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A B S T R A C T

In this work a tapered optical fiber is studied as a waveguide plat-
form for efficient collective light-atom interaction. We present an all-
computer controlled heat-and-pull setup with which a standard opti-
cal fiber can reproducible be tapered down to sub-micron waist size.
The resulting fiber shape is compared against a prediction derived
from a numerical model build upon an easy experimental calibration
of the viscosity profile within the heater. Very good agreement be-
tween the modeled and measured fiber shape is found.

We next study the coherent back-scattering off atoms confined as two
one-dimensional strings in the evanescent field of a tapered optical
fiber. By applying a near-resonant standing wave field, the atoms
are arranged into a periodic Bragg structure in close analogy to a
photo-refractive medium with a refractive index grating. We observe
more than 10 % power reflection off about 1000 structured atoms, cor-
responding to an enhancement of two orders of magnitude when
compared to reflections off an unstructured atomic ensemble.

R E S U M E

Denne afhandling præsenterer et studie af en indsnævret optisk fiber,
der virker som en lysleder platform for øget kollektiv vekselvirkning
mellem lys og atomer. Heri præsenteres en computerstyret opstilling
med hvilken almindelige optiske fibre på kontrolleret vis kan varmes
og trækkes, indtil en diameter på kun 500 nm opnås. Formen af
den resulterende overgang, der forbinder den oprindelige fiber med
den tynde sektion, er blevet sammenholdt med en numerisk model.
Denne bygger på en nem eksperimentel kalibrering af viskositetspro-
filen i fiberen som følger af varmeelementet i opstillingen. Der er
fundet god overensstemmelse mellem den målte form af den ind-
snævrede fiber og modellens forudsigelser.

Dernæst er den kohærente lysrefleksion fra to rækker af atomer, fast-
holdt i lysfeltet langs den indsnævrede fiber, undersøgt. Ved at påtryk-
ke et stående bølgefelt med optisk frekvens nær den atomare reso-
nans, drives atomerne ind i en periodisk struktur der giver anledning
til Bragg spredning. Mere end 10 % lysrefleksion er målt for omkring
1000 strukturerede atomer, som til sammenligning er to størrelsesor-
dener højere end den målte refleksion for ustrukturerede atomer.
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1
I N T R O D U C T I O N

enhancing light-atom coupling

Nowadays, optical fibers are well-known objects to most people, as
these low-loss waveguides, pioneered by Nobel laureate Charles K.
Kao, offer fast internet connection via fiber cable networks utilizing
light as a fast information carrier. For the realization of a quantum in-
formation network, guided light is likewise the obvious choice for the
implementation of fast quantum communication channels between
distant nodes [Cirac et al., 1997; Duan et al., 2001]. However, a chal-
lenge remains in reaching efficient coupling between the information
carrying photons and stationary physical systems that serve as quan-
tum memory stations or as units in which quantum gate operations
can be performed for the implementation of quantum computational
tasks [Nielsen et al., 2000]. Here, optical waveguides are found to
be promising platforms for efficient light-matter interactions [Bajcsy
et al., 2009; Goban et al., 2015; Lodahl et al., 2015]. Furthermore, such
waveguides offer a natural extension to the already existing fiber net-
work and thus provides an all-integrated and scalable “fiber-coupled
quantum system”.

Traditionally, enhanced coupling between light and atoms is realized
in cavity QED experiments where a single or few atoms are trapped
inside a high finesse optical resonator allowing for many interactions
with the same photons [Miller et al., 2005; Haroche et al., 2006]. An-
other approach is to utilize collective effects where many atoms inter-
act with the light field simultaneously [Hammerer et al., 2010].

In 2003 Tong et al. demonstrated that low-loss optical waveguiding
can be obtained from optical fibers tapered down to sub-micron di-
ameters. This revived interest [Balykin et al., 2004; Le Kien, Balykin,
et al., 2004] in the original proposal by Ovchinnikov et al. [1991] to
trap cold atoms in the evanescent field near the dielectric-vacuum in-
terface, in which strong coupling between atoms and a single guided
mode in the tapered optical fiber can be achieved. After tackling nu-
merous “trivial practical problems”, this scheme has been realized
experimentally and found to yield efficient collective light-atom cou-
pling with optical depths of order 10 achieved with only about 103

atoms [Vetsch et al., 2010; Goban et al., 2012; Béguin et al., 2014]. This
constitutes a significant improvement compared to atoms trapped in

1



2 introduction

typical free-space optical dipole traps, where about 105 atoms are
required to obtain similar values of the optical depth [Appel, Wind-
passinger, et al., 2009].

This experimental progress, in turn, motivates now theorists to ex-
plore further the potential of the new platform. The strong coupling
of photons with atoms placed in the proximity of a tapered optical
fiber has been predicted recently to lead to long range interactions
[Chang et al., 2012; Chang et al., 2013] with prospects to simulate
quantum many-body models [Douglas et al., 2015] in the spirit of the
original proposal by Feynman [1982].

In this work we have taken the first steps towards such schemes and
utilized the tight confinement of a guided mode in a tapered optical
fiber to make about 103 atoms comprise an efficient one-dimensional
mirror when the atoms are arranged in linear strings fulfilling the
Bragg condition. As we shall see, an, in principle, simple experiment
turned out to open Pandoras box revealing a rich system full of dy-
namics.

thesis structure

It has by now become a tradition in our group to write theses that
are meant to be useful for the next generation of students. In this
perspective, I have focused on writing in a pedagogical and enlight-
ening style. As a result, there might appear paragraphs that are quite
exhaustive and repeatable in style, especially for the reader that is al-
ready familiar with the subject. I can only hope, that I have managed
to pass on the knowledge that I have accumulated over the last four
years as a PhD student in Eugene Polzik’s group.

Part i This thesis is centered around tapered optical fibers and we
therefore start out by covering the important features of light
propagating in such a waveguide. This includes a discussion of
adiabatic tapers to ensure high light transmission through the
tapered optical fiber, and a description of the field distribution
of a quasi-linear polarization mode in the tapered optical fiber
when configured as either a running wave or a standing wave.
Control over the field polarization in the tapered optical fiber
plays an important role in all our experiments and we therefore
provide a description of how we experimentally configure it as
a quasi-linear polarization mode. The part is concluded by first
a description of our fiber pulling rig followed by a presentation
on how the resulting shape of a tapered fiber can be numerically
modeled by performing an initial calibration of the viscosity
profile in the fiber provided by heater.



introduction 3

Part ii Here a foundation to understand later parts involving light-
atom interactions is provided. As such, it will be a rather the-
oretical section of the thesis where important concepts, such as
the optical depth and the light dipole force, are introduced. In-
tended as an introduction of concepts and definitions, especially
aimed towards the less experienced reader, an expert in the field
might find most of the content trivial leisure reading. He or she
should feel free to jump right ahead to Part iii and use this part
mainly as a reference guide for notation when necessary.

Part iii In this part we present our experimental setup in which a
tapered optical fiber is used as a quantum interface for light-
atom interaction. We start out by showing how atoms are con-
fined as two one-dimensional crystals in the evanescent field
of a tapered optical fiber. This is followed by a description of
the optical detection schemes that are implemented to probe the
atoms. Finally, the part is concluded by a demonstration on how
the number of trapped atoms is counted by a simple absorption
measurement.

Part iv With all the basics ingredients now established, we here en-
ter the main part of this thesis, in which we demonstrate how
the atomic crystal can be made into a Bragg mirror. Starting
with a general description of Bragg scattering we present two ex-
perimental schemes that have been utilized to create the atomic
Bragg mirror, followed by a chapter in which the experimen-
tal details are further discussed. The remainder of the part is
devoted to the presentation of a large fraction of the acquired
experimental results.

Part v In this last part of the thesis, the experimental findings that
have been obtained during this work are summarized and con-
cluded, followed by an overview of future perspectives for col-
lective light-atom interaction mediated by the platform provided
by a tapered optical fiber.





Part I

A N I N T R I G U I N G WAV E G U I D E





2
TA P E R E D O P T I C A L F I B E R S

This chapter serves to give an introduction to the concept of tapered
optical fibers (TOFs). Starting with a brief introduction of step-index
fibers (SIFs) in general, we move on to describe the spatial geometry of
TOFs. This is followed by a brief discussion on how to solve Maxwell’s
equations for the guided mode propagation with the boundary condi-
tions provided by the cylindrical fiber symmetry. The solutions form
a discrete set of bounded modes of which a qualitative description is
given. Before concluding the chapter with a graphical presentation of
the field mode in the TOF waist, the field mode in the tapered part of
the TOF is discussed and the adiabatic criterion is given.

Some parts of this chapter follow closely what has been reported
previously in [Sørensen, 2013] concluding Part A of the 4+4 PhD pro-
gram.

2.1 brief introduction to step-index fibers

z

n0

ncl

nco

x

y

ρ

φb

a

Figure 2.1.: Step-index fiber.

A TOF is essentially the same as
a regular SIF, i.e., a long two-
layered cylinder (Fig. 2.1) where
the contrast in index of refrac-
tion between the two layers ef-
fectively creates an interface by
which light can be guiding due
to total internal reflection. From
Snell’s law it can be derived that
this requires the inner layer, de-
noted the core, to have an in-
dex of refraction nco greater than
that of the surrounding cladding layer ncl, see for example Hecht
[2002]. For SIFs, made of high-purity fused silica, this is typically
obtained by doping the core with germanium (Ge) which slightly in-

7
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creases nco. In the frame of cylindrical coordinates, with basis vectors1

{uρ, uφ, uz}, we therefore have (cf. Fig. 2.1):

n(ρ) =


nco if ρ < a,

ncl if a < ρ < b,

n0 if b < ρ,

(2.1)

with ncl < nco, and with the index of refraction of the medium embed-
ding the fiber often taken to be that of vacuum; n0 = 1. For the single-
mode fibers used in this work, typical values for the core (cladding)
diameter and index of refraction are 2a = 5.5 µm (2b = 125 µm) and
nco = 1.4650 (ncl = 1.4573).

2.2 tof geometry

The geometry of a TOF can be described much like that of a SIF. Again,
light is guided by a core-cladding interface due to the contrast in in-
dex of refraction between the two layers. The thickness of the fiber is,
however, now comparable to the wavelength of the propagating light
field, and the cladding is therefore taken to be that of the surrounding
vacuum, such that:

n(ρ) =

{
nco if ρ < a,

ncl if ρ > a,
(2.2)

where a is now the radius of (the waist section of) the fiber and ncl =

n0. As we shall see later, in Chapter 4, a TOF can be made by heating
a small section of a SIF while pulling the two fiber ends apart. This
results in the TOF geometry illustrated in Fig. 2.2. The thinnest section

z

unstretched taper waist taper unstretched

Figure 2.2.: General geometry of a TOF together with the nomenclature used to label
the different sections of the fiber.

of the TOF, denoted the waist, is connected to the unstretched parts
of the SIF, by two tapered sections. The waist, loosely referred to as
the TOF or fiber throughout the thesis, is thus an integrated part of an
ordinary SIF. This is an important detail, as light can then easily be
coupled into the TOF by standard fiber coupling techniques into the
SIF.

1 All vector quantities will be denoted by bold letters throughout the thesis and unit
vectors will in addition be indicated by the letter u.
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As the tapers form the spatial transitions between the three straight
sections, they constitute the most critical part of the TOF. Preferably,
they should be formed such that a guided field mode in the SIF adi-
abatically transforms into a guided mode in the TOF. This imposes a
set of constraints to the spatial shape and challenges the fiber pulling.
In Chapter 4 the fiber pulling is presented in greater details, together
with a continued discussion on the taper shapes and the adiabatic
criterion provided below in Section 2.4.1.

2.3 light propagation

To be able to use a TOF as an interface for light-atom interactions, it
is of crucial importance that the field distribution of guided modes is
known in detail. This can be calculated by solving Maxwell’s famous
equations2:

∇ ·D = 0 , (2.3a)

∇ ·H = 0 , (2.3b)

∇× E = −µ0
∂H
∂t

, (2.3c)

∇×H =
∂D
∂t

, (2.3d)

with
D(r, t) = ε0E(r, t) + P(r, t) = ε0n2(ρ)E(r, t) (2.4)

being the electric field displacement, E the electric field, and

P(r, t) = ε0χ(ω)E(r, t) (2.5)

the polarization response of the medium to the electric field character-
ized by the (complex linear) dielectric susceptibility χ. B = µ0H is the
magnetic field, and ε0, µ0 are the vacuum permittivity and vacuum
permeability respectively.

Maxwell’s equations, bounded by the two-layer geometry valid for
the unstretched parts and the waist (cf. Eq. (2.2) and Fig. 2.2), have
been solved in several textbooks, e.g., [Boyd, 2008; Snyder et al., 1983;
Ghatak et al., 1998] (with ncl = nglass) and theses oriented specifi-
cally towards TOFs (i.e., with ncl = n0) [Cassany, 2009; Béguin, 2015],
which we encourage the reader to consult. In the following, we there-
fore restrict ourselves to a somewhat superficial treatment of the light
propagation in fibers, highlighting only the main steps and results in
the derivation of the guided field modes as obtained in the above
mentioned references.

2 Written here for a non-conductive, non-magnetic, isotropic, and homogeneous di-
electric medium such as glass.
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2.3.1 Main steps in solving Maxwell’s equations

From Maxwell’s equations (2.3) the wave equation for an electric field
propagating in a dielectric medium can be deduced:(

∇2 − µ0ε0n(ρ)2 ∂2

∂t2

)
E = −∇

(
E ·∇n2(ρ)

n2(ρ)

)
. (2.6)

Inserting the fiber boundary conditions (2.2) the gradient ∇n2(ρ) is
found to be zero when ρ 6= a. The right-hand side (RHS) in Eq. (2.6)
hence also equates to zero and the wave equation reduces to the sim-
pler Helmholtz equation. Because of the cylindrical fiber geometry,
the solutions should be translational invariant along the fiber axis.
This makes it possible to separate them into a transverse and longitu-
dinal part and leads to the following ansatz for the electric field at a
given position r and time t:

E(r, t) = E(ρ, φ)ei(ωt−βz) . (2.7)

Here E is the electric field amplitude, ω is the angular frequency
of the oscillating field, and β is the propagation constant. Inserting
Eq. (2.7) into Eq. (2.6) we find for the z-component of the electric field(

∂2

∂ρ2 +
1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂φ2 +
(
k2 − β2))Ez(ρ, φ) = 0 , (2.8)

where k = ωn(ρ)/c is the wavenumber of the electric field prop-
agating inside the dielectric, and c = (µ0ε0)−1/2 is the speed of
light in vacuum. The transverse electric field in the Helmholtz equa-
tion (2.8) can be further separated in the remaining two variables,
E(ρ, φ) = R(ρ)Φ(φ), where the angular part can readily be obtained
by introducing the separation constant [Riley et al., 2006]:

l2 = − 1
Φ

∂2Φ
∂φ2 , (2.9)

with solution
Φ(φ) = e±ilφ . (2.10)

Since the azimuthal solution has to be single-valued, i.e., Φ(φ+ 2π) =

Φ(φ), l is restricted to take on an integer value.

What remains is then to obtain the solution for the radial part R(ρ).
Inserting E(ρ, φ) = R(ρ)e±ilφ into Eq. (2.8), multiplying through with
ρ2, and introducing a new variable r2 = ρ2(k2 − β2) leads to:(

r2 ∂2

∂r2 + r
∂

∂r
+
(
r2 − l2))R(r) = 0 , (2.11)

which can be recognized as Bessel’s equation with general solutions
given by the Bessel functions of order l. The exact form of the so-
lutions depend on whether k2 < β2 or k2 > β2. Importantly, and
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also rather intuitively, it is found from the solutions that guided fiber
modes only exist if the inequality

ncl <
β

k0
= neff ≤ nco (2.12)

is fulfilled, where k0 = ω/c is the free-space wavenumber, and the ef-
fective index of refraction neff has been introduced as the normalized
propagation constant.

So far, we have only considered the electric field part of the propa-
gating electro-magnetic wave. Conveniently, from the symmetry of
Maxwell’s equations (2.3), the magnetic field can be treated similarly.
On top of that, it is sufficient to only solve for the z-component of
the electric field. Here two things are worth noting: (i) From the so-
lutions of Ez(ρ, φ), and the equivalent for the magnetic field Hz(ρ, φ),
it is possible to obtain all the remaining components of the electric
and magnetic fields from the cylindrical symmetry of the fiber. (ii)
Contrary to an electro-magnetic wave propagating in free-space, the
two longitudinal components along the propagation direction are not
necessarily zero. In fact, as we shall see later in Section 2.5, the lon-
gitudinal field strength can be quite significant in the fiber waist and
should therefore not be neglected.

In the following we give a more qualitative description of the solu-
tions and present graphs for the electric field distribution of the fun-
damental mode. Especially these graphs contain crucial information
that are necessary in order to understand any light-atom interactions
that are mediated by the use of a TOF as a quantum interface.

2.3.2 Exact solutions

The solutions for the bounded field modes are usually divided into
two subgroups: hybrid modes and transverse modes. The hybrid
modes contain both electric and magnetic field components along the
fiber axis and are denoted HE (EH) when Ez is smaller (larger) than
Hz. Each mode is characterized by a pair of indices: an azimuthal
index l = 1, 2, 3, ... (cf. Eq. (2.9)) for each of which there exists a range
of radial solutions m = 1, 2, 3, ..., corresponding to a discrete set of
guided modes in the fiber.

The transverse modes are nothing but a special case of the hybrid
modes with l = 0. For the HE modes this means that the electric field
component in the propagation direction vanish, and they are thus
said to be TE. Similarly, the longitudinal magnetic field component
vanish for the EH modes, when l = 0, and they are then called TM.

To get a feeling for the nature of the guided field modes, it is helpful
to consider Fig. 2.3 depicting the guided light rays and accompanying
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electric field lines for the transverse and hybrid modes. The light rays

E z

(a) TE01 mode. Eφ,Hρ,Hz 6= 0, Eρ = Ez = Hφ = 0.

E z

(b) TM01 mode. Eρ, Ez,Hφ 6= 0, Eφ = Hρ = Hz = 0.

E z

(c) Hybrid mode. Eρ, Eφ, Ez,Hρ,Hφ,Hz 6= 0.

Figure 2.3.: Propagating light rays in the fiber, depicted together with the electric
field lines. A transverse cross-section of the fiber is shown to the left,
while a longitudinal cross-section is shown to the right (having a yel-
lowish background). Note that only vertical light rays are shown in
the longitudinal cross-section in (a) and (b), while both horizontal and
vertical components are contained in the transverse cross-section. In-
spired by [Cassany, 2009, Fig. 1.3 and 1.4], and [Snyder et al., 1983,
Fig. 11-2].

of the transverse modes always intersect the fiber axis as necessary
for the electric (Fig. 2.3(a)) or magnetic (Fig. 2.3(b)) field to be purely
transverse. For the TE01 mode only circular field lines are present
for the electric field, while the electric field lines for the TM01 mode
can be decomposed into perpendicular and parallel components to
the fiber axis. In contrary to the transverse modes, the hybrid modes
have non-zero components of both the electric and magnetic field in
all directions and hence circulate around the fiber axis without ever
passing through it.

2.3.3 Approximative solutions

Most people familiar with SIFs often work with a set of approxi-
mate solutions to Maxwell’s equations (2.3), known as the linearly
polarized (LP) modes, instead of the exact solutions presented in Sec-
tion 2.3.2. It can therefore be instructive to also consider these modes
and their connection to the exacts solutions. From Snell’s law, light
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will be guided by the cladding-core interface of the fiber only if the
angle of incidence θi, formed by the incoming wavevector and the
fiber axis, fulfills the inequality:

sin θi ≤ (n2
co − n2

cl)
1/2 , for n0 = 1. (2.13)

For a typical SIF the core index of refraction is only slightly higher
than the cladding: nco ≈ ncl. For this reason, only incident light rays
near parallel to the fiber axis are sustained, and the fiber is said to
be weakly guiding3. In this limit, the field can therefore be assumed
transverse to the fiber axis and its longitudinal components along
the propagation direction can hence be neglected. The solutions to
Maxwell’s equations, within this approximation, are the LP modes.
These are actually linear combinations of the exact modes and can be
grouped according to:

LP0m : HE1m (2.14a)

LP1m : HE2m , TE0m , TM0m (2.14b)

LPlm : HEl+1,m , EHl−1,m , for l ≥ 2 . (2.14c)

As an example of this we consider Fig. 2.4. Here the TE01 and HE21

modes are combined to constitute the LP11 = TE01 ±HE21 mode for
two different spatial and polarization configurations. The shaded

TE01

+

HE21

=

LP11

− =

Figure 2.4.: Combining the TE01 and HE21 modes forms the LP11 mode for two
different polarization and spatial configurations. Only the transverse
polarization in the fiber cross-section is shown thereby neglecting the
z-component of the hybrid mode. Inspired by [Snyder et al., 1983, Fig.
14-5(d)].

regions indicate the intensity distribution similar to that shown in
Fig. 2.5, which displays the intensity distribution for the four low-
est order LP modes. Two more polarization configurations exist for
the LP11 mode4, and are obtained by combining the TM01 and HE21

3 If the reader is familiar with optical fibers, he or she can most likely recall the frus-
trating experience of trying the first time to couple light into a single-mode fiber!

4 For all lgeq1 modes there exist four independent combinations of the polarization
and intensity distribution. For the l = 0 modes only two independent combinations
exist because of their circular symmetry.
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Figure 2.5.: Intensity distribution for the four lowest order LPlm modes in a SIF cal-
culated for the parameters 2a = 5.5 µm, λ = 852 nm, nco = 1.4650,
and nco = 1.4573. The plot was generated using open-source MAT-
LAB code provided by Bojor [2005].

modes. This yields similar intensity distributions to the ones shown
in Fig. 2.4 but with the polarization rotated by 90°.

When light is guided by the core-air interface, at the TOF waist, the
approximation nco ≈ ncl breaks down. In this regime, the modes can
no longer be regarded as mainly transversal and the LP modes are
no longer an adequate description of the guided modes. They, never-
theless, provides a more convenient platform for the understanding
on how different modes couple in the tapers via the arrangement in
Eq. (2.14) (this will become more clear in Section 4.1.3).

2.3.4 Propagation constant

Since the field distribution of each bounded mode in the fiber is
uniquely described by a set of azimuthal and radial indices, each
mode is also characterized by a correspondingly unique propagation
constant βlm, cf. Eq. (2.12). This is actually not surprising, as each
of the different spatial modes necessarily must be influenced differ-
ently by the spatial boundaries set by the two indices of refraction
that characterizes the fiber, nco and ncl.

As an illustration of this we consider Fig. 2.5, showing the intensity
distribution of the first four LP modes. The lowest order mode LP01

is seen to resemble much that of a Gaussian distributed mode with a
high intensity along the fiber axis z that decays radially from the fiber
axis5. A main part of this mode is hence contained inside the core,
and its effective index of refraction is therefore expected to resemble
the core index of refraction, i.e., neff = β/k0 . nco. For the higher
order modes, it is evident that their spatial distributions extend more
and more into the surrounding cladding and neff for these modes
should therefore be correspondingly lower and move closer to ncl.
The argumentation presented here for the LP modes also holds for

5 Mainly this mode is exited for an incident Gaussian beam to the fiber.
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the exact solutions, and it should hopefully be clear now, why the
inequality in Eq. (2.12) necessarily must be true.

The propagation constant is in the end nothing but the effective wavenum-
ber k in the fiber. In Table 2.1 the free-space wavelengths of the three
colors used in this work is listed together with their corresponding
wavelengths in the TOF.

wavelength

free-space (λ) tof waist (λTOF)

780 nm 661 nm

852 nm 743 nm

1057 nm 985 nm

Table 2.1.: Effective wavelengths in the TOF λTOF = 2π/β for the three colors used
in this work listed together with their free-space wavelength. Calculated
for the parameters nco = 1.45732, ncl = 1, a = 250 nm

2.3.5 V-number and cutoff

When continuing the derivation of the electric field to Maxwell’s equa-
tions, as started in Section 2.3.1, two quantities naturally emerge from
the calculations, namely the core and cladding parameters, defined as
[Snyder et al., 1983]

U = a(k2
0n2

co − β2)1/2 = ak0(n2
co − n2

eff)
1/2 , (2.15a)

W = a(β2 − k2
0n2

cl)
1/2 = ak0(n2

eff − n2
cl)

1/2 , (2.15b)

respectively (also see Appendix A where the solution for the electric
field of the HE11 mode with quasi-linear polarization is given together
with relevant quantities). From Eq. (2.15) the waveguide parameter is
defined as

V = (U2 + W2)1/2 =
2πa

λ
(n2

co − n2
cl)

1/2 , (2.16)

also simply known as the V-number. Here λ = 2π/k0 is the free-
space wavelength of the input field to the fiber. The V-number is
related to the number of bound modes that can propagate in the
fiber6. As we already argued, the more a given mode extend into
the cladding the closer its effective index of refraction neff gets to ncl.
Ultimately, if the core diameter keeps decreasing or yet higher order

6 For V � 1 the number of bound modes scales with V2.
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modes are considered, neff → ncl and hence W → 0 for a given mode.
When this happens, the inequality neff > ncl is no longer satisfied and
the (core) mode is no longer guided by the core-cladding interface.
Depending on whether the fiber geometry is described by that of
SIFs, Eq. (2.1), or TOFs, Eq. (2.2), i.e., by three or two layers, the mode
either becomes a cladding mode, guided by the cladding-vacuum
interface, or a radiative mode completely lost from the waveguide.
Using W = 0 in Eq. (2.16) the cutoff condition, that is, when a mode
is no longer guided, is defined as

Vcut = U =
2πa

λ
(n2

co − n2
cl)

1/2 . (2.17)

The particular cutoff values for each mode can be obtained by careful
evaluation of the transcendental equation for the propagation con-
stant given in Appendix A. Here, we will suffice to give the simple
example for the TE0m modes, for which the expression

J1(U)

UJ0(U)
= − K1(W)

WK0(W)
(2.18)

has be to be fulfilled [Snyder et al., 1983]. Here, Jl is the Bessel func-
tion of the first kind of order l, and Kl is the modified Bessel function
of the second kind of order l. At cutoff, the RHS in Eq. (2.18) is seen
to diverge as W → 0. For the expression to be true, the left-hand
side (LHS) then also has to diverge which can only be obtained by
having J0(U) = 0. Most known is perhaps the first zero for J0(U)

occurring at U = 2.405. The cutoff value for the TE01 mode is thus
given by Vcut = 2.405, for the TE02 mode it is Vcut = 5.520, the TE03

mode has Vcut = 8.654, etc.

As it turns out, all modes, but the HE11 mode, have a finite cutoff
value associated with it for a given wavelength. The HE11 mode is
thus a bound fiber mode for all values of the V-number and, for this
reason, referred to as the fundamental mode in the fiber.

In Fig. 2.6 the effective index of refraction is shown, plotted against
the V-number, Eq. (2.16), for a selection of lowest order modes bounded
by the TOF geometry in Eq. (2.2).

As discussed above, it is evident from the blue dashed line that the
TE01 mode is cutoff at V = 2.405. On top of that, we now also see,
that this mode, together with the TM01 mode, are the most persistent
modes in the fiber, which thus becomes single-mode when V ≤ 2.405.
As expected, neff for each modes is comparable to nco for high V-
numbers and then observed to decrease towards ncl as the V-number
decreases making each mode extend further into the cladding. The
cutoff diameter for the different modes in Fig. 2.6 can be found in
Table 2.2
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Figure 2.6.: Effective index of refraction for a small collection of bounded modes
as a function of the V-number (bottom) core diameter (top) for λ =
852 nm. The plot is made using ncl = n0 = 1, and nco = 1.45732.
The modes are color grouped according to the approximative LPlm
modes: red, LP01; blue, LP11; purple, LP21; and yellow, LP02. The
vertical black dashed line at V = 2.405, d = 0.615 µm indicates the
boundary between single- and multi-mode guidance.

2.4 slowly-varying tapers

Until now, we have only discussed the solutions to Maxwell’s equa-
tions for the cylindrical two-layer fiber geometry, whereas we have
completely neglected the two spatial transitions connecting the TOF

waist with the unstretched SIF, cf. Fig. 2.2. In the following we there-
fore turn our attention toward this part of the TOF. This is neces-
sary in order to understand how the modes are transformed from the
unstretched fiber to the waist and back again without experiencing
severe loss in optical power.

As apparent from Fig. 2.2 the boundary conditions, Eq. (2.2), at the
fiber tapers are non-static. At these sections the fiber can therefore not
be regarded as translational invariant and no exact solutions exists for
Maxwell’s equations. It is, nonetheless, reasonable to assume that the
modes of the uniform fiber can be used as approximative solutions if
the tapers are slowly-varying [Snyder et al., 1983, Chap. 19]. Within
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approximative exact cutoff diameter [µm]

LP01 HE11 N/A

LP11 HE21 , TE01 , TM01 0.71, 0.62, 0.62

LP21 HE31 , EH11 1.09, 0.98

LP02 HE12 0.99

Table 2.2.: Cutoff diameter for the first seven modes, grouped according to the LP

modes, for the same parameters as in Fig. 2.6.

this assumption an electric field mode in the taper can be described
as7

E(r) = E(ρ, φ, β(z))e−i
∫ z

0 β(ζ)dζ . (2.19)

If the initial SIF, constituting the unstretched part of the fiber, is single-
mode the taper necessarily also support only the fundamental mode
in the core since the V-number, Eq. (2.16), exclusively decrease for
decreasing core radius. But as the fiber becomes thinner, the guided
core mode starts to leak out of the core into the cladding and is even-
tually guided by the glass-vacuum interface. When this happens, the
TOF becomes (locally) highly multi-mode, as evident from Fig. 2.6
(where the new core is now the old cladding), and not until the fiber
diameter reaches 0.62 µm does the fiber again become single-mode,
cf. Table 2.2.

The transition of the fundamental mode from a core-guided mode
to a cladding-guided mode is a critical step in the taper. If the tran-
sition happens too abrupt, higher order cladding-modes might get
excited, which leads to losses in optical power when these modes
are no longer supported by the thin fiber and hence lost as radia-
tive modes. To ensure a high optical coupling from the unstretched
part into the waist, an adiabatic transfer of the, initially core-guided,
fundamental mode, into local cladding-guided fundamental modes
along the taper only, is sought. In [Love et al., 1986; Love et al., 1991]
this is accomplished by imposing the same criterion as that necessary
for the validity of Eq. (2.19), namely slowly-varying tapers.

7 Basically, if we if zoom in sufficiently close to a point on the taper, the vicinity of it
will appear as a flat cylindrical section (and not as a cone), at which we can apply
the framework used in Section 2.3.1 to solve Maxwell’s equations. We thus end up
having a set of local solutions along the taper. This method is of course only valid
as long as the boundaries only change gradually.
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2.4.1 Adiabatic criterion

In [Snyder et al., 1983], the slowly-varying criterion, also known as
the adiabatic criterion, is quantified by introducing a local coupling
length zbeat. This is defined as the wavelength of the beat note arising
from the interference between the local fundamental mode, having
propagation constant β1, and the local higher order mode with prop-
agation constant β2 nearest to β1:

zbeat =
2π

β1(z)− β2(z)
. (2.20)

This is then to be compared with a relevant length scale of the taper,
taken as the local taper length ztaper defined through the local taper
angle:

Ω(z) = arctan
(

ρ(z)
ztaper

)
≈ ρ(z)

ztaper
, (2.21)

where ρ(z) is the local core radius as illustrated in Fig. 2.7. When

ncl

znco ρ(zl)

ztaperzl

Ω(zl)

Figure 2.7.: Fiber taper. The dashed line is tangent to the core slope at point zl
where the local core radius is ρ(zl). The local taper angle Ω(zl) is the
angle spanned by the tangent and the fiber axis. The local taper length
ztaper is the cathetus adjacent to Ω(zl).

the local taper length is long compared to the local coupling length,
ztaper � zbeat, the fundamental mode can follow the surrounding
variations in the boundary conditions and only negligible coupling
to other modes takes place. If instead ztaper � zbeat, the fiber bound-
aries change within a single beat wavelength and hence distort the
propagating mode causing significant coupling to other local modes.
This is quite analogous to the single-slit diffraction experiment. Here,
light propagates unhindered along a single straight line as long as
λ � a, where a is the characteristic length scale of the slit. If λ & a,
the light instead gets diffracted and thus couple into other propaga-
tion channels.

By equating the local taper length with the local coupling length,
ztaper = zbeat, an upper bound can be placed on Ω(z). From Eq. (2.21)
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and Eq. (2.20) the adiabatic criterion is thus established as the inequal-
ity

Ω(z) ≤ ρ(z)
2π

(
β1(z)− βi(z)

)
, (2.22)

that should be satisfied to minimize power loss from the fundamental
mode.

In Fig. 2.8(a) the limiting upper bound on Ω(z) as a function of the
normalized core radius ρ(z)/a is shown, calculated8 by the method
described in [Love et al., 1991]. Rather surprisingly at first, it is not
a monotonically decreasing function for decreasing radius, as one
would perhaps expect from the notion that when the fiber becomes
thinner the mode also becomes more sensitive to its surroundings.
This is true to some extend, for large core radii, where the upper
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Figure 2.8.: Limiting taper angle (a) and resulting taper shape (b) calculated for the
parameters NA = 0.115, ncl = 1.45247, ρ0 = 62.5 µm, a = 2.75 µm,
λ = 852 nm corresponding to the fiber parameters used for the fiber
pulling described in Chapter 4.

bound of the taper angle indeed is found to reflect a stronger re-
quirement of a gradual taper the thinner the core becomes. But then,
suddenly, near ρ = 0.4a a turning point is reached and the slowly-
varying condition is loosened allowing for steeper taper angles as the
core radius is further increased. Keeping in mind, that the funda-
mental mode undergoes a critical transition from a core-mode to a
cladding-mode in the taper, the location of the minimum can be in-
terpreted to correspond to the core radius at which this takes place,
as was confirmed in [Love et al., 1991] by thorough analytical investi-
gation.

From the limiting taper angle in Fig. 2.8(a) the corresponding taper
shape can be extracted as shown in Fig. 2.8(b). The limiting taper

8 For internal use: The script can be found in the Mathematica folder on kahuna saved
as lovefibermodes.nb.
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length turns out to be rather short, less than 3 mm, making it fea-
sible9 to actually produce adiabatic TOFs. To ensure that the adia-
batic criteria is satisfied in practice, the taper can be made longer and
more shallow, in fact, it might not even be possible with the avail-
able pulling equipment to actually make as short and steep tapers as
that shown in Fig. 2.8(b). In Chapter 4 a more elaborate discussion
on the pulling procedure and reported results for the optical power
transmissions through TOFs are given.

2.5 quasi-linear field mode distribution at the tof waist

Figure 2.9.: Transverse intensity distribution at z = 0 for the HE11 mode with
quasi-linear y polarization. Calculated for the parameters nco =
1.4469, ncl = 1, a = 250 nm, λ = 1057 nm. The colorbar is nor-
malized to the maximum intensity. The contribution from each of the
three Cartesian components of the field to the total intensity is shown
in Fig. A.3 in Appendix A.

We conclude this chapter by presenting the graphical solution for the
electric field mode to Maxwell’s equations (2.3) at the TOF waist (the
analytical expressions are given in Appendix A). To ensure that the
guided field is single-mode at the TOF waist (cf. Fig. 2.6) and has a

9 The nightmare scenario would be TOFs with meter length tapers. Not only would
this be rather impractical, it would also enhance the exposure of the un-coated fiber
to environmental damages, such as scratching and dust particles.
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significant portion of its field externally distributed, such that a suf-
ficient evanescent field is present for atom trapping and probing, the
waist diameter should be on the sub-wavelength scale and is typi-
cally given by dwaist = 2a = 500 nm. In the following, it therefore
suffices to consider the fundamental HE11 mode only. In addition, all
measurements described in this thesis have been obtained with quasi-
linearly polarized light fields only10, and we therefore further restrict
ourselves to the description of such modes. For the interested reader,
the solutions for a field mode with rotating polarization can be found
in [Le Kien, Liang, et al., 2004; Cassany, 2009; Béguin, 2015]. Further-
more, the solutions for the higher order modes HE21, TE01, and TM01

are described in [Baade, 2009].

In Fig. 2.9 the transverse intensity distribution is shown for the fun-
damental HE11 mode with quasi-linear y-polarization11. A substan-
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Figure 2.10.: Electric field components as a function of the radial distance
to the fiber axis along y, for a quasi-linearly y-polarized HE11
mode. All three components are normalized to the value of∣∣ Ey(ρ = a, φ = π/2)

∣∣. The vertical dotted line indicates the fiber
edge. The vertical dashed line indicates the radial distance of the
atomic trap sites to the TOF, cf. Section 9.4. Calculated for the pa-
rameters nco = 1.4469, ncl = 1, a = 250 nm, and λ = 1057 nm at
x = 0, z = 0, and φ = π/2.

10 This is only partially true. What is definitely true, is that only modes with quasi-
linear polarization in the TOF were intended to be present. But, as will become
apparent in Chapter 3, it is not a trivial task to control the polarization in the TOF.

11 Throughout the thesis the x-axis will be taken to be vertical, and the y-axis will be
taken to be horizontal and perpendicular to the fiber axis oriented along the likewise
horizontal z-axis, cf. Fig. 2.1.
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tial fraction of the field is clearly seen to be distributed outside the
TOF (marked by the white ring). It is brightest at the rim of the TOF

when x = 0, and decays rapidly with the distance to the fiber. As
expected for a y-polarized light field, the intensity is stronger along
the y-direction for x = 0 than along the x-direction for y = 0. This
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Figure 2.11.: Electric field components as a function of the radial distance
to the fiber axis along x, for a quasi-linearly y-polarized HE11
mode. All three components are normalized to the value of∣∣ Ey(ρ = a, φ = π/2)

∣∣. The vertical dotted line indicates the fiber
edge. The vertical dashed line indicates the radial distance of the
atomic trap sites to the TOF, cf. Section 9.4. Calculated for the pa-
rameters nco = 1.4469, ncl = 1, a = 250 nm, and λ = 1057 nm at
y = 0, z = 0, and φ = 0.

is even more clear in the two figures Fig. 2.10 and Fig. 2.11, where
the magnitude of the three Cartesian components of the electric field
is plotted as a function of the radial distance to the TOF axis, parallel
and perpendicular to the orientation of the polarization respectively.
The decay of the evanescent wave is nearly exponential, and can be
quantified by introducing the evanescent wave penetration length de-
fined from the cladding parameter W in Eq. (2.15b) [Le Kien, Liang,
et al., 2004]:

Λ(λ) ≡ a
W

= (β2 − k2
0n2

cl)
−1/2 . (2.23)

The penetration length for the three different colors used in this work
is given in Table 2.3. From this table, it immediately becomes ap-
parent that the decay length of the field is extremely short – on the
sub-wavelength scale. This diffraction limited mode volume of the
confined field is really what makes the TOF such an interesting in-
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wavelength (λ) penetration length (Λ)

780 nm 198 nm

852 nm 241 nm

1057 nm 431 nm

Table 2.3.: Evanescent wave penetration length for the three colors used in this
work. Calculated for the parameters nco = 1.45732, ncl = 1, and
a = 250 nm.

terface for light-atom interaction. Not only does the TOF efficiently
guide the light fields, making a it a very practical instrument in the
lab, it also provides a high local intensity in the vicinity of the fiber,
which is essential for the strong interaction with only a few atoms.

From Fig. 2.10 it is evident that the polarization is not purely y-
polarized in the yz-plane12, i.e., the plane parallel to the polarization,
as a significant longitudinal component is present. For this reason,
it is common practice to refer to the mode as quasi-linearly polarized
rather than simply linearly polarized. The z-component of the electric
field is π/2 phase shifted with respect to the other two components13,
and the resulting field in the yz-plane is therefore nearly circular.

In contrast to the yz-plane, the ellipticity of the electric field is absent
in the xz-plane, since here both the transverse x and longitudinal
z electric field components are zero as evident from Fig. 2.11. In
this plane, perpendicular to the orientation of the polarization, it is
thus possible to have purely y-polarized light. From the azimuthal
dependence of the electric field component, shown in Fig. 2.12, it
becomes clear that the xz-plane is particularly unique, as this is in
fact the only plane, parallel to the fiber axis, where the field is fully
linearly polarized.

From Fig. 2.12 the ellipticity of the polarization at the atomic trap
minima can be extracted (details on the atomic confinement are given
in Section 9.4). The degree of ellipticity depends on the wavelength
of the field and the following numbers are found for λ = 852 nm,
which is the relevant wavelength for the D2 line in Cs used in this
work (the corresponding field components are plotted in Fig. A.1 in
Appendix A). At ρ, φ, z = 442 nm, π/2, 0 the electric field vector is

12 It is perhaps a bit abstract to talk about a plane when analysing a 1D figure. But since
we are considering a running wave, and the fiber is translational invariant along the
fiber axis, there is no z-dependence involved when considering the magnitudes of
the electric field components. Of course, the z-dependence is present in the phase as
apparent from Eq. (2.7).

13 This is not obvious from the figures shown here, where we plot the magnitude of the
electric field components, but it can be seen in the expressions given in Appendix A.
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Figure 2.12.: Electric field components as a function of the aximuthal angle φ
for a quasi-linearly y-polarized HE11 mode. For φ = 0, π the
field is completely polarized along y. The vertical dashed lines in-
dicate the position of the potential trap minima of the atoms, cf.
Section 9.4. All three components are normalized to the value of∣∣ Ey(ρ = a, φ = π/2)

∣∣. Calculated for the fiber parameters nco =
1.4469, ncl = 1, a = 250 nm, and λ = 1057 nm at z = 0 and
ρ = 442 nm (nominal distance to the atomic trap minima).

found to be proportional to E(Cart) = (0,−0.33i, 0.18)T, as written
in the Cartesian basis. Upon transformation of this vector to the
spherical basis with quantization axis along the x-direction, we have
E(Sph,x) = (−0.36i, 0, 0.11i)T, cf. Appendix B for details on the spheri-
cal basis with x as the quantization direction. We then find that∣∣∣ E(Sph,x)

q=−1

∣∣∣2 /
∣∣∣ E(Sph,x)

∣∣∣2 = 92 % , (2.24a)∣∣∣ E(Sph,x)
q=+1

∣∣∣2 /
∣∣∣ E(Sph,x)

∣∣∣2 = 8 % . (2.24b)

The field is thus seen to be almost entirely left-handed circularly po-
larized around the x-axis. Similarly, the polarization on the other side
of the TOF, at φ = 3π/2, is found to be nearly right-handed circularly
polarized.

In order to obtain a more in-depth understanding of the behavior of
the quasi-linear HE11 running wave (RW) mode in the TOF, we also
show a selection of field line plots for different times during an oscil-
lation period. We start by considering the somewhat trivial14 case for

14 And quite surprising I should perhaps add, as we here have something simple for
the otherwise rather complex field mode.
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the time-evolution of the transverse components as shown in Fig. 2.13.
During the course of time, the light field is simply found to oscillate
back and forth between positive and negative y-values, fairly similar
to a linear polarization field in free-space. Of course, this plot reveals
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Figure 2.13.: Transverse electric field distribution in the xy-plane at z = 0 for a
quasi-linearly y-polarized HE11 mode. The gray circle indicates the
fiber edge. Calculated for the parameters nco = 1.4469, ncl = 1,
a = 250 nm, λ = 1057 nm.

nothing about the non-negligible longitudinal component along the
propagation direction of the field. For this we turn to the more in-
teresting Fig. 2.14. For a given position along the fiber axis, the field
vector is clearly observed to rotate with time. One could say, that the
linear polarization travels along the fiber.

2.5.1 Standing wave

Finally, we conclude this chapter by showing the field mode distri-
bution for a standing wave (SW). The time-evolution in the yz-plane
is shown in Fig. 2.15. In contrast to the RW shown in Fig. 2.14, the
field is no longer circular in this plane. Instead, it is everywhere lin-
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Figure 2.14.: Electric field distribution in the yz-plane at x = 0 for a quasi-
linearly y-polarized HE11 RW mode. The fiber is indicated by the
shaded region. Calculated for the parameters nco = 1.4469, ncl = 1,
a = 250 nm, and λ = 1057 nm.

early polarized, albeit oriented along different directions in the plane
depending at the location along the fiber axis. At every half wave-
length of the field, the longitudinal component thus cancels and the
resulting stationary field is found to be purely polarized along the
y-axis. This is also evident in Fig. 2.16(a) where the real part of the
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electric field components is shown as a function of z. As we shall see
in Chapter 9 the atomic trap minima are located in the yz-plane at the
positions where the longitudinal field cancels.

As mentioned, the axial component Ez is π/2 out of phase with the
two transverse components Ex and Ey. Evidently from Fig. 2.15, this
means that the SW in the yz-plane can actually be thought of at two
superimposed SWs that are π/2 out of phase with each other, and
where one is polarized along the y-axis while the other is polarized
along the z-axis. In Fig. 2.16(a), we thus see that the nodes of the
y-polarized SW coincides with the anti-nodes of the z-polarized SW,
and vice versa. Of course, in between the nodes and anti-nodes, the
field is linearly polarized along some other direction, as we already
mentioned. We emphasize, that this configuration means that the re-
sulting intensity of the SW in the yz-plane is never found to be zero,
as opposed to a SW wave in free-space, and hence severely degrades
the resulting fringe contrast. The intensity distribution of a SW evalu-
ating in the yz-plane as well as the xz-plane can be found in Fig. A.2
in Appendix A.

Since, we already saw, from the RW solution of the electric field, that
the longitudinal component Ez is zero in the xz-plane, when the field
is quasi-linearly y-polarized, it is not surprising that the SW display
the same results, that is, all electric field components are zero but Ey.
We thus see, that the SW in the perpendicular plane to the quasi-linear
polarization has full fringe visibility, although the intensity maxima
are about half as big as for the in-plane SW, which reduces the cou-
pling to the atoms.

summary

In the preceding sections we have introduced important concepts,
such as the propagation constant and the notion of adiabatic tapers,
and established the foundation for later discussions of the TOF as a
waveguide platform for light-atom interaction. We have graphically
analyzed the solution for the electric field obtained from Maxwell’s
equations bounded by the cylindrical two-layer fiber geometry. The
striking features of the electric field that we have discussed are abso-
lutely vital to consider when exploiting the evanescent field for atom
trapping, manipulation, and probing, and we will refer back to the
important results given here several times throughout the thesis.
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Figure 2.15.: Electric field distribution in the yz-plane at x = 0 for a quasi-
linearly y-polarized HE11 SW mode. The fiber is indicated by the
shaded region. Calculated for the parameters nco = 1.4469, ncl = 1,
a = 250 nm, and λ = 1057 nm.
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(a) Evalutated in the same plane as the field polarization, i.e., the yz-plane, with x = 0
and y = 442 nm corresponding to the radial distance of the atomic trap sites to the
TOF.
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(b) Evalutated in the plane perpendicular to the field polarization, i.e., the xz-plane,
with y = 0 and x = 442 nm corresponding to the radial distance of the atomic trap
sites to the TOF.

Figure 2.16.: Electric field components as a function of z for a quasi-linearly y-
polarized HE11 SW mode. Evaluated at t = π/2ω, normalized to
Re Ey(x = 0, y = 442 nm, z = 0), and calculated for the parameters
nco = 1.4469, ncl = 1, a = 250 nm, λ = 1057 nm. The total inten-
sity of the parallel and perpendicular fields can be found in Fig. A.2
in Appendix A.



3
E X P E R I M E N TA L C O N T R O L O F T H E
P O L A R I Z AT I O N

In this chapter we describe how we measure and fix the light polar-
ization at the tapered section of the TOF. As we shall see later in Sec-
tion 9.4, atoms can be confined in a TOF-based dipole trap formed by
the evanescent field of two orthogonally polarized guided modes. In
order to turn the TOF into an efficient quantum interface between light
and atoms, it is therefore of uttermost importance to be able to con-
trol the polarization of the guided modes. To do so, we have utilized
the method developed by Vetsch et al. [2012], where they showed that
the polarization at the TOF can be inferred by analyzing the Rayleigh
scattered light from a guided mode. For practical reasons, we have
extended this method by the use of Jones vectors and matrices.

3.1 stress-induced polarization control

The TOF is produced from a nonpolarization maintaining (NPM) SIF as
described in Chapter 4. Due to the slight (unavoidable) asymmetry
in the fiber cross section, both ordinary SIFs and TOFs are birefringent,
and the light polarization hence transforms in an unknown (uncon-
trolled) way upon propagation.

Like in all other materials, the index of refraction of optical fibers
depends on both temperature and on induced or built in stress. In

B

TOF

A

Side 

camera

MM

MM

Input/output fields

Output/input fields

Figure 3.1.: The TOF setup, as viewed from above, with inserted MM to change
the polarization inside the fiber by induced stress. The side camera
measures the Rayleigh scattered light explained in Section 3.2 (also see
Fig. 3.2). Both port A and B are used as input/output ports.

31
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order to change the guided mode polarization, we have therefore im-
plemented two 3-paddle fiber controllers1, in lab-jargon known as the
Mickey-Mice (MM) for reasons obvious from their shape as illustrated
in Fig. 3.1.

The MM are inserted at an unstretched section of the TOF, on either
side of the tapered part, and consists of three paddles with a spool,
around which the fiber is wrapped to induce stress from bending.
Each paddle effectively works as a waveplate (WP) where the retarda-
tion is set by the fiber loop diameter (fixed by the spool diameter), the
number of fiber loops per spool, and the wavelength of the guided
light mode. To have complete control over the polarization, such that
the whole Poincaré sphere can be reached, we have configured the
three paddles of each MM such that they behave2 as quarter-wave
plates (QWPs) and half-wave plates (HWPs) in the sequence QWP–HWP–
QWP.

Having a tool to change the polarization of a TOF-mode, is of course
only worth something if we can actually measure what the resultant
polarization is at the TOF waist. This is the objective of the next two
sections.

3.2 rayleigh scattering

The method to measure the polarization of a TOF-guided mode, as
laid out by Vetsch et al. [2012], relies on Rayleigh scattering from in-
homogeneities in the silica and surface imperfections of the TOF. As-
suming that these defects can be treated as point-scatterers amounts
to an isotropic description of the medium in which the induced dipole
moments oscillate in the same direction as the local electric field. The
basic idea is then to infer the (transverse) electric field polarization by
analyzing the emission pattern of the induced dipoles which goes as
I(φ) ∝ sin2(φ), where φ is the angle spanned between the orientation
of the dipole and the position vector from the dipole to the point in
space where the scattered intensity I(φ) is evaluated [Hecht, 2002].

In order to do so, we have installed two CMOS cameras3 to record the
scattered light intensity, placed below and beside the TOF as shown
in Fig. 3.2 (also cf. Fig. 3.1). In front of each camera is mounted an
f = 50 mm lens to enlarge the image of the fiber, and a polarizer
(Pol.) to ensure that mainly the polarization components transverse

1 FPC030 – Fiber Polarization Controller, 3 Small Paddles from Thorlabs.
2 Note, that this is only true for a specific wavelength of the input field. Here, we have

configured the MM for λprobe = 852 nm.
3 Firefly FFMV-03M2M (Firewire, IEEE 1394) from Point Grey.
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Figure 3.2.: Setup for imaging the scattered light off the TOF, viewed as a transverse
cross-section of the fiber, i.e., the fiber axis is in and out of the plane.
The legend entries refer to the different polarization components. Pol.
is short for polarizer.

to the fiber axis of the scattered field are measured4. The latter is
necessary to be able to minimize the intensity on either camera for
a given quasi-linear polarization, which would be difficult if the lon-
gitudinal component is not suppressed. For the experimental setup
shown in Fig. 3.2, the side camera measures the vertical (V) polariza-
tion component along the x-axis, while the bottom camera measures
the horizontal (H) polarization component aligned to the y-axis. An
example of an image of the guided light scattered off the TOF is shown
in Fig. 3.3.

Using input light that is either V or H polarized, we adjust the MM

paddles while monitoring the scattered intensity. The goal is then
to maximize the scattered intensity on one of the two cameras while
minimizing it on the other camera. The main challenge is not so
much to find a setting of the MM paddles that supports the map-
ping of external linear polarization to quasi-linear polarization in
the TOF for a monochromatic input field, but to find a setting that
does this for three separate input modes comprised of vastly different
wavelengths. As we will see later, in Section 9.4, these wavelengths
are given by λblue = 780 nm and λred = 1057 nm for the blue- and
red-detuned trapping fields used for the TOF-based dipole trap, and
λprobe = 852 nm for the probe field near-resonant with the caesium-
133 (Cs) D2 line.

In order to find a global setting of the MM, for all three colors, we per-
form an iterative adjustment of the paddles, interchanging between
the red and blue input fields as these hold the extremal values of

4 Due to space issues, the bottom camera is not entirely in level but slightly tilted. As
a consequence, some fraction of the longitudinal component is measured alongside
the transverse H polarization component of the scattered electric field.
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Figure 3.3.: Image taken with the bottom camera of the TOF using the red trap
beam (λred = 1057 nm) as input light with optical power Pred =
1.5 mW. The background, taken as the average pixel value over a
(50× 50)pixel2 window in the upper left corner (blue box), is sub-
tracted from each pixel which are afterwards normalized to the maxi-
mum pixel value (intensity) to enhance the contrast. The pixel values
inside the red box, enclosing the TOF, are integrated to yield the scat-
tered intensity (in arbitrary units).

the three wavelengths. This is a somewhat tedious task with a big
parameter space (three paddles that can each be turned in an angle
of 180°) which is further complicated by the fact that it is hard to
reproduce a setting, since the paddles are unmarked. When only
judging from the stream of camera images, it is also hard to tell how
much the scattered intensity changed when turning one of the pad-
dles, and especially if an intensity minimum found on one camera for
a given setting of the paddles is greater or smaller than that found
previously for the same camera. To ease the task a bit, we have writ-
ten a graphical user interface (GUI) where the integrated intensities
measured by each camera, are plotted in real-time next to the camera
images5.

When a setting has been found that is believed to rotate the polar-
ization of the differently colored input fields, such that they are all
quasi-linearly polarized at the TOF, we make a full polarization map
for each input as described in the following section.

Before moving on, we point out that for the procedures described
here and the next section to work properly, the input field of course
has to be stable in terms of power and strong enough that sufficient
scattering takes place and illuminate the cameras. However, one
should be careful that it is not too strong such that the cameras satu-
rate, as any changes in the scattered intensity are then not resolved.

5 As I am sure this will be helpful for future students in the lab I point you to the
script: livecam_gui_v4.py which can be found in the Python folder on kahuna.
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About a milliwatt, a bit more a bit less depending on the wavelength,
has proven to be appropriate for our setup.

3.3 polarization maps

The emission pattern radiated by the dipoles is mapped out by record-
ing the scattered intensity on the two CMOS cameras for various ori-
entations of the input field polarization. From each image, a value
for the scattered intensity is extracted by integrating the pixels over a
box sized such that is covers the TOF as illustrated in Fig. 3.3.

The input field polarization is rotated by using two motorized and
computer-controlled WPs placed between the input fiber coupler and
a polarizer, as shown in Fig. 3.4. Both WPs are mounted on rubber
pads, to minimize vibrations from the motors mediated to the TOF

via the optical table. It is important that the set of motorized WPs

and polarizer is placed right in front of the input port to the TOF, in
order to keep the optical input power at the same level throughout
the measurement.

Horizontal

Vertical

B

TOF

A

QWP HWP

Motorized WPs

ϕm

Input light

Pol.

θm

Side 

camera

Q

Figure 3.4.: Setup, as viewed from above, for mapping out the transverse polariza-
tion inside the TOF as a function of the input polarization set by the
two WPs. The polarizer (Pol.) is set to transmit H-polarized light. The
scattered intensity is recorded by the two cameras placed beside and
below (not shown) the TOF.

By interchangeably turning either WPs by 5°, and saving the recorded
images by the two cameras6, we obtain a two-dimensional (2D) polar-
ization map as a function of the angles φm, θm between the horizontal
axis and the fast axis of the QWP and HWP, respectively. A typical
example of such a map is shown in Fig. 3.5. As expected from the cal-
culated maps in Fig. 3.5(c),(d), the measured intensity maxima/min-
ima for the two polarization components, Fig. 3.5(a),(b), are seen to
be out of phase such that the side camera measures maximum (min-
imum) intensities whenever the bottom camera measures minimum

6 The program for this is MoveWPandTakeImg4.py likewise found on kahuna.
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(a) Side camera (measures V).
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(b) Bottom camera (measures H).
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(c) Calculated intensity of V component.
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(d) Calculated intensity of H component.

Figure 3.5.: Polarization maps of the TOF for the probe with free-space wavelength
λprobe = 852 nm. The angles on the axes refers to the fast axis of the
WPs with respect to the horizontal axis. The colorbar scales with the
integrated intensity detected by the cameras, using red for maximum
intensity and blue for minimum intensity. The mild distortions in the
experimental data, in (a) and (b), are most likely due to the motorized
WPs being slightly tilted.

(maximum) intensities. The calculated polarization maps have been
produced by using the Jones matrices for the HWP and QWP given by

Jh(θ) =

(
cos 2θ sin 2θ

sin 2θ − cos 2θ

)
, (3.1a)

Jq(θ) =

(
cos2 θ + i sin2 θ (1− i) sin θ cos θ

(1− i) sin θ cos θ sin2 θ + i cos2 θ

)
, (3.1b)
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with θ being the angle between the fast axis of the WP and the hor-
izontal axis. The Jones vector for H-polarized light is defined as
H = (1, 0)T, and the resultant polarization X after the two WP is then
simply calculated as X = Jq(φm)Jh(θm)H.

For the specific data set shown in Fig. 3.5, belonging to a particular
setting of the MM, we see that the free-space input polarization trans-
form nearly to the same (transverse) polarization in the TOF. It is,
strictly speaking, not necessary to have the MM configured such that
this is the case. But it certainly does make it comprehensively easier
if the polarization of an input beam, as measured on the optical table,
transforms to the same transverse polarization in the TOF.

In principle, it is also not necessary to map out the large range of an-
gles that we do in Fig. 3.5, from 0° to 180° for each WP. But it can be
very helpful to see if there is a more optimal setting of the input po-
larization, being elliptical if that is what it takes, that transform into a
more pure quasi-linear mode in the TOF. Making the whole map from
0° to 180° thus tells us if the maximum or minimum that we found,
from adjusting the MM while monitoring the scattered intensity, was
only a local extremum or if we can do better.

3.4 jones calculus

The polarization maps presented in Fig. 3.5(a)(b) takes ∼ half an hour
to measure, without including the preparation time in setting up the
motorized WPs and the initial adjustments of the MM paddles, which
can amount to hours. It it often necessary to perform several maps,
one for each color for each new setting of the MM, making the whole
procedure a rather long and tedious task.

As it turns out, it is also quite hard to obtain a global setting for the
MM that, for linearly-polarized input light, maps all three colors to a
quasi-linearly polarized mode in the TOF. Often, we were able to find
a setting that would work decently for two of the colors, but then be
completely off for the third color. A solution in this case, could be
to leave the MM setting as it is and use external WPs for the last color.
This is in principle a nice solution, which we also used for a while.
Unfortunately, exterior changes to the setup, such as changes in the
lab temperature or (especially) an accidental bump of the MM paddles,
imply that one occasionally needs to perform a polarization map to
make sure that all settings are still appropriate and make according
adjustments where needed.
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Figure 3.6.: Illustration of Method I for setting the WPs on the A side such that any
input light is either mapped to quasi-linear H or V polarization in the
TOF. Both polarizers (Pol.) are set to transmit H-polarized light.

In the end, we therefore resorted to a different (and more expensive)
solution and now use external WPs for all three colors7. The benefit
is two-fold: (i) the WPs can be locked, or at least the settings can be
written down such that they can be reproduced. And (ii) it is faster,
as it suffices to make a single polarization map for each color (without
first trying to adjust the MM paddles), from which the settings of all
the external WPs can be found, i.e., including input fields to both port
A and B into the TOF). In the following we discuss two methods that
we have used to set the external WPs.

3.4.1 Setting the waveplates – Method I

The objective is to find the two settings of the WPs in front of port
A, i.e., the angles φA and θA of the WPs’ fast axes with respect to
an arbitrary (fixed) axis, that maps the H input polarization, at P, to
either a quasi-linearly H- or V-polarized mode at the TOF, see Fig. 3.6.
These two WPs and the polarizer are thus integrated parts of the setup,
whereas all the elements in front of input port B are only temporarily
in the setup to aid finding the values for φA and θA.

The strategy to find the setting of the A WPs that maps the input light
to, say, quasi-linearly V-polarized light mode in the TOF is as follows:

1. Make a polarization map from B → A, as described in the pre-
vious section, and pick the values for φm and θm that maximizes
the intensity on the side camera while minimizing it on the bot-
tom camera, i.e., that maps B input light onto a V-mode in the
TOF.

7 Currently, we have not taken the MM out of the setup, so the TOF polarization is still
prone to unwanted changes from incautious actions near the two input ports to the
TOF. Perhaps removing the MM, and resetting all the WPs, would be a nice start-up
project for a new student in the lab?
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2. With φm and θm fixed at these values, we know that H-polarized
light at Q maps to V in the TOF. This means, that the opposite
is also true: V in the TOF maps to H at Q when light propagates
from A→ B.

3. Now, we send in light that propagates in the opposite direction,
that is, from A→ B.

4. Using the WPs on the A side to maximize the transmission though
the polarizer on the B side, we find the angles φA, θA that maps
input light to port A to V in the TOF.

5. As a final step, one can use the two cameras to measure whether
the intensities of light scattered off the TOF are minimized/max-
imized as expected.

When the values of φA, θA have been found for both polarization
modes (H and V), all the elements on the B side as sketched in Fig. 3.6
(i.e., the motorized WPs, the polarizer, and the detector), can be taken
out. The procedure is then repeated to find the settings of a pair of
mounted WPs on the B side by using the mounted WPs on the A side
to play the role of the motorized WPs.

Experimentally in polarization analysis, it is more robust to identify
a minimum rather than a maximum in detected intensity. The proce-
dural steps 4 and 5 can easily take advantage of this fact by simply
rotating θm by 45° between step 2 and 3.

So far, we have not mentioned any other optical elements that might
be present in the TOF setup. What we have mentioned though, is that
we will have three different colored modes simultaneously inside the
TOF. This effective means that there are quite a few optical elements,
such as a dichroic mirror (DM) and beam samplers (BSs), between the
input ports and the WPs. Unfortunately, the transmission to reflection
ratio for these elements depends strongly on the polarization of the
incident beam. For example, after the WPs, the 852 nm input beam
passes through a nominal 90:10 BS8 where 17 % of the light gets trans-
mitted when it is H-polarized, but only 3.1 % when it is V-polarized9.

These additional optical elements, then, both introduce polarization-
dependent losses in the optical path from the WPs to the TOF input
port, and rotate the polarization of the optical field when it is not
purely H- or V-polarized. This, obviously, makes it harder to use the
described procedure to minimize the output on the B side hitting the
detector – did the power decrease because the polarization became
more vertically polarized at the position before the polarizer? Or, did

8 BSX11 – Ø1" 90:10 (R:T) UVFS Plate Beamsplitter, Coating: 700-1100 nm, t = 5 mm from
Thorlabs.

9 10 % actually gets transmitted for unpolarized light, so in this respect the part name
lives up to its reputation.
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the power decrease because more light were lost before entering the
input port A?

On top of that, for the 852 nm input beams, we usually have only
very little light available to begin with, at most a few hundred mi-
crowatt at the TOF input ports. This makes things even harder as the
detector might not resolve such low powers (when minimizing the
output) and step 5 cannot be realized. It also adds to the difficulty
of adjusting the MM while monitoring the scattered light intensity as
described in Section 3.2 (this was also part of the reason why we
typically chose to optimize for the other two wavelengths, 780 nm
and 1057 nm). However, for the polarization maps, as shown in Sec-
tion 3.3, the contrast is acceptable after subtracting the background
light and normalize to maximum intensity.

To circumvent these complications we have developed another method,
robust against polarization-dependent losses, to set the polarization
in the TOF as described in the following.

3.4.2 Setting the waveplates – Method II

The objective is still to find the two sets of angles, φA and θA, that
maps an H-polarized input beam at P to either a quasi-linearly H- or
V-polarized mode at the TOF, see Fig. 3.7. As in Method I, this scheme
relies on the ability to initially have a guided mode in the TOF known
to be polarized as either quasi-linear V or H. In the following, we will
assume that this requirement is met.

We consider the specific case where the polarization in the TOF is
known to be V, such that it is described by the Jones vector Vtof. We
further assume that φA and θA are set such that this mode maps to V

at P, VP = (0, 1)T, via the expression:

VP = Jqh Jbs JtofVtof , (3.2)

where we have introduced the Jones matrix for the combined set of a
HWP and a QWP,

Jqh(θ, φ) ≡ Jh(θ)Jq(φ) , (3.3)

and the Jones matrix for the reflection or transmission through a BS10:

Jbs(β) ≡
(

β‖ 0

0 β⊥

)
, (3.4)

for βi = ri, ti with r (t) being the reflection (transmission) coefficient
of the BS, and the subscript i =‖,⊥ referring to the polarization com-
ponent being either parallel (‖) or perpendicular (⊥) to the plane of
incidence. The last Jones matrix Jtof yields the polarization transform

10 The Jones matrix for a chain of beam splitters has the same form with βi = ∏k βk,i
for i =‖,⊥.
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Figure 3.7.: Illustration of Method II for setting the WPs on the A side such that
any input light (from this side) is either mapped to quasi-linear H or
V polarization in the TOF. Both polarizers (Pol.) are set to transmit
H-polarized light.

of the light propagating out of the TOF, i.e., from TOF to A in Fig. 3.7,
which is assumed to behave as a WP with no losses.

Common to these three Jones matrices, is that they are all invertible:
Ji J−1

i = 1, for i = qh,bs,tof. Furthermore, both Jqh and Jtof are unitary:
J∗k = J−1

k , for k = qh,tof. The BS Jones matrix can never be unitary
by definition, since the light field incident to a BS couples into two
different output modes, and the Jbs effectively describes a loss process
from the incident field to the single output mode that we consider.

As we are interested in the TOF polarization, we isolate Vtof in Eq. (3.2):

Vtof = J−1
tof J−1

bs J−1
qh VP . (3.5)

In general, if the three Jones matrices would be known, we could cal-
culate the (transverse) polarization of a guided TOF-mode resulting
from an arbitrarily polarized input field a, by simply evaluating the
expression J−1

tof J−1
bs J−1

qh a. Unfortunately, Jtof is not known to us. How-
ever, since we only care about quasi-linearly polarized TOF-modes
there is a workaround to this. Let us say, that the input field at P is
H-polarized such that it is described by the Jones vector HP = (1, 0)T.
The polarization in the TOF is then (formally) given by

Xtof = J−1
tof J−1

bs J−1
qh HP . (3.6)

We now want to calculate the projection of the unknown polarization
vector Xtof onto the quasi-linearly V-polarized TOF-mode: X∗tof · Vtof.
Taking the conjugate transpose of Eq. (3.6) we have

X∗tof = HT
P Jqh(J−1

bs )
∗ Jtof , (3.7)

from which we obtain

X∗tof ·Vtof = HT
P Jqh(J−1

bs )
∗ Jtof J−1

tof J−1
bs J−1

qh VP

= HT
P Jqh

∣∣∣ J−1
bs

∣∣∣2 J−1
qh VP . (3.8)
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where we have inserted Eq. (3.5) for Vtof. In order to proceed, we
need to make the assumption that β⊥ ≈ β‖, i.e., that the reflection
and transmission coefficients for the two different polarization com-
ponents are approximately equal11, we then have:

∣∣∣ J−1
bs

∣∣∣2 =

(∣∣ β‖
∣∣2 0

0 | β⊥ |2

)
≈ | β⊥ |2

(
1 0

0 1

)
. (3.9)

Within this approximation we find for Eq. (3.8):

X∗tof ·Vtof ≈ | β⊥ |2 HT
P Jqh J−1

qh VP

= | β⊥ |2 HT
PVP = 0 , (3.10)

which means that Xtof necessarily has to be orthogonal to Vtof, that
is, quasi-linearly H-polarized. This is a very interesting result, as it
gives us a new recipe for setting the angles φA and θA of the WPs for
mapping input light a port A to either Vtof or Htof. The procedure
for doing so, such that, say, input light at A maps to Htof, goes as
follows:

1. Find a setting of the motorized WPs for φm and θm in Fig. 3.7
that maps input light at B to Vtof, for example by running a
polarization map from B→ A as described in Section 3.3.

2. With the polarization in the TOF now given by Vtof, turn the WPs

on the A side such that the power on the detector is minimized,
i.e., such that the light polarization at P becomes V-polarized.
Fix φA and θA at this setting. The transformation of the polar-
ization at P to the TOF can now be described by Eq. (3.5).

3. If the propagation direction is now reversed, such light that
enters the TOF via port A, we have from Eq. (3.6) that the po-
larization at the TOF is given by Xtof, since the polarization at
P is always H-polarized (for light propagating from P → A).
Furthermore, we have from Eq. (3.10) that Xtof must be quasi-
linearly H-polarized and our job is completed.

The procedure to set the A WPs and how to operate them is summa-
rized in Table 3.1. The left column gives the values obtained for the
WP angles, φA, θA, as found from the above procedure. The right col-
umn shows how these settings for φA, θA should be used in order to
get either of the two quasi-linearly polarized modes in the TOF.

With the more rigorous treatment given here, on how the polarization
is mapped between an exterior light beam and a TOF-guided mode,
we have now also justified the procedure given in Method I. In fact,
Method I turns out to be more robust than Method II, in the sense that

11 We have already seen, that there can be a quite big difference between the two
quantities, but for a moment we shall ignore that.
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configuring operating

Dir. Xtof φA, θA XP Dir. XP φA, θA Xtof

B→ A H φ1, θ1 V A→ B H φ1, θ1 V

B→ A V φ2, θ2 V A→ B H φ2, θ2 H

Table 3.1.: Overview of the overall procedure to configure and operate the WPs on
the A side in Fig. 3.7 in order to obtain a quasi-linearly polarized guided
mode in the TOF.

no additional optical elements are present between the TOF and the
motorized WPs. Which means that the BS Jones matrix is not included
in the calculations12, and hence the approximation made in Eq. (3.9) is
avoided. In this respect it is also clear, that the fewer optical elements
mounted between the WPs and the TOF input port, the more robust
against errors does the procedure becomes.

To the extend possible, we have verified the settings of φA and θA
by performing both Method I and Method II, and by inspecting the
scattered intensity off the TOF with the two mounted cameras as ex-
plained in Section 3.2.

summary

In this chapter, we have taken a first peak of the TOF setup used for ex-
periments with atoms coupled to the evanescent field of a TOF-guided
mode. We have meticulously accounted for how the polarization in
the TOF is experimentally controlled and set to either quasi-linear H or
V, by analyzing the scattered intensity from the TOF for different input
polarization, and, by applying Jones calculus, analyzed the mapping
of the polarization through different optical elements.

12 However, the fiber taper itself behaves as a BS with ∼ 4 % optical losses at each taper.
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P R O D U C I N G TA P E R E D O P T I C A L F I B E R S

The first half part of this PhD was concentrated around building a
fiber-pulling rig to produce TOFs. Most of the content in the follow-
ing sections can therefore be found in a more elaborate form in the
progress report [Sørensen, 2013] concluding Part A of this PhD study
and a subsequent published paper [Sørensen et al., 2014]. In this
chapter we briefly review the main results accomplished during this
period, starting with a description of the setup and some of the ex-
perimental results. This is followed by a presentation of a numerical
model developed for the prediction of the resulting fiber shape after
a pulling run.

4.1 experimental setup

The experimental setup consists of two main parts: the fiber-pulling
rig where the TOF are produced and smaller surrounding setups to
characterize the outcome.

4.1.1 Fiber-pulling rig

To produce a TOF we have build a fiber-pulling rig, Fig. 4.1, consisting
of two stacked motorized linear translation stages1 and an electric ce-
ramic microheater2, from here on denoted as either the oven or the
heater. The stacked solution of the stages provides improved stability
compared to stages placed in succession of each other [Warken et al.,
2008]. By only moving the bottom stage, the fiber can easily be trans-
lated (without stretching it) with respect to the sidewards stationary
oven.

The oven is mounted on a motorized rail and can be driven out of
the setup between consecutive pulls. This is obviously useful when
inserting and removing fibers, but it also makes it possible to place a
CCD camera at the oven position, that is used to check the fibers for
dust particles and for imaging the resultant TOF shape after a pulling
run.

1 PMT-160-150-DC05-R and PMT-160-050-DC38-R from Steinmeyer FMD.
2 CMH-7019 from NTT Advanced Technology Corporation.

45
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During a pull, the bottom stage moves the right end of the fiber with
velocity v+, whereas the combined motion of the top and bottom
stages moves the left end with velocity v−. In [Sørensen, 2013] it was

Top motorized stage

Bottom motorized stage

FiberMagnetic clamps CCD

–v– v+

Figure 4.1.: Schematic drawing of the fiber-pulling rig. The CCD camera can only
be inserted when the oven is removed from the setup. From [Sørensen
et al., 2014].

confirmed that identical TOF shapes can be reproducible produced
when driving the oven with electrical heating powers3 in the range
97 W to 103 W. It was also confirmed that the resultant shape only
depends on the ratio of the pull speeds v+/v−, rather than on their
absolute value. This is a consequence of Newtonian fluid flow and
remains valid as long as the speeds are sufficiently low that the fiber
does not slip underneath the magnetic clamps. For a slow quasi-
static pull, the fiber shape therefore only depends on the pull lengths
on either side of the oven.

4.1.2 Imaging

The TOF shape is measured by imaging it with a CCD camera through
a 25× microscope objective placed above the fiber (cf. Fig. 4.1). The
imaging is non-destructive, fast, and in situ: the full fiber shape is
obtained by repeatedly recording an image and translating the TOF

with the bottom stage. The individual images are joined, and a typi-
cal example of 300 merged images is displayed in Fig. 4.2. The green
curves indicate the fiber edges found by an edge-detection algorithm
specially developed for this purpose. It works by calculating the con-
volution of each image column with a template kernel. From this the
position of the edges is located by the outermost local minimum/max-
imum values that are significant enough to exceed a certain threshold
level, as indicated in Fig. 4.3. Introducing this threshold prevents de-

3 The heating powers has been increased in more recent work that were performed
after moving the fiber-pulling rig. This might be a consequence of the re-alignment
of the oven with respect to the fiber or a degrade of the oven performance over time.
Consult [Knudsen et al., 2014] and [Pedersen, 2015] for the most recent parameters
of the fiber-pulling rig.
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Figure 4.2.: ∼ 300 joined CCD images of a TOF, symmetrically elongated by l =
15 mm. The waist diameter is measured to dwaist = 15 µm. The
aspect ratio is not to scale. From [Sørensen et al., 2014].
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Figure 4.3.: Edge-detection algorithm. Dashed blue line: Pixel values along the im-
age column at z = 5 mm in Fig. 4.2. Solid red line: Convolution. Dot-
ted horizontal black lines: Threshold levels (= ±13). Dashed-dotted
vertical green lines: Located edge positions. Inset: Edge-detection ker-
nel. From [Sørensen et al., 2014].

tection errors caused by the narrow, bright features close to the fiber
axis; its value is set to 25 % of the extremal convolution values found
in the unstretched fiber. As template kernel the derivative of a Gaus-
sian is used with a width chosen such that the kernel models the pixel
values observed at the edges of the unstretched fiber.

The precision of the diameter detection is estimated in two ways: (i)
By running the edge detection algorithm over 105 image columns of
an unstretched 125 µm fiber, a width of 694 pixels with a 1 pixel uncer-
tainty in every column is obtained. (ii) Additionally, after stretching
the fiber by 15 mm, similar to the fiber shown in Fig. 4.2, only a rela-
tive change of the fiber volume < 10−3 is observed compared to that
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Figure 4.4.: Comparison of fiber-diameter measuring methods. At several selected
positions the fiber diameter is determined both using the CCD imaging
and the SEM. For fiber diameters < 10 µm diffraction effects limit the
accuracy of the CCD method (indicated by the dashed lines), whereas
the SEM method fails for large fibers due to space-charge buildup. From
[Sørensen et al., 2014].

of an unstretched fiber4. The dominating contribution to the uncer-
tainty is thus given by how well the diameter of the unstretched fiber
is known, nominally given by (125± 2)µm for the fibers used in this
work5.

Because the edge detection is limited by the optical imaging resolu-
tion, diffraction effects, and the fiber bending out of the focal plane,
only TOFs with waist diameters larger than ∼ 10 µm can be measured.
The validity of the fiber shape model, presented in Section 4.2, is
confirmed also for thinner TOFs by the additional use of a scanning
electron microscope (SEM) to measure the diameter at selected axial
positions, as shown in Fig. 4.4.

4.1.3 Light transmission and adiabaticity

Using a λ = 852 nm single-mode external cavity diode laser (ECDL)
source, the light transmission through the fiber is continuously mea-
sured while tapered, in order to quantify the resulting optical losses
in the tapers. In [Sørensen, 2013] transmissions of 91 % were reported

4 When comparing the relative volume change before and after a pull, the waist of the
resulting TOF should preferable be as thin as possible to make the error estimation
more valid, as this reveals more features in the imaging. The l = 15 mm (symmet-
rically) stretched fiber results in dwaist = 15 µm close to the resolution limit of the
imaging setup.

5 LEIKKITM Passive-6/125.
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for TOFs with sub-wavelength waist diameters dwaist = 0.5 µm that
display typical transmission signal (blue curve) as shown in Fig. 4.5.
This is far from a record value as evident from Table 4.1 where a
selection of reported transmissions through TOFs are collected. Two

group T [%] λ [nm] dwaist/d0 [µm] l [mm]

Rauschenbeutel 2011 98.7 850 0.5/125 N/A

Polzik 2013 91 852 0.5/125 36

Rolston 2014 99.95 780 0.53/125 84

Aoki 2014 99.7 852 0.6/62.5 23

Chormaic 2014 99 780 1.1/125 30

Table 4.1.: Selection of reported light transmissions through TOFs.

main ingredients enter the successful production of adiabatic TOFs:
(i) Optimize the tapers according to the adiabatic criterion, cf. Sec-
tion 2.4.1. In the group of Rauschenbeutel they have achieved this
by developing an analytical pulling algorithm. With this they can
produce sub-wavelength TOFs with tapers comprised of three linear
sections that closely follow the shape in Fig. 2.8(b) [Warken, 2007;
Stiebeiner et al., 2010]6. As an aid to reach low-loss tapers, one can
also reduce the cladding to core radius of the initial unstretched fiber,
since this makes it easier to fulfill the adiabatic criterion [Frawley et
al., 2011]. Finally, (ii), the stripped fiber should be cleaned thoroughly
from dust particles and remaining residues of the initially surround-
ing buffer layer [Hoffman et al., 2014; Ward et al., 2014]. Perhaps a
rather trivial point, but nevertheless important.

As already discussed, power loss from the fundamental mode can
be assigned to the excitation of higher order cladding-modes. When
identifying which modes are excited in the tapers and successively
lost, it is helpful to consider the approximative LP modes instead of
the exact modes. If the tapers are axisymmetric, only modes with
the same azimuthal symmetry can be excited [Love et al., 1991]. Cou-
pling to the higher order modes with LP0m are therefore expected to
dominate, with the highest coupling being that to the nearest mode
LP02, i.e., the mode with the smallest difference in propagation con-
stant with respect to the fundamental mode. Of course, if the fiber is
bending, thus breaking the axial symmetry, coupling to other higher
modes can also take place.

6 I apologize for the reference to a PhD thesis written in German, but this is the closest
I have gotten to their pulling algorithm so far.
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Figure 4.5.: Transmission signal together with according Gabor transform. The
vertical lines indicate the inferred radiative loss of higher order modes.
From [Sørensen, 2013].

In Fig. 4.5, the loss and identification of higher order modes are in-
ferred both from the transmission signal T (l) and from a frequency
analysis performed by applying the Gabor transform to T (l) [Ding
et al., 2010]:

G(l, k) =
∫ ∞

−∞
e−α(l−z)2

eikz T (z)dz , (4.1)

where the free parameter α adjusts the resolution, l is the fiber elon-
gation length, and k = 2πνbeat/(v+ − v−) is the wave number equiv-
alent of the beat note frequency νbeat. Eq. (4.1) is nothing more than a
short-time Fourier transform of the transmittance T with a Gaussian
window7.

Two frequency components are seen to arise after elongating the fiber
by about l = 15 mm and l = 20 mm, respectively. The first compo-
nent then suddenly vanishes at 32.0 mm, while the second compo-
nent splits into two, which thereafter vanish at 33.8 mm and 34.9 mm,
respectively (indicated in Fig. 4.5 by the vertical lines). The disap-
pearance of the three frequency components is assigned to the loss
of three bounded modes in the TOF, which is supported by the two
black dashed lines coinciding with observed decreases in the oscilla-
tion amplitude of the transmission signal.

From Fig. 2.6 and the calculated cut-off diameters of the higher order
modes, given in Table 2.2, the excited higher modes are identified

7 This short-time Fourier analysis is used instead of the conventional Fourier trans-
form because the frequency components change during the pull. The Gabor trans-
form thus shows which frequency components are present at a given time and, more
importantly for our application, when they are lost, which in the end, tells us when
the TOF becomes single-mode
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as the HE12 mode with a cut-off at l = 32.0 mm; the HE21 mode
with a cut-off at l = 33.8 mm; and the TE01 and TM01 modes with
a cut-off after 34.9 mm symmetric pulling at which the TOF becomes
single-mode.

The main reason for our rather low transmission, is that we so far
have not done any serious effort in improving it. The transmission
signal in Fig. 4.5, and the correspondingly reported transmission of
91 %, belongs to one of the most simple pull trajectories that can be
implemented, namely that of pulling both fiber-ends by the same
speed, which we shall refer to as a symmetric pull. In Fig. 4.6 we
show how the taper angle of such a pull (blue curve), for our ex-
perimental parameters and pulling boundary conditions8, compares
with the limiting taper angle from the adiabatic criterion (red curve),
cf. Fig. 2.8(a). The red and blue solid lines have been calculated for
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Figure 4.6.: Comparison of the limiting taper angle as a function of the core radius,
to the symmetrically pulled fibers that we have produced (using mod-
eled data, described in Section 4.2). The red and blue curves have been
calculated for the parameters NA = 0.115, ncl = 1.452, d0 = 125 µm,
and 2a = (5.5± 0.5)µm, while the yellow and purple curve have been
obtained for NA = 0.16, ncl = 1.452, d0 = 80 µm, and 2a = 4.3 µm.

an initial SIF with cladding diameter d0 = (125± 2)µm and core di-
ameter 2a = (5.5± 0.5)µm. Evidently, there is quite a big uncertainty
on the core diameter. Taking this into account yields the upper and
lower limits for the calculated taper angles indicated by the dashed
curves. Our modeled data are observed to just slightly cross the adia-
batic limit near ρ/a = 0.45. Although, there is only a minimal overlap
with the non-adiabatic region, this seems to be sufficient to cause the
10 % loss that we observe in the light transmission through the TOF.

8 The numerical model used to produce this data is given in Section 4.2.
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For completeness, we also show the calculated limiting taper angle
for a SIF with initial cladding diameter of 80 µm (yellow curve), for
which the cladding to core radius is reduced compared to the stan-
dard 125 µm diameter SIF that we have used in this work9. Interest-
ingly, it appears that if we would just replace our current SIF with
the one that has a reduced cladding to core radius (purple curve), we
should be able to produce low-loss fibers even when implementing
the simple symmetric pull procedure10.

4.2 modeling the fiber shape

Closely following [Sørensen et al., 2014], we now present a short sum-
mary of a numerical model for the prediction of the resulting fiber
shape after a performed pull with known boundary conditions, i.e.,
pull speeds, heating profile etc. A more elaborate description includ-
ing finer details can be found in [Sørensen, 2013].

4.2.1 Boundary conditions

We set the stage by writing down a few useful relations. Outside the
heated section of the fiber, bounded by z± as illustrated in Fig. 4.7, the
fiber is frozen. In these regions, the fiber therefore moves uniformly

A0 z

|l−| |l+|
z̃− z− z+ z̃+

−v− v+

unstretched taper waist taper unstretched

Figure 4.7.: Boundary conditions during the fiber pulling procedure. From
[Sørensen, 2013; Sørensen et al., 2014].

with the velocities set by the respective fiber holders, cf. Fig. 4.1. For
the axial fiber flow v(z, t), at position z and time t, we then have

v(z, t) = v−, for z < z− , (4.2a)

v(z, t) = v+, for z > z+ , (4.2b)

where the sign of v± follows the direction of the pull. Inside the
heated zone, v(z, t) is described by an unknown function that de-
pends on the pull speeds, the momentary fiber shape contained in

9 Using the specs for the SM800G80 SIF from Thorlabs with mean values NA = 0.16,
d0 = 80 µm, and 2a = 4.3 µm.

10 For the modeled data it is assumed that the ratio between the initial core and
cladding radii is kept constant during the tapering.
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the position- and time-dependent cross-sectional area A(z, t), and the
axial viscosity distribution of the fiber, resulting from the axial tem-
perature profile of the heater (when neglecting any transverse varia-
tion).

The boundary between each taper and the unstretched fiber is de-
noted by z̃±. Outside the tapered sections (z < z̃− or z > z̃+), the
cross-sectional area corresponds to that of the initially uniform fiber,
A(z, t) = A0. We introduce the following convenient abbreviations:

v∞ ≡ v+ − v− , (4.3a)

l± = v±t = z̃± − z± , (4.3b)

An(z, t) ≡ A(z, t)
A0

, (4.3c)

where v∞ denotes the overall stretching speed, l± denote the elon-
gated lengths of the fiber on either side of the heated section, and
An(z, t) denotes the normalized cross-sectional area.

In the following, we restrict ourselves to cases where the fiber is never
compressed, i.e., where v+ − v− > 0.

4.2.2 Fiber shape

The evolution of the fiber shape during the tapering procedure can
be described by two coupled differential equations for the normalized
cross-sectional area An(z, t) and the axial velocity profile of the fiber
v(z, t) [Geyling, 1976; Dewynne et al., 1989]. The continuity equation

∂

∂t
An(z, t) +

∂

∂z

(
An(z, t) v(z, t)

)
= 0 (4.4)

governs mass conservation, and a simplified equation describes axial
momentum conservation:

∂

∂z

(
η(z)An(z, t)

∂

∂z
v(z, t)

)
= 0 , (4.5)

where η(z) is the axial viscosity of the fiber fluid. Equation Eq. (4.5) is
derived by solving the Navier-Stokes equations for an axisymmetric
incompressible Newtonian fluid in the limit of Stokes flow, neglecting
body forces (such as gravity, which is negligible compared to viscous
forces), and by Taylor-expanding the equations to lowest order in the
radial variable [Eggers et al., 1994]. Since the fiber is thin, and its
heat conductivity is poor compared to that of the much bigger sur-
rounding oven, the temperature along the fiber (and hence η(z)) is a
function of the axial position within the oven alone. Additionally, we
ensure that each mass element of the fiber is in thermal equilibrium
with the surroundings by asserting slow motion of the fiber.
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In order to solve Eq. (4.4) and Eq. (4.5) numerically, it is necessary to
know the axial viscosity η(z). Often, this is simply approximated by a
uniform distribution such that it is infinite outside the heated region
of the fiber and finite and constant inside [Dewynne et al., 1989; Birks
et al., 1992; Baker et al., 2011]. In [Xue et al., 2007] they measure the
temperature distribution of their heater and use the Arrhenius model
for the viscosity dependence on the temperature to indirectly deduce
η(z). In [Pricking et al., 2010] η(z) is heuristically model by a flattened
Gaussian profile.

In the following we show how η(z) instead can be easily inferred ex-
perimentally by measuring the resultant fiber shape after a short sym-
metric (−v− = v+) pull. We thereby avoid cumbersome temperature-
viscosity calibrations and measurements of the temperature profile
inside the heater.

4.2.3 Fiber fluidity

The main challenge in solving for the fiber flow in order to obtain
the shape, is really the time-dependency (or rather the fiber shape
dependency) of the axial velocity in the continuity equation Eq. (4.4).
In [Sørensen, 2013] we showed that if v(z, t) had been independent of
time, an analytic solution can be obtained for A(z, t) in Eq. (4.4). How-
ever, as experimentally confirmed in both [Sørensen, 2013; Pricking et
al., 2010] the axial velocity depends on the fiber shape as expressed in
Eq. (4.5). We therefore wish to obtain an expression for the variation
of v(z, t) while performing a pull.

As mentioned earlier, it was also experimentally confirmed in [Sørensen,
2013] that the TOF shape depends on the ratio of the velocities, and
not on the individual velocities. Therefore, only a dependence on the
pull lengths l± = v±t remains (and not on t), which makes it more
convenient and intuitive to express the axial velocity profile and the
cross-sectional area in terms of the total elongation length

l = l+ − l− = v∞t (4.6)

instead of time, such that v(z, t)→ v(z, l) and An(z, t)→ An(z, l).

In order to arrive at an expression for v(z, t), we notice that Eq. (4.5)
almost screams for being integrated over z, from which we obtain

η(z)An(z, l)
∂

∂z
v(z, l) = C(l), (4.7)

where the integration constant C(l) is spatially constant but may de-
pend on the elongation length. Solving Eq. (4.7) for ∂

∂z v(z, l) and
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integrate once more over z, starting at an arbitrary position z0, we
find

v(z, l) = v(z0, l) + v∞ ·
∫ z

z0

f (ζ)
An(ζ,l) dζ∫ z+

z−
f (ζ)

An(ζ,l) dζ
, (4.8)

for the axial velocity profile. Here the integration constant

C(l) =
v∞∫ z+

z−
1

η(ζ)An(ζ,l) dζ
(4.9)

has been fixed by requiring continuity at the boundaries v(z±, l) =

v±, details can be found in [Sørensen, 2013]. In Eq. (4.8) we have also
introduced a new variable f (z) for the normalized fiber fluidity:

f (z) =
1

η(z)∫ ∞
−∞

1
η(ζ)

dζ
. (4.10)

Since the viscosity η(z) necessarily only takes on finite values inside
the heated section, f (z) accordingly only differs from zero in this
region, bounded by z±

4.2.4 Short pull approximation

In the following, we show how f (z) can be experimentally inferred
from a short symmetric pull where the fiber elongation length l is
much smaller than the heated section. In this limit, the spatial varia-
tion of the normalized fiber cross-sectional area An(z, l) over regions
with non-zero f (z) can be neglected and Eq. (4.8), describing the ax-
ial velocity profile, simplifies significantly. If z0 is chosen outside
the heat-softened section, such that v(z0, l) is constant, we find, from
Eq. (4.8) and Eq. (4.10),

v(z, l) ≈ v(z) = v(z0) + v∞

∫ z

z0

f (ζ)dζ (4.11)

to be constant in l during the whole pulling process. From this, the
fiber fluidity can be readily approximated by

f (z) ≈ d
dz

v(z, l)
v∞

. (4.12)

The short pull of the fiber can thus be thought of as providing a snap-
shot of axial fluidity profile from which the heater is essentially cali-
brated. Since the axial velocity profile is now independent of the elon-
gation length, the continuity equation Eq. (4.4) can be solved analyti-
cally to yield an explicit form for the normalized fiber cross-sectional
area:

An(z, l) =
∂

∂z

(
q−1(q(z)− l

))
(4.13a)

with q(z) ≡
∫ z

z∗

v∞

v(ζ)
dζ , (4.13b)
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as can be directly verified by differentiation, i.e., by inserting Eq. (4.13a)
and Eq. (4.13b) into Eq. (4.4). q−1(·) denotes the inverse function of
q(z), and z∗ is an arbitrarily chosen position. We integrate both sides
of Eq. (4.13a) from z̃± and define a new variable

y(z, l) ≡ q−1(q(z)− l
)
, so that (4.14a)

y(z, l) =
∫ z

z̃±
An(ζ, l) dζ + z±. (4.14b)

The second term in Eq. (4.14b) follows from choosing z∗ = z± in Eq. (4.13b).
The expression z − y(z, l) can be interpreted as the distance that a
fiber volume element at position z has moved during the pulling pro-
cess.

We now apply q(·) to both sides of Eq. (4.14a) and differentiate with
respect to z. Using Eq. (4.14b) to express ∂y

∂z and Eq. (4.13b) to express
dq
dz in the result, we obtain a recursion formula for the axial velocity
profile of the fiber:

v
(
y(z, l)

)
= An(z, l) v(z) . (4.15)

Both An(z, l) and y(z, l) are known from a shape measurement of the
fiber after the short pull (the latter via Eq. (4.14b)). On the left side
of the oven y(z, l) > z. Starting from z = z̃−, using Eq. (4.15), we
can now calculate v(y(z, l)) from v(z), which lies further to the left,
until y(z, l) approaches z. The same can be done from the other side
starting from z = z̃+, since there y(z, l) < z. Pseudo-code illustrating
the algorithm for calculating v(z) can be found in Appendix C.

4.2.5 Calibration

To calibrate our heater, we symmetrically elongate a fiber by l = 2 mm
with speeds v± = ±50 µm s−1 and subsequently measure the shape
d(z, l) = 2

√
A(z, l)/π. By applying the recursion formula (4.15), we

infer the axial velocity profile v(z, l) shown in Fig. 4.8(a). Also de-
picted is a simplifying model which was introduced in the seminal
paper by Birks and Li [Birks et al., 1992]. This is commonly used
to describe flame-brushing fiber processing [Kenny et al., 1991], and
approximates v(z) inside the heated section by interpolating linearly
between the exterior pull velocities v± over an “effective hot-zone
length” L0 = v∞/ dv

dz

∣∣∣
v=0

.

The effective hot-zone length L0 can be found from the waist diameter
dwaist using Birks’ and Li’s formula:

dwaist(l) = d0 exp
(
− l

2L0

)
. (4.16)
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Figure 4.8.: (a) Axial velocity profile. Inset: measured fiber diameter of an l =
2 mm stretched fiber used to infer v(z, l). (b) Axial fluidity profile, in-
ferred by applying Eq. (4.12) to (a). Red solid lines depict data inferred
with the presented algorithm. Blue dashed lines depict data correspond-
ing to a uniform fluidity profile with L0 = 4.2 mm, which results in
an identical waist diameter. From [Sørensen et al., 2014].

The l = 2 mm elongation of a TOF, with an initial diameter d0 =

125 µm, results in a final waist diameter measured to dwaist = 98 µm,
which yields L0 = 4.2 mm.

The curves for v(z) in Fig. 4.8(a) agree in value and slope at the oven
center and at the ends by construction but they deviate substantially
at the edges of the heated section. The difference is even more pro-
nounced in f (z), which is depicted in Fig. 4.8(b). This strongly sug-
gests that the assumption of a uniform temperature distribution does
not describe our setup.

4.2.6 Symmetric pull

Given the inferred fiber fluidity f (z) we numerically solve the system
of equations Eq. (4.4) and Eq. (4.8), using the MATLAB function ode45

with a relative error tolerance of 10−6. For thin TOFs with diameters
below ≈ 1 µm, numerical instabilities can occur, which necessitates
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Figure 4.9.: Fiber diameter of four different symmetrically pulled fibers with vari-
ous elongation lengths l. Solid red line: Model. Green lines enclosing
shaded area: Fiber diameter as measured with CCD camera with mea-
surement uncertainty. Dashed blue line: Fiber shape prediction using
an L0 = 4.2 mm uniform fluidity profile. The inset shows a zoom of
the waist of the fiber stretched by l = 15 mm. From [Sørensen et al.,
2014].

decreasing the relative and absolute error tolerances further. Alterna-
tively, by adding a term D ∂2 An(z,t)

∂z2 to the right-hand side of Eq. (4.4),
using a small “diffusion coefficient” D such that 2

√
Dl/v∞ � L0, we

can effectively eliminate the numerical stiffness of the problem with-
out introducing a significant change to the solution.

In Fig. 4.9, we present the modeling of four symmetrically stretched
fibers, which were elongated by l = 5, 10, 15, 20 mm with speeds v± =

±50 µm s−1. We observe very good agreement between the measured
and modeled diameter with only a 1 % discrepancy at the waist of the
l = 5 mm and l = 10 mm streched fibers, and 2 % for the l = 15 mm
fiber. For the longer l = 20 mm stretched fiber the discrepancy is
13 %, however, here the waist is so thin, dwaist ≈ 6 µm, that the CCD

imaging starts to fail.

For reference, we also show the predicted TOF shape using a uniform
profile for the fluidity with L0 = 4.2 mm, which (by definition) pre-
dicts the waist correctly for l = 2 mm. For this f (z) it is evident that
the waist size is increasingly overestimated for longer pull lengths. As
can also be observed by numerically solving Eq. (4.5), this implies that
the effective hot-zone length L0 Eq. (4.16) of the fiber shrinks during
the pull (i.e., for smaller fiber diameters) in agreement with similar
observations made in [Pricking et al., 2010]. This shape-dependency
makes it impossible to predict the waist for arbitrary pull lengths
using a constant-width box-profile for the fluidity, as it fails to repro-
duce qualitative features of the TOF shape. Especially the prediction
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Figure 4.10.: TOF waist of symmetrically elongated fibers. Note the log scale on the
y-axis. From [Sørensen et al., 2014].

of a homogeneous waist with length L0 is absent in the data. This ne-
cessitates non-symmetric pulling procedures for producing TOFs with
long homogeneous waists.

In Fig. 4.10, for symmetric pulls, we compare the predicted fiber waist
diameter resulting from our calibration method with experimental
data and the simplified prediction (4.16). Whereas the latter overesti-
mates the waist for longer pull lengths, our simulations display good
agreement with the data even for very thin TOFs, where the initial
diameter has been reduced by a factor of 250 from 125 µm to about
500 nm. In trying to fit (4.16) to the data shown in Fig. 4.10 by deter-
mining an effective L0 [Kenny et al., 1991; Ward et al., 2006; Ding et al.,
2010], one would compromise on the predicted corresponding shape
of the tapers instead.

4.2.7 Asymmetric pull

The fiber shape model is not only restricted to symmetric pulls, where
−v− = v+, but can be applied to any combination of pull speeds.
This is extremely useful as it makes it possible to test various pulling
procedures without actually performing them.

In Fig. 4.11 the measured and modeled diameter of the resulting TOF

is shown, for the extreme situation where the two fiber ends are
moved in the same direction such that the fiber is being pushed into
the oven from one side while being pulled out on the other side with
a greater speed, i.e., 0 < v− < v+. Here, an elongation of 15 mm is ob-
tained by push and pull speeds v− = 10 µm s−1 and v+ = 100 µm s−1.
The modeled curve predicts the data very closely with only a 3 % dis-
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crepancy at the waist and well within the uncertainty of the CCD data.
This demonstrate that especially in a situation where the axial fiber
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Figure 4.11.: Shape of a TOF, asymmetrically elongated by l = 15 mm. Red solid
line: Predicted fiber shape using the inferred fluidity profile depicted
in Fig. 4.8. Green lines enclosing shaded area: CCD measured diam-
eter. Blue dashed line: Solution to Eq. (4.4) and Eq. (4.8) using a
uniform fluidity profile with L0 = 4.2 mm. The inset shows a zoom
of the TOF waist. From [Sørensen et al., 2014].

diameter changes strongly within the heated zone, accurate modeling
of the viscosity profile leads to a significant improvement of the fiber
shape prediction.

summery

Starting with a description of the fiber-pulling rig, we have showed
how the TOF can be non-destructively imaged in order to measure
the resulting fiber shape after a pulling run. For a symmetric pulling
procedure we observe 91 % light transmission through the fiber after
tapering down to dwaist = 0.5 µm, when the initial fiber diameter is
125 µm. This loss in optical power can be ascribed to non-adiabatic
coupling in the tapers. Calculations show that similarly produced
TOFs but with an initial reduced cladding to core radius should yield
adiabatic coupling in the tapers, and thus improve the light transmis-
sion. Finally, we have presented a numerical model for the prediction
of the TOF shape. By performing an initial short simple pull, the axial
fluidity profile of the fiber within the heater can be inferred. Using
this in a set of two coupled differential equations the fiber flow can be
modeled during a pull from which we obtain the resulting TOF shape.
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5
S C H R Ö D I N G E R ’ S E Q U AT I O N

Everything in quantum mechanics boils down to solve the Schrödinger
equation of the particular system under investigation. The field of
quantum optics is no exception. However, after a while of consider-
ing the (same) different variants of light-atom Hamiltonians and their
respective (approximative) solutions, one tends to forget where it all
started. We have therefore devoted this chapter to the Schrödinger
equation, which we will apply to solve for the dynamics of a two-
level atom interacting with a classical light field.

5.1 unitary evolution

We will jump right into it and immediately write down what all the
fuzz is about – we here present the Schrödinger equation1 [Sakurai,
1994]:

ih̄|ψ̇(t)〉 = Ĥ|ψ(t)〉 . (5.1)

This famous wave equation consists only of the imaginary number
i2 = −1, Planck’s reduced constant h̄ = h/2π, the wave function
state ket |ψ(t)〉 representing the physical state under consideration,
and the Hamiltonian Ĥ which originates from classical mechanics as
the generator of time evolution. Innocent looking, the Schrödinger
equation is by no means easy to solve. In fact, all the solutions given
in this thesis will be approximative obtained by careful considerations
of the system under investigation.

The state dynamics can be considered by introducing the unitary2

time-evolution operator Û(t, t0) such that an initial state |ψ(t0)〉 evolv-
es according to

|ψ(t)〉 = Û(t, t0)|ψ(t0)〉. (5.2)

Inserting this expression into Eq. (5.1) we obtain the Schrödinger
equation for the time-evolution operator:

ih̄ ˙̂U(t, t0) = ĤÛ(t, t0) . (5.3)

It now becomes clear what we mean when we say that the Hamilto-
nian is the time-evolution generator, since solving Eq. (5.3) yields

Û(t, t0) = e−iĤ(t−t0))/h̄ . (5.4)

1 In the following we will make use of the widely known shorthand notation ẋ = dx
dt .

2 Unitary meaning that it fulfills the condition ÛÛ† = Û†Û = Î.
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Knowing Û(t, t0) and the initial state of the system is thus all we need.
Unfortunately, this is easier said than done. First of all we note that
the solution for Û(t, t0), Eq. (5.4), is only valid when Ĥ is independent
of time3. This is certainly not the case for the Hamiltonian governing
light-atom interactions as we shall see in a moment. Generally, in
that case, one needs to resort to perturbation theory in order to solve
for the dynamics of the system, and only, in the simplistic case of a
two-level system exact solutions can be found.

5.1.1 Isolated atom

Although, far from the dynamics involved when interacting with
light, it can be instructive to consider the evolution of an isolated
atom, in order to establish some of the formalism used later. An un-
perturbed atom can be described by the complete set of basis kets,
{|b〉}, containing all the information of the state. The initial wave
function for an atom in its most general state is then given by the
linear combination

|ψ(0)〉 = ∑
b

cb|b〉 , (5.5a)

with the completeness relation

∑
b
|b〉〈b| = Î, (5.5b)

where Î is the unity operator. Similarly, we have for the time-independent
atomic Hamiltonian

Ĥatom = ∑
b

h̄ωba|b〉〈b| (5.6a)

= ∑
g

h̄ωga|g〉〈g|+ ∑
e

h̄ωea|e〉〈e| , (5.6b)

where h̄ωba = h̄(ωb − ωa) is the eigenenergy of the state |b〉 with
respect to the state |a〉. In the second equality we have explicitly
separated the sum over all atomic states into that of all the ground
|g〉 and exited |e〉 states. Using Eq. (5.2) we find for the wave function
at a later time t:

|ψ(t)〉 = ∑
b,n

cne−iωba|b〉〈b|t|n〉 = ∑
b

cbe−iωbat|b〉 . (5.7)

Acting with the eigenstate 〈a| from the left on Eq. (5.7) we obtain the
probability to find the system in the state |a〉 at time t:

pa(t) ≡ | 〈a|ψ(t)〉 |2 = | ca |2 . (5.8)

3 If Ĥ = Ĥ(t) one has to be careful when solving Eq. (5.3) as to whether the Ĥ’s at
different times commute or not.
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From the latter equality it is clear why the coefficients of the state
expansion in Eq. (5.5a) is commonly denoted as the probability am-
plitudes. One important thing to note for the dynamics described
by the atomic Hamiltonian is that once an initial state is given, the
probability to find the system in a given state stay fixed. The states in
Eq. (5.7) are thus referred to as stationary states, since the only time
evolution is given by a simple exponential phase factor. It becomes
clear that such an isolated description of the atom is not adequate to
describe a real system. In fact, no atom is ever truly isolated. At the
very least, the interaction with the (quantized) vacuum field should
be included, as this causes the atom to undergo transitions by sponta-
neously emitting a photon. Later in Chapter 6, this inherently quan-
tum mechanical effect is dealt with in a semiclassical treatment using
the density operator ρ̂.

5.2 semiclassical light-atom hamiltonian

In the semiclassical treatment of light-atom interactions, i.e., where
the atom is treated as a quantum mechanical particle whereas the
light field is treated classically, the Hamiltonian is divided into an
unperturbed atomic term, given by Eq. (5.6), and an interaction term:

Ĥ = Ĥatom + Ĥint . (5.9)

The oscillating electric field drives the electron of the atom and the
interaction is therefore described by the electric dipole Hamiltonian:

Ĥint = −d̂ · E(r, t) , (5.10)

where d̂ = er̂ is the electric dipole moment operator of the atom
with electron coordinate r̂ and E(r, t) is the classical drive field given
by [Milonni et al., 1988]

E(r, t) =
1
2 ∑

k

(
ukEk(r, t)e−i(ωkt−k·r) + c.c.

)
, (5.11)

here uk is the unit polarization vector, Ek is the slowly-varying4 am-
plitude of the electric field light mode with corresponding wavevector
k and angular frequency ωk.

Eq. (5.11) is often simplified by applying the electric dipole approxi-
mation; | k · r | � 1, which is valid when the wavelength of the elec-
tromagnetic radiation (for near-infrared wavelengths we have λ =

2π/k ∼ 1 µm) is large compared to the size of the atom ∼ 0.1 nm.
In the case of a quasi-monochromatic light field propagating in the
z-direction we then have

E(r, t) =
1
2

(
uE(r, t)e−iωt + c.c.

)
. (5.12)

4 With respect to the rapid oscillations of the carrier waves e−i(ωkt−k·r).
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As for the atomic Hamiltonian, Eq. (5.6), it is useful to write Ĥint in
terms of the ground and exited states of the atom. This can be done by
using that the unperturbed eigenstates of the atom form a complete
set, Eq. (5.5b). We then find for the dipole operator projected onto the
orientation of the electric field

µ̂ = d̂ · uk (5.13a)

= ∑
a,b
|a〉〈a|er̂ · uk|b〉〈b| (5.13b)

= ∑
a,b

µab|a〉〈b| (5.13c)

= ∑
e,g

µeg|e〉〈g|+ µge|g〉〈e| (5.13d)

= ∑
e,g

µegσ̂eg + µgeσ̂ge , (5.13e)

where we have used that ground (exited) states do not couple because
of parity, and introduced the atomic operator

σ̂eg ≡ |e〉〈g| , (5.14a)

with commutation relation[
σ̂eg, σ̂e′g′

]
= δge′ σ̂eg′ − δg′eσ̂e′g , (5.14b)

as well as the convenient short hand notation for the dipole matrix
element5,

µeg ≡ 〈e|er̂ · uk|g〉 . (5.15a)

deg ≡ 〈e|er̂|g〉 . (5.15b)

5.3 two-level atom in the rotating frame

At this point it is instructive to solve the Schrödinger equation (5.1)
for a two-level atom as illustrated in Fig. 5.1. Using the ground state
|g〉 as the reference level for zero energy, the general wave function is
given by

|ψ(t)〉 = cg(t)|g〉 + ce(t)e−iωegt|e〉 . (5.16)

The Hamiltonian for a two-level atom interacting with a classical
drive field, Eq. (5.12), is given by

Ĥ = h̄ωeg|e〉〈e| −
1
2

(
deg|e〉〈g|+ dge|g〉〈e|

)(
uEe−iωt + u∗E∗eiωt

)
.

(5.17)
This Hamiltonian contains the dynamics of both the unperturbed
atom and that caused by the interaction with light. As we are only

5 We caution the reader to be aware that µeg 6= µ∗ge, since the polarization vector uk
can in general be complex.
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δ

|e〉

|g〉

|g̃〉, E = 0

ω, Ω

Figure 5.1.: Two-level atom. |g̃〉 illustrates the ground state level in the rotating
frame with the arbitrary energy reference set to zero. The “tilde” has
been omitted in the main text to ease notation.

interested in the latter, we will perform the so-called rotating frame
transformation. In words, this means that we transform the coordi-
nates of the stationary lab frame, containing the atom, into a new
set of coordinates rotating with the light field frequency. In math
language, one applies the transformation according to the unitary op-
erator (see Appendix D)

Û = eiω|e〉〈e|t . (5.18)

Defining δ ≡ ω − ωeg for the detuning of the drive field frequency
from atomic resonance, we obtain for the transformed wave function

|ψ̃(t)〉 = Û|ψ(t)〉 (5.19a)

= cg(t)|g〉 + c̃e(t)|e〉 , (5.19b)

where we have introduced the transformed coordinate

c̃e(t) = ce(t)eiδt . (5.20)

For the transformed Hamiltonian we have in the rotating-wave ap-
proximation (RWA)6

Ĥrot = −h̄δ|e〉〈e| − h̄
2

(
Ωeg|e〉〈g|+ Ω∗eg|g〉〈e|

)
, (5.21)

where the Rabi frequency7

Ωeg ≡
µegE

h̄
, (5.22)

has been introduced.

6 Meaning that only energy preserving terms are kept in the Hamiltonian, and we
thus neglect the rapidly oscillating terms e±2iωt.

7 In writing Ω∗eg the complex conjugate is meant to be taken of the electric field part
of the Rabi frequency.
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5.3.1 Solutions

To solve the transformed Schrödinger equation:

ih̄| ˙̃ψ(t)〉 = Ĥrot|ψ̃(t)〉 , (5.23)

we act with 〈g| (〈e|) from the left on both sides, from which we obtain
the coupled first-order differential equations

iċg = −Ω∗

2
c̃e(t) , (5.24a)

i ˙̃ce = −δc̃e(t)−
Ω
2

cg(t) , (5.24b)

in which we have omitted the subscripts on the Rabi frequency for
ease of notation. By taking the time-derivative of these equations and
rearranging the terms, they can be cast into two uncoupled second-
order differential equations for which exact solutions exist given the
initial conditions. Taking the Rabi frequency to be real8 and treating
the case where the atom is initially in the ground state; cg(0) = 1,
c̃e(0) = 0, the solutions are given by9

cg(t) =
(

cos
Ω′t
2
− iδ

Ω′
sin

Ω′t
2

)
eiδt/2 , (5.25a)

c̃e(t) =
(

iΩ
Ω′

sin
Ω′t
2

)
eiδt/2 , (5.25b)

where Ω′ is the generalized Rabi frequency defined as

Ω′(δ) ≡
(

Ω2 + δ2
)1/2

. (5.26)

In this respect Ω should be considered as the on-resonance the Rabi
frequency. From Eq. (5.25) we see that the effect of the classical light
field is to drive the atom between the two states |g〉 and |e〉. Notewor-
thy is the so-called π-pulse, where applying a light pulse with δ = 0
and Ω′t = π, coherently drives the atomic state initially in |g〉 to |e〉.
The two-level Hamiltonian in Eq. (5.21) can be represented as a matrix
with elements given by Hij = 〈i|Ĥrot|j〉:

Ĥrot
.
= − h̄

2

(
0 Ω∗

Ω 2δ

)
. (5.27)

8 This can always be done by a suitable phase choice for the electric fields.
9 For notational convenience, the “tilde” used to distinguish transformed quantities

from their original basis will be omitted in the remainder of the thesis, and it should
be apparent from the context whether a transform to the rotation frame has taken
place or not. The results are of course unaffected.
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This matrix can be diagonalized to find the new eigenenergies of the
atom (dressed in light) from which we obtain

Eg = − h̄
2
(δ−Ω′) , (5.28a)

Ee = −
h̄
2
(δ + Ω′) . (5.28b)

In the far-detuned limit; Ω� | δ |, where absorption is negligible, the
shift in the energy levels are found to be

∆Eg ≈
h̄Ω2

4δ
, (5.29a)

∆Ee ≈ −
h̄Ω2

4δ
. (5.29b)

This is the well-known result for the AC Stark shift of the atomic levels,
also known as the light shift, see Fig. 5.2.

δ

ω

|e〉

|g〉

Ω

Figure 5.2.: Illustration of the light induced AC Stark shifted levels. Inspired by
[Foot, 2005, Fig. 7.9].

The formalism presented so far, do not include effects such as decay
and dephasing from spontaneous emission and coupling to the en-
vironment. The limits of validity are reached at small detuning |δ|
where the excited state population becomes non-negligible and, on
the opposite side large detunings |δ| ' ω, where the RWA ceases to
be appropriate. A more complete treatment needs to include also the
multi-level nature of atoms and naturally leads to a proper pertur-
bation theory. Coupling to all (also empty) radiation modes, which
leads to excited state decay, level shifts and dephasing, will be taken
into account in later chapters employing density matrix techniques.
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5.4 fully quantized light-atom hamiltonian

The generic Hamiltonian for the light-atom interactions where the
light field is now quantized is given by

Ĥ = Ĥatom + Ĥlight + Ĥint . (5.30)

As before Ĥatom is given by Eq. (5.6), but now we have also included
the Hamiltonian describing the dynamics of the isolated light system:

Ĥlight = ∑
k

h̄ωk

(
â†

k âk +
1
2

)
(5.31)

where âk and â†
k are the annihilation and creation operators following

the usual commutation relation[
âk, â†

k′

]
= δkk′ , (5.32)

with δij being the Kronecker delta. The light-atom interaction is still
described by the electric dipole Hamiltonian:

Ĥint = −d̂ · Ê(r) , (5.33)

but now the electric field is quantized and given by the operator [Gryn-
berg et al., 2010]

Ê(r) = ∑
k

iukEk

(
âkeik·r − â†

ke−ik·r
)

, (5.34a)

with

Ek ≡
√

h̄ωk

2ε0V
, (5.34b)

being the classical field amplitude with energy corresponding to a
single photon in mode k defined in the quantization volume V.

We shall use the fully quantized version of the Hamiltonian in Chap-
ter 19 where we derive expressions for the reflection and transmission
coefficients for atoms coupled to a one-dimensional (1D) waveguide.
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D E N S I T Y O P E R AT O R

As we saw have just seen, using the approach of solving the Schrödinger
wave equation to obtain the dynamics of the atom under influence of
a classical drive field, lacks a natural inclusion of decay and dephas-
ing mechanisms. In order to appropriately account for these effects
one should apply the density operator formalism instead.

Since the (pure) state |ψ(t)〉 of a system is generally not given to us,
the density operator formalism further has the advantage that it is
equally well suited to treat pure states as well as mixed states, which
is also not possible using the Schrödinger equation (5.1).

In quantum mechanics a mixed ensemble of states is described by the
(probability) density operator [Sakurai, 1994]

ρ̂ ≡∑
a

pa|ψa〉〈ψa| , (6.1)

where pa > 0 is the probability to find the system in the pure state1

|ψa〉 and ∑a pa = 1 since the probability to find the system in any of
the possible states naturally has to add to unity.

If the system can be described by a pure state |ψ〉 the density matrix
is simply given by the projector operator

ρ̂ = |ψ〉〈ψ| . (6.2)

As an example of a pure state, we can use the state expansion given
in Eq. (5.7) from which we find the density operator:

ρ̂ = ∑
a,b

ca(t)c∗b(t)|a〉〈b| . (6.3)

If the basis {|b〉}, used for the state expansion, contains in total n
eigenstates, ρ̂ can be represented by an n × n (density) matrix with
the elements given by

ρab ≡ 〈a|ρ̂|b〉 = cac∗b , (6.4)

and from which we see that ρ̂ is Hermitian; ρab = ρ∗ba. Taking the
trace of the density matrix we find

tr (ρ̂) ≡∑
a

ρaa = ∑
a
| ca |2 = 1 , (6.5)

1 That is, it has tr
(
ρ2) = 1. Any state with tr

(
ρ2) < 1 is a statistical mixture.
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due to the normalization of the wavefunction, 〈ψ|ψ〉 = 1. In Eq. (5.8)
we already saw that the coefficients ca are directly related to the prob-
ability to find the system in a given state |a〉; pa = | ca |2, and it is no
surprise that this is recovered in the density matrix formalism. It is
common practice to refer to the probabilities in the diagonal of the
density matrix as the population of a given state.

The off-diagonal elements of the density matrix ρab contains the rela-
tive phase2 between the two states |a〉 and |b〉, and we thus refer to
these elements as the coherences between the levels. This becomes
apparent if we consider the expectation value of the dipole operator
d̂, using Eq. (5.15b) and Eq. (5.19b) we have

〈 d̂ 〉 = ρegdge + ρgedeg , (6.6)

The off-diagonal elements of the density matrix are thus directly
linked to the displacement of the electron, i.e., the induced dipole
moment, and ρeg can be regarded as its complex amplitude.

Finally, we note that the expectation value of a general operator Ô
can be found via the density matrix operator as [Sakurai, 1994]〈

Ô
〉
= ∑

a
pa〈ψa|Ô|ψa〉 (6.7a)

= ∑
a
〈ψa|ρ̂|ψa〉〈ψa|Ô|ψa〉 (6.7b)

= ∑
a
〈ψa|ρ̂Ô|ψa〉 (6.7c)

= tr
(
ρ̂Ô
)

. (6.7d)

6.1 two-level atom including decay

We now continue the study of the two-level atom started in Sec-
tion 5.3. Using the density matrix formalism we will include the
impact of spontaneous emission and collision events in the descrip-
tion of the atomic evolution. We start out by writing the differential
equations in (5.24), giving the time variation of the probability ampli-
tudes, in terms of the density matrix by applying Eq. (6.4). For the
populations we then obtain

ρ̇gg = − i
2
(
Ωρge −Ω∗ρeg

)
, (6.8a)

ρ̇ee =
i
2
(
Ωρge −Ω∗ρeg

)
, (6.8b)

2 This was already hinted at in the way we wrote the state ket for the two-level atom
in Eq. (5.16).
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while for the coherences we get

ρ̇eg = iδρeg − i
Ω
2
(
ρee − ρgg

)
, (6.9a)

ρ̇ge = −iδρge + i
Ω∗

2
(
ρee − ρgg

)
. (6.9b)

As a sanity check we confirm that ρ̇eg = ρ̇∗ge and ρ̇gg + ρ̇ee = 0 as
required from the Hermiticity and conservation of probability for a
closed system. The most intuitive way to include spontaneous emis-
sion, is by recognizing that the effect is to transfer population from
the exited state to the ground state. This can readily be described in
the two rate equations for the populations, Eq. (6.8), by adding/sub-
tracting the term γρee, where γ is the spontaneous emission rate, see
Fig. 6.1. However, for the coherences, Eq. (6.9), we have to be a bit
more careful. To see how to add dephasing, caused by spontaneous
emission, we will therefore first consider the impact done by inelastic
collisions.

δ

γ

|e〉

|g〉

γe

γg

Figure 6.1.: Two-level system with decay γ from the excited state |e〉 to the ground
state |g〉, and decay out of the system by γg and γe.

Similar to spontaneous emission, inelastic collisions cause a reshuf-
fling of the level populations. If we use γa for the collisional decay
rate out of level |a〉 to an unspecified level3, we obtain the modified
rate equations for the populations:

〈
ρ̇gg
〉
= −γgρgg + γρee −

i
2
(
Ωρge −Ω∗ρeg

)
, (6.10a)

〈 ρ̇ee 〉 = −(γe + γ)ρee +
i
2
(
Ωρge −Ω∗ρeg

)
, (6.10b)

Since γg, γe, and γ yields the average rates for the atom to undergo
a transition, the rate equations should now be regarded as governing
the dynamics of the “average” atom, symbolized by the use of 〈 · 〉4.

3 Note then, that the system is no longer closed.
4 The density matrix elements on the RHS of Eq. (6.10) should of course also be treated

as averaged quantities. We have omitted the brackets for notational convenience.
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In order to obtain the impact on the coherences, we use that

| ρab | =
(
| cac∗b |2

)1/2
=
(
ρaaρbb

)1/2 . (6.11)

If there is no drive field, Ω = 0, the solutions to Eq. (6.10) is easily ob-
tained and we find (neglecting spontaneous emission for a moment):

ρaa(t) = ρaa(0)e−γat , (6.12)

for a = g, e. We then have for the coherence:∣∣ ρeg(t)
∣∣ = (ρgg(t)ρee(t)

)1/2 (6.13)

=
∣∣ ρeg(0)

∣∣ e−(γg+γe)t/2 . (6.14)

Perhaps not so surprising, inelastic collision events is seen to also
cause a decay of the coherence terms, i.e., a dephasing of the atomic
dipole, but at half the rate as that of the population decay out of the
levels. Making the conjecture that spontaneous emission will give
rise to the same behavior, we arrive at the modified rate equations for
the coherences:〈

ρ̇eg
〉
= −(Γ− iδ)ρeg − i

Ω
2
(
ρee − ρgg

)
, (6.15a)〈

ρ̇ge
〉
= −(Γ + iδ)ρge + i

Ω∗

2
(
ρee − ρgg

)
, (6.15b)

with:

Γ ≡ 1
τ
+

1
2
(γg + γe + γ) , (6.15c)

used for the total decay rate. For completeness, we have also added
the contribution arising from elastic collisions occurring at the aver-
age rate 1/τ [Milonni et al., 1988]. Together with Eq. (6.10), the equa-
tions in (6.15) constitute what is known as the optical Bloch equations.

6.2 steady-state solution for a closed system

The rate equations, (6.10) and (6.15), given for the density matrix
can, save special cases, only be solved numerically. It is, neverthe-
less, useful to obtain analytically solutions in the steady-state limit,
as these contain valuable information of the system dynamics valid
for timescales much longer than that set by the damping rate in the
optical Bloch equations, i.e., for times t� Γ−1. We will here treat the
case for a closed system with negligible collisions, i.e., the only relax-
ation term present is the one given by the spontaneous emission.
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Setting the time derivatives equal to zero in the optical Bloch equa-
tions and rearranging terms we arrive at the steady-state solutions5:

ρ̄ee =
s

2(1 + s)
=

s0/2
1 + s0 + 4(δ/γ)2 , (6.16a)

ρ̄eg =
iΩ

2(γ/2− iδ)(1 + s)
, (6.16b)

where we have introduced the saturation parameter s defined as

s ≡ s0

1 + 4(δ/γ)2 , (6.17a)

as well as the on-resonance saturation parameter:

s0 ≡
2 |Ω |2

γ2 . (6.17b)

In the following we will give some important relations that can be
derived from the steady-state solutions (6.16). Since these results will
constitute some of the most used concepts used in this thesis, and
when dealing with light-matter interaction in general, they have each
been granted their own small section.

6.3 saturation

We first consider the saturation parameter given in Eq. (6.17). It is
common practice to rewrite the on-resonance saturation parameter in
terms of the light intensity I = 1

2 cε0 | E |2 such that we have

s0 =
I

Isat
. (6.18)

In combination with Eq. (5.22) for the Rabi frequency, we find the
saturation intensity to be given by

Isat ≡
cε0γ2h̄2

4
∣∣ µeg

∣∣2 . (6.19)

This can be further simplified, such that we get rid of the dipole ma-
trix element µeg, Eq. (5.15a), by using that the spontaneous emission
rate is given by [Foot, 2005]

γ =
ω3

eg

3πε0h̄c3

gg

ge

∣∣ µeg
∣∣2 , (6.20)

where ga is the degeneracy6 of the atomic level |a〉. We then find

Isat =
πhcγ

3λ3 . (6.21)

5 ρ̄gg and ρ̄ge follows trivially from the relations ρ̄gg + ρ̄ee = 1 and ρ̄ge = ρ̄∗eg.
6 The ratio gg/ge is of course equal to one for the simple two-level atom considered

here. But for the general multilevel atom it should be taken into account.
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For a low intensity light beam; s� 1, the excited state population ρ̄ee,
Eq. (6.16a), increases linearly with the light intensity, while for a high
intense beam; s� 1, it is seen to saturate at half7 the total population;
ρ̄ee → ½. This is in stark contrast with the solutions, Eq. (5.25), ob-
tained for the populations when neglecting any decay mechanisms of
the atom. It is, however, possible to recover full population inversion
in the two-level system if the Rabi frequency is much bigger than the
damping rate in the optical Bloch equations; Ω � Γ. Alternative, an
additional metastable third level in the atom can be used to obtain
full population inversion.

6.4 scattering rate and power broadening

The effect of saturation becomes, perhaps, even more clear when con-
sidering the scattering rate γsc. Using that the excitation and decay
rates are equal in the steady-state we have:

γsc = γρ̄ee =
s0

1 + s0

γ/2
1 + 4(δ/γ′)2 , (6.22)

when written in terms of the power-broadened linewidth of the atomic
transition:

γ′ ≡ γ(1 + s0)
1/2 . (6.23)

The scattering rate is shown in Fig. 6.2 for various values of the on-
resonance saturation parameter. In the saturation limit; s0 � 1, γsc

intuitively approaches γ/2, since for a high intense light field the
amount of available photons are sufficient to keep re-exciting the
atom whenever it has relaxed to its ground state. The factor of two
difference between γsc and the spontaneous emission rate γ arises
from the fact that the photons also cause the atom to undergo stim-
ulated emission. In contrast to a spontaneously emitted photon, a
photon created by stimulated emission adds to the same mode as the
input field and is thus indistinguishable from the original input flux
of photons.

In Fig. 6.2 it is also evident that the scattering rate broadens for higher
light intensities. This can be thought of as an effective broadening of
the atomic transition and motivates the introduction of the power-
broadened linewidth γ′.

6.5 optical depth

We continue the discussion of the input light beam. For each scat-
tering event a photon with energy h̄ω is lost. Knowing the scat-

7 Evidently, population inversion cannot be reached in steady-state with two-level
atoms as required for lasing.
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Figure 6.2.: Scattering rate as a function of the detuning for different saturation
parameters.

tering rate for a single atom, γsc, the attenuation of a laser beam
with intensity I passing through a cloud with atom number density
N = Natom/V can be described by [Metcalf et al., 1999]

dI
dz

= −h̄ωγscN . (6.24)

Inserting Eq. (6.22) into Eq. (6.24) and using s0 = I/Isat we find

dI
dz

= − h̄ωN
Isat

γ/2
1 + I/Isat + 4(δ/γ)2 I . (6.25)

In the limit of negligible saturation; I � Isat, the non-linear differen-
tial equation for I reduces to the linear differential equation

dI
dz
≈ −σ(δ)N I , (6.26)

where we have introduced the atomic cross section for a single atom:

σ(δ) =
h̄ωγ

2Isat

1
1 + 4(δ/γ)2 =

σ0

1 + 4(δ/γ)2 , (6.27)

with on-resonance scattering cross section given by

σ0 ≡
h̄ωγ

2Isat
=

3λ2

2π
. (6.28)

The solution to Eq. (6.26) is a simple exponential decay, well known
as the Lambert-Beer’s law:

I(z) = I0e−σ(δ)N z = I0e−d , (6.29)
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where d is the optical depth (OD). From this we can define the OD per
atom as

α(δ) ≡ d
Natom

=
σ(δ)

Aeff
=

α0

1 + 4(δ/γ)2 , (6.30)

where Aeff is the effective mode area of the light beam and α0 =

σ0/Aeff is the on-resonance OD per atom. From this definition it is
clear that α is a direct measure of the light-atom coupling strength. As
such, this parameter plays a vital role in quantum optics experiments
with atomic ensembles, and a great effort is made to increase the OD

per atom as much as possible. Basically two strategies exists: either
(i) the atomic cross section is increased, e.g., by using Rydberg atoms,
or (ii) the light field mode area is minimized, e.g., by using a tightly
focused beam. In contrast to a free-space light beam where a strong
focus is at the expense of a greater divergence, a TOF provides an
excellent interface for the atoms to interact with the tightly confined
evanescent field. In comparison, only ∼ 103 atoms are needed in
our current TOF-setup to achieve the same OD as we had in our old
free-space setup with ∼ 105 atoms [Christensen, 2014; Béguin, 2015].

We now consider the highly saturated regime; I � Isat. Here the RHS

of Eq. (6.25) can be approximated by the constant prefactor, −h̄ωγN ,
from which the solution for the beam intensity is simply given by
a linear decay as it propagates through the sample. In other words,
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Figure 6.3.: Numerical solution for I(z) in Eq. (6.25) when entering a homoge-
neous density sample at z = 1 with an initial intensity I0 = 5Isat.

now the number of photons lost from the initial input flux scales with
the number of available scatteres N . This is illustrated in Fig. 6.3 for
an input beam with initial intensity I0 = 5Isat. Entering the sample at
z = 1, the intensity linearly decreases until there are so few photons
left in the beam that it enters the low-saturation regime (near z = 7)
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where it then starts to decay exponentially as described by Lambert-
Beer’s law.

As an experimentalist it is often more useful to work with optical
powers P than optical intensities I. For completeness, we therefore
give here the following expressions which can be derived using I =

P/Aeff, the above expressions, and by making the definition of the
saturation intensity more general, i.e., frequency dependent s(δ) =

I/Isat(δ):

s0 =
P

Psat
, (6.31a)

Psat(δ) =
h̄ωγ

2α0

(
1 + 4(δ/γ)2) . (6.31b)

6.6 linear susceptibility – absorption and dispersion

When an atom is driven by an electric field it becomes polarized. If
we have N atoms per unit volume the polarization can be obtained
by evaluating the expression

P = N〈 d̂ 〉. (6.32)

In Eq. (6.6) we already saw how the expectation value of the induced
dipole moment is intimately linked with the off-diagonal elements
of the density matrix, i.e., the coherences. In the following we will
assume that the induced dipole is parallel to the field8. We then have
for the polarization [Grynberg et al., 2010]

P = N 〈 µ̂ 〉 = N
(
ρegµge + c.c.

)
. (6.33)

In addition, we recall Eq. (2.5) were the linear susceptibility χ were
defined such that

P = ε0χE , (6.34)

where P is the complex amplitude of the polarization when written
as

P(r, t) =
1
2

(
uP(r, t)e−iωt + c.c.

)
, (6.35)

similar to the classical electric field in Eq. (5.12). Inserting the steady-
state solution for ρeg, Eq. (6.16b), into Eq. (6.33) we find for the linear
susceptibility

χ =
N
ε0h̄

∣∣ µeg
∣∣2

(δ + iγ/2)(1 + s)
. (6.36)

8 We then have r̂ · u = r̂u · u = r̂, which means that µeg = µ∗ge.
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Taking the real and imaginary part of χ we obtain the well-known
equations for the dispersion and absorption respectively:

Dispersion: Re χ = −N
∣∣ µeg

∣∣2
ε0h̄

δ

δ2 + (γ′/2)2 , (6.37a)

Absorption: Im χ = N
∣∣ µeg

∣∣2
ε0h̄

γ/2
δ2 + (γ′/2)2 , (6.37b)

where we have used the expression for the power-broadened line-
width, Eq. (6.23). In Fig. 6.4 the real and imaginary part of the sus-
ceptibility are plotted as a function of the detuning of the drive field
frequency from atomic resonance. As the associated names suggests,
the imaginary part of the atomic dipole response is responsible for the
attenuation of the electric drive field via scattering events, while the
real part is related to the phase shift an off-resonant beam will acquire
when passing through a cloud of atoms. This relation is apparent
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Figure 6.4.: Real and imaginary part of the atomic susceptibility.

from the definition of the electric displacement field D in Eq. (2.4) in
combination with the expression for the polarization, Eq. (2.5), from
which we have:

n2(ω) = 1 + χ , (6.38a)

n(ω) ≈ 1 +
χ

2
, (6.38b)

with the approximation being valid for a dilute medium; | χ | � 1.
When solving the wave equation (2.6) for a monochromatic electric
field one finds the well-known relation for the wavenumber:

k2 = n2(ω)
ω2

c2 = n2(ω)k2
0 . (6.39)
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Inserting this into the general expression for a monochromatic field
propagating in the z-direction

E(r, t) =
1
2

(
Ee−n′′k0ze−i(ωt−n′k0z) + c.c.

)
, (6.40)

with
n′ ≡ 1 +

Re χ

2
and n′′ ≡ Im χ

2
, (6.41)

we find the electric field to decay with n′′ as anticipated, while it
acquires a phase shift proportional to n′.

An important feature to note about the susceptibility, is that while
the absorption falls of as δ−2, the dispersion decreases slower as δ−1.
This makes it possible to measure the state of an atomic cloud via
the phase shift acquired by an off-resonant light probe in a minimally
destructive manner, that is, in the sense of causing only very few
scattering events on average.

6.7 light force

The force F (on any quantum mechanical system) is defined as the
expectation value of the force operator F̂, which can be derived from
the momentum operator p̂ [Metcalf et al., 1999]:

F =
〈

F̂
〉
=

d
dt
〈 p̂ 〉 . (6.42)

From Ehrenfest’s theorem we have [Grynberg et al., 2010]

ih̄
d
dt
〈 p̂ 〉 =

〈
[p̂, Ĥ]

〉
, (6.43)

and so the force on the atom is directly related to its Hamiltonian.
For the force exerted by a classical light field we thus find

F =
1
ih̄
〈
[p̂, Ĥint]

〉
. (6.44)

With the usual definition of the momentum operator p̂ = −ih̄∇ in
the r representation, the force on the atom is found to be given by

F = −
〈
∇Ĥint

〉
. (6.45)

Using Eq. (5.10) for the semiclassical light-atom interaction we have
[Grynberg et al., 2010]

F = ∇ 〈 µ̂E(r, t) 〉 = 〈 µ̂ 〉∇E(r, t)|ratom . (6.46)

In the last equality it has been assumed that the atomic wave packet is
highly localized at ratom and has an extension much smaller than the
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wavelength of light, in essence this corresponds to a classical treat-
ment of the atomic position. The expectation value of the atomic
dipole moment operator 〈 µ̂ 〉, was evaluated in the previous section,
where the linear susceptibility was derived from the definition of the
polarization of the atom P Eq. (6.32). Using the results obtained in
Section 6.6 we can therefore write

〈 µ̂ 〉 = 1
2

ε0χE(ratom, t) + c.c. (6.47)

With the electric field given by

E(r, t) =
1
2
E(r, t)ei(k·r−ωt) + c.c. (6.48)

the light force on the atom is straightforward to calculate. In the RWA

we thus find

F =
ε0

4
Re χ∇E2|ratom +

ε0

2
Im χk E2(ratom, t) . (6.49)

The light force on the atom is seen to be given by two terms. The
first term is directly proportional to the real part of the susceptibility,
given in Eq. (6.37a), which is the dispersive response of the atomic
dipole to the light field, whereas the second term contains the imag-
inary part of χ, given in Eq. (6.37b), responsible for the absorption.
The two contributions to the total light force on the atoms thus gov-
erns two different physical processes, which we shall treat individu-
ally in the next two sections.

6.7.1 Radiation pressure force

Starting with the second force term in Eq. (6.49), this is commonly
referred to as the dissipative force9. Using the definition of the imagi-
nary susceptibility for the absorption as given in Eq. (6.37b), together
with the definitions of the Rabi frequency Ω = µ̂E/h̄ in Eq. (5.22)
and the saturation parameter s in Eq. (6.17a), the expression for the
dissipative force can be written as

Fdissipative =
ε0

2
Im χk E2(ratom, t) = h̄k

γ

2
s

1 + s
. (6.50)

Being proportional to the wavevector of the light field and Im χ, ex-
pression (6.50) can be understood to originate from the momentum
or recoil kick that is delivered to the atom every time it scatters a
photon. As expected from the absorption profile in Fig. 6.4, the force
takes on its maximum value when the light is on-resonance with the
atom. For an intense light field, s � 1, the atom saturates and the

9 As well as the scattering force and the radiation pressure force.
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maximum force that can be given to the atom by the dissipative force
is

Fmax
dissipative = h̄k

γ

2
. (6.51)

Fdissipative is thus ultimately limited by the lifetime of the atom: τatom =

1/γ and not by the light field intensity. As a final remark, we note that
the dissipative force is not a conservative field since it relies on spon-
taneous emission – an inherently irreversible mechanism. This means
that atoms cannot be trapped with this force while at the same time
having optical, hyperfine or Zeeman coherences kept unperturbed.
With Fdissipative being a dissipative force it can, however, efficiently10

be used to slow atoms, a mechanism for two-level atoms referred to
as Doppler cooling. To see this in expression Eq. (6.50), one should
remember to make the replacement δ → δ − k · v, where v is the
velocity of the atom.

6.7.2 Dipole force

The first force term in Eq. (6.49) is known as the dipole force:

Fdipole =
ε0

4
Re χ∇E2|ratom . (6.52)

Following the dispersive profile in Eq. (6.4), the dipole force is seen to
be zero on atomic resonance contrary to the dissipative force. Insert-
ing the expression for the dispersion Re χ, given in Eq. (6.37a), into
Eq. (6.52), the Fdipole can be restated as

Fdipole = −
h̄δ∇Ω2

4δ2 + γ2(1 + s0)
. (6.53)

In the far-detuned limit with small saturation, | δ | � γ, Ω, this re-
duces to

Fdipole = −
h̄∇Ω2

4δ
= −∇(∆Eg) , (6.54)

where we, in the last equality, have used expression (5.29a) for the
AC Stark shift of the atomic ground state ∆Eg. Evidently, Fdipole is a
conservative force field which originates from a potential very much
related to the energy shift experienced by the atom when placed in a
light field. The dipole force is seen to be oriented along the gradient
of the light field. For a red-detuned field, δ < 0, the atom is thus
attracted towards high intensity regions, whereas it is repelled for a
blue-detuned field with δ > 0. This will be opposite for excited states,
where the AC Stark shift is opposite of that of the ground states.

10 That is, as long as the atomic lifetime is short enough, since otherwise the atom can
essentially drift out of the light field before it is again in its ground state ready to
scatter yet another photon.
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As we already noticed for the dispersion and absorption profiles in
(6.37), Re χ falls of as δ−1, while Im χ falls of much faster as δ−2. For a
light field far-off resonance, the dipole force will therefore dominate
over the dissipative force, which is really what makes it possible to
trap atoms in the conservative optical dipole potential. Indeed, this
is also how we confine atoms in our experimental setup, which will
be the main subject in Chapter 9. For any further notion on slowing
and trapping atoms, the reader is referred to the very nice textbook
by Metcalf et al. [1999] on the topic in general, and to the paper by
Grimm et al. [2000] on optical dipole traps in particular.

6.8 master equation

We conclude this chapter with a remark concerning the treatment
for the inclusion of atomic state decay mechanisms. So far, we dealt
with it in a phenomenological way by adding relaxation terms to
the optical Bloch equations by hand. Strictly speaking, one should
use the master equation, governing the time-evolution of the density
operator, to meticulously account for dissipative processes [Lukin et
al., 2011]:

˙̂ρ = − i
h̄
[Ĥ, ρ̂] + L(ρ̂) . (6.55)

Here the first term11 contains only the coherent or unitary evolution
of the state generated by the Hamiltonian Ĥ as described in Sec-
tion 5.1, which, in the case of a two-level atom interacting with a
single-mode light field, we saw results in the equations (6.8) and (6.9)
for the dynamics of ρ̂. The last term, then, contains all decay and
dephasing mechanisms of the state described by the Lindblad super-
operator:

L(ρ̂) = −1
2

(
Ĉ†Ĉρ̂ + ρ̂Ĉ†Ĉ− 2Ĉρ̂Ĉ†

)
, (6.56)

where the operator Ĉ contains all the mechanisms causing the state
to undergo decay events or dephasing. For example, to account for
spontaneous emission where the atom decays from |e〉 to |g〉 at a rate
γ, we would have Ĉ =

√
γσ̂ge, which reproduces the results we found

in Eq. (6.10) and Eq. (6.15) when evaluating Eq. (6.55).

When only including the first term in Eq. (6.55), it is often referred
to as the Liouville equation, which, in fact, is the density operator
equation of motion equivalent to the Schrödinger equation (5.1).

11 This is not to be confused with the Heisenberg equation of motion, which for a
time-dependent operator Ô(t) is given by ih̄ ˙̂O(t) = [Ô(t), Ĥ].
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summary

Starting with a brief review of the Schrödinger equation and how
to solve the dynamics for a two-level atom driven by a single-mode
classical light field, we continued to the density operator formalism
where decay and dephasing mechanisms were included in the de-
scription for the atomic evolution. Thus considering a simplistic two-
level system we have in this chapter introduced some of the most
vital concepts when dealing with light-atom interactions. This in-
cludes, e.g., the OD, the scattering rate, the linear susceptibility, and
the dipole force, just to mention a few. These concepts will be re-
ferred to extensively throughout the thesis and this chapter, together
with Chapter 2 for the description of TOFs, thus constitutes a broad
foundation for the remaining chapters.





7
R E A L AT O M S — A M U LT I L E V E L S Y S T E M

The two-level atom considered so far, is an idealized system that
serves well for a fundamental understanding of light-atom interac-
tions, but in practice does not comply with real physical systems. In
particular, we work with neutral caesium-133 (Cs) atoms, which most
definitely should be considered as a multi-level atom. Before moving
on to Part iii, where we present our experimental setup, we therefore
give here a general introduction to Cs, followed by a discussion in the
next chapter on some interesting and important features that emerge
when an atom is placed in the evanescent field of a TOF.

7.1 caesium

As apparent from the small portion of the rich level structure of Cs,
shown in Fig. 7.1, we are dealing with a highly multi-level atom con-
taining in total 16 groundstates. Being an alkali atom Cs has a single
unpaired valence electron [Foot, 2005], which makes it possible to
treat it as a hydrogen-like atom. Due to the spin-orbit interaction,
i.e., the coupling between the magnetic moment of the valence elec-
tron (proportional to its spin S, with S = 1/2) and the magnetic field
(proportional to its orbital angular momentum L), arising from the
electron moving through the electrostatic potential of the nucleus, the
atomic energy levels are split into several sub-levels. This is known as
the fine structure and characterized by the total angular momentum
of the electron J = L + S, with quantum number J restricted to the
range | L− S | ≤ J ≤ | L + S | (in integer steps).

For the ground state, where the electron is in the s shell, we have
L = 0 such that J = S = 1/2. The ground state thus remains a
single energy level and is written as n2S+1LJ = 62S1/2, where n is
the principal quantum number. The first exited state has L = 1 (p
shell), and is therefore split into the two levels, 62P1/2 and 62P3/2, also
known as the fine structure doublet1. The ground state is connected
to these states via the so-called D1 and D2 transition lines as shown in
Fig. 7.1. In this thesis we have exclusively worked with transitions on
the D2 line and any later references to the atomic exited state should
be understood to govern the 62P3/2 level only.

1 With the two levels being separated by 17 THz the fine structure splitting in Cs is
really not that fine again as pointed out by Foot [2005].
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Figure 7.1.: Level diagram of the hyperfine state architecture of the ground and first
exited state in Cs.

The interaction between the magnetic moment of the nucleus (propor-
tional to its spin I) and the magnetic flux density of the valence elec-
tron (approximately proportional to J) gives rise to a further division
of the atomic energy levels into the hyperfine structure, cf. Fig. 7.1. To
represent these levels a new quantum number is introduced for the
total angular momentum: F = I + J, with quantum number F and, as
J, it is restricted to be within the range | I − J | ≤ F ≤ | I + J |. With
I = 7/2 for Cs, the ground state thus splits into two hyperfine states:

62S1/2 →
{

62S1/2, F = 3 ,

62S1/2, F = 4 ,
(7.1)

while the highest level of the first exited state splits into four hyper-
fine states:

62P3/2 →


62P3/2, F′ = 2 ,

62P3/2, F′ = 3 ,

62P3/2, F′ = 4 ,

62P3/2, F′ = 5 .

(7.2)

Here we have employed the commonly used notation, where exited
states are explicitly referred to by adding a prime to the quantum
number. Each hyperfine level has 2F + 1 Zeeman degenerate sub-
levels, denoted by mF, that are lifted by any externally applied mag-
netic fields, including the earth magnetic field. The somewhat ab-
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stract representation of an atomic state given in Eq. (5.7) can now be
made more concrete using the F and mF quantum numbers:

|ψ(t)〉 = ∑
g

cg(t)|g〉 + ∑
e

ce(t)|e〉 (7.3a)

= ∑
F,mF

cF,mF(t)|F mF〉 + ∑
F′,m′F

cF′,m′F
(t)|F′ m′F〉 . (7.3b)

In the remainder of the thesis, we will represent the atomic states
by their F and mF quantum numbers as either |F mF〉 or |F〉 in cases
where an isotropic distribution in the Zeeman sublevels are consid-
ered.

7.2 dipole transitions from interaction with light

As described in Section 5.2, the ground and exited states are coupled
via electric dipole transitions when the atom is driven by an near-
resonant electromagnetic field. The strength of these transitions is
contained in the dipole matrix element given formally in Eq. (5.15a).
In terms of the F and mF quantum numbers we have

µeg = 〈F′ m′F|er̂ · uk|F mF〉 . (7.4)

7.2.1 Spherical basis

When dealing with light-atom interactions, the most convenient coor-
dinate frame is given by the spherical basis {uq} with q = −1, 0,+1,
as this greatly simplifies the evaluation of µeg which will become ap-
parent in a moment. In the spherical basis frame the position operator
r̂ takes the form of a spherical tensor of rank 1, T(1)

q , written as

r̂ = ∑
q

rquq . (7.5)

Similarly, we have for the unit polarization vector in Eq. (7.4)

uk = ∑
q

εkquq , (7.6)

where εkq yields the distribution of the light field polarization among
the three basis vectors fulfilling ∑q εkq = 1. If the quantization axis
is chosen along the unit vector uz in the Cartesian basis {ui} with
i = x, y, z, we have [Normand et al., 1982]

u−1 =
+ux − iuy√

2
, (7.7a)

u0 = uz , (7.7b)

u+1 =
−ux − iuy√

2
. (7.7c)
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When relating the light field polarization to the atomic system, it is
common practice to refer to it as π-polarized when it is parallel to
the quantization axis, i.e., along u0, and σ-polarized when it is per-
pendicular (senkrecht in German) to the quantization axis, i.e., given
by a linear combination of u−1 and u+1. In the special case where the
light field is circularly polarized with respect to the quantization axis,
and hence oriented along either u−1 or u+1, it is denoted as σ− and
σ+ polarized light, respectively.

7.2.2 Selection rules

Writing the dipole matrix element, Eq. (7.4), in the spherical basis we
have

µeg = ∑
q

εkq〈F′ m′F|erq|F mF〉 . (7.8)

In order to calculate the transition elements between the ground and
excited states, we, in principle, have to evaluate the matrix element in
Eq. (7.4) 3× (2F′ + 1)× (2F + 1) times, since there is 3 polarization
components, 2F′+ 1 excited states, and 2F+ 1 ground states (for just a
single hyperfine excited state and ground state F′ and F). Fortunately,
it is possible to derive a set of selection rules that greatly reduces
the number of evaluations. This is the main motivation for working
in the spherical basis, since the position operator in this coordinate
frame satisfies the following commutation relations with the angular
momentum components2 [Sakurai, 1994]

[Fz, rq] = h̄qrq , (7.9a)

[F±, rq] = h̄
√
(1∓ q)(2± q)rq±1 . (7.9b)

Using Eq. (7.9a) it is straightforward to obtain the mF selection rule
(the derivation can be found in Appendix E):

〈F′ m′F|erq|F mF〉 = 0 , if m′F 6= mF + q . (7.10)

This selection rule directly reflects the conservation of angular mo-
mentum. When an atom, initially described by the mF quantum num-
ber, absorbs a photon carrying spin angular momentum qh̄, the new
internal state of the atom must have quantum number m′F = mF + q
in order for the system to have the same total angular momentum
before and after the absorption event.

2 Spherical tensors are in general irreducible operators, in contrary to Cartesian ten-
sors, and the following the commutation relations

[Jz, T(k)
q ] = h̄qT(k)

q , [J±, T(k)
q ] = h̄

√
(k∓ q)(k± q + 1)T(k)

q±1 ,

where J is any angular momentum operator and T(k)
q is a spherical tensor of rank k,

can in fact be regarded as the very definition of spherical tensors [Sakurai, 1994].
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From Eq. (7.9b) the following relation can be derived [Sakurai, 1994]:

〈F′ m′F|erq|F mF〉 = 〈F 1 mF q|F′ m′F〉〈F′||er̂||F〉 , (7.11)

which is known as the Wigner-Eckart theorem. The double-bar no-
tation, in the second factor, denotes a reduced matrix element. The
first factor is what really makes the Wigner-Eckart theorem powerful
since this is simply the Clebsch–Gordan (CG) coefficient of the dipole
transition. In terms of the Wigner 3-j symbol the CG coefficient is
given by

〈F 1 mF q|F′ m′F〉 = (−1)F−1+m′F
√

2F′ + 1

(
F 1 F′

mF q −m′F

)
, (7.12)

and we readily obtain the following selection rules for the atomic
dipole transitions, since the Wigner 3-j symbol is zero unless

∆mF = m′F −mF = q , (7.13a)

∆F = F′ − F = 0,±1 , (7.13b)

F + F′ + 1 = even integer, if mF = m′F = q = 0 . (7.13c)

These selection rules not only tells us which ground to excited state
transitions are allowed, but also relates the light polarization to spe-
cific transitions via the spherical basis index q in Eq. (7.13a) (equal to
what we found in Eq. (7.10)). We thus see that π polarized light only
drives transitions where ∆mF = 0, whereas σ± polarized light are re-
sponsible for transitions with ∆mF = ±1. It greatly pays off to learn
the selection rules in Eq. (7.13) by heart3 and I can only recommend
future students in the lab to always keep them in mind.

7.2.3 Reduced matrix element

The reduced matrix element, 〈F′||er̂||F〉 encountered in the Wigner-
Eckart theorem (7.11), can be further factorized and simplified, and
in the end, the dipole matrix element µeg, Eq. (7.4), is actually not
that hard to evaluate, albeit a bit tedious. For more details on how to
do this, the reader is referred to [Steck, 2003], who has a nice section
on this subject as well as tables for all the CG coefficients of the D1

and D2 line transitions in Cs. Here we simply note that since the CG

coefficients are essentially just the elements of the transformation ma-
trix connecting the two angular-momentum bases {J2, J2

1, J2
2, Jz} and

3 For example, the |4, 0〉 → |4′, 0′〉 transition is found to be forbidden (at least to first
order), which on one hand is great, since is makes it possible to purify the atomic
ensemble into |4, 0〉, but on the other hand it can be really annoying when atoms
are accidentally shelved into the |4, 0〉 state. Remembering the selection rules, such
mistakes occur less often.
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{J2
1, J1z, J2

2, J2z}, they can be readily calculated, although I would sug-
gest4 to use either the ClebschGordan function in Mathematica or the
Python library SymPy.

As a final comment on the reduced matrix element, we note that it
is related to the spontaneous emission rate given in Eq. (6.20) for a
two-level atoms, and a more precise form of the excited state decay
rate is [Steck, 2003]

γe =
ω3

eg

3πε0h̄c3
2J + 1
2J′ + 1

∣∣ 〈J′||er̂||J〉
∣∣2 . (7.14)

4 Just be cautious about different conventions!
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AT O M S P L A C E D I N T H E E VA N E S C E N T F I E L D

With the main theory concerning the evanescent light field and Cs

atoms now established, together with a conceptual introduction to
light-atom interactions, we are now ready to consider the behavior
of these two physical systems when brought together. This is the
main focus of the remainder of this thesis with the exception of a few
detours, for example, when describing the detection scheme that we
use for probing the atoms in Chapter 10.

Here we give a general overview of a couple of important proper-
ties that comes into effect when an atom is placed in the evanescent
light field of a TOF-guided mode. In particular, we will discuss how
the quasi-linear polarization of the HE11 should be interpreted in the
atomic frame and how this affects the atomic scattering rate.

8.1 polarization in the atomic frame

In what follows, we take a leap ahead and anticipate an ensemble
of Cs atoms to be confined in close vicinity to the TOF. Later, in Sec-
tion 9.4, it is shown how this is accomplished in practice, and that the
atoms are formed into two 1D strings positioned along either side of
the TOF. This means, that the atoms will be entirely confined within
a 2D plane, made up of the two parallel 1D strings, which we shall
refer to as the atomic plane. In the lab frame, we have chosen this
plane to be horizontal, and with respect to the cylindrical coordinate
frame, where the TOF-axis is coinciding with the horizontal z-axis and
the transverse x-axis is vertically aligned along the gravity axis, the
atomic plane is equivalent to the yz-plane.

As shown in Section 2.5, the evanescent field of a RW TOF-mode
with quasi-linear y polarization has a significant longitudinal elec-
tric field component in the yz-plane, i.e., parallel to the atomic plane.
In Eq. (2.24) this were found to yield a nearly circular polarization
at the atomic trap sites. It was also found, that if the field polariza-
tion is rotated by 90°, to quasi-linear x polarization, it will be purely
x-polarized in the now perpendicular atomic plane1.

1 Actually, in Section 2.5 we did not rotate the polarization but rather ourselves to the
perpendicular axis. In the end, the result is of course the same.
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A conceptual sketch of these two situations is shown in Fig. 8.1, with
the quantization axis q chosen along the vertical x-axis. For an evanes-

z

HV

y

yx,q

x,q

(a) Quasi-linear horizontal polarization is cir-
cular at the atoms (red balls) and hence
causes σ± transitions where ∆mF = ±1.

z

HV

y

yx,q

x,q

(b) Quasi-linear vertical
polarization is linear
at the atoms (red balls)
and hence causes
π transitions where
∆mF = 0.

Figure 8.1.: Illustration of the quasi-linear horizontal (in the atomic plane) and
vertical (perpendicular to the atomic plane) polarization modes in the
TOF evanescent field. The quantization axis is chosen along the vertical
x-axis. Also cf. Fig. 2.12 and Fig. 2.14.

cent field mode with quasi-linear horizontal polarization in Fig. 8.1(a),
the effective left-handed circular polarization at the atoms positioned
on the upper (right) side of the TOF mainly causes σ− transitions (92 %
as found in Eq. (2.24), the remaining 8 % will be σ+ transitions), while
atoms located on the opposite side of the TOF will undergo σ+ tran-
sitions when driven by the right-handed circularly polarized electric
field. In contrast, a quasi-linear vertical polarization field will only
drive π-transitions in the atoms, since the polarization is now purely
linear along x at the location of the atoms, as illustrated in Fig. 8.1(b).

8.2 anisotropic scattering rate

When an exited atom, placed in the vicinity of a TOF, decays, the spon-
taneously emitted photon can either couple to a free-space radiative
mode or couple into the TOF as a guided mode. The total scatter-
ing rate of the atom γsc can thus be described as the sum of the two
scattering rates of either scenario as

γsc = γfree + γTOF . (8.1)

Because we only collect light that couples out of either input-output
ports of the TOF, we are mainly concerned about emitted photons
coupled into the TOF, and hence γTOF. Four channels in the TOF are
available for the emitted photon. Two for either propagation direction
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along the positive (+) or negative (−) z-direction in the TOF, and two
for either of the quasi-linear polarization modes x and y. The total
scattering rate in either of the two propagation direction can therefore
be written as

γ± = ∑
p=x,y

γ±,p , (8.2)

where
γ±,p = ∑

e,e′
γ
(±,p)
ee′ ρee′ , (8.3)

with the double sum taken over all exited states |e〉 = |F′ m′F〉. Expres-
sion (8.3) is an extension of the two-level atom scattering rate given in
Eq. (6.22) to the case of a multi-level atom. It is worth noting, however,
that in contrast to a two-level atom, where the spontaneous emission
rate only governs the population decay out of the exited state |e〉,
γ = γee, now the decay of cross-level coherences γee′ between exited
state levels, |e〉 and |e′〉, also has to be taken into account [Le Kien
et al., 2005].

We previously saw in Eq. (6.20) for a two-level atom, that the sponta-
neous emission rate is proportional to the norm square of the dipole
matrix element projected onto the orientation of the field polarization,
γee ∝

∣∣ µeg
∣∣2, with µeg given by Eq. (7.4). A natural extension for the

multi-level spontaneous emission rate into the TOF is then something
like

γ
(±,p)
ee′ ∝ ∑

g
µ
(±,p)
eg

(
µ
(±,p)
ge′

)∗
. (8.4)

This expression of course has to be evaluated at the position of the
atom with the field orientation given accordingly. To make this cir-
cumstance a bit more transparent it might be more appropriate to
write γ

(±,p)
ee′ according to that in [Le Kien et al., 2014], which is given

by

γ
(±,p)
ee′ = 2π ∑

g
G(±,p)

eg

(
G(±,p)

e′g

)∗
, (8.5a)

with

G(±,p)
eg =

√
ωegβ′

4πε0h̄
deg · ε±,p e±iβz , (8.5b)

where the shorthand notation β′ = dβ/dω|ωeg is used for the deriva-
tive of the propagation constant β with respect to the field frequency
evaluated at the atomic resonance transition frequency ωeg. ε±,p is
the field mode profile function of the four available TOF channels,
and defined from the complex electric field amplitude in Eq. (2.7) as

E±,p(ρ, φ) = Cε±,p(ρ, φ) , (8.6)
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where C is a normalization constant containing the field optical power
among other things, see Appendix A for the components of E(ρ, φ)

and note that the sign of the z component depends on the propaga-
tion direction, Ez → ±Ez. From Eq. (8.5) it should be clear that the
spontaneous emission rate into the TOF not only depends on the in-
ternal structure of the atom, but also on its degree of spatial overlap
with the available decay channels. The question is thus, if the atom
couple equally well to all four channels in the TOF, or if some are
preferred over the other?

Le Kien et al. [2014] answer this question by calculating the steady-
state solution of the optical Bloch equations for a weak (far below
saturation) forward (+) propagating probe field, scattering off the
|4〉 → |5′〉 transition of a Cs atom placed in the evanescent field. In
Table 8.1 we have collected a few of the numerical results they ob-
tained for the scattering efficiency

η±,p =
h̄ωγ±,p

Pz
, (8.7)

into the four TOF-modes, using a quasi-linearly polarized probe field
and an atom placed on the y-axis2 at the rim of the TOF. Perhaps

probe field scattered field

+, x −, x +, y −, y

+, x 4.0 4.0 5.5 5.5

+, y ∼ 0.01 ∼ 0.01 130 10

Table 8.1.: Scattering efficiency η±,p into the four available decay channels of the
TOF, for an atom sitting on the y-axis on the TOF rim, i.e., at ρ, φ =
a, π/2. For an atom placed further out at ρ = 450 nm corresponding
to the position of the potential trap minima, the table entries are about
30 times lower. The values are read of Fig. 3 and Fig. 4 in [Le Kien et al.,
2014], which were made using the parameters Pz = 10 fW, ω = ωeg,
nco = 1.45, ncl = 1, and a = 250 nm.

what is first caught by the eye in Table 8.1, is that when the probe
polarization is oriented along the y-axis, containing the atom, the
atomic radiative decay is one order of magnitude higher into the for-
ward propagation mode than into the backward propagation mode,
for the polarization preserving channel. While, for the opposite case,
when the probe polarization is perpendicular to the atomic axis, the
scattered light couples equally into the forward and backward prop-
agation modes regardless of which of the two polarization channels

2 Actually, in [Le Kien et al., 2014] the atom is placed on the x-axis, but we have rotated
the frame by 90° to make it match the coordinate frame used in this thesis.
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it couples into. These results can be explained by the presence of the
longitudinal electric field component when the field polarization is
quasi-linear y, while Ez(ρ, φ = π/2) = 0 when the field polarization
is quasi-linear x.

Well, one thing at a time, so let us first try to understand the second
row in Table 8.1, where the probe field is aligned with the atom, i.e.,
quasi-linearly y-polarized. Apart from what we already noticed, it is
also found that the scattered light almost exclusively couples into the
same polarization mode as the drive field. This can be understood
from the fact that Le Kien et al. [2014] consider the steady-state solu-
tions of the optical Bloch equations. Because the atom is essentially
driven by σ− polarized light, cf. Fig. 8.1(a) in the previous section,
it will eventually be optically pumped to the stretched |4,−4〉 state.
For a scattering event into the other polarization channel x to occur,
a change in spin angular momentum by ±h̄ of the scattered photon
with respect to the incoming photon is required from the selection
rule given in Eq. (7.10). This can only happen in the highly improba-
ble scattering event where the atom is excited to the |5,−3〉 state by
a σ+ photon. This is not only unlikely to happen due to only 8 % of
the light being σ+ polarized, but also because the transition probabil-
ity is 45 times weaker for the |4,−4〉 → |5,−3〉 transition than for
the |4,−4〉 → |5,−5〉 transition. On top of all that, the vacuum field
strength for the x-polarized mode is at the same time substantially
weaker than for the y-polarized mode, and any scattering into ±, x is
therefore effectively suppressed.

We now turn our attention back to the dominant coupling into the
forward propagation mode for the quasi-linearly y-polarized probe.
This can also be understood from the nearly circular field driving the
atom into the |4,−4〉 state. As the atom in |4,−4〉 is mainly excited
to the |5′,−5′〉 state, it can only decay back to |4,−4〉. Again, due to
angular momentum conservation, we know the that emitted photon
then has to be σ− polarized. Since we know, that the electric field
distribution is such that a forward propagating mode consist of 92 %
σ− polarized light while only 8 % is σ+ polarized, we also have that a
backward propagating mode, at the same positions, must consist of
92 % σ+ polarized light and only 8 % σ− polarized light. Accordingly,
92 % of the σ− light scattered of the atom into the TOF should couple
into the forward propagating mode and only 8 % into the backward
propagating mode, which matches perfectly with the ratio 10/130 =

8 %.

We now consider the first row in Table 8.1, where the probe field
is quasi-linearly x-polarized. Here the calculations by Le Kien et al.
[2014] predict a stronger coupling into the orthogonal polarization
mode in stark contrast to what we have just found for the y-polarized
probe. Somewhat counter-intuitive at first, this can be explained by
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the stronger vacuum field strength at the atom for the quasi-linear y
polarization mode than for the quasi-linear x polarization mode, as
evident in Fig. 2.10 to Fig. 2.12. Since, the initially isotropic atom are
now driven exclusively by π polarized light, the steady-state distribu-
tion of the population in the |4, mF〉 levels will be symmetric around
|4, 0〉, and hence no directionality is built into the scattering.

To gain further insight of the anisotropic scattering rate, we show in
Fig. 8.2 the ratio between the scattering rates into the forward and
backward propagation modes in the TOF, as calculated for a two-level
atom placed on the positive y-axis near the TOF. For this simplified
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Figure 8.2.: Ratio between the forward γ+ and backward γ− scattering rate into
a TOF-guided mode of a two-level atom placed near the TOF on the
same axis as the quasi-linear polarization field driving the atom. The
nominal distance between the atomic trap site and the TOF is indicated
by the dashed line.

system, consisting of only a single ground and exited state, the spon-
taneous emission rate into the guided modes, given in Eq. (8.5), sim-
plifies to

γ(±,p) ∝
∣∣ deg · ε±,p

∣∣2 . (8.8)

Considering a probe field with quasi-linear y-polarization, the ratio
between the forward and backward scattering rates evaluated on the
positive y-axis (with φ = π/2) are simply given by [Le Kien et al.,
2014]

γ+

γ−
=

( | εr |+ | εz |
| εr | − | εz |

)2

, (8.9)

where εr, εz are the radial and axial components of ε±,y, respectively.
As in Table 8.1 the forward scattering rate into the TOF is seen to
dominate the backward scattering rate by more than a factor of ten.
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Evidently, the anisotropy decreases further away the atom is located
from the TOF, but as indicated by the dashed line for the nominal
position of the atom, there is still one order of magnitude difference
between the two coupling rates and this effect can and should there-
fore not be neglected.

summary

After the introduction of Cs as the atomic species used in this work,
we peaked into some of the features that has to be taken into account
when such an atom is made to interact with the evanescent field of a
TOF-guided mode. Especially important is the electric field polariza-
tion at the position of the atoms depending on whether it is aligned
parallel with the atomic plane, also later referred the to as oriented
along the strong coupling axis (SCA), or perpendicular to the atomic
plane and thus along a weak coupling axis (WCA) with the atoms.
This is important for the atomic Bragg mirror experiment, where also
the anisotropy of the scattering rate has to be taken into account when
back-scattering off the atoms is considered.
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C O N F I N I N G AT O M S

The feasibility of confining atoms is, perhaps needless to say, required
for the serious study of light-atom interactions, whether it being
a physical confinement of atoms inside a sealed glass container or
atoms confined in the conservative potential of an optical dipole trap.
In our group, we have chosen the latter option and hold atoms in the
evanescent field of two light modes guided by a TOF. In this chap-
ter an overview of the principles behind the 1D crystallized spatial
confinement of atoms is given.

9.1 magneto-optical trap

As a second generation PhD-student working in the “fiber group” at
QUANTOP, I have greatly benefited from the large amount of work
done by Jean-Baptiste Béguin in designing, building, and mounting
most parts on the optical table supporting the TOF-setup. Great many
details on the magneto-optical trap (MOT), in large part of practical
notion, can be found in his PhD thesis [Béguin, 2015]. I will not claim
that it is a trivial task to build a MOT, with all its requirements to elec-
tronic control, an appropriate vacuum chamber, laser light sources,
and magnetic fields, but it is certainly not hard to operate as soon as
the effort of implementing it has been overcome. As MOTs by now has
become a basic ingredient in many quantum optics labs around the
world working with cold atoms, and the basic work principles behind
it is already covered in several theses and textbooks, e.g., [Metcalf et
al., 1999], I will resort to only briefly mention a few details regarding
our setup in particular.

We implement a 3D MOT inside a cylindrical glass cell, see Fig. 9.1,
connected to a vacuum system. This is done using as a standard
6-beam configuration for the two laser sources required to cool and
repump the atoms, denoted the cooler and repumper in the following.
The magnetic field gradient is provided by a set of anti-Helmholtz
coils build around the glass cell. In additional, three compensation
coils is mounted around the setup to cancel the static background
magnetic field arising from the local earth magnetic field and other
stray magnetic fields in the lab.

Two Cs dispensers are mounted near the entrance of the glass cell
from which a vapor of Cs atoms inside, the otherwise evacuated, glass

103
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Figure 9.1.: TOF inside an evacuated glass cell surrounded by a pair of anti-
Helmholtz coils. The 35 mm long tapered section of the TOF, in the
center of the image, is lit up from guided light (provided by a He-Ne
laser pen coupled into the fiber) scattered off impurities in the TOF.

cell can be established. Via the dissipative light force, described in
Section 6.7.1, the atoms are Doppler cooled using the cycling transi-
tion |4〉 → |5′〉 of the D2 line, see Fig. 9.2. Even though the decay
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Figure 9.2.: Cs level diagram together with the trap lasers.
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from |5′〉 to |3〉 is a forbidden transition, the atoms eventually end up
in (the transparent state) |3〉 due to off-resonant excitation of the |4′〉
level. To prevent these atoms from drifting away, an additional laser,
the repumper, optically pumps them from |3〉 back into |4〉 via the
|3〉 → |4′〉 transition.

The coldest atomic cloud attainable with plain Doppler cooling is lim-
ited by the Doppler temperature: TD = h̄γ/2kB = 125 µK for the Cs

D2 line. Unfortunately, this temperature is too high for efficient load-
ing of atoms into the dual-color dipole trap, and an additional 15 ms
sub-Doppler cooling stage of the atoms, employing a blue Sisyphus
cooling technique, is therefore performed after the initial 2 s Doppler
cooling. Further details can be found in [Béguin, 2015], here it suf-
fices to say that this method works and to advise the reader that the
atoms are left in |3〉 and not in |4〉 after the two cooling stages.

9.2 laser locking

Both the cooler and the repumper are 852 nm 150 mW single-mode
home build ECDLs in Littrow configuration, see e.g., [Riehle, 2006].
For the laser cooling to work efficiently both lasers are frequency
stabilized.

9.2.1 Doppler-free polarization spectroscopy

For the repumper the frequency stabilization is implemented by per-
forming Doppler-free polarization spectroscopy [Wieman et al., 1976],
see Fig. 9.3. As in standard Doppler-free absorption spectroscopy,
a saturating beam and a probe are sent through a vapor cell, with
the main difference being that the saturating beam is now circularly
polarized. This induces an anisotropy in the atomic sample that basi-
cally turns into a birefringent medium, and leads to a polarization
rotation of a weak linearly polarized probe field passing through
the sample. Even small changes in polarization are easily detectable
by sending the probe output through a polarizer which translates
the polarization change into an alteration of the intensity, which are
then measured by a highly sensitive differential detection scheme.
An advantage of the polarization spectroscopy over the ordinary sat-
uration spectroscopy, is that the measured probe intensity resem-
bles a dispersive signal when the probe frequency is varied over the
atomic resonances, and, in a sense, the error-signal thus comes for
free. Using this signal, the repumper is frequency stabilized onto the
F = 3 → F′ = 2 × 3 crossover by fast control of the laser supply
current.
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Figure 9.3.: Simplified sketch of the optical setup of the repumper (left) and cooler
(right).

Before being sent into a 6-port fiber beam-splitter, providing the 6

beams for the MOT, the repumper is frequency-shifted by about 2×
125 MHz by using the first order beam diffracted off a double-pass
acousto optical modulator (AOM). This also enables fast switching of
the repumper light.

9.2.2 Phase-locked loop

The cooler (as well as the other 852 nm single-mode ECDLs that are
introduced later) is frequency stabilized against the repumper via a
phase-locked loop (PLL) developed by Appel, MacRae, et al. [2009].
Using a fast photodiode the beat note frequency νbeat resulting from
interfering the cooler with the repumper is recorded. The cooler fre-
quency can then be adjusted and tuned by referencing νbeat with a
target frequency. Using a single-pass AOM allows for the fast switch-
ing of the cooler before it is coupled into the same 6-port fiber beam-
splitter as the repumper.

9.3 close encounter between a cold atomic cloud and

a hot glass wire

As already shown in Fig. 9.1, the TOF is stretched out and hold by a U-
shaped glass rod placed inside the same evacuated glass cell in which
the MOT is implemented. In it by no means obvious that a cold cloud
of atoms confined in a MOT can be brought close to a hot macroscopic
object like a TOF. It nevertheless works surprising well as seen from
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the pictures displayed in Fig. 9.4. In the top panel, Fig. 9.4(a), the

(a) Positioned above the TOF.

(b) Positioned on the TOF.

Figure 9.4.: Images of the fluorescence from Cs atoms confined in a MOT. The
500 nm thin TOF is seen as the thin horizontal line. The image width
corresponds to about 2 mm. Photo credit: Jean-Baptiste Béguin.

fluorescence of the cold atoms in the MOT is seen as the bright “sun”
in the center of the image. Right underneath it, the TOF is seen as
the thin illuminated horizontal line. Using the MOT coils, the position
of the MOT can be steered by moving the position of the B-field zero
point. With this, the MOT center is made to overlap1 with the TOF,
as shown in the bottom panel, Fig. 9.4(b). The MOT size, evidently,
shrinks when placed on top of the TOF, due to atoms being heated
out of the trap from collisions with the hot glass wire. Still, this MOT

provides a sufficiently cold atomic reservoir in the vicinity of the TOF,
that 103 atoms can be efficiently loaded into the TOF-based dual-color
dipole trap, which is the subject of the next section.

1 We use the same cameras for imaging the MOT as for configuring the polarization
of a TOF-mode as described in Chapter 3. These two cameras image the MOT along
two different axes both orthogonal to the TOF, which enables us to precisely place
the MOT center on the TOF.
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9.4 dual-color optical dipole trap

The Doppler cooling used for implementing the MOT, works by scat-
tering red-detuned light off the atoms, which, in simple terms, effec-
tively carries away the excess energy between absorbed and emitted
photons. It is thus clear that the cold atoms spend a lot of their time
in the exited state which is very impractical for most quantum opti-
cal experiments. We therefore seek a different way of confining the
atoms. This can be done by implementing an optical dipole trap,
where the atoms are trapped in a conservative light potential, and
was first experimentally realized by [Chu et al., 1986] for the alkali
sodium using a tightly focused Gaussian laser beam.

For a far-off resonance trapping field with | δ | � γ, Ω, where only
negligible fluorescence emission occurs, we saw in Section 6.7.2 that
the dipole potential can be approximated by the AC Stark shift expe-
rienced by atoms in a light field, Eq. (6.54):

Fdipole = −∇Udipole ≈ −∇(∆Eg) . (9.1)

Using a perturbative treatment of the multi-level atomic system to
second order, the AC Stark shift for ground |g〉 and exited |e〉 states
can found to be given by [Grimm et al., 2000], cf. Eq. (5.29):

∆Eg = h̄ ∑
e

∣∣Ωeg
∣∣2

4δeg
, (9.2a)

∆Ee = −h̄ ∑
g

∣∣Ωeg
∣∣2

4δeg
, (9.2b)

where Ωeg = µegE/h̄ is the Rabi frequency as defined in Eq. (5.22) and
δeg = ω−ωeg is the detuning between the light field frequency ω and
the atomic resonance frequency ωeg between the two levels |g〉 and
|e〉. In short, all levels that a given state connects to, via the optical
laser field, have to be taken into account in order to calculate the
effective energy shift of the considered state. Cs has a very rich level
structure, cf. Fig. 7.1, and in principle the sum in Eq. (9.2a) should be
evaluated by calculating all the dipole matrix elements, Eq. (7.4):

µeg = 〈F′ m′F|er̂ · uk|F mF〉 , (9.3)

for a given ground state |F mF〉. However, if the trapping field is
so far detuned from atomic resonance, that the hyperfine splitting
cannot be resolved, | δ | � ωhfs, with ωhfs = 2π × 9.2 GHz for the
two hyperfine ground states, the sum can be greatly reduced to only
contain the nearest fine structure exited states [Grimm et al., 2000].

From Eq. (9.1) and Eq. (9.2a) it is obvious that the trapping laser
field should be red-detuned (δ < 0) in order to attract atoms to high
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intensity regions2. This is especially true for the free-space implemen-
tation, using a tightly focused Gaussian laser beam, where atoms are
confined in the volume effectively spanned by the waist radius and
the Rayleigh range around the focal point.

In [Ovchinnikov et al., 1991] it was proposed to trap atoms in the
evanescent field arising from the total internal reflection of light at
a dielectric-vacuum interface. Again, a red-detuned trapping beam
is used to supply the attractive force on atoms. However, since the
evanescent field monotonically decays away from the dielectric, and
thus has it maximum field strength at the surface, an attractive red-
detuned trapping beam would end up smashing the atoms into the
dielectric. Therefore, a blue-detuned (δ > 0) trapping beam is added
to (elastically) repel the atoms from the surface. This works only
because the penetration depth is inversely proportional to the field
frequency, cf. Eq. (2.23), and hence the repulsive blue-detuned field
decays faster than the attractive red-detuned field. By balancing the
powers properly, the blue-detuned field will then dominate close to
the dielectric and act as a soft barrier, whereas further out, the total
field will mainly consist of the red-detuned field in which the atoms
can be held. We shall refer to this configuration as a dual-color dipole
trap.

A decade later, the optical fiber technology had developed to a point
where low-loss sub-wavelength TOFs could be fabricated as demon-
strated in [Tong et al., 2003]. This catalyzed [Balykin et al., 2004; Le
Kien, Balykin, et al., 2004] to extend the original proposal in [Ovchin-
nikov et al., 1991], to use TOFs as the dielectric-vacuum interface. Ex-
perimentally, Cs atoms were confined in a TOF-based dual-color dipole
trap for the first time in [Vetsch et al., 2010] and then later in [Goban
et al., 2012; Béguin et al., 2014]. Recently, it was also realized in [Lee
et al., 2015] for rubidium-87 (Rb) atoms.

9.4.1 Trap potentials

The effective trapping potential for the dual-color dipole trap is given
by the sum of the individual light potentials for each trapping beam
and the van der Waals potential:

Utrap = Ublue
dipole + Ured

dipole + UvdW . (9.4)

The individual dipole potentials are given by, cf. Eq. (6.52),

Udipole =
ε0

4
Re χ(ω) | E(r) |2 , (9.5)

2 In principle, one could also use a blue-detuned (δ < 0) field, where atoms seek
towards low-intensity regions. It is, of course, somewhat impractical that all the
space where no light field is present is also a low-intensity region.
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where E(r) is the HE11 electric field mode in the TOF with quasi-linear
polarization, cf. Appendix A. For the real part of the susceptibility we
use the (classically derived) expression given in [Le Kien, Balykin, et
al., 2004]:

Re χ = 2πc3 ∑
e

ge

gg

γe(1−ω2/ω2
eg)

(ω2
eg −ω2)2 + γ2

e ω2 , (9.6)

where gi = 2Ji + 1 is the multiplicity of the state |i〉 with quantum
number Ji. The ratio (2Je + 1)/(2Jg + 1) is thus the weighted strength
of the different line transitions, cf. Eq. (6.20) and Eq. (7.14).

Using the free-space wavelengths λred = 1057 nm and λblue = 780 nm
for the red- and blue-detuned trapping fields3, it is sufficient to only
evaluate the sum in Eq. (9.6) over the four exited states given in Ta-
ble 9.1 with relevant parameters.

level λeg [nm] γe/2π [MHz]

62P1/2 894.347 4.575

62P3/2 852.113 5.234

72P1/2 459.317 0.126

72P3/2 455.528 0.293

Table 9.1.: The four excited states used to calculate the TOF-based dual-color dipole
trap potential. λeg = c/2πωeg is the free-space wavelength. The values
were taken from [A. Kramida et al., 2015].

In order to create a 3D confinement of the atoms, the red trap is con-
figured as a SW with quasi-linear y polarization, whereas the blue
trap is simply a RW with quasi-linear polarization oriented along the
vertical x-axis, and thus rotated by 90° with respect to the red trap.
With these settings, we obtain the TOF-based dual-color dipole trap
potential as shown in Fig. 9.5(a),(b) for the transverse and longitudi-
nal cross sections of the TOF respectively. The minima of the potential
are clearly seen to be located on the horizontal y-axis close to the fiber
surface, and separated by λTOF

red /2 along the fiber axis as expected for
a SW which has nodes and antinodes repeating every half wavelength.
In this configuration the dipole trap becomes a 1D optical lattice, con-
sisting of two periodic atomic strings aligned parallel to the TOF.

Because the atoms are only confined in the yz-plane, we see that we
have three options for the orientation of the probe field: (i) quasi-
linearly polarized parallel to the atomic plane, (ii) quasi-linearly po-
larized perpendicular to the atomic plane, (iii) everything in between.

3 From now on, these fields are simply referred to as either the red (blue) trap, trap-
ping field, beam, laser, etc.
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(a)

(b)

Figure 9.5.: 2D plot of the TOF-based dual-color dipole trap potential for (a) the
transverse xy-plane and (b) the longitudinal yz-plane of the TOF.
The colorbar represent the value of Utrap(r), with red colors used
for Utrap(r) < 0 (attractive potential) and blue colors are used for
Utrap(r) > 0 (repulsive potential). The white area indicates the TOF.
Calculated for nco = 1.45732, ncl = 1, a = 250 nm, Pblue = 14 mW,
and Pred = 1.3 mW, which are all typical values used in the lab.

In order to distinguish between the first two options, we will occa-
sionally refer to (i) as probing along the strong coupling axis (SCA),
and (ii) as probing along the weak coupling axis (WCA).

The potential gradient between the minima and the fiber surface is
observed to be quite steep, due to the blue trap repulsive barrier,
whereas it is more shallow on the other side of the minima facing
away from the TOF. This is more evident in Fig. 9.6, where the solid
yellow curve is the trap potential Utrap along the y-axis for x = z =
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0. Together with Utrap is also shown the individual trap potentials
Udipole for the red SW (red dashed curve) and the blue RW (dotted blue
curve). Fig. 9.6(b) is just a zoom of Fig. 9.6(a) to make the shape of
Utrap more clear. The trap minimum is observed to be located about
210 nm from the TOF surface and has a potential depth of Umin =

−0.27 mK corresponding to an AC Stark shift of 35 MHz.
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(b) Zoom of (a).

Figure 9.6.: (a) TOF-based dual-color dipole trap potential as a function of the radial
distance from the TOF surface. Blue dotted curve: Repulsive dipole po-
tential provided by the blue-detuned trapping field. Red dashed curve:
Attractive dipole potential provided by the red-detuned trapping field.
Yellow solid curve: Effective dipole potential with contributions from
the blue- and red-detuned trapping fields as well as the van der Waals
force near the fiber surface. Calculated for the same TOF parameters as
in Fig. 9.5 at x = 0 and z = 0. (b) Zoom in on potential minimum
presented in (a).
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9.4.2 Collisional blockade

In order to efficiently load atoms into the potential minima, MOT cool-
ing near the trap sites is required to provide a sufficiently cold reser-
voir of atoms that can fall into the potential wells. In this respect,
the very small volume of the evanescent field dipole trap sites, with
a characteristic length scale of ∼ 100 nm, adds an extra layer of com-
plexity. In [Schlosser et al., 2002] it was found that the average number
of atoms loaded into a very small dipole trap depends strongly on the
loading rate R and three regimes were identified. In particular, the
collisional blockade regime has caught much attention in the commu-
nity working with TOF-based dipole traps, and is reached when the
loading rate is within the range

γone

2
< R <

γtwo

4
, (9.7)

with γone denoting the one-body loss rate of dipole trapped atoms
from collisions with the hot background vapor, and γtwo ∝ V−1

trap de-
noting the light-assisted two-body collisional loss rate inversely pro-
portional to the volume of the trap sites [Kuppens et al., 2000]. The
collisional blockade regime is characterized by an average occupation
of 0.5, and as consequence each trap site will either be empty or con-
tain a single atom only.

Operating with a TOF-based dipole trap for Cs, similar to our setup,
[Vetsch et al., 2012] estimated their trap parameters to be described by
Eq. (9.7). However, as pointed out by Béguin [2015], it is often taken
for granted that a TOF-based dipole trap is automatically character-
ized by Eq. (9.7), which is of course not true. We will, nevertheless,
assume for the remainder of this thesis, that our setup is character-
ized by the collisional blockade regime. With each trap thus only
occupied by at most a single atom at the time, this has the striking
effect that the confined atoms are spatially arranged as two truly 1D

dilute crystals.

9.4.3 Laser setup

Both the red and blue trapping fields are derived from home-build
single-mode ECDL in the Littrow configuration operated well above
threshold. The red trap laser is split into two beams via a polarizing
beam-splitter (PBS) in order to form a SW in the TOF, as illustrated in
Fig. 9.7. Before coupled into the two input ports, A and B, to the
TOF, each arm of the red SW passes through a pair of WPs in order
to make it quasi-linearly y-polarized in the TOF. The power ratio
between the two arms is balanced using a HWP before the PBS. The
blue trap laser, configured as a RW, only enters the TOF at input port
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Red trap laser

DM1

DM2
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Figure 9.7.: Dual-color dipole trap laser setup. DM1 is a customized dichroic mir-
ror which efficiently transmits 852 nm light (used for probing) and
reflects the 780 nm and 1057 nm light fields for trapping. DM2 is a
dichroic mirror for reflecting 780 nm light and transmitting 1057 nm
light (DMLP950 from Thorlabs).

B. It is overlapped with the red trap laser on a DM after having passed
through at set of WPs that makes it quasi-linearly x-polarized in the
TOF.

Immediately before entering input port B, both trapping fields are
combined with the λprobe = 852 nm probe field on yet a DM. Similarly,
when the trapping fields exit through port A, they are again separated
from the probe beam on a dichroic mirror. The reverse is of course
true for the counter propagating red beam.

The blue trap, leaving the TOF at output A, and the arm of the red trap
exiting through B, are both directed to a photodetector connected to
a spectrum analyzer4, by which the intensity noise of the two fields
can be monitored while running experiments.

In Fig. 9.7 the probe is configured to enter via input B, but we point
out that the setup is versatile and the probe can also be made to enter
the TOF at input A.

4 E4405B ESA-E (9 kHz to 13.2 GHz) from Agilent.



9.4 dual-color optical dipole trap 115

9.4.4 Laser intensity noise

In contrast to the repumper and the cooler, neither of the two trap
lasers are frequency-stabilized5. To have an efficient trap it is, nev-
ertheless, required that they are stable in frequency and intensity. In
particular the latter is extremely important, since the effective trap po-
tential (Fig. 9.6) results from a very delicate balancing of the power ra-
tio between the red and blue trapping fields, and even slight changes
in this ratio has a dramatic effect on the shape of Utrap. It is less
severe, if the trap powers change together, that is, if their power ra-
tio is kept constant. In this case the shape of Utrap is more or less
preserved, with the main influence being how deep the trap is. To
this end, it could be helpful to split a small fraction of light from the
two trapping beams in order to monitor any changes in their optical
power. Having a computer controlled motorized HWP in front of a
PBS in the optical path of, say, the blue trap beam, would make it pos-
sible to change its optical power according to any detected changes in
either the blue or red optical powers due to, e.g., mode jumps or slow
drifts over the course of the experiment. At the very least, it would
be beneficial to record any changes in the optical power of the two
trapping fields while performing measurements, since this would al-
low for to post-selection of data depending on whether the trapping
field intensities were stable or not.

As mentioned, the intensity noise on the two trap lasers are moni-
tored with a spectrum analyzer while conducting measurements. An
example of the resulting power spectrum for the blue trap laser with
large intensity fluctuations is shown as the blue trace in Fig. 9.8(a).
The yellow trace is the electronic noise of the detector and the ma-
genta trace is the intensity noise from an ordinary flashlight hitting
the detector and producing the same DC photocurrent. Being a ther-
mal light source, one would naively expect the flashlight to yield a
thermal distribution in the intensity noise. However, the flashlight is
also highly multi-mode. In fact, it emits light into so many modes,
that the probability of each mode to be occupied by more than a
single photon is much smaller than one. The thermal distribution
therefore resembles that of a Poisson distribution and the flashlight
can be regarded as a shot noise reference.

The magenta trace in Fig. 9.8(a) for the flashlight, therefore gives a
baseline for the shot noise corresponding to a given DC power mea-

5 The λblue = 780 nm trap laser could in principle be locked to the Rb D2 line via
Doppler-free polarization spectroscopy in the same manner as the repumper. For
the λred = 1057 nm trap laser it is a bit more tricky to find a vapor cell containing
a sample with the right transition frequency. It is also not possible to frequency
stabilize against any of the other lasers in the lab via a PLL since the frequency
difference is simply too high. The best option for the red trap is most likely a cavity
lock.
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(a) High intensity noise on the blue trap laser. PDC = 1.58 V.
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(b) Shot noise limited blue and red trap lasers.

Figure 9.8.: Laser intensity noise before (a) and after (b) changing the blue trap
laser.

sured at the same time6. If a laser source is shot noise limited it
should thus give rise to the same power spectrum as that given by a
flashlight with an equivalent DC power. This is clearly not the case for
the blue trace in Fig. 9.8(a), recorded for the blue trap laser with DC

power matched to that of the flashlight, but seen to have intensity fluc-
tuations more than 20 dB above the shot noise level. This trace stems
from a previous home-build free-running diode laser source that we
used to have for the blue trapping field, but which we ultimately

6 The detector as two output ports, one giving the measured DC power which can
be directly plugged into, for example, a voltmeter, and an AC port, containing the
measured power fluctuations, and connected to the spectrum analyzer.
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replaced7 due to the large amount of intensity noise as observed in
Fig. 9.8(a).

As evident in Fig. 9.8(b), the work in replacing the free-running blue
trap laser with an ECDL certainly payed off. With the blue trace now
being that of the DC equivalent shot noise from a flashlight, both the
red and blue lasers are indeed seen to be shot noise limited. The
two peaks near 300 kHz, observed in both the yellow and red traces
for the power spectrum of the trapping fields, are currently believed
to be caused by a torsional vibration mode in the TOF. Having mea-
sured the intensity noise of the lasers before entering the TOF, we
have a least confirmed that they are absent before passing through
the TOF. The peaks are also absent if the power spectrum is measured
before any polarizing optical element after passing through the TOF,
which suggest that the intensity noise rises from fluctuations in the
polarization of the TOF output beams.

During measurements, the red and blue laser noise are simultane-
ously detected and displayed on the spectrum analyzer. This yields a
trace slightly above the magenta and yellow traces in Fig. 9.8(b), from
the higher total optical power hitting the detector, but otherwise it is
the same, see Section F.1. If any of the two trapping fields starts to
mode jump, it should be noted by the attentive PhD student as an in-
crease in the power spectrum signal and dealt with by appropriately
changing the laser current or, as a last resort, the temperature8.

9.5 the smoking gun – evidence of trapped atoms

Although, we have not yet discussed the detection scheme used to
probe the atomic state, we would like to show here the absorption
signal arising from atoms confined in the dual-color dipole trap. In
all our measurements, the two trapping lasers are present at all time
in the TOF. To observe if any atoms have been loaded into the dipole
trap, an absorptive measurement is performed by the evanescent field
of a λprobe = 852 nm probe on-resonance with the |4〉 → |5′〉 hy-
perfine transition. The resulting signal is shown in Fig. 9.9. Before
commenting on the difference between the individual traces, we first
present a few general remarks about the three signals and how they
where obtained.

After the (presumed) loading of Cs atoms into the dipole trap, the
MOT lasers, i.e., the cooler and the repumper, and the MOT coils are
turned off. A 10 ms waiting time is then imposed before starting the
absorption measurement, in order to ensure that only a negligible

7 For internal use: this was done on April 17 2015.
8 Of course, only after identifying which of the trapping lasers is the noisy one!
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Figure 9.9.: Probe absorption signal 10 ms after loading the dual-color dipole trap
and turning off the MOT laser beams, obtained for probing along the
SCA with power Pprobe ≈ 3 pW below saturation. Measured with the
spectrum analyzer in zero span mode and centered at ν = 62.5 MHz,
cf. Chapter 10.

amount of MOT atoms are probed9. In the first millisecond of the
measurements in Fig. 9.9, the probe is turned off in order to estab-
lish a background level, which is found to be 0.3 mV. As previously
mentioned, the atoms will be in the hyperfine ground state |3〉 after
the sub-Doppler cooling. Turning the probe on at t = 1 ms thus give
a reference signal for full transmission until t = 2 ms, at which the
(external10) repumper is turned on, in order to optically pump the
atoms from |3〉 → |4〉. With the probe now on-resonance with the
atoms, it is expected to be absorbed, which is clearly observed as the
drastic decrease in all three signals at t = 2 ms. Hereafter, the probe
transmission steadily increases as the atoms are either heated out of
the trap.

By simply blocking either of the blue or red trapping fields, while
keeping all other experimental conditions the same, full transmission
of the probe is detected from t = 1 ms to t = 10 ms (not shown in
Fig. 9.9). Hence, absorption only occurs when the trapping fields are
present in the TOF, verifying that the three signals in Fig. 9.9, from
t = 2 ms to t = 10 ms must be caused by the absorption of light by
atoms confined in the dual-color dipole trap and not simply in the
MOT. Elaborate details on the probing of MOT atoms and the different

9 Alone from free fall in the gravity field, the atoms (at rest) should have moved a
distance ∆x = gt2/2 ≈ 0.5 mm.

10 External in the sense that it is not a guided TOF mode. It is provided by the six fiber
couplers for the MOT beams.
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characteristics measured for MOT versus dipole trapped atoms can be
found in the PhD thesis by Béguin [2015].

We now turn our attention to the differences between the three traces
shown in Fig. 9.9. As the figure legend suggests, the red and the yel-
low signals are obtained for the blue trapping field provided by either
the free-running diode laser or the ECDL, respectively. Changing the
high intensity noise laser source to a shot noise limited source thus
has a tremendous impact on the trap lifetime, as seen from the much
slower decay of the yellow trace as compared to the red trace. The
light-atom coupling is also greatly enhanced when using the quiet
laser source, as observed from the much higher OD of the yellow
(ECDL) trace compared to the red (free-running) trace.

The blue signal were acquired with the free-running blue trap laser
while monitoring the intensity noise on a spectrum analyzer, cf. Fig. 9.8,
and, at the same time, keeping it stable by manually tweaking the
laser current, which is essentially a semi-automatic PhD lock. This
clearly improves both the lifetime and the OD. Ultimately, this indis-
putable revelation on how destructive a laser source with substantial
fluctuations in the intensity is, lead to the decision of changing the
free-running diode laser to a more stable ECDL source.

summary

In this chapter we have presented the optical setup that we use for
cooling and trapping atoms. We have introduced the dual-color con-
figuration for the TOF-based dipole trap in which atoms are confined
as two 1D crystals along the TOF and only ' 210 nm away from the
hot surface. From intensity noise measurements of the trapping fields,
compared to the resulting lifetime of the trapped atoms and the cou-
pling strength to a guided probe field, we have (not surprisingly) seen
that the trap quality depends critically on the stability of the trapping
fields.





10
D E T E C T I O N S C H E M E

We utilize a optical heterodyne technique for all the measurements
presented in the following chapters. Although, originally designed to
exploit the mapping of phase modulations to amplitude modulations,
such that any phase shift imprinted on the probe light by the atomic
ensemble can be measured, the main focus in this thesis has been to
extract the number of photons impinging on our detectors. As we
shall see, the heterodyne detection technique is also extremely useful
in this respect as very small signals from only a few photons can be
resolved.

10.1 optical heterodyne detection

An optical heterodyne measurement utilizes linear mixing of two
light fields, a signal beam and a local oscillator (LO) beam, at a BS

and subsequent square-law detection (i.e., nonlinear in the field) of
the output beam with a photodetector.

10.1.1 Experimental setup

In Fig. 10.1 the interferometric setup that we employ for the detection
is shown. Both the signal beam and the LO are derived from the same
source, loosely referred to as the probe, such that any common mode
noise fluctuations cancel in the heterodyne detection. The probe laser
is a single-mode λprobe = 852 nm home build ECDL operated well
above threshold, similar to the cooler and the repumper used for the
MOT, described in Section 9.4.3. The laser is frequency stabilized near
the |4〉 → |5′〉 transition exactly like the cooler, i.e., via a PLL using
the repumper as a frequency reference (cf. Section 9.2). The arms in
the Mach-Zehnder interferometer (MZI) are carefully been made to
match in length, such that the interferometer is operated at the white
light position, in order to reduce frequency and phase noise from the
broad emission background of the laser diode.

Unlike in more commonly known optical homodyne technique, the
two beams, signal and LO do not share the same carrier frequency.
After the probe has been separated from the LO at the entrance of
the MZI, it is thus shifted in frequency by Ω = 2π × −62.5 MHz,
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using an AOM, before sent onto the atoms confined in the TOF-based
dipole trap. In practice, we use a HWP and a PBS, instead of a BS,
when recombining the output signal from the TOF and the LO, in
order to maintain as much of the signal beam as possible. For this
reason, it is necessary with the additional pair of HWP and PBS in front
of the detector, such that the two fields are mapped onto the same
polarization mode as necessary for interference. Again, in order to

Red trap laser
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Probe laser
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AOM
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Ω
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Probe
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Figure 10.1.: Simplified illustration of the MZI used to perform optical heterodyne
measurements.

maximize the signal beam, this last HWP is set to reflect ∼ 95 % of the
signal beam (in expense of the LO).

Assuming that the individual field amplitudes and phases are both
slowly varying in time and space and thus constant over an optical
oscillation period, the two individual fields fields in front of the de-
tector can be written as1

ELO(r, t) =
1
2
EL(r)e−i(ωLt+φ) + c.c. (10.1a)

Esignal(r, t) =
1
2
Es(r)e−i(ωL−Ω)t + c.c. (10.1b)

Here Ei denotes the electric field amplitudes, ωL the optical (angular)
frequency by which the fields oscillates, φ the phase difference be-
tween the two fields and Ω the small radio frequency (RF) difference
between the LO and the signal field. The resulting field and power
(∝ | Edet(r, t) |2) in front of the detector are then given by

Edet(r, t) = ELO(r, t) + Esignal(r, t) =
1
2
Ed(r, t) + c.c. , (10.2a)

| Edet(r, t) |2 =
1
4

(
E2

d(r, t) + E∗2d (r, t) + 2 | Ed(r, t) |2
)

, (10.2b)

with

Ed(r, t) = EL(r)e−i(ωLt+φ) + Es(r)e−i(ωL−Ω)t . (10.2c)

1 Here we have dropped the vector notation since the two fields reaching the detector
are necessarily in the same polarization mode after reflecting off the PBS.



10.1 optical heterodyne detection 123

In the following we will drop the explicit notation of the spatial de-
pendence in the field amplitudes and simply set Ei = Ei(r).

10.1.2 Detector response

Driven well below saturation we can assume the detector output y(t)
to be a linear map of the input power P(t) (further details on the
linearity are given in next section). We can therefore use the well es-
tablished theory of linear time-invariant (LTI) systems and express the
detector output as the convolution of the input signal and the detec-
tor response h (also known as the linear response function) [Hobbs,
2009]:

y(t) = (h ∗ P)(t) =
∫ ∞

−∞
h(t′)P(t− t′)dt′ . (10.3)

Using the convolution theorem

F {( f ∗ g)(t)} = F { f (t)} · F {g(t)} , (10.4)

with F {·} denoting the Fourier transform2

f [ω] = F { f (t)} ≡ 1√
2π

∫ ∞

−∞
f (t)e−iωt dt , (10.5a)

f (t) = F−1 { f [ω]} = 1√
2π

∫ ∞

−∞
f [ω]eiωt dω , (10.5b)

we see that Eq. (10.3) can equally well be expressed in the frequency
domain known as the transfer function:

h[ω] =
y[ω]

P[ω]
. (10.6)

Before solving Eq. (10.3) let us first consider the input power given
in Eq. (10.2). We see that the first two terms of | Edet(r, t) |2 entirely
consist of rapidly oscillating terms; E2

d ∝ e−2iωLt. At present time,
no detectors are able to track the extremely fast oscillations of opti-
cal fields (ωL ∼ 2π × 1014 Hz) and the transfer function necessarily
equates to zero at these frequencies. Consequently, we only need to
treat the last term in the response function such that:

y(t) ∝
1
2

∫ ∞

−∞
h(τ) | Ed(t− τ) |2 dτ . (10.7)

From Eq. (10.2c) we have

| Ed(t) |2 =
∣∣∣ ELe−i(ωLt+φ) + Ese−i(ωL−Ω)t

∣∣∣2
= | EL |2 + | Es |2 + ELE∗s e−i(Ωt+φ) + E∗LEsei(Ωt+φ) . (10.8)

2 In general the Laplace transform H[s] = L {h(t)} ≡
∫ ∞

0 h(t)e−st dt is used in LTI the-
ory. This can be extended to the bilateral Laplace transform, i.e., extending the lower
limit in the integral to −∞ from causality reasoning (h(t < 0) = 0), which, since
we are only dealing with sinusoidal signals, reduces to the usual Fourier transform
with H[s] = H[iω] = h[ω].
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The output signal is thus comprised of both direct current (DC) (first
two terms) and alternating current (AC) components. By inserting a
band-pass filter at the detector output centered around Ω we easily
filter out the DC terms as well as unwanted frequencies from potential
noise sources. Inserting the remaining AC terms into Eq. (10.7) we
obtain the detector output as

y(t) ∝ ELE∗s
∫ ∞

−∞
h(τ)e−i(Ω(t−τ)+φ) dτ

+ E∗LEs

∫ ∞

−∞
h(τ)ei(Ω(t−τ)+φ) dτ

= ELE∗s e−i(Ωt+φ)
∫ ∞

−∞
h(τ)eiΩτ dτ

+ E∗LEsei(Ωt+φ)
∫ ∞

−∞
h(τ)e−iΩτ dτ (10.9)

Using the definition of the Fourier transform, Eq. (10.4), we see that
we can write the last equality in terms of the response function h[Ω].

y(t) ∝ h[Ω]∗ELE∗s e−i(Ωt+φ) + c.c. (10.10)

Additionally, we can rewrite the complex response function in terms
of its magnitude | h[Ω] | and argument θ = arg h[Ω], and identify the
former quantity as the gain function G(Ω) and the latter as the phase
lag between input and output signal. We then finally arrive at

y(t) ∝ G(Ω)ELE∗s e−i(Ωt+φ+θ) + c.c. (10.11)

It is thus clear that the output signal will bear all the important in-
formation from the input power, here especially the signal field am-
plitude, that we are interested in for the analysis in the following
chapters.

10.1.3 Photocurrent

More specifically, we use a homebuild detector3 designed to have a
low electronic noise floor at the beat note frequency Ω. The pho-
todiode4 is a semiconductor operated in the photoconductive mode,
where the arrival of a photon triggers an ionization process by which
an electron-hole pair is created and carried away from the depletion
region in a characteristic time τmin. The generated stream of photo-
electrons is formulated as a photocurrent described by [Grynberg et
al., 2010]

〈 i(t) 〉 = e 〈Φe(t) 〉 , (10.12)

3 Designed by Jürgen Appel.
4 Hamamatsu S5971.



10.1 optical heterodyne detection 125

where e is the charge of the electron and the photoelectron flux is
given by the number of electrons ne released per unit time:

〈Φe(t) 〉 =
d 〈 ne 〉

dt
. (10.13)

In practice, of course, the detector has a finite bandwidth B = 1/2τ

and we measure a time average over a time τ of the photocurrent
(denoted by an overbar): 〈

i
〉
=

e 〈 n̄e 〉
τ

. (10.14)

The probability of a photon to fire a photoelectron is given by the
quantum efficiency of the detector η. In the case where η is close
to unity the noise statistics of an arriving photon flux Φph(t) can be
directly carried over to the generated electron flux. The 〈 · 〉, in the
above equations, is thus to remind us that the photocurrent should
be considered as a statistical ensemble average due to the intrinsic
fluctuations present in the photon flux arising from its probabilistic
quantum nature5 [Milonni et al., 1988; Milonni et al., 2010].

The input light is, as mentioned earlier, derived from a laser source
operated well above threshold. It is thus well described as a coherent
state where the photon number nph is Poissonian distributed bearing

the root mean square (RMS) deviation δnph =
√〈

nph
〉
. Carrying

the photon number noise statistics directly over to display a similar
distribution for number of photoelectrons, we find for the fluctuations
on the photocurrent

δi =
eδne

τ
=
√

2e
〈

i
〉

B , (10.15)

most likely familiar to the reader as the shot noise.

It should be mentioned that the light shot noise is not the only contri-
bution to the photocurrent fluctuations. For example, false detection
events, caused by background light, give rise to a dark current leading
to shot noise similar to that in Eq. (10.15). Also the finite temperature
of the detector will add a contribution known as the Johnson-Nyquist
noise6. Fortunately, all these noise sources are independent of each
other and thus add in quadrature. We can therefore get around by
grouping them into a single noise variable, embracing all noise con-
tributions but the light shot noise, and simply label it the electronic
noise; δien.

5 In the case where η � 1 the photocurrent still has to be treated as an ensemble
average. However, in this case, the inherent fluctuations are caused by the quantized
detection resulting in a random sampling of the input flux thus obeying Poisson
statistics [Grynberg et al., 2010].

6 For more elaborate details, including more noise sources or photodetection in gen-
eral, the reader is referred to almost any quantum optics textbook, e.g., [Bachor et al.,
2004], or to previous work done in our group, e.g., [Béguin, 2015].
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Before returning to the resulting photocurrent for the optical field of
interest, Eq. (10.2), we conclude this section by making the following
observation. Since the shot noise describes the independent arrival of
photons its frequency spectrum is inherently white. Recognizing this
as a stochastic process we can linearize the ensemble average of the
photocurrent 〈 i(t) 〉 around its mean value such that it is given by

〈 i(t) 〉 = 〈 i 〉+ δi(t) (10.16a)

with the total noise given by

δi(t)2 = δi2
en + δi2

sn . (10.16b)

In this way, both 〈 i 〉 and δi(t) are treated as random variables drawn
from independent distributions; the former with zero variance and
mean value 〈 i 〉 and the latter with zero mean, 〈 δi(t) 〉 = 0, and
variance given by the total noise δi(t)2, i.e., including contributions
from both the electronic noise7 and the shot noise, henceforth denoted
as δisn.

10.1.4 Impinging photon flux

Relating the measured photocurrent8 to the impinging photon flux
Φph we have

〈 i 〉 = e
∫ 〈

Φph
〉

πw2(z)
S(r)d2r , (10.17)

where the integration is to be carried out over the sensitive area of the
photodiode hit by the beam spot with cross-sectional area πw2(z). In
the following, we will assume that S(r), characterizing the spatial de-
pendence of the sensitivity of the detector, gives a flat response over
the physical detector area, and that the beam spot size is matched
well within this area. πw2(z) is then effectively integrated out and
left is the photocurrent directly linked to the overall photon flux

〈 i 〉 = eη
〈

Φph
〉

. (10.18)

It should be well understood, however, that any mismatch lowers the
detection sensitivity; (i) If the beam waist is too big compared to the
area of the photodiode we obviously loose photons and the input flux

7 Although the electronic noise in general has a non-trivial representation in the fre-
quency domain, this treatment is allowed as long as the LO is strong enough that it
dominates the noise, that is to say, the detection is shot noise limited. In practice,
one might need to decrease the detection bandwidth to enter this regime.

8 In principle, we do not measure the current directly, but rather the voltage drop
over a resistor in series with the photodiode (which is of course proportional to the
photocurrent). However, this is not important for the following analysis and we
will keep the discussion in terms of the photocurrent. For a nice discussion on this
matter we encourage to consult [Béguin, 2015].
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will consist of a random sampling of the actual photon flux. This is
known as clipping and not only lowers the overall detected signal but
also removes any quantum signatures present in the noise statistics.
(ii) A beam focused too hard onto the detector, illuminating only a
small fraction of the photosensitive area, results in a high density of
the photocurrent. This leads to a decrease of the electric field in the
depletion region thereby enhancing the electron-hole recombination
and slowing the drift. Overall, the detector response becomes non-
linear and slow [Hobbs, 2009].

We can rewrite Eq. (10.18) in terms of the optical power using the well
known relation 〈

Φph
〉
=
〈 P 〉
h̄ω

. (10.19)

From the discussion in Section 10.1.2 it is clear that the power we
should insert is the one given by the beat note between the signal
beam and the LO. From Eq. (10.8) we have for the equivalent optical
power of the beat note9:

Pb = 2
√

PLPs cos(Ωt + φ) . (10.20)

Trivially derived by writing the complex electric field amplitudes
in terms of their magnitude and phase; Ei = | Ei | eiφi , such that
Pi ∝ | Ei |2. The individual phase contributions, as well as the added
phase lag from the detector response in Eq. (10.11), have then all been
absorbed into a new global phase φ.

10.1.5 Visibility

As mentioned earlier, the photocurrent should be considered as the
ensemble average over all possible light states hitting the detector. In
this regard we need to evaluate 〈 Pb 〉. For reasons that will become
clear later, it is beneficial to consider the ensemble average of the
complete input signal, i.e., Eq. (10.8) including the trivial DC terms:〈

| Ed(t) |2
〉
=
〈
| EL |2

〉
+
〈
| Es |2

〉
(10.21)

+ 2 Re
[〈
E∗LEseiφnoise(t)

〉]
cos(Ωt + φ) .

In writing this expression, we have expanded the global phase into
a constant contribution φ and a stochastic noise contribution φnoise(t)
which stems from laser phase noise and path length noise (also known
as acoustic noise) in the MZI. As mentioned earlier, the laser phase
noise can effectively be suppressed by operating the MZI at the white
light position. Furthermore, since we in this work mainly use a co-
herent averaging time on the sub-millisecond scale, much faster than

9 Pb should be understood as the deviation from the (much bigger) average power
incident on the detector, and, as such, can of course also become negative.
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any acoustic noise processes, only a minimal phase noise influence is
expected on the photodetected signal.

Eq. (10.21) can be rewritten using the first-order normalized mutual
coherence function10 [Milonni et al., 1988]:

γ(1)(τl) =

〈
ELE∗s eiφnoise(τl)

〉
√〈
| EL |2

〉 〈
| Es |2

〉 , (10.22)

with τl = (lL − ls)/c used for the temporal difference between the
two fields, which in practice is due to a path length difference in the
interferometer. We then have (in terms of optical power)

〈 Pd 〉 = 〈 PL 〉+ 〈 Ps 〉+ 2
√
〈 PL 〉 〈 Ps 〉Re

[
γ(1)(τl)

]
cos(Ωt + φ) .

(10.23)
From the definition of the fringe visibility, which describes the degree
of overlap between the two field modes, we see that

V =
〈 Pd 〉max − 〈 Pd 〉min
〈 Pd 〉max + 〈 Pd 〉min

=
2
√
〈 PL 〉 〈 Ps 〉

〈 PL 〉+ 〈 Ps 〉
Re
[
γ(1)(τl)

]
. (10.24)

Before running the experiment, we optimize and calibrate the fringe
visibility, while having an equal amount of optical power in both arms
of the MZI, such that

V0 = Re
[
γ(1)(τl)

]
. (10.25)

It is clear from Eq. (10.24), that the genuine visibility V during the
measurement is actually much lower than the calibrated visibility V0,
since the optical power of the signal beam is much weaker than that
of the LO; Ps � PL. Nevertheless, it is fortunately the latter that
enters into the expression for the equivalent beat note power, and by
inserting Eq. (10.25) into Eq. (10.23) we have

〈 Pb 〉 = 2V0

√
〈 PL 〉 〈 Ps 〉 cos(Ωt + φ) . (10.26)

10.1.6 Signal power

In order to extract the optical signal power, we mix the photocurrent
down to baseband, by demodulating11 it by the beat note frequency
Ω, and then time average12 it over an integer number m of oscilla-

10 In general this is defined as γ(1)(x1, x2) = 〈 E∗(x1)E(x2) 〉√〈
| E(x1) |2

〉〈
| E(x2) |2

〉 for xi = ri, ti. Be-

cause the system considered here is a MZI we can set rL = rs and encapsulate the
path difference as a time difference given by τl = (lL − ls)/c.

11 This can be done either electronically or in the subsequent data analysis. In this
work both methods have been used.

12 In the analysis this is carried out as a low-pass filtering, i.e., a boxcar average, by
convolving the detector output signal with a normalized uniform distribution with
“length” τ.
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tion periods; τ = 2πm/Ω (this effectively determines the detection
bandwidth):

〈
i
〉
=

eη

h̄ω

1
τ

∫ τ

0
2V0

√
〈 PL 〉 〈 Ps 〉 cos(Ωt + φ)e−iΩt dt

=
eηV0

h̄ω

√
〈 P̄L 〉 〈 P̄s 〉 eiφ . (10.27)

The signal power within the detection bandwidth is then found by
taking the modulus square of the photocurrent yielding

〈 P̄s 〉 =
(

h̄ω

eηV0

)2 ∣∣ 〈 i
〉 ∣∣2

〈 P̄L 〉
. (10.28)

We have previously seen that the photocurrent noise is in direct corre-
spondence to that of the light noise statistics. Exploiting the fact, that
the LO is much stronger than the signal; Ps � PL, we further have
that the light shot noise is dominated by the number of LO photons.
Using this in the expression for the shot noise, Eq. (10.15), by insert-
ing Eq. (10.18) with the total photon flux replaced by that of the LO,
we find

δi2
sn = e2η

〈 P̄L 〉
h̄ωτ

. (10.29)

Together with Eq. (10.16b) we can now use this expression to simplify
Eq. (10.28) for the signal power:

〈 P̄s 〉 =
h̄ω

τηV2
0

∣∣ 〈 i
〉 ∣∣2

δi2 − δi2
en

. (10.30)

The alert reader will notice that
∣∣ 〈 i

〉 ∣∣2 is not only given by the signal
photocurrent but also contains the noise fluctuations as seen from the
linearization in Eq. (10.16a). Since the fluctuations on the photocur-
rent are (mainly) caused by the random arrivals of photons, we can
assume that δi(t) is ergodic such that a time average of 〈 i(t) 〉 equals
the ensemble average;

〈
i
〉
= 〈 i 〉. We then have∣∣ 〈 i
〉 ∣∣2 =

∣∣ i
∣∣2 + | δi |2 . (10.31)

To get the true signal power, proportional to the mean value
∣∣ i
∣∣2, we

should therefore subtract the total noise from the measured photocur-
rent. We then, finally, end up with the expression

〈 P̄s 〉 =
h̄ω

τηV2
0

∣∣ 〈 i
〉 ∣∣2 − | δi |2

δi2 − δi2
en

. (10.32)

As a final remark, we note that both δien and δi are easy measurable,
the former by blocking both the signal beam and the LO, the latter by
blocking the signal beam only.
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10.1.7 Detector calibration

In Eq. (10.16b) we gave the detection noise as the sum of the electronic
noise of the detector and the light shot noise. In practice there might
also be a contribution from additional classical noise on the LO. This
adds yet an extra term to the variance, which shall refer to as excess
noise. We then have for the total detection noise

δi2 = δi2
en + δi2

sn + δi2
excess . (10.33)

The origin of this extra noise has its roots in several sources. As al-
ready mentioned in the beginning of this chapter, the broad emission
pattern from the diode laser can lead to fluctuations in the frequency
and phase of the laser. Excess noise from this source is suppressed
by balancing the MZI such it is operated at the white light position.
Another source is laser intensity noise, which we encountered earlier
in connection with the blue trap laser, Section 9.4.4. This can be sup-
pressed by doing a balanced detection of the MZI output instead of
the “single photodiode” detection can we have sketched so far13. And
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Figure 10.2.: Power spectral density acquired for a frequency band centered around
the beat note frequency Ω = 2π ×−62.5 MHz indicated by the ver-
tical dashed line. Spectrum analyzer settings: RBW = VBW =
100 kHz, sweep time = 10 s, each trace is 10 power averages.

then there is the more sketchy acoustic noise contribution, which is es-
sentially everything that affects the path length difference of the MZI.
More elaborate details on the three different noise sources mentioned
here can be found in the thesis by [Oblak, 2009].

13 For the two detectors used in the atomic Bragg mirror experiment described later,
we do balanced detection in the transmission, whereas the reflection detection is as
described in this chapter.
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Fortunately, these noise sources all have in common that they scale
quadratically with the LO power, whereas the shot noise contribution
is only linear in the LO power. As such, any excess noise is easy
detectable. Before use, we therefore calibrate our detectors to ensure
that the photodetection is shot noise limited.

In Fig. 10.2 the power spectral density for one of our balanced pho-
todetectors (used for the transmission detection in the atomic Bragg
mirror experiment) is shown for varying optical power of the LO (the
signal beam is blocked in all these measurements). The bottom trace
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Figure 10.3.: Scaling analysis of the noise power spectrum. The same data as in
Fig. 10.2 after applying Eq. (10.34).

is the electronic noise obtained when blocking the LO. The photode-
tector has been designed specially for the detection of the beat note
between the signal and the LO, which is evident in the suppressed
noise floor near the beat note frequency Ω = 2π ×−62.5 MHz (ver-
tical dashed line). To check the scaling of the noise power with the
LO power PL we subtract the electronic noise from the total noise
power14:

δi2

δi2
en
− 1 =

δi2
sn + δi2

excess
δi2

en
= aPL + bP2

L (10.34)

with
δi2

sn
δi2

en
≡ aPL and

δi2
excess
δi2

en
≡ bP2

L . (10.35)

Applying Eq. (10.34) to the data in Fig. 10.2 results in Fig. 10.3. Be-
cause we are only interested in the frequency component correspond-

14 We recall here the relation

xdBm = 10 log10
P

1 mW
.
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ing to the beat note, we show in Fig. 10.4 the data in Fig. 10.3 at
62.5 MHz as a function of the LO power. From the linear scaling in
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Figure 10.4.: Scaling analysis of the noise power spectrum at 62.5 MHz, same data
(blue points) as in Fig. 10.3. Red solid line is a linear fit to the data.

Fig. 10.4 the photodetector is found to be shot noise limited.

summary

In this chapter we have presented the optical heterodyne measure-
ment technique used in this thesis work. From a detailed analysis on
the measured photocurrent it has been shown how the optical signal
power impinging onto the photodiode can be extracted. Finally, we
have verified that the detection is shot noise limited by performed a
noise scaling analysis.
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AT O M N U M B E R

In this chapter we present our protocol for the determination of the
number of trapped atoms confined in the TOF-based dual-color dipole
trap, by employing a measurement technique build upon counting
the total number of photons scattered off the atoms [Ketterle et al.,
1993]. A particularly nice feature of this scheme is that it is insensi-
tive to the light-atom coupling strength and thus provides a robust
method for inferring the number of trapped atoms. Elaborate details
can be found in the theses by [Christensen, 2014; Béguin, 2015] and
in the paper [Béguin et al., 2014], and in the following we therefore
restrict ourselves to give only a brief overview of the main concepts
in the measurement.

11.1 counting photons

The measurement protocol utilizes the rate at which atoms, initially
in the hyperfine ground state |4〉, are optically pumped to |3〉 via
the |4′〉 exited state1. Within this simple three-level scheme, we set
up a model for the OD as a function of the number of atoms in |4〉,
N4, while probing on the |4〉 → |4′〉 hyperfine transition. Due to
spontaneous emission events atoms eventually pile up in the |3〉 state,
and N4 is therefore a dynamical variable during the measurement.
As such, it can be related to the input (output) photon flux Φin(t)
(Φout(t)):

Ṅ4(t) = −
1
k
(
Φin(t)−Φout(t)

)
, (11.1)

where k is determined from the branching ratio for the radiative de-
cay from |4′〉 to |3〉 and |4〉 given by the CG coefficients. For the two
hyperfine transitions the partial decay rates are given by 5γ/12 and
7γ/12, respectively. On average, it thus takes k = 12/5 = 2.4 scatter-
ing events to transfer an atom from |4〉 to |3〉. We stress that this is
independent on the initial population distribution in the |4〉 Zeeman
levels, and only depends on the hyperfine line strengths.

The relation between the input and output photon fluxes is given by
Lambert-Beer’s law, Eq. (6.29):

Φout(t) = Φin(t)e−d , (11.2)

1 Quick note: after trap loading the atoms are initially in |3〉. Here, we have thus
assumed that the atoms have already been optically pumped to |4〉.
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where we recall the relation N4(t) = α/d(t). Inserting this together
with Eq. (11.2) into Eq. (11.1) yields the differential equation

ḋ(t) = −α

k
Φin(1− e−d(t)) (11.3)

for the OD, with solution given by

d(t) = ln
(

1 +
(
ed(t=0) − 1

)
e−αΦint/k

)
, (11.4)

in assuming a constant input flux. From Eq. (11.4) the transmittance,
T (t) = Φout(t)/Φin(t) = e−d(t), is easily obtained, and we have

T (t; Natom, α) =
(

1 +
(
eαNatom − 1

)
e−αΦint/k

)−1
. (11.5)

From a simple time-resolved absorption measurement, we can thus
obtain both the initial atom number in |4〉, Natom = α/d(t = 0), and
the OD per atom α.
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Figure 11.1.: Blue points: Typical transmission signal average over ∼ 200 mea-
surement. Red curve: Fitted curve using Eq. (11.5). Acquired with a
5 pW resonant probe on the |4〉 → |4′〉 transition aligned along the
WCA.

We typically conduct ∼ 200 absorption measurements. Fitting the
measurement data with Eq. (11.5), a practical question arises on whether
one should fit the average of all the signal traces, shown in Fig. 11.1,
or each single transmission signal independently of each other and
then afterwards average over the fit parameters Natom, α. Here we
have found, that the atom number is rather robust against these two
different strategies, whereas significantly different results for the OD
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per atom are found when choosing one fitting procedure over the
other [Christensen, 2014; Béguin et al., 2014; Béguin, 2015].

The main reason is that systematic effects in the measurement, such
as probe detuning and polarization, atomic population distribution in
the Zeeman sub-levels, and inhomogeneous broadening of the probe
transition by the trapping fields, all influence the speed of the trans-
mission transients from measurement to measurement. When doing
a fit to the average transmission signal, these slightly different tran-
sients tend to smear out the otherwise sharp transition from almost
complete absorption to full transmission. This introduces a bias in
the fitted value for α, while Natom is left unaffected, since the num-
ber of scattering events required to transfer an atom from |4〉 to |3〉
remains the same.

fit parameters single average common

Natom 1162 1098 1145

α 0.59 % 0.49 % 0.55 %

Table 11.1.: Average fit parameters obtained from the three different fit procedures
applied to the data shown in Fig. 11.1. The OD per atom α has been
extrapolated to the |4〉 → |5′〉 resonant transition. Histograms of the
single trace fit parameters can be found in Section F.2.

In Table 11.1 we have collected the fitted mean values according to the
two different fit procedures applied to the data shown in Fig. 11.1.
The relative difference for Natom is seen to be 94 %, whereas it is
83 % for α. The third column yields the results for a combined fit
strategy, where α is constrained to take on a global value in all the
single trace fits, and only Natom is allowed to vary between measure-
ments. Compared to dispersive phase shift measurements, a discrep-
ancy of ∼ 25 % is found for the OD per atom with a tendency towards
lower values when inferred from the atom number measurement as
described here [Béguin et al., 2014].

In the remainder of the thesis, we will be taking Natom = 1300 and
α0 = 0.51 % for the on-resonant OD per atom for the |4〉 → |5′〉 transi-
tion when probing along the WCA, as reference values when estimat-
ing saturation intensities and the like.
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T U R N I N G A D I L U T E AT O M I C S T R I N G I N T O A
M I R R O R

A large part of this PhD study has been centered around Bragg scatter-
ing off the atomic crystal confined in the TOF-based dual-color dipole
trap. This was originally motivated by a proposal from our (theoret-
ical) colleague Ivan Iakoupov on the implementation of a phase gate
in an atomic ensemble coupled to a waveguide by combining Bragg
scattering with electromagnetically induced transparency (EIT) [Iak-
oupov, 2013] (details on how EIT can be used to aid Bragg scattering
are given in Appendix G).

Before presenting the experimental results, we here recapture the
physics behind Bragg scattering and discuss two different schemes
for turning an unstructured atomic ensemble into a Bragg mirror via
optical pumping.

12.1 bragg scattering

Bragg scattering can be understood by considering the reflection off
a string of atoms where each atom behaves as a point scatterer. If the
atomic sample is optically thin, and all the atoms couple identically to
the incoming light field, the total electric field reflected off the atoms
can be described as the sum of all the individually scattered fields
having the same amplitude A:

Eref = Ae−iωt
N−1

∑
n=0

eiφn , (12.1)

with φn = k · rn being the spatial phase of the field reflected off the
n’th atom out of a total of N atoms.

139
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12.1.1 Randomly spaced atoms

The intensity of the reflected field is given by the norm squared of
Eq. (12.1):

I = | A |2
N−1

∑
n=0

eiφn
N−1

∑
m=0

e−iφm

= | A |2
N−1

∑
n=m

ei(φn−φm) +
N−1

∑
n 6=m

ei(φn−φm) . (12.2)

If the spacing between the atoms is randomly distributed, as illus-
trated in Fig. 12.1(a), the phases in the last sum will add incoherently
and hence equate to zero. We then have

I = | A |2 N . (12.3)

That is, for an optical thin sample the reflected intensity scales with
the number of scatterers. This result could also have been obtained
from Lambert-Beer’s law given in Eq. (6.29):

Φout = Φine−d , (12.4)

written here in terms of the input and output photon flux, Φin and
Φout. For the thin optical sample: d � 1. We can therefore Taylor
expand the exponential to first order in the OD, d, from which we
find

∆Φ = Φout −Φin = −d ∝ N . (12.5)

The missing number of photons thus scales linearly with the number
of scatterers. For isotropic scattering, the back-scattered photon flux

(a) Unstructured atoms. The back-scattered field amplitudes have random phases.

d

λprobe

(b) Structured atoms. The back-scattered field amplitudes are in phase.

Figure 12.1.: Reflection field off a string of atoms (red balls). Left going waves are
incident on the atoms. Right going waves are back-scattered off the
atoms.

then likewise scales with N in agreement with the result obtained in
Eq. (12.3).
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12.1.2 Regularly spaced atoms

Let us now consider the case where the atoms are evenly spaced by a
distance d. In this case, the reflected field, Eq. (12.1), can we written
as

Eref = Ae−iωt
N−1

∑
n=0

ein∆φ , (12.6)

where
∆φ = | k | 2x =

2π

λ
2d sin θ , (12.7)

is the phase difference between fields reflected off neighboring atoms,
and θ is the angle between the incoming wavevector k with modulus
| k | = 2π/λ and the normal to the line of atoms, cf. Fig. 12.2. The

d

θ

xx

Figure 12.2.: Reflection off a string of atoms. Wavy lines illustrates the incoming
field from the left and the reflected field to the right. Red balls symbol-
ize single atoms separated by a distance d. The accumulated phase of
the field reflected off the bottom atom with respect to the field reflected
off the middle atom corresponds to the longer travel distance given by
2x as indicated by the thick black lines.

sum is now a geometric series and Eq. (12.6) reduces to [Riley et al.,
2006]:

Eref = Ae−iωt eiN∆φ − 1
ei∆φ − 1

= Ae−iωtei(N−1)∆φ/2 eiN∆φ/2 − e−iN∆φ/2

ei∆φ/2 − ei∆φ/2

= Ae−iωtei(N−1)∆φ/2 sin(N∆φ/2)
sin(∆φ/2)

. (12.8)

Taking the norm squared to obtain the reflected intensity we get:

I = | A |2 sin2(N∆φ/2)
sin2(∆φ/2)

. (12.9)
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The reflected intensity is maximized when the reflected fields add in
phase, i.e., when ∆φ = 2πm, for integer m, from which we obtain:

Imax = | A |2 N2 . (12.10)

The intensity thus scales quadratically with the number of scatterers
when an optically thin sample of atoms are periodically spaced such
that the reflected field amplitudes add coherently and interfere con-
structively, see Fig. 12.1(b). This result is in stark contrast to what we
found for a randomly distributed string of atoms, and we see that the
intensity can be enhanced by a factor of N in the perfect arrangement.
From Eq. (12.7) it follows that the expression

d sin θ = m
λ

2
for integer m , (12.11)

should be satisfied, which is the well-known Bragg condition.

in the tof geometry For our inherently 1D system θ = π/2
and the Bragg condition (12.11) reduces to

d = m
λTOF

probe

2
for integer m . (12.12)

The attentive reader will remember that the spacing between the TOF-
trapped atoms is given by the red trap wavelength dtrap = λTOF

red /2.
With an atomic sample length of ∼ 1 mm the incommensurate ra-
tio λTOF

red /λTOF
probe allows us to treat the atomic crystal as completely

unstructured leading to negligible reflection as shown in a previous
experiment by [Reitz et al., 2014]. To turn the atoms into an effec-
tive Bragg mirror we facilitate the configurable internal spin states to
burn a grating via optical pumping. In the following sections we will
go through two different schemes that we have employed to create a
dilute yet rather efficient atomic mirror.

12.2 versatile spin grating

Starting with all atoms in the same initial state |4〉, the key idea
is to form a SW along the atomic crystal by sending two counter-
propagating beams, derived from the same laser source and with
free-space wavelength, λstruct, into the TOF. If λstruct is tuned close
to an atomic resonance, atoms located at the intensity maxima of the
SW, i.e., at the antinodes, are prone to be optically pumped out of
their initial level and into the state |3〉 transparent to the light field1,
see Fig. 12.3. If the atomic sample is afterwards probed by a light
field with matching wavelength to that of the SW structuring pulse,
λprobe ≈ λstruct, only atoms left in |4〉 contributes to the scattering
and the Bragg condition, given by Eq. (12.12), is automatically met.

1 Commonly referred to as a dark state.
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λTOF
struct

Before:

Under:

After:

Figure 12.3.: Internal state of the atoms before, under, and after optical pumping
with an SW structuring pulse. Red (gray) balls illustrates atoms in
the |4〉

(
|3〉
)

state.

12.2.1 Experimental considerations on the light fields

For both the structuring and the probing of the atoms the evanescent
field of a guided TOF mode is used. It is therefore necessary to be
careful about which polarization to chose for the two fields. Should
it be quasi-linear parallel or orthogonal to the atomic plane? In the
following, this question is answered first for the SW structure pulse
and then for the RW probe.

structuring field For the Bragg condition (12.12) to be ful-
filled, the pitch of the structuring pulse should match the wavelength
of the probe, and we therefore have λstruct = 852 nm for the free-space
wavelength of the structuring field. In Section 2.5.1 we discussed the
field mode distribution of a SW mode in the TOF. Here, it became

z

y x

z

(a) A weakly modulated SW is formed
along z for x = 0.

z

y x

z

(b) A strongly modulated SW is formed
along z for y = 0.

Figure 12.4.: Exaggerated sketch of the SW modulation for a quasi-linear polariza-
tion mode in the TOF. In the plane where the longitudinal component
is present, the net effect is a weakly modulated SW.

evident that that the fringe contrast of a SW formed in the same plane
as the polarization orientation is substantially lower compared to that
formed in the perpendicular plane, as illustrated in Fig. 12.4.

For the red SW used in the dual-color TOF-based dipole trap, this is
not a problem, since the atoms are confined only at the antinodes of
the field, where the longitudinal component vanish. For the structur-
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ing pulse, however, a high fringe contrast is needed in order to make
sure that atoms sitting in the SW nodes are not optically pumped. In
Fig. 12.5 the intensity distribution along the TOF axis, at the radial
distance corresponding to the atomic positions, is shown for the red
SW trap beam and the SW structuring pulse with quasi-linear polar-
ization either parallel or perpendicular to the red trap. The atoms

Red trap Parallel 852 nm SW

Perpendicular 852 nm SW
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Figure 12.5.: Intensity distribution along the fiber axis of a quasi-linear HE11 SW

mode field. Calculated for the parameters nco = 1.4469, ncl = 1,
a = 250 nm, x = 0, y = 442 nm.

are trapped at the intensity maxima of the red trap (orange curve).
As we already know, the 852 nm SW is incommensurate with the
red trap, as seen from the pitch of the purple dashed and dotted
green curves compared to the orange curve. For the structuring SW

parallel to the red trap the fringe visibility is observed to be only
V ≈ (1 − 0.3)/(1 + 0.3) = 54 %. A significant light field is thus
present, even when the minima of the 852 nm parallel SW overlap
with the atomic sites, e.g., near z = 1000 nm. If instead the over-
all weaker perpendicular SW structuring pulse is considered, the (in
principle) 100 % fringe visibility ensures that no atoms are pumped,
when its minima overlap with the red trap intensity maxima. For this
reason, we chose to configure the structuring field as quasi-linearly
x-polarized, and thus perpendicular to the atomic plane.

probe field In Section 2.5 it was shown that a RW fundamental
mode in the TOF with quasi-linear y polarization, i.e., parallel to the
horizontal yz-plane containing the atoms, has a significant longitudi-
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nal electric field component at the atomic locations. From the discus-
sion in Section 8.2, we know that this alters the atomic scattering rate
such that spontaneous emission into a forward propagating mode is
favored over a backward propagating mode. This asymmetry was
found in [Le Kien et al., 2014] to yield as much as one order of mag-
nitude difference between the scattering rates into the two modes. It
was, however, also found that if the polarization is chosen perpendic-
ular to the atomic plane, where the field is purely vertically polarized
at the location of the atoms, cf. Fig. 8.1, the scattering rates into either
forward or backward propagating modes are equal.

For a measurement, where the sole purpose is to measure an enhance-
ment in the back-reflected photon flux from Bragg scattering off the
atoms, Table 8.1 for the scattering rates into the four available TOF

modes, seems to suggest that the optimal choice for the probe field
polarization is quasi-linear y. It should be kept in mind, however,
that these values are calculated in the steady-state regime, and the re-
sults might therefore not be representative for the |4, mF〉 distribution
that we actually have when running the experiment. In fact, in [Reitz
et al., 2014] were the back-scattering properties of an unstructured en-
semble of Cs atoms, confined in the TOF-based dipole trap similar to
ours, were investigated, a higher back-scattering was observed when
probing perpendicular to the atomic plane, i.e., using quasi-linearly
x-polarized probe light, as compared to parallel probing. These mea-
surement were obtained within the first 200 ns probing, where the
atoms can essentially be assumed motionless and only negligible re-
shuffling of the initial atomic distribution in the Zeeman sub-levels
takes place. The contradictory results with respect to that of [Le Kien
et al., 2014] can therefore be explained by the different Zeeman distri-
bution of the atoms. In the end, which probe polarization to chose
for the most efficient back-scattering rate, therefore depends on the
atomic distribution in the Zeeman sub-levels. For all the results pre-
sented in the work the probe field was configured as quasi-linearly
x-polarized, i.e., perpendicular to the plane containing the atoms.

12.2.2 Dark scheme

We have explored two schemes for turning the 1D atomic crystal into
a Bragg mirror via optical pumping. These have been termed the dark
and bright schemes, respectively, and are described in the following
starting with the dark scheme. The name of choice refers to the atoms
being optically pumped from a bright state into a dark state by the SW

structuring pulse. Here, the nomenclature bright and dark explicitly
refer to the probe laser frequency which is tuned close to resonance
with the |4〉 → |5′〉 transition. The hyperfine ground state |4〉 is
thus regarded as a bright state, whereas the 9.2 GHz lower lying |3〉
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hyperfine ground state is dark in the sense that the probe frequency
is too detuned to drive any notable transitions from this state.

All atoms are initially in the dark state, |3〉, after loading into the TOF-
based dipole trap, cf. Section 9.4. Before structuring the atoms, the
MOT beams are shut off and a ∼ 10 ms waiting time is imposed to en-
sure that only lattice trapped atoms are probed. Using the repumper,
cf. Section 9.2, the atoms are optically pumped for 3 µs from |3〉 to |4〉,
see Fig. 12.6. Soon after2, a short, varying between 0.25 µs and 1.0 µs,

|5′〉
|4′〉
|3′〉
|2′〉

|3〉

|4〉

(ii) Structure

δstruct

(iii) Probe

δprobe

(i) Repump

Figure 12.6.: Dark scheme sequence for creating an atomic Bragg mirror.

SW structuring pulse is sent onto the now bright atoms. As illustrated
in Fig. 12.3, all atoms located near the antinodes of this pulse will be
pumped back to the dark state |3〉, while atoms sitting at a node are
left in |4〉.
With the remaining atoms in the bright state now separated by multi-
ples of half-wavelengths of the structuring pulse, λTOF

struct/2 ≈ λTOF
probe/2,

the probe is sent onto the atomic crystal, shortly after the structuring
pulse, to measure the reflectance.

It is clear from the discussion in the first part of this chapter (Sec-
tion 12.1) that the amount of back-scattered light depends very sen-
sitively on how well the atoms are localized as to fulfill the Bragg
condition (12.12). Any deviation from the regular half-wavelength
spacing leads to a drastic reduction in the reflected intensity which,
for an optically thin sample, where found to scale quadratically with

2 The complete time sequence is given in Section 13.2.
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the number of atoms for the perfectly arranged ensemble, while for
the completely unstructured ensemble it only exhibit a linear scal-
ing with the number of scatterers. In this respect, we would like to
make the structuring pump as strong as possible as to ensure that
only well-positioned atoms are left in |4〉. However, this would obvi-
ously leave us with less atoms in total to contribute to the coherent
back-scattering leading to yet a decrease in the reflected intensity. Ap-
parently, we are facing a situation where we have to choose between
many atoms on one side and a high degree of localization on the
other side.

We visualize this trade-off by considering the probability pj
dark for an

atom, positioned at zj along the string, to remain in the bright |4〉
state after the structuring pulse assumed to be in the low-saturation
regime:

pj
dark = e−ζ cos2(2πzj/λTOF

struct) , (12.13)

with ζ denoting a dimensionless parameter expressing the pumping
strength. In Fig. 12.7 this probability is shown for varying ζ resulting
in different number of atoms N4 remaining in the bright state after ap-
plying the structuring pulse. Using Natom to denote the total number
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n4 = 0.2, ζ = 7.65

n4 = 0.05, ζ = 111

Figure 12.7.: Probability distribution for an atom to survive the optical pumping
into the dark state. The legend states the fraction of atoms remain-
ing in the bright state out of the total number of atoms n4 and the
corresponding pump strength ζ.

of atoms in |4〉 before the structuring pulse, we have

n4 =
N4

Natom
(12.14)
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for the survival fraction of atoms. The values for n4 in the figure
legend are obtained by evaluating the expression

n4 =

∫ z1
z0

pj
dark(ζ)dz∫ z1

z0
pj

dark(ζ = 0)dz
, (12.15)

for | z1 − z0 | > λTOF
struct/2. It is seen in Fig. 12.7 that the harder the

atoms are pumped into the Bragg structure the more spatial sharp
does the survival probability for an atom become to stay in |4〉, and
hence the more localized do the bright atomic wave packets become at
the expense of leaving less atoms to contribute to the back-scattering.

As a final remark, before moving on to the bright scheme, we point
out that after transferring the atoms into the TOF-based dipole trap,
they are distributed among all the nine Zeeman sublevels in |3, mF〉
with mF = −4,−3, . . . ,+4. The structuring pulse only couples |4〉
to the two exited states |3′〉 and |4′〉, and since it is quasi-linearly
vertically polarized only π transitions, with ∆mF = 0, are driven.
All the Zeeman levels couple differently according to their respec-
tive CG coefficients, and especially noteworthy are the stretched levels
|4, mF = ±4〉 that only couple to the |4′〉 exited state, and |4, mF = 0〉
that only couples to the |3′〉 exited state. Both the power and the fre-
quency of the structuring pulse have been experimentally optimized
with respect to the reflectance as shown later in Chapter 15.

12.2.3 Bright scheme

We now discuss the bright optical pumping. In this scheme the re-
pumper step is skipped and the atoms are structured by pumping
them with the SW directly from the dark state |3〉 to the bright state
|4〉 as illustrated in Fig. 12.8. Being technical simpler to implement,
the disadvantage of this scheme is that it offers less localized atoms.
This can be seen by considering the probability for an atom, located
at zj, to be pumped into the bright state. In the low-saturation regime
for the SW structuring pump beam this is given by (cf. Eq. (12.13))

pj
bright = 1− e−ζ cos2(2πzj/λTOF

struct) , (12.16)

and is plotted in Fig. 12.9 for various pumping strengths ζ. In contrast
to the localization offered by the dark pumping scheme in Fig. 12.7,
we here have a spatially very broad probability distribution for the
atoms to be in |4〉. For practical purposes we, nevertheless, initially
implemented the bright scheme. With the repumper frequency sitting
already at the right hyperfine transition, |3〉 → |x′〉, it was straight-
forward to use this for the SW structuring pulse.
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(ii) Probe

δprobe|5′〉
|4′〉
|3′〉
|2′〉

|3〉

|4〉

(i) Structure

δstruct

Figure 12.8.: Bright scheme sequence for creating an atomic Bragg grating.
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Figure 12.9.: Probability distribution for an atom to be optically pumped into a
bright state. The legend states the fraction of atoms pumped into the
bright out of the total number of atoms.

summary

In this chapter, we have established the basic physics leading to Bragg
scattering and presented two schemes on how to transform a 1D di-
lute atomic crystal into a Bragg mirror via optical pumping. With the
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main theory thus laid out we are ready to continue to the experimen-
tal results obtained for the atomic Bragg mirror experiment.



13
E X P E R I M E N TA L D E TA I L S

Apart from the structuring, the experimental setup for the bright and
dark schemes are identical. In this chapter, we therefore introduce the
experimental procedure for preparing and probing the atomic Bragg
mirror in general terms that covers both the bright and dark schemes.
We start out by describing the setup and the time sequence. There-
after, we present typical time traces measured of the transmitted and
reflected light fields. These signals bear all the information we have
about the system and is the foundation of all subsequent analyses
presented in the following chapters.

13.1 setup

Both the transmitted and reflected light fields are coherently detected1

by an interferometric heterodyne measurement as described in Chap-
ter 10. Before entering the setup, illustrated in Fig. 13.1, the probe is

Red trap laser
DM1

Probe

TOF

A

B DM1

LO
Signal

Red/blue

trap lasers

Reflection

detector

Structuring

90:10

90:10

50:50

50:50

50:50

LO
Signal

Transmission

detector

AOM

R:T BS

Mirror

QWP/HWP pair

HWP

PBS

Isolator

Figure 13.1.: Illustration of the optical setup for the atomic Bragg mirror experi-
ment.

therefore split from an LO reference beam and send through an AOM

to shift it in frequency by Ω = 2π ×−62.5 MHz with respect to the
LO frequency.

1 The signal is recorded by a fast oscilloscope: 54832d Infiniium MSO from Agilent.

151



152 experimental details

With the probe entering the TOF-trapped atomic mirror via input B,
the reflected field emerges also via input B. It is then reflected off
the probe input path on a 90 : 10 BS. Using a QWP and a HWP in
connection with an optical isolator, the reflected field is analyzed2

either along the V or H component of the quasi-linear polarization
in the TOF3. The reflected signal field is then combined with the LO

on a PBS and send onto the detector. Likewise, the transmitted field,
exiting through port A, is detected.

The optical losses from B to the reflection detector is typically given
by 50 %. This could be improved by removing the optical isolator
which only transmits 70 % of the light. Unfortunately, it is needed
to prevent any scattering of the strong LO beam off the detector back
onto the atoms. For the atomic mirror experiment, any stray LO pho-
tons would most likely not cause severe damage to the quality of the
atomic mirror, as the LO is detuned from atomic resonance by ∼ 12
linewidths and hence the probability of a scattering event is low. Fur-
thermore, even if an LO photon would enter the TOF and excite an
atom in the Bragg grating, it would not cause the atom to undergo
a spin flip from the bright state |4〉 to the dark hyperfine state |3〉4.
On top of that, the atomic mirror only depends on the population in
the |4〉 state and not on any coherence between states, and the “only”
damage that could be caused by back-scattered LO photons is would
thus be to heat atoms out of the trap or the Bragg grating.

The optical isolators were needed in previous measurements and will
be needed again in future measurements. For this reason, and for
practical purposes, we therefore chose to keep them in the setup. Al-
though not apparent in this thesis, the setup is designed to perform
quantum-nondemolition (QND) measurements of the atomic ensem-
ble via the phase shift induced on two light probes passing through
the atomic ensemble. In this case, the frequency of the two probe
beams are detuned by Ω = 2π ×±62.5 MHz from atomic resonance
and combined onto a shared LO field on-resonance with the atomic
transition. The absorption probability of such an LO photon is thus
much higher. In addition, if the experiment exploits atomic coher-
ences, the impact of a scattering event is much more damaging than
for the atomic mirror measurement, making the need for the optical
isolators apparent. For more details on past measurements were the

2 The majority of the measurements presented in this thesis have been obtained while
analyzing along V. So unless stated otherwise, this setting should implicitly be
assumed in the following.

3 The WPs are set by sending probe light into the TOF at input A (dashed red line
in Fig. 13.1). For each of the two polarization modes at the TOF, the analyzer WPs

are then turned to minimize the transmission through the optical isolator. The final
setting is then obtained by rotating the HWP (mounted between the QWP and the
isolator) by 45° to maximize the output.

4 Since we probe on the |4〉 → |5′〉 transition and the |3〉 → |5′〉 is a forbidden
transition.
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dual-color probing was utilized and for future planned experiments
please see [Béguin et al., 2014; Béguin, 2015; Christensen, 2014].

The laser used for structuring the atoms is derived from an 852 nm
single-mode ECDL, and locked to the repumper via a PLL exactly like
the cooler and the probe, cf. Section 9.2.2, before sent to the setup.
After passing through an AOM, that allows for fast switching, the
structuring beam is split into two separate fields on a PBS. With one
of the fields entering the TOF at input A and the other at input B a SW

is formed at the atoms.

13.2 timing

In Fig. 13.2 the general time sequence for a complete experimental
run, i.e., cooling, trapping, preparing, and probing a single realiza-
tion of the atomic Bragg mirror, is shown. The initial MOT loading
and sub-Doppler cooling, transferring the atoms into the TOF-based
trap, takes ∼ 2 s. Prior to creating the Bragg grating, initial reference
measurements of the (fully) transmitted and (zero) reflected fields are
established by turning the probe on for a few microseconds while hav-
ing all the atoms in the transparent state |3〉. The probe is then turned
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Figure 13.2.: Time sequence of a single experimental run. Green (red) curve is an
illustration of the transmitted (reflected) power (not to scale). The
repumper is only present in the dark scheme.

off and the atoms are structured into a Bragg mirror by either the dark
or bright pumping procedure, cf. Section 12.2.2 and Section 12.2.3. Im-
mediately after structuring, the probe is turned back on and both the
reflected and transmitted fields are continuously measured for up to
40 µs after the SW structuring pulse.

13.3 typical experimental signals

In Fig. 13.3 typical times traces for the reflected and transmitted fields
are shown. Each trace is a statistical average of 200 consecutive ex-
perimental runs of the photocurrent “intensity”, i.e., the square of the
photocurrent

∣∣ 〈 i
〉 ∣∣2, obtained within a B = 1/2τ = 5.2 MHz detec-
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tion bandwidth5 (cf. Eq. (10.27)). The black curve is the electronic
noise, δien

2, of the detectors measured by running the experiment
while blocking the probe and both LO beams. The blue trace for the
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(a) Reflected signal.
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(b) Transmitted signal.

Figure 13.3.: Simultaneously measured reflected and transmitted signals of light
send onto the atomic Bragg mirror as a function of time. The struc-
ture were made by employing the bright scheme. The light-colored
bands signify the one-sigma uncertainty from the statistical averag-
ing of 200 consecutive experimental runs. Measured with a resonant
probe with optical power Pprobe = 940 pW.

total noise δi2 is obtained likewise by blocking the probe beam only.
As discussed in Section 10.1.3, the total noise should be dominated

5 Corresponding to a τ = 96 ns boxcar average, or equivalently to 6 oscillation periods
of the beat note between the signal beam and the LO.
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by the (white) shot noise of the LO as this allows us to linearize the
photocurrent around its mean value. In Fig. 13.3(a), for the reflec-
tion detector, this is clearly seen to be fulfilled as the total noise is
about 6 dB above the electronic noise floor. This level is reached with
a typical optical power of the LO given by PL ≈ 700 µW. For the trans-
mission detector the total noise is 11.6 dB above the electronic noise
floor for PL ≈ 3.5 mW.

The yellow and purple traces are the more interesting ones as they
contain the signal of Bragg structured atoms. We will for a moment
ignore the yellow trace and concentrate on the purple trace only. As
illustrated in Fig. 13.2 for the experimental time sequence, the probe
is initially on for 3.7 µs to obtain a reference measurement of the
reflected and transmitted fields without resonant atoms. From the
transmitted light signal in Fig. 13.3(b) it is clearly the case that this
yields a high flat signal as expected for full transmission. For the re-
flected light, the purple trace is completely buried in the total noise
and hence no signal is observed at all in this time interval. This is of
course also to be expected, but for the reflected signal one has to be
a bit more careful as there could potentially be light reflected off the
fiber coupler or other optical elements that could give rise to a back-
ground signal. Since this is not the case, we can use the first 6.7 µs of
each signal trace in Fig. 13.3(a) (for the reflected signals), as reference
measurements for the total noise that is needed in order to calculate
the number of detected photons. This is more convenient than using
a single total noise measurement (blue trace) since each individual
trace automatically keeps track of any drifts in the LO power.

When the probe is turned back on, a clear rise of the purple trace
in both the transmitted and reflected signals is observed. The re-
flected signal peaks close to 75 · 10−4 V2 corresponding to the detec-
tion of about (75− 20)/(20− 5) = 3.7 photons on average within the
τ = 96 ns sample time. To this day, I still find it quite amazing that a
detection scheme that relies on adding an extremely weak signal field
to a strong reference field can resolve signals on the single photon
level. With the extra beauty added to it, that the measurements can be
accomplished with all the room lights on and not caring about stray
fields from any of the other lasers in the setup. It is true, though, that
we need to conduct several experimental runs in order to overcome
the signal shot noise with a fractional uncertainty of

√
3.7/3.7 = 52 %

in a single shot. The 200 averages used here have proven to be ap-
propriate for most measurements, but 50 to 100 runs are sufficient for
quick6 parameter/configuration checks, although the data is then, of
course, somewhat noisier.

After reaching a maximum signal at t = 7.1 µs the light reflected off
the atoms quickly decays to nearly zero before it features a small

6 100 measurements takes approximately 100× 2 s = 3.3 min.



156 experimental details

revival near t = 14 µs. A more thorough analysis of the lifetime of
the reflectance is carried out in Chapter 16, and we therefore postpone
any further discussion on the subject.

Turning our attention back to the transmission signal in Fig. 13.3(b),
it rises to only 60 % of its original signal strength when the probe is
turned back on at t = 6.7 µs, since the light field is now scattered
by the atoms. The transmission then first decreases slightly until
t = 8.5 µs at which point it starts to increase rather quickly.

The abrupt turning point at t = 15.3 µs is the result of turning on
the repumper, which optically pumps the remaining atoms in the
dark state |3〉 to the bright state |4〉. From this two observations
can be made: (i) since the transmission after repumping, near t =

18 µs, is higher than that after the reflectance has died out, near t =
10 µs, we either have less atoms after repumping, compared to that
after the structuring pulse, or the light-atom coupling has decreased
over this time interval, (ii) although substantial scattering is evident
after repumping the atoms, no notable reflection is observed from
these (unstructured) scatterers compared to the significant reflection
occurring right after the structuring of the atoms at t = 6.4 µs.

We started this section by stating that the signals for the reflection
and transmission shown in Fig. 13.3 are typical examples of what we
measure. It it certainly true for the reflection signal, but for the trans-
mission signal it is mainly true to the extend that the time sequence
for the measurement always follow the recipe given in Fig. 13.2. As
it turns out, the temporal dynamics in the transmission signal, after
structuring the atoms, is quite rich. A more comprehensive analy-
sis of the dynamics in the system is therefore given separately in
Chapter 17 and Chapter 20. This also applies to the reflection off an
unstructured ensemble of atoms that will be treated independently
in Chapter 14.

13.3.1 Blue trap laser intensity noise

Finally, we turn our focus to the yellow trace in Fig. 13.3. What is
noteworthy, is that the data belonging to this trace were acquired
right before the purple trace data for the exact same experimental pa-
rameters. Yet only half the signal is observed in the reflection signal,
and in the transmission signal it is clear that much less probe light
is scattered off the atoms compared to the purple signal. The reason
for this observed difference, can be assigned to the high amount of
fluctuations in the free-running blue trap laser intensity, which was
still in use when these measurement were conducted. The purple sig-
nal in Fig. 13.3 was measured for a intensity noise level of the blue
trap laser which lead the blue absorption signal in Fig. 9.9, whereas
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the yellow signal in Fig. 13.3 was obtained for a much noisier blue
trap intensity, that could not be stabilized by tweaking the laser cur-
rent while measuring. The yellow signal can thus be related to the
same conditions under which the red absorption trace in Fig. 9.9 was
acquired.

The free-running blue trap laser was replaced with an ECDL soon after
the data in Fig. 9.9 were acquired. Simultaneously with the laser up-
grade, we took the opportunity to also modify the setup such that the
more promising7 dark scheme would be used for the optical burning
of the Bragg mirror instead of the bright scheme. Therefore, all data
acquired under the bright structuring scheme were influenced by the
noisy free-running laser source used for the blue trap. For this reason,
the bright scheme measurements were not always reproducible even
when acquired close in time. This obviously makes it difficult to com-
pare any experimental results obtained within this scheme to other
experimental results acquired either with the bright or dark scheme.

For all measurements on the dark scheme, the blue trap ECDL was
employed, making the experimental results more reliable and repro-
ducible. When the results are presented in the following chapters it
will, however, be apparent that also within the dark scheme the re-
sults are not always consistent from day to day. Indeed, during the
course of taking data, we got better and better at loading the TOF-
based lattice trap and at controlling the polarization of guided TOF

modes, which resulted in better and better results, i.e., higher reflec-
tions. We will of course let the reader know when results can be
compared or not. One thing to notice, however, is that even though
the absolute reflectance might not be comparable between measure-
ments taken on different days, relative comparisons can still be made,
for example in how the reflectance changes with the frequency of the
structuring pulse.

13.4 optical depth

It can often be instructive to consider the OD since, for example, the
OD is directly proportional with the number of scatterers in the low
saturation regime as shown in cf. Section 6.5. From Lambert-Beer’s
law, Eq. (6.29), we have

T = e−d , (13.1)

where d is the OD, which can then easily be extracted from the trans-
mittance given by

T =
I
I0

=

∣∣ 〈 i0
〉 ∣∣2 − δi2∣∣ 〈 i
〉 ∣∣2 − δi2

, (13.2)

7 Compare Fig. 12.7 with Fig. 12.9.
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where
〈

i0
〉

is used to denote the reference photocurrent obtained in
the first t = 3.6 µs when the reference measurements of the reflec-
tion and transmission signals are established. Applying Eq. (13.1)
and Eq. (13.2) to the transmission signals shown in Fig. 13.3(b) we
obtain Fig. 13.4 for the OD during the measurement. With d being the
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Figure 13.4.: OD as a function of time. Calculated from the transmission signal in
Fig. 13.3(b).

logarithm of the transmittance, considering the OD also bear the ad-
vantage of blowing up small features in the transmitted light, as seen
in the purple trace between t = 7.1 µs and t = 10 µs. The absence
of signal between t = 3.7 µs and t = 6.7 µs when the probe is off,
stems from the logarithmic function being undefined at zero. We will
leave further discussions on the OD acquired from the Bragg mirror
measurements to later, when more careful analysis is carried out. For
now, we simply want the reader to be aware that we can extract the
OD from the transmission signal and how it is done in practice.

13.5 reflectance

In order to discuss the efficiency of the created atomic Bragg mirror,
we need to calculate the reflectance R, defined as the power ratio
between the reflected and incident light onto the atomic crystal:

R ≡ Preflected

Pincident
. (13.3)

We have already shown in Eq. (10.32) how the optical power imping-
ing onto the detector can be extracted from the measured photocur-
rent. Thus, the only thing we need to do, is to take the optical losses
l between the atomic crystal and the detector into account in order to
obtain Preflected. Typically, we have 50 percent losses between the TOF
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output fiber coupler and the detector. In addition to this, 4 % losses
from the TOF taper should be included8. Using ε = η(1− l)V2

0 for
the overall quantum efficiency of the detection, the reflected power is
calculated as

〈 P̄reflected 〉 =
h̄ω

τε

∣∣ 〈 i
〉 ∣∣2 − | δi |2

δi2 − δi2
en

. (13.4)

We remind ourselves that this result for the reflected power depends
on the detection noise to be limited by the LO shot noise, cf. the dis-
cussion around Eq. (10.16) that is used in deriving Eq. (13.4).

13.5.1 Power calibration

To validate the results for the reflected power extracted from the
measured photocurrent via Eq. (13.4), we have also occasionally per-
formed power calibration measurements of the reflection detector.
The main idea is simply to send light with a known optical power
onto the detector, and compare the response with that of the reflected
signals. Practically, this is done by reversing the probe beam propaga-
tion direction, such that it enters the TOF via port A, as illustrated by
the red dashed line in Fig. 13.1. The transmitted probe, in this configu-
ration, will now be measured by the reflection detector. The resulting
signals, obtained with no trapped atoms, is shown in Fig. 13.5, for
varying probe powers in the range 5 pW to 45 pW. The data is col-
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Figure 13.5.: Power calibration measurements. The lowest two curves are the de-
tector electronic and total noise. Sampled over τ = 96 ns.

8 In total, the transmission is 92 % through the TOF, from which we assign 4 % to each
taper.
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lected using the same measurement sequence as before9, i.e., having
the probe initially on yielding a full transmission signal, before turn-
ing it off at t = 3.7 µs for measuring the total noise floor after which
it is then turned on again at t = 9.75 µs. The sequence is of course
now completely arbitrary for the information we want to extract10.

To compare the detector response
∣∣ 〈 i

〉 ∣∣2 for a given optical power,
the photocurrent intensity for each signal in Fig. 13.5 is time-averaged
from t = 10 µs to t = 20 µs and plotted against Pcalib, for the corre-
sponding probe power inside the TOF. This is shown in Fig. 13.6(a)
using the same color reference as in Fig. 13.5. By doing a linear fit to
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Figure 13.6.: (a) 10 ms time-averaged photocurrent intensiy
∣∣ 〈 i

〉 ∣∣2 from the sig-
nals in Fig. 13.5 as a function of the corresponding probe power refer-
enced to the TOF waist. The blue line is a linear fit with the slope as the
only free parameter. (b) Comparison between the obtained reflectances
of the reflection peaks in Fig. 13.7 when extracting Preflected by using
either Eq. (13.4) (squares) or Eq. (13.5) (circles). The errorbars are
obtained as the one-sigma uncertainty from the statistical averaging
and a 5 % probe power fluctuation during the measurement.

these six points, while keeping the intersection with the y-axis fixed
at the average total noise

〈
δi2

calib

〉
of the six calibration signals, we

obtain the simple expression

Pcalib =
1
a
( ∣∣ 〈 i

〉 ∣∣2 − 〈 δi2
calib

〉 )
(13.5)

for the optical signal power in the TOF as a function of the detector
response, with a being the fitted slope. This method for extracting the

9 The attentive reader will notice, however, that the probe off time is longer than
that shown in Fig. 13.3. This is because the dark scheme was implemented for the
measurements shown here.

10 As a side remark, we mention that the probe rise and fall time has been extracted
from the calibration signals similar to those in Fig. 13.5, and found to be about 80 ns
measured within 10 % to 90 % reference levels
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reflected power off the atoms, does not rely on any measurements for
the overall quantum efficiency ε of the detector. The only thing we
need to know in order to obtain Eq. (13.5), is the optical probe power
in the TOF. Which, in any event, is a parameter that we need to know
in all our measurements.

Using both Eq. (13.4), with η = 89 %, l = 53 %, and V0 = 93 %,
and Eq. (13.5) for extracting the maximum reflected power of the
three measurements shown in Fig. 13.7, we apply formula (13.3), with
Pprobe = 390 pW, to obtain the reflectance. The results are shown in
Fig. 13.6(b) as a function of the structuring power which were varied
for the particular three measurements used here as example for the
power calibration shown in Fig. 13.7. The two methods for obtaining
Preflected, i.e., the shot noise calibration method and the power calibra-
tion method, are seen to be in excellent agreement with well over-
lapped errorbars. For the data shown here, there is however a clear
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Figure 13.7.: Reflected signal for three different powers of the structuring pulse
Pstruct using the dark scheme. Each curve is a statistical average over
50− 250 experimental runs and sampled over τ = 96 ns. Obtained
with Pprobe = 390 pW and δprobe = 2π × 5 MHz.

bias which tend to yield higher values for the reflectance obtained
with the shot noise calibration method, compared to those acquired
with the power calibration method.

As a closing remark for this section, we mention that both the probe
power Pprobe as well as the structuring power Pstruct are varied us-
ing a stack of up to three calibrated neutral density (ND) filters. For
each beam, these are placed immediately before a single-mode fiber
bringing the laser beam to the TOF setup. This can potentially cause a
steering of the beams that might decrease the coupling efficiency into
the before mentioned fiber. However, judging from Fig. 13.6(a), this
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seems to be only a minor effect as all six points are well distributed
around the straight line fit. This has been further confirmed for a
few of the least absorbing ND filters by simply measuring the output
power of the fiber with and without the ND filter. Compared against
the expected calibrated value, at most a 5 % deviation was observed.
This experimental uncertainty is thus already contained in the 5 %
relative power fluctuation of the probe.

13.6 the total noise

The level of the total noise intensity δi2 enters in both Eq. (13.4) and
Eq. (13.5) for extracting the reflected optical power off the atomic
crystal. We therefore present here an estimation of the error on the
total noise of the detection.

We first consider a typical time trace of
∣∣ 〈 i

〉 ∣∣2 = δi2, shown in
Fig. 13.8(a), which corresponds to the blue traces in both Fig. 13.3(a)
and Fig. 13.7. The statistical mean and the standard deviation (std)
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Figure 13.8.: Total detection noise reference measurement of the reflection detector.
Obtained as the statistical average over 200 consecutive experimen-
tal runs sampled over τ = 96 ns. (a) Total noise as a function of
the measurement time. Only shown for the first 10 µs of a 32 µs
measurement for visual clarity, the full time trace can be found in
Section F.3. Black solid line indicated the statistical mean of the data
and the dashed lines the one-sigma uncertainty. (b) Histogram of the
(full time trace) data in (a). Black solid line is a Gaussian fit.

of the (full 32 µs) time trace are indicated in Fig. 13.8(a) by the black
solid line for the mean and the dashed lines for the uncertainty band,
and yields a total noise given by δi2 = (21.3± 0.1) · 10−4 V2, where
the error on the mean are calculated as usual: std/(N − 1)1/2 with
std = 1.5 · 10−4 V2 and N = 333. The data points are observed to be
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randomly distributed around the mean and with statistical errorbars
(from the 200 experimental averages) overlapped well within the std.

In Fig. 13.8(b) the histogram of the (full) time trace in Fig. 13.8(a) is
shown together with a Gaussian fit yielding δi2 = (21.3± 0.1) · 10−4 V2,
in exact correspondence with that of the statistical mean. The total
detection noise can thus safely be regarded as Gaussian distributed.

In calculating the peak reflectances shown in Fig. 13.6(b), we do not
use an initial reference measurement for δi2, but instead extract δi2

from each individual signal trace in Fig. 13.7 by taking the time aver-
age over the first 9.75 µs, as mentioned previously. This will off course
give a slightly larger error contribution to δi2, simply because the time
average is three times shorter. However, the Gaussian noise is already
low enough, that the uncertainty on the total noise barely contributes
to the errorbars in Fig. 13.6(b), which have been obtained by applying
the well-known error propagation formula for uncorrelated variables.
For the square points, obtained by applying Eq. (13.4), the statisti-
cal variance from the different experimental realizations is found to
be on average 50 times higher than the variance on the Gaussian to-
tal noise, regardless of the number of experimental realizations (the
maximum point were obtained using 50 consecutive measurements,
whereas 250 measurements were used for the other two points). The
statistical variance from the different experimental realizations, are
also found to dominate the 5 % power fluctuation assigned to the
probe beam by a factor of 7 on average for the three square points in
Fig. 13.6(b).

13.6.1 Time drift

We also consider the drift on the total detection noise over many mea-
surements, as shown in Fig. 13.9. Each measurement yields signal
traces similar to those shown in Fig. 13.7, and consists of between 100
and 200 experimental realizations. As before, the total noise δi2 is
obtained as the time average over the first 9.75 µs of each signal trace,
and it is these values that are in Fig. 13.9.

The total noise is initially found to be steadily distributed around
the same mean value, until it slowly starts to decrease. This can
be attributed to a drift in the optical power of the LO, most likely
caused by a drift in lab temperature, which influences the laser out-
put mode. Drifting lab temperature does not necessarily change the
output power, but can influence the spatial shape and pointing sta-
bility of the output beam, which degrades the transmission through
the subsequent fiber coupling of the laser source to the TOF setup.
Regardless of which of the two caused the LO power to decrease, the
net effect is the same, namely to cause a decrease in the detection
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Figure 13.9.: Time drift of the total detection noise. Each point is a 9.75 µs time av-
erage of the total detection noise in a single measurement consisting
of 200 consecutive experimental runs until measurement number 37,
whereafter only 100 runs in each measurement were executed, hence
the larger errorbars. The x-axis marks the measurement number of
each point and can be used as a proxy for the time at which the mea-
surement were acquired. The vertical dashed line at measurement
number 67 indicates where the LO power starts to drift towards lower
optical power.

efficiency. The total noise of the last five points were obtained after
fiber couplings for both the LO and the probe were re-optimized.

The measurements up until number 67 (vertical dashed line) are used
to give another estimate of the error of the total noise, and a statis-
tical average yields δi2 = (21.3± 0.2) · 10−4 V2 in good agreement11

with what we found for the reference measurement of the total noise,
which belongs to the same data set, see Fig. 13.8.

13.6.2 But is it shot noise limited?

In order to estimate if the total noise is shot noise limited, we consider
yet again the data shown in Fig. 13.6(b) and Fig. 13.7. The maximum
point, withR = (5.0± 0.8)%, corresponds to nph = 2.9± 0.5 detected
photons12 on average over 50 experimental runs within the τ = 96 ns

11 Note, that it is the std that are now used in the assignment of the uncertainty on the
total noise, since we want to compare with that found in the individual measure-
ments.

12 The detected number of photons within a sample time of τ is seen from Eq. (13.4) to
be given by

nph =

∣∣ 〈 i
〉 ∣∣2 − | δi |2

δi2 − δi2en
. (13.6)
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coherent averaging time. From this, the relative measurement error
is found to be 0.5/2.9 = 16 %. In total, 2.9× 50 = 147 photons were
detected during the whole measurement, which should result in a
relative error of

√
147/147 = 8 % if the detection is shot noise limited.

The relative measurement error is thus found to be twice as high as
that expected from the shot noise limit.

In general, a factor of 2 discrepancy is found in all our measurements,
although it is slightly smaller for higher reflectances. To exclude that
the difference arises from the temporal structure of the reflectance
peak, fluctuating atom number or the like that could cause a noisier
signal than expected from the shot noise contribution, the finding has
been verified using the calibration signals shown in Fig. 13.5.

Nevertheless, we will apply Eq. (13.4), and thus use the shot noise
limited extraction of the reflected power off the atomic Bragg mirror,
together with Eq. (13.3), for the remaining results on the reflectances
presented in this thesis.
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R E F L E C T I O N O F F U N S T R U C T U R E D AT O M S

We have already demonstrated that we can have at least 5 % of light
reflected of the atomic crystal with a Bragg grating burned onto it.
But how much light would we actually collect from an unstructured
ensemble? In this chapter, this question in answered by consider-
ing the experimental results from measurements with unstructured
atoms and compare these to measurements with periodically struc-
tured atoms.

In Fig. 14.1 the recorded reflections from an unstructured (blue) and
Bragg structured (red) atomic ensemble in the TOF-based dual-color
dipole trap is shown. By applying Eq. (13.4) and Eq. (13.3), both
signals have been converted to reflectances, for which reason the elec-
tronic noise and the detection total noise traces are not shown. The
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Figure 14.1.: Reflectance off the atomic crystal sampled over 96 ns and using a
150 pW probe tuned 8 MHz above resonance. Blue: Reflectance off
unstructured atoms, average over 250 experimental runs. Red: Re-
flectance off (dark scheme) structured atoms, average over 200 experi-
mental runs. Inset: time zoom of the high reflectance peak. Note, that
the time axis has been shifted such that the zero point coincides with
the onset of the probe, but the timing sequence remains the same, cf.
Fig. 13.5.

blue signal for the unstructured ensemble is seen observed to ran-
domly distributed around R = 0 over the whole time trace1. Even

1 Obviously, a reflectance cannot be zero. This is simply an artifact from subtracting
the total detection noise from the signal. What it means then, is that this signal is
completely buried in the noise floor.

167
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from the time zoom near the probe onset time at t = 0, no reflectance
of the randomly distributed atomic ensemble is observed. This is in
accordance with the very weak reflection off an unstructured atomic
ensemble, confined in a trap similar to ours, that were reported in
[Reitz et al., 2014]. Here they observed (using an SPCM) only a few
picowatt power reflection from . 103 atoms, when probing with the
same optical probe power that we use here, Pprobe = 150 pW. Such
low powers can only be measured in our setup when using a long
integration time.

For this reason, we show in Fig. 14.2 a time trace of the power re-
flection off an unstructured ensemble containing ∼ 1300 atoms. The
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Figure 14.2.: Purple data points: Reflected power from unstructured atoms as a
function of time, using a 140 pW probe tuned 8 MHz above atomic
resonance. Each point is an average over 1900 MOT loadings sampled
over τ = 96 ns, and afterwards time averaged over 960 ns. The er-
rorbars are given by the statistical one-sigma uncertainty from this
last time average. Yellow (Red) lines: Statistical mean (solid) and 1
std uncertainty band (dashed) over the data points measured before
(after) the probe is turned on at t = 9.8 µs. The measurement were
also performed with a resonant probe giving similar results, see Sec-
tion F.4.

timing sequence is the same as in the previously shown figures, for
example see Fig. 13.5: The probe in on for the first 3.7 µs where it
is turned off while the atoms are optically pumped from |3〉 to |4〉,
after which the probe is turned on again at t = 9.8 µs (black vertical
dashed line). The data has been collected from 1900 MOT loadings,
and yet the reflected power, observed after t = 9.8 µs, is barely distin-
guishable from the initial reference points. Before t = 9.8 µs the re-
flected power is measured to be on average zero (yellow lines for the
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mean and uncertainty band) as expected2. After t = 9.8 µs the light
reflected off the atoms are observed to be only on the sub-picowatt
scale, and results in a reflectance of only Runstruct = (0.10± 0.01)%
for the 140 pW probe used here3. This yields a contrast between re-
flection of a Bragg structured and unstructured atomic ensemble of
Rstruct/Runstruct = 112± 15, withRstruct = (11.6± 1.1)% for the max-
imum atomic mirror reflectance observed in Fig. 14.1.

2 Note, that most of these points have actually be obtained when the probe is off,
but as evident from the data, it does not make any real difference whether they are
included or not.

3 It would have been beneficial to use a higher probe power for this measurement, but
the data presented here were initially taken with for a different purpose where a
weak probe were acquired.
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C R E AT I N G A N E F F I C I E N T M I R R O R
– A H I K E I N PA R A M E T E R S PA C E

In the following sections, we show and discuss how we have op-
timized the reflectance of the dark scheme atomic mirror, cf. Sec-
tion 12.2.2, by varying the different experimental knobs available in
the lab. As it turns out, the parameter space is humongous, and hence
took quite a while to explore, although we only managed to cover in
detail a small fraction of it.

The four parameters we shall discuss are the optical power of the
probe Pprobe, the probe detuning δprobe with respect to the |4〉 → |5′〉
transition, the optical power of the SW structuring pulse Pstruct, and
the frequency of the structuring pulse given in terms of its detuning
δstruct from the |4〉 → |3′〉 hyperfine transmission, cf. Fig. 12.6. Unless
stated otherwise, the pulse length of the Bragg structuring was set to
tstruct = 250 ns in all the measurements.

15.1 probe power

We start by considering the probe power. In Fig. 15.1 three different
data sets is shown for the number of detected photons nph, sampled
within a detection window of τ = 96 ns. The parameters1 for the
three remaining and fixed experimental knobs are displayed in Ta-
ble 15.1.

All three2 data sets are clearly observed to saturate with increasing
probe power, and accordingly fitted by a simple saturation model:

f (Pprobe) = n∞
ph

(
1− e−Pprobe/Psat

)
, (15.1)

1 All the reflection signals presented in the thesis have been obtained by analyzing
along the same polarization orientation as the probe beam, i.e., along the WCA apart
from the May 23 data set presented here for which the analyzer WPs were oriented
along the SCA. For the saturation of the reflection signal with the probe power,
this has only an negligible effect since the effective scattering cross section for π-
light is very similar for a homogeneous Zeeman level distribution compared to the
steady-state distribution for π-light. This means that Zeeman pumping due to the
probe will not markedly change the transition strength and corresponding saturation
power. Also cf. Table 8.1.

2 It is a bit hard to claim this for the blue data set, without a data point further out.
However, there is no reason to believe that it should not saturate like the two other
data sets.
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Figure 15.1.: Detected number of photons nph within a sample time of τ = 96 ns.
The experimental parameters used in each data set are given in Ta-
ble 15.1.

parameters may 23 2015 jun 5 2015 jul 1 2015

δprobe [MHz] 0 −5 +8

Pstruct [nW] 150 200 250

δstruct [MHz] +140 −175 −175

(n∞
ph, Psat) [(1, pW)] (8.7, 730) (13.7, 550) (12, 1400)

Table 15.1.: Experimental parameters belonging to the data shown in Fig. 15.1. The
probe (structuring) detuning δprobe (δstruct) is given with respect to the
|4〉 → |5′〉 (|4〉 → |3′〉) transition. Pstruct refers to the optical power
in a single arm of the SW structuring pulse.

using two free parameters: n∞
ph for the saturated number of photons

that gets detected, and the effective power Psat at which the reflection
saturates. The fitted parameters are listed together with the experi-
mental parameters in Table 15.1.

It is no surprise that the reflected power is observed to saturate with
increasing probe power. Having a finite excited state lifetime τatom =

γ−1 = (2π × 5.23 MHz)−1 = 30.4 ns, an isolated atom in free space
features a maximum scattering rate. As shown in Section 6.3, for
the always illustrative example of a two-level system, the population
in the excited state saturates at 50 % of the total population. This
will, of course, also limit how much light the atoms can scatter in the
backward direction.
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The fitted values for Psat in Table 15.1 are obtained with a phenomeno-
logical model different from the two-level atom case described earlier
in Eq. (6.31). It is, nevertheless, instructive to calculate the expected
Psat and see how it compares. Using an on-resonance OD per atom of
α0 = 0.5 %, inferred from an atom number measurement as described
in Chapter 11, results3 in Psat(δ = 0) = 750 pW, which is found to be
in very good agreement with the data set from May 23 2015.

However, as is already indicated by the distinctly smaller value for
the fitted Psat obtained with a probe detuned a linewidth from reso-
nance (June 5), both of the remaining two data sets compare poorly
to Psat(δ = 2π × −5 MHz) = 3.6 nW and Psat(δ = 2π × 8 MHz) =

7.9 nW, respectively. Neither inhomogeneous broadening nor a global
line shift fully explain the observed values. From Table 15.1 the pa-
rameters used for the structuring power are quite different for the
last two data sets compared to the first data set, especially δstruct. For
δstruct = 140 MHz, the structuring pulse sits between the |4〉 → |3′〉
and the |4〉 → |4′〉 transitions, whereas δstruct = −175 MHz places
the structuring pulse below the (forbidden) |4〉 → |2′〉 transition and
thus more than 30 linewidths from the nearest allowed dipole transi-
tion |4〉 → |3′〉, cf. Fig. 7.1 for the Cs level diagram. The red-detuned
structuring pulse can thus cause an alteration of the trap potential
due to the induced inhomogeneous AC Stark shift of the atoms. This
pulls the atoms toward the TOF into a higher coupling region with
the probe, which can effectively lower the saturation power. We will
return to the influence of the AC Stark shift from the structuring pulse
later in Chapter 20.

As a final remark, we point out that for optimizing the overall re-
flectance of the atomic Bragg mirror, the probe should be in the linear
saturation regime. From Fig. 15.1 this means that Pprobe should not
be chosen any higher than a few hundred picowatt.

15.2 probe detuning

We now consider how the reflectance varies with the probe detun-
ing δprobe, shown in Fig. 15.2 for three data sets with experimental
parameters according to Table 15.2. A clear double-peak structure
is visible in all three data sets, with maxima observed to be 1 to 3
linewidths away from atomic resonance. This result can be explained
by the presence of delocalized atoms in the 1D atomic mirror string.
In order to understand this, it is instructive to first consider the influ-
ence of the necessary formation of a SW along the atomic crystal by
the counter-propagating incident probe and back-scattered fields.

3 These values refer to probing along the WCA on the |4〉 → |5′〉 transition.
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Figure 15.2.: Reflectance as a function of the probe detuning δprobe with respect to
the |4〉 → |5′〉 transition. time bin of τ = 96 ns. The experimental
parameters used in each data set are given in Table 15.2

parameters may 23 2015 jun 8 2015 jun 9 2015

Pprobe [pW] 380 150 140

Pstruct [nW] 150 200 200

δstruct [MHz] +140 −175 −175

Table 15.2.: Experimental parameters belonging to the data shown in Fig. 15.2. The
structuring detuning δstruct is given with respect to the |4〉 → |3′〉
transition. Pstruct refers to the optical power in a single arm of the SW

structuring pulse.

By employing the transfer matrix formalism, Slama et al. [2006] found
that the in the case of perfectly positioned atoms, fulfilling the Bragg
condition Eq. (12.12), the SW nodes will adjust such as to coincide
with the atomic locations. This effectively suppresses the absorption
and allows the probe to propagate further into the atomic sample,
which in return increases the number of contributing scatterers to the
coherent back-scattering. The reflection spectrum for this scenario is
simply a Lorentzian with maximum reflection for a resonant probe
coupled strongly to the atoms [Le Kien et al., 2014].

When delocalized atoms are present, diffuse scattering becomes promi-
nent and hence increases the absorption. As a consequence, the pen-
etration depth of the probe into the sample reduces drastically and
lowers the number of active scatterers. This can be circumvented by
tuning the probe slightly off resonance. Thus reducing the coupling
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to the atoms, the probe can propagate further into the sample and ac-
cordingly interact with more atoms which add more contributions to
the Bragg reflected fields [Birkl et al., 1995]. This description fits very
much with what we observe in Fig. 15.2: Starting from δprobe = 0, the
reflectance is at first only observed to increase when moving away
from resonance. At some point, the coupling becomes too low for the
probe to effectively scatter off the atoms and it is no longer beneficial
to detune it any further.

As evident from Table 15.2 the structuring pulse is detuned by tens
of linewidths from atomic resonance. This necessarily introduces a
phase mismatch between the probe and the Bragg structure imprinted
on the atoms. To estimate the effect of this we consider the relative
wavelength difference between the probe and the structuring given
by ∆λ/λ = (λ/c)∆ν = 5 · 10−7. The two waves thus dephases over
a distance of a meter. Compared to the sample length of about a
millimeter any effects due to phase mismatch can safely be neglected.
This also means that the reflection spectrum should be symmetric
around atomic resonance, as verified by the data in Fig. 15.2.

15.3 structuring frequency

We next consider how the reflectance depends on the chosen fre-
quency of the structuring pulse. From the Bragg condition Eq. (12.12)
it is expected that the frequency should be matched to that of the
probe. Of course, in order to ensure that the whole (optically thick)
ensemble is equally pumped, it is necessary to detune the structuring
pulse from atomic resonance. Here, a rule of thumb is to choose a
detuning that correspond to an OD equal to one, where about 37 % of
the light makes it through the sample, cf. Section 6.5. From Eq. (6.30)
we find that if we have Natom = 1000 atoms and an on-resonance OD

per atom of α0 = 0.5 % a detuning of one linewidth gives d = 1 for
the OD. This is, however, not the full story.

When optically pumping atoms from |4〉 to |3〉 with π polarized light,
cf. Section 12.2.1, there is inevitable some challenge in choosing a
detuning of the pump beam that couples all the Zeeman levels in
|4〉 more or less equally to the excited states. Noteworthy are the
forbidden dipole transition |4, 0〉 → |4′, 0′〉 and the stretched levels
|4,±4〉 which do not couple to |3′〉. A more homogeneous coupling of
all levels can be achieved by tuning midway between the two excited
state transitions. Starting at δstruct = 2π × 100 MHz we performed an
absorption measurement of the atoms, and adjusted Pstruct until we
found a setting where about half of the atoms were pumped out of
|4〉. From these initial settings of δstruct and Pstruct the search for an
optimized setting, i.e., yielding a higher reflectance, started.
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parameters apr 23 2015 jun 4 2015 a ,b jun 5 2015

Pprobe [pW] 950 420 400

δprobe [MHz] 0 0,+5 +5

Pstruct [nW] 40 200 200

tstruct [µs] 0.5 0.25 0.25

Table 15.3.: Experimental parameters belonging to the data shown in Fig. 15.3. The
probe detuning δprobe is given with respect to the |4〉 → |5′〉 transition.
tstruct is the duration of the structuring pulse. Pstruct refers to the
optical power in a single arm of the SW structuring pulse.

The data presented in Fig. 15.3 illustrates the search in parameter
space along the structuring pulse detuning direction. The cluster
of red triangular points between 50 MHz and 160 MHz is where we
started exploring the dark scheme. Here we take a halt and caution
the reader that the probe power used in these measurements was
saturating the atoms in order to have as much back-scattered light
as possible. This means that the reflectances for this data set look
substantially worse compared to the two other data sets, than if the
detected power would have plotted instead. For a fair comparison
(same effective probe saturation) the April 23 data should be scaled
up by a factor two.

Keeping the detuning of the structuring pulse within the two excited
states |3′〉 and |4′〉 a local maximum at δstruct = 140 MHz for the most
optimal setting with respect the reflectance is found. We worked
with this setting for a while, until we, by sheer coincidence4, became
aware of the existence of a more favorable value for δstruct. This made
us extend the search for a new frequency setting of the structuring
detuning, that soon after ended several linewidths red-detuned to
both the excited states at δstruct = 2π×−175 MHz. The blue-detuned
side has not been explored (due to time constraints)5.

4 The frequency lock of the structuring laser had not been activated and after a while
the laser mode jumped from its initial position, with δstruct = 140 MHz, to another
(unknown) frequency, at which point we suddenly measured twice the reflection
signal that we had ever observed.

5 The red-detuned side was chosen because the structuring field is derived from the
+1st order mode of an AOM, and we wanted to prevent (potential resonant) leakage
from the 0th order mode that distorts the loading into the dipole trap.
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(b) Zoom in of the high reflectance data in (a).

Figure 15.3.: Reflectance as a function of the detuning δstruct of the SW structuring
pump with respect to the |4〉 → |3′〉 transition. The sample time is
τ = 96 ns. The experimental parameters used in each data set are
given in Table 15.3.

15.4 structuring power

Finally, we have reached the fourth experimental knob, namely the
optical power of the structuring pulse Pstruct. In Fig. 15.4 we present
how the reflectance varies with Pstruct. Although, the two data sets do
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not display the same reflectances6, they are very similar in shape and
peak near the same structuring power at Pstruct = 200 nW. Although,
it is a bit hard to tell if the yellow data set actually peaks at slightly
higher powers. The dependence of the reflectance on the structuring

parameters jun 3 2015 jun 9 2015

δprobe [MHz] +5 +8

Pprobe [pW] 390 140

δstruct [MHz] +140 −175

Table 15.4.: Experimental parameters belonging to the data shown in Fig. 15.4. The
probe (structuring) detuning δprobe (δstruct) is given with respect to the
|4〉 → |5′〉 (|4〉 → |3′〉) transition.

power can again be understood by a qualitative description of the dy-
namics of the trapped atoms. As we found for the dependence with
the probe detuning, the key element is again delocalized atoms. Be-
fore any structuring, the atoms are randomly spaced with respect to
the pitch required for efficient Bragg scattering. For a weak structur-
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Figure 15.4.: Reflectance as a function of the optical power in a single arm of the SW

structuring pulse. The sample time is τ = 96 ns. The experimental
parameters used in each data set are given in Table 15.4

ing pulse, and thus a weak pump efficiency, it is not hard to imagine
that there will be a substantial fraction of the atoms left in the wrong
spots along the atomic crystal. With only a few atoms removed at

6 It is tempting to again say that this is due to the higher probe power used for the blue
data set than for yellow, but here we caution the reader to also take the saturation
curves for the probe power into account (Fig. 15.1).
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the antinodes of the SW structuring pulse, the Bragg condition will
be somewhat meet, but only to a small extend, also cf. Fig. 12.7 and
Eq. (12.13). So, cranking up the structuring power should remove
more atoms from the sites contributing to the destructive interference
of the back-scattered waves.

Besides the degree of localization, the number of scatterers of course
also enters into the amount of reflected light. This explains why the
reflectance does not continue to rise with Pstruct, since at some point
there will simply be too few atoms left.
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T E M P O R A L D Y N A M I C S I N T H E R E F L E C T I O N

In Chapter 13 it became clear that the system poses a lot of rich dy-
namics. Here the lifetime of the atomic Bragg mirror reflectance and
its partial revivals are analyzed by considering the dynamics of the
atomic wave packets confined in the TOF-based dual-color dipole lat-
tice trap.

16.1 atomic motion

The attenuation of Bragg peaks caused by thermal atomic motion are
described by the Debye-Waller factor [Birkl et al., 1995]:

fDW(t) = e−K2σ2
z (t) , (16.1)

where K = 4π/λTOF
probe is the momentum transfer in a single back-

scattering event with respect to an incoming photon, and σz is the
position spread of the atomic wave packet along the propagation di-
rection. The Debye-Waller factor was originally introduced in crys-
tallography as a tool to describe and explain the attenuation of x-ray
or neutron coherent scattering peaks caused by thermal vibrations in
the crystal lattice [Kittel, 2004]. Since atoms confined in an optical lat-
tice poses a strict periodic structure much like a crystallized solid, it
was suggested by [Deutsch et al., 1995] that the former system should
also display Bragg scattering, but now for optical radiation matched
to the much larger length scale given by the wavelength of the lattice
beams. This was soon after experimentally confirmed for a three-
dimensional (3D) optical lattice in [Birkl et al., 1995], where they also
showed that the strength of the Bragg peaks can be parameterized
by the temperature of the trapped atoms and thus described by the
Debye-Waller factor. Since then, Bragg scattering has been used as
a tool to study the properties of optical lattices, for example, to es-
timate the trap temperature and the extension of the bound atomic
wave packets [Weidemüller et al., 1998; Slama et al., 2005].

16.1.1 Spatial spread of the atomic wave packet

In order to apply the Debye-Waller factor, Eq. (16.1), for the reflectance
lifetime, it is necessary to know the time-dependence for the spread
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of the atomic wave packet σz(t) confined in the dual-color lattice
trap. In Fig. 13.3(a) the reflectance was observed to decay to zero
in about a microsecond. This is much faster than a full trap oscilla-
tion1 ωtrap ≈ 2π × 100 kHz [Vetsch et al., 2010; Goban et al., 2012],
which allows us to approximate the time evolution of σ2

z (t) as free
ballistic expansion:

σ2
z (t) = σ2

z (0) +
σ2

p

m2 t2 , (16.2)

where m is the atomic mass and σp is the momentum spread of the
wave packet. Under the assumption that the trap sites can be de-
scribed as isotropic harmonic oscillator potentials, the momentum
spread for a thermal state with temperature T is given by

σ2
p

m2 =
h̄ωtrap

2m
coth

h̄ωtrap

2kBT
≈ kBT

m
, (16.3)

with kB denoting the Boltzmann constant. The second approximate
follows the assumption h̄ωtrap/2kBT � 1, and is valid for T & 10 µK.
The expected temperature of the trapped atoms is generously bounded
from below by the recoil temperature (0.2 µK), and a conservative up-
per limit is given by the depth of the trap potential (270 µK). The
approximation is thus valid within a broad range between these lim-
its.

16.2 decay time constant

In Fig. 16.1 the temporal decay of the data presented in Fig. 13.3(a) is
fitted by the generic function for the Debye-Waller factor

fDW(t) = fDW(t0)e−(t−t0)
2/2τ2

DW , (16.4)

with the characteristic time constant

τDW =
λTOF

probe

4π

(
m

2kBT

)1/2

, (16.5)

and t0 being the time delay between the end of the structuring pulse
and beginning of the probing. The delay time to be used in the
formula is limited to positive values. In the experiment it is impor-
tant to take possible delay times between digital control signals and

1 Recently, one of our Master students Kilian Kluge together with Jean-Baptiste
Béguin, estimated the radial trap frequency to be 82 kHz: By turning the red trap
off for 0.5 µs the atoms receive a radially outward push from the repulsive blue trap.
Still confined in the potential well, the atoms are now sloshing in the radial direction.
This is done while performing a dispersive measurement. On the measured phase
shift, a damped oscillation is observed from the change in the light-atom coupling
strength due to the atomic motion, with frequency corresponding to the radial trap
frequency.
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the controlled action (here the structuring pulse power) into account
properly. Due to these delays for the data shown in Fig. 13.3(a) the
structuring pulse actually extends 0.2 µs into the probing time inter-
val. The main influence of the overlap between the structuring pulse
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Figure 16.1.: Zoom in of the same data as shown in Fig. 13.3(a) for the detected
light reflected off the atomic Bragg mirorr. Dotted line indicates the
end of the structuring pulse. Dashed lines mark the beginning and
end of the data to be fitted. The time axis has been shifted by 6.67 µs
such that the zero point coincides with the onset of the probe.

and the probe, seems to be a slow initial rise of the probe instead of
the 80 ns rise time we mentioned earlier. For the fit procedure, we do
therefore not start the fit at t = 0.08 µs, but slightly later, at t = 0.29 µs
(dashed line), when the maximum reflection is reached. As free pa-
rameters fDW(t0) and τDW are used, while we set t0 = 0.2 µs.

Strikingly, the fitted time constants for the two curves are found to
be nearly identical. For the yellow data, obtained with the noisy blue
trap, the fit yields τDW = (0.91± 0.04)µs, while the fit of the purple
data, for the quiet trap, yields τDW = (0.90± 0.02)µs. Since, τDW is
directly related to the temperature of the trapped atoms, this suggest
that the main effect of a blue trap with substantial intensity noise is
to decrease the number of trapped atoms, and thus the number of
contributing scatterers for the Bragg reflection.

The fitted time constants yields for the temperature of the atomic
wave packets: T = (34± 3)µK and T = (35± 2)µK for the noisy and
quiet blue trap signal traces, respectively. This is about eight times
lower than the trap well depth of 270 µK, and thus a reasonable result.

For the remaining part of the thesis, only data with no mismatch be-
tween programmed and implemented timing of the structuring pulse
will be considered.



184 temporal dynamics in the reflection

In Fig. 16.2 we present a histogram of the characteristic time constant
τDW, acquired by fitting several reflectance signals varying in strength
with Eq. (16.4). The measurements were conducted over two days and
are accordingly divided into two different data set. Both data sets are
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Figure 16.2.: Histogram of τDW for two different data sets with t0 = −0.3 µs, i.e.,
the structuring pulse ended 0.3 µs before the probe were turned on.
The green data set corresponds to the one shown in Fig. 15.2 and the
blue to that shown in Fig. 15.4.

seen to yield consistent values for τDW distributed around the same
statistical mean value with overlapping errors, see figure legend.

In Section 16.3 below, it will become evident that the blue data set
have several entries with very low reflectances, for which the fitting
procedure are less robust. This might explain the broader distribu-
tion observed for the this data set than for the green, which we, in
Section 15.2, shall see only consists of reflectances higher than 3 %.

It is reasonable to conclude that the trap quality is stable2 for both
data sets presented here, resulting in trap temperatures of T = (35± 3)µK
and T = (38± 1)µK for the blue and green data set, respectively.
These results are in agreement with those reported in [Vetsch et al.,
2012] and [Reitz et al., 2013] working on a setup similar to ours: By
comparing the initial number of atoms trapped in Umin = kB× 400 µK
deep potential wells, to the number of atoms remaining in the trap
after the potential is adiabatically lowered to a new depth (done by re-
ducing the optical power of the red trapping field), Vetsch et al. [2012]
infer the initial temperature of the atoms to be T = (29.8± 0.9)µK. In

2 In the sense, that the temperature of the trapped atoms are consistently the same
for different data sets. As we saw in Fig. 16.1, we stress, that one should be careful
about not interpreting this as also implying that the loading rate into the dipole trap
is stable.
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[Reitz et al., 2013], a reported value of T = (71± 4)µK was extracted
as a fit parameter when modeling experimentally observed Ramsey
fringes and Rabi oscillations between two atomic ground states coher-
ently driven by microwave radiation.

The lifetime of the reflectance observed here is also in accordance
with that previously reported in [Birkl et al., 1995] using a 3D free-
space optical lattice. In their experimental configuration, the optical
lattice constant were tuned very close to atomic resonance, only about
5 linewidths below the |4〉 → |5′〉 transition in Cs. The atoms are thus
spatially confined in a Bragg fulfilling structure to begin with. To
avoid wave mixing between the probe and the lattice beam mediated
by the atoms, they turn off the optical lattice immediately before prob-
ing. With the atoms no longer spatially confined, ballistic expansion
takes place allowing them to perform an analysis of the reflectance
lifetime similar to what we have presented here.

16.3 initial reflectance

Let us now consider the other fit parameter, fDW(t0). We recall, that
this fit parameter yields the Debye-Waller factor for the system, right
after the structuring of the atomic ensemble into a Bragg grating has
ended. Choosing the onset time for the probe as the zero point for the
time axis, and taking the peak time of the reflectance tpeak = 0.2 µs
into account3, the maximum reflectance to be measured according to
the fit can be evaluated as4

fDW(t = tpeak) = fDW(t0)e−(tpeak−t0)
2/2τ2

DW , (16.6)

where t0 = −0.3 µs is the time where the structuring stopped. Ap-
plying Eq. (16.6) to the same data set resulting in the blue histogram
in Fig. 16.2, we obtain the purple points in Fig. 16.3, shown together
with the corresponding (yellow) data points for the maximum ob-
served reflectances, acquired by applying Eq. (13.4) and Eq. (13.3)
to the maximum point of the measured signal. Evidently, the re-
flectances extracted from the Debye-Waller fit and the peak value of
the observed reflection signal tend to agree very well with each other
and overlap within the errorbars. There are, however, also some dis-
crepancies. For reflectances below 4 % the purple points are always
observed to be lower than the yellow points. This can be understood
by considering the reflection signal for these low reflectance points.

3 tpeak is thus also the time at which the fit is started.
4 The Debye-Waller factor is of course a dimensionless quantity, but since we apply

the fit to data given in units of V2, fDW of course takes on the same dimension.
Afterwards, the procedure described in Section 13.5, can be applied to get fDW in
terms of reflectance.
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Figure 16.3.: Difference between the reflectance inferred from the Debye-Waller fac-
tor fit fDW(t0) (purple points), and the maximum experimentally
observed value (yellow points). The data are the same as shown in
Fig. 15.4 and used for the blue histogram in Fig. 16.2. The errorbars
on the purple points are given by the one-sigma fit uncertainty, while
the errorbars on the yellow points are the one-sigma uncertainty from
the statistical averaging over 200 experimental realizations with an
added contribution from a 5 % power fluctuation of the probe.

As an example, we take a closer look on the reflection signal ob-
tained with Pstruct = 1210 nW, shown in Fig. 16.4. Here the peak
reflectance yields Rpeak = (1.6± 0.5)%, whereas the one extracted
from the Debye-Waller fit yieldsRDW = (0.9± 0.2)%. The yellow sig-
nal trace is observed to be almost completely hidden in the detected
noise given by the blue trace. With squeezed eyes and knowing what
to look for a very small bump is barely visible at tpeak right after
the probe is turned on. However, it is not higher than the fluctuating
point of the total noise observed near t = −8.5 µs, and as such it is not
possible to claim any reflectance for this low resolution signal. This
is a prime example, that one should always be critical about claiming
a signal and make sure to also study the “raw” signals. For such a
low signal the fit actually yields a much more reasonable result. Since
there is essentially no structure to fit, it simply gives an almost flat
line. In this respect, if working with very low reflection signals, we
are better off using the fitted values of the Debye-Waller factor, which
takes the whole structure into account and not just a single point.

It is interesting to note that the Debye-Waller fit also gives access
to what we should measure, if the probe could be started exactly
after the structuring pulse had ended. For the highest reflectances in
Fig. 16.3, reaching 9 %, the fit parameter fDW(t0) is found to be two
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Figure 16.4.: Reflection signal measured for the point with Pstruct = 1210 nW in
Fig. 16.3. The electronic noise trace has been omitted for visual clarity.
Other experimental parameters: Pprobe = 140 pW, δprobe = 2π ×
8 MHz with respect to the |4〉 → |5′〉 transition, and δstruct = 2π×
−175 MHz with respect to the |4〉 → |3′〉 transition.

percentage points higher, and thus more than 10 % of the incident
probe is reflected off the atomic Bragg mirror.

16.4 probe influence

Even though we have seen that the Debey-Waller fit yields consistent
values for the temperature of the trapped atoms with those reported
in the literature [Birkl et al., 1995; Vetsch et al., 2012; Reitz et al., 2013],
and as such reveals a good explanation for the rapid decay of the re-
flectance that we observe, it is good scientific practice to perform ad-
ditional checks. Could the probe, for example, induce heating out of
the trap? It is unlikely on this time scale, but to be sure, we performed
a series of measurements for increasing delay between the structuring
pulse and the probe, as shown in Fig. 16.5. If the reflectance lifetime
is mainly dominated by an influence of the probe, the peak height
if the reflection signal is not expected to change significantly by de-
laying the probe further with respect to the structuring pulse, and as
such the whole reflection structure should just simply be delayed.

This is not the case in Fig. 16.5. Instead, the delayed reflection signals
are observed to follow the blue curve, which is the Debye-Waller fit to
the first (black) reflection signal. Evidently, the probe can only have
a negligible effect on the temporal shape of the reflected light, that is,
the dephasing of the imprinted Bragg grating.
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Figure 16.5.: Result of the reflection measurements with delayed probe pulse. The
uncertainty band is omitted for visual clarity, and the curves are nor-
malized to the peak height of the first (black) curve. Each curve is
an average over 100 consecutive experimental runs obtained for a
150 pW on-resonant probe and sampled over τ = 192 ns. Corre-
sponding data showing the transmitted power is given in Fig. F.5.

16.5 but why does it decay?

One could justifiably ask why the reflection signal decays in the first
place. After all, the atoms are still confined in the conservative trap
potential after structuring. In order to answer this question, we refer
back to Section 12.2.1, specifically to Fig. 16.6. We recall, that the
atoms are confined at the anti-nodes, or equivalently, at the intensity
maxima of the red trap. For the dark scheme, atom sitting in the low
intensity regions of the λstruct = 852 nm SW structuring pulse, are left
in the |4〉 state.

Let us consider, what could happen for an atom located at the trap
site near z = 1000 nm in Fig. 16.6. It will not spend all its time ex-
actly at the trap minima, but oscillates back and forth in the potential
well with the trap frequency. If it appears to be located close to the
right edge at the time the structuring pulse is turned on, it will be ex-
posed to a higher intensity of the structuring pulse, than if it would
instead had been making a turn at the left edge of the trap site. As
such, all the surviving atoms in |4〉 actually becomes highly localized
within the trap sites. Or put in another way, the atomic wave packets
become squeezed in their spatial coordinate, much more than what
they already are from being confined in the potential wells. When the
structuring pulse is turned off again, a localized atomic wave packet
will start to dephase back to a state with a broader spatial extension,
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Figure 16.6.: Intensity distribution along the fiber axis of a quasi-linear HE11 SW

mode field. Calculated for the parameters nco = 1.4469, ncl = 1,
a = 250 nm, x = 0, y = 442 nm.

while continuing sloshing in the well, and thus moving in and out of
a high coupling region with the probe.

16.5.1 Partial revivals

For a perfect simple harmonic oscillator potential, where an atomic
wave packet rotates uniformly in phase-space, a full revival of the re-
flectance would have been expected. Clearly, in the reflection signals
presented so far, only a fractional revival is present if at all. This can
be accounted for by the trap potentials being neither truly harmonic
nor isotropic. It is as such reasonable to assume that the atomic wave
packet will dephase back to a thermal state.

For the red reflection signal5 in Fig. 16.7, two revivals can be observed
to appear after roughly 4 µs and 11 µs of the probe onset at t = 0.
The peak reflectance of these small bumps are R = (2.6± 0.5)% and
R = (1.9± 0.6)%, respectively. The revival at 11 µs corresponds well
to a trap frequency of ωtrap = 2π × 100 kHz, which we previously
used for estimating the temperature of the trapped atoms. It is also
reasonable close to a radial trap frequency of ωρ = 2π × 82 kHz that

5 We point out that this is in fact our record signal, showing a high reflectance reaching
nearly 12 %.
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Figure 16.7.: Reflection signal with substantial revivals. Achieved with the exper-
imental parameters Pprobe = 150 pW, δprobe = 2π × 8 MHz, with
respect to the |4〉 → |5′〉 transition, Pstruct = 200 nW, δstruct =
2π ×−175 MHz with respect to the |4〉 → |3′〉 transition.

was recently measured in our setup [Kluge, 2015]. An axial trap fre-
quency of ωz = 2π × 315 kHz is calculated in [Vetsch et al., 2010] for
experimental parameters similar to ours, and would agree with the
revival appearing after 4 µs.
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M I R R O R Q U A L I T Y

Creating an atomic Bragg mirror by burning the spatial structure onto
the internal states of the atoms should allow for a versatile system
that can be turned on and off on demand. In this chapter we therefore
investigate the ability making more than a single realization of the
atomic spin grating with the same batch of atoms.

17.1 repeatable mirror

To see if the atoms can be restructured into a Bragg mirror after the
first reflection signal has faded out, we simply extend the timing se-
quence for the measurement. After the final yellow slot in Fig. 17.1,
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Figure 17.1.: Time sequence of a single experimental run. Green (red) curve is an
illustration of the transmitted (reflected) power (not to scale).

we turn off the probe again and add the three last slots, repumper,
structuring, probe, repeatedly to the sequence. In this way, atoms
that are pumped to the hyperfine level |3〉 by the first structuring
pulse are repumped to |4〉 and then structured again, after which the
probe is turned back on. In Fig. 17.2 we show the resulting reflection
and transmission signals of this looping sequence for periods of 8 µs,
20 µs, 40 µs and 60 µs. Quite disappointingly, the strength of the sec-
ond mirror reflection, Fig. 17.2(a), is always 3 to 4 times lower than
the first, and only for the 8 µs repetition time is it possible to resolve
the third reflection above the noise level. The conclusion must be that
the atoms are either badly structured or simply not there. If we con-
sider the transmission signal in Fig. 17.2(b), the latter argument seems
to be the case. As before, the first few microseconds are a reference
signal for the empty trap transmission. The looped transmission sig-
nal are observed to decay faster towards full transmission for shorter
repetition rates. This suggests, that either the Bragg preparation se-
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(a) Reflection signal.
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Figure 17.2.: Looping reflection and transmission signal. The uncertainty band
has been omitted for visual clarity. Each curve is an average over
50 consecutive experimental runs obtained with Pprobe = 150 pW,
δprobe = 8 MHz, Pstruct = 2× 200 nW, δstruct = 2π ×−175 MHz,
and using a τ = 496 ns running average.

quence or the probing causes the atoms to heat out of the trap. As
we have already verified, in Section 16.4, that the probe has negligible
influence on the decay of the reflection signal, it is the repumping or,
more likely, the structuring that is destructive.
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17.2 decay source

Following our findings in the previous section, we investigate here
the impact of the repumper and the structuring pulse on the mirror
quality. The idea is a follows: First, we delay the usual sequence
of repumper, structuring and final probing, i.e., the last three slots
in Fig. 17.1, by about 20 µs as seen in Fig. 17.3 where the reflection
and transmission signals now appear later than t = 0. For the blue
signal, this is it, and nothing has happened apart from an overall
delay. As such, this signal serves as our reference for the reflection
and transmission signal taken under these conditions (probe power
etc.).

Next, we add an extra single (3 µs as usual) repump pulse at t = 0,
to see whether this influences the signals or not. This is the yellow
signal and no difference with respect to the blue reference can be
observed. As a side remark, we note that this also confirms that the
3 µs repumping is sufficient to bring all the atoms from |3〉 to |4〉.
Adding now both the repumper and the structuring at t = 0, pur-
ple curve, amounts to prepare the atomic Bragg grating twice, but
without probing in between as in Fig. 17.2. Clearly, this substantially
degrades the reflection signal making it more than four times weaker
than the reference. Also, in transmission, a shortage in signal is ev-
ident. It becomes even more apparent when making a quick esti-
mation of the OD, where we have d ≈ ln(70/35) = 0.7 for the blue
reference signal and d ≈ ln(70/53) = 0.3. Since d ∝ Natom we find
that less than half of the number of atoms are contributing to the
purple signal as compared to the reference.

Finally, we also add the structuring pulse only at t = 0 (red curve). At
this point in time, all the atoms should be in |3〉, and the far-detuned
(9.2 GHz) structuring pulse is not expected to have any influence on
the atoms. From Fig. 17.3 this is indeed observed to be the case, with
this signal completely coinciding with the blue reference.

The only reasonably conclusion from all the signals in Fig. 17.3, must
be that the structuring pulse besides from shaping the atomic crys-
tal into a Bragg grating, also exerts a destructive fingerprint on the
atoms. Since we have seen that the rapid (∼ 1 µs) decay of the re-
flectance signal is very well described by the Debye-Waller factor, cf.
Chapter 16, the destructive impact of the structuring pulse occur over
a somewhat longer timescale. This would be consistent with a pull ex-
erted on the atoms from the dipole force induced by the red-detuned
structuring pulse.

If it is an attractive pull from the dipole force that distorts the long
term mirror reproducibility, it is relevant to ask why the atoms in |3〉
are not influenced (red signal in Fig. 17.3). From a quick estimation of
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(a) Reflection signal.
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(b) Transmission signal. Note the longer time axis compared to (a).

Figure 17.3.: Reflection (a) and transmission (b) signals off the atomic Bragg mir-
ror under the investigation of destructive influence from either the
repumper or structuring pulse. Uncertainty band has been omitted
for visual clarity. Each curve is an average over 50 consecutive exper-
imental runs obtained with Pprobe = 150 pW, δprobe = 2π × 8 MHz,
Pstruct = 2 × 200 nW, δstruct = 2π × −175 nW, and using a
τ = 496 ns running average.

the relative difference between the induced AC Stark shift of the two
ground state levels we find ∆E3/∆E4 ≈ 175 MHz/9.2 GHz = 0.02,
when using Eq. (5.29). The influence from the structuring pulse on the
9.2 GHz lower lying ground state |3〉 is thus two orders of magnitude
weaker as compared to the |4〉 level. In Chapter 20 a more in-depth
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analysis of the dipole force exerted by the structuring pulse on the
atoms is provided.





18
R E M A I N I N G F R A C T I O N O F AT O M S

We would like to compare our experimental results with a theoreti-
cal model. Here the transfer matrix approach offers a very flexible
platform for adding up all the field contributions from the individual
atoms as we shall see in Chapter 19. In the model, we need to assign
a pump probability of the atoms to be in either a dark or bright state
when probing them after structuring. In Section 12.2.2 this was given
as

pj
dark = e−ζ cos2(2πzj/λTOF

struct) , (18.1)

where we also showed that the parameter for the pumping strength
ζ, as provided by the structuring pulse, can be translated into the
survival fraction of atoms in |4〉, n4 via Eq. (12.15). In order to com-
pare our experimental findings with this model, we therefore need
to extract the fractional number of atoms left in |4〉 after the structur-
ing pulse. If the atomic sample is optically thin, this can be achieved
by measuring the relative OD between structured and unstructured
atoms. In the following we show how this is done in practice.

18.1 extracting the optical depth

In Section 13.4 we showed how the OD is extracted from the trans-
mission signal by the use of Lambert-Beer’s law. This now gives a
time-varying measure for the OD, whereas we are only interested in
extracting a single number. As seen below, there is a lot of dynam-
ics going on in the transmission signal after a structuring pulse. The
question arises, from which time interval during the measurement
we should extract the relative OD. Should it be the long-term behav-
ior, when the transmission signals are seen to settle towards a steady
value, or should it be the short-term value at the onset of the probing?
To be on the safe side, we did both.

We start with the linear fit of the long-term behavior of the OD. In
Fig. 18.1(a) four time traces is shown of the OD extracted from cor-
responding transmittance signal shown in Fig. 18.1(b). Each trace is
fitted by a straight line starting when the transmission signal has set-
tled at t = 13.25 µs (vertical dashed line), to the end of the signal. The
OD at the probe onset time is then simply extrapolated from the fit
parameters, marked as circular points on the linear fits in Fig. 18.1.
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Figure 18.1.: Sample transmittance (a) and optical depth (b) as a function of time
after probe onset. The traces are obtained for Pprobe = 140 pW,
δprobe = 8 MHz, Natom ≈ 1300, and four different powers of
the structuring pulse Pstruct: Green: Pstruct = 2 × 995 nW; Blue:
Pstruct = 2× 204 nW; Purple: Pstruct = 2× 87 nW; Red: no struc-
turing.

There is obviously a significant difference between the measured OD

at t = 0, compared to that inferred from the linear fit procedure.



18.2 absorption linewidth 199

To extract the short-term value for the OD at the onset time of the
probe (t = 0), we simply make a short 0.4 µs time average over the
data.

18.2 absorption linewidth

Since the OD, in the low saturation regime, yields the absorption pro-
file described by a Lorentzian, cf. Section 6.5, it is instructive to plot
the OD inferred from the two different methods as a function of the
probe detuning δprobe. This is shown in Fig. 18.2. For further compar-
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Figure 18.2.: Extracted OD d as a function of the probe detuning δprobe, for the
June 8 data set in Table 18.1. The data points have been obtained by
implementing three different methods as described in the text.

ison we have also added the inferred OD from a 0.4 µs time average
over the last points of the OD time traces.

data set parameters may 23 2015 jun 8 2015 jun 9 2015

Pprobe [pW] 380 150 140

Pstruct [nW] 150 200 200

δstruct [MHz] +140 −175 −175

Table 18.1.: Experimental parameters belonging to the data shown in Fig. 18.3.

It is noteworthy, that the long-term methods (purple and yellow points)
are symmetric around atomic resonance, whereas the short-term method
(blue points) are clearly observed to be asymmetric around δprobe = 0
with significantly higher ODs obtained on the red-detuned side.
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The behavior of the OD obtained by both the short-term and long
term methods is consistent over different experimental realization as
evident from Fig. 18.3.
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(a) Short-term OD for a 0.4 µs time average. Coherent time average is τ = 96 ns.

−30 −20 −10 0 10 20 30
Probe detuning δprobe [MHz]

0

1

2

3

4

5

O
pt

ic
al

de
pt

h
d

Data set 1
Data set 2
Data set 3

(b) Long-term OD from the linear fit procedure. Coherent time average is τ = 192 ns.

Figure 18.3.: Extracted OD as a function of the probe detuning δprobe. The experi-
mental parameters used in each data set are given in Table 18.1. Data
set 1: May 23 2015, Data set 2: June 8 2015, Data set 3: June 9
2015.

For the data set to be compared with the model, we performing oc-
casional reference measurements (about every 6th measurement) of
the OD of the unstructured atoms, denoted dmax, and uses the ra-
tio between the OD of structured ensembles and unstructured ensem-
bles, d/dmax as a proxy for the relative atom number n4 = N4/Natom.
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One of course has to be careful with this approach, since the lin-
ear relation between the OD and the total number of atoms Natom is
only valid for an optically thin sample. For an off-resonant probe at
δprobe = 2π × 8 MHz, the maximum (unstructured) OD is typically
found to be dmax ≈ 1, as evident in Fig. 18.2, and in this limit the
approach is thus justified.
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T H E O R E T I C A L M O D E L F O R T H E AT O M I C B R A G G
M I R R O R

In collaboration with our colleagues Ivan Iakoupov and Anders S.
Sørensen we have developed a theoretical model for the reflectance
off a 1D atomic ensemble, build upon the transfer matrix formalism
[Deutsch et al., 1995; Chang et al., 2012]. In the following we go
through the principles behind this model and discuss how it is nu-
merically implemented for an atomic ensemble structured by hyper-
fine pumping. Finally, we compare the model with our experimental
findings.

19.1 hamiltonian

To derive the reflection and transmission coefficients of the 1D TOF-
trapped atomic ensemble we model each atom as a two-level system,
see Fig. 19.1. To describe the light-atom interactions we use the fully

δ
|e〉

|g〉

zγTOF γTOF

γfree γfree

γ

Figure 19.1.: Light scattered off an effective two-level atom (left) into a TOF (right).

quantized version of the Hamiltonian given in Section 5.4. Only inter-
actions with TOF-guided modes are considered and the Hamiltonian
can therefore be simplified to 1D. For a single atom positioned at zj
along the TOF-axis we then have in the RWA:

Ĥ = h̄
(

ωeg − i
γfree

2

)
σ̂ee +

∫ ∞

−∞
h̄c|k|â†

k âk dk (19.1)

− h̄
∫ ∞

−∞

(
gegσ̂eg âkeikzj − g∗geσ̂ge â†

ke−ikzj
)

dk .

The first term concerns the energy of the unperturbed atom, cf. Eq. (5.6),
where we have included a non-Hermitian quantum jump operator to
account for losses from the radiative decay of the atom into all other
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channels than the TOF-guided mode. Since, we will keep track of
the decay into the TOF by measuring the reflection and transmission,
this is not a loss channel and should therefore not be included in the
dissipative term. We will use

γ = γTOF + γfree . (19.2)

to designate the total decay rate out of the exited state |e〉 with γTOF

and γfree accounting specifically for decay into the TOF and all other
modes respectively. The second term in the Hamiltonian yields the
energy of the isolated light modes, here written as a continuum. For
the frequency range of interest, we have assumed that a linear disper-
sion relation is valid such that ω(k) = c|k|. Finally, the third term
contains the light-atom interaction with

geg ≡ i
√

ωk

2ε0h̄V
µeg , (19.3)

used for the light-atom coupling of the dipole transition between the
two atomic levels.

When dealing with reflections off the atomic ensemble both left- and
right-propagating field modes will be present in the TOF. We there-
fore divide the annihilation and creation operators into two non-
interacting groups consisting of the left-going modes âleft,k and right-
going modes âright,k. Using these, we define two new field operators
for the annihilation of either a left- or right-propagating photon at
position z [Chang et al., 2007]:

Êleft(z) =
1√
2π

∫ ∞

−∞
âleft,keikz dk , (19.4a)

Êright(z) =
1√
2π

∫ ∞

−∞
âright,keikz dk , (19.4b)

which obey the commutation relations:[
Êleft(z), Ê†

left(z
′)
]
=
[

Êright(z), Ê†
right(z

′)
]
= δ(z− z′) , (19.5a)[

Êleft(z), Ê†
right(z

′)
]
=
[

Êright(z), Ê†
left(z

′)
]
= 0 . (19.5b)

With these definitions, and assuming g = geg to be real and indepen-
dent of frequency, we arrive at the final Hamiltonian (the derivation
can be found in Appendix H):

Ĥ = h̄
(

ωeg − i
γfree

2

)
σ̂ee (19.6)

+ ih̄c
∫ ∞

∞

(
Ê†

left
∂Êleft

∂z
− Ê†

right
∂Êright

∂z

)
dz

− h̄g
√

2π
∫ ∞

∞
δ(z− zj)(σ̂eg

(
Êleft(z) + Êright(z)

)
+ h.c.)dz .

Solving for the dynamics of the light and atomic operators we will
be able to arrive at expressions for the reflection and transmission
coefficients.
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19.2 reflection and transmission coefficients

The time-evolution for a general operator Ô under influence of a
Hamiltonian Ĥ can be obtained by using the Heisenberg equation
of motion [Sakurai, 1994]:

˙̂O =
1
ih̄
[
Ô, Ĥ

]
. (19.7)

From the Hamiltonian given in Eq. (19.6) we obtain the equations of
motion for the light operators1:(

1
c

∂

∂t
− ∂

∂z

)
Êleft =

ig
√

2π

c
δ(z− zj)σ̂ge , (19.8a)(

1
c

∂

∂t
+

∂

∂z

)
Êright =

ig
√

2π

c
δ(z− zj)σ̂ge . (19.8b)

Similarly, we find for the (coherence) atomic operator:

˙̂σge = −(iωeg +
γfree

2
)σ̂ge (19.9)

+ ig
√

2π
(
Êleft(zj) + Êright(zj)

)
σ̂gg

− ig
√

2π
(
Ê†

left(zj) + Ê†
right(zj)

)
σ̂ee ,

where we have made use of the commutation relations given in Eq. (5.14b).
In the low-saturation regime; s ≈ 0, and from the steady-state solu-
tion of the populations given in Eq. (6.16a), we have that most of
the population stays in the ground state. We can therefore approxi-
mate σ̂gg ≈ 1 and σ̂ee ≈ 0. In doing so, we also replace the quantum
operators by the complex-valued expectation values instead and so
Eq. (19.9) reduces to:

σ̇ge = −(iωeg +
γfree

2
)σge + ig

√
2π
(
Eleft(zj) + Eright(zj)

)
. (19.10)

Similarly, we then have for the wave equations of the left- and right-
guided TOF models, Eq. (19.8):(

1
c

∂

∂t
− ∂

∂z

)
Eleft(z) =

ig
√

2π

c
δ(z− zj)σge , (19.11a)(

1
c

∂

∂t
+

∂

∂z

)
Eright(z) =

ig
√

2π

c
δ(z− zj)σge . (19.11b)

Together with Eq. (19.10) these equations constitute the Maxwell-Bloch
equations and from their solutions we can derive the amplitude reflec-
tion and transmission coefficients, r and t, for a single atom. This is

1 Here we have used the handy relation;
[
Â, B̂Ĉ

]
=
[
Â, B̂

]
Ĉ + B̂

[
Â, Ĉ

]
.
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carried out in Appendix I to which we refer the interested reader,
here we simply state the results:

r(δ) = − γTOF

γ− 2iδ
, (19.12a)

t(δ) =
γfree − 2iδ

γ− 2iδ
. (19.12b)

19.2.1 Inhomogeneous broadening

The reflection and transmission coefficients as given in Eq. (19.12) im-
plicitly assume all the TOF-trapped atoms to be identical. This is, how-
ever, not the case since the waist of the TOF is not perfectly homoge-
neous over the range of the trapped atoms. The spatially dependent
AC Stark shift induced by the dual-color TOF-trap is therefore different
for each atom and in effect causes an inhomogeneous broadening of
the transition. In the model, this can be taken into account by assign-
ing an additional shift of the probe detuning δj for each individual
atom drawn from a suitable distribution. The amplitude reflection
and transmission coefficients for the j’th atoms then become:

rj(δ) = −
γTOF

γ− 2i(δ + δj)
, (19.13a)

tj(δ) =
γfree − 2i(δ + δj)

γ− 2i(δ + δj)
. (19.13b)

19.3 transfer matrix

In this section we use the powerful concept of transfer matrices to ex-
tend the modeled scattering off a single atom, via the two expressions
for the reflection and transmission coefficients in (19.13), to the over-
all scattering off an array of atoms taking their spatial distribution
into account.

For an atom located at zj we define z±j ≡ zj ± ε for the positions
immediately to the left and right of the atom. The left- and right-
scattered fields off the atom can then we written as

Eleft(z−j ) = tjEleft(z+j ) + rjEright(z−j ) , (19.14a)

Eright(z+j ) = tjEright(z−j ) + rjEleft(z+j ) . (19.14b)

The single atom transfer matrix Mj
atom connecting all the field modes

on one side of the atom with respect to the fields modes on the other
side are then defined such thatEright(z+j )

Eleft(z+j )

 = Mj
atom

Eright(z−j )

Eleft(z−j )

 . (19.15)
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Combining equations Eq. (19.13) to Eq. (19.15) we obtain

Mj
atom =

1
tj

(
t2

j − r2
j rj

−rj 1

)
=

(
1− ξ j −ξ j

ξ j 1 + ξ j

)
, (19.16)

where we have introduced the single atom scattering parameter ξ j
defined as

ξ j ≡
γTOF

γfree − 2i(δ + δj)
. (19.17)

The transfer matrix for free propagation in the TOF between successive
atoms is given by

Mj
TOF =

(
eikdj 0

0 e−ikdj

)
, (19.18)

where dj is the propagation distance between the j’th and (j + 1)’th
atom, i.e., zj+1 = zj + dj, such that we haveEright(z−j+1)

Eleft(z−j+1)

 = Mj
TOF

Eright(z+j )

Eleft(z+j )

 . (19.19)

The transfer matrix for the whole ensemble is obtained by multiply-
ing all the transfer matrices for the scattering off all the individual
atoms and the free propagation in between in the order of appear-
ance:

Mensemble = MN
TOFMN

atom . . . M1
TOFM1

atom. (19.20)

If Mensemble is written out as

Mensemble =

(
M11 M12

M21 M22

)
, (19.21)

then the reflection and transmission coefficients for the whole ensem-
ble are simply given by, cf. Eq. (19.16):

r =
M12

M22
. (19.22a)

t =
1

M22
. (19.22b)

With the transfer matrix given for the 1D atomic crystal we can pro-
ceed to show how we numerically implement the model to yield the
ensemble reflection and transmission coefficients for a given set of
input parameters. We will start out by given the input parameters to
the model and then move on to explain how we the model algorithm
is build up.
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19.4 input parameters

initial atom number ( Natom ) For an optically thin sample the
reflectance scales with the number of scatterers. The initial num-
ber of trapped atoms Natom is therefore a vital variable that should
be known in order to predict the performance of our atomic mirror.
Specifically for the numerical implementation, it is needed to set up
the number of transfer matrices that should be used in the algorithm,
cf. Eq. (19.20).

optical depth per atom (α) The amount of light scattered into
the TOF depends on how strongly the atoms are coupled to the guided
modes. In the expressions written above for the reflection and trans-
mission coefficients, Eq. (19.13), this is given by the decay rate into
the TOF γTOF. We also know another parameter for the measure of the
light-atom coupling strength, namely the optical depth (OD) per atom
α as given in Eq. (6.30). Since the latter variable is easy measurable
we prefer to talk in terms of this rather than the former. To under-
stand the parameter that we feed into the model and its outcome, of
course, we need to establish a link between the two quantities. Taking
inhomogeneous broadening of the atomic transition into account, we
have for the on-resonance OD per atom (the derivation can be found
in Appendix J):

α0 = 2 Re
∫ ∞

−∞
D (δ ′ )

γTOF

γ − 2 iδ ′
dδ ′ , (19.23)

with D (δ) being the probability density function describing the dis-
tribution of the broadened transition. For simplicity, we have taken it
to be a Gauss distribution with variance σ2

δ and zero mean:

D (δ ′ ) → G (δ ′ , σδ ) =
1

σδ

√
2π

exp
(
− δ ′2

2σ2
δ

)
. (19.24)

We have estimated the inhomogeneous broadening to be σδ = 0.41γ,
see Section J.2 for details.

structuring pump strength (ζ ) The shaping of the atoms
into a Bragg grating is carried out by optical pumping, cf. Section 12.2.
The degree of localization of the atoms with respect to the Bragg con-
dition is therefore directly linked to the strength of the structuring
pulse, i.e., the pump beam. In the experiment this is set by either tun-
ing the temporal length of the structuring pulse or its optical power.
In the algorithm we use the dimensionless parameter ζ as a knob for
the probability of an atom to be optically pumped, see Eq. (19.25) in
the following section.
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number of ensemble realizations ( Nensemble ) Experimen-
tally, the loading of atoms into the TOF-trap is a stochastic process
which yields a different random filling of the trap sites for each re-
alization. A single ensemble realization (both experimentally and in
the theoretical model) is therefore not adequate to describe the overall
average reflectance from an ensemble with otherwise fixed parame-
ters for Natom, α, and ζ , since, for example, the initial distribution
of the atoms might be near-perfectly coinciding with the structuring
pulse nodes or antinodes. In this extreme case the reflectance would
be clearly over- or underestimated. This probabilistic nature of the
initial position of each atom is therefore taken into account in the
model by averaging the reflection and transmission coefficients over
Nensemble simulated ensemble realizations.

19.5 numerical implementation

atomic separation In the numerical implementation of the model,
we neglect the spatial periodicity of the TOF-trap and take the atoms
to be uniformly distributed along the length of the ensemble. The
procedure to obtain dj’s is as follows:

• N = Natom random numbers {x1, x2, . . . , xN} are drawn from
the uniform distribution on the interval [0, 1).

• These numbers are sorted in ascending order, such that a new
sequence {y1, y2, . . . , yN} is obtained, where yj ≤ yj+1.

• The positions of the atoms are given by zj = Lyj, where L is the
total length of the ensemble.

• The distances between the atoms are then given by dj = zj+1 −
zj, where we define zN+1 = L.

optical pumping In Section 12.2 we showed how we utilize a
standing wave (SW) to optically pump a structure onto the internal
states of the atoms that supports the Bragg condition given in Eq. (12.12).
In the following, we describe how this effect can be incorporated into
the theoretical model, using the dark scheme as an example (cf. Sec-
tion 12.2.2).

To each atom we assign a probability pj
dark to remain in the bright

state |g〉 after the structuring pulse (with dimensionless pump strength
parameter ζ and wavelength λTOF

struct within the TOF):

pj
dark = e−ζ cos2(2πzj/λTOF

struct) . (19.25)

The probability of an atom to undergo a transition from the bright
state to the dark state, |g〉 = |4〉 → |3〉, is thus given by 1− pj. In the
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numerical algorithm, this is simulated by creating an array consisting
of N random numbers drawn from a uniform distribution on [0, 1)
and compared with pj

dark for each atom, i.e., each element in the array.
The probability of such a random number to be smaller than pj

dark is
equal to pj

dark and the probability to be larger than pj
dark is equal to

1− pj
dark. For the depumped atoms, Mj

atom is replaced by the identity
matrix.

Each realization of an atomic ensemble is thus comprised of

• An array of detunings δj.

• An array of positions zj (with the dj’s derived from it).

• An array of random numbers to characterize the pumping pro-
cess.

From these arrays the transfer matrix Mensemble, Eq. (19.20) is cal-
culated, from which the reflection and transmission coefficients for
a single ensemble realization, ri and ti, are obtained by the use of
Eq. (19.22). In repeating this procedure Nensemble times we obtain the
average reflection and transmission coefficients over Nensemble stochas-
tic ensemble realizations where the std can be made arbitrarily small
by simply increasing Nensemble.

19.6 comparison between theory and experiment

We now compare our experimental results with the transfer matrix
model for the reflection off atoms that have been structured by the
SW hyperfine pump beam.

We start by considering the reflectance as a function of the remaining
fraction of atoms left in |4〉 n4 after the structuring pulse, as shown
in Fig. 19.2 where we have used the normalized OD as a proxy for n4.
Evidently, the model fails to predict the data. This is obviously true
qualitatively, but also quantitatively there is a discrepancy between
the input parameters used in the model and the experimental param-
eters. Only by using an increased value for the on-resonance OD per
atom of α0 = 0.81 % (as compared to the nominal value α0 = 0.5 %),
are we able to obtain a modeled reflectance above 10 %, while keeping
the other input parameters fixed at experimentally measured values2.

In Fig. 19.3 we investigate how the model compares to the data when
the probe detuning is varied. Here the model performance is, at first
sight, observed to be better on the qualitative side, and predicts the

2 In connection with this particular data set we measured the atom number before and
after the reflection measurement series and found Natom = 1440 and Natom = 1140,
respectively. For the modeling we therefore used the average value 〈Natom 〉 = 1292.
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Figure 19.2.: Model and data comparison for the atomic Bragg mirror as a func-
tion of the OD normalized to the OD obtained for unstructured atoms.
Data points: The reflectance is inferred from the Debye-Waller fit,
cf. Section 16.3, d/dunstruct is inferred using both the long-term
linear fit procedure (red) and the short-term 0.4 µs time average at
the probe onset (yellow), cf. Chapter 18. The experimental param-
eters belongs to the June 9 entry in Table 15.4. Model input pa-
rameters: Natom = 1292, δprobe = 2π × 8 MHz, σδ = 0.41γ,
α0 = 0.81 %. The modeled curve is scaled down according to the de-
crease of the Debye-Waller factor fDW during the time delay between
the end of the structuring pulse and the probing (0.3 µs + 0.2 µs)
with 〈 τDW 〉 = 0.89 µs for the characteristic time constant in fDW,
cf. Fig. 16.2. The x-axis for the modeled curve corresponds to varying
the structuring pump strength ζ, from which a corresponding n4 is
found by using Eq. (12.15).

same double-peak structured as experimentally observed. However,
this is only true when cranking up the input parameter for the total
atom number Natom to 1950 atoms, while keeping the remaining input
parameters fixed at the same values as used in Fig. 19.2, and setting
n4 = 42 % according to the normalized OD at which the maximum
data point in Fig. 19.2 is found (when using the long-term OD). If
we would use Natom = 1292 instead, the model again performs very
poorly as evident from Fig. 19.4. If we would also decrease α0 to our
nominal value the double-peak would vanish all together and the
maximum modeled reflectance would be even lower.

It is thus evident, that the experimental data cannot be described by
the transfer matrix formalism, when neglecting saturation effects in
the model, and when hyperfine pumping is the only physical mecha-
nism included in the model.
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Figure 19.3.: Model and data comparison for the atomic Bragg mirror as a function
of the probe detuning. Reflectance is inferred from the Debye-Waller
fit. Model input parameters: Natom = 1950, n4 = 42 %, σδ = 0.41γ,
α0 = 0.81 %.
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Figure 19.4.: Model and data comparison for the atomic Bragg mirror as a function
of the probe detuning. Reflectance is inferred from the Debye-Waller
fit. Model input parameters: Natom = 1292, n4 = 42 %, σδ = 0.41γ,
α0 = 0.81 %.
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D I P O L E F O R C E F R O M T H E S T R U C T U R I N G P U L S E

By now, we have given several hints that the structuring pulse does
not only pump the atoms out of |4〉 as described in Section 12.2, but
also pulls the atoms towards the TOF and towards the antinodes of
the structuring SW. In fact, a quick estimate reveals that at maximum
Nsc = γsctstruct = γtstruct/2 ≈ 4 photons can be scattered off the
atoms during the short tstruct = 250 ns structuring pulse (by setting
the exited state population equal to one half at saturation). So, it
appears that for finite power of the structuring pulse atoms are not
very efficiently pumped to the dark hyperfine ground state!

In this last chapter, we present our current interpretation of the exper-
imental results presented for the atomic Bragg mirror by considering
additionally the dipole force exerted on the atoms by the structuring
pulse. Preliminary simulations, using the transfer matrix model de-
scribed in Chapter 19, but with the structuring pulse dipole force now
included, show closer agreement with the experimentally observed
features.

20.1 temporal dynamics in the transmission

Let us first consider the typical dynamics we observe in the transmis-
sion signal. In Fig. 20.1 we show this in terms of the extracted OD,
cf. Section 13.4, for a signal belonging to a realization of the atomic
Bragg mirror with about R = 10 %. The short 250 ns structuring
pulse is turned off at t = −0.3 µs. When the probe is turned on
at t = 0, the OD is observed to quickly increase from about 0.9 to
1.1, whereafter it makes a sudden turnaround and dramatically de-
crease to about 0.3. Within the first 10 µs of the measurement, the
transmission thus increases by about 40 percentage points which is
remarkably rapid, when compared to the trap lifetime being on the
order of milliseconds.

Two things can cause the observed initial increase in OD. Either more
atoms enter into the mode area of the probe, or the coupling between
the probe and the atoms increases. The former is quite improbable,
as the measurement is conducted 11 ms after trap loading and would
require some conspiracy to explain why the observed increase in OD

always occur at the same time. The latter, on the other hand, can be

213
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Figure 20.1.: OD extracted from a transmission signal acquired with experimental
parameters resulting in a reflectance of about 10 %: Pstruct = 2 ×
204 nW, δstruct = 2π × −175 MHz, Pprobe = 140 pW, δprobe =
2π × 8 MHz.

explained by the attractive dipole force exerted on the atoms by the
structuring pulse.

Approximating the inward radial trap potential as a harmonic oscilla-
tor and assuming an atom starting initially at rest, the atom after re-
ceiving a momentum kick towards the fiber reaches its maximum ex-
cursion after a quarter of a radial trap oscillation cycle. With the mea-
sured radial trap frequency of 83 kHz this happens after 3 µs. Atoms
with high enough acquired radial kinetic energy will crash into the
fiber surface during this time. Atoms with gained radial kinetic en-
ergy slightly below the repulsive barrier height will turn around and
move towards the soft part of the radial potential far away from the
fiber where they spend a long time without being efficiently coupled
to fiber-guided probe light. Any additional axial acquired kinetic en-
ergy together with the true anharmonic and nonseparable nature of
the trap potential makes a large fraction of these atoms never return
to the vicinity of the fiber surface.

20.2 back of the envelope calculation

In order to verify the above statements about the structuring pulse
induced atomic motion, we present here an estimate of the strength
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of the momentum kick delivered to the atoms by the dipole force of
the structuring pulse, cf. Section 6.7.2 we have

∆p = Fdipole∆t = ∇Udipoletstruct . (20.1)

Being in the low saturation regime1, s0 � 1, for the far-detuned struc-
turing pulse, allows us to use the AC Stark shift as a proxy for the
dipole potential induced by the structuring pulse. Rewriting it a bit,
we have for the AC Stark shift of the |4〉 ground state:

∆E4 =
h̄Ω2

4δ
= h̄γ

Ω2/γ2

4(δ/γ)2
δ

γ
. (20.2)

We now use that the excited state population, Eq. (6.16a), for low
saturation and | δ | � γ can be approximated as

ρ̄ee ≈
s0/2

4(δ/γ)2 =
Ω2/γ2

4(δ/γ)2 . (20.3)

Collecting the three above equations, we can set up an expression for
the velocity gain acquired by the atoms during the structuring pulse,
if we use the propagation constant β, setting the characteristic length
scale, as a proxy for the gradient. We then obtain

∆v =
∆p
m

= γρ̄eetstruct
δ

γ

h̄β

m
(20.4a)

= Nscvrecoil
δ

γ
, (20.4b)

where the second equality follows when using Nsc = γsctstruct =

γρ̄eetstruct for the number of scattered photons per atom and vrecoil =

h̄β/m for the (axial) recoil velocity transferred to the atom, with
β = 2π/λTOF

struct being the effective wave number. From Table 2.1 we
have λTOF

struct = 743 nm which yields vrecoil = 4 mm s−1 = 4 nm µs−1.
Setting the number of scattered photons to be on the order of one,
Nsc ∼ 1, and using δstruct/γ = 33 we estimate an overall velocity kick
of ∆v ∼ 130 nm µs−1. From this quick estimate it becomes apparent
that the atoms can actually move a substantial distance (recall that
the trap minimum is located only about 200 nm from the TOF) in the
time scales considered here.

20.3 rate equation model

Since this preliminary calculation on the velocity kick given by the
structuring pulse to the atoms is so significant, we would like to do it

1 If we use an on-resonant OD per atom of α0 = 0.5 percent for the |4〉 → |5〉 transition
and take the CG coefficients into account, we find that the saturation power Psat
for the three transitions |4〉 → {|3′〉, |4′〉, |5′〉} is given by Psat = {7.0, 21, 44}µW,
respectively, when δstruct = 2π ×−175 MHz. For a typical value of Pstruct = 200 nW
we thus have s0 = Pstruct/Psat ≈ 0.03� 1.
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a bit more careful by actually calculating the excited state population
taking all the three excited states, |3′〉, |4′〉, |5′〉, into account, i.e.,

∆v = γ
h̄β

m
tstruct ∑

e

ρeeδe

γ
. (20.5)

We therefore set up a simple rate equation model for the atomic state
populations:

ρ̇3′

ρ̇4′

ρ̇5′

ρ̇4

 =


−(R3′+γ) 0 0 R3′

0 −(R4′+γ) 0 R4′

0 0 −(R3′+γ) R5′

R3′+γ R4′+γ R5′+γ −(R3′+R4′+R5′ )




ρ3′

ρ4′

ρ5′

ρ4


(20.6)

where we have used the shorthand notation ρa = ρaa for the popula-
tion in |a〉 with a = 4, 3′, 4′, 5′, and introduced the transition rates2 Re

between the ground state |4〉 and the excited state |e〉.
Taking saturation, the different transition strengths, and the electric
field components to get the proper gradient in all directions into ac-
count, we obtain an exited state population of only ρe = 4 % for a
structuring power of Pstruct = 200 pW where the highest reflectance is
observed. Cranking up the structuring power to a microwatt still only
yields a small population in the excited state with a total of ρe = 16 %.
From this we can conclude that minimal hyperfine pumping takes
place in the short time the structuring pulse is on. This also means
that no Bragg grating is burned onto the internal states of the atoms.
Instead, the observed enhancement in reflection must be explained
by the atoms structured into a density grating.

20.4 pictorial interpretation

Using the values for ∆v obtained with the rate equation model, we
provide here a schematic illustration on how the atoms are spatially
focused into a density Bragg grating. In Fig. 20.2 the axial dipole po-
tential resulting from the SW structuring pulse is shown. The dipole
force is strongest when the gradient is high and atoms located halfway
between a node and an antinode therefore receives the largest mo-
mentum kick during the structuring. This is illustrated with the two
left-most atoms, which start to slide down the potential hills towards
a common minimum. Now, from our dual-color trap geometry, the
atoms are in practice separated by at least dtrap = λTOF

red /2 = 493 nm,
but for creating an efficient Bragg reflector only long range order (i.e.,

2 The transition rates are essentially given by Re = σa(δ)Φ, where σe(δ) is the absorp-
tion cross section associated with the excited state |e〉, cf. Eq. (6.27) and Φ is the
photon flux [Milonni et al., 1988].
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Figure 20.2.: Axial dipole potential provided by the structuring pulse. Normal-
ized to its minimal value. Gray balls illustrate atoms. The all-time
present dual-color trap potential has not been taken into account in
this figure.

modulo half a probe wavelength) is required. The pulsed structuring
SW acts on the atoms like an array of microlenses, focusing atomic tra-
jectories towards the antinodes of the field. In fact, all atoms starting
not too far from antinodes, where a parabolic approximation to the
potential is valid, will reach an antinode at the same time after the
structuring pulse.

Let us now consider Fig. 20.3 to see what happens in the radial direc-
tion. Here atoms sitting in the antinodes of the structuring field, i.e.,
in the according minima in Fig. 20.2, receive the largest drag towards
the TOF, and thus starts climbing the potential hill provided by the
blue trap barrier. From the rate equation model we find that such
atoms will move about 50 nm closer to the TOF during the time until
the probe is turned on, for a structuring power of 200 nW. In the
simulation program we take harmonic motion in the radial direction
with the measured trap frequency, in practice the moved distance be
somewhat smaller when taking the steeper blue barrier into account.

The kinetic energy of the atoms will increase as a consequence of the
induced motion. From the rate equations model, this is inferred to
leave the atoms at a higher bound state in the trap with a temperature
increase corresponding to U ≈ −0.13 mK as indicated by the black
dashed line in Fig. 20.3. Ultimately, this means that the atoms are
heated faster out of the trap.

Overall, the axial and radial motion can be visualized as a spatial fo-
cusing of the atoms as illustrated in Fig. 20.4. As indicated by the
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Figure 20.3.: Structuring induced radial motion of an atom in the trap potential.
The radial potential provided by the structuring pulse resemble that
of the red dashed curve, but with a steeper slope due to the shorter
wavelength.

Figure 20.4.: Atoms (red balls) are focused towards the intensity maximum of the
SW structuring pulse (blue shaded area) and towards the TOF.

arrows, atoms near the steep slopes of the SW structuring intensity
distribution receives a large axial kick towards the axial location of
the intensity maxima, but a somewhat smaller kick in the radial di-
rection since the radial intensity gradient is smaller here. In contrast,
the atom already located at the intensity maxima only experience a
radial drag towards TOF. Overall, the effect alters the initial density
distribution of the trapped atoms with a pitch given by the red trap
laser, towards a pitch to that of the structuring SW pulse, and hence
to the atomic separation required to fulfill the Bragg condition. In ad-
dition, the atoms are transiently moved closer to the fiber enhancing
their coupling to the fiber-guided mode substantially.



20.5 preliminary simulations 219

20.5 preliminary simulations

In Fig. 20.5, Fig. 20.6, and Fig. 20.7 preliminary results for the re-
flectance are shown, when including the dipole force from the struc-
turing pulse into the model using the transfer matrix formalism, de-
scribed in Chapter 19. Contrary to the simulations shown in Sec-
tion 19.6 all the curves shown here are obtained for realistic experi-
mental parameters. We thus use T = 44 µK for the temperature of
the atoms as inferred from the Debye-Waller fit of the decay of the
reflection signal, cf. Section 16.2.
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Figure 20.5.: Simulated reflectance as a function of time. Model input parameters:
δprobe = 2π × 8 MHz, Pstruct = 200 nW, σδ = 0.41γ. The vertical
dashed line marks the start of the probe interval. For comparison with
experimental data see Fig. 14.1.

In this simplified model the radial trap potential is approximated
as a harmonic oscillator with the measured trap frequency, whereas
the axial confinement is ignored. While the latter might seem too
crude an approximation, it is actually the same approximation that
has been made in connection with the Debye-Waller factor. Since
the thermal dephasing of reflectance happens fast compared to an
axial oscillation cycle in the real trap potential, it can be justified a
posteriori. In the model atoms can not only disappear by optical
pumping but also by leaving the trap, due to the received momentum
kick – either towards infinity or by literally crashing into the TOF.
Other input parameters to the model are the atom number and the
on-resonance OD per atom, which are both set to their nominal values
Natom = 1292 and α0 = 0.51 %.

The simulation results presented in the figures match the experimen-
tal observations both qualitatively and quantitatively. With the time-
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Figure 20.6.: Simulated reflectance as a function of the probe detuning. Model
input parameters: Pstruct = 200 nW, σδ = 0.41γ. For comparison
with experimental data see Fig. 15.2

trace in Fig. 20.5, for example, seen to decay in about 1 µs exactly as
all the reflection signals we have shown over the last chapters.

The two plots showing the predicted reflectance as a function of
the probe detuning δprobe, Fig. 20.6, and structuring power Pstruct,
Fig. 20.7, are both extracted at t = 0.2 µs corresponding to the time
where we experimentally observe the reflection signal to peak. The
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Figure 20.7.: Simulated reflectance as a function of the structuring power. Model
input parameters: δprobe = 2π × 8 MHz, σδ = 0.41γ. For compari-
son with experimental data see Fig. 16.3.

satisfactory agreement between model and data strongly suggests
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that only a model including both hyperfine pumping and the mechan-
ical forces exerted by structuring light is catching the salient features
observed experimentally.
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I N T H E P I P E L I N E
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21
C O N C L U S I O N

In this thesis we have studied the usage of a TOF as a platform for
collective light-atom interaction.

We have presented a fiber pulling rig with which a standard opti-
cal fiber can be tapered reproducible down to sub-micron waist size.
For a fiber with an initial diameter of d0 = 125 µm we have shown
that the highest attainable light transmission for a TOF symmetrically
pulled with our setup is 91 %. This limitation can be assigned to
non-adiabatic coupling to higher order cladding modes in the taper
sections. Calculations show, that applying the same pulling proce-
dure for a fiber with an initial diameter of d0 = 80 µm should result
in adiabatic tapers with better transmission.

As an aid to optimize the shape of the tapered sections, we have de-
veloped a numerical model for the prediction of the fiber shape given
an arbitrary pulling procedure. This relies on an initial easy exper-
imental calibration of the axial viscosity profile of the fiber within
the heater, obtained by elongating a fiber by less than the effective
width of the heater. Using this snap-shot of the fiber viscosity profile
together with a set of differential equations describing the fiber flow,
we have found very good agreement between modeled and measured
fiber shapes.

We have demonstrated that atoms can be confined in the near prox-
imity of a TOF by means of a dual-color dipole trap. Via an interfer-
ometric setup, utilizing a heterodyne optical detection scheme with
which a few photons can be resolved within a 96 ns measurement
window, we have investigated the coherent back-scattered field from
about 1000 trapped atoms. By applying a near-resonant structuring
pulse we detected a two order enhancement in the reflectance from
Bragg structured atoms when compared to unstructured atoms.

When modeling our experimental observations, we found that sole
hyperfine pumping of the atoms into a spin Bragg grating does not
explain our results. For the experimental parameters in which we
have acquired the highest reflectances, preliminary calculations in-
stead show that the dipole force exerted on the atoms by the SW

structuring pulse pulls the atoms into a density Bragg grating.

From about 1000 atoms we have found that more than 10 % of the
guided light can be redirected in the backward propagation direc-
tion. This is a remarkable result when compared to the only 4 %
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226 conclusion

reflection found for light hitting a slab of glass containing billions
of atoms. 1D free space optical lattices typically contain between
hundreds and thousands of atoms in each trapping site. These are
shaped as disks, with atoms much stronger localized in the axial di-
rection of the SW than in the two radial ones [Schilke et al., 2011;
Slama et al., 2006]. Such systems have shown Bragg reflections of
5 % when probing hundreds of atomic planes [Slama et al., 2006] and
80 % when interacting with 107 atoms located in thousands of disks
[Schilke et al., 2011]. Compared to these more traditional systems, the
high observed power reflectance in our setup clearly demonstrates
the promising prospective of the waveguide platform for collective
light-atom interaction.
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O U T L O O K A N D F U T U R E P E R S P E C T I V E S

22.1 tapered optical fiber production

adiabatic tapers In order to use a TOF as an efficient waveguide
platform for light-atom interaction, it is necessary to have adia-
batic tapers. With calculations showing that this can easily be
obtained by simply reducing the cladding to core radius and
apply the symmetric pulling procedure, cf. Fig. 4.6, this is one
of the next thing we should do in the fiber pulling.

Work on inverting the fiber shape model such that the pulling
boundary conditions to reach a target shape can be numerically
calculated was started in [Knudsen et al., 2014]. The promising
preliminary results motivate a continuation of this work which
could lead to the production of adiabatic TOFs with the d0 =

125 µm fiber we have been using so far.

integrated resonator The efficient light-atom coupling in the
TOF evanescent field can be further enhanced by integrating an
optical cavity around the waist. This can be realized in a couple
of ways. In the group of A. Rauschenbeutel a finesse F ' 85
has been achieved by writing two Bragg mirrors into the fiber
before tapering thus forming a Fabry-Pérot resonator around
the waist. Despite this rather low finesse when compared to
typical cavity QED setups, calculations indicate that this value
is sufficient to reach the strong coupling regime [Wuttke et al.,
2012].

Another method is to create a ring-resonator by looping the
TOF. Here, M. Sumetsky [Sumetsky et al., 2006] has obtained a
finesse of F ≈ 40 by bending the TOF such that the two tapered
sections lie on top of each other. This constitutes a relatively sta-
ble loop held together by van der Waals and electrostatic forces.
Light can thus either propagate into the loop or couple directly
into the other taper through the evanescent field. Few tests on
making looped TOFs have already been performed in our fiber
pulling rig without much effort, and hence this seems like a
promising path to explore.

all-integrated atomic chip Currently, experimental setups with
TOF-trapped atoms are based on fairly bulky free-space setups
where a standard 6-beam MOT is used to provide a reservoir of
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228 outlook and future perspectives

cold atoms [Vetsch et al., 2010; Goban et al., 2012; Grover et al.,
2015; Gouraud et al., 2015]. It would be interesting to place sev-
eral TOFs on an atomic chip utilizing a mirror MOT [Reichel et
al., 1999; Szmuk et al., 2015], as this indeed would offer a scal-
able all-integrated system ideal for realizing small quantum net-
works [Cirac et al., 1997; Choi et al., 2010], with the prospective
of teleporting quantum states between each of the TOF-trapped
atomic ensembles [Krauter et al., 2013].

22.2 moving to the next level

state preparation All experiments in the quantum domain will
benefit from the preparation of a pure state in the Zeeman man-
ifold of atomic ground states. As of writing, this next step in
the experimental procedure has already been implemented. Via
optical pumping on the |4〉 → |4′〉 atoms can be made to rain
down into the dark state |4, 0〉. With a subsequent microwave
π-pulse on the clock transition the atoms in |4, 0〉 are shelved
to the |3, 0〉 level, whereafter any atoms remaining in the hyper-
fine manifold |4〉 are heated out of the trap by applying blue
detuned (external) MOT light on the |4〉 → |5′〉 transition. With
this procedure more than 40 % of the initial trap load ends up
in the target Zeeman state.

raman transfer between ground states The microwave sour-
ce we currently have available is limited in strength and 6 µs
π-pulses are the fastest we can make between ground states.
For experiments sensitive to dephasing of coherences by atomic
motion, it is advantageous to be able to do state transfer on a
time scale fast compared to the inverse trap frequencies. We are
currently investigating the implementation of a faster Raman
scheme, where two-photon resonances can be used to make co-
herent transfer of ground state populations.

spin squeezing A reduction in the quantum spin projection noise
offer improvements to quantum protocols in both quantum in-
formation technology applications and for quantum metrology
and sensing. Such a reduction in the measurement uncertainty
can be achieved by creating a spin squeezed state in the atomic
ensemble [Saffman et al., 2009; Appel, Windpassinger, et al.,
2009] which we strive to implement in the TOF-trapped atomic
ensemble in the near future.

quantum state engineering Aside from their interesting fun-
damental properties non-classical states are useful ingredients
for the successful implementation of quantum assisted metrol-
ogy and quantum information science. In [Christensen et al.,
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2013; Christensen et al., 2014] we took the first steps in cre-
ating the first excited Dicke state in a mesoscopic free-space
atomic ensemble. Apart from the enhanced light-atom coupling
the TOF platform offer yet a promising feature for the improve-
ment of creating such a delocalized single spin excitation in the
atomic ensemble. Due to the anisotropic scattering rate for an
atom coupled to a probe polarized along the SCA, some of the
bad spontaneous decay channels that are present in the scheme
used in [Christensen et al., 2013; Christensen et al., 2014] are
effectively suppressed in the TOF setup.

hybrid systems With the waveguide platform, where “fiber-coupled
atoms” are readily offered, light mediated quantum interactions
with other distant physical systems, e.g., quantum dots, mechan-
ical resonators, electrical resonators, or NV centers in diamonds,
become experimentally realistic. Such a hybrid system opens
for the possibility of making clever designs that take advantage
of the fact that some quantum systems are more suited for the
use as long-lived quantum memories while others offer fast en-
coding and processing [Xiang et al., 2013; Kurizki et al., 2015].
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A
F U N D A M E N TA L F I B E R M O D E H E 1 1 W I T H
Q U A S I - L I N E A R P O L A R I Z AT I O N

Here the solution to Maxwell’s equations (2.3), derived under the two-
layer boundary condition (2.2), is given for the electric field mode
distribution of the fundamental fiber mode HE11 in the case of quasi-
linear polarization as given in [Béguin, 2015]. The total field is given
by

E11(r, t) = E11(ρ, φ, φ0)ei(ωt−β11z) .

The components of the electric field amplitude are listed below, as ex-
pressed in the Cartesian basis. φ0 is introduced in order to define the
quasi-linear polarization in the fiber with respect to a fixed reference
axis, chosen here to be the x-axis such that φ0 = 0 yields quasi-linear
x polarization in the fiber.

inside the fiber , ρ < a :

Ex(ρ, φ, φ0) = C
iβ11

h
√

2
K1(qa)
J1(ha)

(
J2(hρ)(1 + s) cos(2φ− φ0)− J0(hρ)(1− s) cos(φ0)

)
,

Ey(ρ, φ, φ0) = C
iβ11

h
√

2
K1(qa)
J1(ha)

(
J2(hρ)(1 + s) sin(2φ− φ0)− J0(hρ)(1− s) sin(φ0)

)
,

Ez(ρ, φ, φ0) = C
√

2
K1(qa)
J1(ha)

J1(hρ) cos(φ− φ0) .

outside the fiber , ρ > a :

Ex(ρ, φ, φ0) = −C
iβ11

q
√

2

(
K2(qρ)(1 + s) cos(2φ− φ0) + K0(qρ)(1− s) cos(φ0)

)
,

Ey(ρ, φ, φ0) = −C
iβ11

q
√

2

(
K2(qρ)(1 + s) sin(2φ− φ0) + K0(qρ)(1− s) sin(φ0)

)
,

Ez(ρ, φ, φ0) = C
√

2K1(qρ) cos(φ− φ0) .
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With

h2 = (k0nco)
2 − β2

11 ,

q2 = β2
11 − (k0ncl)

2 ,

s =
(

1
h2a2 +

1
q2a2

)(
J∗1 (ha)

haJ1(ha)
+

K∗1(qa)
qaJ1(qa)

)−1

,

J∗1 (ha) =
1
2

(
J0(ha)− J2(ha)

)
,

K∗1(qa) = −1
2

(
K0(ha) + K2(ha)

)
,

and

C =

√
4ωµ0P
πa2β11

(
K2

1(qa)
J2
1(ha)

Tin
1 + Tout

1

)−1/2

,

Tin
1 = (1 + s)

(
1 +

β2
11

h2 (1 + s)
)(

J2
2(ha)− J1(ha)J3(ha)

)
+ (1− s)

(
1 +

β2
11

h2 (1− s)
)(

J2
0(ha) + J2

1(ha)
)

Tout
1 = (1 + s)

(
1− β2

11
q2 (1 + s)

)(
K2

2(qa)− K1(qa)K3(qa)
)

+ (1− s)
(

1− β2
11

q2 (1− s)
)(

K2
0(qa)− K2

1(qa)
)

.

symbol description

φ0 = 0 Quasi-linear x polarization

φ0 = π/2 Quasi-linear y polarization

U = ha Core parameter

W = qa Cladding parameter

Λ = q−1 Evanescent wave penetration length

Jl Bessel function of the first kind of order l

Kl Modified Bessel function of the second kind of order l

C Normalization constant

P Total optical power in the fiber
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a.1 propagation constant

Bounded modes exists when β is a solution to the transcendental
equation which must be solved numerically (for β11 used above, set
l = 1):

(lβ)2

(
1

q2a2 +
1

h2a2

)2

=
ω2

c2

(
J′l (ha)

haJl(ha)
+

K′l(qa)
qaKl(qa)

)
×
(

n2
co

J′l (ha)
haJl(ha)

+ n2
cl

K′l(qa)
qaKl(qa)

)
,

which is the origin of the radial index m characterizing the bounded
modes in the fiber. Here, we have used the short-hand notation

J′l (ha) =
dJl(ha)
d(ha)

and K′l(qa) =
dKl(qa)
d(qa)

.

In order to see how the transcendental equation should be handled
in order to yield the two groups HE and EH, and how the cutoff
values for fiber guidance can be extracted for each mode, the reader
is encouraged to consult either [Snyder et al., 1983] or [Béguin, 2015]
where comprehensive treatments are provided.

a.2 additional figures
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Figure A.1.: Electric field components as a function of the aximuthal angle φ for
a quasi-linearly y-polarized HE11 mode. For φ = 0, π the field is
completely polarized along y. This figure is similar to Fig. 2.12 but
calculated for λ = 852 nm.
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Figure A.2.: Intensity distribution along the fiber axis for a quasi-linearly y-
polarized HE11 SW mode field. Evaluated for the two planes parallel
and perpendicular to the polarization orientation. Calculated for the
parameters nco = 1.4469, ncl = 1, a = 250 nm, λ = 1057 nm,
ρ = 442 nm. Total intensity of the electric field components plotted
in Fig. 2.16
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(a) | Ex |2.

(b)
∣∣ Ey

∣∣2.

(c) | Ez |2.

Figure A.3.: Field strength of the three electric field components for quasi-linearly
y-polarized light. Calculated for the parameters nco = 1.4469, ncl =
1, a = 250 nm, λ = 1057 nm at z = 0. Colorbar is normalized to the
maximum value of

∣∣ Ey
∣∣2.





B
S P H E R I C A L B A S I S

When dealing with atoms the most natural basis for the electric field
polarization is the spherical basis {uq} with q = −1, 0,+1. The unit
polarization vector used in Eq. (5.11) is then given by

uk = ∑
q

ε jquq (B.1)

where ε jq yield the distribution of the polarization fulfilling ∑q ε jq = 1.
If the quantization axis is chosen along uz we have for the spherical
basis vectors in terms of the Cartesian basis {ui} with i = x, y, z [Nor-
mand et al., 1982]:

u−1 =
+ux − iuy√

2
, (B.2a)

u0 = uz , (B.2b)

u+1 =
−ux − iuy√

2
. (B.2c)

When relating the light field polarization to the atomic system it is
common practice to refer to it in terms of σ−, π, and σ+ instead of
u−1, u0, and u+1 respectively. Eq. (B.2) can also we written as the
transformation matrix

MCart2Sph =
1√
2

 1 −i 0

0 0
√

2

−1 −i 0

 . (B.3)

Note, that the transformation matrix from the spherical basis to the
Cartesian basis is easily obtained by simply taken the transpose of
MCart2Sph, since it is necessarily unitary.

b.1 for x as the quantization axis

When working in the fiber frame where uz is chosen to be along
the fiber axis, we will sometimes want the quantization axis to be
perpendicular to the fiber axis (i.e., to the propagation direction). For
this, we need to transform the above set of equations (B.2) accordingly
to still make the usual association between the atomic polarization
and the spherical basis. Thus choosing the new quantization axis to
be along ux , the indices in Eq. (B.2) should be shuffled according to
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x → y, y → z, and z → x, from which we obtain the following set
of transformation equations from the Cartesian basis to the spherical
basis with quantization axis along ux :

u−1 =
+uy − iuz√

2
, (B.4a)

u0 = ux , (B.4b)

u+1 =
−uy − iuz√

2
. (B.4c)



C
P S E U D O - C O D E F O R C A L C U L AT I N G v ( z )

The following pseudo-code illustrates the algorithm for calculating
v(z) in the interval [z̃−, z̃+] with a step size ∆z > 0:

1: vztable ←
{
(v−, z̃−), (v+, z̃+)

}
;

2: z← z̃−; v← v−; y← z̃− − l−;
3: while y > z do
4: insert

(
v · An(z), y

)
into vztable;

5: z← z + ∆z;
6: y← y + ∆z · An(z);
7: v← interpolate(vztable, z);
8: end while;
9: z← z̃+; v← v+; y← z̃+ − l+;

10: while y < z do
11: insert

(
v · An(z), y

)
into vztable;

12: z← z− ∆z;
13: y← y− ∆z · An(z);
14: v← interpolate(vztable, z);
15: end while;

In this way the complete velocity profile v(z) is contained in vztable,
and by Eq. (4.12) the fiber fluidity can be calculated.
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D
U N I TA RY T R A N S F O R M AT I O N S

It can often be useful to transform the Hamiltonian describing a par-
ticular quantum system into another frame such that it contains rel-
evant dynamics only. This is for example the case when doing the
rotating frame transformation. Here we shown how such a general
unitary transform should be made if we start out with a Hamilto-
nian Ĥ and some state given by |ψ〉 fulfilling the Schrödinger equa-
tion (5.1):

ih̄|ψ̇(t)〉 = H̃|ψ(t)〉 . (D.1)

For any unitary operator Û(t) the system can be transformed into a
new state

|ψ̃(t)〉 = Û(t)|ψ(t)〉 . (D.2)

This state should of course still fulfill the Schrödinger equation (5.1)

ih̄| ˙̃ψ(t)〉 = H̃|ψ̃(t)〉 , (D.3)

and therefore the original Hamiltonian Ĥ has to be accordingly trans-
formed into a new Hamiltonian H̃. By inserting Eq. (D.2) into Eq. (D.3)
we can find how this is properly done (to ease notation the time-
dependence is not explicitly written in the following):

ih̄| ˙̃ψ〉 = ih̄
( ˙̂U|ψ〉 + Û|ψ̇〉

)
(D.4a)

= ih̄ ˙̂U|ψ〉 + ÛĤ|ψ〉 (D.4b)

=
(
ih̄ ˙̂U + ÛĤ

)
|ψ〉 (D.4c)

=
(
ih̄ ˙̂U + ÛĤ

)
Û†|ψ̃〉 (D.4d)

=
(
ih̄ ˙̂UÛ† + ÛĤÛ†)|ψ̃〉 . (D.4e)

And so we find that Ĥ should be transformed according to

H̃ = ih̄ ˙̂UÛ† + ÛĤÛ† . (D.5)

d.1 example : interaction picture

As an example we consider the transformation to the interaction pic-
ture for the semiclassical problem where a classical light field inter-
acts with a quantized atom. The stateket can be written as a superpo-
sition of the complete set of unperturbed atomic states:

|ψ(t)〉 = ∑
j

cj(t)|j〉 . (D.6)
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244 unitary transformations

The Hamiltonian is given as the sum of the unperturbed atomic Hamil-
tonian and the light-atom interaction:

Ĥ(t) = Ĥatom + V̂(t) . (D.7)

For this system, where the interesting dynamics lies in the interac-
tion term V̂(t), it is desirable to transform into a frame such that the
new Hamiltonian only involves some form of the interaction term,
Ĥ(t) → V̂int(t). This is commonly known as transforming into the
“interaction picture”. In this representation the Schrödinger equation
is given by

ih̄|ψ̇(t)〉int = V̂int(t)|ψ〉int . (D.8)

From Eq. (D.5) we know that the unitary operator Û(t) bringing us
to the interaction picture acts such that the transformed Hamiltonian
is given by

V̂int = ih̄ ˙̂UÛ† + ÛĤÛ† (D.9a)

= ih̄ ˙̂UÛ† + ÛĤatomÛ† + ÛV̂Û† . (D.9b)

We thus seek the unitary transform which makes the first two terms
cancel such that only the last term containing the light-atom interac-
tion V̂ is left. This is achieved if

Û(t) = eiĤatomt/h̄ . (D.10)

Inserting Û(t) into Eq. (D.9b), and noting that Û(t) and Ĥatom com-
mutes,

[
Û(t), Ĥatom

]
= 0, we find

V̂int = ih̄
iĤatom

h̄
ÛÛ† + ĤatomÛÛ† + ÛV̂Û† (D.11a)

= ÛV̂Û† (D.11b)

= eiĤatomt/h̄V̂e−iĤatomt/h̄ . (D.11c)

With the atomic Hamiltonian given according to Eq. (5.6):

Ĥatom = ∑
b

h̄ωba|b〉〈b| , (D.12)

and V̂ = d̂ · E(r, t) where the dipole operator is written in the from,
Eq. (5.13):

d̂ = ∑
e,g

µeg|e〉〈g|+ µ∗eg|g〉〈e| , (D.13)

we see that the transformed Hamiltonian H̃ = V̂int reduces to the
expression

V̂int(t) = ∑
e,g

eiωegtµeg|e〉〈g|+ h.c. (D.14)

Likewise we find for the transformed stateket:

|ψ(t)〉 = ∑
j,b

eiĤatomt/h̄cj(t)|j〉 (D.15a)

= ∑
j

eiωjatcj(t)|j〉 . (D.15b)



E
D E R I V I N G T H E m S E L E C T I O N R U L E

We wish to find a selection rule for the m quantum number of the ma-
trix element 〈J′ m′|T(K)

q |J m〉 where T(k)
q is a spherical tensor defined

such that [Sakurai, 1994]

[Jz, T(k)
q ] = h̄qT(k)

q , (E.1a)

[J±, T(k)
q ] = h̄

√
(k∓ q)(k± q + 1)T(k)

q±1 ,

where J is the angular momentum operator. In the following we use
that

Jz|J m〉 = h̄m|J m〉 , (E.2)

and
[Jz, T(k)

q ]− h̄qT(k)
q = 0 , (E.3)

from Eq. (E.1a). We then find

〈J′ m′|0|J m〉 = 〈J′ m′|[Jz, T(k)
q ]− h̄qT(k)

q |J m〉 (E.4a)

= 〈J′ m′|JzT(k)
q − T(k)

q Jz − h̄qT(k)
q |J m〉 (E.4b)

= h̄(m′ −m− q)〈J′ m′|T(k)
q |J m〉 (E.4c)

⇒ 〈J′ m′|T(k)
q |J m〉 = 0 , if m′ 6= m + q . (E.4d)

Making the substitutions J → F, J′ → F′, m → mF, m′ → m′F, and
T(k)

q → rq, we arrive at Eq. (7.10).
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A D D I T I O N A L F I G U R E S

f.1 combined laser intensity noise of the red and blue

trapping fields

Figure F.1.: Power spectrum of laser intensity noise. TRACE 1: Both red and blue
trap lasers. TRACE 2: Blue trap laser. TRACE 3: Red trap laser, same
trace as the magenta trace in Fig. 9.8(b).
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248 additional figures

f.2 atom number measurement
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Figure F.2.: Histogram of the free fit parameters Natom and α when fitting the
measurement traces individually, as compared to the mean trace fit
in Fig. 11.1.



F.3 total noise full time trace 249

f.3 total noise full time trace
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Figure F.3.: Full time trace of the total detection noise on the reflection detector
show in Fig. 13.8(a), and used for the histogram in Fig. 13.8(b).



250 additional figures

f.4 unstructured reflection with a resonant probe

Reflected light off an unstructured ensemble of ∼ 1300 atoms, yield-
ing R = (0.10± 0.01)% (red solid line divided by the probe power).
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Figure F.4.: Purple data points: Reflected power from unstructured atoms as a func-
tion of time, using a resonant 140 pW probe. The time sequence is
the same as usual, i.e., the probe in on for the first 3.7 µs where it is
turned off and then on again at t = 9.8 µs (black vertical dashed line),
cf. Fig. 13.5. Each point is an average over 900 MOT loadings sampled
over τ = 96 ns, and afterwards time averaged over 10× 96 ns. The er-
rorbars are given by the statistical one-sigma uncertainty from this last
≈ 1 µs time average. Yellow (Red) lines: Statistical mean (solid) and
1 std uncertainty band (dashed) over the data points measured before
(after) the probe is turned on at t = 9.8 µs.
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f.5 atomic bragg mirror
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Figure F.5.: Transmitted light through the atomic mirror for delayed probe pulses.
Error bars are omitted for visual clarity. Each curve is an average over
100 consecutive experimental runs obtained for a 150 pW on-resonant
probe. τ = 192 ns running average. Corresponding data showing the
reflected light is given in Fig. 16.5.





G
AT O M I C B R A G G M I R R O R A I D E D B Y A N E I T
W I N D O W

The idea initially laid out by Ivan Iakoupov for the atomic Bragg mir-
ror, was actually first of all not meant as a proposal for the sole sake
of making a mirror, but to implement a phase gate – indeed a very
different objective. It was also first based on a quite different scheme
than the optical pumping that we use to imprint the Bragg grating
onto the internal states of the atoms. What he had in mind, was to
utilize the effect of EIT. This bears several advantages which we be-
lieve would greatly enhance the quality of the measured reflectance
presented in this thesis. Especially noteworthy is the temporal evolu-
tion of the reflectance where much longer lifetimes is expected. For
technical reasons, lack of lasers etc., we originally discarded the EIT

idea and instead opted for the more simple solution using mere opti-
cal pumping. Here we will therefore describe the suggested protocols
which will hopefully find their way into future experiments.

The EIT solutions provides a continous platform where the atoms can
be probed while having the structuring beams on at the same time.
This is in contrast to the optical pumping scheme, described in Sec-
tion 12.2, where we first pump the atoms into the Bragg structure
and then probe. In the following sections we present two suggested
schemes where EIT is used as a resource to provide the spatial pattern
necessary for sufficient Bragg scattering off the atoms. We will not go
into any details on how this can be used to realize a phase gate, for
this we refer to the work presented in [Iakoupov, 2013].

g.1 eit in a nutshell

First, a brief presentation the main points and equations governing
EIT, under the assumption that the reader is already somewhat famil-
iar with the concept. If not, there exists plenty of textbooks cover-
ing the subject, e.g., [Boyd, 2008; Milonni et al., 2010; Grynberg et al.,
2010].

We consider the three-level Lambda (Λ) system illustrated in Fig. G.1.
Two laser fields are applied, one on each to the ground to exited state
transitions, |gi〉 → |e〉, for i = 1, 2. In terms of these unperturbed
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|e〉

|g2〉

|g1〉

|e〉

|b〉
|d〉

Ω1 Ω2 Ωb

(a) Level scheme in terms of the atomic
basis states.

|e〉

|g2〉

|g1〉

|e〉

|b〉
|d〉

Ω1 Ω2 Ωb

(b) Level scheme in terms of the dark
and bright basis states.

Figure G.1.: Λ scheme for EIT.

atomic basis states, the Hamiltonian for the light-atom interaction
dynamics is given by1

Ĥ = −−ih̄γe

2
|e〉〈e| −

(
h̄
(
Ω∗1 |g1〉 + Ω∗2 |g2〉

)
〈e|+ h.c.

)
, (G.1)

where γe is the decay out of the exited state, and Ω1, Ω2 are the Rabi
frequencies of the two coupling fields. From Eq. (G.1) it is apparent
that the exited state couples to a superposition of the ground states.
This motivates to introduce a new set of basis states:

|b〉 ≡ Ω∗1 |g1〉 + Ω∗2 |g2〉
Ωb

, (G.2a)

|d〉 ≡ Ω2|g1〉 −Ω1|g2〉
Ωb

, (G.2b)

with

Ωb ≡
(
|Ω1 |2 + |Ω1 |2

)1/2 , (G.2c)

which simplifies the Hamiltonian to

Ĥ = −−ih̄γe

2
|e〉〈e| −

(
h̄Ωb|b〉〈e|+ h.c.

)
. (G.3)

Evidently, there exists a dark state |d〉 which do not couple to the
light fields. Since |d〉 is an eigenstate of the Hamiltonian the atoms
will eventually be pumped out of the bright state |b〉 and into |d〉.
Regarding Ω1 as a control field and Ω2 as a probe field the absorption
spectrum of the latter will display a spectral window or EIT window
on resonance with the width set by the strength of the control field
as shown in Fig. G.2.

1 Here we used the quantum jump formalism to include the exited state decay, con-
tained in the first term, directly into the Hamiltonian.
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Figure G.2.: EIT absorption spectrum of the probe field Ω2 with the detuning de-
fined as the frequency difference between the probe field and the atomic
transition frequency: δ = ω2 − ωe2. The control field Ω1 is on-
resonance with the atomic transition |g1〉 → |e〉.

g.2 three- and four-level eit schemes

The three-level EIT scheme used to imprint a Bragg grating onto the
internal states of the atoms is similar to the one used in [Bajcsy et al.,
2003] where they observed up to ∼ 80 % power reflection off a free-
space atomic ensemble consisting of ∼ 1012 87Rb atoms. All atoms
are initially prepared in the ground state |g1〉. The idea is then to
apply a strong SW control field resonant with the |g2〉 → |e〉 transi-
tion, as shown in Fig. G.3(a), and a weak RW probe resonant with the
|g1〉 → |e〉 transition. This configuration creates an EIT window at

|e〉

|g2〉

|g1〉

RW
SW

(a) Three-level Λ-system.

|e1〉

|g2〉

δprobe

|g1〉

|e2〉

RW SW

probe

(b) Four-level Λ-system.

Figure G.3.: Pumping scheme for the EIT-aided atomic Bragg mirror.
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all the antinodes of the SW control field, i.e., at the intensity maxima.
Atoms located at these positions are thus transparent to the probe
field. On the contrary, atoms located at the nodes of the SW control
field, scatters off probe light as if the control field were not present
at all. Effectively, an atomic Bragg grating has been established with
the advantage, over the optical pumping schemes, that the atoms are
continuously kept in place by the control field.

The four-level EIT scheme is nearly identical to the three-level scheme.
The only difference being, that the probe field is no longer used as the
second leg in the Λ-system for establishing the EIT window. Instead,
an extra control field, configured as a RW, is introduced as illustrated
in Fig. G.3(b). Utilizing a second exited state |e2〉, the probe field now
scatters off the atoms that has been adiabatically transferred from |g1〉
to |g2〉 via the two EIT control fields.

This configuration bears a couple of advantages over the three-level
scheme. Choosing, e.g., two Zeeman levels, one in each of the two
hyperfine manifolds, |3〉 ≡ (62S1/2, F = 3) and |4〉 ≡ (62S1/2, F =

4), is an obvious choice for the ground states |g1〉 and |g2〉. This
limits, however, the freedom to choose the exited state which has
to be in either2 of the two manifolds |3′〉 ≡ (62P3/2, F′ = 3) or
|4′〉 ≡ (62P3/2, F′ = 4) in order to create an EIT window. Taking
the probe beam out of the EIT configuration, allows us to probe the
|4〉 → (62P3/2, F′ = 5) transition instead, which couples stronger to
the field mode resulting in a higher signal. This scheme further has
the advantage that the probe detuning δ can be freely tuned without
being concerned about modifying the EIT window.

2 Considering only the D2 line for now. It might be beneficial to also consider the
possibility of using the D1 line.



H
D E R I VAT I O N O F R E A L S PA C E H A M I LT O N I A N

Here we show how to rewrite the light-atom Hamiltonian initially
described in k-space, Eq. (19.1):

Ĥ = h̄
(

ωe↑ − i
γ′

2

)
σ̂ee +

∫ ∞

−∞
h̄c|k|â†

k âk dk (H.1)

− h̄g
∫ ∞

−∞

(
σ̂e↑ âkeikzj − σ̂↑e â†

ke−ikzj
)

dk .

to that given in real space, Eq. (19.6):

Ĥ = h̄
(

ωe↑ − i
γ′

2

)
σ̂ee (H.2)

+ ih̄c
∫ ∞

−∞

(
Ê†

left
∂Êleft

∂z
− Ê†

right
∂Êright

∂z

)
dz

− h̄g
√

2π
∫ ∞

−∞
δ(z− zj)

(
σ̂e↑
(
Êleft(z) + Êright(z)

)
+ h.c.

)
dz ,

where the left- and right-propagating field modes are defined as,
Eq. (19.4):

Êleft(z) =
1√
2π

∫ ∞

−∞
âleft,k eikz dk , (H.3a)

Êright(z) =
1√
2π

∫ ∞

−∞
âright,k eikz dk . (H.3b)

h.1 second line

We first consider the second line in the Hamiltonian containing the
isolated light description. Using the left- and right-going modes, âleft,k
and âright,k, this can be transformed according to:

Ĥlight =
∫ ∞

−∞
h̄c|k|â†

k âk dk (H.4a)

→
∫ ∞

−∞
h̄ck(â†

right,k âright,k − â†
left,k âleft,k)dk . (H.4b)

Although this contains unphysical modes, that is right-going modes
with negative wavevectors and vice versa for the left-going modes, it
remains valid when considering near-resonant dynamics only [Chang
et al., 2007].
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258 derivation of real space hamiltonian

Inserting Eq. (H.3a) into Eq. (H.2) we get for the first term in the
second line:

ih̄c
∫ ∞

−∞
Ê†

left
∂Êleft

∂z
dz (H.5)

=
ih̄c
2π

∫ ∞

−∞
dz
∫ ∞

−∞
dk
∫ ∞

−∞
â†

left,k e−ikz(ik′)âleft,k’ eik′z dk′

=
ih̄c
2π

∫ ∞

−∞
dk
∫ ∞

−∞
â†

left,k(ik
′)âleft,k’ dk′

∫ ∞

−∞
ei(k′−k)z dz

= ih̄c
∫ ∞

−∞
ikâ†

left,k âleft,k dk

= −
∫ ∞

−∞
h̄ckâ†

left,k âleft,k dk ,

where we have used the Fourier transform definition of the Dirac
delta function [Riley et al., 2006]:∫ ∞

−∞
eikz dz = 2πδ(k) , (H.6)

for the step between the third and the fourth line. It can similarly be
found that

ih̄c
∫ ∞

−∞
Ê†

right
∂Êright

∂z
dz = −

∫ ∞

−∞
h̄ckâ†

right,k âright,k dk . (H.7)

h.2 third line

To obtain the third line in Eq. (H.2) we note that upon transforming
the annihilation and creation operator into distinct left- and right-
propagation modes we have

σ̂eg âkeikzj → σ̂eg(âleft,k + âright,k)eikzj . (H.8)

Inserting this into the second line in Eq. (H.1) and using the defini-
tions given in Eq. (H.3) we directly obtain the third line in Eq. (H.2).



I
S O LV I N G T H E M A X W E L L - B L O C H E Q U AT I O N S

Here we show the derivation of the solutions to the Maxwell-Bloch
equations:(

1
c

∂

∂t
− ∂

∂z

)
Eleft(z) =

ig
√

2π

c
δ(z− zj)σge , (I.1a)(

1
c

∂

∂t
+

∂

∂z

)
Eright(z) =

ig
√

2π

c
δ(z− zj)σge , (I.1b)

σ̇ge = −(iωeg +
γfree

2
)σge + ig

√
2π
(
Eleft(zj) + Eright(zj)

)
. (I.1c)

We start by formally integrating the two wave equations, (I.1a) and
(I.1b), for the left- and right-going fields. Introducing the positive
infinitesimal ε the positions immediately to the right and left of the
atom located at zj are given by z±j = zj ± ε. Integrating over the
atomic position from z−j to z+j yields:

Eleft(z−j ) = Eleft(z+j ) +
ig
√

2π

c
σge , (I.2a)

Eright(z+j ) = Eright(z−j ) +
ig
√

2π

c
σge . (I.2b)

Since Eleft and Eright are both continuous at zj they can be written as
a Taylor series. To first order we thus have;

Ei(z±j ) = Ei(zj)± εE′i(zj) (I.3a)

⇒ Ei(zj) =
1
2

(
Ei(z−j ) + Ei(z+j )

)
(I.3b)

for i = left, right. Using this in combination with Eq. (I.2) we find:

Eleft(zj) = Eleft(z+j ) +
ig
√

2π

2c
σge , (I.4a)

Eright(zj) = Eright(z−j ) +
ig
√

2π

2c
σge . (I.4b)

Defining Ein
left(zj) ≡ Eleft(z+j ) and Ein

right(zj) ≡ Eright(z−j ) for the left
and right input fields to the atom we have upon insertion of Eq. (I.4)
into Eq. (I.1c):

σ̇ge = −
(

iωeg +
γfree

2
+

2πg2

c

)
σge + ig

√
2π
(
Ein

left + Ein
right

)
. (I.5)
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260 solving the maxwell-bloch equations

We identify the term 2πg2σge/c as belonging to the radiative decay of
the atom into one of the TOF-guided modes and hence define γTOF ≡
4πg2/c for the decay rate into the TOF.

We will now assume that the electric field in the TOF initially only
consists of a right-propagating input field; Ein

left = 0. After scattering
off the atom the input field will be partially reflected and transmitted
(and lost) and both left- and right-going field modes will be present
in the TOF. This can be summarized as

Eleft(z) =

{
rEin

right if z < zj,

0 if z > zj,
(I.6a)

Eright(z) =

 Ein
right if z < zj,

tEin
right if z > zj,

(I.6b)

where we have used r and t for the amplitude reflection and transmis-
sion coefficient respectively. We also make the ansatz that the atomic
coherence can be written as the Fourier component:

σge(t) = Ae−iωt = Ae−i(δ+ωeg)t , (I.7)

that is, the fast oscillations of the atomic dipole transition is given
by the near-resonant electric field frequency ω, and the amplitude A
will be slowly-varying over the time-scales considered such that we
can neglect its time-dependence altogether.

Using Eq. (I.6) in Eq. (I.2) we find:

Ein
right =

ig
√

2π

rc
σge . (I.8)

With γ = γTOF + γfree for the total decay rate of the atom, we finally
obtain the reflection coefficient upon inserting Eq. (I.7) and Eq. (I.8)
into Eq. (I.1c):

r(δ) = − γTOF

γ− 2iδ
. (I.9)

Since t = 1 + r by continuity of the electric field at z = zj, the trans-
mission coefficient is found to:

t(δ) = 1− γTOF

γ− 2iδ
=

γfree − 2iδ
γ− 2iδ

. (I.10)



J
R E L AT I O N B E T W E E N T H E O D A N D T H E AT O M I C
E M I S S I O N R AT E I N T O T H E T O F

We seek the relation between the optical depth (OD) of the atomic
crystal and the decay rate into the tapered optical fiber (TOF). Treating
the atomic crystal as an ensemble with 1D linear atom number density
N = Natom/L, we have from Appendix I the equations of motion(

1
c

∂

∂t
+

∂

∂z

)
Eright(z, t) =

ig
√

2π

c
N P(z, t) , (J.1a)

∂

∂t
P(z, t) = −(iωeg +

γfree

2
)P(z, t) + ig

√
2πEright(z, t) . (J.1b)

Where we have replaced the discrete atomic operator for the coher-
ences σeg with the continuous polarization P(z, t), and set the left-
going field equal to zero. We make the ansatz that both the electric
field and the polarization can be separated into slowly and fast vary-
ing parts:

Eright(z, t) = E(z)e−iωt , (J.2a)

P(z, t) = P(z)e−iωt , (J.2b)

with ω being the optical frequency of the light field and any time
dependence of the amplitudes E and P are neglected all together.
Inserting Eq. (J.2) into Eq. (J.1) we find:(

− ik +
∂

∂z

)
Eright(z, t) =

ig
√

2π

c
N P(z, t) , (J.3a)

P(z, t) =
2ig
√

2π

γfree − 2iδ
Eright(z, t) , (J.3b)

with the field detuning from atomic resonance defined as δ ≡ ω−ωeg.
Inserting the solution for the polarization, Eq. (J.3b), into Eq. (J.3a) we
obtain the linear differential equation for the electric field:

∂

∂z
Eright(z, t) = −

(
γTOFN

γfree − 2iδ
− ik

)
Eright(z, t) , (J.4)

where we have used γTOF = 4πg2/c. Integration this equation from
z = 0 to z = L we get the solution:

Eright(L, t) = E0(t) exp
(
− γTOFNatom

γfree

γ2
free + 4δ2

+ iφ
)

, (J.5)
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262 relation between the od and the atomic emission rate into the tof

with the imaginary term in the exponent merged into a single con-
stant φ. From Lambert-Beer’s law given in Eq. (6.29) the OD d is
defined such that

I(z) = I0e−d . (J.6)

Taking the norm squared of Eright(L, t) we then find for the single
atom OD:

α = 2γTOF
γfree

γ2
free + 4δ4

. (J.7)

Since the emission rate in the TOF is much smaller than that into free
space, γTOF � γfree, we can make the approximation γfree ≈ γ =

γTOF + γfree. For the on-resonance OD per atom we then have

α0 = 2
γTOF

γ
. (J.8)

j.1 including inhomogeneous broadening

We now include the effect of inhomogeneous broadening by adding a
shift δ′, described by the distribution D(δ′), to the natural atomic res-
onance frequency ωeg. Starting again from the Maxwell-Bloch equa-
tions they are now given by(

1
c

∂

∂t
+

∂

∂z

)
Eright(z, t) =

ig
√

2π

c
N
∫
D(δ′)P(z, t, δ′)dδ′ , (J.9a)

∂

∂t
P(z, t, δ′) = −

(
i(ωeg − δ′) +

γfree

2
)

P(z, t, δ′) + ig
√

2πEright(z, t) .

(J.9b)

Using again the ansatz for the solutions of Eright and P, Eq. (J.2), we
find:(

∂

∂z
− ik

)
Eright(z, t) =

ig
√

2π

c
N
∫
D(δ′)P(z, t, δ′)dδ′ , (J.10a)

P(z, t, δ′) =
2ig
√

2π

γfree − 2i(δ + δ′)
Eright(z, t) , (J.10b)

Inserting Eq. (J.10b) into Eq. (J.10a) and integrating from z = 0 to
z = L, we find for the norm squared of the electric field:∣∣ Eright(L, t)

∣∣2
| E0(t) |2

= exp
(
− 2Natom Re

∫
D(δ′) γTOF

γfree − 2i(δ + δ′)
dδ′
)

.

(J.11)
The on-resonance single atom OD is then given by

α0 = 2 Re
∫ ∞

−∞
D(δ′) γTOF

γ− 2iδ′
dδ′, (J.12)

under the approximation γfree ≈ γ.
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j.2 estimating the inhomogeneous broadening

To estimate the amount of inhomogeneous broadening of the atomic
transition, we fit the inferred optical depth as a function of the probe
detuning (Fig. J.1) with a Voigt profile:

V(δ; σδ, α) =
∫ ∞

−∞
G(δ′, σδL(δ− δ′)dδ′ . (J.13)

Here G and L are the Gauss- and Lorentz-distributions given by:

G(δ′, σδ) =
1√

2πσδ

exp
(
− δ2

2σ2
δ

)
, (J.14)

L(δ− δ′) =
α

1 + (δ− δ′)2/(γ/2)2 + s0
. (J.15)

s0 = P/Psat = 150 pW/750 pW = 0.2 is the saturation parameter. The
free parameters in the fit are the homogeneous on-resonant optical
depth α, and the inhomogeneous broadening σδ. From this we obtain
σδ = 0.41γ.
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Figure J.1.: OD as a function of the probe detuning. Data points are derived using
the long-term linear fit procedure described in Chapter 18 for the June
8 data set.
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