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Abstract

Quantum mechanics is an immensely successful theory which is essential for
the explanation of numerous phenomena in atomic physics, solid state physics,
nuclear physics and elementary particle physics. Quantum theory also involves
effects which have no analogy in the classical world. In particular, quantum en-
tanglement is a correlation predicted by quantum mechanics, but not by classical
physics. As an observable property it is indispensable for our understanding
of nature. In addition, entangled states are important in quantum computa-
tion, quantum communication and quantum measurement protocols. Entangled
states are, however, sensitive to interactions with the environment, which are
present in any open system. Here, in particular decoherence, i.e. loss of coher-
ence, and dissipation, i.e. loss of energy, destroy the desired correlations.
The novel approach of “dissipative quantum computing” and “dissipative state
engineering” suggests to use the interaction with the environment to perform
quantum information tasks. Here, decay processes are no longer undesirable,
but play an integral part in the dynamics. Following this approach, we consider
the dissipative preparation of two-particle and multi-particle entangled states in
several concrete physical systems such as optical cavities, trapped ions, and su-
perconducting qubits.
To study the dynamics of open quantum systems, we first develop an opera-
tor formalism which allows us to identify the effective interactions. Eliminating
the decaying states from the dynamics of a weakly driven system, we derive
an effective master equation which reduces the evolution to the ground states.
We obtain simple expressions for the effective operators which can be directly
applied to reach effective equations of motion for the ground states, as is demon-
strated considering several widely used example systems.
Using this operator formalism we identify the effective interactions in the phys-
ical systems under consideration and engineer them to prepare a desired entan-
gled target state. This state is then reached regardless of the initial state of the
system and stabilized as the unique steady state of the dissipative time evolution.
In this way, we develop theoretical schemes for the generation of two-particle en-
tangled states in optical cavities, superconducting systems and trapped ions.
For optical cavities, we harness the natural decay processes of cavity photon loss
and spontaneous emission to prepare the maximally entangled singlet state of
the system. We analytically derive the optimal parameters, the error and the

iii



iv Abstract

speed of convergence of our protocols and find a qualitative improvement of the
error as compared to previous methods.
A similar scheme is presented for two superconducting qubits in a circuit QED
setup. Combining resonator photon loss, a dissipative process already present
in the setup, with an effective two-photon microwave drive, we engineer an ef-
fective decay mechanism which prepares a maximally entangled state of two
qubits. We find that high fidelities with the target state can be achieved both
with state-of-the-art three-dimensional, as well as with the more commonly used
two-dimensional transmon qubits.
For trapped ions, we present a theoretical scheme together with its experimental
realization. In our scheme we combine unitary processes with added dissipation
to deterministically produce a Bell state of two trapped-ion qubits in a continu-
ous time-independent fashion. By continuously driving the system towards the
steady state, the entanglement is stabilized and thus made robust against deco-
herence.
In addition, we consider the dissipative preparation of many-body entangled
states. Here we consider a generic system of a number of atoms coupled to
a harmonic oscillator. Adding sources of dissipation to the system, we engi-
neer dissipative processes that prepare many-body Greenberger-Horne-Zeilinger
(GHZ) or W states. Our assessment of the performance of the schemes shows a
favorable scaling of the preparation time with the number of qubits. We propose
an implementation of our schemes using trapped ions.
Our results show that dissipative preparation of entanglement is more than just
a new conceptual approach, but is of practical relevance in concrete physical sys-
tems. This is confirmed by the experimental realization of one of our schemes us-
ing trapped ions. In addition, dissipation is found to offer a qualitative improve-
ment of the error scaling of protocols for optical cavities. Finally, our schemes
for dissipative preparation of multi-particle entanglement pave the way for the
dissipative preparation of high-fidelity many-body entangled steady states. Our
study can thus be seen as a step towards the long term goals of dissipative quan-
tum computation and dissipative phase transitions.



Dansk resumé

Kvantemekanik er en uhyre succesrig teori, som er afgørende for forklaringen af
mange fenomener i atomfysik, faststoffysik, kerne- og elementærpartikelfysik.
Kvanteteori indebærer også effekter, der ikke har nogen analogi i den klassiske
verden. Navnlig kvantesammenfiltring (quantum entanglement) der er en kor-
relation der forudsiges af kvantemekanikken, men ikke af klassisk fysik. Som en
observerbar egenskab er den uundværlig for vores forståelse af naturen. Kvan-
tesammenfiltrede tilstande er desuden vigtige i kvanteberegning, kvantekom-
munikation og protokoller til kvantemåling. Kvantesammenfiltratede tilstand er
skrøbelige for interaktionen med omgivelserne, hvilket er til stede i ethvert åbent
system. Her ødelægger især dekohærens, dvs. tab af kohærens, og dissipation,
dvs. tab af energi, de ønskede korrelationer.
En ny metode, der kaldes “dissipativ kvanteberegning” og “dissipativ tilstands-
forberedelse”, foreslår at bruge samspillet med miljøet til at udføre kvanteinfor-
mationsopgaver. Her er henfaldsprocesser ikke længere uønskede, men spiller
en essentiel rolle i dynamikken. Ved at følge denne fremgangsmåde, undersøger
vi dissipativ forberedelse af to-partikel og flere-partikel kvantesammenfiltrede
tilstande i flere konkrete fysiske systemer såsom optiske kaviteter, indfangede
ioner og superledende qubits.
For at studere dynamikken i åbne kvantesystemer, udvikler vi først en oper-
atorformalisme, der gør det muligt for os at identificere de effektive interak-
tioner. Ved at eliminere de henfaldende tilstande fra dynamikken i et svagt
drevet system, udleder vi en effektiv master ligning, som reducerer udviklin-
gen til grundtilstandene. Vi opnår simple udtryk for de effektive operatorer, der
kan anvendes direkte til at nå effektive bevægelsesligninger for grundtilstandene
hvilket demonstreres ved at betragte flere meget benyttede modelsystemer.
Ved hjælp af denne operatorformalisme identificerer vi de effektive interaktioner
i de fysiske systemer under overvejelse og konstruerer dem så det forbereder en
given ønsket kvantesammenfiltret tilstand. Denne tilstand kan derved opnåes
uanset begyndelsestilstanden af systemet og stabiliseres som den unikke sta-
tionære tilstand af den dissipative tidsudvikling. På denne måde udvikler vi
teoretiske skema til genereringen af to-partikel kvantesammenfiltrede tilstande i
optiske kaviteter, superledende systemer og fangede ioner.
For optiske kaviteter, udnytter vi de naturlige henfaldsprocesser fra kavitets-
fotontab og spontan emission til at forberede den maksimalt kvantesammen-
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filtrede singlet-tilstand af systemet. Vi udleder analytisk de optimale parame-
tre, fejlen og konvergenshastigheden af vores protokoller og finde en kvalitativ
forbedring af fejlen sammelignet med tidligere metoder.
Et lignende skema præsenteres for to superledende qubits i et circuit QED op-
stilling. Ved at kombinere resonatorfotontab, en dissipativ proces der allerede er
til stede i opstillingen, med en effektiv to-foton mikrobølgekilde, konstruerer vi
en effektiv henfaldsmekanisme, som genererer en maksimalt kvantesammenfil-
tret tilstand af to qubits. Vi finder, at høje pålidelighed for den ønskede tilstand
kan opnås både med state-of-the-art tredimensionale, samt med de mere almin-
deligt anvendte todimensionale transmon qubits.
For indfangede ioner, præsenterer vi et teoretisk skema sammen med dets eksper-
imentelle realisering. I vores skema kombinerer vi unitære processer med tilsat
henfald til deterministisk at producere en Bell-tilstand af to fanget-ion qubits på
en kontinuerlig tidsuafhængig måde. Ved kontinuerligt at drive systemet mod
den stationære tilstand er kvantesammenfiltringen stabiliseret og således gjort
robust mod dekohærens.
Derudover betragter vi den dissipative generering af mange-legeme kvantesam-
menfiltrede tilstande. Her undersøger vi et generisk system af et antal atomer
koblet til en harmonisk oscillator. Ved at tilføje kilder af dissipation til systemet,
konstruerer vi dissipative processer der forbereder mange-legeme Greenberger-
Horne-Zeilinger (GHZ) eller W tilstande. Vores vurdering af resultaterne af
skema viser en gunstig skalering af forberedelsestiden med antallet af qubits. Vi
foreslår en mulig metode til implementering med indfangede ioner.
Vores resultater viser, at dissipativ forberedelse af kvantesammenfiltring er mere
end en ny konceptuel tilgang, men har praktisk relevans i konkrete fysiske sys-
temer. Dette bekræftes af den eksperimentelle realisering af en af vores skema
med indespærrede ioner. Desuden finder vi at dissipation tilbyder en kvalitativ
forbedring af fejl-skaleringen af protokoller for optiske kaviteter. Endelig baner
vores fremgangsmåder for dissipative fremstilling af mange-partikel kvantesam-
menfiltring vejen for den pålidelige dissipative fremstilling af mange-legeme
kvantesammenfiltrede stationære tilstande. Vores undersøgelse kan ses som et
skridt i retning af det langsigtede mål om dissipativ kvanteberegning og dissi-
pative faseovergange.
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Chapter1

Introduction

The evolution of small systems, such as atoms, follows the rules of quantum
mechanics [1]. Quantum mechanics describes their properties and dynamics
and predicts their behavior, which can be observed in experiments. Over the
past century, quantum theory has enabled the explanation of a many effects in
nature, such as in atomic physics, solid state physics, nuclear and elementary
particle physics, and has thus been essential in a large fraction of the knowledge
we have about the world today. Remarkably, quantum theory allows for effects
which have no analogy in classical physics. These effects are therefore counterin-
tuitive, but even more important for our understanding of nature. In particular
quantum entanglement [2] as the common knowledge shared by distant sys-
tems, has puzzled physicists since the first formulations of quantum mechanics.
Early on, it has been argued that entanglement is incommensurable with our
perception of the world [3]. It has, however, proven to be an indispensable for
the explanation of certain experiments [4].

In parallel to quantum mechanics, another theory has been on a road of success:
information theory [5]. Starting from cryptographic considerations, it has lead
to what we call the “information society”, where information processing and
transmitting devices such as computers and mobile phones are ubiquitous. In
the need to shrink the building blocks of the devices further and further, com-
monly referred to as Moore’s law, information processing technology is rapidly
approaching the quantum world. Here, technologies have been developed for
the control and measurement of single quantum objects, in which information
can be encoded. The combination of these advancements has given rise to the
field of quantum information science [6].

Since then, impressive applications of quantum information have been proposed:
Using the quantum superposition principle which permits a system to attain
many possible states in parallel, algorithms for quantum computing [7] were
developed for the search of large databases [8] and for the factorization of large
prime numbers [9]. For such tasks quantum algorithms were shown to require
significantly less time compared to their classical counterparts, providing an ex-
ponential speedup. In addition, quantum cryptography [10] was suggested for
the secure transmission of information and has meanwhile become a commer-
cial technique. Quantum-enhanced measurements [11] allow for an improved

1
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sensitivity, e.g. in atomic clocks.
Such quantum information protocols are thought of and experimentally studied
in a variety of physical systems, e.g. nuclear magnetic resonance in molecules
[12], trapped ions [13], and superconducting systems [14], which all come with
certain strengths and challenges.

Nearly independent of the concrete physical system under consideration, entan-
glement plays a key role in most quantum information tasks: Providing corre-
lations which are stronger than what a classical device could ever offer, entan-
glement allows for the speed up in quantum information processing due to the
parallel manipulation of different states and for improved measurements due to
correlated sensing of a signal. The reliable and efficient preparation of entangle-
ment has thus been one of the main tasks in quantum information science since
the birth of the field. To date, entanglement is mostly generated by controlled
interactions applied to a quantum system, so-called “quantum gates”. Unfortu-
nately, however, entangled states suffer from couplings of the system with the
surrounding environment, the so-called quantum noise [15]. Such interactions
cause decoherence [16], which turns quantum states into classical ones, thereby
removing the advantage over classical protocols. For this reason, quantum noise
and dissipation, i.e., loss processes, have been thought of as purely detrimental
processes which have to be avoided [17]. The possibilities to isolate a system are,
however, limited.

As a way out of this difficult situation, it has been proposed to turn noise from
an adversary into a resource by actively engineering the coupling of the sys-
tem to the environment [18]. This principle has been formalized in the novel
paradigm of dissipative state preparation [19] and dissipative quantum com-
puting [20]. Here, the idea is that the coupling to the environment continuously
drives the system towards a steady state. This state either contains the outcome
of a computation, or is otherwise of interest for quantum information, such as
an entangled state. Therefore, the question of whether the dissipative approach
can in be applied in practice and thereby become an alternative to the methods
used so far for quantum information processing is of high relevance.

In this thesis we explore the potential of the new approach by developing pro-
tocols for the dissipative preparation of entanglement. We begin by considering
simple tasks and then move on to more advanced protocols. We study several
concrete physical systems, thereby showing that the new approach is realistic.
This claim is in particular supported by the experimental implementation of one
of our dissipative protocols in trapped ions. Our theoretical assessment of our
schemes shows that dissipative preparation of entanglement is promising and
can have advantages over the previously used methods.

The work on dissipative preparation of entanglement presented in this thesis
constitutes a step towards the long-term goal of dissipative quantum compu-
tation. Following this approach, wider classes of dissipative operations and
quantum information tasks may be realized in a broad range of experimental
systems.
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1.1 Outline of the thesis

We start out by a discussion of the fundamental concepts used in this work
in Chapter 2. Here, we address different types of quantum states and their
properties, quantum mechanical time-evolution and relevant aspects of quan-
tum information processing. Based on the discussion of quantum-mechanical
time evolution we develop a method for the description of effective dynamics in
open quantum systems in Chapter 3 which is used extensively in the following
chapters. In Chapter 4 we present a scheme for the dissipative preparation of an
entangled state of two atoms in an optical cavity. Our analysis of the properties
of the scheme allows us to make conclusions about the performance of the proto-
col and the advantages over previous methods. Realization perspectives are also
addressed in detail. In a similar manner, we discuss a scheme for the preparation
of steady-state entanglement between two superconducting qubits in Chapter 5.
In Chapter 6 we present a theoretical scheme for the dissipative preparation of
an entangled state of two trapped ions, together with its experimental realiza-
tion and the theoretical analysis of the experiment. We move on to many-body
protocols in Chapter 7, where we consider the preparation of multi-particle en-
tangled Greenberger-Horne-Zeilinger and W states by engineered dissipation.
Our analysis shows that our protocols for the dissipative preparation of many-
body entangled states exhibit a favorable polynomial scaling with the number of
qubits. A conclusion and an outlook are given in Chapter 8.





Chapter2

Fundamentals

Quantum mechanics is an immensely successful theory. As we will see through-
out this thesis, it describes systems ranging from microscopic single particles,
such as trapped ions, to macroscopic solid state devices, such as superconduct-
ing circuits. In this section, we summarize basic concepts of quantum mechanics
[1] and quantum information [6] which are helpful to understand the work cov-
ered in this thesis and its implications.
We will first, in Sec. 2.1, briefly review different kinds of quantum mechanical
states. Among these are, most importantly, entangled states, the generation of
which is the main objective of Chapters 4–7. Then, in Sec. 2.2, we will present
quantum-mechanical equations of motion that describe the time evolution of
closed systems. In Sec. 2.3 we discuss open systems. Here, we introduce the
notions of decoherence and dissipation and present the master equation, which
lays the foundation for the methods developed in Chapter 3. Then, in Sec. 2.4,
we give a short account on state-of-the-art quantum information processing with
special emphasis on the physical systems used in this work. In Sec. 2.4.2, we
consider the preparation of entanglement by unitary methods and discuss their
limitations. Finally, we give an overview over the development of the newly
established field of dissipative quantum computation and dissipative state engi-
neering which constitutes the framework for our studies in Chapter 4–7.

2.1 Quantum states

Below we give a brief introduction to several classes of quantum states. Here,
we first discuss pure and mixed states and then address the states of composite
quantum systems, in particular entangled states.

2.1.1 Pure states and observables

A quantum state contains the knowledge about a quantum-mechanical system.
Quantum states can appear as either pure or mixed states. Pure quantum states
can be written as a wave function, e.g. |ψ〉, which constitutes a vector of a
Hilbert space. This vector can generally be expanded in terms of the states |n〉

5
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in an orthonormal basis,

|ψ〉 = ∑
n
|n〉〈n|ψ〉 = ∑

n
cn|n〉. (2.1)

Here, the coefficients cn = 〈n|ψ〉 denote the projection of |ψ〉 on the basis vectors
|n〉. From this representation we already notice an important implication of
quantum mechanics: A quantum system can be in a superposition of states [2].
An instructive example for a superposition state is given by

|ψ〉 = c0|0〉+ c1|1〉 (2.2)

Here, the system is partly in one state |0〉 and partly in another state |1〉. The
superposition collapses once the state is determined by a measurement. The
probability to find the system in Eq. (2.1) in state |n〉 is given by Pn = |cn|2.
Such a two-state system can be regarded as the elementary unit of quantum
information, the so-called “quantum bit” or qubit. Other than a classical bit
which can be in one of two states, 0 and 1, a qubit can also attain any superpo-
sition of |0〉 and |1〉. Moreover, while a single qubit can be in a superposition
of two states, a register of N qubits can, due to the superposition principle, si-
multaneously be in 2N states, as opposed to a classical register which only is in
one of these 2N states. This effect called quantum parallelism allows quantum
computing and quantum simulation to outperform their classical counterparts.

Quantum-mechanical observables are measurable quantities that are represented
by Hermitian operators. In some parts of this work, especially when heavier op-
erator algebra is involved, it will be useful to denote the operators by “hats” [21].
The expectation value of an observable Ô for a system being in a pure state |ψ〉
is given by

〈Ô〉 = 〈ψ|Ô|ψ〉. (2.3)

An observable can be diagonal in a basis of state vectors |n〉, in which case one
can write

Ô|n〉 = on|n〉. (2.4)

Here, on are the eigenvalues of the operator Ô. An important measure is the
fidelity F, which determines the overlap of a state |ψ〉, typically the actual state
of a system, and another state |φ〉, typically the desired state,

Fφ = |〈ψ|φ〉|2. (2.5)

We will use this quantity extensively throughout this work.

2.1.2 Mixed states and the density operator

The description of a system by a pure state is not always sufficient. In particular
large systems and systems which are subject to decoherence (see Sec. 2.3 below),
can be in a state that is not a pure state which can be described by a state vector.
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These states are called mixed states, and are generally described by the density
operator

ρ = ∑
i

pi|ψ〉i〈ψ|, (2.6)

which consists of a sum of projectors onto pure states |ψ〉i. A pure state |ψ〉 is
expressed by a density operator consisting of a single projector

ρ = |ψ〉〈ψ|. (2.7)

The elements of the corresponding density matrix are given by

ρmn = 〈ψm|ρ|ψn〉. (2.8)

While the diagonal entries (n = m) of the corresponding density matrix denote
the populations of the system, the off-diagonal elements (n 6= m) are the coher-
ences. For a pure superposition state |ψ〉 = 1√

2
(|0〉+ |1〉) we have

ρ00 = ρ11 = ρ01 = ρ10 =
1
2

, (2.9)

which means that the coherences are as large as the populations, whereas

ρ =
1
2
(|0〉〈0|+ |1〉〈1|), (2.10)

with ρ01 = ρ10 = 0 describes a completely incoherent “statistical mixture”. The
expectation value of an observable for a system in a mixed state is given by

〈Ô〉 = Tr(ρÔ) = ∑
n
〈n|ρÔ|n〉. (2.11)

Note that the trace can be taken using any orthonormal basis {|n〉}. When using
the density operator to describe a system in state ρ, the fidelity of a pure state
|φ〉 is obtained from

Fφ = Tr(ρ|φ〉〈φ|). (2.12)

Here, |φ〉 can, e.g., be the desired state of a protocol for state preparation. Such
states are often entangled states, which we introduce in the section below.

2.1.3 Entanglement

So far, we have considered pure and mixed quantum states of individual sys-
tems, we now turn to pure states of composite systems. To begin with, we
regard the quantum state of a joint system consisting of a subsystem 1 and a
subsystem 2. In some cases, the state of such a composite system can be written
as a product of the states of the individual subsystems,

|ψ〉 = |φ〉1 ⊗ |χ〉2, (2.13)
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where |φ〉1 denotes the state of subsystem 1 and |χ〉2 is the state of subsystem
2. Here, we refer to |ψ〉 as a “product state” or “separable state”. However, it is
possible that the state of a composite system cannot be factored,

|ψ〉 6= |φ〉1 ⊗ |χ〉2, (2.14)

in which case the system is said to be in an entangled state. This can be seen for
a singlet state of two qubits,

|S〉 = 1√
2
(|0〉1|1〉2 − |1〉1|0〉2) . (2.15)

The counter-intuitive character of entanglement [2] can hardly be overestimated:
Early on, it has been argued by Einstein, Podolsky, and Rosen (“EPR”) that the
existence of such states would make quantum mechanics an incomplete theory
[3]: As measurements on one system could not determine the state of another
system at a distance without violating the concept of local realism, the actual
state would need to be explained by local hidden variables which are outside
the realm of quantum mechanics. Bases on theoretical work by Bell [22], the
existence of a hidden variable theory was later on disproved experimentally
[4]. The conclusion is that entanglement is indeed a non-local effect, meaning
that distant systems can share common information. Such experiments were
performed using bipartite entangled states of the form of Eq. (2.15), which are
commonly referred to as Bell states,

|ψ+〉 = 1√
2
(|00〉+ |11〉) (2.16)

|ψ−〉 = 1√
2
(|00〉 − |11〉) (2.17)

|φ+〉 = 1√
2
(|01〉+ |10〉) (2.18)

|φ−〉 = 1√
2
(|01〉 − |10〉) (2.19)

Similar experiments [23] have been carried out using tripartite, so-called Green-
berger-Horne-Zeilinger (GHZ) states,

|GHZ〉 = 1√
2
(|000〉+ |111〉) . (2.20)

GHZ states constitute a class of entangled states for three qubits [24]. Another
class of entangled three-body states is given by the so called W states,

|W〉 = 1√
3
(|001〉+ |010〉+ |100〉) . (2.21)

Both classes can be generalized to N qubits, where they can be written as

|GHZ〉 = 1√
2

(
|0〉⊗N + |1〉⊗N

)
(2.22)

|W〉 = 1√
N

(|0...01〉+ |010...0〉+ ... + |10...0〉) . (2.23)
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Beside fundamental questions, entangled states of the types in Eqs. (2.16)–(2.19)
are also useful for quantum teleportation [25] and quantum cryptography [10].
Large entangled states, such as those in Eqs. (2.22)–(2.23) are of great interest in
entanglement-enhanced quantum measurement schemes [11] and for quantum
memories [26]. In addition, quantum computation takes advantage of large en-
tangled states: As we already pointed out when discussing superposition states,
the higher correlations of quantum mechanical states, in particular of entangled
ones, allow for an improvement as compared to classical computation. Entan-
gled states, e.g. GHZ states, can also be used to store logical qubits redundantly,
which allows for quantum error correction schemes [27, 28] and fault-tolerant
quantum computation (for a detailed account on these see Ref. [6]). The gen-
eration of high-fidelity entangled states is therefore crucial in many quantum
information tasks. In Sec. 2.4.2 we will consider an example for the prepara-
tion of an entangled state by means of a unitary gates. Below we introduce
the quantum-mechanical equation of motion which we will need to study the
unitary time evolution of quantum-mechanical systems.

2.2 Quantum-mechanical time evolution of closed
systems

Just like their classical counterparts, quantum systems evolve over time. Their
time evolution is described by certain equations of motion, some of which we
will present in the following. In the absence of measurements and decoherence
(to be discussed in Sec. 2.3), the time evolution of closed quantum-mechanical
systems is governed by the Schrödinger equation, the Heisenberg equation or
the von Neumann equation discussed below. The dynamics of open systems
leading to the master equation will then be addressed in Sec. 2.3. Examples for
the time evolution of both, closed and open systems, are found in Sec. 3.4.

2.2.1 Time evolution of pure states: The Schrödinger equation

Quantum systems can be described in the Schrödinger picture, where states |ψ〉
are time-dependent and observables, such as the Hamiltonian of a system, Ĥ,
are time-independent. The dynamics is governed by the Schrödinger equation,

ih̄
d
dt
|ψ〉 = Ĥ|ψ〉. (2.24)

For a time-independent Hamiltonian this equation can be generally solved. The
time evolution of the states then follows

|ψ(t)〉 = Û(t)|ψ(0)〉 = e−
i
h̄ Ĥt|ψ(0)〉. (2.25)

Here, Û(t) is the time evolution operator, which is found to be unitary, Û†Û = 1.
Throughout this work we will refer to unitary dynamics, when the resulting
time-evolution of the system is described by unitary operators. Also note that
we will, for convenience of the notation, use h̄ = 1 in most places.
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2.2.2 Time evolution of operators: The Heisenberg equation

As opposed to the Schödinger picture, where states are time-dependent, it is
also possible to regard the time evolution in a picture where the states are time-
independent, but the operators representing the observables evolve over time.
The dynamics is then governed by the Heisenberg equation,

ih̄
∂

∂t
Ô =

[
Ô, Ĥ

]
+ ih̄

∂Ô
∂t

. (2.26)

Here, the second term refers to a potential explicit time-dependence of the oper-
ator Ô. Solving the Heisenberg equation, the time evolution of Ô is found to be
described by

Ô(t) = Û†(t)ÔÛ(t) = e+
i
h̄ ĤtÔe−

i
h̄ Ĥt, (2.27)

again with a unitary time evolution operator Û(t). Another physical picture is
given by the interaction picture, which is useful for time-dependent perturbation
theory. We will introduce it in Sec. 3.3.3.

2.2.3 Time evolution of the density operator: The von Neumann
equation

For mixed states described by a density operator ρ the time-evolution is given
by the von Neumann equation

ρ̇ = −i
[
Ĥ, ρ

]
= L(ρ) (2.28)

which can be represented by a Liouvillian superoperator L. In classical mechan-
ics, L represents a Liouville equation that describes the evolution of a system in
phase-space. The von Neumann equation is the extension of this concept to
the quantum-mechanical case, yielding a “Quantum Liouville” equation which
governs the evolution of populations and coherences of a quantum system. As
we will see below, the master equation which describes the dynamics of open
quantum systems can also be represented by a Liouvillian operator.

2.2.4 Dark states

To conclude this section on unitary time evolution we introduce the notion of
dark states. A dark state is an eigenstate of the dynamics as, e.g., given by the
Schrödinger equation (2.24) which has eigenvalue zero,

ih̄
d
dt
|D〉 = Ĥ|D〉 = 0. (2.29)

Dark states are thus stable under the interactions present in the system and do
not evolve into other states. The latter criterion is in principle fulfilled for any
eigenstate of the Hamiltonian,

Ĥ|ψ〉 = λ|ψ〉, (2.30)
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which only rephases, but does not couple to other states. As opposed to a dark
state, a bright state is coupled by the Hamiltonian,

Ĥ|B〉 6= 0, (2.31)

and thus evolves over time. The concept of dark states is generalized to steady
states in Sec. 2.3.2.

2.3 Quantum-mechanical time evolution of open systems

In the previous sections, we have introduced quantum-mechanical states and
their time evolution. The dynamics have so far been assumed to be that of
closed systems, leading to a purely unitary evolution. We will now turn to open
quantum systems [29, 30], i.e. systems which interact with an environment.
Here, we will briefly address the notion of decoherence and dissipation and
then introduce the master equation which governs the dynamics of so-called
Markovian open systems. Based on this description, a formalism for the effective
dynamics of open quantum systems will be developed in Chapter 3.

2.3.1 Decoherence

In Sec. 2.1–2.2 we have made the implicit assumption that only the desired
Hamiltonian of, e.g., a unitary gate operation acts on the system. This requires
full isolation of the system from its environment, which has so far been consid-
ered a requirement for building a quantum computer [17]. In practice, perfect
shielding from the outer world is, however, hard to achieve. Any real system
is subject to irreversible dynamics, such as loss processes, e.g. by spontaneous
emission of photons. Such processes are called noise, or quantum noise [15],
and can lead to several unwanted effects, in particular decoherence and dissipa-
tion:

Generally, decoherence [16] is the transformation of a quantum-mechanical su-
perposition state into a classical “statistical mixture”, accompanied by the loss
of quantum-mechanical coherence. An example is given by

ρi = |ψi〉〈ψi| =
1
2
(|0〉+ |1〉) (〈0|+ 〈1|)→ ρ f =

1
2
(|0〉〈0|+ |1〉〈1|) , (2.32)

which describes the transformation of an initially pure superposition state |ψi〉 =
1√
2
(|0〉+ |1〉), to a final state ρ f , which is a classical statistical mixture of |0〉 and

|1〉. Also referred to as “depolarization”, such a mapping from a pure quantum-
mechanical state to a fully mixed, classical state constitutes a non-unitary pro-
cess.

Dissipation, on the other hand, refers to changes of the occupation of the states
of a system, typically due to loss of energy. We regard the example

|ψi〉 =
1√
2
(|0〉+ |1〉)→ |ψ f 〉 = |0〉. (2.33)
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Here, a qubit {|0〉, |1〉}, initially encoded in a superposition, is projected onto its
ground state by a decay process. As a consequence, the quantum information
encoded in the qubit is lost.

Finally, “dephasing” denotes changes in the phases of a quantum state, i.e. the
off-diagonal elements of the density matrix, and can be both of coherent unitary,
and of decoherent origin. While an example for the latter is given by the process
in Eq. (2.32), coherent dephasing, e.g.

|GHZ〉 = 1√
2
(|000〉+ |111〉)→ 1√

2

(
|000〉+ eiφ|111〉

)
, (2.34)

plays an important role in quantum-enhanced measurements. Here, the de-
phasing effect of, e.g., a magnetic field can be used for its detection. Hoewever,
averaging over several dephasings with different φ will also result in non-unitary
evolution and decoherence.

2.3.2 The master equation

In view of the above examples for non-unitary behavior due to the interaction
with an environment discussed in the previous section, it is clear that the evolu-
tion of an open system cannot be accessed by any of the equations in the previous
section which only describe unitary time evolution. However, since decoherence
occurs in many physical settings, it is highly relevant to model the dynamics
of an open quantum system. Here, keeping track of the evolution of both the
system and its surrounding environment may be possible for very simple en-
vironments. This is, however, not realistic in more general cases, in particular
since the most general environment may be given by the universe itself. Never-
theless, it turns out that it is possible to eliminate the environment, or: reservoir,
from the dynamics. This truncation is very useful, as it allows one to derive an
equation of motion that governs the evolution of a system alone, provided that
the reservoir and the coupling to it fulfill certain requirements.

Here, the crucial assumptions are (1) a “Markovian” reservoir, meaning that
the reservoir has a short correlation time in comparison to the characteristic
timescale of the system, typically because it is considered large, and (2) the
“Born approximation” which assumes the interaction between the system and
the reservoir to be weak. These criteria define a reservoir which is “oblivious”
with respect to its interaction with the system and are typically summarized
as the Born-Markov approximation or the “Markov approximation of quantum
optics”.

As can be shown, the dynamics of an open system weakly coupled to a Marko-
vian reservoir is governed by a master equation of Lindblad form [31] which in
the Schrödinger picture is given by

ρ̇ = −i
[
Ĥ, ρ

]
+ ∑

k
L̂kρL̂†

k −
1
2

(
L̂†

k L̂kρ + ρL̂†
k L̂k

)
= L(ρ) (2.35)

Here, the Hamiltonian Ĥ contains the coherent couplings of the system, and the
Lindblad operators L̂k describe physical decay processes, e.g. Lγ =

√
γσ− =
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√
γ|0〉〈1| in Eq. (2.33) and Lγ =

√
γσz =

√
γ(|1〉〈1| − |0〉〈0|) in Eq. (2.32). Note

that, while the Hamiltonian has to be Hermitian for the time evolution to be
trace-preserving, the Lindblad operators do not need to fulfill such a criterion
and can model various different kinds of noise processes, e.g. cooling and heat-
ing through interaction with a nonzero temperature reservoir. In this work, we
will, however, mostly consider decay processes due to interactions with a cold
reservoir. As previously discussed for the von Neumann equation in Eq. (2.28),
the master equation describes a Liouville-type time evolution in phase space,
and can therefore be represented by a Liouvillian (super-)operator as defined in
Eq. (2.35) above.

As a result of the Born-Markov approximation, typical solutions of Eq. (2.35) are
of the form of an exponential, “Markovian” decay. For the example in Eq. (2.33)
we find

ρ11(t) =
1
2

e−γt (2.36)

ρ00(t) =
1
2
(1− e−γt) (2.37)

ρ01(t) = ρ10(t) =
1
2

e−
γ
2 t. (2.38)

As can be seen from these expressions, the master equation describes the de-
coherent or dissipative evolution in continuous time. Several examples will be
discussed in Sec. 3.4.

Steady states

The notion of a dark state in Sec. 2.2 can be generalized to the dissipative context.
Here, a state is called a steady state if it fulfills the requirement

ρ̇ = L(ρ) = 0. (2.39)

The steady state is thus the fixed point of the time evolution of the system. While
in principle several linear independent steady states are possible, we will deal
with situations where the steady state is unique. The system then approaches
the steady state asymptotically as a result of its time evolution described by the
master equation.

Convergence to a steady state

The speed of convergence to a steady state can be approximated using the eigen-
value of the lowest-lying eigenstate of the Liouvillian of the system, L, by the
so-called spectral gap. Here, we refer to the absolute value of the real part of
the eigenvalue, as the real part determines the decay of the state and is there-
fore typically negative. We will use the spectral gap to estimate the speed of
convergence in Chapter 4, but subsequently develop more complete measures to
describe the preparation time of a desired steady state.
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2.4 Quantum information processing

As pointed out previously, quantum computing [6] bears the promise to out-
perform classical computing. Theoretically, the most pronounced improvement
is found for the factorization of large numbers. While this turns out to be a
problem that is believed to require exponential time on a classical computer, it
only requires polynomial time when using quantum operations for the so-called
Shor’s algorithm [9]. An improvement is also found for a quantum search algo-
rithm, the Grover algorithm [8].
While quantum computing has so far only been performed at a very small small
scale, quantum communication and quantum cryptography [10], also referred
to as quantum key distribution (QKD), is already a commercialized technique.
Here, due to the quantum-mechanical no-cloning theorem, eavesdropping a con-
versation is physically not possible without inferring errors, which offers a se-
cure method for transmitting information.
A variety of systems has been considered as candidates for a potential quantum
computer and other quantum devices. However, it is hard to predict which sys-
tem will end up being the preferred one for which task. In Sec. 2.4.1, we briefly
discuss a number of systems. This is done in view of our studies of dissipative
state preparation in Chapter 4–7 which deal with several quantum optical and
solid state systems.
As we previously mentioned, most quantum information tasks take advantage
of superposition and entanglement, which allow for the simultaneous process-
ing of several parts of a quantum state, due to quantum parallelism. The use of
entanglement also renders quantum measurements more accurate than classical
ones. The preparation of entanglement by unitary gates is thus among the most
important tasks in quantum information. So far, such tasks have mostly been
considered using unitary operations, so-called quantum gates. Several theoreti-
cal proposals for quantum gates, in particular the Cirac-Zoller gate [32], and the
Mølmer-Sørensen gate [33] were realized experimentally [34–36]. As it turns out,
the operation of unitary quantum gates is limited by certain effects, typically in
connection with decoherence. In Sec. 2.4.2 we will discuss a quantum gate op-
eration and address its limitations.
Finally, we give an overview over the newly emerged field of dissipative quan-
tum computing and dissipative state engineering in Sec. 2.4.3.

2.4.1 Systems

In the following, we will briefly address a number of systems which are relevant
for quantum information processing. Rather than presenting these systems in
detail here, we refer to the individual sections for their graphical illustration and
mathematical description.
In general, building a quantum computer to perform quantum information pro-
cessing requires a register consisting of a number of sufficiently stable qubits.
These are, e.g., two-level systems addressed by external fields, or multi-level
systems, where additional states are used to mediate interactions. Systems of
this kind will be discussed in detail in the following chapters. Such a regis-
ter coupled to an external field is, however, not sufficient to perform quantum
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information tasks, as these typically involve quantum-mechanical interactions
between the qubits. Such interactions can be facilitated by another quantum
system which is coupled to the qubits, e.g. an additional ‘ancilla’ qubit or a
quantum-mechanical harmonic oscillator. By the aid of such a “bus”, the qubits
can then be made interact quantum-mechanically.

Cavity QED

An example of a coupled system of qubits and a harmonic oscillator is given by
atoms trapped in an optical cavity [37–42]. Here, two highly reflective mirrors
comprise an optical “Fabry-Perot” resonator, in which many reflections of the
light are possible so that photons can be effectively stored. Individual atoms
are trapped in local extrema of a standing laser wave. Due to the high field
strengths of the light in the resonator, strong quantum-mechanical coupling be-
tween atoms and light can be achieved. For a two-level atom, this coupling is
described by the so-called Jaynes-Cummings Hamiltonian,

HJC = g
(

a†|0〉〈1|+ a|1〉〈0|
)

. (2.40)

Here, g is the coupling constant, {a†, a} are the creation/annihilation operators
for a photon in the cavity, and H.c. denotes the Hermitian conjugate. Cavities
are characterized by their cooperativity C = g2

γκ , where γ is the spontaneous
emission rate and κ the rate for photon loss from the cavity. High cooperativities
represent a strong coherent coupling between light and matter. In such systems,
study of quantum-mechanical light-matter interaction down to the single-photon
level becomes possible, which is also referred to as cavity QED. The coupling
to the environment through the mirror renders cavity QED systems attractive
for quantum communication tasks, since information encoded in photons can
be transmitted and single photon sources can be built. Entangling two atoms
in an optical cavity seems to be a promising route towards the production of
entangled states of stationary atoms with photons as “flying qubits”, which is
useful for quantum repeater schemes. The preparation of an entangled state
of two atoms requires a quantum-mechanical interaction between them. In a
cavity QED system this can be achieved by the common coupling to a mode of
the Fabry-Perot resonator. The generation of entanglement in cavity QED was
studied theoretically [43–49] and realized in microwave cavities [50, 51], but has
not yet been achieved in optical cavities. In Sec. 2.4.2 we discuss an entangling
protocol for two atoms in an optical cavity and its limitations.

Trapped ions

While the trapping of neutral atoms in dipole traps is a demanding task even
with feedback techniques, atomic ions can, thanks to their electric charge, be
trapped efficiently using electromagnetic traps. It is thus possible to keep chains
or crystals consisting of tens of ions in a trap for long time. Also, the ions are
so confined in the trap, that the quantized character of their motion becomes
important. The electronic transitions of the ions can be addressed by external
fields, by which cooling, storing and reading out of information can be facil-
itated. For quantum information purposes, long-lived qubit states are found
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as meta-stable states which exhibit lifetimes up to about one second. When
the ions are sufficiently cooled, quantum-mechanical sideband couplings can be
used to let their quantized common motional degrees of freedom interact with
their internal, electronic degrees of freedom. In this way, quantum information
processing protocols can be realized [32, 33]. Beside preparation of an initial
state, typically by optical pumping (discussed in Sec. 3.4.4), and detection of the
state of the ions, entangling operations [33, 52–54] are crucial in quantum com-
putation algorithms [13, 55–57]. Entanglement preparation is mostly achieved
using unitary operations, so called quantum gates. Thanks to the long lifetime
of the ion levels of about seconds, entangled states of up to six [53] and 14 [54]
ions have been achieved. The fidelity of such states has, however, been found to
decrease with the number of qubits.

Superconducting qubits

In addition to atomic systems such as optical cavities and trapped ions, there
exist also solid state systems which are promising for quantum information pro-
cessing, in particular superconducting systems [58]. A superconducting qubit
consists of two superconducting “islands”, connected by a Josephson junction,
across which electron pairs can tunnel. This so-called “Cooper pair box” [59]
constitutes an anharmonic oscillator, where two or more levels can be accessed
by coupling fields to the transitions. The particular type of the qubit is achieved
by controlling the Coulomb energy on the one hand and the Josephson energy
on the other hand by the voltage bias. These include “charge” qubits, “flux”
qubits, and “phase” qubits. More recently, the so-called “transmon” qubit [59]
has become popular due to its long coherence times. Another type, “fluxonium”
is said to be very flexible and may therefore be closer to the configurations of
atomic systems.
Typically, one or more superconducting qubits can be located inside a coplanar
waveguide microwave resonator, which is analogue to the atoms in am optical
Fabry-Perot resonator in cavity QED, but without the need for trapping. Due
to the similarity to cavity QED systems, such superconducting resonator-qubit
setups are referred to as circuit QED. Since inside the resonator very high field
strengths are present, strong coupling can be achieved between the qubits and
the microwave field. As one difference it remains that the actual qubit is still an
anharmonic oscillator and thus exhibits a somewhat different coupling configu-
ration between resonator and qubits, as well as ground-state decoherence. It is,
however, possible to achieve very long coherence times of the order of ∼ 100 µs
[60–65] which render superconducting qubits attractive for quantum information
processing [14, 66, 67].

Emitters coupled to waveguides

Another solid state system are emitters coupled to lossy waveguides [68]. This
system is similar to cavity QED, but works in a different parameter regime. Here,
the radiation field of the emitter is extremely tightly confined by the waveguide.
Also, while in a cavity the atoms couple to a single localized mode, here the
emitters couple to a continuum, typically resulting in a very pronounced decay
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of the emitters through the waveguide. Nevertheless, high cooperativity can be
achieved so that the emitter system resembles a lossy cavity. Taking advantage
of the strong coupling, such systems may be used for the switching and routing
of quantum information stored in photons [69], thereby constituting building
blocks in a potential photonic quantum computing architecture [70].

Other systems

Making use of nuclear-magnetic resonance (NMR) techniques for molecules, pi-
oneering quantum information processing experiments were performed [12].
Other highly relevant systems for quantum information include all-optical se-
tups [71] and Rydberg atoms [72].

2.4.2 Unitary preparation of entanglement and limitations

In the following, we discuss an example of a unitary protocol for the preparation
of an entangled state between two atoms in a cavity as a task that is widely used
in quantum information processing. In addition, we address the main limitation
of the protocol.

Example: Entangling two atoms in a cavity

For cavity QED systems, various ways to prepare entanglement have been con-
sidered theoretically [43, 44, 47–49] typically for two three-level atoms with two
stable ground states |0〉, |1〉, and a decaying excited state |e〉. The system is
assumed to be initially prepared in a ground state of the atoms, |01〉|0〉 =
|0〉1|1〉2|n〉, where the last ket denotes the cavity mode. A coherent driving field

H =
Ω

2
e−i∆t (|e〉1〈0|+ |e〉2〈0|) + H.c. (2.41)

is used to couple the initial state to an excited state,

|01〉|0〉 → |e1〉|0〉. (2.42)

The interaction between the atoms and the cavity mode,

HJC = ga†e−iδt (|1〉1〈e|+ |1〉2〈e|) + H.c., (2.43)

then takes the system to a cavity-excited state,

|e1〉|0〉 → |11〉|1〉 (2.44)

From this state, the system can couple back to |e1〉|0〉 or further to |10〉|0〉 by the
above interactions. Letting the driving field act for a suitable time transfers the
system from |01〉|0〉 into a superposition state

|ψ〉 = 1√
2
(|01〉+ |10〉)|0〉, (2.45)

which is the maximally entangled triplet state of the atoms.
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Limitation by the square-root error

The above protocol is limited by the two dissipative processes present in the
cavity QED system, spontaneous emission and leakage of photons from the cav-
ity. A derivation of the error of unitary entangling protocols for cavity QED has
been given in Ref. [49]. As can easily be reproduced using the formalism we
will present in Chapter 3, the effective coupling constant for the processes in
Eqs. (2.41)–(2.43) is found to be geff ∼ Ωg

∆ . Assuming a spontaneous emission

rate γ � ∆ for the excited level, the effective decay rate is given by γeff ∼ γΩ2

∆2 .
When considering a cavity detuning δ and a cavity leakage rate κ � δ we ob-

tain an effective coupling constant χ ∼ g2
eff
δ between the atoms, together with

an effective leakage rate κeff ∼
κg2

eff
δ2 . The error of the entangling protocol due

to both sources of dissipation, spontaneous emission and cavity photon loss, is
then approximated by

1− F ∼ εγ + εκ ∼
γδ2

g2 +
κ

δ
, (2.46)

where F denotes the fidelity of the triplet state. We optimize this expression by

choosing δ =
√

κ
γ g and ∆ =

√
γ
κ g, which results in

1− F ∼
√

κγ

g2 =
1√
C

, (2.47)

where C = g2

κγ is the cooperativity of the cavity (cf. Sec. 2.4.1). The optimized
error of the protocol thus scales with the square-root of the cooperativity.

2.4.3 Dissipative quantum computation and state engineering

In Sec. 2.3 we have seen that decoherence acts detrimentally on quantum-
mechanical systems, deteriorating their coherences over time. In addition, as
we addressed in Sec. 2.4, also unitary entangling operations can be limited
by dissipation. Quantum information tasks require, however, high-fidelity state
preparation, as is, e.g., discussed in Ref. [73]. The logical consequence has there-
fore been to seek full isolation of the system from the environment and to try to
establish full control over the system parameters [17].
Since perfect isolation of a system is, however, hard to achieve and comes at
the expenses of the accessibility of the system, other approaches need to be con-
sidered. In particular, it has been suggested to take the opposite approach to
actively use interactions of the system with the environment, such as noise and
dissipation, to perform quantum information tasks. In this way, detrimental pro-
cesses are turned into driving forces of a protocol.
The early precursors of this idea are optical pumping [74] and cooling [75].
For optical pumping, which we consider in Sec. 3.4.4, coherent excitation is
combined with dissipation to prepare a system in a certain state. While optical
pumping often refers to spin systems with a number of states without giving a
reference to the energy of the states, cooling typically means the evolution of a
– usually bosonic – system towards its ground state. A generalization of these
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principles is reservoir engineering [18, 76], where interactions with an envi-
ronment drive the system towards a non-trivial state of interest. This approach
is also referred to as dissipative state preparation. In particular, it has early
on been shown that entangled states can be prepared using dissipation as a re-
source [45, 77–83]. These states need not, however, be steady states of the evolu-
tion. Since then, proposals for entangled steady states [84–96] or squeezed steady
states [97–100] have become available. By now, a number of physical systems has
been considered, in particular cavity QED [45, 77, 84–86, 90, 97, 101, 102], atomic
ensembles [97–100], ion traps [78, 87, 91, 92, 103–105], plasmonic waveguides
[88, 89, 93, 94], light fields [95], optical lattices [85, 96], Rydberg atoms [106–108],
NV centers [109] and superconducting systems [110–115]. First experimental
studies along these lines have been performed by Refs. [76, 91, 99, 105, 113, 116].

The concept of dissipative preparation of entangled steady states has been for-
malized in Ref. [19] and generalized to dissipative quantum computation and
dissipative state engineering in Ref. [20]. The central idea of dissipative quan-
tum computation is to tailor the dissipative dynamics such that the steady state
of the time evolution contains the outcome of a universal computation [20]. In
Refs. [19, 20], it was furthermore generally demonstrated that large classes of
states, such as Matrix Product States (MPS) and Tensor Product States [117, 118],
can in principle be prepared efficiently using dissipation. Other tasks that have
been considered in this context are quantum memories [119], quantum commu-
nication [120] and the simulation of open quantum systems [91, 92, 121].

Two highly relevant questions that need to be addressed are whether the dissi-
pative approach is viable in practice, and whether it possibly has an advantage
over unitary protocols. Generally, it can be argued that converting the detri-
mental source of noise into a resource is likely to result in an improvement. In
particular, as opposed to unitary methods, dissipative protocols can be used to
prepare steady states. These states are inherently stable against the dissipation
that was used to produce them. The continuous return towards the steady state
upon a perturbation of the system can also be seen as stabilization mechanism
against other kinds of decoherence. In addition, we will show that in certain
settings it is possible to achieve an improved error scaling.

In the following chapters, we consider dissipative preparation of entanglement
in concrete physical systems. We start out at a small scale, studying dissipative
preparation of an entangled state of two qubits in Chapter 4–6 and then move
on to many-body entangled states in Chapter 7. The experimental realization of
our scheme for trapped ions is presented along with the theoretical scheme in
Chapter 6.





Chapter3

E�ective dynamics of open

quantum systems

In the previous chapter, we have introduced the master equation which describes
the dynamics of an open quantum system coupled to a Markovian reservoir. As
an equation of motion for the density matrix ρ, it determines the temporal evo-
lution of the system. Solving the master equation for the full density matrix is,
however, in many situations cumbersome. To make the description of an open
quantum system manageable as well as to gain physical insight into the evolu-
tion of the system, it is therefore desirable to develop effective theories which
reduce the complexity of the system. In this chapter, we present an effective
operator formalism for open quantum systems based on the master equation.

We begin with an introduction to effective theories for open quantum systems
in Sec. 3.1, leading over to a brief presentation of our formalism in Sec. 3.2. In
Sec. 3.3, we proceed to the derivation of the effective operators. Here, we provide
several extensions which account for different physical situations. In Sec. 3.4, we
give examples for the application of our formalism, deriving effective coherent
and dissipative processes in typical quantum systems. Finally, we compare our
method with other methods in Sec. 3.5, give an account on its realm in Sec. 3.6,
and address the reduction to rate equations in Sec. 3.7.

3.1 Effective theories for open quantum systems

In an open system there are often quite different time scales associated with
different effects, such that the Hilbert space can be divided into two parts, one for
the rapidly decaying (excited) states, and one for the comparably stable (ground)
states. For instance, for weakly driven atoms the evolution and decay of the
excited states happen on a time scale which is fast compared to any other time
scale in the system. In such situations it is desirable to eliminate the rapidly
evolving excited states to get a simpler description of the slow evolution of the
ground states. A standard method for doing this is adiabatic elimination [122],
where the density matrix equations involving the excited states are solved by
assuming a slow evolution of the ground states. This can then be used to describe

21
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an effective evolution of the ground states. This procedure can, however, be
rather involved, as there are many density matrix elements if the system is large.

For closed systems with purely unitary couplings effective theories have been
used to derive effective Hamiltonians, in particular by James and co-workers [33,
123, 124]. If decoherence is added to the system, the joint unitary and dissipative
dynamics can be captured by introducing non-Hermitian descriptions. The use
of complex energies allows for the combination of the energy of a resonance with
its width [125]. Correspondingly, non-Hermitian Hamiltonians are commonly
used to describe the dynamics of open systems [126–130]. In quantum optics the
use of non-Hermitian Hamiltonians is put in a more rigorous form by the so-
called quantum jump formalism, or Monte Carlo wave function method [126],
which is equivalent to the evolution by a Markovian master equation. In this
method the non-Hermitian Hamiltonian describes the evolution in the absence
of decay, whereas quantum jumps are introduced at random times to account
for the resulting state after a decay.

The separation of the Hilbert space into rapidly and slowly evolving ground and
excited states, similar to what we will consider here, has been studied also for
non-Hermitian Hamiltonians. In particular for a coupling of the ground to the
excited states much weaker than the evolution inside the subspaces, a formalism
for effective processes is provided by the Feshbach projection-operator approach
[131]. Similar formalisms for successive nuclear reactions have been studied by
Weidenmüller and co-workers [132]. Methods based on the Feshbach projection
operator method have been used in several fields [133]. However, these treat-
ments are only concerned with the evolution from the effective non-Hermitian
Hamiltonian and therefore ignore the quantum jumps describing the state after
the decay.

In the following, we present a method to eliminate the excited states and to
reduce the system dynamics to the ground states. The method we present is
essentially equivalent to adiabatic elimination, but is much easier to apply in
practice. By formalizing the procedures leading to adiabatic elimination we ob-
tain simple expressions for the effective operators describing the ground-state
evolution. With our expressions one avoids the often tedious steps leading to
adiabatic elimination and can obtain the effective operators by evaluating simple
formulas. In particular, we have found that these methods are very convenient
for studying dissipative state preparation [19, 20, 101, 102, 121], where the goal
is to engineer decay processes such that a system evolves into a desired state.
Here, it is highly desirable to have a convenient tool to rapidly identify the ef-
fective dissipative dynamics of the system. The procedure we present here is
an extension of the Feshbach projection-operator approach to also include these
quantum jumps. As a result, our formalism can be used to describe the full
evolution of the density matrix of the system after elimination of the excited
states. This generalization is crucial for describing situations where we are also
interested in the state of the system after a decay.
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Figure 3.1: Ground and excited subspaces and couplings. The nondecaying ground
states (corresponding to projector Pg) are coupled to the decaying excited states (projec-
tor Pe) by the perturbative (de-) excitations V̂+ (V̂−) [solid lines connecting the subspaces
(red)]. The Lindblad operators L̂k represent various decay process (dotted lines). The
couplings inside the ground and excited subspaces are given by Ĥg [solid lines inside
the lower subspace (green)] and Ĥe [solid lines inside the upper subspace (blue)], re-
spectively.

3.2 Effective operator formalism for open quantum
systems

Before proceeding to its derivation, we first outline the effective operator for-
malism. As illustrated in Fig. 3.1, we assume the open system to consist of two
distinct subspaces, one for the ground states and one for the decaying excited
states. The couplings of these two subspaces are assumed to be perturbative.
Furthermore, we assume that the dynamics of the system is Markovian such
that the time evolution of the density operator ρ can be described by a master
equation of Lindblad form, introduced in Sec. 2.3.2,

ρ̇ = −i
[
Ĥ, ρ

]
+ ∑

k
L̂kρL̂†

k −
1
2

(
L̂†

k L̂kρ + ρL̂†
k L̂k

)
, (3.1)

where Ĥ is the Hamiltonian of the system and each of the Lindblad operators
L̂k represents a source of decay which we assume to take the system from the
excited to the ground subspace. By combining perturbation theory of the density
operator and adiabatic elimination of the excited states we reduce the dynamics
to an effective master equation involving only the ground-state manifold

ρ̇ =− i
[
Ĥeff, ρ

]
+ ∑

k
L̂k

effρ(L̂k
eff)

† − 1
2

(
(L̂k

eff)
† L̂k

effρ + ρ(L̂k
eff)

† L̂k
eff

)
(3.2)

with effective Hamilton and Lindblad operators

Ĥeff = −
1
2

V̂−
(

Ĥ−1
NH + (Ĥ−1

NH)
†
)

V̂+ + Ĥg (3.3)

L̂k
eff = L̂k Ĥ−1

NHV̂+. (3.4)
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connecting only the ground states. Here, V̂+ (V̂−) are the perturbative (de-)
excitations of the system and Ĥg is the ground-state Hamiltonian. ĤNH is the
non-Hermitian Hamiltonian of the quantum jump formalism

ĤNH = Ĥe −
i
2 ∑

k
L̂†

k L̂k, (3.5)

with Ĥe being the Hamiltonian in the excited-state manifold. The effective mas-
ter equation of Eq. (3.2) provides an approximation of the dynamics in Eq. (3.1)
by the effective dynamics of its ground states. Thus, the effective operator for-
malism allows for a substantial reduction of the complexity of the dynamics of
an open system. In essence, adiabatic elimination of the excited states in the
presence of both coherent and dissipative processes is formalized in a compact
form by the effective operators of Eqs. (3.3) and (3.4).

We derive the effective operators of Eqs. (3.3) and (3.4) in the following section,
Sec. 3.3. An elementary application of our formalism to a driven dissipative
two-level system is shown in Sec. 3.4.1. Another relevant example is given in
Sec. 3.4.3, where we discuss the possibility to use our effective operator formal-
ism to engineer decay processes in a four-level system. Optical pumping and
dissipative state preparation are briefly addressed in Sec. 3.4.4. In Sec. 3.3.5 we
present an extension of the formalism which includes non-perturbative ground-
state couplings. This extended formalism will then be used for a detailed anal-
ysis of the effective processes in a three-level Raman system in Sec. 3.4.2. In
Sec. 3.3.6 we introduce a second extension of the effective operator formalism
that allows for several perturbations or fields. The most general formalism is
presented in Sec. 3.3.7. A comparison to similar existing methods is provided in
Sec. 3.5, the possibility to use the formalism beyond the perturbative limit and
its reduction to rate equations are discussed in Sec. 3.6 and 3.7.

3.3 Derivation of the effective operator formalism

We now present the derivation of the effective equation of motion in Eqs. (3.2)–
(3.4). The evolution of the density operator ρ(t) in the Schrödinger picture is
governed by the master equation of Lindblad form, given by Eq. (3.1). The
Hamiltonian Ĥ stands for unitary couplings of the system, such as coherent
driving. Each Lindblad “jump” operator L̂k accounts for a dissipative process,
such as spontaneous emission.

3.3.1 Projection-operator formalism

We use the projection-operator method of Feshbach [131] to structure the Hilbert
space into two subspaces, one for the ground states and one for the excited
states, represented by the projection operators Pg and Pe, with Pg + Pe = 1 and
PgPe = 0. Accordingly, we divide the Hamiltonian into four parts:

Ĥ = Ĥg + Ĥe + V̂+ + V̂−. (3.6)

Here, the interactions inside the ground subspace are labeled by Ĥg ≡ PgĤPg,
and inside the excited subspace by Ĥe ≡ PeĤPe. The perturbative excitations
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V̂+ ≡ PeĤPg and deexcitations V̂− ≡ PgĤPe (V̂†
+ = V̂− and V̂ = V̂+ + V̂−)

connect the two subspaces.

We assume the ground states as stable and the excited states to be decaying
to the ground states. The Lindblad operators can then always be written as
L̂k = Pg L̂kPe. The mentioned couplings inside and between the subspaces are
illustrated in Fig. 3.1.

3.3.2 Non-Hermitian time evolution in the quantum jump picture

Combining unitary and dissipative dynamics within a single non-Hermitian
Hamiltonian has widely been studied in various areas of physics, as mentioned
in Chapter 1. In quantum optics the use of non-Hermitian Hamiltonians is for-
malized by the so-called quantum jump picture [126], in which an effective non-
Hermitian Hamiltonian describes the evolution of the system in the absence of
a quantum jump. In order to distinguish the non-Hermitian Hamiltonian of the
excited states from the effective (Hermitian) Hamiltonian of Eq. (3.3) we have
denoted it as ĤNH in Eq. (3.5). It incorporates the excited state Hamiltonian
Ĥe and the decay terms of the anticommutator part of the master equation (3.1).
Introducing ĤNH to Eq. (3.1) we obtain a reduced master equation

ρ̇ =− i
(
(ĤNH + Ĥg + V̂)ρ− ρ(Ĥ†

NH + Ĥg + V̂)
)
+ ∑

k
L̂kρL̂†

k . (3.7)

Here, we have included the decay terms which describe the loss of population
from the excited states to ĤNH in the commutator-like Hamiltonian part. The
last “feeding term” describes the gain of the population of the ground states by
decay from the excited states remains.

For ground-state interactions Ĥg much weaker than those between the excited
states Ĥe, the dynamics of the decaying excited states are mainly governed by
the non-Hermitian Hamiltonian ĤNH. As all excited states are decaying, all
eigenvalues of ĤNH are nonzero so that its inverse Ĥ−1

NH exists within the excited-
state subspace.

3.3.3 Perturbation theory in the interaction picture

In the following, we assume the couplings of the ground and excited subspaces
V̂± to be sufficiently weak to be described as perturbations of the evolution gov-
erned by an unperturbed Hamiltonian Ĥ0 ≡ Ĥg + ĤNH. Based on this assump-
tion we perform perturbation theory [1] of the density operator. To this end, we
change into the interaction picture by a transformation with the operator

Ô(t) = e−iĤ0t = e−i(ĤNH+Ĥg)t. (3.8)

Then the reduced master equation of Eq. (3.7) transforms into

˙̃ρ(t) =− i
(

Ṽ(t)ρ̃(t)− ρ̃(t)Ṽ†(t)
)
+ ∑

k
L̃k(t)ρ̃(t)L̃†

k(t) (3.9)
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with operators transformed accordingly

ρ̃(t) = Ô−1(t)ρÔ, (3.10)

Ṽ(t) = Ô−1(t)(Ĥ0 + V̂)Ô(t) + i
dÔ−1

dt
Ô(t) = Ô−1(t)V̂Ô(t), (3.11)

L̃k(t) = Ô−1(t)L̂kÔ(t). (3.12)

To derive the effective operators we perform a perturbative expansion of the
density operator in a small parameter ε

ρ̃(t) =
1
N
(ρ̃(0)(t) + ερ̃(1)(t) + ε2ρ̃(2)(t) + ...) (3.13)

and obtain a recursive formulation of the reduced master equation in powers of
ε,

˙̃ρ(n)(t) =− i(Ṽ(t)ρ̃(n−1)(t)− ρ̃(n−1)(t)Ṽ†(t)) + ∑
k

L̃k(t)ρ̃(n)(t)L̃†
k(t), (3.14)

where we have used that V̂ is a small parameter V̂ ∝ ε. The first three orders of
the recursive reduced master equation read

˙̃ρ(0)(t) =∑
k

L̃k(t)ρ̃(0)(t)L̃†
k(t), (3.15)

˙̃ρ(1)(t) =− i
(

Ṽ(t)ρ̃(0)(t)− ρ̃(0)(t)Ṽ†(t)
)
+ ∑

k
L̃k(t)ρ̃(1)(t)L̃†

k(t), (3.16)

˙̃ρ(2)(t) =− i
(

Ṽ(t)ρ̃(1)(t)− ρ̃(1)(t)Ṽ†(t)
)
+ ∑

k
L̃k(t)ρ̃(2)(t)L̃†

k(t). (3.17)

In the absence of initial excitations, decay processes can be neglected for orders
n ≤ 1 so that

˙̃ρ(0)(t) = 0, (3.18)

˙̃ρ(1)(t) =− i
(

Ṽ(t)ρ̃(0)(t)− ρ̃(0)(t)Ṽ†(t)
)

, (3.19)

˙̃ρ(2)(t) =− i
(

Ṽ(t)ρ̃(1)(t)− ρ̃(1)(t)Ṽ†(t)
)
+ ∑

k
L̃k(t)ρ̃(2)(t)L̃†

k(t). (3.20)

We use the projection operator approach for the density operator to separate the
evolution of ground and excited states. In doing so we reduce the evolution of
the ground states to

Pg ˙̃ρ(0)(t)Pg =Pg ˙̃ρ(1)(t)Pg = 0, (3.21)

Pg ˙̃ρ(2)(t)Pg =− iPg

(
Ṽ(t)ρ̃(1)(t)− ρ̃(1)(t)Ṽ†(t)

)
Pg + ∑

k
L̃k(t)Peρ̃(2)(t)Pe L̃†

k(t).

(3.22)

In the last line we have used that for each Lindblad operator we can write L̃k =
Pg L̃kPe, as decay only occurs from the excited to the ground states. Consequently,
the ground states are connected by unitary and dissipative processes of second
order. Also note that since the transformation in Eq. (3.8) is nonunitary, the
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perturbation Ṽ(t) is non-Hermitian. For the dynamics of the excited states we
find

Pe ˙̃ρ(0)(t)Pe = Pe ˙̃ρ(1)(t)Pe = 0 (3.23)

Pe ˙̃ρ(2)(t)Pe = −iPe

(
Ṽ(t)ρ̃(1)(t)− ρ̃(1)(t)Ṽ†(t)

)
Pe. (3.24)

As we have assumed that the excited states do not gain population from decay,
Eq. (3.24) does not exhibit any dissipative feeding terms. Hence, the evolution
of the excited part of the density operator is solely driven by the interaction
Hamiltonian Ṽ(t). While the dynamics of the second-order processes connect
the states either in the ground or in the excited subspace we note that interac-
tions between the subspaces are given by the first-order terms Pg ˙̃ρ(1)(t)Pe and
Pe ˙̃ρ(1)(t)Pg.

3.3.4 Adiabatic elimination of the excited states

In principle, a solution to the remaining second-order master equations for the
ground and the excited states in Eqs. (3.22) and (3.24) can be computed. This
solution can, however, still be very complicated. In particular, if the decaying
excited states are almost unpopulated, it is preferable to obtain a more compre-
hensible solution. In the following, we choose to reduce the complexity of the
dynamics by restricting it to the ground states. To this end, we perform adiabatic
elimination of the excited states:

Pe ˙̃ρ(2)(t)Pe ≈ 0. (3.25)

Consequently, the dynamics of second order in Eq. (3.20) are approximated by
the dynamics of the ground states given by Eq. (3.22). Below we follow the
recursion of the perturbative expansion and carry out the perturbation integrals.

We obtain Peρ̃(2)(t)Pe by integrating Eq. (3.24), and ρ̃(1)(t) by integrating Eq.
(3.19), and insert the resulting expressions into Eq. (3.22). Having excluded the
dynamics of the excited states by adiabatic elimination, we find the open system
to evolve according to

Pg ˙̃ρ(2)(t)Pg =− PgṼ(t)
(∫ t

0
dt′ Ṽ(t′)ρ̃(0)(t′)

)
Pg

− Pg

(∫ t

0
dt′ ρ̃(0)(t′)Ṽ†(t′)

)
Ṽ†(t)Pg

+ Pg ∑
k

L̃k(t)Pe

∫ t

0
dt′
∫ t′

0
dt′′
(

Ṽ(t′)ρ̃(0)(t′′)Ṽ†(t′′)
)

Pe L̃†
k(t)Pg

+ Pg ∑
k

L̃k(t)Pe

∫ t

0
dt′
∫ t′

0
dt′′
(

Ṽ(t′′)ρ̃(0)(t′′)Ṽ†(t′)
)

Pe L̃†
k(t)Pg.

(3.26)

Here, we have omitted terms where the density operator is sandwiched between
perturbations PgṼ and ṼPg. As ρ̃(0) lives in the ground-state subspace, these
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terms do not contribute to the ground-state evolution and can therefore be ne-
glected. The remaining expression in Eq. (3.26) contains two Hamiltonian-like
and two Lindblad-like terms, for which we will carry out the integrals:

I1 ≡ PgṼ(t)
∫ t

0
dt′ Ṽ(t′)ρ̃(0)(t′)Pg (3.27)

I2 ≡ Pe

∫ t

0
dt′
∫ t′

0
dt′′ Ṽ(t′)ρ̃(0)(t′′)Ṽ†(t′′)Pe. (3.28)

In this section we assume the direct interactions within the ground-state sub-
space to be perturbative. Hence, the ground-state evolution is negligibly small
compared to the one for the excited states so that we have Ô(t)Pg ' Pg. Conse-
quently, I1 simplifies to

I1 ≈ V̂−Ô(t)
(∫ t

0
dt′ Ô−1(t′)

)
V̂+ρ̃(0)(t) (3.29)

Carrying out the integral we find

I1 ≈ V̂−e−iĤNHt
[(

iĤNH
)−1 eiĤNHt′

]t

0
V̂+ρ̃(0)(t)

≈ V̂−
(
iĤNH

)−1 V̂+ρ̃(0)(t). (3.30)

In the last step we have used that the term emerging from the lower limit of
the integral at t′ = 0 maintains its time dependence of e−iĤNHt and is therefore
detuned with respect to the term originating from the integral limit at t′ = t,
i.e., by an approximation similar to the rotating wave approximation we keep
the unity term in the expression 1− exp(−iĤNHt). This condition is equivalent
to the standard approximation of adiabatic elimination and is justified provided
that the time evolution of the ground states is slow compared to the time scale
set by Ĥ−1

NH. The second term of Eq. (3.26) is treated accordingly, yielding the
Hermitian conjugate of the result in Eq. (3.30).

For the last two Lindblad-type terms in Eq. (3.26) we carry out the double
integral I2. To this end, we approximate ρ̃(0)(t′′) in Eq. (3.28) by ρ̃(0)(t). This can
be argued the following way: Above we have assumed that the density matrix
of the ground states ρ̃(0)(t) evolves slowly and to second-order in V̂. Another
dependence on Ṽ(t′) and Ṽ(t′′) would only involve features of fourth order in
the evolution. We neglect these higher orders by dropping the dependence of
ρ̃(0)(t′) and ρ̃(0)(t′′) on the time scales of Ṽ(t′) and Ṽ(t′′), which yields ρ̃(0)(t).
Thus, we can separate the integral and write

I2 ≈
1
2

(∫ t

0
dt′Õ−1(t′)

)
V̂+ρ̃(0)(t)V̂−

∫ t

0
dt′(Õ−1)†(t′)

≈ 1
2
(
iĤNH

)−1 V̂+ρ̃(0)(t)V̂−
(
−iĤ†

NH

)−1
. (3.31)

Again we have assumed that the ground states are slowly varying compared to
the time scale of Ĥ−1

NH so that Ô(t)Pg ' Pg and discarded detuned terms. The
remaining term of Eq. (3.26) yields the same result as Eq. (3.31).
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We insert Eqs. (3.30) and (3.31) back into Eq. (3.26) and transform back into the
Schrödinger picture. In doing so, we obtain the effective unitary and dissipative
dynamics of the ground states,

Pgρ̇(2)Pg =

[
−i

(
Ĥeff −

i
2 ∑

k
(L̂k

eff)
† L̂k

eff

)
ρ(0) + H.c.

]
+ ∑

k
L̂k

effρ
(0)(L̂k

eff)
†. (3.32)

with an effective Hamiltonian and effective Lindblad operators as defined in Eqs.
(3.3) and (3.4). To reach this form we have used the equality

∑
k
(L̂k

eff)
† L̂k

eff = V̂−(Ĥ−1
NH)

†

(
∑

k
L̂†

k L̂k

)
Ĥ−1

NHV̂+

= −iV̂−
(

Ĥ−1
NH − (Ĥ−1

NH)
†
)

V̂+. (3.33)

From here it can easily be seen that Eq. (3.32) is equivalent to Eq. (3.2). Thus, we
have reduced the unitary and dissipative dynamics of the open quantum system
described by Eq. (3.1) to the effective master equation of Lindblad form in Eq.
(3.2), obtaining the effective Hamiltonian Ĥeff and Lindblad operators L̂k

eff of Eqs.
(3.3) and (3.4).

The effective Hamiltonian of Eq. (3.3) is the same as the original result of Fesh-
bach [131]. In addition, we have found effective Lindblad operators for second-
order decay processes. As can be seen from Eq. (3.4), each of them consists of
weak coherent excitation V̂+, evolution between the excited states by a “propa-
gator” Ĥ−1

NH, and subsequent decay L̂k. Thus, adiabatic elimination of the excited
states of an open quantum system is formalized in a compact manner by Eqs.
(3.2)–(3.5).

3.3.5 Non-perturbative ground-state coupling

The formalism of Eqs. (3.2)–(3.4) was derived assuming that the ground-state
couplings Ĥg are much weaker than those of the excited states contained by
ĤNH. Under this assumption of a perturbative ground-state coupling it was
possible to neglect the effect of Ĥg on the effective processes.

For strong interactions between the ground states, the action of Ĥg can no longer
be ignored in the effective processes so that the accuracy of the effective dynam-
ics of Eqs. (3.3) and (3.4) will decrease when Ĥg approaches ĤNH. We will
now show how to overcome this drawback by diagonalizing the ground-state
Hamiltonian Ĥg and including its action in the effective operators.

We can build on the dynamics of the separate subspaces as given by Eqs. (3.24)
and (3.26), derived without any assumption about the strength of Ĥg. In contrast
to the above derivation, we can no longer assume Ô(t)Pg ' 1Pg. Since Ĥg
and ĤNH do not couple the ground and excited subspaces, we can separate the
evolution operator into one part for each of the subspaces:

Ô(t) = PgÔg(t)Pg + PeÔe(t)Pe

= e−iĤgtPg + e−iĤNHtPe. (3.34)
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We assume that Ĥg can be diagonalized

Ĥg = ∑
l

El Pl (3.35)

with dressed state energies El and a projector Pl ≡ |l〉〈l| for each ground state l.
Accordingly, we decompose the perturbative excitations V̂+ with respect to the
ground states,

V̂+ = ∑
l

V̂ l
+, (3.36)

where we have defined V̂ l
+ ≡ V̂+Pl as the excitation from ground state l. Given

the different energies of the dressed ground states, the effective evolution is now
no longer identical for ground states with different energy El . This additional
complication in the integral is taken into account by introducing the sum in Eq.
(3.36). For instance, for the first term of Eq. (3.26) we have

I1 = PgṼ(t)∑
l

∫ t

0
dt′ Ṽl(t)ρ̃

(0)
l (t′)Pl (3.37)

With Eqs. (3.34)–(3.36) this term becomes

I1 = PgÔ−1
g (t)V̂−Ôe(t)∑

l

∫ t

0
dt′ ei(ĤNH−El)t′V̂ l

+ρ̃(0)(t)

≈ iPgÔ−1
g (t)V̂−∑

l

(
ĤNH − El

)−1 V̂ l
+Ôg(t)ρ̃(0)(t).

The integration is carried out similarly for the other terms in Eq. (3.26) (the
“sandwich” terms can be neglected for the same reasons as above). Transforming
back into the Schrödinger picture and arranging the terms as in Eqs. (3.3) and
(3.4) we find for the effective operators, including non-perturbative ground-state
evolution,

Ĥeff = −
1
2

[
V̂−∑

l

(
Ĥ(l)

NH

)−1
V̂ l
+ + H.c.

]
+ Ĥg, (3.38)

L̂k
eff = L̂k ∑

l

(
Ĥ(l)

NH

)−1
V̂ l
+. (3.39)

We see that in order to apply this formalism rather than Eqs. (3.3)-(3.4) we
replace the general inverse non-Hermitian Hamiltonian ĤNH by initial-state de-
pendent propagators (

Ĥ(l)
NH

)−1
≡
(

ĤNH − El
)−1 (3.40)

for each ground state l. In doing so we obtain the accurate effective dynamics in
the presence of non-perturbative ground-state coupling. In Chapter 4 we will use
this technique to investigate rapid preparation of entanglement by engineered
decay. In Sec. 3.4.2 we consider a simpler example of a three-level Raman system.



3.3 Derivation of the effective operator formalism 31

3.3.6 Several perturbations or fields

In the following, we present an extension of our effective operator formalism to
several perturbations or fields V̂f , where f denotes the particular field and ω f
its frequency. Then we can write the perturbations as

V̂(t) = ∑
f

V̂ f
+(t) + H.c. = ∑

f
v̂ f
+e−iω f t + H.c. (3.41)

The formalism we develop can also be used to include non-perturbative ground-
state coupling as in Sec. 3.3.5. Still, at the first glance the assumption of several
fields seems problematic: so far we assumed a rotating frame of reference in
which V̂ is time independent. However, our formalism can be derived without
this claim, starting from Eqs. (3.24) and (3.26). As opposed to the previous case,
where we chose to work in the interaction picture, we now keep the time depen-
dence in the perturbations. For simplicity we choose a time-independent frame

with respect to the interactions inside the subspaces ( ∂Ĥe
∂t =

∂Ĥg
∂t = 0). Again,

for perturbative ground-state coupling Ĥg the ground-state evolution becomes
negligible, Ôg(t) ≈ 1. The perturbative evolution of the ground states turns into
a sum for the different fields f :

I1 = PgṼ(t)
∫ t

0
dt′ Ṽ(t′)ρ̃(0)(t′)Pg (3.42)

≈ PgV̂−(t)Ôe(t)∑
f

∫ t

0
dt′ ei(ĤNH−ω f )t′ v̂ f

+Pkρ(0)(t)

≈ iPgV̂−(t)∑
f

(
ĤNH −ω f

)−1 V̂ f
+(t)Pgρ(0)(t).

We then obtain the effective operators

Ĥeff = −
1
2

[
V̂−(t)∑

f

(
Ĥ( f )

NH

)−1
V̂ f
+(t) + H.c.

]
+ Ĥg (3.43)

L̂k
eff = L̂k ∑

f

(
Ĥ( f )

NH

)−1
V̂ f
+(t) (3.44)

with one propagator (Ĥ( f )
NH)

−1 ≡ (ĤNH − ω f )
−1 for each field f . This extension

will be used in Chapter 7, where we apply multi-tone fields.

3.3.7 General formalism

In Sec. 3.3.5 we derived an extension of the effective operators in Eqs. (3.3) and
(3.4) for non-perturbative ground-state coupling and in Sec. 3.3.6 an extension
for several fields. In a situation with both aspects present these two extensions
can be directly combined. We find the effective operators

Ĥeff = −
1
2

[
V̂−∑

f ,l

(
Ĥ( f ,l)

NH

)−1
V̂( f ,l)
+ (t) + H.c.

]
+ Ĥg (3.45)

L̂k
eff = L̂k ∑

f ,l

(
Ĥ( f ,l)

NH

)−1
V̂( f ,l)
+ (t) (3.46)
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Figure 3.2: Two-level system. A ground state |0〉 is coherently coupled to an excited state
|1〉 by a field with a Rabi frequency Ω. The excited state |1〉 is subject to spontaneous
decay at a γ.

with field- and state-dependent propagators(
Ĥ( f ,l)

NH

)−1
≡
(

ĤNH − El −ω f
)

. (3.47)

This quantity contains both the information about the initial state and the ex-
citing field; it is thus the most general propagator expression presented. It will
be used in Chapter 5 to construct an effective two-photon drive across a dipole-
forbidden transition.

3.4 Examples

In the following, we discuss a number of example systems to which we apply our
formalism. We first consider two standard setups, a dissipative two-level system
and a three-level Raman system. Here, we derive the effective interactions, and
compare them to the results obtained using other methods. We then move on
to a four-level system, where an effective decay process can be engineered, and
discuss the available degrees of freedom and the effective quantities. Based on
these examples we give a brief account on the general principles of dissipative
state preparation which will be applied in Chapter 4–7.

3.4.1 The two-level system

The most elementary configuration our formalism can be applied to is a two-
level system with a ground state |0〉 coherently coupled to a spontaneously de-
caying excited state |1〉 (Fig. 3.2). This example is rather straightforward also
without the theory developed here; yet, we include it to demonstrate the general
formalism. The Hamiltonian for this system reads

Ĥ = Ĥe + V̂ (3.48)

Ĥe = ∆|1〉〈1|, Ĥg = 0 (3.49)

V̂ =
Ω

2
(|0〉〈1|+ |1〉〈0|) . (3.50)

The levels |0〉 and |1〉 are coupled with a Rabi frequency Ω and a detuning ∆.
We write the (de-) excitation as V̂+ = Ω

2 |1〉〈0| (V̂− = Ω
2 |0〉〈1|). Spontaneous
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emission from the excited to the ground level at a rate γ is represented by the
Lindblad operator,

L̂ =
√

γ|0〉〈1|. (3.51)

Consequently, the non-Hermitian Hamiltonian is found to be

ĤNH =

(
∆− iγ

2

)
|1〉〈1| ≡ ∆̃|1〉〈1|. (3.52)

Here, we have assigned a complex energy ∆̃ ≡ ∆− iγ
2 that combines the detuning

∆ and the line width γ of the excited state |1〉 to a single complex quantity.

By applying the effective Hamiltonian formula of Eq. (3.3) we adiabatically
eliminate the excited state |1〉 and obtain an effective Hamiltonian for the ground
state |0〉:

Ĥeff = −
1
2

(
Ω

2
|0〉〈1|

)(
|1〉〈1|
∆− iγ

2

+ H.c.

)(
Ω

2
|1〉〈0|

)
= − Ω2∆

4∆2 + γ2 |0〉〈0| ≡ ∆eff|0〉〈0|. (3.53)

This effective Hamiltonian describes an effective AC Stark shift ∆eff of level |0〉
caused by the coherent driving. By applying Eq. (3.4) together with V̂, ĤNH,
and L̂γ as specified above, we obtain a single effective Lindblad operator

L̂γ
eff = (

√
γ|0〉〈1|)

(
1
∆̃
|1〉〈1|

)(
Ω

2
|1〉〈0|

)
=

√
γΩ

2∆− iγ
|0〉〈0|. (3.54)

The effective scattering rate is thus given by

γeff ≡ |〈0|L̂eff|0〉|2 =
γΩ2

4∆2 + γ2 . (3.55)

The effective Lindblad operator L̂eff describes Rayleigh scattering, i.e., elastic
scattering of incident laser photons by the transition |0〉 ↔ |1〉. Seen from the
atom this effect will contribute to the effective dynamics of state |0〉 not as a
decay but as a dephasing of potential coherent couplings to other states.

Above we have given a rather simple example which could also be easily solved
without these techniques. For more complicated situations the formalism de-
veloped here is highly useful. In particular, in the following we consider a
three-level Raman scheme and a four-level scheme relevant for dissipative state
preparation.

3.4.2 The three-level Raman system

A three-level system in Raman configuration is a widely used quantum system
so that the understanding of its effective processes is highly relevant. In particu-
lar Ref. [124] deals with its effective dynamics in the absence of decoherence in
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Figure 3.3: The three-level Raman system. Two ground states |0〉 and |1〉 are driven
up to an excited state |e〉 with different detunings ∆0, ∆1 and Rabi frequencies Ω0, Ω1.
|e〉 decays to the ground states via spontaneous emission at rates γ0 and γ1. Effects
originating from non-perturbative interactions between the ground states (indicated by
Ω2) can also be taken into account by our extended formalism.

great detail. In the following, we give a description of the effective dynamics of
a three-level Raman system that includes dissipation.

As illustrated in Fig. 3.3, the system consists of two ground states |0〉 and |1〉 and
an excited state |e〉. Coherent driving of the transitions |0〉 ↔ |e〉 and |1〉 ↔ |e〉
is facilitated by two fields, generally with different detunings, ∆0 and ∆1, and
strengths, Ω0 and Ω1. In a time-independent frame the system is described by

Ĥg = −∆0|0〉〈0| −∆1|1〉〈1|, Ĥe = 0, (3.56)

V̂ =
Ω0

2
(|0〉〈e|+ |e〉〈0|) + Ω1

2
(|1〉〈e|+ |e〉〈1|) , (3.57)

assuming an arbitrarily strong non-perturbative Ĥg. The time-independent for-
mulation of Eq. (3.56) with detunings ∆0 and ∆1 assigned to the ground states
allows us to use the formalism of Sec. 3.3.5. Alternatively, we could load the
time dependence on the fields and use the formalism presented in Sec. 3.3.6.
Decay from the excited level |e〉 into ground states |0〉 and |1〉 at rates γ0 and γ1
is described by the Lindblad operators

L̂γ,0 =
√

γ0|0〉〈e|, (3.58)

L̂γ,1 =
√

γ1|1〉〈e|. (3.59)

The non-Hermitian Hamiltonian can be divided into two parts, denoted by the
initial state of the exciting field

Ĥ(0)
NH =

(
∆0 −

iγ
2

)
|e〉〈e| ≡ ∆̃0, |e〉〈e| (3.60)

Ĥ(1)
NH =

(
∆1 −

iγ
2

)
|e〉〈e| ≡ ∆̃1|e〉〈e|. (3.61)

In the last step we have assigned complex energies that combine the real detun-
ing and the imaginary decay of the levels.



3.4 Examples 35

Using the non-Hermitian Hamiltonians of Eqs. (3.60) and (3.61) together with
Eqs. (3.38)-(3.57) we obtain the effective Hamiltonian

Ĥeff =

(
∆0 −

∆0Ω2
0

4∆2
0 + γ2

)
|0〉〈0|+

(
∆1 −

∆1Ω2
1

4∆2
1 + γ2

)
|1〉〈1|

+

(
(∆0 + ∆1)Ω0Ω1

8(∆0 − iγ/2)(∆1 + iγ/2)
|0〉〈1|+ H.c.

)
, (3.62)

where we have defined an overall decay rate γ = γ0 + γ1. We note that de-
spite the complex terms the effective Hamiltonian is Hermitian. Besides two
shift terms similar to the one in Eq. (3.53), it contains an effective two-photon
transition between the two ground states with an effective Rabi frequency

Ω̃eff ≡
(∆0 + ∆1)Ω0Ω1

8(∆0 − iγ/2)(∆1 + iγ/2)
. (3.63)

In the absence of dissipative processes (γ = 0), this effective Hamiltonian equals
the time-averaged ground-state Hamiltonian of Gamel and James [124], viz.,

Ĥeff =−
(

Ω0Ω1

4∆0
+

Ω0Ω1

4∆1

)
(|0〉〈1|+ |1〉〈0|)−

Ω2
0

4∆0
|0〉〈0| − Ω2

1
4∆1
|1〉〈1|+ Ĥg.

(3.64)

We will encounter couplings of this kind when we consider an effective two-
photon drive in Chapter 5. Furthermore, we derive the effective Lindblad oper-
ators

L̂γ,0
eff =

√
γ0Ω0

2(∆0 − iγ/2)
|0〉〈0|+

√
γ0Ω1

2(∆1 − iγ/2)
|0〉〈1|, (3.65)

L̂γ,1
eff =

√
γ1Ω0

2(∆0 − iγ/2)
|1〉〈0|+

√
γ1Ω1

2(∆1 − iγ/2)
|1〉〈1|. (3.66)

Besides one loop-term for each of the ground states in this setup, these operators
contain effective decays from either ground state to the other, the strength of
which is given by

γ0→1
eff ≡ |〈1|L̂

γ,1
eff |0〉|

2 =
γ1Ω2

0

4∆2
0 + γ2

, (3.67)

γ1→0
eff ≡ |〈0|L̂

γ,0
eff |1〉|

2 =
γ0Ω2

1

4∆2
1 + γ2

. (3.68)

We note that depending on the relative strength of the effective quantities Ωeff
and γeff, the resulting effective dynamics will either be governed by coherent or
decoherent behavior.
This is visualized in Fig. 3.4 where we have plotted simulated curves of the full
and effective dynamics obtained by numerical integration of the master equa-
tions (3.1)–(3.2). In Fig. 3.4 a) we show a purely unitary case, and in 3.4 b) a
mixed case with both coherent and dissipative processes present.

In the purely unitary case (γ = 0) shown in Fig. 3.4 a) we see that the populations
of the two ground levels exhibit Rabi oscillations at a high and a low frequency.
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Figure 3.4: Comparison of effective and full evolution of a three-level Raman system.
Curves obtained from numerical integration of the effective master equation (dashed)
agree with results from the full master equation (solid) both (a) in the absence (γ = 0)
and (b) in the presence of dissipation (γ 6= 0). The effective operators are found to model
the slow dynamics of the two ground states |0〉 (blue, starting from 0) and |1〉 (green,
starting from 1) very accurately, averaging out the fast oscillations (inset in a). For the
simulations we used the parameters Ω0,1 = ∆/10 (∆ = ∆0 +∆1): (a) ∆1 −∆0 = ∆/1000,
γ0,1 = 0, (b) ∆1 −∆0 = ∆/100, γ0,1 = ∆/10.

The high-frequency oscillations correspond to the virtual excitation of the excited
state |e〉. These oscillations are explicitly excluded from the formalism developed
here and are therefore not present in the evolution with the effective operators,
as can be seen from the inset in Fig. 3.4 a). Nevertheless, the formalism captures
the slow dynamics of the ground states.

A case including dissipation (γ 6= 0) is shown in Fig. 3.4 b). Here, we see that
even for Rabi oscillations sweeping almost the entire population between the
ground states, the effective dynamics match the time evolution of the full master
equation with very high precision. For large times t the oscillations are damped
out and the evolution converges to a steady state.

Finally, we comment on the situation where the ground states are coupled by
another field of strength Ω2, as illustrated in Fig. 3.3. In case this additional
interaction is perturbative it can simply be included in Ĥg, and hence, in Ĥeff,
without affecting the other terms. In the non-perturbative case the effect of
Ω2 on the effective processes is caught by changing into a frame in which the
ground-state Hamiltonian Ĥg is diagonal. From there the formalism of Sec. 3.3.5
can be applied.

3.4.3 Engineered decay

As we will see in Chapter 4–7, our formalism will allow us to engineer schemes
that serve the purpose of dissipative state preparation. Here, the goal is to
prepare a certain desired steady state as the outcome of the evolution of the
open system. This is done by engineering its dissipative dynamics. To this end,
we use the effective operators of Eqs. (3.3) and (3.4) to take nontrivial interactions
between the excited states into account and to identify effective decay processes
of the system. By an appropriate choice of the system parameters these processes
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Figure 3.5: Dissipative state preparation in a four-level system. An effective decay pro-
cess consisting of weak excitation from ground state |g1〉 with a resonant Rabi frequency
Ω, evolution between the excited levels |e1〉 and |e2〉, coupled with g, and subsequent
decay κ prepares ground state |g2〉. The effective decay rate κeff is engineered by the
choice of the detunings of the excited states, ∆ and δ; κeff depends on how close the
dressed states of |e1〉 and |e2〉 are shifted into resonance with the driving (Ω) by their
coupling (g).

can be engineered. This is done by tailoring the “propagator” Ĥ−1
NH, as will be

discussed below.

An example of this is depicted in Fig. 3.5, showing a four-level system consisting
of two ground states |g1〉, |g2〉 and two excited states |e1〉, |e2〉. The excited-state
Hamiltonian

Ĥe = ∆|e1〉〈e1|+ δ|e2〉〈e2|+ g (|e1〉〈e2|+ |e2〉〈e1|) (3.69)

contains the detunings ∆ for |e1〉 and δ for |e2〉, respectively, and a coupling
with a strength g between |e1〉 and |e2〉. We assume that there are no processes
between the ground states so that Ĥg = 0. The weak classical driving described
by

V̂ =
Ω

2
(|g1〉〈e1|+ |e1〉〈g1|) (3.70)

drives the system between |g1〉 and |e1〉 with a Rabi frequency Ω. We assume
|e1〉 to decay to |g1〉 at a rate γ and |e2〉 to |g2〉 at a rate κ, represented by the
Lindblad operators

L̂γ =
√

γ|g1〉〈e1|, (3.71)

L̂κ =
√

κ|g2〉〈e2|. (3.72)

The non-Hermitian Hamiltonian is then given by

ĤNH =∆̃|e1〉〈e1|+ δ̃|e2〉〈e2|+ g (|e1〉〈e2|+ H.c.) , (3.73)
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with complex detunings δ̃ ≡ δ− iκ
2 and ∆̃ ≡ ∆− iγ

2 . Using Eqs. (3.3) and (3.4)
we obtain the effective Hamiltonian and Lindblad operators:

Ĥeff = −
Ω2

4
Re
(

δ̃

δ̃∆̃− g2

)
|g1〉〈g1|, (3.74)

L̂γ
eff =

√
γδ̃Ω

2(δ̃∆̃− g2)
|g1〉〈g1|, (3.75)

L̂κ
eff =

√
κgΩ

2(g2 − δ̃∆̃)
|g2〉〈g1|. (3.76)

We note that the effective Hamiltonian Ĥeff only contains a shift of |g1〉. The
effective decay process L̂κ

eff effectively prepares the ground state |g2〉 from |g1〉
at a rate of

κeff ≡ |〈g2|L̂κ
eff|g1〉|2 =

κg2Ω2

4|g2 − δ̃∆̃|2
. (3.77)

The other process L̂γ
eff is a dephasing of |g1〉 with a rate

γeff ≡ |〈g1|L̂γ
eff|g1〉|2 =

γ|δ̃|2Ω2

4|δ̃∆̃− g2|2
. (3.78)

The strength of the effective Lindblad operator concept is obvious: We immedi-
ately derive the effective pumping rates and dynamics of the ground states from
the initial operators. If one desires to optimize the preparation of |g2〉 from |g1〉
which happens at a rate κeff, this can be realized by an appropriate choice of the
system parameters, ∆, δ, and eventually, g.
Let us assume that γ, κ, and g are fixed, that the coupling g is strong, g � γ, κ,
and that the detunings ∆ and δ are adjustable. Then the optimum is reached by
adjusting the detunings to δopt = g2/∆ and ∆opt = g

√
γ/κ, which leads to a

maximized effective decay rate of

κ
opt
eff ≈

Ω2

8γ
. (3.79)

To compare the effective with the full dynamics, we perform simulations of the
evolution of the system by numerically integrating the master equations (3.1)
and (3.2). The resulting curves are plotted in Fig. 3.6. Here, we show dissi-
pative preparation of |g2〉 from |g1〉 for the optimal choice of ∆ and δ as given
above. We note that for weak driving Ω (solid lines, Ω = γ/10), the curves of
the effective and full dynamics exhibit excellent agreement. For stronger driving
Ω (dash-dot, Ω = γ/2; dot, Ω = γ), the effective dynamics exhibit increasing
deviations. These result from the breakdown of the assumption of weak driving
used to derive the effective operators.

Interpretation and application of the inverse non-Hermitian Hamiltonian. In
general, a good physical understanding of the effective decay mechanisms of an
open quantum system is desirable. Even more so, it is essential for developing
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Figure 3.6: Effective and full time evolution of a system with engineered decay. The
curves illustrate the preparation of the ground state |g2〉 (blue lines, starting from 0) by
decay of the ground state |g1〉 (green lines, starting from 1). For weak driving Ω ≤ γ/5
the effective operators (thick solid) match the full evolution (dash, Ω = γ/10) very
accurately. With increasing driving Ω the assumption of perturbative excitation is no
longer valid and the effective evolution deviates from the full dynamics (dash-dot, Ω =
γ/2; dot, Ω = γ). For the simulations the system parameters γ = κ = g/10 and the
optimized detunings δ = g2/∆ and ∆ = g

√
γ/κ were used.

dissipative state preparation schemes such as the ones in Chapter 4–7. There,
effective decay processes will be engineered to prepare a desired steady state.
To a large extent this is done through the elements of the inverse non-Hermitian
Hamiltonian. In the following, we discuss the physical meaning of these ele-
ments for the example at hand. We find that Ĥ−1

NH can be written as

Ĥ−1
NH =∆̃−1

eff |e1〉〈e1|+ δ̃−1
eff |e2〉〈e2|+ g̃−1

eff (|e1〉〈e2|+ |e2〉〈e1|) , (3.80)

having defined the quantities

∆̃eff ≡ 1/〈e1|Ĥ−1
NH|e1〉 = ∆̃− g2/δ̃ (3.81)

δ̃eff ≡ 1/〈e2|Ĥ−1
NH|e2〉 = δ̃− g2/∆̃ (3.82)

g̃eff ≡ 1/〈e1|Ĥ−1
NH|e2〉 = g− δ̃ · ∆̃/g. (3.83)

Each of the latter quantities can be seen as an effective complex detuning (∆̃eff,
δ̃eff) or coupling (g̃eff) of the excited states. Ĥ−1

NH contains their inverses which act
as “propagators” for the effective operators of Eqs. (3.3) and (3.4) and therefore
govern the strength of the effective processes. We can now express the effective
decay rates of Eqs. (3.77) and (3.78) in terms of the effective complex energies
and couplings of the excited states:

κeff =
κΩ2

4|g̃eff|2
, (3.84)

γeff =
γΩ2

4|∆̃eff|2
. (3.85)
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We note that our above choice of δ = δopt minimizes |∆̃eff|2, |δ̃eff|2, and |g̃eff|2.
Physically, this corresponds to the case where the driving V̂ is in resonance with
the lower dressed state of the excited states |e1〉 and |e2〉 (or the upper dressed
state for δ = − g2

∆ , respectively), as can be seen from Fig. 3.5. Accordingly, the
absolute values of the propagators of Ĥ−1

NH in Eq. (3.80) are maximized under
this choice, resulting in an enhanced decay from |g1〉 to |g2〉. This can be used
for dissipative state preparation as we discuss in the section below.

3.4.4 Dissipative state preparation

Based on the presented examples, we briefly address some basic principles of
dissipative state preparation. We begin by discussing optical pumping and then
move on to a more advanced engineered decay processes.

Optical pumping [74] constitutes a widely used technique for the preparation of
pure – albeit not entangled – states by means of decay. The necessary ingredients
for optical pumping are present in the Raman scheme in Fig. 3.3: A single
field couples to one of two optical transitions of a three-level (‘Λ’) system. The
field, e.g. the one with Ω0 in Eq. (3.57), thereby excites one of the two ground
levels, |0〉 to the excited level, |e〉. The level |e〉 is, in turn, subject to decay, such
as spontaneous emission, described by the Lindblad operators in Eqs. (3.58)–
(3.59), with a total decay rate γ = γ0 + γ1. In the absence of a detuning ∆0 and
assuming for simplicity γ1 = γ

2 , the effective decay from |0〉 to |1〉 is described
by the effective Lindblad operator

Lγ,0
eff =

iΩ√
2γ
|1〉〈0|, (3.86)

which yields an effective decay rate

γ0→1
eff = |〈1|Lγ,1

eff |0〉|
2 =

Ω2

2γ
. (3.87)

As we can see from this expression, the population of level |0〉 can, in principle,
be completely transferred to level |1〉, thus allowing for a theoretical fidelity 1 of
state |1〉 in the steady state. From Eq. (3.87) it also appears that there is some
degree of freedom to engineer the decay by adjusting the driving strength Ω,
and possibly also the line width γ. One can now think of a situation where two
such decay processes are concatenated. This can, e.g., be the case for two driven

atoms, where we have the decay processes |00〉 |0e〉,|e0〉→ {|01〉, |10〉} |1e〉,|e1〉→ |11〉.
Here, the rate for each decay process is determined by the decay rate of a single
excitation to |e〉. It is therefore not possible to favor, say, the first decay process
over the second one. Such a requirement will, however, turn out to be essential
for the preparation of an entangled state of two qubits in Chapter 4–6. In the fol-
lowing, we will sketch how dissipative state preparation can be achieved when
using a four-level system with engineered decay.

Engineered decay has previously been discussed in Sec. 3.4.3 for a four-level
system. Such a setting allows us to tailor effective decay processes: In engineer-
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ing several such processes to be different in strength we lay the foundations for
developing schemes for dissipative state preparation in the succeeding chapters.
We consider two concatenated decay processes, each of the kind shown in Fig.
3.5. We assume them to lead from a state |0〉 to a state |1〉 and, by a similar
process, to a state |2〉. Using the results of Sec. 3.4.3, we can describe these by

Lκ,eff =
√

κeff,1|1〉〈0|+
√

κeff,2|2〉〈1|, (3.88)

κeff,n =
κΩ2

4|g̃eff,n|2
, (3.89)

g̃eff,n =
√

ng− ∆̃δ̃√
ng

. (3.90)

The physical meaning of the parameter n will become clear in Chapter 4, for
now it is only important to state that g̃eff,n can differ. We now engineer the first
decay process to be strong and the second one to be weak. This is achieved by
making the same parameter choice as in Sec. 3.4.3, ∆δ = g2 and ∆

δ = γ
κ . For

g2 � γκ this results in

g̃eff,1 ≈ i
√

γκ, (3.91)

g̃eff,2 ≈ g. (3.92)

Assuming g2 � γκ we have thereby achieved that |g̃eff,1| � |g̃eff,2|, and hence
that |κeff,1| � |κeff,2|. A similar effect is found when considering effective spon-
taneous emission (γeff). Two excited state situations with a difference in the
couplings thus allow us to favor one decay process over the other: While κeff,1
is suppressed by a detuning, κeff,2 is only limited by the line width of the in-
volved levels. The dissipative preparation of state |1〉 is then much faster than
the losses to |2〉. This example will prove useful when we consider dissipative
state preparation schemes in actual physical systems in Chapter 4–7.

3.5 Comparison to other methods

Covering both coherent Hamiltonian and dissipative Lindblad interactions, our
effective operator formalism allows us to reduce the complexity of an open quan-
tum system considerably by restricting its time evolution to an effective master
equation describing ground-state to ground-state processes. It is thus useful
for understanding the quantum dynamics of complex open systems by identi-
fying their effective dissipative interactions and by reducing high-dimensional
evolution to an effective master equation of the ground states. More specifi-
cally, our effective operators can be applied to identify and tailor effective decay
processes involving coherent driving and naturally occurring sources of noise
in open quantum systems. In particular, the presented operators allow for the
development of physical schemes for dissipative quantum computing and dissi-
pative state engineering, as will be seen in the succeeding chapters.

In the following, we compare the results obtained here with other methods from
the literature. The formalism we have presented here is equivalent to the stan-
dard approach of adiabatic elimination in quantum optics (see, e.g., Ref. [122])
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and is essentially a formalization of it. In most approaches adiabatic elimina-
tion is done at the level of equations of motion. This procedure can therefore
be rather tedious, as it requires the derivation of the equations of motion fol-
lowed by various manipulations of the equations, which are then often used to
extract effective operators. For comparison, our formalism works directly at the
operators and immediately gives the effective operators without reverting to the
equations of motion.

The effective operators of Eqs. (3.3) and (3.4) are the most compact formalism
presented in this work. For the assumption of perturbative ground-state cou-
pling and a single perturbative exciting field these operators match the time
evolution very precisely. The extended operators of Eqs. (3.38) and (3.39), (3.43)
and (3.44), and (3.45) and (3.46) allow for the same precision, but also in the pres-
ence of non-perturbative ground-state interactions and several exciting fields.

As could be seen from the example of the three-level Raman scheme in Sec.
3.4.2, in the absence of decoherence the effective Hamiltonian method of James
and co-workers [123, 124] can lead to similar results as our formalism. However,
as opposed to Ref. [124], we do not find any additional decoherence terms
emerging from averaging over the fast coherent evolution of the fields.

Also, the Feshbach projection-operator method of Refs. [131, 133] allows for
descriptions of open system dynamics by means of an effective non-Hermitian
Hamiltonian. We see that if we ignore the feeding term ∑k L̂k

effρ
(0)(L̂eff)

† in Eq.
(3.32) the evolution is described by an effective non-Hermitian Hamiltonian

Ĥeff,NH = Ĥeff −
i
2 ∑

k
(L̂k

eff)
† L̂k

eff (3.93)

= V̂−Ĥ−1
NHV̂+ + Ĥg. (3.94)

This Hamiltonian is equivalent to the one of Refs. [131, 133]. In the language of
the Monte Carlo wave function method [126], Ĥeff,NH accounts for the “no-jump”
evolution of the ground states. In contrast to this method, our effective formal-
ism goes beyond including effects of non-Hermitian time evolution in the effec-
tive Hamiltonian, as we also include the feeding term. As a result we separate
the non-Hermitian effective evolution into a Hermitian part with a (Hermitian)
Hamiltonian Ĥeff and a non-Hermitian part with effective Lindblad operators
L̂k

eff.

3.6 Beyond perturbation theory

In several places we will encounter situations with strong driving. This contra-
dicts the assumption of a perturbative drive made in the derivation of the effec-
tive operator formalism. In Sec. 4.4, the dominant effect is the dressing of the
ground states. This mechanism can be included using the generalized formalism
in Sec. 3.3.5. In Sec. 6.4.2, 7.4 and 7.6, the dominant effect is power broaden-
ing of the excited resonances which cannot be included using the extensions of
the formalism presented so far. Still, it will be possible to add phenomenological
terms from adiabatic elimination to the effective operators to make them account
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for the effect of power broadening. The effective operators which are patched-up
in this way describe the behavior of the strongly driven system quite accurately.

3.7 Reduction of the dynamics to rate equations

Using the effective operator formalism, we can achieve a reduction of the dy-
namics of the open system to an effective master equation of the ground states.
This description is exact to second order perturbation theory. If, in addition,
the effective Hamiltonian vanishes, Heff = 0, the remaining dynamics is purely
dissipative. We can then, in another step, reduce the complexity of the dynamics
to rate equations of the populations. This is achieved by choosing subspaces of
interest between which the interactions present in the system do not build up
coherences. The subspaces are defined by projection operators, e.g. PA and PB.
For negligible coherences between the subspaces A and B we can then trace over
the Liouvillian evolution to obtain decay rates from subspace A to subspace B

ΓA→B ≡ Tr(PBL(PAρiPA)PB) = ∑
k

Tr(PBLkPAρiPAL†
k PB) (3.95)

= ∑
k

∑
f
〈ψ f |PBLkPAρiPAL†

k PB|ψ f 〉 (3.96)

≡∑
k

ΓA→B,k (3.97)

For the subspaces we will consider, the decay rate is the same for all states in the
subspace. We can then calculate the decay rates using a single state |ψi〉,

ΓA→B,k = ∑
f
|〈ψ f |PBLkPA|ψi〉|2 (3.98)

We will use this rate equation approach to analyze the scaling of the preparation
time of the protocols in Chapters 4–7.





Chapter4

Dissipative preparation of

entanglement in cavity QED

As we pointed out in Chapter 2, the reliable and efficient preparation of entan-
glement is one of the main tasks in quantum information science. The effort
has been driven on the one hand by the desire to understand these quintessen-
tially non-classical states of matter, and on the other by their promise as building
blocks for quantum information processing tasks. In particular entangled states
are believed to be the main ingredient responsible for the additional information
processing power of quantum machines over classical ones and are an important
resource in quantum communication. Having access to a reliable source of en-
tanglement thus cannot be overestimated.
Since the advent of quantum information science, noise has been considered a
detrimental element in entanglement preparation schemes (cf. Sec. 2.4.2). A few
years ago, however, it has been suggested that dissipative noise can be used as
a resource for quantum information processing, supporting the preparation of
entangled states. Since then many quantum information processing tasks have
been reconsidered within the framework of dissipative state engineering and
dissipative quantum computing, which are summarized in Sec. 2.4.3. Theoreti-
cal and experimental studies along these lines have shown these new ideas to be
realistic and promising as a new path for harnessing the potential of quantum
information.

In this chapter, we present schemes for the dissipative preparation of a max-
imally entangled steady state. As a concrete physical system we consider a
cavity QED setup (cf. Sec. 2.4.1) with two atoms coupled to a high-finesse opti-
cal cavity [37–42]. Generating entanglement in this system by unitary evolution
has been studied in great detail theoretically [43–49] and the limitations coming
from dissipation are therefore well understood (see Sec. 2.4.2).
The setup is described in detail in Sec. 4.1. In Sec. 4.3–4.5 we demonstrate
that a maximally entangled steady state (stationary state) of the two atoms in
an optical cavity can be prepared dissipatively with a very high fidelity. This
can be achieved by several qualitatively different state preparation mechanisms,
depending on the strengths and limitations of the experiment at hand. In each
of the schemes, the two atoms are rapidly driven into a singlet state, indepen-
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Figure 4.1: Cavity QED setup for dissipative preparation of an entangled state between
two Λ-type atoms in an optical cavity. Coherent driving Ω is performed from ground
state |0〉 to the excited state |e〉. Atom-cavity interaction g takes place between |e〉 and
ground state |1〉; the ground states are coupled by a microwave or Raman field ΩMW.
Spontaneous emission and cavity photon loss are present as sources of decay.

dent of the initial state of the system, and without need for any unitary feedback
control. Consequently, the lifetime of the state is dictated by the lifetime of the
experiment.
In Sec. 4.3 we present a scheme that employs spontaneous emission mediated
by a dark state of the atom-cavity interaction. This scheme leads to the highest
fidelity of the entangled steady state among the presented schemes. In Sec. 4.5
we present schemes suitable for existing cavity QED experiments which do not
have transversal confinement of the atoms, cf. Ref. [41]. For comparison we
discuss an adaptation of a dissipative protocol presented in Ref. [86] to Λ atoms
in optical cavities in App. A.
To identify and engineer the relevant interactions, we apply the effective oper-
ator formalism presented in Chapter 3 to the system in Sec. 4.1, resulting in
the effective dynamics discussed in Sec. 4.2. This gives us an effective master
equation for each scheme, from which all of the desired performance measures
can be analytically derived. We analyze the scheme in Sec. 4.3 in full detail
and derive benchmarks for error and speed of the protocol. In Sec. 4.3.6 we
argue that our protocols for the dissipative preparation of entanglement exhibit
an improved error scaling as compared to previous methods for entanglement
generation. We analytically derive the optimal steady-state fidelity and prepara-
tion time of the scheme as a function of the system parameters in Sec. 4.4 and
the robustness against a difference in the coupling of the atoms to the cavity in
App. B. Our analytic results are verified by numerical simulations. We collect
the results and compare the schemes in Sec. 4.6. A summary is given in Sec. 4.7.

4.1 Cavity QED setup

We consider a single-mode cavity QED system consisting of two distantly trapped
Λ-type atoms with ground states |0〉 and |1〉 and an excited state |e〉. These lev-
els are coupled by a laser, a microwave field or Raman transition, and a cavity
mode. Within the dipole and rotating wave approximation the couplings of this
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system are described by a Hamiltonian

Ĥ = Ĥ0 + Ĥac + Ĥlaser + ĤMW. (4.1)

We assume that the level splittings are the same for the two atoms, and do not
fluctuate in time. This can for instance be achieved by cooling the atoms to
the ground states of identical trapping potentials or by using ‘magic wavelength
traps’. Then the Hamiltonian for the atoms and the cavity mode is given by

Ĥ0 = ωc â† â + ∑
j=1,2

(
ω0|0〉j〈0|+ ω1|1〉j〈1|+ ωe|e〉j〈e|

)
. (4.2)

The couplings of the levels are expressed by the interaction Hamiltonians

Ĥlaser =
Ω

2
e−iωlasert

(
|e〉1〈0|+ eiφ|e〉2〈0|

)
+ H.c., (4.3)

ĤMW =
ΩMW

2 ∑
j=1,2

e−iωMWt|1〉j〈0|+ H.c., (4.4)

Ĥac = g ∑
j=1,2

â|e〉j〈1|+ H.c. (4.5)

The coherent laser field Ĥlaser drives the transition between the ground state |0〉
and the excited state |e〉with resonant Rabi frequency Ω. The angle φ determines
the phase difference of the driving field for the two atoms with respect to the
atom-cavity coupling; for convenience we assume it on the driving of the second
atom. The two ground states |0〉 and |1〉 are coupled by means of a coherent
microwave field or Raman transition ĤMW of Rabi frequency ΩMW. The atom-
cavity interaction Ĥac describes that the cavity field {â, â†} couples the |1〉 and
|e〉 states with a strength of g and identical phase for both atoms. Assuming
that the ground and excited subspace are coupled perturbatively, the system
Hamiltonian can be structured according to

Ĥ = Ĥg + Ĥe + V̂+ + V̂−, (4.6)

with Ĥg (Ĥe) as the Hamiltonian of the ground (excited) subspace and V̂ =
V̂+ + V̂− (V̂− = V̂†

+) as the perturbative (de-)excitation term between the ground
and excited subspaces. We change into a frame rotating at the frequency of the
level |0〉, ω0, and the frequencies of the laser and the microwave, ωlaser and ωMW,
to obtain the time-independent couplings illustrated in Fig. 4.1,

Ĥg =
ΩMW

2 ∑
j=1,2

(
|1〉j〈0|+ H.c.

)
+ β ∑

j=1,2
|1〉j〈1|, (4.7)

Ĥe = ∆ ∑
j=1,2
|e〉j〈e|+ δâ† â + g ∑

j=1,2

(
â†|1〉j〈e|+ H.c.

)
, (4.8)

V̂+ =
Ω

2

(
|e〉1〈0|+ eiφ|e〉2〈0|

)
, V̂− = V̂†

+. (4.9)

Here, ∆ ≡ ωe − ω0 − ωlaser and β ≡ ω1 − ω0 − ωMW are the detunings of the
laser and of the microwave field, respectively; a cavity excitation has an energy
of δ ≡ ωc −ωlaser + ωMW.
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The noise processes resulting from interactions between the system and the en-
vironment are assumed Markovian so that the time evolution of the system can
be described by a master equation ρ̇ = L(ρ) with a Liouvillian in Lindblad form

ρ̇ = L(ρ) = −i
[
Ĥ, ρ

]
+ ∑

k
L̂kρL̂†

k −
1
2

(
L̂†

k L̂kρ + ρL̂†
k L̂k

)
. (4.10)

The Lindblad operators L̂k are associated with the following naturally occurring
noise processes: (i) loss of a cavity excitation, L̂κ =

√
κâ, with a photon decay

rate κ, and (ii) decay by spontaneous emission from the excited atomic state |e〉j
into ground states |0〉j and |1〉j, with Lindblad operators L̂γ,0,j =

√
γ/2|0〉j〈e|

and L̂γ,1,j =
√

γ/2|1〉j〈e|, respectively. Given that the separation of the atoms
will typically be more than one wavelength for typical experimental conditions
we neglect collective components of the spontaneous emission. Furthermore, we
see from the arguments below that the bandwidth of the laser plays a minor role,
as long as it is kept within the linewidth of the transition we want to drive, e.g.
∼ 6 MHz for the parameters of Ref. [41]. Note that for simplicity we assume
equal rates γ/2 into the two ground states; an asymmetric decay of |e〉 does not
modify the results significantly and can even be used to improve the protocols.
We ignore the influence from sources of noise other than spontaneous emission
and cavity decay, such as dephasing due to stray fields or blackbody radiation.
This is justified if the coherence time of the hyperfine transition exceeds the
preparation time. As we shall see later, the preparation time is on the order of
µs justifying this approximation for most experiments.
As a measure for the quality of the cavity we introduce the cooperativity param-
eter, C = g2

γκ . As we will find below, the cooperativity is the main parameter
quantifying how well the entanglement protocols work. We note here, that we
define γ as the decay of population of the excited state and κ as the photon loss
rate of the cavity, which differ from polarization and field decay rates which are
also commonly referred to as (γ, κ) [41] by a factor of two each; hence, for the
parameters of Ref. [41] we get C ≈ 17. In this work, we will always assume
strong coupling C � 1, but we distinguish between the regimes of weak driving
(Ω, ΩMW, β)� (g, κ, γ) and increased driving (Ω, ΩMW, β) . (κ, γ).

In the following, it will be convenient to work in the triplet-singlet basis of
the ground states: {|00〉, |11〉, |T〉, |S〉}, where |00〉 = |0〉1|0〉2, |11〉 = |1〉1|1〉2,
|T〉 = 1√

2
(|0〉1|1〉2 + |1〉1|0〉2), and |S〉 = 1√

2
(|0〉1|1〉2 − |1〉1|0〉2); the latter is the

desired maximally entangled singlet state for all the protocols that we investi-
gate. We further define the following excited states which will appear through-
out the chapter: |T0〉 = 1√

2
(|0〉1|e〉2 + |e〉1|0〉2), |S0〉 = 1√

2
(|0〉1|e〉2 − |e〉1|0〉2),

|T1〉 = 1√
2
(|1〉1|e〉2 + |e〉1|1〉2) and |S1〉 = 1√

2
(|1〉1|e〉2 − |e〉1|1〉2). The excited

states of the cavity read |00〉|1〉, |11〉|1〉, |T〉|1〉, |S〉|1〉. We will truncate the
Hilbert space by excluding states with two or more excitations (of the cavity or
of the atoms), as we always work in the perturbative regime with weak driving
in our analytical calculations. The states and their couplings (for φ = 0) are
shown in Fig. 4.2.
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Figure 4.2: Coherent and dissipative interactions between ground and excited states.
Ground states are coherently excited by an optical field (Ω) to excited atomic states
(straight red arrow). Exchange of excitation via the atom-cavity interaction (g) couples
these to cavity-excited states (wiggled blue arrow). Ground states are coupled by a mi-
crowave or Raman transition ΩMW. Atomic excitations decay by spontaneous emission
at a rate γ and cavity loss occurs at a rate κ (both indicated with dotted arrows). The
ground to excited subspace interactions are drawn for φ = 0 where excitation happens
inside the triplet/singlet subspaces, whereas φ = π leads to crossings between the triplet
and singlet sectors. The detunings are defined in the text.

4.2 Effective dynamics of the system

The key to establishing an entangled ground state by dissipative state prepara-
tion is to identify and engineer decay processes present in the physical system in
a systematic and reliable way. In the following section we present the model of
the physical system at hand. We use the effective operator formalism presented
in Chapter 3 (see also Ref. [134]) to reduce the unitary and dissipative dynamics
of the open quantum system to the non-decaying ground states and to tailor the
effective decay processes to achieve a desired steady state.

4.2.1 Complex energies and non-Hermitian time evolution of the
excited states

In Fig. 4.2 we have visualized the coherent and dissipative interactions of the
ground and excited states present in the system. It is evident that the dynamics
of the excited states, which are subject to decay, is governed by both, unitary and
dissipative couplings. For the excited levels we can combine the real detunings
of the levels with imaginary terms, that correspond to broadening by decay, to
yield complex energy terms. The resulting non-Hermitian time evolution of the
excited states is expressed compactly in terms of a non-Hermitian Hamiltonian

ĤNH ≡ Ĥe −
i
2 ∑

k
L̂†

k L̂k. (4.11)

Also referred to as the no-jump Hamiltonian in the language of the quantum
jump formalism [126], ĤNH combines the Hamiltonian of the decaying excited
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subspace Ĥe with the jump terms of the master equation (4.10). For the system
at hand we find

ĤNH =∆̃0 (|T0〉〈T0|+ |S0〉〈S0|) + ∆̃1 (|T1〉〈T1|+ |S1〉〈S1|) +
+ δ̃0|00〉|1〉〈1|〈00|+ δ̃1|T〉|1〉〈1|〈T|+
+ δ̃2|11〉|1〉〈1|〈11|+ δ̃1|S〉|1〉〈1|〈S|+
+ g (|T0〉〈1|〈T|+ |S0〉〈1|〈S|+ |T1〉〈1|〈11|+ H.c.) . (4.12)

Here, we have defined complex ‘energies’ ∆̃n ≡ ∆n − iγ
2 , δ̃n ≡ δn − iκ

2 , ∆n ≡
∆ + m · β, and δn ≡ δ + m · β, with m being the number of atoms in state |1〉
(∆0 = ∆, δ0 = δ). As will become clear further below, it is useful to set ∆−1 ≡ ∆1.
In doing so, the detunings of the excited states are conveniently combined with
their decay widths to complex detunings, where both their real and imaginary
parts govern the strengths of the transitions involving the excited states.

4.2.2 Effective Hamiltonian and Lindblad operators

As can be recognized from Fig. 4.2, the coherent and dissipative couplings of
the excited states can be concatenated to effective second-order processes be-
tween the ground states. An example for such an effective unitary process is

given by the transition |00〉 Ω→ |T0〉
Ω→ |00〉, facilitated by the coherent driving

V̂ of strength Ω, resulting in an effective shift of ground level |00〉. In case
the coherent de-excitation is replaced by a decay an effective dissipative pro-

cess is formed. Here, |00〉 Ω→ |T0〉
γ→ |S〉 is an example for an effective decay

from state |00〉 to |S〉, involving spontaneous emission of an atomic excitation
at a rate γ. In this manner, all available combinations of weak optical excita-
tion, non-Hermitian coupling between the excited states and either subsequent
weak optical de-excitation or decay bundle together to effective second-order
processes between the ground states. We assume the optical excitation V̂ to be a
perturbation of the non-Hermitian evolution of the excited levels given by ĤNH.
Consequently, their population will always be much lower than the population
of the ground levels. On these grounds, we can perform adiabatic elimination of
the excited levels and restrict the dynamics to the ground states.
In Chapter 3 we have presented an effective operator formalism based on second-
order perturbation theory and adiabatic elimination to reduce the evolution of
an open system to effective unitary and dissipative processes between its ground
states. Applying this method simplifies the complexity of the Liouvillian dy-
namics of Eq. (4.10) considerably, resulting in an effective master equation in
Lindblad form

ρ̇ = i
[
ρ, Ĥeff

]
+ ∑

k
L̂k

effρ(L̂k
eff)

† − 1
2

(
(L̂k

eff)
† L̂k

effρ + ρ(L̂k
eff)

† L̂k
eff

)
, (4.13)

represented by an effective Liouvillian Leff(ρ) = ρ̇. It contains an effective
Hamiltonian Ĥeff and effective Lindblad operators L̂k

eff

Ĥeff ≡ −
1
2

V̂−
(

Ĥ−1
NH + (Ĥ−1

NH)
†
)

V̂+ + Ĥg, (4.14)

L̂k
eff ≡ L̂k Ĥ−1

NHV̂+, (4.15)
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Figure 4.3: Propagators in the excited-state subspace. The loop-like elements ∆̃−1
n,eff, δ̃−1

n,eff
and transition-like elements g̃−1

n,eff contained in Ĥ−1
NH govern the non-Hermitian evolution

of the excited states. Grouped according to the three interacting and two non-interacting
excited subspaces these propagators determine the strength of effective processes involv-
ing the excited states, depending on the state reached by initial excitation and the one
left by either coherent de-excitation or decay.

incorporating the inverse of the non-Hermitian Hamiltonian ĤNH of Eq. (4.11)
and the unperturbed ground-state Hamiltonian Ĥg.
As expected, these effective processes consist of an initial weak optical excita-
tion V̂+ and a final de-excitation V̂− or decay L̂k depending on their unitary or
dissipative character. In-between, the inverse non-Hermitian Hamiltonian Ĥ−1

NH
acts as a ‘propagator’, representing the non-Hermitian evolution of the excited
subspace which determines the strength of the effective processes depending on
which excited states take part in it. Its properties will be addressed in more
detail in the following section.

4.2.3 Effective propagators of the excited states

In the excited-state basis defined earlier, ĤNH can be broken up into 5 block di-
agonal elements which evolve independently. Ĥ−1

NH is then also in block diagonal
form, and can be written out explicitly as

Ĥ−1
NH = Ĥ−1

NH,|T0〉 + Ĥ−1
NH,|S0〉 + Ĥ−1

NH,|T1〉 + Ĥ−1
NH,|S1〉 + Ĥ−1

NH,|00〉|1〉, (4.16)

with three blocks for the interacting excited subspaces

Ĥ−1
NH,|T0〉 = ∆̃−1

1,eff|T0〉〈T0|+ δ̃−1
1,eff|T〉|1〉〈1|〈T|+ g̃−1

1,eff (|T〉|1〉〈T0|+ H.c.) , (4.17)

Ĥ−1
NH,|S0〉 = ∆̃−1

1,eff|S0〉〈S0|+ δ̃−1
1,eff|S〉|1〉〈1|〈S|+ g̃−1

1,eff (|S〉|1〉〈S0|+ H.c.) , (4.18)

Ĥ−1
NH,|T1〉 = ∆̃−1

2,eff|T1〉〈T1|+ δ̃−1
2,eff|11〉|1〉〈1|〈11|+ g̃−1

2,eff (|11〉|1〉〈T1|+ H.c.) , (4.19)

and two blocks for the non-interacting excited states

Ĥ−1
NH,|S1〉 = ∆̃−1

0,eff|S1〉〈S1|, (4.20)

Ĥ−1
NH,|00〉|1〉 = δ̃−1

0,eff|00〉|1〉〈1|〈00|. (4.21)
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In order to keep the notation compact we have defined here

∆̃n,eff ≡ ∆̃n−1 −
ng2

δ̃n
, (4.22)

δ̃n,eff ≡ δ̃n −
ng2

∆̃n−1
, (4.23)

g̃n,eff ≡
√

ng− δ̃n · ∆̃n−1√
ng

. (4.24)

The entries of Ĥ−1
NH, shown in Fig. 4.3, are generally complex and their magni-

tudes have dimension of inverse energy. As has been discussed in Sec. 3.4.3,
they play the role of propagators or complex magnitudes in the effective ground
state to ground state processes of Eqs. (4.14)–(4.15). Each effective process that is
formed from perturbative optical excitation V̂+ and subsequent de-excitation V̂−
or decay includes a propagator depending on which excited states are involved.
As can be seen in Fig. 4.3, Ĥ−1

NH contains both loop-like and transition-like propa-
gators, grouped according to the five separable subspaces. Their index n reflects
the coupling strength between the atomic and cavity excited state of the inter-
acting subspace, the latter of which has n atoms in state |1〉. The states |S1〉 and
|00〉|1〉 are dark-states of the atom-cavity interaction and are uncoupled (n = 0).
By our definitions of Eqs. (4.22)–(4.23) we have associated the loop-like propa-
gators ∆̃−1

n,eff and δ̃−1
n,eff with the complex detunings of the excited states such that

for a vanishing coupling g the shifts in ∆̃n,eff and δ̃n,eff would disappear, and we
would find ∆̃n,eff = ∆̃n−1 and δ̃n,eff = δ̃n. Similarly, in case of negligible complex
detunings ∆̃n−1 and δ̃n the transition-like propagators g̃−1

n,eff in Eqs. (4.17)–(4.19)
would simplify to the inverse of a real coupling g̃n,eff =

√
ng, the well-known

dressed state energy for n atoms resonant with a cavity.
All propagators of ĤNH and Fig. 4.3 can be written in terms of a denominator
D̃n ≡ ng2 − δ̃n · ∆̃n−1 which equals the reduced determinant of the Hamiltonian
of the according subspace and is highly dependent on the system parameters.
As we will show, an appropriate choice of the parameters ∆, δ and β engineers
certain propagators of the excited states, and hence, effective decay processes
mediated by them, to be very strong, while others are effectively suppressed.
Physically this can be understood as shifting one of the dressed states into res-
onance to enhance the coupling. In the following discussion we present various
schemes that build upon this principle of engineered decay. Here, each of the
schemes is denoted by the atomic excited state that mediates the engineered de-
cay into the desired maximally entangled singlet state |S〉.
Applying the discussed methods we will be able to analytically derive the op-
timal parameters and benchmarks for each of the presented schemes, the most
important of which are the steady-state fidelity with the desired entangled state
and the convergence time, estimated by the inverse of the spectral gap. We back
up all of our analytic results by numerical integration of the master equations
(4.10) and (4.13).
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Figure 4.4: Effective decay processes of the |S1〉 scheme. The optical excitation Ω drives
population from |T〉 to |S1〉. From there it decays spontaneously into the desired steady
state |S〉 with a certain probability. Since |S1〉 is the dark state of the atom-cavity interac-
tion Ĥac the initial excitation is not shifted and is close to resonance so that the effective
decay γeff from |T〉 prepares |S〉 very rapidly. Due to the strong coupling Ĥac of |T1〉
and |11〉|1〉 with a strength

√
2g these states form dressed states that are shifted out

of resonance. Effective spontaneous emission γeff and cavity loss κeff from |S〉 into |11〉,
mediated by |T1〉, are hence effectively suppressed. A microwave/Raman transition (not
shown) couples |00〉 and |11〉 to |T〉.

4.3 An entangling scheme using engineered spontaneous
emission

In the following, we present a scheme for the preparation of an entangled steady
state by an engineered spontaneous emission process mediated by the dark state
of the atom-cavity interaction, |S1〉. From the considered schemes it exhibits the
lowest error in the preparation of the entangled state.
As for all schemes discussed in this chapter, we begin by outlining the physical
mechanisms that underlie the dissipative state preparation, and proceed with
a discussion of the effective operators. Depending on the driving regime we
analytically derive the benchmarks for each scheme, in particular steady-state
fidelity and speed of convergence, from the effective dynamics.
For the scheme at hand, we choose to engineer the effective decay by sponta-
neous emission into the maximally entangled singlet state to be as strong as
possible. To this end, we set both the optical driving and the cavity transition
to be resonant (∆ = 0, δ = −β) and the microwave or Raman transition to be
slightly detuned (β 6= 0). Furthermore, we set φ = π so that the optical driving

crosses the singlet/triplet subspace, i.e. |T〉 Ω↔ |S1〉 and |S〉 Ω↔ |T1〉.

4.3.1 Mechanism of the state preparation

The mechanism is illustrated in Fig. 4.4. Population from |T〉 is excited up to
|S1〉 = 1√

2
(|1e〉 − |e1〉). The atomic excited state |S1〉 is the dark state of the

atom-cavity interaction, Ĥac, and is therefore resonant with the optical driving
(∆ = 0). Consequently, |T〉 decays very rapidly over |S1〉 into |S〉. On the other
hand, population from |S〉 is excited to |T1〉 which is coupled to |T〉|1〉 with a
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Figure 4.5: Effective ground-state processes of the |S1〉 scheme. (a) Detuning and inter-
actions in the shuffling picture, where |00〉, |T〉 and |11〉 are coupled by ΩMW to avoid
population in |00〉 and |11〉. Engineered spontaneous emission prepares the maximally
entangled singlet state |S〉 at a rate of 2γeff. Effective cavity decay out of |S〉 happens
at a rate κeff. (b) Dressed state picture. Strong spontaneous emission ∝ γeff reshuffles
the dressed triplet states (not shown between |T±〉). Population in |S〉 is gained from
(∝ γeff) and lost to (∝ κeff) each of the dressed triplet states.

strength of
√

2g. This strong coupling shifts their dressed states out of resonance
by ±

√
2g which is much more than the natural linewidth. Decay out of |S〉 is

thus strongly suppressed, while |T〉 is rapidly pumped into |S〉. Accumulation
of population in |00〉 or |11〉 is prevented by the microwave/Raman field that
couples the three triplet states |00〉, |T〉 and |11〉 and reshuffles population to
|T〉 from which engineered decay prepares |S〉 again. The detuning β of the
microwave is needed to prevent 1√

2
(|00〉 − |11〉) from being a dark state of the

microwave which would not be reshuffled to |T〉. The effective processes result-
ing from the coupling are illustrated in Fig. 4.5 a). We note that even though
the state |T1〉 is far out of resonance the desired steady state |S〉 is still weakly
coupled to |T1〉 by the laser driving; |S〉 is hence not an ideal dark state. The
fidelity of the steady state with |S〉 and the error rate of the protocol depend on
the ratio of the rate of the dissipative preparation of |S〉 and the rate of decay
from |S〉. In the following sections we will model these processes quantitatively
by considering the effective operators to derive the optimal parameters and the
error of the protocol analytically.

4.3.2 Effective processes

We begin our discussion of the effective processes, shown in Fig. 4.5 a), by
deriving the general effective operators for optical driving with φ = π. Given
V̂ and L̂k the terms for the effective processes can be read off directly from
the map of propagators in Fig. 4.3. These operators are equally valid for the
|S0〉 scheme in Sec. 4.5.2 that also uses φ = π. For the effective decay of an
atomic excitation |e〉 into ground state |0〉 by spontaneous emission we obtain
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the effective Lindblad operators

L̂γ,0,{1,2}
eff =±

√
γ/2Ω

2∆̃1,eff
|00〉〈00|+

√
γ/2Ω

4∆̃0,eff
(±|T〉〈T||S〉〈T|) +

+

√
γ/2Ω

4∆̃2,eff
(|T〉〈S| ± |S〉〈S|) . (4.25)

The superscript γ on the Lindblad operators stands for spontaneous emission, 0
for the decay into ground state |0〉, and the index {1, 2} for the atom at which
the decay occurs refers to the upper (lower) set of signs of the terms. Similarly,
the effective decay by spontaneous emission into ground state |1〉 is given by

L̂γ,1,{1,2}
eff =+

√
γΩ

4∆̃1,eff
(±|T〉〈00| − |S〉〈00|)±

√
γΩ

4∆̃0,eff
|11〉〈T|

+

√
γΩ

4∆̃2,eff
|11〉〈S|. (4.26)

The effective decay of a cavity excitation is found to be

L̂κ
eff =

√
κΩ

2g̃2,eff
|11〉〈S| −

√
κ/2Ω

g̃1,eff
|S〉〈00|. (4.27)

Finally, the effective unitary processes are given by

Ĥeff =− Re
[

Ω2

2∆̃1,eff

]
|00〉〈00| − Re

[
Ω2

4∆̃0,eff

]
|T〉〈T|

− Re
[

Ω2

4∆̃2,eff

]
|S〉〈S|+ Ĥg, (4.28)

where Re[ ] denotes the real part of the argument. While the above effective
operators hold whenever φ = π, we can simplify them for the particular scheme
at hand by discussing the propagators for the parameter choices made in the
previous section. In the absence of an atomic detuning, ∆ = 0, the complex
energy of |S1〉, as the dark-state of the cavity interaction, is given by ∆̃1 = β− iγ

2 .
As we will discuss below it is desirable to have β ∝ Ω so that for the assumption
of weak driving (Ω� γ) we can write ∆̃1 ≈ − iγ

2 . The propagator of the effective
|S1〉-mediated decay processes then simplifies to

〈S1|Ĥ−1
NH|S1〉 = ∆̃−1

0,eff ≈ −
2
iγ

. (4.29)

Hence, the effective decay processes mediated by |S1〉 that incorporate this prop-
agator are tailored to be very strong compared to the decay out of the singlet
state which involves the subspace consisting of the states |T1〉 and |11〉|1〉, and
the transition-like propagator

〈1|〈T|Ĥ−1
NH|T1〉 = g̃−1

2,eff ≈
1√
2g

. (4.30)
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The last denominator reflects the strong shift of the dressed states of |T1〉 and
|11〉|1〉 out of resonance, slowing down the effective decay out of |S〉. Conse-
quently, we have reached |∆̃−1

0,eff| � |g̃
−1
n,eff| so that effective processes mediated

by the dark state |S1〉 are engineered to be much stronger than those involving
other states, in particular |T1〉. We have thus found that the triplet ground state
|T〉 undergoes rapid effective spontaneous emission at a rate ∝ 1/γ, while cavity
decay from |S〉 ∝ κ/g2 is suppressed in the strong coupling regime where C � 1.
For finding the steady state we can drop the suppressed terms unless they af-
fect the singlet state. In addition, spontaneous emission from |S〉 ∝ γκ2/g4 is
negligible and will be ignored. The effective decay processes then simplify to

L̂γ,0,{1,2}
eff = ±i

√
γeff|T〉〈T|+ i

√
γeff|S〉〈T|, (4.31)

L̂γ,1,{1,2}
eff = ±i

√
2γeff|11〉〈T|, (4.32)

L̂κ
eff =

√
κeff|11〉〈S|. (4.33)

Here, we have set κeff = |〈11|L̂κ
eff|S〉|2 = κΩ2

8g2 and γeff = |〈S|L̂
γ,0,{1,2}
eff |T〉|2 = Ω2

8γ .

Furthermore, for the scheme at hand the effective Hamiltonian Ĥeff of Eq. (4.28)
is well approximated by the unperturbed ground-state Hamiltonian Ĥg,

Ĥg =
ΩMW

2
(|00〉〈T|+ |T〉〈11|+ H.c.) + β (2|11〉〈11|+ |T〉〈T|+ |S〉〈S|) ,

if we have neglect the minor effective shifts O(Ω2). The resulting effective de-
cay processes of this scheme are illustrated in Fig. 4.5 a) together with the mi-
crowave/Raman reshuffling. The singlet state |S〉 is efficiently prepared from
|T〉 by spontaneous emission at a rate of 2γeff. The singlet |S〉 decays by ef-
fective cavity loss κeff into |11〉. The mechanism that allows us to engineer a
strong effective spontaneous emission from |T〉 into |S〉 at the same time causes
strong decay at a rate of 4γeff from |T〉 into |11〉. Hence, accumulation in |11〉
needs to be inhibited by the microwave/Raman shuffling ΩMW. The fidelity of
the steady state with the desired entangled state will be derived analytically in
the following sections after changing into a dressed state picture with respect to
ΩMW.

4.3.3 Parameter analysis at weak driving

We first analyze the dynamics of this |S1〉 scheme for weak optical driving Ω.
After a basis transform into a dressed ground-state picture, this assumption will
allow us to reduce the dynamics to rate equations for the ground-state popu-
lations. From these, we derive the important benchmarks for a comparison of
the presented schemes; the steady-state fidelity with the desired entangled state,
and the spectral gap as a measure for the rate of convergence.
The basis used so far, involving the triplet states |00〉, |T〉 and |11〉 coupled by
ΩMW, will be referred to as ‘shuffling picture’ in the remainder of the chap-
ter. We now simplify the analysis by identifying a basis in which non-diagonal
elements of the density matrix of the reduced system are suppressed, as a conse-
quence of the weak driving. It is then possible to express the dynamics as a set
of linear rate equations, cf. Sec. 3.7. The basis of the new ‘dressed state picture’
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contains the original singlet state |S〉, and the three dressed triplet states

|T±〉 = −1/2(B∓ 1)|00〉+ 1/2(B± 1)|11〉+ A/
√

2|T〉, (4.34)

|Tr〉 = A/
√

2|00〉 − A/
√

2|11〉+ B|T〉, (4.35)

where we have defined A = ΩMW/
√

Ω2
MW + β2 and B = β/

√
Ω2

MW + β2. In
this basis the effective Hamiltonian is diagonal

Ĥeff = ∑
+/−

(β± (Bβ + AΩMW)) |T±〉〈T±|+ β (|Tr〉〈Tr|+ |S〉〈S|) . (4.36)

The parameters A and B, and hence the ratio of β to ΩMW, determine the contri-
bution of |T〉 to each of the dressed states. We find the optimal parameter choice

to be given by A =
√

2
3 , B =

√
1
3 , and β = ΩMW/

√
2. Here, each of the dressed

states contains an equal share of the triplet state |T〉 from which |S〉 is prepared.
In the weak driving regime (Ω � γ), the rephasing of the dressed states is
much faster than the effective decay γeff ∝ Ω2

γ . Consequently, in the new basis
the evolution of the coherences can be dropped from the master equation. The
dissipative time evolution is then well approximated by a set of coupled linear
differential rate equations. The rate equation for the population of the singlet
state PS is

ṖS =
Ω2

12γ
(PT+ + PT− + PTr)−

κΩ2

8g2 PS. (4.37)

Here, we have used that for weak driving the decay from the three dressed triplet
states into the singlet are of the same strength due to the equal weight of |T〉 in
the dressed states and equals one third of the total rate Ω/4γ.

4.3.4 Derivation of the spectral gap for weak driving

The quality of a dissipative state preparation protocol is determined by two main
benchmarks: (i) fidelity of the stationary state, and (ii) speed of the protocol. We
first consider the latter and turn to the fidelity in the sections below. Estimating
the speed of a dissipative state preparation protocol is in general a difficult task,
but, for small systems, the spectral gap of the Liouvillian is a very good estimate
of the rate of convergence. As mentioned in Sec. 2.3.2 the spectral gap of a
Liouvillian L is defined as the magnitude of the smallest (in absolute value)
non-zero real part of the eigenvalues of L, where the Liouvillian is written as a
linear operator in the matrix units basis (see Ref. [135] for further details). The
spectral gap can thus be seen as the decay rate of the slowest-decaying quasi-
stationary eigenstate. If the gap is small, then the quasi-stationary eigenstate
remains populated for a long period of time, whereas if the gap is large, then all
eigenstates except the stationary one get depopulated rapidly.
In the setting at hand, the gap can in fact be read off from the expressions for the
effective decay process L̂γ,0,{1,2}

eff , which have a rate γeff =
Ω2

8γ . As stated above,
the dressed states each contain an equal share of 1√

3
|T〉. Hence, the singlet is
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prepared equally fast by decay of the three dressed states at an individual rate
of 2 · 1

3 · γeff which results in the spectral gap

λ =
Ω2

12γ
. (4.38)

Furthermore, PT ≡ 1
3 (PT+ + PT− + PTr) is recognized as the according lowest-

lying eigenvector of the Liouvillian, as can be seen from Eq. (4.37) above.

4.3.5 Derivation of the static error

From the rate equation (4.37) we can derive the fidelity of the steady state with
respect to the maximally entangled singlet state as FS = lim

t→∞
PS. Equivalently,

the error of the protocol is found as the stationary population of the undesired
triplet states (1− FS). Inserting 1− PS = PT+ + PT− + PTr into Eq. (4.37), we use
ṖS = 0 and obtain for the static error of the protocol

(1− FS)stat =
3γκ

2g2 ≡
3

2C
, (4.39)

with the cooperativity C as defined in Sec. 4.1. Note that Eq. (4.39) indicates that
in the strong coupling regime (C � 1) the only non-negligible error term scales
linear in C−1. This linear scaling of the error in the cooperativity comprises an
improvement to unitary protocols for entanglement preparation. We discuss this
point in Sec. 4.3.6 below.

4.3.6 Improved error scaling as compared to unitary protocols

In Sec. 4.3.5 we have derived the error of the protocol for weak driving. This has
lead to an error scaling

(1− FS)stat ∝ C−1, (4.40)

where C = g2

κγ is the cooperativity of the cavity. Our protocol thus, quite remark-
ably, exhibits a linear scaling of the fidelity with one over the cooperativity. This
is in contrast to schemes based on controlled unitary dynamics, where the purely
detrimental sources of noise typically result in a weaker square root scaling of
the fidelity. Here, as we discussed in Sec. 2.4.2, the fidelity will suffer errors
coming from spontaneous emission on the one hand, and from cavity decay on
the other. Decreasing one of the error sources will typically increase the other in
such a way that the optimal value of the fidelity is 1− F ∝ 1/

√
C [49]. Indeed,

to the best of our knowledge, all entangled state preparation protocols based
solely on controlled unitary dynamics scale at best as 1/

√
C [43, 44, 47, 48]. This

means that the linear scaling of the fidelity from Eq. (4.40) is a quadratic im-
provement as compared to any known closed system entanglement preparation
protocol. The reason for the improvement stems from the fact that the available
decay processes are engineered to be a resource in our dissipative scheme, so
that the only purely detrimental source of noise are the decay rates which are
engineered to be weak. We note, however, that it is also possible to beat the
square-root scaling if one exploits measurement and feedback [45, 46, 49].
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Figure 4.6: Evolution of the system towards the entangled steady state for (γ, κ) =(
3g
8 , 5g

32

)
similar to Ref. [41], corresponding to C ≈ 17. The evolution due to the full

master equation (solid lines) is compared with the effective evolution in the shuffling
picture (a, c) and rate equations in the dressed state picture (b, d) (dashed) for weak-
driving (a, b) and increased driving (c, d). Starting from a completely mixed triplet state
(see legend for details) the system evolves towards the maximally entangled singlet state
(|S〉 – green) approaching the steady-state fidelity (dotted line, indicated). For a weak
driving of Ω = γ

10 (a-b) the dynamics is completely described by rate equations of the
populations, shown in (b). At increased driving Ω = γ

2 (c, d) the dressed effective
operators (long dash in (c)) are almost indistinguishable from the full dynamics, while
simple effective operators and rate equations (short green dash in c), d) resp.) exhibit
increasing inaccuracies. For all curves the optimized parameters Ω = 25/4ΩMW = 27/4β
(see also Sec. 4.4) were used.

As can be seen from Eq. (4.39) one gets a proportionality factor of 3
2 for the

scaling of the scheme at hand which is also essentially independent of the ratio
κ/γ. In Sec. 4.5 we will compare the analytical results obtained for this scheme
with those from the other schemes in Sec. 4.6 and give numerical examples.

In addition to the asymptotic fidelity, one needs to pay particular attention to
the time it takes to reach equilibrium. In the following sections we address the
evolution of the system towards steady state both for weak driving and beyond
the weak driving regime.
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4.3.7 Time evolution for weak driving

To confirm the predictions about the fidelity and the convergence rate of our
scheme from the last two sections we perform numerical simulation of the dy-
namics of the system. Fig. 4.6 (a-b) summarizes the results obtained by numeri-
cal integration of the master equation of the full system in Eq. (4.10), consisting
of ground states and singly excited states. These curves are plotted together ei-
ther with those from the effective master equation in Eq. (4.13) in (a), or from
the rate equations (such as Eq. (4.37) for the singlet) in (b): For a weak driving
(Ω = γ

10 ) we compare the numerically obtained curves of the population dynam-
ics of the full master equation (solid lines) with (a) the effective master equation
in the shuffling picture and (b) the rate equations in the dressed state picture
(both dashed). We see that in this regime the full and the effective dynamics
of the system are in excellent agreement. In addition, the analytical quantities
derived from the rate equations are found to describe the fidelity of the steady
state with the maximally entangled singlet state and the convergence time very
accurately.
Throughout this section we have worked with the assumption of weak driving,
using the spectral gap as an indicative measure for the convergence. Below, in
Sec. 4.4, we will study the performance of the protocol in the strong driving
regime and introduce the preparation time as a more complete measure. Mini-
mizing the time to achieve a desired fidelity by the available parameters we will
achieve optimal dissipative state preparation.

4.4 How fast can two atoms be entangled by dissipation?

The fidelity of the prepared state with respect to the desired state gives us a
measure of the quality of our scheme once the system has reached equilibrium.
The second figure of merit of a dissipative state preparation protocol is the time
required to reach convergence. In this section, we analyze how fast the scheme
presented above can be performed. We emphasize in particular the trade-off be-
tween the speed of the protocol and its fidelity.
Speeding up the state preparation can be done by increasing the optical driving.
Indeed, as can be seen from Fig. 4.6 (c, d), using an increased optical driving Ω

improves the convergence time by several orders of magnitude at the expense of
only a few per cent additional error. The main reason for the decrease in fidelity
is that the strong driving requires a strong microwave shuffling of the popula-
tion of the triplet ground states. The microwave field, in turn, shifts the ground
states out of resonance with the optical drive. This results in a decrease of the
fidelity at increased optical driving which we will investigate in detail below.
In order to model the effective dynamics of our scheme accurately even for in-
creased optical driving, we begin this section by applying the extended effective
operator formalism of Sec. 3.3.5 to account for the coherent coupling of the
ground states which has so far been ignored when adiabatically eliminating the
excited states. We then proceed to analytically derive the scaling of the two main
performance measures, error and convergence rate (spectral gap), as a function
of the strength of the coherent driving, and perform a study of the optimal
preparation time of an entangled state of a given fidelity.
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4.4.1 Effective processes in the presence of ground-state dressing

In the following section we will apply the extended effective operator formalism
for non-perturbative ground-state coupling, presented in Sec. 3.3.5. It allows us
to include the effects of increased driving and dressing of the ground states and
to derive the dynamic benchmarks of the scheme at hand.
So far, we have worked within the weak driving limit (Ω � γ, κ), where simple
perturbation theory holds very reliably. We now want to consider how our
scheme behaves as we approach the increased driving regime. From the curves
of Fig. 4.6 a) and b) we notice an excellent agreement between the dynamics
simulated with the full and effective master equation, and the rate equations for
a weak optical driving as low as Ω = γ

10 . On the other hand, for Fig. 4.6 c) and
d), we have used Ω = γ

2 which is clearly beyond the weak driving limit. Here,
the previously employed simple effective operators and rate equations become
increasingly inaccurate. This is due to the fact that in our derivation of Eqs.
(4.14)–(4.15) we have neglected the influence of the ground-state Hamiltonian
Ĥg on the effective processes. As we derive below, ΩMW has to be proportional
to Ω so that an increased Ω also leads to a higher ΩMW. For the case at hand,
this influence induces a shift of the ground states by the microwave driving
(‘dressing’). In a frame where Ĥg is diagonal we can include these effects by
using the effective operators of Eqs. (3.38)–(3.39),

Ĥeff = −
1
2

[
V̂−∑

l

(
ĤNH − El

)−1 V̂ l
+ + H.c.

]
+ Ĥg, (4.41)

L̂k
eff = L̂k ∑

l

(
ĤNH − El

)−1 V̂ l
+, (4.42)

where El is the energy of the initial ground state l and V̂ l
+ the excitation from it.

For non-negligible ground-state energies El , the elements of Ĥ−1
NH are generally

replaced by Ĥ−1
NH → (ĤNH − El)

−1. Yet, we note that in order to capture the
effects of the dressed ground states it will not be necessary to keep the dressed
state energies El in all propagators, but only those engineered to be strong. In
fact, numerical curves obtained from these extended operators match the evolu-
tion of the full master equation very accurately, as can be seen from Fig. 4.6 c).

Once ground-state dressing is taken into account, the decay rates from the dressed
triplet states |T±〉 and |Tr〉 into |S〉 are no longer identical. Effective spontaneous
emission from the dressed triplet states into the singlet mediated by |S1〉 has the
non-degenerate propagators

〈S1|
(

ĤNH − ET±
)−1 |S1〉 =

(
∆̃0,eff − ET±

)−1
=

(
− iγ

2
∓
√

3
2

ΩMW

)−1

, (4.43)

〈S1|
(

ĤNH − ETr

)−1 |S1〉 =
(
∆̃0,eff − ETr

)−1
=

(
− iγ

2

)−1

, (4.44)

resulting in detuned decay rates γ
(T±)
eff = γeff · γ2/(γ2 + Ω2

MW), while γ
(Tr)
eff = γeff

and κ
(S)
eff ≈ κeff are effectively unchanged. Taking these into account we can set

up the rate equations in the same manner as in the weak driving case in Sec.
4.3.5.
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Figure 4.7: Fidelity and spectral gap as a function of driving strength. (a) Fidelity of the
steady state with the singlet state and (b) spectral gap as a measure of the speed of con-
vergence with respect to the optical driving strength Ω. Analytical results (blue, short
dash) are in very good agreement with numerical curves obtained from the full (dark
green) and effective (green dash) Liouvillian even at Ω ≈ γ/2 ≈ g/5. For all curves the
cavity parameters (γ, κ) = ( 3g

8 , 5g
32 ) [41], corresponding to C ≈ 17, and the optimized

driving parameters Ω = 25/4ΩMW = 27/4β were used. Note that the analytical curve in
a) contains terms that are not included in Eq. (4.47) (see discussion of Eq. (4.58)).

4.4.2 Derivation of the error and of the spectral gap in the presence
of ground-state dressing

Employing the state-dependent decay rates γ
(Tl)
eff the additional error originating

from the dressing of the triplet states is derived the following way:
Despite the different decay rates into the singlet, the population of the dressed
triplet states is kept close to an equilibrium by strong dissipative shuffling ∝
1/γ in-between them (see Fig. 4.5 b). Consequently, an equal mixture of the
triplet states PT ≡ 1

3 (PT+ + PT− + PTr) is the slowest decaying eigenvector of the
Liouvillian. Using this definition we set up the rate equation for the population
of the singlet state

ṖS =
Ω2

12γ

γ2 + 2Ω2
MW

γ2 + 6Ω2
MW

PT −
κΩ2

8g2 PS. (4.45)

While the loss of population from the singlet by cavity decay κeff is unaffected
by the dressing, the decay rate of the triplet population through spontaneous
emission has now become dependent on ΩMW: Introducing PT results in an

effective decay rate γ
(T )
eff ≡

3
2 · η · γeff with a factor η ≡ γ2+2Ω2

MW
γ2+6Ω2

MW
originating from

averaging the decay rates γ
(Tl)
eff . For the steady state (ṖS = 0, PS ≈ 1) we derive

the error

(1− FS) =
3

2C
·

γ2 + 6Ω2
MW

γ2 + 2Ω2
MW
≈ 3

2C

(
1 +

4Ω2
MW

γ2

)
(4.46)

≡ (1− FS)stat + (1− FS)dres . (4.47)

As can be seen from the second step where we have expanded for ΩMW � γ, the
errors decouple into the static error, derived in Sec. 4.3.5, and another, dynamic
error (1− FS)dres. The latter emerges from the dressing of the ground states by
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ΩMW. Just as the static error, it decreases linearly with one over the cooperativity
C−1.

In the same manner, the spectral gap in the presence of ground-state dressing is
found from Eq. (4.45), determined by the decay rate of the lowest-lying eigen-
vector PT ,

λ =
Ω2

12γ
·

γ2 + 2Ω2
MW

γ2 + 6Ω2
MW

. (4.48)

This result can also be derived more rigorously if we set up the full rate equations
and extract the spectral gap as their smallest non-zero eigenvalue. We find

λ =
Ω2
(

5γ2 + 18Ω2
MW −

√
9γ4 + 84γ2Ω2

MW + 324Ω4
MW

)
24γ

(
γ2 + 6Ω2

MW

) (4.49)

≈ Ω2

12γ
·

γ2 + 2Ω2
MW

γ2 + 6Ω2
MW

. (4.50)

In the last line we have used γ � ΩMW and expanded up to second order in
ΩMW which reproduces the result of Eq. (4.48). For ΩMW → 0 the derived
expressions reduce to the weak driving case as expected. In Fig. 4.7 b) we have
plotted the analytic result for the spectral gap (from Eq. (4.49)) with respect to
the optical driving Ω, together with the numerically obtained spectral gap of
the full and effective Liouvillians of Eqs. (4.10) and (4.13). We see that also for
increased driving the curves are in good agreement.

4.4.3 Beyond rate equations

So far, we have carried out our analytic study using rate equations formulated
in a dressed state picture, where Ĥg is diagonal. In the same picture, we have
included the dressed ground-state energies into the effective operators. However,
in order to fully describe the system, in particular the effects at low microwave
driving, we change back into the original ‘shuffling picture’ with triplet states
|00〉, |11〉 and |T〉 coupled by ΩMW/

√
2. Introducing new decay rates we can

write the dressed effective operators as

L̂γ,0,{1,2}
eff =± i

√
γd|T〉〈T|+ i

√
γd|S〉〈T|∓ (4.51)

∓ χ̃a|T〉〈00| − χ̃a|S〉〈00| ∓ χ̃∗a |T〉〈11| − χ̃∗a |S〉〈11|, (4.52)

L̂γ,1,{1,2}
eff =∓

√
2χ̃a|11〉〈00| ∓

√
2χ̃∗a |11〉〈11| ± i

√
2γd|11〉〈T|, (4.53)

L̂κ
eff =+

√
κeff|11〉〈S| − 2

√
κeff|S〉〈00|, (4.54)

with the previous but shifted effective spontaneous emission rate

γd =
Ω2

8γ

γ2 + 2Ω2
MW

γ2 + 6Ω2
MW

= γeff · η, (4.55)

and an additional spontaneous emission process activated by ΩMW, with an

amplitude χ̃a = ΩΩMW
2
√

γ
γ−i
√

2ΩMW
γ2+6Ω2

MW
. Here, χ̃a carries a phase; the according effective
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Figure 4.8: Effective processes at increased driving. (a) Unaffected (black) and reduced
(blue) processes. A detuning β = ΩMW/

√
2 and dephasing 2γd of state |T〉 retard the

“recycling” of population |11〉 → |T〉 → |S〉. (b) Effective decay processes activated by
dressing of the ground states by ΩMW (red).

decay rate is defined by γa = |χ̃a|2, with γa � γd. The effective cavity decay
κeff = κΩ2

8g2 as the main loss process remains unaffected by the dressing since
ΩMW � g. The shifts of the effective Hamiltonian are again negligible so that
Ĥeff ≈ Ĥg.
The effects of increased driving are illustrated in Fig. 4.8. The dressing of the
triplet ground states |T±〉 by ΩMW causes a reduction of the advantageous decay
processes to γd from γeff, while the amplitude of the detrimental process κeff
remains unchanged. The scaling of γd with η is the result of averaging over the
decay rates of the dressed triplet states γ

(Tl)
eff through back-transform. In addition,

new decay channels at rates γa are activated for high ΩMW and increase the error
of the protocol by accumulation of population in state |11〉.

4.4.4 Derivation of the recycling error and optimal reshuffling

Above we have derived the static error and the driving-dependent error origi-
nating from the shift of the ground states. An additional error emerges from the
dynamics of the coherences which is not caught by rate equations of the popu-
lations:
From Fig. 4.6 a), c) we can see that accumulation of population in |11〉 is the
bottleneck of the scheme. Coherent reshuffling ΩMW from |11〉 to |T〉 is used
to “recycle” the population of |11〉. Hence, the additional error of accumulation
of |11〉 is more pronounced the weaker ΩMW is compared to Ω, regardless of
the driving regime. The effective dephasing of |T〉 at a rate γd and a detuning
β = ΩMW/

√
2, however, tend to slow down the recycling process. Still, justified

by its rapid decay of 6γd altogether, the state |T〉 can be considered transient
and can hence be adiabatically eliminated. In addition, we can ignore the evo-
lution of |00〉 and the much weaker effective decay processes activated by ΩMW
which have rates γa. After adiabatic elimination of the rapidly dephasing coher-
ences (ρ̇11,T, ρ̇T,11 ≈ 0) and the population of |T〉 (ρT,T � ρ11,11) we can write the
dynamics in terms of two rates affecting the population of the desired singlet
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state

ṖS ≈ −κeffPS +
8γdΩ2

MW

96γ2
d

P11. (4.56)

Thus, for the steady state (ṖS = 0, PS ≈ 1) we derive the error

(1− FS)recy ≈
12κeffγd

Ω2
MW

. (4.57)

In order to make sure that the errors of Eqs. (4.46) and (4.57) are actually suffi-
cient to describe the fidelity of the protocol at increased driving we also derive
the steady state from the Liouvillian dynamics. To this end, we solve the master
equation represented by the effective Liouvillian Leff for ρ̇j,k = 0 for all j, k.
The extended decay rates γd and γa also hold for stronger driving. Since the
shuffling ΩMW is still much lower than the spontaneous emission γ, we also
neglect dephasing originating from the ΩMW-activated processes (γa), as well as
dephasing at a rate κeff, in the presence of dephasing at rates γd (γa, κeff � γd).
Normalizing the obtained expression for the steady state and expanding it up
to the second order in Ω and ΩMW, we extract the complete driving-dependent
error as

(1− FS)comb ≈
3γκ

2g2 +
6κΩ2

MW
g2γ

+
3κΩ4

16g2γΩ2
MW

(4.58)

≡ (1− FS)stat + (1− FS)dres + (1− FS)recy . (4.59)

This is exactly the sum of the driving-dependent errors of Eqs. (4.46) and (4.57),
expanded for small ΩMW. We see that in fact the errors decouple. As one of
these terms scales as Ω+2

MW and the other as Ω−2
MW, the optimum for ΩMW is a

trade-off between fast recycling requiring large ΩMW and the need not to shift
states out of resonance favoring small ΩMW. We use the result of Eq. (4.58) to
derive an optimal reshuffling of

ΩMW,opt =
Ω

25/4 . (4.60)

Inserting ΩMW,opt into Eq. (4.58) we obtain the combined error

(1− FS)comb =
3

2C

(
1 +
√

2
(

Ω

γ

)2
)

. (4.61)

We will use this result below to discuss the scaling of the error with the speed
of convergence and with the preparation time.
In Fig. 4.7 a) we plot the analytical result for (1− FS)comb together with numeri-
cal curves obtained by extracting the steady state from the full and the effective
Liouvillian for different optical driving Ω, using the parameters of Ref. [41],
(γ, κ) = ( 3g

8 , 5g
32 ), corresponding to a cooperativity of C ≈ 17. Note that for the

analytical curve in Fig. 4.7 a) we have not discarded terms of higher order in
C−1, as in Eq. (4.58), but have kept terms up to second order in C−1 after solving
for the steady state of the Liouvillian. For higher cooperativies, the higher orders
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become negligible and the expression for (1− FS)comb reduces to Eq. (4.58).
Fig. 4.7 b) contains the analytical and numerical results for the spectral gap,
as a measure for the convergence rate. We find that for our initial assumption
of weak driving (Ω � γ) the analytic results for the scaling of both impor-
tant performance measures, error and spectral gap, with the driving strength
are very accurate. In addition, we find very good agreement with numerical
results obtained from both the full and the effective master equation even up
to an increased driving of Ω ≈ γ/2 ≈ g/5. Despite the increased driving, the
population of the excited states, in particular the close-to-resonant |S1〉, does not
exceed ∼ 5% for Ω = γ/2 (cavity parameters of Ref. [41]) so that both the initial
truncation of the Hilbert space to at most singly excited states as well as the
concept of the effective dynamics of the ground states are well-justified even in
the regime of increased driving.

4.4.5 Performance of the scheme at increased driving

We evaluate the performance of the scheme, this time at increased driving, by
estimating the trade-off between fidelity and convergence time. To this end, we
use the results for the driving-dependent spectral gap λ and error of Eqs. (4.49)
and (4.61) from which we eliminate the driving Ω. In doing so we find

(1− FS)per ≈
3

2C
2
√

2γ + 21λ

2
√

2γ− 27λ

λ�γ
≈ 3

2C
+

18
√

2κλ

g2 . (4.62)

For strong coupling g � (γ, κ), or sufficiently high cooperativities C � 10, the
static and the dynamic error decouple when the expression is expanded in λ.
Thereby we obtain the slope of the tangent of FS for a small λ. The analytic
result shown in Fig. 4.9 agrees very well with the numerical results obtained
from the full and dressed effective master equation as long as the assumption
of perturbative optical driving is justified. For very rapid state preparation,
the analytic expressions reproduce the decreasing trend of the numerical curves
correctly. In Sec. 4.6 we compare these benchmarks for the scheme at hand with
the ones for the schemes presented in Sec. 4.5.1, Sec. 4.5.2, Sec. 4.5.4, and App.
A.

4.4.6 Scaling of the dynamic error with the preparation time

In the discussed setting, the scaling of the error and spectral gap provides an es-
timate of how fast the population decays into a desired steady state and to which
extent the fidelity is lowered by an increased driving. For preparation within a
fixed time one will thus have to make a compromise between the convergence
rate and the detrimental effects of increased driving. These two effects can be
used to derive the optimal driving for a desired preparation time. To this end,
the error of the protocol with respect to the preparation time t, consisting of a
static and a dynamic part, can be written as

(1− FS) (Ω, t) =
3

2C
+ f Ω2 +

3
4

e−Ω2t/r. (4.63)

with f and r specified below. Here, we have assumed that the evolution begins
in a complete statistical mixture of the four states. We minimize the error for
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Figure 4.9: Performance of the dissipative state preparation at increased driving. a) The
fidelity of the steady state is lowered by the increase of the dynamic error when the
spectral gap increases. (b) Error of the protocol (left axis) and optimal driving strength
(right axis) vs. desired preparation time. Analytic results (blue, short dash) are in
good agreement with numerical curves obtained from the full (dark green) and effective
Liouvillian (green dash). The cavity parameters (γ, κ) = ( 3g

8 , 5g
32 ) [41] (C ≈ 17) and the

optimized driving parameters Ω = 25/4ΩMW = 27/4β were used; in (b) we also use and
plot the optimized optical driving Ωopt (red dot) of Eq. (4.64).

a given state preparation time t by taking its derivative with respect to Ω2 and
obtain for the optimal driving strength

Ω2
opt = −

r
t

log
4 f r
3t

. (4.64)

Above we have derived the combined static and dynamic error and the spectral
gap (Eqs. (4.61) and (4.49)) which we now associate with the quantities f and r.
With f = 3κ√

2g2γ
and r = 12γ we get f r = 36κ√

2g2 . We thus obtain for the optimized
error of the protocol

(1− FS)opt (t) =
3

2C
+

36κ√
2g2t

(
1 + log

√
2g2t

48κ

)

=
3

2C
+

36√
2

√
κ

γ

√
1
C

1
gt

(
1 + log

(√
2

48

√
γ

κ

√
Cgt

))
. (4.65)

In the second line we have expressed the optimized error in terms of the coop-
erativity and the ratio of the decay rates γ and κ. We find that – apart from
the linear static error ( 3

2C ) – the above expression for the optimized error also
exhibits a favorable scaling of the dynamic error part with the square-root of
the cooperativity. We plot this analytical result in Fig. 4.9 b), together with
curves obtained numerically from the full/effective Liouvillian, using the cavity
parameters (γ, κ) = ( 3g

8 , 5g
32 ) [41] (C ≈ 17) and the optimized driving parame-

ters Ω = 25/4ΩMW = 27/4β, as well as the optimized optical driving Ωopt of
Eq. (4.64). We find good agreement even for reasonably short preparation times
≈ 103g−1 where we get fidelities above 90%.
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4.5 Schemes for various experimental situations

The scheme for effective spontaneous emission mediated by a dark state, dis-
cussed in the preceding sections, assumes a phase difference of φ = π between
the optical driving of the two atoms. While in present-day cavity experiments
the position of the atoms along the cavity axis with respect to the cavity standing
wave is well-controllable within the Lamb-Dicke regime, their transversal posi-
tion is not necessarily confined. If the atoms are driven by laser fields oriented
transverse to the cavity axis this results in a random phase factor eik·r(t) (with
wave vector k and relative position of the atoms r(t)). Hence, the assumption of
a relative and stable phase relation φ rules out common transversal driving of
the atoms in the absence of transversal trapping.
This section deals with better suited alternatives for today’s cavity experiments:
Here, we present schemes that can be implemented with a driving with φ = 0,
or even with a randomly fluctuating driving phase φ(t).
The phase relation φ = 0 can be obtained by driving the cavity with a strong
laser which is strongly detuned from a cavity mode but near resonance with the
atomic transition |0〉 ↔ |e〉. The detuned drive creates a coupling mediated by
the off-resonant cavity mode and the phase relation will then be set by the phase
of the cavity mode. If the cavity driving mode and the mode used to create the
entanglement are commensurate, this will ensure that we have the phase relation
φ = 0. Schemes that are well-suited for this situation will be presented in Sec.
4.5.1 and 4.5.4.
We also discuss the possibility to use common addressing by a transverse laser
with an arbitrary relative phase φ(t). In the following two sections, Sec. 4.5.1
and 4.5.2, we present two schemes, one of which is operated with φ = 0, and one
with φ = π. The combination of these schemes allows for a phase-insensitive
scheme, as will be carried out in Sec. 4.5.3.

4.5.1 A scheme for an identical driving phase of the atoms

We consider a drive with an identical phase for both atoms, φ = 0. In ad-
dition, we choose to work in the subspace containing the atomic excited state
|T0〉 and the cavity-excited state |T〉|1〉, in order to realize strong spontaneous
emission from |00〉 into |S〉, mediated by |T0〉. For this “|T0〉” scheme we use
non-vanishing laser (∆) and cavity (δ) detuning, but a vanishing detuning β = 0
of the microwave/Raman field. This means that ∆̃ = ∆̃n and δ̃ = δ̃n for all n.

Mechanism of the state preparation. The working principle is illustrated in
Fig. 4.10. Population from state |00〉 is excited to |T0〉 by a weak optical field of
strength Ω. The atomic excited state |T0〉 is coupled to the cavity excited state
|T〉|1〉 by the atom-cavity interaction Ĥac. Due to the strong coupling (g), the
states |T0〉 and |T〉|1〉, initially detuned by ∆̃ and δ̃, form dressed states. Treating
the detunings of the excited states as complex, as discussed in Sec. 4.2, the
detunings of these dressed states can be written as

∆̃± =
∆̃+ δ̃

2
± 1

2

√(
∆̃+ δ̃

)2 − 4
(
∆̃δ̃− g2

)
, (4.66)
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Figure 4.10: Mechanism and effective processes of the |T0〉 scheme. (a) Dissipative
preparation of the maximally entangled singlet state |S〉. For an appropriate choice of
atomic and cavity detuning ∆ and δ the cavity interaction of strength

√
2g enhances the

effective spontaneous emission γeff from state |00〉 by shifting the lower dressed state
of |T0〉 and |T〉|1〉 into resonance with the optical driving Ω. States |T〉 and |11〉 are
coupled to |00〉 by a microwave field or Raman transition ΩMW (not shown). Effective
decay from |S〉 is suppressed as it involves the atom-cavity interaction dark state |S1〉,
the detuning ∆ of which is not compensated. (b) Effective level scheme and ground state
to ground-state processes for the presented scheme.

where ∆̃ = ∆− iγ
2 and δ̃ = δ− iκ

2 . We engineer an efficient spontaneous emission
process that prepares the singlet state |S〉 by setting the cavity detuning equal
to the cavity line shift δ = g2/∆. With this choice the lower dressed state of
|T0〉 and |T〉|1〉 is shifted close to resonance, Re(Ẽ−) ≈ 0. Consequently, pop-
ulation from |00〉 – which is coupled to |T0〉 – is rapidly transferred to |S〉 by
spontaneous emission via the lower dressed state of |T0〉 and |T〉|1〉. On the
other hand, decay out of |S〉 involves excitation of |S1〉. Since |S1〉 is the only
dark state of the atom-cavity interaction, its detuning ∆ means that it is not in
resonance. Hence, the decay into the singlet state |S〉 is engineered to be much
stronger than the decay out of |S〉 so that the maximally entangled state |S〉 is
efficiently prepared. The atomic detuning provides a trade-off between virtual
character of the excited dressed states on the one hand, and spontaneous and

cavity decay on the other hand; by setting ∆ = g
√

γ
κ we minimize the line width

of the dressed states, ∆̃− ≈ Im(∆̃−) ≈ i
2 (∆κ + δγ). Furthermore, coherent cou-

pling of the triplet states |00〉, |11〉, and |T〉 by the microwave/Raman field ΩMW
guarantees that all triplet states decay rapidly towards the singlet state |S〉.

Effective processes. For the discussed scheme we have assumed the relative
phase of the optical driving between the atoms to be zero (φ = 0). Using this,
the effective processes can be read off from Figs. 4.2 and 4.3. Given our choice of
the parameters δ, ∆ and β the terms of the effective detunings can be simplified
to obtain the scaling of the effective decay processes. Using g̃1,eff ≈ i

√
γκ, g̃2,eff ≈
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Figure 4.11: Mechanism and effective processes of the |S0〉 scheme. (a) Setting δ = g2

∆
shifts the lower dressed state of |S0〉 and |S〉|1〉 into resonance with the optical driving
Ω, while the dressed states of |T1〉 and |11〉|1〉 are detuned due to a different coupling
strength of

√
2g. Hence, effective cavity decay κ+ from |00〉 into |S〉 is enhanced while

cavity loss κ− from |S〉 into |11〉 is suppressed. The populations of the triplet states are
shuffled by a microwave or Raman transition ΩMW, shown together with the effective
decay processes in (b).

g/
√

2, ∆̃0,eff ≈ ∆, ∆̃1,eff ≈ −iγ and ∆̃2,eff ≈ −∆ the effective operators simplify to

L̂γ,0,{1,2}
eff = i

√
2γ+|00〉〈00| ± √γ−|T〉〈S|, (4.67)

L̂γ,1,{1,2}
eff = i

√
γ+ (|T〉〈00| ∓ |S〉〈00|)±

√
2γ−|11〉〈S|, (4.68)

L̂κ
eff = −i

√
κeff|T〉〈00|. (4.69)

Here, the spontaneous emission processes L̂γ,0,{1,2}
eff transfer population from |00〉

into the desired state |S〉 at a strongly enhanced rate of 2γ+ = Ω2

16γ . Loss from
the singlet state also occurs by spontaneous emission at a much weaker rate
γ− = κΩ2

32g2 . As opposed to the |S0〉 and |S1〉 schemes, the effective cavity decay,

here with a rate κeff =
Ω2

4γ , does not directly affect the singlet state. The effective
processes are illustrated in Fig. 4.10 b).

Parameter and performance analysis Setting up the rate equations in the same
manner as for the previous scheme is straightforward. We obtain for the error
and the spectral gap

(1− FS)|T0〉 =
11
2C

(4.70)

λ|T0〉 =
2−
√

3
8

Ω2

γ
. (4.71)

Both the error and the spectral gap are found to have the same scaling with the
parameters of the system as the |S1〉 scheme, but exhibit different proportionality
factors. The performance of the schemes presented in this section is optimal for
an ΩMW in the interval of ΩMW = Ω

2 to ΩMW = Ω
3 ; the latter value is used for

the simulations below.
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4.5.2 A scheme using engineered cavity decay

We now turn to a scheme with φ = π which uses engineered cavity decay for
the dissipative preparation of the singlet state |S〉. Since for this scheme we
assume that the atoms are driven with opposite phase φ = π we can conduct
our discussion based on the effective operators of Eqs. (4.31)–(4.33) used for the
scheme presented in Sec. 4.3 and 4.4.
In brief, the mechanism, as visualized in Fig. 4.11, is the following: Population
from state |00〉 is driven up to the excited state |S0〉 = 1

2 (|0e〉 − |e0〉), at a laser
detuning ∆ with β = 0. The state |S0〉 is in turn coupled by the atom-cavity
interaction to |S〉|1〉 with a strength of g. |S〉|1〉 decays into |S〉 via cavity decay
at a rate κ. As only one atom is in |e〉 or |1〉, the coupling |S0〉|0〉 ↔ |S〉|1〉
causes an AC stark shift of g2/∆ to |S0〉|0〉 and |S〉|1〉, whereas the coupling
|T1〉|0〉 ↔ |11〉|1〉 with two atoms in |1〉 or |e〉 causes an AC stark shift of 2g2/∆

of the states |T1〉|0〉 and |11〉|1〉. Thus, setting the cavity detuning to δ = g2

∆

greatly enhances the effective cavity decay |00〉 Ω→ |S0〉
g→ |S〉|1〉 κ→ |S〉. As in

the |T0,1〉 schemes, this is due to the fact that the lower dressed state of |S0〉 and
|S〉|1〉 is shifted into resonance. Loss of population from the singlet via |T1〉 is
effectively suppressed, since |T1〉 and |11〉|1〉 are coupled with a larger strength√

2g, shifting the dressed states out of resonance. The triplet states are shuffled
by a microwave or Raman field with optimal strength ΩMW ≈ Ω/3.

We find that the optimal atomic detuning is ∆ = g
√

γ
κ . At this detuning we

obtain the effective operators

L̂κ
eff =

√
κ−|11〉〈S|+ i

√
κ+|S〉〈00| (4.72)

L̂γ,0,{1,2}
eff = ±i

√
2γ+|00〉〈00| − √γ− (|T〉〈S| ± |S〉〈S|) (4.73)

L̂γ,1,{1,2}
eff = −

√
2γ−|11〉〈S|+ i

√
γ+ (±|T〉〈00| − |S〉〈00|) , (4.74)

where we have assigned κ+ = Ω2

2γ = 8γ+, κ− = κΩ2

2g2 = 16γ−. Indeed, the most
pronounced process is the strongly enhanced effective cavity decay from |00〉
into |S〉. The static error and the spectral gap are found to be

(1− FS)|S0〉 =
7

2C
(4.75)

λ|S0〉 =
5−
√

5
16

Ω2

γ
. (4.76)

A comparative numerical study of the performance of this scheme is given in
Sec. 4.6.

4.5.3 A scheme with robustness to the driving phase

One can think of experimental situations for which neither transversal confine-
ment of the atoms (and hence a stable phase relation φ̇ = 0), nor cavity driving
(φ = 0) are available. In the following, we argue that using laser addressing of
the two atoms at random relative phase φ(t) can be suitable for the preparation
of an entangled steady state of high fidelity.
We set out by noting that, apart from the driving phase φ, the conditions for the
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operation of the above |T0〉 scheme in Sec. 4.5.1 using φ = 0 and the |S0〉 scheme
in Sec. 4.5.2 using φ = π are identical; in particular we use δ = g2/∆. In the
experiment, transversal drift of the atoms can result in a random φ(t) with fluc-
tuations much slower than the couplings of the system. Depending on the actual

value of φ the driving either crosses the singlet/triplet subspace, |00〉 Ω→ |S0〉, as

illustrated in Fig. 4.11 or stays within the subspace, |00〉 Ω→ |T0〉, similar to Fig.
4.10. Therefore, effective decay channels are instantaneously weighted with φ, as
γeff(t) = (γeff)|T0〉 · cos2 φ(t) + (γeff)|S0〉 · sin2 φ(t). Thus, the system mechanisms
are an combination of the two individual schemes. Averaging the decay rates
results in a combined error and spectral gap

(1− FS)|T0〉/|S0〉 =
9

2C
(4.77)

λ|T0〉/|S0〉 =
(9− 2

√
3−
√

5)Ω2

32γ
≈ Ω2

10γ
. (4.78)

We conclude that a setup with arbitrary driving phase is also suitable for an
experimental realization of a high-fidelity entangled state of two atoms in an
optical cavity.

4.5.4 A scheme for cavity driving

We briefly discuss a possible “|T1〉” scheme that combines elements of the “|T0〉”
scheme in Sec. 4.5.1 and of the “|S1〉” scheme presented in Sec. 4.5.1. It exhibits
an improved error and spectral gap as compared to the |T0〉 scheme (which is
also suitable for cavity driving).

Setting δ = 2g2

∆ and accordingly, ∆ = g
√

2γ
κ , shifts one of the dressed states of

|T1〉 and |11〉|1〉 into resonance. Then, |S〉 is effectively prepared through |T1〉 by
spontaneous emission. Similar to the |S1〉-scheme, a choice of β = ΩMW√

2
guaran-

tees an equal share of |T〉 in the dressed triplet states so that these states decay
equally rapidly into |S〉.
As compared to the |T0〉 scheme the contrast between the unwanted |S1〉-mediated
terms and the desired |T1〉-mediated terms is more pronounced than previously
for the decay through |S1〉 and |T0〉. The error and spectral gap are therefore
improved compared to the |T0〉 scheme:

(1− FS)|T1〉 =
9

2C
(4.79)

λ|T1〉 =
Ω2

48γ
(4.80)

The performance of this |T1〉 scheme at increased optical driving will also be
addressed numerically in the section below.

4.6 Comparison of the presented schemes

In the following, we provide an overview of the presented schemes and compare
their error in the preparation of the maximally-entangled singlet state and their
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Figure 4.12: Comparison of static and dynamic error for the presented schemes, ob-
tained numerically from the full Liouvillian of Eq. (4.10). (a) Scaling of the fidelity
with the cooperativity (inset: error weighted with the cooperativity). The lowest er-
ror is found for the |S1〉 scheme ( 3

2C , red solid), followed by the |S0〉 scheme ( 7
2C , blue

dash-dot) and the schemes suitable for cavity driving, |T1〉 ( 9
2C , green dash) and |T0〉

( 11
2C , sky-blue short dash). Noticeable is the qualitative difference between linear scal-

ing of these schemes and the square-root scaling law for the WS scheme ( 3
2
√

2C
, black

dash-dot-dot). Analytical results for the asymptotic scaling are shown for the |S1〉 and
WS scheme (red and black dots) (b) Fidelity vs. speed of convergence (spectral gap). A
compromise between fidelity and speed limits the performance of the WS scheme, while
close-to-linear scaling of both the |S1/0〉 and |T1/0〉 schemes allows rapid state prepara-
tion. For b) the cavity parameters (γ, κ) = ( 3g

8 , 5g
32 ) [41], with C ≈ 17 were used, in a) C

was varied keeping the ratio γ/κ = 12/5 constant. The optimized parameters used for
each of the presented schemes are specified in the corresponding section. The same line
format is used to denote the schemes in (a) and (b).

spectral gap as a measure for the rate of convergence. We separately discuss the
scaling of the static error due to the imperfections of the cavity (as discussed
in Sec. 4.3.5), and the dynamic error originating from increased optical driving
by dressing of the levels (as in Sec. 4.4.4). An overview of all the schemes and
in which section they can be found is shown in Table 4.1 along with a few key
results on the performance of each scheme.

4.6.1 Static error scaling with the cavity parameters

In Fig. 4.12 a) we have plotted the fidelity of the steady state with the maximally-
entangled singlet state, as a function of the cooperativity C = g2

γκ for all schemes
presented in this work. The curves were obtained numerically by extracting
the steady state from the full Liouvillian of Eq. (4.10), using the optimized
parameters specified in the corresponding section. For the error scaling of the
|S1〉 scheme and the WS scheme discussed in App. A, we plot the analytical
curves along with the numerical ones. The linear scaling of the static error with
C is more clearly seen in the inset, where we plot the weighted error (1− FS)C.
In agreement with our analytic results, we find this quantity to be independent
of C for C � 10 for the |T0〉, |T1〉, |S0〉 and |S1〉 schemes, while the adapted
Wang-Schirmer (WS) scheme exhibits an error scaling ∝

√
C as is the case for

coherent unitary protocols. The best error scaling of 3
2C is provided by the |S1〉
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Table 4.1: Comparison of the discussed schemes: Analytic scaling of the error and
rate of convergence (spectral gap) with respect to the cavity parameters for C � 10;
comparative numbers for a cavity QED system as in Ref. [41], (g, γ, κ)/2π = (16, 6, 2.5)
MHz, C ≈ 17. Characteristic dynamic measures are given for a driving that causes a
dynamic error of 2%.

Scheme Static error Spectral gap Convergence time Transversal confi-
max. fidelity at 2% error at 2% error nement required?

|S1〉 (Sec. 4.3) 3/2 C−1 Ω2/12γ

92.5% 6 · 10−3g 10 µs yes
|S0〉 (Sec. 4.5.2) 7/2 C−1 (5−

√
5)Ω2/16γ

84.2% 3 · 10−3g 20 µs yes
|T1〉 (Sec. 4.5.4) 9/2 C−1 Ω2/48γ

81.1% 1 · 10−3g 60 µs no
|T0〉 (Sec. 4.5.1) 11/2 C−1 (2−

√
3)Ω2/8γ

77.2% 8 · 10−4g 80 µs no
|T0〉/|S0〉 (Sec. 4.5.3) 9/2 C−1 Ω2/10γ

79.7% 1 · 10−3g 60 µs no

WS (Sec. A) 3/2
√

2C
−1

2g2Ω2/3∆2κ

77.3% 9 · 10−4g 70 µs no

scheme; an increase of the error to 7
2C is found for the |S0〉 scheme. The schemes

that are suitable for cavity driving in the absence of transversal confinement, |T1〉
and |T0〉 also exhibit linear scaling with the cooperativity with further increasing
proportionality factors 9

2C and 11
2C . Above cooperativities of C ≈ 10 the square-

root scaling error of the WS scheme 3
2
√

2C
is outperformed by the |T1〉 scheme

which uses similar conditions. An overview and numerical examples are given
in Table 4.1.

4.6.2 Dynamic error scaling with the speed of convergence

In addition to the static error scaling of Fig. 4.12 a) we present the dynamic error
scaling with the spectral gap in Fig. 4.12 b). These curves were obtained by
numerically extracting the spectral gap from the full Liouvillian of Eq. (4.10).
Again, the best performance is shown by the |S1〉 scheme, followed by the other
three schemes which all exhibit an almost linear scaling; the schemes suitable for
cavity driving, |T1〉 and |T0〉, have a steeper slope. On the other hand, the perfor-
mance of the adapted WS scheme is governed by a compromise between fidelity
and speed, that also affects the preparation time. Here, the fidelity with the en-
tangled state drops considerably at increased speed, so that the state preparation
of the WS scheme is found to be slow (cf. Ref. [86]). Numerical examples of the
performance are also given in Table 4.1.

We conclude that all relevant benchmarks, both static and dynamic are best for
the |S1〉 scheme that was discussed in detail in Sec. 4.3 and 4.4. Theoretically, this
scheme allows for the generation of a maximally-entangled state with fidelities
of more than 90% and convergence times of about 10 µs for present-day cavity
experiments.
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Yet, for a possible experimental realization of steady-state entanglement in op-
tical cavities in the absence of transversal confinement of the atoms, the cavity-
driven schemes |T1〉 and |T0〉 and the randomly laser-driven |T0〉/|S0〉 scheme
are more suitable. Despite the lower proportionality factors, these schemes pro-
vide preparation of an entangled state with convergence times of a few tens of
microseconds at fidelities ≈ 80% with present day optical cavities.

4.7 Summary and realization perspectives

We have performed a detailed study of the dissipative preparation of a highly
entangled steady state of two Λ-atoms in a single-mode optical cavity by en-
gineering the naturally occurring sources of noise, spontaneous emission and
cavity loss. We have employed the effective operator formalism developed in
Chapter 3 to identify and understand the effective decay processes. The schemes
we have proposed and analyzed use various engineered effective decay processes
of either spontaneous emission or cavity decay to rapidly reach a maximally en-
tangled singlet state as the steady state of the dissipative time evolution at high
fidelity. Our schemes are suitable for various experimental situations and require
coherent driving by only a single laser field and another microwave or Raman
field; in particular we have proposed schemes which work in the absence of
trapping of the atoms in the cavity in the transversal direction, some of which
are tailored for cavity driving.

In showing that all our schemes provide a favorable scaling of the static error
that is linear with the cooperativity of the cavity, we have demonstrated that it
is not only possible to produce entanglement dissipatively between two atoms
in an optical cavity, but also that the error scaling is improved as compared to
unitary protocols for entanglement preparation. These results indicate that the
approach of turning detrimental noise sources into resources in a dissipative
state preparation scheme has an advantage over other techniques. Studying the
speed of the protocol, we have investigated the scaling of the dynamic error
and resolved the underlying mechanisms. Building upon these results we have
derived the optimal conditions for the rapid preparation of an entangled steady
state for a given preparation time.

It should be noted that the mechanisms for dissipative state preparation pre-
sented in this chapter can also be applied to systems of emitters coupled to lossy
waveguides, which have been briefly described in Sec. 2.4.1. Here, a similar
improvement of the error scaling with the system parameters can be achieved.
Details can be found in [136].

We consider our study relevant for the demonstration of an entangled steady
state by means of dissipation in today’s cavity QED experiments. A thorough
theoretical understanding of the mechanisms allowing for dissipative state prepa-
ration of two atoms in an optical cavity has proven to be important for studies
considering other physical systems such as circuit QED in Chapter 5 and trapped
ions in Chapter 6, and as a stepping stone for more complicated schemes involv-
ing many particles, such as the ones in Chapter 7.





Chapter5

Steady-state entanglement of

two superconducting qubits

In the previous chapter we have considered the dissipative preparation of entan-
glement in cavity QED which is a standard quantum optical system. We now
turn to superconducting systems which are solid state systems.
Superconducting systems (cf. Sec. 2.4.1) have proven to be good candidates
for the realization of quantum algorithms involving many gate operations [14,
66, 67]. Still, despite impressive reductions of the decoherence [60–65], today’s
quantum computation and simulation are still limited to elementary protocols
on small scales. Taking the approach of dissipative state preparation (Sec. 2.4.3)
is therefore worth considering. The realization of effects similar to the ones
in Chapter 4 for superconducting systems raises, however, a number of addi-
tional challenges. These are (1) a different energy level diagram, (2) additional,
undesired transitions between qubit levels since these are not, as in atomic sys-
tems, suppressed by selection rules, and (3) additional decoherence mechanisms
acting on the qubit. In addition, the dissipative entangling operation shall be
independent of the initial state and reach a highly entangled steady state within
reasonable time, also in the presence of imperfections in the setup.
In this chapter we present a scheme for the dissipative preparation of entangle-
ment of two superconducting qubits which fulfills the requirements of a circuit
QED system, surmounting the above challenges. Several different state prepara-
tion tasks involving dissipation have previously been considered for supercon-
ducting systems [110–113]. So far, generation of a maximally entangled steady
state of two superconducting qubits coupled through a common resonator has
not been demonstrated. The scheme we present in the following is directed to-
wards the high-fidelity generation of such a state.
As detailed in Sec. 5.1, our scheme is specifically designed to exploit (1) the level
structure of typical transmon qubits [59], which constitute weakly anharmonic
oscillators. The scheme is, however, not particularly restricted to transmons, but
can also be applied to phase qubits [137] coupled to a resonator. Utilizing a
coherent two-photon drive of a dipole-forbidden transition with a two-tone mi-
crowave field similar to Refs. [63, 138], we engineer an effective resonator loss
process which deterministically prepares the maximally entangled singlet state

77
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|S〉, as is described in Sec. 5.2. Here, we also show that (2) the coupling of the
resonator to several transitions of the transmon is in fact an advantage, as it pro-
vides a transfer from the undesired states to the one from which the target state
|S〉 is prepared. Given that |S〉 is produced by a time-independent loss process
and continuous wave fields, it is a steady state of the dissipative evolution.
In Sec. 5.3 we investigate the performance of our scheme, both analytically, to
derive benchmarks for the protocol, and numerically, to verify the mechanisms
that underlie the presented dissipative state preparation scheme. Our results
show that a maximally entangled state of two superconducting qubits can be
prepared rapidly and with a high fidelity, even in the presence of (3) realistic
qubit decoherence rates and imperfections. High fidelities are obtained both for
state-of-the-art three-dimensional (3D), as well as for the more common two-
dimensional (2D) transmons. By fulfilling the above requirements our proposal
thus opens a route for the dissipative preparation of maximally entangled states
of superconducting systems using existing technology.

5.1 Setup: coherent and dissipative interactions of two
coupled transmons

For our study we consider two superconducting transmons [59] coupled to a
common resonator in a circuit QED setup. The coherent dynamics of the system
is described by a Hamiltonian H = Hfree + Hcav + Hd. The energy levels are
illustrated in Fig. 5.1 a) and described by the free Hamiltonian

Hfree =ωca†a + ∑
j=1,2

(2ω− 2A) |2〉j〈2|+ ω|1〉j〈1|, (5.1)

with levels |k〉 of transmon j and the resonator mode a. Here, ω denotes the
level spacing of the two lower levels and A the anharmonicity, with h̄ = 1. In
our analytical discussion we will focus on the first three levels of the transmons,
|0〉, |1〉 and |2〉. Our numerical assessment will also include the fourth level, |3〉.
The transitions of the transmons, |0〉 ↔ |1〉 and |1〉 ↔ |2〉, are coupled by the
coherent interactions shown in Fig. 5.1 b). They are described by a Hamiltonian
Hcav + Hd. Here, Hcav represents the coupling of the resonator to the transitions
of the transmons,

Hcav = ∑
j=1,2

ga†
(
|0〉j〈1|+

√
2|1〉j〈2|

)
+ H.c., (5.2)

with a coupling constant g, and a factor of
√

2 for the matrix element of the
upper transition. The coherent drive

Hd = ∑
j=1,2

(
Ω1

2
e−iω1t + (−1)j Ω2

2
e−iω2t

)(
|1〉j〈0|+

√
2|2〉j〈1|

)
+ H.c.

contains several microwave fields which couple the transitions |0〉 ↔ |1〉 and
|1〉 ↔ |2〉. We assume that the drive with Ω1 exhibits an identical phase, whereas
the phase of Ω2 is opposite for the two transmons. This can be achieved by
driving the qubits with the field Ω1 through a common wire and with the field
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Figure 5.1: Setup. The internal levels of two transmons (a) are coupled by coherent
interactions (b) to mimic the Λ system in (c). Two microwave fields Ω1/2 provide virtual
couplings of the transitions |0〉 ↔ |1〉 and |1〉 ↔ |2〉 (b) which combine to an effective
two-photon drive Ωeff of the transition |0〉 ↔ |2〉. The transmon-resonator coupling (g)
is resonant with the upper transition and detuned by δ1 − δc from the lower transition.
Spontaneous emission (γ) and resonator photon loss (κ) are present as decoherence
processes. The detunings are defined in the text.

Ω2 through additional individual wires, similar to Refs. [139–141]. As we will
see, this choice of phases allows us to break the symmetry of the system and
thereby drive certain transitions which play an important role in our proposal.
We choose the frequencies of the two fields in such a way that they combine to an
effective two-photon drive of the transition |0〉 ↔ |2〉 with a coupling constant
Ωeff that will be derived in Sec. 5.2.1. In doing so, we render the couplings of
the system resembling the Λ system shown in Fig. 5.1 c), with (meta-) stable
lower levels |0〉 and |1〉 and an “excited” level |2〉 for each of the transmons.
“Excitation” from |0〉 to |2〉 is then accomplished by the two-photon drive with
Ωeff. For most of this chapter, we will assume that the resonator coupling is
resonant with the transition |1〉 ↔ |2〉, while being somewhat detuned from the
lower transition |0〉 ↔ |1〉.

In the following, we will avoid the fast dynamics in the drive by changing into a
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frame rotating with a Hamiltonian

Hrot = ω̄

(
a†a + ∑

k
∑

j=1,2
k|k〉j〈k|

)
, (5.3)

where ω̄ ≡ 1
2 (ω1 + ω2) is the mean frequency of the classical driving fields.

Applying a unitary U = exp[iHrott] we obtain a transformed Hamiltonian H
′
=

UHU † + iU̇U † = H
′
free + H

′
cav + H

′
d in a frame rotating with Hrot. The trans-

formed free Hamiltonian can be expressed as

H
′
free = δca†a + ∑

j=1,2
δ1|1〉j〈1|+ δ2|2〉j〈2|, (5.4)

where δ1 = ω− ω̄, δ2 = 2(ω− ω̄)− 2A, and δc ≡ ωc − ω̄ denote the energies of
the transmons and the resonator in the rotating frame. Furthermore, we obtain
the interaction Hamiltonians H

′
cav = Hcav for the transmon-resonator coupling

and

H
′
d = ∑

j=1,2

(
Ω1

2
ei∆1t + (−1)j Ω2

2
ei∆2t

)(
|1〉j〈0|+

√
2|2〉j〈1|

)
+ H.c. (5.5)

for the drive. With this choice of the reference frame rotating with the mean
frequency, we find the detunings of the microwave fields ∆1/2 ≡ ω̄ − ω1/2 =
± 1

2 (ω2 −ω1).

In addition to the coherent dynamics discussed so far, the system also exhibits
dissipative couplings, which is essential for the dissipative state preparation
mechanisms we would like to engineer. The dissipative dynamics of the open
system is determined by its coupling to the bath and the properties of the bath.
Assuming the bath to be Markovian, the system dynamics is governed by a mas-
ter equation of Lindblad form,

ρ̇ = i [ρ, H] + ∑
k

LkρL†
k −

1
2

(
L†

k Lkρ + ρL†
k Lk

)
, (5.6)

with one Lindblad operator Lk for each physical decay process present in the
system. As illustrated in Fig. 5.1 a), we assume that transmon j undergoes
spontaneous decay which in the transmon regime can be described by

Lγ1,j =
√

γ|0〉j〈1|, (5.7)

Lγ2,j =
√

2γ|1〉j〈2|. (5.8)

For simplicity we restrict ourselves to only considering decay and neglect de-
phasing in our calculations unless explicitly mentioned. As we will argue and
numerically verify below, the exact nature of the decoherence only plays a minor
role for our proposal. The photon loss out of the resonator is described by

Lκ =
√

κa, (5.9)

where κ is the photon loss rate.
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Figure 5.2: Dissipative state preparation mechanism and loss mechanism. (a) Effective
resonator decay from |00〉 into |S〉 involves coherent coupling to |S0〉. |S0〉 and |S〉|1〉
are strongly coupled (

√
2g) so that these states hybridize and form dressed states |S±〉

(shown here for a choice of δc = δ2 − δ1, by which the resonator is resonant with the
upper transition). By setting δ2 =

√
2g the driving from |00〉 is resonant with the lower

dressed state |S−〉. Population from |00〉 is thus rapidly excited and decays into |S〉
via the effective engineered resonator decay κ+. (b) The two-photon drive also causes
an undesired coupling of the otherwise dark target state |S〉 to an excited state |T1〉.
|T1〉, in turn, couples to a number of (resonator-) excited states which form dressed
states at different energies (indicated) and eventually decay to other states. These can
generally be made off-resonant with the drive from |S〉 by an appropriate choice of the
resonator and microwave detunings so that the effective resonator decay κ− from |S〉 is
suppressed. In addition, since |S〉 is a dark state of the cavity interaction, the only direct
decay mechanism is through the weak qubit decay γ to |00〉.

Due to our choice of the couplings similar to a Λ configuration, most of the
dynamics will happen in the two lower levels. To describe them we choose a
two-atom basis with triplet states |00〉 = |0〉1|0〉2, |11〉, |T〉 = 1√

2
(|01〉+ |10〉),

and the singlet state |S〉 = 1√
2
(|01〉 − |10〉) as the desired entangled steady state.

For the detailed discussion of the engineered decay processes, we also intro-
duce the excited atomic states |T0〉 = 1√

2
(|02〉+ |20〉), |S0〉 = 1√

2
(|02〉 − |20〉),

|T1〉 = 1√
2
(|12〉+ |21〉) and |S1〉 = 1√

2
(|12〉 − |21〉). The presence of resonator

excitations is indicated by a second ket vector, e.g. |00〉|1〉. For simplicity we
omit this ket vector when the resonator is in the vacuum state. We use this
notation to explain the mechanisms of our scheme in Sec. 5.2 below.

5.2 Mechanisms for dissipative preparation of the
maximally entangled singlet state

In this section we will show how to engineer effective decay processes which
prepare a steady state close to the maximally entangled singlet state |S〉. For
now, we will focus our discussion on the physical mechanisms behind the effec-
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tive decay processes, while Sec. 5.2.1 and 5.2.2 will deal with the derivation of
quantitative expressions for the effective operators and rates.

The mechanism of our scheme is illustrated in Fig. 5.2 a). The working principle
is as follows: Since the singlet state |S〉 is a dark state of the resonator interac-
tion, it can only gain or lose population by effective decay mechanims mediated
by the weak coherent drives or through the slow decay by the weak qubit deco-
herence. A strong asymmetry between the rapid decay into |S〉 and the slow loss
processes out of it results in the dissipative preparation of |S〉 with high fidelity.
In the following, we will discuss the physical mechanism for the preparation of
|S〉.
In the previous section we have introduced a coherent driving Hd. The purpose
of it is to drive a two-photon transition |0〉 ↔ |2〉. For now, we will assume that
we have a coherent drive of |0〉 ↔ |2〉 with a coupling constant Ωeff and defer
the derivation to later. Due to the opposite phase of Ω2 on the two transmons,
this drive then couples |00〉 to an excited state |S0〉 with a detuning δ2, as can be
seen from Fig. 5.2 a). |S0〉 is in turn coupled to |S〉|1〉 by the resonator coupling
Hcav. From here, |S〉|1〉 decays into |S〉 via resonator decay at a rate κ. These
processes combine to an effective resonator decay process from |00〉 into |S〉 with
a rate κ+.
In order to engineer this process to be as strong as possible we have to fulfill two
requirements: First, we need to make sure that the coupling of the transmon-
excited state |S0〉 to the resonator-excited state |S〉|1〉 is close to resonance, given
that only the latter can decay to |S〉 through resonator photon loss. To this end,
we set the resonator into or close to resonance with the upper transition of the
transmons, |2〉 ↔ |1〉|1〉. This is reached by choosing ωc = ω− 2A (δc = δ2− δ1),
and results in an equal energy of |S0〉 and |S〉|1〉, as shown in Fig. 5.2 a). The
two states hybridize and form dressed states

|S±〉 =
1√
2
(|S0〉 ± |S〉|1〉) , (5.10)

located at frequencies of 2ω− 2A±
√

2g (or δ2 ±
√

2g).
The second requirement is that the two-photon drive from from |00〉 is resonant
with one of the dressed states in Eq. (5.10). Choosing a detuning δ2 =

√
2g, we

tune the drive into resonance with the transition from |00〉 to |S−〉. Population
from |00〉 is then rapidly excited to |S−〉, which, through its contribution from
|S〉|1〉, decays into |S〉. For a strong resonant drive, the resulting effective decay
process is only limited by the line width κ

2 of |S−〉, the state which mediates it.
Thus, the dissipative preparation mechanism of the singlet and its rate κ+ can
be engineered to be rather large.

Loss from the singlet can occur through the couplings of |S〉 to any excited
state other than |S0〉 by the available microwave fields, e.g. to |T1〉 by Ωeff.
As indicated in Fig. 5.2 b), these excited states are coupled to a number of
other, in particular resonator-excited states. For instance |T1〉 couples to |11〉|1〉,
|T0〉|1〉, |T〉|2〉, and |00〉|3〉. Consequently, this establishes a loss channel from
|S〉 through effective resonator decay, e.g. into |11〉, which causes losses at a rate
κ− from the desired steady state |S〉. Fortunately, the photon-number dependent



5.2 Mechanisms for the dissipative preparation of the singlet state 83

 g2  g2

 0T

 200

 
−κ

 
+κ

 00

 11

 T  S
 effκ

 effκ

a)

 1T
 100

 000  011

κ

κ κ

 effκ  effκ

 effκ  γ

b)

 g2

Figure 5.3: (a) Shuffling mechanism and (b) effective lower-level decay processes. (b)
The population of the bright states |11〉 and |T〉 is shuffled to |00〉|0〉 by the resonator
coupling g and successive resonator decay at an effective rate κeff. The effective decay
processes of the lower levels shown in (a) and in Fig. 5.2 are summarized in (d).

coupling strength between transmons and resonator provides us with a non-
equidistant spectrum which consequently makes it possible to have the two-
photon drive resonant with the transition from |00〉 to |S−〉 while keeping it
off-resonant with the transitions from |S〉 to other hybridized excited states. In
this way, loss processes from the singlet are suppressed by their detunings.

In order to reach |S〉 independently from the initial state and to maintain it
as the steady state, an additional mechanism is required to transfer population
from lower states other than |00〉, i.e. from |T〉 and |11〉, to |S〉. So far, we have
assumed that the resonator is resonant with the upper transition. This means
that due to the anharmonicity, the resonator is off-resonant with the lower tran-
sition. For reasonable anharmonicities the off-resonant coupling is, however, still
sufficient to allow a reshuffling of population from the bright states |11〉 and |T〉
to |00〉, while |S〉 as the dark state of the resonator coupling remains unaffected.
As shown in Fig. 5.3 a), this reshuffling process involves the resonator coupling
of the lower transition (

√
2g), e.g. |T〉 ↔ |00〉|1〉, and decay of a resonator ex-

citation at a rate κ. It can be seen as an effective decay process with a decay
rate κeff = 2κg2/[2g2 + (δc− δ1)

2/2 + κ2/4]. This expression contains both limit-
ing cases, where one can either eliminate the resonator-excited states, or where
the ground states can be seen as dressed states with resonator-excited states, for
instance the triplet states

|T±〉 =
1√
2
(|T〉 ± |00〉|1〉) , (5.11)

which decay towards |00〉 at rates ∝ κ. Ideally, the reshuffling mechanism rapidly
transfers the population of the triplet states to |00〉, from where they decay
into |S〉 by the dissipative preparation mechanism discussed above. The fastest
reshuffling is reached by tuning the resonator into resonance with the lower
transition, i.e. δc = δ1. This choice is, however, different from the above choice of
δc = δ2 − δ1 which optimizes the dissipative state preparation process. With this
choice of the resonator frequency we get κeff = 2κg2/[2g2 + 2A2 + κ2/4], from
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which we see that the reshuffling works best for small anharmonicity A. For
larger A the process becomes less effective. Having both processes, state prepa-
ration and reshuffling, simultaneously active might therefore seem problematic
for large anharmonicities. However, as we shall see below, the scheme can still be
effective for large A if we allow for longer time for the reshuffling. Furthermore,
as is also addressed below, the two requirements for δc above are far less critical
than the resonant set-up of the two-photon drive. Consequently, both processes,
the dissipative state preparation and the reshuffling, can be effective at the same
time over a wide parameter range, as we will numerically demonstrate in Sec.
5.3.

In addition to effective resonator decay, qubit decoherence present in the system
can cause loss from the singlet independent of the drives. Most notably, it can
cause a loss from |S〉 into |00〉, as shown in Fig. 5.2 b). The presented mecha-
nisms are summarized in Fig. 5.3 b): On the left hand side we see the reshuffling
mechanisms enabled by the resonator coupling to the lower transition, repre-
sented by κeff, and on the right hand side the state preparation (κ+) and loss (κ−)
mechanisms affecting the singlet state, as well as the decay from |S〉 by qubit
decoherence at a rate γ.

To sum up this section, we have identified suitable mechanisms for the dissi-
pative preparation of the singlet state and discussed the physical effects behind
them. In the following two sections we will analytically derive the couplings
and the rates for the effective coherent and dissipative processes in our scheme.
Based on these, we derive benchmarks for the performance of the scheme in Sec.
5.3.

5.2.1 Effective coherent driving of the dipole-forbidden transition
|0〉 ↔ |2〉 by a two-photon process

The implementation of the dissipative state preparation scheme discussed above
requires a coherent coupling of the transition |0〉 ↔ |2〉. Since this transition is
dipole-forbidden, such a coupling cannot be accomplished in a single step. One
way to overcome this is to use a two-photon process, achieved by the combi-
nation of two individual fields. In Ĥd we have chosen two such fields, Ω1 and
Ω2. As we will derive in the following, these provide complementary virtual
single-photon excitations which form the desired coupling.

In the following, we will apply the effective operator formalism presented in
Chapter 3 to obtain a simple effective Hamiltonian for a single transmon with a
two-photon drive. Here, we separate the Hamiltonian into a perturbative part
V(t) = Hd, which contains the fields, and a perturbed part H0 = H

′
free − δca†a.

(Note that the derivation below is for a single transmon only. With this in mind,
the reuse of Hamiltonian definitions should not cause any confusion.) While
in Chapter 3 only effective processes with an initial excitation are considered,
here we also allow for an initial deexcitation. We therefore set up the effective
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Hamiltonian as Heff = H(+)
eff + H(−)

eff with

H(±)
eff =− 1

2
V(t)

2

∑
f=1

2

∑
k=0

(
H(k, f ,±)

0

)−1
V(k, f )
± (t) + H.c., (5.12)

Here, we have applied the most general form of the operator formalism pre-
sented in Sec. 3.3.7, where we specify the initial state k and the field f of the
perturbation V(k, f )

± and the unperturbed Hamiltonian H(k, f ,±)
0 . The latter is de-

fined as H
′
free ± ∆ f − ωk and contains ωk as the frequency of level k ∈ {0, 1, 2}

and ∆ f as the detuning of field f ∈ {1, 2}. We use a projector Pk = |k〉〈k| on the

levels k to identify coherent drive terms V(k, f )
± = V( f )Pk starting from an initial

state k. The superscript f ∈ {1, 2} is used to split V(t) into V(k,1)
± for those terms

which depend on Ω1 and V(k,2)
± for the ones with Ω2; a sign (±) denotes whether

the initial process is an excitation (+), i.e. a term containing a factor e−iω f t, or a
de-excitation (−), with a factor e+iω f t.
Using this formalism we find a considerable number of terms, time-independent
and -dependent ones, some closer to resonance and others stronger detuned. Ne-
glecting the time-varying terms rotating at twice a detuning ∆1/2 we obtain the
effective two-photon Hamiltonian

Heff ≈
2

∑
j=1

2

∑
f=1

Ω2
1

4(δ1 + ∆ f )

(
|1〉j〈1| − |0〉j〈0|

)
− (−1)jΩ1Ω2

4
√

2(δ1 + ∆ f )

(
|2〉j〈0|+ |0〉j〈2|

)
+

Ω2
f

2(δ1 − δ2 −∆ f )

(
|1〉j〈1| − |2〉j〈2|

)
− (−1)jΩ1Ω2

4
√

2(δ1 − δ2 −∆ f )

(
|2〉j〈0|+ |0〉j〈2|

)
(5.13)

Setting the detunings of the fields to ∆1/2 = ∓(δ1 + ε) we have that ∆1 +∆2 = 0
and keep a certain virtual character of the single fields by a detuning ±ε, as
shown in Fig. 5.1 b). In this configuration, there exists an effective two-photon
drive where the first field (with Ω1) drives the lower transition |0〉 ↔ |1〉 and
the second field (with Ω2) drives the upper transition. Expressing the resulting
effective Hamiltonian in terms of the anharmonicity (using δ1 = δ2

2 − A) we
obtain

Heff ≈ ∑
j=1,2

(
Ω2

1
4ε
− Ω2

2
4(2A + δ2 + ε)

) (
|0〉j〈0| − |1〉j〈1|

)
+

(
− Ω2

2
2(δ2 + ε)

+
Ω2

1
2(2A + ε)

) (
|1〉j〈1| − |2〉j〈2|

)
+

Ωeff

2
(−1)j (|2〉j〈0|+ |0〉j〈2|) (5.14)

with an effective two-photon Rabi frequency

Ωeff =
Ω1Ω2

2
√

2

(
1
ε
+

1
δ2 + ε

− 1
2A + ε

− 1
2A + δ2 + ε

)
=

Ω1Ω2

2
√

2
2Aδ2[2(A− ε) + δ2]

ε(δ2 + ε)(2A + ε)(2A + δ2 + ε)
. (5.15)
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From here we see that for the case of zero anharmonicity A = 0, i.e. for harmonic
transmons, no effective two photon drive is possible. For A 6= 0, however, there
exists a possibility of driving the transition |0〉 ↔ |2〉. Note that the remaining
diagonal terms in Eq. (5.14) represent shifts which can be compensated by suit-
able (minor) detunings of the fields. Their effect on Eq. (5.14) can be considered
very small so that Heff is approximately given by a single coherent coupling of
the transition |0〉 ↔ |2〉,

Hd,eff = ∑
j=1,2

Ωeff

2
(−1)j|2〉j〈0|+ H.c. (5.16)

We have thus obtained the coupling constant Ωeff of the effective two-photon
coupling we introduced in Sec. 5.1. With this result we can turn to the derivation
of the effective Lindblad operators for the engineered decay mechanisms used
for the preparation of the singlet state.

5.2.2 Engineered decay processes and their effective Lindblad
operators

To model the effective, dissipative evolution we use the effective formalism of
Chapter 3 to derive the effective Lindblad operators

Lm
eff = Lm ∑

k
∑

f

(
H(k, f )

NH

)−1
V(k, f )(t), (5.17)

with the perturbative coherent excitation V(k, f )(t) from an initial state k by a
field f . In addition, we derive a non-Hermitian Hamiltonian

H(k, f )
NH = H(k, f )

0 − i
2 ∑

n
L†

nLn, (5.18)

with the perturbed Hamiltonian H(k, f )
0 defined previously. We focus on the ef-

fective resonator decay process activated by the two-photon drive Heff and fol-
lowed by decay of a resonator excitation Lκ. With H0 = H

′
free + H

′
cav, V(t) = Heff

(Ω � δ2), and Lm = Lκ we arrive at an effective Lindblad operator

Lκ
eff ≈
√

κ+|S〉〈00|+ ∑
j

√
κ−j |φj〉〈S|, (5.19)

with effective decay rates κ+ and κ−j . This operator represents the dissipative
mechanism we engineer to rapidly prepare the singlet state |S〉 from |00〉. In
addition, it includes the loss processes at rates κ−j from |S〉 into other states |φj〉 ∈
{|11〉, |T0〉, |T, 1〉, |00, 2〉}. Note that here we have ignored some less important
terms as their effect on the population of the singlet is small.

We calculate κ+ of Eq. (5.19), using the driving from |00〉 to |S0〉 as given by Eq.
(5.16), with a matrix element of Ωeff√

2
. The dynamics of the excited state |S0〉 is

described by the non-Hermitian Hamiltonian in Eq. (5.18) which couples |S0〉 to
|S〉|1〉 through the resonator interaction H

′
cav, forming a coupled subspace. For

the non-Hermitian Hamiltonian H(|00〉,Ωeff)
NH of this subspace which contains |S0〉
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and is reached by excitation from |S〉 with the two-photon drive Heff, we define
HS0 ≡ H(|00〉,Ωeff)

NH with

HS0 = δ̃2|S0〉〈S0|+ (δ̃1 + δ̃c)|S〉|1〉〈1|〈S|+
√

2g (|S〉|1〉〈S0|+ H.c.) . (5.20)

In order to keep the notation compact, we have written the Hamiltonian in terms
of the complex detunings δ̃j = δj − ijγ

2 and δ̃c = δc − iκ
2 combining the energy

with the imaginary line width of the levels. For the inverted operator we find

H−1
S0

= δ̃−1
2,eff|S0〉〈S0|+ δ̃−1

1c,eff|S〉|1〉〈1|〈S|+ g̃−1
eff (|S〉|1〉〈S0|+ H.c.) . (5.21)

Here, we have introduced effective detunings δ2,eff = δ̃2 − 2g2

δ̃2
and δ1c,eff = (δ̃1 +

δ̃c)− 2g2

δ̃1+δ̃c
, and an effective coupling constant g̃eff =

√
2g− δ̃2(δ̃1+δ̃c)√

2g
. Since the

rate for resonator decay from |S〉|1〉 into |S〉 is given by κ, we generally find

an effective decay of κ+ =
κΩ2

eff
2|g̃eff|2

from |00〉 to |S〉, concluding that the effective
coupling rate g̃eff governs the strength of the engineered decay process.
The decay rate κ+ is maximized by a parameter choice of δ2 =

√
2g and δc =

δ2− δ1, which corresponds to the two-photon drive from |00〉 being in resonance
with |S0〉 and the resonator being resonant with the upper transition. We then

obtain g̃eff ≈ iκ
2 , and thus κ+ ≈

Ω2
eff

κ . In Sec. 5.3 we will make use of this result to
derive the error and the speed of the protocol.

We now turn to the effective loss processes κ−j as they appear in Eq. (5.19). Given
that |S〉 is a dark state of the resonator coupling, these rates can be calculated
using the same procedure we applied for the derivation of κ+ above: As |S〉 is
coupled to |T1〉 by the two-photon drive we need to consider the non-Hermitian
Hamiltonian HT1 ≡ H(|S〉,Ωeff)

NH which describes the subspace consisting of |T1〉
and the states coupled to it by H

′
cav. For low anharmonicities A . δ2, HNH,T1

needs to reflect the full complexity of the coupled subspace containing |T1〉,
|11〉|1〉, |T0〉|1〉, |T〉|2〉 and |00〉|3〉. For anharmonicities of A & δ2, however, the
subspace of |T1〉 and |11〉|1〉 begins to decouple from the other states so that the
dynamics of the excited states can be approximated using only |T1〉 and |11〉|1〉.
The Lindblad operator of Eq. (5.19) for the effective resonator decay then reduces
to

Lκ
eff ≈
√

κ+|S〉〈00|+√κ−|11〉〈S|, (5.22)

containing a single loss rate κ− = κ−|11〉 from |S〉 into |11〉.
To derive κ−, we approximate HNH,T1 by the non-Hermitian Hamiltonian of the
excited subspace consisting of |T1〉 and |11〉|1〉,

HT1 ≈ δ̃2|T1〉〈T1|+ (δ̃1 + δ̃c)|11〉|1〉〈1|〈11|+ 2g (|11〉|1〉〈T1|+ H.c.) , (5.23)

using the complex detunings defined above. The inverted operator is then given
by

H−1
T1
≈ δ̃−1

2,eff|T1〉〈T1|+ δ̃−1
1c,eff|11〉|1〉〈1|〈T|+ g̃−1

2,eff (|11〉|1〉〈T1|+ H.c.) . (5.24)
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Here, we have found effective detunings δ2,eff,T1 = δ̃2 − 4g2

δ̃2
and δ1c,eff,T1 = (δ̃1 +

δ̃c)− 4g2

δ̃1+δ̃c
, and an effective coupling constant g̃eff,T1 = 2g− δ̃2(δ̃1+δ̃c)

2g , which are
different from the ones in the previous case of |S0〉. With a decay rate κ from

|11〉|1〉 into |11〉, we obtain an effective decay rate κ− ≈
κΩ2

eff
|g̃eff,T1

|2 for the losses from

|S〉. For the above choice of δ2 and δc, the effective coupling constant becomes

g̃eff,T1 ≈ g which results in κ− ≈
κΩ2

eff
4g2 . From here we conclude that for κ2 � g2

the effective loss rate κ− from the singlet is engineered to be much smaller than

its preparation rate κ+ ≈
Ω2

eff
2κ . These results confirm the explanations in Sec. 5.2.

Note that, on the one hand, the above treatment of the coupled excited subspace
where we restrict the excited state subspace to |T1〉 and |11〉|1〉 is quite simplis-
tic, given that it reduces the number of resonances from five to only two. In
particular, one needs to ensure that one does not hit an accidental resonance
with one of the dressed states of the system. On the other hand, the parameter
space consisting of δc, δ2 and ε is sufficiently big to avoid an excitation of the
remaining undesired resonances as there are sufficiently many suitable points
in different regions of parameter space for which all of these resonances are off-
resonant with the two-photon drive. In Fig. 5.4, we draw the dressed states
of the coupled resonator-transmon system. Here, the single-photon fields are
tuned to resonantly excite the transition |00〉 ↔ |S−〉 by a two-photon transition,
mediated by the triplet state |T〉. The same two-photon drive also couples |S〉
to a number of dressed states with contributions from |T1〉. These transitions,
however, generally have different frequencies than the desired one from |00〉 to
|S−〉 so that excitation of |S〉 by the drive Ωeff is off-resonant and suppressed
by its detuning from the dressed states. This can be seen from Fig. 5.4, where
we draw the dressed states together with the two-photon drive for the choice of
δc = δ2 − δ1. In the figure, we show an example near A = 3g

2 where the driving
is off-resonant with the excited states which contain contributions from |T1〉. We
also draw an example at A ≈ 2g where this is not the case and where a reso-
nance is hit accidentally. Here, it is necessary to choose a different detuning δc.
Below, we will verify by numerical simulation for a broad parameter range that
it is always possible to avoid such resonances.

In addition to losses caused by the two-photon drive, also the individual fields
Ω1 and Ω2 couple |S〉 to other states. The coupling of the even-phase single-
photon drive Ω1 from |S〉 to |S0〉 does not cause any significant loss from |S〉,
since population in |S0〉 is recycled via |S〉|1〉 back into |S〉. The odd-phase
single-photon drive Ω2, on the other hand, couples |S〉 to |00〉 and to a super-
position state 1√

2
(|11〉 − |T0〉). Both these states are dark states of the resonator

coupling. Thus, no exchange excitation to a resonator-excited state can shift
them into resonance with the off-resonant drive Ω2 from |S〉 and no effective
resonator decay process from |S〉 is established involving them. Accumulation
in these states does not occur, either, given that 1√

2
(|11〉 − |T0〉) decays through

qubit decoherence and |00〉 decays into |S〉 as discussed earlier. As a conse-
quence, neither of the two drives causes significant loss from the singlet.

Another source of errors emerges for small anharmonicities A . δ2 from the
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Figure 5.4: Dressed state energy vs. anharmonicity. An effective two-photon drive Ωeff
from |00〉 (solid black line) to |S−〉 (green dashed) is implemented as two consecutive
single-photon excitations by two microwave fields, Ω1 and Ω2. The individual drives
are mediated by |T+〉 (short-dashed red), which is a dressed state of |T〉, and made
virtual through a detuning ε (not shown). The two virtual excitations combine to an
effective drive Ωeff resonant with the transition |00〉 ↔ |S−〉; |S−〉 then decays into |S〉
(indicated). The same field couples to the transition from |S〉 to the dressed states of |T1〉
(dashed-dotted). By an appropriate choice of the oscillator detuning δc (here plotted for
δc = δ2− δ1 with ω = 20g), this coupling to |T1〉 is made off-resonant (left set of arrows).
In case that |T1〉 is hit by the drive (right set of arrows), δc needs to be chosen differently
to make the coupling off-resonant.

coherent coupling of |S〉 to other states like |00〉 by the single-photon drives
Ω1 and Ω2. However, for A & δ2, these couplings are sufficiently detuned to
be ignored. Also, beside effective resonator decay processes, qubit decoherence
occurs according to Eqs. (5.7)-(5.8). Provided that the decay rate γ is much
weaker than all other physical couplings present in the system, i.e. γ � κ, g,
effective processes combining qubit decoherence with coherent excitation can be
safely neglected.

We conclude that the sources of error originating from effective resonator decay
which can cause losses from the singlet state are suppressed for the right param-
eter choice. These processes are, together with the engineered dissipative state
preparation process, contained in the effective resonator decay operator in Eq.
(5.22).
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5.3 Parameter and performance analysis, imperfections
and realization aspects

In the previous section we have identified the effective coherent and dissipative
processes which are relevant for our dissipative state preparation scheme and
investigated the corresponding Lindblad operators and rates. In this section, we
will use these results to derive approximate expressions for the error and speed
of the presented protocol as the main benchmarks for our scheme. Later, we will
examine the temporal evolution of the system numerically.

5.3.1 Error and speed of the protocol

In the previous section we have derived the effective resonator decay operator
Lκ

eff, given in Eq. (5.22), which describes both the preparation of the singlet state
|S〉 and the inherent losses of our scheme. The derivation of Eq. (5.22) was car-
ried out in the limit of weak driving. As we will find numerically below, the

dissipative preparation of the singlet at a rate κ+ ≈
Ω2

eff
2κ works well for a driving

strength up to Ωeff ≈ κ
8 , which yields a preparation rate κ+ ≈ κ

128 for the singlet
state |S〉 and a loss rate κ− ≈ κ3

256g2 from it. In addition, |S〉 decays at a rate γ, as
described by the operators in Eq. (5.7)-(5.8).
Based on these rates we can approximate the temporal dynamics for weak driv-
ing using rate equations of the populations Pi ≡ 〈ψi|ρ|ψi〉. We assume that the
reshuffling mechanism rapidly transfers all population from the triplet states to
the state |00〉, which is correct for small anharmonicity A. The evolution of the
population of the singlet PS can then be described by a single rate equation,

ṖS = κ+P00 − (κ− + γ)PS, (5.25)

formulated in terms of the decay rates specified above. Note that in this limit
it is only the total decay rate out of the singlet state which matters, since any
population lost from it is rapidly reshuffled to the |00〉 state regardless of the
nature of the loss. Hence additional decoherence mechanisms, e.g. dephasing
causing decay from |S〉 to |T〉, can easily be incorporated by replacing γ by an
appropriate total loss rate from the singlet. By simply comparing the gain and
loss of the singlet in the steady state, i.e. ṖS = 0, we can estimate the steady-state
fidelity FS = lim

t→∞
PS of the singlet and, consequently, the error of the protocol

(1− FS). Assuming a near unit fidelity we obtain

(1− FS) ≈
γ + κ−

κ+
=

128γ

κ
+

κ2

2g2 . (5.26)

From this expression we can readily see that the error of the protocol has a
promising scaling with the physical parameters. Specifically, the error depends
on the ratios of coupling and noise, g/κ and κ/γ so that it will be small for
strong coupling, g2 � κ2, and modest qubit decoherence, γ ≪ κ. Under the
assumption that we can vary the resonator decay rate κ we can minimize the
error in Eq. (5.26) by a suitable choice of κ. Considering ∂

∂κ (1− FS) = 0, we
derive the optimal resonator decay rate κopt = 4 3

√
2γg2. Inserting this yields the
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Figure 5.5: Evolution of the system towards an entangled steady state. Initially pre-
pared in an equal mixture of the lower states (|00〉 – green, dotted line, |11〉 – red,
dashed-dotted line, |T〉 – blue, dashed line, |S〉 – purple, solid line) the system evolves
towards its steady state which is close to the maximally entangled singlet state of the
two transmons. Part a) and b) show the result for an anharmonicity of A = g and
A = 4.75g respectively. The remaining parameter values are Ω1/2 = g/3, κ = 3g/10
and γ = g/5400 for all plots. The values of ω̄, ∆1/2 and δc are obtained through nu-
merical optimization. The inset in a) shows the region in the ∆A −∆g plane where the
singlet fidelity is high, FS > 90%, for A = g. The number on each contour line indicates
the preparation time in units of 1/g. The inset in b) shows the singlet state fidelity at
t = 1000/g as a function of anharmonicity.

optimized error of the protocol,

(1− FS)opt ≈ 24
(

2γ

g

)2/3

. (5.27)

From here we conclude that for γ ≪ g the inherent error of the protocol can be
limited to very small values. We will later confirm this finding numerically.

In addition, the convergence time, i.e. the decay time of the undesired states, can
be approximated using Eq. (5.25), assuming rapid reshuffling of the undesired
states to |00〉. Given that here the preparation of the singlet at a rate κ+ is the
dominant process, the convergence time τ for weak driving is given by

τ ≈ κ−1
+ ≈

32
3
√

2γg2
, (5.28)

where we have used Ωeff ≈
κopt

8 and κopt from above.

Note that the above expressions for the error and the convergence time are ap-
proximate and are derived using results obtained for the assumption of weak
driving in Sec. 5.2.2. In our numerical simulations below we will optimize a
number of parameters including the driving strength to achieve highly entan-
gled states within a preparation time as short as possible. In doing so, we arrive
at particular choices of the available parameters which allow us to achieve high
fidelities in short time. These optimal parameters are in a regime beyond the
weak driving regime where the effective Lindblad operators no longer accu-
rately describe the dynamics (cf. Sec. 3.6). The findings of Eqs. (5.26)-(5.28)
therefore deviate from the simulation results below.
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5.3.2 Numerical results

To verify the findings above as well as to investigate the limitations of the ap-
proximation we now depart from the analytical treatment in the previous sec-
tions and assess the performance of the scheme numerically [142, 143]. To this
end, we integrate the master equation in Eq. (5.6) including the three lowest
levels of each transmon, |0〉, |1〉 and |2〉, considered in the analytics, as well as
the fourth level of each transmon, |3〉, and up to three photons in the resonator.
While level |3〉 already has a minor effect, the effect of higher excitations is ex-
pected to be negligible. Due to the Stark shifts induced by the driving, we have
numerically optimized the sum- and difference frequencies ω̄ and ∆1/2 of the
drives, as well as the resonator frequency δc. In Fig. 5.5 we plot the populations

Pi(t) = Tr ((|ψi〉〈ψi| ⊗ 1cav) ρ(t)) (5.29)

between the time evolved density matrix ρ(t) and the four lower states |ψi〉 =
|00〉, |11〉, |S〉, |T〉 introduced in Sec. 5.1. The results of our simulation are shown
in Fig. 5.5 a)-b), where we plot the populations, starting with an initially equal
mixture of all four lower states. In Fig. 5.5 a), we consider a rather low anhar-
monicity A = g, which is also what is typically used in experiments [62, 64, 65].
Here, the populations of the states |11〉 and |T〉 show a fast drop due to the
reshuffling to |00〉. At the same time, albeit on a slightly longer timescale, the
dissipative preparation of the singlet is performed, reaching a fidelity of 90%
within a time of about τ ≈ 200/g, and a steady state fidelity of ∼ 96%. For
a transmon experiment with g/(2π) = 300 MHz this would allow prepara-
tion times of about τ ≈ 80 ns. For the results in Fig. 5.5 we have chosen
γ/(2π) ≈ 60 kHz ≈ g/(2π5400) corresponding to a relaxation time of T1 ≈ 3 µs
[60] for the above parameter choice. This is much shorter than current state-of-
the-art 3D transmon qubits where decoherence times of up to T2 ∼ 95 µs and
T1 ∼ 70 µs [61, 62] have been measured. To accurately simulate this situation
we include decay and dephasing rates corresponding to the decoherence times
and find that with the numbers for 3D transmons it is possible to reach a steady
state fidelity of ∼ 97% for A = g. Our analytical results (excluding the negli-
gible effect of pure dephasing) suggest that fidelities of & 99% can be achieved
for T1 & 150 µs (or, in the presence of dephasing, for a corresponding T2 time).
The numbers for the transmon decoherence may, however, be somewhat lower
than 70 µs in the described circuit QED setup, where two qubits need to be
tuned into resonance. In the numerical assessment of our scheme we therefore
chose to work with a shorter coherence time of 3 µs for the transmon relaxation
time, comparable to the coherence time obtained for 2D transmons. In doing
so we show the robustness of our scheme against such imperfections as well as
the possibility to demonstrate a maximally entangled steady state not only in
state-of-the-art 3D, but also in the more commonly used 2D transmon systems.

5.3.3 Anharmonicity of the transmon

As discussed in the previous sections, the coupling of the resonator to the
|0〉 ↔ |1〉 transition for each transmon contributes to the scheme by reshuffling
the unwanted populations to |00〉. This coupling, however, gets increasingly
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detuned for higher anharmonicities A. In Fig. 5.5 b) we show the effect of an
increasing A on the preparation scheme. Here, for a rather high anharmonicity
of A = 4.75g, the reshuffling of the states |11〉 and |T〉 to |00〉 is slowed down as
compared to the result for A = g in Fig. 5.5 a). This can be seen from the drop
in the population of |T〉 and |11〉 which is much less pronounced in b) than in
a). In addition, we observe an increase in the steady state populations of these
states. It is therefore advantageous to work with a rather low anharmonicity,
where the coupling to the lower transition is still effective. Such anharmonicities
are typical for state-of-the-art experiments [62, 64, 65].

In the following, we will assess the possibility to operate our scheme for a
broader range of anharmonicities, despite the breakdown of the reshuffling. To
this end, we allow for a rather long preparation time t = 1000/g. In the inset in
Fig. 5.5 b) we show results achieved using a numerical optimization routine to
optimize the fidelity by fine-tuning the frequencies of the microwave fields and
the resonator. These degrees of freedom in the parameter choice are used by the
optimization routine to avoid undesired resonances by a slight departure from
the resonance conditions of the previous sections. The range of our protocol is
then limited by the breakdown of the reshuffling to A . 4g, as well as to A & g.
For lower A the effective two-photon drive becomes ineffective and couplings to
higher levels of the transmons add shifts to the resonances required for the state
preparation mechanism. To reach a high fidelity FS > 90% of the steady state
one should therefore work with anharmonicities between A ≈ g and A ≈ 4g.

Finally, we briefly comment on the possibility for dissipative state preparation
with even more anharmonic systems: In this case we choose to have the res-
onator in (or close to) resonance with the upper transition. Consequently, the
lower transition is largely detuned and its effect negligible. We thereby achieve
a situation which is very similar to optical cavity QED with atomic Λ schemes
– a system where various schemes for dissipative preparation of entanglement
are available, see Chapter 4. These schemes can then be mapped to the highly
anharmonic circuit QED setup. In those schemes the role of the far-detuned
resonator coupling on the lower transition is accomplished by an additional mi-
crowave field which takes over the reshuffling of the triplet states. In this way,
preparation of a steady state close to the maximally entangled singlet state can
be achieved for any anharmonicity. For low anharmonicity, however, the cou-
pling of the resonator to the lower transition allows us to avoid this field and
thus to simplify the experimental implementation.

5.3.4 Experimental imperfections

From the previous discussion it is clear that our scheme relies on the fact that
the two transition frequencies of the transmons are identical. Moreover, we have
so far only considered the case when the coupling, g, is identical for both trans-
mons. In this section, we depart from these assumptions and consider the effect
of experimental imperfections. The transmons are characterized by their spec-
trum which is set by the effective Josephson energy, EJ and the charging energy
EC = 2A [59]. Here, we assume that both ω =

√
8EJEC − EC and the an-

harmonicity differ between the transmons. We also consider the possibility of
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Figure 5.6: The fidelity as a function of the difference in resonance frequency ∆ω be-
tween the two transmons. The parameters are as in Fig. 5.5 with t = 400/g and A = g.
The inset shows the fidelity when varying the amplitude and phase of the microwave
signals.

having different couplings to the resonator. In Fig. 5.5 a), we focus our anal-
ysis on the charging energy (anharmonicity) and the couplings by considering
A2 = ∆ A A1 and g2 = ∆gg1 where the subscript denotes transmon number. In
the inset of Fig. 5.5 a), we plot the region in the ∆A −∆g plane where F > 90%
for A1 = g. The different contours correspond to the indicated preparation time
and we see that there is roughly a 10− 20% error tolerance built into the system
with respect to these parameters. The reproducibility of EC and g is set by the
precision of the e-beam lithography process and these tolerances are well within
the limits of current technology.

In Fig. 5.6, we consider the effect of different resonance frequencies, ω2 =
ω1 + ∆ω, where subscripts denote transmon number. The error tolerance with
respect to this parameter is substantially smaller than that for differences in an-
harmonicity and coupling. We believe that this larger sensitivity is due to the fact
that for ω1 6= ω2 there is no longer an exact dark state of the transmon-resonator
system, and the singlet state begins to suffer from the Purcell enhanced decay,
which far exceeds the intrinsic decay rates of the qubits. It is not, however, nec-
essary to have ω the same for the two transmons and the tolerance is well within
reach of transmon experiments of today.

Apart from differences in circuit parameters, experimental imperfections can
also originate from errors in the amplitudes and phases of the continuous mi-
crowave tones used to realize the engineered environment. To estimate the ro-
bustness of the scheme against such imperfections we consider the drive Hamil-
tonian

H
′
d =

(
Ω1

2
ei∆1t + e−iθ Ω2

2
ei∆2t

)(
|1〉1〈0|+

√
2|2〉1〈1|

)
+

(
Ω1

2
ei∆1t + ∆Ω

Ω2

2
ei∆2t

)(
|1〉2〈0|+

√
2|2〉2〈1|

)
. (5.30)

In the inset of Fig. 5.6, we plot the fidelity as a function of ∆Ω and the phase θ. It
is clear that there is a substantial robustness in the scheme against imperfections
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in the microwaves so that no involved tuning scheme is required. We note that
the maximum fidelity is not obtained for ∆Ω = 1, which indicates that it is
in principle possible to optimize all parameters including ∆Ω to achieve even
higher values of FS.

A different requirement needs to be imposed on the average number of residual
thermal photons in the resonator n̄. In the absence of residual photons, the target
state |S〉 is a dark state. The preparation of |S〉 from |00〉, however, involves a
coherent coupling of |S0〉 and |S〉|1〉. The singlet is therefore not a dark state in
the presence of photons in the resonator which causes a decrease of fidelity for
nonzero occupancy numbers, n̄ > 0. Still, as our numerical simulations show,
fidelities of above 90% are achieved for n̄ ≤ 0.02, a value which is experimentally
feasible as demonstrated in Ref. [65].

5.4 Summary

In this chapter we have presented a scheme for the preparation of an entangled
steady state of two superconducting transmons by means of dissipation. We
have engineered effective decay mechanisms for the dissipative preparation of
the desired maximally entangled singlet state and verified them analytically and
numerically. We have demonstrated that high fidelity with the singlet state can
be reached within favorable time for realistic experimental parameters, both with
2D and 3D transmons. In addition, our scheme has proven to be robust against
experimental imperfections such as non-degeneracy of the transmon levels and
couplings.

We consider our proposal for the generation of a small scale entangled state
to be a first step towards more advanced protocols in the framework of dissi-
pative state engineering and dissipative quantum computation implemented in
superconducting systems. We hope that our scheme will find application in the
generation of high-fidelity steady state entanglement in circuit QED setups and
that this will stimulate further investigations aiming to harness dissipation for
large scale quantum information processing.





Chapter6

Entangling two trapped ions by

engineered dissipation

The two preceding chapters have dealt with theoretical schemes for the dissi-
pative preparation of entanglement in cavity QED and superconducting setups.
In this chapter we present a protocol for two cold trapped ions, along with its
experimental realization1.
Systems of trapped ions (see 2.4.1) are one of the leading experimental platforms
for quantum information processing. To date, controlled unitary interactions
applied to a quantum system, so-called “quantum gates” (cf. Sec. 2.4), have
been the most widely used method to deterministically create entangled states
of trapped ions [7, 33, 52–54]. Using quantum gates, advanced protocols have
been demonstrated, see for example Refs. [13, 55–57]. However, quantum in-
formation protocols require minimizing the decoherence that inevitably arises
from coupling between the system and the environment and imperfect control
of the system parameters. One approach to overcome this relies on active feed-
back [144–150]. Such feedback techniques may be extended to quantum error
correction, which can stabilize entangled states or realize fault-tolerant quantum
computations. This will, however, require high-fidelity quantum gates and large
qubit overheads that are beyond the reach of current experiments [7].
Our scheme combines unitary processes with engineered dissipation to deter-
ministically produce and stabilize an approximate Bell state of two trapped-ion
qubits independent of their initial state. We thereby follow the approach to create
entangled states or perform quantum computing by engineering the continuous
interaction of the system with its environment, discussed in Sec. 2.4.3.
In our experiment, we take a step towards harnessing dissipation for quantum
information processing by producing an entangled state that is inherently stabi-
lized against decoherence by the applied interactions in a setting fully compati-
ble with quantum computation. While previous works along this line involved
the application of sequences of multiple time-dependent gates [91] or generated
entanglement of atomic ensembles dissipatively, but relied on a measurement

1The experiments were performed at the National Institute of Standards and Technology
(NIST) at Boulder, Colorado, USA, by Y. Lin, J. P. Gaebler, T. R. Tan, R. Bowler, D. Leibfried,
and D. J. Wineland.
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Figure 6.1: Energy Levels The internal energy levels (not to scale) of 9Be+ are shown
as solid black lines for the ground motional state and dashed lines for the first excited
motional state. The couplings needed to produce steady state entanglement are shown
with blue arrows for the strong sideband coupling and sympathetic cooling and the
patterned and dashed red arrows for the weak microwave coupling, repumper, and
spontaneous emission from the |e〉 state. Wavy arrows depict the dissipative processes.

record for steady-state entanglement [99], we implement the process in a contin-
uous time-independent fashion, analogous to optical pumping of atomic states.
By continuously driving the system towards steady-state, the entanglement is
stabilized even in the presence of experimental noise and decoherence. With
this technique, we realize maximally entangled steady states with a fidelity of
F = 0.75(3) by simultaneously applying a combination of time-independent
fields. We also demonstrate that a stepwise application of these fields can speed
up the dynamics of the scheme and achieve a fidelity of F = 0.89(2) after ap-
proximately 30 repetitions. In both cases, the errors can be attributed to known
experimental imperfections.

We begin with a discussion of the general system in Sec. 6.1 and the entangling
scheme in Sec. 6.2. The experimental realization is presented in Sec. 6.3. In Sec.
6.4 we present a thorough theoretical analysis of the experiment. A summary of
the chapter is given in Sec. 6.5.

6.1 System

Our scheme utilizes an ion chain with two qubit ions and at least one “coolant”
ion for sympathetic cooling [151] of the qubit ions’ motion. We consider a normal
motional mode of this ion chain having frequency ν and mean motional quanta
n̄. The motional mode is cooled to n̄ ≈ 0 by laser cooling the coolant ion (or
ions) and thus the vibration effectively coupled to a zero-temperature bath with
the phonon-loss rate denoted by κ. As depicted in Fig. 6.1, we consider four
energy levels of each qubit ion (9Be+), where | ↑〉 and | ↓〉 are the qubit “spin”
states, |a〉 is an auxiliary state, and |e〉 is a fast-decaying excited electronic state.
The coherent interactions in the system are described by a Hamiltonian Hint =
Hs + Hc, where Hs is the sideband excitation and Hc is a carrier drive. The
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sideband excitation, with Hamiltonian

Hs ≡ Ωs(| ↑〉1〈↓ |+ | ↑〉2〈↓ |)b+ + H.c. (6.1)

in the atomic and motional rotating frame, couples the two ions’ spins via the
motion, where Ωs denotes the Rabi frequency, b+ is the motional-mode Fock-
state creation operator, the number subscripts denote the qubit ion number, and
H.c. is the Hermitian conjugate. A carrier interaction with Hamiltonian

Hc ≡ Ωc(|a〉1〈↑ |+ |a〉2〈↑ |) + H.c. (6.2)

drives the | ↑〉↔ |a〉 transition on each ion with Rabi frequency Ωc, and a re-
pump laser incoherently drives |a〉 7→ | ↓〉, | ↑〉 by coupling to the intermediate
state |e〉 with a rate γ. All the above transitions are homogeneously driven on
both qubit ions, such that individual addressing is not needed for this scheme.
As we will see below, these couplings ensure that the maximally entangled sin-
glet state |S〉 ≡ 1√

2
(| ↑↓〉− | ↓↑〉) is the only steady state of the effective dynamics

(cf. Chapter 3) in the regime γ, κ, Ωc � Ωs.

The scheme is described in terms of a two-atomic basis with triplet ground
states | ↓↓〉, | ↑↑〉 and |T〉 = 1√

2
(| ↑↓〉+ | ↓↑〉) and the singlet state |S〉 =

1√
2
(| ↑↓〉 − | ↓↑〉) as the desired entangled steady state. For the discussion of

the engineered decay processes, we also introduce the excited atomic states
|Ta〉 = 1√

2
(| ↑ a〉+ |a ↑〉) and |Sa〉 = 1√

2
(| ↓ a〉 ± |a ↓〉). The presence of mo-

tional excitations is indicated by a second ket vector, e.g. | ↑↑〉|1〉.

6.2 Entangling scheme

The working principle of the presented state preparation scheme is shown in
Fig. 6.2 a). The scheme is based on a strong asymmetry between the dissipa-
tive preparation of the singlet state |S〉 with an enhanced rate γ+ on the one
hand, and the suppressed decay out of the singlet state at a rate γ− on the other
hand. For an intuitive understanding of the scheme, we first consider only the
sideband excitation and the sympathetic cooling (blue lines in Fig. 6.1), which,
when applied together, have two dark states that are not affected by the inter-
actions, | ↑↑〉|0〉 and |S〉|0〉. The remaining basis states of the qubits, | ↓↓〉 and
|T〉 ≡ 1√

2
(| ↑↓〉+ | ↓↑〉), are driven by Hs and eventually pumped to | ↑↑〉|0〉 by

the combination of the sideband drive and the sympathetic cooling (see Fig. 6.2
b). The effect of adding the carrier drive Hc is to couple the | ↑↑〉 state to the |Ta〉
and |aa〉 states and the |S〉 state to the |Sa〉 ≡ 1√

2
(|a ↓〉 − | ↓ a〉) state. However,

assuming the ions are in the ground state of motion, the dressed states of the
sideband Hamiltonian Hs containing |Sa〉 have eigenenergies ±Ωs, while |S〉,
| ↑↑〉, and |Ta〉 are dark states of Hs with zero eigenenergy. Thus, the transition
from |S〉|0〉 to |Sa〉|0〉 is shifted out of resonance with the carrier drive and there-
fore suppressed for Ωc � Ωs. On the other hand, the transition from the | ↑↑〉|0〉
state to the |Ta〉 state is not energy shifted and remains resonant. The repumper
incoherently transfers the state |a〉 back to the | ↑〉 and | ↓〉 qubit manifold. Thus,
the combination of Hc and the repumper creates a process to pump | ↑↑〉 to |S〉



100 Entangling two trapped ions by engineered dissipation

 −
Tγ

 cΩ  cΩ

 ( )↓↑−↑↓=
2

1S

 ( )aaSa ↓−↓=
2

1

 ( )aaTa ↑+↑=
2

1

 ↑↑

 γ γ

 T

 −
↓↓γ

 −
↑↑γ

 ↑↑

 ↓↓

 resκ

 resκ

 T  S

 
+γ 

+γ

 
+γ

 −
Tγ

 sΩ
a) b)

Figure 6.2: Entanglement Preparation Scheme Mechanisms (a) and effective ground-
state processes (b) of the presented scheme. (a) Effective decay from | ↑↑〉 involves
coherent coupling to |Ta〉. Both these states are dark states of the sideband coupling Hs
so that their coupling (Ωs) is on resonance. Population from | ↑↑〉 is therefore rapidly
excited up to |Ta〉 from where it decays into |S〉 via spontaneous emission (denoted as
γ+). |Sa〉, on the other hand, is shifted out of resonance by the sideband coupling so
that effective decay out of |S〉 (γ−) is effectively suppressed. The effective decay pro-
cesses connecting the ground states are summarized in (b): Transfer of the population
of the triplet states to | ↑↑〉|0〉 is accomplished by the sideband and sympathetic cooling
(shown as blue dashed arrows), denoted as κres. Processes that occur by coupling the
| ↑〉 state to the auxiliary |a〉 state followed by excitation with the repumper and decay
by spontaneous emission are shown as dashed red arrows. Processes shown as thin lines
are shifted out of resonance due to the strong sideband coupling, leading to accumula-
tion of population in the maximally entangled state |S〉 in steady state. Further details
on the rates for each process are given in Sec. 6.4.2.

as well as a depumping process from |S〉 to | ↓↓〉, |T〉, and | ↑↑〉, although the
latter is significantly slower, as can be seen from Fig. 6.2 a). In the limit where
the rate to pump other states into |S〉 is much greater than the depumping rate
from |S〉, the steady state will approach |S〉. The ratio of these rates, summarized
in Fig. 6.2 b), can be made arbitrarily high by reducing the values of γ, κ and Ωc
compared to Ωs and in steady state the fidelity of the maximally entangled state
|S〉 can approach unity. We will turn the details of the rates when discussing
the theoretical model of the experiment in Sec. 6.4.2. In the sections below, we
present the experimental implementation of the scheme.

6.3 Experimental realization

In the following, we discuss the experimental setup (Sec. 6.3.1) and present the
results from the experimental realization of the continuous (Sec. 6.3.2) and the
stepwise implementation of our scheme (Sec. 6.3.3). The measurement technique
is detailed in App. C.

6.3.1 Experimental Setup

For our experimental implementation we confine a 9Be+-24Mg+-24Mg+-9Be+

four-ion chain in a linear radio-frequency Paul trap described in [56, 152]. The
two 9Be+ ions serve as qubit ions while the two 24Mg+ ions are used for sympa-
thetic cooling. The ion chain lies along the axis of the trap, the axis of weakest
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confinement, and has an extent of approximately 11 µm. We label the four-ion
axial modes {1, 2, 3, 4}, which have mode frequencies ν1−4 ' {2.0, 4.1, 5.5, 5.8}
MHz, respectively. An internal-state quantization magnetic field B ' 11.964 mT
is applied along a direction 45◦ to the trap axis, which breaks the degeneracy of
the magnetic sub-levels of 9Be+ and 24Mg+. As depicted in Fig. 6.1 a), we utilize
the 9Be+ internal states |F = 1, mF = 1〉 ≡ | ↑〉, |2, 2〉 ≡ | ↓〉, and |2, 1〉 ≡ |a〉. To
create the sideband coupling term Hs we apply two 313 nm laser beams in a Ra-
man configuration tuned approximately 270 GHz below the 2s 2S1/2 to 2p 2P1/2
transition with a frequency difference equal to f0 + ν3 where f0 ' 1.018 GHz is
the resonant transition frequency between the | ↓〉 and | ↑〉 states. The two beams
are derived from the same laser and frequency-shifted using acousto-optic mod-
ulators [153]. The difference wave vector of the two beams is parallel to the trap
axis. Microwaves are used to drive resonant transitions between the | ↑〉 state
and the |a〉 state ( f ' 1.121 GHz) to create Hc. We also apply a repump laser
beam to drive the |a〉 state to the 2p 2P1/2|2, 2〉 state, which subsequently spon-
taneously emits a photon and decays to | ↑〉, | ↓〉 or |a〉 with a branching ratio of
approximately 5:4:3. Phonon excitations due to the photon recoil are removed by
the sympathetic cooling. To cool the 24Mg+ ions, a Doppler cooling beam, two
Raman-sideband beams, and a repump beam co-propagate with the 9Be+ Raman
beams. These beams (λ ' 280 nm) interact negligibly with the internal states of
the 9Be+ ions. We initialize each experiment by first applying Doppler cooling to
9Be+ and 24Mg+, followed by 24Mg+ sideband cooling of all the axial modes to
near the ground state of motion [152]. An optical pumping pulse initializes the
9Be+ ions to the | ↓↓〉 state. We then apply the dissipative entanglement prepa-
ration operations, as detailed below. Finally, we perform spin-state analysis to
measure the populations of the |S〉, |T〉, | ↑↑〉, and | ↓↓〉 spin states, as described
in App. C.

6.3.2 Continuous implementation

We implement the entanglement scheme in Sec. 6.2 using mode 3, where the
9Be+ ions oscillate in phase with each other but out of phase with the 24Mg+

ions (which oscillate in phase). In a first, continuous implementation of the ex-
periment, we apply the laser-induced sideband excitation, microwave-induced
carrier excitation, repumper, and sympathetic cooling simultaneously for a du-
ration t and obtain a steady-state singlet state fidelity of 0.75(3), as shown in Fig.
6.3. This result agrees with our theoretical models presented in Sec. 6.4.
For the continuous implementation we used a sideband Rabi rate Ωs = 2π ×
7.8(1) kHz and a microwave Rabi rate Ωc = 2π × 0.543(6) kHz. The 1/e time
for the repump beam to deplete the |a〉 state was 88 µs. The 1/e time for contin-
uous sympathetic sideband cooling of mode three was 203 µs, determined from
an exponential fit of the average Fock-state occupation number n̄ vs. sympathetic
cooling time from the initial Doppler-cooled value of n̄ ≈ 2.5 to a steady-state
value with cooling on of n̄ = 0.11(1). The continuous sympathetic cooling was
achieved by applying the laser-induced Raman sideband for the 24Mg+ ions that
couples the electronic ground states |F = 1

2 , mF = − 1
2 〉|n〉 ↔ |

1
2 , 1

2 〉|n − 1〉 si-
multaneously with a repump beam that transfers | 12 , 1

2 〉|n〉 → |
1
2 ,− 1

2 〉|n〉. The
continuous sympathetic cooling off-resonantly cooled the other axial modes 1, 2,
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Figure 6.3: Steady State Entanglement The measured populations of the singlet, triplet,
| ↑↑〉 and | ↓↓〉 states are shown as squares, crosses, circles, and triangles, respectively, as
a function of the duration that all the elements of the dissipative entanglement scheme
are applied simultaneously. The system reaches a steady state with a 0.75(3) population
in the target singlet state after a few ms. The solid lines are the result of a simulation
based on the experimental parameters (see Sec. 6.4.1). The slow decrease in the singlet
state fidelity at long times is due to a leak of the qubits to spin states outside the | ↑〉,
| ↓〉, |a〉 manifold caused by spontaneous emission from the lasers that generate the
sideband coupling (see App. C and Sec. 6.4). Error bars represent standard deviations
of each point.

and 4 with 1/e times of approximately 1300 µs, 294 µs, and 181 µs to ther-
mal states with average Fock state occupation numbers of approximately 2.9,
0.95, and 0.12, respectively. The Rabi rate for the 24Mg+ sideband transition on
mode three was ≈ 2π × 11.9 kHz and the repumper rate was ≈ 2π × 625 kHz
(corresponding to a 1/e repump time of 1.6 µs). The repumper rate was made
significantly stronger than the sideband rate to eliminate any coherent dynamics
between the 24Mg+ spins and ion-crystal motion.
In both cases, continuous and stepwise (discussed in Sec. 6.3.3 below), the
ion spacing was set by adjusting the strength of the harmonic confinement,
such that ∆kz = 2πm where ∆k ≈ 2π

√
2

313×10−9 m−1 is the wavevector difference
of the 9Be+ Raman sideband lasers, z is the distance between the 9Be+ ions,
and m is an integer, such that the phase of the sideband excitation was equal
on both ions. For our confinement strength, z ' 11 µm such that the value
of m was near 300. For modes where the qubit ions move in phase, the in-
teger value of m ensures Hs is as defined in the main text. However, in the
general case Hs ≡ Ωs(| ↑〉1〈↓ | + eiφ| ↑〉2〈↓ |)b+ + H.c., where φ is the phase
difference between the two 9Be+ ions of the sideband coupling, and the steady
state of the system (including the cooling, repumper, and microwave carrier) is
|Dφ〉 ≡ |↑↓〉−eiφ|↓↑〉√

2
.
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Figure 6.4: Entanglement With Stepwise Scheme The measured populations of the
singlet, triplet, | ↑↑〉 and | ↓↓〉 states are shown as squares, crosses, circles, and triangles,
respectively, as a function of the number of applied steps. Each step has a duration of
approximately 220 µs. The solid lines are the result of a model as explained in Sec. 6.4.
Error bars represent standard deviations of each point.

6.3.3 Stepwise implementation

We also implement the scheme in a stepwise manner. In this case we can take
advantage of coherences to speed up the entanglement creation process and
thereby reduce the effect of the spontaneous emission induced by the 9Be+ side-
band laser beams. Specifically, we apply a sequence of steps with each step
consisting of a coherent pulse with Hcoh = Hs + Hc followed by the dissipative
processes of repumping and sympathetic cooling, applied sequentially (the order
does not matter). In the steady-state entanglement procedure outlined above we
required Ωc, γ, κ � Ωs to suppress transitions from |S〉 to |Sa〉. However, when
Hcoh is applied without any dissipation, ions initially in the |S〉 state will oscil-
late between |S〉 and a superposition of |S〉 and |Sa〉, which is dressed by Hs,
with an effective Rabi rate Ωeff =

√
Ω2

s + Ω2
c /2 and an amplitude of 1− Aeff

where Aeff =
Ω2

c
Ω2

eff
, assuming the ions are in the motional ground state. Thus, by

applying Hcoh for a full oscillation period π/Ωeff the interaction will be an iden-
tity operation for the |S〉 state while all other states will be partially transferred
to the auxiliary level |a〉, which can then be repumped to create |S〉. However,
if n 6= 0 some population will be transferred out of the |S〉 state since the oscil-
lation period is dependent on n. By taking advantage of the coherent evolution,
we relax the requirement Ωc, γ, κ � Ωs and the entanglement preparation time
scale can be shortened, which reduces the error due to spontaneous emission in-
duced by the sideband laser beams. During the coherent process the entangled
state |S〉 is no longer strictly a steady state; however, if the ratio Ωc/Ωs is small,
the evolution of the state away from |S〉 will be correspondingly small and |S〉
remains an approximate steady state.
We implemented the stepwise scheme in the following way: in each step we
first sympathetically cooled each of the modes of the 9Be+-24Mg+-24Mg+-9Be+

chain with 24Mg+ Raman sideband cooling [34], followed by application of Hcoh
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for a duration t2π, and at the end of each step we applied the repumper. The
populations of the qubit state were measured at the end of each step and plotted
in Fig. 6.4. The 9Be+ sideband Rabi rate was Ωs = 2π × 8.4(1) kHz and the
microwave Rabi rate was Ωc = 2π× 1.24(6) kHz. The repumper had a 1/e time
of approximately 3 µs and was turned on for 6 µs in each step. In each step,
two sympathetic cooling cycles were applied to mode 1, which has the largest
heating rate, and one pulse was applied to each of the remaining modes, with
mode 3 being the last. A sympathetic cooling cycle consists of a single motion
subtracting sideband pulse applied to the 24Mg+ ions followed by a repump
pulse. The duration to apply all the cooling pulses was approximately 100 µs in
each step.
The results of the stepwise experiment are shown in Fig. 6.4. We obtain the
singlet state with fidelity 0.89(2). We use the same model as for the continuous
case (see Sec. 6.4 below) to predict the outcome of the stepwise scheme, and find
good agreement with the data (solid lines in Fig. 6.4) with the largest sources of
error coming from heating processes, unequal sideband Rabi rates, spontaneous
emission caused by the 9Be+ sideband lasers, and off-resonant coupling of the
sideband to mode 4.

6.4 Theoretical analysis

The entanglement creation scheme presented here can in principle produce max-
imally entangled states with arbitrarily low error. Because of experimental limi-
tations, the observed fidelities for the steady states created were, however, 0.75(3)
for the continuous implementation of the scheme and 0.89(2) for the stepwise
implementation. Here, we examine the sources of error for the experiments and
discuss the prospects for reducing these errors to achieve high-fidelity entangled
states without the use of quantum gates. To this end, we utilize both a simplified
rate model to approximate the dynamics of the system, presented in Sec. 6.4.2,
and a direct numerical integration of the master equation, described in Sec. 6.4.1.

6.4.1 Numerical model

For our numerical model we use a master equation with a coherent component
describing the 9Be+ sideband and microwave carrier drives and Lindblad oper-
ators describing the sympathetic cooling, repumper, and spontaneous emission
due to the 9Be+ sideband lasers. The coherent Hamiltonian is

Hcoh ≡ Ωs[(1−
r
2
)| ↑〉1〈↓ |+ (1 +

r
2
)| ↑〉2〈↓ |)]b+ + Ωc(|a〉1〈↑ |+ |a〉2〈↑ |) + H.c.,

where r describes the Rabi-rate imbalance of the sideband on the two ions. The
Lindblad operator describing sympathetic cooling is given by Lκ =

√
κb, and

the repumper is given by Lγj,a , where j is either the | ↑〉 or | ↓〉 state and
Lγj,a =

√
γj,a|j〉〈a|. Heating processes that limit the sympathetic cooling are

modeled with a Lindblad operator Lκh =
√

κhb†, where κh is determined exper-
imentally by measuring n̄ for mode three after sympathetic cooling (no other
interactions are turned on). The heating rate is given by κh = κn̄

1+n̄ . For the
continuous cooling used for the data in Fig. 6.3 we found n̄ = 0.11(1) and for
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the stepwise case of Fig. 6.4 we found n̄ = 0.08(1). We take into account spon-
taneous emission that incoherently changes population from the state i to the
state j (i 6= j) caused by the 9Be+ sideband laser beams with Lindblad operators
of the form Lj,i =

√
Γj,i|j〉〈i|, where Γj,i can be calculated using the Kramers-

Heisenberg formula [154]. The error caused by Rayleigh scattering (i = j) is
negligible [155]. Off-resonant coupling to mode four is taken into account with
an additional Hamiltonian term H4 = Ωs

η4
η3
(| ↑〉1〈↓ | − | ↑〉2〈↓ |)c+e−iδt + H.c.,

where c+ is the raising operator for the fourth mode, δ ≈ 2π × 250 kHz is the
splitting between modes three and four, and η3 = 0.180 and η4 = 0.155 are the
Lamb-Dicke parameters of modes three and four, respectively.
The continuous implementation of the scheme is modeled by numerically solv-
ing a master equation that includes all terms for a variable duration and a given
value of r. We then obtain the theoretical prediction shown in Fig. 6.3 by aver-
aging simulations with different values of r using a Gaussian distribution with
an r.m.s. value of 0.014. This r.m.s. value was determined from fits to qubit Rabi
flopping curves for a single 9Be+ ion and for the 9Be+-24Mg+-24Mg+-9Be+ ion
chain. Percent-level fluctuations of Ωs cause negligible changes to the predicted
fidelity. The result of the calculation at the end of each step is plotted in Fig. 6.4.
In both cases, the initial state of the 9Be+ ions was taken to be | ↓↓〉|n = 0〉. The
particular initial state chosen affects the dynamics only at short times and does
not affect the steady state. All numerical models were implemented by use of
the quantum optics toolbox [156].
We find that the numerical model is in close agreement with the data and sug-
gests that the dominant errors come from the spontaneous emission induced by
the sideband laser beams and unequal sideband Rabi rates. In Sec. 6.4.2 below,
we explain these errors and discuss how they can be reduced.

6.4.2 Analytical model

Rate equation framework

In our simplified rate model, we restrict the dynamics of the master equation
to the ground states | ↑↑〉, | ↓↓〉, |T〉 and |S〉, due to the fast repumping of the
auxiliary level. We achieve this using our effective operator formalism in Chapter
3 to eliminate the decaying states. Thereby we obtain effective decay processes
such as the preparation rate of the singlet and loss processes from the singlet.
Our model involves a rate γ+ for the preparation of the singlet from | ↑↑〉. The
same process also induces a decay at the same rate γ+ from | ↑↑〉 to |T〉 since
the repumper incoherently pumps each ion independently. Furthermore, the
reshuffling process that transfers | ↓↓〉 to |T〉, and |T〉 to | ↑↑〉 is described by a
rate κres. The losses from the singlet are modeled by three loss rates γ−i , i ∈ {↑↑
, ↓↓, T} (overall loss rate γ− = γ−↑↑ + γ−T + γ−↓↓), which can account for various
loss processes present in the experiment. These interactions are illustrated in
Fig. 6.2 b). As no coherences between the ground states are established by
these processes, the dynamics of the coherences can be dropped from the master
equation. The time evolution of the ground states is then described by rate
equations of their populations (cf. Sec. 3.7). With the rates introduced above
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these equations read

ṖS = +γ+P↑↑ − (γ−↑↑ + γ−T + γ−↓↓)PS, (6.3)

Ṗ↑↑ = −2γ+P↑↑ + κresPT + γ−↑↑PS, (6.4)

ṖT = +γ+P↑↑ − κresPT + κresP↓↓ + γ−T PS, (6.5)

Ṗ↓↓ = −κresP↓↓ + γ−↓↓PS. (6.6)

The effect of other decay processes acting on the triplet states (suppressed by
Ω2

c /Ω2
s ) is negligible compared with the fast reshuffling of these states and is

therefore not considered. Setting Ṗi = 0 for all states i the steady state can then
be read off from the system of coupled equations. The fidelity of the steady state
with the maximally entangled singlet is given by

F =
1

1 + E ' 1− E , (6.7)

with

E =
γ−
γ+

+
γ−↑↑ + 2γ−T + 3γ−↓↓

κres
. (6.8)

The error of the protocol, i.e., the infidelity of the steady state with the singlet
state, E ' 1− F, is thus determined by the ratios of the depumping rates out of
the singlet and the pumping rates of other states into the singlet, which result
in a steady-state population of the three triplet states. Therefore, processes that
affect either of these rates can cause error. Eq. (6.8) contains two types or errors:
The first term accounts for the ratio between preparation of and loss from the
singlet state and equals the error for the case of perfect reshuffling (κres → ∞) of
the triplet states. The second term reflects the need to reshuffle population lost
from the singlet state to | ↓↓〉 and |T〉 to | ↑↑〉 in order to transfer it to the singlet
again. In the following, we use this model as a framework to include the rates of
the desired, engineered decay processes, as well as the experimental sources of
loss. We thereby obtain a simple quantitative model for the dynamics observed
in the experiment.

Entanglement Preparation

We start out with the entanglement preparation process: The rate for pumping
other states to the singlet state is dependent on the process that takes | ↑↑〉|n = 0〉
to |S〉|0〉, which is achieved by weak excitation from | ↑↑〉 to |Ta〉 = 1√

2
(|a ↑〉+ | ↑

a〉) and subsequent decay into |S〉. For weak microwave driving this results in
an effective decay by spontaneous emission from | ↑↑〉 to |S〉 with a rate

γ+ =
4γ↓aΩ2

c

γ2 , (6.9)

where Ωc denotes the microwave carrier Rabi rate, the repumper rates are γ↓a
(for repumping from |a〉 to | ↓〉) and γ↑a (for repumping from |a〉 to | ↑〉). Here,
all decay rates are written as γij, leading to a state i from a state j. The line
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width of level |a〉 is given by γ = γ↓a + γ↑a + γaa. The same process transfers
population from | ↑↑〉 to |T〉 at the same rate γ+.

Once the drive Ωc from | ↑↑〉 to |Ta〉 approaches the line width of |Ta〉 (γ) the
excitation is no longer overdamped, the dynamics become more coherent and the
above expression becomes inaccurate. The accuracy can be restored by including
power broadening and the steady population of the excited level. This results in
an adjusted preparation rate

γ+ =
4γ↓aΩ2

c

γ2 + 16Ω2
c

. (6.10)

In the simulated curves below we plot the sum of the populations of the coupled
states | ↑↑〉 and |Ta〉 since these are mixed by the relatively strong drive Ωc.

The preparation process from | ↑↑〉 to |S〉 requires the ions to be in the motional
ground state. This is because the transitions from the | ↑↑〉 state to states contain-
ing |a〉 are shifted out of resonance with the carrier drive by the sideband cou-
pling for |n 6= 0〉. Thus, imperfect cooling slows down the preparation rate for
|S〉, which lowers the fidelity. For a nonzero population of the higher motional
states, the preparation rate therefore has to be multiplied by the probability to
be in the motional ground state, P0 = 1

1+n̄ . We then obtain the preparation rate

γ+ = γ+(n̄ = 0)P0 =
γ↓aΩ2

c

γ2(1 + n̄)
(6.11)

for weak driving, or

γ+ =
γ↓aΩ2

c

(γ2 + 4Ω2
c)(1 + n̄)

, (6.12)

including the strong driving effects from above. In the continuous experiment
the motional mode is cooled to about n̄ = 0.1, which leads to a decrease in
the preparation rate and an error for the singlet state of approximately 0.02
according to both the numerical simulation and the rate model.

In order to transfer population from all states to |S〉|0〉 via | ↑↑〉|0〉, the pop-
ulation from | ↓↓〉|0〉 is reshuffled to |T〉|0〉 by excitation to |T〉|1〉 through the
sideband coupling and subsequent decay to |T〉|0〉 at a rate κ. Similarly, the pop-
ulation of |T〉|0〉 is transferred to | ↑↑〉|0〉 through | ↑↑〉|1〉. Given that Ωs � κ,
the population oscillates back and forth several times between the coupled states
before a decay happens. We can therefore assume the population spends half of
the time in the phonon-excited state (and the other half in the respective ground
state). The decay rate of the reshuffling process can then be approximated as

κres ≈
κ

2
, (6.13)

regardless of the actual value of the sideband coupling Ωs.
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Inherent Depumping

We now turn to the loss processes: The only depumping rate inherent to the
scheme is due to the off-resonant coupling of the |S〉 state to the state |Sa〉 =

1√
2
(|a ↓〉 − | ↓ a〉) and the decay from there into various states. This process

is inhibited by the energy splitting Ωs induced by the strong sideband driving
such that the inherent depumping rate from the singlet amounts to

γ−inh =
(γ + κ)Ω2

c
4Ω2

s
, (6.14)

where a fraction γ↓a/(γ↑a + γ↓a) decays to | ↓↓〉, a fraction 1
2 γ↑a/(γ↑a + γ↓a)

decays to |T〉 and the same amount returns to |S〉. We use the rate equation
model to quantify this source of error. For the parameters of the experiment
we find that for the continuous operation an error of about 0.11 originates from
the inherent loss processes. These loss processes are not present in the stepwise
scheme since (1) the repumper is applied separately from the coherent drives
and (2) we adjust the duration of the coherent pulse such that all population has
returned to the singlet state at its end.

The inherent loss rate γ−inh derived above can be decreased by increasing the side-
band coupling Ωs, and there is thus no fundamental limitation to the achievable
fidelity of the scheme, which can ideally approach unity. In practice, there is
always a limitation to the available sideband coupling strength and the param-
eters of the experiments thus have to be optimized given the available sideband
coupling strength. The inherent loss rate (6.14) can also be decreased by decreas-
ing the drive Ωc. In the experiment we are, however, limited by the γ−/γ+ term
in Eq. (6.8), and since the desirable process γ+ also decreases with decreasing
Ωc, this will only increase the necessary waiting time to reach the steady state
and will not improve the fidelity. Furthermore a small Ωc will also increase the
effect of other experimental imperfections that cause depumping from the en-
tangled state due to the lower preparation rate of the state. In the experiment we
therefore set Ωc ≈ γ/4, which is the point where the desirable rate γ+ begins
to become limited by the saturation effect included in Eq. (6.10). The remain-
ing parameters γ and κ of our experiment are then determined by the tradeoff
between the reduction of γ−inh (favoring low γ and κ) and minimization of other
loss processes (favoring fast preparation through large γ and κ).

The remaining sources of error are not inherent to the scheme, but arise from
the particular setup used for the implementation. These are (1) spontaneous
emission caused by the 9Be+ Raman sideband lasers, (2) fluctuations of laser and
microwave powers and spatial alignments, (3) heating of the motional mode, (4)
off-resonant coupling of the 9Be+ Raman sideband lasers to the carrier and other
motional modes and (5) magnetic field gradients and fluctuations.

Raman Sideband Coupling Induced Spontaneous Emission

Because we implement the sideband coupling with a Raman laser configuration,
the ions have a small amplitude in the electronically excited state from which
they can spontaneously emit photons, reducing an entangled spin state to a



6.4 Theoretical analysis 109

mixed state. This results in a decay from |S〉 to | ↑↑〉 at a rate

Γ−↑↑ =Γ↑↓ +
Γ↑aΓa↓

Γ↑a + Γ↓a
+

Γ↑aΓa↑
2(Γ↑a + Γ↓a)

(
1 +

κ/2
Γ↑a + Γ↓a + κ/2

)
, (6.15)

from |S〉 to |T〉 (as well as from |S〉 to |S〉) at a rate

Γ−T =
Γ↓aΓa↓

2(Γ↑a + Γ↓a)
+

(Γ↑a + Γ↓a)Γa↑
4(Γ↑a + Γ↓a + κ/2)

+
Γ↓aΓa↑

2(Γ↑a + Γ↓a)

κ/2
Γ↑a + Γ↓a + κ/2

, (6.16)

and from |S〉 to | ↓↓〉 at a rate

Γ−↓↓ = Γ↓↑ +
Γ↓aΓa↑

2(Γ↑a + Γ↓a + κ/2)
. (6.17)

The effect of the dephasing from Rayleigh scattering | ↑〉 ↔ | ↑〉 and | ↓〉 ↔ | ↓〉
is negligible [154, 155]. The spontaneous emission rates can be calculated with
the Kramers-Heisenberg formula [154, 155] and are proportional to the Rabi rate
of the Raman sideband coupling. However, the ratio of the spontaneous emission
rates to the Rabi rate can be reduced by increasing the Raman detuning from the
excited state. The Raman detuning used here was 270 GHz below the 2s 2S1/2
to 2p 2P1/2 transition and the spontaneous emission rates are on the order of
10−4 ×Ωs.

In addition, spontaneous emission causes loss from the state | ↑〉 = |1, 1〉 to the
|2, 0〉 and |1, 0〉 states, which are not repumped. As also addressed in App. C,
this error can result in a decrease in fidelity. The additional losses to these states
can be modeled by adding

Ṗ↑↑ = ...− 2Γ↑P↑↑, (6.18)

ṖT = ...− Γ↑PT, (6.19)

ṖS = ...− Γ↑PS, (6.20)

where Γ↑ denotes the spontaneous emission rate from | ↑〉 to states other than
| ↑〉, | ↓〉 and |a〉, and the dots represent the terms in Eqs. (6.3)-(6.6). From
the simulations we find that the population of states containing at least one
ion in either the |2, 0〉 or |1, 0〉 states is approximately 0.05 for the continuous
case (averaging between 6 and 12 ms) and 0.03 for the stepwise case (averaging
from 35 to 59 steps). These populations will continue to increase for increasing
duration of the applied fields. According to our simulation, the singlet state
fidelity for the continuous case would drop to 50% at approximately 84 ms. In
the future, this loss could be avoided by repumping the |1, 0〉 and |2, 0〉 states
back to the qubit states.

We have performed a numerical simulation with identical parameters to the ex-
periment, but eliminated all spontaneous emission errors (while still including
all other sources of error) and find that the fidelities increase by approximately
0.07 for the continuous and 0.04 for the stepwise implementations of the scheme.
Similar results are obtained for the rate equation mode in the continuous case.
Spontaneous emission errors could be reduced by increasing the Raman side-
band detuning and correspondingly increasing the laser intensity to keep the
sideband Rabi rate constant. Another potential future option would be to create
the sideband coupling with microwaves, which would eliminate all spontaneous
emission errors from the sideband excitation [157, 158].
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Experimental Apparatus Noise

Due to fluctuations in the intensity of the laser beams and microwave fields (typi-
cally on the order of a percent), the values of Ωs, Ωc, γ, and κ will vary. However,
for the continuous implementation of the scheme, insensitivity to fluctuations in
the parameters is inherent to the method since the pumping effect relies only on
that ratios between certain parameters be small, a major asset of dissipative state
preparation. For the stepwise implementation of the scheme, however, there is a
greater dependence of the fidelity on the sideband Rabi rate that arises from the
coherent portion of each step. Nevertheless, in the limit Ωc � Ωs, the decrease
in fidelity due to Rabi rate fluctuations can still be small. In our experiment we
estimate δΩs

Ωs
= 0.008, where δΩs is the r.m.s. fluctuation in Ωs, and this reduces

the fidelity of the entangled state by less than 0.01 according to our numerical
simulations.

A more significant problem for the scheme is fluctuations in the position of the
9Be+ Raman sideband laser beams at the site of the ions. Because the lasers are
each aligned at 45◦ to the crystal axis, fluctuations in the beam positions cause
unequal Rabi rates on the two 9Be+ ions. As above, this effect can be modeled
with a modified sideband Hamiltonian Hs ≡ Ωs[(1− r

2 )| ↑〉1〈↓ |+ (1+ r
2 )| ↑〉2〈↓

|]b+ + H.c., where r characterizes the imbalance. In our experiment we estimate
that the value of r fluctuates about zero from experiment to experiment with an
r.m.s. deviation of approximately 0.014. A minor source of error caused by r 6= 0
is that the dark state of the system is no longer the singlet state but rather |Sr〉 =

1√
2+r2/2

[(1− r
2 )| ↑↓〉 − (1 + r

2 )| ↓↑〉]. The error from the difference between |S〉
and |Sr〉 is proportional to r2, which is negligible in our case. However, when
the ions are not cooled to the ground state the above Hamiltonian creates an
additional depumping process for the |Sr〉 state. Specifically, the state |Sr〉|1〉 is
coupled by the sideband coupling to |D〉 ≡ 1√

3
(| ↑↑〉|2〉 −

√
2| ↓↓〉|0〉) with a

Rabi rate 2√
3
rΩs. With sympathetic cooling |D〉 decays towards | ↑↑〉|0〉 with a

rate given by 2κ
3 . Taking into account the fraction of phonon-excited population

P>0 = n̄
n̄+1 ≈ n̄, we find an effective decay from |Sr〉 to | ↑↑〉 at a rate

κ−r ≈
16(rΩs)2n̄

5κ
. (6.21)

In the ideal case, with no heating processes, the steady state will be |Sr〉 ≈ |S〉
and this depumping process can be avoided. However, as discussed below, the
ions are cooled only to a steady state with n̄ ≈ 0.1, and this depumping process
causes errors in both the continuous and stepwise experiments. We perform a
numerical simulation with identical parameters to the experiment but set r = 0
(while still including all other sources of error) and find the fidelity increases by
0.02 for the continuous (obtained from both the simulation and the rate equation
model) and 0.01 for the stepwise implementation of the scheme. This source of
error could be reduced or eliminated in several ways. For example, stabilizing
the alignment of the beams will reduce fluctuations. A better approach would
be to align the Raman beams to counter-propagate along the ion crystal axis.
In this case alignment fluctuations would cause only fluctuations in Ωs but not
r. Potentially another approach would be to create the sideband coupling using
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near-field microwaves (which would also eliminate the spontaneous emission
errors) [157, 158].

The singlet state is insensitive to fluctuations in the magnetic field; however,
gradients of the magnetic field lead to each qubit ion experiencing a different
magnetic field, which breaks the degeneracy of the | ↑↓〉 and | ↓↑〉 states and
therefore couples the singlet and triplet states. In our experiment we measured
the singlet-to-triplet exchange period to be greater than 10 ms, which causes a
negligible error in the scheme since the sideband coupling breaks the degeneracy
of the singlet and triplet states. Fluctuations in the magnetic field also cause
frequency offsets for the sideband and carrier drives by shifting the Zeeman
splittings of the 9Be+ energy levels. The typical frequency offset for the sideband
drive is small compared to Ωs and therefore negligible. The typical frequency
offset for the carrier drive compared to Ωs is more significant and leads to a
decrease in the preparation since the | ↑〉 to |a〉 transition will not be resonant.
However, for our estimated magnetic-field fluctuations of approximately 10−7

T, we find an error for the singlet state of less than one percent for both the
continuous and stepwise implementations using the numerical simulations.

Heating Processes

Heating processes compete with the sympathetic cooling and lead to a steady
state with a thermal distribution. The largest heating process is caused by spon-
taneous emission from the 24Mg+ ions during the application of the 24Mg+ side-
band Raman beams and repump light. Other smaller sources of heating are
photon recoil due to spontaneous emission from the repumper and electric-field
noise at the ions’ positions (including the so-called anomalous heating [159]).
These heating processes limit the lowest achievable n̄ with sympathetic cooling
for mode three to approximately 0.1 for both the continuous and stepwise cases.
One error caused by these heating processes is the decrease in the singlet prepa-
ration rate as can be seen from Eq. (6.12), which leads to an error of 0.02 for
the continuous case. However, if the only source of depumping from the singlet
state is the inherent depumping (Eq. 6.14), the fidelity for the continuous case
can still be made to approach unity in the presence of heating by further increas-
ing the sideband Rabi rate relative to other rates and leaving the interactions on
for a longer duration. Another source of error associated with the heating is due
to the depumping process that results from unequal sideband Rabi rates on the
9Be+ ions when the ions are not in the motional ground state, which leads to an
error of 0.02 for the continuous case as discussed in the previous section.

For the stepwise implementation, there is an additional error associated with the
heating that is due to the n dependence of Ωeff, discussed in Sec. 6.3.3, that leads
to depumping from the |S〉 state for n 6= 0. If we eliminate the heating processes
in the numerical simulation of the stepwise implementation such that the ions
are cooled to motional ground state the fidelity increases by approximately 0.04.
This error combines the effects of the decrease in preparation rate, the depump-
ing due to sideband Rabi rate imbalance, and the additional depumping effect
due to the n dependence of Ωeff.
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Figure 6.5: Steady State Entanglement Data and Theory We plot the dynamics of the
ground-state populations obtained by solving the rate equations (dashed lines) and the
master equation (solid lines) together with the experimental data (symbols). While the
rate equations do not capture the fast oscillations in the beginning, they agree well with
the dynamics of the master equation and the experimental data for longer durations.

Off-Resonant Coupling

Another potential source of error is off-resonant coupling of the 9Be+ sideband
beams to the qubit carrier transition or other motional mode sideband transi-
tions. For our experimental parameters, the only significant coupling is that of
the laser sideband to mode 4, which is detuned by approximately ∆ν ≈ 2π× 250
kHz from the sideband laser drive. The Hamiltonian term for this coupling
is H4 = Ωs

η4
η3
(| ↑〉1〈↓ | − | ↑〉2〈↓ |)c+e−iδt + H.c., where the minus sign occurs

because the two 9Be+ ions oscillate out of phase for mode 4. This couples
|S〉 ↔ | ↑↑〉|1〉4, where the motional excitation is in the fourth mode. Cool-
ing of this mode with a rate κ4 ≈ 0.8 kHz leads to an effective loss process from
|S〉 to | ↑↑〉 at a rate

κ−4 ≈
2κ4(Ωs

η4
η3
)2

∆ν2 . (6.22)

The error due to this off-resonant coupling is estimated from the simulations to
be 0.008 for the continuous (0.007 when using Eq. (6.7)) and 0.023 for the step-
wise experiments. The strength of the off-resonant coupling could be reduced
by using a better isolated motional mode frequency.
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6.4.3 Results

In summary, we have derived the preparation rate γ+ given in Eq. (6.12), the
reshuffling rate κres in Eq. (6.13) and the loss rates

γ−↑↑ =
γ−inhγ↑a

γ↑a + γ↓a
+ Γ−↑↑ + κ−r + κ−4 , (6.23)

γ−T =
γ−inhγ↓a

2(γ↓a + γ↑a)
+ Γ−T , (6.24)

γ−↓↓ = Γ−↓↓. (6.25)

Using these rates we can model the experimental results by solving the coupled
rate equations given by Eqs. (6.3)-(6.6). In Fig. 6.5 we plot the evolution of the
ground states that is obtained using the experimental parameters to calculate the
rates derived in this section. In total, we find for the continuous implementation
an error of about 0.23 from the rate equation model, i.e., either from the steady-
state fidelity in Eq. (6.7) or from the simulation of Eqs. (6.3)-(6.6). This is in
good agreement with the value 0.24 obtained from the simulation of the master
equation and the experimental results.

Reaching higher-fidelity maximally entangled states with this scheme should be
possible if spontaneous emission rates and imbalances of the sideband coupling
on the qubits can be reduced. As an example, if the Raman detuning is increased
to 1.5 THz, which reduces the spontaneous emission error by approximately a
factor of 23 compared to the experiments presented here, and the sideband cou-
pling imbalance is eliminated, the maximum achievable fidelity would be ap-
proximately 0.97 using the continuous implementation. Here, we have kept the
same heating rate, but assumed that errors due to off-resonant coupling have
also been eliminated. To achieve the same sideband Rabi rate at this detuning,
the laser intensity would need to be increased by a factor of 20. Implement-
ing the sideband coupling with microwaves would eliminate both spontaneous
emission and unequal sideband Rabi rates and may therefore be a possible future
approach to achieve high-fidelity entangled states with this dissipative scheme
if other issues with this approach, such as high anomalous background heating,
can be addressed [160].

6.5 Summary

In conclusion, we have presented a theoretical scheme for deterministic steady
state pumping of two trapped ions into a maximally entangled state, together
with its experimental realization. By continuously driving the system towards
steady state, the entangled state is prepared from an initial mixed state and then
stabilized against decoherence. Our theoretical analysis of the experiment shows
that the achieved fidelities are limited by known experimental imperfections.

Our demonstration that a maximally entangled steady state of two qubits can
be prepared by engineered dissipation shows that dissipative state preparation
is experimentally feasible. It represents a step towards the long term goals of
dissipative state engineering, dissipative quantum computation, and dissipative
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phase transitions [19, 20, 121]. Engineered coupling to the environment may be
applied to a broad range of experimental systems to achieve desired quantum
dynamics or steady states.



Chapter7

Dissipative preparation of

many-body entanglement

In the preceding chapters we have presented schemes for the preparation of
two-particle entanglement in several quantum optical and solid state systems.
As we initially discussed in Chapter 2, such small entangled states can be useful
to demonstrate non-locality of nature and for quantum communication tasks,
whereas more advanced protocols require multi-particle entanglement. The two
most widely discussed quantum states which exhibit entanglement of a large
number of qubits are the Greenberger-Horne-Zeilinger (GHZ) and W states,

|GHZ〉 = 1√
2
(|00...00〉+ |11...11〉) , (7.1)

|W〉 = 1√
N

(|0...01〉+ |0...010〉+ ... + |10...0〉) , (7.2)

previously introduced in Sec. 2.1.3. Beside quantum communication and cryp-
tography, such states are of great interest for quantum error correction schemes
[6], and quantum measurements [11].
Preparation of many-body entangled states has so far been performed using
time-dependent unitary gates [33, 52], yielding impressive progress towards en-
tangling larger numbers of qubits [53, 54, 57]. These operations, however, suf-
fer from decoherence and dissipation and the generation of high-fidelity multi-
particle entangled states remains an outstanding challenge. To resolve this obsta-
cle, the idea of dissipative state preparation described in Sec. 2.4.3 has also been
considered for the generation of multi-particle entanglement [87, 94, 96, 161, 162].
So far, however, no approach has been developed for the preparation of high-
fidelity many-body entangled steady states.
In this chapter, we extend our techniques for dissipative preparation from two-
particle entanglement to multi-particle entanglement. We show that by adding
sources of dissipation to a generic system we can engineer complex many-body
dissipation. Using this technique, we demonstrate that many-body Greenberger-
Horne-Zeilinger (GHZ) and W states can be prepared and stabilized as the
steady states of the dissipative time evolution. Our protocols exhibit a favor-
able scaling of the preparation time with the number of qubits. In addition to
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states with 
0 < n1 < N 
atoms in   ,

e.g.

 N⊗0

 110 −⊗N

optical pumping (``Z")

optical pumping (``X")

1
 GHZ

 
−GHZ

Figure 7.1: Protocol for the dissipative preparation of a GHZ state of N qubits. Prepa-
ration of a GHZ state can be realized by two operations: (i) Pumping of states with
0 < n1 < N atoms in state |1〉 into |0〉⊗N , which is a superposition of |GHZ〉 and
|GHZ−〉, and (ii) removal of |GHZ−〉.

 N⊗0

collective 
decay 
(``W")

states with 
more than 1
atom in

e.g.  110 −⊗N

 W

one excitationground 
state

anti-
symm.

optical 
pumping 

(``Z")

optical 
pumping 

(``A")

1

Figure 7.2: Protocols for the dissipative preparation of a W state of N qubits. W state
preparation can be accomplished by pumping all states with n1 > 1 atoms in |1〉 into
those with n1 ≤ 1 and pumping the asymmetric states with n1 = 1 into |0〉⊗N . Collective
decay from |0〉⊗N is used to prepare |W〉 from |0〉⊗N .

our a priori system-independent protocols, we consider an ion trap setup for the
implementation of our schemes. Our study paves the way for the dissipative
preparation of entangled steady states of a higher number of qubits.

We start by presenting the protocols for the dissipative preparation of GHZ and
W states in Sec. 7.1. In Sec. 7.2 we discuss the generic system of atoms coupled to
a harmonic oscillator to which we add tunable sources of dissipation. We show
how to engineer effective decay processes to prepare steady GHZ states in Sec.
7.3 and W states in Sec. 7.5. This is done deterministically by continuous optical
driving from any initial state towards the target state and is achieved using weak
classical fields without the need to apply pulses or to measure the state of the
system. The performance of the schemes for GHZ and W state preparation and
their scaling1 are examined in Sec. 7.4 and Sec. 7.6, and in App. E and App. F.
The preparation times of our protocols are found to have a favorable polynomial
scaling with the number of qubits. An implementation based on a system of
trapped ions is presented in Sec. 7.7. We conclude the chapter with a summary
in Sec. 7.8.

1The analysis of the scaling of the presented schemes has been performed in collaboration
with D. Reeb.



7.1 Protocols for the dissipative preparation of GHZ and W states 117

7.1 Protocols for the dissipative preparation of GHZ and
W states

The challenge for any dissipative many-body procotol is to pump an exponential
number of states efficiently, i.e. in polynomial time. In the following, we demon-
strate that this is possible using only a small number of elementary operations:
Preparation of a GHZ state starting from any initial state can, regardless of the
number of qubits N, be divided into the two operations shown in Fig. 7.1:
(i) Pumping all states with neither none nor all qubits in state |1〉 to the state
|0〉⊗N and (ii) removal of the GHZ state with the wrong phase, |GHZ−〉 =

1√
2
(|0〉⊗N − |1〉⊗N). These mechanisms are nontrivial as they require N-body

dissipative interactions. Below we present a way to accomplish both (i) and (ii)
in a realistic physical system.
Preparation of the W state can in principle be performed by a single collective
jump from |0〉⊗N to |W〉, as can be seen from Fig. 7.2. However, in order to
guarantee |W〉 to be the steady state for any initial state, it is necessary to also
remove states with more atoms in |1〉 and all superpositions that do not exhibit
permutation symmetry like the W state.

7.2 System

For the realization of the protocols we assume a general system of N particles
(“atoms”), shown in Fig. 7.3. Each atom consists of two stable ground states
|0〉 and |1〉 and two excited states, |e〉 and | f 〉. The atoms collectively couple
to two harmonic oscillator modes, a, and b, such as two cavity modes in cavity
QED or two phononic modes in an ion trap setup. We consider two dissipative
processes: Spontaneous emission from the excited states to the ground states
acts incoherently on all atoms. In addition, we assume loss of excitations from
the oscillator modes, such as photon loss in cavity QED or phonon loss due to
sympathetic cooling in a chain of ions. For our schemes we use classical fields
which couple identically to all atoms. While the setup with two excited states
and two oscillator modes is completely steady, it is also possible to implement
our schemes in a stroboscopic manner. Here, a single excited level and a single
oscillator mode are used in two interchanging coupling situations, resulting in a
quasi-steady state (see also Sec. 7.7).

7.2.1 Dynamical model

The dynamics of the system is modeled by a master equation of Lindblad form

ρ̇ = L(ρ) = −i [H, ρ] + ∑
k

LkρL†
k −

1
2

(
L†

k Lkρ + ρL†
k Lk

)
. (7.3)

The Hamiltonian H is generally given by

H = Hfree + Hint + Hdrive. (7.4)
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Figure 7.3: System. (a) We consider a chain of N sub-systems (“atoms”). (b) Each atom
has four levels and is coupled to two harmonic oscillators. The decay processes present
in the system are decay by incoherent spontaneous emission γ and decay of the common
oscillator modes κa/b. Depending on the scheme, we apply classical fields and couplings
of the atoms to the oscillator modes.

We consider a free Hamiltonian Hfree which contains the energies of the levels of
the N atoms and the harmonic oscillator modes,

Hfree = ωe Jee + ω f J f f + ωaa†a + ωbb†b. (7.5)

Here, we have introduced Jij = ∑N
a=1 σ

ij
a = ∑N

a=1 |i〉a〈j| and made the simplifi-
cations ω0 = ω1 = 0 and h̄ = 1. An interaction Hamiltonian Hint describes
the atom-oscillator coupling, and a drive Hamiltonian Hdrive contains the fields
used to perform coherent excitations of the system. The particular coupling con-
figurations, i.e. the interaction and drive terms required for either GHZ or W
preparation, are detailed in the sections 7.3.1 and 7.5.1.

As pointed out above, the excited degrees of freedom in the system are subject
to dissipation which we will later on consider to be adjustable (see Sec. 7.7).
Here, the excited states |e〉 and | f 〉 of each atom undergo spontaneous emission
to each of the ground states |0〉 and |1〉, described by the jump operators

Lγ0e,a =
√

γ0e|0〉a〈e|, (7.6)

Lγ1e,a =
√

γ1e|1〉a〈e|, (7.7)

Lγ0 f ,a =
√

γ0 f |0〉a〈 f |, (7.8)

Lγ1 f ,a =
√

γ1 f |1〉a〈 f |, (7.9)

where the subscript a denotes the atom number. The total decay rates of the
excited levels are given by γe = γ0e + γ1e and γ f = γ0 f + γ1 f . For simplicity we
will assume equal decay rates for both excited states in the W scheme, which
is, however, not crucial for the protocol. The decay of excitations of the two
oscillator modes, a and b, is represented by

Lκa =
√

κaa, (7.10)

Lκb =
√

κbb. (7.11)

The GHZ scheme does not require oscillator decay at all (κa = κb = 0). It may,
however, still be useful to avoid heating. For W preparation, on the other hand,
we assume dissipation of one of the modes (κa > 0).
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Figure 7.4: Setup for GHZ preparation. For the dissipative preparation of GHZ states
in the system presented in Sec. 7.2 we combine two coupling configurations, ‘Z’ and
‘X’, each consisting of an atom-oscillator coupling and a weak coherent drive. (a) The
‘Z configuration’ consists of a coupling of the transition from |e〉 to |1〉 to the harmonic
oscillator a with a coupling constant g. A multi-tone drive with individual Rabi fre-
quencies Ω

(F)
Z and detunings ∆

(F)
Z for the tones F acts on the same transition. (b) In the

‘X configuration’ the harmonic oscillator b couples to both the transitions from | f 〉 to
|0〉 and from | f 〉 to |1〉. Using opposite phases on both transitions thus creates an atom-
oscillator coupling on the transition from | f 〉 to |−〉 = 1√

2
(|0〉 − |1〉). The corresponding

multi-tone drive with Ω
(F)
X and ∆

(F)
X acts on the same transition.

7.3 Realization of the GHZ protocol

In the following, we demonstrate how the protocol for GHZ preparation pro-
posed in Sec. 7.1 can be realized in the physical system described in Sec. 7.2.
To this end, we present a suitable setup in Sec. 7.3.1. In Sec. 7.3.2 and 7.3.3 we
engineer effective decay processes that allow for the preparation of a GHZ state.
The performance of the scheme is discussed in Sec. 7.4.

7.3.1 Setup

For the preparation of GHZ states we consider two coupling configurations, ‘Z’
and ‘X’ (named after σz = |1〉〈1| − |0〉〈0| and σx = |1〉〈0|+ |0〉〈1|, as will become
clear further below), shown in Fig. 7.4 a) and b). These consist of atom-oscillator
couplings and classical drives. The atom-oscillator couplings are described by
an interaction Hamiltonian Hint = Hint,Z + Hint,X with

Hint,Z = g
(

a† J1e + aJ†
1e

)
, (7.12)

Hint,X = g
(

b† J− f + bJ†
− f

)
. (7.13)

Here, ‘Z’ and ‘X’ denote the coupling configurations, and g is the coupling con-
stant of the atom-oscillator coupling. By Hint,Z, an atomic excitation in |e〉 is
exchanged with the oscillator a, leaving the atom in |1〉. Hint,X couples the ex-
cited level | f 〉 to |−〉 = 1√

2
(|0〉− |1〉) while exchanging the atomic excitation with

the oscillator b. In addition, we assume coherent excitation of the atoms by clas-
sical driving fields along the same transitions as the atom-oscillator couplings,
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Figure 7.5: First dissipative mechanism for GHZ preparation, shown for N = 3 qubits.
Pumping towards |0〉⊗N = 1√

2
(|GHZ〉+ |GHZ−〉), “Z pumping”, is achieved using the

coupling configuration shown in Fig. 7.4 a). Ground states are coupled to atom-excited
states by weak driving. Dependent on the number n1 of atoms in |1〉, the excited states
form dressed states with oscillator-excited states at energies ±√n1g. By applying fields

with detunings ∆
(F)
Z =

√
Fg for 1 ≤ F ≤ N, all states except |GHZ〉 and |GHZ−〉 are

pumped towards |0〉⊗N = 1√
2
(|GHZ〉+ |GHZ−〉).

described by a Hamiltonian Hdrive = Hdrive,Z + Hdrive,X with

Hdrive,Z =
1
2 ∑

F
Ω

(F)
Z e−iω(F)

Z t Je1 + H.c., (7.14)

Hdrive,X =
1
2 ∑

F
Ω

(F)
X e−iω(F)

X t J f− + H.c. (7.15)

Here, we generally allow for several field tones with Rabi frequencies Ω
(F)
Z/X and

frequencies ω
(F)
Z/X. We define detunings for each drive tone F,

∆
(F)
Z = ωe −ω

(F)
Z , δ

(F)
Z = ωa −ω

(F)
Z , (7.16)

∆
(F)
X = ω f −ω

(F)
X , δ

(F)
X = ωb −ω

(F)
X . (7.17)

Below we will choose these detunings of the available fields in such a way as
to the engineer effective decay processes in the system to be either enhanced or
suppressed.

7.3.2 Preparing |GHZ〉: the Z pumping

We implement the first dissipative mechanism for the preparation of an N-
particle GHZ state. In the following, we refer to this process as “Z pumping”,
as it is best understood in the eigenbasis of σz = |1〉〈1| − |0〉〈0|, given by the
states |0〉 and |1〉. According to requirement (i) in Sec. 7.1 this process shall
transfer all states with 0 < n1 < N atoms in |1〉, i.e., all states other than |0〉⊗N

and |1〉⊗N , to |0〉⊗N = 1√
2
(|GHZ〉+ |GHZ−〉). This is achieved by making states

with 1 ≤ n1 ≤ N − 1 decay into those with n1 − 1. At the same time, we need to
insure that the residual decay out of |1〉⊗N by the same process is week, in order
to not cause losses from |GHZ〉.
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We engineer this process using the coupling configuration in Fig. 7.4 a). Here,
the oscillator coupling g of the transition |e〉 ↔ |1〉 and a weak drive on the same
transition are used to effectively “count” the number of atoms in state |1〉: As
illustrated in Fig. 7.5 for the example of N = 3 qubits, the weak drive Ω couples
any ground state with n1 atoms in |1〉 to an atom-excited state. This state is
coupled to an oscillator-excited state with n1 atoms in |1〉 by an atom-oscillator
coupling with a strength of

√
n1g. Hence, the atom- and the oscillator-excited

state form dressed states at energies ±√n1g. We pump all ground states with
1 ≤ n1 ≤ N − 1 towards those with n1 − 1 by exciting them with weak driving
tones Ω

(F)
Z detuned by ∆

(F)
Z =

√
Fg, where 1 ≤ F ≤ N − 1. The excited states

with n1 then decay towards ground states with n1 − 1 by spontaneous emis-
sion from |e〉 to |0〉. This operation continuously pumps population from all
states with 1 ≤ n1 ≤ N − 1 to |0〉⊗N , resulting in the production of |GHZ〉 and
|GHZ−〉. As it will turn out further down, it is favorable to apply two sets of
drives with red (∆(F)

Z+ = +
√

Fg) and blue detunings (∆(F)
Z− = −

√
Fg). A second

process, which is discussed in Sec. 7.3.3, is used to empty the state |GHZ−〉. In
the sections below we analyze the engineering of the Z pumping process quan-
titatively.

Effective operators for the Z configuration

In the following, we provide a detailed analysis of the dynamics of the system
under the action of the Z pumping mechanism. Given that the dissipation affects
the excited levels |e〉 and | f 〉 and the oscillator modes a and b and assuming the
drives to be sufficiently weak, we can adiabatically eliminate these decaying
degrees of freedom from the master equation. This is done using the effective
operator formalism presented in Chapter 3. In this way, the dynamics of the
master equation (7.3) are reduced to effective couplings between the ground
states of the system, described by an effective master equation

ρ̇ =− i [Heff, ρ] + ∑
k

Lk,effρ(Lk,eff)
† − 1

2

(
(Lk,eff)

†Lk,effρ + ρ(Lk,eff)
†Lk,eff

)
, (7.18)

where the F’s denote the driving field tones that give rise to the effective cou-
plings. Instead of presenting the steps of the derivation of the effective operators
Heff and Lk,eff for the GHZ scheme here, we refer the reader to App. D, where
the calculations are given. Here, we focus on the discussion of the terms. In
App. D, we find for the effective Lindblad operators for the Z configuration

L(F)
κa,Z =

N

∑
n1=0

√
κaΩ

(F)
Z

2g̃(F)
Z,n1

Pn1 , (7.19)

L(F)
γ0e,a,Z =

N

∑
n1=0

√
γ0eΩ

(F)
Z

2∆̃
(F)
Z,n1

|0〉a〈1|Pn1 , (7.20)

L(F)
γ1e,a,Z =

N

∑
n1=0

√
γ1eΩ

(F)
Z

2∆̃
(F)
Z,n1

|1〉a〈1|Pn1 . (7.21)

These operators are formulated in terms of multiple tones of a driving field,
denoted by F. Each tone acts on all states with the same number of atoms n1
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in state |1〉, represented by the projection operator Pn1 . The magnitude of the
effective processes is determined by the effective detunings

∆̃
(F)
Z,n1

= ∆̃
(F)
Z −

n1g2

δ̃
(F)
Z

, (7.22)

g̃(F)
Z,n1

= g−
∆̃
(F)
Z δ̃

(F)
Z

n1g
. (7.23)

Here, we have generalized the detunings in Eq. (7.16) to complex energies

∆̃
(F)
Z = ωe −ω

(F)
Z −

iγe

2
= ∆

(F)
Z −

iγe

2
, (7.24)

δ̃
(F)
Z = ωa −ω

(F)
Z −

iκa

2
= δ

(F)
Z −

iκa

2
, (7.25)

which also account for the line widths of the excited states, given by their decay
rates. We define effective decay rates for the operators in Eqs. (7.19)–(7.21),

κ
(F)
a,Z,n1

=
κa(Ω

(F)
Z )2

4|g̃(F)
Z,n1
|2

, (7.26)

γ
(F)
0,Z,n1

=
γ0e(Ω

(F)
Z )2

4|∆̃(F)
Z,n1
|2

, (7.27)

γ
(F)
1,Z,n1

=
γ1e(Ω

(F)
Z )2

4|∆̃(F)
Z,n1
|2

. (7.28)

As can be seen from the expressions in Eqs. (7.22)–(7.23), the effective detunings
∆̃
(F)
Z,n1

and hence the rates γ
(F)
0,Z,n1

and γ
(F)
1,Z,n1

of the effective decay processes can
be engineered very small by a suitable choice of the frequencies ωF of the fields
F.
The effective Hamiltonian is generally given by

HZ ≈ −
N

∑
n1=0

∑
F

Re

n1(Ω
(F)
Z )2

4∆̃
(F)
Z,n1

 Pn1 ≡
N

∑
n1=0

∑
F

s(F)
Z,n1

Pn1 , (7.29)

It contains, as effective Hamiltonian processes, AC Stark shifts with a magnitude

s(F)
Z,n1

= −Re

n1(Ω
(F)
Z )2

4∆̃
(F)
Z,n1

 (7.30)

As we will see below, our choice of the field tones will make these Hamiltonian
terms compensate each other.

Engineered operators for the Z configuration

In the following, we consider the engineering of the effective operators under
the particular choice of parameters.
To transfer the population of all states except |0〉⊗N and |1〉⊗N to |0〉⊗N without
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affecting the GHZ state we have chosen to apply drives Ω
(F)
Z± = Ω

(F)
Z in the Z

configuration with detunings ∆
(F)
Z± = δ

(F)
Z± = ±

√
Fg, where 1 ≤ F ≤ N − 1. If the

field index F coincides with the number n1 of atoms in |1〉 for a certain initial
state and driving field, the field is on resonance and the effective detunings in
Eqs. (7.22)–(7.23) become

∆̃
(F=n1)
Z±,n1

= ∆̃
(F)
Z± −

n1g2

δ̃
(F)
Z±

≈ − i
2
(γe + κa) (7.31)

g̃(F=n1)
Z±,n1

= g−
∆̃
(F)
Z±δ̃

(F)
Z±

n1g
≈ i

2
γe + κa√

n1
. (7.32)

Here, the subscript Z+ denotes the fields with positive detunings and Z− those
with negative detunings. Since we generally work in the strong coupling limit
γ, κ � g, the above effective detunings are small compared to those for off-
resonant driving fields with n1 6= F,

∆̃
(F 6=n1)
Z±,n1

≈ ±F− n1√
F

g, (7.33)

g̃(F 6=n1)
Z±,n1

≈ n1 − F
n1

g. (7.34)

With the effective detunings we can then compute the effective decay rates in
Eq. (7.26)–(7.28) for the resonant processes with F = n1 and for the off-resonant
ones with F 6= n1,

κ
(F=n1)
Z±,n1

=
n1κa(Ω

(F)
Z )2

(γe + κa)2 , κ
(F 6=n1)
Z±,n1

=
n2

1κa(Ω
(F)
Z )2

4(n1 − F)2g2 . (7.35)

γ
(F=n1)
0,Z±,n1

=
γ0e(Ω

(F)
Z )2

(γe + κa)2 , γ
(F 6=n1)
0,Z±,n1

=
Fγ0e(Ω

(F)
Z )2

4(F− n1)2g2 , (7.36)

γ
(F=n1)
1,Z±,n1

=
γ1e(Ω

(F)
Z )2

(γe + κa)2 , γ
(F 6=n1)
1,Z±,n1

=
Fγ1e(Ω

(F)
Z )2

4(F− n1)2g2 , (7.37)

We can clearly notice that the first group of rates is engineered to be strong, while
the second group of rates is engineered to be suppressed. Using the entities
above we obtain for the Lindblad operators in Eqs. (7.19)–(7.21).

L(F)
κ,Z± ≈

N−1

∑
n1=1

[√
κ
(F=n1)
Z±,n1

+O
(

1
g2

)]
Pn1 (7.38)

+
√

κ
(F 6=N)
Z±,n1

PN , (1 ≤ F ≤ N − 1), (7.39)

L(F)
γ0,a,Z± ≈

N−1

∑
n1=1

[√
γ
(F=n1)
0,Z±,n1

|0〉a〈1|+O
(

1
g2

)]
Pn1+ (7.40)

+
√

γ
(F 6=N)
0,Z±,n1

|0〉a〈1|PN , (1 ≤ F ≤ N − 1), (7.41)

L(F)
γ1,a,Z± ≈

N−1

∑
n1=1

[√
γ
(F=n1)
1,Z±,n1

|1〉a〈1|+O
(

1
g2

)]
Pn1+ (7.42)

+
√

γ
(F 6=N)
1,Z±,n1

|1〉a〈1|PN , (1 ≤ F ≤ N − 1). (7.43)
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From the above expression we see that for 1 ≤ n1 ≤ N − 1 there are always
find terms with n1 = F to zeroth order in g−1 which are much larger rates than
the ones with n1 6= F which are to second order in g−1. We can therefore drop
the latter for 1 ≤ n1 ≤ N − 1. The terms with n1 = N which in particular
affect the GHZ state need, however, to be kept. Since the effective detunings are
engineered to depend on n1, photons scattered by resonances with different n1
can be distinguished. Formally this is justified by the exponential factors e−iωt

washing out interferences between terms (see App. D. We can therefore separate
the terms with different n1 into individual Lindblad operators, each acting on a
set of states with n1 atoms in |1〉. The enhanced processes are then given by

L(F=n1)
κ,Z± ≈

√
κ
(F=n1)
Z±,n1

Pn1=F, (1 ≤ F ≤ N − 1), (7.44)

L(F=n1)
γ0,a,Z± ≈

√
γ
(F=n1)
0,Z±,n1

|0〉a〈1|Pn1=F, (1 ≤ F ≤ N − 1), (7.45)

L(F=n1)
γ1,a,Z± ≈

√
γ
(F=n1)
1,Z±,n1

|1〉a〈1|Pn1=F, (1 ≤ F ≤ N − 1). (7.46)

The weak decay processes affecting |1〉⊗N , and thus, |GHZ〉 are found to be

L(F 6=n1)
κ,Z± |GHZ〉 ≈

√
κ
(F 6=n1)
Z±,n1

Pn1=N |GHZ〉, (1 ≤ F ≤ N − 1), (7.47)

≈ 1
2

√
κ
(F 6=n1)
Z±,n1

(|GHZ〉+ |GHZ−〉), (1 ≤ F ≤ N − 1), (7.48)

L(F 6=n1)
γ0,a,Z±|GHZ〉 ≈

√
γ
(F 6=n1)
0,Z±,n1

|0〉a〈1|Pn1=N PGHZ, (1 ≤ F ≤ N − 1), (7.49)

≈ 1
2

√
γ
(F 6=n1)
0,Z±,n1

|0〉a〈1|(|GHZ〉+ |GHZ−〉), (1 ≤ F ≤ N − 1), (7.50)

L(F 6=n1)
γ1,a,Z±|GHZ〉 ≈

√
γ
(F 6=n1)
1,Z±,n1

|1〉a〈1|Pn1=N PGHZ, (1 ≤ F ≤ N − 1), (7.51)

≈ 1
2

√
γ
(F 6=n1)
1,Z±,n1

|1〉a〈1|(|GHZ〉+ |GHZ−〉), (1 ≤ F ≤ N − 1). (7.52)

The result of the engineering of the effective processes for the Z configuration is
thus the Z pumping by which all population from states with 1 ≤ n1 ≤ N − 1 is
transferred to |GHZ〉 and |GHZ−〉.

Beside effective decay processes, we also derive an effective Hamiltonian from
by Eq. (7.29), which we write as HZ = HZ+ + HZ− with

HZ± ≈ ∓
N

∑
n1=0

n1

4g ∑
F 6=n1

√
F(Ω(F)

Z )2

F− n1
Pn1 ≡

N

∑
n1=0

∑
F

s(F)
Z±,n1

Pn1 . (7.53)

These terms are AC Stark shifts whose magnitude is obtained from Eq. (7.30),

s(F)
Z±,n1

≈ ∓
n1
√

F(Ω(F)
Z )2

4(F− n1)g
(7.54)

By our combination of red-detuned drives (Ω(F)
Z+, ∆

(F)
Z+) and blue-detuned drives

(Ω(F)
Z−, ∆

(F)
Z−) with Ω

(F)
Z+ = Ω

(F)
Z− and ∆

(F)
Z+ = −∆

(F)
Z− we achieve that the shifts

compensate each other,

HZ ≈ HZ+ + HZ− ≈ 0. (7.55)
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Given that there are no Hamiltonian terms, we turn to a description of the dy-
namics in terms by rate equations below.

Engineered decay rates for Z pumping

In Sec. 3.7, we have described the possibility to reduce the effective dynamics
further to rate equations. To perform such a step, we identify subspaces inside
which all states have the same decay rate and in-between which no significant
correlations are built up. It is therefore important that the effective Hamilto-
nian is zero. We define the subspaces by the projectors PGHZ = |GHZ〉〈GHZ|,
PGHZ− = |GHZ−〉〈GHZ−|, and Pn1 , which contain the states with a certain num-
ber of atoms in |1〉. The decay rates can then be calculated using Eq. (3.98). For
resonant Z pumping (F = n1) from a subspace with n1 atoms in |1〉 to one with
n1 − 1 due to spontaneous emission to |0〉 we obtain the rate

Γ
(F=n1)
n1→n1−1,γ0,Z± ≈∑

a
∑

k
|〈ψk|Pn1−1L(F=n1)

γ0,a,Z±Pn1 |ψj〉|2 ≈
n1γ0e(Ω

(F=n1)
Z )2

(γe + κa)2 . (7.56)

The subscripts in the above and the following decay rates specify the initial
subspace, the final subspace, the physical process, i.e. oscillator decay (κ), spon-
taneous emission to |0〉 (γ0) or |1〉 (γ1), and the pumping process (here: Z). As
opposed to the resonant rate (F = n1) above, the decay rates due to off-resonant
fields can be written as

Γ
(F 6=n1)
n1→n1−1,γ0,Z± = ∑

F
∑

a
∑
k 6=j
|〈ψk|Pn1−1L(F 6=n1)

γ0,a,Z±Pn1 |ψj〉|2 ≈
n1γ0e

4g2 ∑
F

F

(
Ω

(F)
Z

F− n1

)2

,

(7.57)

Γ
(F 6=n1)
n1→n1,γ1,Z± = ∑

F
∑

a
∑
k 6=j
|〈ψk|Pn1 L(F 6=n1)

γ1,a,Z±Pn1 |ψj〉|2 ≈
n1γ1e

4g2 ∑
F

F

(
Ω

(F)
Z

F− n1

)2

.

(7.58)

From these expressions follow the loss rates from |GHZ〉 due to Z pumping:

Γ
(F 6=n1)
GHZ→GHZ−,κ,Z± = ∑

F
|〈GHZ−|L(F 6=n1)

κ,Z± |GHZ〉|2 ≈ N2κa

16g2

N−1

∑
F=1

(
Ω

(F)
Z

N − F

)2

, (7.59)

Γ
(F 6=n1)
GHZ→N−1,γ0,Z± = ∑

F

N

∑
a=1

∑
k 6=j
|〈ψk|L

(F 6=n1)
γ0,a,Z±|GHZ〉|2 ≈ Nγ0e

8g2

N−1

∑
F=1

F

(
Ω

(F)
Z

N − F

)2

,

(7.60)

Γ
(F 6=n1)
GHZ→GHZ−,γ1,Z± =

N−1

∑
F=1

N

∑
a=1
|〈GHZ−|L(F 6=n1)

γ1,a,Z±|GHZ〉|2 ≈ Nγ1e

16g2

N−1

∑
F=1

F

(
Ω

(F)
Z

N − F

)2

.

(7.61)

We neglect the gain of population in |GHZ〉 from |GHZ−〉. Furthermore, we note
that due to its scaling with N2, loss from |GHZ〉 by oscilllator decay should be
avoided. In addition, effective oscillator decay is not useful for the ‘Z’ pumping
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Figure 7.6: Second dissipative mechanism for GHZ preparation, shown for N = 3
qubits. Depumping of |GHZ−〉 (“X pumping”), is achieved using the coupling configu-
ration shown in Fig. 7.4 b). |GHZ〉 is a superposition of states with only even numbers
n− of atoms in |−〉, while n− is odd for |GHZ−〉. The atom-excited states to which
|GHZ〉 (|GHZ−〉) is coupled by weak driving, form dressed states with other atom- and
oscillator-excited states at

√
n−g with even (odd) n−. We depump |GHZ−〉 by applying

fields with detunings ∆
(F)
X =

√
Fg where F = 1, 3, 5, ... ≤ N. Population pumped out by

this process is again pumped to |0〉⊗N by the ‘Z’ pumping process in Sec. 7.3.2.

process. As we will see below, this is also the case for X pumping. Therefore,
we will generally choose to work with κa/b = 0 for the GHZ protocol (a weak
cooling κ � Ω may nevertheless be used to counteract heating). The overall loss
rate from |GHZ〉 due to off-resonant Z pumping is then given by

ΓGHZ→?,Z ≈
N(2γ0e + γ1e)

8g2

N−1

∑
F=1

F

(
Ω

(F)
Z

N − F

)2

. (7.62)

Here, the question mark stands for any potential final state; in the scaling anal-
ysis we will typically consider the worst state possible. For the reasonable as-
sumption of γ0e = γ1e =

γe
2 we obtain

ΓGHZ→?,Z ≈
3γeN
16g2

N−1

∑
F=1

F

(
Ω

(F)
Z

N − F

)2

. (7.63)

We conclude that for g � γ, κ, the rates from Z pumping, ultimately leading to
|0〉⊗N , and thus to |GHZ〉, are much stronger than the loss rates from |GHZ〉.
The derived rates will be used further to analyze the error and preparation time
of the protocol in Sec. 7.4.

7.3.3 Emptying |GHZ−〉: the X pumping

To achieve the second process (ii) in Sec. 7.1 for the dissipative preparation of a
GHZ state we engineer the depumping of the undesired state |GHZ−〉, the so-
called “X pumping”, which is illustrated in Fig. 7.6. Here, we choose to express
the system state in terms of the σx-eigenstates, |±〉 = 1√

2
(|0〉 ± |1〉). Expressed
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in this basis, |GHZ−〉 is a superposition of states with odd numbers of qubits in
|−〉, n−, while |GHZ〉 only contains states with an even n−,

|GHZ−〉 =
1

√
2

N−1 ((|+ ... +−〉+ |+ ... +−+〉+ ...) + ...) , (7.64)

|GHZ〉 = 1
√

2
N−1 (|+ ...+〉+ (|+ ... ++−−〉+ |+ ... +−−+〉+ ...) + ...) .

In order to depump |GHZ−〉we therefore need to distinguish whether n− is even
or odd. We do this in a way similar to the Z pumping above, using the X coupling
configuration described in Sec. 7.3.1. Here, the transition from the excited level
| f 〉 to |−〉 is coherently coupled to the harmonic oscillator b by an atom-oscillator
coupling Hint,X, and coherently excited by the drive Hdrive,X. Applying fields with
detunings ∆

(F)
X± = ±

√
Fg with F = 1, 3, 5, ... ≤ N thus excites the state |GHZ−〉

and makes it decay to random states by spontaneous emission, as shown in
Fig. 7.6 for N = 3. On the other hand, |GHZ〉 remains unaffected by this
process. After decay out of |GHZ−〉 the resulting states are again subjected to
the Z pumping and then transferred back to |0〉⊗N . The combination of both
processes thus dissipatively prepares |GHZ〉 over time and stabilizes it as the
unique steady state of the dissipative dynamics. However, since the X pumping
disturbs the Z pumping, it has to be sufficiently weak so that the Z pumping
has a sizeable probability of reaching the final state |0〉⊗N before being subject
to X pumping; this requirement does not, however, slow down the preparation
process significantly, as we will see in Sec. 7.4. We derive the effective operators
and decay rates for the X pumping below.

Effective operators for the X configuration

The derivation of the effective operators for the X configuration is carried out in
App. D. We obtain for the effective Lindblad operators

L(F)
κ,X =

N

∑
n−=0

√
κbΩ

(F)
X

2g̃(F)
X,n−

Pn− , (7.65)

L(F)
γ0,a,X =

N

∑
n−=0

√
γ0 f Ω

(F)
X

2∆̃
(F)
X,n−

|0〉a〈−|Pn− , (7.66)

L(F)
γ1,a,X =

N

∑
n−=0

√
γ1 f Ω

(F)
X

2∆̃
(F)
X,n−

|1〉a〈−|Pn− . (7.67)

In analogy to Pn1 , Pn− is defined as the projector on all ground states with n−
atoms in |−〉. Furthermore, we use the effective detunings

∆̃
(F)
X,n− = ∆̃

(F)
X −

n−g2

δ̃
(F)
X

, (7.68)

g̃(F)
X,n− = g−

∆̃
(F)
X δ̃

(F)
X

n−g
, (7.69)
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and generalize the real detunings in Eq. (7.17) to complex ones,

∆̃
(F)
X = ω f −ω

(F)
X −

iγ f

2
= ∆

(F)
X −

iγ f

2
, (7.70)

δ̃
(F)
X = ωb −ω

(F)
X −

iκb

2
= δ

(F)
X −

iκb

2
. (7.71)

The effective decay rates are found to be

κ
(F)
X,n− =

κb(Ω
(F)
X )2

4|g̃(F)
X,n− |

2
, (7.72)

γ
(F)
0,X,n− =

γ0 f (Ω
(F)
X )2

4|∆̃(F)
X,n− |

2
, (7.73)

γ
(F)
1,X,n− =

γ1 f (Ω
(F)
X )2

4|∆̃(F)
X,n− |

2
. (7.74)

We engineer these rates by the choice of the detunings of the drive.

Engineered operators for the X configuration

To depump the |GHZ−〉 state without affecting |GHZ〉 we apply again red- and
blue-detuned laser fields Ω

(F)
X± = Ω

(F)
X with detunings ∆

(F)
X± = ±

√
Fg, but includ-

ing only odd field indices F = 1, 3, 5, ..., (F ≤ N), whereas for even F = 2, 4, ...
we use Ω

(F)
X = 0. From Eqs. (7.68)–(7.69) we find for the effective detunings for

resonant (F = n−) and off-resonant (F 6= n−) excitation

∆̃
(F=n−)
X±,n− = ∆̃

(F)
X± −

n−g2

δ̃
(F)
X±

≈ − i
2
(γ f + κb), ∆̃

(F 6=n−)
X±,n− ≈ ±

F− n−√
F

g, (7.75)

g̃(F=n−)
X±,n− = g−

∆̃
(F)
X±δ̃

(F)
X±

n−g
≈ i

2
γ f + κb√

n−
, g̃(F 6=n−)

X±,n− ≈
n− − F

n−
g. (7.76)

For the effective decay rates we find from Eqs. (7.72)–(7.74),

κ
(F=n−)
X±,n− =

n−κb(Ω
(F)
X )2

(γ f + κb)2 , κ
(F 6=n−)
X,n− =

κbn2
−(Ω

(F)
X )2

4(n− − F)2g2 . (7.77)

γ
(F=n−)
0,X±,n− =

γ0 f (Ω
(F)
X )2

(γ f + κb)2 , γ
(F 6=n−)
0,X±,n− =

γ0 f F(Ω(F)
X )2

4(F− n−)2g2 , (7.78)

γ
(F=n−)
1,X±,n− =

γ1 f (Ω
(F)
X )2

(γ f + κb)2 , γ
(F 6=n−)
1,X±,n− =

γ1 f F(Ω(F)
X )2

4(F− n−)2g2 , (7.79)



7.3 Realization of the GHZ protocol 129

for resonant excitation (F = n−) and for off-resonant (F 6= n−) excitation. With
these rates and Eqs. (7.65)–(7.67) we obtain the effective Lindblad operators

L(F)
κ,X± = ∑

odd n−

[√
κ
(F=n−)
X±,n− +O

(
1
g2

)]
Pn− (7.80)

+ ∑
even n−

√
κ
(F 6=n−)
X±,n− Pn− , (F = 1, 3, 5, ..., (F ≤ N)), (7.81)

L(F)
γ0,a,X± = ∑

odd n−

[√
γ
(F=n−)
0,X±,n− |0〉a〈−|Pn− +O

(
1
g2

)]
(7.82)

+ ∑
even n−

√
γ
(F 6=n−)
0,X±,n− |0〉a〈−|Pn− , (F = 1, 3, 5, ..., (F ≤ N)), (7.83)

L(F)
γ1,a,X± = ∑

odd n−

[√
γ
(F=n−)
1,X±,n− |1〉a〈−|Pn− +O

(
1
g2

)]
(7.84)

+ ∑
even n−

√
γ
(n− 6=F)
1,X±,n− |1〉a〈−|Pn− , (F = 1, 3, 5, ..., (F ≤ N)). (7.85)

Again, we separate the effective Lindblad operators by the frequencies of the
resonances, this time depending on n−. We obtain similar Lindblad operators as
for Z pumping, with enhanced terms to zeroth order in g,

L(F=n−)
κ,X± =

√
κ
(F=n−)
X±,n− Pn− , (F = 1, 3, 5, ..., (F ≤ N)), (7.86)

L(F=n−)
γ0,a,X± =

√
γ
(F=n−)
0,X±,n− |0〉a〈−|Pn− , (F = 1, 3, 5, ..., (F ≤ N)), (7.87)

L(F=n−)
γ1,a,X± =

√
γ
(F=n−)
1,X±,n− |1〉a〈−|Pn− , (F = 1, 3, 5, ..., (F ≤ N)), (7.88)

and suppressed terms acting on the target state

L(F 6=n−)
κ,X± =

√
κ
(F 6=n−)
X±,n− Pn− , (even n−, odd F), (7.89)

L(F 6=n−)
γ0,a,X± =

√
γ
(F 6=n−)
0,X±,n− |0〉a〈−|Pn− , (even n−, odd F), (7.90)

L(F 6=n−)
γ1,a,X± =

√
γ
(F 6=n−)
1,X±,n− |1〉a〈−|Pn− , (even n−, odd F). (7.91)

As can be seen more clearly from the section below, these operators make |GHZ−〉
(with only odd n−) decay rapidly, while loss from |GHZ〉 (with only even n−) is
suppressed. In addition, the effective Hamiltonian is compensated by the red-
and blue-detuned fields,

Heff,X ≈ Heff,X+ + Heff,X− ≈ 0. (7.92)

We can therefore describe the dynamics in terms of rates.
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Engineered decay rates for the X configuration

With the effective operators from Eqs. (7.86)–(7.88) we find the decay rates from
|GHZ−〉,

ΓGHZ−→?,γ0,X± ≈
γ0 f

(γ f + κb)2

N

∑
F=1,3,...

(
N
F

)
F(Ω(F)

X )2

2N−1 , (7.93)

ΓGHZ−→?,γ1,X± ≈
γ1 f

(γ f + κb)2

N

∑
F=1,3,...

(
N
F

)
F(Ω(F)

X )2

2N−1 . (7.94)

For the reasonable assumption of γ0 f = γ1 f =
γ f
2 the total rate is therefore given

by

ΓGHZ−→?,X ≈
2γ f

(γ f + κb)2

N

∑
F=1,3,...

(
N
F

)
F(Ω(F)

X )2

2N−1 . (7.95)

The expression in Eq. (7.95) is the total decay rate from the |GHZ−〉 state which
is approximately given by the sum of all enhanced decay rates, weighted with
the number of states with the same excitation. We conclude that the X pumping
causes rapid depumping of |GHZ−〉; the population of |GHZ−〉 is then dis-
tributed over all other states. The losses from |GHZ〉 are only caused by the
off-resonant drives with F 6= n−. Using Eqs. (7.89)–(7.91) and ignoring negligi-
ble gain processes we obtain the loss rates

ΓGHZ→?,γ0,X± ≈
γ0 f

4g2 ∑
n−=0,2,...

(
N
n−

)
n−

2N−1 ∑
F=1,3,...

F

(
Ω

(F)
X

F− n−

)2

(7.96)

ΓGHZ→?,γ1,X± ≈
γ1 f

4g2 ∑
n−=0,2,...

(
N
n−

)
n−

2N−1 ∑
F=1,3,...

F

(
Ω

(F)
X

F− n−

)2

(7.97)

Here, the binomial coefficients originate from the number of states with the same
number of atoms in |−〉. For the total loss rate from |GHZ〉 through X pumping
with both red- (X+) and blue-detuned (X−) fields we approximately find

ΓGHZ→?,γ,X ≈
γ f

2g2 ∑
n−=0,2,...

(
N
n−

)
n−

2N−1 ∑
F=1,3,...

F

(
Ω

(F)
X

F− n−

)2

(7.98)

From this expression we see that the loss terms from |GHZ〉 due to X pumping
are of second order in g−1 and thus suppressed for g � γ, κ. Beside decay out
of |GHZ−〉 the X pumping also causes losses from states with odd n− which
have an overlap with states with 1 ≤ n1 ≤ N − 1 in the Z basis. This affects the
transport from n1 = N − 1 to n1 = 0 by the Z pumping and thus to |GHZ〉 by
imposing a loss rate

Γn1→?,γ,X ≈
γ f

(γ f + κb)2

N

∑
F=1,3,...

(
N
F

)
F(Ω(F)

X )2

2N−1 . (7.99)
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We will refer to this process as “X toss” below. As we will find out this does not,
however, have a significant effect on the scaling of the preparation time and the
error, if the strength of the X process is chosen properly.

We conclude the analytical discussion of the effective operators and engineered
decay rates of the GHZ scheme by stating that the combination of Z and X
pumping results in the preparation of a GHZ state from any initial state. For
g � γ, κ the gain rates are engineered to be strong, while the loss rates from
|GHZ〉 are suppressed. We therefore expect the preparation of a GHZ state with
high fidelity within a short preparation time. These questions are addressed in
the section below, where we investigate the performance of the GHZ protocol.

7.4 Performance of the GHZ protocol

In the preceding section we have presented a scheme for the realization of the
GHZ protocol described in Sec. 7.1. Our analysis of the effective operators and
engineered decay rates of these processes has lead to the conclusion that our
scheme allows for the dissipative preparation of a steady GHZ state regardless
of the initial state of the system.
We now address the performance of the scheme. Here, we derive the scaling
of the preparation time of a desired fidelity of the target state with the number
of qubits and optimize it both analytically and numerically. We start out by an
analysis for weak driving in Sec. 7.4.1. Since it is desirable to operate the scheme
as fast as possible, we investigate potential strong driving effects in Sec. 7.4.2.
Based on these, we present an analysis of the GHZ scheme for strong driving in
Sec. 7.4.3. In Sec. 7.4.4 we assess the performance of the scheme numerically
and compare the outcome with the analytical result.

7.4.1 Scaling analysis for weak driving

In the following, we present the results from the analysis of the performance of
the protocol for weak driving. The full derivation is found in App. E.

To begin with, we describe the dynamics of the system using compartments
defined by the number of atoms in |1〉, n1. This is done for 0 < n1 < N, whereas
for n1 = 0 and n1 = N we consider the compartments consisting of |GHZ〉 and
|GHZ−〉. The rates between these compartments have been derived in Sec. 7.3
using the effective operators which assume weak driving. An illustration of the
compartment model is given in Fig. E.1 in App. E.

The preparation time of the GHZ states is the most important quantity. It is
derived from the individual rates of the Z pumping which reduce n1 stepwise
down to n1 = 0, which overlaps with the GHZ state. Adding up the times for
the individual jumps and assuming that we start from the worst initial state with
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n1 = N − 1, we obtain for the preparation time of |GHZ〉 due to Z pumping

τn1=1→GHZ = 2τn1=N−1→n1=0 =
N−1

∑
n1=1

τn1→n1−1,γ0,Z =
N−1

∑
n1=1

Γ−1
n→n1−1,γ0,Z (7.100)

=
(γe + κa)2

γ0e

N−1

∑
n1=1

1

n1(Ω
(F=n1)
Z )2

. (7.101)

The error due to Z pumping, on the other hand, is given by Eq. (7.63),

ΓGHZ→?,γ,Z ≈
3γeN
16g2

N−1

∑
F=1

F

(
Ω

(F)
Z

N − F

)2

(7.102)

Both these expressions depend on the Rabi frequencies Ω
(F)
Z of the multi-tone

drive Hdrive,Z and the decay rate γe of level |e〉; recall that γe = γ0e + γ1e. In
a first step, we use the Lagrange multiplier method to minimize the error rate
for a given preparation time by choosing the relative strength of the tones of the
driving field. Then, in a second step, we adjust γe such as to achieve a desired
error of the protocol, independent of the number of qubits N. The details are
presented in App. E.1. The treatment of the X pumping is found in App. E.2.
In brief, we find that the steady state fidelity F is determined by the ratio of the
decay out of the GHZ state at a rate Γ− ∼ NΩ2

γ , and the effective preparation rate

Γ+ ∼ NγΩ2

g2 , giving a steady state error E ≈ 1− F = Γ−
Γ+
∼ Nγ2

g2 . With a suitably

chosen low decay rate γ ∼ g
√

E√
N

we can prepare a GHZ state with a desired
fidelity F, independent of the number of atoms. Such an adjustable decay rate
can, e.g., be achieved by taking |e〉 and | f 〉 to be metastable states in an atom
and driving them to an excited state (see Sec. 7.7). With suitably chosen Rabi
frequencies Ω

(F)
Z , Ω

(F)
X and a sufficiently low decay rate γ ∼ g√

EN
we can then

prepare a state with an error E within a preparation time

τGHZ ∝

√
N log2 N
α2g
√

E
. (7.103)

Here, α denotes the relation between the maximum Rabi frequency Ω and the
decay rate γ. This dependency cannot be derived using the effective operators
for weak driving used so far. However, on reasonable grounds which will be-
come more clear in the next section, we can assume that α is limited by the
effect of power broadening. Assuming that this effect grows quadratic with the
driving, we use α ∝ 1√

N
. With this we obtain for the scaling of the preparation

time

τGHZ ∝
N3/2log2(N)

g
√

E
. (7.104)

While here, for the assumption of weak driving, it is not possible to derive an
optimal driving strength, in Sec. 7.4.3 our considerations are turned into a more
rigorous upper bound for the scaling of the preparation time, taking into account
strong driving effects which allow us to derive an optimal Ω. We address these
effects in Sec. 7.4.2 below.



7.4 Performance of the GHZ protocol 133

7.4.2 Strong driving effects

The operator formalism used to derive effective couplings of the ground states
in the system is built on the assumption of a perturbative drive much smaller
than the couplings, decay, or detunings of the excited states, Ω � γ, κ, g, ∆, δ.
Effects from saturating the excited states that could possibly slow down the
preparation process are thus not included in the rates derived so far. On the
contrary, the dependency of all decay rates on the drives ∝ Ω2 suggests that the
optimal Rabi frequencies Ω of the drives are infinitely strong and thereby outside
the perturbative regime. Thus, a proper assessment of the driving strength Ω

requires the inclusion of strong driving effects which begin to play a role for
Ω . γ, κ.

In the following, we include such effects in the dynamics in an approximate way.
Here, we discuss power broadening and population of the excited states and ad-
just the rates derived from the effective operators to account for power broaden-
ing. They will later be used to analytically derive the optimal Rabi frequencies Ω

and the scaling of the protocols for strong driving. In addition, in our numerical
simulations we will use effective operators where we have included the power
broadening terms manually. While this treatment is not rigorous, it provides a
convenient tool for rapidly determining the optimal parameters. These will be
used to simulate the effective dynamics of the system beyond the regime of weak
driving and to match it with the simulations describing a larger Hilbert space
including excitations. In addition, we take into account the effect of population
of the excited states in our numerics.

Power broadening

We first address the effect of power broadening (or ‘line’ broadening) in a simple
model situation: A ground state |0〉 is resonantly coupled by a field with a Rabi
frequency Ω to an excited level |e〉. In total, |e〉 decays at a rate γ = γ0 + γ1,
where γ1 is the decay rate into |1〉. We perform adiabatic elimination by setting
the derivative of the density matrix to zero, ρ̇ ≈ 0. In the weak driving regime,
where the broadening of the excited level can be neglected, this yields an excited
population of ρee = Ω2

γ2 ρ00 and thus an effective decay rate from |0〉 into |1〉 of

γeff =
Ω2

2γ . The population gain of state |1〉 is then given by

ρ̇11 ≈ γ1ρee ≈ γeffρ00 ≈
Ω2

2γ
ρ00 (7.105)

The same result is obtained when using the effective operators. Performing adi-
abatic elimination with a stronger drive we need to take into account the popu-
lation of the excited level. This yields an excited population of ρee = Ω2

γ2+Ω2 ρ00.
Then, as the coupling of the ground state |0〉 to |e〉 is increased, we take into ac-
count the population of the coupled subspace of |0〉 and |e〉 rather than of state
|0〉 only. This leads to

ρ̇11 ≈
γ1ρ00

(ρ00 + ρee)
(ρ00 + ρee) ≈

γ1Ω2

γ2 + 2Ω2 (ρ00 + ρee) (7.106)
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For weak driving Ω2 � γ2, this new decay rate γeff = γΩ2

2(γ2+2Ω2)
matches the

previous result. The decay rate for strong driving can thus be obtained from the
rate which was originally derived from the effective operators by “broadening”
the natural line width of the excited state, γ2 → γ2 + 2Ω2. In the limit of strong
driving, Ω→ ∞, the population is found in |e〉 with a probability of 1

2 such that
here γeff approaches the constant value of γ1

2 . Therefore, the effective decay rate
from |0〉 to |1〉 cannot be increased to more than half of the line width of the
level mediating it.

More generally, we now seek to include power broadening in the effective op-
erators. This is done by replacing all complex effective detunings, e.g. ∆̃

(F)
Z,n1

,
here generally denoted as ∆̃eff and g̃eff, by “power broadened” ones. The re-
placements are made such that the rates obtained from the effective operators
agree with the ones derived by adiabatic elimination. To this end, we make the
replacements of |∆̃eff|2 → |∆̃eff|2 + nΩ2 and |g̃eff|2 → |g̃eff|2 + nΩ2, where n is the
number of atoms that can be excited by the drive. However, as it turns out from
numerical simulations, the action of power broadening needs to be doubled in
the effective operators for ‘Z’ and ‘X’ to achieve agreement between the evolu-
tion due to the effective master equation (7.18) and the more complete master
equation in (7.3). This can be attributed to interference between the blue- and
red-detuned drives. Indeed, considering coherent excitation of a bright state
consisting of both the blue- and the red-shifted dressed state suggests an in-
crease of the broadening by a factor of two and thus the effective detunings
|∆̃eff|2 → |∆̃eff|2 + 2nΩ2 and |g̃eff|2 → |g̃eff|2 + 2nΩ2. While these replacements
are not rigorous, they are supported by our numerical simulations: It can be
seen further down in Sec. 7.4.3 and 7.6.3 that (1) the analytical scalings derived
using the strong driving operators comprise upper bounds to the numerically
obtained scalings and that (2) the effective operators for strong driving agree
well with simulations of the more complete master equation.
Following this reasoning, the power broadened decay rate for the Z pumping
from n1 to n1 − 1 is found to be

Γn1→n1−1,γ0,Z ≈
2n1γ0e(Ω

(F=n1)
Z )2

(γe + κa)2 + 2n1(Ω
(F=n1)
Z )2

. (7.107)

For the X depumping of |GHZ−〉 we have

ΓGHZ−→?,γ,X ≈
N

∑
F=1,3,...

2γ f

(γ f + κb)2 + 2n−(Ω
(F=n−)
X )2

(
N
n−

)
n−(Ω

(F=n−)
X )2

2N−1 (7.108)

and for the X toss rate

Γn1→?,γ,X ≈
N

∑
F=1,3,...

γ f

(γ f + κb)2 + 2F(Ω(F=n−)
X )2

(
N
F

)
n−(Ω

(F=n−)
X )2

2N−1 . (7.109)

As a consequence of the inclusion of terms for power broadening, increasing
the driving strengths in the desired processes also increases the effect of power
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broadening in the desired decay rates. In the off-resonant decay rates γeff ∝ γΩ
g2

the effect of power broadening is, on the other hand, negligible (given that Ω2 �
g2). The detrimental rates thus still increase for a growing Ω while the desired
rates saturate. This is the limiting factor for the drive Ω which we will use to
derive Ω further down.

Population of the excited states

An additional reduction in the fidelity for strong driving comes from the popu-
lation of the excited induced by the drive. In the following, we investigate this
effect:
The GHZ state, through its contribution from |1〉⊗N , is coupled to an excited
state |ψe〉 = 1√

N
(|1..1e〉 + |1..e1〉 + ... + |e..11〉) by Hdrive,Z. Despite being off-

resonance, all tones of the driving field couple to the transition from |GHZ〉
to the dressed states of |ψe〉 and |1〉⊗N |1〉, with driving strengths of Ω

(F)
Z =√

N
2 Ω

(F)
Z and detunings ∆

(F)
Z± = ±

√
Ng + ∆

(F)
Z = (±

√
N ±
√

F)g. For each tone
the excited population is approximately given by

P(F)
excited,Z± ≈

NΩ
(F)
Z

8(
√

N +
√

F)2g2
+

NΩ
(F)
Z

8(
√

N −
√

F)2g2
(7.110)

We also consider the excited population caused by X pumping. This requires
representing the GHZ state in the X basis as in Eq. (7.64) and leads to an expres-
sion

P(F)
excited,X± ≈

N

∑
n−=2,4,...

(
N
n−

)(
n−Ω

(F)
X

4(
√

n− +
√

F)2g2
+

n−Ω
(F)
X

4(
√

n− −
√

F)2g2

)
(7.111)

These expressions are included in our numerical simulations of the effective
dynamics in the strong driving regime and provide another limitation on Ω. Our
analytical derivation of the scaling involves, however, upper bounds to certain
error processes and turns out to take place in a parameter regime where the
population of the excited states is not significant. Therefore, in the analytical
considerations below we leave out its effect.

7.4.3 Scaling analysis for strong driving

We use the results of the previous section to analyze the scaling of the prepa-
ration time for strong driving. As opposed to the analysis for weak driving in
Sec. 7.4.1 we now also include the effect of power broadening. This enables us
to optimize the Rabi frequencies of the drives. While here we present a sum-
mary of our analysis, the details are found in App. E.5. There, with the power
broadened rates in Eq. (7.107), the preparation time is found to be given by

τn1=N−1→GHZ = 2τn1=N−1→n1=0 = 2
N−1

∑
n1=1

(Γn1→n1−1,γ0,Z)
−1 (7.112)

= 2
N−1

∑
F=1

(
γe

F(Ω(F)
Z )2

+
2
γe

)
=

4(N − 1)
γe

+
N−1

∑
F=1

2γe

F(Ω(F)
Z )2

(7.113)
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It can be seen that the preparation rate increases with the strength of the driving
Ω, but for too strong driving the fidelity becomes limited by power broadening,
decreasing the preparation rate in Eq. (7.107), and thus, increasing the prepara-
tion time. On the other hand, the error rate in Eq. (E.9) remains unchanged

ΓGHZ→?,γ,Z =
3γe

16g2 N
N−1

∑
F=1

F(Ω(F)
Z )2

(N − F)2 . (7.114)

Normally, a reduced preparation time at constant error rate would result in an
increased error of the protocol. As shown in App. E, these detrimental effects
can be suppressed with suitable decay rates and driving strengths, decreasing
polynomially with the number of qubits,

γe = 0.42 · g
√

E√
N log N

, (7.115)

Ω
(F)
Z = 0.42 · g

√
E

N
√

log N

√
N − F

F
(for F = 1, . . . , N − 1), (7.116)

γ f = 0.80 · gE1/2

N1/2 (7.117)

Ω
(F)
X = 0.24 · gE1/2

N3/2(log N)1/2 (for F = 1, 3, 5 ≤ N). (7.118)

With these parameter choices we achieve for the preparation time

τGHZ ≈ 66
N3/2 log N

g
√

E
, (7.119)

which agrees with the scaling of Eq. (7.104) up to a logarithm. It thereby con-
firms the previous result and constitutes a more rigorous upper bound for the
preparation time at strong driving.

Note that in the above equations, E is meant to be the static error of the protocol
which is attained in the limit of infinite time. For the “dynamical” error E as
the error that is reached within a finite time τGHZ one should everywhere set
E = 0.62E for E = 0.1 (or E = 0.70E for E = 0.03). The GHZ preparation time
is then also prolonged by an additional factor of ∼ log(1/E). The details are
found in App. E.4–E.5.

7.4.4 Numerical analysis and comparison

In the following, we verify our analytical results numerically. To this end, we
simulate the time evolution by numerically solving the master equation. In Fig.
7.7 we plot the evolution due to the effective master equation, Eq. (7.18), con-
taining the effective operators in Eqs. (7.19)–(7.21) and (7.65)–(7.67), including
the terms for strong driving discussed in Sec. 7.4.2. We compare these curves
with the evolution due to the more complete master equation, Eq. (7.3), trun-
cated to one or two excitations. For the effective dynamics we use a Trotter-like
ansatz, simulating the evolution under the Z and X pumping in an interchang-
ing manner, performing base transformations between the eigenbases of σz and
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Figure 7.7: Evolution towards a steady many-body GHZ state. We numerically simu-
late the effective master equation of the protocol for dissipative preparation of a GHZ
state, starting from an initially fully mixed state. The curves show the evolution for two
to eight qubits (different colors) and are obtained by numercially optimizing all avail-
able parameters to reach a fidelity of F = 0.9 of the desired state within an as short as
possible preparation time. The insets show the scaling of the preparation time with the
number of qubits. In the curves and in the insets, we show different degrees of trun-
cation of the Hilbert space: dash-dots/blue squares – effective dynamics after adiabatic
elimination, solid lines/green circles – one excitation, red dashes/triangles – two exci-
tations). In the insets, small symbols stand for analytically optimized parameters and
large symbols for numerically optimized parameters. We find a favorable polynomial
scaling of the preparation time with the number of qubits, which is in agreement with
our analytical bound (black dash).

σx. The resulting time evolution towards a steady GHZ state for qubit numbers
N = 2, . . . , 8 is shown in Fig. 7.7. The curves are obtained by simulating the
effective master equation, after numerical optimization of the available system
parameters to achieve a desired fidelity of FGHZ = 0.9 in minimal time. The in-
set shows the time required to reach this fidelity when starting from an initially
fully mixed state, as a function of the system size. It can be seen that the desired
fidelity of F = 0.9 is indeed attained within shorter preparation time than given
by our analytical upper bound in Eq. (7.119). The scaling of the points in the
inset, which mark our numerical results, is similar to the analytical curves and
supports a scaling of the preparation time which is less than quadratic in the
qubit number. We therefore conclude that our GHZ protocol has a favorable
polynomial scaling with the number of qubits.

7.5 Realization of the W protocol

We now demonstrate how the protocol for W preparation proposed in Sec. 7.1
can be realized in the physical system described in Sec. 7.2. In Sec. 7.5.1 we
present a suitable setup. As mechanisms we again use the Z pumping of Sec.
7.3.2, discussed in Sec. 7.5.2, together with two more mechanisms, ‘A’ and ‘W’,
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Figure 7.8: Setup for W state preparation. For the dissipative preparation of W states
in the system presented in Sec. 7.2 we combine three coupling configurations, ‘Z’, ‘W’,
and ‘A’, each consisting of an atom-oscillator coupling and a weak coherent drive. (a)
The Z configuration consists of a coupling of the transition from |e〉 to |1〉 to the har-
monic oscillator a with a coupling constant g. A multi-tone drive with individual Rabi
frequencies Ω

(F)
Z and detunings ∆

(F)
Z for the tones F acts on the same transition. (b) In

the A configuration the harmonic oscillator b couples to the transition from | f 〉 to |0〉,
whereas a single-tone drive with ΩA and ∆ A acts on the transition from |1〉 to | f 〉. (c)
The W configuration is opposite to the A configuration: Here, we use the atom-oscillator
coupling of the Z configuration on the transition from |e〉 to |1〉 and a two-tone drive
with ΩW and ∆W on the transition from |e〉 to |1〉.

discussed in Sec. 7.5.3 and 7.5.4. In Sec. 7.6, we study the performance of the
scheme.

7.5.1 Setup

For the preparation of W states we consider the coupling configurations shown
in Fig. 7.8, which consist of atom-oscillator couplings and classical drives. The
atom-oscillator couplings are modeled by the interaction Hamiltonian Hint =
Hint,Z/W + Hint,A with

Hint,Z/W = g
(

a† J1e + aJ†
1e

)
, (7.120)

Hint,A = g
(

b† J0 f + bJ†
0 f

)
, (7.121)

The coupling configurations are denoted by ‘Z’, ‘W’ and ‘A’, the coupling con-
stant of the atom-oscillator coupling is given by g. Hint,Z/W describes that an
atomic excitation in |e〉 is exchanged with the oscillator a, leaving the atom in
state |1〉. Hint,A couples the transition between the excited state | f 〉 and the
ground state |0〉 to the oscillator b. The coherent excitation of the atoms by
classical driving fields is given by the drive Hamiltonian Hdrive = Hdrive,Z +
Hdrive,A + Hdrive,W with

Hdrive,Z =
1
2 ∑

F
Ω

(F)
Z e−iω(F)

Z t Je1 + H.c., (7.122)

Hdrive,W =
1
2

Ω
(F)
W e−iωWt Je0 + H.c., (7.123)

Hdrive,A =
1
2

Ω
(F)
A e−iωAt J f 1 + H.c. (7.124)
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Figure 7.9: First dissipative mechanism for W state generation, shown for N = 3 qubits.
Pumping of all states with n1 ≥ 2 atoms in |1〉 to n1 ≤ 1, is achieved using Z pumping
in the coupling configuration shown in Fig. 7.4 a). Ground states are coupled to atom-
excited states by weak driving. Dependent on the number of atoms in |1〉, n1, the
excited states form dressed states with oscillator-excited states at energies ±√n1g. We

apply fields with detunings ∆
(F)
Z =

√
Fg for 2 ≤ F ≤ N, by which all states with n1 ≥ 2

are pumped towards n1 ≤ 1.

For the Z drive, we generally allow for several field tones F with Rabi frequencies
Ω

(F)
Z and frequencies ω

(F)
Z/W/A. For further discussion we define the detunings

∆
(F)
Z = ωe −ω

(F)
Z , δ

(F)
Z = ωa −ω

(F)
Z , (7.125)

∆ A = ω f −ωA, δA = ωb −ω
(F)
A , (7.126)

∆W = ωe −ωW , δW = ωa −ωW . (7.127)

We will again use these detunings to engineer certain effective decay processes
to be strong and others to be weak.

7.5.2 Transferring states to n1 ≤ 1 by the Z pumping

We adapt the Z pumping mechanism, previously discussed in Sec. 7.3.2 for
the GHZ scheme, to the preparation of W states. The respective ‘Z’ coupling
configuration is shown in Fig. 7.8 a). This time, we apply Z fields with detunings
∆
(F)
Z± = ±

√
Fg with 2 ≤ F ≤ N to pump states with n1 ≥ 2 to the subspace with

n1 ≤ 1. This subspace contains |W〉, |0〉⊗N and the antisymmetric states with
n1 = 1. As can be seen from Fig. 7.9, the Z pumping here is similar to the one
used for GHZ preparation above, with the difference that we choose fields with
detunings ∆

(F)
Z±± = ±

√
Fg and 2 ≤ F ≤ N to pump the population to n1 ≤ 1 and

n1 = 0 as previously. The general effective operators for the Z configuration have
already been discussed in Sec. 7.3.2. Below we therefore focus on the engineered
operators and effective transfer rates for the Z pumping used in the W protocol.

Engineered operators for the Z pumping

We analyze Z pumping from states with n1 ≥ 2 to those with n1 ≤ 1. To do so,
we insert the detunings ∆

(F)
Z± = ±

√
Fg for 2 ≤ F ≤ N into the expressions for
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the effective detunings in Eqs. (7.22)–(7.23) and decay rates in Eqs. (7.26)–(7.28).
This allows us to compute the Lindblad operators in Eqs. (7.19)–(7.21) for this
parameter choice. For the enhanced processes (n1 = F) we find

L(F=n1)
κ,Z± ≈

√
κ
(F=n1)
Z±,n1

Pn1 , (2 ≤ F ≤ N), (7.128)

L(F=n1)
γ0,a,Z± ≈

√
γ
(F=n1)
0,Z±,n1

|0〉a〈1|Pn1 , (2 ≤ F ≤ N), (7.129)

L(F=n1)
γ1,a,Z± ≈

√
γ
(F=n1)
1,Z±,n1

|1〉a〈1|Pn1 , (2 ≤ F ≤ N). (7.130)

In addition, there are weak decay processes that affect |W〉 described by

L(F 6=1)
κ,Z± ≈

√
κ
(F 6=1)
Z±,n1

Pn1=1, (2 ≤ F ≤ N), (7.131)

L(F 6=1)
γ0,a,Z± ≈

√
γ
(F 6=1)
0,Z±,n1

|0〉a〈1|Pn1=1, (2 ≤ F ≤ N), (7.132)

L(F 6=1)
γ1,a,Z± ≈

√
γ
(F 6=1)
1,Z±,n1

|1〉a〈1|Pn1=1, (2 ≤ F ≤ N). (7.133)

The effective Hamiltonian is again compensated by choosing drives with both
blue and red detunings (cf. Eq. (7.55)) so that we can turn to a description using
rate equations.

Engineered decay rates for the Z pumping

We first calculate the rates for the desired mechanism consisting of several en-
hanced processes and then the loss rates. These rates will be needed to derive
the time it takes to reach |W〉.
The decay rate leading from n1 = 2 into n1 = 1 constitutes an upper bound for
the decay rate from n1 = 2 to the antisymmetric subspace (from now on denoted
by “as”), which contains all states with n1 = 1 except the W state. This rate is
given by

Γ2→as,γ0,Z . Γ2→1,γ0,Z ≈
N

∑
a=1

∑
j
|〈ψj|P1L(F=n1)

γ0,a,Z P2|ψk〉|2 ≈
2γ0e(Ω

(F=2)
Z )2

(γe + κa)2 . (7.134)

Generally, the rate for Z pumping from a subspace with n1 atoms in |1〉 to one
with n1 − 1 is found to be

Γn1→n1−1,γ0,Z ≈
N

∑
a=1

∑
j 6=k
|〈ψj|Pn1−1L(F=n1)

γ0,a,Z Pn1 |ψk〉|2 ≈
2n1γ0e(Ω

(F=n1)
Z )2

(γe + κa)2 . (7.135)

We now turn to the effective decay processes from |W〉. Here, we find for the
losses due to Z pumping

ΓW→0,γ0,Z = ∑
a

∑
F
|〈0|⊗N L(F=n1)

γ0,a,Z |W〉|
2 ≈ γ0e

2g2

N

∑
F=2

F

(
Ω

(F)
Z

F− 1

)2

(7.136)

ΓW→as,γ1,Z . ΓW→1,γ1,Z =
N

∑
k=1

N

∑
a=1

N

∑
F=2
|〈1k|L

(F=n1)
γ1,a,Z |W〉|

2,≈ γ1e

2g2

N

∑
F=2

F

(
Ω

(F)
Z

F− 1

)2

.

(7.137)
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Figure 7.10: Second dissipative mechanism for W state generation, shown for N = 3
qubits: States with n1 = 1 atom in state |1〉 with a symmetry differing from |W〉 are
emptied by a process called “A pumping”, using the coupling situation shown in Fig.
7.8 (b). While the atom-excited state to which |W〉 is coupled by a single-tone drive forms
dressed states with |0〉⊗N |1〉 at energies of ±

√
Ng, the atom-excited states to which the

antisymmetric states |1k 6=0〉 are coupled are dark states of the oscillator coupling. They
are thus in resonance with the drive (∆ A = 0) and pumped to |0〉⊗N . |W〉 is prepared
from |0〉⊗N as carried out in Sec. 7.5.4.

As can be seen from Eq. (7.135), the decay rates of the Z process depend on the
number of atoms in |1〉 of a state, and not on its symmetry. To empty the anti-
symmetric states we therefore need an additional process, which we introduce
below.

7.5.3 Emptying antisymmetric states: the A pumping

Since the Z pumping does not distinguish between the symmetry of the states
with n1 = 1, an additional process is needed to empty all states except for
|W〉. Here, it is helpful to recognize that, while |W〉 is completely symmetric
under permutation, the other N − 1 states with n1 = 1 are antisymmetric under
permutation. A basis for the antisymmetric states is given by

|1k〉 =
N

∑
a=1

e2πiak/Nσ+
a |0〉⊗N , (1 ≤ k ≤ N − 1), (7.138)

where σ+
a = |1〉a〈0|. Note that |10〉 = |1N〉 = |W〉 is the W state, or first Dicke

state. The second Dicke state

|20〉 =
N

∑
a=1

(
σ+

a
)2 |0〉⊗N =

1√
N(N − 1)

(|110..0〉+ |1010..0〉+ ... + |0..011〉)

(7.139)

is the symmetric superposition of all states with two atoms in |1〉. To empty the
antisymmetric states, we apply the coupling configuration shown in Fig. 7.8 b)
with a single-tone drive resonant to the transition from |1〉 to | f 〉, ∆ A = 0, and
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an oscillator coupling on the transition from | f 〉 to |0〉. The ground states in the
n1 = 1 manifold are then driven to atom-excited states of the form

|0 f
k 〉 =

1√
N
((−1)

2k
N |0..0 f 〉+ (−1)

4k
N |0.. f 0〉+ ... + (−1)2k| f ..00〉). (7.140)

Here, the permutation symmetric atom-excited state |0 f
0〉, to which |W〉 is excited

by the drive, is coupled to the state |0〉⊗N |1〉b, which has an excitation of the os-
cillator b, with a coupling strength of

√
Ng. Because of their strong coupling,

these states form dressed states at energies ±
√

Ng, as is illustrated in Fig. 7.10.
Excited states of other symmetries, to which the antisymmetric states are cou-
pled, are dark states of the oscillator coupling. They are thus in resonance with
the drive, if no detuning is applied, ∆A = 0. The antisymmetric ground states
are then excited rapidly to the corresponding atom-excited states from where
they decay to |0〉⊗N by spontaneous emission. The W state, on the other hand,
remains unaffected due to the resonant detuning of the corresponding dressed
states.
As we will discuss in Sec. 7.5.4, a third mechanism is applied to prepare |W〉
from |0〉⊗N . We now turn to the effective operators and engineered rates for the
A pumping.

Effective operators for the A configuration

The situation for the A configuration, and, as we will see below, also for the W
configuration is different from the previous cases of Z and X in the sense that
the drive and the atom-oscillator coupling act on different transitions. In App.
D we obtain for the effective operators for the A configuration

L(F)
κ,A =

N

∑
n1=0

√
κbΩ

(F)
A

2g̃(F)
A,n1

J01Pn1 ≡∑
n1

√
κ
(F)
A,n1

J01Pn1 (7.141)

L(F)
γ0,a,A =

N

∑
n1=0

√
γ0 f Ω

(F)
A

2∆̃
(F)
A

[
|0〉a〈1| − (ñ(F)

A,n1
)−1|0〉a〈0|J01

]
Pn1 (7.142)

L(F)
γ1,a,A =

N

∑
n1=0

√
γ1 f Ω

(F)
A

2∆̃
(F)
A

[
|1〉a〈1| − (ñ(F)

A,n1
)−1|1〉a〈0|J01

]
Pn1 (7.143)

H(F)
A = −

(Ω
(F)
A )2

8∆̃
(F)
A

N

∑
n1=0

[
n1 − (ñ(F)

A,n1
)−1 J10 J01

]
Pn1 + H.c. (7.144)

Here, we have the effective detunings

g̃(F)
A,n1

= (N − n1 + 1)g−
∆̃
(F)
A δ̃

(F)
A

g
, (7.145)

ñ(F)
A,n1

= (N − n1 + 1)−
∆̃
(F)
A δ̃

(F)
A

g2 =
g̃(F)

A,n1

g
, (7.146)
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where we have generalized the terms in Eq. (7.126) to complex detunings,

∆̃
(F)
A = ω f −ω

(F)
A −

iγ f

2
= ∆

(F)
A −

iγ f

2
, (7.147)

δ̃
(F)
A = ωb −ω

(F)
A −

iκb

2
= δ

(F)
A −

iκb

2
. (7.148)

It can be seen that for the A configuration – and, as we will see below, also for
the W configuration – we typically do not reach a compact expression for the
effective operators. However, as we will see below, these expressions simplify
considerably for the most states relevant in the scheme, in particular for the dark
states of J10.

Engineered operators for the A configuration

The A mechanism is meant to pump the antisymmetric states to |0〉⊗N , while
ideally leaving |W〉 unaffected. To achieve this we use the A configuration with
a resonant single-tone field, ∆A = δA = 0. The decay of the oscillator mode b is
assumed to be negligible, κb = 0. With this we obtain for the Lindblad operators
in Eqs. (7.141)–(7.143) in the manifold n1 ≤ 1

L(F=0)
κ,A Pn1≤1 ≈

√
κ
(F=0,W)
A,n1

|0〉⊗N〈W| ≈ 0 (7.149)

L(F=0)
γ0,a,APn1≤1 ≈

√
γ
(F=0,as)
0,A,n1

|0〉a〈1|Pn1=1,as +
√

γ
(F=0,W)
0,A,n1

|0〉a〈1|PW (7.150)

L(F=0)
γ1,a,APn1≤1 ≈

√
γ
(F=0,as)
1,A,n1

|1〉a〈1|Pn1=1,as +
√

γ
(F=0,W)
1,A,n1

|1〉a〈1|PW (7.151)

Here, we have defined a projector Pn1=1,as = ∑N−1
k=1 |1k〉〈1k| onto all antisymmetric

states in n1 = 1 and a projector onto the W state, PW = |W〉〈W|, and the effective
decay rates

κ
(F=0,as)
A,n1

= 0, κ
(F=0,W)
A,n1

=
κbΩ2

A
4g2 = 0, (7.152)

γ
(F=0,as)
0,A,n1

=
γ0 f Ω2

A

γ2
f

, γ
(F=0,W)
0,A =

γ0 f κbΩ2
A

16N3g2 = 0, (7.153)

γ
(F=0,as)
1,A,n1

=
γ1 f Ω2

A

γ2
f

, γ
(F=0,W)
1,A =

γ1 f κbΩ2
A

16N3g2 = 0. (7.154)

It can be seen that the effective spontaneous emission from antisymmetric states
with n1 = 1 is only limited by the line width γ f and thus very rapid compared to
the loss terms with g in the denominator. These losses from |W〉 are suppressed
by a detuning growing with the qubit number and are switched off completely
for κb = 0. The effective Hamiltonian of the A mechanism acting on the n1 = 1
manifold is zero due to the absence of a detuning of the driving field,

HA ≈ 0 (7.155)

so that we describe the A pumping by rates.
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Figure 7.11: Third dissipative mechanism for W state generation, shown for N = 3
qubits: |W〉 is prepared from |0〉⊗N using the coupling situation shown in Fig. 7.8 (c).
|0〉⊗N is coupled to an excited state by a two-tone drive with detunings ∆W± = ±g. The
atom-oscillator coupling with g causes |0e

0〉 and |W〉|1〉 to form dressed states which are
each in resonance with one tone of the drive (shown for red detuning). Effective oscil-
lator decay from |0〉⊗N leads to the desired state |W〉. Excitation of |W〉 is suppressed
as the excitation of the corresponding dressed states would require a drive tone with a
detuning of ±

√
2g.

Engineered decay rates for the A pumping

The depumping rate for antisymmetric states (“as”) is given by

Γas→0,γ0,A = ∑
a
|〈0|⊗N L(F=0)

γ0,a,A|1k 6=0〉|2 ≈
γ0 f Ω2

A

γ2
f

. (7.156)

The loss rates from |W〉 are, on the other hand, found to be small,

ΓW→0,κ,A = |〈0|⊗N L(F=0)
κ,A |W〉|2 ≈ κbΩ2

A
4Ng2 ≈ 0, (7.157)

ΓW→0,γ0,A = ∑
a
|〈0|⊗N L(F=0)

γ0,a,A|W〉|
2 ≈

γ0 f κ2
bΩ2

A

16N2g4 ≈ 0, (7.158)

ΓW→as,γ1,A =
N

∑
k=1

N

∑
a=1
|〈1k|L

(F=0)
γ1,a,A|W〉|

2 ≈
γ1 f κ2

bΩ2
A

16N2g4 ≈ 0. (7.159)

The A pumping is found to be limited only be the more or less freely adjustable
decay rate γ f of the excited level | f 〉. The depumping of the antisymmetric states
to |0〉⊗N is thus a very efficient process. Preparation of the |W〉 state from |0〉⊗N

requires an additional, third process, which is the ‘W’ mechanism discussed in
the following section.

7.5.4 Preparation of |W〉 from |0〉⊗N: the W pumping

After all population with n1 ≥ 2 has been transferred to n1 ≤ 1, the A pump-
ing discussed in the previous section pumps all states except for |W〉 to |0〉⊗N .
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The actual preparation of |W〉 from |0〉⊗N is realized by a third process, the so-
called “W pumping”. This is achieved by an effective decay (or “cooling”) of
the harmonic oscillator, realized by the coupling configuration in Fig. 7.8 c). To
achieve this process, we apply a two-tone drive with detunings ∆W± = ±g on
the transition from |0〉 to |e〉 and use the oscillator coupling on the transition
from |e〉 to |1〉. The state |0〉⊗N is then excited by the drive to a symmetric atom-
excited superposition state, from where the atomic excitation is transferred to
the oscillator, yielding state |W〉|1〉. As the latter two states form dressed states
at energies of ±g, the chosen detunings ensure that |0〉⊗N is excited resonantly.
Oscillator decay then transfers the system to the |W〉 state. Due to the specific
detuning, leakage of population from |W〉 to higher Dicke states does not occur,
as this would require detunings ∆ = ±√n1g with n1 > 1.
Instead of oscillator decay, the W mechanism can also be realized by sponta-
neous emission at the cost of a factor ∼

√
N in the preparation time. This is due

to the fact that the involved atom-excited state does not only decay into |W〉, but
also to the N− 1 other states with n1 = 1. We now turn to the effective operators
and decay rates for W pumping.

Effective operators for the W configuration

We derive the effective operators for the W configuration in App. D. Using n0 to
denote the number of atoms in |0〉 we obtain

L(F)
κ,W =

N

∑
n0=0

√
κaΩ

(F)
W

2g̃(F)
W,n0

J10Pn0 ≡
N

∑
n0=0

√
κ
(F)
W,n0

J10Pn0 , (7.160)

L(F)
γ0,a,W =

N

∑
n0=0

√
γ0eΩ

(F)
W

2∆̃
(F)
W

[
|0〉a〈0| − (ñ(F)

W,n0
)−1|0〉a〈1|J10

]
Pn0 , (7.161)

L(F)
γ1,a,W =

N

∑
n0=0

√
γ1eΩ

(F)
W

2∆̃
(F)
W

[
|1〉a〈0| − (ñ(F)

W,n0
)−1|1〉a〈1|J10

]
Pn0 , (7.162)

H(F)
W = −

(Ω
(F)
W )2

8∆̃
(F)
W

N

∑
n0=0

[
n0 − (ñ(F)

W,n0
)−1 J01 J10

]
Pn0 + H.c. (7.163)

Here, we use the effective detunings

g̃(F)
W,n0

= (N − n0 + 1)g−
∆̃
(F)
W δ̃

(F)
W

g
, (7.164)

ñ(F)
W,n0

= (N − n0 + 1)−
∆̃
(F)
W δ̃

(F)
W

g2 =
g̃(F)

W,n0

g
, (7.165)

with complex energies generalized from Eq. (7.127),

∆̃
(F)
W = ωe −ω

(F)
W − iγe

2
= ∆

(F)
W −

iγe

2
, (7.166)

δ̃
(F)
W = ωa −ω

(F)
W − iκa

2
= δ

(F)
W − iκa

2
. (7.167)

As in the case of the A configuration, we do not reach compact expressions for
all of the effective operators. The expressions will, however, simplify below,
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where we discuss the engineering of the effective operators inserting the actual
parameters.

Engineered operators for the W pumping

For the W mechanism we use a field with a single red and a single blue detuning,
∆W± = ±g = δW±. By this condition we transfer population from |0〉⊗N (n1 = 0)
rapidly and directly to |W〉 (n1 = 1) by collective decay, while loss from |W〉
is effectively suppressed by different resonance conditions. Preparation of anti-
symmetric states |1k 6=0〉 is also avoided unless spontaneous emission dominates
over oscillator decay, γe � κa, in which case a modified scheme for W prepara-
tion with a different scaling is obtained. We find for the effective operators of
Eqs. (7.160)–(7.162) in the manifold n1 ≤ 2,

L(F=1)
κ,W± Pn1≤2 ≈

√
κ
(F=1,0)
W±,n0

|W〉〈0|⊗N + ∑
n0≥1

√
κ
(F=1,W)
W±,n0

|20〉〈W|, (7.168)

L(F=1)
γ0,W±Pn1≤2 ≈

√
γ
(F=1,0)
0,W±,n0

|0〉a〈1|Pn1=0 + ∑
n0≥1

√
γ
(F=1,W)
0,W±,n0

|0〉a〈0|Pn0=1, (7.169)

L(F=1)
γ1,W±Pn1≤2 ≈

√
γ
(F=1,0)
1,W±,n0

|1〉a〈1|Pn1=0 + ∑
n0≥1

√
γ
(F=1,W)
1,W±,n0

|1〉a〈0|Pn0=1. (7.170)

Here, we have introduced the effective decay rates

κ
(F=1,0)
W±,n0

= N
κaΩ2

W±
(κa + γe)2 , κ

(F=1,W)
W±,n0

= (N − 1)
κaΩ2

W±
4g2 , (7.171)

γ
(F=1,0)
0,W±,n0

= N
γ0eΩ

2
W±

(κa + γe)2 , γ
(F=1,W)
0,W±,n0

= (N − 1)
γ0eΩ

2
W±

4g2 , (7.172)

γ
(F=1,0)
1,W±,n0

= N
γ1eΩ

2
W±

(κa + γe)2 , γ
(F=1,W)
1,W±,n0

= (N − 1)
γ1eΩ

2
W±

4g2 , (7.173)

with effective couplings for the drive acting resonantly on |0〉⊗N(F = 1, 0), or
off-resonantly on |W〉 (F = 1, W),

g̃(F=1,0)
W±,n0

= ñ(F=1,0)
W±,n0

g =
i
2
(κa + γe), (7.174)

g̃(F=1,W)
W±,n0

= ñ(F=1,W)
W±,n0

g = g. (7.175)

Again, the effective Hamiltonian processes are compensated by the use of fields
with opposite detunings,

HW ≈ HW+ + HW− ≈ 0, (7.176)

so that we can restrict the discussion to gain and loss rates.

Engineered decay rates for the W pumping

Using the engineered operators above we find the preparation rate of |W〉,

Γ0→W,κ,W ≡ |〈W|L(F=1)
κ,W,n0

|0〉⊗N |2 ≈
2NκaΩ2

W
(κa + γe)2 (7.177)
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In addition, there are enhanced decay processes from |0〉⊗N to states with n1 = 1
by spontaneous emission

Γ0→W,γ1,W ≡ |〈W|L(F=1)
γ1,W,n0

|0〉⊗N |2 ≈
2γ1eΩ

2
W

(κa + γe)2 (7.178)

Γ0→as,γ1,W ≡ |
N−1

∑
k=1
〈1k|L

(F=1)
γ1,W,n0

|0〉⊗N |2 ≈ 2(N − 1)γ1eΩ
2
W

(κa + γe)2 (7.179)

The first of these processes can be used to build an alternative W preparation
scheme which works in the absence of oscillator decay, κa = 0. Here, population
pumped to “as” by the rate above is transferred back to |0〉⊗N by the A mecha-
nism. The less directed preparation mechanism results, however, in a different
scaling. For the loss rates from |W〉 due to the W process we obtain

ΓW→2,κ,W ≡
N

∑
a=1
|〈20|L(F=1)

κ,W |W〉|2 ≈ (N − 1)
κaΩ2

W
g2 , (7.180)

ΓW→2,γ1,W ≡
N

∑
j=1

N

∑
a=1
|〈ψj|L(F=1)

γ1,a,W |W〉|
2 ≈ (N − 1)

γ1eΩ
2
W

g2 , (7.181)

ΓW→as,γ0,W . ΓW→1,γ0,W ≡
N

∑
j=1

N

∑
a=1
|〈ψj|L(F=1)

γ0,a,W |W〉|
2 ≈ (N − 1)

γ0eΩ
2
W

g2 . (7.182)

We find that all loss rates from the target state |W〉 scale with 1/g2, while the
gain terms are only limited by the decay rates γ and κ. We therefore conclude
from our analytical discussion of the effective operators of the W scheme that
the combination of the three presented mechanisms allows for the dissipative
preparation of a W state. Since all states in the system eventually end up in the
W state, |W〉 is attained as the unique steady state of the dynamics, independent
of the initial state. Since for g� γ, κ the gain rates are much larger than the loss
rates from |W〉 the preparation of the W state is likely to take place within short
time and to yield a high fidelity. We investigate these questions further in the
section below, where we use the derived rates to analyze the scaling and speed
of the protocol.

7.6 Performance of the W protocol

In the previous section we have presented a scheme for realizing the W protocol
presented in Sec. 7.1. Using the effective operator formalism to derive engi-
neered decay rates we have shown that the W state is indeed prepared as the
steady state. We now study the performance of the scheme, in view of the error
and the speed of the protocol. We begin with an analysis for weak driving in Sec.
7.6.1, and then present an analysis for strong driving in Sec. 7.6.2, taking into
account strong driving effects discussed in Sec. 7.6.3. We compare our analytical
results with numerical ones in Sec. 7.6.4.

7.6.1 Scaling analysis for weak driving

We perform the scaling analysis of the presented protocol in the same manner as
for the GHZ protocol in Sec. 7.4.1. The details are found in App. F.1. Here, we
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again use a rate equation model with compartments defined by n1 (for n1 ≥ 2).
For n1 ≤ 1 we use one compartment containing the antisymmetric states defined
in (7.138), one for the W state, and one for |0〉⊗N . The rates between these
compartments have been derived in Sec. 7.5 above, the model is illustrated in Fig.
F.1 in App. F.1. Optimizing available parameters, we find for the preparation
time of a W state with an error E in the limit of large qubit numbers

τW ∝
N (log N)3/2

g
√

E
(7.183)

Similar to Sec. 7.4.1, we have not derived the optimal Rabi frequencies of the
drives. Instead, we have assumed relations between driving strengths and the
corresponding decay rates of the kind Ω = αγ. For the result in Eq. (7.183) we
have used our previous assumption of α ∝ 1√

N
(cf. App. F.1). As in Sec. 7.4.1,

this assumption is motivated by power broadening as the dominating strong
driving effect. In Sec. 7.6.3, we will conduct a proper analysis of the scaling
of the W protocol for strong driving, after deriving suitable expressions for the
decay rates in this regime in Sec. 7.6.2 below.

7.6.2 Strong driving effects

In a similar manner as in Sec. 7.4.2 for the GHZ scheme, we now address strong
driving effects that play a role in the W scheme, but are not accounted for by the
effective operators discussed in Sec. 7.5. We investigate power broadening and
population of the excited states as two such effects and manually include terms
for power broadening in the engineered decay rates derived in Sec. 7.5. This
permits us to analyze the optimal Rabi frequencies of the drives and to take the
generation of W states to its limits.

Power broadening

Similarly as for the GHZ scheme above, we find for the W scheme the “power-
broadened” collective decay rate from |0〉⊗N to |W〉,

Γ0→W,κ,W ≈
2NκaΩ2

W

(κa + γe)2 + 2NΩ2
W

. (7.184)

For the individual decay process from |0〉⊗N to |W〉 we have

Γ0→W,γ1e,W ≈
2γ1eΩ

2
W

(κa + γe)2 + 2NΩ2
W

. (7.185)

and for the individual decay process from |0〉⊗N to “as”

Γ0→W,κ,W ≈
2(N − 1)γ1eΩ

2
W

(κa + γe)2 + 2NΩ2
W

. (7.186)

Pumping of antisymmetric states with n1 = 1 (“as”) to |0〉⊗N , using only a single,
resonant field, becomes

Γas→0,γ0,A ≈
γ0 f Ω2

A

γ2
f + Ω2

A
(7.187)
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Note that, other than for Z, X, and W, for A the replacements |∆̃eff|2 → |∆̃eff|2 +
nΩ2 and |g̃eff|2 → |g̃eff|2 + nΩ2 are sufficient. An additional factor of two due
to a constructive interference of blue- and red-detuning drives is not required,
since the A configuration uses only a single, resonant drive.

We will use the rates above to address the scaling of the preparation time in the
strongly driven regime and to derive the optimal Rabi frequencies in Sec. 7.6.3.

Population of the excited states

The population of the excited states due to W and A pumping is found to be

Pexcited,W± ≈
NΩW

2(
√

2 +
√

1)2g2
+

NΩW

2(
√

2−
√

1)2g2
(7.188)

Pexcited,A± ≈
(N − 1)ΩA

2Ng2 (7.189)

We include these expressions in our numerical simulations of the effective dy-
namics in the strong driving regime in Sec. 7.6.4.

7.6.3 Scaling analysis for strong driving

We use the power broadened rates from the previous section to analyze the
W scheme for weak driving. Again, we choose the parameters such that, for
given N, they minimize the preparation time of the W state. The details of the
optimization are found in App. F.2. Here, a compact and close-to-optimal result
is reached by setting the decay rate to

γ =

√
2
7

g
√

E√
log N

. (7.190)

assuming γe = γ f = κa = γ, κb = 0, γ0e = γ1e = γ0 f = γ1 f = γ/2, and by
choosing the driving strengths to be

ΩW =
γ√
N

, (7.191)

ΩA = γ, (7.192)

Ω
(F)
Z = γ

√
F− 1

F
, (F = 2, 3, . . . , N). (7.193)

Then, for given stationary error E, the preparation time of the W state becomes,
for large N,

τW ≈
√

14
N(log N)1/2

g
√

E
. (7.194)

Other than Eq. (7.183) this result includes strong driving effects and should
therefore be seen as the correct upper bound for the preparation time. It should,
however, be noted that the scaling in Eqs. (7.183) and (7.194) is predominantly
due to the long time to pump from a completely mixed state to n1 ≤ 2. Starting
from |0〉⊗N may therefore results in a scaling which is only logarithmic.



150 Dissipative preparation of many-body entanglement

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

2 4 6 8
0

1000

2000

3000

Ti
m

e 
un

til
 F

=0
.9

Number of qubits

Time (in units of 1/g)

Fi
de

lit
y 

of
 th

e 
W

 s
ta

te

Figure 7.12: Evolution towards a steady many-body W state. We numerically simulate
the effective master equation of the protocol for dissipative preparation of a W state,
starting from an initially fully mixed state. The curves show the evolution for two to
eight qubits (different colors) and are obtained by numerically optimizing all available
parameters to reach a fidelity of F = 0.9 of the desired state within an as short as possible
preparation time. The insets show the scaling of the preparation time with the number
of qubits. In the curves and in the insets, we show different degrees of truncation of the
Hilbert space: dash-dots/blue squares – effective dynamics after adiabatic elimination,
solid lines/green circles – one excitation, red dashes/triangles – two excitations). In the
insets, small symbols stand for analytically optimized parameters and large symbols
for numerically optimized parameters. We find a favorable polynomial scaling of the
preparation time with the number of qubits, which is in agreement with our analytical
bounds (black dashed line).

Similar to GHZ (cf. Sec. 7.4.3), the static error E is related the dynamical error E
by E = 0.62E for E = 0.1. Also the corresponding preparation time is prolonged
by an additional factor of ∼ log(1/E). The details are found in App. E.5.

7.6.4 Numerical analysis and comparison

In Fig. 7.12 b) we address the scaling of the preparation time of the W protocol
numerically. To this end, we simulate the effective master equation in Eq. (7.18),
using the operators in Eqs. (7.19)–(7.21), Eqs. (7.141)–(7.143) and Eqs. (7.160)–
(7.162) with terms for strong driving (cf. Sec. 7.6.2). Here, we again optimize
the available parameters to achieve a fidelity of F = 0.9 in minimal time and
compare the resulting curves with the evolution due to the master equation in
Eq. (7.3) with one or two excitations. The resulting evolution towards a W state
is shown in Fig. 7.12 for N = 2, . . . , 8 qubits. In Fig. 7.12 b) we plot the time
required to reach the desired fidelity of F = 0.9 when starting from an initially
fully mixed state, against the number of qubits. Similar to the analytical result
in (7.194), the numerical points in the inset of Fig. 7.12 support a close-to-linear
scaling of the preparation time with the system size. The analytical curve is
found to constitute an upper bound for the numerical points. We thus conclude
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that also our W protocol exhibits a favorable polynomial scaling with the number
of qubits.

7.7 Implementation in a system of trapped ions

All the necessary ingredients for our scheme are present in trapped ion exper-
iments: A suitable setup can consist of a chain of N trapped ions, with two
(meta-) stable ground levels |0〉 and |1〉 and two auxiliary levels, |e〉 and | f 〉.
Two phononic modes, cooled to the ground state, e.g. by sympathetic cooling of
auxiliary ions, and coupled to the sidebands of the ions’ transitions, can be used
as harmonic oscillators. Tunable decay of the auxiliary levels by spontaneous
emission can, e.g., be achieved by taking |e〉 and | f 〉 to be metastable states in
an atom and driving them to an excited state by a repumper [105]. An alter-
native stroboscopic implementation requires only a single auxiliary level with a
repumper, interchanging between taking the role of |e〉 and | f 〉 in the assumed
coupling configurations, and a single phononic mode, interchanging between a
and b.

7.8 Summary

In conclusion, we have shown that dissipative state preparation can be extended
to the generation of many body entanglement. This is achieved by generating
complex multi-particle Lindblad operators. Using this technique, we develop
protocols for the dissipative preparation of GHZ and W states which exhibit
favorable polynomial scalings with the qubit number. Our approach may be
realized in realistic physical systems such as trapped ions where the basic in-
gredients of the scheme have already be implemented [105]. We have chosen to
exemplify the procedures by preparing W and GHZ states, which are the stan-
dard examples of multi-particle entangled states, but the developed techniques
are applicable to a range of other tasks. Particularly interesting examples would
be the construction of error correction codes, where the dissipation constantly
pumps entropy out of the system to stabilize the encoded information [163],
or the observation exotic phase transitions [20, 121] induced by many particle
dissipation.





Chapter8

Conclusion and Outlook

In this thesis, we have presented protocols for the dissipative preparation of en-
tanglement. Considering concrete physical systems we have designed schemes
that can produce two-particle and multi-particle entangled steady states. To ana-
lyze our schemes we have developed a set of methods, in particular an effective
operator formalism for open quantum systems (Chapter 3).
This technique has allowed us to greatly reduce the complexity of the physical
systems considered throughout this work, as has been seen in Chapter 4 – 7.
Here, our formalism has provided an understanding of the quantum dynamics
and helped us to identify the effective coherent and dissipative interactions. In
addition, it has allowed us to engineer effective decay processes to prepare cer-
tain desired states. The effective operator concept has thus proven useful for the
development of physical schemes for dissipative state preparation.
Since its presentation, our effective operator formalism has been applied in vari-
ous settings outside dissipative state preparation and dissipative quantum com-
putation, such as cooling, photon switching, and distribution of entanglement,
and is inspiring further development of effective descriptions. It may also play
a constructive role in quantum simulation in the still novel field of dissipative
phase transitions, and in advanced cooling schemes, e.g. involving optomechan-
ical systems. However, in particular in the cooling context, an extension of the
effective operator formalism to warm open systems seems necessary.

In Chapter 4 we have presented a scheme for the preparation of a two-particle
entangled state in a cavity QED system. There we have shown that, using the
sources of noise which naturally occur in a cavity QED system for our protocol,
a maximally entangled state of two Λ-atoms in an optical cavity can be prepared
and maintained as the steady state of the evolution. As an important result, we
have found that our dissipative protocols exhibit a favorable scaling of the error
which is linear in the cooperativity of the cavity. The error scaling has thus been
improved as compared to previous, in particular unitary protocols for entangle-
ment preparation.
The protocols we have proposed are suitable for various experimental settings.
In particular, we have considered schemes which work in the absence of trap-
ping of the atoms in the cavity in the transversal direction, and with cavity
driving. Our detailed study may therefore be helpful for the demonstration of
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entanglement by dissipation in today’s cavity QED experiments. In addition, the
thorough understanding of dissipative preparation mechanisms has helped our
studies in Chapter 5 – 7.

In Chapter 5, we have considered an entangling task similar to Chapter 4, but
implemented it in a superconducting system. Even though superconducting
qubits coupled to a common resonator, so-called circuit QED, are made such as
to mimic atomic systems, a number of difficulties had to be overcome to make
a dissipative entangling scheme work in this system. Here, in particular a two-
photon drive needed to be engineered and the preparation mechanism had to
be made faster than the qubit decoherence present in the system. It has, how-
ever, been possible to develop mechanisms for the dissipative preparation of the
desired maximally entangled singlet state of two transmons. Our analysis of the
scheme showed that high fidelity with the singlet state can be reached within
favorable time for state-of-the-art superconducting systems. As in Chapter 4,
we have studied the effect of experimental imperfections to support a potential
experimental realization of our scheme.
Meanwhile, dissipatively prepared entanglement of superconducting qubits has
been achieved experimentally [116] based on a different theoretical scheme [114].
Compared to this work, we consider our scheme to be more relevant for the gen-
eration of high-fidelity steady-state entanglement in superconducting systems.

As another, highly attractive system that has found extensive application in
quantum information, we have considered trapped ions in Chapter 6. There, we
have presented a scheme for the dissipative preparation of an entangled steady
state of two trapped ions, together with its experimental implementation. The
scheme takes advantage of the properties of the system and of an added tunable
decay process. Its successful experimental realization has shown that dissipation
can indeed be turned from an adversary into a resource and that the dissipative
approach is viable in practice. Our theoretical analysis of the experiment has ex-
plained the remaining sources of error and has shown how these can be reduced.
Further adjustment of ion trap setups to the needs of dissipative protocols may
thus allow for higher fidelities of the steady state in the future.

In Chapter 7, we have extended the dissipative preparation of entanglement to
multi-particle entangled states. Assuming a generic physical system we have
shown that dissipative many-body mechanisms can be engineered which pro-
duce GHZ and W states. The resulting entangling schemes were found to have
favorable polynomial scalings of the preparation time with the qubit number.
Our schemes can be experimentally realized in a trapped ion setting.
We believe that dissipatively prepared multi-particle states may be a precious re-
source in quantum information processing protocols, such as in error correction
schemes, and for quantum metrology schemes, where large entangled states can
be used to improve the measurement accuracy below the Heisenberg limit.

For the many-body protocols presented in this work, the action of the operators
was more important than their actual form. Future works will also focus on the
latter, performing “dissipative operator engineering” rather than “dissipative
state engineering”. This may allow for the dissipative preparation of broader
classes of states, such as graph states [19], and thereby open up the way for



Conclusion and Outlook 155

dissipation-aided quantum computation schemes. Here, for example one-way
quantum computation schemes [164] could be considered, where a large entan-
gled state (“pad”) is initially prepared as a steady state, using the advantages
of dissipative state preparation. In a similar manner, operators could be built
that correct the action of specific sources of noise, in error correction schemes
(see, e.g., Ref. [163]). Beside quantum computation, noise is found to trigger
dissipative phase transitions [20, 121]. Engineering non-trivial noise may thus
be of great potential for both quantum simulation of open systems and for the
understanding of phenomena of dissipative many-body systems.





AppendixA

Wang-Schirmer scheme

generalized to Λ-atoms

In the following, we generalize the scheme of Wang and Schirmer [86], orig-
inally proposed for two two-level atoms, to Λ-type atoms. In contrast to the
schemes presented so far, the ground state |1〉 of the two atoms is shifted asym-
metrically for the two atoms so that a coherent coupling is created between |S〉
and |T〉. This means that a pure singlet state |S〉 can, even in the absence of
spontaneous emission, no longer be reached as the steady state of the time evo-
lution. However, an engineered cavity decay process between the triplet states
|00〉 → |T〉 → |11〉 is used to prepare a steady state which has a minor overlap
with |11〉 and a high fidelity with the singlet.
By elimination of the excited states we will reduce the coupled Λ-atom systems
to an effective system of two coupled qubits described by the master equation
of Ref. [86] and, subsequently, derive the error scaling of the preparation of the
entangled state with the cavity parameters.
The coherent interactions are given by the Hamiltonian of the system as in Eqs.
(4.6)–(4.9). Here, we use a ground-state Hamiltonian Ĥg

Ĥg = ∑
j=1,2

(
β + (−1)jb

)
|1〉j〈1|+ ΩMW

(
|0〉j〈1|+ |1〉j〈0|

)
, (A.1)

where a static magnetic field b has been introduced that results in a shift of
ground state |1〉 with opposite signs for the two atoms. The driving fields for
both atoms exhibit the same phase (φ = 0) so that the general effective Lindblad
operators are the same as for the |T〉 schemes. The effective Hamiltonian consists
of shifts of the ground states

Ĥeff =− Re
[

Ω2

2∆̃1,eff

]
|00〉〈00| − Re

[
Ω2

4∆̃2,eff

]
|T〉〈T|

− Re
[

Ω2

4∆̃0,eff

]
|S〉〈S|+ Ĥg. (A.2)

A parameter choice of δ = 0, ∆ � g � (γ, κ, Ω, ΩMW, β, b) and ∆κ � g2,
allows for an adiabatic elimination of the excited atomic levels |e〉. In this limit,
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all propagators ∆̃−1
n,eff are simply determined by the shifts of the atomic excited

levels ∆,

∆̃−1
n,eff ≈ ∆−1. (A.3)

We then obtain the effective Lindblad operators

L̂κ
eff =− i

√
κeff|11〉〈T| − i

√
κeff|T〉〈00|, (A.4)

L̂γ,0,{1,2}
eff =+

√
2γeff|00〉〈00|+

√
γeff/2 (|T〉〈T| ± |T〉〈S|)

+
√

γeff/2 (±|S〉〈T|+ |S〉〈S|) , (A.5)

L̂γ,1,{1,2}
eff =+

√
γeff (∓|S〉〈00|+ |T〉〈00|)±

√
γeff|11〉〈S|

+
√

γeff|11〉〈T|, (A.6)

where κeff =
2g2Ω2

∆2κ
and γeff =

γΩ2

16∆2 . The effective Hamiltonian is given by

Ĥeff =−
Ω2

2∆
|00〉〈00|+ 2β|11〉〈11|

+

(
β− Ω2

4∆

)
|T〉〈T|+

(
β− Ω2

4∆

)
|S〉〈S|

− b (|S〉〈T|+ |T〉〈S|) + ΩMW (|00〉〈T|+ |T〉〈11|+ H.c.) . (A.7)

The corresponding effective couplings are shown in Fig. A.1 a).
In order to match the master equation of Ref. [86], we compensate the shifts in
the effective Hamiltonian in Eq. (A.7); i.e. we set the (symmetric) detuning of |1〉
to β = −Ω2

4∆ . We then obtain the effective Hamiltonian and the effective cavity
decay

Ĥeff = −b (|S〉〈T|+ |T〉〈S|) + ΩMW (|00〉〈T|+ |T〉〈11|+ H.c.) (A.8)

L̂κ
eff =

√
κeff (|11〉〈T|+ |T〉〈00|) . (A.9)

From here we construct the Dicke-type master equation along the lines of Ref.
[86]. In contrast to Ref. [86], however, we analytically take the (for this scheme)
undesired but unavoidable spontaneous emission into account and write

ρ̇ = −i
[
Ĥeff, ρ

]
+D[L̂κ

eff] + ∑
k
D[L̂γ,k

eff ] (A.10)

with L̂κ as the engineered decay and L̂γ
k as the undesirable spontaneous emission

processes. In order to analyze the scheme we note that

|ψS〉 =
1√

Ω2
MW + b2

(b|11〉+ ΩMW|S〉) (A.11)

is a steady state of the Hamiltonian of Eq. (A.4) and also of the Liouvillian of
Eq. (A.10) in the absence of spontaneous emission. To understand the dissipative
state preparation mechanism we change into a basis consisting of |ψS〉 and the
orthogonal state

|ψ1〉 =
1√

Ω2
MW + b2

(ΩMW|11〉 − b|S〉) . (A.12)
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Figure A.1: Effective processes of the Wang-Schirmer scheme adapted to Λ-atoms. (a)
In the shuffling picture, the triplet states are coupled by a microwave or Raman field
ΩMW and decay by an effective cavity decay κeff. The singlet |S〉 is coherently coupled
to |T〉 by the level shift b. (b) In the steady-state picture, the desired steady state |ψS〉
is no longer coherently coupled, but dissipatively prepared from |T〉 at a rate κeff,S.
Population in |ψS〉 is lost by spontaneous emission γeff.

As can be seen from Fig. A.1 b), the singlet-like steady state |ψS〉 is prepared
at a rate κeff,S ≡ |〈ψS|L̂κ

eff|T〉|2 = 4b2g2Ω2

∆2κ(2b2+Ω2
MW)

, (κeff,S � κeff) and decays only by

spontaneous emission.
For the derivation of the error scaling we use a rate argument to compare the
decay rates into and out of the steady state (Ṗ = 0, PψS ≈ 1)

(
1− FψS

)
≈ 3PT ≈

3ΓψS→
Γ→ψS

PS ≈
3γκ

(
4b2 + 3Ω2

MW

)
Ω2

MW

64g2
(
2b2 + Ω2

MW

)
b2

, (A.13)

where we have used the strong coupling condition, and the assumption that the
populations of the three undesired states are well-shuffled by ΩMW so that they
have a similar population. In contrast to the previously presented schemes, the
static error of the protocol incorporates a second term that determines the preset
compromise in the fidelity of the steady state due to the asymmetry b so that

(1− FS) =
(
1− FψS

)
+
(

1− |〈ψS|S〉|2
)

=
3γκ

(
4b2 + 3Ω2

MW

)
Ω2

MW

64g2
(
2b2 + Ω2

MW

)
b2

+
2b2

2b2 + Ω2
MW

. (A.14)

The minimal overall error is reached for a trade-off at which these terms are
equal. This compromise between establishing the steady state by the asymmetry,
and at the same time avoiding the decrease in its fidelity by the asymmetry, is
the cause of the different scaling of the error and speed discussed in Sec. 4.6.
For the parameter b we obtain the condition

bopt =

√
3ΩMW

4
√

25
4

√
γκ

g2 . (A.15)

Inserting this yields the effective decay rate into |ψS〉

κeff,S =
4g2Ω2

∆2κ
(

2 + 3√
32C

) ≈ 2g2Ω2

∆2κ
(A.16)
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and the error of the protocol

(1− FS)WS =
3γκ

(
8g +

√
2
√

γκ
)

4g
(

3γκ + 4
√

2g
√

γκ
) ≈ 3

2
√

2C
. (A.17)

Thus, we find that for the WS protocol the fidelity of the steady state with the
maximally entangled singlet state exhibits a scaling with one over the square root
of the cooperativity of the cavity. As in the |S1〉 scheme, we have one prominent
decay process to prepare the singlet from the three dressed ground states. With
bopt the spectral gap is then given by

λWS =
κeff,S

3
=

2g2Ω2

3∆2κ
. (A.18)

A numerical comparison with the other schemes is given in Sec. 4.6.



AppendixB

E�ects from imperfect coupling

of the atoms to the cavity

Experimental realization of a scheme for dissipative state preparation requires
an understanding of the effects originating from the imperfect couplings of the
atoms to the cavity mode. In state-of-the-art cavity QED systems, such as Ref.
[41], longitudinal confinement prevents fluctuation of the atomic positions along
the cavity axis. Still, a static difference in the couplings of the two atoms is pos-
sible. Expressing these couplings as g1 = g(1 + α) and g2 = g(1− α) the above
analyses can still be carried out for the mean coupling of g = 1

2 (g1 + g2). From
the asymmetry α an additional source of error emerges. Below, we exemplarily
derive this asymmetry error for the |S1〉 scheme. In case of a static, asymmetric
coupling of the two atoms to the cavity the atom-cavity coupling can be written
as

Ĥac = â (g1|e〉1〈1|+ g2|e〉2〈1|) + H.c.

= âg ((1 + α) |e〉1〈1|+ (1− α)|e〉2〈1|) + H.c., (B.1)

The asymmetry error affects both the dynamics of the populations and the co-
herences so that we use the effective Liouvillian Leff to derive the steady state,
after having excluded other sources of error beforehand (κeff → 0). For weak
driving and strong coupling g � (γ, κ) � (Ω, ΩMW, β) the asymmetry error α

can be effectively decoupled from both the static error (∝ C−1) and the dynamic
error (∝ Ω2) and we obtain

(1− FS)α ≈ 3α2. (B.2)

The result is plotted in Fig. B.1 using the parameters of Ref. [41]. The effect of an
asymmetric coupling is found to be rather small as compared to other sources of
errors. For |α| ≈ 0.1 the loss of fidelity through asymmetry is as small as ≈ 2%.
In this case, with g1

g2
≈ 1.22, fidelities of about 90% are still achievable.
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Figure B.1: Fidelity under asymmetric coupling to the cavity. Numerical results from
the full Liouvillian (solid green) are well-approximated by the analytic findings (blue
dash). High fidelities of about 90% are achieved up to |α| ≈ 0.1, where g1

g2
≈ 1.22.



AppendixC

Spin-state �delity measurement

In the following, we discuss the technique used in the experiment described in
Chapter 6 to determine the state of the system.

To detect the populations of the |S〉, |T〉, | ↑↑〉, and | ↓↓〉 states, we need to
obtain the relevant elements of the density matrix ρ describing the state of the
two 9Be+ ions during the experiment. Since each ion may be found in any of
the three ground states | ↑〉, | ↓〉, |a〉 (Fig. 6.1) the density matrix has dimensions
9× 9. The singlet-state population is given by 1

2 (ρ↑↓,↑↓ + ρ↓↑,↓↑)− Re(ρ↑↓,↓↑) and
the triplet-state population is given by 1

2 (ρ↑↓,↑↓+ ρ↓↑,↓↑) + Re(ρ↑↓,↓↑). The fidelity
of the target entangled state, F, is equal to the singlet-state population. For the
steady state fidelity, we report the average fidelity measured between 6 and 12
ms for the continuous case and between 35 and 59 steps in the stepwise case. We
first measure the populations of the | ↓〉 state by collecting fluorescence photons
from the laser-induced cycling transition | ↓〉 ↔ 2p 2P3/2|3, 3〉 of both 9Be+ ions
together. We apply this detection beam for 250 µs and collect photon counts
with a photo-multiplier tube (approximately 30 counts are registered per ion in
the | ↓〉 state). We repeat the experiment and detection 400 times to obtain a
histogram. We fit the histogram of counts to a Poisson distribution to obtain
the probabilities to measure both ions, one ion, and zero ions in the | ↓〉 state
denoted by P2, P1, and P0, respectively. Specifically, these probabilities are related
to the density matrix as follows: P2 = ρ↓↓,↓↓, P1 = ρ↓↑,↓↑ + ρ↑↓,↑↓ + ρa↓,a↓ + ρ↓a,↓a,
and P0 = ρ↑↑,↑↑ + ρa↑,a↑ + ρ↑a,↑a + ρaa,aa. We repeat the entanglement preparation
scheme and perform a microwave π pulse on the | ↓〉 ↔ | ↑〉 followed by the
same detection procedure to obtain: P2,π = ρ↑↑,↑↑, P1,π = ρ↑↓,↑↓ + ρ↓↑,↓↑ + ρa↑,a↑ +
ρ↑a,↑a, and P0,π = ρ↓↓,↓↓+ ρa↓,a↓+ ρ↓a,↓a + ρaa,aa. Thus, assuming the population of
the |aa〉 state is negligible (see below), we have ρ↑↓,↑↓ + ρ↓↑,↓↑ = P1 − (P0,π − P2).
To obtain the off-diagonal elements we perform the same experiment but with
a microwave π/2 pulse on the | ↓〉 ↔ | ↑〉 transition prior to the detection to
obtain P2, π

2
, P1, π

2
, and P0, π

2
. The phase of the microwave is randomized in each

experiment. It can be shown that Re(ρ↑↓,↓↑) = −1/2 + 2P0, π
2
+ 1

2 (P2 − P0) +
1
2 (P2,π − P0,π), which gives the last piece of information needed to obtain the
populations of the |S〉 and |T〉 states.

Due to spontaneous Raman scattering caused by the sideband laser beams it is
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possible that the 9Be+ ions can be transferred to a hyperfine state outside the
| ↑〉, | ↓〉, |a〉 manifold. However, this detection procedure does not distinguish
these states from the |a〉 state. Our model predicts that the probability to find at
least one ion outside the three-state manifold is at most 5% for the data in Fig.
6.3 and 3% for the data in Fig. 6.4. In future experiments, this population could
be brought back to the three-state manifold with additional repump beams.

To calculate the singlet fidelity above, we assumed that the probability to find
both atoms outside the | ↑〉, | ↓〉 qubit manifold was negligible. For the data in
figures 6.3 and 6.4 we measured the probability to find at least one ion outside
the qubit manifold state, given by P0 + P0,π − (P2 + P2,π), to be 7(5)% and 2(2)%
respectively for the steady state. We expect the probability to find both ions
outside the qubit manifold to be on order of the square of the probability to find
one ion outside the qubit manifold, which is therefore small. Furthermore, our
theoretical model predicts the probability of finding both ions outside the qubit
manifold to be at most 1% for the continuous implementation and 0.05% for the
stepwise implementation.



AppendixD

Derivation of the e�ective

operators for the many-body

schemes

In the following, we derive the effective dynamics for each of the four coupling
configurations used to prepare GHZ and W states by dissipation in Chapter 7.

As can be seen from Sec. 7.2 the dissipation only affects the excited levels |e〉
and | f 〉 and the oscillator modes a and b. We can thus, based on the assump-
tion of weak driving, adiabatically eliminate these decaying degrees of freedom
from the master equation. This is done using the effective operator formalism
presented in Chapter 3, by which the dynamics of the master equation in Eq.
(7.3) are reduced to effective couplings between the ground states of the system,
described by an effective master equation

ρ̇ =− i [Heff, ρ] + ∑
k

Lk,effρ(Lk,eff)
† − 1

2

(
(Lk,eff)

†Lk,effρ + ρ(Lk,eff)
†Lk,eff

)
, (D.1)

Since we are dealing with multiple field tones F that give rise to the effective
couplings, we use the extended formalism of Sec. 3.3.6 with

Heff = −
1
2

V−∑
F

(
H(F)

NH

)−1
V(F)
+ + H.c., (D.2)

Lk,eff = Lk ∑
F

(
H(F)

NH

)−1
V(F)
+ , (D.3)

H(F)
NH = Hfree + Hint −

i
2 ∑

k
L†

k Lk −ω(F). (D.4)

Here, V(F)
+ denotes the exciting part and V(F)

− the deexciting part of the drive
V(F) (V± = ∑F V(F)

± ). The non-Hermitian Hamiltonian H(F)
NH, which contains the

frequency ω(F) of the respective field tone F, describes the time evolution of the
excited states. The drives are regarded as perturbations and thus denoted by
“V”; they are defined by the drive Hamiltonians Hdrive in Sec. 7.3.1 and 7.5.1 so
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that we use V = Hdrive for each configuration below. Based on the assumption
of a weak excitation V we restrict our discussion to the states which have at
most one atomic or oscillator excitation. HNH then contains the energies and
couplings of the excited states. Since HNH needs to be inverted to compute the
effective operators, we will, for each coupling situation, start out by discussing
this entity.

Z configuration

We begin with the Z coupling configuration, which is similar to the X configu-
ration. Both are required for the generation of GHZ states. We use Hint,Z and
Hdrive,Z from Sec. 7.3.1 and the Lindblad operators of Eqs. (7.6)–(7.11) to set up
the non-Hermitian Hamiltonian

H(F)
NH,Z = ∆̃

(F)
Z Jee + δ̃

(F)
Z a†a + g

(
a† J1e + aJ†

1e

)
. (D.5)

Here, we have introduced complex detunings ∆̃
(F)
Z = ωe − ω

(F)
Z −

iγe
2 and δ̃

(F)
Z =

ωa − ω
(F)
Z − iκa

2 , where F denotes the particular tone of the driving field. Fur-
thermore, we have changed into a frame rotating with the frequency of the drive
ω

(F)
Z . For the derivation of the effective operators we will for simplicity drop the

sub- and superscripts denoting the coupling configurations and field tones. To
invert the non-Hermitian Hamiltonian we divide it into four blocks

HNH = A + B + C + D, (D.6)

A = δ̃a†a, B =ga† J1e, C = gaJ†
1e, D = ∆̃Jee. (D.7)

After this separation we can formally invert the Hamiltonian HNH, using Ba-
nachiewicz’ theorem [165] for the blockwise inversion of a square matrix,

H−1
NH = a + b + c + d, (D.8)

d =
(

D− CA−1B
)−1

, (D.9)

a = A−1 + A−1B d CA−1, (D.10)

b = −A−1B d, (D.11)

c = BT = −d CA−1 (D.12)

We now need to compute d to obtain any of the above elements. As we shall
see, it is possible to simplify the calculation and to obtain closed expressions for
the decay rates if we separate the involved operators by the number of atoms in
state |1〉. This is done by introducing projection operators Pn1 which project on
the states with the same number n1 (from now on, n) of atoms in |1〉. For the
Z and X configurations discussed here, n1 (or n− for X) is conserved under the
couplings by the coherent interactions Hint and V, but can be changed by the
dissipative jump processes Lk, e.g. from n1 to n1 − 1 in the case of Z. Using the
projectors we can split the non-Hermitian Hamiltonian of the excited states and
its four blocks by n,

HNH =
N

∑
n=0

HNH,nPn =
N

∑
n=0

An + Bn + Cn + Dn. (D.13)
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The inverse of the non-Hermitian Hamiltonian for each n is then found to be

H−1
NH,n = an + bn + cn + dn. (D.14)

With that the effective operators of Eqs. (D.2)–(D.3) are formally given by

Lκ,eff = ∑
n

√
κ a bnVPn (D.15)

Lγ0,a,eff = ∑
n

√
γ0|0〉a〈e|dnVPn (D.16)

Lγ1,a,eff = ∑
n

√
γ1|1〉a〈e|dnVPn (D.17)

Heff = −
1
2

V ∑
n

dnVPn + H.c. (D.18)

To obtain the effective Lindblad operators and the effective Hamiltonian it is
thus sufficient to compute the blocks dn and bn of the inverse non-Hermitian
Hamiltonian. Using the identities a(a†a)−1a† = 1 and Pg J1e Jee = Pg J1e (where Pg
is the projector onto the ground states) we obtain

dn =
1
∆̃

[
Jee −

(
n− ∆̃δ̃

g2

)−1

J†
1e J1e

]
, (D.19)

bn =
g

∆̃δ̃
a† J1e

[
Jee −

(
n− ∆̃δ̃

g2

)−1

J†
1e J1e

]
. (D.20)

With this, and readopting the sub- and superscripts for the configuration and
the field, and changing to a more detailed notation for the effective Lindblad
operators we find

Lκa,Z = ∑
n1,F

√
κaΩ

(F)
Z

2
e−iω(F)

Z t

(
g−

∆̃
(F)
Z δ̃

(F)
Z

n1g

)−1

Pn1 (D.21)

≡ ∑
n1,F

√
κΩ

(F)
Z

2g̃(F)
Z,n1

e−iω(F)
Z tPn1 , (D.22)

Lγ0,a,Z = ∑
n1,F

√
γ0eΩ

(F)
Z

2
e−iω(F)

Z t

(
∆̃
(F)
Z −

n1g2

δ̃
(F)
Z

)−1

|0〉a〈1|Pn1 (D.23)

≡ ∑
n1,F

√
γ0eΩ

(F)
Z

2∆̃
(F)
Z,n1

e−iω(F)
Z t|0〉a〈1|Pn1 , (D.24)

Lγ1,a,Z = ∑
n1,F

√
γ1eΩ

(F)
Z

2
e−iω(F)

Z t

(
∆̃
(F)
Z −

n1g2

δ̃
(F)
Z

)−1

|1〉a〈1|Pn1 (D.25)

≡ ∑
n1,F

√
γ1eΩ

(F)
Z

2∆̃
(F)
Z,n1

e−iω(F)
Z t|1〉a〈1|Pn1 . (D.26)

To obtain this we have used the identities Pg J1e Je1Pg = Pg J11Pg, J11Pn1 = n1Pn1 ,
and Jee Je1Pg = Je1Pg. In the last expression we have introduced the effective
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detunings ∆̃Z,n1 and the effective couplings g̃Z,n1 with

∆̃
(F)
Z,n1

= ∆̃
(F)
Z −

n1g2

δ̃
(F)
Z

, (D.27)

g̃(F)
Z,n1

= g−
∆̃
(F)
Z δ̃

(F)
Z

n1g
. (D.28)

As can be seen from Eqs. (D.22)–(D.26), dealing with multiple frequencies in the
drive leads a priori to an sum over terms for all fields in the effective Lindblad
operators. However, as the frequencies of these fields are well-distinguishable,
we separate the Lindblad operators by their driving field F. Given the quadratic
appearance of the Lindblad operators in the master equation, we can also drop
the exponential phase factors. For the effective Lindblad operators for the fields
F we then obtain

L(F)
κa,Z =

N

∑
n1=0

√
κaΩ

(F)
Z

2g̃(F)
Z,n1

Pn1 , (D.29)

L(F)
γ0e,a,Z =

N

∑
n1=0

√
γ0eΩ

(F)
Z

2∆̃
(F)
Z,n1

|0〉a〈1|Pn1 , (D.30)

L(F)
γ1e,a,Z =

N

∑
n1=0

√
γ1eΩ

(F)
Z

2∆̃
(F)
Z,n1

|1〉a〈1|Pn1 . (D.31)

We also define the corresponding effective decay rates

κ
(F)
a,Z,n1

=
κa(Ω

(F)
Z )2

4|g̃(F)
Z,n1
|2

, (D.32)

γ
(F)
0,Z,n1

=
γ0e(Ω

(F)
Z )2

4|∆̃(F)
Z,n1
|2

, (D.33)

γ
(F)
1,Z,n1

=
γ1e(Ω

(F)
Z )2

4|∆̃(F)
Z,n1
|2

. (D.34)

The operators in Eqs. (D.29)–(D.31) are then the effective Lindblad operators for
the Z configuration. As can be seen from the expressions in Eqs. (D.27)–(D.28),
the effective detunings ∆̃

(F)
Z,n can be engineered to be very small by a suitable

choice of the frequencies ωF of the fields F which can be used to engineer the
rates γ

(F)
0,Z,n1

and γ
(F)
1,Z,n1

of the effective decay processes. The engineering of the
effective decay process that prepare GHZ and W states will be the subject of Sec.
7.3 and 7.5.

The effective Hamiltonian is computed from Eq. (D.2). Other than for the effec-
tive Lindblad operators, introducing a multi-tone driving field results in cross
terms between different fields, here denoted by F and G,

HZ = −
N

∑
n1=0

∑
F,G

Re

n1Ω
(F)
Z Ω

(G)
Z

4∆̃
(F)
Z,n1

e−i(ω(F)
Z −ω

(G)
Z )t

 Pn1 (D.35)
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Here, all terms F 6= G have fast rotating exponential phase factors. Restricting
the treatment to F = G where these terms cancel, we obtain the main contribu-
tion

HZ ≈ −
N

∑
n1=0

∑
F

Re

n1(Ω
(F)
Z )2

4∆̃
(F)
Z,n1

 Pn1 ≡
N

∑
n1=0

∑
F

s(F)
Z,n1

Pn1 . (D.36)

We thus find that the main effective Hamiltonian processes are AC Stark shifts
with a magnitude

s(F)
Z,n1

= −Re

n1(Ω
(F)
Z )2

4∆̃
(F)
Z,n1

 (D.37)

As we will see in Chapter 7, our choice of the field tones will make these Hamil-
tonian terms compensate each other.

X configuration

We perform an analogous treatment for the X pumping mediated by the excited
level | f 〉 and the oscillator mode b. The effective operators are obtained in the
same way as for the Z configuration, using the non-Hermitian Hamiltonian

H(F)
NH,X = ∆̃

(F)
X J f f + δ̃

(F)
X a†a + ga† J− f + gaJ†

− f (D.38)

with the complex energies ∆̃
(F)
X = ω f − ω

(F)
X − iγ f

2 and δ̃ = ωb − ω
(F)
X − iκb

2 .
Carrying out the derivation in the same manner as above for Z, we obtain for
the effective Lindblad operators

L(F)
κ,X =

N

∑
n−=0

√
κbΩ

(F)
X

2g̃(F)
X,n−

Pn− (D.39)

L(F)
γ0,a,X =

N

∑
n−=0

√
γ0 f Ω

(F)
X

2∆̃
(F)
X,n−

|0〉a〈−|Pn− (D.40)

L(F)
γ1,a,X =

N

∑
n−=0

√
γ1 f Ω

(F)
X

2∆̃
(F)
X,n−

|1〉a〈−|Pn− . (D.41)

with the effective detunings

∆̃
(F)
X,n− = ∆̃

(F)
X −

n−g2

δ̃
(F)
X

, (D.42)

g̃(F)
X,n− = g−

∆̃
(F)
X δ̃

(F)
X

n−g
. (D.43)
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The effective decay rates can be written as

κ
(F)
X,n− =

κb(Ω
(F)
X )2

4|g̃(F)
X,n− |

2
, (D.44)

γ
(F)
0,X,n− =

γ0 f (Ω
(F)
X )2

4|∆̃(F)
X,n− |

2
, (D.45)

γ
(F)
1,X,n− =

γ1 f (Ω
(F)
X )2

4|∆̃(F)
X,n− |

2
. (D.46)

These operators resemble the ones for Z pumping in Eqs. (D.29)–(D.31) when |1〉
is replaced by |−〉. The difference is that spontaneous emission is still assumed
to lead to the final states |0〉 and |1〉.

W configuration

We now turn to the other two coupling situations, W and A, which are required
for preparing the |W〉 state. The situation for W and A is different from the
previous cases of Z and X in the sense that V and H act on different transitions.
Here, we first consider W and, in the next section, A. To find d we consider HNH
in blocks of coupled states with n1 = N − n0 + 1 atoms in |1〉, where n0 denotes
the number of atoms in state |0〉 that can be excited by the drive,

H(F)
NH,W = ∆̃

(F)
W Jee + δ̃

(F)
W a†a + ga† J1e + gaJ†

1e, (D.47)

using ∆̃
(F)
W = ωe − ω

(F)
W − iγe

2 and δ̃
(F)
W = ωa − ω

(F)
W − iκa

2 . Inversion yields the
expressions

d(F)
W,n0

=
1
∆̃

Jee −
(
(N − n0 + 1)−

∆̃
(F)
W δ̃

(F)
W

g2

)−1

Je1 J1e

 ≡ 1
∆̃

[
Jee − ñ−1

W,n0
Je1 J1e

]
(D.48)

b(F)
W,n0

=

[
(N − n0 + 1) g−

∆̃
(F)
W δ̃

(F)
W

g

]−1 (
a†a
)−1

a† J1e ≡ g̃−1
W,n0

(
a†a
)−1

a† J1e,

(D.49)

where we have defined the effective couplings

g̃(F)
W,n0

= (N − n0 + 1)g−
∆̃
(F)
W δ̃

(F)
W

g
(D.50)

ñ(F)
W,n0

= (N − n0 + 1)−
∆̃
(F)
W δ̃

(F)
W

g2 =
g̃(F)

W,n0

g
. (D.51)
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With the identity Pg J1e Je0Pg = Pg J10Pg this yields the effective operators for W,

L(F)
κ,W =

N

∑
n0=0

√
κaΩ

(F)
W

2g̃(F)
W,n0

J10Pn0 ≡
N

∑
n0=0

√
κ
(F)
W,n0

J10Pn0 , (D.52)

L(F)
γ0,a,W =

N

∑
n0=0

√
γ0eΩ

(F)
W

2∆̃
(F)
W

[
|0〉a〈0| − (ñ(F)

W,n0
)−1|0〉a〈1|J10

]
Pn0 , (D.53)

L(F)
γ1,a,W =

N

∑
n0=0

√
γ1eΩ

(F)
W

2∆̃
(F)
W

[
|1〉a〈0| − (ñ(F)

W,n0
)−1|1〉a〈1|J10

]
Pn0 , (D.54)

H(F)
W = −

(Ω
(F)
W )2

8∆̃
(F)
W

N

∑
n0=0

[
n0 − (ñ(F)

W,n0
)−1 J01 J10

]
Pn0 + H.c. (D.55)

It can be seen that for the W configuration – and, as we will see below, also for
A – we typically do not reach a compact expression for the effective operators.
However, as we will see in Sec. 7.5, these expressions simplify considerably for
most of the states which are relevant to the scheme, in particular for the dark
states of J10.

A configuration

The effective operators for A are found by making the replacements 0↔ 1, e↔ f
and n0 ↔ n1 in the terms for W above. We then obtain

L(F)
κ,A =

N

∑
n1=0

√
κbΩ

(F)
A

2g̃(F)
A,n1

J01Pn1 ≡∑
n

√
κ
(F)
A,n1

J01Pn1 (D.56)

L(F)
γ0,a,A =

N

∑
n1=0

√
γ0Ω

(F)
A

2∆̃
(F)
A

[
|0〉a〈1| − (ñ(F)

A,n1
)−1|0〉a〈0|J01

]
Pn1 (D.57)

L(F)
γ1,a,A =

N

∑
n1=0

√
γ1Ω

(F)
A

2∆̃
(F)
A

[
|1〉a〈1| − (ñ(F)

A,n1
)−1|1〉a〈0|J01

]
Pn1 (D.58)

H(F)
A = −

(Ω
(F)
A )2

8∆̃
(F)
A

N

∑
n1=0

[
n1 − (ñ(F)

A,n1
)−1 J10 J01

]
Pn1 + H.c. (D.59)

The above operators are used in Chapter 7 to engineer effective decay processes.





AppendixE

Scaling analysis of the GHZ

protocol

In the following, we provide an analytical study of the scaling of the GHZ
scheme1. We derive an expression for the preparation time and optimize it by
the choice of the parameters. The analysis is performed both for weak driving,
beginning in Sec. E.1, and for strong driving in Sec. E.5.

E.1 Optimization of the parameters for Z pumping alone

The different schemes presented in Chapter 7 have in common that the popu-
lation of a nearly exponential number of states is pumped to subspaces with a
polynomial number of states in a number of steps linear in the size of the system.
For GHZ we have engineered strong decay processes from N − 1 ≥ n1 ≥ 2 for
W from N ≥ n1 ≥ 2. The decay is achieved using the Z pumping which is only
sensitive to n1 and reduces this to n1 − 1, finally leading to n1 = 0 for GHZ and
n1 ≤ 1 for W state preparation. In order to assess the performance of the scheme
it is thus important to know the time for a concatenated process consisting of
many consecutive Z processes. The rate of each individual decay is given by (see
Eq. (7.56)):

Γ
(F=n1)
n1→n1−1,γ0,Z =

N

∑
a=1

∑
k
|〈ψk|Pn1−1L(F=n1)

γ0,a,Z Pn1 |ψj〉|2 ≈
2n1γ0e(Ω

(F=n1)
Z )2

(γe + κa)2 (E.1)

The average time for this decay to occur is given by the inverse decay rate,

τn1→n1−1,γ0,Z = Γ−1
n1→n1−1,γ0,Z (E.2)

For the total time required for pumping from an n1 to an n
′
1 we add the average

times for the intermediate steps

τn1→n′1
=

n1

∑
n=n′1+1

τn→n−1,γ0,Z =
n1

∑
n=n′1+1

Γ−1
n→n−1,γ0,Z =

(γe + κa)2

2γ0e

n1

∑
n=n′1+1

1

n(Ω(F=n)
Z )2

(E.3)

1The analysis has been performed in collaboration with D. Reeb.
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We can also assign a total decay rate from an initial state with n1 to a final state
with n

′
1, Γn1→n′1

= 1
τ . It is, however, more useful to use the total preparation time

and to minimize it by the choice of available parameters. Here, in particular the
Rabi frequencies Ω

(F)
Z of individual field tones F can be chosen, as well as the

tunable decay rate γe.

Since the pumping occurs from a maximal n1 of N − 1 to n1 − 1, the worst case
preparation time for Z pumping is (using Eq. (E.3)) found to be given by

τn1=N−1→n1=0 =
(γe + κa)2

2γ0e

N−1

∑
n1=1

1

n1(Ω
(F=n1)
Z )2

(E.4)

The time from n1 = 1 to |GHZ〉 differs from that to n1 = 0 by a factor of 2.
This is due to the fact that only half of the population is pumped to |GHZ〉 and
the other half to |GHZ−〉, which is continuously depumped by the X pumping
discussed below. Therefore, on average two attempts are required so that the
preparation time is doubled,

τn1=N−1→GHZ = 2τn1=N−1→n1=0 =
(γe + κa)2

γ0e

N−1

∑
n1=1

1

n1(Ω
(F=n1)
Z )2

(E.5)

For the analysis of the GHZ preparation we will from now on choose the pa-
rameter values κa = κb = 0, γ0e = γ1e = γe/2, and abbreviate γe ≡ γ. In
order to obtain dimensionless optimization variables, we will furthermore write
Ω

(F=n1)
Z =: AFΩ (for F = 1, 2, . . . , N − 1) with nonnegative dimensionless vari-

ables AF. The quantity Ω is a dimensionful frequency parameter, whose size
has been chosen such that (for the weak driving calculation) all Ω

(F=n1)
Z have

to satisfy Ω
(F=n1)
Z ≤ Ω, i.e. such that the dimensionless parameters AF satisfy

AF ∈ [0, 1]. In this notation, the above GHZ preparation time reads:

τn1=N−1→GHZ =
2γ

Ω2

N−1

∑
F=1

1
FA2

F
=

2γ

Ω2 H({AF}) , (E.6)

where we have defined the function

H({AF}) :=
N−1

∑
F=1

1
FA2

F
. (E.7)

With the same abbreviations, the error rate from Z pumping alone reads, from
Eq. (7.63):

ΓGHZ→?,γ,Z =
3γeN
16g2

N−1

∑
F=1

F

(
Ω

(F)
Z

N − F

)2

=
3γΩ2

16g2 N
N−1

∑
F=1

FA2
F

(N − F)2 (E.8)

=
3γΩ2

16g2 NG({AF}), (E.9)

where

G({AF}) :=
N−1

∑
F=1

FA2
F

(N − F)2 . (E.10)
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Our goal for now is to find parameters {AF} that minimize the Z-error for any
given value of the GHZ preparation time (or, equivalently, minimize the GHZ
preparation time for any fixed error value). Minimizing G({AF}) under the
constraint H({AF}) ≡ H̃ ≡ const by the method of Lagrange multipliers leads
to

A2
F = η

N − F
F

, with η > 0 such that
1
η

N−1

∑
F=1

1
N − F

= H̃ . (E.11)

Approximating the latter harmonic sum gives roughly η ≈ (log N)/H̃, and we
would have AF > 1 for some F (in particular for F = 1) if η > 1/(N − 1), i.e. if
H̃ . (N − 1) log N.
However, one can still find the optimal assignment {AF} minimizing G({AF})
while obeying 0 ≤ AF ≤ 1 and H({AF}) ≤ H̃:

A2
F =

⌈
η

N − F
F

⌉1

, (E.12)

where we defined the “ceil-1” function

dxe1 :=

{
1 if x > 1
x if x ≤ 1

, (E.13)

and η needs to be adjusted such that H({AF}) = H̃. The assignment (E.12)
means that A2

F = 1 for F < N/(1 + 1/η) and A2
F = η(N − F)/F for F ≥ N/(1 +

1/η). That (E.12) is the unique optimal solution can be checked by the Karush-
Kuhn-Tucker (KKT) conditions [166, Sec. 5.3.3], using that the function G({AF})
to be minimized and the constraint function H({AF}) are both strictly convex in
their arguments.
For η ∈ [1/(N − 1), N − 1] (such that the selection between the two cases in
(E.13) happens at some F ∈ [1, N − 1]) one can thus compute:

H({AF}) =
N−1

∑
F=1

1
A2

F F
≈

N/(1+1/η)

∑
F=1

1
F

+
N−1

∑
F=N/(1+1/η)

1
η(N − F)

(E.14)

≈ log
N

1 + 1/η
+

1
η

log N
(

1− 1
1 + 1/η

)
(E.15)

≈
(

1 +
1
η

)
log N +

1
η

log
1
η
−
(

1 +
1
η

)
log
(

1 +
1
η

)
(E.16)

≈
(

1 +
1
η

)
log N , (E.17)

and

G({AF}) =
N−1

∑
F=1

A2
F F

(N − F)2 ≈
N−1

∑
F=N/(1+1/η)

η

N − F
+

N/(1+1/η)

∑
F=1

F
(N − F)2

(E.18)

≈ η log N
(

1− 1
1 + 1/η

)
+ η + log

(
1− 1

1 + 1/η

)
(E.19)

≈ η log N + η − (η + 1) log(η + 1) (E.20)

≈ η log N . (E.21)
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For η = const > 0, the error in both estimates is O(1) as N → ∞ and thus
irrelevant compared to the log N terms. In particular, if one wants the numerical
factor H in the preparation time (E.6) to scale like log N (like optical pumping),
then one needs η ≥ O(1), which we achieve by letting η = const as N → ∞.

The error E can generally be obtained by comparing the preparation time of the
desired state of the protocol and the loss rate out of it. Using Eqs. (E.6) and
(E.9), the error E is found to be given by

E := (τn1=N−1→GHZ)(ΓGHZ→?,γ,Z) =
3γ2

8g2 N G({AF}) H({AF}) . (E.22)

Thus, to achieve a desired error E (which may be N-dependent, i.e. E = E(N)),
one can adjust γ appropriately. If we assume a relation Ω = αγ in order to limit
Ω to the weak driving regime (and where the number α may or may not depend
on N, i.e. α = α(N)), we can plug this back into the worst-case preparation time
(E.6) to obtain

τn1=N−1→GHZ =
2γ

Ω2 H =
2

α2γ
H =

√
3
2

1√
Eα2g

√
N G H3 (E.23)

≈ η1/2
(

1 +
1
η

)3/2 √3/2√
Eα2g

N1/2 log2 N ,

(E.24)

where the last estimate holds for η = const as N → ∞ and we have neglected
lower-order terms in N. The prefactor is minimized for η = 2, leading to a
minimal preparation time (for the desired error E):

τn1=N−1→GHZ ≈
9

2
√

2
1√

Eα2g
N1/2 log2 N ≈ 3.2√

Eα2g
N1/2 log2 N . (E.25)

To summarize the optimal parameter choices for the scenario considered here:

• The AF for 1 ≤ F ≤ N − 1 have to be chosen as follows (cf. Eq. (E.12) with
the optimal choice η = 2):

AF =
√
d2(N − F)/Fe1, (E.26)

i.e. AF = 1 for 1 ≤ F ≤ 2N/3, and AF =
√

2(N − F)/F for 2N/3 < F ≤
N − 1. This leads to:

H({AF}) =
3
2

log N + O(1) , (E.27)

G({AF}) = 2 log N + O(1) . (E.28)

• The choice of γ ≡ γe, and consequently of Ω ≡ αγ and γ0e = γ1e = γ/2,
is given by:

γ =
2
√

2
3

g
√

E√
N log N

. (E.29)
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Figure E.1: Four-compartment-model of the process creating |GHZ〉.

We also set κa = κb = 0. This leads to:

τn1=N−1→GHZ =
9

2
√

2
1√

Eα2g
N1/2 log2 N . (E.30)

The appearance of N1/2 in the scaling of τn1=N−1→GHZ can be traced back
to the fact that the noise Γ− acts on each of the N atoms (i.e. the prefactor
of N in Eq. (7.63)).

E.2 Compartment model and effective rates

While so far we have only discussed the Z pumping, we will now make a simpli-
fied model of both processes, Z and X, that create the |GHZ〉 state. This model
is more pessimistic w.r.t. the preparation time and the error treatment than the
actual (Lindbladian) dynamics described in Sec. 7.3.2. Nevertheless, this model
will still yield a scaling of the preparation time as τGHZ ∼ (N1/2 log2 N)/

√
E

with the number of qubits N and the error E, just like Eq. (E.25), which thus
shows that this is indeed the best achievable scaling.
Our simplified model is shown in Fig. E.1 and consists of four compartments
as we explain now. We split the 2N-dimensional Hilbert space into the sub-
spaces with n1 = 1, 2, . . . , N − 1, counting the number of |1〉-states appearing in
a computational basis state (as in Sec. 7.3.2). All states with n1 = N − 1 are
put into compartment 1, as they are furthest away (in pumping time) from the
GHZ states; the states with n1 = 1, . . . , N − 2 are then put into compartment 2.
The two Hilbert space dimensions belonging to n1 = 0 and to n1 = N are split
into the compartments 3 and 4 of Fig. E.1, corresponding to the |GHZ−〉 and the
|GHZ〉 states, respectively. The “good” Z pumping process creates each of those
GHZ states with equal rate 1

2 Γ+
Z out of compartment 2 where using Eq. (E.3) we

find

Γ+
Z = (τn1=N−2→n1=0)

−1 =

(
γ

Ω2

N−2

∑
F=1

1
FA2

F

)−1

=

(
3γ

2Ω2 log N
)−1

=
Ω2

γ

2
3 log N

.

(E.31)

Here, we have again plugged in γ0e = γ/2, κa = 0 and the optimal Aj from Eq.
(E.26) and followed the same computation as for (E.17), neglecting lower-order
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terms. Similarly, the rate from compartment 1 to compartment 2 is given by Eq.
(E.1):

Γ
comp
12 = Γ

(F=N−1)
n1=N−1→n1=N−2,γ0,Z ≈

2(N − 1)γ0e(Ω
(F=N−1)
Z )2

(γe + κa)2 =
2Ω2

γ
. (E.32)

As compartment 1 is the furthest away from the desired GHZ state, we pes-
simistically model the X-toss (i.e. the action of the X process on the states other
than |GHZ±〉, see Eq. (7.99)) to throw any state back to the n1 = N− 1 compart-
ment, with a rate Γtoss

X to be computed below. Similarly, we model the errors Γ−Z
and Γ−X affecting |GHZ〉 such that they move the |GHZ〉-state back to compart-
ment 1. By the same rationale, even the “good” X process Γ+

X is modelled to take
the un-wanted state |GHZ−〉 back to compartment 1.
The detrimental Z rate for the compartment model as computed with the pa-
rameters from the previous subsection, Eq. (E.26) (see also Eqs. (E.9), (E.10), and
(E.21) with the optimal η = 2) is

Γ−Z = ΓGHZ→?,γ,Z =
3γΩ2

16g2 NG({A f }) =
γΩ2

g2
3N log N

8
. (E.33)

For the X rates, it was found in Sec. 7.3.3 that only the Rabi oscillations Ω
(F)
X with

odd index F should be turned on. Similar to Sec. E.1, we write Ω
(F)
X = A(F)

X Ω

with the dimensionless parameters A(F)
X which we discuss below. The “good” X

rate Γ+
X for the compartment model of Fig. E.1 is then given by Eq. (7.95):

Γ+
X = ΓGHZ−→?,X ≈

2γ f

(γ f + κb)2

N

∑
F=1,3,...

(
N
F

)
F(Ω(F)

X )2

2N−1 (E.34)

=
2Ω2

γ

N

∑
F=1,3,...

1
2N−1

(
N
F

)
F(A(F)

X )2. (E.35)

Since the (normalized) probability distribution {(N
F)/2N−1}N

F=1,3,... is strongly
peaked around the values F ∼ N/2 (similar to the full binomial distribution),
the exact functional choice of the X coefficients A(F)

X (for odd F) does not really
matter in the limit of large N, as long as it is not exponentially fine tuned. Since
a similar binomial distribution occurs in the X error rates below as well and as
the same reasoning applies, we can take all A(F)

X to be equal as a very good
approximation:

A(F=1)
X = A(F=3)

X = A(F=5)
X = . . . ≡ AX. (E.36)

With this, the rate Γ+
X evaluates to (with exponentially good accuracy for large

N):

Γ+
X =

2Ω2

γ

N
2

A2
X =

Ω2

γ
NA2

X, (E.37)

As we will see below, with this choice the error induced by the X error rate is
smaller than the one from the Z process and thus not a major limitation to the
preparation of the entangled state.
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The X error rate Γ−X is given by (7.98), and we simplify it again with our above
parameter choices, making approximations of the binomial distribution and the
other sum which are good in the large-N limit:

Γ−X = ΓGHZ→?,γ,X ≈
γ f

2g2 ∑
n=0,2,...

1
2N−1

(
N
n−

)
n− ∑

F=1,3,...
F

(
Ω

(F)
X

F− n−

)2

(E.38)

≈ γΩ2 A2
X

2g2
N
2 ∑

F=1,3,...

F

(F− [N/2]even)
2 . (E.39)

In the expression above, [N/2]even denotes the next higher integer number of
N/2. Having the limit of large N in mind, we evaluate the last sum as follows:

∑
F=1,3,...

F

(F− [N/2]even)
2 (E.40)

=
Fodd

∑
1≤F≤[N/2]even−1

F

(F− [N/2]even)
2 +

Fodd

∑
[N/2]even+1≤F≤N

F

(F− [N/2]even)
2

=
Fodd

∑
1≤F≤[N/2]even−1

[N/2]even

(F− [N/2]even)
2 +

Fodd

∑
1≤F≤[N/2]even−1

F− [N/2]even

(F− [N/2]even)
2

+
Fodd

∑
[N/2]even+1≤F≤N

[N/2]even

(F− [N/2]even)
2 +

Fodd

∑
[N/2]even+1≤F≤N

F− [N/2]even

(F− [N/2]even)
2

=[N/2]even

(
1
12 +

1
32 + . . . +

1
([N/2]even − 1)2

)
−
(

1
1
+

1
3
+ . . . +

1
([N/2]even − 1)

)
+ [N/2]even

(
1
12 +

1
32 + . . . +

1
(N − [N/2]even − 1)2

)
+

(
1
1
+

1
3
+ . . . +

1
(N − [N/2]even − 1)

)
≈2 · N

2

∞

∑
n=1,3,5,...

1
n2 = 2 · N

2
· 3

4

∞

∑
n=1,2,3,4,...

1
n2 = N

3π2

4 · 6 ≈ 1.23N ≈ 5N
4

,

neglecting subleading terms in N. This finally gives:

Γ−X =
γΩ2

g2
5N2 A2

X
16

. (E.41)

Finally, the X toss rate Γtoss
X in Fig. E.1 is given by Eq. (7.99), which with our

parameter choices becomes [note that (7.99) is half of the “good” rate (7.95),
which we have computed in Eq. (E.37) already]:

Γtoss
X =

Ω2

γ

NA2
X

2
. (E.42)

From the process in Fig. E.1 one can see that the optimal parameters AX have to
be chosen such that the good X-process and the good Z-process have about the
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same rate: If the X pumping rate Γ+
X is too weak, population will accumulate in

|GHZ−〉 by the Z pumping (Γ+
Z ). On the other hand, a too strong X pumping

will hinder the preparation mechanism through the X toss effect. We thus set
the rates for the desired processes, Z pumping and X depumping to be equal,

Γ+
X = Γ+

Z . (E.43)

This results in:

A2
X =

2
3N log N

(E.44)

(note that, for all N ≥ 2, this choice is consistent with the requirement AX ≤ 1
for the weak-driving analysis).

With these choices made, we summarize the parameters and effective rates for
the four-compartment model of Fig. E.1 found so far:

• For the Z-pumping, we make the choice of parameters found to be optimal
in Eq. (E.26):

A(F)
Z =

{
1 for F ≤ 2N/3 ,√

2 N−F
F for F ≥ 2N/3 ,

(E.45)

meaning that Ω
(F)
Z = ΩA(F)

Z .

• For the X-pumping we take (see Eq. (E.44)):

A(F=odd)
X =

√
2
3

1
N log N

, A(F=even)
X = 0 . (E.46)

• Then one obtains for the effective rates in Fig. E.1:

Γ+
Z = Γ+

X =
Ω2

γ

2
3 log N

, (E.47)

Γ
comp
12 =

Ω2

γ
· 2 = Γ+

Z · 3 log N, (E.48)

Γtoss
X =

Ω2

γ

1
3 log N

=
1
2

Γ+
Z , (E.49)

Γ−Z =
γΩ2

g2
3N log N

8
, (E.50)

Γ−X =
γΩ2

g2
5N

24 log N
. (E.51)

• The total error rate (leading from compartment 4 to compartment 1) is thus

Γ− := Γ−Z + Γ−X =
γΩ2

g2
3N log N

8

(
1 +

5
9 log2 N

)
(E.52)

= Γ+
Z ·

γ2

g2
9N log2 N

16

(
1 +

5
9 log2 N

)
. (E.53)
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E.3 Transition matrix, stationary error, and GHZ
preparation time

The transition matrix for the 4-compartment model of Fig. E.1 is:

T =


−Γ

comp
12 Γtoss

X Γ+
X Γ−

Γ
comp
12 −(Γtoss

X + Γ+
Z ) 0 0

0 1
2 Γ+

Z −Γ+
X 0

0 1
2 Γ+

Z 0 −Γ−

 (E.54)

= Γ+
Z


−3 log N 1

2 1 Γ−/Γ+
Z

3 log N − 3
2 0 0

0 1
2 −1 0

0 1
2 0 −Γ−/Γ+

Z

 . (E.55)

The steady-state population p∞ := (P1(∞), P2(∞), P3(∞), P4(∞)) is given as the
solution (normalized to the sum of entries being 1) of the equation Tp∞ = 0.
This gives:

p∞ =


P1(∞)

P2(∞)

P3(∞)

P4(∞)

 =


1/ log N

2
1

Γ+
Z /Γ−

 · 1

3 + 1
log N +

Γ+
Z

Γ−

. (E.56)

The steady-state fidelity is just F = P4(∞), and the error is thus

E = 1− F = 1− P4(∞) = 1− 1

1 + Γ−
Γ+

Z

(
3 + 1

log N

) (E.57)

≈ Γ−
Γ+

Z

(
3 +

1
log N

)
=

γ2

g2
27N log2 N

16

(
1 +

5
9 log2 N

)(
1 +

1
3 log N

)
.

(E.58)

(Here, the approximation in the second line was made for analytical convenience
and gives a slightly pessimistic bound.) In the scaling with large N, this expres-
sion for E agrees with the one implied by Eq. (E.29) that was found by other
means before, and the prefactor is similar. Thus, to achieve a desired stationary
error E, we need to adjust γ such that:

γ = g
√

E

[
27N log2 N

16

(
1 +

5
9 log2 N

)(
1 +

1
3 log N

)]−1/2

. (E.59)

Below we will use this expression instead of the results obtained in (E.29) which
were derived by considered only the Z pumping.

So far, we have discussed the Z pumping separately from the X pumping, de-
riving an individual characteristic time τn1=N−1→GHZ. It now remains to derive
an analytical expression for the total GHZ pumping time that is obtained in the
presence of X pumping, using the parameters (E.59) and (E.26). In order to factor
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out the dependence of the stationary error E and to obtain a tractable analytical
expression, we make (for the computation of the GHZ preparation time) an ap-
proximation to the transition matrix (E.54) by dropping the small terms leading
out of the GHZ state (these terms vanish in the limit of E → 0). That is, we set
the fourth column in (E.54) to zero:

T+ = Γ+
Z


−3 log N 1

2 1 0
3 log N − 3

2 0 0
0 1

2 −1 0
0 1

2 0 0

 . (E.60)

For the initial population vector (P1(0), P2(0), P3(0), P4(0)) = (0, 0, 1, 0), which
corresponds to the whole population being in the worst state |GHZ−〉 of Fig.
E.1, we have the following evolution:

P1(t)
P2(t)
P3(t)
P4(t)

 = etT+


P1(0)
P2(0)
P3(0)
P4(0)

 = e(tΓ+
Z )(T+/Γ+

Z )


0
0
1
0

 . (E.61)

Thus, on time-scales larger than any fixed t0, the transition from the worst state
|GHZ−〉 to the desired state |GHZ〉 happens at least as fast as in an exponen-
tial decay process, with an approximation Γ+ for the effective exponential rate
computed as:

P4(t0) = 1− e−Γ+t0 , i.e. Γ+ = Γ+
Z
− log (1− P4(t0))

Γ+
Z t0

. (E.62)

Note that the fraction in the last expression will depend both on (Γ+
Z t0) and on

N, since the N-dependence of the transition matrix T+ in Eq. (E.60) cannot be
factored out completely. To get a meaningful expression for the exponential rate,
the timescale t0 should be chosen comparable to the other relevant timescales of
the process. For definiteness we will thus set t0 := 1/Γ+

Z throughout.

The characteristic preparation time of |GHZ〉 in the sense of an exponential rate
is then:

τGHZ =
1

Γ+
=

1
Γ+

Z

(
− log (1− P4(t0))

Γ+
Z t0

)−1

(E.63)

[Eq. (E.47)]
=

3γ

2Ω2 log N
(
− log (1− P4(t0))

Γ+
Z t0

)−1

(E.64)

[Ω=αγ]
=

3
2α2γ

log N
(
− log (1− P4(t0))

Γ+
Z t0

)−1

(E.65)

[Eq. (E.59)]
=

N1/2 log2 N
α2g
√

E

×

9
√

3
8

Γ+
Z t0

− log (1− P4(t0))

√√√√(1 +
5

9 log2 N

)(
1 +

1
3 log N

) .

(E.66)
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In the limit of large N, the square root inside the bracketed expression will tend
to 1. And also the fractional expression involving P4(t0) will tend to a constant
number independent of N, since large values of the first column in the matrix in
(E.60) mean that the transition time out of the first compartment is insignificant
compared to the other transition times, which are all independent of N. This is
also easily seen numerically.

In the following table, we evaluate the factor in square brackets (which we call
b(N)) in Eq. (E.66) for different values of N:

N 2 3 4 6 8 10 20 50 100 103 104 105 106

b(N) 55 33 27 23 21 20 18 17 16 15 14.6 14.3 14.1

The GHZ preparation time is then:

τGHZ = b(N)

√
N log2 N
α2g
√

E
, (E.67)

where b(N) tends to about 13 as N → ∞ (see table above). The parameter
choices for this can be found in Eqs. (E.45), (E.46), and (E.59) together with
Ω = αγ, γ0e = γ1e = γ, κa = κb = 0.

E.4 Analysis of the “dynamical problem”

Here, we analyze the “dynamical problem”. This means that, for a certain expo-
nential form of the time-evolution of the GHZ error E(t) (or, equivalently, of the
GHZ fidelity F(t) = 1− E(t)) in an effective model, we compute and minimize
the time t it takes to achieve a desired target error E . The main result will be
that, up to an additional factor of log(1/E), the scaling of the preparation time
with the particle number N and with the error E is the same as in the previous
analytical approaches, see e.g. Eqs. (E.30) and (E.67) (with E replaced by E ).

In the following, we write again Ω = αγ to be able to limit our treatment to the
weak-driving regime by suitable choices of the number α. Furthermore, to keep
the main derivation as general as possible, we write the rates into and out of the
desired GHZ state as

Γ =
Ω2

γ
f (N) = α2γ f (N) , (E.68)

Γ− =
γΩ2

g2 h(N) (E.69)

with functions f ≡ f (N) and h ≡ h(N). Later, we will evaluate our results for
the functions

h(N) =
3N log N

8

(
1 +

5
9 log2 N

)
, (E.70)
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which is motivated by Eq. (E.53), and

f (N) =
2

3 + 9 log N
, (E.71)

which is chosen such that the ratio Γ−/Γ yields the stationary error from Eq.
(E.58).

Finally, we make the following basic ansatz for the time evolution of the error:

E(t) =
Γ−
Γ

+

(
1− Γ−

Γ

)
e−tκΓ . (E.72)

Note that in the limit of t → ∞ the error indeed converges to Γ−/Γ with an
exponential rate given by κΓ, where κ > 0 can be a dimensionless constant to
adjust the effective decay rate in a model where the effective decay rate κΓ does
not match with the steady state error Γ−/Γ (see Eqn. (E.98) and below). Since we
are interested in the regime of small stationary error Γ−/Γ, we can approximate
and continue:

E(t) ≈ Γ−
Γ

+ e−tκΓ =
γ2

g2
h(N)

f (N)
+ exp

[
−γ tκα2 f (N)

]
(E.73)

=

(
γ

g

√
h(N)√
f (N)

)2

+ exp

[
−
(

γ

g

√
h(N)√
f (N)

) (
tκgα2 f (N)3/2

h(N)1/2

)]
(E.74)

= c2 + e−cτ , (E.75)

where we abbreviate with a constant c and a “rescaled time” τ as follows:

c :=
γ

g

√
h(N)√
f (N)

, (E.76)

τ := tκgα2 f (N)3/2

h(N)1/2 . (E.77)

We can treat c as a free optimization variable, since γ is a freely adjustable pa-
rameter, and thus we can adjust c to any non-negative real number by choosing
γ appropriately (even if g and h(N) and f (N) are fixed). Furthermore, τ is es-
sentially the same as the physical time t, but rescaled by a fixed number (which
in particular depends on N and g).

Now the dynamical problem is as follows: Given any fixed target error E ∈ (0, 1),
we would like to find c > 0 such that the time τ needed to achieve this error
by Eqn. (E.75) is minimized. Obviously, from (E.75), any such suitable c satisfies
c ∈ (0,

√
E). Thus, we can explicitly solve Eqn. (E.75) for τ given c and E :

τ = τ(c) =
− log(E − c2)

c
(c ∈ (0,

√
E)) . (E.78)
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To minimize this (rescaled) time τ = τ(c), we set its derivative equal to zero
(note that a minimum exists since limc→0 τ(c) = limc→

√
E τ(c) = +∞):

dτ(c)
dc

=
2

E − c2 +
log(E − c2)

c2 = 0 (E.79)

⇔ − log(E − c2) = − 2 +
2E
E − c2 (E.80)

⇔ 1
E − c2 = exp

[
−2 +

2E
E − c2

]
(E.81)

⇔ −2E
E − c2 exp

[
− 2E
E − c2

]
= − 2E e−2 (E.82)

⇔ −2E
E − c2 = W(−2E/e2) , (E.83)

where W is (a branch of) the Lambert W function [167], which satisfies W(z)eW(z) =
z (W is defined to be a solution to this equation for every z ∈ C). Now we have to
identify the correct branch of W(z) for our purposes: First, since E ∈ (0, 1), the
argument −2E/e2 in (E.83) satisfies −2E/e2 ∈ (−2/e2, 0) ⊆ [−1/e, 0); secondly,
since c ∈ (0,

√
E), the image in Eq. (E.83) satisfies −2E/(E − c2) ∈ (−∞,−2).

Both these things together mean that the correct branch (solution) of the function
W(z) in our problem is the branch W−1 : [−1/e, 0)→ (−∞,−1], z 7→W−1(z).
Then we can continue from (E.83), and solve explicitly for the time-optimal c:

c =
√
E
√

1 +
2

W−1(−2E/e2)
. (E.84)

The optimal time τ can be obtained by plugging this expression into (E.78) and
simplifying the expression, but there is a less direct and somewhat easier way:
Observe from Eqs. (E.78) and (E.79) that

τ =
2c
E − c2 =

c
E

2E
E − c2

[Eq. (E.83)]
=

−W−1(−2E/e2)

E c
[Eq. (E.84)]

= (E.85)

=
1√
E

√
W−1(−2E/e2)2 + 2W−1(−2E/e2) (E.86)

≈ 1√
E

log
1
E (as E → 0), (E.87)

where in the last step we used the asymptotic approximation of our branch of
the Lambert W function [167]: W−1(x) = log(−x)− log(− log(−x)) +O(1) as
x → 0. This is justified when we are interested in the case of very small or
asymptotically vanishing error E → 0.

Finally, we can use the above expressions to solve Eqs. (E.76) and (E.77) for the
physically interesting optimal parameters γ = γ(N, E) and tGHZ = t(N, E) using
the values given in Eqs. (E.84) and (E.86). When we use the choices for f (N) and
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h(N) given in Eqs. (E.70) and (E.71), we obtain:

γ = gc
f (N)1/2

h(N)1/2 =
4

3
√

3
g
√
E√

N log N

√
1 +

2
W−1(−2E/e2)

(E.88)

×
(

1 +
5

9 log2 N

)−1/2 (
1 +

1
3 log N

)−1/2

(E.89)

≈ 4
3
√

3
g
√
E√

N log N
(as N → ∞, E → 0), (E.90)

Note that for small dynamical error E we have W−1 → 0, such that Eq. (E.90)
approaches the previous result in Eq. (E.59). This is due to the fact that for small
E the stationary part of the error dominates. The GHZ preparation time (defined
as the time to reach a GHZ error of value E ) is:

tGHZ =
τ

gκα2
h(N)1/2

f (N)3/2 (E.91)

=
27
√

3
8κ

√
N log2 N
α2g
√
E

√
W2
−1

(
−2E

e2

)
+ 2W−1

(
−2E

e2

)
(E.92)

×
(

1 +
5

9 log2 N

)1/2 (
1 +

1
3 log N

)3/2

(E.93)

≈ 27
√

3
8κ

√
N log2 N
α2g
√
E

log
1
E (as N → ∞, E → 0) . (E.94)

The approximations of the Lambert-W-function used above, i.e.
√

1 + 2/W−1 →
1 and

√
W2
−1 + 2W−1 → log(1/E), are good only for quite small E . For E =

0.1, one should instead use the exact value W−1(−2E/e2) = −5.27, leading to√
1 + 2/W−1 = 0.788 and

√
W2
−1 + 2W−1 = 4.15, which makes that Eq. (E.94) is

by a factor 1.8 lower than Eq. (E.93). For E = 0.03 the corresponding value is

W−1(−2E/e2) = −6.72, leading to
√

1 + 2/W−1 = 0.838 and
√

W2
−1 + 2W−1 =

5.63, which makes that Eq. (E.94) is by a factor 1.6 lower than Eq. (E.93). We can
also find the relation between the stationary error E = Γ−/Γ (from Eq. (E.72))
and the dynamical error E :

E
E =

Γ−
E Γ

(E.95)

[Eqs. (E.68)−(E.71)]
=

γ2

E g2
3N log N

8

(
1 +

5
9 log2 N

)
9 log N

2

(
1 +

1
3 log N

)
(E.96)

[Eq. (E.89)]
= 1 +

2
W−1(−2E/e2)

, (E.97)

which is independent of N. Thus, using the above values, for E = 0.1 we get for
the stationary error at the optimal parameters E = 0.62E , whereas for E = 0.03
we get E = 0.70E .
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It now remains to fix the value of κ (appearing in (E.93)–(E.94)) in an appropriate
way, namely such that the model (E.72) matches the GHZ preparation process
from Sections E.2 and E.3 as well as possible. For this, note that the effective
GHZ preparation rate ΓGHZ from Sec. E.3 can be inferred from Eq. (E.63):

κΓ
!
= ΓGHZ ≡

1
τGHZ

=
Ω2

γ

2
3 log N

− log (1− P4(t0))

Γ+
Z t0

. (E.98)

Using the value of Γ from Eqs. (E.68) and (E.71), we can solve for κ:

κ = 3
(
− log(1− P4(t0))

Γ+
Z t0

) (
1 +

1
3 log N

)
. (E.99)

Evaluating this as in Sec. E.3, we get the following table:

N 2 3 4 5 6 7 8 10 20 50 100
κ 0.28 0.32 0.34 0.35 0.36 0.36 0.37 0.38 0.39 0.40 0.41

E.5 GHZ scaling analysis for strong driving

When taking power broadening into account (see Sec. 7.4.2), then instead of
Eq. (E.1) from the weak driving scenario, the favorable transition rates of the Z
process are now given by Eq. (7.107) (for n1 = 1, 2, . . . , N − 1):

Γn1→n1−1,γ0,Z =
2n1γ0e(Ω

(F=n1)
Z )2

(γe + κa)2 + 2n1(Ω
(F=n1)
Z )2

=
γFΩ2

F
γ2 + 2FΩ2

F
, (E.100)

where we have again used the parameter values and abbreviations γe ≡ γ, γ0e =

γ/2, Ω
(F=n1)
Z = ΩF as in Sec. E.1. Thus, instead of (E.5), the Z pumping time is

now:

τn1=N−1→GHZ = 2τn1=N−1→n1=0 = 2
N−1

∑
n1=1

(Γn1→n1−1,γ0,Z)
−1 (E.101)

= 2
N−1

∑
F=1

(
γ

Ω2
FF

+
2
γ

)
=

4(N − 1)
γ

+
N−1

∑
F=1

2γ

FΩ2
F

. (E.102)

The error rate from (E.9) remains unchanged:

ΓGHZ→?,γ,Z =
3γ

16g2 N
N−1

∑
F=1

FΩ2
F

(N − F)2 . (E.103)

As below (E.10), we now minimize ΓGHZ→?,γ,Z (as a function of the variables
{Ω f }) while keeping τn1=N−1→GHZ constant. This leads, by the method of La-
grange multipliers, to:

Ω2
F = λ

N − F
F

(for F = 1, 2, . . . , N − 1) , (E.104)
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where λ is a Lagrange multiplier (that has units of frequency2), which we will
determine later. Plugging this back into (E.102) and (E.103), we get:

τN−1→GHZ =
4(N − 1)

γ
+

2γ

λ

N−1

∑
F=1

1
N − F

' 4(N − 1)
γ

+
2γ

λ
log N , (E.105)

ΓGHZ→?,γ,Z =
3γλ

16g2 N log N . (E.106)

Thus, the stationary Z error is (cf. (E.22)):

EZ = (ΓGHZ→?,γ,Z)(τN−1→GHZ) =
3λ

4g2 (N − 1)N log N +
3γ2

8g2 N log2 N .

(E.107)

Thus, when the desired stationary Z error EZ is given, then λ and γ are deter-
mined by each other (since g and N are fixed):

λ =
8g2EZ − 3γ2N log2 N

6(N − 1)N log N

(
for γ2 ∈

[
0,

8g2EZ

3N log2 N

])
. (E.108)

Plugging this back into (E.105), we get:

τN−1→GHZ = 4(N − 1)

 1
γ

+
γ

8g2EZ

3N log2 N
− γ2

 . (E.109)

For fixed N, g, EZ, and γ, this is the minimal Z pumping time (i.e. minimized
over all choices of pumping rates {Ω f }). Since we do not want to fix γ a priori,
we minimize the last expression over γ, finding that the optimal choice is

γ =

√
8g2EZ

9N log2 N
. (E.110)

The corresponding pumping strengths can now be computed from (E.104) and
(E.108):

ΩF =

√
8g2EZ

9N(N − 1) log N
N − F

F
(for F = 1, . . . , N − 1) , (E.111)

and the optimal Z pumping time for given N, g, EZ is then (compare to (E.25)
without power broadening):

τN−1→GHZ =
9√
2
(N − 1)

√
N log N

g
√

EZ
' 9√

2
N3/2 log N

g
√

EZ
. (E.112)

From now on we set (N − 1) ' N, as this neglects only subleading terms.
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We also take power broadening into account for the desired X rate (see (7.108))
and for the X toss rate (see (7.99)), which we both compute as in (E.34)–(E.37)
and (E.42), and we take the detrimental X rate from (E.41):

Γ+
X =

N

∑
n−=1,3,...

1
2N−1

(
N
n−

)
2γ f

(γ f + κb)2 + 2n−(Ω
(F=n−)
X )2

n−(Ω
(F=n−)
X )2 (E.113)

'
2γ f

γ2
f + 2(N/2)Ω2

N
2

Ω2 = N
γ f Ω2

γ2
f + NΩ2

, (E.114)

Γtoss
X =

1
2

Γ+
X ' N

2
γ f Ω2

γ2
f + NΩ2

X
, (E.115)

Γ−X =
γ f Ω2

g2
5N2

16
. (E.116)

Now we adjust the X parameters Ω and γ f such that the X rates agree with the
corresponding Z rates (cf. Sec. E.2), i.e. Γ+

X ≡ 2Γtoss
X = Γ+

Z := 1/(τN−1→GHZ) =√
2

9
g
√

EZ
N3/2 log N and Γ−X = Γ−GHZ→? =

√
2

9
gE3/2

Z
N3/2 log N . To solve this for γ f and Ω exactly,

one would have to solve a cubic equation. As this is quite cumbersome and
uninformative, we are looking for solutions which satisfy the following scaling
ansaetze: γ f ' Nα(log N)β and Ω ' Nφ(log N)ψ. Then, one finds actually two
possible solutions for Ω and γ f , which lead to the desired scaling of Γ+

X and Γ−X
(as N becomes large). One solution is:

Ω =
25/4

3 · 51/4

gE1/2
Z

N3/2(log N)1/2 (E.117)

γ f =
4√
5

gE1/2
Z

N1/2 , (E.118)

Formally, another solution exists, but this is in the extremely saturated regime
where our effective operators do not apply.

Finally, we need to find the relation between the above rate Γ+
Z := (τN−1→GHZ,Z)

−1

and the total GHZ preparation time τGHZ ≡ 1/Γ+ (which includes the errors and
X toss) and the total stationary error E, just as in Sec. E.3. For this, we consider a
simplified 3-compartment model which constitutes a very good approximation
in the large-N-limit, in which the parameters (E.117) were computed in the first
place. Here, compartment A comprises the states with n1 = 1, 2, . . . , N− 1, com-
partment B is the state |GHZ−〉 and compartment C the state |GHZ〉. Then the
transition matrix is (cf. (E.54) and Fig. E.1):

T =

−2Γ+
Z − Γtoss

X Γ+
X Γ−

Γ+
Z + Γtoss

X −Γ+
X 0

Γ+
Z 0 −Γ−

 = Γ+
Z

−5/2 1 Γ−/Γ+
Z

3/2 −1 0
1 0 −Γ−/Γ+

Z

 ,

(E.119)

again with Γ− = Γ−X + Γ−Z , and again as in Sec. E.3 we denote by T+ the transition
matrix without the “bad” rates Γ−. From the stationary vector p∞ satisfying
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Tp∞ = 0 we can again compute the total stationary error E:

E = 1− 1

1 + 5
2

Γ−
Γ+

Z

' 5
2

Γ−
Γ+

Z
= 5EZ. (E.120)

We therefore have to set EZ = E/5 in all previous expressions. The relation
between Γ+

Z and Γ+ ≡ 1/τGHZ is similar to Eq. (E.62):

Γ+ = Γ+
Z
− log (1− PC(t0))

Γ+
Z t0

, (E.121)

where again PC denotes the population in the GHZ state when starting from the
GHZ- state. Computing this for the above transition matrix and plugging in the
values for Γ+

Z and E from above, we obtain:

Γ+ = 0.216 · Γ+
Z = 0.0339 · g

√
EZ

N3/2 log N
= 0.0152 · g

√
E

N3/2 log N
. (E.122)

Thus, in the large-N limit, the final GHZ preparation time τGHZ is:

τGHZ =
1

Γ+
=≈ 66

N3/2 log N
g
√

E
. (E.123)

This is achieved by the following parameter choices in terms of g, N, E:

γ = 0.42 · g
√

E√
N log N

(this is the γ-rate for Z pumping) , (E.124)

ΩF = 0.42 · g
√

E
N
√

log N

√
N − F

F
(for F = 1, . . . , N − 1) , (E.125)

Ω = 0.24 · gE1/2

N3/2(log N)1/2 (E.126)

γ f = 0.80 · gE1/2

N1/2 . (E.127)

Again, as in Eq. (E.97), if one is interested in the dynamical error E instead of the
static error E, one should everywhere set E = 0.62E for E = 0.1 (or E = 0.70E
for E = 0.03). Furthermore, the GHZ preparation time is then prolonged by an
additional factor of log(1/E) (see Eq. (E.94)).



AppendixF

Scaling analysis of the W

protocol

Similar to our scaling analysis of the GHZ preparation time in App. E, we
analyze the scaling of the W preparation time1 in the following. As already
anticipated from the transition rates computed in Sections 7.5 and 7.6.2, we will
again employ a transition rate model, now consisting of five compartments as
shown in Fig. F.1.

F.1 Weak driving analysis

Compartment 5 encompasses all states with n1 ≥ 3 excitations. As can be seen
from Sec. 7.5, none of the error processes leads into this compartment, such
that this compartment is continually emptied. As can be seen from Fig. F.1,
the time to reach the W state (compartment 1) is longest time when starting
from n1 = N, which we will henceforth assume as the worst case. Thus, the
transition rate Γ+

54 from compartment 5 into compartment 4 (consisting of the
states with n1 = 2 excitations) is computed from the N− 2 individual transitions
N → (N − 1)→ . . .→ 3→ 2. With Eq. (7.135) and following the rule of inverse
addition of decay rates we get:

Γ+
54 =

(
N

∑
n1=3

(Γn1→j−1,γ0,Z)
−1

)−1

=

(
N

∑
F=3

1
F

)−1

·
2γ0e(Ω

(F≥3)
Z )2

(γe + κa)2 , (F.1)

where we have made the parameter choice that all Ω
(F=n1)
Z for n1 = 3, . . . , N

are equal to each other and we call their value Ω
(F≥3)
Z . The inverse of the sum

on the right-hand-side equals (log N)−1, up to a correction that is smaller than
(log N)−2, i.e. of lower order.

As physically and implementationally reasonable parameter choices (see also

1The analysis has been performed in collaboration with D. Reeb.
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W 1 

n1=3,…,N 5 

Was 3 

n1=0 2 

12

21

32

13

14

n1=2 4 

43

54
23

Figure F.1: 5-compartment-model of the W process. The “good” transition rates are
shown as bold lines with arrows, whereas the error processes are shown with dashed
lines.

Sec. 7.5), we will throughout set

γ0e = γ1e =
1
2

γe , (F.2)

γ0 f = γ1 f =
1
2

γ f . (F.3)

Furthermore, we introduce a dimensionless constant β to write κa as:

κa = βγe. (F.4)

Later on, it will be seen that β is to be chosen as a constant (of order 1) in
order to obtain an optimal scaling of the W preparation time. From Eq. (7.135)
it can be seen that the desirable decay rate saturates for too strong drives since
the transition is saturated. Hence, driving stronger than Ω

(F≥3)
Z ≈ γe + κa =

γe(1 + β) does not significantly increase the preparation rate, but only the loss
rates. We thus re-parametrize Ω

(F≥3)
Z with a dimensionless constant αn:

Ω
(F≥3)
Z = αnγe (F.5)

With these substitutions and assumptions, the transition rate Γ+
54 from (F.1) reads:

Γ+
54 = γe ·

α2
n

(1 + β)2 ·
1

log N
. (F.6)

With the same substitutions, Eq. (7.134) yields the transition rate from com-
partment 4 to compartment 3 (consisting of the states with n1 = 1 excitation
and outside of the sector with permutation symmetry, i.e. the “antisymmetric”
n1 = 1 states):

Γ+
43 = γe ·

2α2
Z

(1 + β)2 , (F.7)

where the dimensionless constant αZ (potentially different from αn) has been
introduced:

Ω
(F=2)
Z = αZγe (F.8)
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Here, we have made the worst case assumption that decay from states with
n1 = 2 leads to the antisymmetric states in n1 = 1.

The favorable transition rate from compartment 3 to compartment 2 (consisting
of the n1 = 0 state) is given by Eq. (7.156). As the parameter ΩA does not
appear in the loss rates (Eqs. (7.157)–(7.159)) in the present approximation, it
will clearly be best to choose it as large as possible. However, when we include
power broadening, the decay rate saturates at around

Γ+
32 = γ f ·

1
2

. (F.9)

Finally, the transition rate from compartment 2 to compartment 1 (the desired
W state) is given by Eq. (7.177). Again due to the restrictions set by power
broadening, we must have ΩW ≤ γe + κa = (1 + β)γe. We reparametrize with a
dimensionless parameter αW :

ΩW =
αW√

N
γe (F.10)

(Note, here we take the factor
√

N into the parametrization for notational conve-
nience, since in both the good rates and the loss rates the parameter ΩW always
appears in the combination NΩ2

W , see Sections 7.5.4 and 7.6.2). Thus, we get
from Eq. (7.177):

Γ+
21 = Γ0→W,κ,W = γe ·

2α2
W β

(1 + β)2 . (F.11)

For the full W preparation time τW, we get from Eqs. (F.6), (F.7), (F.9), (F.11) and
the rule of the inverse addition of decay rates:

τW = τW(N, αn, αZ, αW , β, γe, γ f ) =
1

Γ+
54

+
1

Γ+
43

+
1

Γ+
32

+
1

Γ+
21

(F.12)

=
1
γe
·
[

log N
α2

n
· (1 + β)2 +

1
α2

Z
· (1 + β)2

2
+ 2

(
γe

γ f

)
+

1
α2

W
· (1 + β)2

2β

]
.

(F.13)

Next we compute the loss rates from the W state, i.e. the rates corresponding to
the dashed lines in Fig. F.1. For this, observe that the parameter κb occurs only
in the loss rates (Sec. 7.5.3), but not in the gain rates; thus, it will be optimal to
set

κb = 0 . (F.14)

Also note that there is no loss from the W state into compartment 5, i.e. Γ−15 = 0.

The loss rate Γ−14 is given by the sum of Eqs. (7.180) and (7.181), where we ap-
proximate the factor (N − 1) by N:

Γ−14 =
N(κa + γ1e)Ω

2
W

g2 =
γ3

e
g2 ·

α2
W(1 + 2β)

2
, (F.15)
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where we have simply used the substitutions Eqs. (F.2), (F.4), and (F.10) from
above.

The loss rate Γ−13 is given by the sum of Eqs. (7.182) and (7.137):

Γ−13 =
Nγ0eΩ

2
W

g2 +
γ1e

2g2 · 2
(

Ω
(F=2)
Z

2− 1

)2

+
γ1e

2g2

N

∑
F=3

F

(
Ω

(F≥3)
Z

F− 1

)2

(F.16)

=
γ3

e
g2

[
α2

W
2

+
α2

Z
2

+
α2

n log N
4

]
, (F.17)

where we have simply plugged in the substitutions from Eqs. (F.2), (F.5), (F.8),
(F.10), and used that ∑N

F=3 F/(F − 1)2 = ∑N−1
n=2 (1/n + 1/n2) = (log N) +O(1),

which equals log N up to subleading terms.

The loss rate Γ−12 is given by Eq. (7.136), and follows in the same way as (F.16)–
(F.17):

Γ−12 =
γ0e

2g2 · 2
(

Ω
(F=2)
Z

2− 1

)2

+
γ0e

2g2

N

∑
F=3

F

(
Ω

(F≥3)
Z

F− 1

)2

(F.18)

=
γ3

e
g2

[
α2

Z
2

+
α2

n log N
4

]
. (F.19)

Finally, we take into account the error rate from the 0 state to the antisymmetric
n1 = 1 states, given in Eq. (7.179):

Γ−23 =
2Nγ1eΩ

2
W

(κa + γe)2 = γe ·
α2

W
(1 + β)2 , (F.20)

which again follows from the subsitutions (F.2), (F.4), and (F.10). Given the gain
and loss rates just computed, the intensity matrix (Markov transition kernel) for
the compartment model of Fig. F.1 is:

T =


−(Γ−12 + Γ−13 + Γ−14) Γ+

21 0 0 0
Γ−12 −Γ+

21 − Γ−23 Γ+
32 0 0

Γ−13 Γ−23 −Γ+
32 Γ+

43 0
Γ−14 0 0 −Γ+

43 Γ+
54

0 0 0 0 −Γ+
54

 . (F.21)

It is easy to see that the stationary vector ~p∞ (satisfying T~p∞ =~0, and containing
the steady state populations of each compartment) is given by

~p∞ =
1

1 + p2 + p3 + p4


1
p2

p3

p4

0

 , (F.22)
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where the numbers p2, p3, p4 are, using the above expressions, given by :

p2 =
Γ−12 + Γ−13 + Γ−14

Γ+
21

=
γ2

e
g2

[
(1 + β)3

2β
+

α2
Z

α2
W
· (1 + β)2

2β
+

α2
n log N

α2
W

· (1 + β)2

4β

]
,

(F.23)

p3 =
Γ−13 + Γ−14

Γ+
32

+ p2
Γ−23

Γ+
32

(F.24)

=
γ2

e
g2

(
γe

γ f

) [
α2

W ·
(1 + β)(1 + 2β)

β
+ α2

Z ·
1 + β

β
+ α2

n log N · 1 + β

2β

]
,

(F.25)

p4 =
Γ−14

Γ+
43

=
γ2

e
g2

[
α2

W
α2

Z
· (1 + β)2(1 + 2β)

4

]
. (F.26)

The steady-state error E equals 1− (~p∞)0, where (~p∞)0 is the steady-state fidelity
that can be read off from (F.22). Thus:

E = 1− 1
1 + p2 + p3 + p4

≈ p2 + p3 + p4 , (F.27)

where the last approximation is very good in the regime of small error (E . 10%)
we are interested in. We shall employ this approximation from now on. As can
be seen from Eqs. (F.23)–(F.27), the stationary error will decrease as γ f /γe → ∞,
which furthermore reduces the W preparation time (see Eq. (F.13)).

It will thus, within the current approximation, be optimal to choose γ f → ∞.
Note, however, that the current derivation assumes that g is the largest coupling
in the system, invalidating this limit for γ f . However, even for a γ f of the order
of γe, other terms will dominate the error and preparation rate. We will thus in
the following assume a

r =
γe

γ f
(F.28)

between the decay rates that is independent of N and has a value r ∼ 1. With
this substitution, the stationary error becomes:

E ≈ p2 + p3 + p4 =
γ2

e
g2

[
(1 + β)3

2β
+

α2
Z

α2
W
· (1 + β)2

2β
+

α2
n log N

α2
W

· (1 + β)2

4β

]
+

γ2
e

g2

[
α2

W ·
r(1 + β)(1 + 2β)

β
+ α2

Z ·
r(1 + β)

β

]
+

γ2
e

g2

[
α2

n log N · r(1 + β)

2β
+

α2
W

α2
Z
· (1 + β)2(1 + 2β)

4

]
. (F.29)

Note that the expression in the square brackets is dimensionless, as are all pa-
rameters occuring in it. We also assume that g is fixed from the beginning. Thus,
for any given scaling of the dimensionless parameters (which we will determine
below), we must choose a small enough γe in order to achieve the stationary
error E. To get E, we must choose

γe =
g
√

E√
[brackets]

, (F.30)
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where [brackets] denotes the expression in square brackets in Eq. (F.29). Plug-
ging this into the W preparation time (F.13) (using (F.28), so that all quantities
except γe are dimensionless), we obtain:

τW =
1

g
√

E
·
[

log N
α2

n
· (1 + β)2 +

1
α2

Z
· (1 + β)2

2
+ 2r +

1
α2

W
· (1 + β)2

2β

]

·

√√√√√ (1+β)3

2β +
α2

Z
α2

W
· (1+β)2

2β + α2
n log N

α2
W
· (1+β)2

4β +

+α2
W ·

r(1+β)(1+2β)
β + α2

Z ·
r(1+β)

β + α2
n log N · r(1+β)

2β +
α2

W
α2

Z
· (1+β)2(1+2β)

4

(F.31)

Here, there are terms log(N) which grow with the qubit number, while the
terms with r are constant and can thus be omitted for large N. Given that αn, αZ
and αW enter in the same way, we can assume that there is little gain in having
them different. We thus set them equal to each other. We then obtain for the
preparation time

τW
[N large]
' (log N)3/2

α2g
√

E
· (1 + β)3

2
√

β

[N large, β=1]
' 4

(log N)3/2

α2g
√

E
(F.32)

Eq. (F.32) identifies the resulting scaling in the weak driving regime. Simi-
lar to the result for GHZ it goes as the inverse of the strength of the driving,
parametrized by α. To investigate the true scaling we thus have to perform a
strong driving analysis. This is done below, but in short we find that the main
limitation comes from αn. This is due to the fact that αn enters in Γ+

54 which
describes the rate at which we can depump the manifold with n1 ≥ 2. It nec-
essarily involves O(N) decays and a resulting time O

(
N
γ

)
. Comparing to Eq.

(F.6) we see that this puts a restriction αn ∼ 1√
N

. Inserting this in Eq. (F.32) gives
us the scaling which only differs from the result obtained below by logarithmic
corrections.

F.2 W scaling analysis for strong driving

We will analyze here the scaling of the W preparation time using effective oper-
ators accounting for the power broadening effect (Sec. 7.6.2). As in Sec. F.1, we
employ again the transition rate model from Fig. F.1. To keep the analysis man-
ageable, we will again assume simple and physically well-motivated relations
between the decay rates and express all of them in terms of a single parameter,
which we call γ throughout (cf. also Sec. F.1):

γe = γ f = κa ≡ γ, (F.33)

γ0e = γ1e =
1
2

γe =
1
2

γ, (F.34)

γ0 f = γ1 f =
1
2

γ f =
1
2

γ, (F.35)

κb = 0. (F.36)
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From Eq. (7.107), we get for the rates of the Z pumping (for n1 = 2, 3, . . . , N):

Γn1→n1−1 = Γn1→n1−1,γ0,Z =
2Fγ0eΩ

2
F

(γe + κa)2 + 2FΩ2
F
=

γFΩ2
F

4γ2 + 2FΩ2
F

(F.37)

where we denote the different pumping strengths for the optical Z pumping by
ΩF with F = 2, 3, . . . , N. By the law of inverse addition of decay rates, we thus
obtain the following “good” rates Γ+

54 and Γ+
43 (cf. Fig. F.1):

Γ+
54 =

(
N

∑
n1=3

(Γn1→n1−1)
−1

)−1

=

(
N

∑
F=3

2
γ
+

4γ

FΩ2
F

)−1

(F.38)

=

(
2(N − 2)

γ
+ 4γ

N

∑
F=3

1
FΩ2

F

)−1

, (F.39)

Γ+
43 = Γn1=2→as ≈ Γ2→1,γ0,Z =

γΩ2
2

2γ2 + 2Ω2
2

. (F.40)

The only errors caused by the Z pumping rates ΩF are, by Eqs. (7.136) and
(7.137):

ΓW→0,γ0,Z = ΓW→as,γ1,Z =
γ

4g2

N

∑
F=2

FΩ2
F

(F− 1)2 . (F.41)

Besides in these errors, the Z pumping drives ΩF appear in the preparation
time τW = (Γ+

54)
−1 + (Γ+

43)
−1 + (Γ+

32)
−1 + (Γ+

21)
−1 (see below and also e.g. Eq.

(F.12)), and they appear only in the combination (Γ+
54)
−1 + (Γ+

43)
−1 = 2(N−1)

γ +

4γ ∑N
F=2

1
FΩ2

F
. To find the optimal choice of {ΩF}N

F=2, we therefore want to mini-

mize the total ΩF-error in Eq. (F.41) for each constant value of (Γ+
54)
−1 + (Γ+

43)
−1,

or equivalently, for each constant value of ∑N
F=2

1
FΩ2

F
. The method of Lagrange

multipliers thus leads us to consider the following Lagrangian:

L({ΩF}N
F=2, λ) :=

N

∑
F=2

FΩ2
F

(F− 1)2 + λ2
N

∑
F=2

1
FΩ2

F
, (F.42)

where λ is a Lagrange multiplier that has dimensions of [frequency]2. Solving
the minimizer conditions dL

dΩF
= 0 for all F = 2, . . . , N, we get the solutions

Ω2
F = λ

F− 1
F

(F = 2, 3, . . . , N). (F.43)

Thus, the optimal choice for the (N − 1) parameters {ΩF} depends on only one
parameter λ, which we will choose below in the optimal way. Plugging (F.43)
back into (F.40), into (Γ+

54)
−1 + (Γ+

43)
−1, and into the error rates (F.41), we get:

Γ+
43 =

λγ

4γ2 + 2λ
, (F.44)

(Γ+
54)
−1 + (Γ+

43)
−1 =

2(N − 1)
γ

+ 4γ
N

∑
F=2

1
λ(F− 1)

' 2(N − 1)
γ

+
4γ log N

λ
,

(F.45)

ΓW→0,γ0,Z = ΓW→as,γ1,Z =
γ

4g2

N

∑
F=2

λ

F− 1
' λγ log N

4g2 . (F.46)
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The good rate Γ+
32 is, from Eq. (7.109):

Γ+
32 = Γas→0,γ0,A =

γΩ2
A

2γ2 + 2Ω2
A

. (F.47)

Due to the choice κb = 0, the parameter ΩA appears only in this good rate, but
not in any error rate (see Sec. 7.5.3). Thus, ΩA should be chosen in such a way
as to maximize Γ+

32 , which happens for ΩA � γ f . As we have assumed g to
be the largest parameter in our derivation, we set, however, ΩA = γ f . We thus
have:

Γ+
32 =

γ

4
. (F.48)

By Eq. (7.184), the rate Γ+
21 (with collective decay) is:

Γ+
21 = Γ0→W,κ,W = 2 ·

γNΩ2
W

4γ2 + 2NΩ2
W

=
γNΩ2

W
2γ2 + NΩ2

W
. (F.49)

The only free parameters (for any fixed values of N and g) in the above rates are
now γ, λ and ΩW , and we will optimize over those later (also taking the error
into account). For convenience, we want to optimize over dimensionless param-
eters, and thus we write λ and ΩW as dimensionless multiples of appropriate
powers of the dimensionful quantity γ:

NΩ2
W = αγ2, (F.50)

λ = βγ2. (F.51)

With this notation, the total preparation time becomes:

τW =
1

Γ+
54

+
1

Γ+
43

+
1

Γ+
32

+
1

Γ+
21

= (F.52)

=
2(N − 1)

γ
+

4γ log N
λ

+
4
γ
+

2γ2 + NΩ2
W

γNΩ2
W

= (F.53)

=
2
γ

(
N +

3
2
+

2 log N
β

+
1
α

)
. (F.54)

Now we compute the stationary error E in terms of the above protocol param-
eters (see the dashed lines in Fig. F.1). From Eqs. (F.15), (F.16) (see also (F.46)),
(F.18), and (7.186), we get the error rates:

Γ−14 = Γ−W→2 =
(κa + γ1e)NΩ2

W
g2 =

3γNΩ2
W

2g2 =
3αγ3

2g2 , (F.55)

Γ−13 = Γ−W→as =
γ0eNΩ2

W
g2 +

λγ log N
4g2 =

αγ3

2g2 +
βγ3 log N

4g2 , (F.56)

Γ−12 = Γ−W→0 =
λγ log N

4g2 =
βγ3 log N

4g2 , (F.57)

Γ−23 = Γ−0→as =
2Nγ1eΩ

2
W

(κa + γe)2 + 2NΩ2
W

=
αγ

4 + 2α
. (F.58)
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In terms of these gain and loss rates, the Markov transition matrix and the sta-
tionary state vector ~p∞ look like Eqs. (F.21) and (F.22), where now p2, p3, p4 are
given by:

p2 =
Γ−12 + Γ−13 + Γ−14

Γ+
21

=
γ2

g2

(
4 + 2α +

β log N
2

+
β log N

α

)
, (F.59)

p3 =
Γ−13 + Γ−14

Γ+
32

+ p2
Γ−23

Γ+
32

=
γ2

g2 (12α + 2β log N) , (F.60)

p4 =
Γ−14

Γ+
43

=
γ2

g2

(
3α +

6α

β

)
. (F.61)

Again, the steady-state error E equals 1− (~p∞)0:

E = 1− 1
1 + p2 + p3 + p4

≈ p2 + p3 + p4 , (F.62)

where the last approximation is very good in the regime of small error (E .
10%), which we are interested in, so that we employ this approximation from
now on. Thus:

E =
γ2

g2

[
4 + 17α +

5β log N
2

+
β log N

α
+

6α

β

]
. (F.63)

Therefore, if the desired stationary error E is given, we have to choose γ in the
following way:

γ =
g
√

E√
4 + 17α + 5β log N

2 + β log N
α + 6α

β

. (F.64)

Therefore, for given stationary error E, the W preparation time is from (F.54):

τW =
2
γ

(
N +

3
2
+

2 log N
β

+
1
α

)
(F.65)

=
1

g
√

E

[
2N + 3 +

4 log N
β

+
2
α

]√
4 + 17α +

5β log N
2

+
β log N

α
+

6α

β
.

(F.66)

Now, to find the optimal W-preparation time τW for any given N, we simply
have to minimize this expression over all choices of dimensionless parameters
α, β > 0. We do this using MATHEMATICA for small values of N, and obtain
the following results:
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N α β τW from (F.66)
2 0.77 2.62 54.1/(g

√
E)

3 0.75 2.33 72.3/(g
√

E)
4 0.72 2.12 89.4/(g

√
E)

5 0.69 1.96 105.6/(g
√

E)
6 0.66 1.82 121.3/(g

√
E)

7 0.63 1.70 136.7/(g
√

E)
8 0.61 1.61 151.6/(g

√
E)

9 0.59 1.52 166.3/(g
√

E)
10 0.58 1.45 180.7/(g

√
E)

We examine now the exact optimal N-scaling in the asymptotic regime. Note
that the expression under the square root in (F.66) satisfies:

expression under square root (F.67)

≥ β log N
α

+
6α

β
− 2 ·

√
β log N

α
·
√

6α

β
+ 2 ·

√
β log N

α
·
√

6α

β
(F.68)

=

(√
β log N

α
−
√

6α

β

)2

+ 2 ·
√

β log N
α

·
√

6α

β
(F.69)

≥ 2 ·
√

β log N
α

·
√

6α

β
= 2
√

6(log N)1/2. (F.70)

Thus, the preparation time τW in (F.66) satisfies:

τW ≥
√

8
√

6
g
√

E
N(log N)1/4. (F.71)

And indeed, such a N-scaling like N(log N)1/4 can be achieved in (F.66) by
choosing α = α0 and β = β0/(log N)1/2 with positive constants α0 and β0. Then
the overall asymptotic prefactor is minimized for α0 = β0/

√
6 and small positive

constant β0. Note that, due to the log-term in Eq. (F.66), the limit β0 → 0 is not,
however, sensible for any finite N. For this reason, and since the numerical pref-
actor can never become smaller than

√
8
√

6 = 4.42 anyway, we may for example
want to choose β = 1/(log N)1/2 and α = 1/

√
6, in which case the asymptotic

W preparation time is:

τW = 5.44
N(log N)1/4

g
√

E
as N → ∞ (for α = 1/

√
6, β = (log N)−1/2).

(F.72)

For the simpler choice α = β = 1, the scaling becomes only a little worse:

τW =
√

14
N(log N)1/2

g
√

E
as N → ∞ (for α = β = 1). (F.73)
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Note that, due to the log-terms, the asymptotic N-scaling of the preparation time
(F.66) is relevant only for rather large N (e.g. only when 2

√
6(log N)1/2 > (4 +

17α)), and one should rather use the parameter values provided in the preceding
table. For realistic (small) values of N, these parameter choices lead to somewhat
better τW than any of the choices that led to Eqs. (F.72) and (F.73).

To conclude, we summarize the above parameter choices:

• choose the dimensionless parameters α, β such that, for the given N, they
minimize the expression (F.66), as done in the above table for N = 2, . . . , 10.
(Alternatively, choose for example α = β = 1).

• set γe = γ f = κa = γ, κb = 0, γ0e = γ1e = γ0 f = γ1 f = γ/2, where

γ =
g
√

E√
4 + 17α + 5β log N

2 + β log N
α + 6α

β

. (F.74)

• set the pumping rates to be:

ΩW =

√
αγ√
N

, (F.75)

ΩA = γ, (F.76)

ΩF =
√

βγ

√
F− 1

F
(F = 2, 3, . . . , N). (F.77)

• then the τW preparation time is given by (F.66).

Similar as in the GHZ scheme, the dynamical error E is obtained by multiplying
the static error E with a factor (cf. Eq. (E.97), e.g. E = 0.62E for E = 0.1
or E = 0.70E for E = 0.03. The W preparation time is then prolonged by an
additional factor of log(1/E) (see Eq. (E.94)).
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