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A B S T R AC T

We are entering an exciting new era of imaging black holes with the help of the Event Horizon

Telescope (EHT). This has stimulated many theoretical works predicting the signals that EHT may

possibly observe and examining the type of properties of gravity that the signals can inform us. While

these signals may in general depend on a complex nearby environment of a black hole, it is possible

to expect some universal and striking signals for the case of near-extremal rotating black holes due

to the existence of an enhanced conformal symmetry in the near-horizon region of such black holes.

These particular signals may serve as a typical signature for identifying a near-extremal rotating black

hole in the Universe. Moreover, the enhanced symmetry supplies powerful tools which enable one to

do analytical computations for these interesting signals. From a practical perspective, astronomical

observations have suggested that plenty of supermassive black holes are rotating very rapidly (i.e.,

they are in the near-extremal limit). Therefore, this thesis will focus on the optical observational

signatures of high-spin black holes. In particular, we study the images of a point-like orbiting emitter

(referred to as a “hot spot”) near the Innermost Stable Circular Orbit (ISCO) of a high-spin black hole.

Images of such an emitter may reveal important features of the black hole event horizon since the

emitter resides in the near-horizon region, thus the images can further inform us of the properties of

the underlying gravity theory. We analytically compute the shadow of a near-extremal rotating black

hole and the optical observables of a near-ISCO hot spot. A key feature of the optical appearance of

such an orbiting hot spot is that there are many images of it moving on a vertical portion of the black

hole shadow and having a rich structure. The computations rely on the geometric properties of the

black hole spacetime and the motion of massive particles and photons in it. Many studies on black
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hole imaging are based on the assumption that the underlying gravity theory is general relativity

(GR) and the motion of lights follows geodesic equations in the spacetime. Here we study alternative

possibilities: a) we compute the influence of a plasma on the observational signature by taking into

account its interactions with photons; b) we compute the observational signature based on gravity

theories that go beyond GR, in particular the Scalar-Tensor-Vector (STVG) modified gravity (MOG)

and the heterotic string theory. The obtained results may not only provide other possible templates

for the EHT to test, but also propose a new way to distinguish different gravity theories.
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1

I N T RO D U C T I O N

As predicted by Einstein’s general theory of relativity (GR), black holes are extreme objects in many

ways. They are the simplest objects with “no hair” while at the same time they are the most elusive

objects with strange singularities and “untouchable” event horizons; apart from being fascinating

mathematical, abstract objects, they are also the most compact and energetic sources in the universe

so that they are the brightest “stars” in the sky—even though they themselves are invisible. Therefore,

the visual appearances of black holes are very mythical, attracting a lot of attentions not only among

the scientific community but also among the public.

Black hole imaging is a “source-ray-observer” problem. The light sources for an image of black

hole are those luminous materials that illuminate this invisible black hole. The rays connecting light

sources with an observer follow null geodesics in the exterior of the black hole and are extremely

bent in the vicinity of black hole due to the large spacetime curvature. The observer is uaually taken

to be very far away from the black hole where the spacetime is asymptotically flat. The observed

images are determined by emission profiles of sources, gravitational focusing, gravitational redshifts

and Doppler shifts. Roughly, a black hole casts a dark shadow in a bright background. Behaviors of

photons near the black hole play a dominant role in determining the detailed structure of the black

hole image. The black hole image therefore tests gravity in its strong-field regime.
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1.1 A S T RO N O M I C A L O B S E RVAT I O N S O F B L AC K H O L E S

In this thesis, we specifically study the images of near-extremal rotating black holes. In particular,

we assume there is a point source (“hot spot”) orbiting near the innermost stable circular orbit (ISCO)

of the black hole which is in the near-horizon region. We analytically calculate the apparent boundary

of a black hole shadow and the observables of the hot spot. Even though the spacetime geometry is

determined by the underlying gravity theory, all we need for calculating the images is merely a black

hole metric which solves the field equations of gravity and determines how particles and photons

move. The near-horizon geometry of a near-extremal rotating black hole possesses an enhanced

symmetry which strongly constrains the motion of photons [4]. Therefore, images of a near-ISCO

hot spot might provide typical signals for a near-extremal rotating black hole [5]. We will consider a

black hole in GR surrounded by a plasma, and we also consider black holes in two of the alternative

theories to GR: the scalar-tensor-vector gravity and string theory.

Next, I briefly introduce some of the historical efforts to “see” astrophysical black holes: astronom-

ical observations providing evidence for their existence, theoretical preparations for imaging them,

and potential observational signals of high-spin black holes.

1.1 A S T RO N O M I C A L O B S E RVAT I O N S O F B L AC K H O L E S

While the term black hole1 was only popularized after a lecture by John Wheeler in New York in

1967, the concept of a black hole had already been proposed by John Michell [7] in 1784. Roughly

speaking, a black hole is something invisible due to its strong gravity such that nothing can escape,

not even light. Michell proposed such an object in the context of Newtonian gravity and named it

as dark star. In the modern sense, a black hole is a region of spacetime with an event horizon as its

boundary—a one-way membrane through which matter and light can pass only inward to the black

1 See The Many Definitions of a Black Hole by Erik Curiel from views of theoretical physics, astrophysics and mathematics

[6].
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1.1 A S T RO N O M I C A L O B S E RVAT I O N S O F B L AC K H O L E S

hole region [8]. Gravity theories like GR, as well as some alternative theories of gravity, predict that

there exists such spacetime solutions which contain black holes.

Black holes are highly mysterious and fascinating objects, both in the sense of mathematical ob-

jects as well as astrophysical objects. As astrophysical objects, it is a natural human curiosity to

look for some observational evidences for their existence in our universe. As early as the concept

of black hole was proposed, even though not in the correct sense, Michell correctly pointed out that

such astrophysical objects might be detectable through the influence of their gravitational fields on

nearby materials [7].

Yet some important and indirect evidences were only confirmed until around the late 1960s. Al-

though black holes themselves are invisible, the largest luminous bodies in the universe are thought

to be powered by supermassive black holes. This is because black holes are so massive that they can

accrete and heat up surrounding materials to form radioactive accretion disks. Ever since the discov-

ery of the first radio galaxy Cygnus A (Cyg A) in 1939 and the discovery of quasars in 1950s, many

other observations of active galactic nuclei (AGN) indicated that [9, 10] there exist a large amount

of supermassive black holes (106 to 1010 Solar masses), each of them residing in the center of an

AGN. Besides supermassive black holes, since the discovery of the first bright X-ray point source

Cygnus X-1 (Cyg X-1) in 1964, many observations of X-ray binaries suggested that [11, 12] there

are also a large number of stellar-mass black holes (3 to 100 Solar masses), each in a X-ray binary.

Additionally, since 1995, astronomers have tracked trajectories of stars orbiting an invisible central

object in our own Milky Way and found that these orbits are Keplerian orbits with a common focus,

suggesting that the central object is a supermassive black hole [13]. These evidences altogether show

that black holes are common astrophysical objects in our universe2.

Thanks to the advanced technologies and their applications to observational facilities, there have

been direct and spectacular observations in the past few years, including not only electromagnetic

2 See recent reviews about astrophysical black holes from [14, 15].
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1.1 A S T RO N O M I C A L O B S E RVAT I O N S O F B L AC K H O L E S

wave observations but also gravitational wave observations. In September 2015, the Laser Interfer-

ometer Gravitational-Wave Observatory (LIGO) collaboration detected directly the first-ever gravita-

tional waves emitted from binary black hole coalescence [16]. Since then, LIGO/Virgo collaborations

detected more coalescence events of stellar-mass black hole binaries [17, 18, 19, 20]. In April 2019,

the Event Horizon Telescope (EHT) collaboration announced the first-ever image of the supermas-

sive black hole M87* in the center of the giant elliptical galaxy Messier 87 (M87), which is the

strongest evidence to date for the existence of a supermassive black hole [21, 22, 23, 24, 25, 26].

Are these evidences enough to convince ourselves that they are really black holes? Probably

not unless we examine very carefully the defining feature of a black hole, the event horizon [27,

28]. Strictly speaking, the “black holes” we have discussed are technically only candidates of black

holes [29]. Nevertheless, we can safely say that black hole models are the best interpretations for

such massive and compact candidates even though there are still possibilities for some alternatives

such as boson stars [30] or gravastars [31]. Fortunately, the LIGO/Virgo observations and the EHT

observations open tantalizingly new windows for further tests. While LIGO/Virgo would detect more

transient merging events to collect more data case by case, the EHT makes it possible to measure the

same targets repeatedly, thus to confirm results and explore more details.

Even if they may eventually be confirmed to be black holes, it is more difficult to tell them apart

from black holes in GR or those arising in alternative theories of gravity. Since gravity theory plays

a fundamental role in theoretical physics, it is essential to test these gravitational theories. While

there are abundant and sufficient tests in the weak field regime, testing the strong field regime is

an important avenue. Therefore, we need to probe closer and closer to the event horizon where

the gravity is relatively stronger. Hopefully, the EHT presents a new way to explore gravity in this

extreme limit which was not accessible before [21]. Instead of treating black holes as point-like

objects, like in previous electromagnetic wave observations and gravitational wave observations, the

EHT zooms into the very centre of an AGN and observes a black hole at the event-horizon-scale.
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1.1 A S T RO N O M I C A L O B S E RVAT I O N S O F B L AC K H O L E S

The main concern of this doctoral thesis is the observational signatures of near-extremal rotating

black holes in GR or beyond GR at the EHT. I will then briefly introduce the EHT instrument and

the first EHT image, as well as its possible improvement in the future.

The EHT is an Earth-sized virtual telescope consisting of a global network of radio telescopes, see

Fig. 3 for the map of EHT, uniquely designed for the imaging of supermassive black holes by using

very long baseline interferometry (VLBI) [22]. The primary EHT targets are the supermassive black

hole candidates M87* and Sgr A*, the latter is the compact radio source at the Galactic center of

Sagittarius A. These are the most observable nearby candidates from the Earth, both have a similar

apparent angular size roughtly around 40 ∼ 50 µas. This size is as small as the apparent size of

grapefruit on the Moon, thus we need the telescope to have a very high resolution in order to resolve

the black holes at such small scale. The angular resolution of a telescope is determined by λ/D with

λ the observing wavelength and D the telescope’s aperture. The first EHT image was observed at a

wavelength of 1.3 mm (230 GHz) together with the Earth-sized aperture, so the observing angular

resolution was 25 µas which was sufficient for the expected precision [21].

An important feature of the first image of M87* (Fig. 2) is a bright asymmetric ring surrounding a

central dark region [21]. The dark region is known as the “black hole shadow” and embedded within

the bright ring lies an interesting “photon ring” [32]. The image matches perfectly well with the

expectations for the shadow of a rotating black hole as predicted by GR. However, fine structures of

this bright ring are not resolved yet [25]. Since black hole models in alternative gravitational theories

are still not ruled out, these fine structures are particularly important for screening different models,

thus for testing gravity theories. Therefore, observations with higher resolution are in need, which

can be attained by expanding the VLBI array and by going to shorter observing wavelength. There

are ongoing plan for adding millimeter telescopes in Africa and a further plan for space-based VLBI

[21, 33].

5



1.1 A S T RO N O M I C A L O B S E RVAT I O N S O F B L AC K H O L E S

Figure 1.: Galaxy M87 with jet ejected from its

core. Credit to here.

Figure 2.: EHT image of the supermassive balck

hole candidate M87*. Credit to here.

Figure 3.: Map of the Event Horizon Telescope array. Credit to here.
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1.2 B R I E F H I S T O RY O F B L AC K H O L E I M AG I N G

1.2 B R I E F H I S T O RY O F B L AC K H O L E I M AG I N G

Today, we celebrate the beautiful first image of the supermassive black hole M87*. However, it

seemed just impossible to image a black hole in earlier years. Yet nothing could stop scientists to

ask what a black hole would look like. They started by calculating the shadow casted by a black

hole and drawing plots which would depict a first glimpse of a black hole. Then, with the advanced

computing power, they performed more and more sophisticated simulations to produce better and

better virtual reality pictures of a black hole. Meanwhile, scientists also explored the possibility of

imaging a black hole by telescopes in practice and made it eventually become true. It takes a long

time from idea to reality. Here I briefly review several important theoretical steps along this fantastic

journey3.

Figure 4.: Apparent boundary (critical curve) of a backlit extremal Kerr black hole as seen by a

distant observer in the equatorial plane. Credit to [37].

In 1965, Synge studied the escape cone of photons from a Schwarzschild black hole and obtained

the angular radius of the shadow casted by that black hole [38]. In 1972, Bardeen calculated the

apparent boundary of an extremal Kerr black hole and drew his famous D-shaped shadow (see Fig. 4)

[37]. Here, the so-called shadow is the optical appearance of a bare black hole illuminated by distant

3 See reviews about black hole imaging from [34, 33, 35, 36, 29].
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1.2 B R I E F H I S T O RY O F B L AC K H O L E I M AG I N G

sources. The boundary of a black hole shadow corresponds to the threshold between captured and

escaping photons, i.e., unstable spherical photon orbits. In the literature, this boundary is often

referred to as “rim”, “silhouette” or simply as “shadow”. To make it definite, Gralla et al [39] gave

the boundary a mathematical name as critical curve, which is a basic and important feature of a black

hole shadow and depends on the spacetime geometry of its underlying gravity theory. Therefore,

critical curves for a large number of black holes in various spacetimes, either within GR or within

theories beyond GR, have been exhaustively studied. Examples include Kerr-Newman black hole

[40], Kerr-Taub-NUT black hole [41], Kerr-Newman-NUT black hole [42], Kerr-Sen black hole

[43], Kerr-MOG black hole [44] and Einstein dilaton Gauss-Bonet black hole [45].

In 1973, Cunninggham and Bardeen [46] calculated the optical appearance of a point source (star)

orbiting on an equatorial and circular orbit around an extremal Kerr black hole, taking into account

not only the gravitational focus effect (position of the star’s image) but also the gravitational redshift

effect and Doppler effect (amplification of the star’s luminosity). The main result was illustrated by

“hat-shaped” orbits (see Fig. 5) for the apparent positions of the brightest several images. These hat-

Figure 5.: Time-dependent images of a star orbiting around an extremal Kerr black hole as seen by a

distant observer at an inclination θo = 84.24◦. Credit to [46].

shaped orbits had already shown the basic structures which were seen later in simulated black hole

shadows. Moreover, they also plot figures for the behavior of the images’ brightness as functions

8



1.2 B R I E F H I S T O RY O F B L AC K H O L E I M AG I N G

of observer’s time. Recently, these results were reproduced in Ref. [47], described by colorful plots

and video animations. A point source can also be a “hot spot” (localized emissivity enhancement)

in an accretion disk, in which case the circular orbits could be much closer to the event horizon

regardless of the Roche limit4. In 2017, Gralla et al analytically computed the optical appearance of

a hot spot orbiting near the ISCO of a high spin Kerr black hole and found a very striking signature

[5]. Besides, the images of a plunging source inside the ISCO have been studied by Dokuchaev and

Nazarova [48, 49].

Most remarkably, in 1979, Luminet studied the appearance of a Schwarzschild black hole em-

bedded in a geometrically thin, optically thick accretion disk, which is much closer to reality, and

produced the first-ever simulated5 image (Fig. 6) of a black hole [50]. The main feature of this image

is a strong asymmetric bright ring surrounding a central dark region, which is exactly what the first

EHT’s image looks like [21]. The bright ring is actually a lensed image of the accretion disk, thus

it depends crucially on the assumption of the disk model. The strong asymmetry of the bright ring

is due to the Doppler effect while the boundary of the central dark region is the lensed position of

the inner edge of the accretion disk. In 1988, an improved colorful image was produced by Fukue

and Yokohama in which the changes of apparent frequencies in the accretion disk were taken into

account [51]. In 1993, Viergutz generalized the study to that of the apparent shape of an accretion

disk around a rotating Kerr black hole and produced colored contours [52, 53]. The standard as-

sumption in these studies were that the disk ended at the ISCO without photons radiated from the

plunging region inside ISCO. In order to understand the image of a disk better, recently, Gralla et al

analytically calculated the shadows and rings with simple disk models which are allowed to extend

all the way to the event horizon [39].

In 2000, Falcke et al studied the possibility of imaging the shadow of Sgr A* in practice with VLBI

experiments at sub-millimeter wavelengths [54]. This was an important turning point in the journey

4 Roche limit is the critical orbital distance for a celestial body to hold together and avoid tidally disrupting.

5 Actually, Luminet drew it by hand using numerical data generated from the computer.
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Figure 6.: First simulated image of a spherical black hole with thin accretion disk terminating at the

innermost stable circular orbit (ISCO), as seen by a distant observer at 10◦ above the disk’s

plane. Credit to [50].

of black hole imaging from idea to reality. The authors developed a numerical ray-tracing code to

simulate the expected images (see Fig. 7) of Sgr A* for various choices of physical parameters. They

found that, when observing at a wavelength of ∼1.3 mm, the resolution of an Earth-sized VLBI

arrays becomes comparable to the angular size of Sgr A*. Therefore, it is just possible to image the

event horizon of a black hole in reality.

Figure 7.: Simulated image of the black hole Sgr A* surrounded by an optically thin emission region,

as seen from θo = 45◦. Credit to [54].
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Figure 8.: Blurred GRMHD image of M87*. Credit to [25].

The current state-of-art simulations are done using numerical general relativistic magnetohydrody-

namic (GRMHD) models which are much more sophisticated then before. Importantly, the observed

image of M87* (Fig. 2) by EHT matches very well with the GRMHD simulated image (Fig. 8) [25].

1.3 O B S E RVAT I O N A L S I G N A L S O F H I G H - S P I N B L AC K H O L E S

The optical appearance of a black hole is a consequence of the propagation of photons in a finite

region (where unstable spherical photon orbits exist) outside the event horizon. However, as we

wish to explore the event horizon of black holes, we are particularly interested in photons which

are extremely close to the event horizon. Due to the emergence of scaling symmetries, photons in

the near-horizon region are not only possible to be observed but may also produce striking signals

for near-extremal rotating (high-spin) black holes—rotating at near-maximally allowed theoretical

limits [5]. A remarkable example of such signals is the broadening of the iron Kα line which is the

strongest feature of an X-ray reflection spectrum [15, 55].
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In 1999, Bardeen and Horowitz studied the near-horizon limit of an extremal Kerr black hole and

found enhanced conformal symmetries arising in the near-horizon region [56]. Similar features of

symmetries are also appearing in many critical low-energy condensed matter systems [57] and in

large-cosmological-redshift inflation [58, 59, 60, 61]. It was shown that the scaling symmetries

not only reduce the complexity of dynamics but also supply powerful computational techniques

which are often used in conformal field theory. Therefore, one could analytically calculate potential

observables with simplified models and find universal signals as a result of the symmetries. It is

suggested from astronomical observations that a large number of astrophysical black holes, especially

supermassive ones in AGN, have high spins [62]. For example, the stellar-mass black holes Cygnus

X-1 [63] and GRS 1915+105 [64] both have spins . 2% below extremality; and the supermassive

black hole MCG-6-30-15 [65] has a spin. 1% below extremality. Therefore, the computational tools

used in conformal field theory might be applied to the study of astrophysical black holes with high-

spins. Indeed, there has been plenty of studies regarding gravitational wave signals from extreme-

mass-ratio-inspirals (EMRIs) or plunging sources [66, 67, 68, 69, 70, 71], relativistic jets from force-

free magnetospheres [72, 73, 74, 75] and electromagnetic emission from the near-horizon region

[4, 5, 55].

We will study the latter case and focus on the emission from a near-ISCO hot spot whose observa-

tional signals would (in principle) be possible to be observed by the EHT. In reality, it would require

an advanced EHT with higher resolution and an appropriate EHT target which rotates rapidly and has

sufficiently long-lived hot spots in the near-horizon region. However, since the astrophysical black

holes are so common in the universe, it is reasonable to hope that a future EHT might eventually

observe such a nice target. If observed, the expected signals would be at a new level of precision and

might reveal new features of the event horizon of a black hole [5].

So far, the study of observational features of astrophysical black holes is still at its infancy. Thus,

most of the studies are based on the standard Kerr black hole as predicted in GR. Nevertheless, it
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would be interesting to study the observational signals of black holes arising from alternative theories

of gravity [76]. In particular, with the higher level of precision, these signals might be used to screen

and distinguish different gravity theories.

1.4 T H E S I S O U T L I N E

The remaining part of the thesis is organized as follows:

Chapter 2 presents review of basic knowledge on gravity and black holes, as well as formalisms for

describing the black hole shadows. In particular, we introduce in detail the analytical computations

of the observational quantities of an isotropically emitting point source orbiting near the ISCO of a

high-spin Kerr black hole in a vacuum background, which is the central topic of this thesis. The main

references for this review are [37, 46, 5].

Chapters 3, 4 and 5 consists of original works of the author and collaborators.

In chapter 3, we study the influence of a surrounding plasma on the observational signature of a

high-spin Kerr black hole, in order to approach a more reliable result for astrophysical observations.

To this end, we consider the refractive and dispersive effects of the plasma on light rays and ignore the

gravitational effects of plasma particles as well as the absorption or scattering processes of photons.

With two specific plasma models, we obtain analytical formulae for the black hole shadow and for the

observational quantities of an orbiting hot spot seen by an observer located far away from the black

hole. We find that the plasma has a frequency-dependent dispersive effect on the size and shape of

the black hole shadow and on the image position and redshift of the hot spot. This chapter is based

on the work [2].

In chapter 4, we study the observational signature of a near-extremal Kerr-MOG (KM) black

hole with a near-ISCO emitter in the scale-tensor-vector modified gravity (MOG). The KM black

hole metric has a mathematically similar form as the Kerr-Newman (KN) metric but has a neutral
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gravitational charge, rather than an electric charge. For several different values of the modified

parameter of the MOG theory, we calculate the apparent size of the black hole shadow, as well

as the observational quantities of the hot spot. The size of the shadow decreases when the modified

parameter is increased. We find qualitatively similar signals of the hot spot image but the quantitative

corrections could be considerable. This chapter is based on the work [1].

In chapter 5, we analytically study the optical appearance of an isotropic emitter orbiting near the

horizon of a near-extremely rotating Kerr-Sen (KS) black hole which is an electrically charged black

hole arising in heterotic string theory. We study the influence of the Sen charge on the observational

quantities, including the image position, flux and redshift factor. Moreover, we compare the results

with those for a near-extremal KN black hole, which is the charged rotating black hole in GR. We find

quantitative corrections to the signatures of these charged black holes (both KS and KN) compared

to that of a neutral Kerr black hole. We also make a comparison between the KN and KM cases. This

chapter is based on the work [3].

Chapter 6 gives a short summary and final remarks.

Appendices present some computational details for the integrals and for the image flux that appear

in our analysis.
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2

BAC K G RO U N D

We review the necessary background materials and introduce the main topic of this thesis. In Sec. 2.1,

we introduce gravity theories—GR and its alternatives, followed by an introduction to rotating black

holes in GR in Sec. 2.2, paying special attention on the extremal limit. In Sec. 2.3, we introduce the

motion of particles and photons in Kerr exterior. In Secs. 2.3.2, 2.4 and 2.5, we describe respectively

the rays, observers and sources, central to the subject of black hole imaging. In Sec. 2.6, we introduce

the main topic—the images of an emitter orbiting near-ISCO of a high-spin black hole. We review

the pioneering study [5] for the Kerr black hole with vacuum surroundings, which will be generalized

in the following chapters.

2.1 G R AV I T Y, G E N E R A L R E L AT I V I T Y A N D A LT E R N AT I V E S

The secret that governs the motion of stars was long hidden in the night until a fantastic falling apple

enlightened Newton. Surprisingly, it turns out that it is the same law that rules both the stars and the

apple—the Newton’s law of universal gravitation. The field equation of Newtonian gravity is given

by1

∇2φ = 4πρ, (1)

1 Unless otherwise stated, we work in units c = GN = h̄ = 1 throughout this thesis.
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where φ is the gravitational potential and ρ is the matter density. As noted above, Newtonian gravity

has an extremely good explanatory power not only for practical situations of daily life but also for

astronomical scenarios that happens in the universe. However, it fails at predicting accurately the

perihelion pression of Mercury’s orbit, the deflection of light by the Sun, and the gravitational redshift

of light.

These discrepancies between Newtonian predictions and astronomical observations were resolved

by Einstein’s general theory of relativity and are known as the three classical tests of GR. That was

a great success and made GR soon become the most prominent theory of gravitation. The Einstein’s

field equation is given by

Gµν = 8πTµν, (2)

where Gµν = Rµν − 1
2 Rgµν is the Einstein tensor for the spacetime metric gµν, which encodes the

geometry of the spacetime; Tµν is the energy-momentum tensor for the matter field which curves

the spacetime. GR provides a completely new description of gravity as a geometric property of

spacetime and has often been appreciated for its extraordinary beauty. However, GR was born as a

defective theory [76] as pointed out by Einstein himself due to the appearance of spacetime singu-

larities, where spacetime becomes ill-defined and any known physics breaks down. Moreover, GR

is a classical theory and fails at the smallest scales where a quantum description is needed. It is a

long-standing question to reconcile quantum theory with GR. On the other hand, even though GR is

well-tested on the scales of solar system, it fails at predicting some astronomical observations on the

scales of galaxies or cosmology, such as galaxies rotation curves, mass profiles of clusters and some

cosmological data.

Therefore, even though GR is still the most successful theory of gravity, there are indications

suggesting that alternatives are needed to accommodate GR at the quantum scales and at the cosmo-

logical scales. A gravity theory that works well at all scales would be essential for the understanding

of modern physics. Thus, testing gravity in different regimes is an important subject. As unique ob-
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jects predicted in many gravity theories, black holes can play special role in testing them, especially

in testing the strong field regime which is more urgent than the weak-field tests. We will consider

two of the alternative theories of gravity to GR, one is motivated from astronomical and cosmological

interests—the scalar-tensor-vector gravity (STVG) or referred as modified gravity (MOG) [77], and

the other from fundamental and theoretical interests—the low energy heterotic string theory [78].

Within the GR framework, dark matter is proposed to accommodate the aforementioned astronom-

ical phenomenons on galactic or cosmological scales. However, even though it is widely accepted,

the nature of dark matter is still elusive and has not been directly detected so far. The best-known

alternative theory to dark matter is the Modified Newtonian Dynamics (MOND) proposed by Mil-

grom in 1983 [79]. The idea of MOND is to introduce a law of effective gravitational force which

reduces to Newtonian dynamics at high acceleration but leads to deviations of Newtonian results

at low acceleration. However, MOND is a non-relativistic theory. From the same motivation but

independently, in 2005 Moffat [77] proposed a relativistic theory that—instead of modifying New-

tonian dynamics—modifies GR such that the force is stronger than Newtonian far from the source

but counteracted by a repulsive fifth forth at shorter distance to the source. Moffat’s MOG theory

is a covariant theory constructed by adding a massive vector field to the standard Einstein-Hilbert

action and allowing the mass of the vector field, the coupling parameter of the vector field and the

Newtonian constant to vary as scalar fields. The vector field leads to a gravitational repulsive force

at a finite range. In Chapter 4, we will introduce some relevant details about the MOG theory and

discuss the observational signature of a rapidly rotating black hole in MOG theory.

String theory is one of the most promising and attractive candidates for a theory of quantum grav-

ity. Roughly speaking, the idea of string theory is simply to generalize the quantum field theory of

point-like objects to a quantum theory of one-dimensional string-like objects. Interestingly, general

relativity naturally emerges in this theory as its classical low energy limit. In Chapter 5, we will
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introduce specifically the low energy heterotic string theory and discuss the observational signature

of a rapidly rotating black hole in this theory.

2.2 P RO P E RT I E S O F B L AC K H O L E S

Soon after Einstein published his theory of GR, the first exact, static and spherically symmetric so-

lution to the vacuum field equations of GR was found by Schwarzschild in 1916, which describes

a non-rotating black hole, known as the Schwarzschild black hole. The stationary and axially sym-

metric solution to these vacuum field equations of GR was only found until 1963 by Kerr, which

describes a rotating black hole, known as the Kerr black hole. Later in 1965, Newman discovered the

solution to the electrovacuum field equations of GR, which generalizes the Kerr metric and describes

a charged rotating black hole, known as the Kerr-Newman black hole. Similar solutions were also

found in many alternative theories of gravity, including the MOG theory and heterotic string theory.

We will consider real astrophysical black holes in the universe which are thought to be rotating

ones and can be described by Kerr-like metrics. In addition to the Kerr and Kerr-Newman (KN)

metrics that arise from GR, we will also study the Kerr-MOG (KM) metric [80] arising in the MOG

theory and the Kerr-Sen (KS) metric [81] present in low energy heterotic string theory. The basic

properties of optical observations of black holes mostly follow from the properties of spacetime

metrics, instead of the deeper level of the gravity theories. Next, after giving a brief sketch of how

the Kerr(-Newman) metric is obtained from GR, we will take this metric as an example to introduce

properties of a black hole.

The starting point is the action for an electrovacuum in GR, given by

S =
∫

d4x
√
−g
(
LEH + LM

)
, LEH =

1
16π

R, LM = −1
4

FµνFµν, (3)
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where LEH is the Einstein-Hilbert Lagrangian for the gravitational field gµν, and LM is matter La-

grangian for the electromagnetism field Aµ with Fµν = ∇ν Aµ −∇µ Aν being the electromagnetism

field strength tensor. The Einstein-Maxwell field equations are obtained by using the least action

principle, as

Gµν = 8πTµν, Tµν =
1

4π

(
FµσF σ

ν −
1
4

gµνFσδFσδ

)
, (4a)

∇νFµν = 0, ∇λFµν +∇νFλµ +∇µFνλ = 0 (4b)

where Gµν is the Einstein tensor and Tµν is the electromagnetic energy-momentum tensor.

The KN metric is a stationary and axisymmetric solution to these field equations and is described

in Boyer-Lindquist coordinates {t, r, θ, φ} by the line element

ds2 = gµνdxµdxν

= −
(

1− 2Mr
Σ

)
dt2 +

Σ
∆

dr2 + Σdθ2 +

(
r2 + a2 +

2Ma2r
Σ

sin2 θ

)
sin2 θdφ2

−4Mar
Σ

sin2 θdtdφ, (5)

where

Σ(r, θ) = r2 + a2 cos2 θ, ∆(r) = r2 − 2Mr + a2 + Q2. (6)

Here, M and Q are the mass and electric charge of the black hole, respectively, and a = J/M is the

spin (angular momentum per unit mass) of the black hole with J being its angular momentum. The

Boyer-Lindquist coordinates were chosen such that they appear to be spherical-like and adapted to the

Killing symmetries of the spacetime: t is the time coordinate corresponding to stationary symmetry

encoded by the Killing vector ∂t, and φ is the azimuthal coordinate corresponding to axisymmetry

encoded by the Killing vector ∂φ.

Even though there is still no rigorous mathematical proof, the conjectured “black hole no hair theo-

rem” is widely appreciated 2, which states that black holes can be described by just three parameters:

2 There are interesting works examining the no hair theorem by studying the shadows of hairy black holes. See for example

[28, 82].
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mass M, angular momentum J and charge Q, as described above by the KN metric. Due to the fact

that the interstellar medium has a high conductivity, astrophysical black holes are less likely to be

charged ones for long, so the uncharged cases, Q = 0, are more relevant in reality. If the black hole

is uncharged, then the KN metric reduces to the Kerr metric. The Kerr metric will further reduce to

the non-rotating Schwarzschild metric for a = 0.

For any stationary, axisymmetric and asymptotically flat spacetime, it is useful to express its metric

in the following standard form in Boyer-Lindquist coordinates [83],

ds2 = −e2νdt2 + e2ψ(dφ−Ωbhdt)2 + e2µ1 dr2 + e2µ2 dθ2, (7)

where ν, ψ, µ1, µ2 and Ωbh are functions of r and θ. For Kerr metric, we have

e2ν =
Σ∆
Ξ

, e2ψ =
Ξ sin2 θ

Σ
, e2µ1 =

Σ
∆

, e2µ2 = Σ, Ωbh =
2Mar

Ξ
, (8)

where

∆ = r2 − 2Mr + a2, Σ = r2 + a2 cos2 θ, Ξ = (r2 + a2)2 − a2∆ sin2 θ. (9)

The metric becomes singular at the roots of either Σ = 0 or ∆ = 0. We then briefly discuss the

corresponding singularities and restrict ourself to the spacetimes of black hole type.

The equation Σ = 0 is solved on a ring of r = 0 and θ = π
2 . It turns out that the singularity on

this ring is a true singularity since the spacetime curvature RµνρσRµνρσ diverges on it, which is thus

referred to as the ring singularity. The equation ∆ = 0 is solved at a pair of event horizons

r± = M±
√

M2 − a2, (10)

which only correspond to coordinate singularities. For M2 < a2, the equation ∆ = 0 does not

have real roots, the metric then describes a naked singularity. A naked singularity is assumed to be

prevented in an observable spacetime according to the Cosmic Censorship Conjecture. For M2 = a2,

the metric describes an extremal black hole and the horizons coincide at r = M. For M2 > a2,
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the metric describes a non-extremal black hole spacetime with two distinct event horizons at r±, the

inner one is a Cauchy horizon, the outer one is the event horizon (“one-way membrane”) of a black

hole in the usual sense.

As our concern is a black hole, we put the following constraint on the parameters of Kerr metric:

0 ≤ a ≤ M. Again, M and a are the mass and spin of the black hole, r+ given in Eq. (10) is its

event horizon which ranges from 2M to M. Moreover, Ωbh in Eq. (8) is the frame-dragging angular

velocity of the black hole determined completely by the spacetime geometry. The domain outside

the event horizon, r > r+, is referred to as the exterior region while the domain inside, r < r+, is

the black hole region; the event horizon of the black hole, r = r+, is a null surface. Nothing in the

black hole region can escape from this surface, even light. Therefore, an observer in the exterior of

black hole can never measure information beyond the event horizon. To study the optical appearance

of a black hole, we only need to systematically study the photon propagations in the exterior region

of the black hole.

Since the Kerr metric is stationary, a static observer does not exist everywhere in the Kerr exterior.

In a region near the event horizon, all four basis vectors ∂t, ∂r, ∂θ and ∂φ are spacelike, no observer

can remain “at rest” and move along the Boyer-Lindquist t coordinate. That is, we have in particular

gtt > 0 in this region and an observer is “forced to rotate” due to the “frame-dragging” effects of

the black hole’s rotation. The static limit is obtained for gtt = 0, i.e., Σ− 2Mr = 0, solving which

gives the ergosurfaces

r0± = M±
√

M2 − a2 cos2 θ. (11)

The region r+ < r < r0+ is called the ergoregion. A static observer exists only outside the outer

ergosurface r0+.
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2.2.1 Near-extremal black holes

The Kerr metric has further interesting properties in the (near-)extremal limit. As we discussed

before, the extremal limit is obtained for

J = M2, a = M, (12)

which corresponds to ∆ = 0. Then from grr = Σ/∆ we see that the proper spatial distance from

a constant t surface to the event horizon is infinite, that is, there is a long throat near the horizon of

an extremal Kerr black hole [56]. When zooming into this throat, there exists three distinct scaling

limits [66]. For near-extremal Kerr, we introduce

κ =

√
1− (

a
M

)2 � 1. (13)

We also introduce the dimensionless Bardeen-Horowitz coordinates [56] to describe the different

extremal limits,

T̃ =
κpt
2M

, Φ̃ = φ− t
2M

, R̃ =
r−M
κp M

, (14)

where 0 ≤ p ≤ 1. Letting κ → 0 at fixed Bardeen-Horowitz coordinates, different choices of p

correspond to different decoupled spacetime regions. We also introduce R = κpR̃ for convenience.

For p = 0, this describes the usual limit of the extremal Kerr exterior in which R ∼ 1. For 0 < p < 1,

this describes the near-horizon extremal Kerr (NHEK) region since κ � κp � 1 and R ∼ κp. For

p = 1, this describes the even deeper near-horizon near-extremal Kerr (near-NHEK) region since

κ = κp � 1 and R ∼ κ. It has been shown that near-NHEK and NHEK are locally diffeomorphic,

and the near-NHEK corresponds a smaller patch of the NHEK patch. Explicitly, the NHEK geometry

takes the form [56]

ds2 = 2M2Γ(θ)
[
− R̃2dT̃2 +

dR̃2

R̃
+ dθ2 + Λ(θ)2(dΦ̃ + R̃dT̃)2

]
, (15)
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where

Γ(θ) =
1 + cos2 θ

2
, Λ(θ) =

2 sin θ

1 + cos2 θ
. (16)

In addition to the ∂T̃ and ∂Φ̃ symmetries, the NHEK metric acquires an enhanced scaling symmetry

such that the metric is invariant under the transformation

(T̃, R̃)→ (
T̃
c

, cR̃) (17)

for any constant c.

The usual extremal Kerr metric resolves physics in the far region (away from the event horizon),

while the (near-)NHEK metric resolves physics in the near-horizon region. When studying physical

processes that extend from the near-horizon region all the way to the far region, we need both of the

limiting metrics and they are on equal footing since each of these breaks in another region [66][84].

The far region is asymptotically flat, so that computations involving spacetime geometry are much

simplified. In the (near-)NHEK region, the enhanced symmetries also make it possible to perform

analytical computations. Combining these by using the method of matched asymptotic expansions

(MAE) between the two distinct regions, one can analytically compute some problems which can

only be numerically accessed in the more general case [66].

2.3 PA RT I C L E M OT I O N

In order to get some insights into the underlining spacetime features and to analytically calculate

observables of black holes, we study of equations of motion for arbitrary particles, both massive and

massless, in the exterior region of black holes.
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We consider a spacetime with line element ds2 = gµνdxµdxν. The equations of motion for a

free particle moving along a trajectory xµ(s) in this spacetime are the geodesic equations, which in

general form are given by

∂2
s xµ + Γµ

αβ∂sxα∂sxβ = 0, (18)

where ∂s denotes derivative with respect to the affine parameter s, and Γµ
αβ are the Christoffel sym-

bols. These are a set of coupled second order non-linear differential equations, which in general

can only be computed numerically. For analytical study of the geodesics, we need to consider cer-

tain symmetries of the spacetime which generate corresponding integrals of motion and allow us to

reduce the geodesic equations to first order by using the Hamilton-Jacobi (H-J) method.

We review the derivation for the first order equations in the Kerr spacetime [85], which can be

easily generalized to Kerr-like spacetimes with the same symmetries. The four-momentum of a

particle is pµ = ∂sxµ, where, for a timelike particle, the affine parameter s is related to the particle’s

proper time τ by s = τ/µ, with µ the mass of the particle. The first constant of motion is the

Hamiltonian

H =
1
2

gµν pµ pν = −µ2

2
. (19)

Using the two Killing vectors of the Kerr metric, we can then obtain two constants of motion for a

free particle: the energy E and the angular momentum parallel to the axis of symmetry L, as measured

by a static observer at infinity,

E = −gµν pµ(∂t)
ν = −pt, L = gµν pµ(∂φ)

ν = pφ. (20)

However, this is not enough to make the system completely integrable. Fortunately, in the Kerr

spacetime, there is also a hidden symmetry corresponding an additional constant. This new constant

was found by Cater by separating the variables in the H-J equation [85]

gµν∂µS∂νS = −µ2, (21)
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where we have assumed there is a separable solution for the Hamilton principle function

S(t, r, θ, φ) = −1
2

µ2s− Et− Lφ + Sr(r) + Sθ(θ). (22)

Then we have

e−2ν(−E + ΩbhL)2 + e−2µ1 p2
r + e−2µ2 p2

θ + e−2ψL2 = −µ2, (23)

where ν, ψ, µ1, µ2 and Ωbh are functions of r and θ, given in Eq. (8). Using pµ = ∂µS one can

obtain the separation constant for the r and the θ motion,

K = p2
θ +

(
aE sin θ − L

sin θ

)2
+ a2µ2 cos2 θ

= −
[
∆p2

r −
1
∆

(
(r2 + a2)E− aL

)2
+ µ2r2

]
. (24)

Here, the expression in the first line is only a function of θ while the expression in the second line is

only a function of r. The separation constant is related to the Carter constant Q by

Q = K− (L− aE)2. (25)

By solving the H-J equation, one can obtain the expressions for the first order differential equations

of motion for particles

Σpr = ±
√
R̃(r), (26a)

Σpθ = ±
√

Θ̃(θ), (26b)

Σpφ = −
[
aE− L

sin2 θ

]
+

a
∆
[
E(r2 + a2)− La

]
, (26c)

Σpt = −a
(
aE sin2 θ − L

)
+

a2 + r2

∆
[
E(r2 + a2)− La)

]
, (26d)

where

R̃(r) =
[
E(r2 + a2)− La

]2 − ∆
[
Q+ (L− aE)2 + µ2r2], (27)

Θ̃(θ) = Q− cos2 θ
[
a2(µ2 − E2) + L2 csc2 θ]. (28)
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Here, R̃ and Θ̃ are respectively the radial and angular “effective potentials”. The vanishing of either

of these corresponds to a turning point along a trajectory.

Trajectories of particles are thus labeled by their conserved quantities of motion: µ, E, L and Q.

Without loss of generality, we may take µ = 1 for massive particles while take µ = 0 for massless

particles (photons).

Note that the H-J method can also be used to study light propagations in a certain distribution of

plasma on Kerr spacetime, in which case the equations of motion for photons are no longer geodesics.

In chapter 3, we will study the influence of a plasma on the photon motion and on the optical appear-

ance of a black hole.

2.3.1 Massive particle

The motion of massive particles in the exterior of a black hole is of relevance for emitting sources. We

analysis several orbits for test particles in the Kerr exterior and introduce the corresponding regions

around the black hole. For mathematical simplicity without loss of physical importance, we consider

only test particles lying in the equatorial plane and orbiting around the black hole on circular orbits

[83].

We have θs =
π
2 for orbits in the equatorial plane, where the subscript s denotes the source. For a

circular orbit at radius r = rs, we have drs/ds = 0 and d2rs/ds2 = 0. Then from Eq. (27) we have

R̃(rs) = 0 and R̃′(rs) = 0, where prime represents the derivative to rs. Solving these equations

simultaneously for E and L gives

E
µ
=

r3/2
s − 2Mr1/2

s ± aM1/2

r3/4
s P1/2

,
L
µ
=
±M1/2(r2

s ∓ 2aM1/2r1/2
s + a2)

r3/4
s P1/2

, (29)
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where P = r3/2
s − 3Mr1/2

s ± 2aM1/2 and, here and hereafter, the upper/lower sign refers to di-

rect/retrograde orbits. The coordinate angular momentum of the orbit can be obtained with the help

of Eqs. (26),

Ωs =
dφ

dt
=

±M1/2

r3/2
s ± aM1/2

. (30)

The existence of circular orbits requires that the denominator of Eqs. (29) is real, i.e., P ≥ 0. The

critical case of equality corresponding to the innermost boundary of the circular orbits for particles

with E/µ → ∞. However, since a physical particle can not have infinity energy the critical orbits

corresponds to nothing but a photon orbit (ph), which is obtained for P = 0,

rph = 2M
[
1 + cos

(2
3

arccos∓ a
M

)]
. (31)

For orbits in the region rs > rph, we are interested in those bound ones with E/µ < 1 since

otherwise the orbits can not stably exist. The marginally bound circular orbit (mb) has E/µ = 1, we

refer to such orbit as the Innermost Bound Circular Orbit (IBCO),

rIBCO = rmb = 2M∓ a + 2M1/2(M∓ a)1/2. (32)

Note that not all bound circular orbits are stable. For such orbits to be stable we require that

R̃′′(rs) ≤ 0 with equality corresponding to the marginally stable circular orbit (ms), also referred to

as the Innermost Stable Circular Orbit (ISCO),

rISCO = rms = M
[
3 + Z2 ∓

√
(3− Z1)(3 + Z1 + 2Z2)

]
, (33)

where

Z1 = 1 + (1− a2
∗)

1/3[(1 + a∗)1/3 − (1− a∗)1/3], Z2 =
√

3a2
∗ + Z2

1 , a∗ =
a
M

. (34)

Once a particle passes the ISCO, r < rISCO, it plunges into the black hole. We call the region inside

ISCO the plunging region.

These circular orbits around a Kerr black hole were summarized in Ref. [83] [see Fig. 9].
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Figure 9.: Radii of prograde/retrograde (dashed/dotted) circular, equatorial orbits around a Kerr black

hole with mass M and spin a. Credit to [83].

(Near-)xtremal limit. For the extremal case a = M, the Boyer-Lindquist radial locations of r+,

rph, rIBCO and rISCO are coincident at r = M. However, this is a deception of the Boyer-Lindquist

coordinates since timelike orbits, like the IBCO and ISCO, can never lie in the event horizon which

is a null surface. In fact, the proper radial distances between these orbits are separated. For astrophys-

ical applications to a rapidly rotating (near-extremal) black hole satisfying κ =
√

1− (a/M)2 � 1

[Eq. (13)], we consider the limiting behavior of these orbits. The leading order behaviour for the

direct circular orbits are obtained as [83]

r+ = M(1 + κ), (35)

rph = M(1 +
2√
3

κ), (36)

rIBCO = M(1 +
√

2κ), (37)

rISCO = M(1 + 2
1
3 κ

2
3 ). (38)

Note that the radius of ISCO scales differently from those of event horizon, photon orbit and IBCO.

As we have reviewed in Sec. 2.2.1, these orbits are situated in a near-horizon throat region. The edge
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of the throat is given by the ergosurface r0+ = 2M for all spin. We observe that ISCO is described

in the NHEK limit (with p = 2
3 ) while the others are described in the near-NHEK limit (with p = 1).

Next, we discuss the location of ISCO. The proper radial distance between two coordinates r1 and

r2 is given by d(r1, r2) =
∫ r2

r1

√
grrdr. Then we have [84]

d(r+, rISCO) =
M
3

log
(

24

κ

)
+O(κ2/3), (39)

d(rISCO, r0+) = M
[

1 +
2
3

log
(

1√
2κ

)]
+O(κ2/3). (40)

We see that in proper distance the ISCO is located infinitely far from both the event horizon r+ (in

near-NHEK region) and the edge of the throat r0+ (in extremal Kerr exterior).

2.3.2 Massless particle

Now we study photon trajectories (light rays) in the exterior of a black hole [37]. In the “source-ray-

observer” problem of black hole imaging, light rays play a role as bonds which tie the source and the

observer. On the one hand, the light rays can be labeled by photon-conserved quantities E, L and Q

[or below in Eq. (41) the impact parameters λ̂ and q̂]. On the other hand, these conserved quantities

help connect the locally measured photon motion of a source to that of an observer.

The geodesic equations for a photon are obtained taking µ = 0 in Eqs. (26). From the expressions

(24) and (25), we see that any photon trajectory passing through the equatorial plane always has a

nonnegative Carter constant since Q = p2
θ ≥ 0 when θ = π/2. We restrict to positive Q since

we will consider photons either emitted by an equatorial source or on spherical orbits. Furthermore,

except for the measure-zero set of light rays with E = 0, the photon motion may be described by two

independent ratios only, referred to as the impact parameters [37, 5],

λ̂ =
L
E

, q̂ =

√
Q

E
. (41)
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The radial and angular potentials for a photon trajectory can be written in terms of the impact param-

eters, we define for the null case

R(r) = R̃(r)/E2, Θ(θ) = Θ̃(θ)/E2, (42)

while the potentials with tildes are for arbitrary particles, given in Eqs. (27) and (28). Complete

information about rays is contained in the null geodesics. It would be helpful to investigate behaviors

of rays in the parameter space of λ̂ and q̂ [86, 87]. However, here we only consider two specific cases.

There are basically two ways to study the appearance of the photons near a black hole. One way

is to consider the rays received by an observer and trace along them backwards towards the region

near the black hole [50]. Another way is to consider the rays connecting a given emitter and a given

observer, and then obtain solutions for these rays by solving the geodesic equations [5].

Unstable spherical photon orbits.

We first consider the threshold between captured and escaping rays, which correspond to the unstable

spherical photon orbits with constant radial coordinate r = rsp. For these photon orbits, we have

drsp/ds = 0 and d2rsp/ds2 = 0. Then we have R(rsp) = 0 and R′(rsp) = 0, solving which for λ̂

and q̂ gives the critical impact parameters [37]

λ̂c = −
r2

sp(rsp − 3M) + a2(rsp + M)

a(rsp −M)
, q̂c =

r3/2
sp

a(rsp −M)

√
4a2M− rsp(rsp − 3M)2. (43)

For these orbits to be unstable, one needs R′′(rsp) > 0 which is always true for spherical photon

orbits [88]. Recall that the radius of spherical orbits is constrained by the condition Q > 0, thus we

always have real positive q̂ for such rays. Then solving q̂2
c > 0 we obtain an range for rsp,

rsp ∈ [rsp+, rsp−], rsp± = 2M
[
1 + cos

(2
3

arccos± a
M

)]
. (44)
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Rays connecting source to observer.

We also consider light rays connecting a source at (ts, rs, θs, φs) to an observer at (to, ro, θo, φo),

where subscripts s and o stand for source and observer, respectively. By integrating up the first order

differential equations of motion (26) from the source to observer along the rays, we get the integral

form equations for the rays (λ̂, q̂) [5]:

−
∫ ro

rs

dr
±
√
R(r)

= −
∫ θo

θs

dθ

±
√

Θ(θ)
, (45a)

∆φ = φo − φs = −
∫ ro

rs

a(2Mr− aλ̂)

±∆
√
R(r)

dr +−
∫ θo

θs

λ̂ csc2 θ

±
√

Θ(θ)
dθ, (45b)

∆t = to − ts = −
∫ ro

rs

r2∆ + 2Mr(r2 + a2 − aλ̂)

±∆
√
R(r)

dr +−
∫ θo

θs

a2 cos2 θ

±
√

Θ(θ)
dθ, (45c)

where the slash notation in the integrals denotes that these integrals are to be evaluated as path

integrals along a trajectory. The signs ± are chosen such that the integrals are always evaluated

along the direction of propagation and therefore flip every time when the light ray meets a turning

point.

2.4 O B S E RV E R ’ S S K Y

Each ray received by an observer corresponds to an image on the observer’s sky. Description of the

image depends on the choice of observer and the impact parameters of the ray.

We introduce the orthonormal frame {e(t̂), e(r̂), e(θ̂), e(φ̂)} for local observers with four-velocity

uµ = e(t̂). This frame basis can be expanded in the Boyer-Lindquist coordinate basis {∂t, ∂r, ∂θ , ∂φ}.

An observer who moves along constants (r, θ, φ) would be a static observer with u ∝ ∂t. However,

such an observer only exists outside the static limit surface [Eq. (11)]. In the ergosphere, all four

Boyer-Lindquist coordinates become spacelike thus these can not correspond to a physical observer.

Nevertheless, it is very convenient to use this static observer in the valid domain and this is usually
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referred to as the static observer at spacial infinity. A fruitful frame for treating physical processes

in a Kerr-like geometry (7) (especially in the ergoregion) was introduced by Bardeen, known as the

locally nonrotating frame (LNRF) [83], which is related to the Boyer-Lindquist frame by

e(tL) = e−ν(∂t + Ωbh∂φ), e(rL) = e−µ1 ∂r, e(θL) = e−µ2 ∂θ , e(φL) = e−ψ∂φ. (46)

The LNRF corotates with the Kerr-like geometry as observed by a static observer at infinity which

cancels out as much as possible the “frame-dragging” effects of the rotation of the black hole. A local

rest observer of LNRF has zero angular momentum due to L = gµν pµ(∂φ)ν = 0, such an observer

then is called a zero-angular-momentum observer (ZAMO). ZAMO exists everywhere outside the

event horizon. In the limit of r → ∞ in Kerr spacetime (8), a ZAMO and a static observer are related

by

e(tL) = ∂t, e(rL) = ∂r, e(θL) = r−1∂θ , e(φL) = (r sin θ)−1∂φ. (47)

Now we introduce a pair of Cartesian coordinates to describe the positions in the observer’s sky

[89, 5]. We assume that the spacetime is asymptotically flat and consider a static observer at infinity.

We can set up a Cartesian coordinate system {x, y, z} for an observer at a distance ro with origin

at the centre of the apparent position of the black hole. This frame only coincides with the Boyer-

Lindquist coordinates for large r while the later is spherical-like. Considering that the spacetime is

axisymmetric, we may set the observer to be located at ro → ∞, θo ∈ [0, π) (exclude the measure-

zero case θo = π/2) and φo = 0. We introduce two screen coordinates (α, β) embedded in the

Cartesian space. The basis vectors are defined as

α̂ = ŷ, β̂ = ∓ cos θo x̂± sin θo ẑ. (48)

The apparent position of a photon can be described by the observer’s screen coordinates (α, β),

~xs = αα̂ + ββ̂ = ∓β cos θo x̂ + αŷ± β sin θo ẑ. (49)

On the other hand, the apparent position of a photon can also be obtained by tracing back the tan-

gent vector of its trajectory from the observer’s position to the celestial plane in the fictitious global
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Cartesian system. The photon trajectory can be described by a parametric curve in the 3-dimensional

observer’s space as

~x(r) = [x(r), y(r), z(r)], (50)

where r =
√

x2 + y2 + z2, which is nothing but the Boyer-Lindquist radial coordinate for large

value. The tangent vector of the trajectory at the observer’s position (ro, θo, φo) is given by~vo =
d~x
dr

∣∣∣
o
.

In terms of spherical coordinate, using x = r sin θ cos φ, y = r sin θ sin φ and z = r cos θ, we obtain

~xs = ~xo − ro~vo = −r2
o cos θo

dθ

dr

∣∣∣
o
x̂− r2

o sin θo
dφ

dr

∣∣∣
o
ŷ + r2

o sin θo
dθ

dr

∣∣∣
o
ẑ. (51)

From Eqs. (49) and (51), we obtain3 [89]

α = −r2
o sin θo

dφ

dr

∣∣∣
o
, β = ±r2

o
dθ

dr

∣∣∣
o
. (52)

For the Kerr case, we find that

α = − λ̂

sin θo
+O( 1

ro
), (53a)

β = ±
√

q̂2 + a2 cos2 θo − λ̂2 cot2 θo +O(
1
ro
) = ±

√
Θ(θo). (53b)

Note that we require Θ(θo) ≥ 0 such that photons with the impact parameters λ̂ and q̂ can reach the

observer at a desired inclination.

2.5 S O U R C E A N D I M AG E

Now we consider the appearance of black holes relative to an observer at spacial infinity. Since black

holes are invisible by themselves, the first question we should answer is what we are really looking

3 In some literatures, impact parameters are defined by these screen coordinates instead of the photon conserved parameters

(λ̂, q̂) as what we have defined. The screen coordinates can be expressed in LNRF (46) as α = −ro
p(φL )

p(tL )
, β = ro

p(θL )

p(tL )
,

which are proportional to cosines of reception angles of rays to a ZAMO [37].
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at? We have reviewed a series of studies in Sec. 1.2 for different light sources. Next, we introduce

some technical details of calculating their images.

Bare black hole. Black holes with no nearby emitting sources are named as bare black holes.

A bare black hole is illuminated instead by background light originating from very far away and

casting a shadow region in the observer’s sky where no light arrives. The apparent boundary of

the shadow, i.e., the critical curve, is a direct consequence of the unstable spherical photon orbits.

The impact parameters for such light rays are given in Eq. (43), which after plugging in the screen

coordinates (53) gives the critical curve [α(rsp), β(rsp)]. The radius of spherical orbits should satisfy

the constrains Eq. (44) and Θ(θo) ≥ 0 [37].

In the extremal limit [5] a→ M, the critical curve [α(rsp), β(rsp)] is obtained as

α(rsp) = − 1
M sin θo

(r2
sp −M2 − 2Mrsp), (54a)

β(rsp) = ± 1
M

√
r3

sp(4M− rsp) + M4 cos2 θo − (r2
sp −M2 − 2Mrsp)2 cot2 θo, (54b)

with rsp ∈ [M, 4M]. This does not in general describe a closed curve and for an open curve there are

two endpoints at [α(M), β(M)]. The inclination θo is restricted by Θ(θo) ≥ 0, thus the condition

for an open curve is obtained for β(M)2 ≥ 0 which gives θcrit < θo < π − θcrit with θcrit =

arctan[(4/3)1/4] ≈ 47◦. This critical curve is shown in Fig. 4 (without the leftmost straight line)

for a distant observer sitting in the equatorial plane.

Since the apparent boundary of a shadow is closed for all astrophysical black holes with a < M,

the above discussion has missed an important piece which corresponds to photons passing through

the near-horizon region. To recover it, we consider the near-horizon and near-extremal limit

a = M
√

1− κ2, rsp = M(1 + κRsp). (55)
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Then the critical curve is obtained as

α(Rsp) = − 2M
sin θo

+O(κ), (56a)

β(Rsp) = ±M

√
3 + cos2 θo − 4 cot2 θo −

4
Rsp

+O(κ). (56b)

Again, the range of Rsp is constrained by Eq. (44) and Θ(θo) ≥ 0, from which we have

Rsp ∈
[ 2√

3 + cos2 θo − 4 cot2 θo
, ∞
)
+O(κ). (57)

As κ → 0, this gives the missing piece, the leftmost straight line in Fig. 4, of an open curve given by

Eq. (54). This missing curve is called the NHEKline [5] as emissions near the line correspond to pho-

tons coming from the NHEK region of the spacetime. Next, we discuss the space-time-geometrical

origin of the NHEKline.

NHEK photons [5]. It is observed that the NHEK source and distant observer are adapted to two

distinct extremal limits (see Sec. 2.2.1), which forces the NHEK source to appear on the NHEKline.

To consider the (near-)extremal limit of spacetime geometry, we have introduced the near-extremal

parameter κ in Eq. (13) and the Bardeen-Horowitz coordinates T̃, Φ̃ and R̃ in Eq. (14). These are

related to the Boyer-Lindquist coordinates by

∂φ = ∂Φ̃, ∂t +
1

2M
∂φ =

κp

2M
∂T̃. (58)

A near-horizon photon with four-momentum pµ has a finite “energy” Ẽ = −pµ∂
µ

T̃. Then, given

0 < p ≤ 1, from Eqs. (58) and (20) we have λ̂ = L/E = 2M as κ → 0. This means that all

photons emitted in the NHEK region are constrained to be near the superradiant bound4. A distant

observer is adapted to the usual extremal limit (p = 0) and has the standard observed sky described

by the screen coordinates (53). Therefore, we have shown that any photons emitted in the NHEK and

4 The superradiant bound of a Kerr black hole is given by E = ΩHL, where ΩH = Ωbh(r+) = a/(2Mr+). In the extremal

limt, we have ΩH = 1/(2M) thus λ̂ = 2M.
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near-NHEK regions, including those emitted on ISCO [Eq. (38)], IBCO [Eq. (37)] and more general

orbits, will end up on the NHEKline.

Orbiting emitter. For a point source orbiting on a tight orbit around a black hole, we will study its

image explicitly in next section, paying spacial attention to an emitter in the near-horizon region of an

near-extremal Kerr black hole. In following chapters, we generalize this study to the Kerr black hole

surrounded by a plasma, Kerr-like black holes in MOG theory and Kerr-like black holes in heterotic

string theory, respectively.

2.6 O R B I T I N G E M I T T E R N E A R I S C O O F A N E A R - E X T R E M A L K E R R B L AC K H O L E

We review the optical appearance of a point-like orbiting emitter [5] (see also the pioneering work

[90, 46]). In Sec. 2.6.1, we set up the imaging problem for a general Kerr black hole in a vacuum

background. We first describe the orbiting emitter and its observational quantities, and then write

down the lens equations for the light rays. In Sec. 2.6.2, we solve this problem in the near-extremal

limit and illustrate the results. We will introduce the necessary steps of the computations which serve

as a preview for the analogues in the following chapters. Therefore, in the following chapters we only

give the results and some main steps. We relegate the detailed calculations of the integrals and image

flux to appendices.

2.6.1 General setup

2.6.1.1 Orbiting emitter

We consider a point source lying in the equatorial plane (θs = π/2) and orbiting on a circular

geodesic at radius rs. The coordinate angular momentum of this emitter is given in Eq. (30). In order
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to interpret the conserved quantities for photons emitted from this source using local observables,

we introduce the local rest frame of the orbiting emitter. The time-leg of this frame is just the four-

velocity of the emitter, eµ

(ts)
= uµ (uµuµ = −1), while the space-legs are choose to be three spacelike

unit vectors orthogonal to eµ

(ts)
,

e(ts) = γ

√
Ξ

∆Σ
(∂t + Ωs∂φ), e(rs) =

√
∆
Σ

∂r, e(θs) =
1√
Σ

∂θ , (59a)

e(φs) = γvs

√
Ξ

∆Σ
(∂t + Ωbh∂φ) + γ

√
Σ
Ξ

∂φ, (59b)

where

vs =
Ξ

Σ
√

∆
(Ωs −Ωbh) and γ =

1√
1− v2

s
(60)

are the three-velocity and boost factor relative to the ZAMO [see Eq. (46)]. Here and hereafter in

this subsection, the functions Ξ, ∆, Σ and Ωbh are given in Eqs. (9) and (8) and evaluated at (rs, θs).

For photons observed by a distant observer, the conserved energy E is redshifted from its local

measured energy Es = p(ts). The redshift factor g is given by

g =
E
Es

=
E

p(ts)
=

1
γ

√
∆Σ
Ξ

1
1−Ωsλ̂

. (61)

Then the conserved quantities (impact parameters) λ̂ and q̂ can be interpreted with the help of emis-

sion angles (Θs, Φs) by using cos Φs = p(φs)/p(ts) and cos Θs = −p(θs)/p(ts), as

λ̂ =
cos Φs + vs

(Σ/Ξ)
√

∆ + Ωs cos Φs + Ωbhvs
, q̂ = ∓ rs cos Θs

g
. (62)

Note that the cosines of emission angles are bounded in [−1, 1], which will constraint the impact

parameters of light rays emitted from the orbiting emitter.

2.6.1.2 Observational quantities

We consider the following observational quantities of the emitter relative to a distant observer, the

image position, redshift factor and energy flux, which can be expressed in terms of the photon impact

parameters λ̂ and q̂.
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The apparent position of an image on the observer’s sky is described by the screen coordinates

(α, β) given in Eq. (53). The redshift factor of the image is given in Eq. (61). The energy flux

of the image is determined by the product of observed intensity (flux per unit solid angle) and the

apparent size of solid angle. We assume that the orbiting emitter has a proper radius ρ � M and

emits isotropically from its surface with intensity Is in the local rest frame. The intensity relative to

a distant observer is related with this local measured intensity by [91]

Io = g4 Is. (63)

The element of the apparent solid angle is dαdβ/r2
o , then the energy flux through the apparent region

of the image is given by [46]

Fo =
∫∫ dαdβ

r2
o

g4 Is. (64)

The detailed calculation of the image flux is given in App. C.

2.6.1.3 Lens equations

In Sec. 2.3.2, we have reviewed the equations for light rays connecting a given source to a given

observer [Eqs. (45)]. Now we make specific choices for the source and observer. For the orbiting

emitter, we have the following coordinates: orbital radius rs, orbital plane θs = π/2, emission time

ts and φs = Ωsts. For a distant observer, we may choose ro → ∞, φo = 2πN with N5 an integral

(physically equivalent to φo = 0), inclination angle θo ∈ (0, π/2) and reception time to. Then, by

solving Eqs. (45) for given rs and θo, one can write ts, λ̂ and q̂ as functions of to. The emission time

ts is not of observable interest and may be decoupled from these equations by using φs = Ωsts. Note

that φo − ∆φ = φs = Ωsts = Ωs(to − ∆t), we then have a new equation

∆φ−Ωs∆t = −Ωsto + 2πN, (65)

5 In the time interval [ts, to], the winding numbers of the light ray and the emitter are, respectively, n = mod2π∆φ and

ns = mod2πΩs∆t. Then from Eq. (65) (note also that mod2πΩsto = 0) we see that N is the net winding number

satisfying N = n− ns.
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where ∆φ and ∆t are given in Eqs. (45b) and (45c). Together with Eq. (45a), we are left with two

equations for the two variables λ̂ and q̂ at a given time to. Solving these two equations will give

time-dependent rays which correspond to time-dependent images of the emitter.

Regarding to the turning points along the light rays, it is helpful to introduce labels to distinguish

different rays and to eliminate the slash notions in the integral Eqs. (45). For the radial direction,

we introduce b = 0 for direct rays with no turning point and b = 1 for the reflected rays with one

turning point. For the angular direction, we introduce m ≥ 0 representing the number of turning

points, and introduce s =∈ {+1,−1} denoting the final sign of pθ . The radial turning point appears

at rmin which is the largest real root of R(r) = 0, while angular turning points appear at θ± which

are roots of Θ(θ) = 0. We require rmin < rs such that the light can reach a distant observer.

Then, we can reexpress the Eqs. (45a) and (65) as the Kerr lens equations

Ir + bĨr = Gm,s
θ , (66a)

Jr + bJ̃r +
1
M

(λ̂Gm,s
φ −Ωsa2Gm,s

t ) = −Ωsto + 2πN, (66b)

where we have defined Gm,s
i = Ĝi for m = 0 and Gm,s

i = mGi − sĜi for m ≥ 0, with i ∈ {t, θ, φ}

and

Gi = M
∫ θ+

θ−
gi(θ)dθ, Ĝi = M

∫ π/2

θo

gi(θ)dθ (67)

and gθ(θ) = [Θ(θ)]−1/2, gφ(θ) = csc2 θ[Θ(θ)]−1/2 and gt(θ) = cos2 θ[Θ(θ)]−1/2; and

Ir = M
∫ ro

rs

dr√
R(r)

, Ĩr = 2M
∫ rs

rmin

dr√
R(r)

, (68a)

Jr =
∫ ro

rs

Jr√
R(r)

dr J̃r = 2
∫ ro

rmin

Jr√
R(r)

dr (68b)

Jr =
1
∆

[
a(2Mr− aλ̂)−Ωsr

(
r3 + a2(r + 2M)− 2aMλ̂

)]
. (68c)

Therefore, for each given choice of the net winding number N, and number of radial and angular

turning points, b and m, and the final polar orientation s, we have a set of lens equations [Eqs. (66)]

for a light ray (λ̂, q̂) connecting source to observer. In general, the lens equations can only be solved
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numerically. Nevertheless, these can be much simplified in the near-extremal regime which will be

analytically computed in next section.

2.6.2 Near-extremal case

2.6.2.1 Orbiting emitter and its observables

Now we consider a near-extremal Kerr black hole and an emitter orbiting on (or near) the direct ISCO

of the black hole. We have reviewed the near-extremal limiting behavior of the ISCO in Sec. 2.3.1

[see Eq. (38)]. We introduce a new small parameter ε = κ2/3 � 1, thus the near-extremal limit (13)

becomes

a = M
√

1− ε3, (69)

under which the ISCO is put away from the event horizon at a coordinate distance ∼ ε, explicitly

rISCO = M[1 + 21/3ε +O(ε2)]. The expansion of near-extremality can be viewed as an expansion

in the divergent proper depth d from the ISCO to the edge of the extremal throat since at the leading

order we have ε = 2−1/3e1−d/M [see Eq. (40)].

We then choose the following radial coordinate for the emitter,

rs = M(1 + εR̄) +O(ε2), R̄ ≥ 21/3. (70)

Photons from the emitter are then adapted to the p = 2/3 NHEK photons discussed in Sec. 2.5. As

we have shown below Eq. (58) that the impact parameter λ̂ of a NHEK photon is strongly constrained,

which forces the photon to appear on the NHEKline [given by Eqs. (56) and (57)]. This can also be

seen from the expansion of Eq. (62) in ε,

λ̂ = 2M +
3MR̄ cos Φs

1 + 2 cos Φs
ε +O(ε2). (71)
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In order to keep track of the small corrections, we introduce a new quantity λ by

λ̂ = 2M(1− ελ). (72)

In addition, the potentials Θ(θ) andR(r) should always be non-negative along a ray from the NEHK

region to the far asymptotically flat region, which will put constraints on the impact parameters. In

the near-extremal limit, Θ(θ) > 0 gives

3− q̂2

M2 < 4(1− ελ + ε2λ2). (73)

It is convenient to introduce a dimensionless shifted constant q by [4]

q̂2 = M2(3− q2). (74)

Positivity of R(r) along the ray requires q2 > 0.

Expansions of observables. It is convenient to work with the coordinates R = κpR̃ [see Eq. (14)].

Our observer is at Ro = (ro − M)/M ≈ ro/M. For the near-extremal case with Eqs. (69), (70),

(72) and (74), we now expand in ε the various quantities that are of observational interests. The

screen coordinates [Eq. (53)] for the apparent position are given by

α = − 2M
sin θo

+O(ε), β = sM
√

3− q2 + cos2 θo − 4 cot2 θo +O(ε). (75)

Note that the leading order position does not depend on λ. Nonnegativity of Θ(θ), i.e., β2 ≥ 0 gives

a range of q

q ∈
[
0,
√

3 + cos2 θo − 4 cot2 θo
]
. (76)

Of course Eqs. (75) and (76) show that the images do appear on the vertical NHEKline and vanish

when the NHEKline disappears for θo < θcrit ≈ 47◦. The redshift factor (61) is given by

g =
(√

3 +
4√
3

λ

R̄

)−1
+O(ε). (77)

The direction cosines to the leading order are given by cos Φs =
√

3/2(g − 1/
√

3) +O(ε) and

cos Θs = (−1)m+1sg
√

3− q2 +O(ε). Note that since cos Φs ≤ 1 the redshift factor has an upper
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bound g ≤
√

3 with the equality corresponding to a net blueshift for photons emitted in the forward

direction, Φs = 0. The normalized image flux relative to the “Newtonian flux”, Fo/FN [see Eq. (336)

in App. C], is given by

Fo

FN
= εg3 qR̄ csc θo

Ds
√

1− q2/3|β/M|

∣∣∣det
∂(B, A)

∂(λ, q)

∣∣∣−1
, (78)

where Ds = (q2R̄2 + 8λR̄ + 4λ2)1/2, and A and B are defined in App. C which are written in terms

of radial integrals (68) and angular integrals (67). These integrals are performed in the near-extremal

regime in appendices A and B. Then from the results of these integrals we find that the leading

order determinant in Eq. (78) scales as log ε. Therefore, the normalized image flux Fo/FN scales as

ε/ log ε at the leading order in ε. The orbital frequency and period of the emitter are

Ωs =
1

2M
− 3R̄

8M
ε +O(ε2), Ts =

2π

Ωs
= 4πM +O(ε). (79)

Exactly extremal problem. To the leading order in ε, the expansions of observables are identical

if we instead expand these observables with a = M and the same Eqs. (70), (72) and (74). This

describes the image of an emitter orbiting near the ISCO of an exactly extremal black hole, and the

small parameter ε represents the deviation from the orbit to the event horizon. Therefore, we see that

the image of a near-ISCO emitter in the near-extremal case is mapped to that in an exactly extremal

case. Note that the same agreement between near-extremal Kerr and extremal Kerr was also observed

for the gravitational waves signals emitted by a near-ISCO source in EMRIs [66].

2.6.2.2 Solutions of lens equations

The observational quantities of the image are determined by the photon impact parameters λ̂ and q̂,

which can be obtained by solving the lens equations (66). In this section, we solve these equations

in the near-extremal limit for the new quantities λ and q. Therefore, we can get the leading order

observational quantities (75), (77) and (78). When expanding the lens equations in small ε, we

see that the leading order terms grow as log ε and λ does not appear, which only determines the
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behaviour of angular turning points m. In order to solve for λ, we must go to the subleading O(ε0)

equations.

First equation. We now solve the first equation in Eqs. (66),

Ir + bĨr = mGθ − sĜθ . (80)

The radial integrals Ir and Ĩr are approximately performed in App. A using the MAE method, and

angular integrals Gθ , Ĝθ are performed as elliptic functions in App. B, which to the leading order

depend only on q but not λ. The results for the radial integrals are given by

Ir = −1
q

log ε +
1
q

log
[ 4q4Ro

(qDo + q2 + 2Ro)(qDs + q2R̄ + 4λ)

]
+O(ε), (81a)

Ĩr =
1
q

log
[ (qDs + q2R̄ + 4λ)2

4(4− q2)λ2

]
+O(ε), (81b)

where

Ds =
√

q2R̄2 + 8λR̄ + 4λ2, Do =
√

q2 + 4Ro + R2
o . (82)

Note that, as ε → 0, the left-hand-side of the first equation grows as log ε which requires that m

on the right-hand-side behaves similarly. In order to solve this equation to the subleading order, it is

convenient to introduce

m = − 1
qGθ

log ε + m̄, Υ ≡ q4Ro

q2 + 2Ro + qDo
e−qGm̄,s

θ > 0. (83)

Then the leading order equation is satisfied automatically and the subleading equation is given by

41−bΥ(4− q2)−bλ−2b(q2R̄ + qDs + 4λ)2b−1 = 1. (84)

Note that in the large-Ro limit,we have Υ = [q4 exp(−qGm̄,s
θ )]/(q + 2) +O(R−1

o ) which is inde-

pendent of Ro to the leading order in 1/Ro. For each given choice of m, b, s and q, the subleading

equation (84) is just a quadratic equation of λ. Next we solve this equation for the b = 0 and
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b = 1 separately and combine the final results. This equation does not always have a solution. The

existence of a solution requires

R̄ <
4Υ
q2

(
1 +

2√
4− q2

)
if b = 0, (85a)

R̄ >
4Υ
q2

(
1 +

2√
4− q2

)
if b = 1, (85b)

under which condition the solution is given by

λ =
2Υ

4− q2

[
2− q

√
1 +

4− q2

2Υ
R̄
]
. (86)

Therefore, given m, b and s, solving the first equation (80) gives a function λ(q) [Eq. (86)] in an

allowed range of q satisfying Eq. (85).

Second equation. Then we solve the second equation in Eqs. (66)

Jr + bJ̃r +
1
M

(λ̂Gm,s
φ −Ωsa2Gm,s

t ) = −Ωsto + 2πN. (87)

Since the problem is periodic with a period Ts = 2π/Ωs, it is convenient to introduce a dimension-

less time coordinate by t̂o = to/Ts = to/(4πM) +O(ε) restricting to a single period t̂o ∈ [0, 1].

Then the second equation can be rewritten as

t̂o = N + G, G = − 1
2π

(
Jr + bJ̃r + 2Gm,s

φ − 1
2

Gm,s
t

)
. (88)

The radial integrals Jr and J̃r are computed using the MAE method in App. A which have a similar

structure as the I integrals. The angular integrals Gm,s
φ and Gm,s

t are given in App. B, which in the

near-extremal approximation are functions of q. Combining with the solution obtained from the first

equation [Eq. (86)], the second equation (88) then gives a function

t̂o(q) = t̂o[q, λ(q)] (89)

for each given choice of m, s, b having a non-vanishing range of q. Note also that as we require

t̂o ∈ [0, 1], N is always uniquely determined for each value of q. Then, for each allowed value of
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N, inverting Eq. (89) in each monotonic domain gives an inverse qi(t̂o) with i a discrete integral

labeling the corresponding domain. We give an illustrating example for determining qi(t̂o) in Fig. 15

in Chapter 4.

To summarize, by solving the lens equations, we obtain the time-dependent light rays with con-

served quantities q(t̂o) and λ[q(t̂o)] which corresponds to tracks of the image on observer’s sky.

Each track segment of the image can be labeled by (m, b, s, N, i).

2.6.2.3 Observational appearance

We now describe the observational quantities of the emitter’s image with figures and discuss them in

detail. The image depends on the choice of four physical parameters: the near-extremality of black

hole spin ε, the orbital radius of the emitter R̄, the observer’s coordinate distance Ro and inclination

θo. In order to make the near-extremal approximations accurate, one must choose ε� 1 and Ro � 1.

For the emitter to be on a stable circular orbit of this high-spin black hole, one must choose R̄ ≥ 21/3.

For there to exist any image at all, one must choose 47◦ < θo < 90◦. We will mainly consider the

following example:

ε = 0.01, R̄ = R̄ISCO = 21/3, Ro = 100, θo =
π

2
− 1

10
= 84.27◦. (90)

This describes a hot spot (orbiting emitter) on the ISCO of a near-extremal Kerr black hole with spin

a = 0.9999995M, viewed by a distant observer from a nearly edge-on inclination. In addition, we

also consider the results for high-spin black holes with ε = 0.156 and ε = 0.001 for comparison.

From the previous subsections, we have obtained the time-dependent impact parameters (λ, q) for

each track segment of an image labeled by (m, b, s, N, i). Then, we may compute the main observa-

tional quantities of the segment: apparent position (α, β) [Eq. (75)], redshift factor g [Eq. (77)] and

normalized flux Fo/FN [Eq. (78)]. By including all such segments for all choices of (m, b, s, N, i),

6 Even though the approximation is not sufficiently accurate for this value, it corresponds to a physically interesting bound,

the Thorne limit a = 0.998M, which is worth to be compared.
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one may build up the complete observable information of the image. Formally, a light ray may orbit

around the black hole infinitely many times between the angular turning points before reaching to

the observer. Therefore, there are infinitely many choices for m and N. However, in practice we only

need to consider a few values of m and N since the fluxes for others are vanishingly small. Next, we

illustrate the main feature of the brightest few images.

We show the main observational quantities7 of the most important few images8 for three cases

of high spin in Fig 10. We see that there are continuous image tracks moving on the NHEKline

which are lined up by the track segments. These different continuous tracks have been coded with

different colours. In each case, the green line is a bright primary image while the others are secondary

images. Over each period, the primary image moves downwards while blueshifts become brighter

after appearing near the center of the NHEKline. At peak flux of the iamge, there is a net blueshift

g ≈ 1.6 which corresponds to light rays emitted near the forward φ-direction g ∼
√

3. This net

blueshift reflects the fact that the Doppler boost from the ultrarelativistic ISCO dominates over the

gravitational redshift. The secondary images are negligible in general except when different image

tracks intersect which corresponds to optical caustics. The secondary images appear with a typical

redshift g = 1/
√

3, corresponding to λ ∼ 0. For ε = 0.15, 0.01 and 0.001, the typical image

positions and redshifts remain unchanged, while the typical normalized flux of images scales as

ε/ log ε.

We see that the energy of emission is shifted by the typical factors g =
√

3 (primary image) or

g = 1/
√

3 (secondary image). For the emission of iron line at EFeKα = 6.4 keV, the energy will be

shifted to 11.1 keV and 3.7 keV, respectively. This might be a typical observational signal for a high

spin black hole. Note that this is close to the unidentified spectral line at 3.5 keV [92].

7 Here, we only introduce several main features. More details will be discussed in the MOG case in Chapter 4.

8 Taking ε = 0.01 for example, this includes track segments with (m, b, s)=(0, 0,−1), (1, 0,−1), (1, 0, 1), (2, 0,−1),

(2, 0, 1), (2, 1,−1), (3, 0,−1), (3, 0, 1), (3, 1,−1), (3, 1, 1), (4, 0, 1) and (4, 1, 1). We have also imposed a small-q

cut-off at q = ε1/4/3.
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Figure 10.: Main observables of the brightest few images (see footnote 8) of an orbiting hot spot for

three different values of spin. These images appear periodically on the vertical NHEKline.

We have depicted each continuous image track by the same color which may consists of

multiple segments labeled by (m, b, s, N, i). In each case, the green line describes a

primary image while the others are for secondary images. A video animation for these

images can be found here. Credit to [5]
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3

I N F L U E N C E O F A S U R RO U N D I N G P L A S M A

3.1 I N T RO D U C T I O N

Nowadays, we are entering an exciting new era of precise astronomical observations of black holes.

The observations with gravitational waves have achieved a celebrating breakthrough in recent years

[16, 17, 18, 19, 20]. Meanwhile, the Event Horizon Telescope (EHT) collaboration is making efforts

on capturing the first image of an astrophysical black hole through electromagnetic wave observations

[33]. Therefore, there is increasing interest in studying theoretical templates for those observations

among the gravity community [93, 35]. The optical signature of a high-spin Kerr black hole at EHT

has been studied recently in Refs. [5, 55, 94], where the authors found some striking signatures which

may serve as a ‘smoking gun’ to identify a high-spin black hole in the universe. A generalization

of these signatures for a Kerr-like black hole in a modified gravity has been discussed in Ref. [1].

In these studies, the light rays were assumed as lightlike geodesics of the spacetime without being

influenced by the medium they passed through. However, an astrophysical black hole is usually

surrounded by a complicated environment (such as a corona, a plasma and jets, etc.) and photons

near the black hole have to pass through this before reaching to an observer far away from the
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black hole. In general, the influence of these surroundings on astronomical observations can not be

neglected. Then, what about the signatures at EHT if we take this influence into consideration?

Though there are various forms of matter surrounding a black hole, in this chapter we will only

concentrate on the influence of a plasma. Plenty of astronomical phenomena of a black hole in a

plasma have been studied ever since the 1960s [95, 96] while there were also some recent studies on

gravitational lensing [97, 98, 99, 100, 101, 102, 103], and shadow of black holes [104, 105, 106, 103,

107] and wormholes [108]. Here, we are aiming to find the influence of a plasma on: a) the shape and

size of shadow for a high-spin black hole, and b) the image of an orbiting emitter (“hot spot”) near

the black hole. To achieve this target analytically, we will consider several idealized plasma models

which have power-law-like distributions and satisfy a separation condition proposed by Perlick and

Tsupko [107]. The shadow for a Kerr black hole in a plasma has been studied in Refs. [105, 107, 109].

However, it is worth to revisit this for a high-spin black hole since doing so helps one to understand

the image of a hot spot (and thus, the signature at EHT) better. Moreover, in contrast with these

works, we will calculate the shadow either using a different method or with different plasma models

(or both). The complete signature at EHT should be the combined information of the black hole

shadow and the signal from the hot spot. In addition to the influence on the size and shape of a black

hole discussed in [107, 109], we find that there is a special segment of the shadow edge originating

from the near-horizon region and is approximately the same for both of the power-law-like models

(108) and (109). Moreover, the image position and redshift of the hot spot are obviously influenced

by the plasma as well. Furthermore, this observational signature is frequency-dependent and there is

a greater influence on light rays with lower frequencies.

This chapter is organized as follows. In Sec. 3.2, we review the photon motion in Kerr spacetime

with a plasma and introduce two plasma models with radial power-law-like distributions to be con-

sidered later. In Sec. 3.3, we revisit the shadow of a Kerr black hole in the presence of a plasma, in

particular, we study the extremal limit of the shadow and the near horizon extremal Kerr line (NHEK-
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line). In Sec. 3.4, we write down the lens equations for an orbiting emitter and find solutions for a

near-extremal black hole to the subleading order in the deviation from extremality. In Sec. 3.5, we

present the results for the observational appearance of this orbiting emitter and illustrate these with

figures. In Sec. 3.6, we give a summary and short conclusion.

3.2 P H OT O N M OT I O N I N K E R R S PAC E T I M E W I T H A P L A S M A

3.2.1 Photon motion

We work in the Kerr spacetime which is thought to describe astrophysical black holes in our universe.

The Kerr metric in Boyer-Lindquist coordinates, x = (t, r, θ, φ), is given by

ds2 = −∆Σ
Ξ

dt2 +
Σ
∆

dr2 + Σdθ2 +
Ξ sin2 θ

Σ
(dφ−Ωbhdt)2, (91)

where

Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2, (92a)

Ξ = (r2 + a2)2 − ∆a2 sin2 θ, Ωbh =
2aMr

Ξ
. (92b)

We consider that there exists a non-magnetized pressureless plasma with electron frequency [97]

ωp(x)2 =
4πe2

me
Ne(x), (93)

where e is the electron charge, me is the electron mass, and Ne is the electron number density. In the

geometric optics limit, the Hamiltonian for a photon propagation through this plasma can be written

as [97]

H(x, p) =
1
2

(
gµν(x)pµ pν + ωp(x)2

)
, (94)

where pµ are the components of the four-momentum of the photon and gµν are the contravariant

components of the metric. p = (pt, pr, pθ , pφ) are the canonical momentum coordinates.
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Note that the plasma has a refractive effect on the photon trajectories and the index of refraction

n(x, ω) is given by

n(x, ω)2 = 1−
ωp(x)2

ω(x)2 , (95)

where ω(x) is the photon frequency with respect to the plasma medium. For a photon to be able to

propagate through this medium, one should require

ω(x) ≥ ωp(x). (96)

For details with regard to the plasma theory, readers may refer to Refs. [97, 98].

In order to find the equation of motion for photons in the Kerr spacetime with a plasma, we should

take care of the plasma frequency. In the vacuum case ωp(x) = 0, there are four constants of the

photon motion: the hamiltonian H = 0, the total energy E = −pt, the angular momentum L = pφ

and the Carter constant Q = p2
θ − cos2 θ(a2 p2

t − p2
φ csc2 θ). Provided these constants, the photon

trajectories are uniquely determined and one may obtain them by solving the Hamilton-Jacobi (H-J)

equation. However, this is no longer the case in general if there is a non-zero plasma. For photons

propagating through a plasma, the Hamiltonian H = 0 still holds. If we assume that the plasma

frequency depends only on r and θ, then E = −pt and L = pφ are still constants of photon motion

since ∂tH = 0 and ∂φH = 0. For later reference, we introduce ω0 to denote the photon frequency

measured at infinity, then we have E = h̄ω0 (hereafter we set h̄ = 1 for convenience). Next, to make

the H-J equation separable, the plasma frequency ωp(r, θ) should take the following form [107],

ωp(r, θ)2 =
fr(r) + fθ(θ)

r2 + a2 cos2 θ
, (97)

with some functions fr(r) and fθ(θ). Therefore, we can get a generalized separation constant,

K : = p2
θ + (aω0 sin θ − L csc θ)2 + fθ(θ)

= −∆p2
r +

1
∆
[
(r2 + a2)ω0 − aL

]2 − fr(r). (98)
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Follow the convention of Refs. [4, 5], we define the generalized Carter constant as Q = K − (L−

aE)2, the explicit expression is

Q = p2
θ − cos2 θ(a2ω2

0 − L2 csc2 θ) + fθ(θ). (99)

Note that, if fθ(θ) is a nonnegative function, we haveQ− fθ(θ) ≥ 0 for any photon passing through

the equatorial plane since Q− fθ(θ) = p2
θ ≥ 0 when θ = π/2. It is convenient to introduce the

following rescaled quantities and functions,

λ̂ =
L

ω0
, q̂ =

√
Q

ω0
, f̂r =

fr

ω2
0

, f̂θ =
fθ

ω2
0

. (100)

In the vacuum case, the trajectory of a photon is independent of its frequency and may be described

only by the rescaled quantities λ̂ and q̂ [37]. In the presence of a plasma, however, the photon

trajectory does depend on the photon frequency and should be described also with an additional

variable ω0 (since the functions fr and fθ are not variables of photons). This can be seen from the

trajectory equations (101).

Provided that the surrounding plasma satisfy the separation condition (97), one can obtain the

equation of motion for photons by using the H-J method, as follows,

−
∫ r dr
±
√
R(r)

= −
∫ θ dθ

±
√

Θ(θ)
, (101a)

∆φ = −
∫ r a(2Mr− aλ̂)

±∆
√
R(r)

dr +−
∫ θ λ̂ csc2 θ

±
√

Θ(θ)
dθ, (101b)

∆t = −
∫ r [

r4 + a2(r2 + 2Mr
)
− 2aMrλ̂

] dr
±∆
√
R(r)

+−
∫ θ a2 cos2 θ

±
√

Θ(θ)
dθ, (101c)

where

R(r) = Rvac(r)− ∆ f̂r(r), (102)

Θ(θ) = Θvac(θ)− f̂θ(θ), (103)

with

Rvac(r) =
(
r2 + a2 − aλ̂

)2 − ∆
[
q̂2 +

(
a− λ̂

)2
]
, (104)

Θvac(θ) = q̂2 + a2 cos2 θ − λ̂2 cot2 θ. (105)
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The functionsR(r) and Θ(θ) are the radial and angular potentionals in a plasma, respectively, while

the functionsRvac(r) and Θvac(θ) are the corresponding potentials in the vacuum case, respectively.

Note that the trajectory equations have the same formulas as those in the vacuum case but the cor-

rections are implied in these potentials. The integrals in these equations are to be evaluated as path

integrals along each trajectory, thus, we use slash notations to distinguish these with ordinary inte-

grals. The plus/minus sign in these equations are chosen to be the same as those of the corresponding

directions of photon propagation (sign of dr or dθ). The direction is changed every time when the

light ray meets a turning point where eitherR(r) or Θ(θ) vanishes.

To summarize, the plasma contributes an additional term to the Hamiltonian of a photon, which

makes the H-J equation non-separable in general. By assuming that the plasma frequency satisfies

the separation condition (97), the equation of motion for photons can be obtained and the influence

of a plasma appears only from the radial potentialR(r) and angular potential Θ(θ).

3.2.2 Plasma models

As the black hole is stationary and axisymmetric, we will consider several specific distributions for

the surrounding plasma which depend only on r and θ. The simplest and well-studied model is the

radial power-law density [98] which depends only on r and satisfies

ωp(r)2 =
4πe2Ne(r)

me
, Ne(r) =

N0

rh , (106)

where N0 is a constant and h ≥ 0. Unfortunately, this does not satisfy the separation condition (97),

thus the above mentioned procedure for obtaining photon motion can not be applied. Nevertheless,

we may assume the plasma density has an additional θ dependence such that the separation condition

is satisfied, and we make a choice for fr(r) and fθ(θ) in Eq. (97) as [107]

fr(r) = Crk, fθ(θ) ≥ 0, (107)
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where C > 0 and 0 ≤ k ≤ 2. Since the plasma density is supposed to be negligible at infinity, we

are going to consider two models with k = 0 and k = 1.

Model 1: A plasma density with fr(r) = 0, fθ(θ) = ω2
c M2 [or equivalently fr(r) = ω2

c M2,

fθ(θ) = 0] such that ω2
p ∼ 1

r2 at large r,

ωp(r, θ)2 =
ω2

c M2

r2 + a2 sin2 θ
. (108)

Model 2: A plasma density with fr(r) = ω2
c Mr, fθ(θ) = 0 such that ω2

p ∼ 1
r at large r,

ωp(r, θ)2 =
ω2

c Mr
r2 + a2 sin2 θ

. (109)

We have introduced a constant ωc in these models. For later reference, we will also introduce a

rescaled constant, ω̂c = ωc/ω0. We name the plasma distributions with the form of Eqs. (97) and

(107) the power-law-like models for the reason that the distributions are approximately the same as

the power-law models at large r.

Since we are interested in the optical appearance of a black hole, we may expect the existence of

a light ray anywhere in the outside of the black hole. As mentioned following Eq. (100), light prop-

agation in a plasma does depend on the photon frequency ω0. The condition (96) gives a constraint

between the plasma frequency ωp and the photon frequency ω0 [107],

ωp(r, θ)2 ≤ ω(r, θ)2 = −gtt(r, θ)−1ω2
0, (110)

where

gtt = 1− 2Mr
r2 + a2 sin2 θ

. (111)

As we have already seen from the Eqs. (101), in the presence of a plasma, the relevant quantity to

describe a photon trajectory (and thus the observables) is the ratio of plasma frequency and photon

frequency which can be represented by the ratio ω̂c for these two models. Note that this ratio may

reflect two kinds of different physics. On the one hand, if we consider the photons only with a given

frequency, different ratios represent different case studies of plasmas with different densities. On
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the other hand, for a given plasma distribution, different ratios represent the chromatic effect of the

plasma. Later we will study the dependence of the optical appearance on the ratio ω̂c.

For the models (108) and (109), we always have ωp < ωc. Therefore, the photon trajectory is

similar as it would propagate in vacuum spacetime if ω̂c � 1 [as from Eq. (95) the refraction index

n→ 1]. However, if ω̂c � 1, it is even impossible for a photon to propagate in the plasma.

Even though the plasma models discussed here are highly idealized, it is possible to extract some

approximate effects of a real plasma by using these toy models. Therefore, we will assume the

plasma density satisfies the separation condition (97) and mostly focus on the power-law-like models

throughout the rest of this chapter. For convenience, later we will also use the subscripts s and o to

represent the source of photons and the observer, respectively.

3.3 S H A D O W O F A N E X T R E M A L K E R R B L AC K H O L E I N A P L A S M A

In Ref. [107], the Kerr shadow in a plasma has been analytically calculated by using the celestial

angles [42] which is appropriate for any position of the observer. Moreover, it is also firstly shown

in [107] that the analytical approach based on solving the trajectory equations is possible only for

a plasma distribution with the form of (97)1 (as was reviewed in Sec. 3.2). In addition, the shadow

also has been numerically performed in Ref. [109]. The numerical approach is, in principle, possible

for any distribution of plasma (for example, the power-law form and exponential form have been

discussed in [109]).

Here, we revisit the shadow for a Kerr black hole in the presence of a plasma by using the screen

coordinates [37] (also refer to as impact parameters in literature) which is appropriate for observers

at large distances. In particular, we will study the extremal limit of the shadow and take care of

1 Previously, Atamurotov et al. [105] have analytically calculated the shadow of a Kerr black hole in a plasma but without

taking into consideration the separation condition.
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the photons in the near-horizon region, whose images are supposed to appear on a vertical line in

the vacuum case, the so-called NHEKline [5]. In Sec. 3.4, we will further study the image of an

orbiting emitter (hot spot) in this near-horizon region to seek for more signals related to astronomical

observations.

The edge of a shadow corresponds to unstable spherical photon orbits around a black hole. For

spherical photon orbits we have

R(r) = R′(r) = 0, (112)

where prime denotes derivative with respect to r. Solving these equations, we have

λ̂ = −M(a2 − r2) + ∆r
√

1− δ

a(r−M)
, (113a)

q̂ =
r3/2

a(r−M)

[
2M∆

(
1 +
√

1− δ
)
− r(r−M)2

+(r− 2M)∆δ− a2(r−M)2

r3 f̂r(r)
]1/2

, (113b)

where we have introduced

δ =
r−M

2r2 f̂ ′r(r). (114)

Note that in the near-horizon limit r → M, we have δ → 0. As discussed below Eq. (99), photon

orbits crossing the equatorial plane satisfy

q̂2 − f̂θ(θ) ≥ 0. (115)

Plugging Eqs. (113b) into Eq. (115) gives a region of spacetime filled with such spherical photon

orbits.

We use the screen coordinates (α, β) [Eq. (52)] to describe the image on the sky. The edge of a

black hole shadow is given by the curve (α, β) with Eq. (113) for λ̂ and q̂ being plugged in, as

α(r) = − λ̂(r)
sin θo

, (116a)

β(r) = ±
√

q̂(r)2 + a2 cos2 θo − λ̂(r)2 cot2 θo − f̂θ(θo) = ±
√

Θ(θo). (116b)
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The parameter r ranges over the photon region where unstable spherical photon orbits exist. The

photon region is determined by the Eq. (115) (spherical) and Θ(θo) ≥ 0 (i.e., β is real such that the

photons can reach to a distant observer thus the orbits are unstable).

3.3.1 Extremal limit and NHEKline

Now we consider the extremal limit following the procedure of Ref. [5]. Letting a → M in

Eqs. (113), we have

Mλ̂ = M2 + Mr(1 +
√

1− δ)− r2M
√

1− δ, (117a)

Mq̂ =

[
r3
(

2M(1 +
√

1− δ)− r + (r− 2M)δ
)
−M2 f̂r(r)

]1/2

. (117b)

Then the condition (115) on the radius r is expressed explicitly as

r3

M2

[
2M(1 +

√
1− δ)− r + (r− 2M)δ

]
≥ f̂r(r) + f̂θ(θ) (118)

The shadow edge is then obtained by plugging Eqs. (117) into Eqs. (52), as follows

α = −
[

M + r(1 +
√

1− δ)− r2

M

√
1− δ

]
csc θo, (119a)

β = ±
[

r3

M2

(
2M(1 +

√
1− δ)− r + (r− 2M)δ

)
+(M2 − α2) cos2 θo − f̂θ(θo)− f̂r(r)

]1/2

. (119b)

For different choices of a plasma model and an inclination θo of the observer, the curves given by

Eqs. (119) may either be closed or open. In case of an open curve, there are two endpoints correspond

to r = M, (i.e., photons originate from the event horizon). For a radial power-law-like plasma with

fr(r) = M2−kω2
c rk, (0 ≤ k ≤ 2), fθ(θ) = 0, (120)
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the endpoints are at [plugging r = M into Eqs. (119)],

αend = −2M csc θo, (121a)

βend = ±M
√

3 + cos2 θo − 4 cot2 θo − ω̂2
c . (121b)

These endpoints exist provided that βend is real, which gives a critical inclination for the observer,

θcrit < θo < π − θcrit, where

θcrit = arctan

√
8− ω̂2

c −
√
(12− ω̂2

c )(4− ω̂2
c )√

(12− ω̂2
c )(4− ω̂2

c )− 6 + ω̂2
c

. (122)

Note that there are no endpoint at all for ω̂c >
√

3 and in that case the given curve is closed. Note

also that a real βend also requires that

ω̂c ≤ ω̂crit =
√

3 + cos2 θo − 4 cot2 θo. (123)

Later we will consider that the observer is located at a nearly edge-on inclination, θo = 84.27◦

(corresponding to ω̂crit ≈
√

2.97), thus, for this observer the endpoints exist provided that ω̂c .

√
2.97. For later reference, we refer to the plasma with ω̂c .

√
2.97 as “low density” plasma,

otherwise as “high density” plasma.

Since the edge of a shadow does close for all a < M, such an open curve has missed an impor-

tant piece originating from the near-horizon sources. To recover the missing part, we consider the

extremal limit again by introducing

a = M
√

1− κ2, r = M(1 + κR), (124)

where κ is a small parameter. Then for photons orbits which cross the near-horizon region, Eqs. (113)

give

λ̂ = 2M +O(κ), q̂ =

√
M2(3− 4

R
)− f̂ (0)r (r) +O(κ), (125)

where f̂ (0)r (r) represents the leading order term in κ. Note that the plasma has no influence on λ̂ in

this limit. For the radial power-law-like plasma with (120), we have

λ̂ = 2M +O(κ), q̂ = M

√
(3− ω̂2

c )−
4

R2 +O(κ). (126)
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Then the other piece of shadow edge (originate from near-horizon region) is traced by

α(R) = −2M csc θo +O(κ), (127a)

β(R) = ±M

√
3 + cos2 θo − 4 cot2 θo − ω̂2

c −
4

R2 +O(κ). (127b)

From the condition (115) and the requirement β ∈ R, we can get the allowed range of R, as

R ∈
[ 2√

3 + cos2 θo − 4 cot2 θo − ω̂2
c

, ∞
)
+O(κ). (128)

As κ → 0 and in the allowed range of R, we have

α = −2M csc θθo , (129a)

|β| < M
√

3 + cos2 θo − 4 cot2 θo − ω̂2
c . (129b)

This gives precisely the missing part of an open curve, which is the generalized NHEKline [5] in

the presence of a plasma. Note that since both of the plasma models (108) and (109) have the form

of (120), this NHEKline [Eq. (129)] is applicable for both of them and is exactly the same for each

particular value of ω̂c. However, curves given by Eq. (119) for these models are different.

To summarize, for an observer at θo = 84.27◦, the shadow is given either by Eq. (119) for ω̂c >

√
2.97 or by the union of Eqs. (119) and (129) for 0 ≤ ω̂c .

√
2.97. Note that any near-horizon

source in a plasma having the above mentioned models with ω̂c >
√

2.97 can not be seen by this

observer. We will show these with figures and discuss them in detail in subsection 3.3.2.

3.3.2 Silhouette of black hole

We now show the silhouette of a black hole shadow observed at θo = 84.27◦ for the two specific

plasma models (108) and (109) in Fig. 11. For model 1, ω2
p = ω2

c M2/(r2 + a2 cos2 θ), we choose

fr = ω2
c M2 and fθ = 0 (or equivalently, fr = 0 and fθ = ω2

c M2); for model 2, ω2
p = ω2

c Mr/(r2 +

a2 cos2 θ), we choose fr = ω2
c Mr and fθ = 0. The silhouettes are obtained by plugging these
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specific functions f̂r and f̂θ into Eq. (119) [and Eq. (129)] over the allowed range of r for each given

value of ω̂c. This allowed range can be found numerically from the inequality (118).

These exhibit the following dependencies of the shadows on the plasma model and on the value of

ω̂c. Each of the shadow edges for a “low density” plasma has a vertical part while that for a “high

density” plasma does not. The shadows shrink in both model 1 and model 2 when ω̂c is increased.

Moreover, at a given value of ω̂c, the shadow shrinks more in model 2 than in model 1. This is

because the model 2 has a larger plasma density at a given distance r since the density scales like 1/r

while in model 1 it scales like 1/r2. Furthermore, in both model 1 and 2, photons in the near-horizon

region have contributions to the shadows only for ω̂c <
√

2.97 (which gives the NHEKlines). At

each same value of ω̂c, the NHEKlines for these two models are the same. When ω̂c goes from 0 to

√
2.97, the NHEKline appears at the same coordinate of α while the maximum absolute value of β

decreases.

Note that the plasma distributions of example 2 and example 3 in Ref. [107] also have the power-

law-like form (107) with ω2
p ∼ r−2 and r−3/2, respectively. The results in [107] are exhibited with

figures for an observer at ro = 5M and θo = π/2 and for spin a = 0.999M. While our models

1 and 2 have ω2
p ∼ r−2 and r−1, respectively, and the results are obtained for a → M, ro → ∞

and θo = 84.27◦. We find a good agreement between our results and those in [107] on the general

features discussed above (except details of the NHEKlines since these have not been discussed in

[107]). Moreover, the critical ratios for the photon regions are also quantitatively comparable among

these results up to factors in these plasma models and the approximations of observers’ locations and

black hole spins. Furthermore, these features for the power-law-like plasma models also qualitatively

agree with those for the power-law models [with the form of (106)] which have been numerically

performed in [109] for ω2
p ∝ r−1, r−2 and r−3. Therefore, even through the separation condition (97)

has been proposed based on a mathematical motivation [107], it is nevertheless physically effective.
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Figure 11.: Shadow edge of an extremal Kerr black in the presence of a plasma for model 1 (left)

and model 2 (right), respectively, seen from an inclination of θo = 84.27◦. For model

1, we have ω2
p = ω2

c M2/(r2 + a2 cos2 θ); for model 2, we have ω2
p = ω2

c Mr/(r2 +

a2 cos2 θ). The photon regions for a spherical orbit crossing the equatorial plane vanish

at ω̂2
c ≈ 27 for model 1 and at ω̂2

c ≈ 8 for model 2. For both models, we have ω̂2
c =

ω2
c /ω2

0 = 0 (red), 0.5 (blue), 1.2 (green), 2.5 (magenta), 5 (orange) and 7 (black). In

addition, the gray curves have ω̂2
c = 26 (left) and 7.8 (right). The dashed lines are

given by Eq. (119) and the solid vertical lines are given by Eq. (129). Note that for

ω̂2
c = 0.5, 1.2 and 2.5, the NHEKlines are overlapped with the red solid lines but have

shorter lengths which begin and end at the endpoints of the corresponding dashed lines.
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Now we consider an isotropic point emitter (hot spot) orbiting on a circular and equatorial geodesic

at radius rs around a Kerr black hole in the presence of a plasma. This point emitter is supposed to

be much heavier than the plasma, thus, we may neglect the influence of the plasma on the motion

of this emitter. The angular velocity for such an emitter is given by [83] (same as in vacuum Kerr

spacetime)

Ωs = ±
M1/2

r3/2
s ± aM1/2

, (130)

and the innermost stable circular orbit (ISCO) is given by

rISCO = M
[
3 + Z2 −

√
(3− Z1)(3 + Z1 + 2Z2)

]
, (131)

where

Z1 = 1 + (1− a2
?)

1/3[(1 + a?)1/3 + (1− a?)1/3], Z2 =
√

3a2
? + Z2

1 , a? =
a
M

. (132)

3.4.1 Lens equations

The orbiting emitter at (ts, rs, θs, φs) is connected to an observer at (to, ro, θo, φo) by photon trajecto-

ries described by Eqs. (101). In these equations, the lower and upper bounds for the radial integrals

are chosen as rs and ro, respectively, while the lower and upper bounds for the angular integrals are

chosen as θs and θo, respectively. In addition, we have ∆φ = φo − φs and ∆t = to − ts. Using the

relation φs = Ωsts, we have

∆φ−Ωs∆t = φo −Ωsto, (133)

then the unknowns φs and ts can be decoupled from the Eqs. (101b) and (101c).

Following Ref. [5], we rearrange these Eqs. (101) as the Kerr lens equations in the presence of a

plasma. First, we introduce parameters b ∈ {0, 1}, m ∈ Z≥0 to denote the number of radial and
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angular turning points, respectively, and s ∈ {−1, 1} to denote the final orientation of pθ . Then we

set φo = 2πN with N ∈ Z recording the net winding number executed by the photon relative to

the emitting source between its emission time and reception time. Finally, the lens equations can be

written as

Ir + bĨr = Gm,s
θ , (134a)

Jr + bJ̃r +
λ̂Gm,s

φ −Ωsa2Gm,s
t

M
= −Ωsto + 2πN, (134b)

where Ir, Ĩr, Jr and J̃r are radial integrals defined in appendix A and Gm,s
i (i ∈ {t, θ, φ}) are angular

integrals defined in appendix B. These equations have the same formulae as those in vacuum Kerr

spacetime, however, the differences are implied in the integrals. Solving these lens equations for

given parameters m, s, b and given values of rs and θo, we can write the conserved quantities λ̂ and q̂

in terms of to which label the photon trajectories connecting the source to an observer.

3.4.2 Near-extremal solutions

We assume the emitter is on, or near, the direct ISCO of a near-extremal Kerr black hole. It is

convenient to introduce a dimensionless radial coordinate R which is defined through the Boyer-

Lindquist radius r by

R =
r−M

M
. (135)

We also introduce a small parameter ε � 1 to describe the condition for the near-extremality of a

black hole, as follows,

a = M
√

1− ε3. (136)

Under this condition, the ISCO [Eq. (131)] is located away from the event horizon a coordinate

distance ∼ ε,

RISCO = 21/3ε +O(ε2), (137)
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thus, the radial coordinate for the emitter can be written as

rs = M(1 + εR̄) +O(ε2), R̄ ≥ 21/3, (138)

which means that the emitter is in the near-horizon region. Even though the motion of this emitter is

not affected by the plasma, its image can only possibly be seen if the plasma density has ω̂c .
√

3 as

the light rays are refracted by the plasma, and in that case the image appears on the NHEKline (see

discussions in Sec. 3.5.1).

Following Ref. [4, 5], we introduce new quantities λ and q instead of using λ̂ and q̂

λ̂ = 2M(1 + ελ), q̂ = M
√

3− q2. (139)

As mentioned below Eq. (99), we have Q − fθ(θ) ≥ 0 for those photons emitted from equatorial

plane. Thus, we have

q2 ≤ 3− f̂θ(θ)

M2 . (140)

In the equatorial plane, motion of photons has q =
√

3− f̂θ(θ)/M2. We will show in Sec. 3.4.2.3

that a light ray originating from this emitter to an observer at far region must also have lower bounds

on q2 and thus we can always have a positive q. Together with the upper bound (140), we can get the

range for a specific plasma model. For the model 1 [Eq. (108)], we may either choose fr(r) = 0 and

fθ(θ) = ω2
c M2, then we have

0 < q2 ≤ 3− ω̂2
c ; (141)

or choose fr(r) = ω2
c M2 and fθ(θ) = 0, then we have

ω̂2
c < q2 ≤ 3. (142)

Note that the range of q may depend on the choice of fr and fθ , however, the quantity q̂2− f̂θ remains

unchanged in any case. For the model 2 [Eq. (109)], we choose fr(r) = ω2
c Mr and fθ(θ) = 0, then

we have

(5ω̂2
c − ω̂4

c )/4 < q2 ≤ 3, q2 > ω̂2
c . (143)
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Plugging the expressions (136), (138) and (139) into the lens equations (134) gives the near-

extremal lens equations. Then for given values of rs and θo, we solve these equations to the sub-

leading order in ε for the plasmas with distributions (108) and (109), respectively, following the

procedure of Ref. [5].

Note that even though we have considered a near-extremal black hole with the condition (136), it

turns out that the results are identical to the subleading order in ε if we considered an extremal black

hole with a = M (same as in the vacuum case [5]).

3.4.2.1 Model 1: ω2
p = ω2

c M2/(r2 + a2 sin2 θ)

We choose fr(r) = 0 and fθ(θ) = ω2
c M2. In this case, the radial potential is the same as that in the

vacuum Kerr case [5], thus, we have the same radial integrals and then we obtain the same formulae

of solutions for the lens equations up to corrections in the angular integrals. These angular integrals

are performed in App. B.

First, we make a choice of the parameters b, m and s. Then, from the first equation (245a) we can

obtain the condition for the existence of a solution,

R̄ <
4Υ
q2

(
1 +

2√
4− q2

)
if b = 0, (144a)

R̄ >
4Υ
q2

(
1 +

2√
4− q2

)
if b = 1, (144b)

and the solution, as follows,

λ =
2Υ

4− q2

[
2− q

√
1 +

4− q2

2Υ
R̄

]
. (145)

Here, Υ > 0 is defined by

Υ ≡ q4Ro

q2 + 2Ro + qDo
e−qGm̄,s

θ , (146)

where

Do =
√

q2 + 4Ro + R2
o , (147)
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and Gm̄,s
θ is defined in Eq. (307), with

m̄ = m +
1

qGθ
log ε. (148)

Next, regarding the second equation (245b), we introduce a dimensionless time coordinate t̂o

which is restricted to unit period of the emitter,

t̂o =
to

Ts
=

Ωsto

2π
=

to

4πM
+O(ε). (149)

Thus, the second equation can be written in terms of this dimensionless time coordinate, as

t̂o = N − 1
2π

(
Jr + bJ̃r + 2Gm,s

φ − 1
2

Gm,s
t

)
, (150)

where J integrals and G integrals are given in Appendices. A and B.

Note that we have already obtained a function λ(q) [Eq. (263)] in the allowed range of q [Eq. (144)]

from the first equation, the second then gives a function t̂o(q). Inverting this function in each mono-

tonic domain gives a function qi(t̂o) for a given choice of integer N. Here we have introduced a

discrete integer i to label the monotonic parts of t̂o(q) in each of the allowed ranges of q. Since the

observational quantities can be expressed in terms of the conserved quantities λ and q, each qi(t̂o)

corresponds to a specific track segment of the emitter’s image which can be labeled by (m, b, s, N, i).

3.4.2.2 Model 2: ω2
p = ω2

c Mr/(r2 + a2 sin2 θ)

We choose fr(r) = ω2
c Mr and fθ(θ) = 0. Since the lens equations for this case are similar as those

for model 1 (see Sec. 3.4.2.3 for details), we can find the solutions in a similar way for a given choice

of parameters b, m and N. For convenience, we introduce a new parameter q̃ =
√

q2 − ω̂2
c .

The solution of the first equation (245a) and the condition of its existence are given by replacing q

with q̃ in the formulas (263) and (144), respectively, where the expression of Υ is corrected as

Υ ≡ q̃4Ro

q̃2 + (2− ω̂2
c

2 )Ro + q̃Do
e−q̃Gm̄,s

θ , (151)
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with

Do =
√

q̃2 + (4− ω̂2
c )Ro + R2

o , (152)

and Gm̄,s
θ is given in Eq. (307) with m̄ = m + log ε/(q̃Gθ).

The second equation (245b) can also be rewritten in a form as (150), however, the J integrals and

G integrals therein are different from those for model 1 (see Appendices A and B).

Similarly, we can also obtain the image track segment qi(t̂o) of the emitter labeled by (m, b, s, N, i).

3.4.2.3 Lens equations for two plasma models

In Sec. 3.4.2, we have solved the lens equations for the power-law-like plasma models 1 and 2

[Eqs. (108) and (109)] by choosing fr(r) = 0, fθ(θ) = ω2
c M2 for model 1 and fr(r) = ω2

c Mr,

fθ(θ) = 0 for model 2. In order to compare the len equations for these two models, we may

equivalently choose fr(r) = ω2
c M2, fθ(θ) = 0 for model 1 instead. Thus, the difference of the

lens equations between these two models are only imposed in the radial integrals with the function

fr(r) taken the form of fr(r) = M2−kω2
c rk. Next we expand the radial potential (102) for fr(r) =

M2−kω2
c rk (0 ≤ k ≤ 2) in the near-horizon region and in the far region, respectively. Then we have

Rn(R ∼ ε) = M4ε2[(q2 − ω̂2
c )R̃2 + 4λ(2R̃ + λ)

]
, (153a)

R f (R ∼ 1) = M4[q2 + 4R + R2 − (1− R)kω̂2
c
]
, (153b)

where we have introduced R̃ = R/ε. At every point along a photon trajectory that originates in

the NHEK region and reaches to the far region, one must have nonnegative potential R(r) ≥ 0. To

guarantee that this condition is hold in the near region, we should take q2 > ω̂2
c ; to guarantee that

this condition is hold in the far region, we should take q2 > ω̂2
c for k = 0 or q2 > (5ω̂2

c − ω̂4
c )/4 for

k = 1. Moreover, from the expansions (153) we see that the near-horizon piece of the radial integrals

for the two models are exactly the same, while even though the far region piece contains differences

among these two models, the plasma densities are very small in that region since they scale like 1/rh

(h=2 and 1, respectively).
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3.5 O B S E RVAT I O N A L A P P E A R A N C E O F T H E O R B I T I N G E M I T T E R

In the vacuum case, the images of an emitter orbiting on the ISCO of a rapidly rotating black hole

appearing on the NHEKline has a rich structure [5]. Next, we will study the influence of plasma on

these images.

3.5.1 Observational quantities

From the previous section, the photon conserved quantities q(t̂o) and λ[q(t̂o)] (along trajectories)

are obtained for the plasma models (108) and (109). These conserved quantities help to describe

the observational appearance of the emitter: the image position, redshift and flux. We have briefly

reviewed this for a general black hole (in vacuum) in Sec. 2.6.1 and will give the results for a near-

extremal black hole (in a plasma) in the following.

In the near-extremal limit and to the leading order in ε, we have (see Sec. 3.4.2)

a = M, rs = M(1 + εR̄), (154a)

λ̂ = 2M(1 + ελ), q̂ = M
√

3− q2. (154b)

Then, the apparent position (52) on the celestial sphere is expanded as

α = −2M csc θo +O(ε), (155a)

β = sM
(

3− q2 + cos2 θo − 4 cot2 θo −
f̂θ(θo)

M2

)1/2
+O(ε), (155b)

where s is the final orientation of pθ . Note that the position does not depend on λ to the leading order

and q should be in a range such that β is real. For an observer at θo = 84.27◦, this range is obtained

as 0 ≤ q .
√

2.97− f̂θ(θo)/M2. Combining with another range of q discussed in Sec. 3.4.2, we
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find that the images of a hot spot in a plasma with models 1 and 2 appear on the NHEKline (see

Sec. 3.3.1). The redshift factor is expanded as

g =
1√

3 + 4√
3

λ
R̄

+O(ε). (156)

The flux (336) is expanded as

Fo

FN
=

√
3εR̄

2Ds

qg3

sin θo
√

Θ0(θo)
√

3− q2 − f̂θ(θs)
M2

∣∣∣∣∣det
∂(B, A)

∂(λ, q)

∣∣∣∣∣
−1

, (157)

where A and B are defined in Eqs. (333), and

Θ0(θo) = 3− q2 + cos2 θo − 4 cot2 θo −
f̂θ(θo)

M2 , (158)

and

Ds =

√
q2R̄2 − 8λR̄ + 4λ2 − f̂ (0)r (rs)

M2 R̄2, (159)

with f̂ (0)r (rs) being the leading order term of f̂r(rs) in ε.

Note that these results are obtained for each given choice of discrete parameters m, s, b and N,

which corresponds to a specific image track. The full time-dependent image is completed by finding

all such tracks for all choices of these parameters. The influences of plasma on these observables are

introduced from the functions f̂r and f̂θ , as well as from the quantities λ and q which label different

photon trajectories.

3.5.2 Hot spot image

We now describe the observational quantities of the hot spot’s image with figures following the

procedure of Ref. [5] and using the open numerical code therein. The image depends on the choice

of the plasma distribution and the physical parameters Ro, θo, ε and R̄. We will consider the two
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plasma models (108) and (109) with several certain values of ω̂c, respectively. In order to compare

the results with those for the vacuum case [5], we make the following choice for these parameters:

Ro = 100, θo =
π

2
− 1

10
= 84.27◦, (160a)

ε = 0.01, R̄ = R̄ISCO = 21/3. (160b)

As described in Sec. 3.4.2, for each choice of discrete parameters m, b, s, N and an additional label

i, we can obtain an image track segment q(t̂o) [and λ(t̂o)]. The main observables for the segment

are given in Eqs. (155), (156) and (157). The completed information of the hot spot image is built up

by including all such choices of parameters (in practice, we consider only a few values of m and N

since the image for others are vanishingly small) [5]. Below we show the brightest few images for

model 1 [Eq. (108)] in Fig. 12 and for model 2 [Eq. (109)] in Fig. 13, respectively. We consider four

different values of the ratio ω̂c for each of the models and also colour-code continuous image tracks

in each of these plots.

Comparing Fig. 12 with Fig. 13, we find that the images of model 1 and model 2 (with a given

value of ω̂c) are very similar. This is because the difference between the lens equations (134) among

these two models is negligibly small. Firstly, the lens equations in the near horizon region are the

same to the leading order in ε for both models. Secondly, even though there are differences appearing

in the far region, these have a negligible influence on the image since the plasma densities decrease

with r in an inverse power-law behavior [See the results and discussions for plasma distributions with

fr(r) = M2−kω2
c rk, (k = 0, 1), and fθ(θ) = 0 in Sec. 3.4.2.3]. Therefore, here we will only discuss

the features exhibited in Fig. 12 for the model 1.

Fig. 12 shows the main observables in a plasma with ω2
p = ω2

c M2/(r2 + a2 sin2 θ), where we

have taken four different values for ω̂2
c = ω2

c /ω2
0 as 0, 0.5, 1.2 and 2.5. In each case, the green

line is for the brightest primary image while others are for the secondary images. Note that the

secondary images are, in general, much fainter than the primary image and are important only when

70



3.5 O B S E RVAT I O N A L A P P E A R A N C E O F T H E O R B I T I N G E M I T T E R

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0

β
/
β
m
a
x

ωc=0

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0
ωc= 0.5

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0
ωc= 1.2

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0
ωc= 2.5

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

F
o
/
F
N

-
ϵ
/
lo
g
ϵ

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

t

o (Phase)

g

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

t

o (Phase)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

t

o (Phase)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

t

o (Phase)

Figure 12.: Positions, fluxes and redshifts of the brightest few images of the hot spot for ω2
p =

ω2
c M2/(r2 + a2 cos2 θ) (model 1). From left to right, we have ωc/ω0 = 0,

√
0.5,

√
1.2 and

√
2.5, respectively. We have color-coded the images in the same way as that

of Ref. [5] and each monochromatic line may be composed of several continuous track

segments labeled by (m, b, s, N, i).
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Figure 13.: Positions, fluxes and redshifts of the brightest few images of the hot spot for ω2
p =

ω2
c Mr/(r2 + a2 cos2 θ) (model 2). From left to right, we have ωc/ω0 = 0,

√
0.5,

√
1.2 and

√
2.5, respectively. We have color-coded the images in the same way as that

of Ref. [5] and each monochromatic line may be composed of several continuous track

segments labeled by (m, b, s, N, i).
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different image tracks intersect. Therefore, below we will focus on the feature of the primary image.

In each of these cases, the primary image (if any) appears near the center of the NHEKline before

moving downward while peaking in brightness. The image appears periodically and the period stays

unchanged when ω̂c is increased. For ω̂2
c = 0, this corresponds to the vacuum case and the results

are agree with Ref. [5]. For a non-zero plasma, there are remarkable influences on the image position

and redshift while smaller influence on the image flux. When ω̂c is increased from zero, not only the

maximum elevation of the NHEKline (βmax) decreases but also the relative portion of the NHEKline

on which appears the image (β/βmax) decreases, and so do the redshift factor and time duration of

the image. Note that for smaller values of ω̂c the primary image is blueshifted while for larger ones

it becomes redshifted. The primary image vanishes when ω̂c is greater than a critical value and the

entire images vanish when ω̂c &
√

2.97.

3.6 S U M M A RY A N D C O N C L U S I O N

In this chapter, we investigated the observational signature of a high-spin Kerr black hole in the

presence of a surrounding plasma. We considered the plasma as a dispersive medium for photons

but neglect its gravitational effects. We assumed that the plasma distributions satisfied a separation

condition (97) proposed by Perlick and Tsupko [107] such that the photon trajectory could be solved

analytically. Then we studied the shadow of the black hole and the signal produced by a nearby hot

spot.

To obtain the optical appearance, we first found the equation of motion for photons by solving the

H-J equations under the separation condition. We found that the corrections of these equations to

the vacuum case were imposed only from the radial potential R(r) and angular potential Θ(θ) [see

Eqs. (101)]. We also introduced two special power-law-like models [(108) and (109)] which satisfied

the separation condition in Sec. 3.2.2 as simple examples which were studied in detail.
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Next, we analytically studied the photon region and shadow of an extremal Kerr black hole sur-

rounded by a plasma. For a power-law-like plasma, the photon region was determined by Eq. (118)

and the edge of a shadow was described either by the union of Eqs. (119) and (127) or by Eq. (119)

only, depending on whether the near-horizon source was in the photon region (“low” density plasma)

or not (“high” density plasma). The size of shadow decreased when the density of plasma was in-

creased and the shape of shadow was different for plasma with “low” or “high” density. Moreover, in

case of “low” density plasma, the near-horizon sources all terminated at a vertical line: the NHEKline.

We showed these in Fig. 11 and discussed the features in Sec. 3.3.2.

Then we studied the signal produced by a hot spot orbiting at the ISCO of the black hole in the

presence of a power-law-like plasma. We solved the lens equations in the near-extremal limit in

Sec. 3.4 and obtained analytical formulae for the observational quantities: the image position (155),

the image redshift (156) and the image flux (157). Noted that since the ISCO of a high-spin black

hole was in the near-horizon region, this signal could only possible be seen in a “low” density plasma.

The plasma had a remarkable influence on the brightest image: the segment on the celestial sphere

for the image to appear was smaller than that in the vacuum case and so was the redshift. We showed

these in Fig. 12 and 13 and discussed the features in Sec. 3.5.2.

In a real astrophysical setup (given the parameters for the black hole and the surrounding plasma),

the ratio ω̂c depends on the frequency of photon, thus, the observational signatures that we discussed

above are all chromatic. Note that the ratio ω̂c is greater for a photon with lower frequency, thus,

there is a larger influence on the trajectory of such photon. Combining the information of black hole

shadow and hot spot signal, we can sketch a picture (template) for what we may see from the EHT.
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4

K E R R - M O G

4.1 I N T RO D U C T I O N

Black holes play an important role both in understanding gravity theories and in explaining astronom-

ical phenomena. There have been abundant observational evidences for black holes in our universe

[110, 111, 112]. Inspiringly, we are entering a new era of more precise astronomical observations

with the efforts of LIGO, Virgo, eLISA, EHT, BlackHoleCam, ATHENA, SKA et al. Among those,

EHT is particularly interesting since it aims at observing the event horizon of a black hole which is

its most striking feature. Thus we will be able to observe black holes significantly closer to the event

horizon and obtain their images (shadows). Hence there is an urgent need for theoretical templates

to identify the images that one expects to observe. This has stimulated recent theoretical works pre-

dicting the signals that EHT may possibly observe [113, 114, 115, 116, 117, 5, 55] and examining

the type of properties of gravity that the shadows can inform us of [35, 118, 119].

Recently, an analytical method was proposed to compute the observational signature of a near-

extremal (high-spin) Kerr black hole [5]. The authors considered an isotropically emitting point

source (“hot spot”) orbiting near a rapidly spinning Kerr black hole and found that the primary image

and secondary images appear on a vertical line segment which constitutes a portion of the black hole
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shadow. Ref. [5] also discussed the positions, fluxes and redshift factors of these images in detail,

which provide a unique signature for identifying a high-spin Kerr black hole.

Even though the Kerr solution predicted by general relativity (GR) is widely expected to de-

scribe astrophysical black holes, there are indications both from physics and astrophysics that GR

is modified. Therefore, it is important to obtain templates based on different gravitational theories

[81, 120, 121, 122, 123, 124, 125, 77]. One of these candidates is the scalar-tensor-vector (STVG)

modified gravitational (MOG) theory [77]. The motivation of this theory is to construct a covari-

ant theory of gravity without invoking dark matter, since the hypothesized dark matter has not been

observed so far, to release the discrepancies between theoretical predictions of GR and some astro-

nomical observations at the cosmological or galactic scale. For the same motivation, a series of

theories has been proposed prior to the MOG theory, namely, the Modified Newtonian Dynamics

theory (MOND) [79] and its relativistic extensions (for a review see Ref. [126]). Independently,

Moffat proposed the MOG theory by adding a massive vector field to the Einstein-Hilbert action

and replacing constants of the ordinary gravity theory by scalar fields [77]. The MOG theory has

successfully explained Solar system observations [77], galactic rotation curves [127], dynamics of

clusters of galaxies [128] and cosmological data [129]. However, it still remains to be tested in the

strong gravity regime [130]. The EHT might hopefully provide such a test.

The static and rotating solutions of MOG were obtained in Ref. [80] and followed by research

works examining various aspects of these black holes [131, 44, 132, 133, 134, 130, 135, 136, 137].

The particular case of rotating black holes known as Kerr-MOG (KM) black holes have gained more

astrophysical interests since the observed black holes are thought to be rotating. For example, the

particle dynamics [135], the innermost stable circle orbit [134], the accretion disks [130] and the

relativistic jets [133] have been studied. Furthermore, the shadows cast by MOG black holes have

been studied in Ref. [44], in which it was shown that the sizes of these shadows increase significantly
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as the free modified parameter is increased. However, the shadow is expected to exhibit further

signals which need to be clarified, such as its shape and images of orbiting hot spots (if any) on it.

The aim of this chapter is to obtain the shadow cast by a near-extremal KM black hole, following

the method of Ref. [5]. Moreover, we will study the images of an isotropically emitting point source

orbiting this black hole to explore further signatures. There are two reasons for us to consider the

near-extremal case. First, the nice properties that the near-extremal case possess enable us to apply a

powerful computational method. Second, a large amount of observed supermassive black holes are

thought to be rotating very rapidly [4], which is the near-extremal case at least in Kerr spacetime. The

signatures we obtained have the following properties. The sizes of shadows cast by near-extremal

KM black holes decrease when the modified parameter is increased. The signals produced by the

orbiting hot spot are similar to those produced in a high spin Kerr (the extremal value of the reduced

spin J/M2 is 1) [5]. However, the extremal KM black hole can have a reduced spin with a finite

amount below 1 (for the cases we will consider, it ranges from 0.717 to 1) which gives a wider

range of possible spin for a near-extremal astrophysical black hole. Furthermore, the observational

appearance of the hot spot is also quantitatively different from Kerr. For example, when the modified

parameter is increased from zero, the flux increases and the typical redshift factor for the secondary

images also increases. These signatures appear periodically with period greater than that of Kerr.

The critical allowed inclination for an observer to see this effect also increases in the MOG cases.

This provides other possible signatures for the EHT to test.

This chapter is organized as follows. In Sec. 4.2, we present a brief introduction to the MOG theory

and KM black hole. In Sec. 4.3, we set up the ray-tracing problem for a general KM black hole and

write down the equations to be solved. In Sec. 4.4, we solve the equations in the near-extremal limit

to the subleading order in the deviation from extremality. In Sec. 4.5, we compute the shadow of a

non-extremal KM black hole and discuss its extremal limit. In Sec. 4.6, we present our results with
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figures and discuss these in detail. We furthermore compare our results with that of the Kerr black

hole. We give a summary in Sec. 4.7.

4.2 M O G T H E O RY A N D K E R R - M O G B L AC K H O L E

We will restore the Newtonian constant GN for a while in order to introduce the modified gravity

(MOG) theory. The MOG theory is also referred to as the scalar-tensor-vector gravity (STVG),

whose action is given by [77]

S = SGrav + Sφ + SS + SM, (161)

where

SGrav =
1

16π

∫
d4x
√
−g

1
G

R, (162)

Sφ = −
∫

d4x
√
−g
[
ω
(1

4
BµνBµν −

1
2

µ̃2φµφµ

)]
, (163)

SS =
∫

d4x
√
−g
[

1
G3

(1
2

gµν∇µG∇νG−V(G)
)

+
1

µ̃2G

(1
2

gµν∇µµ̃∇νµ̃−V(µ̃)
)
+

1
G

(1
2

gµν∇µω∇νω−V(ω)
)]

. (164)

Here, gµν is the spacetime metric and ∇µ is the covariant derivative compatible with this metric,

R is the Ricci scalar, φµ represents a Proca-type massive vector field with µ̃ being its mass, and

Bµν = ∂µφν − ∂νφµ is the strength tensor of the vector field; G(x), µ̃(x) and ω(x) are the scalar

fields and V(G), V(µ̃) and V(ω) are the corresponding self-interaction potentials. The term SM in

the MOG action stands for possible matter distributions.

In order to find black hole solutions in the MOG theory, it is plausible [80] to make some sim-

plifications for the action by neglecting the mass µ̃ of the vector field, fixing the vector coupling to

ω ≡ 1 and defining an enhanced gravitational constant as

G = GN(1 + χ), ∂µG = 0 (165)
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with χ being a free modified parameter of the MOG theory. Given this approximation, the matter-free

MOG action becomes

S =
1

16πG

∫
d4x
√
−gR− 1

4

∫
d4x
√
−gBµνBµν. (166)

The field equations are then given by

Gµν = −8πGTφµν, ∇νBµν = 0, ∇λBµν +∇νBλµ +∇µBνλ = 0 (167)

where Gµν is the Einstein tensor and Tφµν is the energy-momentum tensor for the vector field φµ

given by

Tφµν = −1
4

(
B σ

µ Bνσ −
1
4

gµνBσβBσβ

)
. (168)

We observe that this MOG action and field equations appear similar as those for the Einstein-Maxwell

theory [see Eqs. (3) and (4) and note the difference from G = (1 + χ)GN]. The solution for a

stationary, axisymmetric metric gµν and a vector field φµ of these MOG field equations (167) were

found in [80], which in Boyer-Lindquist coordinates read [133]

ds2 = −∆
Σ
(dt− a sin2 θdφ)2 +

sin2 θ

Σ
[(r2 + a2)dφ− adt]2 +

Σ
∆

dr2 + Σdθ2, (169)

φ = −
√

χGN Mr
Σ

(dt− a sin2 θdθ), (170)

where

Σ(r, θ) = r2 + a2 cos2 θ, (171)

∆(r) = r2 − 2GN(1 + χ)Mr + a2 + G2
Nχ(1 + χ)M2. (172)

The form of the metric (169) is similar as the KN metric (5) but it describes a rotating Kerr-like black

hole in the MOG theory which has a neutral gravitational charge K (instead of an electric charge)

corresponding to the vector field φµ by the postulate [80, 138, 77]

K =
√

χGN M. (173)

This Kerr-like black hole is referred to as the Kerr-MOG (KM) black hole. M and a are mass and

spin parameters of the KM black hole, respectively.

79



4.3 O R B I T I N G E M I T T E R N E A R K E R R - M O G B L AC K H O L E

4.3 O R B I T I N G E M I T T E R N E A R K E R R - M O G B L AC K H O L E

For convenience, we rewrite the KM metric (169) in the standard form

ds2 = −∆Σ
Ξ

dt2 +
Σ
∆

dr2 + Σdθ2 +
Ξ sin2 θ

Σ
(dφ−Ωbhdt)2, (174)

where we have reset Newtonian constant GN = 1 and defined

Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mχr + a2 + Q2
χ, (175a)

Ωbh =
a(2Mχr−Q2

χ)

Ξ
, Ξ = (r2 + a2)2 − ∆a2 sin2 θ, (175b)

with

Mχ = (1 + χ)M, Q2
χ = (1 + χ)K2 =

χ

1 + χ
M2

χ. (176)

Here, Mχ and J = Mχa are the ADM mass and angular momentum of the KM black hole, respec-

tively [139].

Solving the equation ∆ = 0 gives radii of the inner and outer event horizons,

r± = Mχ ±
√

M2
χ − (a2 + Q2

χ). (177)

The extremal limit is obtained for a2 + Q2
χ = M2

χ.

Note that the quantities under the square roots of (173) and (177) should be non-negative, thus we

obtain physical bounds on the parameter χ as [139]

0 ≤ χ ≤
M2

χ

a2 − 1. (178)

We assume that there exists an isotropic point emitting source orbiting on a circular, equatorial

geodesic at radius rs. The coordinate angular velocity of this source is [139]

Ωs = ±
Γ(rs)

r2
s ± aΓ(rs)

, (179)

where Γ2(r) = Mχr−Q2
χ, and the upper or lower sign corresponds to prograde (direct) or retrograde

orbits, respectively. Here and hereafter, we use the subscript s to represent “source”.
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4.3.1 Photon conserved quantities along trajectories

The photon trajectories which connect a source to an observer are null geodesics in the KM spacetime.

There are four conserved quantities for a photon along its trajectory: the invariant mass µ2 = 0, the

total energy E, the angular momentum L and the Carter constant Q [85]. It is convenient to scale

out the energy E from the trajectory by introducing two rescaled quantities related to the conserved

quantities L and Q by

λ̂ =
L
E

, q̂ =

√
Q

E
. (180)

Note that the Carter constant Q is non-negative for any photon passing through the equatorial plane.

Thus we will always have positive and real q̂ for the photons emitted from the equatorial plane.

Using the Hamilton-Jacobi method we can obtain the geodesic equations in integral form, which

connect a source (ts, rs, θs, φs) to an observer (to, ro, θo, φo) [80, 85], as

−
∫ ro

rs

dr
±
√
R(r)

= −
∫ θo

θs

dθ

±
√

Θ(θ)
, (181a)

∆φ = −
∫ ro

rs

a
±∆
√
R(r)

(
2Mχr−Q2

χ − aλ̂
)

dr +−
∫ θo

θs

λ̂ csc2 θ

±
√

Θ(θ)
dθ, (181b)

∆t = −
∫ ro

rs

1
±∆
√
R(r)

[
r4 + a2(r2 + 2Mχr−Q2

χ

)
− a
(
2Mχr−Q2

χ

)
λ̂
]
dr

+−
∫ θo

θs

a2 cos2 θ

±
√

Θ(θ)
dθ, (181c)

where ∆φ = φo − φs, ∆t = to − ts, and

R(r) =
(
r2 + a2 − aλ̂

)2 − ∆
[
q̂2 +

(
a− λ̂

)2
]
, (182a)

Θ(θ) = q̂2 + a2 cos2 θ − λ̂2 cot2 θ. (182b)

The functionR(r) is called the radial “potential” and Θ(θ) is called the angular “potential”. R(r) =

0 corresponds to turning points in the r direction and Θ(θ) = 0 corresponds to turning points in the

θ direction. Here and hereafter, the subscript o stands for “observer”.

81



4.3 O R B I T I N G E M I T T E R N E A R K E R R - M O G B L AC K H O L E

Since the integrals are to be evaluated as path integrals along a trajectory connecting the source and

observer, we have used the slash notation −
∫

to distinguish them from ordinary integrals. The radial

and angular turning points in the trajectory appear any time when the effective potential R(r) = 0

or Θ(θ) = 0. The ± signs in these geodesic equations are chosen such that the corresponding terms

are always integrated along the propagation direction of the photon trajectory. Given these turning

points, there are different possibilities for light rays connecting a source to an observer. Thus we

will introduce parameters b, m and s to distinguish them. For the r direction, we let b = 0 label

those direct trajectories with no radial turning points and b = 1 label those reflected trajectories

with one radial turning point. For the θ direction, we use m ≥ 0 to record the number of angular

turning points and use s ∈ {+1,−1} to denote the final sign of pθ (the θ-component of the photon’s

four-momentum).

Note that we have a relation between the unknowns, φs = Ωsts, it then follows from Eqs. (181b)

and (181c) that

∆φ−Ωs∆t = φo −Ωsto. (183)

We will place the observer at φo = 2πN for an integer N (physically equivalent to φo = 0) for all

time to. Plugging φo = 2πN into Eq. (183), one can see that N is the net winding number which

records the extra windings underwent by the photon relative to the source between its emission time

and reception time [5]. Then the geodesic Eqs.(181) can be rewritten as the “KM lens equations”

Ir + bĨr = Gm,s
θ , (184a)

Jr + bJ̃r +
λ̂Gm,s

φ −Ωsa2Gm,s
t

Mχ
= −Ωsto + 2πN, (184b)

where we have introduced the factor of Mχ such that both lens equations become dimensionless, and

Ir, Ĩr, Jr, J̃r and Gm,s
i (i ∈ {t, θ, φ}) are defined in the same way as Ref. [5] (see also Sec. 2.6 and

Appendices A & B).
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For given values of N, m, s, b, λ̂ and q̂, Eqs. (184) determine the observer coordinates to, ro, θo

for given values of the source coordinates rs, θs [note that we have chosen φo = 2πN and decoupled

ts and φs using Eq. (183)]. For a distant observer we have ro = ∞ and for an equatorial source we

have θs = π/2. From another point of view, by solving Eq. (184) for given choice of N, m, s, b and

given values of θo and rs, one may find the solutions of λ̂ and q̂ in terms of to which are associated

with the time-dependent images of the emitter seen by a distant observer.

4.3.2 Observational appearance

Following Refs. [90, 46, 5], we now consider the observational appearance of the point emitter: the

images positions, redshift factors and fluxes. These observational quantities can be expressed in

terms of the conserved quantities λ̂ and q̂.

The apparent position (α, β) of images on the observer’s screen is given by

α = − λ̂

sin θo
, (185a)

β = ±
√

q̂2 + a2 cos2 θo − λ̂2 cot2 θo = ±
√

Θ(θo). (185b)

The± sign in front of β is equal to the sign of pθ at the observer (i.e., the value of s), which represents

whether the light ray arrives (relative to the observer) from above or below.

The “redshift factor” g is given by

g =
1
γ

√
∆sΣs

Ξs
(1−Ωsλ̂)

−1, (186)

where we have introduced the boost factor γ, which is defined as

vs =
Ξs

Σs
√

∆s
[Ωs −Ωbh(rs)], γ =

1√
1− v2

s
. (187)

The ratio between the image flux Fo and the comparable “Newtonian flux” FN is given by

Fo

FN
= g3 q̂Mχ

γ sin θo

√
Σs∆s

ΞsΘ(θo)Θ(θs)R(rs)

∣∣∣∣det
∂(B, A)

∂(λ̂, q̂)

∣∣∣∣−1

, (188)
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where we have defined

A ≡ Ir + bĨr − Gm,s
θ ±Mχ

∫ θs

π/2

dθ√
Θ(θ)

, (189a)

B ≡ Jr + bJ̃r +
λ̂Gm,s

φ −Ωsa2Gm,s
t

Mχ
. (189b)

The plus or minus sign in Eqs. (189a) corresponds to pushing the emitter above or below the source

plane θs = π/2. The integrals are given in Appendices.

Note that the conserved quantities (185), (186) and (188) have the same form as that of Kerr case

[5], but the difference is implied via the specific expressions for Mχ, ∆s, Ωbh and Ωs. If we take

χ = 0, the above results reduce to the Kerr case [5].

4.4 N E A R - E X T R E M A L E X PA N S I O N

Without loss of generality, we will choose θo ∈ (0, π/2) and set Mχ = 1 in the following. We

consider an emitter orbiting on (or near) the direct ISCO of a near-extremal KM black hole. We

introduce a dimensionless radial coordinate R for convenience, which is related the Boyer-Lindquist

radius r by

R = r− 1, (190)

We also introduce a small parameter ε to describe the near-extremality of the black hole,

a2 + Q2
χ = 1− ε3 (191)

For simplicity, instead of using the parameter χ, we will use the spin a in the following expressions

as the free parameter that describes the modified black hole. We can get the relation between χ and

a from (176) and (191), as

χ =
1
a2 − 1 +O(ε3). (192)
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Following the procedure introduced in Sec. 2.3.1, we find that the ISCO of a near-extremal KM

black hole to the leading order in ε is at

RISCO =
( 2a2

2a2 − 1

)1/3
ε +O(ε2). (193)

Note that we have to choose a >
√

2/2 to guarantee that the ISCO resides in the outside of the event

horizon, this corresponds to a restriction for the modified parameter χ,

χ < 1. (194)

We consider a distant observer located at Ro = (ro − 1) ≈ ro while we put the emitter on or near

the ISCO,

Rs = εR̄ +O(ε2), R̄ ≥
( 2a2

2a2 − 1

)1/3
. (195)

Thus, to leading order in ε we have

rs = 1 + εR̄. (196)

Following Ref. [5, 4], we will also introduce new quantities λ and q defined by

λ̂ =
1 + a2

a
(1− ελ), q̂ =

√
4− 1

a2 − q2. (197)

For later reference, we expand the orbital frequency Ωs and period Ts in ε, leading to the expres-

sions

Ωs =
a

1 + a2 +O(ε), Ts =
2(1 + a2)π

a
+O(ε). (198)

Note that the orbital frequency/period in the near-extremal KM case for 0 < a < 1 is smaller/greater

as compared to the near-extremal Kerr case [5].

If we take a = 1 (corresponding to χ = 0), the above results reduce to the Kerr case [5].
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4.4.1 Photon conserved quantities along trajectories

We will seek for solutions of Eq. (245) (λ̂, q̂, or equivalently, λ, q) to subleading order in ε. Note

that we must keep the O(ε0) terms in the lens equations in order to get a solution for λ.

4.4.1.1 First equation

We start by solving the first equation (184a),

Ir + bĨr = mGθ − sĜθ . (199)

The I integrals and G integrals are performed in the Appendices. Since to does not appear in the first

equation, for given choice of m, s, b, we will express λ as a function of q by plugging the results

of integrals in the equation. Following the method of Ref. [5], for each choice of m, b, s, and q, we

obtain the solution of Eq. (199) and the conditions for its existence. The conditions are given by

R̄ <
4Υ
q2

(
1 +

2√
4− q2

)
if b = 0, (200a)

R̄ >
4Υ
q2

(
1 +

2√
4− q2

)
if b = 1, (200b)

and the solution is

λ =
4Υ

(1 + a2)(4− q2)

[
2− q

√
1 +

4− q2

2Υ
R̄

]
. (201)

Here, Υ > 0 is defined by

Υ ≡ q4Ro

q2 + 2Ro + qDo
e−qGm̄,s

θ =
q4

q + 2
e−qGm̄,s

θ +O( 1
Ro

), (202)

where Do is defined in (301) and Gm̄,s
θ is defined in (307) and (308), with

m̄ = m +
1

qGθ
log ε. (203)

Note that Υ is independent of Ro for large Ro.
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4.4.1.2 Second equation

Next we move on to the second equation (184b) which gives another relation between to, λ and q

for given choice of m, s, b. We will look for functions λ(t̂o) and q(t̂o) which are associated with

the time-dependent tracks of images. We introduce a dimensionless time coordinate t̂o such that the

emitter has unit periodicity in terms of it,

t̂o =
to

Ts
=

ato

2(1 + a2)π
+O(ε). (204)

We then rewrite Eq. (184b) in terms of this dimensionless time coordinate

t̂o = N + G, G ≡ − 1
2π

(
Jr + bJ̃r +

1 + a2

a
Gm,s

φ − a3Gm,s
t

1 + a2

)
. (205a)

The J integrals and G integrals are given in the Appendices.

Since the problem is periodic, we will consider the single period t̂o ∈ [0, 1]. For each given choice

of m, s, b having a non-vanishing range of q satisfying Eq. (200), the first lens Eq. (184a) gives

a function λ(q) [Eq. (201)], the second lens Eq. (184b) [or equivalently, Eq. (205)] then gives a

function t̂o(q) for each choice of an integer N. Note that the integral N is uniquely determined for

each value of q in the given period 0 ≤ t̂o < 1. Then the multivalued inverse q(t̂o) corresponds

to the time-dependent tracks of the emitter’s images. For each allowed N within the corresponding

range of q, the function t̂o(q) may either be monotonic or has local maxima and/or minima. For

the monotonic ones, we are able to get the inverse q(t̂o). For the non-monotonic ones, we divide

t̂o(q) into several invertible parts to get their inverse and label each inverse qi(t̂o) with a discrete

integer i. Then the image track is divided into several segments which associate with these functions

qi(t̂o) and each of these track segments can be labeled by a set of (m, b, s, N, i). Finding all the track

segments for all choices of (m, b, s, N, i) gives all the image tracks which altogether then build up

the complete observable information of the hot spot. We give an example in Sec. 4.6 describing a

practical approach for realizing this process.
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4.4.1.3 Winding number around the axis of rotation

The winding number for a light ray around the rotating axis is given by n = mod2π∆φ, where ∆φ

can be obtained from Eq. (181b). Using the MAE method introduced in App. A, we now compute

∆φ to the leading order in ε and obtain

∆φ =
a

(1 + a2)λε

(
Ds

R̄
− q
)
+O(log ε), (206)

where Ds is defined in (301). We observe that ∆φ scales as ε−1 at the leading order.

4.4.2 Observational appearance

Recall from the beginning of Sec. 5.4 that for near-extremal KM we have

χ =
1
a2 − 1 +O(ε3), rs = 1 + εR̄, (207a)

λ̂ =
1 + a2

a
(1 + ελ), q̂ =

√
4− 1

a2 − q2. (207b)

We now expand the observational quantities to the leading order in ε. The quantities involved are the

apparent position (246), the redshift factor (247) and the flux (249).

4.4.2.1 Image positions and redshift factors

The image position (246) on the observer’s screen is expanded as

α = −1 + a2

a
1

sin θo
+O(ε), (208a)

β = s

√
4− 1

a2 − q2 + a2 cos2 θo −
(1 + a2)2

a2 cot2 θo +O(ε). (208b)

Note that the leading order position does not depend on λ. We should impose the requirement that β

is real to make sure the light rays can reach a distant observer, which gives a range of q:

q ∈
[

0,

√
4− 1

a2 + a2 cos2 θo −
(1 + a2)2

a2 cot2 θo

]
. (209)
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As ε → 0, Eqs. (208) and (209) gives a vertical line segment on which all images of the hot spot

appear. We call this vertical line the NHEK-MOG line, being the analog of NHEKline for Kerr [5]

(Sec. 4.5). We find that when θo < θcrit [Eq. (222)] the range of q vanishes so does the emitter’s

image. Note that the NHEK-MOG line also disappears at this critical inclination (Sec. 4.5).

The redshift (186) is expanded as

g =
1

√
4a2−1

a + 2a(1+a2)√
4a2−1

λ
R̄

+O(ε). (210)

Note that from the cosines of emission angles one can establish a upper bound for g [5], which is

g ≤ a(1 + 2a)√
4a2 − 1

. (211)

4.4.2.2 Image fluxes

The normalized image flux (188) is expanded as

Fo

FN
=

√
4a2 − 1εR̄
2a2Ds

qg3√
4− 1

a2 − q2
√

Θ0(θo) sin θo

∣∣∣∣det
∂(B, A)

∂(λ, q)

∣∣∣∣−1

, (212)

where g is given in Eq. (210) and Ds is given in Eq. (301), and [see Eq. (208)]

Θ0(θo) = Θ(θo)
∣∣
λ=0 = 4− 1

a2 − q2 + a2 cos2 θo −
(1 + a2)2

a2 cot2 θo = β2, (213)

and [see Eqs. (189)]

∣∣∣∣det
∂(B, A)

∂(λ, q)

∣∣∣∣ = ∣∣∣∣ ∂

∂λ

(
Jr + bJ̃r

)[
∂

∂q

(
Ir + bĨr

)
−

∂Gm,s
θ

∂q

]
− ∂

∂λ

(
Ir + bĨr

)[
∂

∂q

(
Jr + bJ̃r

)
+

∂Gm,s
tφ

∂q

]∣∣∣∣+O(ε log ε), (214)

where we have defined

Gm,s
tφ = λ̂Gm,s

φ −Ωsa2Gm,s
t =

1 + a2

a
Gm,s

φ − a3

1 + a2 Gm,s
t +O(ε). (215)

The G, I, J integrals and the variations of I, J integrals with respect to λ and q are given in the

Appendices A and B.
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4.5 S H A D O W A N D N H E K - M O G L I N E

The entire image of a black hole observed from the EHT is expected to be the black hole “shadow”.

To understand the images of the emitter better, we compute the edge of a shadow cast by an extremal

KM black hole. The boundary of a black hole shadow is determined by the threshold from which

the photons can escape to asymptotic infinity [37], which corresponds to unstable spherical null

geodesics with fixed r = r̃.

First, we consider the non-extremal case and restore Mχ. For spherical photon orbits we have

R(r̃) = R′(r̃) = 0, (216)

where R(r) is defined in Eq. (182a) and the prime represents derivative with respect to r̃. For a

generic KM black hole we have 0 < a2 + Q2
χ < M2

χ. Then from Eq. (216) we get

λ̂ = − r̃(r̃2 −Mχr̃− 2Γ(r̃)2) + a2(r̃ + Mχ)

a(r̃−Mχ)
, (217a)

q̂ =
r̃
√

4a2Γ(r̃)2 − (r̃2 −Mχr̃− 2Γ(r̃)2)2

a(r̃−Mχ)
, (217b)

where Γ(r̃) = Mχr̃ − Q2
χ. The shadow boundary (critical curve) is obtained by substituting Eqs.

(217) for λ̂ and q̂ into the screen coordinates (α, β) [Eq. (185)]. The resulting curve is described by

[α(r̃), β(r̃)] with r̃ ranging over the photon region where both q̂ and β are real.

4.5.1 Extremal limit

Following the procedure of Ref. [5], we now consider the extremal limit. We set Mχ = 1 again and

let a2 + Q2
χ → 1. Then Eq. (217) yields

λ̂ = −1
a
(r̃2 − 2r̃− a2), (218a)

q̂ =
r̃
a

√
4a2 − (r̃− 2)2, (218b)
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and the condition that q̂ is real gives a range of r̃,

r̃ ∈ [r̃−, r̃+] = [1, 2(a + 1)], (219)

Then the shadow boundary is given by the curve

α(r̃) =
1
a
(r̃2 − 2r̃− a2) csc θo, (220a)

β(r̃) = ±
√

r̃2

a2

(
4a2 − (r̃− 2)2

)
+ a2 cos2 θo −

( r̃2 − 2r̃− a2

a

)2
cot2 θo. (220b)

However, curves given by these equations are not always closed. We show the open curves for differ-

ent values of a in the dashed line in Fig. 14. The two endpoints are at the positions corresponding to

r̃ = r̃− = 1 which are given by

αend = −1 + a2

a
csc θo, (221a)

βend = ±
√

4− 1
a2 + a2 cos2 θo −

(1 + a2)2

a2 cot2 θo. (221b)

Note that there are no endpoints at all when βend is no longer real, and thus the curves are closed.

Then we can obtain a condition for an open curve on the inclination angle, which is given by θcrit <

θo < π − θcrit, where

θcrit = arctan

√
a2 + 3− 2

√
2 + a2

2
√

2 + a2 − 3
. (222)

Therefore, we notice that an important piece for the open curve has been missed in the extremal

limit. To recover the missing piece and make the curve closed in that case, we reconsider the extremal

limit a2 + Q2
χ → 1 by introducing

a2 + Q2
χ = 1− κ2, r̃ = 1 + κR̃. (223)

As κ → 0, the missing part of the shadow boundary is recovered by plugging (223) in (217), as

α = −1 + a2

a
csc θo, (224a)

|β| <
√

4− 1
a2 + a2 cos2 θo −

(1 + a2)2

a2 cot2 θo. (224b)
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We show this in the solid lines in Fig. 14 and name this segment the NHEK-MOG line which is

the analog of the NHEKline in Kerr spacetime [5]. We see that the images of a near-ISCO orbiting

emitter appear on this NHEK-MOG line [see Eq. (208)].

Therefore, the shadow boundary of an extremal KM black hole is given by the union of the open

curve (220) and the NHEK-MOG line (224).

4.6 R E S U LT S A N D D I S C U S S I O N

No. a χ R̄ISCO θcrit

1 0.717 0.945 3.317 54.758◦

2 0.75 0.778 2.080 53.228◦

3 0.8 0.563 1.660 51.353◦

4 0.85 0.384 1.481 49.881◦

5 0.9 0.235 1.377 48.716◦

6 0.95 0.108 1.309 47.792◦

7 1 0 1.260 47.059◦

Table 1.: The range of the deformation parameters χ, the dimensionless radii of the ISCO R̄ISCO

(Eq. (225)) and the critical observer inclinations θcrit (Eq. (222)), corresponding to different

values of the spin parameters a for the extremal KM black holes, where we choose a =

√
2/2 + 10−2 ≈ 0.717 as the critical case.

We now describe the results with figures and discuss them in detail. First we will look at the

silhouettes (shadow) of a near-extremal KM black hole and discuss how the size is changed when

the free parameter χ [we will also equivalently use a as the free parameter in later discussion since

92



4.6 R E S U LT S A N D D I S C U S S I O N

there is a relation (192) between them for the near-extremal cases] is changed. Then, we will focus

on a special portion of the shadow, the NHEK-MOG line, where the images of the point emitter

appear. These images have some characteristic features which are similar to that of a near-extremal

(high-spin) Kerr black hole.

The modified parameter that we wish to consider should satisfy the physical bounds (178) and

(194), which gives a range of 0 ≤ χ < 1 (corresponding to 1 ≥ a >
√

2/2). These choices are also

in the allowed range for supermassive black holes, 0.03 < χ < 2.47 [130] (except for the critical

case χ = 0). For each choice of the modified parameter χ (in our formulae we use a instead), the

observable quantities of a hot spot depend on four physical parameters, ε, R̄, Ro, and θo. To make our

approximations sufficiently accurate, one must choose ε � 1 and Ro � 1 . For the emitting source

to be on a stable circular orbit of a near-extremal KM black hole, one must choose R̄ ≥
( 2a2

2a2−1

)1/3.

To ensure that an observer can possibly see the flux, one needs to set the observer on a place with

inclination satisfying arctan
√

a2+3−2
√

2+a2

2
√

2+a2−3
< θo < π

2 . When a = 1 the KM case reduces to the

Kerr case. We will consider a special example with the same choice of parameters as in Ref. [5], in

order to compare the results. The parameters are as follows:

Ro = 100, θo =
π

2
− 1

10
= 84.27◦, (225a)

ε = 0.01, R̄ = R̄ISCO =
( 2a2

2a2 − 1

)1/3
. (225b)

This describes a hot spot (orbiting emitter) on the ISCO of a near-extremal KM black hole with spin

a given in Table 1, viewed by a distant observer from a nearly edge-on inclination. (Note that the

parameter a is the spin of a precisely extremal black hole, however, it is also the spin of a near-

extremal black hole to leading order in ε. Here and hereafter, we ignore this difference.) Table 1

shows the ranges of χ, R̄ISCO and θcrit corresponding to different values of a. We find that R̄ISCO and

θcrit [Eq. (222)] increase when χ is increased and that a decreases when χ is increased. This agrees
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with Ref. [134] where the authors find that the ISCOs of KM black holes are always greater than that

of Kerr black hole.

4.6.1 Silhouettes of black hole

-2 0 2 4 6

-4

-2

0

2

4

Figure 14.: Edges of near-extremal KM black hole shadows, where the dashed lines are the open

parts [Eq. (220)] and the vertical solid lines are the NHEK-MOG lines [Eq. (224)]. The

green, magenta, blue and red curves have a = 1, 0.9, 0.8, 0.717 (χ = 0, 0.235, 0.563,

0.945), respectively.

Fig. 14 shows the edges of near-extremal KM black hole shadows (see Sec. 4.5). We find that

the sizes of shadows cast by a near-extremal KM black hole decrease when the free parameter χ is

increased from zero. The length of the NHEK-MOG line and the solid angle corresponding to it

also decrease while the free parameter χ is increased from zero. In Ref. [44], Moffat found that the

sizes of shadows cast by KM black holes increase significantly as the free parameter χ is increased

from zero. This is not conflicting with our results because in their paper one compares the sizes of

shadows for black holes with same parameter M, while we compare that for black holes with same

ADM mass Mχ = (1 + χ)M.
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4.6.2 Images on the NHEK-MOG line

Following the procedure of Ref. [5] and using the open numerical code therein, we now show the

images of an emitter orbiting on ISCO. As discussed in Sec. 4.5, all the images appear on a vertical

line, the NHEK-MOG line. These images correspond to photons arriving with different combinations

of the parameters m, s, b, N, as well as an additional label i if t̂o(q) [or equivalently G(q)] is not

monotonic [see the discussion below Eq. (205)]. In the practical approach [Fig. 15], we first choose

the parameters m, s, b, and then find the allowed value of N as well as necessary labels i for those

non-monotonic functions t̂(q). Fig. 15 shows examples of representative track segments for a = 1

and a = 0.8. We choose m = 2, b = 0, s = +1 for the light rays and choose the physical

parameters (225), which are the same as Ref. [5] for comparison. We find that the cases with a = 1

(the Kerr case) and a = 0.8 have similar features but the modified parameter χ causes corrections to

the associated functions: G decreases and Fo/FN increases while a is decreased.

For each track segment q(t̂o) labeled by (m, b, s, N, i), Eq. (201) gives a function λ(t̂o). Given

these two time-dependent conserved quantities λ and q, we can then obtain the main observational

quantities for this track segment of the image. These observational quantities are the apparent po-

sition (α, β) [Eq.(208)], the redshift factor g [Eq. (210)], and the normalized image flux Fo/FN

[Eq. (212)]. Then we build up the most observable information of the hot spot by including several

brightest track segments. Note that only a few values of N and m are important because the image

flux for others are negligibly small (see Fig. 15 and Fig. 17 for details). Below we describe the most

important features of the images in Fig. 16.

Fig. 16 shows the main observational quantities for three different near-extremal KM cases, a = 1,

a = 0.8 and a = 0.717 (corresponding to χ = 0, χ = 0.563 and χ = 0.945, respectively). In

each case, the green line is a bright primary image while others are secondary images. For a = 1,

it reduces to the Kerr case and we see that our results exactly agree with Ref. [5]. For a = 0.8 and
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Figure 15.: Left to right: plots of G(q), q(t̂o) and Fo/FN(q) for a = 1 (light curves) and a = 0.8

(bright curves) with m = 2, b = 0, s = +1 and the parameter choices of (225). For

a = 1, the light yellow, light magenta and light cyan curves have N = −6,−7,−8,

respectively, and no additional label i, while the light red, light green and light blue

curves have N = −9 and i = 1, 2, 3, respectively. For a = 0.8, the yellow and magenta

curves have N = −6,−7, respectively, and no additional label i, while the cyan, red and

green curves have N = −8 and i = 1, 2, 3, respectively. Note that for a = 1, the KM

case reduce to the Kerr case so that the light curves agree with those in Ref. [5] exactly.

(Although the condition (200) allows the entire range of q, we have imposed a small-q

cutoff since the corresponding image fluxes are negligibly small.)
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a = 0.717 (the critical case), the general features are qualitatively similar to the case of a = 1 but

quantitatively corrected. We find that there are continues tracks moving on the NHEK-MOG line

which are lined up by separate track segments and that the NHEK-MOG line flashes when different

tracks intersect [5]. While Fig 16 shows that the typical image positions remain unchanged for

different value of a, we see from Fig. 14 that the length of the NHEK-MOG line decreases when a is

decreased, i.e. the maximum value of the screen coordinate βmax decreases when the free parameter

χ is increased from zero. The flux intensity increases when the black hole spin is decreased. This is

also true in the near-extremal Kerr cases when considering different values of ε (and considering the

precise spins of the black holes) [5] since the typical flux scales as ε/ log ε. In each case for a = 1,

0.8, 0.717, the primary image appears near the center of the NHEK-MOG line, then moves downward

while blueshifts and peaks in brightness. The winding number of these segments of primary images

in the modified cases are decreased when χ is increased. For example, the winding numbers range

between 17 and 23, 11 and 16, 6 and 8, for spin a = 1, 0.8, and 0.717, respectively (see Fig. 18).

For the near-extremal KM cases, the peak redshift factors are all at g ≈ 1.6 but they correspond

to different emission angles. For example, they correspond to light emitted in cones of 27◦, 20◦

and 25◦ around the forward direction [5] for a = 1, 0.8 and 0.717, respectively. However, another

typical redshift factor (corresponding to λ ∼ 0) associated with the secondary images increases

when the spin parameter a is decreased, at g = a/
√

4a2 − 1. For the near-extremal Kerr cases, both

typical redshifts for primary and secondary images do not change when the spin is increased (by

choosing different value of ε and considering the precise spins of the black holes) [5]. The reason

for this difference is that the range of spin is very limited for the near-extremal Kerr black hole,

but it becomes wider for near-extremal KM black holes. This is why we only take ε = 0.01 into

consideration. In addition, the above signatures in the near-extremal KM case appear periodically

with period greater than that in near-extremal Kerr case [see Eq. (198)].
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Figure 16.: Observables of the most important few images for three different values of near-extremal

spin of KM black holes with the parameter choices of (225). From top to bottom, we plot

positions, fluxes and redshift factors. Form left to right, we have a = 1 (Kerr case [5]),

a = 0.8 and a = 0.717 (critical case for there exist ISCO for a near-extremal KM black

hole). The color-coding is the same as that of Ref. [5]: each of these colored lines maybe a

composition of several continuous track segments. For example, the green line (denoting

the primary image) is consisted of 4, 3, and 3 segments in the a = 1, 0.8, 0.717 cases,

respectively.
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Figure 17.: Left to right: plots of Fo/FN for a = 1 (Kerr case [5]), a = 0.8 and a = 0.717 (critical

case for there exist ISCO for a near-extremal KM black hole) with physical parameters

(225). We set q = 1.5, 1.38, and 1.35 for a = 1, 0.8, and 0.717, respectively, and let m

vary in each case. We denote the direct/reflected (b=0/b=1) images by blue/red dots. For

m = 0, we have only one image corresponding to s = −1, for each other value of m, we

have two images corresponding to s = ±1.
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Figure 18.: Left to right: plots of flux Fo/FN (green) and winding number ∆φ/2π (gray) of the

primary image for a = 1 (Kerr case [5]), a = 0.8 and a = 0.717 (critical case for there

exist ISCO for a near-extremal KM black hole) with physical parameters (225). Note that

as mentioned below Fig. 16, the single primary image for each case is a composition of

multiple track segments.
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The typical redshift factors are related to observations since they could shift the iron Kα line at

EFeKα = 6.4 keV to 6.4g keV. For blueshifted primary image, the factor g ≈ 1.6 will shift the iron

line to 10.2 keV. For redshifted secondary images, the redshift factors for a = 1, 0.8 and 0.717 will

shift the iron line to 3.7 keV, 4.1 keV and 4.5 keV respectively. However, rather than close to the

observed peak at 3.5 keV [92], they are even more away from it in modified cases than in Kerr case

[5].

4.7 S U M M A RY

In this chapter, we analytically compute the observational signature of a near-extremal rotating black

hole in the modified gravity theory (MOG), which is also referred as scalar-tensor-vector theory

(STVG). The rotating black hole in this theory called as the Kerr-MOG (KM) black hole, introducing

a modified parameter χ in addition to the parameters of Kerr black hole. When the parameter χ goes

to zero, the modified black hole reduces to Kerr black hole. The range of the modified parameter that

we considered is 0 ≤ χ < 1, which is in the supposed range for a supermassive black hole [130].

To be specific, we compute the near-extremal KM black hole’s shadow and the position, redshift and

flux of a orbiting hot spot’s image. Compared with the signature produced in the Kerr background,

the MOG case exhibits the following differences:

1. The size of the shadow cast by a KM black hole decreases when the modified parameter χ is

increased.

2. The targeted astrophysical black hole could be one that has a smaller reduced spin than a

corresponding near-extremal Kerr black hole, since the reduced spin parameter a can be in

the range 0.717 < a < 1. The spin of a near-extremal KM black hole decreases when the

modified parameter is increased.
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3. The image of the hot spot appears periodically in the leftmost vertical line (NHEK-MOG line)

of the shadow with a period greater than that of Kerr. The period increases when the modified

parameter is increased.

4. The flux of the image increases when the modified parameter is increased.

5. The typical redshift associated with the secondary image increases when the modified param-

eter is increased.
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K E R R - S E N

5.1 I N T RO D U C T I O N

Black holes are among the most important predictions of general relativity (GR), as well as other

gravitational theories. Thus, attempts to discover black holes have received continuing impetus over

many decades. Now it eventually has become reality with the detections of gravitational waves by

LIGO and Virgo [16, 17] and with the first image of the black hole M87* photographed by the Event

Horizon Telescope (EHT) Collaboration [21, 22, 23, 24, 25, 26]. Yet, there is still an urgent need for

more precise theoretical templates to match these data, which has triggered exciting research among

the gravity community [93, 35, 39, 32, 140].

From the first image of the M87*, a bright ring surrounding a dark region was observed as an

important feature of a black hole. The dark region is known as the “black hole shadow” and the

bright ring is elicited by the luminous sources outside the black hole [21]. Even though it has not

been resolved yet, this observed bright ring is supposed to has an intricate substructure which may

be observable on long interferometric baseline observations [32]. As we know, a black hole itself is

invisible and it is the surrounding luminous matters that make it observable. Thus, the appearance of

a black hole depends closely on its surroundings. Within the surrounding luminous matter, a bright
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point emitter (refer to as “hot spot”) is particularly interesting and can produce striking observational

signals. In the 1970s, the optical appearance of a hot spot (star) orbiting on a circular orbit of an

extremal Kerr black hole has been studied in Refs. [90, 46]. Recently, the observational signature

produced by a hot spot on, or near, the innermost stable circular orbit (ISCO) of a near-extremal Kerr

black hole has been studied in Ref. [5], where a striking signature of high-spin Kerr black hole was

found. Later, the influence of a surrounding plasma on that signature has been studied in Ref. [2].

Besides these, the image of a non-stationary plunging hot spot approaching a black hole has been

studied in Refs. [141, 142, 49]. All these studies are based on the assumption that the underlying

gravity theory is GR. Nevertheless, there are also black holes in alternative gravity theories [81,

121, 123, 124, 125, 77] based on different motivations. It is interesting to study the observational

signature of a black hole (and hot spot) in these theories. Given this motivation, the signature of

a Kerr-MOG (KM) black hole in the scalar-tensor-vector modified gravity theory (MOG) has been

studied in Ref. [1]. Among other gravity theories that modify GR, perhaps the most theoretically

important one is string theory, since it is one of the most attractive candidates for quantum gravity

and unified theory. Thus, in this chapter we will study the observational signals produced by a hot

spot orbiting a near-extremal rotating black hole arising from the string theory.

In a low-energy limit of heterotic string theory, a rotating black hole solution has been found in

Ref. [81], known as the Kerr-Sen (KS) black hole. In addition to the mass M and angular momentum

J, the KS black hole has a third physical parameter: the electric charge Q corresponding to a U(1)

gauge field. Much attention has been paid to the KS black hole including studies of null geodesics,

photon motion and optical appearance (shadow) of a black hole [143, 144, 145, 146, 147, 43, 148].

Moreover, the apparent shape in the KS spacetime has also been compared to those in various

charged/rotating black holes and naked singularities of the Kerr-Newman (KN) class of spacetimes

[146, 148]. It is instructive to compare the results for the KS black hole with those for the KN

black hole since the later is the charged and rotating solution in the Einstein-Maxwell theory [i.e.,
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GR coupled to a U(1) gauge field]. The main target of this chapter is therefore to compute the

signature produced by a hot spot near a near-extremal KS black hole, and compare this to that of

a near-extremal KN black hole. By comparison, we find that the expressions of the metrics for ex-

tremal KN and KM black hole are mathematically identical upon replacements of two corresponding

parameters, and so do the observational quantities. We then quote relevant results for the KM case

from Ref. [1] and transfer them to the observational quantities for the KN case. We find that the

general qualitative features of the hot spot image in the KS case are the same as those in the Kerr

spacetime, while quantitative corrections appear when the Sen charge is non-zero. Moreover, the

U(1) charges in both KS and KN cases trend to have positively correlated influences on most of the

observables, however, the magnitudes are distinguishable.

This chapter is organized as follows. In Sec. 5.2, we review the KS spacetime and the geodesics

in this spacetime. In Sec. 5.3, we set up the problem of the observational appearance of an orbiting

emitter in the general case. We write down the lens equations to be solved and write down the

observational quantities that we are interested in. In Sec. 5.4, we solve this problem for the near-

extremal case to the subleading order in the deviation from extremality. In Sec. 5.5, we revisit the

KN spacetime and introduce its observational appearance. In Sec. 5.6, we present our results for the

KS case with a figure and compare the results with those for the KN case with a table, and we discuss

these in detail.

5.2 K E R R - S E N B L AC K H O L E A N D G E O D E S I C S I N K E R R - S E N S PAC E T I M E

The KS black hole spacetime is described by a 4-dimensional effective action arising from heterotic

string theory:

S = −
∫

d4x
√
−Ge−Φ( −R+

1
12
H2 − Gµν∂µΦ∂νΦ +

1
8
F 2), (226)
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where R and Φ are the scalar curvature and the dilation field, respectively, and F 2 = FµνFµν with

Fµν being the field strength corresponding to the Maxwell field Aµ, and

H2 = HµνρHµνρ. (227)

Here, the expression ofHµνρ is of the form

Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν −
1
4
(
AµFνρ +AνFρµ +AρFµν

)
, (228)

with Bµν being an axion field. Gµν appearing in Eq. (226) are the covariant components of the metric

in the string frame, which are related to the Einstein metric by gµν = e−ΦGµν. The Einstein metric,

gauge field strength and electromagnetic potential in Boyer-Lindquist coordinates read [81]:

ds2 = − ∆
Σα

(dt− a sin2 θdφ)2 +
sin2 θ

Σα
(adt− δdφ)2 +

Σα

∆
dr2 + Σαdθ2 (229)

= −∆Σα

Ξ
dt2 +

Σα

∆
dr2 + Σαdθ2 +

Ξ sin2 θ

Σα
(dφ−Ωbhdt)2,

H = −2rαa
Σα

dt ∧ dφ ∧
[
(r2 − a2 cos2 θ) sin2 θdr− r∆ sin 2θdθ

]
,

A = −Qr
Σα

(dt− a sin2 θdφ), Φ = 2 log
√

Σ
Σα

,

where we have defined

Σ = r2 + a2 cos2 θ, Σα = Σ + 2rαr,

δ = r2 + a2 + 2rαr, ∆ = δ− 2Mr,

Ξ = δ2 − ∆a2 sin2 θ, Ωbh = 2aMr/Ξ.

(230)

This Einstein metric describes a KS black hole with mass M, U(1) charge Q =
√

2Mrα, and angular

momentum J = Ma with a and rα the spin and twist parameters, respectively. The metric reduces to

the Kerr geometry when the twist parameter rα goes to zero. The event horizons are determined by

the roots of ∆ = 0, as

r± = M− rα ±
√
(M− rα)2 − a2, (231)
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where r± denote the outer and inner horizon, respectively. The regularity of the event horizons

requires

a ≤ M− rα, (232)

and the extremal case is obtained for equality in (232) being taken. When rα and a are bounded,

respectively, we obtain the corresponding ranges for a and rα as

0 ≤ a ≤ M, 0 ≤ rα ≤ M. (233)

Now we consider a particle (including photon) of mass µ moving in the KS spacetime with four-

momentum pµ =
(

∂
∂τ̃

)µ
. Here, τ̃ is an affine parameter, and for a timelike particle with proper time

τ we have τ̃ = τ/µ. Then the four-momentum of the particle takes the general form

pµ = ṫ
(

∂

∂t

)µ

+ ṙ
(

∂

∂r

)µ

+ θ̇

(
∂

∂θ

)µ

+ φ̇

(
∂

∂φ

)µ

, (234)

where “ · ” denotes the derivative with respect to τ̃. The conserved quantities of a particle along its

trajectory are
−µ2 = gµν pµ pν, (235a)

E = −gµν pµ

(
∂

∂t

)ν

= −pt, (235b)

L = gµν pµ

(
∂

∂φ

)ν

= pφ, (235c)

Q = p2
θ − cos2 θ(a2 p2

t − p2
φ csc2 θ) + µ2a2 cos2 θ, (235d)

where E is the total energy, L is the angular momentum and Q is the Carter constant [85]. Using the

Hamilton-Jacobi method, we obtain the four-momentum of the particle,

Σα pt =
δ

∆
(Eδ− aL)− a(aE sin2 θ − L), (236a)

Σα pr = ±
√
R̃(r), (236b)

Σα pθ = ±
√

Θ̃(θ), (236c)

Σα pφ =
a
∆
(Eδ− aL)− csc2 θ(aE sin2 θ − L), (236d)
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where

R̃(r) = (Eδ− aL)2 − ∆
[
µ(r + 2rαr) +Q+ (L− aE)2] , (237a)

Θ̃(θ) = Q− µa2 cos2 θ − (L2 csc2 θ − a2E2) cos2 θ. (237b)

The function R̃(r) is the radial potential while Θ̃(θ) is the angular potential. The vanishing of these

potentials corresponds to the radial and angular turning points in the trajectory, respectively.

5.3 O R B I T I N G E M I T T E R N E A R K E R R - S E N B L AC K H O L E

We are interested in an isotropic emitter orbiting on a circular and equatorial geodesic at radius rs

around a KS black hole. For such an emitter, we have θ = π/2, R̃(r) = 0 and dR̃(r)/dr = 0.

Solving these radial equations simultaneously for E and L gives

E±
µ

=
(r + rα)1/2(r− 2M + 2rα)± aM1/2

(r + 2rα)1/2P1/2 , (238a)

L±
µ

=
±M1/2[r(r + 2rα)∓ 2aM1/2(r + rα)1/2 + a2]

(r + 2rα)1/2P1/2 , (238b)

where

P = r2 − (3r + 2rα)(M− rα)± 2aM1/2(r + rα)
1/2. (239)

Note that the existence of circular orbits requires that the denominator of Eqs. (238) is real, i.e.,

(r + 2rα)P > 0. (240)

Combining Eqs. (236) and (238) we obtain the coordinate angular velocity of the emitter,

Ωs ≡
dφ

dt
=

±M1/2

(r + 2rα)(r + rα)1/2 ± aM1/2 . (241)

The upper and lower sign in these formulae denote the direct and retrograde orbits, respectively. Here

and hereafter, we use the subscript s to represent the “source”.
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5.3.1 Photon motion and lens equations

For a photon trajectory, we have µ = 0 in the geodesic equations (236). In this case, the energy

E may be scaled out from these equations and it is convenient to introduce two new dimensionless

parameters

λ̂ =
L
E

, q̂ =

√
Q

E
, (242)

to describe this photon trajectory. Note that we will always have positive and real q̂ for all trajectories

that intersect the equatorial plane since Q = p2
θ ≥ 0. In terms of the new parameters, the potentials

(237) for the null case can be written as

R(r) =
R̃(r)

E2 = (aλ̂− δ)2 − ∆
[
q̂2 + (λ̂− a)2] , (243a)

Θ(θ) =
Θ̃(θ)

E2 = q̂2 − (λ̂2 csc2 θ − a2) cos2 θ. (243b)

Integrating up the geodesic equations (236) for a photon trajectory from a source (ts, rs, θs, φs) to

an observer (to, ro, θo, φo), we obtain

−
∫ ro

rs

dr
±
√
R(r)

= −
∫ θo

θs

dθ

±
√

Θ(θ)
, (244a)

∆φ = φo − φs = −
∫ ro

rs

a
±∆
√
R(r)

(
2Mr− aλ̂

)
dr +−

∫ θo

θs

λ̂ csc2 θ

±
√

Θ(θ)
dθ, (244b)

∆t = to − ts = −
∫ ro

rs

dr
±∆
√
R(r)

(
δ2 − a2∆− 2aMrλ̂

)
+−
∫ θo

θs

a2 cos2 θ

±
√

Θ(θ)
dθ, (244c)

Here and hereafter, we use the subscript o to denote the “observer”. We use the slash notation to

distinguish different light rays connecting the two points. That is, the integrals are to be evaluated

as path integrals along each trajectory, and there appears a turning point in the trajectory every time

when the effective potentials satisfy R(r) = 0 or Θ(θ) = 0. Next, we introduce new parameters

b, m and s to tell the different photon trajectories apart. For the r direction, we use b = 0 for those

direct trajectories with no radial turning point and b = 1 for those reflected trajectories with one
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radial turning point. For the θ direction, we apply m ≥ 0 to denote the number of angular turning

points and let s = ±1 depict the final sign of pθ (final polar orientation of the light ray). Then the

trajectory equations (244) can be rewritten as the “KS lens equations”,

Ir + bĨr = Gm,s
θ , (245a)

Jr + bJ̃r +
λ̂Gm,s

φ −Ωsa2Gm,s
t

M
= −Ωsto + 2πN, (245b)

where we have used φs = Ωsts to decouple ts from these equations and set φo = 2πN for an integral

N, and Ir, Ĩr, Jr, J̃r, and Gm,s
i (i ∈ {t, θ, φ}) are the radial and angular integrals given in Appendices

A and B, which are defined in the same way as in Ref. [5].

5.3.2 Observational appearance

We now consider the observational appearance of the point emitter following Refs. [90, 46, 5]. The

observables are the images positions, redshift factors and fluxes which can be expressed in terms of

the conserved quantities λ̂ and q̂ [Eq. (242)].

The apparent position (α, β) of images on the observer’s screen is obtained as

α = − λ̂

sin θo
, (246a)

β = s
√

q̂2 + a2 cos2 θo − λ̂2 cot2 θo = s
√

Θ(θo), (246b)

where s ∈ {−1, 1} denotes the final sign of pθ at the observer, which represents whether the light

ray arrives from above or below.

The redshift factor g is obtained as

g =
E
Es

=
1
γ

√
∆sΣαs

Ξs

1
1−Ωsλ̂

, (247)

where the boost factor γ is defined as

vs =
Ξs

Σαs
√

∆s
[Ωs −Ωbh(rs)], γ =

1√
1− v2

s
. (248)
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The normalized flux (comparing to the “Newtonian flux” FN) Fo/FN is given by (see App. C)

Fo

FN
=

g3MΣαs

γ sin θo

√
∆s

ΞsΘ(θo)R(rs)

∣∣∣∣∣det
∂(B, A)

∂(λ̂, q̂)

∣∣∣∣∣
−1

, (249)

where we have defined

A ≡ Ir + bĨr − Gm,s
θ ±M

∫ θs

π/2

dθ√
Θ(θ)

, (250a)

B ≡ Jr + bJ̃r +
λ̂Gm,s

φ −Ωsa2Gm,s
t

M
. (250b)

Note that computing the flux involves a variation with regard to θs, thus we have generalized the lens

equations (245) to allow θs 6= π/2. The plus or minus sign in Eq. (250a) corresponds to pushing the

emitter above or below the source plane θs = π/2.

Like in the KM case [1], these observables (246), (247) and (249) also have same form as those of

the Kerr case, while the differences come from the specific expressions for Ξs, Σαs, ∆s, Ωbh and Ωs.

5.4 N E A R - E X T R E M A L E X PA N S I O N

So far, we have set up the problem for the most general case. However it is not easy to analytically

compute the emission signals for most of the situations, therefore, we will only consider the case of

an emitter orbiting on, or near, the direct ISCO of a near-extremal KS black hole (as was suggested in

Ref. [5]). Without loss of generality, we will choose ro → ∞ and θo ∈ (0, π/2) to put the observer

at a distant position in the northern celestial sphere. For simplicity, we introduce a dimensionless

radial coordinate R, which is defined through the Boyer-Lindquist radius r by

R =
r− (M− rα)

M
=

r−M(1− r̃α)

M
, (251)

where we have introduced the reduced twist parameter r̃α = rα/M. In addition, a small parameter ε

is also introduced to describe the deviation of the KS black hole from extremity,

a = M(1− r̃α)
√

1− ε3, (252)
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The ISCO of a general KS can be obtained by following the standard procedure given in Ref. [83]

and the leading order result in the near-extremal limit is obtained as

RISCO = R̄ε +O(ε2), (253)

where

R̄ = 21/3(1− r̃α)
1/3.

Thus, to the leading order in ε, we put the emitter on the orbit with radius

rs = M(1− r̃α + εR̄). (254)

Following Refs. [5, 4], it is convenient to introduce two new quantity λ and q which are related to

the parameters λ̂ and q̂ by

λ̂ = 2M(1− ελ), q̂ = M
√
(1− r̃α)(3 + r̃α)− q2. (255)

For later reference, we now expand the orbital frequency Ωs and period Ts in ε and obtain

Ωs =
1

2M
+O(ε), Ts =

2π

Ωs
= 4πM +O(ε). (256)

To the leading order in the deviation of near-extremality, the orbital frequency remains unchanged for

the KS case compared to that of the Kerr case, which is different from the KM [1] and KN (Sec. 5.5)

cases.

5.4.1 Near-extremal solutions

Now we solve the KS lens equations (245) in the near-extremal limit and express the solutions (λ, q)

as functions of observer’s time to.

5.4.1.1 First equation

We start with the first equation (245a),

Ir + bĨr = mGθ − sĜθ . (257)
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The I integrals (radial) and G integrals (angular) are performed in the Appendices. The results for

the radial integrals are given by

Ir =
1
q

log

[
4q4Ro

(qDo + q2 + 2Ro)(qDs + q2R̄ + 4(1− r̃α)λ)

]

−1
q

log ε +O(ε), (258a)

Ĩr =
1
q

log

[
(qDs + q2R̄ + 4(1− r̃α)λ)2

4(1− r̃α)2(4− q2)λ2

]
+O(ε), (258b)

where

Ds =
√

q2R̄2 + 8(1− r̃α)λR̄ + 4(1− r̃α)2λ2, (259)

Do =
√

q2 + 4Ro + R2
o . (260)

The results for the angular integrals are given by elliptic functions which to the desired order are

some explicit functions of q.

We will introduce the main steps for solving this equation and refrain from giving detailed calcu-

lation since a similar calculation can be found in Ref. [5].

First, we introduce two quantities m̄ and Υ > 0 for convenience, which are defined by

m = − 1
qGθ

log ε + m̄, (261)

Υ ≡ q4Ro

q2 + 2Ro + qDo
e−qGm̄,s

θ . (262)

The logarithmic term in Eq. (261) is introduced to compensate for the corresponding term in left-

hand-side of Eq. (257).

Next, we can rewrite the first lens equation (257) in a simplified form by using (261) and (262),

which leads to a quadratic equation in λ. Solving this quadratic equation for b = 0 and b = 1,

separately, we obtain the final result as

λ =
2Υ

(1− r̃α)(4− q2)

[
2− q

√
1 +

4− q2

2Υ
R̄

]
. (263)
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In addition, the conditions for the solution to exist are obtained as

R̄ <
4Υ
q2

(
1 +

2√
4− q2

)
if b = 0, (264a)

R̄ >
4Υ
q2

(
1 +

2√
4− q2

)
if b = 1. (264b)

We observe that the first equation (257) does not include in explicity the time to. Thus, for given

choice of m, s, and b, we have arrived at a function λ(q) [Eq. (263)] with the supplementary condi-

tions (264).

5.4.1.2 Second equation

From the second equation (245b) we will get another another relation between to, λ, and q for given

choice of m, s, and b. For convenience, we introduce a dimensionless time coordinate t̂o restricted to

a single period t̂o ∈ [0, 1],

t̂o =
to

Ts
=

to

4πM
+O(ε). (265)

We can then rewrite Eq. (245b) as

t̂o = N + G, G = − 1
2π

(
Jr + bJ̃r + 2Gm,s

φ − (1− r̃α)2

2
Gm,s

t

)
, (266)

where J integrals and G integrals are given in the Appendices. The J integrals have similar structures

as the I integrals [Eq. (258)] and G integrals are functions of q to the desired order. Recalling

Eq. (263), we can then conclude that Eq. (266) gives a function

t̂o(q) = t̂o[q, λ(q)] (267)

for a given choice of m, s, b with a non-vanishing range of q. Note also that in the given period of

t̂o ∈ [0, 1], N is uniquely determined.

For each allowed value of N, inverting Eq. (267) in each monotonic domain gives an inverse qi(t̂o)

with i a discrete integral labeling it. We know from Sec. 5.3.2 that the observables of a hot spot’s
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image can be written as functions of λ and q, therefore, each function q(t̂o) corresponds to an image

track segment labeled by (m, b, s, N, i).

5.4.2 Observational quantities

In this subsection, we will expand the observables, including the position (246), the redshift factor

(247) and the flux (249), in ε and pick up the leading piece. Recall from the beginning of Sec. 5.4,

we have the near-extremal KS expansions

a = M(1− r̃α)
√

1− ε3, rs = M(1− r̃α + εR̄),

λ̂ = 2M(1− ελ), q̂ = M
√
(1− r̃α)(3 + r̃α)− q2. (268)

By expanding Eq. (246), the image position on the observer’s screen is obtained as

α = − 2M
sin θo

+O(ε), (269a)

β = sM
[
3− q2 + cos2 θo − 4 cot2 θo

−r̃α(3 + cos 2θo + r̃α sin2 θo)
]1/2

+O(ε). (269b)

Note that the leading order position does not depend on λ and the leading order coordinate α has the

same form as in the Kerr case. The other screen coordinate β being real gives a range of q,

q ∈
[
0,
√

3 + cos2 θo − 4 cot2 θo − r̃α(3 + cos 2θo + r̃α sin2 θo)
]
.

The boundary values of q corresponds to two endpoints of a vertical line (the analogue of NHEK line

[5]), out of which the image disappears since β is no longer real. For an observer being able to see

the image, the inclination is required to be in the range of θcrit < θo < π − θcrit, where

θcrit = arctan

[
2√

2
√

3− 2r̃α − 2r̃α

]
. (270)
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Next, the redshift factor (247) is expanded as

g =

√
(1 + r̃α)(3 + r̃α)

(3 + r̃α) + 4 λ
R̄

+O(ε). (271)

The normalized image flux (249) is expanded as,

Fo

FN
=

√
1 + r̃αR̄ε

2
√

1− r̃αDs

qg3

sin θo

√
1− q2

3−2r̃α−r̃2
α

√
Θ0(θo)

∣∣∣∣∣det
∂(B, A)

∂(λ, q)

∣∣∣∣∣
−1

, (272)

where g is given in Eq. (271) and Ds is given in Eq. (259), and [see Eq. (269)]

Θ0(θo) = [Θ(θo)/M2]|λ=0 = β2/M2

= 3− q2 + cos2 θo − 4 cot2 θo − r̃α(3 + cos 2θo + r̃α sin2 θo), (273)

and from the definitions of A and B [Eq. (250)], we have∣∣∣∣det
∂(B, A)

∂(λ, q)

∣∣∣∣ = ∣∣∣∣ ∂

∂λ

(
Jr + bJ̃r

)[
∂

∂q

(
Ir + bĨr

)
−

∂Gm,s
θ

∂q

]
− ∂

∂λ

(
Ir + bĨr

)[
∂

∂q

(
Jr + bJ̃r

)
+

∂Gm,s
tφ

∂q

]∣∣∣∣+O(ε log ε), (274)

where we have introduced

Gm,s
tφ =

(
λ̂Gm,s

φ −Ωsa2Gm,s
t
)
/M = 2Gm,s

φ − (1− r̃α)2

2
Gm,s

t +O(ε). (275)

The G, I, J integrals are given in Appendices A and B.
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A useful reference for understanding the charged black hole in string theory (the KS black hole) is

its counter partner in GR (the KN black hole). Therefore, here we briefly review the KN metric and

revisit it from a mathematical comparison with the KM metric. We do the later comparison because

the observational signature of a near-extremal KM black hole have been studied in Ref. [1] and we

will see from below that the expressions for the near-extremal KM case can be applied to the near-

extremal KN case upon replacements of the corresponding parameters in the metrics. We will use
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subscript ‘KN’ for physical charges of KN spacetime and we will use subscipt ‘KM’ for those of KM

spacetime. Charges without subscript are for KS spacetime.

The KN metric is a stationary solution of the Einstein-Maxwell theory, which in Boyer-Lindquist

coordinates reads

ds2 = −∆KN

ΣKN

(
dt− aKN sin2 θdφ

)2
+

ΣKN

∆KN
dr2

+ΣKNdθ2 +
sin2 θ

ΣKN

[
aKNdt− (r2 + a2

KN)dφ
]2, (276)

where

ΣKN = r2 + a2
KN cos2 θ, ∆KN = r2 − 2MKNr + a2

KN + Q2
KN, (277)

with aKN, MKN, and QKN being the spin, mass, and U(1) charge of the black hole. For later reference,

we may define a reduced charge parameter Q̃KN = QKN/MKN. When QKN = 0, this metric reduce

to the Kerr black hole. The extremal limit for KN black hole is obtained for

a2
KN = M2

KN −Q2
KN. (278)

For a comparison of the KS metric and KN metric from the action level and a comparison of their

apparent shapes, readers may refer to Ref. [146].

Next, we introduce the KM metric which is a stationary solution of the scalar-tensor-vector (STVG)

modified gravitational (MOG) theory. We will restore the Newtonian constant GN to describe the KM

metric for the reason that will become clear below. The KM metric in Boyer-Lindquist coordinates

reads

ds2 = −∆KM

ΣKM

(
dt− aKM sin2 θdφ

)2
+

ΣKM

∆KM
dr2

+ΣKMdθ2 +
sin2 θ

ΣKM

[
aKMdt− (r2 + a2

KM)dφ
]2, (279)

where

ΣKM = r2 + a2
KM cos2 θ, ∆KM = r2 − 2Mχr + a2

KM + Q2
χ, (280)
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with

Mχ = GN(1 + χ)MKM, Q2
χ =

χ

1 + χ
M2

χ. (281)

Here, MKM and aKM are mass and spin parameters of the black hole and χ is the deformation param-

eter defined by G = GN(1 + χ) with G being an enhanced gravitational constant. Moreover, Mχ

and J = MχaKM are, respectively, the ADM mass and angular momentum of the KM metric [139].

In addition, K =
√

χGN MKM is defined as the gravitational charge of the MOG vector field and Qχ

in (281) is a parameter related to this charge. Note that, unlike the U(1) charges of the KS and KN

black holes which are independent from their masses, this gravitational charge in the MOG theory is

mass-dependent. The extremal limit for KM black hole is obtained for

a2
KM = M2

χ −Q2
χ. (282)

As briefly introduced above, the physical starting points of the KN and KM metrics and their

interpretations are both quite different. Nevertheless, it is interesting that the KN metric (276) and

the KM metric (279) have very similar mathematical forms of their expressions. We will interpret

Mχ as the mass of the KM black hole as suggested in Ref. [139] corresponding to MKN in the KN

black hole, then the only difference between these metrics comes from the mass-dependencies of

their charge parameters. Furthermore, this difference become irrelevant in the expressions for the

(near-)extremal cases due to the constraints (278) and (282). In those cases, we may mathematically

identify the KN metric and KM metric upon MKN → Mχ and QKN → Qχ. As have been shown

in the previous sections (as well as in Refs. [5, 1]) that the computations for the observables of

an orbiting emitter on the ISCO of a near-extremal rotating black hole only rely on the spacetime

metric and the geodesics in it. Therefore, the results in Ref. [1] for the KM case can be applied to

the KN case upon to the replacements: Mχ → MKN and Qχ[= (M2
χ − a2

KM)1/2] → QKN. Note

that in Ref. [1] it has set Mχ = 1 and used spin aKM to represent the modified parameter χ due

to the relations (281) and (282). To be specific, the near-extremal KM cases for aKM = 1, 0.8 and
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0.717 correspond to the near-extremal KN cases for Q̃KN = 0, 0.6 and 0.7. As a particular and

representative example to be compared with the corresponding KS case, we will discuss the KN case

for Q̃KN = 0.6 in Sec. 5.6, for which we have borrowed the results of the KM one for aKM = 0.8

from Ref. [1].

5.6 R E S U LT S A N D D I S C U S S I O N

Now we discuss the results of the observables in practical, we will make the following choices for

the physical parameters,

Ro = 100, θo = 84.27◦,

ε = 0.01, R̄ = R̄ISCO = 21/3(1− r̃2
α

)1/3. (283)

In addition, for the reduced twist parameter r̃α, we will restrict ourself to a range from 0 to 0.5.

As mentioned before, the r̃α = 0 case reduce to the Kerr one. While we take the upper bound

r̃α = 0.5 corresponding to the U(1) charge Q = M, since the charge for an astrophysical black

hole is supposed to be quite small. (Note also, from Sec. 5.5, that the Kerr-Newman metric with a

non-zero spin and a U(1) charge QKN = MKN represents a naked singularity whose apparent shape

has been studied in Ref. [146].) Thus, we have set up a hot spot on the ISCO of a near-extremal KS

black hole with a charge Q ranging from 0 to M, viewed by a distant observer from a nearly edge-on

inclination.

Moreover, we will compare the results for KS black hole with those for other charged rotating

black holes (the KN and KM black holes). The result for KM case can be found in Ref. [1] and the

result for KN case is introduced in Sec. 5.5.

The main observables of the hot spot image in near-extremal KS spacetime are given in Sec. 5.3.2,

which are the apparent position (α, β) (269), the redshift factor g (271) and the normalized flux
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Fo/FN (272). The complete information of the image consists of tracks which are lined up by the

track segments labeled by (m, b, s, N, i). Next, we will illustrate the feature of these observables for

several selected brightest images.
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Figure 19.: Apparent positions, normalized fluxes and redshift factors of the brightest few images of

the hot spot for the twist parameter r̃α = 0 (Kerr case), 0.1, 0.18 (Q = 0.6M) and 0.5

(Q = M). We have depicted each continuous image track by the same color following

Ref. [5]. each of these continuous image tracks consists of several track segments labeled

by (m, b, s, N, i).

In Fig. 19, we show the main observables of these selected brightest images in a single period for

the reduced twist parameter r̃α = 0, 0.1, 0.18, and 0.5, respectively. Note that we choose the specific

value of r̃α = 0.18 because it corresponds to the Sen charge Q = 0.6M, which will be compared, as
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a representative example, with the KN case for the KN charge QKN = 0.6MKN. For each r̃α, each

graph has several different colored lines of which the green one represents the primary image while

the others indicate the secondary images. The secondary images are much fainter than the primary

image apart from near caustics (where lines with different colors intersect). The general features of

the primary image (which moves on a vertical line while blueshifts and peaks in brightness) and the

secondary images (which also move on the vertical line with a typical caustic structure) are the same

as those for the Kerr case [5]. Note that the graphs for r̃α = 0 agree exactly with [5] which is no

surprise since the KS metric reduce to the Kerr metric in that case. However, when r̃α 6= 0, the KS

case displays quantitatively corrections to the kerr case and also has differences from the KM (KN)

case [1]. Regarding to the apparent position (269), the screen coordinate α stays unchanged when r̃α

is varied, while the maximum value of the other screen coordinate β decreases when r̃α is increased

from 0 (corresponding to βmax = 1.72M) to 0.5 (corresponding to βmax = 1.31M). From the middle

line we see that the energy flux increases when r̃α is increased. From the bottom line we see that,

when r̃α is increased, the peak redshift factor associated with the primary image stays around 1.6

(except for r̃α = 0.5) while the typical redshift factor (corresponding to λ ∼ 0) associated with the

secondary images increases. To be specific, one can obtain this typical redshift factor from Eq. (271),

as g =
√
(1 + r̃α)/(3 + r̃α). The astronomical observed iron line [92] might suppose to be shifted

by these factors. Unfortunately, comparing with the predicted value in the Kerr case [5], the results

obtained in the KS cases are further away from the observed value. These observational signatures

appear periodically and the period in KS cases stay unchanged when r̃α is varied. In addition, as in

the Kerr case, these signatures are strongest when the inclination angle θo ≈ 90◦ (i.e., the edge-on

case) and will vanish when the inclination θo less than a critical value θcrit [see Eq. (270)]. In the KS

cases, this critical inclination is increased from 47◦ to 56◦ when r̃α is increased from 0 to 0.5.

Furthermore, now we illustrate the representative example for the observational signatures of near-

extremal KS/KN black holes both with the same U(1) charge Q(KN) = 0.6M(KN). As mentioned
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before, this corresponds to the reduced twist parameter r̃α = 0.18 for the KS case. The results for

the KN case can be obtained from a comparison with the KM case [1] which has a mass-dependent

charge (see Sec. 5.5). We find that, in KS and KN cases, the charges Q(KN) trend to have positively

correlated influences on most of the observables and these observables are corrected more in the KN

case. However, the screen coordinate α and the period Ts in the KS case stay unchanged but they

both are corrected in the KN case. We show these results explicitly in Table 2.

Kerr KS KN

Q 0 0.6M 0.6M

α −20M −20M −20.53M

βmax 1.72M 1.60M 1.55M

gpeak 1.6 1.6 1.6

gλ∼0 0.58 0.61 0.64

Ts 4πM 4πM 4.1πM

θcrit 47.06◦ 49.66◦ 51.35◦

Table 2.: Some typical quantities for the near-extremal KS and KN black hole both with a U(1)

charge Q = 0.6M (QKN = 0.6MKN) and the corresponding quantities for the neutral Kerr

case.
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S U M M A RY A N D O U T L O O K

In this thesis we analytically computed the optical appearance of high-spin black holes with accompa-

nying hot spots in their near-horizon regions, with regard to the current and future EHT observations.

While the standard studies in the literatures were based on the framework of GR and usually neglected

the propagating effects of light, here we considered a broader set of possibilities and sought for alter-

native templates for the EHT to test. We computed the apparent boundaries (critical curves) of such

black holes which are relevant to the current EHT observations. We also computed the observables

of the hot spots which provides striking predictions for future EHT to test. The differences between

the observational signatures predicted in GR and in alternative gravity theories present another way

for testing gravity theories in their strong field regimes.

To date, the first EHT image has confirmed the most important feature of the appearance of a black

hole: a bright photon ring surrounding a central dark shadow. However, GR predicts much richer

substructures of this bright ring than the current image can resolve. With ongoing efforts, an image

with sufficient resolution to recognize these substructures will hopefully be achieved in the future.

Therefore, it would be not only theoretically interesting but also practically relevant to explore more

on the optical appearance of black holes. Possible further directions include:
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• Analytical theory of the photon ring [39][149] and universal substructures of the photon ring

(interferometric signatures [32] and polarimetric signatures [150]) based on GR, as well as

their generalizations to alternative theories of GR.

• Broadening of an emission line from the innermost part of an accretion disk surrounding a

near-extremal rotating black hole [55] in alternative theories of GR.

• Optical appearance of a plunging source [49]—final images of an plunging source before it

drops into the black hole.

• Black holes and hot spots viewed by an observer at finite distance [42], or by a comoving

observer with cosmic expansion [151].
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In this appendix, we deal with the radial integrals appearing in the lens equations in the main body of

the text [Eq. (66) for Kerr in vacuum, Eq. (134) for Kerr in a plasma, Eq. (184) for KM and Eq. (245)

for KS]. These integrals in the different cases are defined in a similar way as [5]

Ir = M
∫ ro

rs

dr√
R(r)

, Ĩr = 2M
∫ rs

rmin

dr√
R(r)

, (284a)

Jr =
∫ ro

rs

Jr√
R(r)

dr, J̃r = 2
∫ rs

rmin

Jr√
R(r)

dr. (284b)

Here,R(r) and Jr are taken differently for the corresponding cases and explicit expressions will be

given in the following. rmin is the largest real root of R(r) satisfying rmin < rs. Note that, for the

KM case, M in the first line of the equations is replaced by Mχ.

In general, these integrals are computed numerically. Here, we will compute them analytically by

using the method of matched asymptotic expansion (MAE) in the near-extremal limit [4, 5]. First,

we review the two examples from the vacuum Kerr case for the computations of these integrals [5];

the MAE method is applied to the first example while the second example is done for an integral only

in the near-horizon region. The other radial integrals can be computed in the same way. Then, we

list the results for each of these cases.
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First example.

We compute the first integral in Eqs. (284a). For convenience, we repeat it here:

Ir = M
∫ ro

rs

dr√
R(r)

, R(r) =
(
r2 + a2 − aλ̂

)2 −
(
r2 − 2Mr + a2)[q̂2 +

(
a− λ̂

)2
]
. (285)

For the near-extremal Kerr black hole, we have

a = M
√

1− ε3, rs = 1 + εR̄, λ̂ = 2M(1 + ελ), q̂ =
√

3− q2 (286)

It is convenient to use the dimensionless radial coordinate R = (r−M)/M. We then introduce

two constants 0 < p < 1 and C > 0 and rewrite the integral as

Ir = M2
∫ εpC

εR̄

dR√
R

+ M2
∫ Ro

εpC

dR√
R

. (287)

As ε → 0, the scaling of εp introduces a separation of scales for the two pieces of integrals since

ε � εp � 1. The first piece of integral is in the near-horizon region R ∼ ε and the second piece is

in the far region R ∼ 1.

In the near-horizon region, we introduce a new variable R̃ = R/ε and expand the first piece of

integral in ε at fixed R̃. Then we have

M2
∫ εpC

εR̄

dR√
R

= M2
∫ εp−1C

R̄

(
1√

q2R̃2 + 8λR̃ + 4λ2
+O(ε)

)
dR̃

=
1
q

log

[
2q2

qDs + q2R̄ + 4λ
+ (p− 1) log ε + log C

]
+O(εp), (288)

where Ds =
√

q2R̄2 + 8λR̄ + 4λ2.

In the far region, we expand the second piece of integral in ε at fixed R. Then we have

M2
∫ Ro

εpC

dR√
R

=
∫ Ro

εpC

(
dR

R
√

q2 + 4R + R2
+O(ε)

)

= M2 1
q

log

[
2q2Ro

qDo + q2 + 2Ro
− p log ε− log C

]
+O(εp), (289)

where Do =
√

q2 + 4Ro + R2
o .
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By adding Eqs. (288) and (289), we get result for the complete integral

Ir = −
1
q

log ε +
1
q

log

[
4q4Ro

(qDo + q2 + 2Ro)(qDs + q2R̄ + 4λ)

]
+O(ε). (290)

Second example.

We then perform second integral of Eq. (284a). The integral is:

Ĩr = 2M
∫ rs

rmin

dr√
R(r)

, R(r) =
(
r2 + a2 − aλ̂

)2 −
(
r2 − 2Mr + a2)[q̂2 +

(
a− λ̂

)2
]
. (291)

This integral is in the near horizon region (the NHEK region to be precise) R ∼ ε. We work with

R̃ = R/ε and find the larger root ofR(r),

R̃min =
1 + a2

q2

(
− 2λ + |λ|

√
4− q2

)
. (292)

Since rmin < r+ for λ > 0, we should then exclude the case of positive λ. However, note that we

have the 1/∆ factor in Eq. (303b) (which is meaningless when it goes through the event horizon),

the integral of J̃r does not exist at all in that case which precludes the existence of a valid light

ray. Therefore, we may still perform the integral regardless whether λ is negative or positive. After

computing we get the result for the integral

Ĩr = 2M2
∫ R̄

R̃min

[
dR̃√

q2R̃2 + 8λR̃ + 4λ2
+O(ε)

]

=
1
q

log

[
(qDs + q2R̄ + 4λ)2

4(4− q2)λ2

]
+O(ε). (293)

A.1 R E S U LT S F O R K E R R I N VAC U U M

For the vacuum Kerr case, we have

R(r) =
(
r2 + a2 − aλ̂

)2 − ∆
[
q̂2 +

(
a− λ̂

)2
]
, (294a)

Jr =
1
∆

[
a(2Mr− aλ̂)−Ωsr

(
r3 + a2(r + 2M)− 2aMλ̂

)]
, (294b)
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where ∆ = r2− 2Mr + a2 and Ωs = M1/2/(r3/2
s + aM1/2). In the near-extremal regime, we have

the expansions (286). The list of results for the integrals and their variations with respect to λ and q

are given in Eqs. (300) and (302) for a = 1.

A.2 R E S U LT S F O R K E R R I N A P L A S M A

For the case of the Kerr black hole in a plasma, we have

R(r) =
(
r2 + a2 − aλ̂

)2 − ∆
[
q̂2 +

(
a− λ̂

)2
+ f̂r(r)

]
, (295a)

Jr =
1
∆

[
a(2Mr− aλ̂)−Ωsr

(
r3 + a2(r + 2M)− 2aMλ̂

)]
, (295b)

where ∆ = r2 − 2Mr + a2, Ωs = M1/2/(r3/2
s + aM1/2), and f̂r(r) is a function appearing in the

expression of plasma density (see Sec. 3.2.2).

In the near-extremal regime, we have the expansions (154). Next, we list the results of integrals

for f̂r(r) = ω̂2
c Mr, as follows,

Ir =
1
q̃

log
[ 4q̃4Ro(

q̃2 + (2− ω̂2
c

2 )Ro + q̃Do
)(

q̃Ds + q̃2R̄ + 4λ
)]− log ε

q̃
+O(ε), (296a)

Ĩr =
1
q̃

log
[(q̃Ds + q̃2R̄ + 4λ

)2

4(4− q̃2)λ2

]
+O(ε), (296b)

Jr = log

[
R̄(2 + q̃)(2− ω̂2

c
2 + q̃)1+ 1

4 ω̂2
c

(Ds + 2R̄ + 2λ)(2− ω̂2
c

2 + Do + Ro)1+ 1
4 ω̂2

c

]
− 7

2
Ir +

3
8λ

(Ds − q̃R̄)

+
1
2
(q̃− Do) +O(ε), (296c)

J̃r = −7
2

Ĩr −
3
4

Ds

λ
+ log

[ (Ds + 2R̄ + 2λ)2

(4− q̃2)R̄2

]
+O(ε), (296d)

where q̃ =
√

q2 − ω̂2
c , and

Ds =
√

q̃2R̄2 + 8λR̄ + 4λ2, Do =
√

q̃2 + (4− ω̂2
c )Ro + R2

o . (297a)

Note that for ω̂c = 0, these give the results for f̂r(r) = 0.
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For f̂r(r) = M2ω̂2
c , the expansions (153) are similar as those for f̂r(r) = 0 up to a replacement

of q→
√

q2 − ω̂2
c . Thus, the final results of the integrals are obtained by including this replacement

in those for f̂r(r) = 0.

A.3 R E S U LT S F O R K E R R - M O G

For the KM case, we have

R(r) =
(
r2 + a2 − aλ̂

)2 − ∆
[
q̂2 +

(
a− λ̂

)2
]
, (298a)

Jr =
1
∆

[
a
(
2Mχr−Q2

χ − aλ̂
)
−Ωs[r4 + a2(r2 + 2Mχr−Q2

χ)− a(2Mχr−Q2
χ)λ̂]

]
,(298b)

where

∆ = r2 − 2Mχr + a2 + Q2
χ, Ωs =

(Mχ −Q2
χ)

1/2

r2
s + a(Mχ −Q2

χ)
1/2 (299)

with Mχ = (1 + χ)M and Qχ = (χM2
χ)/(1 + χ). Later we set Mχ = 1 for convenience.

For the near-extremal regime of KM, we have the expansions (207). We now list the radial integrals

appearing in the KM len equations (245),

Ir = −1
q

log ε +
1
q

log

[
4q4Ro

(qDo + q2 + 2Ro)(qDs + q2R̄ + 2(1 + a2)λ)

]
+O(ε), (300a)

Ĩr =
1
q

log

[
(qDs + q2R̄ + 2(1 + a2)λ)2

(1 + a2)2(4− q2)λ2

]
+O(ε), (300b)

Jr = − a(6 + a2)

1 + a2 Ir −
a

1 + a2 (Do − q)− 4a2 − 1
2a(1 + a2)2

(qR̄
λ
− Ds

λ

)
+

2a
1 + a2 log

[
(q + 2)2R̄

(Do + Ro + 2)(Ds + 2R̄ + (1 + a2)λ)

]
+O(ε), (300c)

J̃r = − a(6 + a2)

1 + a2 Ĩr −
4a2 − 1

a(1 + a2)2
Ds

λ
+

2a
1 + a2 log

[
(Ds + 2R̄ + (1 + a2)λ)2

(4− q2)R̄2

]
+O(ε),(300d)

where

Ds =
√

q2R̄2 + 4(1 + a2)λR̄ + (1 + a2)2λ2, Do =
√

q2 + 4Ro + R2
o . (301)
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Next, we list the variations of these integrals with respect to λ and q,

∂Ir

∂λ
=

1
λ

(
R̄
Ds
− 1

q

)
, (302a)

∂ Ĩr

∂λ
= − 2

λ

R̄
Ds

, (302b)

∂Ir

∂q
= −1

q
Ir −

1
q(4− q2)

[
(8− q2)

( R̄
Ds

+
1

Do
− 2

q

)
+

2(1 + a2)λ

Ds
+

2Ro

Do

]
, (302c)

∂ Ĩr

∂q
= −1

q
Ĩr +

2
q(4− q2)

[
(8− q2)

R̄
Ds

+ 2(1 + a2)
λ

Ds

]
, (302d)

∂Jr

∂λ
= − 1

2aDs
− 1

λ

(1 + a2

a
R̄
Ds
− a(6 + a2)

1 + a2
1
q

)
− 4a2 − 1

2a(1 + a2)2
Ds − qR̄

λ2 , (302e)

∂ J̃r

∂λ
=

1
aDs

+
2(1 + a2)R̄

aDsλ
+

(4a2 − 1)Ds

a(1 + a2)2λ2 , (302f)

∂Jr

∂q
=

a(6 + a2)Ir

(1 + a2)q
+

4a2 − 1
2a(1 + a2)2

(Ds

qλ
− R̄

λ

)
+

a
1 + a2 −

2a(10 + a2)

(1 + a2)q2 −
8a(2 + a2)

(1 + a2)(4− q2)q2

+

[
2a2(2 + a2)(8− q2) + 4(4− q2)

]
R̄ + (1 + a2)

[
4a2(2 + a2) + (4− q2)

]
λ

2a(1 + a2)(4− q2)qDs

+
a
[
(8− q2 + 2Ro)(6 + a2 − q2)

]
(1 + a2)(4− q2)qDo

, (302g)

∂ J̃r

∂q
=

a(6 + a2) Ĩr

(1 + a2)q
−
[
2a2(2 + a2)(8− q2) + 4(4− q2)

]
R̄ + (1 + a2)

[
4a2(2 + a2) + (4− q2)

]
λ

a(1 + a2)(4− q2)qDs

− (4a2 − 1)Ds

a(1 + a2)2qλ
. (302h)

A.4 R E S U LT S F O R K E R R - S E N

For the KS case, we have

R(r) = (aλ̂− δ)2 − ∆
[
q̂2 + (λ̂− a)2] , (303a)

Jr =
1
∆

[
a(2Mr− aλ̂)−Ωs

(
δ2 − a2∆− 2aMrλ̂

)]
, (303b)

where

δ = r2 + a2 + 2rαr, ∆ = δ− 2Mr, Ωs =
M1/2

(r + 2rα)(r + rα)1/2 + aM1/2 . (304)
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In the near-extremal regime, we have the expansions (268). We now list the results for these

integrals which appear in the KS lens equations (245),

Ir =
1
q

log
[ 4q4Ro

(qDo + q2 + 2Ro)(qDs + q2R̄ + 4(1− r̃α)λ)

]
− 1

q
log ε +O(ε), (305a)

Ĩr =
1
q

log
[ (qDs + q2R̄ + 4(1− r̃α)λ)2

4(1− r̃α)2(4− q2)λ2

]
+O(ε), (305b)

Jr = −7− 2r̃α − r̃2
α

2
Ir −

1
2
(Do − q)− 3 + r̃α

8

(qR̄
λ
− Ds

λ

)
+ log

[ (q + 2)2R̄
(Do + Ro + 2)(Ds + 2R̄ + 2(1− r̃α)λ)

]
+O(ε), (305c)

J̃r = −7− 2r̃α − r̃2
α

2
Ĩr −

3 + r̃α

4
Ds

λ
+ log

[ (Ds + 2R̄ + 2(1− r̃α)λ)2

(4− q2)R̄2

]
+O(ε), (305d)

where r̃α = rα/M and

Ds =
√

q2R̄2 + 8(1− r̃α)λR̄ + 4(1− r̃α)2λ2, Do =
√

q2 + 4Ro + R2
o . (306)

130



B
A N G U L A R I N T E G R A L S

In this appendix, we deal with the angular integrals appearing in the lens equations in the main body

of the text [Eq. (66) for Kerr in vacuum, Eq. (134) for Kerr in a plasma, Eq. (184) for KM and

Eq. (245) for KS]. These integrals in the different cases are defined in a similar way as [5]

Gm,s
i =


Ĝi m = 0,

mGi − sĜi m ≥ 1,

i ∈ {t, θ, φ} . (307)

with

Gi = M
∫ θ+

θ−
gi(θ)dθ, Ĝi = M

∫ π/2

θo

gi(θ)dθ, (308)

and

gθ =
1√

Θ(θ)
, gφ =

csc2 θ√
Θ(θ)

, gt =
cos2 θ√

Θ(θ)
, (309)

where Θ(θ) is the angular potential for each case and θ± are roots of it. Note that M in Eq. (308) is

replaced by Mχ for the KM case.

These integrals can be expressed in terms of elliptic functions [84]. Taking the vacuum Kerr case

[5] for example, we have

Θ(θ) = q̂2 + a2 cos2 θ − λ̂2 cot2 θ. (310)
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We make the change of variables by u = cos2 θ, then by solving angular potential Θ(u) = q̂ +

u[a2 − λ̂2(1− u)−1] = 0 we find the roots [5]

u± = ∆θ ±
√

∆2
θ +

q̂2

a2 , ∆θ =
1
2

(
1− q̂2 + λ̂2

a2

)
. (311)

Therefore Θ(θ) has roots at θ± = arccos∓√u+, with the relation 0 < θ− < θ+ < π. Note that

we also have u− < 0 < u+. Then, the expressions for the angular integrals are given by [5]:

Gθ = M
∫ θ+

θ−

dθ√
Θ(θ)

=
2M

|a|
√
−u−

K

(
u+

u−

)
, (312a)

Ĝθ = M
∫ π/2

θo

dθ√
Θ(θ)

=
M

|a|
√
−u−

F

(
Ψo

∣∣∣u+

u−

)
, (312b)

Gφ = M
∫ θ+

θ−

csc2 θ√
Θ(θ)

dθ =
2M

|a|
√
−u−

Π

(
u+

∣∣∣u+

u−

)
, (312c)

Ĝφ = M
∫ π/2

θo

csc2 θ√
Θ(θ)

dθ =
M

|a|
√
−u−

Π

(
u+; Ψo

∣∣∣u+

u−

)
, (312d)

Gt = M
∫ θ+

θ−

cos2 θ√
Θ(θ)

dθ = − 4Mu+

|a|
√
−u−

E′
(

u+

u−

)
, (312e)

Ĝt = Mα

∫ π/2

θo

cos2 θ√
Θ(θ)

dθ = − 2Mαu+

|a|
√
−u−

E′
(

Ψo

∣∣∣u+

u−

)
, (312f)

where E′(φ|m) = ∂mE(φ|m), and F(φ|m), E(φ|m), Π(n; φ|m) are the incomplete elliptic integrals

of the first, second and third kind, and K(m), E(m), Π(n|m) are the complete elliptic integrals of

the first, second and third kind, and Ψo = arcsin
√

cos2 θo/u+.

B.1 R E S U LT S F O R K E R R I N VAC U U M

In the near-extremal limit for the vacuum Kerr case, we have the expansions (286). Then [5]

u± = I± +O(ε), I± =
q2

2
− 3±

√
12− (2q)2 +

(
q2

2

)2

, (313)

Ψo = arcsin

√
cos2 θo

I+
+O(ε), (314)
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and the results for angular integrals are

Gθ =
2√
−I−

K

(
I+
I−

)
+O(ε), Ĝθ =

1√
−I−

F

(
Ψo

∣∣∣I+I−
)
+O(ε), (315a)

Gφ =
2√
−I−

Π

(
I+
∣∣∣I+I−

)
+O(ε), Ĝφ =

1√
−I−

Π

(
I+; Ψo

∣∣∣I+I−
)
+O(ε), (315b)

Gt = −
4I+√
−I−

E′
(
I+
I−

)
+O(ε), Ĝt = −

2I+√
−I−

E′
(

Ψo

∣∣∣I+I−
)
+O(ε). (315c)

B.2 R E S U LT S F O R K E R R I N A P L A S M A

For the case of the Kerr black hole in a plasma, we have

Θ(θ) = q̂2 + a2 cos2 θ − λ̂2 cot2 θ − f̂θ(θ), (316)

where f̂θ(θ) is a function appearing in the expression of plasma density (see Sec. 3.2.2). We will

perform the integrals for fθ(θ) = ω2
c M2. In this case, the angular potential can be written as

Θ(u) = q̂2 − ω̂2
c M2 + u

[
a2 − λ̂2(1− u)−1], (317)

which are similar as those in the vacuum Kerr case up to the replacement: q̂2 → q̂2 − ω̂2
c M2.

Therefore, the results for these integrals are obtained by just replace q by
√

q2 + ω̂2
c in Eq. (315).

B.3 R E S U LT S F O R K E R R - M O G

For the KM case, the angular potential Θ(θ) takes the same form as the Kerr case, Eq. (310). Then

the expressions for the results take the same form as Eq. (312) except replacing M by Mχ. Later we

set Mχ = 1 for convenience.
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For the near-extremal regime of KM, we have the expansions (207). Then the final results for the

angular integrals are

Gθ =
2

a
√
−I−

K

(
I+
I−

)
+O(ε), Ĝθ =

1
a
√
−I−

F

(
Ψo

∣∣∣I+I−
)
+O(ε), (318a)

Gφ =
2

a
√
−I−

Π

(
I+
∣∣∣I+I−

)
+O(ε), Ĝφ =

1
a
√
−I−

Π

(
I+; Ψo

∣∣∣I+I−
)
+O(ε), (318b)

Gt = −
4I+

a
√
−I−

E′
(
I+
I−

)
+O(ε), Ĝt = −

2I+
a
√
−I−

E′
(

Ψo

∣∣∣I+I−
)
+O(ε), (318c)

where

I± =
q2 − 6

2a2 ±
1
a2

√
8− 3q2 + (4− q2)a2 +

(
q2

2

)2

, Ψo = arcsin

√
cos2 θo

I+
. (319)

B.4 R E S U LT S F O R K E R R - S E N

For the KS case, the angular potential Θ(θ) takes the same form as the Kerr case, Eq. (310). In the

near-extremal regime, we have the expansions (268), then the results for the angular integrals are

Gθ =
2

(1− r̃2
α)
√
−I−

K

(
I+
I−

)
+O(ε), (320a)

Ĝθ =
1

(1− r̃2
α)
√
−I−

F

(
Ψo

∣∣∣I+I−
)
+O(ε), (320b)

Gφ =
2

(1− r̃2
α)
√
−I−

Π

(
I+
∣∣∣I+I−

)
+O(ε), (320c)

Ĝφ =
1

(1− r̃2
α)
√
−I−

Π

(
I+; Ψo

∣∣∣I+I−
)
+O(ε), (320d)

Gt = −
4I+

(1− r̃2
α)
√
−I−

E′
(
I+
I−

)
+O(ε), (320e)

Ĝt = −
2I+

(1− r̃2
α)
√
−I−

E′
(

Ψo

∣∣∣I+I−
)
+O(ε), (320f)

where r̃α = rα/M and

I± =
q2 − 6 + 2r̃2

α ±
√
(4− q2)(12− q2 − 8r̃α)

2(1− r̃2
α)

, Ψo = arcsin

√
cos2 θo

I+
. (321)

134



C
I M AG E F L U X

The energy flux of an image on the observer’s screen is determined by the product of observed

intensity and the apparent size of solid angle [46]. In order to study the effects of gravity, it is

instructive to compare the observed image flux with the corresponding “Newtonian flux”. In the

Newtonian case, the energy flux for a particular image of a spherical emitter with a proper radius

ρ� M is given by

FN =
πρ2

r2
o

Is. (322)

In the black hole case, the observed intensity and the angular size of the image are varied, then the

image flux becomes

Fo =
∫∫ dαdβ

r2
o

Io, Io = g4 Is. (323)

Next, we introduce the procedure for computing the flux in the vacuum Kerr case [5]. In the main

body, this procedure has also been applied to compute the flux for the other cases.

The flux (323) corresponds to a narrow bundle of rays that approximately have a uniform redshift

g. Therefore, we can write

Fo = g4 Is
A
r2

o
, A =

∫∫
dαdβ, (324)

where A is the apparent area of the image on the observer’s sky. This area is described by screen

coordinates (α, β) [Eq. (53)], which corresponds to light rays intersecting with the observer’s screen.
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In order to compute the area A, we instead consider the intersection of these rays with the “source

plane”—a plane through the center of the emitter perpendicular to proper radial direction. It is

convenient to define a proper coordinate system (T, X, Y, Z) of the emitter by [see Eq. (59)]

∂

∂T
= e(ts),

∂

∂X
= e(rs),

∂

∂Y
= e(φs),

∂

∂Z
= −e(θs). (325)

Then we have

t− t? = γ

√
Ξ

∆Σ
(T + ΩsY), r− r? =

√
∆
Σ

X, θ − θ? = −
1√
Σ

Z, (326a)

φ− φ? = γ

√
Ξ

∆Σ
(ΩsT + ωvsY) + γ

√
Σ
Ξ

Y, (326b)

where Ξ, ∆, Σ and Ωbh are given in Eqs. (9) and (8) and evaluated at (rs, θs), and Ωs is given in

Eq. (30), γ and vs are given in Eq. (60), and xµ
∗ are the coordinates of the central position of the

emitter. Then the plane with T = X = 0 is the source plane and the area of intersection of the

bundle of rays with this plane can be described with the source plane coordinates (Ys, Zs).

Now we may compute the area A through

A =
∫∫ ∣∣∣∣ ∂(α, β)

∂(Ys, Zs)

∣∣∣∣ dYsdZs =

∣∣∣∣ ∂(α, β)

∂(Ys, Zs)

∣∣∣∣As, As =
∫∫

dYsdZs. (327)

where the Jacobian has been treated as constant under the approximation ρ � M, and As is the

projected area of the emitter’s surface on the source screen.

First, we compute the area As. For small ρ, the narrow bundle light rays are considered to be

emitted in the same direction with a unit tangent vector

k̂ =
1

p(ts)
(p(rs)X̂ + p(φs)Ŷ− p(θs)Ẑ). (328)

Then the projected area As can be computed by

As =
πρ2∣∣∣k̂ · X̂∣∣∣ = πρ2

∣∣∣∣∣ p(ts)

p(rs)

∣∣∣∣∣ = πρ2

g

√
Σ(rs, θs)∆(rs)

R(rs)
. (329)

Next, we compute the Jabobian in Eq. (327). We will compute it in stages∣∣∣∣ ∂(α, β)

∂(Ys, Zs)

∣∣∣∣ = ∣∣∣∣ ∂(φ∗s , θs)

∂(Ys, Zs)

∣∣∣∣ ∣∣∣∣∂(φ∗s , θs)

∂(λ̂, q̂)

∣∣∣∣−1 ∣∣∣∣∂(α, β)

∂(λ̂, q̂)

∣∣∣∣ , (330)
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where we have defined φ∗s = φs −Ωsts for convenience. From Eqs. (326) we have

∣∣∣∣ ∂(φ∗s , θs)

∂(Ys, Zs)

∣∣∣∣ = 1
γ
√

Ξ(rs, θs)
(331)

From Eqs. (53) we have

∣∣∣∣∂(α, β)

∂(λ̂, q̂)

∣∣∣∣ = q̂

sin θo

√
q̂2 + a2 cos2 θo − λ̂2 cot2 θo

=
q̂

sin θo
√

Θ(θo)
. (332)

It remains to compute the middle Jacobian, this involves to consider perturbation to the lens equations

governing the rays (λ̂, q̂). We consider the variation of θs and φ∗s with the rays at fixed rs and at fixed

to, ro, θo, φo. In order to allow θs to be varied, one need to generalize the lens equations (66) to allow

θs 6= π/2. It is convenient to rewrite the lens equations as

A = 0, A ≡ Ir + bĨr − Gm,s
θ ±M

∫ θs

π/2

θ√
Θ(θ)

, (333a)

B = ∆φ∗ = −Ωsto + 2πN, B ≡ Jr + bJ̃r +
1
M

[
λ̂Gm,s

φ −Ωsa2Gm,s
t

]
. (333b)

Taking total derivatives of A and B with respect to λ̂ and q̂, we then obtain

∂θs

∂λ̂
= ∓ M√

Θ(θs)

∂A
∂λ̂

,
∂θs

∂q̂
= ∓ M√

Θ(θs)

∂A
∂q̂

,
∂φ∗s
∂λ̂

= −∂B
∂λ̂

,
∂φ∗s
∂q̂

= −∂B
∂q̂

. (334)

Thus, the middle determinant in Eq. (330) is obtained as

∣∣∣∣∂(φ∗s , θs)

∂(λ̂, q̂)

∣∣∣∣ =
√

Θ(θs)

M

∣∣∣∣∣∣∣∣det

 ∂B
∂λ̂

∂B
∂q̂

∂A
∂λ̂

∂A
∂q̂


∣∣∣∣∣∣∣∣ . (335)

Putting everything together, we finally obtain the normalized flux

Fo

FN
= g3 q̂M

γ sin θo

√
Σ(rs, θs)∆(rs)

Ξ(rs, θs)Θ(θo)Θ(θs)R(rs)

∣∣∣∣det
∂(B, A)

∂(λ̂, q̂)

∣∣∣∣−1

. (336)
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