the output state of one run can be used as input for the next run
so as to generate an updating and continuous fire risk simulation. These data
events could be used as trigger in a dynamic, continuous workflow where the
same data is processed repeatedly by the same Pattern(s). These cycles of pro-
cessing could theoretically go on forever if a continuous monitoring system was
desired, or could continue until a certain threshold was reached. In either case, it
would be much more difficult to set up a system like this using static workflows.
In addition, if additional sensors are brought online, or existing ones removed,
the workflow can be modified at runtime without the system needing extensive
downtime for modification.

Most notably, a dynamic structure allows for optional branching within the
workflow, such as in presented in Section 5. As each step is meaningfully inde-
pendent of each other, there is no requirement for any particular step to produce
any particular output, which is not easily possible in a static workflow system
where step dependencies are often explicit. This means that adaptive workflows
are particularly suited to a dynamic model.

All of these use cases are nothing new, as automation in workflows already
exists in plenty of static systems. What is unique in a dynamic system is that
it is possible to automate even when the outcome is unknown. For instance,

M A N AG I N G E V E N T O R I E N T E D W O R K F L O W S 170

12 D. Marchant et al.

it would be possible to create some automatic system that checks all raw data
from a machine and could calibrate, sort or discard data based on some analysis.
This data can then trigger further analysis based on the outcome to the initial
processing.

7 Future Work

The most pressing point for further improvement in the MiG implementation
of MEOW is proper providence support. This is currently possible as each job
scheduled on the MiG produces individual feedback at job completion, but there
is currently no way to view this easily, nor is there a way to get an overview of
several jobs at once. Some sort of final report would be ideal, where a user can
get an overview of what processing has been scheduled according to the defined
Patterns and Recipes, and what output has been produced. Due to the nature
of an event-driven system this would not be a ‘final’ report produced at the end
of the workflow, as there is no end to an event-driven system where new events
can occur at any time. Instead having a button, or way of triggering a report of
all processing up to that point would suffice.

Parameter sweeping within Patterns is a feature scheduled for further devel-
opment. By this it is meant that from a given input it should be possible to
schedule a number of jobs with each given a different value for some parameter
within a range. This would be ideal for initial exploration of datasets/analysis
techniques, especially in a dynamic system were it is not necessary that each job
successfully completes for the workflow to do so.

As it currently stands, the MEOW definition is robust, but limited. It does
not mandate any sort of environment requirements and so could be expanded
in future to do so. It also acts on the assumption that one file event will lead to
one job, or many jobs once parameter sweeping is implemented. The converse
of this may also be desirable, having multi-input jobs that only trigger once
several files are triggered. This could be especially helpful for final analysis or
the reduce segment of a map-reduce structured workflow. It is possible to achieve
this currently through cunning use of Patterns and Recipes, but an explicit and
simple way of doing so would be a benefit. There are of course also innumerable
usability tweaks and fixes to make as is expected in a prototype system.

8 Conclusions

This paper has proposed one possible solution to some of the problems of modern
scientific workflows. Unlike static workflows that require all steps to be defined
at the very beginning, MEOW is proposed as a bottom up approach which
breaks workflows down into Patterns and Recipes. This allows for an event-driven
workflow system, which is fully dynamic at runtime. This enables a whole host
of new ways of thinking about scientific workflows and how they are structured.

A demonstration system was implemented and described working in con-
junction with the MiG. An example dynamic workflow using mig meow was

M A N AG I N G E V E N T O R I E N T E D W O R K F L O W S 171

Managing Event Oriented Workflows 13

presented. MEOW was then considered in light of the needs of four hypothetical
users and whether the proposed implementation is capable of meeting their needs
for an event-driven, collaborative workflow system. The design repercussion of
MEOW were also considered, with it being of particular note that the event-
driven nature enables workflow structures for which traditional static workflow
systems are unsuited. For example, optional branching and cyclic workflows are
possible within this system.

Further work is expected on increasing the usability of mig meow, most no-
tably with better providence reporting. This work is worth continuing as it
presents scientists with a dynamic paradigm for workflow construction, enabling
new ways of interacting with and exploring even extremely large datasets.

References

1. mig meow. https://pypi.org/project/mig-meow (2019)
2. Project Jupyter. http://jupyter.org (2019)
3. mig meow code examples. https://sid.idmc.dk/sharelink/CJv3sw1fp2 (2020)
4. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler: An

Extensible System for Design and Execution of Scientific Workflows. In: Proceed-
ings. 16th International Conference on Scientific and Statistical Database Manage-
ment, 2004. IEEE (2014)

5. Altintas, I., Block, J., de Callafon, R., Crawl, D., Cowart, C., Gupta, A.,
Nguyen, M., Braun, H.W., Schulze, J., Gollner, M., Trouve, A., Smarr, L.:
Towards an Integrated Cyberinfrastructure for Scalable Data-driven Monitoring,
Dynamic Prediction and Resilience of Wildfires. Procedia Computer Science 51,
1633 – 1642 (2015). https://doi.org/https://doi.org/10.1016/j.procs.2015.05.296,
http://www.sciencedirect.com/science/article/pii/S1877050915011047, interna-
tional Conference On Computational Science, ICCS 2015

6. Amstutz, P., Crusoe, M.R., Tijani, N., Chapman, B., Chilton, J., Heuer, M.,
Kartashov, A., Leehr, D., Mnager, H., Nedeljkovich, M., et al.: Common work-
flow language, v1.0 (Jul 2016). https://doi.org/10.6084/m9.figshare.3115156.v2,
https://tinyurl.com/sqhzosy

7. Bardino, J., Rehr, M., Vinter, B.: Event-driven, collaborative and adaptive scien-
tific workflows on the grid. Communicating Process Architecture pp. 59–78 (2017)

8. Berthold, J., Bardino, J., Vinter, B.: A principled approach to grid middleware:
Status report on the minimum intrusion grid. In: Xiang, Y., Cuzzocrea, A., Hobbs,
M., Zhou, W. (eds.) Algorithms and Architectures for Parallel Processing, pp. 409–
418. Springer (2011)

9. Caeiro Rodriguez, M., Priol, T., Nemeth, Z.: Dynamicity in scientific work-
flows. Institute on Grid Information, Resource and Workflow Monitoring Services,
CoreGRID-Network of Excellence, Tech. Rep. TR-0162, August (01 2008)

10. Deelman, E., Blythe, J., Gil, Y., Kesselman, C.: Pegasus: Planning for ex-
ecution in grids. Tech. Rep. Technical Report 2002-20, GriPhyN (2002),
http://pegasus.isi.edu/publications/ewa/pegasus overview.pdf

11. Deelman, E., Gannon, D., Shields, M.S.: Workflows for e-Science. Workflows for
e-Science (2007). https://doi.org/10.1007/978-1-84628-757-2

12. Dias, J., Guerra, G., Rochinha, F., Coutinho, A.L., Valduriez, P., Mattoso, M.:
Data-centric iteration in dynamic workflows. Future Generation Computer Systems
46, 114–126 (2015)

M A N AG I N G E V E N T O R I E N T E D W O R K F L O W S 172

14 D. Marchant et al.

13. Digabel, H., Lantuéjoul, C.: Iterative algorithms. In: Proc. 2nd European
Symp. Quantitative Analysis of Microstructures in Material Science, Biology and
Medicine. vol. 19, p. 8. Stuttgart, West Germany: Riederer Verlag (1978)

14. Fakhfakh, F., Kacem, H.H., Kacem, A.H.: Workflow scheduling in cloud comput-
ing: A survey. In: 2014 IEEE 18th International Enterprise Distributed Object
Computing Conference Workshops and Demonstrations. pp. 372–378 (Sep 2014).
https://doi.org/10.1109/EDOCW.2014.61

15. Foster, I.: Globus Toolkit Version 4: Software for Service-Oriented Systems. In:
IFIP International Conference on Network and Parallel Computing. pp. 2–13.
Springer-Verlag (2006)

16. Gil, Y., Deelman, E., Ellismand, M., Fahringer, T., Fox, G., Gannon, D., Goble, C.,
Livny, M., Moreau, L., Myers, J.: Examining the challenges of scientific workflows.
IEEE Computer 40(12), 24–32 (2007)

17. Mattoso, M., Dias, J., A.C.S.Ocaa, K., Ogasawara, E., Costa, F., Horta, F., Silva,
V., de Oliviera, D.: Dynamic steering of HPC scientific workflows: A survey. Future
Generation Computer Systems 46, 100–113 (2015)

18. Montella, R., Di Luccio, D., Kosta, S.: DagOn: Executing Direct Acyclic Graphs
as Parallel Jobs on Anything. In: Proceedings of WORKS 2018: 13th Workshop on
Workflows in Support of Large-Scale Science, Held in conjunction with SC 2018:
The International Conference for High Performance Computing, Networking, Stor-
age and Analysis. pp. 64–73 (2019). https://doi.org/10.1109/WORKS.2018.00012

19. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T.,
Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the composition and
enactment of bioinformatics workflows. Bioinformatics 20(17), 3045–3054 (2004)

20. Otsu, N.: A threshold selection method from gray-level histograms. IEEE transac-
tions on systems, man, and cybernetics 9(1), 62–66 (1979)

21. Pelt, D.M., Batenburg, K.J., Sethian, J.A.: Improving tomographic reconstruction
from limited data using mixed-scale dense convolutional neural networks. Journal
of Imaging 4(11), 128 (2018)

22. Rocklin, M.: Dask: Parallel Computation with Blocked algorithms and Task
Scheduling. Proceedings of the 14th Python in Science Conference (SCIPY), 126–
132 (2018). https://doi.org/10.25080/majora-7b98e3ed-013

23. Simancik, F., Jerz, J., Kovacik, J., Minar, P.: Aluminium foam-a new light-weight
structural material. METALLIC MATERIALS 35, 187–194 (1997)

24. Tejedor, E., Becerra, Y., Alomar, G., Queralt, A., Badia, R.M., Torres, J., Cortes,
T., Labarta, J.: PyCOMPSs: Parallel computational workflows in Python. Interna-
tional Journal of High Performance Computing Applications 31(1), 66–82 (2017).
https://doi.org/10.1177/1094342015594678

25. Tolosana-Calasanz, R., Baares, J.A., Rana, O.F., lvarez, P.,
Ezpeleta, J., Hoheisel, A.: Adaptive exception handling for scien-
tific workflows. Concurrency and Computation: Practice and Ex-
perience 22(5), 617–642 (2010). https://doi.org/10.1002/cpe.1487,
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1487

26. Van Aarle, W., Palenstijn, W.J., De Beenhouwer, J., Altantzis, T., Bals, S., Baten-
burg, K.J., Sijbers, J.: The astra toolbox: A platform for advanced algorithm de-
velopment in electron tomography. Ultramicroscopy 157, 35–47 (2015)

27. Zhang, J., Kuc, D., Lu, S.: Confucius: A Tool Supporting Collaborative Scientific
Workflow Composition. IEEE Transactions on Services Computing 7(1) (2014)

28. Zhao, Y., Raicu, I., Foster, I.: Scientific workflow systems for the 21st century, new
bottle or new wine? In: Proceedings of the 2008 IEEE Congress on Services - Part
I, SERVICES ’08. pp. 467–471. Washington, DC, USA (2008)

M A N AG I N G E V E N T O R I E N T E D W O R K F L O W S 173

B
D E V E L O P M E N T S I N E V E N T- O R I E N T E D , E M E R G E N T W O R K F L O W S

This paper was submitted to Euro-Par 2021[32], but was not accepted, on the grounds that it focused
too much on technical implementation details, rather than genuine novel research. Before being
re-submitted further research would have to take place, perhaps focusing on direct comparisons
between MEOW and more static systems once the local runner is more robust. Results could then be
added to this paper with direct measurements of overheads and other comparison metrics.

174

Developments in Event Oriented, Emergent
Workflows?

David Marchant1[0000−0003−4262−7138], Rasmus Munk1[0000−0003−0333−4295], and
Brian Vinter2[0000−0002−3947−9878]

1 Niels Bohr Institues, University of Copenhagen, Denmark
d.marchant@ed-alumni.net, rasmus.munk@nbi.ku.dk

2 Aarhus University, Faculty of Technical Sciences, Aarhus, Denmark vinter@au.dk

Abstract. The recently introduced framework for constructing dynamic
workflow systems, Managing Event Oriented Workflows (MEOW), and
its implementation mig meow, both require further development before
they can be considered complete. This paper describes three major im-
provements that should ensure MEOW and mig meow meet the needs
of any scientific workflow system. Firstly, the ability has been added for
users to create their own workflow runner, independent of any previously
required grid hardware. Secondly, a system for trivially scheduling large
numbers of jobs across a range of parameters has been added. Finally,
the ability for MEOW workflows to dynamically identify job outputs and
construct a provenance report will also be outlined. This sets up MEOW
as a promising way for researchers to schedule large volumes of jobs, and
to experiment with fully dynamic workflows across both large and small
datasets.

Keywords: MEOW · Workflows · Emergent · Dynamic · CSP · MiG.

1 Introduction

Scientific workflows have a need to be dynamic and exploratory in nature[6]. To
meet this need, the framework Managing Event Oriented Workflows (MEOW)
was recently introduced [11] as an event-driven system, which used emergent
workflows that can easily be adapted at runtime. An implementation of this,
mig meow was also presented, however, it lacked some features before it could
be considered a mature system. This paper outlines three such developments
within mig meow. Namely, the addition of a local workflow runner, parameter
sweeping, and provenance reporting should all help complete mig meow as a
Scientific WorkFlow System (SWFS).

? This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk lodowska-Curie grant agreement No
765604.

D E V E L O P M E N T S I N E V E N T- O R I E N T E D , E M E R G E N T W O R K F L O W S 175

2 D. Marchant et al.

1.1 The state of mig meow

An in-depth introduction to mig meow[10] can be found in [11], though a brief in-
troduction shall be provided here. The mig meow package is based upon MEOW,
a theoretical framework for describing event-driven systems that use the Pat-
terns and Recipes to create emergent workflows. MEOW Recipes define a jobs
processing, while Patterns define the conditions under which a new job should be
scheduled. When the outputs of one job act as the inputs of another, a workflow
will emerge. This event-driven system has been implemented within the Mini-
mum intrusion Grid (MiG)[2], using file system events as its foundation, as will
be outlined in section 2.1. To both interact with the MiG, and to define Patterns
and Recipes, mig meow was implemented and deployed as part of the Jupyter
Notebook environment provided by the MiG[14].

1.2 Areas For Development

In works such as [22] and [12], a SWFS is described as needing to possess clar-
ity, well-formedness, predictability, recordability, provenance, portability, and
performance optimisations. Although these are not formal requirements, a well
regarded SWFS should pay heed to as many as possible, and currently mig meow

offers no significant features to address provenance, that being the ability to track
data through the workflow and easily determine what processing has taken place
on it. This shortcoming will be addressed by the addition of logging of workflow
job outputs, and the ability to compile a report displaying all jobs and their
connections in Section 3.1.

Another motivating feature request from users is the ability to schedule sev-
eral jobs at once from the same input file[17], each with a different value for one
or more parameters. This style of scheduling multiple otherwise identical jobs
shall be referred to throughout this paper as parameter sweeping, and is seen as
especially desirable due to the exploratory nature of scientific workflows [6]. A
solution for this is provided in section 3.2.

Another common request is the ability to run MEOW workflows without
having to use the MiG[2]. This would be very helpful, both as a method of
testing workflows before deploying them on the MiG and potentially scheduling
time on expensive resources, but also to run smaller workflows on a users own
machine. The workflow runner outlined in section 3.3

2 Background

Before we get onto looking at how these feature requests were met, it is worth
considering some wider context. For instance, it is worth expanding on the MiG,
and looking at the state of other SWFS’s. As mig meow has already been briefly
introduced in section 1.1 it will not be examined again here.

D E V E L O P M E N T S I N E V E N T- O R I E N T E D , E M E R G E N T W O R K F L O W S 176

Developments in Event Oriented, Emergent Workflows 3

2.1 MiG

The MiG[2] is a feature rich, cloud storage and processing solution developed
at the University of Copenhagen. It allows researchers at the University as well
as external collaborators to upload, store, and share data amongst user-defined
Workgroups. Compute resources are available on which users can schedule pro-
cessing. The MiG also provides services such as JupyterLab, granting users easy
access an interactive compute environment, which can also be used to define pro-
cessing. It is intended as the primary system for mig meow workflows, with the
MiG Workgroup file system being the basis for triggering events, MiG resources
being used to process MEOW jobs, and Jupyter widgets being a primary means
of interacting with MEOW workflows.

Processing happens on the MiG using a queue system. Resources are enrolled
to the MiG, and once ready, will poll the MiG which will pull an appropriate job
from the queue. A job script is generated by the MiG and sent to the resource
to be run. In a workflow job, the appropriate Workgroup from MiG storage is
mounted into the job resource using SSHFS[19]. This allows for easy access to
Workgroup data, and a way to write output data back into the Workgroup.

2.2 Other Workflow Systems

All of the motivating features exist to some degree in many current SWFS’s. For
example, many existing workflow systems such as the commonly used Apache
Airflow[1] or Snakemake[18] are able to perform parameter sweeps. This is qual-
ified as they lack explicit features to enable parameter sweeping, but a user is
able to replicate this functionality through the use of scripting, or clever nest-
ing of workflows. This could be seen as a limitation as scientific workflows are
often exploratory in nature [3][6], and so having explicit functionality to ease
parameter sweeping would be advantageous.

It is hard to generalise about provenance reporting provided by SWFS’s,
as the type, amount, completeness and usability of different workflow reporting
varies massively. Many of the more commonly used systems have GUI’s to create
workflows, display jobs, and provide extensive reporting. For instance, Airflow
provides a web interface that can report on a workflow. Individual jobs are
listed along with their inputs, outputs, parameters and the run code/scripts.
However, this is not a universal standard. Many workflow systems have more
simple reporting, such as Dask[5] or cwltool[4] which can produce a Directed
Acyclic Graph (DAG) showing the various workflow steps and how they lead
into each other. This can be useful to demonstrate the workflow structure, but
is more limited than the previously mentioned GUI, which tend to include far
more additional information.

Whatever the structure of a workflow report, the most common format is a
DAG. Assembling such a DAG is an easy task for a SWFS as any workflow steps
will have defined inputs and outputs, with the outputs of one step usually acting
as the input for another. This allows for easy understanding of the resultant
workflow structure, and identification of inter-jobs dependencies. This is more

D E V E L O P M E N T S I N E V E N T- O R I E N T E D , E M E R G E N T W O R K F L O W S 177

4 D. Marchant et al.

difficult to achieve in MEOW workflows, as a user has no requirement to identify
outputs ahead of processing.

Almost every SWFS has some ability to run workflows locally. These local
runners enable users to learn, test, and explore the possibilities of a workflow
system. Testing workflows in advance can be especially useful, as the ever in-
creasing size of scientific processing drives more and more computation to cloud
and heterogeneous resources. These resources will have attached costs both in
terms of time and money, and so users need the ability to check in advance that
their workflow structure is valid.

3 Developments in mig meow

Now that we have outlined the various problems facing mig meow, we can start
to address them. These will each be addressed in their own section, with all
demonstrated through examples later in 4.

3.1 Provenance reporting without defining outputs

When used as first designed, mig meow job identification and processing will be
done on the MiG. Therefore, it is the responsibility of the MiG to record what
jobs are scheduled as part of any MEOW workflows. The MiG already keeps a
thorough record, but only on a per-job basis, and there is no distinction between
MEOW jobs and regular jobs.

Compiling a list of MEOW jobs is not challenging, but linking jobs together
into a holistic report is. This is because as part of MEOW, a user does not need
to specify a jobs output. Within mig meow, a user can define output, but this is
only used for the visualisation and is not meaningful to the job execution. This
is a deliberate choice within MEOW, as it keeps to the dynamic aims of the
system, where no particular output is demanded or even expected. In order to
start linking jobs, we need to identify at runtime what output is produced.

As jobs are processed on external resources with the relevant MiG storage
location mounted via SSHFS, communications via this mount can be monitored.
Any write operations that occur through the mount are the produced output.
The MiG SSH daemon uses paramiko[16] to manage SSH connections, which
provides interfaces for write operations. By writing a decorator for write, each
write operation through the SSHFS connection can be intercepted and logged.
Each SSHFS connection created as part of a MiG job has associated unique ses-
sion credentials, allowing any logged writes to be easily paired with the workflow
job that initiated them. This allows job outputs to be successfully identified and
attributed, without requiring a user to identify them ahead of time, maintaining
the dynamic nature of MEOW.

Inputs are significantly easier to identify, as all MEOW jobs will take a trig-
gering file as input. Once each job has both input and output, a DAG can be
constructed showing the path through the workflow that data has taken. This

D E V E L O P M E N T S I N E V E N T- O R I E N T E D , E M E R G E N T W O R K F L O W S 178

Developments in Event Oriented, Emergent Workflows 5

is semantically different to the DAGs of other SWFS as it can only be con-
structed in retrospect, due to the emergent nature of the workflow. To display
a MEOW workflow report another widget was created within mig meow, called
the ReportWidget. It retrieves the job logging of a given Workgroup from the
MiG. The ReportWidget allows users to filter down the report according to job
names, Patterns, Recipes, or triggering paths. A sample of one report is shown
in Figure 1. For brevity only a single job is shown, though already we can see
how individual jobs are triggering each other and creating a workflow.

Fig. 1. Provenance report filtered to only show the job
‘989 1 23 2021 9 59 23.test.idmc.dk.0’. This shows the previous job, whose out-
put triggered this job, along with the two jobs triggered by its own output. It also
shows the most important characteristics of the job itself.

3.2 Parameter sweeping in MEOW

To avoid users having to use clever tricks to schedule a parameter sweep from
a single input file, specific functionality was added to mig meow. This was done
by adding a new attribute to the Pattern object with four properties. Each
parameter sweep has a name, that being the name of the variable to assign a
value. The value to replace is then defined by a starting value, ending value, and
step value. These form a list of values in the same manner as a traditional ‘for
loop’ within C-like programming. There is therefore a requirement that param-
eter sweeps can only express numerical values, though can be either integers or
floats. This was judged to be acceptable as numeric values have always been
used in all the parameter sweep use cases the authors are aware of.

On the MiG, when a Pattern is triggered with a defined parameter sweep, a
list of values is assembled according to the start, end, and step values. A new
job is then scheduled for each value. If multiple parameter sweeps are defined

D E V E L O P M E N T S I N E V E N T- O R I E N T E D , E M E R G E N T W O R K F L O W S 179

6 D. Marchant et al.

then a new job is scheduled for every combination of values. Much like any
other workflow job running on the MiG, each job is scheduled in isolation so
it can be completed, modified or fail. This ability to fail can be replicated in
other SWFS’s, either through a users own careful error management within their
code, or through a workflows inbuilt functionality to replace failed jobs such as
in DVega[20]. Within MEOW however, no additional management is needed on
the part of the user and any jobs with inappropriate parameters will fail without
affecting the results of any valid jobs. This is especially useful if the sweep is
being used to explore values in an algorithm and the user does not yet know yet
even an approximate value yet.

3.3 Running MEOW workflows without the MiG

To allow users to be able to run MEOW workflows without depending on the
MiG, a local WorkflowRunner was developed. This would serve two purposes,
firstly it would allow users to run their own workflows, but also it would allow
the testing of Patterns and Recipes before they are uploaded to the MiG. For
this reason the WorkflowRunner should behave in a similar manner to the MiG
where possible. As the MiG is a complete grid management solution we cannot,
and should not, model it in full, but we can borrow the job scheduling and
processing structure.

As described in section 2.1, within the MiG jobs are put into a central queue
of all jobs, held on the MiG server itself. Resources poll the server for jobs and one
is taken from the queue and sent to the resource to be executed. This structure
will be adopted by the WorkflowRunner. As the MiG server is run with multiple
processes, a multi-processed structure is necessary in the runner if it is to behave
in the same way. An effective way of designing multi-process programmes is to
use the design model, Communicating Sequential Processes(CSP)[8]. A Python
implementation of CSP does exist, called PyCSP. It is unfortunately not main-
tained, and so was not used for the workflow runner. Instead, the multiprocessing
package was used as it could achieve similar results, and as part of the python
standard library, can be expected to be kept up to date.

The CSP model is still of use to the runner, as it can provide some of the
core design principles used to assess its correctness. For instance, according to
CSP, no processes should share access to data. This ensures that race conditions
cannot happen, as no two processes will ever be reading or writing at the same
location. A very useful property of CSP is that if process interactions are setup
appropriately, then the system is guaranteed to be free of deadlock. Although
we are not using CSP directly, we can apply the principles of CSP to achieve the
same result. The key way in CSP to avoid deadlock, is to avoid a circular loop of
dependent communication[9]. As can be seen in Figure 2, this has been done as
there is a linear hierarchy of primary processes communication. For this reason
we can be confident in the claim that this system will not suffer from deadlock.

The process structure for the WorkflowRunner is shown in Figure 2, with
communication between processes through Pipes. Each individual process type
shall now be considered in depth.

D E V E L O P M E N T S I N E V E N T- O R I E N T E D , E M E R G E N T W O R K F L O W S 180

Developments in Event Oriented, Emergent Workflows 7

... ...

Admin
State

monitor

File
monitor

LoggerQueue

User

Worker 1 Timer 1

Worker n Timer n

Fig. 2. Process structure of the WorkflowRunner, showing individual processes and
their interactions. Note that in addition, the admin, state monitor, file monitor, queue
and worker processes also can send messages to the logger process, though these con-
nections have not been shown for brevity. Secondary connections used only for replies
are shown in dotted lines. Zero to n workers are created based on user input.

The USER process: The User process is the base process in which the con-
structor for theWorkflowRunner is called, and from which the WorkflowRunner

object is returned. Within the constructor, all other processes are setup and
started. The WorkflowRunner object is then used as the entry point for any user
interaction, with each sending an appropriate message to the Admin process. A
response is always expected from the Admin.

The STATE MONITOR process: Both the State Monitor and File Monitor
inherit from the PatternMatchingEventHandler, part of the watchdog API[21].
The PatternMatchingEventHandler responds to system events, according to
given sub-paths from a watched directory. In the case of the State Monitor,
this is the hidden ‘.workflow runner data/’ directory, with the sub directories
‘patterns/’ and ‘recipes/’. These locations are used to store files defining Patterns
and Recipes, in a manner similar to how they are stored on the MiG. These files
can be altered and updated at any time either by direct user interaction, or
through using functions from the User process. In either case, this monitor will
catch any changes and send any updates to the Admin process. No response is
ever expected from the Admin, so the State Monitor process should never be
blocked, and is therefore always able to process new events.

The FILE MONITOR process: The File Monitor is very similar to the State
Monitor process, though its monitors base data directory. The base directory is
equivalent to a Workgroup on the MiG. As the File Monitor does not know what
Patterns and Recipes have been established, it can do relatively little processing
of events itself. All it can do is filter out irrelevant events, such as ’delete’ events,
or bunch together repeated events at the same file location so as to not spam
the Admin process. Whenever an appropriate event is identified, it is sent to the
Admin to be checked against the registered Patterns and Recipes.

D E V E L O P M E N T S I N E V E N T- O R I E N T E D , E M E R G E N T W O R K F L O W S 181

8 D. Marchant et al.

The ADMIN process: By far the most complex process is the Admin. It
maintains the in-memory state of the runner, in which all currently registered
Patterns and Recipes are stored. Updates to this state are provided by the State
Monitor process, ensuring that the in-memory state is up to date with the saved
state expressed in the Pattern and Recipe files. Patterns and Recipes can also
be added, removed, or modified via user interaction from the User process. Any
changes will result in the appropriate update to the file state, with files being
added, removed, or updated. This will in turn generate more updates from the
State Monitor. To prevent a circular loop of events creating file writes which are
interpreted as events, files are strictly only written by the Admin process if a
change has occurred to its in-memory state.

The Admin process will also receive input from the File Monitor. These
events will be compared against the currently registered Patterns and Recipes.
If the event path matches the ’trigger path’ attribute of a Pattern, then the
Admin will create a new job, and send its ID to the Queue, so that it may
be processed. Creating a new job consists of creating a unique job ID, with
a corresponding job directory created to store job files. These files are a new
notebook file, created as a copy of the appropriate Recipe, along with two yaml
files. These contains the variables defined by the appropriate Pattern, such as the
triggering path, and the jobs meta information, such as when it was scheduled.

As well as this core functionality, the Admin deals with requests from the
the User process. Aside from the previously mentioned adding or modifying Pat-
terns and Recipes, users may also query the current state, or running status of
the WorkflowRunner. Some requests, such as to query the current queue com-
position require further messages to be sent to the Queue before a response can
be generated, but a response is inevitable and provided as soon as possible. The
Admin process utilises a wait statement to stand by until receiving input from
either the State monitor, User, or File Monitor processes. These three inputs
are prioritised in the order given, so that if multiple are available at the same
time, only the first is read and processed.

One limitation of this, is that it can lead to starvation. For instance, if the
State monitor produced continuous messages faster than they could be processed
by the Admin, both the User ’s, and File Monitor ’s messages would never be
read. This should not be a problem here though, as the WorkflowRunner is only
intended for use on a local machine. Events from any of the monitors or the
User can all be responded to relatively quickly, so it is seen as unlikely that the
runner will get truly swamped with events to process. Messages from the State
Monitor are always of the highest priority as a fresh state will always be needed
by the Admin. Changes in the state file system will also be finite in nature, as
a user is incredibly unlikely to make so many changes to Patterns and Recipes
as to swamp the runner whilst it is running. Secondly, are messages from the
User process. These are secondary as they will be requests from a user, and so
will be conducted on a human time-frame. This means that they do not need to
be responded to within nanoseconds and so can wait behind any State Monitor
updates.

D E V E L O P M E N T S I N E V E N T- O R I E N T E D , E M E R G E N T W O R K F L O W S 182

Developments in Event Oriented, Emergent Workflows 9

Lastly, this leaves the File Monitor. This may produce a theoretically infinite
number of messages as there is no limit on the number of files created or updated
by jobs. Despite this being an unlikely use case, it is nevertheless a possibility
and should be accounted for, therefore it must be the lowest priority as anything
behind it could be eternally starved in this scenario.

The WORKER process: Jobs are executed within the Worker processes. The
amount of these to be spawned is determined by the user, and at least one is
needed if the workflow runner is to process jobs. Each Worker has its own Pipes

from the Admin and to the Queue. By default a Worker starts in a stopped state,
and will only start when told to do so by the Admin. Once a worker is started,
it will request a job from the Queue process. If a job is available, the ID will be
sent to the worker, and its definition files are read from the job directory created
by the admin.

The job itself is processed by first parameterizing the input notebook us-
ing the python module notebook parameterizer[13]. This is then run using
papermill[15] in the same manner as is done on the MiG. Once execution has
been completed, the job files are copied into a separate job output directory
where they can be individually inspected. Jobs may produce output directly into
the data directory, monitored by the File Monitor, in the same manner as can be
done within the MiG. As no SSHFS mounting is used in the WorkflowRunner, no
workflow logging can be carried out using the same technique as was presented
in section 3.1. For this reason, it is not currently possible for a provenance report
to be generated from a locally run MEOW workflow.

If no job was available in the Queue, the Worker sends a notification to its
Timer process to start sleeping. If a job completes, or the Worker is notified by
the Timer, it will poll the Queue for another job. This polling of the Queue will
loop until the Worker is manually stopped by user input.

The TIMER process: To prevent spamming the Queue process with requests
for new jobs, each Worker has its own Timer process. This process will wait for
a start signal from their Worker and then sleep. Once the sleep is over, it will
send a signal to the Worker as a prompt to request a job again from the Queue.
By having the timer in a separate process rather than internal to the Worker,
the Worker is still free to receive messages from the Admin, which would not be
the case if it itself were sleeping.

The QUEUE process: The Queue process acts as a buffer for all jobs that
have not yet been processed by a worker. It accepts messages either from the
Admin or any of the Worker processes. From the Admin, the Queue will either
receive the identity of a new job to be added to the queue, or a request for
the current composition of the queue. Alternatively, any of the Workers may
request the identity of a new job to execute. In any case, a response is always
immediately generated and sent. It was necessary to separate the queue into its

D E V E L O P M E N T S I N E V E N T- O R I E N T E D , E M E R G E N T W O R K F L O W S 183

10 D. Marchant et al.

own process, rather than having it stored within the Admin, as otherwise there
would be a risk of deadlock between Workers and the Admin.

The LOGGER process: Every non-Logger process except the Timer pro-
cesses have a Pipe to send messages to the Logger. These are messages to be
written to a log file for debugging, and/or printed to the console if the appro-
priate flags are set during runner creation.

4 Example Workflows

To illustrate the utility of MEOW, two workflows will be presented here. The
first is a scientific workflow already demonstrated on the MiG[11]. It will be
run using the WorkflowRunner, to demonstrate that it is capable of running
the same workflows as the MiG. Secondly, a demonstration workflow with a
complex structure shall be shown both on the MiG and the WorkflowRunner to
demonstrate some of the more exotic possibilities of a MEOW workflow.

4.1 Tomographic Analysis

This workflow was first presented in the paper ’Managing Event Oriented Work-
flows’[11]. As it is a direct repeat of the analysis carried out in that paper, it
will only be briefly introduced here.

Problem Outline This workflow is designed to analyse 3D X-ray computed
tomography datasets. The input data is artificially generated, and we want to
analyse the distribution of pore radii in each sample. However, the analysis is
time consuming and not all generated samples may have a sufficient amount
of pores. These insufficient samples will be discounted from the final analysis.
Those samples which are deemed acceptable will be segmented into different
materials, and finally the segmented data will be analysed.

Setup Three Patterns and Three Recipes will be set up, with all being identical
to those used in the previous running of this example. The only difference is that
this time the Patterns and Recipes have been set up programmatically rather
than through the WorkflowWidget. This makes for easier reuse. The code to run
the experiment can be found in [7]. The same input data was used as before,
with 100 artificial datasets, of which 80 were valid and 20 were not. A significant
difference was in the hardware used to run the workflow. To run the workflow,
a small laptop with a 4 core, Intel Core i7-8550U CPU @ 1.80GHz and 8GB
of RAM. As it was a 4 core machine, it seemed appropriate to use 3 worker
processes, so that hopefully they could always be run in parallel, whilst leaving
an extra core to run the runner itself.

D E V E L O P M E N T S I N E V E N T- O R I E N T E D , E M E R G E N T W O R K F L O W S 184

Developments in Event Oriented, Emergent Workflows 11

Workflow Results The workflow produced 260 jobs, and 80 analysis graphs
were produced as final output. To complete all 260 jobs took 2 hours and 4
minutes, roughly half the time taken to do the same analysis as on the MiG.
This is probably due to this actually being a very small use case, with the total
input dataset only being 6.7GB in size. When coupled with the relatively simple
processing carried out, it means it is still possible to run in a reasonable time
on a users personal machine. This is especially true when comparing it to the
MiG, which will have a great deal of overhead and delays from the grid-based
nature of the system. For this reason we should not take from this that the
WorkflowRunner is necessarily a better option than the MiG, only that the
WorkflowRunner can run MEOW workflows suitable for the MiG.

4.2 Abstract Analysis

To better illustrate some of the utility of MEOW workflows, a more abstract
example has been developed. This workflow has no scientific purpose, so we can
focus purely on the structure and MEOW interactions.

Problem Outline This workflow will demonstrate the utility of a MEOW
workflow by making specific examples of a branching, looping, and failing work-
flow. It will also show both the provenance reporting and parameter sweeping
in action. It will take some nonsense data, and does some simple maths on it so
we can say at least some processing has taken place.

Setup The workflow structure is shown in Figure 3, and the Patterns and
Recipes are explained below. Input data for the workflow is any number of 2D
numpy 5x5 arrays, containing random integers between 0 and 100. The input
data starts in a directory called ‘initial data’.

– Pattern Add 5 with Recipe addition: This is the first Pattern to trigger
as it takes any file in ‘initial data/’ as input. The Recipe will read in the
data and add 5 to each index. This is then saved to a given location, ‘int 1/’.

– Pattern Doubler with Recipe multiplier : This Pattern takes files within
‘int 1/’ as input. The Recipe multiplier will multiply all values in the data
by the given factor, 2. Output is saved to ‘int 2/’.

– Pattern Choice with Recipe chooser : The Choice Pattern takes as
input, files in ‘int 2/’. Depending on if any value in the input data is larger
than a given threshold it will output to one of two locations. If the threshold
is met, then the data is written to ‘final/’. Otherwise, it is incremented and
is written to ‘int 1/’. This will form a loop between the Doubler and Choice
Patterns. Due to the threshold, the loop will not be infinite, but it is unclear
at the start of the workflow how many times it will be run. For this workflow,
the threshold was set to 10000.

– Pattern Division with Recipe divider : Like the Doubler Pattern, this
is triggered by any files in ‘int 1/’. It will read in the data and sum it, then

D E V E L O P M E N T S I N E V E N T- O R I E N T E D , E M E R G E N T W O R K F L O W S 185

12 D. Marchant et al.

take the modulus of the sum and a given number, in this case 8. If modulus
is 0 then the data will be written to ‘div by 8/’. Otherwise, an Exception

will be raised causing the job to fail.
– Pattern Add Range with Recipe addition: This Pattern functions very

similarly to Add 5, though it takes files in ‘div by 8/’ as input. Rather than
defining a single value for the ‘extra’ variable, but uses a parameter sweep
to use the values 1, 2, and 3. Each will output to ‘add to div/’.

initial_data int_1 int_2

finaladd_to_div div_by_8

Division Choice

Doubler

Add_Range

Add_5

Fig. 3. Overview of the abstract workflow. Patterns are shown in bubbles, File locations
are shown as grey folders.

Workflow Results The described Patterns and Recipes were registered on the
MiG. Only three input files were used, as this would be sufficient to display three
routes through the same MEOW workflow, without overly cluttering the output.

Fig. 4. Provenance graph, with each rectangle representing a job as first triggered
by ‘initial data/data 0.npy’. Note the colours have been added to match those of the
Patterns in Figure 3.

In total 108 different jobs were created. All jobs were completed in roughly
25 minutes, and a provenance report was compiled using the ReportWidget. All
results are visible in [7]. As the complete report is rather large, a representation
of it is shown in Figure 4. It can be seen that the data is processed once ac-
cording to the Add 5 Pattern, before looping repeatedly through Doubler and
Choice. Eventually the threshold is met and the loop stops, as expected. While

D E V E L O P M E N T S I N E V E N T- O R I E N T E D , E M E R G E N T W O R K F L O W S 186

Developments in Event Oriented, Emergent Workflows 13

this loop is ongoing we can see that the Division is also triggered several times,
but does not complete the first three times it runs. When it does complete, it
triggers the subsequent Add Range Pattern which produces the expected three
jobs each time. From all this we can conclude the the emergent MEOW workflow
is performing as expected, with the dynamic route through the Patterns produc-
ing a changing workflow with relative ease. Parameter sweeps have allowed for
the easy scheduling of jobs over a range of values. Finally, the provenance report
offers a marked improvement over relying on the MiGs job reporting, as it clearly
demonstrates how different jobs link together and the workflow emerges.

These Patterns and Recipes were also run on the WorkflowRunner. 108 jobs
were created and completed in roughly 10 minutes. As in section 4.1, this should
not be taken that the WorkflowRunner is faster, only that it has less overhead.

5 Future Work

While the presented additions help build up MEOW as a complete SWFS, there
are still many avenues for future development. The limitation of a lack of shared
memory identified first in [11] has still not been addressed, as this is a far more
substantial undertaking than can be addressed in this paper. In addition to this,
identifying a way of constructing a provenance report for the WorkflowRunner

would improve its usability significantly. It may be that write operations could
be decorated in a similar matter to those on the MiG. Though this has not been
investigated, it is expected that this would significantly reduce performance. A
better approach may be to keep track of what system processes are writing data
into the monitored directories, and match worker processes id’s to the jobs they
are currently processing.

6 Conclusion

This paper has described three significant improvements in the MEOW workflow
system as presented in [11]. By enabling parameter sweeping, a user can schedule
a whole range of jobs from a single data input quickly and easily. This is especially
ideal within MEOW as it was already well suited to exploratory workflows,
so an ability to test ranges of parameters is an ideal compliment. A way of
demonstrating the provenance of the produced data was also provided when
MEOW workflows are run using the MiG. This makes it significantly easier
to see what each job produced, from what input, and how it triggered further
jobs. Now, the emergent workflow is explicitly visible to the user. Finally, a
WorkflowRunner was developed allowing users to run MEOW workflows on their
own machine. This has the dual uses of letting users test their workflows before
activating anything on the MiG, or letting them run workflows without using
the MiG at all. These improvements have each been successful, and expand the
feature-set of mig meow so that it can act as a more complete SWFS.

D E V E L O P M E N T S I N E V E N T- O R I E N T E D , E M E R G E N T W O R K F L O W S 187

14 D. Marchant et al.

References

1. Apache Airflow. https://airflow.apache.org (2020)
2. Berthold, J., Bardino, J., Vinter, B.: A principled approach to grid middleware:

Status report on the minimum intrusion grid. In: Xiang, Y., Cuzzocrea, A.,
Hobbs, M., Zhou, W. (eds.) Algorithms and Architectures for Parallel Processing,
pp. 409–418. Springer (2011)

3. Caeiro Rodriguez, M., Priol, T., Nemeth, Z.: Dynamicity in scientific workflows.
Institute on Grid Information, Resource and Workflow Monitoring Services,
CoreGRID-Network of Excellence, Tech. Rep. TR-0162, August (01 2008)

4. cwltool. https://github.com/common-workflow-language/cwltool (2020)
5. Dask. https://docs.dask.org/en/latest/ (2020)
6. Dias, J., Guerra, G., Rochinha, F., Coutinho, A.L., Valduriez, P., Mattoso, M.:

Data-centric iteration in dynamic workflows. Future Generation Computer
Systems 46, 114–126 (2015)

7. Experiments:. https://sid.idmc.dk/wsgi-bin/ls.py?share id=D1KHIT7Nij (2021)
8. Hoare, C.A.R.: Communicating sequential processes. Communications of the

ACM 21(8), 666–677 (1978)
9. Kerridge, J.: Using Concurrency and Parallelism Effectively. Bookboon, 2 edn.

(2014)
10. Marchant, D.: mig meow. https://pypi.org/project/mig-meow (2020)
11. Marchant, D., Munk, R., Brenne, E.O., Vinter, B.: Managing event oriented

workflows. In: 2020 IEEE/ACM 2nd Annual Workshop on Extreme-scale
Experiment-in-the-Loop Computing (XLOOP). pp. 23–28 (2020).
https://doi.org/10.1109/XLOOP51963.2020.00009

12. McPhillips, T., Bowers, S., Zinn, D., Ludäscher, B.: Scientific workflow design for
mere mortals. Future Generation Computer Systems 25(5), 541 – 551 (2009).
https://doi.org/https://doi.org/10.1016/j.future.2008.06.013,
http://www.sciencedirect.com/science/article/pii/S0167739X08000873

13. Munk, R.: notebook parameterizer.
https://github.com/rasmunk/notebook parameterizer (2019)

14. Munk, R., Marchant, D., Vinter, B.: Cloud enabling educational platforms with
corc (2020), CEUR-WS.org, will be published as part of proceedings of CTE
2020: 8th Workshop on Cloud Technologies in Education

15. Papermill. https://github.com/nteract/papermill (2020)
16. Paramiko. http://www.paramiko.org (2020)
17. Parkinson, D.: Interactive parallel workflows for synchrotron tomography (2020),

https://wordpress.cels.anl.gov/xloop-2020, will be published as part of
proceedings from XLOOP 2020 : 2nd Annual Workshop on Extreme-scale
Experiment-in-the-Loop Computing, held as part of SC20

18. Snakemake. https://snakemake.github.io (2020)
19. SSHFS. https://github.com/libfuse/sshfs (2021)
20. Tolosana-Calasanz, R., Bañares, J.A., Rana, O.F., Álvarez, P., Ezpeleta, J.,

Hoheisel, A.: Adaptive exception handling for scientific workflows. Concurrency
and Computation: Practice and Experience 22(5), 617–642 (2010).
https://doi.org/10.1002/cpe.1487,
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1487

21. watchdog. https://pypi.org/project/watchdog/ (2020)
22. Zhao, Y., Raicu, I., Foster, I.: Scientific workflow systems for the 21st century,

new bottle or new wine? In: Proceedings of the 2008 IEEE Congress on Services -
Part I, SERVICES ’08. pp. 467–471. Washington, DC, USA (2008)

D E V E L O P M E N T S I N E V E N T- O R I E N T E D , E M E R G E N T W O R K F L O W S 188

C
T E A C H I N G C O N C U R R E N T A N D D I S T R I B U T E D P R O G R A M M I N G

This paper, and a presentation describing it were originally presented at EduHPC-19: Workshop on
Education for High Performance Computing[30], part of SC19: The International Conference for
High Performance Computing, Networking, Storage and Analysis[84]. It was first published as part
of the proceedings[52].

189

Teaching Concurrent and Distributed Programming
With Concepts Over Mathematical Proofs

1st David Marchant
Niels Bohr Institute

University of Copenhagen
Copenhagen, Denmark

david.marchant@nbi.ku.dk

2nd Carl-Johannes Johnsen
Neils Bohr Institute

University of Copenhagen
Copenhagen, Denmark
carl.johnsen@nbi.ku.dk

3rd Brian Vinter
Neils Bohr Institute

University of Copenhagen
Copenhagen, Denmark
brian.vinter@nbi.ku.dk

4th Kenneth Skovhede
Neils Bohr Institute

University of Copenhagen
Copenhagen, Denmark

kenneth.skovhede@nbi.ku.dk

Abstract—This paper describes how a concept-based approach
to teaching was used to update how concurrent and distributed
systems were taught at the University of Copenhagen. This
approach focuses on discussion to drive student engagement
whilst fostering a deeper understanding of the presented topics
compared to more traditional displays of crude facts. The
course is split into three sections: local concurrency, networked
concurrency, and concurrency in hardware. This allows for an
easier student journey through the course, as they are introduced
to all core concepts in the first section, then have them reinforced
in greater detail in the subsequent sections. Finally, the experience
gained in updating this course is presented so others attempting
to do similar may learn from it.

Index Terms—Concurrent, Parallel, CSP, SME, ZeroMQ,
Teaching, Concepts

I. INTRODUCTION

Scientific data processing is a considerable computing task
that necessitates the use of High Performance Computing.
Despite the presence of various libraries1 to manage all aspects
of parallel programming, knowledge of how a distributed
system works is still essential to make full use of parallel
hardware. This can present a problem as parallelisation is not
a trivial topic, and scientists running experiments may not have
an extensive background in computer science or programming.

At The University of Copenhagen, distributed computing
courses are taught by the eScience group, part of the Niels
Bohr Institute. These courses are mostly taught to physics
students, who need this knowledge so that they can set up
experiments to make use of parallel computing. A new Con-
current and Distributed Systems course has been introduced to
replace an older course. The previous course had a theoretical
focus, with rigid facts rather than engaging concepts. This
would turn students off and give only a surface level of
understanding.

This paper proposes replacing a fact-based approach to
teaching with a concept-based approach. This will be broken
down into 3 linked stages, local concurrent programming,
distributed concurrent programming, and concurrent program-
ming at a hardware level. In this paper these areas are

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant
agreement No 765604.

1As illustrated by, but not limited to: CUDA [1], OpenMP [2], CSP [3],
ZeroMQ [4], and MPI [5]

demonstrated using PyCSP, PyZMQ and SME, but any similar
library could be used in their place as it is the shared concepts
beneath them that are important. These underlying concepts,
such as deadlock, race conditions, and distributed states are the
core of concurrent programming and so are the true learning
goals.

Ultimately this was partially successful, with students re-
sponding well, though at great time investment on the part of
the lecturers. Despite this, the techniques demonstrated their
validity and could be applied to other similar courses going
forward.

II. OBJECTIVES

This paper is an account of, and reflection on, teaching
carried out within the Concurrent and Distributed Systems
course. This is done with 3 goals in mind. In no particular
order these are:

1) To record how a new approach to teaching concurrent
systems design was put into practice.

2) To evaluate and reflect on how this new methodology
worked.

3) To recommend for similar future courses what could be
carried forward and what should be changed.

All of these stated objectives will be considered in the
context of teaching parallel programming to non-computer
scientists. Within this paper ‘computer scientists’ are those
students whose primary area of study falls within computing.
Any other students are ‘non computer scientists’ and are
assumed to have no more than a passing familiarity with
programming.

III. BACKGROUND

The Niels Bohr Institute is a research institute specialising in
astronomy, biophysics, condensed matter physics, geophysics,
quantum physics, and particle physics. In addition to this, the
eScience department conducts its own research into scientific
methods using computers. As well as maintaining physical
hardware and software to support the other departments, it is
also responsible for teaching High Performance Computing.
A new Masters level course in concurrent and distributed
systems was designed to be run in the academic year 2018-
2019 with the authors as the teaching team. This course was

T E AC H I N G C O N C U R R E N T A N D D I S T R I B U T E D P RO G R A M M I N G 190

titled Concurrent and Distributed Systems and was intended
as a refreshed version of older courses in similar areas that
were now deemed insufficient.

The Concurrent and Distributed Systems course used as a
basis for this paper was taught at the University of Copen-
hagen, from the 19th of November 2018, until the 27th of
January 2019. It was taught with 2 lecture slots a week, each
1.45 hours in duration. There was a weekly practical session
also 1.45 hours in duration. 3 assignments were given out
over the course, each lasting roughly 2 weeks and a final
examination was given in the form of a take home exam with
students having 11 days to complete it.

IV. FACTS VS CONCEPTS

The base assumption for the new course was that focusing
on the concepts of distributed computing was preferable to
focusing on facts. By facts, mathematical proofs, information,
or technical details we refer to pieces of knowledge that are
(probably2) true. It is often fundamental to the subject area,
can be easily rote memorised [7], and can easily be expressed
in a book, lecture or other one way communication. The syntax
of a built in function, the clock speed of different machines,
particular communication protocols, would all be examples of
data, information or technical details. For the rest of this paper
these shall all be referred to as facts.

Ideas or concepts refer to pieces of knowledge that are
not necessarily verifiable. These are the grand approaches
that can emerge from multiple facts and used to explain or
guide systems. For example, consider system architectures,
design approaches, or algorithm structures. All of these de-
mand engagement from someone to understand and cannot
be meaningfully rote memorised. These depend on many
facts to be understood, and our understanding of them is
constantly morphing and being updated. They can also be used
to extrapolate new areas of knowledge and understanding [7].
For the rest of this paper these shall be referred to as concepts.

Concepts such as object-orientation are already widely
taught and understood within computing, demonstrating their
utility within computing education. This is especially impor-
tant as the difference between sequential and parallel program-
ming is not one of technical details, but one of thought. How
you approach a parallel problem is fundamentally different
to a sequential one, with a completely different structure and
thought process behind it. Put another way, the problems of
parallel are concepts, rather than facts, and so they require
teaching focused on those concepts rather than on facts [8].
Therefore, even though Concurrent and Distributed Systems is
aimed at potentially novice computer scientists, the teaching
should be concept-based.

We could say that facts are more basic than concepts in
a learning context, as facts are specific and cannot broadly
be applied. However, facts are still required to act as a base

2At the very least it is expected to be true, even if it is up for debate.
Within the field of Epistemology it could be said that these statements are
justified beliefs, that are true as far as can currently be determined. Consider
this in the context of the works of Edmund Gettier and others. [6]

for understanding concepts, and so both concepts and facts
should be taught together. This means that when this paper
refers to teaching concepts rather than facts, it is meant that
concepts should be emphasised over facts, but not that facts
should be ignored entirely as they form a necessary part of
students learning.

In response to all this it was decided to start from scratch
with a new series of lectures. The university format meant
that we had to keep to 2 lectures a week with a practical.
As concepts are much more difficult to explain than facts, as
they tend to require a back and forth discussion in order to
teach [8], the lecture format may have presented a problem.
However, the class was expected to be small enough that the
necessary discussions could take place. Note that despite all
that has been said, facts are still extremely important. Concepts
without facts become meaningless as they cannot be applied to
the external world. It was hoped then, that the resulting slides
could communicate the necessary concepts of concurrent and
parallel systems, with enough supporting facts so as to be
understandable.

V. COURSE GOAL

Concurrent and Distributed Systems was aimed primarily at
non computer scientists with limited programming experience.
This is justified by the increasing requirement for parallel pro-
cessing by scientists in all areas of physics studied at the Niels
Bohr Institute [9]. In addition, students may be involved in
designing scientific instruments or experiments which contain
concurrent systems. Although there exist libraries that purport
to take care of all parallelisation for the user, such as CUDA
[1], MPI [10] or OpenMP [2], these still need a good base
of knowledge from the user before they can be fully utilised.
It would be possible to run a course that only related the
facts of how these systems work, by highlighting specific
commands and their expected outcome. However, this would
leave students with a very narrow pool of knowledge, specific
only to the exact software and problems described in the
course. By adopting a concept-based approach, where instead
the base concepts of distributed programming are explored and
understood, non computer scientists can claim a theoretical
understanding of parallel programming. This should suffice
for them to effectively use any of these preexisting systems,
and potentially even start designing their own custom imple-
mentations.

As most undergraduate physicists are not expected to be
running big enough experiments to justify the use of high
performance systems, Concurrent and Distributed Systems
was set at a Masters level with classes expected to have
between 6 and 12 students enrolled. The sought after learn-
ing objective would be some measurable understanding of
asynchronous concurrent and distributed systems. That is, a
system comprised of multiple processes, where the order of
processing is not and cannot be determined at the start of
processing. By the end of the course students should be able
to design and implement concurrent and parallel systems in
both hardware and software. These systems should be robust

T E AC H I N G C O N C U R R E N T A N D D I S T R I B U T E D P RO G R A M M I N G 191

to common design problems such as deadlock, livelock and
race conditions. Students should also be able to demonstrate
their systems correctness using diagrams and descriptions.

VI. SELECTING COURSE CONTENT

To introduce and reinforce universal concepts of parallel
computing, the decision was taken to break the subject down
into three smaller sections. These could then slowly introduce
concepts, and illustrate their universality within distributed
programming. As these concepts would occur repeatedly
through the three sections in increasing depth, it was hoped
that they would be further reinforced. Starting with local
parallelisation would be logical, as it meant that problems
such as networking could be ignored. This allows for the
introduction of the base concepts such as determinism, race
conditions, deadlock, livelock, compartmentalisation, as well
as identifying what sort of tasks are suitable for parallel or
not.

All scientific programming within the Niels Bohr Institute
is taught in Python3, where possible. This meant that the
underlying language was already set, and that some familiarity
with the language could be assumed. To illustrate parallel
processing concepts in the first course section, PyCSP4 [13]
was selected as all members of the teaching team were already
familiar with it. It is worth noting that PyCSP has been taught
in related courses previously, and has been found to be a
very good introduction to concurrent and distributed concepts,
even for novices [14]. Sticking with what the teaching team
were familiar with was seen as important as it meant all
members had already built up a body of knowledge designing
systems using PyCSP. It was hoped that this would mean that
the teaching team could adequately answer questions without
having to rely on slides or textbooks to do the heavy lifting.
This would be essential if we were to avoid dry lectures of
reading technical information to students, but were instead to
encourage conversation and interaction.

From a localised system the next logical step was a dis-
tributed one. These would still be using the same concepts
from before, but now with added challenges such as the
impossibility of global memory. This could be done using
PyZMQ5 [15] as again, it is Python based, simple to learn, and
the teaching team were already familiar with it. Finally it was
felt that students should have some introduction to physical
devices that could be used to run a distributed system, such
as in an Internet of Things device. This was as the problems
that would be introduced in the first two sections are just as

3This is due to the utility of Python for scientific analysis [11] and research,
as well as its wide adoption throughout the scientific community. [12]

4PyCSP is a Python specific implementation of Communicating Sequential
Processes (CSP) [3], a formal definition of how a system could be split
up into several independent sub-sections and how those sub-sections would
communicate. Other implementations exist in other languages, in varying
states of completeness. The underlying principles between each are shared
however.

5PyZMQ is a python specific implementation of ZeroMQ (also known
as ØMQ) [4]. It is a library for easy asynchronous communication over a
network.

much problems in hardware as in software. To illustrate this,
FPGAs6 were used, with SME7 [16] as the code base.

It was decided that it might help students to keep motivated
and interested in the material if they could relate it to their
own interests or research [7]. As at this point it was known
that the FPGA boards were to be used, and that the students
would build a system on the board, it followed that this
system could be something scientific. A simple sound locator
system was decided upon. This could be used in all course
sections, so that all the assessments are tied together by a
common thread. In the first section the students design a
PyCSP system to process multiple microphones listening for
sounds to determine the direction of a sounds source. In the
second section they design a networked system, where they
each link together their individual systems. In the third section
they then program an individual microphone.

The hope is that these three sections will cover all essential
areas of knowledge for the students, and assumes relatively
little background knowledge. By starting on local systems
and working up to more and more decoupled examples it
is also intended that students are slowly introduced to the
topic without them being hit with incomprehensible topics
all at once. The students journey through the course should
be simplified greatly as in the first section performance and
efficiency are secondary concerns to robustness and ease of
understanding. As the students continue through the course
they are introduced more and more to requirements of perfor-
mance and working within the already introduced concepts to
get more processing done in less time.

VII. SOFTWARE AND HARDWARE

Software and hardware infrastructure was needed to run
the course effectively. Students would need Python, PyCSP,
ZeroMQ, and SME. These libraries and their dependencies
could be time consuming to set up per individual, setting them
up would not be particularly informative to the students. To
get around this, JupyterLab Notebooks were used as a learning
environment. JupyterLab Notebooks are documents accessible
online, capable of displaying and running live code. They are
centrally stored and so can have all dependencies pre-loaded
onto them, meaning all students can easily start from the same
point, with a complete system. For hardware, the PyNQ [17]
board was selected as they contained a FPGA chip, had the
necessary hardware to run Python scripts, and were reasonably
priced.

VIII. PREVIOUS TEACHING MATERIAL

For most of the course there already existed relevant lecture
slides from previous similar courses. Naturally, these needed
slight editing to fit with the new course, but in the case
of section one, on PyCSP, a complete rework was required.

6Field Programmable Gate Arrays (FPGA) are essentially programmable
circuit boards, allowing for the implementation of many different hardware
circuits using only one device, as opposed to expensive, custom made chips.

7Synchronous Message Exchange (SME) is a CSP derived language for
programming FPGA boards. It compiles into VHDL and is designed to be
more user friendly and quicker to program.

T E AC H I N G C O N C U R R E N T A N D D I S T R I B U T E D P RO G R A M M I N G 192

Plenty of teaching material was available [14], in the form of
slides, books and workbooks. Each of these were considered
in turn but rejected for a variety of reasons. These materials
were often for a different length of course, meaning serious
cutting or padding would be needed. As the different resources
available were also from disparate sources they were all
designed inconsistently, so even more editing would be needed
to bring together any slides into a common visual language.

Aside from these small, practical considerations, it was also
felt that the available material relied far too much on reading
complex information off of slides as a method of teaching.
Slides would be either extensive blocks of code, complex
diagrams, or paragraphs of text. Often times, mathematical
proofs of correctness were included and run through, proving
the validity of a certain approach. This may be correct, but
that level of detailed understanding is unnecessary for most
students, especially non computer scientists. The material did
not support interaction beyond asking simple memory recall
questions rather than discussion and could be said to be
entirely fact-based, as discuss in section IV.

It was felt that a better approach would be a more discussion
based one [18], with a focus on the ideas and concepts behind
CSP rather than on the technical details [19]. This should
be especially possible given that the course was set at a
Masters level and so should have students who can engage
in a topic more in terms of ideas rather just simple facts. The
expected small enrolment also meant that facilitating informal
discussions rather than a strict lecture should be possible.
Finally, a conceptual understanding would be preferable for
non computer scientists as numerous libraries and systems
exist to automate the generation of parallel code. It is the
theoretical understanding behind these libraries that the non-
computer scientists need.

IX. GOALS FOR THE NEW MATERIAL

To design the new material, objectives had to be set against
which it could be designed, and success judged. These goals
were devised with the aim of using an inductive approach to
teaching [20]. These are presented below, with higher priority
goals being at the top of the table. The material should:

Goal
G1 Facilitate the teaching of concurrent and parallel

concepts.
G2 Support the presented concepts with facts.
G3 Encourage student engagement in the class

through exercises and discussion.
G4 Provoke questions and discussion from the stu-

dents.
G5 Enable the teacher to explain in their own words,

rather than relying on technical definitions.
G6 Be clear and easy to understand.
G7 Be reusable in subsequent courses, even by others

not on the current teaching team.

Most of these goals should be self explanatory and so will
not explained at length. G3 and G4 may require clarification

Fig. 1. Lesson 1, slide 23. This demonstrates the simple, clean design for the
slides with the bare minimum of information. This diagram is intended as a
conversation aid, rather than an explanation on its own.

though. Ultimately they both are the same idea, to focus more
on conversation about a topic, rather than a direct lecture on
it. It has been split into two goals to show that this is a two
part process. In G4 we need to make sure that the teacher
is accepting of this style in their teaching, whilst in G3 we
should encourage the students to be interacting with the lesson.
After all, if only one person is trying to start a conversation,
it will not happen easily. Note the use of the words ‘teacher’
and ‘lesson’ rather than ‘lecturer’ and ‘lecture’. This is done
to suggest that the person standing at the front is not merely
talking at the students, but with them [19], and does not denote
any further difference.

X. DESIGNING NEW MATERIAL

With these goals in mind, eight sub-topics were selected
for section one of Concurrent and Distributed Systems8. These
could then roughly align to the 4 lectures given in this section,
with each lecture split by a small break, forming 8 half-
lecture slots of roughly 45 minutes. In that time new concepts
should be introduced, the facts to support them presented,
and the resulting discussion engaged in. This is a lot to do,
so presentations were kept to around 25 slides. Sentences on
slides were kept short and well spaced. Diagrams were plain
and presented without accompanying text on the slide. For
examples, see figures 1 and 2.

Both of these slides are typical of the newly made slides
for this course, as both of them provide one or two key facts,
and very little else. This was done deliberately with the aim
of fostering conversation. By having so little information on
the slides the lesson could not turn into a session of just
reading information from slides, as there simply is not enough
information to fill the time by doing so. This approach would
also be coupled with regular questions from the teacher so as
to foster more dialogue than in a more traditional lecture.

8These were parallel design problems, an introduction to PyCSP, dead-
lock and livelock, parallel system design principles, determinism and race
conditions, compartmentalisation, additional CSP concepts, and network
communication. For a complete course description and to see the contents
of each section, all course materials are available at [21]

T E AC H I N G C O N C U R R E N T A N D D I S T R I B U T E D P RO G R A M M I N G 193

Fig. 2. Lesson 3, slide 15. Where text must be used it is kept to a minimum.
As before, these sentences are intended as aides to what is currently being
discussed rather than a lesson on their own. Even the written text is written
conversationally.

Fig. 3. Lesson 7, tiled view. This is demonstrated in LibreOffice Impress,
but many other slideshow programs have similar features

The design of the slideshow itself also changed, with
lessons being divided into sub-categories and where possible,
not depending on a specific ordering to make sense. When
displaying the slides in a lecture a tiled slide selector could
be used to jump from slide to slide in a non-deterministic
manner, and so follow the current direction of discussion. This
is illustrated in figure 3. The simple design of the slides also
helped here as it meant the correct slide is still readable on
a laptop screen when in tiled view and so can be selected
without difficulty.

To achieve the goal of more concepts and more discussion,
regular exercises were introduced [19]. This is perhaps best
exemplified by lecture 4, on designing a concurrent and
parallel system that is only 5 slides long. The first slide is
a title slide, while the second sets the exercise of designing a
system. The third illustrates some discussion points that might
occur as the students solve the problem and acts as an initial
guide to students if they don’t know how to start. The fourth
introduces more exercise as it expands the initial problem.
The final slide acts as a reinforcement to the core concept of
this exercise, explicitly stating some supporting facts to ideas
hopefully encountered. These slides would last no more than a
few minutes, and exemplify every lectures role more as support

19

‘Legoland’ Catalog

IdInt (in, out)

in out
IdIntIdInt

SuccInt (in, out)

in out
SuccIntSuccInt

PlusInt (in0, in1, out)

in1

outin0
++

PrefixInt (n, in, out)

outin
nn

TailInt (in, out)

in out
TailIntTailInt

Delta2Int (in, out0, out1)

out1

out0
in

Fig. 4. An example slide from the previously used material for similar
courses. This example has been picked as it is superficially similar to the
newly designed slides, yet would foster a different style of teaching.

to a discussion rather than as the lesson itself.
The overall design of the slides compares favourably with

the previous materials as the new ones are clearer, more con-
densed displays of relevant information. They act as effective
notes for students as the minimalist design helps ensure that
the information that is left makes effective, if brief notes as to
the key supporting facts for the lessons concepts. As a compar-
ison a sample slide from the older material is shown in figure
4. This slide appears superficially similar the a new ones, but it
only displays a variety of available inbuilt CSP cookie-cutter
processes9. These are rarely used in actual practice and so
would be an example of teaching facts for facts sake as they
do not lead to any wider conceptual understanding. As a result
of this, the slide fosters little discussion beyond a description
of the displayed information

One final brief note on the design of the new slides is
that they each use the same visual language from the very
beginning to the very end. Diagrams were expressed in the
same way consistently, meaning that students only needed to
decipher one way of reading diagrams. As there is no formal
UML definition for network diagrams, previous materials
visual languages could change dramatically between diagrams.
Focusing on concepts over ideas may be hard enough for some
students to follow, so these additional complications should be
minimised by using the same style throughout. The designed
slides, along with all other course material is available at a
public Git repository [21].

XI. LECTURES AND PRACTICALS

When teaching the lectures, to foster an environment of
discussion, affairs were kept fairly informal. For instance, a

9These are provided processes that each perform some very basic func-
tionality such as adding together two input numbers. They can be combined
together to form more advanced functionality. In practice this is not done as
the overhead from having so many processes makes for a bloated and slow
system.

T E AC H I N G C O N C U R R E N T A N D D I S T R I B U T E D P RO G R A M M I N G 194

Fig. 5. Final results. Note that only nine students are shown as one is currently
in the process of re-sitting the final assignment and so has not yet received a
final grade. Initially they received the grade ’0’.

conversational tone would be adopted throughout the lesson,
with regular comments and observations. Questions from the
students should be allowed as soon as they occurred to the
students, rather than waiting for the end or some gap in
explanations. It is also important that the teacher is open
to admitting what they don’t know as part of encouraging a
conversation [19].

Practicals were relatively unplanned compared to lectures as
again they were expected to be more conversational by their
very nature. As students should already expect this from a
practical rather than a lecture, less effort was needed to foster
this specific atmosphere. There was no specific plan set for
individual practicals and they were intended mostly as support
sessions for help with assignments and troubleshooting any
technical issues that emerged.

XII. RESULTS

The course ran as expected with no major issues. Ten stu-
dents enrolled on the course, though unexpectedly, eight were
computer science students. This meant that a higher standard
of background computing knowledge could be assumed. There
was a reasonable spread of grades after the final exam, as
shown in figure 5. These results are certainly higher than the
expected bell curve, but with a small sample size and most
students having a higher than expected familiarity with the
topic, is not surprising or concerning.

The PyNQ boards caused minor software trouble throughout
the course. These technical difficulties were never sufficient to
derail the course and have now been ironed out so should
not provide difficulty in future courses. However, the true
problem with them was that they served as a distraction in
students reports on their system. When asked to comment on
the shortcomings of their designs, most would default to listing
simple technical problems, rather than engaging critically with
the conceptual problems. Most were able to engage with
concepts once verbally prompted. The inability to do so in
their report is potentially down to a failure to set expectations
at the beginning of the assignment, rather than a fundamental

problem of approach. Greater care should be taken in future to
communicate what is expected from assignments, with explicit
instructions in the assignment handouts.

Students responded positively in their end of course surveys
[21]. Most seemed happy with the quality of teaching, but
thought that the workload was too light. This may be due
to the students being more familiar with the course contents
than was anticipated. Students also felt that better use could
have been made of the practical sessions. They were intended
as informal help-sessions, and so were only lightly attended.
This was expected, but a more defined structure with some set
exercises may have helped give non-computer scientists more
hands on time to get familiar with programming. It also would
have filled out the workload. Students in related courses have
also reported that having mandatory, short, defined workshop
exercises every week helped them learn the topics. Workshops
would also particularly suit the presented style of teaching as
concepts are developed through practice and playing around
with the presented facts. The workshop materials and any work
produced in them would also inherently produce good revision
and reference material for students if they needed to revise.

Preparing the teaching materials took roughly two weeks of
work time spent on just 4 hours of lessons. The sheer length
of time taken may be a function of the teachers relative inex-
perience, but it nevertheless illustrates the extensive planning
and preparation required for such an involved teaching style.
Naturally, this will reduce with practice but should be kept in
mind by any new teaching teams attempting to replicate this
approach.

The teaching team also feels that too much material was
covered, particularly in the second section. Several types of
communication protocols were discussed at length but never
used or recommended. More time spent on FPGAs would have
better served the students. This would help with the final point
of criticism for the course. Throughout the course, but particu-
larly in relation to hardware, the teaching team overestimated
the students familiarity with programming concepts. During
hardware setup they could be asked to define their board’s IP
address but no specific instructions on how to do this were
provided at first as it was simply assumed that anyone could
do this. Again, this can easily be addressed in future iterations
of the course through increased support in practical sessions
and more explicit instructions/guides in assignment hand outs.

XIII. REFLECTIONS BY THE TEACHING TEAM

It is reasonable to conclude that the course went well. An
expected number of students passed, the core topics have been
taught, and students responded positively in their end of course
surveys. To further evaluate the success of the course, the
goals presented in section IX should be considered. These
evaluations will rely heavily on the personal reflection by the
primary author, who taught this section of the course. Further
from student questionnaires and colleagues has also been
added where possible and appropriate. Therefore, this section
should not be considered scientific and unbiased. However, it
was felt that the personal experience of an honest attempt at

T E AC H I N G C O N C U R R E N T A N D D I S T R I B U T E D P RO G R A M M I N G 195

trying to implement this style of teaching may be illuminating
to others considering doing the same, especially as scientific
guidance does not, and cannot, meaningfully exist for this [20].

A. G1: Facilitate the teaching of concurrent and parallel
concepts

As the most important objective, G1 was kept in mind
through the whole process, and was the reason that most
previous teaching materials were replaced. Most sections
worked extremely well, such as lesson 5 on Determinism and
Race Conditions. Almost all of the slides in this lesson are
prompts to student interaction, with students guessing at the
outcome of some simple programs. These examples illustrate
what determinism is so that hopefully by the time a quick
slide explaining it through facts is shown, they already have
formed the core concept, that can then be reinforced by the
necessary facts.

However, several slides through the course turned out more
full of explicit information than was first expected, and so
became the primary teaching tool within their lessons. This is
suspected to have led to less conceptual understanding from
the students as the concepts communicated in those lessons
did not appear in the final assessment submissions. Greater
discipline is needed in limiting facts on slides, and a rule of
thumb such as ’only 3 facts per slide’ would help keep slides
short and force discussion to the fore.

The failure of some slides illustrates the success of others.
As mentioned in sections IV and X, concepts require facts
to support them and so all facts on the slide should support a
concept, rather than being a fact in and of itself. As most slides
fostered conversation and with them conceptual understanding
(as evidenced by the concepts being well understood in
assignments) it is demonstrated that the presented teaching
techniques are suitable for this goal.

B. G2: Support the Presented Concepts with Facts

Where the presented concepts fell down however was in
the application to parallel programming as a whole. Once the
course moved to topics other than CSP it seemed that several
of these core concepts were forgotten, or it was not realised
by the students that these were broadly applicable concepts
rather than just relating to CSP. This is perhaps similar to
the shape of the earth problem encountered by Vosniadou
and Brewer [22]. The key similarity here is that the children
and students appeared to have a complete understanding of
the topic when first asked, but actually did not upon closer
inspection. Vosniadou and Brewer suggest that the children
did not have enough supporting facts for them to form an
accurate conception of what the earth looks like when it is
said to be round. It could be that a similar problem has
occurred here, with insufficient examples provided illustrating
the broader applications of the core concepts. Surprisingly,
this issue was not limited to the physicists and even appeared
with the computer scientists, who were expected to have an
existing broad understanding of computing and so be able to
apply concepts more accurately. Care should be taken in future

to use a wider range of examples to demonstrate that these
concepts are bigger than they might otherwise appear.

C. G3: Encourage student engagement in the class through
exercises and discussion

Student engagement was fostered throughout the course
through the use of exercises, questions, and prompts, rather
than as a defined stage within the teaching cycle [7]10. At
certain points this was hard to keep up, and the teaching fell
back on explaining things at the students. lesson 7 in particular
suffers from this, as it is just an explanation of some common
methodologies that exist in other CSP implementations. This
was definitely the least successful lesson with very little
seemingly being learned from it, judging on the taught material
not being present in any of the students submissions. These
topics are not notably more difficult than other lectures, nor
were they explained worse than other topics. The lack of
interaction was the only notable difference, leading to the
conclusion that this is why it stuck less in the student’s
memory than other lessons.

D. G4: Provoke questions and discussion from the students

Students engaged willingly and consistently in discussion of
the presented topics, with engagement from the whole cohort.
A good way to foster conversation between the students was
to set exercises and put them in groups of 2 or 3. This meant
that to complete the exercise students were forced to exchange
ideas, especially as the tasks where conceptual in nature, such
as to design a system.

Better use could have been made of the practical sessions.
As they were mainly conceived as trouble shooting sessions,
attendance was low and those that did attend mostly did not
interact with each other beyond to socialise. Something more
structured could have given more of the students a reason to
talk about the subject together, and allow for more time to
reinforce how to apply the learnt concepts as discussed in
section XIII-B.

It is worth noting that the exercise for the second section
required the students to come to a mutual agreement on a
communication protocol, so that each of their systems could
communicate with each others. This section failed as no
common agreement was made by the students despite repeated
prompting by the teaching team. It may be that this failure was
due to insufficient background being presented, and so students
did not feel they had an understanding of where to begin. It
may also have been that no student wanted to be the one to
suggest a protocol that everyone else would have to follow.
This vagueness of problem means it is hard to meaningfully
reflect on the issue, and so perhaps this style of assignment is
simply best avoided in future.

10It is worth noting that the models that present very separate, defined
stages do not necessarily intend for them to be implemented as such, and
often will explicitly state as such.

T E AC H I N G C O N C U R R E N T A N D D I S T R I B U T E D P RO G R A M M I N G 196

E. G5: Enable the teacher to explain in their own words,
rather than relying on technical definitions

Similar to section XIII-D, this goal was mostly achieved.
The slides were bare-bones so that they could not simply be
read out, and most topics were explained ahead of displaying
the relevant slide. This meant that a personal explanation,
usually delivered in plain English acted as the primary in-
troduction to a topic, with the defined points of a slide only
introduced at the end to reinforce what was already said. The
text that was on the slides also acted as memory prompts so
that once an effectively ad-libbed explanation was complete,
the slides could be checked to confirm that all essential points
had been hit.

F. G6: Be clear and easy to understand

This informal approach meant that explanations or slides
could be rather opaque. However, students seemed to follow
along at the expected rate, and understood what was being
said. This may be down to most student being computer
scientists however, and so would potentially more familiar
with this subject matter. I would expect that this problem
could mostly be addressed by further practice at explaining
the subject, and is affected mostly by practice at teaching.

G. G7: Be reusable in subsequent courses, even potentially
by others not on the current teaching team

Re-usability was mostly forgotten through material creation,
and in hindsight would not have been included as a goal. Much
of the ambition of this style of teaching was in improvisation
and discussion, with pre-made slides potentially discouraging
that. The slides were only ever intended as a visual support to
what was expected to be said, which may differ considerably
from others lecturers. These slides may be a useful guide or
starting point for another lecturers slides, but are not expected
to be entirely usable by another lecturer without work.

This leads into the major downside of this approach. That
being the length of time taken to produce these lectures. Whilst
this process should speed up with experience, it will still
need to be repeated for each course, making this a very time
intensive form of teaching. The ideas presented within this
paper about a concept focus are not new11, yet it is perhaps
this time commitment that limits their wider adoption.

XIV. FUTURE RECOMMENDATIONS

It is recommended that Concurrent and Distributed Systems
continues in future, and that the ideas put forward in its
teaching style are iterated upon. The conceptual basis of the
course worked well, and PyCSP, PyZMQ, and SME acted as
good illustrators of these concepts. The use of established
libraries meant that relatively little time could be spent on
simple facts and allowed for discussions both broad and deep
about the theoretical underpinnings of distributed systems. One
of the primary goals was to make a course for physicists
who needed to understand parallel programming, and yet

11Consider that several references on this paper are over a decade old at
this point

only 20% of the eventual enrolment were physicists. The
course description for students should better reflect who it
is intended for. Additionally, it may be worth advertising the
course directly to physics students, perhaps by making sure
supervisors within the various departments at the Niels Bohr
Institute are aware of its existence, and are mentioning it to
those who may benefit from it.

Masters students can still need considerable prompting to
engage critically with material rather than just rote learning.
Being very clear about this from the beginning is essential.
Even greater emphasis should also be taken on student en-
gagement in lectures. This can be done with exercises and
should lead to better learning outcomes. In addition it will
foster more conversations by their very nature. In particular,
small group exercises during class are extremely good at this,
especially when the work is conceptual in nature.

In contrast to the success of the small group exercises,
the only assignment that required agreement from the whole
cohort did not demonstrate any. Each individual solved the
problem in their own way. Although some guesses were made
as to what caused this failure, no definitive problem could be
found. This might demonstrate that long form group work may
not be as effective as the short class exercises. It could also
demonstrate that a group of 10 is too big to solve a small
problem, and so should have been broken up.

Greater use should be made of the practical sessions by
including short programming exercises. For example, after a
lesson on deadlock, a short exercise to purposefully implement
a deadlocking system would be good. These small exercises
could be done in the practical sessions further away from
assignment hand-ins to keep the students engaged through the
quieter parts of the course. It would also allow them to build
up their practical experience with facts they themselves have
discovered, and to reinforce the concepts they have just been
exposed to.

The PyNQ boards proved to be something of a distraction.
They had constant minor technical difficulties, even with the
JupyterLab Notebooks. With more experience these issues
could be ironed out. It may also be that a more abstract series
of assignments that did not have to run on a particular board
would be better, as any technical problem proved too tempting
students to focus on when reflecting on their own solution,
rather than reflections on the concepts within their system.
Eliminating the physical element may help address this.

All of this leads to following key recommendations for oth-
ers seeking to introduce an inductive, concept-based approach
to teaching parallel systems. In no particular order:

• The student journey of local parallelisation, distributed
parallelisation and finally parallel in hardware works well.
This is exemplified by PyCSP, to PyZMQ and then SME,
and is even an effective introduction for non-computer
scientists.

• Student engagement can be fostered through bare-bones
teaching materials which force both the lecturer and the
students to actively participate throughout the lecture.

T E AC H I N G C O N C U R R E N T A N D D I S T R I B U T E D P RO G R A M M I N G 197

• Care must be taken when designing materials that they
support active discussion. A non-linear slide show that
can be adapted to the flow of conversation is a good
example of this.

• Group work and practical assignments are essential for
allowing concepts to develop and cement in students mind
and should be utilised as much as possible.

• Student may be unused to this style of course and
assessment, so the expectations on them should be re-
peated during course descriptions, introduction lectures
and assignment handouts.

None of the techniques suggested in this paper (group
activities, discussion, bare-bones slides) are unique to parallel
computing and could in theory be applied to any subject
matter. However, it does take considerable setup time. Despite
this, it is hoped that with practice this preparation time
will dramatically reduce, making it a more feasible teaching
method.

XV. CONCLUSIONS

This paper has presented an account of how the Con-
current and Distributed Systems course at the Niels Bohr
Institute eScience department has modernised the teaching
of distributed systems to physicists. This was done because
previous courses were insufficient. They were dry courses, full
of facts, and with very little student interaction. By focusing
instead on concepts supported by facts, discussion and student
engagement it was hoped that learning outcomes could be
better achieved, with non-computer scientists achieving a
deeper level of understanding in the area of parallel systems.
Students were introduced to local concurrent programming,
followed by networked concurrent programming, and finally
concurrent programming on hardware. This allowed for the
core concepts to be introduced early, and then applied to
different situations, demonstrating their universality.

This course was judged to be a success and so should be
refined and repeated in future years. Lessons learned from it
could also be applied to other similar courses. In particular, the
bare-bones slides and the regular group activities were helpful
in fostering an atmosphere of conversation, and elevated the
education beyond a discussion of mere facts. However, there
was a failure in setting a correct expectation amongst students
at the beginning, and the time taken to prepare these lessons
was extensive. Regardless, it is still recommended that the
experience gained in teaching this course is carried forward,
both in this course as it continues next and in other similar
courses.

REFERENCES

[1] “CUDA,” https://developer.nvidia.com/cuda-zone, 2019.
[2] “OpenMP,” https://www.openmp.org, 2019.
[3] C. A. R. Hoare, Communicating Sequential Processes.

http://usingcsp.com/cspbook.pdf: Prentice Hall International, 2015.
[4] “ZeroMq,” http://zeromq.org, 2019.
[5] “MPI for Python,” https://mpi4py.readthedocs.io/en/stable/, 2019.
[6] E. L. Gettier, “Is Justified True Belief Knowledge?” Analysis, vol. 23,

no. 6, pp. 121–123, 1963.

[7] N. Entwistle, Teaching for Understanding at University. Basingstoke:
Palgrave Macmillan, 2009.

[8] J. Biggs and C. Tang, Teaching for Quality Learning at University.
Maidenhead: Open University Press, 2007.

[9] R. Munk, “Teaching Parallel and Distributed Techniques at UCPH
through JupyterLab,” 7 2019.

[10] B. Barney, “Message Passing Interface (MPI),”
https://computing.llnl.gov/tutorials/mpi/, 2019.

[11] J. M. Perkel, “Programming: Pick up Python,”
https://www.nature.com/news/programming-pick-up-python-1.16833,
2015.

[12] D. Robinson, “Why is Python Growing So Quickly?”
https://stackoverflow.blog/2017/09/14/python-growing-quickly/, 2017.

[13] “PyCSP,” https://pypi.org/project/pycsp/, 2016.
[14] B. Vinter and M. O. Larsen, “Teaching Concurrency: 10 years of Pro-

gramming Projects at UCPH,” in Communicating Process Architecture
2017, K. Chalmers and J. B. Pedersen, Eds. IOS Press, 2017, pp.
135–156.

[15] “PyZMQ,” https://github.com/zeromq/pyzmq, 2019.
[16] B. Vinter and K. Skovhede, “Synchronous Message Exchange for Hard-

ware Designs,” in Communicating Process Architectures 2014, P. H. W.
et al, Ed. Open Channel Publishing, 8 2014, pp. 169–179.

[17] “PYNQ: Python Productivity for ZYNQ,” http://www.pynq.io, 2019.
[18] M. Prince, “Does Active Learning Work? A Review of the Research,”

The Research Journal for Engineering Education, vol. 93, no. 3, pp.
223–231, 2004.

[19] P. H. Scott, E. F. Mortimer, and O. G. Aguiar, “The Tension Between
Authoritative and Dialogic Discourse: A Fundamental Characteristic of
Meaning Making Interactions in High School Science Lessons,” The
Research Journal for Engineering Education, vol. 95, no. 2, pp. 123–
138, 2006.

[20] M. J. Prince and R. M. Felder, “Inductive Teaching and Learning
Methods: Definitions, Comparisons, and Research Bases,” The Research
Journal for Engineering Education, vol. 95, no. 2, pp. 123–138, 2006.

[21] “Concurrent and Distributed Systems course material,”
https://github.com/PatchOfScotland/ConcurrentAndDistributedCourseMaterial,
2019.

[22] S. Vosniadou and W. F. Brewer, “Mental Models of the Earth: A Study
of Conceptual Change in Childhood,” Cognitive Psychology, vol. 24, pp.
535–585, 1992.

T E AC H I N G C O N C U R R E N T A N D D I S T R I B U T E D P RO G R A M M I N G 198

D
C L O U D E N A B L I N G E D U C AT I O N A L P L AT F O R M S W I T H C O R C

This paper, and a presentation describing it were originally presented at the 8th Workshop on Cloud
Technologies in Education (CTE 2020)[16]. It was first published as part of the proceedings[69].

199

Cloud enabling educational platforms with corc
Rasmus Munka, David Marchantb and Brian Vinterc

aNiels Bohr Institute, Blegdamsvej 17, Copenhagen, 2100, Denmark
bNiels Bohr Institute, Blegdamsvej 17, Copenhagen, 2100, Denmark
cAarhus University, Ny Munkegade 120, Aarhus C, 8000, Denmark

Abstract
In this paper, it is shown how teaching platforms at educational institutions can utilize cloud platforms to scale
a particular service, or gain access to compute instances with accelerator capability such as GPUs.

Specifically at the University of Copenhagen (UCPH), it is demonstrated how the internal JupyterHub ser-
vice, named Data Analysis Gateway (DAG), could utilize compute resources in the Oracle Cloud Infrastructure
(OCI). This is achieved by utilizing the introduced Cloud Orchestrator (corc) framework, in conjunction with
the novel JupyterHub spawner named MultipleSpawner. Through this combination, we are able to dynamically
orchestrate, authenticate, configure, and access interactive Jupyter Notebooks in the OCI with user defined
hardware capabilities. These capabilities include settings such as the minimum amount of CPU cores, memory
and GPUs the particular orchestrated resources must have. This enables teachers and students at educational
institutions such as UCPH to gain easy access to the required capabilities for a particular course. In addition,
we lay out how this groundwork, will enable us to establish a Grid of Clouds between multiple trusted insti-
tutions. This enables the exchange of surplus computational resources that could be employed across their
organisational boundaries.

Keywords
Teaching, Cloud Computing, Grid of Clouds, Jupyter Notebook

1. Introduction

The availability of required computational resources in organisations, such as scientific or educational
institutions, is a crucial aspect of delivering the best scientific research and teaching. When teaching
courses involving data analysis techniques it can be beneficial to have access to specialized platforms,
such as GPU accelerated architectures.

At higher educational institutions, such as the University of Copenhagen (UCPH) or Lund Univer-
sity (LU), these centers are substantial investments, that are continuously maintained and upgraded.
However, the usage of these resources often varies wildly between being fully utilized to sitting idly
by.

We therefore propose, that these institutional resources be made available (with varying priority)
across trusted educational and scientific organisations. Foremost, this is to enable the voluntary shar-
ing of underused resources to other institutions, thereby potential establishing greater scalability than
can be found within each individual institution.

CTE 2020: 8th Workshop on Cloud Technologies in Education, December 18, 2020, Kryvyi Rih, Ukraine
email: rasmus.munk@nbi.ku.dk (R. Munk); d.marchant@ed-alumni.net (D. Marchant); vinter@au.dk (B. Vinter)
url:
https://research.ku.dk/search/result/?pure=en%2Fpersons%2Frasmus-munk(a72145a7-0203-4791-bb8f-6073bc23fe2f).html
(R. Munk); https://research.ku.dk/search/result/?pure=en%2Fpersons%
2Fdavid-gray-marchant(ff6af890-33df-4414-9a9d-c3d33258ad1f).html (D. Marchant);
https://pure.au.dk/portal/en/persons/brian-vinter(a4fe861f-5a04-4e93-a5b3-c633045eb82e).html (B. Vinter)
orcid: 0000-0003-0333-4295 (R. Munk); 0000-0003-4262-7138 (D. Marchant); 0000-0002-3947-9878 (B. Vinter)
© 2020 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

C L O U D E N A B L I N G E D U C AT I O N A L P L AT F O R M S W I T H C O R C 200

1.1. Basic IT

Within institutions such as UCPH, there is a mixture of services that each provides. At the very
basic level, there are infrastructure services such as networking, account management, email, video
conferencing, payroll management, license management, as well OS and software provisioning. In
this paper, we define these as Basic IT services. At educational institutions, additional services can
be added to this list, these include services for handling student enrollment, submissions, grading,
course management, and forum discussions. As with the initial Basic IT services, these are typically
off the shelf products that needs to be procured, installed, configured and maintained on a continuous
basis.

A distinguishing trait of Basic IT services, in an education context, is that they are very predictable
in terms of the load they will exhibit, both in times of high and low demand. For instance, there will
be busy junctions, such as assignment hand in days, release of grades, student enrollment, and so
on. In contrast, holiday and inter-semester periods will likely experience minor to no usage. Given
this, these services are classic examples of what cloud computing was developed to provide. Efficient
utilization of on-demand resources, with high availability and scalability to handle fluctuating usage
in a cost effective manner.

1.2. Science IT

Science IT services, in contrast, revolve around the institutions scientific activities whether by re-
searchers or students. They include services such as management, sharing, transferring, archiving,
publishing, and processing of data, in order to facilitate the scientific process. In addition, these fa-
cilities also enable lecturers to utilize their research material in courses, giving students access to the
same platform and resources.

What distinguishes these services, is that they impose different constraints compared to Basic IT
services. These typically involve areas such as, computational load, security, budgetary, scientific, and
legal requirements, among others. For example, it is often too inefficient, or costly to utilize public
cloud resources for the storing and processing of large scientific datasets at the petabyte scale. In this
case, a more traditional approach such as institutional compute resources is required. [1].

Research fields such as climate science [2], oceanography [3], and astronomy [4], often employ ex-
perimental simulations as a common scientific tool. These simulations produce output up to petabytes
in size, that still need to be stored for subsequent postprocessing and analysis. Upon a scientific dis-
covery from this process, the resulting datasets needs to be archived in accordance with regulatory
requirements, which in the case of UCPH is 5 years [5] (only available in Danish).

1.3. Institutional Resources

High Performance Computing (HPC) and regular compute centers are often established at higher
educational institutions to provide Science IT services. The UCPH [6], University of Antwerp [7], and
LU [8] compute centers are examples of this. In addition, institutions can also gain access to similar
resources through joint facilities like the Vienna Scientific Cluster [9], which supports 19 institutions,
10 of which are higher educational institutions. Finally there are national and pan-national resources
such as ARCHER (UK) [10] or the EuroHPC [11] that review applications before access is granted.

These established centers are very expensive to build and have a limited lifespan before they need
to be replaced. Even smaller educational compute platforms follow a similar life-cycle. For instance,
at the UCPH a typical machine has a lifetime of 5 years before it needs to be replaced. This is whether

C L O U D E N A B L I N G E D U C AT I O N A L P L AT F O R M S W I T H C O R C 201

the machine has been heavily utilized or not. Therefore, it is important that these systems across
institutions are utilized, not only efficiently, but at maximum capacity throughout their lifetime.

For organising the sharing of resources across trusted educational and scientific organisations, in-
spiration is drawn from the way traditional computational Grids have been established [12]. The
difference is, that instead of establishing a Grid where individual resources are attached, this model
will instead be based on each institution establishing a Cloud of resources that are shared via a Grid.
This means that the Grid is responsible for interconnecting disjointed clouds, whether they be insti-
tutional or public cloud platforms. The result being an established model for sharing cloud resources
across educational institutions in support of cloud services for bachelor and master courses, general
workshops, seminars and scientific research.

In this paper, we present how an existing teaching and research service at UCPH could be enabled
with access to a cloud framework, which is the first step towards a Grid of Clouds resources. We
accomplish this by using the Cloud Orchestrator (corc) framework [13]. Through this, we are able
to empower the DAG service with previously inaccessible compute resources across every course at
UCPH. This was previously not feasible with internal resources alone. Since we do not have access
to other institutional resources at this point in time, we utilized a public cloud provider to scale the
service with external resources.

2. Background

At the Niels Bohr Institute (NBI), part of UCPH, we host a number of Science IT services that are part
of providing a holistic educational platform for researchers, teachers, students, and general staff. A
subset of these Science IT services have been especially beneficial across all levels of teaching. Namely,
services such as the University Learning Management System (LMS), called Absalon, which is based
on Canvas [14] for submissions and grading. The Electronic Research Data Archive (ERDA) [15] for
data management and sharing tasks. In addition to the Data Analysis Gateway (DAG) [16], which is
a JupyterHub powered platform for interactive programming and data processing in preconfigured
environments.

2.1. Teaching Platforms

The combination of these subset services, in particular the combination of ERDA and DAG, has been
especially successful. Teachers have used these to distribute course material through ERDA, which
made the materials available for students to work on at the outset of the course. This ensures that
students can get on with the actual learning outcomes from the get go, and not spend time on tedious
tasks such as installing prerequisite software for a particular course. Due to budgetary limitations,
we have only been able to host the DAG service with standard servers, that don’t give access to any
accelerated architectures.

Across education institutions, courses in general have varying requirements in terms of computing
resources, environments, and data management, as defined by the learning outcomes of the course.
The requirements from computer science, data analysis, and physics oriented courses are many, and
often involve specialized compute platforms. For example, novel data analysis techniques, such as
Machine Learning or Deep Learning have been employed across a wide range of scientific fields. What
is distinct about these techniques is the importance of the underlying compute platform on which
it is being executed. Parallel architectures such as GPUs in particular are beneficial in this regard,
specifically since the amount of independent linear systems that typically needs to be calculated to

C L O U D E N A B L I N G E D U C AT I O N A L P L AT F O R M S W I T H C O R C 202

Figure 1: ERDA Interface

give adequate and reliably answers are immense. The inherent independence of these calculations,
makes them suitable for being performed in parallel, making it hugely beneficial to utilize GPUs. [17].

Given that the DAG service was an established service at UCPH for data analysing and program-
ming in teaching bachelor and master students, it seemed the ideal candidate to enable with access to
cloud resources with accelerator technology. For instance, courses such as Introduction to Computing
for Physicists (abbreviated to DATF in Danish) [18], Applied Statistics: From Data to Results (APP-
STAT) [19], and High Performance Parallel Computing (HPPC) [20], all would benefit from having
access to GPU accelerators to solve several of the practical exercises and hand-in assignments.

2.2. ERDA

ERDA provides a web based data management platform across UCPH with a primary focus on the
Faculty of Science. Its primary role is to be a data repository for all employees and students across
UCPH. Through a simple web UI powered by a combination of an Apache webserver and a Python
based backend, users are able to either interact with the different services through its navigation menu,
or a user’s individual files and folders via its file manager. An example of the interface can be seen in
Figure 1. The platform itself is a UCPH-specific version of the open source Minimum Intrusion Grid
(MiG) [21], that provides multiple data management functionalities. These functionalities includes
easy and secure upload of datasets, simple access mechanisms through a web file manager, and the
ability to establish collaboration and data sharing between users through Workgroups.

C L O U D E N A B L I N G E D U C AT I O N A L P L AT F O R M S W I T H C O R C 203

2.3. Jupyter

Project Jupyter [22] develops a variety of open source tools. These tools aim at supporting interactive
data science, and scientific computing in general. The foundation of these is the IPython Notebook
(.ipynb) format (evolved out of the IPython Project [23]). This format is based on interpreting special
segments of a JSON document as source code, which can be executed by a custom programming
language runtime environment, also known as a kernel. The JupyterLab [24] interface (as shown in
Figure 2) is the standard web interface for interacting with the underlying notebooks. JupyterHub [25]
is the de-facto standard to enable multiple users to utilize the same compute resources for individual
Jupyter Notebook/Lab sessions. It does this through its own web interface gateway and backend
database, to segment and register individual users before allowing them to start a Jupyter session.

In addition, JupyterHub allows for the extension of both custom Spawners and Authenticators,
enabling 3rd party implementations. The Authenticator is in charge of validating that a particular
request is from an authentic user. The responsibility of the Spawner is how a Jupyter session is to be
scheduled on a resource. Currently there exist only static Spawners that utilize either preconfigured
resources that have been deployed via Batch, or Container Spawners, or at selective cloud providers
such as AWS [26]. As an exception to this, the WrapSpawner [27] allows for dynamic user selections
through predefined provides. However, these profiles cannot be changed after the JupyterHub service
is launched, making it impossible to dynamically change the set of supported resources and providers.
Therefore it would be of benefit if a Spawner extended the WrapSpawner’s existing capabilities with
the ability to dynamically add or remove providers and resources.

3. Related Work

As presented in [28], Web-based learning by utilizing cloud services and platforms as part of the cur-
riculum is not only feasible, but advisable. In particular, when it comes to courses with programming
activities for students, educational institutions should enable access to innovative Web-based tech-
nologies that supports their learning. These include interactive programming, version control and
automated programming assessments to ensure instant feedback.

3.1. Interactive Programming Portals

Research in cloud computing for education typically revolves around using Web-enabled Software
as a Service (SaaS) applications. Examples of such include platforms such as GitHub [29], Google
Docs [30], Google Colaboratory [31], Kaggle [32], and Binder [33]. Each of these can fill a particular
niche in a course at the teacher’s or student’s discretion. Nevertheless, the provided capability often
does come with its own burdens, in that the administration of the service is often left to the teaching
team responsible for the course. This responsibility typically includes establishing student access,
course material distribution to the specific platform, guides on how to get started with the service
and solving eventual problems related to the service throughout the course. In addition, many of the
external cloud services that offer free usage, often have certain limitations, such as how much instance
utilisation a given user can consume in a given time span. Instead, providing such functionalities as
Science IT services, could reduce these overheads and enable seamless integration into the courses.
Furthermore, existing resources could be used to serve the service by scaling through an established
Grid of Clouds.

In terms of existing public cloud platforms that can provide Jupyter Notebook experiences, DAG
is similar to Google Colaboratory, Binder, Kaggle, Azure Notebooks [34], CoCalc [35], and Datalore

C L O U D E N A B L I N G E D U C AT I O N A L P L AT F O R M S W I T H C O R C 204

Figure 2: JupyterLab Interface

[36]. All of these online options, have the following in common. They all have free tier plans available
with certain hardware and usage limitations. All are run entirely in the web browser and don’t require
anything to be installed locally. At most they require a valid account to get started. Each of them
present a Jupyter Notebook or Notebook like interface, which allows for both export and import of
Notebooks in the standard format. An overview of a subset of the supported features and usage
limits across these platforms can be seen in Table 1, and their hardware capabilities in Table 2. From
looking at the features, each provider is fairly similar in terms of enabling Languages, Collaborating,
and Native Persistence (i.e. the ability to keep data after the session has ended). However, there is a
noticeable difference, in the maximum time (MaxTime) that each provider allows a given session to
be inactive before it is stopped. With CoCalc being the most generous, allowing 24 hours of activity
before termination. In contrast, internal hosted services such as DAG allow for the institution to define
this policy. At UCPH, we have defined this to be 2 hours of inactivity, and an unlimited amount of
active time for an individual session. However, as Table 2 shows, we currently don’t provide any GPU
capability, which is something that could be changed through the utilisation of an external cloud with
GPU powered compute resources.

Given this, the DAG service seemed as the ideal candidate to empower with external cloud re-
sources. Both because it provides similar features as the public cloud providers in terms of Languages
and Collaborate ability, but also since it is integrated directly with UCPHs data management service.

C L O U D E N A B L I N G E D U C AT I O N A L P L AT F O R M S W I T H C O R C 205

Table 1
Subset of Jupyter Cloud Platforms Features

Provider Native Persistence Languages Collaborate MaxTime (inactive,max)

Binder[37] None User specified 1 Git 10m, 12h2

Kaggle [38] Kaggle Datasets Python3,R Yes 60m, 9h
Google Colab [39] GDrive, GCloud Storage Python3,R Yes 60m,12h* 3

Azure Notebooks [40] [41] Azure Libraries Python{2,3},R,F# NA 60m,8h* 4

CoCalc [42] CoCalc Project Python{2,3},R,Julia,etc Yes* 30m, 24h
Datalore [43] Per Workbook Python3 Yes 60m, 120h 5

DAG [44] ERDA Python2,3,R,C++,etc Yes 2h, unlimited 6

Table 2
Hardware available on Jupyter Cloud Platforms

Provider CPU Memory (GB) Disk Size (GB) Accelerators

Binder NA 1 Min, 2 MAX No specified limit* None
Kaggle1 4 cores 17 5 None
Kaggle2 2 cores 14 5 GPU 7 or TPU 8 [45]

Google Colab Free NA NA GDrive 15 GPU or TPU (thresholded access)
Azure Notebooks (per project) NA 4 1 GPU (Pay)

Cocalc (per project) 1 shared core 1 shared 3 None
Datalore 2 cores 4 10 None
DAG 8 cores 8 unlimited 9 None

3.2. Cloud Orchestration

Cloud resources are typically provided by the infrastructure service through some form of orchestra-
tion. Orchestration is a term for providing an automated method to configure, manage and coordinate
computer systems [46]. Through orchestration, an organisation or individual is able to establish a
complex infrastructure through a well defined workflow. For instance, the successful creation of a
compute node involves the processing of a series of complex tasks that all must succeed. An example
of such a workflow can be seen in Figure 3. Here a valid Image, Shape, Location and Network has
to be discovered, selected, and successfully utilized together in order for the cloud compute node to
be established. An Image is the target operating system and distribution, for instance Ubuntu 20.04
LTS. A Shape is the physical configuration of the node, typically involving the amount of CPU cores,
memory and potential accelerators. Location is typically the physical location of where the resource
is to be created. Cloud providers often use the term Availability Zone instead but it generally defines
which datacenter to utilize for the given task. Network encompasses the entirety of the underlying
network configuration, including which Subnet, Gateway, and IP address the compute node should
utilize. In the context of a federated network like a Grid, the orchestration would ideally involve the
automated provisioning of the computational resource, the configuration of said resource, and ensure
that the resource is correctly reachable through a network infrastructure.

Multiple projects have been developed that automate development and system administration tasks
such as maintenance, testing, upgrading, and configuration. These includes packages such as Ter-
raForm [47], Puppet [48], Chef [49], and Ansible [50], all of which open source projects that can be
utilized across a range of supported cloud providers. Nevertheless, in terms of enabling workflows that
can provide orchestration capabilities, these tools are limited in that they typically only focuses on a

C L O U D E N A B L I N G E D U C AT I O N A L P L AT F O R M S W I T H C O R C 206

Figure 3: Workflow for orchestrating a compute node

subset of the orchestration functionalities such as provisioning and deployment or configuration and
maintenance. For instance TerraFrom is a tool that focuses on infrastructure deployment whereas
Puppet, Chef and Ansible are primarily concerned with configuration and maintenance of existing
systems. In contrast commercial cloud providers typically also provide their own orchestration-like
tools and Software Development Kits (SDK)s, enabling the ability to interact with their respective
cloud system. For instance, Oracle provides the Oracle Cloud Infrastructure CLI [51] tool that can in-
teract with their infrastructure. The same applies to the Amazon AWS CLI [52], in addition to a vast
complement of tool-kits [53] that provide many different AWS functionalities including orchestration.
In contrast, commercial cloud provided tools are often limited to only support the publishing cloud
vendor and do not offer cross-cloud compatibility, or the ability to utilize multiple cloud providers
interchangeably.

Cloud orchestration developments for the scientific community, especially those aiming to provide
cross-cloud deployments, have mostly been based on utilizing on premise cloud IaaS platforms such
as OpenStack [54] and OpenNebula [55]. Developments have focused on providing higher layers of
abstraction to expose a common APIs that allow for the interchangeable usage of the underlying sup-
ported IaaS platforms. The infrastructure is typically defined in these frameworks through a Domain
Specific Language (DSL) that describes how the infrastructure should look when orchestrated. Ex-
amples of this include cloud projects such as INDIGO-cloud [56] [57], AgroDAT [58] and Occupus
[58]. These frameworks, nonetheless do not allow for the utilization of commercial or public cloud
platforms, since they rely on the utilization of organisationally defined clouds that are traditionally
deployed, managed, and hosted by the organisation itself. Although required, if as stated, we are
to establish a Grid of Clouds which should allow for the inclusion of public and commercial cloud
platforms. The corc framework was developed and designed to eventually support the scheduling of
cloud resources across both organisations and public cloud providers.

4. The first cloud enabled service

To establish a Grid of Cloud resources, we started with enabling the usage of a single public cloud
provider to schedule DAG Notebooks on. Through this we created the foundations for the eventual
Grid structure that would allow the resources to be scheduled across multiple clouds and organisa-
tions.

4.1. Corc

The corc framework was implemented as a Python package. The package establishes the foundations
for essential functions such as orchestration, computation, configuration, and authentication against
supported cloud providers and cloud resources. Overall, corc is a combination of an Infrastructure as
a Service (IaaS) management library, and a computation oriented scheduler. This enables the ability

C L O U D E N A B L I N G E D U C AT I O N A L P L AT F O R M S W I T H C O R C 207

Provider

Orchestrator

Compute Configurer

AuthenticatorSchedulerStorage Job

Figure 4: Cloud Orchestrator Framework Overview

to schedule services on a given orchestrated resource. An overview of the architecture can be seen in
Figure 4.1.

The first provider to be integrated into the framework was the OCI IaaS. This was chosen, because
the UCPH had a preexisting collaboration with Oracle, that enabled the usage of donated cloud re-
sources for testing and development. As also highlighted, this does not limit the integration of other
cloud providers into the framework, which the framework was designed for. Furthermore, as explored
in section 2.3. A new Spawner, named MultipleSpawner was introduced, to provide the necessary dy-
namic selection of cloud providers.

As Figure 4.1 indicates, for each provider that corc supports, an orchestrator for that provider
needs to be defined within corc. In addition, the framework defines three other top level compo-
nents, namely Compute, Configurer, and Authenticator. All three are abstract definitions allowing
for specific implementations to support the targeted resources which they apply to. A service can
therefore be enabled with the ability to utilize cloud resources by integrating the corc components
into the service itself. This method is limited to services that are developed in Python. In addition,
corc also defines a Command Line Interface (CLI), that can be used to interact with the cloud provided
resources directly. Details about how the framework and CLI can be used will not be presented in this
paper, but can be found in [13].

{
" v i r t u a l _ m a c h i n e " : [

{
" name " : " o r a c l e _ l i n u x _ 7 _ 8 " ,
" p r o v i d e r " : " o c i " ,
" image " : " O r a c l e Linux 7 . 8 "

}
]

}

Listing 1: Spawner Deployment configuration

4.2. MultipleSpawner

MultipleSpawner [59] is a Python package allowing for the selection of dynamic Spawners and re-
sources. Structurally, it is inspired by the WrapSpawner [27], through the MultipleSpawner inte-
grates corc into the Spawner ifself. This enables the JupyterHub service to manage and utilize cloud
resources on a dynamic set of providers. In order to enable the MultipleSpawner to support these dy-
namic resources providers, two JSON configuration files needs to be defined. One of these is shown
in Listing 1, and defines the specific resource type that should be deployed on the provider. Currently

C L O U D E N A B L I N G E D U C AT I O N A L P L AT F O R M S W I T H C O R C 208

the MultipleSpawner supports deploying, ‘virtual_machine‘, ‘container‘, and ‘bare_metal‘ resources.
The other configuration file is shown in Listing 2. It defines the template configuration settings that
specify which Spawner, Configurer, and Authenticator the MultipleSpawner should use to spawn,
configure and connect to the deployed resource.

[
{

" name " : " V i r t u a l M a c h i n e Spawner " ,
" r e s o u r c e _ t y p e " : " v i r t u a l _ m a c h i n e " ,
" p r o v i d e r s " : [" o c i "] ,
" spawner " : {

" c l a s s " : " sshspawner . sshspawner . SSHSpawner " ,
" kwargs " : {

" r e m o t e _ h o s t s " : [" { e n d p o i n t } "] ,
" r e m o t e _ p o r t " : " 2 2 " ,
" s s h _ k e y f i l e " : " ~ / . c o r c / s sh / i d _ r s a " ,
" remote_port_command " : " / u s r / b in / python3
/ u s r / l o c a l / b in / g e t _ p o r t . py "

}
} ,
" c o n f i g u r e r " : {

" c l a s s " : " c o r c . c o n f i g u r e r . A n s i b l e C o n f i g u r e r " ,
" o p t i o n s " : {

" h o s t _ v a r i a b l e s " : {
" a n s i b l e _ u s e r " : " opc " ,
" a n s i b l e _ b e c o m e " : " yes " ,
" ans ib le_become_method " : " sudo " ,
" new_username " : " { JUPYTERHUB_USER } "

} ,
" h o s t _ s e t t i n g s " : {

" group " : " compute " ,
" p o r t " : " 2 2 "

} ,
" app ly_kwargs " : {

" p l aybook_pa th " : " s e tup_s sh_spawner . yml "
}

}
} ,
" a u t h e n t i c a t o r " : {

" c l a s s " : " c o r c . a u t h e n t i c a t o r . S S H A u t h e n t i c a t o r " ,
" kwargs " : { " c r e a t e _ c e r t i f i c a t e " : " True " }

}
} ,

]

Listing 2: Spawner Template configuration

C L O U D E N A B L I N G E D U C AT I O N A L P L AT F O R M S W I T H C O R C 209

5. Results

By integrating corc into the MultipleSpawner, we enabled the architecture shown in Figure 5, where
the DAG service is able to dynamically schedule Jupyter Notebooks across the two resource providers.
As is indicated by Figure 5, the UCPH and OCI providers are defined to orchestrate resources, in this
case cloud compute instances, in preparation for scheduling a requested Notebook. In order to validate
that the architecture worked as expected, we setup a test environment on a separate machine. This
machine was configured with a corc and JupyterHub environment, where OCI was defined as a corc
provider and the MultipleSpawner as the designated JupyterHub Spawner. With this in order, the
JupyterHub service was ready to be launched on the machine.

The MultipleSpawner was configured to use the template and deployment settings defined in List-
ing 1 and 2. This enables the MultipleSpawner to create Virtual Machine cloud resources at the OCI.
Subsequently, the MultipleSpawner uses the SSHSpawner [60] created by the National Energy Re-
search Scientific Computing (NERSC) Center to connect and launch the Notebook on the orchestrated
resource. Prior to this, it uses the corc defined SSHAuthenticator and AnsibleConfigurer to ensure
that the MultipleSpawner can connect to a particular spawned resource and subsequently configure
it with the necessary dependencies.

An example of a such a spawn with the specified requirements can be seen in Figure 6. To validate
that this resource had been correctly orchestrated, the corc CLI was utilized to fetch the current
allocated resources on OCI. Listing 3 shows that an instance with 12 oracle CPUs, 72 GB of memory
and one NVIDIA P100 GPU had been orchestrated. This reflects the minimum shape that could be
found in the EU-FRANKFURT-1-AD-2 availability domain that met the GPU requirement.

rasmusmunk$ c o r c o c i o r c h e s t r a t i o n i n s t a n c e l i s t
{

" i n s t a n c e s " : [
{

. . .
" a v a i l a b i l i t y _ d o m a i n " : " l f c b : EU−FRANKFURT−1−AD−2 " ,
" d i sp lay_name " : " i n s t a n c e 2 0 2 0 1 0 1 8 1 0 3 6 3 8 " ,
" image_ id " : " o c i d 1 . image . oc1 . eu− f r a n k f u r t " ,
" shape " : "VM. GPU2 . 1 " ,
" s h a p e _ c o n f i g " : {

. . .
" gpus " : 1 ,
" max_vn ic_a t tachments " : 1 2 ,
" memory_in_gbs " : 7 2 . 0 ,
" ocpus " : 1 2 . 0 ,

} ,
}
] ,
" s t a t u s " : " s u c c e s s "

}

Listing 3: Running OCI Notebook Instance

As shown in Figure 7, the JupyterHub spawn action redirected the Web interface to the hosted Note-
book on the cloud resources. Relating this to the mentioned courses at UCPH, this then enabled the
students with access to an interactive programming environment via the JupyterLab interface.

C L O U D E N A B L I N G E D U C AT I O N A L P L AT F O R M S W I T H C O R C 210

Figure 5: DAG MultipleSpawner Architecture, R = Resource

Building upon this, a simple benchmark was made to evaluate the gain in getting access to a com-
pute resource with a NVIDIA P100 GPU. A Notebook with the Tensorflow and Keras quick start
application [61] was used to get a rough estimate of how much time would be saved in building a
simple neural network that classifies images. Listing 5, shows the results of running the notebook on
the GPU powered compute resource for ten times in a row, and Listing 4 shows the results of running

C L O U D E N A B L I N G E D U C AT I O N A L P L AT F O R M S W I T H C O R C 211

Figure 6: MultipleSpawner Interface

the same benchmark on an existing DAG resource. As this shows, the GPU version was on average
24,7 seconds faster or in other words gained on average a 2,8 speedup compared to the DAG resource
without a GPU.

(python3) jovyan@d203812f76e8 : ~ / work / c t e _ 2 0 2 0 _ p a p e r / no tebooks$ \
> python3 b e g i n n e r . py
Took : 3 8 . 1 0 7 9 4 5 9 1 9 0 3 6 8 6 5
Took : 3 6 . 1 2 3 3 5 0 3 8 1 8 5 1 1 9 6
Took : 3 7 . 3 7 4 5 5 7 0 1 8 2 8 0 0 3
Took : 3 7 . 6 9 0 5 1 7 9 0 2 3 7 4 2 7
Took : 4 1 . 1 6 2 4 2 7 9 0 2 2 2 1 6 8
Took : 3 7 . 2 4 0 5 2 0 9 5 4 1 3 2 0 8
Took : 3 8 . 6 8 5 3 9 1 9 0 2 9 2 3 5 8 4
Took : 4 0 . 0 2 7 8 2 3 2 0 9 7 6 2 5 7
Took : 3 8 . 4 0 9 3 6 9 9 4 5 5 2 6 1 2
Took : 3 9 . 3 4 7 0 4 7 8 0 5 7 8 6 1 3
Average : 3 8 . 4 1 6 8 9 5 2 9 4 1 8 9 4 5

Listing 4: DAG compute resource Tensorflow times

C L O U D E N A B L I N G E D U C AT I O N A L P L AT F O R M S W I T H C O R C 212

Figure 7: A Tensorflow + Keras Notebook on an OCI resource

(python3) jovyan@56e3c30c2a f6 : ~ / work / c t e _ 2 0 2 0 _ p a p e r / no tebooks$ \
> python3 b e g i n n e r . py
Took : 1 9 . 4 7 9 9 0 0 3 6 0 1 0 7 4 2 2
Took : 1 2 . 8 5 9 1 2 3 7 0 6 8 1 7 6 2 7
Took : 1 3 . 0 4 7 2 9 3 1 8 6 1 8 7 7 4 4
Took : 1 3 . 2 9 6 7 7 6 0 5 6 2 8 9 6 7 3
Took : 1 3 . 0 0 2 3 6 3 2 0 4 9 5 6 0 5 5
Took : 1 3 . 1 1 8 3 2 9 0 4 8 1 5 6 7 3 8
Took : 1 3 . 0 6 7 5 0 8 9 3 5 9 2 8 3 4 5
Took : 1 3 . 0 8 9 2 8 4 6 5 8 4 3 2 0 0 7
Took : 1 3 . 1 6 0 0 9 9 5 0 6 3 7 8 1 7 4
Took : 1 3 . 0 3 2 1 7 8 4 0 1 9 4 7 0 2 1
Average : 1 3 . 7 1 5 2 8 5 7 0 6 5 2 0 0 8 1

Listing 5: OCI GPU compute resource Tensorflow times

From this simple benchmarking example, we can see that by utilizing the MultipleSpawner in com-
bination with corc, users are able to get access through a simple gateway to the expected performance
gains of accelerators like a GPU. Expanding on this, the teachers and students at UCPH will now be
able to request a compute resource with a GPU on demand, thereby gaining simple access to achieving
similar faster runtimes in their exercises and assignments.

C L O U D E N A B L I N G E D U C AT I O N A L P L AT F O R M S W I T H C O R C 213

6. Conclusions and Future Work

In this paper, we presented our work towards establishing a Grid of Clouds that enables organisations,
such as educational institutions to share computational resources amongst themselves and external
collaborators. To accomplish this, we introduced corc as a basic building block enables the ability to
orchestrate, authenticate, configure, and schedule computation on a set of resources by a supported
provider.

OCI was the first provider we chose to support in corc, foremost because of the existing collabora-
tion with UCPH and the associated credits that got donated to this project. This enabled us to utilize
said provider to cloud enable part of the DAG service at UCPH. This was made possible through the
introduction of the MultipleSpawner package that utilized corc to dynamically chose between sup-
ported cloud providers. We demonstrated that the MultipleSpawner was capable of scheduling and
stopping orchestrated and configured resources at OCI via a local researcher’s machine.

In terms of future work, the next step involves the establishment of a Grid layer on top of the UCPH
and OCI clouds. This Grid layer is planned to enable the establishment of a federated pool of par-
ticipating organisations to share their resources. By doing so, we will be able to dynamically utilize
cross organisation resources for services such as DAG, allowing us for instance to spawn Notebooks
across multiple institutions such as other universities. Enabling the sharing of underused resources
across the Grid participants. To accomplish this, corc also needs to be expanded to support additional
providers, foremost through the integration of the Apache libcloud [62] library which natively sup-
ports more than 30 providers, we will allow corc and subsequently the MultipleSpawner to be utilized
across a wide range of cloud providers.

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innova-
tion programme under the Marie Skłodowska-Curie grant agreement No 765604. Furthermore, many
thanks is given to Oracle for donating the cloud resources that made this project possible.

References

[1] A. Gupta, L. V. Kale, F. Gioachin, V. March, C. H. Suen, B. S. Lee, P. Faraboschi, R. Kaufmann,
D. Milojicic, The who, what, why, and how of high performance computing in the cloud, Pro-
ceedings of the International Conference on Cloud Computing Technology and Science, Cloud-
Com 1 (2013) 306–314. doi:10.1109/CloudCom.2013.47.

[2] B. Vinter, J. Bardino, M. Rehr, K. Birkelund, M. O. Larsen, Imaging Data Management System,
in: Cloud NG:17 Proceedings of the 1st International Workshop on Next Generation of Cloud
Architectures, Belgrade, Serbia, 2017.

[3] D. Häfner, R. L. Jacobsen, C. Eden, M. R. B. Kristensen, M. Jochum, R. Nuterman, B. Vinter, Veros
v0.1 &ndash; a Fast and Versatile Ocean Simulator in Pure Python, Geoscientific Model
Development Discussions (2018) 1–22. doi:10.5194/gmd-2018-3.

[4] P. Padoan, L. Pan, M. Juvela, T. Haugbølle, Nordlund, The Origin of Massive Stars: The Inertial-
inflow Model, The Astrophysical Journal 900 (2020) 82. doi:10.3847/1538-4357/abaa47.

[5] University of Copenhagen, University of Copenhagen policy for scientific data, Technical Report,
Copenhagen, 2014. URL: https://kunet.ku.dk/arbejdsomraader/forskning/data/forskningsdata/
Documents/Underskrevetogendeligversionafpolitikforopbevaringafforskningsdata.pdf.

C L O U D E N A B L I N G E D U C AT I O N A L P L AT F O R M S W I T H C O R C 214

[6] University of Copenhagen, SCIENCE AI Centre, 2020. URL: https://ai.ku.dk/research/.
[7] University of Antwerp, High Performance Computing CalcUA, 2020. URL: https://www.

uantwerp.be/en/core-facilities/calcua/.
[8] Lund University, LUNARC, 2020. URL: https://www.maxiv.lu.se/users/lunarc/.
[9] Vienna Scientific Cluster, Vienna Scientific Cluster, 2009. URL: https://vsc.ac.at//access/.

[10] ARCHER, 2019. URL: https://www.epcc.ed.ac.uk/facilities/archer.
[11] European Union, European Commission, EuroHPC JOINT UNDERTAKING, Tech-

nical Report, 2020. URL: https://op.europa.eu/en/publication-detail/-/publication/
dff20041-f247-11ea-991b-01aa75ed71a1/language-en. doi:10.2759/26995.

[12] I. Foster, C. Kesselman, The history of the grid, Advances in Parallel Computing 20 (2011) 3–30.
doi:10.3233/978-1-60750-803-8-3.

[13] R. Munk, Cloud Orchestrator, 2020. URL: https://github.com/rasmunk/corc.
[14] Instructure, Canvas, 2020. URL: https://www.instructure.com/canvas/about.
[15] J. Bardino, M. Rehr, B. Vinter, R. Munk, ERDA, 2019. URL: https://www.erda.dk.
[16] R. Munk, Jupyter Service, 2019.
[17] G. Zaccone, R. Karim, A. Menshawy, Chapter 7: GPU Computing, in: Deep Learning with

TensorFlow, 1 ed., Packt Publishing, Limited, 2017, p. 316.
[18] University of Copenhagen, Introduction to Computing for Physicists, 2019. URL: https://kurser.

ku.dk/course/nfya06018u/.
[19] University of Copenhagen, Applied Statistics, 2019. URL: https://kurser.ku.dk/course/

nfyk13011u.
[20] High Performance Parallel Computing, 2020. URL: https://kurser.ku.dk/course/nfyk18001u/.
[21] J. Berthold, J. Bardino, B. Vinter, A Principled Approach to Grid Middleware, in: Algorithms

and Architectures for Parallel Processing, volume 7016, Springer, 2011, pp. 409–418. doi:https:
//doi.org/10.1007/978-3-642-24650-0{_}35.

[22] Project Jupyter, Project Jupyter, 2019. URL: https://jupyter.org/about.
[23] F. Perez, B. E. Granger, IPython: A System for Interactive Scientific Computing, Comput-

ing in Science and Engineering, Computing in Science and Engineering 9 (2007) 21–29.
URL: http://scitation.aip.org/content/aip/journal/cise/9/3/10.1109/MCSE.2007.53. doi:10.1109/
MCSE.2007.53.

[24] Project Jupyter, JupyterLab, 2018. URL: http://jupyterlab.readthedocs.io/en/stable/.
[25] Project Jupyter, JupyterHub, 2015. URL: https://pypi.org/project/jupyterhub/.
[26] Project Jupyter, JupyterHub Spawners, 2020. URL: https://github.com/jupyterhub/jupyterhub/

wiki/Spawners.
[27] Project Jupyter, WrapSpawner, ???? URL: https://github.com/jupyterhub/wrapspawner.
[28] S. L. Proskura, S. H. Lytvynova, The approaches to Web-based education of computer science

bachelors in higher education institutions, CEUR Workshop Proceedings 2643 (2020) 609–625.
[29] GitHub, GitHub, 2020. URL: https://www.github.com.
[30] Google, Google Docs, 2020. URL: https://docs.google.com.
[31] Google Colab, 2020. URL: https://colab.research.google.com.
[32] Kaggle Inc, Kaggle, 2018. URL: https://www.kaggle.com.
[33] Project Jupyter, Binder, 2017. URL: https://mybinder.org.
[34] Microsoft, Azure Notebooks, 2020. URL: https://notebooks.azure.com.
[35] CoCalc, CoCalc, 2020. URL: https://cocalc.com.
[36] JetBrains, Datalore, 2020. URL: https://datalore.jetbrains.com.
[37] BinderFAQ, 2017. URL: https://mybinder.readthedocs.io/en/latest/faq.html.
[38] Kaggle Inc, Kaggle Notebooks Documentation, 2020. URL: https://www.kaggle.com/docs/

C L O U D E N A B L I N G E D U C AT I O N A L P L AT F O R M S W I T H C O R C 215

notebooks.
[39] Google, Google Colab FAQ, 2020. URL: https://research.google.com/colaboratory/faq.html.
[40] Microsoft, Azure Notebooks Overview, 2020. URL: https://docs.microsoft.com/en-us/azure/

notebooks/azure-notebooks-overview.
[41] Microsoft, Azure Notebooks manage and configure projects, 2020. URL: https://docs.microsoft.

com/en-us/azure/notebooks/azure-notebooks-overview.
[42] CoCalc, Cocalc Docs, 2020. URL: https://doc.cocalc.com/index.html.
[43] JetBrains, Datalore Documentation, 2020. URL: https://datalore.jetbrains.com/documentation.
[44] R. Munk, DAG, 2019. URL: https://github.com/ucphhpc/jupyter_service.
[45] Kaggle Inc, Kaggle GPU Tips and Tricks, 2020. URL: https://www.kaggle.com/page/

GPU-tips-and-tricks.
[46] RedHat, What is Orchestration, 2020. URL: https://www.redhat.com/en/topics/automation/

what-is-orchestration.
[47] TerraForm, TerraForm, 2020. URL: https://www.terraform.io/docs/index.html.
[48] Puppet, Puppet, 2020. URL: https://puppet.com.
[49] Chef, Chef, 2020. URL: https://www.chef.io/products/chef-infra.
[50] Ansible, Ansible, 2020. URL: https://www.ansible.com.
[51] Oracle Corporation, Oracle Cloud Infrastructure CLI, 2020. URL: https://github.com/oracle/

oci-cli.
[52] Amazon, AWS Command Line Interface, 2020. URL: https://aws.amazon.com/cli/.
[53] Amazon, Tools to build on AWS, 2020. URL: https://aws.amazon.com/tools/.
[54] OpenStack, OpenStack, 2020. URL: https://www.openstack.org.
[55] OpenNebula Systems, OpenNebula, 2020. URL: https://opennebula.io.
[56] INDIGO-DataCloud, INDIGO-DataCloud, 2020. URL: https://www.indigo-datacloud.eu.
[57] M. Caballer, S. Zala, López García, G. Moltó, P. O. Fernández, M. Velten, Orchestrating complex

application architectures in heterogeneous clouds, Journal of Grid Computing 16 (2017) 3–18.
doi:10.1007/s10723-017-9418-y.

[58] J. Kovács, P. Kacsuk, Occopus: A multi-cloud orchestrator to deploy and manage com-
plex scientific infrastructures, Journal of Grid Computing 16 (2018) 19–37. doi:10.1007/
s10723-017-9421-3.

[59] R. Munk, MultipleSpawner, 2020. URL: https://github.com/ucphhpc/multiplespawner.
[60] NERSC, SSHSpawner, 2016. URL: https://github.com/NERSC/sshspawner.
[61] NVIDIA, TensorFlow 2 Quickstart Notebook, 2020. URL: https://www.tensorflow.org/tutorials/

quickstart/beginner.
[62] The Apache Software Foundation, libcloud, 2020. URL: https://libcloud.apache.org.

C L O U D E N A B L I N G E D U C AT I O N A L P L AT F O R M S W I T H C O R C 216

E
R E S O U R C E S U S E D W I T H I N T H I S T H E S I S

Table E.1 outlines all resources used in processing throughout this thesis. Unless otherwise noted
all processing was carried out using the Laptop. This table is only applicable to the work directly
reported in this thesis, and not the papers contained in the Appendices, which will have their own
resources stated.

Resource Nodes CPU Cores Clock Speed (Ghz) Memory (GB)
Laptop 1 i7-8550U 4/8 1.8 8

Desktop 1
Threadripper 1 Threadripper 1950X 16/32 2.2 110

Small OCI Cluster 1 EPYC 7551 4 2.0 60
Large OCI Cluster 20 EPYC 7551 24 2.0 320

Table E.1: Resources used throughout for testing, timing, and benchmarking. Note that the laptop, Desktop and
Threadripper are Hyperthreaded and so although they can simulate as many cores as shown on the
right, the only have the number of the left many physical cores.

217

F
M U M M E R I N G G R A N T A G R E E M E N T E X T R A C T S

Though the full MUMMERING Grant Agreement cannot be shown, certain relevant extracts from it
are presented here in full.

Task 2.1 Automating data analysis through workflows. Data acquisition is
improving not only is resolution and speed, but also in robustness, which
means that still more experiments are performed. The combination of more and
larger data sets is stressed further by the fact that new analysis
approaches have still more components in them. Task 2.1 will develop tools
to help automate the analysis through workflows. Analysis workflows are well
known from other scientific fields, most notably bioinformatics and high
energy physics, both of which are defined by very large datasets that
undergo exactly the same analysis. For X-ray data the analysis is rarely
identical, but with the increased robustness of data acquisition more data
sets will require identical analysis. A workflow that analyse data may be
run because new data arrives, or because the workflow itself has changed,
including individual analysis components. Thus 2.1 will build a system where
new results, be it original data, outputs from one analysis step, or changes
in the analysis, can automatically trigger all causally dependent analysis,
and thus improve overall analysis speed and reduce human errors.

Listing F.1: MUMMERING WP2 Task 2.1 full description. Note this task was primarily my own responsibility.

Task 2.2 A Big Data System for data analysis. The increased size of individual
datasets, where individual tomograms easily grows to more than 64GiB and
soon will require 180GiB, which essentially excludes individual
workstations, and implicitly requires parallel processing. While
conventional Big Data systems, such as Hadoop, have been examined for image
analysis, it has been shown in literature that the model is not well suited
for data such as tomograms. Task 2.2 will build an alternative Big Data
platform that is tailor made for large images and volumes, and for
processing these. The platform will optimize data access from stable storage
and provide users with an interface that directly supports image and volume
analysis, without exposing the programmer to the underlying parallelism. The
successful Big Data platform will provide an improved performance that
scales with the number of nodes that are allocated for analysis.

Listing F.2: MUMMERING WP2 Task 2.2 full description. Note this task was primarily the responsibility of
Rasmus Munk.

Task 2.3 Total data management. The workflow tool from task 2.1, the analysis
platform from task 2.2, experiment scheduling and storage scheduling must be
coordinated overall. One of the big challenges in managing data from large
X-ray facilities is the sheer size of the data, we will soon see 4D datasets
that grows to several hundred TB. These sizes are not compatible with
conventional storage systems, and we will see a migration to slower media
that are both cheaper, use less energy and are more reliable, these include
variable rotation speed hard drives and conventional magnetic tape systems.
Such archive storage technology has many advantages, but the primary
downside is that they are too slow to service conventional operations. To
remedy the decrease in speed the data transfers must be scheduled.
Experiments reserve bandwidth for storing data, the same data can be

218

M U M M E R I N G G R A N T AG R E E M E N T E X T R AC T S 219

scheduled for immediate analysis, and the results from those analyses may
force scheduling another level of analysis, and so forth. To ensure that
there is sufficient resources to store and process all data the overall data
management system must be integrated and supported by a scheduler.

Listing F.3: MUMMERING WP2 Task 2.3 full description. Note responsibility for this task was shared between
Rasmus Munk and I.

G
C O D E C O N T E N T S O F A D D . I P Y N B

1 # Default parameters values
2 # Amount to add to data
3 extra = 10
4 # Data input file location
5 infile = ’example_data/data_0.npy’
6 # Output file location
7 outfile = ’standard_output/data_0.npy’
8

9 import numpy as np
10 import os
11

12 # load in dataset. Should be numpy array
13 data = np.load(infile)
14

15 # Add an amount to all the values in the array
16 added = data + int(float(extra))
17

18 # Create output directory if it doesn’t exist
19 output_dir_path = os.path.dirname(outfile)
20

21 if output_dir_path:
22 os.makedirs(output_dir_path, exist_ok=True)
23

24 # Save added array as new dataset
25 np.save(outfile, added)

Listing G.1: Code contents of add.ipynb Jupyter Notebook.

220

H
M I G B A S E D M E O W J O B T E M P L AT E

The following is a somewhat abridged section of the code within the MiG, showing the template that
is used to define a MEOW job. Note that this code is an amalgamation of two different functions, with
numerous small pieces of processing in between. Therefore this should not be taken as a technical
reference for what is going on, merely as a guide for what the template looks like and how it may be
filled.

1 # Prepare for output notebook
2 task_output = "%s_" + recipe[’name’] + "_output.ipynb"
3 task_output = task_output % "+JOBID+"
4

5 # Prepare execution lines
6 executes = []
7 executes.append("${NOTEBOOK_PARAMETERIZER} %s %s -o %s -e" % (task_path,

parameter_path, param_task_path))
8 executes.append("${PAPERMILL} %s %s" % (param_task_path, task_output))
9

10 template = {’execute’: ’\n’.join(executes), ’output_files’: task_output}
11

12 # Insert variables into template
13 template_mrsl = """
14 ::EXECUTE::
15 %(execute)s
16

17 ::OUTPUTFILES::
18 %(output_files)s%(sep)sjob_output/+JOBID+/%(output_files)s
19

20 ::MAXFILL::
21 CPUCOUNT
22 CPUTIME
23 DISK
24 MEMORY
25 NODECOUNT
26

27 ::RETRIES::
28 0
29

30 ::MEMORY::
31 64
32

33 ::DISK::
34 1
35

36 ::CPUTIME::
37 60
38

39 ::CPUCOUNT::
40 1
41

42 ::NODECOUNT::
43 1

221

M I G B A S E D M E O W J O B T E M P L AT E 222

44

45 ::MOUNT::
46 +TRIGGERVGRIDNAME+ +TRIGGERVGRIDNAME+
47

48 ::VGRID::
49 +TRIGGERVGRIDNAME+
50

51 ::ENVIRONMENT::
52 LC_ALL=en_US.utf8
53 PYTHONPATH=+TRIGGERVGRIDNAME+
54 WORKFLOW_INPUT_PATH=+TRIGGERPATH+
55

56 ::NOTIFY::
57 email: SETTINGS
58

59 ::RUNTIMEENVIRONMENT::
60 NOTEBOOK_PARAMETERIZER
61 PAPERMILL
62 """ % template

Listing H.1: The job template used within the MiG.

I
C O D E C O N T E N T S O F I N I T I A L P O RO S I T Y C H E C K . I P Y N B

1 # Variables that will be overridden according to Pattern
2 input_filename = ’foam_ct_data/foam_016_ideal_CT.npy’
3 output_filedir_accepted = ’foam_ct_data_accepted’
4 output_filedir_discarded = ’foam_ct_data_discarded’
5 porosity_lower_threshold = 0.8
6 utils_path = ’idmc_utils_module.py’
7

8 import numpy as np
9 import importlib

10 import matplotlib.pyplot as plt
11 import os
12 import importlib.util
13

14 spec = importlib.util.spec_from_file_location("utils", utils_path)
15 utils = importlib.util.module_from_spec(spec)
16 spec.loader.exec_module(utils)
17 n_samples, n_components = 10000, 2
18

19 #Load data
20 ct_data = np.load(input_filename)
21 utils.plot_center_slices(ct_data)
22

23 #Perform GMM fitting on samples from dataset
24 sample_inds=np.random.randint(0, len(ct_data.ravel()), n_samples)
25

26 means, stds, weights = utils.perform_GMM_np(
27 ct_data.ravel()[sample_inds],
28 n_components,
29 plot=True,
30 title=’GMM fitted to ’+str(n_samples)+’ of ’
31 +str(len(ct_data.ravel()))+’ datapoints’)
32 print(’weights: ’, weights)
33

34 # Classify data as accepted or discarded and write output
35 filename_withouth_npy=input_filename.split(’/’)[-1].split(’.’)[0]
36

37 if np.max(weights)>porosity_lower_threshold:
38 os.makedirs(output_filedir_accepted, exist_ok=True)
39 acc_path = os.path.join(output_filedir_accepted,
40 filename_withouth_npy+’.txt’)
41 with open(acc_path, ’w’) as file:
42 file.write(str(np.max(weights))+’ ’+str(np.min(weights)))
43 else:
44 os.makedirs(output_filedir_discarded, exist_ok=True)
45 dis_path = os.path.join(output_filedir_discarded,
46 filename_withouth_npy+’.txt’)
47 with open(dis_path, ’w’) as file:
48 file.write(str(np.max(weights))+’ ’+str(np.min(weights)))

Listing I.1: Code contents of initial porosity check.ipynb Jupyter Notebook.

223

J
C O D E C O N T E N T S O F S E G M E N T F OA M DATA . I P Y N B

1 # Variables that will be overridden by Patterns
2 input_filename = ’foam_ct_data_accepted/foam_016_ideal_CT.txt’
3 input_filedir = ’foam_ct_data’
4 output_filedir = ’foam_ct_data_segmented’
5 utils_path = ’idmc_utils_module.py’
6

7 import numpy as np
8 import importlib
9 import importlib.util

10 import matplotlib.pyplot as plt
11 import os
12 import scipy.ndimage as snd
13 import skimage
14

15 spec = importlib.util.spec_from_file_location("utils", utils_path)
16 utils = importlib.util.module_from_spec(spec)
17 spec.loader.exec_module(utils)
18 median_filter_kernel_size = 2
19

20 # Load data
21 filename_withouth_txt = input_filename.split(os.path.sep)[-1].split(’.’)[0]
22 input_data = os.path.join(input_filedir, filename_withouth_txt+’.npy’)
23 ct_data = np.load(input_data)
24 utils.plot_center_slices(ct_data, titl =filename_withouth_txt)
25

26 # Median filtering
27 data_filtered = snd.median_filter(ct_data, median_filter_kernel_size)
28 utils.plot_center_slices(
29 data_filtered,
30 title=filename_withouth_txt+’ median filtered’)
31

32 # Otsu thresholding
33 threshold = skimage.filters.threshold_otsu(data_filtered)
34 data_thresholded = (data_filtered>threshold)*1
35 utils.plot_center_slices(
36 data_thresholded,
37 title=filename_withouth_txt+’ Otsu thresholded’)
38

39 # Morphological closing
40 data_segmented = (skimage.morphology.binary_closing((data_thresholded==0))==0)
41 utils.plot_center_slices(
42 data_segmented,
43 title=filename_withouth_txt+’ Otsu thresholded’)
44

45 # Save data
46 filename_save = filename_withouth_txt+’_segmented.npy’
47 os.makedirs(output_filedir, exist_ok=True)
48 np.save(os.path.join(output_filedir, filename_save), data_segmented)

Listing J.1: Code contents of segment foam data.ipynb Jupyter Notebook.

224

K
C O D E C O N T E N T S O F F OA M P O R E A N A L Y S I S . I P Y N B

1 # Variables that will be overwritten by the Pattern
2 input_filename = ’foam_ct_data_segmented/foam_016_ideal_CT_segmented.npy’
3 output_filedir = ’foam_ct_data_pore_analysis’
4 utils_path = ’idmc_utils_module.py’
5

6 # Imports
7 import numpy as np
8 import importlib
9 import importlib.util

10 import matplotlib.pyplot as plt
11 import os
12 import scipy.ndimage as snd
13

14 from skimage.morphology import watershed
15 from skimage.feature import peak_local_max
16 from matplotlib import cm
17 from matplotlib.colors import ListedColormap, LinearSegmentedColormap
18

19 spec = importlib.util.spec_from_file_location("utils", utils_path)
20 utils = importlib.util.module_from_spec(spec)
21 spec.loader.exec_module(utils)
22

23 # Load data
24 data = np.load(input_filename)
25 utils.plot_center_slices(data, title = input_filename)
26

27 #distance map
28 distance = snd.distance_transform_edt((data==0))
29

30 #get watershed seeds
31 local_maxi = peak_local_max(
32 distance,
33 indices=False,
34 footprint=np.ones((3, 3, 3)),
35 labels=(data==0))
36 markers = snd.label(local_maxi)[0]
37

38 #perform watershed pore separation
39 labels = watershed(-distance, markers, mask=(data==0))
40

41 ## Pore colour map
42 somecmap = cm.get_cmap(’magma’, 256)
43 cvals=np.random.uniform(0, 1, len(np.unique(labels)))
44 newcmp = ListedColormap(somecmap(cvals))
45

46 utils.plot_center_slices(
47 -distance,
48 cmap=plt.cm.gray,
49 title=’Distances’)
50 utils.plot_center_slices(

225

C O D E C O N T E N T S O F foam pore analysis.ipynb 226

51 labels,
52 cmap=newcmp,
53 title=’Separated pores’)
54

55 # Plot statitistics: Pore radii
56 volumes = np.array([np.sum(labels==label) for label in np.unique(labels)])
57 volumes.sort()
58

59 #ignore two largest labels (background and matrix)
60 radii = (volumes[:-2]*3/(4*np.pi))**(1/3)
61 _=plt.hist(radii, bins=200)
62

63 # Save plot
64 filename_withouth_npy = input_filename.split(os.path.sep)[-1].split(’.’)[0]
65 filename_save = filename_withouth_npy+’_statistics.png’
66

67 fig, ax = plt.subplots(1,3, figsize=(15,4))
68 ax[0].imshow(labels[:,:,np.shape(labels)[2]//2], cmap=newcmp)
69 ax[1].imshow(labels[:,np.shape(labels)[2]//2,:], cmap=newcmp)
70 _ = ax[2].hist(radii, bins=200)
71 ax[2].set_title(’Foam pore radii’)
72

73 os.makedirs(output_filedir, exist_ok=True)
74 plt.savefig(os.path.join(output_filedir, filename_save))

Listing K.1: Code contents of foam pore analysis.ipynb Jupyter Notebook.

L
C O D E C O N T E N T S O F G E N E R AT O R . I P Y N B

1 # importing the necessary modules
2 import numpy as np
3 import random
4 import os
5 import importlib.util
6

7 # Variables to be overridden
8 dest_dir = ’foam_ct_data’
9 discarded = ’discarded/foam_data_0-big-.npy’

10 utils_path = ’idmc_utils_module.py’
11 gen_path = ’generate_foam_module.py’
12

13 # import modules dynamically from local files
14 u_spec = importlib.util.spec_from_file_location("utils", utils_path)
15 utils = importlib.util.module_from_spec(u_spec)
16 u_spec.loader.exec_module(utils)
17

18 g_spec = importlib.util.spec_from_file_location("gen", gen_path)
19 gen = importlib.util.module_from_spec(g_spec)
20 g_spec.loader.exec_module(gen)
21

22 # Other variables, will be kept constant
23 vx, vy, vz = 256, 256, 256
24 res=3/vz
25 nspheres_per_unit_few=100
26 nspheres_per_unit_ideal=1000
27

28 # Randomly determine if dataset is sufficient or too small.
29 def get_dataset_type(name):
30 num = random.randint(1, 3)
31 if num == 1:
32 name = name.replace(’--’, ’X-few-’)
33 return (gen.generate_foam, nspheres_per_unit_few, name)
34 else:
35 name = name.replace(’--’, ’X-ok-’)
36 return (gen.generate_foam, nspheres_per_unit_ideal, name)
37

38 # Create a dataset for a given filename
39 def create_random_dataset(name):
40 generator, spheres, filename = get_dataset_type(name)
41 dataset = generator(spheres, vx, vy, vz, res)
42 os.makedirs(dest_dir, exist_ok=True)
43 np.save(os.path.join(dest_dir, filename+’.npy’), dataset)
44

45 # Determine base filename and generate replacement dataset
46 filename = os.path.basename(discarded)
47 filename = filename[:filename.index(’-’)] + ’--’
48 create_random_dataset(filename)

Listing L.1: Code contents of generator.ipynb Jupyter Notebook.

227

M
P Y T H O N S C R I P T I N I T I A L G E N E R AT I O N . P Y

1 # importing the necessary modules
2 import numpy as np
3 import random
4 import os
5 import generate_foam_module as gen
6 import idmc_utils_module as utils
7

8 # Variables definitions
9 dest_dir = ’Patch/foam_ct_data’

10 default_filename = ’foam_data_’
11 to_generate = 20
12

13 vx, vy, vz = 256, 256, 256
14 res=3/vz
15

16 nspheres_per_unit_few=100
17 nspheres_per_unit_ideal=1000
18

19 # Function to randomly determine dataset composition.
20 # 1 in 3 chance of defective dataset.
21 def get_dataset_type(name):
22 num = random.randint(1, 3)
23 if num == 1:
24 name = name.replace(’--’, ’-few-’)
25 return (gen.generate_foam, nspheres_per_unit_few, name)
26 else:
27 name = name.replace(’--’, ’-ok-’)
28 return (gen.generate_foam, nspheres_per_unit_ideal, name)
29

30 # Create a dataset for a given filename
31 def create_random_dataset(name):
32 generator, spheres, filename = get_dataset_type(name)
33 dataset = generator(spheres, vx, vy, vz, res)
34 os.makedirs(dest_dir, exist_ok=True)
35 np.save(os.path.join(dest_dir, filename+’.npy’), dataset)
36

37 if __name__ == "__main__":
38 # Generate all datasets
39 for x in range(to_generate):
40 print(’%d/%d’ % (x+1, to_generate))
41 name = default_filename + str(x) + ’--’
42 create_random_dataset(name)

Listing M.1: Python script initial generation.py

228

N
C O D E C O N T E N T S O F PAT T E R N M A K E R R E C I P E M I G . I P Y N B

1 # Variables to be overridden
2 meow_dir = ’meow_directory’
3 filter_recipe = ’recipe_filter’
4 input_yaml = ’input.yml’
5 workgroup = ’{VGRID}’
6 workflows_url =
7 ’https://test-sid.idmc.dk/cgi-sid/jsoninterface.py?output_format=json’
8 workflows_session_id = *redacted*
9

10 # Names of the variables in filter_recipe.ipynb
11 recipe_input_image = ’input_image’
12 recipe_output_image = ’output_image’
13 recipe_args = ’args’
14 recipe_method = ’method’
15

16 # Imports
17 import yaml
18 import mig_meow as meow
19 import os
20

21 # Setup environment variables for meow to workgroup communication
22 os.environ[’WORKFLOWS_URL’] = workflows_url
23 os.environ[’WORKFLOWS_SESSION_ID’] = workflows_session_id
24

25 # Read in configuration data
26 with open(input_yaml, ’r’) as yaml_file:
27 y = yaml.full_load(yaml_file)
28

29 # Assemble a name for the new Pattern
30 name_str = ’%s_%s’ % (
31 y[’filter’],
32 ’_’.join("{!s}_{!r}".format(k,v) for (k,v) in y[’args’].items()))
33

34 # Create the new Pattern
35 new_pattern = meow.Pattern(name_str)
36 new_pattern.add_recipe(filter_recipe)
37 new_pattern.add_single_input(recipe_input_image, y[’input_path’])
38 new_pattern.add_output(recipe_output_image, y[’output_path’])
39 new_pattern.add_variable(recipe_method, y[’filter’])
40 new_pattern.add_variable(recipe_args, y[’args’])
41

42 # Register the new Pattern with the system.
43 meow.export_pattern_to_vgrid(workgroup, new_pattern)

Listing N.1: Code contents of pattern maker recipe mig.ipynb Jupyter Notebook.

229

O
T E S T I N G WATCHDOG

1 import csv
2 import gc
3 import os
4 import shutil
5 import threading
6 import time
7 from watchdog.observers import Observer
8 from watchdog.events import PatternMatchingEventHandler
9

10 TEST_DIR = ’test_dir’
11 RESULTS_FILE = ’results.csv’
12 WRITERS = 4
13 FILES = [1000, 10000, 100000, 1000000]
14 REPEATS = 20
15

16

17 class TestingEventHandler(PatternMatchingEventHandler):
18 def __init__(
19 self,
20 q,
21 patterns=None,
22 ignore_patterns=None,
23 ignore_directories=False,
24 case_sensitive=False
25):
26 """Constructor"""
27 PatternMatchingEventHandler.__init__(self, patterns,
28 ignore_patterns,
29 ignore_directories,
30 case_sensitive)
31 self.q = q
32 self.count = 0
33 self.start = None
34 self.end = None
35

36 def on_created(self, event):
37 self.count += 1
38 if self.count == 1:
39 self.start = time.time()
40 self.end = time.time()
41 duration = self.end - self.start
42 self.q.append([self.count, self.end, duration])
43

44

45 def monitor(q):
46 path = TEST_DIR
47 patterns = os.path.join(path, ’*’)
48 event_handler = TestingEventHandler(q, patterns=patterns)
49

50 observer = Observer()

230

T E S T I N G W A T C H D O G 231

51 observer.schedule(event_handler, os.path.realpath(path), recursive=True)
52 observer.start()
53

54

55 def writer(w, r):
56 for i in range(r):
57 p = ’%s/%d-%d’ % (TEST_DIR, w, i)
58 with open(p, ’w’) as f:
59 pass
60

61

62 if __name__ == "__main__":
63 if os.path.exists(RESULTS_FILE):
64 os.remove(RESULTS_FILE)
65

66 for file_count in FILES:
67 results = []
68 ranges = [int(file_count / WRITERS)] * WRITERS
69 m = file_count % WRITERS
70 for i in range(m):
71 ranges[i] += 1
72 print(ranges)
73

74 for x in range(REPEATS):
75 if os.path.exists(TEST_DIR):
76 shutil.rmtree(TEST_DIR, ignore_errors=False, onerror=None)
77 print(’finished cleanup of writing dir’)
78 os.mkdir(TEST_DIR)
79

80 print(’starting run %d for %d writers’ % (x, WRITERS))
81 q = []
82

83 monitor_thread = threading.Thread(
84 target=monitor,
85 args=[q])
86 monitor_thread.daemon = True
87 monitor_thread.start()
88

89 time.sleep(3)
90

91 writer_threads = []
92 for w in range(WRITERS):
93 writer_thread = threading.Thread(
94 target=writer,
95 args=[w, ranges[w]])
96 writer_thread.daemon = True
97 writer_threads.append(writer_thread)
98 print(’writing created’)
99 for writer_thread in writer_threads:

100 writer_thread.start()
101 print(’writing started’)
102 for writer_thread in writer_threads:
103 writer_thread.join()
104

105 print(’writing complete’)
106

107 time.sleep(3)
108

109 waiting = True
110 last = -1
111 settle_count = 0
112 while waiting:
113 result = q[-1]

T E S T I N G W A T C H D O G 232

114

115 current = result[1]
116

117 if current == last:
118 settle_count += 1
119 else:
120 settle_count = 0
121

122 if settle_count == 5:
123 waiting = False
124 else:
125 time.sleep(3)
126 last = current
127

128 monitor_thread.join()
129 results.append(result)
130

131 del monitor_thread
132 for writer_thread in writer_threads:
133 del writer_thread
134 del q
135 gc.collect()
136

137 with open(RESULTS_FILE, ’a’, newline=’’) as csv_file:
138 csv_writer = csv.writer(csv_file)
139 csv_writer.writerow([’%s files by %s writer(s)’ % (file_count,

WRITERS), ’’])
140 csv_writer.writerow([’Events’, ’Duration’])
141 for r in results:
142 csv_writer.writerow([r[0], r[2]])

Listing O.1: Testing the event identification rate of watchdog.

P
R E S U LT S F R O M O V E R H E A D I N V E S T I G AT I O N

The following graphs and table are the complete results of the experiments carried out in Section
17.4. All experiments were carried out on either the Laptop or Threadripper resources described in
Appendix E. Source code for each test can be found at [28], [26] and [27].

To fit on a single page Table P.1 only shows timings for selected job counts. All speedups are shown
relative to the Slurm sbatch or sequential sbatch tests run on the same machine. All results have
been rounded to 2 decimal places or 1 significant figure for display only. Raw results can be viewed at
[8]. Note that SPMF etc. refers to the experiment types outlined in Section 17.4.2.

233

R E S U LT S F RO M OV E R H E A D I N V E S T I G AT I O N 234

To
ta

ld
ur

at
io

n
Pe

r-
jo

b
du

ra
tio

n
Sp

ee
du

p
vs
s
b
a
t
c
h

Sp
ee

du
p

vs
se

qu
en

tia
ls
b
a
t
c
h

10
10

0
50

0
10

10
0

50
0

10
10

0
50

0
10

10
0

50
0

L
ap

to
p
s
r
u
n

0.
47

s
4.

16
s

20
.5

4s
0.

05
s

0.
04

s
0.

04
s

0.
14

0.
17

0.
15

6.
65

0.
93

0.
78

T
hr

ea
dr

ip
pe

rs
r
u
n

0.
39

s
3.

35
s

16
.9

3s
0.

04
s

0.
03

s
0.

03
s

0.
13

0.
16

0.
16

7.
4

1.
05

0.
86

L
ap

to
p
s
b
a
t
c
h

0.
06

s
0.

71
s

3.
07

s
0.

00
6s

0.
00

7s
0.

00
6s

-
-

-
48

.7
4

5.
43

5.
2

T
hr

ea
dr

ip
pe

rs
b
a
t
c
h

0.
05

s
0.

53
s

2.
76

s
0.

00
5s

0.
00

5s
0.

00
6s

-
-

-
54

.9
3

6.
67

5.
28

L
ap

to
p

se
qu

en
tia

ls
b
a
t
c
h

3.
14

s
3.

87
s

15
.9

6s
0.

31
s

0.
04

s
0.

03
s

0.
02

0.
18

0.
19

-
-

-
T

hr
ea

dr
ip

pe
rs

eq
ue

nt
ia

ls
b
a
t
c
h

2.
9s

3.
52

s
14

.5
5s

0.
29

s
0.

04
s

0.
03

s
0.

02
0.

15
0.

19
-

-
-

L
ap

to
p

M
E

O
W

SP
M

F
0.

04
s

0.
3s

1.
44

s
0.

00
4s

0.
00

3s
0.

00
3s

1.
5

2.
41

2.
14

72
.9

3
13

.0
8

11
.1

2
T

hr
ea

dr
ip

pe
rM

E
O

W
SP

M
F

0.
02

s
0.

19
s

0.
96

s
0.

00
2s

0.
00

2s
0.

00
2s

2.
4

2.
8

2.
87

13
1.

62
18

.7
15

.1
8

L
ap

to
p

M
E

O
W

M
PS

F
0.

05
s

0.
28

s
1.

37
s

0.
00

5s
0.

00
3s

0.
00

3s
1.

29
2.

59
2.

25
62

.7
2

14
.0

8
11

.6
8

T
hr

ea
dr

ip
pe

rM
E

O
W

M
PS

F
0.

02
s

0.
18

s
0.

88
s

0.
00

2s
0.

00
2s

0.
00

2s
2.

51
2.

96
3.

14
13

7.
89

19
.7

5
16

.5
9

L
ap

to
p

M
E

O
W

M
PM

F
0.

06
s

0.
71

s
14

.3
5s

0.
00

5s
0.

00
7s

0.
03

s
1.

17
1.

01
0.

21
57

.0
2

5.
46

1.
11

T
hr

ea
dr

ip
pe

rM
E

O
W

M
PM

F
0.

03
s

0.
47

s
8.

33
s

0.
00

3s
0.

00
5s

0.
02

s
2.

03
1.

11
0.

33
11

1.
37

7.
4

1.
75

L
ap

to
p

M
E

O
W

SP
SF

P
0.

04
s

0.
28

s
1.

37
s

0.
00

4s
0.

00
3s

0.
00

3s
1.

5
2.

52
2.

25
72

.9
3

13
.6

9
11

.6
9

T
hr

ea
dr

ip
pe

rM
E

O
W

SP
SF

P
0.

02
s

0.
18

s
0.

89
s

0.
00

2s
0.

00
2s

0.
00

2s
2.

4
2.

91
3.

1
13

1.
62

19
.4

2
16

.3
7

L
ap

to
p

M
E

O
W

SP
SF

S
28

.5
7s

31
7.

13
s

16
01

.9
1s

2.
86

s
3.

17
s

3.
2s

0.
00

2
0.

00
2

0.
00

2
0.

11
0.

01
0.

01
T

hr
ea

dr
ip

pe
rM

E
O

W
SP

SF
S

25
.1

2s
27

9.
75

s
14

11
.5

4s
2.

51
s

2.
8s

2.
82

s
0.

00
2

0.
00

2
0.

00
2

0.
12

0.
01

0.
01

L
ap

to
p

M
iG

SP
M

F
1.

23
s

10
.6

5s
24

1.
52

s
0.

12
s

0.
11

s
0.

48
s

0.
05

0.
07

0.
01

2.
56

0.
36

0.
07

T
hr

ea
dr

ip
pe

rM
iG

SP
M

F
1.

26
s

15
.6

9s
35

3.
72

s
0.

13
s

0.
16

s
0.

71
s

0.
04

0.
03

0.
00

8
2.

3
0.

22
0.

04
L

ap
to

p
M

iG
M

PS
F

1.
22

s
8.

84
s

18
0.

64
s

0.
12

s
0.

09
s

0.
36

s
0.

05
0.

08
0.

02
2.

57
0.

44
0.

09
T

hr
ea

dr
ip

pe
rM

iG
M

PS
F

1.
25

s
11

.4
6s

20
9.

95
s

0.
13

s
0.

11
s

0.
42

s
0.

04
0.

05
0.

01
2.

31
0.

31
0.

07
L

ap
to

p
M

iG
M

PM
F

1.
22

s
10

.1
9s

42
3.

65
s

0.
12

s
0.

1s
0.

85
s

0.
05

0.
07

0.
00

7
2.

58
0.

38
0.

04
T

hr
ea

dr
ip

pe
rM

iG
M

PM
F

1.
25

s
13

.0
4s

48
6.

81
s

0.
12

s
0.

13
s

0.
97

s
0.

04
0.

04
0.

00
6

2.
32

0.
27

0.
03

L
ap

to
p

M
iG

SP
SF

P
2.

83
s

31
.1

7s
39

2.
19

s
0.

28
s

0.
31

s
0.

78
s

0.
02

0.
02

0.
00

8
1.

11
0.

12
0.

04
T

hr
ea

dr
ip

pe
rM

iG
SP

SF
P

1.
16

s
5.

86
s

84
.9

1s
0.

12
s

0.
06

s
0.

17
s

0.
05

0.
09

0.
03

2.
51

0.
6

0.
17

L
ap

to
p

M
iG

SP
SF

S
28

4.
37

s
17

88
.7

3s
89

88
.1

2s
28

.4
4s

17
.8

9s
17

.9
8s

0.
00

02
0.

00
04

0.
00

03
0.

01
0.

00
2

0.
00

2
T

hr
ea

dr
ip

pe
rM

iG
SP

SF
S

27
4.

47
s

17
37

.6
5s

85
66

.8
s

27
.4

5s
17

.3
8s

17
.1

3s
0.

00
02

0.
00

03
0.

00
03

0.
01

0.
00

2
0.

00
2

Ta
bl

e
P.

1:
Se

le
ct

ed
tim

in
gs

fo
rs

ch
ed

ul
in

g
du

ra
tio

ns
te

st
s.

To
fit

on
th

is
pa

ge
,o

nl
y

ce
rt

ai
n

va
lu

es
fo

rj
ob

s
ar

e
sh

ow
n.

A
ll

sp
ee

du
ps

ar
e

sh
ow

n
re

la
tiv

e
to

th
e

Sl
ur

m
s
b
a
t
c
h

te
st

ru
n

on
th

e
sa

m
e

m
ac

hi
ne

.A
ll

re
su

lts
ha

ve
be

en
ro

un
de

d
to

2
de

ci
m

al
pl

ac
es

,o
r1

si
gn

ifi
ca

nt
fig

ur
e

if
it

is
sm

al
le

rt
ha

t0
.0

1.

R E S U LT S F RO M OV E R H E A D I N V E S T I G AT I O N 235

10
20

30
40

50
60

70
80

90
100

125 150 175 200 250 300 400 500

Number of jobs scheduled

0

5

10

15

20

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

Slurm scheduling overheads on the Laptop
scheduling sbatch_sequential
execution sbatch_sequential
combined sbatch_sequential
scheduling srun
execution srun
combined srun
scheduling sbatch
execution sbatch
combined sbatch

Figure P.1: Slurm scheduling durations on the Laptop. Each result is an average of 10 runs.

10
20

30
40

50
60

70
80

90
100

125 150 175 200 250 300 400 500

Number of jobs scheduled

10 2

10 1

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

Per-job Slurm scheduling overheads on the Laptop
combined sbatch_sequential
scheduling srun
scheduling sbatch

Figure P.2: Per-job Slurm scheduling durations on the Laptop. Calculated by dividing the total duration by the
number of scheduled jobs. Note the X axis uses a logarithmic scale.

R E S U LT S F RO M OV E R H E A D I N V E S T I G AT I O N 236

10
20

30
40

50
60

70
80

90
100

125 150 175 200 250 300 400 500

Number of jobs scheduled

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

Slurm scheduling overheads on the Threadripper
scheduling sbatch_sequential
execution sbatch_sequential
combined sbatch_sequential
scheduling srun
execution srun
combined srun
scheduling sbatch
execution sbatch
combined sbatch

Figure P.3: Slurm scheduling durations on the Threadripper. Each result is an average of 10 runs.

10
20

30
40

50
60

70
80

90
100

125 150 175 200 250 300 400 500

Number of jobs scheduled

10 2

10 1

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

Per-job Slurm scheduling overheads on the Threadripper
combined sbatch_sequential
scheduling srun
scheduling sbatch

Figure P.4: Per-job Slurm scheduling durations on the Threadripper. Calculated by dividing the total duration
by the number of scheduled jobs. Note the X axis uses a logarithmic scale.

R E S U LT S F RO M OV E R H E A D I N V E S T I G AT I O N 237

10
20

30
40

50
60

70
80

90
100

125 150 175 200 250 300 400 500

Number of jobs scheduled

0

200

400

600

800

1000

1200

1400

1600

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

mig_meow WorkflowRunner scheduling overheads on the Laptop
scheduling single_Pattern_multiple_files
scheduling single_Pattern_single_file_parallel_jobs
scheduling single_Pattern_single_file_sequential_jobs
scheduling multiple_Patterns_single_file
scheduling multiple_Patterns_multiple_files

Figure P.5: mig meow WorkflowRunner scheduling durations on the Laptop. Each result is an average of
10 runs.

10
20

30
40

50
60

70
80

90
100

125 150 175 200 250 300 400 500

Number of jobs scheduled

10 2

10 1

100

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

Per-job mig_meow WorkflowRunner scheduling overheads on the Laptop

scheduling single_Pattern_multiple_files
scheduling single_Pattern_single_file_parallel_jobs
scheduling single_Pattern_single_file_sequential_jobs
scheduling multiple_Patterns_single_file
scheduling multiple_Patterns_multiple_files

Figure P.6: Per-job mig meow WorkflowRunner scheduling durations on the Laptop. Calculated by di-
viding the total duration by the number of scheduled jobs. Note the X axis uses a logarithmic
scale.

R E S U LT S F RO M OV E R H E A D I N V E S T I G AT I O N 238

10
20

30
40

50
60

70
80

90
100

125 150 175 200 250 300 400 500

Number of jobs scheduled

0

200

400

600

800

1000

1200

1400

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

mig_meow WorkflowRunner scheduling overheads on the Threadripper
scheduling single_Pattern_multiple_files
scheduling single_Pattern_single_file_parallel_jobs
scheduling single_Pattern_single_file_sequential_jobs
scheduling multiple_Patterns_single_file
scheduling multiple_Patterns_multiple_files

Figure P.7: mig meow WorkflowRunner scheduling durations on the Threadripper. Each result is an
average of 10 runs.

10
20

30
40

50
60

70
80

90
100

125 150 175 200 250 300 400 500

Number of jobs scheduled

10 2

10 1

100

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

Per-job mig_meow WorkflowRunner scheduling overheads on the Threadripper

scheduling single_Pattern_multiple_files
scheduling single_Pattern_single_file_parallel_jobs
scheduling single_Pattern_single_file_sequential_jobs
scheduling multiple_Patterns_single_file
scheduling multiple_Patterns_multiple_files

Figure P.8: Per-job mig meow WorkflowRunner scheduling durations on the Threadripper. Calculated by
dividing the total duration by the number of scheduled jobs. Note the X axis uses a logarithmic
scale.

R E S U LT S F RO M OV E R H E A D I N V E S T I G AT I O N 239

10
20

30
40

50
60

70
80

90
100

125 150 175 200 250 300 400 500

Number of jobs scheduled

0

2000

4000

6000

8000

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

MiG scheduling overheads on the Laptop
total single_Pattern_multiple_files
total single_Pattern_single_file_sequential
total multiple_Patterns_single_file
total multiple_Patterns_multiple_files
total single_Pattern_single_file_parallel

Figure P.9: MiG with MEOW scheduling durations on the Laptop. Each result is an average of 10 runs.

10
20

30
40

50
60

70
80

90
100

125 150 175 200 250 300 400 500

Number of jobs scheduled

10 1

100

101

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

Per-job MiG scheduling overheads on the Laptop

total single_Pattern_multiple_files
total single_Pattern_single_file_sequential
total multiple_Patterns_single_file
total multiple_Patterns_multiple_files
total single_Pattern_single_file_parallel

Figure P.10: Per-job MiG with MEOW scheduling durations on the Laptop. Calculated by dividing the total
duration by the number of scheduled jobs. Note the X axis uses a logarithmic scale.

R E S U LT S F RO M OV E R H E A D I N V E S T I G AT I O N 240

10
20

30
40

50
60

70
80

90
100

125 150 175 200 250 300 400 500

Number of jobs scheduled

0

2000

4000

6000

8000

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

MiG scheduling overheads on the Threadripper
total single_Pattern_multiple_files
total single_Pattern_single_file_sequential
total multiple_Patterns_single_file
total multiple_Patterns_multiple_files
total single_Pattern_single_file_parallel

Figure P.11: MiG with MEOW scheduling durations on the Threadripper. Each result is an average of 10 runs.

10
20

30
40

50
60

70
80

90
100

125 150 175 200 250 300 400 500

Number of jobs scheduled

10 1

100

101

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

Per-job MiG scheduling overheads on the Threadripper

total single_Pattern_multiple_files
total single_Pattern_single_file_sequential
total multiple_Patterns_single_file
total multiple_Patterns_multiple_files
total single_Pattern_single_file_parallel

Figure P.12: Per-job MiG with MEOW scheduling durations on the Threadripper. Calculated by dividing the
total duration by the number of scheduled jobs. Note the X axis uses a logarithmic scale.

Q
R E Q U I R E D F I L E S F O R C W L W O R K F L O W E X A M P L E

The following commands and files are all necessary parts of the first workflow example presented
as part of the Common Workflow Language User Guide[44]. These are all designed to be used with
cwltool[20], used with the commands shown in Q.5.

1 #!/usr/bin/env cwl-runner
2

3 cwlVersion: v1.0
4 class: Workflow
5 inputs:
6 tarball: File
7 name_of_file_to_extract: string
8

9 outputs:
10 compiled_class:
11 type: File
12 outputSource: compile/classfile
13

14 steps:
15 untar:
16 run: tar-param.cwl
17 in:
18 tarfile: tarball
19 extractfile: name_of_file_to_extract
20 out: [extracted_file]
21

22 compile:
23 run: arguments.cwl
24 in:
25 src: untar/extracted_file
26 out: [classfile]

Listing Q.1: 1st-workflow.cwl.

1 tarball:
2 class: File
3 path: hello.tar
4 name_of_file_to_extract: Hello.java

Listing Q.2: 1st-workflow-job.yml.

1 #!/usr/bin/env cwl-runner
2

3 cwlVersion: v1.0
4 class: CommandLineTool
5 baseCommand: [tar, --extract]
6 inputs:
7 tarfile:
8 type: File
9 inputBinding:

10 prefix: --file

241

R E Q U I R E D F I L E S F O R C W L W O R K F L O W E X A M P L E 242

11 extractfile:
12 type: string
13 inputBinding:
14 position: 1
15 outputs:
16 extracted_file:
17 type: File
18 outputBinding:
19 glob: $(inputs.extractfile)

Listing Q.3: tar-param.cwl.

1 #!/usr/bin/env cwl-runner
2

3 cwlVersion: v1.0
4 class: CommandLineTool
5 label: Example trivial wrapper for Java 9 compiler
6 hints:
7 DockerRequirement:
8 dockerPull: openjdk:9.0.1-11-slim
9 baseCommand: javac

10 arguments: ["-d", $(runtime.outdir)]
11 inputs:
12 src:
13 type: File
14 inputBinding:
15 position: 1
16 outputs:
17 classfile:
18 type: File
19 outputBinding:
20 glob: "*.class"

Listing Q.4: arguments.cwl.

1 echo "public class Hello {}" > Hello.java && tar -cvf hello.tar Hello.java
2 cwl-runner 1st-workflow.cwl 1st-workflow-job.yml

Listing Q.5: CWL workflow example commands.

R
C O N T E N T S O F A CORC C O N F I G U R AT I O N F I L E

The following is a sample configuration file for an installation of corc, which can be used to interact
with a cloud resources solution. Note that additional configurations will be needed specific to the
implementation, as well as additional credential files.

1 corc:
2 configurers:
3 ANSIBLE: {}
4 job:
5 capture: true
6 meta:
7 debug: false
8 env_override: true
9 name: ’’

10 num_jobs: 1
11 num_parallel: 1
12 output_path: /tmp/output
13 working_dir: ’’
14 providers:
15 aws: {}
16 oci:
17 cluster:
18 domain: ’’
19 image: nielsbohr/mccode-job-runner:latest
20 kubernetes_version: ’’
21 name: cluster
22 node:
23 availability_domain: lfcb:EU-FRANKFURT-1-AD-1
24 id: ’’
25 image: Oracle-Linux-7.8-2020.09.23-0
26 name: NodePool
27 node_shape: VM.Standard2.4
28 size: 1
29 instance:
30 availability_domain: ’’
31 operating_system: CentOS
32 operating_system_version: ’7’
33 shape: VM.Standard2.1
34 ssh_authorized_keys: []
35 profile:
36 compartment_id: ’’
37 name: DEFAULT
38 vcn:
39 cidr_block: 10.0.0.0/16
40 display_name: VCN Patch Network
41 dns_label: vcn
42 id: ’’
43 internetgateway:
44 display_name: default_gateway
45 id: ’’
46 is_enabled: true
47 routetable:

243

C O N T E N T S O F A C O R C C O N F I G U R AT I O N F I L E 244

48 display_name: default_route_table
49 id: ’’
50 routerules:
51 - cidr_block: null
52 destination: 0.0.0.0/0
53 destination_type: CIDR_BLOCK
54 id: ’’
55 subnet:
56 cidr_block: 10.0.1.0/24
57 display_name: worker_subnet
58 dns_label: workers
59 id: ’’
60 storage:
61 credentials_path: /mnt/creds
62 download_path: ’’
63 enable: false
64 endpoint: ’https://ku.compat.objectstorage.eu-frankfurt-1.oraclecloud.com’
65 input_path: /tmp/input
66 output_path: /tmp/output
67 s3:
68 bucket_id: ’’
69 bucket_input_prefix: input
70 bucket_name: ’’
71 bucket_output_prefix: output
72 config_file: ˜/.aws/config
73 credentials_file: ˜/.aws/credentials
74 name: default
75 upload_path: ’’

Listing R.1: Contents of a corc configuration file.

S
M E O W W O R K S H E E T

This worksheet is part of the teaching material into MEOW, mig meow, and how to use them to
conduct scientific analysis. The complete materials are available at [34], under the meow-workshop/
directory.

245

An Introduction to mig_meow

This document is intended as an introduction to mig_meow, a package for implementing MEOW
workflows. This tutorial is designed to be run either on IDMC, or your own local machine, and
requires only that you have python, and a text editor to work through.

We will be using standard Python files throughout this tutorial, though many of the files could be
replaced with Jupyter notebooks if you are more comfortable with them. Some modifications may
be needed in this case, so it is encouraged that you stick with python files for now.

Note that you only need to 2 one of the two following ‘Getting started’ sections.

IDMC – Getting started
If you wish to run MEOW workflows on IDMC then you will need to copy the source files using
the sharelink: hRRLoSvSyK

Using the sharelink you can import the files to your own IDMC file system, or can download them
to your own system.

To make sure we have all the software running we need to use the correct environment. This will
happen automatically in a Notebook, but if we run something on the terminal you will need to start
with by running:
conda activate python3

Make sure to place the source files in a new directory. All commands and paths presented in this
tutorial assume you are operating in this directory. By default terminals on IDMC start in a home
directory. To get to your IDMC files you should first use the following, replacing
‘your_source_files_dir’ with the directory you have stored the files in:
cd work/your_source_files_dir

You may also need check you have the most up to date version of mig_meow. Within a terminal
run:
pip3 show mig_meow

If you do not get version 0.20 you should update using :
pip3 install mig_meow –upgrade --user

Local machine – Getting started
If you wish to run MEOW workflows on your own machine then you will need to copy the source
files using the sharelink: hRRLoSvSyK

Using the sharelink you can import the files to your own IDMC file system, or can download them
to your own system.

Make sure to place the source files in a new directory. All commands and paths presented in this
tutorial assume you are operating in this directory.

M E O W W O R K S H E E T 246

Although not strictly necessary, it is a good idea to set up a virtual environment before you install
any software. This helps keep it more stable, and will isolate other installs you have on your
machine. To do this you will need virtualenv installed. If you don’t have it you can find it here:
https://virtualenv.pypa.io/en/latest/installation.html

To set up a new virtual environment you need to use the command line / terminal. You should run:
virtualenv venv

followed by
source venv/bin/activate

Once you’re in the ‘venv’ virtual environment make sure to install mig_meow using:
pip3 install mig_meow

MEOW basics
Before we go further its worth mentioning what MEOW is. This should be explained more fully in
an accompanying talk, but for now its sufficient to say that its a way of repeatedly scheduling
processing on files. It does this by defining two parts. Firstly, Recipes are the processing that takes
place. Secondly, Patterns are the conditions under which this processing is started. In mig_meow,
these conditions are always file events, e.g. a file getting created or modified.

Recipes are Jupyter notebooks. ‘addition.ipynb’ is an example Recipe notebook. Although it is a
trivial amount of processing, we can see that it takes some input, alters that input and produces
some output. As long as your algorithm can be expressed in a Jupyter notebook, it can be a MEOW
Recipe.

Patterns are objects, and will define an input path for some processing. This is a path, where if a file
at that path is created or modified it will trigger some Recipe processing. The triggering file, is
given to the defined Recipe and is processed.

Several of these Patterns and Recipes can be chained together to form a workflow, with processing
able to start at any stage.

Defining a Recipes
To start our MEOW processing we are going to need to create a Python script. This can be done in
any text editor, such as notepad, notepad++, or using an IDE such as PyCharm. Within JupyterLab
this can be done using ‘Text File’ option on the Launcher screen. Lets create a new Python file
called ‘defining_a_recipe.py’. In it we should type:

import mig_meow as meow

We need to read in a notebook as a Recipe.
my_recipe = meow.register_recipe('addition.ipynb')

Check the name of our recipe.
print(my_recipe['name'])

M E O W W O R K S H E E T 247

That all we need to do to register a recipe. Note that the name will be the filename of the notebook
by default. You can set a new name using ‘name=’, such as:

my_recipe = meow.register_recipe('addition.ipynb', name=’something_different’)

Note that all the real process definitions have taken place in the ‘addition.ipynb’ notebook. You
should have a look at this before proceeding to check what it is it actually does. If you don’t have
Jupyter installed, remember that it is available on ERDA/IDMC.

Once you’ve written ‘defining_a_recipe.py’ you can run it from the command line / terminal using

python3 defining_a_recipe.py

Defining a Pattern
Patterns a slightly more involved. Lets create a new file called ‘defining_a_pattern.py’.

import mig_meow as meow

We must start by declaring a new Pattern object.
my_pattern = meow.Pattern('my_first_pattern')

We need to add a Recipe. This is the Recipe that will run when a relevant file
event happens.
my_pattern.add_recipe('addition')

This defines our input file. Note that it will replace the 'infile' variable in
the 'addition' Recipe. This will be replaced with the triggering file path.
It also defines that path against which any file events are
tested. Here we will match any events within the directory 'initial_data;.
my_pattern.add_single_input('infile', 'initial_data/*')

This define our output varibles. Note that it will replace the 'outfile' variable
in the 'addition' Recipe. This value will be replaced with the given output path.
Note that the {VGRID} and {FILENAME} keywords will be replaced at runtime. We'll
explain them more fully later.
my_pattern.add_output('outfile', '{VGRID}/my_output_1/{FILENAME}')

This defines another variable. This will replace the 'extra' variable in the
'addition' notebook with the value 15.
my_pattern.add_variable('extra', 15)

This will tell us if we've made some obvious mistakes. If it returns (True, '').
Then we're good to go.
print(my_pattern.integrity_check())

Save the pattern so we don't need to redefine all this next time
meow.write_dir_pattern(my_pattern)

M E O W W O R K S H E E T 248

This time we’ve also written our Pattern definition to disk using the ‘write_dir_pattern’ function. If
you navigate to meow_directory/patterns’ you should find a file called ‘my_first_pattern’ that shows
the arguments we’ve given it. Recipes can be saved in the same way as this using the
‘write_dir_recipe’ function as well.

Starting a basic MEOW workflow
To get an actual workflow going we’re going to need to define our Pattern and Recipe, and have a
system to listen out for file events. This is where the LocalRunner comes in. This is a small system
that takes definitions of Patterns and Recipes, and uses them to schedule processing when file
events happen. Its designed to mimic functionality on IDMC, but can be used on your own machine
and is a good way to test your workflow before you export it to IDMC.

Lets start another file called ‘defining_a_workflow.py’

import mig_meow as meow

Lets load up our pattern and recipe again.
my_recipe = meow.register_recipe('addition.ipynb')
my_pattern = meow.read_dir_pattern('my_first_pattern')

We need to put them in a dictionary structure for the local runner
recipes = {
 'addition': my_recipe
}

patterns = {
 'my_first_pattern': my_pattern
}

Here we start the runner and give it the Patterns and Recipes. the 'first_meow_workflow'
directory is the base directory we will be operating in. The number 2 refers to how many
workers we will start. These process jobs at the same time so more will make the runner go
faster, but only whilst we have the hardware to support it.
meow.start_local_workflow('first_meow_workflow', patterns, recipes, 2)

When you run this you should get a small wall of text informing you that Patterns and Recipes have
been added, and that Rules have been created. Nothing else will happen though, and if you look at
the directory you started it in, you should have a new folder ‘first_meow_workflow’, which is
currently empty. This is the base for our new workflow, and the runner is listening to events inside
it. Leave the runner running for now, and lets add a file ‘test_file.txt’ inside the
‘first_meow_workflow’ directory.

Once you add the file, you should see a notification in the runner terminal, and ongoing
notifications that there are no jobs in the queue. This is still good, and what we’d expect as we’ve
created a file that doesn’t match the Patterns input_path, which was ‘initial_data/*’. We can add a
folder ‘initial_data’ inside ‘first_meow_workflow’ though and start triggering some processing. We
can add some data to our ‘first_meow_workflow/initial_data’ directory using the data pre-generated

M E O W W O R K S H E E T 249

in example_data. If you give it a few second, you should see some feedback from some job
processing, and a new directory as ‘my_first_workflow/my_output_1’.

If you want a quick way to read the numpy data, you can run the provided script ‘reader.py’. This
expects a directory to be given to it, where it will print all numpy data files inside. You can use the
commands:

python3 reader.py first_meow_workflow/my_output_1
and

python3 reader.py first_meow_workflow/initial_data/
to check that processing has taken place as we’d expect.

That’s cool and all, but we just set up a lot of extra steps to run one small bit of processing. The fun
part is that this we run again for every file we add to ‘first_meow_workflow/initial_data’. If we add
more data as it gets generated, or replace the data with more up to date results the processing will
automatically take place again. Try adding more numpy files and see what happens.

Note that if we added non-numpy data (e.g. a txt file) our job will break as addition.ipynb expects a
numpy file as its input. How might we fix this?

Chaining Patterns
The true power of MEOW is in chaining together different Patterns. Lets stop the previous runner if
you haven’t already by hitting Ctrl+C a few times. Now we can start a new file called
‘defining_a_chain.py’

import mig_meow as meow

Lets load up our pattern and recipe again.
my_recipe = meow.register_recipe('addition.ipynb')
my_first_pattern = meow.read_dir_pattern('my_first_pattern')

Lets define new Pattern
my_second_pattern = meow.Pattern('my_second_pattern')

We can reuse recipes in different patterns
my_second_pattern.add_recipe('addition')

Here our input path matches up to the output path for my_first_pattern
my_second_pattern.add_single_input('infile', 'my_output_1/*')

We should make sure to output somewhere new
my_second_pattern.add_output('outfile', '{VGRID}/my_output_2/{FILENAME}')

We can use different values for variables, so the same recipe can give
different results according to different patterns.
my_second_pattern.add_variable('extra', 1)

This will tell us if we've made some obvious mistakes. If it returns (True, '').
Then we're good to go.
print(my_second_pattern.integrity_check())

M E O W W O R K S H E E T 250

Save the pattern so we don't need to redefine all this next time
meow.write_dir_pattern(my_second_pattern)

We need to put them in a dictionary structure for the local runner
recipes = {
 'addition': my_recipe
}

patterns = {
 'my_first_pattern': my_first_pattern,
 'my_second_pattern': my_second_pattern
}

Make a new base directory, just so we can compare results.
meow.start_local_workflow('second_meow_workflow', patterns, recipes, 2)

Once this is written and started add some inputs to ‘second_meow_workflow/initial_data’ to test
that its functioning correctly. Obviously this is still a very small example but you can link together
as many different Patterns and Recipes to form very complex chains of processing. Multiple
Patterns can match the same inputs, and can produce zero, one, or many outputs allowing for all
sorts of odd workflows that are difficult to define in other systems.

A slightly more complex example
As a final example lets create ‘defining_a_loop.py’:

import mig_meow as meow

Lets get a load of predefined patterns and recipes
patterns = {}
for pattern in ['first_mult', 'second_mult', 'third_choo']:
 patterns[pattern] = meow.read_dir_pattern(pattern)

recipes = {}
for recipe in ['mult', 'choo']:
 recipes[recipe] = meow.read_dir_recipe(recipe)

Make a new base directory, just so we can compare results.
meow.start_local_workflow('looping_meow_workflow', patterns, recipes, 2)
This uses some pre-defined Patterns and Recipes. Have a look at their definitions in
‘meow_directory’ to see if you can work out what they’re doing. The source notebooks have also
been included as ‘mult.ipynb’ and ‘choo.ipynb’ for a clearer view of them. Add some data to
‘looping_meow_workflow/initial_data’ and see what happens.

You should get a loop of processing, with the key part being the ‘third_choo’ Pattern and ‘choo’
Recipe, which has 2 outputs. This will either act as input to the earlier ‘second_mult’ Patterns, or
will output to a new ‘final’ directory based on if the data that has been read in is big enough or not.
This loop is very unusual in a workflow system as it has indeterminate length, and shows off some
of the unusual possibilities for MEOW.

M E O W W O R K S H E E T 251

	Acknowledgements
	Abstract
	Resume
	Thesis Outline
	Contributions
	Notation Within This Document
	Contents
	List of Figures
	List of Tables
	Listings
	Introduction and Designing MEOW
	Introduction
	Introduction
	Motivation

	Motivation and Objectives
	An introduction to MUMMERING
	Objectives for My Project
	Summary
	Background

	Background
	Scientific Workflows
	A Need for Dynamic
	Related Work

	Related Work
	Requirements for Scientific Workflows
	Automatic Optimisation
	Clarity
	Predictability
	Recordability
	Reportability
	Responsiveness
	Reusability
	Scientific
	Well-formedness

	Current Workflow Management Tools
	Commonly Used Non-workflow Tools
	DAGs, and A False Dichotomy
	The limits of Static, and the possibilities of Dynamic
	Dynamic Workflows

	Dynamic Workflows
	Workflows without DAGs
	MEOW: Monitoring, not Controlling
	Recipes: Defining what work is scheduled
	Patterns: Defining when to schedule
	First Forays in MEOW
	Attempts at an Implementation

	MEOW

	MEOW
	A Framework For Emergent Workflows
	Final Requirements
	Summary

	Summary

	Tools for Emergent Workflows
	Introduction
	Introduction
	Background

	Background and Direction
	Minimum intrusion Grid
	Essential Packages
	watchdog
	papermill
	notebook-parameterizer

	migmeow

	migmeow
	A Python Package for MEOW
	Patterns Within mig_meow
	Recipes Within mig_meow
	Widgets and Design Aids
	The Local Runner
	CSP in multiprocessing
	Outlining the Local Runner
	Using the WorkflowRunner

	MiG

	MiG
	MEOW definitions on the MiG
	Identifying MEOW Outputs on the MiG
	Foundational Interactions
	Interacting via Widgets
	Summary

	Summary

	Examples and Tests
	Introduction
	Introduction
	McStas

	A Foundational Example
	Problem Outline
	Defined Recipes
	Defined Patterns
	Using WorkflowRunner
	Setting up
	Running the WorkflowRunner

	Using the MiG
	Concluding The Foundational Example
	MEOW

	A Scientific Example
	Problem Outline
	Defined Recipes
	Defined Patterns
	Using WorkflowRunner
	Using the MiG
	Concluding The Scientific Example
	MiG

	A Self Modifying Example
	Problem Outline
	Defined Recipes
	Defined Patterns
	Using WorkflowRunner
	Using the MiG
	Concluding The Self-Modifying Example
	Testing

	Testing MEOW
	Unit Tests
	User Testing
	Investigating watchdog
	Overheads when using MEOW
	Overheads in Slurm
	Overheads in mig_meow
	Overheads on the MiG
	Evaluating the MEOW overheads

	Summary

	Summary

	Supporting Work
	Introduction
	Introduction
	Teaching MEOW

	Teaching MEOW
	The Need to be Taught
	Technical Reporting And Word Choice
	Documentation
	Examples and Use Cases
	Workshops
	Results
	MEOW to CWL

	MEOW to CWL
	Motivation
	A Universal Language For Workflows
	Translating Between Paradigms
	Stopping Development
	FUR

	FUR
	The Need For An Uploading Framework
	FUR
	Relating to MEOW
	McStas

	McStas
	McStas and McXtrace, and Xnovo
	corc
	McWeb
	Relating to MEOW
	Summary

	Summary

	Discussion
	Introduction
	Introduction
	Work

	Assessing the Project
	Rating Feasibility
	Meeting SWMS requirements with MEOW
	Automatic Optimisation
	Clarity
	Predictability
	Recordability
	Reportability
	Responsiveness
	Reusability
	Scientific
	Well-formedness

	McStas

	Use Cases
	Exploratory Workflows
	Trivially Repeatable Jobs
	Continuous Monitoring Systems
	Heterogeneous Systems
	Summary

	Summary

	Conclusion and Future Work
	Future Work
	Future Work
	Expanding MEOW Definitions
	Limiting Infinite Scheduling
	Improving the WorkflowRunner
	Investigating and Supporting HDF5 and FUR
	Unifying Language
	A Library for Tomography in MEOW
	Conclusion

	Conclusion

	Bibliography
	Bibliography

	Appendices
	Managing Event Oriented Workflows
	Developments in Event-oriented, Emergent Workflows
	Teaching Concurrent and Distributed Programming
	Cloud enabling educational platforms with corc
	Resources used within this thesis
	MUMMERING grant agreement extracts
	Code contents of add.ipynb
	MiG based MEOW job template
	Code contents of initial_porosity_check.ipynb
	Code contents of segment_foam_data.ipynb
	Code contents of foam_pore_analysis.ipynb
	Code contents of generator.ipynb
	Python script initial_generation.py
	Code contents of pattern_maker_recipe_mig.ipynb
	Testing watchdog
	Results from Overhead Investigation
	Required files for CWL workflow example
	Contents of a corc configuration file
	MEOW Worksheet

