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Abstract in English

This thesis presents the results of the experimental study performed on spin qubits realized in
gate-defined gallium arsenide quantum dots, with the focus on noise suppression and long-distance
coupling.

First, we show that the susceptibility to charge noise can be reduced by reducing the gradient
of the qubit splitting with respect to gate voltages. We show that for singlet-triplet and resonant
exchange qubit this can be achieved by operating a quantum dot array in a highly symmetric
configuration. The symmetrization approach results in a factor-of-six improvement of the double
dot singlet-triplet exchange oscillations quality factor while the dephasing times for the three-
electron resonant exchange qubit are marginally longer.

Second, we present the study of the Overhauser field noise arising due to interaction with the
nuclear spin bath. We show that the Overhauser field noise conforms to classical spin diffusion
model in range from 1 mHz to 1 kHz. Meanwhile the megahertz-scale noise spectrum is focused in
three narrow bands related to relative Larmor precession of the three nuclear species. Application
of the dynamical decoupling sequence designed to notch-filter the narrowband noise enables us to
put the highest, up to date, lower bound on the electron spin coherence time in gallium arsenide:
870 µs.

Later, we study the perspectives of exploiting a multielectron quantum dot as a mediator of
the exchange interaction. We investigate interaction between a single spin and the multelectron
quantum dot in nine different charge occupancies and identify ground state spin in all cases. For
even-occupied spin-1/2 multielectron quantum dot a variation of the gate voltage by a few milivolts
in the vicinity of the charge transition leads to sign change of the exchange interaction with a single
neighboring electron.

Finally, we demonstrate the exchange coupling between distant electrons mediated by the even-
occupied spin-0 multielectron quantum dot. The exchange interaction strength can be controlled
up to several gigahertz frequencies. Small level spacing and many body effects give raise to the
positions in the gate voltage space that are characterized by decreased susceptibility to charge noise
which can be used to implement high fidelity, long-range two-qubit gates.





Streszczenie w języku polskim

W niniejszej pracy demonstruję wyniki eksperymentów przeprowadzonych na kubitach spinowych
zrealizowanych w elektrostatycznie zdefiniowanych kropkach kwantowych z arsenku galu. Szczególny
nacisk położony jest na tłumienie szumu oraz oddziaływanie długozasięgowe.

W pierwszej części pokazujemy że podatność na szum ładunkowy może być ograniczona
przez minimalizację gradientu rozszczepienia qubitu względem napięć na bramkach. Dla ku-
bitu syngletowo-trypletowego i kubitu rezonansowej wymiany gradient jest zminimalizowany w
symetryczej konfiguracji szeregu kropek kwantowych. Dzięki symetryzacji uzyskujemy sześ-
ciokrotną poprawę dobroci oscylacji wymiany pomiędzy dwoma elektronami, natomiast kubit
rezonansowej wymiany wykazuje jedynie nieznaczną poprawę czasu koherencji.

Druga część pracy dotyczy szumu Overhausera wynikającego z oddziaływania nadsubtelnego
pomiędzy elektronem i kompielą spinową. Spektrum szumu Overhausera jest zgodne z klasycznym
modelem dyfuzji w zakresie od mili- do kilohertza. Tymczasem szum w wysokoczęstotliwościowy
jest skoncentrowany w trzech wąskich pasmach odpowiadających względnej precesji Larmora
jąder trzech izotopów występujących w arsenku galu. Wykorzystując specjalnie zaprojektowaną
dynamicznie odsprzęgającą sekwencę, działającą jako filtr środkowozaporowy, jesteśmy w stanie
pokazać że czas koherencji spinu elektronu w arsenku galu przekracza 870 µs.

Następnie badamy perspektywę wykorzystania wieloelektronowej kropki kwantowej jako
pośrednika oddziaływania wymiany. Dla dziewięciu kolejnych obsadzeń jesteśmy w stanie określić
spin stanu podstawowego przez sprzęganie jej z pojedyńczym sąsiadującym elektronem. Dla ob-
sadzeń nieparzystych obserwujemy zmianę znaku oddziaływania wymiany przy strojeniu napięcia
na bramkach w zakresie kilku miliwoltów w pobliżu przejścia ładunkowego.

W ostatnim eksperymencie demonstrujemy długozasiegowe oddziaływanie wymiany któremu
pośredniczy wieloelektronowa kropka kwantowa z bezspinowym stanem podstawowym. Siła odd-
ziaływania wymiany może być kontrolowana w zakresie sięgającym kilku gigaherców. Niewielkie
rozszczepienie poziomów energetycznych i efekty wielociałowe prowadzą do pojawienia się
punktów w przestrzeni napięć na bramkach charakteryzujących się niską wrażliwością na szum
ładunkowy, które mogą być wykorzystane do realizacji długozasięgowych bramek dwukubitowych
o wysokiej dobroci.





Résumé i dansk

Denne afhandling præsenterer resultater fra et ekperimentelt studie af spin kvantebit fremstillet i
gatedefinerede galliumarsenid kvantepunkter med fokus på støjdæmpning og langdistancekopling.

For det første viser vi, at følsomheden til ladningsstøj kan reduceres ved at reducere gradienten
af kvantebit energien med hensyn til gatespændinger. Vi viser, at dette for singlet-triplet- og
resonant udvekslingskvantebit kan opnås ved at drive en kvantepunktsrække i en yderst symmetrisk
konfiguration. Symmetriseringstilgangen resulterer i en faktor seks forbedring af kvalitetsfaktoren
af singlet-tripletkvantebittens elektronudvekslingsoscillationer, mens coherenstiden for resonant
udevekslingskvantebitten er marginalt længere.

For det andet præsenterer vi en undersøgelse af Overhauser-feltstøj, der opstår som følge af in-
teraktion med atomspinbadet. Vi viser, at Overhauser-feltstøj følger en klassisk spindiffusionsmodel
i området fra 1 mHz til 1 kHz, mens megahertz-skalaens støjspektrum er fokuseret i tre smalle
bånd relateret til relativ Larmor præcession af de tre nukleare arter. Anvendelse af en dynamisk
afkoblingssekvens, som er designet til at notch-filtrere smalbåndsstøjen, gør det muligt at sætte den
højeste, up-to-date, nedre grænse på elektronens spinconherenstid i galliumarsenid: 870 µs.

Senere studerer vi perspektiverne i at udnytte et multielektronkvantepunkt som mediator for
udvekslingsinteraktionen. Vi undersøger samspillet mellem et enkelt spin og et multielektronkvan-
tepunkt i ni forskellige ladningsbesættelser og identificerer spingrundtilstanden i alle tilfælde. For
et lige besat, spin-1/2 multielektronkvantepunkt medfører variationer af gatespændingen med et
par milivolt i nærheden af ladningstransitionen et fortegnsskift af udvekslingsinteraktionen med en
enkelt naboelektron.

Endelig demonstrerer vi udvekslingskoblingen mellem fjerne elektroner formidlet af et lige
besat, spin-0 multielektronkvantepunkt. Udvekslingsinteraktionsstyrken kan styres op til nogle-
gigahertz frekvenser. Lille energiniveauafstand og mangelegemeeffekter giver anledning til posi-
tioner i gatespændingsrummet, der er karakteriseret af nedsat følsomhed til ladningsstøj, som kan
bruges til at implementere nøgagtige, langdistanse to-kvantebitoperationer.
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1. Overview

1.1 Organization of the thesis

Part I is the overview of the field of spin qubits in gate-defined quantum dots. In the next section of
this chapter I draw a broad picture of the field to present the state of the art and the main challenges
the community is facing. Chapter 2 includes a proper introduction to the field of spin qubits realized
in gate-defined quantum dots. It provides a description of the techniques that can be employed to
manipulate the electronic spins and the list of qubit implementations in quantum dot arrays.

The main results of this thesis will be contained in three parts, corresponding to three topics
which I studied. Each part consists of the reproductions of published results and is extended with
the description of the essential concepts, or puts the published results in a broader context. In
several places I supplement the published results with several additional datasets and elements of
the analysis that did not find their place in articles.

Part II is dedicated to the mitigation of the charge noise which affects the fidelity of the exchange
gates. Chapter 3 describes the principle of symetrization of spin qubits. Chapter 4 presents how to
apply this idea to the two-electron exchange gate in a double quantum dot. Chapter 5 describes the
symmetrization applied to the three-electron resonant exchange qubit.

Part III focuses on the other source of the spin qubits dephasing, i.e. the interaction with the
spinful nuclei of the crystal lattice that hosts the quantum dot. Chapter 7 reviews the most important
properties of the nuclear spin bath and briefly introduces the dynamical decoupling techniques.
Chapter 8 presents nuclear noise spectrum study over a frequency range of 9 orders of magnitude.
Chapter 9 explains how the dynamical decoupling sequence can be viewed as a filter in a frequency
domain It also demonstrates that the sequence can be adjusted to suppress the component of the
nuclear noise related to the Larmor precession of the different nuclear species.

Part IV is dedicated to multielectron quantum dots. Chapter 12 contains an article that provides
the effective model of the multielectron dot. It also presents the study of 9 subsequent multielectron
dot occupancies, by coupling it to the two-electron double quantum dot. Chapter 13 focuses on one
particular occupancy of the multielectron quantum dot where the negative exchange interaction was
observed. The following chapter 14 describes the experiment in which two distant electronic spins
are exchange-coupled via a multielectron quantum dot, which serves as an interaction mediator.
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The final chapter 16 contrasts the long-range exchange coupling with other proposals for long range
coupling and suggests several relatively simple, high-impact follow-up experiments.

The last part V consists of appendices. In chapter A I include the schematics of the experimental
setup. Chapter B contains the recipe for fabrication of GaAs quantum dot devices with a single
layer of confining gates. Chapter C introduces the technique that has been a key to fast tuning of
the dot arrays: real time measurements of the charge diagrams. The final chapter D is a hybrid
between a manual and documentation of the Igor Pro procedures that were used to design, upload
and apply the sequences of voltage pulses using the Tektronix 5014c arbitrary waveform generator.

1.2 Gate-defined quantum dots as qubits (DiVincenzo’s criteria)

Quantum computation is one of the holy grails of modern physics. As such, it is a topic of numerous
books and articles with which this brief introduction has no chance to compete. For this reason I
restrain myself from describing the ultimate goal to which this work contributes. Instead, I will
give a brief introduction to the techniques used for spin manipulation and readout and describe the
state of the art. To maintain the logical structure I will organize these considerations according
to the DiVincenzo’s criteria for quantum computing [1] (in a slightly rearranged order). In this
manner I attempt to put the results presented in this thesis in their broader context.

1.2.1 A (scalable) physical system with well characterized qubits

A single spin 1/2 is conceivably the most natural realization of the qubit, since it forms a natural
2-level quantum-mechanical system. This is the reason why the first implementation of the quantum
algorithms were performed on systems of spin-1/2 nuclei [2, 3]. However it was realized that small
strength of two qubit coupling and lack of tunability prevents this kind of quantum processor to be
scalable [4]. An alternative solution [5] proposed by Daniel Loss and David DiVincenzo was to
employ single electronic spins in gate tunable quantum dots. Compared to NMR implementation
this proposal has numerous advantages: the electron magnetic moment is larger than the nuclear
magnetic moment by a factor of ∼1000 enabling faster manipulation. Moreover, the artificial
molecule consisting of multiple quantum dots can be arbitrarily designed, the strength of couplings
– voltage controlled and the qubits themselves could be moved within the quantum processor.

1.2.2 The ability to initialize the state of the qubits to a simple fiducial state, such as |000〉
Using a higher magnetic moment (or g-factor) becomes a clear advantage of electron spin qubits
when considering the state initialization. A g-factor of the order of 1 leads to a Zeeman splitting
gµBB of tens of microelectronvolts at 1 T. For comparison the thermal fluctuations at 100 mK have
a characteristic energy of kBT = 8.6 µeV. The ratio of these two quantities leads to the conclusion
that for moderate magnetic fields and at dilution-refrigerator temperature the electronic spin can be
prepared in the ground state, simply by letting it relax [6].

Freedom in control of the quantum dot occupation provides also a mean for the initialization of
a more complex multielectron state, by exploiting the Pauli exclusion principle [7, 8]. The exclusion
principle forces two electrons with parallel spins (i.e. in one of the triplet states), located in the
same quantum dot to occupy different orbitals. On the contrary for the antiparallel configuration
of spins (i.e. singlet state) the electrons can occupy the same, lowest orbital. The arising energy
splitting between the two-electron states enables the initialization of the electron pair in a singlet
configuration simply by letting the system relax to its ground state. Once the relaxation happens
one electron can be moved to a different quantum dot resulting in a one-step initialization of the
entangled state. In fact this very method is exploited in all the original experiments presented in
this thesis. The idea could in principle be employed to initialize more complex highly entangled
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multielectron states, by preparing a multielectron quantum dot in the ground state, followed by
shuttling of the electrons to the designated single-electron quantum dots.

1.2.3 A qubit-specific measurement capability
For gate-defined quantum dots the ability to initialize the electronic spins turns out to be closely
related to our ability to read them out. In most works up to date the readout has been performed in
two steps. The first step is to convert the spin state to charge state, i.e. induce a difference of charge
distribution between different spin states in an incoherent manner. In turn, the difference in charge
distribution affects the conductance of neighboring transistor (in practice a quantum point contact
or a single electron transistor). In the second step the conductance is readout by means of lock-in
or reflectometry measurement.

The two techniques for spin-to-charge conversion are dual to the two initialization techniques,
and both were shown to provide a single-shot readout fidelity of individual spins [6, 9]. In the first
technique the spin-up and spin-down states are tuned in such a way that one is located above the
Fermi level of neighboring lead, while other one remains below [6]. Whenever the electron has
high energy it will eventually tunnel out of the lead, resulting in a change of the charge distribution,
and then the electron will tunnel back in onto a dot. The observation of this process relies, similarly
to initialization, on adjusting the Zeeman splitting to be larger the temperature of the electrons
in the lead. The advantage of this technique is that towards the end of the readout phase the
electronic spin is guaranteed to be initialized in the ground state. On the other hand, the limitation
is that the readout speed is set by the tunneling rates which have to be small for high fidelity qubit
manipulations.

The counterpart of singlet initialization provides a mean for measurement of the relative
orientation of the two spins. This method exploits the fact that, as explained before, the triplet states
with two electrons occupying the same dot have significantly larger energy than a singlet state. This
implies that for a carefully tuned double quantum dot the spin triplet state of the lowest energy will
consist of the two electrons residing on different dots. Meanwhile for the singlet state with the
lowest energy two electrons will reside on a single dot. Once more, the resulting difference in the
charge distribution can be picked up by the neighboring charge sensor. This technique, used in all
experiments described in this thesis, has three significant advantages over the alternative described
above: in principle it is non-destructive (excluding decoherence between triplet states and avoidable
relaxation) and does not require a neighboring lead.

1.2.4 Long relevant decoherence times, much longer than the gate operation time
Another DiVincenzo criterium refers to the preservation of the multiqubit quantum state. In
this context the exploitation of the spin degree of freedom yields significant advantages. In the
simplest view the advantage is related to the relative weakness of magnetic interactions compared
to electrostatic interactions. This implies that the external disturbances that can lead to decoherence
are either weak1 or indirect2. Nonetheless these decoherence mechanisms remain a significant
challenge. This thesis yields two results related to the decoherence problem.

Part III is dedicated to the study of the interaction between the electronic spin and the col-
lection of millions of nuclear spin in the gallium arsenide crystal. In these studies we address
the decoherence due to the collective influence of multiple nuclear spins. In particular the use
of elaborated decoupling sequences enables us to increase the spin coherence time by over five
orders of magnitude. This method can be expected to find application in areas closely related to
quantum computing, but is not an ultimate solution to the issue of the electron spin decoherence

1typical hyperfine interaction with between an electron and a single nuclei of the host lattice is of the order 10−9 eV,
for the electronic wavefunction which typically spreads over a million of crystal unit cells [10]

2related to mixing of a spin with other degrees of freedom due to spin-orbit [11] or exchange interaction [12]
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due to interaction with the nuclear bath. In a long run, more promising path is either to change the
semiconducting material hosting the quantum dots to one where nuclei with a non-zero spin are
sparse (e.g. silicon-based quantum dots) [13–15], or to use hole spins [16, 17] which enjoy much
weaker hyperfine interaction.

Reduction of the indirect influence of the charge noise is the topic of Part II of this thesis.
I describe there how introduction of the additional symmetries reduces admixture of the charge
degree of freedom to the multielectron spin state. On the fundamental level our study shows that
the spin qubits are at their best when the difference between the spin states does not entail the
difference in the charge distribution.

1.2.5 A “universal” set of quantum gates
The number of methods for manipulation electronic spins in gate-defined quantum dots is numerous.
The difficulty lies in the choice of the qubit definition and manipulation method that provides a set
of universal gates that do not entail to an increased susceptibility to noise. The almost complete list
of available variants will be included in the introduction to spin qubits in chapter 2, and therefore
I will here limit the discussion to presenting the state of the art in the manipulation of electronic
spins.

In terms of single qubit gates the most promising candidates are simple single-electron qubits
defined in Si/SiGe quantum wells equipped with a micromagnet. The two recent experiments [18,
19] showed that electron rotation induced by shaking a single electron in the gradient of an external
magnetic field can reach the limit of 99% fidelity which is also a threshold for the application
of quantum error correction. These results are very promising, especially because they did not
take advantage of the isotopically enriched silicon which would result in further improvements in
coherence by removing the residual atoms of spinful isotope 29Si.

A similar result was obtained for a single electronic spin in MOS structure that uses isotopically
purified silicon [20]. Moreover, this result was followed by the presentation of the two qubit
gate [21], although it fidelity was not quantified. A significant limitation in this experiment was
the insufficient tunability of the tunnel coupling, due to which the exchange interaction between
electrons was turned on and off adiabatically, rather than rapidly with respect to difference of
Zeeman splittings of the two electrons. Nevertheless, the realization of single- and two-qubit gates
in these two kinds of silicon structures is a signature that exploiting a spin-free nuclear lattices is,
in my opinion, the most promising path towards spin-qubit based quantum computation.

Even higher degree of control over two-qubit system was obtained with singlet-triplet qubits in
GaAs nanostructures. Reference [22] presents a two-qubit gate with 90% fidelity and single-qubit
gates of 99% fidelity. That achievement was reached by harnessing the nuclear spin bath by means
of dynamical nuclear polarization and reduction of the charge noise by operating the qubits in a
rotating frame. As of today realization of such a complex operation is not possible in silicon-based
qubits, since it is much more difficult to fabricate Si/SiGe or MOS quantum dots.

The amount of overhead related to dynamical nuclear polarization makes the electron spin
qubits systems in GaAs unsuitable for scalability. However due to easier fabrication and greater
tunability this system serves as a playground for increasing the size of electron array. In that
field arrays of five, tunnel-coupled quantum dots equipped with two independent charge sensors
(chapter 14) are, to my knowledge, the largest system of coherently controlled electronic spins.
The result presented there also addresses another problem that needs to be solved in order to begin
scaling quantum dot based systems: the gate crowding

1.2.6 A scalable physical system (with well characterized qubits)
The gate crowding is a consequence of the small dimensions of the quantum dots. Even though small
size may ultimately be an advantage, once the quantum dot array reaches a phase of industrialization,
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at the stage of developing few-qubit devices it is a significant obstacle. This is because the typical
gate size required to tune a potential sufficiently precisely must have a width of tens of nanometers.
These dimensions are at the limit of state of the art electron beam lithography techniques, and almost
certainly exclude possibility of building large, two-dimensional arrays of directly tunnel-coupled
quantum dots within the next few years. This concern leads to an extensive search for a potential
long-range coupling mechanism.

In chapter 14, I present a proof-of-principle experiment for performing a long-range (micrometer
scale) exchange gate between electronic spins. This approach involves a multielectron quantum dot
as the interaction mediator and avoids exploiting degrees of freedom different than spin.

Another extensively studied long range coupling mechanism is a dipole-dipole coupling between
hybridized spin-charge qubits mediated by a superconducting cavity [23, 24]. This concept is based
on the enormous success of the superconducting qubits and may provide a method of qubit coupling
over enormous distances (of several milimeters). The difficulty this approach poses is hybridization
with the charge degree of freedom which increases the susceptibility to charge noise. Therefore an
improved understanding of its origin may be a key for scaling quantum dot systems.





2. Spin qubits

Along the lines of the overview chapter 1 I will devote this chapter to spin qubits and minimize the
introduction to quantum mechanics and quantum computing. Section 2.1 provides an elementary
background to the description of the two level system with the main purpose of introducing the
Bloch sphere representation. Section 2.2 describes how single electrons can be confined and
isolated in a solid state system, in particular in GaAs gate-defined quantum dots. Section 2.3 intro-
duces the implementations of the qubit in a single-electron quantum dots that were demonstrated
experimentally.

2.1 Qubit
2.1.1 Definition

A qubit is the basic unit of quantum information, in analogy to a (classical) bit being the unit of
(classical) information. Both qubits and bits can be in one of two states, usually labeled “0” and
“1”. Of these two a qubit is however infinitely more complex1 since by definition it may be in a
superposition of the two states.

Formally the qubit state |Ψ〉 can be represented as a linear combination of the two orthogonal
vectors, |0〉 and |1〉 (representing 0 and 1 states)

|Ψ〉= α |0〉+β |1〉 , (2.1)

where complex coefficients α and β are the probability amplitudes and are related to probabilities
Pi of finding the qubit in state i = 0,1:

P0 = |α|2, P1 = |β |2. (2.2)

The probabilistic interpretation of α and β implies normalization of the vector |Ψ〉 representing the
state of the qubit

|α|2 + |β |2 = 1. (2.3)

1In a sense that an infinite (countable) number of bits is necessary to fully describe state of a single qubit.
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Figure 2.1: Representation of the qubit state on a Bloch sphere

Moreover it turns out that the relative phase between the two coefficients has no physically
observable consequences.

2.1.2 Most handy representation

Normalization condition and irrelevance of the global phase allows to represent the qubit state
in a most helpful manner, i.e. as a point of a sphere (called Bloch sphere). For that purpose the
coefficients α and β must be rewritten, so that the qubit state is represented by

|Ψ〉= cos(θ/2) |0〉+ eiϕ sin(θ/2) |1〉 (2.4)

where θ ∈ [0,π] and ϕ ∈ [0,2π). In this form of θ and ϕ can be interpreted as coordinates of a
point on the Bloch sphere (Fig. 2.1).

The operations on the qubit state also have a natural representation on the Bloch sphere, as
rotations around some axis. Some of the most common single qubit gates are even named after
their graphical representation, e.g. π/2-rotation around y axis.

2.1.3 Imperfect qubit states and operations

In experiments one never finds the qubit to be perfectly prepared or manipulated. Even though
the above notation very often suffices to explain the experimental results, one often needs to
quantify the errors of manipulations. One can derive mathematical formalism to describe such
situation by considering that the qubit might be in one of several pure states |Ψi〉 with classical
probability pi. Such representation turns out to be an excessive one, since many of such states
are physically indistinguishable. The density matrix representation turns out to be the simplest
sufficient description of imperfect states.

For the physical state in one of several pure states |Ψi〉 with classical probability pi one defines
the density matrix by

ρ̂ = ∑
i

pi |Ψi〉〈Ψi| . (2.5)
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Such positive definite matrix has trace 1. In case of a single qubit ρ̂ is a 2×2 matrix, which can be
fully characterized by only three parameters x, y an z

ρ̂ =
1
2
(I+ xσ̂x + yσ̂y + zσ̂z) =

1
2
(I+~r~σ) , (2.6)

where I is the identity and σi are the Pauli matrices. Parameters x, y an z, represented as a single
vector~r must fulfill |~r| ≤ 1 for the matrix to represent a physical state.

Drawing ~r on the Bloch sphere (with its center at the origin of the coordinate system and
radius 1) is an accurate representation of the imperfect, mixed state. This means that the rotations
representing the operations on the pure qubit state will act in an identical way on ~r. Finally,
imperfect qubit manipulations can be represented as combinations of the sphere rotation, shrinking
or squeezing along some directions.

2.1.4 Multi-qubit (and multi-spin) states
Mathematically the multi-qubit states are represented by the vectors in the tensor-product space of
several two-level systems. Such a general state can be written as

|Ψ〉= ∑
{si}=0,1

α{si} |{si}〉 (2.7)

where {si} indicates a list of 0’s and 1’s. The number of 2N−2 real parameters necessary to fully
characterize such state is a manifestation of increased computing power of a quantum system over
a classical one.

2.1.5 Universal set of gates
Even though the number of states available in multi-qubit system is huge the set of operations
necessary to perform an arbitrary computation is rather limited [25].

First part of the universal set of gates are the arbitrary single qubit rotations. The standard way
to achieve these is to combine the rotations around two orthogonal qubit axes (usually x and y).
Then an arbitrary rotation can by realized by rotation by three Euler angles.

One of the spin-qubit realizations, exchange-only qubit (Subcection 2.3.3), gives a possibility of
performing rotations about two axes which are tilted by 120◦ with respect to each other. Although
these rotations are sufficient to construct an arbitrary single-qubit gate. Such twist to Euler angles
increases difficulty of designing and optimization of a quantum algorithm. On the other hand, it
is beneficial to supplement the x and y rotations with the z rotations to reduce depth of the final
quantum circuit.

In principle the set of single qubit operations can be minimized to only two π/2 rotations and
T -gate (which is a rotation by π/8 angle). This can be proven by showing that the set of states
achievable by combining these three rotations is dense on a Bloch sphere, and therefore arbitrary
rotations can be realized with arbitrary precision. However one must remember that the number
of primary gates that must be composed to perform such arbitrary rotation can introduce a huge
overhead in execution of a quantum algorithm. Therefore one must remember that in the set of
available single qubit rotations affects the length and of the algorithm and ultimately has an impact
on resources required to implement quantum error correction.

The second part of the required gate set is an two-qubit entangling gate. Usually three kinds of
such gates are considered.

A CNOT gate is a quantummechanical equivalent of the classical gate with the same name It
changes the state on

CPHASE gate is the most commonly realized two qubit gate. The name indicates that changing
the phase between |1〉 and |0〉 state of the target qubit conditioned by the control qubit. This
operation is equivalent to adding a phase factor to |11〉 state with respect to |00〉, |10〉 and |01〉.
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Table 2.1: A choice of the semiconductor systems for which coherent operation of single electronic
spins was demonstrated up to date.

Manipulation method
All-electrical Optical and electrical

St
ru

ct
ur

e
GaAs, Si/Ge quantum wells

Quantum MOS structures
In(Ga)As/GaAs

dot IsAs nanowires
carbon nanotubes

Impurity P donor in Si
NV in diamond
vacancy in SiC

The final possibility, most natural for exchange-coupled spins, is a
√

SWAP gate. This gate
results from interrupting the flip-flop process halfway through. For example, it can take the two
spin state between different states in a cycle

|10〉
√

SWAP−−−−→ |10〉+ i |01〉√
2

√
SWAP−−−−→ |01〉

√
SWAP−−−−→ |10〉− i |01〉√

2

√
SWAP−−−−→ |10〉 . (2.8)

2.2 Confining electronic spins
2.2.1 Semiconductor platforms for confining electronic spins

A single electronic spin 1/2 is such a natural realization of the qubit that virtually any structure
capable of confining an electron was at some point in the history considered to be a possible
platform for quantum computing. In particular, semiconductor nanostructures allow to benefit
from the wide range of the available fabrication techniques. Roughly speaking, there are two types
of such structures in which coherent spin manipulations were realized: electrons bound on the
crystal impurities or confined by combination of band-gap engineering and gating (i.e. quantum
dots). On the other hand, these systems can be divided into two groups according to the method
of manipulation and detection: all-electrical and mixed optical and electrical. The summary of
semiconductor systems in which coherent spin manipulations of single electrons was performed up
to date is presented in Table 2.1.

In a nutshell, the electrons in optically active structures are expected to serve as an interface
between a solid state quantum processor and photonic quantum communication network. In
particular the depth of the binding on such impurities as NV centers in diamond [26–28] and
vacancy in silicon carbide [29] enables their coherent control at room temperature. On the other
hand, self-assembled quantum dots [30, 31] can be embedded into carefully designed optical
cavities enabling very efficient extraction of emitted photons [32].

The electronically manipulated spins are rather viewed as the platform for quantum processor,
as suggested in the seminal articles by Loss & DiVincenzo [5] and Kane [33]. The leading impurity-
based implementation of electrically controlled qubit is based on individual phosphorus donors in
silicon [13, 33, 34]. Meanwhile there are multiple competitive quantum dot realizations. Among
these, the qubits based on nanowires [35] or carbon nanotubes [36] are less promising, due to
scaling difficulties related to arranging multiple nanowires or nanotubes in a deterministic manner.
The most complex qubits are currently realized in GaAs heterostructures [7, 37], however the
scaling perspectives are limited by the decoherence related to interaction of the electron with the
nuclear spin bath. Finally, in silicon quantum wells [14, 38] and MOS structures [21] this problem
is eliminated. However so far the reliability of device fabrication in this systems is limited. A huge
hope is that small adjustments to CMOS technology will be sufficient to create spin qubit devices
with industrial processes [15].
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accumulation and depletion gates
10 nm ALD-grown HfO2

30 nm Al0.36Ga0.64As
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3 nm Al0.26Ga0.74As

500 nm GaAs

x100buffer

2DEG plane
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Figure 2.2: Schematic of the uniformly doped GaAs/AlGaAs heterostructure forming a 2-
dimensional electron gas (2DEG) 57 nm below the surface, used in all experiments presented
in this thesis. ALD-deposited HfO2 insulating layer and and Ti/Au metallic gates are deposited in
the further fabrication steps. Dimensions in the schematics are drawn to scale.

In what follows I will focus on the description of techniques used to control GaAs spin qubits,
however most of them can be readily applied to Si/SiGe and MOS qubits with the added value of
improved coherence.

2.2.2 Electron confinement GaAs nanostructures
Confinement of the electrons in the GaAs quantum dot is achieved by the combination of the band
gap engineering and electrostatic gating. The 2-dimensional electron gas in this structure is formed
at the interface between GaAs and AlGaAs crystals, on the GaAs side. It appears there as a result of
attraction to the ionized silicon dopants located in the uniform layer above [39] (Fig. 2.2). The three
key characteristics of the heterostructure essential for spin qubits applications are the following.

First, the 2DEG density should be such that the typical area per electron matches closely the
expected size of the quantum dot. For a circular single electron quantum dot of 25 nm radius
we obtain that 2DEG density should be approximately 2× 10−15 m−2. Second, the distance to
the surface should be as small as possible so the shape of potential created by the metallic gates
deposited on top of the heterostructure was not excessively smoothened. In particular, the created
potential variations should be much stronger than the intrinsic ones due to built-in inhomogeneity
of the doping layer. Otherwise the positions of the dots will be accidental, rather that intentional.
For the dot diameter of 50 nm the depth of the 2DEG smaller that ∼100 nm is desirable. Third,
the 2DEG should have high mobility. In principle this condition is not necessary for quantum
dot creation. However high mobility increases the dots tunability, is likely related to the sample
stability. Moreover, the mobility may affect the performance of the parts of the device other than
spin qubit itself (e.g. leads, especially the ones attached to radio-frequency sensor dots).

Further confinement of the electrons is performed by means of an adjustable electrostatic
potential controlled by metallic gates located on top of the device. Due to small dimensions the
gates are defined by electron beam lithography2. Typically the gates are made of gold with thin
sticking layer (e.g. titanium), however in the structures that require multilayer gating, aluminum is
a common choice [40] since native oxide that forms in contact with the air can serve as a naturally
insulating layer.

The gates are arranged so as to surround a small area of the 100-250 nm diameter3 as shown
in figure 2.3. The optional gate in the center, operated at positive voltage helps to create a deep

2Except for CMOS structures. The idea behind studying them is to use conventional industrial optical lithography
techniques.

3For n-type GaAs devices operated in single electron regime. Dimensions in different materials are chosen differently
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single-electron dot

multielectron dot

lead/electron reservoir

accumulation gate

500 nm

Figure 2.3: Scanning electron micrograph of the device designed to create a linear array of
quantum dots. Colors indicate intended locations of single- and multielectron dots as well as leads.
Light gray structures are Ti/Au gates used to deplete the two-dimensional electron gas and confine
the electrons. Light green structure is the accumulation gate attracting the electrons. From the
fabrication perspective this gate is identical to all other gates.
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gμB

kBT

EF

Manipulation

μ↑

μ↓

Initialization/readout

Figure 2.4: Arrangement of chemical potentials during manipulation, initialization and readout of
Loss-DiVincenzo qubit.

potential well, but requires deposition of the insulating layer between the semiconductor and the
gates to prevent leakage through the Schottky diode. The insulating layer has the positive side
effect of blocking the tunneling events that give rise to the sample instabilities [41].

2.3 Qubit implementations
Note: the description of various qubit implementations is written under the assumption that they
are realized in GaAs or other material with negative g-factor. This implies that states with spin up
↑ have lower energy than states with spin down ↓. The description of the implementations applies
also to realization of the qubits in materials with positive g-factor, in which case one must replace
every ↑ symbol with ↓ and vice versa.

2.3.1 Single spin (Loss-DiVincenzo qubit)
It is most natural to use the spin projections |↑〉 and |↓〉 as the two qubit states. However to name a
system a qubit one needs to indicate methods of initialization, coherent manipulation and readout.
For that reason it is necessary to apply an external magnetic field that Zeeman-splits the two states.

due to different effective mass of the carriers, to maintain tunability of the tunnel couplings and control the energy of the
lowest excited orbitals. The actual dot size is smaller than gate to gate distance, since 2DEG is depleted within a certain
radius around the gate.
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If the Zeeman splitting is larger than the typical energy of thermal fluctuations kBT , the Loss-
DiVincenzo qubit initialization can be realized by letting the system reach the thermal equilibrium.
At this point one has to remember that relaxation at any other stage of computation is an undesired
effect. Therefore one must design a scheme in which relaxation rate can be manipulated. It is
usually achieved by adjusting the chemical potential of |↑〉 and |↓〉 relative to the Fermi level of the
neighboring lead (Fig. 2.4).

In the manipulation stage the quantum dot is Coulomb blocked. In the initialization stage
the chemical potential of |↓〉 is moved above the Fermi energy of the leads [6]. In the latter case
the electron in |↓〉 state can tunnel out, and later an electron in |↑〉 state can take its place. If the
tunneling rates are sufficiently high the relaxation rates are significantly increased. Moreover, the
tunneling events (or their absence) can be detected by the neighboring charge sensor which yields a
readout mechanism.

Manipulation of the Loss-DiVincenzo qubit can be done either with oscillating magnetic
fields [8] (electron spin resonance, ESR) or with electric fields (electron dipole spin resonance,
EDSR). To achieve the latter, there must be a mechanism which couples charge and spin degrees of
freedom, i.e. spin-orbit interaction [42] or a magnetic field gradient [43]. The advantage of EDSR
is that is easier to address specific, individual spins, by applying the radio-frequency excitation
only to the gate located closely to one of the quantum dots. AC magnetic field is much more
difficult to localize – the excitation is created with an oscillating current through the macroscopic
stripline. Addressability is achieved by detuning the resonant frequencies of different qubits - either
with variations in local magnetic field created by micromagnets [19] or by locally adjusting the
electronic g-factor [20].

The two qubit gate between Loss-DiVincenzo qubit can be most easily realized with exchange
interaction. Conventionally the exchange interaction is induced by tilting a potential of the double
quantum dot [7]. This procedure admixes (2,0) to (1,1) charge occupations (where the two
numbers indicate the number of electrons on the two dots). Due to Pauli exclusion principle
the admixing process differs between singlet |S〉= (|↑↓〉− |↓↑〉)/

√
2 and any of the triplet states

|T0〉= (|↑↓〉+ |↓↑〉)/
√

2, |T+〉= |↑↑〉 and |T−〉= |↓↓〉. In singlet configuration the two electrons
are allowed to occupy the same orbital, while in triplet configuration added electron must occupy
first excited state. This results in Heisenberg type interaction whose Hamiltonian has the form

JŜ1 · Ŝ2 (2.9)

where J indicates the exchange strength and Ŝi are the spin operators corresponding to the two
electrons. Depending on whether the exchange interaction is turned on and off diabatically or
adiabatically with respect to magnetic field gradients the interaction if this character can be used to
perform a SWAP-like [7] of CPHASE-like gate [21].

Multiple alternative methods of inducing exchange interaction were considered up to date,
with the goal if decreasing susceptibility of the system to charge noise during exchange gate and
increasing the range of the interaction. These are discussed in detail in Parts II and IV of this thesis.

2.3.2 Singlet-triplet qubit (S-T0)
The singlet-triplet S-T0 qubit is defined in a Sz = 0 subspace of the two-electron double quantum
dot, where Sz is the total spin projection on the direction of the magnetic field. The two level system
is therefore spanned by |S〉= (|↑↓〉−|↓↑〉)/

√
2 and |T0〉= (|↑↓〉+ |↓↑〉)/

√
2 states or, equivalently,

by |↑↓〉 and |↓↑〉 states (Fig. 2.5a). In absence of the exchange energy the ifference in the Zeeman
splitting between the two electrons sets |↑↓〉 and |↓↑〉 to be the eigenstates and provides a first
rotation axis (red colored arrow labeled ∆B‖). When the exchange interaction dominates over the
difference between the Zeemans splitting the |S〉 and |T0〉 are the system eigenstates, which defines
the second rotation axis (green colored arrow labeled J). Experimentally, the difference of the
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Figure 2.5: Double dot as a S-T0 qubit. (a) The Bloch sphere representation of the singlet-triplet
qubit. The two rotation axis are defined by exchange splitting (green arrow) and gradient of the
effective magnetic field (or more general – difference of the Zeeman splitting; red arrow). (b)
Representation of the detuning axis ε in the double quantum dot charge diagram.

Zeeman splittings is usually fixed, set by the gradient of the external [44] or effective [45] magnetic
field, or the difference between g-factors in the two dots. Meanwhile the exchange strength can be
controlled in a range of several orders of magnitude by switching between (2,0) and (1,1) charge
configurations. For the experimentalist this is equivalent to moving along the detuning ε axis
showed in the charge diagram in Fig. 2.5b.

Figure 2.5c shows a simplified schematic of the spin states along the detuning ε axis, in the
vicinity of the charge transition. In the left side of the diagram, in (2,0) charge state, the exchange
interaction dominates over the Zeeman splitting difference and the eigenstates of the system are
common eigenstates of the total spin operator Ŝ and the operator of the total spin projection on the
direction of the magnetic field Ŝz. In the right side, in (1,1) charge state, the electrons are decoupled
from each other so the eigenstates are the tensor products of individual spin states |↑〉 and |↓〉. In
the middle region the eigenstates continuously change, which is used to incoherently convert |S〉
and |T0〉 states into |↑↓〉 and |↓↑〉, or vice versa.

Using the two spins to define a single qubit has the disadvantage of leaving several states
unused, in this case the fully polarized triplet states |T+〉= |↑↑〉 and |T−〉= |↓↓〉. This introduces
the threat of leakage error. Due to typical long relaxation times and large energy separation the
leakage risk when performing single qubit gates appears only at the crossing between |S〉 and |T+〉
states. This is usually avoided by performing subnanosecond, diabatic “jumps” between points on
the ε axis at a significant separation from the crossing.

The leakage errors become a significant problem when considering implementation of the
two-qubit gate with the exchange interaction. This is because such interaction enables transfer of
the energy between the two qubits and lifts the protection provided by energy conservation. In fact,
the exchange interaction between the two electrons assigned to different qubits is a perfect leakage
mechanism since it connects |↑↓〉 |↑↓〉 and |T+〉 |T−〉 states. This leakage can be suppressed by
performing CPHASE-like gate in which the exchange between the electrons belonging to different
qubits is turned on and off adiabatically with respect to Zeeman splitting of the correspoinding
spins, in analogy to Ref. [21]. In principle 4 it can be also suppressed by keeping the exchange
interaction within the qubits finite.

Exploiting the dipole moment between |S〉 and |T0〉 at the (2,0)-(1,1) charge transition provides
alternative methods of performing two qubit gates. One has to take these ideas with a grain of salt,
since use of the dipole moment entails increased susceptibility to the charge noise. The simplest

4which is extremely hard to realize experimentally
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Figure 2.7: Resonant exchange qubit. (a) Bloch sphere representation showing the two rotation
axes corresponding to only left or right exchange being non-zero. (b) Energy diagram of the triple
quantum dot with the two qubit states indicated with colored lines. Note that much larger range of
ε for which both, JL and JR are non-zero.

way is to use direct dipole-dipole interaction between neighboring double dots [37]. Although this
scheme allows to achieve 90% gate fidelities [22], such gates may turn out to be too slow to be
practical in the long perspective.

Dipole moment also provides a mean for coupling the S-T0 qubit to the microwave super-
conducting resonator [23, 24, 46], which can mediate interaction between qubits separated by
milimiter-scale distances. In recent experiments the electron-cavity coupling was shown to be as
strong as 240 MHz [24] which can be translated to a potential gate time of about 4 ns.

2.3.3 Exchange-only qubit and Resonant exchange qubit

Both, Loss-DiVincenzo and singlet-triplet qubits require several different manipulation techniques
to achieve a full single qubit control. Using a three-electron systems allows to perform all manipu-
lations using only exchange interaction [47]. This can be easily understood when one realizes that
exchange interaction conserves the total spin. For single- and two- electron system all spin states
differ either by amplitude of the total spin or its projection. Only addition of the third electron
creates a subspace with two states having both of these quantum numbers identical.

Exchange-only qubit and resonant exchange qubit are both defined in the three-electron triple
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quantum dot [48, 49]. The two qubit states are |0〉 = (|↓↑↑〉− 2 |↑↓↑〉+ |↑↑↓〉)/
√

6 and |1〉 =
(|↑↑↓〉− |↓↑↑〉)/

√
2, which both belong to S = 1/2, Sz = −1/2 subspace of the three-electron

system. These are the eigenstates when electron in the middle quantum dot interacts equally
strongly with the electrons located in the left and right dot. By changing ratio between the two
exchange interactions it is possible to change quantization (or rotation) axis by up to 120◦. This is
illustrated in Fig. 2.6a with the two arrows showing rotation axes in the extreme case of only left or
right exchange being non-zero.

Readout and initialization of the triple dot qubits can be performed using spin-blockade, in a
similar manner to singlet-triplet qubit. For extreme negative values of ε two qubit eigenstates are
|SL ↑〉 and |T L

0 ↑〉/
√

3−2 |T L
+ ↓〉/

√
6. Here the first symbol indicates spin state of the electrons

located on the middle and the left quantum dot, while the arrow represents the spin of the electron
in the right dot. One can notice that the middle-left electron pair is either in a pure singlet or pure
triplet configuration, giving rise to Pauli blockade and enabling spin-to-charge conversion, as well
as initialization via relaxation to the ground state.

Exchange-only qubit is usually operated by adjusting gate voltages along a single axis [50, 51]
(called detuning ε), between (2,0,1), (1,1,1) and (1,0,2) electron occupancies (Fig. 2.6b). To better
understand the methods of operation it is helpful to analyze the energy diagram of spin states along
ε (Fig. 2.6c). As visualized with the two colored lines, one can control the rotation axis by changing
ε .

Resonant exchange is a variation of the exchange-only qubit. The qubit subspace is the same,
however resonant exchange is operated in the regime where both JL and JR are large (on the order
of hundreds of megahertz), while operations are performed by means of RF excitation applied to
one of the gates [52] (Fig. 2.7). The RF drive causes a small tilt of the quantization axis which
leads to coherent precession between |0〉 and |1〉, if the RF frequency is adjusted to match the qubit
splitting. Finally, adjusting the phase of the excitation enables the universal two-axis control in the
rotating frame.

Larger number of electrons used to define a single qubit results in in increased number of
leakage states. Similarly to singlet-triplet qubit, leakage to the states with different spin projection
on the external magnetic field direction does not pose a significant threat. However, the state
with S = 3/2, Sz = 1/2 (labeled Q−1/2 in Figs. 2.6 and 2.7) is energetically split from the qubit
states only when both JL, JR > 0, while the leakage to this state is driven by the gradients of the
Overhauser field.

The leakage becomes even more limiting when discussing the two qubit gates realized by
means of the exchange interaction. In principle it is possible5 to exploit the exchange interaction
for the two qubit gates but the this requires very tuning of multiple exchanges at the same time [53]
(while not being able to measure them separately) or performing very long sequences to suppress
leakage [54].

In principle it is also possible to use a dipole moment to couple such qubits using dipole-dipole
interaction or via superconducting cavity [55] but the required coherence time are currently far
beyond the experimental state of the art.

2.3.4 Hybrid (three-electron double dot) qubit

The final implementation of the quantum dot based spin qubit is the so-called hybrid qubit, realized
in a three-electron double quantum dot. Similarly to exchange-only and resonant exchange qubit it
is defined in S = 1/2, Sz = 1/2 subspace of the three-spin system [56]. However it is operated in
the regime of where two of the electrons are located on the first dot (with smaller level spacing)
while the third one resides on another dot (with larger level spacing). This results in the qubit

5experimentally it is virtually impossible
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Figure 2.8: Hybrid (three-electron double dot) qubit. (a) Bloch sphere representation showing the
two rotation axis. The green colored rotation axis corresponds to the level spacing of one of the
dots. (b) Energy diagram of the S = 1/2, Sz = 1/2 subspace of the three-electron double quantum
dot, where one of the dots has the level spacing significantly different than another.

eigenstates |0〉= |SL ↑〉 and |1〉= 1/
√

3 |T L
0 ↑〉−

√
2/3 |T L

+ ↓〉 being split by the level spacing in
the dot containing two electrons.

The qubit benefits from the fact that the level spacing that defining the qubit splitting in the
idle configuration (green in Fig. 2.8) is virtually insensitive to small changes in gate voltages, in
particular is insensitive to charge noise6. On the other hand, inducing the exchange interaction with
the third electron results in a change of the eigenstates and enables the universal qubit control [58].
At the same time, large level spacing in the dot that is usually occupied by a single electron enables
initialization and readout in the manner analogous to the exchange-only qubit.

The fact that the hybrid qubit consists of the three electrons allows to employ most of the two
qubit exchange-based coupling schemes from exchange-only qubit. Additionally, the qubit splitting
given by the level spacing, which can effectively suppress some of the leakage paths [56]. At the
same time the definition of this qubit in the double dot also enable the use of a dipole moment in a
manner analogous to the singlet-triplet qubit.

6To the best of my knowledge the literature [56–60] does not mention the possibility of the leakage from the qubit
space to the single state with S = 3/2 and Sz = 1/2, i.e. |Q1/2〉=

√
2/3 |T L

0 ↑〉+1/
√

3 |T L
+ ↓〉. The leakage to that state

is driven by the gradient of the Overhauser field which is not suppressed by any mechanism. One can observe that the
operation position of the hybrid qubit is analogous to the extreme (1,0,2) configuration of exchange-only qubit, where
|1〉 and |Q1/2〉 state are degenerate (Fig. 2.6). The coherence time measured in Refs. [58–60] is below the timescale
related to the leakage and therefore does not provide an experimental counterevidence to the leakage.
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3. The principle of symmetrization

Charge noise poses a huge obstacle in the development of spin qubits. Depending on the qubit
implementation it can affect about every parameter that is used to tune the qubit frequency. For
example it affects the Zeeman splitting and the EDSR drive strength by moving the electrons
wavefunction in the gradient of the external magnetic field [18, 19] or effectively modifying the
g-factor [15, 61]. The charge noise effects are most pronounced whenever the exchange interaction
is induced between the two neighboring electrons. The exchange interaction arises from the
combination of the Pauli exclusion principle and the Coulomb interaction or confinement of the
electrons. Crucially, in the presence of exchange different spin states of the two electrons are
characterized by different charge distributions which opens the channel for the electric noise to
affect the spins.

3.1 Coupling of the charge noise to the tilted double quantum dot
The canonical example of how the charge noise affects the exchange interaction strength is the
two-electron double quantum dot (Fig. 3.1a), where the exchange J is induced by the potential tilt.
The tilt is realized by changing the difference between the gate voltages controlling the occupancies
of the two dots (ε axis in the charge diagram presented in Fig. 3.1b). Figure 3.1c shows a schematic
energy diagram of the two-electron charge-spin states in the vicinity of the charge transition between
(2,0) and (1,1) occupancies [62], where (N,M) indicates the number of the electrons in the left and
the right dot. The lines indicated with the strong contrast correspond to the low energy singlet S and
unpolarized triplet T0 states which are to be controlled. For large positive values of the detuning ε

the two electrons reside on different dots and are virtually decoupled. In particular the exchange
splitting J between S and T0 states is equal to zero and completely insensitive to charge noise. In
these conditions other decoherence mechanisms, such as Overhauser noise (Part. III), dominate the
dephasing.

In the large negative ε limit (the two electrons residing on a single quantum dot) S and T0
states are split by (approximately) the spacing between the ground and a first excited orbital of the
quantum dot. That is the case since in a singlet configuration both electrons occupy the ground
orbital, while in the triplet configuration one of the electrons is forced to occupy excited orbital due
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Figure 3.1: (a) SEM of the double quantum dot device Charge diagram (b) and the energy diagram
of the spin states (c) of the double quantum dot in the vicinity of the (2,0)-(1,1) charge transition.
(d) Exchange interaction strength and the susceptibility to the detuning noise.

to Pauli exclusion principle. This splitting, typically of the order of several gigahertz (depending on
the material and the size of the dot) is only weakly susceptible to charge noise. The insensitivity is
a consequence of the fact that the difference in the charge distribution corresponding to different
orbitals in the same dot is very small. The residual susceptibility to noise, which is not a current
concern of the community and is beyond the scope of this thesis, arises due to the dependence of
the level spacing on the changes in the confining potential.

For the intermediate values of ε the exchange interaction strength gradually increases. Starting
from large ε , first the singlet state changes the character from (1,1) to (2,0). This leads to an increase
of both, the singlet-triplet splitting (Fig. 3.1d) and the the difference in the charge distribution
between these two states. The latter implies an increase of the susceptibility to the charge noise
(Fig. 3.1d), since the local variation of the confining potential will affect the two spin states to a
different extent. As ε becomes more negative, the triplet states also change character from (1,1)
to (2,0). Consequently the difference in charge distribution between singlet and triplet states is
reduced and susceptibility to noise decreases.

3.2 Detuning noise
The quantitative analysis of the decoherence usually assumes that the characteristic length scale of
the charge noise is larger than the physical size of the double quantum dot. Since the level spacing
within dots and the tunnel coupling are invariant with respect to global shifts of the potential, it
follows that the tilts of the potential are the dominant kind of noise affecting the singlet triplet
splitting. For that reason the noise can be effectively represented as an uncertainty in the detuning
control parameter ε .

Considering the effective quasistatic detuning noise, characterized by the rms value σε , we
observe that the susceptibility to the charge noise is given by the derivative of the singlet-triplet
splitting with respect to detuning dJ/dε (Fig. 3.1d). The resulting formula for the decoherence
time due to charge noise is

T ∗2 =
1√

2πσJ
=

1√
2π

dJ
dε

σε

, (3.1)



3.3 The symmetrization principle 25

where σJ is the rms exchange noise, turns out to be very accurate whenever the exchange interaction
in a double quantum dot is induced by the tilt of the potential [12, 63, 64].

Such a basic model provides a simple recipe for reducing the dephasing while performing
the exchange oscillations – to reduce the dependence of the exchange J on the detuning at the
operating position. The energy diagram and the plot of exchange strength with respect to detuning ε

(Fig. 3.1c,d) reveals two such regions, mentioned in the previous section. These are deep Coulomb
blockade in (1,1) and (2,0) charge configuration. However both of them present significant
disadvantages.

When operating in the (2,0) configuration the oscillations have such a large frequency (� 1 GHz)
that conventionally used arbitrary waveform generators (with ≈ 1 GHz bandwidth) do not provide
sufficient control to perform rotations by a small angle and take advantage of high fidelity oscilla-
tions. On the other hand in the (1,1) charge configuration the exchange interaction is virtually 0,
and no exchange oscillations take place.

The symmetrization principle is the variation to the latter of this approache, where the reduction
of the exchange strength is compensated by an increase in the tunnel coupling to reach required
strength of the exchange interaction.

3.3 The symmetrization principle

We will begin by proving that for a double quantum dot there exists a value of the detuning ε for
which the susceptibility to detuning noise dJ/dε = 0. For that purpose we observe that, starting in
the (1,1) electron configuration, exchange interaction can be increased by tilting the potential either
towards the (2,0) or (0,2) electron configuration. In the first of these cases the exchange increases
for decreasing ε , that is dJ

dε
< 0, while in the second case dJ

dε
> 0. By continuity of dJ

dε
there must be

exist a value of ε for which the susceptibility to the detuning noise vanishes.
Interestingly, one can also show easily that the point with vanishing susceptibility lies exactly

in the center of the (1,1) region, provided that the level spacing of each of the dots is much larger
than the tunnel coupling. This can be most easily seen when the tunnel coupling t is much smaller
than the energy difference between singlet states consisting of two singly occupied dots ES(1,1) and
singlet states consisting of the one doubly occupied dots: ES(2,0) and ES(0,2). In this approximation
the energy of the triplet state T (1,1) is 0, while the energy of the singlet state S(1,1) is slightly
reduced due to admixtures of singlets with doubly occupied dots

ẼS(1,1) =−t2
(

1
ES(2,0)−ES(1,1)

+
1

ES(0,2)−ES(1,1)

)
(3.2)

where the tilde symbol indicates the energy that includes the first order correction due to the
tunneling t between the dots. Energy differences can be expressed in terms of the detuning between
single particle levels in the two dots1 ε and charging energies of the two dots UL/R

ẼS(1,1) =−t2
(

1
UL + ε

+
1

UR− ε

)
. (3.3)

The symmetry of this formula implies that ẼS(1,1) has an extremum at ε = (UR−UL)/2, which is
exactly in the middle between the (2,0)-(1,1) charge transition (which lies at ε = −UL) and the
(1,1)-(0,2) charge transition (at ε =UR). Finally, within the validity range of our approximations
the splitting between singlet and triplet states at the symmetry point can be tuned by adjusting the
tunnel coupling.

1note that here we use the theoretical definition of detuning ε (the difference of the energies of the two single particle
orbitals) rather than experimental definition in terms of gate voltages
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Figure 3.2: Illustration of quantum dots array with and without any cycles. In an array without
cycles one can always find a tuning with every exchange splitting independent on detuning.

This result can be extended to any array of singly-occupied tunnel-coupled quantum dots which
has no cycles (a cycle is a group of dots between which the electron can tunnel in a circle, as
opposed to the tree-like structure; Fig. 3.2). To prove that we start with a double quantum dot and
a new dots, one by one, to the existing array. In an array without a cycle the new dot is always
tunnel coupled to only one of the old dots. Therefore we can adjust the detuning (and find the
noise-insensitive point for the newly introduced exchange interaction) by setting correctly the single
particle energy in the new dot. In the limit of small tunnel couplings this does not influence the
fine tuning of all other exchange interactions in the array. One can also observe that in such case
the noise-insensitive point lies in the geometrical center of the region with each dot being singly
occupied. Notably it is irrelevant whether the tunnel couplings between pairs of dots are identical.

The two particular examples of the dot array without a cycle are: (a) the three-electron triple
quantum dot, in which one can implement the resonant exchange or exchange-only qubit [65, 66],
and (b) a central quantum dot surrounded by three tunnel-coupled dots, which is a basis of the
proposed exchange-only singlet-only qubit [67].

This theoretical result has two limitations for practical applications. First, the control of the
quantum dots is performed by means of gate voltages that couple not only to the chemical potential
of the closest dot, but also to other dots, and to the tunnel couplings. Second, the charge noise
couples to the tunnel couplings.

3.4 Effective gate voltage noise
The tunnel couplings, controlled by dedicated gates, are the second knob the experimentalist has
to tune the array of the quantum dot, next to the chemical potential of the dots (in particular –
detuning). It is also the second most significant channel through which the charge noise affects
the splitting between the singlet and triplet configuration of the electron pairs, and the one that
dominates when the detuning noise is suppressed by means of the symmetrization.

To include the tunnel coupling noise in an experimentally accessible manner it is convenient to
use the effective gate-voltage noise. It relies on the assumption that the charge noise experienced
by the qubit is either an actual gate voltage noise, or that the potential fluctuations have similar
length scales to the changes in the potential introduced by modifications of the gate voltages. In
this model the dephasing time due to the charge noise is given by

T ∗2 =
1√

2πσJ
=

1√
2π|dJ/d~V |σV

. (3.4)

Here the exchange splitting is considered to be a function of the vector of the gate voltages applied
on individual gates J(~V ) and σV is the rms effective gate voltage noise. The susceptibility to



3.5 Experimentally finding the optimal working point 27

the charge noise is given by the gradient of the amplitude of the exchange at the operating point
|dJ/d~V |.

Within this model a reduced sensitivity of the exchange splitting to the charge noise is an
experimental observation concerning tunability of the chemical potentials and the tunnel coupling.
For the typical GaAs quantum dot devices the lever arm between the dedicated gate and the
chemical potential of the dot is much larger than the lever arm between the gate voltage and
the tunnel coupling. This observation implies that the symmetric operation of the spin qubits is
beneficial [64, 68].

3.5 Experimentally finding the optimal working point
The ultimate question about the utility of the optimal symmetric configurations concerns the
experimental methods used to locate them. This task is relatively easy in the case of the double
quantum dot, but its complexity increases very quickly for larger quantum dot arrays.

In the double dot there is only a single exchange splitting and its value corresponds to the
frequency of the exchange oscillations which can be measured directly [7]. This enables, for
example, to apply the iterative gradient descent algorithm to converge to the optimal tuning.
Moreover, the dimensionality of the gate voltage space that needs to be searched is relatively
small (3) as the only relevant parameters that can be adjusted are the chemical potentials of the
two quantum dots and the tunnel coupling between them. This enables a mapping out of the full
topography of the exchange splitting with respect to gate voltages with only a few fingerprint
measurements [68] (Sec. 6.8).

Neither of these approaches is directly applicable to the triple quantum dot case (Ch. 5).
The gradient descend approach does not work, because one must simultaneously optimize two
parameters (susceptibility to the charge noise of the two exchange splittings) while being able to
measure only a combination of the two (the qubit splitting). On the other hand the dimension of the
parameter space in this problem increases to 5 (3 chemical potentials and two tunnel couplings)
which makes it impossible to fully map out the dependence of the qubit splitting with respect to all
gate voltages within a reasonable time.

In the study presented in chapter 5 we assumed that the experimentally controlled ε and δ

parameters (defined by Eq. 5.1) couple only to the chemical potential of the dots. Moreover we
decided to equalize the two exchange splittings only approximately. With these two simplifications
the optimization procedure reduces to setting the gradient of the qubit splitting with respect to ε and
δ to zero, while ensuring that the qubit splitting is nearly symmetric with respect to flipping the sign
of ε . This turned out to be sufficient to reduce the susceptibility to the effective gate voltage noise
by one order of magnitude. Finding the approximate optimal points in larger quantum dot arrays is
most likely possible as well, but it would require a much larger number of practical assumptions.
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We demonstrate a substantial improvement in the spin-exchange gate using symmetric
control instead of conventional detuning in GaAs spin qubits, up to a factor-of-six
increase in the quality factor of the gate. For symmetric operation, nanosecond voltage
pulses are applied to the barrier that controls the interdot potential between quantum
dots, modulating the exchange interaction while maintaining symmetry between the
dots. Excellent agreement is found with a model that separately includes electrical
and nuclear noise sources for both detuning and symmetric gating schemes. Unlike
exchange control via detuning, the decoherence of symmetric exchange rotations is
dominated by rotation-axis fluctuations due to nuclear field noise rather than direct
exchange noise.

4.1 Introduction
Spin qubits, basic units of quantum information built from the spin states of electrons in solid-state
systems, are one of the most promising realizations of a qubit [69]. This is due to their potential

This chapter and chapter 6 are adapted from Ref. [64]. c© (2016) by the American Physical Society.
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for minituarization, scalability and fault tolerance [70, 71]. In fact, experiments in recent years
have demonstrated remarkable progress in the coherent manipulation of single- and multi-spin
devices [37, 45, 72, 73]. Nevertheless, one of the main difficulties with spin qubits, and more
generally with solid-state qubits, is the decoherence due to interactions with the environment. In the
case of electron spins confined in semiconductor quantum dots, two main types of environmental
noise limit coherence: electrical noise and hyperfine interactions with nuclear spins in the surround-
ing lattice [12, 74, 75]. To reach the high control fidelities necessary for quantum computing, the
coupling between a quantum dot spin qubit and its environment can be reduced by the use of sweet
spots [76–78], and pulse errors can be reduced by bootstrap tomography [79, 80].

A crucial component of any spin-based quantum computing platform is strong spin-spin
interaction. In their seminal article, Loss and DiVincenzo proposed that exchange interactions
between electron spins could be controlled by the height of the tunnel barrier between neighboring
quantum dots [5]. However, until recently this proposal was not implemented in the laboratory, and
instead exchange interactions were induced by raising or lowering the potential of one dot relative
to the other, an approach referred to as tilt or detuning control [7]. Unlike the dot-symmetric tunnel
barrier control method, tilt control affects the two dots asymmetrically and hybridizes the (1,1) and
(0,2) charge states. Here numbers within each parenthesis denote occupation number of the left
dot and right dot. In Fig. 4.1(a) we illustrate the difference between the two methods. Firstly, a
singlet state (0,2)S is prepared (P). Thereafter the electrons are adiabatically separated to the |↑↓〉
state in the (1,1) charge configuration. At the exchange point (X), a pulse is performed. For the tilt
case, during this pulse the wavefunctions of the electrons are brought together by asymmetrically
deforming the confining potential of the dots. In the case of the symmetric mode of operation, the
exchange interaction is increased by lowering the potential barrier between the two dots. Finally,
reversing the slow adiabatic passage first projects the final two-spin state onto |↑↓〉 and then maps it
onto (0,2)S, which is then read out at the measurement point (M).

In this Letter, we demonstrate rapid, high-quality exchange oscillations implemented by pulsing
the barrier between two dots, as envisioned in the original Loss-DiVincenzo proposal. We also show
that, unlike tilt-induced qubit rotations, the coherence of barrier-induced rotations is not limited by
electrical detuning noise, but rather by nuclear spin fluctuations parallel to the applied magnetic
field. We quantify the improvements by studying exchange oscillations within a singlet-triplet
qubit, corresponding to

√
SWAP operations between the two spins. Alternatively benchmarking of

single-qubit gate fidelities is in principle possible but requires nuclear programming [45]. Recent
work on surface acoustic waves and silicon triple quantum dots showed results consistent with
some of our observations [68, 81], indicating that symmetric exchange finds applications beyond
GaAs qubits.

4.2 The device and pulse sequences

The double quantum dot device with integrated charge sensor [82] is shown in Fig. 4.1(b). The
device was fabricated on a GaAs/AlGaAs heterostructure 57 nm below the surface, producing a
two-dimensional electron gas with bulk density n = 2.5×1015 m−2 and mobility µ = 230 m2/Vs.
To minimize stray capacitance a mesa was patterned using electron-beam lithography and wet
etching. Metallic gates (Ti/Au) were deposited after atomic layer deposition of 10 nm HfO2, which
allows both positive and negative gating, and obviates gate-bias cooling [41]. All measurements
were conducted in a dilution refrigerator with mixing chamber temperature below 50 mK and
in-plane magnetic field B = 300 mT applied perpendicular to the axis between dots.

Voltages pulses were applied via high-bandwidth coaxial lines to the left and right plunger
gates, VL, VR, and the barrier between the dots, VM. In practice, to account for the small coupling
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Figure 4.1: (a) Schematic comparison of detuning (tilt) and symmetric exchange pulse sequences,
showing double-dot potentials and dot occupancies. Tilt: wave function overlap controlled by
detuning the confining potential; Symmetric: wave function overlap controlled by lowering the
potential barrier between dots. (b) Electron micrograph of the device consisting of a double dot
and charge sensor. Note the gate that runs through the center of the dots. A 10 nm HfO2 layer is
deposited below the gates to allow positive and negative gating. High-bandwidth lines are connected
to left and right plungers gates, VL, VR (blue), and the middle barrier gate, VM (red). (c) Energy
diagrams of the two-electron spin singlet, S, and spin-zero triplet, T0, as a function of detuning ε .
(Left) Tilt mode: Exchange, J, is controlled by detuning ε , set by VL and VR; (Right) Symmetric
mode: J is controlled interdot coupling, γ , set by VM (red curve). (d) Pulse sequences for tilt and
symmetric modes, with amplitudes εx and γx during the exchange pulse, respectively.

asymmetries, all three gates are involved in applying detuning ε and symmetric barrier control γ:

ε = k0[(VR−V 0
R)− (VL−V 0

L )]+ k1(VM−V 0
M),

γ =VM−V 0
M,

(4.1)

where V 0
R , V 0

L and V 0
M are DC offset voltages (see Supplementary Material). Parameters k0 = 0.5

and k1 = −0.075 were determined experimentally by mapping out the charge stability diagram.
The value of k0 is consistent with previous experiments and sets the difference between left and
right dot electrochemical potential, whereas k1 keeps other charge states energetically unaccessible
during γ pulses.

Energy levels for the two-electron singlet S and triplet T0 states as a function of detuning, ε , are
shown in Figs. 1(c), along with the pulse sequences for the tilt and symmetric operation modes in
Fig. 1(d). For both, tilt and symmetric operation, two electrons are prepared (P) in a singlet (0,2)S
state and, by slowly ramping ε to (1,1), the system is initialized (I) into the ground state of the
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Figure 4.2: (a) Probability of detecting a singlet, Ps, as a function of εx and exchange time τ for
tilt-induced oscillations (γx = 0 mV). (b) Ps as a function of γx and exchange time τ obtained for
barrier-induced oscillations near the symmetry point (εx = 13.5 mV). (c) Same as (a) with barrier
pulse activated, γx = 190 mV, revealing the sweet spot of the symmetric operation. The dark vertical
features near 39 mV and -44 mV are due to leakage from the singlet state to the spin-polarized
triplet state. Insets show theoretical simulations for each experimental situation.

nuclear Overhauser field, either |↑↓〉 or |↓↑〉. For tilt operation, the exchange pulse, J, is applied by
detuning to the exchange (X) point εx for a duration τ , inducing rotations between |↑↓〉 and |↓↑〉.
For symmetric operation, the exchange pulse is applied by pulsing the middle gate to γx.

4.3 Exchange oscillations

Two-dimensional images of exchange oscillations, controlled by either tilt [Fig. 4.2(a)] or symmetric
operation near the midpoint of (1,1) [Fig. 4.2(b)], show a striking difference in quality. In both
images, each pixel represents the singlet return probability, PS, measured from an ensemble of
∼ 103 single-shot measurements. Each single-shot measurement is assigned a binary value by
comparing the reflectometery signal at the measurement (M) point, integrated for TM = 10 µs, to a
fixed threshold [82, 83]. Figure 4.2(c) shows exchange oscillations using both tilt and exchange.
This image is generated by applying a tilt pulse of amplitude εx (of either sign) along with a fixed
symmetric pulse γx = 190 mV for a duration τ . As |εx| is increased J also increases, producing a
chevron-like pattern centered around the sweet spot J(εx = 0) that occurs in the middle of the (1,1)
charge state. Defining a quality factor, Q, to be the number of oscillations before the amplitude
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Figure 4.3: (a) Tilt-induced exchange oscillations (i.e. γx = 0 mV) for εx = 79.5 mV and 82 mV,
generating oscillation frequencies indicated by J. (b) Same as (a) but for the symmetric mode of
operation (εx = 13.5 mV), with γx = 100 mV, 120 mV and 140 mV. Open circles are experimental
data. Solid lines correspond to the theoretical model in Eq. (4.2), with J and a horizontal offset
being the only adjustable parameters. Insets show the quality factor Q, defined as the number
of oscillations before the amplitude damps by a factor of e, as a function of J for both tilt and
symmetric operation modes. Solid circles correspond to data in the main panel, and solid lines are
theoretical predictions.

decays to 1/e of its initial value, we measure Q∼ 35 at the symmetry point, εx = 0 1.

The oscillation frequency of PS(τ) gives a direct measure of J at the exchange point X. Interest-
ingly, the frequency does not depend on the Overhauser field, even when it is comparable in size to
J [84]. Figures 4.3(a) and (b) show a set of experimental exchange oscillations representative of
the tilt and symmetric operation mode, respectively. Q extracted from such oscillations is shown
in the insets. Consistent with previous observations [7, 63], tilt-induced exchange oscillations
result in Q ∼ 6 independent of J. On the other hand, for the symmetric mode, Q increases with
J for the range measured of 40 MHz < J < 700 MHz. This is in agreement with recent results
in singlet-triplet qubits fabricated in the Si/SiGe heterostructures [68]. Much higher values of Q
can be obtained by tilting the double dot potential so far that both S and T0 states share the same
(0,2) charge state [12]. However, it is unclear if qubit operations at frequencies of tens of GHz are
practical.

1Fig. 4.2(c) shows that barrier-induced exchange oscillations have high quality factors for a wide range of operating
points εx near the sweet spot. For example, data shown in Fig. 4.2(b) was obtained at εx = 13.5 mV, which for practical
purposes we also classify as symmetric operation.



34 Chapter 4. Noise suppression using symmetric exchange gates in spin qubits

4.4 Noise quantification
To quantify the noise sensitivity of the symmetric exchange gate as well as gain insight into why it
outperforms exchange by detuning, we compare both methods to a simple model that includes both
nuclear Overhauser gradient noise and voltage noise on the detuning and barrier gates. Noise is
assumed gaussian and quasistatic on the timescale of the exchange oscillations. Nuclear noise is
characterized by a mean longitudinal Overhauser gradient energy h0 between dots, with standard
deviation σh. Exchange noise is assumed to result from voltage noise on left and right plungers
and the barrier, with mean exchange energy J with standard deviation σJ . The model also accounts
for triplet-to-singlet relaxation at the measurement point, with a relaxation time TRM during the
measurement interval of length TM. Within this model, the singlet return probability 〈〈Ps〉〉 over
both noise ensembles is given by [84]:

〈〈Ps〉〉=1− TRM

TM

(
1− e−

TM
TRM

)
e
− h2

0
2σ2

h e
− J2

2σ2
J

√
πσhσJ

×
∫

π/2

−π/2
dχ

{
b(χ)

a(χ)3/2 e
b(χ)2

a(χ)

−Re

[
b(χ)+ iτsec(χ)

a(χ)3/2 e
[b(χ)+iτsec(χ)]2

a(χ)

]}
, (4.2)

where χ is the tilt of the qubit rotation axis during an exchange pulse due to the Overhauser field
gradient [84], a(χ)≡ 2tan2χ/σ2

h +2/σ2
J and b(χ)≡ h0tanχ/σ2

h + J/σ2
J .

The black solid lines in Fig. 4.3, together with the insets in Figs. 4.2(a), (b) and (c), are
generated by evaluating Eq. (4.2) numerically. Two fit parameters per curve are the oscillation
frequency J and a horizontal offset associated with the rise time of the waveform generator. All
other parameters were obtained from independent measurements: The Overhauser energy gradient
fluctuations, σh = 23 MHz, was obtained by measuring the distribution of free induction decay
frequencies [75] over a 30 min. interval and fitting the distribution to a gaussian.

The saturation of the singlet return probability, PS, at long τ , denoted Psat, will deviate from
Psat = 0.5 in the presence of a nonzero mean Overhauser field gradient, h0, or finite relaxation
time, TRM. Fitting the J dependence of Psat [Fig. 4.4(a)], yields fit values TRM = 30 µs and
h0/h = 40 MHz.

Exchange noise σJ is obtained by assuming (i) all noise is gate noise, (ii) noise on different gates
is independent: σ2

J = σ2
el[(dJ/dVL)

2 +(dJ/dVM)2 +(dJ/dVR)
2]. In giving all three components

equal weight, we have further assumed that all three gates are equally noisy as quantified by the
parameter σel. Taking into account the definitions in Eq. (4.1) we obtain:

σJ = σel

√
2k2

0

(
dJ
dεx

)2

+

(
dJ
dγx

+ k1
dJ
dεx

)2
(4.3)

The derivatives are calculated from a phenomenological smooth exchange profile J(εx,γx) fitted
to a discrete map of J measured at various operating points (see chapter 6). The effective gate noise
σel is extracted from tilt exchange oscillations measured in a regime where effective detuning noise
dominates, giving σel = 0.18 mV (see Supplementary Material). This value, together with Eq. 4.3,
determines σJ(εx,γx) used in all simulations, and yields excellent agreement with data.

The origin of the improved electrical performance becomes apparent when comparing the
required pulse amplitudes for symmetric and tilted operation for a given J [Fig. 4.4(b)]. Although
the dependences of εx and γx on J are similar, the range of εx is significantly smaller than γx. Note
in Fig. 4.4(b) that J changes from 0.1 to 0.3 GHz for a ∼ 3 mV change in εx, or a ∼ 30 mV change
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Figure 4.4: (a) Saturation probability of the symmetric mode of operation, PSat, as a function
of J (symbols). Comparison with theory (solid line) determines TRM and h0. (b) Plot of εx
for the tilt and γx for the symmetric mode of operation, as functions of the exchange coupling
extracted experimentally. (c) Decoherence time TR, i.e. time before the amplitude of oscillations
is reduced by a factor of e, as a function of J for both tilt and symmetric modes. (d) Quality of
the exchange rotations, defined as Q = JTR, for different J. In (c) and (d) the open circles are
obtained experimentally and solid lines correspond to a model that includes dephasing due to
electrical and nuclear noise. Black dashed lines are the same model if we only consider nuclear
noise contributions (T (nuc)

R , Q(nuc)). Blue and red dashed lines correspond to the electrical noise
contributions (T (el)

R , Q(el)) for the tilt and symmetric modes of operation, respectively. Solid circle
indicates the maximum Q value observed in Fig. 4.2(c).

in γx [see Fig. 4.4(b)]. Because of this difference in derivatives of J with respect to εx and γx, the
symmetric operation has much less noise for a given noise in the gate voltages.

The contributions of nuclear and electrical noise to limiting the quality factor Q of and dephasing
time, TR = Q/J, comparing experiment and model, is shown in Figs. 4.4(c) and (d). Note that for
detuning (tilt) operation, electrical noise dominates above∼ 0.2 GHz, so that going any faster (using
larger J) just makes the exchange noise greater in proportion, limiting the number of oscillations
to Q ∼ 6. For symmetric exchange, on the other hand, electrical noise doesn’t dominate until
above J ∼ 0.6 GHz, resulting in a monotonically increasing quality factor up to ∼ 1 GHz. From
the model, we find Q as high as 50, 8 times larger than in the conventional tilt operation mode.
Finally, we note that the origin of the effective electrical noise may be within the sample and
not in the instrumentation. To distinguish actual voltage fluctuations on the gate electrodes (due
to instrumentation) from intrinsic noise source (e.g. two-phonon processes [85]), further studies
including temperature dependence are needed.
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4.5 Summary
In summary, we have investigated experimentally and modeled the application of an exchange
gate applied by opening the middle barrier at a symmetry point of a two-electron spin qubit
system instead of the conventional method, which is to detune the potential. The model allows
the influences of nuclear and electrical noise to be disentangled for both symmetric and detuning
exchange control, and is in excellent agreement with experimental data. We find that symmetric
mode of control is significantly less sensitive to electrical noise due to the symmetric arrangement,
making exchange only quadratically sensitive to detuning gate voltage noise. With this new
symmetric control method, we were able to increase the quality factor of coherent oscillations from
around 6 to 35, and expect that improvements beyond Q∼ 50 are possible by further increasing
J. The corresponding enhancement of coherence times by nearly an order of magnitude will also
benefit other single- and multi-qubit implementations that rely on exchange interactions [21].
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We operate a resonant exchange qubit in a highly symmetric triple-dot configuration
using IQ-modulated RF pulses. At the resulting three-dimensional sweet spot the qubit
splitting is an order of magnitude less sensitive to all relevant control voltages, compared
to the conventional operating point, but we observe no significant improvement in
the quality of Rabi oscillations. For weak driving this is consistent with Overhauser
field fluctuations modulating the qubit splitting. For strong driving we infer that
effective voltage noise modulates the coupling strength between RF drive and the
qubit, thereby quickening Rabi decay. Application of CPMG dynamical decoupling
sequences consisting of up to n = 32 π pulses significantly prolongs qubit coherence,
leading to marginally longer dephasing times in the symmetric configuration. This is
consistent with dynamical decoupling from low frequency noise, but quantitatively
cannot be explained by effective gate voltage noise and Overhauser field fluctuations
alone. Our results inform recent strategies for the utilization of partial sweet spots in
the operation and long-distance coupling of triple-dot qubits.
The version of the article presented in the thesis is supplemented with the derivation of

This chapter is adapted from Ref. [86].



38 Chapter 5. Symmetric operation of the resonant exchange qubit

the formula for the Rabi decay time (Sec. 5.6).

5.1 Introduction
Spin qubits are widely investigated for applications in quantum computation [5, 7, 8, 21, 22, 37, 87],
with several operational choices depending on whether the qubit is encoded in the spin state of
one [8, 15, 18, 19, 21, 87], two [7, 22, 37, 45] or three electrons [48, 50–52, 58, 65, 88]. In
particular, spin qubits encoded in three-electron triple quantum dots allow universal electrical
control with voltage pulses, and enable integration with superconducting cavities [23, 55, 89–92].
Multi-qubit coupling via superconducting cavities, however, is challenging due to the effects of
environmental noise on resonant exchange (RX) qubits [52, 55]. A recent approach to improve
coherence times is the operation at sweet spots, where the qubit splitting is to first order insensitive
to most noisy parameters [64–66, 68]. Here, we operate a symmetric resonant exchange (SRX)
qubit in which the qubit splitting is highly insensitive to all three single-particle energies [66], and
compare its performance to its conventional configuration as a RX qubit [49, 52].

VLB VRB
VLP VMP VRP
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b

a d SRXRXc
symmetric sweet spotconventional sweet spot
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δ
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ε00

εop = 0 εop = 0δop ≠ 0 δop = 0
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δ

f

δ0δop

Figure 5.1: (a) Scanning electron micrograph of a GaAs triple quantum dot, formed under the
rounded accumulation gate, and a proximal sensor dot (white arrow), formed by depletion gates.
The five depletion gates used for qubit manipulation are labeled. (b) Schematic illustration of two
control parameters, δ and ε , resulting in energy shifts δ |e| and ε|e|. (c) Potential along the RX
qubit. The qubit splitting arises from virtual tunneling of the central electron to the outer dots (blue
arrows), and is therefore sensitive to potential fluctuations of each dot. (d) Potential along the
SRX qubit. Tunneling of the outer electrons to the central dot contributes to charge hybridization
equally strongly as tunneling of the central electron to the outer dots (red arrows), making the qubit
splitting insensitive to potential fluctuations of all three dots. (e) Schematic dependence of the qubit
frequency f on ε and δ around the operating point of the RX and SRX qubit.

5.2 RX and SRX qubit
We configure a triple-quantum-dot device either as a SRX or RX qubit by appropriate choice of
gate voltages. Gate electrodes are fabricated on a doped, high-mobility GaAs/AlGaAs quantum
well, and the triple dot is located ∼ 70 nm below three circular portions of the accumulation gate
(Fig. 5.1a). The occupation of the dots is controlled on nanosecond timescales by voltage pulses on
gates Vi, where i refers to the left/middle/right plunger gate (LP/MP/RP) or left/right barrier gate



5.2 RX and SRX qubit 39

RF

γ

384 mV

δ

37 mV

γB

340 mV

t

ε

60 mV

0 0 1

t

33 mV

0 0 1

ε

b

a

initialize readout

initialize readout

τ
RX

SRX
RF τ

0

0

0

0

0

γop

γop
B

Figure 5.2: Schematic pulse cycle for measuring Rabi oscillations of the RX (a) and SRX (b) qubit.
An IQ-modulated RF burst is applied on resonance with the qubit splitting for duration τ . Linear
detuning ramps, with typical amplitudes indicated, implement spin-to-charge conversion needed
for qubit initialization and readout. For qubit spectroscopy and CMPG measurements the RF burst
is replaced by a continuous RF tone or a sequence of calibrated RF pulses, respectively.

(LB/RB). Radio frequency (RF) bursts for resonant qubit control are applied to the left plunger gate.
The conductance through the proximal sensor dot is sensitive to the charge occupation of the triple
quantum dot, allowing qubit readout (see below).

In the presence of an in-plane magnetic field, B = 400 mT in this experiment, the triple-dot
qubit is defined by the two three-electron spin states with total spin S = 1/2 and spin projection
Sz = 1/2 [48, 49, 52, 65]. Ignoring normalization, these spin states can be represented by
|0〉 ∝ (|↓↑↑〉− |↑↓↑〉)+(|↑↑↓〉− |↑↓↑〉) and |1〉 ∝ (|↑↑↓〉− |↓↑↑〉). Here, arrows indicate the spin
of the electron located in the left, middle and right quantum dot. Note that the spin state of |0〉 and
|1〉 is, respectively, symmetric and antisymmetric under exchange of the outer two electrons. In
the presence of interdot tunneling this exchange symmetry affects hybridization of the associated
orbital wavefunctions, splitting |0〉 and |1〉 by h f (where h is Planck’s constant and f sets the
frequency of the qubit’s rotating frame). Similarily, an additional triple-dot state with S = 3/2 and
Sz = 1/2 is split from the qubit states due to interdot tunneling. All other triple-dot states have
different Sz and are energetically separated from the qubit states due to the Zeeman effect.

In the conventional operating regime of the RX qubit (Fig. 5.1c) the (111) charge state of the
triple dot is hybridized weakly with charge states (201) and (102) (here number triplets denote
the charge occupancy of the triple dot). This lowers the energy of |0〉 with respect to |1〉 and
makes the resulting qubit splitting sensitive to detuning of the central dot, δ (cf. Fig. 5.1b,e) [52].
The qubit splitting is, however, to first order insensitive to detuning between the outer dots, ε ,
[49], reflecting that tunneling across left and right barrier contribute equally to the qubit splitting
(Fig. 5.1c,e). Qubit rotations in the rotating frame are implemented by applying RF bursts to gate
VLP, such that the operating point oscillates around ε = 0. When the RF frequency matches the qubit
splitting, the qubit nutates between |0〉 and |1〉, allowing universal control using IQ modulation
[52]. When the detuning of the outer dots is ramped towards (201), |0〉 maps to a singlet state of
the left pair (|SL〉 ∝ (|↓↑↑〉− |↑↓↑〉), see first terms in |0〉), whereas |1〉 remains in the (111) charge
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state due to the Pauli exclusion principle [48, 50, 52]. This spin-to-charge conversion allows us to
perform single-shot readout on microsecond timescales, by monitoring a proximal sensor dot using
high-bandwidth reflectometry [9]. In this work we estimate the fraction of singlet outcomes, PS, by
averaging 1000-10000 single-shot readouts.

In the case of the SRX qubit, however, all three single-particle levels are aligned, and the
(111) state hybridizes with the charge states (201), (102), (120) and (021) [66]. This introduces
additional symmetries between the tunneling of the electron from the central dot to the outer dots
and tunneling of the outer electrons to the central dot (Fig. 5.1d). As a consequence, the qubit
splitting is expected to be insensitive to first order to both ε and δ (Fig. 5.1e) as well as to the
barrier detuning, εB (introduced below). Due to the required alignment of single-particle levels,
hybridization is suppressed by the charging energy within each dot (indicated by the large energy
spacing between solid and dashed lines in Fig. 5.1c,d). Accordingly, we find that much larger
tunnel couplings have to be tuned up to maintain a significant qubit splitting. In practice, the gate
voltage configuration needed to achieve a SRX qubit splitting of a few hundred megahertz does no
longer allow spin-to-charge conversion solely by a ramp of ε . Therefore, we also apply voltage
pulses to the barrier gates when ramping the qubit between the operation configuration (indicated
by superscript op) and readout configuration (see below).

Figure 5.2a (5.2b) defines the pulse cycle used for spectroscopy and operation of the RX (SRX)
qubit. Taking into account the physical symmetries of the device (cf. Fig. 5.1), control parameters
ε,γ,δ ,εB,γB are specified in terms of gate voltages Vi,
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and the power (PRF), duration (τ), frequency ( fRF) and phase of the IQ-modulated RF burst. The
operating point of the SRX qubit, defined by Vi = V sym

i , was chosen to yield a qubit frequency
of 530 MHz 1. The operating point of the RX qubit, located at {δ op > 0,γop > 0,γop

B < 0}, was
chosen to yield a comparable qubit frequency of 510 MHz. The linear ramps before (after) the RF
burst facilitate initialization (readout) of the qubit state via an adiabatic conversion of a two-electron
spin singlet state in the left dot. For the RX qubit {δ −δ op,γ− γop,εB,γB− γ

op
B } all remain zero

throughout the pulse cycle, i.e. the operation and readout configuration differ only in detuning ε

(Fig. 5.2a). In contrast, to adiabiatically connect the initialization/readout point of the SRX qubit to
its operating point, we found it necessary to vary ε , δ , γ and γB during the pulse cycle (Fig. 5.2b),
which involves voltage pulses on all five gates indicated in Fig. 5.1a.

5.3 Qubit spectroscopy and Rabi oscillations

Qubit spectroscopy performed in the vicinity of the operating point quantitatively reveals each
qubit’s symmetries and susceptibilities to gate voltage fluctuations. First, maps as in Fig 5.3a
are acquired by repeating a pulse cycle with τ = 150 ns fixed, and plotting the fraction of singlet
readouts, PS, as a function of fRF, while stepping the control parameters along five orthogonal axes
that intersect with the operating point. The qubit frequency f is extracted from the center of the
dominant PS( fRF) resonance (cf. red circles in Fig 5.3a), and plotted as a function of ε , δ , γ , εB

1(V sym
LP ,V sym

LB ,V sym
MP ,V sym

RB ,V sym
RP ) = (-1.53, -0.14, -1.05, -0.15, -0.83) V.
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Figure 5.3: (a) Qubit spectroscopy along δ around the SRX operating point (see text). The red
circles indicate the extracted qubit splitting f . Additional resonances correspond to multiphoton
excitations of the triple dot. (b-f) Extracted qubit splitting along δ , ε , εB, γ and γB for the SRX
(red) and RX (blue) configuration, around their corresponding operating points. Error bars indicate
the inhomogeneous line width of the resonance.

and γB (Fig. 5.3b-f). Indeed, the dependence of f on δ reveals that the SRX qubit splitting is to first
order insensitive to δ , in contrast to the conventional RX qubit (Fig. 5.3b). Further, we observe that
both qubits show a sweet spot with respect to ε and εB (Fig. 5.3c,d), indicating that the symmetry
breaking associated with εB 6= 0 is analogues to the well-known symmetry breaking associated
with ε 6= 0 [49]. Interestingly, for both detuning parameters, the curvature of the qubit splitting
is significantly smaller for the SRX configuration, compared to the RX configuration. Moreover,
the SRX qubit frequency is also significantly less susceptible to changes in parameters γ and γB,
compared to the conventional RX qubit (Fig. 5.3e,f), corroborating the potential use of this highly
symmetric configuration for prolonging qubit coherence.

The qubit spectra from Figures 5.3 allow us to quantify the susceptibility of the qubit splitting
to gate voltage fluctuations, by evaluating

S =

√√√√√ ∑
i∈{LP,LB,

MP,RB,RP}

(
∂ f
∂Vi

)2

=

√√√√√ ∑
ξ∈{ε,δ ,
γ,εB,γB}

(
∂ f
∂ξ

)2

(5.3)

for both operating points. For the SRX qubit we find a susceptibility to gate noise (S = 6 MHz/mV)
that is one order of magnitude smaller compared to the RX qubit (S = 66 MHz/mV). For the linear
coupling regime this means that voltage fluctuations on gate electrodes, including instrumentation
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noise propagating on the cryostats wideband transmission lines, are expected to be much less
detrimental to the SRX qubit than to the RX qubit.

70 60 50
 (dBm)

0

50

100

150

 (n
s)

RX
510 MHza

60 50 40
 (dBm)

0

50

100

150

 (n
s)

SRX
530 MHzb

0 50 100 150

R (MHz)

0

50

100

150

R
 (n

s)

c
RX
SRX

Eq. (4)
=
=

0 100
R (MHz)

0

4

8

S 0.2 0.6 1.0

Figure 5.4: (a,b) Rabi oscillations of the RX and SRX qubit as a function of RF burst time (τ)
and excitation power (PRF) obtained at nearly identical qubit splitting of 510 MHz (RX) and 530
MHz (SRX). (c) Parametric plot of Rabi decay time TR and quality factor Q (inset) as a function of
Rabi frequency fR, extracted from vertical cuts of (a) and (b). Solid lines are theory fits based on
Eq. 5.4 and Q≡ TR× fR. Broken lines indicate the limits imposed by solely detuning noise (black)
or solely drive noise (red and blue).

Next we investigate whether the reduced noise susceptibility of the SRX qubit results in
improved Rabi oscillations (Fig. 5.4). To achieve a comparable Rabi frequency, fR, we find that PRF
needs to be 10 dB larger for the SRX qubit compared to the RX qubit, consistent with the smaller
curvatures observed in Fig. 5.3. However, only for high PRF do we observe improvement in SRX
qubit performance relative to the RX qubit. For quantitative comparison we fit an exponentially
damped cosine to PS(τ) for each RF power. Figure 5.4c parametrically plots the extracted 1/e decay
time (TR) and quality factor (Q= TR× fR) of Rabi oscillations as a function of fR. For fR < 50 MHz
the quality of SRX Rabi oscillations is comparable to the RX qubit, while for fR > 50 MHz TR and
Q are enhanced by approximately 50%, relative to the RX qubit.

The marginal performance improvement observed for the SRX qubit can be analyzed quantita-
tively by extending theory from Ref. [49] to include the dependence of the Rabi oscillations decay
time TR on the Rabi frequency fR. Assuming quasistatic gate-voltage noise and quasistatic nuclear
spin noise, we derive(

1
TR

)2

=
σ4

f

4 f 2
R
+ f 2

RA2, (5.4)

where σ f quantifies the rms deviation of f from fRF due to effective voltage flucuations and
Overhauser field fluctuations (discussed below). The quantity A2 captures the effect of voltage



5.4 Coherence under CPMG sequence 43

fluctuations on the coupling strength of the RF drive

A2 =
8π

η2 ∑
ξ=ε,δ ,
γ,εB,γB

(
∂η

∂ξ
σξ

)2

, (5.5)

with σξ being the standard deviation of the fluctuating paramater ξ and η being the lever arm
between amplitude of the RF drive and the qubit nutation speed in the rotating frame. We find
that the observed TR( fR) is well fitted by our theoretical model, using A = 0.17 (0.22) for the SRX
(RX) qubit and a common value σ f = 0.025 (solid lines in Fig. 5.4c). Although Ref. [49] formally
identified η with

η =

√(
∂J

∂VLP

)2

+3
(

∂ j
∂VLP

)2

(5.6)

(here J = (JL + JR)/2 and j = (JL− JR)/2 are symmetry-adapted exchange energies arising from
exchange JL/R between central and left/right dot), its implications for the properties of the A2 term
and associated Rabi coherence were not considered. Equations (5.5),(5.6) would in principle allow
the extraction of voltage noise in more detail, but experimentally the partial derivatives are not
easily accessible. However, by plotting the expected limit of TR if only detuning noise (black
dash-dotted line) or only drive noise (red and blue dashed lines) is modeled, we deduce that the
dominating contribution to σ f arises not from effective gate voltage noise, but from fluctuations of
the Overhauser gradient between dots. Assigning σ f = 0.025 entirely to Overhauser fluctuations,
we estimate the rms Overhauser field in each dot to be approximately 4.2 mT, in good agreement
with previous work on GaAs triple dots [52, 93].

The detrimental effect of fluctuating Overhauser fields on qubit dephasing is not surprising,
given that the qubit states are encoded in the Sz = 1/2 spin texture: For |0〉 the spin angular
momentum resides in the outer two dots, whereas for |1〉 it resides in the central dot. This makes
the qubit splitting to first order sensitive to Overhauser gradients between the central and outer dots
[49]. Equation 5.6 further suggests that the qubit drive strength depends on j = (JL− JR)/2, which
likely is first-order-sensitive to both ε and εB, and hence we suspect that fR, unlike f , remains
sensitive to the charge noise. These conclusions suggest that triple-dot qubits will benefit from
implementation in nuclear-spin-free semiconductors, and possibly from replacing IQ-control in the
rotating frame by baseband voltage pulses. Recent theoretical work indicates that this may allow
efficient two-qubit gates between neighboring qubits using exchange pulses [66] and long-distance
coupling via superconducting resonators [55, 92].

5.4 Coherence under CPMG sequence
Finally, we test the prospect of the SRX qubit as a quantum memory, using Hahn echo and
CPMG sequences consisting of relatively strong (τ . 10 ns) π-pulses (defined in Fig. 5.5a). These
dynamical decoupling sequences are particularly effective against nuclear noise [74, 94], which
is known to display relative long correlation times [82, 95, 96]. Figure 5.5 shows the resulting
coherence time, T CPMG

2 , for different qubit frequencies, for up to n=32 pulses. Values for T CPMG
2

were extracted from Gaussian fits to PS(T ), where T = n · tw is the total dephasing time. For small
number of π-pulses we see no difference in the performance of the RX and SRX qubit, indicating
that effective voltage noise (incl. instrumentation noise on gate electrodes) is not limiting coherence.
Qualitatively, this may point towards high-frequency Overhauser fluctuations playing a dominant
role, although we find coherence times significantly shorter than expected from nuclear spin noise
alone [7, 74, 96] and values reported for RX qubits [52]. While T CPMG

2 strongly depends on the
qubit frequency, the ratio f ×T CPMG

2 is roughly independent of f (not shown). This is reminiscent
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Figure 5.5: (a) CPMG dynamical decoupling sequence adapted from Ref. [52]. The (π/2)y pulse
prepares the superposition state (1/

√
2)(|0〉+ |1〉). The segment consisting of a waiting time, tW/2,

a πx pulse, and another waiting time, tW/2, is repeated n times (n = 1 for Hahn echo). The (−π/2)y

pulse projects the resulting state onto |0〉 or |1〉. The fraction of |0〉 outcomes, for increasing waiting
time and fixed n, is used to extract the coherence time T CPMG

2 (see main text). (b) T CPMG
2 as a

function of the number of π pulses for various SRX and RX qubit frequencies.

of gate defined quantum dots that showed a nearly exponential dependence of the exchange splitting
on relevant control voltages [12, 21, 52, 63, 64, 68].

Although we do not know the exact origin of the effective noise observed here and in previous
work [50, 52], we note that the overall noise levels need to be reduced by several orders of magnitude
to allow high-fidelity entangling gates [55]. As a cautionary advice against the overuse of partial
sweet spots, we note that for any qubit tuned smoothly by N (in our work five) gate voltages one
can always (i.e., for any operating point) define at least N−1 (in our work 4) independent control
parameters that to first order do not influence the qubit splitting. This underlines the importance of
careful analysis of noise sources and noise correlations [97] in determining optimal working points
of qubits [98].

For the 530 MHz tuning the SRX qubit appears to outperform the RX qubit for n > 8, indicating
that the spectral noise density at higher frequencies, filtered by the CMPG sequence [94, 99–101],
may indeed be reduced for the SRX qubit. The scaling of T CPMG

2 with (even) number of pulses
appears to follow a power law. Although the exponent (0.77±0.07) for the SRX data is consistent
with values reported for RX qubits [52], a spectral interpretation may need to take into account
unconventional decoherence processes that can occur at sweet spots, such as non-Gaussian noise
arising from quadratic coupling to Gaussian distributed noise and the appearance of linear coupling
to noise arising from low-frequency fluctuations around a sweet spot [98, 102].

5.5 Conclusions

In conclusion, we have operated a triple-dot resonant exchange qubit in a highly symmetric
configuration. At the three-dimensional sweet spot the overall sensitivity of the qubit frequency
to five control voltages is reduced by an order of magnitude, but resonant operation of the qubit
is technically more demanding. For weak resonant driving the quality of Rabi oscillations show
no significant improvement due to the dominant contributions of nuclear Overhauser gradients to
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fluctuations of the qubit splitting, motivating the future use of nuclear-spin-free semiconductors.
For strongly driven Rabi oscillations and CPMG decoupling sequences the coherence times are
significantly shorter than expected from instrumentation noise alone and Overhauser fluctuations,
suggesting that recent theory must be extended to include the dependence of drive strength on
control voltages. An optimization of gate lever arms and materials’ charge noise may then allow non-
resonant operation of multi-qubit structures that take advantage of highly symmetric configurations
of triple-dot qubits.
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5.6 Unpublished: Derivation of the formula for the Rabi decay time
To derive a formula for the Rabi decay time (Eq. (5.4) and (5.5)) we start with the RX qubit splitting
in the rotating frame

2π fR = ΩR =
√

(Ωd +δΩd)2 +δΩ2
Q (5.7)

in units of angular frequency, where ΩR is the Rabi angular frequency, Ωd is the Rabi drive, δΩd is
the Rabi drive noise and δΩQ the noise in the detuning of the qubit frequency. From here we can
calculate noise of the Rabi angular frequency the lowest order

δΩR ≡ΩR−Ωd = δΩd +
(δΩQ)

2

2Ωd
. (5.8)

Assuming that the noise affecting the qubit frequency and the drive strength are independent,
and using the fact that (σX2)2 = 2(σX)

4 we can convert the above identity into relation between
variances

σ
2
R = σ

2
d +

(σQ)
4

2(Ωd)
2 (5.9)

where σR,d,Q indicates, respectively, the variance of the Rabi angular frequency, drive and the qubit
frequency. We neglect higher order moments of (Ωd)

2 distribution. Knowing σR we can write the
formula for the Rabi decay time

TR =
1√

2π2
(

σ2
d +

(σQ)
4

2(Ωd)
2

) . (5.10)

What remains now is to analyze the origin of the noise in the drive strength (σd term) and in the
qubit frequency (σQ term).

First we focus on the noise in the qubit frequency. The splitting between the qubit states is [49]

ΩQ =
√

J2 +3 j2 +
2
3
(BL−2BM +BR) (5.11)
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where J = (JL + JR)/2, j = (JL − JR)/2 and BL/M/R is the electron Zeeman splitting in the
left/middle/right dot including contributions from the Overhauser field. We can safely assume that
the electrical noise affecting the first term (captured by σJ) and the nuclear noise affecting the
second term (captured by σB) are independent and so

σ
2
Q = σ

2
J +σ

2
B. (5.12)

We represent the value of σJ as a result of the effective gate voltage noise (σV ), and so its’ coupling
to the qubit is determined by the gradient of the qubit splitting with respect to gate voltages

σ
2
J = σ

2
V ∑

ξ∈{ε,δ ,
γ,εB,γB}

(
∂ΩQ

∂ξ

)2

. (5.13)

The sum in this formula is the equivalent of the susceptibility S defined in Eq. (5.3), up to 2π factor
between frequency and angular frequency. To estimate σB we assume that the Overhauser field in
the three quantum dots is independent and characterized by the same variance σB,0. This leads to

σ
2
B =

8
3

σ
2
B,0. (5.14)

As described in the main text, taking σB,0 = 4.2 mT, which is consistent with direct measurements
of the Overhauser field in device of the same geometry [96] (Fig. 10.2c), and neglecting the charge
noise contribution is sufficient to explain the Rabi decay time for weak driving.

To analyse the drive noise we first write down the Rabi drive as a product of rf exciting voltage
amplitude applied to the left plunger gate V 0

LP and the lever arm to the qubit drive η (defined in
Eq. (5.6)) [49]:

Ωd =
V r f

LP
2

η =
V r f

LP
2

√(
∂J

∂VLP

)2

+3
(

∂ j
∂VLP

)2

. (5.15)

This indicates that the drive strength can be affected either by the noise in the driving rf voltage
amplitude V r f

LP or in the lever arm η . We exclude the first possibility relying on two facts: stability
of the rf electronics and small power of the charge noise at qubit frequency [12]. On the other hand
the lever arm η is a function of exchange splittings and therefore is susceptible to the effective gate
voltage noise. Using these observation we can write down

σd =
V r f

LP
2

σV ∑
ξ∈{ε,δ ,
γ,εB,γB}

(
∂η

∂ξ

)2

. (5.16)

Inserting Eq. (5.15) we finally get that the variance of the drive noise is proportional to the drive

σd =
Ωd

η
σV ∑

ξ∈{ε,δ ,
γ,εB,γB}

(
∂η

∂ξ

)2

. (5.17)

Substituting Eq. (5.17) to Eq. (5.10) leads to Eq. (5.4) and (5.5).



6. Supplementary Information for
“Noise suppression using symmetric
exchange gates in spin qubits”

Supplementary material for “Noise suppression using symmetric exchange gates in
spin qubits" is given on the following topics:

6.1 Relationship between control parameters ε , γ and gate voltages VL, VM, and VR
6.2 Extracting J, TR and Q from Ps(τ)
6.3 Model of J(εx,γx)

6.4 Calculation of exchange noise σJ , decoherence time T (el)
R , and quality factor

Q(el) arising from quasistatic electrical noise σel
6.5 Determination of σel
6.6 Comparison of electrical noise in tilt and symmetric operation
6.7 Calculation of T (nuc)

R , TR, Q(nuc) and Q.
Supplementary information appended to this thesis include additional unpublished
results on:

6.8 Mapping of J with exchange pulses of fixed time
6.9 Exchange oscillations in symmetric, tilt and semi-tilt mode at the same frequency

6.10 Exchange oscillations at sweet spot for various γX

6.1 Relationship between control parameters ε, γ

and gate voltages VL, VM and VR

Here, we explain in more detail the actual voltage pulses employed for qubit operation, and their
relationship to control parameters for detuning and barrier height.

Fig. 6.1 illustrates the pulse sequence. Before each exchange pulse the qubit is prepared (P) in
the eigenstate of the nuclear gradient field (denoted |↑↓〉) using standard voltage pulses applied to
the left and right gate similar to earlier experiments [7]. These pulses realize exchange of electrons
with the reservoirs to reset a singlet (0,2) state, a fast crossing of the S-T+ degeneracy to avoid
leakage into the T+ state, and an adiabatic ramp to the (1,1) charge state that maps the singlet
state into the |↑↓〉 state (I). After each exchange pulse the qubit is read out using standard voltage
pulses applied to the left and right gate electrodes. These involve an adiabatic ramp and a fast
crossing of the S-T+ degeneracy that maps the |↑↓〉 qubit state into a (0,2) singlet state or the |↓↑〉
qubit state into a (1,1) T0 state. In the resulting measurement configuration (M), the charge states
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Figure 6.1: Schematic of the energy levels of the two-electron double quantum dot together with
voltage pulses VL(t), VM(t), VR(t) that implement a tilted (a) and barrier-induced exchange gate
(b). The blue trace indicates detuning of the double dot during preparation of the singlet (P), after
initialization of the |↑↓〉 state (I), and during the measurement of the charge sensor (M).

(0,2) and (1,1) are discriminated using single shot readout of the sensor quantum dot based on rf
reflectometry and thresholding of the demodulated rf voltage [82].

The exchange pulse itself differs from conventional operating schemes as it involves fast voltage
pulses applied to left, middle and right gate electrodes (VL,VM and VR in Fig. 6.1). For practical
reasons, low-frequency and high-frequency signals are transmitted to the sample holder using
twisted pairs and coax transmission lines, respectively, and combine on the sample holder using
home-built RC bias tees. After each readout pulse we apply pulse compensation pulses such that
the time average of each coax voltage signal is equal to the voltage of the coax signal just before
the exchange pulse. This means that the idling configuration of the qubit, characterized by voltages
V 0

L , V 0
M, V 0

R , corresponds to the DC voltages of the twisted pairs connected to the low-frequency
input of the bias tees. This ensures that the idling configuration of the qubit does not change within
a data set, even when changing amplitude or duration of the exchange pulses.

In order to turn on a well-defined exchange splitting for a certain amount of time it is convenient
to construct voltage pulses (VL(t)−V 0

L , VM(t)−V 0
M, VR(t)−V 0

R ) based on three control parameters
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δ , ε , and γ:
VL−V 0

L = δ − ε−α1γ

VR−V 0
R = δ + ε−α2γ

VM−V 0
M = γ

(6.1)

where, α1 = 0.675 and α2 = 0.525.
These equations show that the three parameters δ , ε , and γ parameterize physically different

manipulations of the (1,1) charge configuration. Namely, δ controls the common mode of the
plunger gates (it appears with a plus sign in each equation) and brings the (1,1) charge state, which
is in deep Coulomb blockade, toward the energy of the (2,2) or (0,0) charge states. In contrast,
the detuning parameter ε controls how much the double well potential is tilted towards the (0,2)
charge state (ε > 0) or the (2,0) charge state (ε < 0). The barrier height in the double well potential
is controlled by γ , which appears with a positive sign in the equation for VM (i.e. positive γ

corresponds to lower barrier height/increased exchange splitting) and with a negative gain in VL,R
(in order to minimize its contribution to the common mode voltage).

For the symmetric operation of the exchange gate the choice of detuning and barrier during the
time of exchange rotation, (εx,γx), are most important, as these parameters determine how much
virtual tunneling to (0,2) and (2,0) can occur (setting the speed of the exchange gate), and how
balanced these processes are (minimizing the sensitivity to ε noise). The common mode voltage
during the exchange pulse, δx, as well as the detuning voltage after initialization of the |↑↓〉 state,
εi, have a much weaker effect on the quality of observed exchange rotations, and therefore have not
been studied systematically. For the measurement presented in the main text, we choose δx = 0 and
εi = 13.5 mV.

6.2 Extracting J, TR and Q from Ps(τ)

For each operating point of the exchange oscillation, (εx,γx), the exchange interaction J(εx,γx) can
be determined by measuring Ps(τ) and extracting the oscillation frequency. This method is justified
even for h0 6= 0 provided that Ps(τ) represents an average over a sufficiently large (quasistatic)
ensemble characterized by h0 < σh. For our data sets, which typically involve averaging times
exceeding 10 minutes, this condition is satisfied, and hence we do not have to take into account

nuclear contributions to the oscillation frequency of type
√

J2 +h2
0 [84].

Specifically, we extract the frequency of the exchange oscillations for selected operating points
[black lines in Fig. 6.2(a)] in a two step process. First we calculate the discrete Fourier transform
of Ps(τ) and identify the main peak. Then we use the frequency associated with the main peak as
an initial guess for fitting a damped sine wave of frequency J to Ps(τ), with a decay of the form
exp
[
−(τ/TR)

α
]
. The quality factor is obtained using the relation Q = JTR. Values of J obtained

by this method are plotted as symbols in Fig. 6.2(d-g).

6.3 Model of J(εx,γx)

The operating points (εx,γx) associated with data presented in panels Fig. 6.2 (d,e,f,g) fall onto a
grid in the two-dimensional barrier-detuning space, as shown by black lines in Fig. 6.2(a). In order
to inspect the sensitivity of J to small fluctuations in εx and γx a two-dimensional model J(εx,γx) is
needed.

Our phenomenological model of J(εx,γx) is given by:

J(εx,γx) = e[c+(y0+y1εx+y2ε2
x+y3ε3

x+y4ε4
x+y5ε6

x)×((γx−x0)s0+(γx−x1)
2s1)]GHz (6.2)
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Figure 6.2: (a) Range of control parameters εx and γx for which a numerical model of J was
developed (gray shaded regions). Each black line corresponds to operating points (εx,γx) where
Ps(τ) was measured. Extracting J from Ps(τ) on a subset of these lines yields the data points
(symbols) plotted in panels (d-g). Fitting equation (6.3) to the symbols in panels (d-g) yields a
two-dimensional model J(εx,γx) presented in panels (b) and (c). Cuts indicated by numbers in (b)
and (c) correspond to the solid lines in panels (d-g).

Parameters Fig. 6.2 (b) Fig. 6.2 (c)
c -2.62 -1.80
x0 650 mV -487 mV
s0 0.351 mV−1 0.441 mV−1

x1 -1695 mV 1770 mV
s1 8.01 10−5 mV−2 -7.21 10−5 mV−2

y0 0.205 0.0705
y1 8.39 10−6 mV−1 -9.39 10−5 mV−1

y2 2.11 10−5 mV−2 1.42 10−5 mV−2

y3 -1.67 10−7 mV−3 5.80 10−12 mV−3

y4 8.25 10−9 mV−4 2.70 10−9 mV−4

y5 -3.46 10−13 mV−6 -3.80 10−13 mV−6

Table 6.1: Parameters for calculating the smooth exchange profile J(εx,γx) from Eq. 6.3, shown in
Figure 6.2(b,c). These parameters were obtained by fitting Eq. 6.3 to symbols in Fig. 6.2(d-g).

Using parameters from Table 6.1, this model provides an excellent interpolation of J in the
gray shaded regions in Fig. 6.2(a). These two regions have been selected based on the insight
that they provide into the origin of the drastically different performance of tilted exchange gates
and symmetric exchange gates (cf. section 6.4 below). Comparing line cuts of the model J(εx,γx)
with observed values of J shows that our numerical model of J accurately captures the observed
exchange profile of the device [cuts of panels Fig. 6.2(b,c) are shown as solid lines in panels
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Figure 6.3: (a) and (b) J noise σJ as a function of ε and γ for the surfaces in Fig. 6.2(b) and (c).
Both panels assume the same amount of effective gate noise (σel = 0.18 mV). (c) σJ , extracted
from cuts 1 and 2 indicated in panel (a) and (b), as a function of J for tilt and symmetric mode of
operation.

Fig. 6.2(d,e,f,g)]. The next section uses partial derivatives of this model to calculate the effects of
effective gate noise.

6.4 Calculation of exchange noise σJ, decoherence time T (el)
R ,

and quality factor Q(el) arising from quasistatic electrical noise σel

In this section we describe how T (el)
R , and quality factor Q(el) in Fig. 4(c) and 4(d) in main text were

calculated.
We disregard nuclear fluctuations and consider decoherence caused by quasistatic effective

gate noise only. Small fluctuations of control parameters ε or γ result in fluctuations of J with an
amplitude that is proportional to the partial derivative of J with respect to ε or γ . For comparison
with other experiments, and in order to model the decoherence due to electrical noise, it is useful to
express fluctuations of J arising fo ε or γ noise in terms of effective gate noise on VL, VM, and VR.

From Eq. 6.1 we obtain the following relations between partial derivatives of J:
dJ

dVL
= −k0

dJ
dε

dJ
dVR

= k0
dJ
dε

dJ
dVM

= k1
dJ
dε

+ dJ
dγ

(6.3)

Assuming that the effective gate noise associated with VL, VM and VR is quasistatic, independent,
and Gaussian distributed with a common standard deviation σel, i.e. σL = σM = σR = σel, we can
write the expected fluctuations of J:

σJ =

√(
dJ

dVL
σL

)2
+
(

dJ
dVM

σM

)2
+
(

dJ
dVR

σR

)2
= σel

√
2k2

0

( dJ
dε

)2
+
(

dJ
dγ

+ k1
dJ
dε

)2
(6.4)

Averaging over a quasistatic, Gaussian ensemble of J with standard deviation σJ yields a
Gaussian decay envelope exp

[
−(τ/TR)

2
]
, a decoherence time given by T (el)

R = 1/
(√

2πσJ

)
, and

a quality factor given by Q(el) = JT (el)
R [12, 84]. To generate the associated curves in Fig. 4.4(c)

and 4.4(d) in the main text we use σel = 0.18 mV, determined as described in the next section.
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Figure 6.4: Exchange maps with constant τ = 2, 10, 50 ns ((a), (b), (c) respectively). Change of
color in vertical lines noise is related to random changes in Overhauser field, that become more
relevant for longer exchange pulses. Black line in Fig. (c) (τ = 50 ns) shows the position of S-T+
crossing. Data in top right corner of each plot is missing because required voltage for exchange
pulse exceeded amplitude of Tektronix 5014c AWG.

6.5 Determination of σel

We determine the effective gate noise σel by measuring tilt-induced exchange oscillations in a
regime where effective detuning noise σε dominates, i.e. for εx = 84 mV. Fitting a sinusoid with a
Gaussian envelope, exp

[
−(τ/TR)

2
]
, yields TR = 14 ns. Using TR = 1/

(√
2πσJ

)
yields σJ = 1.6

MHz. Taking in account Equations 6.3,6.3 and 6.4 and Table 6.1 this value corresponds to an
effective gate noise σel = 0.18 mV.

6.6 Comparison of electrical noise in tilt and symmetric operation

Application of Eq. 6.4 to the model J(εx,γx) shown in Fig. 6.2(b) and (c) allows us to calculate σJ

[Fig. 6.3 (a) and (b)]. To highlight the difference in magnitude of σJ between tilt and symmetric
mode of operation we use the same color scale for panels (a) and (b), and compare two cuts plotted
against J in panel (c). This analysis demonstrates that the same amount of effective gate noise
(σel = 0.18 mV) results in exchange noise (σJ) that is more than one order of magnitude larger in
the tilt mode of operation than the symmetric mode of operation, for a given J.

6.7 Calculation of T (nuc)
R , Q(nuc)

Here we describe how theoretical curves T (nuc)
R and Q(nuc) in Figures 4(c,d) of the main text were

calculated. These quantities represent the contribution of nuclear noise to the total noise. First,
exchange oscillations were simulated using Eqs. 3 of the main text for both tilt and symmetric
mode of operations, similar to simulating insets shown in Fig. 2(a) and (b) in the main text, but
using σel = 0 while keeping all other parameters unchanged. From these simulations, T (nuc)

R and
Q(nuc) were extracted in the same way as TR and Q were extracted as described in section 6.2.

6.8 Unpublished: Mapping of J with exchange pulses of fixed time

Alternatively to extracting J profile from oscillations PS(τ) for various values of γ and δ (Sec. 6.2
and Fig. 6.2) τ can be kept fixed while both γ and δ are sweeped. In the resulting map (Fig. 6.4)
lines of constant PS(γ,δ ) indicate lines of constant J. And so the first minimum (black stripe)
will correspond to Jτ/h̄ = π , first maximum (bright stripe): Jτ/h̄ = 2π and so on. Density of
oscillations represents therefore the gradient of J and susceptibility to charge noise.
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Figure 6.5: Exchange oscillations in tilt (blue), semi-tilt (green) and symmetric (red) mode at the
same frequency. In the legend values of ε and γ at the exchange point are given.

In Fig. 6.4 we can see that for large ε =−ε ′+83≈ 0 the density of the oscillations decreases
indicating the symmetry point. Unfortunately, we couldn’t observed the full symmetry of the
pattern [68] because of limited voltage range of the waveform generator and high attenuation of the
fast lines.

Fast decay of exchange oscillations requires usage of various times of exchange time τ to
probe various regimes of J. Choice of τ = 50 ns will correspond to probing J ∼ 50 MHz which is
comparable to the gradient of Overhauser field. As a result the measurement becomes more noisy.
50 ns is also sufficiently long time enable leakage to fully polarized T+ state. The crossing between
S and T+ states is visible as a single dark line in Fig. 6.4(c).

6.9 Unpublished: Exchange oscillations in symmetric, tilt
and semi-tilt mode at the same frequency
The additional set of exchange oscillations presented here (Fig. 6.5) shows how Q of exchange
oscillations for fixed frequency changes between charge-noise-dominated (tilt) and nuclear-noise
dominated (symmetric) regime. The top curve shows Gaussian decay for the pure tilt mode. The
middle curve probes intermediate regime. This exchange rotations involved pulse along both ε and
γ axis. Non-Gaussian tail indicates reduced influence of a quasistatic charge noise. The bottom
curve was acquired in the pure symmetric mode. The decay throughout approximately first 50 ns
remains unchanged compared to the first two traces, but the extremely long power-law tail that it is
the Overhauser field fluctuations that limit the fidelity of oscillations.

6.10 Unpublished: Exchange oscillations at sweet spot for various γX

The final dataset (Fig. 6.6) presents crossover from nuclei-dominated decay to charge-noise-
dominated decay. At smallest γX decay has a power-law tail, revealing influence of the nuclei.
Notably up to γX ≈ 140 mV the characteristic decay time remains roughly unchanged. Meanwhile
the frequency of oscillations dramatically increases, indicating substantial increase of Q. For
γX > 140 mV the envelope shortens and becomes Gaussian. This is a result of dominant role of
charge noise. At this point Q is close to the saturation (Fig. 4.4d).
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Figure 6.6: Exchange oscillations at sweet spot for various γX . Traces are offset vertically for
clarity. Irregularity of oscillations at highest frequencies is caused by aliasing.
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7. Overhauser noise
and dynamical decoupling

The noise limiting utility of GaAs spin qubits arises due to hyperfine interaction between each
electronic spin and the nuclear spin bath. In striking contrast to the electrical noise the nuclear
noise has been researched in depth in just about every system that is a potential candidate for a
spin qubit implementation [95, 103–106]. These studies covered a wide range of topics including
the free dynamics of the nuclear spin bath, dynamical decoupling of the qubit and controlling
the bath by means of the dynamical nuclear polarization. In this chapter I will focus on the
elementary properties of the GaAs spin bath dynamics interacting with a single electron and
dynamical decoupling techniques that are most relevant for the novel results presented in chapters 8
and 9.

7.1 Hamiltonian governing the dynamics of an electron and nuclei
The dynamics of the coupled electron-nuclear bath system is ruled by three main mechanisms [10]
– the Zeeman effect, the hyperfine interaction and dipole-dipole interaction between nuclei.

Typically the largest energies in the system are related to the Zeeman splitting due to external
magnetic field which can be described by the Hamiltonian

ĤZ = gµBBŜz +∑
i

gα(i)µBBÎi (7.1)

where g is the g-factor of the electron (or the nuclei of species α), B is the magnitude of the external
magnetic field (assumed to be pointing along the z direction) while Ŝ and Î are the electron and
nuclear spin operators. The summation is performed over the nuclei of several species α (69Ga,
71Ga and 75As in case of GaAs quantum dot). For the purpose of this chapter we will assume that
both the electron and nuclear Zeeman splitting are much larger than other energy scales.

The hyperfine interaction between the electron and nuclei is given by

Ĥhf = ∑
i

AiŜÎi = ∑
i

AiŜzÎi,z +∑
i

Ai

2
(
Ŝ+Îi,−+ Ŝ−Îi,+

)
, (7.2)

where Ai is the hyperfine coupling between i-th nuclei and the electron, which depends on the
nuclear species and the amplitude of the electronic wavefunction at the nuclear site. Due to
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anisotropy introduced by the external magnetic field it is convenient to rewrite this Hamiltonian as
two separate terms. The z component gives an effective magnetic field experienced by the electron
due to nuclei and vice versa. The +/− terms describe a second-order flip-flop processes between
nuclei, mediated by the electron.

The dipole-dipole interaction between the nuclei can be described by

Ĥdip = ∑
i 6= j

bi, j ÎiÎ j = ∑
i 6= j

bi, j
(
Îi,zÎ j,z + Îi,+Î j,−

)
, (7.3)

which I have already written down in a way that distinguishes between components parallel and
perpendicular to an external magnetic field.

Finally, the quadrupolar coupling between electric field gradients and nuclear spin also has an
influence on the system dynamics [107, 108], which I will mention in the relevant places of the
discussion.

7.2 Electron dephasing in a quasistatic nuclear field
Due to the assumption about the dominant influence of the magnetic field we can, in the first
approximation, neglect the flip-flop processes between nuclei1. On the other hand we observe that
even at the typical dilution refrigerator base temperature of 20 mK (kT ≈ 2 µeV) the nuclear bath
is in the infinite temperature limit (gnucµBB is of the order of 0.01 µeV at B = 1 T).

Large magnetic field and high temperature motivate treatment of the nuclear bath as a collection
of classical spins with random projection on the direction of the magnetic field. Since all flip-flop
processes are over each of the nuclear spins induces a small energy shift to the electron Zeeman
splitting AiIi,z. Since the electron wavefunction overlaps with tens to millions of the nuclei it is
convenient to threat their collective influence in terms of an effective magnetic field, called the
Overhauser field

Bnuc =
1

gµB

1
2 ∑

i
AiIi,z (7.4)

which points in the direction parallel to the external magnetic field. Since the flip-flop terms play
a role on a longer timescale it is common to consider the orientation of each spin to be random
each time the electron-spin manipulation experiment is performed. This leads to the probability
distribution of Overhauser field amplitudes which are characterized by several parameters, and for
most purposes can be considered Gaussian and centered on Bnuc = 0.

Firstly, the Overhauser field can be characterized by the value of the external magnetic field
corresponding to the full polarization of the nuclear spins. Secondly, the crucial parameter is the
number of nuclei of each spinful species within the electronic wavefunction. These two give a
typical (rms) value of the Overhauser field experienced by the electron and an inhomogeneous
dephasing time.

For a GaAs quantum dot the electronic wavefunction overlaps with about a million [7] nuclei of
69Ga, 71Ga and 71As. In the case of full polarization these nuclei would create an affective magnetic
field of between 3 and 6 T [109, 110]. The actual rms value of the Overhauser field is reduced
by a factor

√
N compared with the full polarization, where N is the number of nuclei, resulting in

typical magnetic fields of several millitesla [93, 96]. Finally, this translates into a decoherence time
of about [7, 109]

T ∗2 =
h̄

gµ〈Bnuc〉
≈ 10 ns. (7.5)

1for magnetic field >100 mT and timescales up to a microsecond this is a very accurate approximation
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Such a short coherence time is the ultimate obstacle to scaling of the GaAs spin qubits, since
it puts a severe constraint on the maximum gate fidelity. Several methods, including stabilization
of the spin bath by means of dynamical nuclear polarization [22, 45, 111–113] and dynamical
decoupling (Sec. 7.5) allow relaxing the limitation arising from the short inhomogeneous dephasing
time, but they both incur significant overhead.

The ultimate solution to this problem is to reduce the fraction of the spinful nuclei within the
electronic wavefunction. Unfortunately this is impossible for spin qubits in III-V material, such
as GaAs, since the odd number of protons in the atomic nucleus means a non-zero total spin. For
that reason the focus many in the spin qubit community shifts to semiconductors of group IV, in
particular Si and SiGe. In the case of both, silicon and germanium the spinful isotopes are in a
minority – the natural abundance of 29Si is 4.7%, while 73Ge is 7.7% [114]. It has been demonstrated
that usage of natural silicon is sufficient to extend inhomogenuous dephasing times to more than
perform a single spin manipulation at the quantum error correction threshold [18, 19, 115]. Further
isotopical purification virtually eliminates the spinful nuclei from the lattice (<1000 ppm) and the
related decoherence effects [20].

7.3 Overhauser field fluctuations

The degree to which a certain kind of noise is detrimental for the qubit coherence depends not only
on the variance of fluctuations but also their rate. In case of the Overhauser field the fluctuation rate
is related to the internuclei interactions leading to flip-flops.

The two relevant processes that have to be considered are the dipole-dipole interaction (Eq. (7.3)),
and flip-flops mediated by virtual flipping of the electron (a second-order process resulting from
the hyperfine interaction; Eq. (7.2)) [10, 109]. The exact rates for both of these depend on the
mismatch between the Zeeman splitting of the interacting nuclei.

In the first place, different nuclear species are characterized by different g-factors, and therefore
flip-flops between pairs of identical nuclei are most relevant.

Second, the nuclei experience the Knight field (effective magnetic field due to interaction with
the electron, dual to the Overhauser field), that varies depending on the wavefunction amplitude at
the nuclear site [116]. Curiously, large differences of Knight field lead to suppression of the nuclear
flip-flops, but each such event has more significant impact on the Overhauser field. Conversly, if
the two electrons experience identical Knight fields the flip-flops are not suppressed, but they have
no impact on the Overhauser field. This interplay makes the degree of flip-flop suppression strongly
dependent on the (unknown) electronic wavefunction shape.

Third, the magnetic field affects the detuning between electronic and nuclear Zeeman splitting,
influencing the rate of the electron-mediated flip-flops [96, 117].

Finally, the strain-related gradients of electric field couple to the quadrupole moment of the
nuclei [118]. This is most evident in the study of the Overhauser field performed in optically active
self-assembled GaAs quantum dots where the diffusion is supressed by several orders of magnitude
relative to gate defined GaAs dots [95, 96, 106, 107].

The resulting rate of Overhauser field fluctuations is sufficiently small to allow performing
thousands of repetitions of the electron spin manipulation experiment within the nuclear spin bath
coherence time (which is of the order of seconds) [82, 93, 96]. This enables either measuring the
Overhauser fields, and adjusting the spin manipulating sequence accordingly [112] or exploiting spin
transfer between electron and nuclei to manipulate the spin bath [45, 72, 111, 119]. Quantification
of the Overhauser field fluctuation timescales is the topic of chapter 8.



60 Chapter 7. Overhauser noise and dynamical decoupling

a b

Bext

B tot

Bnuc
z

Bnuc
⊥

Bnuc
⊥

B⊥

71Ga

B⊥

75As

B⊥

69Ga

Figure 7.1: a The total effective magnetic field experienced by the electron is composed of
an external magnetic field as well as two components of the Overhauser field – parallel and
perpendicular to the external magnetic field. b The transverse component of the Overhauser field is
composed of three “partial” fields related to three nuclear species, undergoing Larmor precession at
different frequencies, as represented by the circular arrows.

7.4 Larmor precession of the nuclei

Except for diffusion-like low frequency dynamics, the Overhauser field has nontrivial high frequency
behaviour, related to the Larmor precession of the nuclei. The amplitude of related fluctuations is
very small and can be revealed only when the electron decoherence due to slow Overhauser field
dynamics is suppressed by means of dynamical decoupling, which will be the topic of the next
section. Nevertheless the particular power spectrum makes these fluctuations an interesting topic
for experimental and theoretical study.

To understand the Overhauser field dynamics related to the Larmor precession one needs to
include in the considerations the Overhauser field perpendicular to the external magnetic field.
Within this extended framework the effective magnetic field experienced by the electron has three
contributions: external magnetic field, Overhauser field both parallel and perpendicular to the
external magnetic field (Fig. 7.1). Since we assume that the external magnetic field is much larger
than the other fields we can write the amplitude of the total effective magnetic field (to the lowest
nonvanishing order in Bnuc

⊥ ) as

Btot = Bext +Bnuc
z (t)+

|Bnuc
⊥ (t)|2

2|Bext|
. (7.6)

This formula shows that a relatively small influence of the transverse field on the electron coherence
is a consequence of the suppression by a factor of |Bnuc

⊥ (t)|/|Bext|, which is typically somewhere
between 0.2 and 0.01, depending on the external magnetic field, dot size etc. Nevertheless it is the
transverse Overhauser field that gives raise to the high frequency nuclear noise.

The curious high frequency dynamics of the Overhauser field can be understood by treating the
transverse field as consisting of several “partial” fields related to each nuclear species [74, 94, 108]
(Fig. 7.1b). Each of this species Larmor precesses at a different frequency (megahertz-scale for
typical magnetic field of a few hundred militesla), giving rise to the noise focused at very specific
narrow bands. The quadratic coupling to the qubit splitting implies that these are mostly the Larmor
difference frequencies. In chapter 9 we demonstrate how to deterministically suppress a noise at
these frequencies with dynamical decoupling. But first it is relevant to introduce the principles of
dynamical decoupling.
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Figure 7.2: Schematic of state evolution under Hahn-echo sequence in the Bloch sphere represen-
tation. The ensemble of states is initialized a, and then evolves freely b. After time τ a π-pulse c
swaps the two eigenstates. Continued free evolution d leads to the recovery of coherence after total
time of 2τ e.
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Figure 7.3: a An illustration of noise suppression with a train of π-pulses. The black curve
represents a stochastic time dependence of the qubit energy splitting. The colors indicate whether
the phase acquired by the two qubit eigenstates was positive or negative. Application of sufficiently
dense, evenly spaced train of π-pulses results in the red and green regions having similar area,
indicating more efficient decoupling from random fluctuations in the qubit splitting ∆E. b Plot of
the f (t) function corresponding to the periodic train of π pulses, which leads to the filter function
according to Eq. (7.8)

7.5 Dynamical decoupling from a low frequency noise

The principle of dynamical decoupling can be most easily understood in the case of quasistatic
noise. When considering a superposition of |↑〉 and |↓〉, the two eigenstates will be acquiring a
predictable phase due to magnetic-field-induced Zeeman splitting and a random phase due to the
Overhauser field φ(t) = t×gµBnuc/h̄. Let’s consider the Overhauser field fixed on the timescale
we are interested in. Swapping |↑〉 and |↓〉 states with a π-pulse after certain time τ (Fig. 7.2) results
in the random phase being perfectly cancelled out after another time τ . And so the coherence will
be restored after the total time 2τ . This technique, called spin echo or Hahn echo [120] was first
demonstrated in nuclear magnetic resonance. The decay time of the echo signal is a simple measure
of the non-quasistatic noise and is one of the measures of the qubit performance [121].

An echoing technique can be extended to minimize the effect of the slow fluctuations in
the qubit splitting by implementing a train of evenly spaced π-pulses, called Carr-Purcell (CP)
sequence [122]. As illustrated in Fig. 7.3a the phase acquired between nth and (n+1)th π-pulse
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will almost perfectly cancel the phase acquired between (n−1)th and nth π-pulse. Effectively, the
CP sequence will suppress any components of the noise fluctuation that do not change on the 2τ

timescale.

7.6 Dynamical decoupling as a filter design
The difference between Hahn echo and CP sequences in the efficiency of decoupling from low
frequency noise can be demonstrated in the frequency domain. For that purpose one represents
the environmental noise as a power spectrum2, S(ω), and assigns a filter function, F(ω), to the
sequence of π-pulses [99, 100]. The filter function for a sequence of π-pulses is given by

F(ω) =
ω2

2

∣∣ f̃ (ω)
∣∣2 , (7.7)

f (t) =
n

∑
k=0

(−1)k
Θ(tk+1− t)Θ(t− tk), (7.8)

where ω is the angular frequency, ·̃ indicates a Fourier transform, f (t) represents the decoupling
sequence, Θ is the Heaviside step function and tk is the time at which the kth π-pulse is applied (in
particular t0 = 0 and tn = T are the beginning and the end of the sequence). The function f (t) has a
value of ±1 and changes sign at the moment of π-pulse application, and is 0 beyond the duration in
the sequence (Fig. 7.3b). In most of the studies of dynamical decoupling the sequences are defined
by specifying the fractions of the total sequence duration T at which π-pulses are applied. For
example for Hahn echo t0 = 0, t1 = T/2, t2 = T .

With these one can quantify coherence at the end of the pulse sequence by calculating

W (T ) = exp(−χ(T )), (7.9)

χ(T ) =
∞∫

0

dω

π
S(ω)

F(ω)

ω2 . (7.10)

A formulation of the dynamical decoupling has led to tremendous amount of work oriented at
suppression of the low frequency noise [123–125]. These works usually aim at setting the F(0) = 0
along with one or several derivatives, or at minimization of χ(T ) given certain noise spectrum
S(ω).

The suppression of the now frequency noise achieved with dynamical decoupling sequences
is sufficient for the high frequency noise related to the Larmor precession of the nuclei (Sec. 7.4)
to leave a fingerprint on the decoherence pattern [74, 94, 105, 108]. To gain additional insight
into high-frequency noise one can focus on the filter function shape at frequencies comparable
to the typical spacing between the π-pulses in a sequence. It is at these frequencies that the filter
functions exhibit a pattern of minima and maxima. The minima can be used either to address a
narrow-band high-frequency noise [94, 101] while the maxima enhance a specific band enabling
the noise spectroscopy [12, 97, 126–130].

2Throughout this chapter we assume the noise to be Gaussian. This assumption implies that the noise is fully
quantified by its power spectrum.
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Using a singlet-triplet spin qubit as a sensitive spectrometer of the GaAs nuclear spin
bath, we demonstrate that the spectrum of Overhauser noise agrees with a classical
spin diffusion model over six orders of magnitude in frequency, from 1 mHz to 1 kHz,
is flat below 10 mHz, and falls as 1/ f 2 for frequency f &1 Hz. Increasing the applied
magnetic field from 0.1 T to 0.75 T suppresses electron-mediated spin diffusion, which
decreases spectral content in the 1/ f 2 region and lowers the saturation frequency,
each by an order of magnitude, consistent with a numerical model. Spectral content
at megahertz frequencies is accessed using dynamical decoupling, which shows a
crossover from the few-pulse regime (.16 π-pulses), where transverse Overhauser
fluctuations dominate dephasing, to the many-pulse regime (&32 π-pulses), where
longitudinal Overhauser fluctuations with a 1/ f spectrum dominate.

8.1 Introduction
Precise control of single electron spins in gate-defined quantum dots makes them a promising
platform for quantum computation [5, 7, 21, 37, 87]. In particular, GaAs spin qubits benefit from
unmatched reliability in fabrication and tuning. However, being a III-V semiconductor, the GaAs

This chapter and chapter 10 are adapted from Ref. [96]. c© (2017) by the American Physical Society.
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Figure 8.1: (a) Electron micrograph of the device. Gate voltages Vi control the double dot state on
ns timescales. Reflectance from the RF resonant circuit incorporating a sensor dot (white arrow)
measures the charge state of the double dot located below the round accumulation gates. (b) Energy
levels of the two-electron double dot as a function of detuning ε =VL−VR at the (1,1)-(2,0) charge
transition. Red-green lines indicate the qubit states. (c) Bloch sphere representation of the qubit.
Rotation axes correspond to exchange interaction J (green) and gradient of the Overhauser field
∆B‖ (red). (d) Pulse cycle used to probe the qubit precession in the gradient of the Overhauser field.
The qubit is initialized in the S(2,0) state by exchanging electrons with the lead. Next, one electron
is moved to the right dot, and the qubit evolves for the time tS in the gradient of the Overhauser
field. Finally, ε is pulsed back to the readout point, projecting |S〉 into a (2,0) charge state, whereas
|T0〉 remains in (1,1).

lattice hosts spinful nuclei that couple to electron spins via the hyperfine interaction [7, 37, 45,
74, 94]. Nuclear dynamics lead to fluctuations of the Overhauser field, which affect the coherent
evolution of spin qubits. In turn, advances in qubit operation, including single-shot readout [82]
and long dynamical decoupling sequences [94], allow spin qubits to serve as sensitive probes of the
electron-plus-nuclear-environment system, an interesting coupled nonlinear many-body system.

8.2 Measuring Overhauser field gradient with S-T0 qubit

In this Letter, we use a singlet-triplet (S-T0) qubit as a probe to reveal the dynamics and magnetic
field dependence of the GaAs nuclear spin bath over a wide range of frequencies, without the use
of nuclear pumping [112, 119, 131] or postselection [93] techniques. The qubit is defined in a
two-electron double quantum dot (Fig. 8.1a). The external magnetic field Bext separates the qubit
states singlet, |S〉= 1√

2
(|↑↓〉−|↓↑〉), and the unpolarized triplet, |T0〉= 1√

2
(|↑↓〉+|↓↑〉), from the

fully polarized triplet states, |T+〉= |↑↑〉 and |T−〉= |↓↓〉. In this notation, the first (second) arrow
indicates the spin in the left (right) dot. The resulting energy diagram of the spin states at the
transition between (1,1) and (2,0) charge states is presented in Fig. 8.1b. Here (N,M) indicates the
number of electrons in the left (N) and the right (M) dot. The Bloch sphere representation of the
qubit is shown in Fig. 8.1c.

Dynamics of the S-T0 qubit in the well-separated (1,1) charge state, i.e., for vanishing exchange,
J, between the two electrons, is governed by the static external magnetic field Bext and dynamic
Overhauser fields. For large Bext, we can model the qubit evolution using the Hamiltonian [74, 94,
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Figure 8.2: (a,b) Top panels present S-T0 oscillations resulting from the relative precession of the
two electron spins in the Overhauser field gradient, as a function of laboratory time at Bext=0.2 T
(see main text). In the bottom panels we show the extracted frequency of oscillations, fOvh,
converted to |∆B‖|. (c) Power spectral density of (∆B‖)2 at Bext=0.2 T obtained from traces such
as in (a) (blue) and (b) (black). Transition from white spectrum at low frequencies to 1/ f 2 at
high frequencies is reproduced by the nuclear spin diffusion model (gray). A deviation from this
dependence at the highest frequencies is a numerical artifact caused by the discreteness of |∆B‖|
values obtained from the Fourier analysis.

132]

Ĥ(t)=gµB ∑
i=L,R

(
Bi
‖(t)+

|Bi
⊥(t)|2

2|Bext|

)
Ŝi

z, (8.1)

where g ∼ −0.4 is the electronic g-factor, µB is a Bohr magneton, Ŝi
z is the spin operator of the

electron in left or right dot i=L,R, and Bi
‖ is the Overhauser field component parallel to Bext. The

influence of the transverse Overhauser field component Bi
⊥ on the qubit is strongly suppressed

when Bext is much larger than the typical Overhauser field. Hence the transverse Overhauser field
fluctuations play a significant role in the qubit evolution only when the influence of the fluctuating
longitudinal Overhauser field Bi

‖ is eliminated by dynamical decoupling [74, 94]. The splitting
between qubit states |↓↑〉 and |↑↓〉 for J = 0 is thus proportional to the longitudinal component
of the Overhauser field gradient, ∆B‖=BL

‖−BR
‖ , and can be measured by monitoring the qubit
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precession between |S〉 and |T0〉 [45, 75, 82].
To measure this precession, we apply a cyclic pulse sequence that first prepares the singlet,

then separates the two electrons to allow free precession in the Overhauser field for time tS, and
finally performs a projective readout of the qubit in the S-T0 basis (Fig. 8.1d). The total length
of the pulse sequence is approximately 30 µs, including 10 µs of readout time. For each tS we
use 16 single-shot readouts of this sequence to estimate the singlet return probability, PS. By
repeatedly sweeping tS from 0 to 250 ns in 300 steps allows the precession of the qubit in the
evolving Overhauser field to be measured with roughly 1 s temporal resolution (slow mode). A time
trace showing 80 s of slow-mode probability data is shown in Fig. 8.2a. To increase the temporal
resolution from 1 s to 12 ms we omit the probability estimation and record one single-shot outcome
for each tS (fast mode). A time trace showing 1 s of fast-mode single-shot data is shown in Fig. 8.2b.
The time evolution of the qubit precession frequency, fOvh(t), is then extracted from these data as
described in Sec. 10.1. The frequency corresponds to the absolute value of the Overhauser field
gradient |∆B‖(t)|=h fOvh(t)/|g|µB. Examples of |∆B‖(t)| for Bext=0.2 T are shown in Figs. 8.2a,b.
In contrast to experiments performing dynamic nuclear polarization [72, 133, 134] the observed
distributions of ∆B‖ reveal no sign of multistable behaviour (see Sec. 10.2).

8.3 ∆Bz low frequency dynamics

Next, we focus on the power spectral density (PSD) of ∆B‖ for Bext = 0.2 T. Since taking the
absolute value of ∆B‖ introduces kinks in |∆B‖| traces, adding spurious high-frequency content, we
instead extract the PSD of (∆B‖)2 (Fig. 8.2c). The resulting spectrum is flat below 10−2 Hz and
falls off as 1/ f 2 above 1 Hz, indicating a correlation time of ∆B‖ of a few seconds.

A classical model of Overhauser field fluctuations due to nuclear spin diffusion is used to fit
the experimental data in Fig. 8.2c [95] (Sec. 10.5). In the model we use the double dot geometry
estimated from the lithographic dimensions of the device and the heterostructure growth parameters
(distance between the dots d=150 nm, dot diameter σ⊥=40 nm and width of the electron wave
function in the crystal growth direction σz = 7.5 nm). We fit the effective diffusion constant
D=33 nm2/s and the equilibrium width of the ∆B‖ distribution σ∆B=6.0 mT. This model yields
the power spectrum of ∆B‖, which has the same qualitative behavior as the spectrum of (∆B‖)2 –
it is flat at low frequencies (< 10−2 Hz) and falls off as 1/ f 2 at high frequencies (>1 Hz). Such
a relation between the PSD of a Gaussian distributed variable and that of its square is expected
whenever the PSD has a 1/ f β dependence over a wide frequency range [98].

In order to extend the spectral range to higher frequencies we apply the pulse cycle with a
fixed separation time tS=100 ns, acquiring a single-shot measurement every 30 µs. This can be
visualized as a horizontal cut through the data in Fig. 8.2b (top) at 100 ns, though, of course, now
without taking the rest of the data at other values of tS. Although the series of single-shot outcomes
at fixed tS does not allow a direct measure of ∆B‖ from temporal oscillations, it does give statistical
spectral information [95]. In particular, the Fourier transform of the windowed autocorrelation of
single-shot outcomes (Sec. 10.3) yields a PSD of the singlet return probability PS, now extended to
4 kHz.

Power spectra of PS for the lowest and highest applied fields studied, Bext =0.1 and 0.75 T
are shown in Fig. 8.3. We observe that the spectrum for Bext =0.75 T is reduced by an order of
magnitude in the 1/ f 2 regime, compared to the spectrum at Bext=0.1 T. To quantify the observed
magnetic field dependence of the PSD of PS we fit the nuclear spin diffusion constant D of the
classical diffusion model (Sec. 10.5) to data, using fixed σ∆B =6.0 mT (obtained from the fit in
Fig. 8.2) and the same geometrical parameters as above. The observed agreement with experimental
data suggests that the effects of the nuclear spin bath are well described by classical evolution up to
at least 1 kHz.
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Figure 8.3: Magnetic field dependence of the power spectral density of PS, keeping tS = 100 ns
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At low Bext we observe a strong enhancement of the effective spin diffusion constant com-
pared to the literature value for bulk GaAs in the absence of free electrons, D∼10 nm2/s [135]
(Fig. 8.3, inset). Qualitatively, this increase may be attributed to electron-mediated nuclear flip-flop
processes [95, 117, 136–138], which dominate over nuclear dipole-dipole mediated diffusion.
At 0.75 T the effective diffusion constant drops down to the value for bulk GaAs. Despite this
agreement, we note that our values for D are not corrected for possible changes of electronic
wavefunctions with increasing magnetic field. A quantitative statement about the underlying bare
diffusion constant is difficult, as the fitting results for D are sensitive to assumptions about the spatial
extent of the quantum dots (in particular σ⊥) and the fraction of time spent in (1,1) and (2,0). Since
spin diffusion due to nuclear dipole-dipole interaction is strongly suppressed by the Knight field
gradient [139] and quadrupolar splittings, we expect further suppression of D at higher magnetic
fields [117], and saturation below the bulk GaAs value. Indeed, this is observed in self-assembled
quantum dots, where quadrupolar splittings are significantly stronger due to strain [107, 137, 140].

8.4 High frequency dynamics of the Overhauser field
Overhauser field fluctuations above 100 kHz are too fast to be observed as oscillation between
|S〉 and |T0〉 with the present setup. However, we can infer spectral features from the decoherence
of |↑↓〉 and |↓↑〉 states using Hahn echo and Carr-Purcell-Meiboom-Gill (CPMG) dynamical
decoupling sequences [94, 141]. Since these decoupling sequences act as filters in frequency
domain, we can relate the Overhauser spectrum to the decay of qubit coherence [94, 99, 100, 142].
In particular, Hahn echo and CPMG sequences suppress the low frequency fluctuations, making the
coherence decay a sensitive probe of high-frequency Overhauser fields.

The decoupling sequence in Fig. 8.4a uses symmetric exchange pulses [64], but is otherwise
standard [141]: initialize in S(2,0), evolve for time τ/2 in (1,1), apply symmetric exchange
π-pulse, evolve for another τ/2, repeat the τ/2−π−τ/2 segment a total of n times. After
the total evolution time T = nτ , project onto S-T0 by pulsing to (2,0) and perform single-shot
readout. Averaging ∼1000 such single-shot readouts then yields the singlet return probability.
For such a sequence the resulting singlet return probability is related to the qubit coherence by
PS =

1
2 +

1
2 Re[WL(nτ)W ∗R (nτ)], where Wi(t) is the normalized coherence of the spin in dot i at time

t.
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Figure 8.4: (a) Schematic of a CPMG dynamical decoupling sequence applied to a S-T0 qubit,
presented as a time dependent exchange energy J (see text). (b) Coherence of the S-T0 qubit after
Hahn echo and CPMG sequences with number of π pulses n. τ =T/n is the repetition period
between pulses. Black curves present simulations including longitudinal 1/ f noise and transverse
fluctuations due to Larmor precession of the nuclei. Gray curves assume transverse Overhauser
field fluctuations only. Data and curves are offset for clarity. (c) Scaling of the extracted coherence
decay envelope T2,n with n. Solid blue and yellow lines indicate fits of the power law ∝nγ to data
in the indicated range. A large value of γ =0.8 for small number of π pulses indicates that decay is
dominated by the transverse noise. γ =0.5 for large n is consistent with decay due to longitudinal
1/ f noise.

Figure 8.4b shows the singlet return probability for Hahn echo and CPMG sequences with
various numbers of π pulses, n, as a function of the interpulse time τ =T/n. For sequences with
small n, coherence decreases smoothly with τ , while for sequences with large n the decay is strongly
modulated. It was previously shown [74, 94] that the coherence modulations are due to narrowband
spectral content at megahertz frequencies in the transverse Overhauser field Bi

⊥, arising from the
relative Larmor precession of the three nuclear species.

The influence of transverse Overhauser fluctuations, Bi
⊥, on the CPMG signal decay was
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simulated using a semiclassical theory [10, 132, 143] that previously gave good agreement with echo
[72, 108] and CPMG [94] experiments (see Sec. 10.6 for details). Comparisons of experimental data
with numerical simulations are shown in Fig. 8.4b. First, we include only narrowband transverse
fields (gray curves), assuming two identical dots each containing N = 9×105 nuclei and a spread
of effective fields experienced by the nuclei of δB=1 mT, arising, for example, from quadrupolar
splittings [74, 106, 106, 108]. This simulation reproduces the coherence decay for Hahn echo and
the coherence modulations. The decay envelopes for the simulated CPMG, however, do not agree
well with experiment, especially for large n. In order to gain additional insight into the source of
decoherence we extract the envelope decay time, T2,n, from the experimental data and plot it as
a function of n (Fig. 8.4c and Fig.10.4) [141]. We observe an initial scaling of T CPMG

2 ∝nγ with
γ∼0.8, and a crossover to γ∼0.5 for large n.

We ascribe the change in the observed T CPMG
2 scaling to a crossover between decoherence

limited by transverse to longitudinal Overhauser field dynamics. For small n the fluctuations of
Bi
⊥ dominate the decoherence, leading to scaling with large γ; purely transverse low-frequency

fluctuations are expected to yield T CPMG
2 ∝ nγ with γ =1 (see Sec. 10.6). With increasing n other

decoherence sources start playing a dominant role. The intermediate-frequency fluctuations of
∆B‖ cause additional superexponential decay, which for large n is given by exp[−4T S‖(1/2τ)/π2],
where S‖( f ) is the PSD of ∆B‖ [126–128]. Assuming that this PSD has a 1/ f β power-law
behavior in the relevant frequency range, the CPMG decay for fixed n and varying τ is then
exp[−(T/T2,n)

β+1], with T2,n ∝nγ and γ =β/(β+1) [141]. The observed scaling with γ∼0.5 is
therefore consistent with 1/ f noise and a Gaussian decay.

As shown in Fig. 8.4b (black lines), adding the β = 1 envelope function, exp[−(T/T2,n)
2] and

T2,n=n1/2×25 µs, appropriate for β = 1, gives good agreement with experimental results. From
the agreement between the simulations and the measurements we estimate that for f >100 kHz
the PSD S‖( f )∼A2/(2π f ) with A−1∼9 µs. For comparison with results presented in Ref. [94]
we extrapolate this frequency dependence to 667 kHz. Using the extrapolated value we estimate
the CPMG decay time in an experiment in which τ is fixed but n is varied, T CPMG

2 =π2/4S‖(1/2τ).
Such estimate yields ≈0.83 ms for τ =750 ns, which is close to T CPMG

2 =0.87±0.13 ms measured
in Ref. [94].

The 1/ f power law found for f >100 kHz differs from the 1/ f 2 spectrum observed below 1 kHz.
This is not surprising, since for frequencies higher than the strength of intra-nuclear interactions
(∼1 kHz) the diffusion model is no longer applicable. Whether the high-frequency ∆B‖ fluctuations
have the same physical origin (i.e. flip-flops of nuclei due to dipolar and hyperfine-mediated
interactions) as the low-frequency ones is an open question.

Theory for CPMG decay caused by spectral diffusion due to dipolar interactions predicts a
coherence decay of the form exp[−(T/T2,n)

6], with T2,n ∝ n2/3 for small and even n [144]. This
decay form (and scaling) is in disagreement with our observations. In particular for large n, existing
spectral diffusion theories based on cluster expansion [116, 145, 146] may need to be refined, for
example taking into account realistic shapes of the electronic wave functions. Based on our findings,
such theories can be tested experimentally at Bext > 1 T, where bare dipole-dipole coupling is the
dominant internuclear interaction.

Finally, it is possible that the ∆B‖ fluctuations are not of intrinsic origin (nuclear dynam-
ics), but of extrinsic origin. For example, charge noise, which generically has a 1/ f β spectrum
with β ∼ 1 [12], can shift the electron wavefunction and effectively result in Overhauser field
fluctuations [132].
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8.5 Conclusion
In conclusion, we have experimentally investigated the spectrum of the GaAs nuclear environment
for spin qubits and find it consistent with classical diffusion over six orders of magnitude in
frequency, from millihertz to kilohertz. For applied fields below ∼0.75 T, nuclear diffusion is
dominated by the electron-mediated flip-flop, enhancing diffusion by a factor of 8. Decoherence
of the S-T0 qubit is dominated by fluctuations of the transverse Overhauser field for short CPMG
sequences, and by longitudinal Overhauser field for CPMG sequences with more than 32 π pulses.
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9.1 Introduction
Electron spins in gate-defined quantum dots provide a promising platform for quantum computation
[5, 7, 14, 21, 42, 74, 87]. In particular, spin-based quantum computing in gallium arsenide takes
advantage of the high quality of semiconducting materials, reliability in fabricating arrays of
quantum dots, and accurate qubit operations [7, 12, 14, 42, 45, 64]. However, the effective
magnetic noise arising from the hyperfine interaction with uncontrolled nuclear spins in the host
lattice constitutes a major source of decoherence [7, 64, 74, 108]. Low frequency nuclear noise,
responsible for fast (10 ns) inhomogeneous dephasing [7], can be removed by echo techniques
[7, 74, 83, 108, 141, 147]. High frequency nuclear noise, recently studied via echo revivals [74, 108],
occurs in narrow frequency bands related to differences in Larmor precession of the three isotopes
69Ga, 71Ga, and 75As [10, 132, 143]. Here we show that both low and high frequency nuclear
noise can be filtered by appropriate dynamical decoupling sequences, resulting in a substantial

This chapter and chapter 11 are adapted from Ref. [94]. c© (2017) by the Nature Publishing Group.
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Figure 9.1: Singlet-triplet qubit interacting with a nuclear spin bath. a, False-color scanning
electron micrograph of a device similar to the one measured, consisting of a double dot (surrounded
by black rectangle) and a proximal readout dot (indicated by white arrow). b, Double-well potential
occupied by two electrons. Within the left (right) dot an effective magnetic field Btot

L(R) splits
the electron spin states due to the Zeeman effect and hyperfine interaction with spinful nuclei of
69Ga, 71Ga, and 75As. c, Bloch sphere representation of the qubit with corresponding two-electron
spin states indicated. Two rotation axes are defined by the exchange interaction, J, and the total
field gradient between the dots, ∆Btot = Btot

L −Btot
R . d, The effective magnetic field Btot acting

on each spin is set by the external magnetic field Bext (nominally aligned with the [011] crystal
axis), the slowly fluctuating Overhauser field component Bnuc parallel to Bext, and the rapidly
changing transverse Overhauser field Bnuc

⊥ . Here we suppress the dot label indices for brevity. e,
The transverse Overhauser field Bnuc

⊥ = B69Ga
⊥ +B71Ga

⊥ +B75As
⊥ is a sum of fields of the three nuclear

species, each precessing at its Larmor frequency.

enhancement of spin qubit coherence times. Using nuclear notch filtering, we demonstrate a
spin coherence time (T2) of 0.87 ms, five orders of magnitude longer than typical exchange gate
times, and exceeding the longest coherence times reported to date in Si/SiGe gate-defined quantum
dots [18, 51].

9.2 Qubit and nuclear spin bath

The qubit under study is implemented in a gate-defined double dot, with a potential that can be
manipulated via nanosecond voltage pulses applied to gate electrodes VL, VM and VR (Fig. 9.1a and
Methods). The qubit states are encoded in the two-electron spin singlet state, |S〉= 1√

2
(|↑↓〉−|↓↑〉),

and the spin triplet state, |T0〉= 1√
2
(|↑↓〉+ |↓↑〉), where the arrows indicate the spin projections of

the electrons in the left and right dots [7, 45]. These qubit states are energetically separated from
the spin-polarized two-electron states, |↑↑〉 and |↓↓〉, by an external magnetic field Bext, ranging
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from 0.2 to 1 tesla in this experiment. Single-shot readout of the qubit is accomplished using
spin-to-charge conversion followed by readout of a proximal sensor dot [82, 83] (see Methods).

As illustrated in Fig. 9.1b,d, the local Zeeman energy in dot d = L,R is perturbed by the
Overhauser field Bnuc

d arising from the hyperfine interaction with the nuclear spin bath. In our
device, each electron is in contact with∼ 106 nuclear spins, comprised of three species: 69Ga, 71Ga,
and 75As [7, 74, 132].

The Bloch sphere of the S-T0 qubit is shown in Fig. 9.1c. Bold arrows indicate the rotation
axes associated with the exchange interaction, J, and the gradient of the effective field between
the dots, ∆Btot = Btot

L −Btot
R , where Btot

d =
√
|Bext +Bnuc

d |2 is the magnitude of the total effective
field in dot d [45]. Note that transverse nuclear field gradients tilt the quantization axes in the two
dots relative to each other. For large external fields this primarily leads to a minor redefinition of
the qubit subspace [132]; for simplicity throughout this work we refer to the states in the qubit
subspace by the conventional labels S and T0.

Overhauser field fluctuations in each dot are non-Markovian, with low frequency (power-law)
spectral content parallel to the external field, denoted Bnuc

z (suppressing the dot index), and narrow-
band spectral components at the nuclear Larmor frequency scale perpendicular to the external field,
denoted Bnuc

⊥ . Low frequency fluctuations arise primarily from nuclear spin diffusion [95], driven
by dipole-dipole interactions between neighboring nuclei, and nonlocal electron-mediated flip-flops
[10, 143, 145, 148]. High frequency fluctuations of Bnuc

⊥ arise primarily due to the megahertz-scale
relative Larmor precession of different nuclear spins [74, 108, 132]. The transverse Overhauser
field Bnuc

⊥ is given by the sum of contributions B69Ga
⊥ , B71Ga

⊥ , and B75As
⊥ of the three isotopic species,

each of which precesses at its own Larmor frequency, see Fig. 9.1e. This leads to modulations of
the total field in each dot, Btot, which are concentrated near the differences of the nuclear Larmor
frequencies, and contribute quadratically to the qubit splitting.

9.3 Dynamical decoupling and notch filtering
To decouple the qubit from the multiscale nuclear noise, we employ the Carr-Purcell-Meiboom-Gill
(CPMG) pulse sequence shown in Fig. 2a. We first initialize the double dot in a spin singlet
by temporarily loading two electrons into the left dot. Then we quickly separate the electrons
in the double-well potential, thereby rapidly turning off the exchange interaction, J. In this
configuration, the gradient of the total effective field, ∆Btot, causes uncontrolled qubit rotation
around the horizontal axis of the Bloch sphere in Fig. 9.1c. After a time τ/2, an exchange pulse
is applied by temporarily lowering the barrier between dots with a voltage pulse on gate VM [64],
implementing a π rotation around the vertical axis of the Bloch sphere (see Section 11.1). We
repeat this set of operations n times (where n is even) and, after a total evolution time T = nτ , read
out the state of the qubit. The fraction of singlet outcomes is denoted PS. Setting n = 1 implements
a Hahn-echo sequence, and allows comparison to previous work [26, 74, 108].

For quasistatic nuclear noise, the effective field acting on the qubit before and after the π pulse
is nearly the same, causing the qubit state to be refocused to the singlet after an interval τ/2. For
nuclear noise with power spectrum S( f ), Hahn and CPMG sequences act as a filter of the noise in
the frequency domain [99–101, 127, 142, 149]. For Gaussian noise, decoherence is described by a
function

W (τ) = exp
(
−
∫

∞

0

d f
2π2 S( f )

F( f τ)

f 2

)
, (9.1)

corresponding to a singlet probability PS(τ) =
1
2 [W (τ)+ 1]. In this expression, F( f τ) is a filter

function that depends on the particular pulse sequence.
Filter functions for Hahn echo (FHahn) and several CPMG sequences (FCPMG,n) for fixed τ are

plotted in Fig. 9.2b (gray) for varying numbers of π pulses. We write the CPMG filter function as a
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Figure 9.2: Frequency-selective dynamical decoupling. a, CPMG pulse sequence consisting
of n pulses separated by time τ . At the beginning, two electrons prepared in a singlet state |S〉
(Initialization) are rapidly separated into two dots with negligible exchange splitting (shaded region
of J). After a total separation time T = nτ the preserved qubit state is detected by the readout dot
via spin-to-charge conversion (Measurement). During the separation time the two-electron state
evolves in the fluctuating gradient of total magnetic field ∆Btot. For slow fluctuations, the phases
acquired before and after each π pulse cancel each other, due to the sign reversal of the acquired
phase by the π pulse. This is exemplified for three different values of ∆Btot by arrows in the Bloch
sphere. b, Filter functions of Hahn echo (n = 1) and CPMG sequence with n = 2, 8 and 32 π pulses
(gray). Envelope of the filter function Fenv reveals a frequency selectivity that is independent of
n (black). c, Schematic spectral density of nuclear noise. The linear low frequency part (green),
described by a power law, is dominated by fluctuations associated with diffusion of the longitudinal
component of the nuclear spin. The quadratic high frequency noise (red) results from fluctuations
of Btot at differences of nuclear Larmor frequencies. d, By adjusting the time between π pulses, the
minima of the filter function envelope Fenv (black) can be aligned with the nuclear noise spectrum
(green and red shading), thereby decoupling the qubit from both linear low frequency and quadratic
high frequency noise.

product FCPMG,n =
1
2 FFID×Fenv, where FFID is the filter function corresponding to the free induction

decay and Fenv is a slowly varying envelope (see Methods). Fenv is periodic with period 2/τ , with
minima occurring at zero frequency and multiples of 2/τ (Fig. 9.2(b), black), independent of n.
Specific features of the filter functions can be exploited to decouple the qubit from its characterisitic
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noise environment. First, for fixed separation time T = nτ , the filter minimum near zero frequency
becomes wider for increasing n (i.e., decreasing τ , note that the horizontal axis in Fig. 9.2b is
normalized frequency f τ). Thus for fixed T , decoupling from low frequency 1/ f β -type noise
(β > 0) becomes more efficient as n increases. Second, the minima that occur at multiples of 1/τ

indicate that noise at these frequencies is notch-filtered, in the sense that specific narrow frequency
windows are suppressed.

A schematic of the spectral density of nuclear noise for the S-T0 qubit fabricated in a GaAs
heterostructure is shown in Fig. 9.2c, distinguishing longitudinal low frequency noise (green) and
transverse narrow-band noise (red). The low frequency longitudinal contribution is well described
by a power-law spectrum [95, 141], and can be removed efficiently by any CPMG sequence
(Fig. 9.2d). The high frequency transverse contribution due to relative Larmor precession of nuclei
is concentrated near the three Larmor frequency differences [10], at megahertz frequencies for
tesla-scale applied fields. Remarkably, two of the Larmor difference frequencies, f71Ga− f69Ga
and f69Ga− f75As, are nearly equal, independent of magnetic field, and hence the third frequency
difference, f71Ga− f75As, occurs at twice that frequency. This coincidental property of the three
nuclear species allows us to approximately align minima of the filter function with all three
frequency differences by correctly choosing the time between π pulses, τ , thereby decoupling the
qubit from low and high frequency nuclear noise simultaneously.

9.4 Revivals of coherence
We now demonstrate the efficacy of this notch filter strategy in our experimental setup. The narrow-
band character of the high frequency nuclear noise is revealed by plotting the observed singlet
return probability PS as a function of π-pulse separation time τ (rather than total separation time
T ). Independent of the choice of n, we observe an initial loss of coherence followed by revivals at
τ ≈ 1.1, 2.2, 3.3, ... µs (Fig. 9.3a). These values of τ correspond to decoupling conditions shown
in Fig. 9.3b, namely the alignment of nuclear difference frequencies (shaded red) with minima
of the filter function envelope. Qualitatively, the alternating depth of filter minima in Fig. 9.3b
also explains the alternating heights of revivals, most pronounced for n = 4 in Fig. 9.3a. With
increasing τ , the height of the revivals decreases. This is related to decoherence arising from low
frequency noise (shaded green in Fig. 9.3b) [141]. Revivals observed for Hahn-echo sequences can
be explained similarly, except that the filter function for τ ≈ 1.1 µs has a maximum near 0.9 MHz
(Fig. 9.3c), rather than a minimum. Accordingly, PS shows a minimum near τ = 1.1 µs instead of a
revival (cf. n = 1 data in Fig. 9.3a).

The dependence of the decoupling condition for τ on nuclear Larmor dynamics can be verified
by changing the applied magnetic field. In Fig. 9.4a we fix n = 256 and measure the decay of
coherence as a function of Bext. As expected for a linear nuclear Zeeman splitting we find that the
positions of the revival peaks follow a 1/Bext dependence. We further observe that the peaks in
PS(τ) disappear at low magnetic fields. This may arise from several effects. First, the transverse
Overhauser field in each dot, Bnuc

⊥ , affects the total electronic Zeeman energy more strongly at
low magnetic field (see Fig. 9.1d), thereby accelerating dephasing. Second, the energy mismatch
between nuclear and electron Zeeman splittings becomes smaller at low fields, increasing electron-
mediated interactions between nuclear spins and the associated low frequency noise [10, 139, 145].
Third, an increase in τ , as needed to maintain the decoupling condition at lower fields, narrows the
filter function minima and thus reduces decoupling from high frequency noise.

9.5 Extending coherence time
Next we show that revivals in PS translate to prolonged qubit coherence times, by increasing n
while keeping τ and Bext fixed. This method, pioneered in NMR [122], differs from other spin
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Figure 9.3: Revival of coherence due to decoupling from nuclear Larmor precession. a, Singlet
return probability, PS, as a function of the time between π pulses, τ , for various numbers of π pulses,
n. Curves are offset for clarity. b, Filter function envelope (black) and nuclear noise frequencies
expected at 300 mT (shaded) for two choices of τ . In both cases (marked by blue and purple lines
in a) the revival in PS appears when minima of the filter function align with nuclear difference
frequencies. c, Filter function of Hahn-echo sequence for the same choices of τ as in b. The
absence of the first revival (marked by a blue triangle in a) indicates that coherence is lost when
the maximum of the filter function overlaps with the peaks in the nuclear noise spectrum (shaded).
The revival of PS for the second choice of τ (marked by the purple triangle in a) corroborates the
destructive role of nuclear Larmor dynamics in qubit decoherence.

qubit experiments in which n is held constant while τ is swept proportionally to T [74, 141].
Figure 9.4b plots decay curves PS(T = nτ) obtained for τ = 0.95 and 1.15 µs at Bext = 600 mT
(the corresponding points are indicated in Fig. 9.4a). For large n and Gaussian noise, an exponential
decay of coherence is expected, independent of the power spectrum of the noise [127]. By fitting
exponential decay curves [122, 127] (see Methods) we extract drastically different coherence times
T CPMG

2 , as indicated. Values of T CPMG
2 for more choices of τ are plotted in Fig. 9.4c, along with

PS(τ) extracted from Fig. 9.4a. We observe a clear correlation between T CPMG
2 and PS(τ), indicating

that qubit coherence is significantly prolonged whenever the decoupling condition is fulfilled. The
exponential decay indicates that coherence is limited by either incompletely filtered longitudinal
noise or pulse errors.

Finally we comment on the limits of preserving qubit coherence. Most of the observed
features in Fig. 9.4a are captured by a generalization of the semiclassical model of Ref. [132],
modified to include the details of the CPMG pulse sequence. The model involves four device-
specific parameters (Fig. 9.4 inset): the effective number of nuclei interacting with each electron,
N = 7×105, a phenomenological broadening, δB = 1.1 mT, of the effective magnetic field acting
on nuclei (likely due to quadrupolar splitting arising from electric field gradients [74, 108, 132]),
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the spectral diffusion time, TSD = 600 µs, and the exponent associated with the linear low frequency
noise, β = 3 (all determined by independent measurements as described in Sections 11.3 and 11.4).
The model suggests that the longest coherence time may be achieved by choosing a decoupling
condition corresponding to the second revival at high magnetic fields, consistent with a reduced
contribution of Bnuc

⊥ to Btot in each dot (see Fig. 9.1d) and the decoupling condition depicted in
Fig. 9.2d. We note that the model does not take pulse errors into account and does not show several
fine features observed in experiment (see white arrows in Fig. 9.4a, see Section 11.5).

By exploring the parameter space between Bext = 300 and 1000 mT with τ corresponding to
the first revival peak, we observe coherence times around 0.7 ms for Bext = 500 to 600 mT, with
the largest being T CPMG

2 = 0.87± 0.13 ms (Fig. 9.5), measured at Bext = 500 mT and τ = 0.75
µs. However, the number of examined values of Bext and τ remains insufficient to resolve the fine
structure apparent in the first revival peak.

We expect further improvements by using shorter π pulses and nuclear programming [45]. This
will improve the fidelity of π pulses and suppress low frequency noise, allowing the advantageous
use of the decoupling condition in Fig. 9.2d at high magnetic fields and high pulse rates.

9.6 Summary
In summary, dynamical decoupling sequences were demonstrated to provide decoupling from
narrow-band high frequency noise, acting as a notch filter for the nuclear environment. This
technique was used to efficiently decouple a GaAs-based S-T0 qubit from its nuclear environment.
By synchronizing the repetition rate of π pulses in CPMG sequences with differences of nuclear
Larmor frequencies, the coherence of a S-T0 qubit coupled to nuclear spin bath was extended the
millisecond regime (0.87 ms), five orders of magnitude longer than the gate operation time.

9.7 Methods
9.7.1 The sample

The sample, identical to the one shown in Fig. 1a, is fabricated from a GaAs/AlGaAs quantum
well grown by molecular beam epitaxy. Crystallographic axes are shown in Fig. 1a. A high-
mobility 2D electron gas (2DEG) is formed 57 nm below the sample surface with carrier density
ns = 2.5×1015 m−2 and mobility µ = 230 m2/Vs. Metallic gates, separated from the heterostructure
by a 10 nm layer of HfO2, are used to confine two electrons in the region indicated by a rectangle
in Fig. 1a. Gates indicated in blue and red are operated at negative voltages to deplete the 2DEG
underneath, while gates colored in green are biased with positive voltages to accumulate electrons
beneath. The charge state and tunnel coupling of the double dot can be controlled on a nanosecond
timescale by applying voltage pulses to gates VL, VM, and VR.

9.7.2 Initialization and readout of the qubit
The sample is measured at a base temperature of 25 mK in a cryofree dilution refrigerator, with
an external magnetic field Bext applied parallel to the z direction indicated in Fig. 1a. The qubit
is initialized in a singlet state by tilting its charge state into the (2,0) charge configuration and
allowing the exchange of electrons with the left lead near the (1,0) charge transition [7].

After qubit manipulation the state of the qubit is measured by tilting the double well potential
to favour the (2,0) charge state. If the two electrons are in the spin triplet configuration, Pauli
blockade prevents reaching the (2,0) state, and the charge configuration remains (1,1). The charge
state of the double dot modifies the conductance through a proximity sensor dot operated as a single
electron transistor. This sensor dot is embedded in a radio-frequency resonant circuit, enabling us
to distinguish singlet and triplet states in 8 µs with a readout visibility of approximately 80%, as
defined in Ref. [83].
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9.7.3 Envelope of a filter function for CPMG sequence
Filter functions for Hahn echo and CPMG sequence (for even number of π pulses, n) are given by
[100]

FHahn( f τ) = 8sin4 (π f τ/2) ; (9.2)

FCPMG,n( f τ) =
8sin4 (π f τ/2)sin2 (π f τn)

cos2 (π f τ)
. (9.3)

To emphasize the qualitative difference between CPMG sequences and the Hahn echo sequence,
and represent features of CPMG filter functions relevant for large number of π pulses, n, we rewrite

FCPMG,n =
1
2

Fenv×FFID (9.4)

using n-independent filter function envelope

Fenv( f τ) =
8sin4 (π f τ/2)

cos2 (π f τ)
. (9.5)

obtained by dividing FCPMG,n by the filter function corresponding to free induction decay

FFID( f T ) = 2sin2(π f T ). (9.6)

Here T = τn corresponds to a free induction decay time equal to the total duration as a CPMG
sequence. This normalization removes a fine comb related to the total length of the sequence.

9.7.4 Exponential fits to PS(T )

In contrast to many spin qubit experiments [7, 10, 12, 18, 26, 74, 83, 108, 141, 143, 145, 148] we
measure coherence not by keeping n constant and sweeping τ , but by increasing n while keeping
τ constant. This method, which is standard in NMR experiments [122], results in an exponential
decay of coherence for large number of π pulses n and long evolution times T = nτ , independent
of the power spectrum of the Gaussian noise [127]. The rate of such a decay is determined by the
noise spectrum at a frequency corresponding to the first peak of the filter function from Fig. 9.2d at
f = 1/2τ .

Therefore, we perform an exponential fit of the form A + Bexp(−T/T CPMG
2 ) to the data,

where A and B account for preparation and readout fidelity as well as rapid initial decay of the
signal [74, 108], and T CPMG

2 is a coherence time of the qubit. Typical values of A and B obtained
from fits used to extract values of T CPMG

2 , shown in Fig. 9.4c, are A∼ 0.6 and B∼ 0.2. Fit to the
data presented in Fig. 5 yields A = 0.53 and B = 0.34.
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10. Supplementary information for
“Spectrum of the nuclear
environment for GaAs spin qubits”

This supplementary information discusses the following topics:
10.1 Extracting the frequency of oscillations in Overhauser field from averaged and

single-shot data
10.2 Gaussian distribution of ∆B‖
10.3 Obtaining power spectral density of PS from truncated autocorrelation of single-

shot measurements
10.4 Fitting procedures for PSD in Figs. 8.2c and 8.3
10.5 Classical model of Overhauser field noise due to nuclear spin diffusion
10.6 Decoherence of the qubit subjected to the transverse Overhauser noise

10.1 Extracting the frequency of oscillations in Overhauser field from averaged
and single-shot data
The power spectral density of the gradient of Overhauser field squared (∆B‖)2 is obtained from two
kinds of data sets.

The first one consists of oscillations in the singlet probability PS as a function of electron
separation time tS, varying from 0 to 250 ns, measured with 1 s repetition rate. For each studied
value of magnetic field, we measure a 1.5 hour-long data set, and a fragment of such a data set
is presented in Fig. 10.1a. The frequencies of the oscillations are obtained by means of Fourier
analysis. We calculate the Fast Fourier Transform (FFT) of each vertical column and inspect its
absolute value (Fig. 10.1b). The position of the maximum indicates the frequency of oscillations,
which is related to the gradient of the Overhauser field between the dots by h fOvh = gµ|∆B‖|
(Fig. 10.1c).

The second data set consists of ten non-averaged measurements, each 30 s long. A 1 s excerpt
of one of them is shown in Fig. 10.1d. Extracting the underlying oscillation frequency from each
column requires more careful treatment, since the probabilistic nature of binary measurements adds
large amounts of shot noise. In our analysis we first assign S and T0 outcomes to, respectively, 1 and
−1. Then we subtract from each column its mean, and calculate the autocorrelation (Fig. 10.1e). The
obtained autocorrelation reveals oscillations at the same frequency as unprocessed data. However,
in the autocorrelated data the shot noise is averaged out for all ∆tS except for 0, where the shot
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Figure 10.1: Intermediate steps of extracting ∆B‖ from raw data. (a) Raw data is taken by repeating
a 300-point sequence with tS from 0 to 250 ns 16 times, allowing us to estimate the probability PS(tS).
Such data forms a single column of the presented map. (b) Absolute value of FFT of probability
oscillations. (c) Extracted position of the peak, f , and corresponding |∆B‖|. (d) Raw single-shot
data (one sequence run per column) and (e) its autocorrelation. Color scale in autocorrelation 2d
map is chosen to show oscillations and hide the peak at ∆tS = 0. (f) Absolute value of FFT of
autocorrelation. (g) Extracted position of the peak and corresponding |∆B‖|.

noise accumulates. Next we replace the autocorrelation value at ∆tS = 0 with the value at the
smallest |∆tS| 6= 0. This minimizes the influence of shot noise without affecting the visibility of the
oscillations. The absolute value of the FFT (Fig. 10.1f) of the autocorrelations processed in such
way exhibits a clear peak, which we associate with the qubit oscillation frequency. Namely, the
peak position in frequency, fOvh, is used to extract |∆B‖| via h fOvh = gµ|∆B‖| (Fig. 10.1g).

10.2 Gaussian distribution of ∆B‖

Several points of the analysis presented in the main text assume a Gaussian distribution of the
Overhauser field gradients. To show that this assumption is justified we plot in Fig. 10.2a histograms
of |∆B‖| for several values of the external magnetic field. The fits to the data confirm our assumption,
indicating there spin bath does not have multiple stable points, in contract to experiments involving
intentional dynamical nuclear polarization [72, 133, 134]. However we observe that the mean
Overhauser field gradient is shfted away from zero for increasing external magnetic field, while
the width of the ∆B‖ distribution remains unchanged (Fig. 10.2b,c). We suspect that this non-zero
mean arises from unintentional nuclear polarization, as reported previously for this device [64, 94]
and for devices studied by other groups [108].
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Figure 10.2: (a) Measured distribution of |∆B‖| for various applied magnetic fields Bext. Solid lines
are fits assuming Gaussian distributed ∆B‖ with mean |〈∆B‖〉|. (b,c) Fitted mean Overhauser field
gradient |〈∆B‖〉| and the Overhauser field gradient distribution width σ∆B as a function of applied
magnetic field Bext. Colored points correspond to |∆B‖| distributions presented in panel (a).

10.3 Obtaining power spectral density of PS from truncated autocorrelation of
single-shot measurements

As explained in the main text, to maximize the repetition rate at which ∆B‖ is probed, we fix
the separation time tS = 100 ns and repeat the pulse cycle continuously. Then we map S and
T0 outcomes to, respectively, 1 and −1. As a result we obtain binary traces of over 2 million
points. A small piece of such a trace is presented in Fig. 10.3a, obtained for external magnetic field
Bext = 0.6 T and tS = 100 ns.

The sequence of single-shot outcomes is dominated by shot noise, which obscures the under-
lying oscillations when using conventional methods for calculating the PSD. To eliminate this
noise contribution, we apply the same procedure mentioned in the previous section. That is, we
find the autocorrelation and replace its value at ∆t = 0 with the value at the smallest |∆t| 6= 0. The
autocorrelation of single-shot measurements for Bext = 0.6 T are plotted in Fig. 10.3b. Now we can
take advantage of the fact that the Fourier transform of the autocorrelation is identical to the power
spectral density of the original trace.

Even though the sample is huge, we observe artifacts related to its finite size. Namely, the
autocorrelation has a long, irregular tail (Fig. 10.3b, inset). If we perform FFT over the entire
available range of ∆t, fluctuations in the tail dominate over the relevant features at ∆t ∼ 1/ f .

In our further analysis we assume that relevant information about the nuclear noise at frequency
f is contained within the window |∆t| . A/ f = ∆tmax where A is of the order of ten. In other
words, to obtain an accurate value of the power spectral density of the noise at frequency f , it is
sufficient to take the Fourier transform of the autocorrelation in the range −∆tmax < ∆t < ∆tmax. In
our analysis we use 16≤ A≤ 32. To avoid the necessity of windowing we keep the range of ∆t
such that the number of points within the −∆tmax < ∆t < ∆tmax range is 2n, for integer n.

Power spectral densities for Bext = 0.6 T, tS = 100 ns, and various choices of ∆tmax are presented
in Fig. 10.3c, visualizing the trade-off between frequency range and noise floor level due to finite
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Figure 10.3: (a) Example trace of single-shot measurements obtained from pulses with tS = 100 ns
at 0.6 T. (b) Autocorrelation of single-shot traces for tS = 100 ns. Inset shows long-time tail with
oscillations caused by finite size of the sample. (c) Power spectral density of PS obtained by FFT of
the autocorrelation truncated at ±∆tmax.

sample size. Wide ∆t windows (i.e. large tmax) give access to lower frequencies but raise the noise
floor, while narrow ∆t windows sacrifice low-frequency information for a reduction in noise. By
adjusting the window dynamically we are able to achieve a wide spectral range without suffering
from the background noise.

10.4 Fitting procedures for PSD in Figs. 8.2c and 8.3

The classical diffusion model used to describe the experimental results presented in Figs. 8.2c and 8.3,
provides analytical expressions for the autocorrelation of (∆B‖)2 and PS, but no analytical expres-
sion for the PSD. Therefore the fitted expressions involve numerical Fourier transforms of the
autocorrelation obtained from the analytical formulas.

To fit data in Fig. 8.2c we simulate two sets of autocorrelation traces, such that after performing
a FFT they produce PSD points at the same frequencies as in the experimental data. Simulated
traces obtained in such way are suitable for optimization via the method of least squares.

To fit the data in Fig. 8.3 we simulate autocorrelation traces with identical time resolution as
the experimental data. To these traces we then apply the same procedure as to experimental data
(that is we perform FFT of data limited to a suitable range of ∆t). The obtained set of frequencies is
identical to those of the experimental PSD, making this method suitable for least squares fitting.

10.5 Classical model of Overhauser field noise due to nuclear spin diffusion

Here we construct a model for the dynamics of a S-T0 qubit in a double quantum dot, arising from
slow fluctuations of the longitudinal Overhauser (difference) field in the two dots. The Overhauser
field is produced by nuclear spins in the host crystal, which undergo their own dynamics due to their
mutual dipole-dipole coupling. These dynamics lead to fluctuations of the longitudinal Overhauser
field, which in turn affect the evolution of the spin qubit, which plays the role of a sensor in this
work. Our approach is similar to that employed previously to describe the results of the experiment
in Ref. [95].
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The electronic system is influenced by the nuclear spins through the hyperfine (hf) interaction,

HHF = A0 ∑
j

δ (r̂−R j) Ŝ · Î j, (10.1)

where r̂ is the electron position operator, R j is the position of nucleus j, and Ŝ and Î j are the spin
operators for the electron and nucleus j, respectively. Here A0 has units [Energy × Volume/h̄2],
with a characteristic value in GaAs of h̄2A0/v0 ≈ 100 µeV [10], where v0 is the unit cell volume.
For simplicity we consider a single nuclear species. On a coarse-grained scale encompassing many
atomic sites, we describe the nuclear spin state in terms of a spin density field I(x, t). Throughout
this treatment we focus only on the spin component parallel to the externally-applied magnetic
field. Here I(x, t) has units [h̄/Volume].

In a double dot, the (1,1) singlet and triplet (T0) states are coupled by the longitudinal Over-
hauser difference field

∆Bz(t) =
h̄A0

g∗µB

∫
d3x∆ρ(x)I(x, t), (10.2)

where g∗ is the electronic effective g-factor, µB is the Bohr magneton, and ∆ρ(x) = |ψR(x)|2−
|ψL(x)|2, with |ψR(x)|2 and |ψL(x)|2 the electronic density profiles in the right and left dot, respec-
tively. Later it will be convenient to work in Fourier space,

∆Bz(t) =
h̄A0

g∗µB

∫ d3q
(2π)3 ∆ρ̃q Ĩ−q(t), (10.3)

where f̃q =
∫

d3xe−iq·x f (x). Notably, although the nuclear spin field I(x, t) extends throughout the
entire sample, the Overhauser field is only sensitive to the value of I(x, t) in a limited region where
the electrons are localized.

For simplicity, we take a model where the nuclear spin field I(x, t) evolves under its own
dynamics, unperturbed by the presence of the electronic system. In the absence of nuclear spin
relaxation (i.e., for infinite nuclear T1), the dipolar interaction between nuclear spins leads to a
diffusive-type dynamics of nuclear spin polarization:

∂tI(x, t) = D∇
2I(x, t)+ξ (x, t), (10.4)

where ξ (x, t) is a stochastic field that accounts for the randomness of dipole-dipole induced nuclear
spin flips. The units of ξ (x, t) are [Energy / Volume]. Such a diffusive model is also expected to at
least qualitatively describe the dynamics caused by electron-mediated nuclear flip-flops [117].

The smooth diffusive dynamics, as described by the first term in Eq. (10.4), are only manifested
on timescales longer than that for a single nuclear spin flip due to its interaction with its neighbors
(typically∼ 10−100 µs for GaAs [10]). On times longer than this scale, where the diffusion model
applies, the noise has zero average, 〈ξ (t)〉 = 0, and is essentially white: 〈ξ (t)ξ (t ′)〉 ∼ δ (t− t ′).
Here the angle brackets indicate averaging over noise realizations. The conservation of total nuclear
spin is ensured by taking the noise to have the following spatial correlations on scales larger than
the atomic lattice spacing:

〈ξ (x, t)ξ (x′, t ′)〉=−ηD∇
2
δ (x−x′)δ (t− t ′), (10.5)

where the proportionality constant η will be fixed below to ensure the correct RMS value of the
Overhauser difference field in equilibrium. The units of η are [h̄2/Volume].

Fourier transforming Eq. (10.4), we obtain an independent differential equation for each nuclear
spin mode Ĩq, labeled by the 3D wave vector q:

∂t Ĩq(t) =−Dq2Ĩq + ξ̃q(t). (10.6)
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The Fourier modes ξ̃q(t) of the noise field satisfy

〈ξ̃q(t)ξ̃q′(t ′)〉= ηDq2(2π)3
δ (q+q′)δ (t− t ′). (10.7)

The differential equation (10.6) has the formal solution

Ĩq(t) = Ĩq(t0)e−Dq2(t−t0)+
∫ t

t0
dt ′ e−Dq2(t−t ′)

ξ̃q(t ′). (10.8)

Using the explicit form for Ĩq(t) above, along with Eq. (10.7), we obtain the correlation functions
for the nuclear spin field:

〈Ĩq(t)Ĩq′(t ′)〉= e−Dq2(t+t ′−2t0)
[
〈Ĩq(t0)Ĩq′(t0)〉−η(2π)3

δ (q+q′)
]
+η(2π)3

δ (q+q′)e−Dq2|t−t ′|,

(10.9)

where in the second line we have used Eq. (10.7). If the initial state I(t0) is drawn from the
(stationary) equilibrium distribution, 〈Ĩq(t0)Ĩq′(t0)〉= 〈Ĩq(t)Ĩq′(t)〉, then we find

〈Ĩq(t)Ĩq′(t ′)〉= η(2π)3
δ (q+q′)e−Dq2|t−t ′|. (10.10)

In position space, the equilibrium Overhauser field fluctuations are thus uncorrelated:

〈I(x, t)I(x′, t)〉= η δ (x−x′). (10.11)

We now use the results above for the correlation function of the nuclear spin field to calcu-
late the noise correlations of the Overhauser difference field, ∆Bz(t). The correlation function
〈∆Bz(t)∆Bz(t ′)〉 is straightforward to evaluate using Eqs. (10.3) and (10.10):

〈∆Bz(t)∆Bz(t ′)〉= η
h̄2A2

0
(g∗µB)2

∫ d3q
(2π)3 |∆ρ̃q|2 e−Dq2|t−t ′|, (10.12)

where we have used ρ̃−q = ρ̃∗q .
We set the value of η by demanding that the equilibrium RMS Overhauser field fluctuations

should match the measured value:

σ
2
∆B ≡ 〈∆B2

z 〉eq = η
h̄2A2

0
(g∗µB)2

∫ d3q
(2π)3 |∆ρ̃q|2. (10.13)

To evaluate |∆ρ̃q|2 in the integrand above, we must specify a particular form for the electron density
profiles in the two dots. For simplicity we take the densities in the two dots to be Gaussian, centered
at positions xL = (xL,0,0) and xR = (xR,0,0):

|ψα(x)|2 =
e−[(x−xα )

2+y2]/(2σ2
⊥)

2πσ2
⊥

e−z2/(2σ2
z )√

2πσ2
z
, (10.14)

where α = L,R. Setting xL = −d/2, xR = d/2 and taking the Fourier transform of the electron
density in Eq. (10.14), we obtain

|∆ρ̃q|2 = 4sin2(qxd/2)e−(σ
2
z q2

z +σ2
⊥q2

x +σ2
⊥q2

y). (10.15)

Rewriting 4sin2(qxd/2) = 2(1− cosqxd) and substituting into Eq. (10.13) gives

〈∆B2
z 〉eq =

h̄2A2
0

(g∗µB)2
η

4π3/2σzσ
2
⊥

(
1− e−d2/4σ2

⊥
)
. (10.16)
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To cast the result into a more convenient form, we define the effective number of spins Nα in dot
α = L,R via N−1

α = v0
∫

d3x |ψα(x)|4, where v0 is the unit cell volume (see above). For the wave
functions in Eq. (10.14) we have Nα = 8π3/2σzσ

2
⊥/v0 ≡ N. Letting EN = (g∗µB)

√
〈∆B2

z 〉eq, we
have

E2
N =

2
N
· v0η

h̄2 ·
(

h̄2A0

v0

)2

·
(

1− e−d2/4σ2
⊥
)
. (10.17)

In this form, the
√

N dependence of the RMS Overhauser field fluctuations is explicitly displayed.
The oscillations observed in Fig. 8.2 of the main text reveal the magnitude of the gradient, but

do not yield information about its sign. Therefore the correlation function in Eq. (10.12), which
depends on both the magnitude and sign of ∆B(t), is not of direct relevance. Instead, we compute
the experimentally-relevant noise correlations and power spectrum for ∆B2

z (t). Assuming that the
noise is Gaussian, which is justified by the fact that the continuous nuclear spin field I(x, t) is
produced by a large density of randomly polarized individual spins, the fourth-order correlators that
appear in the expression for 〈∆B2

z (t)∆B2
z (t
′)〉c = 〈∆B2

z (t)∆B2
z (t
′)〉c−〈∆B2

z (t)〉2 can be factorized.
This gives:

〈∆B2
z (t)∆B2

z (t
′)〉c =

2η2h̄4A4
0

(g∗µB)4

[∫ d3q
(2π)3 |∆ρ̃q|2e−Dq2|t−t ′|

]2

. (10.18)

The integral in Eq. (10.18) is very similar to the one evaluated above to compute the RMS
nuclear field. Again using the electronic density profile, Eq. (10.14), we get

C(t− t ′)≡
∫ d3q

(2π)3 |∆ρ̃q|2e−Dq2|t−t ′| =
1− e−

1
4 d2/(σ2

⊥+D|t−t ′|)

4π3/2(D|t− t ′|+σ2
⊥)
√

D|t− t ′|+σ2
z
. (10.19)

Substituting back into Eq. (10.18), we get

〈∆B2
z (t)∆B2

z (t
′)〉c =

η2

8π3
h̄4A4

0
(g∗µB)4

(
1− e−

1
4 d2/(σ2

⊥+D|t−t ′|)
)2

(D|t− t ′|+σ2
⊥)

2 (D|t− t ′|+σ2
z )

. (10.20)

The autocorrelation function in Eq. (10.20) above was used for fitting the experimentally
obtained power spectral densities for (∆B‖)2 in Fig. 8.2c. The geometric parameters were taken
from the lithographic dimensions of the device, and known growth parameters of the heterostructure:
d = 150 nm, σ⊥ = 40 nm, and σz = 7.5 nm. The diffusion constant D and the equilibrium nuclear
field fluctuations EN = g∗µBσ∆B, see Eqs. (10.13) and (10.17), were taken as fit parameters. The
extracted values were D = 33 nm2/s and σ∆B = 6.0 mT.

10.5.1 Correlations for fixed separation time
In Fig. 8.3 of the main text, power spectral densities for measurements of the singlet return
probability with fixed separation time are shown. This type of measurement was employed
previously by Reilly and coworkers [95]. For separation time tS, the singlet return probability PS is
given by

PS(t) =
1
2

Re
[
1+ ei(g∗µB/h̄)∆Bz(t)tS

]
. (10.21)

Here we assume that Bz(t) is frozen on the timescale of one experiment, but its value may change
from run to run. Averaging over Gaussian fluctuations gives

〈PS(t)〉=
1
2

[
1+ e−

1
2 (g∗µB/h̄)2〈∆B2

z 〉t2
S

]
. (10.22)
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Figure 10.4: Scaling of the extracted coherence decay envelope T2,n with n at external magnetic
field B = 0.75 T. Solid blue and yellow lines indicate fits of the power law ∝ nγ to data in the
indicated range.

Using Eq. (10.21), the autocorrelation function 〈PS(t +∆t)PS(t)〉− 〈PS(t)〉2 then follows (as
also found in Ref. [95]):

〈PS(t+∆t)PS(t)〉−〈PS(t)〉2 =
1
4

e−(g∗µB/h̄)2〈∆B2
z 〉t2

S
[
cosh

(
(g∗µB/h̄)2〈∆Bz(t +∆t)Bz(t)〉t2

S
)
−1
]
.

(10.23)

The quantity 〈∆B2
z 〉 in the exponent was calculated above, see Eq. (10.13) and below. Furthermore,

the correlation function C(t− t ′) = (g∗µB)
2

η h̄2A2
0
〈∆Bz(t +∆t)Bz(t)〉 was calculated in Eq. (10.19). Thus

we obtain the autocorrelation function for the singlet return probability in experiments with fixed
separation time, used for fitting the data in Fig. 8.3 of the main text.

10.6 Decoherence of the qubit subjected to the transverse Overhauser noise

ĤSN = ∑
i=L,R

(
ĥi

z +
(ĥi

x)
2 +(ĥi

y)
2

Ω

)
Ŝi

z (10.24)

where ĥi
a with a= x, y, and z are the operators of Overhauser field components, given by ĥi

a =

∑k Ai
k Îa

k , in which Îa
k are the spin operators of k-th nucleus and Ai

k = Aα[k]|Ψi(rk)|2 (with Ψi(r)
being the envelope wavefunction of the electron in dot i, Aα[k] the hyperfine interaction energy for
nucleus of species α , and rk the position of k-th nucleus) are the hyperfine couplings of the k-th
nucleus to the electron in dot i.

When the exchange interaction between the two electrons is strongly suppressed due to a large
barrier height separating the two potential minima [64], the overlap between the ΨL(r) and ΨR(r)
functions is negligible, and every contributing nucleus is coupled only to one electron, residing
either in L or R dot. The Hamiltonian (10.24) is then a sum of two commuting terms, each pertaining
to another dot. We also assume that the nuclear density matrices in the two dots are uncorrelated,
and that the L and R dots have the same size and shape. The singlet return probability PS(T ) is then
given by

PS(T ) =
1
2
+

1
2
|W (T )|2 , (10.25)

where W (T ) is the coherence function of a single spin in one of the QDs (i.e. an off-diagonal element
of its density matrix normalized to unity), calculated for the respective dynamical decoupling
sequence.
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Although the longitudinal and transverse Overhauser field operators do not strictly commute,
their commutator is∼ σ/N, where σ is the rms of the Overhauser field and N is the number of
nuclei appreciably interacting with the electron [132]. In the following we use a semiclassical
approach to dynamics of large nuclear bath, and neglect this commutator. The decoherence function
can then be written as

W (T )≈Wz(T )W⊥(T ) , (10.26)

in which Wz(T ) is the contribution to decoherence that originates from the first (longitudinal) term
in Eq. (10.24), while W⊥(T ) is the contribution due to the second term (quadratic in transverse
Overhauser operators).

The Hamiltonian of the nuclei is the sum of a Zeeman term, a quadrupolar splitting term, and a
dipole-dipole interaction term:

ĤN = ĤZ + ĤQ + ĤD = ∑
k

ωk Îz
k +∑

j
qk(Iz

k)
2

+∑
k>l

bkl(Î+k Î−l + Î−k Î+l −2Îz
k Îz

l ) , (10.27)

where ωk and qk are the Zeeman and quadrupolar splittings of the k-th nucleus respectively, and bkl
is the dipolar coupling between k and l nuclei.

It is important to note that W⊥(T ) calculated for echo or other dynamical decoupling sequences
has noticeable time-dependence due to the presence of ĤZ and ĤQ terms involving only single
nuclei. The characteristic oscillations of W⊥(T ) for spin echo [10, 74, 108, 132, 143] and for
CPMG [94] arise from the presence of three distinct nuclear Larmor precession frequencies in
GaAs. In contrast, the echo decay envelope was explained [74, 94, 108, 132] by the presence of
a quadrupolar-induced spread of effective fields δB, with δB sufficiently large to dominate over
broadening due to Îz

k Îz
l dipolar interactions. Reported values are δB≈0.3 mT in [74] and δB≈1

mT in [94, 108]. On the other hand, the decay of Wz(T ) is solely due to the dipolar Î−k Î+l flip-flop
term, which does not commute with ĥz and thus leads to dynamics of the longitudinal Overhauser
field.

We calculate W⊥(T ) using a semiclassical theory [132], in which the averages of products of
any number ĥ2

x,y are evaluated to the lowest order in 1/N expansion [10, 143]. Following [10, 132]
we define a T -matrix, the components of which are given by

Tkl(T ) =
2
3

I(I +1)
√

NkNl
AkAl

2Ω

∫ T

0
f (t ′)eiωklt ′

× cos
(∫ t ′

0
f (t ′′)Akldt ′′

)
(10.28)

where k(l) labels the group of Nk(l) nuclei having (approximately) common values of hf coupling
Ak(l) and Zeeman splitting ωk(l), f (t ′) is the time-domain filter function corresponding to the given
pulse sequence ( f (t ′) is nonzero for t ′ ∈ [0,T ], and it changes between 1 and −1 value at times at
which π pulses are applied), I is the length of individual nuclear spins (assumed to be the same
for all spins, as is the case for GaAs, for which I=3/2), and ωkl =ωk−ωl , Akl =(Ak−Al)/2. We
have then [10, 132, 143]

W⊥(T )=
1

det[1+ iT (T )]
= exp

[
∞

∑
k=1

(−i)k

k
Rk(T )

]
, (10.29)

where Rk(T ) = Tr[T k(T )].
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Figure 10.5: Two-spin decoherence function |W⊥(T = nτ)|2 calculated using the T -matrix approach
for n=1, 4, 16, 64, and 256 (from bottom to top). Black solid lines are the exact calculation, green
lines are the homonuclear-only result, and dashed lines correspond to analytical approximation to
the homonuclear result from Eq. (10.34).

For a spin echo sequence of length T =τ the T -matrix is given by [10, 132, 143]

T SE
kl (τ) =

b̄kb̄l

Ω

−iωkl

ω2
kl−A2

kl

(
cos

ωklτ

2
− cos

Aklτ

2

)
eiωklτ/2 , (10.30)

while for a CMPG sequence with even number of pulses n and interpulse spacing τ we have [94]

T CP,n
kl (T = nτ) =

b̄kb̄l

Ω

ωkl

ω2
kl−A2

kl

cos ωklτ
2 − cos Aklτ

2
cos ωklτ

2

× sin
ωklnτ

2
eiωklnτ/2 . (10.31)

where b̄k=
√

2
3 I(I +1)NkAk is the rms strength of the Overhauser field arising from Nk spins, all

spins having Knight shift Ak.
It is crucial now to recognize the distinct roles of two kinds of contributions to the T -matrix: the

heteronuclear ones, in which ωk and ωl correspond to distinct nuclear isotopes (i.e. 69Ga, 71Ga, and
75As in the case of GaAs, labeled by α =1,2,3), so that ωkl≈ωαβ , and the homonuclear ones, in
which ωk and ωl correspond to groups of nuclei of the same isotope, so that ωkl�ωαβ . The former
terms govern the presence of characteristic oscillations of W⊥(t) in echo [74, 94, 108] and CPMG
case [94], while the latter smooth these oscillations in CPMG case and, more importantly, lead to
an irreversible decay of the signal. Note that the homonuclear terms are nonzero in the presence of
intra-species spread of nuclear splittings, thereby contributing to low- and intermediate-frequency
noise.

Note that the dependence of Tkl on Knight shift differences Akl is negligible in experimentally
relevant range of parameters for both homonuclear and heteronuclear terms. For QD with number
of nuclei N≈106 we have Aklτ�1 for τ�20 µs. For heteronuclear terms we can then put Akl =0
in Eqs. (10.30) and (10.31) provided that ωαβ�Akl (which is fulfilled for Bext>100 mT in dots
considered here), while for homonuclear terms for isotope α we have to assume that ωklτ�1
(which is easily fulfilled for considered values of τ with δB≈1 mT used here). We can then perform
the calculation by dividing the nuclei of each isotope into K groups, each having the same Ak (equal
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to the typical hf coupling for a give isotope), value of ωk taken from [ωα −5σα ,ωα +5σα ] range,
and Nk taken from a Gaussian distribution:

Nk∈α = Nα

1√
2πσα

exp
(
−(ωk−ωα)

2

2σ2
α

)
, (10.32)

in which σα is the rms value of the nuclear splitting due to a spread δB of the effective field
experienced by the nuclei. The calculations converge on timescales relevant for measurements
presented in this paper for K <100 for n=256 pulses (and for smaller K for lower numbers of
pulses).

Examples of results for n= 1, 4, 16, 64, and 256 are shown in Fig. 10.5. In the calculations
we have used the values of Aα =2Aα/N, with Aα =35.9, 45.9, and 42.9 µeV, and ωα =−42.1,
−53.6, and −30.1 neV at 1 T field corresponding to 69Ga, 71Ga, and 75As, respectively (note that
N here is the number of nuclei, while in [10] it denoted the number of unit cells, i.e. twice the
number of nuclei). The experimental results presented in the main text are best fit by N=9×105

in each dot, and effective broadening σα corresponding to 1 mT field, and these are the values used
in Fig. 10.5.

The key observation is that the calculated W⊥(T ) can be very well approximated by a product
of decoherence functions calculated while keeping only the homonuclear terms and only the
heteronuclear ones:

W⊥(T )≈W⊥,het(T )×W⊥,hom(T ) . (10.33)

The heteronuclear term is responsible for large-amplitude oscillations of the signal, while the
homonuclear term gives a decay envelope of the coherence signal, see Fig. 10.5. Furthermore, the
homonuclear contribution can be approximated very well (at least on timescale of the signal decay)
by a simple solution obtained using a bimodal approximation to the distribution of ωk frequencies
of nuclei of each species (first used for spin echo case in [132]). In this approximation we have

W⊥,hom(T )≈∏
α

1

1+(T/t(n)α )4
, (10.34)

where for echo we have

t(1)α =
2
√

2
b̄α

√
Ω

σα

, (10.35)

while for CPMG sequence with even n we obtain

t(n)α = 21/4nt(1)α . (10.36)

This is the main result here: when decoherence due to tranvserse Overhauser field fluctuations
is dominated by the homonuclear contribution, the characteristic coherence half-decay time T2
(defined by W⊥,hom(T2)=1/e) scales linearly with the number of pulses n, i.e. we have T2 ∝ nγ⊥

with γ⊥=1.





11. Supplementary Information for
“Notch filtering the nuclear
environment of a spin qubit”

The supplementary information is divided into sections, which discuss the following
topics:
11.1 Calibration of π pulses
11.2 Semiclassical model of decoherence due to nuclear noise
11.3 Estimating N and δB from Hahn echo signal
11.4 Estimating TSD and β from scaling of coherence time
11.5 Extension of the model to take into account anisotropy of electron g-factor.

Discussion of the origin of the splitting of the first revival peak.
Supplementary information appended to this thesis include additional unpublished
results on:
11.6 CPMG revival maps for 32, 64 and 128 π pulses

11.1 Calibration of π pulses

To generate decoupling sequences consisting of as many as 1000 π pulses we took advantage of
charge-noise-insensitive symmetric exchange pulses. This new technique improves the quality
factor of exchange oscillations by a factor of six relative to conventional method of tilting the
double dot potential [64, 68]. A detailed analysis of this technique, and results obtained in the
preceding experiment from the same setup and same sample, can be found in Ref. [64, 84].

The optimization was performed by maximizing the Hahn echo signal by varying the amplitude
of the symmetric exchange pulse, γX , while keeping detuning εX = 0 mV, exchange time tX = 4.167
ns and total evolution time τ = 0.75 µs fixed (Fig. 11.1). The experiment was performed on the
same device and in identical tuning as Ref. [64], where γX and εX are defined and discussed in
detail.

We note that symmetric exchange pulses show a weaker dependence on gate voltages than
ordinary tilt pulses. Hence, symmetric π pulses are more robust against fluctuations of pulse
amplitudes. On the other hand, symmetric pulses require a larger amplitude, resulting in somewhat
slower exchange gates compared to conventional tilted exchange gates. This limitation makes
π pulses more susceptible to errors induced by gradients of the Overhauser field, causing a
tilted rotation axis of the qubit. In future experiments, larger pulse amplitudes can be achieved
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Figure 11.1: Calibration of π pulses Singlet return probability PS as a function of a symmetric
exchange pulse amplitude, for exchange time of 4.167 ns in a Hahn echo experiment. The maximum
probability indicates π pulse. Solid line is a guide to the eye. Inset: around the maximum the
parabola is fitted to the data. Symbol π indicates value of γX corresponding to the π pulse.

straightforwardly by decreasing the attenuation in the transmission lines in the cryostat.
Nevertheless, the CPMG sequence is particularly robust to two kinds of π pulse errors that

affect exchange gates [150]. The first is over or under rotation around the vertical axis of the Bloch
sphere due to miscalibration of pulse amplitude and duration. The second is tilt of the rotation axis
in the |S〉-|T0〉–|↑↓〉-|↓↑〉 plane due to uncontrolled gradients of the Overhauser field.

11.2 Semiclassical model for decoherence
The inset of Fig. 4 shows theoretical results for coherence revivals. The model is derived closely
following the semiclassical approach developed in Ref. [132]. The starting point is to express the
Hamiltonian for the |↑↓〉, |↓↑〉 subspace of the two-spin system as

Ĥ(t) = g∗µB ∑
d=L,R

(
Bnuc

z,d (t)+
|Bnuc
⊥,d(t)|2

2|Bext|

)
c(t)Ŝz

d , (11.1)

where g∗ is the electron g-factor, µB is the Bohr magneton, Bext is the external magnetic field, Bnuc
z,d

(Bnuc
⊥,d) is the Overhauser field component parallel (perpendicular) to external magnetic field, Ŝz

d is
the electron spin operator, d = L,R labels the left and right dots, and we assume |Bext| � |Bnuc

d |.
Here, the sequence of π pulses applied to the qubit is captured by

c(t) =
n

∑
j=0

(−1) j
θ(t j+1− t)θ(t− t j), (11.2)

where t j is the time at which the j-th π pulse of the CPMG sequence is applied (with t0 = 0,
tn+1 = T ), and θ(t) is the Heaviside step function.

Reference [132] treated only the Hahn echo sequence. This corresponds to n = 1 in the above.
Following the same sequence of steps, we obtain results for arbitrary n. As in that case, the
decoherence function W (τ) =Wz(τ)W⊥(τ) is separated into a product of contributions from the
longitudinal and transverse noise sources. The low-frequency longitudinal noise contribution
is of the form Wz(τ) = e−(τ/TSD)

α

, where α = β + 1 is related to the exponent in the power law
1/ f β describing the spectrum of this noise source [141], and TSD is the spectral diffusion time.
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Because the transverse field enters the Hamiltonian (11.1) as a square, |Bnuc
⊥,d(t)|2, this noise source

is effectively non-Gaussian [98, 132]. As a result, the decoherence function for dot d is of the form
W⊥,d(τ) = 1/det(1+ iTd) with components of the matrix Td given by

Tkl,d =
5Aξ (k)Aξ (l)

√
NkNl

2g∗µB|Bext|
ωkl

ω2
kl−A2

kl

1−
cos
(

AklT
2n

)
cos
(

ωklT
2n

)
sin

(
ωklT +nπ

2

)
ei ωkl T+nπ

2 . (11.3)

Here k, l labels groups of nuclei associated by isotope and local nuclear Zeeman coupling, Aξ (k) is
the hyperfine coupling constant for nuclei in group k, Akl = Aξ (k)−Aξ (l), Nk is number of nuclei in
a group, ωkl = ωk−ωl is a difference of Larmor frequencies between nuclei from two groups, and
T = nτ is the total evolution time. Specifically, the nuclei of each isotope are divided into K groups
using the relation Nk = nξ (k)N/(2K), where nξ is the number of nuclei of isotope ξ per unit cell,
and where all nuclei within each group have the same Larmor angular frequency ωk. The value of
ωk for each group is drawn from a Gaussian distribution centered at the bare Larmor frequency ωξ

for the corresponding isotope, with standard deviation δB. The broadening δB is introduced as a
phenomenological parameter to take into account an effective spread in the Larmor frequencies due
to inhomogeneous quadrupolar splittings and dipole-dipole interactions. For the simulation shown
in Fig. 4, differences between hyperfine couplings within the same isotope were neglected, and
convergence was obtained with K = 4 groups.

Larmor frequencies and hyperfine couplings used to perform the simulation shown in Fig. 4
were taken from Ref. [10] (table 11.1). The remaining parameters are: the effective number, N, of
nuclei interacting with each electron, inhomogeneity, δB, of the effective magnetic field acting on
the nuclei, the spectral diffusion time, TSD, and the exponent, β , associated with the low-frequency
noise. The following sections explain how these parameters are obtained.

11.3 Estimating N and δB from Hahn echo signal
The simulation of revivals under CPMG sequences requires knowledge of four device-specific
parameters, two of which, the effective number, N, of nuclei interacting with each electron and the
inhomogeneity, δB, of the effective magnetic field acting on the nuclei, are extracted from Hahn
echo data obtained at several magnetic fields (Fig. 11.2). Following previous work [74, 132] we
first fit theory to Hahn echo data at each magnetic field separately, keeping δB, N, the spectral
diffusion time for Hahn echo, T Hahn

SD , vertical offset, and vertical scaling as free parameters. Setting
T Hahn

SD � 1 ms gives essentially equally good fits (i.e. T Hahn
SD cannot be determined accurately by

this method) but values for δB and N obtained at various magnetic fields (150-350 mT) differ from
each other by less than 20%. Therefore we average these values and obtain δB = 1.1 mT and
N = 7×105. Fixing these values and T Hahn

SD = ∞, we leave the vertical offset and vertical scaling as
the only free parameters, and obtain excellent agreement for all magnetic fields, as seen in Fig. 11.2.
Visibility and offset are left as free parameters, independent for each curve, to accommodate a
fluctuating readout visibility that is likely due to a buildup of the gradient of Overhauser field for
large Bext [75].

Table 11.1: Bare Larmor angular frequencies, ωξ , hyperfine constants, Aξ , in units of angular
frequency, and abundances, nξ , of 69Ga, 71Ga and 75As, taken from Ref. [10].

ωξ/B [s−1T−1] Aξ [s−1] nξ

69Ga 64.2 5.47×1010 0.604
71Ga 81.6 6.99×1010 0.396
75As 45.8 6.53×1010 1
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Figure 11.2: Revival of coherence under Hahn-echo sequence. Singlet return probability PS as a
function of separation time τ for various magnetic fields. Datasets are offset for clarity. Dotted
lines indicate PS = 0.5 for data plotted in corresponding color. Black lines are simulations with
δB = 1.1 mT, T Hahn

SD = ∞, N = 7× 105. They are fitted to experimental data using offset and
visibility, different for each curve.

The only systematic deviation between the experimental results and the model is a slight, rapid,
initial decay of the signal (first 3-5 data points of each data set). This effect was also observed in
Refs. [74, 108]. The effect depended on the external magnetic field as well as the gradient of the
Overhauser field [108], and was speculated to be related to the entanglement of the qubit with the
nuclear bath or to π pulse errors [74].
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Figure 11.3: Simulation of revivals of coherence under CPMG sequence for 256 π pulses. a,
Simulation omitting effects of g-factor anisotropy, identical to map in the inset of Fig. 4a, i.e.,
g⊥/g‖ = 0. b, Simulation assuming g⊥/g‖ = 0.01.

11.4 Estimating TSD and β scaling of coherence time
To estimate the spectral diffusion time TSD for the simulation in Fig. 4a we quantify the scaling of
the CPMG coherence time with the number of π pulses n in a regime where revivals are not yet
developed (i.e., for n≤ 32 at 750 mT) [141]. The coherence time is found to be proportional to
nγ , with γ ∼ 0.75 [94]. Using this scaling behaviour we infer TSD ≈ 0.6 ms for a CPMG sequence
with 256 π-pulses. Using the relationship β = γ/(1− γ) [141] the exponent γ = 0.75 corresponds
to a power law of low-frequency noise governed by 1/ f β behaviour, with β = 3, in reasonable
agreement with previous measurements [141].

11.5 Splitting of the first revival peak
A possible explanation for the observed splitting in the first revival peak (Fig. 4a) is based on the
anisotropy of the electronic g-factor. The g-factor anisotropy between [011] and [01-1] primary
axes can be as high as 15% in asymmetric GaAs/AlGaAs quantum wells [151]. In Ref. [108] it was
shown that the anisotropy has a strong impact on S-T0 qubit coherence when the magnetic field is
not parallel to one of the main axes. The combination of the anisotropy and small misalignment of
the external magnetic field with the [011] crystal axis changes the magnetic field term in the system
Hamiltonian (11.1) to:

Bnuc
z,d (t)+

|Bnuc
⊥,d(t)|2

2|Bext|
+

g⊥
g‖

[
Bnuc

x,d (t)+Bnuc
y,d (t)

]
, (11.4)

where g‖ (g⊥) are diagonal (off-diagonal) elements of a g-tensor in the basis set by direction of the
external magnetic field. The latter leads to the appearance of individual nuclear Larmor frequencies
in the nuclear noise spectrum in addition to nuclear difference frequencies [108]. As a result, the
CPMG sequence will not be as efficient in suppressing nuclear noise even when the pulses are
commensurate with all three difference frequencies.

In Fig. 11.3 we present simulations showing the consequences of g-factor anisotropy. Panel
(a) shows the simulation presented in the inset of Fig. 4a, i.e. g⊥/g‖ = 0. In panel (b) we show
a simulation that assumes g⊥/g‖ = 0.01. Although our external magnetic field was nominally
aligned with the [011] crystal axis (cf. Fig. 9.1a), the choice of g⊥/g‖ = 0.01 is consistent with the
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Figure 11.4: CPMG revival maps for 32, 64 and 128 π pulses.

smallest value observed in [108] for the same direction of magnetic field as in our setup. In our
simulation a splitting of the first revival peak appears (indicated by a white arrow) as well as more
complex fine structure in other revival peaks. Such fine structure is beyond the resolution of the
experimental data.

We note that a splitting of the first revival peak appears exactly when the frequency of π pulses
coincides with a difference of Larmor frequencies f71Ga− f69Ga and f69Ga− f75As. Therefore other
mechanisms might also lead to the appearance of the splitting. We speculate that weak driving of
the nuclei by a periodic Knight field could enhance flip-flops between nuclei of different species
and therefore increase spin diffusion, leading to faster decoherence.

11.6 Unpublished: CPMG revival maps for 32, 64 and 128 π pulses
The measurement of the CPMG decay as a function of the magnetic field, such as in Fig. 9.4a, was
also repeated for smaller number of π pulses (Fig. 11.4). Here we can see that more and more
ridges are visible for CPMG sequences with fewer π pulses. For n = 32 we can see that mysterious
features before the first revival ridge and the splitting of the first revival ridge persist as well.
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12. Ground state spin of a multielectron
quantum dot and its interaction
with a single neighboring spin
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We study the ground state spin of nine subsequent occupancies of the multielectron
GaAs quantum dot, by means of coupling it to the neighboring two-electron double
quantum dot. For all nine occupancies we map the crossing of the spin states as a
function of the external magnetic field, in the vicinity of the interdot charge transition
between a single- and a multielectron quantum dot. We also perform a time-resolved
measurement of the exchange oscillations in the same regime. These measurements
enable us to identify even and odd occupancies of the multielectron quantum dot. For
three even occupancies we observe no exchange interaction leading indicating a spin-0
ground state. For one even occupancy we observe the exchange interaction and assign
a spin 1 to the multielectron quantum dot ground state. For all five odd occupancies
we observe the exchange interaction and assign a spin 1/2 to the ground state. We
demonstrate that for three odd occupancies the exchange interaction changes sign in the
vicinity of the charge transition. For one of these the exchange interaction is negative
(i.e. triplet-preferring) beyond the interdot charge transition, consistently with the

This chapter is adapted from the manuscript in preparation.
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observed spin-1 for the next occupancy. We develop the Hubbard model involving two
orbitals of the multielectron quantum dot. Allowing for the spin correlation energy (i.e.
including a term favoring the Hund’s rules) and different tunnel coupling to different
orbitals we qualitatively reproduce the measured exchange profiles.

12.1 Introduction

Spins in semiconductornanostructures offer a wide variety of approaches to quantum comput-
ing. These include approaches based on gate-defined single-electron quantum dots realized in
GaAs/AlGaAs heterostructures [37, 60, 87, 88, 94, 152, 153], Si/SiGe quantum wells [14, 18, 19,
51, 58] or in MOS nanodevices [15, 20], as well as spins localized on crystal defects such as
phosphorus donors in silicon [13, 61]. Along with the range of materials, spins trapped in quantum
dots offer a myriad of qubit encodings, including single- [18–20], double- [14, 45, 58, 113] and
triple-dot [50–52] schemes, each with distinct advantages.

In contrast to the vast range of spin qubit encodings, there are only a handful of demonstrations
of two-qubit entangling operations [21, 22, 37, 87] that are required for quantum computing.
Approaches to two-qubit entangling gates based on direct exchange interaction between neighboring
tunnel-coupled quantum dots [21, 87] offer fast, high-fidelity operation [64, 68]. Unfortunately,
these approaches require the dots to be extremely close, which makes fabrication and cross-coupling
between qubits a challenge for multi-qubit systems [40, 154, 155]. In contrast, approaches based on
direct charge dipole-dipole interaction can offer longer ranges, but suffer from weak coupling (and
thus slow gate times) and comparatively lower fidelities [22, 37]. This dipole-dipole interaction
could be mediated by a superconducting cavity [23, 55, 92, 156–158], providing a mechanism
to couple over even longer distances, which is commonly used for superconducting qubits [159].
However, the small dipole moments and susceptibility to charge noise make it unclear whether
these approaches will lead to improvements in gate speed and fidelity.

An attractive alternative that has recently been proposed [160, 161] and demonstrated [162, 163]
is to base two-qubit coupling on the fast exchange interaction, using an intermediate quantum
system as a mediator. This approach combines the fast coupling of the exchange interaction with
the ability to arrange quantum dots at separations that are compatible with current fabrication
techniques. In particular, a mesoscopic multielectron quantum dot [164–169] could serve as both
coupling mediator and spacer [163], providing a pathway for scalability to multi-qubit systems.

To serve as a mediator and spacer, a multielectron quantum dot needs to fulfill several require-
ments:

1. Its physical size must space neighboring dots by at least a few hundred nanometers. This
distance is necessary to facilitate the fabrication of all of the required control and readout
gates for each qubit. It would also be necessary if one wished to couple more than two qubits
to the mediator.

2. The spin of the multielectron quantum dot ground state must be well defined, to enable the
interaction between qubits without entangling with the mediator [170]. The multielectron
quantum dot with a non-degenerate spinless ground state would be the easiest to exploit as a
coupler [160, 161].

3. The level spacing of the multielectron quantum dot and the tunnel couplings must be larger
than the energy of the thermal fluctuations (kBT ≈ 10 µeV for T = 100 mK) and the excitation
spectrum of the control voltage pulses (≈ 20 µeV for 5 GHz bandwidth). This condition is
necessary to guarantee that the mediator will be prepared in the ground state and to avoid its
accidental excitation.

4. The ground state spin, level spacing and tunnel coupling of the multielectron quantum dot
must be tunable with a high yield. These parameters depend on the mesoscopic details of the
multielectron dot, which may not be easily controlled.
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5. The strength of the exchange interaction must provide a competitive timescale for two qubit
gates. We estimate that 100 ns is the upper bound on a viable two-qubit gate. This puts a
bound on the minimum coupling strength of roughly 0.01 µeV.

In this article, we demonstrate that these requirements can be fulfilled by a multi-electron
quantum dot (except for the final requirement, addressed elsewhere [163]). We implement a
composite system consisting of the two-electron double quantum dot coupled to the multielectron
quantum dot in GaAs device [Fig. 12.1(a),(b)]. Our approach is to study the interaction of one of
the electrons in a two-electron double quantum dot with a multielectron quantum dot, in the vicinity
of the charge transition at which the single electron tunnels into the multielectron quantum dot. The
double quantum dot provides a mechanism to prepare the electronic spin state and for spin readout.

By these means, we study the properties of the multi-electron dot in nine different charge
occupancies. We are able to identify even and odd occupancy of the dot. In all of the cases we are
able to identify the total spin of the ground state of the multielectron quantum dot; in terms of the
occupancy of the dot, the ground states form a sequence of alternating spin-0 (even occupancy) and
spin-1/2 (odd occupancy) states interrupted once by single case of a spin-1 ground state in a dot
with even occupancy. This progression of the ground state spin is consistent with previous studies
of the ground state spin of a multielectron quantum dot [167, 171].

Moreover, we discover a peculiar behavior of the exchange interaction at the charge transition
for the case of spin 1/2 multielectron dot ground state. Namely, the exchange interaction changes
sign as a result of a few-millivolt change of a dot-defining gate voltages. A Hubbard model that
includes two levels of the multielectron dot enables us to capture the energetics associated with
the total spin of the multielectron quantum dot. From that model we derive a “phase diagram” that
indicates four regimes with qualitatively distinct energy spectra and associated exchange interaction
dependencies.

The article is organized as follows. In Sec. 12.2 we describe in detail the studied system and
the sequences of voltage pulses used to induce the interaction between a single electron an the
multielectron quantum dot. In Sec. 12.3 we present the sequence of the observed ground states as
the occupancy of the multielectron quantum dot is increased one electron at the time. This enables
us to propose a Hubbard model for description of the multielectron quantum dot. In Sec. 12.4
we present the evidence for the spin 0 ground state for three of the studied electron occupancies.
Sec. 12.5 contains an in-depth study of the interaction between an electron and spin-1/2 state of the
multielectron quantum dot for five different electron occupancies. In Sec. 12.6 we present the data
supporting the observation of a spin-1 ground state. In the final Sec. 12.7 we summarize the results.

12.2 Experimental setup and techniques
The quantum dots are defined in GaAs/AlGaAs two-dimensional electron gas (2DEG), with
electron density 2.5× 1015 m−2 and a mobility 230 m2/Vs. The 2DEG is located 57 nm below
the heterostructure surface. A layer of HfO2 of thickness of 10 nm is deposited on top of the
heterostructure to isolate the gold gates defined on top by electron beam lithography. The oxide
layer has a double purpose: first, it prevents the current leakage through the Schottky barrier that
would appear under application of positive voltage to metallic gate deposited directly on top of
GaAs; second, it blocks the tunneling events between the gates and the donor layer, which are
the main sources of the samples instability [41]. The experiment is performed in the dilution
refrigerator with the mixing chamber at 20 mK.

The SEM of the innermost part of the device is presented in Fig. 12.1(a). The light gray and
colored structures are the metallic gates that are used to define the quantum dot confining potential.
The green-colored accumulation gate is operated at small positive voltage of +40 mV. The remaining
gates are operated at negative voltages to deplete the 2DEG. The accumulation gate is introduced in
this design to increase the depth the quantum dot potential and improve the tunability. With the
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Figure 12.1: (a) Micrograph of the device. Light-gray and red-colored gates metallic gates
deplete the 2DEG underneath. Green-colored accumulation gate deepens the confining potential
of the quantum dots formed underneath. Voltage pulses applied to the gates VL,M,R are used to
control the electrons on nanosecond timescale. (b) Illustration of the electron configuration in
a triple quantum dot. (c) Charge diagrams of the triple quantum dot. The left panel shows the
interdot charge transition of two-electron double quantum dot. The right panel presents the charge
transition at which the transfer of the electron between the middle dot and multielectron quantum
dot occurs. Labels PK , RK and SK indicate positions in gate voltage space at which the electron
pair is, respectively, prepared, readout and separated. Arrows, labeled ζK and εK indicate axes in
gate-voltage space used to define the voltage pulses. The voltages during the interaction step (I) are
varied, but remain on ζK or εK axis. (d) A cartoon illustrating the performed pulses. First, the pair
of electrons is prepared in a singlet state on the leftmost dot. Next, one of electrons is transfered to
the middle dot, and the interaction with the multielectron dot is induced. In the end, the state of
the middle-dot electron spin is measured relative to the left-dot electron spin by means of Pauli
blockade. (e) Performed voltage pulse illustrated in terms of ζK and εK parameters.

use of accumulation gates the typical center-to-center distance of the single-electron quantum dots
is 150 nm, which is approximately 30% less than in designs that do not employ the accumulation
gate [22, 50, 172].

In our device we tune two single electron quantum dots and a multielectron quantum dot, under
the accumulation gate, in the region indicated by a dashed rectangle. Based on the 2DEG density
and the device geometry (dot size roughly 120×250 nm) we estimate the electron occupancy of
the multielectron quantum dot to be between 50 and 100. Splitting of the accumulation gate has
no effect on the formation of the multielectron dot. In red we indicate the gates, labeled VL,M,R

connected to the wide bandwidth coaxial lines in the dilution refrigerator. Voltage pulses on these
gates are used to perform the sub-microsecond charge and spin manipulations, while all DC gate
voltages are modified to explore various occupancies of the multielectron dot.

In Fig. 12.1(c) we present the typical charge diagrams of the double-dot – multielectron-dot
system. On the left we present the charge diagram with respect to gate voltages VL and VM. These
gate voltages are dedicated to control the state of the double quantum dot. This diagram presents the
interdot charge transition for the double dot, connecting the (2,0,K) and (1,1,K) charge states, where
(L,M,R) indicates a number of electrons in the left, middle and multielectron dot, respectively. By
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adjusting the voltages VL and VM , in such a way that we remain on the gate voltage axis labeled ζK

[Fig. 12.1(c), left panel] we control the position of the electrons in the double dot while maintaining
the fixed number of the electrons on the multielectron dot.

On the ζK axis we define a point PK/RK that serves as the preparation and readout of the double
quantum dot spin state. We also define a separation point SK at which the electrons in the double
dot do not interact with the multielectron quantum dot and weakly exchange interact with each
other. For symbols P, R and S we will use the subscript K to indicate the initial occupancy of
the multielectron dot. Having chosen the separation point SK we map out the dot occupancies as
a function of voltages VM and VR as illustrated in the right panel of Fig. 12.1(c). In this charge
diagram we identify the point SK in the gate voltage space. Once we identify that point we define
εK axis that contains the SK point and goes through the interdot charge transition connecting the
(1,1,K) and (1,0,K + 1) charge states. By controlling the position on this axis we can induce
the interaction between a single electron and a multielectron quantum dot, while preserving the
reference electronic spin in the leftmost quantum dot. By slightly changing the DC tuning of the
quantum dots, we can change the occupancy of the multielectron dot and define analogous axis for
different charge states. These are schematically illustrated with the axes labeled εK−1 and εK+1 in
Fig. 12.1(c).

Having defined the points PK/RK , SK and axes ζK and εK for each occupancy K of the multi-
electron quantum dot, we can perform pulses of the gate voltage pulses that will take us between
the (2,0,K), (1,1,K) and (1,0,K +1) charge states and allow to study the interaction of the single
electron with the multielectron quantum dot [illustrated in Fig. 12.1(d),(e)]. The pulse initiates
at point PK , with a pair of electrons prepared in the singlet state |S〉 on the leftmost quantum dot.
From there, we move to the point SK and separate the two electrons. We wait a single clock cycle of
the waveform generator at point SK , which varies between 0.83 and 2.5 ns. This step is necessary to
ensure that we transfer the electron through the middle dot to the multielectron, instead of ejecting it
into a lead, followed by injection of the electron to the multielectron dot from the opposite side. The
waiting time is shorter then the dephasing time due to interaction with the nuclear spins [7, 72, 95],
T ∗2 ≈ 10 ns. The next step of the pulse moves along the εK axis for time τ . Both parameters εK

and τ are varied within a sequence of pulses. It is during this stage that the interaction between
the electron and multielectron quantum dot occurs. We then return to the point SK for another
clock cycle of the waveform generator. Finally, we pulse back to the (2,0,K) charge configuration
at point PK/RK . This charge configuration is reached only if the pair of electrons on the double
quantum dot forms a spin singlet state, otherwise the system is blocked in (1,1,K) charge state. The
reflectometry readout of the conductance trough the neighboring sensor dot lasting between 5 and
20 µs allows us to distinguish these states yielding a single-shot spin readout.

12.3 The multielectron quantum dot
Before we discuss the experiments revealing the exchange interaction between a single electron
and a multielectron quantum dot, we present and discuss a model that can be used to describe the
multielectron quantum dot and its coupling to the double dot.

For the several subsequent occupancies we observe alternating sequence of spin-0 and spin-1/2
ground states as summarized in Tab. 12.1 (inferred from experiments described in sections 12.4-
12.6). This sequence is interrupted once by a spin-1 ground state instead of spin-0. These are
consistent with findings of Folk et al. [167] and Lindemann et al. [171] who identify the ground
states spin by studying the change of the Coulomb peak spacing in magnetic field. Based on these
observations we model the multielectron quantum dot with the Hamiltonian:

ĤR =
e2

2CR
N̂2

R + ∑
λ∈N

σ=↑,↓

Eλ â†
λ ,σ âλ ,σ −

ξ

2
Ŝ2, (12.1)
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Table 12.1: Summary of the inferred ground state spins for 9 subsequent charge occupancies of the
multielectron quantum dot. This sequence of alternating 0 and 1/2 spin states is interrupted once
with a spin 1 ground state. The even reference occupancy 2N is chosen arbitrarily to unambiguously
label the multielectron dot occupancy and emphasize the electron parity.

Multielectron dot Inferred ground Experimental
occupancy state spin evidence
2N−5 1/2 Fig. 12.10
2N−4 0 Fig. 12.4(a)
2N−3 1/2 Fig. 12.7
2N−2 0 Fig. 12.4(b)
2N−1 1/2 Fig. 12.8
2N 0 Fig. 12.3
2N+1 1/2 Fig. 12.9
2N+2 1 Fig. 12.13
2N+3 1/2 Fig. 12.11

where e is the electron charge; CR is the dot self-capacitance; N̂R is the operator counting the total
number of electrons; â(†)

λ ,σ are the annihilation (creation) operators for electron on the single particle
level λ with spin σ ; Eλ are the energies of the single particle levels; Ŝ is the total spin operator and
ξ is the spin correlation energy. The subscript R in this formula refers to the multielectron dot as
right dot, as opposed to the left (L) and middle (M) single-electron dots.

The relative strength of the three terms present in this Hamiltonian determine the properties of
the multielectron quantum dot. The charging energy of the multielectron quantum dot e2/2CR ≈
1 meV is estimated from the distance between the multielectron dot charge transitions [∆VR ≈
20 mV; Fig. 12.1(c)] and typical lever arm between the gates and the dots in devices of similar
design (≈ 0.05 e). The charging energy may vary slightly as a function of the dot occupancy, as
with additional electrons the quantum dots increase in size. For the results presented here it is only
relevant that the charging energy is much larger than all other energy scales.

From the lithographic size of the device, we estimate the typical level spacing [173] to be 〈∆E〉=
π h̄/m∗A≈ 120 µeV, where h̄ is the reduced Planck constant, m∗ is the effective electron mass in
GaAs and A is the area of the 2-dimensional quantum dot. However, the lack of symmetry causes
the level spacings to vary. It remains an open question of how the distribution of the level spacings
∆E and correlations between them are determined for a given mesoscopic quantum dot. These kind
of distributions may be described using random matrix theory with the orthogonal ensemble [164,
167, 174–176], which by itself neglects the interaction effect. The interaction effects are usually
introduced by means of random-phase approximation [177], mean-field approximation[176], using
density functional theory [178], Anderson model [179] or by an on-site Hubbard interaction
term [174] (for review see Ref. [168]). For the results presented here it is most relevant that the
level spacings distribution has the width σ∆E comparable to ∆E and ξ . Also, the excitation spectrum
is highly correlated for a few subsequent charge states [166].

In general, the spin correlation energy ξ is the most difficult quantity to estimate due to the
lack of data in the literature. We make the assumption that ξ/2 comparable, but smaller than, 〈∆E〉,
based on two observations. On the one hand there is no macroscopic polarization of the electronic
spins, which would originate from the Stoner instability that appears in case[168, 175, 180]
ξ/2 > 〈∆E〉. On the other hand, it is not uncommon that the ground state has a spin > 1/2, which
can occur only when energy of the first excited state is smaller than ξ . This excludes the possibility
ξ � 〈∆E〉.
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From the perspective of designing two-qubit entangling gates, configurations of the multielec-
tron quantum dot with total spin 0 are desirable. In our study, we observe a spin-0 ground state
for 3 out of 4 even occupancies. We claim this provides sufficient reliability for use in a scalable
quantum dot system – in case of finding the spin-1 ground state of the coupler it is sufficient to
change its occupancy by 2.

Starting from the multielectron-dot Hamiltonian (Eq. 12.1), we construct a simplified model
that is sufficient to describe a multielectron dot with a given occupancy to which a neighbouring
double quantum dot is coupled. We include a gate voltage Vg tuned such that the ground state
charge configuration of the multielectron dot has Ng = CgVg/e electrons, where Cg is the gate
capacitance. For the spin-0 case we consider here, Ng is even. The Coulomb energy term in the
Hamiltonian with this gate voltage is then given by e2

2CR
(N̂R−Ng)

2 = e2

2CR
n̂2

R, where n̂R = N̂R−Ng

describes the number of excess electrons on the multielectron dot in addition to the electrons paired
up as singlets and forming an effective spin-0 “vacuum”. We can now consider a restricted model
of the multielectron dot, where we need only describe the multielectron dot level λ corresponding
to the lowest unoccupied level (or levels) of the dot above this effective “vacuum”, and label this
level by R rather than λ . (If we wish to consider more levels, they are labelled R1, R2, etc.) The
excess occupancy n̂R,σ counts the electrons with spin σ in this single level and is restricted to 0
or 1. As the occupancy is restricted, we can combine the energies of the Couloumb term e2

2CR
n̂2

R

with the energy levels Eλ â†
λ ,σ âλ ,σ into a single Hamiltonian term describing the energetics of the

multielectron dot: ĤR = ∑
λ∈R1,R2

σ=↑,↓

Eλ n̂λ − ξ

2 Ŝ2.

Our study involves modeling of the interaction between the spin occupying the middle dot
M [Fig. 12.1(b)] and one of the aforementioned levels of the multielectron quantum dot. The
occupancy of the multielectron quantum dot will determine the nature of this interaction. We
consider three cases, ordered by increasing complexity:
• All levels of the multielectron quantum dot are empty or doubly occupied and the total spin is

zero. In this case, the interaction of the double quantum dot with the multielectron quantum
dot can be modeled as an effective interaction of the spin of the middle dot M tunnel coupled
to an unoccupied dot R (Sec. 12.4).
• There is a single unpaired spin in the multielectron quantum dot, and so it has a total spin 1/2

(Sec. 12.5). In this case, the interaction of the double quantum dot with the multielectron
quantum dot can be modeled as an effective interaction of the spin of the middle dot M tunnel
coupled to a single spin in the right dot R. Depending on the details of the spin interaction
terms of the multielectron quantum dot, we must consider both the partially occupied level
of the multielectron quantum dot as well as other low-energy unoccupied.
• Several unpaired spins in the multielectron quantum dot couple to total nonzero spin, e.g.,

spin 1 (Sec. 12.6).

12.4 Spin 0
We first focus on the evidence that the even occupancies of the multielectron dot, specifically 2N−4,
2N−2 and 2N, have a spin 0 ground state. (Here, 2N indicates a specific, even, but unknown
number of electrons). The model for the multielectron dot introduced in Sec. 12.3 suggests that,
in this case, the ground state is described by a configuration where all single-particle states below
the Fermi energy are occupied by singlet pairs of electrons [Fig. 12.2 and 12.3(a)] and form an
effective vacuum state, provided that the spin correlation term is smaller than the level spacing
between the ground and the first excited state. We therefore expect that the double dot will interact
with the multielectron dot as if it were an unoccupied dot, and the spin of an electron tunneling
into the multielectron dot would not change in the process. In this sense, the double dot coupled to
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Figure 12.2: A schematics of the two-electron double quantum dot coupled to the even-occupied
spinless multielectron dot. Symbols EL/M/R indicate a single particle energy of the lowest orbitals
in a double dot and a lowest unoccupied orbital in the multielectron dot. Arrows indicate tunnel
couplings between two small dots tDD and between a middle and multielectron dot t. Detuning ε∗

is varied to obtain the leakage spectroscopy reconstruction presented in Fig. 12.3(d).

the multielectron dot with this even occupancy should be qualitatively similar to a two-electron
triple-dot.

We describe this situation using a phenomenological model based on the Hamiltonian for the
multielectron dot detailed in Sec. 12.3 and add terms describing the neighboring tunnel-coupled
two-electron double quantum dot. Then, for spinless even-occupancy ground states we neglect the
electron pairs singlet-paired on the orbitals below the Fermi energy. We also neglect all but the
lowest unoccupied orbital, and finally we arrive at a Hubbard model of the three dots, each having
a single orbital, labeled L, M, and R:

Ĥspin-0 = ∑
i=L,M,R

Ein̂i

− tDD ∑
σ=↑,↓

(â†
L,σ âM,σ + â†

M,σ âL,σ )

− t ∑
σ=↑,↓

(â†
M,σ âR,σ + â†

R,σ âM,σ ) . (12.2)

As illustrated in Fig. 12.2 the first term describes the gate-tunable chemical potential of the left
L, middle M and the right multielectron R dot. Second term describes the quantum dots charging
energy and the third, capacitative coupling between the dots. The second and final lines incorporate
the tunnel coupling tDD within a double dot and the tunnel coupling t between the middle and right
multielectron dot.

This effective Hamiltonian can be solved in the 2-electron configuration to yield a qualitative
energy level diagram for the coupled system; a representative plot is shown in Fig. 12.3(b). Recall
that the “unoccupied” state of the multielectron dot is describing the effective “vacuum” state with
2N electrons in a spin-0 configuration. We find that, in the (2,0,2N) charge state, the singlet and
triplet states of the two-electron double dot are split by the exchange energy. In the (1,1,2N) state,
the exchange splitting gradually decreases as the overlap of the electronic wavefunctions decreases.
Finally, in the (1,0,2N+1) configuration, the exchange splitting reduces to zero, as the two electrons
occupy distant dots.

In Fig. 12.3(c) we map the exchange profile in these three regimes by means of leakage
spectroscopy (an analogue of the “spin funnel” measurement of a double quantum dot [7, 14]). In
this measurement we prepare the double dot in a singlet state |S〉, and then pulse to the various
interaction points I2N along the ζ2N and ε2N axis for an interaction time of 150 ns. The decrease
of singlet return probability measurement indicates leakage from the singlet state. We repeat this
procedure for various values of the in-plane magnetic field B‖ up to 200 mT. The result of such a
measurement, for the multielectron dot occupancy of 2N is presented in Fig. 12.3(c). The observed
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Figure 12.3: Evidence for a spin-0 ground state for the multielectron dot occupied by 2N electrons.
(a) Schematic representation of the electron configuration for even-occupied multielectron dot
with spin-0 ground state. The electrons in the multielectron dot are paired-up in singlets on the
orbitals located below the Fermi level of the leads. (b) The energy diagram of the DD coupled to
the multielectron dot in charge states (2,0,2N), (1,1,2N) and (1,0,2N+1). The white triangle
indicate the features observed in (c). (c) The leakage spectroscopy revealing vanishing exchange
interaction between two electrons. The line feature corresponds to the S-T+ anticrossing presented
in panel (b). (d) Reconstruction of the leakage spectrum using the simple microscopic model. (e)
The time-resolved measurement of the precession between |S〉 and |T0〉 two-electron spin states in
(1,0,2N+1) charge state due to Overhauser field gradient.

line feature (white triangle) indicates the crossing of the singlet state |S〉 and the fully polarized
triplet state |T+〉= |↑↑〉. This line diverges to the high field in the (2,0,2N) configuration, indicating
that the exchange interaction between the two electrons within the DD is very strong. The line
gradually moves towards B‖ = 0 in the (1,1,2) configuration indicating a decrease of the exchange
interaction strength. Finally, it converges to zero field in the (1,0,2N+1) configuration when the two
electrons are far separated. In this configuration we observe an increased triplet return probability,
independent on the magnetic field. This increase is due to mixing of singlet |S〉 and unpolarized
triplet |T0〉 states the Overhauser field gradient between the left and the multielectron dot. The
measurement yields very similar features in cases of 2N−4 and 2N−2 multielectron dot occupancy,
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Figure 12.4: The leakage spectroscopy of the DD coupled to the multielectron dot at the transition
between (a) (2,0,2N−4), (1,1,2N−4) and (1,0,2N−3) and (b) (2,0,2N−2), (1,1,2N−2) and
(1,0,2N−1).

as presented in Fig. 12.4.
We can reconstruct the qualitative features of the leakage spectrum using our microscopic model

of the system. Using the spectrum obtained from the Hamiltonian of Eq. 12.2 with the addition
of Zeeman energy due to an external perpendicular magnetic field B‖, allows us to reproduce the
expected leakage spectroscopy behaviour, as shown in Fig. 12.3(d). We identify the ground state
associated with preparation of the double dot in the singlet state, and then select the locus of points
as a function of detuning ε and in-plane magnetic field B‖ where this singlet intersects with the
fully polarized state |T+〉.

To confirm the origin of the increased triplet outcome probability for (1,0,2N+1) configuration,
we perform a time-resolved measurement of the Overhauser field gradient [45, 75, 82, 93, 96, 112]
between the leftmost dot and the multielectron dot. For that purpose we fix the interaction point in
the (1,0,2N+1) charge configuration and cyclically vary the waiting time τ from 0 to 100 ns. The
cycle is run continuously and a result of single shot readout at the end of each pulse is recorded. A
time trace showing 30 s reveals coherent oscillations between the singlet |S〉 and triplet |T0〉 states
[Fig. 12.3(e)]. The oscillation frequency varies on a timescale of seconds and within a range of tens
of megahertz, consistent with the dynamics of the GaAs nuclear spin bath [82, 93, 95, 96].

12.5 Spin 1/2

When the multielectron dot has odd occupancy, the ground state is spin-1/2 and the resulting
coupled system is much more complex than the previous spin-0 case. As a reference, we begin
this section by first presenting the set of results for a three-electron triple quantum dot (tuned in
the same device). Having described the relevant physics of this coupled system, we present two
scenarios observed in our experiments that result from replacing a single-electron quantum dot by a
odd-occupied multi-electron quantum dot. This investigation involves a detailed study of the two
distinct profiles of the exchange interaction together with their interpretation within a microscopic
model that predicts two other possible profiles.

12.5.1 Three-electron triple quantum dot
The description of the three-electron triple quantum dot [Fig. 12.5(a)] requires understanding the
spectrum of the possible spin states. The spectrum at the transition between the (2,0,1), (1,1,1) and
(1,0,2) charge states for finite magnetic field is presented in the energy diagram [48, 52, 88, 181] in
Fig. 12.5(b). In the leftmost part, in the vicinity of the (2,0,1)-(1,1,1) charge transition, only the
exchange energy JL between left and the middle dot is significant, while the exchange energy JR
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Figure 12.5: (a) Schematic of the three-electron triple quantum dot which serve as a reference for
the study of a multielectron quantum dot tunnel-coupled to the double quantum dot. (b) Energy
diagram of the three-electron triple dot spin states for finite external magnetic field. Markers
indicate crossings observed in the leakage spectroscopy measurement (c). (d) Exchange oscillations
pattern revealing oscillations of monotonously increasing frequency.

between middle and the right quantum dot can be neglected. Therefore, near this charge transition,
the eigenstates are approximated by a tensor product of the two-electron spin states of the left
double quantum dot |SL〉, |T L

i 〉 (where i = 0,+,−) together with a state of the right single-electron
quantum dot |↑〉 or |↓〉. These states will be Zeeman-split, according to the projection of the total
spin on the external magnetic field direction. Moreover the two singlet-like states |SL;↑〉 and |SL;↓〉
will have lower energy than the triplet-like states |T L

i ;↑〉 and |T L
i ;↓〉 due to the exchange interaction.

Conversely, in the vicinity of the (1,1,1)-(1,0,2) charge transition, JL is negligible while JR > 0
is significant. In this region, the eigenstates are approximated by tensor products of the left dot spin
states |↑〉 or |↓〉 and the two-electron spin states of the right double quantum dot |SR〉 or |T R

i 〉. In the
middle region with (1,1,1) charge occupancy, the eigenstates continuously vary between these two
limiting cases. Their exact structure is not relevant for the analysis presented here. However the
important observation is that simultaneous presence of the exchange JL and JR lifts all degeneracies.

The splitting between the lower singlet-like state and the triplet-like state with the total spin 3/2
[red colored lines in Fig. 12.5(b)] can be mapped out using leakage spectroscopy [181] [Fig. 12.5(c)]
with a procedure similar to the one described in Sec. 12.4. In this case the system is prepared in the
|SL;↑〉 state, while the line feature indicates leakage from the singlet-like state to the fully polarized
|↑↑↑〉 state [white and black triangles in Fig. 12.5(b),(c)]. We observe that the line diverges to high
magnetic field for large positive and negative values of ε , consistent with the decrease of the energy
of the singlet-like state |SL;↑〉 or |↑;SR〉 in the (2,0,1) or (1,0,2) electron configuration, respectively.

Moreover, in this leakage spectroscopy experiment, we observe that the background probability
of the singlet return PS, which is independent of the magnetic field, decreases with increasing value
of ε . This indicates that the eigenstates on the left side (ε < 0) differ from the right side (ε > 0) of
the spectrum. In fact, preparing the three-electron system in the |SL;↑〉 state and interacting it on
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Figure 12.6: Schematics of a two-electron double quantum dot coupled to a odd-occupied spin-1/2
multielectron dot. Symbols EL/M/R1/R2 indicate a single particle energy of the lowest orbitals in a
double dot and two lowest orbitals above the effective vacuum in the multielectron dot. Arrows
indicate tunnel couplings between two small dots tDD and between a middle and each of the
orbitals in a multielectron dot t1/2. Energy difference between the two orbitals on the multielectron
dot is indicated by ∆E = ER2−ER1. Detuning ε∗ is varied to obtain the leakage spectroscopy
reconstruction presented in Fig. 12.7(e).

the right side (ε > 0) leads to coherent exchange oscillations [48, 50]. These kind of oscillations are
presented in Fig. 12.5(d), in which the interaction time τ is varied on the few-nanosecond timescale.
Additionally, the frequency of the oscillations becomes faster for larger values of ε which reflects
the increase of the exchange interaction JR between the middle and the right quantum dot.

This precession can be exploited for the operation of the exchange-only qubit [48, 50, 51]. Based
on this description of the three-electron triple dot behavior as a reference, in the following sections
we will present the results of the leakage spectroscopy and exchange oscillations measurements
performed on the system consisting of the two-electron double quantum dot coupled to the third
multielectron dot with an odd-occupancy spin-1/2 ground state.

12.5.2 Case study: Negative exchange interaction at the charge transition

Now we focus on the two odd occupancies of the multielectron quantum dot, 2N−3 and 2N−1.
In these cases the multielectron quantum dot has a single unpaired spin on the highest occupied
orbital, while remaining electrons are paired up in singlets, forming the effective vacuum state
[Fig. 12.6 and 12.7(a)].

We first perform a leakage spectroscopy measurement for the multielectron quantum dot in
2N−3 occupancy [Fig. 12.7(c)]. The left part of the Fig. 12.7(c), corresponds to the configuration
in which the multielectron quantum dot is not significantly exchange coupled to the double quantum
dot (i.e. J ' 0). Indeed, here we observe the line that corresponds to the crossing between the states
|SL;↑〉 and |↑↑↑〉. (The state of the multielectron quantum dot is irrelevant in this regime, and we
label it to be |↑〉, anticipating the following analysis.)

For the intermediate values of the ε we observe that the line features form a very different
pattern than in case of the three electron triple quantum dot (Subsection. 12.5.1). The line indicating,
so far, the position of the crossing between |SL;↑〉 and |↑↑↑〉 [white triangle in Fig. 12.7(c)] states
converges to B = 0. Meanwhile, a second line emerges and shifts towards larger values of the
external magnetic field B (grey square). For more positive values of ε , which correspond to
(1,0,2N−2) occupancy, we observe that the newly appeared line does not diverge to large magnetic
field. Instead, it returns towards B = 0 (green circle). At the point where the line reaches B = 0 we
observe two new lines. The position of one of these new lines is virtually independent on B (pink
diamond) while another diverges to large magnetic field for increasing values of ε (black triangle).

To explain this peculiar behavior, we introduce a modification of the simple microscopic model
of Eq. 12.2 that we used to describe the even-occupancy spin-0 case. We now consider the gate
voltage of the multielectron quantum dot to be tuned such that the ground state is odd-occupied,
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and is effectively described by a single unpaired spin with a low energy orbital above an effective
vacuum state of paired singlets. Generalizing beyond Eq. 12.2, we include two orbitals of the
multielectron quantum dot, indicated with subscript R1 and R2, and the spin correlation term ξ of
Eq. 12.1. The Hamiltonian of the system (illustrated in Fig. 12.6) is given by

Ĥspin-1/2 = ∑
i=L,M,R1,R2

Ein̂i

+
ξ

2 ∑
σ ,σ ′

â†
R1,σ â†

R2,σ ′ âR1,σ ′ âR2,σ

− tDD ∑
σ=↑,↓

(â†
L,σ âM,σ + â†

M,σ âL,σ )

− t1 ∑
σ=↑,↓

(â†
M,σ âR1,σ + â†

R1,σ âM,σ )

− t2 ∑
σ=↑,↓

(â†
M,σ âR2,σ + â†

R2,σ âM,σ ) . (12.3)

The first term of this equation is the diagonal in terms of the spin occupancy numbers and captures
both the charging and Coulomb energies of the dots. The second term, proportional to ξ , captures
the spin correlation energy: it is a term that favors a S = 1 triplet configuration when both levels
R1 and R2 are occupied. The remaining terms proportional to tDD, t1, and t2 describes tunnel
coupling within the double quantum dot, between the middle dot M and R1, and between M and
R2, respectively.

In Fig. 12.7(b) we present the energy diagram of the double quantum dot coupled to spin-1/2
multielectron quantum dot obtained from the 3-electron spectrum of Eq. 12.3, using ∆E−ξ > 0
and t2/t1 >

√
2 (see discussion in subsection 12.5.5). The left part, for which J = 0 matches exactly

the three-electron triple quantum dot case [Fig. 12.5(b)], and the line feature corresponds to the
crossing between |SL;↑〉 and |↑↑↑〉 states (white triangle). In contrast, for the intermediate values
of ε the singlet-like state |SL;↑〉 continuously changes into triplet-like state ∝ |↑;T R

0 〉−
√

2 |↓;T R
+ 〉.

The change from triplet-like to singlet-like character is a cause for the convergence of the line
feature to B = 0. Simultaneously the triplet-like state ∝ |T L

0 ;↑〉−
√

2 |T L
+ ;↓〉 shifts towards higher

energies and continuously changes into |↑;SR〉. The crossing between this state and the states with
the total spin projection Sz = −1/2 on the direction of the external magnetic field results in the
emergence of the new line in Fig. 12.7(c) (grey square). This interpretation leads to the conclusion
that for intermediate values of ε a triplet configuration consisting of the single electron spin and the
spin 1/2 in the multielectron quantum dot has lower energy than the singlet.

For larger values of ε , the energy of the singlet-like |↑;SR〉 state decreases and ultimately
becomes lower than the energy of the triplet-like state. This implies that the ground state of the
multielectron quantum dot in 2N−2 occupancy has spin 0, consistent with the evidence presented in
Sec. 12.4. The value of ε for which the singlet-like and triplet-like states are degenerate corresponds
to the crossing of the three line features at B = 0 [Fig. 12.7(c)]. Specifically, the three lines
correspond to the crossings of |↑;SR〉 with triplet-like states of different spin projections Sz on the
direction of the external magnetic field. The left, middle and the right line correspond to crossing
with states having, respectively, Sz = 1/2,−1/2 and−3/2, as indicated by gray sqaure, green circle
and pink diamond in Fig. 12.7(b),(c).

An identical analysis of the leakage spectroscopy measurements for the 2N−1 occupancy of the
multielectron quantum [Fig. 12.8(a)] dot yields the same conclusion. In particular it indicates that
the ground state of the 2N occupancy should have spin 0, in agreement with the evidence presented
in Sec. 12.4.

Our microscopic model also allows us to reconstruct the leakage spectrum, as described in
Sec. 12.4. Our reconstruction, which qualitatively reproduces all of the essential features of the
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Figure 12.7: (a) Schematics of the odd-occupied multielectron quantum dot with spin 1/2 ground
state tunnel coupled to the two electron double quantum dot. (b) The inferred energy diagram at
the transition between (2,0,2N−3), (1,1,2N−3) and (1,0,2N−2) electronic configurations, for a
finite magnetic field. The markers indicate the crossings revealed by the leakage spectroscopy
measurement presented in panel (c). (d) Time resolved measurement of the exchange oscillations
between the (2N−3)-occupied spin-1/2 multielectron quantum dot and the neighboring electron.
(e) Reconstruction of the leakage spectrum using the simple microscopic model. (f) Dependence of
the exchange energy extracted from the pattern of exchange oscillations in panel (d).

leakage spectroscopy measurement, is shown in Fig. 12.7(e).
This interpretation of the energy diagram from the leakage spectroscopy measurements implies

that the exchange interaction strength reaches an extremal value as a function of ε . This extremum in
exchange energy should result in a maximum in the exchange oscillations frequency. In Figs. 12.7(d)
and 12.8(b) we present the time-resolved measurement of the exchange oscillations for, respectively,
2N−3 and 2N−1 occupancy of the multielectron dot. The exchange energy extracted from the
leakage spectroscopy pattern for 2N−3 occupancy is presented in Fig. 12.7(f). We observe the
maximum in the oscillations frequency for the value of ε that matches exactly the extreme position
of the line features in the leakage spectroscopy measurement [Figs. 12.7(c) and 12.8(a)]. This
behavior confirms that the exchange interaction strength has an extremum, and that it changes sign
at the charge transition; however these measurements do not yield information about the sign of the
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Figure 12.8: Leakage spectroscopy (a) and time-resolved exchange oscillations measurement (b)
for the multielectron dot occupied by 2N−1 electrons.

exchange interaction strength. In principle that information could be obtained from the dependence
of the oscillations visibility on ε , but the visibility can be affected by the finite waveform rise time
and readout infidelity, therefore we restrain ourselves from such analysis.

To summarize, for 2N−3 and 2N−1 occupancies of the multielectron quantum dot we observe a
negative exchange interaction (i.e., triplet-preferring) with the single electron as long as the electron
resides at the neighboring dot, i.e. in the charge configurations (1,1,2N−3) or (1,1,2N−1). The
exchange interaction then becomes positive (i.e. singlet-preferring) when the electron is transferred
onto the multielectron quantum dot, i.e. in (1,0,2N−2) or (1,0,2N) electron configuration, leading
to the formation of the spin 0 ground state for the even occupancy of the multielectron quantum dot.

12.5.3 Case study: Negative exchange in the multielectron dot

Next we focus on is 2N+1 multielectron dot occupancy. Similarly to the occupancies 2N−3
and 2N−1 (Subsection 12.5.2) in this case there is a single unpaired electron on the highest
occupied orbital of the multielectron dot [Fig. 12.9(a)]. However, the leakage spectroscopy
measurement [Fig. 12.9(c)] implies that the exchange interaction with the single neighboring
electron is qualitatively different.

In contrast to the previous cases, the line indicating the crossing between singlet-like state |SL ↑〉
and the fully polarized |↑↑↑〉 (white triangle) state does not converge to B = 0. Instead, the line
feature reverses to high magnetic fields for intermediate values of ε , i.e., in (1,1,2N+1) charge state
(grey square). This behavior indicates that as long as the single electron resides on the neighboring
dot the singlet-like state |↑;SR〉 has lower energy than the triplet-like states. Nevertheless, beyond
at the transition to (1,0,2N+2) the line feature does come back to B = 0, and the set of the three
lines appear as well.

The energy diagram corresponding to this case is presented in Fig. 12.9(b). Indeed, using
∆E−ξ < 0 and t2/t1 <

√
2 we obtain an energy diagram revealing the positive (singlet-preferring)

exchange interaction in (1,1,2N+1) electron configuration and negative (triplet-preferring) in
(1,0,2N+2) configuration. In this energy diagram we can identify all crossings corresponding to
the line features in Fig. 12.9(c). In particular the three lines correspond to the crossings between
|↑ SR〉 and the triplet-like states having, respectively, Sz =−3/2 (left line, pink diamond), −1/2
(middle, green circle) and 1/2 (right, grey rectangle).

Following the logic from Subsection 12.5.2 we come to the conclusion that the ground state
of the 2N+2 occupancy multielectron dot must have a spin 1. Indeed, in Sec. 12.6 we present the
evidence for the exchange interaction between 2N+2 occupancy multielectron quantum dot and
the neighboring spin, consistent with a spin-1 ground state.

In Fig. 12.9(d) we present the time resolved exchange oscillations measurement. Similarly
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Figure 12.9: (a) Schematics of the odd-occupied multielectron quantum dot with spin 1/2 ground
state tunnel coupled to the two electron double quantum dot. (b) The inferred energy diagram at
the transition between (2,0,2N+1), (1,1,2N+1) and (1,0,2N+2) electronic configurations, for a
finite magnetic field. The markers indicate the crossings revealed by the leakage spectroscopy
measurement presented in panel (c). (d) Time resolved measurement of the exchange oscillations
between the 2N+1-occupied spin-1/2 multielectron quantum dot and the neighboring electron. (e)
Reconstruction of the leakage spectrum using the simple microscopic model. (f) Dependence of the
exchange energy extracted from the pattern of exchange oscillations in panel (d).

to the 2N−3 and 2N−1 occupancies we find the that the oscillations reach locally the maximum
frequency for the value of ε that correspond to the extreme position of the line feature in the leakage
spectroscopy measurement. Additionally we observe the emergence of the line for the value of ε

that results in the degeneracy between |↑;SR〉 and ∝ |↑;T R
0 〉−

√
2 |↓;T R

+ 〉 states.
More extensive study of the charge occupancy 2N+1, presented in this subsection, including

tunability of the exchange profile, is a topic of Ref. [169] (Ch. 13).

12.5.4 Extreme occupancies of the multielectron quantum dot 2N−5 and 2N+3

We now present the results of the leakage spectroscopy and exchange oscillation measurements
for the 2N−5 and 2N+3 occupancies of the multielectron dot charge. These are the most extreme
studied occupancies, which is linked to the limited tunability of the tunnel coupling between the



12.5 Spin 1/2 117

Figure 12.10: Leakage spectroscopy (a) and time-resolved exchange oscillations measurement (b)
for the multielectron dot occupied by 2N−5 electrons.

Figure 12.11: Leakage spectroscopy (a) and time-resolved exchange oscillations measurement (b)
for the multielectron dot occupied by 2N+3 electrons.

middle and multielectron dot. As a result, the data provides consistent evidence for the presence of
a spin on the multielectron quantum dot but the quality is not sufficient to perform the full analysis
analogous to Subsections 12.5.2 and 12.5.3.

In Fig. 12.10(a) we show the leakage spectroscopy for 2N−5 occupancy of the multielectron
quantum dot. Initially the line feature converges towards zero, indicating the decrease of the
exchange interaction within the two-electron double quantum dot. However, at ε ≈ 20 mV it
appears to split. Beyond the apparent splitting, one of the lines converges completely to B = 0
while the second one diverges. Finally, we suspect that the diverging line returns and crosses zero
at about ε = 30 mV. This suggests that one of the two possible scenarios takes place: either the
exchange interaction strength between the single electron and the spin-1/2 multielectron dot has a
negative sign for small wavefunction overlap (in the (1,1,2N−5) charge configuration) and positive
for large wavefunction overlap (in (1,0,2N−4) occupancy), or else the opposite behavior is the case.
The observation of the spin-0 ground state for 2N−4 occupancy supports the first hypothesis.

Notably, the exchange oscillations presented in Fig. 12.10(b) do not reveal a local maximum in
the oscillations frequency. This indicates there is no extremum in the exchange interaction strength,
which contradicts our hypothesis that the line feature crosses B = 0 in Fig. 12.10(a). Regardless, the
presence of the exchange oscillations is evidence that the 2N−5 occupancy multielectron quantum
dot has a spinful ground state.

The leakage spectroscopy performed for the other extreme occupancy, 2N+3, presented in
Fig. 12.11(a), reveals the pattern characteristic for the three-electron triple quantum dot (Subsec-
tion 12.5.1). This suggests that the multielectron quantum dot with this occupancy behaves as an
ordinary spin-1/2 with no remarkable phenomena occurring at the (1,1,2N+3) to (1,0,2N+4)
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charge transition. However we can not fully exclude the possibility that the exchange interaction
changes sign, which may be hard to detect when the tunnel coupling is too large [169]. In addition,
the exchange oscillations pattern does not allow us to make a definite statement about the presence
of the extremum in the exchange interaction strength due to increased dephasing at the strongly
pinched-off interdot charge transition [12] [Fig. 12.11(b)].

12.5.5 The classification of the observed spin-1/2 ground state characteristics within a
Hubbard model

The effective exchange coupling depends on many free parameters in our phenomenological model,
but we find that its general behaviour falls into four main regimes as shown schematically in
Fig. 12.12. We analyse these regimes of the spectrum in terms of two dimensionless quantities. The
first is (∆E−ξ )/t1, which we note can be positive or negative. When positive, i.e., ∆E > ξ , the
energy separation of the two relevant single-particle levels 1 and 2 in the multielectron dot is larger
than the spin correlation energy, and the doubly-occupied multielectron dot will ultimately favour a
singlet configuration energetically once detuning has crossed the charge transition point. When
this quantity is negative, i.e., ∆E < ξ , the spin correlation energy is larger than the splitting, and a
double-occupied triplet configuration is energetically preferred past the charge transition. Thus,
the parameter (∆E−ξ )/t1 will determine the spin state of the multielectron dot (singlet or triplet)
when detuning into the multielectron dot is very large.

The other parameter we use to describe the spectrum is the ratio t2/t1. When t2/t1 .
√

2, tunnel
coupling from the middle dot to the lower level of the multielectron dot is dominant, whereas
t2/t1 &

√
2 describes a situation where the tunnelling to the higher level of the multielectron dot is

stronger. The regime t2/t1 &
√

2 results in an exchange interaction that favours a triplet configuration
in the multielectron dot for small detuning, and t2/t1 .

√
2 favours a singlet configuration.

As a function of these two dimensionless quantities, we obtain the four regimes shown in
Fig. 12.12. In regime I, the behaviour is qualitatively the same as for a triple quantum dot; the
higher level in the multielectron quantum dot is largely uninvolved. In regime II, the stronger
coupling to the second level of the multielectron dot means that a triplet configuration is preferred
for small detuning, but becomes singlet-preferring as the detuning is increased past the charge
transition. In such a regime, we expect exchange coupling to be negative for small detuning, and
then change sign and become positive for large detuning, as seen with the 2N− 3 and 2N− 1
occupancies. Regime III is the opposite; the coupling to the lower level of the multielectron dot
dominates, preferring a singlet configuration for small detuning, but for larger detuning the spin
correlation energy is dominant and favours a triplet configuration. This regime is represented by
the 2N + 1 occupancy, where exchange coupling is negative past the charge transition into the
multielectron dot. Finally, in Regime IV, the dominant coupling to the higher level of the jellybean
together with the strong spin correlation energy ensures that a triplet configuration is energetically
preferred throughout.

12.6 Spin 1

Our final case concerns the 2N+2 multielectron quantum dot occupancy. Our study of the 2N+1
occupancy (Subsection 12.5.3) suggests that the addition of an electron to the spin-1/2 ground state
results in the triplet configuration having lower energy than the singlet. This implies that the ground
state of the multielectron dot with 2N+2 occupancy should have spin 1 [Fig. 12.13(a)].

Indeed, in the leakage spectroscopy measurement [Fig. 12.13(c)] we observe a pattern that
is more similar to the three-electron triple quantum dot case [Fig. 12.5(c)] than to other even
occupancies [Figs. 12.3(c) and 12.4]. It is an unambiguous evidence for presence of the non-zero
spin in the multielectron quantum dot, spin 1 in this case. We note that the line feature diverges
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Figure 12.12: Illustration of qualitatively different exchange profiles arising from the interplay
between the level spacing in the multielectron quantum dot ∆E, spin correlation energy ξ and
tunnel couplings between a single-electron dot and two lowest orbitals of the multielectron quantum
dot t1/2. Colored lines in the insets I-IV represent the energies of the three-spin states with S = 1/2,
Sz =−1/2 as a function of detuning ε∗.

to large B for increasing ε indicating the positive sign of the exchange interaction, i.e. preferring
the low-spin state. Also the measurement of the exchange oscillations shows the presence of the
exchange interaction [Fig. 12.13(d)]. These observations lead us to the following conclusions. First,
the multielectron dot in 2N+2 occupancy carries a spin. Second, the exchange interaction with the
neighboring spin has a positive sign, and therefore the addition of the electron will lead to reduction
of the ground state spin.

We can relate all the observed features to the schematic energy diagram presenting spin states
of the two-electron double quantum dot coupled to spin-1. In the left side of the diagram spin-1 is
decoupled from the double quantum dot and the eigenstates are the tensor product of double dot
states and spin-1 states with different spin projections on the direction of the magnetic field |0/±1〉.
The three double-dot singlet-like states correspond in the diagram to the three lines diverging
towards small energies.

On the contrary, in the right side, the eigenstates are the tensor product of spin-1/2 states and
strongly coupled spin-1/2 and spin-1. Among the latter six states there are four quadruplet states
|Q±3/2〉, |Q±1/2〉 with a total spin 3/2, and two dublet states |D±1/2〉 with the total spin of 1/2 (the
subscript indicates the spin projection on the magnetic field direction). Due to positive exchange
interaction the dublet states diverge towards small energy.

We conjecture that in the experiment we initialize the triple dot in the |SL;+1〉 state (similarly
to |SL;↑〉 for spin-1/2 multielectron dot). As we change detuning this eigenstate continuously
changes into |↑;DR

1/2〉 [bottom red line in Fig. 12.13(b)] which results in the exchange oscillations
in Fig. 12.13(c). Meanwhile, the line features in the leakage spectroscopy correspond to the crossing
of this red-coloured state with a fully polarized |T+;+1〉 ≡ |↑;Q3/2〉 state [black and white triangles
in Fig. 12.13(b),(c)].

Finally, we present an outcome of the leakage spectroscopy measurement in the out-of-plane
magnetic field B⊥ [Fig. 12.13(e)]. Curiously, in this case we observe an additional line (pointed by
the black arrow). At the boundary between (2,0,2N+2) and (1,1,2N+2) the line indicating DD
S-T+ crossing and the new line do seem not to interact with each other. On the other hand, at the
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Figure 12.13: (a) Schematics of the odd-occupied multielectron quantum dot with spin 1 ground
state tunnel coupled to the two electron double quantum dot. (b) The inferred energy diagram at
the transition between (2,0,2N+2), (1,1,2N+2) and (1,0,2N+3) electronic configurations, for a
finite magnetic field. The markers indicate the crossings revealed by the leakage spectroscopy
measurement presented in panel (c). (d) Time resolved measurement of the exchange oscillations
between the 2N+2-occupied spin-1/2 multielectron quantum dot and the neighboring electron. (e)
Leakage spectroscopy measurement in out-of-plane magnetic field

transition between (1,1,2N+2) and (1,0,2N+3) the conventional line ends at the crossing point.
We speculate that the additional line appears because the multielectron-dot orbitals are strongly
affected by the out-of-plane magnetic field, which leads to the change of the ground state spin
from 1 (B⊥ . 180 mT) to 0 (B⊥ & 180 mT). Indeed, this would explain lack of interaction between
the lines in regime where the double quantum dot is essentially decoupled from the multielectron
dot. Moreover, this is consistent with a disappearance of the line at ε ≈ 13 mV, since we know
that this feature is not present when the multielectron quantum dot has a spin-0 ground state case
(Sec. 12.4).
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12.7 Summary and outlook
To summarize, we apply the methods developed for spin qubit manipulation to study a mesoscopic,
multielectron quantum dot. This enables us to detect the electron parity of the dot and study in
detail the interaction with the single neighboring electron. We discover a counterintuitive exchange
profile between a single electron and an odd-occupied multielectron quantum dot and observe that
the exchange interaction rapidly varies. In particular the exchange interaction changes sign as a
result of a few-milivolt change of gate voltages. We also explain this observation using simple
Hubbard model and classify possible exchange profiles.

The most important conclusion of this work that can be readily exploited is that the multielectron
quantum dot is perfectly suitable as a mediator of the exchange interaction. Indeed we demonstrate
that in the follow up experiment [163]. However several other findings may find application in spin
qubits as well. First, at the position of the discovered extrema in the exchange profile, the exchange
oscillations have reduced sensitivity to charge noise [64, 68], which can be used to increase the
gates fidelity. Second, access to both signs of the exchange lifts constraint on the dynamically
decoupled gates [182, 183]. Third, since the large quantum dot is characterized by reduced level
spacing, it may be possible to exploit charge-noise insensitive singlet-triplet splitting in the regime
where the two electrons occupy the multielectron quantum dot, in a manner analogous to the
quantum dot hybrid qubit [58, 60]. Finally, larger size of the multielectron quantum dot implies
reduction of the Overhauser field experienced by the electrons, since its wavefunction overlaps with
larger number of nuclei, and therefore reduced dephasing [109].

Nevertheless, several questions concerning the multielectron quantum dots remain unanswered.
First of all, the distribution of the level spacings and the strength of the spin correlation energy
were not studied here. In particular the dependence of these two characteristics on the dot size is of
both fundamental and practical importance. Another curiosity is that for all three spin-1/2 ground
states, for which we performed the full analysis, we observe the extrema in the exchange strength
even though they are characterized by different sign of the exchange strength. This may be a hint of
the correlation between the level spacing and the ratio of the tunnel couplings.

Finally, for the first time we perform the leakage spectroscopy and exchange oscillations
measurement to study the spectrum of a not understood object. We propose that the same principle
could be applied to study numerous other systems. Several examples are quantum dot coupled
to the quantum hall or fractional quantum hall edge states [184, 185], or to the hybrid super-
semiconducting quantum dot such as Majorana islands [186, 187]. Even more brave generalization
of this technique could involve study of the exchange interaction between a quantum dot located at
the tip of the scanning probe and any surface structure.
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By operating a one-electron quantum dot (fabricated between a multielectron dot and a
one-electron reference dot) as a spectroscopic probe, we study the spin properties of a
gate-controlled multielectron GaAs quantum dot at the transition between odd and even
occupation number. We observe that the multielectron groundstate transitions from
spin-1/2-like to singlet-like to triplet-like as we increase the detuning towards the next
higher charge state. The sign reversal in the inferred exchange energy is robust and
already occurs in the absence of an external magnetic field, while the exchange strength
is tunable by gate voltages and in-plane magnetic fields. Complementing spin leakage
spectroscopy data, the inspection of coherent multielectron spin exchange oscillations
provides further evidence for the sign reversal and, inferentially, for the importance of
non-trivial multielectron spin exchange correlations.

This chapter is adapted from the manuscript in preparation.
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13.1 Introduction

Semiconducting quantum dots with individual unpaired electronic spins offer a compact platform
for quantum computation [69, 71]. They provide submicron-scale two-level systems that can be
operated as qubits [5, 14, 42, 73, 74, 94] and coupled to each other via direct exchange or direct
capacitive interaction. In these approaches, the essential role of nearest-neighbor interactions in
larger and larger arrays of one-electron quantum dots [21, 22, 37, 40, 188] poses technological
challenges to upscaling, due to the density of electrodes that define and control these quantum
circuits. This issue has stimulated efforts to study long-range coupling of spin qubits either by
electrical dipole-dipole interaction [22, 37, 189] or via superconducting microwave cavities [23,
55, 65]. However, these approaches involve the charge degree of freedom, which makes the qubit
susceptible to electrical noise [12, 64, 109, 190]. Recent work [52, 86] indicates that the effective
noise needs to be reduced significantly before long-range two-qubit gates with high fidelity can be
reached [55, 191]. Alternatively, symmetric exchange pulses can be implemented that perform fast,
charge-insensitive gates [64, 68, 81, 192]. Even though the exchange interaction is intrinsically
short-ranged, its range can be increased by means of a quantum mediator [193, 194]. In particular,
using a large multielectron quantum dot as an exchange mediator has the potential to do both:
provide fast spin interaction [160, 195] and alleviate spatial control line crowding. To avoid
entanglement with internal degrees of freedom of the mediator, recent theory [160, 195] motivates
the use of a multielectron quantum dot with a spinless ground state and a level spacing sufficiently
large to suppress unwanted excitations by gate voltage pulses.

In this Letter, we investigate a GaAs multielectron quantum dot and show that its spin properties
make it suitable for use as a coherent spin mediator. The experiment involves a chain of three
quantum dots that can be detuned relative to each other using top-gate voltage pulses. The central
one-electron dot serves as a probe: its spin can be tunnel coupled either to the left one-electron dot
(serving as a reference spin for initialization and readout), or to a large dot on the right, thereby
probing its multielectron spin states. We focus on a particular odd occupancy of the multielectron
dot, 2N+1, characterized by an effective spin 1/2, and establish that the exchange coupling between
the central probe spin and the multielectron spin depends strongly and non-monotonically on the
detuning of relevant gate voltages. Remarkably, this exchange coupling becomes negative, i.e.
triplet-preferring, as the central electron is detuned further into the right dot. We therefore infer a
spin-1 ground state for 2N+2 occupation, even in the absence of an applied magnetic field. Besides
fundamental implications for the role of non-trivial interactions within a multielectron dot, presented
elsewhere for a large range of MED occupations [94], our finding has practical applications. For
example, the nonmonotonicity of the exchange profile results in a sweetspot, whereas its sign
reversal removes a long-standing constraint for the construction of compact dynamically corrected
exchange gates [182, 183].

13.2 Sample

The three quantum dots were fabricated in a GaAs/Al0.3Ga0.7As heterostructure hosting a two-
dimensional electron gas with a bulk density n = 2.5×1015 m−2 and a mobility µ = 230 m2/Vs,
located 57 nm below the wafer surface. The confining potential and dot occupancy is voltage-tuned
by Ti/Au metallic gates deposited on a 10 nm thin HfO2 gate dielectric. Figure 13.1(a) shows the
two accumulation gates (colored in green) surrounded by various depletion gates, and a schematic
cut through the resulting triple-well potential. Gates labeled VL, VM, and VR (colored in red) are
connected to high-bandwidth coaxial lines and allow application of nanosecond-scale voltage pulses.
An adjacent quantum dot (not shown) serves as a fast charge sensor, i.e. changes in its conductance
change the amplitude (VRF ) of a reflected rf carrier [83]. All measurements were conducted in a
dilution refrigerator with mixing chamber temperature below 30 mK.
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Figure 13.1: (a) Electron micrograph of the device consisting of a two-electron double quantum
dot next to a multielectron quantum dot. The accumulation gate (colored in green) is operated at
positive voltage. Remaining gates deplete the underlying two-dimensional electron gas. Gates VL,
VM, and VR, highlighted in red, are connected to high-bandwidth lines. A proximal charge sensor
(not shown) coupled to a radio frequency circuit allows fast measurements. The direction of the
magnetic field B‖ and B⊥ is indicated. (b) Charge diagrams indicating the electron occupation
of the triple quantum dot as function of VL, VM, and VR. Arrows indicate ζ and ε axes in a gate
voltage space. (c) Concept of the experiment. Two electrons are initialized in a singlet state in the
left quantum dot. Thereafter one of the electrons is moved to the middle dot and interacts with
the multielectron quantum dot through exchange interaction J. At the end, readout is attained by
performing spin-to-charge conversion for two-electron spin states in the double quantum dot. (d)
Implementation of the pulse sequence in respect of the gate-voltage parameters ζ and ε .

The device can be viewed as a two-electron double quantum dot (DQD) tunnel-coupled to a
multielectron dot (MED) with an estimated number of electrons between 50 and 100, based on n
and the area of the multielectron dot. By measuring VRF as a function of voltages VL, VM and VR we
can map out the dots’ occupancies in the vicinity of the charge states (2,0,2N+1), (1,1,2N+1) and
(1,0,2N+2). Here, the numbers correspond to electron occupation in the left dot, central dot and
the MED, respectively. The resulting charge diagram in Fig. 13.1(b) allows the definition of two
detuning axes in gate-voltage space, ζ and ε , such that a reduction of ζ pushes the central electron
into the left dot, whereas an increase in ε pushes it to the MED (cf. arrows).

The MED spin states are probed by the pulse sequence illustrated in Fig. 13.1(c,d). First, two
electrons in a singlet state are prepared in the left dot, by pulsing to the (2,0,2N+1) charge state.
Then a ζ pulse to the (1,1,2N+1) state effectively turns off intra-DQD exchange interactions while
maintaining the two-electron spin state. The next step probes the interaction between the central
electron and the MED in the vicinity of the charge transition between (1,1,2N+1) and (1,0,2N+2).
This is done by pulsing ε , i.e. by temporarily applying a negative voltage pulse to VM and a positive
voltage pulse to VR. After an interaction time τ we return to (1,1,2N+1) and immediately reduce ζ

for single-shot reflectometry readout [82]: If VRF indicates a (2,0,2N+1) charge state, we assign a
singlet outcome, whereas (1,1,2N+1) indicates that a spin interaction with the MED has occured,
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Figure 13.2: (a) PS as a function of ζ , ε and B‖ for a fixed, long interaction time τ = 150 ns. (b)
Corresponding energy diagram of the spin states of a Heisenberg model, as a function of ζ , ε for a
fixed B‖. States highlighted in red witness the interaction between the central probe spin and the
effective MED spin, which combine into a singlet-like state, |↑〉 |S〉, that is above a triplet-like state,
|↑〉 |T0〉, for sufficiently large ε (negative J). The charge character of the groundstate transitions
from (2,0,2N+1) via (1,1,2N+1) to (1,0,2N+2) as indicated by the background shading. The sign
reversal of J happens at ε = 0. The Zeeman shift |g|µBB‖ and crossings with other states leading to
spin leakage features in (a) are indicated (see main text). Leakage from |↑〉 |S〉 to the fully polarized
|↓↓↓〉 state (empty circle) is not observed in (a), likely because weak Overhauser gradients or
spin-orbit coupling do not allow changes in spin projection by 2. The S-T0 leakage feature in (a)
(magenta diamond) is not field independent as predicted by the model, likely due to orbital coupling
of B‖ to MED states in combination with a small misalignment of the sample. (c) Experimental
exchange profiles for different operating points (distortions of the confining potential), identified by
VR during the readout step (symbols). Black circles are extracted from (a). Solid lines are guides to
the eye.

and we count it as a non-singlet outcome. The fraction of singlet outcomes when repeating typically
1024 identical pulse sequences is denoted by PS.

13.3 Leakage spectroscopy and exchange oscillations
Leakage spectroscopy is performed by choosing τ sufficiently long to detect incoherent spin mixing
between the central electron and MED states. Figure 13.2(a) shows PS(ε,B‖), where ε is the
detuning voltage during the interaction step and B‖ is the applied in-plane magnetic field. To
make connection to the conventional two-electron DQD regime we also plot PS(ζ ,B‖), acquired
by replacing the composite ζ -ε pulse in Fig. 13.1(d) by a pure ζ pulse. Spin leakage is clearly
observed as a sharp suppression of PS for particular detuning values, with a non-trivial magnetic
field dependence for ε > −5 mV. To understand this spectrum we note that all features below
ε ≈−5 mV are well explained by mixing with fully polarized spin states, consistent with previous
spin leakage experiments: The ε dependence (“spin funnel”) is analogous to mixing between singlet
and T+ ≡ |↑↑〉 in two-electron DQDs [7, 14, 21], whereas the ζ dependence is analogues to mixing
between a singlet-like state and |↑↑↑〉 in three-electron triple quantum dots [50, 52]. (Here, each
arrow indicates the spin state within one quantum dot.) The characteristic dependence on B‖ arises
from the linear Zeeman shift of fully polarized spin states [48, 49].

This identification confirms odd multielectron occupation, i.e. (1,1,2N+1), with effective spin
1/2. It also allows us to extract the exchange interaction (J) between the central spin and the
effective MED spin from the ordinate of the leakage feature (black dot), using J = |g|µBB‖, where
g = −0.44 is the electronic g-factor for GaAs and µB is the Bohr magneton. Towards higher
detuning, ε >−5 mV, an overall drop in the background of PS indicates that the MED ground state
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Figure 13.3: (a) Exchange oscillations in PS as a function of ε and exchange time τ , in the vicinity
of (1,1,2N+1) and (1,0,2N+2) charge transition. External magnetic field is zero, and DC tuning
voltages are the same as in Fig. 13.2(a) (VR = 472 mV). (b) Simulation of the exchange oscillations
using J(ε) from Fig. 13.2(c). Simulation assumes a Gaussian ε low frequency noise with a standard
deviation of 0.18 mV, and a rise time of the experimental instrumentation of 0.8 ns. Dashed line
indicates zero phase accumulation and divides the area where J is positive and negative. For large
τ a dark feature appears at ε = 0 in (a) but not in (b). We associate it with leakage out of the
simulated subspace, corresponding to the crossing in Fig. 13.2(a,b) indicated by a green square.

transitions into (1,0,2N+2), approximately concurrent with the sharp leakage feature (black dot)
reaching a maximum before turning towards B‖ = 0 (blue triangle). At ε = 0 two additonal leakage
features appear at B‖ = 0. We interpret this maximum as a maximum in in the exchange profile,
J(ε), and associate the crossing at B‖ = 0 with a sign reversal of J(ε).

To infer the spin spectrum, we impose the observed exchange profile J(ζ ,ε) on a Heisenberg
model of three spin-1/2 orbitals 1. For simplicity we ignore orbital coupling to B‖ and inspect
spin Zeeman effects only. The resulting energy diagram, sketched in Fig. 13.2(b) for finite B‖,
allows us to identify all characteristic leakage features. On the left side of the energy diagram
only intra-DQD exchange is significant (JL), and the eigenstates are the tensor products of a DQD
spin state and a MED “spectator" spin. For example, the grey dot marks the crossing between
|S〉 |↑〉 and |T+〉 |↑〉, and relates the “spin funnel” in (a) to JL(ζ ). Analogously, on the right side of
the energy diagram, the left dot is decoupled and hosts the spectator spin, while the central spin
interacts with the effective MED spin. Here, field dependent crossings map out the positive (black
and blue marker) and negative (green marker) regime of J(ε) (cf. crossings of |↑〉 |S〉 with |↑↑↑〉,
|↑〉 |T0〉 and |↓〉 |T+〉). At these crossings rapid mixing due to uncontrolled Overhauser gradients is
expected to occur, changing electronic spin projections by 1 on a timescale of T ∗2 ≈ 10 ns [73].

In contrast to three-electron triple dots [50, 52], where J is always positive, we observe that
|↑〉 |S〉 and |↑〉 |T0〉 cross each other at ε = 0. This implies that the exchange interaction between
the single and multielectron quantum dot changes sign from positive to negative, i.e. it is singlet-
preferring for small hybridization and becomes triplet-preferring once the central electron has
transferred to the multielectron dot. Next, we test for robustness and gate-tunability of this effect.
In Fig. 13.2(c) we plot J(ε) extracted from Fig. 13.2(a) (black symbols), and compare it to two
exchange profiles (green and blue symbols) measured by distorting the confining potential while
preserving the charge configuration of the triple dot system (cf. Fig. 13.5). In all cases J(ε) shows
the same behavior, namely a maximum and sign reversal at the position of the charge transition, and
a negative sign in the (1,0,2N+2) configuration. This interpretation implies that the 2N+2 charge

1The specific detuning dependence of J within a Hubbard model is explained in Ref. [196] (chapter 12), and remains
phenomenological within this Letter.
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Figure 13.4: (a) Exchange oscillations as a function of orbital field B⊥ and ε for fixed exchange
time τ = 3.33 ns and fixed B‖ = 0 T. (b) Exchange oscillations as a function of B‖ and ε for fixed
exchange time τ = 3.33 ns and fixed B⊥ = 0 T. (c) Same as (a) but in the leakage spectroscopy
regime (τ = 150 ns). Features of reduced PS correspond to mixing between |↑〉 |S〉 and various other
states (cf. horizontal cut of Fig. 13.2(a) at B‖ = 0). A small deviation between the J = 0 feature in
(c) and the φ = 0 contour in (a) is likely due the drastically different choices of τ in combination
with finite-rise-time effects of our instrumentation. (d) Exchange profiles J(ε) for different values
of B⊥.

state of the multielectron dot has a total spin of 1 at zero magnetic field, which is further confirmed
by studying the MED behavior over multiple charge states [94].

Direct evidence for the sign reversal in J (without the need for a magnetic field) can be obtained
from time-domain measurements. To this end, we induce coherent exchange oscillations between
central and MED spin by significantly reducing (and varying) the interaction time τ . The observed
pattern of PS(ε,τ), shown in Fig. 13.3(a) for the same DC tuning parameters as in Fig. 13.2(a),
differ from analogous oscillations of the exchange-only qubit [48, 50]. Namely, the appearance
of a chevron-like pattern indicates the presence of a local maximum in J(ε). Following contours
of equal phase (φ ) around this “sweet spot”, we note that φ(τ) has opposite sign for large and
small ε , implying a sign reversal in J(ε). To show consistency between time-domain and leakage
spectroscopy results, we perform numerical simulations of the exchange oscillations using the
experimentally measured exchange profile presented in Fig. 13.2(c). The simulation is limited to
the Hilbert space spanned by |↑〉 |S〉 and |↑〉 |T0〉 (indicated with red in Fig. 13.2(b)) and includes a
quasistatic Gaussian noise in ε with standard deviation σε = 0.18 mV [64, 84] and a rise time of
our instrumentation of 0.8 ns. The simulation reproduces a chevron pattern (Fig. 13.3(b)), whereas
simulations using J(ε) = |J(ε)| produce a qualitatively different pattern (not shown). Therefore,
the contour φ = 0 does indeed separate regions with J > 0 from regions with J < 0.
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13.4 Effect of orbital field

Finally, we study the effects of applied magnetic fields on the exchange profile. Figure 13.4(a)
presents PS as a function of ε and out-of-plane magnetic field B⊥, while keeping B‖ = 0 and
τ = 3.33 ns fixed. In such a plot, contours correspond to constant J in the ε-B⊥ plane, and their
curvature indicates that out-of-plane magnetic fields move the sign reversal of J towards higher
detuning (cf. φ = 0 contour, marked by a dashed line). For comparison, within the same range, B‖
has no observable influence on the pattern of the exchange oscillations (Fig. 13.4(b)). By choosing τ

longer than the coherence time we obtain the B⊥-dependence of the leakage spectrum (Fig. 13.4(c),
using τ = 150 ns). The two leakage features appearing for negative values of ε correspond to
mixing between |↑〉 |S〉 and the fully polarized |↑↑↑〉. The leakage feature appearing for positive
values of ε indicates J = 0 and resolves into three lines at higher fields (cf. Fig. 13.2).

Exchange profiles J(ε) for B⊥ = 0, 50, 85 and 120 mT were extracted from PS(ε,τ) maps
obtained for the same tuning voltages as in Fig. 13.4(a) (Fig. 13.6). Their B⊥-dependence shown in
Fig. 13.4(d) corroborates again the sensitivity of the exchange profile to the underlying electronic
orbitals, and establishes an electrical sweet spot in J(ε) that can be precisely tuned by B⊥.

13.5 Conclusion

In summary, we have investigated experimentally the exchange interaction between a two-electron
double quantum dot and a multielectron quantum dot, by complementing incoherent spin leakage
measurements with time-resolved coherent exchange oscillations at various tuning voltages and
magnetic field configurations. We find that the multielectron dot with odd occupation number
behaves as a spin-1/2 object that gives rise to a non-monotonic exchange coupling to the neighboring
dot. By changing the relative dot detuning voltage by a few millivolt the sign of the exchange
interaction can be tuned from positive to negative (also at zero magnetic field), indicating the
presence of non-trivial electron-electron interactions. Finally, we show that the exchange profile can
be tuned by either changing the gate potentials or applying an out-of-plane orbital magnetic field,
giving rise to a tunable electrical sweet spot that might benefit the implementation of high-fidelity
exchange gates [64, 68] in long-distance quantum mediators.
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13.6 Supplement: Extracting J(ε) from exchange oscillations

Exchange profiles J(ε) plotted in Fig. 13.4(d) in the main text were obtained from Fig. 13.3(a) and
Figs. 13.2(a-c) for B⊥ = 0, 50, 85 and 120 mT, respectively. For each value of ε , the frequency of
the exchange oscillations J is obtained in two steps. First, we calculate the Fast Fourier transform
of Ps(τ) and find the frequency bin with the largest weight. Then we use this frequency as an initial
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guess for fitting a damped sine wave of frequency J to Ps(τ), with a decaying amplitude of the form
exp(−τ/TR). Values of J(ε) extrated by this method are plotted as circles in Fig. 13.3(d).
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Figure 13.5: (a) Charge diagram indicating the electron occupation in the multielectron dot as
function of gates VR and V ′R, as defined in the micrograph shown in the inset. Dots indicate the
DC values of VR and V ′R at which spectroscopy of the exchange energy have been performed. (b)
Probability of detecting a singlet, Ps, as a function of ε and B|| for a exchange time τ = 150 ns,
VR = -490 mV and V ′R = -950 mV. (c) Same as (b) for VR = -460 mV and V ′R = -1000 mV. Data
corresponding to the black dot is shown in the main article in Fig. 13.2(a). Exchange profile, J,
extracted from these two spectroscopies is shown in Fig. 13.2(c).

Figure 13.6: Exchange oscillations as a function of ε for a exchange time τ , in the vicinity of
the (1,1,N)-(1,0,N+1) charge transition for various values of B⊥. J profiles extracted from these
oscillations are plotted in Fig. 13.4(d) in the main text. (a) B⊥ = 50 mT; (b) B⊥ = 85 mT; (c)
B⊥ = 120 mT.
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14.1 Introduction

In a scalable quantum processor, the coupling used to perform two-qubit gates must have fulfill
three key requirements: it should be fast, coherent and long-range. Indeed, the presence of such
coupling underlies the success of the superconducting [197, 198] and trapped-ion qubits [199].
The spin qubit community is also focused on finding such coupling scheme. However approaches
based on superconducting qubits designs [159, 200], i.e. capacitative coupling [22, 37] and cavity-
mediated interaction [23, 24], tend to be troublesome. That is because they involve a charge degree
of freedom [154, 156], while spin qubits lack the charge-noise protection [12, 109] inherent to
transmons [201]. Alternatively, exchange coupling can be introduced in a charge-noise insensitive
manner [64, 68]. Moreover, the intrinsically short range of the exchange interaction can be extended
by means of a quantum mediator [160–162]. Here we show that a multielectron quantum dot works
extraordinarily well as such mediator [160]. We show that the exchange interaction mediated by a
multielectron quantum dot can be controlled up to a few-gigahertz regime. Moreover, many-body
effects present in the multielectron quantum dot give rise to the emergence of the extremum in
the exchange interaction strength characterized by low charge-noise sensitivity [169, 196]. We

This chapter and chapter 15 are adapted from the manuscript in preparation.
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Figure 14.1: The concept of the experiment. (a) SEM micrograph of the measured device.
Single-electron quantum dots are located below the circular gates, while a multielectron dot is
located below the central, elongated gate. Nanosecond voltage pulses applied to the blue-colored
gates are used to control the position and the interaction between single electrons. (b) Scheme of
the experiment. First, pairs of electrons in the left and right double quantum dot are initialized
in the singlet state |SL/R〉 in the outer dots. Than, single electrons are moved to the inner dots,
thereby turning off the exchange interaction with the reference spins, which remain in the outer
dots. Next, the exchange between the electrons located in the inner quantum dots is induced, by
applying a positive voltage pulse on the gate VM, and negative voltage pulse on the remaining
gates. The exchange interaction causes flip-flops between electronic spins on the inner dots. As a
result a spin state of the electrons within a double dots become one of the triplet states (see text for
details). Change of the spin states of both double quantum dots is detected in parallel by means of
spin-to-charge conversion followed by the measurement of the two nearby radio-frequency sensor
quantum dots.

conclude that the exchange interaction mediated by a multielectron dot fulfills all requirements
of the scalable coupling mechanism and sketch a clear path for scaling the coherent quantum dot
systems.

14.2 The device and concept of the experiment

We implement long-range exchange coupling mediated by a multielectron quantum dot in a
quintuple quantum dot array (Fig. 14.1(a)). The quantum dots are defined in a 57 nm deep
GaAs two-dimensional electron gas, covered by 10 nm Hf2O insulating oxide layer, by means of
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Figure 14.2: Evidence of the exchange interaction between distant electronic spins (a) Proba-
bility of singlet measurement on both double quantum dots, as a function of the interaction time τ

and the amplitude of the pulse on gate VM . Data presented in both panels is acquired simultaneously.
(b) Joint probabilities of the final spin states, as a function of the exchange-inducing pulse amplitude,
for fixed interaction time τ = 2 ns. (c) Histograms of the single-shot outcomes for several pulse
amplitudes, indicated with colored markers in panel (b).

electrostatic gates deposited on top of the heterostructure. The middle dot has an even number of
electrons [196], between 50 and 100 as estimated from the lithographic size of the device and the
density of the 2-dimensional electron gas. The double quantum dots (DQDs) located on both sides
are tuned to a single-electron regime.

The exchange interaction is studied by means of a sequence sub-microsecond voltage pulses
applied to the blue-colored gates in Fig. 14.1(a). The pulse sequence (Supplementary Section 15.1)
realizes the following procedure (Fig. 14.1(b)). First, pairs of electron in the DQDs are pushed to
the outmost quantum dots, where they relax. This initializes each of the DQDs in a spin singlet
state |SL/R〉= (|↑↓〉− |↓↑〉)/

√
2 where the arrows indicate the spin state of the two electrons and

subscript L/R indicates left and right DQD. Than, the electrons are rapidly separated, so that each of
the small dots is occupied by a single electron. This pulse turns off the exchange interaction between
electrons within each DQD. In the third stage the positive voltage pulses on gate VM and negative
on all other gates induces the exchange between the electrons located on the inner pair of small
dots (to which we will refer as “inner dots”). The induced exchange interaction causes flip-flops
between those electronic spins. This leads to the correlated decrease of probability that electron
pairs in both DQDs are in a singlet state. After the interaction time τ the exchange-inducing pulse
is switched-off. Finally, we employ the spin-to-charge conversion [202] to readout the relative spin
of the electron pairs in each DQD. The reflectometry readout of the two nearby quantum-dot-based
charge sensors [9] allows us to distinguish between singlet and triplet states within each DQD
independently and with single-shot fidelity.
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14.3 Evidence for the exchange coupling

The result of such pulse sequence is shown in Fig. 14.2(a). In the two panels, we plot the singlet
return probability PS of each DQD as a function of duration τ and voltage of the pulse amplitude
(Supplementary Section 15.1). These oscillations are the result of the exchange-driven flip-flops of
the electrons located on the inner small quantum dots. Noteworthy, the frequency of the oscillations
decreases with small VM values, corresponding to the multielectron dot level detuned very far from
the inner dots levels. Inversely, for a large positive pulse on gate VM the oscillations become faster
as the multielectron dot level gets into resonance and, ultimately, shifts below the single particle
levels of the inner dots (which will follow from the analysis presented later). The bending of the
oscillatory pattern for short interaction times is a result of 0.8 ns rise time of the voltage pulses.
Complementary evidence for the presence of the exchange interaction between the two electrons
located on the inner quantum dots is provided by the leakage spectroscopy measurement, mapping
the position of the crossings between various spin states (Supplementary Section 15.3).

Next, we confirm the correlation between single-shot outcomes. In this measurement we fix
interaction time τ = 2 ns and vary the amplitude of the exchange-inducing pulse (see Supplementary
Section 15.1). The joint probabilities of singlet and triplet readout outcomes in the two DQDs are
presented in Fig. 14.2(b). The obtained oscillations of singlet and triplet outcomes are correlated,
and we observe the constant background of the anticorrelated counts. Histograms of the recorded
single-shot readouts for several exchange pulse amplitudes are presented in Fig. 14.2(c). The joint
probabilities were estimated from the histograms by fitting the quadruple Gaussian, followed by a
correction for the relaxation during the measurement time (see Supplementary Section 15.2).

The oscillations observed here are a result of the precession between the initialized |SL〉 |SR〉
state and the fully entangled 1

2(|S
L〉 |SR〉− |T L

0 〉 |T R
0 〉+ |T L

+〉 |T R
− 〉+ |T L

−〉 |T R
+ 〉) state. Here the two

kets indicates the state of the left and right DQD, respectively. The spin triplet states are labeled
according to the standard convention, |T0〉 = (|↑↓〉+ |↓↑〉)/

√
2, |T+〉 = |↑↑〉, |T−〉 = |↓↓〉. As a

consequence, we expect fully correlated readouts and oscillations visibility of 75%. Fig. 14.2(b)
shows that both predictions are almost fulfilled. We attribute the observed background of anticorre-
lated outcomes, which decreases the oscillations visibility, to the interaction between the electrons
located on the outer dots with the nuclear bath, as well as finite bandwidth of the voltage pulses.

14.4 Three regimes of the exchange interaction

Thereafter, we explore different regimes of the exchange interaction mediated by the multielectron
quantum dot. For that purpose we define a new gate voltage parameter ε = (VL2−VR1)/

√
2+C

(where C is a constant; Supplementary Section 15.1), which controls the detuning between the
single particle levels of the two inner dots. In Fig. 14.3(a), we fix the interaction time to τ = 6 ns
and map out the oscillations as a function of ε and VM . In this figure fringes correspond to the lines
at which the acquired phase is fixed (as indicated by the annotations). Since the interaction time τ

is fixed, these fringes correspond also to lines of constant exchange, up to distortions due to the
voltage pulse bandwidth.

For negative VM the exchange interaction is the weakest, and it gradually increases for larger
VM. The exchange interaction strength increases most rapidly for ε ≈ 0 where, for VM & 20 mV,
the fringes are blurred due to decoherence and aliasing. For large |ε| the exchange increases more
slowly, but ultimately the oscillations become impossible to resolve as well. We also observe that
the obtained pattern is almost symmetric with respect to ε .

To understand the pattern we measure the charge distribution during the interaction (Supple-
mentary Section 15.5). The extracted positions of the charge transitions are indicated in Fig. 14.3(a)
by the dashed lines while the deduced positions of the electrons are illustrated in Fig 14.3(b). In the
region labeled I the inner dots remain singly occupied, and the multielectron dot remains in the
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Figure 14.3: The fingerprint of the three regimes of the exchange interaction. (a) Probability
of the singlet outcome in the right double quantum dot, as a function of the detuning between
the inner quantum dots ε , and voltage on the multielectron dot gate VM, for fixed interaction time
τ = 6 ns. Colored triangles indicate detuning corresponding to the data presented in Fig. 14.2a and
14.4a. Dashed lines indicate independently measured positions of charge transitions (Sec. 15.5). (b)
Illustration of the alignment of the chemical potentials of the dots in different interaction regimes.
µL/R indicates chemical potential of the single-electron in the left/right dot. µ1 is the chemical
potential of the single electron added to the multielectron dot. µS/T is the chemical potential of the
multielectron dot with two electrons added in the singlet/triplet configuration. U and ∆ indicate
charging energy and the level spacing of the multielectron dot.

initial charge state. In this case the virtual occupation of the multielectron quantum dot mediates
the exchange interaction, as explained in detail in Ref. [160].

In the region IIa and IIb one of the electrons is moved to the multielectron dot and the effective
many-body spin 1/2 exchange interacts directly with the second electronic spin. The symmetry
between these two configurations gives raise to the symmetry of the oscillations pattern with respect
to ε = 0. The slight asymmetry arises form the inequality between the tunneling of the electrons
from the left and the right inner dot to the central multielectron dot.

Finally, in region III the chemical potential of the multielectron dot is decreased so much that
both of the electrons tunnel on the multielectron dot, and interact while being on the same site.
Depending on the relative spin, either both electrons occupy the same, lowest orbital, or the lowest
and the second lowest orbital. The energy difference between these levels is a limit to the strength
of the exchange interaction, which is given by the two mesoscopic parameters: the level spacing
∆E and the difference of the Coulomb repulsion between electrons occupying the same or two
different orbitals [167, 175, 196].
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Figure 14.4: The extremum in the exchange energy at the border of the direct and on-site
regimes of the exchange interaction. (a) Exchange oscillations for short, fixed interaction time
τ = 2 ns as a function of the detuning between the inner quantum dots ε , and voltage on the
multielectron dot gate VM. A chevron pattern, related to the exchange sweet-spot is emerging at
the transition between direct and on-site regimes. Dashed lines indicate independently measured
positions of the charge transitions. (b) Time dependence of the exchange oscillations. Oscillations
have particularly high coherence at the position of the chevron where the natural dynamical
decoupling occurs. Shift of the oscillations fringes up for small τ is a result of the limited
bandwidth of the instrumentation.

14.5 Extremum in the exchange interaction strength

For the interaction time of τ = 6 ns we cannot resolve the pattern in on-site exchange interaction
regime. For that purpose we decrease the interaction time to τ = 2 ns and measure a pattern of
oscillations as a function of the inner quantum dots ε and voltage on the gate VM (Fig. 14.4(a)). At
the transition between direct and on-site exchange interaction regimes we observe a peculiar series
of arcs. These indicate that, instead of increasing monotonously, exchange strength as a function of
VM goes through a maximum.

In Fig. 14.4(b), we present time-dependent exchange oscillations measured in a asymmetric
configuration, i.e. for ε = 8 mV (indicated with a blue triangle in Fig. 14.3(a)). In this data we
observe a chevron pattern indicating the extremum in the exchange energy [169, 196] with respect
to VM . The presence of a maximum is a consequence of the small level spacing of the multielectron
quantum dot and particular ratio of tunneling to the lowest unoccupied orbitals. The specific
conditions for the maximum to occur are discussed in Ref. [196], where we study the interaction
between spin-1/2 multielectron quantum dot and a single electron. The maximum observed here
has the same origin, with the only difference being that the effective spin 1/2 is formed for a brief
moment by moving one of the electrons into the multielectron dot.
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Moreover, we observe two characteristic positions at which the oscillations fidelity is particularly
high. First, for large values of VM , the exchange energy is given only by the mesoscopic parameters
of the dot, which are virtually insensitive to the small disturbances. This noise insensitive region is
identical to the one noted in Ref. [12] and one exploited by the hybrid spin qubit realized in the
three-electron double quantum dot [58, 60]. Second high-fidelity position is located at the chevron
pattern. Here, the maximum in the exchange strength provides insensitivity to the detuning between
the energy of the electron residing on the multielectron and one residing on the inner dot. In the
presented configuration of the device the oscillation frequency at both noise-insensitive points is
too high to perform rotations by small angles. However by decreasing tunnel couplings between the
single electron and multielectron quantum dots the latter low-frequency point can be tuned down to
a manageable frequency [169] of approximately 1 GHz.

14.6 Perspective for use of the multielectron quantum dots
The natural next step after this demonstration is to use a multielectron quantum dot of larger dimen-
sions. This will enable to define multiple single-electron quantum dots around the multielectron
dot, and perform coherent operation on arbitrary pair of electrons. Increase of the coupler size
has additional advantage of reducing the on-site exchange energy which would enable performing
high-fidelity, small-angle rotations. Another challenge is to implement this coupling scheme in a
silicon nanostructure, to reduce decoherence effects due to interaction with nuclear spins. Third,
demonstrated manipulation of the electrons involving the multielectron quantum dot provides a
strong evidence that it is possible to coherently shuttle the electrons through the multielectron
quantum dot. Combination of this three achievements will open a path for scaling the quantum dot
based systems.

To conclude, we demonstrate that the multielectron quantum dot can serve as an exchange
interaction mediator between distant electronic spins. We show that the interaction can be induced
in three different ways, by keeping the electronic spins on distant quantum dots or by transferring
one or both of them onto a multielectron dot. We show two regions in the gate voltage space
at which the qubits susceptibility to the charge noise during the interaction is reduced. Finally,
we sketch the plan for transforming this proof-of-principle experiment into a scalable system of
quantum dots.
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15. Supplementary Information for
“Fast coherent spin-exchange via
a multielectron quantum mediator”

This supplementary information discusses the following topics:
15.1 Definitions of the varied gate-voltage parameters
15.2 Achieving a subnanosecond temporal resolution of the exchange pulses
15.3 Mapping the position of the crossings between spin states with different total

spin projection Ŝz
15.4 Calculation of the joint probabilities
15.5 Measurement of the charge distribution during interaction between distant elec-

trons

15.1 Definitions of the varied gate-voltage parameters
In the quintuple quantum dot fully-tuned up to the experiment showing exchange interaction
mediated by the multielecron quantum dot it is impossible to measure the full five-dot charge
diagram. This is because the co-tunneling process from the leads to the multielectron quantum dot
is strongly suppressed, since the electron must co-tunnel through one of the two double quantum
dots. For that reason the set up of the pulse sequences is performed in steps, starting with the choice
of the readout configuration.

The DC tuning of the quintuple quantum dot corresponding to the readout position is therefore
an origin of the gate-voltage space in which the pulses are performed. The rough configuration
of the readout point is done based of the “partial” charge diagrams in which the plunger gates
controlling the occupations of the two DQDs are sweeped. Fine tuning of the readout configuration
is done my running one of the pulse sequences and maximization of the signal amplitude with small
adjustments of the DC gate voltages. Unless stated explicitly, voltages on all gates are measured
relative to the readout configuration.

As a first step of the sequence tune-up we perform simultaneously the leakage spectroscopy [169,
196] (so-called “spin funnel” measurement [7, 14]) of both double quantum dots. In this mea-
surement we simultaneously vary parameters εL = (VL2−VL1)/

√
2 and εR = (VR1−VR2)/

√
2 (the

gates to which the voltages are applied are shown in Fig. 14.1(a) in the main text). The example of
the obtained result is shown in the left panels of Fig. 15.1(a,b). This measurement we use to set
the separation point, in which both double quantum dots are in (1,1) charge configuration and the
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Table 15.1: List of dataset obtained in slightly different DC configuration.

DC configuration Figures
1 14.2(a), 14.3, 14.4(a,b), 15.3
2 14.2(b,c), 15.2
3 15.1

exchange interaction strength is minimized. As a separation point we choose a value of εi for which
the line features lies between B = 10 and 20 mT. In case of Fig. 15.1(a,b) the separation point is
situated at εS

L = 13 mV and εS
R = 18 mV.

The separation point (indicated with a superscript S) serves as a reference for the pulse inducing
the multielectron-dot-mediated exchange interaction. From the separation point we define a new
pulse direction δ

VL1
VL2
VM

VR1
VR2

=


−3
−2
3
−2
−3

× δ√
35

+


V S

L1
V S

L2
0

V S
R1

V S
R2

 , (15.1)

where normalization factor
√

35 was chosen to ensure that change of δ by one was corresponding
to distance 1 in the gate voltage space with a Cartesian metric.

On the δ axis we choose the final reference point (indicated with superscript 0). With respect to
that point we define a variable ε =

[
(VR1−V 0

R1)− (VL2−V 0
L2)
]
/
√

2 which corresponds to detuning
between the two inner single-electron quantum dots.

The data presented in this article was acquired in several slightly different DC gate voltage
tuning (Table 15.1), however the principle of the pulse tune-up applies to all of the datasets. In
between dataset there was no significant retuning of the quintuple dot array, and therefore the tunnel
couplings can be considered unchanged throughout the entire experiment, while definitions of the
reference points (indicated with superscripts S and 0) as well as δ axis were changed.

15.2 Achieving a subnanosecond temporal resolution of the exchange pulses
To achieve a subnanosecond resolution of the exchange pulse we use combined signal of the two
arbitrary waveform generator channels to pulse voltage on the multielectron-dot plunger gate VM.
We set the two channels to output a square waveform of the same duration and amplitude, but
opposite polarity, and combine them using the inverted power splitter. Rising slope of the pulses is
set to the beginning of the intended exchange pulse, while the falling slope happens at the beginning
of the spin initialization procedure. The duration of the subnanosecond voltage pulse is then
adjusted with a skew between the two channels of the arbitrary waveform generator. Importantly,
this method allows to overcome the limitations of the temporal resolution, but is constrained by the
0.8 ns pulse risetime in our setup, which leads to distortion effects in Figs. 2, 3 and 4 in the main
text.

15.3 Mapping the position of the crossings between spin states with different
total spin projection Ŝz

One of the methods for detection and quantification of the exchange interaction is the leakage
spectroscopy. In the double dot case it can be used to locate the position of the crossing between
the singlet |S〉 and the fully polarized triplet |T+/−〉 state (the sign of the electronic g-factor defines
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Figure 15.1: The leakage spectroscopy two exchange-coupled double quantum dots Leakage
spectroscopy measurement performed simultaneously for the left (a) and the right (b) double
quantum dot. (c) Schematic energy diagram of the two exchange-coupled double quantum dots,
for finite in-plane magnetic field. In the left only the exchange interaction within the left and right
double quantum dot (JL/R) is non-zero. In the right only exchange mediated my the multielectron
quantum dot (JM) is non-zero. Markers indicate the crossing that are detected in the leakage
spectroscopy measurement.

which of the triplet states is used), and results in the characteristic funnel shape [7, 14]. In more
complex case of the triple quantum dot the position of the analogous crossing, which depends on the
value of the external magnetic field, enables the reconstruction of the exchange profile [88, 169, 196].
Here we employ the same technique for our case of the two double quantum dots, coupled with
multielectron dot mediator.

The sequence of the applied voltage pulses is the same as in the time-resolved study of the
exchange interaction mediated my the multielectron quantum dot, with the only exception being that
the interaction time is set to τ = 150 ns which is much longer that dephasing time due to Overhauser
field and the charge noise. The left panels of Fig. 15.1(a,b) present the position of the S-T+ crossing
for the two DQDs, acquired simultaneously, identical to the conventional “spin funnel” [7, 14].
The overlap of the two line-features is only apparent, as the horizontal axes correspond to different
gate-voltage parameters (detunings of the left εL and the right εR DQD).

The right panels of Fig. 15.1(a,b) present the result in the regime where the long-range exchange
turns on. In this case the horizontal axis is shared. We observe that the in the central part the
lines indicating the level crossing does not overlap, as underlined with blue and red dotted lines.
Meanwhile, in the rightmost part, the line indicating crossing perfectly overlaps (green dotted line)
and diverges towards the large field. In the intermediate region a signature of the anticrossing can
be observed as well.
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Figure 15.2: Joint probability estimation (a) The joint histogram of the single-shot readout (left)
and quadrupole Gaussian fit (right). (b) Decay of the triplet states in the measurement configuration.
Experimentally measured decay (dots) is fitted by the minimal model of the two independent decay
rates for the two double quantum dots (lines).

This agrees with a Heisenberg model of the 4 exchange-coupled 1/2 spins arranged in a linear
array (multielectron dot is neglected in the model, and only the exchange interaction it mediates
is considered). Energy diagram with arbitrary dependence of the three exchange interactions
reveals all of the relevant features (Fig. 15.1(c)). In the left side of the diagram only exchange
interaction within DQDs is nonzero. This allows us to identify the crossings detected in the leakage
spectroscopy measurement. On the contrary, in the right only the exchange interaction mediated by
the multielectron quantum dot is nonzero.

The lines in the left part of Fig. 15.1(a,b) correspond to the S-T+ crossing on the left and the
right DQD. In the two-DQDs pictures these are |SS〉-|T+S〉 and |SS〉-|ST+〉 crossings indicated
with, respectively, blue and red triangle. In the middle part of the energy diagram and leakage
spectroscopy data |T+S〉 and |ST+〉 states start to hybridize due to the exchange mediated by the
multielectron dot. As a results only one of the line features continues (as indicated with the red
to green dotted line transition), while the other one ends (blue dotted line) and continues slightly
shifted (green dashed line). This indicates the position at which |T+S〉 and |ST+〉 are no more the
eigenstates, but their superposition (|T+S〉− |ST+〉)/

√
2 is (the green line in 15.1(b)). At this stage

also |SS〉 state is no longer an eigenstate while |↑ S ↓〉 and |↓ S ↑〉 are (the orange line).

15.4 Calculation of the joint probabilities
The joint probabilities, presented in Fig. 14.2(b), are calculated based of the histograms of single
shot outcomes for each pulse amplitude (presented in the Supplementary Video 1). In the first step
we fit the 2-dimensional quadruple Gaussian to the histogram including multiple pulse amplitudes.
From this fit we obtain the position of the four peaks (8 parameters) and their widths (2 parameters,
we use different distribution widths for measurements performed with different sensors, and set
them to be the same for all 4 Gaussian). The data and the fit are presented in Fig. 15.2(a). Having
fixed the positions and widths we fit the amplitude of the Gaussians to outcomes histograms for
each voltage pulse amplitude separately. The normalized amplitudes of Gaussians yield the joint
probabilities, uncorrected for the decay during the measurement.

To correct for the decay of the two-electron states in the DQDs we fix the amplitude of the
exchange-inducing pulse at the value that yields significant number of counts for all 4 possible
outcomes and introduce the waiting time in the readout configuration, before we perform the actual
measurement. Fig. 15.2(b) presents the obtained decay curves. Next we introduce the minimal
model of the decay, in which the triplet states decay to singlet independently of the state of the
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Figure 15.3: Processed diagram of the charge distribution during the interaction mediated by the
multielectron quantum dot. Dashed lines indicate the extracted positions of the charge transitions.

other DQD, and with the rates different for both DQDs. This model is not physically accurate for
several reasons – the state of one DQD may affect another and decay rates are expected to differ for
different triplet states. Yet in absence of the insight into full relaxation dynamics we decide to limit
ourselves to the simplest possible scenario.

Having fitted the decay rates for both DQDs (see Fig. 15.2(b)) we can reverse the relation
between measured probabilities and the real probabilities:

pmeas =
1
TR

TR∫
0

M(t)prealdt (15.2)

where pmeas/real are the vectors of possible real/measured outcome probabilities, M(t) is the intro-
duces the decay during the waiting time t and TR is the total readout time of 7 µs (as indicated
with the gray-haded region in Fig. 15.2(b)). The integration is performed to include decay that
occurs during the readout time. Application of the numerically inversed relation (15.2) yields the
calculated joint probability of the four states.

15.5 Measurement of the charge distribution during interaction between distant
electrons
To independently confirm the position of the electrons during the interaction step we extending the
interaction time to 4 µs, while maintaining the remainder of the pulse sequence unchanged. During
this time we perform a measurement using both charge sensors. This is repeated for several settings
of the charge sensor since the sensor is sensitive only when it is set to the slope of the sensor
quantum dot Coulomb peak. We perform the numerical derivative of each data set, than apply
blur by convolving with them Gaussian kernel (σ = 1.5 pixel) and take the absolute value to take
advantage of the sensitivity on both slopes of the Coulomb peaks. Finally we sum the obtained data
sets with various weights. The processed data obtained in this way is presented in Fig. 15.3. The
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inferred charge transitions are indicated with dashed black lines. The features indicating the electron
transfer from one of the inner dots to the multielectron dot are very weak, due to large tunnel
couplings, which were necessary to observe the superexchange. The two region in the bottom left
and right of the Fig. 15.3 correspond to, respectively, (1,1,2N+1,1,0) and (0,1,2N+1,1,1) charge
configurations of the quintuple quantum dot.

Except for the indicated charge transitions one can observed additional features which have no
counterparts in the data set presenting exchange oscillations (Fig. 14.3(a)). This is the case because
the exchange oscillations occur in the metastable electron configuration of the quintuple dot array.
As long as the interaction time is much shorter than the relaxation rates it is irrelevant for the spin
manipulations. However, as we increase the interaction time to perform the measurement of the
charge distribution the relaxation occurs for the significant fraction of the pulse repetitions.



16. Outlook

The study of the multielectron quantum dot, and demonstration of the long range exchange
interaction opens several paths for further research, both basic and towards scaling of the spin qubit
systems. In this final chapter of the thesis I contrast the long range exchange coupling with other
currently studied coupling mechanisms. Then I propose several follow-up experiments towards
scaling of the quantum dot systems involving the multielectron-dot–mediated exchange interaction.

16.1 Coupling mechanisms for spin qubits
The exchange interaction mediated by the multielectron quantum dot, demonstrated in chapter 14,
is only one among several mechanisms proposed to realize the two qubit gates. Our approach
is motivated by the original proposal of Daniel Loss and David DiVincenzo [5], in which a
direct exchange is a basis for two qubit gates. This idea provided the potential for high fidelity
operations [64, 68]. It is also relatively simple to realize in small quantum dot arrays but it does not
take into account the technical limitations related to fabrication of large arrays of closely spaced
quantum dots. Nevertheless, this approach can be used in small segments of the large quantum
dot arrays, that would communicate with each other by means of one of the other mechanisms I
describe below.

One possibility to provide communication between small segments of the processor is to
physically shuttle the electrons while maintaining their coherence [154]. The demonstration of this
concept was realized in arrays of up to four quantum dots [193, 203], where an electron was moved
by sequentially adjusting the gate voltages dots to transfer electrons between the neighboring dots.
The obtained results provide the evidence that neither relaxation nor dephasing is enhanced during
shuttling of the electrons. On the other hand, using an array of small dots to shuttle electrons
does not simplify the device fabrication. Another possibility is to create a narrow, empty channel
between only two metallic gates and use a surface acoustic wave to carry the electron through.
Proof of principle for this approach was presented in Refs. [153, 204], although high reliability of
classical information transport, and preservation of coherence are yet to be established.

Meanwhile, a relatively high fidelity of the two qubit gates was demonstrated with capacitively
coupled S-T0 qubits [22, 37]. This method, that can be generalized to other multidot qubits,
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employs the difference in the charge distribution between singlet and triplet states at the transition
between (2,0) and (1,1) dot occupancies [154]. One can view this interaction as a small change in
the detuning ε of one double quantum dot, conditioned on the state of the other qubit (and vice
versa) [205, 206]. The challenge in capacitive coupling is that it is relatively short range1, especially
considering the screening by the dot-defining metallic gates. This constraint can be lifted by means
of the floating gates, extending between the two qubits [189]. Another, more fundamental problem
is that using the charge degree of freedom introduces a susceptibility to the charge noise. Therefore
the reduction of the noise2 is necessary if capacitative coupling was to be used in large quantum
dot arrays.

Similar limitation constraints the usage of superconducting microwave cavities [55, 156]. For
this proposal the potential payoff is the increase in the coupling range up to a millimeter scale
(given by the wavelength of the photon propagating in the superconducting co-planar waveguide).
Up to date the first step towards cavity-mediated coupling, i.e. the strong coupling between a
charge qubit and the cavity photon, was demonstrated by three groups [23, 24, 46]. In all cases
the key to obtain these results was the reduction of the charge noise contribution, combined with
maximization of the photon electric field at the dots site.

Finally, the exchange coupling mediated by the multielectron quantum dot can be used to
perform exchange gates between relatively distant spins. The maximum size of the quantum dot
that can mediate such interaction is crucial to ultimately assess whether this mechanism is suitable
for scalable dot arrays. At the same time the electrons could be shuttled between distant locations
through the multielectron quantum dot. The ability to perform both, the long-range coupling and the
shuttling of physical qubits, would be unprecedented in the field of solid state quantum computing.

To summarize, given the current state of the art it is virtually impossible to predict which of
the coupling mechanisms will be the most successful. Direct exchange interaction suffers from
the gate crowding, which may be less limiting with the progress of the nanofabrication techniques.
Capacitative coupling provides a mean to create dense arrays, while circumventing the extreme
crowding, but requires reduction of the charge noise by several orders of magnitude to achieve
the fault-tolerant fidelities. A similar restriction also applies to coupling via the superconducting
resonator, which, on the other hand, can ultimately resolve the issue of the dense qubit packing.
Finally, multielectron quantum dots can be employed to provide long-range communication between
quantum dots, provided that reasonably large quantum dots can host a spin-0 ground state spaced
from the first excited state by sufficiently large level spacing.

16.2 Next steps towards scaling of quantum dot arrays with exchange coupling
Scaling the array of long-range exchange coupled quantum dots is a challenging task. Yet the
demonstration of the multielectron-dot–mediated exchange interaction enables to set several goals
that can be achieved in the nearest futures.

First, it is essential to demonstrate the long-range exchange in a device fabricated in a material
with sparse spinful nuclei, such as Si/SiGe quantum wells or a MOS structure; or in a structure
where the spin carriers are more weakly coupled to the nuclear spins, such as GaAs hole quantum
wells. The reason is that a short inhomogeneous dephasing time for an electronic spin establishes
an ultimate limit to the fidelity of the spin manipulations in GaAs. Stabilization of the Overhauser
field via dynamical nuclear polarization in combination with dynamically decoupled gates will
delay the moment of transition to a different system, but the amount of the overhead involved will
become limiting sooner rather than later. Nevertheless, multiple nearest objectives can be realized

1Dipole-dipole interaction scales as 1/r4, with the distance r.
2As opposed to suppression by means of qubit symmetrization. Symmetrization minimizes the difference in charge

distribution between the spin states but suppresses the coupling as well. It is worth noting that switching between
symmetric and tilted operation of the qubits provides a mean to switch the capacitative coupling on and off.
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500 nm

Figure 16.1: Proposal for the study of the multielectron quantum dot with varying area in the
working device. The multielectron dot size can be easily increased by adjoining the neighboring
small dots as indicated with the blue-colored ellipses. Due to the large distance between the gates
defining a distant edge, and the multielectron quantum dot and the two-electron double quantum
dot (red circles) a wide range of multielectron dot sizes can be explored with little effort. If the
largest dot turns out to have sufficiently large level spacing the long range coupling can be readily
demonstrated by defining a second double quantum dot in the position indicated by green circles.

with GaAs electron quantum dots, in parallel to progress in the reliability of fabrication of other
structures.

For example it is crucial to experimentally establish the dependence of the mean level spacing
with the area of the multielectron quantum dot. In particular it is important to establish the maximum
dot size that reliably provides a level spacing larger than the energy corresponding to the typical
electron temperature (kT = 8.6 µeV for T = 100 mK, which corresponds to f = kT/h = 2.1 GHz).
This gives a bound on the maximum distance between the exchange-coupled spins. A ballpark
estimate can be obtained from the model of non-interacting electrons in a hard box yields 〈∆E〉=
π/m∗A. This yields a maximum dot area of 0.36 µm2 for electrons in GaAs (factor of 12 relative to
size of dot studied in Ch. 14), 0.12 µm2 for electrons in Si and 0.055 µm2 for heavy holes in GaAs.
However the interaction effects and unknown depletion area around the metallic gates may result in
significant deviations from this prediction. Moreover, the spin correlation energy can reduce the
spacing between the spin-0 ground state and spin-1 excited state. The outcome may point towards
using either elongated dot-buses rather than circular multielectron quantum dots.

Studying if the mean level spacing on the multielectron dot area can be performed on the device
that was employed in the experiments presented in this part (Fig. 16.1). The size of the multielectron
quantum dot can be increased by adjoining the neighbouring regions, intended originally to host
single electron dots. This proposal is very simple to realize experimentally, due to very weak
capacitative coupling between the gates defining the farthest edge of the multielectron dot and the
double quantum dot which can serves for spin initialization and readout. The device shown in
Fig. 16.1 enables to also demonstrate the coupling via an elongated multielectron quantum dot,
provided the first experiment yields a promising results.

Knowing the maximum dimensions of the coupling dot, one can attempt to couple multiple
qubits via the same mediator. This would increase the connectivity within a quantum dot array,
potentially reducing number of operations required to realize a quantum algorithms. An example of
device geometry suitable for such demonstration is presented in Fig. 16.2. This design combines
the dimensions of both single-electron and sensor dots that proved to be easily tunable, with the
multielectron quantum dot that has an area sufficiently small to provide level spacing much larger
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500 nm

Figure 16.2: Scanning electron micrograph of the test exposure of the 4-qubit device. The four
single, double or triple quantum dots can be directly tunnel-coupled to the multielectron quantum
dot with an area of approximately 0.08 µm2. Each of the qubits is equipped with the individual
sensor dot enabling simultaneous, independent spin readouts.

than kT .
The conditions required for the long distance exchange coupling of spins are simultaneously

the conditions for the coherent transport of spin through the multielectron quantum dot. As
demonstrated in Sec. 12.4 a single excess electron preserves coherence while residing on the
multielectron quantum dot, enabling the measurement of the Overhauser field gradient. There is no
obstacle to transfer it afterwards to a different quantum dot. Such experiment can be conducted in
both device geometries presented in Figs. 16.1 and 16.2. In particular, the electron transfer between
red and green-colored dots in Fig. 16.1 can be realized either through one, extremely elongated dot,
or through two multielectron dots of half the size.

These numerous possibilities, most of which can be demonstrated in available, working and
tested devices provide a compelling argument for using the multielectron quantum dots. In particular
the possibility to demonstrate the long range coupling and long range coherent transfer of physical
qubits via the same mediator is unique to this proposal.
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A. Setup

In this chapter you’ll find a description of all the electronics in the experimental:
• the DC part which allows to shape the quantum dot potential and perform basic transport

measurements (A.1);
• the HF part that is responsible for applying nano- to milisecond voltage pulses (A.2);
• the reflectometry setup and demodulation circuit (A.2).

In further sections I will focus on certain extensions of the setup, that are used to:
• combine HF pulses and RF bursts (A.3);
• synchronise multiple AWGs (A.4);
• readout two sensors simultaneously (A.5).

A.1 DC/LF circuit
A low frequency circuit consists of two parts – for gate control and transport measurements
(Fig. A.1). The gate voltages are controlled with homemade DACs (called DecaDACs) to provide
stable voltage on gates forming quantum dots. DecaDACs were built by Jim MacArthur from
Harvard electronics shop. Each of these has 20 16-bit channels that can operate in ranges 0-10,
-10-10 and -10-0 V. To increase resolution of 30 µV voltage on each channel was divided (1:5).
The lines are brought down to the mixing chamber using 24 line constantan looms which are
thermalized at every stage of the fridge. At mixing chamber the lines are RC and RF filtered
to minimize instrumentation and Johnson’s noise. RC filter consists of 80 MHz low-pass filter
(Mini-Circuits LFCN-80), two 2 kΩ resistors and two 2.7 nF capacitors. Cut-off frequency of this
filter is approximately 30 kHz. The RF filter consists of three components: 80 MHz low pass filter
(Mini-Circuits LFCN-80), 1.45 GHz low pass filter (Mini-Circuits LFCN-1450) and 5 GHz low
pass filter (Mini-Circuits LFCN-5000). DC lines that are combined with HF lines (not shown on a
scheme) go through additional bias tee, which I will describe in section A.2.

Part of the circuit used for transport measurements consists of DecaDAC (a source of DC bias)
and SR830 lock (an AC source). Their signals is combined and divided in the adder (with ratios
1:∼400 for DC and 1:∼18000 for AC). Than line goes down the fridge through a set of filters
(identical to ones on gate-controlling lines) and is connected to the source ohmic of the sample.
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Figure A.1: Scheme of DC/LF circuit. Parts of the circuit drawn in a pale blue region are located at
mixing chamber plate or on coldfinger, while yellow box shows elements mounted on the Mayo
PCB.
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Figure A.2: Scheme of HF/RF circuit. Parts of the circuit drawn in a pale blue region are located
inside the fridge, while yellow box shows elements mounted on the Mayo PCB. Brown box
symbolizes a demodulation circuit and other elements located on the fridge. Symbols M/C, still
and PT2 indicate at which level of the fridge relevant component is located.

Drain ohmic is connected to a low noise Ithaco 1211 current preamplifier. Its two outputs are
connected to Agilent 34401A DMM and lock-in SR830 to measure, respectively, the current and
conductance. Some ohmic lines are combined on the sample board with reflectometry lines via
bias-tees and go through tank circuits. I will describe these parts of the circuit later (Sec. A.2).

A.2 HF and reflectometry circuit

The primary purpose of the high-frequency (HF) circuit is to apply pulses to the gates with nanosec-
ond temporal resolution and to perform measurements on a microsecond timescale. Additionally,
we use them to apply a sawtooth wave of 2 kHz frequency. By synchronising measurements with
period of the sawtooth we can speed up measurements of charge diagrams. I will describe this
technique in chapter C and now focus only on the experimental setup.

The heart of the circuit is an arbitrary waveform generator (AWG) Tektronix 5014c. As
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shown in figure A.2, it sends the pulses, via attenuators, down the fridge. At the Mayo PCB high
frequency pulses are combined with DC signal using bias-tees (R = 100 kΩ, C = 22 nF). Combined
signal arrives to the sample. To synchronise pulses with the measurement we connect one of the
marker channels to the AlazarTech PCI digitalizer (ATS 9440), which is used for reflectometry
measurements.

To perform reflectometry measurements we need to send the RF carrier signal down the fridge,
collect reflected signal, amplify, demodulate and deliver to the Alazar card. The RF source is
Stanford Research SG384 signal generator, operating at resonant frequency of the tank circuit
(see below), typically between 100 and 250 MHz. RF signal is divided in directional coupler.
Most of the signal (optimally 13 dBm) goes directly to the mixer and will serve as a reference.
Smaller part of the signal goes through the phase shifter (needed to adjust phase of reflected signal
relative to the reference signal) and RF switch (which we use to turn the RF carrier on only during
the measurements). Than the signal goes through a set of filters and variable attenuators, which
allows to control RF power at the sample. At the bottom of the fridge RF carrier arrives to the next
directional coupler. Small part of the signal goes through, is combined with DC signal and hits the
resonant circuit.

The resonant circuit consists of the inductor (typically 700 to 1200 nH), parasitic capacitance
to ground and resistance (∼1 pF), and resistance of the sensor quantum dot (1/R = σ ∼0.2 e2/h).
When properly tuned the resistance of the quantum dot changes depending on the charge state
of the qubit. In turn, this resistance modifies the impedance of the resonant circuit and therefore
the amplitude of the reflected signal. For detailed description of principles of readout using
reflectometry I recommend Christian Barthel’s thesis [207].

The reflected signal goes back to the directional coupler, now to the low-loss input. At the pulse
tube plate 2 the signal is amplified with the CITLF1 cryo-amplifier (co-called Weinreb amplifier).
Outside of the fridge the signal goes through a set of filters, additional amplifier and arrives at
the mixer. The demodulated signal is once more filtered and amplified and sent to the DMM (for
monitoring purposes) and to the Alazar PCI digitalizer.

The setup has one more element: AWG Agilent 33250A that is used to generate sawtooth wave.
This sawtooth wave can be overlaid with the fast pulses using “add input” option of the Tektronix
AWG. Synchronization of the sawtooth with the Alazar card allows to use for the acquisition of the
charge diagrams (chapter C).

A.3 Adding RF to HF pulses

Operation of a spin qubits such as resonant-exchange or Loss-DiVincenzo requires application of
RF voltage pulses as well as pulses of arbitrary shape on the same gate. For that purpose we built
the following extension of the setup (Fig. A.3).

Two of the channels of Tektronix 5014c AWG were used to apply pulses on gates. They both
are connected to one of the outputs of ZESC-2-11+ power splitter. In case of the channel 1 the
other output of the splitter is 50 Ω terminated.

Another two channels of the AWG are used to modulate in-phase and quadrature of the RF
signal generated by a vector source R&S SMBV100A. The output of the RF goes through a in/out
DC block which breaks a ground loop, a high-pass filter and a 20 dB attenuator. In the end RF is
combined with the signal from 2nd AWG channel on with the power splitter.

Observant reader would notice that in this setup the RF signal will necessarily be delayed
relative to the signal from the AWG. This delay is of the order of tens of nanoseconds and needs to
be calibrated out. Correction in done software by delaying pulses on channels 1 and 2 relative to
the channels 3 and 4.
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A.4 Synchronisation of multiple AWGs

Most of the multi-qubit experiments require more than 4 fast signals, and therefore synchronisation
of multiple AWGs. For synchronisation one needs to provide AWGs with a common 10 MHz
reference and a common external trigger. In our experiment we used SRS FS725 Rubidium
frequency standard to generate 10 MHz reference and Agilent 33250A AWG to generate a square
wave that triggered two Tektronix 5014c AWGs.

However, if you do just that, you will find out that part of the time the AWGs are one clock
cycle off. To eliminate that you need to use the cables of the same length for triggering. Moreover
if AWGs are supposed to output the sequence, it’s good to run the trigger continuously so it would
trigger both AWGs at the beginning of each pulse, not only at the beginning of each sequence.
Importantly, the period of the triggering square wave needs to be an integer multiple of AWG clock
period. This means also that it also has to use the same 10 MHz reference. Otherwise AWGs might
be one clock cycle off most of the time.

A.5 Simultaneous readout of two sensors

The final improvement to the setup was an extension of the demodulation circuit (Fig. A.5) to
enable simultaneous measurement of two sensor dots embedded in resonant circuit of distinct
resonant frequencies. To large extent this circuit is a doubled circuit from Fig. A.2.

Two signal generators produce two RF tones. Signal from each of them goes through a
directional coupler to the mixer. The other outputs of the directional couplers are connected through
the phase shifters to outputs of the power splitter where the two frequencies are combined. The
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combined end splitted with a pair of power splitters.

combined RF carrier goes through the RF switch, common for both frequencies, and a set of filters
and attenuators to the fridge.

The reflected signal is splitted at the output of the fridge and demodulated with two reference
signals in two separate mixers. In this way we get two DC outputs that can be connected to DMMs
or Alazar card.
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Mesa

• 3 solvent clean, N2 dry
• pre-bake 5 min at 185◦C
• cool down 30 s on glass slide
• spin AR 300-80 (∼15 nm)

– 10 s at 500rpm, 500rpm/s
– 60 s at 4000rpm, 4000rpm/s

• Bake 1 min at 185◦C
• spin EL9 (∼315 nm)

– 10 s at 500 rpm, 500 rpm/s
– 60 s at 4000 rpm, 4000 rpm/s

• bake 3 min at 185◦C
• expose in Elionix:

– electron energy 100 keV
– write field 600 µm
– 20.000 dots
– pitch 3
– beam current 40-60 nA
– aperture 250 µm
– Beamer base dose: 295 µC/cm2 (0.4

µs/dot for 60 nA)
• develop the resist

– MIBK:IPA 1:3, 90 s
– rinse in IPA 15 s

• O2 plasma ash for 60-120s (∼12 nm/min)
• prepare 1:8:240 H2SO4:H2O2:H2O
• measure etch rate on a dumy GaAs chip

– etch a dummy chip for 60 s
– wash in mQ H2O for 20 s
– sonicate in Acetone for 5 min and

in IPA for 2 min,
– N2 dry
– measure mesa height
– estimate etch rate (∼ 2 nm/s)

• etch the chip
– etch ∼ 20 nm below 2DEG
– wash in mQ H2O for 20 s
– sonicate in Acetone for 5 min and

in IPA for 2 min,
– N2 dry
– measure mesa height
– estimate etch rate

• warm the chip in IPA/acetone for 1-2
hours
• O2 plasma ash

Ohmics

• 3 solvent clean, N2 dry
• bake 5 min 185◦C
• cool down 30s on glass slide
• spin EL9 (∼320 nm)

– 10 s at 500 rpm, 500 rpm/s
– 60 s at 4000 rpm, 4000 rpm/s

• bake 3 min at 185◦C,
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• cool down for 60s
• spin 4% PMMA (∼200 nm)

– 10 s 500 rpm, 500 rpm/s
– 60 s at 4000 rpm, 4000 rpm/s

• bake 3 min at 185◦C
• expose in Elionix:

– electron energy 100 keV
– write field 600 µm
– 20.000 dots
– aperture 250 µm
– beam current 40-60 nA
– dose 700 µC/cm2

• develop in MIBK:IPA 1:3 60s
• rinse in IPA 10 s
• O2 plasma ash for 120 s (∼12 nm/min)
• load the sample into AJA
• ash with Ar plasma for 120 s
• deposit (for approx. 60 nm depth):

– 43 nm Ge
– 30 nm Pt
– 87 nm Au

• lift off in 85◦C NMP for 2+ hours
• anneal in rapid thermal annealer for 2 min

at 425◦C

Alignment marks

• 3-solvent clean, N2 dry
• O2 plasma ash for 30 s
• pre-bake 4 min at 185◦C
• cool down 30 s
• spin 4% PMMA

– 10 s at 500 rpm, 500 rpm/s
– 60 s at 4000 rpm, 4000 rpm/s

• bake 3 min at 185◦C
• expose in Elionix

– electron energy 100 keV
– dose 800-900 µC/cm2

– write field 150 µm
– 60.000 dots
– beam current 1 nA
– aperture 60 µm

• develop in MIBK:IPA for 60 s
• rinse in IPA for 15 sec, N2 dry
• O2 plasma ash 60 s (∼12 nm/min)
• load the sample into AJA
• deposit:

– 10 nm Ti
– 60 nm Au

• lift off in hot acetone/NMP for 2+ hours

HfO2

• 3 solvent clean, no sonication, N2 dry
• pre-bake 5 min at 185◦C, cool down 30 s
• spin 4% PMMA

– 10 s at 500 rpm, 500 rpm/s
– 60 s at 4000 rpm, 4000 rpm/s

• bake 5 min at 185◦Ce
• expose in Elionix

– electron energy 100 keV
– dose 700 µC/cm2

– write field 600 µm
– 20.000 dots
– aperture 250 µm
– beam current 40 nA

• develop in MIBK:IPA 1:3 for 60 s
• rinse in IPA for 15 s
• O2 plasma ash for 60 s
• deposit 10 nm HfO2

– chamber heater 130◦C
– wall heater 130◦C
– N2 flow 20 SCCM
– pulse HfO2 0.3 sec
– purge 90 sec
– pulse H2O 0.03 sec
– cycles 80
– expected thickness ∼10 nm

• scratch edge to expose resist
• lift off in hot NMP for 5 min with 5×2

sec sonication bursts
• put in 80◦C NMP for 2+ hours
• 5×2 sec sonication
• wet observe and repeat NMP and sonica-

tion if necessary

Fine gates
• 3 solvent clean, N2 dry
• pre-bake 5 min at 185◦C, cool down 30 s
• spin 2% PMMA

– 10 s at 500 rpm, 500 rpm/s
– 60 s at 4000 rpm, 4000 rpm/s

• bake 15 min at 185◦C
– electron energy 100 keV
– base dose 1240 µC/cm2

– PEC done with beamer
– write field 150 µm
– 60.000 dots
– beam current BC 300 pA
– aperture 40 µm

• develop in IPA:H2O 7:3 for 2.5 min at
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-5◦C
• deposit:

– 10 nm Ti
– 60 nm Au

• lift off in hot acetone/NMP for 2+ hours
• wet observe and repeat NMP and soft son-

ication if necessary

Outer connectors
• 3 solvent clean, N2 dry
• pre-bake 5 min at 185◦C, cool down 30 s
• spin 9% Co+polymer

– 10 s at 500 rpm, 500 rpm/s
– 60 s at 4000 rpm, 4000 rpm/s

• bake 3 min at 185◦C
• cool down for 30 s
• spin 4% CSAR

– 10 s at 500 rpm, 500 rpm/s
– 60 s at 4000 rpm, 4000 rpm/s

• bake 3 min at 185◦C
• expose in Elionix

– electron energy 100 keV

– write field 600 µm
– 20.000 dots
– pitch 3
– beam current BC 40-60 nA
– aperture 250 µm
– CON-file prepared w Beamer

Dwell times are set for each element
assuming 45-46 nA and given base
dose. Adjust for different beam cur-
rent by applying dose factor

– Beamer base dose 190 µC/cm2

(0.34 µs/dot for 45-46 nA)
• develop, 45 sec AR-600-546
• 5 sec O-xylene
• 10 sec IPA rinse
• N2 dry
• O2 plasma ash for 60 sec (∼12 nm/min)
• load the sample into AJA
• deposit (total of (1.2× mesa height)

– 10 nm Ti
– 110 nm Au

• lift off in 55◦C acetone for 2+ hours





C. Real-time measurements
of charge diagrams

During the measurements of the PDN 7c sample we realized that reflectometry measurements are
sufficiently sensitive, to acquire charge diagrams of reasonable quality with averaging time of 50 µs
per pixel (0.5 s for 100×100 image). On the other we knew that measuring such a charge diagram
took us typically 20 s. The difference between these times is is a consequence of sending multiple
commands to the DecaDAC to step DC voltage on the gates. In the following I will describe how
we used DAC sweeps and sawtooth waves synchronised with the Alazar card to take advantage of
high sensitivity, and realized real-time measurements of charge diagrams with up to 5 fps.

The technique was to the large extend based on legacy code developed by Jim Medford. It was
implemented in IgorPro, in the experiment file which kept evolving since times of Alex Johnson,
Jason Petta and first coherent operations on single electrons [7, 202].

While developing the code we learned that similar technique was developed in Jason Petta
group [208]. Their readout technique was based on measurement of transmission of the cavity
coupled to nanowire double quantum dot. Usage of higher carrier frequencies (∼8 GHz) allowed
to use Josephson parametric amplifier, which boosted signal to noise ratio and let them cut down
measurement time of a single charge diagram to 20 ms. The noteworthy difference between the two
techniques is that cavity-based readout relies on the tunneling rates being comparable or larger that
the RF excitation frequency, which limits the sensitivity to more “pinched-off” charge transitions.
In case of the SET-based charge sensing this constraint weaker, and is given by the sweeping rate
of the gate voltages (∼5 µs per pixel in our case, corresponding to ∼200 kHz tunneling rate).

C.1 The principle of operation
To perform real-time measurements of charge diagrams you need two voltage sources capable of
sweeping voltage or applying a sawtooth wave. We used DecaDAC to sweep voltage on one of the
gates with variable speed and Agilent 33250A AWG to apply fixed-frequency sawtooth wave on
another (Fig. C.1). The signal from Agilent AWG was transmitted through Tektronix AWG which
can add a high frequency waveform to the sawtooth.

As show in Fig. C.2(a) DecaDAC sweeps voltage only once while acquiring a single charge
diagram, while Agilent AWG is continuously applying 1903 Hz sawtooth wave. (Because of
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Figure C.1: Scheme of a setup for fast acquisition of charge diagrams. All elements that are not
necessary for the explanation of the principle of operation are omitted.
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Figure C.2: (a) Sweep and sawtooth wave applied with DAC and Agilent AWG for real-time charge
diagram measurements. Sync of the Agilent AWG is used for triggering the Alazar card. (b)
Schematic path followed by gate voltages. Solid lines indicate sweep, while dotted lines indicate
voltage jump.

timescales separation these devices don’t need to be synchronised.) This results in a zig-zag path in
gate voltage space that covers the entire mapped area (Fig. C.2(b))

To acquire the charge diagram Alazar card is triggered at the beginning of each sawtooth sweep
and collects data for1 1/(1903 Hz) ≈ 0.5 ms. Sample speed throughout each of the traces is set to
100 MS/s, which corresponds to ∼50000 points per sawtooth period. Subsequent points are then
averaged together to obtain specified horizontal resolution. Few of such traces are then averaged
together, typically 5-20 in the live-view mode and 50-100 for high quality diagrams. The averaged
trace corresponds to a single horizontal line in the final charge diagram. This procedure is repeated
to obtain demanded vertical resolution. Total acquisition time of 50× 50 charge diagram with
10 traces averaged together is therefore 1/1903 Hz × 10 × 50 = 0.26 s. The precalculated total
acquisition time is used to calculate the DecaDAC voltahe sweeping rate.

1Exact frequeny is irrelevant. It needs to be significantly higher than the cutoff frequency of the bias-tees wich add
high-frequency and DC voltage. On the other hand it should be as low as possible to minimize artifacts which appear
when the sawtooth frequency is comparable to the tunneling rates.
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C.2 Code

If you are not using the legacy code you can safely skip this section.
Here I will describe chargeDiagramTraceAlazar() function which is a workhorse of real-

time charge diagram acquisition. The code is written in IgorPro. Knowledge of Igor will be helpful,
but hopefully not necessary to understand the code. I will clarify however, that mysterious “waves”
are simply arrays of floating point numbers.

For completeness – the code described here does not adjust frequency and amplitude of the
sawtooth wave, although this feature is implemented in GUI.

Function chargeDiagramTraceAlazar takes the following arguments:
• waveNom – string that will be a base name of waves storing the output;
• DACchan – integer specifying swept DecaDAC channel;
• from/to – starting/final voltage for DAC sweep;
• points_slow – resolution of the charge diagram along axis swept by DAC;
• avg_slow – number of sawtooth ramps averaged together;
• points_fast – resolution of the charge diagram along axis swept by Agilent AWG;
• channels – string of letters specifying read Alazar channels, separated by semicolons;
• noDisp – variable specifying whether to open new window displaying charge diagram,

and does not return anything. But it does create (or overwrite) a wave(s) waveNom#, where # is a
letter indicating the channel of the Alazar card.

function chargeDiagramTraceAlazar(waveNom,DACchan,from,to,points_slow,

avg_slow,points_fast,channels[,noDisp])

string waveNom, channels

variable DACchan, from, to, points_slow, avg_slow, points_fast,

noDisp, copy

By default don’t pop up a new window.

if(paramisdefault(noDisp)||noDisp == 1)

noDisp = 1

else

noDisp = 0

endif

Read the global variable which tells whether we’re in single shot readout mode. If so, reconfig-
ure Alazar card settings. Most importantly cmode() function chooses the Alazar channel that is
used for triggering the measurement and sets sampling rate.

NVAR AlazarFast = root:AlazarFast

if(AlazarFast != 0)

cmode()

endif

Load information about sampling rate of the Alazar and frequency of the sawtooth from global
variables. We used sampling rate of 100 MSa/s (maximum rate of ATS9440 card is 125 MSa/s) and
sawtooth frequency of 1903 Hz.

NVAR alazarClock = root:alazarClock // 1.0e8

NVAR rampFreq = root:rampFreq // 1903
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Calculate how many samples can be taken during a single sweep of a sawtooth wave. 5 µs is
subtracted from the sweep time to provide a waiting time between end of one measurement and
beginning of another. Then the number of samples is rounded down to the nearest multiple of 16,
which is required by the Alazar card. For different models of Alazar cards number of samples
might need to be set to multiple of different power of 2.

variable pointsPerRamp = alazarClock/rampFreq-5e-6*alazarClock // 52048.6

variable mLength = (floor(pointsPerRamp/16))*16 // 52048

Calculate sweeping rate for DecaDAC (in mV/s) according to the sweep range, averaging and
sawtooth wave frequency

variable speed = abs(from-to)/points_slow/avg_slow*rampFreq

Explanation of the next step requires basic understanding of operation of XOPs that control
the Alazar card. They arrange and manipulate the date in form of 3-dimensional array. The data
acquired within window that follows each trigger is arranged along the first dimension (points).
Along the second dimension (records) I will arrange data from avg_slow number of subsequent
sweeps of a sawtooth wave. These sweeps will be averaged together to form a single line on 2D
charge diagram. Along the third dimension (buffers) I will arrange traces that will make subsequent
lines on the charge diagram.

variable buffers = points_slow

variable records = avg_slow

Set values of variables controlling which of the Alazar channels to measure

variable a,b,c,d

if(FindListItem("A",channels)>=0)

a = 1

endif

if(FindListItem("B",channels)>=0)

b = 1

endif

if(FindListItem("C",channels)>=0)

c = 1

endif

if(FindListItem("D",channels)>=0)

d = 1

endif

Set a DAC channel to the initial value and wait a moment to make sure that the command was
applied. Than start sweeping the DAC channel. Factor of 1.02 and additional waiting time were
chosen experimentally to calibrate out software delays and minimize distortions. Notice that except
for this calibration there is no synchronisation between DAC and Agilent AWG.

setval("c"+num2str(DACchan),from)

wait(0.03)

rampDAC(DACchan,to,speed*1.02,read=0)

wait(90*0.0005)
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After the beginning of the DAC sweep run the external operating procedure which acquires
data with the Alazar card. baseName="test" specifies base wave name with the data that will be
created in the memory. id={1,1} specifies identifier of the Alazar card. cd={a,b,c,d} specifies
measured Alazar channels. sample={mLength,records,buffers} defines dimensionality of the
array of data points described above. pointsAvg=mLength/points_fast tells how many of the
subsequent samples should be averaged together. This will specify resolution of the charge diagram.
dim=2 specifies that data array should be averaged along 2nd dimension.

ATSreadWaveNPT_AVG/q baseName="test",id={1,1}, cd={a,b,c,d},

sample={mLength,records,buffers},

pointsAvg=mLength/points_fast, dim=2

Copy the data from a test wave to the wave specified by user. Than convert volts to milivolts.
Factor of buffers is introduced to correct for the bug in XOP.

variable i,j

for(i=1;i<=4;i+=1)

if((i==1&&a==0)||(i==2&&b==0)||(i==3&&c==0)||(i==4&&d==0))

continue

endif

string chan = num2char(i+64)

duplicate /o $("test_avg"+chan),$(waveNom+chan)

wave outWave =$(waveNom+chan)

outWave *=1000*buffers

endfor

Create a new window in which charge diagram will be displayed (if user set nodisp != 1).

if(noDisp != 1)

j=1

for(i=1;i<=4;i+=1)

chan = num2char(i+64)

if(FindListItem(chan,channels)>=0)

showwaves(waveNom+chan)

positionwindow(j)

j += 1

endif

endfor

endif

end

End of function.
The rest of convenient features is hidden behind the GUI, but the heart of the code is as simple

as this.

C.3 GUI and additional features

As the acquisition of the charge diagrams becomes much faster than typing commands into
command line, we added a graphical interface (Fig. C.3). It provides a convenient way of setting
the range, resolution and averaging of the scan. Also it allows to choose the measurement of
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Figure C.3: Graphical user interface for control of real-time view of a charge diagram

multiple Alazar channels therefore possibility of measuring multiple sensors without adding to the
measurement time. Separate panel adjusts to step voltage by ±0.1, 1 or 10 mV on a chosen gate to
modify the charge diagram.

Fast tuning requires continuous adjustments of the sensor dot, since sensitivity is quickly lost
as voltages on the gates are changed by tens or hundreds of milivolts. These adjustments can be
done in a few ways. In practice we found it is most convenient to manually adjust sensor plunger
voltage with additional panel.
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Figure C.4: Example of a triple quantum dot charge diagram stitched from multiple 50×50 mV
(100×100 px) patches.

Finally, very often there is need to acquire a large diagram extending over a range of a few
hundred milivolts. However we found that increasing of the scan range to much more than 50 mV
is unpractical for several reasons. First, the sensor is sensitive only in a narrow range of voltages.
Second, a large amplitude of the sawtooth wave causes heating of the electron gas, likely due to
energy dissipation at the attenuators mounted at the mixing chamber. Instead we use the approach
of automatic stitching of multiple charge diagrams (Fig. C.4). Before taking each of the diagrams,
sensor plunger voltage is approximately readjusted according to estimated coupling of various gates
to the sensor dot. These can be easily set manually after a few trials and errors.

C.4 Artifacts in charge diagrams due to fast sweeping
Fast measurements of charge diagrams come with certain drawbacks. The biggest one becomes
apparent when tuning multiple-dot structures and minimizing tunnel coupling to the leads. In such
cas tunneling rates Γ between the dots and the leads become comparable or smaller than frequency
of the sawtooth wave (1903 Hz). This results in distortion, blurring and shifting of the hcharge
transitions corresponding to barriers with small Γ.

Typical example of such artifact is presented in Fig. C.5(a). In this case the barrier between
the left quantum dot and the lead (dashed line) disappears, and corresponding change of the dolt
occupation happens at different voltage (dotted line). Ther reason for this is the following. As
the voltage is swept from positive the negative values the chemical potential of the left dot moves
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Figure C.5: Transition blurring and distortion in real-time measurements of charge diagrams.
(a) In this double dot diagram lines indicates with dashed lines are gone, because tunneling rate
through corresponding barrier is smaller than frequency of the sawtooth wave. (b) Low tunneling
rate to the lead prevents the double quantum dot from reaching the ground state. (c) Ground state
is reached only when sequential tunneling to the lead via the right dot is avaliable. (d) Triple dot
charge diagram, very strongly distorted due to slow tunneling rates. Dotted lines indicate positions
of the real charge transitions. This degree of distortion is not unusual at the advanced stage of
tuning, when the qubits are already working, and one is pinching off the barriers to the leads to
maximize relaxation times.

above the chemical potential of the leads (dashed line; Fig. C.5(b)). However the tunneling does
not occur until efficient path for the electron is energetically available. Ground state is reached only
when arrangement of chemical potentials makes sequential tunneling through the right quantum
dot possible (dotted lines; Fig. C.5(c)).

Fortunately, trained eye can usually easily recognize the artifacts and carry on tuning (for
extreme case of the blurring, see Fig. C.5(d)). Moreover, presence of the artifacts does not imply
that tuned qubit will be lousy, on the contrary – quantum dot systems well isolated from electron
bath in the leads tend to have longer relaxation times and be better behaved, as the exchange of
electron (or spin) with the leads becomes dramatically suppressed.

C.5 Applying control pulses while acquiring charge diagrams
Sometimes in the experiments there is a need to search for certain spots with long relaxation time
within the charge diagram. Typically the goal is to find a spin blockade or a good measurement
point within a spin-blocked triangle (Fig. C.6(b)). In such case there is a need to measure a charge
diagram where each pixel represents the value of the measurement performed at this point at the
end of certain sequence of pulses.

The convenient hack is to apply a desired pulse using the AWG while acquiring a charge
diagram (Fig. C.6(a)), with a real-time technique or in a standard way. If the RF carrier is switched
on only when voltages are set to the measurement point the regions with long relaxation time
should show up in the charge diagram. The signal acquired throughout the rest of the pulse cycle
contributes only to the background noise. Increased averaging allows to compensate for this
background.

There are four additional notes that have to be made on this topic. First, to obtain charge
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Figure C.6: (a) Scheme of generation of sawtooth wave with fast pulses added on top using
Tektronix AWG. (b) Example of charge diagram obtained while pulsing on the gates. Arrows
indicate pulse shape in gate voltage space. This pulse has three steps: Separation – that randomizes
spin state of two electrons, Measurement – at which we attempt to read a spin state via spin-to-
charge conversion and D – compensation point that sets average voltage during the pulse to zero.
Triangle indicated with dashed lines indicates region where signature of a spin blockade is expected.

diagrams of good quality the measurement time should be long ,relative to the total pulse length. I
recommend to keep it above 50%.

Second, the application of the fast pulses results in additional artifacts. They appear whenever
any of the steps the pulse goes across a transition with small tunneling rate. Therefore you need to
pay additional attention and make sure that the designed pulse does not cross such charge transition
whenever measurement is performed within interesting region.

Third, if the sawtooth wave period is close to the integer number of pulse periods a strong
stripes might appear on the charge diagram, that will dominate the entire measurement (weak
diagonal stripes can be seen in Fig. C.6(b)). In such case one needs to change the length of the
pulse a little bit (a few hundred nanoseconds is usually enough).

Fourth, the average voltage within a singleperiod of pulse needs to be 0. This is because DC
voltage drop across the bias tees on the sample board, that may cause heating of the fridge. It is
convenient to set voltage on Tektronix AWG to 0 at the measurement point. Otherwise you will
observe apparent shifts of the charge diagram, which might be tedious to calibrate out.





D. Remote control of multiple
arbitrary waveform generators

"Documentation is like sex: When it’s good, it’s amazing, and when it’s bad it’s still
better than nothing." - Eli Levinson-Falk

Edward Laird citing Eli Levinson-Falk in the beginning of the Igor proce-
dure file containing drivers for Tektronix 5014c AWG to justify the state
of documentation.

In this chapter you will find instructions how to use Igor Pro procedures I rewrote to control
multiple Tektronix 5014c arbitrary waveform generators (based on older code by Edward Laird,
Christian Barthel, Jim Medford and others). In section D.1 I will introduce the features available
through graphical interface, introduce most useful commands and point to some important places in
the code. In the section D.2 I will dive deeper into the structure of the code, explaining the features
that are less obvious but need to be remembered.

D.1 User’s guide

D.1.1 Initialization
The code controlling the AWGs (excluding measurement procedures) is contained in three procedure
files:
• MultipleAWG5014.ipf – contains definitions of GUI and some high level functions
• MultipleAWG5014_PulseProcedures.ipf – contains most of the procedures for upload-

ing pulses, sequences, compensation of high-pass filters etc.
• LowLevelAWG5014Control.ipf – low-level driver for communication with AWGs, adopted

from Christian Barthel’s code to communicate with multiple AWGs.
Compiling them requires cleaning the experiment file from the old legacy code for control of
Tektronix 510, 720 and single 5014. You might also need to create two symbolic paths for saving
pulses and sequences (Sec. D.1.7).

Once the code is compiling initialize the GUI by calling

initAWG(n)
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Figure D.1: Main panel for control of multiple Tektronix 5014c AWGs

where n is the number of AWGs you will be using. This will create several panels that I will
describe in a second. For now you care about the main panel (titled AWG5014panel). Set
the IP addresses of the AWGs and the port number (you can find or change it on AWG in
system\GPIB/LAN configuration menu).

Depending on the Igor code version you need then to press Initialize VISA or call initVISA()
first. If no errors are thrown the communication to the AWGs is now established.

However before you proceed you need to know one thing. The values of the parameters you see
now in the GUI (which I will describe in a second) are the values stored locally. If you connected
AWG for the first time or restarted it they do not match the real settings until you change them
through GUI. For this reason I recommend to control AWG only via Igor interface, to make sure
the values stored in Igor match values that are really set.

D.1.2 Main panel
The main panel (Fig. D.1) provides easy access to main settings of each AWG and is mostly
self-explanatory. General tab allows to control all of the AWGs simultaneously. In particular from
here you can resize pulse and sequence table, and upload designed pulse (mode Continuous or
Triggered) or sequence (mode Sequence). If you wish to rearrange pulses in the sequence you
can modify sequence table without the need to upload all pulses (section D.1.8). You can also turn
all outputs on/off and start running the waveform1. Add input controls whether signal supplied to

1Note: Running the waveform and turning outputs on first time after uploading the sequence can take a few seconds.
This might cause errors when you run the first measurement after uploading the sequence
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Figure D.2: (top) Pulse table for a single AWG and (bottom) pulse created based on the table (only
channels 1 and 2 are shown).

the rear input will be added to the waveform (this is useful for fast acquisition of charge diagrams;
chapter C). Buttons on the right allow to reopen remaining windows and tables.

Other tabs allow to control each AWG separately. Here you can reupload pulse or sequence to
single channel (only if length of the pulse and sequence table was not changed) and control trigger
and marker channels.

Should you need to reopen the main panel simply call:

AWG5014panel()

buildAWGpanelTabs(n)

setAWGtab("whatever",0)

where n is number of AWGs you use.

D.1.3 Uploading pulses
Once we familiarized ourselves with the main panel it is time to upload and run our first pulse.
Let’s take a look at the pulse table and corresponding pulse shape (Fig. D.2). The rows of the table
correspond to segments of the pulse. Each of the segments you can label with a few character string.
Segments labeled D and M play a special role (which I’ll mention later) and therefore you should
avoid using labels starting with D or M for other segments. Each segment lasts for time specified
in nanoseconds in next column. Be aware that inserting time that is not a multiple of AWG clock
cycle may sometimes cause troubles. Columns labeled ch #/$ indicate voltage (in milivolts) that
will be outputted during this segment on channel $ of AWG number #2. If the Ramp is nonzero it
indicates the length of the sweep to the specified voltage.

2The indices always go in a descending hierarchy: AWG number first, channel number second, marker number third
(if needed)
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The example of the pulse created with a pulse table is on the bottom of the Fig. D.2. It consists
of a few steps, each labeled according to the pulse table. In particular notice that step L (time 20000,
ramp 10000) consists of 10 µs sweep from 0 to ±8 mV and 10 µs waiting time at ±8 mV, so ramp
time is included in the total segment time. Next segment (PPM) shows that even more clearly –
entire segment is a sweep.

Final columns titled m#$% set the marker % of channel $, AWG number # to low (value 0) or
high (value 1). In this example marker is turned on during PM (reference measurement) and M

(measurement) segments to turn on RF carrier and trigger the Alazar card (so in fact only two
markers are used)3.

Once you prepared pulse table set mode of the AWGs to Continuous or Triggered and press
Upload all.

D.1.4 Correcting for attenuation and delays
By now you might have noticed two parameters in the GUI that do not have counterparts in the
settings of AWG, that is Divider and Delay. These are software corrections for attenuation and
(large) difference in length of the coax lines.

The divider is factor that will multiply the value which is set in the pulsetable (not in dB). The
goal here is to choose this factor to be equal to the attenuation of the fast lines. Once you do that,
the voltage specified in the pulse table will correspond to the actual voltage on the sample. To
estimate the divider factor upload small (let’s say mV, period 10-100 µs) square pulse on one of the
gates and run it while acquiring a charge diagram. All charge transitions should become doubled,
and the distance between two images will correspond to the actual amplitude of the square pulse
on the gate. Now insert divider, upload square pulse again and repeat until you reach satisfying
accuracy. In our example (Figs. D.1 and D.2) we see that during segment S we want to apply −20
mV on gate connected to ch 1/1. However estimated divider id 17.5. This means that the voltage on
the output of the AWG will be set to 17.5× (−20 mV) =−350 mV.

The delay parameter can be used to compensate for large (>1 ns) differences in the length of the
fast lines. In practice difference between length of coaxes is much smaller and should be corrected
by adjusting the skew (directly on AWG, not added to GUI). However it is necessary if you use
some of the AWG channels to pulse on the gates and other to modulate the RF. If delay on any of
the channels is nonzero the software will insert additional segment in the beginning/end of each
pulse, when the voltage is 0. And so if length of the cables delays modulated RF signal by 20
ns you need to insert +20 in the corresponding window. Notice that the delay is introduced by
adding additional waiting time in the beginning and/or at the end of each pulse therefore you need
to design a pulse in such a way, that this will not introduce artifacts in the measurements.

In fact there is one more in-software correction: correction for high-pass filtering of the fast
lines. This feature is not implemented in the interface – the cutoff frequency is hardcoded but can
be modified in compilePulseTable() function (Subsec. D.2.5).

D.1.5 Special role of D and M segments in compensation of high-pass filtering
Speaking of proper design of pulse and high-pass filtering it is time to discuss convention con-
sidering pulse shapes and segments labeled D and M. What you would probably like is for the
volage on gates to be equal to DC set by DAC whenever you set 0 in the pulsetable. Therefore
you must be aware of high-pass filtering (by the bias-tees). Effectively it will shift the average
voltage throughout the pulse to 0 (that is to DC value set by DAC) and cause heating effects. On
the other it is very often convenient to keep the measurement point M at values set by DAC, and

3Side note: notice that there is additional 1 µs waiting time introduced between PM and M. This is because the Alazar
card needs to have clear slope to trigger on. So if marker is switched off for just 150 ns there is a risk that trigger will be
missed.
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therefore all AWG channels output 0 during this segment. To solve this issue it is convenient to
introduce additional segment D (choice of letter D is arbitrary and is hardcoded in the software).
It’s duration is set to fixed percentage of the pulse length (set in the code, as I will describe in
subsection D.2.4) and amplitude is adjusted to set the average voltage throughout the pulse to 0.
By convention segment D in the beginning of the pulse, just after the measurement M and before
initialization. The point is for to reinitialize the system after the D pulse so it would not affect the
experiment.

There is one more issue related to high-pass filtering, which is related to the fact that while
AWG is not running or waiting for trigger (while the outputs are on) it does output the volt-
age. This will be the voltage equal to the first/last point in the sequence (depending on whether
First point when waiting check box is checked in the GUI, Fig. D.1 (bottom)). Within the
convention in which D point is first and M point is last (and all voltages are equal 0) the checkbox
need to remain unchecked, which will make AWG output 0 while it’s waiting to run.

D.1.6 Modifying a pulse from the command line

In the code I define a special function that can be used to modify pulses from the command line

setpulseparameter(idStr, value)

It’s syntax is analogous to setval function. String idStr specifies parameter that will be modified
and value is it’s new value. There are a few fundamental predefined idStr parameters, which
begin with letters t, v, r and m. Their function is the following:
• "t<label>" sets time of the segment <label> to value nanoseconds
• "v#$<label>" sets voltage on AWG #, channel $ during the segment <label> to value

milivolts
• "r<label>" sets ramp time of the segment <label> to value nanoseconds
• "m#$%<label>" sets marker % on AWG #, channel $ during the segment <label> to value

There is also one special idStr="mAll" which sets all markers to value during entire pulse.
Now you might want to specify your own parameter to modify, which is a complex com-

bination of parameters above. To do that you need to get into the code: find definition of
setpulseparameter() function and conditional tree starting with the line:

if(stringmatch(idStr[0],"t")||stringmatch(idStr[0],"v")||

stringmatch(idStr[0],"r")||stringmatch(idStr[0],"m"))

You can add you entry in this tree. For example you can add such commands:

elseif(stringmatch(idStr[0,2],"det"))

setpulseparameter("v11"+idStr[3,sEnd], -value)

setpulseparameter("v12"+idStr[3,sEnd], value)

This will add possibility of calling, for example

setpulseparameter("detS",20)

from the command line. This will set the voltage on channel 1 of AWG 1 during segment S to −20
mV and voltage on channel 2 of AWG 1 during segment S to +20 mV (that is: it will apply such
changes to the pulsetable).

Syntax introduced here will be relevant later, for definitions of pulse sequences.
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Figure D.3: Panel for saving and loading the pulses

D.1.7 Saving and loading pulses
Once you define a fancy pulsetable you will probably like to save it and be able to use at later point
in the experiment. For that you can use a Pulse panel (Fig. D.3; it can be opened from the main
tab on AWG panel D.1). It’s quite self explanatory. Just remember that Delete button removes
highlighted pulse without a warning.

Technical detail is that each column of the pulsetable is stored as a wave, and all waves
corresponding to a single pulse are saved in a single Igor text file (.itx).

Pulses will be saved in the symbolic path pulses, which I suggest to locate in
<experiment_file_location>\pulses\. Panel identical to this one can be used to save se-
quences in symbolic path sequences (suggested location: <experiment_file_location>\sequences\.)

D.1.8 Sequences
More complex function of the AWG is application of a sequence of pulses. First a set of waveforms
is uploaded to AWG, then they are arranged in certain order. Once this is done the AWG can
execute the sequence.

To create a sequence we need to take at the final element of the GUI – Sequencetable

(Fig. D.4). This table specifies how pulses will be arranged in a sequence and whether they should
be modified in any way.

First column – Pulse – gives the name of the pulse. This name corresponds to the name of the
file in the pulse panel. In case this field is left empty (which is usually the case) currently modified
pulsetable is used.

Second column specifies what modifications should be done to the pulse. The operation code is
a string that has a form of <idStr>_<value>. When the sequence is compiled the software will
take specified pulse and call setpulseparameter("<idstr>",<value>).

Third columns will specifies how many times the pulse should be repeated before moving on to
executing the next line of the sequencetable.

Fourth column tells whether the AWG should wait for the trigger before outputting this pulse.
Final columns specifies to which line in a sequence table to move after executing this line of

a sequencetable. This is slightly confusing because Igor labels rows of the sequencetable

from 0, while AWG starts with 1. The convention is this: value 0 means – execute next line of a
sequencetable. Any number n larger than 0 means – execute line n, which is labeled in Igor as
n−1.

Knowing this conventions you can define sequence manually. However this is impractical,
because usually sequences in spin-qubit experiments (perhaps also other) look like one specified in
sequencetable in Fig. D.4. First a single pulse runs over and over again while communication
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1

2 3

Figure D.4: Sequence table. 1) All markers are turned off and pulse runs 5063 times. 2) Eleven
pulses with different values of detS are outputted. 3) AWG returns to the second line of the
sequencetable and runs the eleven pulses all over again.

with other devices takes place. This pulse has all markers turned off, not to trigger any measurement.
Than series of pulses is applied, which differ only by value of one parameter. In this case detuning
during separation point (detS). The Go to value of the last pulse in the sequence points is set to 2
so AWG stays in a loop, outputting the pulses with various detS over and over again.

Such sequencetable can be created using the function

buildsequencetable("<pulse_name>","<idStr>",from,to,steps)

which has similar structure to do1d() function. Here <pulse_name> is the basic pulse – this
name will appear everywhere in the first column of the sequencetable. idStr indicates the
parameter which will be modified in this sequence. from and to are limits within which idStr

will be changed and steps specifies how many different values should it take (in fact there will be
steps+1 values).

For example the sequencetable in Fig. D.4 was created by calling

buildsequencetable("","detS",0,10,10)

You can make more subtle adjustments, for example whether to wait for trigger before outputting
each pulse, how many times to repeat the first pulse etc. by modifying the code (which will be
described in second part of this chapter).

D.2 Code
D.2.1 Basic structure

The code was not written systematically however it has quite logical internal structure. In this
section I will describe this structure and show certain key points, where crucial procedures and
parameters are defined.

The basic structure of the code, with GUI as a root, is shown in Fig. D.5. The most important
part of the code is uploadToAWG() function which handles clicks of the Upload all button and
calls subroutines responsible for compilation and uploading of pulses (Subsec. D.2.2) and sequences
(Subsec. D.2.3). I’ll describe those procedures in detail throughout this section.
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AWG panel

Upload all Other controls

GUI element
handle

if(needs to change AWG settings)

low level
procedure

button handle
uploadToAWG()

if(mode=='Sequence')
if(mode=='Continuous'
or mode =='Triggered')

uploadPulses() uploadSequence()

for(specified channels and AWGs)

uploadPulse()

MultipleAWG5014.ipf

MultipleAWG5014_PulseProcedured.ipf

LowLevelAWG5014Control.ipf

Figure D.5: Basic structure of the code

Except for that GUI has several elements that instantly change settings of AWG. The functions
that handle relevant events call low level functions communicating with AWGs and change local
variables that store information about the setup of AWG. These functions are simple and therefore
I’ll not describe them here. However I remind – because information of the AWG setup is stored
locally, in certain situations the settings presented on the GUI may differ from actual settings of
AWGs.

In addition to this basic functionality there are a few additional loosely connected procedures
for building a sequence table, visualization of the pulse shape etc. They are very handy, and I’ll
describe them in the end of the chapter.

D.2.2 Function: uploadPulse(AWGNum, chan[, quiet])
The purpose of this function is to upload a pulse to a single channel in Continuous or Triggered
mode. It performs the following steps (Fig. D.6):

1. It removes old waveform from the AWG. Importantly it removes only waveform that
was previously outputted on this channel in Continuous or Triggered mode. This means that
whatever sequence was uploaded before remains stored on the AWG and can be ”activated” by
switching back to Sequence mode. As you’ll find out by yourself, it allows to save a lot of time on
uploading of the sequence.

2. Time and voltages during D point in the active pulsetable are adjusted by calling
correctionD(background=0) (Subsec. D.2.4).

3. It compiles the pulse to wave of floating numbers between −1 and 1, in which each cell
corresponds to a single clock cycle of the AWG. The relevant function is called
compilePulseTable(AWGNum, chan, background=0) (Subsec. D.2.5).

4. It turns the wave into binary and sends ready waveform to the proper AWG naming it
Igor_ch$ where $ is a channel number by calling sendPulseToAWG(AWGNum, chanm "Igor")

(Subsec. D.2.8).
5. The AWG is commanded to output the waveform on the designated channel.

D.2.3 Function: uploadSequence(AWGNum, chan[, quiet])
This function is more branched than one for uploading pulses (Fig. D.7) and consists of the
following parts:

1. The function removes old waveforms from AWGs. If pulses are uploaded to all channels
nothing is left behind. This is because communication with AWG is relatively slow, so browsing a
list of waveforms and removing them one by one would be very inefficient.

2. All pulses the sequence consists of are uploaded to the memory of the AWG with function
uploadPulsesForSequence(AWGNum, chan) (Subsec. D.2.10).
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uploadPulse()

AWG5014cmd(remove waveform Igor_ch#)

correctionD()
adjust point D to set
mean voltage to zero compilePulseTable()

sendPuseToAWG(name it "Igor_ch#")

for each AWG and channel

AWG5014out(waveform "Igor_ch#")
output waveform on appropriate channel

AWGmakewaveform()
compile pulse table to wave
of floats between -1 and 1

inverthighpass()
correct for high pass

filtering of the bias-tees

Figure D.6: Structure of the code for uploading pulses. Black lines indicates hierarchy. Gray arrows
indicate order in which functions are called.

uploadSequence()

remove old waveforms

uploadPulsesForSequence()

for every line of sequencetable

loadPulseInBacground() or
copyPulseToBackground()

load pulse from file or copy
pulsetable to temporary waves

sendSequenceTable()
arrange uploaded pulses

in a sequence

operateOnPulseTable(in background)
reads operation code for a pulse

setPulseParametr(in background)
sets parameter of the pulse

correctionD(in background)
adjust point D to set
mean voltage to zero

compilePulseTable(in background)

for each AWG and channel

AWGmakewaveform()
compile pulse table to wave
of floats between -1 and 1

inverthighpass()
correct for high pass

filtering of the bias-tees

sendPuseToAWG(name it "Igor_ch#")

Figure D.7: Structure of the code for uploading sequences. Black lines indicates hierarchy. Gray
arrows indicate order in which functions are called.

3. Sequencetable is converted to the series of commands which are sent to AWGs by calling
sendSequenceTable(AWGNum) (Subsec. D.2.11). The commands arrange waveforms uploaded to
AWG in sequence.

D.2.4 Function: correctionD([background])
The purpose of function is to adjust time and voltage during the pulse segment D to set the mean
voltage during the pulse to zero. The time of segment D in set to be a fixed fraction of the elength
of the entire pulse by a set of commands:

// set time of D point to 0 and calculate total time
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setPulseParameter("tD",0,background=background)

variable totTime = sum(AWGt)

// set initial time of D pulse to ##% of pulse time

NVAR AWGfreq = root:malina:AWGfreq

variable timeD = round(totTime/2*AWGfreq)/AWGfreq

setPulseParameter("tD",timeD,background=background)

In this case line variable timeD = round(totTime/2*AWGfreq)/AWGfreq (factor 2) will
set the segment D to last 1/3 of the total length of the pulse. If you wish to adjust the length of the D
point here is where you should make modifications. The purpose of the multiplication by AWGfreq,
rounding and division is to guarantee that the time of the segment D will be a multiple of the AWG
clock cycle.

D.2.5 Function: compilePulseTable(AWGNum, chan[, background])
This function main function is to pass parameters of a pulse (just single channel) from pulsetable to
AWGmakewaveform function. However it also adds segments in the beginning and/or at the of the
pulse to introduce delay specified by the user in the GUI.

1. First, the waves containing columns of pulse table are copied to locally created waves. To
these two segments are added, in the beginning and in the end. In these segments all voltages and
markers are set to, and their duration is adjusted based on delays for all channels.

2. Waves storing the pulse table are passed to AWGmakewaveform() function (Subsec. D.2.6),
which creates in the memory two waves, one for waveform (normalized to ±1 based on Vpp set for
a channel) and second for markers (points have values 0, 1, 2 or 3, to represent 2 bits – for 1st and
2nd marker).

3. Functions for high- and low-pass correction are called4. Here the time constants of the filters
are hardcoded. This relevant piece of code goes like this (Subsec. D.2.7):

// invert high-pass and low-pass filters

variable highpass = 2.7e6 // time constant of the high-pass filter in ns

variable lowpass = 0

if(highpass != 0)

inverthighpass(highpass*1e-9, igorPulse, "arbinv")

duplicate/o $"arbinv" $("root:malina:pulses:Igor_AWG_"+num2str(AWGNum)+

"_ch"+num2str(chan))

KillWaves $"arbinv"

endif

if(lowpass != 0)

invertLowpass(lowpass, igorPulse, "arbinv")

duplicate/o $"arbinv" $("root:malina:pulses:Igor_AWG_"+num2str(AWGNum)+

"_ch"+num2str(chan))

KillWaves $"arbinv"

endif

D.2.6 Function: AWGmakewaveform
(AWGNum, chan, arbstr, markstr, tw, rw, hw, mw1, mw2)
This function waveform (normalized to±1 based on Vpp set for a channel) and marker-wave (points
have values 0, 1, 2 or 3, to represent 2 bits – for 1st and 2nd marker). AWGNum and chan need to

4I was not using correction for low-pass filtering, so I am not aware whether it’s functioning is correct
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be specified, since Vpp and divider can be specified differently for each channel. arbstr and
markstr are names of the waves that will be created in the memory. tw, rw, hw, mw1, mw2 are the
waves with the parameters read from the pulsetable.

AWGmakewaveform() function performs the following steps:
1. Reads AWGFreq, Vpp and divider from the global variables.
2. Calculates number of clock cycles for each segment and ramp.
3. Calculates whether the pulse has the minimum length of 256 points. If not, repeats the same

pulse many tames in a single waveform.
4. Calculates voltage and 2-bit value of the marker wave for each clock cycle.
5. Normalizes the voltage according to the Vpp.

D.2.7 Function: inverthighpass(tau, inputPulse, finalPulseName)
The purpose of the inverthighpass() function is to correct the pulse shape, for the high pass
filter on the bias-tee. Essentially it applies a transformation:

V (ti) 7→V (ti)+
V (ti)−Vmean

τ/∆t
. (D.1)

Here V (ti) is voltage during i-th clock cycle, ∆t = ti+1− ti, τ is the time constant of the high pass
filter and Vmean is the mean voltage during the pulse.

Under assumption that ∆t � τ this reverses the filtering perfectly. Typically ∆t ≈ 1 ns and
τ ≈ 1 ms so this condition is easily fulfilled.

D.2.8 Function: sendPulseToAWG(AWGNum, chan, name)
This function reads compiled waveform for single channel and markerwave and passes it to
awg5014sendPatternToWList() for uploading. Here also the name of the uploaded waveform
file is defined.

D.2.9 Function: awg5014sendPatternToWList(AWGNum, filename, arbwave, markwave)
Low-level awg5014sendPatternToWList() function converts the waveform and markerwave to
the binary format, which can be efficiently sent to the AWG. More precisely each Voltage and
marker value at each step is converted to two 8-bit integers (14 bits for voltage and 2 bits for
markers) according to the following recipe.

binarywave[2*i] = round((arbwave[i]+1)*(2^13))&255

//first 8 bits of 14-bit representation of arbwave

binarywave[2*j+1] =

(round((arbwave[i]+1)*(2^13))&(2^8+2^9+2^10+2^11+2^12+2^13))/255

+(markWave[i]&1)*2^6+(markWave[i]&2)/2*2^7

//remaining 6 arbwave and 2 bits of markerwave

Than new waveform is created on AWG and binarywave is sent using AWGVisaWriteBinary()
function.

D.2.10 Function: uploadPulsesForSequence(AWGNum, chan[, sequenceName])
This function essentially executes procedure identical to uploadPulse() function in a loop for
every line of the sequence table.

In every iteration it looks at the row of the sequence table, copies an appropriate pulse table to
the temporary waves, applies an operation that modifies the pulse table according to the codeword
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(Sec. D.1.6), applies correctionD(), compiles with compilePulseTable() and uploads with
sendPulseToAWG() under a name created based on the codeword.

In case the name of the base pulse does not match any of the saved pulse tables it searches
through the list of the saved sequences and calls itself with the subsequence name as an optional
argument. This enables to iteratively upload all of the pulses for the subsequence.

D.2.11 Function: sendSequenceTable(AWGNum)
Once all of the pulses of a sequence are uploaded with uploadPulsesForSequence() function
they are arranged in a sequence by calling this function. Essentially it loops through the rows in a
sequence table and sends a series of binary commands to AWG specifying the waveform name,
number of repetitions etc. for each element in a sequence. To slightly increase the speed commands
ares first memorized in a strings of∼ 100 commands which are sent with AWGVisaWriteBinary().

D.2.12 Function: showpulse(channels)
Showpulse() function allows to plot waveforms defined in a pulsetable. For example calling
showpulse("11;12") will plot waveforms for channels 1 and 2 of AWG 1. This is how the plot
in Fig. D.2 was created (except for background shading and segment labels).

D.2.13 Function: annotateshape(xcent, ycent, xchan, ychan)
This function visualises the pulse shape as arrows on a charge diagram. Parameters xchan and
ychan (which are strings consisting of two digits) choose which AWG channels should be visualised
on, respectively, horizontal and vertical axis. Parameters xchan and ychan indicate DC voltages on
a charge diagram, which will correspond to 0 voltage on corresponding AWG channel. Special case
is xchan=0 or ychan=0 which will result in visualisation of the pulse in the center of the charge
diagram.
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