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0.1 Abstract
This theoretical thesis consists of two parts which concern rather different topics
belonging to the field of quantum optics.

Part I:
Electro-optomechanical transduction
Using the techniques of optomechanics, there has been significant recent progress
in coupling nano- and micro-scale mechanical oscillators to electromagnetic ra-
diation modes ranging from radio to optical frequencies. By arranging two such
couplings in tandem, a high-Q mechanical oscillator can serve as an efficient
transducer between electromagnetic modes of different frequencies. This ap-
proach has successfully been exploited for frequency conversion of classical sig-
nals [1] and also has the potential of enabling quantum state transfer between
superconducting circuitry and traveling optical signals.

In this thesis we present a detailed theoretical description of the interconver-
sion between itinerant radiation modes using an intermediary mechanical mode.
In order to characterize the performance of such transducers, suitable figures of
merit must be established. We find here that a transducer can be characterized
by two key parameters, the signal transfer efficiency η and added noise N . In
terms of these, we evaluate its performance in various tasks ranging from clas-
sical signal detection to quantum conversion for quantum communication and
information processing applications.

Having established the requirements for a transducer to perform efficiently,
we turn to the question of optimizing the design of electro-optomechanical trans-
ducers in order to meet these demands. Moreover, given the hybrid nature of
such systems, it is desirable to find a common framework for describing their dy-
namics. We address these questions by developing a unifying equivalent-circuit
formalism for electro-optomechanical transducers, allowing us to optimize the
design parameters of the transducer for its specific purpose. The equivalent
circuit approach is suited for integrating the novel optomechanical transduc-
tion functionality into the well-established framework of electrical engineering,
thereby facilitating its implementation in potential real-world applications such
as nuclear magnetic resonance imaging (NMRI) and radio-astronomy. We con-
sider such optomechanical sensing of weak electrical signals in detail using the
equivalent circuit formalism to optimize the electrical circuit design.

Part II:
Quantum hard-sphere model for dissipative Rydberg-EIT
media
Effective photon-photon interactions can be engineered by combining long-range
Rydberg interactions between atoms in a cold, optically dense cloud with light
fields propagating under the condition of electromagnetically induced trans-
parency (EIT). This can lead to strong and non-linear dissipative dynamics at
the quantum level that prevent slow-light polaritons from coexisting within a
blockade radius of one another.

Extending the work of Ref. [2], we introduce a new approach to analyzing
this challenging quantum many-body problem in the limit of large optical depth
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per blockade radius db ≫ 1. The idea is to separate the single-polariton EIT
physics from the Rydberg-Rydberg interactions in a serialized manner while
using a hard-sphere model for the latter. We use our approach to analyze the
saturation behavior of the transmission through one-dimensional Rydberg-EIT
media in the experimentally relevant regime of non-perturbative single-polariton
EIT-decay and compare our findings to recent experimental data. Next, we
analyze a scheme for generating regular trains of single photons from continuous-
wave input in the limit of perturbative single-polariton EIT-decay and derive
its scaling behavior with db.

0.2 Resumé

Denne teoretiske afhandling består af to dele, der beskæftiger sig med forskellige
emner inden for forskningsområdet kvanteoptik.

Del I:
Elektro-optomekanisk frekvensomformning

Ved at udnytte optomekanikkens metoder er der i de senere år gjort betydelige
fremskridt med hensyn til at koble mekaniske oscillationer på nano- eller mi-
kroskala til elektromagnetiske svingninger i et stort spektrum, der strækker sig
fra radiobølger til synligt lys. På denne vis er det lykkedes at frekvensomforme
klassiske radiosignaler [1] og metoden kan potentielt set benyttes til at overføre
en kvantetilstand fra et superledende kredsløb til et optisk signal (og omvendt).

I denne afhandling præsenteres en detaljeret teoretisk beskrivelse af frekven-
somformning mellem elektromagnetiske felter ved brug af et mekanisk mellem-
led. For at karakterisere ydeevnen for sådanne omformere må dertil passende
parametre defineres. Vi finder her at vi kan karakterisere omformere ved deres
signaloverførselseffektivitet η og tilføjede støj N . Udtrykt ved disse parametre
evaluerer vi ydeevnen med henblik på en række anvendelser, deriblandt detek-
tion af klassiske signaler og frekvensomformning på kvanteniveau med relevans
for kvantekommunikation.

Efter således at have klarlagt kravene til en frekvensomformers ydeevne, be-
tragter vi den optimeringsopgave der består i at få elektro-optomekaniske omfor-
mere til at leve op til disse. Eftersom disse omformere er hybrider af elektriske,
optiske og mekaniske elementer, er det ydermere ønskværdigt at finde en samlet
beskrivelse af disse. På denne baggrund udleder vi en ækvivalenskredsløbsfor-
malisme for sådanne systemer som udgør et bekvemt værktøj til at optimere
deres udformning med henblik på ydeevnen i en given anvendelse. Kredsløbsbil-
ledet er velegnet til at anskueliggøre hvorledes optomekanisk omformning kan
implementeres i konventionel elektronik og har potentielle anvendelser inden-
for Magnetisk Resonans (MR) skanning og radioastronomi. Vi analyserer derfor
optomekanisk detektion af svage elektriske signaler og anvender kredsløbsfor-
malismen til at optimere udformningen af det elektriske kredsløb.
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Del II:
Kvantekuglemodel for dissipative Rydberg-EIT-medier

Effektive vekselvirkninger mellem fotoner kan opnås ved at kombinere den lang-
trækkende Rydberg-vekselvirkning mellem atomer i en kold, optisk tæt sky med
lysfelter der propagerer takket være elektromagnetisk induceret gennemsigtig-
hed (EIT). Dette kan føre til en stærk og ikke-lineær dynamik på kvanteniveau
der forhindrer fotoner i at befinde sig inden for en blokaderadius af hinanden.

Ved at bygge videre på Ref. [2] introducerer vi en ny tilgang til at analy-
sere dette udfordrende mangelegemeproblem i grænsen hvor den optiske dybde
per blokaderadius er stor, db ≫ 1. Idéen er at adskille enkeltfotonfysikken fra
Rydberg-Rydberg-vekselvirkningerne på seriel vis og hvor sidstnævnte modelle-
res i stil med spredning af stive legemer. Vi anvender denne model til at analyse-
re mætningen af transmissionen gennem endimensionelle Rydberg-EIT-medier i
den eksperimentelt relevante grænse hvor EIT-henfald af enkelte fotoner spiller
en stor rolle og sammenligner efterfølgende vores forudsigelser med eksperimen-
telle data. Derefter analyserer vi en metode til at generere pulstog af enkelte
fotoner ud fra en Poisson-fordelt lyskilde i grænsen hvor EIT-henfald af enkel-
te fotoner spiller en mindre rolle, og vi udleder hvorledes metodens ydeevne
skalerer med db.
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Chapter 1

Introduction to transduction
and electro-optomechanics

This chapter will provide the background and motivation for Part I of the the-
sis. In Section 1.1, recent experimental and theoretical developments regarding
transduction in the realm of quantum optics will be reviewed. Next, in Section
1.2, we will discuss the physical mechanisms that allow efficient coupling between
a mechanical mode and electromagnetic fields of various frequencies. Used in
combination they form the basis for electro-optomechanical hybrid systems and
we will provide an overview of the transduction physics of such devices. Having
reviewed current research in transduction and the physical principles behind it,
we give in Section 1.3 an overview of the work to be presented in the remaining
chapters of Part I.

1.1 Transduction

1.1.1 Motivation and experimental review

Frequency conversion of signals is an ubiquitous task in electronics and optics
applications, respectively. Moreover, interconversion between the electrical and
optical parts of the electromagnetic spectrum is of utmost technological impor-
tance as the essential process enabling, e.g., long-distance fiber-based telecom-
munications forming the backbone of the Internet. With the conception of quan-
tum communication and computing, frequency conversion has received renewed
interest as an important ingredient in realizing an optically based “quantum
internet” among quantum computers [4]. This imposes much more demanding
requirements on the conversion process than in the case of the classical commu-
nication. Recently, a promising path towards frequency-conversion which can
be extended to the quantum level has been demonstrated in Refs. [5, 1, 6] and is
provided by coupling electromagnetic radiation to nano- or micro-scale mechan-
ical oscillators (with typical resonance frequencies in the MHz-GHz range), as
pursued in the field of cavity optomechanics [7, 8]. Such interaction can be made
very efficient in the sense that it has enabled cooling of an individual mechanical
oscillation mode to the vicinity of its quantum ground state [9, 10, 11, 12] as
well as reversible coherent state transfer from electromagnetic fields into such a

11
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mechanical mode [13]. Remarkably, this coupling technique may be applied in
a wide range of the electromagnetic spectrum and has seen a variety of imple-
mentations in both electrical circuits operating at radio [14, 15] or microwave
[16, 9, 10] frequencies as well as in optical cavities [11, 12]. The universality of
the coupling technique furthermore allows for hybrid systems involving several
radiation modes with potentially different frequencies interacting with a com-
mon mechanical mode [17, 18, 19, 20]. Such hybrid devices have applications
in the quantum-limited optical detection of weak electrical signals [19] such
as in nuclear magnetic resonance imaging and radio astronomy. They are also
envisioned to play an important role as transducers in quantum information pro-
cessing including conversion between stationary and flying qubits in quantum
networks [21]. At the classical level, such mechanically mediated transduction
has already been realized with input and output modes both in the optical do-
main in optomechanical crystals [22] and silica microspheres [23] or discs [24],
and with input and output modes respectively in the optical and the radio-
frequency [1] or microwave domain [5, 6]. Although quantum-level transduction
has yet to be achieved in these systems, they offer a promising alternative to
electro-optic modulation, which is the established technique for classical signal
conversion between the electrical and the optical domain, involving no inter-
mediate mechanical resonance. While in principle quantum operation can be
achieved in such systems [25], obtaining a quantum efficiency approaching unity
has yet to be realized experimentally (see Refs. in [6]).

1.1.2 Steady-state transduction of itinerant signals

In the previous section we introduced the basic ideas behind mechanically me-
diated transduction. Within this general setting there are, however, a num-
ber of different ways in which the transducer can be operated. The bias op-
tical and electrical frequency fields need to be oscillating in time to bridge
the frequency gaps, but in addition their amplitudes can be varied in time.
A variety of schemes for choosing the drive field parameters, including their
time-dependence, have been discussed. In the simplest possible scheme, steady-
state transduction, the cavity-mechanical coupling strengths are kept constant
throughout the process [18]. This mode of operation is experimentally conve-
nient and does not require knowledge of the temporal mode of the input. If,
on the other hand, we have knowledge of the temporal input mode, this can
be exploited to further enhance signal transduction as compared to the noise
(in particular that of mechanical origin). This can be done either by sequen-
tial swap operations [26] or by adiabatically modulating coupling parameters
in time, i.e. either the cavity-mechanical couplings strengths as in a STIRAP
procedure [27, 28, 29] or one of the drive field detunings [30]. Contrary to
the steady state transduction, however, all of these time-modulated approaches
require strong cavity-mechanical coupling g ≫ κ to effectively suppress the me-
chanical noise (here, g is the annihilation operator coupling rate and κ is the
decay rate of the cavity). Yet a different approach is to operate the transducer
as a parametric amplifier by tuning one of the drive fields to the blue mechanical
sideband. In this way, a traveling two-mode squeezed microwave-optical state
can be generated, which may subsequently be used for continuous-variable state
transfer by teleportation [31].

As mentioned above varying the control parameters in time may offer certain
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advantages, but for simplicity we restrict ourselves to steady state operation.
That such a scheme may accommodate efficient transfer of itinerant signals can
be attributed to the existence of a dark mode with respect to mechanical dissi-
pation [27, 28]. This effect is known as optomechanically induced transparency
(OMIT) [32, 33, 34] and leads to the suppression of mechanical noise in the
transducer output. In the following, we will review some important results for
this scheme that have appeared before in the context of a chain of three coupled
oscillators. Since the steady-state transduction scenario can be described by
coupled linear equations with constant coefficients, the system is easily solvable
in the Fourier domain. The transduction chain can be biased towards an effec-
tive beam splitter interaction by red-detuning the drive fields by the mechanical
frequency, ∆i = −ωm (as will be discussed later in more detail). Assuming
furthermore the resolved-sideband regime, the chain of three coupled bosonic
oscillators obeys the equations of motion (in an appropriately rotating frame),

˙̂a = −γ1
2
â− ig1b̂−

√
η1γ1âin −

√
(1− η1)γ1â

′
in

˙̂
b = −γm,0

2
b̂− ig1â− ig2ĉ−

√
γm,0b̂

′
in

˙̂c = −γ2
2
ĉ− ig2b̂−

√
η2γ2ĉin −

√
(1− η2)γ2ĉ

′
in. (1.1)

Here the bosonic operator b̂ represents the mechanical mode (with intrinsic
damping rate γm,0) coupled to the cavity (or circuit) modes â, ĉ at rates g1, g2
(assumed real). Each of the latter modes (i ∈ {1, 2}) decay at a rate γi with
external coupling efficiency ηi. Signal and noise inputs are represented by op-
erators âin, ĉin and â′in, b̂

′
in, ĉ

′
in respectively. The resolved-sideband condition in

terms of the mechanical frequency ωm is γi/(4ωm) ≪ 1, i ∈ {1, 2}. For trans-
duction, it is desirable to have a near-unity signal transfer efficiency η and a
small amount of added noise N (to be defined below), however, the relative
importance of these quantities depends on the particular application in which
the transducer enters. In the case of the 3-oscillator chain, (1.1), the peak signal
transfer efficiency η(+)

0 from the external port of â to that of ĉ (or vice versa) is
[29, 28, 23, 22]

η
(+)
0 = η1η2

4C1C2
(1 + C1 + C2)2

, (1.2)

where Ci ≡ 4g2i /(γm,0γi) is the cooperativity between the mechanical mode and
cavity i ∈ {1, 2}. Eq. (1.2) shows that unit signal conversion efficiency requires
the simultaneous fulfillment of three conditions: 1) impedance matching the
transducer chain, C1 = C2, 2) overwhelming the intrinsic mechanical dissipation
rate, Ci ≫ 1, and 3) overcoupling of the cavities, ηi → 1, for i ∈ {1, 2}. The first
two conditions can be understood intuitively noting that in the fully-resolved
sideband regime the cooperativities Ci are dimensionless versions of the rates
γm,i ≡ Ciγm,0 at which a narrow-band signal is transferred between cavity i
and the mechanical mode. From this point of view Eq. (1.2) can be seen as
the competition between inducing a transfer rate through the mechanical mode
(the numerator) and the ensuing associated broadening of the mechanical mode
that tends to decrease the coupling (the denominator, which is the square of
the effective dimensionless width of the mechanical mode). If conditions 1) and
2) are fulfilled, C1 = C2 ≫ 1, the intrinsic mechanical loss (represented by the
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’1’ in the denominator) drops out of Eq. (1.2) leaving η(+)
0 → η1η2; hence unit

conversion efficiency is possible if η1, η2 → 1.
It is important to stress that η(+)

0 approaching unity is in itself insufficient
to conclude that the transducer can operate coherently at the single-photon
level. A full analysis must also consider the noise N added by the transducer,
as a perfectly transduced signal photon is useless if swamped by a multitude
of (transduced) noise photons. Moreover, outside the resolved sideband regime
the efficiency η

(+)
0 can even exceed unity at the cost of amplification noise.

Additionally, we remark that the signal transfer efficiency η(+)
0 is of secondary

importance for some transducer applications. These aspects will be treated in
detail in a subsequent chapter.

1.2 Electro-optomechanics

1.2.1 Physics of cavity-mechanical interfaces

The physical basis for the transduction processes to be considered here is the
force exerted by electromagnetic radiation on mechanical objects; in turn, me-
chanical deflection will affect electromagnetic fields whereby mutual interaction
may result. As this phenomenon pertains, in principle, to any wavelength in the
spectrum, this system allows a mechanically mediated cross-coupling between
electromagnetic modes [17]. In this way, a mechanical element may serve as a
link between two electromagnetic fields. As we will describe in some detail, it
is in general advantageous to couple the mechanical element to the input and
output fields via appropriate electromagnetic cavities (or circuits) rather than
directly to these itinerant fields.

To illustrate the notion of a cavity-mechanical interface between itinerant
electromagnetic modes, we now turn to a concrete implementation of electro-
optomechanical transduction as proposed in Ref. [19] and realized in Refs.
[5, 1, 6]. The setup is illustrated in Fig. 1.1: Traveling radio or microwave
frequency photons are fed to an LC circuit via a transmission line of charac-
teristic impedance Ztx. A mechanical mode of high quality factor (Qm ≫ 1) is
coupled capacitively to the LC circuit, whereby charge fluctuations in the cir-
cuit and mechanical vibrations become coupled. An electrical DC or AC source
(not shown) induces a macroscopic steady-state charge (for DC bias) or charge
oscillations (for AC drive) on the capacitor; since the electromechanical (EM)
interaction is non-linear (as we will return to below) this will enhance the effect
of the small (possibly quantum) fluctuations induced by a signal arriving via the
transmission line. Effectively, these signal fluctuations in the circuit will thus
see an enhanced linear coupling with the mechanical motion. Moreover, in the
case where mechanical and circuit resonances do not coincide in frequency, the
AC drive field will supply the energy necessary to convert between these two
different frequencies. At the same time, the mechanical mode is read out opti-
cally through its coupling to the field fluctuations in the optical cavity. A laser
drive (not shown) populates the cavity to enhance the effective linear coupling
to the mechanical mode, while also ensuring energy conservation in a manner
analogous to the AC-driven EM interface.

Mathematically, the essential physics of both radiation fields and mechanical
motion are captured by a harmonic oscillator formulation; hence the transduc-
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κext

κ0
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L

γm,0
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Figure 1.1: Sketch of an electro-optomechanical transduction apparatus. A me-
chanical vibration mode of a micromembrane couples simultaneously to both
charge fluctuations in the electrical circuit (left) and intensity fluctuations of
the optical cavity (right) thereby enabling transduction between electrical and
optical frequencies (here using an optomechanical membrane-in-the-middle con-
figuration [35]). Electrical and optical sources that bridge the frequency gaps are
not shown. The input signal enters from the left via a transmission line of char-
acteristic impedance Ztx. A fraction of the signal is reflected due to impedance
mismatch (dashed arrow on the left). The electrical circuit (left) is character-
ized by the inductance L, the coupling capacitance Cc, and ohmic resistance
R; this corresponds to an electrical coupling efficiency of ηel = Ztx/(Ztx + R).
The optical cavity (right) has external coupling rate κext and intrinsic loss κ0,
corresponding to an optical coupling efficiency of ηopt = κext/(κext + κ0). The
electromechanical and optomechanical coupling strengths are quantified by the
cooperativity parameters CEM and COM, respectively. The mechanical mode has
intrinsic damping rate γm,0. Damping losses are represented by wavy, dashed
arrows.
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tion process can be thought of as the successful propagation of an incoming
signal through a cascade of coupled oscillators yielding, ideally, an unperturbed
but frequency-converted outgoing signal (as in the example given above, Eqs.
(1.1)). The coupled oscillator model considered here is rather general and has
previously been used to model optical-to-optical [23] and electrical-to-optical [6]
transduction (or its reverse). The mapping of an electro-optomechanical system
to an oscillator model can be easily understood for the setup depicted in Fig.
1.1, i.e. a serial RLC circuit coupled to a single mechanical mode which is, in
turn, coupled to a single mode of an optical cavity; this is simply a string of
three linearly coupled harmonic oscillators with the signal entering the first and
leaving through the last. On the other hand more complex electrical circuits
are often used and part of the motivation for the work to be presented below is
to be able to deal with a more general class of electrical circuits.

1.2.2 Parametric cavity-mechanical couplings
In this section we will elaborate on the introductory description of cavity-
mechanical coupling given in Section 1.2.1 and illustrated in Fig. 1.1. We
do this by introducing a Hamiltonian description of the electromechanical (EM)
and optomechanical (OM) couplings, highlighting the formal equivalence be-
tween the two.

We will now consider the nature of these cavity-mechanical couplings. They
can be characterized as parametric in the sense that one or more canonical
variables of the mechanical mode modulate a cavity parameter. In the typical
coupling scheme, one arranges for the canonical position of a mechanical mode
to modulate the cavity resonance frequency, i.e. a dispersive coupling, but
other approaches have been considered including dissipative coupling [36] and
mechanical multimode schemes [37, 38, 39]. In this thesis we will mainly focus on
dispersive cavity couplings involving a single mechanical mode, although several
of the ideas developed here likely to be extendable to accommodate other kinds
of parametric couplings as well as multiple mechanical modes.

The standard parametric cavity-mechanical interaction Hamiltonian can be
arrived at in a perturbative fashion by Taylor-expanding the mechanically mod-
ulated parameter around the classical steady state configuration of the hybrid
system. For the canonical optomechanical setup consisting of an optical cavity
(of which we confine attention to a single mode of frequency ωc) with a movable
mirror (described by canonical position operator x̂), we may in this way find the
radiation pressure Hamiltonian from that of a single optical mode (described by
the field annihilation operator â) as [7]

Hcav = ℏωc(x̂)â
†â ≈ ℏ

[
ωc,0 +

dωc

dx

∣∣∣∣
x=x̄

δx̂

]
â†â

hence this corresponds to an effective interaction Hamiltonian

HOM = ℏ
dωc

dx

∣∣∣∣
x=x̄

δx̂â†â, (1.3)

where x̄ is the steady-state value of the position coordinate to which the me-
chanical fluctuations are referenced, δx̂ ≡ x̂ − x̄. A more rigorous treatment
shows that this is indeed the correct radiation pressure interaction Hamiltonian
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in the limit where the mechanical oscillation amplitude is small relative to the
equilibrium cavity length and the mechanical frequency is small relative to the
cavity mode spacing [40].

To derive the electromechanical coupling, we will again apply the simple
perturbative procedure. Motivated by recent experiments [9, 37, 13, 1, 6], we
will further specialize our treatment to capacitive coupling, i.e. a capacitor in
the circuit has its capacitance modulated by a mechanical normal mode coor-
dinate. Our approach should however work equally well for inductive coupling
[41]. Expanding the charging energy of the capacitor (with capacitance Cc and
canonical charge Q̂c) yields

HC =
Q̂2

c

2Cc(x̂)
≈ Q̂2

c

2C̄c
− 1

2

Q̂2
c

C̄2
c

dCc

dx

∣∣∣∣
x=x̄

δx̂ (1.4)

from which we read off the capacitive coupling Hamiltonian

HEM = −1

2

Q̂2
c

C̄2
c

dCc

dx

∣∣∣∣
x=x̄

δx̂; (1.5)

as above, x̂ is a canonical position operator for the mechanical mode, x̄ is
its steady-state value, wrt. to which we define the mechanical fluctuations,
δx̂ ≡ x̂ − x̄, as in the optomechanical case; C̄c ≡ Cc(x̄) denotes the steady-
state value of the coupling capacitance. The notion of a position-dependent
charging energy, presumed in Eq. (1.4), is meaningful in the quasi-electrostatic
limit, where the electromagnetic field surrounding the capacitive element equi-
librates much faster than the timescale of the mechanical modulation 2π/ωm.
The physical mechanism underlying the position dependence in Cc(x̂) depends
on the implementation; examples include the Kelvin polarization force from
a inhomogeneous electric field on a dielectric mechanical element [15, 42], the
electrostatic interaction with a conductive mechanical element [9, 10, 37, 34, 3],
and the piezoelectric effect [16, 5], but the precise nature of the coupling is not
important for this study.

1.2.3 Enhanced linearized interaction in presence of cavity
drive fields

Now we discuss the important role played by drive fields. The cavity-mechanical
interaction Hamiltonians (1.3) and (1.5) are non-linear in nature; for sensing or
cooling purposes, however, linear interaction is typically desirable, in particular
since they can be easily enhanced by applying strong classical drive fields to the
cavity and the circuit. For an optical cavity, this can be achieved by adding
a large mean intracavity field amplitude αe−iωlt, whereas for the mechanically
coupled capacitor a charge response Q̄c(t) of large amplitude is induced (α is
assumed real without loss of generality). By transforming to displaced dynam-
ical variables corresponding to the fluctuations around the classical response to
the drive fields,

x̂→ x̄+ δx̂, Q̂c → Q̄c(t) + δQ̂c, â→ αe−iωlt + δâ,

we can derive the effective Hamiltonians governing the interactions among the
fluctuation variables δx̂, δQ̂c, δâ. For simplicity we assume a monochromatic
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electrical drive so as to induce a fluctuating charge on the coupling capacitor

Q̄c(t) ≡

{
Q̄c,0 [DC bias]
Q̄c,0[e

iωdt + e−iωdt] [AC bias]
, (1.6)

where ωd is the frequency of the AC drive (we have taken Q̄c,0 to be real without
loss of generality). Eq. (1.6) assumes that in the AC case we have a simple
harmonic response in spite of (1.4) being non-linear. This will be the case if
the mechanical response at frequencies ≥ 2ωd is negligible leaving only a static
displacement due to the mean force. Note that the notational convention for
Q̄c(t) (1.6) implies that

⟨Q̄2
c(t)⟩ =

{
Q̄2

c,0 [DC bias]
2Q̄2

c,0 [AC bias]
, (1.7)

where ⟨·⟩ denotes time-averaging over a period. Eqs. (1.3) and (1.5) lead to
linear interaction among the fluctuation variables to lowest order in the latter:

H
(lin)
OM ≈ ℏ

xZPF
gOMδx̂(e

iωltδâ+ e−iωltδâ†) (1.8)

H
(lin)
EM ≈ GδQ̂cδx̂ ·

{
1 [DC bias]
eiωdt + e−iωdt [AC drive]

, (1.9)

where we have introduced the drive-enhanced cavity-mechanical OM and EM
coupling parameters gOM (units of s−1) and G (units of V/m):

gOM ≡ α
dωc

dx

∣∣∣∣
x=x̄

xZPF

G ≡ − Q̄c,0

C̄2
c

dCc

dx

∣∣∣∣
x=x̄

, (1.10)

with xZPF ≡
√
ℏ/(2mωm) being the mechanical zero-point amplitude in terms of

the mechanical mass m and an appropriate mechanical frequency ωm (including
static shifts from the interaction as will be discussed later). We see from Eqs.
(1.10) that the linear cavity mechanical interaction strengths are enhanced by
the drive-induced intra-cavity amplitudes α and Q̄c,0, respectively.

Throughout we attempt to emphasize both the similarities and differences
between DC- and AC-biased EM interfaces. Eq. (1.6) implies that in the AC-
driven case we define Q̄c,0 to be half of the charge amplitude whereas in the DC
case it is the full amplitude; this choice allows for a simpler presentation below.
Physically, the factor of 1/2 by which the AC and DC definitions differ can
be understood as a Rotating Wave Approximation penalty for AC operation;
for ωm ≪ ωd, any process in which the creation/annihilation of an electrical
quantum is not accompanied by the annihilation/creation of a drive photon will
be strongly energy non-conserving and hence suppressed; as a consequence only
half the field amplitude will contribute.

The electromechanical coupling strength G introduced here will play a cen-
tral role in several of the following chapters as it characterizes the strength of
the interaction. An advantage of this quantity is that it can be meaningfully
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defined without specifying an electrical circuit resonance. Let us, however, dis-
cuss how G relates to the more familiar quantum optics system of two coupled
quantum oscillators with coupling rate g. To relate the coupling strength G to
this more familiar coupling rate g between bosonic annihilation and creation
operators, we consider briefly the scenario where the electrical system is a serial
RLC circuit as in Fig. 1.1 (but without the optical system). The electrical
resonance frequency is ωLC = (LC̄c)

−1/2, where L is the inductance and C̄c is
the steady-state value of Cc. We then seek to express Eq. (1.9) as

H
(lin)
EM ≈ ℏg(δâ+ δâ†)(δb̂+ δb̂†), (1.11)

in a suitably rotating frame (again assuming the mechanical response to be neg-
ligible at frequencies ≥ 2ωd if AC-driven). Using that the quantized dynamical
variables are given by δx̂ = xZPF(δâ + δâ†) and δQ̂c = qZPF(δb̂ + δb̂†), where
xZPF ≡

√
ℏ/(2mωm) and qZPF =

√
ℏ/(2LωLC), we find that Eqs. (1.9) and

(1.11) are identical if

g =
GxZPFqZPF

ℏ
=

G

2
√
LωLCmωm

. (1.12)

1.2.4 Energy conservation, sideband resolution and am-
plification effects

As mentioned several times above, the time dependence of drive fields is crucial
in efficiently coupling oscillators of different frequencies. If the drive frequen-
cies are chosen appropriately, then in a rotating frame wrt. these, the three
subsystems can be made to oscillate at the same frequency. This occurs when
red-detuning both drive fields by the mechanical frequency, see Fig. 1.2a. Hence,
from this point of view, the operation of the transducer can be made energy con-
serving corresponding in the resolved-sideband regime to effective beam splitter
interactions (where appropriate rotating frame annihilation and creation oper-
ators are introduced via δx̂ = xZPF(δb̂+ δb̂†) and δQ̂c = qZPF(δĉ+ δĉ†))

Ĥint ∼ ℏgOM(δâ†δb̂+ δâδb̂†) + ℏgEM(δb̂†δĉ+ δb̂δĉ†) (1.13)

and can thus operate efficiently. The Hamiltonian (1.13) results in the same
type of coupling considered in Eqs. (1.1) above. This coupling technique allows
bridging the energy gap between a mechanical oscillator and vastly different
parts of the electromagnetic spectrum. Ideally, then, an incoming traveling
electrical photon will be resonantly transmitted through the apparatus and fi-
nally leave as an optical photon (and vice versa) as in the all-optical analogy
shown in Fig. 1.2b.

The above characterization is only correct in the fully resolved sideband
regime, i.e. when the cavity susceptibilities are negligible for frequencies ∼
ωd,i−ωm as compared to frequencies ∼ ωd,i+ωm, where ωd,i are the respective
drive field frequencies (see Fig. 1.3). The degree of sideband resolution can be
quantified by the ratios γLC/(4ωm) and κ/(4ωm). If either of these differ appre-
ciably from zero, the presence of the lower sideband will introduce parametric
signal amplification alongside the beam splitter interaction. Moreover, (signal)
squeezing will occur: Lack of sideband resolution for the input cavity will cause
the output to be a mixture of frequency components of the upper and lower
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Figure 1.2: a) Circuit and cavity line shape functions of widths γLC and κ in
the fully EM and OM resolved-sideband regime entailing beam splitter interac-
tion, Eq. (1.13), when operated red-detuned by −ωm inducing anti-Stokes rates
γEM,+ and γOM,+. b) Cascaded optical beam splitter analogy for the interac-
tion Hamiltonian (1.13) between optical (δâ), mechanical (δb̂) and electrical (δĉ)
modes. The input and output fields associated with signal and noise ports are
indicated.
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Figure 1.3: Scenario similar to Fig. 1.2a, but where the EM sidebands are re-
solved while the OM ones are not (both are operated red-detuned by −ωm).
Under these circumstances an electrical input signal at the electrical cavity res-
onance will be upconverted in a 1:2 fashion, appearing at both OM sidebands
reflecting simultaneous anti-Stokes and Stokes processes. The mechanical cou-
pling to the lower optical sideband moreover leads to parametric amplification
at the price of increased optical noise.
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(input) sidebands. Signal amplification may be desirable but will in general
result in additional added noise [43]. The signal squeezing is unwanted in typi-
cal quantum transduction schemes, but can be exploited for teleportation-based
transduction as mentioned previously.

In terms of cavity and electrical frequencies, the scenarios we consider will
have either 1) The electrical signal frequency coinciding with the mechanical
resonance frequency, in which case a DC electrical bias should be applied, or
2) The electrical signal frequency ωs being much larger than the mechanical
frequency, ωs ≫ ωm, in which case an AC electrical drive of frequency ωd ∼
ωs − ωm should be applied. For MHz mechanical oscillators, the former driving
scheme is relevant for the transduction of radio-frequency signals (at MHz),
while the latter applies to microwave transduction (at GHz). On the other
hand, if a mechanical oscillator resonant in the GHz domain is used, direct (DC
biased or piezoelectric) conversion to microwave radiation can be achieved.

1.2.5 Loss channels and noise sources

Finally, we briefly consider the loss and noise processes competing with the
desired signal transduction. For studying cavity-mechanical transducers, an im-
portant part of the analysis is to consider damping and reflection losses and
the associated noise inputs. The absolute frequencies of the subsystems of the
transducer are important since they set the occupancies of the thermal reser-
voirs, n(ω) ≈ kBT/(ℏω), where ω is the bare (angular) signal frequency of the
subsystem in question. In this sense, the thermal reservoir of the optical cavity
is “cold” even at room temperature (vacuum fluctuations, to excellent approx-
imation). In comparison, the occupancies of the thermal reservoirs coupled
to the mechanical and electrical degrees of freedom (MHz or GHz), respec-
tively, are typically much more severe. Hence, transduction is an inherently
non-equilibrium situation.

Loss channels of the optical cavity include internal absorption and mode
mismatch, with vacuum noise leaking in accordingly. The electrical cavity may
suffer from ohmic losses resulting in Johnson noise leaking in. The mechanical
oscillator will suffer from damping such as clamping losses, although this loss
channel can be mitigated by phononic bandgap engineering [44, 45]. Addition-
ally, reflection may occur due to lack of impedance matching in the transducer
and amplification noise may arise due to finite sideband resolution in the AC-
driven case. In summary, the various complications mentioned above conspire to
make transduction a non-trivial optimization problem even within the linearized
theory considered here.

1.3 Overview of Part I

Above we have reviewed recent experiments realizing transduction in hybrid
systems involving a mechanical mode. We also discussed the basic physical
mechanisms underlying them as well as some of the detrimental effects pre-
venting ideal transduction in such systems. Part I of this theoretical thesis
explores different aspects concerning the implementation of transduction in
electro-optomechanical hybrid systems, but also considers transduction more
generally. The presentation of the work is organized in four chapters:
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Chapter 2: Framework for calculating electromechanical couplings
This chapter establishes the details of the electromechanical coupling. We then
present a simple procedure for calculating mode-specific coupling strengths and
induced mechanical frequency shifts for electromechanical interfaces. While
these quantities could be extracted from more cumbersome finite-element sim-
ulations, our approach provides intuition about the influence of geometry and
material choices and requires little or no input from numerical simulations. The
method has been applied in recent experiments involving vibrating micromem-
branes [3, 1].

Chapter 3: Figures of merit for transduction Before considering the
specifics of electro-optomechanical transduction, we give a general discussion of
linear transducers. Staring from the scattering matrix of a linear transducer,
we characterize it generically in terms of its signal transfer efficiency and added
noise temperature. To make connection to the language of quantum optics, we
consider how these figures of merit are related to conditional and unconditional
state fidelities and heterodyne sensitivity. These relations establish the require-
ments on a transducer for it to perform efficiently in various applications and
show that the noise temperature of the transducer tends to be more important
than its signal transfer efficiency.

Chapter 4: Equivalent circuit formalism for electro-optomechanics
Focusing henceforth on electro-optomechanical transduction, we introduce an
equivalent circuit formalism for electro-optomechanical transducers, thereby in-
tegrating the transduction functionality of optomechanical systems into the tool-
box of electrical engineering. This unifying impedance description naturally ac-
commodates the amplification effects that arise due to finite cavity-mechanical
sideband resolution and which are crucial in analyzing transduction in the quan-
tum regime. The formalism allows us to determine the scattering matrix of the
transducer using standard circuit analysis, and from this we can assess the per-
formance of the transducer as discussed in the preceding chapter.

Chapter 5: Optimizing electro-optomechanical receiver circuits Here
we apply the equivalent circuit formalism as a design tool to optimize electro-
optomechanical transduction. In particular, we focus on optimizing the optical
detection of weak radio or microwave signals, considering both classical and
quantum regimes. By evaluating the figure of merit for this and other transducer
applications (discussed in a previous chapter), we can assess the feasibility of
electro-optomechanical transduction in various scenarios.



Chapter 2

Framework for calculating
electromechanical couplings

The work presented in this chapter has been carried out in collaboration with
Jacob M. Taylor and Anders S. Sørensen.

2.1 Introduction

The introductory chapter touched upon the basic principles for achieving ef-
ficient electromechanical (EM) coupling. In this chapter we will revisit these
ideas in the context of actual interface geometries that have appeared in recent
experiments and discuss their characterization. We present a simple procedure
for calculating mode-specific coupling strengths and induced mechanical fre-
quency shifts for electromechanical interfaces involving 2-dimensional mechani-
cal modes. These quantities could be extracted from full numerical simulations,
but our analytical approach is calculationally simpler and provides a direct in-
tuition about the influence of geometry on the coupling. The method presented
here has already proven useful in the analysis of recent experiments [3, 1] in-
volving vibrating micromembranes.

2.1.1 Overview of chapter

We present our approach to characterizing EM interfaces in two steps. First, in
Section 2.2, we formulate the generic scenario of interest: a circuit resonance for
which the capacitance is modulated by the motion of a mechanical oscillator.
The capacitance in question thus arises from the combined configuration of
both electrical and mechanical elements. In terms of this effective capacitance,
Ceff, we can derive perturbative formulas for coupling strengths and frequency
shifts. Second, in Section 2.3, we discuss how Ceff and its derivatives can be
calculated efficiently by decomposing the capacitive interface into small unit
cells. Example geometries from recent experiments are discussed in Section 2.4
followed by concluding remarks in Section 2.5.

23



24 CHAPTER 2. CALCULATING EM COUPLINGS

2.2 Capacitive electromechanical interfaces
Here we will establish a Hamiltonian description of the electromechanical sys-
tem, revisiting the calculation from the introductory Section 1.2.2. With careful
attention to the mechanical and electrical modes involved in the interaction, we
will perturbatively derive formal expressions for the coupling parameters of in-
terest. These are the coupling strengths and mechanical frequency shifts induced
by the interaction.

2.2.1 Overview of capacitively coupled systems

To begin our discussion of capacitive electromechanical coupling, we consider
first the paradigmatic parallel plate capacitor. It consists of two conductive
plates of small separation d compared to the transverse dimensions. Its capaci-
tance is given by

C =
ϵA

d
, (2.1)

where ϵ is the electrical permittivity of the separating medium and A is the area
of each plate. The energy stored in the capacitor when the plates carry charge
±Q, respectively, is

H ′
C =

Q2

2C
. (2.2)

We now extend this well-known scenario to the situation illustrated in Fig. 2.1a.
Here, the upper plate has been mounted on a (conductive) spring allowing dis-
placements along the normal of the plates. Hence, the plate separation is now
d = d̄+ δz, where d̄ is the equilibrium separation and δz is the spring displace-
ment relative to equilibrium. This leads to the capacitance, (2.1), acquiring a
dependence on the spring displacement δz, C → C(δz). In turn, this leads the
charging energy (2.2) to depend on δz and, ultimately, coupling between the
motion of the spring δz and the charge Q flowing to and from the capacitor
(assumed to be connected to some electrical circuit).

While the plates of the parallel capacitor are 2-dimensional (2-d), the motion
of the top plate considered in the scenario of Fig. 2.1a is essentially 1-d or,
equivalently, corresponds to a flat 2-d mode. One of the main purposes of this
chapter is to deal with generalizations of the simple 1-d scenario to arbitrary
2-d modes and their coupling to more involved capacitor geometries. As an
example of such a scenario, consider the system depicted in Fig. 2.1b in which
a 2-dimensional conductive membrane serves as one “plate” of a capacitor (the
capacitor is part of an electrical circuit as will be relevant for the discussion of
electrical biasing below). The effective capacitance of the circuit Ceff will hence
depend on the (2-d) configuration z(r⃗) of the mechanical membrane, where
r⃗ = (x, y) is a point in the plane of the membrane. In this case, the charging
energy (2.2) takes the form

HC =
Q2

2Ceff[z(r⃗)]
, (2.3)

where Ceff is a functional of z(r⃗).
In the typical mode of operation, an electrical AC or DC voltage bias is

applied to the circuit in order to enhance the electromechanical coupling, see



2.2. CAPACITIVE ELECTROMECHANICAL INTERFACES 25

Ceff[z(r⃗)] +Q

−Q

R

{Gj}
V

{ω′
j}

L

C(δz)

δz

d̄+ δz

a) b)

+Q

−Q

Figure 2.1: a) Parallel-plate capacitor where one plate has a one-dimensional
vibratory degree of freedom δz around the steady-state separation d̄ hence mod-
ulating the capacitance C(δz) leading to coupling between δz and the charge
on the plates Q. b) Illustration of an electromechanical system in which the
vibrations of a 2-dimensional mechanical object with configuration z(r⃗) are ca-
pacitively coupled to the charge fluctuations Q in an electrical circuit. The
circuit is a serial RLC resonance of resistance R, inductance L and with a volt-
age source V which biases the mechanically modulated capacitor Ceff[z(r⃗)]. The
interaction between the circuit and the mechanical vibration mode j is charac-
terized by a coupling strength Gj and the effective mechanical frequency ω′

j .

Fig. 2.1b. This will induce a charge response Q̄(t) on the effective capacitor
Ceff as has already been discussed in Section 1.2.3. This previous discussion
carries over here, although in this chapter we will denote the amplitude of Q̄(t)
by Q̄c,0 → Q̄0. As previously, the charge amplitude Q̄0 is a large offset which
serves to enhance the interaction and will appear in the expressions for the
coupling strengths and effective frequencies below. Here we are interested in
fluctuations δQ relative to the drive induced response Q̄(t),

δQ ≡ Q− Q̄(t).

2.2.2 Mechanical vibrational modes

We now consider the mechanical system which couples to the capacitor, spe-
cializing to objects that are essentially 2-d. Taking the plane of the extended
object to be the (x, y)-plane, we assume that it is only allowed to move in the
out-of-plane direction, z. Under these circumstances, the 2-d mechanical object
can be described in terms of a displacement field z(r⃗) and a momentum density
field Π(r⃗), where r⃗ = (x, y). For a given boundary condition for the out-of-plane
motion of the object, a complete set of normal modes, each characterized by
frequency ωj and mode shape uj(r⃗), can be determined (see Appendix A.1 for
details). Expanding the mechanical displacement relative to the steady-state
configuration on this set we have,

δz(r⃗) =
∑
j

δβjuj(r⃗), (2.4)
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in terms of canonical displacement coordinates {δβj}. We can then state the
Hamiltonian of the mechanical vibrational modes in diagonal form,

Hm({δβj , δpj}) =
∑
j

[
1

2
mjω

′2
j δβ

2
j +

δp2j
2mj

]
, (2.5)

where δpj ≡ mjδβ̇j is the canonical momentum conjugate to δβj . In this expres-
sion the mechanical mode frequencies ω

′

j are shifted from their non-interacting
values ωj due to the gradient of the bias-induced force field,

ω′2
j = ω2

j +
⟨Q̄2(t)⟩
2mj

 2

C̄3
eff

(
∂Ceff

∂(δβj)

∣∣∣∣
eq.

)2

− 1

C̄2
eff

∂2Ceff

∂(δβj)2

∣∣∣∣
eq.

 , (2.6)

as we will return to in Section 2.2.4. The gauge mass mj in (2.5) depends on
a scaling freedom in choosing δβj . We can freely choose any point r⃗j whose
displacement with respect to mode uj represents the excursion of the mode as a
whole. In doing so, however, we have to adjust for this choice in the gauge mass
mj and the physical interpretation of the canonical variables {δβj , δpj} (see
Appendix A.1 for details). We note, for purposes of expanding the charging
energy (2.3) in terms of the canonical coordinates {δβj , δpj} below, that the
expansion (2.4) implies that these are chosen such that the {δβj} correspond
to physical position. Below, we will work in the quasi-electrostatic limit, where
the capacitance Ceff only depends on the spatial configuration of the mechanical
object. As a consequence, Ceff is independent of {δpj}.

We note here that intrinsic mechanical damping is most easily accounted
for when considering the equations of motion rather than in the Hamiltonian
description (2.5) [46]. This leads to the (classical) Langevin equations for each
viscously damped mechanical mode (suppressing the mode index j for brevity)

δβ̇ = δp/m

δṗ = −mω′2δβ − γδp+ F (t) + EM coupling, (2.7)

where γ is the damping rate and F is the associated stochastic force.

2.2.3 Coupling strength Gj

In order to understand the interaction resulting from the mechanically mod-
ulated charging energy (2.3), we now expand this expression around the elec-
tromechanical steady-state configuration {Q̄(t), z̄(r⃗)} to second order in δβj . By
the definition of the steady state, there will be no linear terms in δβj or δQ as the
net force on these relative variables must vanish (neglecting, in the case of AC
drive, rapidly varying forces on the mechanical element of frequencies ≥ 2ωd as-
sumed to exceed all relevant mechanical frequencies). Here we first consider the
coupling term, leaving the discussion of quadratic terms δβ2

j for Section 2.2.4.
The bilinear term in δβj , δQ yields the electromechanical coupling Hamiltonian

Hint ≡
∑
j

H
(j)
int ≡

∑
j

GjδQδβj ·

{
eiωdt + e−iωdt [AC drive]
1 [DC bias]

, (2.8)
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where we have introduced the electromechanical coupling strength (units of
electrical potential/length):

Gj ≡ − Q̄0

C̄2
eff

∂Ceff

∂(δβj)

∣∣∣∣
z=z̄

= − V̄0
C̄eff

∂Ceff

∂(δβj)

∣∣∣∣
z=z̄

, (2.9)

which we see to be enhanced by the drive-induced charge Q̄0 of the coupling
capacitor. In the last expression of (2.9) we have introduced the voltage ampli-
tude

V̄0 ≡ Q̄0/C̄eff. (2.10)

Eqs. (2.8,2.9) are a straightforward generalization of the derivation in Section
1.2.3, but here we have emphasized how the canonical position δβ ↔ δx and
effective coupling capacitance Ceff ↔ Cc arise and made their proper interpre-
tation clear in the 2-d case. We thus have a general recipe for determining the
most important coupling parameter. In Sections 2.3 and 2.4 we will use (2.9) to
calculate the coupling strength for structures featured in recent experiments.

2.2.4 Effective mechanical frequency and electrical modes
of the capacitive interface

The second quantity that we will use to characterize the interface is the effec-
tive frequency of the mechanical modes. To correctly determine this quantity
for a given mechanical mode, we must carefully include all contributing factors,
including both static and dynamic contributions. By the former we denote the
drive-induced electrical force gradient experienced by the mechanical object for
a given charge (an “electrical spring” effect). The dynamical shifts are those
that arise because the mechanical motion also modifies the charge on the ca-
pacitor. The latter depends on the interaction between the mechanical mode
and the various modes of the electrical circuit and in particular on their relative
timescales.

In view of the above we need to consider more carefully the electrical modes
of the capacitive interface as shown in Fig. 2.2. We start by specifying two
kinds of modes that appear in that basic circuit layout: Firstly, there are the
internal modes of the electrical part of the capacitive element, which rearrange
the charge distribution on the electrodes, but does not alter their net charge.
Their significance will be discussed in Subsection 2.2.4.1. Secondly, there is a
mode associated with the voltage bias V responsible for inducing the (static
or oscillating) bias charge on the coupling capacitor and hence does alter the
net charge on the electrodes, i.e. the loop in Fig. 2.1b. The time-scale of this
mode relative to that of the mechanical mode will determine to which extent
the voltage bias can react to the mechanical modulation of the capacitance as
we will see in Subsection 2.2.4.2 below.

2.2.4.1 Internal modes of the electrodes

As mentioned initially, we will approach the calculation of Ceff and its deriva-
tives by subdividing the EM interface into small unit cells. This prompts us
to consider the internal charge movements on the electrodes as illustrated in
Fig. 2.2. We assume that the internal charge movements on the respective
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Ceff[z(r⃗)]

C1, Q1

L1

−Q

+Q

CN , QN

LN

CN−1, QN−1

L2 LN−1

C2, Q2

− − − − − − −

Figure 2.2: Close-up of the electromechanical interface of Fig. 2.1. We model
each of the electrodes as a parallel connection of a number of LC arms with
parameters Li, Ci[z(r⃗i)], the latter being dependent on the local mechanical
displacement z(r⃗i). The internal modes of the electrodes correspond to charge
movement of the charges Qi between arms belonging to the same electrode, thus
conserving its net charge Q. The figure indicates that the charge distribution
on a conductive membrane will mirror that of the electrodes.

electrodes occur without dissipation, but account for their finite time-scale by
the inductances Li as shown in the figure.

If the mechanical object moves in a manner that affects the capacitive ele-
ments asymmetrically it will in general cause internal charge redistribution on
the electrodes, i.e. the mechanical modes couple to the internal modes of the
electrodes. In turn, this alters the dynamics of the mechanical motion. In par-
ticular, these modes will dynamically shift the mechanical resonance frequency.
In this work, we are interested in the limit where the internal electrode dynamics
occurs on a time-scale much faster than those of both the mechanical motion
and the bias mode of the circuit. As shown rigorously in previous work [47],
this amounts to applying the limit Li → 0 in the circuit diagram of Fig. 2.2 and
eliminating the internal modes by combining the capacitances {Ci}i∈{1,...,N} us-
ing standard impedance combination rules; this yields the effective capacitance
functional Ceff[z(r⃗)], which is just the capacitance for a static displacement z(r⃗).
In particular, this procedure will lead to the correct effective mechanical res-
onance frequencies, where the dynamical shift due to the eliminated internal
modes now enters as part of the static shift of the coupling as described by
Ceff[z(r⃗)], Eq. (2.6). Hence, in the limit of fast internal capacitor dynamics, we
may represent the electromechanical interface by a single effective capacitance
Ceff[z(r⃗)] associated with a single electrical mode Q as shown on the left-hand
side of Fig. 2.2.

2.2.4.2 Time-scale of the voltage bias

Given the conclusion of the previous subsection, we may conveniently return
to the simple circuit diagram in Fig. 2.1b for the remainder of the present
discussion. We will now consider the interplay between the voltage bias mode
and each of the mechanical modes. This is most easily done by considering the
Fourier transformed electromechanical equations of motion. In the DC-biased
case we find from Eqs. (2.7,2.8) and the electrical circuit impedance in Fig.
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2.1b,

mj [ω
′2
j − Ω2 − iΩγj ]δβj(Ω) = −GjδQ(Ω) + Fj(Ω)

L[ω2
LC − Ω2 − iΩR/L]δQ(Ω) = −Gjδβj(Ω), (2.11)

where ωLC ≡ (LC̄eff)
−1/2, Ω is the Fourier frequency and we neglect Johnson

noise, which is irrelevant to the present analysis (the details of setting up these
equations will be treated when we derive the equivalent circuit in a later chap-
ter). Solving Eqs. (2.11) for the effective mechanical response to Fj(Ω) we find
in the limit L→ 0

mj

[
ω′2
j − Ω2 − iΩγj −

G2
j C̄eff

mj

1 + iΩRC̄eff

1 + (ΩRC̄eff)2

]
δβj(Ω) = Fj(Ω). (2.12)

The bracketed term in (2.12) is the (inverse) effective mechanical susceptibil-
ity. Assuming the dependence of its last term on Ω to be negligible, it can be
interpreted as an electrically induced dynamical frequency shift (the real part)
as well as dynamically induced broadening (the imaginary part). Under these
circumstances we find the effective mechanical frequency to be (for DC biasing)

Ω2
j ≡ ω′2

j −
C̄effG

2
j

mj

1

1 + (ω′
jRC̄eff)2

. (2.13)

Eq. (2.13) shows how the effective mechanical frequency depends on the ratio
of the mechanical oscillation period ∝ 1/ω′

j and the RC time of the bias circuit,
RC̄eff. The dynamical shift interpolates between −G2

j C̄eff/mj , in the limit of
short RC time ω′

jRC̄eff ≪ 1, and zero, in the limit of sufficiently long RC
time ω′

jRC̄eff → ∞. In the former limit, the bias voltage source responds
instantaneously to mechanical motion leading to “fixed voltage” dynamics. In
the latter limit, the mechanical oscillation period 2π/ω′

j is much shorter than
the response time RC̄eff of the voltage source leading to “fixed charge” dynamics.
The derivation of (2.13) can be generalized to the AC-driven scenario. In the
typical limit of ωd ≫ Ωj this yields a factor of 2 relative to the shift found in
the DC case, (2.13).

2.2.4.3 Effective mechanical frequency

As discussed above, the observed frequency shift of a mechanical mode is gener-
ally comprised of several contributions: 1) From the electrostatic field gradient
induced by the bias voltage, 2) the adiabatic effect of the fast internal modes of
the capacitive circuit element as discussed in Section 2.2.4.1, and 3) interaction
with the main LC circuit mode, Eq. (2.13), as depends on the relative time-scale
of the voltage bias as discussed above. Working in the limit where the internal
capacitor modes are much faster than the mechanical time-scale, we can neglect
the internal dynamics and work at the level of the effective capacitance Ceff, as
mentioned above. In this limit, shifts 1) and 2) combine to produce ω′

j given by
Eq. (2.6), which we will, in turn, combine with 3) in what follows.

The static shift ωj → ω′
j , (2.6), arises from the “diagonal” second order

derivatives of the charging energy (2.3), (∂2/∂(δβj)2)Q2/[2Ceff({δβj})]. These
quadratic terms ∝ (δβj)

2 combine with the “free” evolution of the mechanical
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Hamiltonian, which has the same form as Eq. (2.5), to produce the shift ωj →
ω′
j . To facilitate the combination with the dynamical shift, we rewrite the static

shift (2.6) as

ω′2
j = ω2

j +
⟨Q̄2(t)⟩
Q̄2

0

C̄effG
2
j

mj
− 1

2mj

⟨Q̄2(t)⟩
C̄2

eff

∂2Ceff

∂(δβj)2

∣∣∣∣
eq.
, (2.14)

where the second term has been expressed in terms of in terms of G using (2.9).
Substituting Eq. (2.14) into the expression for the dynamical shift (2.13) we
find the effective mechanical frequency including all contributions (assuming
ωd ≫ Ωj in the case of AC bias)

Ω2
j = ω2

j +
⟨Q̄2(t)⟩
Q̄2

0

C̄effG
2
j

mj

(ω′
jRC̄eff)

2

1 + (ω′
jRC̄eff)2

− 1

2mj

⟨Q̄2(t)⟩
C̄2

eff

∂2Ceff

∂(δβj)2

∣∣∣∣
eq.
. (2.15)

The second term contains the dependence on the relative time scale of the volt-
age source. In the limit of fixed charge dynamics, ω′

jRC̄eff ≫ 1, this contribution
is finite and depends on Gj . In the opposite limit of fixed voltage dynamics,
ω′
jRC̄eff ≪ 1, this contribution vanishes. In contrast, the third term of (2.15)

only depends on the bias-induced voltage across the capacitor and is indepen-
dent of the details of the circuit. For this reason, seeing as the focus of this
chapter is to characterize the electromechanical interface, we will henceforth
consider the fixed voltage limit, where (2.15) reduces to

Ω2
j = ω2

j −
⟨V 2(t)⟩
2mj

∂2Ceff

∂(δβj)2

∣∣∣∣
eq.
, (2.16)

where we have introduced the bias voltage V (t) ≡ Q̄(t)/C̄eff for brevity. For
small relative shifts |Ωj − ωj | ≪ ωj we may approximate the shift in (2.16) by

∆ωj ≡ Ωj − ωj ≈ −⟨V 2(t)⟩
4mjωj

∂2Ceff

∂(δβj)2

∣∣∣∣
eq.
, (2.17)

which is the formula we will use below.

2.3 Decomposing the effective capacitance Ceff into
capacitive unit cells

With the above results we have a characterization of how the dependence of
Ceff on δz(r⃗) affects the dynamics of the system. To apply the expressions
derived for the electromechanical coupling strengths Gj and the mechanical
frequency shifts ∆ωj , we must be able to calculate Ceff and its derivatives and
will now address how to evaluate these quantities. We introduce our approach
by means of an example and consider a wired, conductive membrane above
a fixed electrode. An instance of this coupling geometry is depicted in Fig.
2.3 (left). In this figure, we see a capacitive element consisting of a tensioned
circular aluminum membrane above a fixed electrode (not visible) [10]. Since
this mechanical oscillator is metalized and thus conducting, we can make it part
of a capacitor. Because it is allowed to vibrate, the associated degrees of freedom
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Ceff(δβ)

Figure 2.3: Plate capacitor with an elastic upper plate: (left) Aluminum circular
drum capacitor where the upper electrode is free to vibrate whereas the lower
electrode (not shown) is fixed (this figure has been reprinted from Ref. [10]).
(right) Stylized depiction of the setup as a plate capacitor with a “wobbly” upper
plate. Focusing on a single 2-d vibrational mode, δβ is a suitable canonical
position coordinate.

will modulate the capacitance of the arrangement. A simpler, but equivalent,
pictorial representation of this scenario is provided in Fig. 2.3 (right), where a
plate capacitor with one elastic plate is shown. This illustration intentionally
alludes to the paradigmatic parallel plate capacitor discussed in Section 2.2.1,
but it is not equivalent to it. Let us, nonetheless, return to this standard
textbook example.

The parallel plate capacitance, as given by Eq. (2.1), describes the scenario
where the parallel plates are so close that the electric field lines are essentially
all pointing along the normal of the plates. While field lines near the edges will
deviate from this direction, the associated contributions to the stored energy
are vanishingly small in the limit d ≪

√
A and (2.1) accurately describes the

capacitance. Turning now to the more complicated geometry of Fig. 2.3 (right),
we will for simplicity continue to neglect edge effects, thus assuming the plate
separation to be much smaller than the plate dimensions. In order to account for
the mechanical modulation of the capacitance, we must necessarily account for
changes induced by the variable configuration of the upper plate. Imagine that
we freeze the motional state of the vibrating element in one of the configurations
shown in Fig. 2.3 (right), as is appropriate for the quasi-static limit. The
exact determination of the resulting capacitance with a frozen motional state is
analytically complicated for an arbitrary configuration of the upper plate and
will in general require a numerical solution. To circumvent this complication
we will now construct an analytical approximation: If the configuration of the
upper plate is such that its radius of curvature is large compared to the plate
separation, then locally we may approximate the field density by that of a
parallel plate capacitor. Hence, we are led to assign a capacitance contribution
dC(r⃗) to an infinitesimal area dA in the neighborhood of the point r⃗ = (x, y) in
the plane of the plate. Expressed as capacitance per unit area we have

dC[δz(r⃗)]

dA
=

ϵ

z̄(r⃗) + δz(r⃗)
. (2.18)

In calculating the total capacitance from (2.18) we wish to account for imper-
fect overlap between the electrodes or regions of the oscillating plate where
metallization is absent. In the simplest possible approximation we only count
contributions from the metalized regions of the mechanical oscillator that over-
lap with the fixed electrode. By introducing a mask function ξ(r⃗) that equals



32 CHAPTER 2. CALCULATING EM COUPLINGS

1 for points in the plane of the mechanical oscillator that are metalized and
overlap with the fixed electrode, we can express the total capacitance as

Cc =

ˆ
A

dC[δz(r⃗)]

dA
ξ(r⃗)dA, (2.19)

where the integral is over the entire mechanical mode area.
We can express the k’th derivative of C[δz(r⃗)]/dA wrt. δβj using the mode

expansion (2.4) as

∂k

∂(δβj)k
dC[δz(r⃗)]

dA
=

[
dk

d(δz)k
dC[δz]

dA

]
ukj (r⃗), (2.20)

which is proportional to the k’th power of the mode function uj(r⃗). For the
parallel plate capacitance density (2.18) we have

dk

d(δz)k
dC[δz]

dA
= (−1)kk!

ϵ

(z̄(r⃗) + δz)k+1
. (2.21)

The derivatives of Cc (2.19) for the locally parallel-plate conditions (2.18) then
follow from (2.20) and (2.21); evaluating at the equilibrium configuration we
arrive at

∂kCc

∂(δβj)k

∣∣∣∣
eq.

=

ˆ
A

(
dk

d(δz)k
dC[δz]

dA

)∣∣∣∣
eq.
ukj (r⃗)ξ(r⃗)dA

=

ˆ
A

(−1)kk!
ϵ

[z̄(r⃗)]k+1
ukj (r⃗)ξ(r⃗)dA. (2.22)

To evaluate (2.22) one needs to determine the mechanical equilibrium configu-
ration z̄(r⃗) induced by the electrical drive. The exact determination of z̄(r⃗) is as
difficult as calculating the capacitance of any given configuration. If the static
deflection of the mechanical element is small, however, we may approximate
z̄(r⃗) ≈ d when evaluating (2.22), whereby the derivatives of the capacitance per
unit area dC[δz]/dA can be taken outside the integral. Thereby we get

∂kCc

∂(δβj)k

∣∣∣∣
eq.

≈ dk

d(δz)k
dC[δz]

dA

∣∣∣∣
z̄(r⃗)≈d

AO
(k,j)
A = (−1)kk!

ϵA

dk+1
O

(k,j)
A , (2.23)

where the overlap is given by

O
(k,j)
A ≡ A−1

ˆ
A

ukj (r⃗)ξ(r⃗)dA
′. (2.24)

Eq. (2.23) shows that within the stated approximations, the derivatives of
Cc are those of a standard parallel plate capacitor of area A and separation
d, but with a correction from the mode-dependent factor O(k,j)

A . Within the
same approximation, the (steady-state) capacitance is that of a parallel-plate
capacitor multiplied by the overlap fraction:

C̄c ≡ Cc|eq. ≈
ϵA

d
O

(0)
A .

Allowing for additional parasitic and/or tuning capacitance C0 in parallel with
the coupling capacitance we have Ceff(δβ) = Cc(δβ) + C0 and C̄eff ≡ Ceff|eq. =
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C̄c+C0, assuming that only Cc is modulated by δβ. Using the derivatives (2.23)
to evaluate the coupling strength (2.9) and the frequency shift (2.17) we arrive
at the results,

G =
V̄0

C̄c + C0

ϵA

d2
O

(1)
A , ∆ω ≈ −⟨V 2(t)⟩

4mω
2
ϵA

d3
O

(2)
A , (2.25)

for a particular mechanical mode of (unperturbed) frequency ω and mass m.

2.4 Additional examples
We have previously applied the framework presented here in the analysis of
experiments involving vibrating micromembranes above one or more pairs of
coplanar electrodes [3, 1], with the membrane acting as an intermediate float-
ing electrode; in this section we will describe the details of these analyses. In
such floating electrode scenarios, we must for calculational purposes distinguish
between two scenarios: 1) Comparable or large membrane-electrode separation
compared to inter-electrode gap(s). 2) Small membrane-electrode separation
compared to the inter-electrode gap(s). The former case (1) applies, e.g., to
a floating membrane electrode above a fixed electrode mask of high spatial
frequency [3]. The approach presented here is still applicable, even for non-
metalized membranes, but requires some input from numerical simulation; this
case was treated in detail in previous work [47]. In what follows, we will there-
fore treat case (2) (we focus on a single mechanical mode j and therefore write
δβ ≡ δβj and ω = ωj for brevity).

2.4.1 Floating, conductive membrane close to fixed elec-
trode mask

In this section we consider an EM coupling geometry which was used in a re-
cent radio-to-optical transducer experiment [1], see Fig. 2.4. Here the elec-
tromechanical capacitance arises from a slightly more involved geometry than
what was considered in Section 2.3. In this scenario, the conductive membrane
is not electrically wired to the circuit. It is the electromechanical equivalent
of the optomechanical membrane-in-the-middle setup [35]. This is typically an
advantage for practical reasons since no wires are connected to the membrane
[3].

If the metalized membrane is significantly closer to the plane of the elec-
trodes than the inter-electrode gap, the capacitance between the respective
electrodes and the membrane dominates over the inter-electrode capacitance.
In this case the electrical field lines will be approximately normal to the elec-
trode and membrane planes, although their direction will be different for the two
electrode polarities. Hence, neglecting edge effects once again, the capacitance
between electrodes and the membrane will locally be that of a parallel plate
capacitor (2.18). In contrast to the simpler geometry in Fig. 2.3, however, little
of the field energy resides directly between the positive and negative electrodes,
but mainly between the membrane and the respective electrodes. Therefore the
membrane acts to serially connect the capacitances of the electrodes so that the
coupling capacitance now takes the form

Cc(δβ) =
[
C−1

+ (δβ) + C−1
− (δβ)

]−1
, (2.26)
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Cc(δβ)

a) b)
C+(δβ)

C−(δβ)

Figure 2.4: a) Electrically floating conductive membrane above fixed pair of elec-
trodes. Note that, crucially, in the actual experiment the membrane-electrode
separation is much smaller than the inter-electrode gap. The electrodes interact
indirectly via the conductive mechanical object by polarizing it. b) Capaci-
tance model for a) in which the capacitances between the membrane and the
positive/negative electrode C±(δβ) combine in series to determine Cc(δβ), see
Eq. (2.26).

where C±(δβ) is the capacitance between the membrane and the positive/negative
electrode. Adding a membrane-independent capacitance C0 in parallel to ac-
count for tuning and/or parasitic capacitance including direct capacitance be-
tween electrodes, the effective capacitance becomes

Ceff(δβ) = C0 + Cc(δβ) = C0 +
[
C−1

+ (δβ) + C−1
− (δβ)

]−1
. (2.27)

We will model C±(δβ) using the parallel plate capacitance per unit area (2.18),
defining in analogy with (2.19),

C±(δβ) ≡
ˆ
A±

dC[δz(r⃗)]

dA
ξ(r⃗)dA,

where A± is the region above the positive/negative electrode. From here we may
apply the procedure of Section 2.3 to approximate C±(β) and its derivatives
for each electrode polarity individually (amounting to the modification Cc →
C±, A→ A± in (2.22)). Neglecting the static displacement as in (2.23), we find
the approximation

∂kC±

∂(δβ)kj

∣∣∣∣∣
eq.

≈ dk

d(δz)k
dC[δz]

dA

∣∣∣∣
z̄(r⃗)=d

AO
(k,j)
± = (−1)kk!

ϵA

dk+1
O

(k,j)
± (2.28)

O
(k,j)
± ≡ A−1

ˆ
A±

[uj(r⃗)]
kξ(r⃗)dA′. (2.29)

Note that the partial overlap factors O(k,j)
A±

(2.29) are related to the full overlap

factors of (2.24) as O(k,j)
A = O

(k,j)
A+

+ O
(k,j)
A−

. By applying the chain rule to Eq.
(2.27) we can relate the derivatives of C±(δβ) to those of Ceff(δβ). Evaluating
the required derivatives of Ceff(δβ) at the equilibrium configuration and using
the approximation (2.28) we arrive at the coupling strength (2.9)

G ≡ V̄0
C̄c

C0 + C̄c

1

d

[O
(0)
+ ]−2O

(1)
+ + [O

(0)
− ]−2O

(1)
−

[O
(0)
+ ]−1 + [O

(0)
− ]−1

, (2.30)
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containing the participation ratio C̄c/(C0 + C̄c) and the weighted average of
the renormalized overlap factors for the first derivative O(1)

± /O
(0)
± with weight

factors [O
(0)
± ]−1. The frequency shifts are given by (2.17)

∆ω ≈ −⟨V 2(t)⟩
2mω

ϵA

d3

[
[O

(0)
+ ]−2O

(2)
+ + [O

(0)
− ]−2O

(2)
−(

[O
(0)
+ ]−1 + [O

(0)
− ]−1

)2
− 1

O
(0)
+ +O

(0)
−

(
[O

(0)
+ ]−1O

(1)
+ − [O

(0)
− ]−1O

(1)
−

[O
(0)
+ ]−1 + [O

(0)
− ]−1

)2 ]
. (2.31)

This expression was used in Ref. [3] to analyze mode-shape and misalignment
corrections for floating electrodes made from SiN membranes metalized with Al
or graphene.

In some experimental circumstances [1] it is easier to measure the electri-
cally induced mechanical frequency ∆ω than the coupling strength G. We can,
however, infer G from ∆ω using Eqs. (2.30,2.31):

G = − V̄0

⟨V 2(t)⟩
2ωmd

(C0 + C̄c)

[O
(0)
+ ]−2O

(1)
+ +[O

(0)
− ]−2O

(1)
−

[O
(0)
+ ]−1+[O

(0)
− ]−1

[O
(0)
+ ]−2O

(2)
+ +[O

(0)
− ]−2O

(2)
−

[O
(0)
+ ]−1+[O

(0)
− ]−1

−

(
[O

(0)
+ ]−1O

(1)
+ −[O

(0)
− ]−1O

(1)
−√

O
(0)
+ /O

(0)
− +

√
O

(0)
− /O

(0)
+

)2∆ω,

where the prefactor equals V̄ −1
0 for DC bias and (2V̄0)

−1 for AC bias, see Eqs.
(2.10) and (1.7). In an experimental context, this expression is a means to infer
the possible coupling strength G which may be obtained. This procedure was
used in Ref. [1] as an additional check that the system performance was well
understood.

2.5 Concluding remarks
In this chapter we have given a rather careful treatment of the linearized capac-
itive coupling between charge fluctuations and 2-d mechanical vibration modes
with emphasis on coupling strengths and mechanical frequency shifts, which are
important quantities in characterizing such interfaces. We also introduced a
semi-analytical approach to obtaining approximate predictions for these quan-
tities, which has already been applied in the analysis of various interface geome-
tries appearing in experiment [3, 1]. The method is a useful tool for achieving
quick estimates of the influence of geometry and material choices and also pro-
vides a model linking coupling strength G and frequency shift ∆ω for situations
where the former is difficult to measure directly in experiment. The derivation
was given here in the context of (thin) vibrating membranes, but can likely be
extended to other types of oscillatory motion.
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Chapter 3

Figures of merit for
transduction

The work presented in this chapter has been carried out in collaboration with
Albert Schließer, Jacob M. Taylor, and Anders S. Sørensen.

3.1 Introduction

Having considered the specifics of achieving effective EM coupling, the remain-
der of Part I will turn to hybrid electro-optomechanical systems and their ap-
plication as transducers. Before specializing to electro-optomechanical trans-
ducers, however, it is worthwhile to discuss transduction more generically. Part
of the motivation for taking a more general viewpoint here are the alternative
approaches in current research to realizing quantum transduction between elec-
trical and optical frequencies. In these systems the intermediary mechanical
degree of freedom is replaced by, e.g., an erbium-doped crystal [48, 49] or a
ferromagnetic magnon [50].

This chapter addresses the question of theoretically characterizing the per-
formance of a quantum transducer. Given that we in practice cannot attain
ideal one-to-one quantum conversion, we will explore how well the transducer
performs in various scenarios ranging from classical signal detection to applica-
tions for quantum information processing. The performance of the transducer
depends on the particular application in which the transducer enters but regard-
less of the application the performance of the transducer can be characterized
by two simple parameters, the signal transfer efficiency η and the added noise
N .

3.2 Scattering matrix formulation

The essential feature of a transducer is that it uses oscillating bias fields to
modulate an incoming field and thereby connects different frequency compo-
nents as shown in Fig. 3.1a (and discussed previously in the context of electro-
optomechanics in Section 1.2). Here we are interested in the typical linear regime
where a weak (bosonic) field is transduced to a different frequency through the

37
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modulation with a much stronger bias field. In this case the Hamiltonian can be
truncated at the second order in the involved field operators and the equations
of motion become linear. As a result, the solution to the Heisenberg-Langevin
equations will take the form

A⃗out(Ω) =

ˆ
dΩ′S(Ω,Ω′)A⃗in(Ω

′), (3.1)

where A⃗in (out)(Ω) is a vector containing the input (output) of the involved an-
nihilation and creation operators âi and â†i of all the involved modes, including
decay channels, at a frequency Ω. In this expression the operation of the trans-
ducer is completely captured by the scattering matrix S(Ω,Ω′) which describes
how different frequency components are connected and this will form the basis
of the discussion below. We will for simplicity assume the drive amplitude of
the bias fields to be independent of time [18], and as a result the scattering ma-
trix will take a simple form in the frequency representation. In practice there
are, however, a variety of different approaches, e.g., involving time varying am-
plitudes [26, 27, 28, 29] or detunings [30] or using quantum teleportation [31]
(see discussion in Section 1.1.2). Regardless of the specifics of the transducer,
however, it is always possible to derive a similar scattering matrix in the linear
regime and most of our conclusions can therefore easily be generalized to other
situations.

In the ideal limit, a transducer merely converts photons from one frequency
to another. In reality, however, photons may not be converted with unit effi-
ciency η < 1. As a simple example of this let us consider a model where the
scattering relation (3.1) does not mix creation and annihilation operators. In
this case the transducer can be understood by the simple beam splitter model
in Fig. 3.1a where the efficiency η is captured by a transmittance η. The loss
at the beam splitter is complemented by the addition of noise from the other
port as described by the beam splitter relation

âout,e(Ωe) =
√
ηâin,s(Ωs) + F̂ (Ωe), (3.2)

where âout,e and âin,s are annihilation operators for the output and input signal
respectively and where F̂ (Ωe) is a stationary noise operator accounting or all
other contributions to âout,e(Ωe). Eq. (3.2) is a particular component of (3.1)
representing the output of a particular port. Suppose that we are interested
in measuring the time-integrated number flux from this output port. It will
have two contributions

´
dt′I(t) = η

´
(dΩ/2π)(⟨â†in,sâin,s⟩(Ω) + N(Ω)), where

⟨â†in,sâin,s⟩(Ω)δ(Ω− Ω′) ≡ ⟨â†in,s(Ω)âin,s(Ω′)⟩ and

N(Ω)δ(Ω− Ω′) =
⟨F̂†(Ω)F̂(Ω′)⟩

η
(3.3)

describes the added noise relative to the signal. For measuring the input signal
we are interested in knowing the output signal relative to the noise. This is
exactly what is described by N , which measures how many photons an input
signal should have per mode in order to exceed the noise. N is thus the central
quantity of interest in this case, and in particular N ≲ 1 is required for appli-
cations in the quantum regime, where we are sensitive to single photons. Here
we will generalize this result, finding the full form of η and N , and show that
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ωd,a

ωd,b

âin,s

âout,s

âin,e

âout,eF̂

a) b)

Transducer

ω

ωd,ie ˆ̃ae(Ω)

ˆ̃as(Ω)

ˆ̃ai(Ω)

ˆ̃a†i (−Ω)

ˆ̃a†s(−Ω)

ˆ̃a†e(−Ω)

= ω0,1

ωd,si
= ω0,2

Figure 3.1: Generic transduction scenario. a) A transducer is driven by harmon-
ically varying drive frequencies ωd,i which connect different frequency compo-
nents. In an idealized limit the transducer acts as a beam splitter transforming
an input signal âin,s at a certain frequency to an output signal âout,e at a dif-
ferent frequency by addition or subtraction of the drive frequencies. A finite
transduction efficiency η < 1 leads to admixture of noise F̂ from the other
port of the beam splitter. b) The dynamics of the modes of the transducer are
assumed to occur in narrow frequency bands (boxes) centered around {ω0,m},
relative to which the corresponding slowly-varying bosonic operators ˆ̃am(Ω) are
defined. The harmonic driving terms ωd,k connect the different frequency bands.
Drive terms not matching the difference between the bands are discarded in the
rotating wave approximation. In the instance depicted here, the internal modes
s and e that couple to the itinerant fields âin,s and âout,e, respectively, are linked
via the internal transducer mode i.

these are the two essential parameters for describing the performance of a linear
transducer.

3.3 Time-stationary transduction

To be concrete we first derive the input-output scattering relation [51] for a
general time-stationary transducer driven by bias fields of constant amplitude.
We consider an open, linear system obeying the Heisenberg-Langevin equation
of motion

˙⃗
V (t) =

∑
k,l

Ml,ke
ilωd,ktV⃗ (t)− ΓA⃗in(t). (3.4)

Here V⃗ is a vector of bosonic operators describing the internal degrees of the
freedom of the transducer. Decay of the modes means that the internal degrees
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are coupled to the input vector A⃗in(t) as described by the matrix Γ, as per input-
output theory [51]. The dynamics of the transducer is described by the coupling
matrices Ml,k which include the part of the coupling which is modulated by all
the different harmonic driving fields of frequency ωd,k which may enter to var-
ious order l = 0,±1,±2, . . .. To proceed we will make the assumption that the
different field operators can be divided into a finite number of narrow bands
denoted by an index m centered around a frequency ω0,m (possibly zero). Each
central frequency is connected to the center of another by an integer number of
drive frequencies. This scenario is depicted in Fig. 3.1b and refers to the situa-
tion typically desired where bias fields are used to bridge different components
of the spectra. Furthermore we make the rotating wave approximation (RWA)
and neglect all couplings which are not resonantly connecting the different fre-
quency bands. After introducing the Fourier representation of all operators in
the equation of motion (3.4), it is convenient to change to a rotating frame where
all field annihilation operators for a particular band â(Ω + ω0,m) are replaced
by slowly varying operators ˆ̃a(Ω) = â(Ω + ω0,m) with commutation relation
[ˆ̃a(Ω), ˆ̃a†(Ω′)] = δ(Ω − Ω′). We assume here that after having performed the
RWA, all operators â(ω), â†(ω) enter the equations of motion only via one slowly
varying representation ˆ̃a(Ω), ˆ̃a†(Ω). In this case, all oscillating components in
Eq. (3.4) can be absorbed and the resulting equation of motion only involves
the slow frequency component Ω. Solving Eq. (3.4) in the Fourier domain and
using the input-output relation A⃗out(t) = Γ′V⃗ (t) + A⃗in(t) [51] with a suitable
matrix Γ′ we arrive at a scattering relation of the form given in Eq. (3.1) with
the scattering matrix

S(Ω,Ω′) ≡
(
1+ Γ′ 1

iΩ1+M
Γ

)
δ(Ω− Ω′). (3.5)

Here M =
∑

⟨l,k⟩ M̃l,k is the sum over terms ⟨k,m⟩ in (3.4) not discarded in the
RWA and the tilde on M̃l,k denotes that terms corresponding to the central fre-
quencies ω0,m have been removed. Note, that since annihilation operators enter
with the time dependence ˆ̃a(Ω) exp(−iΩt) whereas the creation operators, in the
convention used here, are ˆ̃a†(Ω) exp(iΩt), the annihilation operators ˆ̃a(Ω) will in
general couple to ˆ̃a†(−Ω) and the input (output) vectors A⃗in(Ω) (A⃗out(Ω)) thus
contain ˆ̃a(Ω) and ˆ̃a†(−Ω) (see Appendix B.1 regarding the Fourier convention).
Since within the stated assumptions we can work in terms of the slowly varying
operators alone, we will for notational simplicity omit the tilde henceforth.

3.4 Transducer characterization

We now return to the question of characterizing a transducer based on its scat-
tering matrix S and a specification of the noise input fields. For simplicity we
will assume that we only have signal input near a single positive frequency, i.e.
confined to a particular band (see Fig. 3.1b). Furthermore, since we will typi-
cally be interested in the output of a particular port, it suffices to consider only
a single row of the scattering matrix S. Denoting the output field of the “exit”
port âout,e, we will write the corresponding scattering relation in a manner that
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singles out the input on the “signal” port âin,s (generalizing 3.2)

âout,e(Ω) =

{
Us(Ω)âin,s(|Ω|) + F̂(Ω) for Ω > 0

Vs(Ω)â
†
in,s(|Ω|) + F̂(Ω) for Ω < 0

, (3.6)

where all noise contributions have been collected in a single noise operator

F̂(Ω) ≡
∑
i ̸=s

[
Ui(Ω)âin,i(Ω) + Vi(Ω)â

†
in,i(−Ω)

]
. (3.7)

Here Ui (Vi) denote the contribution of âin,i to âout,e in the scattering rela-
tion (3.1) and any possible input in the signal port at negative frequencies is
treated as noise and thus contained in the sum. Furthermore we have used that
the slowly varying annihilation operators â(Ω) at negative frequencies Ω < 0
couple to creation operators at positive frequencies â†(|Ω|). The operators
âin,s(Ω), â

†
in,s(Ω) will be assumed uncorrelated with F̂(Ω′), F̂†(Ω′) for all Ω,Ω′.

We see from Eq. (3.6) that if we consider the upper (lower) output sideband
alone, Ω > 0 (Ω < 0), the transducer is phase-preserving (phase-conjugating)
[43].

The scattering relation (3.6) allows the generalization of the two generic
transducer parameters introduced above. Firstly, the signal transfer efficiency
η(Ω) is

η(Ω) ≡

{
|Us(Ω)|2 for Ω > 0

|Vs(Ω)|2 for Ω < 0
(3.8)

Secondly, we define the added noise flux per unit bandwidth referenced to the
input

N(Ω)δ(Ω− Ω′) ≡ ⟨F̂†(Ω)F̂(Ω′)⟩
η(Ω)

. (3.9)

The expectation value ⟨F̂†(Ω)F̂(Ω′)⟩, which must be calculated to determine
N(Ω) can straightforwardly be evaluated under the assumption of time-stationary
thermal reservoirs,

⟨âi(Ω)†âi(Ω′)⟩ = ni(Ω + ω0,i)δ(Ω− Ω′), (3.10)

in terms of the thermal mean number of excitations ni(ω) = (exp[ℏω/kBTi] −
1)−1, which depends on the frequency in the lab frame. With this we find

⟨F̂†(Ω)F̂(Ω′)⟩ = δ(Ω− Ω′)(
∑
i ̸=s

|Ti(Ω)|2ni(Ω + ω0,i)

+
∑
i

|Vi(Ω)|2[ni(−Ω+ ω0,i) + 1]), (3.11)

where in the second sum we include the noise due to the coupling to the lower
sideband of the input port (assumed to be subject to thermal input).

3.5 Quantum-mechanical constraints on transduc-
tion

With these results we are now in a position to evaluate the performance of
transducers for various applications. Before going into the details of particular
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applications we note that the the scattering matrix elements are subject to
a number of constraints imposed by quantum mechanics [43]. In particular,
if we consider the specific case where the scattering relation (3.6,3.7) can be
described by a beam splitter interaction (Vi = 0 for all i), corresponding to the
fully resolved sideband limit, as discussed in Section 1.2.4, unitarity implies the
sum rule (Ω > 0)

1 = η(Ω) +
∑
i ̸=s

|Ui(Ω)|2, (3.12)

where we have used the definition (3.8). Hence if we achieve unit signal trans-
fer efficiency η(Ω) = 1 the contribution from the noise sources (contained in
F̂(Ω)) must vanish and we have an ideal transducer. On the other hand if we
consider imperfect transducers, η(Ω) < 1, noise will necessarily enter. Since the
transducer connects vastly different frequency scales, we will have to consider
the different number of thermal excitations in the noise reservoirs, ni(Ω+ω0,i),
entering N(Ω), see Eq. (3.11). E.g., this is due to the vast gap between optical
(≳ 300 THz), mechanical and electrical frequencies (∼1 MHz – 10 GHz). For
this reason, maximizing η(Ω) will in general not lead to minimization of N(Ω)
and, hence, a trade-off has to be made between maximizing signal transfer ef-
ficiency η and minimizing the added noise N . Outside the resolved-sideband
regime, Eq. (3.12) generalizes to (Ω > 0)

1 = η(Ω) +
∑
i ̸=s

(
|Ui(Ω)|2 − |Vi(Ω)|2

)
,

allowing η(Ω) > 1 at the cost of amplification noise (as discussed in Section
1.2.4). This further emphasizes the above conclusion that maximization of η(Ω)
in itself is not a meaningful optimization strategy in general.

3.6 Transducer applications
Now that we have established the generic transducer parameters η(Ω) and N(Ω)
from the scattering matrix and discussed their general features in the previous
section, we will finally consider a number of transducer applications and their
figures of merit.

3.6.1 Heterodyne detection
As a particular application we first consider sensing of weak signals, e.g., de-
tection of upconverted electrical signals by optical means. We are interested
in measuring both quadratures of the incoming signal and will therefore con-
sider heterodyne detection. Alternatively if only a single quadrature is desired,
homodyne detection may be advantageous. Heterodyning relies on beating the
transducer output with a local oscillator (LO) of amplitude αLO = |αLO|eiθLO

at a well-defined frequency which we take to be at the center of the output band
ω0,e. With this choice the LO lies in between the two sidebands ω0,e ±Ω carry-
ing the information to be measured. For simplicity we confine our attention to
setups involving a single photo-detector as shown in Fig. 3.2a. At the detector
the associated photocurrent is given by

Î(Ω) ≈ α∗
LOâout,e(Ω) + αLOâ

†
out,e(−Ω), (3.13)
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α = |α|eiθLO
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ωLO = ω0,e
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T

Figure 3.2: a) Interferometric detection of the output of the transducer mixed
with a LO of frequency ω0,e via a beam splitter. In general the Fourier compo-
nent of the photocurrent I(Ω) at a frequency Ω will contain contributions from
both the upper and lower sideband. b) Entanglement generation by transducing
the output from two qubits to optical frequencies and interfering the signals on
a beam splitter.

here the LO phase determines the relative phase with which the sidebands enter
the linear combination. Assuming the transducer input to be confined to a
single band, the scattering relation (3.6) and (3.13) imply that this will result
in a simultaneous measurement of both input quadratures:

Substituting the former into the latter, we see that the spectral compo-
nent I(Ω) is phase preserving and directly proportional to the signal input
we want to measure Î(Ω) ∝ âs(Ω). Moreover, assuming an input coherent
state ⟨âs⟩ = α the signal-to-noise ratio is phase independent and is given by
δ(Ω − Ω′)|⟨Iα(Ω)⟩|2/⟨Iα=0(Ω)Iα=0(Ω

′)⟩ = |α|2/P where Iα is the current with
an incoming coherent state α and the power spectral noise density relative to
the signal is given by

P (Ω) =
1

2
+

1

|tθLO(Ω)|2

[
η(Ω)N(Ω) + η(−Ω)N(−Ω)

+
1

2
+

1− η(Ω) + η(−Ω)

2
+ Re

[
e−2iθLOf(Ω)

] ]
; (3.14)

here the transfer function is defined as

tθLO(Ω) ≡ e−iθLOUs(Ω) + eiθLOV ∗
s (−Ω), (3.15)

and

f(Ω)δ(Ω− Ω′) ≡ ⟨F̂(Ω)F̂(−Ω′)⟩+ ⟨F̂(−Ω)F̂(Ω′)⟩,

is the interference between the noise in the sidebands. We notice that both the
noise and efficiency has a phase dependence. This reflects the possible different
degree to which the signals and noise are mapped to different quadratures of
the output. If for instance the signal is mapped to one quadrature and the noise
to another, the phase of the local oscillator can be set so that the heterodyne
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detection does not see the noise. Such details depend on the specifics of the
transducer and we shall not enter this discussion here. In general, however,
the interference term can be bounded by the Cauchy-Schwarz inequality and by
setting the phase to have constructive interference for the signal we arrive at
(see Appendix B.3 for details)

P (Ω) ≤ 1

2
+√η(Ω)
√
N(Ω) + 1

2 [
1

η(Ω) − 1] +
√
η(−Ω)

√
N(−Ω) + 1

2 [
1

η(−Ω) + 1]√
η(Ω) +

√
η(−Ω)

2

.

(3.16)

Thus the sensitivity is primarily determined by a suitably weighted combination
of the added noisesN(±Ω), whereas the signal transfer efficiencies η(±Ω) mainly
enter into the vacuum noise contributions ∝ [η(±Ω)]−1 ∓ 1.

3.6.2 Deterministic transduction of coherent states
As an application for quantum information processing, we consider deterministic
transduction of an incident coherent state of amplitude α [27] as e.g., required
for continuous variable quantum information protocols. For simplicity, we only
consider the upper-sideband output of the transducer although a better perfor-
mance might in principle be achieved by also including the lower sideband. For
a spectrally narrow input pulse at the upper sideband, for which the transducer
parameters have the values η(+)

0 , N
(+)
0 , we find that the output has the same

noise in all quadratures and a resulting fidelity of

Fuc =
1

1 + η
(+)
0 N

(+)
0

exp

−|α|2
|1−

√
η
(+)
0 |2

1 + η
(+)
0 N

(+)
0

 , (3.17)

where we have included a phase rotation of the output that maximizes the
fidelity. Hence the parameters N (+)

0 and η
(+)
0 are again the crucial parameters

for describing how well the transducer performs. However, the input amplitude
|α| also enters Eq. (3.17) showing that larger amplitude states are more sensitive
to signal attenuation or amplification, η(+)

0 ̸= 1.

3.6.3 Discrete-variable transduction
We now turn to discrete variable photon counting of the output signal. The
role of the transducer in this case is to perform frequency conversion of each
photon. To this end, beam splitter interaction (Vi ≈ 0) is desirable since it
directly converts quanta from one frequency to another. We shall therefore
consider transducers which are reasonably sideband-resolved. Nevertheless non-
zero temperature as well as imperfect sideband resolution will still lead to noise
photons leaving the transducer giving rise to an effective dark count rate. As
opposed to the heterodyne measurement considered above, photon counting
is not mode-selective and will count photons of all modes impinging on the
detector. Using the scattering relation in Eq. (3.6) the dark count rate can be



3.6. TRANSDUCER APPLICATIONS 45

expressed as rN = η
(+)
0 N

(+)
0 B, where we have separated out the peak efficiency

η
(+)
0 and added noise N (+)

0 at that frequency and introduced

B =

ˆ
dΩ

2π

η(Ω)

η
(+)
0

N(Ω)

N
(+)
0

. (3.18)

If the added noise N(Ω) can be considered constant over the entire bandwidth of
the transducer, then B is just a measure of the bandwidth. On the other hand
B may deviate significantly from this if, e.g., the transducer involves near-DC
components with rapid variations in the thermal population near zero frequency.

We now consider an incoming temporal mode and express the annihilation
operator of the mode through its spectral decomposition âs =

´
hin(Ω)âin,s(Ω)dΩ.

Here âs obeys the desired discrete mode commutation relations given the nor-
malization convention

´
|hin(Ω)|2dΩ = 1. If we integrate over the entire out-

put at the upper sideband, the mode dependent efficiency is given by ηh =´∞
0
η(Ω)|hin(Ω)|2dΩ. Introducing the normalized mode function hout(t) for the

output and considering a single photon in the input, we may express the number
of photons counted during a time interval ∆T as

n̄out = η
(+)
0

(
ηh

η
(+)
0

ˆ ∆T

0

|hout(t)|2dt+N
(+)
0 B∆T

)
. (3.19)

Here the first term in the parenthesis represents the desired component. This
term is upper-bounded by unity, which can only be reached in the limit of a
long time interval ∆T . Hence the added noise relative to the signal is again
given by the added noise N (+)

0 , but now it is increased by a factor of B∆T ≳ 1,
since photon counters are not mode selective.

3.6.4 Entanglement generation
As an application for quantum information processing in the discrete variable
regime, we consider the remote entanglement of two, e.g., superconducting
qubits by transducing the signal to optical frequencies for long distance com-
munication as shown in Fig. 3.2b. A number of different protocols have been
suggested for this [52]. In particular protocols relying on a single click are ad-
vantageous for low η ≪ 1 since they give a higher success probability, whereas
two click protocols are advantageous in terms of the resulting fidelity. Optimiz-
ing the protocols in the presence of dark counts we find (see Appendix B.4 for
details)

F1c ≈ 1− 2

√
N

(+)
0 B∆T

F2c ≈ 1− 6N
(+)
0 B∆T (3.20)

for the one- and two-click protocols respectively. Here we have assumed η ≪ 1,
as is typical in schemes for long-distance communication using quantum re-
peaters, and that 1/∆T is small compared to the bandwidth, so that the the
pulse fits within both the spectral and temporal windows. As is evident, the
key quantity for the quality of the generated entanglement is the added noise,
whereas the efficiency of the transducer mainly enters into the success probabil-
ity.
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3.7 Concluding remarks
In this chapter we have given a generic characterization of time-stationary trans-
ducers in terms of signal transfer efficiency η and added noise N . We have
pointed out that the non-equilibrium character of transduction requires us to
make a trade-off in optimizing these quantities. By deriving the figures of merit
for various quantum optics applications in terms of η and N , we have clarified
the requirements on a transducer to perform efficiently in each of these con-
texts. This is important for a proper assessment of which applications a given
transducer is suited for. Importantly, the examples considered here show that
the added noise N often plays a more important role than the signal transfer
efficiency η in determining the performance.

The figures of merit derived here will be evaluated for example electro-
optomechanical transducer systems in Chapter 5 below.



Chapter 4

Electro-optomechanical
equivalent circuits for
transduction

The work presented in this chapter has been carried out in collaboration with
Albert Schließer, Jacob M. Taylor, and Anders S. Sørensen.

4.1 Introduction

In the previous chapter we gave a general treatment of transducers without
reference to the particulars of its individual components. The mathematical
description used there is a generic input/output scattering formalism. Hence-
forth, we will focus on electro-optomechanical realizations of transducers. In
this more specific context, we will introduce another unifying formalism: As
an analysis and design tool for such electro-optomechanical transducers, we de-
velop an equivalent circuit formalism, where the entire transducer is represented
as an electrical circuit. Thereby we integrate the transduction functionality of
optomechanical systems into the toolbox of electrical engineering allowing the
use of the well-established techniques of that field. This unifying impedance
description can be applied both for static (DC) and harmonically varying (AC)
fields, accommodates arbitrary linear circuits, and is not restricted to the re-
solved sideband limit. Furthermore, by establishing the quantized input/output
formalism for the equivalent circuit, we obtain the scattering matrix for linear
transducers using standard circuit analysis, and thereby have a complete quan-
tum mechanical characterization of the transducer (as discussed in Chapter 3).
Hence, this mapping of the entire transducer to the language of electrical engi-
neering both sheds light on how the transducer performs and can at the same
time be used to optimize its performance by aiding the design of a suitable
electrical circuit.

47
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4.1.1 Equivalent circuits and circuit theory

In the formalism to be developed here, the entire coupled system of electrical
modes, mechanical vibrations, and optical fields can be described in terms of a
linear electrical circuit obeying Kirchhoff’s laws. The formal reason that such an
equivalent-circuit formulation is possible is that all the involved systems are con-
veniently described in the Heisenberg-Langevin input-output formalism for cou-
pled oscillators. For an arbitrary linear circuit the Heisenberg-Langevin equa-
tions are nothing but a quantized version of Kirchhoff’s well-known circuit laws.
As a consequence all the involved degrees of freedom can be mapped to electri-
cal analogs thereby allowing a common equivalent circuit description of the full
electro-optomechanical system. Hence we may adequately describe the system
by Kirchhoff’s laws with impedances specified by the electro-optomechanical
couplings.

A similar representation of mechanical oscillation modes coupled to an elec-
trical circuit by an equivalent circuit element is already an established tool in the
MEMS community [53, 54], known as the Butterworth-van Dyke circuit, and has
also been applied in the context of cavity-electromechanics [14, 16]. We take this
idea further by making the following important extensions: Firstly, we derive
a quite general, yet simple, equivalent circuit for AC-driven electromechanical
(EM) systems. Secondly, we derive the impedance of an optical mode, allowing
us to construct a full electro-optomechanical equivalent circuit. Moreover, we
will discuss how to quantize the theory.

A quantum theory for electrical circuits can be established by applying the
canonical quantization procedure to appropriate charge and flux variables [55],
where a suitable set of canonical variables can be identified by graph theoretical
considerations [56]. Analogously to quantum optical input-output theory, an
open system description can be developed to account for the dissipation induced
by resistive circuit elements. While this approach fully accommodates non-
linear circuit elements such as Josephson junctions [57], we will in this article
restrict ourselves to effectively linear circuits (w.r.t. displaced variables). In this
case the Heisenberg-Langevin equations closely resemble the classical equations
of motion. By solving the classical equations of motion we can thus find the
complete scattering matrix representing the transducer. As a result we only need
to quantize the incoming and outgoing fields to get a complete characterization
of the transducer even in the quantum regime.

4.1.2 Structure of chapter

We will establish the electro-optomechanical equivalent circuit formalism gradu-
ally in the following steps: First we give an intuitive derivation of the mechanical
equivalent impedance for a DC-biased interface in Section 4.2. Next, we extend
the electromechanical equivalent circuit to the case of an AC electrical drive
in Section 4.3. Then, in Section 4.4, we supplement the impedance formal-
ism by introducing electrical input-output theory, which allows us to consider
the in- and outcoupling of signals and noise. Following that, we describe how
to quantize the theory in Section 4.5. Having established all aspects of the
electromechanical equivalent circuit, we then introduce the optical subsystem
by analogy in Section 4.6, thereby arriving at the full electro-optomechanical
equivalent circuit. We use this, in Section 4.7, to derive the general structure of
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the scattering matrix for electro-optomechanical transducers using impedance
rules. For demonstration we apply the formalism to a simple transducer in
Section 4.8. In Section 4.9 we derive a reduced equivalent circuit by adiabatic
elimination of the electrical and optical modes. Finally, we conclude the chapter
in Section 4.10 with an outlook.

4.2 Intuitive derivation of electromechanical equiv-
alent circuit for DC bias

We will now give a simple derivation of the equivalent circuit representation
of a mechanical system coupled to an electrical circuit based on the treatment
of capacitive electromechanical interfaces presented in Sections 1.2.3 and 2.2
above. Throughout the chapter we will consider only a single mechanical mode.
For simplicity we start with the case of DC-biased coupling, postponing the
AC-driven scenario until Section 4.3. In essence, we are looking for a way to
describe the linear response of the system depicted in Fig. 4.1a with a circuit
diagram consisting of standard components (capacitors, inductors, etc.). Con-
sider adding charge δQ to the equilibrium charge Q̄c,0 already present on the
EM capacitor of capacitance Cc ≡ Cc(x̄). In this case the additional charge
will introduce a force on the oscillator which pushes it towards a larger capac-
itance in order to reduce the charging energy. As a consequence the voltage
fluctuation induced on the capacitor δV (x) will be less than anticipated from
naive expectation δV (x̄) = δQ/Cc(x̄). Instead of modeling this as a capacitance
which depends on δx we instead introduce a fixed capacitance C̄c and model
the reduced voltage fluctuations as being due to a part of the charge −δQm not
sitting on the capacitor but instead being diverted to an equivalent mechanical
circuit branch in parallel to the coupling capacitor as shown in Fig. 4.1b [54].
Since the charge diverted to the parallel mechanical arm represents the mechan-
ical motion we expect it to obey similar equations of motion as the viscously
damped harmonic oscillator (2.7) considered in Section 2.2.2. Such an oscillator
is mathematically equivalent to a serial RLC circuit and we therefore tentatively
assume the mechanical arm to be simply a serial RLC,

Zm(ω) = −iωLm +Rm +
1

−iωCm
, (4.1)

where Lm, Rm, Cm are mechanical equivalent circuit parameters (see Fig. 4.1b).
Below we confirm this ansatz for the mechanical impedance and derive explicit
expressions for the individual components in terms of the known physical pa-
rameters.

4.2.1 Dynamical variables of the equivalent circuit

The (non-dissipative) Hamiltonian corresponding to the circuit in Fig. 4.1b is

H ′ =
(δQ+ δQm)2

2C̄c
+
δQ2

m

2Cm
+

ϕ2m
2Lm

=
δQ2

2C̄c
+

1

2

(
1

C̄c
+

1

Cm

)
δQ2

m +
ϕ2m
2Lm

+
δQδQm

C̄c
, (4.2)
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Cc(δx)

a)

Rm

b)

C̄c
Lm, ϕm

Cm

δQm

δQ

δQ

δQ+ δQm

Figure 4.1: a) Sketch of a mechanically modulated coupling capacitor, Cc(x),
where x is a suitable mechanical position coordinate. b) Equivalent circuit model
with a serial RLC circuit in parallel to the unmodulated coupling capacitor C̄c.

where δQm, ϕm are charge and magnetic flux variables of the virtual mechanical
branch. The first two terms of Eq. (4.2) can be regarded as the charging energy
of two capacitors, and the third term is the virtual magnetic field energy of
the equivalent mechanical inductor. The fourth term, which is essential for the
transducer, is a bilinear coupling between the mechanical oscillation and the
capacitor. We can check the ansatz (4.1) and find expressions for the equivalent
circuit parameters in terms of EM quantities by comparing Eq. (4.2) to the
mechanical Hamiltonian (2.5) for a single mode combined with the coupling in
Eq. (2.8) and the charging energy of the (steady-state) coupling capacitor C̄c,

HC +Hm,0 ≈ δQ2

2C̄c
+

1

2
mω2

m,Qδx
2 +

p2

2m
+GδQδx. (4.3)

This is the the linearized Hamiltonian describing the mechanical system and the
coupling capacitor, where in this chapter we use the notation δβj ↔ δx,mj ↔
m,Ceff ↔ Cc, Q̄(t) ↔ Q̄c(t) relative to that of Chapter 2. Here we have defined
a modified mechanical frequency ωm,Q,

ω2
m,Q = ω2

m,0 +
C̄cG

2

m
− ⟨Q̄2

c(t)⟩
2mC̄2

c

d2Cc

dx2

∣∣∣∣
eq.
, [DC bias] (4.4)

which is the “fixed charge” frequency ω′ (2.14) discussed in Section 2.2.4.3. We
will return to the interpretation of this frequency below.

We can now compare each of the terms of Eq. (4.2) with the corresponding
term in Eq. (4.3) (the two expressions are written in the same order). We
first compare the last (coupling) terms. These become identical if we make the
identification

δQm = C̄cGδx, (4.5)

that is, the charge variable of the virtual mechanical arm is proportional to the
mechanical displacement.

Given the above correspondence, we expect a similar relationship among the
canonical conjugates, ϕm ∝ p. Taking the time derivative we indeed find

p = mδẋ =
m

C̄cG
δQ̇m =

m

C̄cG
Im =

m

C̄cGLm
ϕm, (4.6)
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using ϕm = LmδQ̇m and Im ≡ δQ̇m. Equating the inductive energy term of
Eq. (4.2) with the kinetic of Eq. (4.3) and substituting using (4.6) we find an
expression for Lm

p2

2m
=

ϕ2m
2Lm

⇔ Lm =
m

C̄2
cG

2
. (4.7)

Substituting Lm into Eq. (4.6) we then find

ϕm =
1

C̄cG
p. (4.8)

Taken together, Eqs. (4.5,4.8) show that the dynamical variables of the equiva-
lent circuit {δQm, ϕm} are related to the original coordinates {δx, p} by a simple
canonical scaling transformation.

Finally, we determine the equivalent mechanical resistance Rm, which is
most easily done by comparing equations of motion (where damping can be
incorporated straightforwardly). Equating the viscous dissipation rate in the
mechanical Langevin equation (2.7) with ϕ̇m = −(Rm/Lm)ϕm + . . . we get

Rm = γm,0Lm =
mγm,0

C̄2
cG

2
, (4.9)

using the expression in Eq. (4.7) for Lm and denoting the intrinsic mechanical
damping rate γm,0. In the same way, the associated mechanical Johnson noise
is found by comparison with ϕ̇m = 2Vm + . . . to be

2Vm ≡ F

GC̄c
, (4.10)

where the factor of two has been included to conform with the electrical input-
output formalism to be presented in Section 4.4 below, cf. Eq. (4.33).

4.2.2 Effective mechanical resonance frequencies
In Section 2.2.4.2 we discussed a subtlety of the effective mechanical resonance
frequency regarding its dependence on the time-scale of the mechanical mode
(here represented by δQm) in relation to that of the electrical mode δQ. In
the present context of the EM equivalent circuit, this discussion comes out
naturally: Two different limits can be understood from Fig. 4.1b and Eqs.
(4.2), namely fixed voltage vs. fixed charge dynamics. Fixed voltage across
the terminals of Fig. 4.1b corresponds to the situation where the voltage bias
in the circuit acts much faster than the mechanical modulation, i.e. supplying
and absorbing charge instantaneously so as to maintain a fixed voltage. Hence
the voltage across the mechanical arm will in this case be independent of the
coupling capacitor arm; therefore we may read off the fixed voltage mechanical
resonance frequency as the resonance frequency of the mechanical branch of
Fig. 4.1b:

ω2
m,V =

1

LmCm
, (4.11)

sometimes referred to as the mechanical series resonance [54]. For given applied
voltage across the coupling capacitor the maximal mechanical response occurs
at ωm,V . If, on the other hand, the time-scale of mechanical modulation is much
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faster than that of δQ (thus preventing the voltage bias from reacting), we may
effectively set δQ→ 0 and the fixed charge mechanical resonance frequency will
be the resonance frequency of the entire loop in Fig. 4.1b in which case the
capacitances C̄c, Cm are added in series

ω2
m,Q =

1

Lm

(
1

C̄c
+

1

Cm

)
. [DC bias] (4.12)

This is sometimes referred to as the mechanical parallel resonance [54]. This is
the same relation obtained by equating the second terms in Eq. (4.2) and Eq.
(4.3). For a given current running into the (physical) coupling capacitor Cc(x),
the maximal mechanical response occurs at ωm,Q. By comparing Eqs. (4.11)
and (4.12) we see that the two limiting mechanical frequencies are related by

ω2
m,Q − ω2

m,V =
1

LmC̄c
=
C̄cG

2

m
, [DC bias] (4.13)

from which we conclude that ωm,Q ≥ ωm,V . The mechanical oscillator thus has
a different resonance frequency depending on the circuit to which it is coupled
(as we also concluded in Section 2.2.4). For instance if the bias voltage is applied
via a low-pass filter with cut-off frequency below the mechanical frequency (as
in Ref. [1]) this entails fixed charge conditions.

From the expression for ω2
m,Q in Eq. (4.4) and the relation in Eq. (4.13) we

can find an expression for ωm,V in terms of the known physical quantities

ω2
m,V = ω2

m,0 −
⟨Q̄2

c(t)⟩
2mC̄2

c

d2Cc

dx2

∣∣∣∣
eq.
, (4.14)

consistent with Eq. (2.16). Using Eqs. (4.7,4.11) we can then express the
mechanical capacitance through quantities which can be calculated from first
principles

Cm =
C̄2

c |G|2

ω2
m,Vm

. (4.15)

4.3 Electromechanical equivalent circuit for AC
drive

Above we have given an intuitive derivation of the equivalent circuit in the case
of a DC-biased capacitor. This allows us to describe how electrical signals are
converted into mechanical motion at the same frequency. The main purpose of
a transducer is, however, to convert signals from one frequency Ω to another
ωd±Ω by harmonically driving the system with a frequency ωd. In the following
we shall develop an equivalent circuit formalism to describe such a situation. To
this end we will consider a system corresponding to a low frequency mechanical
oscillator, e.g. in the MHz regime, driven by a high frequency bias field, e.g. in
the microwave regime.

When the capacitor is driven by an alternating voltage the charge on the
capacitor will take the form

Q(t) = Q̄c(t) + δQ(t) = Q̄c,0
(
e−iωdt + eiωdt

)
+ δQ(t), (4.16)
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as in Section 1.2.3. As previously, this amplitude should be found by self-
consistently solving for the equilibrium configuration of the electrical and me-
chanical system, and δQ(t) then represents the fluctuations around this value.

It will be convenient to work in the Fourier domain. Using that all charges,
currents, and voltages are real valued, we introduce the Fourier transform as
an integral over positive frequencies so that, e.g., the voltage fluctuations are
denoted by

δV (t) =

ˆ ∞

0

dω√
2π

[
V (ω)e−iωt + V ∗(ω)eiωt

]
(4.17)

with similar expressions for the charge δQ and current δI fluctuations as well as
the position δx and momentum p fluctuations. To proceed it is convenient not
to deal with the specifics of the rest of the circuit and we therefore replace it
with its Thévenin equivalent as shown in Fig. 4.2a, where the rest of the circuit
is represented by the ideal voltage source δV and the input impedance Z.

If we now consider the contribution to Kirchhoff’s voltage law coming from
the coupled EM system we have

δV (t) = ...+
Q(t)

Cc(x)
−
Q̄c,0

(
e−iωdt + eiωdt

)
C̄c

(4.18)

≈ ...+
δQ(t)

C̄c
+Gδx(t)

(
e−iωdt + eiωdt

)
(4.19)

Here we have in the last line expanded to lowest order in the fluctuations and
introduced the coupling constant G as defined in (2.9).

RmC̄c

Lm, ϕm

Cm

Qm

2VmVe,+

b)

Cc(x)

δV

x

C̄c

a)

Z

Ze,+

Ze,−

Ve,−

Qe,+

Qe,−

Figure 4.2: a) Thévenin equivalent circuit considered for the AC-driven sys-
tem. An ideal voltage source δV (ω) in series with an impedance Z(ω) drives
the coupled membrane capacitor system. b) Electromechanical equivalent cir-
cuit. The mechanical motion is replaced by the central loop current Im(Ω).
Through capacitors of capacitance C̄c the mechanical current is connected to
loop currents Ie,+ and Ie,− representing the upper and lower sidebands of the
electrical current, which are driven by voltage sources Ve,+(Ω) = δV (ωd + Ω)
and Ve,−(Ω) = δV ∗(ωd − Ω).

We will now assume that the mechanical component is the slowest frequency
scale in the problem so that we can neglect the mechanical response, δx(ω) ≈ 0,



54 CHAPTER 4. EOM EQUIVALENT CIRCUITS

at high frequencies ω > ωd, this amounts to the assumption that the mechan-
ical linewidth is narrow compared to ωd. With this assumption, the frequency
components of the voltage δV (ω) with ω > ωd are according to Eq. (4.19)
only coupled to the positive frequency component of the mechanical motion
δx(ω−ωd). Similarly, the negative frequency component of the voltage δV ∗(ω)
with ω < ωd is only coupled to δx(ωd − ω). We thus arrive at

δV (ωd +Ω) = Z(ωd +Ω)δI(ωd +Ω) +
δQ(ωd +Ω)

C̄c
−Gδx(Ω) (4.20)

δV ∗(ωd − Ω) = Z∗(ωd − Ω)δI∗(ωd − Ω) +
δQ∗(ωd − Ω)

C̄c
−Gδx(Ω)(4.21)

From this expression the principle of the transducer is apparent: the oscillating
drive connects different frequency components of the mechanical and electrical
circuit. Eqs. (4.20,4.21) also show that electrical frequency components are
mapped into the mechanical mode in a non-invertible, 2-to-1 manner. This
characteristic permits us to avoid the use of matrix-valued impedance functions
and is hence the key to establishing a relatively simple equivalent circuit for the
AC case below. The two components represent the two sidebands to which the
mechanical mode couples as illustrated in Fig. 1.3 on page 20. Essentially, as
we will see below, we may consider the upper and lower electrical sidebands,
(4.20) and (4.21), as distinct degrees of freedom coupling to the mechanical
mode. In terms of the generic transducer discussion in Section 3.3, these two
equations represent symmetrically placed bands that couple to a single band
centered around zero frequency as illustrated in Fig. 3.1b on page 39.

We now turn to the mechanical oscillator. By combining the interaction
Hamiltonian (2.8) with the mechanical Langevin equation (2.7) we may derive
the equation of motion for the mechanical momentum

ṗ = −mω2
m,V δx− γm,0p+ F (t)−G

(
e−iωdt + eiωdt

)
δQ− 2G2C̄cδx. (4.22)

In the above expression we have averaged over oscillations occurring with a
frequency 2ωd in accordance with the assumption that the mechanical response
only happens on a slower time scale. Compared to the DC-biased case, where
ωm,Q and ωm,V are related by (4.13), this averaging in the AC case gives a
factor of two appearing on the right-hand side of (4.13) and hence in the last
term of Eq. (4.22). This merely reflects the difference in the average of the
square of the charge oscillation which is ⟨Q̄2

c(t)⟩ = 2Q̄2
c,0 with the definition in

Eq. (4.16) whereas it is Q̄2
c,0 in the DC case. For later convenience we have here

introduced ωm,V in (4.22) from Eq. (4.14) which we will again identify as the
resonance frequency at fixed voltage. Converting Eq. (4.22) to Fourier space
and introducing the electrical analogs of the mechanical parameters as defined
in Eqs. (4.5,4.6,4.7,4.9,4.10,4.15) we find

2Vm(Ω) = −iΩLmIm(Ω) +RmIm(Ω) +
Qm(Ω)

Cm

+
2Qm(Ω) + δQ(ωd +Ω) + δQ∗(ωd − Ω)

C̄c
. (4.23)

The equation of motion for the momentum (4.23) resembles Kirchhoff’s Volt-
age Law, except for the mixing of different frequency components and the ap-
pearance of the complex conjugate. To absorb the differences in frequency and
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the complex conjugate we define new voltages and charges for the upper and
lower sidebands of the drive

Ve,+(Ω) = δV (ωd +Ω) Ve,−(Ω) = δV ∗(ωd − Ω) (4.24)
Qe,+(Ω) = δQ(ωd +Ω) Qe,−(Ω) = δQ∗(ωd − Ω). (4.25)

For the current we wish to retain the standard relation Qe,l = −iΩIl with l = ±.
We achieve this with the choice

Ie,+(Ω) =
Ω

ωd +Ω
I(ωd +Ω) Ie,−(Ω) = − Ω

ωd − Ω
I∗(ωd − Ω), (4.26)

where the minus sign in the last expression is a consequence of the complex
conjugation. Correspondingly we have the impedances

Ze,+(Ω) =
ωd +Ω

Ω
Z(ωd +Ω) Ze,−(Ω) = −ωd − Ω

Ω
Z∗(ωd − Ω). (4.27)

Here the combination of the negative sign and the complex conjugation in Ze,−
means that reactances retain their sign whereas resistances get a negative sign.
This reflects the instability associated with the lower sideband which gives rise to
parametric amplification. Furthermore the factor in front means that capacitors
keep their usual expression for the impedance 1/(−iΩC) whereas inductances
and resistances are scaled up to reflect that it is harder to induce a given current
at a higher frequency. Combining these definitions with the equations of motion
in Eq. (4.20), (4.21), and (4.23) we finally achieve

2Vm(Ω) =

[
−iΩLm +Rm +

1

−iΩCm

]
Im(Ω)+

2Im(Ω) + Ie,+(Ω) + Ie,−(Ω)

−iΩC̄c
(4.28)

Ve,+(Ω) = Ze,+(Ω)Ie,+(Ω) +
Ie,+(Ω) + Im(Ω)

−iΩC̄c
(4.29)

Ve,−(Ω) = Ze,−(Ω)Ie,−(Ω) +
Ie,−(Ω) + Im(Ω)

−iΩC̄c
. (4.30)

These equations of motion have a straightforward interpretation in terms of
the equivalent circuit diagram in Fig. 4.2b, where the mechanical system is
represented by the loop current Im in the central loop, whereas the outer loops
represent the upper and lower sidebands of the electrical system.

From the circuit it is immediately apparent that ωm,V = 1/
√
LmCm is the

mechanical resonance frequency in the limit where the capacitor is connected
to an ideal voltage source Ze,+ = Ze,− = 0, so that the outer arms are re-
placed by short circuits bypassing C̄c. On the other hand, for fixed charge
Ze,+, Ze,− → ∞ the mechanical resonance frequency at fixed charge ωm,Q is
shifted from ωm,V by twice the amount given in Eq. (4.13) since C̄c appears for
both sidebands (as remarked above). The limit of resolved sidebands is obtained
by taking Ze,−(Ze,+) → ∞ for red-detuned (blue-detuned) electrical drive (for
finite Ve,−, Ve,+).

This completes the derivation of the equivalent circuit. With the results
developed here the analysis of the coupled EM system can now be reduced
to finding voltages and currents of linear circuits. This gives a very direct
description of how voltage fluctuations are transduced to the mechanical system
and vice versa.
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Figure 4.3: Illustration of the scattering matrix S(ω) for an N-port system.

4.4 Electrical input-output formalism

In the preceding sections we have derived an equivalent impedance description
of electromechanical systems. We will now establish the equations that describe
how signals and noise enter and exit the system via its various ports, which
is essential to the analysis of transducers. Physically, the ports of the circuit
correspond to transmission lines, resistive elements and mechanical dissipation.
In order to have an equivalent circuit description we shall establish a common
mathematical description of these sources. Input-output formalism is a well-
established tool for describing open quantum optical systems [51] (see also Sec-
tion 3.3). A formally equivalent formalism is employed in the characterization
of radio-frequency and microwave circuits [58]. In the context of a linear N-port
network, with the i’th port connected to a transmission line of characteristic
impedance Ztx,i, the outgoing signals can be related to the incoming ones by
the classical scattering matrix

V⃗out(Ω) = S(Ω)V⃗in(Ω), (4.31)

where V⃗in/out(Ω) is a vector containing the complex amplitudes of the incoming
and outgoing traveling waves. Note that this vector should be understood in the
framework of the preceding section where Vin/out,i(Ω) is in a rotating frame wrt.
to the central frequency ωd,i (specific to subsystem i), and the lower sideband
enter as an independent input containing the complex conjugate of the voltage
δV ∗(ωd − Ω). This is foreign to ordinary linear circuit theory but arises here
due to the driven electromechanical nonlinearity and allows us to capture the
frequency conversion of the transducer. Once the scattering matrix S(Ω) in
(4.31) has been obtained, we have a full characterization of the dynamics of the
transducer. When the initial state of all the involved reservoirs is specified, the
scattering matrix can then be used to evaluate the performance of the transducer
for whichever application one is interested in, as discussed in Chapter 3.

To link the external input and output fields in V⃗in/out(Ω) to the internal
currents and voltages in the impedance formalism of the preceding two sections,
we must derive how the presence of a port in the circuit modifies Kirchhoff’s
equations. To this end, we observe that the voltage Vi across and the net current
amplitude Ii into the i’th terminal can be expressed in terms of the traveling
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VR

a) b)

Ztx = R

2Vin = VR

Figure 4.4: Illustration of the mapping between a) resistor R with Johnson volt-
age noise VR and b) a semi-infinite lossless transmission line with characteristic
impedance Ztx = R and incoming signal 2Vin = VR.

wave amplitudes at the terminal as

Vi = Vin,i + Vout,i

Ii =
1

Ztx,i
[Vin,i − Vout,i] . (4.32)

From Eqs. (4.32) we can derive the equivalent of a fluctuation-dissipation the-
orem for each port [55],

Vi = −Ztx,iIi + 2Vin,i. (4.33)

Eq. (4.33) is the key to extending Kirchhoff’s laws to an open system setting,
i.e. to derive the classical Langevin equations for linear circuits. Specifically,
for Kirchhoff’s Voltage Law for any loop including one of the ports, it tells us
that the port introduces dissipation corresponding to the real-valued resistance
R = Ztx,i, as well as a source term 2Vin,i. Conversely, as pointed out by Nyquist,
this implies that any resistive element R in the circuit can be mapped to an
equivalent semi-infinite transmission line of characteristic impedance Ztx,j = R
(for which we will specify a thermal mixed state for the corresponding source
term Vin,j); this idea is illustrated in Fig. 4.4. Hence, the resulting open circuit
formalism accommodates both noise and signal inputs exactly as its quantum
optical counterpart. From Eqs. (4.32) we can also derive the input-output
relations for the ports,

Vout,i = −Ztx,iIi + Vin,i, (4.34)

that allow us to determine the outgoing voltages.
With the above in place, we may, for an arbitrary N-port passive linear

circuit, use Kirchhoff’s circuit laws supplemented with Eqs. (4.33) and (4.34) to
derive the scattering matrix S(ω), Eq. (4.31). In practice this can, e.g., be done
by applying voltage and current division rules to the equivalent circuit diagram
under consideration as will be demonstrated for the full electro-optomechanical
circuit in Section 4.7.

4.5 Quantization of the equivalent circuit
Turning now to the quantization of the circuit theory, we remark that this task
is greatly facilitated by the great degree parallelism between the classical and
quantum cases. One way to see this is to note that for a bilinear Hamiltonian,
the Heisenberg-Langevin equations of the system are form-equivalent to their
classical counterpart, Hamilton’s equations of motion. As a consequence, the
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linearity of the equations entails that the method for deriving the scattering
matrix S(ω) in the classical case carries through quantum mechanically. Hence
the scattering matrix S(ω) is the same quantum mechanically as it is classically.
Put differently, due to the linearity the scattering matrix is independent of
the amplitude. Therefore the quantum mechanical equations of motion are in
the macroscopic correspondence limit for all amplitudes of the fields (within
the validity of the linearized theory), and must give the same as the classical
solution according to the correspondence principle. This circumstance simplifies
the problem considerably, as we do not have to explicitly quantize the internal
degrees of freedom of the circuit prior to solving for S(ω), which contains all
desired information about the dynamics of the system. Hence, the quantum
circuit theory simply consists of a scattering relation (of the form (4.31)) relating
the quantized input and output fields [55]. To complete the theory we thus have
to provide a quantum description of the incoming and outgoing modes.

To this end, we expand the quantized voltage amplitudes for the incoming
and outgoing fields into frequency components according to

V̂in/out,i(t) =

ˆ ∞

0

dω√
2π

√
ℏωZtx,i

2

[
b̂in/out,i(ω)e

−iωt + H.C.
]
, (4.35)

where the annihilation operators b̂in/out,i(ω) obey the commutation relations

[b̂in/out,i(ω), b̂
†
in/out,j(ω

′)] = δ(ω − ω′)δi,j , (4.36)

with all other commutators involving these being zero. Eqs. (4.35,4.36) specify
the correct ohmic noise operator that enters the quantum version of (4.33)
within the First Markov Approximation [46]. This expansion has the same
form as the Fourier transform introduced in Eq. (4.17), and hence we can
immediately identify the corresponding voltage operators which replace their
classical counterparts

Vin/out,i(ω) → V̂in/out,i(ω) =

√
ℏωZtx,i

2
b̂in/out,i(ω) (4.37)

V ∗
in/out,i(ω) → V̂ †

in/out,i(ω) =

√
ℏωZtx,i

2
b̂†in/out,i(ω). (4.38)

From these expressions we can then find the corresponding rotating frame oper-
ators entering into the equivalent circuit using Eq. (4.24). To characterize the
noise we will assume that all reservoirs are in their thermal state as specified by
the expectation values

⟨V̂ †
in,i(ω)V̂in,j(ω

′)⟩ = ℏω′Ztx,i

2
N̄i(ω

′)δ(ω − ω′)δi,j (4.39)

and ⟨V̂in,i(ω)V̂in,j(ω
′)⟩ = 0, where the thermal flux pr. unit bandwidth is

N̄i(ω) ≡ (eℏω/kBTi − 1)−1. The thermal expectation values of the mechani-
cal Johnson voltage Vm(Ω), (4.10), take on the same form as (4.39) with the
replacements Ztx,i → Rm, Ti → Tm [59].
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4.6 Optical impedance and full electro-optomechanical
equivalent circuit

In Section 4.3 we derived the equivalent circuit for an AC-driven electrome-
chanical interface involving an arbitrary linear electrical circuit. We now turn
to the optomechanical coupling, assuming we may consider a single optical cav-
ity mode whose frequency ωcav(x̂) is modulated by the same mechanical position
x̂ entering the electromechanical coupling (paralleling the discussion in Sections
1.2.2 and 1.2.3). Following the standard procedure [7], we take as our starting
point the quantum Hamiltonian for the optical mode,

Hopt = ℏωcav(x̂)â
†â. (4.40)

Applying a coherent optical laser drive of frequency ωl to the optical cavity
(represented by a Hamiltonian Hl), we expand the total Hamiltonian of the
optomechanical system H = Hopt +Hm,0 +Hl + . . . around the ensuing steady-
state configuration (x̄, α) (ignoring the terms in the Hamiltonian responsible for
coupling to the environment of the hybrid system). The linearized dynamics of
the displaced variables, x̂ = x̄ + δx̂ and â = α + δâ, is then described by the
Hamiltonian

HOM = ℏω̄cavδâ
†δâ+

[
δp̂2

2m
+

1

2
mω2

mδx̂
2

]
+HOM,int (4.41)

HOM,int ≡ GOMδx̂(e
iωlte−iθδâ+ e−iωlteiθδâ†)/

√
2 (4.42)

in terms of the steady-state cavity resonance ω̄cav, the optically shifted me-
chanical frequency ωm and the optomechanical coupling strength GOM (units of
energy per length)

ω2
m ≡ ω2

m,0 +
ℏ|α|2

m

d2ωcav

dx2

∣∣∣∣
x=x̄

, GOM ≡
√
2ℏ

dωcav

dx

∣∣∣∣
x=x̄

|α|, θ ≡ Arg[α].

(4.43)
The coupling strength GOM is related to the more familiar coupling rate gOM
between creation and annihilation operators that occurs in the following restate-
ment of (4.42),

HOM,int = ℏgOM(δĉ+ δĉ†)(eiωlte−iθδâ+ e−iωlteiθδâ†), (4.44)

where δx̂ = xZPF(δĉ + δĉ†) and xZPF ≡
√
ℏ/2mωm. Comparing (4.42) and

(4.44), the two optomechanical coupling parameters are seen to be related by

gOM = GOM/
√
4ℏmωm. (4.45)

The first and second terms of (4.41) are the “free-evolution” Hamiltonians of the
displaced optical and mechanical modes whereas the third term, HOM,int, is the
drive-enhanced linear coupling between them. In order to achieve equations of
motion equivalent to those governing the electromechanical coupling considered
in Section 4.3, we note that within the rotating wave approximation (RWA), we
may approximate the interaction Hamiltonian (4.42) as

HOM,int ≈ GOMδx̂(e
iωlt + e−iωlt)X̂, (4.46)
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where we have introduced the dimensionless light quadratures

X̂ ≡ (e−iθδâ+ eiθδâ†)/
√
2, P̂ ≡ (e−iθδâ− eiθδâ†)/(

√
2i), (4.47)

obeying [X̂, P̂ ] = i. Note that here we go in the opposite direction of what
is typically done in the RWA, where the standard procedure is to replace Eq.
(4.46) by Eq. (4.42). In optomechanics the RWA is typically a very good
approximation since the dynamics on the mechanical timescale 2π/ωm are much
slower than that of the optical drive 2π/ωl. Hence the starting point of the
derivation of the coupling assumed the RWA from the beginning, and there is a
priori no reason to prefer one form over the other. By choosing the form in Eq.
(4.46), however, the Hamiltonian linearly couples δx̂ to X̂ with strength GOM
in a manner similar to the linearized electromechanical interaction Hamiltonian
(1.9) considered above. With the form in Eq. (4.46) we can thus obtain the
equivalent circuit in a similar manner.

We also need to specify how the optical mode couples to its environment via
its loss and drive ports, as can be conveniently treated using quantum optical
input/output formalism. Traditionally this is again only discussed within the
RWA, and the microscopic details of the optical bath coupling is in general not
known, leaving it an open question how the bath couples to the quadrature
variables (X̂, P̂ ) [46]. Assuming linear coupling to the bath modes, however,
the precise microscopic model is unimportant within the RWA. Thus, in a spirit
similar to (4.46), this permits us to assume that the optical bath modes couple
to the quadrature X̂, resulting in the usual viscous damping and noise terms in
the equation of motion of the conjugate quadrature P̂

˙̂
X = ω̄cavP̂

˙̂
P = −ω̄cavX̂ − κP̂ +

√
2κP̂in + . . . , (4.48)

where κ is the decay rate of the optical mode and the operator P̂in represents
the noise and/or signal input leaking into the mode. The input operator P̂in
and its output counterpart P̂out can be expanded on a set of itinerant bosonic
modes in analogy to (4.35) as

P̂in/out(t) =

ˆ ∞

0

dω√
2π

√
ω

ω̄cav

[
âin/out(ω)e

−iωt + â†in/out(ω)e
iωt
]
, (4.49)

where we have introduced bosonic field operators obeying [âin/out(ω), â
†
in/out(ω

′)] =

δ(ω − ω′) and [âin/out(ω), âin/out(ω
′)] = 0. If P̂in is in a thermal state then

Eq. (4.49) represents an ohmic bath with the following expectation value in
Fourier space

⟨P̂in(ω)P̂in(ω
′)⟩ = ω′

ω̄cav
N̄opt(ω

′)δ(ω + ω′),

where in analogy to Eq. (4.39) we define N̄opt(ω) ≡ (eℏω/kBTopt − 1)−1 in
terms of the temperature of the optical system Topt. For all practical pur-
poses the magnitude of optical frequencies is such that |ℏω/kBTopt| ≫ 1, which
entails that to very good approximation we may take the optical noise to be
vacuum, N̄opt(ω) ≈ −Θ(−ω). For consistency with the conventions implicit
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in (4.47,4.48,4.49), the optical input-output relation reads (for ω > 0, ω < 0
simply yield the Hermitian conjugate equations)

âout(ω) = i

√
ω

ω̄cav

√
κe−iθâ(ω) + âin(ω). (4.50)

Having achieved optomechanical equations of motion equivalent to an ohmi-
cally damped serial RLC circuit capacitively coupled to a mechanical mode, we
may straightforwardly retrace the steps of Section 4.3 to derive an optomechan-
ical equivalent circuit. Rather than considering this on its own, we proceed
immediately to the transduction scenario of simultaneous electro- and optome-
chanical couplings. In this case the displaced variables δQ, δx, δa are defined
wrt. the equilibrium configuration of the 3-part hybrid system subjected to
simultaneous electrical and optical driving (we again neglect the higher har-
monics of the system response). Kirchhoff’s law for the mechanical loop (4.28)
then generalizes to

2Vm(Ω) =

[
−iΩLm +Rm +

1

−iΩC ′
m

]
Im(Ω)

+
2Im(Ω) + Ie,+(Ω) + Ie,−(Ω)

−iΩC̄c
+

2Im(Ω) + Io,+(Ω) + Io,−(Ω)

−iΩC̄opt
, (4.51)

whereas the effective electrical equations (4.29,4.30) are unaltered, but supple-
mented by the following optical counterparts

Vo,+(Ω) = Zo,+(Ω)Io,+(Ω) +
Io,+(Ω) + Im(Ω)

−iΩC̄opt
(4.52)

Vo,−(Ω) = Zo,−(Ω)Io,−(Ω) +
Io,−(Ω) + Im(Ω)

−iΩC̄opt
. (4.53)

Here we define optical upper/lower sideband quantities Vo,±(Ω), Qo,±(Ω), Io,±(Ω)
and Zo,±(Ω) analogously to the similar electrical quantities in Eqs. (4.24-4.27)
with the replacements ωd → ωl, Z → Zopt, δV → 2Vo,in, δQ → δQo, Io → δQ̇o
and according to the definitions

δQo ≡ ℏω̄cav
C̄cG

GOM
X̂ (4.54)

Zopt(ω) = −iωLopt +Ropt (4.55)

Lopt ≡
G2

OM

C̄2
cG

2ℏω̄3
cav

, C̄opt ≡ ℏω̄cav
C̄2

cG
2

G2
OM

, Ropt ≡ κLopt (4.56)

and
1/C ′

m ≡ 1/Cm − 2/C̄opt. (4.57)

The mechanical frequency ωm,V entering the definition of Cm contains static
shifts from both the EM and OM interaction, (4.14) and (4.43). Note that
the need to define the modified C ′

m (4.57) appearing in Eq. (4.51), which was
not required for the electrical coupling, can be traced to the difference in how
we define the coupling constant (whether we take derivatives of the resonance
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Rm

C̄c

Lm C ′
m

Qm

2VmVe,+

C̄c

Ze,+
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Ve,−

Qe,+

Qe,−

Vo,+
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Zo,−

Vo,−
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Qo,−

C̄opt

C̄opt

Figure 4.5: Electro-optomechanical equivalent circuit for a mechanical mode
acting as an intermediary between an arbitrary linear electrical circuit and a
single optical mode. Each of the electrical or optical sidebands are represented
by a loop current Ie,± or Io,± in the diagram and are coupled capacitively to
the mechanical loop current Im via C̄c or C̄opt. The effective voltage sources
Ve,±, Vo,±, Vm represent electrical, optical and mechanical noise or signal inputs.
Using standard circuit rules to determine the current in an external loop, ex-
pressed as a linear combination of voltage sources, we may determine the output
at the corresponding sideband.

frequency or the capacitance). Converting (4.49) to electrical units we obtain
the equivalent optical input and output voltage fields

Vo,in/out(t) ≡
√

ℏω̄cavRopt

2
Pin/out(t)

=

ˆ ∞

0

dω√
2π

√
ℏωRopt

2

[
âin/out(ω)e

−iωt + â†in/out(ω)e
iωt
]
, (4.58)

which is completely analogous to (4.35). We likewise convert the optical input-
output relation (4.50) into electrical units using (4.47,4.54,4.58),

Vo,out(ω) = −RoptIo(ω) + Vo,in(ω), (4.59)

completely analogous to its electrical counterpart, (4.34). Again these equations
can be interpreted as a combined electro-optomechanical equivalent circuit dia-
gram that generalizes Fig. (4.2). This equivalent circuit is shown in Fig. (4.5).

4.7 Scattering matrix
Here we will demonstrate how the scattering matrix of an electro-optomechanical
transducer can be determined by applying circuit rules to the generic equivalent
circuit in Fig. 4.5. This analysis will already determine the main features of the
scattering matrix even without specifying a particular circuit. Later, in Section
4.8, we will consider a concrete example transducer.
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Defining the mechanical impedance in the presence of OM coupling (compare
to (4.1)),

Z ′
m(Ω) ≡ −iΩLm +Rm +

1

−iΩC ′
m
,

a useful first observation based on Fig. 4.5 is that each sideband can be viewed
as adding additional loads to Z ′

m. The resulting effective mechanical impedance
Zm,eff determines how Im will respond to Vm. Applying standard impedance
combination rules to Fig. 4.5, we find Zm,eff(Ω) = Z ′

m(Ω) + ∆Z(Ω), where

∆Z(Ω) =
∑
l

[−iΩCl + 1/Zl(Ω)]
−1

=
1

−iΩ

(
2

C̄c
+

2

C̄opt

)
+
∑
l

[
− 1/(−iΩCl)2

Zl(Ω) + 1/(−iΩCl)

]
, (4.60)

where in the second line we have expressed the load from loop l as the serial
combination of the impedance of the relevant coupling capacitor Cl and an
impedance transformed version of Zl(Ω). Under circumstances where the elec-
trical and optical modes can be adiabatically eliminated (see Section 4.9 below
for details), the effective mechanical resonance frequency Ωm, i.e. including all
static and dynamical shifts from the electrical and optical interactions, can be
found from (4.60) as the solution to the equation

Im[Zm,eff(Ωm)] = 0. (4.61)

leading us to define the effective mechanical resistance

Rm,eff ≡ Zm,eff(Ωm), (4.62)

which yields the effective transducer bandwidth γm,eff ≡ Rm,eff/Lm in the adia-
batic regime.

Let us consider the current I(l)l′ in the loop of l′ induced by the voltage source
Vl. Note that Vl induces the voltage −Vl(Ω)(−iΩCl)−1/[Zl(Ω) + (−iΩCl)−1]
across its coupling capacitor Cl into the mechanical loop, adding to 2Vm(Ω).
Conversely, the mechanical loop current Im induces a voltage −Im/(−iΩCl′) in
loop l′. Thus, putting these three observations together, we find the admittance
relating I(l)l′ and Vl,

I
(l)
l′ (Ω) = Ql′(Ω)

[
Ql(Ω)

Zm,eff(Ω)
− iΩCl′δl,l′

]
Vl(Ω), (4.63)

where we have introduced the line shape functions

Ql(Ω) ≡ − (−iΩCl)−1

Zl(Ω) + (−iΩCl)−1
, (4.64)

which can be interpreted as the resonant voltage enhancement at Ω by the
resonator and sideband represented by loop l (as will become clearer in the
context of the example circuit considered below in Section 4.8). The factor
1/Zm,eff(Ω) in (4.63) is the effective admittance of the electro-optically loaded
mechanical mode defined in (4.60). The arguments above Eq. (4.63) also imply
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that the mechanical Johnson voltage Vm induces the current I(m)
l′ in loop l′ given

by

I
(m)
l′ (Ω) =

Ql′(Ω)

Zm,eff(Ω)
2Vm(Ω). (4.65)

The total current in loop l′ follows from (4.63,4.65) by linearity,

Il′(Ω) =
∑
l

I
(l)
l′ (Ω) + I

(m)
l′ (Ω). (4.66)

Since the Zl′(Ω) in general represents the combined impedance of several output
ports, we cannot proceed to determine the scattering matrix without specifying
the structure of the Zl′(Ω). For this reason, we now turn to a concrete example
of a transducer in the following section.

4.8 Example of application
To demonstrate the circuit formalism we now consider a specific example trans-
ducer with the aim of determining its scattering matrix. We choose the well-
known scenario of a single mechanical mode serving as the intermediary between,
on the one hand, a serial RLC circuit via its capacitance Cc(x) and, on the other,
a single mode of an optical cavity via a parametric dispersive coupling, see
Fig. 4.6 (other electrical circuit layouts will be considered in Chapter 5). The
serial RLC circuit contains two resistive loads, an ohmic loss resistance RLC
and a transmission line load given by its characteristic impedance Ztx; hence,
our example circuit is characterized by the following Thévenin impedance Z(ω)
entering the formalism through Eqs. (4.27) (see also Fig. 4.2a)

Z(ω) = −iωL+RLC + Ztx, (4.67)

where L is the inductance in the electrical circuit and, for later convenience, we
define ω̄LC ≡ (LC̄c)

−1/2.
Since the electrical circuit in itself only has one loop, Eq. (4.67) implies the

electrical coupling efficiency ηel ≡ Ztx/(RLC +Ztx). Each of the decay channels
induce a (Johnson) voltage source contributing to δV

δV (ω) = 2V
(LC)
e,in (ω) + 2V

(tx)
e,in (ω), (4.68)

as derived in Section 4.4. Analogously, we specify the optical mode to have two
(optical) decay channels, κ = κ0 + κext, where κ0 is the intrinsic loss rate and
κext is the coupling rate to the optical signal port. Hence, in our example, (4.55)
reads

Zopt(ω) = −iωLopt +R0 + Zext, (4.69)

where from (4.56) we have been led to define R0 ≡ κ0Lopt, Zext ≡ κextLopt, and
hence the optical coupling efficiency ηopt ≡ Zext/(R0+Zext) = κext/(κ0+κext).
Accordingly, the equivalent optical input and output voltages Vo,in/out each split
into two independent contributions of the same form (4.58) obtained by the
replacements Ropt → R0, Zext and introducing appropriate bosonic operators.

Having specified Z(ω), Zopt(ω) we are now in a position to determine the
output fields of the signal ports. The electrical output fields are given by the
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CcTx line
Ztx

+
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κ0L

γm,0

G
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a)

Ztx
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2V
(LC)
e,in

RLC

2V
(tx)
e,in

Z(ω), δV (ω)

b)
RLC

Figure 4.6: a) Example electro-optomechanical transducer: The electrical sub-
system is a serial RLC circuit with intrinsic resistance RLC loaded by a semi-
infinite transmission line of characteristic impedance Ztx. The circuit is capac-
itively coupled to a mechanical mode of intrinsic linewidth γm,0 with coupling
strength G. Analogously, the optical mode has an intrinsic loss rate κ0 and
a readout rate κext and couples to the mechanical mode with strength GOM.
b) The electrical part of a) that determines the Thévenin equivalent quantities
Z(ω) and δV (ω); these enter the formalism through Eqs. (4.24) and (4.27).
Each of the electrical loss ports has an associated voltage source contributing
to δV (ω), Eq. (4.68). Note that the subcircuit b) does not include the coupling
capacitor.

input-output relations (4.34) found above. For the serial RLC considered here,
(4.67), which only has one loop current, the electrical transmission line output
is given by

V
(tx)
e,out(ωd +Ω) = −ωd +Ω

Ω
ZtxIo,+(Ω) + V

(tx)
e,in (ωd +Ω) (4.70)

V
(tx)
e,out(ωd − Ω) =

ωd − Ω

Ω
ZtxI

†
o,−(Ω) + V

(tx)
e,in (ωd − Ω), (4.71)

in terms of the upper and lower sideband electrical loop currents Ie,±(Ω). Anal-
ogously, the optical readout is found by reexpressing (4.59) in terms of the upper
and lower sideband optical currents Io,±(Ω) to find (Ω > 0)

V
(ext)
o,out (ωl +Ω) = −ωl +Ω

Ω
ZextIo,+(Ω) + V

(ext)
o,in (ωl +Ω) (4.72)

V
(ext)
o,out (ωl − Ω) =

ωl − Ω

Ω
ZextI

†
o,−(Ω) + V

(ext)
o,in (ωl − Ω). (4.73)

Eqs. (4.70-4.73) provide the missing relations needed to determine the scat-
tering matrix; combining these with the solution for Il′(Ω), (4.66), we can find
the rows of the scattering matrix corresponding to the sidebands of the electri-
cal and optical transmission lines. Let us evaluate, e.g., the optical output at
the upper sideband (4.72) at the effective mechanical resonance frequency Ωm
defined in (4.61), assuming red-sideband operation ω̄LC −ωd = Ωm = ω̄cav −ωl.
The current Io,+, as can be evaluated via (4.66), depends on the functions Ql(Ω),
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(4.64). At the mechanical peak they take the values

Qo,+(Ωm) = −i ω̄cav

κ
≡ −iQcav, Qo,−(Ωm) ≈ iQcav

1− 4iΩm/κ
(4.74)

Qe,+(Ωm) = −i ω̄LCL

RLC + Ztx
≡ −iQLC, Qe,−(Ωm) ≈ iQLC

1− 4iΩmL/(RLC + Ztx)
,

(4.75)

where the approximations are valid in the limitQcav ≡ ω̄cav/κ,QLC ≡ ω̄LCL/(RLC+
Ztx) ≫ 1,Ωm ≪ ω̄cav, ω̄LC. These quantities signify the strength of the vari-
ous sidebands. Let us, in our example, assume the optomechanically resolved-
sideband regime, κ/(4Ωm) ≪ 1. From (4.74) we see that this implies that
|Qo,−(Ωm)/Qo,+(Ωm)| ≪ 1 and hence we may disregard the loop (o,−) alto-
gether (however, for applications where quantum noise is important, one has to
carefully consider to which extent this limit is fulfilled). In this scenario, we
arrive at a scattering relation of the form

â
(ext)
out (ω̄cav) = Stx,U b̂

(tx)
in (ω̄LC) + SLC,U b̂

(LC)
in (ω̄LC) + Stx,Lb̂

(tx)†
in (ω̄LC − 2Ωm)

+SLC,Lb̂
(LC)†
in (ω̄LC − 2Ωm)+Smĉin(Ωm)+Sext,U â

(ext)
in (ω̄cav)+S0,+â

(0)
in (ω̄cav),

(4.76)

where ĉin is the bosonic input operator for the mechanical noise. Defining the
dimensionless voltage mapping factor T from the mechanical loop to the upper
optical sideband,

T ≡ −2
ω̄cav

Ωm
Zext

−iQcav

Rm,eff
= iηopt

4g2OM
ω̄cavγm,eff

, (4.77)

in terms of gOM = GOM/
√
4ℏmΩm and γm,eff, defined below (4.62), the scatter-

ing matrix elements are

Sm = T

√
ΩmRm

ω̄cavZext
(4.78)

Stx,+ = T

√
ω̄LCZtx

ω̄cavZext
Qe,+(Ωm) Stx,− = T

√
(ω̄LC − 2Ωm)Ztx

ω̄cavZext
Qe,−(Ωm)

(4.79)

SLC,+ = T

√
ω̄LCRLC

ω̄cavZext
Qe,+(Ωm) SLC,− = T

√
(ω̄LC − 2Ωm)RLC

ω̄cavZext
Qe,−(Ωm)

(4.80)

Sext,+ = 1− 2ηopt − iQcavT S0,+ =
√
η−1
opt − 1 [−2ηopt − iQcavT ] , (4.81)

where the electrical sideband strengths Qe,±(Ωm) were calculated in Eq. (4.75).
All of the scattering elements contain a frequency and impedance conversion
factor of the form

√
ωinRin/ωoutRout; it is the ratio of the voltage zero-point

amplitudes, appearing as the prefactor in (4.35). For the optical sources this

factor takes the values unity and
√
η−1
opt − 1, respectively, as expressed in terms

of ηopt introduced below Eq. (4.69). The electrical and mechanical scattering
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Figure 4.7: Reduced electro-optomechanical equivalent circuit in which elec-
trical and optical modes have been adiabatically eliminated. It consists of an
effective mechanical loop of shifted resonance frequency loaded by a resistive
element for each sideband coupling. The resistances are positive for the upper
sidebands, REM/OM,+, and negative for the lower ones, −REM/OM,−, leading
to amplification effects. Each sideband coupling drives the effective mechanical
loop with a Thévenin voltage representing the noise and signal ports of that
subsystem. The readout of the system corresponds to the signal dissipated in
the various ports.

coefficients (4.78-4.80) consist only of single terms because for these sources only
a single path exists to the optical readout port ’ext’. In contrast, the effective
reflection coefficient for the ’ext’ port Sext,+, (4.81), results as the interference
between three paths and hence three terms; in order of appearance: Direct
reflection, reflection in the cavity, and reflection from the electromechanical
system. (In the case of S0,+, only the latter two apply.)

Given the scattering relation (4.76) we may calculate the transducer param-
eters η and N and, in turn, evaluate figures of merit for transducer applications
of interest as discussed in Chapter 3. Several examples of this will be given in
Chapter 5 below.

4.9 Adiabatic elimination of electrical and opti-
cal modes

In the preceding two sections, 4.7 and 4.8, we have demonstrated how the
electro-optomechanical equivalent circuit in Fig. 4.5 can be used to deduce
the elements of the scattering matrix. In the present section we will proceed
to derive an even simpler, reduced equivalent circuit (Fig. 4.7) by adiabatically
eliminating the electrical and optical modes in Fig. 4.5. Such elimination is
warranted when their loading of the mechanical mode has negligible frequency
dependence over the bandwidth of interest (typically, the effective bandwidth
of the transducer) and simply amounts to neglecting this weak dependence.

In the effective description that results (see Fig. 4.7), the electrical and
optical modes enter as effective loads attached to the mechanical loop. The
combined electrical and optical loading of the mechanical current loop ∆Z(Ω)
was derived in (4.60). The real part of ∆Z(Ω) adds resistance while the imagi-
nary part shifts the mechanical resonance frequency. The effective resistance of
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the mechanical loop thus has a contribution from each sideband of each coupled
subsystem, positive from the upper sidebands and negative for the lower ones

Rm,eff = Rm +REM,+ −REM,− +ROM,+ −ROM,−. (4.82)

These resistances REM/OM,± are the electrical equivalents of the EM/OM anti-
Stokes and Stokes rates for the scattering of mechanical phonons into the re-
spective sidebands as electrical/optical photons,

γEM/OM,± ≡ REM/OM,±/Lm. (4.83)

Moreover, each of the eliminated loops contribute a voltage source term to
the effective mechanical loop. However, we lump the two electrical and the two
optical contributions, respectively, into effective quantities Ve(Ω) and Vo(Ω). Fi-
nally, to be able to calculate the electrical and optical readout from the reduced
circuit, we need to obtain effective input-output relations. We will establish
these effective quantities and relations in what follows.

4.9.1 Elimination of optical mode

The optomechanical resistances in (4.60),

ROM,± ≡ ±Re
[
− 1/(−iΩmC̄opt)

2

Zo,±(Ωm) + 1/(−iΩmC̄opt)

]
, (4.84)

can be put on a more specific form since we are assuming a single cavity
mode, (4.55). Considering optical frequencies ω close to the cavity resonance,
|ω − ω̄cav| ≪ ω̄cav, the optical line shape is well-approximated by a Lorentzian.
Ignoring corrections of order Ωm/ωl, this allows us to reexpress (4.84) as

ROM,± = LmγOM,± (4.85)

γOM,± ≡ γm,0COML2
±, COM ≡ 4g2OM

γm,0κ
, (4.86)

where γOM,± are the OM anti-Stokes and Stokes rates in terms of the OM
cooperativity COM and the Lorentzian line shape strengths L± and phases θ±
at the upper/lower OM sidebands,

L(ω) ≡ κ/2

−i(ω − ω̄cav) + κ/2
, (4.87)

L± ≡ |L(ωl ± Ωm)|, θ± ≡ Arg[L(ωl ± Ωm)]. (4.88)

The effective optical Thévenin voltage Vo, which has contributions from Vo,±,
can be determined by voltage division as discussed in Section 4.7,

Vo(Ω) ≈ −iQcav[e
iθ+L+Vo,+(Ω)− e−iθ−L−Vo,−(Ω)], (4.89)

where we have ignored the frequency dependence of L(ω) over the bandwidth
of interest. For the typical example of an optical mode with two decay channels
considered in Section 4.8, Vo(Ω) in (4.89) can be stated explicitly in terms of the
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bosonic operators of the itinerant optical fields as (again ignoring corrections of
order Ωm/ωl)

Vo(Ω) ≈ −i2gOM√
κ

√
ℏmΩm/2

C̄cG
[eiθ+L+âin(ωl +Ω)− e−iθ−L−â

†
in(ωl −Ω)], (4.90)

where âin(ω) =
√
ηoptâ

(ext)
in (ω)+

√
1− ηoptâ

(0)
in (ω) is a linear combination of the

two optical input fields. The effective optomechanical input-output relation can
be found by combining (4.59) with (4.52,4.53) and the optical counterparts of
(4.26). For the readout port ’ext’ we find the outgoing field

â
(ext)
out (ωl +Ω) = ieiθ+

√
ηopt

√
2ROM,+

ℏΩm

Ωm

Ω
Im(Ω) + â

(eff)
in (ωl +Ω) (4.91)

â
(ext)
out (ωl − Ω) = −ieiθ−√ηopt

√
2ROM,−

ℏΩm

Ωm

Ω
I†m(Ω) + â

(eff)
in (ωl − Ω)(4.92)

where we have defined the effective optical noise operator

â
(eff)
out (ωl±Ω) ≡

[
1− 2ηoptL±e

iθ±
]
â
(ext)
in (ωl±Ω)−2

√
ηopt(1− ηopt)L±e

iθ± â
(0)
in (ωl±Ω).

(4.93)
Eqs. (4.91,4.92) show that the power dissipated from the mechanical loop into
the resistors ROM,± is proportional to ROM,±|Im|2 in the classical limit as one
would expect.

4.9.2 Elimination of electrical modes
We define the effective electromechanical resistances from (4.60) as

REM,± ≡ ± Re
[(
−iΩC̄c + 1/Ze,±(Ω)

)−1
]∣∣∣

Ω=Ωm

= ± Re
[
− 1/(−iΩC̄c)

2

Ze,±(Ω) + 1/(−iΩC̄c)

]∣∣∣∣
Ω=Ωm

, (4.94)

where the two expressions are related by the impedance transformation in (4.60),
allowing us (in terms of the calculation) to combine Ze,±(Ω) with the impedance
owing to C̄c either parallelly or serially. From these expressions we find in terms
of electrical frequencies ω and actual circuit impedances that

REM,± =
ωd ± Ωm

Ωm
Re
[(
−iωC̄c + 1/Z(ω)

)−1
]∣∣∣
ω=ωd±Ωm

=
ωd ± Ωm

Ωm
Re
[

1/(ωC̄c)
2

Z(ω) + 1/(−iωC̄c)

]∣∣∣∣
ω=ωd±Ωm

(4.95)

where Z(ω) is the arbitrary impedance illustrated in Fig. 4.2a. The denomina-
tors of the first and second expressions in Eq. (4.95) contain, respectively, the
parallel and serial combinations of Z(ω) with the coupling capacitor impedance
(complex conjugated and multiplied by −1 in the case of the lower sideband).

The Thévenin voltage Ve of the reduced circuit, Fig. 4.7, is easily derived in
terms of the Thévenin voltages Ve,± of Fig. 4.5 following Section 4.7,

2Ve(Ω) = Qe,+(Ω)Ve,+(Ω) +Qe,−(Ω)Ve,−(Ω). (4.96)
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For purposes of practical calculation, however, it is more natural to calculate
Ve directly without the intermediate step of determining Ve,±. This is done by
including the coupling capacitor C̄c in, e.g., Fig. 4.6b, leading to a new Thévenin
voltage δV ′(ω). In terms of this quantity, the electrical Thévenin voltage of the
reduced equivalent circuit is

2Ve(Ω) = δV ′(ωd +Ω) + δV ′∗(ωd − Ω). (4.97)

The effective electromechanical input-output relations can be determined as in
the optomechanical case once the electrical circuit has been specified.

The reduced equivalent circuit will be applied in the following chapter to
analyze various circuits.

4.10 Concluding remarks and outlook
In this chapter we have developed an equivalent circuit formalism for electro-
optomechanical transducers, thus unifying the elements of such hybrid systems
in a common framework native to electrical engineering while capturing all the
relevant physics. The scattering matrix S of the transducer can therefore be
determined by linear circuit analysis. The common language provided by the
equivalent circuit formulation is valuable in the cross-disciplinary work of im-
plementing the low-noise sensing capabilities and optical fiber compatibility
of optomechanics [1] in real-world applications such as nuclear magnetic res-
onance imaging (NMRI) and radio-astronomy. We have given a prescription
for quantizing the theory, thus making it applicable to analyzing transduction
in the quantum limit. This is important for assessing the potential of electro-
optomechanical transducers in future quantum communication applications in
optically-based networks [21]. The formalism was developed assuming capaci-
tive coupling to a single mechanical mode, but it should be straightforward to
generalize to inductive coupling [41] or situations involving several spectrally
well-separated mechanical modes.

In the following chapter we will further demonstrate the formalism by ap-
plying it in optimizing electro-optomechanical receiver circuits.



Chapter 5

Optimizing
electro-optomechanical
receiver circuits

The work presented in this chapter has been carried out in collaboration with
Albert Schließer, Jacob M. Taylor, and Anders S. Sørensen.

5.1 Introduction
In the course of the previous two chapters we have: 1) established how to char-
acterize transducers and assess their performance in various applications based
on their scattering matrix S (Chapter 3), and 2) we have derived an equiva-
lent circuit formalism that allows us to obtain S in terms of the (equivalent)
impedances of the various components of the transducer (Chapter 4), which can
be advantageous in the design of the transducer. Now is the time to put these
these tools to work by applying them to an actual design problem.

In this chapter we will consider a family of simple receiver circuits coupled
to an optomechanical system and apply the circuit formalism to determine the
transducer parameters η and N . On this basis we could optimize the circuit
design for, e.g., any of the applications discussed in Chapter 3. For specificity,
however, we will here focus on optimizing the circuit design of the receiver circuit
for indirect optical heterodyning of weak incoming electrical signals, consider-
ing both the high-temperature and quantum limits of operation. We will also
evaluate the performance in the deterministic state transfer scheme relevant for
quantum communication applications although without optimization.

5.2 Contents of chapter
First we review, in Section 5.3, the equivalent circuit formalism developed in
the previous chapter. Then, in Section 5.4, we introduce the family of electrical
receiver circuits with optomechanical readout that we will analyze: Serial and
parallel RLC circuits and a non-resonant RC circuit. Using the equivalent-
circuit formalism, we will in Section 5.5 derive the scattering matrix elements

71



72 CHAPTER 5. OPTIMIZING EOM RECEIVER CIRCUITS

relating signal and noise input fields to the output port, from which we extract
the transducer parameters η and N , the signal transfer efficiency and added
noise, in Section 5.6. We then specialize, in Section 5.7, to the application of
indirect optical heterodyne detection of electrical signals, for which we optimize
the circuit design over the family of receiver circuits. Afterwards, in Section 5.8,
we estimate the performance of the detection scheme using parameter values
inspired by recent experiments. As an example of a quantum application, we
also evaluate the unconditional state transfer fidelity. Finally, we conclude on
the results in Section 5.9.

5.3 Summary of equivalent circuit formulation

We will now demonstrate how the equivalent circuit formalism can be used to
determine and optimize the performance of electro-optomechanical transducers.
The present section provides an overview of the conceptual and calculational
steps leading from a given physical system (Fig. 5.1a) to the generic transducer
parameters η(Ω) and N(Ω) (Fig. 5.2b).

Fig. 5.1 illustrates the conceptual transition from electro-optomechanical
transducer system (a) to its full equivalent-circuit representation (b) as derived
in Section 4.6. In the latter, each sideband of each electromagnetic subsystem
is represented by a circuit loop with loop charge Qe,± or Qo,± connecting to the
central mechanical loop with loop charge Qm by capacitive couplings. The elec-
trical voltages Ve,±(Ω) and charges Qe,±(Ω) in (b) are proportional to the actual
Thévenin voltage and charge fluctuations in (a) on the the coupling capacitor
C̄c at the sidebands around the electrical drive ωd ±Ω (although with complex
conjugation applied to the lower sideband quantities). The optical equivalent
voltages Vo,± and charges Qo,±(Ω) are proportional to the optical input fields
and cavity field fluctuations at the upper/lower sidebands. Let us now con-
sider the mapping of the (actual) electrical circuit impedance in (a) into the
equivalent description of (b): The electrical impedance across the open termi-
nals shown in Fig. 5.1a (in absence of coupling to the optomechanical system
but with Cc → C̄c) maps into the equivalent circuit (Fig. 5.1b) as indicated
by the solid dots, but with a frequency conversion prefactor referencing the
electrical impedance to the mechanical frequency scale (relevant for AC-driven
scenarios). In the case of electrical AC drive, this frequency-converted electri-
cal impedance manifests itself a second time as the lower-sideband impedance
across the open dots in (b), where this time the electrical resistances enter with
a flipped sign, R → −R, giving rise to amplification effects. The impedance
contributions across the two pairs of dots represent the dynamical back-action
from the upper and lower electrical sidebands, respectively. Noting that the
equations of motion for an optical cavity mode are mathematically equivalent
to those of a serial RLC circuit, the couplings to the two optical sidebands enter
the equivalent circuit analogously to those of the electrical subsystem.

While the full equivalent circuit (Fig. 5.1b) is general and elucidates the
physics of the hybrid system, we may in the adiabatic limit work with the re-
duced equivalent circuit derived in Section 4.9 and shown in Fig. 5.1c. I.e.
its regime of applicability is when the frequency dependence of the electrical
and optical loading is negligible over the bandwidth of interest. In this case,
the loading of the mechanical loop by each sideband can be approximated as
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Figure 5.1: Relating component parameters to effective transducer parameters,
step by step: a) The electro-optomechanical apparatus is defined by its cir-
cuit layout and the parameters of its various components as well as coupling
and dissipation rates; the optical readout will in general feature two mechanical
sidebands at ωl ± ωm. b) Electro-optomechanical equivalent circuit for a me-
chanical mode acting as an intermediary between an arbitrary linear electrical
circuit and a single optical mode. Each of the electrical or optical sidebands
are represented by a loop charge Qe,± or Qo,± in the diagram and are coupled
capacitively to the mechanical loop charge Qm via C̄c or Copt. The effective
voltage sources Ve,±, Vo,±, Vm represent electrical, optical and mechanical noise
or signal inputs. Using standard circuit rules to determine the current in an
external loop, expressed as a linear combination of voltage sources, we may
determine the output at the corresponding sideband. c) By eliminating the
electrical and optical loops in b), a reduced equivalent circuit for the transducer
is achieved in the weak-coupling regime. It consists of an effective mechanical
loop of shifted resonance frequency loaded by a resistive element for each side-
band coupling. The resistances are positive for the upper sidebands, REM/OM,+,
and negative for the lower ones, −REM/OM,−, leading to amplification effects.
Each sideband coupling drives the effective mechanical loop with a Thévenin
voltage representing the noise and signal ports of that subsystem. The readout
of the system corresponds to the signal dissipated in the various ports.
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Figure 5.2: a) By applying voltage division rules to the reduced equivalent
circuit, Fig. 5.1c, we may obtain the transfer functions that relate voltage
sources to the fluctuations they induce at each port; these are exactly the entries
of the scattering matrix S(ω). b) From the particular row of the scattering
matrix S(ω) corresponding to the desired output port, we can extract the signal
transfer efficiency η(ω) and the added noise spectral density N(ω); focusing on
their peak values, we arrive at the effective transducer parameters from which
the figure of merit can be calculated.

an effective positive/negative resistance ±REM,± or ±ROM,± and a frequency
shift (which we combine into the net shift C ′

m → C̃m). The reduced electrical
Thévenin voltage is given by Ve(Ω) = δV ′(ωd+Ω)+ δV ′∗(ωd−Ω) where δV ′(ω)
is the Thévenin voltage across the coupling capacitor C̄c of the original circuit
as indicated by the open terminals in the example circuit of Fig. 5.1a. When
applicable, the reduced equivalent circuit (Fig. 5.1c) offers two (related) advan-
tages: It is a very compact and simple representation of the transducer as a
single damped, driven oscillator. As a result, calculating the system dynamics
is trivial once the quantities defining the reduced circuit have been determined.

In this chapter, we will assume the adiabatic limit where the reduced equiv-
alent circuit applies, i.e. that the effective width of the mechanical mode
γm,eff ≡ Rm,eff/Lm does not become comparable to the widths of the circuit
and cavity modes ((Ztx + R)/L and κ, respectively, in the notation of Fig.
5.1a). This is not a severe limitation when analyzing steady-state transduction
of itinerant fields because signals anyway cannot enter or leave the system faster
than dictated by the external coupling rates of the circuit/cavity (Ztx/L and
κext, respectively).

We will now outline the calculational procedure that we will follow in our
analysis of the receiver circuits below. Working in the adiabatic limit, we start
by establishing the reduced equivalent circuit (Fig. 5.1c) from the physical
system, e.g., Fig. 5.1a. Using the effective input-output relations connecting
the itinerant fields to the response of the reduced circuit loop (see Section 4.9),
we derive the scattering matrix S(Ω) relating incoming and outgoing itinerant
signal and noise fields (as illustrated in Fig. 5.2a and discussed in Chapter
3). Finally, by specifying the state of the noise reservoirs, we can extract the
effective transducer parameters η(Ω) and N(Ω) from the scattering matrix S(Ω),
yielding the generic transducer characterization illustrated in Fig. 5.2b. The
results η(Ω), N(Ω) and S(Ω) serve as the starting point for the optimization of
the receiver circuits.
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Figure 5.3: Electrical receiver circuits: A transmission line (characteristic
impedance Ztx) coupled into either a serial RLC (a), parallel RLC (b) via a
“loading” capacitor of capacitance Cl, or an RC circuit (c). The inductor is
assumed to be the primary source of ohmic resistance, RL, whereas the cou-
pling capacitor of steady-state capacitance C̄c is assumed lossless. The resonant
circuits (a&b) include a tuning capacitor of capacitance CT. In all three cir-
cuits we include a serial ohmic resistance Rmin at the input accounting for the
incoupling loss. The Thévenin impedance Z ′ and voltage δV ′ across the open
terminals in the circuit diagram determine the electrical loading and driving of
the mechanical mode across the two pairs of dots in the full equivalent circuit
(Fig. 5.1b) and the effective electromechanical resistances REM,± and Ve in the
reduced equivalent circuit (Fig. 5.1c).

5.4 Receiver circuits

The electrical circuits we will consider can be thought of as matching circuits
for the efficient coupling of the optomechanical system to the signal input. For
the purposes of our analysis below, we will assume the incoming signal (central
frequency ωs) to be supplied by a transmission line of characteristic impedance
Ztx ∈ R+. The signal will be assumed narrow with respect to the transducer
bandwidth and to be confined to the upper EM sideband. In addition, we assume
a semi-infinite transmission line so that signals reflected from the transducer are
simply lost. This conveniently separates the transducer design from the specifics
of the source, under the additional assumption that the effects of back-action and
noise from the transducer on the source are negligible (e.g. this is clearly valid
for radio-astronomical sensing applications, whereas the coupling to a single
super-conducting emitter may warrant a more detailed analysis).

In our analysis we will consider the three simple receiver circuits in Fig. 5.3:
The resonant serial (a) and parallel (b) RLC circuits as well as the non-resonant
RC circuit (c). Regarding the resonant circuits, the labels serial and parallel
are determined by the incoupling position of the electrical signal source, i.e.
the transmission line, relative to the inductor (inductance L) and the coupling
capacitor (steady-state capacitance C̄c). The combined (ohmic and/or radia-
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tive) resistance RL of the inductor is in either case assumed to be the dominant
electrical loss port, whereas we take the coupling capacitor to be lossless. We
also include an incoupling resistance Rmin to account for the residual ohmic
loss present even in absence of an inductor as in the RC circuit. Each sig-
nal or noise port has an associated voltage source representing its input. As
a means to the resonance frequency, a tuning capacitor of capacitance CT has
been included in the RLC circuits. We will use the symbol Ctot to denote the
total electrical capacitance in the resonant circuits, i.e., C(ser)

tot ≡ C̄c + CT and
C

(par)
tot ≡ C̄c +CT +Cl. Here, CT is a tuning capacitance serving the purpose of

aligning the electrical resonance with the signal frequency ωs. Based on these
definitions, we define the LC impedance Z0 ≡

√
L/Ctot for the resonant circuits,

and Z ′
0 ≡ 1/(ωsC̄c) for the RC circuit.

In comparing the circuits, we will always assume the values of ωs, Ztx, Rmin
and C̄c to be fixed. This corresponds to the situation of a given signal that we
wish to transduce using a given EM coupling interface, whereas we are free to
build any linear circuit around this interface. Also, we will implicitly assume the
drive-enhanced optomechanical (annihilation operator) coupling strength gOM
(units of s−1) [7] and the EM coupling strength G (units of V/m) [1] to be
constant across choices of optical detuning ∆ and circuit layouts. Effectively,
this amounts to assuming the same intracavity fields for different circuits. By
doing this, we ignore that the intracavity field may depend on detuning and
that the resonant enhancement of the drive field will be different for different
circuits. This is a meaningful comparison if the coupling strength is limited by
competing non-linearities and instabilities a realistic scenario. Fixed G then
corresponds to the EM biasing being limited by a maximal (rms) voltage that
can be applied as dictated e.g. by the mechanical pull-in instability. Moreover,
we assume the noise flux spectral densities ni of the dissipative channels in the
system to be given (evaluated at suitable frequencies). For the resonant circuits,
we will assume their resonance frequencies ωLC ≡ (LCtot)

−1/2 to align with the
electrical signal carrier ωLC = ωs. This still leaves the quantities L and Cl as
tunable parameters as will be discussed in detail when we optimize the circuits
in Section 5.7.

5.5 Deducing scattering matrix elements

We will now determine the scattering matrix elements starting from the circuit
diagrams in Fig. 5.3. The scattering matrix S(Ω) contains all information
about the transducer when combined with a specification of the input fields as
discussed in Section 5.3. A convenient way to derive S(Ω) is to use the reduced
equivalent circuit Fig. 5.1c. The quantities appearing in the reduced circuit,
which we need to determine in order to apply this method, are the Thévenin
equivalent voltage δV ′(ω) of the electrical subcircuit and the EM resistances
REM,± . These will be derived in the following two subsections, after which we
obtain the scattering matrix elements of interest in Subsection 5.5.3.

5.5.1 Thévenin voltages

Physically, the Thévenin voltage simply corresponds to the net force due to
electrical sources experienced by the (loaded) mechanical mode. We will deter-
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mine this for each receiver circuit as the voltage across the coupling capacitor,
i.e. the voltage across C̄c in absence of the mechanical loop, accounting for
the contributions from each of the “bare” voltage sources appearing in the re-
spective diagrams, Figs. 5.3. Each contribution can be determined by iterative
application of the voltage transfer rule for impedances. The sources entering
the Thévenin voltage are seen in Figs. 5.3: The Johnson noise of the inductor
VL and the incoupling resistance Vmin, and the incoming transmission line sig-
nal Vtx. In the following we will derive the transfer functions Ti(ω) for each of
these voltage sources for each of the three circuit designs, writing the Thévenin
voltage δV ′ as defined in Fig. 5.3 as the linear combination

δV ′(ω) = 2Ttx(ω)Vtx(ω) + 2TL(ω)VL(ω) + 2Tmin(ω)Vmin(ω). (5.1)

This determines the electrical voltage source Ve that appears in the reduced
equivalent circuit (Fig. 5.1c) via Eq. (4.97), which we reproduce here:

2Ve(Ω) = δV ′(ωd +Ω) + δV ′∗(ωd − Ω). (5.2)

Since, by the adiabatic assumption, the frequency dependence of the transfer
functions Ti(ω) is negligible over the transducer bandwidth, we see from Eq.
(5.2) that we will only need to evaluate Ti(ωd ± Ωm) in our calculations.

5.5.1.1 Serial RLC

Starting with the serial RLC, in which all electrical sources enter the diagram
equivalently (Fig. 5.3a), we find using the voltage division rule in terms of
impedances

T (ser) ≡ T (ser)
tx = T (ser)

L = T (ser)
min , (5.3)

T (ser)(ω) =
1/(−iωCtot)

1/(−iωCtot)− iωL+ Ztx +RL +Rmin

ω=ωLC−−−−−→ i
Z0

Ztx +RL +Rmin
,

(5.4)

in terms of the LC impedance Z0 ≡
√
L/Ctot introduced previously. Evaluating

the transfer function T (ser) at the electrical resonance ωLC = (LCtot)
−1/2 in Eq.

(5.4), we find that it equals the (loaded) electrical Q-factor. Since all electrical
inputs of the serial circuit have the same transfer function T (ser), signal and
ohmic noise enjoy the same enhancement and no other part of the transducer
may alter this one-to-one ratio between signal and ohmic noise. Hence the
resonance does not improve the input signal relative to the other electrical noise
sources; it does, however, increase the electrical signal relative to the optical
and mechanical equivalent voltages Vo and Vm (see Fig. 5.1c).

5.5.1.2 RC circuit

Now we consider the inductorless RC circuit (Fig. 5.3c) for which we define the
characteristic impedance Z ′

0 ≡ 1/(ωsC̄c) in terms of the electrical signal carrier
frequency ωs. In this case there is no inductor, and from the circuit diagram in
Fig. 5.3c, we find:

T (RC)(ω) ≡ T (RC)
tx = T (RC)

min , T (RC)
L = 0

T (RC)(ω) =
1/(−iωC̄c)

1/(−iωC̄c) + Ztx +Rmin

ω=ωs−−−→
(
1− i

Ztx +Rmin

Z ′
0

)−1

≈ 1,



78 CHAPTER 5. OPTIMIZING EOM RECEIVER CIRCUITS

where in the approximation we have taken the limit of short RC time of the
loaded circuit compared to the signal period, (Ztx + Rmin)C̄cωs = (Ztx +
Rmin)/Z

′
0 ≪ 1. We thus see that in this limit the input voltage is mapped with a

factor of unity, which is smaller than in the resonant case discussed above, since
we do not gain from the resonant buildup in the circuit. On the other hand this
circuit has the advantage that it completely gets rid of the inductor, whereby
this circuit has the minimum amount of electrical noise corresponding to the
reduced residual resistance Rmin. Furthermore this circuit has the additional
advantage that there is no need to tune the circuit into resonance.

5.5.1.3 Parallel RLC

Turning now to the parallel RLC circuit, we start by discussing the role of the
loading capacitor of capacitance Cl (see Fig. 5.3b). This capacitor is inserted in
the circuit to transform the transmission line impedance Ztx, thereby providing
a practical knob for tuning the effective loading of the circuit. This can be seen
by rewriting the admittance Yl of the arm containing these circuit elements

Yl(ω) = 1/Zl(ω) =

(
1

−iωCl
+ Ztx +Rmin

)−1

=
[ωCl(Ztx +Rmin)]

2

1 + [ωCl(Ztx +Rmin)]2
1

Ztx +Rmin
− iω

Cl

1 + [ωCl(Ztx +Rmin)]2
, (5.5)

showing that Re[Yl(ω)] can be tuned in the interval [0; 1/(Ztx +Rmin)] by scan-
ning Cl between the limits [ωCl(Ztx +Rmin)]

2 ≪ 1 and [ωCl(Ztx +Rmin)]
2 ≫ 1.

The latter limit amounts to removing the loading capacitor so that Re[Yl(ω)] =
1/(Ztx+Rmin), resulting in performance which we find to be essentially identical
to the inductorless RC circuit (see below). For this reason we focus on the limit
[ωCl(Ztx +Rmin)]

2 ≪ 1 in which case we may approximate Eq. (5.5) by

Yl(ω) ≈
[ωCl(Ztx +Rmin)]

2

Ztx +Rmin
− iωCl, (5.6)

which is equivalent to a resistance (Ztx + Rmin)/[ωCl(Ztx + Rmin)]
2 in parallel

to a capacitance Cl (assuming ωCl[Ztx + Rmin] can be taken constant over the
bandwidth of interest); this means that Cl combines in parallel with C̄c and CT,
as presumed in the definition of Ctot, and hence affects the circuit resonance
frequency ωLC. By similar steps we approximate the admittance YL of the arm
containing the inductor in the limit QL ≡ ωLCL/RL = Z0/RL ≫ 1 by

YL(ω) = 1/ZL(ω) = (−iωL+RL)
−1 ≈ RL

Z2
0

+ (−iωL)−1, (5.7)

which amounts to converting the serial inductive resistance RL into a parallel
resistance Z2

0/RL (ignoring a small shift in L of relative size 1/Q2
L, see Appendix

C.1). To get the most efficient transducer we are interested in overcoupling the
circuit by the transmission line (in some cases, coupling critically). From the
above expression we see that this requires Re[Yl(ωLC)] < Re[YL(ωLC)] since
these arms combine in parallel (see Fig. 5.3b). To achieve this, Eqs. (5.6,5.7)
imply that Cl must exceed

Ccrit =
C̄c + CT√
Ztx+Rmin

RL
− 1

. (5.8)
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For typical non-superconducting rf circuits RL is likely to be sizable and hence
this implies that Cl > C̄c + CT (for Ztx larger than but comparable to RL),
which would cause a large shift of the circuit resonance. To compare different
circuits we shall therefore assume that the sum of the capacitances Ctot is fixed
so that also the resonance frequency is fixed, but for the typical rf scenario
this entails Cl ≫ C̄c + CT. As we shall see this essentially renders the circuit
similar to a serial RLC circuit. In contrast, for superconducting MW circuit
which may have (Ztx+Rmin)/RL ≫ 1 the parallel RLC configuration allows for
overcoupling while keeping the loading capacitance small, Cl ≪ C̄c + CT.

Having discussed the role of Cl, we now turn to the transfer functions for the
parallel RLC circuit using the approximations (5.6,5.7) and assuming ωCl(Ztx+
Rmin) ≪ 1. Since Vtx and Vmin enter in series, we immediately have

T (par)
tx = T (par)

min .

The signal transfer function T (par)
tx is found as the ratio of the loading arm

admittance to the sum of all admittances Yl/
∑
i Yi:

T (par)
tx (ω) =

[ωCl(Ztx+Rmin)]
2

Ztx+Rmin
− iωCl

[ωCl(Ztx+Rmin)]2

Ztx+Rmin
− iωCtot +

1
−iωL + RL

Z2
0

ω=ωLC−−−−−→≈ −iωLCCl
[ωLCCl(Ztx+Rmin)]2

Ztx+Rmin
+ RL

Z2
0

. (5.9)

Assuming that the loading capacitance Cl can be varied at will, we consider
which value optimizes the magnitude of T (par)

tx (ωLC) to have the maximal trans-
fer. This is achieved at the critical coupling condition Cl = Ccrit, (5.8), yielding
(for fixed Ctot)

T (par)
tx (ωLC)

∣∣∣
crit.

= −i1
2

Z0√
RL(Ztx +Rmin)

, (5.10)

in magnitude this exceeds what is achieved with the corresponding serial circuit,
Eq. (5.4), by a factor greater than unity, ≈

√
(Ztx +Rmin)/RL/2 in the regime

Ztx ≫ RL, hence allowing for greater relative suppression of the mechanical
noise. Similarly, we find the transfer function of the inductor as YL/

∑
i Yi

T (par)
L (ω) =

1
−iωL + RL

Z2
0

[ωCl(Ztx+Rmin)]2

Ztx+Rmin
− iωCtot +

1
−iωL + RL

Z2
0

ω=ωLC−−−−−→≈ i/Z0

[ωLCCl(Ztx+Rmin)]2

Ztx+Rmin
+ RL

Z2
0

. (5.11)

From here we see that the ratio between the transfer functions for the inductive
Johnson noise and the transmission line signal is

T (par)
L (ωLC)

T (par)
tx (ωLC)

≈ (−iωLCL)
−1

−iωLCCl
=
Ctot

Cl
. (5.12)

Since the ratio (5.12) exceeds unity, the parallel RLC offers less electrical noise
suppression than its serial counterpart, for which the corresponding ratio (5.3)
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is unity. Eq. (5.12) approaches unity in the limit Cl ≫ C̄c + CT, whereas for
critical coupling Cl = Ccrit, (5.8), it takes the value

T (par)
L (ωLC)

T (par)
tx (ωLC)

∣∣∣∣∣
crit.

=

√
Ztx +Rmin

RL
.

For fixed circuit resonance frequency ωs, the electrical signal-to-noise ratio of
the parallel RLC approximately interpolates between that of the serial RLC in
the limit ωLCCl(Ztx+Rmin) ≪ 1 (and Cl ≫ C̄c+CT) and that of the RC circuit
when ωCl(Ztx +Rmin) ≫ 1.

In conclusion we thus find that choosing Cl = Ccrit, (5.8), in order to have
critical coupling, the parallel RLC circuit enhances the electrical signal relative
to the mechanical noise by the factor (5.10), but this comes at a similar cost
in the electrical noise from the inductor. On the other hand, taking Cl > Ccrit
we decrease the gain in the signal relative to the mechanical, but at the same
time we decrease the electrical noise from the inductor. Hence the value of the
coupling capacitor can be chosen to optimize the performance depending on the
dominant imperfection of the particular device at hand.

5.5.2 Electromechanical resistances, REM,±

Having determined the Thévenin voltages of the electrical circuits above, we
now turn to the second ingredient of the reduced equivalent circuit, the elec-
tromechanical resistances REM,±. These can be evaluated from the Thévenin
impedances of the electrical circuits using Eq. (4.95).

Considering first the resonant circuits, Fig. 5.3a&b, we note that their
Thévenin impedances Z ′(ω) include the coupling capacitor in parallel to the
remainder of the circuit. Hence, to relate to the notation of Section 4.9.2, we
have Z ′(ω) = [−iωC̄c + 1/Z(ω)]−1, where Z(ω) is the electrical impedance ex-
cluding the coupling capacitor, which determines Ze,± in the full equivalent
circuit (Fig. 5.1b). Then, in terms of Z ′(ω), Eq. (4.95) reads

REM,± =
ωd ± Ωm

Ωm
Re [Z ′(ω)]|ω=ωd±Ωm

.

Using this expression we find that the effective EM resistances for the resonant
circuits are given by

REM,± =
Z2
0

R
(X)
LC

·

{
δ+,± [DC bias]
ωd±Ωm

Ωm
[K(X)

± ]2 [AC drive]
, (5.13)

where the loaded LC circuit resistances are

R
(ser)
LC ≡ RL + Ztx +Rmin, R

(par)
LC ≡ RL + (Ztx +Rmin) (Cl/Ctot)

2
,

respectively, and we have defined K(X)
± ≡ |K(X)(±Ωm)| from the Lorentzian

K(X)(ω) for circuit ’X’ in analogy to the optical L(Ω),

K(X)(Ω) ≡
R

(X)
LC /2L

−i(ωd +Ω− ωLC) +R
(X)
LC /2L

, (5.14)
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valid for |ωd +Ω−ωLC| ≪ ωLC. Note that K(X)(ω) is closely related to the line
shape function Ql(Ω) of Chapter 4, see Eqs. (4.64,4.75). For the non-resonant
RC circuit we find the following resistances

R
(RC)
EM,± ≈ Ztx +Rmin

1 + (Ztx +Rmin)2/Z ′2
0

[AC drive], (5.15)

and likewise for DC bias except that in that case R(RC)
EM,− = 0.

The EM resistances are the electrical analogs of the anti-Stokes and Stokes
rates (4.83) for the scattering of a phonon into the upper and lower EM side-
bands, respectively, γEM,± ≡ REM,±/Lm. In terms of these rates, the net EM
broadening of the mechanical mode by the circuits is given by

ΓEM =

{
γEM,+ [DC bias]
γEM,+ − γEM,− [AC drive]

. (5.16)

5.5.3 Scattering matrix elements
Having determined the reduced Thévenin voltage Ve and the EM resistances
REM,±, we have now reduced the three electro-optomechanical receiver circuits
to the simple form of a driven, damped oscillator shown in Fig. 5.1c (the optical
equivalent components were derived in Section 4.9.1). It is therefore clear that
quantities of interest will share a common form. We will now derive the scat-
tering relation (3.6) giving the output field at the desired optical port in terms
of the various inputs and thereby explicitly determine the scattering matrix el-
ements of interest. To do so we combine the effective mechanical response as
described by the equivalent current,

Im(Ω) =
1

Zm,eff(Ω)
[2Ve(Ω) + 2Vo(Ω) + 2Vm(Ω)] ,

with the effective OM input-output relations, Eqs. (4.91,4.92); in terms of the
quantized source terms this yields

â
(ext)
out (ωl +Ω) = ieiθ+

√
ηopt

√
2ROM,+

ℏΩm

Ωm

Ω
2
V̂e(Ω) + V̂o(Ω) + V̂m(Ω)

Zm,eff(Ω)
+ â

(eff)
in (ωl +Ω)

(5.17)

â
(ext)
out (ωl − Ω) = −ieiθ−√ηopt

√
2ROM,−

ℏΩm

Ωm

Ω
2
V̂ †

e (Ω) + V̂ †
o (Ω) + V̂ †

m(Ω)

Z∗
m,eff(Ω)

+ â
(eff)
in (ωl − Ω),

(5.18)

where the itinerant electrical (5.2), optical (4.90), and mechanical input fields
enter via (Rtx ≡ Ztx)

V̂e(Ω) =
∑

i∈{tx,L,min}

[
Ti(ωd +Ω)

√
ℏ(ωd +Ω)Ri

2
â
(i)
in (ωd +Ω)

+ T ∗
i (ωd − Ω)

√
ℏ(ωd − Ω)Ri

2
â
(i)†
in (ωd − Ω)

]
(5.19)



82 CHAPTER 5. OPTIMIZING EOM RECEIVER CIRCUITS

V̂o(Ω) = −i2gOM√
κ

√
ℏmΩm/2

C̄cG
[eiθ+L+â

(opt)
in (ωl +Ω)− e−iθ−L−â

(opt)†
in (ωl − Ω)],

(5.20)

V̂m(Ω) =

√
ℏΩRm

2
â
(m)
in (Ω), (5.21)

where the optical input operator â(opt)
in (ω) ≡ √

ηoptâ
(ext)
in (ω) +

√
1− ηoptâ

(0)
in (ω)

is a linear combination of the two decay channels of the cavity and the effective
optical noise operator â(eff)in is defined in Eq. (4.93). Eqs. (5.17-5.21) are
effectively a statement of the two columns in the scattering matrix S(Ω) that
relate the two optical output sidebands â(ext)

out (ωl ± Ω) to all the inputs of the
system.

To calculate the peak signal transfer efficiencies η(±)
0 (as defined via Eq.

(3.8)), we only need to track how â
(tx)
in (ωd + Ω) maps into the optical output

sidebands, i.e. two particular elements of S(Ω). Let us now consider these
matrix elements in detail as an example. From the Eqs. (5.17-5.19) we find (as
always assuming the incoming electrical signal to be confined to the upper EM
sideband)

â
(ext)
out (ωl +Ω) = iei(θ++ϕ+)√ηoptηel

Ωm

Ω

2
√
ROM,+REM,+

Zm,eff(Ω)
â
(tx)
in (ωd +Ω) + noise

(5.22)

â
(ext)
out (ωl − Ω) = −iei(θ−−ϕ+)√ηoptηel

Ωm

Ω

2
√
ROM,−REM,+

Z∗
m,eff(Ω)

â
(tx)†
in (ωd +Ω) + noise,

(5.23)

where we have introduced the electrical coupling efficiency (for the upper EM
sideband) as

ηel ≡
ωd +Ωm

Ωm

|Ttx(ωd +Ωm)|2Ztx

REM,+
. (5.24)

This is the fraction of the electrical loading caused by the transmission line and,
conversely, the efficiency with which transmission line signals can be mapped
into the system relative to the electrical noise sources. Eqs. (5.22,5.23) reflect
the simplicity of the reduced equivalent circuit, Fig. 5.1c. We may eliminate the
electrical units in these equations by introducing the EM and OM anti-Stokes
and Stokes rates (4.83), γEM/OM,± ≡ REM/OM,±/Lm,

â
(ext)
out (ωl +Ω) ≈ iei(θ++ϕ+)√ηoptηel

√
γOM,+γEM,+

−i(Ω− Ωm) + γm,eff/2
â
(tx)
in (ωd +Ω) + noise

(5.25)

â
(ext)
out (ωl − Ω) ≈ −iei(θ−−ϕ+)√ηoptηel

√
γOM,−γEM,+

i(Ω− Ωm) + γm,eff/2
â
(tx)†
in (ωd +Ω) + noise,

(5.26)

where we for simplicity have made the mechanical narrow-band approximation,
|Ω − Ωm| ≪ Ωm. The scattering matrix elements in Eqs. (5.25,5.26) have the
following straightforward interpretation: Transmission line signal at the upper
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sideband couples at rate ηelγEM,+ into the mechanical mode, whose response
is governed by the detuning Ω − Ωm and effective width γm,eff and is read out
optically at rates ηoptγOM,± at the upper/lower sideband. Note that the lower
optical sideband reads out the Hermitian conjugate of the transmission line input
operator. The remaining coefficients of the scattering relation (5.17-5.21) can
be put on a similar form (with the exception of the optical-to-optical elements,
see discussion below Eqs. (4.81) in Section 4.8).

5.6 Calculating transducer parameters η and N

The scattering relation derived above, given by Eqs. (5.17-5.21), can be used to
determine the transduction for all frequency components within the mechanical
bandwidth. Henceforth we will, however, restrict our attention to the transducer
peak, corresponding to input signals that are narrow compared to the transducer
bandwidth. Hence, now that the scattering relation has been established, we
can extract the (peak) transducer parameters η(±)

0 and N (±)
0 at the upper/lower

output sideband as defined in Section 3.4.

5.6.1 Peak signal transfer efficiency, η(±)
0

First of all, Eqs. (5.25,5.26) allow to us to directly read off η
(±)
0 (3.8), and

hence the peak signal transfer efficiency into the upper/lower OM sideband for
the circuits takes the common form,

η
(±)
0 = ηoptηel

4γOM,±γEM,+

(γm,0 + ΓOM + ΓEM)2
. (5.27)

in terms of the cavity-mechanical anti-Stokes/Stokes rates, γEM/OM,±. The net
EM and OM broadening are given by

ΓEM/OM ≡ γEM/OM,+ − γEM/OM,−. (5.28)

ηel/opt in (5.27) are the cavity coupling efficiencies which determine the fraction
of the signal in the cavities that makes it into the desired channel as opposed
to being dissipated into the cavity loss channels, i.e. a fraction 1 − ηel of the
electrical cavity signal will be dissipated ohmically, see Eq. (5.24). Analogously,
a fraction 1 − ηopt of the signal in the optical cavity will be dissipated into
loss channels. In the notation of Fig. 5.1a), the optical coupling efficiency is
ηopt = κext/(κext + κ0) = κext/κ.

Eq. (5.27) is valid for arbitrary degree of sideband resolution as determined
by the ratio of the sideband separation 2Ωm to the respective circuit and cavity
linewidths. In the regime of resolved EM and OM sidebands operated red-
detuned by −Ωm, we observe that ΓEM/OM → γEM/OM,+, thereby recovering
the situation described by Eq. (1.2) in Section 1.1.2. Hence, under these cir-
cumstances, we get a transfer efficiency η(+)

0 , (5.27), only limited by ηelηopt in
the impedance-matched, overdamped regime γOM,+ = γEM,+ ≫ γm,0. Outside
the resolved sideband regime, however, the net cavity-mechanical broadening
ΓEM/OM (5.28) also has a negative contribution from γEM/OM,− leading to am-
plification effects whenever we have γEM,− > 0 and/or γOM,− > 0. This means
that η(±)

0 can exceed ηelηopt (and possibly even exceed unity), but this comes
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at the price of amplification noise and small bandwidth as discussed previously.
The quantities ηel, γEM,+,ΓEM in (5.27) depend on the circuit in question and
will be presented below in Table 5.1.

5.6.2 Added noise, N (±)
0

We now turn to the second transducer characteristic, the added noise N flux
per unit bandwidth referenced to the input, (3.9), focusing on its values at
the transducer peak of the upper/lower output sideband N

(±)
0 . To determine

these, we combine the scattering functions of the noise inputs into the optical
output port, implicitly given by Eqs. (5.17-5.21), with the thermal expectation
values of the input operators, see Eqs. (3.10,3.11), under the usual assumption
of uncorrelated inputs. In the DC-driven or AC-driven EM resolved-sideband
limit we find that for all circuits the added noise can be described by

N
(±)
0 =

Rmin

Ztx
(nmin(ωd +Ωm) + δ−,±) +

RL
Ztx

|TL|2

|Ttx|2
(nL(ωd +Ωm) + δ−,±)

+
1

γEM,+ηel
[γm,0 (nm(Ωm) + δ−,±) + γOM,∓] . [EM RSB] (5.29)

If the EM sidebands are not fully resolved additional electrical noise contri-
butions will arise, as discussed previously. If we assume that the mechanical
frequency is much smaller than the drive frequency Ωm ≪ ωd and take the high-
temperature limit for the circuit kBTcirc ≫ ℏ(ωd +Ωm) ⇔ ni(ωd +Ωm) ≫ 1, in
which ⟨δâ(i)†in (ω)δâ

(i)
in (ω′)⟩ ≈ ⟨δâ(i)in (ω)δâ

(i)†
in (ω′)⟩ ⇒ ni[ωd + Ωm] + 1 ≈ ni[ωd +

Ωm], then we may approximate ni(ωd−Ωm)+1 ≈ ni(ωd−Ωm) ≈ ni(ωd+Ωm) ≈
ni(ωd) in Eq. (3.11), whereby in the fully EM unresolved-sideband regime (5.29)
is replaced by1

N
(±)
0 ≈ ntx(ωd − Ωm) + 2

Rmin

Ztx
nmin(ωd) + 2

RL
Ztx

|TL|2

|Ttx|2
nL(ωd)

+
1

γEM,+ηel
[γm,0nm(Ωm) + γOM,∓] , [EM unRSB] (5.30)

the first term being the tx line noise impinging at the lower electrical sideband.
The result (5.30) determines the added noise for the EM unresolved-sideband
regime in the classical, high-temperature limit. It shows that in this case the
Johnson noise contribution is essentially doubled compared to the sideband-
resolved case (5.29) (assuming the difference in drive enhancement to be unim-
portant).

Another regime of interest is that of low-temperature circuits, potentially
near the quantum ground state. Working in this regime, it is important to note
that the EM sideband resolution will determine the Johnson noise contributions
to N (±)

0 that persist even at absolute zero temperature T → 0, where all ni → 0.
In this limit, e.g. for red-detuned operation (both electrically and optically),

1The different frequency arguments for the thermal electrical occupancies have been chosen
for didactical reasons although within the approximations stated above they are indistinguish-
able: We write ntx(ωd −Ωm) to indicate that this is the noise from the lower sideband of the
tx line. Since the other sources, e.g., nL have contributions from both sidebands ωd ± Ωm,
we make the symmetric choice ωd.
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N
(+)
0 will be bounded from below by the squeezed vacuum contribution from

the lower electrical sideband. For AC drive where we can ignore corrections of
order Ωm/ωd by assuming ni(ωd+Ωm) ≈ ni(ωd−Ωm) ≈ ni(ωd), we find for the
resonant circuits (assuming Rmin ≪ Ztx)

N
(+)
0 ≈

(
1

ηel
− 1

)[
1 +

K2
−

K2
+

]
nL(ωd) +

K2
−

K2
+

ntx(ωd − Ωm) +
1

ηel

K2
−

K2
+

+
1

γEM,+ηel
[γm,0nm(Ωm) + γOM,−] , (5.31)

N
(−)
0 ≈

(
1

ηel
− 1

)[
1 +

K2
−

K2
+

]
nL(ωd) +

K2
−

K2
+

ntx(ωd − Ωm) +

(
1

ηel
− 1

)
+

1

γEM,+ηel
[γm,0 (nm(Ωm) + 1) + γOM,+] , (5.32)

where K± are electrical sideband strengths defined in Eq. (5.14). Considering
the electrical and mechanical contributions in Eqs. (5.31,5.32), we notice that
the finite-temperature contributions, i.e. those proportional to ni for some i, are
the same for the two sidebands, (±). Thus, in the high-temperature limit where
all ni ≫ 1 we have approximate equality between the EM contributions to N (±)

0

at the upper and lower sidebands, N (+)
EM,0 ≈ N

(−)
EM,0. The vacuum contributions of

Eqs. (5.31,5.32), that persist even when all ni → 0, are different, however. The
asymmetry between the third terms in Eqs. (5.31,5.32) is due to our assumption
that the upper electrical sideband contains signal whereas the lower contains
noise and the convention that the input of the former does not contribute to
N(Ω).

5.7 Optimizing heterodyne detection sensitivity
P

As mentioned above, to consider a specific application we will optimize the
electro-optomechanical receiver circuits for the optical detection of transduced
electrical signals. We now specify the homodyne detection scheme that we will
apply to the optical output of the transducer (see Fig. 5.4). An important
first consideration is how the electrical input signal is mapped to the optical
sidebands. As mentioned previously, we will restrict the discussion to narrow
electrical input signals (wrt. the transducer bandwidth) with carrier frequency
at the upper EM sideband. A transducer in the OM resolved-sideband regime
will simply translate the signal spectrum by adding an optical carrier frequency
and subtracting an electrical ditto (with some gain and added noise), yielding an
output spectrum as in Fig. 5.4b. Outside the resolved-sideband regime the sig-
nal spectrum will be mapped into two optical sidebands, which are in some sense
scaled mirror images of one another (see Fig. 5.4c). As will be demonstrated
below, the two-sideband (optical) homodyne measurement depicted in Fig. 5.4c,
where the LO frequency is in between the sidebands ωLO = (ω+ + ω−)/2, col-
lects the same quadrature information from the transducer output as would a
direct electrical heterodyne measurement corresponding to Fig. 5.4b with ωLO
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LO

Asymmetric BS

αLO

freq.
ωLO < ω+

b) c)

freq.
ωLO = (ω+ + ω−)/2

ω+ ω+ω−

a)

Figure 5.4: Illustration of homo- and heterodyning setups involving a single pho-
todetector. a) The optical transducer output is combined with a local oscillator
(LO) field using a highly asymmetric beam splitter; b) Heterodyning of a single
isolated sideband at ω+ using a LO at some ωLO < ω+ causing the admixture of
vacuum noise. The measurement b) simultaneously captures both quadratures
at the cost of an extra quantum of vacuum noise; c) Two-sideband homodyning
using a LO frequency in between the sidebands at ω±, ωLO = (ω+ + ω−)/2.

representing an electrical LO (but, crucially, the optical measurement allows
for increased sensitivity). This choice can be regarded as a practical method of
measuring both quadratures of the input signal simultaneously at the cost of
adding an additional quantum of vacuum noise. Note that this addition of a
quantum of vacuum noise is a fundamental requirement of quantum mechanics
for any simultaneous measurement of two conjugate quadratures.

We now turn to analyzing the signal and noise content of the homodyne
photo-current spectrum Î(Ω) obtained using a local oscillator state αLO of fre-
quency ωLO = ωl and phase angle θLO = Arg[αLO] (see Appendix C.2.1 for
details). Using the generic scattering relation (3.6) to substitute for âout,e in
Î(Ω) ≈ α∗

LOâout,e(Ω) + αLOâ
†
out,e(−Ω), we find for Ω > 0

Î(Ω)/|αLO| = ts,θLO(Ω)âin,s(Ω) + N̂θLO(Ω), (5.33)

with

ts,θLO(Ω) ≡ e−iθLOUs(Ω) + eiθLOV ∗
s (−Ω), (5.34)

N̂θLO(Ω) ≡ e−iθLOF̂(Ω) + eiθLOF̂†(−Ω), (5.35)

where ts,θLO(Ω) characterizes how the signal part of the sidebands interfere when
recombined in the homodyne measurement. Note that even though Î(Ω) con-
tains information from two output sidebands, Eq. (5.33) resembles Eq. (5.22)
for the upper sideband readout, Ω > 0. Thus, by including the homodyne
system in what we define as “the transducer”, its overall action is seen to be
phase-preserving. Moreover, the noise N̂θLO(Ω) is time-stationary as it inherits
this property from F̂ (see Appendix B.3). This constitutes the mathematical
derivation of the statement given previously in this section: That two-sideband
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homodyning of the transduced spectrum (Fig. 5.4c) contains the same quadra-
ture information as a direct heterodyne measurement of the input spectrum
(Fig. 5.4b). In the limit of no lower output sideband, V ∗

s (−Ωm) ≈ 0, i.e. a
sideband-resolved output cavity, the situation described by Eq. (5.33) becomes
simply a heterodyning scenario like in (Fig. 5.4b), as already discussed. Hence,
no matter the sideband-resolution, the photo-current Î(Ω), Eq. (5.33), consti-
tutes a simultaneous measurement of both quadratures of the input spectrum.

Each input quadrature of the form X̂s,φ(Ω) ≡ [e−iφâin,s(Ω)+e
iφâ†in,s(Ω)]/

√
2

is mapped to an output quadrature Ẑϕ,θLO(Ω) ≡ [eiϕÎ(Ω)+e−iϕÎ†(Ω)]/(2|αLO|)
for some ϕ and fixed θLO. Since the noise is time-stationary it will be quadra-
ture independent. We are now in a position to characterize the performance
of this “indirect heterodyne” measurement, by defining a figure of merit: The
sensitivity P (Ω) of the indirect heterodyne measurement to incoming signals of
the transducer2

P (Ω)δ(Ω− Ω′) ≡ 1

2
δ(Ω− Ω′) +

⟨N̂θLO(Ω)N̂
†
θLO

(Ω′)⟩+ ⟨N̂ †
θLO

(Ω)N̂θLO(Ω
′)⟩

2|ts,θLO(Ω)|2
,

(5.36)
i.e. the combined transducer and measurement noise referenced to the input;
the first term on the right-hand side of (5.36) is the fundamental vacuum noise
of the input field, ⟨X̂s,Θ(Ω)X̂s,Θ(Ω

′)⟩vac = (1/2)δ(Ω − Ω′), while the second
is the transducer noise, with N̂θLO(Ω) given by (5.35). Hence, P (Ω) quanti-
fies the minimum spectral density that must be present in the input for it to
be detectable. For example, for an incoming mode much narrower than the
transducer bandwidth, P (Ωm) is simply the minimum number of signal photons
that must be present in that mode for the signal to rise above the noise of the
combined transduction/homodyne measurement process. The added noise N (±)

0

was defined to be proportional to the excess number of photons leaving the up-
per/lower sideband as, e.g, measured by photon counting. The sensitivity P , on
the other hand, expresses the noise as measured by heterodyne measurements
and thus contain additional vacuum noise contributions.

Whereas the expression in Eq. (5.36) is completely general we shall now
simplify it for the reduced equivalent circuit in Fig. 5.1c. To this end we note
once more from the circuit that the ratio and phase of electrical signal relative
to electrical and mechanical noise sources are determined by the combination
Ve+Vm. Hence the ratio between the electrical and mechanical noise sources are
unaffected by the details of the optical readout process.3 From this it follows
that the electrical and mechanical contributions to N(Ω), Ne(Ω) and Nm(Ω),
are independent of optical parameters as seen in, e.g., the expressions in Section
5.6.2. In this sense, the only non-trivial sideband interference is between the
optical back-action and the imprecision shot noise. The choice of LO phase angle
θLO will therefore only influence the optical noise contribution to P . The above
considerations imply that the homodyne sensitivity P (Ω), (5.36), simplifies to

2The definition (5.36) given here is equivalent to the one in Section 3.6.1, as remarked in
Appendix B.3 above Eq. (B.13).

3The only exception is the Hermitian conjugation brought about by lower-sideband readout
that lead to the asymmetry in, e.g., the expressions for N

(±)
0 in Section 5.6.2.
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(see Appendix C.2.2 for details)

P (Ω)δ(Ω− Ω′) =

[
1

2
+ N̄e(Ω) + N̄m(Ω) +N

(h)
opt(Ω)

]
δ(Ω− Ω′). (5.37)

Here N̄e(Ω) ≡ [Ne(Ω) + Ne(−Ω)]/2 and N̄m(Ω) ≡ [Nm(Ω) + Nm(−Ω)]/2 are
the symmetrized versions of the Johnson and mechanical noise contributions
Ne(Ω), Nm(Ω) to N(Ω), whose peak values N (±)

0 ≡ N(±Ωm) we have already
determined in Section 5.6.2. The optical noise contribution N

(h)
opt(Ω) will be

considered later, in Section 5.7.2.
Since the EM noise is independent of the optical parameters, we can inde-

pendently analyze the classical regime where the transducer is dominated by
thermal EM excitation making the optical (vacuum) noise negligible in compar-
ison, N (h)

opt ≪ N̄e + N̄m; we will do this in Section 5.7.1. It remains to calculate
N

(h)
opt(Ω), which is the optical contribution to P (Ω), and we will do so in Section

5.7.2.1, allowing us to finally perform a full optimization of the sensitivity. We
note that the added optical noise N (h)

opt does depend on the electrical parame-
ters since the noise is referenced to the electrical input and since N (h)

opt includes
contributions from reflected input noise operators.

5.7.1 Classical regime: Electromechanical noise contribu-
tions

In this section we analyze the transducer sensitivity P derived above, in the
limit where the electrical and mechanical noise contributions dominate, i.e. at
high temperatures. We focus henceforth on the value of P at the transducer
peak, P0 ≡ P (Ωm). We note that in the high-temperature limit considered here
we have N̄i ≈ N

(+)
i ≈ N

(−)
i for i ∈ {e,m}, as noted previously in Section 5.6.2.

Hence, in this limit, the peak sensitivity (5.37) is simply given by

P0 ≈ Ne,0 +Nm,0,

where we have dropped the (±) for brevity as we will for the remainder of this
section.

To compare the different circuits, it is useful to introduce dimensionless EM
cooperativity parameters. We define the externally loaded cooperativities CEM
of the respective receiver circuits as the ratio of the on-resonant sideband loading
to Rm,

CEM ≡ REM,+

Rm

∣∣∣∣
K(X)

+ →1

, (5.38)

where REM,+ is given by Eq. (5.13) or (5.15). For the resonant circuits, Eq.
(5.13) implies that CEM can be expressed as

CEM =
Z2
0

Rm,0R
(X)
LC

·

{
1 [DC bias]
ωd+Ωm

Ωm
[AC bias]

, (5.39)

where Z0 ≡
√
L/Ctot and the loaded circuit resistances for the serial and parallel

circuits are given by

R
(ser)
LC = RL + Ztx +Rmin

R
(par)
LC = RL + (Ztx +Rmin) (Cl/Ctot)

2
. (5.40)
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CEM for the RC circuit follows from Eq. (5.15) and is given in Table 5.1 be-
low. We note that the loaded resistance R(par)

LC of the circuit resonance (5.40)
shows how the loading of the parallel circuit is controlled by the ratio Cl/Ctot.
Increasing the external loading of the circuit will tend to decouple it from the
mechanical mode, resulting in smaller coupling rates γEM,± and less broadening
ΓEM, (5.16). Since R(par)

LC < R
(ser)
LC , the parallel circuit offers larger transducer

bandwidths at the price of less electrical noise suppression. As a common refer-
ence for comparing different circuits, we define the serial RLC cooperativity in
the absence of the transmission line load (Ztx, Rmin → 0), so that R(ser)

LC → RL
from (5.39)

CEM,0 ≡ Z2
0

Rm,0RL
·

{
1 [DC bias]
ωd+Ωm

Ωm
[AC bias]

. (5.41)

From the results of Section 5.6.2 for the added noise contributions Ne,0, Nm,0
along with the transfer functions determined in 5.5.1, the definition of ηel and
the above expressions for CEM, CEM,0, we assemble a simplified overview of the
performance of the three receiver circuits in Table 5.1; the results apply to
AC-driven operation in the EM resolved-sideband regime and for DC-biased
operation. Considering the first set of rows in the table we include here, in
the first column, the electrical coupling efficiency to the signal port ηel and, in
the second, the EM cooperativity CEM characterizing the EM coupling strength
relative to the intrinsic mechanical dissipation rate. The second set of rows
states the ohmic and mechanical contributions to the added noise in the EM
resolved-sideband limit (or DC-biased operation).

circuit/fig. of merit ηel CEM

Serial RLC Ztx
Ztx+Rmin+RL

≈ 1− RL

Ztx
Cser
EM = CEM,0

RL

Ztx+Rmin+RL
≈ CEM,0

RL

Ztx

Parallel RLC Ztx
Ztx+Rmin+RL(Ctot/Cl)

2 Cpar
EM = CEM,0

RL

RL+(Ztx+Rmin)(Cl/Ctot)
2

RC Ztx
Ztx+Rmin

≈ 1 CRC
EM = CEM,0

RLZtx
Z2

0+Z
2
tx

circuit/fig. of merit Ne,0 Nm,0

Serial RLC RL+Rmin
Ztx

nohm(ωs)
nm(Ωm)
CEM,0

(Ztx+Rmin+RL)2

RLZtx
≈ nm(Ωm)

CEM,0

Ztx
RL

Parallel RLC RL(Ctot/Cl)
2+Rmin

Ztx
nohm(ωs)

nm(Ωm)
CEM,0

[Ztx+Rmin+RL(Ctot/Cl)
2]

2

ZtxRL(Ctot/Cl)
2

RC Rmin
Ztx

nohm(ωs)
nm(Ωm)
CEM,0

Z2
0+Z

2
tx

RLZtx

Table 5.1: Performance of the transducer for the three receiver circuits assuming
equal EM coupling strength G. The approximations are valid in the regime
Z2
0/RL ≫ Ztx ≫ RL ≫ Rmin. For the parallel circuit we assume ωCl(Ztx +

Rmin) ≪ 1 for frequencies ω of interest. CEM,0 is the serial RLC cooperativity
in absence of external loading by Ztx and Rmin, Eq. (5.41). For added ohmic
noise Ne,0 we assume DC or resolved EM sidebands (5.29) and that nohm(ω) ≡
nmin(ω) = nL(ω). ωs = ωLC = ωd +Ωm is the incoming signal frequency. More
general expressions for the added noise contributions can be found in Section
5.6.2.

Let us discuss the relative strengths of the three receiver circuits of Fig. 5.3.
The RLC circuits have the advantage of resonant enhancement of incoming sig-
nals, which is not a feature of the non-resonant RC circuit. On the other hand,
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the RC circuit does not suffer from the ohmic noise associated with the induc-
tive element of the RLC circuits. Comparing now the two resonant circuits,
serial vs. parallel, the latter offers tunable loading of the circuit by the trans-
mission line impedance (fixed) Ztx via the impedance transformation brought
about by the loading capacitor Cl. In the regime of interest, the parallel RLC is
equivalent to the serial RLC but with an effective transmission line impedance
Z ′

tx ∈ [0;Ztx]. As will emerge from the analysis, these characteristics imply
that the three receiver circuits each have their advantages in different parame-
ter regimes. To provide an overview, we may somewhat simplistically order the
three receiver circuits in the following “spectrum”: At one extreme, a critically
coupled parallel RLC provides maximal mechanical noise suppression (suited for
super-conducting circuits near the ground-state); as an intermediate choice, a
serial RLC overcouples the circuit by the transmission line, suppressing Johnson
noise, while still having good mechanical noise suppression due to resonant elec-
trical enhancement (suited for room-temperature rf or microwave circuits); on
the other extreme is the RC circuit with its near-perfect overcoupling (provided
that Rmin ≪ Ztx), but vanishing electrical electrical signal enhancement (suited
for room-temperature DC-biased interfaces or AC-driven interfaces with a cold
signal source in which large EM cooperativity CEM,0 is available).

The results in Table 5.1 show that formulas for the serial and parallel circuits
have the same form; i.e. the serial expressions hold for the parallel circuit under
the replacements

Ztx → Z ′
tx = Ztx(Cl/Ctot)

2, Rmin → R′
min = Rmin(Cl/Ctot)

2, (5.42)

where the primed parameters are the effective resistances for the parallel circuit.
The resistance Rmin has been included in the receiver circuits as the residual
resistance present even when there is no inductor. When comparing these cir-
cuits we will therefore mostly neglect Rmin by assuming Rmin ≪ Ztx, in which
case inspection of Table 5.1 shows the following useful relation for the resonant
circuits

CEM = CEM,0(1− ηel), (5.43)

where the part of CEM dependent on the transmission line load has been factored
out. These two observations, (5.42) and (5.43), will prove convenient shortly.

We will now consider how to minimize the sum NEM,0 ≡ Ne,0 + Nm,0 by
the choice of the appropriate circuit in the classical high-temperature limit,
where the optical (quantum) noise is negligible. To quantitatively compare the
circuits in a meaningful way, we must keep certain properties fixed. The relevant
properties are determined by practical restrictions or requirements and one can
envision a multitude of different optimization constraints. Two scenarios will
be discussed in some detail in the following subsections (both subject to the
general constraints stated in Section 5.4).

5.7.1.1 Optimal ηel for fixed L,RL

Here we will consider the case where the parameters of the inductor L,RL
are fixed, leaving as the only free parameter the loading capacitance Cl in the
parallel circuit, which controls the external loading efficiency of the circuit, ηel.
The matching condition of the resonance frequency of the RLC circuits to the
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incoming signal, ωLC = ωs, fixes the tuning capacitance CT for given Cl and
determines the range of the latter, Cl ∈ [0; (ω2

sL)
−1 − C̄c].

As noted above, if we for simplicity neglect Rmin ≪ Ztx, the expressions in
Table 5.1 for the parallel circuit become equivalent to those for the serial, but
with a variable loading, ηel. Conveniently, this allows us to treat the resonant
circuits simultaneously. Subsequently, we will compare their performance with
that of the non-resonant RC circuit.

To determine the optimal value of ηel for the resonant circuits, we will for
specificity consider the two limits of EM resolved and unresolved sidebands,
respectively (intermediate cases are a straightforward generalization). From
the EM added noise Ne,0 and Nm,0 in Table 5.1 (Eq. (5.30) for unresolved
EM sidebands), we have for the resonant circuits in the high-temperature limit
(using the appropriate formulas for ηel, CEM from Table 5.1 and assuming ωd =
ωLC − Ωm)

NEM,0 =


(

1
ηel

− 1
)
nohm(ωd +Ωm) + 1

CEM,0ηel(1−ηel)nm(Ωm), [EM RSB]

ntx(ωd − Ωm) + 2
(

1
ηel

− 1
)
nohm(ωd) +

1
CEM,0ηel(1−ηel)nm(Ωm), [EM unRSB]

(5.44)
where we have made the assumptions that Ztx ≫ Rmin and that the resistors
RL and Rmin are at equal temperatures, nohm(ω) ≡ nL(ω) = nmin(ω), allowing
us to neglect Rmin altogether; the EM resolved-sideband (RSB) regime is char-
acterized by R

(par)
LC /2L ≪ ωm, the EM unresolved-sideband (unRSB) regime

being the opposite limit. Choosing a large value of ηel is desirable for minimiz-
ing the ohmic noise, but this comes at the expense of a reduced cooperativity
and thus an increased mechanical noise. Minimizing NEM,0 as a function of ηel
the optimal value is found to be (henceforth denoting optimized quantities with
a ·̌ accent)

η̌el =


[
1 +

(
1 +

CEM,0nohm(ωd+Ωm)
nm(Ωm)

)−1/2
]−1

, [EM RSB][
1 +

(
1 + 2

CEM,0nohm(ωd)
nm(Ωm)

)−1/2
]−1

, [EM unRSB]
(5.45)

resulting in the minimum EM added noise

ŇEM,0 ≡ NEM,0|ηel=η̌el

=

2nm(Ωm)
CEM,0

(
1 +

√
1 +

CEM,0nohm(ωd+Ωm)
nm(Ωm)

)
, [EM RSB]

ntx(ωd − Ωd) + 2nm(Ωm)
CEM,0

(
1 +

√
1 + 2

CEM,0nohm(ωd)
nm(Ωm)

)
, [EM unRSB]

(5.46)
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Figure 5.5: Plots of optimal electrical coupling efficiency η̌el and minimal added
EM noise temperature ŤN ≡ ℏωs

kB
ŇEM,0 as a function of the unloaded EM co-

operativity CEM,0, Eq. (5.41). Parameters represent a room-temperature trans-
ducer in which a MHz mechanical mode coupled to a MHz circuit (top row),
DC-biased and hence automatically EM sideband resolved; and a GHz circuit
(bottom row) loaded by a cold source, ntx(ωd−Ωm) = 60, for both EM resolved
and unresolved sidebands.

We plot the minimum added noise and the optimal coupling efficiency η̌el,
(5.45) and (5.46), in Fig. 5.5 in terms of the noise temperatures TN. In the
classical regime this quantity is preferable over the sensitivity P0 (equivalent
flux of noise quanta per unit bandwidth) considered thus far; we define the
(peak) added noise temperature (referenced to the signal frequency ωs) as

TN ≡ ℏωs

kB
P0, (5.47)

with similarly definitions when referring to the individual contributions to P0.
The plots in Fig. 5.5 correspond to different scenarios of room-temperature
transducers. The top row plots represent a DC-biased transducer consisting
of 1 MHz mechanical and electrical modes, whereas the bottom row refers to
AC-biased transduction from a 1 GHz circuit via a 1 MHz oscillator. In both
cases, the noise temperature curves show two regimes as expected from (5.46):
For small values of CEM,0 ≪ nm(Ωm)/nohm(ωd) we should employ critical cou-
pling η̌el ≈ 1/2 and the noise temperature ŤN decreases as 1/CEM,0, whereas
for large values, CEM,0 ≫ nm(Ωm)/nohm(ωd), the circuit must be overcoupled
η̌el > 1/2 to gain further, leading to a decrease in ŤN of only ∝ 1/

√
CEM,0.

Fig. 5.5 demonstrates how a large electromechanical coupling as expressed by
the cooperativity CEM,0 allows for efficient transduction of electrical signals to
optical fields. At large CEM,0 the optimal coupling efficiency approaches unity
and correspondingly the added noise temperature decreases, possibly reaching
the quantum level where the added noise is less than a single photon, as will
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be analyzed in Section 5.7.2. For the MW-to-optical scenario (bottom row of
Fig. 5.5) we note, however, that the unloaded cooperativity must be rather
large CEM,0 ≳ 104 for the noise temperature TN to drop below room temper-
ature. Unresolved EM sidebands call for larger coupling efficiency η̌el than
the resolved-sideband case because of the additional Johnson noise from the
lower sideband, and thus an increased demand for suppression of Johnson noise.
Furthermore in the unresolved-sideband case, the added noise temperature is
ultimately bounded from below by the temperature of the lower sideband of the
input signal port, which does not diminish as we increase the cooperativity. Note
that the optimal coupling efficiency (5.45) is always in the range η̌el ∈ [1/2; 1].
Hence if mechanical noise is the bottleneck, nm(Ωm)/CEM,0 ≫ nohm(ωd), critical
coupling η̌el = 1/2 is optimal since it allows the largest suppression of the me-
chanical noise. On the other hand, for large unloaded EM cooperativity CEM,0
such that nm(Ωm)/CEM,0 ≪ nohm(ωd) we have η̌el → 1 reflecting a demand for
suppression of Johnson noise by overcoupling. We must have in mind, however,
that the resonant circuits considered here can at most provide a coupling effi-
ciency η

(ser)
el = Ztx/(Ztx + Rmin + RL). The values of CEM,0 for which we can

no longer attain ηel = η̌el using a resonant circuit are

η̌el > η
(ser)
el ⇒ CEM,0 >

[(
Ztx

RL +Rmin

)2

− 1

]
nm(Ωm)

nohm(ωd)
. (5.48)

It should also be noted that under the constraints considered here, Cl is bounded
from above such that the achievable values with the parallel circuit are ηel ≤
[1+ (RL/Ztx)(1− C̄c/Ctot)

−2]−1 < η
(ser)
el , so that there is, in general, also a gap

in the spectrum of achievable ηel separating the serial and parallel circuits.
The limit to the efficiency in Eq. (5.48) raises the question of whether we can

achieve less added EM noise than offered by the resonant circuits by discarding
the inductor which limits the efficiency and reverting to the non-resonant RC
circuit (Fig. 5.3c). While the latter can provide superior overcoupling, as in-
dicated by ηel in Table 5.1, it offers no resonant electrical signal enhancement
and thus less EM cooperativity. By comparing the expressions in Table 5.1
for NEM,0 ≡ Ne,0 + Nm,0 for the serial RLC against those of the inductorless
RC, we find that the latter adds less EM noise if (assuming 2RLZtx ≪ Z2

0 and
Rmin ≪ Ztx)

CEM,0 >

(
Z2
0

R2
L

− 2
Ztx

RL
− 1

)
nm(Ωm)

nL(ωd)
≈ Z2

0

R2
L

nm(Ωm)

nL(ωd)
= Q2

L

nm(Ωm)

nL(ωd)
, (5.49)

where QL ≡ Z0/RL is the Q-factor of the unloaded serial resonance. We plot
in Fig. 5.6 the smaller of the two values of Ne,0 +Nm,0 as well as the crossover
between the two regions for similar parameters as considered in Fig. 5.5. The
crossover between the two desired regimes of operation expressed in Eq. (5.49)
can be understood from the following argument: The appearance of Q2

L can be
understood noting that dissipated power goes as ∝ V 2 combined with the fact
that the relative voltage enhancement in switching from a serial RLC to the
RC circuit is 1/QL. In order for the RC scenario to be desirable the increased
mechanical load, which is now ≈ (RL/Ztx)(Q

2
Lnm(Ωm)/CEM,0) for Z0 ≫ Ztx,

must be lower than the ohmic load of the serial RLC circuit, (RL/Ztx)nL(ωd). It
is important to note that the ratio of bath occupancies appearing in Eq. (5.49)
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Figure 5.6: Optimal circuits for transduction when η̌el ≥ η
(ser)
el : Phase diagram

showing the respective parameter regimes where the serial RLC and RC circuits
add the least noise, NEM,0, assuming room-temperature operation T ∼ 300K
and Rmin ≪ Ztx. The left plot represents a typical DC-biased scenario with
Z0/Ztx = 20 and bath occupancies corresponding to Ωm = ωLC = (2π) · 1MHz
so that nm = nohm = 6 · 106. The right plot corresponds to a typical AC-driven
scenario with Z0/Ztx = 5 and frequencies Ωm = (2π) · 1MHz, ωd = (2π) · 1GHz,
resulting in nm = 6 · 106 and nohm = 6 · 103, with the assumption that the
transmission line noise at the lower EM sideband has been removed by filtering
or cooling. The black curves demarcates the transition between serial RLC and
RC being the preferable circuit layout according to Eq. (5.49). In interpreting
the plots it is important to keep in mind that increasing RL for fixed CEM,0
entails decreasing Lm in the same proportion (assuming γm,0 fixed, see Eq.
(5.41)) corresponding to increasing the EM coupling strength G.

in the high-temperature limit equals the ratio of the electrical and mechanical
frequencies, nm(Ωm)/nL(ωd) ≈ ωd/Ωm (assuming equal bath temperatures);
hence for DC-biased operation the ratio is unity, whereas in the AC-driven case
of, e.g., a GHz circuit coupled to a MHz mechanical mode this ratio will be
∼ 103, making mechanical noise suppression more important. It must also be
emphasized that for the AC-driven scenario, Eq. (5.49) assumes the serial RLC
circuit to be sideband-resolved and for the RC circuit that the noise of the lower
electrical sideband can be neglected ntx(ωd − Ωm) ≈ 0 or filtered away.

5.7.1.2 Optimal L for fixed Cl

While we have fixed the resonance frequency of the RLC circuits to the signal
frequency, ωLC = ωs, thus fixing the product of L and Ctot. Releasing the con-
straint of given L considered in the previous subsection, we may hence consider
what their optimal ratio is, i.e. optimize over Z0 ≡

√
L/Ctot. We will do so for

the serial and parallel circuits for fixed (effective) transmission line impedance,
Z ′

tx. For the analysis to have practical relevance, we must recognize that RL will
depend on L in some way, RL = f(L). Assuming, for specificity, that the induc-
tors available to us are characterized by a fixed quality factor QL ≡ ωsL/RL, we
have the relation RL = γLL. It follows that increasing L will lead to a decreas-
ing ηel, due to increased ohmic resistance, and an increasing CEM,0 reflecting
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stronger EM loading due to the increased RL for fixed QL. With this in mind,
we minimize NEM,0, Eq. (5.44), wrt. L and find that the optimum Ľ is given by
the root of a cubic polynomial. Expanding the result in the overcoupled limit
RL ≪ Z ′

tx we find (in the high-temperature regime, ni(ω) ≈ kBT/(ℏω), and
considering the EM resolved-sideband regime for specificity)

Ľ ≈ Z ′
tx

γL
3

√
2Rm

Z ′
txQ

2
L

(
1 +

1

3
3

√
2Rm

Z ′
txQ

2
L

)
, (5.50)

valid when 3
√

2Rm/(Z ′
txQ

2
L) ≪ 1. The EM coupling strength enters (5.50)

through Rm ∝ G−2, (4.9). Evaluating (5.44) at Ľ (keeping only the lowest order
term) yields the added noise minimum in the overcoupled limit RL ≪ Z ′

tx,

NEM,0 =
3

2
3

√
2Rm

Z ′
txQ

2
L

nohm[ωs].

It is important to note that the practically achievable range of L under the given
constraints is L ∈ [0; (ω2

s [C̄c +Cl])
−1] and may not include Ľ, in which case one

should choose the maximal value.

5.7.1.3 More general optimization

In the previous two subsections we have considered the minimization of the EM
added noise NEM,0 with respect to the component parameters Cl and L individ-
ually. If these values are both tunable, it is desirable to perform a simultaneous
optimization over (Cl, L). This simultaneous optimization is more cumbersome
and is better suited to be performed in the context of given experimental con-
straints, including a specification of the relation RL = f(L).

5.7.2 Quantum regime: Full minimization of the (peak)
sensitivity P0

Above we have found that the EM noise can ideally reach the quantum limit
P0 ∼ 1. At such low noise levels one should also include the optical noise and
minimizing the sensitivity requires a balance between the various noise sources.
To investigate this the optical noise N (h)

opt will be calculated in Subsection 5.7.2.1.
Having calculated this, we may perform the full minimization of the (peak)
sensitivity P0, as given by Eq. (5.37),

P0 =
1

2
+ N̄e,0 + N̄m,0 +N

(h)
opt,0 (5.51)

As discussed in Section 5.7, for the case of electrical-to-optical conversion
N

(h)
opt depends on electrical parameters (including ΓEM), whereas N̄e,0, N̄m,0 are

independent of optical parameters. Conveniently, this permits the following
optimization strategy: First, we minimize N (h)

opt,0 as a function of the OM co-
operativity COM for a given EM setup to obtain the minimum value Ň (h)

opt,0 in
terms of EM parameters. This will be done in Subsection 5.7.2.2 (in doing so
we assume COM to be freely tunable). Second, we minimize P0, (5.51), with
N

(h)
opt,0 = Ň

(h)
opt,0 which then only depends on EM parameters, i.e. electrical

parameters and choice of circuit design. This will be discussed in Subsection
5.7.2.3.
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5.7.2.1 Optical heterodyne noise N (h)
opt

In this section we will derive an explicit expression for the optical contribution
N

(h)
opt,0 to the (peak) homodyne sensitivity P0, Eq. (5.37). Before doing so, it

is in order to comment on how the present analysis relates to the discussion of
heterodyne detection already given in Section 3.6.1. There we derived an upper
bound for P expressible in terms of η and N by (pessimistically) assuming
constructive interference between the noise in the two sidebands. The precise
value of P depends on the actual interference, as is manifest in Eq. (3.14), but
this coherence information is lost when evaluating η and N . Hence, to obtain
the precise value of P , the transducer parameters η and N do not suffice.4

To determine N (h)
opt we must therefore return to the scattering relation for

Î(Ω), (5.33), and evaluate the optical contribution to P (Ω), Eq. (5.36),

N
(h)
opt(Ω)δ(Ω− Ω′) ≡

⟨N̂ (opt)
θLO

(Ω)N̂ (opt)†
θLO

(Ω′)⟩+ ⟨N̂ (opt)†
θLO

(Ω)N̂ (opt)
θLO

(Ω′)⟩
2|ts,θLO(Ω)|2

, (5.52)

where N̂ (opt)
θLO

is the optical component of N̂θLO , Eq. (5.35). Evaluating (5.52)
at the transducer peak we find (see Appendix C.2.2 for details)

N
(h)
opt,0 ≡ N

(h)
opt(Ωm) =

1

ηelγEM,+
×(

(γm,0 + ΓEM + ΓOM)2

4COMγm,0|L+e−i(θLO−θ+) − L−ei(θLO−θ−)|2

[
(

1

ηopt
− 1) +

γm,0 + ΓEM − ΓOM

γm,0 + ΓEM + ΓOM

]

+
γm,0COM

2
(L2

+ + L2
−)

)
, (5.53)

having set nopt ≈ 0. Only the prefactor to the bracketed term depends on θLO

and hence the extrema of N (h)
opt,0 coincide with the extrema of the prefactor with

respect to θLO. These correspond to constructive and destructive sideband-
interference (wrt. the absolute size of the signal component),

|L+e
−i(θLO−θ+) − L−e

i(θLO−θ−)|2 → (L+ ± L−)
2,

and are achieved for

θLO =
θ+ + θ−

2
+

{
π/2 constructive
0 destructive

. (5.54)

Evaluating (5.53) for constructive/destructive sideband interference (5.54), we
find

N
(h)
opt,0

∣∣∣
constr./destruc.

= (N
(+)
opt,0 +N

(−)
opt,0)/2 + N

(im)
opt,0

∣∣∣
constr./destruc.

(5.55)

4This only applies to the optical contribution N
(h)
opt to P because the EM signal-to-noise

ratio cannot be altered in the optical readout, see discussion above Eq. (5.37).
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N
(im)
opt,0

∣∣∣
constr./destruc.

≡

1

ηelγEM,+

(
1

ηopt

(γm,0 + ΓEM + ΓOM)2

4COMγm,0(L+ ± L−)2
− γm,0 + ΓEM + ΓOM

2

L+ ∓ L−

L+ ± L−

)
,

(5.56)

where in Eq. (5.55) we have decomposed the (peak) optical homodyne added
noise N (h)

opt,0 into the average of the squeezed vacuum fluxes of the two sidebands
(see, e.g., Eq. (5.29)),

N
(+)
opt,0 +N

(−)
opt,0

2
=

γm,0COM

2ηelγEM,+
(L2

+ + L2
−) =

γOM,− + γOM,+

2ηelγEM,+
, (5.57)

and a contribution N (im)
opt,0 containing imprecision shot noise (first term) and an

interference contribution (second term) due to the correlations between impre-
cision noise and the squeezed vacuum [60]. Imprecision noise arises from the
quantized nature of light at low intensities and is due to the random arrival
times of photons. In fact, by comparing to the peak transfer efficiencies η(±)

0 ,
(5.27), we see that the imprecision noise contribution in (5.56) is

1

ηelηopt

(γm,0 + ΓEM + ΓOM)2

4γEM,+COMγm,0(L+ ± L−)2
=

1(√
η
(+)
0 ±

√
η
(−)
0

)2 , (5.58)

showing that its impact diminishes with the absolute amount of signal trans-
ferred through the transducer. Hence, the imprecision (5.58) noise is minimized
by impedance matching considerations. On the other hand, the squeezed vac-
uum contribution (5.57) is seen to be proportional to COM/CEM, thus favoring
small values of COM. We will consider this trade-off in the next section.

5.7.2.2 Extrema of the homodyne optical noise N (h)
opt,0

In this section we will examine the extrema of N (h)
opt,0 wrt. COM and L± for

fixed EM parameters ηel, CEM. We therefore start by parametrizing Eq. (5.55)
in terms of COM and L±, which is equivalent to drive-induced intra-cavity field
and laser detuning for fixed cavity width κ and mechanical frequency Ωm:

N
(h)
opt,0

∣∣∣
constr./destruc.

=

1

4ηelγEM,+

(
γm,0COM

[(
1

ηopt
− 1

)
(L+ ∓ L−)

2 + (L+ ± L−)
2

]
+

1

γm,0COM

(γm,0 + ΓEM)2

ηopt(L+ ± L−)2
+ 2(γm,0 + ΓEM)

[
1

ηopt
− 1

]
L+ ∓ L−

L+ ± L−

)
. (5.59)

Eq. (5.59) has the following local minimum point ČOM with respect to COM,

ČOM
∣∣
constr./destruc. =

1 + ΓEM/γm,0

|L2
+ − L2

−|
√
1± ηopt

4L+L−
(L+∓L−)2

=
1 + ΓEM/γm,0

(L+ ± L−)2
√
1∓ (1− ηopt)

4L+L−
(L+±L−)2

. (5.60)
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Considering Eq. (5.60) in the limits of resolved and unresolved OM sidebands,
4ηoptL∓ ≪ L± ≈ 1 (red/blue detuned) and L− ≈ L+ respectively, we find

ČOM ≈

{
1 + ΓEM/γm,0 [OM RSB]
1+ΓEM/γm,0

L2
+

√
16ηopt

[OM un-RSB] . (5.61)

Hence, in the RSB limit we recover the impedance matching condition that the
optically induced width should match that of the electrically broadened mechan-
ical mode, ΓOM ≈ γOM,+ ≈ γm,0ČOM = γm,0+ΓEM (≈ ΓEM when ΓEM ≫ γm,0).
From this we draw the important conclusion that for the heterodyning scheme
considered here, impedance matching is only the optimal strategy to the extent
that the readout cavity is sideband-resolved. The un-RSB limit of Eq. (5.61)
reflects a trade-off between heating from squeezed vacuum (grows as COM) and
imprecision shot noise, as discussed in the previous section.

In the following we will analyze the minimized quantity Ň (h)
opt ≡ N

(h)
opt|COM=ČOM

,
assuming that the optimal OM cooperativity ČOM (5.60) is attainable; we find
for constructive/destructive interference (assuming γm,0 + ΓEM > 0),

Ň
(h)
opt,0 =

1

ηel

γm,0 + ΓEM

γEM,+
σ, (5.62)

where, for later convenience, we have introduced the effective optical noise flux
per unit bandwidth

σ|constr./destruc. ≡

1

2

 1
√
ηopt

√
1 +

[
1

ηopt
− 1

](
L+ ∓ L−

L+ ± L−

)2

+

[
1

ηopt
− 1

]
L+ ∓ L−

L+ ± L−

 , (5.63)

that only depends on the optical coupling efficiency ηopt and the optical sideband
strengths L±. The interpretation of σ will become clear when we compare the
optical noise to the other noise contributions later on. Before considering the
choice of optical drive detuning, which will determine L±, we make the following
observations: First, we remark that σ|constr. < σ|destruc. for all applicable L±,
meaning that constructive sideband interference results in less optical noise than
destructive sideband interference for COM = ČOM|constr./destruc.. Henceforth we
will therefore restrict our attention to Ň (h)

opt,0|constr. and omit the label. Second,
we note by inspecting Eq. (5.63) that in the limit of perfect optical outcoupling,
ηopt → 1, we have σ → 1/2 and (accordingly) the minimized added noise Ň (h)

opt,0
is independent of the optical sideband strengths L± (or, alternatively, the OM
sideband resolution parameter s ≡ κ/(4Ωm) and the choice of optical detuning
∆):

Ň
(h)
opt,0

∣∣∣
ηopt→1

=
1

2ηel

γm,0 + ΓEM

γEM,+
. (5.64)

If we moreover take the limit of resolved EM sidebands, ΓEM → γEM,+, high EM
cooperativity, γEM,+ ≫ γm,0 and ideal electrical efficiency ηel = 1, we recover
the fundamental quantum-mechanical limit Ň (h)

opt,0 = 1/2 for the simultaneous
measurement of two quadratures. This is achieved since all incoming informa-
tion is transduced and measured in the output regardless of the detuning ∆.
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We now turn to the choice of optical drive detuning ∆. For ηopt < 1 we note
that Ň (h)

opt,0 only depends on the sideband strengths through l ≡ L−/L+ and
has no stationary points with respect to l for l ∈ R+, i.e. dŇ

(h)
opt,0/dl ̸= 0. It

then follows from the chain rule that the extremal points of Ň (h)
opt,0, (5.62), with

regard to the choice of optical detuning ∆ coincide with those of the sideband
ratio l = L−/L+. These extrema are ∆ = ±∆0 where for the Lorentzian line
shape

∆0 =
√
Ω2

m + (κ/2)2 = Ωm

√
1 + 4s2,

where s ≡ κ/(4Ωm) is the OM sideband resolution parameter. The minimum
of Ň (h)

opt,0 occurs for blue-sideband detuning ∆ = +∆0, whereas the maximum
occurs for red-sideband detuning ∆ = −∆0. The reason for this is that blue
detuning maximizes OM amplification of the signal before it is subject to loss
due to the finite optical coupling efficiency ηopt < 1. The gain achieved using
blue-sideband detuning ∆ = +∆0 thus counters the added noise floor due to
imperfect optical coupling ηopt < 1, thereby leading to the minimal value of
Ň

(h)
opt,0. At the same time, however, it also diminishes the bandwidth of the

transducer ΓEM + γm,0(1 + COM[L2
+ − L2

−]). This implies a gain-bandwidth
trade-off. In the resolved sideband limit s ≲ 1, we have ∆0 → Ωm and find that
blue-detuned operation results in

Ň
(h)
opt,0

∣∣∣
∆=+∆0

=
1

ηel

γm,0 + ΓEM

γEM,+

[
1

2
+ (1− ηopt)s

2

]
+O(s3). (5.65)

Comparing Eq. (5.65) to the expression (5.64) for the ηopt → 1 limit, we see
that blue-sideband operation in the OM resolved sideband regime allows us to
approach the ηopt → 1 value of Ñ (h)

opt even for an imperfect optical outcoupling
ηopt < 1. As mentioned above, this comes at the cost of a smaller bandwidth.
Ultimately, as s → 0 we have ČOM → (1 + ΓEM/γm,0)/L2

− and L+/L− → 0
for blue-detuned operation whereby the transducer bandwidth approaches zero,
ΓEM + γm,0(1 + COM[L2

+ − L2
−]) → 0.

Working red-detuned, on the other hand, has the benefit of increasing the
bandwidth. In the resolved-sideband limit, s ≲ 1, the largest optical broadening
is obtained for ∆ ≈ −Ωm. In this case, for s≪ 1, the optical noise is

Ň
(h)
opt,0

∣∣∣
∆=−Ωm

=
1

ηel

γm,0 + ΓEM

γEM,+

[
1

2
+ (

1

ηopt
− 1)[1− 2s(1− s(1 + ηopt/2))]

]
+O(s3).

In the unresolved sideband regime, s ≳ 1, the difference between driving red
and blue detuned naturally becomes less pronounced. In this regime, maximal
optical broadening is achieved for ∆ ≈ −κ/

√
12 yielding the optical noise (s≫

1)

Ň
(h)
opt,0

∣∣∣
∆=−κ/

√
12

=
1

ηel

γm,0 + ΓEM

γEM,+

[
1

2
√
ηopt

+ (
1

ηopt
− 1)

√
3

16

1

s

]
+O(s−2).

We collect simplified versions of the above results in Table 5.2, which shows
how the sensitivity to imperfect optical coupling efficiency ηopt < 1 decreases
with increasing OM amplification. In one end of the spectrum, red-detuned
operation in the fully resolved-sideband limit, the optical noise goes as η−1

opt,
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whereas for blue-detuned operation in the same limit, a narrowband signal can
in principle be preamplified to the classical level. In the latter case, imprecision
noise becomes negligible and the dependence on ηopt vanishes. As an interme-
diate choice, ∆ = −κ/

√
12 (which maximizes ΓOM when s ≫ 1) provides some

amplification and results in the noise scaling as (ηopt)
−1/2. These consideration

are important insofar as the optical noise dominates the sensitivity and a noise
penalty on the order of ∼ η−1

opt − 1 is a concern (assuming the electrical system
to be perfectly coupled, ηel → 1).

Opt. regime/fig. of merit Ň
(h)
opt,0

∆ = −Ωm [s≪ 1] 1
ηel

γm,0+ΓEM
γEM,+

[
1
ηopt

− 1
2

]
∆ = −κ/

√
12 [s≫ 1] 1

ηel

γm,0+ΓEM
γEM,+

[
1

2
√
ηopt

]
∆ = +Ωm [s≪ 1] 1

ηel

γm,0+ΓEM
γEM,+

[
1
2

]
Table 5.2: Optical noise for optimal COM = ČOM, Ň (h)

opt, evaluated at different
optical detunings ∆ in different limits of the OM sideband-resolution parameter
s. The expressions show decreasing sensitivities to optical loss ηopt < 1 from
top to bottom due to an increasing degree of OM pre-amplification.

5.7.2.3 Full minimization of the sensitivity P0

We will now minimize the homodyne peak sensitivity P0, (5.37), taking into
account all contributions at once. Such a full optimization is most relevant in
the vicinity of the quantum regime, P0 ∼ 1, which is only likely to be achieved
with an AC-driven resonant superconducting circuit and hence we specialize to
this case. We will optimize over the parameters COM and ηel, while leaving the
result a function of drive detunings and cavity/circuit linewidths. Choosing the
values of the latter parameters is a matter of gain-bandwidth trade-off, which we
will not delve into here. Two cases will be discussed: 1) The scenario where we
assume that we can always achieve the optimal OM cooperativity COM = ČOM,
(5.60), but where CEM,0 is constrained by some upper (practical) bound C(max)

EM,0 .

2) The scenario where OM cooperativity is limited COM ≤ C(max)
OM ≪ ČOM so

that the optimal value of ČOM cannot be attained (the latter being evaluated at
C(max)
EM,0 ).

COM freely tunable In Section 5.7.2.2 above, we considered the minimization
of the optical noise contribution to P0 for fixed electrical parameters CEM,K±.
The resulting minimum Ň

(h)
opt,0 as a function of ČOM, (5.62), is hence a function

of the electrical parameters. Since in contrast, as discussed above, the electrical
and mechanical noise contributions N̄e,0, N̄m,0 are independent of the parameters
of the optical system, the full minimization of P0 corresponds to minimizing

P0|COM=ČOM
=

1

2
+ N̄e,0 + N̄m,0 + Ň

(h)
opt,0 (5.66)

over the electrical parameters. This presumes, however, that COM = ČOM is
always achievable and this is the assumption we will make at present.



5.7. OPTIMIZING HETERODYNE DETECTION SENSITIVITY P 101

We start by expressing the minimized optical noise in terms of the electrical
sideband strengths K±, which appeared first in Section 5.5.2, see Eq. (5.14). In
terms of these symbols Eq. (5.62) reads,

Ň
(h)
opt,0 =

1

ηel

γm,0 + ΓEM

γEM,+
σ =

1

ηel

(
1

CEMK2
+

+
K2

+ −K2
−

K2
+

)
σ. (5.67)

Here, the first term in the parenthesis equals γm,0/γEM,+ and is therefore sup-
pressed as 1/CEM; the second term in the parenthesis is ΓEM/γEM,+ for which
the dependence on CEM cancels out. Combining (5.67) with N̄e,0 + N̄m,0 as
follows from Eqs. (5.31,5.32), we evaluate Eq. (5.66) to find

P0|COM=ČOM
=

1

2
+

(
1

ηel
− 1

)[
1 +

K2
−

K2
+

](
nL(ωd +Ωm) +

1

2

)
+

K2
−

K2
+

(
ntx(ωd − Ωm) +

1

2

)
+

1

ηel

[
σ + (1− σ)

K2
−

K2
+

]
+

nm(Ωm) + 1/2 + σ

K2
+CEM,0(1− ηel)ηel

.

(5.68)

Here we have used γEM,+ = γm,0CEM,0(1−ηel)K2
+ as follows from Eq. (5.43) and

the definition of the anti-Stokes rate. Noting that (5.68) has the same functional
form as (5.44) in terms of ηel, we may minimize P0 using similar steps; hence,
we rewrite (5.68) as

P0 = Pres +

(
1

ηel
− 1

)
nEO +

nOM

CEM,0(1− ηel)ηel
, (5.69)

in terms of the residual sensitivity Pres and effective electro-optical nEO and
opto-mechanical nOM noise fluxes per unit bandwidth,

Pres =
1

2
+

K2
−

K2
+

(
ntx(ωd − Ωm) +

1

2

)
+

K2
−

K2
+

+

[
1−

K2
−

K2
+

]
σ,

nEO ≡
[
1 +

K2
−

K2
+

](
nL(ωd) +

1

2

)
+

K2
−

K2
+

+

[
1−

K2
−

K2
+

]
σ, nOM ≡ nm(Ωm) + 1/2 + σ

K2
+

.

These definitions make it clear that σ (5.63) plays the role of an effective optical
noise flux per unit bandwidth. The peak sensitivity, (5.69), is minimized by

η̌el =

[
1 +

(
1 +

CEM,0nEO

nOM

)−1/2
]−1

, (5.70)

generalizing Eq. (5.45). The corresponding minimum value of P0 is

P̌0 = Pres + 2
nOM

CEM,0

(
1 +

√
1 +

CEM,0nEO

nOM

)
, (5.71)

which is the generalization of (5.46) to the quantum regime (as well as arbitrary
electrical drive detuning and sideband resolution). The expression (5.71) shows
that CEM,0 should be made as large as possible provided that COM = ČOM,
(5.60), can be maintained (this corresponds to the situation where the EM
coupling strength is the bottleneck). In this sense, Eq. (5.71) is minimized wrt.
the cooperativities COM and CEM, while the optical and electrical drive-tone
frequencies will have to be chosen as a compromise between peak added noise
and bandwidth.



102 CHAPTER 5. OPTIMIZING EOM RECEIVER CIRCUITS

COM limited If we cannot tune COM freely so as to achieve the value ČOM,
the preceding analysis ceases to apply. Hence we now consider the scenario
where practical considerations constrain the OM cooperativity COM ≤ C(max)

OM ≪
ČOM (where the latter is evaluated at C(max)

EM,0 ). In this case the optical noise is
dominated by the imprecision shot noise. Focusing on red-detuned operation,
(5.60) and the previous assumption imply Γ

(max)
OM ≡ γm,0C(max)

OM (L2
+ − L2

−) ≪
γm,0 + ΓEM; choosing COM = C(max)

OM we can therefore approximate (5.55)

N
(h)
opt,0 ≈ γm,0

ηelηoptγEM,+

(1 + ΓEM/γm,0)
2

4C(max)
OM (L+ + L−)2

. (5.72)

In this situation, N (h)
opt,0 → ∞ for CEM → ∞ because EM broadening will decou-

ple the mechanical mode from the optical field if COM does not follow CEM (as we
assumed in the previous minimization above). Since, obviously, we also require
CEM > 0 a trade-off exists with some optimal value of CEM. To determine this,
we must consider simultaneously all terms in P0, (5.51), that depend on CEM;
these are the mechanical and optical contributions

N̄m,0 +N
(h)
opt,0 =

1

ηel

[
1

K2
+CEM

(nm(Ωm) +
1

2
+ nO)

+ CEMnO
(K2

+ −K2
−)

2

K2
+

+ 2

(
1−

K2
−

K2
+

)
nO

]
, (5.73)

where we once again have introduced the electrical sideband strengths K± and
an equivalent optical noise flux per unit bandwidth

nO ≡ 1

4ηoptC(max)
OM (L+ + L−)2

.

Eq. (5.73) is minimal as a function of CEM at

ČEM =

√
1 + (nm(Ωm) + 1/2)/nO

|K2
+ −K2

−|

=

√
1 + (nm(Ωm) + 1/2)4ηoptC(max)

OM (L+ + L−)2

|K2
+ −K2

−|
, (5.74)

determining the effective transducer bandwidth (for red-detuned electrical drive)
for CEM = ČEM

γm ≈ γm,0(1+ČEM[K2
+−K2

−]) = γm,0

√
1 + (nm(Ωm) + 1/2)4ηoptC(max)

OM (L+ + L−)2.

Evaluating P0, (5.51), at CEM = ČEM, (5.74), we find

P0 =
1

2
+
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ηel
− 1
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] [
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[
1 + (1 + (nm(Ωm) + 1/2)/nO)

−1/2
]
.

(5.75)
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Provided that CEM = (1− ηel)CEM,0 = ČEM can be fulfilled, ηel in (5.75) should
be as large as possible, i.e. within the family of circuits considered here, the
serial RLC should be chosen. Eq. (5.75) shows that if the OM cooperativity
COM is limited and P0 is dominated by the OM contributions in (5.75), it can be
advantageous to decrease the electrical sideband resolution (provided that we
may still achieve CEM = ČEM). This is because the electrical broadening of the
mechanical mode (that takes place in the EM resolved-sideband regime) tends
to decouple it from the optics.

This concludes our analysis of how to balance the noise contributions de-
termining P0 in the quantum regime where optical noise must be accounted
for.

5.8 Numerical examples
We will now evaluate the figures-of-merit for some of the transducer applications
discussed in Chapter 3, considering both examples of classical and quantum op-
eration. To enable single-quantum operation of a transducer, noise sources must
be suppressed to a degree that the probability of converting thermal excitations
into output photons is small compared to that of converting input signal pho-
tons. In general, this requires careful engineering of the system and operating
the system at cryogenic temperatures. On the other hand, sensing weak electri-
cal signals with optical heterodyne detection can be advantageous even at room
temperature. Here we will consider device parameters from recent experiments
to assess the feasibility of some of the transduction schemes considered above.

5.8.1 Optical homodyne detection of RF and microwave
signals

The task of designing an optical homodyne detector for MHz or GHz radiation
was considered in some detail in the preceding parts of this section. Here we
will calculate the expected performance of such an apparatus, considering both
classical and quantum level scenarios.

5.8.1.1 RF to optical

For DC-biased RF-to-optical conversion at room temperature, where the me-
chanical resonance frequency equals that of the incoming electrical signal, we
are typically in the classical scenario which was the focus of Section 5.7.1.
Ohmic noise from the electrical circuit will dominate in the large EM coop-
erativity limit CEM > (1− ηel)

−1. Using parameters similar to those of Ref. [1],
RL = 20Ω, QL = 130, CEM,0 = 6800, ωLC = Ωm = (2π) · 0.72MHz, the criteria
(5.45) and (5.49) for picking the circuit layout with the least added noise favors
the serial RLC circuit since η̌el = 0.99 but CEM,0 < Q2

L. Feeding the serial
RLC receiver by a transmission line of characteristic impedance Ztx = 50Ω we
may evaluate the noise temperatures using Table 5.1 and 5.2 (Rmin → 0 for
simplicity)

Tohm ∼ 120K, Tmech ∼ 0K, Topt ∼ 0K,

assuming that the optical noise minimum Ň
(h)
opt can be achieved, Eq. (5.62).

In this case, we find the optical noise to be negligible (irrespective of optical
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detuning) as long as ηopt is not very small,

ηopt ≫
1

(1− ηel)nohm(ωLC)
, for ∆ = −ωm[s≪ 1]

ηopt ≫
(

1

2(1− ηel)nohm(ωLC)

)2

, for ∆ = −κ/
√
12[s≫ 1]

referring to the limits of resolved and unresolved OM sidebands using a red-
detuned optical drive, see Table 5.2.

Hence for RF-to-optical conversion, ohmic noise is typically the bottleneck
for room-temperature operation, whereas the optomechanical system adds little
noise. The ohmic noise can be suppressed by increasing the coupling efficiency
of the circuit ηel = Ztx/(Ztx + RL) or decreasing nohm by cooling the circuit
below room temperature. Alternatively, if CEM,0 can be increased, the lossy
inductor can be dispensed with as discussed in Section 5.7.1.1.

5.8.1.2 MW to optical

For AC-driven receiver circuits operating in the GHz range of frequencies cou-
pled to a MHz mechanical oscillator at equal temperature, the ohmic bath oc-
cupancy nohm will be several orders of magnitude smaller than its mechanical
counterpart nm, nohm ≈ (Ωm/ωs)nm. In this case, ohmic noise will only exceed
the mechanical noise given that the latter can be suppressed by an EM cooper-
ativity CEM > (ωs/Ωm)(1− ηel)

−1. Therefore, in GHz-to-optical conversion the
noise contribution of the MHz mechanical mode will tend to be the bottleneck,
which (in the absence of a very large EM cooperativity) can only be brought
into the quantum regime by cooling the system to sub-Kelvin temperatures.
Since we reference the added noise to the GHz signal, the noise temperature of
the MHz oscillator may well exceed the temperature of the system, as we will
see below.

The exact optimization of this scenario was performed in Section 5.7.2.3 as a
function of COM and ηel. Assuming that COM is freely tunable and choosing the
value ČOM, (5.60), that minimizes the optical noise, we evaluate P̌0 (5.71) corre-
sponding to ηel = η̌el, (5.70), for parameters similar to those in the experiment
of Ref. [6],

CEM,0 = 20.000, ηopt = 0.23,Ωm = (2π) · 1.24MHz,
ωLC = (2π) · 7GHz, sOM = sEM = 0.3,∆ = −Ωm = ωd − ωLC. (5.76)

We do so for different system temperatures and the results are plotted in Fig.
5.7 with select values given in Table 5.3 specifying the noise contributions of the
individual subsystems.

From the plot in Fig. 5.7 we see that mechanical noise dominates for temper-
atures T ≳ 0.7K, whereas for smaller temperatures the optical noise contribu-
tion dominates, which is mainly due to the imperfect optical coupling efficiency
ηopt = 0.23. Note that since N (h)

opt,0 ≥ 1/2 for the chosen heterodyning scheme
where two quadratures are measured simultaneously, the fundamental limit for
P0 is unity. It should be remarked that for system temperatures where the
electrical system is near its ground state, it is at least in principle possible to
perform all-electrical quantum-limited heterodyne detection.
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Figure 5.7: (left) Minimized (peak) heterodyne noise, P̌0, in terms of its ohmic
N̄e,0, mechanical N̄m,0 and optical N (h)

opt,0 contributions. (right) The required
value for the electrical coupling efficiency, η̌el.

Temp./Noise source ohmic mech. opt. total

T = 300K [η̌el = 0.69] Te,0 ∼ 172K Tm,0 ∼ 394K T
(h)
opt,0 ∼ 1K Ť0 ∼ 568K

T = 4K [η̌el = 0.70] N̄e,0 ∼ 6.6 N̄m,0 ∼ 16.0 N
(h)
opt,0 ∼ 3.2 P̌0 ∼ 26.3

T = 40mK [η̌el = 0.90] N̄e,0 ∼ 0.2 N̄m,0 ∼ 0.4 N
(h)
opt,0 ∼ 2.5 P̌0 ∼ 3.5

Table 5.3: Transducer added noise contributions in MW-to-optical homodyn-
ing using parameters (5.76) similar to those of Ref. [6], assuming them to be
temperature-independent (not necessarily true in practice). The total includes
the vacuum fluctuations of the input field. The room-temperature values are
stated as temperatures using Eq. (5.47).

5.8.2 Coherent state transfer
A task relevant for continuous-variable quantum information processing is the
deterministic transduction of a coherent state. To get a sense of the feasibility
of implementing such conversion with an electro-optomechanical transducer, we
will now evaluate the unconditional fidelity Fuc given in Eq. (3.17), valid for
a narrowband input signal. For η(+)

0 ̸= 1, Fuc depends on the amplitude |α|
of the state to be transduced. We choose to consider parameters such that the
imperfect coupling efficiency ηelηopt < 1 is countered by amplification effects,
due to the circuit and cavity modes not being fully sideband resolved, with the
result that η(+)

0 = 1 according to Eq. (5.27). Under these circumstances, the
expression for the fidelity becomes independent of |α| and reduces to

Fuc|η(+)
0 =1

=
1

1 +N
(+)
0

, (5.77)

where N (+)
0 will include an amplification noise penalty. Using Eq. (5.31) for

N
(+)
0 , we plot Fuc and N (+)

0 in Fig. 5.8 as a function of the transducer temper-
ature T (assumed to be the same for all subsystems) for the parameter set

COM = CEM = 5000, ηopt = ηel = 0.9,Ωm = (2π) · 1.24MHz,
ωLC = (2π) · 7GHz, sOM = sEM = 0.34,∆ = −Ωm = ωd − ωLC. (5.78)

The plot shows that the fidelity saturates at Fuc ∼ 0.8 for T ≲ 10mK when the
mechanical noise contribution drops below the amplification noise floor. Note
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Figure 5.8: (left) Unconditional coherent state transfer fidelity Fuc, Eq. (5.77),
as a function of temperature for the parameter set (5.78). (right) Noise contri-
butions to N (+)

0 from the various subsystems of the transducer.

from Fig. 5.8b that both the circuit and the optical cavity modes are in the
ground-state for T ≲ 100mK, meaning that the amplification noise that deter-
mines the asymptote Fuc ∼ 0.8 is squeezed vacuum. To improve the performance
the sideband resolution could be increased. In the fully sideband-resolved, high-
cooperativity limit we see from (3.17) that

Fuc → exp
[
−|α|2(1−√

ηoptηel)
2
]
, (5.79)

provided that the electrical system is in its ground state. For a coherent state
with |α| ≈ 1 and a transducer with combined coupling efficiency ηoptηel = (0.9)2,
as in (5.78), the limiting expression (5.79) yields a fidelity of Fuc ∼ 0.99.

5.9 Conclusion and outlook for Part I
In this chapter we applied the equivalent circuit formalism for electro-optomechanical
transducers to analyze receiver circuits. The formalism provides a straightfor-
ward way to extract the effective quantities that govern the dynamics of the
hybrid system in a way that makes clear the influence of the electrical circuit
design on the performance. We optimized the receiver circuits for optomechan-
ical detection of electrical signals in both the high-temperature and quantum
regimes. The resulting expressions for the achievable performance describes how
the various noise sources should be balanced under various circumstances and
constraints. These results can serve as a starting point to identify real-world
applications in which such optomechanical sensing is advantageous, e.g., poten-
tially in radio-astronomy or nuclear magnetic resonance imaging (as mentioned
previously).

Part I of this thesis has addressed several important matters of relevance to
current research in transduction, as we will now briefly summarize. We have
discussed the characterization of transducers in terms of their signal transfer
efficiency η and added noise N and related these quantities to figures of merit
for applications of interest. Hereby we have established the requirements for
a transducer to perform efficiently in various contexts, which is important for
guiding experimental efforts. We also introduced an equivalent circuit formal-
ism for electro-optomechanical transducers which could be crucial in realizing
the potential of optomechanical sensing and conversion in the realm of electron-
ics, both as a design tool and as a common language enabling cross-disciplinary
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collaborations. We also presented a thorough analysis of capacitive electrome-
chanical interfaces along with an analytical method for predicting their coupling
properties.
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Chapter 6

Quantum hard-sphere model
for dissipative Rydberg-EIT
media

The work presented in this chapter has been carried out in collaboration with
Michael J. Gullans, Mohammad F. Maghrebi, and Alexey V. Gorshkov at
JQI/QuICS/NIST, University of Maryland.

6.1 Introduction

The interaction between photons is under most circumstances completely neg-
ligible at the quantum level. In optically dense atomic media, however, strong
non-linear inter-photon interactions at the single-quantum level can be engi-
neered via the interactions of Rydberg-polaritons propagating due to Electro-
magnetically Induced Transparency (EIT) [61]. Such photon-photon interac-
tions are highly desirable from the point of view of quantum information pro-
cessing as they can be used to implement quantum gates between a pair of pho-
tons (“flying” qubits) or between a photon and a stored spin-wave in the atomic
medium [62]. The strong photon-photon interaction can also be engineered to
dynamically generate non-classical states of light [2]. The Rydberg-EIT tech-
nique accommodates the engineering of a rich variety of physical effects includ-
ing both dissipative and dispersive Rydberg-Rydberg interactions, the former
resulting in the scattering of photons out of the propagating mode [2], while the
latter gives rise to both attractive and repulsive inter-photon potentials allowing
the formation of many-body bound states [63].

The present work proposes a model for the many-body physics of the dis-
sipative blockade in Rydberg-EIT media. Since general analytical solutions to
this problem are unavailable, such an ansatz is valuable if it can shed light on
the structure of these solutions.

The remainder of this introductory section will provide the background and
foundation for this work. We start by discussing the mechanism that allows
photons to interact via Rydberg-Rydberg interactions in Subsection 6.1.1. Sub-
sequently, we will review important experimental realizations of the dissipative

111
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Rydberg blockade in Subsection 6.1.2, as well as theoretical progress towards
understanding the many-body physics of such systems in Subsection 6.1.3. Fi-
nally, an overview of the work presented in the remainder of this chapter is given
in Subsection 6.1.4.

6.1.1 Rydberg-EIT physics

The Rydberg-EIT media we will consider here are optically dense ensembles
of cold atoms for which the effective 3-level structure shown in Fig. 6.1a is
applicable. It is comprised of a stable ground state |g⟩, an excited state |e⟩
with decay rate Γ and a meta-stable high-lying Rydberg state |r⟩. When no
excitations are present in the medium, an impinging photon resonant with the
|g⟩ ↔ |e⟩ transition (frequency ωge) will encounter the ’vacant’ level diagram
depicted in the figure. Here a control field of Rabi frequency Ω is resonant
with the |e⟩ ↔ |r⟩ transition (frequency ωer) leading to transmission of the
impinging photon due to electromagnetically induced transparency (EIT) [64],
thus circumventing the decay channel of the excited state |e⟩. This is reflected
by the on-resonant dip in the absorption curve (solid plot in Fig. 6.1c). The
accompanying positive slope in the dispersion curve near resonance (solid plot in
Fig. 6.1d) leads to a reduction of the group velocity vg ≪ c in the medium and
hence spatial compression of the incoming pulse by a factor of vg/c (c being the
speed of light in free space). The excitations propagating through the medium
under these conditions are referred to as (slow-light) polaritons since they are
coherent combinations of atomic and photonic excitation.

What we have described above is the standard EIT transmission experienced
by the first photon entering the medium. However, once a polariton has been
formed near the entrance, this excitation involving the Rydberg state |r⟩ will
impose a van der Waals interaction V (r) on neighboring atoms [65]. This entails
a shift in the transition frequency ωer as shown in the ’blocked’ level diagram of
Fig. 6.1a, whereby the control field ceases to be resonant with that transition.
This will affect subsequent incoming photon arriving in a region of ’blocked’
atoms as these photons will experience an ensemble of two-level scatterers with
decay rate Γ corresponding to the dashed curves in Fig. 6.1c&d. The size of the
region blocked by a Rydberg excitation follows from the sharp van der Waals
potential V (r) = ℏC6/r

6 with strength parameter C6 and the single-atom EIT
linewidth γEIT ≡ Ω2/Γ, leading to the definition of the blockade radius rb (see,
e.g., [62, 66]),

V (rb) =
ℏγEIT

2
⇒ rb =

(
2C6

γEIT

)1/6

. (6.1)

If the optical depth per blockade radius is large, db ≫ 1, then a photon arriving
at a blocked medium will scatter in the course of its propagation through the
blockaded region (the optical depth db is defined via the on-resonant 2-level
attenuation ∝ e−db over a blockade radius). Hence, in the db ≫ 1 regime, the
blockade precludes polaritons from coexisting in the medium at separations less
than rb.

Let us now envision the dynamics that would arise from the simple physical
picture given above. Assuming the waist of the probe beam to be small com-
pared to the blockade radius, we consider the one-dimensional scenario sketched
in Fig. 6.1b of a bright light pulse impinging on the medium from the left. Those
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Figure 6.1: a) Atomic level diagram: Ground and Rydberg levels, |g⟩ and |r⟩,
are long-lived compared to the lossy excited level |e⟩, which has decay rate Γ.
Outside the blockade radius of Rydberg polaritons, an incoming photon in the
probe field Ê enjoys EIT transmission (’vacant’ set of energy levels). For atoms
within the blockade region of a polariton, the Rydberg level |r⟩ is shifted out
of resonance with respect to the classical drive Ω causing an incoming photon
encounter the ’blocked’ levels and thus to scatter out of the excited state |e⟩.
b) A bright single-mode light pulse impinges on a Rydberg medium producing
a train of propagating Rydberg polaritons (green peaks), separated by their
blockade radius rb, by scattering “superfluous” photons at the entrance (red
dashed arrow) out of the forward-propagating mode. In turn, the polariton train
emanates on the opposite end of the medium as a train of single photons spaced
by the decompressed blockade radius τbc = rbc/vg (where vg is the polariton
group velocity in the medium). c&d) Absorption and dispersion curves for
vacant (solid curve) and blockaded (dashed curve) media. They are plotted as
a function of probe detuning from the transition frequency ωge between |g⟩ and
|e⟩ in units of the linewidth Γ of |e⟩. (Subfigures c&d are reproduced from Ref.
[64]).
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photons that successfully form polaritons upon entrance will propagate through
the medium and emanate as an outgoing light field on the right. Due to the
dissipative Rydberg blockade, photons entering the medium within a blockade
radius of a polariton will not themselves form polaritons but instead scatter out
of the forward-propagating mode due to the absence of EIT. Once formed, a
polariton will block the entrance of the medium by its blockade radius for the
duration of the blockade time,

τb = rb/vg. (6.2)

Therefore, based on this simple picture we expect the outgoing light field to
show anti-bunching with time-scale τb and, given sufficiently bright input, to
form a pulse train of single photons as illustrated in Fig. 6.1b. While simple
and appealing, we will see in the next section that the physical picture presented
here is not fully sufficient to accurately describe experimental realizations of the
system.

6.1.2 Experimental review

Here we will briefly review two key experiments studying the dissipative Ryd-
berg blockade in cold atomic ensembles. One of the first realizations of effective
photon-photon interactions using the technique of Rydberg-EIT was reported
in Ref. [67]. In this study, the on-resonant transmission was observed to de-
crease with increasing probe intensity, a signature of the Rydberg blockade. A
subsequent experimental study was performed using denser atomic media with
optical depths per blockade radius db ≳ 1 [66], thus approaching the db ≫ 1
regime discussed in Section 6.1.1. This study offers a more extensive character-
ization of resonant Rydberg-EIT media: In addition to observing saturation in
the outgoing photon rates for high probe intensities, measurements of g(2)(τ)
were performed exhibiting anti-bunching of the optical output. While such
anti-bunching is indeed a signature of the Rydberg blockade, the observed size
of this feature significantly exceeded the blockade time τb, 6.2, counter to the
naive expectation based on the discussion of Subsection 6.1.1. This discrepancy
was attributed to the circumstance that the spectral features of width ∼ 1/τb
generated by the Rydberg blockade exceeded the bandwidth of the EIT trans-
mission window B = γEIT/

√
8d; here d is the optical depth corresponding to

the full length of the medium, d = (L/rb)db. As a consequence, the polaritons
propagating through the medium experienced significant EIT filtering and dis-
persion, with the result of washing out the relatively sharp features created by
the blockade. One of the main lessons of Ref. [66] is that these additional EIT
effects are important in setting the limits of control for Rydberg-EIT media, as
they will be detrimental to most applications.

6.1.3 Review of theoretical work

Several theoretical approaches to analyzing the dissipative Rydberg blockade
can be found in the literature. A semi-classical theory has been derived in
the limit of low probe intensity compared to the control field [68]. Within
the regime of validity, its predictions agree with the transmission data of the
experiment reported in Ref. [67] and mentioned above. Predictions agreeing
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Figure 6.2: Dissipative Rydberg-EIT medium of length L acting as a single-
photon filter on the probe pulse E of compressed length Lp. Only the photon
arriving first propagates through the medium under EIT conditions, whereas
the remaining photons scatter to the environment. (Adapted from Ref. [2])

with this data have also been obtained using a quantum theory that models
the atomic ensemble as a collection of super atoms with radius rb [69]. Also
accounting for the quantum nature of light, Ref. [62] analyses the case of two
strongly interacting photons. By deriving approximate analytical solutions to
the Heisenberg-Langevin equations and verifying by full numerical simulations,
it is demonstrated that dissipative Rydberg-EIT media subject to copropagat-
ing input photons will produce an output field exhibiting the avoided volume
associated with blockade. The analysis was extended in Ref. [2] to include arbi-
trary multi-photon input states, providing an analytical approach to analyzing
the quantum many-body regime.

Since the theory developed in Ref. [2] will serve as one the main founda-
tions for the present work, we will now review it in some detail. The analysis
considers a scenario similar to that in Fig. 6.1b, but assumes that the EIT-
compressed input pulse (of length Lp) fits within a blockade radius rb and the
length of the medium L, i.e. Lp < rb, L. In the limit of large optical depth per
blockade radius, db ≫ 1, this causes the medium to act as a single-photon filter
as illustrated in Fig. 6.2. In this limit, the single-polariton EIT transmission
becomes ideal, i.e. we may ignore the decay and dispersion effects due to the
polariton not fitting within the EIT window that were observed in the finite-db
experiment of [66]. This permits a derivation of the wave function |ψ{τ2,...,τn}(t)⟩
for the polariton remaining after the entire pulse has entered the medium given
knowledge of the scattering times {τ2, . . . , τn} of the other photons. For an
input pulse h(t) in the Fock state |n⟩, we will have n−1 (time-ordered) scatter-
ing events {τ2, . . . , τn} occurring; the resulting (unnormalized) polariton wave
function is [2],

|ψ{τ2,...,τn}(t)⟩ = |ψτ2(t)⟩ = −√
vg

ˆ τ2

−∞
dt1h(t1)Ŝ

† (vg(t− t1)) |0⟩ (6.3)

in terms of the slowly-varying operator Ŝ†(z) ∼ |r⟩⟨g| creating a Rydberg exci-
tation in the ensemble at position z [70] (|0⟩ denotes the vacuum of the medium).
Eq. (6.3) shows that the wave function only depends on the timing of the first
scattering event (occurring at τ2). Moreover, it has the straightforward inter-
pretation of the first scattering event projecting the polariton into the medium,
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as it must have formed prior to τ2, and that its wave function is given by the
leading part of the pulse h(t) that entered the medium before t = τ2. Hence, we
draw two important conclusions about the dissipative Rydberg blockade in the
limit db ≫ 1: Firstly, the first photon to enter a vacant medium survives the
blockade interaction with subsequent photons. Secondly, the scattering events
amount to projective measurements on the polariton wave function. The later
scattering events {τ3, . . . , τn} do not enter Eq. (6.3) because they correspond to
trivial projections, i.e. they carry no additional information about the polariton;
this follows from the assumption that Lp < rb and hence the polariton could not
have vacated the entrance of the medium. An implicit simplifying assumption
here is that scattering events occur immediately upon entering the blockaded re-
gion, otherwise the non-zero propagation distance of the scattered photon would
contain additional information about the distance to the blockading polariton
leading to corrections to Eq. (6.3).

Under usual experimental circumstances, the scattered photons are difficult
to detect, prompting us to trace out these degrees of freedom in the mathe-
matical description. This amounts to constructing a density matrix ρ̂(t) from
the wave functions (6.3) weighted by the probability density for the various
scattering histories {τ2, . . . , τn}. By considering the retrieval of the spin-wave
described by ρ̂(t) the effect of the finite EIT window for finite db was estimated,
leading to the experimentally demanding criterion of db ≳ 104 for the success
probability of generating a single photon from a coherent input state to exceed
η > 0.9 [2]. This underscores the lesson from the experiment of Ref. [66] that
the finite EIT window will play a significant role in most, if not all, realizations
of the dissipative blockade in atomic ensembles.

6.1.4 Overview of chapter

In the remainder of this chapter we will construct and explore a model for the
dissipative Rydberg blockade building on the approach of Ref. [2] reviewed
above. Motivated by the experiment of Ref. [66], our model extends this work
in two respects: Firstly, by dispensing with the constraint of the input pulse
fitting into a blockade radius, Lp < rb, we are allowed to consider continuous
wave (CW) operation. Secondly, we incorporate the fact that single-polariton
EIT decay releases the blockade, thereby allowing for the formation of a new
polariton.

The model will be constructed in Section 6.2 based on the intuition harvested
from previous work. We will subsequently test the resulting hypothesis by com-
paring its predictions to numerical simulations and experimental data to the
extent available. To this end, we analyze in Section 6.3 the saturation behavior
of the transmission through one-dimensional Rydberg-EIT media in the regime
of non-perturbative single-polariton EIT-decay relevant to present-day experi-
ments. The predictions of the theory are compared to the experimental data
of Ref. [66] and numerical simulations of the full equations of motion. Next,
in Section 6.4, we analyze a scheme for generating regular trains of single pho-
tons from CW input and derive its scaling behavior in the limit of perturbative
single-polariton EIT-decay. Finally, we conclude and consider future directions
in Section 6.6.



6.2. QUANTUM HARD-SPHERE MODEL FOR THE DISSIPATIVE BLOCKADE117

|ψ⟩
R-R

interaction ρ̂
EIT

filtering ρ̂′

a)

rb

b)

Ê

Figure 6.3: a) Serialization approximation of EIT filtering. The single-mode
input state |ψ⟩ is mapped into ρ̂ according to the hard-sphere ansatz for the
Rydberg-Rydberg (R-R) interaction. Subsequently, ρ̂ is subjected to EIT filter-
ing as it would occur in a linear EIT medium, producing the final density matrix
ρ̂′. In the exact evolution, to which ρ̂′ is an approximation, these effects occur
in a complex intermingled fashion. b) Localized polaritons in the “hard-sphere”
model: Each Rydberg polariton (black dots) has a spherical blockade region
(grey sphere) of radius rb in which the formation of new polaritons is prohib-
ited; however, blockade regions can overlap without entailing Rydberg-Rydberg
scattering.

6.2 Quantum hard-sphere model for the dissipa-
tive blockade

In this section we propose a model for the dissipative Rydberg-Rydberg blockade
in the 1-dimensional regime (see Figs. 6.1b and 6.2) and working in the limit
of large optical depth per blockade radius, db ≫ 1. The model involves two
ingredients: Firstly, a hard-sphere ansatz for the Rydberg-Rydberg interaction
and, secondly, accounting for the finite width of the EIT window by considering
the linear EIT physics of individual polaritons. The idea is to separate the single-
polariton EIT physics from the Rydberg-Rydberg interactions in a serialized
manner as illustrated in Fig. 6.3a. This is based on the intuition that the
sharp temporal features, leading to single-polariton EIT decay, are defined by
the Rydberg-Rydberg interaction near the entrance of the medium, as we will
discuss shortly.

6.2.1 Hard-sphere Rydberg-Rydberg interaction

We start by considering the limit of perfect single-polariton EIT, db ≫ 1,
which allows us to discuss the hard-sphere interaction independently. The model
we propose here for the Rydberg-Rydberg interaction is to approximate the
blockade region of a polariton by a sharply defined sphere of radius rb inside
of which impinging photons will immediately scatter, whereas right outside the
region the Rydberg-Rydberg interaction energy drops abruptly to zero as for a
hard-sphere potential, see Fig. 6.3b. Note, as indicated in the figure, that this
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Figure 6.4: Formation of the polariton wave function by sequential projections
of an incoming square pulse according to the hard-sphere model in the limit
of perfect single-polariton EIT. a) An incoming probe photon is scattered (red
dashed arrow) near the beginning of the medium thereby projecting a polariton
in the medium. b) The polariton propagates further into the medium and at
a subsequent time a second probe photon scatters, but since (in this instance)
the polariton could not have left the first rb of the medium, no additional
projection of the polariton wave function ensues. c) The polariton is now about
to leave the first blockade radius of the medium, prompting us to consider
possible formation times t2 of the second polariton as described by the two-
photon wave function c’), assuming the pulse to arrive at t = 0. d) The first
and second polaritons straddle the rear and front boundaries of the first blockade
radius as a scattering event occurs; this causes a projection c’) → d’) on the
two-body wave function producing a superposition state of the first and second
polariton being the scatterer.
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does not prevent the blockade spheres from overlapping insofar as the center of
one sphere does not lie within another sphere. This figure is too simple, however,
because these spheres are non-classical in the sense that their exact (center)
positions are not fully determined, i.e. they are in a quantum superposition of
being in different locations according to some wave function.

Within the hard-sphere model, the action of the Rydberg medium on pulsed
input can be understood as described in the following, where, for sake of ar-
gument, we assume that we detect the scattering events. Consider Fig. 6.4:
Photons enter the medium according to some temporal input mode h(t) in a
quantum state |ψin⟩; if a photon successfully enters the medium it creates a po-
lariton excitation that propagates without loss at speed vg. If another photon
attempts to enter less than a time τb = rb/vg after the polariton was created,
the photon that attempts to enter will scatter into a mode of the environment.
In terms of the time τ at which this scattering event took place, the environment
effectively projects the wave function of the Rydberg excitation to be localized
within the arrival time interval [τ − τb, τ ] (see Fig. 6.4a). As long as the po-
lariton is within the first blockade radius of the entrance, subsequent scattering
events will not localize the polariton further (see Fig. 6.4b). Once the polariton
has propagated a distance rb into the medium it can no longer cause scattering
of incoming photons and a new polariton may be formed at the entrance of the
medium. Within the validity of the hard-sphere model, scattering photons are
ignorant as to the precise distance to the scatterer, since the scattering event
constitutes a projective, binary distance measurement. As a consequence, when
a polariton (whose temporal extent was defined near the entrance) straddles
the rear of the first blockade radius of the medium, then a scattering event can-
not distinguish whether the scattering was caused by this distant polariton, or
whether the distant polariton had already left and the scattering was instead
caused by a newly formed polariton near the entrance (see Fig. 6.4d). The
resulting projection caused by the scattering hence acts simultaneously on the
two polaritons leading to spatial entanglement.

When a polariton reaches the rear of the medium, it will map back onto
an outgoing optical field. Ignoring dispersion, the output light signal is simply
related to the polariton wave function by spatial decompression by a factor of
c/vg. For this reason, we may conveniently use the basis of definite time-ordered
polariton formation times to specify the state of the output light field:

|⃗tR⟩ ≡ |t1, . . . , tR⟩ ≡ Ê†(t1) · · · Ê†(tR)|0⟩, (6.4)

where Ê†(t) is the outfield field creation operator, |0⟩ is the vacuum and t1 ≤
. . . ≤ tR due to the assumed time ordering (subscript R in t⃗R indicates the
dimension of the vector). According to the analogue situation of macroscopic
objects with a large degree of interaction with the environment, it makes sense
to think of the localized states (6.4) as forming a “classical basis”. The wave
nature of the polariton resides in coherences between these states, and it is this
we must refer to in determining the EIT propagation of the polariton.

Note that the counting statistics that result from the hard-sphere model (as-
suming perfect single-polariton EIT) also appear in the subject of dead-time-
distorted photo-detection [71]. For given input, a non-paralyzable photodetec-
tor with dead time τb produces the same counting statistics as the hard-sphere
blockade with blockade time τb (measuring its output using an ideal photode-
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tector). (Non-paralyzable means that photons arriving during dead time do not
extend the current dead period.)

6.2.2 Single-polariton EIT decay

We will now consider how single-polariton EIT decay modifies the above picture.
In the limit of many input photons per blockade time τb it seems reasonable to
assume that the first projection of a given polariton occurs when its wave packet
is localized in the vicinity of the entrance of the medium. During the subsequent
propagation within the first blockade radius no additional projections occur (Fig.
6.4b) as discussed above and hence it is reasonable to assume that the effect of
EIT decay during this interval is equivalent to linear EIT filtering. Should such
a polariton decay event occur within the first blockade radius of the medium,
it would immediately allow for a new polariton to be formed at the entrance.
An implementation of these ideas will be considered in Section 6.3 below. In
the limit of perturbative polariton EIT decay, we may take a simpler approach
akin to that of Ref. [2] by considering the density matrix ρ̂ predicted by the
hard-sphere theory in the limit of perfect single-polariton EIT. Applying linear
EIT filtering to ρ̂ or its correlation functions then yields an estimate of the EIT
transmission. This approach will also be applied in the course of the analysis.
Note that we will not consider the effect of EIT dispersion.

In summary, the “quantum hard-sphere” model presented above captures the
dualistic nature of light as it manifests itself in the Rydberg-EIT medium: In the
atomically mediated photon-photon interaction light appears corpuscular due to
the sharp 1/r6 interaction potential prohibiting polaritons to co-exist within a
blockade radius of one another; meanwhile, the EIT-facilitated propagation of
light through the medium can only be properly accounted for in reference to
the wave nature of light. In this approach, photons that successfully enter the
medium can be thought of as propagating blockade spheres, of radius equal to
the Rydberg blockade radius rb, whose centers are only localized to within a
certain wave packet. The photonic wave packet of the quantum signal emanating
from the ensemble will be determined by the projective measurements on the
many-body state performed by the environment modes, taken to be all other
modes than that of the forward-propagating signal.

6.3 Transmission behavior

We will now apply the approach described in Section 6.2 to analyze various
scenarios involving dissipative Rydberg-EIT media in the 1-dimensional limit,
where the transverse spot size of the impinging light fields is small compared to
the blockade radius. As our first application, we will consider the transmission
behavior for a medium subject to continuous-wave (CW) probe and control
fields as a function of the input rate Rin of the probe.

6.3.1 Perfect single-polariton EIT

As a preliminary, let us first derive the output rate in absence of single-polariton
EIT decay, i.e. only considering the R-R interaction (see Fig. 6.3a). The input
flux Rin splits into two fractions, the part of the flux that makes it through the
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medium Rout and a rate of Rydberg-Rydberg scattered photons, RoutτbRin:1

Rin = Rout +RoutτbRin; (6.5)

τbRin is simply the average number of photons scattered by each Rydberg po-
lariton, while Rout is the rate of periods where the medium is blockaded. From
Eq. (6.5) we find the desired result

Rout =
1

τb + (1/Rin)
. (6.6)

We see that the output rate is upper-bounded by the inverse blockade time
as expected, Rout ≤ (1/τb); the average temporal separation between input
photons 1/Rin combines with τb to determine (6.6).

6.3.2 Imperfect single-polariton EIT
We now turn to the more realistic case of imperfect single-polariton EIT, in
which we must account for the finite transmission of polaritons that do not
fit within the EIT window. If a polariton is EIT-scattered within the first
blockade radius rb of the medium its blockade ceases, hence allowing for the
creation of a new polariton at the input of the medium. Therefore the average
blockade time (during which Rydberg-Rydberg scattering occurs) per polariton
τ̄b is upper bounded by that of a polariton that makes it through the first rb of
the medium, τ̄b ≤ τb. Introducing the average single-polariton EIT transmission
η̄EIT[L] through a medium of length L ≥ rb and (for didactical reasons) the
average Rydberg formation rate RRf, we again decompose the input rate in the
spirit of Eq. (6.5),

Rin = η̄EIT[L]RRf + (1− η̄EIT[L])RRf +RRfτ̄bRin, (6.7)

where on the right-hand side the first term is the output rate,

Rout ≡ η̄EIT[L]RRf, (6.8)

the second term of (6.7) is the rate of polariton EIT decay, and the third term is
the rate of Rydberg-Rydberg scattering events. We can decompose the average
blockade time τ̄b into contributions from polaritons that make it through the
first rb of the medium and those that do not

τ̄b = η̄EIT[rb]τb + τ̄ ′b, (6.9)

where τ̄ ′b is the contribution from those polaritons that EIT-decay within the
first blockade radius of the medium. Substituting Eqs. (6.8,6.9) into (6.7) and
solving for the output rate, we find

Rout =
η̄EIT[L]/η̄EIT[rb]

τb + 1
η̄EIT[rb]

[
1

Rin
+ τ̄ ′b

] , (6.10)

which, for finite EIT transmission η̄EIT < 1, is less than the rate (6.6) for
perfect single-polariton EIT. Eq. (6.10) shows that the part of the medium

1We neglect finite-pulse corrections that arise from the initial condition of the medium and
a finite averaging time.
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beyond the first blockade radius simply contributes a trivial damping factor in
the numerator, whereas the denominator reflects only the dynamics of the first
blockade radius.

To evaluate (6.10) we must estimate the functions η̄EIT[l] and τ̄ ′b in terms
of known quantities. Applying the serialization approach of Fig. 6.3a and
the intuition of Fig. 6.3c&d, we take the temporal extent τ of a polariton to be
defined by the first R-R event after its formation and denote its EIT transmission
probability through a length l of the medium by ηEIT(τ, l). (This assumption
ignores the additional projections that can occur as the polariton leaves the first
blockade radius of the medium; these projections will lessen the probability that
the polariton makes it through the remaining part of the medium.) Averaging
over the CW/Poisson distribution for τ this leads to,

η̄EIT[l] = ⟨ηEIT(τ, l)⟩τ =

ˆ ∞

0

dτRin(Rinτ)e
−RinτηEIT(τ, l). (6.11)

We estimate τ̄ ′b in a similar manner as

τ̄ ′b = ⟨
ˆ rb

0

dl(l/vg) [−dηEIT(τ, l)/dl]⟩τ . (6.12)

Approximating ηEIT(τ, l) by the EIT transmission of a square pulse subjected
to Gaussian filtering (see Appendix D.1), Eqs. (6.11,6.12) combined with (6.10)
yields the following expression for the output rate,

R̃out =
exp

(
4 Lrb

R̃2
in
db

)
erfc

(
2
√

L
rb

R̃in√
db

)
1

R̃in

[
1 +

√
db
π

]
+ db

4R̃2
in

[
exp

(
4R̃2

in
db

)
erfc

(
2R̃in√
db

)
− 1
] , (6.13)

where we have introduced dimensionless rates R̃in/out ≡ Rin/outτb and used the
relation τb = db/(2γEIT); γEIT ≡ Ω2/Γ is the single-atom EIT linewidth in terms
of the control field Rabi frequency Ω and the linewidth Γ of the intermediate
level. We start by examining limiting cases of Eq. (6.13): First we note that
this expression agrees with the result for perfect single-polariton EIT (6.6) in
the limit of infinite optical depth per blockade radius,

R̃out

∣∣∣
db→∞

=
1

1 + 1/R̃in
, (6.14)

as expected. Considering instead the limit of infinite input rate R̃in, we find
from (6.13) that

R̃out

∣∣∣
R̃in→∞

=
1

2

√
rb
L

1

1 +
√
π/db

; (6.15)

hence this calculation predicts a finite asymptote in the high-intensity limit. The
asymptotic value equals 1/2 for rb = L and

√
db/π ≫ 1. That the asymptotic

value (6.15) can be finite (rather than zero) can be explained by noting that
while EIT decay tends to lessen the photonic output rate, its impact on the rate
is diminished by the fact that a new polariton can be formed immediately after.
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6.3.3 Comparison to experiment and numerical simula-
tion

We plot (6.13) in Fig. 6.5 where it is compared to the experimental data of Ref.
[66]. In plotting (6.13) we use effective values of db and L from the experiment,
whereas the value of τb is obtained by fitting to the data; this is equivalent to
fitting the single-atom EIT linewidth γEIT since db is fixed. The fitted values
of τb are about a factor of 2 within those found by using the value of γEIT from
the experiment. In Fig. 6.5 the data is also compared to the output rate R′

out
that would arise if all multi-photon events within a time-window ∆t = 0.8µs
are converted to single-photon events, assuming that this conversion happens
independently in different time windows,

R′
out =

1

∆t

(
1− e−∆tRin

)
. (6.16)

This is the theoretical curve presented in Ref. [66] alongside the transmission
data. Because R′

out includes events where photons in neighboring time windows
are separated by less than ∆t, this rate exceeds the hard-sphere prediction for
perfect single-polariton EIT, (6.6) or (6.14), when comparing for ∆t = τb. Note
that ∆t = 0.8µs exceeds the value of τb found from experimental parameters by
more than an order of magnitude. While the quantum hard-sphere result (6.13)
is more motivated by the physics of the system than the simpler ad-hoc formula,
(6.16), the experimental data considered here is insufficient to determine the
precise saturation behavior of the output rate.

Numerical simulation of the quantum many-body problem considered here is
computationally unfeasible for more than a few excitations, but considering the
few-photon scenario is still a valuable benchmark for our model. Hence, to check
the serialization approximation for EIT filtering, as illustrated in Fig. 6.3a, we
compare against numerical simulations of the full set of equations of motion. We
apply EIT filtering to the density matrix to obtain ρ̂→ ρ̂′ corresponding to the
full length L of the Rydberg medium (taking L = rb); this yields a pessimistic
estimate, since the sharp temporal features removed by the filter are in general
created somewhere in the interior of the medium thus reducing the effective
optical depth of the EIT-filtering effect. For the comparison we consider square-
pulse Fock-state input with nin = 2 (which is reasonably feasible numerically).
The numerical simulation uses the three-level model for the atoms shown in
Fig. 6.1a. The density matrix ρ̂ predicted by the hard-sphere ansatz applied to
Fock-state input is given in Appendix D.2. The results are plotted Fig. 6.5b,
showing good agreement for db ? 10.

6.4 Generation of regular trains of single photons

As another application of the model, we will now consider schemes for generating
regular pulse trains of single photons, see Fig. 6.6. The first scheme (Fig. 6.6a)
will now be analyzed in some detail. It operates with the same CW probe and
control input as considered in the transmission analysis above. The blockade
sets a lower limit τb to the temporal separation of output photons leading to
anti-bunching. To achieve regularity, we must also impose an upper bound on
the (average) separation. This can be ensured by a sufficiently large input rate,
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Figure 6.5: Transmission through a dissipative Rydberg-EIT medium. a) Out-
put rate Rout as function of input rate Rin. The data from Ref. [66] is compared
to plots of (6.13) for two fixed values of db (blue and yellow) corresponding to
mean and peak values of the Gaussian distribution in the experiment with ax-
ial spread σax, effective length L = 4.2 · σax and fitted values of τb. Also
plotted (green curve) is the probability of having at least one photon in the
time-interval ∆t = 0.8µs, see Eq. (6.16). b) Comparison between full numerical
simulation and hard-sphere ansatz with post-EIT filtering for the propagation
of a two-photon square pulse through a Rydberg medium of length L = rb. The
numerical simulation was performed by Michael Gullans (JQI/NIST).
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Figure 6.6: Generation of single-photon trains with period τc and pulse duration
at most τb using a dissipative Rydberg-EIT medium with blockade time τb. a-
b) Input pulse cycles for two different schemes with CW control fields. a) CW
probe scheme. b) Pulsed probe scheme equivalent to repeated single-photon
generation [2], see Fig. 6.2. c) 1-d Rydberg-EIT medium acting as a single-
photon filter.

but only insofar as the effect of single-polariton EIT decay remains negligible
(as discussed above, the average polariton EIT transmission η̄EIT decreases with
increasing input rate). Such a decay event will terminate the regularity of the
pulse train (creating a “domain wall”), effectively resetting the process. These
considerations imply that an optimum input rate exists as a trade-off between
the input photons not being too far apart while keeping single-polariton EIT
decay low. Moreover, to generate regular pulse trains containing an appreciable
number of photons the probability of EIT decay must be small, i.e. we must
be in the regime of perturbative single-polariton EIT decay. In this regime, we
can meaningfully estimate the correlation functions of the outgoing light field by
appropriately filtering the correlation functions of the density matrix ρ̂ produced
by the idealized R-R interaction (see Fig. 6.3a). These functions will be derived
in the following using the intuition of hard-sphere projective scattering events
(Fig. 6.3c&d).

6.4.1 Hard-sphere correlation functions in the limit of per-
fect single-polariton EIT

6.4.1.1 Diagonal elements

First we consider the ensemble-averaged intensity profile ⟨Î(τ)⟩ρ̂ = ⟨Ê†(τ)Ê(τ)⟩ρ̂ =
G(1)(τ ; τ). Since it is the expectation value of an operator which is diagonal in
the “classical basis”, Eq. (6.4), it is indifferent to the wave nature of the polari-
tons and will coincide with the result of a suitably defined macroscopic analog
involving, say, bowling balls. ⟨Î(t)⟩ρ̂ for square-pulse Poisson input of rate Rin
can be derived inductively by propagating the initial condition that the medium
is empty when the input pulse arrives at the medium at time τs (and using the
fact that different chunks of the input pulse are uncorrelated). Let us first
consider the probability density P1(t1 − τs) of the first Rydberg excitation oc-
curring at a time t1 ≥ τs; this is simply the product of the probability that
no photons arrived during the interval [τs; t1], i.e. exp[−Rin(t1 − τs)] for the
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Poisson distribution, and the arrival rate of photons Rin, so that we have

P1(τ) = θ(τ)Rin exp[−rτ ]. (6.17)

Next, let us construct the probability density P2(t2 − τs) that the second Ry-
dberg excitation occurs at time t2. Note that per the hard-sphere ansatz this
probability density can be non-zero only for t2 ≥ τs + τb. The conditional prob-
ability density of the second Rydberg occurring at t2 conditioned on the first
Rydberg arriving at t1 is just P1(t2 − t1 − τb), where P1 is given in Eq. (6.17);
i.e. the first Rydberg excitation (at t1) imposes an initial condition of an empty
medium at t1 + τb equivalent to the one at τs. The unconditional probability
density P2(t2 − τs) for the arrival of the second Rydberg at t2 is then found by
integrating the conditional density P1(t2−t1−τb) over t1 ∈ [τs, t2−τb] weighted
by the probability density P1(t1 − τs) we found above for t1 (interestingly, the
combined integrand is independent of t1)

P2(t2 − τs) = θ(t2 − τs − τb)

ˆ t−τb

τs

dt1P1(t1 − τs) · P1(t2 − t1 − τb)

= θ(t2 − τs − τb)Rin exp[−Rin(t2 − τs − τb)] · [Rin(t2 − τs − τb)].

By iterating this argument we find the probability density for the arrival of the
R’th Rydberg at time tR to be given by (defining t0 ≡ τs − τb for convenience)

PR(tR − τs) = θ(tR − τs − (R− 1)τb)

×Rine
−Rin(tR−τs−(R−1)τb)

[Rin(tR − τs − (R− 1)τb)]
R−1

(R− 1)!
. (6.18)

PR(tR − τs), Eq. (6.18), is the probability density of the creation of a polariton
at time tR conditioned on R−1 polaritons having been created in the preceding
time interval [τs, tR − τb]. This allows us to construct G(1)(τ ; τ) simply by
observing that its value at a time τ = t − τs after the onset of the pulse only
can have contributions from the first ⌈(t− τs)/τb⌉ polaritons created since τs
per the hard-sphere ansatz; summing these contributions, Eq. (6.18), we find
(for t ≥ τs)

G(1)(t− τs; t− τs) =

⌊(t−τs)/τb⌋∑
j=0

Pj(t− τs)

=

⌊(t−τs)/τb⌋∑
j=0

Rine
−Rin(t−τs−jτb) [Rin(t− τs − jτb)]

j

j!
. (6.19)

We plot Eq. (6.19) in Fig. 6.7a for different combinations of the input rate Rin
and the blockade time in units of pulse duration τb/τp. The width of the peaks
are seen to increase with peak number while their heights decrease. This is a
symptom of the decay of the initial condition of a vacant medium at τs when
the pulse arrives, corresponding to the decay of photon-photon correlations in
the output signal as we will return to later.

The second-order correlation function,

G(2)(τ1, τ2; τ2, τ1) = ⟨:: Î(τ1)Î(τ2) ::⟩ρ̂ = ⟨Ê†(τ1)Ê†(τ2)Ê(τ2)Ê(τ1)⟩ρ̂,
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Figure 6.7: Correlation functions predicted by the hard-sphere model in the
limit of perfect single-polariton EIT: a) Ensemble-averaged output intensity
⟨Î(t)⟩ ≡ G(1)(t; t). Poisson distributed input with fixed mean number of photons
Rinτp for different ratios τb/τp. b) Steady-state 2-time correlation function
g
(2)
ss (τ), Eq. (6.21), exhibiting perfect anti-bunching for |τ | ≤ τb.
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can be constructed from the diagonal elements G(1)(τ ; τ) derived in Eq. (6.19)
by pursuing a similar logic: As the product between the probability density of
creating a polariton at time τs+min{τ1, τ2} conditioned on a vacant medium at
τs and the probability density of creating a polariton at time τs + max{τ1, τ2}
conditioned on a polariton having been created at τs + min{τ1, τ2}. Impor-
tantly, the latter is independent of the event history of the time interval [τs; τs+
min{τ1, τ2} + τb]. This is because the counting statistics of different time in-
tervals of the CW input are uncorrelated and conditioning on having a Ryd-
berg excitation created at τs + min{τ1, τ2} sets a boundary condition at t′ =
τs+min{τ1, τ2}+τb equivalent to the initial condition at τs of a vacant Rydberg
medium. This argument leads to the expression:

G(2)(τ1, τ2; τ2, τ1) = Θ(|τ2 − τ1| − τb)

×G(1)(min{τ1, τ2};min{τ1, τ2})G(1)(|τ2 − τ1| − τb; |τ2 − τ1| − τb). (6.20)

The correlation functions considered thus far apply to the scenario of a
square pulse arriving at the medium at time t = 0. A more common quantity
to consider in experiment is the steady-state correlation function g2ss(τ),

g(2)ss (τ) ≡ ⟨Ê†(0)Ê†(τ)Ê(τ)Ê(0)⟩ss
⟨Ê†(τ)Ê(τ)⟩ss⟨Ê†(0)Ê(0)⟩ss

,

that ensues when the transients from the leading edge of the pulse and the initial
condition of the medium have decayed. Taking the limit min{τ1, τ2} → ∞ in Eq.
(6.20) and identifying the steady state mean output rate Rout ≡ G(1)(τ ; τ)

∣∣
τ→∞

we find

g(2)ss (τ) = Θ(τ − τb)
G(1)(τ − τb; τ − τb)

Rout
, (6.21)

which is seen to be closely related to the diagonal elements of G(1) (see plots in
Fig. 6.7). The hard-sphere prediction for g2ss(τ) in the perfect EIT limit, Eq.
(6.21), shows perfect anti-bunching for |τ | ≤ τb as per construction.

The argument leading to Eq. (6.20) can be iterated to express the “diagonal”
elements (τi = τ ′i) of the correlation function

G(N)(τ1, . . . , τN ; τ ′N , . . . , τ
′
1) ≡ ⟨::

N∏
i=1

Ê†(τi)Ê(τ ′i) ::⟩ρ̂

in terms of those of G(1) found in Eq. (6.19). Assuming a time-ordered set
{τ1, . . . , τN}, Eq. (6.20) generalizes to (where τ0 ≡ −τb for convenience)

G(N)(τ1, . . . , τN ; τN , . . . , τ1) =

N∏
i=1

θ(τi − τi−1 − τb)G
(1)(τi − τi−1 − τb; τi − τi−1 − τb). (6.22)

6.4.1.2 Off-diagonal elements

We now turn to the off-diagonal elements of the general first-order correlation
function G(1)(τ ; τ ′) = ⟨Ê†(τ)Ê(τ ′)⟩ can be related to the diagonal elements
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τ τ ′ time

τb

Figure 6.8: Since a polariton will only scatter photons arriving subsequent to
itself, its effective blockade region is a hemisphere pointing forward in time. The
overlap of effective blockade regions corresponding to polariton arrival times τ
and τ ′ is indicated by shading. The forbidden region, during which scattering
events would ruin the superposition between τ and τ ′, consists of the two disjoint
time intervals shown as projections on the axis.

G(1)(τ ′′; τ ′′). Note that the operator Ê†(τ)Ê(τ ′) is non-diagonal in the classical
basis; it measures the quantum coherence between having a Rydberg excitation
at different times at once (and the result differs from that of the bowling ball
experiment in which G(1)(τ ; τ ′) ∝ δ(τ − τ ′)G(1)(τ ; τ)). To have such coherence,
no scattering events must occur so as to determine whether the Rydberg exci-
tation were formed at τ or τ ′. We may construct G(1)(τ ; τ ′) as the probability
density for the creation of a polariton at min{τ, τ ′} times the probability that
no scattering events occur that allows the environment to distinguish whether
the polariton was created at τ or τ ′. The forbidden scattering times is the set
obtained by subtracting the intersection of effective blockade regions of polari-
tons at τ, τ ′ from their union (assuming that the effective blockade region of the
polariton is not truncated by the pulse ending), see Fig. 6.8. From the figure,
we see that this requires that no photons impinge on the Rydberg medium for
intervals of combined duration 2min{τb, |τ − τ ′|}. This is all the information
we need for Poisson-distributed input, and therefore we find that (assuming
τ, τ ′ ≤ τp − τb, where τp is the pulse duration)

G(1)(τ ; τ ′) = G(1)(min{τ ; τ ′};min{τ ; τ ′})e−2Rin min{τb,|τ−τ ′|}. (6.23)

We plot Eq. (6.23) in Fig. 6.9 for two different values of Rin.
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Figure 6.9: Plots of G(1)(t1; t2) according to the the hard-sphere ansatz without
EIT filtering for coherent square-pulse input. The diagonal ridges are recognized
as the diagonal elements of G(1) plotted in Fig. 6.7.

6.5 Conditions for generating pulse trains of sin-
gle photons

We will now use the hard-sphere correlation functions derived above to analyze
the generation of regular trains of single photons. The effect of EIT-filtering
will be estimated by post-filtering of G(1)(τ, τ ′) in the spirit of Fig. 6.3a. We
consider the experimentally relevant case of CW Poisson input characterized by
mean input rate Rin impinging on a Rydberg medium with blockade time τb.
We will mainly consider the signatures of regularity in G(1) as G(N) is simply
related to this by Eq. (6.22).

6.5.1 Input rate requirement
To ease the analysis of ⟨Î(t− τs)⟩ ≡ G(1)(t− τs; t− τs) we rewrite Eq. (6.19) as

⟨Î(t− τs)⟩ =
⌊(t−τs)/τb⌋∑

p=0

Ĩp(t− τs), (6.24)

in terms of the profile of the p’th peak

Ĩp(t− τs) ≡ Rin
1

p!
[Rin(t− τs − pτb)]

pe−Rin(t−τs−pτb)Θ(t− τs − pτb), (6.25)

enumerating peaks as {0, 1, . . .}. Considering the individual peak profiles Ĩp(t−
τs), the p’th peak is seen to be located at tp = τs + p(τb +1/Rin) and hence the
peak-to-peak separation is ∆t = τb +

1
Rin

. In the high-intensity limit the peaks
are well-separated and we can approximate Eq. (6.24) by

⟨Î(τ ∼ tp − τs)⟩ ≈ Ĩp(τ), (6.26)

where τ ∼ tp − τs means that τ is in the neighborhood of tp − τp (or, more
precisely, that p minimizes |τ − tj + τs|). Note that each peak Ĩp, Eq. (6.25),
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has unit area. To derive a condition for well-separated peaks we consider the
corrections to Eq. (6.26); from the exact Eq. (6.24) we see that these are simply
the tails of the other Ĩp′ :

⟨Î(τ ∼ tp − τs)⟩ = Ĩp(τ) +

⌊τ/τb⌋∑
j=0,j ̸=p

Ĩj(τ).

As we shall see shortly, the width of Ĩp(t) is sublinear in p (∼ √
p) and hence

grows slower than tp − τs ∝ p. For this reason it is sufficient to ensure that
each peak Ĩp(t) is well-separated from its nearest neighbors. Thus to have a
well-separated crystal of N = p + 1 photons we must ensure that the width
(δt)N of ĨN (t) is much less than the peak separation ∆t = τb +1/Rin. The p’th
peak width (HWHM) can be approximated for p≫ 1 as

(δt)p ≈
√

ln(4)p

Rin
. (6.27)

From Eq. (6.25) we also find the p’th peak height to be,

⟨Î(tp − τs)⟩ = Rin
pp

p!
e−p ≈ Rin√

2πp
, (6.28)

using Sterling’s approximation for p≫ 1. Notably, peak heights and widths are
independent of τb.

We wish to have a parameter condition that determines whether all peaks
of ⟨Î(t)⟩ρ̂ will be well-localized and regularly spaced. As discussed above that
requires us to ensure that all N peaks are narrow compared to their nearest-
neighbor separation. In turn, since the width grows with peak number, it suffices
to consider the last peak of the crystal, i.e. make sure that the (HWHM) width
of ĨN (τ) obeys (δt)N < τb + 1/Rin ≈ τb (working in the N ≫ 1 regime we
here take N − 1 ≈ N). Demanding more specifically that (δt)N ≤ βτb for some
fraction β of the blockade time, Eq. (6.27) yields the input rate requirement

Rin ?
√

ln(4)N

βτb
. (6.29)

Below we will use Eq. (6.29) with equality (rather than as a lower bound)
because the detrimental effect of the finite EIT window becomes more severe
with increasing r (as we will turn to shortly).

6.5.2 EIT filtering

EIT post-filtering can be carried out by filtering the ensemble-averaged quantum
coherent single-Rydberg wave packet G(1)(t1; t2). Before proceeding, we take a
look at some plots of G(1)(t1; t2) in Fig. 6.9. These plots appear as narrow
ridges/strings of spikes along t1 = t2, decaying rapidly for t1 ̸= t2 (i.e. the
quantum coherence decays). Using Eq. (6.23) in the limit of well-separated
peaks for which Eq. (6.26) is applicable, we define the single-Rydberg EIT
transmission ηEIT in terms of the diagonal elements of the filtered G̃(1) (Gaussian
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EIT approximation and assuming we can extend integration limits to infinity)

ηEIT ≡
ˆ ∞

−∞
dτG̃(1)(τ ; τ) (6.30)

G̃(1)(τ ; τ) ≡
ˆ ∞

−∞
dδĨp(min{τ, τ + δ})e−2Rin min{τb,|δ|}

× 1

2
√
πτEIT

exp

(
− δ2

4τ2EIT

)
. (6.31)

Eq. (6.30) can be evaluated analytically, but we restrict our attention to the
limit τEIT ≪ 1/Rin, τb in which2

ηEIT ≈ 1− 4RinτEIT√
π

+O[(RinτEIT)
2].

Tolerating an EIT loss fraction of at most ϵ = 1 − ηEIT, we are faced with an
upper bound for Rin:

ϵ ? 4RinτEIT√
π

⇔ Rin >
√
π

4

ϵ

τEIT
. (6.32)

Hence, the average crystal length allowed by the EIT filter is NEIT ∼ 1/ϵ.

6.5.3 Asymptotic scaling of the pulse-train length
We assume the optimal input rate ř to be the solution to NEIT = Np, where
Np is the N stemming from the peak width requirement, Eq. (6.29);

Řin = 3

√ √
π ln(2)

2τEITβ2τ2b
= 3
√
2 ln(2)π1/6β−2/3d

−5/6
b γEIT,

having used τb ≡ db/(2γEIT) and τEIT ≡
√
db/γEIT. Combining Eqs. (6.29)

and (6.32) we find at Rin = Řin

Nmax = NEIT = Np ⇒ Nmax =
3

√
πβ2

128 ln 2
db.

For this expression to reach Nmax ? 1 requires db ? 100 for β ≈ 1/2, whereas
Nmax ≈ 10 requires db ≈ 105. Hence we find the process of crystal generation
to demand a very large optical depth per blockade radius.

Having discussed in detail the CW scheme of Fig. 6.6a, we will now consider
the alternative scheme shown in Fig. 6.6b. While it retains the CW control
field, it uses a pulsed input probe field (generated from a CW field by e.g. a
beam chopper). The probe pulses are taken to be of duration τb so that each
fits within the medium of length L = rb, i.e. the regime addressed by Ref.
[2]. A main advantage of this scheme (over scheme ’a’) is that a polariton
EIT-decay event will only create a defect in the outgoing pulse train, whereas
it will not affect the overall regularity which is ensured by that of the input

2The EIT loss determined here by post-filtering is found to be a factor of 2 worse than
η̄EIT[rb] as given by Eq. (6.11). We ascribe this to the additional projections that can occur
when a polariton leaves the first rb of the medium (as opposed to entering it as in Fig. 6.3c).
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Figure 6.10: Multi-body Rydberg scattering event in a 3-d medium, where the
waist of probe and control fields exceed the blockade radius, allowing polaritons
to coexist “side by side”.

probe field; moreover, this lessens the need for a large input rate. Hence, to
assess this scheme we simply need to consider the probability of having a single
output photon in a given duty cycle. In this way the asymptotic scaling of
the defect probability is found to be 1 − η̄EIT ∝ 1/

√
db for large db [2]. Both

schemes considered here present requirements for db which are outside the reach
of Rydberg media in magneto-optical traps, but which could be approached in
Bose-Einstein condensates.

6.6 Conclusion and outlook
We have proposed a new model for analyzing the many-body physics of the
dissipative Rydberg blockade in extended EIT media. The model accounts for
the finite width of the EIT window, which is a significant effect in state-of-the-art
experiments [66]. Analyzing the transmission through such systems, we found
the predictions of the model to be compatible with numerical simulations and
available experimental data. To further assess the model, it would be of interest
to perform additional numerical simulations, like that presented in Fig. 6.5b, to
explore the single- and zero-photon output manifolds starting from two-photon
input. Moreover, additional experimental data for larger values of db would be
of great value in establishing the precise saturation behavior of the blockade.
The model was also applied to analyzing a scheme for generating pulse trains of
single photons from CW input, whereby its asymptotic scaling was determined.

The results presented here lead us to conclude that the model has some merit
and warrants further investigation. The model could provide valuable insight
for tackling the difficult quantum many-body problem considered here so that,
ideally, it could serve as the starting point for the rigorous derivation of effective
many-body theories for Rydberg-EIT that go beyond the regime of validity of
existing theories.

Finally, one can envision several extensions of the approach taken here: Stor-
age and retrieval operations in Rydberg media can be modeled by translating
time-varying control fields into a time-dependent blockade time τb of hard-
sphere Rydberg polaritons. In 3-d Rydberg media multi-body Rydberg scat-
tering events can take place when the blockade regions of transversely spaced
polaritons overlap (see sketch in Fig. 6.10). One might also hope that the intu-
ition gained here can somehow be extended to shed light on dispersive Rydberg
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interactions.
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Appendix A

Appendix to Chapter 2

A.1 Membrane modes and their gauge masses

We will now show how the drum modes may be introduced into a Hamiltonian
description of the vibrating membrane. Our starting point will be a classical
Hamiltonian expressed as an area integral over the membrane, the integrand
being a Hamiltonian density (see for instance Ch. 4 of Ref. [72])

Hmem =

¨
A

d2r⃗

[
Π2(r⃗)

2ρ
+
ρv2

2
[∇z(r⃗)] · [∇z(r⃗)]

]
; (A.1)

here ρ is the uniform mass density (per area) and Π(r⃗) = ρż(r⃗) is the momentum
density conjugate to the displacement z(r⃗), r⃗ being a 2-dimensional vector in the
plane of the membrane. Specializing to clamped membranes, for which z = 0
at the boundary of A, we use the identity

∇ · [z∇z] = [∇z] · [∇z] + z∇2z

and the divergence theorem to rewrite (A.1) in terms of the Laplacian

Hmem =

¨
A

d2r⃗

[
Π2(r⃗)

2ρ
− ρv2

2
z(r⃗)∇2z(r⃗)

]
Assuming the shape of the membrane allows us to solve the spatial Helmholtz
equation

(∇2 + ω2
j /v

2)z(r⃗) = 0,

to determine a complete, countable set of orthogonal modes {uj} that obey the
clamped boundary condition, z = 0; v is the speed of sound. Using this set of
modes to expand the displacement and momentum density fields

z(r⃗) =
∑
j

βjuj(r⃗), Π(r⃗) = ρ
∑
j

β̇juj(r⃗) (A.2)

and exploiting orthogonality of the mode set,
¨
A

d2r⃗uj(r⃗)uj′(r⃗) ∝ δj,j′ ,
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we find

Hmem =
∑
j

¨
A

d2r⃗
u2j (r⃗)

A

[
1

2
m∗β̇2

j +
m∗

2
ω2
jβ

2
j

]
(A.3)

where we have introduced the physical mass of the membranem∗ ≡ ρA. In order
for (A.3) to be a genuine Hamiltonian we must express it in terms of canonical
position-momentum conjugate pairs representing the respective normal modes.
In identifying these coordinate pairs there is a certain gauge freedom. A useful
way to think of this freedom is the following: Assume for the sake of argument
that only a single, given normal mode uj(r⃗) is excited; tracking the motion of
any fixed point r⃗j in the membrane plane as it undergoes oscillations amounts
to tracking all points because they move in a perfectly correlated fashion ac-
cording to the mode shape uj(r⃗). The gauge freedom is the freedom to choose
canonical coordinates {βj , pj} so that βj is the oscillation amplitude of the
point r⃗j according to uj(r⃗) as is be achieved by normalizing the modes so that
uj(r⃗j) = 1 (there are additional choices of coordinates for which βj does not
correspond to the amplitude of any point on the membrane). In order to pre-
serve the form of Eqs. (A.2), we note that any canonical scaling transformation
{βj , pj} → {β′

j = rjβj , p
′
j = r−1

j pj} must be accompanied by a rescaling of the
normal modes {uj} → {u′j = r−1

j uj} and vice versa, so that e.g.,

z(r⃗) =
∑
j

βjuj(r⃗) =
∑
j

β′
ju

′
j(r⃗). (A.4)

The gauge freedom described above amounts to choosing the gauge mass mj of
the normal mode described by {βj , pj}. Demanding the form invariance (A.4)
and choosing gauge masses {mj} we find that (A.3) only takes the canonical
form of a sum of harmonic oscillator Hamiltonians in the position-momentum
pairs (βj , pj = mj β̇j)

Hmem =
∑
j

[
p2j
2mj

+
1

2
mjω

2
jβ

2
j

]
, (A.5)

by demanding the normal mode normalization
¨
A

d2r⃗
u2j (r⃗)

A
=
mj

m∗
. (A.6)

Conversely, for a set of modes normalized so that {uj(r⃗j) = 1}, Eq. (A.6)
determines the gauge masses {mj} that must be chosen. For two gauge choices
{mj} and {m′

j}, the position coordinates {βj} and {β′
j} are related as

√
mjβj =

√
m′
jβ

′
j . (A.7)
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Appendices to Chapter 3

B.1 Fourier transform convention

We will use the following convention for the Fourier decomposition of bosonic
annihilation and creation operators (in the “lab frame”)

â(t) ≡ 1√
2π

ˆ ∞

0

dωâ(ω)e−iωt; â†(t) ≡ 1√
2π

ˆ ∞

0

dωâ†(ω)e+iωt, (B.1)

where [â(ω)]† = â†(ω); i.e. Eqs. (B.1) are the positive- and negative-frequency
parts of the Hermitian operator â(t) + â†(t). In the presence of a drive field (of
frequency ωd,i) applied to the mode â we will rather be interested in the Fourier
decomposition of the rotating frame variables eiωd,itâ(t) and e−iωd,itâ†(t); con-
sidering the first of these, we find from Eq. (B.1)

eiωd,itâ(t) =
1√
2π

ˆ ∞

0

dωâ(ω)e−i(ω−ωd,i)t

=
1√
2π

ˆ ∞

−ωd,i

dΩâ(Ω + ωd,i)e
−iΩt =

1√
2π

ˆ ∞

−ωd,i

dΩˆ̃a(Ω)e−iΩt (B.2)

where we have introduced the rotating frame frequency Ω ≡ ω− ωd,i and made
the notational shift ˆ̃a(Ω) ≡ δâ(Ω+ωd,i) (the signals of interest will be assumed
to lie within a narrow bandwidth of the carrier for which |Ω| ≪ ωd,i). We read
off the rotating frame Fourier transform from Eq. (B.2)

Ft→Ω{eiωd,itâ(t)} = ˆ̃a(Ω). (B.3)

In parallel to Eq. (B.2) we find for the Hermitian conjugate,

e−iωd,itâ†(t) =
1√
2π

ˆ ∞

−ωd,i

dΩâ†(Ω + ωd,i)e
iΩt =

1√
2π

ˆ ∞

−ωd,i

dΩˆ̃a†(Ω)eiΩt,

from which we read off

Ft→Ω{e−iωd,itâ†(t)} = ˆ̃a†(−Ω). (B.4)
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B.2 Homodyne measurement and noise quadra-
tures

Combining Eqs. (3.6) and (3.13) from the main text we find that the Fourier
transformed heterodyne current has the following signal and noise components
(Ω > 0)

Î(Ω)/|αLO| = ts,θLO(Ω)âin,s(Ω) + N̂θLO(Ω)

where

ts,θLO(Ω) ≡ e−iθLOUs(Ω) + eiθLOV ∗
s (−Ω) (B.5)

N̂θLO(Ω) ≡ e−iθLOF̂(Ω) + eiθLOF̂†(−Ω). (B.6)

Integrating the photocurrent with a variable phase ϕ, we see that both input
quadratures are contained in Î(Ω) obtained for a fixed value of θLO

Ẑϕ,θLO(Ω) ≡
1

|αLO|

ˆ
Î(t) cos(ωt+ ϕ)dt =

eiϕÎ(Ω) + e−iϕÎ†(Ω)

2|αLO|

=
1√
2

[
|ts,θLO(Ω)|X̂s,−(ψ+ϕ)(Ω) + Ŷn(Ω)

]
(B.7)

where we have introduced the phase ψ ≡ Arg[ts,θLO(Ω)] of the quadrature trans-
fer function (B.6) for the single-mode input signal quadratures

X̂s,φ(Ω) ≡
e−iφâin,s(Ω) + eiφâ†in,s(Ω)√

2
, (B.8)

obeying the canonical commutation relations [X̂φ(Ω), X̂φ+iπ/2(Ω
′)] = iδ(Ω−Ω′);

the added quadrature noise in Eq. (B.7) is accounted for by the Hermitian
operator

Ŷn(Ω) ≡
eiϕN̂θLO(Ω) + e−iϕN̂ †

θLO
(Ω)

√
2

, (B.9)

where N̂θLO was defined in Eq. (B.6).

B.3 Cauchy-Schwarz upper bound for heterodyne
sensitivity

This section uses the optical homodyne quadratures defined in Appendix B.2
above. Referencing Eq. (B.7) to the input signal, we define the heterodyne
sensitivity as the variance

P (Ω)δ(Ω−Ω′) ≡

⟨(
X̂s,−(ψ+ϕ)(Ω) +

Ŷn(Ω)

|ts,θLO(Ω)|

)(
X̂s,−(ψ+ϕ)(Ω

′) +
Ŷn(Ω

′)

|ts,θLO(Ω
′)|

)⟩
vac,s

=
1

2
δ(Ω− Ω′) +

⟨Ŷn(Ω)Ŷn(Ω
′)⟩

|ts,θLO(Ω)|2
, (B.10)
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where we take the input on the signal port to be vacuum uncorrelated with the
noise inputs. To evaluate ⟨Ŷn(Ω)Ŷn(Ω

′)⟩ we will make use of the property that
the noise associated with F̂ is time-stationary, i.e.

⟨F̂†(Ω)F̂(Ω′)⟩ ∝ δ(Ω− Ω′), ⟨F̂(Ω)F̂†(Ω′)⟩ ∝ δ(Ω− Ω′)

⟨F̂(Ω)F̂(Ω′)⟩ ∝ δ(Ω + Ω′), ⟨F̂†(Ω)F̂†(Ω′)⟩ ∝ δ(Ω + Ω′), (B.11)

as follows from the assumed form of F̂ , (3.7) given in the main text, combined
with the thermal expectation values of the input operators âin,i(Ω). From Eq.
(3.7) of the main text we find in this way that

⟨Ŷn(Ω)Ŷn(Ω
′)⟩ = 1

2

[
⟨N̂θLO(Ω)N̂

†
θLO

(Ω′)⟩+ ⟨N̂ †
θLO

(Ω)N̂θLO(Ω
′)⟩
]

=

∣∣∣∣( u⃗(+)

v⃗(+)

)∣∣∣∣2 + ∣∣∣∣( v⃗(−)

u⃗(−)

)∣∣∣∣2 + 2Re
[
e−2iθLO

⟨(
u⃗(+)

v⃗(+)

)∗

,

(
v⃗(−)

u⃗(−)

)⟩]
(B.12)

where ⟨·, ·⟩ denotes the inner product between vectors in Cn and we have defined
the vectors

[u⃗(±)]i ≡ Ui(±Ω)
√
ni(±Ω+ ωd,i) + 1/2, [v⃗(±)]i ≡ Vi(±Ω)

√
ni(∓Ω+ ωd,i) + 1/2.

As a side remark, we note that P (Ω) as given by Eq. (B.10) coincides with
the definition given in the main text as can be seen using the first equality in
(B.12) and the commutator [N̂θLO(Ω), N̂

†
θLO

(Ω′)] = −|ts,θLO(Ω)|2δ(Ω−Ω′). The
Cauchy-Schwarz inequality on Cn implies that∣∣∣∣⟨( u⃗(+)

v⃗(+)

)∗

,

(
v⃗(−)

u⃗(−)

)⟩∣∣∣∣ ≤ ∣∣∣∣( u⃗(+)

v⃗(+)

)∣∣∣∣ · ∣∣∣∣( v⃗(−)

u⃗(−)

)∣∣∣∣ , (B.13)

which leads us to an upper bound of (B.12)

⟨Ŷn(Ω)Ŷn(Ω
′)⟩ ≤

(∣∣∣∣( u⃗(+)

v⃗(+)

)∣∣∣∣+ ∣∣∣∣( v⃗(−)

u⃗(−)

)∣∣∣∣)2

. (B.14)

Note that (Ω,Ω′ > 0)∣∣∣∣( u⃗(±)

v⃗(±)

)∣∣∣∣2 δ(Ω− Ω′) =
⟨F̂†(±Ω)F̂(±Ω′)⟩+ ⟨F̂(±Ω)F̂†(±Ω′)⟩

2

=

[
η(±Ω)N(±Ω) +

1∓ η(±Ω)

2

]
δ(Ω− Ω′),(B.15)

since from the bosonic commutation relations and (3.6) we have (for Ω,Ω′ > 0)

[âout,e(±Ω), â†out,e(±Ω′)] = δ(Ω− Ω′) ⇒ [F̂(±Ω)F̂†(±Ω′)] = [1∓ η(±Ω)]δ(Ω− Ω′).

Combining (B.10) with (B.14) and (B.15) we arrive at the upper bound for Ps,
given as Eq. (3.16) in the main text.



146 APPENDIX B. APPENDICES TO CHAPTER 3

B.4 Conditional entanglement generation
One of the highly desired protocols for quantum communication is entanglement
generation between distant atom-like systems conditioned on one or more clicks
in photo-counting detectors [52]. The schemes discussed here are related to their
more familiar quantum optical analogs by the replacement of actual atoms by
artificial ones such as superconducting qubits with typical transition frequencies
in the microwave domain. This is of particular interest for (entanglement-based)
quantum repeaters, which may allow for the realization of a long-ranging quan-
tum internet based on an optical fiber infrastructure. To achieve this based
on super-conducting systems, transduction between microwave and optical fre-
quencies is required.

The entanglement schemes involve the emission of single photons from the
(artificial) atoms which need to be transduced to optical frequencies for fiber
transmission (see Fig. B.1). The transduction efficiency for a single signal
quantum is given by

η = ηh

ˆ ∆T

0

|hout(t)|2dt (B.16)

with ηh defined as in the main text. For simplicity, we will perform the analysis
assuming |Vi(Ω)| ≈ 0, so that the transducers act as beam splitters. In the end
we will take the limit η ≪ 1 where it is very unlikely that a single incoming signal
quantum generates more than one quantum at the exit port. In this limit the
expressions remain valid even in the presence of the amplification noise resulting
from |Vi(Ω)| > 0. The inevitable transduction of noise photons amounts to
an additional equivalent dark count probability Pd related to the noise rate
rN defined in the main text; here we shall take this to be the only source
of dark counts for simplicity. Moreover, we assume unit detection efficiency.
To simplify the analysis we make the assumptions that the noise photons are
distinguishable and hence do not bunch upon combination on the beamsplitter;
this amounts to assuming that 1/∆T is much smaller than the bandwidth. From
this assumption it follows that each transducer contributes an average dark
count rate of rN∆T/2 in each detector, whereby the probability for at least one
dark count in a particular detector is Pd = 1 − (e−rN∆T/2)2 = 1 − e−rN∆T ≈
rN∆T for rN∆T ≪ 1.

The basic idea of the schemes to be considered here is to symmetrically excite
the artificial atoms into a state of the form

(
√
1− Pe|0⟩A,1|0⟩P,1+

√
Pe|1⟩A,1|1⟩P,1)⊗(

√
1− Pe|0⟩A,2|0⟩P,2+

√
Pe|1⟩A,2|1⟩P,2),

(B.17)
where |n⟩A,i denotes the atomic state of atom i and |n⟩P,i the photonic Fock
states corresponding to the emitted light from atom i. The photonic states are
transduced by individual electro-optomechanical transducers and mixed in a
mode-matched fashion at a 50:50 beamsplitter, thereby withholding the which-
way information from the subsequent photodetection measurement (see Fig.
B.1). Hence, in absence of imperfections, if a single click is obtained the atomic
system is projected into an entangled state of either atom being in its |1⟩A,i
state (while we would like to condition on exactly one click in a single detector,
photon number resolution is typically not achievable in practice):

|Ψ±⟩ =
1√
2
(|0⟩A,1|1⟩A,2 ± |1⟩A,1|0⟩A,2), (B.18)
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T

T

Figure B.1: Sketch of the setup for conditional remote entanglement generation
between microwave qubits via optics. The two qubits are symmetrically and
coherently excited by a control pulse. The microwave radiation resulting from
subsequent decay is transduced into the optical domain and interfered on a
symmetric beam splitter and the output is measured by photodetection. A click
in one of the detectors is an indication that the single-click scheme has succeeded.
Subsequently applying a symmetric π-pulse to the qubits and conditioning on a
second click in a two-click scheme decreases the sensitivity to transduced noise
photons.

with the sign determined by which detector clicks. The two-click scheme adds
a subsequent π-pulse along with the condition of an additional click; this serves
to verify that the atomic systems are in the state (B.18). This added step
mitigates the effect of dark counts, imperfect transduction η < 1 and atomic
double excitations, hence allowing Pe = 1/2.

We now calculate the conditional fidelities Fic, i ∈ {1, 2} for Bell-state gen-
eration by means of these single-click and two-click variants (illustrated in Fig.
B.1). This conditional fidelity is defined as the average overlap between the gen-
erated and desired states given that the relevant click condition was fulfilled.
Upon fulfillment of the condition, the system is described by a certain density
matrix ρ̂ic. Starting with the single-click condition, we will now determine the
conditional fidelity of achieving either of the states |Ψ±⟩. This may be calcu-
lated by imagining that if we obtain |Ψ−⟩, we rotate it into |Ψ+⟩; denoting
the corresponding rotated density matrix ρ̂′ic, the desired conditional fidelity is
given by:

Fic = Tr[ρ̂′ic|Ψ+⟩⟨Ψ+|]. (B.19)

By considering the various possible outcomes compatible with fulfillment of the
condition in the limit Pd/η ≪ Pe ≪ 1 and η ≪ 1, we arrive at (using the
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abbreviated notation |i⟩A,1|j⟩A,2 ≡ |ij⟩)

ρ̂′1c =
1

N1

[Neither emits, dark count in one arm︷ ︸︸ ︷
(1− Pe)

22Pd(1− Pd)|00⟩⟨00|

+

One atom emits and is detected, no dark count in other arm︷ ︸︸ ︷
2Pe(1− Pe)η(1− Pd)|Ψ+⟩⟨Ψ+|

+

One emits but is not detected, dark count in one arm︷ ︸︸ ︷
Pe(1− Pe)(1− η)2Pd(1− Pd)[|01⟩⟨01|+ |10⟩⟨10|]

+

Both emit, if detected no dark count in other arm︷ ︸︸ ︷
P 2

e ([1− (1− η)2] + (1− η)22Pd)(1− Pd)|11⟩⟨11|

]
, (B.20)

where N1 is the appropriate normalization factor ensuring that Tr[ρ̂′1c] = 1.
Using Eqs. (B.18) and (B.20) to evaluate the conditional fidelity (B.19), we
find

F1c =
2Pe(1− Pe)η + Pe(1− Pe)(1− η)2Pd

Peη(1− 2Pd)[2− Peη] + 2Pd
. (B.21)

expanding Eq. (B.21) in the limit Pe, Pd ≪ 1, Pd ≪ Pe it reduces to

F1c ≈ 1− Pe(1− η/2)− Pd

ηPe
(B.22)

The choice of Pe that maximizes F1c as given by (B.22) is

P (opt)
e =

√
Pd

η(1− η/2)

yielding the fidelity

F
(opt)
1c = 1− 2

√(
1

η
− 1

2

)
Pd ≈ 1− 2

√(
1

η
− 1

2

)
η
(+)
0 N

(+)
0 B∆T . (B.23)

Next, we consider the two-click scheme. The scheme works in two steps
and we will take as our condition that at least one click in exactly one arm
occurs in each of the two steps. In the first step the two atoms are excited
symmetrically to the state (B.17) with Pe = 1/2 (which maximizes the fidelity),
preferably only one of the atoms emit a photon. In the next step, a π-pulse
is applied symmetrically to the two atoms such that an atom in the |0⟩A state
is transferred to |1⟩A while emitting a photon; meanwhile, an atom in the |1⟩A
state is left unchanged by the pulse. In the absence of dark counts and for perfect
transduction, Pd = 0, η = 1, fulfillment of the two-click condition that either
of the states entangled atomic states |Ψ±⟩, Eq. (B.18), have been generated
with unit conditional fidelity (whether the first click occurs in detector one or
two reveals which of the two states where generated). For finite dark count
probability Pd, the conditional fidelity drops below 1 according to an expression
to be determined shortly. Fulfillment of the two-click condition corresponds to
the density matrix (rotating |Ψ−⟩ into |Ψ+⟩ for purposes of calculating F2c,
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ρ̂2c → ρ̂′2c)

ρ̂′2c =
1

N2

[
(1− Pe)

22Pd(1− Pd)
(
[1− (1− η)2](1− Pd) + (1− η)22Pd(1− Pd)

)
|00⟩⟨00|

+Pe(1−Pe)
[
(η(1− Pd) + (1− η)2Pd(1− Pd))

2 − η2(1− Pd)
2
]
[|01⟩⟨01|+|10⟩⟨10|]

2Pe(1− Pe)η
2(1− Pd)

2|Ψ+⟩⟨Ψ+|+ P 2
e
(
(1− η)22Pd + (1− (1− η)2)

)
2Pd(1− Pd)

2|11⟩⟨11|
]
.

From this the conditional fidelity for entanglement generation in the two-photon
scheme is, from Eq. (B.19), (evaluating at the optimum excitation probability
Pe = 1/2)

F
(opt)
2c =

2P 2
d (1− η)2 + 2Pd(1− η)η + η2

8P 2
d (1− η)2 + 2Pd(4− 3η)η + η2

. (B.24)

Juxtaposing the single-click and two-click schemes, we find in the limit
Pd, Pd/η ≪ 1, η

(+)
0 N

(+)
0 B∆T ≪ 1 that

F1c ≈ 1− 2

√(
1

η
− 1

2

)
η
(+)
0 N

(+)
0 B∆T

F2c ≈ 1−
(
6

η
− 4

)
η
(+)
0 N

(+)
0 B∆T. (B.25)

From these expressions, Eqs. (B.25), we see that the dependence of the fidelities
on the efficiency η is rather weak in both cases: It serves to determine a prefactor
to N (+)

0 varying by at most a factor of 2 for F1c and at most a factor of 3 for F2c,
where we have set η = η

(+)
0 to focus on the N (+)

0 dependence (other values would
not change the main conclusions). This reflects that the conditional fidelity is
determined by the probability to detect the good transduced photons relative to
the noise photons, which is exactly determined by the added noise N (+)

0 . The
expressions for Fic given as (3.20) in the main text follow from (B.25) by taking
the low-efficiency limit η = η

(+)
0 → 0. From the expressions (B.25) it is clear

that the two-photon scheme has a smaller sensitivity to added noise than the
one-photon scheme in the interesting regime N (+)

0 B∆T ≪ 1. On the other hand
the two-photon scheme will have a lower success probability if the transducer
has a low efficiency since it requires the detection of two photons. If we are only
interested in the quality of the produced entanglement N (+)

0 is the important
quantity to consider. As opposed to the situation for heterodyne detection,
where a single mode was measured, there is, however, an additional factor com-
ing from the fact the photo-detectors are not mode selective. Since efficient
transduction requires B∆T > 1 this factor puts an additional requirement on
the the added noise for photo-detection schemes compared to the continuous-
variable schemes. On the other hand, photo-detection schemes can give useful
output even with limited efficiency.
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Appendix C

Appendices to Chapter 5

C.1 From serial to parallel resistance
The ohmic resistance RL of the inductor L naturally appears in series with
the latter. For the case of a parallel RLC, it is convenient to approximate
the serial connection of RL and L by a parallel connection of effective circuit
elements RL,eff and L′. Assuming that we are only interested in a narrow band
of frequencies δω around the signal carrier ωs, |δω|/ωs ≪ 1, we find by Taylor
expansion of the small quantity 1/QL ≡ RL/(ωsL) ≪ 1 that

1

−iωL+RL
=

1

−iωL
1

1 + RL/L
−iω

≈ 1

−iωL

[
1− RL/L

−iω
+

(
RL/L

−iω

)2
]
≈ 1

−iωL

[
1− 1

Q2
L

]
+

RL
ω2

sL
2
,

from which we can read off L′ = L(1 − 1/Q2
L)

−1 and RL,eff = ω2
sL

2/RL =
RLQ

2
L. This makes clear that the resonance of the parallel RLC (in absence of

electromechanical coupling)[
1

−iωL+RL
− iωC̄c

]−1

≈
[

1

−iωL′ − iωC̄c +
1

RL,eff

]−1

occurs at the frequency ωLC = (L′C̄c)
−1/2 within the stated approximations.

C.2 Homodyne measurement

C.2.1 Photo-current, Î(Ω)
Homo- or heterodyne measurement of a signal requires mixing the relatively
weak output signal of the transducer, as given by its scattering relation (3.6),
with a large coherent-state LO αLO = |αLO|eiθLO , where the phase θLO will
determine which quadrature is being measured. The mixing serves to down-
convert the optical signal by the LO frequency ωLO, whereby the sidebands will
contribute to the photo-current at frequencies ∼ ω± − ωLO; therefore it is con-
venient to work with field operators in a rotating frame wrt. ωLO. Denoting the
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output fluctuation signal for the exit port âout,e, the annihilation operator âh
for the field impinging on the photodetector of the heterodyne interferometer
is (in a rotating frame wrt. ωLO) âh(t) = αLO + âout,e(t), the associated pho-
tocurrent being represented by the operator Î(t) ≡ â†h(t)âh(t). Ignoring the DC
contribution from the LO alone, |αLO|2, this leads to the following expression
for the frequency components of the photo-current,

Î(Ω) ≈ α∗
LOâout,e(Ω) + αLOâ

†
out,e(−Ω), (C.1)

where âout,e(Ω) is in a rotating frame wrt. ωLO. Eq. (C.1) shows that the photo-
current spectral component Î(Ω) has contributions from the optical signal at
the two absolute frequencies ωLO ± Ω as illustrated in Figs. 3.2. In particular,
this allows for the two-sideband homodyning scheme depicted in Fig. 3.2c)
where a linear combination of the red and the blue optical sidebands at ω±
is measured. Importantly, as is clear from Eq. (C.1), the LO phase θLO =
Arg[αLO] will determine the relative phase with which the sidebands enter the
linear combination. The LO amplitude |αLO|, on the other hand, is in principle
immaterial as long as it dominates other contributions at ωLO.

C.2.2 Sideband interference and noise contributions

This section relies on the definitions of the homodyne quadratures given in
Appendix B.2. Using the thermal expectation values for F̂ , Eqs. (B.11), we
find via the definitions (B.9,B.6) that the added noise Ŷn(Ω) is phase-insensitive
wrt. the integration phase ϕ while it does in general depend on the relative
phase with which the output sidebands are combined as can be tuned via θLO
(for Ω,Ω′ > 0)

⟨Ŷn(Ω)Ŷn(Ω
′)⟩ =

1

2

[
⟨N̂θLO(Ω)N̂

†
θLO

(Ω′)⟩+ ⟨N̂ †
θLO

(Ω)N̂θLO(Ω
′)⟩
]

(C.2)

=
⟨F̂†(Ω)F̂(Ω′)⟩+ ⟨F̂(Ω)F̂†(Ω′)⟩

2
(C.3)

+
⟨F̂†(−Ω)F̂(−Ω′)⟩+ ⟨F̂(−Ω)F̂†(−Ω′)⟩

2
(C.4)

+Re
[
e−2iθLO

(
⟨F̂(Ω)F̂(−Ω′)⟩+ ⟨F̂(−Ω)F̂(Ω′)⟩

)]
,(C.5)

The first two terms of Eq. (C.3) correspond to the symmetrized noise of the
upper and lower optical sidebands while the third represents their interference.
Rather than evaluating ⟨Ŷn(Ω)Ŷn(Ω

′)⟩ using (C.3), we make use of the reduced
equivalent circuit to rewrite the homodyne photocurrent, (5.33). By means
of the effective OM input-output relations (4.91,4.92) we have (in mechanical
units)

Î(Ω)/|αLO| = g(θLO)δx̂(Ω) + e−iθLO â
(eff)
in (ωl +Ω) + eiθLO â

(eff)†
in (ωl − Ω),

g(θLO) ≡ −i2gOM√
κ

√
ηopt

xZPF

[
e−i(θLO−θ+)L+ − ei(θLO−θ−)L−

]
,

where θ± ≡ Arg[L(±Ωm)]. Considering the mechanical response to the mechan-
ical F̂m, Johnson F̂e and optical F̂o back-action forces, where the F̂i ≡ 2C̄cGV̂i
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are given by Eqs. (4.10) and (5.19-5.21), as well as the transmission line signal

δx̂(Ω) = χm,eff(Ω)[F̂m(Ω) + F̂e(Ω) + F̂o(Ω)−
ℏ

xZPF

√
ηelγEM,+b̂

(tx)
in (ωd +Ω)],

χ−1
m,eff(Ω) = m

[
Ω2

m − Ω2 − i(γm,0 + ΓEM + ΓOM)Ω
]

where χm,eff(Ω) is the effective mechanical susceptibility corresponding to the
damped oscillator of Fig. 5.1c, we can separate the noise contributions to Î(Ω)
and properly reference them to the input

Î(Ω)/|αLO| = − ℏ
xZPF

√
ηelγEM,+g(θLO)χm,eff(Ω)

[
b̂
(tx)
in (ωd +Ω)

+
1

− ℏ
xZPF

√
ηelγEM,+

(
F̂m(Ω) + F̂e(Ω) + F̂o(Ω) +

e−iθLO â
(eff)
in (ωl +Ω) + eiθLO â

(eff)†
in (ωl − Ω)

g(θLO)χm,eff(Ω)

)]

Comparing to Eq. (5.33) we see that ts,θLO(Ω) = − ℏ
xZPF

√
ηelγEM,+g(θLO)χm,eff(Ω)

and identify the optical component N̂ (o)
θLO

(Ω) of the noise operator N̂θLO(Ω) =∑
i N̂

(i)
θLO

(Ω), (B.6),

N̂ (o)
θLO

(Ω) = − ts,θLO(Ω)
ℏ

xZPF

√
ηelγEM,+

(
F̂o(Ω) +

e−iθLO â
(eff)
in (ωl +Ω) + eiθLO â

(eff)†
in (ωl − Ω)

g(θLO)χm,eff(Ω)

)
,

(C.6)
as well as the electrical and mechanical components,

N̂ (e)
θLO

(Ω) = − ts,θLO(Ω)
ℏ

xZPF

√
ηelγEM,+

F̂e(Ω) (C.7)

N̂ (m)
θLO

(Ω) = − ts,θLO(Ω)
ℏ

xZPF

√
ηelγEM,+

F̂m(Ω). (C.8)

Note that the noise operators (C.6,C.7,C.8) are mutually uncorrelated.
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Appendices to Chapter 6

D.1 Linear EIT transmission for a square pulse

We estimate the averaged quantities η̄EIT and τ̄ ′b by applying Gaussian filtering
to a square pulse. We introduce the EIT transmission of a square pulse of
duration τ through a medium of length l

ηEIT(τ, l) ≡
ˆ ∞

−∞
dT

ˆ ∞

−∞
dt1

ˆ ∞

−∞
dt2

1

2πτ2EIT(l)
e
− (t1−T )2

2τ2
EIT(l) e

− (t2−T )2

2τ2
EIT(l)

× 1

τ
[Θ(t1)Θ(τ − t1)Θ(t2)Θ(τ − t2)]

= erf
[

τ

2τEIT(l)

]
+

2√
π

τEIT(l)

τ

(
−1 + exp

[
− τ2

4τ2EIT(l)

])
, (D.1)

in terms of the length-dependent EIT time parameter

τEIT(l) ≡
√
(l/rb)db

γEIT
(D.2)

where γEIT ≡ Ω2/Γ is the single-atom EIT linewidth in terms of the control
field Rabi frequency Ω and the linewidth Γ of the intermediate level. Taking
the pulse length to be defined by the first Rydberg-Rydberg scattering event,
we average ηEIT(τ, l) over the corresponding Poisson distribution

η̄EIT[l] = ⟨ηEIT(τ, l)⟩τ =

ˆ ∞

0

dτRin(Rinτ)e
−RinτηEIT(τ, l)

= exp
(
[RinτEIT(l)]

2
)
erfc (RinτEIT(l)) , (D.3)

which we will use to evaluate η̄EIT[L] and η̄EIT[rb] that appeared above.
Next, to determine τ̄b we need to average over both the position l at which

the polariton dies and the temporal polariton extent τ . We perform the first
averaging using the assumption that the probability density for polariton decay
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can be found from Eq. (D.1) as −dηEIT(τ, l)/dl

τ̄b = ⟨
ˆ ∞

0

dlmin{l/vg, τb}
[
−dηEIT(τ, l)

dl

]
⟩τ

= ⟨τbηEIT(τ, rb) +

ˆ rb

0

dl
l

vg

[
−dηEIT(τ, l)

dl

]
⟩τ (D.4)

= τbη̄EIT[rb] + ⟨
ˆ rb

0

dl
l

vg

[
−dηEIT(τ, l)

dl

]
⟩τ , (D.5)

where we have used (D.3) and where we recognize the decomposition (6.9), so
that the second term in (D.5) is τ̄ ′b. We determine this quantity using (D.1) and
the same distribution for τ as in (D.3)

τ̄ ′b = ⟨
ˆ rb

0

dl
l

vg

[
−dηEIT(τ, l)

dl

]
⟩τ

= τb

(
γEIT

Rin
√
db

(
2√
π
− γEIT

Rin
√
db

)
+ exp

(
R2

indb

γ2EIT

)
erfc

(
Rin

√
db

γEIT

)[
γ2EIT
R2

indb
− 1

])
.

(D.6)

We note that τ̄ ′b/τb and τ̄b/τb, (D.6) and (D.5), only depend on the dimension-
less parameter Rin

√
db/γEIT = RinτEIT(rb). The results (D.3) and (D.6) were

used to arrive at the result for R̃out, Eq. (6.13), in the main text.

D.2 Hard-sphere density matrix for two-photon
input

According to the hard-sphere ansatz, the density matrix when the entire pulse
has entered the medium is (assuming that h(t) = 0 for t < 0 and t > τend and
that τend ≥ τb)

ρ̂(t) =

one scattering event︷ ︸︸ ︷
2

ˆ τend

0

dτ1

ˆ τ1

max{τ1−τb,0}
dt1h

2(τ1)h
2(t1)|ψ̃τ1(t)⟩⟨ψ̃τ1(t)|

+

no scattering event, ∅︷ ︸︸ ︷
2

ˆ τend−τb

0

dt1

ˆ τend

t1+τb

dt2h
2(t1)h

2(t2)|ψ̃∅(t)⟩⟨ψ̃∅(t)|,

where the normalized wave functions are

|ψ̃τ1(t)⟩ =
−√

vg√´ τ1
max{τ1−rb/vg,0} dt

′
1h

2(t′1)

ˆ τ1

max{τ1−rb/vg,0}
dt1h(t1)Ŝ

†[vg(t− t1)]|0⟩

|ψ̃∅(t)⟩ =
vg√´ τend−rb/vg

0
dt′1
´ τend

t′1+rb/vg
dt′2h

2(t′1)h
2(t′2)

×
ˆ τend−rb/vg

0

dt1

ˆ τend

t1+rb/vg

dt2h(t1)h(t2)Ŝ
†[vg(t− t1)]Ŝ

†[vg(t− t2)]|0⟩.


