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Abstract
�is thesis presents the results of theoretical studies of superconductor-semiconductor
(SC-SM) hybrid nanowire systems with the focus on detecting Majorana bound states
(MBSs) by methods using electron tunneling spectroscopy.

We model the SC-SM nanowire using three Hamiltonian models: the �rst is the 1D
spinless p-wave SC, and the other two are a 1D SM nanowire with Rashba spin-orbit inter-
action, Zeeman �eld, and induced s-wave superconductivity, where the superconductivity
is either modeled as a constant gap or an energy-dependent self-energy term. Electron tun-
neling spectroscopy will be simulated in the grounded nanowire setup using the sca�ering
formalism and in the charged island setup using a master equation model.

We will present and discuss the results of �ve projects in this thesis. In the �rst project,
we study a SC-normal-SC nanowire setup and simulate di�erential conductance measured
at the end of the nanowire. We �nd that there exist 2 or 4 MBSs in the topological regime,
depending on the phase di�erence between the two SCs. �is phase dependence gives rise
to distinctive 2π period features in the di�erential conductance, which are absent in the
trivial phase and may be used to identify MBSs.

�e second project is centered around modeling the experimental setup of a quantum
dot coupled to the end of a SC-SM nanowire and understanding the observed di�erential
conductance data. �e experimental data is consistent with our model where the nanowire
hosts MBSs and the levels in the quantum dot can be tuned in and out of resonance with
the nanowire. We �nd that the observed energy spli�ing upon resonance with a dot level
is due to the MBS wavefunction leaking into the quantum dot.

In the third project, we investigate the e�ect of the normal-conducting drain lead on the
parent SC of the SC-SM nanowire. A below-gap density of states is induced into the parent
SC at the normal-SC interface. Depending on the coherence length of the SC, this below-
gap density of states may provide a leakage channel for the MBSs in the nanowire. �is
leakage may, depending on coherence length of the superconductor, result in a quenching
of the energy oscillations and a suppression of the 2e2/h quantized conductance usually
associated with MBSs.

In the fourth project, we model quasiparticle poisoning in a charged SC-SM nanowire
island and estimate the quasiparticle poisoning rate by comparing with experimental data.

In the �nal project, we �nd that the electron and hole components of the lowest-energy
subgap state can be extracted from the ratio of consecutive conductance peaks measured
at zero bias in a charged SC-SM nanowire island in the sequential tunneling regime. We
study the correlation between this ratio and the energy spli�ing oscillations of the subgap
state in case of MBSs and trivial Andreev bound states (ABSs). We �nd that certain kinds
of trivial ABSs with MBS-like conductance features can be distinguished from true MBSs
by comparing this ratio with energy spli�ing as function of magnetic �eld and chemical
potential.

Although many indirect MBS signatures using electron spectroscopy do not provide
unambiguous evidence of the presence of MBSs in SC-SM nanowire, they are still impor-
tant in guiding the search for MBSs and developing a be�er understanding of quantum
phenomena in SC-SM nanowires.
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Dansk Resumé
I denne a�andling præsenteres resultaterne af en række teoretiske studier af superleder-
halvleder-hybrid-nanotråd-systemer (SL-HL-nanotråde) med fokus på at detekterer lokalis-
erede Majorana kvantetilstande (LMKe) ved hjælp af elektron-spektroskopi-metoder.

Vi beskriver SL-HL-nanotrådene med tre Hamilton modeller: Den første er den endi-
mensionelle spinløse p-bølge SL, og de to andre er en endimensionel HL-nanotråd med
Rashba-spinbane-vekselvirkning, Zeeman felt, og induceret s-bølge superledning, hvor
superledningen enten beskrives ved et konstant gab eller et energia�ængigt selvenergiled.

Vi præsenterer og diskuterer resultaterne af fem projekter i denne a�andling. I det
første projekt vil vi studere et SL-normalleder-SL-system og simulere di�erentialkon-
duktansen, der måles ved enden af nanotråden. Vi �nder, at der eksisterer enten 2 eller
4 LMKe i det topologiske regime a�ængigt af faseforskellen mellem de to SLe. Denne
fasea�ængighed giver anledning til 2π -periodiske karakteristika i di�erentialkonduk-
tansen, som er fraværende i det trivielle regime, og som kan bruges til at identi�cere
LMKe.

Det andet projekt omhandler modellering af et eksperiment, hvor en kvanteprik er
koblet til enden af en SL-HL-nanotråd og fortolkning af den observerede di�erentialkon-
duktans. Data fra eksperimentet er i overenstemmelse med vores teoretiske model, hvor
to LMKe er tilstede i nanotråden og kvanteniveauerne i kvanteprikken kan justeres ind
og ud af resonans med nanotråden. Vi �nder, at den observerede energisplitning, når et
kvanteniveau er resonant, skyldes, at bølgefunktionen af den LMK forskydes ind i kvan-
teprikken.

I det tredje projekt undersøger vi e�ekten af den normal-ledende a�øbsleder på den in-
ducerende SL i SL-HL-nanotråd-systemet. Der induceres en tilstandstæthed under SL-gabet
i SLen ved over�aden mellem normal-lederen og SLen. A�ængig af kohærenslængden i
SLen kan denne tilstandstæthed under gabet give anledning til lækage fra de LMKe i nan-
otråden. Denne lækage kan, a�ængig af SLens kohærenslængde, resultere i en dæmpning
af energisvingningerne og en undertrykkelse af den 2e2/h kvantiserede konduktans, som
normal ses forbundet med LMKe.

I the �erde projekt modellerer vi kvasipartikel-forgi�ning af en ladet SL-HL-nanotrådø
og estimerer raten af kvasipartikel-forgi�ning ved at sammenligne med data fra et eksperi-
ment.

I det sidste projekt �nder vi, at elektron- og hul-komponenterne af kvantetilstanden med
lavest energi under det superledende gab kan estimeres fra forholdet mellem naboliggende
konduktanstoppe, målt ved nul spændingsforskel, i en ladet SL-HL-nanotrådø i det sekven-
tielle tunneleringsregime. Vi studerer korrelationen mellem de�e forhold og svingningerne
af energien af kvantetilstanden både, hvor tilstanden er en LMK og en triviel lokaliseret
Andreev kvantetilstand (LAK). Vi �nder, at man i vise tilfælde kan skelne trivielle LAKe med
LMK-lignende konduktanskarakteristika fra sande LMKe ved at sammenligne de�e forhold
med tilstandens energi som funktion af styrken på det magnetiske felt og det kemiske
potentiale.

Selvom mange af de forslåede indirekte signaturer for LKMe, som beny�er sig af elek-
tronspektroskopi, ikke er entydige beviser for tilstedeværelsen af LMKe i SL-HL-nanotråde,
er de stadig vigtige for den videre forskning i LMKe og for bedre at forstå kvantefænomener
i SL-HL-nanotråde.
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J. Nygård, P. Krogstrup, and C. M. Marcus, Science 354 (6319), 1557 (2016)

[Danon et al., 2017] J. Danon, E. B. Hansen, and K. Flensberg, Physical Review B 96 (12), 125420
(2017)

[Albrecht et al., 2017] S. M. Albrecht, E. B. Hansen, A. P .Higginbotham, F. Kuemmeth, T. S. Jes-
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Nomenclature

ABS Andreev bound state
BCS Bardeen–Cooper–Schrie�er
CB Coulomb blockaded
CBMI Coulomb blockaded Majorana island
ETS Electron tunneling spectroscopy
MBS Majorana bound state
MI Majorana island
N-SNS Normal-superconductor-normal-superconductor
NDC Negative di�erential conductance
ps-ABS Partially separated Andreev bound state
SC Superconductor
SM Semiconductor
ZBC Zero bias conductance
ZBP Zero bias peak
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Introduction

“ But what am I going to see?
I don’t know. In a certain sense, it depends on you.

Stanislaw Lem, Solaris

Topology

Topological phases are relatively new states of ma�er. It was believed for a long time that
Landau theory could be used to classify all phases of ma�er by symmetries. However, the
continuous discovery of new materials displaying a variety of di�erent phases not separated
by any symmetry breaking phase transitions, demonstrated the need for a new theory. �e
term ”topological” refers to the existence of a global characteristic quantity, a topological
invariant, which only changes in quantized steps at topological phase transitions, and
otherwise stays invariant under changes that respect the symmetries of the system. An
analogy is o�en drawn to the topological classi�cation of 2D surfaces embedded in 3D
space by the number of holes in the surface. In this respect, a co�ee cup is topologically
equivalent to a donut and distinct from a sphere, since the cup can be smoothly deformed
into a donut without changing the number of holes in the surface, but not into a sphere.

An example of a topological phase is the celebrated quantum Hall phase, which can
exist in certain 2D semiconductor (SM) systems subjected to strong magnetic �elds. At zero
magnetic �eld, the system is in a conventional insulating phase, but as the �eld is increased
a topological phase emerges. �is phase is characterized by a quantized Hall conductance
that changes in either integer or fractional steps of e2/h as the electron density is varied.
�e quantization of the conductance does not depend on the details of the sample and is
so exact that the ratio e2/h has been determined to the precision of almost one part in
a billion and is used as the standard unit of measure for electrical resistance. While the
bulk of the SM is insulating, the Hall current is carried by gapless edge states and the Hall
conductance is set by the number of �lled edge channels. In the integer quantum Hall state,
the number of edge states corresponds to the number of �lled Landau levels, which can
be labeled by a topological invariant called the Chern number. �e Chern number can
be calculated theoretically and the Hall conductance is thus a direct measurement of the
topological invariant.

As the framework of topological materials was developed, many more exciting phases
have been predicted and studied theoretically. In recent years, material science has made

3



4 CHAPTER 1. INTRODUCTION

rapid progress and it is now possible to study many of these topological phases experimen-
tally. One system that has gained a lot of interest and will be the fulcrum of this thesis, is
the superconductor-semiconductor (SC-SM) hybrid nanowire. It is anticipated that this
system will, under the right conditions, exhibit a topological superconducting phase, which
hosts exotic quasiparticle excitations, termed Majorana fermions. Before considering how
this may be possible we provide a brief introduction of Majorana fermions in solid state
physics.

Majorana Fermions

Initially conceived by Majorana [1937] as a solution to his real variant of Dirac’s complex
wave equation, Majorana fermions are neutrally charged fermions, which distinguish
themselves from their charged Dirac fermion cousins by having real-valued �eld operators
and by being their own anti-particles. Whether this mathematical construct exists as
an elementary particle remains an open question (among the proposed candidates are
neutrinos, super-symmetric partners, and dark ma�er particles), however it has been
predicted that Majorana fermions may also emerge from collective excitations in exotic
solid state systems. Here they have a�racted much a�ention, as they are expected to behave
as non-abelian anyons in 2D [Stern, 2010], and may serve as a useful basis for fault tolerant
quantum computations[Kitaev, 2003; Nayak et al., 2008].

Anyons are particles which obey di�erent exchange statistics from ordinary fermions
and bosons. Upon the exchange of two anyonic particles, the many body wavefunction
is multiplied by a general phase factor which may be di�erent from the usual −1 (+1) for
fermions (bosons). Non-abelian means that the exchange operations of di�erent particles
do not commute. A system hosting N pairs of Majorana fermions has a 2N fold degenerate
ground state manifold, which can be used to span the computational space of a quantum
computer. �e non-abelian anyonic nature of Majorana fermions makes it possible to
perform logical operations by exchanging (or braiding) Majorana fermions.

It should be noted that when the term ”Majorana fermion” is used in the context of solid
state physics, any fermionic operator, in the language of second quatization, may be wri�en
as a superposition of two Majorana operators which are Hermitian. �is simply amounts
to spli�ing the fermion into its real and imaginary components. For ordinary fermions,
the two Majorana fermions have wavefunctions that mostly coincide in space. Certain
topological phases are however signi�ed by hosting unusual fermionic states that consist
of two spatially separated Majorana fermions and it is these states that the term ”Majorana
fermion” refers to in the context of condensed ma�er physics. To avoid confusion with the
elementary particle Majorana fermion, the term Majorana bound state (MBS) will be used.

A fermionic state composed of two spatially separated Majorana operators is, in theory,
protected from many types of decoherence, as it should be unchanged by local perturbations
a�ecting only one of its constituting MBSs. �ese states are topological in nature and the
hope is as such that they may be employed in topologically protected quantum computation
schemes.

By now a myriad of di�erent schemes have been proposed on how build and control
Majorana based qubits and on how to make a scalable quantum computer. However, we have
yet to realize a system where the presence of MBSs can be demonstrated unambiguously.

Majorana bound states in superconductors and nanowires

In the language of Fermi liquid theory, the notion of particles and anti-particles arises as
electron and hole excitations in the Fermi sea ground state. �ey move and behave in many
ways as free elementary particles, but their characteristics, such as mass, charge, д-factor,
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and spin, may be renormalized due to interactions, which gives rise to a large variety of
quasiparticles. Such interactions can lead to the emergence of superconducting phases,
where electrons form a bosonic condensate by pairing up into Cooper pairs. �e resulting
quasiparticles are superpositions of both electrons and holes and therefore superconducting
systems seem like promising places to search for Majorana-like particles.

�e quasiparticles in ordinary s-wave superconductors are superpositions of an electron
and a hole of opposite spin and are as such not their own anti-particle. Other kinds of
superconductors with more interesting pairings do exist, although, they are not so easy to
come by. One of these exotic superconductors is the p-wave superconductor with triplet
pairing symmetry. In this case, the quasiparticles are superpositions of electrons and
holes with the same spin. If there exists such a quasiparticle with zero energy and equal
electron-hole components, its corresponding operator will be Hermitian and it would be
a very strong candidate for a MBS. Indeed, the triplet superconductor accommodates a
topological phase with MBSs as topological signatures.

In the 1Dp-wave SC, MBSs are located at the two edges of the topological phase[Sengupta
et al., 2001; Kitaev, 2001], while in the 2D px + ipy SC, they are tied to the core of the vor-
tices[Read and Green, 2000; Ivanov, 2001]. Intrinsic triplet pairing is, however, very sensitive
to disorder, making it di�cult to achieve experimentally because it requires very clean
materials. Its existance was theorized in Sr2RuO4 by Das Sarma et al. [2006], but it remains
to be observed experimentally.

About a decade ago, it was proposed by Fu and Kane [2008] that the surface states in a
strong topological insulator in contact with an ordinary s-wave SC experience an e�ective
triplet superconducting pairing. �e mechanism behind this is the interplay between
a strong spin-orbit coupling and the proximity induced s-wave pairing. Additionally, a
Zeeman �eld has to be induced in order to li� the Kramer’s degeneracy and e�ectively
create a spin polarized band. It was soon therea�er realized that this may also be achieved
by replacing the topological insulator by a SM with strong Rashba spin-orbit coupling[Sau
et al., 2010a; Alicea, 2010], enabling the use of a wide array of experimentally accessible
materials.

One of the simplest setups, proposed by Oreg et al. [2010] and Lutchyn et al. [2010],
is a 1D SM nanowire with strong Rasbha spin-orbit and superconducting s-wave pairing,
subjected to a magnetic �eld. �e s-wave pairing can be induced by proximity to a bulk
s-wave SC, such as Al or NbTiN and Rashba spin-orbit coupling is generated by breaking
inversion symmetry when placing the nanowire on an electrically gated surface. �e
interplay between the spin-orbit �eld and magnetic �eld results in a helical band, which
e�ectively generates a superconducting p-wave pairing from the induced s-wave pairing.

Spectroscopic signatures of Majorana bound states

Despite the relative simplicity of this proposal, it requires very high quality materials as
well as a high degree of experimental control, and involves counteracting factors, such
as magnetic �elds and superconductivity. �us far, it has not been possible to realize a
system where the non-abelian anyonic properties of MBS can put to the test. �is �eld
is still in the phase of re�ning experimental techniques and materials, as well at �nding
good setups for examining MBS braiding statistics. In order to guide experimental e�orts,
many indirect indicators have been proposed to test for the presence of MBSs. Among
these indicators are: �e 2e2/h conductance at zero bias due to perfect Andreev re�ection
through the MBS[Law et al., 2009; Linder et al., 2010; Sengupta et al., 2001; Flensberg, 2010;
Akhmerov et al., 2009; Wimmer et al., 2011]. �e 4π periodic Josephson e�ect[Kwon et al.,
2003; Fu and Kane, 2009; San-Jose et al., 2012]. Exponentially suppressed energy spli�ing
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of overlapping MBSs[Kitaev, 2001]. Oscillating energy spli�ing of overlapping MBSs as a
function of chemical potential and magnetic �eld[Das Sarma et al., 2012].

Many of these proposals involve using electron tunneling spectroscopy (ETS) to probe
quantum states in the nanowire as a function of the applied source-drain bias. Experiments
using this technique generally fall into one of two categories. One where a tunnel barrier is
induced at the interface with the source lead and ETS is performed at one end only while
the SC-SM nanowire is grounded by the drain lead. �e second category is the Coulomb
blockaded type, where tunnel barriers are induced at the interface of both the source and
the drain lead, such that the SC-SM nanowire becomes a �oating charged island with a
tunable number of electrons.

Figure 1.1: Measurement of one
of the �rst zero bias peak from
Mourik et al. [2012].

One-end ETS experiments have mainly been focused
on �nding supporting evidence for MBSs by measuring
2e2/h quantized zero bias conductance. �e �rst zero bias
peaks (ZBPs) in SC-SM nanowire devices were reported
by Mourik et al. [2012] (shown in Fig. 1.1), Das et al. [2012],
and Churchill et al. [2013]. �ese observations sparked
a lot of excitement despite the conductance peaks being
considerably smaller than 2e2/h. Other experiments have
since reported similar �ndings, but the value of a non-
quantized ZBP as a MBS signature has been questioned,
since trivial Andreev bound states (ABS) may also be
responsible[Liu et al., 2012; Pikulin et al., 2012; Liu et al.,
2017b]. A ZBP originating from a trivial ABS can take any value between 0 and 4e2/h, while
one caused by a MBS should not surpass 2e2/h. Hence there was still the possibiity that
the ZBP could be a MBS signature and a lot of e�ort was put into improving experiments
to see whether the observed ZBP would saturate at 2e2/h or surpass it. 2e2/h quantized
ZBPs in conductance have been reported by Nichele et al. [2017] and Zhang et al. [2018]
as shown in Fig. 1.2. It was nevertheless recently shown by Moore et al. [2018b] and Vuik
et al. [2018] that partially separated ABS (ps-ABS) might give rise to a persistent and 2e2/h
quantized ZBP, once more casting doubt on the potential of this being a MBS signature.

Figure 1.3: Measurement of zero bias con-
ductance as a function of magnetic �eld
and gate voltage, reported by Albrecht et al.
[2016]. Energy spli�ing of the possible MBS
is calculated from the distance between con-
ductance peaks. �e amplitude of the split-
ting decays exponentially with the length of
the nanowire.

In the second category of experiments, the
Coulomb blockaded ETS, the exponential sup-
pression of energy spli�ing with nanowire
length was reported by Albrecht et al. [2016].
Data from the experiments is shown in Fig. 1.3,
where the energy spli�ing of the possibly MBS
is obtained from the distance between the mea-
sured zero bias conductance peaks. Even though
the data seem to support the existence of MBSs,
it also showed discrepancies, such as MBS en-
ergy oscillations decreasing in amplitude in-
stead of growing. Whether these observations
speak in favor or against the presence of MBSs
is still debated[Rainis et al., 2013; van Heck
et al., 2016; Chiu et al., 2017; Reeg et al., 2017;
Domı́nguez et al., 2017; Escribano et al., 2017;
Reeg et al., 2018].

At the current state of the �eld, the pres-
ence of MBSs in SC-SM nanowires remains an
open question, which in the end can only be an-
swered by experimental observations. However,
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(a)

(b)

(d)

(c)

Figure 1.2: Measurements of 2e2/h quantized ZBP reported by Nichele et al. [2017], (a) and (b), and
by Zhang et al. [2018], (c) and (d). (a) and (c) show conductance measured as a function of magnetic
�eld and source drain bias. (b) and (d) show conductance as a function of source drain bias for
increasing transmission and a saturation of the ZBP at 2e2/h.

theoretical work dealing with interpreting experimental data, �nding new ways to identify
MBSs, and understanding the experimental setups is important in guiding experimental
e�orts and scrutinizing experimental �ndings. Time will tell whether the tremendous
e�ort put into the study of these SC-SM nanowire devices will ultimately result in the
realization of a topological quantum computer or not. Nonetheless, it will hopefully lead
to a be�er understanding of quantum mechanical phenomena in these systems as well as
great advancements in the materials used.

Structure of thesis

�is thesis is devoted to the study of the MBS in SC-SM nanowires and how they may be
discerned using ETS. �e thesis is structured into three parts as follows:

In the remainder of this part, we will go through three microscopic models that are
widely used to describe SC-SM-nanowires: �e spinless p-wave SC, SC-SM nanowire
Hamiltonian, and the SC-SM nanowire with energy-dependent gap.

�e second part will be centered around studying one-end ETS of a grounded SC-SM
nanowire. �e di�erential conductance is computed using the sca�ering matrix formal-
ism, taking a microscopic tight-binding version of one of the models introduced in the
previous part as input. �is transport model will be used in three projects: �e �rst project
is concerned with identifying features of MBSs in a Normal-Superconducting-Normal-
Superconducting (N-SNS) setup[Hansen et al., 2016]. �e second project is a study of ETS
through a quantum dot at the end of a SC-SM nanowire[Deng et al., 2016]. We will focus on
the theoretical modeling of the setup. In the third project, we investigate the e�ects that the
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normal-conducting drain lead may have on the bulk SC in SC-SM nanowire setups[Danon
et al., 2017].

�e third and last part of this thesis is devoted to studying SC-SM nanowires by ETS
in a Coulomb blockade setup. A transport model based on the tunneling Hamiltonian
formalism is used to calculate the two terminal current through the Coulomb blockaded
nanowire by solving a set of steady state Pauli master equations. �e nanowire is modeled
as a superconducting island with a BCS density of states and a subgap state. We go
present and discuss two projects where this transport model will be employed. In the �rst
project, quasiparticle poisoning in a Coulomb blockaded nanowire island is studied and
the transport model is used to obtain a quantitative estimate of the quasiparticle poisoning
rate[Albrecht et al., 2017]. In the second project, we study how the ratio of the heights
of consecutive zero bias Coulomb peaks in the sequential tunneling regime can be used
to measure the electron and hole components of the lowest-energy subgap state[Hansen
et al., 2018]. We discuss how this may be used to distinguish trivial ps-ABSs that exhibit
MBS-like conductance features from real MBSs by comparing the conductance peak ratio
with the energy spli�ing of the subgap state.
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Majorana Nanowires

“ �e electron is a theory we use; it is so useful in understanding the way
nature works that we can almost call it real.

Richard Feynman

In this chapter we will introduce three microscopic models which exhibit topologically
non-trivial phases with MBSs. First, the spinless p-wave superconductor, which is a corner-
stone model of the theoretical study of MBSs and its relative simplicity allows for analytical
results to be obtained. Second, the SM-SC nanowire Hamiltonian initially proposed by Oreg
et al. [2010] and Lutchyn et al. [2010] to describe semiconducting nanowires with strong
spin-orbit interactions, Zeeman �elds and proximity induced s-wave superconductivity.
�ird, a Green’s function model of the SC-SM hybrid nanowire where superconductivity
is included through an energy-dependent self-energy, obtained by integrating out the
electron degrees of freedom in the SC. �e last two models will be employed to model
SC-SM hybrid nanowire devices in the second and third parts of this thesis. �e �rst model
can be obtained as an approximation of the SC-SM nanowire Hamiltonian and will be used
occasionally to achieve analytical results for further insights.

2.1 Classification of Topological phases

Before introducing the three models, we will brie�y touch upon the classi�cation scheme
used to classify topological phases in insulators and superconductors. In general, most
topological phases are strongly interacting systems where the ground state has long range
entanglement. �ese systems fall outside the scope of this classi�cation scheme, which
is restricted to systems that can be described by an e�ective weakly interacting model
that has a band gap in the electronic excitation spectrum. Systems of this type can be
categorized into 10 symmetry classes introduced by Zirnbauer [1996] and Altland and
Zirnbauer [1997]. �e symmetry class is determined by the symmetries exhibited by the
bulk single particle Hamiltonian. Depending on the dimensionality, each symmetry class
may exhibit a di�erent number of topologically distinct phases.

�e distinct topological phases within each symmetry class are divided into trivial
or non-trivial phases. �e non-trivial phases are characterized by hosting topologically
protected excitations, usually, in the form of gapless excitations on the boundary. Every
symmetry class has one trivial phase which is topologically equivalent to vacuum, in the

9
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sense that there do not exist gapless excitations on the boundary to vacuum. �e number
of topologically non-trivial phases depends on the dimensionality and are o�en just termed
topological phases. �e MBS is an example of a gapless excitation signifying a topological
phase.

We will brie�y review the topological classi�cation scheme introduced by Zirnbauer
[1996] and Altland and Zirnbauer [1997]. Consider a system of non-interacting fermions
described by a Hamiltonian wri�en in second quantization

H =
∑
AB

ψ †AHA,BψB , (2.1)

where ψ †A and ψB are fermionic creation and annihilation operators satisfying the usual
anti-commutation relations. �e subscripts A and B can be a set of indices labeling spins,
la�ice or continuous coordinates, orbitals and/or momenta. In BdG formalism, the sum can
be wri�en as a matrix product

H =
1
2Ψ†HΨ, (2.2)

where HA,B are the matrix elements of the BdG-Hamiltonian Hand Ψ = (ψ ,ψ †)T is called
the Nambu spinor. Hamiltonians of this form is classi�ed according to three symmetry
operators.

�e Hamiltonian is said to possess particle-hole symmetry (PHS) if there exists an anti-
unitary operator Υ such that ΥHΥ−1 = −H. An anti-unitary operator can in general be
wri�en as the product of a unitary operator and the complex conjugation operator. Secondly,
the Hamiltonian is time-reversal symmetric (TRS) if there exists an anti-unitary operator Θ
such that ΘHΘ−1 = H. �e third kind of symmetry, called chiral (or subla�ice) symmetry
(SLS), may be present if either the Hamiltonian exhibits or lacks both time-reversal and
particle-hole symmetry. �e Hamiltonian is then classi�ed according to its possessed
symmetries and whether the corresponding anti-unitary operators square to +1 or −1.

TRS PHS SLS d = 1 2 3
Standard A (unitary) 0 0 0 − Z −

AI (orthogonal) +1 0 0 − − −

AII (symplectic) −1 0 0 − Z2 Z2
Chiral AIII (unitary) 0 0 1 Z − Z

BDI (orthogonal) +1 +1 1 Z − −

CII (symplectic) −1 −1 1 Z − Z2
BdG D 0 −1 0 Z2 Z −

C 0 −1 0 − Z −

DIII −1 +1 1 Z2 Z2 Z

CI +1 −1 1 − − Z

Table 2.1: �e 10 symmetry classes of single particle Hamiltonians classi�ed according to the
ten-fold way as presented by Schnyder et al. [2008]. �e absence of a symmetry is denoted by ”0”
while ±1 denotes that the symmetry is present and the value of the square of the corresponding
anti-unitary operator. �e corresponding group of the topological invariant for the 10 symmetry
classes in one to three dimensions are listed in the three rightmost columns.

�e 10 resulting symmetry classes may each host 1, 2, or more topological phases
depending on the dimensionality of the system [Schnyder et al., 2008]. Systems with only 2
distinct topological phases are labeled by a Z2 invariant, while those with more are labeled
by a Z invariant. �e 10 symmetry classes are listed in Table 2.1 along with the group of
their associated topological invariant in one to three dimensions.
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2.2 Spinless p-wave superconductor

We will start by examining the 1D spinless p-wave superconductor, which is one of the
simplest models exhibiting MBSs. It is possible to obtain some analytic results from which
we gain some insights into the nature of MBSs that are useful when we consider more
complicated models later on.

Consider a 1D system of spinless fermions with the unconventional p-wave supercon-
ducting pairing described by the Hamiltonian

Hpw =
1
2

∫
Ψ† (x )HpwΨ(x ) dx , (2.3)

where Ψ(x ) = (ψ (x ),ψ † (x ))T is a Nambu spinor with the operatorψ † (x ) creating a fermion
at position x . �e single particle BdG-Hamiltonian is

Hpw =

(
−
}2

2m ∂
2
x − µ

)
τz − i}∆τx∂x (2.4)

with the fermion massm, the chemical potential µ, and the superconducting gap ∆ which
we assume to be real and positive. �e Pauli matrices ~τ act in particle-hole space. �is
Hamiltonian is both time-reversal symmetric and particle-hole symmetric since there exist
two anti-unitary operators

Υ = τxK and Θ = K , (2.5)

for which

Υ HpwΥ−1 = −Hpw and ΘHpwΘ−1 = Hpw. (2.6)

�e time-reversal operator Θ di�ers from the operator that is customarily denoted the
time-reversal operator for fermions, iσyK , and is therefore sometimes called a pseudo-
time-reversal operator.

We straight forwardly get Υ2 = 1 and Θ2 = 1, so according to Table 2.1, the p-wave
Hamiltonian belongs to the BDI symmetry class. In general, the topological phases of a 1D
system in the BDI symmetry class can be classi�ed by a Z invariant. However, in the single
channel bulk Hamiltonian we consider here there are two distinct topological phases: A
trivial phase without MBSs and a topological phase with MBSs.

In the semi-in�nite system, the topological phase hosts a MBS at the boundary, while
in a �nite system, there are one MBS at each boundary of the topological phase. �e two
MBSs are exponentially localized at the boundary, but always has a �nite overlap. Hence it
is only possible to realize MBSs that are exponentially close to true topological Majorana
modes in a �nite system.

We will not provide a rigorous proof for identifying the di�erent topological phases,
but instead use a winding number as a layman-proof of how to distinguish topological
phases of the p-wave superconductor. To this end, we consider a translationally invariant
system for which we write the Hamiltonian from Eq. (2.3) in terms of momentum eigenstate
operators c†p :

Hpw =
1
2
∑
k

ξkc
†

kck + ∆kc
†

kc
†

−k + h.c. (2.7)

which has the energy spectrum

E± (k ) = ±
√
ξ 2
k + ∆

2k2, (2.8)
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with ξk = }2

2mk2 − µ where k is the wave number in the x-direction. �e spectrum, which is
shown in Fig. 2.1 for three di�erent values of µ = {−1, 0, 1}, is gapped for all values µ except
µ = 0 where the gap closes. Topological phase transitions are indicated by a gap closing in
the bulk spectrum, but a gap closing is not necessarily a unique signature of a topological
phase transition.

Figure 2.1: Spectrum resulting from
Eq. (2.8) for µ < 0 (red), µ = 0 (black),
and µ > 0 (blue) as a function of wave
number k .

In order to identify di�erent topological phases,
we look for a topological invariant that is constant
throughout each phase and changes at the transition
between them[Tewari and Sau, 2012]. We consider
the vector

vk = 1√
ξ 2
k+∆

2k2

(
ξk
∆k

)
=

(
Re eiϕ (k )
Im eiϕ (k )

)
, (2.9)

with the phase given by tanϕ (k ) = ∆k
ξk

, and let the
winding numberW be the number of times the vk
rotates around the origin as k goes from −∞ to +∞:

W =
1

2π

∫ ∞

−∞

ϕ (k ) dk . (2.10)

�e winding number is W = 0 for all µ < 0 and W = 1 for all µ > 0, and we take this
as proof that these are two distinct topological phases separated by a phase transition at
µ = 0. In Fig. 2.2, we show examples of the evolution of the phase ϕ (k ) across the k-space
for di�erent values of µ both in the trivial and topological phase.

Figure 2.2: Plot of the phaseϕ (k ) for di�erent val-
ues of µ both in the trivial and topological phases.
�e y-axis is periodic, so lines ending at ϕ = π
continue from ϕ = −π and k are mapped to tank
to show the whole k-space on a �nite axis. In the
three examples where µ > 0, the phase winds 2π ,
while for the three with µ < 0, the phase winds 0.
Other parameters arem/}2 = 1 and ∆ = 1.

�e phase with W = 1 hosts a state
with energy below the gap that is exponen-
tially localized at the edge and is therefore
called the topologically non-trivial phase,
or topological phase for short. �e phase
with W = 0 displays no such states and
is called the topologically trivial phase or
just trivial phase. �e subgap state in the
topological phase is a so called Majorana
bound state (MBS). �ey always exist in
pairs, since any real physical 1D system
has two ends with one MBS located at each
end. Each MBS also only constitutes half
of an ordinary fermion and two are needed
in superposition to form a whole ordinary
fermion. �e term ”Majorana” is associated
with these states because in the limit where
the two MBSs are decoupled, it is possible
to describe each of them by a Hermitian
operator γ = γ †, also known as a Majorana
operator. One way to theoretically obtain a

true MBS is with a semi-in�nite system where this state will be at zero energy. In a �nite
system, the two MBSs will in general acquire a non-zero energy that is exponentially small
compared to the size of the system due to the overlap of their wavefunctions. We will work
with a continuous model, but the corresponding tight-binding model, named the Kitaev toy
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model[Kitaev, 2001], also provides a pedagogical introduction to the formation of MBSs in
p-wave superconductors.

Wavefunction of the Majorana Bound State

We will be working a lot with real space wavefunctions throughout this thesis. We will
therefore derive the wavefunction solution for the semi-in�nite system with a hard wall
condition at x = 0 and extending towards x = +∞. We use a wavefunction ansatz of the
form

ψL (x ) =
∑
n

(
un
vn

)
e−λnx (2.11)

where Re λn > 0 so the wavefunction is localized at the le� boundary. Acting with the
Hamiltonian in Eq. (2.3) on the trial wavefunction we look for a E = 0 solution and get the
secular equation

−

(
}2

2mλ2
n + µ

)2
+ ∆2λ2

n = 0 ⇒
}2

2mλ2
n + µ − ν∆λn = 0 (2.12)

with the solution

λ± =
m∆

}2
*
,
ν ±

√
1 − 2 }

2

m∆2 µ
+
-

(2.13)

where ν = ±1. Due to the constraint Re λn > 0, only the case with ν = +1 can be used. �e
ν = −1 solution gives a wavefunction that decays in the other direction. �e Schrödinger
equation also gives the relation between the spinor components

i∆λ±v± =

(
−
}2

2mλ2
± − µ

)
u± (2.14)

which combined with the secular Eq. (2.12) gives

v± = iu± (2.15)

and the wavefunction takes the form

ψL (x ) =
∑
n=±

(
1
i

)
vne

−λnx . (2.16)

�e boundary conditionψ (0) = 0 gives −v− = v+ ≡ C and the wavefunction of the MBS is
then

ψL (x ) =

(
1
i

)
C (e−λ+x − e−λ−x ), (2.17)

where C is a normalization constant. �e wavefunction is localized at the le� boundary
x = 0 and decays exponentially away from it. In the case of a �nite system of length L
there will be a corresponding bound state at the right end, but as long as Lm∆/}2 � 1 the
wavefunction in Eq. (2.17) will be a good approximation of the MBS. �e wavefunction of
the state at the right end would have the form

ψR (x ) =

(
1
−i

)
C (eλ+x − eλ−x ). (2.18)
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Figure 2.3: Components of the the MBS wavefunction in a semi-in�nite p-wave superconductor
given in Eq. (2.17) for parametersm/}2 = 1, ∆ = 1, and µ = 0.5 in (a) and µ = 10 in (b). u and v are
the electron and hole components of the wavefunction. Note Im u = Re v = 0 in (a).

�e electron and hole components u and v ofψL are plo�ed in Fig. 2.3 for a given set of
parameters. For 2}2

m∆2 µ < 1, the wavefunction decays monotonically, while for 2}2

m∆2 µ < 1 it
oscillates while decaying. In the �rst case, the localization length is given by λ−. In the
second case, the localization length is given by Re λ± = m∆}−2 and the wave length by
|Im λ± | =

m∆
}2

√
2}2

m∆2 µ − 1. �e wavefunction oscillates more rapidly as µ is increased. �is
can be understood as the localized MBS has support from states with wave numbers close
to the Fermi wave number kF =

√
2mµ
} , which grows as the chemical potential µ increases.

2.3 Superconductor-semiconductor hybrid nanowire Hamiltonian

�e spinless p-wave SCs are not readily available in nature, but it is possible to generate a
low-energy e�ective model with p-wave pairing from the interplay of Rashba spin-orbit
coupling, a Zeeman �eld, and ordinary s-wave pairing. One such system that combines
these ingredients is the SM nanowire, contacted with a s-wave SC, and subjected to a
magnetic �eld. However, some of these factors counteract each other. For example, the
large Zeeman �eld required to reach the topological phase is induced by applying a magnetic
�eld, which at the same time becomes detrimental to the superconducting phase of the
contacted parent SC. A very large д-factor in the SM is therefore desired in order to have a
regime where the superconducting gap is of appreciable size when the topological phase
is reached. In order to have a considerable and hard induced superconducting gap, the
interface between the SM and the SC has to be good. Experiments have mainly used InAs
and InSb nanowires due to their strong spin-orbit coupling, high electron mobility, and
large Landé д-factor, while Al or NbTiN have been used as parent s-wave SCs. NbTiN has a
larger superconducting gap, but the superconducting phase in Al is less susceptible to the
applied magnetic �eld.

�e 1D nanowires can be fabricated by growing nanowires by molecular epitaxy beam or
by lithographically de�ning nanowire strips in a 2D quantum well heterostructure[Shabani
et al., 2016]. Previously, the parent SC was deposited on the nanowire a�er the nanowire had
been exposed to oxygen making it necessary to remove an oxidized layer before deposition,
which resulted in a so� induced superconducting gap due to a rough interface between the
materials. Today, Al can be grown epitaxially on a nanowire or heterostructure[Krogstrup
et al., 2015; Zhang et al., 2017] with a near perfect interface, yielding a hard induced
superconducting gap[Chang et al., 2015; Kjaergaard et al., 2016; Gül et al., 2017] in the SM
nanowire. A good interface, however, also leads to a strong hybridization between the
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SM and SC leading to a renormalization of the SM’s parameters, such as a less e�ective
д-factor. We will postpone a more accurate treatment of the parent SC to the next section
and here introduce the SC-SM nanowire model, as we will denote it, where the induced
s-wave pairing is described by a �xed potential.

We model the nanowire by the single channel Hamiltonian[Oreg et al., 2010; Lutchyn
et al., 2010]

H = HNW + HSC, (2.19)

where HNW contains the kinetic part, the Rashba spin-orbit coupling, and the Zeeman �eld,
while H∆ contains the proximity induced superconductivity. Considering the �rst term

HNW =
1
2

∫
Ψ† (x ) (Hkin + HSOI + HZ)Ψ(x ) dx , (2.20)

with the Nambu spinor Ψ(x ) = (ψ↑(x ),ψ↓(x ),ψ
†

↓
(x ),−ψ †

↑
(x ))T , where the operatorψ †σ (x )

creates an electron of spin σ at position x . �e Hamiltonian consists of three parts. �e
kinetic energy term

Hkin =

(
−
}2

2m∗ ∂
2
z − µ

)
τz , (2.21)

wherem∗ is the e�ective mass of the electrons and µ is the chemical potential. �e spin-orbit
interaction term

HSOI = −iαR∂zσxτz , (2.22)

which is the Rashba type with αR being the coupling strength. Lastly, the Zeeman �eld
term

HZ =
1
2дµB

~B · ~σ = ~V Z · ~σ , (2.23)

where д is the e�ective Landé g-factor and µB is the Bohr magneton. In general we will
assume the Zeeman �eld to point along the wire and z-axis such that HZ = VZσz . �e Pauli
matrices ~σ and ~τ act in spin and particle-hole space, respectively. �e proximity induced
superconductivity is described by the Hamiltonian

HSC =
1
2

∫
Ψ† (x )HSCΨ(x ) dx = 1

2

∫
Ψ† (x )∆0τxΨ(x ) dx , (2.24)

where ∆0 is the induced superconducting gap.
�e single particle Hamiltonian in momentum space is

H(k ) = H
(k )

NW + H
(k )

SC =

[
ξk + αRkσx +VZσz ∆0

∆0 −ξk − αRkσx +VZσz

]
(2.25)

with the bulk spectrum

E2
± (k ) = V

2
Z + ∆

2 + ξ 2
k + α

2
Rk

2 ± 2
√
V 2

Z∆
2 +V 2

Z ξ
2
k + α

2
Rk

2ξ 2
k . (2.26)

�e Hamiltonian is both time-reversal and particle-hole symmetric, with the same operators
as the p-wave Hamiltonian, given in Eq. (2.5). It therefore also belongs in the BDI symmetry
class and should exhibit MBSs if the system can be brought into a topologically non-trivial
phase.
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Figure 2.4: Bulk spectrum given by Eq. (2.26) for di�erent parameters, all with µ = 0. (a) and (b):
�e spin component along the spin-orbit �eld is shown by the line color. ∆∗ = |VZ −

√
∆2 + µ2 |

In order to become familiar with this somewhat complex Hamiltonian and illustrate
its connection to the p-wave Hamiltonian, we will discuss how the di�erent parts of the
Hamiltonian in�uence the bulk spectrum. For this discussion we set µ = 0. We �rst consider
the case with only spin orbit coupling present, so VZ = 0 and ∆ = 0. �e two parabolas
are shi�ed due to the coupling of momentum and spin, as shown in Fig. 2.4 (a), where the
direction of the spin is shown by the color of the parabola. Turning on VZ opens up a gap
at k = 0, as shown in Fig. 2.4 (b) and creates two helical bands where the spin changes
direction as the momentum changes from negative to positive momentum. Lastly, when the
superconducting s-wave pairing is included, a gap opens at the two Fermi points, as shown
in Fig. 2.4 (c). �e bulk spectrum is in general gapped for all parameters when ∆,αR , 0,
except at VZ,c =

√
∆2 + µ2, where the gap closes linearly at k = 0, as shown in Fig. 2.4 (d).

�is resembles the gap closing for the p-wave Hamiltonian and also signi�es a topological
phase transition in this case. Due to the Zeeman �eld, the spins at the Fermi points have a
component pointing in the same direction, which results in an e�ective p-wave pairing.

To see how this comes about, we diagonalize the H
(k )

NW part of the Hamiltonian in
Eq. (2.25), using the unitary operatorU = cos( θ2 )σ0τ0 + i sin( θ2 )σyτz with sin(θ ) = αRkκ

−1
k

and cos(θ ) = VZκ
−1
k , where we have de�ned κk =

√
α2

Rk
2 +V 2

Z . A�er the transformation,
the Hamiltonian has the form

U†H(k )U =



ξk − κk 0 ∆0VZ
κk

−
αRk∆0
κk

0 ξk + κk
αRk∆0
κk

∆0VZ
κk

∆0VZ
κk

αRk∆0
κk

−ξk − κk 0
−
αRp∆0
κk

∆0VZ
κk

0 −ξk + κk



, (2.27)

where ξk −κk and ξk +κk correspond to the lower and upper band of the H
(k )

NW Hamiltonian,
respectively. In this basis, it can be seen that the s-wave paring results in the inter-band
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pairing ∆0VZκ
−1 and intra-band pairing αRk∆0κ

−1 and that the la�er is of the p-wave type.
We perform an additional unitary transformation, which diagonalizes the inter-band pairing,
but leaves the intra-band pairing unchanged:

W†H(k )W =



−κk + ρk 0 0 −
αRk∆0
κk

0 κk + ρk
αRk∆0
κk

0
0 αRk∆0

κk
−κk − ρk 0

−
αRk∆0
κk

0 0 κk − ρk



, (2.28)

where ρk =
√
ξ 2
k +

(
∆VZ
κk

)2
. �e inter-band pairing li�s the degeneracy at k = 0 between

the ξk − κk and −ξk − κk band, as seen in Fig. 2.5.

Figure 2.5: Energy spectrum of band (−κk + ρk ) and (−κk − ρk ). (a) For ∆ = 0 the two bands are
degenerate at k = 0. (b) For ∆ , 0 a gap of 2∆∗ =

����

√
∆2

0 + µ
2 −VZ

����

Now the upper and lower band are decoupled and we consider just the lower energy
(LE) band

H
(k )

LE = (−κk + ρk )τz −
αRk∆0
κk

τx . (2.29)

It may not be obvious from this Hamiltonian that it is gapped for all k , 0 when ∆,αR,VZ ,
0, so we will explore the spectrum a bit further. �e band −κk + ρk may have zeros at �nite
k , as seen in Fig. 2.5, but the o�-diagonal term αRk∆0κ

−1
k τx couples the particle and hole

band, opening a gap for all k , 0. So the only place where the spectrum can close is where
this particle-hole pairing is zero, at k = 0, which then happens for VZ,c =

√
µ2 + ∆2

0.
In the limit of VZ � αRkF where κk ≈ VZ we see that it has the form of the p-wave

Hamiltonian in Eq. (2.4), although with a slightly di�erent kinetic term

H
(k )

LE ≈
(√

ξ 2
k + ∆

2
0 −VZ

)
τz −

αRk∆0
VZ

τx . (2.30)

From here we also see that even though the Zeeman �eld drives the system into the
topological phase, it also decreases the topological gap, αRk∆0

VZ
, such that the topological

phase only exists with a considerable gap for Zeeman �elds of intermediate strength.
�e exact wavefunction solutions for the MBS for this model cannot be found analyti-

cally in the general case, but certain limits are solvable[Klinovaja and Loss, 2012]. We will
mainly focus on numerical studies of eigenenergies and wavefunctions and refer back to
the p-wave Hamiltonian for analytic solutions when required.
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Tight binding approximation and numerical computations

We will study the continuous models numerically by mapping to a la�ice model, using the
tight binding approximation,

k →
1
a

sinka , k2 →
4
a2 sin ka

2 =
2
a2 (1 − coska), (2.31)

where a = L/N is the la�ice constant, with L being the length of the nanowire and N the
number of la�ice sites.

A�er Fourier transforming from momentum space to la�ice space and using the tight
binding approximation, the non-superconducting part of the Hamiltonian in Eq. (2.19) takes
the form

HNW =
1
2

N∑
i, j=1

c̃†iH
(i j )

NW c̃j =
1
2

N∑
i, j=1

c̃†i
(
Di j +Ti j

)
c̃j , (2.32)

where the sum is over the N la�ice sites and c̃j = (c̃ j↑, c̃ j↓, c̃
†

j↓,−c̃
†

j↑)
T is a Nambu spinor

of electron la�ice site operators c̃ jσ =
∑

k e
−ikRjckσ at position R j = ja. �e diagonal and

o�-diagonal parts of the la�ice Hamiltonian are

Di j =

((
}2

m∗a2 − µ

)
τz +VZσz

)
δi, j , (2.33)

Ti j =

(
−
}2

2m∗a2 (δi, j+1 + δi+1, j ) −
iαR
2a σx (δi, j+1 − δi+1, j )

)
τz . (2.34)

and the superconducting part is

HSC =
1
2

N∑
i, j=1

c̃†i ∆0τxδi, j c̃j , (2.35)

We solve the eigenvalue equation of this discretized Hamiltonian in order to obtain the
eigenenergies and eigenfunctions. Numerical computations are carried out in Python 3.6.5
using routines from the Numpy package(1). �e computations mainly involve obtaining
eigenvalues and eigenvectors of a Hamiltonian represented as a matrix, inversion of matrices
and solving linear sets of equations.

Majorana modes

Just as Kitaev [2001] wrote the fermionic operators of the Kitaev chain as a superposition
of Hermitian Majorana operators, we can decompose the eigenfunctions of the discretized
SC-SM Hamiltonian in a similar manner.

�e eigenfunction with the corresponding eigenenergy ϵ has the form

ϕϵ (i ) = (uϵ ↑i ,uϵ ↓i ,vϵ ↓i ,−vϵ ↑i )
T , (2.36)

where i is the site index on the chain of the discretized Hamiltonian. �e creation operator
corresponding to the state with energy ϵ can be wri�en in terms of this eigenfunction and
the electron creation and annihilation operators,

ψ †ϵ =
∑
i

uϵ ↑ic
†

↑i + uϵ ↓ic
†

↓i +vϵ ↓ic↓i −vϵ ↑ic↑i . (2.37)

1. Documentation can be found at h�ps://docs.scipy.org/doc/
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Due to particle-hole symmetry, the spectrum is symmetric around zero energy and the
negative eigenfunction is related to the positive partner by

ϕ−ϵ (i ) = (−v∗ϵ ↑i ,v
∗
ϵ ↓i ,u

∗
ϵ ↓i ,u

∗
ϵ ↑i )

T . (2.38)

From each pair of positive and negative eigenfunctions, we can construct linear combina-
tions

χϵA (i ) =
1
√

2
[ϕϵ (i ) + ϕ−ϵ (i )] =

[
ũϵA↑i , ũϵA↓i , ũ

∗
ϵA↓i ,−ũ

∗
ϵA↑i

]
, (2.39)

χϵB (i ) =
i
√

2
[ϕϵ (i ) − ϕ−ϵ (i )] =

[
ũϵB↑i , ũϵB↓i , ũ

∗
ϵB↓i ,−ũ

∗
ϵB↑i

]
, (2.40)

with the corresponding operators

γ †ϵα =
∑
i

ũϵα ↑ic
†

↑i + ũϵα ↓ic
†

↓i + ũ
∗
ϵα ↓ic↓i − ũ

∗
ϵα ↑ic↑i , (2.41)

with α = A,B. �ese linear combinations correspond to spli�ing each fermionic excitation
ψ †ϵ into a pair of Majorana operators, which satisfy γ †α = γα . However, these linear
combinations of eigenfunctions are not exact eigenstates of the Hamiltonian, but rather
ful�ll

〈χϵα |H |χϵα 〉 = 0, and 〈χϵA |H |χϵB〉 = iϵ, (2.42)

corresponding to the overlap between the two Majorana states |χϵA〉 and |χϵB〉 that consti-
tute the fermionic state |ψϵ 〉. For most fermionic states, the two Majorana states have a
large overlap in space, but for the MBS existing in the topological phase, the two Majorana
states are exponentially localized at opposite ends of the nanowire.

Examples

We will now compute the eigenvalue spectrum as a function of parameters that can be
tuned in experimental setups to see how the spectrum depends on model parameters. For a
more detailed study we refer to the work by Mishmash et al. [2016].

In Fig. 2.6 we show several plots of the eigenvalue spectrum as a function of Zee-
man �eld along the nanowire. Le� and right columns compare a short (L = 0.75 µm)
and a long nanowire (L = 1.5 µm) with di�erent spin-orbit coupling strengths αR =
{5, 10, 20, 50} µeV µm. With the chosen parameters ∆ = 150 µeV and µ = 0 µeV, the topolog-
ical phase transition happens at VZ,c = 150 µeV, but it is seen that the bulk spectrum does
not necessarily close and reopen as expected at a topological phase transition. �is is due
to �nite size e�ects and strong spin-orbit interactions, which can make the level spacing
large enough to push the bulk states out of the gap at the phase transition. �e emerging
MBS also does not reach zero energy at the bulk phase transition in these cases, but rather
a slightly higher Zeeman �eld. �e energy spli�ing oscillations of the MBS are larger in
shorter wires and for small spin-orbit coupling. �e topological gap a�er phase transition,
on the other hand, grows with increasing spin-orbit coupling.

In Fig. 2.7, we see the two Majorana wavefunctions, calculated from the numerically
obtained wavefunctions using Eq. (2.39) and (2.40), for three values of Zeeman �eld. One
before the phase transition at VZ,c = 150 µeV and two a�er. In the trivial phase, the two
Majorana wavefunctions have a large overlap and they have a bulk-state pro�le extending
over the whole nanowire. In the topological phase, the two Majorana wavefunctions are
localized at opposite ends. �ey are more localized close to the phase transition, while at
large VZ, they become less localized and their overlap increases.
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Figure 2.6: Eigenvalue spectrum as function of Zeeman �eldVZ. Le�: L = 0.75 µm Right: L = 1.5 µm.
Spin-orbit coupling is the same in each row. From top to bo�om: αR = 5 µeV µm, 10 µeV µm,
20 µeV µm and 50 µeV µm. Other parameters arem∗ = 0.026 me, ∆0 = 150 µeV, µ = 0 µeV, N = 100
sites

In Fig. 2.8, the eigenvalue spectrum is shown as a function of chemical potential for
three di�erent Zeeman �elds. �e top one is solely in the trivial phase, while the other
two are in the topological phase for a �nite region of chemical potential symmetric around
µ = 0. �e topological phase transitions happen at µc = ±

√
V 2

Z − ∆2. Energy spli�ing
oscillations of the MBS also occur as a function of chemical potential, as can be seen at
high Zeeman �elds in the right plot.

A picture of the phase diagram as a function of Zeeman �eld and chemical potential
can be constructed by computing the energy of the lowest-energy eigenstate, as shown in
Fig. 2.9. �e color-scale shows the energy of the state and the white dashed line indicates
the topological phase transition with the topological phase to the right, inside the sideways
parabola. In order to make the oscillations apparent, the color-scale saturates at the value
of the induced superconducting gap ∆0.

�e striped pa�ern inside the topological phase is a generic feature in the case where
the overlap of the Majorana modes located at each end is large enough to cause visible
energy spli�ing. �e spacing between the stripes becomes larger for increasing VZ and µ
indicating that energy spli�ing and the overlap of the end state Majorana modes becomes
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Figure 2.7: Majorana wavefunction for the lowest-energy state for three di�erent values of Zeeman
�elds. Other parameters are αR = 20 µeV µm, m∗ = 0.026 me, ∆0 = 150 µeV, µ = 0 µeV, L =1.5 µm,
N = 400 sites.

Figure 2.8: Eigenvalue spectrum as a function of chemical potential µ for three di�erent Zeeman
�elds with values given in the �gure. �e energy scale (y-axis) is the same on all three plots. Other
parameters are L = 1.5 µm,m∗ = 0.026 me, ∆0 = 150 µeV, µ = 0µeV, N = 100 sites

larger. It is therefore preferable to enter the topological phase on the bo�om side of the
parabola at low µ if the goal is to have the smallest overlap between the Majorana modes.

�e electron parity changes when the lowest-energy state crosses zero[Ben-Shach et al.,
2014]. From the bulk spectrum, given in Eq. (2.26), the trivial phase is expected to be fully
gapped. However, due to �nite size e�ects, there may exist states crossing zero outside the
topological phase at high chemical potential in certain parameter regimes. An example of
this is shown in Fig. 2.9, where the black rings outside the topological phase and at large µ
are trivial states crossing zero energy. In the present situation of a uniform nanowire, these
trivial states are fairly easy to distinguish from a MBS since they are not gapped from the
bulk spectrum and they do not exhibit the same characteristic oscillations. However, in
non-uniform nanowires and nanowires with non-superconducting segments at the end, it
might be possible to �nd trivial states that oscillate in a similar manner to a MBS. We will
return to this ma�er later in Chap. 9.
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Figure 2.9: Energy of the lowest-energy eigenstate as a function of chemical potential µ and Zeeman
�eld VZ with the parameters: L = 0.75 µm, m∗ = 0.026 me, ∆0 = 150 µeV, αR = 20 µeV µm, N = 200
sites. Gray color indicates that the energy is larger than the gap ∆0. �e dashed white line given, by
VZ −

√
µ2 + ∆2

0 = 0 µm, indicates where the topological phase transition occurs for an in�nite size
system.

2.4 SC-SM nanowire self-energy model

In the previous section, we discussed the SC-SM nanowire Hamiltonian which despite being
rather complex is still a non-interacting Hamiltonian and can be diagonalized numerically.
However, it should be noted that the proximity induced gap only takes into account
the zero frequency coupling to the parent superconductor and therefore best describes
the limit of weak coupling between the superconductor and the nanowire. In order to
construct a model that is valid at strong coupling, we use the tunneling Hamiltonian
approach to calculate the quasiparticle Green’s function of the nanowire by integrating
out the electron’s degrees of freedom in the parent superconductor. �e resulting Green’s
function includes an energy-dependent self-energy that (i) describes the proximity e�ect,
i.e. it introduces (superconducting) correlations between electrons and holes in the wire,
and (ii) leads to a renormalization of all energy levels and quasi-particle weights in the
wire. Both e�ects would not be captured fully by a model where the s-wave pairing
is introduced phenomenologically as a constant pairing potential Stanescu et al. [2011].
Recent experiments in epitaxially grown SC-SM nanowires have showed a hard induced
gap which is comparable in size to the gap in the parent superconductor Chang et al. [2015].
Especially in that case, retaining an energy-dependent self-energy can make a qualitative
and important di�erence Peng et al. [2015].

We consider the Hamiltonian

H = HNW + HSC + Ht (2.43)

where the three parts describe the nanowire, the bulk superconductor, and the coupling
between them, respectively. �e nanowire Hamiltonian is the same as in the previous
section

HNW =
∑
k

c†k HNWck =
∑
k

c†k [(ξk + αRkσx )τz +VZσz] ck , (2.44)
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where ck = (c↑k , c↓k , c
†

↓k ,−c
†

↑k )
T is a Nambu spinor of electron operators in momentum

space. �e Hamiltonian describing the superconductor is

HSC =
∑

p
a†p

[(
}2

2mp2 − µSC

)
τz + ∆τx

]
ap, (2.45)

with the Nambu spinor of electron operators in the superconductor ap = (a↑p,a↓p,a
†

↓p,

−a†
↑p), the superconducting gap ∆, and the chemical potential of the superconductor µSC.

�e Hamiltonian describing the tunneling between them is wri�en in real space,

Ht =
∑
σ

∫
t (z, r′)ψ †σ (z)ϕσ (r

′) + h.c. dz dr′ (2.46)

whereψ †σ (z) creates an electron with spin σ in the nanowire at position z and ϕ†σ (r′) creates
an electron of spin σ in the superconductor at position r′. �e tunnel coupling is

t (z, r′) = t̃δ (x ′)δ (y ′)δ (z ′ − z). (2.47)

and is assumed to be real. We rewrite the tunnel Hamiltonian in momentum space

Ht =
∑
σ

∫
t̃δ (x ′)δ (y ′)δ (z ′ − z)

1
√
Lz

∑
k

e−ikzc†kσ
1
√
V

∑
p
eip·r

′

apσ + h.c. dz dr′

(2.48)

=
t̃

√
LzV

∑
σpk

∫
e−i (k−pz )zc†kσapσ + h.c. dz (2.49)

= t
∑
σpk

δk,pzc
†

kσapσ + h.c. (2.50)

= t
∑
pk

δk,pz c†kτzap, (2.51)

where we have de�ned t = t̃√
Lx Ly

We de�ne a Nambu matrix structure for the imaginary time Green’s functions we will
be working with

G (k,τ ) =

[
Gee Geh

Ghe Ghh

]
, (2.52)

where we suppress the dependence on k and τ . �ere is also a spin structure to these
Green’s functions, which we de�ne as

Gee =


Gee
↑↑
Gee
↑↓

Gee
↓↑
Gee
↓↓


, Geh =



Geh
↑↓
−Geh
↑↑

Geh
↓↓
−Geh
↓↑


(2.53)

Ghe =


Ghe
↓↑

Ghe
↓↓

−Ghe
↑↑
−Ghe
↑↓


, Ghh =



Ghh
↓↓

−Ghh
↓↑

−Ghh
↑↓

Ghh
↑↑


. (2.54)

Of these Green’s functions Gee
σσ ′ and Ghh

σσ ′ are the usual electron and hole Green’s functions,
while Geh

σσ ′ and Ghe
σσ ′ are the anomalous Green’s functions where a hole is turned into an

electron or opposite through interactions with the superconductor. �e single particle
Green’s functions we are working with are

Gee
σσ ′ (k,τ ) = −

〈
T̂τ ckσ (τ )c

†

kσ ′ (0)
〉
, Geh

σσ ′ (k,τ ) = −
〈
T̂τ ckσ (τ )c−kσ ′ (0)

〉
(2.55)

Ghe
σσ ′ (k,τ ) = −

〈
T̂τ c

†

−kσ (τ )c
†

kσ ′ (0)
〉
, Ghh

σσ ′ (k,τ ) = −
〈
T̂τ c

†

−kσ (τ )c−kσ ′ (0)
〉
.

(2.56)
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We will let the above Green’s function be the full imaginary time Green’s functions of the
nanowire, while the Green’s functions of the nanowire and superconductor in the absence
of coupling between them will be denoted by a subscript ”0” and ”SC”.

We now write the full imaginary time Green’s function as an expansion in the tunneling
Hamiltonian and obtain a Dyson equation

G (k,τ ) = G0 (k,τ ) + t
2
∫ β

0
dτ1 dτ2G0 (k,τ − τ1)

∑
p
δk,pzGSC (p,τ1 − τ2)G0 (k,τ2)

+ t4
∫ β

0
dτ1 . . . dτ4G0 (k,τ − τ1)

∑
p

{
δk,pzGSC (p,τ1 − τ2)

}
G0 (k,τ2 − τ3)

×
∑

p

{
δk,pzGSC (p,τ3 − τ4)

}
G0 (k,τ4) + . . . (2.57)

= G0 (k,τ ) +

∫ β

0
G0 (k,τ − τ1)ΣSC (k,τ1 − τ2)G (k,τ2), (2.58)

where we have de�ned the self-energy

ΣSC (k,τ ) = t2
∑

p
δk,pzGSC (p,τ ). (2.59)

�e expansion only contains terms with even orders of the tunneling Hamiltonian since
the electron has to start and end in the nanowire.

Converting the Green’s functions to the frequency domain, we have

G (k, iωn ) =

∫ β

0
dτ eiωnτG (k,τ ) (2.60)

= G0 (k, iωn ) + G0 (k, iωn )ΣSC (k, iωn )G (k, iωn ), (2.61)

and we convert the sum over wave vectors into an integral over energy in the self-energy

ΣSC (k, iωn ) = t2
∑

p
δk,pzGSC (p, iωn ) (2.62)

= t2
∫

dξp ν2 (ξ ,k )GSC (ξ , iωn ), (2.63)

where ν2 (ξ ,k ) =
∑

p δ (ξ − ξp)δk,pz is the 2D density of states in the superconductor at
energy ϵ and with wave vector k in the z-direction. �e Green’s function of the electrons
and holes in the superconductor is [Bruus and Flensberg, 2004]

GSC (ξ , iωn ) =
1

ω2
n + ξ 2 + |∆|2



−iωn − ξ 0 ∆ 0
0 −iωn − ξ 0 ∆
∆ 0 −iωn + ξ 0
0 ∆ 0 −iωn + ξ


=
−iωn − ξτz + ∆τx

ω2
n + ξ 2 + |∆|2

. (2.64)

Assuming that ∆,ω � εF the e�ective density of states ν2 is constant and we can perform
the integral over ϵ and obtain the self-energy

ΣSC (k, iωn ) =
πt2ν2√
|∆|2 + ω2

n

(−iωn + ∆τx ), (2.65)
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and by analytic continuation, iωn → ω + i0+, the retarded self-energy

ΣR
SC (k,ω) =

γ√
|∆|2 − (ω + i0+)2

(−ω + ∆τx ), (2.66)

where we have de�ned γ = πt2ν2.
We proceed to solve the Dyson equation in Eq. (2.61) to obtain the full Green’s function

containing the self-energy in Eq. (2.66) from which we construct the retarded Green’s
function by analytic continuation

GR (k,ω) =
1(

GR
0 (k,ω)

)−1
− ΣR

SC (k,ω) + i0+
(2.67)

=
1

ω − H
(k )

NW − ΣR
SC (k,ω) + i0+

, (2.68)

with the single particle Hamiltonian of the nanowire given in Eq. (2.44).

Estimating parameters from experiments

�is section includes results presented in the supplementary material of Deng
et al. [2016].

In order to compare with experiments and extract model parameters, we derive some
relations between observables in the energy spectrum and model parameters. For the
remainder of this section we will assume that ∆ = |∆| without loss of generality. At
energies below the gap of the bulk superconductor ∆, the electronic spectrum is obtained
by solving

0 = det[Re (GR (k,ω))−1] (2.69)

= ω2
(
1 + γ
√
∆2 − ω2

)2
−V 2

Z −

(
γ∆

√
∆2 − ω2

)2
− ξ 2

k − α
2
Rk

2

± 2

√
V 2

Z

(
∆γ

√
∆2 − ω2

)2
+V 2

Z ξ
2
k + α

2
Rk

2ξ 2
k .. (2.70)

One unknown parameter, is the coupling strength γ between the nanowire and the
bulk superconductor. It can however be related to the lowest energy state (induced gap)
at zero Zeeman �eld and zero chemical potential and the gap of the bulk superconductor.
We de�ne the induced gap ∆ind in the nanowire as the lowest available energy, above a
possible MBS. Se�ing VZ = 0 and µ = 0, we �nd a relation between the γ , ∆ind, and ∆, by
solving det[Re (GR (k = 0,ω = ∆ind))

−1] = 0:

∆ind
*..
,
1 + γ√

∆2 − ∆2
ind

+//
-
−

γ∆√
∆2 − ∆2

ind

= 0. (2.71)

Solving for γ we obtain

γ = ∆ind

√
∆ + ∆ind
∆ − ∆ind

. (2.72)

In the weak coupling limit ∆ind � ∆, we can approximate√
∆ − ∆ind
∆ + ∆ind

=

√
1 − 2 ∆ind

∆ + ∆ind
≈ 1 − ∆ind

∆ + ∆ind
=

∆

∆ + ∆ind
(2.73)
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and obtain an expression for the induced gap in terms of the coupling strength and parent
superconductor gap

∆ind ≈
γ∆

γ + ∆
, (2.74)

which is in agreement with the estimate by Stanescu et al. [2011]. In the strong coupling
regime where ∆ind ≈ ∆ and γ � ∆, we approximate√

∆ − ∆ind
∆ + ∆ind

≈

√
∆ − ∆ind

2∆ . (2.75)

Inserting this in Eq. (2.72) and squaring, gives the equation

γ 2 (∆ − ∆ind) ≈ 2∆2
ind∆, (2.76)

with the solutions

∆ind ≈
γ 2

4∆
*.
,
−1 ±

√
1 + 8∆2

γ 2
+/
-
. (2.77)

We are looking for a solution with positive induced gap, so we pick the corresponding
solution and expand the square root to second order in 8∆2

γ 2 to obtain

∆ind ≈ ∆

(
1 − 2∆

2

γ 2

)
. (2.78)

Besides the induced superconducting pairing, the self energy also leads to a renormal-
ization of the level spectrum below the gap of the bulk superconductor. As a result, the
critical Zeeman �eld at which the topological phase transition occur is moved to a higher
Zeeman �eld. We �nd the critical �eld by solving

det[Re (GR (k = 0,ω = 0))−1] = 0 ⇒ V 2
Z,c = γ

2 + µ2. (2.79)

Even though stronger coupling to the superconductor induces a larger gap in the nanowire,
it also pushes the phase transition to higher �elds, which might be di�cult to obtain as it
requires a very large magnetic �eld. �e magnetic �eld will also eventually destroy the
superconducting phase in the bulk superconductor, an e�ect that is not yet included.

�is e�ect is included phenomenologically by le�ing the gap of the bulk superconductor
depend on the applied magnetic �eld:

∆(B) = ∆(0)

1 − *

,

~B · ~дSC
Bc

+
-

2
, (2.80)

where ~дSC is the Landé д-factor in the superconductor. In experiments, the critical magnetic
�eld where the gap in the bulk superconductor closes depends on the direction of the mag-
netic �eld, which can be incorporated above by le�ing the д-factor in the superconductor
be dependent on direction. For simplicity we will in general assume the д-factor to be the
same in all directions. It will be explicitly speci�ed in the text when this phenomenological
gap closing model is included.

It is also possible to obtain an estimate of the coherence length ξ and the spin-orbit
coupling strength αR from the low energy spectrum at the topological phase transition. At
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low energies ω � ∆ and for µ = 0 and small k , the spectrum is approximately given by

det[Re (GR (k,ω))−1] ≈ ω2
(
1 + γ

∆

)2
−V 2

Z − γ
2 − α2

Rk
2 − 2VZγ (2.81)

⇓

ϵk ≈
∆

∆ + γ

√
(VZ − γ )2 + k2α2

R. (2.82)

Close to the phase transition point VZ,c = γ we then have

ϵk ≈
∆′ |k |αR
∆′ + γ

, (2.83)

where ∆′ is the gap of the parent superconductor at this point. Due to �nite size e�ects,
the induced gap does not close exactly at VZ,c, but at a slightly higher �eld. �e gap at VZ,c
is given by the gap to the �rst excited state

ϵ1 ≈
∆′

∆′ + γ

παR
L
, (2.84)

which was also shown by van Heck et al. [2016]. If we estimate the coherence length ξ near
the phase transition as ξ ≈ αR

∆′ , we have

ξ

L
≈

∆′ + γ

∆′
ϵ1
π∆′
, (2.85)

and also from the previous equation an estimate of the spin-orbit coupling strength

αR ≈
∆′ + γ

∆′
L

π
ϵ1. (2.86)

Numerical computations

For numerical computations, we use a la�ice version of Green’s function, which is obtained
using the tight binding approximation as in the previous section. Green’s function from
Eq. (2.68) in la�ice space is

GR (i, j;ω) = 1
ω − H

(i j )
NW − ΣR

SC (i, j;ω) + i0+
, (2.87)

with the self-energy

ΣR
SC (i, j;ω) = γ

−ω + ∆τx√
|∆|2 − (ω + i0+)2

δi, j . (2.88)

�e di�erential conductance measured from a lead into any point in the grounded
nanowire can be computed using the sca�ering matrix formalism that will be introduced
in Chap. 3. We will here show a few plots of di�erent tunnel coupling strengths to the bulk
superconductor to see how the spectrum compares with the model in the previous section.
�e di�erential conductance, at the end of the nanowire as a function of Zeeman �eld
along the wire and bias voltage, is shown in Fig. 2.10 for the di�erent coupling strengths
γ = {0.5, 1, 2, 4, 8}∆. Besides pushing the topological phase transition to higher Zeeman
�elds increasing γ also suppresses the MBS’s energy spli�ing oscillations.

In Fig. 2.11 we show the di�erential conductance at the end of the nanowire as a function
of Zeeman �eld and bias voltage where the gap of the bulk superconductor depends on the
magnetic �eld as given in Eq. (2.80).
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Figure 2.10: Di�erential conductance as a function of Zeeman �eldVZ pointing along the nanowire
for �ve di�erent coupling strengths to the superconductor γ = {0.5, 1, 2, 4, 8}∆ from top to bo�om.
Other parameters are L = 0.75µm,m∗ = 0.026 me, ∆ = 220µeV, αR = 20pm eV, µ = 0µeV, N = 100
sites
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Figure 2.11: Di�erential conductance as a function of Zeeman �eldVZ pointing along the nanowire
with a Zeeman �eld dependent bulk superconductor gap, as given in Eq. (2.80) with 1/2µBдSCBc =
2000µeV. Other parameters are γ = 2∆, L = 0.75µm, m∗ = 0.026 me, ∆ = 220µeV, αR = 20pm eV,
µ = 0µeV, N = 100 sites
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2.5 Summary

In the �rst part of this thesis we have introduced and discussed three microscopic models
that can exhibit a topologically non-trivial phase with MBSs. �e SC-SM nanowire with
the energy-dependent self-energy o�ers the best capability for accurately describing real
experiment nanowire in the light of the hard induced superconducting gaps observed in
experiments. However, it is also the most complex of the three models. When the goal is to
understand a speci�c phenomenon, rather than reproducing experimental observations,
the simpler SC-SM Hamiltonian with energy-independent induced superconducting gap
may be more appropriate to use. �e SC-SM Hamiltonian may be further approximated
by the spinless p-wave superconductor, which are more tractable to deal with analytically.
�ere are many other details of these models, but we have limited ourselves to providing
an adequate overview that enables us to employ the models later on without further
introduction.
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Scattering Matrix Formalism

“ If I were forced to sum up in one sentence what the Copenhagen interpreta-
tion says to me, it would be “Shut up and calculate!”

David Mermin

�is part of the thesis will revolve around studying grounded SC-SM nanowire devices
by electron tunneling spectroscopy (ETS) at the end of the nanowire which is grounded.
�is will be carried out using the Landauer-Bü�tiker formalism, which we will give a short
introduction to in this chapter. First we will outline the starting point of the formalism in
general terms and then focus on the practical problem at hand: Finding the current across
a normal-superconductor interface. For a more detailed introduction, see e.g. Bruus and
Flensberg [2004].

We consider the nanowire as a mesoscopic sample connected to two electron reservoirs
through perfect leads, as pictured in Fig. 3.1. �e reservoirs are macroscopic and their
contacts to the leads are assumed to be re�ectionless, such that any electrons incident
on the reservoir from the leads will be fully absorbed and thermalized before being re-
emi�ed. For simplicity we assume the leads α = L,R to be perfectly straight with a constant
cross-section Ω and impenetrable boundary ∂Ω, and we de�ne the coordinate system such
that x is parallel to the lead and (y, z) = r⊥ is the plane perpendicular to the lead. �e
Hamiltonians Hα of the leads with the eigenstates ϕ±αζ nE (x , r) with energy E are given by

Hα = −
}2

2mτz (∂
2
x + ∂

2
⊥), for r⊥ ∈ Ω, else 0, (3.1a)

ϕ±αζ nE (x , r⊥) =
1√

kn (E)
υζ χn (r⊥)e±ikn (E )x , ζ ∈ {e, h} (3.1b)

−
}2

2m ∂
2
⊥χn (r⊥) = ϵn χn (r⊥), n ∈ N, (3.1c)

χn (r⊥) = 0, for r⊥ ∈ ∂Ω, (3.1d)
τzυζ = ςυζ , with ς = ±1, (3.1e)

E = ς

(
}2

2mk2
n + ϵn

)
. (3.1f)

�e quantum numbers ” + / − ” denote right/le� moving states with wavenumbers kn (E)
and χn is the eigenfunction of the transverse part of the Hamiltonian with the eigenenergie
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ϵn . We have wri�en the Hamiltonians in BdG form in order to accommodate so-called
Andreev re�ections, where an electron is re�ected as a hole at the normal-superconductor
interface[Blonder et al., 1982]. �e vector υζ is a spinor in electron-hole space where
υe = (1, 0)T and υh = (0, 1)T . �e number of transverse eigenfunctions or channels, as we
will call them, is in principle in�nite, but we will in practice choose some cut-o� value N
and disregard higher states. �e normalization of the wavefunctions have been chosen this
way, such that they all carry the same absolute probability current in a given cross-section:∫

Ω

(
ϕ±αζ nE (x , r)

)∗←→
Jx τzϕ

±
αζ nE (x , r) dr⊥ = ±

ς}

m
,

←→
Jx =

}

2mi

(
−→
∂ x −

←−
∂ x

)
, (3.2)

where the arrows indicate which side the di�erential operator acts on and ς = ±1 We will
neglect spin for the purpose of this introduction, but it can easily be included by extension.

Left reservoir Right reservoir

Figure 3.1: Setup considered, a superconducting mesoscopic sample connected by two re�ectionless
leads, each with N channels. Incoming and outgoing waves of electrons and holes are transmi�ed
or re�ected with amplitudes given by the S-matrix in Eq. (3.5).

Now we introduce the sca�ering matrix or S-matrix formalism in order to calculate
the conductance without having to deal with the problem of �nding the explicit wavefunc-
tions of the sample. We start by considering an eigenstate with energy E and write its
wavefunction in the three parts of the system as

ψζ E (x , r⊥) =




∑
n a
+
ζ nϕ

+
Lζ nE (x , r⊥) +

∑
n a
−
ζ nϕ

−
Lζ nE (x , r⊥), (x , r⊥) ∈ L,

ψM,ζ E (x , r⊥), (x , r⊥) ∈ M,∑
n b
+
ζ nϕ

+
Rζ nE (x , r⊥) +

∑
n b
−
ζ nϕ

−
Rζ nE (x , r⊥), (x , r⊥) ∈ R.

(3.3)

In the leads α = L,R, the wavefunction is a linear combination of incoming and outgoing
waves ϕ±αζ nE (x , r⊥), while in the sample region, it is some unknown wavefunctionψM,ζ E .
Using the usual boundary conditions: the wavefunction ψζ E and its derivative must be
continuous, we obtain 4×2N linearly independent equations that determine the amplitudes
a±ζ n and b±ζ n . Writing the amplitudes as vectors of the form a+ζ = (a+ζ 1,a

+
ζ 2, ...)

T , we can
represent their linear dependence by the so-called sca�ering matrix or S-matrix:

*....
,

a−e
a−h
b+e
b+h

+////
-

=



ree (ϵ,V ) reh (ϵ,V ) t ′ee (ϵ,V ) t ′eh (ϵ,V )
rhe (ϵ,V ) rhh (ϵ,V ) t ′he (ϵ,V ) t ′hh (ϵ,V )
tee (ϵ,V ) teh (ϵ,V ) r ′ee (ϵ,V ) r ′eh (ϵ,V )
the (ϵ,V ) thh (ϵ,V ) r ′he (ϵ,V ) r ′hh (ϵ,V )



*....
,

a+e
a+h
b−e
b−h

+////
-

(3.4)

=

[
R(ϵ,V ) T′(ϵ,V )
T(ϵ,V ) R′(ϵ,V )

] *....
,

a+e
a+h
b−e
b−h

+////
-

. (3.5)

where the re�ection matrices rζ ζ ′ and r ′ζ ζ ′ and the transmission matrices tζ ζ ′ and t ′ζ ζ ′
are of size N × N . �e normal re�ection and transmission amplitudes of an incoming
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wave in the le� lead channel n′ being re�ected in the same lead or transmi�ed in the
right lead channel n is represented by the matrix elements (ree)nn′ and (tee)nn′ , respectively.
Due to superconductivity, we also have Andreev re�ection, where incoming electrons are
re�ected into holes, which is represented by the matrix elements (rhe)nn′[Blonder et al.,
1982]. Transmission and re�ection amplitudes in the opposite direction are given by the
elements of the primed matrices. A schematic representation of how the transmission and
re�ection matrices connect the incoming and outgoing waves is shown in Fig. 3.1.

We now turn to calculating the current through the sample and for this we de�ne
the so-called sca�ering states ψαnE , these are states with an incoming wave in lead α
in channel n. �e conservation of current gives that, in steady state, the current is the
same in both leads, and it will su�ce to consider the sca�ering states in the le� lead. We
restrict our a�ention to the normal-superconductor interface of the le� lead and the sample.
In doing this, we assume the right lead to be far away from this interface. Across the
NS-interface, the sca�ering of electrons impinging from the le� lead can be described by
just the re�ection part of the S-matrix in Eq. (3.5):

R(ϵ,V ) =

[
ree (ϵ,V ) reh (ϵ,V )
rhe (ϵ,V ) rhh (ϵ,V )

]
. (3.6)

An incoming electron can either be sca�ered back from the NS interface as an electron by
normal re�ection (ree) or as a hole by Andreev re�ection (rhe). In order to accommodate
both processes, we de�ne the sca�ering states originating from an incoming wave in the
le� lead to include both a re�ected electron and a hole:

ψLenE (x , r⊥) = ϕ+LenE (x , r⊥) +
∑
n′ζ ′

(rζ ′e)n′nϕ
−
Lζ ′n′E (x , r⊥), (x , r⊥) ∈ L. (3.7)

We assumed that electrons entering the leads from the reservoirs are completely ther-
malized with a Fermi-Dirac energy distribution nF of the given reservoir α , which is
characterized by the chemical potential µα . Further, we assumed the leads to be perfectly
transmi�ing, so in equilibrium, we take the sca�ering eigenstates to be stationary and their
occupation set by the distribution function

fα (ϵ ) = nF (ϵ − µα ), (3.8)

with the chemical potential set by the connected reservoir. We calculate the current
contributions of the sca�ering states using

Iαζ nE =

∫
Ω

(
ψαζ nE (x , r)

)∗←→
Jx τzψαζ nE (x , r) dr⊥. (3.9)

Considering only the sca�ering of incoming electrons, ζ = e, we use Eq. (3.2) and obtain

ILnE =
}

m

[
1 − (r †eeree)nn + (r †herhe)nn

]
, (3.10)

where 1 − (r †eeree)nn is the current contribution from transmi�ed electrons, while (r †herhe)nn
is the contribution from Andreev re�ection.

Now we take the chemical potential of the right lead µR to be equal to the chemical
potential of the sample µ, which we set to zero, and the chemical potential of the le� lead
to be shi�ed relative to this by −eV due to the applied voltage bias. �e current across the
NS interface results from the di�erence in occupation of sca�ering states incident from the
le� and right reservoir, which is given by

fL (E) − fR (E) = nF (E + eV ) − nF (E) (3.11)
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�e electrical current is then obtained by multiplying the current contribution of each
sca�ering with the di�erence in occupation, summing over all sca�ering states

I = −
e

2π}
∑
kn

ILnE [nF (E + eV ) − nF (E)] . (3.12)

We transform the sum into an energy integral

I = −
e

2π}

∫ ∞

0

∑
n

[
1 − (r †eeree)nn + (r †herhe)nn

]
[nF (E + eV ) − nF (E)] dE, (3.13)

=
1
e

∫ ∞

0
Gs (E,V ) [nF (E) − nF (E + eV )] dE, (3.14)

where we have de�ned the spectral conductance

Gs (E,V ) =
e2

h
Tr

[
1 − r †eeree + r

†

herhe
]
, (3.15)

with sum diagonal elements n wri�en as the trace.
�e di�erential conductance obtained by di�erentiating with respect to the voltage V

is
dI

dV

�����V
=

∫
−n′F (E + eV )Gs (E,V ) +

1
e

[nF (ϵ ) − nF (ϵ + eV )] dGs (E,V )

dV
dE. (3.16)

�is is for the general case, where the spectral conductance may depend on the applied bias
voltage. Here we assume that the coupling to the leads is small enough that the spectral
conductance is approximately independent of the voltage bias, so

dI

dV

�����V
≈

∫
−n′F (ϵ + eV )Gs (E) dE, (3.17)

which in the limit of zero temperature becomes

dI

dV

�����V
≈ Gs (E) =

e2

h
Tr

[
1 − r †eeree + r

†

herhe
]
. (3.18)

�e re�ection matrix needed to calculate the spectral conductance can be obtained
from the Green’s function of the sample using [Aleiner et al., 2002; Beenakker, 2015]

R(E) = 1 − 2iπW †
{ [
GR (E)

]−1
+ iπWW †

}−1
W , (3.19)

where the matrix W describes the coupling between the sample and the lead. In la�ice
space we write it as

W =
√
γW (sn ⊗ 14)

T , (3.20)

where sn = (0, ..., 1, ..., 0) is a vector of length N with a 1 in the n’th component and all
other components being zero, 14 is a 4×4 identity matrix. �e e�ective coupling parameter
γW parametrizes the strength of the coupling to the lead. �is 4N × 4 matrix describes
a coupling between one single mode in the lead and site n only. We see from Eq. (3.19)
thatWW † plays the role of a self-energy for the particles in the wire, so γW can be seen
as the electronic tunneling rate through the barrier between the wire and the lead. �e
Green’s function of the nanowire is constructed by employing one of the microscopic
models described in chapter 2.

�is concludes the introduction of the framework we will use to compute the di�erential
conductance for di�erent setups.
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Phase-Tunable Majorana
Bound States in a Topological

N-SNS Junction

“ �ose who are not shocked when they �rst come across quantum theory
cannot possibly have understood it.

Niels Bohr

�is chapter is based on the work presented in [Hansen et al., 2016] with some
changes in order to relate and conform to the notation used in the rest of this
thesis. Some additional work has been added, which is pointed out in the text.

�e motivation behind the work presented in this chapter is to propose a setup where
MBSs may be identi�ed using already well-established experimental techniques. We will
investigate a superconductor-normal-superconductor (SNS) junction where two separate
parts of the nanowire are coupled to two separate bulk superconductors, interconnected
by a superconducting loop to control the phase di�erence between them (see the sketch
in Fig. 4.1). Under the right circumstances there can emerge up to four low-energy MBSs
(one at each NS boundary inside the wire), which are known to have very characteristic
phase-dependent properties San-Jose et al. [2012]; Cayao et al. [2015]. It has previously been
proposed to detect these features by measuring the Josephson current through the junction
as a function of the voltage bias induced time-dependent phase di�erence [San-Jose et al.,
2012], or the supercurrent bias [San-Jose et al., 2014].

Here we will investigate the normal-superconductor-normal-superconductor (N-SNS)
junction by electron tunneling spectroscopy through the probe at the end of the nanowire.
�e presence of MBSs may be revealed by observing the phase dependence of the di�erential
conductance due to the non-locality of the MBSs. �e superconducting loop is introduced
to create a controllable phase di�erence across the junction. Creating such a topological
SNS junction is feasible with the current state of experimental techniques, and probing by
means of tunneling spectroscopy is standard practice in this �eld.

�e presence of MBSs reveal themselves by the low energy conductance being 2π
periodic in the phase di�erence, both in the case of overlapping and well separated MBSs.
In order to observe this, it is important that the entire nanowire is phase coherent and

37



38 CHAPTER 4. PHASE-TUNABLE MAJORANA BOUNDS STATES IN A SNS JUNCTION

achieving a gateable and disorder-free normal region in the SNS junction may pose an
experimental challenge. It must however be noted that an experimental measurement
with a local probe, such as tunnel conductance at just one end of the nanowire, cannot
unequivocally probe a non-local phenomenon. It is however still an interesting experiment
which may provide further evidence for the presence of MBSs in these systems.

Recently there have been proposals to measure the degree of non-locality of MBSs in
nanowires, using a quantum dot at the end as a spectroscopic tool, by Prada et al. [2017]
and Clarke [2017], which have shown to be in agreement with experimental observations
by Deng et al. [2017]. We will turn to the setup of a coupled quantum dot nanowire system
in the next chapter.

�is chapter is structured as follows. In Sec. 4.1 we describe the setup we have in mind
and present a Hamiltonian to model this system. We calculate the di�erential conductance
using the S-matrix, as introduced in Sec. 3 and present the results in Sec. 4.2.

We examine the conductance of the wire for energies smaller than the superconducting
gap, calculating the conductance spectrum as a function of applied magnetic �eld and
of the phase di�erence between the two superconductors. We compare the spectra that
result when the wire is in a topological phase and in a trivial phase, and we �nd that the
conductance spectrum, when tunneling into one end of the wire, is only sensitive to the
phase di�erence between the superconductors if the wire is in a topological phase.

Depending on the phase di�erence and the applied magnetic �eld, one to four low-
energy subgap conductance peaks are visible: For zero phase di�erence, one strong zero-bias
peak appears a�er entering the topological phase; at higher magnetic �elds this peak splits
and starts to oscillate due to the increasing overlap of the two MBSs at the ends of the
wire. For a phase di�erence close to π we can see two more low-energy peaks, which we
associate with the formation of two additional MBSs close to the central normal region of
the SNS junction where the superconducting phase changes sign.

In section 4.3 we support our interpretation with a simple low-energy model based
on a one-dimensional spinless p-wave superconductor with a phase discontinuity. �is
toy Hamiltonian reproduces all important qualitative features of our numerical results
and provides insight into the structure of the “Majorana subspace” including the gradual
gapping out of the central two Majorana states when the phase di�erence is reduced to
zero.

We will also present some additional work that was not included in [Hansen et al.,
2016]. �e investigation of the potential in the normal part of the SNS junction is extended
to include the case where the potential forms a potential well. �e phase di�erence
between the two superconducting segments is controlled by threading a magnetic �ux
through a superconducting loop that connects the two segments. �is may be accomplished
experimentally by rotating the direction of the applied magnetic �eld. We investigate how
a rotation of the magnetic �eld will a�ect the di�erential conductance spectrum.

4.1 Model

We consider a semiconducting nanowire proximity coupled to two s-wave superconductors,
as illustrated in Fig. 4.1(a). �e two superconductors are connected by a superconducting
loop such that the phase di�erence ϕ between them can be tuned by threading a �ux Φ
through the loop. Further, the wire is assumed to have strong spin-orbit interaction and we
include a magnetic �eld that initially only results in a Zeeman spli�ing of the electronic
states inside the wire but does not add to the �ux Φ. Later we consider how much the
magnetic �eld needs to be rotated to thread a single �ux quantum through the loop and
how that rotation will a�ect the energy spectrum. At its le� end, the wire is tunnel coupled
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Figure 4.1: (a) Cartoon of the N-SNS setup we consider. A semiconducting nanowire with epitaxially
grown s-wave superconductor covering two separate parts of the wire. �e two superconductors S1
and S2 are connected by a grounded superconducting loop through which a �ux Φ can be threaded,
resulting in a phase di�erence between S1 and S2. An external magnetic �eld BZ is applied that
couples to the electronic spins inside the wire but does not add to Φ. �e wire is tunnel coupled to a
probe lead at the le� end which can be used for tunneling spectroscopy by applying a bias voltage
V to it while measuring the current A. (b) A more schematic view of the setup. �e wire is oriented
along the z-axis and BZ lies in the yz-plane where the e�ective spin-orbit �eld is assumed to point
along the y-axis.

to a normal-metal probe which can be used to measure the di�erential conductance of the
system, as indicated in Fig. 4.1(a).

A more schematic picture of the setup is shown in Fig. 4.1(b). �e nanowire of length L is
oriented along the z-axis and it is proximity coupled to two bulk s-wave superconductors of
length L1 and L2 which have the e�ective pairing potentials ∆e−iϕ/2 and ∆eiϕ/2 respectively.
We assume the e�ective spin-orbit �eld to point along the y-axis and the Zeeman �eld to
lie in the yz-plane, BZ = B (ẑ cosθ + ŷ sinθ ). By varying the direction of this �eld we can
investigate both the topologically trivial state and non-trivial state of the system: �e wire
is in a trivial state when the Zeeman �eld is parallel to the spin-orbit �eld (θ = ±π/2) and
can be in a topological state for non-parallel �elds [Rex and Sudbø, 2014].

To describe this setup we will employ the model introduced in Sec. 2.4, but since it is
not a uniform system, we will go through the details here. We use the Hamiltonian

H = HNW + H1 + H2 + Ht, (4.1)

where HNW, H1, and H2 describe the electrons in the nanowire and the two superconductors
respectively, and Ht accounts for the coupling between the di�erent parts of the system.

Assuming that the wire is thin enough such that only the lowest electronic subband
is occupied, we write a one-dimensional Hamiltonian in a Bogoliubov-de Gennes (BdG)
form,HNW =

1
2
∫
dz Ψ† (z)HNWΨ(z), using the Nambu spinor Ψ(z) =

[
Ψ↑(z),Ψ↓(z),Ψ

†

↓
(z),

−Ψ†
↑
(z)

]T
, where the operator Ψ†σ (z) creates an electron with spin σ at position z in the

nanowire. We use

HNW =

(
−
}2∂2

z

2m∗ − µ − iαR∂zσy

)
τz +

1
2дµBBZ · σ , (4.2)

where the Pauli matrices τ and σ act in particle-hole space and spin space respectively.
Further,m∗ is the e�ective mass of the electrons in the wire, µ is the chemical potential, αR
is the Rashba spin-orbit strength, and д is the e�ective д-factor in the wire.

�e Hamiltonians for the two superconductors read Hn =
1
2
∫
drψ †n (r)Hnψn (r), where

the Nambu spinorψn (r) describes the electrons in superconductor n. �e BdG Hamiltonian
reads

Hn =

(
p2
n

2m∗S
− µS

)
τz + ∆

[
cos(ϕn )τx + sin(ϕn )τy

]
, (4.3)
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where pn is the momentum operator for electrons in superconductor n,m∗S is their e�ective
mass, and µS is the chemical potential of the two superconductors. �e superconducting
phases are ϕ1 = −ϕ/2 and ϕ2 = ϕ/2, corresponding to a phase di�erence ϕ.

Finally, the tunnel coupling between the nanowire and the two superconductors is
described by the tunneling Hamiltonian

Ht =
∑
n,σ

∫
dr tn (r)ψ †n,σ (r)Ψσ (z) + H.c., (4.4)

using the functions t1 (r) = t δ (x )δ (y)Θ(z)Θ(L1−z) and t2 (r) = t δ (x )δ (y)Θ(z−L+L2)Θ(L−
z), with t parameterizing the coupling strength.

Our aim is to calculate the di�erential conductance of this system in a setup where
one end of the wire is connected to a normal-metal tunnel probe (see Fig. 4.1). We will do
this using the S-matrix formalism described in Chap. 3. To this end we need the retarded
Green’s function of the electrons and holes in the nanowire. We assume that the Fermi
energy in the superconductor is by far the largest relevant energy scale in the problem,
and proceed to integrate out the electron degrees of freedom in the two superconductors
as described in Sec. 2.4. We then obtain an expression for the retarded Green’s function
GR (z, z ′, ϵ ) for the electrons and holes in the nanowire coupled to a bulk superconductor
with pairing potential ∆eiϕ as [Stanescu et al., 2011; Sau et al., 2010b; Danon and Flensberg,
2015]

ΣS (∆,ϕ; ϵ ) = γ
−ϵ + ∆

[
cos(ϕ)τx + sin(ϕ)τy

]

√
∆2 − (ϵ + i0+)2

, (4.5)

where γ parametrizes the strength of the coupling to the superconductor (it is proportional
to t2 and to the normal-state density of states in the superconductor and corresponds
roughly to the normal-state tunneling rate of electrons into the superconductor at the
Fermi level) and 0+ is a positive in�nitesimal.

�e self-energy (4.5) is diagonal in position space, and for our setup (involving two
superconductors) we thus have the total self-energy

Σ(z, ϵ ) =




ΣS (∆,−ϕ/2; ϵ ) for 0 < z < L1,

ΣS (∆,ϕ/2; ϵ ) for L − L2 < z < L,

0 otherwise.
(4.6)

With this, we can write the Green function for the electrons and holes in the wire as

GR (z, z ′, ϵ ) =

[
1

ϵ − HNW − Σ(z, ϵ )δ (z − z ′) + i0+

]

z,z′
. (4.7)

We then proceed to obtain the re�ection matrix (part of the S-matrix) using Eq. (3.19)
and calculate the di�erential conductance using Eq. (3.18). For our numerical calculations,
we discretize the Hamiltonian HNW on a one-dimensional la�ice with N sites, and the
Green functionGR (ϵ ) is then found from inverting the 4N × 4N matrix [ϵ −HNW−Σ+ i0+].

We express all energies in terms of the spin-orbit energy ESO ≡ α
2
Rm
∗/2}2 ≈ 68 µeV,

where the Rashba spin-orbit strength is set to αR = 20 µeV µm and the e�ective mass of the
electrons in the nanowire is assumed to be m∗ = 0.026me, which is the value for bulk InAs
at room temperature. Unless stated otherwise, the parameters we use in our simulations
are as follows: �e number of sites in the tight-binding model N = 100, the length of
the wire L = 1.5 µm, the length of the two superconductors L1 = L2 = 675 nm, the bulk
superconductor gap ∆ = 2ESO, the wire’s chemical potential µ = 0, the coupling parameter
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γ = 2.5ESO, and the coupling of the wire to the lead γW = 25ESO. �is combination of
parameters results in an e�ective hopping matrix element t = }2/2m∗a2 ≈ 95ESO, where
a = L/N is the la�ice constant, and a spin-orbit-induced ‘spin-�ip’ nearest-neighbor
coupling of s = αR/2a ≈ 9.8ESO.

4.2 Results

In this section, we will present and discuss the results of the numerical model.

Trivial phase

We �rst investigate the di�erential conductance of the system in the topologically trivial
phase, i.e. where the Zeeman �eld BZ is parallel to the spin-orbit �eld (θ = π/2). In
Fig. 4.2 we plot the di�erential conductance in units of e2/h as a function of bias voltage
V . Fig. 4.2 (a) shows the dependence on the strength of the Zeeman �eld VZ =

1
2дµB |BZ |,

assuming no phase di�erence, ϕ = 0. We see that conductance is high for energies larger
than the bulk superconducting gap, |eV | > ∆. Indeed, at these energies the superconductors
have a �nite single-particle density of states which allows for tunneling of electrons from
the lead into the superconductors. For energies smaller than the bulk gap we see several
sharp peaks in the conductance. �ese peaks are caused by Andreev bound states in the
wire which can lead to Andreev re�ection of electrons at the lead-wire interface, e�ectively
resulting in the transfer of Cooper pairs from the lead into the superconductors. At VZ = 0,
there is an induced gap in the wire of ∆ind ≈ 1.2ESO, which agrees quite well with the
estimate ∆ind ∼ ∆γ/(∆+γ ) from Eq. (2.74), even though this is in the intermediate coupling
strength regime. WhenVZ increases, the subgap states acquire a Zeeman spli�ing resulting
in a closing of the induced gap at VZ ≈ 2.5ESO, also in agreement with the estimate
VZ,c =

√
γ 2 + µ2 from Eq. (2.79). �e gap does not reopen again, since the nanowire stays

in the topologically trivial phase for θ = π/2. �e bending of the peaks for energies close
to ±∆ is due to the renormalization of the energy levels in the wire by the proximity of the
superconductor. If we would have used a phenomenological (energy-independent) induced
gap in the wire Hamiltonian, described in Sec. 2.3, this bending would have been absent.

We would like to point out that this Zeeman-induced subgap structure has qualitative
features in common with the subgap spectrum in the topological regime. A�er the gap clos-

Figure 4.2: Di�erential conductance of the nanowire in units of e2/h for θ = π/2. With this
orientation of the Zeeman �eld the system is always in the trivial regime. (a) Conductance as
a function of bias voltage V and VZ for ϕ = 0. (b) Conductance as a function of V and ϕ for
VZ = 8.3ESO, indicated by the red line in (a).
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ing, the spacing between the conductance peaks at zero bias, V = 0, becomes proportional
to
√
VZ, which is the same as the expected VZ-dependence of the period of the oscillations

due to a �nite overlap of the Majorana end states in the topological regime [Das Sarma
et al., 2012; Rainis et al., 2013]. Also, the amplitude of the oscillations of the “spli�ing of the
zero-bias peak” grows steadily with increasing VZ, as it is expected to do in the Majorana
case. �erefore, if one would focus only on the VZ-dependence of the lowest-energy peaks
in the conductance (for instance, when other features of the subgap structure are smeared
by noise or �nite temperature), then it could be hard to distinguish the topological from
the trivial regime.

We now proceed by investigating the dependence of the conductance on the phase
di�erenceϕ between the superconductors. In Fig. 4.2(b) we plot the di�erential conductance
as a function of V and ϕ with �xed VZ = 8.3ESO, which is at the position of the red line
in Fig. 4.2(a). We see that the positions of the peaks in the conductance do not depend
signi�cantly on ϕ. Indeed, in the trivial regime the Andreev bound states that are most
strongly in�uenced by the phase di�erence between the two parts of the wire are expected
to live mainly in the central normal region. �e tunnel probe is a�ached to the le� end of
the wire and is thus predominantly coupled to the Zeeman-split subgap states in the le�
proximity-induced superconductor. We emphasize the importance of the weak coupling
between the tunnel probe at the end of the wire and the Andreev states the middle of the
wire for clearly distinguishing the topologically trivial and non-trivial phases in experiment.
�is requires to have the length of the wire covered by superconductor S1 longer than the
coherence length of the resulting induced superconductivity. In experiment, one should
verify this �rst by showing that, in the topologically trivial phase, the conductance has
virtually no dependence on the phase di�erence between the superconductors.

Topological phase

Next we investigate the conductance of the wire when BZ is oriented parallel to the wire,
i.e. θ = 0. In Fig. 4.3(a) we plot the di�erential conductance in units of e2/h as a function
of V and VZ for the phase di�erences ϕ = 0, π/2, and π (from top to bo�om). We see that
a�er the induced gap closes at VZ = Vc ≈ 2.5ESO, it now reopens again, which signals a
topological phase transition. For ϕ = 0 (top plot) and VZ > Vc a strong zero-bias peak
appears which at higher VZ splits again and starts to oscillate. �is zero-bias peak of
conductance 2e2/h as well as its spli�ing and the oscillations at higher �eld are consistent
with the formation of Majorana end states at the boundaries of the topological regimes in
the wire [Das Sarma et al., 2012; Rainis et al., 2013]. In our setup, one could in principle
expect four Majorana states in the topological phase, as indicated in the cartoon inside
the plot. �e Majorana states labeled γ2 and γ3 are however strongly coupled through the
central normal region, and thus will gap out to form a normal fermionic state. �e two
other Majorana modes (γ1 and γ4) are separated by L and both are localized on the scale of
the coherence length ξM. �is coherence length is a function of VZ and the overlap of the
two Majorana wave functions increases with increasingVZ. �is explains the spli�ing of the
zero-bias peak into two, and the oscillations are due to the oscillatory form of the Majorana
wave functions. In the case the two superconductors have opposite phases (ϕ = π , bo�om
plot) the situation is di�erent. �e e�ective p-wave pairing term now changes sign across
the central normal region, creating two di�erent topological phases in the two halves of
the wire (this induced p-wave superconductor falls in the BDI symmetry class). Since the
Majorana modes γ2 and γ3 now belong to di�erent phases, they cannot recombine into a
normal fermionic mode and gap out, and we thus expect to have four low-energy Majorana
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Figure 4.3: Di�erential conductance of the wire in units of e2/h for θ = 0. For this direction of
magnetic �eld, the nanowire enters a topological phase when VZ is larger than VZ,c =

√
γ 2 + µ2.

(a, le� column) Conductance as a function of V and VZ for ϕ = 0, π/2, and π . (b, right column)
Conductance as a function of V and ϕ for VZ = ESO, 5.5ESO, and 8.3ESO, indicated by the yellow
circle, red star and purple square in the le� column.

modes in the system [San-Jose et al., 2012; Cayao et al., 2015] (1), which will couple and split
due to the �nite size of the wire. �e pair of Majorana states γ1 and γ2 (as well as the pair
γ3 and γ4) still belong to the same topological phase. �e states are separated by a distance
of roughly L/2 and their energies will split when the two wave functions start to overlap
signi�cantly. We, indeed, see in our simulations two interlaced sets of oscillations which
start at lowerVZ than those in the top plot and have both a larger period and amplitude. All
these di�erences can be explained by the reduced separation of the overlapping Majorana

1. �is situation is very similar to the case where the e�ective spin-orbit �eld changes sign along the wire. Such
a sign change also leads to the formation of di�erent topological phases in the wire and results in a pair of
low-energy Majorana modes across the phase boundary[Ojanen, 2013]
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Figure 4.4: �e di�erential conductivity of the wire in units of e2/h as a function ofV and position
of the normal probe lead. We have set the phase di�erence to ϕ = 0, π/2, and π (from top to bo�om),
the Zeeman energy to VZ = 5.5ESO, and the coupling strength to the lead to γW = ESO.

states. �e middle plot (ϕ = π/2) shows an intermediate situation where the two central
modes γ2 and γ3 are still coupled, but the coupling is not strong enough to push their
energies outside of the induced gap.

In Fig. 4.3(b) we plot the di�erential conductance as a function of V and the phase
di�erence ϕ, for three di�erent Zeeman �elds: VZ = ESO (before the closing of the gap) and
VZ = 5.5ESO and 8.3ESO (a�er the reopening of the gap), indicated by the red lines in the
top le� plot. In contrast to the topologically trivial case shown in Fig. 4.2(b), the low-energy
conductance peaks now show a distinctive dependence on the phase di�erence. In the
lower two plots we see how the peak due to the lowest excited state moves towards zero
energy and increases in intensity when the phase di�erence goes from 0 to π . �is is the
gapped fermionic mode formed by the two central Majorana states gradually developing
into two uncoupled low-energy Majorana modes with signi�cant weight at the ends of the
wire, cf. the spectra of Andreev bound states presented in Refs. San-Jose et al. [2012, 2014];
Cayao et al. [2015].

�is picture is supported by plo�ing the local di�erential conductivity (where we vary
the position of the probe lead along the wire, encoded in the matrixW ), which maps out the
local (tunneling) density of states in the wire. We show the result in Fig. 4.4 forVZ = 5.5ESO
and three di�erent phase di�erences, ϕ = 0, π/2, and π . �e lowest excited state indeed
develops from a bulk state with energy ∼ ESO at ϕ = 0 to a low-energy state localized at
the boundaries of the topological regimes at ϕ = π . �is behavior is generally seen for all
values of Zeeman �elds in the topologically non-trivial phase.
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�e plots presented in Fig. 4.3 are the main results of the numerical work. �ey illustrate
how the low-energy Majorana modes should manifest themselves as strong peaks in the
di�erential conductance with a distinctive dependence on the phase di�erence ϕ, which
is absent in the trivial case, see Fig. 4.2(b). �e main feature that can be discerned is the
gradual gapping out of the two central Majorana modes when ϕ is changed from π to 0.
Below, in Sec. 4.3, we will investigate the phase-dependence of the low-energy part of the
spectrum in more detail and present a simple model to analytically understand the level
structure as a function of ϕ.

Unequal length of superconductors

However, before we move on to present our low-energy model, we will �rst investigate
how deviations from the idealized system pictured in Fig. 4.1 would a�ect the conductance
spectrum. Firstly, in an experimental setup it is unlikely that the two superconductors
will be of exactly the same length. In Fig. 4.5(a,b) we show the di�erential conductance
as a function of V and VZ for L1 > L2 and L1 < L2 respectively. We see that when the two
superconductors are of di�erent lengths, the general structure can still be similar to that of
Fig. 4.3(a, bo�om plot), but now anti-crossings arise between some of the low-energy modes.
In Fig. 4.5(a) where L1 > L2 we see that the “inner” modes show a higher conductance than
the “outer” ones, and we see the opposite in Fig. 4.5(b) where L1 < L2. �e tunneling lead
is connected to the le� end of the wire where it probes the local density of states. �is
signi�es that the inner modes are localized mainly in the longer superconducting part of
the wire and the outer modes mainly in the shorter part.

Dependence on potential in normal region

Another ingredient in an experimental setup could be a tunable potential barrier in the
central normal region. We add this complication to our model as a constant potential of
height Vm on all la�ice sites where Σ = 0. Raising this barrier can deplete the wire in the
normal region and gradually reduce the overlap of the two central Majorana modes. As the
barrier becomes high enough this e�ectively cuts the wire into two uncoupled sections. In
Fig. 4.5(c,d) we show the conductance spectrum as a function of Vm , again for L1 > L2 and
L1 < L2 respectively, and for two phase di�erences ϕ = 0 and π . We see that the two central
Majorana modes that are gapped out at Vm = 0 and ϕ = 0 (top plots) indeed move towards
zero energy when the barrier is increased, due to their suppressed overlap. �ey hybridize
with the original low-energy Majorana mode localized at the end of their section of the
wire. At the right end of the plots in Fig. 4.5(c,d) the wire is e�ectively cut in two by the
high barrier in the middle and the spli�ing of the two Majorana modes in the le� section
depends on both the length of the section and the Zeeman �eld (the shorter section will in
general show a larger spli�ing due to a larger overlap between the MBSs). At ϕ = π the
two central modes are always uncoupled and the dependence of the conductance spectrum
onVm is less pronounced (bo�om plots). SinceVm could be easily tuned by adding an extra
gate electrode to the sample, investigating the barrier- and phase-dependent conductance
spectrum (such as in Fig. 4.5) could be used as an alternative direction in the search for
signatures of Majorana physics in the wire.

�e work presented in the rest of this section is not part of the work presented in
[Hansen et al., 2016], but is included for completeness. In Fig. 4.5 (c), it is shown how the
di�erential conductance depends on the potential in the middle region, but only for positive
potential, i.e. when the potential creates a barrier. In experiments, it might not be possible
to control the potential in this region with a nearby gate or control is limited. It is therefore
also relevant to consider the case where Vm is negative and the normal region behaves as a
potential well between the two superconducting regions.
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Figure 4.5: Di�erential conductance in units of e2/h for the case that L1 , L2. We took θ = 0 and
ϕ = π , and show dI/dV as a function of V and VZ (a,b) and of V and the potential of the central
normal region Vm (c,d). In (a,c) we have set L1 = 825 nm and L2 = 525 nm and in (b,d) we took the
opposite, L1 = 525 nm and L2 = 825 nm. In (a,b) we did not include an extra potential o�set in the
central region, Vm = 0, and in (c,d) we �xed VZ = 5.5ESO, as indicated by the red lines in the top
plots.
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Figure 4.6: (a-c) Di�erential conductance in units of e2/h as a function of bias voltage V and
potential height in the normal region Vm for three di�erent phase di�erences ϕ = {0, 0.5, 1}π . (d-g)
Di�erential conductance in units of e2/h as a function of bias voltage V and phase di�erence ϕ for
four di�erent potential values Vm = {−5,−10,−25,−35}ESO, indicated by the red star, yellow circle,
purple square, and green pentagon in (a-c) . �is is for a symmetric setup L1 = L2 = 675 nm and
�xed VZ = 6ESO and with γW = 48ESO.

In Figs. 4.6(a-c) we show the di�erential conductance as a function of source-drain bias
and potential in the normal region, for di�erent phase di�erences ϕ = {0, 0.5, 1}π . Note
this is for a symmetric setup, L1 = L2 = 675 nm, and we only show the positive part of the
spectrum, but the negative part is the same, just mirrored in the x-axis.

For ϕ = 0, shown in Fig. (a), we see a di�erential conductance peak at high bias move
down to low bias and up again repeatedly as the potentialVm is lowered while the Majorana
ZBP is not a�ected much by this. At phase di�erence ϕ = 1

2π , as shown in Fig. (b), the peak
does not go all the way to the gap at high bias, but rather moves between close to zero and
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half way up to the gap. At Φ = π , as shown in Fig. (c), there are two strong di�erential
conductance peaks at low bias associated with the four MBSs in the system which oscillate
in a seemingly unsystematic way as Vm is lowered.

Interestingly, lowering the potential Vm in the �rst two cases does not seem to e�ect
the overlap of the two MBSs at the end of the wire, as the ZBPs in Figs. (a) and (b) are
almost unchanged. Only when there are four MBSs, at ϕ = π , is their overlap sensitive to
changing Vm , as seen in the Fig. (c).

In order to illuminate how these three plots are connected, we compute the di�erential
conductance as a function of bias voltage V and phase di�erence ϕ for di�erent values of
Vm , as shown in Figs. (d-g). �e four chosen values of the potential Vm = {5, 10, 25, 35}ESO
are indicated by the red star, yellow circle, purple square, and green pentagon in Figs. (a-c).
We see that for certain values of Vm , there are no di�erential conductance peaks moving
down to low bias from the gap. �is happens when the second lowest state is already close
to zero energy, around potential values Vm = {−5,−25} in this case.

It is therefore important to have some ability to tune the potential in the normal region
in order to ensure that it is not at a value where the di�erential conductance show li�le
dependence on the phase di�erence.

Rotating the magnetic �eld

Another aspect of this setup that is relevant to consider is the e�ect of rotating the magnetic
�eld. In the N-SNS setup under consideration, we propose to control the phase di�erence
between the two superconductors by threading a magnetic �ux through a superconducting
loop that connects them. �is superconducting loop will most likely be in plane with the
nanowire, such that there is no �ux through the loop when the magnetic �eld is applied
along the nanowire. Let ~v⊥−loop be the normal vector to the plane of the superconducting
loop for easy reference. In order to thread a �ux through the loop, the magnetic �eld can
be rotated towards ~v⊥−loop. If this rotation is perpendicular to the spin-orbit �eld, it will
not cause any change in the energy spectrum. However, the direction of the spin-orbit
�eld may not be known and it will most likely not be perpendicular to both the nanowire
and ~v⊥−loop. A rotation of the magnetic �eld from the direction parallel to the nanowire
towards ~v⊥−loop will therefore in general result in a larger component of the magnetic
�eld pointing along the spin-�eld. If this component becomes too large, the topologically
non-trivial phase will be destroyed.

We consider the worst case scenario where the spin-orbit �eld is parallel to ~v⊥−loop, so
the magnetic �eld is rotated directly towards the spin-orbit �eld. In Fig. 4.7, we plot the
di�erential conductance as a function of bias voltage V and the angle of the magnetic �eld
θ measured from the direction of the nanowire towards the spin-orbit vector for di�erent
Zeeman �eld strengths. At small Zeeman �elds close to the phase transition, the �eld can
be rotated to a larger angle before the topological gap is closed, while at higher �elds the
closing happens at a smaller angle and the spectrum changes more rapidly around θ = 0◦.
�ere is therefore a trade-o� between either increasing the magnetic �eld where it requires
a smaller rotation of the �eld to generate a �ux through the loop, but the spectrum is more
sensitive to rotations, or maintaining lower �elds where a larger rotation is required to
generate the �ux, but the spectrum is less sensitive.

In order to get an estimate of how many magnetic �ux quanta can be threaded through
the loop by rotating the magnetic �eld in a range where the spectrum is not a�ected too
much, we consider some parameters comparable to what is observed in experiments. �e
zero bias peaks are observed to appear at magnetic �elds in the range of 0.25−2.5T [Mourik
et al., 2012; Albrecht et al., 2017; Nichele et al., 2017; O’Farrell et al., 2018]. We take a magnetic
�eld of |B| = 0.5T and a superconducting loop of area A = 0.25µm2 to get a conservative
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Figure 4.7: Di�erential conductance in units of e2/h as a function of bias voltage V and either
Zeeman �eld VZ (a-c) or angle θ (d-g). In (a-c) plots are shown of three di�erent angles θ =
{0◦, 5◦, 10◦}. In (d-g) plots are shown of four di�erent Zeeman �eldsVZ = {3, 4, 5, 7}ESO indicated by
the green pentagon, purple square, yellow circle, and red star in (a-c). �is is for a symmetric setup
L1 = L2 = 675 nm and �xed ϕ = 0 and with γW = 48ESO.

estimate. �e �ux through the loop is

Φ(θ ) = A|B| sin(θ ) (4.8)

For these parameters, rotations of 2.5◦ and 5◦ yield magnetic �uxes of Φ(2.5◦) ≈ 2.7Φ0
and Φ(5◦) ≈ 5.3Φ0 respectively through the superconducting loop. It should therefore
be possible to tune the phase di�erence ϕ over a large enough range in this manner for
systems with parameters comparable to what we have considered in this chapter.

4.3 Low-energy model

As presented in Sec. 4.2, our numerical calculations produced low-energy peaks in the
di�erential conductance of a topological N-SNS junction and we showed that these peaks
can be associated with states living on the boundaries between topologically trivial and
non-trivial regions, all consistent with the interpretation of these states as being Majorana
bound states. In this section we will provide further support for this picture by investigating
a one-dimensional spinless p-wave superconductor with a phase discontinuity. We develop
an e�ective model to describe the low-energy physics of this system and we show how
it produces up to four Majorana bound states (at the ends of the system and at the phase
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discontinuity). We then map the parameters in the p-wave Hamiltonian to those in the
nanowire Hamiltonian (4.1) and show how this simple toy model produces qualitatively the
same phase-dependent features as those found from our numerical simulations in Sec. 4.2.

We thus consider the one-dimensional p-wave superconductor that we discussed in
Sec. 2.2 and describe with the Hamiltonian Hp =

∫
dzψ† (z)Hpψ (z), where we use Nambu

spinors in particle-hole spaceψ (z) = [ψ (z),ψ † (z)]T . Now because the phase of the p-wave
pairing potential has a spatial dependence, we have to write the Hamiltonian in a more
general form as [Bernevig, 2013]

Hp = *
,

−
}2∂2

z
2m − µ − i

2 {∆p (z), ∂z }

− i
2 {∆

∗
p (z), ∂z }

}2∂2
z

2m + µ
+
-
, (4.9)

where the pairing potential is position-dependent,

∆p (z) =




∆pe
−iϕ/2 for z < 0,

∆p for z = 0,
∆pe

iϕ/2 for z > 0.
(4.10)

�is Hamiltonian reduces to the form presented in Sec. 2.2 for ϕ = 0. �e superconductor
is assumed to be of length L and the center of the wire corresponds to z = 0, see Fig. 4.8(a).
As sketched in Fig. 4.8(b), the phase of the superconducting pairing potential ∆p (z) jumps
from −ϕ/2 to ϕ/2 at z = 0. As shown in Sec. 2.2, the p-wave superconductor is in the
topologically non-trivial phase for µ > 0, which is the only case we will consider in this
section.

We expect this model to describe a situation similar to the one investigated in Sec. 4.2:
For ϕ = 0, the wire should have two Majorana bound states, one at each end, with an
exponentially small energy spli�ing δϵ ∝ e−L/lc [Das Sarma et al., 2012], where lc is the
coherence length of the superconductor. For ϕ → π we expect two additional Majorana
states to form close to the phase discontinuity at z = 0. We will now analyze the p-wave
Hamiltonian (4.9) and try to derive an e�ective low-energy model to describe the physics
of the four Majorana levels.

We try to solve the Schrödinger equation

(Hp − E)ψ (z) = 0, (4.11)

using forψ (z) the Ansatz

ψ (z) =
∑
n

ecnz
(
un
vn

)
. (4.12)

�is yields four solutions for (4.11) with

cn = ±
1
ξ

√
1
2 − µ̃ ± i

√
µ̃ − Ẽ2 − 1

4 , (4.13)

where we used the coherence length ξ = }2/2m∆p and introduced the dimensionless
Ẽ = ξE/∆p and µ̃ = ξ µ/∆p , and we assumed that µ̃ > Ẽ2 + 1

4 . In fact, we will take µ̃ � 1
which is deep in the topological regime and allows for several convenient simpli�cations.
With (4.13) we �nd

v±n = i
c̃2
n + Ẽ + µ̃

c̃ne±iϕ/2 u±n , (4.14)
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Figure 4.8: (a) Sketch of a one-dimensional p-wave superconductor centered around z = 0. We
expect Majorana bound states to form at the ends of the wire and close to the phase jump at z = 0.
(b) �e phase of the pairing potential ∆p (z) as a function of z. (c)

where the + applies to the right part of the wire, where z > 0, and the − to the le� part,
z < 0. We also used a normalized c̃n = ξcn .

We expect the bound states to be localized close to z = ±L/2 and z = 0 (depending on
ϕ). In principle one should thus allow all four solutions for cn in both the le� and right part
of the wire, and then �nd the explicit wave functions and energies from imposing the right
boundary conditions and matching the solutions at z = 0.

Since we cannot solve this problem analytically, we construct approximate solutions
by separating the problem into two parts. First we focus only on the bound states around
z = 0, and we thus assume the wire to be in�nitely long. Now we can only have decaying
solutions for increasing |z |, which means that for z > 0 only the two cn with Re cn < 0 are
allowed and for z < 0 only the two with Re cn > 0. We then proceed as follows: (i) We
match the wave functions at z = 0. (ii) Since the derivative can be discontinuous due to the
δ -function resulting from the term ∂z∆p (z) in the Hamiltonian, we impose

lim
η→0

∫ η

−η
dz (Hp − E)ψ (z) = 0. (4.15)

(iii) We require normalized solutions,
∫
dz |ψ (z) |2 = 1. �is all together allows us to �nd

explicit solutions for the eigenstates and eigenenergies for the two lowest levels. We make
use of the assumption µ̃ � 1, and a�er a π/2-rotation along τx in particle-hole space we
can �nally write the Hamiltonian for this 2 × 2 subspace as

H23 =
∆p

√
µ̃

ξ
cos(ϕ2 )τy , (4.16)

and �nd the wave functions

ψ2 =

√
| sin ϕ

2 |

2 e
−

1
2ξ |z sin ϕ

2 | cos
(√

µ̃
ξ z

) (
i
−i

)
, (4.17)
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ψ3 =

√
| sin ϕ

2 |

2 e
−

1
2ξ |z sin ϕ

2 | sin
(√

µ̃
ξ z

) (
i
−i

)
, (4.18)

cf. Ref. [Kwon et al., 2003]. �ese two wave functions oscillate with period ξ/
√
µ̃ and

decay exponentially on a length scale 2ξ/| sin ϕ
2 |. �e prefactor ( 1

2 | sin ϕ
2 |)

1/2 follows from
normalization of the wave functions. We see that for ϕ = π the two states are strongly
localized around z = 0 and their spli�ing is zero, whereas for ϕ → 0 the localization length
diverges, their spli�ing becomes maximal, and the wave functions look more like bulk
modes. �is all is in agreement with the picture we presented in Sec. 4.1. In Fig. 4.8(c) we
sketch the z-dependence of the two wave functions for ϕ = π and µ̃ = 20, showing the
prefactor of the spinor [i,−i]T (blue and red curves in the central part of the plot).

We now turn to the bound states at the ends of the wire, at z = ±L/2. As an ap-
proximation, we ignore the phase jump at z = 0: Terms in the wave function that decay
for increasing z live almost entirely in the le� part of the wire, and we assume that for
these terms Eq. (4.14) applies with a minus sign for the whole extent of the wire, i.e. these
terms are constructed taking ∆p (z) = ∆pe

−iϕ/2 throughout the wire. Similarly, we set
∆p (z) = ∆pe

iϕ/2 everywhere for all terms decaying with decreasing z. Using the boundary
conditions ψ (±L/2) = 0 and the normalization constraint

∫
dz |ψ (z) |2 = 1 we can again

arrive at analytic expressions for the eigenstates and eigenenergies. In the limit of µ̃ � 1
and a�er an appropriate rotation in particle-hole space, we �nd for the two lowest levels
the Hamiltonian

H14 = −2
∆p

√
µ̃

ξ
cos(ϕ2 ) sin

(√
µ̃
ξ L

)
e
−
L

2ξ τy , (4.19)

and the wave functions

ψ1 =
e
−

1
2ξ (z+L/2)

√
2

sin
(√

µ̃
ξ [z + L

2 ]
) (

eiπ /4−iϕ/4

e−iπ /4+iϕ/4

)
, (4.20)

ψ4 =
e

1
2ξ (z−L/2)

√
2

sin
(√

µ̃
ξ [z − L

2 ]
) (

e−iπ /4+iϕ/4

eiπ /4−iϕ/4

)
. (4.21)

�ese two wave functions oscillate with the same period ξ/
√
µ̃ as ψ2,3 found above, and

always decay exponentially on a length scale ξ . �e spli�ing between the states vanishes
for ϕ = π and is maximal for ϕ = 0, similar to the spli�ing between the central two states.
However, sinceψ1,4 are always localized at the ends of the wire and never acquire a bulk
character, their maximal spli�ing is reduced with a factor e−L/2ξ . �e black curves localized
at z = ±L/2 in Fig. 4.8(c) show the typical z-dependence of these solutions.

To complete our e�ective low-energy model, we have to include the coupling between
the end states ψ1,4 and the central states ψ2,3. To that end we consider the two halves of
the wire separately assuming that the main contribution to this overlap comes from the
regions close to z = ±L/4. �e approximate wave functions derived above cannot be used
to calculate the matrix elements directly (all leading-order terms in µ̃ cancel), and we have
to infer the spli�ing between the end states and the central states from the similarity of
their wave functions.

We focus here on the matrix element betweenψ1 andψ3, all other elements follow from
similar reasoning. We notice thatψ3 andψ4 have a very similar structure, the di�erences
being: (i) a renormalized ξ in the exponent in ψ3, (ii) a di�erent, ϕ-dependent prefactor
in ψ3, and (iii) a di�erent orientation in particle-hole space. If we can understand the
resulting di�erences in the matrix element between the two states, we can thus modify H14
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to describe the coupling betweenψ1 andψ3. �e spinor structure ofψ1 andψ3 together with
the structure of the Hamiltonian guarantee that the matrix element has to be proportional
to (cos ϕ

4 + sin ϕ
4 ). �is factor replaces the factor cos ϕ

2 in (4.19), which results in the same
way from the spinor structure ofψ1 andψ4. We assume that the renormalization of ξ inψ3

mainly results in a di�erent exponential suppression: e−L/2ξ → e−L(1+ | sin ϕ
2 |)/8ξ , where we

used that the length of the segment we consider is now L/2. Including the extra prefactor
| sin ϕ

2 |
1/2, we thus infer the 2 × 2 coupling Hamiltonian

H13 = − 2
∆p

√
µ̃

ξ
(cos ϕ4 + sin ϕ4 )

√
| sin ϕ

2 | sin
(√

µ̃
2ξ L

)
e
−
L
8ξ (1+ | sin ϕ

2 |)τy . (4.22)

Exactly the same reasoning yields explicit expressions for the remaining seven matrix
elements, and we �nally arrive at the approximate low-energy Hamiltonian (cf. the low-
energy Hamiltonian inferred from numerical calculations in the supplementary material in
[Chiu et al., 2015])

HM = 2
∆p

√
µ̃

ξ

*.........
,

0 i fc i fs i cos(ϕ2 ) sin
(√

µ̃
ξ L

)
e−L/2ξ

−i fc 0 − i
2 cos(ϕ2 ) i fc

−i fs
i
2 cos(ϕ2 ) 0 −i fs

−i cos(ϕ2 ) sin
(√

µ̃
ξ L

)
e−L/2ξ −i fc i fs 0

+/////////
-

,

(4.23)

where we used the functions

fc = (cos ϕ
4 + sin ϕ

4 )

√
| sin ϕ

2 | cos
(√

µ̃
2ξ L

)
e
−
L
8ξ (1+ | sin ϕ

2 |), (4.24)

fs = (cos ϕ
4 + sin ϕ

4 )

√
| sin ϕ

2 | sin
(√

µ̃
2ξ L

)
e
−
L
8ξ (1+ | sin ϕ

2 |) . (4.25)

We would now like to connect this e�ective low-energy model for the p-wave Hamilto-
nian (4.9) to the results presented in Sec. 4.2, i.e. we would like to express the parameters√
µ̃ and ξ in terms of the parameters of the nanowire Hamiltonian (4.1). Using the result

for ϕ = 0 and either small αR or ∆ind Das Sarma et al. [2012], we can identify

√
µ̃

ξ
≡ k∗F =

√
2m∗
}

√√√√
µ +

m∗α2
R

}2 +

√√
*
,
µ +

m∗α2
R

}2
+
-

2

+V 2
Z − ∆2

ind − µ
2, (4.26)

ξ−1 =
m∗

}2
αR∆ind√(

µ +
m∗α 2

R
}2

)2
+V 2

Z − ∆2
ind − µ

2

, (4.27)

where ∆ind is the induced pairing potential in the wire, in this section for simplicity assumed
to be constant. �is yields for the energy scale 2∆p

√
µ̃/ξ = }2k∗F/mξ , which is consistent

with the results of Das Sarma et al. [2012].
In Fig. 4.9 we plot the spectrum of HM, using µ = 0 and ∆ind = 4ESO and L = 20lSO

where we de�ne the spin-orbit length as lSO = }
2/mαR. Fig. 4.9(a) shows the energy levels

as a function of VZ for ϕ = 0 (top plot) and ϕ = π (bo�om plot), to be compared with
the top and bo�om plots of Fig. 4.3(a). We see that for ϕ = 0 the two central states are
again gapped out, their spli�ing being ∼ }2k∗F/mξ . �e spli�ing of the two remaining
low-energy states is suppressed by a factor e−L/2ξ and shows oscillations with a period of
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Figure 4.9: �e spectrum of HM for µ = 0, ∆ind = 4ESO, and L = 20lSO. (a) Level structure as a
function of VZ for ϕ = 0 (top) and ϕ = π (bo�om). (b) Spectrum as a function of ϕ for VZ = 8.8ESO
(top) and VZ = 9.25ESO (bo�om), as indicated by the red lines in (a).

k∗F . At ϕ = π the coupling between ψ2 and ψ3 vanishes, and all energies are suppressed
by a factor e−L/4ξ . In Fig. 4.9(b) we plot the spectrum as a function of ϕ, for VZ = 8.8ESO
(top plot) and VZ = 9.25ESO (bo�om plot), to be compared with the two lower two plots
of Fig. 4.3(b). We see the same distinctive phase-dependence as in our numerical results:
When the phase di�erence goes from 0 to π , the gapped fermionic mode formed by the
two central Majorana statesψ2 andψ3 gradually develops into two low-energy Majorana
modes that are weakly coupled toψ1 andψ4. �e slight bending of the levels close to ϕ = 0
and ϕ = 2π , which is absent in the numerical results presented in Fig. 4.3, is a consequence
of including only four levels in the low-energy description: In the “full” numerical model
of Sec. 4.2, two of the four low-energy states in fact merge with the above-gap states when
ϕ approaches a multiple of 2π , and therefore we should not expect to �nd their correct
energies with a low-energy model that does not include these above-gap states.

Finally, we only mention that it is straightforward to modify the Hamiltonian (4.23) in
order to describe the case where the lengths of the two parts of the wire are di�erent. �e
resulting spectrum (not shown here) indeed resembles the low-energy part of Fig. 4.5(a,b),
reproducing the anti-crossings observed in the �gure.

4.4 Summary

In this chapter, we investigated the phase-dependent conductance spectrum of a topological
N-SNS junction in a semiconducting nanowire. Creating such a system is feasible with
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the current state of experimental techniques, and we showed that it should in principle
allow us to determine whether or not a measured low-bias peak in the di�erential conduc-
tance can be associated with non-local fermionic states formed by MBSs at the topological
phase boundaries inside the wire. We presented numerical calculations of the conductance
spectrum and indicated the phase-dependent features that could serve as a distinguishing
signature of the formation of MBSs at the ends of the wire. We supported our interpretation
with a simple low-energy model based on a one-dimensional spinless p-wave superconduc-
tor with a phase discontinuity. �is toy Hamiltonian reproduced all important qualitative
features of the numerical results and provides insight into the structure of the “Majorana
subspace” including the gradual gapping out of the central two Majorana states when the
phase di�erence is reduced to zero.
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Majorana Bound States in a
Coupled �antum-Dot

Hybrid-Nanowire System

“ �ere are two possible outcomes: if the result con�rms the hypothesis, then
you’ve made a measurement. If the result is contrary to the hypothesis, then
you’ve made a discovery

Enrico Fermi

�is chapter is based on work presented in [Deng et al., 2016] and the corresponding
supplementary material.

One of the simplest setups for performing electron tunneling spectroscopy experiments
on SC-SM nanowires is where the two ends of the nanowire are contacted by normal leads
and with a single tunnel barrier at one end. Electrical gates of di�erent sizes are deposited
near the nanowire and used to change the electrostatic potential in di�erent parts of the
nanowire. One or two smaller gates at the end of the nanowire are used to create the tunnel
barrier in a small segment of the nanowire close to where one of the leads is contacted.
A voltage bias applied between the two contacts generates a current that may be used
to probe quantum states in the nanowire. �e fabrication of these nanowire devices is
however not a fully controlled process, which occasionally results in the formation of a
quantum dot in the tunnel barrier region. An example of such a device is shown in Fig. 5.1.
�e presence of such a quantum dot will inevitably in�uence the electron transport from
the lead into the nanowire. It is therefore important to understand this in�uence when the
goal is to probe other quantum states, such as the elusive MBS, that may also exist in the
nanowire under the right circumstances.

In this chapter, we will present a theoretical model of a SC-SM nanowire where a small
segment at the end is not coupled to the superconductor. In this normal segment, the
potential well and the potential barrier emulate a quantum dot coupled to the end of a
SC-SM nanowire. �e model was developed as part of the work presented in [Deng et al.,
2016] and we will discuss how it was used to interpret the experimental data.

In the experiments, the energy spectrum of a grounded SC-SM nanowire coupled to
a quantum dot at the end is investigated by ETS through the quantum dot. �e system

57
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Figure 5.1: Scanning electron micrograph of device 1 in [Deng et al., 2016], with false color repre-
senting di�erent materials. �e gates marked with voltage Vд1 are used to create a tunnel barrier
close to the lead with bias voltage Vsd, while those marked with Vд2 and Vд3 are used to tune the
electrostatic potential in the nanowire. �e current A is measured as a response to changing gate
voltages, magnetic �eld, and voltage bias Vsd between the two leads, as a way of characterizing the
quantum states in the SC-SM nanowire.

displays a rich spectrum of states below the superconducting gap and it is demonstrated
that the electrostatic potential of the nanowire and the dot can be tuned separately. �e
evolution of the subgap spectrum is explored as a function of the applied magnetic �eld
and gate voltages in cases where dot levels are on and o� resonance with the Fermi levels
of the nanowire. �e conductance spectrum exhibits a ZBP in a regime that is compatible
with the presence of MBSs. Bringing a dot level into resonance with the MBS ZBP leads to a
spli�ing of the ZBP and an anti-crossing between the split ZBP and the dot level. Numerical
simulations of the theoretical model are able to qualitatively reproduce the experimental
data. �ese and further simulations are discussed in order to interpret and understand the
hybridization between the MBS in the nanowire and the dot level.

In subsequent theoretical work by Prada et al. [2017] and Clarke [2017], a similar model
is used to study the hybridization of the dot levels and the MBS in more detail and it is
proposed that a quantum dot can be used as a spectroscopic tool to quantify the degree of
non-locality of MBSs in the nanowire. In experiments reported by [Deng et al., 2017], the
observed MBS ZBP signatures are analyzed using the model of Prada et al. [2017]. A high
degree of non-locality is found which is consistent with the interpretation of topological
MBSs. We �nd similar features in our model, but will not go into a detailed comparison.

However, the presence of a dot at the end of the SC-SM nanowire may not only be a
good thing with respect to identifying ZPB in conductance as a signature of topological
MBS. In the theoretical work by Liu et al. [2017b], it is shown that strong hybridization
between the nanowire and dot may lead to MBS-like ZBP features in conductance that
are due to trivial ABSs. �is happens in the regime of a very large chemical potential
where localized ABSs with energies below the induced superconducting gap form at the
ends of the nanowire. �e non-superconducting segment at the end of the wire leads
to the hybridization between these trivial ABSs, which in certain cases might result in
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MBS-like ZBP features. In a similar theoretical model where the normal section constitutes
an extended tunnel barrier [Moore et al., 2018b], it is found that this trivial ABS may give
rise to a persistent ZBP which is seemingly quantized at 2e2/h. Whether or not these
models describe the experimental situation is debatable, and it is therefore important to
develop methods for experimentally distinguishing these trivial ABSs from topological
MBSs. �is is however not the subject of the work presented in this chapter, so we will
postpone this discussion until a later point.

5.1 Dot-nanowire model

We consider the setup of a SC-SM nanowire that is coupled to a lead through a tunnel
barrier at the le� end, as schematically pictured in Fig. 5.2 (a), though the lead and tunnel
barrier are not considered as a part of the nanowire. �e nanowire consists of three parts:
a dot, a potential barrier, and a segment coupled to a bulk s-wave superconductor. �e
dot is the �rst segment from the le� of length Ld , while the potential barrier is the next
segment of length Lb . �e right segment covered by the bulk superconductor is of length L
and superconductivity is proximity induced in this part. Even though all three segments
are part of the nanowire we will for the sake of easy reference refer to the right part as
the nanowire. �e potential pro�le throughout the whole nanowire is a stepwise changing
pro�le, as shown in Fig. 5.2 (b), where the potential height in each segment can be tuned
separately.

In order to obtain a picture of the local density of states throughout the wire, we model
the connected tunneling lead as a movable tunneling probe that can be connected to any
point along the nanowire, as shown in Fig. 5.2 (c).

�e system will be described using the model introduced in Sec. 2.4, but with spatially
dependent potentials. We will brie�y recap the equations we need to describe the model
and de�ne the potentials. �e Green’s function of the electrons and holes in the nanowire
is

GR (z, z ′;ω) =


1
ω − HNW − ΣR

SC (ω) + i0+
z,z′
, (5.1)

with the position dependent self-energy

ΣR
SC (z, z

′;ω) = γ (z) −ω + ∆(B)τx√
|∆(B) |2 − (ω + i0+)2

δz,z′, (5.2)

where the superconducting gap of the parent superconductor ∆(B) depends on the applied
magnetic �eld in the manner

∆(B) = ∆(0)

1 −

(
B

Bc

)2
, (5.3)

such that the gap closes at B = Bc . �e coupling between the nanowire and parent
superconductor is parametrized by

γ (z) =



γ for Ld + Lb < z < Ld + Lb + L,

0 elsewhere.
(5.4)

�e BdG Hamiltonian of the nanowire is

HNW =

[
−
}2∂z
2m∗ − iαR∂zσy +V (z)

]
τz +VZσz , (5.5)
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Figure 5.2: (a) Schematic drawing of the dot-nanowire setup. �e nanowire is connected to a lead
(green) through a tunneling barrier (grey) at the le� end. �e �rst segment of length Ld constitutes
the quatum dot and the next segment of length Lb is the potential barrier (light red). �e last
segment of length L is partly covered by a superconducting shell and forms the topological part of
the nanowire under the right conditions. �e superconducting shell is connected to ground. (b)
Pro�le of the potential V (z) given in Eq. (5.6) without the phenomenological charging energy term
1
2EC (σz + 12). (c) As in (a), but with a movable tunneling probe.

where m∗ is the e�ective mass of the electrons, αR is the spin-orbit coupling strength,
VZ =

1
2дµBB is the Zeeman �eld induced by the magnetic �eld B pointing along the

nanowire, with the д-facter д and the Bohr magneton µB. �e potential is

V (z) =




−µd +
1
2EC (12 − σz ) for z < Ld ,

V0 for Ld ≤ z ≤ Ld + Lb ,

−µNW elsewhere,
(5.6)

so that µd is the chemical potential on the dot, V0 is the height of the barrier, and µNW
is the chemical potential on the proximitized part of the wire. Charging e�ects in the
quantum dot are accounted for phenomenologically by the term EC in V (z). �is term li�s
the Kramers degeneracy in the dot states at VZ = 0 by shi�ing the spin down state to a
higher energy. �is assumes a negative д-factor as is the case for the InAs nanowires under
consideration. �is qualitatively reproduces the results of a mean-�eld description of the
Coulomb interactions at large magnetic �eld.

Using the methods described in Chap. 3, we compute the di�erential conductance
measured by a tunnel probe connected to the system at position zprobe by

dI

dV

�����V=Vsd

=
e2

h
Tr

[
1 − reer

†
ee + rher

†

he

]
(5.7)
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where the re�ection matrix is obtained by

R(ϵ ) =
[
ree (ϵ ) reh (ϵ )
rhe (ϵ ) rhh (ϵ )

]
= 1 − 2iπW †

{ [
GR (ϵ )

]−1
+ iπWW †

}−1
W . (5.8)

For the purpose of numerical computations, the model described above is mapped to a tight
binding model with N sites. �e coupling to the tunnel probe is described by the matrix

W =
√
γW (sn ⊗ 14)

T (5.9)

where γW parametrizes the coupling strength. �e vector sn = (0, 0, ..., 0, 1, 0, ...) has a
single 1 located at the n’th entry and thereby encodes the position of the tunnel probe,
zprobe = nL/N . �e tunnel probe will in general be coupled to the le� end of the wire, i.e.
the �rst site, unless it is explicitly speci�ed otherwise or we are computing the di�erential
conductance as measured at points along the wire.

Model parameters

Figure 5.3: Experimental data of di�erential conductance as a function of magnetic �eld B and
voltage bias Vsd. Data is from experiments presented in Fig. 3G in [Deng et al., 2016] and a scanning
electron micrograph of the device is shown in Fig. 5.4. �e distance to the �rst excited state and the
gap of the parent superconductor at the approximate point of the topological phase transition are
indicated by ϵ1 and ∆′, respectively.

Some model parameters can be read o� from the experimental data, such as the parent
superconductor gap ∆(B) and the critical magnetic �eld where the parent superconducting
gap closes Bc . Others can be estimated by the methods discussed in Sec. 2.4 and by com-
paring with similar experiments. In Fig. 5.3, we show a plot of the di�erential conductance
as a function of magnetic �eld and voltage bias measured in the device we are modeling by
Deng et al. [2016]. By reading o� the gap of the parent superconductor ∆(0) ≈ 220µeV, and
the induced gap ∆ind ≈ 130µeV at zero magnetic �eld from the data, we can estimate the
e�ective coupling strength between the nanowire and parent superconductor γ by using
Eq. (2.72):

γ = ∆ind

√
∆ + ∆ind
∆ − ∆ind

≈ 256µeV. (5.10)

�e critical �eld where the parent superconductor gap closes is Bc ≈ 2.2T.
We can also estimate the ratio of the e�ective distance between the MBSs, L, and the

e�ective superconducting coherence length, ξ , near the topological phase transition using
Eq. (2.85),

L

ξ
≈

∆′

∆′ + γ

π∆′

ϵ1
. (5.11)
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An estimate of γ was obtained above and we are able to read o� the other parameters’
values in Fig. 5.3: �e energy distance to the �rst excited state ϵ1 ≈ 100µeV and the gap
of the parent superconductor ∆′ ≈ 180µeV around the topological phase transition. From
these parameters we obtain the estimate L

ξ ≈ 2.3.
�e model we employ assumes a clean disorder-free nanowire, but this is not the case

for real world nanowires. �e e�ective distance between MBSs, L, (to be used in the model)
may therefore di�er from the lithographic device length. If we take ξ ≈ 260nm, which was
estimated by Albrecht et al. [2016] from a �t of wire-length dependence in similar nanowires,
we obtain and e�ective length of L ≈ 600nm, which is shorter than the lithographic device
length, as seen in Fig. 5.4. Using this e�ective length we can now estimate the spin-orbit
coupling strength αR using Eq. (2.86),

αR ≈
∆′ + γ

∆′
L

π
ϵ1 ≈ 50 meV nm, (5.12)

which is rounded o� to one signi�cant digit. �e remaining parameters are chosen such
that the observed data in experiments is qualitatively reproduced or in accordance with
what is widely used to model InAs nanowires.

To recap the model parameters we are using: E�ective electron massm∗0.026me, spin-
orbit coupling strength αR = 50 meV nm, д-factor д = −18, ”Charging energy” EC = 5meV,
potential barrier height V0 = 8meV, critical magnetic �eld for parent superconductor gap
closing Bc = 2.2T, e�ective coupling strength between nanowire and parent superconductor
γ = 257µeV, gap of parent superconductor at zero magnetic �eld ∆(0) = 220µeV, length of
dot Ld = 60nm, length of barrier Lb = 12nm, and length of superconductor covered part of
the nanowire L = 528nm. �e coupling strength to the lead will di�er between plots and is
given in the �gure caption.

�e rather large д-factor we have chosen should not be viewed as the ”bare” wire
д-factor, but rather as a phenomenological parameter, since we have not taken д-factor
renormalization due to coupling to the parent superconductor into consideration. Obtaining
an estimate of the д-factor by ��ing to experimental data is also made di�cult by the
�nite-size e�ect that makes it hard to read o� the critical �eld of the topological phase
transition.
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5.2 Results

In this section, we will present the results of the numerical model along with some of the
data from the experiments presented in [Deng et al., 2016]. We will present and discuss
some of the features observed in the experimental data, but refer to the article for a more
in-depth discussion of the experimental details. Several nanowire devices were used in the
experiment, but we will focus on the data from device 1 shown in Fig. 5.4.

In this device, a quantum dot was formed in the region indicated by the white bracket.
�e gates labeled with Vд1 are connected to one voltage source and the gates labeled Vд2
and Vд3 to another. Besides these gates that are used to change the potential locally in the
nanowire and quantum dot, a large back gate is used to tune the overall electron density in
the nanowire.

�e nanowire is covered by epitaxially grown Al superconductor on two of the six
facets, resulting in a proximity-induced superconducting gap in the nanowire. �e induced
gap consists of two parts: A continuum of states which start at the gap of the parent
superconductor and a discrete spectrum of Andreev bound states (ABSs) below the parent
superconductor gap.

Depending on the back gate voltage, the nanowire may be tuned between a high density
regime where there are many subgap ABSs present or a low density regime with no ABSs.
In the intermediate density regime, a single ABS moves to zero energy and stays at zero
over a range of magnetic �eld intensities. �is regime is compatible with the existence
of topological MBSs and the emergence of this ZBP is interpreted as a topological phase
transition where the ABS transforms into a MBS.

�e potential of the dot is then tuned to bring a dot level into resonance with the MBS.
As the dot level comes into resonance, the MBS acquires a non-zero energy spli�ing and
the dot level anti-cross with the MBS. �is interpretation of the experimental data was
developed in comparison with the numerical model introduced above, which simulates the
situation of a topological nanowire with MBSs.

Figure 5.4: Top down view of the scanning electron micrograph of device 1 in [Deng et al., 2016]
with false color representing di�erent materials, also shown in Fig. 5.1 from a di�erent angle. �e
white brace indicates the location of a natively formed quantum dot. �e gates marked with Vд2
and Vд3 are coupled to the same voltage source and are used to tune the electrostatic potential in
the nanowire, while the gates labeled by voltage Vд1 are used to create a tunneling barrier and tune
the potential in the quantum dot.
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5.2.1 Dot and nanowire states and their dependence on gates and magnetic �eld

First we compare with the experimental data presented in [Deng et al., 2016] Fig. 2, re-
produced in Fig. 5.5, where the di�erential conductance is measured as a function of the
applied bias voltage Vsd and either the gate controlling the electrostatic potential in the dot
Vд1 or the magnetic �eld B. �is is done at two di�erent back gate voltages, corresponding
to high density with many subgap states or low density with no subgap states. �e data
shows that a large degree of control over the quantum dot and the density in the wire is
achieved by tuning the gates.

In Fig. 5.6, we show simulations reproducing most of the features observed in the
experiment. Figs. (a-c) are in the high density regime with many subgap states and Figs. (d-
f) are in the low density regime with almost no ABSs in the gap. In the low density regime
with µNW = −1.1 meV, the nanowire stays in the topologically trivial phase for the whole
range of magnetic �elds. In the high density regime with µNW = 0.7 meV, the nanowire
becomes topologically non-trivial with the formation of a pair of MBSs at the ends of the
nanowire at the magnetic �eld where the lowest-energy state cross zero energy in Fig. (c).
In the µd -sweep plots (a, b, d, e), we see two states crossing zero energy at µd ≈ 2 meV
and 8 meV. �ese are the dot states of opposite spin where the distance between the two
crossings corresponds to the charging energy in the dot plus the Zeeman spli�ing of the
two spin states. In our model, we have chosen EC = 3.5 meV such that the two spin states
are well separated, but not so large that one of them coincides with higher energy dot
states. �e �rst and second zero energy crossing show a di�erence in peak intensity that is
also seen in the experimental data in the high density regime, but not apparent in the low
density regime.

�e Zeeman spli�ing of the dot states is visible in the experimental data in Figs. 5.5 (a)
and (d), but absent in our simulation. �is is due to the way we have implemented charging
e�ects in the dot, which gives an accurate description only when the Zeeman spli�ing of
the dot levels is larger than the superconducting gap. �is is also the regime where MBSs
exist which is of interest to us here.
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Figure 5.5: Reproduction of the experimental data presented in [Deng et al., 2016] Fig. 2. Di�erential
conductance measured as a function of the bias voltage Vsd and either gate voltage Vд1 in (a, b, d,
e) or the applied magnetic �eld B in (c, f). (a, b, c) correspond to the high density regime with
many subgap states, while (d, e, f) correspond to low density regimes with no subgap states. �e
white/black line in (a) and (b), and (d) and (e) indicate the gate voltage where (c) and (f) are taken.
(a) and (b), and (d) and (e) are taken at B = 0.5, 1 T, respectively. White arrows in (a) indicate the
Zeeman spli�ing of the dot states.

Figure 5.6: Simulated data corresponding to the experimental data shown in Fig. 5.5. Di�erential
conductance as a function of bias voltage Vsd and either dot chemical potential µd (a, b, d, e) or
magnetic �eld B (c, f). (a-c) are in the high density regime with µNW = 0.7 meV, while (d-f) are in
the low density regime with µNW = −1.1meV. �e yellow dashed line in (a) and (d) at µd = 5 meV
indicate the value of the dot chemical potential where (c) and (f) are taken. �e two yellow dashed
lines in (c) and (f) at B = 0.5, 1.55 T indicate where (a) and (b), and (d) and (e) are taken, respectively.
In all plots we have γW = 2 meV.
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In Fig. 5.7 we see the data from [Deng et al., 2016] Fig. 3. In experimental devices, gates
are positioned close to parts of the setup in order to tune the local electrostatic potential
by applying a voltage to the nearby gate. It is however o�en unavoidable that gates couple
capacitively to more than just the one part of the setup. �is is schematically shown in
Fig. 5.7(a), where the gates g1 and g2, g3 couple to both the quantum dot and the nanowire.
It is although possible to do a so-called smart sweep, where more than one gate voltage is
swept together, in order to keep the potential in one region constant. How this works can
be seen from the zero bias conductance plot shown in Fig. 5.7 (b). Zero bias conductance is
measured as a function of gate voltages Vд1 and Vд2,д3 to construct a so-called gate map.
�e high conductance lines indicated by the red arrows are dot levels and by performing
a smart sweep parallel to these lines, the potential in the dot will be kept approximately
constant while the potential in the nanowire is changed. �is smart sweep is employed
to measure the di�erential conductance as a function the nanowire potential, while the
dot potential is kept constant, as shown in Fig. 5.7 (c-f). �e data shows that the subgap
spectrum has a strong dependence on the nanowire potential. At zero magnetic �eld in
Fig. (c), the spectrum shows a single subgap state with a minimum(1) at a given gate voltage.
At a small magnetic �eld in Fig. (d), the subgap state splits due to the Zeeman �eld and the
minimum remains at the same gate voltage. At higher magnetic �elds in Figs. (e) and (f),
the subgap spectrum displays oscillating behavior as a function of gate voltage.

In Fig. 5.7 (g-i), di�erential conductance measured as a function of Vsd and magnetic
�eld is shown for di�erent gate voltages. Depending on the gate voltage, the subgap state
may show di�erent behaviors as it goes to zero energy. It may cross zero and split o� from
zero again, then at higher magnetic �elds turn around and move towards zero again. Or it
may go the zero energy and stick there as the magnetic �eld is increased. �e point where
the state goes to zero energy is around B = 1 T, but is also changed by the gate voltage.
Whether the state crosses or sticks to zero energy is seen as re�ecting the di�erence of an
ABS and a MBS. �e distinction is however not so clear cut, as an ABS evolves smoothly
into a MBS through a transition where its wavefunction changes from having a bulk form,
located throughout the nanowire, into a form localized at the ends of the wire. Even
though the MBSs are localized at opposite ends of the wire, their wavefunctions decay
exponentially into the wire. In shorter wires they have a notable overlap resulting in an
observable energy spli�ing. �is overlap is also sensitive to the potential in the wire and
changing it will result in di�erent magnetic �eld behaviors.

�e simulated data, shown in Fig. 5.8, is able to reproduce many of the features observed
in the experimental data described above. In Figs. (d-f), the nanowire enters the topological
phase around the magnetic �eld strength where the lowest-energy subgap state goes to
zero and becomes a MBS. �ere is a discrepancy between the simulation in Fig. (a) and the
experimental data in Fig. 5.7(c), where the experiment shows that the subgap state at B = 0
has a minimum at a given gate voltage and moves towards the superconducting gap away
from this point both for increasing and decreasing gate voltage. In the simulation, this
happens only as µNW is lowered and the nanowire becomes depleted, but not for raising
µNW. We have therefore chosen lower values of µNW instead of higher in Figs. (e) and (f)
in order to have a situation where the subgap state at B = 0 moves towards the gap as
seen in the experimental data in Fig. 5.7 (h) and (i). �e di�erence between the theoretical
model and experiment may be due to multiple transverse subbands being occupied in the
experiment, whereas we only have a single subband in the model. In Figs. (d-f) we also
see that the MBS oscillations are very sensitive to changing µNW. �e �eld where the state
cross zero is shi�ed and the number of visible oscillations change as µd is varied. �is also
happens for increasing µNW though it is not shown here.

1. minimum meaning minimum distance to zero bias voltage
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Figure 5.7: Reproduction of the experimental data presented in [Deng et al., 2016] Fig. 3. (a) A
schematic of device 1 with arrows indicating that both gates g1 and g2,g3 are capacitively coupled
to both the dot and the nanowire. (b) Conductance measured at zero bias and B = 0, as a function
ofVд1 andVд2,д3 (the gate map). Gate g2 and g3 are connected to the same voltage source. �e high-
conductance lines indicated by red arrows are the resonant levels in the end dot. (c-f) Di�erential
conductance at intermediate density as a function of bias voltage and a combined sweep of Vд1 and
Vд2,д3 along the red line in (b) for di�erent magnetic �elds, noted in the �gures. (g-h) Di�erential
conductance as a function of bias voltage and magnetic �eld for di�erent gate voltages of Vд2,д3
indicated by the triangle, square and circle symbols in (c-f). Arrows in (g-i) indicate the �rst excited
state with energy ϵ1.

Figure 5.8: Simulated data corresponding to the experimental data shown in Fig. 5.7. Simulated
di�erential conductance as a function of bias voltage Vsd and either nanowire chemical potential
µNW (a-c) or magnetic �eld B (d-f). (a-c) are taken at di�erent magnetic �elds as indicated by the
cyan triangle, green square and purple circle symbols. (d-f) are taken at di�erent nanowire chemical
potentials µNW as indicated by the yellow triangle, black square and red circle symbols. In all plots
we have γW = 2meV.
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5.2.2 Hybridization of dot-levels and Majorana bound states

Next we consider the situation where a level in the dot becomes resonant with the Fermi
level of the nanowire. �e data from the experiment is shown in Fig. 5.9 (a-d). �e gate map
in Fig. (a) shows how the dot and wire states depend on the gate voltages Vд1 and Vд2,д3.
�e blue and red dashed arrows indicate smart sweeps where either the dot potential or
the wire potential is approximately constant. A smart sweep is performed along the red
solid line, where a dot level crosses the Fermi level of the wire as potential in the nanowire
is approximately constant. Di�erential conductance measurements as a function of the
smart sweep gate voltage for di�erent magnetic �elds are shown in Figs. (b-c). In Fig. (b),
the dot level simply cross zero energy. In Fig. (c), there is a single subgap state present
below the induced gap. At resonance, a state moves down from the gap and anti-crosses
with the subgap state, marked by the black dashed circle. �e already present subgap state
then proceeds to cross zero energy and moves back up to the same approximate energy as
initially. In Fig. (d), a MBS initially at zero energy, splits o� from zero when the dot level
becomes resonant. �e two anti-cross and the MBS returns to zero energy, resulting in a
”diamond shaped” spli�ing pa�ern.

�e simulated data is shown in Fig. 5.9 (e-i). In Fig. (e), we see the magnetic �eld
dependence of the di�erential conductance at µNW = 0 meV. As the magnetic �eld is
increased from zero, an ABS separates from the higher energy ABSs and moves toward zero.
A MBS develops around B = 1 T and performs two small oscillations close to zero before
the bulk gap closes. �e µd dependence of the spectrum is computed at four magnetic
�elds B = 0, 0.4, 1.35, 1.8 T. �is is shown in Figs. (f-g), where Figs. (f-h) correspond to the
experimental situations shown in Figs. (b-d), respectively. B = 0 and 0.4 T are in the trivial
phase and B = 1.35 and 1.8 T are in the topological phase. �e large range of µd is chosen
to show the case of both dot spin states crossing the nanowire levels. Here we see that
there are some di�erences between the two spin states coming into resonance. In general,
the �rst state exhibits a lower peak intensity and a smaller anti-crossing compared to the
second. At B = 0 in Fig. (f), both dot levels move down from the induced gap and cross zero
in the same way. At �nite magnetic �elds in Figs. (g-i), where there is a nanowire single
state present below the induced gap, the dot levels form an anti-crossing with the subgap
state upon resonance. Depending on whether the subgap state is initially at a non-zero
or close to zero energy when the dot levels are not resonant, the subgap state displays
two di�erent behaviors when a dot level becomes resonant. If the subgap state is initially
at a non-zero energy, it will form a ”bowtie” crossing, as seen in Figs. (g) and (i). If the
subgap state is initially close to zero energy, it will split o� from zero as the dot level comes
into resonance and moves back to zero again a�er the resonance is passed, forming an
eye-like or ”diamond” shape, as seen in Fig. (h). In Fig. (h), the MBS shows a larger energy
spli�ing when the second state becomes resonant compared to the �rst. In Fig. (g), there is
an apparent asymmetry in the two anti-crossings by the �rst state, while the second state
has a more symmetric anti-crossing, but still slightly asymmetric in the opposite direction.
In Fig. (i), both zero crossings are shi�ed to the right of the center of the resonance, while
in Fig. (g), the �rst is shi�ed right and the second to the le�.

�e di�erence in peak intensity and width of the anti-crossing indicates that the two
dot spin states hybridize di�erently with the MBS, with the second state (spin down state)
being more strongly hybridized with the MBS. In Fig. (g), the nanowire is still in the trivial
regime, but the ABS is a precursor to a MBS and will have acquired some MBS character at
this point.

In a similar model considered by Prada et al. [2017], the details of the bowtie and diamond
shaped resonances are investigated as well as the di�erences between the resonances of the
two di�erent dot spin states. It was found that the MBSs at each end of the nanowire have
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di�erent spin cantings. �e MBS closest to the dot has a larger spin down component and
therefore hybridizes more strongly with the spin down dot state. �e spin canting angle
of the MBS may be extracted by comparing the size of the diamond shaped MBS spli�ing
and the width of the anti-crossings of the two di�erent dot spin levels. It is likely that the
di�erences between the two dot spin level resonances we see in our model here are due to
similar e�ects. We will however not pursue this ma�er further and instead turn our focus
towards why the MBS energy spli�ing is a�ected by the dot level resonance.
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Figure 5.9: (a-d) Reproduction of the experimental data presented in [Deng et al., 2016] Fig. 4. (a)
A gate map of the zero bias conductance as a function of gate voltages Vд1 and Vд2,д3 at B = 1.2 T
similar to Fig. 5.7 (a). Blue dashed arrows denote the dot isopotential sweeping direction, and the red
dashed arrow denotes the wire isopotential sweeping direction. (b-d) Di�erential conductance for
di�erent magnetic �elds B = 0, 0.8 and 1.2 T as a function of Vsd and smart sweep of gate voltages
along the line indicated by the solid red line in (a), where a dot level becomes resonant with the
nanowire. (e-i) Data from simulations at chemical potential µNW = 0 meV corresponding to the
intermediate density regime in the experimental data shown in (a-d). (e) Di�erential conductance
as a function of Vsd and B and with µd = 2.5 meV and γW = 2 meV. (f-i) Di�erential conductance as
a function of Vsd and µd at di�erent magnetic �eld strengths B =0, 0.4, 1.35 and 1.8 T as indicated
by the colored squares in (e) and with γW = 0.2 meV.
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Spatial pro�le of MBSs and dot level wavefunctions

�e diamond shaped spli�ing of the MBS seen in Fig. 5.9 (h) is interpreted as a hybridization
between the near-zero energy MBS and a dot level. �e MBS partly leaks into the dot,
which causes the e�ective overlap of the two end-state wavefunctions to change. In a �nite
nanowire, the actual spli�ing between the two MBSs is very sensitive to the details of their
wavefunctions. A slight change in the wavefunctions on resonance can cause a signi�cant
change to the spli�ing. In order to explore this e�ect in more detail, we will in the following
simulate a system with slightly di�erent parameters, but where the observations still apply
to the previous case.

�e parameters that have changed from the simulation above are: �e spin orbit
coupling strength αR = 20 meV nm, the height of the potential barrier V0 = 30 meV, the
length of the dot Ld = 80 nm, the length of the potential barrier Lb = 16 nm, the length of
the nanowire L = 704 nm, �e coupling to the parent superconductor γ = 560 µeV, and the
parent superconductor gap ∆(B) = 140 µeV which we will take to be independent of the
magnetic �eld in this case.

In Fig. 5.10, we investigate the spatial pro�le of the MBS wavefunction in the vicinity of
a dot level resonance by simulating the di�erential conductance measured by a tunneling
probe that is moved along the nanowire. In Fig. (a), the spectrum as a function of Zeeman
�eld is shown, where the induced gap closes at VZ ≈ 0.6 meV and the topological phase
emerges along with a MBS ZBP. �e gap reopens at higher �elds and the MBS oscillations
increase in amplitude. In Fig. (b), we show the di�erential conductance as µd is varied
in a range where the spin down dot level comes into resonance with the levels in the
nanowire, at a Zeeman �eld VZ = 1415 µeV that is well inside the topological phase and
where the MBS spli�ing is close to zero when the dot level is not resonant. As the dot
level comes into resonance, the MBS splits in a diamond-like shape, as was also shown in
Fig. 5.9 (h). In Figs. (c-e), the di�erential conductance measured by a tunnel probe moved
along the dot-barrier-nanowire setup is shown for three di�erent values of dot potential
corresponding to before, in the center of, and a�er resonance with the dot level. In the �rst
and last case, the MBSs close to zero energy are located predominantly at the ends of the
nanowire, which spans the setup from z = 96 to 800 nm. When the dot level is resonant,
there are four subgap peaks (counting both positive and negative). �ese correspond to
the hybridized dot level and the now split MBS where we see the wavefunction weight of
the MBS has leaked into the dot and the dot leaked into the nanowire. We interpret the
simultaneous shi� of the MBS wavefunction and the increased MBS energy spli�ing as the
shi� of the wavefunction causes a change in the overlap between the MBSs.
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Figure 5.10: (a) Di�erential conductance as function of Vsd and Zeeman �eld VZ measured by the
tunneling probe connected at zprobe = 96nm, right where the barrier ends and the nanowire begins.
�e induced gap closes aroundVZ ≈ 0.6 meV where a MBS is formed at zero bias. �e dashed yellow
line indicates the value of VZ where (b-e) are taken. �e gap reopens at higher �elds and the MBS
energy oscillations increase in amplitude. Other parameters are γW = 2meV, µd = 2.5meV. (b)
Di�erential conductance as a function of Vsd and µd at VZ = 1415 µeV as measured by a tunneling
probe connected at zprobe = 0 nm with coupling strength γW = 0.1 meV. In this range of µd the spin
down dot level comes into resonance with the nanowire. �e three colored squares indicate the
values of µd where (c-e) are taken. (c-e) Di�erential conductance as the tunneling probe is moved
along the dot-barrier-nanowire setup, for three di�erent values of the dot potential µd = 3.1, 3.3, and
3.5 meV corresponding to before, in the middle of, and a�er resonance with the dot level. Tunnel
coupling to the probe is γW = 0.03 meV.
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Hybridization dependence on MBSs overlap

In order to further support this interpretation, we consider cases where the MBSs have
di�erent degrees of overlap. �e overlap of the MBSs depends on the Zeeman �eld and is
smallest just a�er the topological phase transition, while it becomes larger as the Zeeman
�eld is increased, hence the increasing energy spli�ing oscillations(2). In the limit of a
large Zeeman �eld, the MBS localization length is given by ξ ≈ }2VZ

mαR∆0
[Klinovaja and Loss,

2012; Das Sarma et al., 2012], which sets the exponential decay length of the wavefunction
envelope of each MBS away from the ends of the nanowire. Although the overlap of the
two MBS wavefunctions grows with increasing Zeeman �eld, the MBSs energy spli�ing
does not grow monotonically, but rather oscillates around zero with increasing amplitude.
�is is due to the di�erent components of the two MBS wavefunctions oscillating in and
out of phase with each other. At speci�c Zeeman �elds where the components of the MBSs
wavefunctions are completely out of phase, the energy spli�ing goes to zero, even though
the wavefunctions still overlap in space. �ese points are �ne tuned and small changes
to their wavefunction will result in a non-zero energy spli�ing. �e greater the overlap,
the greater the spli�ing generated by a small change of the wavefunctions. However,
the spli�ing is still bounded by the overlap of the wavefunctions, which is exponentially
suppressed by the localization length and the distance between the MBSs. So by being able
to make this bound smaller, the need to �ne tune to zero energy spli�ing goes away.

In Fig. 5.11 we investigate the e�ect of increasing the MBS overlap. We choose four
values of Zeeman �eld where the energy spli�ing of the MBSs vanishes, indicated by the
colored squares in Fig. (a) and consider the energy spli�ing of each of them when a dot
level comes into resonance with the MBS. In Figs. (b-e), we see that larger VZ result in
a larger diamond shaped spli�ing of the MBSs when the dot level becomes resonant, in
agreement with the discussion above.

2. �e MBSs wavefunctions also depend on all other model parameters, but we focus on the dependence on
Zeeman �eld here.
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Figure 5.11: (a) Same as in Fig. 5.10(a), see details there. �e colored squares mark the values of VZ
where (b-e) are taken. (b-e) Di�erential conductance as function of Vsd and µd for the values VZ =
755, 1065, 1415 and 1830 T in the range of µd where the spin down dot level is resonant with the
nanowire. �e tunnel coupling to the lead is γW = 0.1 meV and the probe connected at zprobe = 0 nm.
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Hybridization dependence on potential barrier height

Lastly, we investigate how changing the potential barrier height a�ects the diamond shaped
spli�ing when the dot level is resonant. In Fig. 5.12 (a-d), we see the di�erential conductance
as µd is varied across the resonance with the dot spin down state for di�erent potential
barrier heights. As the height of the barrier becomes lower, the hybridization of the dot
level and the MBS becomes stronger, seen as the width of the anti-crossing between the dot
level and the MBS becomes larger. �e maximum energy spli�ing of the MBSs on resonance
also becomes larger as the barrier height becomes smaller. In the case of no barrier V0 = 0,
we see a very di�erent behavior. In Fig. (e), the spectrum for a wider range of µd is shown.
In the case of no potential barrier between the nanowire and the dot, there is nothing to
con�ne the wavefunctions in the nanowire. �e MBS wavefunction is always leaking into
the dot and is a�ected continuously as µd is changed. �e MBS energy spli�ing is mainly
around the value set by the overlap of the wavefunction, occasionally crossing zero energy
when µd reaches a value where another bound state is accommodated in the dot and the
parity of the dot-nanowire system changes parity. In the case of no potential barrier, the
notion of separating the system into a dot and a nanowire part does not really make sense
and the two should rather be viewed as a nanowire with a non-superconducting segment
at the end. Even though this situation does not seem to apply to the observed dot behavior
in the experiment above, it is relevant to consider, as it may host trivial low-energy ABS
states that give rise to MBS-like features in the di�erential conductance. We will return to
this case in Chap. 9.

Figure 5.12: Di�erential conductance as a function of Vsd and µd in a range where the dot spin
down state is resonant with the nanowire. (a-d) uses di�erent heights of the potential barrier V0 =
30, 15, 7.5 and 0 meV and Zeeman �eldsVZ = 1415, 1405, 1385 and 1300 µeV. (e) Same as (d) but for a
di�erent range of µd . �e coupling strength to the lead is γW = 0.1 meV.
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5.3 Summary

In this chapter, we have introduced a theoretical model of a quantum dot-potential barrier-
nanowire setup and discussed its ability to explain the experimental observations in [Deng
et al., 2016]. Model parameters were extracted from the experiment and the numerical
simulations showed a large degree of qualitative agreement with the experimental data.
�e observed diamond shaped energy spli�ing of the MBS which occurred when a dot
level became resonant with a non-split MBS was reproduced by the simulation. By further
studying the numerical model, it was found that the spli�ing of the MBS upon resonance
with a dot level is due to a change in the MBS wavefunction resulting in the MBS leaking
into the dot when the dot level is resonant. It was found that the size of the energy spli�ing
depends on the coupling strength between the resonant dot level and the MBS, but is
bounded by the energy spli�ing set by the overlap of the MBSs wavefunctions.
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Conductance Spectroscopy on
Majorana Wires and the
Inverse Proximity Effect

“ Not only is the Universe stranger than we think, it is stranger than we can
think.

Werner Heisenberg, Across the Frontiers

�is chapter is almost entirely a reproduction of the work presented in [Danon
et al., 2017] with minor changes in order to relate and conform to the rest of the
thesis.

As was mentioned in the introduction in Chap. 1, the pioneering experiments using
electron tunneling spectroscopy into one end of SC-SM hybrid nanowires have reported
observations that speak both in favor and against the presence of Majorana bound states
in the nanowires. Although a �eld-dependent zero-bias anomaly in the conductance was
a commonly observed phenomenon at high enough magnetic �elds [Mourik et al., 2012;
Deng et al., 2012; Das et al., 2012; Churchill et al., 2013], several other observations were
less compatible with an interpretation in terms of an emerging topological phase. �ese
“inconsistencies” included the zero-bias peak in the di�erential conductance being much
smaller than the predicted value of 2e2/h and the absence of a clear gap closing at the phase
transition.

A wave of theoretical work aimed at understanding the discrepancies followed in the
wake of the experiments. Explanations that were consistent with having Majorana-like
modes at the ends of the wire [Prada et al., 2012; Rainis et al., 2013; Mishmash et al., 2016]
as well as alternative “trivial” interpretations of the observed zero-bias features [Liu et al.,
2012; Kells et al., 2012; Lee et al., 2012] were put forward. In parallel, other “smoking-gun”
features in the conductance spectrum were identi�ed that could evidence a transition to a
topological phase, a good candidate being the spli�ing of the zero-bias peak and subsequent
characteristic oscillations of the low-energy modes as a function of magnetic �eld, due to
�nite-size e�ects [Das Sarma et al., 2012; Rainis et al., 2013].

In the years that followed, the quality of the experiments has steadily improved, mainly
driven by advances in growth and fabrication techniques [Krogstrup et al., 2015]. Today,

77
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state-of-the-art experiments [Albrecht et al., 2016; Deng et al., 2016; Gül et al., 2017] show
quite compelling evidence for the existence of Majorana modes in these hybrid nanowires,
but a few annoying discrepancies persist: (i) It is still very hard to measure a zero-bias peak
that approaches 2e2/h over a signi�cant range of magnetic �elds. (ii) In most experiments
the expected “Majorana oscillations” as a function of magnetic �eld are absent. Recent
experiments in the Coulomb-blockaded regime showed some oscillations [Albrecht et al.,
2016], but several of their characteristics do not �t current theory very well. (iii) �e
zero-bias peak is usually much broader than expected, o�en �lling most of the (quite so�)
topological gap.

Several recent theoretical works addressed these points and investigated many e�ects
in detail, including the occupation of multiple subbands in the wire, �nite temperature, the
existence of low-energy Andreev bound states in the wire [Chiu et al., 2017; Liu et al., 2017b],
electrostatic interactions between the electrons in the wire and the substrate [Domı́nguez
et al., 2017], a �nite subgap density of states in the proximitizing superconductor [Stenger
and Stanescu, 2017; Liu et al., 2017a], and the presence of interfacial tunnel barriers and
dissipation [Liu et al., 2017c]. A general trend is that the more ingredients are added to the
model the be�er the theory can be made to resemble the experimental observations.

In this chapter, we focus on one particular ingredient present in many experiments,
which has been addressed only indirectly so far. Inspired by the di�erence in behavior
of the wires in the Coulomb-blockaded regime (where Majorana-like oscillations were
observed) and in the transport regime (where the oscillations are mostly absent), we propose
that the presence of a second normal metal contact, usually connected as a drain lead to
the superconductor, is a part of the setup that should be taken seriously. Depending on
the strength of the coupling to this drain (weak in the blockaded regime, stronger in a
transport setup), it can induce a �nite subgap normal density of states in the hybrid wire, a
phenomenon known as the inverse proximity e�ect. �e bound states in the wire, including
the low-energy Majorana modes, can thus acquire a �nite life time which can be expected
to a�ect the appearance of the measured conductance spectrum. A crude way to account
for the “leakage” into the normal drain is to add an imaginary part to the electronic energies
in the superconductor, resulting in a broadening of all levels [Liu et al., 2017a; Stenger and
Stanescu, 2017; Das Sarma et al., 2016]. Although this does produce a �nite subgap density
of states in the system, it does not provide a straightforward way to investigate any details
related to the device geometry or the nature of the coupling between the drain and the
wire.

Below, we present a detailed theoretical investigation of the e�ects of such a drain
contact and we show how the results can indeed di�er qualitatively depending on the
geometry of the device and on the coherence properties of the superconductor. �e setup we
will mainly have in mind is shown in Fig. 6.1 (a): A semiconducting nanowire is proximitized
by an epitaxially grown thin layer of superconductor, shown in blue. A tunnel barrier
(gray) in an uncovered part of the wire at the le� end connects the proximitized region
to a tunnel probe (the source contact ‘S’). A second normal lead (marked ‘D’) is directly
deposited onto the superconducting layer and serves as drain for transport measurements.

We model electronic transport in the superconductor (and in the drain lead) as being
di�usive. Although the actual mean free path in the superconductor (the distance between
impurity sca�ering events) is probably not much shorter than all relevant device dimensions
in most experiments, the surface of the superconductor on the outside (which usually forms
an interface with an oxide layer) is known to be rough and can be expected to randomize
the electrons’ momentum each time they sca�er o� this surface. We thus assume that we
can use the thickness of the superconductor (typically 5–20 nm) as e�ective mean free
path, which can justify employing a di�usion approximation.

�e rest of this chapter is organized as follows: We will �rst present a numerical
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Figure 6.1: (a) Schematic of a commonly used setup for conductance spectroscopy experiments.
�e nanowire (marked ‘NW’) is contacted on one side by a tunnel probe (marked ‘S’) and is (partly)
covered by an epitaxially grown s-wave superconductor layer (marked ‘SC’), which proximitizes
part of the wire. �is superconducting layer is connected to a normal metal drain lead (marked
‘D’) through which the conductance is measured. (b) Sketch of the tight-binding model used for
numerical calculations. �e electron dynamics in the wire are discretized on a �nite chain and the
presence of the superconductor is included by adding a self-energy term in the electronic Green
function. We treat the superconductor as being part of a di�usive SN-junction, where the junction
interface is located a distance d away from the nanowire.

study of the conductance spectrum of the system, where we treat the superconductor and
the drain lead together as one di�usive SN-junction. We will show how an e�cient SN-
coupling can be responsible for a quenching of the Majorana oscillations in the conductance
spectrum. �e result is either a persistent zero-bias peak approaching 2e2/h throughout the
topological phase or a gradual suppression and smearing out of all features in the spectrum,
depending on the ratio of the coherence length in the superconductor to the length of the
proximitized region in the wire. We also investigate the apparent hardness of the gap on
both sides of the phase transition and �nd that a strong in�uence of the normal drain tends
to so�en the gap in the topological regime. We then present a toy model where we only
focus on the dynamics of the two low-lying (Majorana) modes. We assume the modes to be
coupled to each other and also include an e�ective coupling of both modes to the states
in the source and drain leads. From this simple model we derive an analytic expression
for the di�erential conductance from source to drain. We show how this result allows to
qualitatively reproduce the main �ndings from our numerical calculations and we explain
how it provides more insight in the underlying physics.

6.1 Numerical tight-binding simulations

We perform numerical tight-binding simulations of the conductance spectrum, using the
S-matrix formalism described in Chap. 3. �e nanowire is described using the model from
Sec. 2.4, but with a modi�ed self-energy term due to the parent superconductor being
di�usive and the presence of the normal drain lead. �e parent superconductor is treated
as being part of a di�usive SN-junction and we use approximate expressions for the semi-
classical regular and anomalous Green functions in this junction [Belzig et al., 1996] to
derive an e�ective self-energy for the electrons in the nanowire. With this approach, the
self-energy itself produces a �nite subgap density of states and thus allows for leakage out
of the wire into the normal part of the junction.

We model the system as sketched in Fig. 6.1(b). �e nanowire (light red region marked
‘NW’) is described by a one-dimensional Bogoliubov-de Gennes Hamiltonian, HNW =
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1
2
∫
dx Ψ† (x )HNWΨ(x ), wri�en in terms of the Nambu spinors

Ψ(x ) = [Ψ↑(x ),Ψ↓(x ),Ψ†↓ (x ),−Ψ
†

↑
(x )]T , where the �eld operator Ψ†σ (x ) creates an electron

with spin σ at position x . Explicitly, we use the Hamiltonian

HNW =

(
−
}2

2m∗ ∂
2
x − µ − iαR∂xσy

)
τz +VZσz , (6.1)

where the Pauli matrices σ and τ act in spin space and particle-hole space respectively.
Furthermore, m∗ is the e�ective mass of the electrons in the wire, µ is their chemical
potential, αR is the Rashba spin-orbit strength, and VZ is the magnitude of the Zeeman
spli�ing in the wire.

We discretize this Hamiltonian on N = 100 la�ice sites and write for the retarded
electronic Green function on this chain

GR (n,m; ϵ ) =


1
ϵ − HNW − ΣRSC (ϵ ) + i0+

n,m
, (6.2)

where 0+ is a positive in�nitesimal and ΣRSC (ϵ ) is the self-energy due to the coupling to the
superconductor, which we will derive below. �e di�erential conductance is then calculated
using the method described in Chap. 3. From this Green function we calculate the re�ection
matrix of the hybrid wire,

R (ϵ ) =

[
ree (ϵ ) reh (ϵ )
rhe (ϵ ) rhh (ϵ )

]

= 1 − 2iπW †
{ [
GR (ϵ )

]−1
+ iπWW †

}−1
W , (6.3)

where the amplitudes ree(hh) describe normal electron(hole) re�ection and the o�-diagonal
amplitudes reh,he describe Andreev re�ection. �e matrix

W =
√
γW (s1 ⊗ 14)

T , (6.4)

models the coupling between the probe lead and the �rst site of the chain. Here, γW
parametrizes the coupling strength, 14 is a 4 × 4 unit matrix, and the N -dimensional
vector s1 = (1, 0, 0, 0, . . . ) speci�es the position of the probe along the chain. �e resulting
re�ection matrix allows us to calculate the di�erential conductance as

dI

dV
=
e2

h
Tr

[
1 − ree (ϵ )

†ree (ϵ ) + reh (ϵ )
†reh (ϵ )

]
, (6.5)

where we set ϵ = eV , in terms of the bias voltage V on the tunnel probe.
�e task le� is to �nd a suitable self-energy ΣRSC (ϵ ) that accounts for the di�usive nature

of the superconductor as well as the presence of a normal drain lead. We assume the Fermi
wavelength inside the superconductor to be by far the shortest length scale in the problem,
which allows us to use a local self-energy

ΣRSC (x ; ϵ ) = t̃2GR
SC (x ,x ; ϵ ), (6.6)

in terms of the electronic Green function inside the superconductor GR
SC that connects

the point x at the superconductor-wire interface with itself (for simplicity we assume the
coupling parameter t̃ to be real and constant along the wire). �e elements of ΣRSC thus
follow straightforwardly from the electron, hole, and anomalous Green functions in the
superconductor.
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To �nd these Green functions, we assume that the SN-junction is in the dirty (di�usive)
limit and that we can describe the relevant electron dynamics in the junction using a
semi-classical approximation, i.e., we assume that both the electronic mean free path and
the Fermi wave length in the junction are much smaller than all relevant length scales in
the wire. �e semi-classical Green functions then obey the Usadel equation [Eilenberger,
1968; Usadel, 1970], which one can solve for the SN-junction, assuming no interface barrier
and se�ing the order parameter ∆(r) to a constant −i∆ inside the superconductor and to
zero in the normal metal [Kuprianov and Lukichev, 1988; Belzig et al., 1996]. By doing so,
one ignores the requirement for self-consistency of ∆(r), and in that sense the result must
be seen as a lowest-order approximation, which is expected to introduce quantitative errors
but not to a�ect the result in a serious qualitative way.

�e solution for the semi-classical electronic and anomalous Matsubara Green functions
presented in Ref. [Belzig et al., 1996] uses the angular parametrization

дee (x , ϵ ) = cosθ (x , ϵ ), (6.7)
f eh (x , ϵ ) = sinθ (x , ϵ ), (6.8)

where the position-dependent angle θ reads explicitly

θ (x , ϵ ) =




4 arctan
{
e−(x/ξN)

√
−iϵ/∆ tan

(
1
2 arctan β

)}
for x > 0,

− arctan ∆
iϵ + 4 arctan

{
e (x/ξS)

4√1−(ϵ/∆)2

× tan
(

1
2 arctan β + 1

4 arctan ∆
iϵ

)}
for x ≤ 0,

(6.9)

assuming that the SN-interface is at x = 0 with the superconducting region at x ≤ 0. We
used the notation

β = − sin
( 1
2 arctan ∆

iϵ

) [
κ

√
−iϵ

4√
∆2 − ϵ2

+ cos
( 1
2 arctan ∆

iϵ

)]−1

, (6.10)

and introduced the quantities

ξN,S =
√
}DN,S/2∆, (6.11)

κ = σNξS/σSξN, (6.12)

with D = 1
3vFle the electronic di�usion constant in terms of the electronic mean free path

le , and σ the normal-state conductivity, which both can be di�erent in the normal and
superconducting regions. For a detailed derivation, see App. A.

�is allows us to derive straightforwardly a (position-dependent) self-energy for the
electrons in the wire due to the proximity of the SN junction:

ΣRSC (x , ϵ ) = ζ
[

sinθ (x , ϵ )τy − i cosθ (x , ϵ )
]
, (6.13)

where the parameter ζ characterizes the coupling between the wire and the junction. (Note
that this self-energy is diagonal in the coordinate basis.) �e energy ϵ could be given a
�nite imaginary part ϵ → ϵ + iΓin in to account for inelastic sca�ering processes in the
di�usive junction, which would introduce an extra broadening that smears out all features
in the conductance spectrum. In all of the following, however, we disregard these processes
and we set Γin = 0+.

Se�ing κ → 0 corresponds to se�ing the conductivity of the normal part of the junction
to zero. �is should e�ectively remove the inverse proximity e�ect caused by the normal
part, and make the self-energy reduce to that of a bulk superconductor. One can check that in
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the limit of κ → 0 we have arctan(∆/iϵ ) = 2 arctan β , which yields θ (x , ϵ ) = arctan(∆/iϵ ).
�is indeed produces a position-independent self-energy ΣRSC (ϵ ) identical to the self-energy
one �nds for a clean bulk superconductor [Stanescu et al., 2011; Hansen et al., 2016]. �e
further κ increases, the more the self-energy deviates from this “clean” self-energy.

We note that also in the limit |x/ξS | � 1 the self-energy reduces to that of the clean bulk
superconductor: �e coherence length ξS thus determines how far from the SN interface
the normal-metal part still has a signi�cant in�uence on the electron dynamics inside
the superconductor. To illustrate this, we calculate the position-dependent density of
states in the junction, ν (x , ϵ ) = νN Re [дee (x , ϵ )], obtained from analytically continuing the
Green function (6.7), where νN is the density of states at the Fermi level in the normal state
(assumed the same in the whole junction). In Fig. 6.2 we show the result at ϵ = ∆/2 for three
di�erent coupling parameters: κ = 0.2 (green), κ = 1 (red), and κ = 5 (blue). �e inverse
proximity e�ect clearly weakens with decreasing κ, but becomes always exponentially
suppressed when x exceeds the coherence length ξS.

We can now calculate the di�erential conductance of the system using Eqs. (6.3)–(6.5),
where the self-energy matrix is de�ned by

[
ΣRSC (ϵ )

]
n,m
= ΣRSC (xn , ϵ )δn,m at position xn ,

corresponding to the location of site n on the chain of the tight-binding discretization.
In all numerical simulations in this section we usem∗ = 0.026me , corresponding to the

value for bulk InAs at room temperature, µ = 0, αR = 10 µeV µm, ∆ = 180 µeV, ζ = 720 µeV,
and γW = 890 µeV. �e length of the wire is set to L = 0.9 µm, resulting with N = 100 in a
la�ice constant a = 9 nm, which is used to derive the tight-binding hopping matrix element
t = }2/2m∗a2 and spin-orbit-induced “spin-�ip” nearest-neighbor coupling s = αR/2a.

For simplicity we set the distance d between the SN-interface and the right end of
the nanowire to zero. In this case we could expect di�erent behavior depending on the
parameter ξS/L: When ξS . L the drain will mainly a�ect the right end of the wire, and
thus primarily couple to the right Majorana mode (when in the topological regime). If,
however, ξS & L then we expect a stronger, more homogeneous e�ect which will a�ect both
Majorana modes more equally (1). For a typical experimental setup, we make the following

1. �is limit will also more closely resemble a situation where the superconductor is not epitaxially grown but
rather deposited in bulk onto the nanowire. In this case the in�uence of the normal drain is not necessarily
expected to be stronger on one particular side of the wire. Such a geometry was more common in the �rst
generation of experiments.

Figure 6.2: �e position-dependent density of states ν (x , ϵ ) at energy ϵ = ∆/2 in a di�usive SN-
junction, calculated from the electronic Green function (6.7). We used κ = 0.2 (green), κ = 1 (red),
and κ = 5 (blue).
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Figure 6.3: Calculated di�erential conductance as a function of Zeeman energy VZ and applied
bias voltage V on the probe lead, using a self-energy that includes the e�ect of a (di�usive) normal
metal drain coupled to the (di�usive) superconductor. We assumed a setup as sketched in Fig. 6.1
where we set d = 0; all other parameters are given in the text. (a–d) With L = 0.9 µm and ξS = 0.1L,
we vary the coupling parameter κ: (a) κ = 0, (b) κ = 0.2, (c) κ = 1, and (d) κ = 5. (e–h) We keep
L = 0.9 µm and now set ξS = L, varying again the coupling parameter κ: (a) κ = 0, (b) κ = 0.05, (c)
κ = 0.2, and (d) κ = 1.

very rough estimate: We assume the superconductor to be epitaxial aluminum and to have
a thickness of ∼ 10 nm. Se�ing le = 10 nm (assuming that the surfaces of the epitaxial
layer are rough enough to randomize the electronic momentum a�er sca�ering from the
surface) and using vF = 2 · 106 m/s and ∆ = 180 µeV, we �nd ξS ≈ 100 nm, which typically
corresponds to ξS/L ∼ 0.1. In case the superconductor would be clean and much thicker,
e�ectively yielding le & L, one should rather treat it as a ballistic medium. �e presence
of the normal drain lead can then still induce a �nite subgap density of states inside the
superconductor, but now the length scale over which this inverse proximity e�ect decays
is probably set by the “clean” coherence length ξ0 ∼ }vF/∆. �en, depending on the ratio
ξ0/L one can still be in either of the regimes mentioned above and we can expect similar
e�ects as in the di�usive case.

In Fig. 6.3 we show the calculated di�erential conductance, as a function of applied
Zeeman �eld VZ and bias voltage V , for two di�erent coherence lengths ξS. In the �rst four
plots (a–d) we set ξS = 0.1L and we vary the coupling parameter κ: (a) κ = 0, (b) κ = 0.2,
(c) κ = 1, and (d) κ = 5. In plots (e–h) we take a longer coherence length, ξS = L, and again
vary the coupling κ: (e) κ = 0, (f) κ = 0.05, (g) κ = 0.2, and (h) κ = 1.

Roughly speaking, we see the following behavior: (i) For small ξS (small compared to
L)—where the drain is expected to couple mainly to states living at the right end of the
wire—the amplitude of the Majorana oscillations is suppressed with increasing κ, and they
tend to collapse to a single zero-bias peak, which then approaches 2e2/h again. (ii) For
larger ξS—where the e�ective coupling to the drain is more uniform across the wire—the
oscillations are again quenched, but now all features get smeared out and the conductance
approaches 2e2/h nowhere. (iii) In general the gap seems to be so�er at higher �elds
(associated with the topological regime) than in the trivial regime; this e�ect appears more
prominent for more uniform coupling (larger ξS).
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Figure 6.4: Line cuts from the di�erential conductance shown in Fig. 6.3. All choices of parameters
are indicated in the plots.

We illustrate this in more detail in Fig. 6.4, where we present line cuts of the data of
Fig. 6.3. In Fig. 6.4(a) we illustrate how the Majorana oscillations become suppressed and
collapse to a zero-bias peak: We used ξS = 0.1L (as in the upper row in Fig. 6.3), �xed
VZ = 1.05 meV (where the peak is clearly split at weak coupling), and show the di�erential
conductance for κ = 0 (green) and κ = 5 (red). At strong coupling the spli�ing is indeed
reduced, but the peak height is still close to 2e2/h. In Fig. 6.4(b), we show how the hardness
of the gap can look di�erent on opposite sides of the phase transition, when the coupling
is strong: We have set ξS = 0.1L and κ = 5, and show the conductance at VZ = 0.55 meV
(green, corresponding to the trivial phase) and VZ = 1.42 meV (red, corresponding to the
topological phase). �e gap is clearly less hard in the high-�eld case, where the zero-bias
feature has a width of the same order of magnitude as the gap. Finally, in Fig. 6.4(c) we
compare the peak heights in the strong-coupling limit for ξS = 0.1L (green) and ξS = L (red),
both at VZ = 1.05 meV. �is con�rms that for longer ξS (a more homogeneous in�uence
of the normal drain) not only the oscillations become quenched, but also the actual peak
heights are suppressed.

6.2 Analytic toy model

We will now try to develop a be�er understanding of the results presented in the previous
section. To this end, we will use a simple toy model to describe the spectroscopy setup,
including the in�uence of a normal lead connected to the proximitizing superconductor,
and we will focus on the low-energy features in the spectrum (the zero-bias peak and the
Majorana oscillations).

�e model we will use is sketched in Fig. 6.5: We assume that the nanowire is in the
topological regime and that the gap separating the lowest-lying modes from all other states
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is much larger than all energy scales relevant for the dynamics of these modes. In this case,
we can project our description to this low-energy subspace and treat the hybrid wire (the
blue region marked ‘TS’) as an e�ective two-level system of localized Majorana modes
(indicated by the two γ̂ ’s). �e probe lead is tunnel coupled to the le� Majorana mode, and
also has a �nite but weaker coupling to the right mode, due to the �nite length of the wire.
�e normal metal contact connected to the superconductor is modeled as a second lead
which is tunnel coupled to both Majorana modes and is assumed to be at the same chemical
potential as the superconductor.

To calculate the di�erential conductance dI/dV of this system, we proceed along the
same lines as in Ref. [Flensberg, 2010]. We �rst write an e�ective Hamiltonian

Ĥ =
∑

α=S,D

(Ĥα + ĤT ,α ) + ĤM , (6.14)

where

Ĥα =
∑
k,σ

ξαkσ ĉ
†

αkσ ĉαkσ , (6.15)

describes the electrons in lead α ,

ĤM =
i

2
∑

i, j=1,2
ti jγ̂iγ̂j , (6.16)

accounts for the coupling between the two Majorana modes, and

ĤT ,α =
∑
k,σ ,i

(
V ∗αkσ i ĉ

†

αkσ −Vαkσ i ĉαkσ
)
γ̂i , (6.17)

describes the coupling between the Majorana modes and the electrons in lead α . �e
current from lead ‘S’ into the wire can then be expressed as

I =
e

}

∑
k,σ ,i

[
V ∗Skσ iG

<
i,Skσ (0) −VSkσ iG

<
Skσ ,i (0)

]
, (6.18)

in terms of the mixed lead-wire lesser Green functions

G<
i,αkσ (t ) = i〈ĉ

†

αkσ (0)γ̂i (t )〉, (6.19)
G<
αkσ ,i (t ) = i〈γ̂i (0)ĉαkσ (t )〉. (6.20)

A lengthy but straightforward calculation then results in

dI

dV
=

2e2

h

∫
dω M (ω) [−n′F (ω − eV )], (6.21)

Figure 6.5: A toy model to include the e�ect of a (normal) drain lead connected to the superconductor
proximitizing the nanowire. �e hybrid nanowire is described in terms of a single low-energy
fermionic bound state, which is split into two Majorana modes localized close to the ends of the
wire.
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where n′F (x ) = dnF (x )/dx is the derivative of the Fermi function, V is the voltage on the
probe, and the spectral density M (ω) = ASS (ω) +

1
2ADS (ω) +

1
2TDS (ω), with

Aβα (ω) = Tr
{
GR
ωΓβ (−ω)

∗GA
ωΓα (ω)

}
, (6.22)

Tβα (ω) = Tr
{
GR
ωΓβ (ω)G

A
ωΓα (ω)

}
, (6.23)

describing respectively the probabilities of Andreev re�ection and normal re�ection, from
lead α to lead β at energyω. �ese probabilities are expressed in terms of the Majorana-lead
coupling matrices

[
Γα (ω)

]
i j
= 2π

∑
kσ

Vαkσ iV
∗
αkσ jδ (ω − ξαkσ ), (6.24)

and the Green function of the Majorana modes,

GR
ω =

2
ω − 2it + i[Γω + Γ∗−ω ] − 2[Λω − Λ∗−ω ] , (6.25)

where t is the Majorana coupling matrix and we used the notation Γω = ΓS (ω) + ΓD (ω)
and introduced the matrix Λω = ΛS (ω) + ΛD (ω) with

[
Λα (ω)

]
i j
= P

∫
dz

2π

[
Γα (ω)

]
i j

ω − z
. (6.26)

For simplicity we now assume that we can neglect, over the range of all relevant
energies, all energy- and spin-dependence of both the coupling elements Vαkσ i and the
densities of states of the leads. �is allows us to (i) simplify [Γα ]i j = 2πVαiV ∗α jνα , where να
is the density of states at the Fermi level of lead α , and (ii) set Λα (ω) = 0. If we furthermore
assume that the lead-mediated Majorana-Majorana coupling will be dominated by the
overlap-induced couplings ti j , then the coupling matrices are real and diagonal,

ΓS =

(
γS1 0
0 γS2

)
and ΓD =

(
γD1 0
0 γD2

)
, (6.27)

where γαi thus parametrizes the decay rate of Majorana mode i into lead α . For a not
too short wire one usually has γS2 < γS1. �e magnitude of the “leakage” rates γDi to the
drain as well as their ratio γD1/γD2 depend on the actual geometry of the experimental
setup, e.g. on how far from the wire the superconductor is contacted by a normal lead,
but also on the detailed electronic dynamics inside the superconductor and the normal
contact. We emphasize here that at this point these leakage rates γDi have turned into
phenomenological parameters, which do not necessarily originate from the proximity of a
normal drain lead: Leakage to any localized subgap state in the superconductor to which
the two Majorana modes are coupled with (possibly) di�erent strengths can be described
using these model parameters.

Se�ing t = −iσyt0/2 we can now �nd an explicit expression for the spectral density,

M (ω) =
4G12ω

2 + 4G21 (t
2
0 + 4Γ1Γ2)

ω4 − 2
(
t2
0 − 2[Γ2

1 + Γ2
2 ]

)
ω2 + (t2

0 + 4Γ1Γ2)2
, (6.28)

with Gi j = Γ1γSi + Γ2γS j , and using the total Majorana decay rates Γi = γSi + γDi .
In the limit of zero temperature (which we will assume from now on for simplicity) the

di�erential conductance thus reads

dI

dV
=

2e2

h
M (eV ), (6.29)
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Figure 6.6: Di�erential conductance calculated using Eq. (6.29) with γS1 = 0.002E0 and γS2 = 0, for
(a) t0 = 0 and (b) t0 = 0.02E0. We have set γD1 = γD2 ≡ γ and we show the resulting conductance
for γ = 0 (blue), γ = 0.001E0 (green), γ = 0.01E0 (red), and γ = 0.2E0 (purple).

with M (ω) as given in Eq. (6.28).
Let us �rst investigate this result in the ideal case of a wire that is long enough so that

t0 and γS2 can be neglected. In that limit the di�erential conductance,
dI

dV
=

2e2

h

4γS1Γ1

4Γ2
1 + (eV )2

, (6.30)

acquires a Lorentzian line shape with a full width half maximum of 4Γ1 and a maximum
conductance of (2e2/h) (γS1/Γ1) at V = 0. We see that this zero-bias peak has a height of
2e2/h as long as γD1 = 0, i.e., as long as Majorana mode 1 (which is completely decoupled
from mode 2) does not have a second normal channel into which it can decay. When γD1
becomes �nite, e.g. due to a superconductor-mediated coupling to a normal drain lead, the
peak height is suppressed by a factor γS1/Γ1. We illustrate this in Fig. 6.6(a), where we plot
the di�erential conductance as given by (6.29) with t0 = 0, γS2 = 0, and γS1 = 0.002E0, in
terms of the (arbitrary) energy scale E0. We varied the coupling of Majorana mode 1 to the
drain lead as γD1 = 0 (blue), γD1 = 0.001E0 (green), γD2 = 0.01E0 (red), and γD1 = 0.2E0
(purple).

Another idealized limit is where the wire is short enough that t0 cannot be neglected,
but the probe lead is still coupled to mode 1 only and there is no e�ective leakage to a
second normal contact at all, i.e. γS2 = γD1 = γD2 = 0. In that case, Eq. (6.29) gives

dI

dV
=

2e2

h

4γ 2
S1 (eV )2

t4
0 − 2(t2

0 − 2γ 2
S1) (eV )2 + (eV )4

, (6.31)
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Figure 6.7: Di�erential conductance as a function of the bias voltage V and the applied magnetic
�eld B, calculated using Eqs. (6.29) and (6.28) and using a B-dependent Majorana coupling energy
t0 (B) as given in Eq. (6.33). In all plots we have set γS1 = 0.002E0 and γS2 = 0. (a–d) We set
γD1 = 0 and vary the coupling of the Majorana mode 2 to drain: (a) γD2 = 0, (b) γD2 = 0.001E0, (c)
γD2 = 0.01E0, and (d) γD2 = 0.2E0. (e–h) We set γD1 = γD2 ≡ γ and vary this uniform coupling
parameter: (a) γ = 0, (b) γ = 0.001E0, (c) γ = 0.003E0, and (d) γ = 0.01E0.

which yields zero conductance atV = 0 and produces two peaks atV = ±t0/e with a height
of 2e2/h and full width half maximum of 2γS1, as expected. If we now add a �nite coupling
to the drain, the double-peak structure gets suppressed. �is is illustrated in Fig. 6.6(b),
where we again set γS1 = 0.002E0 and γS2 = 0, but now use t0 = 0.02E0. �e leakage rates
to the drain are set equal, γD1 = γD2 ≡ γ , and are gradually increased from γ = 0 (blue),
γ = 0.001E0 (green), γ = 0.01E0 (red), to γ = 0.2E0 (purple).

In general, the function M (eV ) can have a single- or double-peak structure, depending
on the relative magnitude of the Majorana coupling energy t0 and the decay rates γαi . For
a given set of parameters, we �nd a single peak at V = 0 when

t2
0 < t2

c ≡ 4
Γ3

1 γS2 + Γ3
2γS1

Γ1 (γS1 + 2γS2) + Γ2 (2γS1 + γS2)
, (6.32)

and the peak splits into two when t2
0 > t2

c . We see that tc being non-zero depends on
having a �nite decay rate of Majorana mode 2: as long as Γ2 = 0, which implies that
γS2 = γD2 = 0, we have tc = 0. From Eq. (6.32) it is thus clear how the e�ective coupling
of the Majorana modes to normal metal leads—either to the tunnel probe itself or to a
normal drain connected to the superconductor—can quench the split-peak behavior of the
conductance at �nite t0. In the case of a proximitized semiconductor nanowire, where the
e�ective coupling between the two low-energy modes is expected to oscillate as a function
of the applied magnetic �eld, leakage to a drain lead can thus obscure the corresponding
oscillatory pa�ern in the di�erential conductance.

To connect to the numerical results presented in Fig. 6.3, we show in Fig. 6.7 the
conductance spectrum, as calculated from Eq. (6.29), as a function of both the bias voltage
V and applied Zeeman �eld B. �e e�ect of the �eld is implemented phenomenologically
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by se�ing

t0 (B) =
E0
√
b
e−l/2b cos

(
l
√
b
)
, (6.33)

which corresponds to the coupling between the two Majorana modes due to the �nite
overlap of their wave functions, assuming for simplicity the large-B limit [Das Sarma et al.,
2012; Rainis et al., 2013]. In this expression the Zeeman �eld b = B/E0 is expressed in units
of the (arbitrary) energy scale E0 and the parameter l characterizes the length of the wire. By
se�ing l = L

√
2mE0/} (with L the actual length of the wire) and E0 = (2mα2∆2/}2)1/3 (with

α/} the spin-orbit velocity and ∆ the induced superconducting gap) one could connect these
parameters to those used in more detailed models describing a semiconducting spin-orbit
coupled nanowire in proximity to a superconductor [Das Sarma et al., 2012]. We further
assume that the wire is long enough so that we can neglect γS2 and we investigate again
the two di�erent situations corresponding to the two rows in Fig. 6.3 (di�erent coherence
length ξS).

In Fig. 6.7(a–d) we set γD1 = 0 and vary the coupling γD2 of the right Majorana mode to
the drain lead. �is situation is expected to be more close to that of the top row of Fig. 6.3,
where the coherence length ξS = 0.1L was signi�cantly smaller than the wire length, and
the normal drain thus mainly a�ected states with most of their weight close to the right
end of the wire.

We used (a) γD2 = 0, (b) γD2 = 0.001E0, (c) γD2 = 0.01E0, and (d) γD2 = 0.2E0, and
we see that increasing γD2 again a�ects the appearance of the Majorana oscillations: For
intermediate γD2 the split-peak structure gets smeared out, and for large γD2 ultimately
all oscillatory behavior gets quenched and the conductance spectrum shows a single zero-
bias peak that approaches 2e2/h, in a way very similar to what we found numerically in
Fig. 6.3(a–d). To check, we evaluate from (6.32) the corresponding values for the critical
Majorana coupling tc , and �nd (a) tc = 0, (b) tc = 0.001E0, (c) tc ≈ 0.013E0, and (d)
tc ≈ 0.28E0. �ese values are indeed consistent with the global behavior seen in Fig. 6.7:
�e regions in Fig. 6.7(b–d,f–h) where t0 (B) < tc , i.e., where the original spli�ing observed
in Fig. 6.7(a,e) is smaller than tc , indeed seem to be the regions where we see a single
zero-bias peak instead of a split peak.

We can understand the behavior observed in Fig. 6.7(a–d) as follows: If Majorana mode
2 is the only mode coupled to the drain lead and the corresponding decay rate presents
the largest energy scale in the model, then this rapid decay will prevent the two Majorana
modes from hybridizing: All coherence built up between the two modes (which happens
on the time scale }/t0) decays before it becomes signi�cant (the decay happens on the time
scale 1/γD2). �e Majorana modes thus become decoupled from each other if the decay
is fast enough, and this brings us e�ectively to the situation where t0 is zero and each
Majorana mode is only coupled to the nearest lead. �is explains why a single zero-bias
peak of height 2e2/h is recovered in Fig. 6.7(a–d) in the regime where γD2 & t0.

An apparent di�erence between the numerical and analytical results is that the results
in Figs. 6.3 (a-d) seem to show a gradual reduction of the amplitude of the oscillations
with increasing coupling, whereas the analytic results in Figs. 6.7 (a-d) show a “fade out”
of the oscillations without a reduction of their amplitude. We cannot say which detailed
combination of ingredients reduces the apparent amplitude in Figs. 6.3 (a-d), but one
important contribution is given by the energy dependence of the subgap normal density of
states produced by Eqs. (6.7)-(6.10): there is always a dip in ν (x , ϵ ) on the superconducting
side around ϵ = 0 (cf. Fig. 3 in [Belzig et al., 1996]), which yields a dip in the wire’s
conductance whenever the Majorana states are split. In a situation where the oscillations
are almost fully faded out but the zero-bias peak is somewhat suppressed [e.g. comparable
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to B = 5E0 in Fig. 6.7 (d)], this extra dip at zero energy will indeed make the conductance
peak look split, but with a smaller amplitude.

In Fig. 6.7(e–h) we try to reproduce the situation of the lower row of Fig. 6.3, where
a longer coherence length ξS = L resulted in a more homogeneous in�uence of the drain
lead. To mimic this, we make the two couplings to the drain equal, γD1 = γD2 ≡ γ , and vary
the parameter γ , using (e) γ = 0, (f) γ = 0.001E0, (g) γ = 0.003E0, and (h) γ = 0.01E0. �e
results now indeed resemble more those shown in the lower row of Fig. 6.3: Increasingγ not
only quenches the Majorana oscillations, but also suppresses the height of all conductance
features. �is results from Majorana mode 1 (the one probed by the source) now also being
coupled to the drain and thus acquiring an e�ective life-time broadening.

In conclusion, our simple low-energy toy model thus shows how a �nite leakage
rate from the Majorana modes can quench the Majorana oscillations in the conductance
spectrum. �e result is either a persistent zero-bias peak or an overall broadening and
suppression of all features in the spectrum, depending on the ratio of the leakage rates
of the two modes. Similar phenomena are indeed commonly observed in experiments,
even in very recent high-quality spectroscopy experiments [Deng et al., 2016; Gül et al.,
2017]. �e unexpected so�ness of the induced topological gap—another phenomenon o�en
observed—is of course not captured here, since all dynamics on the energy scale of the gap
and higher have been disregarded in this low-energy model.

6.3 Summary

Tunneling spectroscopy experiments on proximitized semiconducting nanowires, aimed
at the detection of convincing signatures of Majorana modes, ultimately always involve a
normal drain lead connected to the hybrid system. In this paper, we reported a detailed
theoretical investigation of the e�ects on the conductance spectrum of the system if the
contact to this normal lead is close enough to the nanowire to cause signi�cant leakage
from the low-energy modes in the wire.

We �rst presented numerical results, where we treated the proximitizing superconductor
and the drain lead together as one di�usive SN junction. �is yielded two qualitatively
distinct types of behavior, depending on the relative strength of the leakage to the drain
from the two ends of the wire: If leakage is only signi�cant from one end of the wire, then
increasing the coupling to the drain quenches the Majorana oscillations in the conductance
spectrum and results in a prolonged zero-bias peak of almost 2e2/h. If, on the otherhand,
leakage is equally strong from both ends, then increasing the coupling smears out and
suppresses all features in the spectrum. We supported these results with the investigation
of a simple toy model, which allowed us to derive analytic expressions for the conductance
through the low-energy modes in the topological regime. �ese analytic results reproduced
qualitatively all our main numerical �ndings and thereby provided more insight in the
physics underlying the observed phenomena.

We thus conclude that several “inconsistencies” between experimental results and
theoretical predictions, such as the commonly observed absence of Majorana oscillations in
combination with a persisting zero-bias peak at higher magnetic �elds, could, at least partly,
be explained in terms of such leakage. �e fact that the measured zero-bias peak usually is
signi�cantly lower than 2e2/h is not necessarily inconsistent with our theory since we did
not include �nite temperature in our calculations [Nichele et al., 2017]. �e mechanisms
described in this paper could indeed be expected to play an important role when the
proximitizing superconductor is grown epitaxially on the wire and directly contacted by a
normal lead [Deng et al., 2016], and might be less signi�cant if the superconductor is large
and contacted by a normal lead far away from the wire [Zhang et al., 2017]. We emphasize,
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however, that any mechanism causing leakage from the bound states at the ends of the
wire, irrespective of its detailed origin, will produce similar e�ects

�is concludes the second part of this thesis, which revolved around studying MBSs in
grounded SC-SM hybrid nanowires by simulating di�erential conductance measurements
at the end of nanowire. �is was done using the S-matrix formalism described in Chap. 3.
�e next and last part of the thesis will also be focused on electron transport in SC-SM
nanowire, but in a Coulomb blockaged setup where charging e�ects are important. We
therefore start the next part by developing another transport model in order to study these
systems.
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“ Some people juggle geese!

Wash

- Fire�y, Joss Whedon

�e third and last part of this thesis will be centered around SC-SM nanowires in a
Coulomb blockaded setup. For this purpose, we will develop a transport model, based
on a similar model used by Higginbotham et al. [2015], to study electron transport in a
two terminal setup, as pictured in Fig. 7.1. We assume that the tunnel couplings to the
leads are weak, so the nanowire island has time to equilibrate between tunneling events.
�e tunneling Hamiltonian formalism is then used to build a set of master equations in
order to study electron current as a function of the applied source-drain bias voltage. �e
nanowire is modeled as a superconducting island with a BCS-like continuum of states and a
single subgap state, and charging e�ects are included through a constant interaction model.
�e number of charges on the nanowire island is restricted by the charging energy and
controlled by the voltageVG of a capacitively coupled gate. We will calculate the current to
the �rst order in the tunneling Hamiltonian so the model is applicable in the sequential
tunneling regime.

We start by de�ning the Hamiltonians of the leads, the nanowire island, and the coupling
between them

H = Hleads + HD + HT. (7.1)

�e leads are described by the Hamiltonian

Hleads =
∑
i,ν,σ

(ϵiν − µi )c
†

iνσciνσ , (7.2)

where the operator c†iνσ creates an electron with energy ϵiν in lead i ∈ {L,R}, with orbital
index ν and spin σ ∈ {↑,↓}. We let the lead L act as the source and lead R as the drain and

95
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Figure 7.1: A semiconductor nanowire (green) with a epitaxially grown superconductor (blue) on
part of the nanowire. Metallic leads are connected at the ends of the nanowire and two gates are
used to create tunnel barriers towards both leads, creating a superconducting island in the middle of
the nanowire. Another gate is capacitively coupled to the island and is used to control the number
of charges on the island by changing the gate voltageVG . Current I is measured as a function of the
applied source-drain bias voltage VSD and the gate voltage VG .

de�ne their chemical potentials by µL = −µR = Vsd/2 where Vsd is a symmetrically applied
bias voltage. �e density of states in the leads is assumed to be constant in the energy
range under consideration.

We describe the superconducting island containing N electrons by the Hamiltonian

HD =
∑
σ




∑
n

Enγ
†
nσγnσ + E0σγ

†

0σγ0σ


+ Eel (N ), (7.3)

where the �rst term contains the energy of the quasiparticles and the second term models
the electrostatic energy. For simplicty, we take the BCS continuum to be purely s-wave and
neglect the e�ects of spin-orbit interactions and the magnetic �eld on the BCS states. �e
operator γnσ corresponds to the states in the BCS continuum and γ0σ to the subgap state.
�e quasiparticle operator γ †nσ creates a quasiparticle excitation on the island which is a
superposition of electron (d†nσ ) and hole (d−nσ̄ ), where the hole creation is accompanied
by the addition of a Cooper pair, thereby ensuring that both terms carry the charge of an
electron. �e operator d†nσ creates an electron on the island with spin σ and orbital label n.
�e quasiparticle operators wri�en in terms of electron operators are

γnσ = undnσ − σvnd
†
−nσ̄e

−iϕ̂ , (7.4)

γ †nσ = u
∗
nd
†
nσ − σv

∗
ne

iϕ̂d−nσ̄ , (7.5)

where e±iϕ̂ shi�s the number of Cooper pairs on the island by ±1. Likewise, the electron
operators, wri�en in terms of the quasiparticle operators, are

dnσ = u
∗
nγnσ + σvnγ

†
−nσ̄e

−iϕ̂ , (7.6)

d†nσ = unγ
†
nσ + σv

∗
nγ−nσ̄e

iϕ̂ , (7.7)

�e state −nσ̄ is the time-reversed partner of nσ . For the energies of the quasiparticles and
the coherence factors on the island we use

En =

√
ϵ2
n + ∆2 , |un |

2 =
1
2

(
1 + ϵn

En

)
, |vn |

2 =
1
2

(
1 − ϵn

En

)
, (7.8)
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where ϵn is the electron energy measured from the chemical potential of the island and ∆
is the e�ective superconducting gap on the island.

In general, the subgap state may be spinful and we allow for the coherence factors to be
di�erent at the two ends of the nanowire. We write the quasiparticle annihilation operator
corresponding to the subgap state with energy E0σ as

γ0σ =
∑
iσ ′

u0σiσ ′d0σ ′ − σ
′v0σiσ ′d

†

0σ̄ ′e
−iϕ̂ , (7.9)

where u0σiσ ′ and v0σiσ ′ are the electron and hole coherence factors at the position where
lead i is tunnel coupled.

�e second term Eel (N ) in Eq. (7.3) models the electrostatic energy of the island,

Eel (N ) = EC (N − NG)
2 , where N =

∑
nσ

d†nσdnσ +
∑
σ

d†0σd0σ (7.10)

is the number of charges on the island, and EC = e2/CΣ is the charging energy of the
nanowire island with total capacitanceCΣ. �e dimensionless gate-induced charge number
NG = CGVG/e is proportional to the gate voltageVG and the capacitance between the island
and the gate CG.

Lastly, expressed in terms of the quasiparticle operators the tunneling Hamiltonian
reads

HT =
∑
i,ν,σ




∑
σ ′

[
t0ic

†

iνσ (u
∗
0σ ′iσγ0σ ′ + σv0σ ′iσγ

†

0σ̄ ′e
−iϕ̂ )

+ t∗0i (u0σ ′iσγ
†

0σ ′ + σv
∗
0σ ′iσγ0σ̄ ′e

iϕ̂ )ciνσ

]

+
∑
n

[
tic
†

iνσ (u
∗
nγnσ + σvnγ

†
−nσ̄e

−iϕ̂ )

+ t∗i (unγ
†
nσ + σv

∗
nγ−nσ̄e

iϕ̂ )ciνσ

] 

, (7.11)

where we assume that the tunnel coupling elements ti between the electronic states in
lead i and the quasiparticle states on the island do not depend on energy. We allow for
di�erent coupling strengths to the subgap state t0i and the continuum states ti . Due to
the island being superconducting, electrons can be added to the island by either creating
a quasiparticle or annihilating a quasiparticle and creating a Cooper pair, as seen in the
tunneling Hamiltonian. �is gives rise to a characteristic odd-even e�ect between coulomb
diamonds of odd and even ground state.

7.1 Thermodynamics of the odd/even parity effect

In order to calculate the current at �nite temperature, we need to know the thermodynamics
of quasiparticles in a BCS superconductor. A superconductor with a �xed number of
electrons has two distinct ground states depending on whether the number of electrons
is even or odd, due to the electron’s ability to form Cooper pairs[Tuominen et al., 1992;
Lafarge et al., 1993]. In the even case, all electrons can form pairs and leave a ground state
with no quasiparticles, while the odd case ground state has a single quasiparticle le� with
none other to pair with. At �nite temperatures, thermal �uctuations cause Cooper pairs
to split, but the overall parity of the superconductor is preserved since quasiparticles can
only be created in pairs this way. We will need the distribution function of quasiparticles
in each parity sector in order to calculate the transition rates involving states in the BCS
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continuum. �e distribution functions in each parity sector can be related to each other
by a di�erence in free energy. In this section, we will restrict ourselves to presenting the
results of the calculation, which can be found in App. B.

�e starting point for the derivation is the partition function for odd (o) and even (e)
parity states at the inverse temperature β = 1/kBT that can be wri�en as

2Zp =
∏
n

(1 + e−βEn ) ∓
∏
n

(1 − e−βEn ), (7.12)

where p ∈ {o, e}, p̄ denotes the opposite of p, En is given in Eq. (7.8) and the − (+) applies
to the odd (even) case.

In the limit of β∆ � 1, which is the regime we are considering, we obtain the thermal
distribution function as

fp (E) =
1

eβ (E±δ F ) + 1
, (7.13)

where the− (+) applies to the odd (even) case and we have de�ned the free energy di�erence
between the odd and even parity sector

δF = Fo − Fe = −
1
β

ln
(
Zo
Ze

)
. (7.14)

Using Eq. (7.12), the free energy di�erence may be calculated as

δFBCS ≈ −
1
β

ln tanh
∫ ∞

∆
dEρBCS (E) ln coth

(
βE

2

)
(7.15)

where

ρBCS (E) =
ρDE

√
E2 − ∆2

, (7.16)

is the BCS density of states with ρD = ρAlV being the normal density of states at the
Fermi level of the island including spin. ρAl is the aluminum density of states per volume
andV is the volume of the island. �is is the expression we will use to calculate the free
energy di�erence for numerical calculations later on. In Fig. 7.2, we show the temperature
dependence of δFBCS for typical experimental parameters. For low temperatures β∆ � 1
we can approximate

ln coth
(
βE

2

)
≈ coth

(
βE

2

)
− 1

≈ 2e−βE (7.17)

which in the same limit lets us approximate the free energy di�erence as

δFBCS ≈ −
1
β

ln tanh
[
2
∫ ∞

∆
dEρBCS (E)e

−βE
]
= −

1
β

ln tanh[Ne�e
−β∆] (7.18)

≈ ∆ −
ln(Ne�)

β
, (7.19)

with

Ne� = 2
∫ ∞

∆
ρBCS (E)e

−β (E−∆) dE = 2ρD∆e
β∆K1 (β∆), (7.20)
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where Kν (x ) is the modi�ed Bessel function of the second kind and Ne� is an e�ective
quasi-particle number.

In Fig. 7.2 we see the free energy di�erence between the odd and even parity states as
a function of temperature. As the temperature is increased, Cooper pairs can be broken
apart by thermal energy and the number of quasiparticles in both parity sectors increases.
As the number of quasiparticles in each parity sector becomes� 1 the di�erence between
even and odd parity goes away, and the free energy di�erence goes to zero.

Figure 7.2: �e free energy di�erence as a function of temperature calculated using Eq. (7.15) in
the regime of higher temperatures, β∆ < 10, and Eq. (7.18) for low temperatures, β∆ ≥ 10, with the
parameters ∆ = 200 µeV and ρD = 1.7 µeV−1.

Number of �asiparticles in the BCS Continuum

We use the distribution function derived above to calculate the number of quasiparticles in
each parity sector, in the absence of a subgap state. In the low temperature limit, where
the free energy di�erence is given in Eq. (7.19), the distribution function takes the form

fe =
1

1 + eβ (E+δ FBCS)
≈ Ne�e

−β (E+∆), (7.21)

fo =
1

1 + eβ (E−δ FBCS)
≈
e−β (E−∆)

Ne�
, (7.22)

where Ne� is given in Eq. (7.20). We calculate the number of quasiparticles in each parity
sector using

Np = 2
∫ ∞

∆
ρBCS (E) fp (E) dE. (7.23)

In the odd parity case, we �nd approximately one quasiparticle,

No = 2
∫ ∞

∆
ρBCS (E) fo (E) dE ≈

2
∫ ∞
∆
ρBCS (E)e

−β (E−∆) dE
Ne�

= 1, (7.24)

as expected. For the even case we have

Ne = 2
∫ ∞

∆
ρBCS (E) fe (E) dE ≈ 2

∫ ∞

∆
ρBCS (E)e

−β (E+∆)Ne� dE = (Ne�e
−β∆)2. (7.25)

Since the quasiparticles can only be created in pairs at energy above the superconducting
gap ∆, the number of quasiparticles is suppressed by the exponential factor e−2β∆ in the
even parity sector.
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7.2 Master Eqation

Now we will turn towards se�ing up the master equation for calculating the current through
the nanowire island, where we assume that transport is dominated by incoherent sequential
tunneling processes, i.e. temperature,TkB, is larger than the coupling to the leads ΓL,R , Γ0L,R .
�e time between tunneling events is long enough that the number of quasiparticles in
the BCS continuum relaxes to the distribution function of the given parity, which we
derived in the previous section. However, the time is not so long that a quasiparticle in the
continuum will always relax into the subgap state. Instead we include a relaxation rate
for the quasiparticle from the BCS continuum into the subgap state with the characteristic
time τr , which has been estimated to be of order ∼ 0.1 µs in experiments conducted by
Higginbotham et al. [2015].

We label the many body state of the nanowire island in terms of the number of charges
on the island N , the number of quasiparticle excitations in the BCS continuum N∆ and the
occupation of the subgap state N0. �e equilibrium probability density function P(N ,N∆,N0)

is found by solving the master equation

d

dt
P(N ,N∆,N0) =

∑
N ′,N ′∆,N

′
0

{
Γ(N ,N∆,N0)←(N ′,N ′∆,N

′
0)
P(N ′,N ′∆,N

′
0)

− Γ(N ′,N ′∆,N
′
0)←(N ,N∆,N0)P(N ,N∆,N0)

}

= 0, (7.26)

together with the normalization condition∑
N ,N∆,N0

P(N ,N∆,N0) = 1, (7.27)

where Γ(N ′,N ′∆,N ′0)←(N ,N∆,N0) is the transition rate from the state (N ,N∆,N0) to (N ′,N ′∆,N
′
0).

Rates with N , N ′ involve tunneling of charges to and from the leads, and these rates
thus include contributions from both leads. Only focusing on (lowest-order) single-particle
tunneling, this means that we can write

Γ(N±1,N ′∆,N
′
0)←(N ,N∆,N0) =

∑
i ∈{L,R }

Γ (i )
(N±1,N ′∆,N

′
0)←(N ,N∆,N0)

, (7.28)

where the superscript i indicates which lead the charge is tunneling to or from. �e current
resulting from sequential tunneling is then obtained as

I = (−e )
∑

N ,N∆,N ′∆

{
Γ (L)
(N+1,N ′∆,N

′
0)←(N ,N∆,N0)

− Γ (L)
(N−1,N ′∆,N

′
0)←(N ,N∆,N0)

}
P(N ,N∆,N0) .

(7.29)

In order to calculate the current explicitly, the only task le� is to �nd all relevant
transition rates Γ(N ′,N ′∆,N ′0)←(N ,N∆,N0) . In our model we include (i) tunneling of charges to
and from the leads resulting in the creation or annihilation of a quasiparticle excitation in
the BCS continuum, Γ (L,R )

(N±1,N ′∆,N0)←(N ,N∆,N0)
, (ii) tunneling to and from the leads combined

with a change of the occupation of the subgap mode Γ (L,R )
(N±1,N∆,N ′0)←(N ,N∆,N0)

, and (iii) we
add internal relaxation processes on the island Γ(N ,N ′∆,N

′
0)←(N ,N∆,N0) . In the following

subsections we will discuss these three types of transitions in more detail.
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7.3 Transition Rates

We calculate the incoherent tunneling rates between the leads and the nanowire island
using Fermi’s golden rule,

Γβ←α = 2π
∑
fβ ,iα

|〈fβ |HT |iα 〉|
2Wiα δ (Efβ − Eiα ), (7.30)

where α = (N ,N∆,N0) is the initial state, β = (N ′,N ′∆,N
′
0) is the �nal state, and we set

} = 1. �e sum goes over all the con�gurations of internal degrees of freedom of the initial
state iα and �nal state fβ weighted by the corresponding thermal distribution function
Wiα . We divide the transition rates into two categories depending on whether the process
involves the creation or annihilation of a quasiparticle excitation in either (a) the BCS
continuum or (b) the subgap states. We also include a third category of internal relaxation
processes with no electrons tunneling in or out of the nanowire island, but the value of
these rates are obtained from experiments rather than calculations.

7.3.1 Transition rates in and out of the BCS continuum

We �rst calculate the rates that involve the creation or annihilation of quasiparticles in the
BCS continuum. �ere are four di�erent rates, two where an electron is added to the island,
and two where an electron is removed. We write up the relation and energy di�erence
between the �nal and initial states:

| fN+1,N∆+1〉 = γ
†
nσciνσ |iN ,N∆〉, EfN+1,N∆+1 − EiN ,N∆

= UN + En − ϵiν , (7.31a)

| fN+1,N∆−1〉 = eiϕ̂γ−nσ̄ciνσ |iN ,N∆〉, EfN+1,N∆−1 − EiN ,N∆
= UN − En − ϵiν , (7.31b)

| fN ,N∆〉 = c
†

iνσγnσ |iN+1,N∆+1〉, EfN ,N∆
− EiN+1,N∆+1 = −UN − En + ϵiν , (7.31c)

| fN ,N∆〉 = c
†

iνσγ
†
−nσ̄ e

−iϕ̂ |iN+1,N∆−1〉, EfN ,N∆
− EiN+1,N∆−1 = −UN + En + ϵiν , (7.31d)

where we have suppresed the subgap state index N0 and de�nedUN = Eel (N +1)−Eel (N ) =
EC (2N − 2NG + 1) as the di�erence in charging energy between a state with N + 1 and N
electrons.

As an example, we consider the two ways an electron can be added to the island. First,
the �nal state in Eq. (7.31a) is created from the initial state |iN 〉 by removing an electron
from lead i with energy ϵiν and creating an electron quasi-particle γ †nσ with energy En
(given in eq. 7.8). �e initial state has energy Ec (N ) while the �nal state has the energy
Ec (N + 1) + En − ϵiν . Second, if a quasiparticle is already present on the island, the added
electron can form a Cooper pair with it, as wri�en in eq. 7.31b. �is �nal state has a di�erent
energy than in the �rst case since the Cooper pair has to be at the Fermi energy of the
island.

Due to the thermodynamics of the odd/even parity e�ect of the BCS density of states
discussed in Sec. 7.1, both ways of adding (removing) an electron to the island should be
included when calculating the transition rate. �e distribution function 〈γ †nσγnσ 〉p = fp (En )
given in Eq. (7.13) with the free energy di�erence δF given in Eq. (7.15) will take care of
weighting each process appropriately for the given parity p of N∆. �e transition rates of
adding and removing an electron to the island follow from a straight forward calculation
of Eq. (7.30) with the tunneling Hamiltonian given in Eq. (7.11),

Γ (i )N+1←N = 2π *.
,

∑
iN

WiN |〈iN |c
†

iνσγnσ tiu
∗
nγ
†
nσciνσ |iN 〉|

2δ (UN + En − ϵiν )

+
∑
iN

WiN |〈iN |c
†

iνσγ
†
−nσ̄e

iϕ̂t∗i v
∗
ne
−iϕ̂γ−nσ̄ciνσ |iN 〉|

2δ (UN − En − ϵiν )
+/
-
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= Γi

∫
dϵidϵn

{
|un |

2nF (ϵi − µi ) (1 − fp (En ))δ (UN + En − ϵi )

+|vn |
2nF (ϵi − µi ) fp (En )δ (UN − En − ϵi )

}

= Γi

∫
dϵn

{
|un |

2nF (UN + En − µi ) (1 − fp (En ))

+|vn |
2nF (UN − En − µi ) fp (En )

}
(7.32)

Γ (i )N←N+1 = 2π *.
,

∑
iN+1

WiN+1 |〈iN+1 |γ
†
nσ ,eciνσ tiunc

†

inσγnσ ,e |iN+1〉|
2δ (−UN − En + ϵiν )

+
∑
iN+1

WiN+1 |〈iN+1 |γ−nσ̄ ,hciνσ tivnc
†

iνσγ
†

−nσ̄ ,h |iN+1〉|
2δ (−UN + En + ϵiν )

+/
-

= Γi

∫
dϵn

{
|un |

2 fp (En ) (1 − nF (UN + En − µi ))

+|vn |
2 (1 − nF (UN − En − µi )) (1 − fp (En ))

}
, (7.33)

where we have suppressed the index of the BCS continuum and subgap state occupation.
�e coupling strength Γi = 2πρDρi |ti |2 with ρD and ρi being the normal density of states
of the island and lead, respectively, is related to the normal conductance дAl = 2π (e2/h)Γi ,
which can be measured in spectroscopy experiments as the peak height at high bias voltage.
�ese two transition rates cover both the case of even and odd numbers of electrons on the
island. Terms containing un (vn) correspond to adding (removing) a quasi-particle to (from)
the island. For the sake of easy reference, we write the expression for un , vn and En here:

En =

√
ϵ2
n + ∆2 , |un |

2 =
1
2

(
1 + ϵn

En

)
, |vn |

2 =
1
2

(
1 − ϵn

En

)
. (7.34)

Both un and vn contain a term (ϵn/2En) which is odd in ϵn and a term that is even (1/2).
Since the rest of the integrand (which is a function of En) is even in ϵn , integrating ϵn from
−∞ to∞ gives zero for the odd part. We keep the even part and change integration variable
to En using

dϵn =
dϵn
dEn

dEn =
En√

E2
n − ∆2

dEn . (7.35)

We have then obtained the �nal expressions for the transition rates involving quasiparticles
in the BCS continuum:

Γ (i )N+1←N = Γi

∫ ∞

∆
dEn




En√
E2
n − ∆2

Ain (En )



(7.36a)

Γ (i )N−1←N = Γi

∫ ∞

∆
dEn




En√
E2
n − ∆2

Aout (En )



(7.36b)

where

Ain (En ) = nF (UN + En − µi ) (1 − fp (En )) + nF (UN − En − µi ) fp (En ) (7.37a)
Aout (En ) = (1 − nF (UN + En − µi )) fp (En ) + (1 − nF (UN − En − µi )) (1 − fp (En )),

(7.37b)

and the integrals are calculated numerically.
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Before moving on to the transition rates involving the subgap state, we will consider
the case where there is no subgap state. �e energy of the island is then

E (N ,N∆) = EC (N − NG)
2 + ∆N∆, (7.38)

where we have approximated the energy of a quasiparticle by ∆. �e low-energy spectrum
is shown in Fig. 7.3 (a), where black (blue) parabolas correspond to the energy of even (odd)
charge states with no (one) quasiparticle in the continuum. �e odd parabolas are shi�ed
up by the superconducting gap ∆, giving rise to a di�erence in the size of the Coulomb
diamonds of even and odd charge states. �is is seen in Fig. 7.3 (c), where the di�erential
conductance as a function of induced gate charge NG and source-drain bias voltage Vsd is
shown. Peaks at zero bias correspond to ground state degeneracies where the black and
blue parabolas cross each other in (a).

Figure 7.3: (a-b) Energy spectrum of the superconducting island without (a) and with (b) a subgap
state. Black parabolas correspond to even charge states with no quasiparticles in either continuum
or subgap states. Blue (red) parabolas correspond to odd charge states with one quasiparticle in the
continuum (subgap state). (c-d) Di�erential conductance as a function of the induced gate charge
NG and the source-drain bias voltageVsd obtained by solving the master equation numerically. Note
the colorscale is logarithmic down/up to |dI/dV | = 10−3e2/h and then linear across zero. (c) Only
the BCS density of states are included and transition rates are calculated using Eq. (7.36), with
parameters ∆ = 75 µeV, EC = 100 µeV, ρD = 2.25 µeV−1, ΓL,R = 0.1 µeV, and T = 20 mK. (d) Both the
BCS density of states and a subgap state with energy E0 = 25 µeV and coupling to leads Γsub

L,R = 1 µeV.
Other parameters are the same as in (c).

7.3.2 Transition rate in and out of the subgap state

We now calculate the transition rates that involve creating or annihilating quasiparticles in
the subgap state. We consider the general case where the subgap state is spinful and allows
for the two spin states to have di�erent energies as well as coherence factors that may be
di�erent for each lead i = L,R,

γ0σ =
∑
iσ ′

u0σiσ ′d0σ ′ − σ
′v0σiσ ′d

†

0σ̄ ′e
−iϕ̂ . (7.39)
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In this general case, the occupation of the subgap state can take the values N0 ∈ {0,↑,↓, 2}
and we have to consider the following states

| fN+1,σ 〉 = γ
†

0σciνσ |iN ,0〉, EfN+1,σ − EiN ,0 = UN + E0σ − ϵiν , (7.40a)
| fN+1,2〉 = γ

†

0σ̄ciν σ̄ |iN ,σ 〉, EfN+1,2 − EiN ,σ = UN + E0σ̄ − ϵiν , (7.40b)

| fN+1,0〉 = eiϕ̂γ0σciν σ̄ |iN ,σ 〉, EfN+1,0 − EiN ,σ = UN − E0σ − ϵiν , (7.40c)

| fN+1,σ 〉 = eiϕ̂γ0σ̄ciνσ |iN ,2〉, EfN+1,σ − EiN ,2 = UN − E0σ̄ − ϵiν , (7.40d)
| fN ,0〉 = γ0σc

†

iνσ |iN+1,σ 〉, EfN ,0 − EiN+1,σ = −UN − E0σ + ϵiν , (7.40e)
| fN ,σ 〉 = γ0σ̄c

†

iν σ̄ |iN+1,2〉, EfN ,σ − EiN+1,2 = −UN − E0σ̄ + ϵiν , (7.40f)

| fN ,σ 〉 = e−iϕ̂γ †0σc
†

iν σ̄ |iN+1,0〉, EfN ,σ − EiN+1,0 = −UN + E0σ + ϵiν , (7.40g)

| fN ,2〉 = e−iϕ̂γ †0σ̄c
†

iνσ |iN+1,σ 〉, EfN ,2 − EiN+1,σ = −UN + E0σ̄ + ϵiν , (7.40h)

where the �rst (last) four states correspond to a process where an electron has been added
to (removed from) the island. �e calculation of the transition rates using Eq. (7.30) is
similar to that involving the quasiparticles in the BCS continuum. In this case we have
a discrete state instead of a continuum and the expectation value 〈γ †0σγ0σ 〉 just takes the
value 0 or 1 depending on the occupation of the subgap state. �e transition rates are

Γ (i )N+1,σ←N ,0 = Γsub
i |u0σi |

2nF (UN + E0σ − µi ) (7.41a)

Γ (i )N+1,2←N ,σ = Γsub
i |u0σ̄ i |

2nF (UN + E0σ̄ − µi ) (7.41b)

Γ (i )N+1,0←N ,σ = Γsub
i |v0σi |

2nF (UN − E0σ − µi ) (7.41c)

Γ (i )N+1,σ←N ,2 = Γsub
i |v0σ̄ i |

2nF (UN − E0σ − µi ) (7.41d)

Γ (i )N ,0←N+1,σ = Γsub
i |v0σi |

2 (1 − nF (−UN − E0σ + µi )) (7.41e)

Γ (i )N ,σ←N+1,2 = Γsub
i |v0σ̄ i |

2 (1 − nF (−UN − E0σ + µi )) (7.41f)

Γ (i )N ,σ←N+1,0 = Γsub
i |u0σi |

2 (1 − nF (−UN + E0σ + µi ) (7.41g)

Γ (i )N ,2←N+1,σ = Γsub
i |u0σ̄ i |

2 (1 − nF (−UN + E0σ + µi )) (7.41h)

where we have suppressed the index of the BCS continuum occupation N∆ and de�ned
|u0σi |

2 =
∑
σ ′ |u0σiσ ′ |

2, |v0σi |
2 =

∑
σ ′ |v0σiσ ′ |

2. �e estimated coupling strength to the
subgap state Γsub

i = 2π |t0i |2ρi is determined by ��ing a zero-bias conductance peak to the
functional form of a Breit-Wigner resonance with unequal tunnel barriers, see Supplement
of Ref. Jørgensen et al. [2007].

Now with both the BCS continuum and the subgap state, the energy of the island is

E (N ,N∆,N0) = EC (N − NG)
2 + ∆N∆E0N0 (7.42)

where we have assumed that the subgap state energy is the same for both spin directions
and again approximated the energy of a quasiparticle in the continuum by ∆.

�e low-energy spectrum is shown in Fig. 7.3 (b), where black parabolas correspond
to the energy of even charge states with no quasiparticles and blue (red) parabolas to the
energy of odd charge states with one quasiparticle in the continuum (subgap state). �e
idea is to let the subgap state act as a MBS on the island, so we assume the subgap state
to be equal superposition of electron and hole, |u0σi |

2 = |v0σi |
2 = 1

2 , even though it is not
at zero energy. Further, we assume that the couplings to the leads are greater than the
continuum states (which is also seen in experiments), due to the state being localized at the
ends of the nanowire. Since E0 < ∆, the ground state degeneracies are now at crossings
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between black and red parabolas. �ere is still di�erent spacing of the even and odd charge
ground states at zero bias, as long as E0 , 0.

�e di�erential conductance spectrum is shown in Fig. 7.3 (d), where we also see new
features at �nite bias. �e blue lines are negative di�erential conductance (NDC) which
indicate the current ge�ing blocked. �is happens because the BCS continuum states are
more weakly coupled to the leads than the subgap state. It occurs when the bias voltage
becomes large enough so that electrons can enter the continuum. Here they become trapped
for a much longer time compared to the subgap state which results in a blocking of current.

�is current blocking e�ect can be used to estimate the relaxation rate of quasiparticles
from the BCS continuum into the subgap state. �is is important for knowing the lifetime of
the parity of the subgap state and was done in experiments by Higginbotham et al. [2015].

7.3.3 Internal relaxation

�e last type of transitions we include in the general description of the master equation
model are transitions due to relaxation and excitation between states of the island where
no electrons are exchanged with the leads.

�e �rst type of relaxation process we consider, is where a quasiparticle from the BCS
continuum relaxes down into the subgap state. �e rate of this process was estimated by
Higginbotham et al. [2015] in a SC-SM nanowire similar to those we will consider later.
In these SC-SM nanowires, the subgap state is more strongly coupled to the leads than
the BCS continuum states, i.e. γ sub

i > γi . �is leads to a current blocking e�ect when a
quasiparticle enters the BCS continuum and becomes trapped there for a long time, due to
the weaker coupling to the leads. �e current blocking is observed as a NDC peak at �nite
bias.

However, the trapped quasiparticle may exit the island via a di�erent process than
directly tunneling to the leads. It can �rst relax into the subgap state, which is much
more strongly coupled to the leads and thus facilitates fast subsequent tunneling out of
a charge. �e rate of relaxation from the BCS continuum into the subgap state can then
be estimated from the heights of the positive and NDC peaks. A similar e�ect is seen in
superconducting grains in the contunneling regime where current is blocked at �nite bias
when single electron tunneling becomes enabled Hekking et al. [1993].

We assume that the di�erent relaxation processes involving a quasiparticle from the
BCS continuum relaxing into the subgap to be approximately the same and de�ne a common
relaxation rate for all of them. �ese relaxation processes are:

Γ(N∆−1,σ )←(N∆,0) = Γ(N∆−1,2)←(N∆,σ ) = Γ(N∆−1,0)←(N∆,σ ) = Γ(N∆−1,σ )←(N∆,2) ≡ Γrelax, (7.43)

where we have suppressed the index of the number of charges on the island N as it does
not change in these processes.

In terms of the schematics shown in Fig. 7.4: �e �rst rate describes a transition
from an initial state as pictured in (e) to a �nal state (d), the second rate corresponds to
going from (c) to (b), and the third rate from (c) to (a). �e last rate describes transitions
from a state with three excitations (two in the subgap and one in the continuum) to (d).
Relaxation processes like the third and the fourth one mentioned in eq. (7.43) include
the recombination of a Cooper pair, which are allowed since translational invariance is
broken in the system: momentum is not a good quantum number and Cooper pairs are
not simply composed of opposite momentum quasiparticles. For simplicity we assume the
same, energy-independent relaxation rate for all these transitions. �e reverse thermal
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Figure 7.4: Schematic density of states of the island where the subgap state is assumed to be
degenerate, E0σ = E0, for the sake of simplicity. (a–c) Assuming even N , the three lowest-energy
states are (a) without any excitations, (b) a state with a doubly occupied subgap state, and (c) a
state with a singly occupied subgap state and one quasiparticle excitation. (d,e) With odd N the
lowest-energy state (d) has a singly occupied subgap mode and the �rst excited state (e) has one
quasiparticle excitation.

excitation rates are also included and read

Γ(N ,N∆+1,0)←(N ,N∆,σ ) = Γrelaxe
−β (∆−E0σ ), (7.44)

Γ(N ,N∆+1,σ )←(N ,N∆,2) = Γrelaxe
−β (∆−E0σ̄ ), (7.45)

Γ(N ,N∆+1,σ )←(N ,N∆,0) = Γrelaxe
−β (∆+E0σ ), (7.46)

Γ(N ,N∆+1,2)←(N ,N∆,σ ) = Γrelaxe
−β (∆+E0σ̄ ) . (7.47)

We also include the similar process of Cooper pair recombination(breaking) from(to)
the doubly-occupied subgap state,

Γ(N ,0,0)←(N ,0,2) = Γ(N ,1,0)←(N ,1,2) = Γrelax, (7.48)
Γ(N ,0,2)←(N ,0,0) = Γ(N ,1,2)←(N ,1,0) = Γrelaxe

−β (E0↑+E0↓) . (7.49)

To see how these relaxation rates a�ect the current through the island, we simulate
the di�erential conductance for di�erent values of Γrelax, shown in Fig. 7.5. We write the
relaxation rate in terms of a relaxation time τrelax = h/Γrelax, which is the lifetime of a
quasiparticle in the continuum with respect to relaxing into the subgap state. For smaller
τrelax we see the NDC peak diminish and turn into a positive peak, while the peak marked
with д′ grows. �e current blocking e�ect disappears since the quasiparticle remains
trapped in the continuum for a shorter time as it can relax into the subgap state, from
which it can exit into the drain subsequently. �e relaxation time can be quanti�ed by the
relative conductance ratio

R =
д′ + дNDC
д′ − дNDC

(7.50)

between the minimum of the NDC peak дNDC and the growing peak д′ [Higginbotham
et al., 2015]. �e relaxation time is then estimated by ��ing the model relaxation time to
the one obtained experimentally.
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Figure 7.5: (a-d) Di�erential conductance as a function of the induced gate charge NG and the
source-drain bias voltage Vsd in the vicinity of odd to even charge state degeneracy for di�erent
values of relaxation times, wri�en above each plot. �e x-axis below (e-h) also applies to (a-d). (e-h)
Cut along the dashed line in (a-d). �e marked conductance peaks д′ and NDC are used to estimate
the relaxation time. Parameters are ∆ = 75 µeV, EC = 100 µeV, ρD = 2.25 µeV−1, ΓL,R = 0.1 µeV, E0 =
25 µeV, and Γsub

L,R = 1 µeV.

�is concludes the introduction of the master equation model in its general form.
Further details will be speci�ed in the concrete cases of the following chapters.





C
h
a
p
t
e
r 8

Transport Signatures of
�asiparticle Poisoning in a

Majorana Island

“ Never’s the word God listens for when he needs a laugh.

Stephen King, The Dark Tower

�is chapter is based on the work presented in [Albrecht et al., 2017].

In many Majorana-based qubit proposals, the quantum information is stored in the
parity of the MBS. �e MBSs are however not strictly topological due to their �nite over-
lap [Bonderson and Nayak, 2013] and the information is susceptible to errors from quasi-
particle poisoning. In recent papers by Plugge et al. [2017] and Karzig et al. [2017], it is
proposed to implement the Majorana-based qubit in a Coulomb blockaded (CB) setup,
where a large charging energy will help protect the quantum information. In order to
�nd out if it is feasible to use CB superconducting nanowire islands in these schemes, it is
important to know the parity life-time of the charge states in these islands.

In this chapter, we will analyze the data from a tunneling spectroscopy experiment on
a CB SC-SM nanowire island, similar to the setup shown in Fig. 8.1. We use the master
equation model introduced in Chap. 7 to determine the rate of quasiparticle poisoning of
the island.

�e setup consists of an InAs nanowire partially covered by epitaxially grown Al on
two of the nanowires six facets. �e Al covered segment constitutes the �oating island and
is created by tunnel gate induced barriers at the ends of the segment. �e side gate labeled
VG is capacitively coupled to the island and controls the number of charges on the island.

Tunnel spectroscopy is performed by measuring the current I as a function of the
applied source-drain bias voltage VSD and either the gate voltage VG or the magnetic �eld
B⊥. For further details on the experimental setup and more data, see [Albrecht et al., 2017].
Zero bias di�erential conductance data (not included in this thesis) displays a low energy
state, which oscillates as a function of B⊥ in accordance with interpreting the state as a
MBS [Albrecht et al., 2016], while the island remains topologically trivial for magnetic �eld
Btr.
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VSD

I

VG

500 nm

B Btr

InAsAl

Figure 8.1: Top: Electron micrograph (false color) of a Majorana island device similar to the one
used in this experiment. �e applied bias voltage VSD, gate voltage VG, and measured current I are
indicated. Bo�om: Schematic top view of the InAs nanowire (green) with two-facet epitaxial Al
shell (light blue), showing the direction of applied magnetic �elds B⊥ and Btr.

8.1 Theoretical model

Before discussing the experimental results, we will brie�y summarize the theoretical model,
which was introduced in more detail in Chap. 7, in order to discuss the transport processes
relevant for estimating the poisoning rate.

We consider the superconducting island to be a �oating charged island with N charges.
We assume that the density of states of the island can be described by a BCS density of
states with superconducting gap ∆, and discrete subgap states at energies E0σ . At �nite
magnetic �eld, the energy of the two spin directions of the subgap state are di�erent, but
the continuum is una�ected. We assume that the coherence factors of the subgap states are
the same at both ends of the wire where the leads are a�ached and that the electron and
hole components are equal, i.e. |u0σ |

2 = |v0σ |
2 = 1

2 .
�e number of charges on the island is given by N = 2Ncp + N∆ + N0, where Ncp is the

number of Cooper pairs, N∆ is the number of quasiparticles in the BCS continuum, and
N0 is the occupation of the discrete subgap states. �e charging energy associated with
having N charges on the island is

Eel = EC (N − NG)
2, (8.1)

and may be controlled through the gate induced charge NG = CGVG/e by tuning the
capacitively coupled gate VG, where CG is the capacitance between the gate and the island.
�e internal states of the island are labeled by (N ,N∆,N0), with N ∈ N, N∆ ∈ {0, 1}, and
N0 ∈ {0,↑,↓, 2} and the island is tunnel coupled to a source and a drain lead with a voltage
bias VSD applied between.

We assume that the time between tunneling events is long enough that the island
has time to equilibrate. A set of master equations are solved to calculate the distribution
functions of states of the island and the current as a function of the voltage bias VSD and
the gate voltage VG. In this set of equations, we include only single electron tunneling
transitions, which were calculated in Sec. 7.3, and the model is therefore only valid in the
sequential tunneling regime.

For the sake of simplicity, we will in the following discussion restrict the occupation of
the subgap state to N0 ∈ {0, 1}, with the subgap state having energy E0. �is is enough to
explain the concept behind estimating the quasiparticle poisoning rate, but in the numerical
simulations we include the larger set of subgap state occupations given above since it is
a more realistic representation of the experimental situation. We will return to how the
energy spli�ing of the two subgap spin states is implemented later.
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For the present, we take the energy of the island to be

E (N ,N∆,N0) = EC (NG − N )2 + N∆∆ + N0E0. (8.2)

In writing (8.2) we assume that if there is a BCS quasiparticle on the island, its energy can
be approximated by ∆.

S D

S D

Figure 8.2: (a) Spectrum resulting from Eq. (8.2) for di�erent states (N ,N∆,N0) as a function of the
gate-induced charge NG. Red circles mark degeneracies between di�erent charge states (Neven, 0, 0)
and (Nodd, 0, 1), in the ground state branch. Green squares mark degeneracies between di�erent
charge states (Neven, 1, 1) and (Nodd, 1, 0), in a branch of excited (poisoned) states. �e plot is made
to scale with the parameters extracted from the experimental data: EC = 105 µeV, ∆ = 140 µeV, and
E0 = 75 µeV. (b) and (c) Processes corresponding to poisoned (green square) and unpoisoned (red
circle) transport through the subgap state.

�e low-energy part of the resulting spectrum is plo�ed in Fig. 8.2 (a) as a function of
the gate-induced charge NG where the parameters are extracted from experimental data.
Each parabola corresponds to the energy of state (N ,N∆,N0) with the labels included in
the �gure (note that N is to be understood modulo an arbitrary number of Cooper pairs
on the hybrid island). For even N , the ground state is a pure BCS condensate without any
excitations in the subgap state or in the BCS continuum (black curves in the plot). With
this limited occupation space of the subgap state, the �rst excited state (solid green) has
one excitation in the subgap state and one in the BCS continuum, resulting in an excitation
energy of ∆ + E0. For odd N , the ground state (solid red) has one excitation in the subgap
state (energy E0), and the �rst excited state (solid ) has one excitation in the BCS continuum
instead (energy ∆).

At low temperatures and ignoring quasiparticle poisoning for now, the island is expected
to be mostly in its ground charge state, with transport occurring only at charge-state
degeneracies, indicated by the red circles in Fig. 8.2 (a). At these points, an extra electron
can be added to (removed from) the island without energy cost, changing the occupation
of the subgap state. Transport cycles at these degeneracies, schematically shown in Fig. 8.2
(b), correspond to the processes,

(Neven, 0, 0) � (Nodd, 0, 1). (8.3)

�e two degeneracies are symmetric about odd values of NG, and produce a conductance
peak pa�ern with unequal even and odd peak spacings, Se = 1 + E0/EC and So = 1 − E0/EC.
�e odd-even conductance peak spacing de�ned here relates to the dimensionless induced
gate charge NG, but it can be related to the gate voltage VG through the gate lever arm (see
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[Albrecht et al., 2017] for details). �e peak spacing di�erence thus gives the energy of the
subgap state, [Higginbotham et al., 2015]

E0 = EC
Se − So

2 , (8.4)

and can be used to track the subgap state in experiments.
�asiparticle poisoning excites the system from its charge ground state to a state with

N∆ = 1, corresponding to the green and blue parabolas in Fig. 8.2 (a). Due to the relatively
weak coupling of the BCS continuum states to the leads, when compared to the subgap
state, a quasiparticle may be trapped in the continuum long enough to facilitate observable
transport in this excited branch at charge-state degeneracies, marked with green squares
in Fig. 8.2 (a). �e associated transport cycles, shown in Fig. 8.2 (c), correspond to

(Nodd, 1, 0) � (Neven, 1, 1). (8.5)
We include two types of quasiparticle poisoning processes,

(N , 0,N0) → (N ± 1, 1,N0). (8.6)
�e ”+” corresponds to an electron entering the island from one of the leads, while the
”-” corresponds to the breaking of a Cooper pair with one of the electrons exiting the
island and the other staying behind as an excitation in the continuum. �e processes are
characterized by the poisoning rate Γp = h/τp and poisoning time τp . �e model does not
include poisoning events that populate the subgap state as they will tunnel out again on a
time scale set by the large subgap state-lead coupling, Γsub

L,R , and thus does not contribute
signi�cantly to the shadow peak conductance. In the limit of a weakly coupled island, τp
sets a lower bound on the parity lifetime of the island.

Processes that bring the island back to an unpoisoned state with N∆ = 0 include (i)
Cooper pair recombination, (N , 1, 1) → (N , 0, 0) (made possible by the lack of translational
invariance), (ii) quasiparticle relaxation into the subgap state, (N , 1, 0) → (N , 0, 1), and
(iii) quasiparticle tunneling out to a lead, (N , 1,N0) → (N − 1, 0,N0). We discussed the
relaxation processes in more detail in Sec. 7.3.3. Depending on the relative magnitude of
the relaxation rates, the poisoning rate, and the coupling of the subgap state to the source
and drain leads Γsub

L,R , the transport cycles in Eq. (3) can yield measurable conductance
resonances. As evident from Fig. 8.2 (a), the conductance peaks in the poisoned state should
occur with the same peak spacings as the unpoisoned state, Se,o , but shi�ed by 1e in gate
voltage. �e conductance height of the poisoned peaks contains quantitative information
about the quasiparticle poisoning and relaxation rates. �e associated relaxation time was
quanti�ed as τrelax = Γ−1

relax = 0.1 µs in Ref. Higginbotham et al. [2015], where a similar
SC-SM nanowire device was used. �ese relaxation processes are internal processes of the
island and therefore should not depend on the coupling to the leads, so we will use the
same relaxation time here.

Zeeman spli�ing of the subgap states

Applying a magnetic �eld to the island will split the energy of the subgap states by a
Zeeman spli�ing, which is linear for small �elds. Eventually, the state moving up in energy
will merge with the (quasi-)continuum of BCS states, whereas the state moving down will
evolve into a single low-energy mode (a Majorana mode in the limit of a long wire). We
model this e�ect by including a linear spli�ing of the two subgap states,

E0↑(B) =

{
E0 +VZ for 0 ≤ VZ < ∆ − E0,
∆ for VZ ≥ ∆ − E0,

(8.7)

E0↓(B) =

{
E0 −VZ for 0 ≤ VZ < E0,
0 for VZ ≥ E0,

(8.8)
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Figure 8.3: Spectrum as a function of the gate-induced charge NG resulting from Eq. (8.2) with E0σ
as given in Eqs. (8.7) and (8.8). Labels indicating the di�erent states (N ,N∆,N0) are again included,
and the plot is again made to scale with the parameters given in the main text: EC = 105 µeV, ∆ =
140 µeV, and E0 = 75 µeV. We now also included a Zeeman energy of EZ = 25 µeV.

whereVZ =
1
2дµBB withд the e�ectiveд-factor of the subgap state (taken to be positive here).

When the state with σ = ↑ reaches the superconducting continuum it stays at the energy
E0↑(B) = ∆ for larger B, and when the state with σ = ↓ reaches zero it stays at E0↓(B) = 0
for larger B. We also include the e�ect of the decrease in coupling strength to the leads
when the higher subgap state develops into a BCS continuum state in a phenomenological
way, by making the coupling parameters spin- and �eld-dependent,

Γsub
α,↑ = Γsub

α

(
1 −

E0↑(B) − E0
∆ − E0

)
+ γα

E0↑(B) − E0
∆ − E0

, (8.9)

Γsub
α,↓ = Γsub

α . (8.10)

For completeness, we show in Fig. 8.3 again the spectrum as a function of gate-induced
charge (similar as in Fig. 8.2), but now including the e�ect of a �nite Zeeman spli�ing
where E0↑,E0↓ < EC.

8.2 Results

Spectroscopy of similar SC-SM nanowire islands in a CB setup reported by Higginbotham
et al. [2015] and Albrecht et al. [2016] showed peaks at the unpoisoned resonances, Eq. (8.3),
but no features associated with the poisoned transport cycles in Eq. (8.5). We present data
here from the 400nm device that was also used in [Albrecht et al., 2016] with barriers set
to be more transparent. �is increases the coupling of both the subgap state Γsub

L,R and the
continuum ΓL,R , as well as the rate of quasiparticle poisoning from the leads, giving rise to
measurable transport features associated with the poisoned resonances Eq. (8.5).

Fig. 8.4 (a) shows the di�erential conductance, д = dI/dVSD as a function of source-
drain bias voltage VSD and gate voltage VG at zero magnetic �eld. �e data shows a
high-conductance Coulomb diamond pa�ern with large even-occupancy diamonds, small
odd-occupancy diamonds, and negative di�erential conductance (NDC) at �nite bias. �e
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Figure 8.4: (a) Experimental di�erential conductance д as a function of gate voltage, VG, and
source-drain voltage, VSD,at zero magnetic �eld, showing a series of 2e-periodic Coulomb diamonds
with a second set of weaker shadow diamonds o�set from the main diamonds by 1e . (b) Numerically
calculated di�erential conductance as a function of gate-induced charge NG and source-drain voltage
with poisoning time τp = 1.2 µs.

nearly vanishing odd diamond indicates that the subgap state energy E0 is only slightly
smaller than EC.

In addition to the main Coulomb diamonds with peak conductance дm ≈ 0.5e2/h in
Fig. 8.4 (a), a weaker set of “shadow” Coulomb diamonds centered on the valleys of the
main diamonds, with peak conductance дs ≈ 0.03e2/h. �e shadow diamonds are similar
to the main diamonds, including regions of NDC, though much lower in conductance and
shi�ed by the equivalent of 1e in gate voltage. Similar shadowlike peaks were previously
investigated in metallic superconductor islands by Hergenrother et al. [1994], in which case
they were made visible by increasing temperature rather than island-lead coupling.

From the main Coulomb diamonds we extract the charging energy EC = 105 µeV and the
zero-�eld subgap state energy E0 = 75 µeV. Other extracted parameters are: �e coupling
of the subgap state to the leads, Γsub

L ≈ 4.14 µeV and Γsub
R ≈ 24.84 µeV. �e lead-continuum

conductance, дAl ≈ 0.7e2/h, from which the lead-continuum coupling can be obtained by
ΓL,R = дAl (2π (e2/h))−1. �e induced superconducting gap, ∆ = 140 µeV, chosen to match
the onset of NDC. �e temperature in the simulation was T = 80 mK. �e relaxation time
of quasiparticles from the continuum to the subgap state, previously measured to be τp ≈
0.1 µs in similar devices [Higginbotham et al., 2015].

In Fig. 8.4 (b) we show the simulated di�erential conductance д as a function of VSD
and induced gate charge NG using the parameters above. �e qualitative features of the
experimental conductance data are reproduced and a poisoning time of τp = 1.2 µs gives
the best agreement with the observed ratio of main and shadow-peak conductance (see
below for more details).

Fig. 8.5 (a) shows the measured zero-bias di�erential conductance as a function of VG
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Figure 8.5: (a) Measured zero-bias di�erential conductanceд as a function of perpendicular magnetic
�eld, B⊥, and gate voltage, VG, showing a series of strong even-odd Coulomb peaks with weaker
shadow peaks in the even valleys between main peaks. Both sets of peaks split with increasing
�eld and merge at B⊥ ≈ 160 mT. (b) Simulated di�erential conductance as a function of Zeeman
energy, VZ, and dimensionless gate voltage (charge number), NG with poisoning time τp = 1.2 µs.
(c) Measured di�erential conductance vs VG at B⊥ = 50 mT [white dashed line in (a)]. �e average
heights of the main and shadow peaks are indicated by дm and дs , respectively. (d) Simulated
di�erential conductance as a function of NG for poisoning times τp = 0.2, 1.2, and 6 µs. Simulations
show an increase in дs and decrease in дm for decreasing τp .

and perpendicular magnetic �eld B⊥. �e (initially small) odd Coulomb valley spacings
increase with B⊥ up to a �eld of B⊥ ≈ 160 mT, where the average peak spacings become
uniform, 〈Se 〉 = 〈So〉, indicating a zero-energy state E0 = 0. For higher �elds, the peak
spacings oscillate as a function of magnetic �eld, as expected theoretically for hybridized
Majorana modes [Hützen et al., 2012; Das Sarma et al., 2012; Stanescu et al., 2013] and
observed experimentally [Albrecht et al., 2016; Sherman et al., 2017]. Shadow peaks have
the same magnetic-�eld dependence as the main peaks, shi�ed by 1e gate-induced charge.
Above B⊥ ≈ 160 mT, where E0 ≈ 0, main and shadow peaks merge.

�e Zeeman e�ect on the subgap state is included in the numerical model as described
in the previous section. �e resulting zero bias conductance д as a function of NG andVZ is
shown in Fig. 8.5 (b). Using τp = 1.2 µs as in Fig. 8.4 (b) reproduces the qualitative features
of the data, including the spli�ing and merging of main and shadow peaks.

A cut of д vsVG at B⊥ = 50 mT (where the overlap between adjacent peaks is minimal) is
shown in Fig. 8.5 (c). De�ning дm and дs as the average main and shadow peak conductance,
we �nd дm/дs ≈ 18 in the presented gate range. Model conductance curves for di�erent
poisoning times are shown in Fig. 8.5 (d), showing an increase in дs and decrease in дm
for decreasing τp . �e decrease in дm , deemphasized by the logarithmic scale in Fig. 8.5
(d), matches the increase in дs , re�ecting that the island is either in a poisoned or in an
unpoisoned state. For these parameters, the model yields the simple dependence,

τp = a
дm
дs
+ b, (8.11)

with a = 0.068 µs and b = −0.004 µs. From this relation and the observed ratio дm/дs , we
infer τp = 1.2 ± 1 µs.

�e data presented here is not taken in an optimal tuning for long parity lifetimes. By
estimating the maximum ratio дm/дs from the noise �oor in more weakly coupled device
tunings, where no shadow diamonds were observed [Albrecht et al., 2016], a conservative
estimate on the poisoning time of τp > 10 µs can be made. In the limit of a fully decoupled
island this time scale of ∼ 10 µs sets a conservative bound on the lifetime of the parity state
of the island.
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8.3 Summary

In conclusion, we have observed and modeled shadow diamonds o�set from the main
Coulomb diamonds by 1e , associated with quasiparticle poisoning of a SC-SM nanowire is-
land, yielding estimates for poisoning times on a ∼ 1 µs time scale. High-�eld measurements
indicate a transition to the topological phase, with extracted Majorana mode hybridization
energies consistent with previous measurements.
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Probing Electron-Hole
Components of Subgap States in

Coulomb Blockaded Majorana
Islands

“ �e most exciting phrase to hear in science, the one that heralds the most
discoveries, is not “Eureka!” (I found it!) but “�at’s funny…”

Isaac Asimov

�is chapter is based on the work presented in [Hansen et al., 2018].

�e hunt for MBSs has led to an extensive study of SC-SM hybrid nanowires along with
a growing list of theoretically predicted features of MBSs. �e list includes an exponential
suppression of MBS energy with the length of the wire [Kitaev, 2001], a 4π -periodic
Josephson e�ect [Kitaev, 2001], a (2e2/h)-quantized ZBP in conductance [Law et al., 2009;
Sengupta et al., 2001; Flensberg, 2010], and non-Abelian braiding statistics [Nayak et al.,
2008]. Since the �rst observations of a ZBP on the background of a so� superconducting
gap [Mourik et al., 2012], advancements in material growth have enhanced the quality
and resolution of experiments to a point where the more detailed features of the possible
MBSs can be subjected to further experimental tests. �e clean interface between Al and
InAs in epitaxial nanowires has been shown to induce a hard superconducting gap in the
nanowire, close to the gap of Al [Chang et al., 2015], which in turn enabled the observation
of an exponential suppression of the oscillations of the lowest bound-state energy with
increasing wire length in Coulomb blockaded Majorana islands (CBMIs) [Albrecht et al.,
2016] as well as, more recently, a quantized zero-bias conductance of 2e2/h [Nichele et al.,
2017; Zhang et al., 2017]

However, persistent ZBPs in conductance measurements are not conclusive evidence for
the existence of MBSs since other (topologically trivial) phenomena might give rise to ZBPs
as well. Trivial Andreev bound states (ABSs) with conductance features resembling MBSs
might arise due to disorder [Liu et al., 2012], smooth con�nement [Kells et al., 2012], and/or
strongly coupled non-superconducting quantum dots at the ends of the nanowire [Liu
et al., 2017b]. In certain cases where a dot/normal segment is strongly coupled to the end
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of the superconducting nanowire, these trivial ABSs may even result in a 2e2/h quantized
conductance peak at zero bias [Moore et al., 2018b; Vuik et al., 2018]. Braiding experiments
would give a conclusive answer to whether the states associated with the observed ZBP
are topological or trivial in nature, but since these are still outside the reach of current
experiments, transport spectroscopy is currently among the best techniques for obtaining
information about the low energy quantum states in SC-SM nanowires. It is therefore of
great interest to the �eld to extract additional information about the state behind the ZBP
from the currently accessible transport spectroscopy measurements.

Experiments with CBMIs have shown consistent behavior in tunnel conductance mea-
surements over many Coulomb peaks [Albrecht et al., 2016], indicating that transport
happens through the same state and that the state is, to a large degree, unperturbed by the
change in gate voltage. So far, analyses of the zero-bias conductance in these setups have
mainly focused on the oscillations and intensity of individual peaks as a function of system
parameters [Albrecht et al., 2016; van Heck et al., 2016; Das Sarma et al., 2012].

In this chapter, we will discuss how zero-bias conductance (ZBC) measurements on
CBMIs [see Fig. 7.1] can give information about the electron and hole components of the
system’s lowest-energy state, which in turn might help to discern whether this state is
a MBS or a trivial ABS. We study the ZBC in the sequential tunneling regime with the
assumption that the lowest-energy state is well separated from higher excited states on the
scale of temperature and tunnel coupling. We �nd that, the ZBC at even-odd (odd-even)
charge degeneracies is proportional to the electron (hole) component of the lowest-energy
state, see Fig. 9.1. �e ratio of consecutive ZBC peaks thus gives a direct measure of the ratio
of the electron and hole components of the state, which can be compared with theoretical
predictions.

In the case where the CBMI hosts a pair of MBSs, we �nd that this ratio will follow a
similar beating pa�ern as that of the energy spli�ing. MBSs are localized exponentially
at the ends of the SC-SM nanowire and the wave-function overlap of a pair of MBSs is
exponentially suppressed by the distance between them. When the separation of MBSs
is several times larger than the Majorana localization length, the MBSs are, to a good
approximation, completely decoupled from each other and consist of an equal superposition
of an electron and a hole at zero energy. In shorter nanowires where the overlap between
MBSs is non-negligible, the MBSs acquire an energy spli�ing, which oscillates as a function
of the magnetic �eld. �e electron and hole components (u and v) of overlapping MBSs are
in general unequal, and the ratio ( |u |2 − |v |2)/( |v |2 + |u |2) oscillates as a function of the
magnetic �eld with the same period as the energy spli�ing but shi�ed such that the ratio
di�ers from 0 when the spli�ing is zero and is ±1 when the energy spli�ing is maximal.

�is additional piece of information might serve to di�erentiate a trivial ABS with
MBS-like conductance features from a true MBS. We show how this applies to an example
case, similar to the setups considered in Refs. [Liu et al., 2017b; Moore et al., 2018a], where a
Majorana nanowire with a non-superconducting region at the end hosts a trivial ABS that
gives rise to a ZBP similar to what is seen in the experiment reported in Ref. [Deng et al.,
2016]. We �nd that trivial ABSs of this kind can be distinguished from topological MBSs by
looking at the correlation between the ratio of conductance peaks and the energy spli�ing.
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Figure 9.1: (a) Energy spectrum of the CBMI, given in Eq. (9.1), as a function of the dimensionless
gate-induced charge NG. (c) At even-to-odd (odd-to-even) charge-state degeneracies, indicated in
(b), the sequential transport is governed by the value of the norm of the subgap state’s electron
(hole) coherence factor |u |2 (|v |2) at the end of the wire.

9.1 Model

We consider the setup of a CBMI as depicted in Fig. 7.1. It is assumed that the subgap
eigenstate of the MI with lowest-energy E0 is well separated from higher eigenstates on
the scales of temperature and tunnel coupling to the leads. In the sequential-tunneling
regime, the dominating contribution to conductance at zero bias is by transport through
this state, and we will therefore include only this state in our master equation transport
model. We label the states of the CBMI by the number of charges N and the occupation of
the state at E0, N0 = {0, 1}. �e number of charges include an even number of electrons
that are condensed into Cooper pairs, and N can only be odd (even) when N0 = 1(0). �e
spectrum, shown in Fig. 9.1 (b), is given by

E (N ,NG,N0) = EC (N − NG)
2 + N0E0, (9.1)

where the �rst term is the electrostatic energy due to Coulomb interaction with NG being
the dimensionless gate-induced charge proportional to the gate voltage VG. At zero bias,
conductance peaks appear when two charge states are degenerate which is indicated with
red and cyan circles in Fig. 9.1 (a). �e distance between these peaks is labeled So and Se
corresponding to odd or even ground states.

�e master equation transport model we employ here was introduced in Chap. 7. In
this chapter, we add some more structure to the subgap state as compared to the case in
Chap. 8, where |u |2 = |v |2 = 1/2.

We consider the operatorψ †σ (x ) that creates an electron of spin σ at position x in the
SC-SM nanowire that constitutes the CBMI. Writing it in terms of the eigenstates of the
CBMI γn it takes the form

ψ †σ (x ) =
∑
n

[
unσ (x )γ

†
n +v

∗
nσ (x )γne

iϕ̂
]
, (9.2)

where the sum is over all eigenstates of the MI and eiϕ̂ creates the charge equivalent of a
Cooper pair on the island. �e coherence factors u and v depend on the microscopic model
of the MI, which we will return to later. Projecting the tunneling Hamiltonian onto the
lowest bound state, with creation operator γ †0 , we write it as

HT =
∑

σ ,i=L,R

t0i (u0σiγ
†

0 +v
∗
0σiγ0e

iϕ̂ )ciνσ + h.c. (9.3)

where c†iνσ is the electronic creation operator of electrons in lead i in state ν . We assume a
constant density of states in the metallic leads and energy-independent tunnel couplings.
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�e coherence factors u0σi and v0σi correspond to the coherence factors on the le� (x = 0)
and right (x = L) ends of the island for i = L and R, respectively.

�e zero-bias conductance can be calculated analytically in the vicinity of ground-state
degeneracies by solving the master equation under the approximation that only the two
degenerate states contribute to transport. �e result is

Ge→o =
e2

h

ΓLΓR |uLuR |
2

4(ΓL |uL |2 + ΓR |uR |2)

β

cosh2
[ β

2 (UN + E0)
] , (9.4)

for the even-to-odd degeneracies, where ΓL,R are dimensionless parameters characterizing
the coupling to the le� and right lead and β is the inverse temperature. We have de�ned
the electrostatic energy di�erence UN = Eel (N + 1) − Eel (N ) between charge states N + 1
and N and the spin sum of the coherence factor |ui |2 =

∑
σ |uσi |

2. �e conductance in the
vicinity of the odd-to-even degeneracy is the same, but with ui → vi and E0 → −E0:

Go→e =
e2

h

ΓLΓR |vLvR |
2

4(ΓL |vL |2 + ΓR |vR |2)

β

cosh2
[ β

2 (UN − E0)
] . (9.5)

Assuming that the coherence factors ui and vi do not change between neighboring conduc-
tance peaks Ge→o and Go→e, we de�ne the ratio

Λ =
Ge→o −Go→e
Ge→o +Go→e

=

ULUR
UL+UR

−
VLVR
VL+VR

ULUR
UL+UR

+
VLVR
VL+VR

, (9.6)

where we have de�ned Ui = Γi |ui |
2 and Vi = Γi |vi |

2. �is ratio is accessible experimentally
and carries information about the relative size between electron and hole coherence factors
of the subgap state. �e ratio goes from −1 where the state is purely hole-like, to +1 for
a purely electron-like state (at the end positions where the leads are a�ached). In the
general case between these two limits, it might be di�cult to disentangle the e�ective
tunnel coupling to the leads, Γi , from the coherence factors, |ui |2 and |vi |2, which depend
on the distribution of the subgap state wavefunction. We will here consider a couple of
cases where it is possible.

When the coherence factors are the same where both leads are a�ached, uL,R = u and
vL,R = v , the couplings to the leads, ΓL,R , cancel and the ratio Λ gives a direct measure of
the ratio of the coherence factors

Λuni =
|u |2 − |v |2

|u |2 + |v |2
. (9.7)

�is may correspond to a case where the island is made of a uniform SC-SM nanowire
and it is an ideal case for determining the ratio of the electron and hole components of the
subgap state.

In the limit of very asymmetric couplings to the leads, where UR � UL and VL � VR ,
we get

ΛΓR�ΓR =
|uL |

2 − |vL |
2

|uL |2 + |vL |2
, (9.8)

and the ratio gives a measure of the electron and hole components at the position of the
most weakly coupled lead (in this case lead L). Having good experimental control of the
couplings to the leads would then make it possible to probe the ratio of the electron and
hole components at each lead position somewhat independently.
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In the case of symmetric couplings to the leads, ΓL = ΓR , we have

ΛΓL=ΓR =

|uL |2 |uR |2

|uL |2+ |uR |2
−
|vL |2 |vR |2

|vL |2+ |vR |2

|uL |2 |uR |2
|uL |2+ |uR |2

+
|vL |2 |vR |2
|vL |2+ |vR |2

. (9.9)

�ese results hold in general for any lowest-energy subgap state as long it is well
separated from higher-energy states and sequential tunneling processes dominate the
transport. �e experimentally obtained ratio Λ can then be compared with a microscopic
model of the subgap state in order to determine its nature.

We model the SC-SM nanowire that constitutes the CBMI by the single channel BdG
Hamiltonian introduced in Sec. 2.3. Previously wri�en details are le� out and we only
write the single particle Hamiltonian to refresh our memory:

H=

[
−
}2

2m∗ ∂
2
z − µ − iαR∂zσx

]
τz +VZσz + ∆τx , (9.10)

wherem∗ is the e�ective mass of the electrons, µ is the chemical potential, αR is the spin-
orbit coupling strength, VZ =

1
2дµBB is the Zeeman energy due to the magnetic �eld B

along the nanowire with Landé д-factor д and the Bohr magneton µB, and ∆ is the induced
superconducting gap. �e Pauli matrices σ and τ act on spin and particle-hole space,
respectively.

�e eigenenergies ϵn and the electron and hole components unσ and vnσ are found by
numerically diagonalizing a discretized version of the Hamiltonian obtained using the tight
binding approximation on a chain of length L with N sites.

9.2 Results

We will consider both the case of the subgap state being a topological MBS and a trivial
ABS, which displays a MBS-like conductance peak at low bias. �e ratio Λ will be calculated
using Eq. (9.6), rather than extracting it from simulating conductance measurements with
the master equation model, but it has been checked that the results agree.

9.2.1 Uniform nanowire

We will �rst study the case where the nanowire island is a uniform SC-SM nanowire and
consider both the topological phase (Zeeman �eld perpendicular to spin-orbit �eld) and
the trivial phase (Zeeman �eld parallel to spin-orbit �eld).

Topologically non-trivial

We study the topological case to look for features that might be used to identify topological
MBSs. We take the island to be a uniform SC-SM nanowire of length L = 1 µm and use N =
100 sites in the discretized model. We use symmetric coupling to the leads, ΓL = ΓR , although
the results are independent of the lead couplings, cf. Eq. (9.7). �e other parameters are the
e�ective mass of the electrons in the nanowire m∗ = 0.026me , spin-orbit coupling strength
αR = 30 µeV µm, chemical potential µ = 0 µeV, and superconducting gap ∆ = 140 µeV.

In Fig. 9.2, we see a simulated example of how measured data from a CBMI might
look for the parameters given above in the regime with topological MBSs. �e ZBC is
calculated using Eqs. (9.4) and (9.5), where the energy E0 and the coherence factors at the
end of the nanowireuL,R andvL,R are obtained numerically by diagonalizing the discretized
Hamiltonian.

In an experimental data set, such as this, the ratio Λ de�ned in Eq. (9.6) can then be
accessed directly using the heights of consecutive conductance peaks as shown in Fig. 9.2
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Figure 9.2: (a) Zero-bias conductance as a function of Zeeman-�eld VZ and gate-induced charge
NG, calculated from Eqs. (9.4) and (9.5) with T = 150 mK, EC = 150 µeV, and ΓL,R = 1. �e colored
dashed lines indicate where cuts in (b) are taken and the x-axis is the same as in (c). (b) Cuts along
the NG axis of (a) atVZ = 570 microeV (the green triangle), 685 µeV (the cyan star), and 820 µeV (the
red circle). (c) Energy of the subgap state ±E0 (red and blue) on the le� axis, and Λ (black) on the
right axis.

(b). �e energy of the subgap state can also be extracted from the size of the odd-even peak
spacings through [Higginbotham et al., 2015]

E0 = EC
Se − So

2 , (9.11)

where Se and So are in units of the induced gate charge.
In Fig. 9.2 (c), we see ±E0 (red and blue), plo�ed along with the ratio Λ. �e oscillating

behavior of Λ, seen a�er the topological phase transitionVZ,c ≈ 140 µeV, is a generic feature
of MBSs. �e oscillations follow the same period as the spli�ing between ±E0 but shi�ed
so that |Λ| is maximal when E0 crosses zero. �at is, the MBS is more electronlike/holelike
when it is at zero energy and half-electron/half-hole when the energy spli�ing is maximal.
�is behavior is generic in the sense that Λ is correlated to the oscillations of E0 such that,
if parameters are changed, Λ will change accordingly to the change in E0 .

�e �nite energy spli�ing and the non-zero Λ are due to the �nite size e�ects, where
the MBS at each end of the nanowire hybridize with each other. In longer nanowires, where
the overlap between MBSs is smaller, both the energy spli�ing as well as Λ are smaller, as
seen in Fig. 9.3 (a), where a nanowire of length L = 2 µm is considered. As the Zeeman �eld
increases, the oscillations of Λ grow in a similar manner as the energy spli�ing oscillations,
due to the increasing overlap of the MBSs.

In the limit of an in�nitely long nanowire, both the energy spli�ing and Λ go to zero.
However, this is also the expected behavior in the limit when the nanowire island becomes
normal (non-superconducting). It is therefore important to determine if there still is a �nite
superconducting gap between the subgap state and higher excited states, e.g. by considering
�nite bias conductance.

In experiments, the superconducting gap will eventually be destroyed by the applied
magnetic �eld. �is e�ect is not included in our model, but it appears to be common in
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Figure 9.3: Energy of the subgap state ±E0 (red and blue) on the le� axis, and Λ (black) on the right
axis as a function of Zeeman �eldVZ (a) and chemical potential µ (b). Parameters are the same as in
Fig. 9.2, except L = 2 µm for (a) and VZ = 0.5 meV in (b). �e shaded blue area in (b) indicated the
topological phase in the range |µ | <

√
∆2 +V 2

Z . 520 µeV.

current state of the art experiments to observe only one or two energy spli�ing oscillations
as a function of magnetic �eld. It is therefore di�cult to investigate the correlated behavior
between the energy spli�ing andΛ discussed above as a function of magnetic �eld. However,
the energy spli�ing and Λ is correlated in the same way as a function of chemical potential,
as seen in Fig. 9.3 (b). Even when the Zeeman/magnetic �eld is tuned to the �rst maximum
of the energy spli�ing oscillations as done here, the topological phase contains several
oscillations as functions of µ. �is makes the chemical potential a more a�ractive parameter
to be able to tune in experiments when looking for correlations between the energy spli�ing
and Λ and it was recently observed in experiments by O’Farrell et al. [2018].

�e kinks in the curve of Λ at large µ are due to a crossing of the lowest and second
lowest energy subgap state. Since the two states have di�erent ratios of electron-hole
components and we only include the lowest-energy subgap state in our model, Λ will
jump when the lowest-energy state changes. Taking higher energy states into account is
expected to smooth out the kinks of the curve where the lowest-energy state crosses the
second lowest state, but not change Λ where there is a considerable gap between the lowest
and second lowest-energy state. Including the e�ects of higher energy states should thus
not a�ect the observed behavior inside the topological phase, since there is a considerable
gap between these and the subgap state.

In this section, we considered the nanowire island to be a uniform SC-SM nanowire
for which |uL |2 = |uR |2 and |vL |2 = |vR |2. �e ratio Λ was thus given by Eq. (9.7) which is
independent of the couplings to the leads ΓL,R . Tuning the couplings to the leads may be
used experimentally to study whether the nanowire island is uniform or at least uniform
enough that the subgap state is coherent across the island. It would be signi�ed by Λ being
independent of tuning the couplings to the leads, assuming that tuning the coupling does
not perturb the subgap state inside the nanowire signi�cantly.

Topologically trivial case

Next we consider the situation where the Zeeman �eld is parallel to the spin-orbit �eld,
such that the nanowire stays in the trivial phase. �e energy of the lowest-energy state
and Λ as a function of Zeeman �eld is shown in Fig. 9.4 (a). In this case there is no gap
between the lowest-energy and second lowest-energy state, as seen in (b). Since both states
will contribute to transport when they are approximately degenerate, we can not expect
the picture in (a) to be completely accurate, but it still gives a qualitative picture of the
correlation between the energy spli�ing and Λ.

�e curve of Λ jumps when the lowest and second lowest-energy states cross each
other. We expect, as in the previous section, that including the second lowest state in our
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(b)(a)

Figure 9.4: (a) Energy of the subgap state ±E0 (red and blue) on the le� axis, and Λ (black) on the
right axis and (b) eigenenergies as a function of Zeeman �eld VZ for a Zeeman �eld parallel to the
spin-orbit �eld. Parameters are the same as in Fig. 9.2, except L = 0.4 µm.

model will result in a smoothening of these jumps, but that the oscillating behavior will
be le� unchanged. �e oscillations of Λ are hence correlated with the energy spli�ing
oscillations in the same way as we saw in the topological case above. It might therefore be
di�cult to tell the two apart by only considering the energy spli�ing and Λ. �is correlated
behavior between Λ and the energy spli�ing should therefore be viewed as a signature of
the nanowire island being uniform enough that the subgap state is coherent across the
island, rather than a MBS signature. Under the right conditions, that is a considerable
spin-orbit interaction and magnetic �eld perpendicular to the spin-orbit �eld, this state
should turn into a MBS. Finite bias measurements can be used to align the magnetic �eld
correctly and determine whether there is a gap between the lowest-energy state and higher
energy states.

9.2.2 Dot-Nanowire system

We will now consider the case where the island is a non-uniform SC-SM nanowire. Occa-
sionally, a quantum dot is formed in the nanowire at the position of a tunnel barrier, as in
the experiment considered in Chap. 5.

Several theoretical studies of SC-SM nanowires with non-uniform potentials in a
grounded nanowire setup have reported the existence of low-bias conductance features
in the topologically trivial regime, which are similar to MBS features. Liu et al. [2017b]
found that in the case of the dot being strongly coupled to the superconducting part of the
nanowire (i.e. no potential barrier between the dot and nanowire), low-bias conductance
features emerged in the topologically trivial regime, which were very similar to the features
observed in the experiments by Deng et al. [2016].

In work by Moore et al. [2018a], it was found that non-uniform potentials or a non-
superconducting segment at the end of the nanowire may give rise to low energy partially
separated ABS (ps-ABS) in topologically trivial parts of parameter space. �ese ps-ABSs may
exhibit conductance features similar to MBSs, such as a robust ZBP with 2e2/h quantized
conductance as a function of Zeeman �eld [Moore et al., 2018b]. �e ps-ABSs are mainly
localised at only one end of the nanowire, as opposed to MBSs, which have equal and
correlated parts at both ends. It was proposed to discern the ps-ABSs from MBSs by looking
at the correlations between ETS conducted at both ends of the nanowire.

In this section, we will study such ps-ABSs in a non-uniform nanowire and see how
they may be distinguished from MBSs in a coulomb blockaded setup. We take the island to
be as SC-SM nanowire where a segment at the end of the nanowire is uncovered by the
superconductor, as pictured in Fig. 9.5. �e superconductor covers a part of the nanowire of
length L∆ and the uncovered part is of length Ldot. Although a more realistic setup would
have a normal segment at both ends of the nanowire, we consider this setup for simplicity.
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le tunnel barrier right tunnel barrier

Source Drain

Island

Figure 9.5: (top) Schematic picture of the Coulomb blockaded nanowire island setup and the spatial
pro�le of the induced superconducting gap ∆ (middle) and the potential in the dot Vdot (bo�om).

Case (A) (B)
Induced superconducting gap: ∆ = 140 µeV ∆ = 250 µeV

Dot size: Ldot = 0.15 µm Ldot = 0.3 µm
Spin-orbit interaction: αR = 30 µmµeV αR = 40 µmµeV

Dot potential: Vdot = 1000 µeV Vdot = 750 µeV

Table 9.1:

We will refer to non-superconductor-covered segment as the ”dot” for easy reference even
though it does not constitute a quantum dot. �e Hamiltonian describing the island is still
Eq. (9.10), but now with induced superconducting gap in only a part of the nanowire,

∆(z) =



0 for z < Ldot,

∆ else,
(9.12)

and a dot potential

Vdot (z) =



Vdotτz for z < Ldot,

0 else.
(9.13)

We simulate this setup with two sets of parameters. In Case (A), we will see a subgap
state going to zero and oscillating around zero in a MBS-like manner. In case (B), we see a
subgap state going to zero energy and forming a robust ZBP with constant conductance
close to 2e2/h. �e common parameters are the superconductor covered section L∆ = 1 µm
and the e�ective mass of the electronsm∗ = 0.026me , while the case speci�c ones are given
in table 9.1. �e remaining parameters are given in the captions of the �gures.

In order to identify a parameter regime where these MBS-look-alike ps-ABSs exist, we
simulate transport, where the right tunnel barrier is completely open and the island is
grounded, using the S-matrix formalism introduced in Chap. 3.

In Fig. 9.6 (a) and (b), we see a subgap state starting at �nite energy which moves to
zero energy as a function of Zeeman �eld. In (a), it oscillates around zero energy in a way
similar to a MBS while in (b) it remains zero for an extended range of the Zeeman �eld.
However, the topological phase transition happens at VZ,c =

√
∆2 + µ2, which is V (A)

Z,c ≈

1550 µeV and V (B )
Z,c ≈ 1350 µeV in the two cases, hence the ZBP is due to a trivial ABS. �e

zero-bias conductance shown in (c) is not quantized exactly at 2e2/h, but shows a plateau
at ≈ 1.75e2/h.
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(b)

(c)

(a)

Figure 9.6: (a) and (b) Di�erential conductance as a function of source drain bias voltage Vsd and
Zeeman �eldVZ. (a) [(b)] correspond to case (A) [(b)] with µ = 1550 µeV [1320 µeV] and the e�ective
tunnel coupling to source lead is γ = 1 meV [4.5 meV]. (c) Zero-bias di�erential conductance as a
function of Zeeman �eld VZ.

(a) (b)

Figure 9.7: Energy of the subgap state ±E0 (red and blue) on the le� axis, and Λ on the right axis
for symmetric coupling to the source and drain leads ΓL = ΓR (black) and for asymmetric couplings
ΓL = 10ΓR (dashed green) and ΓR = 10ΓL (dashed orange). (a) correspond to case (A) with µ =
1550 µeV and (b) to case (B) with µ = 1320 µeV.

Since the chemical potential µ is not known in experiments and the д-factor is estimated
from the slope of the subgap state, the critical magnetic �eld where the topological phase
transition occurs is not known. In an in�nite system, the phase transition is accompanied
by a closing of the superconducting bulk gap, but it is not necessarily visible in �nite
systems [Stanescu et al., 2012]. ZBPs such as these two examples may thus be mistaken as
signatures of MBSs.

We proceed to the case where tunnel barriers are induced at both ends and the nanowire
becomes a �oating charged island. We assume that the low energy spectrum is not a�ected
by the right tunnel barrier now being closed and extract the electron and hole coherence
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factors of the lowest-energy state at the ends of the nanowire, as in the uniform case.
�e evolution of E0 and Λ as function of the Zeeman �eld in the two cases is shown in

Fig. 9.7. In (a), corresponding to case (A), if the lowest-energy state were a MBS, we would
expect Λ to oscillate in the same way as the energy spli�ing, but shi�ed so that |Λ| has a
local maximum when E0 cross zero and |Λ| ≈ 0 when |E0 | has a local maximum. Instead
we see Λ being mostly positive, corresponding to the state being mostly electron-like. Λ
also shows some dependence on the relative strength between the couplings to the source
and drain leads, as shown by the dashed orange and green curves being distinct from the
black curve.

In (b), the oscillations of E0 are very small over an extended range of Zeeman �elds, so
for a MBS we would expect the Λ to be close to 0 in this range. Instead we see Λ oscillating
back and forth across 0 in a seemingly unsystematic manner and that Λ depends on the
relative strength of the couplings to the leads for some values of VZ.

In light of the correlation between Λ and E0 in the case of uniform nanowires and MBSs,
as discussed in Sec. 9.2.1, both cases discussed here exhibit very di�erent behavior and can
be discounted as MBS candidates.

Further details on trivial low-energy ABS

We will study these trivial ABSs a bit further in order �nd their origin and where they
might be encountered.

(c)

(a)

topological trivialtopological trivial (d)

(b)

Figure 9.8: (a) and (b): Energy of the lowest-energy state as a function of Zeeman �eld and chemical
potential for case (A) and (B) with parameters as given in the text. �e horizontal white dashed
lines indicate the value of µ where Fig. 9.7 (a) and (b) are taken, while the vertical white dashed
lines indicate the value of VZ where (c) and (d) in this �gure are taken. �e regime where the
superconductor covered part of the nanowire is in the topological phase is indicated by the white-
shaded region. �e red star, green circle, and yellow square indicate values of VZ and µ used in
Fig. 9.9. (c) and (d): Energy of the subgap state ±E0 (red and blue) on the le� axis, and Λ on the
right axis (black) as a function of chemical potential (for ΓL = ΓR ) with VZ = 600 in both (c) and (d).
�e light-blue shaded region indicates the region where the superconductor covered part of the
nanowire is topological.
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In Fig. 9.8 (a) and (b), we see the energy of the lowest-energy state as a function of
Zeeman �eld and chemical potential in cases (A) and (B), respectively. �e consistent striped
pa�ern seen in the topological regime (white shaded) is symptomatic of MBS oscillations.
Outside the topological region there are regions with high chemical potential where the
lowest-energy state cross zero energy (black color). Although these trivial low-energy states
seem to be generic at large µ for a range of model parameters, the parameter con�gurations
where the states behave in a MBS-like manner as function of the Zeeman �eld are �ne-tuned
points. We discussed two such cases (indicated by the horizontal white dashed lines in
Fig. 9.8 (a) and (b)) in the section above. A slight change of µ alters the evolution of E0 as a
function of VZ drastically. �ere is thus a clear di�erence between the systematic behavior
in the topological phase and the more chaotic behavior in the trivial phase.

�is is also seen in Fig. 9.8 (c) and (d), where we compare the spli�ing of the lowest-
energy state (blue and red) with Λ (black) as a function of the chemical potential. In the
topological regime (light blue shaded) we see the same correlated behavior between the
energy spli�ing oscillations and Λ as in the case of the uniform nanowire. In the trivial
regime we see two distinct behaviors, but both are di�erent from the topological and
uniform cases. In case (A) [Fig. 9.8 (c)], the energy spli�ing oscillates around zero, but
Λ clearly oscillates with a di�erent period than the energy spli�ing. In case (B) [Fig. 9.8
(d)], Λ oscillates with the same frequency as the small energy oscillations, but the energy
oscillations are not centered around zero.

Both behaviors are di�erent from that of the MBS in the topological regime, where
we expect the energy spli�ing to oscillate around zero and Λ to oscillate with the same
period, but shi�ed by π/2 relative to the energy spli�ing. It should therefore be possible
to discern trivial ABSs of this kind from MBSs by looking at the correlation between the
energy spli�ing and Λ as a function of the chemical potential.

Even in the case where it is possible to �nd a set of parameters in the trivial regime
where the energy spli�ing and Λ are correlated as a MBS as a function of VZ (µ), it would
most likely be a very �ne tuned point in parameter space, which should be revealed by
tuning µ (VZ).

(c)(a) (b)

Figure 9.9: Spatial wavefunction of the two Majorana modes of the lowest-energy fermionic mode
with energy E0. (a, red star) MBS in the topological phase with µ = 100 µeV and VZ = 400 µeV. (b,
green circle and c, yellow square) Trivial low-energy ABS with parameters VZ = 600 µeV and (b)
µ = 880 µeV and (c) µ = 1320 µeV. �e values of µ and VZ are indicated by corresponding symbols
in Fig. 9.8 (a). �e remaining parameters are given in the text for case (A).

Lastly, we look at the spatial wavefunctions of the two Majorana modes that the
lowest-energy fermionic mode can be decomposed into, using Eq. (2.39) and (2.39). �is
decomposition is not only tied to the MBS, but can be done for any fermionic mode, although
for a MBS, the two constituting Majorana modes will be spatially separated, as we discussed
in Sec. 2.3.

In Fig. 9.9 (a), we show the Majorana modes of a MBS in the topological regime, localized
at the edges of the topological phase (superconductor covered part of nanowire). �is is
compared with two trivial low-energy ABSs in (b) and (c) where the two Majorana modes



9.3. SUMMARY AND PERSPECTIVE 129

are localized at the le� end of the nanowire where the dot is situated. �e Majorana modes
of these trivial low-energy ABSs do not overlap completely, but rather are slightly separated,
earning them the name partially-separated ABSs (ps-ABSs) as they have been termed by
Moore et al. [2018a]. When the separation is so large that only one Majorana mode has
weight at the le� end, it may be impossible to tell this ps-ABS from a MBS using only
ETS at the le� end. However, since the ps-ABS is only located at one end of the nanowire,
as opposed to the MBS, it should also be possible to discern from a MBS by looking at
the correlation between the conducted ETS at both ends of the nanowire, as proposed by
Moore et al. [2018a]. Here, we have discussed another way of discerning these ps-ABSs, by
considering the correlation between the lowest-energy state spli�ing and Λ in Coulomb
blockaded transport experiments in the sequential tunneling regime.

9.3 Summary and perspective

In this chapter, we have calculated the ZBC through a CBMI hosting a single isolated
subgap state in the sequential tunneling regime. We found that the height of the ZBC peaks
at the even-to-odd Ge→o (odd-to-even Go→e) charge state degeneracy is proportional to the
electron (hole) components of the subgap state wavefunction at the position of the tunnel
coupled leads. By considering the ratio of neighboring conductance peaks,

Λ =
Ge→o −Go→e
Ge→o +Go→e

, (9.14)

it is possible to gain information about the relative size of the subgap state’s electron and
hole components.

We proceeded to study the correlated behavior between the ratio Λ and the energy
of the subgap state for di�erent microscopic models of the MI and subgap states. We
considered the case of a uniform SC-SM nanowire both in the topological case with MBSs
(Zeeman perpendicular to spin-orbit) and the trivial case (Zeeman parallel to spin-orbit).

In the topological case, Λ oscillates with the same frequency as the energy spli�ing
of the MBS but shi�ed such that Λ ≈ 0 when the energy spli�ing is maximal and |Λ| is
maximal when energy spli�ing is ≈ 0. �is behavior is observed both as a function of
Zeeman �eld and chemical potential. In the limit of a long nanowire where the MBSs are
decoupled, the energy spli�ing and Λ goes to zero.

In the trivial case, we see the same correlated behavior between the energy spli�ing
of the subgap state and Λ. �e correlated oscillations between the energy spli�ing and
Λ can therefore not be used as exclusive indicators of the presence of MBSs. It is rather
indicating that the SC-SM nanowire constituting the MI is uniform and that the subgap
state may evolve into a MBS under the right circumstances, i.e. Zeeman �eld perpendicular
to spin-orbit �eld and strong spin-orbit interaction. It may also be used to discard certain
trivial low-energy ABSs that behave similar to MBSs.

As an example, we considered the case of a non-uniform SC-SM nanowire where a
segment at the le� end of the nanowire was not covered by the superconductor. �is case is
known to exhibit trivial low-energy ABSs which give rise to MBS-like conductance features
in one-end ETS in a grounded nanowire setup [Liu et al., 2017b; Moore et al., 2018a; Vuik
et al., 2018]. We considered two sets of parameters where a low-energy subgap state either
oscillated around zero energy or formed a robust ZBP as a function of Zeeman �eld in
a manner similar to what is expected for a MBS. In both cases, the correlations between
the energy spli�ing and Λ was signi�cantly di�erent from the observed behavior in the
uniform and topological case above which makes it possible to distinguish these trivial
ABS states from MBSs.
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It is nevertheless not possible to rule out the possibility of trivial ABSs where the
energy spli�ing and Λ correlate in the same manner as MBSs. Further investigations of
these trivial low-energy ABSs revealed that they seem to exhibit MBS-like behavior only
at �ne tuned points, which may be uncovered by tuning the chemical potential. It may
hence be possible to distinguish these trivial ABSs from MBSs in general by looking at the
correlations between the energy spli�ing and Λ both as a function of magnetic �eld and
chemical potential.

We also looked at the wavefunctions of these trivial low-energy ABSs and found
that they are located mainly in the non-superconducting segment at the le� end of the
nanowire, in contrast to MBSs that are located at both ends of the superconducting segment.
Decomposing them into two Majorana modes showed that the ABS is what could be termed
as a partially-separated ABS, where the two Majorana modes are not separated well enough
to be considered real MBSs [Moore et al., 2018a].

�e kind of trivial low-energy ABSs we have studied here occur somewhat generically
at large chemical potential, as seen in Fig. 9.8 (a) and (b). �eir details depend strongly on
the size and potential in the dot/normal segments as well as the strength of the spin-orbit
interaction. Ongoing studies (not included in this thesis) seems to indicate that these ABSs
can be avoided or made less frequent by having a short dot/normal segment (. 100 nm)
and a larger potential (barrier).

9.3.1 Ideas for future work

Due to the constraints of time, some questions will have to be le� open for future studies.
We will here discuss a couple of ideas that might be natural to consider next.

Normal-superconductor-normal setup

In the non-uniform case above, we considered a SC-SM nanowire with a non-super-
conducting segment only at the le� end. However, a more realistic setup in the Coulomb
blockaded setup would be a normal-superconductor-normal (NSN) con�guration since
tunnel barriers are induced at both ends of the SC-covered nanowire. Although we will not
be studying this setup here, we will argue that the results found above apply to the NSN
setup in most cases.

In a Coulomb blockaded setup, the two tunnel barriers at the ends would in general not
be identical, and we should thus consider a NSN setup with normal segments of di�erent
sizes and potentials. �e MBSs live inside the superconducting region and are thus not
very sensitive to changes in the N segments. We therefore expect the topological case to
be very similar to the case we have discussed in this chapter. �e ps-ABSs on the other
hand are localized in the normal segments, and for a non-symmetric setup we expect the
ps-ABS located in each normal segment to be di�erent in general, except at some �ne tuned
points. We base this on the observed behavior of the ps-ABSs in this chapter where we
found the ps-ABSs to depend very sensitively on the potentials. In particular, we expect the
two ps-ABS in the NSN setup to have di�erent electron and hole component. �is should
make it possible to distinguish them from MBSs by looking at the correlation between the
energy spli�ing and Λ in the same way as discussed in this chapter.

Disorder

From our consideration of the uniform SC-SM nanowire, we concluded that the correlated
behavior between the oscillations of the energy spli�ing and Λ cannot be used as an
exclusive indicator of a MBS, since both the trivial and topological cases showed the
same qualitative behavior. Rather, the correlated behavior is an indication that the SC-SM
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nanowire that constitutes the MI is uniform or at least uniform enough that the electron
and hole components of the subgap wavefunction are the same at both lead interfaces. It
is thus natural to ask “what is uniform enough?”, and study how non-uniform potentials
and disorder potentials inside the superconducting segment a�ect the wavefunction of the
subgap state both in the topological and trivial cases. �is has already been done [Kells
et al., 2012; Brouwer et al., 2011; Rainis et al., 2013], and the focus should thus be made on
how non-uniform potentials and disorder may a�ect the correlated behavior between the
energy spli�ing and Λ in relation to what is observed in the uniform case.

Higher order transition rates

Our studies of the correlated behavior between Λ and the energy of the lowest-energy
subgap state rely on the equations we derived for the conductance peak heights [Eq. (9.4)
and (9.4)], which are valid in the sequential transport regime. �is regime might not always
be accessible experimentally, and it is thus relevant to investigate whether information
about the electron-hole components also can be extracted in other transport regimes.

�e cotunneling regime is a natural next case to consider. Although explicit calcula-
tions are needed in order to get quantitative answers, we will discuss some qualitative
considerations of what may be expected using the intuition we have gained in this chapter.

In the case of E0 > EC, the odd charge state parabolas in Fig. 9.1 (a) will be shi�ed above
the N and N + 2 charge state degeneracies, and all ground states have even parity. At the
charge state degeneracies between N and N + 2, the Cooper pair tunneling process, where
two electrons tunnel in (out) of the island by forming (breaking) a Cooper pair, is resonant.
�is process involves the combination of the two single electron tunneling processes we
considered and will be proportional to |u |2 |v |2. It will thus not be possible to probe the
electron-hole components of the subgap state using this resonance.

Another process to consider is cotunneling, where an electron enters (exits) on one
side of the island and exits (enters) on the other side. Depending on whether E0 > EC or
E0 < EC, there may be two or four relevant tunneling processes.

Starting with the case of E0 > EC, we may not be able to neglect the e�ects of higher
energy states, but for the sake of the argument, we only consider tunneling processes
involving the lowest-energy subgap state. �is corresponds to only including elastic
cotunning processes through the subgap state. We label the states of the island by (N ,N0),
where N is the number of charges and N0 is the occupation of the subgap state. �e two
relevant cotunneling processes are

(N , 0) → (N + 1, 1) → (N , 0) and (N , 0) → (N − 1, 1) → (N , 0), (9.15)

where the state in the middle is the virtual intermediate state. In the �rst process, an
electron �rst enters the island by occupying the subgap state and a�erwards it exits while
emptying the subgap state. Both of these single electron tunneling events couple to the
electron component |u |2 of the subgap state. For the second process, both single electron
processes couple to the hole component |v |2. �e �rst process will thus be proportional to
|u |4, while the second to |v |4. �e �rst process dominates in the gate interval N to N + 1
(with N being even), since the virtual state (N + 1, 1) has lower energy than (N − 1, 1).
�e situation is opposite in the gate interval N − 1 to N , where the second process will
dominate.

With these considerations in mind, we may expect an asymmetry between the electron
and hole components, u and v , to be re�ected in the di�erential conductance around the
center of the Coulomb valleys at gate tunings NG = even. If |u | > |v |, we expect an
asymmetry with larger di�erential conductance on the right side of the valley, and vice
versa.
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In making these arguments, we neglected higher energy states. �is is not a good
assumption when there is no gap between these states and the lowest-energy state, or
the gap is small and the higher energy states form a dense spectrum. Especially since the
higher energy states may therefore wash out the e�ect of asymmetric u and v components
of the subgap state.

When searching for potential MBSs, the case where E0 < EC is of greater interest. Here
we have both even and odd parity ground states, and we expect the higher energy states to
have a smaller e�ect, since they are separated from the lowest-energy subgap state by the
induced gap. �e relevant cotunneling processes are the two discussed above for the even
ground states and

(N + 1, 1) → (N , 0) → (N + 1, 1) and (N − 1, 1) → (N , 0) → (N − 1, 1), (9.16)

for the odd ground states. �e �rst process involves two single electron tunneling processes
that both couple to the electron component. �e second process is likewise composed
of two single electron tunneling processes, but these couple to the hole component. �e
picture is hence the same as before, i.e. cotunneling processes in the gate interval N to N + 1
(N being even) scale with |u |4 while those in the interval N − 1 to N scale with |v |4. An
asymmetry between |u | and |v | should thus also give rise to an asymmetry in the Coulomb
valleys in this case, but there are both even and odd parity Coulomb valleys. For |u | > |v |
we expect that the even valleys will be asymmetric with higher di�erential conductance on
the right side of the valley and opposite for the odd Coulomb valleys.

In the case of a zero energy MBS, we have |u | = |v | and expect all valleys to be
symmetric. In the case of an oscillating MBS, we expect the asymmetry of the Coulomb
valleys to oscillate with the same frequency as the MBS energy spli�ing. �at is, the
Coulomb valley asymmetry is correlated with the energy spli�ing in the same manner as
the ratio Λ, such that the Coulomb valley asymmetry is greatest when the energy spli�ing
is zero and Coulomb valley is symmetric when the energy spli�ing is maximal.

Explicit calculations are needed to investigate how this e�ect may depend on the
relative strength of the tunnel couplings to the leads and whether it is possible to extract
more quantitative information about the electron-hole components of the subgap state.
However, it appears to be possible to identify trivial ps-ABS of the kind we discussed in
Sec. 9.2.2, by comparing the energy spli�ing with the Coulomb valley asymmetry in the
same manner as the energy spli�ing and the ratio Λ.



C
h
a
p
t
e
r 10

Conclusion

“ Harry thought over his collected experimental data. It was only the most
crude and preliminary sort of e�ort, but it was enough to support at least one
conclusion: “Aaaaaaargh this doesn’t make any sense!”

Harry Potter

- Harry Po�er and the Methods of Rationality, Eliezer Yudkowsky

We will brie�y summarize the �ndings of chap. 4, 5, 6, 8, and 9 and give a perspective
on the current status of the search for MBSs in SC-SM nanowires.

Summary

�e second part of this thesis was centered around studying the SC-SM nanowire in a
grounded setup, where the sca�ering formalism was used to simulate the di�erential
conductance in a one-end ETS measurement.

In Chap. 4, we discussed a proposal for identifying MBSs in a SNS setup by tuning the
phase di�erence between the two superconductors. In the topological case we found that
the di�erential conductance measured at the end of the nanowire exhibits a period of 2π
as a function of the phase di�erence between the superconductors. �is e�ect is absent
in the topologically trivial phase. �e phase di�erence may be controlled by threading a
magnetic �ux through a superconducting loop that connects the superconductors. We also
discussed the how deviations from an ideal system may a�ect this signature and found that
it is important to have control over the potential in the normal part of the SNS junction.
�is setup may still be relevant in the context of searching for indirect signatures of MBS,
but it will be necessary to investigate whether trivial MBS-look-alike states, such as ps-
ABS[Moore et al., 2018b] and quasi-Majorana modes[Vuik et al., 2018], can be distinguished
from true MBSs.

In the work presented in Chap. 5, we were concerned with understanding data from
an ETS experiment in a coupled quantum dot-nanowire system using a theoretical model
and numerical simulations. �e numerical simulations qualitatively reproduced the experi-
mental data. Speci�cally, data from the experiment showed a spli�ing of the ZBP when a
dot level came into resonance with the nanowire, which is consistent with the numerical
simulations where the ZBP originated from a MBS. Further studies of the numerical model
found that the spli�ing of the MBS ZBP is due to hybridization between the MBS in the
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nanowire and the dot levels. �e MBS wavefunction leaks into the quantum dot upon
resonance, which in turn alters the wavefunction overlap with the second MBS at the other
end of the nanowire and leads to a change in the MBS energy spli�ing.

In Chap. 6, we discussed a possible explanation for some of the discrepancies between
what is observed in experiments and what is predicted by theory. Here we focused on
the lack of MBS energy oscillations and the non-2e2/h quantized conductance peaks seen
in experiments. We investigated the e�ect of the normal metal drain on the parent su-
perconductor of the SC-SM hybrid nanowire. It was found that the normal drain results
in a so�ening of the parents superconductor gap, where a below-gap DOS leaks into the
superconductor from the SN-interface. Depending on the coherence length of the supercon-
ductor, this below-gap DOS may provide a leakage channel for one or both of the MBSs in
the nanowire. If only one MBS is coupled to the drain, the di�erential conductance remains
quantized at 2e2/h, but the amplitude of the energy spli�ing oscillations as a function of the
magnetic �eld is quenched. If the drain couples to both MBSs, the di�erential conductance
is smaller than 2e2/h and all features of the spectrum are suppressed.

In the third part of this thesis, we studied electron transport in Coulomb blockaded
SC-SM nanowires, using a master equation model.

In Chap. 8, we modeled quasiparticle poisoning in a CBMI in comparison with exper-
imental observations. In addition to the main Coulomb blockade diamonds, data from
experiments exhibited “shadow” diamonds, shi�ed by 1e in gate voltage, which are con-
sistent with transport through an excited (poisoned) state of the island. Comparison with
simulated transport using the master equation model yielded an estimate of parity lifetime
for the strongly coupled island (∼ 1 µs) and sets a bound for a weakly coupled island (>
10 µs).

In Chap. 9, we studied ZBC in the sequential tunneling regime in a CBMI. We found that
the Coulomb peaks at the even-to-odd (odd-to-even) charge degeneracy are proportional to
the electron (hole) component of the subgap state wavefunction at the position of the two
lead interfaces. �e relative size of the electron and hole components is therefore accessible
by taking the ratio of experimentally measured even-to-odd and odd-to-even conductance
peaks. We proceeded to study how this ratio is correlated with the energy spli�ing of
the lowest-energy state in a uniform SC-SM nanowire in the topological and trivial cases.
We found that the ratio oscillates with the same frequency as the energy spli�ing, but
phase shi�ed by π/2, both as function of Zeeman �eld and chemical potential. We then
investigated two cases of non-uniform SC-SM nanowires, which host trivial low-energy
ps-ABSs that exhibit MBS-like features. We found that these trivial states may be discerned
from MBSs in a Coulomb blockaded setup by comparing the ratio with the energy spli�ing
as function of Zeeman �eld and chemical potential.

Perspectives

�e projects presented in this thesis are part of ongoing work on the study of SC-SM hybrid
nanowires systems and MBSs. At present, the existence of topologically protected MBSs in
these systems is still an open question. A myriad of di�erent indirect MBS signatures have
been proposed, of which only some have been tested experimentally. However, it has been
shown that most of these signatures are non-exclusive to MBSs and/or the experiments
display some discrepancies with the predictions from the initial wave of theoretical models.

On the theoretical side, more and more complex models have been developed in order
to explain the discrepancies between experiments and theoretical predictions. Spatially
varying potentials, orbital e�ects of the magnetic �eld, disorder, quantum dots, barriers,
and electrostatics, among others, are being taken into account in di�erent combinations.
Although these factors may be necessary to explain experimental observations (and they
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have explained some discrepancies), it is di�cult to know which are the most important.
Experimental studies of SC-SM nanowires which focus on determining and disentangling
the e�ects of these factors may serve both to improve experiments as well as further develop
theoretical understanding.

Adding complexity to the theoretical models has also served to �nd speci�c topologically
trivial explanations for some of the proposed indirect MBS signatures. Examples of such
are the ps-ABS [Moore et al., 2018b] and quasi-Majorana modes [Vuik et al., 2018], which
exist in the regime of high chemical potential. It is thus important to study these states
in parameter regimes comparable to experiments and determine which of the currently
accessible indirect signatures cannot distinguish them from MBSs. It is equally important
to propose currently accessible tests which could distinguish the trivial state from a MBS,
in order to assist in the development of be�er experiments.

In this thesis, we has focused on describing the SC-SM nanowires using single-band
1D models. �ese types of models have proven able to explain many aspects of experi-
mental observations. However, it is possible that several transverse bands are occupied
in experiments and it may be necessary to consider 2D and 3D models in order to study
the e�ects of multiple bands. �ese models are already being studied numerically, but the
possibility of obtaining analytical results from them is very limited. By identifying and
studying speci�c e�ects that are only present in 2D and 3D models, it may be possible
to include these e�ects phenomenologically in 1D models, which are more tractable for
analytical work.

A demonstration of non-abelian exchange statistics is possibly the only de�nite proof
of topological MBSs. �is is still outside reach of current experiments, but great e�ort is
being put into improving the quality of materials as well as developing new experimental
setups. In recent years the close tandem work between theory and experiments has lead to
great advancements in the �eld superconductor-semiconductor hybrid systems. �e �eld is
progressing faster than ever and many exciting discoveries surely still lie ahead. �at said,
focusing primarily on realizing the Majorana-based qubit may come at the cost of carrying
out only super�cial studies of many other interesting phenomena that appear along the
way.

Whether the quest for realizing topological MBSs in SC-SM hybrid systems proves to
be fruitful or not will hopefully be answered within the next few years. In any case, these
systems host many other exciting quantum phenomena that are worth studying.
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Green’s Function at a Diffusive
Superconductor-Normal

Interface

In this section we derive the Green’s function of the electrons at a di�usive superconductor-
normal interface in Eq. (6.9).

We consider a 1D system consisting of a normal and a superconducting part with the
interface of the two parts at x = 0 and the normal part at x > 0. We consider the di�usive
limit ξ � le where the coherence length of the superconductor ξ is much greater than
the elastic mean free path of the electrons lel. �e equation of motion for the retarded
quasiclassical Green’s functions G and F is [Usadel, 1970]

D

2G∂
2
xF − F∂

2
xG = −iϵF − ∆G, (A.1)

whereG is the normal (diagonal) and F is the anomalous (o�-diagonal) parts of the Green’s
function, andD = 1

3vFlel is the di�usive constant. We have neglected inelastic sca�ering pro-
cesses which are small at low temperatures. �e Green’s functions obey the normalization
condition G2 + F 2, which we enforce by parametrizing them as

F (x , iω) = sinθ (x , iω), G (x , iω) = cosθ (x , iω), (A.2)

where iω = ϵ is a Matsubara frequancy, where we have neglected the customary subscript
index. At the SN interface we have the boundary conditions

F (0−) = F (0+) (A.3)
σS

G (0−) ∂xF (0
−) =

σS
G (0+) ∂xF (0

+), (A.4)

where σN /S are the conductivityies of the normal metal and the superconductor. A self-
consistent solution can be obtained by iteratively solving for the superconducting order
parameter, but we will here use a �xed order parameter

∆(x ) =



−i∆ for x < 0,
0 for x ≥ 0,

(A.5)
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so the solution should be seen as a lowest order approximation. With the parametrization
in Eq. (A.2), the di�erential equation in Eq. (A.1) takes the form

D

2 ∂
2
xθ = ω sinθ − ∆ cosθ . (A.6)

First we consider the normal part where ∆ = 0 and we look for a solution of the form

θ = 4 arctan(aebx ). (A.7)

Using this ansatz in the di�erential equation Eq. (A.6), we obtain

DN

2 4ab2ebx
1 − a2e2bx

(1 + a2e2bx )2
= 4ωaebx 1 − a2e2bx

(1 + a2e2bx )2
, (A.8)

where DN is the di�usive constant in the normal metal and we have used the trigonometric
identity

sin 4y = 4 tany 1 − tan2y

(1 + tan2y)2
. (A.9)

Solving Eq. (A.8) for b we obtain the expression

b = ±

√
2ω
DN
. (A.10)

�e other constant a will be found later using the boundary conditions.
Turning to the superconducting part, we use a solution of the form

θ = θS + 4 arctan(cedx ). (A.11)

In Eq. (A.6). A�er applying the trigonometric identities

sin(α ± β ) = sinα cos β ± cosα sin β, (A.12)
cos(α ± β ) = cosα cos β ∓ sinα sin β, (A.13)

cos 4y = 4 tany 1 − tan2y

(1 + tan2y)2
, (A.14)

and Eq. (A.9), and a�er some algebra, we get the equation

DS

2 4cd2edx = 4cedx (ω cosθS + ∆ sinθS ) + (1 − c2e2dx ) (ω sinθS − ∆ cosθS ). (A.15)

In order for this to hold for a general x , we require

ω sinθS = ∆ cosθS ⇒ θS = arctan
(∆
ω

)
+ nπ , (A.16)

where we take n to be even such that Re cosθ > 0. With this condition, the rest of Eq. (A.15)
becomes

DS

2 d2 = ω cosθS + ∆ sinθS =
√
ω2 + ∆2 (A.17)

⇓

d = ±

√
2
DS

4√
ω2 + ∆2. (A.18)
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We pick the solutions of b and d with decaying exponential function away from the
interface, i.e. ” − ” for b and ” + ” for d . In order to �nd the two other constants a and c , we
use the boundary conditions. From the �rst boundary condition in Eq. (A.3), we have the
equation

sinθ (0+) = sinθ (0−) ⇒ θ (0+) + 2nπ = θ (0−). (A.19)

We de�ne θ0 ≡ θ (0+) and on the le�-hand we have

θ0 = 4 arctan(a) ⇒ a ≡ tan θ0
4 . (A.20)

On the right-hand side we have

θ (0−) = θS + 4 arctan(c ). (A.21)

�e boundary condition is thus ful�lled for

c = tan θ0 − θS + 2nπ
4 . (A.22)

Due to sin(y + π ) = − siny, another solution is

c = − tan θ0 − θS + (2n + 1)π
4 , (A.23)

which can be combined with the previous solution to write

c = (−1)n tan θ0 − θS + nπ

4 . (A.24)

Inserting the ansatz Green’s function into the second boundary condition in Eq. (A.4)
we get the equation

a

1 + a2σNb =
c

1 + c2σNd (A.25)

⇓

−η
a

1 + a2 =
c

1 + c2 , (A.26)

where we have inserted the previously found solutionsb = −
√

2ω/DN andd =
√

2/DS
4√
ω2 + ∆2,

and de�ned

η =
σN
σS

√
DS

DN

√
ω

4√
ω2 + ∆2

. (A.27)

We insert the solutions for a and c in Eqs. (A.20) and (A.24), which were obtained with the
�rst boundary condition, into Eq. (A.26) and use the trigonometric identity

tany
1 + tan2y

= sin 2y (A.28)

to obtain the equation

−η sin θ0
2 = (−1)n sin θ0 − θS + nπ

2 , (A.29)

which yields

−η sin θ0
2 =




± sin θ0−θS
2 for even n

± cos θ0−θS
2 for odd n.

(A.30)
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Using n even and the ” − ” sign gives solution obtained by Belzig et al. [1996]. We pick n
even and the ”+ ” sign. Using the trigonometric identity in Eq. (A.12), we get the expression

θ0
2 = arctan *

,
sin

(
θS
2

) [
cos

(
θS
2

)
− η

]−1
+
-

(A.31)

= arctan
(
− sin

( 1
2 arctan ∆

iϵ

) [
cos

( 1
2 arctan ∆

iϵ

)
− η

]−1)
(A.32)

≡ arctan β , (A.33)

where we inserted θS = arctan ∆
iϵ with ω = −iϵ . We have de�ned β which is the the same

as in Eq. (6.10). Combining this expression with Eqs. (A.20), (A.24), (A.18), and (A.10), we
write the full solution

θ (x , ϵ ) =



4 arctan
{
aebx

}
for x > 0,

θS + 4 arctan
{
cedx

}
for x ≤ 0,

(A.34)

=




4 arctan
{
e−(x/ξN)

√
−iϵ/∆ tan

(
1
2 arctan β

)}
for x > 0,

− arctan ∆
iϵ + 4 arctan

{
e (x/ξS)

4√1−(ϵ/∆)2

× tan
(

1
2 arctan β + 1

4 arctan ∆
iϵ

)}
for x ≤ 0,

(A.35)

as wri�en in Eq. (6.9), where we have de�ned ξN,S =
√
}DN,S/2∆.
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Distribution Function for
odd/even Parity BCS Density of

States

In this appendix, we will perform a detailed calculation of the distribution function of
quasiparticles with BCS density of state in case of even and odd parity, leading to the
Eqs. (7.13) and (7.17).

�e partition function for odd (o) and even (e) parity states at the inverse temperature
β = 1/kBT can be wri�en as

2Zp =
∏
n

(1 + e−βEn ) ∓
∏
n

(1 − e−βEn ), (B.1)

where p ∈ {o, e}, p̄ denotes the opposite of p, and the − (+) applies to the odd (even) case.
�e energies of the quasiparticles are

En =

√
ϵ2
n + ∆2, (B.2)

as given in Eq. (7.8). �rough a few algebraic operation we rewrite the expression of the
partition function:

2Zp =
∏
n

(1 + e−βEn ) ∓
∏
n

(1 − e−βEn )

=
∏
n,i

{1 + e−βEn }(1 + e−βEi ) ∓
∏
n,i

{1 − e−βEn }(1 − e−βEi )

=
∏
n,i

{1 + e−βEn } ∓
∏
n,i

{1 − e−βEn } + *
,

∏
n,i

{1 + e−βEn } ±
∏
n,i

{1 − e−βEn }+
-
e−βEi )

= 2Z ′p + 2Z ′p̄e
−βEi ,

⇓

Zp = Z ′p + Z
′
p̄e
−βEi , (B.3)

where Z ′p denotes the partition function where the state at energy Ei is unoccupied. We
have thus wri�en the partition function of parity p as the sum of the partition function of
parity p where the state i is unoccupied and the partition function with opposite parity
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and state i unoccupied times probability of state i being occupied. Both terms contain only
states with parity p. �e expression can be reversed to write the partition function Z ′p in
terms of Zp and Zp̄ ,

Z ′p =
Zpe

βEi − Zp̄

2 sinh(βEi )
(B.4)

We proceed to consider the thermal distribution function

fp (E) =
Z ′pe

−βE

Zp
, (B.5)

which is the weight factor of having the state with energy E occupied e−βE , multiplied
by the partition function of the opposite parity where the state E is unoccupied Z ′p̄ and
divided by the partition function for parity Zp . Rearranging a bit, we obtain

fp (E) =
Z ′pe

−βE

Z ′p + Z
′

pe
−βE
=

1
eβE (Z ′p/Z

′

p ) + 1
≈

1
eβE (Zp/Zp ) + 1

, (B.6)

and we have used the approximation

Z ′p

Z ′p̄
=
eβEZp − Zp̄

eβEZp̄ − Zp
≈
Zp

Zp̄
, (B.7)

which is obtained using Eq. (B.4) and the approximation holds for βE � 1. For the
superconducting gap parameters we will be considering (∆ ≈ 200 µeV) this is satis�ed at
temperatures below ∼ 0.5 K. We can then write the thermal distribution function as

fp (E) =
1

eβ (E±δ F ) + 1
, (B.8)

where the− (+) applies to the odd (even) case and we have de�ned the free energy di�erence
between the odd and even parity sector

δF = Fo − Fe = −
1
β

ln
(
Zo
Ze

)
. (B.9)

We proceed to calculate the free energy di�erence of the BCS density of states using
Eq. (B.1) through a series of algebraic operations

δFBCS = −
1
β

ln *
,

∏
n,σ (1 + e−βEn ) −

∏
n,σ (1 − e−βEn )∏

n,σ (1 + e−βEn ) +
∏

n,σ (1 − e−βEn )
+
-

= −
1
β

ln *.
,

∏
(e

1
2 βEn + e−

1
2 βEn ) −

∏
(e

1
2 βEn − e−

1
2 βEn )∏

(e
1
2 βEn + e−

1
2 βEn ) +

∏
(e

1
2 βEn − e−

1
2 βEn )

+/
-

= −
1
β

ln *
,

∏√
(ex + e−x )2 −

∏√
(ex − e−x )2∏√

(ex + e−x )2 +
∏√

(ex − e−x )2
+
-

= −
1
β

ln
*....
,

∏√
(ex+e−x )2−

∏√
(ex−e−x )2∏√

(ex+e−x ) (ex−e−x )∏√
(ex+e−x )2+

∏√
(ex−e−x )2∏√

(ex+e−x ) (ex−e−x )

+////
-
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= −
1
β

ln
*..
,

∏√
(ex+e−x )
(ex−e−x ) −

∏√
(ex−e−x )
(ex+e−x )∏√

(ex+e−x )
(ex−e−x ) +

∏√
(ex−e−x )
(ex+e−x )

+//
-

= −
1
β

ln

tanh *.

,
ln



∏√
(ex + e−x )

(ex − e−x )



+/
-



= −
1
β

ln

tanh *

,

1
2
∑
nσ

ln
[
coth

( 1
2βEn

)]
+
-


, (B.10)

where we have omi�ed the product indices through the calculation and de�ned x ≡ 1
2βEn .

In the three last lines we have used that

tanh (lny) = e lny − e− lny

e lny + e− lny

=
y − y−1

y + y−1 (B.11)

and ln√y = 1
2 lny. We convert the sum into an integral in eq. (B.10)

δFBCS ≈ −
1
β

ln tanh 1
2

∫ ∞

−∞

dE Re [ρBCS (E)] ln coth
(
βE

2

)
(B.12)

≈ −
1
β

ln tanh
∫ ∞

∆
dEρBCS (E) ln coth

(
βE

2

)
(B.13)

where

ρBCS (E) =
ρDE

√
E2 − ∆2

, (B.14)

is the BCS density of states with ρD = ρAlV being the normal density of states at the Fermi
level of the island including spin. ρAl is the aluminum density of states per volume andV
is the volume of the island. For low temperatures β∆ � 1 we can approximate

ln coth
(
βE

2

)
≈ coth

(
βE

2

)
− 1

=
e
βE
2 + e−

βE
2

e
βE
2 − e−

βE
2

− 1

= 2 e−
βE
2

e
βE
2 − e−

βE
2

= 2 1
eβE − 1

≈ 2e−βE (B.15)

which in the same limit lets us approximate the free energy di�erence as

δFBCS ≈ −
1
β

ln tanh
[
2
∫ ∞

∆
dEρBCS (E)e

−βE
]
= −

1
β

ln tanh[Ne�e
−β∆] (B.16)

≈ ∆ −
ln(Ne�)

β
, (B.17)

with

Ne� = 2
∫ ∞

∆
ρBCS (E)e

−β (E−∆) dE = 2ρD∆e
β∆K1 (β∆), (B.18)

where Kν (x ) is the modi�ed Bessel function of the second kind and Ne� ≈ ρD∆ is an
e�ective quasi-particle number.
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P. Krogstrup, J. Nygård, and C. M. Marcus (2015), Nature Nanotechnol-
ogy 10 (January), 10.1038/nnano.2014.306

[Chiu et al., 2017] Chiu, C.-K., J. D. Sau, and S. Das Sarma (2017), Physical Review B
96 (5), 054504

[Chiu et al., 2015] Chiu, C. K., M. M. Vazifeh, and M. Franz (2015), Epl 110 (1), 10001

[Churchill et al., 2013] Churchill, H. O. H., V. Fatemi, K. Grove-Rasmussen, M. T.
Deng, P. Caro�, H. Q. Xu, and C. M. Marcus (2013), Physical Review B
87 (24), 241401

[Clarke, 2017] Clarke, D. J. (2017), Physical Review B 96 (20), 201109

[Danon and Flensberg, 2015] Danon, J., and K. Flensberg (2015), Physical Review B
91 (16), 165425

[Danon et al., 2017] Danon, J., E. B. Hansen, and K. Flensberg (2017), Physical Review
B 96 (12), 125420

[Das et al., 2012] Das, A., Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman
(2012), Nature Physics 8 (12), 887

[Das Sarma et al., 2016] Das Sarma, S., A. Nag, and J. D. Sau (2016), Phys. Rev. B 94,
035143

[Das Sarma et al., 2006] Das Sarma, S., C. Nayak, and S. Tewari (2006), Physical
Review B - Condensed Ma�er and Materials Physics 73 (22), 220502

[Das Sarma et al., 2012] Das Sarma, S., J. D. Sau, and T. D. Stanescu (2012), Physical
Review B - Condensed Ma�er and Materials Physics 86 (9), 220506

[Deng et al., 2016] Deng, M. T., S. Vaitiekenas, E. B. Hansen, J. Danon, M. Leijnse,
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W. Chang, F. Kuemmeth, P. Krogstrup, T. S. Jespersen, J. Nygård, K. Flensberg,
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