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Introduction

Since the invention of the transistor in 1947 and the development of integrated circuits in the late
1950’s, there was a rapid progress in the development and miniaturization of the solid state devices
and electronic circuit components. This miniaturization raises a question “How small do we have
to make a device in order to get fundamentally new properties?” [1], or more concretely, when do
the quantum effects become important. During the last 30 years, the innovations in fabrication
and cooling techniques allowed to produce nanometer scale solid-state or single molecule-based
devices and to perform electrical transport experiments at temperatures below one Kelvin (1 K),
and thus to address such question. In this thesis we are concerned with the theoretical description
of one kind of such devices called quantum dots.

As the name suggest a quantum dot is a system where particles are confined in all three
directions, which makes it effectively zero dimensional and corresponds to discrete electronic
orbitals (levels) and excitation spectrum. This is analogous to the situation in atoms, where
confinement potential replaces the potential of the nucleus, thus quantum dots are often referred
to as artificial atoms [2, 3]. Additionally, in order for the system to be truly quantum, the size of
the dot has to be comparable to the de Broglie wavelength of the electrons in it. What we have
mentioned so far is rather abstract conditions, which practically can be realized in various systems,
such as, electrically confined electrons in semiconductor nanowires, two dimensional electron
gases, carbon nanotubes, or just small metallic particles, nanoscale pieces of semiconductor.

One of the usual ways to make an electronic device with quantum dots is the transistor setup,
where the dot is coupled by electron tunneling to the source and drain leads, which can maintain a
voltage bias across it. This kind of setup can be referred to as transport junction. If the temperature
and the tunnel couplings to the leads are low compared to the energy scale associated with charging
of the dot, the electrons from the leads are either transferred one-by-one through the junction
or the transport is blocked, which is known as the Coulomb blockade regime [4]. This depends
on the positions of the levels and electrostatic environment of the dot, which can be tuned with
an additional gate electrode. As a practical application, it was proposed that operating in such a
regime the junction can be used as charge sensor [5], for sensitive temperature measurements [6],
or as high efficiency thermoelectric device [7]. Also the current signal acts as a spectroscopic tool,
and gives the information about quantum properties of the quantum dot, which is interesting for
the studies of fundamental physics. For instance, if a quantum dot has an odd number of electrons,
because of the one unpaired electron spin, it acts as a magnetic impurity, which can be screened
by conduction electrons, which is known as the Kondo effect. This is an interesting phenomenon,
which was first observed in 1930’s experimentally in metals containing magnetic impurities [8],
and only 30 years later the first theoretical explanation was given by Jun Kondo in 1964 [9]. The
observation of the Kondo effect in quantum dots in late 1990’s [10, 11], where it manifests itself
through zero bias differential conductance due to so-called Abrikosov-Suhl resonance [12, 13], has
revived the interest in this problem. Additionally, during the last decade it became possible to
fabricate hybrid systems where quantum dots are contacted to superconducting leads [14]. These
kind of systems allow to study the interplay between superconductivity and Coulomb blockade
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with Kondo effect.
In this thesis we are investigating three problems, which deal with quantum dots in transistor

type setup. Even though the setup is similar for all examined problems, the theoretical tools used
to solve them are rather distinct. That is why the thesis is divided in three parts. In the following
paragraphs we give a short technical description of the individual parts.

The first part is dedicated to the examination of the so-called cotunneling spectroscopy of the
quantum dots, where in the Coulomb blockade regime simultaneous electron transport happens
through the junction by virtual occupation of the excited states of the dot. More specifically, we
address the renormalization effects of such spectroscopy due to higher order tunneling processes
by considering energy level shifts using leading order quasi-degenerate perturbation theory. Then
the renormalization of the cotunneling spectrum for particular carbon nanotube quantum dots
connected either to normal metal or ferromagnetic leads is examined using the presented theory.

The second part is devoted to the study of the emergence of sub-gap states in a junction
consisting of two superconducting leads coupled to a spinful quantum dot. The system is modelled
by an effective Kondo model, where conduction electron spins are interacting with an impurity
spin. If the impurity spin is treated as a classical quantity the problem can be solved exactly,
which yields the so-called Yu-Shiba-Rusinov states inside the gap. For a quantum spin the bound
states and their energy are found using the Yosida’s wavefunction ansatz approach. Additionally, the
relation between the supercurrent and the sub-gap states is studied.

In the last part we address the question “How the heat transport due to center of mass vibrational
modes can be reduced in a molecular junction, while maintaining electrical conductivity?”. As
one of the possible suggestions we consider a molecular design consisting of two large masses
coupled to each other and to the leads. By having a small spring constant between the masses, it is
possible to reduce the heat transport due to vibrations. As one of the possible realization of this
idea we examine π-stacked molecular structures. The resulting heat transport is compared with the
situation when the molecule is modelled as a single mass.



Part I

Tunneling renormalization of
cotunneling spectroscopy
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Chapter 1

Sequential tunneling and cotunneling spectroscopy
of quantum dots

Drain

Dot

G
a
te

Source

Figure 1.1: Quantum dot coupled to the source, drain, and gate electrodes. Here V denotes source-
drain bias, Vg is the gate voltage, I is the current flowing through the device, and tL,R are tunnel
couplings from the quantum dot to the source and drain.

Solid-state quantum dot devices are made of nanostructure tunnel coupled to source and drain
electrodes. If the temperature is very low and the Coulomb interaction is sufficiently strong, the
device is said to be in the Coulomb blockade regime [4]. The characteristic feature of such a system
is the suppression of the single electron transport processes and the appearance of simultaneous
few electron transport, called the cotunneling effect, in which energetically unfavorable states are
populated by virtual transitions from the lead having higher chemical potential for the electrons,
and then this population is relaxed to the lead having smaller chemical potential. The chemical
potential difference across the junction can be obtained by voltage biasing it. The cotunneling
processes are classified either as elastic, if the quantum dot energy state is unchanged, or inelastic,
if the quantum dot is left in the excited state after charge transport [15]. Whether the device will be
left in the excited state depends on the applied bias across the device. In such a way, by performing
bias spectroscopy [16–18], one can obtain the energy level structure of the quantum dot, which is
important for understanding and predicting the behavior of the device.

It is known that the coupling to the leads produces quantum dot energy level shifts [19, 20]
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6 1. SPECTROSCOPY OF QUANTUM DOTS

Figure 1.2: Different charge states N of a simple case of a quantum dot containing two single
particle states ε1 = −∆2 and ε2 = ∆

2 . Black dots denote occupied single particle states and ∆ is energy

difference between them. Here constant energy for all charge states
EcN

2
g

2 is neglected.

and broadening due to hybridization of the lead states with the quantum dot states. These kind
of effects were already experimentally observed for carbon nanotube quantum dots with normal
leads [21], where asymmetry between coupling to different orbitals causes a gate dependent
cotunneling threshold, and with ferromagnetic leads [22–28], where spin-dependent tunneling
creates an exchange field, which may depend on the gate voltage. A large number of theoretical
works dealing with the case of ferromagnetic leads and exploiting different methods was already
presented [29–44].

In this part of the thesis Iinvestigate the carbon nanotube quantum dot cotunneling thresholds
and the effects of their renormalization due to the tunneling to the leads. Two different cases
of normal (Chapter 4) and ferromagnetic (Chapter 5) leads are examined. Throughout this part,
except in Chapter 3, we employ units in which the Planck constant, the Boltzmann constant, the
elementary charge, and the Bohr magneton are equal to one, i.e. ~ = kB = e = µB = 1.

The device under consideration is a quantum dot coupled to the source and drain electrodes,
which have an applied bias V and maintain a current I through the device (Figure 1.1). There is
also another gate electrode, capacitively coupled to the quantum dot, which is used to change the
electrostatic environment on the dot by applying a voltage Vg to it. By sweeping the source-drain
voltage V and the gate voltage Vg it is possible to acquire spectroscopic information about the
quantum dot region. If the device is in the Coulomb blockade regime one gets diamond like
differential conductance (dI/dV ) dependence on the source-drain V and the gate Vg voltages,
which is shown in schematic contour plot, called a stability diagram, in Figure 1.4.

1.1 Constant interaction model
The interpretation of the experimental data of transport through quantum dots operating in the
Coulomb blockade regime can be based on a constant interaction model [4, 15]. In this model it is
assumed that the Coulomb interactions on the dot can be parameterized by a charging energy Ec
required when adding an additional electron to the quantum dot. It is also assumed that the single
particle energy level spectrum εn of the quantum dot is independent of these interactions. So the
total energy of the system having N electrons, and occupying particular single particle states εn is
given by

EN,l =
Ec
2

(N −Ng )2 +
∑

n corresponding to l

εn, (1.1)

where the label l denotes a particular occupation of single particle orbitals for a given number of
electrons, and we will simply call it the orbital quantum number. Here Vg = EcNg corresponds to
the gate voltage.
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(a) Sequential tunneling (b) Cotunneling

Figure 1.3: Illustration of first order sequential tunneling and second order cotunneling processes.
For sequential tunneling (a) the solid lines denote the transitions through the ground states and the
dashed lines through the excited states. The yellow regions schematically denote filled continuum
states of the leads. Here D denotes the bandwidth of the leads, V is symmetrically applied bias,
with µL = −µR = V

2 being chemical potentials of the source (µL) and the drain (µR).

Let us consider some empirical rules used to determine the position of the differential con-
ductance peaks in the stability diagram. A differential conductance peak appears, whenever the
energy difference between two different charge states matches the chemical potential of the source
(µL) or drain (µR) lead. For simplicity, we assume the bias to be applied symmetrically to the leads,
i.e. µL = −µR = V /2. Such peaks result from first order processes called sequential tunneling, and
are illustrated in Figure 1.3a, for a simple case of a quantum dot containing two single particle
orbitals. So the bias threshold value for sequential tunneling is

µL,R = ±
Vseq

2
= EN,l −EN−1,l′ ≡ µN,ll′ . (1.2)

Sequential tunneling processes determine the Coulomb diamond structure of the stability diagram.
There can also appear differential conductance peaks inside the diamonds, called “inelastic co-
tunneling lines”, and they result from second order tunneling processes (Figure 1.3b). The bias
threshold value for inelastic cotunneling is given by the energy difference between different orbitals
l and l′ in a given charge state:

|Vcot| = EN,l −EN,l′ . (1.3)

More precisely this condition corresponds to a inflection point position of dI/ddV . Note that
if the single particle level spacing does not contain any kind of gate voltage dependence, then
the cotunneling threshold always corresponds to a horizontal line in the stability diagram. For a
quantum dot containing two single particle orbitals the schematic stability diagram is shown in
Figure 1.4.
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Cotunneling lines

Figure 1.4: Schematic stability diagram for a quantum dot containing two single particle orbitals.
In this case there is one Coulomb diamond and (black solid) cotunneling line due to transition from
the single particle state ε1 to the state ε2 in a charge state N = 1. Gray dashed-dotted lines depict
the threshold for the sequential tunneling through the ground state, and gray dotted lines depict
the threshold for the sequential tunneling through the excited state. Black dashed line shows the
position of the zero bias V = 0.

Figure 1.5: Bias spectroscopy performed for a carbon nanotube quantum dot attached to ferromag-
netic leads with an applied perpendicular to the tube axis magnetic field of size B = −1 T. The
gate dependent cotunneling thresholds are observed, which are accentuated by the green dotted
curves. For a particular gate voltage the external magnetic field is compensated by an exchange
field appearing due to tunneling renormalization. The white arrows denote the ground state of the
quantum dot, i.e. either spin-up or spin-down depending on the gate voltage. The yellow dashed
lines depict differential conductance peaks corresponding to the sequential tunneling threshold,
and the numbers 0, 1, 2 mark the charge state of the quantum dot. The differential conductance
dI/dVb is measured in terms of the conductance quanta G0 = e2/h.
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Figure 1.6: Bias spectroscopy performed for a carbon nanotube quantum dot attached to normal
leads. The gate dependent cotunneling thresholds are observed for different Coulomb diamonds
in b) and c). The green arrows denote the slopes of the positive bias cotunneling thresholds. The
differential conductance G = dI/dVsd is measured in terms of the conductance quanta G0 = e2/h.

Figure 1.7: Bias spectroscopy performed for a carbon nanotube quantum dot attached to normal
leads, with an applied magnetic field parallel to the tube axis. Here also the gate dependent
cotunneling thresholds are observed. When the magnetic field is increased the gate dependence
becomes diminished. The green arrows show the slopes of the positive bias cotunneling thresholds,
and the green curves correspond to zero bias differential conductance. The differential conductance
dI/dVsd is measured in terms of the conductance quanta G0 = e2/h.
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1.2 Experiments regarding the tunneling renormalization of cotunnel-
ing spectroscopy

From the analysis method presented in Section 1.1 we saw that when the single particle level
spacing does not depend on the gate voltage, the cotunneling threshold is also independent of it.
However, in several experiments the gate dependence of cotunneling thresholds was observed,
which shows that the above analysis is oversimplified [21, 26, 45]. The reason is that a basic
cotunneling process itself corresponds to a virtual charge fluctuation of the dot, and as such
it also renormalizes the very spectrum which is being observed. Of course the strength of the
renormalization effects depends on the relative size of the tunneling coupling and the single
particle level spacing.

In this section we shortly review experimental data of Hauptmann et al. [26], Holm et al. [21],
and Grove-Rasmussen et al. [45]. In the Hauptmann experiment a carbon nanotube quantum
dot was attached to ferromagnetic leads and a magnetic field perpendicular to the tube axis was
applied. They observed that tunneling renormalization exerts a gate dependent exchange field,
which can compensate the external magnetic field for a particular gate voltage (Figure 1.5). In the
Holm experiment the bias spectroscopy of a carbon nanotube quantum dot attached to normal
leads was performed, and for some Coulomb diamonds a gate dependent cotunneling thresholds
were observed, as it is shown in Figure 1.6. In the Grove-Rasmussen experiment again a the carbon
nanotube quantum dot with normal leads was examined, but now a magnetic field parallel to
the tube axis was applied. The observation was that for zero magnetic field a gate dependent
cotunneling thresholds appeared. However, when the parallel magnetic field was increased this
gate dependence was diminished (Figure 1.7).



Chapter 2

Tunneling induced level shifts

2.1 The model
A quantum dot connected to the source and drain electrodes and capacitively coupled to a gate
electrode (Figure 1.1) can be modeled by the following constant interaction Hamiltonian

H =HLR +HD +HT, (2.1)

where
HLR =

∑
ανs

εανsc
†
ανscανs, (2.2)

describes the source and drain electrodes as two reservoirs of noninteracting electrons. Operator
c†ανs creates an electron with quantum number ν and spin s ∈ {↑,↓} in a lead α ∈ {L,R}, which has
energy εανs. Here L or R stands for the left or right lead, and µL,R = ±V /2 is the chemical potential
of the leads, which depends on the applied bias voltage V .

The quantum dot region is described by HD and it is modeled as Ns localized single particle
states with the interaction between electrons assumed to be constant:

HD =
Ns∑
n=1

εnd
†
ndn +U (N −Ng )2. (2.3)

Here d†n creates an electron in the dot level n with energy εn, Ng corresponds to the gate voltage
(Vg = 2UNg ), N =

∑N
n=1d

†
ndn is the total number of electrons on the dot and U denotes the total

capacitive charging energy of the dot. The single particle spectrum εn for a carbon nanotube
quantum dot single “shell”, which we are interested in, will be defined in Section 3.3.

The coupling between the leads and the dot is described by the following tunneling Hamiltonian

HT =
∑
ανs
n

(
tnανsc

†
ανsdn + (tnανs)

∗d†ncανs
)
, (2.4)

where tnανs is the tunneling amplitude from the dot state n to the lead state ανs. For a carbon
nanotube quantum dot these tunneling amplitudes will be defined in Section 3.4. We will treat
the tunneling Hamiltonian HT as a perturbation to HLR +HD, when examining its influence on the
spectrum of the dot.

We will denote the many body eigenstates of the lead Hamiltonian HLR by

HLR|LR〉 = ELR|LR〉, (2.5)

11



12 2. TUNNELING INDUCED LEVEL SHIFTS

where ELR is the energy of the state |LR〉, and of the quantum dot Hamiltonian HD by

HD|Nl〉 = ENl |Nl〉, (2.6)

with ENl being the energy of the state |Nl〉, where N denotes the number of electrons in the state
(which we will call a charge state N ) and l is an orbital quantum number of the state. Note that
when there are Ns single particle states, the number Nl of different orbitals l for a given charge
state N is Nl =

(Ns
N

)
= Ns!
N !(Ns−N )! . From Hamiltonian (2.3) we can read-off the energy of the state |Nl〉

as
ENl =U (N −Ng )2 +

∑
n∈|Nl〉

εn, (2.7)

where by
∑

n∈|Nl〉 . . . we mean sum over all occupied single particle states in a many body state |Nl〉.
We will also denote the many body eigenstates of the dot by |D〉, where D is labeled by integers, i.e.

|D〉 ∈ {|1〉, . . . , |2Ns〉}, (2.8)

and all the states first are sorted by the number of charges in the state, and for the same charge by
increasing energy.

2.2 Application of quasi-degenerate perturbation theory

1

2

3

4

1

2 3

4

Figure 2.1: Examples of processes (which have the ground state of the leads |LR〉 as an intermediate
state) responsible for appearance of the terms proportional to Γ

∆
in fourth order expansion of usual

Rayleigh-Schrödinger perturbation theory. The numbers denote the order of processes.

We want to determine how the tunneling renormalizes the energy of the many-body states
of Hamiltonian HLR +HD. For this purpose, we will use quasi-degenerate perturbation theory
(“Löwdin partitioning”) described in [46, 47] to determine this energy renormalization. More
precisely, we want to derive an effective Hamiltonian and calculate the energy shifts of the states
|D〉|LR〉, where |D〉 is any many body state of the dot Hamiltonian (2.3), and |LR〉 is one particular
many body state of the leads (for example, zero temperature ground state of the leads). We are
also interested in the regime, where gate voltage Vg is around the middle of a particular charge
state diamond (see Figure 1.4), i.e. far from charge degeneracy points, and the tunneling rates Γ
are comparable or larger than a single particle level spacing ∆.

The idea of quasi-degenerate perturbation theory is to divide the eigenstates of H0 = HLR +
HD into two subsets |m〉 ∈ A and |l〉 ∈ B, and perform a unitary transformation eiS to the full
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Hamiltonian (2.1) in such a way that for the transformed Hamiltonian

H̃ = e−iSHeiS , (2.9)

the matrix elements H̃ml = 〈m|H̃ |l〉 between the states in different sets A and B vanish to desired
order in the tunneling Hamiltonian HT (2.4). The matrix elements of the effective Hamiltonian
(2.9) for |m〉 states in a set A takes the following form

H̃mm′ =H (0)
mm′ +H

(1)
mm′ +H

(2)
mm′ +H

(3)
mm′ +H

(4)
mm′ + . . . , (2.10)

and up to second order we have the following expressions [47]

H
(0)
mm′ =

(
HLR
mm +HD

mm

)
δmm′ , (2.11a)

H
(1)
mm′ =HT

mm′ , (2.11b)

H
(2)
mm′ =

1
2

∑
l

HT
mlH

T
lm′

(
1

Em −El
+

1
Em′ −El

)
, (2.11c)

where E are energies of the states. Here the sum
∑

l . . . runs over all the states |l〉 in the set B. We
also have changed the subscripts D, LR, T into superscripts for convenience. The expression of
the fourth order effective Hamiltonian, to which we will perform our calculations, is specified in
Appendix B.

Now we need to specify the states in the set A, which we will call the model space. Because
we are interested in the energy shift of the many body state |D〉|LR〉, we could make our model
space consisting only of this state, and then we would recover the usual Rayleigh-Schrödinger
perturbation theory. However, we are interested in a particular regime, when tunneling rates Γ

are comparable or larger than the single particle level spacing ∆ (note that the tunneling rates
are defined in the beginning of the Chapter 4). In such a case the usual Rayleigh-Schrödinger
perturbative expansion with only a single state in the model space breaks down due to the fourth
order terms, which are proportional to Γ

∆
. This situation occurs because it is possible to have

intermediate states |l〉, containing the particular state of the leads |LR〉, as depicted in Figure 2.1.
But, if it is projected to an extended model space, containing all many body states having |LR〉
particular state of the leads, this situation is resolved. The calculation of fourth order terms is more
thoroughly discussed in Appendix B. So we choose our model space |m〉 ∈ A to consist of all the
states containing any quantum dot state |D〉 and the particular state of the leads |LR〉:

A = {|1〉|LR〉, . . . , |2Ns〉|LR〉}. (2.12a)

The space of intermediate states |l〉 ∈ B contains

B = {|1〉|LR′〉, . . . , |2Ns〉|LR′〉}, (2.12b)

where |LR′〉 , |LR〉. As can be seen from (2.11) such procedure introduces off-diagonal elements
between different quantum dot states.

After having defined our model space A, we start calculating more explicit expressions for the
effective Hamiltonian (2.10). Expression (2.11a) simply gives the energy of the state |m〉 if m =m′:

H
(0)
DD′ ,LR

=
(
ELR +ED

)
δDD′ , (2.13)
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We see that the energy of a particular state of the leads ELR is a common constant term for all the
dot states, so we neglect it. The first order contribution is equal to zero as is the case with all odd
order contributions

H
(1)
DD′ ,LR

=
∑
ανs
n

(
tnανs〈LR|〈D|c†ανsdn|D′〉|LR〉+ (tnανs)

∗〈LR|〈D|d†ncανs|D′〉|LR〉
)

=
∑
ανs
n

(
tnανs(−1)ND〈LR|c†ανs|LR〉〈D|dn|D′〉

+(tnανs)
∗(−1)ND′ 〈LR|cανs|LR〉〈D|d†n|D′〉

)
= 0,

(2.14)

H
(2n+1)
DD′ ,LR

= 0, n ∈N, (2.15)

because we have chosen our model space to contain only one lead state |LR〉 and the odd powers of
tunneling Hamiltonian does not conserve the number of particles in the leads. Here ND denotes
the number of electrons in the state |D〉. Now we will work out the second order expression (2.11c):

H
(2)
DD′ ,LR

=
1
2

∑
|D′′〉|LR′〉<A

 1
E

LR
+ED −ELR′ −ED′′

+
1

E
LR

+ED′ −ELR′ −ED′′


× 〈LR|〈D|HT|D′′〉|LR′〉〈LR′ |〈D′′ |HT|D′〉|LR〉

=
1
2

∑
|LR′〉,|D′′〉

∑
n
ανs

∑
n′

α′ν′s′

 1
E

LR
+ED −ELR′ −ED′′

+
1

E
LR

+ED′ −ELR′ −ED′′


× 〈LR|〈D|

(
tnανsc

†
ανsdn + (tnανs)

∗d†ncανs
)
|D′′〉|LR′〉

× 〈LR′ |〈D′′ |
(
tn
′
α′ν′s′ c

†
α′ν′s′dn′ + (tn

′
α′ν′s′ )

∗d†n′ cα′ν′s′
)
|D′〉|LR〉

=
1
2

∑
|LR′〉,|D′′〉

∑
n
ανs

∑
n′

α′ν′s′

 1
E

LR
+ED −ELR′ −ED′′

+
1

E
LR

+ED′ −ELR′ −ED′′


×
{
〈LR|〈D|tnανsc†ανsdn|D′′〉|LR′〉〈LR′ |〈D′′ |tn

′
α′ν′s′ c

†
α′ν′s′dn′ |D

′〉|LR〉

+〈LR|〈D|tnανsc†ανsdn|D′′〉|LR′〉〈LR′ |〈D′′ |(tn
′
α′ν′s′ )

∗d†n′ cα′ν′s′ |D
′〉|LR〉

+〈LR|〈D|(tnανs)∗d†ncανs |D′′〉|LR′〉〈LR′ |〈D′′ |tn
′
α′ν′s′ c

†
α′ν′s′dn′ |D

′〉|LR〉

+〈LR|〈D|(tnανs)∗d†ncανs |D′′〉|LR′〉〈LR′ |〈D′′ |(tn
′
α′ν′s′ )

∗d†n′ cα′ν′s′ |D
′〉|LR〉

}
=

1
2

∑
ανs
nn′
|D′′〉

tnανs(tn′ανs)∗|〈LR|c†ανscανs |LR〉|2〈D|dn|D′′〉〈D′′ |d†n′ |D
′〉
(

1
εανs +ED −ED′′

+
1

εανs +ED′ −ED′′

)

+(tnανs)
∗tn
′
ανs |〈LR|cανsc†ανs |LR〉|2〈D|d†n|D′′〉〈D′′ |dn′ |D

′〉
(

1
−εανs +ED −ED′′

+
1

−εανs +ED′ −ED′′

).

(2.16)

After the second equality we extended the sum over all lead and dot states, because the matrix
element 〈LR|HT|LR〉 is always equal to zero. After the third equality the first and fourth terms in
curly brackets vanish, because we always have 〈LR|cανs|LR′〉〈LR′ |cα′ν′s′ |LR〉 = 0, for any state |LR′〉.
For the second and the third term we get that the terms with ανs = α′ν′s′ give contribution, and
the energy of the intermediate state |LR′〉 for the second term is ELR′ = ELR − εανs and for the third
is ELR′ = ELR + εανs.
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Now we make a thermal average over the particular lead state |LR〉 for H (0)
DD′ ,LR

and H (2)
DD′ ,LR

assuming grand-canonical ensemble with chemical potentials µL,R and inverse temperatures βL,R =
1/TL,R for the leads. This yields:

H
(0)
DD′ =

∑
|LR〉

W
LR
H

(0)
DD′ ,LR

= δDD′

ED +
∑
ανs

(εανs −µα)fα

 , (2.17a)

H
(2)
DD′ =

∑
|LR〉

W
LR
H

(2)
DD′ ,LR

=
1
Z
∑
|LR〉

e−βL(EL−µLNL)e−βR(ER−µRNR)H
(2)
DD′ ,LR

=
1
2

∑
ανs
nn′
|D′′〉

tnανs(tn′ανs)∗〈D|dn|D′′〉〈D′′ |d†n′ |D′〉
(

1
εανs +ED −ED′′

+
1

εανs +ED′ −ED′′

)
fα

+(tnανs)
∗tn

′
ανs〈D|d†n|D′′〉〈D′′ |dn′ |D

′〉
(

1
−εανs +ED −ED′′

+
1

−εανs +ED′ −ED′′

)
(1− fα)

.
(2.17b)

Here

WLR =
1
Z

e−βL(EL−µLNL)e−βR(ER−µRNR), (2.18)

Z =
∑
|LR〉

e−βL(EL−µLNL)e−βR(ER−µRNR), (2.19)

is probability to be in particular lead state |LR〉 and partition function, respectively, and

fα = f (εανs −µα) =
1

eβα(εανs−µα) + 1
(2.20)

is Fermi-Dirac distribution. Also EL, ER denote the energy, and NL, NR denote the number of
particles in the left and the right lead, respectively, for the state |LR〉. We see that in (2.17a) only
the constant term (which we neglect) is affected when averaging. We note that in the calculations
we will take the temperatures of the left and the right lead to be equal, i.e. βL = βR = β.

To derive the final expression for the effective Hamiltonian to second order in tunneling we
need to perform the ν-sums. To do that we make a flat band approximation for the lead electrons,
i.e. we assume constant density of states, which is of the form

ρανs(ξ) = ραsθ
(
Da,αs + ξανs

)
θ
(
Db,αs − ξανs

)
, (2.21)

where
ξανs = εανs −µα , (2.22)

and ραs, Da,αs, Db,αs > 0 denotes different constants for the lead index α and spin s, which are all
positive. Also θ(x) denotes Heaviside step function. In a case of normal leads we set the following
values of constants

Da,αs =D, Db,αs =D, ραs = ρ, (2.23)

and for ferromagnetic leads we use

Da,αs =D +
s∆st

2
, Db,αs =D − s∆st

2
, (2.24)
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with arbitrary ραs, and s = +1(−1) for spin up (down). Here 2D denotes the bandwidth of the leads,
and ∆st is the Stoner splitting of the bands with different spins s [48]. Lastly, to be able to perform
the ν-sums we also assume that tunneling amplitudes do not depend on quantum number ν

tnανs → tnαs, (2.25)

and then we replace the ν-sums by an integral in the following way

∑
ν

tnανs . . . → ραst
n
αs

∫ Db,αs

−Da,αs
dξ . . . . (2.26)

Using the above mentioned approximations the second order effective Hamiltonian becomes

H
(2)
DD′ ≈ lim

η→+0

1
2

∑
αs,nn′ ,|D′′〉

ραsRe
∫ Db,αs

−Da,αs
dξ

f (ξ)tnαs(t
n′
αs)
∗〈D|dn|D′′〉〈D′′ |d†n′ |D

′〉

×
(

1
ξ +µα +ED −ED′′ + iη

+
1

ξ +µα +ED′ −ED′′ + iη

)
+ {1− f (ξ)}(tnαs)∗tn

′
αs〈D|d†n|D′′〉〈D′′ |dn′ |D

′〉

×
(

1
−ξ +µα +ED −ED′′ + iη

+
1

−ξ +µα +ED′ −ED′′ + iη

)
T→0≈ 1

2

∑
αs,nn′ ,|D′′〉

ραs

tnαs(tn′αs)∗〈D|dn|D′′〉〈D′′ |d†n′ |D′〉
×
 ln

∣∣∣∣∣ ED −ED′′ +µα
ED −ED′′ +µα −Da,αs

∣∣∣∣∣+ ln
∣∣∣∣∣ ED′ −ED′′ +µα
ED′ −ED′′ +µα −Da,αs

∣∣∣∣∣


+ (tnαs)
∗tn

′
αs〈D|d†n|D′′〉〈D′′ |dn′ |D

′〉

×
 ln

∣∣∣∣∣ ED −ED′′ −µα
ED −ED′′ −µα −Db,αs

∣∣∣∣∣+ ln
∣∣∣∣∣ ED′ −ED′′ −µα
ED′ −ED′′ −µα −Db,αs

∣∣∣∣∣

.

(2.27)

After the first equality we have included infinitesimal imaginary part iη to regularize the integral,
and then took only the real part of the integral. After the second equality we took the zero temper-
ature limit in which Fermi-Dirac distribution becomes f (x) = 1−θ(x). For the finite temperature
the logarithms should be replaced by digamma function, as it is discussed in Appendix A. Here we
also used the following integrals

lim
η→+0

∫ D

0

dx
a− x+ iη

= lim
η→+0

∫ 0

−D

dx
a+ x+ iη

= ln
∣∣∣∣ a
a−D

∣∣∣∣− iπ
2
{sgn(a)− sgn(a−D)} . (2.28)

There is one additional approximation, which we make — we assume that the bandwidth of the
leads is much larger than the charging energy 2U , the single particle level spacing ∆, and the
applied bias V , and using expressions (2.24) for ferromagnetic leads we obtain the final result for
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the second order effective Hamiltonian (Da,αs,Db,αs >> |ED |, |ED′ |, |µα |):

H
(2)
DD′

T→0≈ 1
2

∑
αs,nn′ ,|D′′〉

ραs

tnαs(tn′αs)∗〈D|dn|D′′〉〈D′′ |d†n′ |D′〉
×
 ln

∣∣∣∣∣ED −ED′′ +µαD + s∆st/2

∣∣∣∣∣+ ln
∣∣∣∣∣ED′ −ED′′ +µαD + s∆st/2

∣∣∣∣∣


+ (tnαs)
∗tn

′
αs〈D|d†n|D′′〉〈D′′ |dn′ |D

′〉

×
 ln

∣∣∣∣∣ED −ED′′ −µαD − s∆st/2

∣∣∣∣∣+ ln
∣∣∣∣∣ED′ −ED′′ −µαD − s∆st/2

∣∣∣∣∣

.

(2.29)

We see that the effective Hamiltonian H̃ ≈H (0) +H (2) has a block structure to second order in
HT, i.e. only the matrix elements between the same charge dot states |D〉 = |Nl〉 and |D′〉 = |Nl′〉
are non-zero, i.e. HNl,N ′ l′ =HNl,Nl′δNN ′ . After diagonalizing the effective Hamiltonian H̃ , we find
the new eigenspectrum Ẽ to second order in HT, which will be used to determine the tunneling
renormalized cotunneling thresholds in Chapters 4 and 5.





Chapter 3

Carbon nanotube quantum dots

In this Chapterwe shortly review the long wavelength limit, which constitutes the low energy
spectrum of carbon nanotubes. We start by reviewing the geometry, the lattice, and the reciprocal
lattice of carbon nanotubes (for explanation of these properties one can also see Figure 1 of
Ref. [49–51] or Chapter 3 in [52]). Then we introduce an effective low energy Hamiltonian derived
by Izumida et al. [53]. This Hamiltonian is used to obtain the single particle energy spectrum of
the carbon nanotube quantum dot.

3.1 The geometry, the lattice, and the reciprocal lattice of carbon nan-
otubes

Carbon nanotubes can be thought of as folded two dimensional graphene sheet into a tube (see
Figure 3.1a). The lattice of graphene can be described by such a choice of primitive lattice vectors

a1 = a{1,0,0}, a2 = a
{

1
2
,

√
3

2
,0

}
, a3 = h{0,0,1}, (3.1)

where a is the lattice constant, and a3 is an additional lattice vector, which is not necessary for
describing the graphene lattice, but we will need it, when we calculate the reciprocal lattice. We
note that graphene has two sublattices commonly denoted by A and B. The nearest neighbors of a
particular carbon atom, denoted by empty circle in sublattice B, belong to different sublattice A,
as shown in Figure 3.1a. Vectors connecting nearest neighbor carbon atoms from sublattice B to
sublattice A are given by

τ1 = a
{

0,
1
√

3
,0

}
, τ2 = a

{
−1

2
,− 1

2
√

3
,0

}
, τ3 = a

{
1
2
,− 1

2
√

3
,0

}
. (3.2)

The folding of graphene into a cylinder shape carbon nanotube is described by a chiral vector C
and a chiral angle θ,

C = na1 +ma2 ≡ (n,m), n,m ∈Z, (3.3)

cosθ =
C · a1

|C||a1|
=

2n+m

2
√
n2 +m2 +nm

, (3.4)

where n and m are integers, and it is enough to consider the following values of n and m

0 ≤ |m| ≤ n, (3.5)

because of the hexagonal symmetry of the lattice. The chiral angle θ shows how much the hexagons
of a graphene sheet are tilted with respect to the tube axis direction T, defined by

C ·T = 0. (3.6)

19
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(a)

(b)

(c)

Figure 3.1: The geometry, lattice, and reciprocal lattice of carbon nanotubes.

Also because of the hexagonal symmetry of the graphene sheet it is enough to consider such angles

0 ≤ θ ≤ π
6
. (3.7)

Tubes with chiral angle θ = 0 are called zig-zag and are given by integers (n,0), and tubes with
chiral angle θ = π/6 are called armchair and are given by integers (n,n). The names zig-zag and
arm-chair come from the appearance of the cross section of the tubes shown in Figure 3.1b. The
length of a chiral vector C gives the circumference of the nanotube, which is

|C| =
√

C ·C = πD = 2πR = a
√
n2 +m2 +nm. (3.8)

Here D is the diameter of the tube and R is the radius of the tube. We also note that the lattice
vectors are not orthogonal to each other, i.e.

a1 · a2 =
a2

2
. (3.9)
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Now we will construct the reciprocal lattice and the first Brillouin zone of the graphene sheet.
The reciprocal lattice translation vectors are defined to satisfy the following orthogonality condition

ai ·bj = 2πδij . (3.10)

We choose the following form of primitive translation vectors of the reciprocal lattice [54] (these
relations can also be used as definitions of the reciprocal lattice)

b1 = 2π
a2 × a3

a1 · (a2 × a3)
=

2π
a

{
1,− 1
√

3
,0

}
, (3.11a)

b2 = 2π
a3 × a1

a1 · (a2 × a3)
=

2π
a

{
0,

2
√

3
,0

}
, (3.11b)

b3 = 2π
a1 × a2

a1 · (a2 × a3)
=

2π
h
{0,0,1} . (3.11c)

Here

Va = a1 · (a2 × a3) = Sah =

√
3

2
a2h (3.12)

correspond to the volume of the unit cell (also called the Wigner-Seitz primitive cell) with

Sa =

√
3

2
a2 (3.13)

being the area of the unit cell of graphene.
The first Brillouin zone is defined as a primitive unit cell in the reciprocal lattice. We consider

the two dimensional Brillouin zone of graphene. The zone boundary, which is defined by vectors
kBZ, can be constructed by satisfying the condition

kBZ ·
(1

2
G0

)
=

∣∣∣∣∣12G0

∣∣∣∣∣2 , (3.14)

where G0 is any smallest reciprocal lattice vector satisfying

|G0| = |ub1 + vb2| =
4π

a
√

3
, u,v ∈Z. (3.15)

The geometrical construction of the first Brillouin zone is shown in Figure 3.1c. We see that it has
hexagonal shape. The volume of the reciprocal lattice unit cell is defined as

VaVb = (2π)3 → Vb = 2πSbh =
2
√

3

(2π)3

a2h
, (3.16)

with

Sb =
2
√

3

(2π
a

)2
(3.17)

being the area of the two dimensional first Brillouin zone. The corners of the hexagon are called K
and K ′ points, and are given by the vectors

Kτ =
2π
a

{
τ
3
,

1
√

3

}
, (3.18)

where τ = +1 for K and τ = −1 for K ′ point. These points corresponds to the Fermi energy of the
undoped graphene sheet. We are interested in the low energy excitations in the carbon nanotubes
around these points.
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3.2 Low energy single particle spectrum of carbon nanotubes
The effective low energy Hamiltonian for π electrons derived using k ·p perturbation theory near
the K and K ′ points in the first Brillouin zone of carbon nanotube is given by [53]

H =H0 +HSO +Hcurv, (3.19)

where H0 is the effective Hamiltonian without spin-orbit coupling and curvature induced σ −π
band hybridization, and is given by

H0 = ~vF(σ1τ0s0kc + σ2τ3s0kt), (3.20)

where kc is the electron momentum along the circumference, and kt is the momentum along the
tube axis. Also si denote Pauli matrices in spin subspace, σi in A − B sublattices subspace, τi
corresponds to K and K ′ point subspace, and vF is the Fermi velocity of graphene given by

vF = −
√

3aHπ
2~

. (3.21)

Here a is the lattice constant of graphene and Hπ is the overlap (hopping) integral between π
orbitals. We note that spin quantization axis is chosen along the tube axis T. The hybridization of
σ −π bands induced by spin-orbit coupling is described by the effective Hamiltonian

HSO = ~vF (−σ1τ0s3kSO + σ0τ3s3k0) , (3.22)

where

kSO = α1
∆C

2~vFR
, (3.23a)

k0 = α2
∆C

2~vFR
cos(3θ), (3.23b)

with ∆C being the spin-orbit coupling energy in carbon atom, α1, α2 are parameters, which were
calculated using tight binding approach in Ref. [53], θ is the chiral angle of the nanotube defined
in the interval {0,π/6}, and R is the radius of the nanotube.

The hybridization of σ − π bands induced by curvature effects is described by the effective
Hamiltonian

Hcurv = −~vF(σ1τ3s0kc,cv + σ2τ0s0kt,cv), (3.24)

where

kc,cv = β
cos(3θ)
4~vFR2 , (3.25a)

kt,cv = ζ
sin(3θ)

4R2 , (3.25b)

with β and ζ being parameters again calculated using a tight binding approach. We again rewrite
the effective Hamiltonian, but now explicitly specify the A−B sublattices subspace:

H = ~vF


A B

τsk0 (kc − τkc,cv − skSO)− i(τkt − kt,cv)

(kc − τkc,cv − skSO) + i(τkt − kt,cv) τsk0

. (3.26)
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Here τ = +1 for K and τ = −1 for K ′ point, and s = +1 for spin up ↑ and s = −1 for spin down ↓.
We can write the above Hamiltonian in a different gauge used in Ref. [51, 55] by performing the
following unitary transformation H →UHU−1,

U =
(
τ 0
0 1

)
. (3.27)

Then the Hamiltonian (3.26) becomes

H = ~vF


A B

τsk0 (τkc − kc,cv − τskSO)− i(kt − τkt,cv)

(τkc − kc,cv − τskSO) + i(kt − τkt,cv) τsk0

. (3.28)

After performing the k ·p perturbative expansion near the K and K ′ points the wavefunction in
a real space representation happens to be [49]

Ψτ,s,kc ,kt (c, t) = eiKτ ·rψτ,s,kc ,kt (c, t) = eiKτ ·rei(kcc+ktt)
(
zτ,s,kc ,kt

1

)
, (3.29)

where ψτ,s,kc ,kt is the eigenfunction of Hamiltonian (3.26) expressed in either real space or momen-
tum representations, with

zτ,s,kc ,kt = ± k̃c − ik̃t√
k̃2
c + k̃2

t

, k̃c = kc − τkc,cv − skSO, k̃t = τkt − kt,cv,

or k̃c = τkc − kc,cv − τskSO, k̃t = kt − τkt,cv, for Hamiltonian (3.28),

(3.30)

Here a minus sign in zτ,s,kc ,kt corresponds to the valence band, a plus sign corresponds to the

conduction band, and the vector
(
zτ,s,kc ,kt

1

)
is written in A−B sublattices subspace. Here

r = {ccosθ − t sinθ,c sinθ + t cosθ}, (3.31)

is radius vector in coordinate system xy before folding the graphene sheet into a nanotube and (c, t)
denote the coordinates along the circumference and tube axis, respectively. We also note that the
wavefunctions are not normalized, but are orthogonal, because they have the forms

z+1,+1
1
0
0
0
0
0
0


,



0
0

z−1,+1
1
0
0
0
0


,



0
0
0
0

z+1,−1
1
0
0


,



0
0
0
0
0
0

z−1,−1
1


, (3.32)

and for the valence and conduction bands we have the following orthogonality condition:(
− k̃c+ik̃t√

k̃2
c +k̃2

t

1
)
·

 k̃c−ik̃t√
k̃2
c +k̃2

t

1

 = 0. (3.33)

The states can also be described by “backward going” waves in (3.29), i.e. (kc, kt)→ (−kc,−kt).
Using these “backward going” waves we can form pairs of wavefunctions, which are time-reversal
partners, i.e.

kc, kt , τ = +1, s = +1 with − kc, −kt , τ = −1, s = −1, (3.34)
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and
kc, kt , τ = +1, s = −1 with − kc, −kt , τ = −1, s = +1, (3.35)

are time-reversal pairs. Here c and v stands for conduction and valence bands respectively. Such
pairs have the same energy, when there is no magnetic field, as can be seen from (3.54a). Also when
the Hamiltonian is in (3.26) gauge the pairs are related to each other in the following way:

Ψ+1,+1,kc ,kt = −σ3Ψ
∗
−1,−1,−kc ,−kt , Ψ+1,−1,kc ,kt = −σ3Ψ

∗
−1,+1,−kc ,−kt . (3.36)

When the Hamiltonian is in (3.28) gauge they are related as

Ψ+1,+1,kc ,kt = Ψ ∗−1,−1,−kc ,−kt , Ψ+1,−1,kc ,kt = Ψ ∗−1,+1,−kc ,−kt . (3.37)

We note that when performing complex conjugation we need to pay attention to the symmetry of
the first Brillouin zone (Figure 3.1c), for instance, these are two equivalent points

−K
′
≡K. (3.38)

We will denote states in (3.37) as

Ψ+1,+1,kc ,kt → |K ↑〉, (3.39a)

Ψ−1,−1,−kc ,−kt → |K ′ ↓〉, (3.39b)

Ψ+1,−1,kc ,kt → |K ↓〉, (3.39c)

Ψ−1,+1,−kc ,−kt → |K ′ ↑〉, (3.39d)

and will refer to it as the KK ′-basis, which can be either for the conduction band or the valence
band. Note that in the case when there is no spin-orbit coupling all of the KK ′-basis states have
the same energy, i.e. there is a fourfold degeneracy.

The wavefunction (3.29) also has to be periodic in the circumferential direction

Ψτ,s,kc ,kt (r) = Ψτ,s,kc ,kt (r + C), (3.40)

which requires that
ei(k+Kτ )·C = 1 → (k + Kτ ) ·C = 2πm, m ∈Z, (3.41)

where k = (kc, kt) is in ct coordinates. This condition quantizes values of circumferential momentum
kc. Firstly, we need to know the product

Kτ ·C =
2π
3

{
τn+

(τ
2

+
3
2

)
m
}
, (3.42)

and when exponentiated it can be written as

eiKτ ·C = e
2πi
3 (n−m)τ = e

2πi
3 ντ , (3.43)

where
ν = 0,±1, (3.44)

depending on n and m values. For ν = 0 the nanotube is called metallic, and for ν = ±1 it is called
semiconducting. So the periodic boundary condition (3.41) can be written as

kcR+
ντ
3

=m, (3.45)
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which quantizes kc as

kc→ km =
(
m− ντ

3

) 1
R
. (3.46)

When a magnetic field B is applied, it couples to the angular momentum and the spin of the
electron. Now we examine the coupling to the angular momentum of the electron. If we choose
Coulomb gauge for the vector potential

A =
1
2

[B× r], (3.47)

because of the cylindrical geometry of the nanotube, only the component of the field B|| parallel
with the tube axis T, couples to the electrons, through so-called minimal coupling

pc = −i~
∂
∂c

→ pc +
ΦAB

Φ0

1
R
, (3.48)

where
ΦAB = πR2B|| (3.49)

is the Aharonov-Bohm flux through the cross section of the tube, and

Φ0 =
h
e

(3.50)

is a flux quantum. We denote the momentum associated with the Aharonov-Bohm flux as

kΦ =
ΦAB

Φ0

1
R

=
πe
h
RB||. (3.51)

The magnetic field coupling to the orbital degrees of freedom gives a shift in the k̃c→ k̃c + kΦ . Also
note that the parallel and perpendicular components of the B field with respect to the tube axis are
given by

B|| = Bcosζ, B⊥ = Bsinζ, (3.52)

with ζ being the angle between tube axis direction T and B.
The coupling of the magnetic field to the spin is described by the Zeeman term

HZ = −σ0τ0B ·µs =
1
2
gsµBB · s, (3.53)

where µs = −gsµBs is the spin magnetic moment, gs ≈ 2 is the electron’s Landé factor, and s =
{s1, s2, s3} is a vector of the Pauli matrices in spin space. After the first equality we also specified
that this term is diagonal in sublattice (σ0) and K and K ′ point (τ0) subspaces.

Comment: Here I replaced (kc, kt)→ (k̃c, k̃t) in zτ,s,kc ,kt , because this diagonalizes the Hamil-
tonian (3.26), and left the plane wave factor ei(kcc+ktt) with bare (kc, kt), because in real space
representation of the Hamiltonian (3.26) we replace ~kc→ pc = −i~ ∂

∂c and ~kt→ pt = −i~ ∂
∂t , and all

other terms are kept as they are. Also when the magnetic field is applied, the Aharonov-Bohm flux
Φ = πR2B|| through the tube circumference affects only k̃c→ k̃c + kΦ .

After diagonalizing the (3.26) (or 3.28) Hamiltonian we find the eigenspectrum, when the
coupling of the magnetic field to orbital motion of electron is included:

Eτ,s,kc ,kt = ~vF

(
±
√
k̃2
c + k̃2

t + τsk0

)
with k̃c = kc − τkc,cv − skSO + kΦ ,

and k̃t = τkt − kt,cv.

(3.54a)
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Here again plus is for the conduction band and minus for the valence band. By assuming that
|kc − τkc,cv| >> |kSO|, |kΦ | we can expand the square root in the (3.54a) eigenenergies

Eτ,s,kc ,kt
~vF

≈ ±
√

(kc − τkc,cv)2 + k̃2
t +

τsk0 ∓
sgn(kc − τkc,cv)√

1 +
(

k̃t
kc−τkc,cv

)2
skSO

±
sgn(kc − τkc,cv)√

1 +
(

k̃t
kc−τkc,cv

)2
kΦ

↓

Eτ,s,kc ,kt ≈ E
0
τ + sτ

∆SO

2
∓ τ

gorbµBB||
2

,

(3.54b)

where

E0
τ = ±~vF

√
(τkc − kc,cv)2 + (τkt − kt,cv)2, (3.54c)

∆SO = 2~vF

k0 ±
sgn(kc,cv − τkc)√

1 +
( τkt−kt,cv
τkc−kc,cv

)2
kSO

 , (3.54d)

gorb = 2
sgn(kc,cv − τkc)√

1 +
( τkt−kt,cv
τkc−kc,cv

)2

evFR
2µB

. (3.54e)

We also note that sgn(kc,cv − τkc) returns a dimensionless number ±1. The above result coincides
with the result (13) in Ref. [55], when we have the zeroth circumferential mode m = 0, and a
metallic nanotube ν = 0, noting that ~vFk0 = ∆0, ~vFkSO = −∆1, ~vFkc,cv = ∆g , and R =D/2.

3.3 Single particle spectrum of a carbon nanotube quantum dot
If a carbon nanotube has a finite length L and is confined by a very sharp rectangular potential near
the ends, which defines the quantum dot region, the wavevector kt along the tube axis becomes
discrete, and may be assumed to have values [51, 55]

kt ≈
Nπ
L
, N ∈Z. (3.55)

In such a case we can write the normalized wavefunction as

Ψτ,s,kc ,kt (c, t) =
1
√

2πL
eiKτ ·rei(kcc+ktt)

(
zτ,s,kc ,kt

1

)
, (3.56)

and we use this result to define the tunneling amplitudes.
In Section 3.2 we saw that carbon nanotubes have a nearly fourfold degenerate energy level

structure, which is due to the intrinsic spin (↑, ↓), and the so-called isospin or valley index (K ,
K ′) [18, 53, 55, 56]. In a lot of experimental cases such every four states described by particular
kt and kc, “a shell”, are separated by a large energy ∆E comparable or bigger than the charging
energy 2U [55]. The fourfold degeneracy is broken by spin-orbit coupling and disorder. However,
if there is no magnetic field, the system still has time-reversal symmetry and we are left with a
pair of twofold degenerate states, called Kramers doublets. The time-reversal partners (Kramers
doublets) in the KK ′-basis (3.39) are the states

|K ↑〉 = T |K ′ ↓〉, (3.57a)

|K ↓〉 = T |K ′ ↑〉, (3.57b)
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where T is the time-reversal operator.
Now we turn our interest to the single “shell” eigenspectrum. If a carbon nanotube contains

disorder, i.e. defects in the lattice structure, tube is placed on the substrate and etc., this can induce
mixing in KK ′-basis states. However, such mixing should not break time-reversal symmetry. The
single particle Hamiltonian with B field and KK ′ mixing for a single “shell” of a carbon nanotube
quantum dot becomes:

H =



|K ↑〉 |K ′ ↓〉 |K ↓〉 |K ′ ↑〉
E+1,+1 0 0 1

2∆KK ′

0 E−1,−1
1
2∆
∗
KK ′ 0

0 1
2∆KK ′ E+1,−1 0

1
2∆
∗
KK ′ 0 0 E−1,+1



+
1
2
gsµBB



|K ↑〉 |K ′ ↓〉 |K ↓〉 |K ′ ↑〉
cosζ 0 sinζ 0

0 −cosζ 0 sinζ

sinζ 0 −cosζ 0

0 sinζ 0 cosζ

,
(3.58)

remembering, that the spin quantization axis is chosen along the tube axis T, and B field lies in zx
plane of spin-quantization coordinate system. We also note that in this KK ′-basis for τ = −1 we
have (kc, kt)→−(kc, kt). Here ∆KK ′ is the KK ′-mixing due to disorder, gs ≈ 2 is the electron’s Landé
g-factor, ζ is the angle between the magnetic B field and the tube axis, and energies in the diagonal
are given by

Eτ,s = τs
∆SO

2
∓ τgorbµB

Bcosζ
2

, (3.59)

where τ = +1(−1) forK(K ′), s = +1(−1) for spin up (down), gorb is the effective orbital Landé g-factor,
and the upper (lower) sign corresponds to the conduction (valence) band. Note that a constant
factor for particular “shell” E0

τ in (3.54b) was neglected. After diagonalizing the Hamiltonian
(3.58), we find the eigenspectrum εn, which defines the single particle orbitals of the quantum
dot. In our discussion of tunneling induced energy shifts, we will use the energy spectrum for the
conduction band and assume ∆SO > 0.

3.4 Tunneling amplitudes
To define the tunneling amplitudes in KK ′-basis, we need to specify the lead states. We assume
that the lead states constitute Kramers doublets, when there is no magnetic field, which we will
denote:

|αν ↑〉 = T |αν̃ ↓〉, (3.60)

where α = L,R is a lead index. In general if there is spin-orbit coupling in the leads, the lead states
in real space have the form

〈r|αν ↑〉 =
(
aαν(r)
bαν(r)

)
, 〈r|αν̃ ↓〉 =

(
−b∗αν(r)
a∗αν(r)

)
, (3.61)
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where aαν(r), bαν(r) are complex functions of the coordinate. Now using KK ′-basis states (3.39)
and lead states (3.61), which are written in spin s space, we get the following tunneling amplitudes

tτsαξ = 〈αξ |Htot|τs〉 = (1± eiϕτ,s )
∫

drAξs(r)Htot(r)eiK·reiτ(kcc+ktt), (3.62a)

ϕτ,s = τArg
[
kc − kc,cv − i(kt − kt,cv)− τskSO + τkΦ

]
, (3.62b)

Aξs =
(
Aν↑,↑ Aν↑,↓
Aν̃↓,↑ Aν̃↓,↓

)
=

1
√

2πL

(
a∗αν b∗αν
−bαν aαν

)
. (3.62c)

Here ξ denotes either ν ↑ or ν̃ ↓, andHtot is the total single particle Hamiltonian representing leads,
dot region, and tunneling barriers. In general, the lead states can also depend on magnetic field B,
however, we do not consider a such situation. If |kc − kc,cv − i(kt − kt,cv)| >> |skSO − kΦ |, which covers
most cases for carbon nanotubes, we can safely neglect the dependence of tunneling amplitudes on
spin-orbit coupling (kSO) and parallel magnetic field (kΦ ) to the tube axis.

We can simplify the above tunneling amplitudes (3.62a) by assuming that the Hamiltonian
describing electrons in the leads is real and that we can choose arbitrary spin-quantization direction
(for example, there is no spin-orbit coupling in the leads). In the case of no spin-orbit interaction
the states (3.60) can be represented in real space as

〈r|αν ↑〉 =
(
aαν(r)

0

)
, 〈r|αν̃ ↓〉 =

(
0

aαν(r)

)
, (3.63)

where aαν(r) is a real function of coordinates. Here the spin-quantization direction is chosen along
the tube axis. When there is no magnetic field, we can define the following tunneling amplitudes

tK↑αν↑ = 〈αν ↑|Htot|K ↑〉 = tαν,1,

tK
′↓

αν↓ = 〈αν̃ ↓|Htot|K ′ ↓〉 = t∗αν,1,

tK↓αν↓ = 〈αν̃ ↓|Htot|K ↓〉 = tαν,2,

tK
′↑

αν↑ = 〈αν ↑|Htot|K ′ ↑〉 = t∗αν,2,

(3.64)

where we also used the time-reversal symmetry of the states. As we can see from (3.62) the
difference between tunneling amplitudes tαν,1 and tαν,2 appears due to spin-orbit coupling and
that it can be neglected, when spin-orbit coupling is small compared to the curvature induced
splitting in the carbon nanotube, i.e.

tαν,1 ≈ tαν,2 → tαν . (3.65)

In general the tunneling amplitudes (3.64) also depend on the parallel magnetic field, however this
effect is small, when magnetic field is small compared to the curvature induced splitting, and we
do not consider it in our calculations. We also neglect ν dependence of the tunneling amplitudes
tαν,1/2→ tα,1/2.

Note that if spin-orbit coupling in the leads is present, as can be seen from (3.62a), this may
additionally introduce the following non-vanishing tunneling amplitudes

tK↑αν̃↓ = 〈αν̃ ↓|Htot|K ↑〉 = tαν,3, tK
′↓

αν↑ = 〈αν ↑|Htot|K ′ ↓〉 = −t∗αν,3,

tK↓αν↑ = 〈αν ↑|Htot|K ↓〉 = tαν,4, tK
′↑

αν̃↓ = 〈αν̃ ↓|Htot|K ′ ↑〉 = −t∗αν,4.
(3.66)

The inclusion of such terms does not change the qualitative picture of the results presented in
Chapters 4 and 5, so for simplicity we will neglect them.



Chapter 4

Tunneling renormalized cotunneling spectroscopy
of carbon nanotube quantum dots with normal leads

The objective of this chapter is to examine how the tunneling renormalization affects the cotun-
neling spectroscopy of carbon nanotube quantum dots attached to normal leads. The quantum
dot is assumed to have four single particle orbitals of single “shell” defined in Section 3.3. We
are interested in how the cotunneling threshold is modified by the tunneling in the middle of the
single charge N = 1 diamond. The following equation is solved for the cotunneling threshold Ṽth:

|Ṽth| = ∆E(B,Vg , Ṽth) = ẼNl − ẼNl′ , (4.1)

where Ẽ is the tunneling renormalized eigenspectrum, which is determined by the method specified
in Chapter 2.

We will be interested in the parameter regime where the charging energy 2U is much larger
than the single particle spectrum energies εn, the bias V and the tunneling rates

Γ nαs = πραs|tnαs|2, (4.2)

in order for our expansion inHT to be valid. Also we need to be far away from the charge degeneracy
points, so the gate voltage has to be not too far from the middle of the diamond, and because of
this we can linearize the logarithms in (2.29) and be able to get some simple analytical results.
However, in order not to overwhelm the physical interpretation presented in upcoming sections by
cumbersome expressions, the derivation of analytical results is presented in Appendix C.

We note that cotunneling thresholds Ṽth will be measured in units of

Γ =
∑
αj

Γαj = πρ
∑
αj

|tαj |2 (4.3)

for normal leads, where tαj are the tunneling amplitudes defined by (3.64), and in units of

ΓΣ = π
∑
αsj

Γαsj = π
∑
αsj

ραs|tαj |2 (4.4)

for ferromagnetic leads.

4.1 Zero magnetic field B = 0 cotunneling thresholds
First we study the case when B = 0, all single particle orbitals are coupled symmetrically to the
leads Γ nαs = Γ /4, and the tunneling rate Γ is much larger than the disorder splitting ∆KK ′ ≈ 0
and spin-orbit coupling ∆SO ≈ 0, with the resulting tunneling renormalized threshold shown in

29
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(a) (b)

(c) (d)

Figure 4.1: Tunneling renormalized cotunneling thresholds shown as solid curves (blue) for differ-
ent KK ′-mixing and spin-orbit coupling values. The dashed lines (black) depict bare cotunneling
thresholds and dashed-dotted lines (gray) show bare sequential tunneling thresholds. The long
dashed lines (red) in (a) show linearized cotunneling threshold, when there is no KK ′-mixing and
spin-orbit coupling, and the dotted lines (red) in (c) and (d) depict, respectively, the position of zero
bias crossing and minimum separation of the cotunneling threshold from zero bias. The values
of the other parameters are B = 0, U = 32Γ , D = 109Γ , with all tunneling amplitudes tL/R,1/2 being
equal and Arg[tL/R,1/2] = 0.

Figure 4.1a. We see that the fourfold degenerate “shell” spectrum is split in a gate dependent way,
and we get the 1st cotunneling line at zero bias (for B , 0 it is visible at finite bias, and for T < TK it
evolves into a Kondo peak, which is not included in our approach, with T being the temperature
and TK the so-called Kondo temperature), and one twofold degenerate gate dependent line, which
splits into 2nd and 3rd cotunneling line for B , 0. The slope of the 2nd, 3rd cotunneling lines is
given by (dashed (red) line in Figure 4.1a)

S = ± Γ

πU
∆Vg . (4.5)

There is also a crossing of cotunneling lines exactly in the middle of the diamond, i.e. the tunneling
renormalization effects vanish.
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0

(a)

(b)

Figure 4.2: Qualitative picture of tunneling induced KK ′-mixing for a carbon nanotube coupled
to normal leads in zero magnetic B = 0 field. (a) Example of tunneling process, which introduces
KK ′-mixing with a single electron in a carbon nanotube “shell”. Here µL,R denotes chemical
potentials of the leads. (b) Schematic of cotunneling threshold (solid and dashed blue lines) for
a single charge Coulomb diamond, in the absence of spin-orbit coupling and disorder induced
KK ′-mixing, and with real tunneling amplitudes tK , tK ′ . The effective tunneling renormalized
ground state of the quantum dot is |K+〉 with larger tunneling rate ΓK+ ∼ |tK+|2 (dashed blue line)
at the left side of the diamond and |K−〉 with smaller tunneling rate ΓK− ∼ |tK−|2 (solid blue line) at
the right side.

Even though formally it is possible to speak only about tunneling renormalization of the
many-body eigenstates, however, effectively this splitting appears due to the mixing of single
particle K and K ′ states because of the tunneling to the leads (Figure 4.2). This KK ′-mixing
appears because in the leads K and K ′ are no longer good quantum numbers. The resulting
schematic cotunneling threshold without spin-orbit coupling and intrinsic KK ′-mixing is depicted
in Figure 4.2b, where the spin quantum number s and lead index α are disregarded for simplicity.
Also the tunneling amplitudes to the states K and K ′ are taken to be real. In such a case the
tunneling renormalization determines that the effective ground state of the quantum dot has a
larger tunneling rate ΓK+ ∼ |tK+|2 on the left side of the diamond and a smaller one ΓK− ∼ |tK−|2 on
the right side. Also if tunnel couplings are complex and different for the left and right lead, then this
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conclusion holds for tunneling rate summed over the lead index α. This situation occurs, because
the charge fluctuations on the left side tends to empty the quantum dot and it is energetically
favorable to have ground state with larger tunneling rate. On the right side of the diamond the
situation is different, because charge fluctuations to doubly occupied dot states are preferable and
it is energetically more favorable to have an excited state with the larger tunneling rate.

If the tunneling couplings are different for the left and the right lead, the positive and the
negative slopes get corrections and instead of the above expression (4.5), we obtain for the slope

S± = ±ΓL + ΓR

πU

(
1± ΓL − ΓR

πU

)
∆Vg , (4.6)

where Γα = Γα1 + Γα2. We see that asymmetry between positive and negative bias appears, however,
this corresponds only to a second order effect in Γ /U .

When spin-orbit coupling is included, instead of cotunneling lines crossing in the middle of
the diamond, we get an anticrossing of size (Figure 4.1b)

A1 = 2
(
1− Γ

πU

)
|∆SO|. (4.7)

It is not possible to restore a crossing if both Kramers doublets defined in Section 3.3 (Eq. 3.57)
have the same tunneling couplings to the leads (tα,1 ≈ tα,2), even if mixing of K and K ′ due to
disorder ∆KK ′ is included (Figure 4.1d). In this case, for symmetric couplings to the left and right
leads we can find the eigenspectrum around the middle of the diamond, which yields the following
energy difference between ground and excited states

∆E =


[(

1− Γ

πU

)
∆Σ +

Γ

πU
cos(φ)

∆KK ′

∆Σ

∆Vg

]2

+

∣∣∣∣∣∣ Γ

πU

(
∆SO

∆Σ

cos(φ) + isin(φ)
)
∆Vg

∣∣∣∣∣∣2


1/2

,

(4.8)

where

∆Σ =
√
∆2

SO +∆2
KK ′ , (4.9)

and the phase φ is the sum of the KK ′-mixing phase (∆KK ′ = |∆KK ′ |eiφKK ′ ) and the tunneling
amplitudes’ phase (tL/R,1/2 = |t|eiφt ):

φ = φKK ′ + 2φt . (4.10)

From the above expression (4.8) we find that an anticrossing appears near the point

∆Vg ≈
(
1− πU

Γ

)
∆KK ′ cos(φ), (4.11)

and its size is

A2 = 2
(
1− Γ

πU

)√
∆2

SO + sin2(φ)∆2
KK ′ . (4.12)

We note that in this case the middle of the bare diamond is given by ∆Vg = −∆Σ. If spin-orbit
coupling is neglected ∆SO = 0, but there is KK ′-mixing ∆KK ′ , and the total phase φ is equal to zero,
a crossing instead of anticrossing appears near the point (4.11), as shown in Figure 4.1c.
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(a) ∆SO = 0.1Γ , ∆KK ′ = 0.13Γ

1.0 1.50.5

1
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1
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(b) ∆SO = 0.16Γ , ∆KK ′ = 0

Figure 4.3: (a) Illustration of tunneling renormalization reduction, when there is a phase difference
between the left and right leads tunneling couplings, and the relations (4.13) are satisfied. The
values of the parameters are B = 0, U = 32Γ , D = 109Γ , tR,1/2tL,1/2

= eiπ/2, Arg[tL,1/2] = 0. (b) Illustration
of a zero bias crossing, when there is only spin-orbit coupling, and the Kramers doublets have
different tunneling couplings to the leads (only relation (4.13a) is satisfied). The values of the

parameters are B = 0, U = 32Γ , D = 109Γ ,
∣∣∣∣ tL/R,1tL/R,2

∣∣∣∣ = 7, Arg[tL,1/2] = Arg[tR1] = 0, Arg[tR2] = π. The
legend is the same as in Figure 4.1.

By changing the relative phases between the left and right couplings, we can reduce the
tunneling renormalization, as shown in Figure 4.3(a). The condition for complete reduction of the
tunneling renormalization around the middle of the diamond is

tL1tL2 + tR1tR2 = 0, (4.13a)

|tL1|2 + |tR1|2 = |tL2|2 + |tR2|2, (4.13b)

which can be rewritten as

tR1 = eiϕtL2, tR2 = −e−iϕtL1, (4.14)

where tL/R,1/2 are complex numbers, and ϕ is some arbitrary phase.
It is possible to get a crossing if the Kramers doublets are coupled differently, i.e. tα1 , tα2, as

shown in Figure 4.3(b), where we for simplicity consider the case with only spin-orbit coupling,
but the statement is also true when KK ′-mixing is included. In this case, the condition for crossing
is given by relation (4.13a), when relation (4.13b) is not satisfied. Then the position of the crossing
is given by

∆Vg ≈
πU

Γ2 − Γ1
∆SO, (4.15)

where Γj = ΓLj + ΓRj , and the middle of the diamond is in this case given by ∆Vg = −|∆SO|. To be able
to observe it experimentally, the value of Eq. (4.15) has to be between −2U and 2U .
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4.2 Finite magnetic field B , 0 cotunneling thresholds. Gate depen-
dence of g-factors

Now we investigate how the tunneling induced level shifts effect the magnetic field dependence of
the cotunneling threshold, i.e. we examine the gate dependence of the g-factors. As in the previous
section, we restrict our examination to the single charge N = 1 diamond. We start by examining
the case when the spin-orbit coupling and KK ′-mixing are neglected, the magnetic field is parallel
to the tube axis, and the couplings to the left and right leads are equal. When the gate voltage is
exactly in the middle of the diamond the bare g-factors are almost unaffected and they are reduced
only by a factor (1− Γ /πU )

g̃s,orb ≈ (1−κ)gs,orb, κ =
Γ

πU
. (4.16)

For very small Γ /U ratio, the renormalized threshold matches the bare one (dashed (black) curves
in Figure 4.4a). For perpendicular magnetic field B⊥ the renormalization of g-factors is also small
and for 1st, 2nd, and 3rd cotunneling lines, respectively, are given by

κgs, (1−κ)gs, gs. (4.17)

Going away from the middle of the diamond, we find that g-factors acquire gate dependence (solid
(blue) curves in Figure 4.4a), which for the κ∆Vg >> B > 0 case is written in Table 4.1, for different
transitions. The situation when spin-orbit coupling is included is depicted in Figure 4.4b. We see
that the tunneling renormalization again acts as a gate dependent ∆KK ′ splitting. The effective
g-factors for small magnetic B fields (κ∆Vg , ∆SO >> B > 0) are written in Table 4.1, where the
following notation is introduced:

κ̃ ≈ κ
1 +

(
1−κ
κ

∆SO

∆Vg

)2−1/2

, (4.18a)

g̃s ≈ gs(1−κ)

1 +
(

1−κ
κ

∆SO

∆Vg

)2−1/2

, (4.18b)

g̃orb ≈ gorb(1−κ)

1 +
(
κ

1−κ
∆Vg
∆SO

)2−1/2

. (4.18c)

When there is only KK ′-mixing, the magnetic field dependence of the cotunneling threshold
does not change qualitatively, and the only difference at finite ∆Vg is an effective enhancement of
the KK ′-mixing due to tunneling-renormalization, as can be seen from Figure 4.4c. The situation
when both spin-orbit coupling and KK ′-mixing are included is depicted in Figure 4.4d.

In an experiment, the cotunneling threshold dependence on the magnetic field angle ζ (with
respect to the tube axis) also could be measured. The angle dependence of the bare cotunneling
threshold is shown in Figure 4.5a. Again, in the middle of the diamond there is almost no
renormalization due to tunneling and it matches Figure 4.5a. The situation at finite ∆Vg is shown
in Figure 4.5b. If the quantum dot is coupled to the leads asymmetrically, then the asymmetry
between positive and negative bias thresholds acquires angle dependence, which can be seen by
adding positive and negative bias thresholds in Figure 4.5b, and the result is shown in Figure 4.5c.
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Cotunneling
κ∆Vg >> B > 0, ∆SO = 0 κ∆Vg > ∆SO >> B > 0

line Bare g-factor Renormalized g Bare g Renormalized g

Parallel field B||

1st gs (1−κ)gs gs + gorb (1−κ − κ̃)gs + g̃orb

2nd gorb κgs + g2
orbB

2κ∆Vg
gs (1−κ)gs

3rd gs + gorb gs + g2
orbB

2κ∆Vg
gorb −κ̃gs + g̃orb

Perpendicular field B⊥

1st 0 gs 0 κgs + g̃s
2nd gs κgs

gsB
2∆SO

κgs
3rd gs (1−κ)gs

gsB
2∆SO

g̃s

Table 4.1: Bare and renormalized g-factors for carbon nanotube quantum dot, when gorb > gs and
∆KK ′ = 0.

(a) (b)

(c) (d)

Figure 4.4: Comparison of the dependence on parallel B|| and perpendicular B⊥ magnetic field of
the bare (dashed curves (black)) and the tunneling renormalized (solid curves (blue)) cotunneling
threshold for different values of KK ′-mixing and spin-orbit coupling at a gate voltage Vg = 1.2×2U
away from the middle of the diamond. The values of the other parameters are U = 32Γ , D = 109Γ ,
with all tunneling amplitudes tL/R,1/2 being equal and Arg[tL/R,1/2] = 0.
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(a) Bare cotunneling threshold

(b) Tunneling renormalized cotunneling threshold

(c) Asymmetry between negative and positive bias
tunneling renormalized cotunneling thresholds

Figure 4.5: Angle dependence of cotunneling threshold. The values of the parameters are B = 0.13Γ ,
∆SO = 0.16Γ , ∆KK ′ = 0, U = 32Γ , D = 109Γ , tL,1/2tR,1/2

= 7, Arg[tL/R,1/2] = 0.
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4.3 Comparison of second and fourth order corrections

(a) (b)

(c) (d)

Figure 4.6: The comparison of energy differences corresponding to cotunneling thresholds in
Figure 4.1, where solid curves (blue) correspond to energy differences with corrections up to second
order in HT, and dotted (green) curves up to fourth order in HT. The values of the other parameters
for calculation are B = 0, U = 32Γ , D = 109Γ , with all tunneling amplitudes tL/R,1/2 being equal and
Arg[tL/R,1/2] = 0.

To show the region of validity of the perturbative expansion, we consider the energy shifts with
fourth order corrections included, which are examined in Appendix B, for the cases discussed in
Section 4.1. The comparison of the energy differences corresponding to cotunneling thresholds in
Figure 4.1 is shown in Figure 4.6, where solid curves (blue) correspond to energy differences with
corrections up to second order in HT, and dotted (green) curves - up to fourth order in HT. From
this figure we see that for chosen parameters in our calculation we have wide range of gate voltage
Vg for which second order perturbation theory in HT is valid.





Chapter 5

Tunneling renormalized cotunneling spectroscopy
of quantum dots with ferromagnetic leads

In this chapter we discuss the cotunneling thresholds in the presence of ferromagnetic leads, the
effect of the exchange field, and its compensation by external magnetic field.

5.1 Tunneling amplitudes

Tube
axis

Left lead (L) Right lead (R)

(a)

L R
parallel collinear

parallel anticollinear

perpendicular collinear

perpendicular anticollinear

(b)

Figure 5.1: Orientation of the lead polarizations and magnetic field with respect to quantum dot
spin quantization axis (or the carbon nanotube axis). (a) Arbitrary orientation of lead polarization
when ϕα = 0. (b) Orientations of polarizations discussed in the thesis.

If spin quantization axes of the leads are rotated with respect to the quantum dot spin quantiza-
tion axis by angles θα and ϕα (Figure 5.1), then the new eigenstates of the leads, expressed in terms
of the old ones (which have spin quantization axis the same as the quantum dot), are eigenstates of

(aα · τ ) =
(

cosθα sinθα cosϕα − i sinθα sinϕα
sinθα cosϕα + isinθα sinϕα −cosθα

)
, (5.1)

39
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where aα denotes the spin quantization directions in the leads (α = L,R)

aα = {sinθα cosϕα ,sinθα sinϕα ,cosθα}, (5.2)

and τ is vector consisting of Pauli matrices. The eigenvectors of the above matrix written as
columns of Pα are

Pα =
(

cos(θα/2) −sin(θα/2)e−iϕα

sin(θα/2)eiϕα cos(θα/2)

)
. (5.3)

So the new eigenstates in the leads are expressed as

|αξ↑̃〉 = cos(θα/2)|αν ↑〉+ sin(θα/2)eiϕα |αν̃ ↓〉, (5.4a)

|αξ̃↓̃〉 = cos(θα/2)|αν̃ ↓〉 − sin(θα/2)e−iϕα |αν ↑〉. (5.4b)

and the tunneling amplitudes in the new basis become

tn
αξ↑̃ = cos(θα/2)tnαν↑ + sin(θα/2)e−iϕα tnαν̃↓, (5.5a)

tn
αξ̃↓̃ = cos(θα/2)tnαν̃↓ − sin(θα/2)eiϕα tnαν↑. (5.5b)

The new spins ↑̃ and ↓̃ have corresponding new constant tunneling density of states ρ↑̃ and ρ↓̃,
because we are considering ferromagnetic leads.

5.2 Two orbital quantum dot
In this section we will look at the simple quantum dot containing only two single particle orbitals
spin-up |↑〉 and spin-down |↓〉 (Figure 1.2, Ec = 2U ). Uncoupled from the leads quantum dot has
the following bare many-body eigenstates

|ψd〉 ∈ {|0〉, |1↑〉, |1↓〉, |2〉} , (5.6)

with corresponding bare eigenenergies

E
(0)
0 = 0, (5.7a)

E
(0)
1↑ =

∆

2
+U −Vg , (5.7b)

E
(0)
1↓ = −∆

2
+U −Vg , (5.7c)

E
(0)
2 = 4U − 2Vg , (5.7d)

Here ∆ = gsB corresponds to applied external magnetic field, with gs being the electron Landé
factor. We assume that the tunneling amplitudes have the following form

t↑αs = tαδs,↑, (5.8a)

t↓αs = tαδs,↓, (5.8b)

i.e., that spin quantization-axes in the leads and in the quantum dot are in the same direction,
which will be the case for large enough external magnetic field B, which polarizes the leads in
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its direction. Having the above eigenenergies and tunneling amplitudes we can find tunneling
induced level shifts, by using expression (2.29)

E
(2)
0 =

Γ↑
π

ln

∣∣∣∣∣∣∣U −
∆
2 +

∆Vg
2

D + ∆st
2

∣∣∣∣∣∣∣+
Γ↓
π

ln

∣∣∣∣∣∣∣U + ∆
2 +

∆Vg
2

D − ∆st
2

∣∣∣∣∣∣∣ , (5.9a)

E
(2)
1↑ =

Γ↓
π

ln

∣∣∣∣∣∣∣U −
∆
2 −

∆Vg
2

D − ∆st
2

∣∣∣∣∣∣∣+
Γ↑
π

ln

∣∣∣∣∣∣∣U −
∆
2 +

∆Vg
2

D − ∆st
2

∣∣∣∣∣∣∣ , (5.9b)

E
(2)
1↓ =

Γ↑
π

ln

∣∣∣∣∣∣∣U + ∆
2 −

∆Vg
2

D + ∆st
2

∣∣∣∣∣∣∣+
Γ↓
π

ln

∣∣∣∣∣∣∣U + ∆
2 +

∆Vg
2

D + ∆st
2

∣∣∣∣∣∣∣ , (5.9c)

E
(2)
2 =

Γ↑
π

ln

∣∣∣∣∣∣∣U + ∆
2 −

∆Vg
2

D − ∆st
2

∣∣∣∣∣∣∣+
Γ↓
π

ln

∣∣∣∣∣∣∣U −
∆
2 −

∆Vg
2

D + ∆st
2

∣∣∣∣∣∣∣ , (5.9d)

where the following notations were introduced

Γαη = πραη |tα |2, (5.10a)

Γη =
∑
α

Γαη = ΓLη + ΓRη , η ∈ {↑,↓} (5.10b)

Vg = 2UNg = 2U +
∆Vg

2
. (5.10c)

Note that when calculating the energy corrections (5.9) we have set the voltage bias to zero V = 0
for simplicity.

With the above energy corrections (5.9) we find that the cotunneling threshold becomes

Vc =
(
E0

1↑ +E(2)
1↑

)
−
(
E

(0)
1↓ +E(2)

1↓

)
= ∆+

Γ↑
π

ln

∣∣∣∣∣∣∣1 +
∆Vg
2U −

∆
2U

1− ∆Vg
2U + ∆

2U

∣∣∣∣∣∣∣+
Γ↓
π

ln

∣∣∣∣∣∣∣1−
∆Vg
2U −

∆
2U

1 +
∆Vg
2U + ∆

2U

∣∣∣∣∣∣∣
+
Γ↑ + Γ↓
π

ln

∣∣∣∣∣∣∣1 + ∆st
2D

1− ∆st
2D

∣∣∣∣∣∣∣ ,
(5.11)

and if the gate voltage is around the middle of the diamond (∆Vg << 2U ), then the above threshold
can be linearized to give

Vc ≈
(
1−

Γ↑ + Γ↓
πU

)
∆+

Γ↑ − Γ↓
πU

∆Vg +
Γ↑ + Γ↓
πD

∆st. (5.12)

We see that the gate dependent splitting appears if the leads are ferromagnetic, i.e. Γ↑ , Γ↓. That
kind of splitting in the literature is called gate dependent exchange field [26]. Also there is a
correction Γ↑+Γ↓

πD ∆st if the spin-up and spin-down bands of the leads are shifted with respect to one

another by the Stoner splitting. And lastly there is a correction
(
1− Γ↑+Γ↓

πU

)
∆, which renormalizes the

magnetic field by diminishing it. In a way it corresponds to the Lamb shift from atomic physics [57,
58], or the Knight shift from nuclear magnetic resonance physics [59].

Now let us examine zero-bias sequential tunneling thresholds and the possible motion of the
middle of the diamond due to tunneling renormalization. The bare threshold for ground state
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transitions between zero-to-single and single-to-two charge states is determined respectively by
the conditions (here we assume that ∆ < 0, i.e. spin-up is the ground state):

E1↑ −E0 =U −V 1↔0
g − |∆|

2
= −U −

∆V 1↔0
g + |∆|

2
= 0, (5.13a)

E2 −E1↑ = 3U −V 2↔1
g +

|∆|
2

=U −
∆V 2↔1

g − |∆|
2

= 0. (5.13b)

From the above equations we get

∆V 1↔0
g = −2U − |∆|, (5.14a)

∆V 2↔1
g = 2U + |∆|. (5.14b)

We see that in this case the middle of the diamond is always given by

∆Vmid
g = 0, (5.15)

but the width varies depending on |∆|

∆V width
g = 4U + 2|∆|. (5.16)

If the second order corrections (5.9) are included then the zero-bias sequential tunneling thresholds
qualitatively would be determined from:

(E1↑ +E(2)
1↑ )− (E0 +E(2)

0 ) = −U −
∆V 1↔0

g + |∆|
2

+ Γ↓ ln

∣∣∣∣∣∣1− (∆V 1↔0
g − |∆|)/2U

1 + (∆V 1↔0
g − |∆|)/2U

∣∣∣∣∣∣ = 0, (5.17a)

(E2 +E(2)
2 )− (E1↑ +E(2)

1↑ ) =U −
∆V 2↔1

g − |∆|
2

+ Γ↑ ln

∣∣∣∣∣∣1− (∆V 2↔1
g + |∆|)/2U

1 + (∆V 2↔1
g + |∆|)/2U

∣∣∣∣∣∣ = 0. (5.17b)

Of course the second order perturbation theory near the charge degeneracy points is not valid,
but here we included it to see how the zero-bias sequential tunneling points might move due to
tunneling renormalization. We see that we can get equation (5.17b) from (5.17a) by replacing
∆V 1↔0

g →−∆V 2↔1
g and Γ↓→ Γ↑. In the case when Γ↓ = Γ↑ we get ∆V 2↔1

g = −∆V 1↔0
g , and this implies

that the middle of the diamond still is given by ∆Vmid
g = 0. However, when Γ↓ , Γ↑, the middle of

the diamond will move as a function of |∆| (i.e. magnetic field), and even for ∆ = 0, will not be
∆Vmid

g = 0.

5.3 Carbon nanotube quantum dot
In the following discussion for a quantum dot with four single particle orbitals we neglect Stoner
splitting of the spin-up and spin-down bands, i.e. we assume that the bandwidth D is much larger
than this splitting. We also assume that the tunneling density of states for the left and right leads
is equal, i.e. ρLs = ρRs = ρs, and only the spin quantization direction of the two leads with respect
to one another can change. Lastly, we consider asymmetric couplings to the left and right leads
tL , tR, and in general also having a phase difference with respect to one another.

5.3.1 Zero magnetic field

The possible qualitative gate dependencies of the cotunneling threshold for a carbon nanotube
coupled to ferromagnetic leads is depicted in Figure 5.2. For particular parameter values, which are
discussed in the thesis, corresponding qualitative figure from Figure 5.2 is indicated in Table 5.1.
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(c) ∆SO = 0, ∆KK ′ = 0.14ΓΣ, θR = θL +π
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(d) ∆SO = 0.23ΓΣ, ∆KK ′ = 0, θα = π
2

Figure 5.2: The possible qualitative gate dependencies of tunneling renormalized cotunneling
threshold for a quantum dot coupled to ferromagnetic leads for different KK ′-mixing, spin-orbit
coupling values, and orientations of the leads θα. The insets show enlarged plots of crossings. The
values of the other parameters are B = 0, U = 47ΓΣ, D = 109ΓΣ,

ρ↑̃
ρ↓̃

= 2, tR,1/2tL,1/2
= 3

5eiπ/3, Arg[tL,1/2] = 0.
The legend is the same as in Figure 4.1.

We start by considering the gate dependence of the cotunneling threshold for collinear configu-
ration of the left and the right lead polarizations θL = θR. In the case when there is no spin-orbit
coupling and KK ′-mixing, we can find the eigenspectrum around the middle of the diamond by
linearizing the logarithms in Eq. (2.29) and solving the eigenvalue problem:

E↑̃ = −
∆Vg

2

(
κ+
↓̃ ±

√
(κ−
↑̃

)2 + |κo
↑̃
|2
)
, (5.18a)

E↓̃ = −
∆Vg

2

(
κ+
↑̃ ±

√
(κ−
↓̃

)2 + |κo
↓̃
|2
)
, (5.18b)

where

κ±s =
∑
α

ρs
U

(|tα1|2 ± |tα2|2), (5.19a)

κos = 2
∑
α

ρs
U
tα1tα2, (5.19b)

with s = ↑̃, ↓̃. (5.19c)
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Collinear
∆SO
ΓΣ

∆KK ′
ΓΣ

θ Figure 5.2

0 0 ∗ (a)
0 0.23eiπ/2 ∗ (b)
0.23 0 0 (b)
0.23 0 π/2 (d)
0.19 0.14eiπ/2 0 (b)
0.19 0.14eiπ/2 π/2 (b)

Anticollinear
∆SO
ΓΣ

∆KK ′
ΓΣ

θ Figure 5.2

0 0 ∗ (a)
0 0.23eiπ/2 ∗ (d)
0 0.14 ∗ (c)
0.23 0 0 (d)
0.23 0 π/2 (b)
0.19 0.14eiπ/2 0 (d)
0.19 0.14 0 (c)
0.19 0.14eiπ/2 π/2 (b)

Table 5.1: Indication of the corresponding qualitative figure for particular ∆SO and ∆KK ′ parameters.
In the case of collinear configuration we have θ = θL = θR and anticollinear θ = θL = θR +π. Values
of angle denoted with asterisk (∗) mean that the actual plot does not depend on the angle θ.

The energies (5.18a) correspond to states with ↑̃ and (5.18b) to states with ↓̃. If ρ↑̃ > ρ↓̃, the left
side of the diamond (∆Vg < 0) has a ground state with spin ↑̃ and the right side (∆Vg > 0) with
spin ↓̃. When tα1 = tα2 = tα (κ−s = 0), which is the case for carbon nanotubes, we see that in
order for the exchange field to split all cotunneling thresholds, we have to have a phase difference
between the left tL and the right tR couplings. When only the ∆KK ′ mixing is included, there is no
dependence on the direction of the polarization of the collinear leads, as shown in Figure 5.2b.
This is because there is no particular spin-quantization direction in the carbon nanotube. However,
when only spin-orbit coupling is included there is qualitative difference for parallel (θα = 0) and
perpendicular (θα = π/2) direction of the collinear leads polarization (Figure 5.2b,d). We see
that for the perpendicular direction an additional crossing away from the middle of the diamond
appears (Figure 5.2d). However, it can be lifted by ∆KK ′ splitting (Figure 5.2b). We also note that
the position of the crossing is always on the right side of the diamond independent of ∆SO sign,
tunneling amplitudes tα,1/2, and densities of states ρs.

For anticollinear configuration (θR = θL + π), similarly, as for collinear configuration, the
eigenspectrum around the middle of the diamond, when there is no spin-orbit coupling and
KK ′-mixing, can be expressed as Eq. (5.18) by replacing κ±s and κos by

κ±s =
1
U

[
ρs(|tL1|2 ± |tL2|2) + ρs̄(|tR1|2 ± |tR2|2)

]
, (5.20a)

κos =
2
U

[ρstL1tL2 + ρs̄tR1tR2] , (5.20b)

with s = ↑̃, ↓̃ and s̄ = ↓̃, ↑̃. (5.20c)

Again we set tα1 = tα1 = tα. In this case, we notice that all cotunneling lines are split only when
there is a phase and modulus difference between the left tL and the right tR couplings. We also note
that exchange fields from the left and right leads cancel each other if we have symmetric couplings
tL = tR (there is no splitting of cotunneling lines having different spins). This is also true when both
spin-orbit coupling and KK ′-mixing are included. As in the case of collinear configuration, when
only KK ′-mixing is included, there is no dependence on the direction of the polarization of the
leads in anticollinear configuration. We also see that in this case a crossing appears (Figure 5.2d),
which is lifted for the perpendicular case (θL = π/2 θR = −π/2, Figure 5.2b) and left intact for the
parallel case (θL = 0, θR = π, Figure 5.2d) when spin-orbit coupling is included. This crossing can
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(d) ∆SO = 0, θL = ζ = 0, θR = π

Figure 5.3: Tunneling renormalized cotunneling threshold dependence on parallel magnetic field
B|| for a quantum dot coupled to ferromagnetic leads, away from the middle of the diamond at gate
voltage Vg = 1.2× 2U . a), b), and c) cases depict situation for the collinear lead configuration, and
d) for the anticollinear lead configuration. When only KK ′-mixing is included, the cotunneling
thresholds qualitatively look as in case a). The values of the parameters are ∆KK ′ = 0, U = 39ΓΣ,
D = 109ΓΣ,

ρ↑̃
ρ↓̃

= 2, tR,1/2tL,1/2
= 4

5eiπ/3, Arg[tL,1/2] = 0.

also appear on the left side of the diamond, depending on the KK ′-mixing phase φKK ′ , as shown in
Figure 5.2c.

5.3.2 Parallel magnetic B field

The parallel magnetic field B|| dependence of the cotunneling thresholds for the collinear config-
uration (θα = 0) is shown in Figure 5.3a,b,c. The B < 0 (B > 0) side of the plots corresponds to
majority (minority) spins having the larger tunneling density of states. When only KK ′-mixing
is included, the cotunneling thresholds qualitatively look as in Figure 5.3a. We note that in the
case of Figure 5.3a inclusion of a small ∆SO << ∆KK ′ does not split the crossings, and in the cases of
Figure 5.3b,c including a small ∆KK ′ << ∆SO also leaves the crossings intact. However, large enough
KK ′-mixing can lift the crossings denoted 1 and 2 in Figure b,c. So we see that for majority spins
tunneling, the parallel magnetic field B|| can always compensate the exchange field between ground
and first excited states (ground doublet), or the second and third excited states (excited doublet),
even when both ∆SO and ∆KK ′ are included. However, the compensation between the states, which
would correspond to a bare Kramers doublets at zero magnetic field, appears near different values
of B||-field, as shown by dotted (red) lines in Figure 5.3a. For minority spins tunneling, the compen-
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0.25

0.1-0.1

(a) ∆SO = ∆KK ′ = 0
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0.1-0.1

(b) ∆SO = 0, ∆KK ′ = 0.23eiπΓΣ

0.25

0.1-0.1

(c) ∆SO = 0.23ΓΣ, ∆KK ′ = 0

0.25

0.1-0.1

(d) ∆SO = 0.19ΓΣ, ∆KK ′ = 0.14eiπ/2ΓΣ

Figure 5.4: Tunneling renormalized cotunneling threshold dependence on perpendicular magnetic
field B⊥ for a quantum dot coupled to ferromagnetic leads in the collinear configuration (θα = ζ =
π/2), away from the middle of the diamond at gate voltage Vg = 1.2× 2U . The values of the other

parameters are U = 47ΓΣ, D = 109ΓΣ,
ρ↑̃
ρ↓̃

= 2, tR,1/2tL,1/2
= 3

5eiπ/3, Arg[tL,1/2] = 0.

sation of exchange field is complex and depends on particular values of parameters, i.e. ∆SO and
the sign of it, ∆KK ′ and its phase, and also tunneling coupling tα. The situation for anticollinear
configuration (θL = 0, θR = π) with no ∆SO, ∆KK ′ is depicted in Figure 5.3d. If we assume that the
leads majority spins have largest density of states, then the B < 0 side of the plot corresponds to the
anticollinear lead with respect to the B||-field direction less coupled to the dot than the collinear
lead, and for B > 0 case vice versa. This means that cotunneling renormalization for antiparallel
ferromagnetic leads is invariant under exchange (ρ↑̃, tL)↔ (ρ↓̃, tR). From Figure 5.3d, when there is
no spin-orbit coupling and KK ′-mixing, we see that the exchange field can be compensated only
for either the ground doublet or for the excited doublet, depending on the couplings tα to the
leads. If only KK ′-mixing is included, the compensation also depends on tα phases and the phase
φKK ′ of this KK’-mixing, and one can get cotunneling threshold looking qualitatively like the one
in Figure 5.3d or its mirror image. When only spin-orbit coupling is included, the cotunneling
thresholds qualitatively look exactly as in the case of collinear leads Figure 5.3b,c. Including both
spin-orbit coupling and KK ′-mixing again produces the situations depicted in Figure 5.3b,c, (with
the possibility to lift the crossings 1 and 2 for large enough ∆KK ′ and crossing 1 to appear in B < 0
region) or Figure 5.3d and its mirror image, depending on actual values of ∆SO, ∆KK ′ , and tα.
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Figure 5.5: Tunneling renormalized cotunneling threshold dependence on perpendicular magnetic
field B⊥ for a quantum dot coupled to ferromagnetic leads in the anticollinear configuration
(θL = ζ = π/2, θR = −π/2), away from the middle of the diamond at gate voltage Vg = 1.2 × 2U .
The values of the other parameters are U = 47ΓΣ, D = 109ΓΣ,

ρ↑̃
ρ↓̃

= 2, Arg[tL,1/2] = 0, except for c)
U = 32ΓΣ.

5.3.3 Perpendicular magnetic B field

For perpendicular magnetic field B⊥ and polarization of the leads (|θα | = π/2), we will focus on
exchange field compensation for the ground doublet. With a parallel configuration of the leads
(θα = π/2), the cotunneling thresholds are depicted in Figure 5.4. We see that for majority spin
tunneling, the exchange field for the ground doublet can only be compensated if there is no spin-
orbit coupling (Figure 5.4a,b), and this holds for any sign of ∆SO. When onlyKK ′-mixing is included
then whether the three cotunneling thresholds qualitatively look like Figure 5.4a or Figure 5.4b
depends on the phase of ∆KK ′ . For minority spin tunneling the exchange field for the ground
doublet will be compensated if there is only spin-orbit coupling (Figure 5.4c). If both ∆KK ′ and ∆SO
are present the exchange field is never compensated for both doublets, as shown in Figure 5.4d,
and it is so even for symmetric coupling to the leads tL = tR. Lastly, the case of anticollinear
configuration of the leads (θL = π/2, θR = −π/2) and perpendicular magnetic field B⊥ is depicted
in Figure 5.5. If the anticollinear lead is more coupled to the dot than the collinear one and if
there is no spin-orbit coupling and KK ′-mixing then the exchange field is always compensated for
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the ground doublet and vice versa. In the case when there is only KK ′-mixing the compensation
depends on ∆KK ′ and tα phases, and the qualitative picture of the cotunneling thresholds can look
as in Figure 5.5a or Figure 5.5b. If spin-orbit coupling is included, the compensation depends
on the values of tunneling couplings tα, while the sign of ∆SO is irrelevant. When the tunneling
couplings have a phase difference, the exchange field is never compensated and all crossings
become anticrossings (Figure 5.5c). In the case of symmetric tunneling couplings there is effectively
no exchange field and of course the compensation is at zero magnetic field B⊥ = 0. Now, when there
is only spin-orbit coupling and the tunneling couplings differ only in modulus, the qualitatively
situation depicted in Figure 5.4c for collinear leads configuration appears, i.e. the exchange field
can be compensated. However, if in this case KK ′-mixing is included, there is no compensation
possible (Figure 5.5d).

Conclusions for Part I
In this first part we have examined the tunneling renormalization of quantum dot cotunneling spec-
trum by considering energy shifts of many-body eigenstates using quasi-degenerate perturbation
theory [46, 47] in tunneling Hamiltonian HT. The second order result Eq. (2.29) is applicable to
any quantum dot with arbitrary number of single particle orbitals, coupled either to normal or fer-
romagnetic leads, when the tunneling rates Γ are much smaller than charging energy (Γ << U ), and
gate-voltage is far from charge degeneracy points. Using this second order result we determined
energy shifts for carbon nanotube quantum dot, where fourfold “shell” structure (Section 3.3) of
the single particle spectrum was assumed. It was shown that tunneling renormalization introduces
gate-dependent KK ′-mixing of carbon nanotube orbitals, and this in turn renormalizes g-factors for
some cotunneling lines in a gate dependent way. From the energy shifts the cotunneling spectrum
was obtained and we found that for asymmetric tunneling couplings to the right and left leads
bias asymmetry appears, which is a second order effect in the small parameter Γ /U . By measuring
the cotunneling threshold asymmetry (if the coupling to the left and to the right lead is different)
between positive and negative bias and its dependence on the magnetic field angle with respect
to the tube axis, it would be possible to indicate that the gate dependence of cotunneling lines
appear due to tunneling renormalization and not some other effects, like the change of the local
electrostatic potential. It was also found that the tunneling renormalization can be reduced by
changing the relative phases between the left and right couplings to the leads. For coupling to
ferromagnetic leads we showed that the exchange field can completely lift all degeneracies in a
fourfold spectrum, however, at particular gate voltages the crossings of cotunneling lines may
appear. Then the compensation of this exchange field by external magnetic field was examined.
The most important finding was that if both spin-orbit coupling and KK ′-mixing are present the
exchange field can never be compensated by a perpendicular magnetic field for leads in collinear
configuration, and if couplings to the left and right lead are different then it is also the case for
leads in anticollinear configuration.
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Sub-gap states in superconductors due to
spinful quantum dots
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Chapter 6

Superconductor/quantum dot/superconductor
junctions

Quantum dots coupled to superconducting leads are examined in this part of the thesis. Such a
setup presents an interesting research area, where the interplay between superconductivity and
the Coulomb blockade physics can be examined. The state of the leads made out of conventional
superconductors is described by the condensation of the so-called Cooper pairs in the ground state
of the system [60]. This result in a broken symmetry state, which has the following non-vanishing
expectation value

∆α = |∆α |eiφα ∝
∑

k

〈c†αk↑c
†
α,−k↓〉. (6.1)

Here ∆α = |∆α |eiφα is the superconducting order parameter, which has the modulus |∆α |, known as
the superconducting gap, and the phase φα. Also c†αkσ denotes electron creation operator in the
lead α with the momentum k and the spin σ .

More concretely, the system we are interested in is depicted in Figure 6.1a, where we have a
quantum dot, which is in the Coulomb blockade regime, coupled to two superconducting leads,
which have a phase difference φ = φL −φR between them. There is also a third normal lead, with
which bias spectroscopy of the joint superconductor/quantum dot/superconductor (SDS) system is
performed. So in order for the normal lead not to affect the joint SDS system, we want the coupling
to the normal lead ΓN � ΓS,α to be much smaller than the coupling to the superconducting leads1.
This kind of setup is motivated by the recent experiment of Chang et al. [62, 63], and similar
experiments on superconductor/quantum dot/normal metal (SDN) systems [64–67]. Now if a
single orbital quantum dot is deep in the Coulomb blockade regime and has an odd number of
electrons it effectively acts as a spin-1/2 impurity, which interacts with conduction electrons of
the leads through exchange interaction [68, 69]. In the case when the leads are a normal metal, a
magnetic impurity induces a localized Kondo resonance at the Fermi level, if the temperature is
below the so-called Kondo temperature TK [70]. When the metal is superconducting, it has a gap
|∆| of density of states above and below the Fermi level [60] as schematically shown in Figure 6.1b,
and the magnetic impurity instead gives rise to excited sub-gap states [71–78] (see Figure 6.1c).

The nature of the ground state and the excited sub-gap state depends on the ratio TK / |∆|. If
TK � |∆|, which corresponds to a weak coupling, the excited state is a singlet |S〉, which is formed
between the spin on the quantum dot and Bogoliubov quasiparticles in the leads, and the ground
state is a doublet |Ds〉, s = ↑,↓. The Bogoliubov quasiparticles correspond to superconductor’s
single particle excitations, which are a superposition of a particle and a hole. We also note

1As it was shown by Žitko et al. [61], that at zero temperature T = 0 the coupling to the normal lead is non-
perturbative and it always induces Kondo screening. Nevertheless, we will neglect this effect by assuming that the
temperature is larger than the corresponding Kondo temperature due to this normal lead.
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that the presented picture of the singlet is valid when the charging energy is larger than the
superconducting gap U � |∆|, because in the other limit U � |∆| the singlet is the mixture of zero
|0〉 and two |2〉 charge states on the quantum dot [79] as shown in Figure 6.2. For TK � |∆| the spin
is screened resulting in a singlet ground state |S〉 and excited doublet |Ds〉. So the increasing ratio
TK / |∆|, induces a change from a doublet to a singlet ground state, as the sub-gap state crosses zero
energy [80–83]. This behavior appears to be confirmed by superconducting scanning tunneling
microscope (STM) measurements on an array of magnetic molecules [84] and sharp sub-gap
states have also been observed in normal lead bias spectroscopy of a Coulomb blockaded carbon
nanotube and InAs quantum dots [62, 64–67, 85]. The schematic of the possible sub-gap state
and corresponding ground state dependence on a gate voltage for oddly occupied quantum dot is
shown in Figure 6.3.2 Our main interest in this part of the thesis is to understand the sub-gap state
dependence on the phase difference φ between two superconductors and an external magnetic
field B.3

6.1 The model
To describe a quantum dot in a magnetic field connected to two superconducting leads and
capacitively coupled to a gate electrode, we assume that its highest partially occupied orbital is
represented by a single orbital Anderson model. Then the Hamiltonian for the system is

H =H0 +HT =HLR +HD +HT. (6.2a)

The superconducting leads are described by the effective Bardeen-Cooper-Schrieffer (BCS) Hamil-
tonian [60]

HLR =
∑
αkσ

ξkσ c
†
αkσ cαkσ −

∑
αk

(
∆αc

†
αk↑c

†
α,−k↓ +∆∗αcα,−k↓cαk↑

)
, (6.2b)

ξkσ = ξk + σ
gceB

2
, ξk = εαk −µα . (6.2c)

Here α = L,R stands for the left or right lead; µα is the chemical potential of the leads; σ =↑,↓
denotes the spin of the conduction electron and σ = +1(−1) for ↑ (↓); k is the momentum quantum
number; εαk is the dispersion; gce is the Landé g-factor for the conduction electrons; B denotes the
applied magnetic field; and ∆α = |∆α |eiφα is the superconducting gap, which has the amplitude
|∆α | and the phase φα. The quantum dot Hamiltonian is

HD =
∑
σ=↑,↓

εdσd
†
σdσ +Un↑n↓, εdσ = εd + σ

giB

2
, (6.2d)

2The plots in Figure 6.3 were obtained by using sub-gap state energies of Eq. (7.18) with g → 3g replacement
and Eq. (6.26c) parametrization of the coupling. In Figure 6.3a and Figure 6.3b we have set Γ /U = 0.1 and Γ /U = 0.2,
respectively. We note that this reproduces only qualitative behavior of the sub-gap states and such a calculation does not
correspond to a formally correct result.

3In a transport experiment, if the SDS junction is biased it exhibits AC-Josephson effect, which manifests itself
in a characteristic series of sub-gap peaks at V = 2∆/ne, (n = 1,2, . . .) due to multiple Andreev reflections [86–88]. If,
additionally, spin induced sub-gap states are present, the two effects overlap and experimental signatures of both
sub-gap states and multiple Andreev reflections is not so clear. Transport experiments have shown markedly different
sub-gap conductance [89–91], depending on the relative strength of tunnel couplings from the quantum dot to the
source and drain leads, respectively, which can be understood as a competition between multiple Andreev reflections
dominating in the nearly symmetric, and spin induced sub-gap states dominating in the strongly asymmetric coupling
limit [92]. In this thesis Iwill not address such phenomena.
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Figure 6.1: (a) Spinful quantum dot coupled to two superconducting leads, which have a phase
difference φ = φL −φR between them, and a third normal lead, which acts as a spectroscopic tool
for joint SDS system. (b) A schematic diagram of the local density of states (LDOS), which has the
characteristic ∼ 1/

√
1− (ω/ |∆|)2 behavior, for a superconductor when it is not coupled to a quantum

dot. (c) In the presence of a spinful quantum dot the sub-gap states with energy ±ωp appear, which
take the spectral weight from the superconducting gap edge and LDOS behavior is modified to
∼ |ω|

√
ω2 − |∆|2/[ω2 −ω2

p] [93]. Here ω denotes the energy at which the system is probed and |∆|
denotes the superconducting gap.

where ε is the position of the level, gi is the Landé g-factor, and U is the charging energy of the
quantum dot. The coupling between the leads and the quantum dot is given as

HT =
∑
αkσ

(
tαc
†
αkσdσ + t∗αd

†
σ cαkσ

)
, (6.2e)

where tα is the tunneling amplitude to the lead α. We note that it is possible to get rid of the phase
in tunneling amplitudes tα = |tα |eiϕα by making the following gauge transformation for conduction
electron operators cαk = c̃αkeiϕα . Then the above phase ϕα goes to the order parameter phase

HPairing = −
∑
αk

(
|∆α |eiφαc†αk↑c

†
α,−k↓ + |∆α |e−iφαcα,−k↓cαk↑

)
= −

∑
αk

(
|∆α |ei(φα−2ϕα)c̃†αk↑c̃

†
α,−k↓ + |∆α |e−i(φα−2ϕα)c̃α,−k↓c̃αk↑

)
.

(6.3)

So we use the tunneling Hamiltonian which has real tunneling amplitudes tα, and redefine the
order parameter ∆α phase as φα − 2ϕα→ φα.

We will express the Hamiltonians (6.2b) and (6.2e) in terms of Bogoliubov quasiparticle opera-
tors γαkσ . The conduction electron operators are expressed as

cαkσ = uαkγαkσ + σvαkeiφαγ†α,−kσ̄ , (6.4a)
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Figure 6.2: A simplified empirical distinction between two different singlets. (a) In the case when
charging energy U is smaller than the superconducting gap |∆| the singlet is a superposition of
zero |0〉 and |2〉 charge states on the quantum dot, because the pairing energy gain is larger than the
charging penalty. (b) In the other limit U � |∆| a single electron on the quantum dot is preferred
and the singlet is formed between Bogoliubov quasiparticles in the superconductor and the spin of
the quantum dot. Of course, for intermediate values of U ∼ |∆| the sub-gap state has the character
of both singlets.

everywhere

Increasing Increasing(a) (b)

Figure 6.3: The schematic of the possible sub-gap state and corresponding ground state dependence
on a gate voltage for oddly occupied quantum dot. Here x denotes dimensionless gate voltage and
x = 0 corresponds to the middle of the diamond. (a) Situation when at the middle of the diamond
the ground state is a doublet |Ds〉 and going away from x = 0 the increasing ratio TK / |∆| induces a
change from a doublet |Ds〉 to a singlet |S〉 ground state, as the sub-gap state crosses zero energy.
(b) The case when TK,b� TK,a and we always have the singlet ground state.
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where σ̄ denotes the inverse spin and

uαk =

√
1
2

(
1 +

ξk

Eαk

)
, vαk =

√
1
2

(
1− ξk

Eαk

)
, Eαk =

√
ξ2

k + |∆α |2. (6.4b)

Then the leads and tunneling Hamiltonians (6.2b) and (6.2e) become

HLR =
∑
αkσ

Eαkσγ
†
αkσγαkσ , Eαkσ = Eαk + σ

gceB

2
, (6.5a)

HT =
∑
αkσ

(
tα

[
uαkγ

†
αkσ + σvαke−iφαγα,−kσ̄

]
dσ + t∗αd

†
σ

[
uαγαkσ + σvαkeiφαγ†α,−kσ̄

])
. (6.5b)

6.2 Effective cotunneling model
We want to examine the cotunneling regime well inside a Coulomb diamond, where charge
fluctuations happen only virtually. This corresponds to a quantum dot level position being
around εd = −U/2. To obtain the effective cotunneling model we will perform the Schrieffer-Wolff
transformation [68, 69]. For the dot Hamiltonian HD we have the following eigenstates

|ψd〉 ∈ {|0〉, |↑〉, |↓〉, |2〉} , (6.6)

with the following eigenenergies

Eψd ∈
{
0, εd↑, εd↓, εd↑ + εd↓ +U

}
=

{
E0, E↑, E↓, E2

}
. (6.7)

The purpose of the Schrieffer-Wolff transformation is to project out the states |0〉 and |2〉, which
are assumed to be well separated in energy from the states |↑〉 and |↓〉. To do so we will use
quasi-degenerate perturbation theory as in Chapter 2. For convenience we rewrite the effective
Hamiltonian to second order in HT

H
(0)
mm′ = 〈m|H0|m′〉,

H
(1)
mm′ =HT

mm′ = 〈m|HT|l〉,

H
(2)
mm′ =

1
2

∑
l

HT
mlH

T
lm′

(
1

Em −El
+

1
Em′ −El

)
,

(6.8)

and for the states |↑〉 and |↓〉 we have

|m〉, |m′〉 ∈ {|λ〉|↑〉, |λ〉|↓〉},
|l〉 ∈ {|λ〉|0〉, |λ〉|2〉},

(6.9)

with |λ〉 being arbitrary eigenfunction of the Hamiltonian HLR. We see that the first order term
vanishes H (1)

mm′ = 0, because the tunneling Hamiltonian HT has non-vanishing matrix elements only
between different charge states. The zeroth order term has the matrix elements

H
(0)
ss′ = δss′ (HLR + εds), s, s′ ∈ ↑,↓. (6.10)

At second order we get the following matrix elements

H
(2)
ss′ = −

∑
aa′

{[
uaua′ (A

aa′
s−as +Aaa

′

s′−a′s′ ) + vava′e
−i(φa−φa′ )(Baa

′
s−as +Baa

′

s′−a′s′ )
]
γasγ

†
a′s′

+s′
[
uava′e

−iφa′ (Aaa
′

s−as +Aaa
′

s′+a′ s̄′ )−ua′vae
−iφa(Baa

′
s−as +Baa

′

s′+a′ s̄′ )
]
γasγa′ s̄′

+s
[
ua′vae

iφa(Aaa
′

s+as̄ +Aaa
′

s′−a′s′ )−uava′e
iφa′ (Baa

′

s+as̄ +Baa
′

s′−a′s′ )
]
γ†as̄γ

†
a′s′

+ss′
[
vava′e

i(φa−φa′ )(Aaa
′

s+as̄ +Aaa
′

s′+a′ s̄′ ) +uaua′ (B
aa′
s+as̄ +Baa

′

s′+a′ s̄′ )
]
γ†as̄γa′ s̄′

}
,

(6.11)
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where we have used this notation

a = α,k, −a = α,−k,

Aaa
′

s±bσ = −1
2
× tata′

Es −E0 ±Ebσ
,

Baa
′

s±bσ = −1
2
× tata′

Es −E2 ±Ebσ
.

(6.12)

Note that when writing down the matrix elements in (6.11) we used the assumption ξa = ξ−a,
Eaσ = E−aσ , ua = u−a, va = v−a. To see the structure of the Hamiltonian (6.11) we neglect the k
dependence of the quasiparticle energy Ebσ in coefficients (6.12), i.e., Ebσ → |∆|+ σgceB/2 and set
εds = (x−1)U/2 + sgiB/2, where x denotes the dimensionless level position around the particle-hole
symmetric point εd = −U/2:

x = 1 +
2εd
U
. (6.13)

Then after expanding the coefficients (6.12) in B/U and |∆|/U to lowest order we obtain

Aaa
′

s±σ ≈
tata′

U

[
1

1− x
+

(sgi ± σgce)B± 2|∆|
U (1− x)2

]
,

Baa
′

s±σ ≈
tata′

U

[
1

1 + x
+

(sgi ± σgce)B± 2|∆|
U (1 + x)2

]
.

(6.14)

We want to write Hamiltonians (6.10) and (6.11) in terms of spin operators S i , which satisfy
the commutation relation [S i ,Sj] = iεijkSk, with εijk being the Levi-Civita symbol. The quantum
dot creation and annihilation operators can be expressed as

d†↑d↑ =
1
2

+ Sz,

d†↓d↓ =
1
2
− Sz,

d†↑d↓ = Sx + iSy = S+,

d†↓d↑ = Sx − iSy = S−.

(6.15)

Then the effective Hamiltonian (6.10), (6.11) to second order becomes

H (0) =HLR +Hi,B, (6.16a)

H (2) ≈HJ +HW

+HJ,∆ +HW,∆ +HJ,B +HW,B +H (2)
i,B .

(6.16b)

where

Hi,B = giBS
z, (6.17a)

HJ =
∑
a′a

Ja′a

{
Sz

[
Ka′a

(
γ†a′↑γa↑ −γ

†
a′↓γa↓

)
+ (La′a −Laa′ )γ†a′↑γ

†
a↓ + (L∗aa′ −L

∗
a′a)γa′↓γa↑

]
+S+

[
Ka′aγ

†
a′↓γa↑ +La′aγ

†
a′↓γ

†
a↓ +L∗a′aγa′↑γa↑

]
+S−

[
Ka′aγ

†
a′↑γa↓ +Laa′γ

†
a′↑γ

†
a↑ +L∗aa′γa′↓γa↓

]}
,

(6.17b)

HW =
∑
a′a

Wa′a

[
Ma′a

(
γ†a′↑γa↑ +γ†a′↓γa↓

)
+ (La′a +Laa′ )γ

†
a′↑γ

†
a↓ + (L∗aa′ +L

∗
a′a)γa′↓γa↑

]
, (6.17c)
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HJ,∆ = −
∑
a′a

J∆a′aMa′a

[
Sz(γ†a′↑γa↑ −γ

†
a′↓γa↓) + S+γ†a′↓γa↑ + S−γ†a′↑γa↓

]
, (6.18a)

HW,∆ = −
∑
a′a

W∆
a′aKa′a(γ

†
a′↑γa↑ +γ†a′↓γa↓), (6.18b)

HJ,B =
∑
a′a

JBa′aS
z
[
Ma′a(γ

†
a′↑γa↑ +γ†a′↓γa↓) + (La′a +Laa′ )γ

†
a′↑γ

†
a↓ + (L∗aa′ +L

∗
a′a)γa′↓γa↑

]
, (6.18c)

HW,B =
∑
a′a

W B
a′a

[
Ka′a(γ

†
a′↑γa↑ −γ

†
a′↓γa↓) + (La′a −Laa′ )γ†a′↑γ

†
a↓ + (L∗aa′ −L

∗
a′a)γa′↓γa↑

]
, (6.18d)

The functions Ka′a, La′a, Ma′a are given as

Ka′a = ua′ua + va′vae
i(φa′−φa),

La′a = ua′vae
iφa ,

Ma′a = ua′ua − va′vaei(φa′−φa),

(6.19)

and the couplings are

Ja′a =
ta′ ta
U

4
1− x2 , Wa′a =

ta′ ta
U

2x
1− x2 , (6.20)

J∆a′a =
ta′ ta
U
|∆|
U

16x
(1− x2)2 , W∆

a′a =
ta′ ta
U
|∆|
U

4(1 + x2)
(1− x2)2 ,

JBa′a =
ta′ ta
U

B̃
U

16x
(1− x2)2 , W B

a′a =
ta′ ta
U

B̃
U

4(1 + x2)
(1− x2)2 ,

(6.21)

where B̃ = (g − gce)B/2. Additionally, the term H
(2)
B represents gate-dependent renormalization of

the magnetic field

H
(2)
B = −

∑
a

{[
uauaA

aa
↑−a↑ + vavaB

aa
↑−a↑

]
(1 + 2Sz)

+
[
uauaA

aa
↓−a↓ + vavaB

aa
↓−a↓

]
(1− 2Sz)

}
≈ −Sz

∑
α

8νF |tα |2

U
1

1− x2 B̃+ const.

(6.22)

Here we have kept the k dependence of the coefficients (6.12) and have evaluated the k-sums
using the following assumptions and simplifications: symmetric conduction band ξ ∈ [−D,D];
|εd ± B̃| > |∆|; |U + εd ± B̃| > |∆|; the result was expanded to lowest order in B̃/U and |∆|/U . When
considering the effective cotunneling model this gate-dependent renormalization of the magnetic
field (6.22) will not be taken into account.

In the calculations we will keep only the terms of Eq. (6.17), i.e.,

H ≈HLR +Hi,B +HJ +HW , (6.23)

because the additional terms, when superconductivity in the leads [69] and magnetic field are
present, are smaller by ∆/U or B/U . The Hamiltonian HJ (6.17b) describes the interaction between
the spin on the quantum dot and conduction electrons, and if expressed in terms of operators c†αkσ
takes the usual Kondo Hamiltonian form

HJ =
∑
i=x,y,z

α′k′s′ ,αks

Jα′αS
ic†α′k′s′τ

i
s′scαks, (6.24)
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where τ i are the Pauli matrices. Similarly, the term HW (6.17c) is rewritten as

HW =
∑

α′k′ ,αk,s

Wα′αc
†
α′k′scαks, (6.25)

and corresponds to the potential scattering for the conduction electrons. Lastly, Hi,B (6.17a) simply
gives the Zeeman splitting of the quantum dot spin.

When the effective Hamiltonian (6.23) is derived from the Anderson type model (6.2a), then the
exchange coupling Jαα′ and the potential scattering term Wαα′ have the following matrix structure
in the left/right lead space

Jαα′ = J
(
cosθ cosθ cosθ sinθ
sinθ cosθ sinθ sinθ

)
, Wαα′ =W

(
cosθ cosθ cosθ sinθ
sinθ cosθ sinθ sinθ

)
, (6.26a)

where
cosθ =

tL√
t2L + t2R

, sinθ =
tR√
t2L + t2R

, (6.26b)

J =
4

1− x2

t2L + t2R
U

, W =
2x

1− x2

t2L + t2R
U

. (6.26c)

We note that the exchange coupling J > 0 is always anti-ferromagnetic inside the oddly occupied
diamond x ∈ [−1..1], and also J > |W |.



Chapter 7

Sub-gap states

7.1 Review of an experiment
Before we start discussing the theoretical description of the sub-gap states, we review an experiment
by Chang et al. [62], to see how they are observed in practice. The scanning electron microscope
image of the device is shown in Figure 7.1, where ∼ 100 nm diameter InAs nanowire (green) is
contacted to two ends of the superconducting loop (gray) made out of aluminium (Al). Everything
is deposited on the Si substrate, which has an applied gate voltage VBG. The superconducting loop
has an area of A ∼ 25µm2 and the magnetic field B is threaded through it. The magnetic field
controls the phase difference φ ∼ BA/Φ0 (here Φ0 is the flux quantum) between two ends of the loop,
introduces the Zeeman splitting of the spin in the quantum dot, and closes the superconducting
gap. The quantum dot forms in the Al-InAs-Al junction, which is of the length 0.5 µm. To perform
the bias spectroscopy of the system a normal metal lead (yellow), which is made out of gold (Au)
and has an applied bias VT, is contacted to the nanowire in the middle of the junction.

The resulting differential conductance dI/dVT dependence on the gate voltage VBG and on the
phase difference φ for the odd occupations of the quantum dot is depicted in Figure 7.2, in order
of increasing charging energy U . The vertical red line represents the particle-hole symmetric point.
The superconducting gap is observed at VT ∼ 0.2 mV. The sub-gap states (which actually become
broadened resonances, when the normal lead is contacted) can be seen through enhanced values of
dI/dVT. We see that for smaller charging energy (see Figure 7.2a) the sub-gap states do not cross
the zero bias and has “anti-crossing” like behavior as a function of the gate voltage VBG. Also as a
function of phase for VT < 0 it has a minimum at φ = 0 and a maximum at φ = π. For large charging
energy (see Figure 7.2c) the sub-gap states cross the zero bias and has an “eye” like behavior as a

Figure 7.1: (a) Scanning electron microscope image of the device. (b) Zoom of the region where the
normal lead (Au) is contacted to the SDS junction.
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Figure 7.2: (a)-(c) Experimentally observed sub-gap state dependence on the gate voltage VBG. The
diamond in (a) has the smallest charging energy U and (c) has the largest one. The corresponding
to (a)-(c) sub-gap state phase dependence is shown in (d)-(f) away from the particle-hole symmetric
point (gate voltage at the blue vertical line), and (g)-(i) at the particle-hole symmetric point (gate
voltage at the red vertical line).

Figure 7.3: Magnetic field dependence of the sub-gap states in Figure 7.2c at the particle-hole
symmetric point.
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function of VBG. If the gate voltage is in the region between the crossings the sub-gap states acquire
reversed phase dependence, i.e., it has a minimum at φ = π and a maximum at φ = 0 for VT < 0.
Additionally, when the sub-gap states are close to the zero bias and are outside the “eye” they can
cross the zero bias as a function of phase φ.

Theoretically we will be able to address magnetic field dependence for the situation correspond-
ing to Figure 7.1c at the particle-hole symmetric point. Such dependence is shown in Figure 7.3.
We see that the gap closes as a function of B and the sub-gap state follows the gap without crossing
it. Also for higher magnetic fields (10 to 20 mT, small gap) a zero bias peak appears, which could
be attributed to the Kondo peak due to normal lead [61]. For even higher magnetic fields (from
20 mT), the superconductivity is destroyed in the aluminium electrodes and also the resulting
Kondo peak is being Zeeman split. In our calculations we will not address effects concerning the
Kondo effect due to the normal lead, and we will not include the magnetic field dependence of the
superconducting gap.

7.2 Classical spin

(a) (b)

Figure 7.4: (a) Sub-gap state energy dependence on the coupling. The blue curve denotes spin ↑
state and the red curve denotes spin ↓. When the exchange coupling is anti-ferromagnetic g > 0 and
small g <

√
1 +w2 then the ground-state contains quasiparticle with spin ↑ and for larger couplings

g >
√

1 +w2 it switches to spin ↓. (b) The corresponding sub-gap excitation spectrum. The potential
scattering value is w = 0.5.

We start by discussing the case of a classical spin, which corresponds to simplifying the exchange
Hamiltonian (6.24) to a spin-dependent potential scattering term for conduction electrons:

Hcl
J =

∑
α′k′ ,αk

Jα′αS
(
c†α′k′↑cαk↑ − c

†
α′k′↓cαk↓

)
. (7.1)

In this case the problem can be diagonalized exactly by using the Bogoliubov-de Gennes transfor-
mation

γnσ =
∑
βq

(
Anσ,βqcβqσ + σBnσ,βqc

†
β,−qσ̄

)
. (7.2)

Here we denoted the lead index by the label β and the momentum by the label q. The equations for
the expansion coefficients Anσ,βq and Bnσ,βq are generated by requiring the following commutator

[H,γnσ ] = −Enσγnσ , (7.3)
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where Enσ is the quasiparticle energy with included Hcl
J and HW terms. The equations for coeffi-

cients A and B are generated by taking the commutators

[H,cbσ ] = −εbσ cbσ + σ∆σbc
†
−bσ̄ −

∑
a

(Wba + σJbaS)caσ , εbσ = εb + σB, (7.4a)

[H,c†bσ ] = εbσ c
†
bσ − σ∆

∗
σbc−bσ̄ +

∑
a

(Wab + σJabS)c†aσ , (7.4b)

which after using transformation (7.2) and commutator (7.3) give

[H,γnσ ] = −Enσ
∑
b

(
Anσ,bcbσ + σBnσ,bc

†
−bσ̄

)
=
∑
b

[
(−εbσ cbσ + σ∆σbc

†
−bσ̄ )Anσ,b − cbσ

∑
a

Anσ,a(Wab + σJabS)
]

+
∑
b

[
(ε−bσ̄ c

†
−bσ̄ − σ̄∆

∗
σbcbσ )σBnσ,b + c†−bσ̄

∑
a

(W−b,−a + σ̄ J−b,−aS)σBnσ,a
]
.

(7.5)

Here we used the shorthand notation b ≡ β,q, −b ≡ β,−q. After equating the coefficients in front of
different operators cβqσ or c†βqσ we get

cbσ : EnσAnσ,b = εbσAnσ,b −∆∗σbBnσ,b +
∑
a

Anσ,a(Wab + σJabS), (7.6a)

c†−bσ̄ : EnσBnσ,b = −ε−bσ̄Bnσ,b −∆σbAnσ,b −
∑
a

(W−b,−a + σ̄ J−b,−aS)Bnσ,a. (7.6b)

We see that we get two independent sets of equations, i.e., one set for coefficients A↑,B↑ and one set
for coefficients A↓,B↓:(

Enσ − εbσ ∆∗σb
∆σb Enσ + ε−bσ̄

)(
Abσ,n
Bbσ,n

)
=

( ∑
a(Wab + σJabS)Aaσ,n

−
∑

a(W−b,−a − σJ−b,−aS)Baσ,n

)
, (7.7)

Solving the above equations for A and B we obtain the following integral equations

Anσ,βq = −
(Enσ + ξ−qσ̄ )

∑
αk(Wαβ + σJαβS)Anσ,αk +∆∗β

∑
αk(Wβα − σJβαS)Bnσ,αk

ξqσξ−qσ̄ + |∆β |2 + (ξqσ − ξ−qσ̄ )Enσ −E2
nσ

, (7.8a)

Bnσ,βq =
(Enσ − ξqσ )

∑
αk(Wβα − σJβαS)Bnσ,αk +∆β

∑
αk(Wαβ + σJαβS)Anσ,αk

ξqσξ−qσ̄ + |∆β |2 + (ξqσ − ξ−qσ̄ )Enσ −E2
nσ

. (7.8b)

By integrating the above Eqs. (7.8) over q we get
1 + fnσζ

+,σ
LL Ωnσ fnσζ

+,σ
RL Ωnσ fnσe−iφLζ−,σLL fnσe−iφLζ−,σLR

fnσζ
+,σ
LR Ωnσ 1 + fnσζ

+,σ
RRΩnσ fnσe−iφRζ−,σRL fnσe−iφRζ−,σRR

−fnσeiφLζ+,σ
LL −fnσeiφLζ+,σ

RL 1− fnσζ
−,σ
LL Ωnσ −fnσζ

−,σ
LR Ωnσ

−fnσeiφRζ+,σ
LR −fnσeiφRζ+,σ

RR −fnσζ
−,σ
RL Ωnσ 1− fnσζ

−,σ
RRΩnσ



Anσ,L
Anσ,R
Bnσ,L
Bnσ,R

 = 0. (7.9)

Here the assumption ξq = ξ−q was used and the q sums were performed using a flat density of

states approximation, i.e.,
∑

q . . .→ νF
∫ D
−D dξ . . ., where the bands in the left and right leads are

assumed to be symmetric ξ ∈ [−D,D]. Also we have set the amplitudes of the gaps in the left and
the right lead to be equal |∆L| = |∆R| = |∆|. Lastly, the following notation was introduced:

Ωnσ = Enσ − σ
gceB

2
, (7.10)
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wαα′ = πνFWαα′ , gαα′ = πνFJαα′S, ζ±,σαα′ = wαα′ ± σgαα′ , (7.11)

Anσ,β =
∑

q

Anσ,βq, Bnσ,β =
∑

q

Bnσ,βq, (7.12)

fσ =
1
π

∫ D

−D

dξ

ξ2 + |∆|2 −Ω2
nσ

=
2
π

arctan
(

D√
|∆|2−Ω2

nσ

)
√
|∆|2 −Ω2

nσ

≈ 1√
|∆|2 −Ω2

nσ

, for D � |∆|, |Ωnσ | < |∆|.

(7.13)

By taking the determinant of the matrix in (7.9) we obtain the secular equation, that can be
solved to yield sub-gap states, i.e., solutions |Ωnσ | < |∆|. When the couplings have the structure
described by Eq. (6.26), the resulting secular equation is

1 + 2gσfσΩnσ +u
(
1− f 2

σ sin2(2θ)sin2 φ

2

)
= 0,

u = w2 − g2, φ = φL −φR,
(7.14)

which can be solved analytically to give the following sub-gap states

Ω±,σ = σc±|∆|

√
(1 +u)(1 +χu) + 2g2 ± 2g

√
g2 +u(1−χ)(1 +χu)

(1 +u)2 + 4g2 , (7.15)

where

χ = 1− sin2(2θ)sin2 φ

2
, (7.16a)

c+ = sgn(u) , c− = −sgn(1 +χu), (7.16b)

and g > 0 was assumed. For g < 0 the above result holds with interchanged spins. From Eqs. (7.21)
and (7.15) we see that there can be up to four sub-gap solutions.

In the rest of this section we will examine the sub-gap excitation spectrum dependence on
the coupling strengths and phase difference for B = 0 case (Ωnσ = Enσ ). We define the excitation
spectrum ωp of the system as the energy differences between the ground-state |GS〉, which has all
quasiparticle states filled with negative energy Enσ < 0, and the excited state |ES〉, which has an
additional quasiparticle at positive energy Enσ > 0:

ωp = EES −EGS, |ES〉 = γ†nσ |GS〉, Enσ > 0. (7.17)

Of course there are also sub-gap excitations corresponding to removed quasiparticles from the
ground state |ES〉 = γnσ |GS〉, however, we will specify the excitation spectrum only for added
quasiparticles. When there is no phase difference φ = 0 from Eq. (7.15) we obtain the following
energies for two sub-gap states when considering anti-ferromagnetic coupling:

EYSR,σ = −σ |∆|
1 +w2 − g2√

(1 +w2 − g2)2 + 4g2
, g > 0. (7.18)

This is the result obtained by Yu-Shiba-Rusinov [71–73]. The energy dependence of the two states
on the coupling is shown in Figure 7.4a and the corresponding excitation spectrum is shown in
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(a) (b)

Figure 7.5: (a) When there is no exchange coupling g = 0, the sub-gap excitation is spin degenerate
Andreev bound state. If potential scattering is increased the excitation approaches zero energy at
φ = π (w→ +∞ corresponds to transmission τ = 1). (b) The presence of exchange coupling g < |w|
splits the Andreev bound state. In the plot anti-ferromagnetic g > 0 coupling is considered and
w = 2.0.

Figure 7.4b. For values g <
√

1 +w2 of the exchange coupling the sub-gap excitation is an added
quasiparticle with spin ↓ and for g >

√
1 +w2 the excited quasiparticle changes to spin ↑.

In the case when there is no exchange coupling g = 0 we obtain the usual expression for the
Andreev bound state [94–98]:

EK,±,σ = ±σ |∆|
√

1− τ sin2 φ

2
, τ =

w2 sin2(2θ)
1 +w2 , (7.19)

where τ is the normal state transmission of the junction. The dependence of the Andreev bound
state on phase difference is shown in Figure 7.5a. We see that the sub-gap states are spin-degenerate,
and if a small exchange coupling g � |w| is introduced they are split by

E±,σ ≈ EK,±,σ + σ |∆|
g |w|

1 +w2

√
1−χ

1 +w2 . (7.20)

which is shown in Figure 7.5b. When g > |w| the phase difference dependence of the excitation
spectrum from Eq. (7.15) is shown in Figure 7.6. We see that for finite phase difference two added
quasiparticle sub-gap excitations are present. The crossing of two excited states at φ = π is lifted
by potential scattering w or coupling asymmetry.

For arbitrary couplings gαα′ and wαα′ it is not possible to write down a simple closed form
solution, so we find sub-gap states perturbatively in the couplings:

Ω±,σ ≈ σc±|∆|(1− η2
cl,σ ,±), (7.21)

where c± = −sgn(ηcl,σ ,±) with

ηcl,σ ,± =
1
√

2

[
gLL + gRR ± gcl,d

]
,

gcl,d =
[
(gLL − gRR)2 + 4|gLR|2 cos2 φ

2
+ 4|wLR|2 sin2 φ

2

− 4σ |gLR||wLR|sin(φg −φw)sinφ
] 1

2
,

(7.22)
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Potential scattering 0.5 includedw=

Coupling asymmetry includedθ=π/3

Increasing g
g=0.6 g=1.25 g=2.5

(c)(a) (b)

Figure 7.6: The excitation spectrum dependence on the phase difference for B = 0 and g > |w|. The
dashed lines represent excitation spectrum when potential scattering w = 0.5 is included and the
dotted lines show the situation when coupling asymmetry θ = π/3 is present.

and gLR = g∗RL = |gLR|eiφg , wLR = w∗RL = |wLR|eiφw . From Eq. (7.22) we see that there are four
sub-gap states (two added quasiparticle excitations) if the couplings have arbitrary form even at
phase difference φ = 0. This corresponds to two channels, which contribute to the sub-gap state
formation, i.e., the matrix gαα′ has two non-zero eigenvalues. Reverting to an Anderson model, one
has g2

LR = gLLgRR, which implies that

ηcl,± =

√
2

2

(
g ±

√
g2χ+w2(1−χ)

)
. (7.23)

7.3 Quantum spin
In this section we obtain the sub-gap state energies perturbatively in the couplings for the case of
the quantum spin. We start by presenting a simplified calculation for the case with no potential
scattering term HW = 0 (6.17c) and magnetic field B = 0. The exchange Hamiltonian (6.17b) for
low energies gets simplified to

HJ ≈
1
2

∑
α′k′αk

(
1 + ei(φα′−φα)

)
Jα′α

×
[
Sz

(
γ†α′k′↑γαk↑ −γ

†
α′k′↓γαk↓

)
+ S+γ†α′k′↓γαk↑ + S−γ†α′k′↑γαk↓

]
=
∑
k′k

ψ†k′Mψk,
(7.24)

where the pairing-like terms γ†a′↑γ
†
a↓ and γa′↑γa↓ were neglected and we have set uk ≈ vk ≈ 1

2 ,
because the energy dependence of the uk, vk factors is necessary only for higher order corrections
for the sub-gap state energies. Also the following spinor ψk and matrixM were introduced

ψ†k = (γ†Lk↑,γ
†
Rk↑,γ

†
Lk↓,γ

†
Rk↓), (7.25)

M =
(
Sz S+

S− −Sz

)
⊗
 JLL JLR

1+eiφ

2
J∗LR

1+e−iφ

2 JRR

 =Ms ⊗Ml . (7.26)

We note that the matrixMs represents the spin space of conduction electrons andMl represents the
lead space. The above effective Hamiltonian (7.24) corresponds to Yosida’s wavefunction ansatz [99,
100] with one included quasiparticle, which is described in Appendix D.1. First the Yosida’s method
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was applied by Soda-Matsuura-Nagaoka [74] for a quantum magnetic impurity problem in the
superconductor. Because the Hamiltonian (7.24) is written in the excitation basis (γαkσ |0〉=0, with
|0〉 being the BCS vacuum state) it can be diagonalized exactly. After diagonalizing the lead space
matrixMl we obtain two decoupled channels δ = 1,2

γ1kσ = aγLkσ + be+iφdγRkσ ,

γ2kσ = aγRkσ − be−iφdγLkσ ,
(7.27a)

where φd = φ/2 +φg , JLR = |JLR|eiφg , and

a =

√
1
2

(
1 +

JLL − JRR
Jd

)
, b =

√
1
2

(
1− JLL − JRR

Jd

)
. (7.27b)

The corresponding eigenvalues for two channels are

J1/2 =
1
2

(JLL + JRR ± Jd) ,

Jd =

√
(JLL − JRR)2 + 4|JLR|2 cos2 φ

2
.

(7.27c)

The eigenstates of the spin matrix

Ms =


|↑δk,↑〉 |↑δk,↓〉 |↓δk,↑〉 |↓δk,↓〉

1
2 0 0 0
0 −1

2 1 0
0 1 −1

2 0
0 0 0 1

2

, (7.28)

are the singlet

|Sδk〉 =
1
√

2
(|↑δk,↓〉 − |↓δk,↑〉) , λS = −3

2
, (7.29a)

and triplet like solutions

|T 0
δk〉 =

1
√

2
(|↑δk,↓〉+ |↓δk,↑〉) ,

|T +
δk〉 = |↑δk,↑〉, |T −δk〉 = |↓δk,↓〉, λT =

1
2
.

(7.29b)

Here λS/T denotes corresponding eigenvalue and

|σδk, s〉 = γ†δkσ |0〉|s〉, with Sz|s〉 = s/2|s〉. (7.30)

Using the above basis |Sδk〉 and |T jδk〉 (7.29) we obtain

HLR +HJ =
∑
δk

Ek

(
|Sδk〉〈Sδk|+Σj |T

j
δk〉〈T

j
δk|

)
− 3

2

∑
δk′k

Jδ|Sδk′〉〈Sδk|+
1
2

∑
jδk′k

Jδ|T
j
δk′〉〈T

j
δk|,

(7.31)
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To get the sub-gap state from the above Hamiltonian (7.31) we make the linear superposition

|Sδ〉 =
∑

q

Aδq|Sδq〉, (7.32)

and solve the stationary Schrödinger equation

(HLR +HJ −ESδ )|Sδ〉 = 0. (7.33)

For the triplet components

|T jδ 〉 =
∑

q

A
j
δq|T

j
δq〉, j = 0,±, (7.34)

the procedure is completely analogous. After projecting Eq. (7.33) to 〈Sδκ| (or 〈T jδ |) we obtain

Aδκ =
3Jδ
2

∑
qAδq

Eκ −ESδ
→ 1 = 3gδIESδ , (7.35a)

A
j
δκ = − Jδ

2

∑
qA

j
δq

Eκ −ESδ
→ 1 = −gδIESδ , (7.35b)

where after the arrow we have integrated over κ and defined gδ = πνFJδ/2. The necessary integral
IE in (7.35) for sub-gap states |E| < |∆| and large bandwidth D � |∆| becomes

IE =
1
πνF

∑
κ

1
Eκ −E

≈ 2
π

ln
∣∣∣∣∣2D∆

∣∣∣∣∣+
2E

(
1
2 + 1

π arcsin E
∆

)√
|∆|2 −E2

. (7.36)

Similar integrals are performed more explicitly in Appendix D.1. By parameterizing the energy as

E ≈ |∆|(1− η2), (7.37)

we expand the integral (7.36) to lowest order in η

IE ≈
√

2
|η|
, (7.38)

and obtain a perturbative solution to lowest order in gδ

|ηSδ | ≈ 3
√

2gδ, for singlet,

|ηTδ | ≈ −
√

2gδ, for triplet.
(7.39)

We see that there exists a singlet like solution if the effective channel exchange coupling is anti-
ferromagnetic gδ > 0 and the triplet like solution if the coupling is ferromagnetic gδ < 0. For the
triplet the above result (7.39) matches the excitation energy obtained from perturbative classical
spin expression (7.21) when S = 1

2 , and for the singlet it matches (7.21) if in the classical expression
the coupling is replaced by gαα′ → 3gαα′ . If the potential scattering term HW (6.17c) is included
the previous statement is not affected (see Appendix D.1), however, such a term mixes the δ = 1,2
channels.
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In the presence of a magnetic field the Zeeman term is expressed in the singlet/triplet basis as

HB =− B̃
∑
δk

(
|Sδk〉〈T 0

δk|+ |T
0
δk〉〈Sδk|

)
+ B̄

∑
δk

(
|T +
δk〉〈T

+
δk| − |T

−
δk〉〈T

−
δk|

)
,

+
giB

2

(
|D↑〉〈D↑| − |D↓〉〈D↓|

)
,

(7.40)

where
B̃ =

B
2

(gi − gce), B̄ =
B
2

(gi + gce). (7.41)

Here the last term represents Zeeman splitting of the ground-state doublet |Ds〉 = |0〉|s〉. The
sub-gap states |T ±δ 〉 are the eigenstates of HB, and for gi , gce the singlet |Sδ〉 and the triplet |T 0

δ 〉 get
mixed, so the new eigenstate is

|ψδ〉 =
∑

q

(
aδq|Sδq〉+ bδq|T 0

δq〉
)
, (7.42)

which after projecting the stationary Schrödinger equation

(HLR +HB +HJ −E)|ψδ〉 = 0 (7.43)

to sub-space spanned by 〈Sδκ| and 〈T 0
δκ| we obtain the equations(

Eκ −E −B̃
−B̃ Eκ −E

)(
ak
bk

)
= Jδ

∑
k

(
3ak
−bk

)
, (7.44)

which yield

aκ = Jδ
3(Eκ −E)a− B̃b
(Eκ −E)2 − B̃2

,

bκ = Jδ
−(Eκ −E)b+ 3B̃a

(Eκ −E)2 − B̃2
.

(7.45)

Here we introduced the notation a =
∑

k ak, b =
∑

k bk. We rewrite the coefficients in Eq. (7.45) as

aκ =
Jδ
2

[
3
(

1
Eκ − (E + B̃)

+
1

Eκ − (E − B̃)

)
a−

(
1

Eκ − (E + B̃)
− 1
Eκ − (E − B̃)

)
b

]
,

bκ =
Jδ
2

[
−
(

1
Eκ − (E + B̃)

+
1

Eκ − (E − B̃)

)
b+ 3

(
1

Eκ − (E + B̃)
− 1
Eκ − (E − B̃)

)
a

]
,

(7.46)

and by integrating Eqs. (7.46) over κ we obtain the following secular equation∣∣∣∣∣∣1− 3gδ
2 [IE+B̃ + IE−B̃] gδ

2 [IE+B̃ − IE−B̃]
−3gδ

2 [IE+B̃ − IE−B̃] 1 + gδ
2 [IE+B̃ + IE−B̃]

∣∣∣∣∣∣ = 0. (7.47)

We start by examining Eq. (7.47) in the small magnetic field limit, i.e., |B̃| � |g2
δ∆|. We

parameterize the energy as before

El = |∆|(1− η2
l ), η± =

√
η2
l ±

B̃
|∆|
, (7.48)



Quantum Transport 69

and from Eq. (7.47) to lowest order in η± we get

η+η− −
√

2gδ(η+ + η−)− 6g2
δ = 0, (7.49)

which after expanding η± to lowest order in B̃/(η2
l |∆|) yields

η4
l − 2
√

2gδη
3
l − 6g2

δη
2
l −

(
B̃

2|∆|

)2

= 0. (7.50)

Finally, from the above Eq. (7.50) we obtain the perturbative solutions

|ηS,l | ≈ 3
√

2gδ
(
1 +

3
16

B̃2

η4
Sδ
|∆|2

)
, singlet like,

|ηT 0,l | ≈ −
√

2gδ
(
1 +

1
16

B̃2

η4
Tδ
|∆|2

)
, triplet like.

(7.51)

We see that the energy of the sub-gap state decreases quadratically in B̃ for small magnetic field. In
the high magnetic field limit, i.e., |B̃| � |g2

δ∆|, from Eq. (7.47) to lowest order in gδ we obtain the
solution

Eh = |∆|(1− η2
h )− B̃, |ηh| ≈

√
2gδ. (7.52)

The above result (7.52) corresponds to neglected off-diagonal terms in the spin matrix (7.28). For
arbitrary magnetic field the perturbative solution in gδ is obtained by solving Eq. (7.49) numerically.

Now we examine the sub-gap excitation spectrum when it is assumed that the magnetic field
in the superconducting leads is screened, i.e., gce ≈ 0 and B̃ = B̄ = giB/2. Note that we also do not
consider closing of the superconducting gap. For positive magnetic field B̃ > 0 the ground-state is a
doublet E↓ = −B̃ and the resulting sub-gap excitations for a particular channel δ are depicted in
Figure 7.7. For anti-ferromagnetic coupling gδ > 0 (Figure 7.7a) there is a singlet like excitation,
which for high magnetic fields approaches an energy consistent with the classical spin (7.21). In this
case the eigenstate is |↑δ,↓〉 =

∑
qA
↑
δq|↑δq,↓〉, where A↑δk is determined by projecting the Schödinger

equation to |↑δk,↓〉 with neglected spin-flip terms S+ and S− in the exchange Hamiltonian (7.24).
For ferromagnetic coupling gδ < 0 (Figure 7.7b) the excitation is a triplet, which gets split by
the magnetic field. The |T +

δ 〉 and |T 0
δ 〉 components approaches the gap and crosses it, and |T −δ 〉

component does not move with B̃. Changing the sign of the magnetic field simply reverses all spins
in the previous discussion.

So far we have examined the excitation spectrum when a single quasi-particle is included,
i.e., the system is effectively described by the Hamiltonian (7.24). Now the question is, whether
the pairing-like terms γ†a′↑γ

†
a↓ in (6.17b) and (6.17c) modify the perturbative result for the energy

difference between the ground-state |Ds〉 and the sub-gap states. There is a second order energy
correction for the ground-state

E
(2)
s =

∑
λ,Ds

|〈l|H ′ |Ds〉|2

E
(0)
s −Eλ

=
∑
aa′

(
− 1

4
Ja′aJaa′ |La′a −Laa′ |2

Ea +Ea′
− 1

2
Ja′aJaa′ |La′a −Laa′ |2

Ea +Ea′ − s(g − gce)B

− Wa′aWaa′ |La′a +Laa′ |2

Ea +Ea′
+ 2is

Ja′aWaa′ Im[La′aL∗aa′ ]
Ea +Ea′

)
,

(7.53)
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(a) (b)

Figure 7.7: Sub-gap excitation spectrum from the ground-state doublet |D↓〉when it is assumed that
the magnetic field in the superconductor is screened gce ≈ 0. (a) For anti-ferromagnetic coupling
gδ > 0 the sub-gap state is singlet like state, which for high magnetic fields becomes classical spin
like state |↑δ,↓〉. (b) For ferromagnetic coupling gδ < 0 the sub-gap state is a triplet. The |T +

δ 〉 and
|T 0
δ 〉 components approaches the gap and crosses it, and |T −δ 〉 component does not move with B̃.

where |l〉 are all possible intermediate states and H ′ = HJ + HW . However, such a term gets
canceled for the energy difference, because the sub-gap states get the same second-order shift when
three quasiparticles are included in the wavefunction ansatz (see Appendix D.2). The Yosida’s
wavefunction ansatz generates a well defined perturbative expansion in the couplings g, w for the
energy differences. Also with the included three quasiparticles a higher order correction Eq. (D.30)
for the energy difference is found, which contains leading-logarithmic contribution ln 2D

|∆| . These
logarithms can be resummed using the usual poor man’s scaling approach [see Eq. (D.31)-(D.33)],
which yields the running coupling g∗ = π

4ln(D∗/TK ) , with TK =De−
π
4g being the Kondo temperature,

and D∗� |∆|. The expression of g∗ shows that the perturbative expansion is valid only when the
Kondo temperature is much smaller than the superconducting gap TK � |∆|.



Chapter 8

Supercurrent

The supercurrent jS is a dissipationless current flowing in the superconductor if there is an
order parameter phase φ(r) gradient, i.e., jS ∼ ∇φ(r). In this chapter we examine a type of the
supercurrent due to the Josephson effect [101], which arises in two superconductors, which have a
phase difference between them φ = φL −φR, coupled by a weak link. This phenomenon appears in
the SDS junctions (see Figure 6.1). Various measurements of the supercurrent through Coulomb
blockaded quantum dots [102–105] have shown that odd-occupied spin degenerate quantum dots
may lead to a negative (π-phase) supercurrent. Also a supercurrent sign-reversal, i.e. a π − 0
transition, has been shown to take place, when moving the gate voltage from odd occupancy
(moving away particle-hole symmetric point), or when increasing the ratio TK / |∆|. This observation
is consistent with a number of theoretical predictions [106–115]. Here we examine the relation
between the sub-gap states and the supercurrent, and present the phase diagram for SDS junction.

At zero temperature T = 0 the supercurrent is generally given as the ground-state energy
EGS derivative with respect to the phase difference φ = φL −φR between two superconducting

(a) (b)

Figure 8.1: (a) Phase diagram as a function of couplings g and w for a junction with a classical
spin. The coupling asymmetry is θ = π/3. The transition from π′ to 0′ for w = 0 is denoted by a

circle and is given by g = f (θ), where f (θ) = [1/2
{
sin2(2θ) +

√
4 + sin4(2θ)

}
]1/2. When there is no

coupling asymmetry θ = π/4 for g > w the junction never goes to 0-junction for increasing g. (b)
Phase diagram when the couplings are parameterized by Eq. (6.26c), where Γ = νF(t2L + t2R), and the
dimensionless level position (gate voltage) x is given by Eq. (6.13).
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Figure 8.2: Examples of supercurrent for different junctions with a classical spin. Potential
scattering is set to w = 0. The values of other parameters are g = 2.5, θ = 1.15 for 0, g = 2.5, θ = π/4
for 0′, g = 1.25, θ = π/4 for π′, and g = 0.6, θ = π/4 for π-junction.

leads [116], i.e.,

IS(φ) = 2
∂EGS

∂φ
. (8.1)

The above relation Eq. (8.1) for the considered model can be obtained by performing gauge
transformation for the conduction electrons„

cαkσ → cαkσeiφα/2, (8.2)

which transfers the phase difference from the Hamiltonian HLR into HW +HJ , i.e.,

Jαα′ → Jαα′e
i(φα−φα′ )/2,

Wαα′ → Wαα′e
i(φα−φα′ )/2.

(8.3)

Then the current operator can be expressed as

ÎS(φ) = i[HW +HJ ,NL] =
1
2
∂(HW +HJ )

∂φ
, (8.4)

where NL =
∑

kσ c
†
Lkσ cLkσ is the particle number operator in the left lead. By using the relation

(8.4) and the Hellmann-Feynman theorem

∂EGS

∂φ
= 〈GS|∂H

∂φ
|GS〉, (8.5)

we obtain the supercurrent expression (8.1). For the case of a junction with a classical spin the
supercurrent can also be found by using the sub-gap excitation spectrum as [98]

IclS = −
∑
p

tanh
(ωp

2T

) dωp
dφ

T→0= −d|E+|
dφ
− d|E−|

dφ
, (8.6)
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where after the second equality in Eq. (8.6) we have used the zero temperature limit, and E± is
given by Eq. (7.15) for B = 0. To lowest order in g and w the expression (8.6) yields

IclS ≈ (|∆|/2)sin2(2θ)
(
w2 − g2

)
sinφ. (8.7)

From Eqs. (8.1) and (8.6) we see that the phase φ dependent part of the ground state is

EGS = −1
2

(|E+|+ |E−|) + const. (8.8)

If the ground state energy has one global minimum at φ = 0, then the junction is classified as
0-junction, and the supercurrent is a continuous function of φ, has a positive slope at φ = 0,
and negative slope at φ = π. When the global minimum is at π we have a π-junction. Then the
supercurrent is a continuous function of φ, has a negative slope at 0, and a positive slope at π. The
situation when there are minima at both phases 0 and π can also arise. If 0 corresponds to a global
minimum and π to a local minimum, then the junction is called 0′-junction. For π being a global
minimum and 0 being a local minimum the junction is called π′-junction. In both previous cases
the supercurrent is a discontinuous function [with one discontinuity in the interval φ ∈ (0,π) and
one in the interval φ ∈ (π,2π)] and it has positive slopes at 0 and π. This discontinuous behavior of
the supercurrent is directly related to the sub-gap states crossing the zero energy and changing
their spin as can be seen from Figure 7.6b,c. The resulting phase diagram as a function of couplings
w and g is depicted in Figure 8.1, and examples of the supercurrent for different junctions is shown
in Figure 8.2.

For a junction with a quantum spin we can calculate the supercurrent perturbatively from Eq.
(7.53). For B > 0 the ground state is |D↓〉 and we have

IS ≈ 2|∆|sin2(2θ)
[(
w2 − g2

)
F(0)− 2g2F(B̃)

]
sinφ, (8.9)

where
F(B̃) =

1

|∆|π2ν2
F

∑
kk′

ukvkuk′vk′

Ek +Ek′ + B̃
, F(0)

D�|∆|≈ 1
4
, (8.10)

and we also used Eq. (6.26) form of the coupling. When there is no magnetic field the supercurrent
becomes

IS ≈ (|∆|/2)sin2(2θ)
(
w2 − 3g2

)
sinφ. (8.11)

We see that this result is not given by the dispersion of the sub-gap states, i.e.,

IS , −
∑
i=±

d|Ei |
dφ

=


|∆|
2

sin2(2θ)
(
w2 − 9g2

)
sinφ, g > 0,

|∆|
2

sin2(2θ)
(
w2 − g2

)
sinφ, g < 0.

(8.12)

as in the case of a classical spin Eq. (8.6). For the coupling derived from the Anderson model we
have g > |w| and in this case the junction is always π for perturbative values of g and w. When the
magnetic field is present and |B̃| � |∆| we have

F(B̃)−F(0) ≈ − B̃

2π2|∆|
. (8.13)

From Eq. (8.9) we see that when B̃ > 0 the supercurrent |IS | decreases for a π-junction and increases
for a 0-junction, and vice versa for B̃ < 0. We note that B̃ can become negative for positive B when
gce > gi.
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Conclusions for Part II
The second part of the thesis is dedicated to the examination of the sub-gap states and corresponding
excitation spectrum for spin coupled to two superconducting leads, which have a phase difference
φ. The interaction between spin and conduction electrons is described by a Kondo model. Because
of the two leads, there can be up to two interaction channels between conduction electrons and spin,
which result in four sub-gap excitations (two quasiparticle like γ†nσ and two quasihole like γnσ ). If
the Kondo model is derived from Anderson’s model, at zero phase difference φ = 0 there is only one
channel, and thus two sub-gap states. However, at finite phase difference the problem effectively
becomes two channel, and four sub-gap states appear. If the spin is assumed to be classical the
Kondo interaction effectively becomes spin dependent potential scattering for conduction electrons
and the problem can be solved exactly [Eq. (7.15)]. For the quantum spin case a perturbative result
in couplings g and w can be obtained using Yosida’s wavefunction ansatz. The analysis is valid
when the ground-state is one of the doublet |Ds〉 components and when the Kondo temperature is
much larger then the superconducting gap TK � |∆|. If the potential scattering w and the magnetic
field B are neglected, then for effective channel exchange coupling gδ > 0 the sub-gap states are
singlets |Sδ〉 and for gδ < 0 the states are triplets |T 0,±

δ 〉. Perturbatively, the energy of the triplet
state |T 0,±

δ 〉matches the classical result (7.21) and for the singlet state it matches if the exchange
coupling in the classical expression is replaced by gαα′ → 3gαα′ . The inclusion of the magnetic
field mixes the singlet |Sδ〉 and the triplet |T 0

δ 〉 if the g-factors of the spin and conduction electrons
are different, i.e., gi , gce. Assuming that the magnetic field is screened in the superconducting
leads gce ≈ 0, this mixing results in the transition energy from the ground-state doublet |D↓〉 (B > 0)
to the singlet |Sδ〉 approaching classical value for high magnetic field B� g2

δ |∆|. For the triplet
|T 0
δ 〉 the transition energy approaches the gap value |∆|. Because of the phase difference φ there

is a supercurrent running through the junction. In the case of a classical spin it can be directly
related to the sub-gap excitation spectrum, which can be calculated exactly. The phase diagram
as a function of exchange g and potential scattering w is shown in Figure 8.1. For the quantum
spin case the supercurrent is obtained perturbatively and it is found that there is no direct relation
between supercurrent and the sub-gap excitation spectrum. Also, if the Kondo model is derived
from Anderson’s model (g > |w|), the perturbative expression (8.9) always will yield a π-junction
behavior.



Part III

Designing π-stacked molecules as
phonon insulators
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Chapter 9

Molecular junctions as thermoelectric devices

(b)

Au

Au

x

z

y

(a)

Figure 9.1: a) An effective description of the center of mass vibrational degrees of freedom in the
system as two large masses M1 and M2, which have coordinates (x1, y1,x1) and (x2, y2, z2), coupled
to each other by a spring Ki and to the leads by springs KiL and KiR. The substrate is modelled as an
elastic continuum described by the displacement vector u(r, t). TL and TR denote the temperatures
of the left and the right lead, respectively. b) A schematic diagram of a junction consisting of two
π-stacked 2-phenylethyne-1-thiol molecules, which are coupled to the gold (Au) electrodes.

In this third part of the thesis we are concerned with the performance of molecular junctions
(see Figure 9.1) used as thermoelectric devices, in which a temperature gradient is used to produce
an electrical current or voltage. Recent studies showed that such devices give a large thermoelectric
effect because of sharp electronic resonances appearing due to molecular orbitals [117, 118] or due
to interference effects [119, 120]. At the same time, it has been argued that molecular junctions
should have a very small phonon contribution to the heat conductance because, in small molecules,
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the quantized molecular vibrational modes have frequencies above the Debye frequency of the
electrodes, preventing phonons from being transported from the hot to the cold electrode via the
molecule. However, this argument does not take into account that when a molecule is bonded
between two electrodes, additional vibrational modes appear which are associated with center
of mass motion of the entire molecule [121]. Since the mass of the entire molecule is very large
compared to that of individual atoms, these modes have a low frequency, well inside the band of
acoustic phonons in the electrodes, and might be detrimental for the thermoelectric performance.

So we propose a simple mechanism to reduce thermal conductance of the molecular junction due
to center of mass vibrational modes. We call such a thermal conductance the phonon conductance.
The idea is to have a system effectively consisting of two large masses M1 and M2 coupled by the
spring K to each other and by springs KL, KR to the leads as shown in Figure 9.1a. When the spring
constant between the masses is weak the phonon conductance is reduced compared to the situation
with a single mass in the junction M =M1 +M2. For thermoelectric purposes the molecule should
also maintain the electrical conductivity. As a possible realization of such a system having such
properties we consider π-stacked molecules in the junction as depicted in Figure 9.1b. Here by
π-stacking we mean attractive, noncovalent interactions between aromatic rings, which in the case
of Figure 9.1b are two sandwiched benzene rings [122].

9.1 The model
We describe the vibrational degrees of freedom in a molecule and the coupling to the leads using
the harmonic approximation and it is assumed that the molecule couples to a particular lead
only at a single point (xα , yα , zα), with α = L,R. So the system under consideration is a junction
consisting of two leads described by vibrational modes of a continuum and a molecule (middle
region) described by harmonic oscillators. The Hamiltonian for the vibrational degrees of the
system is

H =H0 +V , (9.1a)

H0 =
∑
i,m

p2
im

2Mm
+HL +HR, i = x,y,z, m = 1,2, (9.1b)

Hα =
∑
ν

~ωανa
†
ανaαν , α = L,R, (9.1c)

V =
1
4

∑
ii′mm′

Kim,i′m′ (rim − ri′m′ )2 +
1
2

∑
ii′mαr

Kim,i′α(r)[rim −ui′α(r)]2, (9.1d)

where rm = (xm, ym, zm) are the coordinates of the mass Mm; pm is the corresponding momentum;
ui′α(r) ≡ ui′α(r,0) is the displacement vector in the lead α at time t = 0; Kim,i′m′ are the spring
constants between masses and Kim,i′α(r) are the couplings to the leads. The operator a†αν creates
a vibrational mode ν in the lead α with energy ~ωαν , and it satisfies the canonical commutation
relation [aαν , a

†
α′ν′ ] = δαα′δνν′ . The description of elastic continuum modes and quantization of

displacement vector uα(r, t) is given in Chapter 10. For the system depicted in Figure 9.1a we have
the following non-zero couplings

Ki1,i2 = Ki2,i1 ≡ Ki , Ki1,iL(r) ≡ KiLδ(r− rL), Ki2,iR(r) ≡ KiRδ(r− rR), (9.2)

where rα ≡ (xα , yα , zα) denotes points of attachment of the molecules to the leads. The validity of the
approximation that the molecule couples to a single point of the lead is discussed in Appendix F.2.
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We transform the coordinates into mass weighted coordinates, i.e.,

rn → rn√
Mn

, pn → pn
√
Mn,

uβ →
uβ√
Mβ

, πβ → πβ
√
Mβ ,

(9.3)

where we have introduced the following shorthand notation n ≡ i,m, β ≡ i′ ,α,r for the labels and
Mβ denotes the mass of the lead atoms. Then the Hamiltonian (9.1d) is rewritten in mass weighted
coordinates as

V =
1
2

∑
nn′
Vnn′ rnrn′ +

1
2

∑
β

Vβu
2
β +

∑
nβ

Vnβrnuβ(), (9.4)

Vnn =
1
Mn

(∑
n′
Knn′ +

∑
β

Knβ

)
, Vnn′ = − Knn′√

MnMn′
, n , n′ ,

Vβ =
1
Mβ

∑
n′
Kn′β , Vnβ = −

Knβ√
MnMβ

,

(9.5)

which is more convenient for the current calculation described in Section 11.1.





Chapter 10

Eigenmodes of the leads described as elastic con-
tinuum

In this chapter we describe the eigenmodes of the leads, when there is no coupling to the molecule,
where we closely follow Ezawa [123]. The same method to describe the semiconducting leads with
a weak link between them was also applied extensively by Patton and Gellar [124–126].

10.1 General equations
The equation of motion for an elastic medium is given by

ρ
∂2ui
∂t2

=
∂σij
∂xj

, (10.1)

where ρ is the mass density of the medium, ui = ui(r, t) is a displacement vector component in the i
direction, xj ∈ {x,y,z} denotes Cartesian coordinate, and σij is a stress tensor given by

σij
ρ

= (c2
l − 2c2

t )
∂uk
∂xk

δij + c2
t

(
∂ui
∂xj

+
∂uj
∂xi

)
(10.2)

for an isotropic medium. Note that the Einstein summation convention over all repeated indices is
implied. Here cl is the velocity of a longitudinal wave in an infinite isotropic medium (displacement
is in the direction of propagation), and ct is the velocity of a transverse wave in an infinite isotropic
medium (displacement is perpendicular to the direction of propagation). The velocities cl and ct
are given in terms of Young modulus E and Poisson ratio σ as [127]

cl =

√
E(1− σ )

ρ(1 + σ )(1− 2σ )
, (10.3)

ct =

√
E

2ρ(1 + σ )
. (10.4)

Note that the allowed values for the coefficients are

E > 0, −1 < σ <
1
2
, cl >

√
4
3
ct , (10.5)

and that E, σ correspond to an adiabatic measurement (constant entropy) values [127]. More
generally the stress tensor is expressed through the strain tensor uij as

σij = Kukkδij + 2µ
(
uij −

1
3
δijukk

)
, (10.6)
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where the strain tensor to second order in the displacement derivatives is given as

uij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂uk
∂xj

)
. (10.7)

We consider only the harmonic approximation, i.e. no second order term in the strain tensor.
Equation (10.1) with stress tensor (10.2) can be conveniently rewritten as

∂2u
∂t2

= c2
t ∇2u + (c2

l − c
2
t )∇(∇ ·u). (10.8)

Using Helmholtz decomposition we can represent the vector u as a sum of two components

u = ul + ut , (10.9)

which satisfy the conditions

∇×ul = 0, (10.10a)

∇ ·ut = 0, (10.10b)

i.e. ul is an irrotational vector field and ut is a solenoidal vector field. Taking the divergence of
both sides of the expression (10.8) and using (10.10b) we obtain the equation

∇ ·
(
∂2ul
∂t2
− c2

l ∇
2ul

)
= 0, (10.11a)

and using relation (10.10a) we also have to satisfy

∇×
(
∂2ul
∂t2
− c2

l ∇
2ul

)
= 0. (10.11b)

If the curl and the divergence of a vector vanish in all space, then the vector has to be zero identically.
So from equations (10.11) the wave equation for the longitudinal part ul is obtained:(

∂2

∂t2
− c2

l ∇
2
)

ul = 0. (10.12)

For the transversal part ut we get the equation

∇×
(
∂2ut
∂t2
− c2

t ∇2ut

)
= 0, (10.13a)

when taking the curl of both sides of the equation (10.8) and satisfying the relation (10.10a), and
the equation

∇ ·
(
∂2ut
∂t2
− c2

t ∇2ut

)
= 0, (10.13b)

by using the relation (10.10b). From equations (10.13) the wave equation for transversal part ut is
obtained: (

∂2

∂t2
− c2

t ∇2
)

ut = 0. (10.14)
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The displacement vector also can be written in terms of the scalar potential φ and the vector
potential ψ:

ul = ∇φ, (10.15a)

ut = ∇×ψ, with ∇ ·ψ = 0. (10.15b)

The potentials also satisfy the wave equations(
∂2

∂t2
− c2

t ∇2
)
φ = 0, (10.16a)(

∂2

∂t2
− c2

l ∇
2
)
ψ = 0, with ∇ ·ψ = 0. (10.16b)

10.2 Eigenmodes of a half space filled with an isotropic elastic medium
We want to find the eigenmodes of a half space y ≤ 0 filled with an isotropic elastic medium, which
has a stress-free surface. For every point of a stress-free surface we have to satisfy the boundary
condition

σijnj = 0, (10.17)

where n is the outward normal at each point of the surface. For a half space y ≤ 0 we have

n = {0,0,1}. (10.18)

So we need to solve equation (10.8) with the boundary condition (10.17). We start by choosing
the following ansatz for the displacement vector

u(r, t) =
1

2π
f(y)ei(kzz+kxx−ωt), f = {fz, fx, fy}, [u(r, t)] = [f(y)] = L, (10.19)

where [A] denotes the dimension of the quantity A, and dimensions L, T , and M stand for length,
time, and mass dimension, respectively. For definiteness we assume ω ≥ 0. Inserting (10.19) into
equation (10.8) and the boundary condition (10.17) we obtainM0 +M1

(
−i
∂
∂y

)
+M2

(
−i
∂
∂y

)2f(y) = ω2f(y), (10.20)[
N0 +N1

(
−i
∂
∂y

)]
f(y) = 0, for y = 0, (10.21)

where

M0 =


c2
l k

2
z + c2

t k
2
x (c2

l − c
2
t )kzkx 0

(c2
l − c

2
t )kzkx c2

l k
2
x + c2

t k
2
z 0

0 0 c2
t (k2

z + k2
x )

 , (10.22a)

M1 = (c2
l − c

2
t )


0 0 kz
0 0 kx
kz kx 0

 , (10.22b)

M2 =N1 =


c2
t 0 0
0 c2

t 0
0 0 c2

l

 , (10.22c)

N0 =


0 0 c2

t kz
0 0 c2

t kx
(c2
l − 2c2

t )kz (c2
l − 2c2

t )kx 0

 . (10.22d)
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We anticipate that the eigenmodes, which we label as ν, will be classified using the following
quantities (“quantum numbers”)

ν = (k, ky ,m), k = {kz, kx}. (10.23)

where k is the wavevector in zx plane, ky wavevector perpendicular to the surface, and m ∈
{H,±,0,R} labels type of the mode, where there will be four types as discussed in forthcoming
sections.

The solutions will be normalized in the following way:

〈u(ν′),u(ν)〉 = [χν]
∫

dru†(ν
′)(r)u(ν)(r) = δν′ν[χν], [〈u(ν′),u(ν)〉] = L5, (10.24)

where δν′ν denotes Dirac delta function for continuous variables and Kroenecker delta for discrete
variables. The quantity [χν] denotes particular dimension depending on whether ν contains
discrete or continuous labels. Note that

[u(r, t)] , [u(ν)(r)]. (10.25)

The normalization condition (10.24) can be written more explicitly as

〈u(k′ ,k′y ,m
′),u(k,ky ,m)〉 = [χm]

1
2π

∫ ∞
−∞

dzei(k′z−kz)z 1
2π

∫ ∞
−∞

dxei(k′x−kx)x
∫ 0

−∞
dyf†(k,k

′
y ,m
′)(y)f(k,ky ,m)(y)

= [χm]δk′ ,k

∫ 0

−∞
dyf†(k,k

′
y ,m
′)(y)f(k,ky ,m)(y) = δk′ ,kδk′y ,kyδm′ ,m[χm],

(10.26)

and we get

(f(k,k′y ,m
′),f(k,ky ,m)) =

∫ 0

−∞
dyf†(k,k

′
y ,m

′)(y)f(k,ky ,m)(y) = δk′y ,kyδm′ ,m. (10.27)

Here
u(ν)(r) = u(k,ky ,m)(r) =

1
2π

f(k,ky ,m)(z)ei(kzz+kxx), k = {kz, kx}, (10.28)

and 〈A,B〉 denotes the inner product in the whole space, and (A,B) in y direction. We have the
following dimensions of u(k,ky ,m), f(k,ky ,m), and [χm]:

[u(k,ky ,m)] = [f(k,ky ,m)] = 1, [χm] = L2 for m =H,±,0,

[u(k,kR,R)] = [f(k,kR,R)] = L−1/2, [χR] = L3, for m = R,
(10.29)

where the first line is the dimensions for the modes with continuous ky and the second line for the
modes with discrete ky . For some of the derivations we will use the potentials φ and ψ. In analogy
with (10.19) we use the following ansatz

φ(r, t) =
1

2π
fφ(y)ei(kzz+kxx−ωt), (10.30a)

ψ(r, t) =
1

2π
fψ(y)ei(kzz+kxx−ωt), (10.30b)

and we find that f is expressed in terms of fφ and fψ as

fz = ikzfφ + ikxfψy −
d
dy
fψx , (10.31a)

fx = ikxfφ +
d
dy
fψz − ikzfψy , (10.31b)

fy =
d
dy
fφ + ikzfψx − ikxfψz . (10.31c)
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Inserting the potentials into the wave equations (10.16) we obtain

c2
l

[
k2
z + k2

x −
∂2

∂y2

]
fφ =ω2fφ, (10.32a)

c2
t

[
k2
z + k2

x −
∂2

∂y2

]
fψ =ω2fψ , (10.32b)

ikzfψz + ikxfψx +
∂
∂y
fψy = 0, (10.32c)

and from the boundary condition (10.21) we getK0 +K1

(
−i
∂
∂y

)
+K2

(
−i
∂
∂y

)2F = 0, for y = 0, with F = {fφ, fψz , fψx , fψy }, (10.33)

where

K0 =


0 −c2

t kzkx c2
t k

2
z 0

0 −c2
t k

2
x c2

t kzkx 0
(c2
l − 2c2

t )(k2
z + k2

x ) 0 0 0

 , (10.34a)

K1 =


2c2
t kz 0 0 c2

t kx
2c2
t kx 0 0 −c2

t kz
0 −2c2

t kx 2c2
t kz 0

 , (10.34b)

K2 =


0 0 −c2

t 0
0 c2

t 0 0
c2
l 0 0 0

 . (10.34c)

We will perform calculations and will find the modes, where z and x axes are rotated such that
the vector k gets transformed into

k = {kz, kx} → {κ,0}, with κ =
√
k2
z + k2

x . (10.35)

10.2.1 SH-mode, m =H

For this mode we set fz = fy = 0, and then the wave is polarized both to the direction of k = {κ,0}
and the y-axis, i.e. we get shear wave with horizontal polarization (SH-mode), which we label as

m =H. (10.36)

For this polarization the equation of motion (10.20) and the boundary condition (10.21) reads as(
c2
t
d2

dy2 +ω2 − c2
t κ

2
)
fx = 0, (10.37a)

dfx
dy

∣∣∣∣∣
y=0

= 0. (10.37b)

As always for linear differential equation with constant coefficients we guess solution of the form
eikβy , which yields the following characteristic equation for (10.37a)

−c2
t k

2
β +ω2 − c2

t κ
2 = 0 → ω = ct

√
k2
β +κ2. (10.38)
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Then we construct the following general solution

2fx = Aeikβy +Be−ikβy → fx = Acos(kβy), kβ > 0, (10.39)

where after the arrow we have satisfied the boundary condition (10.37b), which requires A = B. We
see that kβ has to be real, because if kβ is imaginary then the above solution grows exponentially in
y direction, which is not physical.

Now we normalize the solution (10.39) using condition (10.27)

|A|2
∫ 0

−∞
dy cos(k′βy)cos(kβy) =

|A|2

2

∫ +∞

−∞
dy cos(k′βy)cos(kβy)

=
|A|2

8

∫ +∞

−∞
dy

(
ei(k′β+kβy + ei(k′β−kβ)y + e−i(k′β−kβ)y + e−i(k′β+kβ)y

)
=
π|A|2

2
δ(k′β − kβ) → A =

√
2
π
.

(10.40)

We note that terms with e±i(k′β+kβ)y vanish, because k′β and kβ always have the same sign. So we get
the final expression for the SH-mode

f
(κ,kβ ,H)
z = f

(κ,kβ ,H)
y = 0, f

(κ,kβ ,H)
x =

√
2
π

cos(kβy), m =H. (10.41)

10.2.2 Mixed P − SV mode, m = ±
We proceed with the calculation using the potentials φ and ψ, and the corresponding equations of
motion (10.32). In the coordinate system where k = {κ,0} we get that fφ with fψx gets decoupled
from fψz with fψy , i.e. equation of motion (10.32) and the boundary condition (10.33) simplifies to

c2
t

[
κ2 − d2

dy2

]
fψz,y =ω2fψz,y , (10.42a)

iκfψz +
d
dy
fψy = 0, (10.42b)

iκ
d
dy
fψy −

d2

dy2 fψz = 0, at y = 0. (10.42c)

and

c2
l

[
κ2 − d2

dy2

]
fφ =ω2fφ, (10.43a)

c2
t

[
κ2 − d2

dy2

]
fψx =ω2fψx , (10.43b)

κ2fψx − 2iκ
d
dy
fφ +

d2

dy2 fψx = 0, at y = 0, (10.43c)

(c2
l − 2c2

t )κ2fφ − 2c2
t iκ

d
dy
fψx − c

2
l
d2

dy2 fφ = 0, at y = 0. (10.43d)

Solution of equations (10.42) corresponds to the SH-mode, when fφ = fψx = 0 → fz = fy = 0. For
mixed P − SV mode (as also for modes in next sections) we set fx = 0 → fψz = fψz = 0, and use the
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following ansatz for fφ and fψx

fφ = Aeikαy +Be−ikαy , (10.44a)

fψx = Ceikβy +De−ikβy , (10.44b)

Inserting these solutions in the equations (10.43a,b) we get

ωα = cl

√
k2
α +κ2, (10.45a)

ωβ = ct
√
k2
β +κ2, (10.45b)

and the boundary condition (10.43c,d) gives

−2κkα[A−B] + (k2
β −κ

2)[C +D] = 0, (10.46a)

(k2
β −κ

2)[A+B] + 2κkβ[C −D] = 0. (10.46b)

After requiring that ωα =ωβ we obtain

kα =
ct
cl

√
k2
β +κ2

1− c2
l

c2
t

. (10.47)

There are two independent solutions for the above system of equations. We note that in this case
the wave coming from φ is called a P -wave (pressure wave) and the one from ψ a SV -wave (shear
wave with vertical polarization). Also for a mixed P − SV wave we have

k2
α , k

2
β > 0, kα , kβ > 0, → kβ > κ

√
c2
l

c2
t

− 1. (10.48)

As a first solution we pick a P -wave incident upon the surface

A = 1, C = 0, (10.49)

and from (10.46) we find

B = −a, D =

√
kα
kβ
b, (10.50)

where we introduced coefficients

a =
(k2
β −κ

2)2 − 4κ2kαkβ

(k2
β −κ2)2 + 4κ2kαkβ

, b =
4κ

√
kαkβ(k2

β −κ
2)

(k2
β −κ2)2 + 4κ2kαkβ

. (10.51)

So for an incident P -wave we get

f
(κ,c,P )
φ = eikαy − ae−ikαy , (10.52a)

f
(κ,c,P )
ψx

=

√
kα
kβ
be−ikβy . (10.52b)
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Using the relations (10.31) we find the corresponding displacement vector f(y) for P -wave

f
(κ,c,P )
z = iA(κ,c,P )κ

eikαy − ae−ikαy +

√
kαkβ
κ2 be−ikβy

 , (10.53a)

f
(κ,c,P )
x = 0, (10.53b)

f
(κ,c,P )
y = iA(κ,c,P )κ

kακ (
eikαy + ae−ikαy

)
+

√
kα
kβ
be−ikβy

 . (10.53c)

Here we introduced the normalization constant A, which we determine from condition (10.27).
When calculating normalization constant we will need the integral

I =
∫ 0

−∞
dye±i(q∓iη)y =

i
∓q+ iη

= ∓ iP
q

+πδ(q), (10.54)

where η = +0 is positive infinitesimal, and P denotes principal part. The normalization condition
(10.27) for the P -wave (10.53) gives:

|A(κ,c,P )|2π
[
(κ2 + k2

α)(1 + a2)δ(k′α − kα) +
(
kαkβ +κ2 kα

kβ

)
b2δ(k′β − kβ)

]
= |A(κ,c,P )|2π

(κ2 + k2
α)(1 + a2)

(
cl
ct

)2
kα
kβ

+
(
kαkβ +κ2 kα

kβ

)
b2

δ(k′β − kβ)

= |A(κ,c,P )|22π
kα
kβ

(k2
β +κ2)δ(k′β − kβ) → A(κ,c,P ) =

√
kβ

2πkα(k2
β +κ2)

.

(10.55)

Here we used the identity

δ(f (x)) =
n∑
j=1

δ(x − xj )
|f ′(xj )|

, with f (xj ) = 0 and f ′(xj ) , 0, (10.56)

which yields
∂kα
∂kβ

=
(
ct
cl

)2 kβ
kα
, δ(k′α − kα) =

δ(k′β − kβ)

|∂kα/∂kβ |
=

(
cl
ct

)2
kα
kβ
δ(k′β − kβ). (10.57)

We note that all the terms with a principal value cancel each other, and there were many δ-functions,
which cannot be satisfied, so we have not specified them. Using the above normalization constant
the normalized displacement vector f(y) for a P -wave becomes:

f
(κ,c,P )
z = i

√
kβ

2πkα(1 + k2
β/κ

2)

eikαy − ae−ikαy +

√
kαkβ
κ2 be−ikβy

 ,
f

(κ,c,P )
x = 0,

f
(κ,c,P )
y = i

√
kβ

2πkα(1 + k2
β/κ

2)

kακ (
eikαy + ae−ikαy

)
+

√
kα
kβ
be−ikβy

 , m = P .

(10.58)

When a SV -wave is the incident wave we have

A = 0, C = 1, (10.59)
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and equations (10.46) yields

B = −

√
kβ
kα
b, D = −a, (10.60)

so the incident SV -wave becomes

f
(κ,c,SV )
φ = −

√
kβ
kα
be−ikαy , (10.61a)

f
(κ,c,SV )
ψx

= eikβy − ae−ikβy . (10.61b)

The corresponding displacement vector f(y) for SV -wave is

f
(κ,c,SV )
z = iA(κ,c,SV )κ

−
√
kβ
kα
be−ikαy −

kβ
κ

(
eikβy + ae−ikβy

) , (10.62a)

f
(κ,c,SV )
x = 0, (10.62b)

f
(κ,c,SV )
y = iA(κ,c,SV )κ


√
kαkβ
κ2 be−ikαy + eikβy − ae−ikβy

 , (10.62c)

and we find the normalization constant A(κ,c,SV ) from

|A(κ,c,SV )|2π
[
kβ

(
kα +

κ2

kα

)
b2δ(k′α − kα) + (κ2 + k2

β)(1 + a2)δ(k′β − kβ)
]

= |A(κ,c,SV )|2π
kβ (kα +

κ2

kα

)
b2

(
cl
ct

)2
kα
kβ

+ (κ2 + k2
β)(1 + a2)

δ(k′β − kβ)

= |A(κ,c,SV )|22π(k2
β +κ2)δ(k′β − kβ) → A(κ,c,SV ) =

1√
2π(k2

β +κ2)
.

(10.63)

which yields the final expression for the SV -wave

f
(κ,c,SV )
z = i

1√
2π(1 + k2

β/κ
2)

−
√
kβ
kα
be−ikαy −

kβ
κ

(
eikβy + ae−ikβy

) ,
f

(κ,c,SV )
x = 0,

f
(κ,c,SV )
y = i

1√
2π(1 + k2

β/κ
2)


√
kαkβ
κ2 be−ikαy + eikβy − ae−ikβy

 , m = SV .

(10.64)

Note that the P -wave and the SV -wave are orthogonal to each other:

(f(κ,c,P ),f(κ,c,SV )) ∼ ab

√
kαkβ
κ2

[(
kα
κ

+
κ
kα

)
δ(k′α − kα)−

(
kβ
κ

+
κ
kβ

)
δ(k′β − kβ)

]
= ab

√
kαkβ
κ2

(kακ +
κ
kα

)(
cl
ct

)2
kα
kβ
−
(
kβ
κ

+
κ
kβ

)δ(k′β − kβ) = 0.

(10.65)
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Having the P -wave and the SV -wave we will construct a so-called mixed P − SV wave in the
following way

f
(κ,c,±)
φ,ψx

= ∓i
√
κ
kα
f

(κ,c,P )
φ,ψx

+
√
κ
kβ
f

(κ,c,SV )
φ,ψx

, (10.66)

or more explicitly

f
(κ,c,±)
φ = ∓i

√
κ
kα

(
eikαy − ζ±e−ikαy

)
, (10.67a)

f
(κ,c,±)
ψx

=
√
κ
kβ

(
eikβy − ζ±e−ikβy

)
, (10.67b)

where
ζ± = a± ib, |ζ±|2 = a2 + b2 = 1. (10.68)

The displacement vector f± for mixed P − SV mode is

f(κ,c,±) =
1
√

2

[
∓if(κ,c,P ) + f(κ,c,SV )

]
, (10.69)

or more explicitly

f
(κ,c,±)
z =

1√
4π(1 + k2

β/κ
2)

±
√
kβ
kα

(
eikαy − ζ±e−ikαy

)
− i
kβ
κ

(
eikβy + ζ±e

−ikβy
) ,

f
(κ,c,±)
x = 0,

f
(κ,c,±)
y =

1√
4π(1 + k2

β/κ
2)

±
√
kαkβ
κ2

(
eikαy + ζ±e

−ikαy
)

+ i
(
eikβy − ζ±e−ikβy

) , m = ±.

(10.70)

10.2.3 Mode with total reflection, m = 0

In this section we examine the modes which have

k2
α < 0, k2

β > 0 → 0 < kβ < κ

√
c2
l

c2
t

− 1, (10.71)

and define

kα = ikγ = i
ct
cl

√
κ2

c2
l

c2
t

− 1

− k2
β , 0 < kγ < κ

√
1−

c2
t

c2
l

. (10.72)

From the solution of equation (10.44) we see that we need to set A = 0, because otherwise we would
get exponentially increasing solution as y→−∞, which is unphysical. So we start with incident
SV -wave, i.e.

A = 0, C = 1, (10.73)

and from (10.46) we find
B = −b, D = −a, (10.74)

with

a =
(k2
β −κ

2)2 − 4iκ2kγkβ

(k2
β −κ2)2 + 4iκ2kγkβ

, b =
4κkβ(k2

β −κ
2)

(k2
β −κ2)2 + 4iκ2kγkβ

. (10.75)
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The following potentials are obtained

f
(κ,c,0)
φ = −bekγy , (10.76a)

f
(κ,c,0)
ψx

= eikβy − ae−ikβy , (10.76b)

and the displacement vector becomes

f
(κ,c,0)
z = −iA(κ,c,0)κ

[
bekγy +

kβ
κ

(
eikβy + ae−ikβy

)]
, (10.77a)

f
(κ,c,0)
x = 0, (10.77b)

f
(κ,c,0)
y = A(κ,c,0)κ

[
−
kγ
κ
bekγy + i

(
eikβy − ae−ikβy

)]
. (10.77c)

In this case the normalization constant is

|A(κ,c,0)|2π
(
1 + |a|2

)
(κ2 + k2

β)δ(k′β − kβ)

= |A(κ,c,0)|22π(κ2 + k2
β)δ(k′β − kβ) → A(κ,c,0) =

1√
2π(κ2 + k2

β)
, (10.78)

and we get the following final expression for a mode with total reflection

f
(κ,c,0)
z = −i

1√
2π(1 + k2

β/κ
2)

[
bekγy +

kβ
κ

(
eikβy + ae−ikβy

)]
,

f
(κ,c,0)
x = 0,

f
(κ,c,0)
y =

1√
2π(1 + k2

β/κ
2)

[
−
kγ
κ
bekγy + i

(
eikβy − ae−ikβy

)]
, m = 0.

(10.79)

10.2.4 Rayleigh mode, m = R

In the case of this mode we have
k2
α < 0, k2

β < 0, (10.80)

and we define

kβ = ikη , kα = ikγ = i
ct
cl

√
κ2

c2
l

c2
t

− 1

+ k2
η . (10.81)

We need to set A = C = 0 in order not to have exponentially increasing terms in (10.44), and then
set of equations (10.46) become

2iκkγB− (κ2 + k2
η)D = 0, (10.82a)

(κ2 + k2
η)B+ 2iκkηD = 0. (10.82b)

In order to have non-trivial solutions the determinant of this set of equations has to be equal to
zero, i.e.

(κ2 + k2
η)2 − 4κ2kγkη = 0, (10.83)
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which requires the wavevector kη to be a root kR of

ξ4 + 4ξ3 + 2(3− 8ν)ξ2 − 4(3− 4ν)ξ + 1 = 0, with ξ =
k2
R

κ2 , ν =
(
ct
cl

)2

=
1− 2σ

2(1− σ )
, (10.84)

known as the Rayleigh condition. Note that ξ has to be in the interval ξ ∈ [0,1].
We set the following coefficients for the Rayleigh mode

A = 0, B = 1, C = 0, (10.85)

which from (10.82) yields

D =
2iκkγ
κ2 + k2

η
, (10.86)

and we get the following potentials

f
(κ,c,R)
φ = ekγy , (10.87a)

f
(κ,c,R)
ψx

=
2iκkγ
κ2 + k2

η
ekηy . (10.87b)

The corresponding displacement vector f(y) for the Rayleigh mode is

f
(κ,c,R)
z = iA(κ,c,R)κ

ekγy − 2kγkη
κ2 + k2

η
ekηy

 , (10.88a)

f
(κ,c,R)
x = 0, (10.88b)

f
(κ,c,R)
y = A(κ,c,R)κ

kγκ ekγy −
2κkγ
κ2 + k2

η
ekηy

 . (10.88c)

Because the velocity kR is discrete for given κ, we choose the mode to be normalized to 1 instead of
a δ-function:

|A(κ,c,R)|2κ2
∫ 0

−∞
dy

1 +
k2
γ

κ2

e2kγy +
4k2
γ

κ2 + k2
η

e2kηy −
2kγ

κ2 + k2
η

(
kγ + kη

)
e(kγ+kη )y


= |A(κ,c,R)|2κ

κ2 + k2
γ

2κkγ
+
(
kγ
kη
− 2

)
2κkγ
κ2 + k2

η


= |A(κ,c,R)|2κ

κ2 + k2
γ

2κkγ
+
(
kγ
kη
− 2

)
κ2 + k2

η

2κkη


= |A(κ,c,R)|2κ

(kγ − kη)(κ2kγ −κ2kη + 2kγk2
η)

2κkγk
2
η

= |A(κ,c,R)|2κK(σ ) → A(κ,c,R) =
1√

κK(σ )
,

(10.89)

with

K(σ ) =
(kγ − kη)(κ2kγ −κ2kη + 2kγk2

η)

2κkγk
2
η

. (10.90)
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Here we also used relation (10.83). The final expression for the displacement vector of Rayleigh
mode is:

f
(κ,c,R)
z = i

√
κ

K(σ )

ekγy − 2kγkη
κ2 + k2

η
ekηy

 ,
f

(κ,c,R)
x = 0,

f
(κ,c,R)
y =

√
κ

K(σ )

kγκ ekγy −
2κkγ
κ2 + k2

η
ekηy

 , m = R.

(10.91)

10.3 The complete set of eigenfunctions
The completeness of eigenfunctions is proven in [123] and here we will only state the result. Firstly,
the following completeness in a subspace of y is satisfied with any constant κ:∑

m,kβ

f
(κ,kβ ,m)
i (y)f

∗(κ,kβ ,m)
j (y′) = δijδ(y − y′), (10.92)

or more explicitly

f
(κ,kR,R)
i (y)f ∗(κ,kR,R)

j (y′) +
∫ +∞

0
dkβf

(κ,kβ ,H)
i (y)f

∗(κ,kβ ,H)
j (y′)

+
∫ κ
√

(cl /ct)2−1

0
dkβf

(κ,kβ ,0)
i (y)f

∗(κ,kβ ,0)
j (y′)

+
∫ +∞

κ
√

(cl /ct)2−1
dkβ

[
f

(κ,kβ ,+)
i (y)f

∗(κ,kβ ,+)
j (y′) + f

(κ,kβ ,−)
i (y)f

∗(κ,kβ ,−)
j (y′)

]
= δijδ(y − y′).

(10.93)

If we sum over κ we get completeness in subspace zy

∑
κ,m,kβ

u
(κ,kβ ,m)
i (r)u

∗(κ,kβ ,m)
j (r′) =

1
(2π)2 δijδ(y − y′)

∫ +∞

−∞
dκeiκ(z−z′) =

1
2π
δijδ(y − y′)δ(z − z′). (10.94)

To obtain completeness in full half-space xyz we need to construct eigenfunctions f
(κ,kβ ,m)
i for an

arbitrary direction of the wavevector k = {kz, kx}. This we obtain by rotating the coordinate plane
z′x′, where we have the wavevector k′ = {κ,0}, to zx, where the wavevector becomes k = {kz, kx}
with κ =

√
k2
z + k2

x . This is achieved by making the transformation

f
(k,kβ ,m)
i (y) = Rijf

(κ,kβ ,m)
j (y), u

(k,kβ ,m)
i (r) =

1
2π
f

(k,kβ ,m)
i (y)ei(kzz+kxx), (10.95)

where the rotation matrix Rij is

Rij =


cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

 , (10.96)

and θ is the angle of rotation around the y axis with

kz = κcosθ, kx = κ sinθ. (10.97)
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Because the Kroenecker δij is a second rank tensor and is invariant under rotations the subspace
completeness (10.92) is carried over to the new coordinate system, and we have∑

k,m,kβ

u
(k,kβ ,m)
i (r)u

∗(k,kβ ,m)
j (r′) =

1
(2π)2 δijδ(y − y′)

∫ +∞

−∞
dkze

ikz(z−z′)
∫ +∞

−∞
dkxe

ikx(x−x′)

= δijδ(y − y′)δ(z − z′)δ(x − x′) = δijδ(r− r′).

(10.98)

10.4 Quantization of eigenmodes
The equation (10.8) with the boundary condition (10.17), which we rewrite again for convenience

∂2u
∂t2

= c2
t ∇2u + (c2

l − c
2
t )∇(∇ ·u), (10.99a)

σijnj = 0, σij = ρ(c2
l − 2c2

t )
∂uk
∂xk

δij + ρc2
t

(
∂ui
∂xj

+
∂uj
∂xi

)
, (10.99b)

can be formulated as a variational problem with the following Lagrangian

L[v,u] =
ρ

2

(
−Φ[v,u] +

∫
V

dr
∂v†

∂t
· ∂u
∂t

)
, (10.100)

where the following sesquilinear form was used:

Φ[v,u] =
∫
V

dr
[
(c2
l − 2c2

t )(∇ · v)∗(∇ ·u) + c2
t (∇× v)∗(∇×u) + 2c2

t
∂v∗i
∂xj

∂uj
∂xi

]
(10.101)

To get the equations of motion we need to use the variational principle for L[u,u]. From the above
Lagrangian we get the following Hamiltonian

H[v,u] =
ρ

2
Φ[v,u] +

1
2ρ

∫
V

drπ†v ·πu , with πv = ρ
∂v
∂t
, πu = ρ

∂u
∂t
, (10.102)

where π is the canonical momentum. Note that the energy of the eigenmode is determined from
the general relation

H[u(ν),u(ν′)] = ρω2
ν〈u(ν),u(ν′)〉 = ρω2

νδνν′ [χν]. (10.103)

Having the complete set of eigenfunctions (10.98) we expand the phonon field û(r, t) as

û(r, t) =
∑
ν

√
~

2ρων

[
u(ν)(r)e−iωνtaν + u∗(ν)(r)eiωνta†ν

]
, with ωk,kβ = cl

√
k2
β + |k|2 > 0, (10.104)

in terms of the operators aν and a†ν , which satisfy the following commutation relations

[aν , a
†
ν′ ] = δνν′ , [aν , aν′ ] = 0, [a†ν , a

†
ν′ ] = 0, (10.105)

or more concretely
[ak,kβ ,m

, a†k′ ,k′β ,m′
] = δm,m′δkβ ,k′βδk,k′ . (10.106)

Note that the dimensions of the quantities entering the phonon field are

[û(r, t)] = L, [ρ] =ML−3, [~] =ML2T −1, [ων] = T −1,


√

~

2ρων

 = L5/2, (10.107)
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and for modes ν with continuous c we have∑
ν

 =
[∫

dkz

∫
dkx

∫
dkβ

]
= L−3, [u(ν)(r)] = 1, [aν] = L3/2, (10.108)

and for modes ν with discrete c we have∑
ν

 =
[∫

dkz

∫
dkx

]
= L−2, [u(ν)(r)] = L−1/2, [aν] = L. (10.109)

The canonical momentum for the phonon field (10.104) is

π̂(r, t) = ρ
∂û(r, t)
∂t

= −i
∑
ν

√
~ρων

2

[
u(ν)(r)e−iωνtaν −u∗(ν)(r)eiωνta†ν

]
, (10.110)

and the following commutation relation is satisfied

[ûi(r, t), π̂j(r
′ , t)] = i~δijδ(r− r′), (10.111)

because of the completeness relation (10.98). We specify the Hamiltonian operator for phonons as

Ĥ[û(r, t), û(r, t)] =:
ρ

2
Φ[û(r, t), û(r, t)] +

1
2ρ

∫
V

drπ̂†(r, t)π̂(r, t) :, (10.112)

where : A : denotes a normal ordered (Wick ordered) operator. Using relation (10.103) we find that
the Hamiltonian operator becomes

Ĥ =
∑
ν

~ωνa
†
νaν . (10.113)





Chapter 11

Transport through the molecular junction

11.1 Heat current and phonon conductance
When there is a temperature difference ∆T = TL −TR between the leads, the heat current is running
through the device. If the electron-phonon coupling is neglected we can define the heat current
due to phonons as the rate of change of the energy [as described by Hamiltonian (9.1a)] in one
particular lead α [128–131]:

Qα,t = −〈∂tHα(t)〉 = − i
~

〈[H,Hα] (t)〉 . (11.1)

Here A(t) = eiHtAe−iHt denotes the Heisenberg evolution of an operator. The commutator in Eq.
(11.1) yields

Qα,t =
1
ρα

∑
nir

Vn,iα(r)〈πiα(r, t)rn(t)〉 =
i~
ρα

∑
nir

Vn,iα(r)Grπ,<n,iαr,tt , (11.2)

where Grπ,<nβ,tt′ = −i/~〈πβ(t′)rn(t)〉 is the lesser Green’s function. Note that the shorthand notation

n ≡ i,m, β ≡ i′ ,α,r for the labels is used. The same time function Grπ,<nβ,tt can be expressed in terms

of Gru,<nβ,tt′ = −i/~〈uβ(, t′)rn(t)〉 as

Grπ,<nβ,tt = lim
t′→t

∂
∂t′
ρβG

ru,<
nβ,tt′ . (11.3)

In the steady state the current becomes time independent and can be expressed in the following
way

Qα =Qα,t=0 =
i~
ρα

∫ +∞

−∞

dω
2π

∑
nir

Vn,iα(r)Grπ,<n,iαr,ω = −~
∫ +∞

−∞

dω
2π

ω
∑
nir

Vn,iα(r)Gru,<n,iαr,ω, (11.4)

where we have the Fourier transformation Gru,<nβ,ω =
∫ +∞
−∞ d(t − t′)eiω(t−t′)Gru,<nβ,tt′ We calculate the above

Green’s function entering the current using the Keldysh technique [132] and closely follow Wang
et al. [131].

So we need to consider such bosonic contour-ordered Green’s functions

Gcab(τ,τ
′) = − i

~

〈Tca(τ)b(τ ′)〉 =,
{
G>ab(τ,τ

′), τ >c τ
′ ,

G<ab(τ,τ
′), τ <c τ

′ (11.5)

with the following definition of the greater G> and the lesser G< Green’s functions

G>ab(t, t
′) = − i

~

〈b(t′)a(t)〉, (11.6a)

G<ab(t, t
′) = − i

~

〈a(t)b(t′)〉, (11.6b)
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(a) The ’’ contour‘‘closed time path (b) The Keldysh contour

time

Figure 11.1: Different contours for the computation of the contour-ordered Green’s function.

where a and b are bosonic operators, and c is the contour along the real time axis that starts and
ends at t0 by passing through τ and τ ′ once (see Figure 11.1a). The contour-ordering operator Tc
orders the operators according to the position on the contour of their time arguments, and the
relation τ >c τ ′ means that τ is further along the contour than τ ′. We are interested in the stationary
state of the system so the initial time is put to t0→−∞, and we extend the largest time along the
contour to infinity to obtain the Keldysh contour depicted in Figure 11.1b. Now we consider the
following contour-ordered Green’s functions

Scββ′ ,ττ ′ = − i
~

〈Tcuβ(τ)uβ′ (τ
′)〉, (11.7a)

Gur,cβn,ττ ′ = − i
~

〈Tcuβ(τ)rn(τ ′)〉, (11.7b)

Gru,cnβττ ′ = − i
~

〈Tcrn(τ)uβ(τ ′)〉, (11.7c)

Dcnn′ ,ττ ′ = − i
~

〈Tcrn(τ)rn′ (τ
′)〉, (11.7d)

which satisfy the equations

Gur,cβn′ ,ττ ′ =
∑
β1n2,τ1

S0,c
ββ1,ττ1

Vβ1n2
Dcn2n′ ,τ1τ ′

+
∑
β1,τ1

S0,c
ββ1,ττ1

Vβ1
Gur,cβ1n′ ,τ1τ ′

, (11.8a)

Gru,cnβ′ ,ττ ′ =
∑
n1β2,τ1

Dcnn1,ττ1
Vn1β2

S0,c
β2β′ ,τ1τ ′

+
∑
β1,τ1

Gru,cnβ1,ττ1
Vβ1

S0,c
β1β′ ,τ1τ ′

, (11.8b)

Dcnn′ ,ττ ′ =D0,c
nn′ ,ττ ′ +

∑
n1,n2,τ1

D0,c
nn1,ττ1

Vn1n2
Dcn2n′ ,τ1τ ′

+
∑
n1β2,τ1

D0,c
nn1,ττ1

Vn1β2
Gur,cβ2n′ ,τ1τ ′

, (11.8c)

on the Keldysh contour and
∑

τ1
→

∫
cK

dτ1 . . . denotes integration along this contour. The derivation

of Eqs. (11.8) is presented in Appendix E. The Green’s functions D0 and S0 are calculated in
Appendix F and correspond to Hamiltonian consisting of (9.1b) and the terms Vnn in (9.4). Using
the Larkin-Ovchinnikov representation for contour-ordered Green’s functions [133, 134]

Gc → G =
(
GR GK

0 GA

)
, (11.9)
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we can Fourier transform Eqs. (11.8) with respect to the time difference t − t′, to give

Gurβn′ ,ω =
∑
β1n2

S0
ββ1,ω

Vβ1n2
Dn2n′ ,ω +

∑
β1

S0
ββ1,ω

Vβ1
Gurβ1n′ ,ω

, (11.10a)

Grunβ′ ,ω =
∑
n1β2

Dnn1,ωVn1β2
S0
β2β′ ,ω

+
∑
β1

Grunβ1,ω
Vβ1

S0
β1β′ ,ω

, (11.10b)

Dnn′ ,ω =D0
nn′ ,ω +

∑
n1,n2

D0
nn1,ωVn1n2

Dn2n′ ,ω +
∑
n1β2

D0
nn1,ωVn1β2

Gurβ2n′ ,ω
. (11.10c)

In Eq. (11.9) GR/GA/GK denote respectively retarded/advanced/Keldysh Green’s functions, which
for bosonic operators a and b are defined as

GRab(t, t
′) = − i

~

θ(t − t′)〈[a(t),b(t′)]〉, (11.11a)

GAab(t, t
′) =

i
~

θ(t′ − t)〈[a(t),b(t′)]〉, (11.11b)

GKab(t, t
′) = − i

~

〈{a(t),b(t′)}〉. (11.11c)

By neglecting the subscripts in the equations (11.8) and (11.10), they can be written more abstractly

Gur = S0VD + S0VGur , (11.12a)

Gru =DVS0 +GruV S0, (11.12b)

D =D0 +D0VD +D0VGur , (11.12c)

which can be expressed as

Gur = S̃0VD, (11.13a)

Gru =DV S̃0, (11.13b)

D = D̃0 + D̃0VGur , (11.13c)

where we have introduced frequency shifted lead Green’s function S̃0 = [1−S0V ]−1S0 and molecule
Green’s function in the normal mode basis D̃0 = [1−D0V ]−1D0. After inserting Eq. (11.13a) into
Eq. (11.13c) we obtain the Dyson equation for the molecule

D = D̃0 + D̃0ΣD, Σ = V S̃0V , (11.14)

with the self-energy Σ. In the calculation we will need separately the self-energy due to left and
right lead, which explicitly reads

Σnn′ ,α =
∑
i1r1i2r2

Vn,i1α(r1)S̃0
i1αr1,i2αr2,ω

Vi2α,n′ (r2), α = L,R, (11.15)

where we have suppressed the frequency subscript for the self-energy.
Now we will express the heat current in terms of the molecule Green’s function D. Using Eq.

(11.13b) and the following Langreth rule Gru,K =DRV S̃0,K +DKV S̃0,A, which can be seen from the
Larkin-Ovchinnikov representation (11.9), we obtain

Qα = −~
∫ +∞

−∞

dω
2π

ω
2

Tr[DRΣKα +DKΣAα ]. (11.16)
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We note that we have the relation 2Gru,<nβ,tt = Gru,Knβ,tt for the same time lesser Green’s function. Because
the heat current is real Qα = Q∗α and conserved QL = −QR, Eq. (11.16) can be cast into a more
symmetric form

Q =
1
4

(QL +Q∗L −QR −Q
∗
R)

=
~

4

∫ +∞

0

dω
2π

ωTr[(DR −DA)(ΣKR −Σ
K
L ) + iDK (ΓR − ΓL)],

(11.17)

where we have introduced
Γα = i(ΣRα −ΣAα ), (11.18)

and used the following properties
[
DRω

]†
=DAω ,

[
ΣAα,ω

]†
= ΣRα,ω,

[
DKω

]†
= −DKω ,

[
ΣKα,ω

]†
= −ΣKα,ω. For a

quadratic model, like the one we consider in this paper Eq. (9.1), the heat current (11.17) can be
rewritten in terms of transmission Tp(ω), which is a temperature independent function, i.e., we get
a Landauer-Büttiker type expression [135–137]

Qp = ~

∫ +∞

0

dω
2π

ωTp(ω)(nL −nR), (11.19)

where nα = 1/{exp[βα~ω]− 1} is the Bose-Einstein distribution with βα = 1/(kBTα) denoting the in-
verse temperature. The phonon transmission function Tp(ω) is given by a Caroli type formula [138]

Tp(ω) = Tr[ΓL(ω)DR(ω)ΓR(ω)DA(ω)], (11.20)

When the temperature difference ∆T is small the Eq. (11.19) yields the following linear phonon
conductance

κp = ~

∫ +∞

0

dω
2π

ωTp(ω)
∂n(ω,T )
∂T

,
∂n(T )
∂T

=
kB
~ω

x2ex

(ex − 1)2 , x =
~ω
kBT

. (11.21)

We consider the operation of the device at room temperature T = 300 K. For molecules examined
in this paper the typical energies of the center of mass vibrational modes are smaller than room
temperature, so the phonon conductance corresponding to these modes saturates and becomes
temperature independent, i.e.,

κp
T→+∞= kB

∫ +∞

0

dω
2π
Tp(ω),

∂n(T )
∂T

→ kB
~ω

. (11.22)

11.1.1 Single mass model

When there is a single mass M1 (see Figure 11.2) in the junction we have only coupling to the leads

Ki1,iL(r) ≡ KiLδ(r− rL), Ki1,iR(r) ≡ KiRδ(r− rR), (11.23)

which gives the following mass weighted coordinate couplings V to a single point

Vi1,i1 =
KiL +KiR
M1

≡ω2
i , Viα =

Kiα
Mα

, Vi1,iα = − Kiα√
M1Mα

. (11.24)

In such a case we obtain the following phonon transmission function

T ione(ω) =
(
KiLKiR
M1

)2 2b̃iLb̃iR[
ω2 −ω2

i −
K2
iL
M1
ãiL −

K2
iR
M1
ãiR

]2
+
[
K2
iL
M b̃iL + K2

iR
M b̃iR

]2 , (11.25)
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Figure 11.2: Model for single mass in the junction.

where ãiα and b̃iα describe real and imaginary parts of frequency shifted lead Green’s function

S̃0,R
iαrα ,iαrα ,ω

=Mα(ãiα + ib̃iα), (11.26a)

ãiα =
aiα −Kiα(a2

iα + b2
iα)

(1−Kiαaiα)2 + (Kiαbiα)2 , b̃iα =
biα

(1−Kiαaiα)2 + (Kiαbiα)2 , (11.26b)

with aiα and biα being real and imaginary parts of non-interacting lead Green’s function

S0,R
iαrα ,iαrα ,ω

=Mα(aiα + ibiα), (11.27)

where

aiα = −Aiα
π

(
2ωD +ω ln

∣∣∣∣∣ωD −ωωD +ω

∣∣∣∣∣) , biα = −Aiαωθ(|ω| −ωD ), (11.28)

and the coefficients Aiα for gold (Au) substrate are obtained in Appendix F.1. We use the transmis-
sion (11.25) to get black dotted lines in Figure 11.3.

11.1.2 Two masses model

When there are two massesM1 andM2 (see Figure 9.1a) in the junction we have the spring constants
(9.2) which give the following mass weighted coordinate couplings V to a single point

Vi1,i1 =
Ki +KiL
M1

≡ω2
i1, Vi2,i2 =

Ki +KiR
M2

≡ω2
i2, Viα =

Kiα
Mα

,

Vi1,i2 = − Ki√
M1M2

, Vi1,iL = − KiL√
M1ML

, Vi2,iR = − KiR√
M2MR

.
(11.29)

Then we get such a phonon transmission function

T itwo(ω) =
(
KiLKiKiR
M1M2

)2 2b̃iLb̃iR
R2 + I2 , (11.30)

where all relevant functions entering the above transmission are expressed as

R = (ω2 −ω2
i+)(ω2 −ω2

i−) +
K2
iL
M1

K2
iR
M2

(ãiLãiR − b̃iLb̃iR)

−
ω2 −

ω2
i+ +ω2

i−
2

K2
iL
M1

ãiL +
K2
iR
M2

ãiR

− δi K2
iL
M1

ãiL −
K2
iR
M2

ãiR

 ,
(11.31a)

I =

ω2 −
ω2
i+ +ω2

i−
2

K2
iL
M1

b̃iL +
K2
iR
M2

b̃iR

+ δi

K2
iL
M1

b̃iL −
K2
iR
M2

b̃iR

− K2
iL
M1

K2
iR
M2

(b̃iLãiR + b̃iRãiL), (11.31b)

ω2
i± =

ω2
i1 +ω2

i2
2

±∆i , ∆i =
√
δ2
i +V 2

i1,i2, δi =
ω2
i1 −ω

2
i2

2
, (11.31c)



102 11. TRANSPORT THROUGH THE MOLECULAR JUNCTION

10.0

15.0

18.0

10.0

5.0

2.0

1.0

1.5

1.7

1.0

0.5

0.3

(a) (b)

(c) (d)

Figure 11.3: Phonon conductance κp dependence on the middle spring constant in y direction.
The units of phonon conductance κp and spring constant K are κ0 = 49 pW/K and K0 = 12.7 N/m.
Also in a) the couplings to the leads are KL = KR = 1.0 and in b) the masses are M1 = M2 = 10.0.
Figures c) and d) show zoom of phonon conductance for small values of K of e) and f), respectively.
We want to use particular molecules, which have spring constants below the black dotted lines,
corresponding to a model with a single mass in the junction.

The frequencies ω2
i± correspond to normal vibrational modes and are derived in Appendix G.

Now we will discuss the saturated phonon conductance (11.22) dependence on the parameters of
the model. We note that in calculations we use elastic parameters for gold (Au), which has mass den-
sity ρ = 19.3 kg/cm3, Young modulus EY = 77.5 GPa, and Poisson ratio σ = 0.42 [139, 140]. These
elastic parameters yield the longitudinal velocity cl =

√
EY (1− σ )/ρ(1 + σ )(1− 2σ ) ≈ 3.20 km/s and

transverse velocity ct =
√
EY /ρ(1 + σ ) ≈ 1.19 km/s. We use bulk Debye temperature TD = 170 K

for frequency cut-off, which corresponds to ωD ≈ 22.2 THz [54]. The units of spring constant,
mass, and heat conductance respectively are: K0 = 1/A⊥ωD ≈ 12.7 N/m, M0 = 1/A⊥ω

3
D ≈ 15.3mH,

κ0 = kBωD /2π ≈ 49 pW/K, where mH is the mass of a hydrogen atom and A⊥ = 1.445/4πρc3
t .

Figure 11.3 shows the typical phonon conductance dependence on the middle spring constant
in the y direction. Figure 11.3a depicts this dependence for different masses asymmetry, fixed
total mass M =M1 +M2, and symmetric coupling to the leads KL = KR. In the case of symmetric
masses M1 =M2 the conductance overshoots the value of conductance compared to when there is a
single mass in the junction. However, if the masses are very asymmetric, this overshooting does
not happen. The situation when masses are symmetric M1 =M2, but the coupling to the leads is
changed is shown in Figure 11.3b. In this case we see that the more asymmetric the couplings the
more the phonon conductance is reduced (the sum of the couplings to the left KL and the right KR
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Increasing coupling asymmetry
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Figure 11.4: a) Conductance dependence on total mass M = M1 + M2, when the masses are
symmetric M/2 =M1 =M2. b) Conductance dependence on masses asymmetry when total mass is
being fixed.

leads is being kept constant). We note that in the considered model the transmission separates for
different directions Tp = T xp + T yp + T zp and that for z and x directions the dependence is analogous.
As we can see from the typical behavior in Figure 11.3c,d our aim is to have phonon conductance
below the dotted black line corresponding to conductance with single mass M =M1 +M2 in the
junction.

The dependence on the total mass when the masses are symmetric is depicted in Figure 11.4a,
11.5a, 11.6a for different middle spring constants K corresponding to values shown by gray vertical
lines in Figure 11.3a. The heat conductance decreases with increasing total mass, except for the
region of very small masses, which correspond to the case when the frequencies ωi± are pushed out
of the interval [0,ωD]. For symmetric coupling to the leads for fixed mass sum M =M1 +M2 the
conductance tends to go down with increased masses asymmetry as can be seen in Figure 11.4b,
11.5b, 11.6b. However, if the coupling to the leads is asymmetric the heat conductance maximum
is being shifted. For example, if KL > KR, then the maximum will appear for M1 >M2 [the relevant
parameters to determine this are KL/M1 and KR/M2 as can be seen from expressions (11.31a) and
(11.31b)]. The effect of coupling strength to the leads is shown in Figure 11.7a, 11.8a, and on
coupling asymmetry in Figure 11.7b, 11.8b. It can have all sorts of behaviors depending on the
actual values of K and Kl = KL +KR.



104 11. TRANSPORT THROUGH THE MOLECULAR JUNCTION

0.001

1.5

3.0

10.0

20.0

40.0

1.0

1.5

1.7

1.0

0.5

0.3

Increasing coupling asymmetry

(a)

(b)

Figure 11.5: The same as Figure 11.4 only with K = 1.0
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Figure 11.6: The same as Figure 11.4 only with K = 5.0
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Increasing mass asymmetry
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Figure 11.7: a) Conductance dependence on total coupling to the leads Kl = KL +KR, when the
couplings are symmetric Kl/2 = KL = KR. b) Conductance dependence on coupling asymmetry
when total coupling is being fixed.
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Figure 11.8: The same as Figure 11.7 only with K = 1.0
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11.2 Figure of merit ZT
To describe the thermoelectric efficiency of the molecules in the junction, we will calculate the
dimensionless figure of merit ZT , which is given by [141]

ZT =
S2σeT
κe +κp

, (11.32)

where S is the Seebeck coefficient, σe is the electronic conductance, κe is the electron contribution
to the thermal conductance, and T denotes temperature. The numerator in Eq. (11.32) gives the
power production of the device and the denominator is a measure of the heat current. Because
we neglect the electron-phonon coupling in our calculations, the quantities S, σe, and κe will be
expressed through the electron transmission Te(E) [142–144]. Once the electron transmission
function Te(E) is known the electric and heat currents due to electrons can be expressed using
Landauer-Büttiker type expressions

Ie = −2e
h

∫ +∞

−∞
dE(fL − fR)Te(E), (11.33a)

Qe =
2
h

∫ +∞

−∞
dE(E −µhot)(fL − fR)Te(E), (11.33b)

where fα = 1/{exp[βα(E −µα)] + 1} is the Fermi-Dirac distribution, e denotes the absolute value of
the electron charge, and µhot is the chemical potential of the hot lead. If the temperature difference
∆T = TL−TR and the applied bias ∆V = −∆µ/e = −(µL−µR)/e are small compared to T = (TL+TR)/2
and µ = (µL +µR)/2, i.e., |∆T /T | � 1 and |∆µ/µ| � 1, then we can expand the distribution function
fα to lowest order around a point (µ, T ) as

f (µα ,Tα) ≈ f (µ,T ) +
∂f (µ,T )
∂µ

(µα −µ) +
∂f (µ,T )
∂T

(Tα − T )

= f (µ,T )−
∂f (µ,T )
∂E

(µα −µ)−
∂f (µ,T )
∂E

(E −µ)
Tα − T
T

.

(11.34)

Using the above relation the difference between Fermi-Dirac distributions becomes

−(fL − fR) ≈
∂f (E,µ,T )

∂E
∆µ+

∂f (E,µ,T )
∂E

(E −µ)
∆T
T
, (11.35)

and the electrical with the heat currents given in Eq. (11.33) can be expressed as

Ie ≈ e2L0∆V − eL1
∆T
T
, (11.36a)

Qe ≈ −eL1∆V +L2
∆T
T
, (11.36b)

where

Lm =
2
h

∫ +∞

−∞
dE(E −µ)m

(
−
∂f (E,µ,T )

∂E

)
Te(E). (11.37)

Then the linear transport coefficients S, σe, and κe are determined in the following way

σe =
Ie
∆V

∣∣∣∣∣
∆T=0

= e2L0, (11.38a)

S = − ∆V
∆T

∣∣∣∣∣
Ie=0

= − 1
eT

L1

L0
, (11.38b)

κe =
Qe

∆T

∣∣∣∣∣
Ie=0

=
1
T

(
L2 −

L2
1
L0

)
. (11.38c)
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11.3 π-stacked molecules

-stacking

Figure 11.9: The considered molecules for π-stacking.

Having discussed in Section 11.1.2 how the molecules can be divided into two parts to reduce the
phonon conductance κp we try to come up with some molecular structures where these conditions
are realized (see Figure 11.3). In this section we propose that this could be achieved by π-stacked
molecules, where we hope that π-stacking yields soft mechanical connection (weak spring constant)
between two masses. The considered molecules for π-stacking are shown in Figure 11.9. We
examine the following four stackingsM1M1,M1M2,M2M2, andM3M4. We note that all spring
constants were obtained using density functional theory (DFT) by finding the energy landscape
for the molecules and then it is fitted to Hook’s law.1 The obtained coupling to the leads for all

1The DFT calculations were performed by Qian Li and Gemma C. Solomon and details of the calculations are
presented in Ref. [145].
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Figure 11.10: The dependence of the phonon conductance for arbitrary middle spring constants Ki
in different directions for considered stackings. Solid circles denote the conductance calculated
with the middle spring constants obtained from DFT, which are summarized in Table 11.1. The
units of phonon conductance κp and spring constant K are κ0 = 49 pW/K and K0 = 12.7 N/m.

stackings is symmetric KiL = KiR = KiS and the same: KxS = 1.789K0, KyS = 3.349K0, KzS = 0.945K0.
The dependence of the phonon conductance for arbitrary middle spring constants Ki for considered
stackings is shown in Figure 11.10, where solid circles denote the conductance calculated with the
middle spring constants obtained from DFT. The values of Ki , the resulting phonon conductances
κitwo, κione in three different directions, and comparison of total phonon conductance κtwo between
two masses and a single mass M =M1 +M2 conductance κone is summarized in Table 11.1.

We see that for all molecules, due to the small middle spring constant, the conductance is
significantly reduced in the y direction compared to the case if there would be a single mass in
the junction. Also the phonon density of states and the coupling to the leads is the largest in the
y direction. In all cases in the z direction and for stackingsM2M2,M3M3 in the x direction the
conductance is larger than in the single mass case. However, due to the large reduction in the
y direction the overall phonon conductance becomes smaller for the stackingsM1M1, M1M2,
M3M4. Note that the largest reduction is for stacking M1M2, which has asymmetric masses.
So the suggested mechanism for reduction of phonon conductance is partially exploited with
π-stacked molecules.

To describe the thermoelectric efficiency of π-stacked molecules in the junction, we calculate
the dimensionless figure of merit ZT , which is given by Eq. (11.32). The resulting ZT as a function
of chemical potential µ at room temperature T = 300 K for all considered stackings is depicted
in Figure 11.11, when the electron transmission Te(E) is calculated using DFT. For the stacking
M1M2, which had the largest reduction in phonon conductance, we see that the optimized values
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M1M1 M1M2 M2M2 M3M4

Kx 0.137 0.129 0.568 0.147
Ky 0.056 0.090 0.275 0.129
Kz 1.161 2.414 3.586 2.041

κxtwo 0.062 0.024 0.129 0.065
κ
y
two 0.007 0.010 0.092 0.033
κztwo 0.135 0.093 0.083 0.114

κxone 0.126 0.093 0.073 0.103
κ
y
one 0.182 0.138 0.111 0.152
κzone 0.066 0.047 0.037 0.053

κtwo 0.204 0.127 0.304 0.212
κone 0.374 0.278 0.221 0.308

Table 11.1: The values of the middle spring constant Ki obtained from DFT, the resulting phonon
conductances κitwo, κione in three different directions, and comparison of total phonon conduc-
tance κtwo between two masses and a single mass phonon conductance κone. The blue values of
conductance denote situation when κtwo < κone and the red ones vice versa.

ZT

(eV)

Figure 11.11: The figure of merit ZT dependence on the chemical potential µ at room temperature
T = 300 K for all considered stackings with electronic transmission Te(E) obtained from DFT. The
solid black curves show ZT when system has a weak link in the middle (two masses model) and
dashed blue curves show ZT when the center of mass vibrational degrees of freedom are described
by single mass in the junction.
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(d)

(a)

Spinless

(b)

Spinful

(c)

Figure 11.12: a), b) Maximal figure of merit ZTm dependence on the coupling strength Γ , for
the stackingM1M2, when spinful resonant level electronic transmission Te(E) is used. The red
dashed-dotted line gives behavior of ZTm when there is no phonon conductance κp = 0. c), d)
The position of the level εd with respect to the chemical potential of the leads µ at which ZT is
maximized.

of ZT are considerably increased compared to the case of a single mass in the junction. For all
other stackings the main contribution to the thermal transport comes from electrons, and the effect
of a change in the phonon conductance is not substantial. We also see that the values of ZT for
the examined molecules are not large, which is, however, mainly due to the electronic properties.
One possibility of increasing ZT is to reduce the electronic coupling to the leads, which can be
done without significantly altering the mechanical coupling. It has been shown [7, 117, 146, 147]
that in the limit of a small electronic coupling, ZT in Eq. (11.32) becomes infinite if the molecular
resonances can be correctly positioned relative to the lead Fermi level and if κp is neglected. In this
case, the efficiency is limited only by the phonon heat current and our mechanism can lead to a
large improvement. To illustrate this we show in Figure 11.12 the maximal ZTm value dependence
on the coupling strength, for the stackingM1M2, when the electron transmission has the form of
resonant level, i.e.,

Te(E) =
Γ 2

(E − εd)2 + Γ 2 , (11.39)

where εd is the position of the level and Γ denotes coupling strength to the leads. Here the difference
between spinful and spinless cases is that for spinless case we use functions Lm Eq. (11.37) without
a factor of 2. We note that the Coulomb interactions do not alter the result very much, the only
thing is that the resonant level effectively becomes spinless, as was shown by Leijnse et al. [148].
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Conclusions for Part III
In the third part of the thesis we have examined molecular junctions used as thermoelectric devices,
where we have addressed a question of reducing the phonon conductance due to center of mass
vibrational modes of the molecule. So we have proposed a simple mechanism, which is based
on the idea of vibrationally decoupling the left lead from the right lead (see Figure 9.1). This
is achieved by dividing the system into two sub-units, which have a soft mechanical connection
between them (small spring constant). Of course, in order to be a good thermoelectric device the
junction should maintain electrical conductivity. To describe and to analyze the possible reduction
of the phonon conductance as a function of different parameters (masses of the molecules and
spring constants) we have set up a simplified model for which the exact transmission for phonons
is obtained. As a possible realization of the mechanism we have examined π-stacked molecules,
which partially exploit the suggested mechanism. The relevant spring constants needed to describe
the junction with π-stacked molecules were obtained using density functional theory (DFT).
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Appendix A

Finite temperature integral appearing in second
order expansion

In this Appendix we describe the calculation of the integral

I =
∫ D

−D

f (ξ)dξ
ξ + a+ iη

=
∫ βD

−βD

f (x/β)dx
x+ βa+ iβη

→
∫ R

−R

dx
(ex + 1)(x+α + iη)

(A.1)

for finite temperature. Here iη = +i0 is infinitesimal imaginary part so after the arrow we have
replaced iβη→ iη, and denoted α = βa, R = βD. We are interested in asymptotic value of integral
I , when R→ +∞ and R >> |α|. We go to complex plane and apply contour depicted in Figure A.1,
where we will let j→ +∞, j ∈N. According to residue theorem the integral around this contour is
equal to 2πi times the sum of all residues enclosed by this contour, which yields

I + I1 + I2 + I3 = −2πi
j−1∑
n=0

1
(2n+ 1)πi +α + iη

η→+0
= Ψ0

(1
2

+
α

2πi

)
−Ψ0

(
j +

1
2

+
α

2πi

)
, (A.2)

where we used that all residues appear due to poles of Fermi function 1
ez+1 , which are at z0 =

(2n+ 1)πi, k ∈N, and

Res
(ez0 + 1)−1

(z0 +α + iη)
= − 1

(2n+ 1)πi +α + iη
. (A.3)

We also expressed the sum in (A.2) in terms of digamma function defined as

Ψ0(z) = −γ +
∞∑
n=0

( 1
n+ 1

− 1
n+ z

)
(A.4)

where γ ≈ 0.577 is Euler-Mascheroni constant.

I1

j→+∞
η→+0

=
∫ +∞

0

idy
(eiy+R + 1)(iy +R+α)

≈ ie−R
∫ +∞

0

e−iydy
iy +R+α

= E1(R+α)eα ≈ e−R

R
→ 0, (A.5a)

I2
η→+0

= −
∫ R

−R

dx
(e2πij+x + 1)(2πij + x+α)

j→+∞
−→ 0, (A.5b)

I3
η→+0

= −
∫ +2πj

0

idy
(eiy−R + 1)(iy −R+α)

≈ −
∫ +2πj

0

idy
iy −R

= − ln

√
1 +

(2πj
R

)2
+ iarctan

(2πj
R

)
,

(A.5c)
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Figure A.1: Contour, which is used to calculate the integral (A.1).

where we used the following asymptotic expansion

E1(x) x→+∞= e−x
[1
x

+O
( 1
x2

)]
. (A.6)

Now combining (A.2) with (A.5) and taking the j→ +∞ limit afterwards we get

I ≈ Ψ0

(1
2

+
α

2πi

)
− ln

R
2π
− i
π
2

= Re
[
Ψ0

(1
2

+
α

2πi

)]
− ln

R
2π
− iπf (α) , (A.7)

where the following asymptotic expansion was used

Ψ0(x) x→+∞= ln(x) +O
(1
x

)
, (A.8)

and the identity

Im
[
Ψ0

(1
2

+ ix
)]

=
π
2

tanh(πx) = π
(1

2
− f (2πx)

)
, f (x) =

1
ex + 1

. (A.9)



Appendix B

Fourth order corrections to energy shifts

In this Appendix we examine fourth order term

H
(4)
mm′ =

1
2

∑
l,l′ ,l′′

HT
mlH

T
ll′H

T
l′ l′′H

T
l′′m′

[
1

(Em −El )(Em −El′ )(Em −El′′ )
+

1
(Em′ −El )(Em′ −El′ )(Em′ −El′′ )

]

+
∑
l,l′ ,m′′

HT
mlH

T
lm′′H

T
m′′ l′H

T
l′m′

 8
(Em −El )(Em −El′ )(Em′′ −El′ )

+
8

(Em′ −El )(Em′ −El′ )(Em′′ −El )

+
4

(Em −El′ )(Em′′ −El )

(
1

Em −El
+

1
Em′′ −El′

)
+

4
(Em′ −El )(Em′′ −El′ )

(
1

Em′ −El′
+

1
Em′′ −El

)
− 1

(Em′′ −El )(Em′′ −El′ )

(
1

Em −El
+

1
Em′ −El′

)
− 3

(Em −El )(Em′ −El′ )

(
1

Em′′ −El
+

1
Em′′ −El′

).

(B.1)

of perturbation expansion in tunneling Hamiltonian HT.

B.1 1st Expression
We start by considering term of the form

1
2

∑
l,l′ ,l′′

HT
mlH

T
ll′H

T
l′ l′′H

T
l′′m′

[
1

(Em −El )(Em −El′ )(Em −El′′ )
+

1
(Em′ −El )(Em′ −El′ )(Em′ −El′′ )

]
, (B.2)

where we will use following notation for tunneling Hamiltonian

HT =
∑
ab

(
tabc

†
adb + t∗abd

†
bca

)
, (B.3)

with short-hand notations:
a = ανσ, b = n, tab = tnανσ . (B.4)

The only non-vanishing terms are of the type

ta1b1
ta2b2

t∗a3b3
t∗a4b4
〈m|c†1d1 |l〉〈l|c

†
2d2 |l

′〉〈l′ |d†3c3|l
′′〉〈l′′ |d†4c4|m

′〉 (B.5a)

t∗a1b1
t∗a2b2

ta3b3
ta4b4
〈m|d†1c1|l〉〈l|d

†
2c2|l

′〉〈l′ |c†3d3 |l
′′〉〈l′′ |c†4d4 |m

′〉 (B.5b)

ta1b1
t∗a2b2

ta3b3
t∗a4b4
〈m|c†1d1 |l〉〈l|d

†
2c2|l

′〉〈l′ |c†3d3 |l
′′〉〈l′′ |d†4c4|m

′〉 (B.5c)

t∗a1b1
ta2b2

t∗a3b3
ta4b4
〈m|d†1c1|l〉〈l|c

†
2d2 |l

′〉〈l′ |d†3c3|l
′′〉〈l′′ |c†4d4 |m

′〉 (B.5d)

ta1b1
t∗a2b2

t∗a3b3
ta4b4
〈m|c†1d1 |l〉〈l|d

†
2c2|l

′〉〈l′ |d†3c3|l
′′〉〈l′′ |c†4d4 |m

′〉 (B.5e)

t∗a1b1
ta2b2

ta3b3
t∗a4b4
〈m|d†1c1|l〉〈l|c

†
2d2 |l

′〉〈l′ |c†3d3 |l
′′〉〈l′′ |d†4c4|m

′〉, (B.5f)
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and they can be rewritten as

ta1b1
ta2b2

t∗a3b3
t∗a4b4

〈D|d1 |δ〉〈δ|d2 |δ
′〉〈δ′ |d†3 |δ

′′〉〈δ′′ |d†4 |D
′〉 × 〈LR|c†1|λ〉〈λ|c

†
2|λ
′〉〈λ′ |c3|λ

′′〉〈λ′′ |c4|LR〉 (B.6a)

t∗a1b1
t∗a2b2

ta3b3
ta4b4

〈D|d†1 |δ〉〈δ|d
†
2 |δ
′〉〈δ′ |d3 |δ

′′〉〈δ′′ |d4 |D
′〉 × 〈LR|c1|λ〉〈λ|c2|λ

′〉〈λ′ |c†3|λ
′′〉〈λ′′ |c†4|LR〉 (B.6b)

ta1b1
t∗a2b2

ta3b3
t∗a4b4

〈D|d1 |δ〉〈δ|d
†
2 |δ
′〉〈δ′ |d3 |δ

′′〉〈δ′′ |d†4 |D
′〉 × 〈LR|c†1|λ〉〈λ|c2|λ

′〉〈λ′ |c†3|λ
′′〉〈λ′′ |c4|LR〉 (B.6c)

t∗a1b1
ta2b2

t∗a3b3
ta4b4

〈D|d†1 |δ〉〈δ|d2 |δ
′〉〈δ′ |d†3 |δ

′′〉〈δ′′ |d4 |D
′〉 × 〈LR|c1|λ〉〈λ|c

†
2|λ
′〉〈λ′ |c3|λ

′′〉〈λ′′ |c†4|LR〉 (B.6d)

ta1b1
t∗a2b2

t∗a3b3
ta4b4

〈D|d1 |δ〉〈δ|d
†
2 |δ
′〉〈δ′ |d†3 |δ

′′〉〈δ′′ |d4 |D
′〉 × 〈LR|c†1|λ〉〈λ|c2|λ

′〉〈λ′ |c3|λ
′′〉〈λ′′ |c†4|LR〉 (B.6e)

t∗a1b1
ta2b2

ta3b3
t∗a4b4

〈D|d†1 |δ〉〈δ|d2 |δ
′〉〈δ′ |d3 |δ

′′〉〈δ′′ |d†4 |D
′〉 × 〈LR|c1|λ〉〈λ|c

†
2|λ
′〉〈λ′ |c†3|λ

′′〉〈λ′′ |c4|LR〉, (B.6f)

where |D〉, |δ〉 correspond to the dot states and |LR〉, |λ〉 to the lead states. We also use short-hand
notation

ci = cai , di = dbi . (B.7)

1. Let’s evaluate (B.6a) term. We see that the matrix element with the lead states will not vanish
if either

a1 = a3, a2 = a4 or a1 = a4, a2 = a3, and a1 , a2. (B.8)
so we end up with∑
λ,λ′ ,λ′′

〈LR|c†1|λ〉〈λ|c
†
2|λ
′〉〈λ′ |c1|λ

′′〉〈λ′′ |c2|LR〉 = 〈LR|c†1 c1|LR〉 〈LR|c†1c
†
2 c2c1|LR〉 〈LR|c†1c

†
2c1 c2|LR〉 〈LR|c†2c2|LR〉,

(B.9)∑
λ,λ′ ,λ′′

〈LR|c†1|λ〉〈λ|c
†
2|λ
′〉〈λ′ |c2|λ

′′〉〈λ′′ |c1|LR〉 = 〈LR|c†1 c1|LR〉 〈LR|c†1c
†
2 c2c1|LR〉 〈LR|c†1c

†
2c2 c1|LR〉 〈LR|c†1c1|LR〉,

(B.10)

which at finite temperature will give the following contribution

1
2

∑
f1f2

− M( a1,a2,a1,a2
1,1,†,† )

(ε1 +Ei −Eδ)(ε1 + ε2 +Ei −Eδ′ )(ε2 +Ei −Eδ′′ )

+
M( a1,a2,a2,a1

1,1,†,† )

(ε1 +Ei −Eδ)(ε1 + ε2 +Ei −Eδ′ )(ε1 +Ei −Eδ′′ )

,
(B.11)

where

M
(
a1, a2, a3, a4

s1, s2, s3, s4

)
= ts1a1b1

ts2a2b2
ts3a3b3

ts4a4b4
〈D|ds11 |δ〉〈δ|d

s2
2 |δ
′〉〈δ′ |ds33 |δ

′′〉〈δ′′ |ds44 |D
′〉, (B.12)

and si ∈ {1,†} corresponds to either performing Hermitian conjugate † or doing nothing 1. Also
summation over all possible indices is implied and

Ei ∈ {ED,ED′ }. (B.13)

2. As in previous case term (B.6b) will not vanish if either

a1 = a3, a2 = a4 or a1 = a4, a2 = a3, and a1 , a2. (B.14)

so we end up with∑
λ,λ′ ,λ′′

〈LR|c1|λ〉〈λ|c2|λ
′〉〈λ′ |c†1|λ

′′〉〈λ′′ |c†2|LR〉 = 〈LR|c1 c
†
1|LR〉 〈LR|c1c2 c

†
2c
†
1|LR〉 〈LR|c1c2c

†
1 c
†
2|LR〉 〈LR|c2c

†
2|LR〉,

(B.15)∑
λ,λ′ ,λ′′

〈LR|c1|λ〉〈λ|c2|λ
′〉〈λ′ |c†2|λ

′′〉〈λ′′ |c†1|LR〉 = 〈LR|c1 c
†
1|LR〉 〈LR|c1c2 c

†
2c
†
1|LR〉 〈LR|c1c2c

†
2 c
†
1|LR〉 〈LR|c1c

†
1|LR〉,

(B.16)
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and the contribution of this term is

1
2

∑
(1− f1)(1− f2)

− M( a1,a2,a1,a2
†,†,1,1 )

(−ε1 +Ei −Eδ)(−ε1 − ε2 +Ei −Eδ′ )(−ε2 +Ei −Eδ′′ )

+
M( a1,a2,a2,a1

†,†,1,1 )

(−ε1 +Ei −Eδ)(−ε1 − ε2 +Ei −Eδ′ )(−ε1 +Ei −Eδ′′ )

.
(B.17)

3. The term (B.6c) will not vanish if

a1 = a4, a2 = a3 and a1 , a2. (B.18)

We note that the other term
a1 = a2, a3 = a4, (B.19)

would survive if we projected only to one particular state of the dot, and then would have only the
diagonal contributions. But we will see that this term is behaving badly, if single particle spacing is
becoming smaller than ρ|t|2. So we end up with∑
λ,λ′ ,λ′′

〈LR|c†1|λ〉〈λ|c2|λ
′〉〈λ′ |c†2|λ

′′〉〈λ′′ |c1|LR〉 = 〈LR|c†1 c1|LR〉 〈LR|c†1c2 c
†
2c1|LR〉 〈LR|c†1c2c

†
2 c1|LR〉 〈LR|c†1c1|LR〉,

(B.20)∑
λ,λ′ ,λ′′

〈LR|c†1|λ〉〈λ|c1|λ
′〉〈λ′ |c†2|λ

′′〉〈λ′′ |c2|LR〉 = 〈LR|c†1 c1|LR〉 〈LR|c†1c1 |LR〉 〈LR|c†2 c2|LR〉 〈LR|c†2c2|LR〉. (B.21)

We see that (B.21) would vanish if we project to particular lead state |LR〉 and all other possible dot
states, because then we are not allowed to have |LR〉 as an intermediate state. The contribution of
(B.6c) term is

1
2

∑ f1(1− f2)M( a1,a2,a2,a1
1,†,1,† )

(ε1 +Ei −Eδ)(ε1 − ε2 +Ei −Eδ′ )(ε1 +Ei −Eδ′′ )

+
f1f2M( a1,a1,a2,a2

1,†,1,† )

(ε1 +Ei −Eδ)(Ei −Eδ′ )(ε2 +Ei −Eδ′′ )

.
(B.22)

We see that the term in red has (Ei − Eδ′ )−1 factor, where Ei and Eδ′ in this case are in the same
charge state, and the difference between two corresponds to single particle level spacing, which
of course blows up if we have degenerate levels. This term is not included if we project to all dot
states and particular lead state |LR〉.

4. As in (B.6c) The term (B.6d) will not vanish if

a1 = a4, a2 = a3 and a1 , a2. (B.23)

but we will also keep
a1 = a2, a3 = a4, (B.24)

and we end up with∑
λ,λ′ ,λ′′

〈LR|c1|λ〉〈λ|c
†
2|λ
′〉〈λ′ |c2|λ

′′〉〈λ′′ |c†1|LR〉 = 〈LR|c1 c
†
1|LR〉 〈LR|c1c

†
2 c2c

†
1|LR〉 〈LR|c1c

†
2c2 c

†
1|LR〉 〈LR|c1c

†
1|LR〉,

(B.25)∑
λ,λ′ ,λ′′

〈LR|c1|λ〉〈λ|c
†
1|λ
′〉〈λ′ |c2|λ

′′〉〈λ′′ |c†2|LR〉 = 〈LR|c1 c
†
1|LR〉 〈LR|c1c

†
1 |LR〉 〈LR|c2 c

†
2|LR〉 〈LR|c2c

†
2|LR〉. (B.26)

The contribution of this term is

1
2

∑ (1− f1)f2M( a1,a2,a2,a1
†,1,†,1 )

(−ε1 +Ei −Eδ)(−ε1 + ε2 +Ei −Eδ′ )(−ε1 +Ei −Eδ′′ )

+
(1− f1)(1− f2)M( a1,a1,a2,a2

†,1,†,1 )

(−ε1 +Ei −Eδ)(Ei −Eδ′ )(−ε2 +Ei −Eδ′′ )

.
(B.27)
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5. The term (B.6e) will not vanish if

a1 = a3, a2 = a4 and a1 , a2, (B.28)

but we will also keep
a1 = a2, a3 = a4, and a2 , a3, (B.29)

and we end up with∑
λ,λ′ ,λ′′

〈LR|c†1|λ〉〈λ|c2|λ
′〉〈λ′ |c1|λ

′′〉〈λ′′ |c†2|LR〉 = 〈LR|c†1 c1|LR〉 〈LR|c†1c2 c
†
2c1|LR〉 〈LR|c†1c2c1 c

†
2|LR〉 〈LR|c2c

†
2|LR〉,

(B.30)∑
λ,λ′ ,λ′′

〈LR|c†1|λ〉〈λ|c1|λ
′〉〈λ′ |c2|λ

′′〉〈λ′′ |c†2|LR〉 = 〈LR|c†1 c1|LR〉 〈LR|c†1c1 |LR〉 〈LR|c2 c
†
2|LR〉 〈LR|c2c

†
2|LR〉, (B.31)

The contribution of this term is

1
2

∑
f1(1− f2)

− M( a1,a2,a1,a2
1,†,†,1 )

(ε1 +Ei −Eδ)(ε1 − ε2 +Ei −Eδ′ )(−ε2 +Ei −Eδ′′ )

+
M( a1,a1,a2,a2

1,†,†,1 )

(ε1 +Ei −Eδ)(Ei −Eδ′ )(−ε2 +Ei −Eδ′′ )

.
(B.32)

6. As in (B.6e) the term (B.6f) will not vanish if

a1 = a3, a2 = a4 and a1 , a2, (B.33)

but we will also keep
a1 = a2, a3 = a4, and a2 , a3, (B.34)

and we end up with∑
λ,λ′ ,λ′′

〈LR|c1|λ〉〈λ|c
†
2|λ
′〉〈λ′ |c†1|λ

′′〉〈λ′′ |c2|LR〉 = 〈LR|c1 c
†
1|LR〉 〈LR|c1c

†
2 c2c

†
1|LR〉 〈LR|c1c

†
2c
†
1 c2|LR〉 〈LR|c†2c2|LR〉,

(B.35)∑
λ,λ′ ,λ′′

〈LR|c1|λ〉〈λ|c
†
1|λ
′〉〈λ′ |c†2|λ

′′〉〈λ′′ |c2|LR〉 = 〈LR|c1 c
†
1|LR〉 〈LR|c1c

†
1 |LR〉 〈LR|c†2 c2|LR〉 〈LR|c†2c2|LR〉, (B.36)

The contribution of this term is

1
2

∑
(1− f1)f2

− M( a1,a2,a1,a2
†,1,1,† )

(−ε1 +Ei −Eδ)(−ε1 + ε2 +Ei −Eδ′ )(ε2 +Ei −Eδ′′ )

+
M( a1,a1,a2,a2

†,1,1,† )

(−ε1 +Ei −Eδ)(Ei −Eδ′ )(ε2 +Ei −Eδ′′ )

.
(B.37)

B.2 2nd Expression
In this section we will consider term of the form∑

l,l′ ,m′′
CmiH

T
mlH

T
lm′′H

T
m′′ l′H

T
l′m′

[
1

(Em1 −El )(Em2 −El )(Em3 −El′ )
+

1
(Em4 −El )(Em5 −El′ )(Em6 −El′ )

]
, (B.38)

where
mi ∈ {m,m′ ,m′′}. (B.39)
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and Cmi
is some prefactor smaller than 1. Again the only non-vanishing terms are of the type

ta1b1
t∗a2b2

ta3b3
t∗a4b4
〈m|c†1d1 |l〉〈l|d

†
2c2|m

′′〉〈m′′ |c†3d3 |l
′〉〈l′ |d†4c4|m

′〉 (B.40a)

t∗a1b1
ta2b2

t∗a3b3
ta4b4
〈m|d†1c1|l〉〈l|c

†
2d2 |m

′′〉〈m′′ |d†3c3|l
′〉〈l′ |c†4d4 |m

′〉 (B.40b)

ta1b1
t∗a2b2

t∗a3b3
ta4b4
〈m|c†1d1 |l〉〈l|d

†
2c2|m

′′〉〈m′′ |d†3c3|l
′〉〈l′ |c†4d4 |m

′〉 (B.40c)

t∗a1b1
ta2b2

ta3b3
t∗a4b4
〈m|d†1c1|l〉〈l|c

†
2d2 |m

′′〉〈m′′ |c†3d3 |l
′〉〈l′ |d†4c4|m

′〉, (B.40d)

and they can be rewritten as

ta1b1
t∗a2b2

ta3b3
t∗a4b4

〈D|d1 |δ〉〈δ|d
†
2 |D
′′〉〈D′′ |d3 |δ

′〉〈δ′ |d†4 |D
′〉 × 〈LR|c†1|λ〉〈λ|c2|LR〉〈LR|c†3|λ

′〉〈λ′ |c4|LR〉 (B.41a)

t∗a1b1
ta2b2

t∗a3b3
ta4b4

〈D|d†1 |δ〉〈δ|d2 |D
′′〉〈D′′ |d†3 |δ

′〉〈δ′ |d4 |D
′〉 × 〈LR|c1|λ〉〈λ|c

†
2|LR〉〈LR|c3|λ

′〉〈λ′ |c†4|LR〉 (B.41b)

ta1b1
t∗a2b2

t∗a3b3
ta4b4

〈D|d1 |δ〉〈δ|d
†
2 |D
′′〉〈D′′ |d†3 |δ

′〉〈δ′ |d4 |D
′〉 × 〈LR|c†1|λ〉〈λ|c2|LR〉〈LR|c3|λ

′〉〈λ′ |c†4|LR〉 (B.41c)

t∗a1b1
ta2b2

ta3b3
t∗a4b4

〈D|d†1 |δ〉〈δ|d2 |D
′′〉〈D′′ |d3 |δ

′〉〈δ′ |d†4 |D
′〉 × 〈LR|c1|λ〉〈λ|c

†
2|LR〉〈LR|c†3|λ

′〉〈λ′ |c4|LR〉. (B.41d)

7. Let’s evaluate (B.41a) term. We see that the matrix element with the lead states will not
vanish if (and that is also the case for all other terms in (B.41))

a1 = a2, a3 = a4, (B.42)

so we end up with∑
λ,λ′
〈LR|c†1|λ〉〈λ|c1|LR〉〈LR|c†2|λ

′〉〈λ′ |c2|LR〉 = 〈LR|c†1 c1|LR〉 〈LR|c†1c1|LR〉〈LR|c†2 c2|LR〉 〈LR|c†2c2|LR〉, (B.43)

which at finite temperature will give the following contribution

∑
Cmi f1f2M

(a1, a1, a2, a2
1,†,1,†

) 1
(ε1 +Em1 −Eδ)(ε1 +Em2 −Eδ)(ε2 +Em3 −Eδ′ )

+
1

(ε1 +Em4 −Eδ)(ε2 +Em5 −Eδ′ )(ε2 +Em6 −Eδ′ )

.
(B.44)

8. The lead sums in term (B.41b)∑
λ,λ′
〈LR|c1|λ〉〈λ|c

†
1|LR〉〈LR|c2|λ

′〉〈λ′ |c†2|LR〉 = 〈LR|c1 c
†
1|LR〉 〈LR|c1c

†
1|LR〉〈LR|c2 c

†
2|LR〉 〈LR|c2c

†
2|LR〉, (B.45)

and its contribution∑
Cmi (1− f1)(1− f2)M

(a1, a1, a2, a2
†,1,†,1

) 1
(−ε1 +Em1 −Eδ)(−ε1 +Em2 −Eδ)(−ε2 +Em3 −Eδ′ )

+
1

(−ε1 +Em4 −Eδ)(−ε2 +Em5 −Eδ′ )(−ε2 +Em6 −Eδ′ )

.
(B.46)

9. The lead sums in term (B.41c)∑
λ,λ′
〈LR|c†1|λ〉〈λ|c1|LR〉〈LR|c2|λ

′〉〈λ′ |c†2|LR〉 = 〈LR|c†1 c1|LR〉 〈LR|c†1c1|LR〉〈LR|c2 c
†
2|LR〉 〈LR|c2c

†
2|LR〉, (B.47)

and its contribution∑
Cmi f1(1− f2)M

(a1, a1, a2, a2
1,†,†,1

) 1
(ε1 +Em1 −Eδ)(ε1 +Em2 −Eδ)(−ε2 +Em3 −Eδ′ )

+
1

(ε1 +Em4 −Eδ)(−ε2 +Em5 −Eδ′ )(−ε2 +Em6 −Eδ′ )

.
(B.48)
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10. The lead sums in term (B.41d)∑
λ,λ′
〈LR|c1|λ〉〈λ|c

†
1|LR〉〈LR|c†2|λ

′〉〈λ′ |c2|LR〉 = 〈LR|c1 c
†
1|LR〉 〈LR|c1c

†
1|LR〉〈LR|c†2 c2|LR〉 〈LR|c†2c2|LR〉, (B.49)

and its contribution∑
Cmi (1− f1)f2M

(a1, a1, a2, a2
†,1,1,†

) 1
(−ε1 +Em1 −Eδ)(−ε1 +Em2 −Eδ)(ε2 +Em3 −Eδ′ )

+
1

(−ε1 +Em4 −Eδ)(ε2 +Em5 −Eδ′ )(ε2 +Em6 −Eδ′ )

.
(B.50)

B.3 Evaluation of the integrals
B.3.1 1st Expression

From above analysis for 1st expression we see that we need to evaluate integrals of the type

I1(a,b,c) = lim
ηx ,ηy→+0

Re
∫ D+iηx

−D+iηx

∫ D+iηy

−D+iηy

f (x)f (y)dxdy
(x+ a)(x+ b)(x+ y + c)

T=0→ lim
ηx ,ηy→+0

Re
∫ 0+iηx

−D+iηx

∫ 0+iηy

−D+iηy

dxdy
(x+ a)(x+ b)(x+ y + c)

,

(B.51)

I2(a,b,c) = lim
ηx ,ηy→+0

Re
∫ D+iηx

−D+iηx

∫ D+iηy

−D+iηy

f (x)f (y)dxdy
(x+ a)(y + b)(x+ y + c)

T=0→ lim
ηx ,ηy→+0

Re
∫ 0+iηx

−D+iηx

∫ 0+iηy

−D+iηy

dxdy
(x+ a)(y + b)(x+ y + c)

.

(B.52)

Here η = +0 gives infinitesimally small imaginary part. From now on we will skip the indication of
the limit and of the real part of the integral. Let’s calculate integral I1 for zero temperature. Firstly,
we integrate with respect to y, which yields

I1 =
∫ 0+iηx

−D+iηx

dx ln(x+ y + c)
(x+ a)(x+ b)

∣∣∣∣∣y=0+iηy

y=−D+iηy
= −

∫ 0+iηx

−D+iηx

dx ln(x+ y + c)
a− b

( 1
x+ a

− 1
x+ b

) ∣∣∣∣∣y=0

y=−D
. (B.53)

Here in the last step we have taken limit of ηy → +0, which also corresponds to taking the following
branch of logarithm:

ln(−x) = ln(x) + iπ, x > 0. (B.54)
We see that we need to perform integral of the type (we neglect subscript x in ηx)

I (y,a,c) =
∫ 0+iη

−D+iη

dx ln
( x+y+c

D

)
x+ a

=
∫ 0+iη

−D+iη
dx


ln

(
x+a
a−c−y

)
(a− c − y)

(
1− x+a

a−c−y
) +

ln
(
x+a
a−c−y

)
x+ y + c︸                                       ︷︷                                       ︸

0

+
ln

( x+y+c
D

)
x+ a


=

∫ a+iη
a−c−y

−D+a+iη
a−c−y

dt ln t
1− t

+
∫ 0+iη

−D+iη
dx

d
dx

{
ln

(
x+ a

a− c − y

)
ln

(x+ y + c
D

)}

=


∫ a+iη

a−c−y

1
−
∫ −D+a+iη

a−c−y

1

 dt ln t
1− t

+
{

ln
(
x+ a

a− c − y

)
ln

(x+ y + c
D

)}∣∣∣∣∣x=0+iη

x=−D+iη

= dilog
(
a+ iη
a− c − y

)
−dilog

(
−D + a+ iη
a− c − y

)
+ ln

(
a+ iη
a− c − y

)
ln

(y + c
D

)
− ln

(
−D + a+ iη
a− c − y

)
ln

(−D + y + c
D

)
.

(B.55)
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where

dilog(x) =
∫ x

1

dt ln t
1− t

. (B.56)

In the last step of (B.55) we again took the limit η→ +0 where possible. The limit of η→ +0 in the
dilog(x) functions (and also in some of log’s) depends on the sign of a− c − y, because we have the
following branches of the dilog(x) and ln(x) functions

lim
ε→±0

dilog(−x+ iε) =
1
6
π2 −dilog(1− x)− {ln(−x)± iπ} ln(1− x), x > 0, (B.57)

lim
ε→±0

ln(−x+ iε) = ln(x)± iπ, x > 0. (B.58)

However, by choosing the incorrect branch we will only affect the imaginary part of the expression,
so we can make the calculation with any branch, and then take the real part of the expression,
which is the desired result. So we will choose the upper branch (i.e. ε→ +0)

I (y,a,c) = Re
{

dilog
(

a
a− c − y

)
−dilog

(
−D + a
a− c − y

)
+ ln

(
a

a− c − y

)
ln

(y + c
D

)
− ln

(
−D + a
a− c − y

)
ln

(−D + y + c
D

)}
. (B.59)

Integral I1 can be expressed through I as

I1 = − 1
a− b {

I (0, a)−I (−D,a)−I (0,b) + I (−D,b)} . (B.60)

Integral I2 can be performed in a similar manner, and here we write only its final expression

I2 = − 1
a+ b − c

Re

ln
(
y + b
D

)∣∣∣∣∣∣
y=0

y=−D
ln

( x+ a
x+ c − b

)∣∣∣∣∣∣
x=0

x=−D

− I1(a,c − b,c). (B.61)

Note that in particular cases (i.e. a = b, c = 0 and etc.) one has to take a limit to find an actual closed
form expression (or perform the integrals for those particular values) and the good thing is that
those limits exist.

Again we rewrite the full expressions of integrals for convenience without indication of real
part:

I1 = − 1
a− b

{
dilog

( a
a− c

)
−dilog

(−D + a
a− c

)
+ ln

( a
a− c

)
ln

( c
D

)
− ln

(−D + a
a− c

)
ln

(−D + c
D

)
−dilog

(
b

b − c

)
+ dilog

(
−D + b
b − c

)
− ln

(
b

b − c

)
ln

( c
D

)
+ ln

(
−D + b
b − c

)
ln

(−D + c
D

)
−dilog

( a
a− c+D

)
+ dilog

( −D + a
a− c+D

)
− ln

( a
a− c+D

)
ln

(−D + c
D

)
+ ln

( −D + a
a− c+D

)
ln

(−2D + c
D

)
+dilog

(
b

b − c+D

)
−dilog

(
−D + b
b − c+D

)
+ ln

(
b

b − c+D

)
ln

(−D + c
D

)
− ln

(
−D + b
b − c+D

)
ln

(−2D + c
D

)}
,

(B.62)

I2 = − 1
a+ b − c

{
ln

(
b
D

)
− ln

(
−D + b
D

)}{
ln

( a
c − b

)
− ln

( −D + a
−D + c − b

)}
− I1(a,c − b,c), (B.63)

and in very large D limit, which we will be interested in, they become (also keeping the terms that
do not depend on D)

I1
D→+∞= − 1

a− b

{
dilog

( a
a− c

)
−dilog

( −D
a− c

)
+ ln

( a
a− c

)
ln

( c
D

)
−dilog

(
b

b − c

)
+ dilog

( −D
b − c

)
− ln

(
b

b − c

)
ln

( c
D

)}
,

(B.64)

I2
D→+∞= − 1

a+ b − c
ln

(
b
D

)
ln

( a
c − b

)
− I1(a,c − b,c). (B.65)
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B.3.2 2nd Expression

For 2nd expression we need to evaluate integral of the type

I3(a,b,c) = lim
ηx ,ηy→+0

Re
∫ D+iηx

−D+iηx

∫ D+iηy

−D+iηy

f (x)f (y)dxdy
(x+ a)(x+ b)(y + c)

T=0→ lim
ηx ,ηy→+0

Re
∫ 0+iηx

−D+iηx

∫ 0+iηy

−D+iηy

dxdy
(x+ a)(x+ b)(y + c)

,

(B.66)

which is straightforward to do for zero temperature

I3 = −
∫ 0+iηx

−D+iηx

dx ln(y + c)
a− b

( 1
x+ a

− 1
x+ b

) ∣∣∣∣∣y=0+iηy

y=−D+iηy

= − 1
a− b

ln(y + c)
∣∣∣∣∣y=0

y=−D
ln

(x+ a
x+ b

) ∣∣∣∣∣x=0

x=−D
,

(B.67)

and explicitly it looks like

I3 = − 1
a− b

Re
{

ln
( c
−D + c

)
ln
a(D − b)
b(D − a)

}
. (B.68)

B.4 Taylor expansion of the result for a single charge state
In this section we will expand the result for a single charge state and will examine it in the

middle of the first diamond, i.e. Vg = 2U +∆Vg . We also assume that the bandwidth is extremely
large D→ +∞ and charging energy U >> Ei is much bigger than the single particle energies.

1. We start by examining term (B.11). For a single charge state the energy differences in the
denominator takes the form

a = Ei −Eδ = −3U +Vg +∆
(1)
a = −U +∆Vg +∆

(1)
a , (B.69)

c = Ei −Eδ′ = −8U + 2Vg +∆
(1)
c = −4U + 2∆Vg +∆

(2)
c , (B.70)

b = Ei −Eδ′′ = −3U +Vg +∆
(1)
b = −U +∆Vg +∆

(1)
b , (B.71)

Here ∆(n) corresponds to sum of single particle energies

∆(n) =
n∑
j=1

En, (B.72)

with special case
∆(0) = Ei −Ej , (B.73)

being single particle energy difference. The expansion of results will be performed in small
parameter values

x =
∆(n) +∆Vg

U
. (B.74)

The expansion of integrals I1 and I2 becomes

I1 ≈
1
U

ln
(U
D

)
+

8ln(2)
3U

→ 8ln(2)
3U

, (B.75)

I2 ≈
2[dilog(4)−dilog(4/3)]− ln2(3)

4U
. (B.76)
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Here for I1 we have neglected term dependent on D, because for very large bandwidth the result
(tunneling renormalized energy differences) does not depend on it. Actually, the matrix elements
themselves for fourth order do not depend on D. This was checked numerically, because it is too
tedious to do that analytically.

2. For single charge states all (B.17) type terms vanish.
3. For term (B.22) the energy differences in the denominator takes the form

a = Ei −Eδ = −U +∆Vg +∆
(1)
a , (B.77)

c = Ei −Eδ′ = ∆
(0)
c , (B.78)

b = Ei −Eδ′′ = −U +∆Vg +∆
(1)
b . (B.79)

The expansion of integral I1 becomes

I1 ≈
1
U

ln
(U
D

)
+
∆

(0)
c

U2 ln

∣∣∣∣∣∣∣∆
(0)
c

U

∣∣∣∣∣∣∣+
(∆(1)
a +∆

(1)
b + 2Vg )

2U2 ln
( U

eD

)
,

→ ∆
(0)
c

U2 ln

∣∣∣∣∣∣∣∆
(0)
c

U

∣∣∣∣∣∣∣− (∆(1)
a +∆

(1)
b + 2Vg )

2U2 .

(B.80)

We again have neglected D dependent terms.
4. For term (B.27) the energy differences in the denominator take the form

a = Ei −Eδ = −U −∆Vg −∆
(1)
a , (B.81)

c = Ei −Eδ′ = ∆
(0)
c , (B.82)

b = Ei −Eδ′′ = −U −∆Vg −∆
(1)
b . (B.83)

The expansion of integral I1 becomes

I1 ≈
1
U

ln
(U
D

)
+
∆

(0)
c

U2 ln

∣∣∣∣∣∣∣∆
(0)
c

U

∣∣∣∣∣∣∣− (∆(1)
a +∆

(1)
b + 2Vg )

2U2 ln
( U

eD

)
,

→ ∆
(0)
c

U2 ln

∣∣∣∣∣∣∣∆
(0)
c

U

∣∣∣∣∣∣∣+
(∆(1)
a +∆

(1)
b + 2Vg )

2U2 .

(B.84)

5. For term (B.32) the energy differences in the denominator take the form

a = Ei −Eδ = −U +∆Vg +∆
(1)
a , (B.85)

c = Ei −Eδ′ = ∆
(0)
c , (B.86)

b = Ei −Eδ′′ = −U −∆Vg −∆
(1)
b . (B.87)

The expansion of integral I2 becomes

I2 ≈ −
π2

4U
+
∆

(0)
c

U2 ln

∣∣∣∣∣∣∣∆
(0)
c

eU

∣∣∣∣∣∣∣− π
2(∆(1)

a −∆
(1)
b −∆

(0)
c )

8U2 . (B.88)
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6. For term (B.37) the energy differences in the denominator take the form

a = Ei −Eδ = −U −∆Vg −∆
(1)
a , (B.89)

c = Ei −Eδ′ = ∆
(0)
c , (B.90)

b = Ei −Eδ′′ = −U +∆Vg +∆
(1)
b . (B.91)

The expansion of integral I2 becomes

I2 ≈ −
π2

4U
+
∆

(0)
c

U2 ln

∣∣∣∣∣∣∣∆
(0)
c

eU

∣∣∣∣∣∣∣− π
2(∆(1)

b −∆
(1)
a −∆

(0)
c )

8U2 . (B.92)

We can get this result from (B.88) by interchanging a with b.
2nd Expression. For second expression terms the energy differences in the denominator take

the form

a = −U ± (∆Vg +∆
(1)
a ), (B.93)

b = −U ± (∆Vg +∆
(1)
b ), (B.94)

c = −U ± (∆Vg +∆
(1)
c ), (B.95)

where all possible sign combinations can be taken. We will examine only the term with all pluses,
because result for other signs does not differ qualitatively. The expansion of integral I3 becomes

I3 ≈
1
U

ln
(U
D

)
+
∆

(1)
a +∆

(1)
b + 2∆Vg

2U2 ln
(U
D

)
−
∆

(1)
c +∆Vg
U2

→−
∆

(1)
c +∆Vg
U2 .

(B.96)



Appendix C

Analytical expressions for a single charge in a “shell”
eigenspectrum

If we consider quantum dot consisting of four single particle orbitals of single “shell”, the second
order effective Hamiltonian (2.29) acquires the following matrix-block structure, where different
blocks correspond to different charge states:

H
(2)
DD′ →



.
. . . .
. . . .
. . . .
. . . .

. . . . . 0

. . . . 0 .

. . . 0 . .

. . 0 . . .

. 0 . . . .
0 . . . . .

. . . .

. . . .

. . . .

. . . .

. . . .
.



. (C.1)

We examine the first 4× 4 block corresponding to a single charge many-body states. The elements
of this 4× 4 matrix, which we will call Hi,j can be expressed as

Hi,j = (U −Vg +Ei )δi,j +
∑
ασ

ρασ


|tiασ |2 ln

∣∣∣∣∣∣U −Vg +Ei −µα
D

∣∣∣∣∣∣+
∑
k,i

|tkασ |2 ln

∣∣∣∣∣∣3U −Vg +Ek −µα
D

∣∣∣∣∣∣ , i = j,

1
2

(tiασ )∗t
j
ασ ln

∣∣∣∣∣∣ (U −Vg +Ei −µα)(U −Vg +Ej −µα)

(3U −Vg +Ei −µα)(3U −Vg +Ej −µα)

∣∣∣∣∣∣ , i , j.

(C.2)

Here Vg = 2UNg . We will rewrite this expression by shifting diagonals by a constant

−

U −Vg +
∑
ασk

ρασ |tkασ | ln
U
D

 . (C.3)

and by changing Vg = 2U +
∆Vg

2 . This yields

Hi,j = Eiδi,j +
∑
ασ

ρασ



|tiασ |2 ln

∣∣∣∣∣∣1− Ei −∆Vg /2−µαU

∣∣∣∣∣∣+
∑
k,i

|tkασ |2 ln

∣∣∣∣∣∣1 +
Ek −∆Vg /2−µα

U

∣∣∣∣∣∣ , i = j,

1
2

(tiασ )∗t
j
ασ ln

∣∣∣∣∣∣∣∣∣
(
1− Ei−∆Vg /2−µαU

)(
1− Ej−∆Vg /2−µαU

)
(
1 +

Ei−∆Vg /2−µα
U

)(
1 +

Ej−∆Vg /2−µα
U

)
∣∣∣∣∣∣∣∣∣ , i , j.

(C.4)
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In the calculations we will also need expressions of the form

Hi,i −Hj,j = Ei −Ej +
∑
ασ

ρασ

|tiασ |2 ln

∣∣∣∣∣∣∣∣1−
Ei−∆Vg /2−µα

U

1 +
Ei−∆Vg /2−µα

U

∣∣∣∣∣∣∣∣− |tjασ |2 ln

∣∣∣∣∣∣∣∣1−
Ej−∆Vg /2−µα

U

1 +
Ej−∆Vg /2−µα

U

∣∣∣∣∣∣∣∣
 , (C.5a)

Hi,i +Hj,j = Ei +Ej +
∑
ασ

ρασ

|tiασ |2 ln

∣∣∣∣∣∣
(
1−

Ei −∆Vg /2−µα
U

)(
1 +

Ei −∆Vg /2−µα
U

)∣∣∣∣∣∣
+|tjασ |2 ln

∣∣∣∣∣∣
(
1−

Ej −∆Vg /2−µα
U

)(
1 +

Ej −∆Vg /2−µα
U

)∣∣∣∣∣∣
+2

∑
k,i,j

|tkασ |2 ln

∣∣∣∣∣∣1 +
Ek −∆Vg /2−µα

U

∣∣∣∣∣∣
.

(C.5b)

Now we will expand logarithms in

xαi =
Ei −∆Vg /2−µα

U
. (C.6)

We see that we need to deal with expansion of the functions

ln |1 + x| =
∞∑
n=1

(−1)n+1 x
n

n
= x − 1

2
x2 + . . . , (C.7a)

ln
∣∣∣∣∣1− x1 + x

∣∣∣∣∣ = −2
∞∑
n=0

x2n+1

2n+ 1
= −2

(
x+

1
3
x3 + . . .

)
, (C.7b)

ln |(1− x)(1 + x)| = −
∞∑
n=1

x2n

n
= −

(
x2 +

1
2
x4 + . . .

)
. (C.7c)

So the expressions (C.5) to lowest order in xαi become

Hi,i −Hj,j ≈ Ei −Ej − 2
∑
ασ

ρασ

{
|tiασ |2xαi − |t

j
ασ |2xαj

}
, (C.8a)

Hi,i +Hj,j ≈ Ei +Ej + 2
∑
k,i,j

∑
ασ

ρασ |tkασ |2xαk . (C.8b)

and off-diagonals
Hi,j ≈ −

∑
ασ

ρασ (tiασ )∗tjασ
(
xαi + xαj

)
, i , j. (C.9)

Note that we will also use the following notation

Vα =
∆Vg

2
+µα . (C.10)

C.1 Zero and parallel magnetic B field
Here we will do explicit calculations of the tunneling renormalized eigenspectrum, when magnetic
field is parallel to the tube axis (ζ = 0). In such a case the single particle Hamiltonian (3.58) is

H =


|K ↑〉 |K ′ ↓〉 |K ↓〉 |K ′ ↑〉

E+1,+1 + 1
2gsB||

1
2∆KK ′e

iφKK′

E−1,−1 − 1
2gsB||

1
2∆KK ′e

−iφKK ′

1
2∆KK ′e

iφKK′ E+1,−1 − 1
2gsB||

1
2∆KK ′e

−iφKK ′ E−1,+1 + 1
2gsB||

, (C.11)
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where ∆KK ′ denotes modulus of KK ′ mixing. After diagonalizing the above Hamiltonian we find
the eigenspectrum of the “shell” and the new eigenstates in terms of KK ′-basis states, which are:

Ei ∈
{1

2
(Bs +∆1) ,

1
2

(−Bs +∆2) ,
1
2

(−Bs −∆2) ,
1
2

(Bs −∆1)
}
, (C.12)

Pi,n =


P1,1 0 0 P1,4

0 P2,2 P2,3 0
0 P3,2 P3,3 0
P4,1 0 0 P4,4

 =


u1 0 0 −v1eiφKK ′

0 u2 −v2e−iφKK′ 0
0 v2eiφKK ′ u2 0

v1e−iφKK′ 0 0 u1

 , (C.13)

where

ui =

√
1
2

(
1 +

δi
∆i

)
, vi =

√
1
2

(
1− δi

∆i

)
, uivi =

∆KK ′

2∆i
, i = 1,2,

∆i =
√
δ2
i +∆2

KK ′ , δ1 = ∆SO −Borb, δ2 = ∆SO +Borb,

Bs = gsB, Borb = gorbB,

(C.14)

In this case the Hamiltonian Hi,j simplifies to

Hi,j =


H1,1 0 0 H1,4

0 H2,2 H2,3 0
0 H∗2,3 H3,3 0
H∗1,4 0 0 H4,4

 , (C.15)

and has the eigenvalues

1
2

(
H1,1 +H4,4 ±

√
(H1,1 −H4,4)2 + 4|H1,4|2

)
, (C.16a)

1
2

(
H2,2 +H3,3 ±

√
(H2,2 −H3,3)2 + 4|H2,3|2

)
, (C.16b)

and eigenvectors

P =


ũ1 −ṽ1eiφH1,4 0 0
0 0 ũ2 −ṽ2eiφH2,3

0 0 ṽ2e−iφH2,3 ũ2

ṽ1e−iφH1,4 ũ1 0 0

 , φH = ArgH, (C.17)

with

ũ1, ṽ1 =

√√√√√√√1
2

1±
H1,1 −H4,4√

(H1,1 −H4,4)2 + 4|H1,4|2

, ũ2, ṽ2 =

√√√√√√√1
2

1±
H2,2 −H3,3√

(H2,2 −H3,3)2 + 4|H2,3|2

. (C.18)

The tunneling amplitudes to the “shell” single particle sates after the inclusions of KK ′-mixing
take the following form

t1ασ = δσ↑
(
u1tα1 + v1e−iφKK′ t∗α2

)
,

t2ασ = δσ↓
(
u2t
∗
α1 + v2eiφKK ′ tα2

)
,

t3ασ = δσ↓
(
−v2e−iφKK′ t∗α1 +u2tα2

)
,

t4ασ = δσ↑
(
−v1eiφKK′ tα1 +u1t

∗
α2

)
,

(C.19)
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where it is assumed that (3.64) are only non-zero tunneling amplitudes. In such a case the spin
sums become: ∑

σ
ρασ |t1ασ |2 = ρα↑

{
u2

1 |tα1|2 + v2
1 |tα2|2 + 2u1v1 Re[eiφKK′ tα1tα2]

}
, (C.20a)∑

σ
ρασ |t2ασ |2 = ρα↓

{
u2

2 |tα1|2 + v2
2 |tα2|2 + 2u2v2 Re[e−iφKK′ t∗α1t

∗
α2]

}
, (C.20b)∑

σ
ρασ |t3ασ |2 = ρα↓

{
v2

2 |tα1|2 +u2
2 |tα2|2 − 2u2v2 Re[e−iφKK′ t∗α1t

∗
α2]

}
, (C.20c)∑

σ
ρασ |t4ασ |2 = ρα↑

{
v2

1 |tα1|2 +u2
1 |tα2|2 − 2u1v1 Re[eiφKK ′ tα1tα2]

}
, (C.20d)∑

σ
ρασ (t1ασ )∗t4ασ = ρα↑

{
−u1v1eiφKK′ |tα1|2 +u2

1 t
∗
α1t
∗
α2 − v

2
1ei2φKK ′ tα1tα2 +u1v1eiφKK′ |tα2|2

}
, (C.20e)∑

σ
ρασ (t2ασ )∗t3ασ = ρα↓

{
−u2v2e−iφKK ′ |tα1|2 +u2

2 tα1tα2 − v2
2e−i2φKK′ t∗α1t

∗
α2 +u2v2e−iφKK′ |tα2|2

}
. (C.20f)

Using the above relations we evaluate (C.5) type expressions

H1,1 −H4,4 = ∆1 −
∑
ασ

ρασ
U

{
∆1(|t1ασ |2 + |t4ασ |2) + (Bs − 2Vα)(|t1ασ |2 − |t4ασ |2)

}
= ∆1 −

∑
α

ρα↑
U

{
∆1(|tα1|2 + |tα2|2) + (Bs − 2Vα)

[
δ1
∆1

(|tα1|2 − |tα2|2) + 2
∆KK ′

∆1
Re[eiφKK′ tα1tα2]

]}
,

(C.21a)

H2,2 −H3,3 = ∆2 −
∑
ασ

ρασ
U

{
∆2(|t2ασ |2 + |t3ασ |2)− (Bs + 2Vα)(|t2ασ |2 − |t3ασ |2)

}
= ∆2 −

∑
α

ρα↓
U

{
∆2(|tα1|2 + |tα2|2)− (Bs + 2Vα)

[
δ2
∆2

(|tα1|2 − |tα2|2) + 2
∆KK ′

∆2
Re[e−iφKK′ t∗α1t

∗
α2]

]}
,

(C.21b)

H1,1 +H4,4 = Bs +
∑
ασ

ρασ
U

{
∆2(|t2ασ |2 − |t3ασ |2)− (Bs + 2Vα)(|t2ασ |2 + |t3ασ |2)

}
= Bs +

∑
α

ρα↓
U

{
∆2

[
δ2
∆2

(|tα1|2 − |tα2|2) + 2
∆KK ′

∆2
Re[e−iφKK ′ t∗α1t

∗
α2]

]
− (Bs + 2Vα)(|tα1|2 + |tα2|2)

}
,

(C.21c)

H2,2 +H3,3 = −Bs +
∑
ασ

ρασ
U

{
∆1(|t1ασ |2 − |t4ασ |2) + (Bs − 2Vα)(|t1ασ |2 + |t4ασ |2)

}
= −Bs +

∑
α

ρα↑
U

{
∆1

[
δ1
∆1

(|tα1|2 − |tα2|2) + 2
∆KK ′

∆1
Re[eiφKK′ tα1tα2]

]
+ (Bs − 2Vα)(|tα1|2 + |tα2|2)

}
,

(C.21d)

and off-diagonals

H1,4 = −
∑
ασ

ρασ
U

(t1ασ )∗t4ασ (Bs − 2Vα)

=
∑
α

ρα↑
U

eiφKK ′
{
∆KK ′

2∆1
(|t2α1| − |t

2
α2
|)−

[
u2

1e−iφKK ′ t∗α1t
∗
α2 − v

2
1eiφKK′ tα1tα2

]}
(Bs − 2Vα),

(C.22a)

H2,3 =
∑
ασ

ρασ
U

(t2ασ )∗t3ασ (Bs + 2Vα)

= −
∑
α

ρα↓
U

e−iφKK ′
{
∆KK ′

2∆2
(|t2α1| − |t

2
α2
|)−

[
u2

2eiφKK′ tα1tα2 − v2
2e−iφKK′ t∗α1t

∗
α2

]}
(Bs + 2Vα).

(C.22b)

Often we will be rewriting expression in square brackets in (C.22) using relation:

u2eiφ − v2e−iφ = isinφ+
δ
∆

cosφ,

when u2 =
1
2

(
1 +

δ
∆

)
, v2 =

1
2

(
1− δ

∆

)
.

(C.23)

Now let’s see how these expressions change for different parameters. Here throughout we
assume normal leads ρασ = ρ and applied symmetric bias µL = −µR = V /2:
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Case 1: t = |t|eiφt = tL/R,1/2, ∆SO = ∆KK ′ = B = 0:

H1,1 −H4,4 =H2,2 −H3,3 = 0, (C.24a)

H1,1 +H4,4 =H2,2 +H3,3 = −
4ρ|t|2

U
∆Vg , (C.24b)

H∗1,4 =H2,3 =
4ρt2

U

∆Vg
2
. (C.24c)

The eigenvalues and eigenvectors in this case are

−
2ρ|t|2

U

(
∆Vg ∓ |∆Vg |

)
, −

2ρ|t|2

U

(
∆Vg ∓ |∆Vg |

)
→ 0,−

4ρ|t|2

U
∆Vg , (C.25)

P =
1
√

2


1 −e−iφ 0 0
0 0 1 −eiφ

0 0 e−iφ 1
eiφ 1 0 0

 , (C.26)

where
φ = 2φt + Arg(∆Vg ). (C.27)

The order of eigenstates corresponds to eigenvalues written in the order of (C.25) before the arrow.
The modulus of the energy differences is

∆E = 2|H2,3| =
4ρ|t|2

U
|∆Vg | =

Γ

πU
|∆Vg |, Γ = 4πρ|t|2. (C.28)

We see that cotunneling threshold acquires gate dependence due to the tunneling renormalization.
Also from (C.26) we get the new effective “single particle states”

|a ↑〉 =
1
√

2

(
|K ↑〉+ eiφ|K ′ ↑〉

)
, (C.29a)

|b ↑〉 =
1
√

2

(
−e−iφ|K ↑〉+ |K ′ ↑〉

)
, (C.29b)

|a ↓〉 =
1
√

2

(
|K ′ ↓〉+ e−iφ|K ↓〉

)
, (C.29c)

|b ↓〉 =
1
√

2

(
−eiφ|K ′ ↓〉+ |K ↓〉

)
, (C.29d)

which have the following tunneling amplitudes and tunneling rates

ta↑α↑ =
1
√

2

(
1 + eiArg(∆Vg )

)
t, Γ

a↑
α↑ = ρ|t|2

(
1 + cos[Arg(∆Vg )]

)
, (C.30a)

tb↑α↑ =
1
√

2

(
1− e−iArg(∆Vg )

)
t∗, Γ

b↑
α↑ = ρ|t|2

(
1− cos[Arg(∆Vg )]

)
, (C.30b)

ta↓α↓ =
1
√

2

(
1 + e−iArg(∆Vg )

)
t∗, Γ

a↓
α↓ = ρ|t|2

(
1 + cos[Arg(∆Vg )]

)
, (C.30c)

tb↓α↓ =
1
√

2

(
1− eiArg(∆Vg )

)
t, Γ

b↓
α↓ = ρ|t|2

(
1− cos[Arg(∆Vg )]

)
. (C.30d)



132 C. SINGLE CHARGE IN A “SHELL” EIGENSPECTRUM

Case 2: tL = |tL|eiφL = tL,1/2, tR = |tR|eiφR = tR,1/2, ∆SO = ∆KK ′ = B = 0:

H1,1 −H4,4 =H2,2 −H3,3 = 0, (C.31a)

H1,1 +H4,4 =H2,2 +H3,3 = −
2ρ
U

{
(|tL|2 + |tR|2)∆Vg + (|tL|2 − |tR|2)V

}
, (C.31b)

H∗1,4 =H2,3 =
ρ

U

{
(t2L + t2R)∆Vg + (t2L − t

2
R)V

}
, (C.31c)

and the modulus of energy difference is

∆E = 2|H2,3| =
2ρ
U

∣∣∣(t2L + t2R)∆Vg + (t2L − t
2
R)V

∣∣∣ . (C.32)

Using this energy difference we find the threshold voltage

Vth = |A∆Vg +BVth|, A =
2ρ
U

(t2L + t2R), B =
2ρ
U

(t2L − t
2
R), B << 1, (C.33)

by solving quadratic equation (here D denotes discriminant)

(1− |B|2)V 2
th − 2Re[AB∗]∆VgVth − |A|2∆V 2

g = 0, D = |2A∆Vg |2,

Vth =
Re[AB∗]∆Vg ± |A|∆Vg

1− |B|2
≈ (Re[AB∗]± |A|)∆Vg ,

↓ and for real tunneling amplitudes it can be written as

Vth = ±ΓL + ΓR

πU

(
1± ΓL − ΓR

πU

)
∆Vg , where Γα = 2πρ|tα |2.

(C.34)

From above expression we see that there is asymmetry between positive and negative bias threshold.

Case 3: t = |t|eiφt = tL/R,1/2, ∆SO , 0, B , 0, ∆KK ′ = 0:

sgn(δ1)(H1,1 −H4,4) = δ1 (1−κ) , (C.35a)

sgn(δ2)(H2,2 −H3,3) = δ2 (1−κ) , (C.35b)

H1,1 +H4,4 = −κ∆Vg +Bs (1−κ) , (C.35c)

H2,2 +H3,3 = −κ∆Vg −Bs (1−κ) , (C.35d)

H∗1,4 =
κ
2

e2iφt
(
∆Vg −Bs

)
, (C.35e)

H2,3 =
κ
2

e2iφt
(
∆Vg +Bs

)
, (C.35f)

where we have denoted

κ =
4ρ|t|2

U
=

Γ

πU
. (C.36)

The four eigenenergies are

−κ
∆Vg

2
+
Bs
2

(1−κ)± 1
2

√
(1−κ)2 (∆SO −Borb)2 +κ2

(
∆Vg +Bs

)2
, (C.37a)

−κ
∆Vg

2
− Bs

2
(1−κ)± 1

2

√
(1−κ)2 (∆SO +Borb)2 +κ2

(
∆Vg −Bs

)2
. (C.37b)

Thereinafter we will neglect constant shift −κ∆Vg /2 of all energies. When there is no magnetic field
Bs, then δ1 = δ2 = ∆SO, and the energy splitting between two pairs of degenerate states becomes

∆EB=0 =

√
(1−κ)2

∆2
SO +

(
κ∆Vg

)2
. (C.38)
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Table C.1: Bare and renormalized g-factors for carbon nanotube quantum dot, when ∆SO = 0,
gorb > gs, and κ∆Vg >> Bs,Borb > 0

Cotunneling line Bare transition from K ↓ to Bare g-factor Renormalized g-factor
1st K ↑ gs (1−κ)gs
2nd K ′ ↓ gorb κgs + (1−κ)2 g2

orbB
2κ∆Vg

3rd K ′ ↑ gs + gorb gs + (1−κ)2 g2
orbB

2κ∆Vg

We see that in this case there is no more crossing, when ∆Vg = 0, and we get splitting 2∆EB=0 for
cotunneling threshold between negative and positive bias. When magnetic field is included and
we are exactly around the middle of the diamond ∆Vg ≈ 0, we get the following energies after
expanding square root when κ << 1

1
2

(sBs + τs∆SO − τBorb) (1−κ) , (C.39)

with all possible sign combinations of s = ±1, τ = ±1. This result is almost the same as for the bare
spectrum case without tunneling renormalization, except for the factor (1−κ).

Let’s look at the case when ∆Vg > 0 and |κ∆Vg | >> |∆SO|, |B|, i.e. we expand√
x2 + (1 + y)2 ≈ 1 + y +

1
2
x2 with x = (1−κ)

∆SO ∓Borb

κ∆Vg
, y = ± Bs

∆Vg
, (C.40)

and then the energies become

4.
Bs
2

+
κ∆Vg

2

1 +
(1−κ)2

2

[
∆SO −Borb

κ∆Vg

]2 , (C.41a)

2.
Bs
2

(1− 2κ)−
κ∆Vg

2

1 +
(1−κ)2

2

[
∆SO −Borb

κ∆Vg

]2 , (C.41b)

3. −Bs
2

(1− 2κ) +
κ∆Vg

2

1 +
(1−κ)2

2

[
∆SO +Borb

κ∆Vg

]2 , (C.41c)

1. −Bs
2
−
κ∆Vg

2

1 +
(1−κ)2

2

[
∆SO +Borb

κ∆Vg

]2 . (C.41d)

Here the number labels correspond to sorting from the lowest energy to the highest, when ∆Vg > 0
and ∆SO = 0. The comparison between bare g-factors and renormalized ones for different cotunnel-
ing lines, when gorb > gs and ∆SO = 0, is given in Table C.1. We see that g-factor corresponding to
gorb now depends on magnetic B field and vanishes for B = 0. For finite B field orbital factor gorb
depends on the gate voltage ∆Vg . We note that in this case bare energies are

EK↓ = −(gorb + gs)
B
2
, EK↑ = −(gorb − gs)

B
2
, EK ′↓ = (gorb − gs)

B
2
, EK ′↑ = (gorb + gs)

B
2
. (C.42)

Now we will expand (C.37) energies in Bs and Borb assuming that ∆SO,∆Vg >> |Bs|, |Borb| > 0.
We need the expansion of the function√

a2(1 + x)2 + b2(1 + y)2 ≈
√
a2 + b2 +

|a|x
√

1 + b2/a2
+

|b|y
√

1 + a2/b2
,

with a = (1−κ)∆SO, b = κ∆Vg , x =
Borb

∆SO
, y =

Bs
∆Vg

,
(C.43)
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Table C.2: Bare and renormalized g-factors for carbon nanotube quantum dot, when gorb > gs,
g̃orb > g̃

±
s , and κ∆Vg > ∆SO >> Bs,Borb > 0

Cotunneling line Bare transition from K ↓ to Bare g-factor Renormalized g-factor
1st K ′ ↑ gs + gorb (1−κ − κ̃)gs + g̃orb
2nd K ↑ gs (1−κ)gs
3rd K ′ ↓ gorb −κ̃gs + g̃orb

in x and y. Then the energies (C.37) become

Bs
2

(1−κ)± 1
2

∆EB=0 −
(1−κ))√

1 +
(
κ

1−κ
∆Vg
∆SO

)2
Borb +

κ√
1 +

(
1−κ
κ

∆SO
∆Vg

)2
Bs

 , (C.44a)

−Bs
2

(1−κ)± 1
2

∆EB=0 +
(1−κ)√

1 +
(
κ

1−κ
∆Vg
∆SO

)2
Borb −

κ√
1 +

(
1−κ
κ

∆SO
∆Vg

)2
Bs

 . (C.44b)

We will rewrite the above energies as

3.
∆EB=0

2
− (g̃orb − g̃+

s )
B
2
, (C.45a)

2. −∆EB=0

2
+ (g̃orb + g̃−s )

B
2
, (C.45b)

4.
∆EB=0

2
+ (g̃orb − g̃+

s )
B
2
, (C.45c)

1. −∆EB=0

2
− (g̃orb + g̃−s )

B
2
, (C.45d)

where

κ̃ ≈ κ
1 +

(
1−κ
κ

∆SO

∆Vg

)2−1/2

, (C.46a)

g̃±s ≈ gs (1−κ ± κ̃) , (C.46b)

g̃orb ≈ gorb(1−κ)

1 +
(
κ

1−κ
∆Vg
∆SO

)2−1/2

. (C.46c)

The number labels in (C.45) correspond to sorted energies from low to high for κ∆Vg > ∆SO >> B > 0,
and g̃orb > g̃

±
s . We again see gate voltage renormalization of gorb. In this case the comparison

between bare g-factors and renormalized ones for different cotunneling lines, are given in Table C.2.
We note that in this case bare energies are

EK↓ = −∆SO
2
− (gorb + gs)

B
2
, EK ′↑ = −∆SO

2
+ (gorb + gs)

B
2
,

EK↑ =
∆SO

2
− (gorb − gs)

B
2
, EK ′↓ =

∆SO
2

+ (gorb − gs)
B
2
.

(C.47)
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Case 4: ∆SO , 0, ∆KK ′ = B = V = 0:

sgn(δ1)(H1,1 −H4,4) = sgn(δ2)(H2,2 −H3,3) = (1−κ+)∆SO +κ−∆Vg , (C.48a)

H1,1 +H4,4 =H2,2 +H3,3 = κ−∆SO −κ+∆Vg , (C.48b)

H∗1,4 =H2,3 = κ12
∆Vg

2
, (C.48c)

where
κ± =

∑
α

ρ

U

(
|tα1|2 ± |tα2|2

)
, κ12 =

∑
α

2ρ
U
tα1tα2. (C.49)

We have set the chemical potentials to zero (i.e. bias V = 0), because we want to figure out whether
we can get a crossing in the cotunneling threshold. Also all tunneling amplitudes are arbitrary.
The modulus of the energy difference in this case is

∆E =

√{
(1−κ+)∆SO +κ−∆Vg

}2
+
(
|κ12|∆Vg

)2
. (C.50)

It is possible to get a crossing in cotunneling threshold if

κ12 = 0 → tL1tL2 + tR1tR2 = 0, (C.51a)

∆Vg = −1−κ+

κ−
∆SO. (C.51b)

One possible solution is

t1 = tL1 = tR1, t2 = tL2 = eiπtR2 = −tR2,

∆Vg ≈
πU

Γ2 − Γ1
∆SO, where Γi = 2πρ|ti |2.

(C.52)

Case 5: t = |t|eiφt = tL/R,1/2, ∆SO , 0, ∆KK ′ , 0, B = 0:

H1,1 −H4,4 =H2,2 −H3,3 = (1−κ)∆Σ +κcos(φ)
∆KK ′

∆Σ
∆Vg , (C.53a)

H1,1 +H4,4 =H2,2 +H3,3 = κ(∆KK ′ cos(φ)−∆Vg ), (C.53b)

H∗1,4 =H2,3 = κe−iφKK ′
(
∆SO
∆Σ

cos(φ) + isin(φ)
)
∆Vg

2
, (C.53c)

where

φ = φKK ′ + 2φt , ∆Σ =
√
∆2

SO +∆2
KK ′ . (C.54)

We note that one has to be careful when taking limit ∆SO, ∆KK ′ → 0. In this case the energy
difference becomes

∆E =

√[
(1−κ)∆Σ +κcos(φ)

∆KK ′

∆Σ

∆Vg

]2

+

∣∣∣∣∣∣κ
(
∆SO

∆Σ

cos(φ) + isin(φ)
)
∆Vg

∣∣∣∣∣∣2. (C.55)

The minimal value of splitting between positive and negative bias appears near gate voltage

∆Vmin
g = −1−κ

κ
∆KK ′ cos(φ), (C.56)

and the value of this splitting is

∆Emin = (1−κ)
√
∆2

SO +∆2
KK ′ sin2(φ). (C.57)
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If ∆KK ′ >> |∆SO| ≈ 0 it is possible to get an approximate crossing, when φ = 0 (or φ = π) near the
point

∆V cross
g ≈ ∓1−κ

κ
∆KK ′ . (C.58)

Upper sign corresponds to φ = 0, lower corresponds to φ = π.
Case 6: ∆SO , 0, ∆KK ′ , 0, B = V = 0:

H1,1 −H4,4 =H2,2 −H3,3 = (1−κ+)∆Σ +
(
κ−

∆SO
∆Σ

+κc
∆KK ′

∆Σ

)
∆Vg , (C.59a)

H1,1 +H4,4 =H2,2 +H3,3 = κ−∆SO +κc∆KK ′ −κ∆Vg , (C.59b)

H∗1,4 =H2,3 = e−iφKK′
(
−κ−∆KK

′

∆Σ
+κc

∆SO
∆Σ

+ iκs

)
∆Vg

2
, (C.59c)

where

κ± =
∑
α

ρ

U

(
|tα1|2 ± |tα2|2

)
→

2ρ
U

(
|t1|2 ± |t2|2

)
, (C.60a)

κc =
2ρ
U

(cos(φL)|tL1tL2|+ cos(φR)|tR1tR2|) →
4ρ
U
|t1t2|cos(φ), (C.60b)

κs =
2ρ
U

(sin(φL)|tL1tL2|+ sin(φR)|tR1tR2|) →
4ρ
U
|t1t2|sin(φ), (C.60c)

φL,R = φKK ′ +φL1,R1 +φL2,R2, (C.60d)

We have set chemical potentials to zero (i.e. bias V = 0), because we want to figure out whether we
can get a crossing in the cotunneling threshold. Relations after the arrow correspond to symmetric
coupling to the leads. By choosing all phases equal to zero, i.e. φL = φR = 0, we have to satisfy the
condition

κc∆SO = κ−∆KK ′ → 2∆SO

∆KK ′
=
|t1|2 − |t2|2

|t1t2|
, (C.61)

to get a crossing at

∆V cross
g = − (1−κ+)∆2

κc∆KK ′ +κ−∆SO
. (C.62)

Also we can get rid of the tunneling renormalization by removing the gate voltage ∆Vg depen-
dence from the eigenspectrum. This is achieved by requiring

κ− = 0, κc = 0, κs = 0 → κ− = 0, κc + iκs = 0, (C.63a)

which can be rewritten into conditions (4.13).

C.2 Perpendicular magnetic B field
Here we will perform calculation using spectrum and eigenstates, when magnetic field is perpen-
dicular to the tube axis (ζ = π/2). In such a case the single particle Hamiltonian (3.58) is

H =


|K ↑〉 |K ′ ↓〉 |K ↓〉 |K ′ ↑〉
E1

1
2gsB⊥

1
2∆KK ′e

iφKK′

E1
1
2∆KK ′e

−iφKK′ 1
2gsB⊥

1
2gsB⊥

1
2∆KK ′e

iφKK ′ E2
1
2∆KK ′e

−iφKK′ 1
2gsB⊥ E2

, (C.64)
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where

E1 = E+1,+1 = E−1,−1 = E0 +
∆SO

2
, E2 = E+1,−1 = E−1,+1 = E0 − ∆SO

2
. (C.65)

Neglecting a constant shift in the energies E0 the eigenvalues of the above Hamiltonian are

±1
2

√
(Bs ±∆KK ′ )2 +∆2

SO, Bs = gsB⊥ (C.66)

with all possible sign combinations.

In order to get simple analytical results we will consider only a particular case, when there is
no ∆KK ′ mixing, and orbitals are equally coupled to the leads, i.e. t1α = t2α = tα. When ∆KK ′ = 0
the single particle eigenspectrum becomes

±1
2

√
B2
s +∆2

SO, (C.67)

which is doubly degenerate. The corresponding eigenstates are

|K ↑̄〉 = +u|K ↑〉+ v|K ↓〉, (C.68a)

|K ′↑̄〉 = +u|K ′ ↓〉+ v|K ′ ↑〉, (C.68b)

|K ↓̄〉 = −v|K ↑〉+u|K ↓〉, (C.68c)

|K ′↓̄〉 = −v|K ′ ↓〉+u|K ′ ↑〉, (C.68d)

or written in a matrix form

Pi,n =


P1,1 0 P1,3 0

0 P2,2 0 P2,4
P3,1 0 P3,3 0

0 P4,2 0 P4,4

 =


u 0 −v 0
0 u 0 −v
v 0 u 0
0 v 0 u

 , (C.69)

where

u =

√
1
2

(
1 +

∆SO

∆

)
, v =

√
1
2

(
1− ∆SO

∆

)
sgn(Bs), ∆ =

√
B2
s +∆2

SO, 2uv =
Bs
∆
. (C.70)

The tunneling amplitudes take the following form

t1α↑ = +utα1, t1α↓ = +vtα2,

t2α↑ = +vt∗α1, t2α↓ = +ut∗α2,

t3α↑ = −vtα1, t3α↓ = +utα2,

t4α↑ = +ut∗α1, t4α↓ = −vt∗α2,

(C.71)
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and the spin sums become (taking ρασ = ρ and t1α = t2α = tα):∑
σ
ρασ |tnασ |2 = ρ|tα |2, (C.72a)

∑
σ
ρασ (t1ασ )∗t2ασ = ρ2uv(t∗α)2 = ρ

Bs
∆

(t∗α)2, (C.72b)∑
σ
ρασ (t1ασ )∗t3ασ = 0, (C.72c)

∑
σ
ρασ (t1ασ )∗t4ασ = ρ(u2 − v2)(t∗α)2 = ρ

∆SO
∆

(t∗α)2, (C.72d)

∑
σ
ρασ (t2ασ )∗t3ασ = ρ(u2 − v2)t2α = ρ

∆SO
∆

t2α , (C.72e)∑
σ
ρασ (t2ασ )∗t4ασ = 0, (C.72f)

∑
σ
ρασ (t3ασ )∗t4ασ = −ρ2uv(t∗α)2 = −ρBs

∆
(t∗α)2. (C.72g)

In this case Hamiltonian Hi,j simplifies to

Hi,j =


H1,1 H1,2 0 H1,4
H∗1,2 H1,1 H2,3 0

0 H∗2,3 H3,3 H3,4
H∗1,4 0 H∗3,4 H3,3

 →



H1,1−H3,3
2 H1,2 0 H1,4

H∗1,2
H1,1−H3,3

2 H2,3 0

0 H∗2,3 −H1,1−H3,3
2 H3,4

H∗1,4 0 H∗3,4 −H1,1−H3,3
2


. (C.73)

Here in the diagonal after the arrow we neglect constant factor H1,1+H3,3
2 . After using relations

(C.8a) and (C.9) we get the diagonal term

H1,1 −H3,3 = (1−κ)∆, κ =
2ρ
U

(|tL|2 + |tR|2), (C.74)

and off-diagonals

H1,2 = −
∑
α

ρ(t∗α)2

U
Bs
∆

(∆− 2Vα) =
κ∗+
2
Bs
∆

(
∆Vg −∆

)
+
κ∗−
2
Bs
∆
V , (C.75a)

H1,4 =H∗2,3 = −
∑
α

ρ(t∗α)2

U
∆SO

∆
(∆− 2Vα) =

κ∗+
2

∆SO

∆
∆Vg +

κ∗−
2

∆SO

∆
V , (C.75b)

H3,4 = +
∑
α

ρ(t∗α)2

U
Bs
∆

(−∆− 2Vα) = −κ
∗
+

2
Bs
∆

(
∆Vg +∆

)
− κ
∗
−

2
Bs
∆
V , (C.75c)

where

κ+ =
2ρ
U

(t2L + t2R), κ− =
2ρ
U

(t2L − t
2
R). (C.76)

To get simple analytical relations for solution of characteristic equation of (C.73) we also assume
that tunneling amplitudes are real, i.e. tα = t∗α. In this case the Hamiltonian (C.73) can be written
as

Hi,j =


z
2 x 0 w
x z

2 w 0
0 w − z2 y
w 0 y − z2

 , with

z =H1,1 −H3,3,

x =H1,2,

y =H3,4,

w =H1,4.

(C.77)
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Table C.3: Bare and renormalized g-factors for carbon nanotube with applied perpendicular field,
when ∆SO = 0 and κ∆Vg >> Bs > 0

Cotunneling line Bare g-factor Renormalized g-factor
1st 0 gs
2nd gs κgs
3rd gs (1−κ)gs

The eigenvalues of the above Hamiltonian are

1
2

(
x+ y ±

√
(x − y + z)2 + (2w)2

)
, −1

2

(
x+ y ±

√
(x − y − z)2 + (2w)2

)
. (C.78)

Now we consider case when couplings to the left and right leads are equal tL = tR. In such a
case κ− = 0 and we get

x+ y = −κBs, x − y =
Bs
∆
κ∆Vg , 2w =

∆SO

∆
κ∆Vg , z = (1−κ)∆. (C.79)

If there is no spin-orbit coupling ∆SO = 0 and we are in the middle of the diamond ∆Vg = 0, we get
the following eigenspectrum, sorted from low to high energies (Bs > 0):

1. − Bs
2
, 2. − (1− 2κ)

Bs
2
, 3. (1− 2κ)

Bs
2
, 4.

Bs
2
, (C.80)

The corresponding g-factors for the above eigenspectrum are

1. κgs, 2. (1−κ)gs, 3. gs. (C.81)

When there is still no spin-orbit coupling, but κ∆Vg >> B > 0 we get the following eigenspectrum

1. −κ∆Vg −Bs, (C.82a)

2. −κ∆Vg +Bs, (C.82b)

3. κ∆Vg − (1− 2κ)Bs, (C.82c)

4. κ∆Vg + (1 + 2κ)Bs. (C.82d)

The comparison between bare and renormalized g-factors in this case is given in Table C.3.
When κ∆Vg ,∆SO >> |Bs| > 0 we can expand square root in spectrum (C.78). We rewrite this

square root as √(
ax

√
1 + x2

± b
√

1 + x2

)2

+
(

a
√

1 + x2

)2

≈
√
a2 + b2 ± ab

√
a2 + b2

x,

where x =
Bs
∆SO

, a = κ∆Vg , b = (1−κ)∆SO,

(C.83)

and then the spectrum becomes

1. −∆EB=0

2
− (g̃s +κgs)

B
2
, (C.84)

2. −∆EB=0

2
+ (g̃s +κgs)

B
2
, (C.85)

3.
∆EB=0

2
− (g̃s −κgs)

B
2
, (C.86)

4.
∆EB=0

2
+ (g̃s −κgs)

B
2
, (C.87)
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Table C.4: Bare and renormalized g-factors for carbon nanotube with applied perpendicular field,
when κ∆Vg > ∆SO >> Bs > 0

Cotunneling line Bare g-factor Renormalized g-factor
1st 0 g̃s +κgs
2nd gsB

2∆SO
κgs

3rd gsB
2∆SO

g̃s

where

∆EB=0 =

√
(1−κ)2∆2

SO +
(
κ∆Vg

)2
, (C.88a)

g̃s ≈ gs(1−κ)

1 +
(

1−κ
κ

∆SO

∆Vg

)2−1/2

. (C.88b)

The comparison of g-factor in this case is given in Table C.4.

C.3 Ferromagnetic leads
If the leads are ferromagnetic, then the tunneling density of states is different for spin-up and
spin-down ρασ , which has an effect on spin sums:∑

σ

ρασ (tnασ )∗ tn
′
ασ = (tnα↑)

∗tn
′

α↑

(
ρα↑̃ cos2(θα/2) + ρα↓̃ sin2(θα/2)

)
+ (tnα↓)

∗tn
′

α↓

(
ρα↑̃ sin2(θα/2) + ρα↓̃ cos2(θα/2)

)
+
(
(tnα↑)

∗tn
′

α↓e
−iϕα + (tnα↓)

∗tn
′

α↑e
iϕα

)(
ρα↑̃ − ρα↓̃

)
sin(θα/2)cos(θα/2).

(C.89)

When there is no magnetic field B = 0, then the above sums become∑
σ
ρασ |t1ασ |2 =

{
ρα↑̃ cos2(θα/2) + ρα↓̃ sin2(θα/2)

} {
u2|tα1|2 + v2|tα2|2 + 2uvRe[eiφKK′ tα1tα2]

}
, (C.90a)∑

σ
ρασ |t2ασ |2 =

{
ρα↑̃ sin2(θα/2) + ρα↓̃ cos2(θα/2)

} {
u2|tα1|2 + v2|tα2|2 + 2uvRe[e−iφKK ′ t∗α1t

∗
α2]

}
, (C.90b)∑

σ
ρασ |t3ασ |2 =

{
ρα↑̃ sin2(θα/2) + ρα↓̃ cos2(θα/2)

} {
v2|tα1|2 +u2|tα2|2 − 2uvRe[e−iφKK′ t∗α1t

∗
α2]

}
, (C.90c)∑

σ
ρασ |t4ασ |2 =

{
ρα↑̃ cos2(θα/2) + ρα↓̃ sin2(θα/2)

} {
v2|tα1|2 +u2|tα2|2 − 2uvRe[eiφKK ′ tα1tα2]

}
, (C.90d)

∑
σ
ρασ (t1ασ )∗t2ασ =

(
ρα↑̃ − ρα↓̃

) sinθα
2

{
u2(t∗α1)2 + v2ei2φKK′ t2α2 +uv(eiφKK′ + eiφKK′ )t∗α1tα2

}
e−iϕα , (C.90e)

∑
σ
ρασ (t1ασ )∗t3ασ =

(
ρα↑̃ − ρα↓̃

) sinθα
2

{(
u2 − v2

)
t∗α1tα2 +uv

(
t2α2eiφKK′ − (t∗α1)2e−iφKK ′

)}
e−iϕα , (C.90f)∑

σ
ρασ (t1ασ )∗t4ασ =

(
ρα↑̃ cos2(θα/2) + ρα↓̃ sin2(θα/2)

) {
u2t∗α1t

∗
α2 − v

2ei2φKK ′ tα1tα2 +uveiφKK′ (|tα2|2 − |tα1|2)
}
, (C.90g)∑

σ
ρασ (t2ασ )∗t3ασ =

(
ρα↑̃ sin2(θα/2) + ρα↓̃ cos2(θα/2)

) {
u2tα1tα2 − v2e−i2φKK ′ t∗α1t

∗
α2 +uve−iφKK ′ (|tα2|2 − |tα1|2)

}
,

(C.90h)∑
σ
ρασ (t2ασ )∗t4ασ =

(
ρα↑̃ − ρα↓̃

) sinθα
2

{(
u2 − v2

)
tα1t

∗
α2 +uv

(
(t∗α2)2e−iφKK′ − t2α1eiφKK′

)}
eiϕα , (C.90i)

∑
σ
ρασ (t3ασ )∗t4ασ =

(
ρα↑̃ − ρα↓̃

) sinθα
2

{
u2(t∗α2)2 + v2ei2φKK′ t2α1 −uv(eiφKK ′ + eiφKK ′ )tα1t

∗
α2

}
eiϕα . (C.90j)
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Note that u and v are defined by (C.14). Now we will consider situation when there is no KK ′-
mixing and spin-orbit coupling. In such a case for parallel collinear and anticollinear lead polar-
ization Hamiltonian Hi,j simplifies into (C.15) form. As was mentioned previously in Section 5.3.1,
when there is no spin-orbit coupling it is possible to arbitrarily choose spin-quantization axis in
the quantum dot, so the upcoming result for parallel lead polarization is also valid for any angle.
Case 1: θα = 0, ρασ = ρσ , ∆SO = ∆KK ′ = B = V = 0:

Using (C.21) and (C.22) relations and spin sums (C.90) we get:

H1,1 −H4,4 = ∆Vgκ
−
↑ , H2,2 −H3,3 = ∆Vgκ

−
↓ , (C.91a)

H1,1 +H4,4 = −∆Vgκ+
↓ , H2,2 +H3,3 = −∆Vgκ+

↑ , (C.91b)

H1,4 =
∆Vg

2
(κo↑)

∗, H2,3 =
∆Vg

2
κo↓. (C.91c)

where
κ±σ =

∑
α

ρσ
U

(|tα1|2 ± |tα2|2), κoσ = 2
∑
α

ρσ
U
tα1tα2. (C.92)

We can instantly write down the eigenvalues

−
∆Vg

2

(
κ+
↓ ±

√
(κ−↑ )2 + |κo↑|2

)
, (C.93a)

−
∆Vg

2

(
κ+
↑ ±

√
(κ−↓ )2 + |κo↓|2

)
, (C.93b)

and get the following energy differences

0 (↑), ρ↑β∆Vg (↑), −(ρ↑ − ρ↓)(α − β)
∆Vg

2
(↓),

[
−(ρ↑ − ρ↓)(α − β) + 2ρ↓β

] ∆Vg
2

(↓), (C.94)

where

α =
κ+
σ

ρσ
=

1
U

(
|tL1|2 + |tL2|2 + |tR1|2 + |tR2|2

)
, (C.95a)

β =

√
(κ−σ )2 + |κoσ |2

ρσ
=

1
U

√
(|tL1|2 − |tL2|2 + |tR1|2 − |tR2|2)2 + 4|tL1tL2 + tR1tR2|2. (C.95b)

We see that in the general case there are no degeneracies left, expect in the middle of the diamond
∆Vg = 0, and that is the case even if tL/R,1 = tL/R,2 = tL/R, but then a phase difference between tL
and tR is required. Note that the above α has nothing to do with lead quantum number, and that
relation

α > β → |tL1t
∗
R2 − t

∗
L2tR1| > 0, (C.96)

is always satisfied. If we consider case ρ↑ > ρ↓ and ∆Vg < 0 (left side of the diamond) then the
energy differences can always be sorted as

−ρ↑β|∆Vg | (↑),

0 (↑),
[
(ρ↑ − ρ↓)(α − β)− 2ρ↓β

] |∆Vg |
2

(↓)

, (ρ↑ − ρ↓)(α − β)
|∆Vg |

2
(↓), (C.97)

where energy differences inside the curly brackets can have any order, depending on the parameters.
We see that in this case the ground state is always a state corresponding to spin up. For the right
side of the diamond (∆Vg > 0) we get the following sorting of energy differences:

−(ρ↑ − ρ↓)(α − β)
|∆Vg |

2
(↓),

− [(ρ↑ − ρ↓)(α − β)− 2ρ↓β
] |∆Vg |

2
(↓), 0 (↑)

, ρ↑β|∆Vg | (↑), (C.98)
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which corresponds to spin down ground state, for ρ↑ > ρ↓ case.
Case 2: θL = 0, θR = π, ρασ = ρσ , ∆SO = ∆KK ′ = B = V = 0:

Either using (C.21) and (C.22) relations and setting ρL↑ = ρR↓, ρL↓ = ρR↑, what corresponds to
antiparallel leads by keeping the angle θR = 0, or using spin sums (C.90) we get:

H1,1 −H4,4 = ∆Vgκ
−
↑ , H2,2 −H3,3 = ∆Vgκ

−
↓ , (C.99a)

H1,1 +H4,4 = −∆Vgκ+
↓ , H2,2 +H3,3 = −∆Vgκ+

↑ , (C.99b)

H1,4 =
∆Vg

2
(κo↑)

∗, H2,3 =
∆Vg

2
κo↓. (C.99c)

where

κ±σ =
1
U

[
ρσ (|tL1|2 ± |tL2|2) + ρσ̄ (|tR1|2 ± |tR2|2)

]
, κoσ =

2
U

[ρσ tL1tL2 + ρσ̄ tR1tR2] ,

with σ =↑,↓ and σ̄ =↓,↑,
(C.100)

and eigenvalues are as in the previous case (C.93) with new κ±σ and κoσ .



Appendix D

Yosida’s wavefunction ansatz

D.1 Single quasiparticle
The possible lowest order approximation for the wavefunctions including single quasiparticle
is [74]

|S/T 0〉 =
∑
αk

(Aαk|↑αk,↓〉+Bαk|↓αk,↑〉) , (D.1)

|T +〉 =
∑
αk

Cαk|↑αk,↑〉, (D.2)

|T −〉 =
∑
αk

Dαk|↓αk,↓〉, (D.3)

where the notation (7.30) was used. We require the above states to satisfy the eigenvalue equation
H |ψ〉 = E|ψ〉, where Hamiltonian is given by (6.23). Then taking the projections 〈↑α′κ,↓|H |S/T 0〉,
〈↓α′κ,↑|H |S/T 0〉, 〈↑α′κ,↑|H |T +, and 〈↓α′κ,↓|〉H |T −〉, we obtain equations for expansion coefficients:

Aα′κ =
1

Eκ − (E + B̃)

∑
α

[1
2
Jα′α

(
uκSαuA + eiφα′αvκSαvA

)
−Jα′α

(
uκSαuB + eiφα′αvκSαvB

)
−Wα′α

(
uκSαuA − eiφα′αvκSαvA

)]
,

(D.4a)

Bα′κ =
1

Eκ − (E − B̃)

∑
α

[1
2
Jα′α

(
uκSαuB + eiφα′αvκSαvB

)
−Jα′α

(
uκSαuA + eiφα′αvκSαvA

)
−Wα′α

(
uκSαuB − eiφα′αvκSαvB

)]
,

(D.4b)

Cα′κ =
1

Eκ − (E − B̄)

∑
α

[
−1

2
Jα′α

(
uκSαuC + eiφα′αvκSαvC

)
−Wα′α

(
uκSαuC − eiφα′αvκSαvC

)]
,

(D.4c)

Dα′κ =
1

Eκ − (E + B̄)

∑
α

[
−1

2
Jα′α

(
uκSαuD + eiφα′αvκSαvD

)
−Wα′α

(
uκSαuD − eiφα′αvκSαvD

)]
,

(D.4d)
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where the following notation is introduced

SαaF =
∑

q

aqFαq, φα′α = φα′ −φα . (D.5)

After multiplying Eqs. (D.4) by either uκ or vκ and summing over κ we get linear set of equations
for sums SαaA. The resulting secular equation is∣∣∣∣∣∣1+Mj

LL Mj
LR

Mj
RL 1+Mj

RR

∣∣∣∣∣∣ = 0, j = S/T 0,T ±, (D.6)

where for the state (D.1) [the coefficient matrix is for
(
Sα′uA Sα′vA Sα′uB Sα′vB

)
] we have

MS/T 0

α′α =


−s+uu(gα′α −wα′α) −s+uv(gα′α +wα′α)eiφα′α 2s+uugα′α 2s+uvgα′αeiφα′α

−s+vu(gα′α −wα′α) −s+vv(gα′α +wα′α)eiφα′α 2s+vugα′α 2s+vvgα′αeiφα′α

2s−uugα′α 2s−uvgα′αeiφα′α −s−uu(gα′α −wα′α) −s−uv(gα′α +wα′α)eiφα′α

2s−vugα′α 2s−vvgα′αeiφα′α −s−vu(gα′α −wα′α) −s−vv(gα′α +wα′α)eiφα′α

 , (D.7)

and for the states (D.2) (D.3) we have

M±α′α =
(
s̄∓uu(gα′α +wα′α) s̄∓uv(gα′α −wα′α)eiφα′α

s̄∓vu(gα′α +wα′α) s̄∓vv(gα′α −wα′α)eiφα′α

)
. (D.8)

Here 1 denotes a unit matrix and the following notation was introduced

sab =
1
πνF

∑
κ

aκbκ
Eκ −E

,

s±ab = sab(E ± B̃), s̄±ab = sab(E ± B̄),

gα′α =
1
2
πνFJα′α , wα′α = πνFWα′α .

(D.9)

After performing κ sums in sab for symmetric band ξk ∈ [−D,D] we obtain

suu = svv =
1
π

ln

∣∣∣∣∣∣D +
√
D2 + |∆|2
|∆|

∣∣∣∣∣∣+
E
|∆|
suv ,

suv = svu =
1
π

∫ √D2+|∆|2

|∆|

dx

(x −E)
√
x2 + |∆|2

=



1
2 −

1
π arcsin

(
E
√
D2+|∆|2+|∆|2

|
√
D2+|∆|2+E||∆|

)
√

1−E2/ |∆|2
, |E| < |∆|,

1
π ln

∣∣∣∣∣D√E2−|∆|2+E
√
D2+|∆|2+|∆|2

(
√
D2+|∆|2+E)|∆|

∣∣∣∣∣√
E2/ |∆|2 − 1

, |E| > |∆|.

(D.10)

In the case when there is no magnetic field (B = 0, s+ = s− = s) we can simplify the above
equations by choosing (D.1) to be either singlet or triplet state, i.e.,

Bακ = −Aακ, singlet |S/T 0〉 = |S〉,
Bακ = Aακ, triplet |S/T 0〉 = |T 0〉.

(D.11)

Then for the singlet we get

MS
α′α = −

(
suu(3gα′α −wα′α) suv(3gα′α +wα′α)eiφα′α

svu(3gα′α −wα′α) svv(3gα′α +wα′α)eiφα′α

)
, (D.12)
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and for all the triplets the matrixM0,±
α′α has the form (D.8). When there is no potential scattering

wαα′ = 0 we can set SαuF = SαvF , because suu = svv , and then we obtain

MS/T 0

α′α
w=0=

(
−gα′α(s+uu + s+uveiφα′α ) 2gα′α(s+uu + s+uveiφα′α )
2gα′α(s−uu + s−uveiφα′α ) −gα′α(s−uu + s−uveiφα′α )

)
,

M±α′α
w=0= gα′α(s̄∓uu + s̄∓uveiφα′α ),

MS
α′α

w=0= −3gα′α(suu + suveiφα′α ).

(D.13)

The perturbative solutions in gα′α of the secular equations (D.6) matches the results presented in
Section 7.3. Additionally, when there is no magnetic field the inclusion of potential scattering term
wαα′ yields solution E = |∆|(1− η2),

|η0,S | =
√

2
2

(
3g ±

√
9g2χ+w2(1−χ)

)
, for singlet, (D.14a)

|η0,T | = −
√

2
2

(
g ±

√
g2χ+w2(1−χ)

)
, for triplet, (D.14b)

where the form (6.26) of the coupling was used and χ is defined in (7.15). For small magnetic field
|B̃| � |η2

0∆| the above solutions get modified to

|ηS,l | ≈

1 +
B̃2

8gη2
0 |∆|2

×
2g
√

2η0 − 3g2 + (w2 − 3g2)(1−α2)[
(w2 − 12g2)(1−α2) + 18g2

]√
2η0 + g(w2 − 9g2)(1−α2)(2 +α2)

η0, singlet like, (D.15a)

|ηT 0,l | ≈

1 +
B̃2

8gη2
0 |∆|2

×
2g
√

2η0 + 3g2 − (w2 + g2)(1−α2)[
w2(1−α2) + 2g2

]√
2η0 − g(w2 − g2)(1−α2)(2−α2)

η0, triplet T 0 like, (D.15b)

and for high magnetic field |B̃| � |g2
δ∆| it becomes Eh ≈ |∆|(1 − η2

0,h) − B̃, where |η0,h| = −|η0,T |.
Independent of the magnetic field size for the states |T ±〉 we get ET ±,l = |∆|(1− η2

0,T )± B̄.

D.2 Three quasiparticles
In this section we will check how does the energy of the state (D.1) is changed when in the ansatz
three quasiparticles are included. To make things simple we examine situation with no potential
scattering, no magnetic field, and no phase difference. In such a case we have a wavefunction

|ψ〉 =
∑

q

(
Aq|↑q,↓〉+Bq|↓q,↑〉

)
+

∑
q1q2q3

(
aq1q2q3

|↑q1
↑q2
↓q3
,↓〉+ bq1q2q3

|↓q1
↓q2
↑q3
,↑〉

)
, (D.16)

and we get the following equations for the expansion coefficients

〈↑κ,↓|H |ψb〉 = EκAκ −
J
2

∑
k

KκkAk + J
∑

k

KκkBk

− J
2

∑
kk′

(L∗kk′ −L
∗
k′k)(aκkk′ − akκk′ ) + J

∑
kk′

L∗kk′ (bkk′κ − bk′kκ) = EAκ,
(D.17a)

〈↓κ,↑|H |ψb〉 = EκBκ −
J
2

∑
k

KκkBk + J
∑

k

KκkAk

− J
2

∑
kk′

(L∗kk′ −L
∗
k′k)(bκk′k − bk′κk) + J

∑
kk′

L∗k′k(akk′κ − ak′kκ) = EBκ,
(D.17b)
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〈↑κ1
↑κ2
↓κ3

,↓|H |ψb〉 = (Eκ1
+Eκ2

+Eκ3)(aκ1κ2κ3
− aκ2κ1κ3

)︸                                       ︷︷                                       ︸
− J

2

∑
k

Kκ1k(akκ2κ3
− aκ2kκ3

)− J
2

∑
k

Kκ2k(aκ1kκ3
− akκ1κ3

) +
J
2

∑
k

Kκ3k(aκ1κ2k − aκ2κ1k)

+ J
∑

k

Kκ1k(bκ2κ3k − bκ2kκ3
) + J

∑
k

Kκ2k(bκ1kκ3
− bκ1κ3k)

− J
2

(Lκ2κ3
−Lκ3κ2

)Aκ1
+
J
2

(Lκ1κ3
−Lκ3κ1

)Aκ2
− J(Lκ1κ2

−Lκ2κ1
)Bκ3

= E(aκ1κ2κ3
− aκ2κ1κ3

)︸                                                                                                               ︷︷                                                                                                               ︸,
(D.18a)

〈↓κ1
↓κ2
↑κ3

,↑|H |ψb〉 = (Eκ1
+Eκ2

+Eκ3)(bκ1κ2κ3
− bκ2κ1κ3

)︸                                       ︷︷                                       ︸
− J

2

∑
k

Kκ1k(bkκ2κ3
− bκ2kκ3

)− J
2

∑
k

Kκ2k(bκ1kκ3
− bkκ1κ3

) +
J
2

∑
k

Kκ3k(bκ1κ2k − bκ2κ1k)

+ J
∑

k

Kκ1k(aκ3kκ2
− akκ3κ2

) + J
∑

k

Kκ2k(akκ3κ1
− aκ3kκ1

)

− J
2

(Lκ3κ2
−Lκ2κ3

)Bκ1
+
J
2

(Lκ3κ1
−Lκ1κ3

)Bκ2
− J(Lκ2κ1

−Lκ1κ2
)Aκ3

= E(bκ1κ2κ3
− bκ2κ1κ3

)︸                                                                                                               ︷︷                                                                                                               ︸ .
(D.18b)

In Eqs. (D.18) we keep only the braced terms, because the other terms correspond to higher order
corrections. Then we get the following coefficients

aκ1κ2κ3
− aκ2κ1κ3

≈ J
2

(Lκ2κ3
−Lκ3κ2

)Aκ1
− (Lκ1κ3

−Lκ3κ1
)Aκ2

+ 2(Lκ1κ2
−Lκ2κ1

)Bκ3

Eκ1
+Eκ2

+Eκ3 −E
, (D.19a)

bκ1κ2κ3
− bκ2κ1κ3

≈ J
2

(Lκ3κ2
−Lκ2κ3

)Bκ1
− (Lκ3κ1

−Lκ1κ3
)Bκ2

+ 2(Lκ2κ1
−Lκ1κ2

)Aκ3

Eκ1
+Eκ2

+Eκ3 −E
, (D.19b)

which are inserted into (D.17) to give

(Eκ +∆Eκ −E)Aκ −
3J
2

∑
k

KκkAk −
3J2

4

∑
kk′

(Lκk′ −Lk′κ)(Lkk′ −Lk′k)
Eκ +Ek +Ek′ −E

Ak = 0, for singlet Bκ = −Aκ,

(Eκ +∆Eκ −E)Aκ +
J
2

∑
k

KκkAk +
5J2

4

∑
kk′

(Lκk′ −Lk′κ)(Lkk′ −Lk′k)
Eκ +Ek +Ek′ −E

Ak = 0, for triplet Bκ = Aκ,

(D.20)

where

∆Eκ = −3J2

4

∑
kk′

|Lkk′ −Lk′k|2

Eκ +Ek +Ek′ −E
, (D.21)

is the quasiparticle energy shift. The integral equation (D.20) is solved iteratively by substituting
in the last term

for singlet: Aκ ≈
3J
2

∑
k

Kκk

Eκ +∆Eκ −E
Ak; for triplet: Aκ ≈ −

J
2

∑
k

Kκk

Eκ +∆Eκ −E
Ak. (D.22)

Then by having SuA = SvA [see Eq. (D.5)] for symmetric band ξ ∈ [−D..D], we obtained from Eq.
(D.20) with the above approximation (D.22) the following secular equations

1− 3J
2

∑
κ

u2
κ +uκvκ

Eκ +∆Eκ −E
− 9J3

8

∑
κkk′

(u2
κ +uκvκ)(u2

k +ukvk)(u2
k′ −uk′vk′ )

(Eκ +Ek +Ek′ −E)(Eκ +∆Eκ −E)(Ek +∆Ek −E)
= 0, for singlet,

1 +
J
2

∑
κ

u2
κ +uκvκ

Eκ +∆Eκ −E
− 5J3

8

∑
κkk′

(u2
κ +uκvκ)(u2

k +ukvk)(u2
k′ −uk′vk′ )

(Eκ +Ek +Ek′ −E)(Eκ +∆Eκ −E)(Ek +∆Ek −E)
= 0, for triplet.

(D.23)
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Now we want to calculate the bound state energy from equations (D.23). We will write down more
detailed calculation for the singlet case, because in the triplet case it is analogous. First thing to
note is that ∆Eκ gives ground-state energy shift when we set Eκ −E = 0 in the expression (D.21).
We denote this shift as ∆E0 and introduce new variables

∆E0 = −3J2

4

∑
kk′

|Lkk′ −Lk′k|2

Ek +Ek′
, (D.24a)

E = E′ +∆E0, ∆Ẽκ = ∆Eκ −∆E0. (D.24b)

The new variable E′ corresponds to energy difference between ground-state doublet and excited
singlet/triplet. Using the new variables the equation (D.23) for the singlet becomes

1− 3J
2

∑
κ

u2
κ +uκvκ

Eκ +∆Ẽκ −E′

− 9J3

4

∑
κk

(u2
κ +uκvκ)(u2

k +ukvk)

(Eκ +∆Ẽκ −E′)(Ek +∆Ẽk −E′)
πνF

2
U− (E′ +∆E0 −Eκ −Ek) = 0,

(D.25)

where we introduced
U±(E) = suu ± suv . (D.26)

By assuming that 0 < |∆| −E′ ∼ g2|∆| � |∆| the main contribution to the integrals in the last term of
(D.25) comes when Eκ and Ek are close to |∆|. Then we also have

1
2

∑
κ

u2
κ +uκvκ

Eκ +∆Ẽκ −E′
≈ πνF

2
U+(E′)

(
1− g2c1

)
,

∆Ẽκ ≈ (Eκ −E′)g2c1,

c1 =
3

π2ν2
F

∑
kk′

|Lkk′ −Lk′k|2

(Ek +Ek′ )2 ,

(D.27)

and after leaving the relevant terms which will give contributions to third order in g = πνFJ/2 to
E′, Eqs. (D.25) become

1− 3gU+(E′)− 9g3U2
+(E′)U−(−|∆|) = 0, for singlet,

1 + gU+(E′)− 5g3U2
+(E′)U−(−|∆|) = 0, for triplet.

(D.28)

Once again we write the energy as E′ = |∆|(1− η2), which then gives

U+(E′) ≈ 1
π

[
ln

2D
|∆|

+
2
η

(
π
√

2
− η

)]
,

U−(−|∆|) ≈
1
π

(
ln

2D
|∆|
− 2

)
, D � |∆|,

(D.29)

and finally from Eqs. (D.28) we obtain

ηS ≈ 3
√

2g
[
1 +

4g
π

(
ln

2D
|∆|
− 2

)]
,

ηT 0 ≈ −
√

2g
[
1 +

4g
π

(
ln

2D
|∆|
− 2

)]
.

(D.30)
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The above result (D.30) is consistent with poor man’s scaling for the coupling [70, 149], when
D � |∆|, and it differs from the result obtained in [74]. There some small mistakes were made
when obtaining the leading-logarithmic contribution ln 2D

|∆| for the energy difference. So we resum

leading-logarithms ln 2D
|∆| in (D.30) using poor man’s scaling

η(g,D)− η(g + δg,D − δD) = 0, (D.31)

where η stands for ηS/T 0 . From Eq. (D.31) we obtain the usual flow equation

dg

dλ
= −

4g2

π
, dλ = d lnD =

dD
D
, (D.32)

which gives the following running coupling g∗ when D is scaled down to D∗

g∗ =
π

4ln D∗
TK

, TK =De−
π
4g . (D.33)

Note that D∗� |∆| for the usual poor man’s scaling equation (D.32) to hold.



Appendix E

Equations for phonon Green’s functions

In this Appendix we calculate the following retarded correlation functions

Gur,Rβνn′ ,tt′ = − i
~

θ(t − t′)[uβν(t), rn′ (t
′)], (E.1a)

Gru,Rnβ′ν′ ,tt′ = − i
~

θ(t − t′)[rn(t),uβ′ν′ (t
′)], (E.1b)

DRnn′ ,tt′ = − i
~

θ(t − t′)[rn(t), rn′ (t
′)], (E.1c)

using the equation of motion technique. Note that the variables are in mass weighted coordinates
(9.3) and we use the following shorthand notation n ≡ i,m, β ≡ i′ ,α,r. Here

uiαν(r, t) =

√
Mα~

2ραωαν
[u(ν)
iα (r)e−iωανtaν +u∗(ν)

iα (r)eiωανta†ν] (E.2)

is mass weighted displacement vector for particular mode ν. In the calculations we will need such
time derivatives [commutators wit Hamiltonian (9.1)] of rn,t, pn,t, uβν,t and πβν,t:

∂
∂t
rn,t =

i
~

[H,r]t = pn,t , (E.3a)

∂
∂t
pn,t =

i
~

[H,p]t = −Vnnrn,t −
∑
n1,n

Vnn1
rn1,t −

∑
β1

Vnβ1
uβ1,t , (E.3b)

∂
∂t
uβν,t =

i
~

[H,uβν]t =
Mβ

ρβ
πβν,t ,

∂
∂t
uβ,t =

1
ρα
πβ,t , (E.3c)

∂
∂t
πβν,t =

i
~

[H,πβν]t = −
ρβ
Mβ

ω2
βνuβν,t −

∑
n1

rn1,tVn1β2
c

(ν)
β2β
−
∑
β1

uβ1,tVβ1
c

(ν)
β1β︸             ︷︷             ︸

substrate frequency
shift term

, (E.3d)

where we used the shorthand notation At = A(t) for the Heisenberg evolution of an operator, and

introduced the function c(ν)
ββ′ ≡ δαα′cii′ ,α,ν,rr′ = δαα′ Re[u(ν)

iα (r)u∗(ν)
i′α (r′)] with u(ν)

iα (r) being given by Eq.
(10.28). After differentiating Eqs. (E.1a), (E.1c) with respect to time t and Eq. (E.1b) with respect to
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time t′ we obtain

∂tG
ur,R
βνn′ ,tt′ =

Mβ

ρβ
Gπr,Rβνn′ ,tt′ , (E.4a)

∂t′G
ru,R
nβ′ν′ ,tt′ =

Mβ′

ρβ′
Grπ,Rnβ′ν′ ,tt′ , (E.4b)

∂tD
R
nn′ ,tt′ = Gpr,Rnn′ ,tt′ , (E.4c)

and we see that we need the equations of motion for Gπr,Rβνn′ ,tt′ , G
rπ,R
nβ′ν′ ,tt′ , and Gpr,Rnn′ ,tt′

∂tG
πr,R
βνn′ ,tt′ = −

ρβ
Mβ

ω2
βνG

ur,R
βνn′ ,tt′ −

∑
β1n2

c
(ν)
ββ1
Vβ1n2

DRn2n′ ,tt′
−
∑
β1ν1

c
(ν)
ββ1
Vβ1

Gur,Rβ1ν1n′ ,tt′
, (E.5a)

∂t′G
rπ,R
nβ′ν′ ,tt′ = −

ρβ′

Mβ′
ω2
β′ν′G

ru,R
nβ′ν′ ,tt′ −

∑
n1β2

DRnn1,tt′
Vn1β2

c
(ν′)
β2β′
−
∑
ν1

Gru,Rnβ1ν1,tt′
Vβ1

c
(ν′)
β1β′

, (E.5b)

∂tG
pr,R
nn′ ,tt′ = −ω2

nD
R
nn′ ,tt′ −

∑
n1,n

Vnn1
DRn1n′ ,tt′

−
∑
β1ν1

Vnβ1
Gur,Rβ1ν1n′ ,tt′

, (E.5c)

where we denoted Vnn =ω2
n. Combining the equations (E.4) and (E.5) we obtain

∂2
tG

ur,R
βνn′ ,tt′ = −ω2

βνG
ur,R
βνn′ ,tt′ −

∑
β1n2

Mβ

ρβ
c

(ν)
ββ1
Vβ1n2

DRn2n′ ,tt′
−
∑
β1ν1

Mβ

ρβ
c

(ν)
ββ1
Vβ1

Gur,Rβ1ν1n′ ,tt′
, (E.6a)

∂2
t′G

ru,R
nβ′ν′ ,tt′ = −ω2

β′ν′G
ru,R
nβ′ν′ ,tt′ −

∑
n1β2

DRnn1,tt′
Vn1β2

Mβ′

ρβ′
c

(ν′)
β2β′
−
∑
β1ν1

Gru,Rnβ1ν1,tt′
Vβ1

Mβ′

ρβ′
c

(ν′)
β1β′

, (E.6b)

∂2
tD

R
nn′ ,tt′ = −ω2

nD
R
nn′ ,tt′ −

∑
n1,n

Vnn1
DRn1n′ ,tt′

−
∑
β1ν1

Vnβ1
Gur,Rβ1ν1n′ ,tt′

. (E.6c)

Now we Fourier transform the above equations with respect to the time difference, i.e., we integrate
both sides with

∫ +∞
−∞ d(t − t′)ei(ω+iη)(t−t′) . . ., and then we get

− (ω+ iη)2Gur,Rβνn′ ,ω = −ω2
βνG

ur,R
βνn′ ,ω −

∑
β1n2

Mβ

ρβ
c

(ν)
ββ1
Vβ1n2

DRn2n′ ,ω
−
∑
β1ν1

Mβ

ρβ
c

(ν)
ββ1
Vβ1

Gur,Rβ1ν1n′ ,ω
, (E.7a)

− (ω+ iη)2Gru,Rnβ′ν′ ,ω = −ω2
β′ν′G

ru,R
nβ′ν′ ,ω −

∑
n1β2

DRnn1,ωVn1β2

Mβ′

ρβ′
c

(ν′)
β2β′
−
∑
β1ν1

Gru,Rnβ1ν1,ω
Vβ1

Mβ′

ρβ′
c

(ν′)
β1β′

, (E.7b)

− (ω+ iη)2DRnn′ ,ω = −ω2
nD

R
nn′ ,ω −

∑
n1,n

Vnn1
DRn1n′ ,ω

−
∑
β1ν1

Vnβ1
Gur,Rβ1ν1n′ ,ω

, (E.7c)

which can be rewritten as

Gur,Rβνn′ ,ω =
∑
β1ν1n2

S0,R
βν,β1ν1,ω

Vβ1n2
DRn2n′ ,ω

+
∑
β1ν1

S0,R
βν,β1ν1,ω

Vβ1
Gur,Rβ1ν1n′ ,ω

, (E.8a)

Gru,Rnβ′ν′ ,ω =
∑
n1β2ν2

DRnn1,ωVn1β2
S0,R
β2ν2,β′ν′ ,ω

+
∑
β1ν1ν2

Gru,Rnβ1ν1,ω
Vβ1

S0,R
β1ν2,β′ν′ ,ω

, (E.8b)

DRnn′ ,ω =
∑
n1,n2

D0,R
nn1,ωVn1n2

DRn2n′ ,ω
+

∑
n1β2ν2

D0,R
nn1,ωVn1β2

Gur,Rβ2ν2n′ ,ω
, (E.8c)

where D0 and S0 are non-interacting substrate and particle Green’s functions which are given in
Appendix F by equation (F.1). In the end we will need Green’s functions summed over the modes ν
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and ν′, and by summing the above equations (E.8) over ν and ν′ we obtain

Gur,Rβn′ ,ω =
∑
β1n2

S0,R
ββ1,ω

Vβ1n2
DRn2n′ ,ω

+
∑
β1

S0,R
ββ1,ω

Vβ1
Gur,Rβ1n′ ,ω

, (E.9a)

Gru,Rnβ′ ,ω =
∑
n1β2

DRnn1,ωVn1β2
S0,R
β2β′ ,ω

+
∑
β1

Gru,Rnβ1,ω
Vβ1

S0,R
β1β′ ,ω

, (E.9b)

DRnn′ ,ω =
∑
n1,n2

D0,R
nn1,ωVn1n2

DRn2n′ ,ω
+
∑
n1β2

D0,R
nn1,ωVn1β2

Gur,Rβ2n′ ,ω
. (E.9c)

The equation of motion technique gives exactly the same equations for advanced Green’s functions
(with η→−η) and as we can see from Larkin-Ovchinnikov representation (11.9) it also carries to
Schwinger-Keldysh space (see Eq. 11.10) [131, 134, 150].





Appendix F

The non-interacting particleD0 and lead S0 Green’s
functions

In this section we present the non-interacting particle Green’s function D0 corresponding to Hamil-
tonian H0 =

∑
im(p2

im +Vim,imr
2
im)/2 and lead Green’s functions S0 corresponding to Hamiltonian

H0 =
∑

αν ~ωανa
†
ανaαν . We note that we use mass weighted coordinates (9.3). By using equation of

motion we obtain for Fourier transformed retarded Green’s functions

D0,R
im,i′m′ ,ω =

δii′δmm′

(ω+ iη)2 −ω2
im

, ω2
im =

Kim
Mm

, (F.1a)

S0,R
iαrν,i′α′r′ν′ ,ω =

Mα

ρα

cii′ ,α,ν,rr′δαα′δνν′

(ω+ iη)2 −ω2
αν

, ωαν = cαt
√
k2
β +κ2, (F.1b)

where

cii′ ,α,ν,rr′ = Re
[
u

(ν)
iα (r)u∗(ν)

i′α (r′)
]

=
1
2

[
u

(ν)
iα (r)u∗(ν)

i′α (r′) +u∗(ν)
iα (r)u(ν)

i′α(r′)
]
, (F.2)

and S0,R
iαrν,i′α′r′ν′ ,ω corresponds to

S0,R
iαrν,i′α′r′ν′ ,tt′ = −iθ(t − t′)〈[uiαν(r, t),ui′α′ν′ (r

′ , t′)]〉0. (F.3)

We are interested in the νν′ summed lead Green’s function S0,R
iαr,i′α′r′ ,ω, when molecules are attached

only to the surface of the leads rα = (x,yα , z), r′α = (x′ , yα , z′). So we need the coefficient

cα,ii′ ,ν,rαr′α =
1

2(2π)2

[
f

(ν)
iα (yα)f ∗(ν)

i′α (yα)eikz(z−z′)eikx(x−x′) + f ∗(ν)
iα (yα)f (ν)

i′α (yα)e−ikz(z−z′)e−ikx(x−x′)
]
, (F.4)

and then the required νν′ summed lead Green’s function is

S0,R/A
iαrα ,i′α′r′α ,ω

=
Mαδαα′

2(2π)2ρα

∑
m=H,±,0,R

∫ κD

0
dκκ

∫ k2

k1

dkβ

∫ 2π

0
dθ

1

(ω ± iη)2 − c2
t (k2

β +κ2)

×
[
f

(ν)
iα (yα)f ∗(ν)

i′α (yα)eikz(z−z′)eikx(x−x′) + f ∗(ν)
iα (yα)f (ν)

i′α (yα)e−ikz(z−z′)e−ikx(x−x′)
]
,

(F.5)

where different modes m =H,±,0,R and relevant integration intervals k1, k2 for these modes are

described in Section 10. We have the following expressions for functions f
(κ,θ,kβ ,m)
iα,yα

, which enter
(F.5)

153



154 F. THE NON-INTERACTING PARTICLE D0 AND LEAD S0 GREEN’S FUNCTIONS

H : fz = −sinθ

√
2
π
, k1 = 0, k2 = +∞,

fx = cosθ

√
2
π
.

± : fz =
cosθ√

4π(1 + k2
β /κ

2)

±
√
kβ
kα

(1− ζ±)− i
kβ
κ

(1 + ζ±)

 , ζ± = a± ib, kα =
ct
cl

√√
k2
β +κ2

1− c2l
c2t

,
fx =

sinθ√
4π(1 + k2

β /κ
2)

±
√
kβ
kα

(1− ζ±)− i
kβ
κ

(1 + ζ±)

 , a =
(k2
β −κ

2)2 − 4κ2kαkβ

(k2
β −κ2)2 + 4κ2kαkβ

, b =
4κ

√
kαkβ(k2

β −κ
2)

(k2
β −κ2)2 + 4κ2kαkβ

,

fy =
1√

4π(1 + k2
β /κ

2)

±
√
kαkβ

κ2 (1 + ζ±) + i (1− ζ±)

 , k1 = κ

√√
c2l
c2t
− 1, k2 = +∞.

0 : fz = −i
cosθ√

2π(1 + k2
β /κ

2)

[
b+

kβ
κ

(1 + a)
]
, kγ =

ct
cl

√√
κ2

 c2l
c2t
− 1

− k2
β , kα = ikγ ,

fx = −i
sinθ√

2π(1 + k2
β /κ

2)

[
b+

kβ
κ

(1 + a)
]
, a =

(k2
β −κ

2)2 − 4iκ2kγkβ

(k2
β −κ2)2 + 4iκ2kγkβ

, b =
4κkβ(k2

β −κ
2)

(k2
β −κ2)2 + 4iκ2kγkβ

.

fy =
1√

2π(1 + k2
β /κ

2)

[
−
kγ
κ
b+ i(1− a)

]
, k1 = 0, k2 = κ

√√
c2l
c2t
− 1.

R : fz = icosθ
√

κ
K(σ )

1− 2kγkη

κ2 + k2
η

 , kβ = ikη ,

fx = isinθ
√

κ
K(σ )

1− 2kγkη

κ2 + k2
η

 , K(σ ) =
(kγ − kη )(κ2kγ −κ2kη + 2kγk2

η )

2κkγk
2
η

,

fy =
√

κ
K(σ )

kγκ − 2κkγ

κ2 + k2
η

 , there is no integral over kη , because kη = kR,

(F.6)

where we have suppressed the labels α, yα, and (κ,θ,kβ ,m) for simplicity. We can obtain the
advanced S0,A and Keldysh S0,K Green’s function by noting that in equilibrium for bosonic Green’s
function Gω we have the relations GAω = [GRω]† and GKω = [2n(ω) + 1](GRω −GAω).

F.1 Coupling to a single point
If the molecule couples to a single point of the lead rα = (xα , yα , zα) then from Eq. (F.5) and Eq.
(11.27) we obtain such imaginary part for different modes m of S0,R

iαrα ,iαrα ,ω
:

bH‖ = − ω

4πρc3
t

∫ 1

0

xdx
√

1− x2
≈ − ω

4πρc3
t

, (F.7a)

b±‖ = − ω

8πρc3
t

∫ 1/cr

0

crx
√

1− x2dx

cr(1− 2x2)2 + 4x2
√

1− x2
√

1− (crx)2
≈ −0.042

ω

4πρc3
t

, (F.7b)

b
(0)
‖ = − ω

4πρc3
t

∫ 1

1/cr

c2
r x
√

1− x2(1− 2x2)2dx

c2
r
[
1− 8x2(1− x2)(1− 2x2)

]
− 16x4(1− x2)

≈ −0.168
ω

4πρc3
t

, (F.7c)

bR‖ = − ω

4πρc3
t

πξ
√

(1− ξ)(c2
r − 1 + ξ)[cr(1 + ξ)− 2

√
ξ(c2

r − 1 + ξ)]2

cr(1− ξ2)2(
√
c2
r − 1 + ξ − cr

√
ξ)[(1 + 2ξ)

√
c2
r − 1 + ξ − cr

√
ξ]
≈ −0.151

ω

4πρc3
t

, (F.7d)
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b±⊥ = − ω

4πρc3
t

∫ 1/cr

0

x
√

1− (crx)2dx

cr(1− 2x2)2 + 4x2
√

1− x2
√

1− (crx)2
≈ −0.021

ω

4πρc3
t

, (F.7e)

b
(0)
⊥ = − 2ω

πρc3
t

∫ 1

1/cr

x3
√

1− x2[(crx)2 − 1]dx

c2
r
[
1− 8x2(1− x2)(1− 2x2)

]
− 16x4(1− x2)

≈ −0.540
ω

4πρc3
t

, (F.7f)

bR⊥ = − ω

2πρc3
t

πξ(1− ξ)5/2(c2
r − 1 + ξ)3/2

cr(1− ξ2)2(
√
c2
r − 1 + ξ − cr

√
ξ)[(1 + 2ξ)

√
c2
r − 1 + ξ − cr

√
ξ]
≈ −0.863

ω

4πρc3
t

. (F.7g)

For gold (Au) leads we have

cr =
cl
ct

=

√
2(1− σ )
1− 2σ

≈ 2.693, where σ = 0.42 is Poisson ratio, (F.8)

and 0 < ξ < 1 is determined from Eq. (10.84)

ξ4 + 4ξ3 + 2
(
3− 8

c2
r

)
ξ2 − 4

(
3− 4

c2
r

)
ξ + 1 = 0, ξ ≈ 0.107. (F.9)

Then the total values of imaginary parts are

b‖ ≈ −1.404
ω

4πρc3
t

≡ −A‖ω, b⊥ ≈ −1.445
ω

4πρc3
t

≡ −A⊥ω, (F.10)

Note that b‖ corresponds to bzz, bxx components and b⊥ corresponds to byy .
We can calculate the real part using the Kramers-Krönig relations (also known as Hilbert

transform). For function G(ω), which is analytic in the upper complex half-plane (the retarded
one), and which decays as ω−a with a > 0 we have

ReG(ω) =
1
π
P

∫ +∞

−∞
dω′

ImG(ω′)
ω′ −ω

,

ImG(ω) = − 1
π
P

∫ +∞

−∞
dω′

ReG(ω′)
ω′ −ω

.

(F.11)

In our case the retarded function S0,R
iαrα ,iαrα ,ω

satisfies all the above mentioned conditions if we
cutoff the frequency ω in the imaginary parts of (F.10) by the Debye frequency ωD . In such a case
after applying transformation Eq. (F.11) to Eq. (F.10) we obtain

a‖/⊥ = −
A‖/⊥
π

(
2ωD +ω ln

∣∣∣∣∣ωD −ωωD +ω

∣∣∣∣∣) . (F.12)

F.2 Coupling to an area
From Eq. (F.12) we see that the real part a‖/⊥ depends on the cutoff ωD even when ωD → +∞,
and in such a case the result for the heat current depends on the actual value of ωD . To see if the
assumption of coupling to a single point of the lead is valid we examine coupling to an area as
depicted in the inset of Figure F.1. We consider such a function

R0
ii′ ,ω =

1
a4

∫ a
2

− a2
dzdxdz′dx′S0

ii′ ,rαr′α ,ω
, (F.13)
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Figure F.1: The imaginary part of function R0,R
ii′ ,ω (F.15) for different modes m. Solid black curves

correspond to R0,R
zz,ω, R0,R

xx,ω and dotted blue curves correspond to R0,R
yy,ω. Solid vertical gray lines

denote the values of dimensionless Debye frequencies ω̃1 ≈ 2.80 corresponding to radius of a gold
atom a1 = 1.5 Å, and ω̃2 ≈ 7.61 corresponding to a lattice constant a2 = 4.08 Å.

where we integrate the lead Green’s function over area a2 for every of the variables rα = (x,yα , z)
and r′α = (x′ , yα , z′). Note that we have neglected the label α for convenience. If the coupling area
is of the size of the lead atom the Debye ωD frequency should cutoff the imaginary part of the
function (F.13) before it starts decaying do to coupling to a finite area. Using the following integrals

Izz = Ixx =
∫ 2π

0

dθ
cos2θ

sin2
(κa

2
cosθ

)
sin2

(κa
2

sinθ
)
,

Iyy =
∫ 2π

0

dθ

cos2θ sin2θ
sin2

(κa
2

cosθ
)

sin2
(κa

2
sinθ

)
,

(F.14)

we can rewrite the retarded function of (F.13) as

R0,R
ii′ ,ω =

1
2(2π)2ρ

∑
m=H,±,0,R

∫ κD

0
dκκ

∫ k2

k1

dkβ
f̄

(ν)
i f̄

∗(ν)
i′ + f̄ ∗(ν)

i f̄
(ν)
i′

(ω ± iη)2 − c2
t (k2

β +κ2)
× 16
a4κ4 Iii′

(κa
2

)

=
16

2(2π)2ρc2
t a

∑
m=H,±,0,R

∫ κDa

0

du
u3

∫ k2a

k1a
dv

f̄
(ν)
i f̄

∗(ν)
i′ + f̄ ∗(ν)

i f̄
(ν)
i′

(ω̃ ± iη)2 − (v2 +u2)
× Iii′

(u
2

)
,

(F.15)

where f̄ represents functions in (F.6) without trigonometric factors dependent on the angle θ. Also
the new variables and the dimensionless frequency are

ω̃ =ωa/ct , u = κa, v = kβa. (F.16)
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Now in expression (F.15) we separate the real and imaginary part in the denominator, i.e.,

1
(ω̃ ± iη)2 − (v2 +u2)

= −P 1
v2 +u2 − ω̃2 ∓

iπ
2

sgn(ω̃)
√
ω̃2 −u2

δ(v −
√
ω̃2 −u2), (F.17)

where we used

δ(
√
v2 +u2 ∓ ω̃) =

|ω̃|
√
ω̃2 −u2

δ(v −
√
ω̃2 −u2). (F.18)

Note that for Rayleigh mode R we have fixed value of v2 = −u2ξ, where ξ satisfies Eq. (10.84), and
then we use the following form of the relation (F.17)

1
(ω̃ ± iη)2 −u2(1− ξ)

= −P 1
u2(1− ξ)− ω̃2 ∓

iπ

2(ω̃ ± iη)
√

1− ξ
δ

(
u − |ω̃|
√

1− ξ

)
. (F.19)

Using Eqs. (F.17) and (F.19) we find the imaginary part of function R0,R
ii′ ,ω (F.15), which is plotted in

Figure F.1 for different modesm. Solid vertical gray lines denote Debye frequencyωD = 22.2 THz for
a1 = 1.5 Å corresponding to radius of a gold atom, which gives dimensionless frequency ω̃1 ≈ 2.80,
and a2 = 4.08 Å corresponding to a lattice constant, which gives dimensionless frequency ω̃2 ≈ 7.61.
We see when the coupling area is shrunk to size of gold atom the Debye frequency cutoff is
consistent with cutoff, which appears due to coupling to a finite area.





Appendix G

Normal modes of the two masses model

We want to rewrite Hamiltonian (9.1) with the coupling (9.2) for two masses model in the normal
mode basis, which is useful when calculating the transmission (11.30). For simplicity, we suppress
the coordinate label i and then we need to diagonalize the following Hamiltonian

HM =
p2

1
2

+
p2

2
2

+
K +KL
2M1

r2
1 +

K +KR
2M2

r2
2 −

K
√
M1M2

r1r2, (G.1a)

V = − KL√
MLM1

r1uL −
KR√
MRM2

r2uR. (G.1b)

In order to find the normal modes of (G.1a) we need to diagonalize the following Hessian matrix

H =

 K1
M1

− K√
M1M2

− K√
M1M2

K2
M2

 =
(
ω2

1 V12
V12 ω2

2

)
= PDP−1, (G.2)

where
K1 = K +KL, K2 = K +KR. (G.3)

The matrices D, P , P−1 are

D =
(
ω2

+ 0
0 ω2

−

)
, P =

(
u v
−v u

)
, P−1 =

(
u −v
v u

)
, PP−1 = 1, (G.4)

with

ω2
± =

ω2
1 +ω2

2
2

±∆, ∆ =
√
δ2 +V 2

12 δ =
ω2

1 −ω
2
2

2
, (G.5)

u =

√
1
2

(
1 +

δ
∆

)
, v =

√
1
2

(
1− δ

∆

)
. (G.6)

Then the normal mode coordinates are expressed as(
r+
r−

)
= P−1

(
r1
r2

)
=

(
u −v
v u

)(
r1
r2

)
=

(
ur1 − vr2
ur2 + vr1

)
(G.7)

and the inverse transformation is(
r1
r2

)
= P

(
r+
r−

)
=

(
u v
−v u

)(
r+
r−

)
=

(
ur+ + vr−
ur− − vr+

)
. (G.8)
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In the normal mode basis the Hamiltonian (G.1) is expressed as

HM =
p2

+

2
+
p2
−

2
+

1
2
ω2

+r
2
+ +

1
2
ω2
−r

2
−, (G.9a)

V = r+ (V+LuL +V+RuR) + r− (V−LuL +V−RuR) , (G.9b)

where
V+L = − KLu√

MLM1
, V+R = +

KRv√
MRM2

,

V−L = − KLv√
MLM1

, V−R = − KRu√
MRM2

,
(G.10)

Note that uα corresponds to the displacement vector of the leads and u is just given by (G.6).
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