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Abstract

Quantum computing relies on developing quantum devices that are robust against small and
uncontrolled parameter variations in the Hamiltonian. One can apply feedback by estimating such
uncontrolled variations in real time to stabilize quantum devices and improve their coherence. This
task is important for many quantum platforms such as spins, superconducting circuits, trapped
atoms, and others towards error suppression or correction. Semiconductor spin qubits are attrac-
tive due to their long coherence times, compact size, and potential large-scale integration with
existing semiconductor technology. Until now however, spin qubits shine with high-fidelity opera-
tions of selected devices. Further scalability and reproducibility may require actively compensating
for environmental fluctuations.

In this Thesis, we focus on real-time closed-loop feedback protocols to estimate uncontrolled
fluctuations of the qubit Hamiltonian parameters, followed by enhancing the quality of qubit
rotations. First, we coherently control a spin qubit with a low-latency quantum controller. The
protocol uses a singlet-triplet spin qubit implemented in a gallium arsenide double quantum dot.
We establish real-time feedback on both control axes and enhance the resulting quality factor
of coherent spin rotations. Even with some components of the Hamiltonian purely governed by
noise, we demonstrate noise-driven coherent control. As an application, we implement Hadamard
rotations in the presence of two fluctuating control axes.

Next, we present a protocol for a physics-informed real-time Hamiltonian estimation. We
estimate the fluctuating nuclear field gradient within the double dot on-the-fly by updating its
probability distribution according to the Fokker-Planck equation. We further improve the physics-
informed protocol by adaptively choosing the free evolution time of the electrons singlet pair,
based on the previous measurement outcomes. The protocol results in a ten-fold improvement of
the estimation speed compared to former schemes.

Finally, we present an adaptive frequency binary search scheme for efficiently tracking low-
frequency fluctuations in a resonantly-driven qubit. In real time, we implement the Bayesian
algorithm to estimate low-frequency magnetic flux noise in a flux-tunable transmon qubit, whose
coherence and fidelity are improved. Furthermore, we show by gate set tomography that our
frequency tracking protocol minimizes the amount of drift in the system.

Our approaches introduce closed-loop feedback schemes aimed at mitigating the effects of
decoherence and extending the lifetime of quantum systems. This Thesis pushes the field towards
integrating qubit hardware and control hardware, and implementing Bayesian estimation and
optimization methods from computer science.



Resumé

Kvantecomputere er afhængige af at udvikle kvantebits eller qubits, der er robuste over for små
og ukontrollerede parametervariationer i deres Hamiltonian. Man kan anvende feedback ved
at estimere sådanne ukontrollerede variationer i realtid for at stabilisere kvantebits og forbedre
deres kohærens. Denne opgave er vigtig for mange kvanteplatforme som f.eks. spins, superle-
dende kredsløb, fangede atomer og andre med henblik på fejlundertrykkelse eller -korrektion.
Halvleder-spin-qubits er attraktive på grund af deres lange kohærenstider, kompakte størrelse og
potentielle integration i storskalaproduktion med eksisterende halvlederteknologi. Indtil nu har
spin-qubits brilleret med high-fidelity-operationer af udvalgte enheder. Yderligere opskalering og
reproducerbarhed kan kræve, at man aktivt kompenserer for miljøudsving.

I denne afhandling fokuserer vi på feedbackprotokoller med lukket kredsløb i realtid for at
estimere ukontrollerede udsving i qubit-hamiltonparametrene og derefter forbedre kvaliteten
af qubit-rotationer. Først kontrollerer vi kohærent en spin-qubit med en kvantecontroller med
lav latenstid. Protokollen bruger en singlet-triplet spin-qubit, der er implementeret i et dobbelt
kvantepunkt af galliumarsenid. Vi etablerer feedback i realtid på begge kontrolakser og forbedrer
den resulterende kvalitetsfaktor for sammenhængende spinrotationer. Selv med komponenter i
Hamiltonianen, der udelukkende styres af støj, demonstrerer vi støjdrevet kohærent kontrol. Som
en applikation implementerer vi Hadamard-rotationer ved brug af to fluktuerende kontrolakser.

Dernæst præsenterer vi en protokol for en fysikinformeret realtids-hamiltonian-estimering. Vi
estimerer den fluktuerende kernefeltgradient inden for dobbeltpunktet on-the-fly ved at opdatere
dens sandsynlighedsfordeling i henhold til Fokker-Planck-ligningen. Vi forbedrer yderligere den
fysikinformerede protokol ved adaptivt at vælge den frie udviklingstid for elektronernes singlet-par
baseret på de tidligere måleresultater. Protokollen resulterer i en tifoldig forbedring af estimerings-
hastigheden sammenlignet med tidligere ordninger.

Endelig præsenterer vi et adaptivt frekvensbinært søgeprogram til effektiv sporing af lavfre-
kvente udsving i en resonansdrevet qubit. I realtid implementerer vi den bayesianske algoritme
til at estimere lavfrekvent magnetisk fluxstøj i en flux-tunable transmon-qubit, hvis kohærens og
troværdighed er forbedret. Desuden viser vi ved hjælp af gate-set tomografi, at vores frekvensspor-
ingsprotokol minimerer mængden af frekvensstøj i systemet.

Vores tilgange introducerer feedback-ordninger med lukket kredsløb, der har til formål at afbøde
virkningerne af dekohærens og forlænge kvantesystemers levetid. Denne afhandling skubber
feltet i retning af at integrere qubit-hardware og kontrolhardware og implementere Bayesianske
estimerings- og optimeringsmetoder fra datalogi.

ii



List of Abbreviations, Constants and Symbols

Abbreviations

2DEG Two-dimensional electron gas
BPE Bayesian parameter estimation
DQD Double quantum dot
DUT Device under test
EMA Effective mass approximation
FBS Frequency binary search
FID Free induction decay
HF High-frequency
LD Loss-DiVincenzo
LF Low-frequency
MC Mixing chamber
PCB Printed circuit board
PSB Pauli spin blockade
QD Quantum dot
QPU Quantum processing unit
QSA Quasi-static approximation
QW Quantum well
RAP Rapid adiabatic passage
RF Radio-frequency
r.m.s. Root-mean-square
RT Room temperature
SAP Slow adiabatic passage
SD Sensor dot
SET Single-electron transistor
SMD Surface mounted devices
T4 Triton 4 dilution refrigerator setup
T7 Triton 7 dilution refrigerator setup
VNA Vector network analyzer

iii



Constants and symbols

m0 ≈ 9.31×10−31 kg Bare electron mass
kB ≈ 86.2µeVK−1 Boltzmann constant
µB ≈ 57.9µeVT−1 Bohr magneton
J Exchange coupling
GaAs Gallium arsenide
Ω Larmor frequency
∆Bz Overhauser field gradient
Si Silicon

iv



Contents

Contents v

List of Figures vii

Introduction ix

1 Semiconductor Spin qubits and Real-time Quantum Control 1
1.1 Spin qubits encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Gallium arsenide and silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Bandstructure engineering and spin-qubit devices . . . . . . . . . . . . . . . . . . . 7
1.4 Spin-to-charge conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Singlet-triplet qubits in GaAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6 Quantum control of two-electron spin states . . . . . . . . . . . . . . . . . . . . . . . 20
1.7 Real-time feedback and feedforward . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Experimental Setup 31
2.1 Triton 4 Dilution Refrigerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Motherboard and daughterboard, and sample-puck . . . . . . . . . . . . . . . . . . . 35
2.3 Radio-frequency reflectometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 Low- and high-frequency lines in-situ calibration . . . . . . . . . . . . . . . . . . . . 41
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Real-time Two-axis Control of a Spin Qubit 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Device and Bayesian estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Controlled Overhauser gradient driven rotations . . . . . . . . . . . . . . . . . . . . . 51
3.4 Real-time two-axis estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Controlled exchange-driven rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6 Hadamard rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.8 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.9 Supplementary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

v



CONTENTS

4 Physics-informed Tracking of Qubit Fluctuations 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Device and Bayesian estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Non-tracking and physics-informed tracking of the qubit frequency . . . . . . . . . 76
4.4 Physics-informed adaptive Bayesian tracking of the qubit frequency . . . . . . . . . 81
4.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.6 Supplementary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.7 Author contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Qubit Stabilization by Binary Search Hamiltonian Tracking 95
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Device and frequency binary search by Bayesian estimation . . . . . . . . . . . . . . 95
5.3 Improvement of the qubit coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4 Improvement of the qubit fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.5 Reduction of non-Markovian noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.7 Supplementary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Conclusion and Outlook 107

A Bloch Sphere, Single-qubit Gates, Decoherence 109

B Exchange Interaction 113

C Experimental Setup Characterization 117

D Dispersive Charge Sensing without Reservoirs 127

Bibliography 131

vi



List of Figures

1.1 Loss-DiVincenzo and singlet-triplet encodings . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Bandstructure of bulk GaAs and Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Depletion mode GaAs/AlGaAs and accumulation mode SiMOS . . . . . . . . . . . . . . 8
1.4 Charge stability map and energy levels of a double quantum dot . . . . . . . . . . . . . 12
1.5 Energy level diagram of two-electron singlet and triplet states in a DQD . . . . . . . . . 13
1.6 Charge sensing and spin-to-charge conversion by Pauli spin blockade . . . . . . . . . . 15
1.7 Singlet-triplet qubit in GaAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.8 Rapid- and slow-adiabatic passage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.9 Spin funnel, Overhauser field driven qubit rotations, exchange oscillations . . . . . . . 23
1.10 Fundamental building blocks in a control system with feedback and feedforward . . . 26
1.11 PI loop to stabilize exchange-based FID in a GaAs singlet-triplet qubit . . . . . . . . . . 29

2.1 Triton 4 dilution refrigerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 Vector magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Pin-out of the coldfinger as seen from the bottom of the refrigerator . . . . . . . . . . . 33
2.4 Coax lines summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5 Board and sample puck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6 Radio-frequency reflectometry building blocks . . . . . . . . . . . . . . . . . . . . . . . . 38
2.7 RF reflectometry response while “turning on" the SETs . . . . . . . . . . . . . . . . . . . 40
2.8 Bias-tee cutoff frequency and correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.9 High-frequency pulse voltage calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 A singlet-triplet (ST0) qubit with two fluctuating control axes . . . . . . . . . . . . . . . . 49
3.2 Controlled Overhauser gradient-driven rotations of a ST0 qubit by real-time Bayesian

estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3 Real-time Bayesian estimation of two control axes . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Real-time-controlled exchange-driven qubit rotations . . . . . . . . . . . . . . . . . . . . 55
3.5 Real-time universal ST0 control demonstrated by Hadamard rotations . . . . . . . . . . 56
3.7 Experimental setup T7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.8 Frequency resolution of Bayesian estimation . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.9 Standard deviation of Bayesian estimations . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.10 Improvement of the visibility of coherent oscillations by rejecting low-quality estimates 65
3.11 Extracting fluctuations of the exchange energy and Overhauser field gradient from two

different estimated Larmor frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vii



LIST OF FIGURES

3.12 Comparing Hadamard rotations with and without real-time stabilization . . . . . . . . 69
3.13 Simultaneous controlled qubits rotations by uncontrolled frequencies . . . . . . . . . . 70

4.1 Qubit implementation and estimation schedule . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Tracking of the Overhauser frequency by anticipating nuclear spin diffusion on the

quantum controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Efficiency of the non-tracking and physics-informed protocols . . . . . . . . . . . . . . 80
4.4 Adaptive Bayesian tracking by real-time choice of qubit probe times . . . . . . . . . . . 81
4.5 Improved qubit quality factor from lower estimation uncertainties . . . . . . . . . . . . 84
4.6 Reconstruction of probability distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.7 Optimal choice of c in ti = 1/(cσi−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.8 Numerical simulation of estimation methods . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.9 Bias of the adaptive-time estimation scheme at low frequencies . . . . . . . . . . . . . . 91
4.10 Examples of potential numerical errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 Qubit implementation and estimation schedule . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Suppressed dephasing of a qubit in a feedback-controlled rotating frame . . . . . . . . 99
5.3 Randomized benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4 Gate set tomography and model violation . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.6 Experimental setup BF2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.7 Qubit frequency stabilization over 6 hours . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.8 Interleaved randomized benchmarking with and without frequency binary search. . . 106

A.1 Bloch sphere representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.2 Single-qubit gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

B.1 Low-energy spectrum of a one- and two-electron QD with spin degree of freedom . . . 113

C.1 Pin-out numbering convention for Nano-D, cinch and Fischer ports . . . . . . . . . . . 117
C.2 Simulated bias-tee cut-off frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
C.3 Detailed schematics with part numbers of electrical components . . . . . . . . . . . . . 123
C.4 Room temperature characterization of coax lines . . . . . . . . . . . . . . . . . . . . . . . 124
C.5 Room temperature characterization of RF reflectometry setup . . . . . . . . . . . . . . . 124
C.6 Relative delay among the coax lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

D.1 Molecular sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
D.2 Interferometric reflectometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

viii



Introduction

More than 40 years after the first proposal for a quantum computer, we can now implement limited
control over various quantum systems in pursuing this goal [1]. The fundamental component of
a quantum computer is a quantum bit (qubit), a physical system with two quantum mechanical
basis states (|0〉 and |1〉) which can be controlled and measured reliably, and sufficiently protected
from decoherence. Unlike a classical bit, a qubit can also occupy a superposition of both states
at the same time and be entangled with other qubits to form exponentially large computational
spaces. However, a quantum bit cannot be completely isolated from its environment, as it must
respond to control signals to perform computations and measurements.

Fluctuations of the qubit’s environment (such as magnetic or electrical noise) lead to undesired
dynamics known as decoherence. Decoherence explains why the control signals must be suffi-
ciently fast compared to the qubit decoherence timescale. Two common strategies are to improve
the computations’ quality and reduce the noise in the qubit’s environment; another is to reduce
the noise coupling strength to the qubit. Quantum error correction [2] can detect and correct
errors at the expense of an increased number of physical qubits. An alternative route is feedback or
feedforward control to mitigate or correct noise in the qubit’s environment [3].

In this introduction, we introduce feedback control and explain why it could be useful for a
quantum processing unit. We conclude with a summary of the Spin Qubit Group research at the
Center for Quantum Devices (QDev) and the content of this Thesis.

Closed-loop control In a closed-loop control (or feedback) protocol, there are fundamentally two
entities: the controller and the system [3]. The controller receives information about the system’s
state to manipulate its trajectory in real time, even in the presence of noise or errors. Thus, the
information that the controller receives is fed back to the system. This can be seen as a “closed-loop
scheme” that reduces the system’s entropy and allows it to be controlled. Indeed, noise contributes
to uncertainty in the system dynamics, which can be reduced by transferring it to another system.
More specifically, when we measure a system, it reduces our uncertainty. Therefore, it allows us
to adjust the motion while reducing the spread in the system’s state, i.e. randomness. The system
is measured by a device that records the necessarily random result of the measurement. The
result is as random as the quantity being measured [3]. Thus, the quantum controller transfers
randomness from the system to its memory through the measurement. As randomness is entropy
and all physical laws are reversible, entropy must be transferred in a different system, such as
the environment. That is why a feedback process, according to quantum feedback control, is any
process that transfers entropy from the system to the controller.

ix



INTRODUCTION

Historically, Ctesibios’s water clock, dating back to the 3rd century BC, is considered the first
example of feedback control [4]. The ancient Greeks measured time by dividing the daylight hours
into twelve. However, this method caused the known water clock to fall out of sync between
seasons. Presumably, Ctesibios added a waterwheel and cogs to the already-known water clock.
The waterwheel and cogs would then rotate a cylinder every day by some amount and trace the
hour lines on a pole based on the time of the year. In this example, the variability introduced by the
different seasons contributes to the randomness. The randomness is transferred to the feedback
mechanical components, which adjust the water clock.

A more modern example is Watt’s centrifugal governor, from the second half of the 17th century,
whose mathematical model was studied for the first time by Maxwell [5]. By adding feedback to
control the flow of steam into the cylinder by a throttle valve, it is possible to speed up transients, set
the stationary regime, and improve stability. The steam engine’s speed can fluctuate, introducing
randomness into the system. The feedback mechanism then acts to correct deviations from the
desired speed, thus reducing the spread of its fluctuations.

Feedback control first joined the field of quantum dynamics in the early 1980s [3], but it became
more popular later in the 1990s. A mathematical theory on feedback control in quantum systems
was introduced by Belavkin [7, 6] by extending the theory of classical continuous measurements
to the quantum field. In the same decade, Wiseman and Milburn [8] described how continuous
feedback in quantum systems can be derived from a Markovian master equation. A few years later,
in 1998, Yanigasawa and Kimura [9], as well as Doherty and Jacobs [10], introduced the concept of
feedback by exploiting estimates from the stochastic master equation. In the context of quantum
control, Bayesian feedback refers to the use of estimates obtained from the stochastic master
equation, differently from Markovian feedback [3]. While in the Bayesian approach measurement
results are used to obtain an estimate of the current state properties, in the case of Markovian
feedback the measurements are directly fed back to the state.

From classical to quantum bits The quest to realize a useful quantum computer resembles
the effort from the 1940s to engineer the fundamental hardware unit that would lead to the first
solid-state computers. The basic unit of classical computing is the transistor functioning as a
switch, depending on an applied voltage that turns it "on" or "off". The binary information can
be encoded in the flow of current. Ideally, if current flows, the transistor is "on," and it encodes,
e.g., the "1" logical state. If the current does not flow, the transistor is "off," encoding the "0" state.
The transistor may then hold a bit of information. A number N of available transistors form an
N -dimensional space since a binary vector of dimension N can represent any possible state.

If we consider a single qubit, it spans a two-dimensional space to describe the direction of its
spin, e.g. spin-up or spin-down. If we increase the number of electrons to N , the dimensional
space becomes 2N because of the possible presence of entangled states between different electrons.
Unlike the classical case where N bits can describe an N -dimensional space, representing a
quantum state with N particles requires a complex vector with 2N components. This originates
from the possibility of creating a superposition of the basis states, which eventually leads to
quantum entanglement.

The (classical) exponential scaling to represent quantum states was already known almost
one hundred years ago. Indeed, in 1929, Paul Dirac explicitly stated that if we tried to solve the
Schrödinger equation for many particles, it would be an intractable problem [11]. At the time, there
was a relatively good understanding of the underlying physical laws for the branch of chemistry
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and material science. Nevertheless, solving these laws exactly for many particles is too complicated
to be done in practice. This intractability was already understood by researchers interested in
solid-state physics in the 1930s.

We highlight a few events to trace the origin behind the idea of a quantum computer [1]. In
the 1980s, Yuri Manin mentioned the idea of a quantum automaton that used superposition
and entanglement [12]. Paul Benioff was also interested in quantum computing [13] around
that time. But he was not particularly interested in what we now call quantum advantage or
quantum complexity, but rather in understanding whether we could compute a time-independent
Hamiltonian without dissipation.

Other physicists were discussing similar topics at the time, including Richard Feynman. He
was interested in quantum chromodynamics (QCD), with theories of strong interaction [1]. At
the time, the interest in computing the predictions of QCD for the properties had grown. Though
the theory was known, it was unclear how to do computations for many processes in QCD or
other strongly coupled quantum field theories. That problem was part of the background that
inspired Feynman to propose the idea of a quantum computer [14]. Feynman proposed storing
and manipulating information encoded in the state of a quantum system. This would then make
it possible to simulate a system of many particles by keeping track of the required number of
amplitudes, which is exponential in the particle number (as mentioned above).

Some years later, it was shown that quantum computers can, in principle, beat classical com-
puters in several tasks [15, 16, 17]. To perform quantum computation, the information has to be
represented in an appropriate physical platform [18], such as quantum dots, nitrogen-vacancy
centers, solid-state superconducting circuits, atomic and molecular systems, e.g. Rydberg atoms
and trapped ions, photons, and others.

Nowadays, quantum processors have on the order of a hundred qubits with about 20-30 gate
operations [19]. In the past years, academic interest has been accompanied by industrial efforts,
leading to an increased number of physical qubits every year. These devices are categorized as
noisy intermediate-scale quantum (NISQ) [20], where "intermediate scale" refers to the number of
qubits, and "noisy" emphasizes the imperfect control over them. Indeed, while a classical bit is
digital and insensitive to small variations of the control signals, small errors can lead to significant
errors in qubits when long algorithms are performed.

In classical devices errors are corrected, for instance, by having many copies of the information,
as a majority vote across the classical bits can correct errors. Nevertheless, the no-cloning theorem
forbids copying quantum information. Therefore, quantum information is encoded in the non-
local degrees of freedom of many physical qubits [21]. Fault-tolerant quantum computers using
quantum error correction [2] are expected to rely on integrating millions of qubits.

The early 2020s have witnessed the first demonstrations of experimental quantum error cor-
rection [21], marked first by trapped ions qubits [22, 23]. A 17-transmon-qubit Kitaev’s surface
code has been demonstrated in superconducting qubits within academia [24]. Again, in super-
conducting qubits, the suppression of logical error with increasing code size has been shown by
industry [25]. Fault-tolerant logic over hundreds of physical qubits has been shown in reconfig-
urable atom arrays [26]. Regarding spin qubits, in Ref. [27] a three-qubit phase-correcting code has
been recently demonstrated in silicon.

Overall, the advantage (supremacy) of quantum computing over classical computing has been
shown by NISQ devices, although on problems with limited usefulness. Efforts are in play to
demonstrate a quantum advantage in practical problems such as optimization and chemistry [16,
28].
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INTRODUCTION

The Spin Qubit Group at the Niels Bohr Institute

The work described in this Thesis has been realized at QDev, at the Niels Bohr Institute (NBI), under
the supervision of Prof. Ferdinand Kuemmeth and Assoc. Prof. Anasua Chatterjee. The Spin Qubit
Group at QDev focuses on different semiconductor material platforms to investigate new directions
for qubit networks with optimal control, while still addressing condensed matter physics-related
research questions [29].

The group and its collaborators have studied gallium-arsenide (GaAs) heterostructures to
study nuclear spins dynamics [30, 31], as well as electron-electron correlations [32, 33]. Further
research has been done on the use of symmetry points that prolong qubit coherence [34], elongated
quantum dots as quantum mediators [35], and two-dimensional spin qubit arrays [36].

Moreover, academic and industrially fabricated spin qubit devices in silicon have been stud-
ied [37, 38, 39], as isotopically-purified silicon-28 (28Si) has longer coherence times and it holds
promising compatibility with industrial fabrication.

Experiments have also implemented computer science-related techniques for optimization,
automation, and machine learning [41, 40] for a deeper understanding of spin phenomena while
increasing control complexity in larger quantum-dot circuits.

Thesis outline

This Thesis deals with implementing real-time quantum control techniques in gate-defined spin
qubits and superconducting qubits for quantum information processing. By coherently controlling
electron spins with a low-latency FPGA-powered quantum controller, we establish a real-time
feedback protocol to enable noise-driven coherent qubit rotations. Moreover, we show the first
experimental implementation of a physics-informed tracking of the qubit fluctuations, and of a
Bayesian approach for real-time Hamiltonian tracking and stabilization of a superconducting qubit.
In the following, we summarize the Chapters content:

• In Chapter 1, we introduce semiconductor spin qubits and provide an overview of the state-
of-the-art before going more in-depth on the singlet-triplet qubit encoding used in this
work. Ultimately, we illustrate the basics of feedback control by comparing different qubit
platforms, and we describe an introductory example.

• In Chapter 2 we describe the experimental setup “T4" at QDev, and we provide an introduc-
tion to radio-frequency (RF) reflectometry based-readout of spin qubits.

• Chapter 3 is based on Ref. [42]. We implement a feedback protocol for real-time control of a
singlet-triplet qubit with fluctuating Hamiltonian parameters in a quantum controller. The
protocol involves two main steps: leveraging a new control axis based on estimating one of
the fluctuating parameters and using this control axis to probe the qubit frequency in real
time across different operating points. The quality of coherent qubit rotation is significantly
improved by counteracting fluctuations along both axes. Some of the results are extended to
two qubits simultaneously, and they are not contained in Ref. [42].

• Chapter 4 is based on Ref. [43]. We show a physics-informed and real-time Hamiltonian
estimation protocol. The scheme estimates the fluctuating environment of a spin qubit (a
nuclear spin bath) on-the-fly on a quantum controller. The controller updates the probability
distribution of the fluctuating parameter according to a model describing the nuclear spins

xii



(by the Fokker-Planck equation). The protocol is further improved by adaptively choosing
the probing time of the qubit, based on the previous measurement outcomes, to maximize
the information gathered per measurement.

• In Chapter 5 we present an adaptive frequency binary search algorithm to estimate and
stabilize in real time the frequency of a flux-tunable transmon qubit affected by flux noise.
The protocol adaptively updates the frequency of the qubit drive pulses and the duration
of the probing evolution times after each measurement. We evaluate the algorithm by
randomized benchmarking and gate set tomography, which show improved fidelity and
reduction of drift in the system, respectively. This Chapter’s measurements have been
performed at the Engineering Quantum System group (EQuS) at the Massachusetts Institute
of Technology, under the supervision of Dr. Jeffrey A. Grover and Prof. Dr. William D. Oliver.

• Chapter 6 provides a comprehensive summary and an outlook of possible future develop-
ments in the field of quantum control.
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1

Semiconductor Spin qubits and Real-time Quantum Control

The spin degree of freedom of one electron, spin-up or spin-down, can define a qubit [44]. Due
to the small magnetic moment of the electron spin µe ≈ −9.28×10−24 JT−1, its coupling to the
environment is weak, and it leads to long spin coherence times [45]. At the same time, this also
means that it is hard to measure the electron spin directly. On the other hand, it is possible to
electrically control spin states by exploiting the coupling of the electron charge to electric fields,
and using spin-to-charge conversion techniques. Indeed, energy-dependent tunneling or the Pauli
exclusion principle [46, 47] enable to initialize electrically and readout electron spins, which are
projected onto different charge states. Alternatively, a qubit can be defined by two different nuclear
states [48], for which coherence times of hours have been demonstrated [49, 50]. We refer the
reader to Refs. [51, 45] for quantum information processing encoded in electron holes and nuclear
states with high fidelity.

Contrarily to metals, semiconductors can be depleted of conduction electrons at sufficiently
low temperatures. It is possible as well to engineer the electron density to confine the electrons
in two dimensions (2D) in quantum wells (QWs), or at the interface between two materials [52].
Finally, electrostatic tailoring of the potential landscape can confine electrons to one (1D) or
zero (0D) dimensions [54, 53]. In particular, the 0D confinement restricts one or more electrons
in quantum dots1 (QDs), known also as artificial atoms defined in semiconductors [56]. The
different semiconductor materials typically used in semiconductor spin qubits include group III–V
(e.g. gallium arsenide) or IV (silicon and germanium) of the periodic table, as discussed in Sec. 1.2.

Exchange interaction [57, Chapter 32] is a key ingredient in semiconductor spin qubits. Given
two electrons in two distinguishable locations, with overlapping wavefunctions, the exchange
coupling J (also known as pseudo-exchange or kinetic exchange [51]) is defined as the energy
difference of the spin-singlet state lowered relative to the three spin-triplet states (in the absence of
an externally applied magnetic field). The higher energy of the triplets compared to the singlet for
spins i and j is given by the Heisenberg exchange Hamiltonian

Ĥ= Ji j
ˆ⃗Si · ˆ⃗S j , (1.1)

where ˆ⃗Si is the operator for the electron spin in site i . (For ease of notation, the ·̂ is dropped
to denote operators wherever no ambiguity arises.) The two electrons have an antisymmetric
wavefunction because of the Pauli exclusion principle. The electron pair in the singlet spin state

1The recent Nobel Prize in Chemistry 2023 has rewarded Moungi G. Bawendi, Louis E. Brus, and Aleksey Yekimov for
the discovery and synthesis of quantum dots [55].
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1. SEMICONDUCTOR SPIN QUBITS AND REAL-TIME QUANTUM CONTROL

(with antisymmetric spin wavefunction) can move to and from the same location. In contrast, in
the triplet spin state (with symmetric spin wavefunction), the motion is forbidden. The exchange
interaction Ji j can be tuned over many orders of magnitude (from a few kHz to tens of GHz) by
changing gate voltages [47] and it can be used for both single-qubit [58, 47, 59] and two-qubit gates,
depending on the spin qubit encoding [60, 61, 62, 63].

Spins in semiconductors are promising because of their small size of ≈ 100nm and the ex-
pected requirement of at least one million physical qubits for a fully-error corrected quantum
computer [64]. The small size would allow the semiconductor industry to produce dense quan-
tum computing architectures [65, 66, 67, 68] based on their decades of experience with classical
transistors. However, the nearest neighbor Heisenberg exchange interaction (spatially limited by
the wavefunctions overlap) and the small features of spin qubits also come with engineering chal-
lenges in terms of design, fabrication, and operation for quantum information processing. Possible
solutions for long-range connectivity include physically transporting qubits across the device by
surface acoustic waves in piezoelectric materials such as GaAs [69, 70, 71], “bucket brigade" in
GaAs [72, 73] and Si [74, 75], conveyor mode single electron and spin shuttling [76, 77], sequence of
pairwise SWAPs [44, 47, 78, 79], superexchange by an additional QD-based mediator [80, 81, 35, 82],
or microwave photons by cavity quantum electrodynamics (QED) [85, 86, 84, 88, 83, 85, 87, 89, 90].
The previous list is not exhaustive: more details are found in Ref. [51].

Spin qubits are measured at low temperatures in dilution refrigerators on the order of a few
tens of mK, a much smaller quantity2 compared to the typical energy scales for semiconducting
quantum dots, on the order of meV. Low-temperature operation also minimizes thermal noise.
However, less cooling power is available at such temperatures (about hundreds of µW at about
100mK), and the thermal budget needed to operate large arrays of qubits may require operation well
above the millikelvin regime [65, 92, 91, 93, 95, 94, 96, 97]. Some experiments have been performed
above 1K [93, 95, 94, 96, 98] where at higher temperatures it is more difficult to maintain high
state-preparation-and-measurement (SPAM) and gate fidelities compared to millikelvin operation.

In the following section, we introduce two different kinds of spin qubit encodings, followed
by the description of two architectures used in this Thesis to explain the difference between
“depletion" and “accumulation" mode devices. A reader familiar with semiconductor spin qubits
may jump directly to Sec. 1.6, where we provide details on singlet-triplet qubits in GaAs, including
standard pulses for spin control and readout, and related introductory experiments. Finally, we
introduce feedback and feedforward in quantum devices, with an example of a real-time control
loop protocol which lays the premises for the main results of this manuscript.

1.1 Spin qubits encodings

The number of spins used to encode the qubit classifies the spin qubit encoding. In the following,
we focus on the Loss-DiVincenzo (one electron) and singlet-triplet (two electrons) encodings.
Another type is the exchange-only qubit (three electrons) [29, 51], which requires only exchange
interaction to access the entire Bloch sphere, but it is not treated here. We refer to Appendix A for
an introduction to the Bloch sphere formalism, single-qubit gates, and decoherence.

Loss-DiVincenzo encoding A single electron encodes quantum information in the single spin
Loss-DiVincenzo (LD) qubit. Assuming one electron per dot and tight electronic confinement,

2The Boltzmann constant kB ≈ 86µeVK−1, thus 50mK ≈ 4.3µeV.
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Fig. 1.1: Loss-DiVincenzo and singlet-triplet encodings. (a) Loss-DiVincenzo (LD) qubit: a single
electron (black circle) is trapped in a potential well, and the externally applied magnetic field B eff

z
defines the spin quantization axis. A transverse and weaker AC magnetic field B eff

x (t ) rotates the LD
qubit between spin up and spin down. (b) Energy levels of the LD qubit with applied magnetic
field (assuming g > 0) which removes the spin-up |↑〉 and spin-down |↓〉 energies degeneracy. (c)
Bloch sphere of a LD qubit. The state |↑〉 (|↓〉) defines the |0〉 (|1〉) state. The states are split in
energy by B z

eff. The resonant field B eff
x (t ) provides a second, orthogonal rotation axis (e.g. along X ).

(d) Two electrons trapped in a double quantum well encode the singlet-triplet (ST0) qubit. The
qubit Hamiltonian is defined by the exchange coupling interaction J between the two electrons
(visualized by the overlap of the electrons wavefunctions), and the difference in the effective
magnetic field ∆B eff

z between the two electrons. A globally applied magnetic field Bz (not shown)
defines the spin quantization axis. (e) Energy level diagram of the four eigenstates of two electrons,
one singlet (|S〉) and three triplets (|T+〉 , |T0〉 , |T−〉) (see main text). The |T+〉 and |T−〉 are Zeeman-
split in energy by the global field Bz , while |S〉 and |T0〉 are split in energy by the exchange coupling
J . (f ) Bloch sphere of the ST0 qubit, where J (∆B eff

z ) enables rotations around the Z (X ) axis.

the Hamiltonian includes the Heisenberg exchange coupling (mentioned previously) and the
single-electron Zeeman term:

H(t ) = 1

4

∑
〈i , j 〉

Ji j (t )σi ·σ j + 1

2

∑
i

giµBBi ·σi , (1.2)

where Bi and gi are the effective magnetic field and g –factor at site i , µB is the Bohr magneton
and σi = 2Si , with i = x, y, z, are the Pauli operators. Single-qubit gates are performed by time-
dependent control of Bi or gi .

While spin-selective ferromagnetic elements were suggested in Ref. [44], nowadays readout
is performed by spin-selective tunneling to a reservoir of electrons, also known as “Elzerman
readout” [46]. A sufficiently large static magnetic field is applied compared to the thermal broaden-
ing, g B eff

z ≫ kB Te /µB, where kB is Boltzmann constant and Te the electron temperature. The
Larmor frequency of the electron spin is then on the order of tens of GHz. For instance, as
µB ≈ 58µeVT−1 and g ≈ 2 in silicon, assuming an electron temperature of 50mK, it follows
B eff

z ≫ 4.3µeV/
(
2 ·58µeVT−1

) ≈ 40mT. Thus B eff
z ≈ 1T as an order of magnitude, and the Zee-
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1. SEMICONDUCTOR SPIN QUBITS AND REAL-TIME QUANTUM CONTROL

man splitting Ez = gµB B eff
z ≈ 116µeV ≈ 28GHz3. The chemical potential of the QD is tuned such

that only the higher energy spin-state is allowed to tunnel to the Fermi reservoir, whereas tunneling
from the lower energy spin-state is energetically forbidden. By charge sensing (see Sec.1.4 later) it
is possible to measure the presence or absence of a tunneling event, thus discriminating between
the two electron spin states. This measurement is destructive because the measured electron is
lost to the reservoir after tunneling out of the QD.

Focusing on one electron in one dot and dropping the subscript i in the notation, see Fig. 1.1(a),
the degeneracy between the spin-up |↑〉 and spin-down |↓〉 state is lifted by the global magnetic
field B eff

z [see (b), with Zeeman splitting EZ], whereas an AC transverse magnetic field B eff
x (t)

drives the qubit coherently between the two states by electron spin resonance (ESR) [99, 61, 100].
Alternatively, it can be possible to apply electric dipole spin resonance (EDSR) via oscillatory
electric fields in a combination of spin-orbit coupling [101, 102], or magnetic field gradients [103,
63, 104]. Figure 1.1(c) depicts the Bloch sphere of the LD qubit. Single-qubit gates X and Y differ
by a phase π/2 of the drive B eff

x (t ).
As mentioned above, gate voltages tune the exchange coupling between single electrons [47]

and such interactions allow time-dependent two-qubit control. Silicon spin-qubit devices have
achieved high-fidelity single-qubit gates exceeding 99.9% [104] and two-qubit gates [61, 63, 62].
The regime for fault-tolerant operation has been recently reached exceeding 99% [107, 106, 105] in
Si, and recently in Ge holes [108].

A main advantage of the LD qubit is that it maps the two possible spin states of an electron in
the presence of a magnetic field to a qubit without leakage states (i.e. other spin states outside the
computational space). Also, each QD corresponds to one LD qubit. The main disadvantage is that
electron spin rotations require tens of GHz frequency range. Moreover, selectivity is challenging
and solutions nowadays include using micromagnets or g –factor differences between QDs [51].

Singlet-triplet encoding We have seen how the LD qubit requires a combination of static and
oscillating electric or magnetic fields. It is challenging to localize the fields in such devices, and at
cryogenic temperatures the available cooling power limits the amount of energy that those fields
can dissipate. Also, dephasing due to magnetic noise in materials such as GaAs with spinful nuclei
can be detrimental.

These problems can be overcome by encoding a qubit out of two electrons in a double quantum
dot (DQD), see Fig. 1.1(d). The singlet-triplet splitting given by the exchange interaction sets
the energy splitting of the so-called singlet-triplet (ST0) qubit [58, 47]. Given a spin quantization
axis along z, the qubit basis is defined by the singlet |S〉 and unpolarized |T0〉 states, whereas the
polarized triplet states |T+〉, |T−〉 are the leakage states outside the computational space. The
composition of these spin triplet and singlet states is [57, Chapter 32]:

|T+〉 = |S = 1, MS = 1〉 = |↑↑〉
|T0〉 = |S = 1, MS = 0〉 = (|↑↓〉+ |↓↑〉)/

p
2

|T0〉 = |S = 1, MS =−1〉 = |↓↓〉

|S〉 = |S = 0, MS = 0〉 = (|↑↓〉− |↓↑〉)p
2

,

(1.3)

where S is the total spin of the two electrons, MS is the total spin projection along the given z axis,
and e.g. |↑↑〉 means both electrons are spin-up along z. Notice that in |S〉 and |T0〉 the two electrons

31µeV ≈ 242MHz.
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1.2. Gallium arsenide and silicon

form an entangled pair. By applying a global magnetic field Bz , the |T+〉 and |T−〉 are split by the
Zeeman energy Ez from the |S〉 and |T0〉 [see Fig. 1.1(e)], as both share MS = 0 and their energy does
not change by Bz . We reiterate that |S〉 =: |0〉 and |T0〉 =: |1〉, whereas the |T+〉 and |T−〉 are leakage
states in this setting detuned by the externally applied magnetic field.

The Hamiltonian of the ST0 qubit is given by

H ST0 = J12
σz

2
+µB∆(g∗Bz )

σx

2
. (1.4)

Again, QD gate voltages can control the exchange coupling J12 [47], which enables rotations around
the Z axis of the Bloch sphere [see Fig. 1.1(f)]. In the presence of an applied global field along z,
∆B eff

z ≡∆(g∗Bz ) is the effective difference in the magnetic field between the two QDs along z. This
effective magnetic field gradient drives rotations around the X axis. In general, ∆B eff

z is always on,
but we can tune the exchange J by electrically tuning the barrier between the two dots, so we can
work in the regime where J ≫|∆Bz |. There is no idle gate in this qubit, except if one works in the
resonant mode and in the rotating frame of the qubit [109].

As the total spin projection MS = 0 for the |S〉 and |T0〉 states, the ST0 qubit is insensitive to
fluctuations with respect to global magnetic fields that couple to the spin of the electrons [110].
However, local effective magnetic-field fluctuations cause decoherence because of the ∆(g∗Bz )
appearing in the Hamiltonian defined in Eq. (1.4). The σx term can originate from hyperfine
fields [111, 112], g -factor variations [114, 113, 115], or micromagnet field gradients [116]. In
particular in GaAs, single-qubit gates have been performed by dynamic polarization of the nuclei,
also known as “nuclear pumping" [117, 118, 109]. After qubit manipulation, the singlet state
is distinguished by the triplet states by Pauli spin blockade (PSB), with a fast and high-fidelity
measurement with a nearby quantum dot used as a charge sensor [47, 119]. Upon the measurement,
the singlet and triplets are mapped to different spatial configurations of the two electrons in the
DQD. Unlike Elzerman readout, the measurement is non-destructive, in the sense that no electrons
are exchanged with the reservoir for readout. Moreover, it is faster as its speed is not limited by
the tunneling rate of the QD with the reservoir, enabling fast (typically a few µs long) single-shot
readout by radio-frequency reflectometry techniques [120]. Moreover, the readout window of PSB
is given by the singlet-triplet orbital splitting. The latter has energy scales on the order of 1meV,
which is convenient for high-temperature (≈ 1K) operation [65].

In the following section we will see why most spin qubit experiments were first performed in
GaAs, and then reproduced in Si. Recently, Ge electron holes (often called holes) have entered the
race as promising semiconductor spin-qubit platform. Germanium holes have several benefits,
including natural strong spin-orbit coupling, which enables full electrical control, Fermi-level
pinning of the valence band, and no valley degeneracies. We refer the interested reader to Refs. [121,
122].

1.2 Gallium arsenide and silicon

To illustrate the main differences between GaAs and Si for spin qubit applications, we start by
plotting in Fig. 1.2(a) the first Brillouin zone (BZ) of a face-centered-cubic structure (FCC) in direct
space. The Γ point is at the origin of k-space, where k is the crystal momentum. We plot the band
structure of bulk GaAs and Si in (b) and (c); they are different as the band structure depends on the
crystalline potential of each material [57, 123]. GaAs is a direct gap semiconductor (at Γ= 0v) with
gap of ≈ 0.4eV at room temperature (RT). Silicon instead has indirect gap of ≈ 1.1eV at RT.
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1. SEMICONDUCTOR SPIN QUBITS AND REAL-TIME QUANTUM CONTROL

Fig. 1.2: Bandstructure of bulk GaAs and Si. (a) Bulk first Brillouin zone of a face-centered-cubic
lattice (FCC) with labeled symmetry points. (b) Bandstructure of bulk GaAs as a function of the
crystal momentum k, along symmetric directions labeled in (a). The band gap (gray) is direct as
the nondegenerate conduction band minimum is centered at the Γ point (k = 0). (c) Bandstructure
of bulk Si as a function of the crystal momentum k, along symmetric directions labeled in (a). The
band gap (gray) is indirect, and six equivalent conduction band minima are in the 1st BZ [cf. (a)]
along the X directions. Figure adapted from [123].

To better understand the properties of electrons in QDs, one can describe the electrons close
to the conduction band minima by the effective mass approximation (EMA). The single-particle
Hamiltonian is then [124]:

HEMA = ∑
i=x,y,z

−ℏ2

2mi

∂2

∂(ri )2 +U (r)+µBS⃗ · ĝ · B⃗ , (1.5)

where mi are the effective masses, r = (rx ,ry ,rz ) = (x, y, z) is the position vector, U (r) is a spatially
slowly varying potential (compared to the lattice period). Such potential considers the electrostatic
potential shaped by the QD gate’s voltages. The Zeeman term with an effective g -tensor ĝ arises
from spin-orbit interaction [125]. In bulk GaAs free electrons fill the isotropic Γ (k = 0v) conduction
band minimum [Fig. 1.2](b) and in the EMA their effective mass m∗ ≈ 0.067m0, where m0 is the
bare electron mass. On the other hand, bulk silicon [Fig. 1.2(c)] has six-fold degenerate conduction
band minima at X. Each valley has an anisotropic effective mass of about 0.92m0 and 0.19m0

along the longitudinal and transverse directions, respectively. The heterostructure and electrostatic
confinement break the six-fold valley degeneracy in Si devices, inducing valley splitting [126].
However, in many cases, the atomic disorder can reduce the energy splitting between the lowest
valley states, until it becomes comparable to the thermal energy, hindering qubit operation.

Because of its free electrons’ relatively small effective mass, the first spin qubit devices were
realized in GaAs in 2005 [47]. Small effective mass means QDs can be bigger, thus relaxing fabrica-
tion constraints. Also, GaAs has advantageous electronic properties including single conduction
band valley, stable dopants, and decades of improvements in the growth of III–V heterostructures
by molecular beam epitaxy, yielding high-quality substrates [127]. Though, group III–V have nu-
clear isotopes that cause poor dephasing times of tens of nanoseconds by hyperfine interaction.
Therefore research has focused more on group IV semiconductors such as Si (and Ge), which have
smaller percentages of spinful nuclei isotopes and can be isotopically purified, leading to longer
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1.3. Bandstructure engineering and spin-qubit devices

coherence times [45]. However, devices in Si and Ge are more challenging to fabricate because of
their larger effective mass than GaAs; thus, they require smaller (and multi-layer) gates to better
control the electrons. The more complex fabrication process explains why the first singlet-triplet
qubit in Si was demonstrated seven years later than GaAs, in 2012 [112].

The trend to move to Si, and more recently Ge, is promising, but so far it is not scientifically
established that group IV is better overall. While a recurrent claimed advantage of Si is its compati-
bility with complementary metal-oxide-semiconductor (CMOS) foundry fabrication, Si spin qubits
require small feature sizes and different layouts compared to classical transistors [127]. Different
layouts cause large development costs for the industry. GaAs-based devices remain a leading
platform for proof-of-concept quantum information processing and solid-state experiments [29].

1.3 Bandstructure engineering and spin-qubit devices

In heterostructures, single electrons are confined in the growth (out-of-plane) direction by the
conduction band offsets at the semiconductor interfaces [123]. In this Thesis measurements from
two devices are reported: one device is a depletion-mode GaAs/AlGaAs device fabricated in an
academic cleanroom, and the other is an accumulation mode n-type Si metal-oxide-semiconductor
(SiMOS). The SiMOS is foundry-fabricated in a 300 mm process, using CMOS-compatible process
steps by IMEC [129, 130, 131].

GaAs/AlGaAs depletion mode A two-dimensional electron gas (2DEG) can be hosted in devices
defined by Schottky-gated GaAs/AlGaAs heterostructures. Indeed, a 2DEG is formed in the GaAs
layer interface with AlGaAs because of the lower conduction band edge of the GaAs layer, see
Fig. 1.3(a). The confinement potential is triangular to a good approximation [123]. In general Si
atoms are used to dope the AlGaAs layer next to the GaAs one [132]. In the so-called “remote doping"
technique the implantation is performed in the AlGaAs layer, whereas the 2DEG is accumulated
in the GaAs layer, which has not been implanted. This technique provides fewer defects in the
GaAs layer and, thus, higher mobility. A 2DEG can also be formed by sandwiching a thin GaAs
layer between two AlGaAs ones, and in general, the 2DEG occupies the whole 2D interface. Ohmic
contacts are required to make electrical contact with the 2DEG. The ohmics are contacts where
by definition the I −V curve is linear. In (a), below OL(R), the ohmic contacts are depicted by the
spikes of Ge, Au, and Pt extending through the AlGaAs, after annealing at high temperature (≈ 450◦).
Without any voltages applied to the gates, if one were to set a voltage bias V between OL and OR, the
measured current I across the two terminals would be linear and symmetric around zero applied
voltage. Once the 2DEG is present, it is then possible to form QDs by applying voltages to the metal
gate electrodes on top of the heterostructure [see Fig. 1.3(a)].

In GaAs the gates are in general obtained by depositing metals on the heterostructure surface.
The Schottky barrier, which forms at the interface between the semiconductor surface and the
metal, can deplete the electrons below, by applying negative voltages. On the other hand, applying
a positive voltage to the gates to accumulate electrons beneath may cause leakage current from the
donor layer to the gates [133, 134]. Charge carriers tunneling from the donor layer would then cause
charge noise and make device tuning more time-consuming. A solution proposed by Refs. [133,
134] to stabilize the device is to apply a positive bias (up to ≈ 200mV) during the cool-down, also
knows as “bias cooling".
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1. SEMICONDUCTOR SPIN QUBITS AND REAL-TIME QUANTUM CONTROL

Fig. 1.3: Depletion mode GaAs/AlGaAs and accumulation mode SiMOS. (a) Depletion mode
device GaAs/AlGaAs heterostructure, whose two-dimensional electron gas (2DEG) resides at the
interface of the GaAs bulk with the AlGaAs layer. On the left, E (z) describes the vertical confinement
and µ the chemical potential. Ohmics OL/R make electrical connections from the surface to the
2DEG. Gates control the potential landscape and the lateral confinement in the x y-plane: plunger
gates PL/R control the chemical potentials of the dots underneath, barrier gates control either the
coupling to the reservoir (BL/R) or the interdot tunnel coupling (BM). (b) SEM image of FF1B device
from [36]. The 2DEG is localized 57 nm below the surface and the GaAs cap is covered with 10 nm of
HfO2. See main text for description. One gate layer is present. Each of the four DQD (black circles)
encodes a singlet-triplet qubit with a sensor dot (SD, white circles) next to it for charge sensing.
(c-d-e) SEM image of foundry-fabricated SiMOS device with overlapping gate architectures, and
relative cross sections along the double-quantum dot (c) and the single-electron transistor (or
sensor dot) (d). Three gate layers in total. Ohmic contacts to the reservoir implantation region are
not shown. SEM from Ref. [128] © [2023] IEEE.
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1.3. Bandstructure engineering and spin-qubit devices

The voltages applied to the gates shape the electrostatic potential U (⃗r ) in Eq. (1.5), and confine-
ment along both in-plane directions can form QDs with single-electron occupancy at the potential
minima. In (a), two electrons are below the so-called “plunger gates" PL and PR. The plunger gates
tune the QDs electrochemical potentials and the shape of the confining potential. The voltage
applied to the barrier gate BM controls the barrier height between the two electrons of the DQD
depicted in (a), and therefore the tunnel coupling tc between the two QDs, or equivalently the
energy split between the bonding and antibonding orbitals formed by the DQD. The barrier gates
BL and BR control the coupling of the electron(s) in the QDs to the reservoir nearby. In theory,
plunger gates should control only the electrochemical potential of the QD underneath, and the
barriers only the tunneling rates. In real systems, there are cross-capacitance terms [54] that can be
compensated for by “virtualizing" the gates [135], which amounts to using properly defined linear
combinations of gate voltages.

Device In Fig. 1.3(b), it is shown a top view scanning electron micrograph (SEM) image of
the GaAs device FF1B [36], fabricated at the Niels Bohr Institute. There are in total four DQDs in
the device, where a black circle represents each QD. A DQD defines a singlet-triplet qubit, which
was briefly introduced before. The white circles represent the sensor dots used to charge sense the
nearby qubit (see later Sec. 1.4 for charge sensing readout). The light blue area indicates where the
2DEG approximately lies in the GaAs layer when the qubits are tuned. In purple, the barrier gates
confine the quantum dots from the reservoirs, whose chemical potential is set by the overall eight
ohmics 4. In red, each plunger gate controls the chemical potential of the dot underneath. The
elongated dot at the center controls a multi-electron dot designed initially to couple the qubits
among each other. Instructions on how to tune the device are contained in Ref. [136].

In FF1B the surface of the heterostructure has been covered by a 10nm layer of HfO2 [not shown
in panel (a)] before the metallic gates deposition. The oxide layer is expected to provide quiet and
stable devices without requiring the bias cooling mentioned above [137]. The advantage of the
oxide layer is that we can apply both positive (on the order of ≈ 100mV) and negative voltages
to the gates without worrying about leakage current. Then, we can both deplete or accumulate
electrons underneath the gates. The quantum dots are below a shared accumulation gate that
spans all four DQD, and in FF1B we usually set it to about 50mV.

In terms of design choices, it is known the heterostructure has a density of electrons ≈ 2.4 ·
1015m−2. Thus one electron corresponds to the area of a circular dot with a radius of 10nm. The
gates are designed to surround the area of a circle of about 100nm diameter. Secondly, the 2DEG
should be closed enough to the metallic gates such that the electrostatic gating dominates U (r)
[Eq. 1.5] over the random and intrinsic potential variations, related to inhomogeneities (“disorder")
of the heterostructure. At the same time, the 2DEG should not be too close to the gates, to avoid
charge noise from the donor layer and to have higher mobility for better device tunability. As a rule
of thumb, the 2DEG depth should not exceed 100nm given a QD diameter of 50nm. These devices
typically show mobilities of 2–2.5 ·106cm2 V−1 s−1.

SiMOS accumulation mode At IMEC the SiMOS spin qubit devices are linear qubit arrays with
multi-level gate stack. The set of gates consists of alternating plunger and barrier finger gates. The
2DEG is formed at the Si/SiO2 interface, on the Si side, and the devices strongly resemble classical

4While checking whether one ohmic works, it is possible to float the others. But while tuning, all ohmics should always
have a well-defined potential to confine the 2DEG.
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1. SEMICONDUCTOR SPIN QUBITS AND REAL-TIME QUANTUM CONTROL

transistors from the CMOS (complementary MOS) industry, see cross-sections in Fig. 1.3(c-d).
Again, the electrons are confined in an approximately triangular potential as a result of the gate-
induced electric fields across the oxide. As the used oxides have a large band gap, such out-of-plane
electric fields can be high. It is important to notice for the SiMOS device in (c) how, differently
from a depletion mode device such as GaAs, at zero voltage applied to the gates, no charge is
accumulated at the interface (therefore the “accumulation mode" name). Instead of applying
negative voltages to the gate electrodes, to form QDs positive voltages are applied to PL and PR.
The SEM image of the n-type SiMOS device is shown in (e). The horizontal cross-section, panel
(c), shows the three gate layers designed to control a double quantum dot. In the first layer there
is the confinement (or screening) gate C, whose purpose is to screen the plunger gates PL(R) and
the barrier gates BM(R), such that the quantum dots are confined under an area comparable with
the gates length. The target length of the sensor gates, and of the LB-RB space, is usually around
50nm [130] to satisfy the condition kBT ≪ EC, where EC is the charging energy (described in next
section) for seeing Coulomb oscillations. Comparing the 200nm scale bars in (a) and (e), the gates
are much finer in Si because of its higher effective mass. Thus Si requires tighter confinement, as
mentioned previously. The reservoir gate R accumulates electrons close to the right QD, with a
tunneling rate set by BR. As in the GaAs device, BM sets the interdot tunnel coupling tc between
the two QDs. The sensor dot under ST [see panel (d)] is used to discriminate the charge occupancy
in the nearby DQD by charge sensing. The sensor dot is capacitively coupled to the DQD, but
in general not tunnel coupled (depending on the voltage applied to C, typically grounded at the
beginning of the tuning). In panel (d), the cross-section along the single-electron transistor (SET)
or sensor dot (SD) is depicted, where the ST gate accumulates the charge coming from the heavily
n-doped source (S) and drain (D) region far from the device [not visible in panel (c)]. The barrier
gates LB and RB set the tunnel coupling to the reservoirs.

The first batch of received devices had atomic layer deposited (ALD) TiN gates and ALD silicon
oxides. The motivation for choosing TiN is to have fewer strain-induced defects in the devices
compared to Al and Pd [130]. Regarding the oxide, high-k materials might have more defective
effects than silicon oxide. At a later stage, the TiN gates have been replaced by polysilicon gates,
as charge sensors have shown lower disorder and lower required biases to tune to their operation
regime [138].

Tuning heuristics To tune a single dot under PL, after having tuned the SET, the fast way
is to set the voltages VR = VBR = VPR = [2,3]V, with VC = 0V (grounded). [We use the convention
VX is the voltage applied to the gate X.] Then PL is swept in the range [0.5,1]V, while its interdot
barrier voltage VBM = [0,0.5]V. It is even faster to tune the SET while the other gates are set to the
values above. If one were to tune the device from scratch, standard values are again VR = VBR =
VPR = [2,3]V. This time, VPL is set to a value such that there are electrons below. The value can be
guessed starting from the SET barrier threshold (after the SET is tuned). The value for VPL should
be slightly higher because of the confinement gate C nearby. Then one may sweep VC and VBM.
The confinement gate VC can be swept within a narrow range (e.g. [−100,100]mV), as it is in the
1st layer. The interdot barrier BM can have a larger range. However, if its applied voltage is too low,
there would be no tunneling from the reservoir. If VBM is set too high, the broadening would not
allow the formation of a single dot.

To tune a DQD beneath PL and PR, the fast way is to set VR = [2,3]V, VBM = 1V and VBR = 2V.
Then, one sweeps VPL and VPR around 1V. The alternative way is to tune a single dot under VPL,
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1.4. Spin-to-charge conversion

and then tune a second dot by sweeping VPR and VBM. These tuning procedures are guidelines, a
device may require different settings because of design or local disorder variability.

1.4 Spin-to-charge conversion

At the beginning of this Chapter, it has been highlighted that spin qubits have long coherence times
because in principle they directly couple to magnetic fluctuations instead of electrical ones. On the
other hand, measuring the spin of a single electron is harder than measuring its charge. One can
correlate spin and charge degrees of freedom to solve this issue using spin-to-charge conversion
protocols. Then we can map different charge configurations in a DQD to different spin states,
e.g. (1,1) →|T〉 and (0,2) →|S〉. Here (1,1) means one electron is in each QD, whereas (0,2) means
both electrons are in the right QD.

The previous sections presented how band structure and electrostatic confinements make it
possible to trap single electrons in QDs. However, electron-electron Coulomb interaction is impor-
tant as electrons are added to the system. The charging energy EC = e2/C , where C is the total dot
capacitance. The charging energy models the classical repulsion energy of the electrons in the QD,
that electrostatically repulse any other electron that could be added to the dot. Coulomb blockade
is a consequence of this Coulomb repulsion: in Coulomb blockade, the electron occupation is
fixed, and no current can flow across the QD [53, 139]. As EC is in the order of a ≈ 1meV, Coulomb
blockade can be measured only if the thermal excitation in the system kBT ≈ 86µeVK−1 ≪ EC, thus
around 10–100mK of operation, reachable in cryogenic dilution refrigerators (Chapter 2). Another
condition to observe Coulomb blockade is that the tunneling resistance should be greater than
h/e2 ≈ 25.8kΩ [123], derived from Heisenberg’s uncertainty principle.

Because of quantum confinement, the total energy required to add an electron is different from
the charging energy EC, and it is called the addition energy Eadd, which is related to the orbital
energy Eorb. The orbital energy is the change in single-particle energy when another electron
must occupy a new orbital level due to the Pauli exclusion principle, which prohibits two electrons
from being in the same single energy level (neglecting spin at the moment). Within the constant
interaction model [54], the addition energy is then given by Eadd = EC +Eorb.

In the next paragraph, we consider only the charge degree of freedom. At a later stage, we
consider the spin degree of freedom and the presence of externally applied magnetic fields.

Charge degree of freedom

We consider a double well potential illustrated in Fig. 1.4(a). Each well represents a dot with a
chemical potential µL(R). Electrons come from nearby reservoirs (not shown), which have chemical
potential µF. The applied plunger gates voltages VPL(PR) control the chemical potentials µL(R). The
difference in the chemical potentials defines the electrical detuning ε = µL −µR of the double
quantum dot. The tunnel coupling tc sets the hopping rate between the two charge configurations,
and it is controlled by the interdot barrier gate VBM. Figure 1.4(b) shows a DQD charge stability
diagram as a function of ε and the mean energy E = (µL +µR )/2 [123], where each ground state
charge configuration is labeled as (N1, N2). Here Ni is the number of electrons in the i -th QD. The
vertical lines represent interdot transitions where one electron is exchanged from one dot to the
other. The diagonal lines represent electron exchanges with the left and right reservoirs. Focusing
on N1 +N2 = 1, namely a DQD with one electron, the charge configurations (1,0) and (0,1) can
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Fig. 1.4: Charge stability map and energy levels of a double quantum dot. (a) Sketch of a double
well potential defining a DQD. The left (right) dot chemical potential µL (µR) is controlled by the
plunger gate voltage VPL (VPR). The interdot barrier gate VBM controls the tunnel coupling tc

between the two dots. The electrical detuning ε≡µL −µR. (b) Charge stability map as a function
of the electrical detuning ε and the mean energy E . While the detuning ε defines the tilt in the
potential between the two dots, E sets the total number of charges. (c) Energy levels of one electron
in a DQD as a function of ε across the (1,0)− (0,1) charge transition. At low detuning, the diabatic
(1,0) state is the system’s ground state. After anticrossing with the (0,1) state at higher detuning, the
latter becomes the ground state and the (1,0) is the excited state. The splitting at the anticrossing is
given by 2tc . (d) Energy level diagram of two electrons state across the (2,0)−(1,1)−(0,2) transition.
The total number of electrons does not change; what changes is the polarization of the DQD with
either two electrons in the same dot or on separate dots. The energy splitting between the (1,1)
and (0,2) or (2,0) energy levels is proportional to tc .

approximate the DQD as a two-level system, whose Hamiltonian is:

Hc =
(
ε/2 tc

tc −ε/2

)
. (1.6)

Here the tunnel coupling tc is in principle an exponential function of the interdot barrier height
(controlled by VBM), whereas ε is controlled by a linear combination of the plunger voltages VPL(PR).
Figure 1.4(c) shows how the ground state changes between (1,0) and (0,1) depending on ε. Close
to ε = 0, antibonding and bonding combinations of the (diabatic) charge states hybridize. The
hybridization strength is set by the tunnel coupling tc .

We focus now on the case where N1 +N2 = 2, i.e. a two-electron DQD, the (2,0), (1,1), and (0,2)
charge states are allowed. Due to Coulomb repulsion, the (2,0) or (0,2) charge states are the ground
state only if ε is highly biased (|ε| ≫ tc ), see Fig. 1.4(d). Also in this case tc provides the energy
splitting at the anticrossings by a factor 2

p
2tc [54]. The (2,0) or (0,2) charge states are relevant for

spin qubit control, in particular for the initialization of the singlet state |S〉.

12
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Kinetic exchange in the Fermi-Hubbard hopping model
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Fig. 1.5: Energy level diagram of two-electron singlet and triplet states in a DQD. Energy level
diagram of a DQD [cf. Fig. 1.4(d)] including the singlet (black) and triplet (red) states, in the absence
of an externally applied magnetic field. When two electrons are in the same dot, the singlet |S〉
is the ground state, while the triplet states |T〉 are high in energy. In the (1,1) regime, |S〉 is still
the ground state but with a relatively smaller separation from |T〉, as electrons reside in different
dots. The tunnel coupling tc leads to level anticrossing between the singlet states where the on-site
Coulomb energy U equals |ε| (vertical dashed lines).

In this section we use the Fermi-Hubbard model to describe the kinetic exchange J , fundamental
for spin qubit operation (see Appendix B for details on the derivation of J ). The first assumption is
that electrons are tightly bound to their single-electron ground state orbitals φ j (⃗r ) in dot j , with
j = 1, 2. The QD-to-QD Coulomb and direct exchange interactions are assumed to be negligible.
What remains is the on-site Coulomb interaction with strength U . A constant tunnel coupling tc

describes the antidiagonal elements of the kinetic energy transition matrix T j k such that tc = T12

for sites 1 and 2 (tc is assumed to be real). The diagonal elements ( j = k) correspond to the chemical
potential µ j on each dot j , and they can be controlled by voltages applied to the plunger gates.
Focusing on two electrons populating the two sites j = 1, 2, in the absence of magnetic field, it is
obtained [51]:

HFH = ∑
σ=↑,↓

[ ∑
j=1,2

µ j c†
jσc jσ+ tc (c†

1σc2σ+ c†
2σc1σ)

]
+ ∑

j=1,2
Uc†

j↑c j↑c†
j↓c j↓. (1.7)

Here we have defined the anticommuting annihilation (creation) operator c jσ (c†
jσ) which annihi-

lates (adds) an electron in the orbital state φ j (⃗r ) and spin state σ. It is convenient to write down the
states defined by charge and spin configurations to introduce the charge-to-spin protocol later. We
rewrite the Hamiltonian in Eq. (1.7). Because of the exclusion principle, the (2,0) and (0,2) states
allow only one spin up and one spin down electron (singlet state). (The triplet states are high in
energy and neglected). Instead, the (1,1) state allows four possible states, one spin-singlet state,
and three spin-triplet states. The detuning ε≡µL−µR and the zero-energy is defined as µL+µR ≡ 0.
The rewritten Hamiltonian is then:
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1. SEMICONDUCTOR SPIN QUBITS AND REAL-TIME QUANTUM CONTROL

H = (U −ε) |S(0,2)〉〈S(0,2)|+ (U +ε) |S(2,0)〉〈S(2,0)|
+p

2tc (|S(2,0)〉〈S(1,1)|+ |S(0,2)〉〈S(1,1)|+h.c.) , (1.8)

where all triplet states are at zero energy and S labels singlet states. Solving the Hamiltonian yields,
for |tc |≪U ±ε and |ε| <U , the eigenstate

|S〉 ≃ |S(1,1)〉−
p

2tc

U −ε |S(0,2)〉−
p

2tc

U +ε |S(2,0)〉, (1.9)

with error terms given by t 2
c /(U ±ε)2, and kinetic exchange energy (or exchange coupling) −J given

by

J = 4U t 2
c

U 2 −ε2 +O

(
t 3

c

(U ±ε)3

)
. (1.10)

The kinetic exchange interaction is indeed due to the virtual hopping between the two sites. The
hopping lowers the energy of the lowest singlet state by J , relative to the triplet state energy. Higher
energy states that are singlets exist, but are about U ±ε away. Similarly, we know that excited (2,0)
and (0,2) triplets also have higher energies. Restricting ourselves to the low-energy states, the
Hamiltonian of the (1,1) charge configuration is given by

H=−J |S〉〈S| = J

2

(
S2 −2

)= J S⃗i · S⃗ j +const., (1.11)

as the total spin of sites i and j is S⃗ = S⃗i + S⃗ j , yielding the Heisenberg exchange formula, minus an
offset in energy.

The result of this section is visually summarized in Fig. 1.5, where the energy spectrum of
a double quantum dot as a function of detuning is plotted considering the spin states (without
applied magnetic field). Considering the singlet states |S〉, the (2,0) [(0,2)] charge configuration is
the ground state for ε<−U [ε>U ]. In between, the (1,1) is the ground state, close in energy with
the triplet states as the electrons reside in different QDs. The triplet states of (0,2) and (2,0), missing
in the previous Hamiltonian, are here plotted and they hybridize with the triplet state of (1,1). The
triplet states (0,2) and (2,0) limit the available readout window in ε of PSB.

Charge sensing and Pauli spin blockade readout

In the previous sections, charge states have been related to spin states. In what follows, charge
sensing techniques are described to measure the number of electrons in a DQD and for single-shot
readout by Pauli spin blockade (PSB).

If next to a DQD another QD is placed, the latter can be used to charge sense the number of
electrons in the DQD [140]. The QD used for sensing is often referred to as “sensor dot" (SD) or
“single-electron transistor" (SET). To explain how charge sensing works, as an example it is shown
in Fig. 1.6(a) a schematic of the SiMOS device already presented in Fig. 1.3. As described before,
the DQD is formed by applying positive voltages to the gates PL and PR, while C is grounded, BM

controls the interdot barrier, BR tunes the coupling between the DQD and its electron reservoir on
the right. The electron reservoir is indeed provided by a positive voltage applied to gate R, which
accumulates electrons from a third ohmic (not shown). To measure the number of electrons under
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Fig. 1.6: Charge sensing and spin-to-charge conversion by Pauli spin blockade. (a) Schematic
of the SiMOS device shown in Fig. 1.3(e). Black circles are the QDs charge-sensed by the sensor
dot (white circle). (b) Sketch of measured current by sweeping the plunger gate voltage VST of the
sensor dot, with different numbers of electrons in the dot PL. (c) Charge stability map of the SiMOS
device as a function of the double quantum dot voltages VPL and VPR applied to the respective gates.
(d) Homodyne voltage from radio-frequency reflectometry signal showing an electron jumping in
and out of the quantum dot defined under PL. (e) Schematic of spin readout by Pauli spin blockade
(PSB) near the (1,1)− (0,2) charge transition [star in panel (f)]. From the (1,1) charge configuration
(one electron in each dot), a triplet state remains stuck in the (1,1) charge state because the T(0,2)
level is high in energy (and tunneling is assumed to be spin preserving). Instead, the S(0,2) is lower
in energy, allowing the electron to tunnel. (f ) Sketch of a charge stability diagram close to the
(1,1)–(0,2) interdot transition. The singlet state in (0,2) is initialized by electron exchange with the
reservoir going from (0,1) to (0,2). Deep in the (1,1) charge region, qubit manipulation occurs, and
it is measured in (0,2). (g) Sketch as a function of laboratory time how the signal changes while
sweeping the detuning ε, from the (1,1) to (0,2) charge configuration. If the two electrons are in
the triplet state, the sensor dot charge senses the (1,1) state (gray dashed line) until relaxation.
Otherwise a singlet state results in the electron tunneling from (1,1) to (0,2) (green dashed line).
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PL and PR, the SD is placed on the left of the DQD, to which it is capacitively coupled. The SD
is formed by applying a positive voltage to the top gate ST, and by tuning the tunnel coupling to
the reservoirs, by the barrier gates LB and RB. The charge carriers are provided by ohmic contacts
(source and drain) represented by the black squares.

Between the two ohmic contacts, a current I flows upon applied bias between the source and
drain. In Fig. 1.6(b), it is illustrated a sketch of the measured current across the sensor dot, as a
function of the applied sensor dot plunger gate ST voltage. The current shows a Coulomb peak
when N electrons reside under the left dot PL. If no electrons were to tunnel under the left dot
while sweeping the gate, the curve would look similar to the black one. Due to a cross-capacitance
effect, at a specific voltage of VST, an electron jumps into the left dot, which is capacitively coupled
to the sensor dot. The capacitive coupling causes a shift in the Coulomb peak position (red
curve), because the sensor dot chemical potential is affected by the nearby electrostatic potential
modulated by both the gates and the electrons occupying the nearby dots. By tuning the sensor at
a particular gate voltage VST, a current signal IN (IN+1) would correspond to N (N +1) electrons
under the left dot5.

The charge stability map of the DQD as a function of the plunger gates PL and PR is shown
in panel (c). The IMEC device’s identifier is AL00126614 D21 D1SD5 2 5. The signal is the norm
of the gradient of the measured current with respect to the applied voltages to the gates, and
the characteristic honeycomb pattern [54] appears in the top right corner. The almost diagonal
lines represent the interdot transitions where one electron is exchanged from one dot to the
other. Towards higher voltages, the horizontal (vertical) [to some extent] lines represent electrons
accumulated into the QD defined by PR (PL) from the nearby reservoirs (presumably PL receives
electrons from the SD, to which it is sufficiently tunnel coupled). In the few-electron regime (bottom
left corner), unintentional or not-well-defined dots manifest by charging lines with different slopes
than the ones in the top right corner.

One can tune the device at one of the transitions between the right dot and the reservoir to
investigate the dynamics of one electron tunneling in and out of the QD. Then it is possible to
measure as a function of laboratory time, tunneling events of an electron from the dot to the
reservoir and vice versa, as shown in Fig. 1.6(d). A high (low) signal corresponds to N + 1 (N )
electrons under the right dot. The frequency of the jumps depends on the tunneling rate between
the right dot and its reservoir, as well as how far the DQD is tuned away from the transition with
the reservoir.

We now overview Pauli spin blockade (PSB), a fundamental tool to readout many types of
spin qubits and which has been observed in planar GaAs DQDs for the first time in Ref. [141]. An
electron singlet pair can be initialized in the same QD in the charge configuration (0,2) [or (2,0)] by
electron tunneling between the same QD and the nearby reservoir [47, 142]. Upon initialization,
the two electrons can be separated in two different QDs by, e.g. decreasing the electrical detuning ε
starting from (0,2) [cf. Fig. 1.5], before being manipulated in the (1,1) charge configuration.

The PSB measurement is performed by stepping ε to, e.g., a high value for readout in (0,2)
[cf. Fig. 1.5], namely |ε|≫U . Figure 1.6(e) shows the spin-to-charge PSB readout technique. Within
the readout window, the T(0,2) energy levels are much higher than the singlet state. Therefore after
qubit manipulation in (1,1), a triplet state T(1,1) is not energetically allowed to tunnel into the T(0,2)
state once ε is stepped. Also, T(1,1) is not allowed to tunnel into the S(0,2) charge configuration as

5Notice if one were to sit at the crossing between the red and black curve, the sensor dot would be insensitive to the
N ↔ N +1 transition.
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1.5. Singlet-triplet qubits in GaAs

electron tunneling prevents spin flips (in the absence of spin-orbit interaction). Whereas, a singlet
S(1,1) is allowed to tunnel in S(0,2). The measured signal (see Fig. 1.6(g)) would then be (1,1) for an
initial triplet state, and (0,2) for a singlet state. The different charges configuration (1,1)–(0,2) are
readout by the nearby SD, and high-fidelity readout has been pioneered by using radio-frequency
(RF) reflectometry techniques [143, 144, 119, 120]. Such techniques will be presented in the next
Chapter 2.

1.5 Singlet-triplet qubits in GaAs

An electron in a semiconductor couples to the nuclei by hyperfine interaction. The main disad-
vantage of singlet-triplet qubits in GaA is that fluctuating hyperfine fields limit the dephasing time
to T ∗

2 ≈ 10ns [47]. In the following, we summarize the main results of Ref. [111] to obtain the
Hamiltonian of a singlet-triplet qubit in GaAs and to explain how we manipulate it.

Electron spin Hamiltonian for a single quantum dot The Fermi contact interaction Hamiltonian
between an electron with spin operator S⃗, interacting with the lattice nuclei of species β in unit

cells j carrying spin ˆ⃗Iβ, j , is given by

HFC = ℏγe
∑
β, j

bβα j ,β
ˆ⃗S · ˆ⃗Iβ, j , (1.12)

where the gyromagnetic ratio for the electron spin ˆ⃗S is γe = g∗µB/ℏ, the sums are over nuclear
species β and unit cells j . The effective hyperfine field due to species β is described by bβ, with
b75As =−1.84 T, b69Ga =−1.52 T, and b71Ga =−1.95 T [145]. The probability of the electron being at
unit cell j is α j ,β = v0|ψ(⃗r j ,β)|2, where v0 is the volume of the unit cell (containing two nuclei) and
ψ(⃗r ) is the envelope wavefunction of the localized electron.

After adding an external magnetic field, which contributes to the Hamiltonian by a Zeeman

term ℏγe B⃗ext · ˆ⃗S, the total Hamiltonian can be rewritten as an electron spin that interacts with an

external magnetic field B⃗ext and a field ˆ⃗Bnuc such that

Heff = ℏγe (B⃗ext + ˆ⃗Bnuc) · ˆ⃗S . (1.13)

The nuclear field value is maximum when all spins are fully polarized with value I = 3/2. This
corresponds to h0 = ∑

βbβxβIβ
∑

k αk , where the relative contributions of nuclear species have
been separated: x75 As = 1, x69Ga = 0.6, and x71Ga = 0.4 for GaAs (removing the β dependence from
the αk,β). It results in b0 ≈ 5.3T. Under the assumption that the N nuclear spins are described by a
density matrix ρ = 1̂/(2I +1)N in the infinite temperature limit, the nuclear field has a root-mean-
square (r.m.s.) strength

Bnuc =
√
〈| ˆ⃗Bnuc|2〉/3 =

√∑
β,k

b2
β
α2

k,β〈|
ˆ⃗Iβ,k |2〉/3 (1.14a)

=
√√√√(∑

β

xβb2
β

)
I (I +1)v0/3

∫
d 3r |ψ(r )|4 (1.14b)

= h1/
p

N , (1.14c)
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(a) (b)

J

69Ga  71Ga  75As

J

ΔBzBz

Blnuc Brnuc

Fig. 1.7: Singlet-triplet qubit in GaAs. (a) Schematic of a DQD in the (1,1) configuration in GaAs,
with externally applied magnetic field Bz . The exchange interaction J is given by the overlap of the
two electrons’ wavefunctions. The electrons interact with the spinful nuclei of the GaAs/AlGaAs
heterostructure by hyperfine interaction. Thus, in the far-detuned regime in (1,1), the left (right)
dot feels an effective field B l (r )

nuc, on top of the applied magnetic field. (b) The |S〉 and |T0〉 states
define the ST0 qubit. Exchange J drives qubit rotations around the Z axis of the Bloch sphere,
whereas the Overhauser gradient ∆Bz = B l

nuc,z −B r
nuc,z drives rotations around the X axis.

where
∑

j v0 has been replaced by
∫

d 3r . The strength factor h1 for GaAs is

h1 =
√

2I (I +1)/3
∑
β

xβb2
β
= 4.0T, (1.15)

as N = 2/
[∫

d 3r |ψ(r )|4v0
]

is the number of nuclei which largely overlap with the electron spin.
The total interaction between the nuclei and the electrons also includes dipole-dipole interaction
terms. Those terms are negligible for electrons in Si and GaAs compared to the Fermi contact
one, but they are critical to determining how the nuclear spin path evolves in time [51]. As one
one electron in a QD overlaps with many nuclear spins, the nuclei exert an effect “Overhauser"
magnetic field on the electron. Because of nuclear dynamics, the Overhauser field fluctuates over
time, causing spin qubit dephasing. It has been experimentally demonstrated that spin-orbit terms
in the interaction dominate relaxation and dephasing on time scales of milliseconds [111]. In this
work we focus on the nanoseconds to hundreds of nanoseconds scale, and we do not address
spin-orbit terms.

The quasi-static approximation for nuclear spins

To describe the electron spin dynamics in the large N limit of the number of nuclei, in Eq. (1.13),

the operator ˆ⃗Bnuc can be replaced by a random, classical vector B⃗nuc. Therefore, it is possible
to calculate the observables from the distribution of classical values. In the large N limit, the
distribution becomes:

P (B⃗) = 1

(2πB 2
nuc)3/2

exp
(−(B⃗ · B⃗)/2B 2

nuc

)
, (1.16)

which stems from the quasi-static approximation (QSA) [111]. At large external magnetic field
along z, Ŝz is conserved, but the transverse spin components, e.g. Ŝy , decay following

〈Ŝy 〉nuc =
Ŝy

2
(1+e−

1
2 (γe Bnuct )2

). (1.17)
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1.5. Singlet-triplet qubits in GaAs

Thus, given an electron in a single QD i at a large magnetic field, the time-ensemble-averaged
dephasing is given by

T ∗
2,i =

1

Ωnuc,i
= 1

γe Bnuc,i
. (1.18)

The QSA is a good approximation at low magnetic fields up to the single electron spin-nuclear
spin interaction time [O(ℏN /A)], typically a few microseconds [111]. By the rotating wave approxi-
mation, terms that do not commute with the Zeeman term in the Hamiltonian can be eliminated,
resulting in the effective Hamiltonian (here, the external magnetic field is along z):

Heff = ℏγe (Bext +B z
nuc)Ŝz . (1.19)

In Fig. 1.7(a) we sketch the two electrons trapped in DQD, with a different local nuclear field for
each dot, in the presence of an externally applied magnetic field Bz . In the following sections, we
extend the results summarized so far to a DQD, which is the case of interest in our work.

Hyperfine interactions in a double quantum dot

To describe the hyperfine interaction in a DQD, we consider the case of two electrons in one of
the two QDs, and one electron in each QD. As mentioned before in 1.4, the ground state of a
doubly-occupied QD is a singlet |(0,2)S〉, separated by its triplet state |(0,2)T〉 by a large energy gap.
The ground state of the system can be changed to separated electrons in the two QDs of the DQD
by electrically controlling the detuning, where ε= 0 at the avoided crossing between (1,1) and (0,2)
[dashed gray line on the right in Fig. 1.5]. Following Eq. (1.8), considering only charge coupling and
restricting to the diabatic states |(0,2)S〉 and |S〉 in (1,1) that provides the zero energy reference, the
Hamiltonian becomes:

H11−02 =
( −ε tc

tc 0

)
, (1.20)

apart from a common shift in energy for the singlet states, and tc is the (real) tunneling coefficient
of the DQD.

In the case of a time-independent Hamiltonian, the eigenstates are∣∣S̃〉 = cosθ |S〉+ sinθ |(0,2)S〉 (1.21a)∣∣G̃〉 =−sinθ |S〉+cosθ |(0,2)S〉 . (1.21b)

Here we follow the convention the tilde
∣∣X̃ 〉 describes an adiabatic state. For instance

∣∣S̃〉 is the

lower energy state, with adiabatic angle θ = arctan

(
2tc

ε−
p

4|tc |2+ε2

)
. The energies of the two states are

ES̃ =− tc

2
tan(θ), (1.22a)

EG̃ = tc

2
tan(π/2−θ). (1.22b)

For instance, the eigenstates of the system become
∣∣S̃〉→ |1,1)S〉 ,

∣∣G̃〉→ |(0,2)S〉 if ε≪−|tc |, θ→ 0.
For ε≫|tc |, θ→π/2, and the eigenstates are switched, with

∣∣S̃〉→ |(0,2)S〉 and
∣∣G̃〉→ |1,1)S〉.
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1. SEMICONDUCTOR SPIN QUBITS AND REAL-TIME QUANTUM CONTROL

Now we can add both spin couplings, the Zeeman interactions, and the hyperfine contact
coupling, to the DQD mode. Two effective Hamiltonians are obtained for the case where ε≪−|tc |
and ε≈ 0, again following [111]. In the basis of the triplet and singlet states |Tm〉 ,

∣∣S̃〉, we can write
the interactions of the spins in the far-detuned regime ε≪−|tc | as

Hhf,tot =Hl
hf,eff +Hr

hf,eff − J (ε) |S〉〈S| , (1.23)

being l and r the left and right QD, the nuclear fields are given by the single dot Hamiltonians
(cf. Eq.1.19) and J (ε) =−ES̃(ε). Substituting, one gets

Hhf, tot = ℏγe [B⃗ · ( ˆ⃗Sl + ˆ⃗Sr )+∆B⃗ · ( ˆ⃗Sl − ˆ⃗Sr )]− J (ε) |S〉〈S| , (1.24)

given the average field B⃗ = B⃗ext +
(
B⃗nuc,l + B⃗nuc,r

)
/2 and difference field ∆B⃗ = (B⃗nuc,l − B⃗nuc,r)/2.

Then it is possible to write in matrix form Eq. (1.24) in the basis {|T+〉 , |T0〉 , |T−〉 , |S〉}

H = ℏγe


Bz 0 0

∆Bx−i∆Byp
2

0 0 0 −∆Bz

0 0 −Bz
−∆Bx−i∆Byp

2
∆Bx+i∆Byp

2
−∆Bz

−∆Bx+i∆Byp
2

−J (ε)/γe

 . (1.25)

The associated level structure is plotted in Fig. 1.8(a) [negleticing the |S〉– |T+〉 anticrossing]. It
is interesting to note that because of the negative electron g -factor = -0.44, in GaAs the |T+〉 lies
lower in energy than the |T−〉 state. To write Eq. (1.25), we assume the QSA, and spin-up and -down
axes are defined along the sum B⃗ of the external magnetic field and average nuclear field. If there
were no external magnetic field, all states would couple to the singlet. Nevertheless, at a finite
external magnetic field, a sufficiently large Zeeman splitting for which Bz ≫ Bnuc makes the system
separable. In other words, in the far-detuned regime the transition occurs only between the MS = 0
states, and in this basis {|T0〉 , |S〉} then Eq. (1.25) becomes:

HMS=0 = ℏγe

(
0 −∆Bz

−∆Bz −J (ε)/γe

)
. (1.26)

The previous Hamiltonian describes the dynamics of the singlet-triplet qubit of this Thesis. The
result is summarized in the Bloch sphere in Fig. 1.7(b), where J (∆Bz ) provides Z (X ) rotations.
Next, we show how we operate the qubit.

1.6 Quantum control of two-electron spin states

In this section it is shown how the singlet-triplet qubit is operated by time-dependent control
of the electrical detuning ε. The two main techniques are called rapid adiabatic passage (RAP)
and slow adiabatic passage (SAP) [111]. Rapid adiabatic passage involves initializing a separated,
two-spin entangled state |S〉 in the far-detuned regime, followed by a projective measurement. The
measurement distinguishes the triplet states |Tm〉 from the singlet state |S〉. Instead, SAP prepares
and measures eigenstates of the nuclear field |s,−s〉. Here s =±1/2 is the eigenvalue of the spin
projection on the field of the left dot. These techniques are the fundamental ingredients for the
experiments shown later in Fig. 1.9.
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1.6. Quantum control of two-electron spin states

Fig. 1.8: Rapid- and slow-adiabatic passage. (a) Energy level diagram of a singlet-triplet qubit in
GaAs as a function of detuning ε across the (1,1)-(0,2) transition, upon applied in-plane magnetic
field Bz . The leakage states |T+〉 and |T−〉 are Zeeman split from the |T0〉. Rapid-adiabatic passage:
starting from the state |(0,2)S〉, the detuning ε(t) is swept from ε≫ tc to ε≪−tc , fast compared
to the nuclear energy scale ∆Bz . Here t is the laboratory time. The reversed pulse transfers |S〉
(RAP) to |(0,2)S〉 while the other states remain stuck in the (1,1) charge configuration by PSB. (b)
Pulse sequence corresponding to (a) as a function of laboratory time t . By sweeping fast from
the (0,2) charge configuration to (1,1), the spin state remains a singlet and it precesses around X
because of ∆Bz -driven rotations. The qubit state is readout in (0,2) by Pauli spin blockade (PSB).
(c) Slow adiabatic passage: similar to (a), but as the system is past the S −T+ crossing (gray curve),
the change of ε(t) is made slow (black curve) compared to the nuclear energy scale. Then the
ground state of ∆Bz (|↑↓〉 or |↓↑〉, depending on the sign, see text) is initialized. The reversed pulse
transfers the ground state of ∆Bz (SAP) to |(0,2)S〉 while the other states remain in the (1,1) charge
configuration by PSB. (d) Pulse sequence of (c) as a function of laboratory time t . Starting from the
(0,2), the (0,2)S-T+ transition (red line) is crossed diabatically. A forward adiabatic ramp prepares
the state into the ground state of ∆Bz , e.g. |↑↓〉. After qubit manipulation, the time-reversed
sequence is performed for readout.
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1. SEMICONDUCTOR SPIN QUBITS AND REAL-TIME QUANTUM CONTROL

Spin-to-charge conversion for preparation and measurement

Rapid adiabatic passage Adiabatic transition from ε ≪ −tc to ε ≫ tc maps the far-detuned
regime states |S〉 , |Tm〉 to |(0,2)S〉 , |Tm〉 [past the (1,1) -(0,2) charge transition]. The singlet state
|(0,2)S〉 is distinguished from the |Tm〉 by the charge measurement. As the adiabatic transfer of
states is fast with respect to the nuclear spin-induced mixing, it is called “rapid adiabatic passage"
(RAP) [111]. It is important to notice that the change in detuning ε is adiabatic compared to the
tunnel coupling tc (to avoid ending up in the excited state

∣∣G̃〉 after the charge transition), but
much faster than the Overhauser field gradient ∆Bz from Eq. (1.26). For sufficiently fast sweeps, the
adiabatic passage does not depend on the nuclear dynamics. As an example, if one initializes the
state |(0,2)S〉 (≈ ∣∣S̃〉) and ε≫ tc , using RAP then initial state remains |S〉. The latter is an entangled
spin state of two electron located in separate dots. The protocol is shown in Fig. 1.8(a), where
the |(0,2)S〉 state initialization is represented by the black circle. We show the associated control
sequence as a function of detuning and laboratory time in panel (b). A readout can be performed
by following the procedure in the opposite direction, which converts the singlet state to the charge
(0,2), while the triplet state remains in (1,1). A charge sensor next to the DQD distinguishes between
the two results.

Slow adiabatic passage If the change of ε is slow compared to ∆Bz , then the adiabatic passage
follows the eigenstates of ∆Bz instead of

∣∣S̃〉. For now, we assume that RAP is adopted between
the charge transition after the S–T+ [cf. Fig. 1.8(c)], so the transfer between the |S〉 and the |T+〉
states can be neglected. (An external magnetic field |Bext|≫ Bnuc is applied.) Starting then from
this ε<−tc point to the far-detuned regime deep in (1,1), ε is changed slowly compared to ℏγe Bnuc.
Then, adiabatic passage maps into eigenstates of the nuclear field, |s,−s〉, as shown in Fig. 1.8(c).
The states |s,−s〉 are product states, with one spin up and the other spin down with respect to the
external magnetic field direction. The SAP pulse sequence is shown in panel (d). Notice the RAP
across the S–T+ to avoid leakage to the |T+〉 state, followed by the SAP.

To summarize, RAP maps |(0,2)S〉↔ |S〉e iφ, where φ is the accumulated adiabatic phase, and
|Tm〉↔ |Tm〉, leaving the triplet states unaffected. Whereas for SAP, the mapping is:

|(0,2)S〉 ↔ e iφ |s,−s〉
|T0〉 ↔ e iφ′ |−s, s〉 .
|T±1〉 ↔ |T±1〉

(1.27)

It is worth mentioning that |(0,2)S〉 maps to the current ground state of the nuclear field, whose
ground state is different depending on the sign of ∆Bz . Here s is chosen such that Es,−s < E−s,s ,
with Es,−s = sγe (B l

nuc,z −B r
nuc,z ) (at large external magnetic field). The adiabatic passage duration

is typically about 1µs, which gives an error probability of a few percent [111] for the adiabatic
preparation of the Overhauser gradient ground state. Longer timescales may favor relaxation from
|s,−s〉 to |T+1〉.

Probing the
∣∣S̃〉–|T+〉 resonance, or “spin funnel”

Close to the (1,1)-(0,2) [or (2,0)] charge transition the |T+〉 and
∣∣S̃〉 states can be coupled. This

coupling corresponds to the adiabatic singlet state
∣∣S̃〉 having an exchange energy J(ε) close to

the Zeeman energy Ez = ℏγe Bz of the |T+〉 state. It is recalled that |T+〉 is the groundstate instead
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Fig. 1.9: Spin funnel, Overhauser field driven qubit rotations, exchange oscillations. (a-b-c) The
“spin funnel" (a) Schematic of the pulse sequence to map the (0,2)S-T+ transition. The singlet
states |S(0,2)〉 is diabatically pulsed around the measurement point in a 2D sequence as a function
of the plunger gates VPL and VPR of the GaAs DQD (recall Fig. 1.3(b)). At the end, the qubit is
readout. (b) Averaged measurement from (a), the stripe corresponds to the (0,2)S-T+ crossing
(see main text). In-plane field set to Bz = 200mT. (c) Averaged measurement as a function of the
externally applied magnetic field. The crossing maps the exchange J profile. (d-e) Overhauser
gradient-driven free induction decay (FID) (d) Schematic of pulse sequence ε versus laboratory
time, used to probe the singlet return probability function by RAP for measurement. After singlet
initialization, the qubit evolves deep in the (1,1) region for a stepped time τ and it is measured after
evolution. (e) Single-shot measurement where for each row a white (black) pixel corresponds to a
singlet (triplet) outcome, at a given FID time τ. On the right, extracted frequency of ∆Bz in real time
on the commercial quantum controller (see Chapter 3). (f-g) Exchange-based FID. (f) Sketch of SAP
pulse sequence for the exchange-gate sequence to probe the exchange interaction J between the
two electrons. After singlet initialization, the state is pulsed diabatically across the S-T+ transition,
adiabatically ramped (≈ 1µs) to initialize the ∆Bz groundstate (e.g. |↑↓〉) for 48ns, diabatically
pulsed closed to (0,2)-(1,1). The same sequence is performed backward before measurement. Here
τ= 32ns. The detuning ε is swept as a function of both plungers. (g) Averaged measurement of (f)
where the exchange FID time is set to 32ns, yielding exchange oscillations fringes.
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of |T−〉 because of the negative electron g -factor in GaAs of ≈ −0.4 . In the basis {|T+〉 ,
∣∣S̃〉}, the

Hamiltonian becomes

Hflip-flop = ℏγe

 Bz
∆Bx−i∆Byp

2
cosθ

∆Bx+i∆Byp
2

cosθ −J (ε)/γe

 , (1.28)

where θ is the adiabatic angle defined before. Here “flip-flop” describes the flips between
∣∣S̃〉 and

|T+〉, causing the flipping of a nuclear spin. This can understood by defining ∆B+ =∆Bx + i∆By =(
B̂nuc,l,+− B̂nuc,r,+

)
/2.

In Figure 1.9(a) a pulse sequence is sketched to map in 2D voltage space the singlet and
polarized triplet transition. At the beginning of the sequence a (0,2) singlet is initialized, and then
it is quickly ramped in a 2D map close to the interdot (1,1)-(0,2) transition. The blue segment
corresponds to a pair of pulses amplitude (VPR, VPL) that are swept with the waveform generator
(see Chapter 2). The evolution time deep in (1,1) is fixed to 200ns to allow for mixing of the two
states via the transverse Overhauser field. The result of the pulse sequence is shown in panel (b),
where the dark feature on the bright background corresponds to the crossing. The increase of the
linewidth corresponds to a broadening caused by a larger pulse amplitude sent to the cryogenic
bias-tee in the cryostat. The measurement has been taken at in-plane field 200mT. To check
whether it is the spin funnel, we seep the magnetic field. We use the same pulse sequence with
detuning ε stepped between the measurement point and about −40mV deep in the (1,1) region.
Sweeping the magnetic field, the spin funnel maps out the exchange profile (in the absence of
nuclear spin polarization [117]).

Free induction decay: probing the nuclear field

In this section it is explained how to probe the nuclear field, dephasing, and the exchange interac-
tion. This technique allows us to probe coherent ST0 rotations. The separated electrons experience
in general a different local nuclear environment corresponding to different local magnetic fields.
Thus, the electrons precess at different rates, which coherently mixes singlet and triplet states.
Many measurements are taken to evaluate the fraction of the state remaining a singlet. By averaging
the time-ensemble, one finds the dephasing of the singlet T ∗

2 [47].
To understand the effect of the nuclei on the electron spins, it is useful to analyze the sin-

glet probability return function PS (t) = |〈S(t )|S(0)〉 |2 in the far-detuned regime, as evaluated in
Ref. [111].

The evolution operator is U (t) and in the Schrödinger picture |S(t )〉 =U (t) |S〉. In the limit of
J → 0, the two electrons become uncoupled, which simplifies the expression of their dynamics. The
equation of motion is solved analytically for any spin state in the (1,1) subspace. More specifically,
the Hamiltonian of Eq. (1.23) is written in the form of two effective magnetic fields, each acting
separately on one spin. Then U (t ) = exp(−i H t/ℏ) can be factorized as U (t ) =Ul (t )⊗Ur (t ), based
on

Ui (t ) = exp
(−iγe t [B⃗ + B⃗nuc,i ] · S⃗i

)
. (1.29)

Here Ui (t) is a rotation of spin i around an axis n⃗i = (xi , yi , zi ) ∝ B⃗ + B⃗nuc,i of angle tωi , having
defined ωi = γe |B⃗ + B⃗nuc,i |/2.

We assume the electrons are prepared in the state |S(t = 0)〉 = (|↑↓〉− |↓↑〉)/
p

2, and measured
using RAP to discriminate between singlet and triplet states. Initializing a singlet state at t = 0,
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1.6. Quantum control of two-electron spin states

the probability PS (t ,B) of staying a singlet after a time t is given by (adding the magnetic field
dependence)

PS (t ,B) = |〈S(t )|S(t = 0)〉 |2 (1.30)

= |cos(ωl t )cos(ωr t )+ n⃗l · n⃗r sin(ωl t )sin(ωr t )|2.

In reality, any experiment has to be repeated multiple times, which implicitly averages the result
over random fluctuations of the nuclear field. Due to its slow dynamics, we use the quasi-static
approximation (QSA), in which Bnuc is constant on any particular run of the experiment, but
possibly varies between consecutive runs.

When the external field is much larger than the effective nuclear fields (|B⃗ |≫ Bnuc,i ), the spin-
flip terms are highly suppressed and the system can be well approximated by the singlet-triplet
two-level system |S〉 and |T0〉 = (|↑↓〉+ |↓↑〉)/

p
2. Then PS (t ,B) becomes [111]:

PS (t ,B ≫ Bnuc) ≈ 1

2

[
1+e

−
(
t/T ∗

2,eff

)2]
, (1.31)

where T ∗
2,eff = 1/

√
1
2 [(T ∗

2,l )−2 + (T ∗
2,r )−2] (in the QSA). This result shows how the singlet return prob-

ability PS,B has a Gaussian decay because of the nuclear field, with a timescale T ∗
2,eff.

In Fig. 1.9(d) we show the pulse sequence to probe the nuclear field. Rotations around the X axis
are performed by ∆Bz when the initialized singlet is detuned deep in (1,1). At such detuning, for
one repetition, the evolution time τ is stepped between zero and ≈ 100ns. A typical measurement
is shown in panel (e), where each row is one repetition, whose white (black) pixels correspond
to a singlet (triplet) measurement outcomes. Also, for each row, the frequency of the oscillations
is estimated in real-time by Bayesian estimation (presented in Chapter 3). Since ∆Bz changes
randomly according to the nuclei spin diffusion, this leads to short dephasing times of the order
of tens of ns characteristic of III-V semiconductors. In Chapter 3 we will show how to extend the
quality of coherent qubit rotations in real time by the real-time Bayesian estimation of the nuclear
field.

Exchange-based free induction decay: probing the exchange interaction

Now we show how the SAP at large external magnetic field allows us to measure the exchange
interaction. As mentioned earlier, SAP allows to prepare and measure the spin eigenstate |s,−s〉 and
|−s, s〉. The rotation angle between the two states is given by the product of the exchange interaction
energy during the gate, J (ε), and the gate time τ during which exchange is non-zero. After the gate,
reversing SAP maps the lower energy eigenstate of the nuclear field |s,−s〉→ |(0,2)S〉 and the higher
energy state |−s, s〉 → |T0〉, which corresponds to the (1,1) charge state. The final measurement
evaluates if the final state is the same as the initial state [measurement outcome is (0,2)], or if it has
changed to the state with two spins swapped due to the exchange gate [measurement outcome
is (1,1)]. Therefore, preparing the state |s,−s〉 and measuring it in the same basis discriminates
the possible measurement outcomes of the exchange-based rotation of the two electron spins.
For instance, when the probability of measuring (1,1) approaches 100%, a complete SWAP of the
two spins has occurred. If 50%, it corresponds to an exchange Z (π/2) pulse which generates the
entangling square root for the SWAP gates, i.e.

p
SWAP. Formally, the effect of exchange can be

computed [51] by writing Eq. (1.2) as the projection operator on the spin-singlet state, H =−J | S〉〈S|.
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1. SEMICONDUCTOR SPIN QUBITS AND REAL-TIME QUANTUM CONTROL

Fig. 1.10: Fundamental building blocks in a qubit system with feedback and feedforward control.
The plant is the system to be controlled. The input is changed by the controller to affect the plant.
The output of the plant contains what is to be controlled, and it is provided to the feedback control.
The controller is the control pulse sequence (electrical detuning), which controls the plant (the
Hamiltonian). The measurement (output of the free-induction decay) is fed back to the input to
estimate the disturbance (fluctuating nuclear field gradient). Compensation is absent in our setup.
Adapted from [3].

The corresponding unitary is U (φ) = exp
(−iφ|S〉〈S|)=1+ (e iφ−1)|S〉〈S|. Given φ= Jτ/ℏπ, we have

U (π) = 1−2|S〉〈S| = SWAP whereas forφ=π/2 we get U (π/2) = (1+i )1/2+(1−i )SWAP/2 =p
SWAP.

Similarly to before, we consider the probability of measuring the lower energy eigenstate. This time
though the state is |s,−s〉, upon which the exchange of angle θE = Jτ/ℏ is performed where τ is the
time spent by the state with exchange energy J . This rotation is applied to the state |s,−s〉, whose
survival probability function becomes

Ps,−s (t ) = ||s,−s(t )〉〈s,−s| |2 = cos2(θE/2). (1.32)

The exchange interaction depends on the overlap of the orbital wavefunctions of the two electrons,
and we can tune such interaction by voltage signals. In Fig. 1.9(g) we plot a sketch of the sequence
used to let the initialized ground state of the Overhauser gradient (e.g. spin state |↑↓〉) evolve around
the Z axis. The sequence is also known as exchange-based free induction decay (FID). The voltage
is spanned in a 2D map, yielding the averaged result in panel (g), where fringes from exchange
oscillations are closer to the (1,1)-(0,2) transition in the bottom right corner, and fade out in the top
left corner. The annulus sector is due to the programming of the exchange pulse amplitude and
angle in polar coordinates on the quantum controller.

In this section we have seen how to probe the nuclear field and the exchange interaction of
a DQD. In the next section, we provide a brief introduction to quantum control and a warm-up
example with the device used in this work.

1.7 Real-time feedback and feedforward

Control of quantum processing units (QPUs) in the presence of noise, imperfect devices, and
imperfect control systems is a critical problem for developing a useful quantum computer. As
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1.7. Real-time feedback and feedforward

Linear optics Superconducting circuits Semiconductor spin qubits
System energy-scale 1 THz 1-10 GHz 10 MHz - 10 GHz
Feedback bandwidth 1 MHz 10 MHz 10 MHz
Decoherence rate 1 MHz 10 - 100 kHz 1 - 100 kHz
Measurement rate photon flux 100 kHz 100 kHz
Feedback delay 0.1-10 µs 200 ns 200 ns
Working Temperature 300 K 30 mK 30 mK - 1 K

Table 1.1: Characteristic parameters for feedback in various physical settings, first three columns
adapted from [3]. See the main text for the semiconductor spin qubit values.

mentioned in the previous Chapter, noise severely limits the performance of today’s NISQ devices.
In this Thesis, we show how closed-loop control methods can help mitigate the effects of such
noise. Additionally, we demonstrate how these methods can be used to perform noise-driven
coherent qubit rotations.

In the context of control theory [3], it is possible to break down the control system into three
components [see Fig, 1.10]

• The “plant" is the system we want to control, e.g. the Hamiltonian Hoperator of the QPU. It
has inputs and outputs.

• The input(s) to the plant (or “control”) is what we can change to affect the system, e.g. control
pulses of the QPU.

• The output(s) of the plant (or “yield”) contains any variables that can be measured to gain
information about the plant.

In feedback control, one can think about the interaction between the control system and the
plant as a causal structure, according to which the control system obtains information from a
measurement that provides the input to the plant. The interaction may not be explicit in the
Hamiltonian description [3]. In general, a control steers one or more outputs to an intended action
in the presence of noise or disturbance. As illustrated in Fig. 1.10, a feedforward controller can
be used at the input to cancel the effects of known or measurable disturbances. Differently, if the
disturbance is unknown, the role of a feedback controller is to change the input according to the
output of the predetermined measurements imposed on the plant.

In this Thesis, the plant is a Hamiltonian parameter x(t) we want the quantum controller
to estimate. The measurement of the free-induction decay carries information about x(t). The
quantum controller estimates x(t) and updates the control pulses accordingly. A feedforward
protocol would require a sensor that measures x(t ) in real time.

Feedback has been implemented in a great variety of physical systems [3], including super-
conducting qubits, semiconductor spin qubits, atom optics, cavity QED, and opto-mechanics.
In Tab. 1.1, different parameters are summarized from recent state-of-the-art experiments on
feedback control in three selected platforms. We add typical semiconductor spin qubits parameters
to values found in Ref. [3]. The feedback bandwidth is the fastest rate at which the controller
changes the system. This rate sets the lower limit to the timescale of the whole feedback protocol.
The measurement strength of a continuous measurement has units of inverse time and the inverse
square of the observable to be measured. It can be seen as the rate at which the inverse variance
of the observable is increased. The measurement rate units depend on the system of interest.
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1. SEMICONDUCTOR SPIN QUBITS AND REAL-TIME QUANTUM CONTROL

In linear optics, the system to be measured is generally a continuous-wave laser beam, so the
photon flux is the measurement rate. Instead, if one is interested in the position of a harmonic
oscillator, the unit of position is the uncertainty in the position for the oscillator ground state. The
previously mentioned feedback bandwidth and the time delay of the feedback loops are critical for
measurement-based feedback.

Regarding the semiconductor spin qubits values, the system energy scale depends on the qubit
encoding, with up to 1GHz bandwidth for qubits that require baseband control pulses (e.g. singlet-
triplet, exchange only encodings), up to microwave control in the tens of GHz range for single-
electron spin Loss-DiVincenzo qubits. The feedback bandwidth is chosen based on the quality
factor of surface-mounted tank circuits used in spin qubits for radio-frequency reflectometry
readout (see Ch. 2), which provides the maximum readout bandwidth. The measurement rate
stems from typical qubit cycle periods of around 10µs (PSB requires a few µs for readout, Elzerman
instead tens of µs). The feedback delay is on the order of 200ns for both commercial and in-house
solutions [146, 147]. At the beginning of this chapter, we have mentioned that semiconductor spin
qubits have been operated at temperatures above 1K.

Before illustrating an example of a feedback protocol, one last distinction is crucial. In measurement-
based feedback, a series of measurements are performed on the system, and the Hamiltonian
is modified after each measurement based on the measurement results [3]. On the other hand,
coherent feedback is when a classical model cannot describe the joint dynamics of the system and
controller. Two disadvantages of measurement-based feedback are that performing measurements
on quantum systems requires signal amplification, and some finite time (on the order of hundreds
of ns) is required to obtain and process the measurement results. Nevertheless, the advantage of
measurement-based feedback is that the information processing is basically noise-free. On the
contrary, in coherent feedback the controller can be subjected to noise from its environment.

In this Thesis, we focus on measurement-based feedback: we apply classical feedback to
a quantum system, but there is no back-action. We program a quantum controller to probe a
fluctuating qubit Hamiltonian parameter and adjust the control pulses accordingly.

A control loop example In this section we present an example of real-time measurement feed-
back, inspired by a superconducting qubit experiment [148], here applied to a singlet-triplet qubit.
Exchange-based free induction decays (FIDs) (see Sec. 1.6) are means of studying charge noise.
Charge noise is presumably caused by an ensemble of two-level fluctuators in the heterostructure,
on top of 1/ f noise from the experimental apparatus [149]. Figure 1.11(a) shows the schemat-
ics of a PI loop (D=0)6, where the given input is the averaged signal from exchange-based FID
at fixed τ = 20ns to correct by ∆ε fluctuations in the electrical detuning ε. First, an averaged
exchange-based FID at the same duration is taken to calibrate the PI loop by sweeping ε. A linear
fit approximates the signal on the flank of an oscillation, near −6mV [see panel (b]).

The top panel of Fig. 1.11(c) shows the measurement outcome without feedback, interleaved
with the bottom panel with feedback. It is interleaved in the sense that from each repetition
(column) of the top panel, the signal Vrf is extracted at τ= 20ns. The signal is compared to the bias
point from the offline model [shown in (b)], and the detuning is corrected accordingly by the PI loop
(a). This feedback manages to correct some of the abrupt changes in the qubit frequency [marked

6A proportional-integral-derivative controller (PID controller) is a control feedback loop protocol widely used in control
systems. A PID system calculates an error e(t), which is the difference between the desired setpoint and the measured
observable. The correction is applied based on the proportional, integral, and derivative terms computed from e(t ).
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Fig. 1.11: PI loop to stabilize exchange-based FID in a GaAs singlet-triplet qubit. (a) Schematic of
feedback loop where the input is the RF reflectometry signal Vrf, the output is the updated detuning
ε. The aim is to stabilize the exchange-based FID fringes. P stands for the proportional part of
the feedback, and I for the integral one. (b) Feedback calibration. The pulse sequence sketched
in Fig. 1.9(f) is performed, this time sweeping the electrical detuning ε at fixed exchange-based
evolution time τ = 20ns. The (1,000 times) averaged RF reflectometry signal Vrf is fitted on the
flank of the oscillation by the line Vrf =−0.135ε−0.830mV, centered at ε0 =−5.84mV (gray dot).
(c) Top (bottom) panel shows averaged measurement without (with) feedback. Each column of the
top panel is used to measure Vrf, whose variation from the setpoint computes the ∆ε required to
correct for low-frequency fluctuations. Then, a column of the bottom panel takes into account the
correction ∆ε as schematized in panel (a). Some frequency jumps pointed by the gray arrows are
corrected for (see main text).

by the gray arrows in (c)], but not slowly varying fluctuations. A better approach is shown in
Chapter 3, where instead of a single data point per repetition, the whole sequence of measurements
is considered with a Bayesian protocol.

Bayesian parameter estimation

Mathematical models often describe experimental data by its parametrization. In general the first
attempt is to minimize the squared error (classical regression), which assumes there exists a single
optimal point in the parameter space [150]. Bayesian parameter estimation (BPE) [151] does not
require this assumption, as it is based on a probability distribution in the space of the parameters
of the model. On the other hand, machine learning methods (e.g. neural networks) can be used
as well to get insights from data when classical regression fails. Nevertheless, there are no reliable
methods to interpret and assign errors to these methods [150]. By numerical simulation and BPE it
is possible not to use a black box to extract useful information from the data.

As mentioned above, in classical regression the typical approach is to optimize the parameters
to minimize a cost function, e.g. the sum of squared errors, between what the model predicts and
the “best fit” of set parameters. The minimum value of the cost function is used as a metric to
evaluate the goodness of the fit. Possibly, it can hint at effects not included in the model if the cost
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1. SEMICONDUCTOR SPIN QUBITS AND REAL-TIME QUANTUM CONTROL

function is not “low enough". Also the landscape of the fit around the found optimal-fit point can
provide some insights on confidence intervals. Bayesian parameter estimation instead produces a
probability distribution given the model parameters. In the Bayesian approach, each combination
of parameter values gets assigned a strength of belief in being the correct one to describe the data,
provided by the probability distribution. The BPE is based on Bayes’ theorem, which follows

P (H | E)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
P (E | H)

prior︷ ︸︸ ︷
P (H)

P (E)︸ ︷︷ ︸
evidence

, (1.33)

where E is some evidence, e.g. the observed data, and H is the hypothesis, i.e. a point in the
parameter space. The likelihood P (E | H) is the probability of observing some evidence given the
hypothesis is true. Given the observed evidence, the posterior P (E | H) is the probability of our
hypothesis being true. In summary, Bayes’ theorem converts a likelihood to a posterior, where
the likelihood function acts in the observation space containing the evidence E . In contrast, the
posterior exists in the parameter space where the hypotheses H are.

In the context of feedback, for example, we can perform a series of “single-shot” measurements
with a discrete set of outcomes (the evidence E), and perform a unitary action on the system after
selecting the best hypothesis H provided by the BPE. The unitary action is the “feedback" phase
of the protocol, after the unknown disturbance has been estimated [cf. Fig. 1.10]. The estimation
phase can be considered as “adaptive" if we change the parameters of the probing phase while we
perform the estimation. We will further discuss these concepts in Chapters 3, 4, and 5.

1.8 Conclusions

In this Chapter, we have introduced the singlet-triplet (ST0) spin qubit encoding, and some of
the main differences between GaAs and Si for gate-defined quantum dots. We have described
two examples of depletion mode GaAs/AlGas device and accumulation mode Silicon metal-oxide
semiconductor (SiMOS) devices, as well as spin-to-charge initialization and readout by Pauli spin
blockade (PSB). We have presented how to operate a singlet-triplet qubit in GaAs. At last, we have
introduced the distinction between feedback and feedforward, Bayesian inference, and a warm-up
example of closed-loop control in a singlet-triplet qubit. In the next Chapter 2, we present the
experimental setup and radio-frequency reflectometry readout.
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2

Experimental Setup

2.1 Triton 4 Dilution Refrigerator

The Triton 4 setup1 owes its name to the installed Triton200 Cryofree® Dilution Refrigerator, by
Oxford Instruments. The cryogen-free 3 He – 4He dilution refrigerator [152] is equipped with a
superconducting magnet (90mm bore) and a single pulse tube [153], with measured experimental
temperatures of about 20mK and magnetic fields up to 6 T. The refrigerator has been upgraded to
the so-called “large” sample puck (74mm diameter, 16cm high), which can host up to 28 RF and 96
DC lines.

The interior of the cryostat is shown in Fig. 2.1, with the magnet being temporarily removed to
access the plates. As the sample puck during an experiment is docked to the coldfinger, the latter
has been changed as well. The superconducting vector magnet (see Fig. 2.2) is thermally anchored
to the 4 K plate. It reaches 6T along the main axis of the refrigerator, here along the z direction, and
nominally 1T along x or y .

Low-frequency electrical lines (DC - 50 kHz)

The cryostat hosts four DC looms (shown in Fig. 2.1), resulting in overall 96 low-frequency electrical
lines at the end of the coldfinger, as drawn in Fig. 2.3. While a summary of the wiring is described
in Tab. 2.1, more details are presented in the Appendix C.

The DC lines are divided into four looms: each loom carries 12 twisted pairs of constantan
wire, which offers low thermal conductivity and small temperature dependence of the electrical
resistivity [152]. The looms are accessible on top of the cryostat by hermetic Fischer connectors and
they are thermalized at different stages by anchoring them to the plates. As these low-frequency
channels require a particularly low-noise environment for current measurements, they are filtered
at the mixing chamber (MC) stage by QDevil QFilters. In each QFilter the first “RC ” stage filters the
electronic noise from 65 kHz up to a few GHz, thermalising the electrons. It is followed by a second
“RF” filter bank with LC low pass stages, for filtering out from 225 MHz to the THz regime. In the
MC stage also a homemade RC-RF filter realized at Harvard has been installed.

1The experimentalist should be familiar with the most updated setup documentation on the QDev Wiki. This Chapter
is intended as a general introduction to a typical spin-qubit setup.
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2. EXPERIMENTAL SETUP

Fig. 2.1: Triton 4 dilution refrigerator. Interior of the Oxford Triton dilution refrigerator and its
cooling stages from about 55 K down to a few tens of mK. Also, some of the components carrying
the DC and RF signals to the coldfinger are labeled.
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2.1. Triton 4 Dilution Refrigerator

Fig. 2.2: Vector magnet. (a) Superconducting magnet thermally anchored to the 4 K plate. The Bz

component of the magnetic field is parallel to the main axis of the cryostat. (b) Bottom view of the
installed magnet, showing its orientation with respect to the coldfinger.

51 male sockets

51 male sockets

51 PIN DOCK 
CONNECTOR ‘Nano-D A’

51 PIN DOCK 
CONNECTOR ‘Nano-D B’

DOCK RF 1

DOCK RF 7

DOCK RF 14

DOCK RF 20

DOCK RF 25

DOCKRF6

DOCK RF 13

DOCK RF 19

DOCK RF 24

DOCK RF 28

(a)

Open

(b)
126

51 27

Fig. 2.3: Pin-out of the coldfinger as seen from the bottom of the refrigerator. (a) Two Nano-D
connectors, A and B, deliver the overall 96 DC lines, whereas the 28 RF docks are for the high-
frequency signals up to the GHz range. (b) The colors refer to the labeling with permanent markers
of 20 SMA - SMP coaxial cables delivering the high-frequency electrical signal from the MC to the
bottom of the coldfinger. Out of 28 RF docks, 8 have been left open.
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2. EXPERIMENTAL SETUP

nano-D A 1 2 ... 24 25 26 27 28 ... 50 51
Breakout Box A (QBox) 1 2 ... 24 N/C N/C 25 26 ... 48 N/C
Constantan looms R ≈214Ω ≈214Ω

RC/RF Filter
QFilter

CM10017-0123
QFilter

CM10017-0114
Total measured R ≈1.92 kΩ ≈1.92 kΩ

nano-D B 1 2 ... 24 25 26 27 28 ... 50 51
Breakout Box B 1 2 ... 24 N/C N/C 27 28 ... 50 N/C
Constantan loom R ≈127Ω ≈129Ω

RC/RF Filter
bypassed.

R ≈ 4.0 kΩ, C ≈ 10 nF
QFilter

CM10017-0003
Total measured R ≈127Ω ≈1.83 kΩ

Table 2.1: Coldfinger DC pin-out. Summary of DC pin-out from the two nano-D connectors at
the bottom of the coldfinger - where the sample puck engages - to the two breakout boxes. Each
breakout box has 48 DC ports, resulting in overall 96 DC lines into the cryostat. The measurements
are taken with an Agilent U1272A multi-meter. Three DC looms out of four are filtered by QDevil
QFilters, while one line is left unfiltered to compare the electron temperature with and without
QFilter.

High-frequency electrical lines (100Hz - 20GHz)

Voltage signals in the few GHz range are transmitted by coaxial cables, as shown in Fig. 2.1. A
summarizing schematic is presented in Fig. 2.4, while coaxes materials and details of the electrical
components are found in Fig. C.3. Mainly three stages are distinguished from room temperature
(RT) to the MC. Silver-plated2 stainless steel (SSS-SS) cables run from RT to the 4 K stage and NbTi
ones from 4 K down to the MC plate - except for the KF40 Line of Sight (LOS) coaxes, see Fig. 2.4,
where NbTi lines are used also between PT2 and the still plate. Both materials have low passive
load and NbTi, which is much more expensive, turns superconducting below 10K, inhibiting Joule
heating at the lower stages [154] and yielding excellent signal transmission properties (NbTi also
has a rather low thermal conductivity, outperforming SS below 80mK [152]). Ultimately, flexible
silver-plated copper links (Rosenberger L70-180-400-V1) connect the coaxes from the MC to the RF
docks of the coldfinger (Fig. 2.3).

Cryogenic attenuators are placed along the lines at different stages to thermalize the incoming
photons from RT, with overall nominal attenuation ranging from 23 dB to 28 dB. Further details
about the trade-off between the number of photons and required cooling power on the differ-
ent plates are found in [154]. One line is heavily attenuated (about 65 dB) to be far below the
single-photon level for cavity quantum electrodynamics experiments. Measured transmission
and reflection of the coax lines are shown in Fig. C.4. Two sets of reflectometry lines are available,

2The silver plating of the steel inner conductor significantly improves signal transmission by reducing skin-effect losses
associated with the inner conductor. Still, this is at the expense of a higher thermal conductance because of Wiedemann-
Franz law (the quality of the silver plating can be quite high, but its RRR value is typically not specified, making it difficult
to estimate actual heat loads). Nominally, the different cooling stages should be thermally isolated as much as possible.
However, the outer conductor is more responsible for the heat load, due to its larger diameter.
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2.2. Motherboard and daughterboard, and sample-puck

Fig. 2.4: Coax lines summary. Coax lines schematic showing the cryogenic attenuators between
PT2 (4 K) and MC, Weinreb SN68 amplifier, Minicircuits directional couplers and one DC block for
the amplifier. A more detailed schematic is shown in Fig. C.3.

Tx-Rx, A and B. The former contains a cryogenic and low-noise Weinreb SN68 amplifier, whose
transmission tests at RT are shown in Appendix C, Fig. C.5. Delay times are described in Tab. C.5.

2.2 Motherboard and daughterboard, and sample-puck

So far we have described the cryostat setup from the RT wiring, down to the coldfinger, which
is thermalized by the MC at 20 mK. Now we describe the sample puck, which is docked to the
coldfinger after loading. Before loading into the cryostat, the chip bond pads (connected to the
device ports) are bonded to the daughterboard with the semi-automatic bonder Bondtech 5630.
Figure 2.5(a) shows an example of the QBoard I [155] used throughout this work (by QBoard we
mean the combination of the daughterboard, interposer, and motherboard). The daughterboard
is grounded during bonding and its cavity (about 10mm×10mm large) hosts the device. The
daughterboard may host surface-mounted devices (SMD) for radio-frequency (RF) reflectometry
multiplexed readout. The daughterboard is mounted on its motherboard, with electrical connec-
tions made by an interposer with fuzz buttons. The advantage of the portable daughterboard
is that the motherboard does not have to be disconnected from the sample puck [Fig. 2.5(b)]
whenever a new device is to be loaded. The main disadvantage is the cutoff frequency of the fuzz
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Fig. 2.5: Board and sample puck. (a) Front (rear) view of the QBoard I on the left (right). The
device chip is wire-bonded to the daughterboard. RLP and CLP are the RC elements of the LP filters
on the motherboard. The HF electrical lines from the coldfinger are connected to the Mini-Coax
ports on the rear of the QBoard (up to 16). The motherboard hosts RBT and CBT components for
the bias tees, which provide both a LF and HF signal to the ports of the DUT. (b) Triton sample
puck that can host two motherboards, mounted in either parallel or perpendicular configuration
with respect to the cryostat longitudinal axis. (c) Simplified circuit schematic of the QBoard I. The
NanoD connectors from the coldfinger deliver the LF electrical signals. Some of the LF signals
are connected to the DUT after going through the LP RC filters (RLP and CLP) on the motherboard.
Some of them go through the bias-tee on the motherboard that hosts both the low-pass RC filters
and the high-frequency lines, connected by RBT and CBT. The high-frequency signals are delivered
from the miniSMA connectors in the puck to the Mini-Coax in (a). When the surface-mounted
devices (SMDs) for RF reflectometry are mounted, the LF signals supply bias to the inductors,
which are wire-bonded to the DUT. Cp is the parasitic capacitance to ground, each of the four tank
circuits has an SMD inductor Li connected by a 22pF capacitor to another capacitor 100pF for
frequency-multiplexing. The DUT is mounted on the cavity of the daughterboard.
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2.3. Radio-frequency reflectometry

buttons around ≈ 1GHz [155]. The motherboard has first-order RC low-pass filters consisting of
RLP ≈ 1.2kΩ and CLP ≈ 1.0nF to filter the 48 low-frequency signals coming from the NanoD of the
sample puck, to the nanoD of the motherboard. The fast lines are delivered from the coldfinger
to the sample puck by miniSMA connectors [Fig. 2.5(b)], which then connect to the Mini-Coaxes
through flexible Cu coaxes with silver plating (Rosenberger RTK 047). A bias tee with RBT ≈ 50kΩ
and CBT ≈ 22nF supplies both the LF and HF signals to the bond pads, which are wire-bonded to the
device under test (DUT). The bias-tee RC filters are the same as before (RLP ≈ 1.2kΩ, CLP ≈ 1.0nF)
for the LF lines.

In Fig. 2.5(b) we show a puck with two motherboards to host two experiments at the same time,
after the cryostat upgrade. Both motherboards have nanoD cables that connect in parallel to both
ends of the sample puck. One end is in general grounded while the user is handling the puck, to
protect the device from electrostatic discharge damage. The grounding is maintained until the end
of the loading into the cryostat, when the sample puck is engaged to the coldfinger which then
provides the grounding from the RT breakout box.

In Fig. 2.5(c) a circuit schematic summarizes all the components used in the printed circuit
board (PCB), including the 48 RC filters, of which 16 can be used to supply a low-frequency signal
to the device through the bias-tee alongside the HF signals. The daughterboard shown in Fig. 2.5(a)
has also SMD components for RF reflectometry multiplexed readout. In particular, it has four tank
circuits, each equipped with an inductor Li that is bonded in series to one of the device’s ports
[either an ohmic or gate for dispersive readout (see section 2.3)]. Also, an LF line is connected to Li

to provide the DC bias. The parasitic capacitance, typically Cp ≈ 0.8pF, is not known in advance,
it depends on the wire bond, and the specific PCB [155]. The coupling capacitors of ≈ 22pF
are all connected on the PCB to one end of a 100pF capacitor that, if present, allows frequency
multiplexing and it connects to the one of Mini-Coax ports on the rear of the motherboard (see
Fig.2.5(a), right picture [155]).

2.3 Radio-frequency reflectometry

The idea behind radio-frequency (RF) reflectometry readout is to send a high-frequency sine wave
between tens and hundreds of MHz (recall 240MHz ≈ 1µeV). The frequency should be sufficiently
high to suppress 1/ f noise, but not too high because of losses in the printed circuit board hosting
the device, high-frequency noise and unwanted excitation of higher energy states. We refer the
reader to Ref. [120] for more details on RF reflectometry for readout of quantum devices.

Here we describe a particular kind of RF reflectometry, called homodyne detection. In Fig. 2.6(a),
the local oscillator (LO) generates a sinusoidal wave of the form vin(t ) =Vin ·cos

(
ωLOt +φ0

)
, where

Vin is the amplitude and φ0 is the phase. The signal goes through a phase shifter that can change
the phase of vin(t ). For now, we assume the phase shift φ= 0. The signal is attenuated by a factor α
because of the attenuation in the coax line and the directional coupler, and it reaches the sample.

In the reflection configuration, the reflected signal is now vr(t ) = |Γ|αVin ·cos
(
ωLOt +φ0 +δφ

)
,

where Γ is the (in general complex) reflection coefficient given by

Γ= ZL −Z0

ZL +Z0
, (2.1)

where Z0 = 50Ω is the characteristic impedance of the coaxial line. The reflected signal vr(t ) has a
different amplitude and phase δφ compared to the incoming signal, depending on the modulus of
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Fig. 2.6: Radio-frequency reflectometry building blocks. (a) Radio-frequency (RF) reflectometry
setup. An RF carrier is sent from the LO source, travels through a phase shifter, a transmission line
and is sent to the device (ZL) through a directional coupler. The signal is reflected and after being
amplified, it is demodulated by a mixer. The homodyne low-frequency voltage is obtained after
a low-pass filter is applied to the demodulated voltage. (b) Cartoon of change in amplitude and
phase of the reflected sine wave when at time t the load ZL changes. In the bottom panel, we see
changes in amplitude and phase of the sine wave are mapped into changes of the demodulated
in-phase [VI(t)] and out-of-phase [VQ(t )] quadrature voltages. The gray (black) dot corresponds
to vr(t ), before (after) time t∗. (c) Cartoon to show in general how current measurements are not
linearly mapped to the RF signal. The black curve mimics the conductance measurement of a
Coulomb peak (normalized to the conductance quantum e2/h ≈ 3.87×10−5 S) as the plunger gate
voltage is swept. The red curve, right axis, is the fraction of reflected signal assuming the circuit is
designed to be matched at Zmatch = 2h/e2 ≈ 51.6kΩ, and the dashed gray lines indicate where the
matching occurs (reflection coefficient Γ= 0). Panels (a) and (b) are adapted from Ref. [120].

Γ and its phase ∠Γ, respectively. After being reflected, assuming negligible insertion loss in the
directional coupler and the transmission line, the signal is amplified by a (cryogenic) amplifier by
a gain factor G [yellow triangle in Fig. 2.6(a)]. In the demodulation part [orange in (a)], the mixer
then multiplies the reflected signal (RF port) by the reference provided by the local oscillator (LO
port), and it outputs the demodulated voltage vd(t ) at the X port:

vd(t ) =G · vin(t ) · vr(t ) =G ·Vin ·cos
(
ωLOt +φ0

) ·ΓαVin ·cos
(
ωLOt +φ0 +δφ

)= (2.2a)

= G|Γ|αV 2
in

2
· [cos

(
δφ

)+cos
(
2ωLOt +2φ+δφ

)]
, (2.2b)

where the identity cos(a) ·cos(b) = [cos(a −b)+cos(a +b)]/2 has been used. This means that at
the output X there is a DC component [proportional to cos

(
δφ

)
] superimposed on an AC signal at

twice the frequency of the LO. By applying a LP filter to filter out the AC component, we are left
with what we define as the in-phase quadrature of the signal

I ≡ G|Γ|αV 2
in

2
·cos

(
δφ

)
. (2.3)
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2.3. Radio-frequency reflectometry

The out-of-phase quadrature Q ≡G|Γ|αV 2
in ·sin

(
δφ

)
/2 can be similarly obtained by multiplying the

reflected signal by the reference shifted by π/2, adding for instance a splitter and a π/2 phase shifter
to the circuit in Fig. 2.6(a). With the phase shifter, it is possible to change the phase φ0 →φ0 +φ,
recalling φ was set to zero at the beginning of the discussion. In theory, the phase shifter could also
be placed right before the mixer, but this is not recommended as the optimal power for the input of
the phase shifter is much lower than what is required by the mixer’s LO port. When only I (or Q) is
available, sometimes the component is referred to simply as homodyne voltage VH.

Figure 2.6(b) is a sketch of the change in amplitude and phase of the sine wave vr(t) being
reflected by the load, as ZL changes at a given time. We assume the change is slow compared to
the bandwidth of the low-pass filters used to obtain I and Q. The voltage change identifies two
different points in the complex plane spanned by I and Q, using the equivalent phasor notation

vr(t ) = Re

{√
I 2(t )+Q2(t )e

iatan
(

Q(t )
I (t )

)}
. (2.4)

In an experiment the features measured by RF reflectometry may be different from the ones
measured by DC current. To explain why, in Figure 2.6(c) we sketch a DC conductance measure-
ment of a Coulomb peak, which is modeled as a Lorentzian curve, as a function of the plunger
gate voltage of a sensor dot. Assuming the load (the sensor dot) has been matched (discussed
below) to Z0 = 2h/e2 ≈ 51.6kΩ (typical range for sensor dots), we can see that the reflected power
(proportional to |Γ2|) is not proportional the Lorentzian shape. This means that RF reflectometry’s
measured quadrature may not linearly map to the conductance measured by DC transport.

Radio-frequency measurement of the SET (and QD)

In the previous section a typical homodyne detection setup has been briefly introduced, showing
also with a cartoon model that the homodyne voltage VH does not necessarily map linearly to the
current signal. Transmission lines have a characteristic impedance in the range of tens ofΩ, with
the most common nominal value Z0 = 50Ω. If one were to connect a sensor dot with characteristic
impedance in the tens of kΩ, the signal would always be reflected because of |Γ| ≈ 1. It is possible
to match the sensor dot by connecting it to a tank circuit with a capacitor and an inductor, realizing
an RLC circuit (where the sensor dot is modeled as a variable resistor). Ideally a matched load
receives all power from the RF carrier, that otherwise would be reflected. It can be shown in the
series RLC approximation [120] that the matching (ZL ≈ 50Ω) then occurs when

Rmatch = L

CpZ0
, (2.5)

where Rmatch is the resistance to be matched, and Z0 = 50Ω. Since Rmatch is in general in the tens
of kΩ range as mentioned before, Eq. 2.5 gives a constraint in the ratio between the inductor L
and the parasitic capacitance Cp. The latter is not something that can be properly controlled, as it
depends on the printed circuit board, the bonding, and the device capacitance to ground and it is
usually in the range of ≈ 1pF. The second constraint is the wanted resonant frequency

fR = 1

2π
√

LCp
. (2.6)

Since the wanted resonant frequency is usually in the tens or few hundred MHz range, the inductor
L ranges from hundreds of nH up to ≈ 1µH.
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Fig. 2.7: RF reflectometry response while “turning on" the SETs. (a) Schematic of a tank circuit
wire-bonded to one of the two ohmics of the sensor dot, which is capacitively coupled to two
QDs. The sensor dot chemical potential is controlled by a voltage VST(PS), while the dots are to
be charge-sensed by VPL(PR). (b) On the right, the RF reflectometry response and turn-on current
(black curve) of a SiMOS SET, which is schematized in the left panel. We observe a capacitive shift
due to the electron charge accumulating below the ST gate. (c) On the right, RF reflectometry
response and turn-on current (black curve) of the bottom right GaAs SET of the device 1.3(b),
schematized in the left panel. Better matching (dips in |S21|) occurs when Coulomb peaks are
measured around −200mV.

Figure 2.7 (a) is a circuit schematic of RF reflectometry through one ohmic contact of a single-
electron transistor, which is capacitively coupled to a DQD. The RF carrier vin(t ) ∝ cos

(
ωLOt +φ0

)
probes the tank circuit through a coupling capacitor Cc (neglected in Eq. 2.5). The ohmic is biased
by Vbias through the resistor R connected on the printed circuit board to the inductor. The inductor
is wire-bonded to one ohmic of the sensor dot, and the left (LB) and right (RB) gate barriers confine
the sensor dot such that the RF excitation provides an AC excitation on top of the DC bias Vbias.
The excitation makes the electron tunnel in and out of the sensor dot, and the impinging RF signal
power is dissipated in the sensor dot, which is resistive. In general dissipation causes a change in
amplitude in the frequency response of the tank circuit. The sensor dot is capacitively coupled to
both dots in the array to be charge sensed, but there is no electron exchange between the sensor dot
and the dots array represented by capacitors in the schematic. The inner dots are tunnel coupled
to each other, and their chemical potential is controlled by their respective plunger voltages VPL(PR).
In the schematic, cross-capacitance effects between the gates and the dots are neglected, as well as
the presence of the barriers.

In Fig. 2.7(b) an example of the RF signal response while turning on the SET of a SiMOS
device depicted on the left, measured with a Rohde & Schwarz ZNB20 vector network analyzer
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2.4. Low- and high-frequency lines in-situ calibration

(VNA) with port 1 connected to TxA and port 2 connected to RxA (see Fig. 2.4) using SMA cables
HUBER+SUHNER ST18. The IMEC device’s identifier is IMEC AL809789 D18 D3SD4 QBB16 3
6. Before the turn-on of the SET, a notable decrease in the resonant frequency is measured,
presumably due to the 2DEG accumulating below the ST gate. The signal |S21( f )| at frequency f is
the amplitude ratio of sine wave (Vout( f ) using the phasor notation) from RxA [cf. Fig. 2.4] over the
sine wave sent to TxA (Vin( f )), which in dB reads:

|S21( f )|dB ≡ 20log

( |Vout( f )|
|Vin( f )|

)
= 20log

(
α( f )G( f )|Γ( f )|) , (2.7)

where α denotes the losses, G the gain of the cryogenic amplifier, and Γ the reflection coefficient
introduced in the Sec. 2.3, this time adding the frequency dependence f .

Figure 2.7(c) reports a similar measurement, performed this time in T7, for the bottom right
sensor dot of Fig. 1.3(c), schematized on the left. From the measurement on the right, at sufficiently
negative voltages the 2DEG is pinched off (no current goes through the SET), but as the plunger
gate is increased, Coulomb peaks appear corresponding to a decrease in |S21( f )| close to 180MHz.
In general it is easier to achieve matching in GaAs because of the low resistance of the channel
compared to the SiMOS device (which is an accumulation type device), as well as the reduced
capacitance of the gates (which are much larger in Si devices than GaAs).

Dispersive readout [120] is an alternative technique to ohmic-based reflectometry. It can be
applied to measurement-based feedback protocols without an additional quantum dot acting as a
sensor dot. An example of dispersive charge sensing without reservoirs is presented in Appendix D.

2.4 Low- and high-frequency lines in-situ calibration

Cutoff frequencies and correction

To measure the transfer function of the lines, with and without the bias-tee, we use a SiMOS device
similar to the one shown in Fig. 1.3(d). Figure 2.8(a) shows an RF reflectometry measurement of the
sensor dot Coulomb peaks as a function of the left plunger VPL of the DQD (the qubit dot plunger
is capacitively coupled to the sensor dot).

The cutoff frequency of, e.g. a low-pass filter, is the frequency at which the output power is
half (−3dB) of the input power, given a sinusoidal input signal. In the following we use a square
waveform instead of a sine wave, which are not equivalent, but the cutoff frequency is expected to
be similar. With a square wave input, in theory one could calculate the power of each harmonic
component and then determine at which harmonic the power is reduced by half.

First, the low-frequency input port of the bias-tee is characterized using a Keysight 33600A
waveform generator. The waveform generator is programmed to output a square wave vPL(t ) 50%
duty cycle, ≈ 20mVpp [see Fig. 2.8(b)]. The waveform generator can also offset the DC component
VPL of the square wave, and it is connected to the breakout box to VPL. Here VPL refers to the
low-frequency signal, whereas vPL(t ) is the high-frequency one.

To measure the cutoff frequency from the DC port of the bias-tee, we use as reference the
Coulomb peak around 65mV of panel (a) (pointed by the arrow). In Fig. 2.8(c) the waveform
generator sweeps VPL between ≈ 40mV and ≈ 90mV, while on top the square waveform vPL(t ) is
applied (still from the BNC port) with variable frequency. The fitted cutoff from (c) is (88±15)Hz,
close to the value of about 100Hz found from LTspice simulations described in Appendix C.
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Fig. 2.8: Bias-tee cutoff frequency and correction. (a) Measured Vrf while sweeping the left plunger
VPL of a SiMOS device whose schematic is in Fig. 1.6(a), over the Coulomb peaks of the sensor dot
under ST to which VPL is capacitively coupled. (b) Square waveform with 50% duty cycle applied
to the device (with amplitude signal at the device level), to measure the transfer function in situ.
(c) DUT response while applying the square waveform vPL(t) of (b) with DC offset VPL from the
RT BNC breakout box to the low-frequency line of the bias-tee [cf. Fig. 2.5(c)]. The Coulomb peak
pointed by the arrow in (a) splits according to the bandwidth of the investigated line. (d) DUT
response while applying the square waveform vPL(t ) of (b) from the RT SMA breakout box to the
high-frequency line of the bias-tee, and DC offset VPL to the low-frequency line. (e) DUT response
while applying the square waveform vLB(t ) of (b) with DC offset VLB to a low-frequency line (from
the RT BNC breakout box) with only the RC filter. (f ) The uncompensated (compensated) waveform
of period 500Hz is shown in the black (red) curve. The compensated one takes into account the
high-pass filter in the motherboard applied to the high-frequency signal. (g) DUT response while
applying an uncompensated (compensated) waveform from (f). Due to the high-pass filter, the
uncompensated square waveform shows the discharge of the bias-tee.
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2.4. Low- and high-frequency lines in-situ calibration

To characterize the cutoff frequency from the high-frequency port of the bias tee, we repeat
a similar measurement, see Fig. 2.8(d). This time we sweep VPL from the BNC port with a QDAC
I channel and we apply vPL(t ) with a Tektronix 5014C to the high-frequency line. Note the vPL(t )
amplitude is defined at the device level by taking into account the attenuation in the cryostat lines,
as explained in the next section.

Last, we measure the RC time of a low-frequency line (no bias-tee) by using as a feature a similar
Coulomb peak, this time sweeping the left barrier LB of the sensor dot as a gate [1.3(d)], capacitively
coupled to that feature. Similarly to Fig. 2.8(a), in (e) the Keysight 33600A waveform generator is
used to sweep the bias voltage VLB on top the waveform vLB(t). The fitted cutoff is found to be
(47±1)kHz, which does not agree with the value of ≈ 30kHz found from the LTspice simulations
(Appendix C). A sine wave at the input instead of a square wave may help reduce the discrepancy
between the measurements and the simulations.

When the high-frequency waveform repetition rate becomes comparable with the bias-tee
cutoff frequency (as a rule of thumb, within a factor of 20), the waveform should be compensated
for the bias-tee discharge of time constant τ = RC . In Fig. 2.8(f) we plot a square waveform of
frequency 500Hz, and zero-average. The bias VPL is chosen such that the high (low) level of the
square pulse corresponds to a Coulomb peak (Coulomb blockade regime) of the sensor dot (again,
due to capacitive coupling). By applying a square pulse with the Tektronix 5014C and measuring
in the laboratory time domain with the Alazar card digitizer, it can be seen in Fig. 2.8(g) that the
high and low levels of the square pulse have a slope because of the bias-tee discharge. The slope is
corrected by multiplying the original signal by the inverse of the transverse function of the bias-tee
(approximated by a single zero), as offered by the “ripasso" module of the broadbean package [156].

More specifically, the module has two types of filters: an RC-circuit high-pass and an RC-circuit
low-pass. We focus on the n-th order high-pass transfer function

Hn( f ) =
(

2π f iτ

1+2π f iτ

)n

, (2.8)

where the parameter τ is one over the cutoff frequency. The filter compensation is performed by
multiplying with the inverse transfer function in the frequency domain, and transforming back to
the time domain, e.g. for a given signal s(t ) and a high-pass filter of order n,

sfiltered(t ) =F−1[F [s]( f ) ·Hn( f )](t ) (2.9)

and
scompensated(t ) =F−1[F [s]( f ) ·H−n( f )](t ). (2.10)

We choose n = 1, which results in the red curve in Fig. 2.8(f), and we show the corresponding
output in panel (g), where the optimal time constant τ≈ 1.24ms has been optimized by fitting the
red curve to a Heavyside function. We measure the black and red traces with a slightly different
trigger delay, which explains the time shift of around ≈ 1ms in the rise of the waveform.

Another point related to the high-pass filtering and pulse design is that in general, one may
want the voltage on the gates to be equal to the DC value set by the DAC, whenever the waveform
generator outputs zero voltage. The high-pass filter from the bias-tee shifts the average voltage
throughout the pulse to zero and causes a heating effect. Often, it is convenient to keep the
measurement point where it is set by the DAC, such that all the waveform generator channels are
outputting zero at that time. To fix this, an additional pulse segment, in the Spin Qubit group called
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Fig. 2.9: High-frequency pulse voltage calibration. (a) Charge stability map as a function of VPL

and VPR from the GaAs bottom right DQD shown in Fig. 1.3(b). The charge transition across the
blue line is used to extract the divider of the fast line connected to PR. (b) 2D scan is taken in about
3s by ramping the low-frequency (QDAC-II) and high-frequency (OPX+) channels. The divider is
extracted from the slope of the charge transition line, and is fit by a Hough transform (see main text).
Inset: applied voltage vPR(t ) (VPR) to the AC (DC) side of the bias-tee with the OPX+ (QDAC-II).

“Correction D" or “CorrD" is added to a qubit cycle sequence, such that the average voltage of the
qubit cycle pulse is equal to zero. The CorrD pulse can be inserted at the end of the sequence,
and it usually lasts a few microseconds, after the measurement and before the initialization, to
discharge the bias-tee before the next qubit cycle.

In this section the bias-tee used in this work has been characterized in situ with a SiMOS device.
Next, we show how to calibrate the output amplitude of the high-frequency waveform generator
given the attenuation in the coax lines in the cryostat.

Divider calibration

In a device, the gates have much higher impedance |ZL| than the cryostat lines and the filters
resistance at LF, so in general the potential drop along the cryostat lines is negligible. The situation
is different for the high-frequency lines (Fig. 2.4) which are attenuated at different stages of the
dilution refrigerator, to reduce the number of thermal photons emitted from RT. This means that
whenever a gate is wire-bonded to the output of a bias-tee, the high-frequency waveform generator
signal must be amplified by a so-called divider D factor, to have the desired amplitude at the device.
The relationship between the line nominal attenuation α(dB) and D is:

D = 1

2
10α

(dB)/20, (2.11)

where the factor of 1/2 comes from the gates impedance |ZL| ≫ 50Ω. For instance, if a coax
has nominal attenuation α(dB) = 25dB, then D ≈ 8.9. This means that if we want a square pulse
at the device levels of ±10mV, then we need to set the output of the waveform generator to
±10mV×D ≈±89mV.

In reality, D will differ from the nominal value because of losses, also depending on the fre-
quency (see later Fig. C.4). One way to calibrate it is, for instance, by measuring a charge stability
map as the one in Fig. 2.9(a), as a function of VPL(R) in the bottom right DQD in Fig. 1.3. The 2D
map is measured by ramping the QDAC-II [157] channels with ≈ 3ms per pixel, and (only) at the
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beginning of the 2D scan the QDAC-II triggers the OPX for readout by outputting an RF burst of
≈ 3ms per pixel, with a total measurement time of 120 ·120 ·3ms ≈ 43.2s. The whole program,
including pulling the data from the server and storing it in the database, takes almost 46s. To extract
the divider of the gate PR, a feature as a function of that gate is needed. We set VPL ≈−175mV and
we program VPR to sweep between about −110mV and −90mV [blue line in (a)]. The calibration
requires a guess of the divider Dguess, which can be set equal to Eq. 2.11 (the expected theoretical
one based on the nominal attenuation of the high-frequency line). For Fig. 2.9(b), Dguess = 6.33
(from a previous measurement) and the OPX channel associated with PR is programmed to output
a staircase waveform of maximum amplitudes (in absolute value) ±30mV ·Dguess ≈ ±189.9mV
(assuming high-impedance load). At a given value of VPR on the x-axis of Fig.2.9(b), the OPX
channel is stepped from −189.9mV to 189.9mV in 100 steps, each step about 1µs long, as long as
the RF readout burst. Notice the OPX average output signal per column is zero. Thus one does not
need to worry about the DC component being removed by the capacitor in the bias tee in series
with the high-frequency signal. This is repeated 300 times for each column in (b), so each pixel
corresponds to an integration time of 300·1µs = 300µs. At the end of each column, the OPX triggers
the QDAC-II which steps to the next PR value, which is also stepped 100 times between −110mV
and −90mV. Overall, the measurement takes about 300µs ·100 ·100 = 3s, and the whole program
including saving data about ≈ 3.3s. From the slope of the antidiagonal feature in (b), extracted by a
Hough fit giving angle α≈ 24.68◦ (with respect to −VPR) after filtering the norm of the gradient of
the 2D map, the new divider is found according to:

Dfinal =
Dguess

tan
(
π
2 +α · π

180◦
) · V

( f )
PR −V (i )

PR

v
( f )
PR −v (i )

PR

. (2.12)

Given the values V ( f )
PR =−90mV, V (i )

PR =−110mV, v ( f )
PR =−v (i )

PR = 30mV, it is extracted Dfinal ≈ 8.73,
slightly higher than the expected 7.06 from a 23dB attenuated line. In theory, by repeating several
times the same measurement, Dguess should converge to Dfinal, where each Dfinal is used for the
following Dguess. A similar measurement was repeated for PL, yielding a divider of ≈ 8.60, again
slightly higher than the expected nominal value of 7.06.

2.5 Conclusions

In this Chapter we have presented the Triton 4 setup, from the cryostat main components down to
the sample puck where the devices are located. After upgrading the cryostat to a larger puck, we
tested coax lines and DC looms at RT (see Appendix C). Last, we have reviewed RF reflectometry
working principle. We have characterized in situ the cutoff frequencies of the PCB, as well as the
attenuation in the cryostat lines. In the next three Chapters, we present the core results of this
Thesis.
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3

Real-time Two-axis Control of a Spin Qubit

Optimal control of qubits requires the ability to adapt continuously to their ever-changing environ-
ment. We demonstrate a real-time control protocol for a two-electron singlet-triplet qubit with two
fluctuating Hamiltonian parameters1. Our approach leverages single-shot readout classification
and dynamic waveform generation, allowing full Hamiltonian estimation to dynamically stabilize
and optimize the qubit performance. Powered by a field-programmable gate array (FPGA), the
quantum control electronics estimates the Overhauser field gradient between the two electrons
in real time, enabling controlled Overhauser-driven spin rotations and thus bypassing the need
for micromagnets or nuclear polarization protocols. It also estimates the exchange interaction be-
tween the two electrons and adjusts their detuning, resulting in extended coherence of Hadamard
rotations when correcting for fluctuations of both qubit axes. Our study highlights the role of
feedback in enhancing the performance and stability of quantum devices affected by quasistatic
noise.

3.1 Introduction

Feedback is essential for stabilizing quantum devices and improving their performance. Real-time
monitoring and control of quantum systems allows for precise manipulation of their quantum
states [8, 158]. In this way, it can help mitigate the effects of quantum decoherence and extend the
lifetime of quantum systems for quantum computing and quantum sensing applications [3], for
example in superconducting qubits [159, 160, 161, 162, 148], spins in diamond [163, 164, 166, 165,
167, 168], trapped atoms [169, 170], and other platforms [171, 172, 173, 174, 175, 176].

Among the various quantum-information processing platforms, semiconductor spin qubits [51,
29] are promising for quantum computing because of their long coherence times [45] and foundry
compatibility [67]. Focusing on spin qubits hosted in gate-controlled quantum dots (QDs), two-
qubit gate fidelities of 99.5% and single-qubit gate fidelities of 99.8% have recently been achieved
in silicon [106]. In germanium, a four-qubit quantum processor based on hole spins enabled
all-electric qubit logic and the generation of a four-qubit Greenberger-Horne-Zeilinger state [177].
In gallium arsenide, simultaneous coherent exchange rotations and four-qubit measurements
in a 2×2 array of singlet-triplets were demonstrated without feedback, revealing site-specific
fluctuations of nuclear spin polarizations [36]. In silicon, a six-qubit processor was operated with

1This Chapter is published in Fabrizio Berritta et al. “Real-time two-axis control of a spin qubit”. In: Nature Com-
munications 15 (2024), p. 1676. DOI: 10.1038/s41467- 024- 45857- 0, and reused in accordance with the CC BY
license.
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3. REAL-TIME TWO-AXIS CONTROL OF A SPIN QUBIT

high fidelities enabling universal operation, reliable state preparation and measurement [178].
In germanium, in a 2×4 quantum dot array universal control of four singlet-triplet qubits was
shown [179].

Achieving precise control of gated qubits can be challenging due to their sensitivity to envi-
ronmental fluctuations, making feedback necessary to stabilize and optimize their performance.
Because feedback-based corrections must be performed within the correlation time of the relevant
fluctuations, real-time control is essential. Continuous feedback then allows to calibrate the qubit
environment and to tune the qubit in real time to maintain high-fidelity gates and improved coher-
ence, for instance by suppressing low-frequency noise and improving π-flip gate fidelity [180]. An
active reset of a silicon spin qubit using feedback control was demonstrated based on quantum
non-demolition readout [181]. Real-time operation of a charge sensor in a feedback loop [182]
maintained the sensor sensitivity for fast charge sensing in a Si/SiGe double quantum dot, com-
pensating for disturbances due to gate-voltage variation and 1/ f charge fluctuations. A quantum
state with higher confidence than what is achievable through traditional thermal methods was
initialized by real-time monitoring and negative-result measurements [183].

This study implements real-time two-axis control of a qubit with two fluctuating Hamiltonian
parameters that couple to the qubit along different directions on its Bloch sphere. The protocol
involves two key steps: first, rapid estimation of the instantaneous magnitude of one of the fluctu-
ating fields (nuclear field gradient) effectively creates one qubit control axis. This control axis is
then exploited to probe in real time the qubit frequency (Heisenberg exchange coupling) across
different operating points (detuning voltages). Our procedure allows for counteracting fluctuations
along both axes, resulting in an improved quality factor of coherent qubit rotations.

Our protocol integrates a singlet-triplet (ST0) spin qubit implemented in a gallium arsenide dou-
ble quantum dot (DQD) [36] with Bayesian Hamiltonian estimation [109, 184, 185, 186, 187]. Specif-
ically, an FPGA-powered quantum controller (OPX [146]) repeatedly separates singlet-correlated
electron pairs using voltage pulses and performs single-shot readout classifications to estimate
on-the-fly the fluctuating nuclear field gradient within the double dot [31]. Knowledge of the field
gradient in turn enables the quantum controller to coherently rotate the qubit between S and T0 by
arbitrary, user-defined target angles. Differently from previous works, we let the gradient freely
fluctuate, without pumping the nuclear field [117], and instead program the quantum controller to
adjust the baseband control pulses accordingly.

An adaptive second-axis estimation is performed to also probe the exchange interaction be-
tween the two electrons. This exchange interaction estimation scheme is not simply an inde-
pendent repetition of the single-axis estimation protocol [109, 184, 185, 186, 187]: the design of
the exchange-based free induction decay (FID) pulse sequence depends on the outcome of the
first-axis estimation and needs to be computed on the fly. Finally, fluctuations along both axes are
measured and corrected, enabling the stable coherent rotation of the qubit around a symmetric
axis, essential for performing the Hadamard gate.

Our work introduces a versatile method for enhancing coherent control and stability of spin
qubits by harnessing low-frequency environmental fluctuations coupling to the system. As such, it
is not limited to the operation of ST0 qubits in GaAs. Our implementation of real-time reaction to
fluctuating Hamiltonian parameters can find application in other materials and qubit encodings,
as it is not necessarily limited to nuclear noise.
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3.2. Device and Bayesian estimation

Fig. 3.1: A singlet-triplet (ST0) qubit with two fluctuating control axes. (a) The dots’ electrical
detuning ε tunes from a regime of low qubit frequency,ΩL, to a regime of high frequency,ΩH. States
outside the computational space are not plotted. (b) In the first (second) regime, the Overhauser
gradient |∆Bz | (the exchange coupling J) dominates the qubit frequency ΩL (ΩH) and the polar
angle ϕ of the qubit rotation axis. (c) SEM image of the GaAs device [36], implementing a two-
electron double quantum dot (black circles) next to its sensor dot (SD) for qubit readout. (d) J and
∆Bz drive rotations of the qubit around two orthogonal axes, providing universal qubit control, as
depicted in the Bloch sphere. (e) Uncontrolled fluctuations of the Larmor frequencies ΩL and ΩH,
estimated in real time on the quantum controller and plotted with a 30ms moving average.

3.2 Device and Bayesian estimation

We use a top-gated GaAs DQD array from [36] [Q3 in Fig. 1.3(b)] and tune up one of its ST0 qubits
using the gate electrodes shown in Fig. 3.1(c), at 200mT in-plane magnetic field in a dilution
refrigerator with a mixing-chamber plate below 30mK. Radio-frequency reflectometry off the
sensor dot’s ohmic contact distinguishes the relevant charge configurations of the DQD [120].

The qubit operates in the (1,1) and (0,2) charge configuration of the DQD. (Integers indicate the
number of electrons in the left and right dot.) The electrical detuning ε quantifies the difference in
the electrochemical potentials of the two dots, which in turn sets the qubit’s spectrum as shown in
Fig. 3.1(a). We do not plot the fully spin-polarized triplet states, which are independent of ε and
detuned in energy by the applied magnetic field. We define ε= 0 at the measurement point close
to the interdot (1,1)-(0,2) transition, with negative ε in the (1,1) region. In the ST0 basis, we model
the time-dependent Hamiltonian by

H(t ) = J (ε(t ))
σz

2
+ g∗µB∆Bz (t )

σx

2
, (3.1)

which depends on the detuning ε that controls the exchange interaction between the two electrons,
J(ε(t)), and the component of the Overhauser gradient parallel to the applied magnetic field
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between the two dots, ∆Bz (t ). σi are the Pauli operators, g∗ is the effective g-factor, and µB is the
Bohr magneton. In the following, we drop the time dependence of the Hamiltonian parameters
for ease of notation. On the Bloch sphere of the qubit [Fig. 3.1(d)], eigenstates of the exchange
interaction, |S〉 and |T0〉, are oriented along Z , while ∆Bz enables rotations along X .

The qubit is manipulated by voltage pulses applied to the plunger gates of the DQD, and
measured near the interdot (1,1)-(0,2) transition by projecting the unknown spin state of (1,1)
onto either the (1,1) charge state (|T0〉) or the (0,2) charge state (|S〉). Each single-shot readout
of the DQD charge configuration involves generation, demodulation, and thresholding of a few-
microsecond-long radio-frequency burst on the quantum controller (see 3.6 in Sec. 3.9).

The quantum controller allows for real-time calculation of the qubit Larmor frequency Ω(ε) =√
∆B 2

z + J (ε)2 at different detunings, based on real-time estimates of ∆Bz and J (ε).
Inspecting the exchange coupling in a simplified Fermi-Hubbard hopping model [51] and in-

serting J (ε) into equation 3.1 suggests two physically distinct regimes [Fig. 3.1(b)]: At low detuning,
in the (1,1) charge state configuration, the Overhauser gradient dominates the qubit dynamics.

In this regime, the qubit frequency reads ΩL ≡
√
∆B 2

z + J 2
res, where we have added a small phe-

nomenological term Jres to account for a constant residual exchange between the two electrons
at low detuning. Such a term may become relevant when precise knowledge of ∆Bz is required,
for example for the Hadamard protocol at the end of this study. At high detuning, close to the
(1,1)-(0,2) interdot charge transition, exchange interaction between the two electrons dominates,

and the qubit frequency becomes ΩH(ε) ≡
√
∆B 2

z + J (ε)2. As shown in Fig. 3.1(b), the detuning
affects both the Larmor frequency Ω and the polar angle ϕ of the qubit rotation axis ω̂, with ϕ

approaching 0 in the limit J (ε) ≫∆Bz and π/2 if J (ε) ≪∆Bz .
Without the possibility of turning off either J or ∆Bz , the rotation axes of the singlet-triplet

qubit are tilted, meaning that pure X - and Z -rotations are unavailable. In their absence, the
estimation of the qubit frequency at different operating points is crucial for navigating the whole
Bloch sphere of the qubit. Figure 3.1(e) tracks Larmor frequencies ΩH and ΩL, both fluctuating
over tens of MHz over a period of several seconds, using a real-time protocol as explained later. The
presence of low-frequency variations in time traces of ΩH and ΩL suggests that qubit coherence
can be extended by monitoring these uncontrolled fluctuations in real time and appropriately
compensating qubit manipulation pulses on-the-fly.

To estimate the frequency of the fluctuating Hamiltonian parameters on the quantum con-
troller, we employ a Bayesian estimation approach based on a series of free-induction-decay
experiments [109]. Using mi to represent the outcome (|S〉 or |T0〉) of the i -th measurement after
an evolution time ti , the conditional probability P (mi |Ω) is defined as the probability of obtaining
mi given a value of Ω:

P (mi |Ω) = 1

2

[
1+ ri

(
α+βcos(2πΩti )

)]
, (3.2)

where ri takes a value of 1 (−1) if mi = |S〉 (|T0〉), and α and β are determined based on the
measurement error and axis of rotation on the Bloch sphere.

Applying Bayes’ rule to estimate Ω based on the observed measurements mN , . . .m1, which are
assumed to be independent of each other, yields the posterior probability distribution P (Ω |mN , . . .m1)
in terms of a prior uniform distribution P0 (Ω) and a normalization constant N :

P (Ω |mN , . . .m1) =P0 (Ω)N
N∏

i=1

[
1+ ri

(
α+βcos(2πΩti )

)]
. (3.3)
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Based on previous works [109, 186, 187], we fix α= 0.25 and β=±0.5, with the latter value positive
when estimating ΩL and negative when estimating ΩH. The expectation value 〈Ω〉, calculated over
the posterior distribution after all N measurements, is then taken as the final estimate of Ω.

3.3 Controlled Overhauser gradient driven rotations

We first implement qubit control using one randomly fluctuating Hamiltonian parameter, through
rapid Bayesian estimation of ΩL and demonstration of controlled rotations of a ST0 qubit driven
by the prevailing Overhauser gradient. Notably, this allows coherent control without a micromag-
net [116, 188] or nuclear spin pumping [117].

ΩL is estimated from the pulse sequence shown in Fig. 3.2(a): for each repetition a singlet pair
is initialized in (0,2) and subsequently detuned deep in the (1,1) region (εL ≈−40mV) for N = 101
linearly spaced separation times ti up to 100ns. After each separation, the qubit state, |S〉 or |T0〉,
is assigned by thresholding the demodulated reflectometry signal Vrf near the (1,1)-(0,2) interdot
transition and updating the Bayesian probability distribution of ΩL according to the outcome of
the measurement. After measurement mN , the initially uniform distribution has narrowed [inset
of Fig. 3.2(b), with white and black indicating low and high probability], allowing the extraction
of 〈ΩL〉 as the estimate for ΩL. For illustrative purposes, we plot in Fig. 3.2(a) the N single-shot
measurements mi for 10,000 repetitions of this protocol, which span a period of about 20s, and
in Fig. 3.2(b) the associated probability distribution P (ΩL) of each repetition. The quality of the
estimation seems to be lower around a laboratory time of 6 seconds, coinciding with a reduced
visibility of the oscillations in panel 3.2(a). We attribute this to an enhanced relaxation of the
triplet state during readout due to the relatively high |∆Bz | gradient during those repetitions [189].
The visibility could be improved by a latched or shelved read-out [190, 191] or energy-selective
tunneling-based readout [186].

Even though the rotation speed around ω̂L at low detuning is randomly fluctuating in time,
knowledge of 〈ΩL〉 allows controlled rotations by user-defined target angles. To show this, we task
the quantum controller in Fig. 3.2(d) to adjust the separation times t̃ j in the pulse sequence to
rotate the qubit by M = 80 different angles θ j = t̃ j 〈ΩL〉 between 0 and 8π. In our notation, the tilde
in a symbol x̃ indicates that the waveform parameter x is computed dynamically on the quantum
controller. To reduce the quantum controller memory required for preparing waveforms with
nanosecond resolution, we perform controlled rotations only if the expected ΩL is larger than an
arbitrarily chosen minimum of 50 MHz. (The associated IF statement and waveform compilation
then takes about 40µs on the quantum controller.) This reduces the number of precomputed
waveforms needed for the execution of pulses with nanosecond-scale granularity, for which we use
the quantum controller baked waveforms capability. Accordingly, the number of rows in Fig. 3.2(d)
(1,450) is smaller than in panel (a), and we only label a few selected rows with their repetition
number.

To show the increased rotation-angle coherence of controlled |∆Bz |-driven rotations, we plot
the average of all 1,450 repetitions of Fig. 3.2(d) and compare the associated quality factor2, Q ≳ 7,
with that of uncontrolled oscillations, Q ≈ 1. The average of the uncontrolled S-T0 oscillations
in Fig. 3.2(a) can be fit by a decay with Gaussian envelope (solid line), yielding an inhomoge-
neous dephasing time T ∗

2 ≈ 30ns typical for ST0 qubits in GaAs [192]. We associate the relatively
smaller amplitude of stabilized qubit oscillations with the low-visibility region around 6 seconds

2We define the quality factor as the number of oscillations until the amplitude is 1/e of its original value.
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Fig. 3.2: Controlled Overhauser gradient driven rotations of a ST0 qubit by real-time Bayesian
estimation. One loop (solid arrows) represents one repetition of the protocol. (a) For each repeti-
tion, the quantum controller estimates ΩL by separating a singlet pair for N linearly spaced probe
times ti and updating the Bayesian estimate (BE) distribution after each measurement, as shown
in the inset of (b) for one representative repetition. For illustrative purposes, each single-shot mea-
surements mi is plotted as a white/black pixel, here for N = 101 ΩL probe cycles, and the fraction
of singlet outcomes in each column is shown as a red dot. (b) Probability distribution P (ΩL) after
completion of each repetition in a. Extraction of the expected value 〈ΩL〉 from each row completes
ΩL estimation. (c) For each repetition, unless 〈ΩL〉 falls below a user-defined minimum (here
50MHz), the quantum controller adjusts the separation times t̃ j , using its real-time knowledge of
〈ΩL〉, to rotate the qubit by user-defined target angles θ j = t̃ j 〈ΩL〉. (d) To illustrate the increased
coherence of Overhauser gradient driven rotations, we task the quantum controller to perform
M = 80 evenly spaced θ j rotations. Single-shot measurements m j are plotted as white/black pixels,
and the fraction of singlet outcomes in each column is shown as a red dot.
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Fig. 3.3: Real-time Bayesian estimation of two control axes. (a) One repetition of the two-axis
estimation protocol. After estimating ΩL from N = 101 ti probe cycles [Fig. 3.2(a)], the quantum
controller computes on-the-fly the pulse duration t̃π/2 required to initialize the qubit near the
equator of the Bloch sphere by a diabatic ΩL(π/2) pulse. After the ΩL(π/2) pulse, the qubit evolves
for time t j under exchange interaction before another ΩL(π/2) pulse initiates readout. After each
single-shot measurement m j , the quantum controller updates the BE distribution of ΩH. Similar
to ti in theΩL estimation, t j is spaced evenly between 0 and 100 ns across M = 101 exchange probe
cycles. (b) Qubit evolution on the Bloch sphere during one exchange probe cycle. (c) Each column
plots P (ΩL) after completion of the ΩL estimation in each protocol repetition. (d) Each column
plots P (ΩH) after completion of the ΩH estimation in each protocol repetition.

in Fig. 3.2(d), discussed earlier. Excluding such regions by post selection increases the visibility
and quality factor of oscillations (see Fig. 3.10). Overall, the results presented in this section exem-
plify how adaptive baseband control pulses can operate a qubit reliably, out of slowly fluctuating
environments.

3.4 Real-time two-axis estimation

In addition to nuclear spin noise, ST0 qubits are exposed to electrical noise in their environment,
which affects the qubit splitting in particular at higher detunings. It is therefore important to
examine and mitigate low-frequency noise at different operating points of the qubit. In the previous
section, the qubit frequency ΩL was estimated entirely at low detuning where the Overhauser field
gradient dominates over the exchange interaction. In order to probe and stabilize also the second
control axis, namely J-driven rotations corresponding to small ϕ in Fig. 3.1(d), we probe the qubit
frequency ΩH at higher detunings, using a similar protocol with a modified qubit initialization.

Free evolution of the initial state |S〉 around ω̂L would result in low-visibility exchange-driven
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oscillations because of the low value of ϕ. To circumvent this problem, we precede the ΩH estima-
tion by one repetition of ΩL estimation, as shown in Fig. 3.3(a). This way, real-time knowledge of
〈ΩL〉 allows the initial state |S〉 to be rotated to a state near the equator of the Bloch sphere, before
it evolves freely for probing ΩH. This rotation is implemented by a diabatic detuning pulse from
(0,2) to εL (diabatic compared to the interdot tunnel coupling) for time t̃π/2, corresponding to a
rotation of the qubit around ω̂L by an angle ΩL t̃π/2 =π/2. After evolution for time t j under finite
exchange, another π/2 rotation around ω̂L rotates the qubit to achieve a high readout contrast in
the ST0 basis, as illustrated on the Bloch sphere in Fig. 3.3(b).

As a side note, we mention that in the absence of knowledge of the Overhauser field gradient,
the qubit would traditionally be initialized near the equator by adiabatically reducing detuning
from (0,2) to the (1,1) charge configuration, and a reverse ramp for readout. Such adiabatic ramps
usually last several microseconds each, while our t̃π/2 pulses typically take less than 10ns, thereby
significantly shortening each probe cycle.

For the estimate of ΩH, the Bayesian probability distribution of ΩH is updated after each of the
M = 101 single-shot measurement m j , each corresponding to a separation time t j that is evenly
stepped from 0 to 100ns. The Bayesian probability distributions of both ΩL and ΩH are shown in
Fig. 3.3(c) and (d), respectively, with the latter being conditioned on 20MHz < 〈ΩL〉 < 40MHz to
reduce the required quantum controller memory.

This section demonstrated a real-time baseband control protocol that enables manipulation of
a spin qubit on the entire Bloch sphere.

3.5 Controlled exchange-driven rotations

Using Bayesian inference to estimate control axes in real-time offers new possibilities for study-
ing and mitigating qubit noise at all detunings. Figure 3.4a describes the real-time controlled
exchange-driven rotations protocol aimed at stabilizing frequency fluctuations of the qubit at
higher detunings. Following the approach of Fig. 3.3, we first estimate ΩL and ΩH using real-time
Bayesian estimation. We then use our knowledge of ΩH to increase the rotation angle coherence of
the qubit where the exchange coupling is comparable with the Overhauser field gradient.

As illustrated in Fig. 3.4(a), the qubit control pulses now respond in real time to both qubit
frequencies ΩL and ΩH. Similar to the previous section, after determining 〈ΩL〉 and confirming
that 30MHz < 〈ΩL〉 < 50MHz is fulfilled, the qubit is initialized near the equator of the Bloch sphere
by fast diabatic ΩL(π/2) pulses, followed by an exchange-based FID that probes ΩH. Based on
the resulting 〈ΩH〉, the quantum controller adjusts the separation times t̃l to rotate the qubit by
user-defined target angles θl = t̃l 〈ΩH〉.

To show the resulting improvement of coherent exchange oscillations, we plot in Fig. 3.4(c)
the interleaved K = 101 measurements ml and compare them in Fig. 3.4(b) to the M = 101 mea-
surements m j . Fitting the average of the uncontrolled rotations by an oscillatory fit with Gaussian
envelope decay yields T ∗

el ≈ 60ns and Q ≈ 3, presumably limited by electrical noise [192], while the
quality factor of the controlled rotations is enhanced by a factor of two, Q ≈ 6.

The online control of exchange-driven rotations using Bayesian inference stabilizes fluctuations
of the qubit frequency at higher detunings, where fluctuations are more sensitive to detuning noise.
Indeed, we attribute the slightly smaller quality factor, relative to Overhauser-driven rotations
in Fig. 3.2(d), to an increased sensitivity to charge noise at larger detuning, which, owing to its
high-frequency component, is more likely to fluctuate on the estimation timescales [184].
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Fig. 3.4: Real-time-controlled exchange-driven qubit rotations. (a) One repetition of the exchange
rotation protocol. After estimation of ΩL and ΩH as in Fig. 3.3, the quantum controller adjusts
exchange duration times t̃l , using real-time knowledge of 〈ΩH〉, to rotate the qubit by user-defined
target angles θl = t̃l 〈ΩH〉. Pulse durations t̃π/2 for qubit initialization and readout use real-time
knowledge of 〈ΩL〉. (b) Each row plots measurements m j from one protocol repetition, here M =
101 exchange probe outcomes. (c) Each row plots measurement ml from one protocol repetition,
here K = 101 controlled-exchange-rotation outcomes. To illustrate the increased coherence of
controlled exchange rotations, we also plot in (b) and (c) the fraction of singlet outcomes of each
column.
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Fig. 3.5: Real-time universal ST0 control demonstrated by Hadamard rotations. (a) Hadamard
rotation protocol. After estimating ΩL, ε is chosen in real-time such that J(ε) = |∆Bz |, based on
a linearized offline model from panel (c). If 40MHz < 〈|∆Bz |〉 < 60MHz, the detuning is adjusted
to account for deviations of the prevailing J from the offline model. Real-time knowledge of
ΩHad =p

2 |∆Bz | then dictates t̃i to achieve a user-defined Hadamard rotation angle. (b) Averaged
exchange driven FID as a function of detuning and evolution time. Here, a diabatic ΩL(π/2) pulse
initializes the qubit near the equator of the Bloch sphere, prior to free exchange evolution, and
subsequently prepares it for readout. (c) J as a function of ε extracted offline from (b), as well
as a linearized model (dashed line) used in the two feedback steps of panel (a). (d) Hadamard
rotation depicted on the Bloch sphere. (e) Measurement of Hadamard rotations with |∆Bz | and J
estimation (purple, top panel), only |∆Bz | estimation (light gray, middle panel), and without the
feedback shown in a (dark gray, bottom panel).

This section established for the first time stabilization of two rotation axes of a spin qubit.
This advancement should allow for stabilized control over the entire Bloch sphere, which we
demonstrate in the next section.
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3.6 Hadamard rotations

In this experiment, we demonstrate universal ST0 control that corrects for fluctuations in all
Hamiltonian parameters. We execute controlled Hadamard rotations around ω̂Had, as depicted by
the trajectory on the Bloch sphere of Fig. 3.5(d), by selecting the detuning εHad in real time such
that J (εHad) = |∆Bz |. To achieve this, we do not assume that ∆Bz =ΩL (i.e. we allow contributions
of Jres to ΩL) or that J =ΩL (i.e. we allow contributions of ∆Bz to ΩH). The full protocol is detailed
in Sec. 3.9.

Real-time knowledge of both ∆Bz and J would potentially benefit two-qubit gate fidelities [97]
and the resonant-driving approach of previous works [109, 186, 187]. In the resonant implemen-
tation, constrained to the operating regime |∆Bz | ≫ J , low-frequency fluctuations of J result in
transverse noise that causes dephasing and phase shifts of the Rabi rotations [193, 194].

In previous sections, we have shown how to probe the qubit Larmor frequencies ΩH and
ΩL at different detunings in real time and correct for their fluctuations. Now, we simultaneously
counteract fluctuations in J and |∆Bz | on the quantum controller in order to perform the Hadamard
gate. As we do not measure the sign of ∆Bz , we identify the polar angle of ω̂Had as either ϕ=π/4 or
−π/4.

In other words, starting from the singlet state, the qubit rotates towards +X on the Bloch sphere
for one sign of ∆Bz , and towards −X for the other sign. The sign of the gradient may change
over long time scales due to nuclear spin diffusion (on the order of many seconds [31]), but the
measurement outcomes of our protocol are expected to be independent of the sign.

The relative sign of Overhauser gradients becomes relevant for multi-qubit experiments [195],
and could be determined following [196] by comparing the relaxation time of the ground state
(e.g. |↑↓〉) of ∆Bz with its excited state (|↓↑〉). Such diagnostic sign-probing cycles on the quantum
controller should not require more than a few milliseconds, negligible compared to the expected
time between sign reversals.

In preparation for our protocol, we first extract the time-averaged exchange profile by per-
forming exchange oscillations as a function of evolution time [Fig. 3.5(b)]. Removing contribu-
tions of ∆Bz to ΩH then yields J(ε) in Fig. 3.5(c). A linear approximation in the target range
40MHz < 〈J〉 < 60MHz (dashed blue line) is needed later on the quantum controller to allow initial
detuning guesses when tuning up J(ε) = |∆Bz |. We also provide the quantum controller with a
value for the residual exchange at low detuning, Jres ≈ 20MHz, determined offline as described in
Fig. 3.11.

As illustrated in Fig. 3.5(a), the Hadamard rotation protocol starts by estimating |∆Bz | from ΩL,
taking into account a constant residual exchange by solving ∆B 2

z =Ω2
L − J 2

res.
Next, an initial value of εHad is chosen based on the linear offline model to fulfill J (εHad) = |∆Bz |

[feedback 1⃝ in panel (a,c)]. To detect any deviations of the prevailing J from the offline model, an
exchange-driven FID is performed at εHad to estimate J from ΩH, using J 2 =Ω2

H −∆B 2
z .

Any deviation of 〈J〉 from the target value |∆Bz | is subsequently corrected for by updating εHad

based on the linearized J(ε) model [feedback 2⃝ in panels (a,c)]. Matching J to |∆Bz | in the two
detuning feedback steps each takes about 400ns on the quantum controller. Finally, real-time
knowledge of ΩHad ≡p

2|∆Bz | is used to generate the free evolution times t̃i , spent at the updated
value ε̃Had, in order to perform Hadamard rotations by K user defined target angles.

The resulting Hadamard oscillations are shown in Fig. 3.5(e) (top panel) and fitted with an
exponentially decaying sinusoid, indicating a quality factor Q > 5. (According to this naive fit, the
amplitude drops to 1/e over approximately 40 rotations, although we have not experimentally ex-
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plored rotation angles beyond 9π.) In comparison to exchange-controlled rotations from Fig. 3.4(c),
the Hadamard rotations are more stable, which we attribute to the additional feedback on detuning
that fixes the oscillation axis and decreases sensitivity to charge noise.

To illustrate the crucial role of real-time estimation for this experiment, we also performed
rotation experiments that do not involve any real-time estimation and feedback cycles (dark
gray data, bottom panel), as follows. Within minutes after performing the controlled Hadamard
rotations (purple data), we executed Hadamard rotations assuming a fixed value of |∆Bz | = |∆Bz |,
i.e. by pulsing to a fixed detuning value corresponding to J(εH) = |∆Bz | according to the offline
model. Here, |∆Bz | ≈ 40 MHz is the average Overhauser gradient that we observed just before
executing the Hadamard protocol. Not surprisingly, the quality factor of the resulting Hadamard-
like oscillations is low and the rotation angle deviates from the intended target angle, likely due to
the Overhauser gradient having drifted in time. As a side note, we mention that the purple data in
Fig. 3.5(e) constitutes an average over 5,000 repetitions, corresponding to a total acquisition time
of 2 minutes including Overhauser and exchange estimation cycles. In contrast, the dark gray data
also constitutes an average over 5,000 repetitions, but only required 15 seconds because of the
omission of all estimation and feedback cycles.

To verify that the enhancement in Q is not solely due to the more accurate knowledge of
|∆Bz |, we also performed Hadamard rotations only using the estimation of |∆Bz |. The quantum
controller was programmed to perform a measurement where the initialized singlet is pulsed to
a fixed detuning J(εH) ≈ 20MHz to perform a Hadamard rotation, only if the estimated |∆Bz | on
the quantum controller satisfies 17MHz < 〈|∆Bz |〉 < 23MHz. We then post select the repetitions
where 19.5MHz < 〈|∆Bz |〉 < 20.5MHz. Fitting this by an oscillatory fit with Gaussian envelope
decay yields T ∗

el ≈ 70ns, Q ≈ 2.0 and frequency ≈ 29MHz.
In Figure 3.5(e) we compare these data (light gray, middle panel) with the cases where the

quantum controller estimated both |∆Bz | and J (purple, top panel) and where the microprocessor
does not perform any estimation but simply pulses to J(εH) to perform the rotations (dark gray,
bottom panel). (In the middle panel the horizontal axis was rescaled to the Hadamard evolution
time using the fitted frequency ≈ 29MHz.) We see that (i) a reduction of the uncertainty in |∆Bz |
from ≈ 30MHz (r.m.s.) to ≈ 2MHz (dark gray to light gray) does not yield a proportional gain in Q
and (ii) the improvement in Q when including estimation of J (light gray to purple) is much larger
than can be justified solely by the slight further reduction of the uncertainty in |∆Bz | (roughly from
≈ 2MHz to ≈ 1MHz). This demonstrates the crucial contribution of the estimations along both
axes in the improvement of our Hadamard gate quality factor.

Further evidence for the fluctuating nature of non-stabilized Hadamard rotations is discussed
in Fig. 3.12.

The stabilized Hadamard rotations demonstrate real-time feedback control based on Bayesian
estimation of J and |∆Bz |, and suggest a significant improvement in coherence for ST0 qubit
rotations around a tilted control axis. Despite the presence of fluctuations in all Hamiltonian
parameters, we report effectively constant amplitude of Hadamard oscillations, with a reduced
visibility that we tentatively attribute to estimation and readout errors.

3.7 Discussion

Our experiments demonstrate the effectiveness of feedback control in stabilizing and improving
the performance of a singlet-triplet spin qubit. The protocols presented showcase two-axis control
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of a qubit with two fluctuating Hamiltonian parameters, made possible by implementing online
Bayesian estimation and feedback on a low-latency FPGA-powered qubit control system. Real-time
estimation allows control pulses to counteract fluctuations in the Overhauser gradient, enabling
controlled Overhauser-driven rotations without the need for micromagnets or nuclear polarization
protocols. Notably, even in the absence of a deterministic component of the Hamiltonian purely
noise-driven coherent rotations of a two-level quantum system were demonstrated.

The approach is extended to the real-time estimation of the second rotation axis, dominated
by exchange interaction, which we then combine with an adaptive feedback loop to generate and
stabilize Hadamard rotations. In particular, executing the Hadamard gate involves (i) sequentially
executing two distinct estimation cycles, where the design of the second cycle relies on the out-
comes of the first, (ii) correlating the detected frequencies to distinguish independent fluctuations
of the two control axes, and (iii) utilizing this correlated information to dynamically construct and
execute a Hadamard gate. These steps demand real-time adaptive estimations and signal genera-
tions throughout the protocol, which has not been demonstrated before. A constant Overhauser
field gradient, whether stemming from nuclear spin pumping or a micromagnet, is expected to
further improve the feedback control. From this perspective, our work represents a worst-case
scenario, demonstrating the effectiveness of our experimental technique.

Our protocols assume that ∆Bz does not depend on the precise dot detuning in the (1,1)
configuration and remains constant on the time scale of one estimation. Similarly, stabilization
of exchange rotations is only effective for electrical fluctuations that are slow compared to one
estimation. Therefore, we expect potential for further improvements by more efficient estimation
methods, for example through adaptive schemes [197] for Bayesian estimation from fewer samples,
or by taking into account the statistical properties of a time-varying signal described by a Wiener
process [198] or a nuclear spin bath [199]. Machine learning could be used to predict the qubit
dynamics [200, 201, 202], possibly via long short-term memory artificial neural networks as reported
for superconducting qubits [203]. While our current qubit cycle time (approximately 30µs) is
dominated by readout and qubit initialization, it can potentially be reduced to a few microseconds
through faster qubit state classification, such as enhanced latched readout [191], and faster reset,
such as fast exchange of one electron with the reservoir [142]. Our protocol could be modified
for real-time non-local noise correlations [204] or in-situ qubit tomography using fast Bayesian
tomography [205] to study the underlying physics of the noisy environment, thereby providing
qualitatively new insights into processes affecting qubit coherence and multi-qubit error correction.

Beyond ST0 qubits, our protocols uncover new perspectives on coherent control of quantum
systems manipulated by baseband pulses. This work represents a significant advancement in
quantum control by implementing an FPGA-powered technique to stabilize in real time the qubit
frequency at different manipulation points.

3.8 Methods

Experimental setup

We use an Oxford Instruments Triton 200 cryofree dilution refrigerator with base temperature
below 30mK. The experimental setup employs a Quantum Machines OPX+ for radio-frequency
(RF) reflectometry and gate control pulses. The RF carrier frequency is ≈ 158MHz and the gate
control pulses sent to the left and right plunger gates of the DQD are filtered with low-pass filters
(≈ 220MHz) at room temperature, before being attenuated at different stages of the refrigerator.
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Low-frequency tuning voltages (high-frequency baseband waveforms) are applied by a QDAC [157]
(OPX) via a QBoard high-bandwidth sample holder [155].

Measurement details

Before qubit manipulation, an additional reflectometry measurement is taken as a reference to
counteract slow drifts in the sensor dot signal. At the end of each qubit cycle, a ≈ 1µs long pulse is
applied to discharge the bias tee. As the qubit cycle period (tens of µs) is much shorter than the
bias tee cutoff (≈ 300Hz), we do not correct the pulses for the transfer function of the bias tee.

3.9 Supplementary

Experimental setup

Figure 3.6 displays the experimental setup used in this study, which comprises a Triton 200 cryofree
dilution refrigerator from Oxford Instruments capable of reaching a base temperature below 30 mK.
A superconducting vector magnet is thermally anchored to the 4 K plate and can generate 6 T along
the main axis z of the refrigerator and 1 T along x or y . It is used to apply an in-plane magnetic
field of B ≈ 200mT, along the double quantum dot (DQD) axis (see device schematic in Fig. 3.6).
An upper bound of the electron temperature is 100 mK, determined by attributing the observed
broadening of the interdot (1,1)-(0,2) charge transition to thermal broadening.

The Quantum Machines OPX+ includes real-time classical processing at the core of quantum
control with fast analog feedback. It enables on-the-fly pulse manipulation, which is critical for
this experiment [146]. The RF carrier frequency, approximately 158 MHz, is attenuated at room
temperature by a programmable step attenuator. The RF carrier power incident onto the PCB
sample holder corresponds to between −70 and −80 dBm. Before entering the cryostat, the signal
is filtered with low-pass and high-pass filters, and a DC block reduces heating in the coaxial lines
caused by the DC component of the RF signal. The RF carrier is reflected by the surface-mounted
tank circuit wirebonded to one ohmic of the sensor dot and is amplified by a cryogenic amplifier
at 4 K. The RF carrier is then amplified again at room temperature, filtered to avoid aliasing, and
digitized at 1 GS/s. As the signal is AC coupled and does not have a 50Ω resistance to ground, a
bias tee is used to bias the input amplifier of the OPX+.

The QDAC-II [157] can trigger the OPX+, for example while tuning the device in video-mode
using the RF reflectometry measurements taken by the OPX+. All the ohmics of the device are
grounded at the QDevil QBox, a breakout box where low-pass filters are installed for all the DC lines
for the gate voltages. To reduce noise and interference in the signal chain, a QDevil QFilter-II [206]
is installed in the cryostat for the DC lines. Additionally, the setup includes a QDevil QBoard
sample holder [155], which is a printed circuit board with surface-mounted tank circuits used
for multiplexed RF reflectometry. The bias tees have a measured cut-off frequency of ≈ 300Hz,
whereas the RC filters have a cut-off frequency > 30kHz.

Relation between the quality factor and the Bayesian estimation procedure

In this section we show that most of the oscillation decay, i.e., the finite quality factor of coherent
rotations in Fig. 3.2, can be explained by the estimation errors. For each estimation procedure
we represent the probability distribution of Ω on a regular grid, and update the weights based on
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Fig. 3.7: Experimental setup T7 (previous page). The cryostat is a Triton 200 dilution refrigerator
by Oxford Instruments with a base temperature lower than 30 mK. A Quantum Machines OPX+ is
used for RF reflectometry and fast gate control pulses with a bandwidth of less than 1 GHz. The
RF carrier frequency used is approximately 158 MHz. Additionally, the setup includes a QDevil
QDAC-II for generating low-frequency analog signals. A QDevil QFilter-II is used to suppress noise
and interference in the signal chain. Finally, the setup incorporates a QDevil QBoard PCB sample
holder with surface-mount tank circuits for multiplexed RF reflectometry. Only one of the four
qubits of the chip is activated for this experiment.

Fig. 3.8: Frequency resolution of Bayesian estimation. (a) Each trace shows averaged Overhauser-
driven controlled rotations as Fig. 3.2(d). For each trace we used a different frequency resolution for
the probability distribution when estimating ΩL, as indicated. The y-axis of each curve is offset for
clarity. (b) Each trace shows exchange-driven controlled rotations as shown in Fig. 3.4(c). For each
trace we used a different frequency resolution for the probability distribution when estimating ΩH,
keeping fixed the frequency resolution of ΩL at 1MHz. The y-axis of each curve is offset for clarity.

the measurement outcome. To convert the final probability distribution to an estimation of the
frequency we use the average:

〈Ω〉 =∑
n

p(Ω[n])Ω[n], (3.4)

where Ω[n] is the frequency and p(Ω[n]) is the corresponding probability. When the estimated
frequency is used to adjust the time for coherent rotations t =φ/(2π〈Ω〉) [in the previous section the
qubit rotation angle θ ≡φ/(2π)], any estimation error δΩ will result in a random phase evolution
δφ= 2πδΩ t that contributes to a decrease in a quality factor.

Finite frequency resolution

The first source of errors can be associated with the finite resolution of the probability distribution.
While too high a resolution would significantly slow down an on-the-fly estimation scheme, too
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low a resolution would introduce an estimation error, the scale of which can be related to a step
size δΩ≈ (Ω[n +1]−Ω[n])/2.

To optimize the frequency resolution used in the Bayesian estimation, we perform different
measurements for both ΩL and ΩH. Figure 3.8(a) shows the averaged traces after performing con-
trolled Overhauser-driven rotations whenever 〈ΩL〉 > 30MHz, as described in Fig. 3.2. Increasing
the frequency resolution from 10MHz to 0.3MHz (with frequency span from 10MHz to 70MHz)
results in an increased number of visible oscillations. However, considering the required com-
putational time by the quantum controller and no appreciable improvements above 0.5MHz, we
choose a resolution of 0.5MHz throughout this work, resulting in ≈ 5µs per qubit cycle to update
the estimate on the quantum controller.
We also test the frequency resolution of ΩH in a similar way by performing exchange-driven con-
trolled rotations, as shown in Fig. 3.4, and estimatingΩH between 40MHz and 90MHz. In this case,
we also set the resolution to 0.5MHz to keep the estimation cycle on the few µs scale.

We support the above by a simple model of uncertainty, in which for each realization of the
experiment we draw a random error δΩ≈N (0,σ2

δΩ
). For simplicity we assume the initialization

and measurement axis are perpendicular to the rotation axis, such that the probability of measuring
the initial state reads:

PS(τ) = 1

2
+ 1

2

〈
cos(2π[Ω+δΩ]τ)

〉
δΩ = 1

2
+ cos(2πΩτ)

2
W (τ), (3.5)

where W (τ) is the attenuating function related to classical averaging over repetitions of δΩ, which
we denoted as 〈. . .〉δΩ. For simplicity we assume the errors are normally distributed with character-
istic width σδΩ, for which W (τ) = exp

(−2π2σ2
δΩ
τ2

)
. For the relevant case of stabilized rotations,

which are obtained by adjusting evolution time τ= 2πΩ/φ, we have

PS(φ) = 1

2
+ 1

2
cos

(
φ

)
exp

{
−1

2

(σδΩ
Ω

)2
φ2

}
≡ 1

2
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2
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)
exp

{
−

( φ
φ∗

2

)2
}

, (3.6)

where in analogy to dephasing time T ∗
2 we defined dephasing angle φ∗

2 , which measures the angle
of rotation at which the amplitude falls as 1/e. For a constant estimation error it depends on the
estimated frequency, since:

φ∗
2 =p

2
Ω

σδΩ
, (3.7)

and can be related to a Q-factor via the equation:

Q = φ∗
2

2π
= Ωp

2πσδΩ
. (3.8)

Using the above, we estimate that an resolution-related error of σδΩ ≈ 0.5MHz at Ω= 20MHz (the
smallest estimated frequency) should allow for at least Q ≥ 9. As this number is larger than any
measured Q, we conclude the finite resolution of the estimation is not the main factor responsible
for observed amplitude decay.

Low quality estimates

Having confirmed sufficiently high resolution (0.5 MHz), another source of errors is associated
with low-quality estimates resulting from multi-modal or not sufficiently narrow probability distri-
butions. As a measure of estimation quality we take the variance of the final distribution, defined
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Fig. 3.9: Standard deviation of Bayesian estimations. (a) Probability distributions used to estimate
frequencies 〈ΩL〉 > 50MHz. (b) Histogram of corresponding variances σest of the probability
distributions p(Ω[n]).

as:

σ2
est = Var(Ω) ≡∑

n

(
Ω[n]−〈Ω〉)2p(Ω[n]). (3.9)

To show that low-quality estimates play an important role in the loss of oscillation amplitude
we post-process the measured data based on σest. We reject the repetitions with a probability
distribution with calculated variance of σest >σest,max, and we average over the remaining traces.
We highlight that in principle, such or an even more sophisticated procedure of quality assessment
could also be performed on-the-fly, for instance as a part of the same feedback loop and without
the need of measuring the low-quality oscillations.

We test this approach on the experimental data used to generate Fig. 3.2(d). In Fig. 3.9(a), we
plot the obtained probability distributions with 〈ΩL〉 ≥ 50MHz. For each distribution we compute
its variance, whose histogram over all the distribution is plotted in Fig. 3.9(b). By imposing an upper
bound for the variance σest,max, we can now compute an average such as shown in the bottom
panel of Fig. 3.2(d), but now using only a selection of the best estimates.

In Fig. 3.10(b) we plot the ratio of used data Ñ versus total repetition N = 1450, as a function
of σest,max. For each value of σest,max we plot in Fig. 3.10(a) the change in the averaged singlet
probability PS(θ j ) of stabilized oscillations, as compared to the trace shown in Fig. 3.2. In par-
ticular, we focus on two different bounds of tolerated variance σest,max = 0.8MHz and 2.7MHz,
that correspond to rejecting 80% and 50% of the worst estimations, respectively. We mark those
values of σest,max using dashed lines in both panels. Finally, in Fig 3.10c we compare the coherent
oscillations obtained using the 20% (green) and 50% (yellow) best estimates against the unfiltered
result from Fig. 2(d) (black). We see a significant improvement in the oscillation amplitude, which
suggests that the observed decay may be associated with poor performance of the estimation
scheme.
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(a)

(b)

(c)

Fig. 3.10: Improvement of the visibility of coherent oscillations by rejecting low-quality estimates.
(a) Change in oscillation amplitude after averaging only the best Ñ estimates out of N = 1450 as a
function of bound estimation uncertainty σest,max. (b) The fraction of used estimations Ñ /N as
a function of bound estimation uncertainty σest,max. By dashed lines we mark σest,max = 0.7MHz
(green), and 2.7MHz (yellow), that correspond to rejecting 80% and 50% of repetitions respectively.
(c) The resulting averaged oscillations in comparison to unfiltered data (black) from Fig. 3.2(d).

Extracting exchange energy and Overhauser field gradient from Larmor frequencies

In this section, we seek to extract time-dependent knowledge about the exchange energy, J (t ), and
the Overhauser field gradient, ∆Bz (t ), from the ΩL(t ) data and ΩH(t ) data shown in Fig. 3(c,d). To

achieve this, we assume ΩL(t ) ≡
√
∆B 2

z (t )+ J 2
res(t ) and ΩH(t ) ≡

√
∆B 2

z (t )+ J 2(εH, t ), and combine
this with statistical methods as the problem is not analytically solvable: at each time t , we have two
known quantities [ΩL(t ) and ΩH(t )] and three unknown ones [∆B 2

z (t ), J 2
res(t ), and J 2(εH, t )].

As ΩH(t ) is probed only when 20MHz < 〈ΩL(t )〉 < 40MHz, we downsample 〈ΩL(t )〉 to the same
number of points as we have for 〈ΩH(t )〉, by choosing for each value of 〈ΩH(t )〉 the one of 〈ΩL(t )〉
that is closest in time. We then remove any outliers in the data by considering a window of size
w = 15 around each data point and reject any data point that is more than the standard deviation
of its 14 neighboring data points away from the average of those points. In such a case, we replace
the rejected data point with that average. We then finally apply a running average with a window
size of w = 5 to smoothen the data and remove high-frequency noise. In Fig. 3.11a we show the
resulting 〈ΩL,H(t )〉, cf. Fig. 3.3(c,d).

We assume the fluctuations of |∆Bz | to dominate on this time scale, and thus we square ΩL

and ΩH and determine the shift κ2
opt that results in the best overlap of 〈ΩL(t )〉 and

√
〈ΩH(t )〉2 −κ2,

using a least squares method. The result is plotted in Fig. 3.11(b), with κopt ≈ 36MHz, suggesting
that on average J(εH)2 ≈ J 2

res +κ2
opt. The clear correlation between the two traces confirms the

assumption that the fluctuations of |∆Bz | dominate over the fluctuations of J . The slightly worse
overlap seen in some regions, for instance at about 1s, are possibly due to fluctuations of Jres and
J (εH).
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Fig. 3.11: Extracting fluctuations of the exchange energy and Overhauser field gradient from
two different estimated Larmor frequencies. (a) Fluctuations of the Larmor frequencies ΩL and
ΩH after removal of estimation outliers (see text). (b) The estimated Larmor frequency 〈ΩL(t )〉 and

the shifted frequency
√
〈ΩH(t )〉2 −κ2

opt, based on the same data as shown in Fig. 3.3, where κopt

provides the best overlap using a least-squares error. (c) Histogram of a ≈ 36s long measurement of
〈ΩL〉. From a fit to equation (3.10) (red solid line) the average Jres ≈ 20.2MHz is found. (d) |∆Bz (t )|
and J(εH, t) extracted from the Larmor frequencies ΩL(t) and ΩH(t) of main Fig. 3, assuming
constant Jres = 20.2MHz.

Nevertheless, in order to extract direct knowledge about ∆Bz (t) we still need to determine
Jres(t ) [or J (εH, t )] independently. To obtain an average value of Jres(t ), we combine together longer
measurements of 〈ΩL(t)〉 and 〈ΩH(t)〉 taken at different times at the same tuning and cooldown
over ≈ 36s and ≈ 6s, respectively. We then consider histograms of the measured frequencies
without filtering [we show in Fig. 3.11(c) the one obtained for 〈ΩL〉], which we fit to the distribution
function

P(Ω) =
∫ Ω

−Ω
d J

1

πσJσB

Ω√
Ω2 − J 2

exp

[
− (J −µJ )2

2σ2
J

]
exp

[
−Ω

2 − J 2

2σ2
B

]
, (3.10)

that gives the probability density forΩ=
√

J 2 +B 2 when J and B are normally distributed variables
with means µJ and zero and variances σ2

J and σ2
B , respectively. The red solid line in Fig. 3.11(c)

shows the least-square fit of the data, yielding σJ ≈ 4.63MHz, σB ≈ 22.0MHz, µJ ≈ 20.2MHz for
the ≈ 36s long trace of 〈ΩL(t )〉.

The results of this fit confirm that σB >σJ , i.e., that the fluctuations in the Overhauser gradient
dominate those in Jres. Indeed, first-order detuning fluctuations of the residual exchange interac-
tion are expected to be zero, as the qubit is tuned close to the symmetry point in the (1,1) charge
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state when measuring ΩL [192, 207]. To get a rough picture of the time dependence of |∆Bz (t )| we
thus replace the residual exchange term Jres(t ) by its constant average value µJ as extracted from

the fit and we extract |∆Bz (t )| =
√
Ω2

L(t )−µ2
J and J (εH, t ) =

√
Ω2

H(t )−∆B 2
z (t ). The result is plotted

in Fig. 3.11(d).

Controlled Hadamard rotations

Protocol The aim of this protocol is to perform an adaptive Hadamard gate in a singlet-triplet
qubit in GaAs by Bayesian estimation of two Larmor frequencies at different detunings. We define
the following quantities:

• Ω(ε) ≡
√
∆B 2

z + J (ε)2 is the Larmor frequency at a given detuning ε

• Jres is the residual exchange deep in (1,1) (ε≈−40 mV)

• ΩL ≡
√
∆B 2

z + J 2
res is the Larmor frequency deep in the (1,1) charge state.

• At the detuning where J ≈ |∆Bz | (with |∆Bz | ≈ [40,60] MHz), we approximate J(ε) ≈ J(ε0)+
α∆ε, where α is ≈ 10 MHz/mV and ε0 ≈−16 mV

• ΩH ≡
√
∆B 2

z + J (ε0)2 is the Larmor frequency at the detuning point defined above

• εHad is the detuning at which J = |∆Bz |, and in general εHad ̸= ε0 because J fluctuates.

This protocol assumes we have prior knowledge of the residual exchange (assumed constant),
an offline model of J(ε), and |∆Bz | does not depend on detuning ε and it fluctuates sufficiently
slowly to be considered constant throughout the protocol. Typical values for Jres ≈ [10,20] MHz.

1. Estimate ΩL.

2. Calculate ∆B 2
z = Ω2

L − J 2
res. If 40 MHz < |∆Bz | < 60 MHz, go to the next point. Otherwise

repeat 1.

3. Adjust detuning such that J = |∆Bz |, based on the offline knowledge of J (ε) = J (ε0)+α∆ε.

4. To learn the prevailing J , perform exchange-based FID around the field found at 3, i.e. where
J = ∆Bz , interleaved with ΩL(π/2) pulses for initialization and readout, from which we
estimate ΩH as in Fig. 3.3.

5. Estimate J 2 =Ω2
H −∆B 2

z and adjust detuning again such that J = |∆Bz | to account for fluctu-
ations of J from the offline model.

6. Perform Hadamard with rotation angle calculated based on |∆Bz | by directly jumping to
εHad.

7. Back to 1.
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Details

1. Estimate ΩL by 101 single shots linearly spaced between 0 ns and 100 ns.

2. Calculate ∆B 2
z =Ω2

L − J 2
res = (ΩL + Jres)(ΩL − Jres).

3. Adjust detuning such that J = |∆Bz |. In practice this condition is equivalent to Ω2
H = 2(Ω2

L −
J 2

res). Since

Ω2
H(ε) ≈ (J (ε0)+α∆ϵ)2 +Ω2

L − J 2
res, (3.11)

by solving we get the required detuning shift ∆ε∗ = (∆Bz − J (ε0))/α.

4. Perform FID with interleaved ΩL(π/2) pulses, from which we measure ΩH,meas.

5. Adjust detuning again such that J = |∆Bz |. We have

Ω2
H,meas(ε) ≈ (J (ε0)+α∆ϵmeas)2 +Ω2

L − J 2
res, (3.12)

where we have assumed Ω2
L, J 2

res and J(ε0) have not changed. We look for the fluctuation in
detuning by looking at Ω2

H,meas −Ω2
H and find

∆εmeas ≈
Ω2

H,meas −Ω2
H

2J (ε0)α
+∆ε∗, (3.13)

having neglected second order terms in ∆ε. So we shift the detuning of the qubit by the
amount ∆ε∗−∆εmeas.

6. Perform Hadamard with rotation angle calculated based on ΩHad = p
2|∆Bz | by directly

jumping to εHad = ε0 +∆ε∗−∆εmeas .

7. Back to 1.

Examples of Hadamard rotations without feedback

In Fig. 3.12 we compare the quality of Hadamard rotations with feedback [reproduced from
Fig. 3.5(e)] with naive Hadamard rotations without feedback, as explained in Sec. 3.6. In the
absence of feedback, the resulting oscillation curves fluctuate randomly in time, even though the
cycles of qubit control pulses were nominally identical for panels (b, c, d). This is likely due to
the Overhauser gradient drifting over time. (All panels were taken within minutes of each other.)
For example, data in panel (b) and (d) suggests a slight under- and over-rotation relative to the
target rotation angles, while in c we have picked a data set that happens to show approximately the
correct rotation angles. For all nominally identical uncontrolled Hadamard experiments that we
acquired, we observe a quality factor that is much lower compared to the stabilized oscillations in
panel (a).
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Fig. 3.12: Comparing Hadamard rotations with and without real-time stabilization. (a) Measure-
ment of Hadamard rotations with feedback, same data as shown in Fig. 3.5(e). (b-c-d) Additional
measurements of Hadamard rotations without feedback, not shown in Sec. 3.6.

Simultaneous controlled qubits rotations by uncontrolled frequencies

In this section we also tune the top right singlet-triplet qubit, Q4 [cf. 1.3(b)] to simultaneously
perform controlled rotations in both Q3 and Q4. Differently from before, whenever the previously
estimated value of ΩH(L) is available, we set a window prior distribution of span ≈ 2MHz, with a
mean equal to the previously estimated value to reduce estimation errors. In the next Chapter 4,
the window prior will be replaced by a physics-informed model.

ΩL is estimated as in Fig. 3.2(b): for each repetition a singlet pair is initialized in (0,2) and
subsequently detuned deep in the (1,1) region (εL ≈−100mV in Q4) for N = 101 linearly spaced
separation times ti up to 100ns. The result is shown in the top panel Fig. 1.3(a), which shows the
probability distribution P (ΩL) of each repetition for Q3(4) in the left (right) panel.
Again, knowledge of 〈ΩL〉 allows controlled rotations by user-defined target angles as in Fig. 3.2(d),
this time for both qubits. To show this, we task the quantum controller to adjust the separation
times t̃ j in the pulse sequence to rotate each qubit by M = 41 different angles θ j = t̃ j 〈ΩL〉 between
0 and 5π, see Fig. 3.13(b), bottom panel. The controlled rotations are performed only if both
estimated frequencies of the qubits lie in the window [30,70]MHz.

Again, real-time knowledge of 〈ΩL〉 [similarly to 3.13(a)] allows the initial state |S〉 to be rotated
to a state near the equator of the Bloch sphere, before it evolves freely for probing ΩH, this time in
both qubits. This rotation is implemented by a diabatic detuning pulse from (0,2) to εL (diabatic
compared to the interdot tunnel coupling) for a time t̃π/2, corresponding to a rotation of the qubit
around ω̂L by an angle ΩL t̃π/2 = π/2. After evolution for time t j under finite exchange, another
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Fig. 3.13: Simultaneous controlled qubits rotations by uncontrolled frequencies. (a) (top panels)
Probability distribution P (ΩL). Extraction of the expected value 〈ΩL〉 from each row completes ΩL

estimation. (bottom panels) To illustrate the increased coherence of Overhauser gradient-driven
rotations, we task the quantum controller to perform M = 80 evenly spaced θ j rotations. Single-
shot measurements m j are plotted as white/black pixels, and the fraction of singlet outcomes in
each column is shown as a red dot. (b) (top panels) One repetition of the exchange rotation protocol.
The quantum controller estimates ∆Bz,i of qubits i = 1,2, then lets the qubits evolve under an
exchange-based FID simultaneously. Pulses duration t̃π/2,i for qubit initialization and readout use
real-time knowledge of ∆Bz,i . (bottom panels) Each row plots single-shot measurements outcomes
singlet or triplet for both qubits as a function of the exchange-based FID time t , and the fraction of
singlet outcomes p(S) in each column is shown as a dot.
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π/2 rotation around ω̂L rotates the qubit to achieve a high readout contrast in the ST0 basis, as
illustrated on the Bloch spheres in the top panel of Fig. 3.13(b).

We set a window prior distribution of span ≈ 3MHz centered around the previously estimated
value, with N = 101 measurements per repetition. Also, the quantum controller performs exchange-
based FIDs if 25MHz < 〈ΩL, Q3〉 < 40MHz and 30MHz < 〈ΩL, Q4〉 < 45MHz.

We plot in Figure 3.13(b) [bottom panel] the single-shot measurements for 500 repetitions
of this protocol, and the fraction of singlet outcomes as a function of the time t where both
qubits performed exchange-based FID at the same time. The rotation is executed through a
diabatic detuning pulse from εL to εH = −12mV (−50mV) (diabatic compared to the interdot
tunnel coupling) for Q3 (Q4).

In summary, this section presents a protocol where information obtained from tracking estima-
tion enables synchronized angle rotations in both qubits simultaneously, even though the control
frequencies randomly fluctuate in both qubits.
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4

Physics-informed Tracking of Qubit Fluctuations

Environmental fluctuations degrade the performance of solid-state qubits but can in principle be
mitigated by real-time Hamiltonian estimation down to time scales set by the estimation efficiency.
We implement a physics-informed and an adaptive Bayesian estimation strategy and apply them in
real time to a semiconductor spin qubit1. The physics-informed strategy propagates a probability
distribution inside the quantum controller according to the Fokker–Planck equation, appropriate
for describing the effects of nuclear spin diffusion in gallium-arsenide. Evaluating and narrowing
the anticipated distribution by a predetermined qubit probe sequence enables improved dynamical
tracking of the uncontrolled magnetic field gradient within the singlet-triplet qubit. The adaptive
strategy replaces the probe sequence by a small number of qubit probe cycles, with each probe time
conditioned on the previous measurement outcomes, thereby further increasing the estimation
efficiency. The combined real-time estimation strategy efficiently tracks low-frequency nuclear
spin fluctuations in solid-state qubits, and can be applied to other qubit platforms by tailoring the
appropriate update equation to capture their distinct noise sources.

4.1 Introduction

Low-frequency environmental fluctuations cause decoherence in solid-state qubits [149, 208,
209]. Quantum error correction strategies [2] can detect and correct errors but demand an in-
creased number of physical qubits. Conventional noise reduction techniques, such as dynamical
decoupling [210, 211] and active suppression of environmental fluctuations [117, 212, 213], are not
universally effective and may not align with specific experimental goals.

Hamiltonian learning emerges as a promising solution for compensating for uncontrolled
environmental effects and enhancing the qubit quality factor [109, 180, 186, 148, 187, 42, 214]. This
approach leverages modern hardware capabilities to provide real-time feedback, but comes at
the cost of dedicating time to estimate the fluctuating Hamiltonian parameters. Although several
theoretical estimation schemes [197, 215, 151, 198, 199, 216, 217, 218] have been proposed to
boost the estimation efficiency, no experiment has yet demonstrated a physics-informed scheme
within any qubit platform, where understanding of the physical processes driving the fluctuations
is utilized to improve the estimations. Even the experimental adoption of real-time adaptive
Bayesian strategies [164, 219], where measurement parameters are chosen based on the previous

1This Chapter is published in Fabrizio Berritta et al. Physics-informed tracking of qubit fluctuations. 2024. DOI:
10.48550/arXiv.2404.09212, and reused in accordance with the CC BY license.
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measurements, is still missing in gate-defined spin qubits. This work reports the first real-time
physics-informed and adaptive Bayesian estimation of a qubit.

To demonstrate an adaptive and physics-informed estimation protocol, we employ a singlet-
triplet (ST0) qubit in GaAs. In nitrogen-vacancy centers in diamond [220] and semiconductor
spin qubits [51], low-frequency noise from spinful nuclear isotopes decreases qubit performance
through hyperfine interactions. Isotopic purification techniques [221, 222] mitigate this issue in
group IV semiconductors such as silicon and germanium, though it comes with significant effort
and does not remove low-frequency noise originating from other sources. For our demonstration
we choose GaAs as its nuclear noise spectrum is well understood [111, 31]. Our technique involves
programming a commercial quantum controller, powered by an integrated field-programmable
gate array (FPGA), to propagate the probability distribution of the effective nuclear fields on the
dots in real time, using the Fokker–Planck (FP) equation [217, 218]. This enables the dynamic
tracking of the fluctuating nuclear field gradient across the qubit, which is the main source of
decoherence in ST0 qubits in GaAs [111, 31].

The propagation of probability distributions on the quantum controller, here according to
the FP equation, can be replaced by other update equations, e.g., a transition matrix for Markov
processes [223], or machine-learning-based methods for signal prediction [201], the details of
which depend on the specific nature of the qubit system.

Real-time capabilities of quantum controllers can also be used advantageously to choose
optimal measurement parameters within an adaptive estimation sequence (in our case updating
free-induction-decay times on the fly, based on previous measurement outcomes), which we will
analyze separately below.

Our scheme can accomplish Hamiltonian learning for intermittent calibration of circuit pa-
rameters, making it ideal for the recurrent and reliable execution of quantum circuits against the
impact of drift. Since the interleaved estimation and qubit operation take place in the same qubit,
there is an intricate interplay between the correlation time of the fluctuations being estimated,
the efficiency of the estimation procedure, and the required time for coherent operations between
estimations. Optimizing and managing these time scales will be essential when going from single-
qubit devices to multi-qubit devices, making it even more valuable to estimate qubit and noise
correlations times quickly and efficiently.

4.2 Device and Bayesian estimation

We employ the top-gated GaAs double quantum dot (DQD) Q3 and experimental setup described
in Chapter 3. The qubit operates in the (1,1) and (0,2) charge configuration, where the integers
stand for the number of electrons in the left and right dot of the DQD. In the two-electron ST0 basis,
the Hamiltonian can be approximated in the regime of interest as

H(t ) = J (ε)

2
σz + g∗µB∆B(t )

2
σx , (4.1)

where σi represent the Pauli operators, g∗ is the effective g -factor, and µB is the Bohr magneton.
The energy J (ε) characterizes the exchange interaction between the two electrons, which is tunable
via the relative electrical detuning of the dots. By defining ε = 0 at the (1,1)–(0,2) charge-state
degeneracy, the detuning is proportional to the difference in the effective on-site potentials on the
two dots of the singlet-triplet qubit, where negative ε corresponds to the (1,1) ground-state region.
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Fig. 4.1: Qubit implementation and estimation schedule. (a) Exchange coupling J(ε) and Over-
hauser gradient ∆B ∝ h fB (t ) drive rotations of the qubit around two orthogonal axes of the Bloch
sphere, providing universal qubit control if the prevailing Overhauser frequency fB can be esti-
mated sufficiently efficiently. (b) Qubit schedule, alternating between periods Top of quantum
information processing (dashed box), and short periods Test for efficiently learning the fluctuating
environment (gray box).

The field ∆B(t) denotes the z-component of the Overhauser gradient, which is the difference in
effective magnetic fields on the two dots due to the hyperfine interaction of the electrons with
approximately 105–106 of spinful nuclei on each dot [111]. This gradient fluctuates slowly, and our
goal is to efficiently estimate the corresponding Overhauser frequency fB (t ) ≡ g∗µB∆B(t )/h in real
time on the quantum controller, using a physics-informed model with and without adaptive probe
times.

A Bloch-sphere representation of the two contributions to H is sketched in Fig. 4.1(a). The qubit
undergoes manipulation through voltage pulses applied to the plunger gates of the DQD, which
effectively control the magnitude of J (ε). Deep in the (1,1) regime, where J (ε) ≪|h fB |, the qubit is
almost purely driven by the Overhauser gradient, whereas close to ε= 0 typically J (ε)≳ |h fB |.

After manipulation, the qubit is measured by projecting the unknown final spin state onto either
the (1,1) charge state (|T0〉) or the (0,2) charge state (|S〉), by tuning to positive ε. Each single-shot
readout of the DQD charge configuration involves the generation, demodulation, and thresholding
of a few-microsecond-long radio-frequency burst on the quantum controller [42].

The fluctuating frequency fB is assessed on the quantum controller using a Bayesian estimation
approach based on a series of N free-induction-decay experiments with evolution times ti where
i = 1,2, . . . , N [109, 180, 186, 187, 42, 214]. Employing mi to represent the outcome (|S〉 or |T0〉) of
the i -th measurement, the likelihood function P (mi | fB ) is defined as the probability of obtaining
mi given a value of fB ,

P
(
mi | fB

)= 1

2

[
1+mi

(
α+βcos

(
2π fB ti

))]
, (4.2)

where mi takes a value of 1 (−1) if mi = |S〉 (|T0〉), and α and β are parameters accounting for
the measurement error and axis of rotation on the Bloch sphere during a free-induction decay
experiment [109]. In this work we use α = 0.28 and β = 0.45 extracted from a series of separate
free-induction decay (FID) experiments. Applying Bayes’ rule to estimate fB based on the series
of measurements mN , . . .m1, which are assumed to be independent of each other, yields the final
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probability distribution Pfinal
(

fB
)≡ P

(
fB |mN , . . .m1

)
given by

Pfinal
(

fB
)∝ P0

(
fB

) N∏
i=1

[
1+mi

(
α+βcos

(
2π fB ti

))]
, (4.3)

where P0
(

fB
)

is the initial probability distribution assumed for fB before the estimation starts.
Equivalently, the measurement outcome mi updates the Bayesian probability distribution ac-
cording to Pi ( fB ) ∝ Pi−1( fB )P (mi | fB ), up to a normalization factor, where the likelihood function
P (mi | fB ) is given by Eq. (4.2). The final estimate of fB is taken to be the expectation value 〈 fB 〉,
calculated over the final distribution Pfinal

(
fB

)
after all N measurements have been performed.

The estimation protocol can be repeated at user-defined times when the qubit is not in use for
other operations.

Estimating low-frequency fluctuations is useful as outlined in the following example, depicted
in Figure 4.1(b): one starts by estimating the instantaneous magnitude of the slowly fluctuating
field (the Overhauser frequency in our case), resulting in a strongly reduced uncertainty in this
field. Subsequently, that knowledge is used to compensate for the random value of the field
during coherent qubit operation, resulting in an increased qubit quality factor [42]. However,
while operating the qubit for a period Top, the field will again slowly drift, which can be captured
by letting its distribution function evolve over time according to a known noise model [31]. For
the Overhauser gradient, this amounts to a diffusion of its mean towards zero mean field and an
increase of the uncertainty towards a maximum value that depends on the number and coupling
strengths of the involved nuclear spins. Before such a stationary state is reached, the known
dynamics of the probability distribution can be used to improve the feedback or make the next
estimation more efficient. After a user-defined period Top, qubit operations are momentarily halted
and a new real-time estimation is initiated on the quantum controller. Its duration, approximately
Test ∝ N , depends on the desired estimation accuracy as discussed below. A series of estimation
sequences, each resulting in an accurate distribution Pfinal( fB ), is what we refer to as qubit tracking.

4.3 Physics-informed tracking of the qubit frequency

This section describes how such “stroboscopic” physics-informed tracking of an Overhauser field
is implemented on the quantum controller and to what extent it produces higher-quality estimates
than obtainable via more commonly used estimation sequences [109, 42]. The protocol is physics-
informed in the sense that the assumed evolution of the distribution function in between two
estimations is based on a physical model describing the nuclear spin dynamics in GaAs-based
quantum dots.

The FPGA-based estimation of the Overhauser frequency fB is illustrated in Fig. 4.2(a): One
estimation sequence consists of N repetitions of a free-induction decay (FID) probe cycle. In each
probe cycle, a singlet pair is initialized in (0,2) and then detuned deeply into the (1,1) region. At ε≈
−40mV, the quantum controller lets the qubit evolve for a probe time ti = i t0, before thresholding
the resulting qubit state and updating the probability distribution [Pi ( fB ) ∝ Pi−1( fB )P (mi | fB )]. In
this sequence, the probe times ti are predetermined and linearly distributed by the probe time
spacing t0 = 1ns. We assume that N is sufficiently small such that the Overhauser gradient remains
constant during the sequence.

We model the dynamics of the Overhauser gradient as an Ornstein–Uhlenbeck (or drift–
diffusion) process [31], driven by randomly occurring nuclear spin flips. The time dependence of
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Fig. 4.2: Tracking of the Overhauser frequency by anticipating nuclear spin diffusion on the
quantum controller. (a) The physics-informed estimation sequence for fB initializes the prior
distribution P0( fB ) by evolving an older final distribution Pfinal( fB ) (Fokker-Planck update). For
each of the N probe cycles, labeled i , the quantum controller initializes the qubit to the singlet
state, performs a FID for time ti = i t0, then updates the probability distribution Pi ( fB ) based on
the measurement outcome mi . After N probe cycles, the final distribution Pfinal( fB ) is saved. (b)
Simulation of the unknown fluctuating Overhauser gradient (black) and five physics-informed esti-
mation sequences, illustrating the tracking protocol. Every 40ms, a sequence of FID probe cycles

results in a final distribution with expected value f f
B = 〈 fB 〉 and error bar 2σ f (red markers). The

simulation assumes a uniform prior distribution P0( fB ) at t = 0, whereas subsequent priors P0( fB )
are based on the mean µ(t ) and standard deviation σ(t ) propagated by the Fokker-Planck equation
over period Top (shaded in light red). (c) Experimental results for the non-tracking reference pro-
tocol, using P0( fB ) ≡ Puniform( fB ) for each estimation sequence. (d) Experimental results for the
physics-informed tracking protocol, obtained simultaneously with non-tracking estimates in panel
(c). The initial prior P0( fB ) for each column is Pfinal( fB ) from the previous column, propagated in
time according to Equation (4.5). Note the absence of multi-peaked distributions Pfinal( fB ).
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the distribution function P ( fB , t) resulting from such a process is governed by a Fokker–Planck
(FP) equation [224, 217, 218], allowing the prediction of P ( fB ) in periods when the qubit is used for
other operations (Top). Assuming that each final distribution Pfinal( fB ) is sufficiently characterized
by its mean and variance, we instruct the quantum controller to approximate it by a Gaussian

distribution 2. Denoting the mean and variance immediately after estimation (time t = 0) as f f
B

and σ2
f , respectively, the FP equation yields as solution for t > 0

P ( fB , t ) = 1√
2πσ(t )2

exp

{
− [ fB −µ(t )]2

2σ(t )2

}
, (4.4)

where

µ(t ) = f f
B e−Γt , (4.5a)

σ(t )2 = σ2
K +

[
σ2

f −σ2
K

]
e−2Γt . (4.5b)

Here, σK is the steady-state root mean square value of the Overhauser field frequency (typically
around 30−50MHz [31]), while Γ reflects the slow relaxation rate of nuclear spin polarization
(measured to be Γ ≈ 1.1Hz from autocorrelation). Notably, the inverse of Γ, denoted as Tc =
Γ−1 ≈ 0.91s, defines the timescale for the correlation of fluctuations in fB ; this establishes the time
window within which an estimate of fB is expected to remain useful.

In Figure 4.2(b) we numerically simulate a fluctuating Overhauser gradient with Tc = 1s and
σK = 30MHz. The associated unknown frequency fB (black trace) is assumed to be estimated every
Top = 40ms (red markers). The physics-informed evolution of probability distributions (shaded red
areas, adapted from Ref. [218]) captures two properties expected for nuclear spin diffusion, namely
the inclination of the average of the Overhauser gradient to drift back towards zero [Eq. (4.5a)], and
a progressive expansion of the uncertainty in the gradient towards σK [Eq. (4.5b)]. Both processes
take place on a timescale of Tc.

Initially, no knowledge of fB is available, reflected by a uniform prior distribution Puniform( fB )
at t =0 represented by the semi-transparent error bar spanning the entire frequency range of
the simulation (60MHz) 3. A number of FID cycles are performed until the updated probability
distribution has a fitted σ < 2MHz. This estimation sequence is assumed to take only a few

hundred microseconds, i.e. much shorter than Top and Tc, and we only plot the mean f f
B and 95%

confidence interval of the final distribution Pfinal( fB ) (first red marker).
After the first estimation sequence, the Overhauser fields are left to evolve freely for Top. During

this time, the distribution function is assumed to be Gaussian; the time dependence of its mean
and variance is given by Eq. (4.5). The evolution of the 95% confidence interval is indicated by the
red shaded area in Fig. 4.2(b). At the end of Top (t = 40ms) the associated Gaussian distribution
is characterized by µ(Top) and σ(Top), and serves as the initial prior distribution for the next
estimation sequence. Similarly, estimations at t = 80, 120, 160 and 200 ms use as prior the most
recent Gaussian.

If Top is smaller than Tc, the physics-informed P0( fB ) will remain somewhat constrained,
providing a better prior compared to a uniform distribution and potentially requiring fewer FID

2Since we only work with positive frequencies fB , one should be aware that this becomes inaccurate for distributions
that have significant weight close to fB = 0, i.e., that have a variance larger than the square of the mean.

3We choose our prior distribution to be non-zero for positive frequencies only, resulting in a unimodal final distribution.
As the sign of the Overhauser gradient is unknown, the true final distribution would always be symmetric around zero.
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experiments for a more accurate estimate of fB . If Top becomes comparable to or larger than Tc,
prior knowledge about fB becomes irrelevant and is not expected to improve the next estimation.

To experimentally test the benefits of physic-informed priors, we define a non-tracking estima-
tion scheme that always sets the initial distribution P0( fB ) to a uniform distribution Puniform( fB )
between 1MHz and 70MHz with 1MHz resolution. Thus, as in previous works [109, 42], each
estimation sequence does not retain any memory of previous estimations. In parallel to this non-
tracking estimation, we instruct the quantum controller to also generate estimates based on the
physics-informed initialization of P0( fB ), thereby improving the estimation accuracy as quantified
below.

Figure 4.2(c) plots 1,000 final probability distributions of the non-tracking scheme, acquired
over a span of 2.6 s using an N = 31 schedule with Test = 0.6ms and Top = 2ms. Specifically, each
FID probe cycle lasts 20µs, of which 5µs is dedicated to qubit readout, 2.6µs to initialize the qubit
and discharge the bias tee with a zero-averaging pulse, and the remaining time is used to update the
non-tracking and physics-informed distributions Pi ( fB ) on the FPGA. Several estimation sequences
result in a multi-peaked probability distribution, with secondary peaks that randomly jump from
one column to another. In simulations, such “outliers" also appear in the absence of measurement
errors and appear to be a shortcoming of the algorithm, not an artifact of the device or the quantum
controller. The known correlation time of the Overhauser field dynamics makes it improbable
that the sudden jumps of the outliers represent the actual Overhauser field gradient, and similar
jumps in previous work were associated with compromised qubit quality factors (cf. discussion of
Fig. 3.9(b) of Ch. 3).

Figure 4.2(d) shows the physics-informed estimates Pfinal( fB ), acquired concurrently with the
non-tracking estimates in panel (c). Strikingly, multi-peaked probability distributions are absent,
suggesting that the physics-informed model on the quantum controller suppresses unphysical
jumps of the estimated Overhauser gradient (here with Tc = 0.91s and σK = 50MHz). By extracting
the standard deviation from each column in Figure 4.2(d), we find that its average is reduced
relative to the average standard deviation extracted from panel 4.2(c), suggesting an improved
estimation accuracy.

Figure 4.3 compares the performance of the non-tracking and physics-informed estimation
sequences as a function of the number of FID probe cycles, for different choices of Top. Each data
point corresponds to an independent experiment comprising 10,000 repetitions of an estimation
sequence. The plotted uncertainty is defined as the average standard deviation of the final probabil-
ity distribution Pfinal( fB ) of each of the 10,000 estimations. The shaded areas indicate the standard
deviation of the associated 10,000 standard deviations. In our experiment, the true value of the
real field, and thus the actual error in the estimation, is unknown, and therefore we rely on the
uncertainty measure plotted as a reasonable metric. Indeed, low uncertainties at the end of Test

correlate with increased quality factors of controlled Overhauser rotations during Top (see Sec. 4.6).

The uncertainty of the non-tracking estimates in Fig. 4.3(a) does not depend on Top. This is
expected, as the prior distributions P0( fB ) in the non-tracking scheme are always the uniform
distribution Puniform( fB ), with no memory of the previous estimates. In contrast, the uncertainty of
the physics-informed estimates decreases with decreasing Top, for fixed number of measurements
in the estimation sequence. This suggests that a narrower prior yields a more accurate estimate.

Remarkably, with as few as 10 probes the physic-informed estimates for Top = 1ms are more
accurate than non-tracking estimates based on 100 probes (in Fig. 4.3(a) the uncertainties are
approximately 3 MHz and 5 MHz, respectively). With increasing number of probe cycles, the uncer-
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4. PHYSICS-INFORMED TRACKING OF QUBIT FLUCTUATIONS

Fig. 4.3: Efficiency of the non-tracking and physics-informed protocols. (a) Estimation uncer-
tainty as a function of the number of FID probes in the estimation sequence, for the non-tracking
(black) and physics-informed (red) protocols. Symbols denote the average standard deviation of
10,000 〈 fB 〉 values, whereas shaded regions show their standard deviation, for different choices
of operation time. (b) Uncertainty from (a) plotted as a function of the ratio Test/Top, where the
estimation time is Test = N ·20µs. The dash-dotted gray line indicates the resolution limit imposed
by our setup, see main text.

tainty of non-tracking estimates saturates near 5MHz, whereas the physics-informed estimation
uncertainty approaches the limitation imposed by our choice of frequency binning (0.8MHz 4).

The trade-off between “qubit duty cycle" (Top/Test) and estimation accuracy is evident in
Fig. 4.3(b). Here, we replot the uncertainties from (a) as a function of the estimation time Test =
N ·20µs, where N is the number of qubit probes and 20µs is the probe cycle duration. Depending
on the desired Hamiltonian uncertainty, a maximum operation limit Top and a significant qubit
downtime (high Test/Top ratio) for estimation must be tolerated. The optimum choice of N depends
on details of the noise spectrum and the estimation efficiency [218].

One may be tempted to pursue the lowest possible uncertainty while estimating the envi-
ronmental fluctuations, but the operational benefits will depend on details such as the tolerable
estimation uncertainty for a certain application and how long it is expected to survive given a
specific environment. Because achieving lower uncertainties in general requires more qubit down
time for estimation, quantum information processing applications may need to define a tolerated
“error budget”, which translates into a useful operation time Top depending on the correlation time
of the fluctuations Tc and a minimized estimation time Top depending on the efficiency of the
protocol.

So far, we demonstrated an improved Hamiltonian learning protocol that tracks a slowly
fluctuating environmental parameter, by instructing a quantum controller to generate in real time
physics-informed priors. Next, we instruct the controller to adaptively choose the probe times,
thereby reducing the length of the estimation sequences.

4We programmed the frequency resolution on the quantum controller to be 1MHz. The associated minimum standard
deviation of Pfinal( fB ) calculated on the FPGA is approximately 0.8 MHz.
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4.4. Physics-informed adaptive Bayesian tracking of the qubit frequency
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Fig. 4.4: Adaptive Bayesian tracking by real-time choice of qubit probe times. (a) In this adaptive
Bayesian estimation sequence, probe times ti are chosen based on the standard deviation σi−1

of the previous Bayesian distribution. P0( fB ) is initialized based on the FP equation. (b) Adaptive
tracking obtained from short estimation sequences (N = 10) for Top = 1ms. (c) Reconstructed
uncertainty in the distribution function within an estimation sequence (defined in the text) as a
function of the measurement update mi . Squares at the end of the curves correspond to the experi-
mental posterior distributions computed on the quantum controller. (d) Simulated uncertainty
expected at the end of a short estimation sequence (N≤ 10) for different probe time protocols,
including evenly distributed ti (probe time spacing of 1 or 5 ns), adaptive probe times, and random
probe times (see main text). The initial prior distributions are assumed to be determined from the
FP equation.

4.4 Adaptive Bayesian tracking of the qubit frequency

For the purpose of only monitoring fluctuating Hamiltonian parameters without interspersed
qubit operation, non-adaptive Bayesian estimation is straightforward to execute because it does
not require real-time feedback and could even be carried out a posteriori. However, numerical
studies [197, 215, 198, 199, 217, 218] suggest the beneficial use of adaptive estimation sequences in
which the probe times ti are chosen based on previous measurement outcomes, as experimentally
realized in nitrogen-vacancy centers [164, 219].

Previous experiments with gate-defined spin qubits employed non-tracking and non-adaptive
FID-based Bayesian estimation to probe the qubit frequency [109, 42]. In this section, we supple-
ment the generation of physics-informed time-evolved priors by the generation of adaptive probe
times in real time, thereby reducing the number of required probes and showing a path towards

81



4. PHYSICS-INFORMED TRACKING OF QUBIT FLUCTUATIONS

much shorter estimation sequences.
Figure 4.4(a) illustrates the key difference of the adaptive estimation sequence, relative to that in

Fig. 4.2(a): the free-evolution time ti for the i -th FID probe now depends on the previous Bayesian
update as

ti = 1

cσi−1
, (4.6)

whereσi−1 is the standard deviation of the Gaussian-approximated probability distribution Pi−1( fB ),
except σ0, which is the standard deviation of prior P0( fB ) based on the FP equation. The optimal
numerical prefactor c is expected to depend on the experimental setup [199]. Intuitively, this choice
for the free evolution times can be motivated by our desire that two oscillations with frequencies
that differ by ∆ f develop a phase shift of π after time t = 1/(2∆ f ). In other words, Eq. (4.6) maps a
frequency range of width cσi−1/2 to a large phase contrast in the likelihood function.

Implementation of the estimation protocol of Fig. 4.4(a) on the quantum controller yields
reliable estimates for fB from only 10 probes per sequence, as shown in Fig. 4.4(b) for Top = 1ms
and c ≈ 13 5. This example demonstrates the estimation of a slowly fluctuating qubit frequency
within 200 microseconds, which is one order of magnitude shorter and with better accuracy than
previously reported [42]. Here, c ≈ 13 was chosen empirically, and further improvements may be
possible by better choices informed from numerical simulations, see Sec. 4.6.

Outliers appear to be absent both for the physics-informed [Fig. 4.2(c)] and adaptive tracking
[Fig. 4.4(b)], likely for similar reasons, motivating a quantitative comparison based on experimental
data and theoretical insights.

Figure 4.4(c) compares average uncertainties, inferred from experimental data in Fig. 4.6 of
Sec. 4.6 We choose Top = 5ms and perform 10,000 repetitions of three protocols, focusing on N≤30
to test whether short sequences benefit from adaptive probe cycles. The three squares at the
end of the curves show the uncertainties σ (defined as in Fig. 4.3 and computed on the quantum
controller from the posterior distributions Pfinal) for non-tracking (black), physics-informed (red),
and adaptive (blue) estimation sequences. For N = 30, the non-tracking scheme yields an average
σ ≈ 7.3MHz, while the physics-informed scheme yields σ ≈ 3.5MHz. The uncertainty of the
adaptive scheme is similar, though obtained with fewer probes (N = 25).

To investigate how each probe cycle contributes information gain, we analyze how uncertain-
ties evolve within a sequence (additional details can be found in Fig. 4.6 of Sec. 4.6). Specifically,
we reconstruct the Bayesian probability updates Pi ( fB ) from our record of raw single-shot mea-
surement outcomes mi

6. For each i , we plot the standard deviation of Pi ( fB ) (reconstruction),
averaged over all 10,000 repetitions, as well as their standard deviation (shaded areas).

The non-tracking method is clearly outperformed by the physics-informed and adaptive
schemes. This is expected, as both the physics-informed and adaptive protocols use physics-
informed prior distributions. Furthermore, the adaptive scheme has consistently lower uncertainty
than the physics-informed scheme, though only marginally. Finally, we note that the uncertainties
for the non-tracking and physics-informed schemes barely decrease during the first few measure-
ments (i ≲ 5), as shown by the nearly flat curves in this range. In contrast, the adaptive scheme
shows a negative slope already for the first measurement outcomes, indicating information gain
and a narrowing of the probability distribution.

5Due to the numerical precision of the quantum controller and the discreteness of the ti that can be implemented, the
actual ratio between 1/σi−1 and ti varies slightly between FID probe cycles.

6To increase the estimation bandwidth within the FPGA memory constraints, the quantum controller overwrites
Bayesian updates Pi ( fB ) and only records Pfinal( fB ) at the end of each sequence, as well as all N measurement outcomes.
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To explore the ultimate estimation efficiencies that can be expected for our spin-qubit system,
unconstrained by coarse frequency binning and limited memory on the FPGA-powered controller,
we now turn towards simulated Overhauser fluctuations, assumed to follow an Ornstein–Uhlenbeck
process with Tc = 1s and σK = 40MHz, and simulate estimation sequences on a much finer
and larger frequency grid (0 to 150 MHz with 0.25 MHz bin size) than currently possible in our
experimental setup.

Figure 4.4(d) shows the resulting uncertainties and their standard deviations, assuming Top =
5ms, for different distributions of probe times (see Figs. 4.7,4.8 of Sec. 4.6 for further details): In
the sequences with “linear" probe times, ti = i t0, we observe that the choice of the probe time
spacing t0 (shown 1 and 5 ns) has a drastic influence on the resulting accuracy. In the sequences
with “random" probe times, ti is randomly chosen from a uniform distribution between 1ns and
50ns. In the sequences with “adaptive" probe times, ti = 1/(cσi−1), now with c = 6 and without
rounding ti to the temporal granularity of the quantum controller (see Sec. 4.6).

The adaptive-probe-time sequence outperforms the linear sampling approach with t0 = 1ns,
yielding uncertainties that are on average smaller by a factor of ≈ 2.7, and is also superior to t0 = 5ns
and random probe times, resulting in approximately 30% smaller uncertainties for short estimation
sequences (N ≲ 5). We therefore believe that adaptive estimation sequences will become crucial in
applications that only permit a small number of probe cycles.

In summary, the results shown in Fig. 4.4 present the first adaptive Bayesian estimation scheme
implemented in a semiconductor-defined spin qubit.

The real-time capabilities of the quantum controller enable probe times ti to be updated based
on previous measurement outcomes mi−1,mi−2, . . . ,m1, resulting in a small but measurable im-
provement compared to linearly spaced probe times. Our approach is substantiated by numerical
simulations, indicating that high-quality estimates of the qubit frequency achieving only a few
percent error (approximately 3MHz uncertainty with a simulated dynamic range of ≈ 150MHz)
should be possible with fewer than five qubit probe cycles.

4.5 Outlook

We have implemented physics-informed and adaptive estimation sequences that allowed the
efficient tracking of low-frequency fluctuations in a solid-state qubit. A quantum controller esti-
mates in real time the uncontrolled magnetic field fluctuations in a gallium-arsenide singlet-triplet
spin qubit, yielding improved accuracy by temporally evolving a sufficiently recent probability
distribution according to the Fokker-Planck equation. In addition, the adaptive choice of qubit
probe times, based on the standard deviation of the updated probability distribution, allows for
significantly shorter estimation sequences yielding similar or reduced uncertainties. Compared to
the previous experiments [42] in Chapter 3, this work extends the estimation bandwidth from a few
hundred Hz to ≈ 2.5kHz, due a tenfold reduction of the estimation time and a reduced uncertainty.

While our work marks the first real-time adaptive tracking of a semiconductor spin qubit,
determining optimal protocols compatible with constraints of the control hardware and application
requirements remains an open question. We anticipate further progress by research that combines
theoretical and hardware aspects.

Possibly useful modifications of the protocol could relax the assumption of single-shot read-
out [225] or mitigate state preparation and measurement errors by duplication of probe cycles [197,
151]. Probe times can further be optimized by also taking into account the estimated qubit fre-
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Fig. 4.5: Improved qubit quality factor from lower estimation uncertainties. (a) Average measured
singlet–triplet oscillations resulting from averaging over only the best estimates, as a function of
rotation angle and cutoff uncertainty σest,max. (b) The fraction of used estimations as a function of
σest,max. (c) Dots: the averaged oscillations at σest,max = 1.4MHz (red, corresponding to rejecting
97% of the repetitions), and 2.8MHz (black, rejecting 3%), corresponding to the green and orange
vertical dashed lines in (a,b), respectively. Solid lines: Fitted exponentially decaying sinusoidal
oscillations.

quency, not just its uncertainty, and possibly it is advantageous to terminate an estimation se-
quence when reaching an accuracy target, rather than a predetermined length.

Fault-tolerant quantum computing based on quantum error correction will likely require qubits
that are affected by limited amounts of Markovian noise. Therefore, real-time frequency tracking
protocols may become important tools, as they suppress non-Markovian noise [214].

By properly modifying the tracking equation relevant to the specific noise source, this work
offers an efficient, physics-informed, and adaptive Hamiltonian learning protocol for real-time
estimation of low-frequency noise in solid-state qubits.

4.6 Supplementary

Variance of the distribution as a measure of estimation error

The true frequency of the Overhauser field gradient is not known, so to benchmark the different es-
timation protocols we choose as a figure of merit the standard deviation σest of the final probability
distributions resulting from the estimations. Formally, this standard deviation follows from

σ2
est = Var( fB ) ≡∑

n

(
fB [n]−〈 fB 〉

)2Pfinal( fB [n]), (4.7)

where the index n labels the bins of the (discrete) probability distribution stored on the quantum
controller. In this section we demonstrate that lower σest indeed correlates with a better estima-
tion of fB (t), by performing Overhauser-driven controlled rotations of the qubit based on the
information provided by the final probability distributions [42].
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We thus perform a series of N = 3,668 estimations of the Overhauser gradient, spanning a
few seconds of laboratory time. The experiment ends whenever the number of repetitions with
Overhauser-controlled rotations (explained later) reaches 1,000. Due to finite FPGA program
memory, the controlled rotations are executed whenever 20MHz ≤ 〈 fB 〉 ≤ 45MHz. The repetitions
of controlled rotations happen to be executed 1,000 times out of the N = 3,668 repetitions of
estimations because of the chosen frequency range. For each estimation repetition, the quantum
controller initializes the qubit in the singlet state, pulses deep into the (1,1) region, where the
qubit undergoes rotations along σx with the instantaneous frequency fB (t ), and after time τrot the
quantum controller pulses back into the (0,2) region for qubit readout. The quantum controller
repeats this experiment 3,668 times with τrot linearly increasing by 1 ns from τrot = 1ns to τrot =
50ns. From the 50 single-shot outcomes of each estimation repetition, 〈 fB 〉 is estimated.

After each estimation repetition, if 20MHz ≤ 〈 fB 〉 ≤ 45MHz, the quantum controller performs
Overhauser-driven controlled rotations of the qubit by an user-defined unit less target angle
θrot = 2π〈 fB 〉τ̃rot, where 〈 fB 〉 is the expectation value for fB resulting from the estimation performed
just before the cycle of rotation experiments, which is different for each trace, θrot is linearly spaced
between 0 and 5 in 51 points and τ̃rot is computed on-the-fly on the quantum controller. The
controlled rotations consist of the following steps: the quantum controller initializes the qubit
in the singlet state, pulses deep into the (1,1) region, where the qubit undergoes rotations along
σx with the instantaneous frequency fB (t), and after time τ̃rot to rotate the qubit by the wanted
angle θrot, the quantum controller pulses back into the (0,2) region for qubit readout. The time
τ̃rot thus corresponds exactly to the required time to rotate the qubit by the user-defined angle of
rotation θrot, if the frequency was indeed exactly 〈 fB 〉. We then study the average of the 1,000 traces
based on their respective estimation uncertainty σ; the quality factor of the averaged oscillations is
the result of the qubit decoherence time and the average accuracy of the knowledge about fB . We
assume the qubit decoherence time does not change across repetitions and the quality factor is
mostly dependent on the uncertainty on fB .

To show that low-quality estimates play an important role in the loss of oscillation amplitude
we post-process the measured data based on the σest of all repetitions: We introduce the variable
σest,max, and for given σest,max we reject all repetitions with a probability distribution with a cal-
culated variance of σ2

est > σ2
est,max, and we average over the remaining traces. We consider the

controlled rotations of the qubit taken whenever the 20MHz ≤ 〈 fB 〉 ≤ 45MHz (the chosen interval
is limited by the quantum controller program memory). In Fig. 4.5(a,b) we show the result for
10 choices of σest,max, ranging from 1.2MHz to 3.0MHz. Fig. 4.5(a) shows the singlet probability
P (S) of the averaged oscillations as a function of τ and σest,max, and in Fig. 4.5(b) we plot the
corresponding fraction of used data for each σest,max. In Fig. 4.5(c) we focus on two specific choices
for σest,max [1.4MHz (red) and 2.8MHz (black)], that correspond to rejecting 97% and 3% of the
estimations, respectively [see the vertical dashed lines in Fig. 4.5(a,b)]. The dots represent the
averaged oscillations, as shown in Fig. 4.5(a), and the solid curves fitted sinusoidal oscillations with
an exponentially decaying envelope. We thus see a significant improvement in the quality factor of
the oscillations, which suggests that an important part of the observed decay may be associated
with the performance of the estimation scheme. In that sense, σest thus seems to be a valid metric
to benchmark the different protocols when the real field is not known.
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Fig. 4.6: Reconstruction of probability distributions. (a–c) Final probability distribution on the
quantum controller of 1,000 repetitions, using the non-tracking (a), tracking (b), and adaptive
scheme (c). (d–f ) Reconstructed evolution of the distribution during the estimation, for 8 consec-
utive repetitions (top panels) and corresponding reconstructed uncertainty σ during estimation
(bottom panels).

Reconstructing the distribution during estimation [Fig. 4.4(c) of Sec. 4.4]

In Fig. 4.6 we present more detailed data underlying Fig. 4.4(c) in Sec. 4.4. Figure 4.6(a–c) presents
the first 1,000 out of 10,000 repetitions of experimental final posterior distributions Pfinal( fB )
computed on the quantum controller with σK = 40MHz for the estimation methods tracking (a),
tracking (b) (both with a total number of measurements N = 30), and adaptive (c) (with N = 25).
These repetitions serve as the benchmark for comparing the different methods in Fig. 4.4(c) of
Sec. 4.4 and the following. To compare the methods fairly in Fig. 4.4(c) of Sec. 4.4 we exclude
estimation runs where the estimated frequency 〈 fB 〉 is smaller than the minimum measurable
value of ≈ 2.5MHz resulting from discretization in the quantum controller program (such small
〈 fB 〉 cause problems in the adaptive-time scheme, as explained in more detail in Fig. 4.8 below). In
the top row of Fig. 4.6(d–f) we display the reconstructed evolution of the probability distributions
during the estimation procedure for 8 consecutive repetitions, where the ticks at the horizontal
axis mark the end of each estimation. The bottom row shows the corresponding evolution of
the uncertainty σ during the estimations. While the distributions shown in (a–c) have been
computed on the quantum controller, (d–f) show results that were reconstructed from the recorded
measurement outcomes mi (see description below). As in Sec. 4.4, squares represent uncertainties
computed from the distribution in (a), demonstrating good agreement with the reconstructions
most of the time, with a few exceptions. These occasional deviations are likely attributed to
variations in numerical accuracy between the quantum controller and the desktop computer. A
detailed discussion of setup limitations is provided in the next section.
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Method of reconstructing from the measurement outcomes

The reconstruction process involves the analysis of raw data, obtained from experimental mea-
surements by the quantum controller in conjunction with the evolution times ti used, where
i = 1,2. . . N labels measurement updates (shots). Differently from the previous sections, here
we label the repetitions of estimation cycles by n. It follows the evolution times tn,i are loaded
from the quantum controller. On top of this, we use the corresponding thresholded reflectom-
etry measurement. As a result, the matrix representing single-shot measurements mn,i = ±1 is
generated.

Subsequently, the elements of the arrays tn,i and mn,i are employed to update the probability
distribution based on a Bayesian update rule:

Pn,i ( fB , j ) =Nn,i Pn,i−1( fB , j )[1+mn,i (α+βcos
(
2π fB , j tn,i

)
)]/2, (4.8)

where N−1
n,i =

∑
j Pn,i−1( fB , j )[1+mn,i (α+βcos

(
2π fB , j tn,i

)
)]/2 and fB , j is defined on a discrete grid.

At each pair of indices n, i , the first two moments are computed:

〈( fB )k〉n,i =
∑

j
Pn,i ( fB , j )( fB , j )k , (4.9)

which can be linked to the expectation value (µn,i ) and the standard deviation (σn,i ) of the field:

µn,i = 〈 fB 〉n,i , σn,i =
√
〈 f 2

B 〉n,i −〈 fB 〉2
n,i . (4.10)

The quantity σn,i serves as a measure of field uncertainty, which is used as a figure of merit in
the study. For visual representation, reconstructed values of σn,i are depicted in Fig. 4.6 d-f) as a
function of i for eight consecutive realizations n = 641,642. . .648.

In the first repetition (n = 1), the initial distribution P1,0( fB ) is flat. In subsequent repetitions
(n > 1), either a flat distribution (non-adaptive schemes) or a Gaussian distribution with parameters
computed from the previous n −1 are used (adaptive schemes). For the adaptive prior methods,
we use the update equation:

P ′
n+1,0( fB , j ) = exp

(
− ( fB , j −µn+1,0[Top])2

2σ2
n+1,0[Top]

)
, (4.11)

with the normalization:

Pn+1,0( fB j ) = P ′
n+1,0( fB , j )/

∑
j ′

P ′
n+1,0( fB , j ′ ), (4.12)

where the expectation value and uncertainty are propagated from the last measurement of the
previous estimation sequence, using Fokker-Planck update:

µn+1,0[Top] =µn,N e−Top/Tc , σ2
n+1,0[Top] =σ2

K + (
σ2

n,N −σ2
K

)
e−2Top/Tc . (4.13)

Top serves as the separation time between two consecutive repetitions n and n + 1. In the re-
construction we use parameters that mimic experimental setup, i.e. we set α = 0.28, β = 0.45,
σK = 40MHz, Tc ≈ 1s and use the frequency grid fB , j = 1,2. . .40MHz.

87



4. PHYSICS-INFORMED TRACKING OF QUBIT FLUCTUATIONS

Fig. 4.7: Optimal choice of c in ti = 1/(cσi−1). Numerically simulated uncertainty as a function
of c and number of measurements N = 5 (green), N = 10 (blue), N = 25 (yellow) for the adaptive
estimation method. To reflect experimental scenario we set α = 0.28, β = 0.45, σK = 40MHz,
Tc ≈ 1s and us the frequency grid f j = 1,2. . .40MHz. The estimation protocol consists of 1,000
realizations, and is averaged over 100 independent numerical experiments.

Numerical simulation of estimations

We support our results by the numerical study, that aims at simulating relevant features of esti-
mation setup. For each realization of the algorithm we generate a random trajectory of the field
fB (t), modeled as the Ornstein-Uhlenbeck process with σK = 40Hz and Tc ≈ 1s. We use qua-
sistatic approximation, i.e. assume that the frequency is constant during single evolution time
f (r,i )

B and varies only between the consecutive FID experiments. For each repetition r and each
measurement i , we use the value of simulated field to compute probability of measuring singlet

Pr,i ( f (r,i )
B ) = 1+ (α+βcos

(
2π f (r,i )

B t
)
]/2, where the evolution time t is selected based on the method

used. With this distribution, we use a random number generator to draw the single-shot outcomes
mr,i , which we then feed to the algorithm described in the previous section.

Determine optimal adaptive-time parameter c

Firstly, we use the simulation to find the optimal value of parameter c = 1/(tiσi−1), which minimizes
estimation uncertainty, given the constraints of the quantum controller. To achieve that, we kept
the simulation parameters from experimental and reconstruction protocols, the details of which
are described in the previous section. We sweep the value of c in the numerical simulation of the
adaptive method that uses N = 5, 10, 25 measurements (colors) and find that c ≈ 5−10 typically
gives the smallest uncertainties [see Fig. 4.7].

As our simulations do not include other sources of qubit dephasing, this range of c may not
be the best choice in the experiment. In principle, as σi−1 decreases, longer sensing times are
more efficient in further decreasing the frequency uncertainty. In practice, however, the range of
useful sensing times is limited by the qubit decoherence time, on the order of 100ns in our system.
Consequently, for experiments with N = 25, we empirically tuned the parameter c to c ≈ 13, which
seems to limit the allowed sensing time to a reasonable range.
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Benchmarking the different estimation methods [Fig. 4.4(d) of Sec. 4.4]

In our experimental setup, the estimations encountered limitations stemming from readout quality
and quantum controller memory constraints. We envision that advancements in both aspects
could significantly enhance the speed and robustness of the adaptive-time scheme (see also next
section). To explore the potential, we conduct a benchmark of the estimation schemes outlined in
Sec. 4.4, comparing them against two additional schemes incorporating adaptive priors and using
distinct evolution time schedules: randomly picked times ti and linearly spaced ti but with a larger
time step. We thus simulate a series of 4,000 estimations spaced by Top = 5ms, spanning 20s of
“lab” time, using different estimation schemes. In our estimations, the true Overhauser gradient
follows an Ornstein–Uhlenbeck process with σK = 40MHz and Tc ≈ 1s. We further assume for
simplicity ideal conditions, amounting to:

• ideal readout (α= 0, β= 1);

• a broader frequency grid [0,150]MHz instead of (0,40]MHz with 0.25MHz bin size;

• the possibility to use non-integer sensing times (ti = i t0 with t0 = 1 ns).

We compute the average uncertainty at the end of 4,000 estimation cycles, separated by Top = 5ms.
For statistical purpose we additionally average this quantity over 100 independent realizations of
the field and measurement outcomes. Obtained in this way average uncertainty, as a function of
number of measurements in each estimation N , is shown in Fig. 4.4(d).

To shed more light on the performance of different estimation schemes as well as the correlation
between uncertainty and the error we concentrate on a single realization of the field. Fig. 4.8(a)
shows the resulting final distributions as a function of the lab time for N = 5, where all plots
are based on the same simulated realization of fB ,sim(t), whose trajectory is shown in Fig. 4.8(b).
The statistics of the uncertainties in the final distributions Pfinal( fB ) (their mean and standard
deviation) are plotted in Fig. 4.8(c) as a function of measurement update, where value i = 0
corresponds to average initial distribution while i = 5 is the average final one. We again used the
uncertainties in Pfinal( fB ) as a measure for the error in the estimate, in order to make comparison to
the experimental results fair. However, in the simulations we of course know the true instantaneous
value fB ,sim(t ) of the frequency, and we can thus also assess the actual error in the estimation, which
we define as |〈 fB 〉− fB ,sim| and plot its median in Fig. 4.8(d) for the same collection of estimations
as used in Fig. 4.8(c).

These findings show first of all that the non-tracking scheme [black in (a)] is relatively ineffective
and, among the methods using a physics-informed prior distribution, the adaptive-time scheme
performs best. Furthermore, we see that the uncertainties σ plotted in panel (c), which we use in
the previous sections as a measure for the estimation error, indeed correlate with the median of
actual errors, shown in (d) (as also investigated above). We note that the overall error can be as
low as 2.5 MHz, with N = 5, which would translate to total estimation time Test = 5 ·20µs = 100µs,
where 20µs is the typical duration of a single free-induction decay experiment.

Physics-informed adaptive Bayesian tracking: setup limitations

In this section we discuss the limitations of our setup. We show experimental results where the
adaptive-time scheme deviates from the expected behavior, affecting the statistics of the perfor-
mance of the scheme. We explain how we accounted for them when presenting the performance
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Fig. 4.8: Numerical simulation of estimation methods. (a) Simulated posterior distributions
Pfinal( fB ) for different estimation methods, given the simulated frequency shown in (b). “FP prior"
means that the prior distribution P0( fB ) at the beginning of each repetition follows from the Fokker–
Planck equation, as described in Sec. 4.3. (b) Simulated frequency of the Overhauser magnetic
field gradient. (c) Statistics of the uncertainties in the final distributions of the protocols shown
in (a) (except the inefficient non-tracking protocol), as a function of the measurement updates
i = 0,1,2,3,4,5 in estimation cycle [same plot as Fig. 4.4(c)]. (d) Median of the absolute error of the
protocols shown in (a) (except non-tracking) as a function of i = 0,1,2,3,4,5 [same legend as in
panel (c)].

of the scheme in Sec. 4.4, and we also discuss potential underlying causes and propose possible
solutions for future work.

Bias towards lower frequencies

Fig. 4.9(a) shows the final distributions of a series of 10,000 adaptive-time estimations (approx-
imately 30s of lab time) where we used c = 6, N = 40, and Top = 20ms. We immediately notice
that there seems to be an unexpectedly large number of distributions that peak sharply in the first
bin (the frequency range 0–1MHz). We corroborate this observation in Fig. 4.9(b), which shows a
two-dimensional histogram of the final mean and standard deviation {〈 fB 〉,σ f } of all estimations
shown in (a). We see that there is indeed a disproportionate number of estimated frequencies
taking the lowest value of 〈 fB 〉 ≈ 0.5MHz, all having an extremely narrow final distribution. We
consider these estimations to be anomalies caused by the limitations of our setup, and thus filtered
them out before performing the benchmarking presented in Sec 4.4. Since we thus reject a number
of estimations with very small associated uncertainty, our comparison of the adaptive-time scheme
to other methods in Fig. 4.4(c) can be seen as a worst-case benchmark for the experimentally
implemented adaptive-time scheme.

To investigate the cause of this behavior, we zoom in on a range of repetitions with a significant
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Fig. 4.9: Bias of the adaptive-time estimation scheme at low frequencies. (a) An example of
a complete adaptive-time estimation trace across 10,000 repetitions (≈ 30s of laboratory time),
with N = 40 and Top = 20ms. (b) Histogram of the means and standard deviations {〈 fB 〉,σ f } of all
repetitions in (a). (c) Zoom in on repetitions 6,000–6,700 from (a). (d) Single-shot measurement
outcomes used for the estimations during the repetitions shown in (c). (e) Sensing times used for
all single-shot measurement across the different repetitions.

number of anomalous estimations, shown in Fig. 4.9(c), and we plot the corresponding single-
shot measurement outcomes mi [Fig. 4.9(d)] and sensing times ti [Fig. 4.9(e)] used during each
estimation. This allows us to make two observations: (i) The ranges where the estimated frequency
is small correspond to white “stripes" of singlet-biased data in Fig. 4.9(d), see, e.g., the repetitions in
the interval [6400,6600]. (ii) Inside these ranges, the sensing times ti , shown in Fig. 4.9(e), increase
much faster than elsewhere; eventually it reaches the maximum sensing time of 200ns allowed by
the quantum controller, after which the time is reset to the user-defined value of 1ns. Below we
will discuss several mechanisms we identified that could play a role in this behavior, and we give
an outlook on possible ways to mitigate these issues.

Qubit dephasing. We recall that the sensing time is determined by the posterior distribution
variance at each step as ti = 1/cσi−1, where c ≈ 13 was used in the experiments. This in fact helps
the estimation being attracted to small 〈 fB 〉 and σ f during the estimation cycle in the following
way: Small posterior uncertainties σi lead to longer separation times, which at some point become
comparable with the qubit decoherence time T2, on the order of ≈ 100ns. When ti ≳ T2 there is
no information left in the measurement outcomes and the probabilities for measuring mi =±1
become independent of ti . Since the scheme we use does not include a finite dephasing in the
likelihood function, the absence of oscillations at larger times is in fact processed as correct
information and can be treated as evidence for vanishing fB (depending on the saturation value of
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4. PHYSICS-INFORMED TRACKING OF QUBIT FLUCTUATIONS

the singlet probability), yielding (i) an estimate with both very small 〈 fB 〉 and σ f and (ii) a relatively
quick divergence of ti during the estimation, as indeed seen in Fig. 4.9(e).

A straightforward improvement in the estimation scheme would be to modify Eq. (4.3) by
adding a phenomenological dephasing time T2 as follows

Pfinal
(

fB
)∝ P0

(
fB

) N∏
i=1

[
1+mi

(
α+βe−ti /T2 cos

(
2π fB ti

))]
. (4.14)

The exponential factor will decrease the weight of the information gained at longer separation
times, thus taking into account the decoherence of the qubit.

Residual exchange coupling. The relatively high number of data points in the lowest frequency
bin could also be partly attributed to a non-vanishing field along the z-axis of the qubit Bloch
sphere at the sensing point deep in the (1,1) region, due to residual exchange coupling. When
the magnitude of the Overhauser field gradient becomes comparable to or smaller than the in-
stantaneous exchange splitting, i.e., h fB ≲ J(ε), then the free-induction decay precession on the
Bloch sphere will no longer let the qubit evolve approximately along a meridian from the north
pole (singlet) to the south pole (triplet) and back, but rather only partly reach the triplet state. This
will thus bias the measurement outcomes towards more singlets in this low-Overhauser-field limit.
Since the likelihood function we use for the Bayesian update assumes the rotations to be along the
x-axis and thus does not account for residual exchange coupling, the bias towards more measured
singlets results in a bias towards believing that the qubit does not rotate at all, thus contributing to
confidence that the frequency is zero. As the Overhauser field becomes larger this biasing effect
becomes less and less pronounced.

The residual exchange may be reduced by reducing the tunnel coupling between the two dots
during FID. Alternatively, the estimation protocol could be modified by considering the residual
exchange when the qubit frequency is estimated.

Gaussian approximation. The way we convert each final posterior distribution to a Gaussian, as
input for the physics-informed evolution of the distribution, can contribute to artificial narrowing
of the distribution for small 〈 fB 〉. Indeed, an underlying probability distribution for fB that has
significant weight at both positive and negative frequencies will yield a distribution for | fB | on the
quantum controller that is in fact narrowed, up to a factor 2. The σ f extracted as input for the FP
evolution can thus be smaller than the actual uncertainty in the underlying distribution, and this
artificial reduction will contribute to the bias toward small {〈 fB 〉,σ f } as described above.

For future experiments, one could try to derive an improved version of the FP equation, that
takes the indiscernibility of the sign of fB into account, not producing artificial narrowing of σ
for small frequencies. However, one can argue that for any practical purpose (e.g., using the
Overhauser gradient as a coherent control axis) the regime of very small fB should be avoided
anyway, and the pragmatic way to mitigate this issue is thus simply to discard estimations that
yield an 〈 fB 〉 below some user-defined threshold. We note that this “sign problem” also plays a
role in the numerical simulations we performed, in contrast to the qubit dephasing and residual
exchange coupling discussed above, which we set to be absent in the simulations.

Numerical errors on the quantum controller hardware

Finally, we note that in some cases σi becomes sufficiently small or large to cause errors on
the FPGA-powered quantum controller, because of its available numerical accuracy, leading to
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Fig. 4.10: Examples of potential numerical errors. (a) (left) Reconstructed (by post processing)
Bayesian update of a distribution that becomes multi modal. (right) The corresponding experi-
mental posterior as computed on the quantum controller. (b) Sensing time and standard deviation
for every single-shot outcome in the estimation run. (c) (left) Reconstructed Bayesian update of a
distribution that remains almost unchanged during estimation. (right) The corresponding final
posterior as computed on the quantum controller. (d) sensing time and standard deviation for
every single-shot outcome in the estimation run.

presumably incorrect estimations. In Figure 4.10 we show two examples of unexpected behavior
during an estimation that we attribute to an error on the quantum controller. In (a,c) we show in the
right panel the final distributions of the two estimations as stored on the quantum controller and
in the left panel we present the reconstructed evolution of the distribution during the estimation,
as explained above. In (b,d) we show the corresponding series of ti and σi during the estimation,
resulting from the reconstruction. In dataset A [Fig 4.10(a,b)] we see that the sensing time ti

suddenly jumps to a large value (≈ 200ns) and then drops back again to a very small value (≈ 1ns).
This results in a posterior that has many peaks, due to the rapid oscillation of the likelihood function
P

(
mi | fB

)
when ti is large. When waiting 20ms between estimations, such upward jumps in ti over

100ns happen for 30% of estimations. In dataset B [Fig 4.10(c,d)] the sensing time [Fig 4.10(d)]
almost does not change at all from 1ns so that the final posterior distribution is almost equal to
the initial prior distribution. This seems to happen much less frequently, with only about 1% of
estimations (with 20ms waiting time between estimations) having values of ti that are all smaller
than 5ns. We note that in both datasets the final distributions end up having relatively large
variances. When the waiting time in between estimations is 1ms or 5ms, the only instances where
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ti suddenly jumps up is when the standard deviation is very low, and there are no estimations
where ti are all smaller than 5ns.

It is only in the Top = 20ms case where the starting standard deviation at each estimation is
above 8.9MHz, indicating that numerical overflows are the likely cause. Indeed, overflow errors
in the quantum controller are expected to happen for variances outside the range of standard
deviations 1/(8

p
10)MHz ≈ 40kHz <σ<p

80MHz ≈ 8.9MHz. However, the adaptive separation
times produced during overflow errors are not retrievable through post-processing, preventing a
definitive attribution of these errors to the aforementioned overflow issues. Nevertheless, for the
two examples depicted in the figures above, we observe that the reconstructed standard deviations
(which are in good agreement with the final posterior standard deviations found by the quantum
controller) are greater than the 8.94MHz threshold capable of causing the quantum controller to
overflow.

A possible solution for future works when evaluating the standard deviation on the FPGA is to
count the number of zeros in the mantissa of the fixed point number [limited to the range [−8,8)]
and choose a different conversion factor accordingly, at the expense of added program complexity.
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5

Qubit Stabilization by Binary Search Hamiltonian Tracking

Previously we have shown how to efficiently estimate low-frequency noise stemming from nuclear
spins and compensate the qubit for it. In this Chapter, we stabilize a flux-tunable transmon
qubit from noise in magnetic flux. Different from the nuclear spin noise with characteristic 1/ f 2

spectrum [31], flux noise is mostly 1/ f [148] and requires higher feedback bandwidth. We task the
quantum controller to perform an adaptive frequency binary search by Bayesian estimation in real
time. The qubit Hamiltonian tracking improves the coherence time by 49% and the single-qubit
error rate is reduced from (7.6±0.3)×10−4 to (6.9±0.2)×10−4. By gate set tomography, we show
that the protocol also reduces the non-Markovian noise in the system. The frequency binary search
can be used in any resonantly-driven qubit platform and it provides a useful calibration subroutine
during the execution of general quantum circuits.

5.1 Introduction

Flux-tunable transmon qubits are designed to be mostly insensitive to charge noise, and an ex-
ternally applied magnetic field can tune their frequency. However, the effective magnetic field is
sensitive to random flux fluctuations known as flux noise. We refer the reader to Ref. [226] for a
review on superconducting qubits. Flux-tunable transmon qubits are typically operated at bias
points (sweet spots), which are first-order insensitive to small changes in flux. Real-time frequency
estimation and stabilization can enable the operation of these qubits far from the sweet spots, to
reduce frequency crowding in large qubit arrays or coupling to a two-level system (TLS). Moreover,
online qubit frequency estimation enables compensating for drifts of the qubit frequency even in
the presence of a TLS [227].

The frequency binary search presented in this Chapter is an adaption of Ref. [151], where
the “optimal" solution of the probing time τ is the one that partitions the prior distribution in an
equal left and right part, performing a type of “ binary search". In Ref. [151], the lack of control
of the qubit drive frequency means the binary search breaks down at sufficiently small frequency
fluctuations x. Instead, in a transmon qubit, we can tune the drive frequency, which allows us to
implement the binary search for all values of x in a quantum controller in real time.

5.2 Device and frequency binary search by Bayesian estimation

Similarly to the previous Chapters, the estimation of low-frequency fluctuations is useful as shown
in Figure 5.1(a): one starts by estimating the qubit frequency in the quasistatic approximation.

95



5. QUBIT STABILIZATION BY BINARY SEARCH HAMILTONIAN TRACKING

Fig. 5.1: Qubit implementation and frequency binary search. (a) Qubit schedule, alternating
between periods of quantum information processing (dashed box), and periods for efficiently
learning the fluctuating environment (gray box). (b) Illustration of the frequency binary search
algorithm. At each step, the probing time and detuned frequency are chosen so that the distribution
moves left or right, while reducing the standard deviation by a fixed fraction.

Afterwards, the qubit frequency is updated accordingly resulting in an increased qubit fidelity [148].
We use a superconducting qubit array from Ref. [228] and tune up one of its flux-tunable

transmon qubits in a dilution refrigerator with a mixing-chamber plate below 30mK. A commercial
FPGA-powered quantum controller [146] applies high-frequency waveforms to the lines for qubit
control and single-shot readout. A Yokogawa GS200 provides the DC flux bias source through a
room temperature bias-tee (see Fig. 5.5 in Sec. 5.7 for details on the experimental setup).

The transmon has an asymmetric superconducting quantum interference device loop, and
microwave Z and XY control lines [see (a)] of drive frequency fd. The qubit is dispersively coupled
to a coplanar waveguide resonator for its state readout.

To increase the qubit sensitivity to magnetic flux noise, the transmon is tuned at quarter flux
Φext = πΦ0/4, where Φ0 = h/(2e) is the superconducting magnetic flux quantum and Φext is the
applied magnetic flux through the flux line Z . The qubit has a transition frequency fq ≈ 3.78GHz
and we model its Hamiltonian in a rotating frame, within the rotating wave approximation by [226]:

H(t ) =−∆ f

2
σz + u(t )

2
σx . (5.1)

Here σi are the Pauli matrices, and the prefactor ∆ f = fd− fq is the detuned frequency between
fq and the chosen rotating frame fd. The control u(t ) is the envelope of a drive pulse with carrier
frequency fd.

For the frequency binary search (FBS), we assume the probability of measuring an outcome
m ∈ {−1,1} corresponding to the states |0〉 and |1〉 is given by the following model:

P (m|x,∆ f ,τ) = 1

2

(
1+m[α+βe−τ/T cos(2π(∆ f +x)τ)]

)
, (5.2)
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5.2. Device and frequency binary search by Bayesian estimation

where we can experimentally control the set detuned frequency ∆ f = fd − fq and the evolution
time of the Ramsey τ. The parameters α=−0.02 and β= 0.6 are coefficients capturing initializa-
tion/readout errors, while T describes a coherence time that limits how long measurements remain
useful. We set T ≈ 10µs based on the Hahn echo value T H

2 ≈ 12µs fit with exponential envelope.
The qubit fluctuation x is what we want to estimate. In the quasistatic approximation, we want

to find the optimal sequence of τ’s to estimate x in as few measurements as possible. By using
Bayesian estimation we know that:

P (x|mn+1, . . . ,m1,∆ fn+1,τn+1) = P (x|mn , ...,m1,∆ fn ,τn)P (mn+1|x,∆ fn+1,τn+1), (5.3)

with the assumption that P (x|mn+1, . . . ,m1,∆ fn+1,τn+1) is always Gaussian. Since this is not
exactly the case, one is forced to fit P (x|mn+1, . . . ,m1,∆ fn+1,τn+1) to a Gaussian, with the idea that
a Gaussian should remain quite close to the actual distribution. The “optimal” solution presented
by Ref. [151] indicates that the best τ is one that partitions the prior distribution P (x) in an equal
left and right part, performing the binary search.

Two steps are needed to implement the binary search in the quantum controller. The first step
is to determine optimal experiment parameters τ and ∆ f based on the prior distribution. Then,
one must fit the resulting posterior P (x|mn+1, . . . ,m1,∆ fn+1,τn+1) when using these parameters to
a Gaussian. This can be done using equations implemented on the quantum controller.

The prior distribution, dashed line in Fig. 5.2(b), in the Gaussian approximation is given by

P (x) = 1√
2πσ2

n

exp

{
−

(
x −µnp

2πσn

)2}
. (5.4)

where µn is our guess for what x is with uncertainty σn . The probing time is given by:

τn+1 =
√

16π2σ2
n +1/T 2 −1/T

8πσ2
n

, (5.5)

and in order to divide the prior at the center by the likelihood functions, the detuned frequency
must satisfy

∆ fn+1 = 4

τn+1
−µn . (5.6)

After measuring m =±1, the posterior distribution is obtained by multiplying the initial prior by the
likelihood function related to the measurement outcome [cf. panel (b)]. In the end, the posterior is
fit to a Gaussian by calculating its mean and variance:

µn+1 =µn − 2πmn+1βσ
2
nτe−τn+1/T−2π2σ2

nτ
2
n+1

1+mn+1α
, (5.7)

σ2
n+1 =σ2

n − 4π2βσ4
nτ

2e−2τn+1/T−4π2σ2
nτ

2
n+1

(1+mn+1α)2 . (5.8)

Based on these equations we get a new prior with updated values µn+1 and σn+1, and this scheme
is repeated N times to obtain a sufficiently narrow distribution. In the following, we optimize the
number of single-shot measurements N based on the specific experiment. In the next section we
test the FBS by performing Ramsey experiments to verify that it finds the correct qubit frequency.
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5.3 Improvement of the qubit coherence

We implement qubit control through rapid FBS of x and demonstrate extended coherence of the
flux-tunable transmon qubit.

The qubit quasistatic fluctuation x is estimated from the Ramsey pulse sequence shown in
Fig. 5.2(a): for each repetition the Bloch vector is positioned on the equator using an Xπ/2-pulse.
After precessing for a time τi , a virtual Z(∆ fi ) gate [229] is performed, which corresponds to adding
a phase offset φ= 2π∆ fiτi to the following Xπ/2-pulse. The latter pulse projects the Bloch vector
back onto the z-axis, followed by the measurement. After each measurement, the qubit state si ,
ground (si = 0) or excited (si = 1), is assigned by thresholding.

The Bayesian probability distribution of x is updated according to the two outcomes si and
si−1, as we do not initialize the qubit to the ground state at the beginning of the repetition to
reduce the qubit cycle period (thus higher feedback bandwidth). It follows that in Eq. (5.2) mi =
2 XOR (si , si−1)−1. For instance, if in the previous measurement the qubit was in the ground state
si−1 = 0 and now it is in the excited state (si = 1) then mi = +1. This is a good approximation
as the qubit cycle period (a few µs) is short compared to the measured T1 ≈ 80µs at quarter flux.
The readout length is 1.44µs and the cooldown time of the resonator is about 2µs (to deplete the
residual photons after the readout pulse), the average Ramsey evolution time is ≈ 2.7µs.

The quantum controller is programmed to start with µ0 = 0 and σ0 = 30kHz. After each
measurement, the quantum controller updates the Bayesian probability according to the outcome
mi which narrows the prior distribution. For illustrative purposes, we plot in the bottom panel of
Fig. 5.2(a) the evolution of P (x|mn+1, . . . ,m1,∆ fn+1,τn+1) from Eq. (5.3) as a function of the number
of measurements N . Each black dot is the estimated x on the quantum controller and the shaded
area shows the 68% credible interval for x. In the middle panel we plot the associated probability
distribution P (x|mn+1, . . . ,m1,∆ fn+1,τn+1) of each repetition after N = 8 measurements (down-
sampled to ≈ 8ms for clarity).

After the estimation of x, the quantum controller updates the qubit frequency fq and it performs
a Ramsey sequence of evolution time τ j and set detuned frequency ∆ f j = 1MHz, see Fig. 5.2(b).
Below the pulse sequence, we plot the single-shot measurements p j of this protocol as white/black
pixels, spanning about 24s.

After the Ramsey sequence with feedback, the quantum controller resets fq to the offline-
calibrated value, and it performs the same pulse sequence by linearly stepping τk at set ∆ fk =
1MHz, see Fig. 5.2(c). To show the increased coherence of the qubit, we plot the average of all
Ramsey sequences. The decays are fit with Gaussian envelopes (solid line), yielding T ∗

2 ≈ 3.73µs
without feedback and T ∗

2 ≈ 5.57µs with feedback, resulting in a 49% improvement.
Overall, the results presented in this section show how the FBS can efficiently find and stabilize

the qubit frequency.

5.4 Improvement of the qubit fidelity

In this section we show improvement of the qubit fidelity by the FBS protocol by single-qubit
randomized benchmarking (RB) [230].

The pulse sequence is shown in Fig. 5.3(a): the quantum controller resets the qubit frequency
fq and it performs the FBS with N = 15 measurements, starting with µ0 = 0 andσ0 = 200kHz. At the
end of the estimation, fq is updated and an RB sequence of depth Ls is performed. An interleaved
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Fig. 5.2: Suppressed dephasing of a qubit in a feedback-controlled rotating frame. One loop
(solid arrows) represents one repetition of the protocol. (a) For each repetition, the quantum
controller estimates x by N = 8 Ramsey cycles of adaptive probe times ti and detuned frequency
∆ fi computed in real time. The quantum controller updates the frequency binary search (FBS)
distribution after each measurement, as shown in the bottom panel for one representative repeti-
tion. The shaded area shows the 68% confidence interval computed on the quantum controller.
Middle panel: probability distribution P (x|m8, . . . ,m1,∆ f8,τ8) after completion of each repetition.
(b) For each repetition the quantum controller updates the qubit frequency fq, using its real-time
knowledge of x. To illustrate the increased coherence, we task the quantum controller to perform
a Ramsey cycle of set ∆ f j = 1MHz. The FBS estimation and evenly spaced Ramsey cycles are
repeated M = 50 times. Single-shot measurements p j are plotted as white/black pixels, and the
fraction of flipped outcomes in each column is shown as a blue dot. (c) To test the feedback, the
quantum controller resets fq to the offline-calibrated value and performs M = 50 evenly spaced
Ramsey cycles of set ∆ fk = 1MHz. Single-shot measurements qk are plotted as white/black pixels,
and the fraction of flipped outcomes in each column is shown as a red dot. Comparing (b) to (c),
the coherence time improves by ≈ 49% with feedback.
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Fig. 5.3: Randomized benchmarking. (a) A randomized benchmarking sequence of length Ls

combined with the FBS feedback (with N = 15 probing cycles). (b) Randomized benchmarking
is repeated 44 times with the feedback (blue dots) and without (red dots). The native gate errors
are extracted from the fit to the data, which consists of 10,000 realizations of 30 random Clifford
sequences with and without the feedback. The error bars show the 68% confidence interval for the
fitted gate error. Dashed lines are the averaged gate infidelities.

RB measurement without feedback follows by resetting the qubit frequency to the offline-calibrated
value. The maximum circuit depth Lmax = 2,300 and the measurement is averaged 10,000 times. We
implement DRAG (derivative reduction by adiabatic gate) for our 20ns pulses to suppress leakage
errors [226].

Similarly to the previous section, the qubit is not initialized to the ground state at the beginning
of the qubit cycle: the quantum controller keeps track of whether the state is different or not
compared to the previous measurement.

Every 1,000 times averages, the threshold that classifies the state is updated online in the
quantum controller by taking the average of 10,000 single-shot measurements after performing an
Xπ/2-pulse to the qubit.

The quantum controller performs the RB sequence for 6 hours, yielding a native gate infidelity
of (7.6±0.3)×10−4 without feedback and (6.9±0.2)×10−4 with feedback [dashed lines in Fig. 5.3(b)].
The infidelities are higher than the T1 limit [231] approximated by tgate/(3T1) ≈ 8×10−5, given
tgate ≈ 20ns and T1 ≈ 80µs at quarter flux. The feedback protocol always performs better than
without, and with less spread around the mean value as a result of the stabilization. Some of the
drifts of the infidelity remain correlated, and we tentatively attribute it to remaining low-frequency
fluctuations not corrected by the FBS or other factors (e.g. changes in T1).

We highlight the RB has been performed at quarter flux, far from the sweet spot to make the
qubit more sensitive to qubit fluctuations. The improved fidelities of single-qubit gates by feedback
by interleaved RB are presented in Sec. 5.7, Fig. 5.8.
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5.5. Reduction of non-Markovian noise

The implemented feedback scheme demonstrates improvement of the qubit control. In the
next section, we further characterize low-frequency drifts by gate set tomography.

5.5 Reduction of non-Markovian noise

Quantum error correction schemes assume Markovian noise [232], thus the effects of non-Markovian
noise must be mitigated for fault tolerance.

We implement gate set tomography (GST) [233] using the pyGSTi [234] software package to
show the improved stability of the qubit by the FBS, similar to what was implemented in Ref. [214]
with a silicon spin qubit. The pulse sequence implemented on the quantum controller is shown in
Fig. 5.4(a). The FBS requires N = 6 measurements per sequence with feedback, the initial µ0 = 0
and σ0 = 30kHz. Each repetition is repeated 100 times for each of the 616 sequences constructed
for GST.

As before, the qubit is not initialized to the ground state at the beginning of the qubit cycle for
higher feedback bandwidth.

Gate set tomography assumes a Markovian gate set, or equivalently stationary noises for error
prediction. It follows that GST does not fit well measurements in the presence of non-Markovian
noise. In principle, the amount of non-Markovian noise is described by the goodness-of-fit [233],
for which a sufficiently Markovian noise would satisfy

k −
p

2k < 2∆ logLs < k +
p

2k, (5.9)

where logLs is the log-likelihood ratio between the predicted and observed value, and k is the
number of independent measurement outcomes of a single circuit. If the observed data is well
fitted by the model, 2∆ logLs = 2logLmax,s −2logLs is expected to follow the χ2

k distribution with a

mean k and standard deviation
p

2k. The theoretical upper bound of the GST model is provided by
logLmax,s.

Figure 5.4(b) shows a reduction of non-Markovian noise with feedback. The non-Markovian
noise shows up as the red squares, which have values 2∆ logLs outside the range of Eq. (5.9) with a
confidence level of 95%. To quantify the reduction of non-Markovian noise, the quantum controller
repeats the GST experiment 30 times spanning a laboratory time of 40 minutes. In Fig. 5.4(c) we
plot as a function of the maximum length the average total amount of 2∆ logL =∑

s 2∆ logLs. While
for maximum lengths of 1 and 2 there is no clear improvement, the latter is evident for longer
sequences.

The GST protocol yields an Xπ/2-pulse infidelity of (2.6±0.3)×10−2 with and without feedback,
and for the Yπ/2-pulse (1.6±0.3)×10−2 with and without feedback. These values are two orders
of magnitude larger than what is reported by RB. This discrepancy may be explained by GST’s
ability to identify non-Markovian noise and that non-Markovian effects dominate the Markovian
stochastic noise in the system [232].

Drifts in the qubit frequency causes time-varying coherent errors in the gates. Randomized
benchmarking is in principle insensitive to coherent errors [235]. Gate set tomography is sensitive
to non-Markovian noise, but it misclassifies the slow drift as stochastic noise. It follows that GST
overestimates stochastic noise, whereas RB underestimates the total noise.

In summary, even though the goodness-of-fit overestimates the actual degree of non-Markovian
noise, the model violations suggest that the feedback protocol is likely to mitigate the effects of
non-Markovian processes on the qubit.
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Fig. 5.4: Gate set tomography and model violation. (a) A gate set tomography (GST) sequence
combined with the FBS feedback (with N = 6 probing cycles). (b) Model violation plot without (left)
and with (right) FBS feedback. The red marks reveal detection of model violation at a confidence
level of more than 95% and the gray boxes indicate statistical fluctuations. (c) The FBS feedback
decreases the total amount of the log-likelihood ratios 2∆ logL (see main text) at maximum lengths
of 4, 8, and 16, extracted from 30 GST runs. Error bars show the 68% confidence interval.

5.6 Outlook

We have introduced an adaptive frequency binary search algorithm to track low-frequency fluctua-
tions in a resonantly-driven qubit efficiently. The algorithm has been implemented in a quantum
controller to estimate in real time the flux noise in a transmon qubit, by adaptively choosing the
frequency of the XY pulses and the duration of the probing evolution times. This work marks
the first implementation of a flexible Bayesian approach for real-time frequency tracking in a
superconducting qubit. Furthermore, we show by GST that the algorithm reduces the amount
of non-Markovian noise in the system. Quantum error correction approaches rely on Markovian
noise, but real-time frequency tracking protocols can suppress non-Markovian noise [214] to bring
qubits to a fault-tolerant regime.

While the feedback bandwidth is limited by readout and resonator cooldown time, higher
bandwidth could be obtained by adding a Purcell filter [226] while protecting the qubit from
relaxing into its environment. The use of feedback approaches, as described in this Chapter, may
favor using symmetric junctions to increase the frequency range of the qubit, without worrying
about increased sensitivity to flux noise.

Possible modification of the protocol may involve the addition of a physics-informed prior [43]
that considers 1/ f noise, which has proven to require higher feedback bandwidth than nuclear
spin noise. Also, the online calibration of single-qubit gates is a possible direction with available
hardware, for single-qubit corrections in two-qubit gates [236] by actual (not virtual) Z gates.

Beyond superconducting qubits, our protocol efficiently calibrates solid-state qubits manipu-
lated by resonant pulses. This work represents a significant advancement in quantum control by
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implementing a Bayesian adaptive technique to stabilize in real time the qubit frequency with a
small number of measurements.

5.7 Supplementary

Experimental setup

The measurements are performed in a Bluefors XLD-600 dilution refrigerator with a base tempera-
ture of 20mK and the setup is shown in Fig. 5.5. The Quantum Machines OPX+ and Octave are used
for the XY control of the qubit and readout signal. Each drive pulse is 28ns long, with a cosine rise
and fall envelope of 5ns each. (Except for the randomized benchmarking and gate set tomography
experiments, where the pulses are 20ns long and calibrated by DRAG.)

The OPX+ includes real-time classical processing at the core of quantum control with fast
analog feedback programmed in QUA software [146]. The OPX+ and Octave are frequency-locked
by a Quantum Machines OPT (not shown). The microwave readout tone, approximately 7.08GHz,
is filtered and attenuated at room temperature by passive components. The readout tone is at-
tenuated in the cryostat to remove excess thermal photons from higher-temperature stages, and
low-pass filtered at the mixing chamber. The device is shielded magnetically with a superconduct-
ing can. The transmitted signal from the feedline goes through a circulator placed after the sample
to remove all reflected noise of the Josephson traveling wave parametric amplifier (JTWPA) and
dump it in a 50Ω terminator (not shown). We preamplify the readout signal at base temperature
using a Holzworth HS9000 Synthesizer.

To prevent noise from higher-temperature stages from reaching the JTWPA and the sample,
two microwave isolators are placed after the JTWPA. A high-electron mobility transistor amplifier
thermally anchored at the 3K stage further amplifies the readout signal. At room temperature,
the readout line is again amplified by an amplifier. A Yokogawa GS200 provides the DC bias flux
through a bias-tee terminated by 50Ω from the AC side, as we perform virtual Z gates in this work.

Qubit stabilization over six hours

We perform the protocol explained in Fig. 5.2 for hours as shown for the interleaved measurements
in Fig. 5.7(a). In the left (right) panel the feedback is turned off (on) for over 6 hours. By taking the
average (not shown) along laboratory time, we find a dephasing time T ∗

2 ≈ 4.2µs without feedback
and T ∗

2 ≈ 5.2µs with feedback.
Figure 5.7(b) shows the values of ∆ f obtained from Ramsey measurements with feedback off

(red curve) and on (blue curve). The feedback significantly reduces the fluctuation of ∆ f .

Interleaved randomized benchmarking

We perform interleaved randomized benchmarking (RB) [237] with and without feedback. The
protocol consists of interleaving the gate C of interest with random gates from the Clifford sequence.
A final gate is performed to make the total sequence equal to the identity operation. In Fig. 5.8 we
plot the fraction of not-flipped state p(no flip) as a function of the number of Clifford gates in a
random sequence, terminated by a Clifford gate that would in principle bring the qubit back to the
initial state. For each gate, 30 random sequences are generated and they are averaged 1,000 times.
We find a Xπ/2-pulse gate infidelity improvement from (5.75±0.04)×10−4 to (5.47±0.04)×10−4,
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Fig. 5.5: See next page for caption.
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Fig. 5.6: Experimental setup BF2 (previous page). The cryostat is a Bluefors XLD-600 dilution
refrigerator with a base temperature lower than 30 mK. A Quantum Machines OPX+ and Octave are
used for the XY drive pulses and readout. The setup includes a Yokogawa GS200 for DC flux biasing.

Fig. 5.7: Qubit frequency stabilization over 6 hours. (a) Ramsey experiment repeated for 6 hours
without (left) and with (right) feedback by the frequency binary search. With the feedback, the
qubit frequency is locked during the whole duration of the experiment. (b) Time dependence of
the measured frequency detuning extracted from Ramsey measurements in (a). The red trace is
taken with a fixed drive frequency fd, and the blue trace is taken with a feedback-controlled fd.

and for the Yπ/2-pulse from (5.26±0.04)×10−4 to (5.04±0.04)×10−4. The interleaved RB infidelities
are in the same order of magnitude as the standard RB shown in Fig. 5.3. For each gate, feedback
shows a similar improvement.
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Fig. 5.8: Interleaved randomized benchmarking with and without frequency binary search. (a)
Sequence infidelities for interleaved randomized benchmarking without frequency estimation by
FBS. Traces are offset by 0.1 for clarity. Interleaved sequences are annotated with corresponding
single-qubit gates and extracted natural gate infidelities. (b) Interleaved with (a) using frequency
estimation by FBS. For all gates, the infidelity is slightly lower with feedback by a few 10−5.
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Conclusion and Outlook

Real-time Hamiltonian learning and feedback control can improve the performance of qubits
affected by environmental fluctuations. In the first part of this work, we have presented a protocol
for optimizing the control of a solid-state qubit in real time, which has effectively enhanced the
qubit performance even in the presence of uncontrollably fluctuating Hamiltonian parameters.

In particular, we have employed an FPGA-powered quantum controller for dynamic, real-time
baseband waveform generation and qubit manipulation. Combining this approach with real-
time Hamiltonian Bayesian estimation, we have demonstrated the stabilization of a singlet-triplet
qubit in GaAs. Our protocol has enabled real-time estimation of the Overhauser field gradient
between the two electrons, allowing controlled Overhauser-driven rotations without the need
for micromagnets or nuclear polarization protocols. In other words, the protocol has enabled
noise-driven coherent rotations. Additionally, by estimating the exchange interaction between the
electrons, we have performed a Hadamard gate, and extended its coherence by compensating for
fluctuations in both rotation axes of the qubit.

In the second part of this work, we have implemented an online physics-informed estimation
strategy. Specifically, we have programmed the quantum controller to propagate a probability
distribution according to the Fokker–Planck equation, and adaptively generate qubit probe times
that maximized the resulting estimation accuracy. The physics-informed protocol has yielded
significantly higher-quality qubit tracking than obtainable via established estimation schemes.
Remarkably, we have demonstrated a 10-fold increase in estimation speed and increased accuracy
compared to previous schemes. The fast and efficient physics-informed Hamiltonian learning
protocol readily applies to any spin qubit platforms affected by nuclear spin noise, e.g. gate-
defined quantum dots, relaxing the effort in isotopic purification, and nitrogen-vacancy centers in
diamonds.

In the last part, we have shown an adaptive frequency binary search algorithm by Bayesian
estimation in real time, implemented in a flux-tunable transmon qubit. The qubit Hamiltonian
tracking protocol has improved the coherence time by 49%, and the single-qubit error rate has
been reduced from (7.6±0.3)×10−4 to (6.9±0.2)×10−4. By gate set tomography, we have shown
that the scheme also reduces the non-Markovian noise in the system. The frequency binary search
can be used in any resonantly-driven qubit platform, and it provides a useful calibration subroutine
during the execution of general quantum circuits. Also, this experiment has demonstrated for the
first time that real time Bayesian techniques can improve the stabilization of a qubit frequency with
characteristic 1/ f noise (here dominated by magnetic flux noise), which requires higher bandwidth
than the 1/ f 2 noise spectrum characteristic of nuclear spins.
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6. CONCLUSION AND OUTLOOK

Still, at the current stage it is unclear what the future FPGA resources and limitations will be for
operating a multi-qubit experiment. We speculate that a large overhead on classical computing
and classical FPGA-based quantum control is a valid path forward, as these are relatively easy
to engineer. Offloading technological developments from scaling of qubit hardware to scaling
of classical control hardware is an exciting research direction. In this view, this Thesis provides
valuable insights into the synergy between quantum control, quantum computation, and computer
science.
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A

Bloch Sphere, Single-qubit Gates, Decoherence

Bloch sphere

The Bloch sphere is a geometrical representation of the state of a two-dimensional system, e.g.,
a qubit. We follow the introduction of Ref. [226]. Figure A.1 shows a Bloch sphere with a Bloch
vector which represents the state

∣∣ψ〉 =α |0〉+β |1〉 (with α and β complex numbers). The Hilbert
space of the qubit is mapped to a sphere of unit length, with antipodal points (north-south poles)
corresponding to the orthogonal state |0〉 and |1〉. Here

∣∣ψ〉 is a pure quantum state: this means
|α|2+|β|2 = 1, or in words the vector connects the center of the sphere to a point on its surface. The
longitudinal axis is the Z -axis and it represents the qubit quantization axis for the states |0〉 and |1〉,
in the qubit eigenbasis. The x-y plane instead is the transverse plane with transverse axes X and Y .
The unit Bloch vector a⃗ = (sinθcosϕ, sinθ sinϕ,cosθ) in a Cartesian coordinate system, and it is
described using the polar angle 0 ≤ θ ≤π and the azimuthal angle 0 ≤ϕ< 2π, as shown in Fig. A.1.
Therefore, we can equivalently represent the quantum state by the angles θ and ϕ:

∣∣ψ〉 =α |0〉+β |1〉 = cos

(
θ

2

)
|0〉+e iϕ sin

(
θ

2

)
|1〉 . (A.1)

In the laboratory frame, a Bloch vector precesses around the Z -axis at the qubit frequency |E1 −
E0|/ℏ.

Fig. A.1: Bloch sphere representation. Bloch sphere representation of the quantum state
∣∣ψ〉 =

cos
(
θ
2

)
|0〉+ e iϕ sin

(
θ
2

)
|1〉. The qubit quantization axis – the Z axis – corresponds to σz terms in

the qubit Hamiltonian. The X -Y plane corresponds to σx and σy terms in the qubit Hamiltonian.
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A. BLOCH SPHERE, SINGLE-QUBIT GATES, DECOHERENCE

The density matrix ρ = ∣∣ψ〉〈
ψ

∣∣ for a pure state
∣∣ψ〉 can be described as

ρ = 1

2
(I + a⃗ · σ⃗) = 1

2

(
1+cosθ e−iϕ sinθ
e iϕ sinθ 1+ sinθ

)
(A.2a)

=
(

cos2 θ
2 e−iϕ cos θ

2 sin θ
2

e iϕ cos θ
2 sin θ

2 sin2 θ
2

)
(A.2b)

=
( |α|2 αβ∗
α∗β |β|2

)
(A.2c)

given I is the identity matrix, and σ⃗= [σx ,σy ,σz ] is the vector of Pauli matrices. When a⃗ is a
unit vector, ρ describes a pure state ψ and Tr(ρ2) = 1. We mention that the Bloch sphere can also
represent the so-called mixed states, for which |a⃗| < 1; in this case, the Bloch vector connects the
center of the Bloch sphere to points inside the unit sphere, and 0 ≤ Tr(ρ2) < 1, where Tr is the trace.
To sum up, the surface of the unit sphere describes pure states, whereas its interior describes mixed
states [15].

The guidelines for quantum computation, known as the “DiVincenzo criteria" in the literature,
can be stated as follows [238, 239]:

1. The elementary units of information, the qubits, must be stored in a scalable quantum
register. A qubit is a quantum two-level system with orthogonal basis states |0〉 and |1〉.

2. The qubits can be prepared in a known state, e.g. |00. . .0〉, where i -th "0" refers to the i -th

3. The quantum system must remain coherent for times longer than the duration of elementary
logic gates because decoherence causes computational errors.

4. While keeping coherence, a high-fidelity gate set (single-qubit and two-qubit gates) must be
available.

5. It should be possible to readout a sufficiently large part of the quantum register at the end of
the computation.

Single-qubit gates

In this manuscript we have used spin-operators S⃗ that are in general represented as Pauli operators,
similarly to Ref. [51]. Here we use the notation of Pauli operators, in terms of the Pauli matrices

σx =
(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

for the qubit states |0〉 and |1〉. Single-qubit operations are then generated by the Pauli operators

Rn⃗(θ) = e−i n⃗·σθ/2. (A.3)

For instance the unitary Rn⃗(π), i.e. a π-pulse, applies −i n⃗ ·σ, which means if n⃗ is along x, y or z, it is
a Pauli operator with an overall phase (we recall a Pauli-operators applies ±1 to the two eigenstates
of the qubit in the corresponding basis). Some of the single-qubit gates are summarized in Fig. A.2,
including the Hadamard gate that performs a π rotation about an axis diagonal in the X –Z plane.
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Gate Matrix representation Bloch sphere

X gate: rotates the qubit
state by π radians (180°) 
about the X-axis

0 1

1 0( (
X

Y

Z

Y gate: rotates the qubit
state by π radians (180°) 
about the Y-axis

0 -i

i 0( (
X

Y

Z

180°

180°

Z gate: rotates the qubit
state by π radians (180°) 
about the Z-axis

1 0

0 -1( (
X

Y

Z
180°

X
Y

Z

I identity-gate: 
no rotation is performed

1 0

0 1( (
0 1

Hadamard gate: rotates 
the qubit state by π 
radians (180°) about an 
axis diagonal in the X-Z
plane

1 1

1 -1( (2
1

X
Y

Z
180°

Fig. A.2: Single-qubit gates. For each gate, the name, a short description, matrix representation,
and Bloch sphere representation are provided. Matrices are defined in the basis spanned by the
state vectors |0〉 ≡ (1,0)T and |1〉 ≡ (0,1)T. Adapted from Ref. [226].

Relaxation, decoherence, dephasing

As quantum devices are sensitive to changes in their environment, they can easily lose their
intended quantum properties, a phenomenon known as decoherence. Different decoherence
sources exist in semiconductor spin qubits [51], with terms borrowed from the NMR and ESR
community. A relaxation process nondegenerate spin states exchange energy with the environment
(e.g. via phonons or photons), with characteristic time T1. In pure dephasing, the phase of the qubits
is changed by random elastic (energy-conserving) processes (T2). In inhomogeneous dephasing,
the qubit’s phase is steady for long periods, however it is not well synchronized with itself in a later
time, a clock or another qubit (T ∗

2 ).
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B

Exchange Interaction

Exchange interaction is a fundamental physical property of spin qubits, and due to the broad use
of this term, this section aims to describe what is meant by exchange in the spin qubit community.
In the following the main steps are adapted from Ref. [51]. Exchange origins from Fermi statistics,
Coulomb repulsion, and electron tunneling. We introduce the single-particle basis functions
φm (⃗r )χσ, where m denotes the spatial orbital, σ=↑,↓ is the electron spin, and r⃗ the position. For
instance, we show in Fig. B.1(a) the real part of the one-electron wavefunctions φm (⃗r )χσ of a single
QD [approximated by a parabolic potential V (x)], where the first excited state |e〉 is separated
from

∣∣g〉 by the orbital energy Eorb, typically on the order of a few meV. Each dashed gray line has
two-fold degeneracy σ=↑,↓, without externally applied magnetic fields. The exchange is described
in more detail next to understand what happens if a second electron is added to the same QD.

(a)

Position x

En
er

gy

Position x

Singlet (S=0) Triplet (S=1)

J

V(x) ...

Eorb Eadd

(b)

2

|g

|e

Fig. B.1: Low-energy spectrum of a one- and two-electron QD with spin degree of freedom (in the
absence of an external magnetic field) (a) Confining potential of a quantum dot approximated by
the parabolic potential of a harmonic oscillator as a function of the position x. The different curves
are the real part of the wavefunctions solution of the 1D quantum harmonic oscillator problem,
plotted at their corresponding eigenenergies. For the following discussion, only the first two orbital
levels are considered, the ground state

∣∣g〉 and the excited state |e〉. Dashed gray lines represent
two-fold degenerate spin states. (b) For two electrons, considering the spin degree of freedom,
but still in the absence of an applied magnetic field, the spin component of the wavefunction
can be singlet (with total spin S = 0) or triplet (S = 1). The singlet state is the ground state, with
additional energy Eadd compared to the single electron case. The second state in energy is the
triplet, where also the excited orbital |e〉 participates in the wavefunction. Its energy is lower than
the independent electron approximation because of the exchange interaction 2J . The separation
in energy J is what is commonly called the (kinetic) exchange energy in the spin-qubit community.
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B. EXCHANGE INTERACTION

The Pauli exclusion principle states that the multiparticle wavefunction Ψσ1σ2... (⃗r1, r⃗2, . . .) must
be antisymmetric given the N electrons 1,2, . . . , N . We can obtain a basis set for antisymmetrized
many-particle states using the Slater determinant. Any fermionic wavefunction can thus be written
as a linear combination of Slater determinants. We assume we have N electrons in states (m1,
σ1). . . (mN , σN ). We write the antisymmetrized many-particle wavefunction as

Ψm1σ1,m2σ2,...mNσN (⃗r1, r⃗2, . . . , r⃗N ) = 1p
N

∣∣∣∣∣∣∣∣∣∣
φm1 (⃗r1)χσ1 φm2 (⃗r1)χσ2 . . . φmN (⃗r1)χσN

φm1 (⃗r2)χσ1 φm2 (⃗r2)χσ2 . . . φmN (⃗r2)χσN

...
...

. . .
...

φm1 (⃗rN )χσ1 φm2 (⃗rN )χσ2 . . . φmN (⃗rN )χσN

∣∣∣∣∣∣∣∣∣∣
. (B.1)

For instance, focusing on two electrons, their wavefunction is

Ψm1σ1,m2σ2 (⃗r1, r⃗2) = φm1 (⃗r1)χσ1φm2 (⃗r2)χσ2 −φm2 (⃗r1)χσ2φm1 (⃗r2)χσ1p
2

. (B.2)

After swapping the two electrons, the wavefunction satisfiesΨm1σ1,m2σ2 (⃗r2, r⃗1) =−Ψm1σ1,m2σ2 (⃗r1, r⃗2).
Within the second quantization formalism, we define the anticommuting annihilation (creation)
operator cmσ (c†

mσ) which annihilates (adds) an electron in the orbital state φm (⃗r ) and spin state σ.
Then, the same state described by Eq. (B.2) can be represented as∣∣Ψm1σ1,m2σ2〉 = c†

m1σ1
c†

m2σ2
|vac〉 , (B.3)

where the vacuum state with no electrons is |vac〉. Thus, rewriting the EMA Hamiltonian of Eq. (1.5)
in this notation yields

H=∑
σ

∑
mn

Tmnc†
mσcnσ+ 1

2

∑
σ1σ2

∑
mnℓp

Vmnℓp c†
mσ1

c†
nσ2

cpσ2 clσ1 , (B.4)

where the single-particle kinetic and electrostatic potential energy integral is

Tmn =
∫

d 3r⃗ φ∗
m (⃗r )

[
−ℏ2

2
∇· (β ·∇)+U (⃗r )

]
φn (⃗r ). (B.5)

In the previous equation it has been introduced β= (m−1
x ,m−1

y ,m−1
z ) to describe the inverse

effective masses. The effect of the electrostatic potential, due to the voltages applied to the gates
and built-in electric fields, is captured by U (⃗r ). The Coulomb integral is given by

Vmnℓp =
∫

d 3r⃗1d 3r⃗2φ
∗
m (⃗r1)φ∗

n (⃗r2)
e2

4πϵr ϵ0 |⃗r1 − r⃗2|
φℓ (⃗r2)φp (⃗r1), (B.6)

having introduced the semiconductor relative permittivity ϵr and the vacuum permittivity ϵ0. For
simplicity, image charges from metal gates are neglected. We recall that the spatial wavefunction
must be symmetric (antisymmetric) under particle exchange, given the spin state is singlet (triplet).
It is worth noticing that electrons in the singlet states can occupy the same orbital, whereas in
triplets the electrons must reside in different orbitals. Anyway, singlet states are allowed to have
electrons in different orbitals, as we discuss below.

To describe direct exchange, one may consider two different orbitals 1 and 2 of the same QD
with high spatial overlap. Then the Coulomb integral of Eq. (B.6) can be split into a direct Coulomb
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term K, when m ̸= n, m = p, and n = ℓ, e.g. V1221, and a direct exchange term J when m = n and
ℓ= p, e.g. V1122. The consequence is that given a pair of two electrons, the energy of the triplet
states (spin component symmetric, orbital component antisymmetric) is K−J /2, whereas for the
singlet state (spin component antisymmetric, orbital component symmetric) is K+3J /2. Overall,
the singlet state energy is higher than the triplet states one by 2J (no magnetic field is considered.)

Here we summarize the result for two electrons in a QD. The higher energy of the singlet state
compared to the triplet state, when both electrons have different orbitals in both spin states, is
shown in Fig. B.1(b) [notice the three triplet states are degenerate in the absence of magnetic
fields]. They are separated by the energy 2J . In the spin qubit community, it is defined as (kinetic)
exchange1 the singlet-triplet splitting of the lowest two states J = ET −ES, where ET is the energy of
the triplet state shown in (b), and ES is the energy of the singlet state where both electrons occupy
the lowest orbital state. As the triplet has one electron each in its ground and excited orbital state,
then the exchange J > 0, and for the contribution of the direct Coulomb exchange interaction
2J mentioned above, in a two-electron QD2 J < Eorb. Spin qubits leverage the kinetic exchange
interaction, caused by the Pauli exclusion principle on the Tmn and K spin-independent terms.

1In atomic physics or chemistry the “exchange energy" is what here has been introduced as the Coulomb exchange
integral J , which describes the interaction between singlet and triplet states with the same set of orbitals. In spin qubits
the orbital content is disregarded [51].

2It can be shown that any two-electron system has a singlet ground state in the absence of magnetic fields [57, Chapter
32].
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C

Experimental Setup Characterization

DC Pin-out

Fig. C.1 shows the pin-out convention used in this manuscript. On top of the cryostat two turrets -
A and B - are installed for the five DC looms, numbered starting from the top of each turret. The
Weinreb amplifier is powered outside the cryostat by a BNC cable that goes to Fischer 4 and 11 of
loom 3B. Inside the refrigerator, the amplifier is powered by a voltage-ground twisted pair.
To check for leakage between different DC lines, all the channels on the breakout box have been

126

51 27

1 26

27 51

131

4152

41

131

52

OMNETICS 51-WAY 
NANO -D MALE

OMNETICS 51-WAY 
NANO-D FEMALE

25-WAY 
CINCH MALE

25-WAY 
CINCH FEMALE

24-WAY 
FISCHER - POLARITY A 

24-WAY 
FISCHER - POLARITY Z 

Fig. C.1: Pin-out numbering convention for Nano-D, cinch and Fischer ports.

grounded except one connected to the BUS line. Then, the resistance between the BUS line and the
ground common to the instrument and the cryostat has been measured with the Keysight 34465A,
expecting its overload in the absence of a shortage. Channels 23 and 24 of breakout box B (DC
loom 1B) were shorted to each other (we observed a leakage resistance of about 200Ω), it was fixed
by replacing one of the DC looms with a nominally identical one that was characterized as well.
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C. EXPERIMENTAL SETUP CHARACTERIZATION

Breakout Box A
QBox [1..24]

Fischer 1A
24-way

RT - MC Cinch 1A MC - coldfinger
Omnetics

Nano-D 51-way
1 1 twin-twisted

constantan
1 copper 1

2 2 14 copper 2
3 3 twin-twisted

constantan
2 copper 3

4 4 15 copper 4
5 5 twin-twisted

constantan
3 copper 5

6 6 16 copper 6
7 7 twin-twisted

constantan
4 copper 7

8 8 17 copper 8
9 9 twin-twisted

constantan
5 copper 9

10 10 18 copper 10
11 11 twin-twisted

constantan
6 copper 11

12 12 19 copper 12
13 13 twin-twisted

constantan
7 copper 13

14 14 20 copper 14
15 15 twin-twisted

constantan
8 copper 15

16 16 21 copper 16
17 17 twin-twisted

constantan
9 copper 17

18 18 22 copper 18
19 19 twin-twisted

constantan
10 copper 19

20 20 23 copper 20
21 21 twin-twisted

constantan
11 copper 21

22 22 24 copper 22
23 23 twin-twisted

constantan
12 copper 23

24 24 25 copper 24
open 13 open 25, 26

Table C.1: DC pin-out from Nano-D connector A to QDevil QBox (Breakout box A), channels [1..24].
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Breakout Box A
QBox [25..48]

Fischer 2A
24-way

RT - MC Cinch 2A MC - coldfinger
Omnectics

Nano-D 51-way
25 1 twin-twisted

constantan
1 copper 27

26 2 14 copper 28
27 3 twin-twisted

constantan
2 copper 29

28 4 15 copper 30
29 5 twin-twisted

constantan
3 copper 31

30 6 16 copper 32
31 7 twin-twisted

constantan
4 copper 33

32 8 17 copper 34
33 9 twin-twisted

constantan
5 copper 35

34 10 18 copper 36
35 11 twin-twisted

constantan
6 copper 37

36 12 19 copper 38
37 13 twin-twisted

constantan
7 copper 39

38 14 20 copper 40
39 15 twin-twisted

constantan
8 copper 41

40 16 21 copper 42
41 17 twin-twisted

constantan
9 copper 43

42 18 22 copper 44
43 19 twin-twisted

constantan
10 copper 45

44 20 23 copper 46
45 21 twin-twisted

constantan
11 copper 47

46 22 24 copper 48
47 23 twin-twisted

constantan
12 copper 49

48 24 25 copper 50
open 13 open 51

Table C.2: DC pin-out from Nano-D connector A to QDevil QBox (Breakout box A), channels
[25..48].
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C. EXPERIMENTAL SETUP CHARACTERIZATION

Breakout Box B
[1..24]

Fischer 1B
24-way

RT - MC Cinch 1B MC - coldfinger
Omnectics

Nano-D 51-way
1 1 1 copper 1
2 2

twin-twisted
constantan 14 copper 2

3 3 2 copper 3
4 4

twin-twisted
constantan 15 copper 4

5 5 3 copper 5
6 6

twin-twisted
constantan 16 copper 6

7 7 4 copper 7
8 8

twin-twisted
constantan 17 copper 8

9 9 5 copper 9
10 10

twin-twisted
constantan 18 copper 10

11 11 6 copper 11
12 12

twin-twisted
constantan 19 copper 12

13 13 7 copper 13
14 14

twin-twisted
constantan 20 copper 14

15 15 8 copper 15
16 16

twin-twisted
constantan 21 copper 16

17 17 9 copper 17
18 18

twin-twisted
constantan 22 copper 18

19 19 10 copper 19
20 20

twin-twisted
constantan 23 copper 20

21 21 11 copper 21
22 22

twin-twisted
constantan 24 copper 22

23 23 12 copper 23
24 24

twin-twisted
constantan 25 copper 24

open 13 open 25, 26

Table C.3: DC pin-out from Nano-D connector B to Breakout box B, channels [1..24].
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Breakout Box B
[27..50]

Fischer 2B
24-way

RT - MC Cinch 2B MC - coldfinger
Omnectics

Nano-D 51-way
27 1 twin-twisted

constantan
1 copper 27

28 2 14 copper 28
29 3 twin-twisted

constantan
2 copper 29

30 4 15 copper 30
31 5 twin-twisted

constantan
3 copper 31

32 6 16 copper 32
33 7 twin-twisted

constantan
4 copper 33

34 8 17 copper 34
35 9 twin-twisted

constantan
5 copper 35

36 10 18 copper 36
37 11 twin-twisted

constantan
6 copper 37

38 12 19 copper 38
38 13 twin-twisted

constantan
7 copper 39

40 14 20 copper 40
41 15 twin-twisted

constantan
8 copper 41

42 16 21 copper 42
43 17 twin-twisted

constantan
9 copper 43

44 18 22 copper 44
45 19 twin-twisted

constantan
10 copper 45

46 20 23 copper 46
47 21 twin-twisted

constantan
11 copper 47

48 22 24 copper 48
49 23 twin-twisted

constantan
12 copper 49

50 24 25 copper 50
open 13 open 51

Table C.4: DC pin-out from Nano-D connector B to Breakout box B, channels [27..50].

Simulated cut-off frequencies of QBoard I

Here we simulate on LTspice V. 17.1.4 the cut-off frequencies of the PCB presented in Chapter 2. In
Figure C.2(a), we show the circuit and transfer function from a BNC channel at the breakout box at
RT, without bias-tee. The found cut-off frequency is ≈ 30kHz. In the presence of a bias-tee [panel
(b)], the cut-off frequency is ≈ 100Hz.
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C. EXPERIMENTAL SETUP CHARACTERIZATION

Fig. C.2: Simulated bias-tee cut-off frequency (a) Simulated circuit for the cut-off frequency of
a low-frequency line (from RT BNC breakout box) with only the RC filter of Fig. 2.5(c). Electrical
components of T7. (b) Simulated circuit for cut-off frequency of the low-frequency line (from RT
BNC breakout box) part of the bias-tee. Electrical components of T7.
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RF lines - Detailed schematics

Fig. C.3: Detailed schematics with part numbers of electrical components. Coax 15 is SC-219/50-
SSS-SS between PT2 and still plate. Thermal anchoring (blue line) is provided by a high-purity
copper strand.
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C. EXPERIMENTAL SETUP CHARACTERIZATION

RF lines - transmission and reflection at room temperature

The transmission and reflection of each coax have been measured between the input port on top
of the cryostat and the associated RF dock at the bottom of the coldfinger. The ZNB 20 Vector
Network Analyzer output power was set to -20 dBm, with nominal frequency resolution 20MHz
and 100 averages. For testing the amplifier in Fig. C.5, the power was reduced to -30 dBm and the
resolution to about 5MHz.
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Fig. C.4: Room temperature characterization of coax lines. (a, c, e, g) Forward transmission (from
port 1 to port 2) of the VNA. (b, d, f, h) Input reflection coefficient from port 1 of the VNA.
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Fig. C.5: Room temperature characterization of RF reflectometry setup. (a) Setup: the load is the
termination of the coax at the coldfinger. (b) Transmission from Tx to Rx (A), with different loads at
RF dock 19 of the coldfinger. Notice the opposite phase of the ripples for the opened and shorted
termination. From the period of the ripples an electrical length of about 1.1 m is found.
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RF lines - delay times

The relative delay between the lines has been measured by generating on two channels a sine
wave 1V peak-to-peak at 120MHz with a Tektronix 5014C Arbitrary Waveform Generator (AWG),
in direct output mode. Sine waves have been chosen as in theory they are not distorted through
the lines. While the first channel was connected directly to the oscilloscope MSO S234A, the other
channel was connected to the RT input of the coaxes [1..17] and then to another channel of the
oscilloscope. Finally, the delay between the two zero-crossings has been measured. Being coax 18
heavily attenuated, the signal from coax 18 was too noisy to be measured on the oscilloscope. In
Tab. C.5 the relative delays compared to line 17 are shown.
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Fig. C.6: Relative delay among the coax lines. (a) The AWG sends two nominally identical sinu-
soidal waves, one directly to one channel of the oscilloscope, the other to one coax. The output of
the coax is measured on another channel of the oscilloscope. (b) The horizontal distance between
the zero-crossings gives an absolute time, to be referenced to the one of a coax.

Fast line: Delay relative to line 17 Fast line: Delay relative to line 17
1 (1.12±0.02)ns 9 (−5±32)ps
2 (1.12±0.02)ns 10 (−2±33)ps
3 (1.12±0.02)ns 11 (−4±37)ps
4 (1.12±0.02)ns 12 (−10±40)ps
5 (1.12±0.02)ns 13 (−25±34)ps
6 (1.12±0.03)ns 14 (−40±30)ps
7 (−5±27)ps 15 (−23±21)ps
8 (43±30)ps 16 (−4±21)ps

Table C.5: Relative delays among the coax lines measured with the oscilloscope and the AWG, as
described in the main text.
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D

Dispersive Charge Sensing without Reservoirs

Dispersive charge sensing without reservoirs

The measurement-based feedback protocol presented in Chapters 3 and 4 uses an independent
sensor dot, since the technique relies on fast projective measurement of each qubit. Dispersive
readout is an alternative technique to ohmic-based reflectometry to measure the charge occu-
pation in QD arrays, for instance by the single-electron box (SEB) [120]. The SEB is a charged
island connected to one lead only, instead of two as in the previously described SETs. The SEB is
capacitively coupled to at least one other gate defining a QD. The periodic tunneling of an electron
between the island and its reservoir can be modeled as an effective so-called quantum capacitance.
The analytical expression of the quantum capacitance for a zero-dimensional density of states
is [120]:

CQ = (eα)2

4kBT

γ2
0

γ2
0 +ω2

cosh−2
(

ϵ0

2kBT

)
, (D.1)

where γ0 is the tunneling rate between the SEB and the reservoir at the charge degeneracy point,
ε0 is the bias point (tuned by the gates voltages) and ω is the RF carrier angular frequency. The
island potential shifts when the electron occupation of nearby QD changes, which changes the
capacitance that can be proved by the reflectometry measurement. As SEBs require only one lead,
they require less space.
When scaling from 2x2 devices to longer 2xN arrays, the source and drain reservoirs will eventually
be too distant to support charge sensing within the bulk of the array. We address this challenge
by demonstrating that charge sensing is possible without exchanging electrons with the leads 1.
Our technique is based on creating a hybridized double dot within the array (Fig. D.1a), whose
quantum capacitance is sensitive to nearby charges Fig. D.1 and can be detected as a dispersive
shift in the reflectometry signal [240]. We show this in a 2x2 device [38, 39] by activating two dots as
a sensing DQD and the other two dots as qubit dots.

To create the sensing DQD, the top gate (not shown in the SEM) is set to +30 V and QD4 is
populated by 6-7 electrons. In this regime, the interdot transition between QD4 and QD1 hybridizes
charge states on both dots and gives rise to an enhanced reflectometry signal (black star in Fig. D.1b).
Its sensitivity to nearby charges becomes evident by sweeping G2 vs. G3, as done in Fig. D.1c. The
observed honeycomb pattern in VH indicates that the sensor DQD not only senses changes to the

1This section is published in Fabio Ansaloni et al. “Gate reflectometry in dense quantum dot arrays”. In: New Journal of
Physics 25.3 (2023), p. 033023. DOI: 10.1088/1367-2630/acc126, and reused in accordance with the CC-BY 3.0 license.
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Fig. D.1: Molecular sensing. (a) SEM of a 2x2 QD array in a fully depleted silicon-on-insulator (FD-
SOI) transistor [38, 39]. The scale bar is 200 nm. (b) Circuit schematic showing the LC resonator
connected to the SEB charge sensor, which probes the other QDs of the 2x2 array. A bias-tee
provides the gate voltage V4. The arrow represents the electron tunneling between the SEB and
the source reservoir. (c) A 2xN quantum dot array model where the reflectometry dot and its
longitudinal neighbor (black circles) exchange electrons and are cut off from the leads. The so-
formed molecule is used for locally sensing the qubit states (red circles). (d) An uncompensated
stability diagram featuring a DQD formed below G1 and G4 acquired at Vt g = 30 V and having
two/zero electrons on QD3/QD2. (e) Stability diagram for the DQD formed below G2 and G3

obtained by fixing V1 and V4 at the interdot transition (as shown with a star symbol in (b)). When
the charge configuration of QD2–QD3 changes from (0,2), the demodulated signal changes from
yellow to blue. This enables a new charge technique that relies on charge sensing of quantum dots
in a 2xN array with a local, reconfigurable reflectometry molecule sensor that is decoupled from
the electron reservoirs.
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Fig. D.2: Interferometric reflectometry. (a) The blue circle represents the input range of the
digitizer. The gray circle, outside the range, is shifted towards the origin of the IQ plane by an inter-
ferometric arm at RT. (b) In the interferometric arm, we tune the attenuation A by a programmable
attenuator (MiniCircuits RCDAT-6000-60) connected in series to a voltage-controlled continuous
one (ZX73-2500M-S+). The phase shifter Pulsar SO-06-411 tunes the phase ϕ of the arm. (c-d) In
IQ space different physical processes in a charge stability diagram show up differently. Without the
interferometric arm, only (c) would be available.

total charge in the qubit array (note the strong contrast between (02) and (12), for example), but
also inter-qubit charge transitions [such as (02) to (11)].

Ultimately, future 2xN devices may benefit from reconfigurable dots, serving as qubit sites
at some times and employed for readout or charge sensing at other times. Our gate-based DQD
reflectometry technique may simplify such applications, as it does not require proximal reservoirs
or dedicated sensor dots.

Translation in IQ space

When performing reflectometry with spin qubits, the reflected carrier from the cryostat may reside
within a small region of the IQ plane, far away from the origin of the IQ plane (grey area in Figure D.2,
panel (a). By far we mean compared to the input range of a DC-coupled digitizer, e.g. an Alazar
card. A standard solution we use is the addition of a phase shifter to shift one quadrature of the IQ
response into the (small) input range of one Alazar channel. Effectively, we are then only sensitive
to phase changes of the reflected carrier, and do not learn anything about amplitude changes.

To also allow the detection of amplitude changes, we implement an interferometric technique,
shown in panel (b). One arm of the interferometer is the cryostat. The other arm contains a voltage-
controlled phase shifter and a voltage-controlled continuous attenuator, and produces a reference
signal that results in complete deconstructive interference with the cryostat signal. Thereby, the

129



D. DISPERSIVE CHARGE SENSING WITHOUT RESERVOIRS

interferometer effectively relocates the carrier towards the origin of the IQ plane [red arrow in (a)],
such that conventional demodulation into I and Q channels of the Alazarcard provides information
about phase changes and amplitude changes arising from the sample. We show the results of
this method in panels (c-d), where different physical processes within a quadruple dot show up
differently in IQ space. For instance, the loading of the electron under dot 2, either from the nearby
reservoir or from dot 3 shows up in (d) but not in (c). Vice versa, the sensor dot coulomb peaks
from (c) do not show up in (d). Without the interferometer, only the Q panel would be available.
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