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Summary

In this thesis different experiments on entanglement involving room tempera-
ture ensembles of Cesium atoms are described. The key ingredient is a con-
trolled dispersive interaction of a light field with the ensemble of atoms. To
this end the previously existing description of the light atom interface was
refined. With this new understanding an experiment on steady state entan-
glement between the spin states of two atomic ensembles was proposed and
experimentally realized.

With a completely different approach, spin squeezing of the collective spin
state of an atomic ensemble was generated. The spin noise reduction relies on
the creation of superposition states within the single atoms of the ensemble
via a Raman transition. The atomic state is reconstructed and squeezing of
approximately 3dB is reported.

One application of entanglement is quantum teleportation. In the presented
setup a light state was teleported successfully to a single atomic ensemble.
Light atom entanglement generated by dispersive interaction was used as a
resource together with quantum measurement and feedback to realize the state
transfer with a fidelity exceeding the classical benchmark.

Resumé

Denne afhandling beskriver forskellige eksperimenter med ensembler af cæsi-
umatomer ved stuetemperatur. Det vigtigste indhold er en undersøgelse af,
hvordan lys og atomer vekselvirker på en kontrolleret måde, når lyset har en
frekvens relativt langt fra atomernes egenfrekvens. I dette arbejde udvikles en
mere præcis beskrivelse af visse detaljer ved denne vekselvirkning end hvad
tidligere er blevet præsenteret. Denne nye beskrivelse bruges til at foreslå og
udføre et eksperiment, der viser at to atomare ensembler er i en ligevægtstil-
stand, hvori de er sammenfiltrede ("entangled").

I en anden sammenhæng beskrives et andet eksperiment, der viser, at det er
muligt at "squeeze" det atomare ensembles samlede "spin"-tilstand. Reduk-
tionen i støjen af spintilstanden skyldes at de enkelte atomer er i en super-
positionstilstand tilvejebragt via Ramanovergange. Den atomare tilstand blev
rekonstrueret og her rapporteres det, at den observerede squeezing var 3dB.

En mulig anvendelse af sammenfiltring er i forbindelse med kvantetelepor-
tation. Her præsenteres et eksperiment, hvor det lykkedes at teleportere en
kvantetilstand fra lysfeltet til det atomare ensemble. Processen havde en højere
"fidelity", end hvad der er muligt ved klassiske vekselvirningsprocesser.



Abstract

In this thesis different experiments on entanglement involving a room tem-
perature ensemble of Cesium atoms are described. The key ingredient is a
controlled dispersive interaction of a light field with the ensemble of atoms
which can be combined with quantum measurement and feedback. Based on
this light atom interface several experiments on entanglement generation and
application are realized. Steady state entanglement between two macroscopic
ensembles of atoms is reported on and spin squeezing of a single ensemble
due to internal single atom entanglement is reported on. Finally, light atom
entanglement is utilized to realize quantum teleportation of a light state to an
atomic ensemble.





Preface

This thesis represents an attempt to present most of the work that I have been
a part of in the research group of professor Eugene Polzik in QUANTOP (the
Danish National Research Foundation Center for Quantum Optics) at the Niels
Bohr Institute, University of Copenhagen.

The experimental setup in which all described experiments were realized was
- though always under continuous development - to a large extend present
when I joined the group and a lot of the details can be found in PhD theses of
previous students [JSC+04, SJP07]. I repeat some aspects here where I find it
instructive for understanding. Part of the experimental achievements discussed
in the course of the thesis are also published in [1, 2, 3, 4, 7, 10].

All of the experimental efforts reported on have been achieved as a group effort
under the conduct of Eugene Polzik. Due to the close collaboration with the
PhD students Jacob Sherson and Kasper Jensen, there is a certain overlap with
their PhD theses. The names of everyone who I have been cooperating with
for specific achievements are represented in the author listings of the relevant
publications, but I want to name some of my coworkers here, to all of whom I
am very grateful.

The teleportation experiment was performed together with Jacob Sherson, of
whom I received my introduction to the experiment and who has invested
a huge amount of time in helping me to get acquainted with the setup and
theory of the experiment. Shortly after, Thomas Fernholz joined the group
as a post doc and working together with him on the single atom squeezing
experiment has been very inspirational and instructive. Partly due to my fam-
ily extension, my PhD period has a big overlap with Kasper Jensen, and our
long successful teamwork included work on the spin squeezing experiment
and the steady state entanglement. Wojtek Wasilewski joined the group in my
absence and worked out new ideas for both the theoretical understanding and
the experimental realization of the experiment. The discussions with him sup-
plied me with new insight to the experiment. The realization of steady state
atomic entanglement was accompanied by a close collaboration with the the-
orist Christine Muschik and her supervisor Ignacio Cirac. Lately Jonas Meyer
Petersen has joined the group and has contributed to the atomic entanglement
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ing in the course of my PhD. I also want to thank Jörg Helge Müller for his
patient instruction on daily experimental and all other issues amongst others
the writing of my thesis. Also, I want to thank Anders Sørensen who advised
me on theoretical problems.

It has been a great pleasure working together with all the Quantoppies. The
good atmosphere in the group has made this experience a pleasure.

I want to conclude with expressing my thankfulness to my family, old and new,
without whose understanding it would not have been possible to accomplish
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Chapter 1

Introduction

The chore topic of this thesis, atomic entanglement, is a research field with
great activity today. Already since its conceptual origin - the widely known
paper of Einstein, Podolsky and Rosen [EPR35] - entanglement has been one
of the most controversial and discussed elements of quantum mechanics. This,
as Einstein put it "spukhafte Fernwirkung" ("spooky action in the distance"
[Ein71]), was attempted to be explained by hidden variables, which would elu-
cidate the strange connection of two systems separated in space. However,
John Bell [B+64] introduced inequalities, which showed a discrepancy between
predictions made by quantum mechanics and any local hidden variable theory.
This way he formed an indicator, which could be used to test quantum theory.
If one were able to produce an entangled pair, correlation measurements on the
two constituents in different bases should yield a number that would contradict
any classical, local theory. In [CS78] several experiments were introduced that
granted the possibility of such an investigation.
The first entanglement - and violation of Bell’s inequality was shown with po-
larization entangled photons, emitted in a radiative atomic cascade [ADR82].
Later continuous variable entanglement similar to entanglement originally pro-
posed in [EPR35] was realized for the quadratures of two light beams [OPKP92].
This kind of entanglement experiment does not display any violation of Bell’s
inequality due to the Gaussian nature of the light states and the homodyne
measurement scheme, but the inseparability of the states of the two compo-
nents can be shown elsewise [DGCZ00].

Atomic entanglement proved to be harder to achieve. The main difficulty -
to engineer an entangling interaction between two atomic systems - was first
solved by the exchange of a single photon of two Rydberg atoms in a cavity
[HMN+97]. Shortly after, deterministic two atom entanglement was shown in
ion traps [TWK+98]. Many experimental realizations of quantum information
ideas followed in ion traps. Despite enormous experimental complexity, those
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2 Introduction

setups pocess tremendous advantages compared to other systems due to un-
matched long lifetimes and a high degree of control [RLR+04, LOJ+05].

The first atomic entanglement of continuous variables was established by a
collective quantum non demolition measurement (QND) on two macroscopic
atomic ensembles in the setup that is the basis of all experiments discussed
in this thesis [JKP01]. The QND approach has since become one of the stan-
dard spin squeezing techniques used in several experiments [KMB00, AWO+09,
TVLK08, TFNT09, SSLV10].

One of the reasons for the apparent high interest nowadays in achieving and
improving entanglement between different systems is rooted in more than the
desire to make a point in supporting quantum mechanics. The fields of quan-
tum communication and quantum information rely heavily on entanglement
as a resource. For instance, to overcome the limitations of quantum commu-
nications, due to imperfect communication channels, the idea of a repeater
[BDCZ98] was brought forward. Moreover, the concept of quantum networks
[Kim08] depends on coupling between stationary systems (memories) and in-
formation carriers. The interface between atomic ensembles and light is one
possible realization. An example is the scheme for quantum communication
between two atomic ensembles proposed by Duan, Lukin, Cirac and Zoller
(DLCZ) [DLCZ01], which has quantum memories, and single pairs of entan-
gled photons as building blocks. That this approach is not too far from real-
ity becomes clear considering that in [CDRF+05] the generation of entangle-
ment between two atomic memories, following this idea was reported. The
two atomic systems are two distant atomic ensembles, consisting of 105 Cesium
atoms in a MOT.

A whole range of other fields of research are directed towards establishing
the required resources for quantum information processing [ZBB+05], amongst
others are cavity QED and several solid state systems such as quantum dots,
superconducting qubits and impurity spins in solids. A lot of experimental and
theoretical efforts lie in the discrete regime with qubits as the basic components.
However, also for continuous variables there is a lot of development in the field
of quantum communication and information [BvL05, CCLP07].

Another - more straight forward - application of entanglement and squeezing is
the improvement of metrology experiments, such as atomic clocks, and atomic
spectroscopy [PMM05, KBM98, LBS+04, RCK+06].

In this thesis I will report on different experiments on entanglement of the col-
lective spins of a macroscopic atomic system at room temperature. The basis of
the experiments is an atom light quantum interface, where light is coupled off
resonantly to a well prepared atomic ensemble. An illustration of the experi-
mental scenario is shown in figure 1.1. Part of the presented work is devoted
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Figure 1.1: An ensemble of oriented atoms interacting with light. After the interaction
the light is measured. Those components are the key ingredients for teleportation,
light-atom and atom-atom entanglement.

to establish a more accurate understanding of the underlying dispersive inter-
action of light with oriented atomic ensembles.

The interaction leaves the atoms and the light in an entangled state. This entan-
glement can be utilized to realize teleportation of a light state on to the atoms
[1]. The correlations between light and atoms can also be used to two-mode
squeeze the spins of two atomic ensembles by a measurement on light. In an
earlier realization in the same setup [JKP01] the entanglement lifetime was lim-
ited due to different decoherence mechanisms. In recent years a new concept of
generating quantum states has been brought forward where carefully designing
the environment of the system of interest leads to a situation where the system
is dissipatevly driven into the desired state ([PCZ96, KBD+08, VWC09, VMC10]
and many others). Combining this thought with the original idea of measure-
ment induced squeezing and a better understanding of the light atom interface
enabled us to produce an atomic steady state in which two atomic ensembles
are entangled. Such an experiment can be run over hours and the atomic en-
sembles remain entangled. This means that one just has to turn the interaction
"off" to have readily available entanglement [7].

With a totally different scheme, internal entanglement of the spin of single
atoms can be prepared. Again a dispersive light interaction is used to control
the atomic system. Via a Raman process it is possible to reach a situation, where
the single atoms are in a superposition state of the internal level structure -
leading to the possibility of reduced spin noise. This way squeezed spin states
of the collective ensemble can be produced [2].

The mentioned experiments which are the main topic of this thesis cover a wide
range of the field of quantum optics. Therefore, their concepts are put into
perspective of the respective fields in the introduction of the relevant chapters.

This work is divided in three parts: the theoretical background containing
chapters 2 and 3, the experimental methods with chapters 4 and 5 and finally
the description of the experiments on generation and application of entangle-
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ment in chapters 6, 7 and 8.
To specify, the theory behind the underlying light atom interface is presented in
chapters 2 and 3. While chapter 2 gives a summary of a previously established
theoretical approach [HSP10, She06], whose understanding is essential for the
discussed experiments, chapter 3 gives a detailed description of the extension
of the theory for higher coupling ranges.

In chapter 4 the details of the experimental system are disclosed, including
characteristic measures of atoms and light. Chapter 5 is concerned with the
quantum noise properties of the atomic and light system. In this context dif-
ferent kinds of entanglement are introduced together with an entanglement
criterion based on the noise properties of the entangled systems.

Chapter 6 details the experiment on teleportation of a light state onto an atomic
ensemble and the theory behind the experiment. In chapter 7 an experiment
on spin squeezing of an atomic ensemble by squeezing the spin of the single
atoms is presented. And finally in chapter 8 the generation of atomic steady
state entanglement is detailed.

The thesis in concluded with a short summary of other experiments, that have
been conducted in the same experimental setup, during the time between the
start and end of my PhD. I close with a conclusion and outlook.



Part I

Theoretical background
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Chapter 2

Light atom interface

In this chapter I will discuss the light-atom interface that provides the basis for
the experiments discussed in the thesis (in accordance with [SJP07, HSP10],[3]).
The applied dispersive interaction of a macroscopic light beam with an en-
semble of atoms at room temperature will turn out to be a versatile tool to
implement a great number of different interesting experiments at the quantum
level.

The two macroscopic systems that are used, namely light and atoms, are char-
acterized by continuous variables (CV). For the different quantum experiments
discussed later, it is often useful to consider canonical operators which will be
introduced in the first section. Then, the interaction will be described in detail
and the following, simple equations will be used throughout the entire thesis.

2.1 Light and atoms

When talking about an interface of two different systems, it is convenient to
have a common language to handle both systems. When experiments are dis-
cussed that involve a state transfer (as in chapter 6 and section 9.2) this is even
a necessity. As mentioned above, we chose to describe our systems in the lan-
guage of canonical operators x̂ and p̂ with [x̂, p̂] = i and the variances1:

Var(x̂) ·Var( p̂) ≥ 1
4

(2.1)

which will be introduced in the following. The discussion of the dynamics of
the system will be carried through in the Heisenberg picture.

1Var(Ô) = 〈(Ô− 〈Ô〉)2〉, h̄ = 1

7
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Figure 2.1: Level scheme of Cesium. The figure on the left shows the level scheme of
the D2 line of Cesium. All the atoms are pumped into the F = 4, m = 4 state such
that they are oriented along x. The magnetic field leads to a splitting of the magnetic
sublevels by the Larmor frequency Ω.

2.1.1 Atomic variables

The atomic system consists of an ensemble of about 1011 − 1012 Cesium atoms
at room temperature situated in a glass cell. The corresponding experimental
details will be discussed in depth in section 4.1.1.

The considered atomic variables are the projections of the collective internal
angular momentum of all atoms in the different directions, given by the sum of
the total angular momenta of the individual atoms ̂k

i :

Ĵi =
Na

∑
k

̂k
i (2.2)

with i = x, y, z. Since the ensemble contains such a vast amount of atoms
those spin variables are quasi continuous. The collective spin follows, as do the
individual spins, the commutation relation of angular momentum2,

[ Ĵy, Ĵz] = i Ĵx, (2.3)

so the Heisenberg uncertainty principle for the variances reads

Var( Ĵy) ·Var( Ĵz) ≥
〈Jx〉2

4
. (2.4)

In our setting, the atomic spins are all oriented along the x-direction. This
is achieved by pumping the atoms optically into F = 4, m = 4 of the 6S1/2

ground state (see figure 2.1), the method of which will be discussed in section
4.1.2. The maximal value of the spin component in x-direction is J = 4 · Na,

2h̄ = 1
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where Na is the number of atoms. The spins Ĵy, Ĵz of the fully oriented state
in the perpendicular directions follow Gaussian probability distributions with
a mean value of 0 and a minimum uncertainty meaning that the variances
Var( Ĵy) = Var( Ĵz) = J

2 . This is easily understood. We consider all atoms
in F = 4, m = 4. Since there are many independent atoms, we can assume
〈J2

x〉 = ∑〈(ji
x)

2〉 ≈ F2 · Na and therefore,

Var( Ĵy) = 〈 Ĵ2
y〉 = 〈 Ĵ2

z 〉 = ∑
k
〈 ̂k

y〉2 =
F · (F + 1)Na − 〈J2

x〉
2

=
F
2
· Na =

J
2

. (2.5)

This minimum uncertainty state is called a coherent spin state (CSS) and is the
starting point of all our experiments.

For highly oriented many atom systems we can use the Holstein-Primakoff ap-
proximation [HP40, Kit63]. We identify the fully oriented state as the ground
state of a harmonic oscillator and introduce collective atomic creation and an-
nihilation operators b† and b. Then Ĵx = J − b†b is decreased along with every
atomic excitation. On the right of figure 2.1 the atomic level structure of the
hyperfine ground state we use (F=4) is drawn. All the atoms start in the m = 4
ground state and an excitation in the described formalism leads to one atom
in the m = 3 state distributed over the whole ensemble. We introduce the
canonical atomic operators

x̂ =
Ĵy√

J ≈
1√
2
(b̂ + b̂†), p̂ = Ĵz√

J ≈
−i√

2
(b̂− b̂†), (2.6)

which follow the commutation relation [x̂, p̂] ≈ i.
When evaluating experiments, we normalize the transversal spin components
by the mean of the macroscopic spin over the interaction time 〈Jx〉 instead of
J. In this way, the commutator is kept constant also when the mean spin is
slightly reduced, e.g. due to decay or losses. This is exceedingly important,
when we evaluate the noise properties of the atomic states as the commutator
sets the minimum uncertainty noise.

In figure 2.2 a phase space diagram for a displaced atomic coherent state is
shown. Note that the displacement is connected to the collective excitation

d =
√

x̂2 + p̂2 =
√

n̂a +
1
2 (2.7)

with n̂a = b†b.

I want to add here that the Holstein-Primakoff approximation is very conve-
nient and will supply us with a very intuitive picture of the experiment. How-
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lightatoms Gaussian probability distribution

Figure 2.2: Phase space diagrams for the quadratures of light and atoms. The variables
follow Gaussian probability distributions. The displacements are given by the number
of excitations of the atomic state and the number of photons in the quantum polariza-
tion. Note that those numbers are very small compared to the total number of photons
and atoms.

ever, in some situations which need to be carefully evaluated the theory will
still hold, even if we venture further away from the CSS, assuming we normal-
ize with the true length of the macroscopic spin 〈Jx〉 and not its maximal value
J. In this way the commutator of x̂ and p̂ is still held approximately constant,
the noise properties might change dramatically, though.

In the experiment a magnetic field is added in the x-direction. This is described
by the Hamiltonian ĤB = h̄Ω Ĵx which leads to a precession of Ĵy and Ĵz around
the x-axis with the Larmor frequency Ω. Ω is given by the magnetic field
Ω = gFµB/h̄B. In our case, with a magnetic field B of around 0.9 Gauss, this
frequency lies at 2π320 kHz. In the following, the operators in the rotating
frame are often the variables of interest:

x̂′ = x̂ cos(Ωt)± p̂ sin(Ωt) (2.8)

p̂′ = p̂ cos(Ωt)∓ x̂ sin(Ωt). (2.9)

The lower signs indicate the setting, where the macroscopic spin is oriented
opposite to the magnetic field. Note that the definition of x̂ = ± Ĵy/

√
〈Jx〉

changes sign for the two different orientations.
The creation operator in the rotating frame reads:

b̂′ =
1√
2
(x̂′ + i p̂′) = b̂e∓iΩt (2.10)

Later I will drop the prime for the operators in the rotating frame as those are
the operators of interest.
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2.1.2 Light Variables

To represent the light propagating in z-direction we look at the Stokes opera-
tors which characterize the polarization state of light. They are given by the
differences of the number operators n̂pol of the photons polarized in different
orthogonal bases.

Ŝx = 1
2 (n̂x − n̂y),

Ŝy = 1
2 (n̂+45◦ − n̂−45◦),

Ŝz = 1
2 (n̂rh − n̂lh), (2.11)

where the indices x, y of n̂pol label photons polarized in x- or y-direction and
±45◦ the photons polarized in ±45◦-direction, while Ŝz is given by the differ-
ence of the number of right hand and left hand polarized photons. The Stokes
operators are quantities for which measurement is fairly straightforward (see
section 4.1.3), whereas the discussed atomic operators are much harder to ac-
cess. The Stokes operators follow the commutation relations of angular mo-
mentum

[Ŝy, Ŝz] = iŜx. (2.12)

In the experiment we have a strong coherent light pulse, which is polarized in
the x- or y-direction. In that way, Sx becomes a large classical value proportional
to the flux of photons. Similar to the case of the atoms the considered variables
are then canonical operators y and q, given by:

ŷ =
Ŝy√
|Sx|

, q̂ = ± Ŝz√
|Sx|
→ [ŷ, q̂] ≈ i. (2.13)

where the two signs stand for x- or y-polarized light. When we consider a y-
polarized local oscillator, which is the setting in all experiments discussed in
this thesis, those variables are the quadrature operators of light in x-polarization:

ŷ =
1√
2
(âx + â†

x), q̂ =
1√
2i
(âx − â†

x) (2.14)

with the creation and annihilation operators âx, â†
x. This means that there is

a strong classical field polarized in y-direction (local oscillator) and the weak
quantum field, which we are interested in, polarized in x-direction.
Normally, the creation and annihilation operators are defined in the k-space
such that [â(k), â†(k′)] = δ(k− k′). We are interested in position space operators
for which [â(z, t), â†(z′, t)] = cδ(z− z′) holds. After this normalization â†(z)â(z)
describes the flux of photons in the "quantum" polarization at position z3.

3The Stokes operators are also normalized accordingly: Ŝi(z, t)→ cŜi
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Since the atoms are placed in a magnetic field and the atomic spins are rotating
with frequency Ω, it is useful to look at the cosine and sine modes of the light
operators at this frequency:

q̂c(z) = ±
√

2
|Sx|T

∫ T

0
Ŝz(z, t) cos(Ωt)dt =

√
2
T

∫ T

0
q̂(z, t) cos(Ωt)dt,

ŷc(z) =

√
2
|Sx|T

∫ T

0
Ŝy(z, t) cos(Ωt)dt,

q̂s(z) = ±
√

2
|Sx|T

∫ T

0
Ŝz(z, t) sin(Ωt)dt,

ŷs(z) =

√
2
|Sx|T

∫ T

0
Ŝy(z, t) sin(Ωt)dt, (2.15)

where T is the interaction duration.
The measurement of the light modes at higher frequencies is very helpful, since
the technical noise at low frequencies (DC) makes measurements at the quan-
tum level difficult.
For several reasons it will become necessary later on to introduce light modes
with a different temporal shape. In our setting this means that we introduce a
mode function f (t), other than a simple top-flat profile used above, and use it
as the envelope for the cosine and sine modes, i.e.

q̂c, f (z, t) = 1
N f

∫ T

0
q̂(z, t) cos(Ωt) · f (t)dt. (2.16)

N f is a normalizing factor such that the commutator [ŷk, q̂k] = i for the canoni-
cal variables remains valid. Those kind of light modes will be introduced due
to different effects of the interaction such as back action of light onto its self
mediated via the atoms due to the magnetic field (section 2.2.3) and exponen-
tial decay or growth of the observables due to higher order effects from the
Hamiltonian (see section 3.1).

In figure 2.2 the representation of the two systems is shown in phase space
diagrams. The sets of variables follow Gaussian probability distributions, fully
characterized by the mean values and variances. At the beginning of most
experiment, the atoms and the light systems are set as coherent states, i.e. states
with minimum uncertainty of 1

2 in both quadratures.
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2.2 Interaction

The scenario we are considering is a dispersive interaction of light with the
atomic transition from the 6S1/2,F=4 ground state to the 6P3/2 excited state.
Coming from the known dipole interaction with the electric field E and the
dipole moment d, Ĥi is the interaction Hamiltonian for every single atom:

Ĥi = di · E. (2.17)

Starting from 2.17 an effective Hamiltonian can be derived, concerned only
with the ground state of the atomic spins. The full derivation has been carried
through in various different places [Jul03, HWPC05, HSP10] and will therefore
not be repeated here. To arrive at the desired effective Hamiltonian which
only concerns the ground state coherences and populations of F = 4 standard
techniques are applied. Slowly varying operators are introduced and, since
the detunings we are interested in are big compared to the line width of the
atomic transition, the population of the excited levels is small and we can apply
adiabatic elimination.

The effective interaction Hamiltonian reads [SJP07, Jul03, She06]4:

V̂ = − h̄γλ2

8A∆2π

∫ L

0
(a0φ̂(z, t)nA + a1Ŝz(z, t) ̂z(z, t)

+ a2[φ̂(z, t) ̂2z − Ŝ−(z, t) ̂2+ − Ŝ+(z, t) ̂2−])dz

= ... + a2[φ̂̂2z − 2( ̂2x − ̂2y)Ŝx − 2( ̂x · ̂y + ̂y · ̂x)Ŝy]dz, (2.18)

where λ is the wavelength of light L is the interaction length given by the
length of our atomic ensemble, A is the cross section of the sample and φ̂

the photon flux. All spin operators are depending on position and time. The
atomic operators at different positions of the sample are defined as ̂k(z, t) =

∑Na
i δ(z − zi) ̂i

k(t), where ̂i
k is the spin of atom i at position zi such that the

collective spin can be calculated as Ĵk(t) =
∫ L

0 ̂k(z, t)dz.

The prefactors a0, a1 and a2 can be calculated for the specific setting, with the
ground state F = 4 and a detuning ∆ from F = 5 of the 6P3/2 excited state
and are stated in [Jul03]. In graph 2.3a the prefactors are shown. For typical
detunings the fraction a2/a1 lies around 0.01 as can be seen in figure 2.3b. In
the following (section 2.2.1) the a2 terms will therefore be neglected. However,
later on in chapter 3, the effect of those terms will be discussed thoroughly
and the dominant term for our experimental realization will be included. It
will become evident that moving to a stronger coupling regime by increas-

4Note that this is with slightly different definition of the spin operators as stated below,
which leads to a missing factor of ρA. Because of this there was also introduced an nA =

∑Na
i δ(z− zi) such that

∫ L
0 nA(z) = Na
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ing the interaction duration, the number of atoms or the light power, the ad-
ditional term in the Hamiltonian will lead to dynamics which open up for
new experimental possibilities. Also, we need to discuss the effects of these
higher order terms on the protocols where a weaker coupling was used and
thus the simplified Hamiltonian is employed to describe the experiment.
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Figure 2.3: The prefactors of the terms of the Hamiltonian are shown for the D2 line
with F = 4 as ground state in (a). In (b) the ratio of the vector and the scalar parts are
shown.

Figure 2.4: Level-
scheme of spin
1
2 in x-direction
with off-resonant
y-polarized light
depicted by the
thick arrows, while
the photons cre-
ated in y direction
are depicted by the
wavy arrows.

A more intuitive picture of the interaction can be estab-
lished by looking at a spin 1

2 atom, sketched in figure 2.4.
Considering two ground states and two excited states one
arrives at an effective Hamiltonian ([DCZP00],[1]), which
only includes two terms similar to the first terms of 2.18:
V̂ ∝ a0Φ̂Na + a1Ŝz Ĵz . Looking closer at this it becomes ev-
ident that the first expression just gives rise to the same
shift to all levels of the ground state. This is not interesting
for the dynamics. The second term causes a displacement
of Ŝy due to the spin in z-direction. This corresponds to a
rotation of the linear polarization proportional to Ĵz and is
known as Faraday rotation. This rotation originates in the
different phases the left-hand circular and right-hand circu-
lar polarized photons acquire due to the circular birefrin-
gence arising from the spin in z-direction. At the same time
the atomic angular momentum in y-direction is displaced
corresponding to Sz. The underlying effect is rooted in the
different AC Stark shifts, which the two different ground
levels experience, due to different numbers of photons with
right- and left-hand circular polarization in the probe light.
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2.2.1 Input output relations for the QND
Hamiltonian

The dynamics of the light and atom variables can be deduced with the help of
Heisenberg’s equation of motion using the full Hamiltonian:

Ĥ = Ĥlight + Ĥa + V̂ (2.19)

First we will consider the simplified interaction Hamiltonian

V̂ = − h̄γλ2

8A∆2π

∫ L

0
(a1Ŝz(z, t) ̂z(z, t))dz

= h̄ · a
∫ L

0
( p̂∗(z, t) · q̂(z, t))dz (2.20)

= h̄ · a
∫ L

0
(â†b∗† − â†b∗ + H.c.)dz,

with a = γλ2a1
8A∆2π

√
Sx J and where p̂∗(z, t) = ̂z(z, t)/

√
FNa is an atomic variable

depending on position. We arrive at our atomic canonical operators by integrat-
ing over the sample: p̂(t) =

∫ L
0 p̂∗(z, t)dz. Note that p̂∗ and x̂∗ do not follow a

canonical commutation relation, but [x̂∗(z, t), p̂∗(z′, t)] = [ ĵy(z, t), ĵz(z′, t)]/(FNa)

= i〈 ̂x〉z/(FNa)δ(z− z′) where we assume that 〈jx〉z is the same over all z. Sim-
ilarly b̂∗ is the corresponding position depending unnormalized annihilation
operator.
The light Hamiltonian for a single transverse mode is given by
ĤLight = ∑k |k|ch̄(â†

k âk +
1
2 ). We are looking at the operators a(z)5, for which

the Heisenberg equation of motion leads to

∂a
∂t

+ c
∂

∂z
a = − i

h̄
[a, V̂]. (2.21)

By defining new operators with a retarded time variable â′(z, t′) = â(z, t =

t′ + z/c) [HSP10] we arrive at the simpler equation c ∂
∂z a′ = −i[a′, Ĥ]. For our

setting, clearly t′ ≈ t. Note that this is equivalent to assuming that L/c is
small compared to all characteristic timescales. In the following those will be
the variables and operators of interest, so we drop the prime and for the light
operators we have the equations.

∂

∂z
ŷ = −i[ŷ, V̂],

∂

∂z
q̂ = −i[q̂, V̂]. (2.22)

5a(z) = 1√
2π

∫ ∞
−∞ eikzakdk
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Without a magnetic field the equations for the atomic operators read

∂

∂t
x̂∗ = −i[x̂∗, V̂] ,

∂

∂t
p̂∗ = −i[ p̂∗, V̂],

∂

∂t
x̂ = −i

∫ L

0
[x̂∗, V̂]dz ,

∂

∂t
p̂ = −i

∫ L

0
[ p̂∗, V̂]dz. (2.23)

This leaves us with

q̂′ = 0, ŷ′ = ap̂∗,
˙̂p = 0, ˙̂x = aq̂, (2.24)

where the prime denotes the spatial derivative. The q̂-quadrature of light and
the p̂-quadrature of the atoms are conserved. Thus we can easily obtain the
operators after the interaction. For the light we integrate the equation over the
length of the sample and obtain:

q̂(z = L, t) = q̂(z = 0, t),

ŷ(z = L, t) = ŷ(z = 0, t) + ap̂(t). (2.25)

The variables we are interested in - our measured quantities - are the light vari-
ables, integrated over duration of the interaction. We define the input and out-
put light operators before and after the cell as q̂out = 1√

T

∫ T
0 q̂(z = L, t)dt, q̂in =

1√
T

∫ T
0 q̂(z = 0, t)dt, .... The atomic input and output operators are just defined

at time 0 and T. We get set of input-output relations for the variables of light
and atoms with κQND = a

√
T :

q̂out = q̂in, ŷout = ŷin + κQND p̂in, (2.26)

p̂out = p̂in, x̂out = x̂in + κQND q̂in. (2.27)

These simple equations are highly interesting. After the interaction ŷout carries
information about p̂in, while p̂ is not changed via the interaction. ŷout can
be measured, providing information about the unchanged atomic p̂. This is
known as a quantum non demolition (QND) measurement and is an important
quantum mechanical concept for generating squeezing and entanglement.

Adding a magnetic field in x-direction, which is the situation in the experiment
we desire to describe, will complicate those simple equations, but in section
2.2.4 we will apply a trick to regain the same simple structure of the input-
output equations discussed here. There, light is sent through two cells with
oppositely orientated macroscopic spins and again a QND measurement can
be conducted, but this time on collective variables of the two cells.
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2.2.2 Input output relations in a magnetic field

As mentioned above, in our experimental realization, a magnetic field is ap-
plied in the direction of the macroscopic spin. The atomic Hamiltonian Ĥatoms =

h̄Ω Ĵx leads to a Larmor precession of the atomic spin around the x-axis and we
introduce the spin operators in the rotating frame as stated in 2.8. To achieve
better understanding the interaction Hamiltonian expressed in equation 2.20
can be rephrased in terms of the rotating frame creation and annihilation oper-
ator 2.10.

V̂↑ = h̄ · ã
∫ L

0
(â†e−iωtb̂∗

†
e−iΩt − âeiωtb̂∗

†
e−iΩt + H.c)dz (2.28)

= h̄ · ã
∫ L

0
(â†

+b̂′∗† − â†
−b̂′∗ + H.c)dz. (2.29)

â†
+(−) is the creation operator for a photon in the upper (lower) Ω-sideband.

It is very important to note here that this is only true for the setting where the
magnetic field is pointing in the same direction as the macroscopic spin. When
J is oriented opposite to the magnetic field the Hamiltonian reads:

V̂↓ = h̄ã
∫ L

0
(â†
−b̂′
∗† − â†

+b̂′
∗
+ H.c.). (2.30)

b̂′
∗†

is the atomic creation operator in the rotating frame shuffling one atom
away from the fully oriented state, as is depicted in figure 2.5 for both settings
with the spin parallel and antiparallel to the B-field. One excitation is accom-
panied by the production of photons of different frequencies in the two cases.
In 2.5a where the macroscopic orientation is in the same direction as the field,
the photon lies in the upper sideband while for the antiparallel setting it is the
lower sideband.

2.2.3 Single atomic ensemble

Now I want to derive the evolution of the canonical operators for light and the
atomic spins in the rotating frame with the simple Hamiltonian from equation
2.20 for a situation as shown in figure 2.6 where a light beam interacts with one,
oriented atomic ensemble. In the following the equations will always be stated
for the case of the macroscopic spin aligned with the magnetic field and for
the case where they are antiparallel (〈Jx〉 ≈ ±J). In those cases the canonical
operators of the atoms are defined slightly differently. The definition of one

quadrature, x̂ = ± Ĵ′y√
J changes sign. p̂ = Ĵ′z√

J is the same for both settings. The
atomic spins are defined in the rotating frame. It is easily understood that this
way the commutator remains [x̂, p̂] = ±i 〈Jx〉

J ≈ i.
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W

+

J
x

B

(a) (â†
+ b̂′

† − â− b̂′
†
) + h.c

+

J
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(b) (â†
− b̂′

† − â+ b̂′
†
) + h.c

Figure 2.5: The process of the Hamiltonian is depicted. In our case, all the atoms
start in the m=4 level. The strong light field is seen as a superposition of σ+ and σ−
polarized photons and is depicted with the thick arrow. In (a), where the B-field and Jx
have the same sign, the production of one collective atomic excitation is accompanied
by one photon in the upper sideband. In (b), B-field and Jx have the opposite sign one
atomic excitation is produced together with a photon in the lower sideband.

vertically
polarized
light

B-field

horizontally
oriented
atoms

IN OUT

J
x

Figure 2.6: A top view of the interaction setup is depicted. A strong, vertically polar-
ized light beam is sent through the atoms which are all oriented in the same direction
as the bias magnetic field.
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When we extend the equations 2.26 for the magnetic field, one of the light
variables still remains unchanged, while the other is changed by the rotating
spin. Thus we get,

q̂(z = L, t) = q̂(z = 0, t), (2.31)

ŷ(z = L, t) = ŷ(z = 0, t) + a( p̂(t) cos(Ωt) + x̂(t) sin(Ωt)),

where the different components of the rotating spin effect the light at different
times. Before those equations can be integrated, we need to find the time de-
pendence of the atomic operators in the rotating frame. Including the magnetic
field, their equations of motion read

˙̂x = aq̂ cos(Ωt), ˙̂p = ∓aq̂ sin(Ωt). (2.32)

Since q̂(z, t)remains unchanged in the interaction, this leads to

x̂(t) = x̂(0) + a
∫ t

0
q̂(z = 0, t′) cos(Ωt′)dt′, (2.33)

p̂(t) = p̂(0)∓ a
∫ t

0
q̂(z = 0, t′) sin(Ωt′)dt′. (2.34)

Finally, we get the input-output relations for the atomic operators:

x̂out = x̂in +
κQND√

2
q̂in

c ,

p̂out = p̂in ∓ κQND√
2

q̂in
s .

(2.35)

The cosine and sine light modes are defined in 2.15 and κQND = a
√

T.

Reconsidering equation 2.31 we take a closer look at the atomic contribution
on the light quadrature ŷ after the interaction which oscillates with frequency
Ω. The two signals at this frequency, which are out of phase by π/2, are
proportional to the two atomic quadratures. Therefore, it might be interesting
to look for example at the cosine mode of ŷ. This means we multiply the

equation with
√

2
T cos(Ωt) and integrate over the interaction duration T. When

we consider T � 1/Ω and the evolution of the equations much slower than 1
Ω ,

terms proportional to cos(Ωt) sin(Ωt) can be set equal to zero as their effect
averages out, when the integration is done. The integral over the square of the
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cosine will only give a factor T
2 . Using the result 2.35, the light equation reads

ŷout
c = ŷin

c +
κQND√

2
p̂in ∓ κ2

QND

√
2

T3

∫ T

0
dt cos2(Ωt)

∫ t

0
dt′q̂ sin(Ωt′)

= ŷin
c +

κQND√
2

p̂in ∓ κ2
QND

√
2

T3

∫ T

0
(

T − t
2

)q̂ sin(Ωt)dt. (2.36)

Now, we would like to express the last term of the equation above as a sum of
our well known sine light mode and an orthogonal contribution. This makes it
easier to analyze commutators and variance of the output variable. We define

q̂s,1 =

√
24
T3

∫ T

0
(

T
2
− t) sin(Ωt)q̂(t)dt (2.37)

and q̂c,1 and ŷc(s),1 similarly which commute amongst each other:

[q̂c(s),1, ŷc(s)] = [q̂c(s),1, q̂c(s)] = 0. (2.38)

The input-output relations for the light y quadrature then read:

ŷout
c = ŷin

c +
κQND√

2
p̂in ∓ (

κQND

2
)2 · (q̂in

s +
1√
3

q̂in
s,1),

ŷout
s = ŷin

s ±
κQND√

2
x̂in ± (

κQND

2
)2 · (q̂in

c +
1√
3

q̂in
c,1),

q̂out
s(c) = q̂in

s(c).

. (2.39)

Even though the outputs of those two observables contain a number of non-
commuting operators, they should of course still commute after the interaction.
In fact, we routinely measure the cosine and sine modes of our operators over
the interaction time:

[ŷout
c , ŷout

s ] = [ŷin
c ,±

κ2
QND

4
q̂in

c ]±
κ2

QND

2
[ p̂in, x̂in]∓

κ2
QND

4
[q̂in

s , ŷin
s ] =

=
κ2

QND

4
(±1∓ 2± 1) = 0

To summarize, the interaction of light with a single cell in a magnetic field
equation is given by equations 2.35 and 2.39. Equations 2.35 show that the two
atomic quadratures read out two orthogonal modes of the input light quadra-
ture q̂. At the same time q̂ is still conserved. The ŷ-quadrature of light behaves
in a more complicated way and shows quadratic effects in κQND . The reason for
this is a back action of light on itself which can be understood as follows: while
the light is sent through the atoms, the atomic spin in z-direction is causing
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Figure 2.7: The zeroth, first and second order temporal modes are depicted - all of
which are mutually orthogonal. The standard temporal mode is a top-hat mode. Via
the underlying interaction in the magnetic field, the mode evolving linear in time in
the middle is introduced. On the right the second order mode is depicted. The n-th
mode includes a term of tn.

a shift in ŷ corresponding to the size of the collective spin in this direction -
one can say that it is mapped on ŷ. At the same time the orthogonal transver-
sal spin component is displaced corresponding to the other light quadrature q̂.
The two components of the spin, one of which is read out by the light while
the other one maps one quadrature of the light, rotate in and out of each other.
As a result a mapping of light onto itself occurs. This is a quadratic effect in
κQND . It also leads to an inclusion of a higher order temporal mode into the
input-output relations. This mode is linear in time and orthogonal to the orig-
inal modes. The higher order temporal modes, the first of which are plotted
in figure 2.7, follow their own input output relations, where all the q̂c/s,m are
conserved and the ŷc/s,m couple to q̂c/s,m and q̂c/s,m+1. In [HPC06] the higher
order modes and their input/output relations are discussed in detail.

From the quantum mechanics point of view, the higher order effects are crucial
as they make sure that it is not allowed to measure non commuting variables.
Equations 2.39 show the output of two light operators which we can easily
measure simultaneously (if we talk about time scales sufficiently larger than
1/Ω). Clearly, without the quadratic terms, increasing κQND would lead to the
possibility of measuring x̂ and p̂. But if we now measure at a high κQND , the
measurement will be dominated by noise contributions from the input light.
The connection of light and atoms after the interaction is highly interesting.
In section 5.3.2 it will be shown that the spin operators are entangled with the
upper sideband quadratures of light for certain couplings or, if the macroscopic
spin is aligned antiparallel to the magnetic field, with the lower sideband op-
erators. Considering figures 2.5a and 2.5b, this can be intuitively understood,
as one atomic excitation is accompanied by the production of a photon at the
upper/lower sideband frequency.
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Figure 2.8: The interaction setup is depicted. A strong, vertically polarized light beam
is sent through the two atomic ensembles that have macroscopic spins oriented in
opposite direction.

2.2.4 Two oppositely oriented atomic ensembles

As mentioned earlier, we will now turn to a scenario where two atomic ensem-
bles are involved. This looks at first glance more complicated, but when we
calculate the input-output equations, they will be of a simpler form than in the
case of the single atomic ensemble in a magnetic field. As a matter of fact, they
will look similar to the QND case discussed in 2.2.1.
The setting is depicted in figure 2.8. A light beam is sent through two cells
with oppositely oriented macroscopic spins. To begin, we define two sets of
collective operators of the two cells in the following way:

X̂c =
Ĵy,1 − Ĵy,2√

2J
=

1√
2
(x̂1 + x̂2),

P̂c =
Ĵz,1 + Ĵz,2√

2J
=

1√
2
( p̂1 + p̂2),

X̂s = − Ĵz,1 − Ĵz,2√
2J

= − 1√
2
( p̂1 − p̂2),

P̂s =
Ĵy,1 + Ĵy,2√

2J
=

1√
2
(x̂1 − x̂2), (2.40)

such that [X̂k, P̂l ] = iδkl and [X̂k, X̂l ] = [P̂k, P̂l ] = 0.
It is easy to extract the output equations for the atoms from equation 2.35:

X̂out
c,s = X̂in

c,s + κQND q̂in
c,s,

P̂out
c,s = P̂in

c,s.
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(2.41)

Using 2.39 for the interaction with the second cell and inserting ŷout
c,s from the

interaction with the first cell as input, we also get a much simpler set of equa-
tions for the light variables:

ŷout
c = ŷout, cell 1

c +
κQND√

2
p̂in

2 + (
κQND

2
)2(q̂in

s +
1√
3

q̂in
s,1),

ŷout
s = ŷout, cell 1

s − κQND√
2

x̂in
2 − (

κQND

2
)2(q̂in

c +
1√
3

q̂in
c,1).

Inserting the output equations from the first cell:

ŷout, cell 1
c = ŷin

c +
κQND√

2
p̂in

2 − (
κQND

2
)2(q̂in

s +
1√
3

q̂in
s,1),

ŷout, cell 1
s = ŷin

s +
κQND√

2
x̂in

2 + (
κQND

2
)2(q̂in

c +
1√
3

q̂in
c,1)

we get the input-output relations for the light operators:

ŷout
c,s = ŷin

c,s + κQND P̂in
c,s

q̂out
c,s = q̂in

c,s.

(2.42)

There are two sets of similar equations for two atomic modes characterized by
the indices c and s. This is due to the fact that there are two cells. Essentially,
we end up with a QND measurement of the two operators P̂c and P̂s similar to
the simple case discussed in section 2.2.1 where the interaction of light with a
single atomic ensemble without a magnetic field was investigated. Only now
this is a simultaneous measurement of the sums of the transversal components
of the spins of the two ensembles Ĵy,1 + Ĵy,2 and Ĵz,1 + Ĵz,2. This might appear
strange at first glance, but the possibility was engineered by the two opposite
macroscopic spins. This way, the commutator of the sums of the transversal
spins of the two ensembles becomes zero:

[ Ĵy,1 + Ĵy,2, Ĵz,1 + Ĵz,2] ≈ i(〈 Ĵx,1〉+ 〈 Ĵx,2〉) = 0.

Now, it is possible to measure the two quantities at the same time.
These equations provide a basis for several interesting experiments. The most
obvious one is utilizing the QND measurement of the collective spins to gain
knowledge about the atomic state, with which several proposals and experi-
ments are concerned amongst others [UTK06, ERIR+07, KNDM10]. How to
utilize the measurements of the light state to reconstruct the atomic state is dis-
cussed in section 5.2.
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The light measurement can also be used to achieve spin squeezing [AWO+09,
TVLK08, TFNT09, SSLV10] translating in our case to entanglement between the
two cells. Starting from the minimum uncertainty state (CSS) for both cells, one
gains more information about the sum of the spins through a measurement on
light. This experiment has already been conducted successfully [JKP01] and
will be discussed in section 5.3.3 for a slightly different setting. The measure-
ment concept is also used to achieve steady state entanglement as described in
chapter 8.
Also a mapping protocol of a light state on atoms can be implemented. In the
first step light is sent through atoms and one quadrature of light is mapped
onto the atoms via this interaction (see equation 2.41). In a second step the
results of a measurement on the ŷ-quadrature of light are fed back onto the
atomic P̂-quadrature. This experiment has been conducted for coherent light
states [JSC+04] and, more recently, also displaced squeezed states have been
mapped onto atoms [9], which is discussed briefly in section 9.2.



Chapter 3

Re�ned theoretical model for

oriented atomic states

In this chapter a more complicated and - for highly oriented ensembles - more
accurate approximation of the Hamiltonian is discussed and the input-output
equations will be adjusted accordingly (in accordance with [5]). These adjust-
ments will give rise to the description of new dynamics, enabling a range of
novel experiments at higher couplings [5, 7]. It will also lead to the introduc-
tion of specific temporal modes for the light operators that couple optimally to
the atomic variables.

Also corrections arising for experiments with lower coupling that were evalu-
ated with the QND model derived in the previous chapter will be considered.

3.1 Higher order Hamiltonian

Now, I am going to have a closer look at the remaining parts of the Hamilto-
nian that we have neglected in the previous chapter. The full Hamiltonian has
previously been considered in [KMS+05, MKP05]. The scenario we are limiting
us to is the one of high orientation of all atomic spins in x-direction, so that
Ĵx ≈ 4Na. This means that it is a good approximation to only consider the up-
per two m levels m = 4 and m = 3. Then the transversal spins of the ensemble
at position z for quantization in x-direction can be viewed as [5]:

̂y(z) ≈ 2
√

2
nz

∑
i
(|4〉 〈3|i + |3〉 〈4|i) and

̂z(z) ≈ 2
√

2i
nz

∑
i
(|4〉 〈3|i − |3〉 〈4|i). (3.1)

25
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Where in the spatial slice z + dz, there are nz atoms. We also assume ̂x(z) ≈
∑nz

i (4 |4〉 〈4|i + 3 |3〉 〈3|i) ≈ 4 · nz. When we consider a macroscopic spin which
is oppositely oriented the levels of interest are m = −4 and m = −3.1 The
quadratic terms in the spin operators appearing in the Hamiltonian can then be
expressed by linear combinations of the three spins and 1 = |4〉 〈4|+ |3〉 〈3| (see
Appendix A) such that the effective interaction Hamiltonian, stated in equation
2.18 is reduced to

V̂ = − h̄γλ2

8A∆2π

∫ L

0
(a1Ŝz(z, t) ̂z(z, t)∓ a2 · 14 ̂y(z, t)Ŝy(z, t))

+ a2(∓21 ̂x + 56)Ŝx + (a0 + a2(∓
7
2

̂x − 16))φ̂(z, t))dz. (3.2)

The justification of this approximation needs to be evaluated carefully in every
considered situation, by checking the orientation of the spins of the ensembles
which we wish to describe.

Let us turn to the terms proportional to a2 that were neglected in chapter 2.
Fortunately, a closer investigating of the impact of the discarded terms shows
that only the first term proportional to Ŝy ̂y is important. The other terms give
rise to much smaller corrections. That is to say that the part proportional to Ŝx

leads to a rotation in the Ŝy and Ŝz plane. The rotational angle is small, on the
order of a couple of degrees for our normal settings. Also the atoms experience
rotation in the ̂y- ̂z plane due to the terms proportional to Ŝx ̂x and ̂xφ̂. This is
the linear Stark shift and can be seen as a shift in the Larmor frequency, while
light is shone on the atoms. We will have to consider this for the experimental
realization where the light is turned on and off, but the dynamics of the highly
oriented atoms are not effected, except of a rotation at a different frequency
that can be taken into account by adjusting the frequency of the rotating frame
to the true rotation frequency.

Finally, since φ̂ is a constant of motion, the part of the Hamiltonian containing
only φ̂ (and no atomic operator) is not contributing to the dynamics of our
variables.

Thus we are left with

V̂ = − h̄γλ2

8A∆2π

∫ L

0
(a1Ŝz(z, t) ̂z(z, t)∓ a2 · 14 ̂y(z, t)Ŝy(z, t)))dz

= −h̄ · a
∫ L

0
( p̂∗(z, t)q̂(z, t) + ξ2 x̂∗(z, t)ŷ(z, t))dz. (3.3)

with the size of the correction of the QND Hamiltonian given by ξ2 = 14 a2
a1

and

a = γλ2a1
8A∆2π

√
Sx J, as before. The second line is only true for a y-polarized light

beam which is our usual setting.

1 ̂y ≈ 2
√

2 ∑ni
i (|−4〉 〈−3|i + |−3〉 〈−4|i) and ̂z ≈ 2

√
2i ∑ni

i (|−4〉 〈−3|i − |−3〉 〈−4|i).
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This Hamiltonian is valid for both orientations of Jx. As a reminder, the atomic
operators with the star are as before unnormalized and we are only interested
in the spatial integrals over them.

In Appendix A, the Heisenberg equations of motion are calculated for the full
Hamiltonian, including the quadratic spin components. Then those equations
are approximated in the same fashion as described above. The same result as
in section 3.2 is obtained where the Heisenberg equations are derived directly
from the approximated Hamiltonian 3.3.

A Hamiltonian H ∝ p̂q̂ or H ∝ x̂ŷ, as discussed in section 2.2.1, is often referred
to as a Quantum Non demolition (QND) Hamiltonian, because of the possi-
bility of a QND measurement which it grants. H ∝ ( p̂q̂ + x̂ŷ) can be called a
"swap" Hamiltonian. This refers to the possibility to use an interaction of this
type by adjusting the interaction strength, in such a way that the two systems
swap their quantum states. The Hamiltonian describing the underlying light
atom interface in equation 3.3 is similar to the swap case, but with suppressed
x̂ and ŷ. This will give rise to input-output relations presented in section 3.2.1
that display a swap- but also a squeezing behavior, due to the asymmetry.

Again, let us consider the level scheme and the harmonic oscillator picture,
as depicted in figure 2.5. We see that the effect takes its origin in a different
strength of the two processes going away from (entanglement), and going to-
wards (beam splitter) the ground state. In the presence of the magnetic field,
for a macroscopic spin aligned with the magnetic field, this means:

V = h̄
∫ L

0
(χe â†

+b̂∗
† − χBS â−b̂∗

†
+ H.c)dz. (3.4)

Again, for the antiparallel aligned macroscopic spin, the sidebands will ex-
change roles.

3.2 Input output relations

Starting with the interaction Hamiltonian 3.3, and keeping in mind that the
atoms are situated in a magnetic field, the light operators after the cells read:

ŷ(L, t) = ŷ(0, t) + ap̂ = ŷ(0, t) + a( p̂′ · cos(Ωt)± x̂′ · sin(Ωt)),

q̂(L, t) = q̂(0, t)− aξ2 x̂ = q̂(0, t)− aξ2(∓ p̂′ · sin(Ωt) + x̂′ · cos(Ωt)), (3.5)

where the prime stands for the variables in the rotating frame. The integration
over the sample, is still straight forward here, because we are only interested
in the atomic operators of the whole ensemble. For the atomic operators we
also need to integrate the equations of motion for x̂∗ and p̂∗ over space. As
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opposed to the simpler case before, those equations will contain ŷ and q̂ that
are depending on the position. We have to make a simple assumption to be
able to solve those equations. This assumption is based on the fact that the
atoms at room temperature are moving very fast on our interaction time scale
- they hit the walls around 10 times. We therefore conjecture that the atomic
operators have no spatial dependance and we can take an average of the light
variables over the sample:

〈ŷ〉L = 1
L

∫ L

0
ŷ(z, t)dz = ŷ(0, t) +

a
2
( p̂′ · cos(Ωt)± x̂′ · sin(Ωt)).

〈q̂〉L = 1
L

∫ L

0
q̂(z, t)dz = q̂(0, t)− aξ2

2
(∓ p̂′ · sin(Ωt) + x̂′ · cos(Ωt)).

We assume that the atomic operators are effected by the average of the light
operators which allows us to integrate the atomic equations of motion over the
entire cell:

˙̂x = a〈q̂〉L ∓Ω p̂ = aq̂(0, t)− a2ξ2

2
x̂∓Ω p̂,

˙̂p = −aξ2〈ŷ〉L ±Ωx̂ = −aξ2ŷ(0, t)− a2ξ2

2
p̂±Ωx̂. (3.6)

These equations can be solved for the rotating frame spins,2 where we end up
with

x̂(t) = x̂ine−γst + a
∫ t

0
e−γs(t−t′) q̂(0, t′) cos(Ωt′)dt′ ∓ aξ2

∫ t

0
e−γs(t−t′)ŷ(0, t′) sin(Ωt′)dt′

p̂(t) = p̂ine−γst ∓ a
∫ t

0
e−γs(t−t′) q̂(0, t′) sin(Ωt′)dt′ − aξ2

∫ t

0
e−γs(t−t′)ŷ(0, t′) cos(Ωt′)dt′

(3.7)

The introduced decay or "swap" rate γs is defined as

γs =
a2ξ2

2 . (3.8)

3.2.1 Two cell setting

Again the equations will become considerably simpler, when we move to the
setting with two oppositely oriented ensembles depicted in figure 2.8. Because
there is a principal difference to the earlier case where the light quadrature
mapped on the atoms remained unchanged, we need to take a little more care-
ful look at what happens to the equations 3.7 for the second cell. In the new

2Start with solving the equations for ˆ̃x = eγst x̂′ and ˆ̃p = eγst x̂′ with the time derivatives
˙̃̂x = eγst(aq̂(0, t) cos(Ωt)− aξ ŷ(0, t) sin(Ωt)) and ˙̃̂p = eγst(−aq̂(0, t) sin(Ωt)− aξŷ(0, t) cos(Ωt))
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setting the input variables of light have already been changed by the first cell:

x̂2(t) = x̂in
2 e−γst + a

∫ t

0
e−γs(t−t′)q̂(L, t′) cos(Ωt′)dt′ + aξ2

∫ t

0
e−γs(t−t′)ŷ(L, t′) sin(Ωt′)dt′,

p̂2(t) = p̂in
2 e−γst + a

∫ t

0
e−γs(t−t′)q̂(L, t′) sin(Ωt′)dt′ − aξ2

∫ t

0
e−γs(t−t′)ŷ(L, t′) cos(Ωt′)dt′.

To express the solution in terms of the incoming light variables, we plug in
equation 3.5 and 3.7 for the first cell and arrive at

x̂2(t) = x̂in
2 e−γst + a

∫ t

0
e−γs(t−t′) q̂(0, t′) cos(Ωt′)dt′ + aξ2

∫ t

0
e−γs(t−t′)ŷ(0, t′) sin(Ωt′)dt′ + ...

+2γs

∫ t

0
(e−γs(t−t′)(sin(2Ωt′) · p1(t′)− cos(2Ωt′) · x1(t′))dt′

p̂2(t) = p̂in
2 e−γst + a

∫ t

0
e−γs(t−t′) q̂(0, t′) sin(Ωt′)dt′ − aξ2

∫ t

0
e−γs(t−t′)ŷ(0, t′) cos(Ωt′)dt′ ...

+2γs

∫ t

0
(e−γs(t−t′)(− sin(2Ωt′) · x1(t′)− cos(2Ωt′) · p1(t′))dt′.

(3.9)

The parts which are printed in gray contain integrals over terms which are
formed of a product of components oscillating at 2Ω and the comparatively
slowly varying atomic operators. These terms are then averaging out on a
short time scale, so we omit them. Then the equations look as if there was no
first cell. This effect can be better understood, when one sees that the roles
of the sidebands are exchanged in the two cells, so that the strong effect of the
light on cell 1 is not seen by cell 2. For two parallel oriented samples this would
look very different. However, when we look at the collective variables of the
cells, we will see that the operators from the two cells are far from independent
(see following equation 3.10), because they interacted with the same light.

Now, it is easy to get to the atomic input-output relations for the combined
atomic variables:

X̂out
c,s = X̂in

c,s

√
1− κ2ξ2 + κq̂in

c,s+

P̂out
c,s = P̂in

c,s

√
1− κ2ξ2 − κξ2ŷin

c,s+.

(3.10)

The ingoing light operators are defined with an exponentially rising mode
function as for examples ŷin

c+ = 1
N+

∫ T
0 e−γs(T−t) cos(Ωt)ŷ(t)dt where N+ is the

normalization factor. The coupling constant is defined as κ =
√

1− e−2γsT/ξ.
Obviously this has the limit of the coupling constant κQND that was defined
in the previous chapter. When κ is expanded around ξ = 0, we get κ ≈
a
√

T − 1
4 a3
√

T3ξ2 + o(ξ4).
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The atomic equations can be plugged into equation 3.5 adapted for two oppo-
sitely oriented cells. Then we use the same trick as in section 2.2.3 by looking
directly at the cosine and sine modes. Now we consider slightly different light
modes that follow an exponential decay with γs and oscillate at Ω, for example
the cosine mode of the ŷ-quadrature of light ŷout

c− = 1
N−

∫ T
0 e−γst cos(Ωt)ŷ(t))dt

where N− is the normalization factor:

ŷout
c− =

√
2γs

1− e−γsT

∫ T

0
ŷ(2L, t)e−γst cos(Ωt)dt

= ŷin
c− +

a
N−

P̂in
c

∫ T

0
cos2(Ωt)e−2γstdt...

− aξ2

N−

∫ T

0
e−γst cos2(Ωt)(

∫ t

0
e−γs(t−t′) cos(Ωt′)ŷ(0, t′)dt′)dt

= ŷin
c− + κP̂in

c −
1

N−

∫ T

0
(e−γst − e−γsT · e−γs(T−t))ŷ cos(Ωt)dt. (3.11)

We see that the operator with the exponentially falling input mode cancels.
Thus the output variable that has an exponentially falling mode couples to the
exponentially rising input mode, just as the atomic output operators in equa-
tion 3.10. For all light output operators with the exponential falling mode we
have:

ŷout
c,s− = ŷin

c,s+

√
1− κ2ξ2 + κP̂in

c,s

q̂out
c,s− = q̂in

c,s+

√
1− κ2ξ2 − κξ2X̂in

c,s,

(3.12)

which looks very similar to the atomic equations 3.10 where the different light
modes behave like the collective atomic rotating spins.

Long interaction times

As mentioned earlier, we have now a situation where the output variables of
the two systems display a swap behavior: the systems "exchange" quantum
states. In the extreme case of very high coupling or long interaction times

ŷout
c,s− → 1

ξ
P̂in

c,s, q̂out
c,s− → ξX̂in

c,s

X̂out
c,s → 1

ξ
q̂in

c,s+, P̂out
c,s → ξ ŷin

c,s+. (3.13)

It is not a true swap because, while the original input is suppressed in both
quadratures, the mapping of the new variables is not symmetric, so that the
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Figure 3.1: The states of light and atoms are swapped and squeezed.

final states are left in a swapped and squeezed version of the input states. The
process is sketched in figure 3.1. In our case, where the collective operators of
two systems are the variables of interest, this means entanglement of the two
systems: for the atoms in the rotating spin of the two ensembles, and for the
light in the quadratures of the upper and lower sidebands at Ω.

However, for now, we are not interested in this extreme case. As a matter of fact,
in our experimental realization, we can not reach into this strong interaction
regime, because dephasing and decoherence inhibit the observation of the long
time effect.

Comparison to the QND model

Also for the weak and intermediate coupling, there are multiple discrepancies
to the QND model. The first difference is the mode shape. The experimental
realizations often feature coupling strengths κ around one in which case the
exponential with γsT = ln(1− κ2ξ2)/2 leads to a decay in the interaction time
from 1 to 0.92. Thus the modes look very similar to the simple flat-top modes
with an overlap of 0.9997. For a low coupling the flat-top modes are thus a
good approximation. In addition, the pre-factors in the equations 3.10 and 3.12
have changed and can be compared to the QND equations 2.41 and 2.42. The
coupling strength κ is now defined differently, the effect can be seen in graph
3.2a for values typically used. Also, there is a factor 1− κ2ξ2 in front of the
input operators of the original variable. This input suppression, which is the
same in all four equations, can be seen as the solid line in figure 3.2b whereas
in the QND equations the strength of the input remained unchanged. Finally p̂
and q̂ which were originally unperturbed are now also subject to change. The
strength of their coupling to x̂ and ŷ is κξ2 and is also shown in graph 3.2b as
the dashed line.

When the results of earlier experiments are discussed, it will fortunately turn
out that the QND approximations lead to comparatively small errors. This is
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Figure 3.2: On the top left the coupling constant κ introduced in this chapter can be
compared to the κQND introduced in chapter 2. κQND is shown with a dashed line. The
parameters were chosen in such away that κ is close to one for T = 2 ms which is close
to the setting where we run part of our experiments. On the right the suppression
of the original input is shown with the solid line. In the QND-case there is no such
suppression - the prefactor of the input operators remains to be one. Also the prefactor
of the extra term in input-output relations which did not feature in the QND case is
shown as the dashed line.
In the second row the light power was tripled, and a longer timescale is considered.
Here the deviations from the simple model become crucial, but decoherence mecha-
nisms will have to be included.

partly due to the fact that some flaws in the noise evaluations cancel each other
to some extent. The noise from the atoms was underestimated, because the
suppression of the light noise was not taken into account, but κ2 was also set to
be smaller, because it was measured via the CSS noise. In 6.4, the corrections
arising for the teleportation experiment are discussed explicitly.

New proposals and limitations

The new equations can not only be used as a necessary correction to our former
description. We can extract promising possibilities also in the experimental
accessible regime. Analyzing the noise properties of the outputs it becomes
clear that the quadratures are not symmetric anymore. Actually both systems
become squeezed, as can be seen in figure 3.3 and it will turn out that this is



3.2 Input output relations 33

0.005 0.010 0.015 0.020
T @sD

1

2

3

4

5

variances

Var(X,y)
^ ^

Var(P,q)
^ ^

Figure 3.3: Variances of light and atomic sets of variables after the interaction with a
certain duration T. As starting point we take minimum uncertainty case for both, light
and atoms. q̂c,s− and P̂ become squeezed, while ŷc,s− and X̂ are anti squeezed.

still the case, when we include the effect of decoherence. In [5] two mode light
squeezing is reported and in chapter 8 I am going to describe squeezing of the
collective atomic operators, due to this effect.

In the second row of figure 3.2 the factors governing the interaction are shown
for a light power around three times higher than our usual setting and for
longer times. Here the differences compared to the QND are much more dra-
matic. κ saturates at 1

ξ and the input becomes considerably suppressed. As
these graphs contain no contributions of decoherence, they are not sufficient
to predict experimental outcomes, but still show the interesting possibilities of
such an interaction. The atomic decay leads to the loss of atoms to F = 3.
These atoms do, due to the large detuning, not participate in the interaction,
but lead to a time dependent γs. Also there is a population transfer to the other
magnetic sublevels in F = 4 bringing about additional noise, and, if the orien-
tation is reduced a lot, the breakdown of the theory that is based on a two level
model. It will turn out that the various decoherence mechanisms will lead to
an additional decay of the transversal spin with a decay constant on the same
order of magnitude as γs. Opposed to the effect described in this section, the
additional decay will just add noise to the measurements. Part of this will be
discussed in section 3.3.

3.2.2 Single cell

The atomic input-output equations for the setting depicted in figure 2.6 where
a single oriented atomic ensemble is situated in a magnetic field, have already
been expressed in 3.7. However, the equations for the light modes of interest
have not explicitly been stated due to their complexity. The full input-output
relations will be derived in this section.

Throughout the thesis the derived formulas will be used to see the effect of the
higher order corrections on experiments that were evaluated with the simpler
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model. But also proposals of new experiments, like atomic teleportation that is
discussed in chapter 10, should be based on the more accurate model.
A lot of technical details are included in this section. This is partly due to the
fact that there are different light modes which are worth considering. More
specifically, it is possible to define rather complicated light modes, to achieve
simple equations. The downside of this is that those light modes are not easily
accessible for measurement. Therefore, I will also consider the modes that we
usually measure to discuss the error made when the equations 2.39 are applied.
If one does not want to follow the full derivation, this section can be skipped
and the corrections will be discussed explicitly for every experiment where they
are of relevance.

We saw previously that the single cell setting was more complicated, since in
the two cell case the back action of light on itself is canceled out. There are two
possible settings, one were the macroscopic spin is aligned with the magnetic
fields and one where its antiparallel. The two sidebands in the Hamiltonian 3.4
that participate in the two processes with different weights exchange place.

The final atomic equations are easily obtained from equation 3.7:

x̂out =
√

1− κ2ξ2 x̂in +
κ√
2

q̂in
c+ ∓

κξ2
√

2
ŷin

s+,

p̂out =
√

1− κ2ξ2 p̂in ∓ κ√
2

q̂in
s− −

κξ2
√

2
ŷin

c+.

(3.14)

The light equations for the falling modes can be calculated by integration:

ŷout
c− =

1
2
(ŷin

c− +
√

1− κ2ξ2ŷin
c+)∓

1
2ξ2 (q̂

in
s− −

√
1− κ2ξ2q̂in

s+) +
κ√
2

p̂in,

ŷout
s− =

1
2
(ŷin

s− +
√

1− κ2ξ2ŷin
s+)±

1
2ξ2 (q̂

in
c− −

√
1− κ2ξ2q̂in

c+)±
κ√
2

x̂in,

q̂out
c− =

1
2
(q̂in

c− +
√

1− κ2ξ2q̂in
c+)±

ξ2

2
(ŷin

s− −
√

1− κ2ξ2ŷin
s+)−

κξ2
√

2
x̂in,

q̂out
s− =

1
2
(q̂in

s− +
√

1− κ2ξ2q̂in
s+)∓

ξ2

2
(ŷin

c− −
√

1− κ2ξ2ŷin
c+)±

κξ2
√

2
p̂in.

(3.15)

The falling output modes couple thus to a linear combination of the rising and
falling input modes. Therefore one needs to pay attention, when evaluating
noise and mean value transfer in those equations, as the exponentially decaying
and rising modes are not orthogonal. Later suitable orthogonal modes that are
given by linear combinations of the two will be introduced.
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To achieve simpler equations, new light modes can be defined like

ˆ̃Yout(in) =
1√
2ξ

(q̂c−(+) ∓ ξ2ŷs−(+)),
ˆ̃Qout(in) =

1√
2ξ

(∓q̂s−(+) − ξ2ŷc−(+)).

(3.16)
Note that the input operators have rising and the output operators falling ex-
ponential modes. Then the input-output equations are reduced to

x̂out =
√

1− κ2ξ2 x̂in + κ ˆ̃Yin, p̂out =
√

1− κ2ξ2 p̂in + κ ˆ̃Qin,

ˆ̃Yout =
√

1− κ2ξ2 ˆ̃Yin + κξ2 x̂in, ˆ̃Qout =
√

1− κ2ξ2 ˆ̃Qin + κξ2 p̂in.

(3.17)

Those equations look reasonably simple, but they are experimentally not very
convenient, since those light modes are not easily measurable.

To make a useful discussion of experimental results where the simple equa-
tions of section 2.2.3 were used, we need equations that look like the original
equations 2.39 with a correction. So as the very last thing in this section, I will
evaluate the single cell input-output relations, considering the scenario of the
teleportation experiment discussed in chapter 6.
Let us first reexpress equation 3.15 for ŷout

c , such that it features only orthogonal
modes. We introduce f+⊥(t) = a f+(t) + f−(t), such that

∫ T
0 f+⊥(t) f+(t)dt = 0,

implying that the exponentially rising mode f+(t) = 1
N+

e−γ(T−t) and f+⊥ are
orthogonal over the interaction time. Now, we can substitute the operators of
the exponential falling modes by a linear combination of operators with orthog-
onal modes. The negative mode functions can be replaced by

f−(t) =
γT

sinh(γT)
f+(t)−

√
1− γ2T2

sinh(γT)2 · f+⊥(t). (3.18)

For now, I only want to evaluate the resulting equation for settings close to
κ = 1, which is the working point of several experiments. For a detuning of
∆ = 850MHz, the overlap of f+(t) with the previously used flat-top mode and
the overlap of f+⊥(t) with the first order temporal mode defined in equation
2.37 is 0.999584.

For the mentioned detuning κ = 1 translates into γsT ≈ 0.08, and we can Taylor
expand the output equations for γsT. Then we get for a reasonable expansion:
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The κQND = a
√

JxSxT, also refers to the coupling constant introduced in chapter
2. The variance of this light output is plotted in figure 3.4 as the dashed line.
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Figure 3.4: Variances of light quadrature ŷc,s after the interaction with a certain dura-
tion T. The solid line is the noise expected without the correction and the dashed line
is the noise with the correction. Clearly the QND theory overestimates the expected
noise.

The noise coming from the atoms is slightly suppressed. The back action noise
of light is overestimated, if one considers the equations in chapter 2, since there
is also a suppression of the input light noise taking place. Anyhow, as men-
tioned before, a number of other things, like the method of the measurement
of the coupling strength need to be considered, to evaluate the reconstruction
mistake.

3.2.3 Comments to the input-output equations

In the last section we introduced exponentially decaying and rising modes.
The decaying output light modes and the rising input light modes couple to
the atoms. The equations were derived for very specific settings. Actually, the
sign of γs can be flipped in different ways, such that the output modes would
be exponentially rising. The sign can be changed, by changing the polarization
of light, which leads to a sign change in the light quadrature operators, or
by using a red detuned probe that changes the sign of a2. This leads to a
completely different scenario where V̂ ∝ p̂q̂ − ξ2 x̂ŷ. The input operators are
amplified, since

√
1− ξ2κ2 > 1 and γs flips sign. Also κ2 grows faster than

linear with time, instead of saturating. For certain experiments, this setting
might be beneficial. However, in the experiments conducted so far, we have
experienced additional technical noise in our measurements. It is not clear
today, if there is a fundamental problem with those measurements, or if the
general sensitivity of our measurements combined with less invested time in
those specific settings just lead to the observed behavior.
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3.3 Effects of additional decay

In the experiment, the atoms are exposed to a whole range of effects that cause
the transversal spin to decay. The atoms collide with the walls and other atoms,
there is spontaneous emission and, since the observables of interest are mag-
netic coherences, magnetic field instabilities also lead to decoherence. Thus,
experimentally, we will always see a decay of the mean values that is faster
than a decay with γs introduced in the previous section. While the mean value
is decaying, for us it is very important what happens to the noise of the observ-
ables. Here we will consider the known approach of Langevin noise operators
[SZ97]. We extend the equations of motion of the atomic operators by adding
an extra decay with γextra and to keep the quantum mechanical properties of
the system valid, we add noise operators f̂x,p with Var( f̂x,p) =

1
2 , simulating a

decay towards the CSS. This seems like a rather contingent assumption. Any-
how, we know that the major decay contributions coming from spontaneous
emission go towards the CSS3, other decay contributions might lead to an ad-
mixture of the thermal state.

If we assume a decay towards a state with lower noise than the CSS impossible,
the description will provide us with a best case scenario, when we attempt to
make predictions about the outcome of an experiment. On the other hand, if we
use the formulas derived in the following for atomic state reconstruction from
the light noise measurement, they will provide us with a worst case scenario.
This means that we will overestimate the atomic noise (see section 5.2).
We can test the atomic orientation and for short timescales the approximation
will prove to be quite accurate, A thorough discussion of measurements on the
decay will follow in section 4.3.

The extended atomic equations read

˙̂x = aq̂(0, t)− a2ξ2

2
x̂−Ω p̂− γextra x̂ +

√
2γextra f̂x,

˙̂p = aξ ŷ(0, t)− a2ξ2

2
p̂ + Ωx̂− γextra p̂ +

√
2γextra f̂p.

(3.20)

We will now define the new decay constant γ = γs + γextra. It is straight for-
ward to solve those equations for the atoms in the single and two cell case. For
more details, see appendix B. For the single cell, we get

3Atoms decaying to F = 3, effectively leave the system, which is similar to an admixture of
vacuum; atoms decaying over an excitation of F′ = 5, m = 5 can only decay into the CSS.



38 Refined theoretical model for oriented atomic states
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with ε2 = γextra
γ and for two cells:
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√
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For light, the two cell case can in principle also be easily calculated for the ex-
ponentially decaying mode. The light modes read:
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c,s− + ŷin
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Again, it is important to note that the decaying and rising modes are not or-
thogonal. This means that operators, as for example ŷc,s− and ŷc,s+, are not in-
dependent. So whenever noise measurements are taken, we have to formulate
those equations in a way including only orthogonal modes. The full equations
can be found in appendix B.

3.4 Limitations of the derived equations

While this extension of the simple QND model is supposed to yield a better
description of the experiment in the higher coupling limit, there are a couple
of crucial limitations that need to be considered.

The first is that linearizing of the quadratic spin terms only works for a very
highly oriented ensemble, since it is only considering the upper two magnetic
sub-levels. For some of our experiments this is not sufficient. In chapter 7 states
are considered where a considerable amount of population is in the m = 2 level.
To evaluate the atomic state via a dispersive readout with a low coupling a per-
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turbational approach without the linearizing step was taken in appendix C.
In chapter 8 strong coupling is used to achieve atomic entanglement via the
interaction leading to considerable spontaneous emission in all magnetic sub-
levels. The orientation will be tested to make sure that the model remains valid
throughout the whole process. In some of those experiments, a weak pump-
ing laser will be applied during the interaction, leading to a high degree of
polarization throughout the whole model.

For timescales long compared to the decay of the longitudinal spin, γs will also
be time dependent, as γs ∝ Jx, so for long timescales this need to be considered.
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Chapter 4

Characterization of the

experimental system

This chapter is devoted to the description of the experimental setup and mea-
surements which characterize this system. There are many quantities that are
of importance in our experiment. Here, we are mainly going to deal with what
I would like to call classical measurements, implying that we are going to be
concerned with mean values. However, those mean value measurements are
not going to be enough to characterize the full system. Chapter 5 will therefore
be concerned with quantum noise measurements which will supply us with
another set of calibrations - like the shot noise of light, a different method of
measuring κ and the detection efficiency.

First, the experimental systems - the atomic sample and the light sources - will
be described. This is followed by an experimental analysis of the atomic states
where the achieved orientation and the macroscopic spin will be measured.
Also the coupling constant (section 4.14) can be determined just by mean value
measurements. A rather long part of this chapter is devoted to measurements
of the decay, since decoherence is one of the main limiting factor of our experi-
ments.

4.1 Experimental system

In this section I will introduce the atomic system and the light sources. The
experiment requires three light beams. Two are used for the preparation of
the oriented state by optical pumping [Hap72]. Furthermore, the probe laser is
needed for the desired interaction discussed in chapters 2 and 3 and finally the
measurement on the Stokes operators is discussed

43
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4.1.1 Atomic system

The atomic system consists of an ensemble of Cesium atoms at room tempera-
ture. Cesium is an alkali metal with only one stable isotope 133Cs which has the
nuclear spin of I = 7/2. Together with the outer electron this gives a ground
state with the two hyperfine states F = 4 and F = 3. In figure 4.2 the ground
state is shown together with the first excited states. There are two D-lines,
the D1 line corresponding to the 62S1/2 → 62P1/2 transition and the D2 line
(62S1/2 → 62P3/2). Details can be found in [Ste03].

The atoms are situated in a glass cell with a paraffin coating1. Those coatings
are known to protect the atomic spins from decoherence due to wall collisions
[BB66, ABP+96, ABB+02]. At room temperature the Cesium atoms have a mean
velocity of 235 m/s. This leads to around 10 wall collisions in one millisecond
for cubic cells with a side length of 2.2cm. With help of the coatings we can
achieve spin coherence times around 30-40 ms and lifetimes of the macroscopic
spin up to 200ms, which stresses the quality of the used coatings. Recently,
new alkane based coatings have been developed [6] which grant lifetimes of the
macroscopic spin up to a second. The next generation of cells will be coated
with this newly developed material.
On one side of the glass cube a glass finger is attached with solid Cesium in the
end of the finger. The diameter of the hole between cell and finger is smaller
than 1mm to avoid the exchange of atoms from cell body and the finger at a fast
rate. On the left of figure 4.1a, the cubic glass cell is shown along with another
cell design that was used previously. Glass plates with antireflection coatings
are attached to the outer windows of the cells with help of an index matching
fluid. This way the light losses for one passage can be reduced to around 8-10%.
Currently efforts are made to use cells with antireflection coating on the inside
to reduce reflection losses even further. However, this causes some problems in
the production, since the windows have to be glued together after the coating
was applied. Then the paraffin coating has to be layered on top and since
the preparation for this procedure includes a heating cycle up to temperatures
around 350◦C the coatings need to be able to withstand higher temperatures.
In the first attempt we have experienced some problems with the behavior of
the cells after the gluing. It seems that the paraffin coating does not cover the
cell surfaces properly. This could be due to some interaction with the glue.
Since the atoms move rather fast, already a small uncoated surface suffices to
degrade the performance considerably. Also when the prepared glass cell was
filled with Cesium there appeared to be a reaction of the Cesium with some of
the remaining components after the evacuation and the seiling of the cell, the
reason of which remains unknown.

1The coatings we use are produced by M. Balabas.
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Cesium cell

Rf-coils
Magnetic shielding

(a)

(b)

Figure 4.1: Experimental setup. On the left of (a) two glass cell, filled with Cesium are
shown. The square glass cell is the latest design. It is situated in a magnetic shield
shown on the right. The bias magnetic field of 0.9 G is pointing out of the picture
plane here and is created by four coil pairs. The RF coils are oriented such that the
RF field lies orthogonal to the bias field and macroscopic spin. Two apertures along
the transversal direction allow the light beam to pass the cell. The pump beams are
aligned in direction of the main axis and also a small and weak probe light beam to
measure the macroscopic spin is directed that way. (b) shows the part of the setup
where the interaction and measurement take place.
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Figure 4.2: Level scheme of Cesium, including the ground levels and the first excited
levels. The frequencies of the three lasers that are used, are depicted.

The cells contain around 2.5 · 1011 atoms at room temperature (RT). By changing
the temperature and thus the density of atoms with help of a heated or cooled
air flow the number of atoms inside the cell can be reduced to around half the
number of atoms and increased to around three times the number of atoms at
RT. Due to the paraffin coating, the cells can not be heated up further. It will
turn out that this is also not advisable, since a too high temperature induces
additional technical noise which we observe in our atomic noise measurements,
so that we find an optimum for most experiments at room temperature or at
the temperature yielding around twice as many atoms in the cell.
For further protection, the glass cell is situated inside a magnetic shielding. It
consists of layers of µ metal and iron and can be seen on the right of figure
4.1a. Since our measurement quantities are coherences of magnetic substates
this protection against magnetic disturbances is crucial.

4.1.2 Pump lasers and state preparation

The pump lasers are grating stabilized diode lasers which are set up in Lit-
trow configuration with diodes with different suitable gain profile. The lasers
are homemade and used in a whole range of QUANTOP experiments [She06,
Hil08, Win08].
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Frequency stabilization of the pump lasers

The repump laser at 852nm is used to shuffle atoms from F = 3 to the F = 4
ground state. Its frequency is stabilized to the D2 line F = 3 to F′ = 4 transition
by saturation absorption spectroscopy. Saturation absorption spectroscopy is
a tool used to lock to a sharp atomic transition, even though the absorption
profile is broadened due to atomic motion. At room temperature, every line is
Doppler broadened to almost 200 MHz. On the D2 line we will therefore only
see two absorption dips 9.2 GHz apart, coming form the splitting of the ground
states. The transitions to the different excited states can not be resolved, as they
lie too close, compared to the Doppler broadening. To make them visible, a
small portion of the beam coming from the diode laser is sent through a Ce-
sium cell, attenuated and then sent back through the sample (see the right of
figure 4.4 for the setup). The laser frequency is seen with different Doppler
shifts for atoms moving with different velocities. Therefore the atoms see dif-
ferent frequencies for the two beams, coming from either side of the sample, as
their velocity flips sign compared to the beam propagation. When the laser hits
the exact frequency of a transition the atoms with zero velocity will absorb the
light. If the beam is strong enough, it will saturate the transition, causing a de-
creased absorption in the reflected beam that is also resonant with the atoms at
zero velocity. This can be seen as peaks inside the absorption profile. In figure
4.3 such a saturated absorption signal is shown for the D2 line. Additionally
to the spikes at the transition frequencies, also crossover peaks appear. These
come from one velocity class of atoms in resonance with one transition of the
atoms for the saturation beam and the neighboring transition for the reflected
beam. Those peaks lie therefore exactly in between the true transitions. The
lower curve in figure 4.3 shows the signal that we actually use as the error sig-
nal for locking. This differential signal is produced, by adding a modulation to
the diode current at a certain frequency. With help of the resulting sidebands,
the error signal is produced by mixing the photo detector signal with a signal
with the original modulation frequency [BLLO83].

The pump laser at 894nm is locked to the D1 line F = 4 to F′ = 4 transition.
On the D1 line 4 distinct absorption dips can be seen, but to have a sharp stable
frequency again saturated absorption spectroscopy is applied.

Pulsed optical pumping

Besides the right frequency the lasers also need to have a distinct polarization
for the atomic state preparation. The pump beams are aligned in direction
of the magnetic field and are either σ+ or σ− polarized. This way m = 4 or
m = −4 is a dark state for the pump laser, as there are no exited m′ = ±5 states
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Figure 4.3: Saturation absorption spectroscopy signal. The black line shows the satura-
tion absorption spectroscopy signal for the D2-line, considering only the ground state
F = 4. The gray line shows the error signal

available. The corresponding level scheme is depicted in the middle of figure
4.6. The atoms in all other magnetic sublevels of the ground state absorb the
pump light and decay towards F = 4 or 3 and, depending on if the pump light
was σ+ or σ− polarized move on average one m level up or down. When the
pumping is conducted long enough with enough power all the atoms in F = 4
will end in m = 4. The repump laser pumps in the meantime those atoms
which decay to F = 3 back to F = 4, so they are not lost to the pumping cycle.
The powers used are around 3 to 5 mW for the repump laser and 0.5-2 mW for
the pump laser.

Since the pump lasers are not to be shone on the atoms while the actual exper-
iment takes place, they are turned on and off via acousto optical modulators
(AOM). The AOMs are used with a 125MHz modulation and the first order
of diffraction is directed to the atomic ensemble. The light can then easily be
turned off by switching off the modulation. The frequency of the pump light is
shifted by the modulation frequency. Fortunately the Doppler profile is broad
enough, so that this does not matter, as long as we pump for long enough
times. The pump pulses have usually a duration of 4-20 ms and the extinction
of the input light, when turned off, lies around 0.1%.

4.1.3 Probe laser and Stokes measurement

Probe laser setup

The probe laser is detuned from the D2 F = 4 to F’=5 line by ∆ as depicted in
the level scheme in figure 2.1. The detuning should be chosen in such a way
that the frequency lies well outside the Doppler profile. Our typical detuning
is 850 MHz. We use two different laser systems as the probe laser. One is a
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distributed feedback laser (DFB) from Toptica2. The frequency selective device
is a grating structure directly incorporated in the semiconductor chip. The
frequency can be scanned by modulating temperature or the laser current, and
can easily be varied over the D2 lines without any mode hops. The output has
extremely low amplitude noise at the RF-frequency of interest at 322kHz.
The laser is sent through an optical isolator and part of the light is taken out for
the frequency stabilization. This fraction of light is sent through a fiber coupled
electro optical modulator, used for intensity modulation. The modulations at
around 1 GHz is done so strongly that almost nothing is left in the carrier, while
the two sidebands become very strong. Then, depending on whether we wish
to achieve red or blue detuning, we lock the blue or red sideband frequency
to an atomic transition. We usually choose the first cross over peak of the red
sideband as a locking point, so that our detuning is given by the modulation
frequency minus half the splitting of F′ = 4 and F′ = 5, ∆45

2 = 125.5MHz.

The other probe laser that can be used for the experiments is a Ti:Sa ring cav-
ity laser3 which is pumped with a Verdi4 laser at 532nm with 8-10W pump
power. This laser has higher output power (several hundred mW), which is
useful for some of our applications. Especially experiments in which squeezed
light is used profit from the narrow linewidth of the Ti:Sa laser and the high
output power which allow for efficient production of broadband squeezed light
[WKHW86] with standard optical-parametric-oscillator (OPO) techniques. The
setup for this is discussed in detail in [SSP02, NNNH+06] and I will just briefly
describe it here for completeness. The output of the laser is frequency doubled
by second harmonic generation in a nonlinear crystal. This is used as input for
an optic parametric oscillator (OPO). Here parametric down conversion leads
to an infrared light output that is quadrature squeezed. Combined with a local
oscillator, the output can be used for our experiments. In this thesis, exper-
iments with squeezed light are only discussed in passing. Most of the time
when the Ti:Sa laser is employed, we use the local oscillator and a vacuum field
in the quantum mode. However, the path which is used to produce squeezing,
can be exploited to create displaced coherent states with help of two EOMs.
This is discussed briefly in section 4.14.

The Ti:Sa laser is frequency locked with help of a beat lock to another laser
with known, stable frequency. The beat lock requires much less laser power
than we typically use for the sideband-modulation lock. A portion of light is
mixed on a beamsplitter with a frequency stabilized laser, for example the DFB
laser. The signal is detected with a fast photo diode5 and the amplified sig-

2with the diode: LD-0852-0150-DFB-1
3We use microlase (now COHERENT) system as well as a homemade laser.
4Diode pumped solid state laser from Coherent
5Hamamatsu GaAs Metal-Semiconductor-Metal photo detector (G4176-03) on a Mini-circuits

ZX85-12G-S+ Bias-T
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nal is mixed with a oscillating signal at a frequency fref, which will determine
the detuning of the two lasers that are overlapped. This mixed signal is sent
to a frequency discriminator6 that compares the down mixed beating signal to
a reference frequency which in our case lies at 65MHz. It produces an error
signal which gives a negative output for input frequencies below 65MHz and a
positive output for higher frequencies. Locking to this signal allows to lock to
detunings of δ = ±( fref±65MHz). In figure 4.4 the schematics of the locks of
the two probe lasers are shown.
Besides fixing the frequency to a certain detuning, the probe laser also needs
to be shaped in time. In the previous section it was mentioned that the pump
lasers are switched with AOMs. This approach is not taken with the probe
light as we experience high excess amplitude noise on the edges of the pulses.
Therefore we use an electro optical modulator (EOM) positioned between two
polarization beam-splitters instead. The electro optical crystal changes the re-
fractive index by applying an external voltage differently for two orthogonal
polarizations. The reached suppression is of the order of 100-200.
Also, the beam has to be shaped in space. The atomic cells have a 2.2x2.2cm2

cross section and the beam should fill as much as possible of this area and
have a smooth intensity profile. The first option to achieve this is to use a very
big collimated Gaussian beam and cut out the center with an iris to achieve
a smooth beam profile. This introduced of course a lot of losses in the probe
beam, as most of the beam is dumped. A better result is achieved, when a
beam shaper7 is used that converts a gaussian beam to a flat-top profile type
beam. The achieved smoothness is satisfactory for both settings, as the remain-
ing deviations in laser power are averaged out due to the atomic motion. The
experiments described in chapters 8 and 9 in this thesis were conducted with
the beam-shaper.

Stokes vector measurement

The light quantities of interest are the Stokes operators. We mainly measure Ŝy,
as it is changed strongest by the interaction. For that we use a λ

2 -plate and a
polarization beamsplitter and measure the number of photons polarized in 45◦

and −45◦ accordingly. Thus by subtracting the photocurrent of the two detec-
tors we get a signal proportional Sy = 1

2 (n+45◦ − n−45◦) =
√

Sx · y. The signal
strength is given by the strength of the classical input pulse. Similarly we can
measure q̂ (Ŝz) with help of an extra λ

4 -plate.
Our measurement is similar to normal homodyning measurements [BRLR98],
where for us the local oscillator (LO) and the weak quantum field are not spa-

6The phase-frequency discriminator was originally designed in the MIT, Boston. It is based
on an ultrahigh speed phase/frequency discriminator from Analog Devices (AD9901).

7beam shaper for collimated beams from ΠShaper.
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Figure 4.4: Probe laser setup, including the different locking systems. On the right the
DFB-laser and the saturation absorption spectroscopy setup are depicted. On the left
the Ti:Sa laser is shown which is frequency locked via a beat lock.

tially separated, but belong to orthogonal polarization modes. In most of our
measurements the LO is y-polarized and the quantum field is x polarized. Thus
the mean value of 〈Sy〉 = 0. The amplitude noise of the driving laser is can-
celed, and only the "quantum" noise is detected. Of course one can not achieve
perfect noise suppression, so called balancing. We routinely achieve a sup-
pression of classical noise by a factor of 400-1000. For a balancing of 1000 a
shot noise measurement, with an extremely noisy light source with 100 times
shot noise additional intensity modulation, will still only reveal one per mill
additional noise compared to the shot noise level.

As we are interested in the light variable components at a certain frequency,
we use a lock-in amplifier8 that supplies us with the strength of the difference
detector signal at a chosen frequency. The two components which the lock-
in gives out are the components of the input signal in phase and 90◦ out of
phase with the reference RF-signal. After normalization, this corresponds to
the cosine and the sine component of the Stokes operator Ŝy,c(s).

The detectors we use are peaked around the frequency we are interested in
(see [She06]), but broader than the filtering of the lock-in amplifier. The photo
diodes9 have a high quantum efficiency of around 98% at the used wavelength.
Around 4% of the incident light are reflected, so this reduces the efficiency. This
reduction can be avoided by back-reflecting the reflections onto the detector.
This approach is advisable, whenever feedback of the measurement results is
applied. If the measurement is used only to characterize the quantum state of

8A Stanford research systems SR844 200 MHz RF lock-in amplifier is used with an external
reference. The simple working principal is as follows: the input signal is multiplied with a signal
oscillating with reference frequency and phase. The resulting signal has a component which is
oscillating with the sum frequency of input an reference and at the difference frequency. After a
low-pass filter only the signal close to DC are left.

9Hamamatsu photodiode S33994
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light (or atoms via the light) the slightly worse quantum efficiency can easily
be compensated for, as we are only dealing with Gaussian states.

The noise coming from the whole detection system lies at around 1% of the
shot noise of light for a light power of 5mW.
For some experiments, like the test of orientation, the signal from the lock-in
amplifier can be recorded with help of a digital oscilloscope.
For the noise measurements that require many repetitions the data acquisition
is conducted such that for every measurement pulse the lock-in amplifier out-
put is sampled at a rate of 10 kHz10. Those points are multiplied with a given
mode function and added up. Then for a set of measurements the mean value
and the variances are calculated and stored.

4.2 Characterization of the atomic state

After the atomic system is initialized with the pump beams we want to assume
that the atoms are in the CSS. In this section some of the measures charac-
terizing the atomic state are discussed. Starting with the measurement of the
macroscopic spin in section 4.2.1 we describe an investigation of the orientation
in section 4.2.2 followed by a discussion of the effect of the probe light onto the
atoms, not including decay which will be discussed in detail in section 4.3.

4.2.1 Faraday angle

To determine the length of the macroscopic spin in the x-direction, we send a
weak, detuned probe of linearly polarized light in the direction of the orienta-
tion of the spin. This weak measurement is a probe of 〈 Ĵx〉, with a negligible
effect on the atoms. The polarization of the probe beam is rotated proportion-
ally to the mean spin in x-direction. This is discussed in detail in [Jul03] and
summarized in appendix D. The rotation angle, in the following called Faraday
angle θF, is given by (see equation D.3)

θF =
γ0a1λ2〈Jx〉
16A∆2π

≈ γa1λ24Na

16A∆2π
, (4.1)

where the right side is true for a fully oriented sample, meaning almost all the
atoms are sitting in F = 4, m = 4. If all atoms are in F = 4 but the ensemble
is not fully oriented, one has to add the orientation oF=4 = 1

4 ∑m m · pm to the
formula, where pm are the populations of the different m levels in F = 4. After
the interaction, we measure the angle by sending the Faraday probe through a
polarizing beam splitter (PBS)11 with a DC detector in each output port. From

10Labview FPGA is used.
11A Glan Thompson polarizing beamsplitter is used that provides high purity in polarization.
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the detector signals the polarization rotation can be calculated. According to
equation 4.1 it is thus possible to obtain the number of atoms. Of course this is
only true for the CSS and we must be very careful as to check if our pumping
procedure is efficient. Therefore a measurement of the orientation of atoms in
F = 4, called magneto optical resonance (MORS) will be discussed in section
4.2.2. The MORS measurement does not give any information about atoms in
F = 3, but by using a rather large power of the repump power for which the
Faraday angle is saturated, one can be sure not to leave many atoms in F = 3.

Sometimes it might be interesting to work at settings where a controlled part of
the atoms are in F = 3. One can for example reduce the power of the repump
laser in the pumping pulse. This is an easy way to reduce the number of atoms
participating in the interaction. The atoms in F = 3 are strongly detuned, so
they interact much weaker with the light. Also, they have a different g factor
and precess therefore at a different Larmor frequency. Their contribution to the
detection of the transversal spin via the light is small. The atoms in F = 3 do
have a small effect on θF and equation D.5 can be used to calculate a compen-
sated Faraday angle which gives the polarization rotation that purely comes
from the rotation of the atoms in F = 4. Some issues arise here, as one needs
to have information about the orientation of the atoms in F = 3. Most of the
time, we will work with settings where this will be close to one. Otherwise, we
might be able to use the techniques described in the next section to learn some-
thing about the orientation. Anyhow, in most cases the polarization rotation
originating from atoms in F = 3 is very small and can be ignored.

The Faraday angle measurement is conducted regularly in every measurement
series. It is an important control measure as the coupling constant is depending
on the macroscopic spin arising from the atoms in F = 4.

4.2.2 Characterization of the atomic orientation

It is very important to verify that the atomic ensemble is in the CSS as part
of the model describing the light-atom interface relies on this knowledge. A
first step is to measure the orientation of the atomic ensemble. To check the
orientation of the atomic F = 4 ground state, we use an RF magnetic field to
excite coherences and then read out the transversal spins that are given by the
coherences. This can be done in the frequency or time domain. The former is
a known method introduced in [AGC+87, JSSP04] and discussed in detail in
[Jul03, She06] and called magneto optical resonance signal (MORS). The setup
for a MORS experiment is shown in figure 4.5 and explained in the caption. I
will give a brief discussion here and some details are included in appendix E,
since it is an important tool for the state characterization. Then the method of
measuring and analyzing a MORS in time domain is discussed.
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Figure 4.5: Setup for MORS measurement.An RF field is applied to the atoms and a
detuned light beam is sent through the atoms. After the interaction the light hits the
polarization homodyning setup. The difference signal from the detectors is analyzed
with a lock-in amplifier that uses a reference, coming from the same signal generator
that supplies the signal for the RF field. On the right side the magnetic sublevels of
the ground state are shown. The detected signal on the light will have components
proportional to the coherence strengths. The two coherences depicted here (σ43 and
σ32) oscillate at different frequencies and can thus be resolved.

Frequency spectrum of atomic coherences

For the MORS experiment, a DC magnetic RF field is applied perpendicular
to the macroscopic spin, as sketched in graph 4.5. The RF field creates an
excitation of ∆m = 1 coherences, whenever the frequency is on resonance. The
resonances have a certain width and, due to the quadratic Zeeman shift, they
precess with different frequencies. The quadratic Zeeman effect which becomes
relevant for atoms in magnetic fields of intermediate strength is discussed for
the presented experiment in [Jul03]. The effect is rather small and leads to a
splitting of the coherence frequencies of around 22Hz (ΩL = 2π322), but due
to the long spin coherence times and thus narrow lines in the MORS it gives us
the possibility to resolve the different lines allowing us an analysis of the spin
state.

The transversal spins that we probe in our measurement are sums of all the
spins of the atoms which are given by the coherences as
̂y = ∑m

√
F(F + 1)−m(m + 1)(σ̂m+1,m + σ̂m,m+1) and

̂z = ∑m i
√

F(F + 1)−m(m + 1)(σ̂m+1,m − σ̂m,m+1) with σ̂i,j = |i〉 〈j|. When we
look at mean values coming from equation 2.35, our measurement quantities
〈ŷout

c,s 〉 ∝ 〈 Ĵy,z〉 will be proportional to the two transversal spins in the rotating
frame. The MORS is given by R =

√
〈ŷout

c 〉2 + 〈ŷout
s 〉2 and follows equation E.3.

For the case of a slowly varying RF frequency, the spins are given by the sum of
Lorenzians at the resonance frequency of each coherence σ̂m,m+1. The strength
of every peak is given by the population difference in the two levels m and
m + 1 and the factor F(F + 1)−m(m + 1). To create an imbalance between the
magnetic sublevels in order to see any signal in the mean values, the repump
laser can be turned on. On the left of figure 4.6 the trace for such a scenario is
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Figure 4.6: Different MORS for F = 4 are shown together with the relevant levels of
Cesium. On the left only the repump laser is creating an imbalance in the ground
state populations. The repump laser is far off resonance to all transitions from the F=4
ground level states. Therefore it has a negligible effect on the width and the splitting
frequency of the resonances. In the middle also the pump laser is turned on, which
is resonant with the D1 line F = 4 → F′ = 4. This causes a broadening of the lines
an makes the extraction of the orientation difficult. On the right the pump laser was
locked to the D1 F = 4 → F′ = 3 transition. For σ+ light, m = 4 and m = 3 are dark
states. Therefore the σ43 coherence is not broadened. The polarization of the pump can
be optimized by maximizing the peak of the 4− 3 coherence.

shown. The main peak represents the σ4,3 coherence and can be maximized by
adjusting the polarization of the repump laser.

In figure 4.7 frequency domain MORS traces are shown for different probe laser
power and probe laser polarization. Not only the signal strength, but obviously
also the width of the single peaks depends on the probe power. This is due to
decay introduced by the probe and will be discussed in more detail in section
4.3. Also the splitting between the peaks differs from the 20Hz at low powers
caused by the quadratic Zeeman shift. This originates in the quadratic Stark
shift coming from the a2 terms in the Hamiltonian 2.18. In [Jul03, She06] this
is described for our experiment. The Stark shift also causes a displacement of
all coherences with the same value. This was compensated for in the measure-
ments of 4.7, by adjusting the magnetic field, but needs to be considered in
protocols where light is switched on and off.

When all the atoms are in m = 4, we do not care about the splitting of the fre-
quencies of the coherences, since we are only interested in the transition from
m = 4 to m = 3. But whenever we investigate other atomic states (meaning
other than the CSS), such as the thermal state (section 5.2.1) or a more com-
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(a)

(b)

Figure 4.7: MORS signal for horizontal (a) and vertical (b) polarization of the probe
beam at ∆ = 825MHz for different probe power. The signal is proportional to the
squared sum of the rotating transversal spins. The frequency on the x axis is the
frequency of the RF field applied. The frequency was varied very slowly (one scan
took about 10s) and the response of the spins was recorded in a setup such as depicted
in figure 4.5. The magnetic coherences are split due to the quadratic Zeeman shift and
due to the quadratic Stark shift. For vertical polarization there is one setting where the
two shifts cancel each other and all the coherences precess at the same frequency. In
most cases, we work at this point or close to it.
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Figure 4.8: Pulsed MORS signal for a pumping cycle with only repump light (a) and
for the full pumping (b). The black dots are the measurement results for the two
atomic quadratures and the red and blue lines is a fit. The orientation that can be
extracted from the fits are 0.82 and 0.998. In (a) the beating of the 43-coherence and the
32-coherence can clearly be seen as the second peak and even a third peak is visible.
But also in (b) the structure of the envelope is clearly more complicated than a single
exponential decay.

plicated squeezed atomic state (chapter 7), we need to consider this frequency
mismatch. For those cases we often chose to work at the setting where quadratic
Zeeman and Stark shift cancel (see figure 4.7b), which means working with ver-
tical polarization around 4.5-5mW.

From fits to the MORS we can extract the orientation oF=4 = 1
4 ∑m mpm =

1
4 ∑m m〈σm,m〉. For pumped samples we assume exponentially decaying popu-
lations, as ε4−m, thus reducing the amount of fitting parameters drastically. We
will see that this assumption gives good results. Alternatively, we can assume
the populations of the outer sublevels to be zero, which will lead to similar
results in the populations coming from the fit. From the graph on the left of
figure 4.6 we get orientations of p ≈ 0.8. Obviously we want to know the ori-
entation of the atoms, when the full pumping mechanism is applied - meaning
that the optical pump is turned on. Since the optical pump is resonant with the
D2 line for the F = 4 ground state the lines get broadened, such that the single
coherences can not be seen anymore and it is hard to extract any information
about the orientation. Such a MORS is shown in the middle of figure 4.6.

MORS in the time domain

To probe the orientation of the fully pumped state, we need to establish a
different method where we first optically pump the atoms into what we believe
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to be the CSS and afterwards ramp down the pump and repump light and do
a measurement with a weak probe. Then the signal coming from the atoms
observed in time can be found by Fourier transformation of the equations in
appendix E:

R ∝ |∑
m
(F(F + 1)−m(m + 1)eiΩm+1,mte−Γt(σm+1,m+1 − σm,m)|. (4.2)

with Γ being the width of the coherences. Instead of a sum of Lorentzians there
is a sum of oscillating terms with different frequencies which decay exponen-
tially. The orientation can be extracted due to the beating of the signals with
different frequencies coming from the different coherences. The timing of such
an experiment is shown on the top of graph 4.8. The two graphs below show
the decaying signal coming from the spin rotating at 322kHz. R is shown, to-
gether with X and P, the two out of phase signals coming from Jy and Jz in the
rotating frame. One can see that the measurement frequency and the Larmor
frequency actually differ slightly, as can be observed by the oscillations of the
two signals. For the measurement run, shown in figure 4.8a, only a repump
pulse was applied, for graph 4.8b both repump and pump laser were turned
on. The beating between the coherences is clearly reduced. The extracted ori-
entations are 0.820(2) and 0.998(2).

Difficulties with the orientation fit

In the previously presented data, we assumed a high orientation of the sample,
we would like to fit. For this it is assumed that the populations of the different
sublevels behave as ε4−m. This model suits our data very well and also seems
like a very intuitive model, characterizing the quality of our pumping proce-
dure, with a dark state in m = 4. I just want to stress that in situations where
we do not know as much about the state our atoms are in, we can not always
extract the exact orientation from the MORS signal. The reason can be under-
stood as explained in the following. The signal is comprised out of 2F peaks,
while there are 2F+1 populations. Additionally the MORS is observed with
a usually unknown overall strength AMORS and every coherence is weighted
with the corresponding transition matrix elements. Of course the populations
have to add up to one ∑ pm = 1. Now this is similar to having 2F+2 unknowns
and 2F+1 equations12. In the figure 4.9a, a DC-MORS signal is depicted for the
atoms in F = 3, when applying a weak pump laser (150µW), resonant with
F = 4 → 4 on the D1 line and a probe field at 8mW, close to the F = 4 → 5
transition of the D2 line. All seven peaks are visible. Without assuming any-

12A precise calibration of all experimental quantities should grant us some knowledge of
AMORS. However, in the presented data further below we can not even measure the ratio of
atoms in F = 3 and F = 4, thus making such an attempt difficult.



4.3 Atomic decay 59

0 100 200 300 400 500
fRF @a.u.D

5

10

15

20

R

(a)
-0.2 -0.1 0.0 0.1 0.2 0.3

A @a.u.D

0.1

0.2

0.3

0.4

0.5
pi

(b)

-0.2 -0.1 0.1 0.2 0.3
A @a.u.D

-0.4

-0.2

0.2

0.4

0.6

o

(c)

Figure 4.9: MORS for atoms in F=3, when a strong probe with ∆ = 850MHz from
F = 4 → 5 transition of the D2 line and a pump resonant to F = 4 → 4 on the D1
line. The F = 3 sublevels remain unbroadened. With the hight of the peaks an approx-
imate range of the population distribution (in (b) where p3, p2, p1, p0, p−1, p−2, p−3 are
shown in red, orange, yellow, green, cyan, blue, purple) and orientation (in (c)) can be
estimated.

thing of the orientation of the atoms in F = 3, one can use the heights of the
peaks to determine an estimate of the difference of the populations in the differ-
ent m levels depending on the unknown factor AMORS. From this, depending
on AMORS, one can plot the possible population distributions (see figure 4.9b).
Obviously, only the range where all populations are positive is relevant. Also,
clearly there can not be a negative orientation in a scenario where a σ+ oriented
pump field is applied. Still, we need more information to determine the orien-
tation which is plotted in 4.9c, over the unknown parameter A. Here we only
succeed in limiting the possible orientation. This question becomes relevant in
chapter 8 where we would like to correct for the Faraday-rotation, coming from
atoms in F = 3, after a long probing pulse.

4.3 Atomic decay

There are two different decay constants describing the decay of the collective
spin T1 and T2. The decay of the mean spin 〈 Ĵx〉 = 〈 Ĵ0

x〉e−t/T1 is characterized
by T1. The decay of 〈 Ĵx〉 can directly be measured by the decrease of the Fara-
day rotation over time. T1 in the dark lies around 100-200ms. When the probe
light is turned on, the rate becomes faster, because of spontaneous emission.
The decay of the mean spin can result from population transfer into F = 3
where atoms contribute only very little to the Faraday rotation (see appendix
D) thus leading to a considerable reduction in the Faraday angle. The spon-
taneous emission can also lead to transfer into different magnetic sublevels in
F = 4 - to first order m = 3, 2. Those atoms still contribute to the Faraday
rotation, reduced with a factor 3

4 and 1
2 . By evaluating the different transition

strengths [Ste03] or by measurement of population distribution in F = 4 it can
be determined that most atoms (∼ 80%) are lost to F = 3. In figure 4.10a the
dependency of 1/T1 on the transmitted probe power P is shown for the two
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Figure 4.10: (a) shows the dependence of the longitudinal decay on probe power at
∆ = 855 MHz. The two sets of data are for two different cells. (b) shows the decay
constant 1/T2, depending on power. One set of data points (circles) were taken with
a bigger beam (dγ = 5.6mm), the other for a smaller beam ((dγ = 1.6mm)). A big
Gaussian beam was used and clipped with an iris. In the newer experiments we work
with a flat top beam profile with a diameter of 2cm improving the decay times further.

cells. Since we are far away from saturation, P is proportional to the intensity
in the cells.

The decay constant T2 describes the decoherence of the transversal spin. We
often measure the decay of a mean value in the rotating transversal spins as
〈 Ĵy,z〉 = 〈 Ĵ0

y,z〉e−t/T2 . This decay is the main cause of imperfections and limita-
tions of our experiments in quantum communication protocols and quantum
state engineering. The decay γ = 1

T2
depends on light power P and atom num-

ber in the cell. Experimentally, it can be parameterized as:

γ = aγ + bγ · θF + cγ · P + dγ · θFP + e · P2, (4.3)

The constant contribution aγ comes amongst others from wall collisions, atom
losses to the stem and magnetic field instabilities. The part proportional to
the Faraday angle probably comes mainly from atom-atom collisions and the
part proportional to the light power from spontaneous emission induced by
the probe. The quadratic part in light power arises from the inhomogeneous
intensity distribution over the sample. A reason for this could be dephasing
of the atoms, because they experience different Stark shifts in different places
of the cell. In graph 4.10b the dependance of the decay on the light power is
shown for two different beam sizes.

The last contribution, dγ · θFP is a collective effect, of the sort predicted in
chapter 3. This part does not add decoherence in the sense that noise is added,
but it contributes to the dynamics, coming from the a2 term of the Hamiltonian.
Decay measurements were taken for different detunings for different powers
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Figure 4.11: A measurement set of 1/T2 for different power and number of atoms is
shown for a detuning of ∆ = 700MHz. The number of atoms was monitored with the
Faraday angle θF

.

and atomic densities. In graph 4.11 one set of measurements for ∆ = 700MHz
is shown. From the measurement set for every detuning, one can extract all the
prefactors from equation 4.3. First, a linear fit to the data for the same power
to θ (γ = o + sθF) was performed and then the outcomes of the offset o = aγ +

cγP(+eγP2) and slope s = bγ + dγP were evaluated for different power. The
parameters aγ and bγ should exhibit no dependency on ∆. The measurement
points are quite scattered and for the lowest blue detunings (700,900 and 1125
MHz) it was necessary to fix aγ to the mean value of the measurements from the
other detunings. The reason lies in the quadratic behavior of the low detuning
data sets, where the additional free parameter eγ otherwise makes the outcomes
of aγ and cγ too uncertain. This course of actionas has no effect on the bγ

and dγ-measurements. The averaged outcomes for the overall offset are aγ =

(15± 3) s−1 and for the pure density term bγ = (1.8± 0.5)s−1deg.−1.
In figure 4.12 cγ and dγ are shown over the detuning. The parameter dγ is
especially interesting for us, as it is part of the dynamics which we established
in chapter 3. They fit very well with the predictions made with help of equation
3.8:

dγ =
γs

θ[◦] · P[mW]
=

λ3γ0 · 7a2(∆) · 180◦

16∆Ahc · 10−3 . (4.4)

The scaling with the light power given by cγ is explained by spontaneous emis-
sion.



62 Characterization of the experimental system

(a) (b)

Figure 4.12: In (a), from measurement extrapolated values for dγ (circles) are shown
together with the γs from theory. Theory and measurement fit very well. The agree-
ment is poorest for the points with lowest detuning (∆ = 700MHz and -900 MHz). This
is probably due to the fact that there the Doppler broadening can not be neglected. In
(b) the pure light effect cγ is shown. This corresponds to the absorption profile of a
fully oriented state.

For our experiments we have to specifically evaluate, which setting gives us the
desired coupling and the lowest decay. It is interesting to follow how the decay
γ behaves compared to the collective decay γs. In 4.13 this ratio 1− ε2 = γs

γ

is shown for constant atom number (4.13a - equivalent to the number of atoms
at room temperature) and for constant light power (4.13b: P ∼ 5mW). In
this setting ε2 decreases for higher powers for the lower detunings, due to
the quadratic behavior. Heating the atomic sample from room temperature
(Na ∼ 2.5 · 1011) to a temperature in which the cell contains around twice as
many atoms should supply us with a better ratio, however we experience a
different problem at the higher atomic densities. The atomic measurements
display an additional noise component at higher temperatures, for which we
have not found a source yet. The optimal detuning which we can extract from
the graphs lies between 700− 1000 MHz. The measurements were taken with a
Gaussian beam which caused additional decay. If one discards the term which
is quadratic in the light power, one achieves a situation at RT which fits with
later experiments, where a smaller ε2 ≈ 0.2− 0.4 was recorded when a very
smooth beam profile was used.

4.4 Coupling strength

An important experimental parameter is the coupling constant κ. We can mea-
sure it by measuring noise of known atomic states like the projection noise of
the CSS or the thermal atomic state (see section 5.2.1). Another approach is
to transfer a coherent light state with a known displacement to the atoms and
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Figure 4.13: The lines show the extrapolated behavior (from the measurements of
aγ, bγ, cγ, dγ, eγ) of the ratio of the collective rate γs to the whole decay rate γ: γs/γ =

1− ε2. The curves represent ∆ = 700, 900, 1125, 1375, 1625, 1875, 2125 MHz where the
darkest curve belongs to ∆ = 700MHz and the lightest to ∆ = 2125MHz. In (a) the
power was varied and the number of atoms held constant (room temperature). In (b)
the power was held constant at 5mW and the number of atoms was varied.

then read out the atomic state [8]. This procedure is sketched in the following,
followed by an explanation of some of the experimental details below.

First, a pulse is sent through two oppositely oriented atomic samples with a
displacement in q̂1st

c,s , so in Sz. This leaves the atomic sample with a mean value
in the X-quadrature.

〈X̂c,s〉 = κ〈q̂1st
c,s 〉. (4.5)

To be able to read out those atomic mean values, we apply a π-pulse to the
atomic spin rotating X̂ into P̂. This can be done by adding a magnetic field
in the x-direction, so that the spins rotate a little faster in between the pulses.
Then we send a second light pulse for the read out. The outcome of the light
measurement of the second pulse reveals

〈ŷ2nd
c,s 〉 = κ〈P̂c,s〉 = κ2〈q̂1st

c,s 〉. (4.6)

The coupling strength can be calculated: κ2 =
〈ŷ2nd

c,s 〉
〈q̂1st

c,s 〉
. The pulse sequence is

shown in figure 4.14.

There are different approaches as to how to produce the displaced coherent
light states. In [She06] it is discussed, how a strongly polarized beam can be
sent through an electro optical modulator (EOM) whose optical axis is slightly
tilted compared to the input polarization. Then a DC voltage and a small mod-
ulation at 322 kHz can be used to rotate a small portion of the big classical Sx

into Ŝy and Ŝz. The value of the DC voltage sets the working point of the mod-
ulator in a Ŝy-Ŝz plane on the Poincare sphere - it determines the phase of the
generated displacement in phase space. The strength and phase of the RF mod-
ulation determine the size of the displacement of the cosine and sine modes.
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This is a rather easy way to create a displacement in the light quadratures, but
the input light experiences a considerable loss due to reflection losses on the
crystal surfaces of the EOM. Those losses are not important when we work with
coherent states, but the approach is disadvantageous for light states which are
more sensitive to losses such as squeezed states. Therefore, when squeezed
light is used, the displacement is created in a polarizing interferometer where
the strong local oscillator is in one arm and in the other arm the quantum me-
chanical state is generated. This includes, if desired, the squeezed state with
help of second harmonic generation and parametric down conversion. Addi-
tionally a weak seed beam is fed in that is phase and amplitude modulated at
the desired sideband frequency with help of two consecutive EOMs. The first
EOM is followed by a PBS for amplitude modulation and the second EOM is
used purely for phase modulation. By a suitable linear combination of modu-
lation strengths on the EOMs ŷc,s and q̂c,s can be accessed.

To evaluate the signal coming from the atoms, 〈qc,s〉 needs to be calibrated.
This is usually done before the measurement of the mean value transfer. A
λ
4 -plate is inserted in the detection path to switch to a Ŝz measurement. To
test if the measurement is set up correctly, one can compare a fixed signal
coming from the atoms that is created for example by a magnetic RF pulse.
Following equations 3.12, the atomic signal should be suppressed by ξ2 in a
〈Ŝz〉- compared to a 〈Ŝy〉-measurement.

κ2 can be measured by mean value transfer in dependency of light power,
atomic number or pulse duration. In figure 4.14 measurements of κ2 is shown
for a variation of power and number of atoms.

Below, the γ is decomposed in γs and γextra where γs ∝ P · θF and γextra =

aγ + bγ · θF + cγ · P + e · P2.
The measured slope for γs lies for graph (d) 13% and 6% for graph (e) above
predictions calculated from the theory. Considering the high uncertainties in
the measurement of dγ as well as some of the numbers used for the prediction,
and the fact that the theory is highly simplified (not even the Doppler profile
is considered here), this is a reasonable agreement. In the reconstruction of the
atomic state, the most important measure is κ2 which is directly measured.

In chapter 5, it is discussed how κ2 can be measured by noise measurements.

4.4.1 Effect of light losses on κ2 measure

Light losses after the cells are easily included into the model. In the calibration
we would measure a suppressed

√
η〈q̂1st

c,s 〉 which is just due to the fact that the
light power is reduced and a suppressed and a similarly reduced

√
η〈ŷ2nd

c,s 〉, so
that the measured κ stays the same. But the light power on the detectors is of
course also reduced by η. Thus one needs to take care that the losses are held
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Figure 4.14: in (a) the pulse sequence is shown. The probe light is turned on and off
smoothly to avoid noise contributions at 322kHz. (a) shows κ2 for a varied number of
atoms and a light power P = 5mW, in (c) measurements of κ2 at room temperature
are presented for different light power. The x axis is given by the product of the light
power P and the Faraday angle θF, to compensate for drifts and fluctuations in the
quantity that was not varied.
(e) and (f) show the corresponding decay constants γextra and γs.
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constant or monitored carefully between calibration and actual measurement,
so they can be compared.

Losses ηb between the cells give a different effect. If we assume that we keep
the power in cell 2 constant that means that higher losses between the cells lead
to a higher light power in cell 1 and thus a higher κ. If we stick to rather small
losses, in which case we can assume κ2 to be linear in power as it is the case in
the QND approximation, this leads to a measured 1+ηb

2ηb
· κ2

cell2, where κ2
cell2 - and

thus the light power on the detectors - is constant.



Chapter 5

Quantum noise

This chapter is devoted to measurements of quantum fluctuations. The mea-
surement of the variances of the quantum variables of concern, is in general the
most important aspect of all our measurements. Due to the fact that all states
I will be concerned with throughout the thesis are Gaussian, the measurement
of the mean value and the variance generally suffice for a full characterization
of the state.
When we evaluate the atomic states, we need to exercise caution that we in-
terpret the interaction setting right, i.e. if we are close to the fully oriented
ensemble, which justifies part of our approximations.

Part of the noise measurements discussed here are calibrations, such as the
measurement of light noise and of classical atomic states like the CSS and the
thermal state. The chapter will conclude with a discussion of the measurement
of collective variables, e.g. of two atomic samples or a light beam and a single
atomic ensemble. Evaluating the variance of such collective variables gives us
the possibility to measure entanglement between two systems.

5.1 Light noise

The measurement of the Stokes operators was discussed in the previous chap-
ter. The light noise is used as the basic calibration of our whole measurement
setup. From equations 2.11 to 2.14 we see that for coherent light

Var(Ŝ(c,s)
y ) =

Sx

2
=

nph

4
, (5.1)

with the number of photons nph. If the measurement is limited by quantum
fluctuations, the noise should thus scale linear with the number of photons.

67
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Since we are considering the variances, any additional classical noise contribu-
tion can be seen as a quadratic component in the scaling1. When linear scaling
is observed, we can use the measurement to find the gain of our detection sys-
tem. This leaves us with a calibration with which we can evaluate the measured
noise at a known light power also for other light states. We generally measure
two orthogonal light modes, the cosine and sine component at 322kHz with
help of the lock-in amplifier. The output can be multiplied with a temporal
mode function that evolves much slower than the oscillation at RF as stated in
equation 2.16. For the coherent input states in our light noise calibration, the
choice of mode-function has in principle no influence on the measurement out-
come, if the mode function is normalized properly. However, small variations
can be observed, if there lies too much weight on the beginning or end of the
pulse. This happens for one because the pulses are not turned on and off in-
stantaneously, but smoothly, to suppress 322kHz components on the edges and
because of the finite detection bandwidth. One measurement pulse usually
takes 1-10ms. This is repeated 2.000-10.000 times and from the measurement
outcomes the variance and the mean value can be extracted.

For the light noise measurements, the same beam path as for the atomic mea-
surements is used, meaning that the light transverses through the atomic sam-
ple. To achieve a pure light noise measurement, the strength of the magnetic
field is changed significantly, so the Larmor frequency is detuned. That way no
signal coming from the atomic spins is recorded in the 322kHz sideband.

For the calibrations, the mean values of Ŝy and Ŝz are zero, or at least very small
considering the number of photons participating. We can call the measurement
a balanced measurement, referring to the fact that the classical signal is evenly
distributed on the two detectors and then canceled out, including all classical
amplitude noise contributions. It can be understood similar to standard homo-
dyne detection - a kind of polarization homodyning - where the local oscillator
and the weak quantum field belong to two orthogonal polarization modes, as
opposed to different spatial modes.

The signal of one of the detectors alone displays the noise coming from half of
the photons, without any noise cancelation, and we can observe the classical
noise present for half the light power. A measurement for the balanced setting
along with a single detector measurement for the DFB laser and the Ti:Sa laser
is shown in graph 5.1. The DFB laser has very low amplitude noise, while the
noise of the Ti:Sa laser is considerable. To suppress this a noise eater [BRLR98]
was build, based on a feedback loop, using the signal generated by a small
portion of the beam on a detector. The signal was mixed with a 125MHz RF
field and fed back onto an AOM. The first order diffraction of the beam was

1The variation of the light power is done by attenuating the beam without changing any
laser settings.
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Figure 5.1: Light noise for the balanced setting (circles) and a single detector measure-
ment (dots) for the DFB laser (a) and the Ti:Sa laser (b). The balanced measurement
is shot noise limited, while the single detector measurements exhibit quadratic behav-
ior. The DFB laser is at the measurement frequency and the used powers close to shot
noise limited. The measurements of the Ti:Sa laser show a much stronger quadratic
component. The additional noise comes partly directly from the laser and partly from
the fact that the spatial mode is cleaned with help of a cavity which is stabilized to the
laser frequency.

dumped, and the strength of this diffraction determined by the signal from
the detector. That way a reduction of the single detector noise close to the
shot noise level could be achieved. For lasers which had better initial noise
properties such as the DFB laser 10-20dB sub-shot noise could be observed
[Jen07] inside the feedback loop - that is on the detector used for the feedback.
This effect is called squashing [Wis99, BGS+99].

As will be seen later, it is possible to utilize squeezed light states for some of
our experiments. The squeezed light is produced in another QUANTOP exper-
iment with well known down conversion techniques [SSP02, NNNH+06]. The
generated squeezing is usually of the order of around 6dB (11dB anti squeez-
ing). On the setup for the atomic interface, the light is subject to considerable
losses, due to optical elements, and the uncoated glass surfaces of the cells
holding the atoms. The total losses amount to around 35%, leaving around 3dB
of squeezing on the detectors after the atomic cells. In figure 5.2 the noise of
one of the quadratures is shown in black for a scan over the squeezing phase.
The dark gray line shows the shot noise of light which clearly lies above part
of the black line.

5.2 Reconstruction of the atomic spin noise

The atomic state tomography reveals some difficulties, as the atomic observ-
ables can not be measured directly with a simple scheme as the one used for
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Figure 5.2: Power spectrum of the light noise, recorded with a spectrum analyzer at
322 kHz. The dark gray line shows the shot noise level. The black line shows the noise
of light coming from the squeezing source, where the phase of the local oscillator was
scanned. Clearly the noise goes below the coherent state noise level, proving squeezing.
The light gray line shows the electronic noise.

the light measurement. We need to utilize the light atom interaction to evaluate
the atomic state. One of the light quadratures is measured after the interac-
tion, and from the measurement outcomes we reconstruct the mean value and
variance of the atomic state, by employing the different input-output relations
developed in chapters 2 and 3. The measured atomic state is thus obstructed
by the input light noise. This corresponds to a measurement of light with a bad
detection efficiency - this concept will be discussed in greater detail in section
7.5.2. We are only considering Gaussian states, so the variances of the atomic
state can be extracted from our raw experimental data with the measured vari-
ance σ2

measured. We can calculate the atomic variance (AN)

AN =
1
C
(

σ2
measured − σ2

el
SN

− EN), (5.2)

where the shot noise (SN) can be determined by a measurement of the light
power, and with the calibration from graph 5.1 and σ2

el is the noise floor coming
from the measurement apparatus. The coupling C and the extra noise EN differ
for different realizations, as will be explained in the following.

In the case of the simple QND two cell equations 2.42 we can extract the noise
of P̂c,s

Var(Pc,s) =
1

κ2
QND

(Var(ŷc,s)
out −Var(ŷc,s)

in).

In most cases we work with coherent light states as input, so that Var(ŷc,s)in can
be set to be 1

2 . In the presented measurement graphs the variances are often
expressed in units of shot noise, then EN = Var(ŷc,s)in = 1 and C = κ2.

For a single cell on the other hand we can extract Var(p) and Var(x) with

EN = Var(ŷin
c,s) +

κ2
QND

16
Var(q̂in

s,c) +
κ2

QND

48
Var(q̂in

s,c,1) = 1 +
κ2

QND

12
,
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setting coupling (C) EN κ2

QND two cells - thermal noise κ2
QND 1 a · Sx JxT

simple single cell κ2
QND

2 1+ κ2

12

Swap two cells κ2 1-κ2ξ2 1−e−2γsT

ξ2

swap single cell κ2

2 B.13

Swap two cell, including decay κ2 B.10 (1− ε2) 1−e−2γT

ξ2

Swap single cell, including decay κ2

2 B.12

Table 5.1: Relevant quantities for noise reconstruction. Some of the lengthy expressions
are stated in appendix B. The additional noise EN is given in units of shot noise of light.

while the coupling C is given by κ2
QND/2.

For the highly oriented atomic state, the higher order Hamiltonian from equa-
tion 3.3 can be employed. Including also additional decay (see appendix B) the
additional noise becomes more complicated, but can be extracted from equa-
tion 3.21 for the two cell setting. For the single cell in the case of low coupling,
equation B.5 can be used. In table 5.1 all the relevant components for the atomic
noise reconstruction are summarized. It is important to note that κ2 is generally
measured and not calculated from the formulas.

5.2.1 Thermal state of the atoms

We start by looking at an atomic sample which is not oriented, meaning that the
sublevels are evenly populated. This setting is fully symmetric and for every
atom this means

̂2y = ̂2z = ̂2x =
F(F + 1)

3
=

20
3

.

Since in the thermal state all atomic sublevels have the same population, we
have to consider that part of the atoms are in F = 3. These atoms are not
observed in our measurement, since the probe laser is much further detuned
for those atoms. Also they have a different Larmor frequency, which lies beside
our detection frequency (≈ 1kHz). The observed noise will thus be 20

3 ·
9

16 = 15
4 ,

since there are in total 16 sublevels, 9 of which belong to F = 4. Compared the
minimum uncertainty noise F/2, this is a factor 15

8 - almost twice - the noise
of a CSS. Clearly, if noise measurements are used to calibrate e.g. the coupling
constant κ, we need to have an additional knowledge about the orientation of
the atoms, which can be gained by measurements described in section 4.2.2.

The thermal noise can be measured in a two cell setting, or in a single cell
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setting in both cases the additional noise EN is equal to Var(ŷc,s)in. For the
single cell measurement the back action of light on itself is not present, since
the coupling of the light variable to the atomic spin variable (see equation 2.32)
is enhanced by Jx and for the thermal state 〈jx〉 = 0. This is discussed in
detail in appendix F. Also the higher order corrections are negligible for a not
oriented sample. This leads to simpler input-output relations (equation F.3) for
the light:

ŷout
c(s) = ŷin

c(s) +
κthermal√

2
x̂( p̂),

which (a) does not feature the suppression of the input light state and (b) has
a coupling constant κthermal that slightly differs from the κ which includes the
swap operation. It is given by κthermal = κQND = a1

7a2
· γs · T. Thus, when one

measures the coupling constant with help of the thermal state noise to interpret
measurements in or close to the CSS, the difference between κthermal and the
oriented-sample κ has to be taken into account. In figure 5.3 the ratio κ2

thermal/κ2

is shown for two different detunings.

Figure 5.3: Theoretical comparison of κthermal and the κ for the CSS. The solid line
shows the ratio κ2/κ2

thermal for ∆ = 855MHz and the dashed one for∆ = 1.5GHz.

The thermal noise should scale linearly with the number of atoms. Figure
5.4 shows a measurement series where the thermal noise was measured for
different atomic numbers, monitored by a Faraday angle measurement of the
optically pumped ensembles. Clearly we observed the expected linear behavior.
In the figures κthermal was extracted from the noise measurements.

When the light power is varied we see - especially for the horizontal polar-
ization - a saturation of the noise (see figure 5.5). The main reason is that
in the thermal state all coherences in F = 4 contribute to the measurement.
As discussed in section 4.2.2 those coherences oscillate at different frequencies
depending on the light power due to the Stark shift. The saturation effect orig-
inates in the fact that some of those frequencies will lie outside the detection
bandwidth for high powers at horizontal polarization. We measure therefore
usually thermal noise only for settings where the splitting of the coherences is
close to zero, meaning for vertical polarization around 5mW. Also the sponta-
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neous emission gives a depletion of the F = 4 level and thus a small deviation
from a linear scaling. It is important to note that the observed behavior is due
to a different effect than the saturation of κ2 for vertical polarization for the
CSS. The swap and squeeze behavior, coming from the higher order correc-
tions leads to a faster saturation of κ2 in the vertical polarization, while for the
horizontal polarization the coupling strength actually grows faster than linear
- it does not saturate.

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

ΘF

1
+

k
2

fr
o
m

 t
h
e
rm

a
l

ΘF

2

Figure 5.4: κthermal, extracted from the thermal noise for different numbers of atoms
monitored by the Faraday angles θi

F measured for the two ensembles. κ2
thermal is pro-

portional to the extracted normalized noise AN, which rises linearly as expected.

5.2.2 CSS noise

The fully oriented atomic state - or the coherent spin state (CSS) - is regularly
utilized in our experiments. In section 4.1.2 it was described, how the CSS is
achieved with optical pumping. In section 4.2.2 a method to confirm a high
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Figure 5.5: Thermal noise for different light powers for vertical polarization of the
probe beam (a) and horizontal polarization (b). The dashed/solid lines show lin-
ear/quadratic fits.
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orientation of the atomic ensemble is presented. Now we want to measure the
variance of the normalized rotating transversal spins of the CSS. Equation 5.2
is used for the reconstruction of AN from light measurement and EN and C is
set in according to table 5.1, depending on if we measure in the two cell or the
one cell setting. Usually we measure in the balanced setting, and in the QND
approximation the additional noise EN is just one unit of shot noise. If we
include the higher order corrections the additional noise is given by the sup-
pressed light noise and the coupling is given by κ2. Until recently the projection
noise measurements for two cells were used to calibrate κ, with the equations
in the QND approximation. This lead to a miscalibration of κ; κ2 was underes-
timated when a vertical polarized driving probe beam was used which is our
usual setting, since the light noise suppression was not considered. The mea-
surement of κ via the CSS was mainly used for the reconstruction of atomic
noise in unknown quantum states close to the CSS, like in the evaluation of the
teleportation experiment reported on in chapter 6. The underestimation of κ

will in those cases only lead to a small atomic reconstruction error, which will
be presented in more detail in section 6.4.

In figure 5.6 a measurement of CSS noise (black dots) is shown for different
Faraday-angles θF ∝ Na. The number of atoms in the glass cell was varied
by heating the cell. The noise was fit with a linear function, displayed as the
blue line. From this fit κ2 can be extracted according to the QND theory by
subtracting one unit of shot noise which is shown by the blue dashed line. The
red dashed line show a κ2 extrapolation originating from a κ2 measurements
by mean value transfer (section 4.4) - this clearly lies higher. With help of the
more complicated theory presented in chapter 3 the expected observed noise
of a CSS on light is plotted as the red line. This line lies close to the measured
noise for lower couplings. The QND approximation therefore seems adequate
for lower couplings. Here, for higher atom numbers the AN appears to lie
slightly above the CSS noise.

Figure 5.6: Atomic noise for different numbers of atoms characterized by the Faraday
angle, evaluated with the QND model and the corrected model.
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5.2.3 Detection efficiency

The reduction of the detection efficiency η is due to several mechanisms which
spoil the detection. The main degradation of the measurement quality comes
from losses on the cell surfaces. Also the optical elements used for the detec-
tion, even though they are antireflection coated, contribute to the losses. The
optical elements after the cell are two lenses used to decrease the beam size
appropriately for detection, a wave plate and a polarizing beam splitter. The
reflections from the detectors (around 4%) can be reflected back onto the detec-
tors. This is often done for experiments where feedback of the measurement
results is applied onto the atoms. The remaining loss mechanism is the detec-
tion inefficiency of the detectors. The effect on the light variable can be modeled
by a beamsplitter with vacuum in one input port:

ŷout′
c,s =

√
ηŷout

c,s +
√

1− η ˆVac (5.3)

To measure η, one can measure the dominating light losses directly and esti-
mate the detection efficiency. There are some uncertainties, as to how to include
the losses in between the cells. For small attenuations between the cells, includ-
ing those losses with a factor 1/2 into η gives reasonable results (see section
4.4.1).

We can also establish the detection efficiency by analyzing the AN, for different
numbers of atoms as follows. Consider a small technical noise contribution on
the spin variance. The technical noise scales quadratically with the number of
atoms. The normalized AN should then be linearly depending on the num-
ber of atoms and a line fitted to the measured AN for different atom numbers
should go through one unit of vacuum noise for zero atoms. Such a mea-
surement is shown in figure 5.7. The extrapolated detection efficiency and the
directly measured η in both those cases lay at η = 0.84(4).

Yet another way to find η is to measure κ with two different methods which are
effected differently by the detection efficiency. E.g. when κ2 is measured via the
mean value transfer discussed in section 4.4, the effects of the light losses are as
discussed in section 4.4.1. Losses after the cells have no effect on the measured
κ2. On the other hand, if we measure the noise of a known atomic state, such
as the CSS or the thermal state, the noise contribution of the atomic state on the
light measurement will be damped by η according to equation 5.3. Comparing
two of these measurements can give a more exact measurement of the detec-
tion efficiency. However, there are some problems to this. If we wish to use
the CSS-noise for κ2 calibration, we need to be sure that there are no additional
noise components. We can also measure the thermal state which is much less
sensitive to additional noise sources, because it is not oriented and we do not
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Figure 5.7: Reconstructed atomic noise (AN) for different numbers of atoms character-
ized by the Faraday angle. The detection efficiency η was set to η = 0.84

Perfect entanglement:

Figure 5.8: Entanglement shown by correlation of collective variables

need to use the optical pump lasers. But, as discussed earlier, then we have to
make assumptions about the connection of κ2 for the oriented ensembles and
κ2

thermal.
Considering those uncertainties the η that has been measured on several occa-
sions by the latter method fits reasonably well to the result obtained with the
other two methods (well inside the uncertainty).

5.3 Combined Variables of two systems and
entanglement criterion

In this section we will discuss combined variables of two systems. In our sys-
tem, this can either be the spins of two atomic samples as given in equations
2.40, the upper and lower sideband quadratures of light, or combinations of
light and atomic variables. Those collective variables are introduced because
their variances can be used to characterize entanglement.
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5.3.1 Entanglement criterion

In chapter 1 the interest in entanglement is motivated. But how do we know
that we have entanglement? Two systems A and B are entangled, when their
combined density matrix ρAB can not be decomposed into products of ρA and
ρB:

ρAB 6= ∑
i

aiρ
A
i ⊗ ρB

i . (5.4)

This will be hard to verify in a high dimensional system. Therefore, here we
would like to have an entanglement criterion connected to the canonical oper-
ators which we use to characterize our system. If we consider an EPR kind of
entanglement as sketched in figure 5.8, we can define collective operators2 like
Û = X̂A − X̂B and V̂ = P̂A + P̂B with a commutator [Û, V̂] = 0. We consider
the two systems to be perfectly entangled, when X̂A (P̂A) is perfectly anticor-
related (correlated) with X̂B (P̂B), meaning that the variances of the collective
variables are Var(Û) = Var(V̂) = 0. In comparison, two uncorrelated states in
the symmetric minimum uncertainty state would yield

Var(X̂A − X̂B) + Var(P̂A + P̂B)

= Var(X̂A) + Var(X̂B) + Var(P̂A) + Var(P̂B) = 4 · 1
2
= 2. (5.5)

So the variances of the collective operators seem to include information about
the entanglement.

In [DGCZ00] an inseparability criterion based on the collective variances of
canonical operators was introduced. It reads:

Var(X̂A − X̂B) + Var(P̂A + P̂B) < 2. (5.6)

Looking at the input-output relations in 2.35 and 2.39, one can see that light and
atom variables are connected after the interaction. To check for entanglement,
we can now employ equation 5.6.

5.3.2 Light atom entanglement

Let us consider the interaction of light with a single cell, as depicted in figure
2.5, not considering the higher order terms in the interaction.
In figure 5.9 the sum of the variances of the collective variables Û = Ŷ′ + x̂out

and V̂ = Q̂′ − p̂out are shown as a function of the coupling constant κ as the
black line. Ŷ′ and Q̂′ are the canonical light operators of the upper sideband to

2[X̂i, P̂i] = i
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Figure 5.9: The graph shows the sum of the collective variances of the output variables
of atoms and light. The dashed line is the limit below which atoms and light are
entangled (see equation 5.6). The minimum is 0.58 for κ = 1.7. In the graph to the
right decay and light loss are included. The change is quite big for high κ. At our
working point of κ ≈ 1 the collective variance increases from 0.8 to 1.1 which leaves
still a fair amount of entanglement to work with.

within a sign correction:

Ŷ′ =
1√
2
· (ŷout

s + q̂out
c ), Q̂′ = − 1√

2
· (ŷout

c − q̂out
s ). (5.7)

The predicted collective variances have a minimum which lies underneath the
entanglement limit given by equation 5.6 shown as the dashed line. The one cell
interaction can therefore be utilized to create light atom entanglement which
can be used as resource for light atom teleportation. The first step of the telepor-
tation protocol, discussed in 6, is therefore the interaction of light and atoms.
In our experiment the coupling constant κ is of the order of 1 leading to a pre-
dicted sum of variances of 0.8 or 1.1, when relevant light losses and decay of
the atomic spin are included.

We have seen that our two systems are entangled after the interaction, but is
there a simple way to understand how this came about? An intuitive picture
explaining the entanglement generation can be gained by considering figure
2.5. As a reminder, the corresponding interaction Hamiltonian 2.30 can for an
oriented atomic state be written in terms of the atomic ladder operators in the
rotating frame b̂′, b̂′† and the creation and annihilation operators of the light for
the upper (lower) sideband â+(−), â†

+(−). Then the Hamiltonian has the simple

form Ĥint ∼ κ
2
√

T
(â†

+b̂′
† − â†

−b̂′ + h.c). Since, the atoms are in the extreme m = 4
state, and since the quantum field is polarized in x-direction (π-polarized in the
picture), we are in a situation where mainly one of the classical polarizations
is relevant. In figure 2.5a a photon in the upper sideband is created together
with an excitation of the atomic system - clearly an entangling interaction. The
second process, including the lower sideband is suppressed, since the atoms
are all pumped into m = 4, so m = 3 is empty.

Again for higher coupling we need to move to the theory presented in chapter
3. For this we can consider different light modes. First, I evaluate the light
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(a) (b)

Figure 5.10: Entanglement variables, including the corrections from chapter 3. The
solid lines show the variance of the combined atomic and light variable. The gray line
is the corresponding κ2 and the dashed line at 2 indicated the entanglement limit. In
(a) the modes defined in equations 3.16 are evaluated and in (b) the upper sideband
with an exponentially falling envelope function is used.

modes defined in equation 3.16 which are entangled with the atoms.

ˆ̃Yout(in) =
1√
2ξ

(q̂c−(+) ∓ ξ2ŷs−(+)),
ˆ̃Qout(in) =

1√
2ξ

(∓q̂s−(+) − ξ2ŷc−(+))

The variances of the entangled combined variable are shown in figure 5.10a.
The minimal noise is then the same as in the unperturbed case. If we in-
stead take the upper sideband weighted with suitable exponential functions,
the achievable collective variances are shown in figure 5.10b. Here the variances
are at optimum only reduced to 0.7 - but this lies very close to our measurement
setting. Those values are calculated without the additional decay.

We can not verify this reduction in the collective variances directly. The prob-
lem is that our method to read out the atomic state is based on the assumption
of these correlation between light and atoms. But in chapter 6 a successful ex-
periment of teleportation between light and atoms based on this entanglement
is presented. This can be seen as an indirect proof of the entanglement.

5.3.3 Atomic entanglement via QND measurement

In the end of chapter 2, I briefly touched upon the subject of quantum non
demolition (QND) measurement. This concept describes a measurement of
a quantum mechanical variable without disturbing it. A measurement on a
light beam that has interacted with two atomic ensembles in a magnetic field
with oppositely oriented spins, gives us the opportunity to perform this kind
of measurement. Equation 2.41 shows that the collective atomic variables P̂c,s

remain unchanged through the interaction. Equation 2.42 shows the possibility
to make a measurement on those variables by monitoring ŷc,s. After such a
measurement, the outcomes ỹc,s = ŷout

c,s + κP̂in
c,s can be fed back with a certain
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gain g on the atomic variable. This can be done with a magnetic RF field with
tunable field strength. The resulting atomic variable reads:

P̂out′
c,s = P̂out′

c,s + gỹc,s = P̂in
c,s(1 + κg) + gŷin

c,s. (5.8)

The gain can be adjusted to minimize the atomic variance Var(P̂out′
c,s ). With a

gain g = − κ
s+κ2 where s = 2Var(ŷin

c,s) the variance is

Var(P̂out′
c,s ) =

1
2

s
s + κ2 ≤

1
2

(5.9)

which is smaller 1
2 for every κ > 0. This means that the collective atomic

variable becomes squeezed - and the two atomic ensembles become entangled.
Since both P̂c and P̂s can be measured, the sums of the Ĵys and the Ĵzs become
squeezed.

The experiment including the feedback is described in [SJP07, She06]. It is also
possible to leave out the actual physical feedback. Then we are left with a
conditional entanglement. This means the collective atomic operators P̂c,s fol-
low Gaussian probability distributions with a reduced variance, but displaced
with a certain value which is given by the measurement outcome. This condi-
tional entanglement was first reported in [JKP01]. It can be verified by measur-
ing with two consecutive light pulses and calculating the conditional variance:
LC = Var(ŷout,2

c,s + αŷout,1
c,s ), which can again be optimized with α = κg. Leading

to the conditional variance LC = 1
2 (s + κ2 s

s+κ2 ).

To improve the noise suppression one can increase κ or reduce the light noise.
A set of experiments with squeezed light as an input was conducted. The light
squeezing on the detectors was s = 0.55± 0.02 in shot noise units (with con-
siderably higher squeezing in the cells). The noise reduction was improved by
10% compared to the noise reduction achieved with a coherent light source.
The atomic initial noise lay around 20% above the CSS noise, due to additional
classical noise, so the achieved atomic entanglement did not surpass the best ex-
periments we conducted with coherent light. Anyhow this experiment proves
the possible benefit of using a squeezed light source.

Later in this thesis, in chapter 8, a QND type measurement is utilized to achieve
a steady state entanglement.

Also another possibility to create atomic entanglement is discussed in chap-
ter 7, namely nuclear electronic spin entanglement of the single atoms in the
ensemble.
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Chapter 6

Teleportation between light

and matter

In this chapter I summarize an experiment on teleportation from light to atoms
[1, 4], which was conducted in the previously introduced setup. The chap-
ter starts with an introduction into the concept of teleportation, followed by
a detailed description of the implementation in the available light atom inter-
face. All discussions are based on the theory developed in chapter 2, but the
influence of the effects described in chapter 3 are discussed.

6.1 Introduction to teleportation

6.1.1 Teleportation Principle

The non cloning theorem [WZ82] - the fact that an unknown quantum mechan-
ical state can not be copied perfectly - leads to interesting possibilities. It is a
corner stone of quantum communication - which opens up for the possibility
of absolute secure communication [BB84]. But also new challenges arise from
this quantum mechanical phenomenon. For example, one faces a problem, if
one wishes to transfer a quantum mechanical state to a remote location in an-
other way than physically moving the system bearing the state - a task that can
prove to be very hard for fragile quantum systems. Now a different approach
is needed, than what one might attempt in a classical setting, in which case
measuring on the physical system and making a replica at another location
would suffice. In 1993 Bennet et al. introduced the concept of teleportation for
a spin- 1

2 -type two level system [BBC+93], which was solving this task. Here,
two parties, widely known as Alice and Bob, wish to transfer the quantum state
of a system that Alice possesses to Bob. Since the quantum state is unknown to
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BobAlice

1.

2.

3.

Entanglement:

Joint measurement:

Feedback:

Figure 6.1: Teleportation Scheme
Quantum teleportation is the remote state transfer of a quantum system held by Alice
to a quantum system held by Bob. The different steps of the teleportation protocol are
shown on the left and will be described in the following.

1. Distributed Entanglement. Alice and Bob need to share an Einstein Po-
dosky Rosen (EPR) entangled pair. This establishes the quantum link between them
needed for the teleportation.

2. Bell measurement. Alice conducts a joint measurement on the two quantum
systems held by her. That way the information on her input state is now distributed
between her measurement results and Bob’s quantum system. She can perform this
measurement as [X̂A − Ŷ, P̂A + Q̂] = i− i = 0.

3. Classical Communication/ Feedback. Alice tells Bob, what she measured,
after which he can perform a local transformation on his system, recreating Alice’s
input state.
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Alice, she can not perform a measurement, through which she gains the full in-
formation of the quantum state. The outcome of a measurement will crucially
depend on the basis she chooses to measure in, so that she would need some
information on the initial state to make a useful observation.
To overcome this problem, Bennet et al. employ an Einstein Podolsky Rosen
(EPR) entangled pair [EPR35], of which Alice and Bob each hold one of the
two parts. Then Alice can conduct a joint, so called Bell measurement, on the
quantum state that she wishes to teleport and the one member of the EPR pair.
After this the full information of the quantum state is distributed between Al-
ice’s measurement outcome and Bob’s part of the entanglement pair. In a final
step Alice only has to send her classical data over a classical channel to Bob
who can then recreate the input state by performing a unitary transformation
on his system.

While Bennet et al. deal with a discrete system, the teleportation protocol was
later adapted for continuous variables [Vai94] by Vaidman. Here, the entan-
glement shows itself in the correlations of a set of non commuting variables of
two separated systems as discussed in section 5.3. This concept is depicted in
figure 6.1 and will be referred to throughout this chapter.

Quantum teleportation can be useful to more than just the transfer of a quan-
tum mechanical state. It can be regraded as an essential building block for
quantum information processing. In [FT07] continuous variable quantum tele-
portation and its applications in quantum information processing is discussed
in detail, highlighting the impact of teleportation in this field.

6.1.2 Teleportation experiments

In the first successful teleportation experiment the polarization state of one
photon was transferred to another photon by Bouwmeester et al. [BPM+97].
This setup follows the original proposal of Bennet et al. for a two level system.
The input photon can be in an arbitrary superposition of two orthogonal po-
larizations (i.e. ±45 deg). Suitable entanglement is created in a type II down
conversion process where two polarization entangled photons are produced
[KMW+95]. One of those photons is sent to Alice where a Bell measurement of
one of the four Bell states is performed. Whenever this measurement is success-
ful - so whenever the measurement projects the two photons in the specific Bell
state (25% of all cases) - the third photon emerges in the original state of the
input photon. The teleportation was verified for different input polarizations.
Soon after followed the realization of the first unconditional teleportation scheme
[FSB+98]. Coherent light states, described by the continuous variables X̂, P̂,
corresponding to the amplitude - phase quadratures of light, were teleported.
Following the teleportation scheme depicted in figure 6.1, in the first step dis-
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tributed entanglement is created. For this, two squeezed beams are gener-
ated by parametric down conversion and mixed on a beamsplitter [OPKP92,
WKHW86]. At Alice’s site her part of the entangled beams is mixed with an-
other beam with an unknown input state on a 50/50 beamsplitter (BS). Then
the joint measurement is performed by homodyne detection in the two output
ports of the BS. Those measurement outcomes are sent to Bob who applies feed-
back to his light beam accordingly, thus recreating the input state. To describe
the quality of a quantum mechanical state transfer, a commonly used quantity
is the fidelity, which will be discussed later in more detail. In this experiment a
fidelity of F = 0.58± 0.02 was achieved exceeding the best classical fidelity of
0.5.
The first quantum teleportation between atoms was realized in 2004 between
two closely positioned Ca+ ions in an ion trap [RHR+04]. A qubit is encoded
in a superposition of internal states of one atom and then transferred via tele-
portation onto another atom.

Finally, in this chapter I will describe an experiment on light to atom telepor-
tation [1]. This was the first time interspecies teleportation was experimentally
realized.
Later the conditional teleportation of a photonic qubit onto an atomic qubit was
shown [CCY+08]. There the atomic qubit, consisting of a single spin excitations
of two atomic ensembles, was entangled with the polarization state of a photon.
No direct feedback was included, but feedback after retrieving a photon from
the atomic storage is possible.

In another experiment a state transfer from a photon to a single atom called
remote state preparation was performed via a teleportation protocol [RBV+07].
Also teleportation between two ions in independent vacuum chambers sepa-
rated by one meter was implemented [OMM+09]. This was achieved by con-
ducting a joint measurement on two photons which were entangled with one
atom respectively.

6.2 Teleportation experiment

In this section we will discuss the different steps of the teleportation scheme,
described in figure 6.1, in detail for our experiment [HPC05]. The experimental
system is sketched in figure 6.2. Also we will discuss how the teleportation
experiment can be evaluated. We therefore introduce a quantity called fidelity,
to characterize the performance of our protocol.
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6.2.1 Teleportation principle

Input state

Before the first step of the teleportation protocol, Bob starts with an atomic
ensemble in the vacuum state (CSS). Alice has an input state characterized
by the quantum variables Q̂s,c and Ŷs,c. The canonical operators she wants to
teleport are combinations of those. They belong to the lower sideband at ω−Ω
where ω is the light frequency:

Ŷ =
1√
2
(Ŷc + Q̂s), Q̂ = − 1√

2
(Ŷs − Q̂c)→ [Ŷ, Q̂] = i. (6.1)

To start with input states which are interesting which implies states other than
vacuum, we need to create a displaced coherent state. The displacement can
be achieved by using an electro-optic modulator (EOM), as already described
in section 4.4 and in more detail in [She06]. Usually a strong DC voltage is
used to access both operators of relevance, Ŝy and Ŝz. In the experimental
setup for the teleportation the DC voltage is not necessary. The reason is, that
the displacements are introduced in one arm of an interferometer (see figure
6.2). The input state will be defined after the exit BS of this interferometer.
Then the phase of the modulation can be changed by changing the length of
the interferometer arm where the input state is created. That way the strength

Figure 6.2: Schematic drawing of the teleportation setup. The input state is created in
one arm of the interferometer by an electro optic modulator (EOM). In the other arm
entanglement between atoms and light is created via interaction. The entangled beam
and the input beam are mixed on a beam splitter (BS) and measurements of Ŝy and Ŝz
are conducted in one arm each. The results are fed back to the atomic spins with help
of RF coils.
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of the RF-modulation on the EOM will give the size of the displacement and
the phase can be chosen by adjusting the path difference. Since the EOM only
creates a mean value, it will be easy to do the calibration of the input states.
Behind the BS there will of course be additional noise, coming from the other
arm. But, as we know the input is a vacuum state we know its noise properties
and we are only interested in the mean values - so the size and phase of the
displacement. In section 6.3 such measurements are shown.

Now we wish to teleport Alice’s input state onto Bob’s atoms. The description
follows the steps outlined in figure 6.1.

Entanglement

Entanglement is the starting point of the teleportation protocol. In our case
we want to link Bob’s atomic ensemble to a system, with which a Bell mea-
surement with the input state will be possible. The most well known form
of such joint measurements are conducted between two light beams. Fortu-
nately, as discussed in section 5.3.2, we are in possession of a light atom en-
tanglement resource. Just by sending a light beam through our atomic en-
semble with a suitable coupling, the entanglement criterion, discussed in sec-
tion 5.3.1 can be fulfilled. The light quadratures of the upper sideband be-
come entangled with the collective rotating spin of the atoms. The result-
ing entanglement looks slightly different than the pure EPR-type quadrature
entanglement, depicted in figure 6.1. In [HWPC05] the entanglement gener-
ated by the used interaction scheme and EPR entanglement generated with the
same coupling strength are compared. There it turns out that EPR entangle-
ment is in the regime we are working in not much superior to our approach.

...

Figure 6.3: Two beams are
mixed on a 50/50 beam
splitter. At the output
ports the sums and differ-
ences of the input quadra-
tures can be measured.

Bell measurement

The next step in the teleportation scheme is the Bell
measurement. We would like to measure the collec-
tive variables of two light beams; one which is entan-
gled with the atoms and the one bearing the input
state. For this we combine the two beams on a 50-50
beam splitter (BS). After the BS we have the differ-
ence of the quadratures in one arm and the sum in
the other arm (see figure 6.3).
We measure Ŝy by polarization homodyning in one
arm (as discussed in 5.1) and Ŝz in the other arm.
Measurements in the two output ports will now pro-
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vide us with four quantities:

ỹc,s =
1√
2
(ŷc,s + Ŷc,s), q̃c,s =

1√
2
(q̂c,s − Q̂c,s). (6.2)

Alice sends those measurement outcomes to Bob.
Combined with the right signs those yield a Bell measurement of the lower
sideband of the light which is to be teleported and the upper sideband of the
beam which is entangled with the atomic spin. Combining the measurement
results yields:

ỹs + q̃c ∝ q̂+ − Q̂,

ỹc − q̃s ∝ ŷ+ + Ŷ.

Thus the lower sideband of the input can be transferred to the atoms. This is
a feature of our experimental setting. The Bell measurement selects the mode
which is to be teleported. A different experimental setting would allow for the
teleportation of the other sideband. If we had started with an atomic ensemble
oriented oppositely to the magnetic field, the entanglement would lie in the
lower sideband of the light quadratures. Then it would only be possible to
teleport the upper sideband of the input beam. Also it is possible to imagine a
completely different measurement scheme where we make a Bell measurement
of the same sideband of the input and entangled beam, so that the entangle-
ment and input would lie in the same sideband.

Feedback

To accomplish the feedback we send a pulsed RF signal to coils, which are
depicted in figure 6.2, to generate a RF magnetic pulse to displace the atomic
quadratures according to the outcomes of the measurements given by equation
6.2. As discussed before, the atomic quadratures are given by the spins in
the rotating frame. In the laboratory frame they precess around x with the
Larmor frequency Ω. Sending an RF signal to the coils creates a magnetic field
orthogonal to the macroscopic spin, to perform the feedback. Using two RF-
fields synchronized with the Larmor precession which are π

2 out of phase we
can access both quadratures.

Now we wish to perform feedback of a combination of the four measurement
outcomes in such a way that as much as possible of the noise which came from
the entangling light pulse will be canceled out. After Bob does the feedback
to the atoms according to Alice’s measurement outcome, the atoms are left in
the input state of the light which Alice wanted to teleport plus some additional
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noise components:

X̂tele = x̂out − gx · (ỹs + q̃c), (6.3)

P̂tele = p̂out − gp · (ỹc − q̃s). (6.4)

When the gains gx,p are set to be one, we arrive at:

X̂tele = Ŷ + rX, P̂tele = Q̂ + rP. (6.5)

The input quadratures Ŷ and Q̂ are written on the atomic quadratures and rX,P

are the residual uncanceled components, coming from the input states of the
atoms and the entangling light,

rX = (1− κ
2 )X̂in − 1√

2
(1− κ

2 )
2q̂in

c + 1√
2
ŷin

c − 1√
6
( κ

2 )
2q̂in

c,1. (6.6)

The noise added by those contributions degrades the teleportation. We need to
determine how big the additional noise is and evaluate, if this teleportation is
any better than a classical attempt of a state transfer.

As a meaningful quality measure, we use a quantity called fidelity F (see section
6.2.2). If the incoming and the outgoing state are identical the fidelity equals
one, if there is no overlap between the states it is zero.

This feedback step finishes the teleportation protocol.

Verification

To check the performance of our teleportation protocol, we need to read out
the atomic state after the whole protocol. We can not measure the atomic state
directly. As described in section 5.2, we send another light pulse through the
atoms, so that light and atoms become entangled via the interaction, and then
measure on ŷver

c,s of the light. We run 10.000 teleportation experiments. From
that we can, with help of equation 2.39 and including the beam splitter after
the cells, derive the applied gain and the variances of the final states. The gain
can be extracted from the mean values:

〈ŷver
c 〉 = gP ·

κ

2
〈P̂tele〉

〈ŷver
s 〉 = gX ·

κ

2
〈X̂tele〉. (6.7)

Also the atomic variances σX,P can be found with help of equation 2.39. They
are calculated in the following way:

σ2
X,P =

4
κ2 (Var(ŷver

c,s )−
κ4

48
− 1

2
). (6.8)
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Figure 6.4: Classical transfer of a coherent state
1. Measurement The input state with a certain displacement is sent to a BS. On the
two output ports two coherent states (i.e. with the same variance) with displacements
which are reduced by a

√
2 are measured. When one likes to reconstruct the input

from those measurements one unit of noise is therefore added
2. Feedback The atomic input state is in the best case also an minimum uncertainty
state. Therefore, when a displacement according to the measurement result is con-
ducted, the resulting output state has additional two units of vacuum noise.

Note that here one unit of shot noise is kept as 1/2 to keep in analogy with
the corresponding publications. Another factor of two, compared to the re-
construction quantities presented in table 5.1, arises from the BS. Now we will
have to verify, if we have entered less noise in our experiment than possible
classically.

6.2.2 Fidelity for coherent states

Since we are dealing with Gaussian states, the performance of our teleportation
is fully characterized by the noise that we add to the quadratures in the process
and the gain that the mean values experience. We now want to compare our
experiment with possible classical protocols, and for this want to use a mea-
sure that will allow us to do this comparison. To characterize the quality of
a protocol which transfers the quantum mechanical state from one system to
another, the fidelity is a good measure. It gives the overlap of the input state
with the output state for a certain input distribution. A classical benchmark of
the fidelity can not be defined in all cases, but for coherent states it is known
[HWPC05].
We start by looking at any "classical" transfer scheme. This will give us a bench-
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Figure 6.5: Optimal fidelity. The theoretically achievable fidelity for g = 1 is shown for
the teleportation protocol that was applied. The dashed line indicates the best possible
classical teleportation.

mark that we want to exceed utilizing our quantum tools like entanglement.
Classically the best possibility would be to measure at one system and then
transfer this knowledge onto another system. This scheme is depicted in fig-
ure 6.4. Unfortunately we will add noise in both of those steps. Firstly noise
will be added, if we try to measure both quadratures of the input at the same
time. Here the best approach will be homodyning after a beamsplitter. This
will add a unit of vacuum noise in every quadrature. Also, the target system
will have an input state with noise and thus induce at least one additional unit
of vacuum noise for each quadrature. So the variances are increasing to three
times their initial value, leading to a fidelity of F = 0.5. It has been proven that
this is the best possible classical achievable fidelity for all possible approaches
[HWPC05].
For coherent input states which follow a Gaussian probability distribution with
the width n0 the fidelity can be calculated from the gains and the variances of
the output state:

F = 2√
(n0(1−gx)2+1+2σ2

x )·(n0(1−gp)2+1+2σ2
p))

(6.9)

with σ2
x = Var(X̂tele) and σ2

p = Var(P̂tele). When looking at all possible input
states, the gain has to be set to one.

In figure 6.5 the best achievable fidelity for our setting is shown for g = 1 in
dependency of κ. For κ = 0, meaning for no interaction and ergo no entan-
glement, the fidelity becomes F = 0.5. This is just the best discussed classical
approach where Alice measures on her state and Bob does the feedback accord-
ingly.
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Figure 6.6: Schematic drawing of the experimental setup. On the right the probe laser
and the EOM create the light pulses with a duration of 2 ms. The experimental pulse
sequence is shown in the inset. On the left the interferometer is shown with the atomic
ensemble in one arm and an EOM for the creation of the state to be teleported in the
other. The phase can be varied by a mirror placed on a piezo electric element. On
the two output ports of the interferometer measurements of Sy and Sz are conducted.
The pump lasers are used to create the CSS and a weak probe beam measures the
macroscopic spin.

6.3 Experimental realization

The experimental setting is sketched in figure 6.6. For the teleportation experi-
ment an interferometer is set up. Using the same laser for the input arm and the
entangling arm is the easiest way to ensure the necessary phase stability for the
Bell measurement. In one arm the atomic cell is situated. A strong polarized
beam is directed through the atoms and entanglement between the atoms and
the light beam emerges from the interaction. In the other interferometer arm
a weak beam is sent through an electro optical modulator (EOM) to create a
displaced coherent state. The two beams are recombined on a beamsplitter. On
the two output ports the Bell measurements take place as described in section
6.2.1. The interferometer is very stable over the measurement cycles of around
a minute.
As described in section 6.2.1, we want to establish the gain of our teleportation.

To determine the gain we compare the mean values of the measurements of the
first pulse with the mean values of the second pulse. The pulse sequence of the
experiment is shown in the inset in figure 6.6. The first value derives from the
input state of light, since the entangled light beam carries no mean value. The
second mean value is due to the atomic displacement after the teleportation,
while no contribution is coming from the input arm.
To vary the mean value of the two quadratures of the input, we apply a con-
stant modulation at 320kHz onto the EOM. Then we vary the path difference of
the two arms, thus scanning the phase between the input beam and the strong
local oscillator which was sent through the atoms. That way the mean value of
the input state moves on a circle in quadrature phase space. Figure 6.7 shows
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Figure 6.7: The graph to the left shows measurements of the two quadratures of the
input and read out state. Here the phase between the two interferometer arms was
scanned, while the displacement at 320 kHz (modulation with EOM) was held con-
stant. Thus the mean value moved on a circle in the phase space around zero. The big
black circle shows the mean values of the first pulse - so the displacement of the input
state of light. The smaller gray circle shows the read out of the atomic displacement
with the second pulse. The gain calibration is shown on the right. The mean value of
the input state is compared with the final atomic state.

this for the input light (black) and for the read out of the atoms (gray). The
radius is much smaller for the measurements, for which the mean values come
from the atomic spin, because the read out is done with κ/

√
2 ≈ 0.7 and the

beamsplitter gives another factor of
√

2. When looking at the quadrature mean
value transfer we can calibrate the gains by doing a linear fit (see figure 6.7). Of
course the intrinsic quantum noise is visible in the graph. With a fit for 10.000
points the slope a = κ/2 · g can be measured very precisely.

To look at the variances of the teleportation output, we use a constant input
state and take 10.000 measurements. We can then reconstruct the variances
of the resulting atomic state with equation 6.8, by using the variance of the
second light pulse. Since the atomic state is Gaussian, it is fully characterized
by the mean value and the variances. In graph 6.8 the Wigner function of
such a reconstructed state is shown together with the best theoretical classical
teleportation.

In figure 6.8 the reconstruction of an outgoing experimental state with a dis-
placement of five units is shown. The achieved fidelity with a gain of one for
this state is 0.57± 0.02. The uncolored curve in the graph shows the state which
could have been achieved with the best classical teleportation. It is clear that
the measured state is localized better.

For most protocols of relevance, a reduced input range of states will probably
suffice. After the feedback the variances depend quadratically on the gain. For
reduced input ranges the fidelity can be optimized and a lower gain might lead
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Figure 6.8: Here the probability distribution of the reconstructed state (colored) is
shown together with the best possible classical teleported state (black and white). The
final state achieved experimentally clearly rises above the classical teleported state. The
displacement for this state corresponded to around 5 photons.

to a better performance of our protocol. One has to keep in mind that this extra
information also leads to an increase in the classical fidelity limit [HWPC05].
Experiments were done with different gains for states with various displace-
ments. In graph 6.9a the variances depend, as expected, quadratically on the
gain. The displacement of the input state should not depend on the gain. This
is also, what we observe for lower photon numbers, but for states with d ≥ 20
technical instabilities led to higher noise.
From the measurements the fidelity (equation 6.9) can be optimized in the gain
for different input ranges. This was done and is shown in graph 6.9b together
with the best classical fidelities.
Measurements with higher displacements lead to lower fidelities, but in mea-
surements with displacements corresponding to up to 200 photons the classical
fidelity limit was still exceeded.

6.4 Correction with higher order Hamiltonian

This experiment was evaluated with the QND model. The question is, if the
extrapolated atomic noise changes considerably, when we employ our more
sophisticated model. The first thing is of course the deficient calibration of κ2

by evaluating the CSS as discussed in section 5.2.2. The CSS was measured for
different Faraday angles, and a slope of 0.139(2)/deg. was measured. In section
5.2.2 we saw that close to the CSS the reconstructed noise with a κ2 from a mean
value transfer measurement was very close to the one where the calibration
from the noise was used. For the teleportation results, we do the atomic noise
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(a) (b)

Figure 6.9: In figure (a), the gain was varied and the variances were measured. The
displacements used in this graph lay between d = 0 and d = 20. The line at 1.5 - three
times vacuum noise - correspond to the classical benchmark for g = 1. The uncertainty
of the reconstructed variances due to calibration lies at 5%. In (b), the experimental
data was used to extrapolate the optimal fidelity for input distributions with different
widths n. The dashed curve shows the classically achievable fidelity.
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Figure 6.10: In (a) the atomic noise (ANestimate) which is extracted with the QND
based theory is compared to the AN reconstructed with the corrected theory. In (b)
the corresponding effect on the fidelity is illustrated.

(AN) reconstruction with a κ2, coming from the measured slope. We compare
this with a noise reconstruction with a theoretical predictions of γs and an
additional decay, leading to ε2 = 0.3. As can be seen in figure 6.10a, especially
in the case for higher atomic noise, the AN was actually overestimated. In
6.10b, the fidelity for the new and old calibrations are compared for g = 1.
This suggests a correction of the fidelity of a couple of percent was in order.
Anyhow, since no suitable measurements of κ2 and γs were taken at the time
means we can not make a precise correction. Let it merely be stated that for
future experiments the correction should be included and seems to increase the
fidelities slightly.
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6.5 Possible improvements

Equation 2.39 shows that the interaction leads to an admixture of other light
modes. These are higher order temporal modes. As mentioned in section 2.2.3
this is due to a back action effect of light onto itself mediated by the rotat-
ing atomic spin. In figure 2.7 the temporal shapes of the first three modes
are shown. Those additional modes limit the noise cancelation which can be
achieved by the described feedback. Therefore the first step to improve the
performance of the protocol is to include higher order modes into the feedback
protocol.
All the q̂c(s),n are conserved by the interaction. But obviously the higher order
modes of the other quadrature ŷc(s),n are changed. We include them into the
protocol by defining a new input mode given by Ŷ = ∑ gn√

2
(ŷs,n + q̂c,n) and

Q̂ = −∑ gn√
2
(ŷc,n − q̂s,n) where ∑ g2

n = 1 and feed back the combination of the
measured quantities. The measurement of the higher orders can be accom-
plished by additional data processing, during the measurement. By including
the first three modes and optimizing the gain this process will increase the the-
oretical fidelity limit from 0.72 to 0.80 for κ = 1 (light losses and decay not
included) [1].

The part of the residual noise Var(rX,P) originating from the feed back of ŷin
c(s) of

the entangling beam onto the atoms can be reduced using an entangling beam
squeezed in this quadrature. Attention needs to be paid, since most available
squeezed light sources will also be squeezed in the higher order modes ŷin

c(s),n.
That means the q̂in

c(s),n will be anti-squeezed, spoiling the teleportation results.
But when the higher mode feedback is included this can be suppressed and
for a squeezing source delivering 6 dB of squeezing and 10 dB anti-squeezed
the fidelity can be pushed to 0.93 [1]. In our laboratory a squeezing source
is available and first results coupling squeezed light to the atoms have been
obtained in a mapping protocol described in section 9.2.

6.6 Conclusion and outlook

In the experiment teleportation of a light state onto a remote atomic ensem-
ble was shown, exceeding the limitations of classical state transfer. This was
done for distributions of coherent states with widths corresponding to up to
200 photons. Possible improvements were mentioned in the previous section
leading to considerably higher fidelities.

The main application of the teleportation in quantum information processing
is the transfer of entanglement. In this respect the reviewed experiment is a
step in the right direction. The fact that the teleportation is performed with the
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fidelity greater than the classical benchmark fidelity means that the protocol is
capable of transferring entanglement. However, a more direct demonstration
of such a transfer is desirable. In this respect, teleportation of an entangled
state of light onto matter would be the next milestone. A memory experiment
with two-mode entangled states was already conducted [9], which proves the
possibility to couple our setup to a nonclassical light source (see section 9.2).
Although the teleportation protocol described here has been performed using
continuous variable formalism, it is capable of teleportation of discrete states,
such as a qubit. The challenge here is to create a qubit state which is compat-
ible with the atomic ensemble used for the teleportation. In the current setup
the bandwidth of the input state of light has to be narrower than 1 kHz. If a
single photon state with such bandwidth is available, the teleportation proto-
col described here can achieve the fidelity of teleportation of 0.72 as shown in
[1], including light losses and atomic decay, which is above the classical bench-
mark of 2/3. An alternative approach would be to use an ensemble of cold
atoms with the crossection of a fraction of a mm where a light qubit with the
bandwidth of MHz can be used as a teleportation input state. Also, we cur-
rently investigate the possibility of fabricating much smaller Cesium cells, with
a cross section of maybe 100x100µm2 - which would lead to the possibility to
use a faster pulse sequence. This is discussed briefly bin chapter 10.



Chapter 7

Spin squeezing by internal

entanglement of single atoms

In chapter 5 the noise properties of different atomic states were discussed. The
thermal state displays noise properties for which the product of the variances
clearly lies above the right hand side of the Heisenberg uncertainty inequality
2.4. The CSS on the other hand is a minimum uncertainty state with symmetric
variances. In the following we would like to construct spin states for which one
of the two spin components perpendicular to the macroscopic orientation goes
below the noise of the symmetric minimum uncertainty state.

I start with a general introduction into spin squeezing in 7.1 followed by a
discussion of potential spin-squeezing mechanisms in section 7.2. In section
7.3 a feasible implementation for our setup is discussed, where the creation of
superposition-states of the magnetic sublevels of the single atoms give the pos-
sibility for reduced spin noise. This differs from other experiments performed
in the setup, where superposition states of the collective spins of the whole en-
semble are generated to acquire squeezing. Finally the experimental realization
is presented. The results were first reported in [2, 10].

7.1 Introduction to spin squeezing

7.1.1 Spin squeezing criteria

Starting from the coherent spin state with the minimum variance Var( Ĵz) =

Var( Ĵy) = J
2 with J being the maximum 〈 Ĵx〉, one could think, that a good

squeezing criterion would be that one of those variances has to be smaller than
J
2 . However, a better definition of spin squeezing [KY86, KU93] is defined by
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the criterion

ζ2 = 2
Var( Ĵ⊥)
〈Jx〉

< 1. (7.1)

Here Ĵ⊥ is one of the spin components orthogonal to the macroscopic orien-
tation. The noise is compared to a CSS with the same length of Jx that can
be considerably smaller than the maximal J = 4Na. The criterion 7.1 defines
potentially "useful" squeezing, as it leads to a reduced noise compared to clas-
sical systems like the CSS. The fidelity of state transfer schemes [JSC+04],[9]
conducted in our setup can be improved with states fulfilling this criterion.

Another, even more restrictive squeezing measure is concerned with the reduc-
tion in spin angle uncertainty [WBI+92]:

ζ2
α = 2J

Var( Ĵ⊥)
〈Jx〉2

< 1. (7.2)

The criterion 7.2 implies entanglement of elementary spin 1/2 constitutents
[SDCZ01]. Also it defines the necessary spin entanglement for the improvement
of several clocks and other experiments whose accuracy relies on the angular
uncertainty of the spin [WBI+92]. A magnetometry experiment conducted in
our experiment [8] can also be improved with squeezed states meeting this
criterion.

7.1.2 Squeezing experiments

The first reported experimental spin squeezing [HSSP99] was based on the state
transfer of squeezed light to atoms. There squeezed light was absorbed on the
D2 line and the exited atoms where probed on the P-D transition. 1.4% of noise
reduction was achieved.

In section 5.3.3 I discussed the possibility to achieve atomic two mode squeez-
ing via a QND measurement [JKP01]. This is a known approach and was used
in most spin squeezing attempts that followed. In [KMB00] continuous QND
probing of one transversal spin by a Faraday interaction lead to a significant
noise reduction for 107 atoms. In [GSM04], real time feedback was used to
create spin squeezing of a cold Cesium ensemble. However, this article was
retracted, as the authors failed to reach a quantitative understanding of their
results, and later determined that there was no spin squeezing observed in the
reported experiment. In [AWO+09, WOH+09] spin squeezing via a QND mea-
surement in a cold Cesium cloud inside an interferometer was shown on the
clock transition. Many other experiments utilizing the QND approach were
conducted, amongst others [TVLK08, TFNT09, SSLV10].
The different spin squeezing approaches have been used to improve metrology
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experiments, such as magnetometery in theory [PMM05] and experiment [8].
Also atomic interferometry with ensembles has been considered in [KBM98].
Entanglement of three and two ions has been used to improve spectroscopy
experiments like Ramsey spectroscopy [LBS+04] and [RCK+06].

In the experiment discussed here an interaction of the atoms with light is used
to engineer a Hamiltonian which is nonlinear in the spin components of the
single atom and thus leads to spin squeezing of the single atom, instead of the
collective atomic state. This possibility arises, due to the multilevel structure
of the Cesium ground state. For spins with a certain length, the achievable
minimum increases, the more spin 1

2 entities participate. Our case with F = 4
is equivalent to eight spin- 1

2 constituents. When the state generation is designed
carefully, also the spin of an atomic ensemble can be squeezed in this way. The
optimal achievable spin squeezing for spins of certain length is discussed in
[SM01].

The squeezing mechanism is described in detail in the following chapter and let
it just be mentioned here that similar states are generated in [CMH+07]. There
the generation of a vast amount of states in the F = 3 manifold via controlling
light and magnetic fields is reported. The states are observed in the weak
coupling regime and the average single atom density was determined. This
does not give the possibility to make statements about the collective state of the
atomic ensemble. The preparation of the states has to be done in a very precise
fashion to avoid collective effects, which can lead to correlations between the
atoms. When the atoms are not in a product state, the average single atom
density matrix is not sufficient to evaluate the collective spin operators. The
strong read out we apply here, on the other hand, will give us the possibility
for an analysis of this collective state.

7.2 Squeezing mechanism

The most well known form of squeezing is quadrature light squeezing. The
generation of such squeezed light states is usually achieved by employing a
nonlinear Hamiltonian which leads to the generation of two identical photons.
This requires a nonlinear optical medium. Correspondingly, generating spin
squeezing can be accomplished by a Hamiltonian which is nonlinear in one,
or several spin components. Similarly as in the light case double excitations
are created, which means in the case of single atoms excitations with ∆m = 2
between the states. Such Hamiltonians, can for example be accomplished by
engineering the interaction of an atom with suitable, off resonant light fields,
leading to a Raman process.

In the following, I first introduce two general possible spin-squeezing Hamil-
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tonians, followed by the description of the implementation in our experiment.

7.2.1 One and two axes twisting

Two similar approaches to achieve spin squeezing, starting from an oriented
state, with different Hamiltonians are described here. This section is in accor-
dance with [KU93].

One axis twisting

Figure 7.1: Schematic illustra-
tion of one axis twisting for a
Gaussian input distribution.

Let us consider a Hamiltonian for a single atom
of the form1:

Ĥ = α̂2z . (7.3)

This Hamiltonian leads to an effect described
as one axis twisting in [KU93] (see sketch in
figure 7.1). It is straight forward to solve the
Schrödinger equation, for a single atom for our
case. Here we consider a quantization in x-
direction, because the starting point in the ex-
periment is usually a fully oriented state in x-
direction.

d
dt
|ψ〉 = Ĥ

i
|ψ〉, |ψ〉 =

4

∑
m=−4

cm(t)|m〉, (7.4)

and for the single components, this reads:



ċ4(t)
ċ3(t)
ċ2(t)
ċ1(t)
ċ0(t)
·
·
·


=



−i
(
−
√

7α·c2(t) + 2α·c4(t)
)

−i
(
− 3

2

√
7α·c1(t) + 11

2 α·c3(t)
)

−i
(
−3
√

5
2 α·c0(t) + 8α·c2(t)−

√
7α·c4(t)

)
−i
(

19
2 α·c1(t)− 3

2

√
7α·c3(t)− 5α·c−1(t)

)
−i
(

10α·c0(t)− 3
√

5
2 α·c2(t)− 3

√
5
2 α·c−2(t)

)
·
·
·



Clearly, the states with ∆m = 2 couple via this interaction. The equation is
symmetric in ±m, so the equations for cm with m < 0 do not give any additional
information. As the input state we choose the atoms oriented in the x-direction,

1Here ̂2z refers to the single atom spin, as opposed to the position-depending ensemble spins
previously used.
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so that |ψ(0)〉 = |4〉. Then the differential equations for cm(t) are solved. I will
not state the solutions explicitly, but instead show plots of the time evolution
of relevant observables. In figure 7.2a the populations of the m sublevels in x-
direction are shown. Only the even sublevels become populated. After α · t = π,
the whole population is transferred to m = −4 and thus the macroscopic spin
flips sign.

p4

p2

p0

p-2

p-4

pm

a·t

(a) 1-axis twisting

p4

p2 p0

p-2

p-4

pm

a·t

(b) 2-axes twisting

Figure 7.2: The development of the populations pm of the different m-sublevels in x-
direction are shown for (a) a Hamiltonian of the kind of 7.3 and (b) a Hamiltonian of
the kind of 7.5. The populations of the odd m levels remain zero.

Now let us look at the development in the transversal plane. In figure 7.3,
the statistics of the populations of the magnetic sublevels in the y-z-plane are
depicted for different states which can be reached. In 7.3a the probability dis-
tribution for the different m is depicted for the fully oriented CSS for a single
atom. In a measurement of several atoms in the CSS, most atoms will be found
in m = 0. The CSS is symmetric in the transversal plane, and therefore has the
same distribution in y- and z-direction.

The statistics of the population after a certain, optimal interaction time of the
two transversal directions are shown in 7.3b and 7.3c. The distribution in y-
direction is distinctly wider than the one of the oriented state, shown in figure
7.3a. Figure 7.3c shows the unchanged z-direction. This was to be expected
as the Hamiltonian commutes with ĵz, while ĵy is displaced corresponding to
ĵz. The generated squeezing lies at another angle in the x-y plane. At this
angle φopt, we can observe the minimum variance of the spin. The statistics of
the population distribution in the corresponding direction is shown in figure
7.3d and shows a narrower profile. The anti squeezed spin component that lies
rotated by 90◦ in the transversal plane has an extremely broad profile with high
probabilities for the two extreme states.

In figure 7.4b, the variances of the transverse spins ̂y, ̂z are depicted depend-
ing on time together with the mean of ̂x. Those are the values of interest,
if one wishes to evaluate the squeezing parameters discussed in section 7.1.1.
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Figure 7.3: Populations of Zeeman levels along quantization-axes orthogonal to the
mean spin. In (a) the statistical distribution of the CSS is shown. (b)-(e) display the
maximally squeezed state reachable via one axis squeezing in various directions and
in (f)-(i) the same is shown for the optimal two axes squeezing. The state vector was
calculated in x-basis and then rotated by an angle φ around x and 90◦ around the y axis.
This was done with help of the Wigner D matrix. Dj

mm′(φ, Π/2, 0) = e−iφmdm,m′(π/2).

Var( ̂z) remains unchanged by the Hamiltonian, while Var( ̂y) grows, as ad-
ditional noise contributions from ̂z are piling up. However, ̂y and ̂z are no
longer independent - the distribution which the transversal spins follow was
twisted around the z axis as illustrated in figure 7.1. Thus the squeezed spin
components in the transversal plane lies at an angle φopt to the y axis. The de-
velopment of the variance of the turned quadrature is shown in figure 7.4c. The
optimal acquired squeezing after criterion 7.1 is achieved after αt ≈ 0.257, at an
angle φ ≈ 1.083 with ζ2 ≈ 0.288. The optimum after criterion 7.2 is achieved
slightly earlier, after αt ≈ 0.228, at an angle φ ≈ 1.061 with ζ2

α ≈ 0.354. The ob-
vious reason for the earlier optimum is that the reduction of 〈jx〉 has a stronger
effect here, since the normalization factor is 〈jx〉2.

Two axes twisting

Another approach, also discussed in [KU93] is the so called two axes twisting
achieved by a Hamiltonian

Ĥ = a( ̂2z − ̂2y). (7.5)
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Figure 7.4: The variances of the transverse spins ̂y, ̂z are depicted depending on time
as the black and gray lines. The mean of ̂x is shown as the black dashed line. The
upper two figures are the one axis twisting case at angle 0◦ and φopt. The lower line
show the scenario for the two axes twisting case.

This squeezing process achieves slightly better results, than the simpler one
axis twisting case. The final squeezed spin state lies at 45◦ to the initial axes.
In the third row of figure 7.3 the distributions of the optimal squeezing point
which can be achieved with this process are shown. A slight improvement is
visible. The reason for this better outcome is essentially that the Hamiltonian
7.5, as compared to 7.3, does not induce any differential energy shift between
the magnetic sublevels.2 The improved achievable squeezing lies at φ = π/4
and has the values ζ2 ≈ 0.248 after αt ≈ 0.137 and ζ2

α ≈ 0.327, achieved slightly
earlier at αt ≈ 0.119.

2This becomes clear, if one considers that the diagonal elements of single atom spin operators
are canceled:

̂2y,z =
1
4 ∑

m
[±C(F, m)(σm+1,m−1 + σm−1,m+1) + (F(F + 1)−m(m + 1))(σm,m + σm+1,m+1)]

̂2y − ̂2z =
1
2 ∑

m
C(F, m)(σm+1,m−1 + σm−1,m+1). (7.6)

with C(F, m) =
√
{F(F + 1)−m(m + 1)}{F(F + 1)−m(m− 1)} and σi,j = |i >< j|.



106 Spin squeezing

-50 0 50
m

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(a) CSS
-50 0 50

m

0.01

0.02

0.03

0.04

0.05

0.06

0.07

p

(b) 2-axes: αopt

-50 0 50
m

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(c) 2-axes:αopt + 90◦

Figure 7.5: Statistical distribution for the collective transversal spin for 100 atoms for
(a) a CSS, (b) the squeezed quadrature for the optimally 2 axis twisted squeezed state
and (c) the corresponding anti-squeezed spin component. The red lines show Gaussian
distributions with the expected variance for a single atom times the number of atoms.
The Gaussian clearly fits the distribution extremely well.

Collective spin

When we read out the spins with our standard techniques, discussed in earlier
chapters, we will not measure the spin of an individual atom, but the quasi
continuous collective spins. Due to the central limit theorem for independent
atoms we observe a Gaussian distributions for the transversal spins with the
variance given by N times the variances of the distributions shown in figure
7.3. To illustrate this, in figure 7.5 a simulation of the statistics of 100 atoms are
shown, together with the Gaussian distributions with the width corresponding
to 100 times the variance of the distribution of a single atom, which can be very
far from Gaussian.

7.3 Implementation

Squeezing Hamiltonian

In the experimental realization, we implement the desired Hamiltonian by shin-
ing a light beam detuned from the D1 line onto the atoms. We are interested in
the effects which are nonlinear in the spin components and sending the beam
in direction of the macroscopic spin makes it possible to neglect the effect of the
linear term of the Hamiltonian from equation 2.18, if 〈Sz〉 is small. If the beam
is directed in y- or z-direction instead, the enhanced coupling of the ∆m = 1
coherences of the atoms to the vacuum field in π-polarization introduces cor-
relations between the atoms in the sample, after which the atoms are not in a
product state any longer. Theses correlations can lead to additional noise in the
observed spin noise. When the beam is traveling in the quantization direction,
the light has no co-propagating π polarized component.
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Now, for a beam propagating along x, linearily polarized in z- or y-direction
with the photon flux φ, the Hamiltonian for the single atom reads3:

Ĥ =
1
2

αφ( ̂2x ± ̂2y ∓ ̂2z)→ αφ̂2z(y), (7.7)

with α = h̄γ1λ2·a2
4a∆R2π and where ∆R is depicted in figure 7.6a. I left out the parts of

the Hamiltonian that only give rise to a collective shift to all levels. In the case
of z-polarized input light, the Hamiltonian will be proportional to ̂2z , while for
y-polarized light it is given by ̂2y. The occuring observable of the light field φ

can be treated classically.

Note that the a2 featured in the pre-factor is referring to the D1 line. This factor
can be calculated, as discussed in [Jul03] with help of the transition moments
and reduced matrix elements presented in [Ste03]. The coefficients are stated
in appendix G.1. The ratio of a2

a1
can become higher than what we observe on

the D2-line, which is the essential reason why we chose to work on the D1

line for this experiment. Especially when the light is tuned in between the
two exited levels, we will see that we observe a very strong effect. The optimal
position will be determined experimentally, by comparing the induced decay to
the strength of the Raman transition. In figure 7.6b the ratio a2

a1
is shown for the

D1 and the D2 line where the second order effects are clearly less pronounced.

Effect of the magnetic field

In our experiment we also add a magnetic field and consider the spins in
the rotating frame. To remain with the simple Hamiltonian, we send in two
light beams which are σ+ and σ− polarized and have frequencies that differ by
2π fR ≈ 2Ω.4 This way the light fields are kept on resonance for the two photon
process which is responsible for the squeezing generation. In figure 7.6a this is
shown schematically. The atoms start out in the extreme m = 4 sublevel. The
Raman beams are tuned to two photon resonance and thus always two quanta
are transferred to the atom. As mentioned, this is similar to the generation of
light squeezing in a nonlinear medium where even photon number states are
produced and this leads to quadrature squeezing.

Another effect of the magnetic field, besides the Larmor-precession, is the sec-
ond order Zeeman shift, due to which the ∆m = 1 coherences precess at dif-
ferent frequencies. The corresponding effective Hamiltonian that describes this
impact of the magnetic field is ĤZ = β ĵ2x, as discussed in [Jul03]. Thus the

3Note: 2x + 2y + 2z = F(F+1)
2

4To be exact 2π fR = Ω43 + Ω32. In the description of the experiment I keep stating one
Larmor frequency for all coherences for simplicity. This is of course not always the case due to
the second order effects and will be considered later in this chapter.
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Figure 7.6: (a) Schematic light atom coupling on the D1 line leading to squeezing. Two
beams with σ+ and σ− polarization detuned by twice the Larmor frequency Ω. Thus
population transfer from the m = 4 to m = 2 and 0 is induced.
(b) Comparison of the ratio of a2 and a1 for the D1 line with the D2 line (dashed). The
divergencies are situated where a1 is zero - this is usually close to resonance and thus
suppressed by the Doppler width and we work further away from the resonances (as
a reminder the resonances lie at 0Hz and -1.2GHz)

Hamiltonian during the interaction (again where the terms giving a collective
energy shift are left out) reads:

Ĥ = (α− β) ĵ2z − β ĵ2y. (7.8)

By adjusting α = 2β with detuning and light power, we arrive at the slightly
superior two axes squeezing Hamiltonian. So we can utilize the fact that the
second order Stark shift of the energy levels can be compensated by the second
order Zeeman shift.

Faraday rotation of Raman beams

Finally, I would like to consider the effect of the linear terms of the Hamilto-
nian on light. I have laid out the necessity to lead the light through the cells
in the direction of the mean spin to suppress the effect of mapping of light
noise onto the atoms. But what about the effect on the light? We know that
linearly polarized light traveling in the direction of the mean spin experience
a polarization rotation due to the Faraday effect. This corresponds to different
phases acquired by the σ+ and σ− light. For the produced squeezing this trans-
lates into different squeezing angles in the y− z-plane, generated at different
positions in the sample. The Faraday angles we measure are quite small in the
detuning areas of interest. Another important point to note is that the atoms
move a lot on our interaction time scale. In [Jen07] the effect of the Faraday



7.4 Experimental realization 109

rotation was simulated and it was observed that there is only a negligible effect
on the squeezing outcome for the duration regime of interest.

7.4 Experimental realization

7.4.1 Setup

In figure 7.7a the setup for the generation of the two light beams which are used
for the Raman transition is depicted. The laser beam with detuning ∆R from
the F = 4→ F′ = 4 transition of the D1 line is divided with a PBS into two even
parts. In each of the two arms an AOM is situated. The two AOMs are modu-
lated with RF pulses with frequencies differing by fR. The first order diffracted
light beams thus have frequencies differing exactly by this amount. Those first
order beams are recombined on a PBS and a quarter wave plate transfers the
polarization of the two beams into σ+ and σ− respectively. The overlap was
optimized, by checking the visibility achieved with the interferometer and a
visibility of 95% was accomplished.

The beam is combined with the pump laser beam on a BS. The beam in the
second output port of the BS is sent on a PBS, and onto a detector. The output
signal is demodulated at fR ≈ 644kHz with a lock-in-amplifier and thus the
difference in phase of the RF component of the two beams can be monitored.
This way fluctuations in the two beam paths can be observed and compensated,
e.g. by changing the phase of the RF modulation imposed on one of the beams.

The laser which is used to drive the Raman transition is a Ti:Sa laser that is
frequency-locked via a beat lock similar to the locking setup described in the
experimental introduction in chapter 4. Here the optical pump laser is used
as the reference frequency. An additional, variable RF frequency is admixed to
the beating signal to have the possibility to change ∆R.

7.4.2 Effect on the orientation monitored by the Faraday angle

As discussed in the beginning of this chapter, the squeezing is accompanied
with a reduction of 〈 ĵx〉 of the single atom. This can be easily understood, as
there is a population transfer from m = 4 to m = 2, 0,−2,−4 which can be
seen in figure 7.2. For the Raman process to happen effectively, the frequency
difference of the two Raman beams 2 fR should be equal to the two photon
resonance frequency ωR/2π ≈ 2Ω/2π. Of course also spontaneous emission
in the presence of the Raman beam creates a reduction of 〈 ĵx〉, but this should
not depend on the difference frequency fR of the two Raman beams.



110 Spin squeezing

AOM

125MHz

125MHz+fR

l/2

l
/4

To cell

A
O

M

Verdi

Ti:Sapphire
optical

pumping

(a) (b)

Figure 7.7: In (a) the generation of the two Raman beams is shown. The Ti:Sa laser
is used as the light source. The Raman beams with frequencies differing by fR are
created in an interferometer with help of two AOMs. After their recombination they are
combined with the the pump beams on a BS and sent to the cell. In (b) the experiment
where squeezing is produced and observed is depicted. The inset shows the pulse
sequence.

To observe the two photon resonance, the orientation in F = 4 which is propor-
tional to 〈 ̂x〉 was observed for a scan over fR. The Faraday angle - so the polar-
ization rotation of a weak linearly polarized beam, propagating in x-direction -
was used to monitor the length of Jx (see section 4.2.1) after a Raman pulse with
a fixed duration. In figure 7.8 θF is shown over fR as the black curve. The plot
features a bimodal structure; beside the sharp dip, originated in the desired two
photon process, one can observe a broad background dip. In this measurement
the Raman beams filled only a small portion of the cell due to spatial limita-
tions in the beam preparation. The broad background dip arises due to atoms
that stay inside the beam only for a short time. The asymmetry originates from
the different Stark shifts which the atoms experience at different positions.

The gray curve in figure 7.8 shows the same experiment with an expanded
beam where the broad structure is suppressed. This is the setting, in which all
data presented in the following was taken.

7.4.3 Optimal experimental parameters

To choose the optimal detuning and power of the Raman beams, the questions
to consider are twofold. To achieve the superior two axes twisting, the second
order Zeeman-shift and Stark shift should cancel, so that the ∆m = 1 coherences
are synchronized during the interaction. For this purpose, we used the MORS
techniques, described in section 4.2.2. Secondly, we wish to find a situation
where the induced spontaneous emission is small compared to the desired
effect.
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Figure 7.8: The detuning of the two Raman beams fr was scanned, and the Faraday
angle θ f ∝ Nat〈jx〉 was monitored. The black curves are for a setting where the Raman
beam covers only a small portion of the cell. For the gray curves, the beam has been
blown up to have a width of almost 2cm. All curves feature a narrow reduction at the
two photon resonance fR = ωR/2π

Strength of Raman process and induced decay

We measured the decay-constant of the macroscopic spin in presence of the Ra-
man beams, but detuned from the two photon resonance. The result is shown
in figure 7.9a. Only the part of the decay coming from the Raman beam is
shown, so the dark decay rate was subtracted. When the laser is tuned in be-
tween the two exited lines, there lies a local maximum of the decay time, in the
middle between the Doppler broadened transitions. For larger detunings the
decay time gets longer and longer.

Also the strength of the Raman process was tested for the same detunings. As a
simple measure for this, we chose the light power which is needed to achieve a
certain reduction in 〈jx〉 for a fixed duration of the Raman pulse on two photon
resonance. Without the magnetic field this method would essentially determine
the scaling of the prefactor α of the squeezing Hamiltonian in equation 7.7.
Here the required light power will also depend on how close the situation
is to two axes twisting. We choose a sensible duration of the Raman pulse
and a reduction of 〈jx〉 close to optimal squeezing for one axis and two axes
twisting so that this characterization method will give us an idea of the scaling
of the magnitude of the process anyhow. A measurement of the dip in the
Faraday angle, as described in the section before was performed for different
light powers for every detuning and the size of the dip was observed. In figure
7.9b the light power which was needed for a 10% reduction of the Faraday angle
for fR on resonance is plotted. In between the lines, much less power is needed,
than for bigger detunings. If we assume that the induced Γ = 1

T1
scales linearly
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Figure 7.9: In (a) measurements of the decay time of the macroscopic spin induced by
the Raman beam are shown for a fixed light power and different detuning ∆R, while
the beams are not on the two photon resonance. The gray lines depict the resonance
frequencies for the transition of F = 4 to the two exited lines. In (b) the light power
needed to create a 10% reduction of θ is shown while fR is tuned to the two photon
resonance. (c) depicts a combination of the two measurements. The decay time is
divided by the power which is used as a figure of merit to define the optimal working
position - where the longest decay time compared to a certain population transfer is
achieved

with the light power, as it should, we can calculate the extrapolated induced
decay for the 10% reduction by dividing T1 by the power and it becomes clear
that to achieve the same reduction in the Faraday angle there are two similar
positions: one between the two exited lines and one at around ∆ = 750MHz.
We choose to work in between the lines, which will give us the possibility
to cancel out the second order Zeeman-shift. If a blue detuning is chosen,
the nonlinear Hamiltonian of the light gets the same sign as the second order
Zeeman shift and two axes twisting becomes impossible.

Splitting of the coherences

Figure 7.10: Splitting of
the coherences for differ-
ent Raman powers over
ωR.

In figure 7.10, a measurement of the splitting for dif-
ferent light powers is shown for the chosen red de-
tuning ∆ = −550MHz. MORS traces were recorded
for different powers of the Raman beam and ωR =

Ω43 + Ω32 and the splitting of the coherences 2πνs =

Ω43−Ω32 was measured. As the x-axis we use the fre-
quency (energy) difference ωR of the substates m = 4
and 2 which is shifted due to the Stark shift by the
Raman light. The splitting can only be measured for
small powers and the zero point νs = 0 extrapolated.
Most of our experiments however, are conducted for
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higher light powers. The reason is that dephasing and
decay make a faster preparation superior even though this lies between the one
axis and the two axes case.

7.5 Results

On the path to optimize the single atom squeezing experiments, many different
measurement series were taken. As mentioned in the previous chapters, to
achieve optimal results the beam shape and the procedure of how to produce
the Raman beams needed to be optimized and detuning and light power were
picked carefully. Until now I have only considered measurements of 〈jx〉, but
of course the important measurement size is the spin noise in the two spin
components, which will be discussed in the following.

7.5.1 Atomic variances and mean spin

The measurement outcomes of the read out pulse depicted in the inset of fig-
ure 7.7b, can be used for the atomic state reconstruction of the collective state.
The knowledge of the shot noise and κ2 are crucial to gain information about
the noise properties of the created state. The coupling constant was calibrated
by thermal noise measurements (section 5.2.1). The atomic noise was recon-
structed with the assumption of a one cell interaction with a QND-type Hamil-
tonian, following the procedure which was described in section 5.2, applying
the second line of table 5.1. We should pick the phase of the demodulation with
the lock-in amplifier at Ω such, that the squeezed/antisqueezed variances lie
in the atomic quadratures x̂ and p̂ which are read out with ŷc and ŷs

5. All RF
phases - of the AOM modulations and the atomic reference signal - are reset in
the beginning of every duty cycle.

The QND approximation, which only features linear terms in the Hamiltonian,
is valid for all orientations. The model developed in chapter 3 depends on an
approximation valid only for high orientation and can therefore not be used
here. If we want to evaluate the effect of the higher order terms in the Hamil-
tonian on our reconstruction procedure, we need to find another method. In
section 7.5.3 such a procedure is described and the mistake made in the recon-
struction due to higher order terms in the Hamiltonian is estimated.

5Alternatively one can extract the squeezed and antisqueezed variances with a different
phase afterwards. For this one takes a measurement series and finds the minimum uncertainty
angle of the set of measurements in the phase space and then evaluates the variance.
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Measurements of the time evolution

In the measurement presented in figure 7.11 the duration of the Raman-pulse
was varied, while keeping the Raman power and fR

6. For every duration 10.000
points were taken and the atomic variance reconstructed. The squeezed vari-
ances are shown by the magenta dots. The blue dots indicate the behavior of
the mean spin, but normalized such that it shows the variance of a CSS with
corresponding spin length. Measured variances beneath the blue points there-
fore indicate spin squeezing after criterion 7.1, we observe thus spin squeezing
in the first 1-1.5 ms.
The development of the measured sizes resembles the theoretical predicted be-
havior of the variance and mean spin depicted in figure 7.4e. But there are
some apparent differences.

Figure 7.11: In (a) the time evolution of the squeezing is shown. The duration t of the
Raman pulse was varied and a consecutive probe pulse was used to analyze the atomic
state. The blue dots show the noise of a CSS with the equivalent macroscopic spin
(which was measured via a Faraday rotation measure). The magenta dots show the
variance of the optimally squeezed spin component in units of CSS-noise and the black
dots show the variance of the corresponding anti-squeezed component. The lines come
from a theoretical model which is using the light power of 0.88mW. The dashed lines
are based on a model not including decay, while the solid lines show the predictions
from the model including decay due to spontaneous emission and collisions with the
wall. The uncertainty of the points is not depicted and lies at around 10% (coming
from calibration uncertainties and statistical uncertainty) for the variances and 1% for
the macroscopic spin.

The mean spin behaves different to the prognosis. 〈jx〉 barely flips sign and
comes back to a reduced value. This conduct is originating amongst others in
the fact that the setting lies between one-axis and two axes twisting. Thus the
Raman beams can not be on resonance for all possible two photon processes at
the same time. The dashed lines in figure 7.11 show the theoretical evolution of
the mean spin and the variances for the full Hamiltonian for this setting. There
is a strong similarity in the experimental and theoretical curves established by

6Set to the two photon resonance for a short pulse duration.
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leaving the light power in the cell as a free parameter. This needed to be done,
as part of the losses of the light towards the cell were not characterized. The
discrepancies between the dashed curve and the measurement points are the
decaying mean spin and higher measured noise in the squeezed variance. This
is apparently originating from the different decay mechanisms.

Spin decay during squeezing generation

To achieve a better agreement I want to include decay in our predictions. Pre-
viously, we had some success in making a very simple addition to the model
in order to include the decay, by use of the Langevin operators. The decay was
assumed to be directed towards the CSS (or the thermal state). The earlier de-
scribed interaction were not based on population transfer, but kept somewhat
close to the CSS, thus the assumptions gave good results. It would be possible
to make a similar ansatz for a decay towards a different state, but when the
population of the different levels changes so drastically during the interaction,
so will the state that the atoms decay to.

As we are only interested in the evolution of the atomic ensemble, we can
consider the time evolution of the atomic density matrix, and include Lindblad
terms Ln (step operators with rates) for the decay. The corresponding formulas
are shown in appendix G.2. There are different decay types to consider. Most
importantly, there is spontaneous emission. Due to this, a big fraction of atoms
will leave the observed subsystem (F = 4), reducing the mean spin and the
noise of the observed spin components. This can easily be modeled, by adding
an ancillary state into our model which will not contribute to our observables.
This will be seen as a loss of atoms and reduces 〈 ĵx〉 and the variances of the
transversal spins accordingly. Spontaneous emission back to the F = 4 level will
add different amounts of noise, depending on the final m f state. Additionally a
decay mechanism towards the thermal state, modeling processes like collisions
was included. The time constant used for this was close to the measured T1 in
the dark. The time evolution was evaluated iteratively with the formulas stated
in appendix G.2 and the result is shown as the solid curves in figure 7.11 - a
good agreement was reached.7

Lifetime and stability of the generated squeezing

In figure 7.12a, the lifetime of the squeezing was tested. The delay between the
Raman light pulse, generating the squeezed state, and the read out was varied.

7The contribution of the atoms in F = 3 to the Faraday rotation was not included here. This
could in principle be done by adding all substates of F = 3 into the model individually. The
effect of this seems small compared to the precession of the fit, so I did not do it here.
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(a) (b)

Figure 7.12: In (a) the lifetime of the squeezing was tested. The first point is calculated
from 100.000 measurements, while the others are measured with 10.000 repetitions.
The variances of the two quadratures (blue and magenta) are shown together with the
expected variance of a CSS (black) with the same length of the macroscopic spin Jx.
the black points therefore indicates the boundary of the squeezing. In (b) the stability
of the measurement is shown. Those measurements represent the first point with zero
delay. Here the measurements are binned into 10 times 10.000 measurements and
the fluctuations can be seen. The resulting standard deviation of those ten measured
variances is bigger then expected, if the uncertainty would just come from the Gaussian
nature of the measured variable. The additional uncertainty arises from instabilities in
preparation. Other uncertainties, as in the kappa calibration, Faraday measurement
and light noise are included in the error-bars.

Squeezing vanishes after 2.5ms. This arises from the usual decay mechanisms
and dephasing of the magnetic coherences, due to the second order Zeeman
shift which lets the coherences rotate at 20Hz different frequencies for neigh-
boring coherences.
For the Raman duration which produced the best squeezing, the state was mea-
sured with 100.000 repetitions and in figure 7.12b the variances are shown for
10 points of 10.000 repetitions. The shown error bars come from uncertainties
in the calibration of κQND and the shot noise. The squeezing parameters for
those points are ζ2 = 0.45± 0.05 and ζ2

α = 0.50± 0.06. The latter confirms the
presence of nuclear-electronic entanglement in the individual atoms.

7.5.2 Atomic state reconstruction - Wigner function and density
matrix

In figure 7.13a all the measurements, for which the binned variances are shown
in 7.12b, are shown as a histogram. The pink curve displays a Gaussian distri-
bution with the measured widths. The atomic state reconstruction is similar to
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Figure 7.13: In (a) the histogram of 100000 measurements are shown together with a
Gaussian distribution with the measured widths. In (b) the reconstructed collective

atomic state with X =
Ĵy

〈 Ĵx〉
and P = Ĵz

〈 Ĵx〉

a measurement of a light state with a bad detection efficiency. In principle one
can write the light variable on the detectors, similar as in [UTK06]:

ŷout
c = A(√η p̂ +

√
1− η ˆvac), ŷout

s = A(√ηx̂ +
√

1− η ˆvac) (7.9)

which just looks like the detection of two phases of a light state with a certain

detection efficiency. The "detection efficiency" is given by η =
κ2

QND

2+κ2
QND+κ4

QND/6 and

the gain A2 = 1 +
κ2

QND

2 +
κ4

QND
12 . Now, similar tools as for the analysis in opti-

cal homodyning [LP95] can be used. From the multiple of the polluted Wigner
function in figure 7.13a, we can reconstruct the atomic Wigner function in phase
space of the collective atomic state, assuming that the atomic state is Gaussian.
The extracted atomic Wigner function is shown in figure 7.13b. While the mea-
sured distribution only shows a small asymmetry, for the reconstructed one
with almost 3dB of squeezing the asymmetry can be seen easily. The Wigner
function includes all information about the atomic state, so we can calculate the
corresponding density matrix[LP95, NN08] for all atoms8. The relevant section
of the obtained density matrix is shown in 7.14a.

If one does not want to make assumptions about the atomic state before the
atomic reconstruction, the collective density matrix can be reconstructed with
maximum likelihood methods[HMŘ06]. The method optimizes the likelihood
of the density matrix, based on a certain measurement set of q̂(θ) = x̂ cos(θ) +
p̂ sin(θ). The measurements are binned and starting from a certain guessed
density matrix, one defines the likelihood, e.g. as ln L(ρ) = ∑θ,j Nθ,j pθ,j where
Nθ,j is the number of measurements in bin j and pθ,j is the probability of this

8ρmn = 2π
∫ ∫ ∞
−∞ W(x, p)Wmn(x, p)dxdp with Wmn = 1

2π

∫ ∞
−∞ eiyp < x− y

2 |m− n|x +
y
2 > dy
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measurement outcome, based on the guessed ρ0. Now ρ can be varied, but the
trace needs to be held constant and ρ should be Hermitian and positive defi-
nite. All this can be granted by defining a suitable iterator R̂ and calculating
the likelihood for iteration k ρk = Rρk−1R until the Likelihood stabilizes. As
shown above, the fact that we measure the atomic state via light can be trans-
lated into an imperfect detection efficiency which can routinely be included in
the procedure as shown amongst others in [HMŘ06, NN08]. The difference to
usual settings is that instead of measuring a probability distribution for differ-
ent angles θ after each other, we measure always x̂ and p̂ at the same time, with
a bad detection efficiency (which is allowed by quantum mechanics).

In figure 7.14b the result of such a procedure for the presented points is shown9.
It looks very similar to the density matrix shown in figure 7.14a which comes
from the much simpler reconstruction based on the assumption of Gaussian
states. To compare, in figure 7.14c the diagonal elements of the density matrices
for the two methods are shown together. The values of the different elements
vary by a few per mil. The assumption that we are working with Gaussian
states seems justified.

In 7.14d the single atom density matrix from the theoretical predictions which
lead to the theoretical curves in 7.11 is shown for the point after 1ms. The
element in the upper right corner shows the predicted population of all F = 3
substates. Also here, mainly the even states become populated, but there is
some pollution of the pure squeezed state, coming from the decay. It can not
be compared to the other two density matrices quantitatively as it arises from
a completely different measurement set.

7.5.3 Corrections of the reconstruction

It is harder to evaluate the accuracy of the atomic state reconstruction here
than it was in the case of the teleportation experiment. The reason is that, as we
ventured away from the CSS and away from the possibility of limiting ourself to
a two-level system, we needed to establish another estimate of the higher order
corrections. In the appendix C a perturbational approach is taken. Again the
full Hamiltonian is considered and, like previously the relevant terms extracted.
This time the linearizing step is not taken, instead the first order perturbation
is calculated for the variable of interest for the read out. The corrected read out

9The result of the ML reconstruction are shown by the courtesy of Thomas Fernholz, who
programmed the maximum likelihood evaluation program.
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(a) (b)

(c) (d)

Figure 7.14: In (a) the density matrix from the simple reconstruction or Gaussian states
is shown, for the measurements from the histogram 7.13a. In (b) the upper corner of the
collective density matrix which is reconstructed by maximum likelihood is depicted10.
The two matrixes look similar. To compare, in (c) the diagonal elements of the two
matrixes are plotted together.
In (d) the single atom density matrix, corresponding to the optimal squeezing point
of the theoretical curve featured in figure 7.11 is shown. The upper right corner is
showing the population of all sublevels of F = 3.

formula C.10 reads:

ŷout
c = ŷin

c (1−
κ2

QND,0ζ
2

16
( ̂2x − ̂2y)) +

κQND√
2

p̂in(1−
κ2

QND,0ζ
2

16
( ̂2x − ̂2y))

−
κ2

QND

4
(q̂in

s +
1√
3

q̂in
s,1)−

κ2
QND,0ζ

2

16
√

3
(̂ ̂2x − ̂2y)y

in
c,1

with ζ2 = 4 a2
a1

. Clearly, there are similar corrections, as the ones coming from
the scenario discussed in chapter 3. There is a suppressed coupling constant,
and a suppressed light noise contribution. The κ2

QND was measured via the ther-
mal noise. More precisely the coupling constant, suppressed by the detection
efficiency η was measured. Now, to analyze the quality of our state reconstruc-
tion the remaining question is, what we would like to set as 〈 ĵ2x− ĵ2y〉. This entity
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has its maximal value for the CSS, for which the value is 14. Obviously, for the
squeezed states it gets smaller and smaller. Plotted in figure 7.15a are the vari-
ances for the QND analysis as dots together with the the maximal correction
(for the CSS) as circles, which lie around 15% above the noise evaluated with
the QND theory. The crosses show variances evaluated with an estimate for
〈 ĵ2x − ĵ2y〉 from the theoretical predictions which is shown in figure 7.15b. This
presumably better correction corrects the measured atomic variances upwards
for small times and minimally downwards for later times. The corrections do
not change the quality of the experiment, but e.g. the optimal squeezing is in-
creased by 7% of PN. There are some remaining uncertainties to the precession
of this correction, amongst others, what the detection efficiency was in this spe-
cific setting. For future experiments the quantities relevant for the correction
should be measured with specific care to achieve a more accurate correction.
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Figure 7.15: In (a) the corrected squeezing points are shown, the crosses utilized a value
of 〈 ̂2x− ̂2y〉 directly from the model (shown in (b)) while the circles where reconstructed
by setting 〈 ̂2x − ̂2y〉 = 14 which is the maximal value. The variances reconstructed with
the QND model ares shown in red and gray.

7.6 Conclusion and outlook

In this section I showed a method of generating spin squeezing in the spin of the
single atom. It was verified that this procedure leaves also the collective atomic
state in a noise reduced state, so that the squeezing is useful for ensemble
applications, such as clocks or atomic magnetometers. It also became clear that
a very careful choice of the experimental conditions starting from the direction
of the beam to frequency and spatial properties and duration is necessary to
achieve a good result. The squeezing of 3dB is similar or actually slightly higher
than the achieved QND squeezing for room temperature atoms. The corrections
from the higher order terms of the Hamiltonian were estimated, and though
they are not negligible, they do not change the quality of the experiment.

One might attempt to combine such a squeezing procedure with a QND mea-
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surement to achieve a higher degree of squeezing. The reasoning is simple, as a
QND measurement should always enhance the knowledge about one quadra-
ture of the system, no matter what the input state. In [KM10] the possibility
of employing both concepts of spin squeezing is investigated for either first
generating the single atom entanglements followed by a QND measurement,
or the other way around. Also the possibility of using both procedures simul-
taneously was discussed. The outcome is that, even though the two squeezing
procedures can produce a better result together than the internal spin squeez-
ing alone, no matter which procedure starts the squeezing it reduces the effect
of the following. The reasons are very simple: if the Raman squeezing is ap-
plied first, the length of the macroscopic spin is decreased, also decreasing the
coupling strength. Thus the QND measurement becomes less effective. When
the QND measurement is applied first, one does not start in the pure CSS state
and applying the Raman process then leads to a mixing of unwanted levels as
well.

Another difficulty using both squeezing procedures together is the necessity of
employing two atomic ensembles with oppositely oriented spins. This needs
to be carefully evaluated, and the choice of probing and pumping parameters
must probably be done in such a way, that the quadratic Zeeman- and Stark-
shifts cancel, otherwise the spins in the two ensembles will precess differently
in the magnetic field.

Also the effect on a memory was discussed in [KM10]. Starting from an intro-
duction of a Holstein Primakoff approximation for product states other than
the CSS, it becomes clear that the described collective oscillator modes are not
squeezed in this discription. The squeezing still helps the protocol, as the new
normalization of those oscillator modes leads to an increase in the coupling
strength for one of the quadratures.





Chapter 8

Steady state atomic

entanglement via dissipation

and measurement

This chapter is dedicated to an experiment where our current setup is used
to generate atomic entanglement via the light atom interaction. By carefully
designing the interaction settings, we can reach a scenario in which the entan-
glement prevails as long as the interaction is kept on - the collective spins of
the ensembles of atoms reach an entangled steady state.

Two concepts for entanglement generation are employed to achieve this steady
state. Starting with the interaction described by the theory presented in chap-
ter 3, two mode squeezing is achieved without any measurement on light. To
understand the nature of this entanglement generation better, one can also de-
scribe the process such that the atomic system is driven by dissipation into the
desired state. The corresponding theory is touched on in section 8.2.1.

The achieved two mode squeezing can be improved in quality and duration
by employing a particular measurement scheme. This is similar to the known
QND approach where the atomic system is squeezed conditioned on a mea-
surement which is conducted on light after the interaction with the atoms.

8.1 Atomic entanglement

The value of entanglement has already been mentioned in several contexts,
simply as a striking feature of quantum mechanics, as a resource for quantum
communication and quantum information or as needed to improve metrology
experiments. Atomic entanglement is of special interest as it can in principle

123
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be distributed and then stored until one wishes to use it. However, exactly in
the storage lies a major problem in most previously conducted atomic entan-
glement experiments. Atomic entangled states proved to be extremely frag-
ile, wether they were generated by measurement [JKP01, CDRF+05, EAM+05,
MCJ+06, YCZ+08, AWO+09] or atomic interactions [GZN+10, RBL+10], and
also the entanglement described earlier in this thesis (chapter 7) displayed life-
times of only a couple of ms.

The coupling to the environment leads to decoherence which until now ir-
resistibly was followed by the disappearance of entanglement after a certain
time. Several proposals have been made, of how to use carefully engineered
environments to create a situation where entanglement is reached by dissipa-
tion to overcome this shortcoming. More specifically, dissipatively generated
entanglement was proposed for our system in [MPC10]. Due to certain re-
straints in the experimental realization like the decay and a limited reachable
optical depth, the proposed entanglement generation process lead to a long
entanglement duration, but not the wanted steady state entanglement. Com-
bining with a measurement on the light output gives the possibility of steady
state entanglement, as will be shown in the course of this chapter.

8.2 Theoretical model

The theory described in chapter 3 was until now used solely to estimate correc-
tions of the previously employed QND theory. However, I briefly mentioned
that the Hamiltonian does two things; it swaps the state of light and atoms and
at the same time performs a squeeze operation on both systems, leaving both
light and atoms in a two mode squeezed state. The resulting squeezed light
was measured and the results reported in [5].

Here, I would like to turn towards the possibility to achieve squeezed atomic
states by applying the interaction for longer interaction times, than previously
employed. As we are using a two cell setup, the achieved two mode squeez-
ing of the collective operators translates into entanglement between the spin
operators of the two atomic cells. One of the advantages of this is, compared
to the QND approach to entanglement, that this is an unconditional entan-
glement without the feedback of a light measurement. This means that the
atomic entanglement is not achieved, mediated by the light atom entanglement
after the interaction. The light is used simply as a common reservoir, lead-
ing to entanglement by dissipation. For convenience I will use the same kind
of equations as in the rest of the thesis to describe the phenomenon. But the
experiment can also be described fully in the language generally used for de-
scribing a dissipation-driven process - with the master equation in the Lindblad
form. This concept will be briefly introduced in the next section, before moving
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on to the discussion of entanglement generation with help of the input-output
equations in section 8.2.2.

8.2.1 Entanglement by dissipation

In the introduction the fragility of entanglement was pointed out. As a mat-
ter of fact, for any quantum mechanical system that couples to an environment
only states to which the decay is directed towards remain, while all other quan-
tum states are subject to decoherence. The degradation of entanglement, and
other interesting quantum states by coupling to the environment has been stud-
ied in several contexts (amongst others [MKT+00, BLW+08, BSG+10, BPP10]).
However, recently several proposals have been made of how to engineer the
environment in a suitable fashion to utilize dissipation, caused by the coupling
to this environment, to engineer interesting quantum states which thus prevail
as long as the coupling to the environment is kept the same. Also proposals to
realize quantum computation by dissipation [VWC09] have been made.

In [PCZ96] it was proposed how to couple two laser fields to an ion to create
Schrödinger cat states. In [KC04] a possibility to create two distant entangled
atomic ensembles by shining two squeezed light beams onto them is discussed.
A very small squeezing is sufficient to create substantial entanglement. Also
in [DMK+08] and [KBD+08] the preparation of quantum systems into desired
quantum states via specific design of the environment are presented.

All these approaches are dealing with the coupling of the systems of interest
to an environment and the final quantum state of the environment is not of
concern. The way to describe the scenario is the Lindblad form of the mas-
ter equations. The crucial point is to find suitable surroundings so that the
dissipation leads towards a steady state that is the state of interest.

Imagine a desired final state |Ψd〉 with Â|Ψd〉 = B̂|Ψd〉 = 0 for Â = µb̂1 + νb̂†
2

and B̂ = µb̂2 + νb̂†
1 where the indices 1 and 2 refer to two different modes. In

our case this could point to the first and second ensemble. For µ = cosh(s)
and ν = sinh(s) this corresponds to a two mode squeezed state with squeezing
parameter s. Such a state can be created in a process, described by the master
equation

d
dt

ρP = ca(AρA† − AA†ρ/2− ρAA†/2) + cb(BρB† − BB†ρ/2− ρBB†/2) (8.1)

More specifically, in [MPC10] a Hamiltonian describing the interaction of two
oppositely oriented atomic ensemble in a magnetic field interacting with a light
field is introduced:

Ĥ ∝
∫

ω+

(Âa†
k + Â†ak)dk +

∫
ω−

(B̂a†
k + B̂†ak)dk, (8.2)
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where a†
k is the creation operator for a photon with wave vector k. The integrals

run over the upper (+) and lower (-) sideband. The master equation for the
atomic state after the light has been traced out looks more complicated than
equation 8.1. In [MPC10] the full state evolution it is stated, including several
additional decay processes.

The model is similar to the theory we have used until now with one major
exception. In the analysis in the Heisenberg picture, we have treated the light
field as a single mode - in fact the one common emission mode for the two en-
sembles. Here all modes are considered and thus the part of the spontaneous
emission which is not enhanced is included. The outcome of both approaches
is therefore only the same in the limit of very high optical depth where spon-
taneous emission can be neglected. This is a far more rigorous approach than
the previously used description, but with the main drawback that the light
measurement is not included in the theory.

The understanding we reach this way is that the entanglement is generated
by the interference of different processes in the two ensembles for which an
indistinguishable photon is emitted in the common mode. The processes in
the forward direction are collectively enhanced and a photon emitted at, for
example the upper sideband stands for an atomic excitation in ensemble one,
or an annihilation in ensemble two.

Since we wish to include the light measurement into the discussion, I limit
myself in the following to the input-output descriptions. However, the model
which is presented in [MPC10] fits nicely with the experimentally obtained
data, as has been shown in [7]. Currently efforts are made to include the mea-
surement into the master equation approach.

8.2.2 Discussion of entanglement generation with input-output
equations

Equations 3.10 directly display the squeezing characteristics for the atomic op-
erators which we are interested in. The limit of long interaction times is given
in equations 3.13. The final steady state is squeezed by a factor 1

ξ2 of the input
variance of light. The time scale in which this state is reached is around 20-
100ms for relevant experimental settings. In figure 8.1 the black lines show the
predicted behavior of the atomic variances. Here, the steady state is reached
after around 50ms.
Unfortunately, on this timescale the decay of the atomic spin can not be ne-
glected and needs to be included in the theory. Earlier in this thesis, decay
towards the CSS was modeled and the equations for atomic operators after the
interaction are given by equation 3.21. There, the final steady state is charac-
terized by the squeezed variance ε2 + ξ2(1− ε2). However, this decay model
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is only valid for timescales considerably shorter than the decay of the macro-
scopic spin Jx which decays with T1 ∼ 0.4− .1s. Due to this decay atoms will
start populating m = 3 and the F = 3 ground-state. Every atom in m = 3
contributes 2.7 times as much noise as atoms in m = 4 which comprise the CSS.
Meanwhile Jx is shrinking due to the atoms leaving the fully oriented state. I
include this slow decay in equations 3.21 by letting γs → γs(t) decrease, as
the macroscopic spin and let the transversal spin decay towards a state, char-
acterized by the noise operator F̂x with Var(F̂x) = Var(CSS)(r · 1 + (1− r) · 2.7)
where r gives the ratio of atoms in m = 3 of the F = 4 subset. This seems like a
crude model, but it will give us an idea of what we can expect. Technically the
state evolution is then evaluated by letting the state evolve by the equation 3.21
for small steps, where the coupling strength is decreased for every increment.
This is easier than solving the full equations with the time dependent decay
constant. The approach can be justified by arguing that the process, governed
by γs is faster then the decay of Jx.

In figure 8.1 all three predictions are shown for room temperature atoms and
5.6mW probe laser power at ∆ = 850MHz. The solid lines represent the vari-
ances originating from the equations without decay. The dashed lines where
a decay towards the CSS was included display similar behavior with a steady
state with reduced degree of squeezing. The dotted lines where the decay of
the macroscopic spin was added do not level out, but display a minimum af-
ter a certain interaction time. This means that we can not expect steady state
entanglement in our experiment with the usual course of action.

Different approaches can be taken to improve the situation. To avoid the high
noise originating in atoms populating m = 3, we can apply a weak pump
laser for which m = 4 is a dark state. This will lead to a higher orientation
in the F = 4 subset. It will also deplete the macroscopic spin even faster, as
atoms decay towards F = 3. To avoid this an additional repump laser can be
employed. Both laser fields will shuffle atoms incoherently back to the two
level system of interest, therefore increasing the achievable steady state atomic
noise. However, for carefully selected settings a steady state with a quadrature
with reduced noise compared to the CSS could in principle be obtainable.

8.2.3 Including light measurement

In section 5.3.3, it is discussed, how a QND measurement can be used to gener-
ate a squeezed state. The basic idea was to use the knowledge about the atomic
state gained by a measurement on light which has interacted with the atoms
to reduce the uncertainty of the atomic state. This can be done by applying
feedback whose strength is given by the measurement outcome to the atoms.
Instead one can produce conditional entanglement [JKP01] where the atomic
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Figure 8.1: Atomic variances with and without decay. The full lines show the pre-
diction for the variances for a relevant setting (room temperature, P=5.6mW) over the
interaction time. For the dashed lines, a decay toward the CSS is included with a time
constant T2 = 8ms, as we measure for these settings in our experiment. The dotted
curves also include the decay of the macroscopic spin with T1 ≈ 60ms, as explained in
the text. In (a) the squeezed and anti-squeezed variances are shown and in (b) only the
more interesting squeezed variances are plotted.

spin state is a displaced squeezed state whose displacement is given by the
measurement outcome times a known number α.

The underlying interaction does not allow a pure QND measurement. But we
can still attempt to utilize the light measurement to squeeze the atoms, as long
as the light contains any information about the final atomic state. Let us first
consider the equations without the added decay.
From equations 3.10 and 3.12 we can calculate a conditional variance of the
atoms after the interaction, by subtracting the light measurement outcome from
the atomic operators P̂c,s [JKP01, SJP07]:

Var(P̂out
c,s − αŷout

c,s−) = AN · (
√

1− κ2ξ2 − ακ)2 + LN · (κξ2 + α
√

1− κ2ξ2)

(8.3)

The optimal αo = κ(AN − ξ2)
√

1− κ2ξ2/(1 + (AN − ξ2)κ2) only depends on
the coupling constants and the input noise of atoms (here the light noise was
set to LN = 1). No matter what the input noise was, the final variance of the
atoms and the final conditional variance coincide at the level 1/ξ2. In figure 8.2
this is illustrated for two different atomic input states.

Even though the measurement can reduce the atomic noise on short timescales,
this method does not seem beneficial for the steady state. This makes sense as
in the steady state the atoms are in a pure state and therefore the atomic state
can not be correlated with the light state. The scenario changes drastically,
when decay with the decay constant γextra of the transversal spin is included
in the theory. The steady state is then not a minimum uncertainty state, so
that a measurement of the outgoing light in principle could contain informa-
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(a) No decay

Figure 8.2: Conditional noise. The full lines show the optimal conditional variance after
equation 8.3 of the atomic P̂ operators, the dashed lines show the original variance of
these operators after the interaction. The light noise LN = 1, like for coherent light
and the atomic input noise AN = 1 for the black line and AN = 1.5 for the gray lines.
The dotted light-gray line indicates the 1

ξ2 . The conditional variances for both atomic
input states are similar after short time

tion about the atoms. However, it seems that the light mode of the output
light which has an exponential falling mode function might be unsuitable, as it
contains minimal information about the noise component which is piling up in
the atomic operators. So what is the optimal light mode to squeeze the atomic
state? Let us consider the out-coming light mode characterized by the function

f (t) = e−γmt/Nm with an arbitrary rate γm and where Nm =
√

1/2
∫ T

0 e−2γmt is
the normalization factor with a factor

√
1/2, due to the fact that we consider

cosine or sine modes. The input-output relation for this mode reads (here for
the cosine case)1:

ŷout
c,m = B · P̂in

c + ˆ̃yin
c,∗ +

ˆ̃Fin
P,?, (8.4)

with B = a√
2Nm

∫ T
0 e−(γ+γm)tdt. The light and noise operators marked by the

tilde are not normalized and have the un-normalized mode functions2:

f̃∗(t) =
1

Nm
(e−(γm+γ)t − 2γs A(t)eγt),

f̃?(t) =
a
√

γextra

Nm
A(t)eγt (8.5)

with A(t) =
∫ T

t e−(γ+γm)t′dt′. The atomic output (equation 3.21) only depends
on the rising input modes of the light and noise operators. For the relevant

1Constants correspond to the ones introduced in chapters 2 and 3
2Because of earlier conventions I do not pull the cosine and sine into the mode function.

Like before the light modes marked with the indices c or s are cosine and sine modes with the
envelope given by f . This is important for normalization.
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operator this looks as:

P̂out
c =

√
1− κ2ξ2P̂in

c −
√

1− ε2κξ2ŷin
c+ + εκξ F̂P+.

To calculate the correlation between the atomic and the light output, the light
and noise modes, defined in 8.5 need to be expressed as a linear combination
of the rising modes and a mode orthogonal to the rising mode. For this we find
f̃⊥c+(t) = c · f̃∗(t) + fc+(t) and f̃⊥+ (t) = d · f̃?(t) + f+(t),3 such that:

∫ T

0
f̃⊥c+(t) fc+(t)dt = 0,

∫ T

0
f̃⊥+ (t) f+(t)dt = 0.

Then we end with

ŷout
c,m = B · P̂in

c +
1
c
(−ŷin

c+ + Nc⊥ŷin
c⊥) +

1
d
(−F̂P+ + N⊥ F̂P⊥), (8.6)

where Nc⊥ =
√

1
2

∫ T
0 ( f̃⊥c+(t))2dt and N⊥ =

√∫ T
0 ( f̃⊥+ (t))2dt. Now we can evalu-

ate the conditional variance and the noise for different ε2. In figure 8.3 the noise
was evaluated for ε2 = 0, 0.22, 0.5 and 0.75 over different interaction durations
T for characteristic experimental settings. For simplicity the decay is again
modeled to be directed towards the CSS4. In the two graphs below, the optimal
gain α and mode constants are shown. Without additional decay, the scenario
described earlier, with γm = γ is optimal. As soon as there is additional decay,
γm becomes negative and in the steady state settles at a negative value, smaller
than −γ leading to a fast growing mode-function. It does seem quite intuitive,
that those light measurements nearest in time to the point in time for which we
wish to squeeze the atomic state need to be weighted most. This new knowl-
edge about the use of optimal modes makes the conditional squeezing superior
to the ones performed before [JKP01] where the achieved entanglement was
limited in duration by decay. Besides creating a slightly better squeezing result
the refined method also gives the possibility to employ the idea discussed in
the end of the previous section, of introducing additional pump beams which
will open up for the possibility of achieving a squeezed atomic steady state. In
the steady state where noise and Jx are stable, even if the collective atomic noise
lies above the entanglement limit, the correlations between outgoing light and
atomic state can be used to attempt to squeeze the atomic collective operators.
The pump beams will also introduce additional decay towards the CSS and
therefore the minimum conditional noise will be higher the more pump light
is used.

3Again f+ and fc+ are the exponential rising (envelope) mode function, differing by a factor
of
√

2 in the normalization, with the time constant γ.
4This assumption anticipates either short time scales compared to T1 or a scenario which

will be discussed later where a weak pump and repump laser introduce a decay towards the
CSS.
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Figure 8.3: In the upper graph the modeled behavior over time for the atomic noise
(AN) is shown as the full lines, and the conditional variance as the dashed lines. Below
the optimal gain αm is shown on the left and the optimal mode constant γm is depicted
together with the respective decay rates −γ as the dashed lines. Three different εs are
assumed, while γs was kept constant. All curves have AN = 1 for t = 0, which can
not be seen in the graphs, due to the logarithmic scaling of the x-axis.

(a) (b)

Figure 8.4: Time sequence to optimize squeezing. In (a), the whole preceding light
pulse is used to conditionally reduced the atomic variance with a decaying mode func-
tion, as optimal in the case of no additional decay. In (b) the same is shown for the
optimal case with included decay.

In the experimental realization we measure the conditional variance C = Var(P̂out
c −

αŷout
c,m) by sending a second readout pulse through the atoms. Then we evaluate

LC = Var(ŷout,2
c − αŷout

c,m) where for the second pulse we need to use an expo-
nential falling mode function with γm = γ. Then, by using the usual noise
reconstruction we extract C from LC , corresponding how we usually recon-
struct the atomic noise AN from Var(ŷout,2

c ). A measurement time sequence is
depicted in figure 8.4b



132 Steady state entanglement

8.3 Experimental realization

The experimental setup corresponds to the sketch in figure 2.8. The outgoing
light is measured via a Ŝy measurement. Measurements of different temporal
modes of Ŝy are used on the one hand to conditionally squeeze the atomic state
and on the other hand to evaluate the atomic noise as will be discussed in the
following.

8.3.1 Data acquisition and analysis

In all the previously described measurements, we recorded two values for ev-
ery measurement pulse with duration T - the outcome of the measurement of∫ T

0 f (t) cos(Ωt)Ŝy(t)dt and the orthogonal
∫ T

0 f (t) sin(Ωt)Ŝy(t)dt. For the ex-
periment discussed here, it is crucial to use very long probe pulses and then
evaluate different parts of the pulse with suitable mode functions f (t). At the
same time it should be possible to chose the mode function after the measure-
ment is done. It would be possible to register more points, let us say one every
100µs over a period of 20-200ms. To evaluate variances one usually needs to
repeat a measurement 10.000 times. When many different experimental situ-
ations are realized with long pulses this will sum up to a lot of measurement
points. Therefore, instead the covariance matrix over the measurement pulse
for Nrep many repetitions is stored. In practise 〈x(ti)x(tj)〉 is recorded where
x is the measurement variable, so for example Ŝy,c and ti = i · ∆t with ∆t
being the step size, often chosen to be 80− 200µs. This gives a matrix with
the dimensions n × n where n = T/∆t. Also the mean values 〈x(ti)〉 are
put on file and collected in the vector x̄. The covariance matrix x̄x can then
be calculated from those two measurement sets. The elements are given by
x̄xi,j = 〈x(ti)x(tj)〉 − 〈x(ti)〉〈x(tj)〉.

In figure 8.4 a long measurement pulse is shown and a certain section, starting
with t = k∆T, with a duration of tprobe = m∆T is indicated. For this section the
mean value and the variance can now easily be calculated.
We construct a mode function vector u which has elements ui = 0 for i < k, i >
k + m and ui = 1/Nu · f ((i − k)∆t) for all other. Now the variance and mean
value of the measured x̂ in this section is:

σ2(x)t,T0 = u∗ · x̄x · u, 〈x〉t,T0 = u∗ x̄. (8.7)

When we evaluate the conditional variance, we split the pulse in different sec-
tions as shown in figure 8.4b and choose two mode functions for the first and
second section. The first pulse is then used to try to squeeze the atomic state
and should have an exponentially growing mode-function f1(t) with an op-
timal rate γ1, while the second pulse which is used to do atomic state re-



8.3 Experimental realization 133

construction needs to be evaluated with an exponentially falling mode with
rate γ = 1

T2
. The size of interest is Var(ŷout

c− |
t+tprobe
t − αŷout

c,m|t0), to reconstruct
Var(P̂out

c(s)(t)− αŷout
c(s),m|

t
0). For this we need to assume that the light contribution

in the two pulses are uncorrelated, so we leave out a small slice in between the
pulses to avoid correlations due to the finite bandwidth of measurement. The
two mode vectors are given by u1 with u1i = f1(i∆t) for i∆t < t and otherwise
u1i = 0, and u2 defined as above. Then

σ2(x|Te
t − αx|t0) = u2

∗ · x̄x · u2 + α2u1
∗ · x̄x · u1 − α(u2

∗ · x̄x · u1 + u1
∗ · x̄x · u2),

σ2(x|Te
t − αx|t0)opt = u2

∗ · x̄x · u2 −
1
4
(u2
∗ · x̄x · u1 + u1

∗ · x̄x · u2)

u1
∗ · x̄x · u1

,

where the conditional variance was optimized for α in the last line. To avoid us-
ing the same data to find α, one can make a reference measurement beforehand
to extract the optimal feedback gain.

In figure 8.5 two density plots for recorded x̄x matrices are shown. The graph
8.5a represents a light measurement, i.e. the atomic Larmor frequency is shifted
outside the detection bandwidth by an additional magnetic field. In this case
there should be only contributions on the diagonal of the matrix, as there ought
not to be correlations between an earlier and later time. This is almost true
and the small contributions in the first off diagonal matrix elements can be
explained by the finite bandwidth of our measurement. The power spectrum
of the measurement is shown in figure 8.5c.
In figure 8.5b x̄x for an atomic measurement is shown. There are clearly more
correlations visible, as was to be expected, since the atomic signal on the read
out prevails for some time. The fact, that there is a decay in the correlations
tells us, that the atomic state decays. Also the variance decays over time. This is
mainly due to the decay of the macroscopic spin, but also to a reduced variance
compared to the macroscopic spin. The shown graph actually starts about 40%
above the projection noise, since this way the reduction becomes clearer visible.
The spectrum for the atomic measurement shows a well defined narrow peak,
coming from the rotating atomic spins, as well as the broad light background.
The recorded signal is demodulated at 322kHz. The signal at frequency 0 in the
graphs corresponds therefore to the component of the measurement that rotates
at the Larmor precession frequency. The small contribution at this frequency
in the light spectrum can be attributed to a DC offset in the electronics of the
system, after the demodulation of the signal.

8.3.2 Calibration measurements

The effect on the initial noise due to dissipation effects which we wish to ob-
serve here is small, compared to observations in previous experiments. Specific
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Figure 8.5: In (a) the correlation matrix from a pure light measurement is depicted. No
correlations between earlier and later measurements are seen, except for small corre-
lations due to the finite measurement bandwidth. In (b) the atomic state is measured
via the light and thus correlations can be seen. In (c)the power spectra for both those
measurements are shown. The light measurement displays a broad peak, showing
the bandwidth of our measurement setup. The atomic signal is confined in a much
narrower bandwidth.

care was therefore taken in the course of those measurements to verify that the
atomic state was projection noise limited. The coupling constant κ2 was mea-
sured by mean value transfer in the days, or weeks surrounding the single mea-
surement set. So was the atomic noise. The atomic noise (AN) was measured
in reference measurements with 1ms pulses, so the pulsed κ2 measurements
could be used. Thus the input noise was established. For long measurement
pulses, we used this input atomic noise, to determine κ2 (or the swap rate γs) of
the first points from the initial noise. This means that our usual process of de-
termining AN with a noise measurement, when we know κ2 is reversed. Now
we know AN, and then determine κ2 and thus γs. From this we can extrapo-
late κ2 throughout the whole measurement, as we know that γs scales with the
macroscopic spin, while the other decay constants remain constant. Therefore
we can evaluate the noise, compared to the CSS, for all t until T − tprobe. Of
course the assumptions for our reconstruction have to be met, like a sufficiently
high orientation. The orientation was therefore tested for different scenarios.

In figure 8.6a the orientation was tested after different pulse durations of the
probe. The orientation keeps high which justifies the use of our model. In
figure 8.6b the measured orientation was transferred into the excess atomic
noise that arises from atoms in m = 3. Clearly the decrease of the orientation
is counteracting the squeezing procedure.

Another problem to consider is the growing number of atoms in the F = 3
ground state. The Faraday rotation, which is used for the characterization of the
size of Jx therefore needs to be compensated. This is easily done as discussed
in appendix D, but one needs to assume a certain orientation of the atoms in
F = 3. If one considers oF=3 = 1 we get the lowest possible Jx, which will
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(a) (b)

Figure 8.6: In (a) the orientation of atoms in F = 4 was tested with help of the pulsed
MORS technique after different probe durations. In (b) the measured orientation was
transferred into the normalized atomic noise, taking only m = 4 and m = 3 into
account.

give us a worst case scenario for the normalized spin-noise. In very specific
situations, when there is no laser resonant with any transition starting in F = 3,
the steady state orientation of the F = 3 atoms can be estimated with help of a
MORS signal. A signal like this for the case of probe and a small pump beam on
is shown in figure 4.8. It is much more difficult to think about ways to extract
the noise which the atoms in the F = 3 ground state are contributing to the
measurement. Presumably it is small in all situations which will be considered
compared to the noise component arising from atoms in F = 4. The coupling
to the light falls of with 1/∆2 and it will be additionally suppressed by the
frequency difference in the Larmor precession and our final bandwidth. We
ignore this noise contribution for now.

8.3.3 Noise measurements

We wish to evaluate the behavior of atomic noise over time. In figure 8.7 the
measured evolution of the mean of the variances of Pc and Ps is shown for
different atom numbers in units of projection noise (PN). The probe power was
set to 5mW. The entanglement limit then reads:

1
2
(Var(P̂c) + Var(P̂s)) =

1
4
(Var( p̂1 + p̂2) + Var(x̂1 − x̂2)) =

1
8〈Jx〉

(Var( Ĵz1 + Ĵz2) + Var( Ĵy1 + Ĵy2)) <
1
2

. (8.8)

The black line in figure 8.7, indicates the limit of entanglement between the two
samples5. The uncertainty of the measured noise level is 4%, mainly arising
from uncertainty of κ2, the shot noise of light and η.

The number of atoms was increased by heating the cell with a warm airflow.
The number of atoms was varied from 2 · 3.4 · 1011 to 2 · 5.9 · 1011 and 2 · 1.1 ·

5 1
2 is one unit of PN in equation 8.8
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Figure 8.7: Time evolution of atomic noise. The two upper graphs and the one in
the bottom left corner show the behavior of the atomic noise over time for different
numbers of atoms. The dark blue lines show the reconstructed atomic noise and the
gray lines show the decay of the mean spin which was calculated from the measured
Faraday rotation in x-direction including a compensation for atoms in F = 3, this
compensation lies maximally at around 5%. The coupling constant κ and the ε2 are
calculated from the mean of the initial points, for which the atomic noise is known,
because it has been measured in an independent set of measurements. The behavior
of κ2 can then be extrapolated, since we know that γs depends linearly on Jx. The
magenta lines show the conditional noise calculate with optimal mode constant γm and
feedback α. The uncertainty on the input noise is 4%, mainly arising from uncertainty
of κ, the shot noise of light and η.
In the lower right the determined optimal mode constants γm are shown together with
−γ for all three settings (color coded as shown in the legends). The behavior looks
similar to the modeled graphs in 8.1 and 8.5.

1012, corresponding to optical depths on resonance of approximately 32, 56 and
104. In all three graphs, the atomic noise reaches a minimum and then starts
growing again. The reason is the decay of the macroscopic spin displayed in
gray which leads to an orientation lower than one in F = 4. Unoriented states
yield higher normalized noise. At the same time γs decreases with Jx, making
the process driving the collective state into entanglement slower and slower.
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Though the relative noise reduction is bigger for the higher optical depths, as
was expected, the absolute reached minimum noise is similar for the first two
graphs and higher for the highest optical depth. This is due to the fact that the
initial noise grows the more we heat. To a certain extent this can be explained
by the classical noise on the atoms growing quadratically with the number of
atoms. However, additionally we experience an onset of an extremely high
additional noise contribution, starting from a certain number of atoms. In most
experiment, we keep therefore to room temperature or a slightly warmer setting
with around twice the number of atoms.

(a) (b)

Figure 8.8: In (a) the magnetic field in the two cells was changed such that the atomic
spins precessed with Larmor frequencies differing by δ fL. In (b) an additional pump
laser on the D1 line is applied during the probing. The circular polarized beam was
directed along the x-axis like our usual pump beam, the pump power lay at around
100µW and the induced decay is around 1/10ms. The solid lines are the behavior of
the noise, when the behavior of Jx was calculated, assuming the orientation in F = 3
was 1. The dashed lines show the behavior, if there was no correction from the atoms
in F = 3 - so for an assumed orientation of 0

.

Detuned Larmor precession

The sensitivity of the process to optimal calibration is illustrated by the mea-
surement shown in figure 8.8a. In this measurement series, the magnetic fields
of the two cells were slightly changed, such that the Larmor precession of the
spins had frequencies differing by δ fL. The photons emitted in the two cells
become thus distinguishable and the entanglement without feedback vanishes
after shorter timescales.
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Additional pump field

In the shown experiments, one of the major problems, was the growing noise,
due to decaying atomic orientation. To avoid this, a weak pump beam was used
simultaneously with the probe beam. The power of this pump beam can be
optimized and one will get a trade off between achieved orientation and added
decoherence which leads to a shallower dip in noise. The drawback of this
approach is an even faster decay of the macroscopic spin due to spontaneous
emission in the presence of the pump beam into F = 3. In figure 8.8b such
a measurement is shown for 180ms. The decay of the macroscopic spin is
substantial so that Jx in F = 4 can no longer be assumed to be proportional to
the Faraday rotation angle θ. Thus the compensation due to atoms in F = 3 is
taken into account with an orientation of the F = 3 ground state o3 = 1. This
leads to the maximal possible correction, compared to the case if we would
ignore the atoms in F = 3. To illustrate the effect, I show the noise curve for
o3 = 0 (no correction) and o3 = 1 (maximal correction). The latter is definitely
closer to the actual situation, but the lifetime of entanglement is probably a
little longer than the thus estimated 40ms. Since collisions and scattering into
other m levels will bring about an o3 < 1. In as similar measurement scenario
the orientation of F = 3 was measured via MORS to be o3 ≈ 0.9. The fact that
the AN rises above the projection noise level indicates that the decay is not only
directed towards the CSS. Additionally the big number of atoms in F = 3 might
contribute noise for longer times.

Steady state with probe, pump- and repump-field

The decay of the mean spin can be counteracted by adding a weak repump
laser. In [7] and [MPC10] theoretical predictions for this scenario are shown
for different optical depths, showing that one can reach an entangled steady
state, without additional measurement. However, in the experiment we have
not observed this. One reason is the limited optical depth we can achieve and
another the fact that we can not apply bigger amounts of repump compared
to the pump power without adding noise. The reason for the latter might be a
small polarization pollution in the pump and repump beam which shuffles too
many atoms in states other than m = 4.

However, adding the measurement and looking at the conditional variance,
we can produce a steady state, in which the conditional noise is still below
the entanglement limit. In figure 8.9b a measurement with a probe of 8mW,
and a pump and repump beam with around 150µW and 300µW respectively
is shown. The normalized noise stabilizes quickly. The final Jsteady

x is 0.95 of
the maximal Jx = 4Na. The points, which can be seen on the upper end of
the time scale arise from a pure steady state measurement. For this, we simply
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leave all lasers on DC and, after the steady state is reached, average the noise
over around one hour. We looked at 10 ms time slices and for the conditional
variance we used at least 3ms of measurement. The observed conditional noise
lies at 0.80(4) PN units.
The noise level reached should not depend on the value of the input noise, if
this level is higher due to different preparation. In figure 8.9 there are therefore
two measurement curves for different starting conditions. A state with higher
input noise was created by turning off all pump fields for 150ms, this way a
poor orientation is reached, leading to a lower mean spin and to a higher nor-
malized noise. The input noise can be calibrated in an independent calibration
sequence where the same pulse sequence as shown in the figure was used, but a
1ms calibration pulse preceded the long pulse, so that our usual calibrations for
the atomic noise reconstruction could be used. The calibration of the state with
low orientation is not as accurate as our usual reconstruction, due to the fact
that the model relies on high orientation. That being said, I want to stress, that
the precise initial noise value is not of much interest - the important conclusion
from this measurement is, that the final state is independent of the input state.
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Figure 8.9: In (a) the pulse sequence for the measurement starting at the CSS and for
the measurement starting at a state with lower orientation are shown. To achieve a
lower orientation, we wait around 150ms, which is of the order of T1 in the dark. In
(b) the noise evolution for both starting conditions is show. The reached noise level is
very similar. The points to the far right are extracted from a measurement where all
beams were DC and the noise was averaged over around 1 hour. The power of the
laser beams were 8mW for the probe laser, around 150µW for the pump and 300µW
for the repump laser.

8.4 Conclusion and outlook

In this chapter I reported on the generation of steady state entanglement of two
atomic systems. While without the additional light measurement, the atoms
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reach only a quasi steady state with long entanglement durations, adding the
measurement leaves the two systems in a conditionally entangled state. In most
relevant uses of entanglement, the additional information needed, can be dis-
tributed by classical means. If a protocol requires unconditional entanglement,
feedback can be added to the protocol in two fashions. One possibility is to
feed back the measurement outcomes continually or one can wait until the en-
tanglement is needed and one can apply a short RF pulse. The latter has the
advantage that the outgoing noise will be the same as the conditional noise
presented in the section above [SJP07]. The optimal gain and mode function
can be applied in the same fashion. However, it creates a time delay of at least
the feedback duration of around 100µs. The continuous feedback option has
not been treated here, and it needs to be analyzed carefully, what the outcome
would be. However, the conditional noise is not very sensitive to the choice of
the mode constant, as long as one uses a function weighting later times more.
Since the atomic state is decaying and with this also the contribution of earlier
feed back, the outcome will probably be similar to the conditional noise.



Chapter 9

More experiments with the

light atom interface

This chapter is intended to give an overview over other experiments conducted
in the setup, during the duration of my PhD which I was less involved in.
I will only briefly review these observations and give references for further
information. The experiments were first reported in [5, 8, 9] and additional
references are [11, 12, 13].

9.1 Narrow band two mode light squeezing

In several places I mentioned the possibility of using the squeeze and swap
Hamiltonian to produce squeezed light. To be more precise, the interaction
gives the possibility to produce two mode squeezed light in a very narrow
bandwidth around the Larmor frequency of the atoms. In [5] the realization
of this experiment with an achieved squeezing of light of -3.5(1)dB of a single
temporal mode is reported. The experimental setup is almost equivalent to the
experiment reported in chapter 8. The most important difference in the setup
is that since the q̂ quadrature of light is squeezed, the detection system has to
be changed slightly. For this a Ŝz measurement is realized by adding a quarter
wave plate.

9.2 Memory for squeezed states

The basic principle of a quantum memory protocol is the transfer of the canoni-
cal quantum variables of light to the corresponding atomic ones. We know from
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Figure 9.1: Two-mode entangled (squeezed) light is generated by an optical parametric
amplifier (OPA). A variable displacement of the state is achieved by injecting a coherent
input into the OPA which is displaced with help of electro-optical modulators (EOM).
The output of the OPA is shaped by a chopper, and combined on a polarizing beam-
splitter with the local oscillator (LO) beam, such that the squeezed light is only on
during the second probe pulse. A beam shaper and a telescope create an expanded
flat-top intensity profile. The light is then send to the memory consisting of two op-
positely oriented ensembles and the homodyne detection system. The detector signal
is processed electronically and used as feedback onto the spins via RF magnetic field
pulses. Below, the pulse sequence is shown. After preparing the squeezed spins state,
the actual storage takes place, followed by a verification pulse.

the input-output equations 3.10 and 3.12, that if we could achieve the long in-
teraction time regime, the underlying interaction would swap the states of the
two systems. However, as this is not possible for our experimental realization
due to decoherence, a trick is applied to achieve the desired state transfer; the
ŷc,s of the outgoing light are measured and the measured results are fed back
to the atoms. Let us assume a coupling constant κ = 1 and a feedback gain,
which is also 1. The collective atomic operators are then left as:

P̂ f in
c,s = −ŷin

c,s, X̂ f in
c,s =

√
1− ξ2X̂in

c,s + q̂in
c,s (9.1)

Clearly the input light state is mapped onto the atoms with some additional
noise, coming from the atomic X̂ operators. A memory based on a similar
protocol was conducted for coherent states [JSC+04] in the setup exceeding the
achievable fidelity for any classical memory. The next obvious step was to map
non classical states, like squeezed light states. A squeezed light source [SSP02]
was used to produce displaced squeezed states, which were mapped onto the



9.3 Magnetometry 143

atoms. The setup is shown in figure 9.1 and described briefly in the caption
and in more detail in [9].

The experiment was refined by employing an additional probe pulse after the
preparation of the atomic CSS to reduce the input noise of X̂c,s. The achieved
squeezing was approximately −14%. The initial light state was squeezed by
6dB.

To evaluate the performance the fidelity of certain sets of input states was calcu-
lated and compared to a classical benchmark that is also presented in [9]. The
classical benchmark was beaten for a certain input set with a square displace-
ment range with a maximum displacement of 3.8 and two possible squeezing
phases.

9.3 Magnetometry

(a) (b)

Figure 9.2: (a) The experimental setup is similar to the usual settings. A pulse of
BRF at the frequency Ω is applied orthogonally to the B field, such that the created
displacement in the spin lies in the same direction for both cells. (b) The pulse sequence
for projection noise limited magnetometry is also similar to previous experiments. The
temporal mode function for the probe is indicated as the dashed black curve. The lower
pulse sequence shows the scenario including the temporal modes for entanglement-
assisted magnetometry.

A completely different application of the oriented atomic ensembles is the mea-
surement of small magnetic RF fields. The projection noise limited performance
of the light measurement of the atomic spin is an excellent tool for measure-



144 More experiments with the light atom interface

ments of small displacements of the rotating spin operators. The displacement
of the rotating spins by a magnetic field on resonance with the Larmor fre-
quency grows linearly with the number of atoms. When varying the exposure
duration of the atoms to the RF field, the maximal created displacement is
limited by the decoherence time of the spins. Therefore the light fields are
turned off during the RF pulse, so that the T2 time is maximal. This is one
of the reasons that the magnetometry experiment reported in [8] achieves a
similar sensitivity as the state of the art magnetometries, even though two or-
ders of magnitude less atoms are used. The optimal achieved sensitivity was
BRF
√

T · SNR = 4.2(8) · 10−16Tesla/
√

Hz for the exposure time of T = 22ms.
The signal to noise ratio (SNR) was optimized by varying probe power and
atom number, as well as optimizing the mode function of the measurement.
The optimal SNR can be reached with γm ≈ 2γ, which maximizes the atomic
signal compared to other noise sources as input light noise and noise arising
from the decay. The light noise was suppressed considerably due to a high
coupling constant, such that the measured sensitivity is close to be PN lim-
ited. Ignoring the preparation time the value lies 30% above the PN limit. The
additional noise arises due to the decay of the spin and the residual light noise.

In principle it should be possible to improve the sensitivity by venturing away
from the CSS and towards squeezed atomic spins. The drawback is that due
to the short lifetimes of the squeezing compared to the optimal exposure time,
the optimal setting can not be improved in such a way. However, it is possi-
ble to improve the measurement performance for shorter RF-pulses or larger
bandwidths. An additional probe pulse was used to conditionally squeeze the
atomic input operators prior to the exposure to the RF field. In figure 9.3 a
measurement series of the atomic noise and the SNR is shown, both for the
original scenario and where initial squeezing was used. An improvement of
around 15% in the SNR can be seen for short pulses.
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Figure 9.3: On the left the atomic noise in units of shot noise of light is shown for dif-
ferent durations of the RF pulse. The dashed line at 0.5 is the contribution of the probe
light noise(LN). The average noise level of the initial spin state (squares) is 1.10(8) in
projection noise (PN) units. The PN level is shown as the solid horizontal line. Grey
bands have the width equal to twice the standard deviation. The noise for the entan-
gled state vs. the delay between the two probe pulses is shown as circles. The fit yields
an entanglement lifetime of 4ms. The BRF = 36 fT pulse is applied to Na = 3.6(3) · 1011

atoms. The duration of the first/second probe pulse is 2/3ms, the duration of the
pumping pulse 6ms. On the right the SNRs times the RF bandwidth (inverse pulse
duration) of the magnetometer for the entanglement assisted magnetometer (circles)
and in the absence (squares) of the entanglement are shown.





Chapter 10

Conclusion and outlook

The room temperature Cesium cell experiment which is the focus of this the-
sis has been an extremely versatile tool for the implementation of interesting
quantum mechanics experiments and protocols which show the possibility of
the realization of certain quantum communication building blocks. Entangle-
ment between separate atomic systems [JKP01], [7] in the single atoms of the
ensemble [2], between light and atoms [1] and between two light modes [5]
have been generated with similar setups, albeit partly with very different ap-
proaches. Quantum communication protocols like memory [JSC+04], [9] and
teleportation [1] have been conducted successfully. Besides giving a detailed
description on three of the mentioned experiments, in this thesis I tried to
detail the theoretical background of the experiment, with an emphasis on a
recently developed refined understanding of the interaction. One focus were
the temporal modes and their importance for the correct analysis of the atomic
states, when venturing into a stronger coupling regime. Even though more in-
volved than the formerly used QND presentation, the new description holds
the possibility, not only to describe the system more correctly, but also to im-
prove some of our old methods. The entanglement generation by measurement
was extended such that the inclusion of mode shapes into the measurement
scheme gave us the possibility to achieve a steady state entanglement.

There are many proposals for experiments, which could be realized in the cur-
rent setup. The quantum cloning of a light state onto the atoms [FCP04] is one
of those proposals. Also several protocols, where the light should transverse
the ensembles several times from different directions, enabling a memory that
includes a possibility for state retrieval were suggested for two cells [SSF+06]
and one cell [MHPC06]. Also multipartite entanglement (cluster states) can be
generated with this kind of setup including two - or several atomic ensembles
either by letting the light pass sequentially through several ensembles [SRP+09]
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or by letting one memory unit (two ensembles) consecutively interact with sev-
eral squeezed light states (theoretical work in progress).

One of the most intriguing protocols which remains to be realized in the current
setting is the teleportation of a state from one atomic ensemble to another.
Different approaches can be taken to realize atomic teleportation, including
either three or two atomic ensembles, but I would like to highlight a specific
one here in the following. The layout of the possible teleportation experiment
is sketched in figure 10.1. The main difference, compared to all other two
cell experiments is that the macroscopic spins of both cells are oriented in the
same direction. The teleportation protocol can be realized as follows. The
first atomic ensemble at Bob’s site gets entangled with the light that is passing
through. Then one makes a combined measurement of the light and the second
ensemble bearing the input state at Alice’s site by directing the light through
the second cell and conducting a measurement on the light afterwards. The
measurement outcomes are communicated to Bob, who makes a feedback to the
atoms accordingly. The protocol has been analyzed theoretically for the input-
output equations stated in chapter 2 from which the possibility to perform
this protocol with a fidelity better than classically possible is deduced [She06].
However, the scenario, where the protocol could be realized successfully is for
rather high coupling constants κ > 1. Therefore it is essential, that the protocol
is analyzed with the knowledge gained in chapter 3 which is a current work in
progress.

Figure 10.1: Schematic drawing of possible atomic teleportation setup. The two atomic
ensembles are oriented in the same direction.

Let me now turn to a completely different course for future experiments. Minia-
turizing the room-temperature Cesium cell experiment could provide the op-
portunity of a complete new set of experiments [LKM+04, BUB+10]. Currently,
all experiments that we are able to incorporate are limited to Gaussian quan-
tum states. This seems a strange limitation, as experiments like mapping and
teleportation of a light state onto the atomic ensembles should give us the
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possibility to transfer other light states as single photons [NNNT+07] or even
Schrödinger kitten states [NNNH+06] to atoms. However, those experiments
produce light states with bandwidths of around 10MHz which is unsuitable
for the interaction times of milliseconds that we need to achieve suitable cou-
pling. The density of atoms can not be increased much by heating due to the
properties of the paraffin coating, and a higher optical power leaves us with
technical difficulties in the detection as well as problems with growing classical
noise. Shorter interaction times present us with another problem, as it is very
important for us that the atoms cross the beam several times in the interaction
time, because the transfer protocols rely on an averaged spatial atomic mode.
The latter problem can easily be resolved by scaling down the cell parameters.
As the coupling constant scales in the same fashion with time as with the in-
verse cross section, the pulse duration can be reduced retaining the coupling
constant and the number of wall collisions per atom per pulse.

Instead of mapping a non Gaussian state with a low fidelity protocol onto the
atoms, one can also attempt to produce a single excitation state directly in the
atoms. This can be done by integrating single photon detection in the polar-
ization mode orthogonal to the drive field (see figure 10.2). Conditioned on a
measurement event, a single excitation distributed over the whole atomic en-
semble would be reached. With the number of photons, currently used such an
approach is unfeasible due to limitations in filtering. But as argued before, a
reduced area will allow us to use a reduced duration and light power and thus
filtering is getting closer to realizability. To enable additional filtering possibili-
ties, the magnetic field can be increased such that the emitted photon becomes
distinguishable in frequency from the drive field. In figure 10.2 a possible setup
is sketched, allowing for single photon detection and homodyning. This way
an atomic state reconstruction, similar to the ones utilized in chapter 7 can be
implied.
To decrease the needed number of photons even more, we would like to inte-
grate the cells inside a low finesse cavity. The light atom coupling can thus be
enhanced by the finesse of the cavity.

Figure 10.2: Simple idea for an experiment with a micro cell, generating one atomic
excitation and being able to make a full state tomography.



150 Conclusion and outlook

In conclusion, there is a whole range of interesting possibilities to explore. Es-
pecially an improved, miniaturized setup with future possibilities of integrat-
ing the whole setup into a fiber system seems like a route worth investigating,
with the perspective of several coupled micro cells on the path to a quantum
network.
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Appendix A

Linearization

One can calculate the Heisenberg equations of motion for the spins and the
Stokes operators for the full Hamiltonian given in equation 2.18. In [Jul03],
those equations are states, and I repeat them here with some minor corrections:

∂

∂t
̂x(z, t) =

γ

8A∆
λ2

2π
{a1Ŝz y} (A.1)

+ a2{2Ŝy[x z + z x]− (2Ŝx − φ̂)[z y + y z]},
∂

∂t
̂y(z, t) =

γ

8A∆
λ2

2π
{−a1Ŝz ̂x}

+ a2{7− (2Ŝx + φ̂)[ ̂x ̂z + ̂z ̂x]− 2Ŝy[ ̂z ̂y + ̂y ̂z]}, (A.2)

∂

∂t
̂z(z, t) =

γ

8A∆
λ2

2π
a2{4Ŝx[ ̂x ̂y + ̂y ̂x]− 4Ŝy[ ̂

2
x − ̂2y]}, (A.3)

∂

∂z
Ŝx(z, t) =

γ

8A∆
λ2

2π
{a1Ŝy ̂z + a2 · 2Ŝz[ ̂x ̂y + ̂y ̂x]}, (A.4)

∂

∂z
Ŝy(z, t) =

γ

8A∆
λ2

2π
{−a1Ŝx ̂z − a2 · 2Ŝz[ ̂

2
x − ̂2y]}, (A.5)

∂

∂z
Ŝz(z, t) =

γ

8A∆
λ2

2π
a2{2Ŝy[ ̂

2
x − ̂2y]− 2Ŝx[ ̂x ̂y + ̂y ̂x]}. (A.6)

All stated spin operators have a dependency on position and time. Now we
can reexpress the quadratic spin components as discussed in section 3.1, if we
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consider a fully oriented spin. We end with the following approximations:

̂y ̂x + ̂x ̂y ≈ ±7 ̂y, (A.7)

̂z ̂x + ̂x ̂z ≈ ±7 ̂z, (A.8)

̂y ̂z + ̂z ̂y ≈ 0, (A.9)

̂2x − ̂2y ≈ 14, (A.10)

̂2z ≈ ∓7
2

̂x + 16 · 1. (A.11)

After the linearization, we can, by the same arguments as in chapter 3 limit
ourselves to the important components and thus we end with the same Heisen-
berg equations of motion that were also achieved by calculating the equations
of motion directly with the approximated Hamiltonian 3.3.



Appendix B

Calculations to inclusion of

decay in higher order equations

Following equation 3.20, the time dependance of the atomic p̂-operator in the
rotating frame is as follows:

˙̃̂p(t) = eγt(−aq̂(0, t) sin(Ωt) + aξ2ŷ(0, t) cos(Ωt) +
√

2γex F̂p). (B.1)

Here ˆ̃p = peγt and F̂p is the noise operator belonging to the rotating wave spin.
Thus the time dependent rotating spin operator reads:

p̂(t) = e−γt p̂in ∓ a
∫ t

0
e−γ(t−t′)q̂(0, t) sin(Ωt)dt′... (B.2)

+ aξ2
∫ t

0
e−γ(t−t′)ŷ(0, t) cos(Ωt)dt′ +

√
2γex

∫ t

0
e−γ(t−t′) F̂pdt′

From this one can directly infer the input-output equations 3.21. Attention
needs to be paid, when normalizing the modes, as the integrated noise oper-
ator1 has a normalization factor differing by a factor

√
2 from the cosine and

sine modes of light.

Now, the equations for the light operators can be calculated. I do that here for

1 F̂p,+ = 1/NF
∫ T

0 e−γ(T−t) F̂pdt
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ŷc. We use:∫ T

0
cos2(Ωt)e−2γt(

∫ t

0
f (t′)dt′)dt =

∫ T

0
f (t′)(

∫ T

t
cos2(Ωt)e−2γt)dt′

=
∫ T

0

e−2γt − e−2γT

4γ
f (t)dt. (B.3)∫ T

0
cos2(Ωt)e−2γtdt ≈ 1− e−2γT

4γ
. (B.4)

Combining equations 3.5 and B.3 leads to:

ŷout
c,− = ŷin

c,− +
√

1− ε2 κ√
2

p̂in ∓ 1− ε2

2ξ2 (q̂in
s,− −

√
1− κ2ξ2 · q̂in

s,+)...

− 1− ε2

2
(ŷin

c,− −
√

1− κ2ξ2 · ŷin
c,+)...

+
ε
√

1− ε2
√

2ξ
(F̂in

p,− −
√

1− κ2ξ2 · F̂in
p,+).

(B.5)

For two cells we arrive at equation 3.23 where the second term, including the
q̂is, drops out. The exponentially decaying and rising modes are not orthog-
onal. To analyze the noise of the light, to do a reconstruction of the atomic
noise, we need to express the input-output relations of the light operators with
a set of orthogonal modes. We calculate, the mode function that is orthogonal
to the exponentially rising mode u+(t) = 1

N e−γ(T−t)with N =
√

1−e−γT

2γ over the

interaction time:
∫ T

0 u+(t) · u⊥+(t)dt = 0. Then we get:

u⊥+(t) =
1

N⊥
(u+(t)−

sinh(γT)
γT

u−(t)), (B.6)

with N⊥ =

√
cosh(2γT)− 1− 2γ2T2

√
2γT

We can express the falling mode as a linear combination of u+(t) and u⊥+(t), to
end with equations that only feature independent operators:

u−(t) =
γT

sinh(γT)
u+(t)−

√
1− γ2T2

sinh(γT)
u⊥+(t). (B.7)

The equations after this are rather lengthy. In most settings, we are interested
in the measured noise, and divide it up in an atomic contribution and the rest:

LN = κ2 · AN + EN, (B.8)

where LN is the output light noise, AN the atomic noise and EN all additional
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noise contributions. The coupling constant, we measure is given by:

κ2
measure = (1− ε2)

1− e−2γT

ξ2 . (B.9)

With B.5 and 3.23 we calculate the additional noise term for the two cell case:

EN = (
1

e2γ·T − 1
(Sinh(2γ · T) + (1− 2ε2)(1−Cosh(2γ · T))− ...

− 2ε2(1− ε2)(
1
ξ2 − 1)(2γ · T − Sinh(2γ · T)))). (B.10)

As a reminder, not considering decay, the extra noise is given by the suppressed
light noise:

EN = 1− κ2ξ2. (B.11)

For the single cell case, we can also calculate the light and decay contribution
of the noise:

EN =
(1− ε2)2(−

√
e−2Tγ + TγCsch(Tγ))2

4ξ4 +
ε2(1− ε2)(−

√
e−2Tγ + TγCsch(Tγ))2

2ξ2 ...

+
1
4
(
√

e−2Tγ(1− ε2) + Tγ(1 + ε2)Csch(Tγ))2 +
1
4
(1 + ε2)2(1− T2γ2Csch(Tγ)2)...

+
(1− ε2)2(1− T2γ2Csch(Tγ)2)

4ξ4 +
ε2(1− ε2)(1− T2γ2Csch(Tγ)2)

2ξ2 . (B.12)

This can be compared to the single cell light noise output without decay, com-
ing from equations 3.15:

EN =
1

4ξ2 (2− (2 + κ2)ξ2 + 2ξ4 − κ2ξ6 + 2Tγ
√

1− κ2ξ2(−1 + ξ4)csch(Tγ)...

+ 2T2γ2ξ2csch(Tγ)2). (B.13)

These lengthy equations do hardly yield any information that can be grasped
at first glance. To see the effect of the decay on the noise compared to the
case with no additional decay, one can consult figure B.1. Here, the light noise
contribution is shown for the case of a balanced cell setting in B.1a and B.1b,
and the single cell setting in B.1c and B.1d. While the solid lines show the
additional noise calculated from the equations including the decay, the dashed
lines show the original light noise 1− κ2ξ2, but using the measured suppressed
κ given by equation B.9.

In the two cell case, the decay leads to an increase of the EN contribution. This
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(d) Single cells, high coupling

Figure B.1: The light noise contribution is shown over ε =
√

γextra
γ for the case of a

balanced cell setting in B.1a and the single cell setting in B.1c , for a relevant experi-
mental low power setting with T = 1ms, γ = 6.5ms (room temperature, P ≈ 8mW). We
usually experience ε2 between 0.2 and 0.4. The solid lines show the additional noise,
when the decay is included. The dashed lines show the light noise, calculated from the
simple model, using the measured κ2, which is suppressed by (1− ε2).
The figures on the right show the same curves for around triple light power - so much
higher coupling. The scaling of the two graphs for the single cell case are different.

extra noise calculated with the simple model with the measured κ only gives
a couple of percent different result for the most relevant settings. The effect
increases for stronger coupling, so that it becomes very important to take it
into account for the atomic state reconstruction. The reason is that small light
noise - meaning light noise suppressed strongly by the swap interaction - is
effected very strongly, when vacuum is mixed in. For the single cell case the
effect for the low coupling is also comparatively small.



Appendix C

Perturbation of the

input-output equations in the

magnetic �eld

In this section I want to evaluate equations A.2, A.3 and A.5, A.6 perturbational
in the presence of a magnetic field. I will only consider the terms that are
also considered in the rest of the thesis, but without the linearizing step. The
equations for the atomic spins read:

˙̂y(z, t) = d ̂x(z, t)Ŝz(z, t)−Ω ̂j(z, t) (C.1)
˙̂z(z, t) = −dζ2( ̂2x − ̂2y)(z, t)Ŝy(z, t) + Ω ̂y(z, t). (C.2)

The additional term, compared to the QND theory is proportional to ζ2 = 4 a2
a1

which is small for reasonable detunings. Also the term ĵ2x − ĵ2y is part of the
perturbation term. In all calculations for input output equations we need to
assume that ĵx is constant throughout the interaction and now also 〈 ̂2x − ̂2y〉L is
assumed constant during the measurement. In the measurements we usually
take 〈jx〉L = Jx/L as the normalization factor.

It follows for the spins in the rotating frame1:

˙̂∗y(z, t) = d〈 ̂x〉LŜz · cos(Ωt)− dζ2〈 ̂2x − ̂2y〉LŜy sin(Ωt) (C.3)
˙̂∗z (z, t) = −d〈 ̂x〉LŜz · sin(Ωt)− dζ2〈 ̂2x − ̂2y〉LŜy cos(Ωt) (C.4)

1 ̂∗y = cos[Ωt] ̂y + sin[Ωt] ̂z, ̂∗z = cos[Ωt] ̂z − sin[Ωt] ̂y
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160 Perturbation of the input-output equations in the magnetic field

And for Ŝy and Ŝz we have

Ŝ′y(z, t) = b ̂z = b( ̂∗y sin(Ωt) + ̂∗z cos(Ωt)) (C.5)

Ŝ′z(z, t) = −b
ζ2

2
( ̂y ̂x + ̂x ̂y) ̂z (C.6)

with d = γλ2

8A∆2π a1 and b = dSx.2 Thus the equation for Ŝy is the same as without
the perturbation. This is the light variable of interest, as we wish to understand
the effect of the ζ2 term on our atomic reconstruction which is done via a Sy

measurement.

C.1 Zeroth order, ζ2 = 0

Like in the QND equations presented in chapter 2, ̂z and Ŝz remain constant:

Ŝy(z, t) = Ŝy(0, t) + bz( ̂∗y sin(Ωt) + ̂∗z cos(Ωt))

Ŝz(z, t) = Ŝz(0, t)

̂∗y(z, t) = ̂∗y(z, 0) + d · 〈 ̂x〉L
∫ t

0
dt′(Ŝz(0, t) cos(Ωt′))

̂∗z (z, t) = ̂∗z (z, 0) + d · 〈 ̂x〉L
∫ t

0
dt′(Ŝz(0, t) sin(Ωt′))

C.2 First order perturbation in ζ2

First we integrate the atomic equations

̂∗y(z, t) = ̂∗y(z, 0) + d · 〈 ̂x〉L
∫ t

0
cos(Ωt′)Ŝz(t′, z)dt′ − dζ2〈 ̂2x − ̂2y〉L

∫ t

0
sin(Ωt′)Ŝy(t′, z)dt′

̂∗z (z, t) = ̂∗z (z, 0)− d · 〈 ̂x〉L
∫ t

0
sin(Ωt′)Ŝz(t′, z)dt′ − dζ2〈 ̂2x − ̂2y〉L

∫ t

0
cos Ωt′)Ŝy(t′, z)dt′

̂∗y(z, t) = ̂∗y(z, 0) + d · 〈 ̂x〉L
∫ t

0
cos(Ωt′)Ŝz(t′, 0)dt′ − ...

− dζ2〈 ̂2x − ̂2y〉L
∫ t

0
sin(Ωt′){Ŝy(t′, 0) + bz[ ̂∗y sin(Ωt) + ̂∗z cos(Ωt)]}dt′ (C.7)

̂∗z (z, t) = ̂∗z (0)(1 +
dbzζ2T

2
)− d〈 ̂x〉L

∫ t

0
sin(Ωt′)Sz(t′, 0)dt′ − ...

− dbζ2〈 ̂2x − ̂2y〉L
∫ t

0
cos(Ωt′)Sy(t′, 0)dt′ (C.8)

For the last two lines we approximated the integral over a squared cosine with
T
2 , as we have done previously. For the light equations we consider the cosine

2bdTL〈jx〉 = κ2 and b
√

T
√

Jx/Sx = κ.
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or sine modes3:

Ŝout
y,c =

√
2
T

∫ T

0
Ŝy(z, t) cos(Ωt)dt

= Ŝin
y,c + bz

√
T
2

̂z(0){1−
dbLζ2T

4
〈 ̂2x − ̂2y〉L} −

db〈 ̂x〉LTL
4

(Ŝin
z,s +

1√
3

Ŝin
z,s,1) + ...

−dbζ2TL
4
〈 ̂2x − ̂2y〉L(Ŝin

y,c +
1√
3

Ŝin
y,c,1) (C.9)

For the normalized case and with ̂z →< ̂z >L= Ĵz/L;

ŷout
c = ŷin

c (1−
κ2

QND,0ζ
2

16
( ̂2x − ̂2y)) +

κQND√
2

p̂in(1−
κ2

QND,0ζ
2

16
( ̂2x − ̂2y))

−
κ2

QND

4
(q̂in

s +
1√
3

q̂in
s,1)−

κ2
QND,0ζ2

16
√

3
(̂ ̂2x − ̂2y)y

in
c,1 (C.10)

where κQND,0 is the coupling constant for the fully oriented CSS, while κQND scales
with

√
Jx as usual. The factors ĵ2x − ĵ2y stated in the last equation are referring to

single atom spins, not the spatial depending ensemble spins. The differences
compared to the equations derived without any considerations of ζ2 terms, are
threefold

1. A reduced readout coupling (smaller than κ measured from thermal noise.)

2. A reduced input light noise.

3. Additional light noise because of incoupling of yc,1.

All three effects appear small and can be easily estimated. The influence of
this on the atomic noise reconstruction depends crucially on the input state. It
will be largest for atomic variances below the minimum uncertainty noise. The
reason is that then the suppression of the light noise will begin to play a more
important role. Also, all the correction terms are proportional ( ̂2x − ̂2y). For
the CSS it is equal 14 and the corrections get similar to equation 3.19 which is
only valid for highly oriented ensembles. Equation C.10 can now be used to
evaluate the correction on the atomic state reconstruction by the QND mode.

3Note:
∫ T

0 cos2(Ωt)dt ≈ T
2 ,

∫ T
0 cos2(Ωt)

∫ t
0 cos(Ωt′)2dt′dt ≈ T2

4 and∫ T
0 cos2(Ωt)

∫ t
0 f (t′)dt′dt ≈

∫ T
0 ( T−t

2 ) f (t)dt





Appendix D

Faraday angle measurement

For the Hamiltonian in equation 2.18 the propagation direction of light is the z-
direction. Here I will discuss the effect on a weak probe beam traveling through
the cell in x direction. I will therefore circularly exchange the spin operators
so that the spin in propagation direction is ̂x. In this scenario, apart from
the main component proportional to a1Ŝz ̂x there will only be one component
proportional a2, which is potentially of relevance. To specify the negligible
terms, the term ̂y ̂z + ̂z ̂y ≈ 0 for relevant states. Again we leave out the terms
proportional φ̂, with which all Stokes operators commute. The additional term,
we are left with is 7a2 ̂xŜx. While the strong first term ∝ a1 causes a rotation
from Ŝx to Ŝy and vice versa, the second term ∝ a2 leads to a rotation in the
Ŝy-Ŝz plane. In the experiment, where Ŝz(0) = 0 the effect on Ŝy is undetectable
(on the order of 0.00001%). Ŝz does change, but this is not of interest here. It is
therefore enough to consider the simple Hamiltonian from equation 2.20. Then
Ŝx and Ŝy after the sample have changed in the following fashion:

Ŝx(L) = Ŝx(0) · cos(2θF) + Ŝy(0) · sin(2θF) (D.1)

Ŝy(L) = Ŝy(0) · cos(2θF)− Ŝx(0) · sin(2θF). (D.2)

The Stokes operators are proportional to the difference of the power of light
in orthogonal polarization directions. The macroscopic spin rotates the linear
polarization of the probe beam by the Faraday angle:

θF =
γλ2〈Jx〉a1

16A∆2π
≈ γa1λ24Na

16A∆2π
. (D.3)

The left part of the equation holds also for atoms in F = 3. Of course a1

and the detuning need to be adjusted accordingly. For large detunings a1 is
close to 1 for F = 4 and -1 for F = 3. Since the splitting of the hyperfine
levels is rather big the rotation coming from atoms in F = 3 will always be
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164 Faraday angle measurement

Figure D.1: The solid line shows the measured Faraday angle θmeasure/θmax, while the
dashed line shows the Faraday angle, we would measure, if only atoms in F = 4 would
contribute. n = Na,F=3/Na is the ratio of atoms in F = 3 to all the atoms.

very small as the probe light is detuned by ∆34 − ∆, with ∆34 = 9.2GHz form
the transitions starting in F = 3. If one knows the maximal Faraday angle
θmax, which stands for the polarization rotation, when all atoms are in F = 4,
then one can easily calculate the compensated Fardaday angle θF=4, which is
the polarization rotation, coming from the atoms in F = 4. Starting with the
measured Farday angle, for the situation that Na,F=4 atoms are in F = 4 and
Na,F=3 atoms are in F = 3:

θmeasure = θF=4 + θF=3 (D.4)

=
γλ2

16A2π
(4Na,F=4 · oF=4 ·

aF=4
1
∆

+ 3Na,F=3 · oF=3 ·
aF=3

1
∆− ∆34

).

Where the oF = 1
F ∑mF

mF · pmF are the orientations, given by the distribution of
the populations of the magnetic sublevels mF of the hyperfine state F.
Setting both orientations to one, this lead to

θF=4 = θmeasure − θF=3

=
1

1− C
(θmax − Cθmeasure) (D.5)

with C = ∆
∆34−∆

3a3
1

4a4
1

and the maximal Faraday angle for all atoms in F = 4,

θmax = a1γλ2

8A∆2π 4Na. In certain situations, the orientations can differ substantially
from one (especially of F = 3), so that we have to take them into account.



Appendix E

Magneto optical resonance

signal (MORS)

RF excitation of the transversal spins

I will summarize some important equations that are used for the state analysis
with the MORS method. This will follow strictly [JSSP04] and the PhD theses
[Jul03, She06].

The atoms in a magnetic field B follow the Hamiltonian Ĥ = µbgFJB + o(B2)

with gF being the gyromagnetic factor for F = 4. In our setting we have a
strong DC field in x-direction. For the MORS experiment an RF field with the
frequency ΩRF in y-direction is added. The time derivatives of the collective
rotating transversal spins thus read:

˙̂Jy = ωs sin(Ωt) sin(ΩRFt)Jx, ˙̂Jz = ωc cos(Ωt) cos(ΩRFt)Jx (E.1)

with ωc,s = Bc,sgFµBgF/h where Bc,s is the amplitude of the RF cosine and
sine component. When the field is on resonance so Ω = ΩRF and we look
at time scales long compared to the oscillation, the quadratic oscillating terms
can be replaced with a factor 1

2 . Now the RF field on resonance clearly creates
a displacement in the rotating spin. We can measure the rotating spins with
help of the light atom interface. When we scan the RF frequency we expect
to see a resonance at the Larmor frequency around 322 kHz, which represents
an excitation of all ∆m = 1 coherences that make out the transverse spins
̂y = ∑m

√
F(F + 1)−m(m + 1)(σ̂m+1,m + σ̂m,m+1) and

̂z = i ∑m
√

F(F + 1)−m(m + 1)(σ̂m+1,m − σ̂m,m+1). But the quadratic Zeeman
effect, which is discussed in [Jul03] in detail for our experiment, leads to a split-
ting of the coherence frequencies by 20Hz. This is of course a very small effect
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166 Magneto optical resonance signal (MORS)

compared to the Larmor frequency but it gives us the possibility to resolve the
different coherences of the atoms at frequencies Ωm,m+1. When the frequency
of the RF field is scanned slowly, the response will be a sum of Lorenzians at
different frequencies with the widths Γm,m+1

Ĵy = Re(A ∑
m

F(F + 1)−m(m + 1)
i(Ωm,m+1 −ΩRF)− Γm,m+1/2

eiΩRF [σm+1,m+1 − σm,m])

Ĵz = Im(... (E.2)

where σm,m is the population of level m. When we measure the cosine and
the sine component of Ŝy after the interaction, it is equivalent to those two
measurements. The MORS signal R is actually the square root of the squared
sum R2 =

√
S2

y,c + S2
y,s which is proportional to.

R2 ∝ |∑
m

F(F + 1)−m(m + 1)
i(Ωm,m+1 −ΩRF − Γm,m+1/2)

eiΩRF [σm+1,m+1 − σm,m]|2. (E.3)

Often we work with very low probe powers, so that the probe light does not
give rise to line broadening.



Appendix F

Thermal state noise

measurement

For the calibration of κthermal = κQND, one can measure the noise of the atoms
in a thermal state. As we know, for the CSS the variance of the transverse spin
components for the single atoms Var(jy) = Var(jz) = F

2 = 2 (with < j2x >= F2).
The variance of the thermal state is symmetric, so Var(jx) = Var(jy) = Var(jz) =
F(F+1)

3 = 20
3 . Since there are 9/16 of all atoms in the hyperfine state F = 4, the

variance of the thermal state that we measure should be 15/4.

Now we would like to find out, what happens to our single cell input-output
relations for light and atoms. First we look at the Heisenberg equations for
the spins. Most additional terms which are considered in chapter 3 are left
out. This can be justified, as the terms in the Hamiltonian average out for the
thermal state.

∂̂z(z, t)
∂t

= 0 ,

∂̂x(z, t)
∂t

= aŜz(z, t) ̂y(z, t),

∂̂y(z, t)
∂t

= −aŜz(z, t) ̂x(z, t), (F.1)

with a = γλ2

8A∆2π . Since Ŝz is constant in time the equations lead to an oscillation
between ̂x and ̂y. This is a very small effect and for relevant settings leads to
a frequency of around 10−4 Hz, fluctuating with Var(P̂) = Var(Ŝz/

√
Sx).

Since our timescales are in the ms-range, we can consider all the spins to be
unaffected by the interaction. Of course going to the rotating frame will not
change this.

Looking at the light variables, we see that only Ŝy is changed by the spins and
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168 Thermal state noise measurement

we get (now with collective rotating frame spins)

Ŝout
y = Ŝin

y + aSx( Ĵy sin Ωt + Ĵz cos Ωt)

Ŝout
y,c(s) = Ŝin

y,c(s) +
aSxT

2
Ĵy(z) = Ŝin

y,c(s) +
κthermal

√
SxT

2
√

J
Ĵy(z) (F.2)

where J = 4Nat. Then we get for the normalized operators (x̂ = Ĵz√
J , p̂ =

Ĵy√
J ):

ŷout
c(s) = ŷin

c(s) +
κthermal√

2
x̂( p̂) (F.3)

Compared to the usual input-output relations for an oriented sample in a mag-
netic field, the back-action of light is indeed missing.

When we now measure the variance Var(Ŝout
y ), we can extract κ2

thermal

κ2
thermal

2
· 15

16
= Var(ŷout

c(s))−Var(ŷin
c(s)). (F.4)



Appendix G

D1 numbers

G.1 ai prefactors of D1 line

a0, a1 and a2 can be calculated following the introduction of the effective Hamil-
tonian in [Jul03] and with help of the transition moments and reduced matrix
elements presented in [Ste03]

a0 =
1
4
(5 +

3
1− ∆34/∆

) (G.1)

a1 =
1
8
(1 +

7
1− ∆34/∆

) (G.2)

a2 =
1

16
(1− 1

1− ∆34/∆
). (G.3)

a0, a1 and a2 are shown in figure G.1, not considering the Doppler broadening

-2000 -1000 1000 2000
D @MHzD

-0.006

-0.004

-0.002

0.002

0.004

0.006

a�D @1�MHzD

Figure G.1: The solid line shows a1/∆, the dashed line a2/∆ and the dotted line a0/∆
of the D1 line. In between the two exited lines, there a1 gets zero. If one includes the
Doppler broadening the zero crossing is probably not visible.
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170 D1 numbers

G.2 Lindblad terms

I want to model the decay of the atomic states during the creation of the
squeezed state via Raman transitions. The evolution of the density matrix looks
as:

ρ̇ = − i
h̄
[V̂, ρ] + ∑

n
(2LnρL†

n − L†
nLnρ− ρL†

nLn) (G.4)

where V̂ is the previously used single atom interaction Hamiltonian and where
the Lindblad terms Ln stand for certain decay channels and consists of a step
operator and a decay rate. They can be identified by considering different decay
types. One decay mechanism is spontaneous emission. The step operators for
the ground state and their strength can be calculated with help of the transition
matrix elements by adiabatic elimination of the exited states. The principle idea
is described in [Sto] and in appendix G.2.1 the terms are stated.

Additional decay mechanism towards the thermal state, modeling processes
like collisions are also included and the Lindblad operators are given in G.2.2.

G.2.1 Spontaneous emission

We are interested in spontaneous emission driven by the two Raman beams.
They are tuned close to the D1 line, detuned by ∆R = −550Mhz, the linewidth
of the transition is γ = 4.2MHz. The two beams are σ− and σ+ polarized,
the emitted photon can have any polarization. Depending on the initial state,
the atom can after one process therefore end up with m f = mi, m f = mi ± 1,
m f = mi ± 2. The strength of those processes are given by the product of the
transition elements[Ste03] dD1(F, m, F′, m′) of the involved processes:

dD1(F1, m1, F2, m2) =< Fm|er|F′m′ >=

< Fm|F′1m′s > (−1)F′+J+1+I
√
(2F′ + 1)(2J + 1)

{
J J′ 1

F′ F I

}
< J||er||J′ >,(G.5)

where < J||er||J′ > is the reduced matrix element that can be found in [Ste03].

The strength of the process is given by Ωs =
√

P/2·3λ3

A·32π2ch̄
γ

∆r+iγ . We use half the
power P/2 of the light beam, as half of the light is right hand circular polarized
and half is left hand circular polarized.
The corresponding step operators that stand for the process of taking one atom
from mi in F = 4 to m f in F = 4 over the exited F′.

L(mi, m f , F′, s) =
ΩS

2
dD1(F, mi, F′, mi + s)dD1(F′, mi + s, F, m f )|m f >< mi|

(G.6)
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where s = ±1, stands for the two possible polarizations of the exiting photon.
A similar description is derived in [Sto].
Additionally, we add an ancillary state to collect all decays into F = 3, in the
same fashion as above.

G.2.2 Collisions

A process, like collisions that takes any input state and transfers it into any
other state

L(mi, m f ) =
1√

16Tdark
1

(|m f >< mi|+ |mi >< m f |) (G.7)

As all F = 3 states are collected in one ancillary state the process towards it is
enhanced by

√
7

L(mi, mF=3) =
1√

16Tdark
1

(
√

7|mF=3 >< mi|+ |mi >< mF=3|) (G.8)

with the decay constant of the macroscopic spin in the dark Tdark
1 .
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