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Abstract

Epidemic processes operate on all scales of life – from infectious pathogens
to the spread of rumors on social networks. This work is about epidemic
spreading in different network substrates. The thesis is apportioned between
three related research topics.

The first seeks to estimate the effect of coordinating lockdowns between
subnational entities that sustain recurring out-of-phase outbreaks of SARS-
CoV-2. The uncoordinated strategy delays longer when given the same dis-
posable resources. This difference is minimal on a metapopulation network
with small-world properties. The coordinated strategy is superior if it is only
slightly better at reducing transmission.

The second topic explores the dynamics of reactive social behavior on
infectious disease outbreaks in a spatially extended system. This model ex-
hibits a critical transition where the disease can no longer spread because
reactive behavior changes have depleted the susceptible population around
the outbreak. We show that the model can explain the 2014–2016 outbreak of
the Ebola virus disease and introduce a statistical measure of spatial hetero-
geneity.

The final topic concerns the spread of information on a social network.
Here we simulate how influencers compete for attention on a social network
by new spreading information. The "virality" of information decays over
time. Consequently, an influencer must discover new information or appro-
priate it from other subcultures to retain its subscribers’ attention. The col-
lective attention of the network exhibits metastable states in the presence of
positive feedback. We consider the model on an assortment of social net-
work topologies and find mutual coexistence between a few dominating in-
fluencers on a scale-free social network. Our findings suggest that either fake
news or the perception of fake news as ubiquitous is endemic to our society
because everyone can become a news outlet (e.g., influencer).
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Resumé

Epidemiske processer opererer på alle former for liv – fra smitsomme
mikroorganismer til rygtespredning på sociale netværk. Arbejdet beskæftiger
sig med epidemisk spredning i forskellige netværks substrater. Afhandlin-
gen er opdelt i tre relaterede forskningsprojekter.

Det første forskningsprojekt forsøger at estimerer effekten af at koordinere
nedlukninger mellem forskellige regioner der rammes af SARS-CoV-2. Det
påvises af den ukoordinerede nedlukningsstrategi er bedre til at udskyde
epidemien, hvis begge strategier undertrykker smittespredning lige meget.
Forskellen på de to strategier er minimal på et netværk af koblede metapop-
ulationer der er tæt forbundet. Den koordinerede strategi er bedst hvis den
er marginalt bedre til at undertrykke smittespredning.

Det andet forskningsprojekt omhandler effekten af reaktive adfærdsæn-
dringer på smittespredning i rummelige systemer. Modellen har en kritisk
tilstand hvor sygdommen ikke kan sprede sig, fordi adfærdsændringerne har
udtømt den modtagelige befolkning omkring udbruddet. Vi viser at mod-
ellen kan forklare Ebola-udbruddet i Vestafrika 2014-2016 og introducerer et
statistisk mål for rummelig heterogenitet.

Det sidste projekt beskæftiger sig med informationsspredning i sociale
netværk. Vi simulerer hvordan influencers konkurrerer om opmærksomhed.
Viraliteten af information aftager over tid. Det er nødvendigt at opdage
ny information eller at approprierer det fra andre for at forblive relevant.
Netværkets kollektive opmærksomhed opnår en stabil tilstand når vi tilsæt-
ter positiv feedback. Modellen simuleres på en række forskellige netværks
topologier. Gensidig sameksistens blandt nogle få influencers opstår på et
skalafrit netværk. Vores resultater viser at "fake news" eller indtrykket af
"fake news" som et allestedsnærværende fænomen er endemisk i en verden
hvor alle kan blive en nyhedskilde.
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Chapter 1

Introduction

Epidemic processes operate on all scales of life – from infectious pathogens to
information spreading and social behavior. The destructive power of conta-
gion is not easy to dispute. The ongoing coronavirus pandemic has brought
to the world to halt and caused millions of fatalities. Yet, this catastrophic
event began with a few seemingly innocuous cases of influenza-like illness
before spreading and replicating around the world. Epidemic processes (e.g.,
diseases, social behavior) are the thesis’s subject matter. We put particular
emphasis on the dynamic interplay between diseases and social behavior.
The coronavirus pandemic, although not originally intended, has become
a significant piece of this work. SARS-CoV-2 has caused great loss of life,
inflicted enormous economic damage, and changed human behavior world-
wide. It has also changed the study of human behavior itself [11]. We now
have access to a wealth of data and natural experiments on social behavior
during a pandemic. Here I aim to set the stage for the work carried out in this
thesis by providing a lucid and concise introduction to the topic. This chap-
ter contains nothing novel, and the reader may choose to jump ahead to the
next chapter. First, I will state more precisely what is meant by generalized
epidemic theory.

1.1 Generalized epidemic theory

Epidemic processes extend far beyond contagious diseases and cover a sur-
prisingly diverse range of phenomena. Goffman defines an epidemic process
as a time-dependent transition process where exposure to some infectious
material causes state changes in members of a population [79]. This defini-
tion captures the essence of contagion and serves as a decent starting point,
although we will not exclusively consider populations of humans or animals
in the following. For a disease to be contagious, it must be able to spread be-
tween humans. Certain infectious diseases (e.g., vector-borne diseases such
as Malaria and lime disease) can replicate inside a host but cannot spread
without a disease vector (e.g., mosquitos and ticks).

A contagion process must be able to spread and self-replicate, i.e., make
copies of itself, but such an epidemic process need not involve biological enti-
ties. John von Neumann envisioned a way to explore the universe with a self-
replicating spacecraft. The eponymous von Neuman probe is a space probe
that travels to another planet and uses its resources to build one or more



2

copies of itself. This process is vaguely analogous to how viruses spread
by hijacking host cells to replicate. More recently, the spread of computer
viruses has been modeled as epidemics on scale-free networks (the internet’s
topology) [139]. Computer viruses are self-replicating programs that infect
a device by copying itself onto it. The Neuman probe and computer viruses
are generalized by von Neumann’s theory of self-replicating automata [131].
While computer virus epidemics have not caused havoc comparable to nat-
ural epidemics, they are nonetheless responsible for substantial economic
damage.

There are also physical processes that mimic contagion. Consider, for ex-
ample, the nuclear chain reaction: A uranium-235 atom splits into two fis-
sion fragments after absorbing a neutron and releases three neutrons and
some binding energy in the process. These neutrons induce additional fis-
sion events like an infectious material. Intriguingly, the analogy goes further
yet. The effective neutron multiplication factor m f is defined as the aver-
age number of neutrons from one fission that causes another fission event.
This m f factor is analogous to the effective reproductive Re number in in-
fectious disease epidemiology. Nuclear power plants should operate at the
endemic state m f = 1 to maintain a stable fission reaction. In contrast, nu-
clear weapons are designed to have a m f factor above one, so the number of
fission reactions increases exponentially, releasing a large amount of energy.

The hazard posed by self-replicating processes (e.g., epidemics, nuclear
fission) is self-evident. Exponential growth occurs when a quantity y in-
creases over time by a rate proportional to y. A growth rate that is pro-
portional to y implies that self-replication is involved. We have seen this
for all the processes above. Remarkably, a single lucky SARS-CoV-2 virion
can take over the world through exponential growth – a single neutron in a
fissile material can unleash destruction on a massive scale. However, while
a self-replicating process can grow exponentially, it will not necessarily do
so. Consider, for example, Eden Growth used to describe the various growth
phenomena, including tumors and bacteria colonies [47]. Here a cluster of
cells aggregates on a square lattice by occupying neighboring sites. Only the
cells on the colony’s edge contribute to aggregation, and the radius grows at
a constant rate. The spatial constraints preclude exponential growth. Cluster
growth models (e.g., Eden growth and diffusion-limited aggregation) are re-
lated to percolation, which itself is connected to epidemic spreading. Percola-
tion describes a range of physical phenomena (e.g., fluid movement through
a porous material). The mathematical study of percolation has brought in-
sight into topics in geology, traffic flow, complex networks, and epidemiol-
ogy.

1.1.1 General epidemic process and percolation

The connection between percolation and disease spreading appears to have
been suggested by Frisch and Hammersley but was first formally introduced
by Grassberger [65, 84]. Grassberger considered the general epidemic pro-
cess (GEP), a stochastic multiparticle process that is believed to describe many
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spatial growth phenomena, including solitary chemical waves, forest fires,
and epidemics. Here the infectious medium spreads to nearest neighbors at
some rate β, while sites are removed with a rate γ — unlike Eden Growth,
where cells are immortal. GEP does not allow the susceptible medium (e.g.,
food, people, trees) to be replenished and is thus necessarily non-ergodic.
GEP is essentially the sir model on a lattice. The epidemic propagates like
a solitary wave in an infinite homogenous medium, leaving a depleted area
behind it. In a finite medium, the epidemic reaches a maximum size before
it inevitably dissipates—the connection to percolation lies in the critical be-
havior of the growth process. Whether the cluster grows from a single site to
deplete the entire system or dies out depends on the ratio β/γ, analogous to
a percolation threshold.

1.1.2 Transmission of ideas as an epidemic process

The epidemic process also extends to the spread of ideas, memes, and ru-
mors. In 1964, Goffman and Neville introduced a generalized epidemic the-
ory to describe the transmission of ideas and rumors [80, 81]. Daley and
Kendell showed that rumor spreading could be explained by the sir model,
depending on what mechanisms govern the spreading process [35]. Here a
susceptible person (or population) X represents someone who has not yet
heard the rumor. An infectious person Y is actively spreading the rumor,
and a person Z who is recovered or dead is no longer spreading the rumor.
If the rumor spreads by a rate proportional to XY and decays at a rate pro-
portional to Y, we obtain the Kermack-McKendrick Model. Here the decay
process Y → Z represents forgetting. Another possibility is that an active
spreader Y stops spreading the rumor if she learns it has lost its novelty. This
reaction can occur upon contact with an inactive spreader Y + Z → Z or an-
other active spreader Y + Y → 2Z. This form of rumor spreading is different
from the sir model. There is no analogy for this annihilation process in infec-
tious disease epidemiology. Two infected persons never recover or die upon
contact with each other. More recently, variations of the sir model have been
used to understand the spread of news and rumors on social networks [136].

The spread of ideas and rumors applies to a host of phenomena. Belief
systems (e.g., religions and political ideologies) are essentially a collection
of ideas that spread in a population. Consider a missionary as an infectious
agent who seeks to recruit or convert susceptible individuals to a particular
faith. Individuals who have left the religion or are ardent followers of an-
other religion may be considered immune, and a person who joins the faith
can help spread the word. Religions can have many mutually exclusive com-
peting denominations, just like viruses can mutate into new variants. They
can also go extinct by failing to retain their adherents or persuade others to
join the faith.

There are some historical analogies between efforts to contain disease out-
breaks and political ideologies deemed hostile or undesirable. A Cordon San-
itaire is a restriction on movement into or out of a particular area. Many peo-
ple have been affected by such regulations during the ongoing coronavirus
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pandemic—notably in the city of Wuhan, where unprecedented restrictions
were imposed to contain the outbreak. However, the word has also been
used metaphorically to describe ideological containment. Bolshevism was
likened to infectious disease during the interwar period. The French Minis-
ter of Foreign Affairs Stephen Pichon (1857-1933) even compared the spread
of Bolshevism to the plagues that had swept over Europe from the east [58].
Western Europe thus sought to establish a Cordon Sanitaire as a bulwark
against this encroaching ideology [154]. The United States continued this
line against communism during the cold war with the Truman doctrine as
a cornerstone of American foreign policy. The Vietnam war was greatly in-
fluenced by the domino theory asserting that communism would spread to
neighboring states in Mainland Southeast Asia like a domino effect if a gov-
ernment fell to communism.

More generally, the dissemination of culture can be regarded as an epi-
demic process. Axelrod proposed a model of cultural dissemination where
agents on a lattice adopt the cultural traits of their neighbors when they inter-
act [13]. Agents interact with a probability equal to their cultural similarity
and adopt random features from each other. This model satisfies Goffman’s
definition of an epidemic process as a transition process where exposure to
some infectious material causes state changes in members of a population.
In this sense, everyone is infectious because each person is knowingly or not
passing on cultural traits to other members of the population. The theory
of epidemics has also been used to model survival, and coexistence between
competing languages [162]. Here a population speaks two languages, a ma-
jority language a minority language. The population is then divided into a
group of majority speakers, a group of minority speakers, and a group of
bilingual speakers. The minority language disappears if its associated repro-
duction number R0 is below one. Generally speaking, things must reproduce
to avoid extinction – this is true not only for populations of biological organ-
isms but also for systems (e.g., languages, ideologies, and religions).

1.1.3 Simple and complex contagions

While many of the examples above are superficially similar to the spread of
a contagious disease, the mechanics of the transmission process can be very
different for behaviors, ideas, and beliefs. More recently, it has become fancy
to distinguish between a simple and complex contagion. Simple contagions
need just one source of exposure to induce a state transition. Conversely,
a complex contagion process requires multiple sources of exposure [26]. Ex-
amples of simple contagions include the spread of information and infectious
diseases. This work carried out in this thesis exclusively concerns simple con-
tagions involving the spread of diseases and information (e.g., news, rumors,
and memes).
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1.2 Mathematical modeling of epidemics

The modeling of infectious diseases appears to have been invented by Daniel
Bernoulli, who proposed a model of smallpox in 1766 [20]. The conventional
approach to model epidemics is based on compartmental mean-field analy-
sis. Individuals within a homogeneously mixed population belong to mu-
tually exclusive classes (e.g., susceptible or infectious). The origin of such
models can be traced back to Ross, Hudson, Kermack, and McKendrick [105,
149–151]. The most famous compartmental model is the sir model introduced
by Kermack and McKendrick in 1927. A group of infectious individuals I
spreads disease to a group of susceptible individuals S, and the number of
infected persons grows by a rate β that is proportional to IS. The infectious
persons die or recover with immunity at a rate γ proportional to I. The in-
fectious population will grow exponentially until the susceptible population
has been sufficiently depleted.

There are many variations of the sir model. The choice of model depends
on the characteristics of the disease. Some relevant examples are covered be-
low. The susceptible-infectious-susceptible model is used for diseases that
do not confer long-lasting immunity after recovery. Influenza is an example
of a viral infection that does not confer lasting immunity because of antigenic
shift and drift. The emergence of SARS-CoV-2 variants around the world ap-
pears to be driven by a large global reservoir. This would suggest that large-
scale outbreaks of a novel pathogen make achieving long-lasting immunity
more challenging. An infected host will generally not become symptomatic
or contagious immediately after exposure to a pathogen. If a pathogen suc-
cessfully invades a host, it needs to evade the immune system and replicate
above some threshold before affecting the host organism. Here a distinction
is made between the latency period, i.e., the time elapsed between exposure
and infection, and the incubation period, which is the time between expo-
sure and onset of clinical symptoms. A person may become infectious before
showing signs of illness, as is the case of SARS CoV-2, which makes contain-
ment more difficult. If a disease has a long latency period, it may be appro-
priate to include an exposed state for susceptibles who have been infected
but are not yet contagious.

1.2.1 Contact heterogenity

Human populations are not well mixed. Nonetheless, homogenous mixing
models are successful in describing epidemics [7]. To understand how this is
possible, let us consider the transmission of an infectious pathogen in a large
population. Let us further assume that contact rates vary inside the popula-
tion. With the benefit of hindsight, we may fit the observations and extract a
contact rate that reproduces the epidemic. However, this contact rate will be
some average of the different contact rates [178]. R0, the basic reproduction
number is also defined as the mean number of secondary infections caused
by an infected person in a susceptible population. Modeling transmission in
heterogeneous populations with average quantities may obscure the effect
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Figure 1.1: Mobility changes in Denmark and Sweden around the first
COVID-19 lockdown. Data from Google mobility reports.

of individual variation [121]. Superspreading is a phenomenon observed for
some diseases (e.g., SARS and EBOV) in which particular individuals cause
a disproportionately high number of secondary infections [111, 121]. Knowl-
edge of individual variation can inform public health policy. If a few super-
spreaders are responsible for sustaining an epidemic, targeting them is more
effective than a population-wide effort. A large-scale study by Mossong et al.
recorded all the contacts between many participants over a day. Mixing was
found to be highly assortative with age [130]. Younger people also appear
to have more contacts in general. This study may have influenced the Dan-
ish Health Authority’s decision to vaccinate adolescents and young adults
(16-24) against COVID-19 before adults (25-39).

Heterogeneous mixing models do not assume that transmission or con-
tacts between people occur with equal probability. There are many causes
of individual variation. It is convenient to differentiate between sources of
variability that are disease-dependant and those that are not [15]. An in-
fected person with a very high pathogen load may more easily transmit the
disease. Disease-independent sources of variation are environmental factors
(e.g., seasonal effects) and social effects (e.g., social distancing). This the-
sis is more concerned with social dynamics than environmental factors or
the biology of a particular disease. Humans exhibit variable social behavior
that affects the risk of receiving or transmitting infection [54]. A person who
rarely leaves the confines of his home is unlikely to be infected or infect oth-
ers. This is precisely the point of social distancing and isolation. To reduce
the number of contacts by regulating human behavior.

Governments can impose restrictions on movement (e.g., social distanc-
ing measures and quarantines) to put a brake on transmission. We refer
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to this as extrinsic behavior change as an external entity enforces it. Re-
cently, we have seen restrictions on movement around the world to control
the spread of coronavirus. The word quarantine has an interesting etymol-
ogy. It appears to be derived from the Venetian word for "forty," referring
to the isolation period imposed on ships and visitors during the Black Death
[123].

Intrinsic behavior change is when individuals voluntarily change behav-
ior as a response to perceived risk. The local prevalence of HIV/AIDS is
associated with an increased demand for contraception [2]. The ongoing
coronavirus pandemic has given us precious insight into intrinsic behav-
ior change, which is worth expounding on. Sweden chose not to impose
a lockdown during the early stages of the coronavirus pandemic like other
countries. Nonetheless, mobility in Sweden decreased suddenly around the
first danish lockdown. Scandinavian countries are both culturally and demo-
graphically similar and rarely pass radically different policies—the different
reactions to SARS-CoV-2 make for an interesting natural experiment. Natu-
ral experiments are empirical studies where individuals are exposed to con-
ditions that the researchers do not control. We use natural experiments when
it is impractical or unethical to conduct controlled experiments. It would be
impracticable to raise or lower the minimum wage for an extended period
to study its effect on employment. Google has published data on mobility
trends for many countries during the ongoing coronavirus pandemic. This
data yields insight into the impact of COVID-19 on human behavior and the
effectiveness of restrictions.

Fig. 1.1 show mobility trends across different categories in Denmark and
Sweden (e.g., recreation, transit, workplace). Danish Prime Minister Mette
Frederiksen announced extensive restrictions on March 11, closing schools,
ordering non-essential public employees to work from home, and prohibit-
ing large gatherings. Sweden did not impose similar restrictions. However,
citizens were encouraged to practice social distancing. Nonetheless, Den-
mark and Sweden follow the same trend. Work, public transportation, and
recreational activities decline the most. Retail and groceries are less affected
as people need to purchase essential consumer goods. Residential mobil-
ity increased because people spend more time at home (e.g., working from
home). It is not surprising that mobility declines more in Denmark with
obligatory restrictions. It is, however, interesting that mobility declines at
all in Sweden. The mobility patterns began to change around March 11 in
both countries, suggesting that the Danish Government’s decision to impose
restrictions increased the perceived risk of SARS-CoV-2 in Sweden.

However, it has to be said that behavior changes are not necessarily be-
nign. Fear and panic may adversely affect efforts to contain an epidemic
outbreak. A team of health care workers was attacked in Guinea during the
2014 Ebola epidemic in West Africa, and patients are reported to have fled
from treatment centers [160]. This form of spontaneous behavior change and
its effect on disease transmission is covered in more detail in chapter 3. Here
we review some approaches to model contact heterogeneity (e.g., space and
network structure). These models will be of use to us later on.
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1.2.2 Spatial and network structure

Spatial or geographic spreading is a natural starting point. Proximity to an
infected person or animal increases the risk of being infected – but how much
depends on the mechanics of how transmission happens. Not all diseases are
transmitted by direct contact with the host. Measles particles can remain in-
fectious in the air for up to two hours. So a host can infect others through a
residual collection of virus particles in the air or on a surface. Nonetheless,
the host and the susceptible individual must have been around the same loca-
tion within a limited time interval. The global outbreak of severe acute respi-
ratory syndrome coronavirus (SARS) is a notable example of spatial spread.
This outbreak has been traced to a superspreading event (SSE) by a man who
spent one night in a hotel in Hong Kong on February 21, 2003. Dr. Liu Jianlun
was a medical doctor from the Guangdong province, where the virus origi-
nated. During his brief stay at Hotel Metropole on the 9th floor, he infected
16 other guests who also stayed on that floor [62].

J. V. Noble modeled the spread of bubonic plague across Europe with a
diffusion model [133]. It seems inconceivable that a pandemic can be mod-
eled with simple diffusion. However, the movement of humans and animals
(e.g., rats and fleas) was limited in medieval times. Mobility patterns must be
very local for a disease to spread by diffusion. It seems unlikely that such a
description would be valid in a post-industrial or globalized society. The ef-
fect of civil aviation on global epidemics has been studied in many scientific
publications [31, 97, 152].

Metapopulation models

Multi-patch (or metapopulation) describes transmission inside and between
spatially separated subpopulations (e.g., district, city, municipality). Here
the transmission is modeled with a compartmental system of ordinary dif-
ferential equations (ODE’s) for each patch [41, 120]. We obtain a large system
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Figure 1.2: Sketch of a weighted contact network. (a) shows an infected
node in a contact network. (b) shows how immunizing the contacts of the
infected node prevents the disease from spreading. Hindering the spread
of disease by vaccinating those most likely to be infected is known as ring
vaccination. This network is heterogeneous because the nodes can occupy
different states. Networks composed of identical nodes are homogenous.
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of ODE’s if we use many patches. Individuals in one patch can also infect in-
dividuals in other patches. However, there is naturally more mixing within
a patch than between them. Further, patches can be out of sync with each
other as one would expect in a spatially heterogenous epidemic [55]. Multi-
patch models have been used to explain and model several epidemiological
features [41, 146]. We a metapopulation model in chapter 2 to investigate the
effect of coordinating lockdowns between recurring outbreaks of SARS-CoV-
2.

Epidemics on networks

Many diseases are spread by direct physical contact, which led us to con-
sider spatial transmission models. However, individuals can be physically
close without interacting at all. Residents of a neighborhood or an apart-
ment building live close together but do not necessarily interact with or know
each other. Individuals tend to have more direct contact with friends, family
members, and colleagues than strangers. Spatial models are oblivious to the
intricate social structure of human interaction, but network models can over-
come this deficit. Networks are made of nodes that are connected by links.
We can take a node to represent a host in one of many mutually exclusive
states (e.g., susceptible, infectious, immune). The links between nodes may
represent one or more contact events between two hosts.

Networks offer unique flexibility to describe arbitrary levels of contact
heterogeneity. Multiple contacts between individuals naturally increase the
probability of disease transmission. Furthermore, the likelihood of transmit-
ting a disease also depends on the specific nature of the contact event. For
example, the risk of HIV transmission depends on the type of sex. Weighted
networks have been proposed to accommodate this lower level of hetero-
geneity [103, 157]. Networks can be directed or undirected. Undirected net-
works are made of bidirectional links, representing symmetrical interactions
between the hosts. Conversely, directed networks are made of unidirectional
links with asymmetrical interactions. Intuitively, there is no reason why a
respiratory virus should spread from host P to host Q but not from Q to P
if the roles were reversed. However, symmetries are easily broken in the
real world. For example, if one of the two hosts wears a mask, that would
induce an asymmetry. There are also sexually transmitted diseases (STDs)
that are more easily transmitted to a woman than a man during sexual inter-
course [129]. Thus, a contact network can be semi-directed and contain both
directed and undirected links.

Contact networks have been used to model the spread of sexually trans-
mitted diseases (e.g., HIV/AIDS) [108]. It is naturally difficult to construct a
network for infection spread by fleeting contact (e.g., airborne and respira-
tory droplets) as these events are likely to go unnoticed. However, individ-
uals generally know whom and when they have sexual intercourse, which
allows us to construct a temporal contact network and trace contacts.
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Figure 1.3: Spontaneous order emerges from in-group preference. Simula-
tion of the Schelling model with periodic boundary conditions. Individuals
will relocate to a random empty site if less than 4 of his 8 neighbors belong
to his group.

Individual-based models

Individually-based models are computational models that simulate autonomous
agents (e.g., humans, animals) with simple rules. These models have been
applied to problems in many fields (e.g., ecology, epidemiology, and social
science). Such models have shown that complex dynamics can emerge from
simple rules, which traces back to the work of Stanival Ulam, and John von
Neumann on cellular automata in the 1940s [131].

In 1971, Thomas Schelling proposed a simple model of racial segregation
[153]. This model is very instructive and worth expounding on. Let us con-
sider a N × N grid. A grid cell can be vacant or contain a person assigned
to one of two mutually exclusive groups. Individuals have some preference
for members of their group in their neighborhood. The system is then up-
dated by checking the immediate neighborhood of a person. A person who
is not content relocates to an empty site that satisfies his preference. The up-
dating can be synchronous or asynchronous. In synchronous updating, the
status of each cell on the grid is updated simultaneously—conversely, the
asynchronous scheme updates the status of each cell one by one. Schelling
discovered that a population with modest in-group preferences would self-
organize into a racially segregated state. The Schelling model successfully
explains a phenomenon that would otherwise have been impracticable to
capture with other modeling approaches (e.g., partial differential equations).

In epidemiology, individual-based models have been used to simulate
disease outbreaks of smallpox and coronavirus [1, 147]. Individual-based
models capture spatial heterogeneity (e.g., space and network structure) and
allow us to specify unique properties of individuals, diseases, and the envi-
ronment. However, the models can be time-consuming to run and require
extensive validation.

We use an individual-based model on a spatial structure to explain the
spread of the Ebola virus (EBOV) in chapter 3. We also use them in chapter 4
to model information flow on a social network.
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Chapter 2

Estimating the effect of
coordinating lockdowns

The ongoing coronavirus pandemic has caused economic and social disrup-
tion on a massive scale, plunging the world into a global recession. Gov-
ernments worldwide have imposed restrictions on travel, movement, and
gatherings to curb the spread of the virus, closing educational institutions,
nonessential shops (e.g., restaurants and coffeehouses), public places (e.g., li-
braries), and in some cases, ordering people to shelter in place. Closing entire
sectors of society on a global scale to curb the spread of a contagious disease
is a novelty. Modeling studies on the global spread of pandemic influenza
have considered various interventions such as therapeutic and prophylactic
antiviral treatment, vaccination, case isolations, and air travel restrictions,
but none so profound as to shut down society [30, 32, 48, 60]. This unex-
plored topic presents us with a chance to do new research. Here we use a
mathematical model to explore the efficacy of different lockdown strategies
to stop viral transmission.

2.1 The coronavirus pandemic

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was dis-
covered in Wuhan, the capital of Hubei Province, in December 2019. SARS-
CoV-2 causes coronavirus disease (COVID-19) [117, 183]. On January 23,
2020, the Chinese State Council imposed a Cordon sanitaire, imposing re-
strictions on movement in Wuhan and elsewhere in the Hubei Province to
contain the outbreak. On January 30, 2020, The World Health Organization
declared the SARS-CoV-2 outbreak a Public Health Emergency of Interna-
tional Concern (PHEIC) on January Most of Hubei had reopened by March
2020 following the end of local transmission. Wuhan reopened on April 8,
2020 [51]. Nonetheless, the lockdowns failed to prevent SARS-CoV-2 from
spreading to other countries despite some of the most draconian restrictions
ever seen [33]. The World Health Organization updated the public health
emergency to a pandemic on On March 11, 2020. As of October 2021, there
have been around 234 million confirmed cases and 4.79 million deaths world-
wide, making it the deadliest pandemic since the Spanish flu.
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2.1.1 Transmission and symptoms of COVID-19

COVID-19 is generally transmitted through respiratory droplets and airborne
particles [85, 119, 172]. These infectious droplets and particles are released
when an infected person exhales (e.g., sneezing, breathing, or coughing). The
respiratory droplets and aerosols containing the virus then cause infection
when inhaled by susceptible humans. Albeit airborne transmission was at
first controversial, it has since been established that SARS-CoV-2 can remain
in the air for hours [166]. The virus can also survive on surfaces, but this is
not believed to be a significant source of infection [115].

There is significant variability in the symptoms experienced by those in-
fected with coronavirus disease (COVID-19). A person infected with SARS-
CoV-2 can have various symptoms, ranging from asymptomatic to serious
illness. Common symptoms of infection are fever, dry cough, fatigue [175].
Less common symptoms include headache, nasal congestion, loss of taste or
smell, sore throat, muscle pain, diarrhea, skin rash, chills, or dizziness. Short-
ness of breath, persistent pain, high fever, and loss of appetite are symptoms
of serious illness [175].

The incidence of asymptomatic infections varies between studies but has
been a concerning factor as these carriers can transmit the virus but show no
signs of being infectious. [69, 71, 88, 134]. Presymptomatic transmission is
also a major problem in containing the spread of coronavirus [9, 161]. The
difference between pre - and asymptomatic infection is simply that asymp-
tomatic cases never develop symptoms. Presymptomatic cases become infec-
tious before becoming symptomatic, which occurs for diseases with a shorter
latency than the incubation period.

2.1.2 Strategies to control influenza outbreaks

Strategies to control influenza outbreaks have been studied extensively be-
fore the emergence of SARS-CoV-2 [8, 30, 32, 48, 56, 57, 60, 122, 128]. In
a review of 19 modeling papers on pandemic influenza published between
1999 and 2009, only four considered the effect of combining different inter-
ventions on a global scale [30, 32, 48, 60, 114]. One of the studies considered
the effects of vaccination, case isolation, and reduced air traffic, and antiviral
drugs [60]. This study found vaccination to be the most effective provided it
is available, while global air travel had to be almost completely terminated
to impact the estimated attack rate.

Only two modeling studies were sanguine about the prospect of contain-
ing an influenza outbreak given favorable conditions. One by Ferguson et
al. aimed to show how an incipient influenza pandemic could be contained
using a combination of pharmaceutical interventions, in particular, the pro-
phylactic use of antiviral drugs and social distancing measures [56]. Another
by Longini et al. showed how the prophylactic use of vaccination and an-
tiviral agents together with quarantine measures could contain an influenza
strain with a basic reproductive number R0 up to 2.4 [122].
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2.1.3 Responses to the COVID-19 pandemic

The presence of pre - and asymptomatic transmission makes SARS-CoV-2
a very non-trivial containment problem. A study on the effect of travel re-
strictions found that the Wuhan travel ban in early February 2020 decreased
cases imported to other countries from Mainland China by 77% [27]. A 2006
paper on the effect of travel restrictions on pandemic influenza found that it
would be necessary to quickly restrict almost all international travel to pre-
vent the new epidemics in other areas [92]. Many travel restrictions dur-
ing the pandemic have been aimed at symptomatic cases or people traveling
from specific regions, while pre - or asymptomatic COVID-19 carriers could
slip through the safeguards undetected. While banning all travel could, in
theory, prevent this, a single infected person can seed an outbreak in a coun-
try previously unaffected.

The United States issued some travel restrictions on passengers inbound
from China after declaring COVID-19 a Public Health Emergency on Jan-
uary 31, 2020, which took effect on February 2 [156]. U.S citizens from the
Hubei province were subject to a 14-day mandatory quarantine. Asymp-
tomatic U.S citizens from other parts of mainland China were allowed entry,
while other foreign nationals who had been to China within 14 days were
prohibited from entering the United States [95]. Aside from allowing en-
try to possible carriers, the coronavirus was already spreading in the United
States when the restrictions were implemented [93]. Thus, it would have
been necessary to trace and isolate all symptomatic and asymptomatic cases
to contain the spread, even if the travel restrictions were completely effective.
Only a few countries (e.g., South Korea and Taiwan) managed to control the
epidemic early on through mass testing and contact tracing efforts and by
imposing mandatory quarantines on all travelers entering the country. Nei-
ther vaccines nor antiviral drugs were available at the onset of the pandemic.
Consequently, many countries resorted to non-pharmaceutical interventions
to slow transmission and prevent hospitals from overflowing with patients.
However, these interventions have varied significantly both within and be-
tween countries. In the United States, the timing and use of interventions
varied significantly between individual states. [86]. Some states issued stay-
at-home orders while others did not. A modeling study suggests that unco-
ordinated state policy increased transmission through social and geographic
spillover [94]. This study considers the possibility that people’s behavior
is not solely influenced by their local communities but also by friends and
relatives living far away, which may erode adherence to social distancing.
Uncoordinated local policies can also mediate geographic spillover to neigh-
boring communities. Another modeling study assessed the impact of local
tiered restrictions imposed in England to curb the second wave in autumn
2020 and found them to be less effective than a national lockdown [36]. Den-
mark imposed harsh local restrictions in 7 municipalities between Nov 5-19,
2020, to eradicate a SARS-CoV-2 variant with several mutations in the spike
protein (Cluster 5 variant) [12]. This effort appears to have been successful.
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Figure 2.1: Sketch of the lockdown mechanism. Uncoordinated lockdown
(UL) activates when cases in a unit exceeds a. The contact rate β is reduced
by a factor of (1 − s) while lockdown is activated. The lockdown is annulled
when cases drop below b. Synchronized lockdown CL activates if cases in
just one unit surpass a and is undone when all units have below b cases. The
latency period causes the epidemic waves to peak slightly above a.

2.2 Metapopulation model

Here we model epidemic spreading in multiple subnational units that are out
of sync with each other. Coupled metapopulations represent distinct admin-
istrative units with individual containment policies (e.g., states, counties, or
municipalities). From this point, we refer to these simply as units for brevity.

2.2.1 Suppression strategies

Two related suppression strategies shall be considered.
Uncoordinated lockdown (UL) is activated in a particular unit denoted by

subscript i when cases Ii(t) exceed a. Restrictions are lifted when when cases
drop below b. Fig. 2.1 delinates the basic concept.

Mathematically, we can write this as a sequence of dynamic boundary
conditions. If lockdown is not active then βi = β while a ≥ Ii(t) until a <
Ii(t) at which instant lockdown becomes active and βi = β(1 − si). Then
βi = β(1 − si) while Ii(t) ≥ b until Ii(t) < b at which point lockdown is no
longer active and βi = β.

Coordinated lockdown (CL) follow the same rule but is activated in all units
if cases in just one of them exceed a and lifted only when cases in all them
drops below b.

Closing and reopening parameters can vary between units using UL. The
risk of depleting critical care capacity has been widely used to support lock-
down. Substantial variability exists in intensive care bed availability even
among wealthy nations [145]. The efficacy of lockdown si may also vary
depending on the imposed restrictions and the degree of compliance with
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Figure 2.2: Model diagram showing the mutually exclusive states a person
can occupy and the transition rates between them. Each row represents the
compartmentalized populations in a unit, and each column is the sum pop-
ulation in that state.

them. A study estimating the effect of non-pharmaceutical interventions on
COVID-19 transmission in Europe found lockdown to be significantly more
effective at reducing transmission than school closure, banning public events,
case-based isolation, and encouraging social distancing [61]. Overall, esti-
mates suggest a reduction in transmission by around 60-80 % can be expected
[61, 107].

2.2.2 Coupled metapopulations

The transmission within individual units is governed by a susceptible-exposed-
infected-recovered model, with a low spillover rate g between them

dSi

dt
= −(1 − ∑

j
gi,j)βi IiSi − ∑

i
gi,jβiSi Ij, (2.1)

dEi

dt
= (1 − ∑

j
gi,j)βi IiSi + ∑

i
gi,jβiSi Ij − σEi, (2.2)

dIi

dt
= σEi − γIi. (2.3)
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Figure 2.3: Disease transmission between 4 interconnected units. Each unit
is executing its own suppression policy with decreasing commitment from
top to bottom. The top panel (a) does a draconian lockdown that nullifies
transmission. (b) is using a hard lockdown with 80% efficiency. (c) is using a
soft lockdown with a 60% efficiency. Unit in the bottom panel (d) is not doing
lockdown. Spillover from (d) is causing a surge of cases in (c) despite being
in lockdown. Initial conditions are Ia(t0) = 1 and the remaining population
is susceptible at t = t0. Each unit contains N = 100.000 persons. Model
parameters: R0 = 2.0, σ = 1/5, γ = 1/4, gab = gbc = gcd = 0.01 and
gdc = 0.04. Lockdown parameters: a = 500, and b = 50.

Here the sum is over n units interacting through the coupling matrix gi,j,
which gives the spillover rate between units. Generally, these spillover rates
should be symmetrical, i.e., gi,j = gj,i, although slight asymmetries are per-
missible. The first term in the system above gives the transmission within
i. The spillover from i to other units is subtracted from the transmission rate
within that unit. This effect is negligible unless spillover rates are abnormally
high. The next term gives the transmission from other units to i. Each unit
contains the same number of persons N to avoid the proliferation of model
parameters. The combined population of all units is nN.

The transmission model blends homogenous mixing inside a metapopu-
lation with heterogeneous mixing between them. The suppression strategies
are superimposed as boundary conditions. This continuous model does not
permit the eradication of the disease. SARS-CoV-2 quickly spread to so many
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Figure 2.4: Comparing the two strategies. (a) show 3 simulations with a
limit on lockdown time equal to 160 days. (b) shows the effect of varying s
for CL on peak seperation. Effectiveness of UL is kept constant at s = 0.6. (c)
shows (b) around parity. Model parameters are R0 = 2.38, a = 100, b = 10,
σ = 1/3.69, γ = 1/3.48, with reciprocal couplings g1,2 = g2,1 = 0.01. Each
unit contains N = 100.000 persons.

countries that any effort to eradicate it with lockdowns was unlikely to suc-
ceed after it had spread from Wuhan. A stochastic model would be better
suited to investigate the prospect of eradication.

2.3 Exploring the metapopulation model

The possibly large system of ordinary differential equations (ODE’s) is solved
numerically with the suppression strategies as dynamic boundary condi-
tions. Figure 2.3 shows transmission between n = 4 interconnected units
using UL. The effectiveness of lockdown varies, as shown by the blue filling.
The unit in (d) has decided not to enact a lockdown but maintains a strong
coupling to (c), which further drives transmission since lockdown here oth-
erwise barely keeps R0 below the epidemic threshold. Re-directing this cou-
pling to (a) has no effect, and the effect on (b) is negligible. This finding
would suggest that border closings are less pertinent if a hard lockdown is
in effect. However, if only a soft lockdown is in effect, one should be more
cautious about links to a large transmission cluster.
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Figure 2.5: Metapopulation graph with long path length. The epidemic
begins in "1" and must spread between neighboring communities all around
the ring to infect "8".

2.3.1 Estimating the model’s parameters

The principal objective is to assess which of the two strategies best delay
transmission if given the same disposable resources. Each unit is assigned
a fixed amount of lockdown time to answer this question. The unit can no
longer activate lockdown when this time is spent.

Li et al. estimated the latency period and the infectious period to be
3.69 and 3.48 days, respectively [118]. This analysis estimated the transmis-
sion parameters of COVID-19 during the outbreak in Wuhan using maxi-
mum likelihood. Here the basic reproduction number was estimated to be
R0 = 2.38. New SARS-CoV-2 variants have emerged since the Wuhan out-
break, and there is considerable variation among them in transmissibility.
This analysis does include the new variants, but we will discuss the implica-
tions of this later.

In this particular numerical experiment, the lockdown threshold should
be low to ensure that most of the population is susceptible when lockdown
expires or the epidemics dissipate before lockdown time runs out. Threshold
parameters are a = 0.1%N and b = 0.01%N. Each unit has 160 days of
lockdown time.

2.3.2 Assessing the effect of coordinating lockdowns

Figure 2.4 shows the output of a simulation with these parameters. The epi-
demic curve peak afters the unit runs out of lockdown time, so we want the
curves to peak as late as possible. (a) shows three individual simulations
with different lockdown effects. Unsurprisingly a more effective lockdown
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Figure 2.6: Simulation on graph with long path length. (a) shows the av-
erage peak time for the two strategies. (b) shows the epidemic curves. (c)
shows spend lockdown time. Model parameters are R0 = 2.38, a = 100,
b = 10, σ = 1/3.69, γ = 1/3.48. Reciprocal couplings have strength
gi j = 10−2. Each unit contains N = 100.000 persons with 160 days desposible
lockdown time.

delays transmission longer with the same resources. (b) shows the effect of
varying lockdown efficacy s on the peak separation. UL performs slightly
better around parity δs = 0, but this is easily offset by a small difference in
s. CL is generally believed to be more effective. The peak separation around
parity is caused by a phase delay between the units that are coordinating.
The phaseshift arises because the epidemic begins in one unit and spreads to
the other through spillover. The lockdown is then activated prematurely in
the other unit, causing CL to run out of lockdown time slightly faster. This
phase delay also occurs in UL, but here the units activate lockdown individ-
ually.

2.3.3 Metapopulation graphs

We can create more favorable conditions UL by designing a network of cou-
pled metapopulations with a long path length. Figure 2.5 shows eight poorly
connected metapopulations labeled from 1 to 8. The epidemic begins in 1 and
must spread through all the remaining units to get to 8. Figure 2.6 shows a
simulation with this network. Here the lockdowns are assumed to be equally
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Figure 2.7: Metapopulation graph with short path length. Adding a few
links to the networks imbues it with small-world properties. The epidemic
now spread between units much faster.
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Figure 2.8: Simulation on graph with short path length. Adding a few links
has significantly reduced the peak separation between the strategies. Model
parameters are identical to the previous simulation except for g containing
additional entries. The strength of all couplings are gij = 10−2 as before.
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effective with s = 0.6. Figure 2.6 (a) shows the mean peak separation be-
tween the two strategies. Here UL performs even better than before as ex-
pected. The network in 2.5 was designed to have a long path length and is
not a realistic model of a country. Figure 2.7 shows how the distance between
nodes is dramatically decreased by adding a few links. Most countries have
big cities that are central hubs in a transportation network. The presence
of these hubs decreases the mean path length by mediating interactions be-
tween less-connected nodes. If the metapopulation network has small-world
properties, the mean path length will be proportional to the logarithm of n
units. Therefore, adding more metapopulations to the network will not sig-
nificantly change the result.

Figure 2.8 show a model simulation on this network substrate. The peak
separation in (a) is considerably smaller than before, and the local epidemics
in (b) are nearly synchronized. We have now considered the model on the dif-
ferent metapopulation networks while assuming parity between the strate-
gies on reducing transmission. Our objective was to assess whether coordi-
nating lockdown was good or bad. The coordinated strategy performs worse
on a poorly connected graph because the local epidemics are out of phase,
which causes precious lockdown time to be wasted. This disparity was al-
most eliminated by adding a few connections to the metapopulation graph.
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Figure 2.9: Simulation on metapopulation graph with short path length
and δs = 0.1. Here the coordinated strategy reduces transmission by 70%,
while the uncoordinated lockdown policy reduces transmission by 60%. The
other parameters are unchanged.
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Figure 2.10: Lockdown decrease the attack rate by decreasing the over-
shoot.

Nonetheless, the coordinated "national" policy is conceivably more effective
according to some modeling studies. So we need to determine whether a
small discrepancy in lockdown efficacy can offset the network-induced dis-
placements that favor UL.

Figure 2.9 shows a simulation where CL is slightly more effective than UL.
The simulation is performed on the metapopulation graph with a short path
length. Here the coordinated strategy reduces transmission by 70%, while
the uncoordinated lockdown policy reduces transmission by 60%. Here CL
is clearly superior to UL. Model simulations show that CL had to be slightly
less than 2% more effective to get to parity on the metapopulation graph
with a short path length; it had to be 5% more effective a the graph with a
long path length. Figure 2.9 (c) shows how much disposable lockdown time
has been allocated in the different units. CL is now effective enough to get
cases below the de-activation threshold b. These intermittent lockdowns are
responsible for the saw-tooth pattern. A 60% reduction in transmission is
barely enough to suppress a disease with a basic reproduction number of
2.38. That is why the blue UL curves activate lockdown until they run out of
time. This analysis allocated a fixed amount of lockdown time to each sub-
national entity, and compliance dwindles after lockdown has been activated
for this long. The intermittent lockdowns could conceivably replenish com-
pliance by giving people a breathing space to socialize. If so, there could be
benefits to a shorter and more effective lockdown.
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Figure 2.11: Catastrophic overshooting. Top panels (a & b) show a simula-
tion with CL. The overshoot is not eliminated on the last wave as infection
peaks just below a. Bottom panels (c & d) show the simulation with UL.
Each unit contains N = 100.000 persons. Model parameters are R0 = 3.0,
γ = 1/4, σ = 1/5, and g12 = g21 = 0.01. Lockdown parameters: a = 2100N,
b = 210N, and s = 0.4. Failure to eliminate the overshoot can occur for either
strategy depending on the input parameters.

Here we digress for a moment to discuss the implication of large dispari-
ties in vaccination coverage before moving on to the next topic. The situation
has changed with the rapid distribution of SARS-CoV-2 vaccines. There is
considerable variation in vaccination coverage between U.S. states. This dis-
crepancy appears to be driven by an unwillingness to be vaccinated rather
than a shortage of supplies. Here imposing local restrictions could make
more sense to prevent critical care units from overflowing with patients –
while a coordinated lockdown policy would force states with high vaccina-
tion coverage and low caseload to enact lockdowns as well.

2.3.4 Eliminating the overshoot

The role of control strategies in delaying susceptible depletion has been con-
sidered. There are other reasons to impose control strategies than to postpone
transmission. Flattening the curve has become a household word in many
countries. This strategy aims to impede the spread of SARS-CoV-2 to prevent
the healthcare system from being overloaded by patients. Another reason to
flatten the curve is to minimize overshoot. The effective reproduction num-
ber Re decreases with susceptible depletion. The epidemic begins to subside



24

when the effective reproduction number falls below one, and the susceptible
population is Sth. However, when this occurs, there will be a large number of
active cases. This residual infected population causes disease transmission to
persist, although the remaining active cases produce less than one new case
on average. Consequently, the susceptible population drops below Sth. These
excess infections are sometimes referred to as overshoot. The overshoot can
be significant depending on R0. Handel et al. proposed control strategies
that minimize these excess infections. The optimal strategy seeks to flatten
the curve in such a way that the susceptible population never falls below Sth.
Figure 2.10 show how imposing restrictions results in a lower attack rate,
although this strategy is not optimized to minimize overshoot.

There are some caveats worth mentioning if we aim to delay transmis-
sion as long as possible. Figure 2.11 shows how a suppression strategy can
produce a higher attack rate despite spending a long time in lockdown. The
last wave in a & b is barely below the lockdown activation threshold, so the
overshoot is not diminished. Units in c & d sustain only two epidemic waves
but reduce overshoot on both of them. This catastrophe causes a & b to end
up with a higher attack rate despite spending more time in lockdown. Such a
catastrophe could happen in the following way. Say a state decides to impose
a lockdown to slow transmission until a vaccine becomes available. How-
ever, it is hard to predict in advance how long it takes to develop the vac-
cine, and it is implausible to sustain a lockdown indefinitely, as compliance
is bound to fade eventually [82]. We risk this scenario if civil disobedience
ensues after a long time in lockdown but before a vaccine is developed and
distributed.

2.3.5 Summary and conclusive remarks

Novel infectious diseases outbreaks pose a threat to global public health.
Control strategies can blunt the impact, but these efforts to control trans-
mission are only temporary. We have simulated SARS-CoV-2 transmission
between coupled metapopulations and imposed different control strategies.
The uncoordinated strategy (UL) better delays transmission if the strategies
reduce transmission by an equal amount. The coordinated lockdown policy
(CL) had to be 2% more effective at reducing transmission to achieve par-
ity on a metapopulation graph with small-world properties. CL had to be
5% more effective on the ring lattice. CL is conceivable more effective at re-
ducing transmission, according to some studies. The uncoordinated strategy
(UL) may be preferable if limited lockdown time is available and the objective
is to minimize the overshoot and not to delay transmission. This recommen-
dation comes with the caveat that UL should be reasonably effective for this
to work.

Coordinated or not, lockdowns are an emergency brake to be used only
when other options are unavailable. Containing disease outbreaks early on
through enhanced epidemic surveillance and being better prepared for fu-
ture outbreaks by developing drugs is preferable to locking down society.
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Chapter 3

Dynamics of reactive social
behavior in spatial epidemics

This chapter considers spatial models of disease spread, emphasizing the
effect of local behavior changes on the transmission of Ebola virus disease
(EVD). Before addressing those topics, it is necessary to review some basic
features of the virus. The virus that causes Ebola virus disease (EVD) was dis-
covered during the outbreak in 1976 in the Democratic Republic of the Congo
(DRC). The spread began in a small village called Yambuku, where several
villagers fell ill with an unknown hemorrhagic fever [53] The virus appears
to have been named after the Ebola river by the virologists who discovered
it to avoid stigmatizing Yambuku and its residents [142]. Another Ebola out-
break had occurred months prior in the town Nzara in South Sudan, but it
was not recognized as an Ebola outbreak until later [177]. Ebola outbreaks
occur sporadically in Sub-Saharan Africa. There have been 24 documented
outbreaks between its discovery in 1976, and 2012 [176]. The Ebola virus epi-
demic in West Africa (2014-2016) was the first occurrence of the disease to be
considered an epidemic, causing more loss of life than all previous outbreaks
combined. Kivu Ebola epidemic (2018-2020) in the DRC became the second-
largest recorded Ebola outbreak, suggesting that widespread transmission is
becoming more common.

3.1 The Ebola virus

This introduction is not aimed at ebolaviruses’ virology, but a basic taxon-
omy is not irrelevant. There are currently six known species of the genus
Ebolavirus belonging to the family Filoviridae, only four of which are known
to cause illness in humans [52, 83, 110]. The Zaire ebolavirus (EBOV) identi-
fied in Yambuku is the deadliest, responsible for the Western African Ebola
virus epidemic (2014-2016). EBOV has caused most known Ebola outbreaks
and fatalities, including the recent Kivu Ebola epidemic (2018-2020) in the
DRC [14, 37, 100]. The Sudan ebolavirus (SUDV) was responsible for the first
known Ebola outbreak in South Sudan. This species caused other outbreaks
in Sub-Saharan Africa (e.g., Congo, Uganda, Sudan) [159, 177]. The Taï Forest
ebolavirus (TAFV) was identified in a population of chimpanzees in the the
eponymous Tai Forest in Côte d’Ivoire in 1994 [63]. This species has caused
one human infection in a scientist who made contact with the chimpanzees
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[14, 63]. The Bundibugyo ebolavirus (BDBV) has caused an outbreak of Ebola
Virus Disease in the Bundibugyo District of Uganda, where it was discovered
in 2007 [165]. It was responsible for another outbreak in DRC in 2012 [98].

3.1.1 Transmission and symptoms of Ebola virus disease

Ebola virus disease (EVD) is transmitted by direct contact with infected hu-
man or animal bodily fluids [176]. Ebola is a zoonotic virus, meaning that it
jumps from an animal host to a human, after which human-to-human trans-
mission drives onward propagation of the disease. Bats are suspected of be-
ing the natural reservoir of the Ebola virus, but other animals (e.g., chim-
panzees, gorillas, monkeys) can also have the infection. Consuming an in-
fected animal can cause a zoonotic transmission.

The disease is very lethal, with a case fatality ratio (CFR) of up to 90%
for EBOV [176]. Early symptoms may include fever, fatigue, muscle pain,
headache, and sore throat, followed by vomiting, diarrhea, rash, internal and
external bleeding, signs of impaired kidney and liver function [176]. Some-
one infected with Ebola is not considered infectious before the onset of symp-
toms [24]. Thus, a person with symptoms is normally bedridden until death
or recovery, reducing the risk of spreading the infection far away after onset.
Asymptomatic infection is quite rare, although it is unknown if these cases
can transmit the virus [78]. Health care workers and caring family mem-
bers face the greatest risk of exposure. However, the body of a person who
has died from Ebola remains infectious after death. This fact is problematic
because burial ceremonies that involve physical contact with the deceased
are common in many parts of Africa. We expound on the cultural drivers
of Ebola transmission in the following sections. Hewlett et al. has explored
the anthropology of Ebola, which is important to understand the spread and
containment of the disease [90].

3.1.2 The 2014–2016 Ebola epidemic

The West African Ebola epidemic was the deadliest outbreak of Ebola virus
disease reported to this date. On March 23, 2014, local authorities notified the
World Health Organization of an Ebola virus outbreak in southern Guinea.
The virus quickly spread to neighboring countries, Liberia and Sierra Leone,
causing a net count of 28.616 reported infections and 11.310 fatalities before
ending in June 2016 [164]. The unprecedented scale of the epidemic resulted
from dysfunctional healthcare systems, low trust in government following
years of armed conflict, and a slow response to the crisis [141]. Risky cultural
practices also compounded the severity of the outbreak, particularly burial
rites that involve close contact with deceased Ebola patients.

Fig. 3.1 shows the cumulative number of confirmed or probable cases
at the district level in Guinea. The time series began on January 5, 2014,
ends on May 8, 2016, and advances in weekly increments. The outbreak
originated in Guinea, in the Guéckédou prefecture, and quickly spread to



27

0 20 40 60 80

time (weeks)

100

101

102

103
re

p
or

te
d

ca
se

s
(a

cc
u

m
u

la
te

d
)

Beyla

Boffa

Boke

Conakry

Coyah

Dabola

Faranah

Fria

Gueckedou

Kissidougou

Kouroussa

Macenta

Mali

N’Zerekore

Figure 3.1: Ebola virus epidemic in Guinea. Shows the cumulative number
of confirmed or probable cases at the district level. The time series begin on
January 5, 2014, ends on May 8, 2016, and advances in weekly increments.
On August 8, 2014, several months after its beginning, the World Health
Organization declared the outbreak in a Public Health Emergency of Inter-
national Concern. On September 18, 2014, the United Nations established
The United Nations Mission for Ebola Emergency Response (UNMEER). The
pink shaded region shows the time before the creation of UNMEEER. Guinea
was declared free of Ebola by the World Health Organization on June 1. We
also show epidemic curves for 14 of 33 Guinean prefectures. The outbreak
originated in the Guéckédou prefecture and quickly spread to Conakry, the
capital city. Data from the World Health Organization.

Liberia and Sierra Leone. On August 8, 2014, several months after its begin-
ning, the World Health Organization declared the outbreak a Public Health
Emergency of International Concern. On September 18, 2014, the United Na-
tions established The United Nations Mission for Ebola Emergency Response
(UNMEER). The epidemic was declared to have ended by the World Health
Organization on June 9, 2016.

The local outbreaks in Fig. 3.1 tend to saturate long before susceptible
depletion. Before the United Nations convened to form UNMEER, many lo-
cal outbreaks, including the one in the Guéckédou prefecture where the epi-
demic originated, had already terminated. Naive epidemic theory predicts
that onward transmission continues without interventions (e.g., contact trac-
ing, isolation, or immunization) until herd immunity is reached. However,
it is unclear whether interventions nor susceptible depletion can explain the
abrupt termination of local outbreaks. Despite the large size of the outbreak
compared to previous sporadic outbreaks of Ebola virus disease (EVD) in
Sub-Saharan Africa, the total number of cases was also small compared to
model projections [23].
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3.1.3 Mathematical modeling of Ebola

Lagrande et al. proposed a model to explain the dynamics of Ebola using
data from the 1995 outbreak in DRC and the 2000 outbreak in Uganda. The
model identifies particular settings where Ebola transmission occurs (com-
munity, hospitalization, and funerals) estimate how much each of these sources
contributes to R0. This model has become widely used to understand the
transmission of Ebola. The contributions from each setting can vary signif-
icantly between outbreaks. Lagrande et al. estimates that R0 was 2.7 (95 %
CI 1.9-2.8) for the 1995 DRC outbreak and 2.7 (95 % CI 2.5-4.1) for the 2000
Uganda outbreak. Traditional burials were responsible for most transmis-
sion in the DRC, while community transmission accounted for the bulk of
transmission in Uganda. A meticulous study on Ebola Transmission in West
Africa 2014-2016 found that 25% of cases who reported Ebola reported a fu-
neral exposure [163]. 89% of those reporting a funeral exposure also reported
one or more non-funeral exposures. 87% of reported exposure occurred be-
tween family members [163]. Modeling studies did consider the possibility
of relatively high under-reporting [89, 127].

A myriad of modeling studies has tried to shed light on the 2014-2016
Ebola epidemic [6, 28, 59, 116, 126, 138, 144, 148]. One modeling study of
the spatial spread of Ebola virus disease in Liberia (2014) and concluded
that Ebola treatment units (ETUs), safe burial procedures, and household
protection kits explain the decrease in the incidence [127]. Another computa-
tional modeling study of the spread in Guinea found that contact tracing was
crucial to eliminating the disease [3]. Here we explore whether awareness-
induced behavior changes can explain the dynamics of the disease. Drake et
al. found that behavior changes decreased the effective reproductive num-
ber in Liberia to almost one and that interventions further brought it down
below the epidemic threshold [40]. Another study found that healthcare-
seeking behavior doubled throughout the outbreak in Lofa county, Liberia,
but this was also linked to increased transmission inside treatment facilities
[67]. The RAPID Ebola forecasting challenge compared the performance of
eight independent modeling approaches on synthetic data and found that the
top-performing models for short-term weekly incidence used reactive behav-
ior changes [168].

3.1.4 Cultural drivers of transmission

There are significant cultural drivers of transmission, as we alluded to be-
forehand. Burial rites that involve touching the corpse of the deceased are
known to drive Ebola transmission [39, 64, 90, 171]. The Kono people in
Sierra Leone have a tradition of transporting the deceased’s body to bury
them in their hometown [137]. This ensuing burial ceremony can then spark
a new outbreak.

Previous outbreaks in Uganda and the Democratic Republic of Congo
(DRC) have shown that unsafe burial practices linger unless infection-control
measures are adapted to local traditions[174]. Nonetheless, the 2014-2016
Ebola epidemic was massive compared to previously known outbreaks. It
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is conceivable that an outbreak must reach a certain size before behavior
changes occur. Some of the behavior changes we have seen during the on-
going coronavirus pandemic would seem to support this idea. However, the
behavior response to COVID-19 has varied significantly both inside and be-
tween countries, underscoring that human behavior is complex and difficult
to model.

There is some evidence of behavior change. An observational study found
that of the cases exposed during funerals, 65% of those giving a response
reported having touched the corpse. This proportion declined significantly
after October 2014, suggesting that behavior changes had taken place [163].
Some may also have decided to stay away.

Belief in sorcery, spirits, traditional medicine (e.g., herbal therapies), and
distrust of western medicine and healthcare workers make it more difficult
to control Ebola outbreaks [90]. This problem is not dissimilar to the spread
of fake news and conspiracies in some countries during the coronavirus pan-
demic that drives vaccine hesitancy and low compliance with public health
guidelines (e.g., mask use and social distancing). Distrust of foreigners led
to attacks on healthcare workers during the 2014-2016 Ebola. A treatment
center was attacked by a mob in Liberia who denied the presence of Ebola
and freed the patients who would then go on to spread the disease. Lack of
trust in the health care system also led some people to care for Ebola patients
on their own, which is not recommended [135]. Spiritual Healers who falsely
claimed to cure Ebola also exacerbated the outbreak. The spiritual healers
also become vectors for spreading the disease if sought out by symptomatic
Ebola patients seeking a cure [124].

Local communities often have protocols to contain infectious disease out-
breaks [90]. The first documented Ebola outbreak in Yambuku, 1976, was
under control when national and international help arrived because the vil-
lagers isolated the sick and imposed restrictions on movement between vil-
lages [90]. The Ugandan Acholi people had the most comprehensive protocol
comprising fifteen behavior changes to control an epidemic outbreak [90]. It
is not surprising that local people have devised strategies for containing epi-
demic outbreaks. After all, infectious diseases have been around long before
humans. Social mobilization and community awareness can build on these
efforts to control Ebola outbreaks. The effect of this has been a topic of many
research papers [50, 73, 112, 140]. Social mobilization was probably impor-
tant in ending the West African Ebola epidemic [50].

3.2 Transmission models

The behavior changes used to contain Ebola outbreaks (e.g., avoiding di-
rect contact with people who show Ebola symptoms, self-isolating, and not
touching the corpse during a funeral or attending the ceremony) can occur
spontaneously. We referred to this as intrinsic behavior change to differen-
tiate from the extrinsic behavior changes enforced by government interven-
tion. Estimates of R0 for Ebola fall in the lower end of the spectrum compared
to other infectious diseases (e.g., measles, rubella, smallpox, polio, pertussis).



30

S A I R
αIS

βIS

δIA γI

Figure 3.2: Diagram of the compartmental model showing the possible states
and transition rates between them. β is the contact rate, and γ is the rate of
recovery. Here α is the rate of behavior change, and δ is the contact rate in
the aware population.

A review of modeling studies of Ebola virus disease in West Africa found R0
to be 1.78 [180]. Thus, a small reduction in transmissibility is sufficient to
push R0 below the epidemic threshold [66]. We aim to show that this is plau-
sible.

3.2.1 Mean-field theory

The simplest possible model concerning this reactive behavior change is given
by the following system of ordinary differential equations (ODE’s). Each
equation represents a compartment of susceptible, aware, infectious, or re-
moved agents. Here awareness about the diseases causes people to adopt
health-promoting behaviors, thus decreasing the risk of infection.

dS
dt

= −βIS − αIS (3.1)

dA
dt

= αIS − δAI, (3.2)

dI
dt

= βIS + δAI − γI, (3.3)

where β is the contact rate, and γ is the rate of removal. α is the rate of be-
havior change, and δ is the contact rate among aware individuals. Here A is
assumed to grow by a proportional rate to I, meaning that only symptomatic
persons can spread awareness. Figure 3.3 (a) shows a phase plane of the
model. Here each trajectory is obtained by numerical integration. The area
under a curve gives the fraction of the susceptible population that is infected
over the outbreak. Figure 3.3 (b) shows how the attack rate decreases with α.
The epidemic threshold is not affected by α in the mean-field approximation
– it appears to follow a power law because doubling α approximately cuts
the available susceptible population in half.
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Figure 3.3: (a) Trajectories in the phase plane produced by numerical integra-
tion of eq. 3.1-3.3. The parameters are β = 0.4, γ = 0.1, and δ = 0. Here α
runs between 0 and 1 from top to bottom in increments of 0.1. The attack rate
is the area under a curve. (b) shows the final attack rate RF as a function of
α.

3.2.2 Spatial model

Spatial heterogeneity was a distinguishing feature of the 2014-16 Ebola epi-
demic. However, the mean-field model above assumes homogeneous mix-
ing. The 2014-16 Ebola epidemic has been the subject of many spatial model-
ing studies [42, 106, 109, 127]. A modeling study found that transmission
events occurred within a short distance with a median value of 2.51 km.
[111].

Funk et al. showed that the impact of behavior change is more pro-
nounced in the presence of spatial structure [68]. The tendency of local Ebola
outbreaks to flare up and subside quickly suggests the epidemic could be
locally self-organized. To explore this possibility, we will consider a spatial
version of the mean-field model. The spatial model is defined on a L × L lat-
tice where one person occupies each site. A grid cell is either susceptible S,
infectious I, aware A or removed R. Grid cells are initialized in the suscep-
tible state with a small number of infected to start the epidemic. Sampling
is repeated until all infected sites have been removed. A time step ∆t = 1.0
(unit days) is equal to a sweep of L2 updates. Do the following to perform an
update.

a: Select a random grid cell s1. If s1 is infected then proceed to (b). Else
proceed to (c).

b: 1) Select another site s2. This site is chosen randomly on the lattice with
probability p. Else with probability 1 − p, select s2 with a probability
that decays exponentially with distance from s1. To be explicit, select a
distance d with probability ∝ exp(−d/λ) and choose a random point
s2 at this distance.
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2) If s2 is susceptible, it is infected with probability β∆t. Else if s2 is
aware, it is infected with probability δ∆t.
3) Select another cell s3 as above. If s3 is susceptible, is becomes aware
with probability α∆t.

c: s1 is removed with probability γ∆t.

There is a tiny probability of selecting identical targets i.e., s2 = s3. Since

the reactions S
β→ I and S α→ A are mutually exclusive, it should be specified

what happens in this event. Here we allow the reaction S
β→ I to happen first.

It is also possible to randomly pick between the two reactions, but the effect
is negligible unless α and β are large. Global and local transmission allow for

(a)
infectious

susceptible

(b)

infectious (s2)

removed (s1)

aware (s3)

Figure 3.4: Diagram of the spatial model with one infectious person in the
center. Each site on the grid contains just one person. (a) the infected per-
son spreads disease and awareness to nearby squares. The transitions occur
with probabilities β and α, respectively. The infected cell is removed with
probability γ. (b) shows the updated grid.
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Figure 3.5: Support figure to analysis of the spatial model. Here we see the
probability density function around an infectious grid cell I in the center of
a one-dimensional array. The chance of a grid cell being selected during a
single transmission cycle pij is the integral of p(x) over it. A susceptible cell
then has a probability β of being infected.

dispersal on different length scales. The effect of long-distance transmission
events on epidemics has been studied by Shaw et al. [158, 179].

3.2.3 Analytical theory of the spatial model

Let us write an analytical theory of the spatial model. Doing so will help us
better understand the difference between the mean-field and lattice models.
Here we consider the spatial model in one dimension for the sake of simplic-
ity. The effect of awareness spreading is neglected at first.

Consider an infected cell denoted i located somewhere a one-dimensional
array of grid cells (sketched in the figure). Each time this cell is selected, it
has a probability pij of selecting a particular element. This probability decays
exponentially away from i (see figure 3.6). Susceptible cells are infected with
probability β when selected. Further, I has a probability γ of being removed
each time it is selected. An infected site will on average survive θ transmis-
sion cycles

θ = γ−1

Note that γ is a distribution that we have approximated by its mean to sim-
plify the analysis. The probability that a susceptible cell j is infected by i over
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its entire lifetime is given by Ti,j

Ti,j = 1 −
θ

∏(1 − βpij) = 1 − (1 − βpij)
θ (3.4)

where the probabiliy of a particular site j being selected is

pi,j =
∫ (j−i)± 1

2
p(x)dx. (3.5)

Here the limits of integration run between the boundaries of the cell. Con-
sider for example the probability of obtaining the configuraton in figure 3.6
where i = 0 and j = 2. Thus, integration over p(x) runs from 1.5 to 2.5.
Ti,j is the probability of i infected a particular cell j over its entire lifetime.
Therefore we can write R0 as a sum over all the nearby cells.

R0 =
local

∑
j
(1 − (1 − βpi,j)

θ) (3.6)

In the mean-field version, there is no spatial decay away from an infected
person, so here we must sum over all sites.

Now let us consider the effect of awareness transmission on R0. Let Ui,j
be the probability of becoming aware which is identical to Eq. 3.4 with β, and
α interchanged.

Ui,j = 1 −
θ

∏(1 − αpi,j) = 1 − (1 − αpi,j)
θ (3.7)

Let us imagine that an infected grid cell transmits only awareness until it
is removed. Then we re-infect the cell and turn off awareness transmission.
The lattice points now occupy a mixed state, being aware with probability
Ui,j and susceptible with probability 1 − Ui,j. Aware sites are infected with
probability δ, and susceptible sites are infected with probability β so we can
express R0 as a sum over nearby lattice points weighted by Ui,j and 1 − Ui,j

R0 =
local

∑
j
(1 − (1 − (Ui,jδpi,j + (1 − Ui,j)βpi,j))

θ) (3.8)

Subject to mean-field interactions, this effect is completely washed out
because the entire system absorbs the awareness. Figure 3.3 (b) also show
this because α cannot affect R0 if the attack rate is power law of α. However,
in the spatial model, this effect is concentrated on the nearby cells most likely
to be infected. Here there will be a critical threshold αc where the disease
cannot spread, which we will show by direct simulation.
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Figure 3.6: Stochastic simulation of the mean-field model. (a) is a solution to
Eq. 3.1-3.3 generated with the Gillespie algorithm. (b) is a solution generated
with the stochastic method we developed above. The transition rates were
α = 0.2, β = 0.2, γ = 0.1, and δ = 0. Each simulation was with N =
40.000 agents. Initial conditions were I(t0) = 1. In (b), the random dispersal
probability has been set to 1 to obtain random mixing to compare the two
methods.

3.2.4 Gillespie’s algorithm

Here we evaluate the proposed model by comparing it to the Gillespie algo-
rithm to ensure correctness. The Gillespie algorithm generates a stochastic
solution to a system of equations with known reaction rates [74–76].

Consider a well-mixed system of N species which interact through M re-
actions [76]. The algorithm was originally introduced in chemical kinetics,
which explains the residual terminology. However, it has since been applied
in many other fields (e.g., computational biology, epidemiology, social sys-
tems). In our case, the species are compartmentalized populations (e.g., S,
and I), and the reactions correspond to transitions between different states
(e.g., S → I). Let Xi(t) denote the number of persons in i’th compartment at
time t. Our objective is to estimate the state vector X(t) = (X1(t), . . . , Xn(t))
at time t given some initial configuration at time t0 [76]. Without a compre-
hensive review of the Gillespie method we write the conditional probability
p(τ, j | x, t), given the state vector X(t) = x, that one reaction Rj will occur
in the time interval [t, t + dt]. This probability is given by

p(τ, j | x, t) = aj(x) exp(τ∑
j

aj(x)), (3.9)

where aj are the so-called propensity functions [76]. Let us consider the sys-
tem of equations 3.1-3.3. There are N = 4 species and M = 4 reactions.

S
a1→ I, S

a2→ A, A
a3→ I, I

a4→ R (3.10)
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with corresponding propensity functions

a1 = βSI/N, a2 = αSI/N, a3 = δAI/N, a4 = γI (3.11)

The algorithm now consists of the following steps.

1. Initialize the system at time t = t0 and in the state x = x0.

2. Generate a uniform random number ui on [0, 1] for each reaction. A
reaction occurs if

ui < ai/∑
j

aj(x) (3.12)

3. Here the time increment is, following the conventional approach

τ =
1

∑
j

aj(x)
· ln(

1
u
) (3.13)

where u is also a uniform random number between 0 and 1. Generate
a τ and update the clock t → t + τ.

4. Update the state vector. Return to step (1) or end the simulation if no
infected remains.

Figure 3.6 show a stochastic solution to Eq. 3.1-3.3 generated by each
method. Stochastic effects in the early stage of exponential growth induce
significant temporal displacements between successive simulations. Thus,
irrespective of the method, there is significant variation between successive
simulations. This variation is confined to when the epidemic curve peaks
unless it goes extinct early on. The final attack rate is largely fixed within
small variations.

3.3 Simulations of the spatial model

Here we explore epidemic spreading with the spatial model. Figure 3.7 shows
a simulation of the spatial model on a 128 × 128 lattice. An infected cell
spreads from the center of the grid. However, the growing cluster of infec-
tious sites faces a problem. The effect of susceptible depletion is felt imme-
diately in a spatial environment, which exacerbates intraspecific competition
among infected cells. Thus, the effective reproduction number decays much
faster than it would in a homogenously mixed system. This effect is com-
pounded by awareness spreading, which immunizes susceptible cells. The
aware cells aggregate around the expanding cluster and block transmission
much like a barrier. This mechanism is somewhat analogous to ring vac-
cination because the persons at risk of infection are most likely to change
behavior. Here the contact networks of disease and awareness transmission
completely overlap; each process uses the same probability density function
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Figure 3.7: Dynamic simulation of the spatial model on a 128 × 128 grid.
The simulation shows how awareness-induced behavior changes can quash
outbreaks in a spatially extended system. Simulation was initialized with one
infected person in the center, and the model parameters were α = 0.48, β =
0.20, γ = 0.08, and δ = 0.0 meaning that awareness confers full immunity.
Here the scale parameter of the exponential distribution was λ = 2 with
a p = 10−2 chance of global transmission. Color codes: Turquoise cells are
susceptible; beige cells are aware, and the red cells are infectious or removed.

with the same scale parameter. The effect of disjointed contact networks on
awareness and disease spreading has been studied by Funk et al. [68].

Global transmission events give infected cells a chance to break out from
the enclosing barrier by seeding new clusters. These low-probability events
can have a big impact on the epidemic, in particular on spatial heterogeneity.
The epidemic is a connected cluster of infected cells without global transmis-
sion events. Ebola outbreaks have generally been confined to a particular
district or province. The Western African Ebola epidemic was a novelty in
this respect, comprising many spatially disassociated transmission clusters
[44].

Since epidemic spreading is a stochastic phenomenon, it follows that many
outbreaks die out early by chance [104]. Figure 3.7 shows this – isolated red
cells are the product of global transmission events that are victims of stochas-
tic extinction. The extinction probability is significant if we initialize the sys-
tem with a single infected node. We will initialize the system with a small
cluster of infected sites to prevent unnecessary extinction events.
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Figure 3.8: (a) shows the coefficient of variation cv between the subgrids for
increasing α. Model parameters: β = 0.25, γ = 0.10, δ = 0.0, p = 0.01. The
scale parameter in the exponential distribution was 2.0. (b) shows cumulative
cases R(t) for each subgrid in a simulation around criticality α = 0.70 with
parameters as above.

3.3.1 Measuring spatial heterogenity

The spatial model exhibits a critical transition from a subcritical state where
the disease spreads unabated to a supercritical state where it is contained.
This transition occurs as the rate of behavior change α is increased. The
boundary between these two domains is particularly interesting. We quan-
tify spatial heterogeneity by partitioning the lattice into equally sized sub-
grids. We then measure the coefficient of variation cv between the subgrids.

Figure 3.8 (a) shows the average coefficient of variation cv between the
subgrids for a large number of simulations on a 200 × 200 system decom-
posed into 16 blocks of size 50× 50. The behavior change rate increases along
the horizontal axis while all other parameters are kept fixed. Spatial hetero-
geneity is low in the subcritical state because the epidemic spreads unabated
across the system, which leaves only slight variations between subgrids. Spa-
tial heterogeneity is maximized around criticality. Here the epidemic is made
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Figure 3.9: Phase diagrams of the spatial model. The color shows the final
attack rate (%) for a particular set of parameters. Outbreaks are controlled
in the dark domain but spreads unabated in the bright domain. (a) shows
the spatial model on a 100 × 100 grid with δ = 0, p = 0.01 and λ = 2.0.
The remaining panels share these parameters except for one feature that is
changed. (b) shows simulations on a 200× 200 grid. (c) shows δ/γ = 0.5. (d)
random mixing p = 1.0.

up of a collection of spatially disassociated transmission clusters of varying
sizes. Some subgrids sustain large outbreaks, and others none at all. Spatial
heterogeneity drops in the supercritical state because the epidemic is con-
tained. Most residual heterogeneity comes from the variation between the
subgrid where the outbreak starts and the remaining unaffected subgrids.

Figure 3.8 (b) shows the cumulative number of cases (removed cases)
in each block around criticality where spatial heterogeneity is maximized.
These micro-epidemics share features with the Ebola epidemic in Guinea
shown in Fig. 3.1. Local outbreaks are spatiotemporally asynchronous and
saturate rapidly. There is significant variability in the duration of the epi-
demic from stochasticity. The corresponding epidemic curves for a simula-
tion in the subcritical domain have fairly trivial features. Here the micro-
epidemics all follow sir-like trajectories and saturate at the same level, albeit
with slight temporal displacements.
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3.3.2 Model’s parameter space

Fig. 3.9 shows the parameter space of the spatial model. The attack rate is
estimated for a range of parameters by averaging over repeated simulations
—β increases along the vertical axis, which increases the attack rate. Con-
versely, α is increased along the horizontal axis and inhibits transmission.
(a) is simulated on a 100 × 100 with the following set of parameters {δ = 0,
p = 10−2 and λ = 2}. The remaining panels share these parameters but
change one specific feature. (b) is simulated on a 200× 200 system. The attack
rate is scale-invariant in the subcritical domain as the epidemic invariably
grows into a homogeneous cluster spanning the entire lattice. Conversely,
the outbreak grows to a finite-sized cluster before containment in the super-
critical domain. Thus, increasing the system size decreases the attack rate.
This broken scale-invariance explains why the attack rate decreases between
(a) and (b) in the supercritical domain. (c) shows the effect of increasing δ
above zero, which is small provided that it is not increased above the point
where transmission becomes possible in a fully aware population. (d) shows
the effect of introducing random mixing in the spatial model. Here there is
no supercritical domain, as we have shown in the preceding analysis.

Guéckédougou

Conakry

Nzérékoré

Kissidogou

Macenta

150 km

100 102 104

Figure 3.10: Gridded population density map of West Africa. Shown are
the prefectures in Guinea that experienced the largest outbreaks. The color
shows the number of people expected to reside within the cell. The dimen-
sions of a cell are approximately one km2. Data from SEDAC [101].
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Figure 3.11: Simulation of the model with 10 persons per site.

3.3.3 Effects of population density

The spatial model is simulated on a grid with one idealized person in each
grid cell. While this is not realistic, the effect of population density is unlikely
to be profound. Hu et al. has estimated how contact rates scales with popu-
lation density [22, 96]. However, symptomatic Ebola patients are likely to be
bedridden during infection. Those most likely of exposure are caring family
members, health care personal, or those attending funerals. Accordingly, the
rates could be largely independent of population density.

Figure 3.10 shows a gridded population density map of West Africa. While
the largest outbreaks in Fig. 3.1 occur in prefectures with somewhat concen-
trated populations, the difference in the population density cannot explain
the variance between them – Macenta sustains a larger outbreak than the
much more densely populated Conakry. The largest outbreaks appear to
cluster around Guéckédou, where the outbreak originated. We also observe
this tendency in simulations of the spatial model because the awareness has
not spread around the location where the outbreak originated. The late ar-
rival of international aid may also explain this tendency. Figure 3.11 shows
how the spatial model can be extended to accommodate population density.
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Figure 3.12: Mean-field model with fading. Model parameters are α = 4,
β = 0.4, γ = 0.1, δ = 0, and ϵ = 0.004.

3.3.4 Diminishing awareness

The initial analysis of the mean-field and spatial model assumed behavior
changes to be permanent. Furthermore, A becomes an absorbing state if be-
havior changes confer full immunity. The ongoing SARS-CoV-2 has taught
us a great deal about the interplay between human behavior and infectious
diseases. For example, one study finds that while lockdown significantly re-
duces transmission, the impact declines over time, possibly due to lockdown
fatigue [82]. It is straightforward to modify the mean-field model to include
fading. Here we allow A to fade with a rate ϵ

dS
dt

= −βIS − αIS + ϵA, (3.14)

dA
dt

= αIS − δAI − ϵA, (3.15)
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Figure 3.12 shows a model simulation with fading, which causes oscillatory
behavior [77]. The presence of spatial structure should have a dampening
effect on such oscillations, although we do not model this explicitly. There
are no infected nearby to spread the disease if a spatially localized outbreak
is terminated and the remaining A states become susceptible. It is, therefore,
necessary to introduce the disease again, either through a global transmission
event or by intrusion from another growing transmission cluster.

3.3.5 Summary and concluding remarks

We have explored the effect of reactive behavior changes on infectious dis-
ease outbreaks in a spatially extended system. The spatial model exhibits a
critical transition where the disease can no longer spread because reactive
behavior changes have depleted the susceptible population around the out-
break. The spatial model we propose describes a disease with the following
properties. R0 is close to the epidemic threshold, transmission is highly lo-
calized, and adapting a few behavior changes can significantly reduce the
risk of being infected or infecting others. Ebola virus disease is a perfect can-
didate because it has all of these properties. R0 was estimated to be 1.2–2.2
during the Ebola outbreak in West Africa [23]. Transmission events occurred
within a short distance with a median value of 2.51 km. [111]. Furthermore,
behavior changes (e.g., social distancing, funerals, isolation) can reliably re-
duce transmission.

The model can explain the spatial patterns observed in Guinea’s 2014-16
Ebola epidemic, but some assumptions have been made. The rate of behavior
change α is not are not derived from data. More data is needed to understand
this dynamic interplay between the risk of infection and social behavior. Es-
timating δ is difficult because humans can exhibit a range of behaviors that
produces a spectrum of A states with corresponding contact rates. However,
it is possible to identify specific behaviors (e.g., funerals) with a significant
effect, and it suffices to show that the disease cannot survive in a fully aware
population.

Evidence from the ongoing SARS-CoV-2 pandemic suggests that behav-
ior changes have a significant effect on disease transmission. However, the
risk of Ebola infection is likely to induce more drastic behavior changes than
COVID-19, given the vast discrepancy in the case fatality ratio. The coron-
avirus pandemic has also shown us that variations in behavior explain dif-
ferences between many countries. Many factors influence how people re-
spond, including the risk of infection, age, and compliance with public health
guidelines. Nonetheless, the latter will carry more weight in countries with
high trust in government. Ebola outbreaks have so far happened in coun-
tries where trust in government is low. Here the behavior response is more
likely to be a local effect because people respond to community transmission
more than recommendations from public health officials. We have shown
how such a local behavior response can explain the abrupt termination of
local outbreaks, as was observed during the 2014-2016 Ebola epidemic.
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Chapter 4

Epidemics on social networks

In this chapter, we return to view communication as an epidemic process.
In particular, we consider the spread of aging news and rumors on social
networks. Before introducing this work, it is helpful to consider how infor-
mation transmission systems have evolved throughout history. This non-
exhaustive summary will help us motivate and contextualize the research
that has been carried out.

4.1 Information transmission systems

The first information transmission systems relied on semaphores (e.g., smoke
signals, fire) and messenger pigeons. In ancient China, beacon towers were
used to send smoke signals across the Great Wall [38]. This method allowed
simple messages to be transmitted quickly across the wall, as the color of
the smoke could specify the size of the raiding party. The Ancient Romans
used messenger pigeons to send field reports back from the front [102]. The
use of messenger pigeons would eventually expand to other domains (e.g.,
news, financiers, and stockbrokers) as it became advantageous to receive and
transmit information faster than a competitor. Paul J. Reuters, who founded
the eponymous news agency, used homing pigeons to carry news and stock
quotes between London and Paris [170]. Perhaps it is not surprising that
the Ancient Romans and Chinese were early adopters of these technologies,
although they did not invent them. Both the Roman Empire and Impe-
rial China encompassed vast swathes of territory. Being able to send mes-
sages quickly must have been especially useful concerning military opera-
tions where time is of the essence.

The 19th century witnessed the invention of the electric telegraph. The
telegraph was the first device that used electricity to communicate at great
distances. This device allowed messages to be transmitted almost instantly
between two places. Standard time which is the synchronization of clocks
within a region was adopted to schedule trains and steamships. Doing so
was made possible by the telegraph. Railroads could now effectively coordi-
nate the arrival and departure of trains. Newspapers could receive informa-
tion from far away, and financial markets could centralize prices. The New
York Stock Exchange became a national market, absorbing many regional ex-
changes [182]. Du Boff notes that many observers at the time predicted the
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telegraph would have a decentralizing effect on the economy, while the op-
posite turned out to be the case [43]. The rise of digital media appears to
be having the same effect on the news industry, with a decline in local and
regional news but subscription surges for the largest American newspapers
[17]. However, it has also had a powerful decentralizing effect by democra-
tizing mass communication. These two diverging trends are interesting and
worth considering. Here we jump directly to the internet and skip over some
notable advances in communication technology (e.g., telephone, radio, and
television).

The internet has revolutionized how we communicate. Social networking
services, blogging, and digital publishing platforms have made it possible for
ordinary people to share information with many individuals and followers.
A local newspaper may have a few thousand subscribers; an influencer on
social media can have millions of subscribers worldwide and transmit infor-
mation to them almost instantly at no cost. This new paradigm has blurred
the distinction between influencers and news outlets subject to editorial over-
sight. Before the internet, only news media (e.g., newspapers and broadcast-
ing via radio and television) had this capacity. Overall, this has decentralized
information sharing as everyone can have a blog or media channel. How-
ever, it appears to be having the opposite effect on the news industry. Let us
consider how newspapers have traditionally operated to understand this.

4.1.1 News distribution

Newspapers are perishable products as the newsworthiness of a story nat-
urally decays over time [99]. Yesterday’s newspaper is less valuable than it
was at the time of publication. As the saying goes, "Today’s news is tomor-
row’s birdcage liner." Newer and more relevant stories necessarily replace
older stories that we forget. Wu and Huberman studied the collective at-
tention of a million users on many online news stories and found that nov-
elty within groups decays with a stretched exponential law [181]. Thus an
event occupies a transient state of newsworthiness before being forgotten or
becoming history. The newspaper distribution problem has been treated in
some publications [99, 125]. Distributing newspapers to people living further
away becomes increasingly arduous due to the cost of transportation and the
diminishing value of aging news. These two factors favor local newspapers
by making it difficult for one newspaper to cover a large region. The likeli-
hood of a news story becoming obsolete increases as the distribution network
extends farther away. New technology has enabled a more centralized news
industry. News broadcasting (e.g., radio and television) is not affected by
this limitation. Until the 1990s, three commercial television networks (CBS,
NBS, and ABC) dominated broadcast television in the United States, known
collectively as the Big Three [91].

A paper from 2006 found that technological change had reduced the cost
of distributing newspapers in local markets. Local newspaper circulation
was lower in areas with high New York Times penetration, suggesting that
advances in technology promote consolidation of the news industry. Hayes
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et al. found that local news has declined somewhat over the recent years
[87]. Overall, newspaper circulation has declined in the United States [17].
Meanwhile, the New York Times has added millions of digital subscribers,
while the printed circulation was cut in half from 2005 to 2017 [17]. A digital
subscriber can live anywhere in the world and read about stories immedi-
ately as they are published. Thus, the digital transformation has solved the
distribution problem, which helps the largest newspapers expand into new
markets.

4.1.2 News factors

What makes news news? There are many relevant factors other than being
novel, although it is perhaps the defining property of news. For example, a
local newspaper can cover stories that are relevant to its community. Many
factors affect the newsworthiness of an event. Galtung and Ruge made the
first attempt to classify these factors in their seminal paper [70]. Much work
has gone into identifying all these news values. However, there is some dis-
agreement about what constitutes a news value[18, 19, 25, 155]. It has to be
said that news values are not a set of objective metrics for what deserves cov-
erage but simply what is likely to be selected for coverage. Let us consider a
few pertinent examples.

We have already encountered two values so far. Timeliness concerns news
about current or ongoing events. This factor is arguably the principal news
value — after all, there is no such thing as old news. Familiarity concerns
events that are relatable to the audience. Here a local news outlet has an
edge because it can tailor its stories to a specific audience. Conversely, this is
more difficult for a prominent newspaper with a more heterogeneous group
of subscribers. Frequency is a news value related to timeliness, asserting that
sudden events are more likely to receive coverage than long-term trends or
events that fit poorly into the schedule of the news organization. For exam-
ple, a terrorist attack is more likely to receive coverage than a story about
the gradual decline of poverty or violence. Bad news events also tend to re-
ceive more coverage than positive stories. However, it has been suggested
that positivity is also a news value. A scientific breakthrough or a success-
ful space mission will tend to receive some media coverage. There are other
news values, but it is unnecessary to go through them, as we only draw upon
timeliness and frequency in work ahead.

4.1.3 Modes of transmission

The internet allows everyone to become a news outlet. Becoming a news out-
let (e.g., newspaper, radio, or television station) was capital intensive before
the internet. Still, now everyone with a blog or a presence on a video-sharing
platform is effectively a news outlet able to transfer information to everyone
else on the network. Here we differentiate between two modes of commu-
nication. Mass communication is where a news outlet (e.g., an influencer,
blogger, or a newspaper or news broadcast) imparts information to a large
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population segment. This mode is directed, as there is no exchange taking
place. The information flows from the news outlet to the receiver. In con-
trast, communication between two persons is undirected as information can
flow in both directions. The following section introduces a model that com-
bines many of the concepts we have discussed above. Here influencers battle
for followers on a social network by spreading information. Individuals are
more susceptible to new information. Recent news events are more conta-
gious while information loses its infectious as it ages.

4.2 Modeling spread of news and rumors

Here we propose a model for the spread of news and rumors. This model
concerns how information spreads and how news outlets or influencers com-
pete for attention by spreading this information. To do so, we combine many
concepts from the previous section. First, we consider a population of indi-
viduals represented by a collection of nodes. Each person can occupy one of
two mutually exclusive states, follower or influencer. All nodes have a set
of static undirected links independent of their state that represents person-
to-person communication. The links are assumed to be fixed because an
individual’s social relationships are relatively stable. There is a multitude
of ways to set up this reciprocal network. We start by using nearest neigh-
bor interactions. Thus, a person is friends with his four nearest neighbors,
subject to periodic boundary conditions. We will consider more realistic net-
work topologies during the analysis. The effect of increasing the number of
these links is also explored. Dunbar’s seminal paper on neocortex and group
size suggests that humans maintain around 150 stable relationships, so four
is obviously in the lower end [45, 46, 143] Superimposed on this static net-
work is a directed network of links between influencers and followers. These
links are not fixed but can change over time. A follower can maintain only
one directed connection to an influencer or news outlet, as attention is a fi-
nite resource. The influencers compete for attention by capturing followers
from each other. This competition is driven by new information. In the pre-
vious section, we spend an entire paragraph arguing that novelty is a vital
determinant of information spreading. Of course, one could include other
parameters, but avoid this to keep the model as simple as possible. A person
has a news value τ that measures its knowledge of current affairs. The net-
work is updated stochastically in discrete steps. With each update, a node
has a chance of discovering a news event, which has the following state-
dependent effects. If a follower triggers a news event, it is promoted to an
influencer and gains a news value equal to the current time step, i.e., τ = t.
An influencer also updates its followers’ news value to t upon discovering
a news event. With each step, a node also communicates with a random
member of its reciprocal network. If the neighbor has a lower news value
than its friend, it will shift its directed link to the friends’ influencer while
breaking the link to its previous information source. This mechanism allows
influencers to capture followers by spreading new information. Meanwhile,
influencers who fail to discover news will lose followers to those who do.
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Figure 4.1: Schematic diagram of the model. Nodes represent users on an
undirected social network. Color and subscript indicate followers’ adherence
to a news outlet. (a) shows the discovery of a news event, and the capture
of a node. (b) shows how an influencer (S2) can immunize its followers by
appropriating the news event.

However, if a node attacks an influencer with a superior news value, it will
appropriate the information and copy the news value onto itself and its fol-
lowers. Thus, one can either discover news or copy it from others. The
network will freeze up with influencers impervious to capture without oc-
casionally demoting them to the follower state. To overcome this issue, we
downgrade influencers who lose all subscribers to the follower state. Thus,
an influencer must first lose all subscribers before becoming vulnerable to
being absorbed by another subculture. To ensure the reproducibility of the
model, we include a brief description of the computational algorithm.

4.2.1 Algorithm description

Define N nodes with a given undirected network topology (e.g., nearest-
neighbor, Erdős–Rényi, small-world). Each node occupies either a follower
state f or an influencer state S and has a current information state τ equal to
the time of origin of the last news update it has received. Nodes are assigned
an index i, j, . . . n designating the influencer it belongs to. That is to say that
each subculture encompassing an influencer and all its subsequent follow-
ers inherits the same index. Time is increased by one increment for each N
update. To perform an update, do the following.

Select a random node a. This node discovers a news event with probabil-
ity p0. If it is a follower node, it gains a news value τ = t and is promoted
to an influencer, i.e., a ∈ f → S. If an influencer discovers a news event, all
nodes with that corresponding index gains news value τ = t.

Select a random neighbour b to a. If τ(a) > τ(b) then b abandons it
influencers and establish a link to a’s influencer. If τ(a) > τ(b) and b ∈ S
then all nodes with b’s index gains news value τ(a). For each sweep of N
updates, influencers with no followers are demoted to followers. Although
these demoted notes are not following anyone, they are no longer impervious
to capture and can be absorbed by another subculture.
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Figure 4.2: Simulation on a small 20 × 20 lattice. (a) shows the size of each
subculture over 1.100 time steps. (b-c) show snapshots of the simulation at
the vertical lines. Subcultures are assigned a unique color, and the white
stars represent influencers. The system occupies a fragmented state where no
subculture dominates for an extended period. The simulation was performed
with p0 = 2.5 × 10−4. The stars are only updated each time a full sweep of
400 updates has been performed.

4.3 Stochastic simulation of the model

Here we investigate the model under a wide range of conditions. Fig 4.2
shows a model simulation on a small system of 20 × 20 nodes with p0 =
2.5 × 10−4 that is probability of discovering news. The p0 parameter deter-
mines how difficult it is to become a news outlet, but it is also a measure of
the overall occurrence of notable events that are discovered. We will expound
on this in the discussion as this section is dedicated to analysis and simula-
tion. Fig 4.2 shows that the network occupies a perpetually fragmented state
without a dominating subculture. The number of influencers grows to some
steady-state where the removal rate balances out the creation of new ones.

The p0 parameter determines how difficult it is to become a news out-
let. Careful inspection of Fig 4.2 shows that influencers represented by white
stars tend to be located on the boundary between different subcultures. This
pattern is not a coincidence; the system will self-organize into a state where
influencers are situated on the border between subcultures for the following
reason. Whenever a subculture encroaches on another with a lower news
value, it will capture followers until it reaches the influencer. The influencer
copies the news value of the attacker onto its followers, thereby immunizing
from further capture. The influencer is left on a stable interface between the
two subcultures, as these have the same news value. Self-organizing into this
state dramatically increases the speed at which information can spread on
the network. A news event can rarely trigger a cascade that travels through
the system using the influencer networks, leaving the subcultures largely in-
tact because the information imbalance is restored almost instantly. A non-
uniform distribution of information drives the conflict between influencers.
There is no competition or flow if all nodes have the same news value. In this
sense, the system is never in equilibrium unless p0 is small.

Fig 4.3 shows the news value of each site in a simulation on a 100 × 100
system. Here information spreads from person to person in the early stage of
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Figure 4.3: News cascades on a large 100 × 100 lattice. The color shows the
news value of each node. Model parameter was p0 = 2.5× 10−5. Red squares
represent influencers. A massive information cascade occurs between t =
180 and t = 182.

the simulation. Once a collection of subcultures has been established, news
can spread faster using the directed influencer networks. The influencers act
as hubs that instantly spread information to all their followers. Fig 4.3 shows
how the influencer networks can trigger information cascades. Because in-
fluencers are likely to be located on the boundary between subcultures, this
may trigger secondary or tertiary cascades.

4.3.1 Feedback-induced stability

Feedback is when the output of a system or process feeds back into the sys-
tem as input. There are two forms of feedback. Positive feedback occurs
when a perturbation is self-reinforcing. Conversely, negative feedback pro-
motes stability by counteracting the disturbance. Feedback is pervasive in
biological, economic, and climate systems [10, 21, 29]. Negative feedback oc-
curs in many biological processes because of its stabilizing effect. Homeosta-
sis is a process by which biological systems maintain stable internal condi-
tions (e.g., body temperature, fluid balance, blood sugar level) while interact-
ing with the external environment. Negative feedback mechanisms govern
this process. The presence of multiple interacting feedback loops obscures
climate modeling. Ice–albedo feedback is an example of positive feedback.
Rising surface temperatures cause ice sheets to melt at the higher latitudes
decreasing its albedo and increasing the proportion of sunlight absorbed by
the surface. This mechanism then causes more ice to melt, and thus, we have
a feedback circuit. Here we add a positive feedback loop between subscriber
count and the news generation probability. An influencer with many sub-
scribers should have a higher likelihood of producing or discovering news.
For example, a newspaper with many subscribers can afford to hire more
people, which allows it to find more news events. Aside from the monetary
benefit, a journalist from a newspaper with many subscribers may receive
more news tips. An influencer with index i now has probability

pi = p0(1 + ηκi) (4.1)
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Figure 4.4: Simulation with positive feedback on a 100 × 100 lattice. (a)
shows the size of each subculture. Vertical lines represent the time evolution
of a subculture. The red lines are metastable states where the vast majority of
followers belong to the same influencer. The bright blankets are fragmented
states encompassing many subcultures of varying sizes. (a) shows the emer-
gence of the first metastable state around t = 5 · 103. (b-d) show snapshots of
the simulation at different points in time. (b) shows the ordered domain on
the verge of collapse as many emerging subcultures siphons followers from
it. This subculture makes a swift recovery in (c) before collapsing in (d) into
a fragmented state. Simulation was done with parameters η = 0.30, and
p0 = 4.0 · 10−5. The color in (a) displays a subculture’s size. In (b-d) it dis-
plays affiliation with identical color nodes belonging to the same subculture.

to discover a news event. Here η is a feedback parameter and κi its number
of followers. We define p0 and η to be sufficiently small such that pi never
exceeds unity, i.e. pi = p0(1 + ηki) ≤ 1. An influencer is also a node and
can therefore have no more than N − 1 followers. Therefore, if p0 = 1/N
and η = 1.0 then pi = 1. To avoid that pi exceeds one we shall impose the
following bounds η ≤ 1 and p0 ≤ 1

N on the model’s parameters.

4.3.2 Metastability and decay

Fig. 4.4 shows a simulation of a system with positive feedback. Model pa-
rameters are p0 = 4.0 · 10−5, and η = 0.30. (a) shows the size of subcultures
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over the simulation. Influencers can now increase pi by capturing more fol-
lowers. This positive feedback loop allows one influencer to maintain dom-
inance for a sustained period. The probability of discovering a news event
increases by ηp0 for each subscriber. If p0 is sufficiently high, there is a critical
η where a subculture grows to encompass the entire system. The system can
reside in an ordered metastable state, a fragmented configuration, or a com-
pletely disordered phase if p0 is very large and η is negligible. It might seem
paradoxical that p0 is promoting stability through feedback and disorder by
adding noise, but this is just a consequence of how we defined pi. We return
to this conundrum to further clarify it later on.

Metastability is commonly encountered in physics and chemistry. Con-
sider, for example, a marble resting in a hole corresponding to a local min-
imum in the energy landscape or an atom in an excited state with a long
lifetime. Dynamical systems with feedback, such as this one, can also exhibit
stable and metastable states. Here the p0 which adds noise to the system
is somewhat analogous to a temperature which increases the probability of
pushing the state out of a metastable configuration. The metastable phase is
about to decay in (b) but bounces back in (c). This behavior is characteris-
tic of systems with alternate stable states. Consider, for instance, the marble
we alluded to above. Move it up the slope, and it simply rolls back down
to its previous position. The decay of the metastable phase occurs between
(c) and (d). This decay is a stochastic event facilitated by new subcultures
that siphon followers from the dominating network, thereby lowering its pi
value. We use a random updating scheme where an arbitrary node is selected
with each update. Hence there is no guarantee that the influencer of a large
subculture is chosen during a sweep of N2 updates. Of course, this influencer
may also be selected multiple times during a sweep, but there is no benefit
to this as they are assigned the same τ value. This asymmetry reduces the
lifetimes of the metastable phase.

The model was also simulated on a one-dimensional ring. Here there was
no transition to an ordered state, even for large values of η. Van Hoves’
non-existence theorem prohibits phase transitions from occurring in one-
dimensional systems with short-range interactions, but it only applies a cer-
tain class of systems [167]. Models with phase transitions in one dimension
do exist [34]. Consider the following scenario to understand why this model
does not have a phase transition in one dimension. An influencer S1 on the
ring lattice has amassed a large number of subscribers and reaches another
influencer S2 with few followers. S2 will block any progress in this direction.
To demote S2 from the influencer state, it must lose all its followers. How-
ever, some of its followers are likely placed on the other side, so S1 cannot
capture them. Moreover, because S2 borders the S1 subculture, it can copy all
of its news events and use this to capture followers on the other side. Thus,
because of its juxtaposition to S1, it is unlikely ever to be demoted. Subcul-
tures on the ring lattice will tend to freeze up due to this, while the stasis is
occasionally interrupted by the promotion of new influencers.
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Figure 4.5: Virality of information. Here the color shows the fraction of
viral news events that infect at least half of the network. Each point in the
parameter space was averaged over 20.000 iterations on a 100 × 100 lattice

4.3.3 Viral information

Viral news events are events that spread quickly and widely on social media.
It is possible to explore the viral properties of information in this model. Here
we define viral news events as events that spread to half or more of the net-
work. News events with the same τ are considered to be identical to avoid
additional bookkeeping. Figure 4.5 shows the virality of information for a
range of parameters 1. Viral news events make up almost all of the news
events for very low p0 because an event has ample time to spread to a large
part of the system before another replaces it. That is, in a world where note-
worthy events seldom occur, the few noteworthy events that do occur are
likely to attract attention. The competition between news events intensifies
with p0. Here it is difficult to capture the collective attention of the system
because the network is inundated with news events. Viral news events are
relatively common in the top right corner. Here most followers belong to the
same influencer. This influencer has a high probability of generating news
and can instantly pass on this information to its followers, and only this in-
fluencer can spread viral information.

1There are some minor discrepancies between Fig. 4.5 and the corresponding figure in
the publication. Here the viral news events generated by influencers are not counted. This
introduces an error along the vertical axis as the news events produced by influencers make
up a significant fraction of all news events for large η, but changes nothing significant.
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4.4 Complex network topologies

We have performed extensive simulations on a lattice model with many in-
teresting qualities (e.g., boundary clustering, network cascades). Real social
networks are characterized by variable degree distributions, nontrivial clus-
tering, and assortative mixing [132]. The lattice has none of those properties
except high clustering but with no cliques. Each node on the lattice has ex-
actly four neighbors, so there is no variation in the number of edges assigned
to them. Here the words node and vertex together with link and edge are used
interchangeably. Clustering is a propensity for nodes with a mutual neigh-
bor to be connected. The local clustering coefficient of a node introduced by
Watts and Strogatz quantifies how close it is to a clique [173]. Here a clique
or a complete subgraph is a subset of mutually adjacent vertices. Nontrivial
clustering is related to homophily or assortative mixing. Assortative mixing
is a tendency to form connections between nodes with similar characteristics.
This tendency likely exacerbates fake news and polarization by creating echo
chambers. However, since we do not assign specific characteristics to indi-
vidual nodes (e.g., beliefs and preferences), exploring homophily with this
model is not meaningful. We now proceed to simulate the model on more
complex networks substrates. First, however, it is helpful to introduce them
properly to clarify how they differ from the simple lattice.

4.4.1 Erdős–Rényi networks

The Erdős–Rényi model is one of two related algorithms for generating ran-
dom graphs. The one introduced by Paul Erdős and Alfred Rényi generates a
random network G(N, k) from a predefined number of vertices N and edges

(a) (b)

Figure 4.6: (a) random graph G(N, p) with N = 103 and probability p = 0.004
of edge creation between vertice pairs. The expected number of links for this
graph is 1998. (b) small-world graph with N = 103 and a β = 0.1 rewiring
probability. Each node was assigned k = 4 neighbours.
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k [49]. The other model introduced contemporaneously by Edgar Gilbert as-
signs a probability p to an edge being formed independently of other edges
[72]. These random networks G(N, p) are sometimes called random bino-
mial graphs because the degree distribution of any particular vertex follows
a binomial distribution. The probability that a node is given k links is

P(k) =
(

N − 1
k

)
pk(1 − p)n−1−k, (4.2)

and the graph has an expected sum of p(N
2 ) edges. Overall, random graphs

have somewhat variable degree distributions (some vertices have many edges
and some have few or no edges), but low clustering coefficients [173].

4.4.2 Small-world networks

Small-world networks are similar to lattices in that most nodes are not con-
nected. They differ from lattices by having a low path length L. More pre-
cisely, the average distance L between two random vertices grows logarith-
mically with the size of the network N. The basic idea is that a few well-
connected nodes dramatically reduces the distance between nodes by acting
as transportation hubs. Thus, a node can use the links of its neighbors and
so forth. Watts and Strogatz proposed a method for generating small-world
networks. Starting from a regular lattice, we randomly rewire each link with
probability β. We have a regular lattice at β = 0, a random network at β = 1,
and small-world networks somewhere between those extremes. Watts and
Strogatz showed that we obtain networks with low path length and high
clustering for low β [173].

4.4.3 Model’s parameter space

Figure 4.7 shows the average size of the largest subculture for a range of pa-
rameters on different networks. (a) shows the familiar lattice as a reference
point. (b) show random-neighbor interactions. That is a complete network.
(c) show simulations on random graphs generated by the Erdős–Rényi model
with p = 0.0004. (d) show simulations on small-world networks generated
by the Watts–Strogatz model with β = 0.1. Dark fields are ordered domains
with a dominating subculture, and disorder increases with brightness. The
information generation probability pi increases by ηp0 for each captured fol-
lower. The effect of feedback is proportional to p0, which is why there is no
ordered domain for low p0. Alternatively, we could increase pi by a fixed
amount for each subscriber independent of p0.

The time-averaged size of the largest subculture begins to increase for low
p0 because an influencer with new news has more time to capture followers
before the information is made obsolete. This effect is more pronounced on
the regular lattice with a high average path length than the other networks.

The highly clustered lattice and the small-world network have a solid
boundary to the ordered domain. Conversely, the Erdős–Rényi random graphs
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Figure 4.7: Phase diagrams showing the average size of the largest sub-
culture. (a) regular lattice. (b) each node interacts with a random node. (c)
Erdős–Rényi random graph with p = 0.0004. (d) Watts-Strogatz generated
small-world network with β = 0.1. Dark regions mark the ordered domain.
Disorder increases with brightness. Each point in the parameter space was
averaged over 20.000 iterations on a network with 104 nodes.

and the complete networks have a fuzzy boundary. Subcultures grow ex-
ponentially on the "mean-field" networks. Thus, emerging influencers can
siphon followers from the dominating subculture much faster compared to
the regular lattice. We already mentioned how the stochastic updating scheme
asymmetrically favors the emerging subcultures, now compounded by ex-
ponential growth. Concerning the Erdős–Rényi random graphs, the ordered
domain is slightly brighter than the other diagrams. The largest component
in the Erdős–Rényi random graphs never controls the entire network. In-
spection of Fig. 4.6 reveals poorly connected nodes at the network’s periph-
ery, with some nodes being completely disjointed. Thus it is difficult for the
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dominating subculture to absorb these low degree nodes. Remember that the
network in Fig. 4.6 is an order of magnitude smaller than in Fig. 4.7.

4.4.4 Mutual co-existence in scale-free networks

Scale-free networks denote a class of networks whose degree distribution
follows a power law. Thus, most nodes have a few links, while a few nodes
have disproportionately many links. The Barabási–Albert model grows a
scale-free network by preferentially attaching nodes with m to pre-existing
nodes [16]. The probability of connecting a new node to a is

pa =
ka

∑b kb
, (4.3)

here ka is the degree of a, and the sums run over the existing nodes b [4].
Hence nodes of a high degree accumulate links faster.

Figure 4.9 show a simulation of the model on a scale-free network. Here
the nodes with disproportionately many neighbors are like massive news
networks whose links reach every corner of the network. These links allow
them to pick up news events around the network. This capability to quickly
copy information allows them to immunize their followers while attacking

Figure 4.8: Scale-free network of N = 103 nodes with m = 4.
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Figure 4.9: Simulation of the model on a scale-free network showing the four
largest subcultures. The dashed line on top shows the sum of these four sub-
cultures. Model parameters are p0 = 0.05, and η = 0. The Barabási–Albert
model was used to generate a scale-free network with N = 104 nodes with
m = 4.

other less connected nodes. Mutual co-existence between highly connected
influencers occurs in simulation. Here the node with the most links is pro-
moted about halfway through the simulation. This highly connected node
dominates about half of the network for a sustained period. Despite this
abrupt shift, the number of subscribers belonging to the four largest subcul-
tures fluctuates around a steady state. We conjecture that the network will
converge to a stable state of mutual co-existence when all the high-degree
nodes have been promoted, which appears to have occurred in the last half
of the simulation. It is, therefore, necessary to simulate for a very long time
if p0 is low to ensure the promotion of high-degree nodes. The phase dia-
gram of the scale-free network was deemed prohibitively time-consuming to
make, although it is not impossible.

4.4.5 Summary and concluding remarks

To summarize, we modeled a social network that exhibits transitions be-
tween a dominating monoculture and a disaggregated collection of subcul-
tures. It is posited that online social networks have brought about a similar
transition by allowing everyone to be a news outlet. The effect of feedback
was more pronounced than network topology, except on the scale-free net-
work that exhibits some stability without feedback. However, the scale-free
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network is not a realistic model of social networks because the high-degree
nodes have connections that exceed Dunbar’s number. It can, however, be
interpreted as a model of competing news networks. The big three news
networks used to dominate mass media in the United States, as previously
stated [91].

There is growing concern that the internet has brought about an epidemic
of fake news by lowering the cost of entry to new competitors, many of
whom reject journalistic norms [113]. Vosoughi et al. showed that fake news
stories spread more than the truth [169]. Fake news outlets can fabricate sto-
ries of greater newsworthiness, so it should not be surprising that false news
spreads more than the truth. However, some studies dispute the prevalence
of fake news. Findings by Allen et al. [5] suggest that fake news only makes
up a small percentage of Americans’ daily media diets. Whether true or false,
there is a perception of fake news as a widespread problem. Individuals in
a fragmented information ecosystem are exposed to information from many
different sources. Exposure to conflicting narratives could exacerbate the per-
ception of fake news. Conversely, individuals in a monoculture are exposed
only to the information passed on to them from the dominating news outlet.
These individuals could be exposed to much more fake news because a single
news outlet generally controls the flow of information in autocratic societies.

The content of news events was not explicitly modeled, nor was there
any differentiation between real and fake news outlets. An extension of the
model could give fake news outlets a high news generation probability. Here
it would be necessary to introduce a measure of credibility to penalize outlets
that disseminate fake news. Respectable news outlets would then find them-
selves in a delicate situation when deciding whether or not to pass on infor-
mation from another source. The risk of passing on false information entails
a loss of reputation. However, journalists often face this dilemma because
the race to report on a breaking news event first can drive even respectable
news outlets to publish information before adequately vetting it.

Our findings suggest that either fake news or the perception of fake news
as being ubiquitous is endemic to our society because everyone can become
a news outlet (e.g., influencer).
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ABSTRACT

The ongoing SARS-CoV-2 pandemic has prompted governments around the world to lockdown society. Suppression and
mitigation strategies have nonetheless varied considerably within and among countries. This work estimates the effects of
synchronizing lockdowns between jurisdictions hit by recurring infectious disease outbreaks. It is shown that a coordinated
strategy is likely better at postponing susceptible depletion using the same amount of disposable resources.

1 Introduction: SARS-CoV-2 pandemic
The SARS-CoV-2 pandemic has upended life worldwide and prompted governments to enact stay-at-home orders, closing
schools, non-essential shops, and public places. Strategies to control an infectious disease outbreak have been studied
extensively. Ferguson et al. showed how a nascent influenza pandemic could be contained using a combination of pharmaceutical
interventions and social distancing measures1.

Lockdowns were put in place to slow the spread of disease and prevent intensive care units from overflowing with patients as
neither vaccines nor antiviral drugs were available at the outset of the pandemic.2–5. Handel et al. proposed an optimal control
strategy for multiple infectious disease outbreaks that minimize overshooting6. However, the current pandemic affects many
different jurisdictions that do not necessarily follow the same containment policy. The response to SARS-CoV-2 in the United
States was characterized by significant variation across state lines. England enforced localized, tiered restrictions in an attempt
to control a second wave, which was found to be less effective than a national lockdown7. Denmark restricted the movement of
citizens in 7 municipalities between November 5-19, 2020, to thwart a novel spike mutation (cluster 5 variant)8. Findings by
Ruktanonchai et al. suggest that coordinating lockdowns increased the likelihood of eliminating community transmission in
Europe and that fewer lockdown periods would be necessary to end continent-wide community transmission9.

Here a simple epidemic model is used to explore the effects of coordinating intermittent lockdowns between jurisdictions
that experience multiple unsynchronized epidemic waves. The idea is to simulate the model with unsynchronized lockdown
(UL) and synchronized lockdown (SL) for a range of parameters to compare outcomes.

2 Model
Two related suppression strategies shall be considered.
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Figure 1. Sketch of the lockdown mechanism. UL activates a lockdown when cases surpass a. The contact rate β is
reduced by a factor of (1− s) while lockdown is activated. The lockdown is annulled when cases drop below b. SL activates
lockdown if just one jurisdiction surpasses a and undo the policy only when all jurisdictions have below b cases. The latent
period causes the epidemic waves to peak above a.
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Figure 2. Disease transmission between 4 jurisdictions. Each jurisdiction is executing its own suppression policy with
decreasing commitment from top to bottom. The top panel (a) does a draconian lockdown that nullifies transmission. (b) is
using a hard lockdown with 80% efficiency. (c) is using a soft lockdown with a 60% efficiency. The bottom panel (d) is not
doing lockdown. Cross-transmission from (d) is causing a surge of cases in (c) despite being in lockdown. Initial conditions are
Ia(t0) = 1 and the remaining population is susceptible at t = t0. Each jurisdiction contains N = 100.000 persons. Model
parameters: R0 = 2.0,σ = 1/5, γ = 1/4, gab = gbc = gcd = 0.01 and gdc = 0.05. Lockdown parameters: a = 500, and b = 50.

Unsynchronized lockdown (UL) is activated in i when cases in Ii(t) exceed a and anulled when cases drop below b.
Mathematically, we can write this as a sequence of dynamic boundary conditions. If lockdown is not active then βi = β while
a ≥ Ii(t) until a < Ii(t) at which instant lockdown becomes active and βi = β (1− si). Then βi = β (1− si) while Ii(t)≥ b until
Ii(t)< b at which point lockdown is no longer active and βi = β .

Synchronized lockdown (SL) follow the same rule but is activated in all jurisdictions if cases in just one of them exceed a
and undone only when cases in all them drops below b.

Closing and re-opening parameters could vary between jurisdictions using UL. The risk of depleting critical care capacity
has been widely used to support lockdown. Substantial variability exists in the number of intensive care beds even among
wealthy nations10. The effect of lockdowns si also varies depending on compliance and rigor. A soft lockdown may entail
closing schools, public places, and limits on gatherings, while a hard lockdown breaks down contact between people by forcing
them to shelter in place. Estimates suggest a reduction in transmission by around 60-80 % can be expected3, 11.

2.1 coupled susceptible-exposed-infected model
Let us consider transmission inside and between n jurisdictions, each according to a susceptible-exposed-infected model with a
small amount of cross-transmission between them.

dSi

dt
=−(1−∑

j
gi, j)βiIiSi −∑

i
gi, jβiSiI j, (1)

dEi

dt
= (1−∑

j
gi, j)βiIiSi +∑

i
gi, jβiSiI j −σEi, (2)

dIi

dt
= σEi − γIi. (3)

Here the sum is over n jurisdictions interacting through a coupling matrix gi, j. The coupling matrix gi, j gives the cross-
transmission from one jurisdiction to another. The first term in the system above gives the transmission within i. The second
term gives the transmission from other jurisdictions to i. The sum ∑ j gi, j gives the net contact rate out of i to other jurisdictions.
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Figure 3. Disparities between the two strategies. Here SL performs better in blue and worse in red. (a) show the difference
in attack rate between the two strategies after one year of transmission. (b) shows the difference in lockdown time measured as
a fraction of one year. Each jurisdiction contains N = 100.000 persons. Model parameters: σ = 1/3.69, γ = 1/3.48, and
g1,2 = g2,1 = 0.01. Lockdown parameters: b = 0.1 ·a, and s = 0.6. Bottom panel (c) and (d) shows the simulations with
reduced effectiveness for UL decreased to s = 0.5. (e) show 3 simulations with a limit on lockdown time equal to 160 days. (f)
shows the effect of varying s for SL on peak seperation. Effectiveness of UL is kept constant at s = 0.6. Model parameters for
(e) and (f) are R0 = 2.0, a = 100, b = 10, and otherwise equal to those above.

This value is subtracted from the transmission rate within i. Each jurisdiction contains the same number of persons N. The
disease cannot go extinct owing to the continuous nature of the model. Onward transmission persists until susceptible depletion.

3 Model analysis and results
The ordinary differential equations (ODE’s) are solved numerically with the suppression strategies as dynamic boundary
conditions. Figure 2 shows transmission between n = 4 jurisdictions using UL. The effectiveness of lockdown varies, as shown
by the blue filling. The jurisdiction in (d) has decided not to enact a lockdown but maintains a strong coupling to (c), which
further drives transmission since lockdown here otherwise barely keeps R0 below the epidemic threshold. Re-directing this
coupling to (a) has no effect, and the effect on (b) is negligible. This finding would suggest that border closings are less
pertinent if a hard lockdown is in effect. However, if only a soft lockdown is in effect, one should be more cautious about links
to a large transmission cluster.

3.1 model’s parameter space
The model is simulated on various parameters to measure performance on attack rate and time spend in lockdown. This analysis
seeks to find variations in outcomes between the two suppression strategies. Here we consider transmission between two
jurisdictions connected by a reciprocal coupling gi j = g ji = 0.01 to keep things as simple as possible. The latency σ−1 and
infectious periods γ−1 are set to 3.69 and 3.48 days, respectively12. The transmission rate β and the lockdown trigger a, and b
are free parameters. Lockdown is set to reduce transmission β by 60%. Figure 3 shows the output of simulations after one year
of transmission. Here the horizontal axis shows the activation threshold a; b is set to 10% of this value, so cases must drop one
order of magnitude below a to de-activate the lockdown. The vertical axis shows R0 which reduces to β

γ without vital dynamics.
Fig. 3 (a) shows the difference in attack rate between the two strategies after one year. SL performs better in the blue and worse
in the red. Fig. 3 (b) shows the difference in lockdown time measured as a fraction of the one-year simulation time.

UL generally gives a lower attack rate in exchange for a longer lockdown. It is not surprising that longer lockdowns tend
to yield fewer cases, but there are some exceptions to this rule that we will return to. In practice, however, it may be more
difficult to implement UL at a local level. It also opens up the possibility that persons from municipalities under lockdown
carry on social activities in other places. Davies et al. found regional lockdowns to be less effective than a national lockdown in
England7. While UL has increased flexibility over SL, it is likely not as effective at reducing the contact rate. The bottom
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Figure 4. Top panels (a-b) show a simulation with SL. Overshooting is not minimized on the last wave as infection peaks just
below a. Bottom panels (c-d) show the simulation with UL. Each jurisdiction contains N = 100.000 persons. Model
parameters are R0 = 3.0, γ = 1/4, σ = 1/5, and g12 = g21 = 0.01. Lockdown parameters: a = 2100, b = 210, and s = 0.4.
Failure to minimize overshoot can also occur for UL depending on the input parameters.

panel (c) and (d) shows the simulations repeated but with effectiveness for UL decreased to s = 0.5. Here SL performs better
and can repress transmission with greater R0. Lockdown time is even higher now compared to UL for large R0 because UL is
unable to stop transmission. Susceptible depletion takes place early, resulting in less lockdown time at the cost of more cases.
Unfortunately, the problem of weighing lockdown duration against attack rate persists. It is possible to overcome this problem
by giving each municipality a maximum of 160 lockdown days and measure how long the two strategies can delay susceptible
depletion. Lockdown is immediately de-activated when the 160 days have been spent. Fig. 3 (e) shows this for 3 simulations.
Here UL is used as a reference with s = 0.6 and the effectiveness of SL is varied. Fig. 3 (f) shows the average peak separation
as a function of δ s. UL is slightly better at parity δ s = 0. However, if δ s = 0.2, then SL delays susceptible depletion for about
100 days more using the same amount of lockdown time. The effect of varying a and b on peak separation was small compared
to s.

3.2 catastrophic overshooting
Figure 3 show that longer lockdown does not necessarily correlate with a lower attack rate—the red trajectory in (a-b) has
a moderately higher attack rate despite a longer lockdown period. This effect is a result of the strategy failing to minimize
overshoot. Overshooting is the excess infections that occur leading up to herd immunity. The effective reproduction number
Reff drops as the susceptible population is depleted. The infectious curve peaks when Reff is one; from this point onward, the
expected number of cases generated by each infection is equal to or less than one. The number of infected is maximum, so
cases continue to pile up absent any effort to control the pandemic. These excess infections can be prevented with interventions
to curb transmission temporarily. We arrive at herd immunity in both scenarios, but the latter’s final attack rate is minimized.
Recurring outbreaks are not possible if lasting immunity is gained from infection. This assumption is especially problematic
concerning SARS-CoV-2 as the mutation of new variants is driven by a vast global reservoir.

SL and UL can fail to minimize overshooting because of the intransigent lockdown condition. Fig. 4 shows an example
of this error. The top panels (a-b) show transmission between two jurisdictions using SL. The last waves are just below the
threshold for lockdown activation, so the overshoot is not minimized on the final waves. The bottom panels (c-d) show the
simulation repeated with UL. Here the epidemic is much faster but overshooting is minimized over the entire epidemic. SL
performs worse on cases and significantly worse on lockdown time. Nonetheless, SL is generally better at delaying susceptible
depletion given the same amount of lockdown time, assuming it is slightly more effective.
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4 Discussion and summary
Outbreaks of novel infectious diseases pose a threat to global public health. Control strategies can blunt the impact. These
efforts to control transmission are only temporary. Delaying transmission of SARS-CoV-2 by lockdown or contact tracing does
not prevent outbreaks from erupting once infection controls are lifted. While, in theory, it is possible to eradicate SARS-CoV-2
with lockdown, these would need to be synchronized worldwide and maintained for very long, which is not realistic. In practice,
some form of herd immunity through vaccination or infected persons recovering with immunity is the only way to prevent
recurring outbreaks of an infectious disease that has escaped early containment.

This work suggests that SL is likely better at postponing susceptible depletion, while UL is better at minimizing overshooting
using minimal lockdown time. SL is, therefore, promising if the goal is to postpone susceptible depletion until a vaccine
becomes available. UL may be better if, for whatever reason, a vaccine is not possible to make in the foreseeable future, and the
aim is to minimize overshooting with the fewest possible resources. The effort to quickly discover and distribute a COVID-19
vaccine has been an unprecedented success. It is, however, not clear from the onset of a novel infectious disease outbreak how
long it takes to find a vaccine or whether it is possible to do so. Nor is not known how long intermittent lockdowns can be
sustained before civil disobedience ensues. Maintaining social distancing for many years would likely not have been feasible
if initial efforts fail to produce a safe and effective vaccine. Minimizing overshoot and expanding intensive care capacity to
prevent overflow of critical cases may be better if it is impossible to delay transmission until a vaccine becomes available.
However, allowing a significant fraction of a population to be infected entails more deaths and unknown risks. Some recovering
COVID-19 patients show signs of chronic illness and cognitive impairment, a condition known as Long COVID. It is unknown
if this condition is permanent, but it will be very costly if so.

It should be stressed that lockdown, coordinated or not, is an emergency brake to be used only when other options are
unavailable. Being better prepared for future pandemics is better than having to close down society.
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Abstract

The West African Ebola (2014-2016) epidemic caused an estimated 11.310 deaths and
massive social and economic disruption. The epidemic was comprised of many local
outbreaks of varying sizes. However, often local outbreaks recede before the arrival of
international aid or susceptible depletion. We modeled Ebola virus transmission under
the effect of behavior changes acting as a local inhibitor. A spatial metapopulation
model is used to simulate Ebola epidemics. Our findings suggest that behavior changes
can explain why local Ebola outbreaks recede before substantial international aid was
mobilized during the 2014-2016 epidemic.

1 Introduction

The West African Ebola epidemic was the deadliest outbreak of Ebola virus disease
reported to this date. On March 23, 2014, local authorities notified the World Health
Organization of an Ebola virus outbreak in southern Guinea. The virus quickly spread
to neighboring countries, Liberia and Sierra Leone, causing a net count of 28.616
infections and 11.310 fatalities before ending in June 2016 [1]. The unprecedented scale
of the epidemic resulted from dysfunctional healthcare systems, low trust in government
following years of armed conflict, and a slow response to the crisis [2]. Risky cultural
practices also compounded the severity of the outbreak, particularly burial rites that
involve close contact with deceased Ebola patients.

Fig. 1 shows the cumulative number of confirmed or probable cases at the district
level in Guinea. The time-series begin on January 5, 2014, ends on May 8, 2016, and
advances in weekly increments. The outbreak originated in Guinea, in the Guéckédou
prefecture, and quickly spread to Liberia and Sierra Leone. On August 8, 2014, several
months after its beginning, the World Health Organization declared the outbreak in
West Africa a Public Health Emergency of International Concern. On September 18,
2014, the United Nations established The United Nations Mission for Ebola Emergency
Response (UNMEER). The West African Ebola epidemic was declared over by the
World Health Organization on June 9, 2016.

The local outbreaks in Fig. 1 terminate at different times and the whole epidemic
ends long before susceptible depletion. Before the United Nations convened to form
UNMEER, many local outbreaks, including the outbreak in the Guéckédou prefecture
where the epidemic originated, had already ceased. Naive epidemic theory predicts that
onward transmission continues in the absence of interventions (e.g., contact tracing,
isolation, or immunization) until herd immunity is reached. It is unclear if interventions
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Fig 1. Ebola virus epidemic in Guinea. Shows the cumulative number of
confirmed or probable cases at the district level. The time series begins on January 5,
2014, ends on May 8, 2016, and advances weekly increments. On August 8, 2014,
several months after its beginning, the World Health Organization declared the
outbreak in West Africa a Public Health Emergency of International Concern. On
September 18, 2014, the United Nations established The United Nations Mission for
Ebola Emergency Response (UNMEER). The grey shaded regions show the time before
the creation of UNMEEER. Guinea was declared free of Ebola by the World Health
Organization on June 1. We also show epidemic curves for 14 of 33 Guinean prefectures.
The outbreak originated in the Guéckédou prefecture and quickly spread to Conakry,
the capital city. Data from the World Health Organization.

or susceptible depletion can explain the abrupt termination of local outbreaks. Despite
the large size of the outbreak compared to previous sporadic outbreaks of Ebola virus
disease (EVD) in Sub-Saharan Africa, the total number of cases was also small
compared to model projections [3]. Merler et al. modeled the spatial spread of Ebola
virus disease in Liberia (2014) and concluded that Ebola treatment units (ETUs), safe
burial procedures, and household protection kits explain the decrease in incidence [4, 5].
Here we explore an alternate hypothesis; that behavior changes explain the surprisingly
small number of cases.

1.1 Human behavior and the 2014 West Africa Ebola Outbreak

Ebola virus disease is transmitted by direct physical contact with infected bodily
fluids [6]. According to the World Health Organization, avoiding direct contact with
people who show Ebola symptoms reduces transmission. Asymptomatic infections are
rare [7], suggesting that social distancing and isolation are effective in reducing the risk
of human-to-human transmission. Burial rites are also a strong driver of Ebola
transmission. Previous outbreaks in the Democratic Republic of Congo (DRC) and
Uganda have shown that unsafe burial practices linger unless infection-control measures
are adapted to local traditions [8]. Nonetheless, the 2014-2016 Ebola epidemic was
massive compared to previously known outbreaks. An observational study found that of
the cases exposed during funerals, 65% of those giving a response reported having
touched the corpse. This proportion declined significantly after October 2014, suggesting
that behavior changes had taken place [9]. Estimates of R0 during the 2014-2016 Ebola
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Fig 2. Diagram of the compartmental model. β is the contact rate, and γ is the rate of
recovery. α is the rate of behavior change, and δ is the contact rate in the aware
population.

epidemic in West Africa are low, ranging between 1.2 and 2.2 [10]. Hence, a moderate
reduction in transmissibility is sufficient to push R0 below the epidemic threshold [11].

It should be emphasized that the behavior changes mentioned above (i.e., avoiding
direct contact with people who show Ebola symptoms, self-isolating, and not touching
the corpse during a funeral or attending the ceremony) can occur autonomously.
Findings by Drake et al. suggest behavior changes decreased the effective reproductive
number in Liberia to almost one and that interventions further brought it down below
the epidemic threshold [12]. Another study by Funk et al. found that healthcare-seeking
behavior doubled throughout the outbreak in Lofa county, Liberia, but this was also
linked to increased transmission inside treatment facilities [13]. The RAPID Ebola
forecasting challenge compared the performance of eight independent modeling
approaches on synthetic data and found that the top-performing models for short-term
weekly incidence used reactive behavior changes [14].

2 Model

Consider the following system of ordinary differential equations (ODE’s). Each equation
represents a compartment of susceptible, aware, infectious, or removed agents [15].

dS

dt
= −βIS − αIS (1)

dA

dt
= αIS − δAI, (2)

dI

dt
= βIS + δAI − γI, (3)

where β is the contact rate, and γ is the rate of removal. α is the rate of behavior
change, and δ is the contact rate for aware individuals. A is assumed to grow by a rate
that is proportional to I, meaning that only symptomatic carriers can spread awareness.

Spatial heterogeneity was a distinguishing feature of the 2014-16 Ebola epidemic.
However, the mean-field model above assumes homogeneous mixing. The West African
Ebola epidemic has been the subject of many spatial modeling studies [4, 16–20]. Funk
et al. showed that the impact of behavior change is more pronounced in the presence of
spatial structure [21]. The tendency of local Ebola outbreaks to flare up and subside
quickly suggests the epidemic could be locally self-organized. To explore this possibility,
we will consider a spatial version of the mean-field model.
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Fig 3. Diagram of the spatial model. Each site on the grid contains just one person. A
small grid is with one infectious person in the center. (a) the infected person spreads
disease and awareness to nearby squares. The transitions occur with probability β and
α, respectively. The infected cell is removed with probability γ. (b) shows the updated
state-space on the grid.

2.1 Stochastic lattice model

The spatial model is defined on a L× L lattice where one person occupies each site. A
grid cell is either susceptible S, infectious I, aware A or removed R. Grid cells on the
lattice are initialized in the susceptible state with a small number of infected sites to
start the epidemic. Simulations run until infected have been removed. An asynchronous
updating scheme is used with ∆t = 1.0 day equal to L2 updates. Do the following to
perform an update.

a: Select a random grid cell s1. If s1 is infected then proceed to (b). Else proceed to
(c).

b: 1) Select another site s2. This site is chosen randomly on the lattice with
probability p. Else with probability 1− p, select s2 with a probability that decays
exponentially with distance from s1. To be explicit, select a distance d with
probability ∝ exp(−d/λ) and choose a random point s2 at this distance.
2) If s2 is susceptible, it is infected with probability β∆t. Else if s2 is aware, it is
infected with probability δ∆t.
3) Select another cell s3 as above. If s3 is susceptible, is becomes aware with
probability α∆t.

c: s1 is removed with probability γ∆t.

The extended model contains two spatial parameters, p, and λ in addition to the
rate parameters α, β and γ. There is a probability of selecting identical targets during

an update i.e., s2 = s3. Since the reactions S
β→ I and S

α→ A are mutually exclusive, it
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Fig 4. Phase diagram of the spatial model. The color shows the final attack rate (%).
Outbreaks are controlled in the dark domain but spread unhindered in the light domain.
(a) shows the spatial model on a 100× 100 grid with δ = 0, p = 0.01 and λ = 2.0. (b) is
simulated on a 200× 200 grid, but otherwise identical to (a). Representative spatial
configurations are shown for selected parameters, where all infected have been removed.
White grid cells are susceptible; grey cells are aware; red cells are removed. (c) Explores
the effect of some susceptibility in the aware state, using δ/γ = 1

2 with other parameters
as in (a). (d) Homogeneous mixing with p = 1, and otherwise identical to (a)

should be specified what happens in this event. Here we allow the reaction S
β→ I to

happen first. It is also possible to pick randomly between the two reactions, but the
effect is completely negligible unless α and β are large. Global and local transmission
allow for dispersal on different length scales. The effect of global transmission events is
to seed spatially disassociated transmission clusters, which made up the epidemic in
West Africa 2014-16 [22]. The previous known Ebola outbreaks have generally been
localized, so this is a novelty. The effect of long-distance dispersal on epidemics has
been studied by Shaw et al. [23,24]. For p ∼ 1 or λ ∼ L we recover homogeneous mixing
equivalent to the mean-field model.

3 Analysis

Fig. 4 explores the effect of awareness transmission and idealized reproductive number.
Successful spreading is a stochastic phenomenon, and many outbreaks die out early by
chance [25]. The extinction probability is large when I(0) = 1 so we initiate our
simulations with a cluster of I(0) = 16 infected sites placed in the center. To estimate
the attack rate in Fig. 4 we average over many simulations.

Outbreak size measured by the final attack rate increases with β/γ and decreases
with α/β. The subcritical domain is carved out by the space of parameters where the

October 17, 2021 5/9



0 1 2 3 4
(α/β)

0.2

0.4

0.6

(σ
/
µ

)

(a)

0 100 200 300 400
time (days)

100

101

102

103

R
(t

)

(b)

Fig 5. (a) shows the coefficient of variation cv between the subgrids for increasing α.
Model parameters: β = 0.25, γ = 0.10, δ = 0, and p = 0.01. The scale parameter in the
exponential distribution was 2.0. (b) shows cumulative cases R(t) for each subgrid in a
simulation around criticality α = 0.70 with parameters as above.

disease is not contained. Outbreaks are rapidly enclosed by awareness in the
supercritical domain. Fig. 4 (a) and (b) suggest that system size has a negligible effect.
The attack rate is scale-invariant in the subcritical domain because the cluster is
spanning the whole lattice. Scale-invariance is broken in the supercritical domain as the
cluster grows to a finite size before it is enclosed by awareness. Here it is possible to
reduce the attack rate by scaling the system.

Panel (c) shows the effect of δ > 0, which is moderate provided that δ is not
increased above the critical value where transmission is sustainable in a fully aware
population.

Panel (d) reveals the absence of a supercritical state in a well-mixed system. It is no
longer possible for awareness to spread around and enclose a cluster of infected cells;
therefore, it does not affect the epidemic threshold [21]. The effect of susceptible
depletion is also decreased as infected grid cells face much less intraspecific competition.

3.1 Heterogeneity measures

The fuzzy boundary between the sub and supercritical domain is particularly
interesting. The epidemic can often seed multiple spatially dissociated transmission
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clusters before containment, resulting in a high degree of spatial heterogeneity. The size
variation among the clusters can range from a few infected to clusters spanning the
whole system. We explore this by dividing a 200× 200 lattice into subgrids of 50× 50
grid cells. Variations between the subgrids can be used to measure spatial heterogeneity.
Fig 5 (a) shows the coefficient of variation cv between the 16 subgrids. The dispersion is
low before criticality; the cluster will span the whole lattice producing only minor
variations between the subgrids. Spatial heterogeneity is maximized around criticality
where some regions have massive outbreaks and others none at all. The region-to-region
variability drops in the supercritical state where transmission is rapidly contained.

Fig 5 (b) shows the number of cases over time in each subgrid. Features are
comparable to Fig 1 distinguished by subexponential growth and outbreaks of varying
sizes that saturate rapidly before susceptible depletion.

4 Discussion

The model can explain the spatial patterns observed during the 2014-16 epidemic in
Guinea. However, many assumptions have been made throughout the paper. The rate
of behavior change α and its effect δ is not derived from data. More data is needed to
understand the dynamic interplay between infection and human behavior. Evidence
from the ongoing Sars-CoV-2 pandemic suggests that behavior changes have a
significant effect on disease transmission. However, the risk of Ebola infection is likely
to induce more drastic behavior changes than Sars-CoV-2, given the vast discrepancy in
the case fatality ratio. Data concerning Ebola-related behavior change is limited. It is
known that participation in risky funerals declined over time in Guinea, Liberia, and
Sierra Leone. The International Ebola Response Team further found that this decline
was positively correlated with the within-district transmission intensity, supporting the
proposition that local prevalence drives behavior changes [9]. Awareness is more likely to
be present in communities with either ongoing transmission or past exposure. However,
awareness is expected to fade over time as the perceived risk of infection decreases. Our
model does not contain a fading term, but adding one is not difficult. Glaubitz et al.
found that this could cause oscillatory behavior in a homogeneous mixing model [26].
The presence of spatial structure should have a dampening effect on such oscillations
because different regions quickly come out of phase. If a localized outbreak ends and
the remaining A states are returned to S states, there are no infected to spread the
disease. It is, therefore, necessary to introduce the disease again, either through a global
transmission event or by encroachment from another growing transmission cluster.

Precise estimates of the susceptibility of aware people δ are unnecessary; it suffices
to show that the disease cannot survive in a fully aware population. Estimating δ is
difficult because humans can exhibit a range of behaviors that produces a spectrum of
A states with corresponding contact rates. However, it is possible to identify specific
behaviors with a significant effect. Lagrand’s model breaks the reproduction number
down into components that can be ascribed to various settings, including community Rc,
hospitals Rh, and funerals RF [5]. The RF component is driven by behavior and gives a
lower bound on the effect of awareness. The weight carried by each of these terms can
vary significantly between Ebola outbreaks, suggesting that δ is very outbreak-specific.

The spatial model is simulated on a grid with one idealized person in each grid cell.
While this is not realistic, the effect of population density is unlikely to be profound. Hu
et al. has estimated how contact rates scales with population density [27,28]. However,
symptomatic Ebola patients are likely to be bedridden during infection. Those most
likely of exposure are caring family members, health care personal, or those attending
funerals. Accordingly, the rates could be largely independent of population density.

The ongoing Sars-Cov-2 pandemic has shown us that variations in behavior explain
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many differences between countries. Many factors influence how people respond,
including the risk of infection, age, and compliance with public health guidelines.
Nonetheless, the latter will carry more weight in countries with high trust in government.
Ebola outbreaks have so far happened in countries where trust in government is low.
Here the behavior response is more likely to be a local effect because people respond to
community transmission more than recommendations from public health officials. We
have shown how such a local behavior response can explain the abrupt termination of
local outbreaks, as was observed during the 2014-2016 Ebola epidemic.
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Social media has blurred the distinction between news outlets and social networks by giving everyone access to
mass communication. We simulate how influencers compete for attention on a social network by spreading infor-
mation. The network structure occupies an ordered metastable state where one influencer maintains dominance
for a sustained period or a fragmented state that divides attention between influencers. Numerical simulations are
performed to map the domain of the ordered regime on various network topologies. Mutual coexistence between
a few dominating influencers occurs on a scale-free social network. Our findings suggest the perception of fake
news as a pervasive problem is endemic to a society where everyone can become a news outlet.

DOI: 10.1103/PhysRevE.103.022303

Social contagion processes have been simulated with local
and reciprocal interactions between neighbors in a connected
graph [1–5]. González-Avella et al. modeled the effect of
mass media on the dissemination of culture [6–8]. Social
media has disaggregated media influence by facilitating in-
formation sharing. Ordinary people can now communicate
with unlimited subscribers, something previously reserved for
news corporations. Members of a global social network can
have as many subscribers as local newspapers or even large
news corporations. We argue that users in a social network
are now effectively news outlets, varying in size and impact.
The capacity to interact with many is a defining property
of the information age. The nature of this interaction is not
reciprocal but directed; a collection of subscribers can receive
information from a news outlet or an influencer, but there
is no mutual exchange of information. Below, we simulate
the emerging dynamics of a social network where any node
can become an influencer and collect followers by sharing in-
formation. Our model integrates local reciprocal interactions
between neighbors in a social network and global directed
interactions between influencers and subscribers.

Before giving a formal description of the model, it is useful
to describe its core mechanics in words. Consider a static
undirected social network where nodes can be either followers
or influencers. The topology of the social network has to be
specified. A lattice is used to model the social network during
the preliminary analysis, but other network topologies are
considered toward the end. The basic idea is that influencers
can build up a network of followers by sharing newsworthy
information. Each follower is allowed to maintain only one
directed link to an influencer at any point in time because
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attention is a finite resource [9]. Unlike the static links in
the social network, these directed links can change ownership
when a follower node decides to follow another influencer.
Each node is assigned a news value τ , gauging its knowledge
of current affairs. The network is updated in discrete steps. For
each update, a random node a communicates with a random
neighbor b in its social network. If b has a lower news value
than a, then b unfollows its own influencer to follow a’s
influencer. If the neighbor b being attacked is an influencer,
b will instead copy a’s news value onto itself and its own
followers.

Each node has a probability pi of discovering a news event
with every update. Galtung and Ruge [11] proposed a set of
criteria known collectively as news values that influence the
selection of published news. We quantify newsworthiness by
assigning a news value of τ = t to a node that discovers a
news event. Followers that discover news events are promoted
to influencers. Influencers also update the news value of their
subscribers to t upon discovering a news event. Recent news
events are thus assigned a higher news value to ensure that
new information takes precedence. The emergence and decay
of novelty have been the subject of empirical and theoretical
modeling studies [12–15].

Figure 1 shows the possible interactions on a simple lattice.
Figure 1(a) shows the discovery of a news event followed by
the capture of a node, and Fig. 1(b) shows how an influencer
can immunize its followers by appropriating information.

I. MODEL

We consider N nodes connected by fixed links representing
person to person communication in a static social network. A
node can be either a follower f or an influencer S. Each node
has a current information state τ that is equal to the time of
origin of the last news update it has received. Furthermore,
each node is assigned an index, i, j, . . . , n, that shows which
influencer it belongs to. This is just a way to keep track of
different subcultures. For example, if an influencer ai ∈ S has
index i, then all of its followers will inherit this index. The
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S1 f1 f1

f1 f2ffS2

f2fff2ff f2ff

(a)attack

tweet

S1 f1 f1

f1 f2ffS2

f2fff1 f2ff

attack

(b)retweet

FIG. 1. Diagram of the model on a quadratic lattice. Each node
represents a user on an undirected social network. Color and sub-
script indicate the follower’s adherence to a news outlet. Panel
(a) shows the discovery of a news event followed by the capture of
a node. Panel (b) shows how an influencer (S2) can immunize its
followers by copying information.

probability that a node generates a news event is given by

pi =
{

p0(1 + ηki ), influencer,
p0, otherwise, (1)

where ki is the number of followers the influencer with index
i presides over. Note that we define p0 to be sufficiently small
such that pi never exceeds unity, i.e., pi = p0(1 + ηki ) � 1.
Here η is a positive feedback parameter between news gener-
ation and the number of subscribers [16]. Keep in mind that
an influencer itself is a node and can therefore have no more
than N − 1 followers. Therefore, if p0 = 1/N and η = 1.0
then pi = 1+(N−1)

N = 1. To avoid pi exceeding 1, we impose
the following bounds, η � 1 and p0 � 1

N , on the model’s
parameters.

Time t is advanced by one increment t → t + 1 for each N
updates performed on the system. To perform an update, do
the following.

(i) Select a random node a. The chosen node discovers
a news event with probability pi if it is an influencer or p0

otherwise. If a follower discovers a news event, it is promoted
to an influencer, i.e., its state is changed from f to S, and it
gains the news value τ = t . If an influencer discovers a news

event, it updates the news value of itself and its followers to
τ = t .

(ii) Proceed by selecting a random neighbor b to the node
a. Let τ (a) and τ (b) be the news values of a and b, respec-
tively. If b is not an influencer and τ (a) > τ (b), then b adopts
the news value τ (a) and begins to follow the same influencer
as a. If b is an influencer and τ (a) > τ (b), then b sets the news
value of itself and its followers to τ (a).

The system is initialized at time t = 0 with all nodes occu-
pying the follower state. These unclaimed followers have not
been assigned a news value τ and can be captured as soon as
a node discovers the first news event. News events that occur
later on are assigned a higher news value because t increases
as we perform more updates on the system. This mechanism is
necessary to ensure that recent news events overwrite outdated
ones. To prevent the system from freezing up with influ-
encer nodes impervious to capture, we also demote influencers
without any subscribers to the follower state. This is done
whenever a full iteration of N updates has been performed.
These demoted influencers are not following anything but can
be absorbed by another subculture. As a result of this removal
process, the number of influencers will eventually saturate
around some steady-state value that depends on p0 and N and
on whether the system is ordered or fragmented.

II. RESULTS

Figure 2 show a simulation on a small system with a lattice
topology and parameters p0 = 2.5 × 10−4 and η = 0.0 over
1100 time step iterations. Figure 2(a) shows the size of each
subculture. The system occupies a perpetually fragmented
state in the absence of feedback. Heterogeneity in the distri-
bution of newsworthy information drives the conflict between
influencers. To quote William Gibson, “The future is already
here—it’s just not evenly distributed.” An influencer must
discover new information to stay relevant and hold on to its
followers. A newspaper that printed the same stories every
day would presumably also lose its subscribers. Figures 2(b)
and 2(c) show snapshots of the simulation. The system has
self-organized into a configuration where influencers (white

FIG. 2. Simulation on a quadratic lattice. Panel (a) shows the size of each subculture over 1100 time steps. Panels (b) and (c) each show a
snapshot of the simulation at the labeled points in time. Each color defines a subculture, and the white stars represent influencers. The system
occupies a perpetually fragmented state where no subculture dominates for an extended period. The simulation was carried out with periodic
boundary conditions and parameters: N = 20 × 20, p0 = 2.5 × 10−4, and η = 0.0. Note that stars are only updated each time a full iteration
of 400 updates has been performed. A full animation of the simulation is included as Supplemental Material [10].
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FIG. 3. Simulation with positive feedback on a quadratic lattice. Panel (a) shows the size of each subculture. Each vertical line represents
the time evolution of a subculture. The solid lines are metastable states where the vast majority of followers belong to the same influencer.
The diffuse blankets are fragmented states encompassing many subcultures of varying sizes. Panel (a) shows the first ordered metastable state
emerges around t = 5 × 103. Panels (b)–(d) show static snapshots of the simulation at different points in time. Panel (b) shows the monoculture
on the verge of collapse as many emerging subcultures capture followers from the dominating influencer. The largest subculture makes a speedy
recovery in panel (c) before collapsing in panel (d) into a fragmented state. Simulation was carried out with periodic boundary conditions and
the following set of parameters: N = 100 × 100, η = 0.30, and p0 = 4.0 × 10−5. The color scheme in panel (a) displays a subculture’s size,
but in the remaining panels, it displays affiliation with identical color nodes belonging to the same subculture.

stars) are located on the boundary between subcultures. An
influencer must be attacked directly before it can copy in-
formation from its attacker. Following the appropriation of
a news event, the two influencers and their followers will
have the same news value. This immediately suspends the
conflict until another news or appropriation event induces a
discrepancy in news value between them.

Figure 3 shows a simulation on a larger system with param-
eters p0 = 4.0 × 10−5 and η = 0.30 over 20 000 time-step
iterations. Figure 3(a) shows the size of each subculture over
the simulation. An influencer can now increase its probability
of discovering a news event by capturing more followers. This
positive feedback loop induces metastable states where one
influencer maintains dominance for a sustained period.

Figures 3(b)–3(d) show snapshots of the simulation.
Figure 3(a) shows that the first ordered metastable state
emerges around t = 5 × 103. Figure 3(b) reveals that the or-
dered state is about to collapse as many emerging subcultures
capture followers from the dominating influencer. The mono-
culture makes a swift recovery in Figure 3(c) before it finally
collapses into a fragmented state in Fig. 3(d). The transitions
between the ordered and the fragmented regime are short-
lived compared to the particular state’s lifetime. These shifts

occur over a few hundred iterations for the chosen parameters,
whereas the fragmented or ordered states tend to persist for
thousands of iterations. Increasing η above a critical threshold
eliminates the fragmented regime, but the system can still
jump between different metastable states. The lifetime of a
metastable state also increases with η. We also performed
simulations on a one-dimensional system where no value of
feedback was sufficient to induce ordered metastable states.
This is consistent with van Hove’s nonexistence theorem [17].

We use a linear feedback loop that increases pi with the
number of subscribers ki, but other functional dependencies
were also considered. Sublinear growth is usually insufficient
to support an ordered regime unless η is increased to com-
pensate. Let us assume that N = 104, p0 = 1/N , and η = 1.0.
So if pi, as an example, increases with the square root of
ki, an influencer with N − 1 followers will have a pi value
of 0.1 instead of 1.0 obtained with the linear model. How-
ever, faster than linear growth does not necessarily support an
ordered regime either. If pi increases with the square of ki,
each influencer with 100 or more followers obtains a pi value
greater than 1.0. This caps the advantage of followers above
a critical threshold, as there is no benefit to a pi value greater
than 1.
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FIG. 4. Semilogarithmic phase diagrams. Panels (a)–(c) shows
the time-averaged fraction of nodes belonging to the largest subcul-
ture for different network substrates. The followers in the largest
subculture are counted for each time step and averaged over the
full simulation. The subculture being sampled is not necessarily
the same over the entire simulation. Panel (a) shows the quadratic
lattice. Panel (b) shows a complete graph with interactions between
random nodes. Panel (c) shows a small-world graph constructed
by a Watts-Strogatz process: Each node is initially assigned four
neighbors, and the links are randomly rewired between nodes with
a probability of β = 0.1. Dark regions represent the ordered domain
in each diagram, and the system becomes increasingly disordered
with brightness. The quadratic lattice becomes fully disordered in
the lower-right corner, whereas the other network substrates become
fragmented. The ordered domain is smaller for random mixing than
for local interactions. Panel (d) shows the percentage of viral news
events that spread to half or more of the nodes on a quadratic lattice.
Each simulation was carried out with N = 104 nodes and averaged
over 10 000 time steps.

Figure 4 shows a collection of phase diagrams. Fig-
ures 4(a)–4(c) show the time-averaged size of the largest
subculture for different network topologies. Figure 4(a)
shows the familiar quadratic lattice with local interactions.
Figure 4(b) shows a complete graph with interactions between
random nodes, i.e., mean-field behavior. Figure 4(c) shows
a small-world graph constructed by a Watts-Strogatz model
where each node is initially assigned four neighbors. The
links are then randomly rewired with a probability of β = 0.1.
Social networks have small-world properties [18]. However,
findings by Newman and Park suggest that real-world social
networks differ from other networks in important ways [19].
All the network substates have an ordered regime for high
values of η and p0. Both variables contribute because pi is
increased by an increment of ηp0 for each follower gained.
Dark regions represent the ordered domain in Figs. 4(a) to
4(c). This region is larger on the lattice than on the com-
plete graph. Emerging subcultures can grow exponentially

on a complete graph, whereas local interactions permit only
polynomial growth. Simulations on the lattice thus give the
influencer of the largest subculture more time to discover
a news event before losing a critical number of followers.
News events become less frequent as we decrease p0, which
permits an emerging influencer to capture a large number of
followers before the next news event occurs, explaining why
the maximal cluster size increases for very low p0. This effect
is also more pronounced on the complete and small-world
graph than on the lattice, where news events take longer to
spread.

Figure 4(d) shows the fraction of viral news events that
spread to at least half of the system on a quadratic lattice.
A news event has a good chance of capturing the attention
of a broad audience when p0 is small. However, competition
intensifies as p0 is increased, and more recent news events
often overwrite news events before they can spread to a large
fraction of the system. For large p0 only a small fraction of
events go viral [20]. So if almost nothing happens, the few
exciting events that occur are very likely to receive widespread
attention. But in a world exposed to a vast flux of news
events, only a tiny fraction of these events get viral coverage.
Figures 4(a) and 4(d) show that information diversity is sup-
pressed in the ordered regime, as only news events propagated
by the dominating influencer receive a broad audience.

We also performed a preliminary analysis on a scale-free
network [21]. The Barabási-Albert model was used to grow
a scale-free network of N = 10 000 nodes [21]. Each node is
initially assigned four links that are preferentially attached to
existing nodes with high degrees. As a result, a few nodes end
up with disproportionately many links. Our analysis shows
that mutual coexistence between a handful of dominating
influencers emerges over time in the absence of positive
feedback. The appropriation of news events was primarily a
defensive mechanism on the lattice network. However, this
mechanism can also be used offensively on a scale-free net-
work. A node with many static links can easily pick up news
events and use the information to attack other nodes together
with its followers. Attacking these influencers’ followers is
difficult because their many links ensure that their news value
is almost always up to date. We deemed a comprehensive
analysis of the scale-free network to be prohibitively time-
consuming. Simulations must be averaged over a long time
because the nodes with many links have only a small proba-
bility of being promoted to influencers.

III. DISCUSSION

Our work concerns competition between news outlets in
an information supply economy with finite attention. We
have shown that a benefit to size can lead to a metastable
state where one news outlet dominates. Shifts between stable
states are often interspersed with periods of fragmentation.
The collapse of the ordered state occurs when many new
subcultures emerge and capture followers from the dominant
influencer, decreasing its probability of discovering news. If
it fails to update its news value, it will also continue to bleed
subscribers, and the system collapses into a fragmented state.
This represents a transformation from a centralized form of
media influence to a disaggregated collection of independent
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news outlets. We argue that ubiquitous information sharing
has brought about a similar change in our society. Three
news networks used to dominate mass media in the United
States [22]. Easy access to communication has driven down
the cost of becoming a news outlet or influencer, dramatically
increasing p0. The monetary benefit of being a news outlet
has also diminished, meaning that η assumes lower values in
a world where mass communication is available to everyone.
For example, the rise of digital media explains the decline of
local newspapers [23].

There is growing concern that the internet has brought
about an epidemic of fake news by lowering the cost of entry
to new competitors, many of whom reject journalistic norms
[24]. Vosoughi et al. [25] showed that fake news stories spread
more than the truth. Fake news outlets can fabricate stories
of greater newsworthiness, so it should not be surprising that
false news spreads more than the truth. However, some studies
dispute the prevalence of fake news. Findings by Allen et al.
[26] suggests that fake news only makes up a small percentage
of Americans’ daily media diets. True or false, the perception
of fake news as being a huge issue is widespread. The advent
of social media can explain this phenomenon. Residents of
a polarized society may think that fake news is pervasive
because information diversity is high. The inhabitants of a
monoculture may be less inclined to share the perception of
fake news as a problem—even if the dominating influence is
passing on false information. Mass media in autocratic soci-
eties fits this description particularly well; a single news outlet

effectively controls the flow of information, and the informa-
tion is, we assume, overwhelmingly false. If so, it is informa-
tion diversity that precipitates the perception of fake news.

The information content of news events was not modeled
explicitly in this work, nor did we differentiate between real
and fake news outlets or influencers. An extension of the
model could assign a higher p value to fake news outlets.
Introducing a measure of credibility would be necessary to
penalize outlets that disseminate fake news. Respectable news
outlets would then find themselves in a delicate situation when
deciding whether or not to pass on information from another
source. The risk of passing on false information entails a loss
of reputation. However, journalists often face this dilemma
because the race to report on a breaking news event first can
drive even respectable news outlets to publish information
before adequately vetting it.

To summarize, we model a network that exhibits transitions
between a dominating media influence and a decentralized
collection of independent news outlets. Our findings suggest
the perception of fake news as a widespread problem is en-
demic to a society where everyone can become a media outlet.
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