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A B S T R A C T

This thesis investigates hybrid two-dimensional semiconductor-
superconductor (Sm-S) devices and presents a new material plat-
form exhibiting intimate Sm-S coupling straight out of the box.

Starting with the conventional approach, we investigate coupling
superconductors to buried quantum well heterostructures, observ-
ing clear evidence of supercurrent, and the first direct spectroscopy
of an induced superconducting gap in a two-dimensional electron
gas. Nonetheless, these experiments reveal inhomogeneous con-
tacts and a soft-induced superconducting gap, likely due to dis-
order at the Sm-S interface

To overcome these issues we integrate the superconductor di-
rectly into the semiconducting material growth stack, depositing
it in-situ in a molecular beam epitaxy system under high vacuum.
We present a number of experiments on these hybrid heterostruc-
tures, demonstrating near unity interface transparency and a hard
induced superconducting gap. Furthermore the thin superconduct-
ing (< 10 nm) aluminium films allow for the application of large
in-plane magnetic fields without destroying superconductivity. In
such a scenario we investigate the magneto-transport properties
in S-Sm-S junctions, revealing anomalous Fraunhofer diffraction,
qualitatively in agreement with a complex interplay between Zee-
man coupling, spin-orbit interaction and disorder.

Finally by patterning quasi-one-dimensional structures we ob-
serve coalescing Andreev bound states stabilizing at zero energy
in large magnetic fields, in agreement with previous reports of Ma-
jorana modes in semiconductor nanowires. By offering a pattern-
able two-dimensional platform our approach opens up the door
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to experiments probing the predicted topological properties in this
system.
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Part I

C O U P L I N G S E M I C O N D U C T O R S A N D
S U P E R C O N D U C T O R S





1B U I L D I N G B L O C K S

The invention of the transistor at Bell labs in 1947 [1, 2] and sub-
sequent development of integrated circuits [3] ushered in the mod-
ern of era of pervasive computing devices, enabled by the ability
of semiconducting materials to seamlessly transition from metallic
conductors to insulators at the flip of a switch. This property of
gate-tunebility has likewise opened up a rich field of mesoscopic
physics [4] exploring electron transport in diverse nanoscale struc-
tures from quantum dots [5, 6], quantum point contacts [7], to in-
terferometers [8].

Superconductivity, since its discovery in 1911 [9] has similarly
driven vast technological change, owing to the ability of transport-
ing electric current without dissipation. Moreover, the prediction
by Brian D. Josephson in 1962 [10, 11] that a supercurrent could
flow between two closely spaced but disconnected superconduct-
ing banks, has opened up a diverse field of superconducting elec-
tronics.

In comparison to these vast fields, hybrid systems have been
slow to develop, in large part to the substantial difficulties of cou-
pling them reproducibly. Recent years have however have seen a
dramatic resurgence of interest in such hybrid systems owing to
the possibility of realizing topological systems applicable to quan-
tum computing.

While both semiconducting and superconducting quantum com-
puting platforms have been heavily investigated over the past years,
both suffer from the inherent problem that information encoded in
qubits (quantum analogues of transistors) is very fragile and short-
lived. Topological systems theoretically allow for the encoding of
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4 building blocks

quantum information in extended states, offering an in-built pro-
tection from enovironmental noise.

One of the most promising candidates for realizing such systems
are semiconducting nanowires with strong spin-orbit interaction
and induced superconductivity, predicted to host topological Ma-
jorana bound states. Over the past few years a number of exper-
iments on crystalline nanowires have reported results consistent
with these predictions [12–17]. Experiments directly probing the
topological properties of these systems however require access to
a second spatial dimension in order to manipulate them by braid-
ing.

1.1 introduction

In this chapter we introduce the key concepts that underpin the
work carried out in this thesis. The aim is a to get a general feel
for two-dimensional electron gases, superconductors, and coupled
hybrid systems. At the end of the chapter we give an introduction
to exotic properties that may arise in such hybrid systems, one of
the key motivations for this work.

Condensed matter systems offer a versatile playground of com-
ponents which can be combined to form a variety of systems. Imag-
ine that we have two different types of Lego bricks, red ones rep-
resenting semiconductors, and blue superconductors (Figure 1.1).
Section 1.2 details the relevant properties of the semiconductor sys-
tem followed by a brief introduction to superconductors in Sec-
tion 1.3. Upon stacking these lego bricks, two types of systems can
be constructed, a single superconductor-semiconductor (S-N) inter-
face, or two stacked interfaces forming and S-N-S structure. These
two types of structures are examined in Sections 1.4.1 and 1.4.2
respectively.
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Semiconductor
Super S N N

S

N

S

SN
+

a b c

Figure 1.1: Superconductor and semiconductor building blocks. From
two constituent building blocks (a), red representing a semi-
conductor and blue a superconductor, two types of structures
can be built: single S-N interfaces (b) or S-N-S “weak-links” (c).

1.2 two-dimensional electron gas

Metals are typically described using the free electron model, with
electrons in the conduction band roughly behaving like a gas of
non-interacting electrons in three dimensions. Intrinsic semicon-
ductors (without doping) on the other hand, at low temperature
(T ∼ 1 K), are expected to behave like insulators [18]. With the
Fermi level aligned within the band gap and negligible thermal
population of carriers, no transport should take place1. Nonethe-
less, certain semiconductors curiously demonstrate significant sur-
face conduction at low temperatures.

1.2.1 Surface accumulation layers

Figure 1.2 shows a vacuum-semiconductor interface for two typ-
ical semiconductors found in condensed matter physics laborato-
ries, InAs (left) and GaAs (right). The zinc blende crystal structure,
common to III- V semiconductors, terminating at a vacuum inter-

1 The probability of exciting an electron from the valence band into the conduction
band is ∼ exp(−Eg/2kBT), with Eg the band gap, kB the Boltzmann constant,
and T the temperature. With conventional semiconductor band gaps Eg ∼ 1 eV
and typical measurement temperatures of 0.03 K, this number is essentially zero.
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face is shown in the upper panels. As a function of depth z from
the surface (z = 0), the band alignment of the conduction and
valence bands are shown below. For both materials, deep in the
crystal the Fermi level EF rests in the band gap. Approaching the
vacuum-semiconductor interface however, the bands may bend up
or down potentially crossing the Fermi level, depending on details
of microscopic surface structure (and material composition).

CB

VB

In

As

Ga

As

CB

VB

z0

Ef

Va
cu

um

Va
cu

um

Figure 1.2: Interface band bending. Comparison of the typical band align-
ment at a vacuum-crystal interface for two typical III-V semi-
conductors, InAs (left) and GaAs (right).

Unique to the III-V group, in InAs the bands bend down at the
surface such that the Fermi level crosses the conduction band [19–
21]. Donor-like surface states pin the Fermi level above the conduc-
tion band minimum, whilst other III-Vs tend to form acceptor-like
states at the surface causing the bands to bend up [22, 23] 2. This
peculiar band alignment in InAs forms a triangular quantum well
(QW) at the interface leading to a quantization of the electron states
along the z axis (see e.g. [26]). For typical high quality InAs crystals
only one or two of these states are occupied, depending on mate-

2 Despite a considerable amount of research, the exact nature of these surface states
is to date not fully understood [24, 25].
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rial details influencing the precise position of the Fermi level [22].
This yields a conducting sheet of electrons at the surface: a two-
dimensional electron gas (2DEG). Despite being fundamental in
the development of semiconductor systems, such surface accumu-
lation layer 2DEGs suffer from low mobilities owing the proximity
of the electrons to the surface, thus prone to interface scattering
[27, 28]. We next introduce quantum well heterostructures, where
the band alignment can be engineered to form QWs within the
crystal lattice. This opens up a larger flexibility in their design and
significantly improves their transport properties.

1.2.2 Quantum well heterostructures

The III-V group of semiconductors contains twelve binary com-
pounds with lattice constants ranging from 4.5 Å to 6.5Å and band
gaps in the range 0.25 eV 6 Eg 6 2.5 eV [29]. Together with a
rich set of ternary alloys and the relative ease of growing layered
structures by molecular beam epitaxy [30–32], this enables a vast
platform for band engineering QWs by a priori design.

The top inset of Figure 1.3c shows a schematic representation of
a three layer semiconductor sandwich, chosen such that the band
gap in the central segment (yellow) is considerably smaller than
in the flanking barriers (blue). Such a scenario can for example be
practically realized in AlSb/InAs/AlSb [33] or InGaAs/InAs/In-
GaAs [34] heterostructures (among many others). This semicon-
ductor stack results in the band alignment shown by the solid
black line, confining electrons along the growth direction z in a
rectangular QW of width w.
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Figure 1.3: Rectangular QW heterostructure (a) Parabolic dispersion for
the first three energy states confined to a 2D plane. (b) Density
of states D(E) as a function of energy. (c) Electric potential as a
a function of depth z from the surface. In gray the probability
amplitudes of the first three levels are shown. The inset shows
a three dimensional representation of the semiconductor sand-
wich structure.

For sufficiently high barriers, this situation resembles the toy
model found in any quantum mechanics text book, the one dimen-
sional infinite potential well (or a “particle in a box”). For finite
height barriers, the results are similar with minor quantitative dif-
ferences as the wave functions penetrate into the barriers. Whilst
we neglect this effect for now, this will become import in Chapter 4.
Concentrating on the infinite well, the energy levels are given by

Ezn =
 h2

2m∗

(nπ
w

)2
with n = 1, 2, ... (1.1)
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with  h the reduced Planck constant, m∗ the effective mass, n the
band index, and w the well width. The corresponding wavefunc-
tions are given by

ψn(z) = An sin
(
nπ(z− a)

w

)
(1.2)

defined in the range a < z < a+w and zero elsewhere. An is a nor-
malization constant. The corresponding probability densities |ψn|2

are shown in Figure 1.3(c) for the first three levels (n = 1, 2, 3).
Whilst the electron motion in z direction is confined to this set

of states, movement along the x-y plane is unrestricted. The total
energy of an electron inhabiting this plane can then be written as
the sum of the confinement energy Ezn and a kinetic energy term

En(kx,ky) =
 hk2

2m∗
+ Ezn (1.3)

Here k =
√
k2x + k

2
y, while kx and ky denote the electron momenta

along the x and y directions. This equation defines free electron-
like, isotropic, and parabolic bands as shown in Figure 1.3(a). Ow-
ing to the confinement along z the zero-point energy is given by
En(0, 0) = Ezn.

The total density of states (DOS) of the 2DEG is shown in Fig-
ure 1.3(b) with an energy independent contribution from each band
of

dn(E) =
m∗

π h
(1.4)

assuming a two-fold degeneracy for spin. The total DOS is a sum
over all occupied subbands D =

∑
n dn. In order to get a handle

on an experimentally measurable quantity we note that the total
electron density follows as [35]

n =

∫µc
Ez1

dED(E) = D · (µc − Ez1) = D · EF (1.5)
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where µc is the chemical potential. By considering characteristic
momentum of states at the Fermi level

EF =
 h2k2F
2m∗

(1.6)

we arrive at kF, the Fermi wavevector. Combination of Equation 1.5
and 1.6 then gives us

kF =
√
2πn (1.7)

which can be experimentally determined (see Section 1.2.3 below).
Other quantities of interest such as the Fermi wavelength and ve-
locity follow as λF = kF/2π and vF =  hkF/m

∗ respectively.
One aspect so far undiscussed is the “cleanliness” of electron

transport in the 2D plane. Typically this is parametrized by the
electron mobility

µ =
|e|τ

m∗
(1.8)

where τ is the mean time an electron travels between scattering
events. The mean free path is then

le = µvF =
 hµ

e

√
2πn (1.9)

which describes the average distance an electron travels ballisti-
cally before encountering a scattering event. Whilst a number of
different scattering mechanisms contribute to determining the over-
all mobility we here simply consider an average scattering time.
The different contributions can be disentangled by careful measure-
ments of the mobility as a function of temperature [36], a useful
tool in 2DEG development.



1.2 two-dimensional electron gas 11

R
(Ω

)

0

0 Bz (mT)

Rxx

RxyVxx

Vxy

I
BzW

L

Figure 1.4: Hall characterization. A typical Hall bar geometry (left) with
six ohmic contacts, two at either end acting as source and drain
electrodes, and four along the mesa periphery used to measure
the longitudinal and Hall voltages, Vxx (red) and Vxy (blue)
respectively. The behavior of the corresponding resistances as a
function of perpendicular magnetic field is shown on the right.
In the low field regime the Hall resistance exhibits a finite slope
from which the density can be deduced, whilst the longitudinal
resistance remains constant.

1.2.3 Determining density and mobility

Now that we have determined the primary parameters of interest
in the characterization of a 2DEG, we need to examine how to mea-
sure them. The measurement concept relies on the Drude model
(see e.g. [35]), and is carried out by measuring the low magnetic
field response of a Hall bar as shown in Figure 1.4(a). A constant
current of magnitude I is driven from one end of the Hall bar to the
other while a perpendicular magnetic field Bz is swept. Simultane-
ously, the longitudinal (Vxx) and Hall (Vxy) voltages are recorded.
The per-square resistivity of the material can then be determined
as

ρxx =
Vxx

I

W

L
(1.10)
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which for low fields is constant (see Figure 1.4(b)). The Hall resis-
tivity on the other hand increases linearly with field and is given
by

ρxy =
Vxy

I
(1.11)

From these quantities, measured over a small magnetic field range,
the density and mobility can be extracted [35]

n =
1

|e|dρxy/dB|B=0
, µ =

dρxy/dB|B=0
ρxx(B = 0)

(1.12)

This type of characterization is key to benchmarking 2DEGs and
will be used extensively throughout the thesis. Typically we will
quote the resulting parameters, though more detailed results will
be presented when we move to more novel materials. One key
point to note is that the quantities extracted using this method rep-
resent the total density and mean mobility of all carriers contribut-
ing to transport. As such, further steps need to be taken to ensure
that only a single subband is occupied in the QW. This point will
be elaborated in Chapter 5.

1.2.4 Spin-orbit interaction

So far we have implicitly assumed that the dispersion shown in
Figure 1.3(a) tells the whole story. Realistic systems can however
deviate in a number of ways from this two-fold spin degenerate,
isotropic, and parabolic dispersion relation. One of the most inter-
esting is through spin-orbit interaction (SOI). First discovered in
the context of atomic and molecular physics as a relativistic correc-
tion coupling an electron’s spin to it’s orbital momentum [37, 38],
an analogous effect appears in condensed matter systems.

Owing to the additional complexity of solid-state systems where
both crystal structure and interfaces play an important role, this
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effect can manifest itself in two distinct forms termed structural
inversion asymmetry (SIA) and bulk inversion asymmetry (BIA).
These symmetry breaking mechanisms result in the Rashba and
Dresselhaus spin-orbit terms respectively.

Rashba SOI relies on a structural symmetry breaking perpen-
dicular to the 2DEG plane, typically provided by the confining
potential. Hence the overall magnitude of this effect is given by
α = α0〈E · ẑ〉 with a material dependent prefactor α0 called the
Rashba coefficient and E · ẑ the symmetry breaking electric field.

Dresselhaus spin-orbit on the other hand requires a crystal struc-
ture which breaks inversion symmetry (such as e.g. zinc blende).
In this case the overall strength is determined by β = β0〈k2z〉where
β0 is again a material dependent prefactor, the Dresselhaus coeffi-
cient, and 〈k2z〉 ∼ π2/w2 is the squared average momentum in the
z direction, dependent only on the QW width w [39].

The overall magnitude of both these effects is set by material
parameters α0 and β0, which derive from the atomic spin-orbit
strength of the constituent atoms. Consequently crystals composed
of heavier elements tend to have stronger spin-orbit coupling. The
band gap also plays a fundamental role as the interaction between
the valence and conduction bands drives this phenomenon. As a
result, (α0,β0) ∝ 1/Eg [40]. For more details the interested reader
is directed at the comprehensive treatise on this topic by R. Winkler
[41].

Understanding the origin of these effects we can now write the
effective first order Hamiltonians for Rashba and Dresselhaus SOI
respectively3

HR =
α
 h
(σxpy − σypx) (1.13)

HD =
β
 h
(σxpx − σypy) (1.14)

3 Assuming a (001) grown QW
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The total spin-orbit Hamiltonian is the sum of these two contribu-
tions HSO = HR +HD.

Concentrating now on Rashba SOI, typically dominant in III-V
materials, the dispersion relation follows from Equation 1.13 and
is given by

E±(k) =
 h2k2

2m
±αk (1.15)

and shown in Figure 1.5(a), with k =
√
k2x + k

2
y. Owing to the form

of the Hamiltonian, the spins always point in-plane and are tied to
the electron momentum as demonstrated by the spin textures of
the upper and lower spin-orbit bands shown in Figure 1.5(b) and
(c) respectively. For each band the spin texture takes on the form
of a vortex with the spin pointing perpendicular to the electron
motion.

Due to time reversal symmetry however all states come in Kramers
pairs of the form

E↑(k) = E↓(−k) (1.16)

such that at zero magnetic field, details of the spin-orbit bandstruc-
ture do not contribute to transport. In order to examine this further
we need to consider the effect of a magnetic field in the presence
of Rashba SOI.

1.2.5 Competition between Zeeman and SOI

Applying a magnetic field induces an energy gap between spins
of opposite orientation. Neglecting orbital effects, this can be de-
scribed using the Zeeman Hamiltonian

HZ =
1

2
g∗µB(B ·σ) (1.17)
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where g∗ is the Landé g-factor (assumed to be isotropic), B the ap-
plied field, and σ = {σx,σy,σz} are the Pauli matrices. Assuming
a magnetic field B ‖ x̂ and negligible Dresselhaus SOI, the Hamil-
tonian then takes the form

H = H0 +
α
 h
(σxky − σykx) +

g∗µBB
2

σx (1.18)

in which we can identify the Zeeman energy εz = g∗µBB/2. The
eigenvalues now take the form (see e.g. [42])

E± =
 h2k2

2m
±
√
α2k2x + (αky − εz)2 (1.19)

Considering the case of transport purely along kx or ky yields

E±(kx = 0,ky) =
 h2k2

2m
± (αky − εz) (1.20)

E±(kx,ky = 0) =
 h2k2

2m
±
√
α2k2x ± ε2z (1.21)

where we can clearly identify that for k ⊥ B a trivial extra en-
ergy shift εz appears, linearly shifting the bands as a function of
magnetic field as shown in Figure 1.5(e). Conversely for k ‖ B,
a nontrivial band mixing opens a finite energy gap at k = 0 as
shown in Figure 1.5e. Nonetheless, for 2DEGs this gap is effectively
quenched by the gapless dispersion along ky. We will return to this
so-called “spin-orbit gap” in Section 1.5.2 in the context of confined
one-dimensional structures with induced superconductivity.



16 building blocks

kykx

E

0.4−0.4 0.0

0.4

−0.4

0.0

0.4

−0.4

0.0

kx

ky

ky

−1.0 0.0 1.0
E

−1.0

0.0

1.0

−0.5 0.0 0.5 1.0 1.5 2.0

−1.0

0.0

1.0

−1 0 1

−1 0 1

E
E

kx

ky

EZ

ky

kx

−3

3

a
b

c

d

e

Figure 1.5: Rashba SOI. (a) 2DEG dispersion of the lowest band in the
presence of finite Rashba SOI. For zero magnetic field the spin
textures of the inner and outer bands are shown in (b) and (c)
respectively. For transport along kx (d) and ky (e), positions
of the band turning points (gray) are shown as a function of
magnetic field B ‖ kx (in Zeeman units EZ). For three magnetic
fields, the corresponding full dispersions are shown with the
superimposed spin orientation.
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1.2.6 Quantum point contact

Now that we have a firm understanding of extended 2DEGs, the
next step is to consider how they can be controlled to form arbitrar-
ily shaped structures (such as one-dimensional wires if we want to
investigate the aforementioned “spin-orbit gap”). The key aspect of
semiconductors which has driven their technological prevalence is
their ability to act as a voltage controlled switch. Similarly, by ap-
plying an external electric field, typically using electrodes on the
sample surface (often called electrostatic gates) the density in the
2DEG can be locally tuned. This allows for the formation of com-
plex devices with relative ease as nanometer-scale gate designs can
be deposited in a single step without the need for troublesome
etching of fine semiconductor features.

To introduce gating we will briefly review the “quantum point
contact” (QPC) which represents the elementary unit in more com-
plex designs. By depositing two metallic electrodes on the surface
of a 2DEG as shown in Figure 1.6(a) and applying a gate voltage
VG, a one dimensional channel can be formed as the carriers be-
low the gates are depleted. The red shading in the figure depicts
a representation of the local electron density. We follow the results
of Buttiker to examine the behavior in this 1D segment [43].

The potential in the central region (dashed box) between the
gates takes the form of a saddle point (Figure 1.6(a) top inset)

V(x,y, z) =
m∗

2
(ω2xx

2 +ω2yy
2) + V(z) (1.22)

where V(z) is the confinement potential of the 2DEG and ωx/y
are characteristic frequencies in the x/y directions. The Hamil-
tonian is separable, and the total energy can thus be written as
E = Ex + Ey + Ez. Along y the potential is that of a harmonic
oscillator Eny =  hωy(n+ 1/2) with n = 1, 2, 3, ... (Figure 1.6(a) bot-
tom inset). Classically, only levels Eny up to the Fermi energy con-
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tribute to transport. Quantum mechanically however, electrons can
tunnel through the barrier with a transmission probability Tn(E).
This problem of scattering from a saddle point potential has been
solved analytically in the context of atomic and molecular physics
and the transmission coefficients take the form [44, 45]

Tn(E) =
1

1+ exp(−2πεn)
(1.23)

with the energy parametrization

εn =
E−  hωy(n+ 1/2) − Ez

 hωx
(1.24)

The conductance through the constriction can then be calculated
as the sum of transmission coefficients at EF

G =
2e2

h

∑
n

Tn(EF) (1.25)

with the conductance quantum G0 = 2e2/h, for a two-fold spin
degenerate subband. In the presence of finite Zeeman splitting
this degeneracy is broken and the conductance rises in steps of
e2/h [46].

For zero magnetic field, the theoretical conductance as a func-
tion of Fermi energy is shown in Figure 1.6(b) for two different
curvatures of the saddle point potential ωy/ωx = 1 (dashed) and
ωy/ωx = 2 (solid). Such conductance quantization was first ex-
perimentally observed in 1988 jump starting the rich field of meso-
scopic transport [7, 47], owing largely to the versatility of the gate-
able 2DEG platform.
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Figure 1.6: Quantum point contact. (a) Schematic of a metallic split-gate
deposited on the surface of buried 2DEG. By applying a neg-
ative potential to the gates the 2DEG underneath is depleted,
indicated by the red shading representing local electron den-
sity. The local potential in the constriction takes the form of
a saddle (top inset). Along y the potential resembles the har-
monic oscillator with constantly spaced energy levels as shown
in (bottom inset), with the corresponding wavefunction ampli-
tudes shown in gray. (b) The calculated conductance through
the constriction in units of the conductance quantum 2e2/h.
Results are shown for two constriction of different curvatures
ωy/ωx = 1 (dotted) and ωy/ωx = 2 (solid).

1.2.7 Choice of material system

So far we have kept things general, concentrating on the key ideas
required for understanding the behavior of 2DEGs with electro-
static gate control. We have briefly addressed differences with re-
spect to how the band structure behaves at the surfaces of two dif-
ferent III-V materials, namely InAs and GaAs. In this section we
give an overview of the three III-V binary semiconductors GaAs,
InAs and InSb available for electron transport experiments and
compare their characteristics.



20 building blocks

Before diving in it is instructive to consider the desired character-
istics. In terms of the 2DEG we want a high mobility, stable gating,
large g-factor, and strong SOI. The reasoning for wanting strong
SOI will be examined in detail towards the end of this section.

From a practical perspective the ability to fabricate devices is
also of utmost importance. Whilst one might expect that the differ-
ences between III-V materials are negligible, this is far from true.
Simply from an energetics perspective, InSb is a relatively unsta-
ble material compared to GaAs and is as such prone to crystal
defects but also to forming unwanted oxides when exposed to the
atmosphere. As a result it is especially unstable at the elevated
temperatures ∼ 180◦C typical in processing.

Finally, we would like the material to be compatible with induc-
ing superconductivity. This characteristic somewhat poorly under-
stood but is typically related to tendency of the bands to bend
up or down at the surface. If well behaved Ohmic contacts can be
formed, inducing superconductivity should in theory be straight-
forward. In the case of depletion layers forming a Schottky barrier
at the surface, substantial efforts are required to pull this down.

Over the course of this work, measurements have been carried
out on QPCs in all three material systems. Results are shown in
Figure 1.7(b), plotted on an arbitrary gate voltage scale to allow for
a cleaner comparison. All three materials show a similar trend of
quantized conductance plateaus at integer values of G0 = 2e2/h

(c.f. Figure 1.6). The quality of the data however is distinctly dif-
ferent, with the GaAs devices showing negligible signs of disor-
der, compared to the somewhat more disordered InAs, and almost
questionable InSb. Indeed, the InSb sample whilst seemingly show-
ing a plateau at 2e2/h for certain gate sweeps, was very unstable in
time. The two sweeps shown in the figure reflect two consecutive
gate traces (both swept down), clearly indicating gate instability.

Motivated by these traces, in Figure 1.7a we show a radar plot
scoring each of the materials in the aforementioned categories to
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give and overview of their respective advantages and disadvan-
tages. As some of the figures of merit are hard to objectively quan-
tify, the categories Fabrication, Gating, and Induced Superconductiv-
ity are scored largely on intuition based on the state of the liter-
ature and experiences in the lab. The values of the other figures
of merit are given in the table of Figure 1.7, with densities and
mobilities reported for the measured materials together with the
current records (at the time of writing). The g-factors and Rashba
coefficients are quoted from literature for bulk crystals.

It is clear from Figure 1.7 that all three materials have their own
areas of strength. Largely the dominance of GaAs in mobility, fab-
rication, and gating is due to nearly 40 years of active research and
development. InAs and InSb on the other hand while relatively
widely studied in the context of photon detection (though much
of it classified) have only relatively recently been investigated in
2DEG experiments. As a result, further material developments may
well significantly improve these characteristics.

As large SOI and g-factors are paramount to studying the poten-
tial topological states which will be introduced in Section 1.5.2, in
this work we have concentrated primarily on InAs. Very early in
this work InSb was tested but eventually abandoned due to count-
less issues with material stability during fabrication.
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Material GaAs InAs InSb

Grower L. N. Pfeiffer J. Shabani M. Santos

Institution Bell Labs UCSB U. Oklahoma

n (cm−2) 2.7× 1011 3.0× 1011 2.1× 1011
µ (cm2/Vs) 25× 106 0.2× 106 0.15× 106

35× 106 [48] 2.4× 106 [49] 0.22× 106 [50]

g∗ [51] -0.5 -15 -52

α0 (Å2) [51] 5 117 523

Figure 1.7: III-V material comparison. (a) Radar chart scoring GaAs
(blue), InAs (red), and InSb (green) in six figures of merit. (b)
Conductance as a function of gate voltage measured on QPCs
in each material system. (c) Figures of merit for the three mate-
rials and collaborating materials growers/institutions.
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1.3 superconductivity

In a seminal work in 1957, Bardeen, Cooper, and Schrieffer (BCS)
developed a microscopic description of superconductivity [52]. The
key idea was that electrons with opposite momentum and spin
could pair up to form an effective bosonic particle called the Cooper
pair (k ↑,−k ↓), with the attractive potential driving this process
mediated by weak electron-phonon coupling. Owing to this pair-
ing, Cooper pairs condense into an energetically favorable ground
state separated from the continuum of single-electron states by an
energy gap ∆. Quasiparticle excitations from the BCS condensate
can be conveniently described by the Bogoliubov-de Gennes (BdG)
equation [53, 54][

H(r) ∆(r)

∆∗(r) −H(r)

](
uk(r)

vk(r)

)
= E

(
uk(r)

vk(r)

)
(1.26)

with the single electron Hamiltonian H(r) defined as

H(r) = −
 h2

2m∗
∇2 +U(r) − µc (1.27)

where m∗ is the effective mass, U(r) a scalar potential, and µc
the chemical potential. The solutions of this equation of the form
(uk, vk)T represent electron or hole-like quasiparticle excitations.
The vector components individually represent the probability of
finding a quasiparticle in a electron or hole-like state.

For a homogeneous superconductor ∆(r) = ∆ the spatial depen-
dence can be separated out. Assuming plane wave solutions of the
form (

uk(r)

vk(r)

)
= exp(ik · r)

(
u0

v0

)
(1.28)
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the electron and hole weights u0 and v0 are thus

u20 =
1

2

1+
√
E2 −∆20

E

 , v20 = 1− u20 (1.29)

with the energy eigenvalues given by

E = ±
√
ξ2k + |∆0|2 where ξk =

 h2k2

2m∗
− µc (1.30)

The density of states then takes the form

ρS(E) =


E√

E2−∆20

E > ∆

0 E < ∆

(1.31)

shown in Figure 1.8.

ρS(E )

E∆−∆

Figure 1.8: Superconducting density of states
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Figure 1.9: Andreev reflection. (a) Schematic representation of Andreev
reflection at a normal metal-superconductor interface. To cap-
ture the key ingredients we assume transport is confined to the
two-dimensional xy plane. The third dimension is energy, with
the filled regions indicating a finite density of single particle
states. In the normal region (green), states are available up to
the Fermi level EF, fixed to E = 0 in the center of the supercon-
ducting gap. (b) A cut of (a) in the spatial plane showing the
two possible reflection processes. Normal reflection leads to a
incoming (ke ↑) electron bouncing off the interface yielding
a returning (−ke ↑) electron. Andreev reflection on the other
hand dumps a (ke ↑,−ke ↓) Cooper pair into the supercon-
ductor, yielding a retroreflected (kh ↓) hole exactly retracing
the path of the incident electron. (c) A cut of (b) in the ener-
gy/space plane depicting the Andreev reflection process. The
incoming electron with energy ε is reflected as a hole with en-
ergy −ε.
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1.4 hybrid structures

1.4.1 Andreev reflection

Consider now the case of a semiconductor-superconductor (NS)
interface as shown in Figure 1.9(a). As the coupling may not be
perfect we include an intervening barrier at the interface Hδ(x),
withH the barrier height. In the semiconductor, all states below the
Fermi level are occupied as indicated by the green shading. The
superconductor on hand has a finite energy gap, with no single
particle states available within ±∆ of the Fermi level (Figure 1.9(c)).

Assuming an incident spin-up electron arriving from the N re-
gion described by a wavefunction Ψin (Equation 1.32a), upon hit-
ting the interface two processes are possible dependent on both the
energy of the incoming electron, and the opacity of the barrier. For
energies E < ∆ transmission into the superconductor (in a single-
particle sense) is prohibited and as such the electron must undergo
a reflection process yielding Ψreflection (Equation 1.32b). For a trans-
parent barrier the electron can be Andreev retro-reflected as a hole,
creating a Cooper pair in the superconducting condensate with a
total charge transfer of 2e as shown in Figure 1.9. The presence of
the barrier however also allows for a normal specular reflection off
the interface resulting in an effective charge transfer of −e. For en-
ergies E > ∆ the electron may be injected into the superconductor
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as electron or hole-like quasi-particle excitations described by the
wavefunction Ψtransmission (Equation 1.32c).

Ψin =

(
1

0

)
eikex

Incident electron

(1.32a)

Ψreflection = a

(
0

1

)
eikhx

Andreev

+ b

(
1

0

)
e−ikex

Normal

(1.32b)

Ψtransmission = c

(
u

v

)
eik̃ex

Electron-like

+ d

(
u

v

)
e−ik̃hx

Hole-like

(1.32c)

The corresponding probabilities of Andreev and normal reflection
are given by A = a∗a and B = b∗b respectively, and for ener-
gies above the gap, probabilities of quasi-particle transmission by
C = c∗c and D = d∗d. The solution of this set of equations under
probability conservation, A(E) + B(E) + C(E) +D(E) = 1, yields
the probabilities of each process as tabulated in Table 1 and shown
in Figure 1.10, with γ2 = [u20 +Z

2(u20 − v
2
0)]
2 while u20 and v20 are

defined by Equation 1.29 [55]. Here Z represents the dimensionless
barrier strength, determined by the magnitude H of the barrier and
is also directly related to the transmission probability T

Z = H/ hνF =

√
1

T
− 1 (1.33)

The current through the junction can be evaluated by consider-
ing the integral

INS(V) =
GN
e

∫∞
−∞ dE[f→(E) − f←(E)] (1.34)
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E < ∆ E > ∆

A
∆2

E2 + (∆2 − E2)(1+ 2Z2)2
u20v

2
0

γ2

B 1−A
(u20 − v

2
0)
2Z2(1+Z2)

γ2

C 0
u20(u

2
0 − v

2
0)(1+Z

2)

γ2

D 0
v20(u

2
0 − v

2
0)Z

2

γ2

Table 1: Transmission and reflection coefficients at an NS interface with
transparency Z and superconducting gap ∆. A gives the probabil-
ity of Andreev reflection and B of normal reflection. C and D give
the probabilities of transmission into the superconductor as elec-
tron or hole-like quasiparticles respectively. For energies below
the gap these processes are forbidden.

with the right moving distribution function originating from the
semiconductor side given by

f→(E) = f0(E− eV) (1.35)

with f0 the Fermi distribution function. The distribution function
originating from the superconducting bank is

f←(E) = A(E)[1− f→(−E)] +B(E)f→(E)

+ [C(E) +D(E)]f0(E) (1.36)
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Noting that A(E) = A(−E) and f0(−E) = 1− f0(E), Equation 1.34

can then be written as

INS(V) =
GN
e

∫∞
−∞ dE[f(E) − f(E− eV)](1+A(E) −B(E))

(1.37)

Here we identify the expression 1+A(E) − B(E) as the “transmis-
sion coefficient for electrical current" [55]. Appreciating that the
quantities of interest for transport are the Andreev and normal
reflection coefficients A and B, in Figure 1.10 we study their de-
pendence on both energy and the interface transparency Z.

Following from Equation 1.37, dI/dV = G(eV) ∝ 1+A(eV) −

B(eV). The right hand panel of Figure 1.10 thus shows the differ-
ential conductance normalized by the normal state conductance4

GNN ∝ (1 + Z2)−1 = T. We note here that in this simple pic-
ture the normal state conductance is equivalent to the conductance
at large bias GNN = G(eV � ∆). The colorscale is centered on
G(eV)/GNN = 1 in white, to highlight regions of conductance en-
hancement (red) and suppression (blue). For Z < 1 a conductance
enhancement is observed for |eV | 6 ∆, approaching a factor of two
for Z � 1. For Z = 0.1 the enhancement is ∼ 1.95. In the opposite
limit, for an opaque interface Z > 1 a significant suppression of the
conductance is observed within the gap. In this limit the conduc-
tance is proportional to the density of states in the superconductor
G(eV) ∝ ρS(eV) (cf. Equation 1.31). Indeed this somewhat surpris-
ing result is the key to the final chapters of the thesis. By control-
lably forming an opaque NS interface, the junction allows us to
probe the local density of states in at the interface by tunneling
spectroscopy.

4 Whilst this is quite intuitive, it can be derived from Equation 1.37 by considering
the limit A→ 0. Probability conservation then implies 1−B = C = (1+Z2)−1.
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Figure 1.10: BTK coefficients as a function of barrier transparency. The probability
of Andreev reflection A(E) (left column), normal reflection B(E) (mid-
dle column), and the “transmission coefficient for electrical current” [55]
1+A(E) − B(E) (right column), shown for three different values of the in-
terface transparency Z = {0.03, 0.3, 3.0} in the top, middle, and bottom rows
respectively. The rightmost panel shows the ratio G(E)/GNN as a function
of Z. The colorscale is saturated at 2 to emphasize the in-gap conductance
doubling for Z < 1. For Z > 1 the BCS coherence peaks at the gap edge
may yield a ratio G(E)/GNN significantly larger than 2.
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1.4.2 The Josephson junction

In 1962 Josephson proposed that a supercurrent could flow be-
tween two disconnected superconducting leads, with its magni-
tude proportional to the phase difference between them φ = χ1 −

χ2[10]:

IS(φ) = IC sin(φ) (1.38)

Generically however this current phase relation may include higher
order components

IS(φ) =
∑
n>1

[In sin(nφ) + Jn cos(nφ)] (1.39)

with the odd Jn terms vanishing in the presence of time-reversal
symmetry. In this thesis we will largely assume a sinusoidal CPR,
however noting that recent evidence on epitaxial superconductor-
semiconductor nanowires suggests the presence of substantial higher
order components as expected for transparent junctions [56].

1.4.3 Andreev bound states to a supercurrent

To examine the behavior of a SNS structure it is instructive con-
sider two SN junctions in series. In this case however we need to
explicitly consider right (Ψ→) and left (Ψ←) moving wavefunctions
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separately [57]. These can be compactly be written together in the
form

Ψτ =



Aτ

v0e−iφ/2
u0

 eiτk̃(−τ)x x < 0

Bτ

v0e−iφ/2
0

 eiτkex +Bτ
 0

u0

 eiτkhx 0 < x < L

Cτ

v0e+iφ/2
u0

 eiτk̃(τ)(x−L) x > L

(1.40)

with τ = ±1 corresponding to Ψ→ and Ψ← respectively. k̃(τ) de-
note the wavevectors for electrons (τ = 1) and holes (τ = −1) in
the superconducting banks, and k the wavevectors in the normal
region. Given some work, this system of equations can be shown
to yield Andreev bound states for an SNS junction of length Lwith
perfect transmission(

E

∆

)(
L

ξ

)
= 2 arccos

(
E

∆

)
±φ− 2πn (1.41)

For short junctions in the limit L � ξ the left hand side tends to
zero such that

E±(φ) = ±∆ cos
(
φ

2

)
(1.42)

In the case of finite barriers at the interfaces the calculation is some-
what more involved but can be solved in a similar fashion yielding

E±(φ) = ±∆
√

cos2(φ/2) + 4Z2

4Z2 + 1
(1.43)
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1.4.3.1 Supercurrent

As these bound states allow for a dissipationless transfer of charge
across the normal region, a supercurrent flows. The total supercur-
rent carried by these discrete states is given by

I =
∑
n,±

2e
 h

dE±n(φ)
dφ

f[E±n(φ)] (1.44)

Plugging Equation 1.43 into Equation 1.44 yields

I(φ) =
e∆0
 h

sin(φ)
2
√
(4Z2 + 1)(cos2(φ/2) + 4Z2)

tanh(E+B/2kBT)

(1.45)

=
e∆

2 h
T

 sin(φ)√
1− T sin2(φ/2)

 tanh
(

∆

2kBT

√
1− T sin2(φ/2)

)
(1.46)

Whilst this calculation was done explicitly for a clean junction with
finite transparency barriers, equivalent results are obtained largely
independent of the scattering mechanism, including arbitrary delta
functions barriers [58–60], arbitrary smooth potentials [61], reso-
nant impurity levels [62], or the presence of a single scattering
impurity in the junction [63].

In the limit of perfect interfaces we obtain the form derived by
Beenakker and Furusaki for a superconducting quantum point con-
tact with N occupied channels [64, 65]

I(φ) =
Ne
 h
∆0 sin(φ/2) tanh

[
∆0
2kBT

cos(φ/2)
]

(1.47)

Indeed in the classical (many mode) limit this reduces to the orig-
inally derived Kulik-Omelyanchuk (KO-2) model [66] and can be
obtained from Equation 1.47 by division by the quantized resis-
tance RN = π h/Ne2.
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1.4.4 Fraunhofer pattern

In the presence of a perpendicular magnetic field B⊥ as shown
on the upper right of Figure 1.11 the phase difference across a
Josephson junction gains an extra term (c.f. Equation 1.38)

φ = χ2 − χ1 −
2π

Φ0

∮
C

A · ds (1.48)

where A is the magnetic vector potential, related to the applied
field by B = ∇×A, and ds is an infinitesimal surface element in
the plane of the junction. Letting the integration contour C run the
full width of the junction and deep into the contacts we see that
the integral describes the total flux Φ = B⊥(WL) enclosed by the
junction area. This results in a constant winding of the phase along
the contacts of the form

∂φ

∂y
=
2π

Φ0
B⊥L (1.49)

yielding a linear gradient

φ(y) =
2π

Φ0
B⊥Ly+φ0 (1.50)

where φ0 is an integration constant enumerating the phase differ-
ence at y = 0. Letting kφ = (2π/Φ0)B⊥L we can now combine
Equation 1.38 and 1.50 to write the total supercurrent Is as a func-
tion of applied magnetic field

Is(B⊥) =
∫W/2
−W/2

Jc(y) sin
(
kφy+φ0

)
dy (1.51)

here Jc(y) is the supercurrent density along the junction width.
Typically for well behaved junctions Jc = constant as shown in the
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upper inset of Figure 1.11. As the phase offset φ0 only contributes
a phase factor to the integral Equation 1.51 can be rewritten as

Imax
s (B⊥) =

∣∣∣∣∣
∫W/2
−W/2

Jc(y) exp
(
ikφy

)
dy

∣∣∣∣∣ (1.52)

which we identify as the Fourier transform of the critical current
density Jc.

For the case of Jc being constant this results in the well known
Fraunhofer diffraction pattern

Imax
s (Φ) = Ic

∣∣∣∣sin(x)
x

∣∣∣∣ where x =
πΦ

Φ0
(1.53)

shown at the bottom of Figure 1.11.
To gain insight into the physical origin of this effect, the lo-

cal supercurrent density Js(y) = Jc(y) sin
(
kφy+φ0

)
is plotted

for a range of different magnetic fields corresponding to fluxes
of Φ = 0, 0.5, 1.0, 1.5Φ0 threading the junction (assuming a cur-
rent flow directed from bottom to top). For Φ = 0, Js is con-
stant along the junction width leading to uniform current flow of
magnitude I0c. Upon increasing the field however, the kφ term be-
comes important, leading to a sinusoidal oscillation of Js with a
period ∆y = 2π/kφ. For Φ = Φ0/2 half a wavelength is enclosed
within the junction leading to negligible supercurrent transport
near the junction edges, overall lowering the critical current mag-
nitude. Further increasing the field toΦ = Φ0, a full wavelength of
the oscillation is enclosed in the junction such that half of the junc-
tion carries supercurrent parallel to the external current flow (+Js),
while the other half carries a backward propagating supercurrent
anti-parallel to it. This scenario results is a net zero supercurrent
forming the first node of the Fraunhofer pattern. As the field is in-
creased further this scenario repeats, resulting in nodes whenever
the enclosed flux equates to integer multiples of Φ0.
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Figure 1.11: Fraunhofer diffraction. (Top right) SNS junction in an exter-
nal perpendicular magnetic field B⊥ with a current I sourced
from left to right. In the ideal case the critical current density
along the junction width is constant as shown by the top in-
set. In this case the resulting diffraction pattern takes on the
Fraunhofer form (bottom). The local supercurrent densities
for a range flux quanta threading the junction are shown in-
set. Positive supercurrent flow (along I) is colored red, while
negative flow (against I) is in blue.
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1.5 topological hybrids

1.5.1 Majorana fermions

Proposed by Ettore Majorana in 1937 as an overlooked solution to
the Dirac equation, Majorana fermions are particles which acts as
their own antiparticle [67]

γ = γ† (1.54)

To date, no fermions included in the Standard Model have been
shown to demonstrate this property, with experiments still un-
derway on neutrinos. Condensed matter systems however often
display rich phenomenna beyond those found in particle physics
[68]. Indeed, half a century after Majorana’s work, proposals ap-
peared suggesting that such particles could emerge as excitations
in a topological superconductor [69, 70]. Some more time was re-
quired to reformulate the proposals into actionable experiments,
but in 2010 a recipe for creating such topological superconductors
was published using off the shelf parts [71, 72] .

1.5.2 A recipe

The proposed physical model combines ingredients typically found
in a condensed matter physics laboratory, namely a quasi-one-
dimensional semiconductor with SOI, Zeeman coupling and su-
perconductivity. This system is described by the Hamiltonian

H =

∫
dyΨ†HΨ where Ψ = (ψ↑, ψ↓, ψ

†
↓, −ψ†↑)

T (1.55)

with

H =

[
k2y

2m∗
− µc

]
τz

Kinetic

+
α
 h
kyσxτz

SOI

+
gµB
2
Byσy

Zeeman

+ ∆0τx
Sc.

(1.56)
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Here the Pauli matrices σ and τ act on spin and particle-hole
spaces respectively. Further m∗ is the effective mass, µc the chemi-
cal potential, α the magnitude of Rashba SOI,  h the reduced Planck
constant, g∗ the g-factor, µB the Bohr magneton, By the magnetic
field applied along the wire axis, and finally ∆ the superconduct-
ing gap. Collecting terms for clarity such that EZ = g∗µBBy/2 and
ξ = (k2y/2m

∗) − µc, the dispersion can be readily obtained

E2±(ky) = E
2
Z +∆20 + ξ

2 +
(α

 h
ky

)2
± 2
√
E2Z(∆

2
0 + ξ

2) +
(α

 h
ky

)2
ξ2 (1.57)

and is shown in Figure 1.12(a) for a range of magnetic fields (with
µc = 0, α = 1 and m∗ = 1, and ∆0 assumed to be independent of
applied magnetic field). The dispersion relations at each field are
shaded according to their electron (red) and hole (blue) weights,
obtained from the corresponding eigenvectors. Furthermore the
spin textures are also shown, similarly to Figure 1.5.

For EZ = 0 a gap of magnitude ∆ opens at EF with the spec-
trum mirrored around E = 0 owing to the introduced supercon-
ducting pairing. As the magnetic field is increased the gap is sup-
pressed linearly as ∆ = 2(∆0 − EZ), with spin orientations at the
gap edge at k = 0 fixed in an antiparallel configuration. For a
critical magnetic field EZ = E∗Z = ∆ the gap closes, reopening
as ∆ = 2(EZ − ∆0) for EZ > ∆0 with an inversion of the lower
energy bands. In this regime the system has become topological,
and by bulk-edge correspondence for a finite system we expect the
appearance of a set of edge states connecting the inverted bands,
resulting in the zero-energy Majorana bound state (MBS) indicated
by the dashed line. This state is delocalized along the entire wire
length, with exponentially suppressed wave function weight in the
center. As such, the MBS is protected from local perturbations.
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For the general case of a non-zero chemical potential the criti-
cal field is given by E∗Z =

√
∆2 + µ2c as shown in Figure 1.12(b).

Whilst the topological gap opens at E∗Z and initially grows lin-
early, deep in the topological regime the magnitude of the gap
is governed by the strength of SOI. In Figure 1.12(c) the size of
the lowest energy gap is shown for a range of spin orbit strengths
α = {0.5, 1.0, 1.5, 2.0} denoted by {•,N,�, ?} respectively. After some
characteristic field value, dependent on α, the topological gap sat-
urates when the k = 0 gap exceeds that at kSO as seen in Fig-
ure 1.12(a). For large EZ the gap is largely constant and determined
by the magnitude of α. In Figure 1.12(d) the magnitude of the topo-
logical gap is shown for increasing α at a constant field magnitude
of EZ/∆0 = 3. For weak spin-orbit ∆ ∝ α, whilst in the strong
spin-orbit regime the gap is bounded by ∆ 6 ∆.
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Figure 1.12: Bandstructure of a one dimensional wire with SOI, super-
conductivity, and Zeeman coupling. (a) Bandstructure of a
one-dimensional wire as a function of Zeeman energy EZ.
The gray lines indicate the locations of the band local minima.
Pink shading denotes a trivial gapped system while green
indicate a topological gap. The dashed line signifies the zero-
energy Majorana bound state in a finite length wire. (b) Phase
diagram as a function of chemical potential and Zeeman en-
ergy. (d) Lowest energy gap in the system for four value of
Rashba SOI strength indicated in (c). (c) Size of the topologi-
cal gap for EZ = 3∆ as a function of Rashba SOI strength.
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Not even a year after Brian D. Josephson’s seminal prediction [10,
11], Anderson and Rowell confirmed this effect in metal oxide junc-
tions [73], jump-starting a novel field of superconducting electron-
ics.

After a considerable amount of effort by numerous groups [74],
some ten years after these advances on metallic structures, Huang
and Van Duzer succeeded in fabricating semiconductor-superconductor
Josephson junctions (Sm-S JJs) on silicon [75, 76]. Starting from this
milestone, we briefly review the progress of hybrid semiconductor-
superconductor structures over the past fifty years in Figure 2.1. In
the interest of brevity and relevance to this thesis we highlight
mainly papers concentrating on III-V materials. On the left hand
side, a histogram of the number of papers published per year is
shown, with those related to 2DEGs in blue.

Following the first Sm-S JJs it took another ten years before
control by electrostatic gating was demonstrated, with simultane-
ous successes on both silicon [77] and InAs platforms [78]. Fraun-
hofer interference, first observed in metallic junctions in 1963 [79]
and key to proving Josephson’s predictions, was shortly after con-
firmed in InAs junctions [80]. Whilst most of the early work was
carried out on single crystal inversion layers, heterostructured ma-
terials grown by molecular beam epitaxy soon followed. Initially
this approach focused on improving the inversion layers [81], even-
tually superseded by buried quantum wells, leading to significant
improvements in the two-dimensional electron gas properties [34,
82]. More complex device geometries taking advantage of the gate
control of the semiconducting weak-link showed possible evidence

41
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of quantization of the supercurrent [83] following earlier theoret-
ical predictions [64]. Further, analysis of multiple Andreev reflec-
tions in the finite voltage state indicated the presence of an effective
superconducting energy gap in the semiconductor [84].

Following this flurry of papers, the field however started to slow
down. Early hints of the fundamental issues can be found in a
range of papers investigating for example the induced damage in
the QW as a result of the cleaning methods prior to superconductor
deposition [85, 86]. An encompassing review of the state of the
field at this point was published by Schäpers [87], outlining the
importance of the “interface transparency” problem, highlighted
in red on the timeline.

Perhaps coincidentally, this slow down in 2DEG-superconductor
hybrids saw the rise of an alternate Sm-S hybrid platform, namely
semiconductor nanowires contacted with superconducting leads
[88–90]. Due to the confined structure of these crystalline wires,
and correspondingly large surface to volume ratio, inducing su-
perconductivity was relatively straightforward (as it had initially
been for surface inversion layers in 2D). Recent work on com-
plex structures allowing for direct tunneling spectroscopy however
have highlighted similar issues to those previously encountered in
2DEGs. Most experiments reported “soft” superconducting gaps
[12, 13, 91] presumably due to disordered Sm-S interfaces [92].
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Figure 2.1: Development of 2D Sm-S hybrids. A selection of works high-
lighting the progress in III-V semiconductor-superconductor
hybrids [34, 75, 80–84, 93–98]. The histogram to the left indi-
cates the number of papers published per year in the fields of
hybrid 2DEGs (blue) and nanowires (green).
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This chapter focuses on an early portion of this thesis work at-
tempting to couple superconductors to conventional buried InAs
quantum wells (QWs), largely along the lines of previously pub-
lished studies [34, 99–101]. Despite somewhat promising results,
the contact strategy employed here proved to be very cumbersome
and hard to carry out reproducibly. Though many of the issues en-
countered have been documented previously [87], we include this
brief chapter as a stepping stone to contrast with the vastly im-
proved approach which was ultimately adopted, to be introduced
in Chapter 4.

3.1 inas 2deg

The wafer structure used for this portion of the work is shown
in Figure 3.1, together with an electrostatic Schrödinger-Poisson
simulation of the QW (courtesy of J. Shabani). Hallbar characteri-
zation of the 2DEG yielded an electron mobility (at zero gate) of
µ = 200, 000 cm2/Vs at a density of n = 3× 1011 cm−2 [102–104].

In order to fabricate nanoscale devices from a wafer such as this,
the general (simplified) fabrication flow consists of at least two
steps, shown in Figure 3.2. First, portions of the 2DEG must be
isolated to form the active device region or mesa (middle panel), by
locally etching down into the wafer. How exactly this is done will
be left to the more detailed fabrication overview in Chapter 4. Once
the mesas are defined they need to be contacted to the outside
world, this is generally done by depositing metallic contacts using
electron beam evaporation (right panel). Depending on the types
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of experiments envisioned a variety of metals can be used to obtain
either Ohmic (well behaved and low-resistance) normal contacts or
superconducting contacts.

In0.75Al0.25As  

InAs

In0.85Al0.15As  

InxAl1-xAs  

InP (100)

10.5 nm

4 nm

10.5 nm

100 nm

In0.75Ga0.25As  

In0.75Ga0.25As  

50 nm

In0.75Al0.25As  115 nm

Energy (eV)

-0.2 0.2 0.40.0

E
f  

Figure 3.1: Buried InAs 2DEG wafer structure. Wafer stack of the buried
InAs 2DEGs used in this work (left). A zoom-in of the InAs
QW flanked by InGaAs barriers is shown on the right. Super-
imposed we show the conduction band level (solid line), and
2DEG probability density (shaded gray).

Figure 3.2: 2DEG device fabrication. Starting from a semiconductor wafer
with an embedded QW (left) devices are defined and isolated
using a chemical wet-etch (middle). Finally contacts are made
to the 2DEG, typically by depositing metallic electrodes using
electron beam evaporation (right). A more thorough overview
of the fabrication process is presented in Figure 4.3.
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In order to obtain superconducting contacts to the buried QW,
two approaches are available [105]

• top down (2D) contacts by locally etching away the top bar-
rier [34, 82, 106–108]

• sidewall (1D) contacts to the mesa edge [83, 109–114]

Examples of these two contact methods are shown schematically
in Figure 3.3(a) and (b), with corresponding SEMs of devices fabri-
cated utilizing these two methods in Figure 3.3(c) and (e).

For top down contacts, selective wet chemical etching of the bar-
riers is typically employed, for example in the InP/InGaAs [106]
and AlSb/InAs [82, 107] material systems. Unfortunately however,
no etch exists with sufficient selectivity to stop at the InGaAs/InAs
interface defining our QW [115]. One solution is to finely calibrate
the etch time to stop close to the interface.

Another option is to use physical cleaning methods such as Ar-
gon sputtering [86, 116]. In this case again the etch times need to
be finely calibrated to ensure the QW is not damaged or etched
away in the process. One viable approach here to avoid to fine
tuned calibration would be to simultaneously monitor the sput-
tered etch residues using secondary ion mass spectrometry. If the
QW and barriers have a sufficiently differentiated material com-
positions this would allow for a well defined etch end point. This
method has for example been used for ohmic contacts to buried
InSb QWs [50], but to our knowledge has to date not been em-
ployed for superconducting contacts.
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Figure 3.3: Contact strategies to buried 2DEGs. Schematics showing side-
wall contacts (a) and top down contacts (b) between a super-
conductor (gray) and buried 2DEG (yellow). (c) SEM image of
a completed SNS device fabricated utilizing the top down tech-
nique. (d) SEM image after mesa etching showing the isotropic
etching of the III-V stack yielding a trapezoidal shape with
sloping ∼ 45◦ sidewalls. The corresponding sidewall contacted
device after superconductor deposition is shown in (e).

Sidewall contacts are more straightforward as the 2DEG is di-
rectly exposed at the mesa periphery. The oxidation of the semi-
conductor surface after mesa etching however typically leads to an
effectively semi-insulating barrier which must be removed before
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contact deposition. Conventionally the mesa edges are cleaned in-
situ before contact deposition, using e.g. Argon sputtering [83, 86].

Unable to decide on a clearly superior option, both approaches
were investigated with the following strategies

1. Top down contact: Wet chemical etch to a depth of ∼ 120 nm
into the top barrier of the QW, followed by in-situ cleaning
using RF plasma.

2. Side contact: in-situ cleaning using RF plasma

After a number of rounds of optimization of these methods in par-
allel, varying both the chemical etching and RF plasma cleaning
times, the top-down contact technique was abandoned due to neg-
ligible signs of superconductivity in all tested devices. In contrast
the sidewall contacted devices showed promising results early on.
The fabrication steps for the surface preparation and superconduc-
tor deposition for these early results are detailed in Method 3.1.

Figure 3.4(a) shows a false colored SEM image of a second gen-
eration sidewall contacted SNS device with superconducting Al
contacts in blue connected to Ti/Pt/Au extension lines in yellow1.
Further, in red, fine gates can be seen allowing for control of the
density distribution in the junction, which could unfortunately not
be used however due issues with gate leakage. The Al contact to
the the 2DEG at the sloped mesa sidewalls is shown by the zoom
ins shown in Figure 3.4(b) and (c). The 2DEG position can be seen
in the SEMs, as highlighted by the white arrow in Figure 3.4(c).
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500 nm
a

b c

Figure 3.4: Buried S-2DEG-S device. (a) False colored SEM showing a
second generation sidewall contacted SNS structure with nor-
mal metal leads (yellow). Superconducting Al is shown in blue
contacting the mesa (green) with electrostatic gates in red. (b)
Zoom in of (a) without false coloring at one end of the de-
vice highlighting the superconducting contacts climbing up the
mesa sidewalls. The scale bar is shown for 500 nm. (c) Fur-
ther zoom in at the exposed mesa sidewall. The faintly visible
horizontal line indicated by the white arrow is the InAs QW
contacted on either side by Al leads.

1. Plasma clean: 60 s RF plasma (for 4 nm)

2. Superconductor deposition: Ebeam evaporation of 5 nm Ti
at 0.5 Å/s followed by 100 nm Al at 1.0 Å/s

Method 3.1: Details of the initial interface cleaning and superconductor
deposition.
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3.2 supercurrent

3.2.1 Inhomogeneous contacts

An example of the typical behavior of SNS junctions prepared
using the in-situ RF cleaning prior to superconductor deposition
as detailed in Method 3.1 is shown in Figure 3.5(a). As a func-
tion of the driving current I the junction switches from a super-
conducting regime to dissipative transport with a critical current
|Ic| ∼ 15 nA. As a function of magnetic field the critical current un-
dergoes oscillations, as a result of interference effects as described
in Section 1.4.4. However, in contrast to the expected Fraunhofer
type decay of the supercurrent, a smooth envelope is observed. In
Figure 3.5(b) a schematic of the junction is shown together with
the expected supercurrent density Jc as a function of the posi-
tion along the mesa width. For a homogeneous contact, uniform
density would be expected as indicated by the blue shaded area,
yielding Fraunhofer diffraction as a function of magnetic field [Fig-
ure 3.5(c) blue line]. The slowly decaying envelope observed in
Figure 3.5(a) is consistent with supercurrent transport at the mesa
periphery as indicated by the red shading in (b) (and correspond-
ing diffraction pattern in (c)).

This behavior was observed in a number of devices using the
sample preparation detailed in Method 3.1, indicating that cou-
pling of the Al leads to the mesa is reproducibility enhanced at the
edges. This is presumably due to enhanced physical bombardment
at the mesa corners during RF plasma cleaning, yielding better lo-
cal contact. The possibility of other mechanisms causing electron
accumulation at the mesa edges however cannot be ruled out.

As a result, the contact method was amended to include a brief
wet etch for oxide removal prior to in-situ cleaning as detailed in

1 The Pt interlayer was used to prevent the "purple plague", an insulating inter-
metallic formed between Au and Al [117]
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Figure 3.5: Inhomogeneous contacts. (a) Differential resistance R as a func-
tion of driving current I and perpendicular magnetic field B⊥
of a sidewall contacted SNS junction with interfaces prepared
using contact method 3.1. (b) 3D schematic of the SNS junc-
tion with anticipated uniform supercurrent density Jc along
the junction width (blue). A supercurrent density consistent
with electron accumulation at the mesa edges is shown in red.
(c) Expected critical current magnitude Ic as a function of B⊥
for the two current distributions shown in (b). A uniform den-
sity results in the Fraunhofer form (blue), whilst edge conduc-
tion results in a SQUID form (red).

Method 3.22. The result of this improved recipe is shown in Fig-
ure 3.6 for three devices with increasing contact separation L =

{220, 270, 330} nm from left to right. Whilst resembling the expected
Fraunhofer form, irregularities are apparent, indicative of non-uniform
critical current density along the contacts [119–122].

2 See also appendix of Ref. [118] for further details
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1. Oxide removal wet etch: 20 s mesa etch, quenched in MQ
water and dried immediately prior to loading into the depo-
sition chamber

2. Plasma clean: 60 s RF plasma (for 4 nm)

3. Superconductor deposition: Ebeam evaporation of 5 nm Ti
at 0.5 Å/s followed by 40 nm Al at 1.0 Å/s

Method 3.2: Details of the improved interface cleaning and superconduc-
tor deposition.
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Figure 3.6: Irregular Fraunhofer interference. Diffraction patterns in the
differential resistance R as a function of current I and perpen-
dicular magnetic field BZ for three devices with lengths 220,
270 and 330 nm from left to right.

Further, despite the length variation between devices, the maxi-
mal critical current at zero magnetic field Imax

c , is almost constant.
For uniform junctions, a roughly inverse exponential dependence
is expected between the critical current and the junction length
Imax

c ∼ exp(−L/ξ) [123]. The largely independent behavior of Imax
c

on junction length thus suggests that it is dominated by the differ-
ences in contact transparency rather than the junction geometry.
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3.3 confined geometries

3.3.1 Supercurrent in SNS configuration

Despite the issues with obtaining reproducible homogeneous and
transparent contacts between Al and the buried InAs QW, more
complex devices were envisioned with the goal of exploring possi-
ble topological superconductivity in this system. Figure 3.7 shows
a false colored SEM demonstrating the device structure. In dark
gray, along the upper edge of the mesa two Al contacts locally in-
duce superconductivity. Surrounding the Al contacts, a number of
gates (yellow) allow for electrostatic control of the electron density.
Finally the ends of the mesa are connected to two Ohmic contacts
on each end (not shown), allowing for four-probe transport mea-
surements.

1µm

Figure 3.7: Wire device scanning electron micrograph. Electrostatic gates
are shown false colored in yellow. The upper darker gray
pads are Al contacts. The mesa extends out at either end to
two Ohmic contacts allowing for four-terminal measurements
through the structure.

Characterization of the superconducting properties is shown in
Figure 3.8(b) and (c), with the measurement configuration indi-
cated in (a). By fixing all the outer gates to Vg = 0 and utilizing the
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central QPC gates, the device can be tuned from a superconduct-
ing regime (Figure 3.8(b), solid line) to an insulating state (dashed
line). This is evidenced by the negligible voltage drop observed in
the range I = ±20 nA for Vg = 0, indicative of a supercurrent. Con-
versely for Vg = −3.9 V the nearly vertical slope of the IV curve
indicates insulating behavior. The full gate voltage dependence of
the critical current is shown in Figure 3.8(c). The critical current is
relatively stable Ic ∼ 20 nA down to approximately Vg = −1.5 V
after which it steadily decreases to zero as the junction is depleted.
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Figure 3.8: Supercurrent in confined buried structures (a) False colored
SEM of the device, showing the measurement configuration.
The yellow gates are held at a fixed potential while the red ones
are varied to tune the device from an open superconducting
regime (b, solid line) to an insulating state (b, dashed line). (c)
Four-terminal voltage drop across the junction as a function of
driving current and gate voltage.
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3.3.2 Tunneling spectroscopy

In Figure 3.9(a) we change the contact configuration to study trans-
port across a single SN interface. By fully depleting the middle
QPC (red), we cut off the right side of the device. Figure 3.9(b)
shows the device conductance as a function of the source-drain
bias3 V and left QPC gate voltage Vlqpc. In the open regime, near
zero bias, a finite conductance enhancement is observed as shown
by the gray linecut in Figure 3.9(c). For more negative gate volt-
ages a BCS-like superconducting gap on the order ∆∗ ∼ 100 µeV
(black) develops. To our knowledge this is the first reported direct
tunneling spectroscopy on a proximitized buried 2DEG structure4.

For such an S-QPC-N geometry, the expected behavior can be un-
derstand by extending the analysis of Figure 1.10 to the quantum
(single channel) regime [124]. Qualitatively the measurements mir-
ror Figure 1.10 with a gradual transition between a zero-bias con-
ductance enhancement owing to excess current carried by Andreev
reflections, to a zero-bias conductance suppression in the tunnel-
ing regime directly probing the gapped local density of states in
the proximitized QW. The theoretical expectation for the zero bias
conductance (GNS) as a function of the normal state conductance
(GNN) is given by [124]

GNS = 2G0
G2NN

(2G0 −GNN)2
(3.1)

and is shown by the red curve in Figure 3.9(d), together with the
experimental data (black dots)5. The large discrepancy between
the data and the theoretical expectation is likely due to a poor

3 The data are plotted using the measured four-terminal voltage drop V , between
the source and drain leads, when a voltage Vsd is applied at the source electrode.

4 An indirect measurement through a proximitized quantum dot is reported in [96]
5 With GNN extracted at large bias (V � ∆∗)
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superconductor-semiconductor interface resulting in a “soft gap”
[125].

Finally in Figure 3.9(e) the superconducting gap is investigated
as a function of magnetic field B‖, applied in the plane of the junc-
tion parallel to the S-N contact as indicated in the Figure 3.9(a).
Despite the relatively thin Al leads (∼ 40 nm), the induced gap is
rapidly suppressed, collapsing at roughly Bc = 0.2 T.

3.4 outlook

The results presented in this chapter on proximitizing buried 2DEGs
highlight the difficulties with this approach. Largely these results
confirm the issues previously encountered in the literature (c.f.
Figure 2.1). The quality of the superconductor-semiconductor in-
terface is paramount, and chemical etching methods together with
physical in-situ cleaning seem insufficient to obtain strong and uni-
form coupling.

Ideally one would remove the requirement of cleaning the semi-
conductor interfaces entirely and grow the entire superconductor-
semiconductor structure in the same growth chamber. One viable
route may be to utilize cleaved edge overgrowth of superconduc-
tors in-situ [126]. Another option may be to etch the mesa struc-
tures and subsequently load them into an MBE chamber and de-
gas them at high temperature before superconductor deposition.
For III-V materials however, especially InAs and InSb it is unclear
if the temperatures needed for degassing are too high to ensure
the integrity of the QW structure.

In the next chapter we introduce a novel approach allowing for
in-situ growth of the superconductors in the MBE chamber by
bringing the 2DEG closer to the surface.
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Figure 3.9: Tunneling spectroscopy in a buried structure. (a) False colored SEM of the
device, showing the measurement configuration. The gates in red are fixed
at −4 V to isolate the left side. The gates in green are operated in the QPC
regime. (b) Conductance through the S-QPC-N as a function of gate voltage
and source-drain bias. (c) Line cuts from (b) in the open (gray) and tunneling
regimes (black). (d) Zero bias conductance GNS plotted against the normal
state conductance GNN (black dots), extracted from (a). The theoretical ex-
pectation from Equation 3.1 is shown in red.
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4S U P E R C O N D U C T O R - S E M I C O N D U C T O R
H E T E R O S T R U C T U R E S

4.1 introduction to a new platform

Owing to the plethora of issues with obtaining transparent super-
conducting contacts to buried quantum wells, a new approach was
developed to grow superconductors directly on the III-V wafer
stack. This idea followed recent success with nanowires where epi-
taxial matching between the underlying InAs crystal structure and
covering Al was demonstrated [127], together with strongly en-
hanced properties in transport experiments [125].

Indeed this isn’t a totally novel approach, and has coincidentally
been attempted before with promising results here in the same
building at HCØ almost 20 years ago [128, 129] as well as in Cam-
bridge sometime later [130]. However at the time the target was to
obtain transparent superconducting contacts to GaAs which typi-
cally forms large Schottky barriers at the interface. Follow up ex-
periments nonetheless demonstrated clear evidence of a supercur-
rent [131, 132] and multiple Andreev reflections [133, 134].

4.1.1 Material considerations

First a near-surface InAs quantum well is grown by MBE and
capped with an InGaAs barrier of thickness d as shown in Fig-
ure 4.1a. Without breaking vacuum, a thin Al film of thickness h
is then grown on top. Under the right growth conditions the Al
forms an epitaxial match with the crystal structure of the underly-
ing semiconductor [127].

65
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Figure 4.1: Superconductor-semiconductor hybrid material considera-
tions. (a), General design for a hybrid superconductor/near-
surface InAs 2DEG structure with tunable inter-layer coupling
via a InGaAs barrier of variable width d. (b) Semiconductor-
superconductor coupling  hΓ as a function of InGaAs barrier
thickness (solid). The Al superconducting gap is shown for
comparison (dashed). (c) Estimated Zeeman energy for quasi-
particle states with |g| = 10 (solid black) and |g| = 5 (dashed
black). Green and red solid lines indicate the in-plane critical
fields of Al films of thicknesses 10 nm and 5 nm respectively.
Similarly the gaps for these films are shown by dotted lines. For
appropriate structures the topological regime is anticipated for
EZ > ∆, highlighted in light blue (for |g| = 10).

The reasoning for adding the InGaAs cap may be unclear at first,
it’s primary role being to enhance the mobility of the carriers in the
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2DEG by pushing the wavefunction away from scattering impuri-
ties at the surface. To give an idea for scale, typical InAs surface
inversion layers have mobilities on the order 7000 cm2/Vs whilst
buried InAs quantum wells as discussed in Chapter 3 have typical
mobilities on the order 200, 000 cm2/Vs [102, 103], with recent on
structures grown on lattice matched substrates reaching as high
as µ = 700, 000 m2/Vs [135–137]. Further, the width of the bar-
rier allows control over the coupling between the superconductor
and 2DEG. Whilst the overall goal is to have a clean and transpar-
ent interface, recent theoretical insights suggest that too strong of
a coupling may also hinder experiments probing topological sys-
tems [138].

By varying the height of the barrier, the interface can be tuned
such that the 2DEG inherits superconducting properties from the
proximitizing superconductor whilst retaining the large SOI and
g-factors inherent to the InAs QW. The extent to which these quan-
tities are renormalized by the superconductor is non-trivial, how-
ever a good estimate can be made by considering the wavefunction
weights residing in the Sm and S regions. The average time quasi-
particles spend in the InAs QW is governed by the coupling to the
superconductor τsm ∼ 1/Γ [139]. The time spent in superconductor
on the other hand is given by τs ∼  h/∆with ∆ the superconducting
gap. A simple compromise in terms of proximity coupling whilst
retaining the semiconductor characteristics is obtained for τsm = τs
such that the quasiparticles spend on average an equal amount of
time in the semiconductor and superconductor.

In Figure 4.1b we plot  hΓ as a function of InGaAs barrier thick-
ness (solid line), with the superconducting gap ∆ = 250 µeV for a
10 nm thick Al film shown dotted. The intersection between these
two curves indicates the ideal region of operation from the perspec-
tive of coupling optimization such that ∆ =  hΓ . It is worth noting
that this doesn’t tell the whole story as the mobility in the 2DEG
is also of considerable importance, the ideal structure in practice
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may compromise on coupling in order to push the 2DEG to higher
mobilities leading to overall better results.

The final variable parameter to consider is the superconductor
thickness h. For simplicity we concentrate here on Al films as these
are relatively well lattice matched to InGaAs and have been shown
to work well on InAs nanowires [127]. Furthermore, the ubiquity
of Al in most MBE systems, and its widespread adoption in the
superconducting electronics community, makes this a well under-
stood and relatively easy material to work with. For the curious
and forward thinking reader, full tabulations of lattice mismatches
between elemental metals (and superconductors) and the III-V bi-
naries (InAs, InSb, GaAs) are provided in the supplementary ma-
terial of Ref. [127].

In order to be viable as a platform for topological devices, the
superconducting film needs to withstand sizable magnetic fields
of the order B > ∆/(gµB), with µB the Bohr magneton and g the g-
factor in InAs [140]. Whilst bulkAl has a comparatively low critical
magnetic field of 10 mT [141], thin films can sustain significantly
larger magnetic fields when they are applied in-plane [142–144],
even up to 6.0 T [145]. In Figure 4.1c the Zeeman energy EZ of a
state with the g-factor of InAs |g| = 10 is shown as a function of
magnetic field (solid black). As realistically the effective g-factor
may be lower due to renormalization by coupling to the supercon-
ductor, we also show for reference in dashed black the energy for
a state with |g| = 5. Dashed green and red lines indicate the re-
spective quasiparticle gaps for Al films of thicknesses 10 nm and
5 nm respectively, the critical fields Bc are shown as solid lines. For
both values of the g-factor it is clear that EZ > ∆0 for B < Bc, the
practical criterion for accessing the topological regime.

In Figure 4.2a we show a TEM cross section of a grown superconductor-
semiconductor heterostructure, indicating a clean match at the in-
terface. Due to very similar scattering cross sections, InGaAs and
InAs cannot be directly distinguished from TEM imaging. In Fig-
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Figure 4.2: Superconductor-semiconductor epitaxy. (a) TEM cross section
of the wafer structure with d = 5 nm and h = 7 nm. (b)
Schrödinger-Poisson simulation showing in black the conduc-
tion band energy and the 2DEG probability density as a func-
tion of depth z from the surface (in a.u.).

ure 4.5b a Schrödinger-Poisson simulation is shown for the grown
structure. The conduction band profile is indicated in black, with
the Fermi level highlighted by the dashed line. The corresponding
electron probability density is shown in shaded gray, centered at
the InAs QW with finite tails leaking into the lower barrier and
the surface Al layer. This wavefunction leakage into the surface
superconductor is key to proximitizing the 2DEG.
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4.2 fabrication

Now that we have a material to work with, the next step is to
develop a fabrication recipe. An overview of steps required to go
from a wafer received from our collaborators to a working device
are shown in Figure 4.3. As this recipe was developed together
with M. Kjaergaard and detailed in great depth in his thesis [118],
we limit ourselves here to a high level overview (with details in
Appendix A).

The first step in the process is cleaving the large growth wafers
into appropriately sized 5 mm × 2.5 mm chips. This is done by
aligning to the underlying crystal axes and using a diamond scriber
to dice up the wafer. Due to growth constrainsts the material qual-
ity is typically highest near the center of the wafer, thus we start
by using chips from this region as shown in the figure. The outer
edges are discarded or used for preliminary process optimization.

Before fabrication can commence, we need to design the devices
using computer aided design (CAD) software. An example of a
typical chip layout is shown in Figure 4.4 (top right). For each
subsequent fabrication step, a separate mask is designed as indi-
cated by the color groupings: blue for the mesa etch, green for the
aluminium etch, and yellow for the gate deposition. The subgroup-
ings shown in Figure 4.4 indicate masks exposed within the same
step, however with different exposure parameters. This is some-
what of an implementation detail, however it is important to min-
imize the overall exposure time. Using such minor modifications
the mesa etch exposure (with over 50% chip coverage) for example
takes on the order of 2h, while it would take orders of magnitude
longer otherwise.

Once the design is set it’s time to get comfortable in the clean
room. The overall fabrication flow requires five separate steps, four
of which require lithographic patterning. In order to imprint the
designs onto the chip, first a thin layer of polymeric resist is spun
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onto the chip surface. Next by using an electron beam lithography
system, the desired pattern can be exposed such that upon chemi-
cal development the exposed regions of the polymer dissolve away.
This yields a chip with a polymer mask of the designed pattern,
ready for further processing.

The first step is to define the mesas using a standard III-V chem-
ical wet etch. Next, aluminium is selectively etched away in certain
areas1, for example to create the S-N junction shown in Figure 4.3.
This is followed by atomic layer deposition of an insulating oxide
covering the entire chip. Finally electrostatic gates are patterned
and deposited in a two-step process using electron-beam evapora-
tion. Full processing details for each of these steps are included in
Appendix A.

1 Another option is oxidize it, see Figure A.1
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Figure 4.3: Epitaxial device fabrication. A simplified process flow show-
ing all steps required to go from a bare semiconducting wafer
to a working S-QPC-N device.
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Figure 4.4: CAD chip layout Example of a typical chip layout (top right),
with masks for each subsequent fabrication step indicated by
the color groupings shown on the left. Successive zoom-ins
from the global layout to a S-QPC-N device are shown at the
bottom.
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4.3 al and 2deg properties

4.3.1 Al film
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Figure 4.5: Epitaxial aluminum film properties. (a) Superconducting
phase boundaries for films of thickness h = 5 nm (triangles)
and h = 10 nm (squares) as function of temperature and in-
plane magnetic field. Resistance as a function of temperature
(b), in-plane magnetic field (c) and perpendicular field (d) for
the h = 10 nm film.
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To characterize the grown Al films, a range of films of different
thicknesses were measured to determine both their critical tem-
perature Tc and in-plane magnetic field Br,c. In Figure 4.5(b) a
characteristic measurement of a h = 10 nm film is shown (for
Br = 0) as a function of temperature. As the temperature is de-
creased, at T = 1.5 K a sharp transition is seen in the resistance
of the film from approximately R = 5 Ω to R = 0 indicating the
onset of superconductivity. Similar measurements are shown in
Figure 4.5c and d as a function of in-plane Br and perpendicular
Bz magnetic fields (taken at T = 30 mK). At base temperature the
obtained values for the parallel and perpendicular critical fields
for the h = 10 nm film are Br,c ∼ 1.6 T and Bz,c ∼ 30 mT. In
Figure 4.5(a) the superconducting phase boundaries are shown for
the d = 10 nm (squares) and 5 nm films (triangles). At elevated
temperatures the data is relatively well described by the BCS form
Bc(T) = Bc(0)[1− (T/Tc)

2] [54]. For low temperatures, the thinner
5 nm film is better described by the Chandrasekhar-Clogston limit
Bc = ∆0/

√
2µB ∼ 2.4 T [146, 147]. Close to Tc data from both films

is well described by Bc(T) = Bc(0)
√
1− T/Tc [148].

4.3.2 Two-dimensional electron gas

Having established that the Al film is working as anticipated the
next step is to characterize the 2DEG. Unfortunately characterizing
the proximitized 2DEG under the Al seems out of reach, at least
from a transport perspective, owing to the orders of magnitude
higher carrier density in the Al film shunting out anything we
might hope to see in the 2DEG. Nonetheless, by either growing
identical structures without the Al, or simply etching the Al away,
the properties of the normal 2DEG can be studied.

In Figure 4.6(a) we show an optical micrograph of a typical char-
acterization Hall bar used for both testing the properties of the Al
film as described in Section 4.3.1 and for investigating the proper-
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ties of the 2DEG. The left and right edges of the devices, in light
gray, are covered in epitaxial Al and act as the source and drain
electrodes. The left side of the Hall bar is fully covered in Al and
is used for characterizing the film. On the right side however, the
Al is etched away exposing the InGaAs surface (dark gray sur-
face). The gold pad covering this region in the micrograph is a
global top gate allowing us to tune the carrier density in the Hall
bar. The measured longitudinal ρxx and Hall ρxy resistivities mea-
sured on such a device as a function of perpendicular magnetic
field are shown in Figure 4.6(b) in black and red respectively, for
Vg = −2.5 V (d = 10 nm). These traces show the hallmarks of two
dimensional transport, namely Shubnikov de Haas oscillations in
the longitudinal resistivity, and the quantum Hall effect at high
field.

Extracted from low field Hall measurements, the evolution of
carrier density and mobility as a function of gate voltage are shown
in Figure 4.6(c) and (f) for two wafers with d = 10 nm (solid) and
d = 0 nm (dashed). The general trend in both wafers is similar, for
more negative gate voltages the carrier density falls roughly lin-
early whilst the mobility increases gradually before peaking and
falling to zero. Such a non-monotonic behavior of the mobility
could be interpreted as the wavefunction being pushed away from
the surface as the gate voltage is made more negative. However,
further measurements comparing the extracted densities from the
Hall slope compared to the Shubnikov de Haas spectrum revealed
that near Vg = 0 (Figure 4.6(b), gray) two subbands are occupied
in the 2DEG (see also Section 5.2). Probably then as the second sub-
band is depleted by gatingm a reduction of intersubband scatter-
ing is responsible for the mobility peak. It is still unclear whether
these two mechanisms might coexist however.

In Figure 4.6(d) the mobilities of a range of wafers are shown
with different barrier thicknesses. Further, we compare sets of wafers
that were grown without Al (red) to those where the Al has been
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chemically etched (gray). The observed trend is in agreement with
the preliminary comparison between the d = 10 nm and d = 0 nm
wafers, a larger barrier tends to increase mobility, most likely due
to a suppression of surface impurity scattering. Moreover, the etch-
ing process appears to have a non-negligible effect on the 2DEG
mobility suggesting that improved process development could po-
tentially yield up to a factor of two improvement.

Finally in Figure 4.6(f) the low field magnetoconductance mea-
sured on a wafer with a 5 nm InGaAs barrier is shown, in units
of δσ = σ(B) − σ(B = 0). The measurements were taken at a den-
sity of n = 1 × 1016 m−2 to ensure single subband occupation.
The zero field conductance enhancement is indicative of weak an-
tilocalization, arising as a result of spin-orbit coupling. Utilizing
a model developed by Iordanski, Lyanda-Geller, and Pikus (ILP)
[149, 150], the fit to the data yields two parameters, the phase co-
herence length lφ = 350 nm and Rashba coefficient α = 0.28 eVÅ,
corresponding to a spin-orbit length lso ∼ 50 nm. Further details
can be found in Ref. [151].
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Figure 4.6: Two-dimensional electron gas properties. (a) Optical micro-
graph showing the Hall bar structure used to characterize
both the Al film and the 2DEG. (b) Longitudinal and Hall
resistivities as a function of perpendicular magnetic field at
Vg = −2.5 V in black and red respectively. The longitudinal re-
sistivity at Vg = 0 is shown in gray. All traces are for d = 10 nm.
Density (c) and mobility (f) as a function of gate voltage for
d = 10 nm (dashed) and d = 0 nm (solid). (d) Extracted peak
mobilities as a function of InGaAs barrier thickness d, for sam-
ples grown without Al (red) and etched Al (gray). (e) Low field
magnetoconductance δσ = σ(B) − σ(B = 0) for d = 5 nm. The
red curve is a fit using the ILP model.
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4.4 andreev quantum point contact

In order to investigate the properties of the induced supercon-
ductivity in this system, we investigate an S-QPC-N structure as
shown by the zoom in (lower right) of Figure 4.4. This is essen-
tially the same experiment as that presented on buried structures
in Figure 3.9. The results are shown in Figure 4.7 for two nominally
identical devices.

Probing the normal state of the junction, with a large source-
drain bias (Vsd � ∆, red), high temperature (T > Tc, green) or
large magnetic field (B⊥ > B⊥,c), a well defined conductance plateau
is observed at G = 2e2/h, consistent with the behaviour of a con-
ventional quantum point contact. In the superconducting regime
however, the conductance is doubled to G = 4e2/h (black traces).
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Figure 4.7: Andreev quantum point contact. (a,b) Differential conduc-
tance G as a function of gate voltage VG for two nominally
identical S-QPC-N junctions. Traces are shown at zero bias for
both devices (black) indicating a conductance plateau at 4e2/h,
double the value observed for large Vsd (red), high tempera-
ture (green), or large magnetic field (blue).

Figure 4.8(a) investigates the S-QPC-N conductance as a func-
tion of gate voltage and source-drain bias (c.f. Figure 3.9. Near
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VG = −8.2 V on the first QPC plateau the conductance enhance-
ment is visible, with a line-cut shown in (b). At more negative gate
voltages, the conductance near zero bias is strongly suppressed.
This conductance gap indicates the induced superconducting gap
∆∗ in the QW. In contrast to the buried structures where a gap
was also observed, the gap appears better defined and “harder”.
To investigate this, in Figure 4.8(c) we plot the zero bias conduc-
tance against the normal state conductance, determined by averag-
ing for Vsd > 0.8 mV. The experimental data, extracted from (a)
are shown as black dots. For comparison the data from Figure 3.9
is overlaid in blue. Finally the green curve is the theoretical pre-
diction of Equation 3.1 [124], without any fitting parameters. The
good agreement between the theory and experiment over two or-
ders of magnitude, and up to 4e2/h, indicates that the junction
is well described by nearly perfect Andreev reflection of a single
mode.
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Figure 4.8: Hard superconducting gap. (a) Differential conductance map
as a function of gate voltage and source drain bias from device
1. (b) Line cuts of (a) at the indicated positions demonstrating
the conductance doubling on the first plateau, and a hard su-
perconducting gap near pinch off. (c) G at zero bias versus G
for Vsd > 0.8 mV, indicating the ratio between the in-gap and
normal state conductance. Black dots are extracted from (a),
blue dots indicate the behaviour of the buried QW device from
Figure 3.9. The green line is the theoretical prediction following
Equation 3.1.
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Measurement of multiple Andreev reflection (MAR) in a Joseph-
son junction made from an InAs quantum well heterostructure
with epitaxial aluminum is used to quantify a highly transpar-
ent effective semiconductor-superconductor interface, indicating
near-unity transmission. The observed temperature dependence of
MAR does not follow a conventional BCS form, but instead agrees
with a model in which the density of states in the quantum well
acquires an effective induced gap, in our case 180 µeV, close to that
of the epitaxial superconductor, indicating an intimate contact be-
tween Al and the InAs quantum well. Carrier density dependence
of MAR is investigated using a depletion gate, revealing the sub-
band structure of the proximitized quantum well, consistent with
magnetotransport experiments of the bare InAs performed on the
same wafer.

5.1 josephson junction in a qw heterostructure

We report multiple Andreev reflection (MAR) in a gateable Joseph-
son junction formed from an InAs 2DEG/epitaxial Al heterostruc-
ture. We observe a temperature dependence of the MAR peak po-
sitions that differs from expectations for a conventional BCS-like
gap, but is consistent with an induced gap in the InAs under the
Al [92, 138, 153, 154]. The appearance of an induced gap, ∆∗, in the
local density of states of the semiconductor reflects the finite time
a state from the quantum well spends in the superconductor [155].

Adapted from [152]

83
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Comparing MAR data to a quantitative model (described below),
we infer an induced gap ∆∗ = 180 µeV in the InAs region covered
by Al, and a transmission through the effective interface formed
at the boundary between the covered and uncovered InAs in ex-
cess of 97%. These results are consistent with tunnel spectroscopy
measurements on the same wafer [156].

The high transparency of our junction is further confirmed by
the shape of the MAR features, where we observe dips in conduc-
tance when the applied voltage is a fraction of the gap, V = 2∆∗/en.
This dip-to-peak transition in conductance is a longstanding pre-
diction for highly transparent junctions [157], also confirmed by
our quantitative modeling. To our knowledge, this inversion is of-
ten overlooked in the experimental literature, even for junctions
considered highly transparent (see, for instance, Ref. [88, 90, 158]),
leading to erroneous identification of the gap. We discuss the dip-
to-peak transition further in Section 5.2 below.

Modeling also reveals the existence of two distinct families of
MAR resonances at zero top-gate voltage, which we associate with
two occupied subbands in the 2DEG. By energizing a top gate on
the exposed 2DEG, the resonant features change, becoming consis-
tent with single-subband occupancy. The gate-dependent change
from two to one subband is consistent with magnetotransport mea-
surements on a Hall bar with the Al removed, fabricated on the
same wafer.

Figure 5.1(a) shows a false-color scanning electron micrograph
of the final device, and Fig. 5.1(c) shows a schematic cross-section
through the junction. The exposed 2DEG region has a length L '
250 nm and a width W = 3 µm. The superconducting gap of
the 10 nm thick Al layer is inferred from the critical temperature
(Tc = 1.56 K, independently measured in four-terminal measure-
ment) via ∆Al = 1.76 kBTc = 237 µeV. We note that the gap of
the Al layer is larger than bulk Al [159], with a Tc consistent with
previously reported values [160, 161].
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Figure 5.1: Andreev reflection in an S-2DEG-S device. (a) False-color
scanning electron micrograph of the S-2DEG-S device. (b)
Schematic of the 2nd order MAR process when a voltage
eV < ∆ is applied across an ideal SNS junction. (c) Cross-
sectional schematic of the device in (a) (not to scale). Due to
processes such as the one sketched in the schematic, involving
multiple Andreev reflections (ARs) and potentially also normal
reflections (NRs), the part of the quantum well covered by Al
gains an induced gap ∆∗. Andreev reflection of particles in the
uncovered region happen at the vertical effective interface, indi-
cated by the gray, vertical dashed line, stemming from the gap
∆∗ in the quantum well. Right schematic indicates variation
of superconducting gap ∆(z) in the growth direction, for the
case of an effective quantum well thickness much less than the
normal-state coherence length, dN � ξN (see text for details),
in the part of the quantum well covered by Al.

All measurements were performed in a dilution refrigerator with
base temperature T ∼ 30 mK using standard DC and lockin tech-
niques, with current excitation in the range 2.5 nA to 5 nA.
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5.2 multiple andreev reflection

The theoretical approach to this system begins with the Octavio-
Blonder-Tinkham-Klapwijk (OBTK) model for multiple Andreev
reflections [162]. As originally formulated, this model assumes a
well-defined voltage is dropped across the normal region (green
rectangle in Fig. 5.1a), leading to the MAR process sketched in
Fig. 5.2b. For a planar junction where the 2DEG extends under the
Al (Fig. 5.1c), the voltage can also drop along the horizontal Al-
2DEG interface. In the case of imperfect Al-2DEG transparency,
this leads to smearing of the resonances arising from MAR [34,
163]. The OBTK model was later extended to account for the pla-
nar geometry [153], denoted SNcNS, where c is the semiconduct-
ing region in which the superconducting top layer has been re-
moved. The SN electrodes, consisting of 2DEG with Al on top, are
assumed to be disordered and in equilibrium, while the exposed
2DEG region of length L is assumed ballistic. The model yields a
renormalized density of states in the 2DEG, with an induced gap,
∆∗ < ∆Al determined by the quality of the interface between the
quantum well and the Al [153].

Figure 5.2 shows differential conductance (left) and DC voltage
(right), as a function of applied DC current, for two gate volt-
ages. The inset in Fig. 5.2a shows a zoom-in indicating the ex-
cess current and critical current for Vg = 0 V. The critical cur-
rent is Ic = 1.77 µA yielding an IcRn product of 165 µeV, about
70% of the gap of the Al film, and a critical current density Jc =

Ic/W = 0.59 µA/µm. The excess current, reflecting enhanced cur-
rent through the junction due to Andreev reflection, is defined as
the V = 0 intercept of a linear fit to V(I) taken at V � ∆Al/e (green
dashed line in Fig. 5.2a). The measured excess current, Iexc =
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1.44 µA, corresponds to IexcRn = 140 µeV 1. The differential con-
ductance (red curve in Fig. 5.2a) shows a series of peaks/dips as
the current is increased. The peak/dip structure is a manifesta-
tion of the MAR processes and is expected to follow the series
eV = 2∆/n, with n = 1, 2, 3, ... corresponding to the number of
Andreev reflections.
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Figure 5.2: Differential conductance (left axis) and voltage (right axis) at
two different gate voltages. In (a), the dashed green line shows
linear fit at eV(I)� ∆Al, used to extract the excess current, Iexc,
as the intercept with the V = 0 mV (as shown in the inset). Ic
is the current at which the system switches to a resistive state.
The dips highlighted in (b) correspond to multiple Andreev
reflections of order n.

However, a broad dip in conductance, highlighted with black
horizontal bar in Fig. 5.2a, occurs at energies larger than 2∆ but
follows the temperature dependence of Ic and disappears at Tc, in-
dicating that the feature has a superconductive origin. Such anoma-

1 The excess current is related to the gap via Iexc = α∆/eRn, where α = 8/3 in
the ballistic, fully transparent case [55], and α = (π2/4− 1) in the diffusive case
[164].
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lous resistance features are believed to be associated with the pla-
nar Josephson junction geometry [99, 165], where quasiparticles in
the 2DEG can undergo several scattering events at the Al interface
before ultimately undergoing Andreev reflection and traversing
the same path back. On a length scale smaller than the normal-
state coherence length ξN =  hvF/kBT , this process will appear
as Andreev reflection from an effective boundary, indicated by the
gray vertical dashed line in Fig. 5.1c. The finite-bias properties of
such systems cannot be adequately described by either the SNcNS
or OBTK models, and the simple picture in Fig. 5.1b breaks down.
With the contacts out of equilibrium, the position of the peaks in
Fig. 5.2a cannot be directly related to the superconducting gap.
However, by increasing the resistance in the exposed region rel-
ative to the horizontal interface, the peaks at finite-bias follow a
regular series and can be used to extract a value for the induced
gap.

In Fig. 5.2(b), the gate covering the exposed 2DEG region is ener-
gized to Vg = −2.2 V, substantially depleting the junction, leading
to a normal state resistance Rn = 740 Ω. At this gate voltage, the
broad conductance dip at energies eV > 2∆Al is absent, and the
DC voltages of the first three peaks (indicated with vertical black
arrows) are positioned proportional to 1/n, indicating that the volt-
age drop now occurs predominantly in the 2DEG region not cov-
ered by Al. At this gate voltage IcRn is reduced from the Vg = 0

value. As we show below, the IV curves in Fig. 5.2 are consistent
with near unity transmission through an SNcNS junction.

In highly transparent junctions, the resonances due to MAR ap-
pear as dips in the differential conductance, as opposed to the often
used peaks. This subtle point can be appreciated by considering
the nature of the current in a Josephson junction at finite voltages.
In general, the current is a combination of the number of Andreev
reflections, n, and the transmission τ of the junction. For the n’th
order Andreev reflection, the particle traverses the normal region
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Figure 5.3: (a) Current through an SNS–junction, from the simplified
model of Eq. (5.1), in units of gn∆/e (gn is the normal state
conductance), for several values of transmission through the
junction. (b) conductances of an SNS-junction calculated using
scattering approach for different values of the transparency τ.
The vertical black arrow indicates the position of the conduc-
tance dip discussed in detail in Sec. 5.4.

n+ 1 times, and neglecting the energy dependence of Andreev re-
flection probability, the current will depend on transmission as,

I(V) ∼ (n+ 1)τn+1V . (5.1)

For low τ, the current thus decreases rapidly for higher order An-
dreev reflection processes (i.e. increasing n). In contrast, for very
transparent interfaces, higher order Andreev reflections will still
yield an appreciable contribution to the current. This situation is
demonstrated in Fig. 5.3(a), where we show the current in an SNS
device, calculated according to Eq. 5.1. For low transparencies, the
slope of the I versus V curves increases as n decreases and the
current is increased at the transition from n to n− 1 Andreev re-
flections. As a result, the conductance of opaque junctions forms
a staircase-pattern that increases in voltage with peaks at the sub-
gap features (cf. the conductance depicted with the blue and green
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curves in Fig. 5.3b, calculated using the model of Ref. [157]). In
contrast, in the transmissive junctions, the current curve exhibits
an opposite pattern, which results in a declining staircase-pattern
in the conductance with the peaks replaced by dips (see the purple
curve in Fig. 5.3(b)). This leads to an overall increase in the conduc-
tance between values of the voltage corresponding to integer multi-
ples of the gap (i.e. at V = 2∆/en). Therefore, the vertical arrows
in Fig. 5.2(b) point to local minima, not maxima, in conductance to
indicate multiples of the gap, arising from the relation V = 2∆/en.

5.3 electrostatic gate dependence

To extract the value of ∆∗, we plot the conductance from Fig. 5.2
against the DC voltage drop, as shown in Fig. 5.4(a). The theoret-
ical MAR resonances in Fig. 5.4(a) are simulated using a general-
ized scattering matrix approach developed for SNS junctions [157,
166]. Within the model of an induced gap [153] the SNcNS system
is interpreted as an effective S∗NS∗-junction, where S∗ is the super-
conducting quantum well covered by Al, with a gap ∆∗ and a criti-
cal temperature identical to that of the parent superconductor. Sim-
ulations are performed by calculating the conductance G(τ)(V) of
a single mode with transmission τ, from the DC component of the
current I(τ)(V , t) =

∑
k I

(τ)
k exp(2ikeVt/ h). The time-independent

Fourier component of Ik is calculated from the wave functions of
the quasiparticles accelerated by the voltage V across the junction.
In the case of a ballistic junction (L < le), the back-scattering ef-
fectively only occurs at the boundary between S? and N (dashed
white line in Fig. 5.1c). The total current through the junction is
the sum of currents carried by N modes in M subbands. The re-
sulting conductance through the multimode junction is given by
G(V) =

∑M
i NiG

(τi)(V) where Ni is the number of modes in the
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Figure 5.4: (a) Conductance as a function of bias voltage at two different
gate voltages exhibiting resonances due to MAR. (b) Density
in the 2DEG extracted from Hall slope and power spectrum
of Shubnikov-de Haas oscillations versus gate voltage (See text
for details). (c),(d), Transparency, τi, and number of modes,Ni,
in subband i, as a function of top gate voltage Vg, extracted
from the MAR data in (a). The red and teal points correspond
to the fitting values used for the dashed curves in panel (a).

i’th subband, and τi is the transmission of the modes in the i’th
subband.

A nonlinear least-squares procedure is used to fit simulatedG(V)
curves to the data in Fig. 5.4b, where τi,∆? andN are fitting param-
eters and M is predefined (see also [167]). The minimal number of
subbands needed to capture the essential features of the data was
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found to be M = 2. For M > 2 the optimal fit did not populate the
i > 2 subbands (i.e. Ni ∼ 0 for i > 2), indicating that the data is
well described by two subbands. The result of fitting to the MAR
features at two Vg values are shown as dashed curves in Fig. 5.4(a).
At Vg = 0, the induced gap was ∆∗ = 182 µeV with N1 = 199,
N2 = 109, τ1 = 0.98, and τ2 = 0.8. When the gate is energized to
Vg = −2.2 V the fitting values are ∆∗ = 180 µeV, with N1 = 100,
N2 = 29, τ1 = 0.97, and τ2 = 0.65. The gate-voltage dependence
of the fitting parameters τi and Ni are shown in Figs. 5.4(c) and
5.4(d). The gap ∆∗ extracted from the fitting routine is identical to
the one measured in a tunneling experiment on the same wafer
[156].

The presence of two transmission species in the optimal fit is at-
tributed to the 2DEG having two occupied subbands. The carrier
density in the 2DEG, denoted nHall, is measured in a Hall bar ge-
ometry via the Hall slope (shown in Fig. 5.4b). The density from
the Hall slope is compared to the density extracted from the period-
icity of the SdH oscillations in an out-of-plane magnetic field. The
data in Fig. 5.4(b) show the density change in the 2DEG as the top
gate is energized. The power spectrum of ρxx(1/B) exhibit a two
peak structure, indicating two subbands with different densities
in the quantum well at Vg = 0 V [168]. The density correspond-
ing to the major peak is denoted n1, and the difference nHall −n1
is denoted n2. The density in the two subbands changes as the
topgate is energized, as shown in Fig. 5.4(b), similar to N1 and
N2 extracted from fitting to the MAR features. In particular, the
N2 species becomes depopulated at a gate voltage similar to the
depletion of the second subband in the Hall bar (Fig. 5.4(b)). The
decrease of transmission of the i = 2 species in Fig. 5.4(c) could
be due to a breakdown of the ballistic assumption as the second
subband is depleted.

Within the 1D Blonder-Tinkham-Klapwijk (BTK) formalism for
an SN interface, the transparency is often parametrized using the



5.4 elucidating the induced gap 93

dimensionless quantity Z, related to the transmission via τ−1 =

(1 + Z2) [55]. For the first subband we extract an average trans-
mission τ̄1 & 0.97, corresponding to a Z-parameter of Z1 . 0.18.
This indicates that the effective interface between the uncovered
quantum well and the region covered by Al is pristine.

5.4 elucidating the induced gap

The distinction between a BCS-like gap, ∆Al, and an induced gap,
∆∗, is revealed through the temperature dependence of the super-
conducting properties. In the case where the effective thickness of
the quantum well is much less than the normal-state coherence
length, dN � ξN, any position-dependence of the gap magnitude
in the growth direction in the 2DEG can be neglected, and the tem-
perature dependence of the induced gap depends on ∆Al according
to [84, 153, 169]

∆∗(T) =
∆Al(T)

1+ γB

√
∆2Al(T) −∆

∗2(T)/πkBTc
, (5.2)

where ∆Al(T) is determined self-consistently from BCS theory. The
dimensionless parameter γB is a measure of the horizontal SN
interface transparency (black, dashed line in Fig. 5.1(c)), where
γB = 0 corresponds to a perfectly transparent interface [87]. The
parameter γB represents the discontinuity in the superconducting
pair-potential and gives rise to the difference between the gap in
aluminum, ∆Al, and the induced gap, ∆∗, in the 2DEG, denoted
δ in Fig. 5.1(c). For the present case we find γB = 0.87, using
∆∗ = 180 µeV and ∆Al = 237 µeV, consistent with a high qual-
ity interface between the quantum well covered by Al, and the Al
itself.

To elucidate the nature of the induced superconducting gap, we
study the temperature dependence of the differential conductance
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Figure 5.5: (a) Temperature dependence of the MAR features at Vg =

−2.2 V. Traces successively offset by 10 2e2/h. (b) Tempera-
ture dependence of the dip labeled p2. Dashed purple line is
Eq.(5.2) scaled to match p2 at base temperature. Solid teal line
is temperature dependence of a BCS superconducting gap, and
dashed teal line is a rescaling of ∆Al(T), to match p2 at base
temperature. (c) Temperature dependence of first, second, and
third dip positions, with multiples of ∆∗(T) from (b).

at Vg = −2.2 V, shown in Fig. 5.5(a). The position of the second
MAR related dip (denoted p2) is tracked in Fig. 5.5b as the temper-
ature is increased. The curves in Fig. 5.5(b) show the solution of
Eq. (5.2) (purple), temperature dependence of a BCS gap, ∆Al(T),
(teal), and a BCS-like gap, ∆ ′Al(T), (teal, dashed), where the gap
value has been rescaled to coincide with the data at T = 30 mK.
The inadequacy of the temperature dependence of a BCS-like gap
(both unscaled and rescaled) to account for the temperature de-
pendence of the peaks is contrasted by the good correspondence
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between Eq. (5.2) and our data. The temperature dependence of the
first and third dip positions, p1 and p3, are shown in Fig. 5.5c. The
curves identified with p1 and p3 are found by multiplying ∆∗(T)
by a factor of 2 and 2/3, respectively, corresponding to n = 1 and
n = 3 in the 2/n MAR series.

The small deviation between V(p2) ∼ 0.21meV, which one might
expect was located at V = 2∆∗/(2e) = ∆∗/e, and the gap extracted
from the fitting in Section 5.3 (∆∗ ∼ 0.18 meV) can be understood
by again appealing to the simulation in Fig. 5.3(b). There, the black
vertical arrow show the minimal conductance close to the n = 2

MAR resonance, which does not coincide exactly with ∆/e. From
the simulation, we see that the voltage difference from the resis-
tance maxima at the vertical arrow and the gap is approximately
∼ 10%, in good agreement with V(p2) and ∆∗ which differ by
∼ 14%. Regardless, the correspondence between the temperature
dependence of MAR features and temperature dependence of the
gap is unchanged by this effect and the excellent agreement also
with n = 1 and n = 3 resonances indicate that the superconduct-
ing properties of the junction are well described within the induced
gap model.

5.5 conclusion

In conclusion, we have measured MAR resonances in a Josephson
junction in a InAs 2DEG heterostructure, where aluminum is epi-
taxially matched to the 2DEG. By fitting the conductance of the
MAR features, we extract a transmission close to unity through an
effective S∗NS∗-junction, where S∗ represents the InAs quantum
well covered by the Al. The temperature dependence of the MAR
resonances is well-described by the theory of an effective induced
gap, and we find ∆∗ = 180 µeV in the 2DEG region covered by Al,
close to the gap of the Al itself, indicating a transparent interface
between the two.





6A N O M A L O U S F R A U N H O F E R I N T E R F E R E N C E

In this chapter we investigate patterns of critical current as a func-
tion of perpendicular and in-plane magnetic fields in superconductor-
semiconductor-superconductor (SNS) junctions based on InAs/In-
GaAs heterostructures with an epitaxial Al layer. Thin epitaxial Al
allows the application of large in-plane field without destroying
superconductivity. For fields perpendicular to the junction, flux fo-
cusing results in aperiodic node spacings in the pattern of critical
currents known as Fraunhofer patterns by analogy to the related
interference effect in optics. Adding an in-plane field yields two
further anomalies in the pattern. First, higher order nodes are sys-
tematically strengthened, indicating current flow along the edges
of the device, as a result of confinement of Andreev states driven
by an induced flux dipole; second, asymmetries in the interference
appear that depend on the field direction and magnitude. A model
is presented, showing good agreement with experiment, elucidat-
ing the roles of flux focusing, Zeeman and spin-orbit coupling, and
disorder in producing these effects.

Superconductor-normal-superconductor (SNS) junctions form a
well-established platform to study the properties of superconduct-
ing hybrid structures. SNS junctions based on semiconductors with
strong SOI have been proposed to study the topological phase tran-
sition [171–174], but could also potentially be used to quantify the
strength of SOI in the semiconductor [175]. For instance, theoretical
models have been developed to understand how the detailed SNS
current-phase relation depends on SOI in two-dimensional junc-

Adapted from [170]
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tions [176], as well as in single-channel junctions [177], quantum
point contacts [178, 179], and nanowires [180].

Many details of the physics occurring in the junction are also en-
coded in the critical current. A measurement of the critical current
as a function of the out-of-plane magnetic field Bz is paradigmatic
in the study of SNS junctions. For increasing Bz, the winding of the
superconducting phase by the enclosed flux leads to a characteris-
tic modulation of the critical current Ic. For a rectangular junction
with uniform current density

Ic(Bz) = I
(0)
c

∣∣∣∣sin(πBzLW/Φ0)
(πBzLW/Φ0)

∣∣∣∣ , (6.1)

reminiscent of a single-slit Fraunhofer interference pattern in op-
tics [54]. Here, L and W are the length and width of the normal
region, I(0)c is the zero-field critical current, and Φ0 = h/2e is the
flux quantum. This behavior has been observed in a wide variety
of systems [79, 181] including 2DEGs with strong SOI [80]. Devi-
ations from this Fraunhofer form can yield information about the
local magnetic field profile [182] as well as the supercurrent density
in the junction [120, 183]. Recently, such interference mapping has
been used to probe edge states arising in two-dimensional topolog-
ical insulators [184–186] and graphene [167].

In this chaper, we present an experimental and theoretical study
of the magnetic field dependence of the interference pattern of
critical currents in epitaxial Al/InAs/Al junctions, with both per-
pendicular field as well as a separately controlled in-plane field.
We identify several interesting effects: (i) In a purely perpendicu-
lar field, we observe a deviation from a simple Fraunhofer pattern
(Eq. (6.1)), which we interpret as arising from flux focusing due to
the Meissner effect in the epitaxial Al leads. (ii) The interference
pattern changes dramatically when an in-plane field is applied. A
crossover is observed in the perpendicular-field interference pat-
tern with increasing in-plane field, from a Fraunhofer-like pattern
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with rapidly decreasing critical currents with node index, toward
one resembling that of a superconducting quantum interference
device (SQUID) with critical currents that depend only weakly on
node index. We interpret this transition as again resulting from
flux focusing: When the in-plane flux is excluded from the leads,
an effective out-of-plane flux dipole appears in the junction region.
This dipole dephases contributions to the supercurrent in the cen-
ter of the junction, resulting in coherent transport only near the
edges of the sample. (iii) Application of an in-plane field also in-
duces striking asymmetries (upon reversing perpendicular field)
in the interference pattern that depend on the magnitude and di-
rection of the in-plane field, but also vary strongly from lobe to
lobe and from sample to sample. Based on these observations, we
conclude that flux focusing plays a key role in planar epitaxial
devices, particularly in the presence of an in-plane field. Indeed,
field modulations due to flux focusing may prove useful, for in-
stance providing magnetic confinement of Andreev states. In the
present devices, observation (iii)—asymmetries in the interference
pattern—are dominated by disorder effects, masking related effects
due to spin-orbit and Zeeman coupling.

The chaper is organized as follows: Section 6.1 provides details
on device fabrication and magnetotransport measurements. Sec-
tion 6.2 describes the behavior of the junction with a purely per-
pendicular magnetic field. Section 6.3 describes junction behavior
when the applied field is purely in-plane. Section 6.4 reports ef-
fects of combined perpendicular and in-plane fields. Conclusions
and open questions are discussed in Section 6.5.

6.1 methods

Characterization of the epitaxial Al film yielded a superconduct-
ing transition temperature of Tc = 1.5 K, and collapse of super-
conductivity at an out-of-plane critical field Bz,c ∼ 30 mT, and an
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in-plane critical field Br,c ∼ 1.6 T (c.f. Figure 4.5). Separate trans-
port measurements of the InAs quantum well (QW) with Al re-
moved demonstrated an electron density of ne = 3.8× 1016 m−2

and mobility µ = 0.43 m2V−1s−1 at zero gate voltage, yielding
a mean free path le = 140 nm. In this density regime, two QW
subbands are occupied, as determined by magnetotransport mea-
surements. Upon partially depleting the 2DEG with the top gate,
the single subband limit is reached at gate voltage Vg < −2.0 V
with a mobility peak µ = 0.7 m2V−1s−1 for ne = 1.9× 1016 m−2.
The data presented in Secs. 6.2 to 6.4 were all obtained with Vg = 0.
Occupation of the second subband appears to play only a minor
role in all device characteristics (c.f. B.1). Measurements on similar
QWs have demonstrated large SOI, characterized by a spin-orbit
length lso ∼ 45 nm [151]. The superconducting coherence length is
estimated as ξ =  hvF/∆

∗ = 1.3 µm 1, with vF the Fermi velocity
and the induced superconducting gap ∆∗ ∼ 180 µeV as determined
from tunneling measurements presented in Chapter 4.

Measurements were performed on six SNS devices, all of which
showed qualitatively similar behavior (c.f. Figure B.4). The data in
Section 6.2 through Section 6.4.1 were characteristic of all devices.
Data similar to those presented in Section 6.4.2 were obtained from
several samples but with broad quantitative variation, as discussed
below. We focus on data from one SNS junction with contact sepa-
ration, L = 450 nm, and lateral width, W = 1.5 µm in the regime
le < L < ξ (see Figure 6.1(a)). The junction is oriented such that the
current flows along the [011] orientation of the underlying crystal
structure.

Throughout, we define the x-direction as in the plane of the
electron gas and parallel to the average current flow, and the y-
direction as in plane and perpendicular to average current flow.
The inset in Figure 6.1(a) shows the corresponding components of
the applied magnetic field B.

1 An effective mass of meff = 0.05me is estimated from k.p calculations
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To avoid effects of hysteresis as a function of I [187] and Bz [188],
measurements as in Fig. 6.1(c) were obtained by merging the four
quadrants separated by white dashed lines, each taken separately
by sweeping current and field away from zero.

6.2 perpendicular magnetic field

Sweeping the bias current I over a range of perpendicular mag-
netic fields Bz while measuring the differential resistance R results
in the interference pattern shown in Figure 6.1(c). This pattern de-
viates from the expected Fraunhofer form predicted by Eq. (6.1).
For instance, from Eq. (6.1) we expect equally spaced nodes of the
critical current, at values of perpendicular field Bz = nΦ0/(WL),
where integer numbers of flux quanta penetrate the semiconduc-
tor region. Experimentally, we find a deviation from this uniform
node spacing, as can be seen from the vertical dashed lines in Fig-
ure 6.1(c).

In order to investigate this variable node spacing in more de-
tail, we plot in Figure 6.1(e) the critical current extracted from Fig-
ure 6.1(c) as a function of Bz (markers). For reference, we also show
the expected Fraunhofer pattern (green) using the lithographic de-
vice area, for which Φ0/(WL) = 3.1 mT. From the data, we find
a central lobe half-width of 0.97 mT and a reduced spacing of the
subsequent side-lobes, gradually increasing and reaching 1.9 mT
for the fifth side-lobe 2.

2 The deviation at high field between our result and the expectation is presumably
due to an underestimation of the junction area due to the neglect of the finite
penetration depth in the leads [189]. Utilizing an effective length Leff = L+ 2λL
(with λL estimated in Section B.1) yields an expected node spacing of 1.7 mT.
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Figure 6.1: SNS device schematic and Fraunhofer, (a) Device and measurement
schematic illustrating the extended superconducting Al banks (gray), InAs
quantum well (yellow), and InGaAs barrier (green). The top gate (orange)
is shown suspended above the junction, for clarity we have omitted the in-
tervening ALD layer. L and W denote the junction length and width respec-
tively. Lc indicates the physical aluminum contact length. The coordinate
system is illustrated in the inset. (b) Local magnetic-field focusing parame-
ter γ as a function of position x for three different ratios β = Bz/Bf. On
the upper horizontal axis we highlight 2LAl, the contact length entering the
model. (c) Differential resistance R, as a function of bias current I and per-
pendicular magnetic field Bz. (d) Total magnetic field enhancement in the
junction Γ as a function of Bz, calculated by extraction of the nodes visible
in (c,e) (markers), and a fit using Eqs. (6.3) to (6.6) (solid line). (e) Critical
current Ic, plotted logarithmically to highlight periodicity, extracted from (c)
(markers). Overlaid are the expectation of Eq. (6.1) (green) and the modified
form taking into account field enhancement due to flux focusing (red).
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To quantify the deviation from the expected uniform spacing,
we introduce a dimensionless factor Γ , the ratio of the expected
node position to the observed node position,

Γ(B
(n)
z ) =

nΦ0

B
(n)
z LW

, (6.2)

where B(n)z is the perpendicular magnetic field at node number n.
A regular Fraunhofer pattern has Γ = 1 everywhere, as indicated
in Figure 6.1(d). At low fields, we find Γ ∼ 3. As Bz increases, Γ
decreases, approaching unity at high fields. The black dots in Fig-
ure 6.1(d) show the extracted Γ based on the data of Figure 6.1(c).

The deviation from Equation 6.1 leading to Γ > 1 can be un-
derstood as resulting from field-dependent flux focusing from the
superconducting contacts. The qualitative behavior of Γ is consis-
tent with the superconducting leads passing from a Meissner state
at low field, through a mixed state, towards a fully flux-penetrated
state above 10 mT. In the Meissner state, the contacts completely
expel flux, causing the field in the junction region to be enhanced.
When the magnetic field is increased, the thin aluminum banks
are slowly pushed into a mixed state as they are penetrated by
field lines, leading to a smaller field enhancement in the junction
and correspondingly a decreasing Γ . At high field the banks are
presumably fully penetrated by the incident flux, approaching a
negligible field enhancement and Γ ≈ 1.

Previous studies using thick niobium contacts also found large
field enhancements in SNS junctions [190, 191]. In those studies,
however, the leads remained in a full Meissner regime for the
perpendicular field range studied, resulting in a constant field en-
hancement. Because the Al electrodes in the present system are
operated close to their critical field Bc, the degree of flux focusing
depends on field.

To examine the flux-focusing picture more quantitatively, we
model the field profile inside the junction following Ref. [192] (see
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also [188]). The effective field near a single thin superconducting
strip of length 2LAl and infinite width (see Figure 6.1(b)), subject
to a perpendicular applied field, is given by

Beff(x̃) = Bf log

 |x̃|
√
L2Al − a

2 + LAl
√
x̃2 − a2

a
√∣∣x̃2 − L2Al

∣∣
 , (6.3)

for |x̃| > a and Beff(x̃) = 0 for |x̃| 6 a. The coordinate x̃ is the
in-plane coordinate perpendicular to the edges of the film, with
x̃ = 0 corresponding to the center of the film. The length 2a corre-
sponds to the extent of a region centered at x̃ = 0 where the field
is fully expelled due to Meissner screening; this length is given by
a = LAl/ cosh(Bz/Bf), with Bz the applied perpendicular magnetic
field 3 and Bf a characteristic field scale roughly corresponding to
the field of first vortex penetration. To account for the finite width
of our junction, we argue that 2LAl in this case corresponds not to
the physical contact length Lc (see Figure 6.1(a)), on the order of
10 —m, but to an effective length over which flux is focused into
the junction. Flux lines further away than ∼ W from the junction
edge are more likely to be expelled towards the sides rather than
into the junction region. We thus use W as a cutoff for the effective
contact length and set LAl =W.

To account for both contacts in our SNS geometry, we approxi-
mate the total effective perpendicular field profile as

Btot(x) = Beff(LAl + L/2− |x|), (6.4)

expressed in terms of the x-coordinate with x = 0 corresponding
to the center of the SNS junction. We thus make the simplification
that the focusing in the junction is dominated by the left(right)

3 For Bz > Bf, Beff(x̃) ∝ Bz. Indeed for large x̃ we find Beff(x̃) =

Bf log
(

cosh
(
Bz
Bf

) [
1+ tanh

(
Bz
Bf

)])
= Bz.
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contact for negative(positive) x. We then use Eqs. (6.3) and (6.4) to
define a local field enhancement parameter

γ(β, x) = Btot(x)/Bz, (6.5)

which is a function of the ratio β = Bz/Bf. In Figure 6.1(b) we
plot γ for three different β, illustrating the inhomogeneous field
profile induced by the superconducting leads. The dashed line in
Figure 6.1(b) highlights the expectation in the absence of focus-
ing (γ = 1). Near zero applied field (blue line), the local enhance-
ment peaks strongly close to the superconducting banks. Inside
of the superconducting contacts, however, γ abruptly falls to zero.
When the field is increased (cyan and gold lines) we see a gradual
smoothing of the enhancement profile as more of the flux pene-
trates the superconducting banks.

Integrating Eq. (6.5) over the junction length allows us to calcu-
late the total field enhancement,

Γ(Bz) =
1

L

∫L/2
−L/2

γ(β, x)dx. (6.6)

We fit the data using Eq. (6.6) with Bf as the only free parameter.
The resulting fit is shown as the blue line in Figure 6.1(d), yield-
ing Bf = 8.2 mT. This is in good agreement with an estimate for
the field of first vortex penetration of the film Bc1 = 7.7 mT (see
B.1). Besides, detailed calculations for a finite-width geometry pre-
dict a low-field enhancement of Γ = (2W/L)2/3 ∼ 3.5 as shown
by the black dashed line in Figure 6.1(d) [193]. The good agree-
ment between this low-field prediction and our model further sup-
ports our approximation LAl = W. The resulting continuous func-
tion Γ(Bz) can then be used to plot the full interference pattern of
Ic(Bz), corrected for the flux focusing due to the presence of the
superconducting contacts. The resulting Ic(Bz) is plotted in red
in Figure 6.1(e), and shows excellent agreement with the Ic(Bz)
extracted from Figure 6.1(c).
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Despite its simplicity, our model captures the observed devia-
tions from a regular Fraunhofer pattern in the interference pattern
of critical currents, strongly suggesting that the observed aperiodic
node spacings are indeed caused by flux focusing in the mixed
state of the superconducting leads where Bz ∼ Bc1. As a control
experiment we have also studied a device of nominally identical
dimensions, but with large flux holes located behind the super-
conducting contacts. Consistent with our interpretation, negligible
field enhancement is observed in this device, independent of the
applied field (c.f. Figure B.3).

6.3 in-plane magnetic field

We next examine the effects of in-plane magnetic field on the SNS
junction, initially without perpendicular field, Bz = 0. Differen-
tial resistance as a function of bias current and field magnitude is
shown in Figure 6.2 for two field orientations: field parallel to the
current (x-direction, Figure 6.2(a)) and field perpendicular to the
current (y-direction, Figure 6.2(b)). We see that the critical current
exhibits a strong anisotropy. The critical field (where the supercur-
rent becomes fully suppressed) changes from ∼ 200 mT for B ‖ x̂
to ∼ 650 mT for B ‖ ŷ. In Figure 6.2(d) we show the full depen-
dence of Ic on the direction of the in-plane field, where we fixed
the magnitude of the field to Br = 150 mT and θ denotes the angle
between B and the x-direction.

We propose to interpret this anisotropy again in terms of flux
focusing due to the Meissner effect. Indeed, also an in-plane field
could give rise to flux focusing, since the thickness of the Al layer
(d ∼ 10 nm) is comparable to the London penetration depth of Al,
λL = 16 nm [142].

One consequence of the in-plane Meissner effect would be that
the density of flux lines just below the aluminum contacts increases,
leading to local enhancements of the effective field inside the QW.
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Figure 6.2: Supercurrent in-plane magnetic field dependence, (a) Differ-
ential resistance R, as a function of bias current I and in-plane
magnetic field Bx, applied in the x-direction (along the direc-
tion of current flow). (b) As in (a) but with the in-plane field
By along the y-direction. (c) Schematic indicating how an in-
plane field along x̂ can result in an effective flux dipole in the
normal region. (d) Normalized critical current Ic as a function
of the angle θ between the in-plane field and x̂; the field has
a fixed magnitude of Br = 150 mT. The dots represent the
experimental data, the solid line is a theory curve based on
a one-parameter fit of α at θ = π, using the model based on
Eq. 6.7 (see below). The red and yellow markers highlight the
correspondence with panels (a) and (b) respectively.
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However, this focusing effect is not expected to depend strongly
on the direction of the in-plane field. Another possible effect is
that the bending of the field lines around the edges of the contacts
may induce a flux dipole in the junction, as exaggerated schemati-
cally in Figure 6.2(c). Assuming that B ‖ x̂, we see that close to the
left contact there is a small component of flux inside the well in the
positive z-direction, and close to the right contact there is a com-
parable component in the opposite direction. This flux dipole cou-
ples to the in-plane motion of the electrons and can therefore have
a strong effect on the interference pattern of Ic. Furthermore, the
effect is proportional to Bx only, and can thus lead to an anisotropy
of Ic in the in-plane field direction.

For B ‖ ŷ the suppression of the critical current with field ap-
pears to be fully accounted for by Zeeman effects only. Neglect-
ing orbital effects, an estimate of the magnitude of the effective
g-factor in the InAs QW from the critical field By,c yields |g∗| =
2∆∗/µBBy,c ∼ 10, which is in good agreement with previous mea-
surements [151].

As soon as we let the in-plane field deviate from the y-direction,
a flux dipole will be induced in the N region. The effect of this
dipole is most easily understood within a semiclassical picture,
where supercurrent arises from coherent transport of Andreev pairs
between S regions along well-defined trajectories through the N
region. A finite flux dipole makes the phase picked up along a
trajectory depend explicitly on the angle ϑ between the trajectory
and the x-axis. The dipole will therefore lead to a dephasing of
contributions to the current arising from trajectories with different
ϑ, and will thus suppress the supercurrent.

We develop a simple but quantitative model of supercurrent
through an SNS junction in the presence of a flux dipole by as-
suming that the junction is ballistic and we can use a semiclassical
approximation (where the Fermi wavelength is the smallest length
scale in the problem). In the absence of a perpendicular field (or
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for finite but small Bz) we can associate the Andreev bound states
in the normal region with straight trajectories connecting the two
proximitized regions in the QW. For the energy of such a bound
state as a function of ϑ and the average y-coordinate y0 one finds
in the limit of W,L� ξ

E(y0, ϑ) = ±∆∗ cos
(
ϕ

2
− π

Φ

Φ0

y0
W

− πα tan ϑ
)

, (6.7)

where ϕ is the phase difference between the two proximitized re-
gions, Φ is the homogeneous flux associated with Bz, and α =

α0 cos θ depends on Bx and parametrizes the effect of flux focus-
ing 4. The contribution of all Andreev bound states to the free en-
ergy F of the junction is found by summing (6.7) over all allowed
y0 and ϑ, weighted by a Fermi function. The supercurrent then
follows as Is(ϕ) = (2e/ h)∂F/∂ϕ and the critical current is simply
Ic = maxϕ Is(ϕ).

We convert the sums over y0 and ϑ into integrals and, assum-
ing for simplicity zero temperature and fully absorbing sides at
y = ±W/2, we numerically compute the critical current for Φ = 0

as a function of the in-plane field direction θ. Comparing the re-
sulting Ic(θ)/Ic(π/2) with the data shown in Figure 6.2(d) results
in a single-parameter fit yielding α0 = 0.32± 0.01. The resulting
fit is shown as the solid blue line in the figure and shows excellent
agreement with the data. We can also try to connect this numerical
value for α0 to our device geometry. A rough estimate for α0 in
terms of device parameters is α0 = ηBrLdf/Φ0, where df is the
width of the strips close to the proximitized regions where flux
focusing is significant and η is the fraction of Bx that locally con-
tributes to magnetic flux oriented along ±ẑ. We thus estimate that
there is only a significant out-of-plane flux in two narrow strips

4 We note that this model neglects the effect of SOI. We have verified that spin-orbit
effects, calculated along the lines of Ref. [176], yield changes on the order of a few
percent while the experimental anisotropy is of the order 1.
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of area L× df bordering the proximitized regions, and 0 6 η 6 1
is a phenomenological parameter related to the average degree of
bending of the flux lines. (For instance, η = 1/

√
2 would corre-

spond to a situation where the flux lines make on average an angle
of 45◦ with the plane of the junction within two strips of width
df.) If we estimate df = d = 10 nm we find for Br = 150 mT
and α0 = 0.32 that η = 0.29, corresponding to an average local
out-of-plane angle of ∼ 20◦.

6.4 combined perpendicular & in-plane magnetic fields

Sweeping Bz while still applying an in-plane field we observe
two new and striking effects, as shown in Figure 6.3(a,b). First,
in the presence of an in-plane field, the critical current develops
a pronounced asymmetry between positive and negative Bz; we
observe this for all directions of in-plane field. Second, increasing
the in-plane field when directed along x̂ results in (i) a decrease of
the zero-perpendicular-field critical current, I(0)c ; (ii) a relative en-
hancement of all side-lobe maxima as compared to the central one,
approaching a situation where all observable maxima are roughly
equal; and (iii) a gradual decrease of the width of the central lobe.
We initially focus on the latter effects, associated with Bx, and dis-
cuss the asymmetries in Section 6.4.2.

6.4.1 SNS-to-SQUID transition

Both the narrowing of the central lobe and the gradual equalizing
of lobe maxima with increasing Bx can be understood as resulting
from the flux-focusing mechanism discussed in the previous sec-
tion. As argued above, a large Bx could lead to a situation where
the supercurrent in the center of the junction is suppressed and
most transport takes place along the edges of the normal region,
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Figure 6.3: In-plane field induced Fraunhofer asymmetry, (a) Differential
resistance R as a function of bias current I and Bz, measured
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upper left panel indicate the lobe indices. (b) As (a), for an
in-plane magnetic field applied along x̂, using Bx = ±150 mT
(upper row) and Bx = ±200 mT (bottom row).
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making the system more like a SQUID, with conduction only along
sample edges, instead of a planar SNS junction with uniform cur-
rent flow. In the pure-SQUID limit, one expects for the critical cur-
rent Ic(Φ) ∝ | cos(πΦ/Φ0)| instead of a Fraunhofer-like pattern,
i.e., all lobes will have the same maximum value and the same
width Φ0. This is qualitatively consistent with the trend we ob-
serve in Figure 6.3(b).

To further examine the picture of a focusing-induced flux dipole
leading to SQUID-like current flow, we use the model from Sec-
tion 6.3 to calculate the critical current as a function of Φ = BzLW

for different focusing parameters α, and compare the resulting the-
oretical interference patterns Ic(Bz) with experimental data 5.

In Figure 6.4(a), the calculated Ic(Bz) is plotted for five values
of α, corresponding to Bx = 0, 100, 150, 200, and 300 mT (assum-
ing for simplicity a linear relation between α and Bx, and setting
α = 0.32 for Bx = 150 mT). These numerical results reproduce
the two main features discussed above: (i) As highlighted by the
vertical gray dashed lines, the width of the central lobe decreases
with increasing Bx. For Bx = 0 we find a width of roughly 2.6Φ0
(slightly larger than the 2Φ0, corresponding to a regular Fraun-
hofer pattern, presumably due to finite size effects 6), and for large
Bx it approaches Φ0, the SQUID limit. (ii) The heights of all side-
lobes in Figure 6.4(a) increase relative to the central lobe when
increasing Bx, approaching a situation where all lobes are of com-
parable height. Both these trends are qualitatively consistent with

5 In this section we concentrate largely on qualitative features and thus for simplicity
neglect the effect of out-of-plane focusing as discussed in Section 6.2

6 Close to the edges of the junction, where y0 ≈ ±W/2, there are fewer angles
ϑ available to construct Andreev bound states with. Consequently, the flux pen-
etrating the N region close to the edges has less influence on the total average
supercurrent through the junction than the flux penetrating the center of the re-
gion. To achieve the first full suppression of the supercurrent by perfect destructive
interference of all trajectories, one thus needs to go to slightly higher fields than
Bz =Φ0/(WL).
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the experimental observations and support our interpretation in
terms of a focusing-induced flux dipole.

We next examine the behavior of the sequence of side-lobe max-
ima for different Bx in more detail. In Figure 6.4(b) we show the
experimentally obtained maxima for four different Bx, where we
removed the complicating asymmetry in ±Bz (considered in de-
tail below) by symmetrizing and normalizing the data, (I(+n)c +

I
(−n)
c )/2I

(0)
c , using side-lobe numbers n as indicated in the top

left pane of Figure 6.3(a). When Bx is increased we see that (i) the
side-lobe maxima are enhanced relative to the central peak, and
(ii) the sequence of maxima I(n)c becomes non-monotonic, even
yielding side-lobes that exceed the central lobe in magnitude at
the highest field (Bx = 200 mT). We can extract the same data
from the numerical results presented in Figure 6.4(a), and show in
Figure 6.4(c) the resulting lobe maxima I(n)c , normalized by I(0)c .
Comparing with the experimental data, we see that the model not
only reproduces the gradual enhancement of the side-lobe max-
ima for increasing Bx, but also captures the more detailed behav-
ior of the series of side-lobes: Whereas at small Bx the maxima
I
(n)
c monotonically drop for increasing |n|, at larger Bx the series

becomes non-monotonic, ultimately even producing interference
patterns where side-lobes exceed the central maximum in height.

The black dots in Figure 6.4(b), all falling on top of the yellow
curve corresponding to Bx = 0, represent two data sets with the
side-lobe maxima for By = 150 and 300 mT (all at Bx = 0), where
we removed the asymmetry by symmetrizing Ic in ±Bz (as above,
this data is normalized by I(0)c ). The fact that all these data are
equal to the data without in-plane field, within experimental ac-
curacy, confirms that the qualitative change of the interference pat-
tern that we attribute to an SNS-to-SQUID transition only depends
on Bx. It also suggests that the asymmetry in ±Bz has a physical



6.4 combined perpendicular & in-plane magnetic fields 115

origin which is distinct from the focusing effects discussed in this
section.

In conclusion, the model presented in Section 6.3, that assumes
a simple flux dipole in the normal region proportional to Bx, ap-
pears to capture many aspects of the qualitative behavior of Ic(Bz)
as a function of in-plane field. All global trends we observe in the
data are reproduced by our numerical calculations, indicating a
transition from Fraunhofer-like interference at zero in-plane field
to SQUID-like behavior in the presence of sufficiently strong Bx. A
flux dipole in the normal region, induced by flux focusing of the x-
component of the in-plane field thus appears to provide the likely
explanation for our observations. However, we emphasize that the
model used in this section is not capable of generating the striking
asymmetries in ±Bz.

6.4.2 Asymmetries in the interference patterns

Finally, we turn our attention to the surprising asymmetries ob-
served in the interference patterns of Figure 6.3(a,b). To quantify
the asymmetry, we define an asymmetry parameter An for each
side-lobe pair {n,−n} as

An =
I
(−n)
c − I

(n)
c

I
(−n)
c + I

(n)
c

, (6.8)

which yields the relative difference in the side-lobe maxima for
±Bz. In this section, we will investigate systematic dependences of
An on the magnitude Br and direction θ of the in-plane field.

In Figure 6.5(a), we plot A1 (blue) and A2 (red) as functions of
Br with the field applied along ŷ. The asymmetry of the first node
A1 is seen to scale roughly linearly with Br, reaching ∼ 100% at the
highest fields, while the asymmetry of the second node A2 remains
zero within experimental uncertainty. In Figure 6.5(b), for in-plane



116 anomalous fraunhofer interference

field now along x̂, we now see that both A1 and A2 increase pro-
portionally to Br, both reaching ∼ 25% at 250 mT, just before Ic
gets fully suppressed (see Figure 6.2). All asymmetries thus seem
to scale linearly with the magnitude of the applied in-plane field.
The slope of An(Br), however, varies considerably: from positive,
to zero, to negative for different n and θ. From these two angles
(θ = 0 and θ = π/2) no systematics are evident.

The dependence of the An on the direction of the in-plane field
is shown in Figure 6.5(c). We plot the measured absolute asym-
metries |A1| and |A2| for 16 angles at a fixed field magnitude
Br = 150 mT (we use solid and dashed connectors to indicate
where the obtained An are positive and negative, respectively). As
a reference, we include the anisotropic angular dependence of I(0)c
(filled gray area, plotted in arbitrary units), which we analyzed
in terms of a Meissner-induced flux dipole in Section 6.3. The ob-
served evolution of the asymmetry as a function of θ in the present
sample has a number of interesting characteristics: (i) The asymme-
try of the first side-lobe is maximal for θ ∼ 5π/8 and minimal in
the perpendicular direction θ ∼ π/8. (ii) The maximal and minimal
asymmetries of the second lobe are roughly perpendicular to those
of the first lobe. (iii) Consistent with the mirroring in Bz observed
upon inversion of Bx or By (see Figure 6.3), both asymmetries have
a well defined node at zero about which the behavior of An are an-
tisymmetric in θ (or equivalently Br).

Separate samples have demonstrated similar behavior, including
a linear scaling of the An in field magnitude and a continuous an-
gular evolution of the asymmetry antisymmetric upon π rotation
7. Many of the details, however, are very different from sample
to sample: The observed magnitudes of A1 and A2 for given Br
fluctuate up to 100%, and also the angular alignment of their min-
ima and maxima varies across different samples (also the roughly

7 See the Figure B.4 for data from different samples.
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perpendicular orientation of the maxima of A1 and A2 observed
in Figure 6.5 is not a consistently observed feature). The variation
of all these details does not display a clear trend following any of
the controllable device parameters, such as W, L, or the orienta-
tion of the junction with respect to the crystallographic axes of the
InAs wafer. This suggests that the asymmetries are the result of an
intricate interplay of many device-dependent factors, most likely
including SOI, disorder, local details of the coupling between the
InAs and the Al, and the microscopic shape of the sample.

Although it thus seems difficult to pinpoint the physical mecha-
nism responsible for the asymmetries, we can try to develop a qual-
itative picture by carrying out a general analysis along the lines of
Ref. [194]. We construct a model (Bogoliubov-de Gennes) Hamil-
tonian, treating the electrons in the junction as a two-dimensional
free electron gas in the presence of a vector potential due to the
applied magnetic field (including the flux dipole proportional to
Bx). We add to this Hamiltonian finite superconducting pairing
potentials of equal magnitude under the left and right contacts,
and terms accounting for Rashba and Dresselhaus SOI, Zeeman
splitting, and an arbitrary disorder potential V(x,y). We can then
investigate under what circumstances the symmetries of the total
Hamiltonian dictate the critical current to be symmetric in Bz and
when this symmetry is broken.

The most important conclusion is that if V(x,y) = 0 the symme-
try Ic(+Bz) = Ic(−Bz) is protected, and the model will produce
a symmetric interference pattern for a symmetrically shaped sam-
ple, no matter how all other parameters are tuned. Disorder or
other spatial asymmetries in the junction are thus a necessary in-
gredient for obtaining an asymmetric critical current. More specif-
ically, we find: (i) In the presence of an in-plane field oriented
along x̂, only one of the mirror asymmetries V(x,y) 6= V(−x,y)
or V(x,y) 6= V(x,−y) has to be present to allow for an asymmetric
interference pattern. (ii) If the in-plane field is along ŷ, a direction
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along which we observe a strong asymmetry (see Figure 6.5), only
V(x,y) 6= V(x,−y) breaks the symmetry.

As a side note, we mention that some combinations of symmetry-
breaking ingredients only affect the higher Fourier components
of the current-phase relation Is(ϕ). For instance, in order to have
Ic(+Bz) 6= Ic(−Bz) in combination with a purely sinusoidal Is(ϕ),
it is required to have (in addition to disorder): (i) a finite Bx or (ii)
a finite By and SOI. In this case, the degree of asymmetry left at
θ = π/2 could thus present a measure for the strength of SOI in
the junction. In our experiment, however, current was controlled
rather than phase, so we do not know to what degree the current-
phase relation is nonsinusoidal. In general, one expects junctions
with weak NS-coupling to have a nearly sinusoidal Is(ϕ) [195]. En-
gineering a barrier between the normal and proximitized regions
in the QW could thus present a way to obtain more detailed knowl-
edge about the SOI in the sample.

Our qualitative analysis thus clearly supports the idea that a
key role is played by structural asymmetries in the device, already
suggested by the strong sample-to-sample variation observed in
the data. As to the mechanisms that can break spatial symmetries
in our samples, we identify three: (i) spatial variation in the cou-
plings to the superconducting contacts, (ii) imperfections in the
microscopic shape of the junction, or (iii) a random disorder po-
tential. Owing to the epitaxial growth of Al and the small size of
the junction, we expect the couplings to the contacts to be relatively
homogeneous. Further, measurements of the asymmetry as a func-
tion of gate voltage, presented in B.2, show that the asymmetries in
Ic are robust to gating in both magnitude and angular dependence.
This weak gate dependence could indicate that the dominant spa-
tial symmetry breaking mechanism is stable, which also suggests
that it is either the specific shape of the junction or a fixed disor-
der potential induced by ionized impurities in the QW. To further
support this picture, we also performed tight-binding numerical
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simulations of the supercurrent through a two-dimensional disor-
dered SNS junction focusing on the asymmetry parameters An;
the results are presented in Section B.4. We find patterns that look
similar to those extracted from the experimental data and also dis-
play a strong variation from device to device (i.e. when we change
the disorder configuration). This also supports our speculation that
disorder plays a crucial role in the underlying mechanisms respon-
sible for the asymmetries.

An alternative explanation of the asymmetries one could pro-
pose is in terms of Abrikosov vortices near the junction; the pres-
ence of such vortices is known to induce asymmetries in the critical
current upon inversion of Bz. In the limit of single vortices the be-
havior is well understood and studies have successfully mapped
the position of vortices from the modification of interference pat-
terns [182, 196]. For large numbers of vortices, experimental and
theoretical investigations exist in the limit of disordered vortex ar-
rays [197, 198], yielding seemingly random interference patterns.
Theoretical work on ordered vortex arrays predicts symmetric in-
terference patterns described by minor modifications to Eq. (6.1)
[199].

While we expect flux penetration of the leads in a perpendic-
ular field, and thus vortices to be present, we observe no indica-
tion of quantized vortex entrance events, i.e., sudden switches in
the critical current [196]. Furthermore, we do not observe asymme-
tries without the application of an in-plane field, which seems to
be incompatible with vortices as the origin of the asymmetry. Fur-
thermore, the mirror symmetry in Bz of the observed asymmetry
upon reversing the sign of the in-plane field would require an al-
most perfect reversal of the vortex configuration, which is highly
unlikely.

To conclude, we believe that in the mechanisms underlying the
asymmetries we explored in this section, an important role is be-
ing played by structural disorder in the samples. Given the com-
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plexity of the system and the randomness of what appears to be
the most important symmetry-breaking ingredient, it is currently
unclear whether measurements of the asymmetry could be used
to quantify the strengths of SOI and Zeeman coupling in these
devices. SNS junctions designed with a well-defined built-in dom-
inant asymmetry might allow for disentangling these effects; this
warrants further work.

6.5 conclusion

We report a systematic experimental study of the behavior of two-
dimensional epitaxial Al/InAs/Al SNS junctions under the appli-
cation of out-of-plane as well as in-plane magnetic fields. Measur-
ing the critical current as a function of the magnitude and direction
of the applied magnetic field, we discover a strong influence on the
properties of the junction of flux focusing from the superconduct-
ing contacts, both for perpendicular and in-plane magnetic fields.
For in-plane fields applied along the direction of average current
flow, flux focusing results in an effective flux dipole in the normal
region, causing transport to be localized towards the edges of the
sample. We thus find that the in-plane field may act as a novel
control knob allowing for magnetic confinement of Andreev states
in such hybrid superconductor-semiconductor systems. We further
observe striking asymmetries in the interference pattern Ic(±Bz)
when an in-plane field is applied. Although most qualitative prop-
erties of these asymmetries remain unexplained, we argue that the
microscopic structure of the device plays an crucial role, poten-
tially masking the influences of spin-orbit and Zeeman coupling.





7S C A L A B L E M A J O R A N A D E V I C E S

Majorana zero modes have received widespread attention due to
their potential to support topologically protected quantum com-
puting [201]. Emerging as zero-energy states in one-dimensional
semiconductors with induced superconductivity, Zeeman coupling,
and spin-orbit interaction [71, 72], Majorana modes have been pri-
marily investigated in individual InSb or InAs nanowires [12–16],
including recently realized epitaxial hybrid nanowires [17, 125,
127]. Tests of non-Abelian statistics of Majoranas involve braid-
ing [202, 203] or interferometric measurement [204–206], requir-
ing branched geometries, which are challenging to realizing using
nanowire growth. Scaling to large networks using arrays of assem-
bled nanowire also appears difficult. Here we explore signatures
of Majorana zero modes in devices made from a two-dimensional
heterostructure [151, 156] using top-down lithography and gating.
Scalable top-down fabrication readily allows complex geometries
and large networks, paving the way toward applications of Majo-
rana devices.

7.1 ballistic tunnel probe

A schematic of one of the samples is shown in Fig. 7.1(a), with
the heterostructure layers in the inset. The InAs/InGaAs quantum
well is close to the surface and covered by a thin layer of epitaxial
Al. Large mesas are first etched to isolate individual devices (not
shown), then the Al top layer is selectively etched into an effective

Adapted from [200]
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wire of width W ∼ 100 nm and length L ∼ 1 µm (Fig. 7.1(b)). One
end of the wire is connected to a large Al plane, serving as mea-
surement ground. On the other end, a ∼ 40 nm gap (indicated by
the dashed circle in Fig. 7.1a) separates the Al wire from the op-
posing Al plane, acting as voltage source. A global insulating layer
and a metallic topgate were then deposited on the entire sample.

Initially, the Al wire is surrounded by conductive 2DEG. Ap-
plying a negative potential VG to the top gate, the wide exposed
2DEG regions adjacent to the Al strip are depleted, leaving a nar-
row conducting InAs channel strongly coupled to the Al. Due
to screening by the surrounding Al, conduction through the con-
striction persists to more negative gate voltages than the 2DEG
planes, resulting in a gate voltage range where wire and Al plane
are tunnel coupled. As we will show in the following, the con-
striction is single mode and ballistic. Furthermore, the asymmet-
ric Al regions allow for a useful (and, to our knowledge, novel)
magnetic-field tuning of the device properties. As the Al strip
width W is significantly shorter than the superconducting coher-
ence length ξAl ∼ 1.6 µm [159], its critical field is enhanced with
respect to the Al plane [208, 209]. It is then possible, by chang-
ing the magnetic field strength and orientation, to tune the wire-
plane configuration from superconductor-superconductor (S-S), to
superconductor-normal (S-N), to normal-normal (N-N). We give
evidence of this tuning both in the open regime (Fig. 7.1(c)) and in
the tunneling regime (Fig. 7.2(a)).

The four-terminal differential conductance of the device as a
function of gate voltage is shown in Fig. 7.2(c). We are interested
in the regime close to pinch-off, where the narrow junction is well
defined. Applying an out of plane field B⊥ = 1 T, superconduc-
tivity in the whole system is suppressed, resulting in the N-N con-
figuration. Similarly to a conventional quantum point contact, the
conductance shows a plateau of 2e2/h, demonstrating the junction
is single mode and ballistic. In the same gate voltage range, the
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Figure 7.1: Device schematic and behavior of the ballistic probe. (a)
Device schematic indicating the aluminum leads (gray), InAs
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trostatic gate has been omitted for clarity. The tunneling probe
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between the Al and InAs. (b) False colored atomic force micro-
graph of a lithographically identical device before ALD and
gate deposition. (c) Conductance as a function of gate voltage
for B = 0 (blue), B⊥ = 0.08 T (red) and B⊥ = 1 T (purple).

zero field data (S-S configuration, blue line) shows a conductance
increase up to 120 e2/h, reminiscent of a supercurrent. Finally, set-
ting B⊥ to 0.08 T, the Al plane is driven normal (B⊥,c ∼ 0.06 T)
while the wire persists in the superconducting regime, resulting in
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tive normal probe in a magnetic field. (a), Tunneling spectroscopy of the
wire for B = 0 (blue), B⊥ = 0.08 T (red) and B‖ = 0.4 T, aligned along the
wire (green). (b,c), Tunneling spectroscopy of the superconducting gap for
the three field configurations in (a). The colors from (a) identify each panel,
with arrows indicating the gate voltage location of the traces in (a). A non-
linear color-scale is used [207]. (d–f) Schematic representations of the three
regimes of operation shown in (a) with relative DOS in the wire (left) and
Al plane (right). Superconducting Al is represented in black, white indicates
that the Al has been driven normal and gray that the Al is still superconduct-
ing but the induced gap is soft.

the S-N configuration (red curve). In the S-N configuration the con-
ductance plateau approaches 4e2/h as expected in a single-mode



7.1 ballistic tunnel probe 127

VG  = -2.285 V

VG (V)

−2.29 −2.28 −2.29 −2.28 −2.29 −2.28 −2.29 −2.28
−0.2

0.0

0.2

V
sd

(m
V

)

1.5

3.0

4.5

−0.2 0.0 0.2
V sd (mV)

c

d

e

f

0 1 2 3B‖ (T)

−0.4

−0.2

0.0

0.2

0.4

V
sd

(m
V

)

c d e f

ba

c d e f

0

3

6

9

S-S S-N* S-N N-N

B = 0.8T B = 1.2T B = 2.0T B = 2.2T

G
(1

0−
3
×

2e
2
/
h)

G
(1

0−
3
×

2e
2
/
h)

Figure 7.3: Stable zero energy state at large in-plane field. (a) Conductance as a func-
tion of source-drain bias and parallel magnetic field. The upper colorbar
schematically indicates, with reference to Fig. 7.1, the DOS configuration in
the wire and under the 2D plane. The colorscale used is shared with (c–f). (b)
Line cuts taken at the points indicated in a. Curves are successively offset by
2.5× 10−3 2e2/h. (c–f) Stability scans as a function of bias and gate voltage
at the field positions indicated in (a).

S-N junction with high probability of Andreev reflection [124], and
recently reported in a similar system [156].
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7.2 magnetic field regimes

The magnetic tuning of the junction is also evident in the tunneling
spectroscopy data shown in Fig. 7.2(a). In the S-S geometry (blue
line), the zero field conductance shows a 4∆ gap, owing to con-
volution of two BCS-like densities of states with ∆ = 180 µeV, as
schematically shown in Fig. 7.2(d) [210]. In the S-N configuration
(red line) the constant density of states in the plane, as shown in
Fig. 7.2(e), results in a direct measurement of the superconduct-
ing gap of the wire. The full gate voltage evolution in the S-S
and S-N scenarios is presented in Fig. 7.2(b) and (c) (left panel),
identified by the colored boxes. In both cases, a sharp transition
from G ∼ 2e2/h to G ∼ 0 is observed at large bias, indicative of a
clean junction. The S-S configuration also shows, for Vsd = 0 and
Vg > −2.28 V, a large conductance peak surrounded by regions of
negative differential conductance, which is identified as a super-
current precursor [211]. Similarly, regular sub-gap features in the
open S-S regime are assigned to multiple Andreev reflections. Su-
percurrent and multiple Andreev reflections disappear in the S-N
configuration (Fig. 7.2(c), left panel).

A particularly interesting situation is obtained for an in plane
field B‖ = 0.4 T aligned along the wire, well below the critical
field of the large Al plane (B‖,c ∼ 1.3 T). Tunneling spectroscopy
in this regime reveals a 2∆ gap (green line in Fig. 7.2(a)) very sim-
ilar to the S-N configuration discussed previously. On the other
hand, conductance in the open regime shows a supercurrent peak
(Fig. 7.2(c), right panel), a hallmark of the S-S configuration. This
seemingly contradictory scenario is readily explained with a super-
conducting density of states in the large Al regions developing a
soft gap in an in-plane field, as shown in Fig. 7.2(f). In this config-
uration, referred to as S-N?, the 2D plane stays superconducting,
but in the tunneling regime acts as a quasi-constant DOS probing
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the wire. Independent measurements of the field induced gap soft-
ening in a variety of samples are presented in the Section C.2.

7.3 majorana zero modes

We now focus on probing the wire under conditions relevant for
topological superconductivity. To enter the topological phase, a
magnetic field aligned perpendicular to the spin-orbit direction
must be applied. For a Rashba dominated system, as in the present
case, the spin-orbit field is oriented in the plane of the 2DEG
and perpendicular to current flow. We thus orient B‖ along the
wire direction. The topological transition is expected at a field
B∗T = 2

√
∆2 + µ2/gµB [72], with µ the chemical potential, g the

g-factor of the states in the wire, and µB the Bohr magneton.
Figure 7.3a shows the wire tunneling conductance as a function

B‖ for a top gate voltage VG = −2.285 V, setting the constriction
in the tunneling regime. The 4∆ gap observed for B‖ = 0 collapses
to 2∆ by B‖ = 0.3 T, attributed to the gap softening under the 2D
plane (corresponding to the transition from Fig. 7.2(b) to (d)). The
2D plane evolves continuously from a softened gap (S-N?) into the
normal state (S-N) by B‖ ∼ 1.5 T. For B‖ > 2.9 T, superconductivity
in the Al wire is quenched, yielding the N-N state.

Starting from B‖ = 0.4 T a pair of states emerge from the gap
edge and linearly approach Vsd = 0 with an effective g-factor
|g∗| = 2δVsd/µBδB ∼ 4 (see also Section C.4). At B‖ = 1.8 T the
two states merge at zero energy and stick there until the overall
gap collapses, at B‖ = 2.9 T. Figure 7.3(b) shows line cuts from
Fig. 7.3(a) at the marked positions. The two states are symmet-
rically positioned around zero bias, as expected by particle-hole
symmetry, but have different amplitudes. This is presumably due
to finite voltage effects in conjunction with a spatially asymmetric
device. Reverting the source and drain contacts results in a bias re-
versal of the asymmetry. Similarly to previous results in nanowires
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[17], the g-factor associated to the Majorana precursors is signifi-
cantly reduced from that of the bulk semiconductor (g ∼ −12 for
InAs). This is presumably due to the hybrid nature of these states,
extending in both Al and InAs.

To emphasize the stability of the observed zero bias peak (ZBP),
Figs. 7.3(c–f) show gate scans at the marked positions in Fig. 7.3a.
At low field (B‖ > 0.4 T) two subgap Andreev states are present,
which evolve as a function of bias and field. In Fig. 7.3(e), at B‖ =
2.0 T, these states merge at zero bias over a finite gate voltage range,
distinct from the simple point-like crossing in Fig. 7.3(d). Further
increasing the field (2.2 T in Fig. 7.3(f)) has a negligible effect on
the ZBP, with only the bounding gap shrinking slightly.

7.4 magnetic field angle and temperature dependence

To further investigate the origin of the ZBP, we vary the magnetic
field orientation θ in the 2DEG plane, with θ = 0 being parallel to
the wire. As explained above, a Majorana zero mode should only
manifest itself for a sufficiently strong field along θ = 0. Figure 7.4
shows three such rotations for constant magnetic field amplitudes
Br. In all cases, the rotations demonstrate the ZBP stability within
a narrow angle range centered at θ = 0, expanding with Br, con-
sistent with a larger field component perpendicular to BSO. For
larger misalignment angles, the superconducting gap softens and
the ZBP splits into two Andreev levels, presumably due to the
failure of the topological criterion as the component of |B| perpen-
dicular to BSO decreases.

Similarly to previous observations [12, 17], the height of the ZBP
is significantly reduced from the quantized value of 2e2/h, pre-
dicted in the absence of disorder at zero temperature [212, 213].
Disorder in our samples is presumably comparable to conventional
nanowires, as suggested by the observation of clear conductance
plateaus and a hard superconducting gap. Despite this, the lim-
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ited gate voltage range over which the ZBP appears is indicative
of significant subband mixing, presumably addressable with wafer
structures of higher quality. Figure 7.4(c) (top panel) shows the evo-
lution of the ZBP of Fig. 7.3(a) for B‖ = 2.0 T as a function of mix-
ing chamber temperature Tmc, with linecuts shown in Fig. 7.4(b).
Consistent with previous measurements of Majorana modes [12],
the ZBP is fully suppressed by 300mK, corresponding to an energy
scale for the topological gap on the order ∆T ∼ 30 µeV. The super-
conducting gap persists up to 1 K, with an overall lifting of the gap
background due to thermal quasiparticle excitation. Figure 7.4(c)
(bottom panel) shows the peak height Gmax and full width at half
maximum (FWHM) for T 6 200 mK, where the quasiparticle back-
ground conductance is negligible. Decreasing the temperature, the
ZBP gets sharper and its height monotonically increases, with a
saturation reached below T ≈ 50 mK, presumably due to the fail-
ure of cooling the electrons further. In this intermediate regime,
the peak conductance is proportional to T−α, with α = 0.4± 0.02
while the peak full width at half maximum (FWHM) scales approx-
imately as G−1

max. These observations suggest the ZBP height and
width are temperature limited in the present experimental config-
uration, with the coupling to the leads playing a negligible role.

7.5 conclusion

In conclusion, we have investigated transport signatures of Majo-
rana zero modes in devices defined by top-down lithographic pat-
terning of hybrid InAs-Al two-dimensional heterostructures. Mea-
surements show many features observed in previous studies, in-
cluding a non-universal zero-bias conductance peak, which ap-
pears when an external magnetic field is applied along the wire
axis. The scalable fabrication developed here opens the door to
complex device geometries and extended networks of Majorana
devices.
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Figure 7.4: Stability of the zero bias peak as a function of field angle
and temperature. (a) Conductance as a function of bias and in-
plane magnetic field orientation θ for fixed field magnitudes
Br. θ = 0 indicates a field alignment parallel to the wire. (b)
Conductance linecuts as a function of bias for fixed values of
the mixing chamber temperature Tmc. With decreasing temper-
ature, the ZBP gets sharper and higher. Curves are offset for
clarity. (c) Detailed temperature evolution of the ZBP (upper
panel), and extracted ZBP height Gmax and full width at half
maximum (FWHM) as a function of Tmc (lower panel). Note
that the vertical axes have logarithmic scales.
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1. Clean: 60 s acetone at 50◦C. IPA rinse. N2 blowdry.

2. Spin coat: Deposit PMMA A4 at 500 RPM. Spin at 4000 RPM
for 45 s. Bake at 185◦C for 3 min.

3. Expose:

a) Inner features at 500 pA, dose = 0.4 µs/dot

b) Outer features at 20 nA, dose = 0.36 µs/dot

c) Develop in MIBK:IPA (1:3) for 60 s

d) Rinse in IPA for 20 s. N2 blow dry.

4. Ash: O2 plasma for 60 s.

5. Al etch: 10 s in Transene D at 50◦C. Rinse 20 s in MQ at 50◦C.
Rise 40 s in MQ at RT.

6. Mesa etch: 10 min in (220 : 55 : 3 : 3) H2O : Citric acid :
H3PO4 : H2O2. Rinse for 40 s in MQ. N2 blow dry.

7. Strip: Follow 1

Method A.1: Mesa etch.
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1. Clean: 60 s acetone at 50◦C. IPA rinse. N2 blowdry.

2. Spin coat: Deposit PMMA A4 at 500 RPM. Spin at 4000 RPM
for 45 s. Bake at 185◦C for 3 min.

3. Expose:

a) Inner features at 500 pA, dose = 0.4 µs/dot

b) Develop in MIBK:IPA (1:3) for 60 s

c) Rinse in IPA for 20 s. N2 blow dry.

4. Ash: O2 plasma for 30 s.

5. Al etch: 10 s in Transene D at 50◦C. Rinse 20 s in MQ at 50◦C.
Rise 40 s in MQ at RT.

6. Strip: Follow 1

Method A.2: Aluminium etch.
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1. ALD setup: Set ALD stage temperature to 90◦C.

2. Purge: Turn on N2 flow and close all precursor valves. Purge
chamber by running cleaning program.

3. Precursor: Open trimethylaluminium precursor valve.

4. Clean: 60 s acetone at 50◦C. IPA rinse. N2 blowdry.

5. Deposition: Load sample into deposition chamber and
pump it out. Start deposition process of 300 cycles of TMA
followed by H2O, with 30 s purge times after each pulse.

6. Verifcation: Ensure the process is running smoothly by ob-
serving the pressure spikes on each pulse.

Method A.3: Atomic layer deposition.
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1. Clean: 60 s acetone at 50◦C. IPA rinse. N2 blowdry.

2. Spin coat: Deposit PMMA A4 at 500 RPM. Spin at 4000 RPM
for 45 s. Bake at 185◦C for 3 min.

3. Expose:

a) Inner features at 500 pA, dose = 0.4 µs/dot

b) Develop in MIBK:IPA (1:3) for 60 s

c) Rinse in IPA for 20 s. N2 blow dry.

4. Ash: O2 plasma for 45 s.

5. Sticking layer: Deposit 5 nm of Ti at 1Å/s.

6. Metal deposition: Deposit 50 nm of Au at 1.5Å/s.

7. Liftoff: 1 h in dioxalane at 50◦C. If necessary, use N2 gun
with syringe attachment to lightly blow bubbles.

Method A.4: Fine gate deposition.
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1. Clean: 60 s acetone at 50◦C. IPA rinse. N2 blowdry.

2. Spin coat:

a) Deposit EL9 at 500 RPM. Spin at 4000 RPM for 45 s.
Bake at 185◦C for 3 min.

b) Deposit PMMA A4 at 500 RPM. Spin at 4000 RPM for
45 s. Bake at 185◦C for 3 min.

3. Expose:

a) Inner features at 500 pA, dose = 0.4 µs/dot

b) Outer features at 20 nA, dose = 0.4 µs/dot

c) Develop in MIBK:IPA (1:3) for 60 s

d) Rinse in IPA for 20 s. N2 blow dry.

4. Ash: O2 plasma for 60 s.

5. Sticking layer: Deposit 5 nm of Ti at 1Å/s.

6. Metal deposition: Deposit 250 nm of Au at 1.5Å/s.

7. Liftoff: 4 h in dioxalane at 50◦C. If necessary, use N2 gun
with syringe attachment to lightly blow bubbles.

Method A.5: Outer gate deposition.
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Figure A.1: Anodization (a) Anodization test setup with real-time mon-
itoring in an SNS geometry following [214]. (b) Normalized
current passing through the SNS structure as a function of
time for three different anodization voltages, the final oxide
thickness is proportional to the applied voltage (∼ 1 nm/V for
Al [215]). For Vanod = −15 V the full thickness of the film
has been oxidized and the current falls to zero. (c) The same
method can also be used to thin down Al films. Superconduct-
ing phase boundry measured in a Hallbar geometry (inset) for
as-grown 10 nm (blue dots) and 5 nm (open squares) Al films,
and films anodized at -5 V (green) and -6 V (red). The signifi-
cant increase in Tc and Bc for the anodized films may indicate
succesfully thinned films, however the formation of coupled
Al islands cannot be ruled out.
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b.1 estimating Bc1

In order to determine Bc1 we need to estimate the parameter κ =

λ/ξ. We use values for bulk Al from the literature [159]: ξbulk =

1 .6 µm and Tc ,bulk = 1 .2 K. From our measurements we have
an accurate value for Tc (see Section 4.3.1) and we know from [54]
that

∆(0) = 1 .76 kBTc and ξ =
hvF

π∆
. (B.1)

These expressions allow us to determine the coherence length in
the thin film limit as a function of known parameters, yielding

ξthin = ξbulk
Tc ,bulk

Tc ,thin
, (B.2)

the same method is e.g. used in Ref. [216]. Substituting the known
values of Tc ,bulk , ξbulk and the Tc = 1 .5 K measured gives ξ =

1 .28 µm for the superconducting film. We may also estimate the
penetration depth from known quantities [54, 217]

λ = λL (0)

√
1 +

ξ

d
. (B.3)

Using the value for λL = λL,bulk = 16 nm from the literature and
using the modified ξ calculated above, we obtain λ = 180 nm for
a film thickness of d = 10 nm.
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Finally we can estimate Bc1 . For type-II superconductors the
field of first vortex penetration (assuming a magnetic field perpen-
dicular to the film) is given by [54]

Bc1 ≈
Φ0
4πλ2

log κ =
Bc√
2κ

log κ . (B.4)

Importantly this formula assumes that κ > 1/
√
2. For our values

κ ≈ 0.2× (1/
√
2), clearly in the type-I regime. However, in the thin-

film limit the penetration depth is renormalized such that κ = Λ/ξ

[218, 219], where Λ ∼ λ2/d. Using this renormalization we obtain
κ ∼ 2.5, which lies in the type-II regime. Using these numbers
together with Bc,z ∼ 30 mT yields Bc1 = 7.7 mT. It is worth noting
that the first vortex may penetrate before Bc1 is reached [220].

b.2 gate dependence

The QW used for the experiment hosts two subbands at Vg = 0.
Based on Hall measurements, we know that the transition to the
single subband limit is achieved at Vg ∼ −2 V (c.f. Figure 5.4).

Figure B.1 (a) shows the measured differential resistance R, as
a function of gate voltage Vg and bias current I. The interference
patterns obtained at four different values of Vg are shown in Fig-
ure B.1(c–f). From these data we can extract the field-dependent
critical current Ic(Bz), which we correct for the flux focusing pa-
rameter Γ (see Section 6.2). The resulting Ic(Bz) can be used to cal-
culate the supercurrent density Jc(y) using the Dynes and Fulton
method [120], the results are shown in the insets in Figure B.1(c–
f). All curves show a supercurrent density accumulation towards
the lateral edges of the SNS, the effect being more accentuated at
negative gate voltages. This effect is also captured in Figure B.1(b),
where we plot the normalized side-lobe maxima. Compatibly with
the accumulation of Jc at the edges, the side-lobe maxima are
gradually lifted upon depletion of the 2DEG. For Vg < −2 V, an
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Figure B.1: Supercurrent density gate dependence. (a) Differential resis-
tance R, as a function of gate voltage Vg and bias current I. (b)
Normalized critical current as a function of side-lobe index n,
for varying gate voltages, denoted by the colored markers in
(a). (c–f) Differential resistance R, as a function of bias current
I and out-of-plane magnetic field Bz, for the different values of
gate voltage marked in (a). Insets show the extracted supercur-
rent density Jc(y). (c) is based on the same dataset as shown
in Figure 6.1(c)
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Figure B.2: Gate dependence of the Fraunhofer asymmetry. (a) Measured
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tion of in-plane field angle θ. (b) as (a) for the second side-lobe
A2. Curves are colored according to gate voltage. Note that
the zero gate voltage data is the same as that displayed in Fig-
ure 6.5.

anomalous lifting of the n = 2 side-lobe is observed, similar to
Figure 6.4(b) where in an in-plane field is applied. We interpret
the gate-voltage-induced enhancement of the critical current den-
sity at the mesa edges with band bending. InAs is well known to
host a surface accumulation layer due to the breaking of the trans-
lational symmetry of the crystal [19, 20]. Due to the presumably
high initial electron density at the edges we expect these features
to dominate as the 2DEG is depleted.

Finally we investigate the effect of the gate on the asymmetries in
the interference pattern. In Figure B.2(a,b) we plot the asymmetry
of the first two lobes, A1 and A2 respectively, as a function of
in-plane field angle at a fixed magnitude of Br = 150 mT. The
asymmetry of the two lobes is largely independent of gate voltage,
both in amplitude and angular alignment. These results highlight
how the asymmetries are robust against variation of carrier density
and subband occupation of the system.
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b.3 additional devices

b.3.1 Flux focusing control device

The behavior of a control device with large regions of removed alu-
minum behind the junction, as shown in Figure B.3(a), is demon-
strated in Figure B.3(b) and (c). The dimensions of the central semi-
conducting region are lithographically identical to that of the pri-
mary device studied in Chapter 6, cf. Figure 6.1(a). In contrast
the device in Chapter 6 with Al lead dimensions W = 1.5 µm
and 2LAl ∼ 10 µm, the contacts of the device presented here have
W = 1.5 µm and 2LAl = 0.3 µm. The lack of extended aluminum
planes atop the leads results in a more uniform magnetic field pro-
file perpendicular to the junction plane, minimizing flux focusing.
Figure B.3(b) shows the measured interference pattern of Ic(Bz) on
this device. All figures from here on including colorplots are dis-
played on a constant colorscale ranging from R = 0 to R = 0.5 k˙. By
extracting the positions of the visible node closings we obtain an
effective field enhancement as shown in Figure B.3(c), which can
be compared to Figure 6.1(d). Whilst a finite enhancement is ob-
served, the value is roughly constant in the field range measured.
Applying the model developed in Eqs. 6.3–6.6 to the present flux-
minimizing geometry yields the blue curve, in good agreement
with the data.

b.3.2 Devices rotated with respect to crystal axes

A number of additional samples were investigated where the de-
vice design was rotated relative to the crystal, as shown in the top
right of Figure B.4. These devices are otherwise lithographically
identical to the one examined in Chapter 6.

The top row of Figure B.4 shows the interference patterns ob-
served in all devices. The second row shows the extracted field
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Figure B.3: No flux focusing (a) Schematic of the flux-focusing control de-
vice. (b) Differential resistance R as a function of current I and
perpendicular field Bz. (c) Extracted field enhancement at the
nodes visible in (b) (markers), and fit using Eqs. 6.3–6.6 (solid
line).

enhancement parameters of all visible nodes for each device (mark-
ers). For comparison with Chapter 6 we also plot the enhancement
envelope from Figure 6.1(d) (solid gray line). All devices show ape-
riodic node spacings, with the effective field enhancement decreas-
ing with increasing applied field. The variation in Γ(Bz) observed
across the samples is attributed to small variations in the effec-
tive sample dimensions arising during processing. The third row
demonstrates the behavior of the critical current for a purely in-
plane field (Bz = 0) as a function of field angle θ (the current is
normalized to the maximum value Ic,max measured at zero field).
Curves are shown for varying in-plane field magnitudes and gate
voltages as detailed in the legend. Overall, we see roughly a factor
of two suppression of Ic between Br = 75mT and 150mT when
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the field is applied along the current (x direction, θ = 0). For fields
applied perpendicular to the current (y direction, θ = π/2) the sup-
pression is considerably weaker, consistent with our interpretation
in terms of flux focusing. Negligible differences are observed for
different values of gate voltage. The fourth and fifth rows demon-
strate the behavior of the asymmetry parameters A of the first and
second side-lobe pair respectively. Concentrating initially on the
[011] column, corresponding to a device nominally identical to the
one examined in Chapter 6, it is clear that the specific behavior
of the asymmetry is not quantitatively reproducible across devices
(data from Figure 6.5(c) and Figure B.2(a) are shown in solid gray
for comparison). Furthermore, comparing all four junctions we do
not observe any systematic dependence on crystal orientation as
one might expect for an intrinsic spin-orbit dominated effect. These
results support our suggestion outlined in Chapter 6 that disorder
plays a key role in determining the precise magnitude and align-
ment of the asymmetries.
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ond row) Extracted field enhancement at the nodes of the interference pat-
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Chapter 6. (Third row) Behavior of the critical current at Bz = 0, as a func-
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respect to the direction of current flow as indicated in the top right inset.
(Fourth row) Extracted asymmetry of the first side-lobe pair A1. The gray
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device studied in Chapter 6. (Fifth row) The same for the second side-lobe
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b.4 tight binding simulations

To support the suggestion of Section 6.4.2 that the microscopic
(disordered) structure of the junction can play a crucial role for
the behavior of the asymmetries in the interference pattern, we
present numerical simulations of the supercurrent through a two-
dimensional disordered SNS-junction. For the normal region we
write the model Hamiltonian

HN =
{ p̂2

2m
− µ+ V(x,y)

}
τz +

1

2
gµBB̃ ·σ+HSO, (B.5)

where momentum operator p̂ = −i h∇r − eA again includes the
effect of a vector potential A = −B̃zyx̂τz. As before, we include in-
plane flux focusing by making the magnetic field position-dependent:
the field B̃ is the effective field including the flux focusing, whereas
B is the actual applied field. Explicitly, we use

B̃(x) =


(
√
1− f2Bx,By,Bz + fBx) −L/2 6 x < −L/2+ df,

(Bx,By,Bz) −L/2+ df 6 x < L/2− df,

(
√
1− f2Bx,By,Bz − fBx) L/2− df 6 x 6 L/2.

(B.6)

The z-component of the field thus gets shifted by a ±fBx in a strip
of width df next to the contacts. We further include the chemical
potential µ and a (possibly disordered) electronic potential V(x,y)
in the first term of H.

The calculations that follow are based on a perturbative expan-
sion of the free energy of the central normal region, assuming
for ease of calculation weak coupling to the superconductors (see
Ref. [194] and especially its Supplementary Material for all details
of the calculation). For the numerical simulations we discretize the
full Hamiltonian (B.5) for the electrons in the normal part.



150 anomalous fraunhofer simulations

In our simulations we use a 30× 120 lattice with lattice constant
a = 2.5 nm, resulting in L = 75 nm and W = 300 nm. Using an
effective electronic mass ofm = 0.026me this yields a hopping ma-
trix element t =  h2/2ma2 = 234 meV. We use a Fermi wavelength
of λF = 20 nm, which corresponds to µ = 0.62 t, and a g-factor of
g = −10, yielding a “Zeeman length” lZ = 2π hvF/|g|µBB ≈ 50 µm
for B = 200 mT. The Rashba and Dresselhaus coefficients are set
to α = 1 eVÅ and β = 0.25 eVÅ respectively, corresponding to
spin-orbit lengths π h2/mα = 92 nm and π h2/mβ = 368 nm. We
further take ∆ = 0.2 meV, such that the coherence length ξ =
 hvF/π∆ ≈ 1.5 µm, in the short-junction limit. The temperature is
set to T = 100mK and we use an NS coupling parameter κ = 3meV.
We include disorder by adding an onsite potential V(x,y) with its
elements picked from a uniform distribution between [−U/2,U/2],
where U = (48a/le)

1/2(µ/t)1/4t with le = 50 nm being the effec-
tive electronic mean free path. The width of the strips where flux
focusing is present is set to df = 15 nm, with its strength f as well
as the in-plane field magnitude B‖ varied for different plots, see
below.

The results are presented in Figure B.5, B.6 and B.7. In Fig-
ure B.5(a–c) we show the interference pattern of critical currents
Ic(Bz) for three different disorder realizations, using f = 10% and
an in-plane field of Br = 200 mT oriented along the x-direction.
We repeated these calculations, varying the angle θ between the
in-plane field and the x-axis from 0 to 2π in 36 steps. For each in-
terference pattern we find the local maxima, which give the I(n)c

as defined in Chapter 6. The resulting asymmetry of the first two
side lobe pairs,

An =
I
(−n)
c − I

(n)
c

I
(−n)
c + I

(n)
c

(B.7)

with n = 1, 2, is then calculated as a function of θ. In Figure B.5(d–
f) we present polar plots of the resulting |A1,2| for the three disor-
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Figure B.5: Varying disorder configuration. (a–c) Critical current as a
function of Bz for three distinct disorder configurations. In all
panels an in-plane field of 200 mT is applied along Bx and
other parameters are fixed as detailed in the text. The local
maxima corresponding to the first two side-lobes are marked
with arrows. (d–f) Lobe asymmetries A1,2, in blue and red re-
spectively, as a function of in-plane field angle, for the disorder
configurations in (a–c).

der configurations used in Figure B.5. These results can be qualita-
tively compared with Figure 6.5, as well as the experimental data
shown in Figure B.4. We see that the overall patterns always look
similar in shape, but with significant differences in both angular
alignment of the maxima, as well as angular separation between
the lobes. Furthermore, the overall magnitudes of the asymmetries
appear to depend strongly (on the order of ∼ 100%) on the precise
disorder configuration. In general numerical simulations yield con-
sistently smaller asymmetries than those observed in experiment
for a wide range of parameters. Furthermore, for comparable disor-
der strengths to those estimated experimentally (as characterized
by the mean free path), the obtained diffraction patterns deviate
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Figure B.6: Varying Zeeman strength. (a–d) Behavior of the side-lobe
asymmetries A1,2, in blue and red respectively, as a function
of in-plane field angle for increasing Br, denoted by markers
indicated in (e,f). In all plots the same disorder configuration
as in Figure B.5(a,d) was used. (e) The maximum asymmetry
max„[A1,2] as a function of Br. (f) The angle θmax where the
maximal asymmetries occur, as a function of Br.

strongly from the Fraunhofer form and we regularly observe a fi-
nite lifting of the nodes as seen in Figure B.5(a), incompatible with
experimental observations. The reasons for these discrepancies be-
tween experiment and numerical simulations are at present not
well understood.
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In Figure B.6 we investigate the effect of the magnitude of the
in-plane field. In (a–d) we again plot the asymmetry parameters
|A1,2| using the same disorder configuration and other parameters
as in Figure B.5(a,d), but now for different in-plane field magni-
tudes Br = 50, 100, 200, and 300 mT. The maximal asymmetries of
the first and second lobe maxθ[A1,2], in blue and red respectively,
are shown in Figure B.6(e) as function of in-plane field magnitude.
The dotted lines intercepting zero are added to emphasize that the
model yields effectively zero asymmetry (up to floating point ac-
curacy) in the absence of an in-plane field. Consistent with our
experimental findings, the asymmetries of both lobes appear to
grow linearly with different slopes. To allow for a fair comparison
with Figure 6.3 we track the angular position of the asymmetry
maxima θmax in Figure B.6 and find that changes in in-plane field
strength do not affect the angular alignment of the observed asym-
metry pattern. This appears to consistent with the data presented
in Figure B.4 for the supplementary devices.

In Figure B.7(a–e) we gradually change the strength of the flux
focusing, setting f = 0%, 1%, 2%, 5%, and 10% respectively, us-
ing the same disorder configuration as in Figure B.5(a,d) and Fig-
ure B.6 and with Br = 200 mT. We find that a change in the effec-
tive dipole has a significant effect on the angular alignment of the
first lobe asymmetry A1 (blue), rotating roughly by π/2 when the
dipole strength is changed from 0% to 10%, as shown explicitly in
Figure B.7(g): In the absence of a dipole, the asymmetry is zero for
a field parallel to current flow; when the dipole is strong (f = 10%)
the asymmetry is almost maximal in this direction. This change
may indicate that there are asymmetries of different origins. The
overall increase in magnitude of A1 for increasing f, as shown in
Figure B.7(f), could support this interpretation. The largely inde-
pendent behavior of the second lobe asymmetry A2 (red) in both
magnitude and angular alignment as seen in (f) and (g) is currently
not understood.
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c.1 single channel junction

As shown in Figure 7.1(c), the geometry of our sample allows for
the formation of a single mode ballistic junction. In case of a junc-
tion connecting two normal metals, it is well known that the con-
ductance GN is proportional to the junction transmission T . This
is not the case for a junction connecting a normal metal to a su-
perconductor. In this scenario, the conductance GS is linked to the
normal state conductance GN by [124]:

GS = 2G0
(GN)2

(2G0 −GN)2
(C.1)

where G0 = 2e2/h. In our experiments we associate GS with the
zero bias conductance (GVSD=0) andGN with the conductance mea-
sured at source drain biases larger than the superconducting gap
(GVSD>∆). Figure C.1 shows a parametric plot of GVSD>∆ versus
GVSD=0 for various magnetic field configurations studied in the
Chapter 7, together with the expectation of Eq. C.1 (solid black
line).

In the S-S configuration (blue dots), GVSD=0 sharply increases
for high transmission due to the presence of a supercurrent (not
shown in Fig. C.1). On the other hand, for low transmission, the
conductance in the S-S configuration is suppressed below the S-N
expectation owing to the gapped densities of states on either side
of the junction. The regimes attributed in the Chapter 7 to S-N and
S-N∗ behavior, B⊥ = 0.08 T (red dots) and B‖ = 0.4 T (red pluses)

155
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respectively, are both in good agreement with the theoretical ex-
pectation for a single mode S-N junction over two orders of magni-
tude. For larger in-plane fields (green dots for B‖ = 1.0 T and black
pluses for B‖ = 1.8 T), relevant for accessing the topological regime,
the superconducting gap softens and the in-gap conductance be-
haves similarly to the S-N case. This allows us to perform direct
tunneling spectroscopy and observe Majorana modes at VSD = 0.
The softening of the gap for large in-plane magnetic field is consis-
tent with recent experiments on quasi-ballistic nanowire junctions
[16]. As a guide to the eye, we also plot the proportional relation
expected for a N-N junction (dashed black).
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Figure C.1: Magnetic field tuning. Zero bias conductance GVSD=0 as a
function of normal state conductance GVSD>0.4 mV in vari-
ous field configurations. The shaded blue region denotes the
expectation for a superconductor-superconductor (S-S) junc-
tion. The solid black line is the expectation for a single mode
superconductor-normal (S-N) junction [124]. The dashed black
line is GVSD=0 = GVSD>0.4 mV as expected for a normal-normal
junction (N-N).

c.2 superconducting transitions

To further elucidate the mechanisms behind the magnetic field
tuning of our devices, in Fig. C.2 we compare spectroscopic data
(Figs. C.2(a-h)) in two gate voltage regimes as a function of out-
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of-plane and in-plane magnetic field (left and right hand side of
Fig. C.2, respectively). Furthermore, we plot in Figs. C.2(i,j) the
resistance of the large Al leads as a function of magnetic field, sep-
arately measured in a four terminal configuration. Figures C.2(a,b)
show spectroscopic data of the wire for very low coupling
(GVSD>0.4 mV � 2e2/h), with line cuts at constant VSD shown in
Fig. C.2(c,d). In this case, the gate voltage is more negative than
in Figure 7.3(a), and no subgap states appear. Figures C.2(e,f) and
the line cuts of Figs. C.2(g,h) show results obtained for a more pos-
itive gate voltage, setting GVSD>0.4 mV ≈ 2e2/h and allowing the
flow of a supercurrent (visible here as a conductance enhancement
up to an order of magnitude over the normal state for VSD = 0).
For perpendicular magnetic fields, the Al planes turn normal at
B⊥ = 0.05 T. This is clearly associated to the 4∆ to 2∆ transition in
the tunneling regime as well as the suppression of the conductance
enhancement in the open regime. The gap closing and relative rise
in the VSD = 0 conductance for B⊥ = 0.45 T marks the collapse
of the superconductivity in the Al wire. For an in-plane magnetic
field, the 4∆ to 2∆ transition and the suppression of the supercur-
rent are markedly different, with only the latter coinciding with
the critical field of the Al planes (B‖ = 1.3 T). As discussed further
with reference of Fig. C.3, B‖ = 0.3 T marks instead the typical
field scale necessary to lift the hard gap in the superconducting
density of states below the large Al planes. Above B‖ = 0.3 T, the
wire is effectively probed by a constant density of states.
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respectively.



160 wire devices

c.3 s-qpc-n and s-qpc-s

To directly probe the magnetic field evolution of the superconduct-
ing density of states below a large Al plane, we perform tunnel-
ing measurements from a normal contact (Fig. C.3(a), S-N config-
uration) and between two symmetric Al planes (Fig. C.3(e), S-S
configuration). In both cases the tunneling probe is given by two
evaporated Ti/Au gates defining a quantum point contact in the
InAs 2DEG, similarly to Ref. [156]. Tunneling spectroscopy as a
function of an in-plane magnetic field aligned along or perpendic-
ular to the current direction (B‖ and Bt respectively), are shown in
Fig. C.3(b,c,f,g). As expected, the zero field conductance shows a
2∆ gap in the S-N configuration and a 4∆ in the S-S configuration.
Further inspection reveals the in-gap conductance suppression for
the S-S configuration is much stronger than in the S-N case, as
discussed with reference to Fig. C.1. In both configurations, an
in-plane field above 200 mT lifts the in-gap conductance. In the
S-N configuration it is evident the inducing subgap conductance
does not influence the gap size, which is largely unaffected for
B < 400 mT. In the S-S configuration, however, the convolution of
the two DOS yields four peaks in conductance at ±2∆ and ±∆. As
the field is increased further towards B‖ = 0.4 T the ±∆ edges are
independent of field. In conclusion, both devices demonstrate that
for magnetic fields of the order of 400 mT, the superconducting
gap measured in a 2D geometry stays roughly constant, however
with a significant increase in the subgap conductance.

c.4 subgap state g-factors

To investigate the extent of the gate-tuneability of 2DEG under
the Al wire, in Figure C.4 we investigate the g-factors of Andreev
bound states as a function of gate voltage at B = 1 T. Figure C.4(a)
shows the the tunneling conductance as a function of source-drain
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similarly for a S-QPC-S geometry.

bias and gate voltage, revealing a spectrum of subgap Andreev
bound states. By measuring the evolution of these states in mag-
netic field at different gate voltages as shown in Figure C.4(c–f)
we extracted the g-factors of the individual states, shown in Fig-
ure C.4(b) by the black dots. The red line indicates the average
g-factor at a given gate voltage. Below Vg = −2.88 V (indicated by
the blue shading), no subgap states are visible, and the g-factor is
estimated from the closing of the superconducting gap.
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