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Abstract

This PhD thesis consists of three research projects revolving around the com-
mon thread of investigation of the properties and biological functions of Toxin-
Antitoxin loci. Toxin-Antitoxin (TA) loci are transcriptionally regulated via an
auto-inhibition mechanism called conditional cooperativity, based on cooperative
binding of toxin-antitoxin complexes to operator DNA that depends on the stoi-
chiometric ratio between the toxin and the antitoxin. More specifically, toxin and
antitoxin can form heteromers with different stoichiometric ratios, and the complex
with the intermediate ratio works best as a transcription repressor. This allows
transcription at low toxin level, strong repression at intermediate toxin level, and
then again transcription at high toxin level

In the first project, we reveal the biological function of conditional coopera-
tivity by constructing a mathematical model of one particular E.coli TA system,
the relBE locus. We show that the model reproduces the experimentally observed
response to nutritional stress. We further demonstrate that conditional cooper-
ativity stabilizes the level of antitoxin in rapidly growing cells such that random
induction of relBE is minimized. At the same time it enables quick removal of free
toxin when the starvation is terminated.

In the second project, we explore the features and the potential biological role
of conditional cooperativity, in a more general perspective, that can be applied to
the regulation of chromosome encoded TA loci in E.coli in general. In this con-
text, we will neglect the cooperativity in the binding, and focus on the fact that
the regulation depends on the ratio between the toxin and the antitoxin. For this
reason, we talk about conditional regulation instead of conditional cooperativity.
Such regulation has two interesting features: first, it provides a non-monotonous
response to the concentration of one of the proteins, and second, it allows ultra-
sensitive response mediated by the sequestration of the active heteromers. We
study conditional regulation in simple feedback motifs, and show that it can pro-
vide bistability for a wide range of parameters. We then demonstrate that the
conditional cooperativity in toxin-antitoxin systems combined with the growth-
inhibition activity of free toxin can mediate bistability between a growing state
and a dormant state.

The final project aims at unraveling the connection between stochasticity in
the expression of TA loci in E.coli and the phenomenon of bacterial persistence.
Persistence is a form of antimicrobial tolerance that is not associated with DNA
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mutation that confers resistance, but rather with a spontaneous switch of a cell to a
physiological state characterized by slow or non-growth that impairs the effective-
ness of antibiotics. The action of TA loci has often been invoked in the attempt of
explaining the mechanism of persisters formation. We suggest a stochastic descrip-
tion of the activity of chromosome-encoded TA loci, aiming at providing insights
about the mechanisms that support the stochasticity in persister formation.
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Dansk Resume

Denne PhD afhandling består tre forskningsprojekter der handler om den røde tråd
af efterforskning af biologiske funktioner af Toxin-antitoxin loci. Toxin-antitoxin
(TA) loci er transkriptionelt reguleret via en auto-hæmning mekanisme kaldet con-
ditional cooperativity, baseret påkooperativ binding af toxin-antitoxin komplekser
til operatør DNA. Reguleringen afhænger af det støkiometriske forhold mellem
toksinet og antitoksin. Mere specifikt, kan toksin og antitoksin danne heteromers
med forskellige støkiometriske forhold, og komplekset med den mellemliggende
forhold fungerer bedst som en transcription repressor. Dette tillader transskrip-
tion ved lav toksin niveau, stærk undertrykkelse påmellemniveau toksin niveau og
derefter igen transskription ved høj toksin niveau.

I det første projekt, afslører vi den biologiske funktion af betingede koopera-
tivitet, ved at konstruere en matematisk model af den særlige E.coli TA system,
relBE locus. Vi viser, at modellen reproducerer eksperimentelt observerede reak-
tion ernæringsmæssig stress. Vi viser endvidere betinget kooperativitet stabiliserer
niveauet af antitoksin i hastigt voksende celler, således at tilfældig induktion af
relBE minimeres. Samtidig er det muliggør hurtig fjernelse af frit toksin når sult
afsluttes.

I det andet projekt, udforske vi de funktioner og den potentielle biologiske
rolle betinget kooperativitet i et mere generelt perspektiv, der kan anvendes til
reguleringen af kromosom-kodede TA loci i E.coli i almindelighed. I denne
sammenhæng vil vi forsømmer den kooperativitet i bindingen, og fokusere pådet
faktum, at forordningen, afhænger af den forholdet mellem toksinet og antitoksin.
Derfor taler vi om conditional regulation i stedet for conditional cooperativity. En
sådan regulering har to interessante træk det første giver det en ikke-monoton re-
spons påkoncentrationen af et af proteinerne, og dels gør det muligt ultrafølsomt
reaktion medieret ved beslaglæggelse af de fungerende heteromers. Vi studerer
betinget regulering i simple feedback-motiver, og vise, at det kan give bistabilitet
for en bred vifte af parametre. Vi derefter vise, at den betingede kooperativitet i
toksin-antitoxin systemer kombineret med væksthæmning aktivitet fri toksin kan
mægle bistabilitet mellem en voksende stat og en sovende tilstand. Det endelige
projekt sigter mod optrevling forbindelsen mellem stokastik i ekspressionen af TA
loci i E.coli og fænomenet af bakteriel persistence. Persistence er en form for
antimikrobiel tolerance, som ikke er forbundet med DNA-mutation, der bibringer
resistens, men snarere med en spontan omstilling af en celle til en fysiologisk til-
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stand karakteriseret af en langsom eller ikke-vækst, som forringer effektiviteten af
antibiotika. Virkningen af TA loci er ofte blevet påberåbt i forsøget påat fork-
lare den mekanisme af persisters formation. Vi foresl̊en stokastisk beskrivelse af
aktiviteten af kromosom-kodede TA loci, med det formål give indsigt i de mekanis-
mer, der understøtter den stokastik i persisters formation.
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Introduction

Biological systems are characterized by a high level of complexity. Thanks to the
great technological advancement in the field of biology in the post genomic era, the
extent of this complexity has been exposed even further: Enormous amount of new
data are available, and several new molecular process taking place inside cells have
been elucidated. Even if we restrict our attention to prokaryotic cells, the simplest
phenotypical features will be the result of a complex network of several molecu-
lar components interacting on different levels. Mathematical and computational
modeling has thus become an essential tool to approach this complexity.

In this thesis, I am mainly concerned with the process of regulation of gene
expression, which relies on complex networks of interacting genes and proteins,
that up- and down-regulate each other. The approach used throughout this thesis
is to focus on one specific pathway, that constitutes a small subcomponent of
such a network. Through mathematical modeling, one can address its functional
properties and at the same time gain insights on the basic design principles of the
pathway.

More specifically, the work presented here, although divided in three separate
projects, develops around one common thread: the attempt to unravel the biolog-
ical function of toxin-antitoxin (TA) loci. Those are DNA regions, found in E.coli
as well as in other bacteria and archae, that encodes for both a cytotoxic protein
and a cognate antidote.

In Chapter1 I summarize the basic concepts from mathematical modeling and
molecular biology, employed throughout all the thesis.

In Chapter 2, I discuss a project that focuses on the investigating the role
played by one specific TA locus in E.coli, the relBE locus, in stress response, and
in particular, in the response to amino-acid starvation. The relBE system is one of
the most thoroughly investigated prokaryotic TA loci, and measurements of several
fundamental biochemical quantities are available in literature. For this reason, the
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relBE system will serve as a reference point throughout the all thesis.
The investigation is carried beyond the specificity of one single system: in

Chapter 3, the focus is shifted to exploring the potential of TA loci in E.coli
as genetic modules capable of mediating bistability in the state of the bacterium,
which might support the occurrence of heterogeneous behavior within a population
of genetically identical cells.

The interest for molecular mechanisms that can support such an occurrence,
lies in the connection with a phenomenon known as bacterial persistence. This is a
form of anti-microbial tolerance, that has its basis in the arising of heterogeneous
phenotypes in a clonal cell population, not mirrored by genotypic mutations, as in
the case of antibiotic resistance, and is considered to be intrinsically stochastic in
nature.

In Chapter 4 I tackle the problem of addressing the stochasticity in the expres-
sion of TA loci in E.coli, in the attempt to connect it to bacterial persistence. The
latter project, although it provides a valid descriptive framework for the intercon-
nection between toxin-antitoxin loci and persistence, is still a work in progress,
and the future perspective are discussed in the conclusion of the chapter.

2



Chapter 1

Introductory Concepts

The aim of this chapter is to summarize the basic concepts that have been employed
to perform the work presented in this thesis. In order to do so, I first describe the
mathematical and computational techniques used and discuss them in relation to
their application to models of gene regulatory network. Furthermore, since this
thesis focuses specifically on the regulatory network of genetic elements known as
prokariotic toxin-antitoxin loci, in the end of the chapter I will provide a short
summary of the main biological features of those.

1.1 Gene Expression Regulation

Gene expression is the process by mean of which the information contained in a
gene is converted into a functional gene product, that can be a protein, tRNA,
sRNA or ribosomal rRNA. The process of gene expression in prokariotic cells can
be schematically described by the following basic steps:

• Transcription: where a specific DNA segment is copied, by RNA-polymerase,
into messenger RNA (mRNA).

• Translation: where a ribosome binds to the mRNA and recruits amino-
acids according to the sequence specified by the mRNA, decoding this way
messenger RNA into an amino-acids chain (polypeptide).

• Protein Folding: where the synthetised polypeptide folds into a functional
three-dimensional structure.

3



Chapter 1. Introductory Concepts 1.1. Gene Expression Regulation

Regulation of gene expression encompasses a wide range of mechanisms that
result in an increase or decrease in the level of gene product for a given gene. It
covers the fundamental role of allowing cells to adapt to a changing environment
and respond to external signals. Gene Regulatory Networks (GRN) describe the
interaction between the several molecular players that characterized the state of
a cell. More specifically, GRNs include the indirect interaction between differ-
ent genes, mediated by their gene products, and the direct interaction between
each gene and the several chemical species, (RNA, proteins and other kinds of
signaling molecules) that affect the expression of that gene. Each node on the
network represents a certain molecular component like a DNA segment, RNA, or
a protein and the links between nodes describe the type of interaction (binding,
conformational change, degradation, phosphorilation, etc..). Mathematical mod-
eling of GRN provides a powerful tool to capture the essential features connected
to the expression of a certain gene, or a set of genes. Furthermore, it allows to
obtain predictive results on the behavior of the system that can be tested against
experimental observations.

In this thesis I mainly focus on investigating the behavior of small gene reg-
ulatory network, where the regulation occurs mainly at the transcriptional level,
and is mediated by simple chemical reactions, like binding of proteins to DNA,
and among each other. For this reason this is the type of GRN I will refer to in
the rest of this chapter.

4



Chapter 1. Introductory Concepts 1.2. Modeling Chemical Reactions

1.2 Modeling Chemical Reactions

1.2.1 Law of Mass Action

Let us consider a simple chemical reaction, for example a titration experiment
where we consider the binding of a transcription factor TF to an operator site O
on a piece of DNA.

O + TF 
 OTF (1.1)

The law of mass action states that in equilibrium the concentration of the reaction
product [OTF] is directly proportional to the product of the concentrations of the
reactants [1]:

[OTF] ∝ [O][TF]. (1.2)

The constant of proportionality can be derived considering the condition of equi-
librium. A reversible reaction is in equilibrium when the ratio reactant/product is
constant over time. This condition is satisfied when the flux of the forward reaction
O + TF kon−−→ OTF is equal to the flux of the backward reaction OTF koff−−→ O + TF.
This translates into:

kon[O][TF] = koff [OTF], (1.3)

hence one can define the constant of proportionality in equation 1.2 as 1
K
, with K

defined as:

K = kon
koff

= [O][TF]
[OTF] (1.4)

K is called the dissociation constant for the binding reaction 1.1. An intuitive
interpretation of the identity of K can be given if we consider that all the con-
centrations considered so far, refer to free concentrations in solution. The total
concentrations are defined as:

[TFtot] = [TF] + [OTF] (1.5)
[Otot] = [O] + [OTF]. (1.6)

5



Chapter 1. Introductory Concepts 1.2. Modeling Chemical Reactions

It follows that the occupied fraction of the operator is

[OTF]
Otot

= [OTF]
[OTF] + [O] =

[O][TF]
K

[O]( [TF]
K

+ 1)
= [TF]

1 + [TF]
K

. (1.7)

Analogously the fraction of the operator that is free is

[O]
Otot

= [O]
[OTF] + [O] = [O]

[O]( [OTF]
[O] + 1)

= 1
1 + [TF]

K

. (1.8)

Normally the number of operator sites is much smaller that the number of TF
molecules, hence [TFtot] ≈ [TF ] It follows that the K can be interpreted as the
concentration of [TF ] required for the fraction of the occupied operator to be 1

2 [2].

Cooperativity

Let us generalize what discussed so far to the case where cooperative binding of
n transcription factors TF is required for formation of a stable complex with the
operator O.

nTF +O 
 OTFn (1.9)

with K, effective dissociation constant, defined as

K = [O][TF]n

[OTFn] . (1.10)

In this situation it can be shown that the fraction of occupied promoter can be
calculated as

[TF]n
K

1 + [TF]n
K

=
( [TF]
Km

)n

1 + ( [TF]
Km

)n
(1.11)

where is the constant Km that can be interpreted as the concentration of the
transcription factor TF at which the fraction of occupied promoter is 1

2 and not the
effective dissociation constant K derived from the law of mass action 1.10. Only in
the case n = 1 the two coincide. Equation 1.11 is referred to as the Hill’s equation
[3] and n is the Hill’s coefficient. The Hill’s coefficient quantifies the cooperativity of
the described binding reaction. More specifically, n > 1 implies that the binding is
cooperative, namely the affinity of a single transcription factor TF for the operator
is enhanced by the presence of others TFs bound to the operator. The higher
the hill coefficient, the sharper is the dependence of the fraction of the occupied

6



Chapter 1. Introductory Concepts 1.2. Modeling Chemical Reactions

promoter on the variation of the concentration of the transcription factor around
Km, as it is shown in Fig 1.1, where the dependence of Hill’s function 1.11 on the
concentration of the transcription factor [TF], for n = 2 and n = 4 are illustrated.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5

n = 2
n = 4

Figure 1.1: Schematic representation of the dependence of the occupancy fraction of the operator
( [TF]

Km
)n

1+( [TF]
Km

)n
on [TF] for Hill’s coefficient 2 (red line) and 4 (green line). Km = 1

1.2.2 Statistical Mechanics Approach

In the previous section we derived the formula for the fraction of occupied operator
O, given the dissociation constant K for the simple binding reaction 1.1, using the
law of mass action. In this section, we show how the same result can be obtained
using a statistical mechanics approach.

Let us consider N identical transcription factor molecules TF (non interacting
among each other) in a volume V , and one single operator site O. The probability
for one TF to be bound to O, is related to the difference in Gibbs Free Energy
between the bound and unbound state: ∆G′ = G′(bound) − G′(unbound). Here
when ∆G′ < 0 the ’bound’ state has a lower free energy, and it is hence more
favorable. The system, constituted by the N TF molecules, can be found in two
possible state: the "ON" state, where one TF is bound to the operator while
N − 1 TF are free, and the "OFF" state, where all the N molecules are free.
The statistical weight of each state can be calculated as the product between the
number of ways the state can be realized and the Boltzmann factor e−

E
kBT of the

7



Chapter 1. Introductory Concepts 1.2. Modeling Chemical Reactions

state. The statistical weight for the ON state is [2]

Z(ON) = 1
(N − 1)!

(∫
V

dr3
∫ dp3

h3 e
− p2

2mKBT

)N−1

· e−
∆G′
kBT (1.12)

where the integrals count over all the possible positions in the volume V and
values of the momentum in the momentum space, for each free molecule. The
factor 1

(N−1)! avoids multiple counting of realizations that differ by a permutation
of molecules, given the fact they are indistinguishable. The division by h3 accounts
for the discreteness of the phase-space required by quantum mechanics. The term
e
− ∆G′
kBT is the Boltzmann factor for the binding of one TF to O. Analogously we

can define the statistical weight of the OFF state as:

Z(OFF ) = 1
N !

(∫
V

dr3
∫ dp3

h3 e
− p2

2mKBT

)N
(1.13)

Integration of 1.12 yelds:

Z(ON) =
V N−1

[(
2πmkBT

h2

) 3
2
]N−1

(N − 1)! e
− ∆G′
kBT (1.14)

using Stirling’s formula (N ! ≈ (N
e

)N) and within the approximation N−1
N
≈ 1, we

obtain

Z(ON) ∝
(
c

ρ

)N−1

e
− ∆G′
kBT (1.15)

where ρ = N
V

and c =
(

2πmkBT
h2

) 3
2 . For the OFF state we can write

Z(OFF ) ∝
(
c

ρ

)N
. (1.16)

The partition function for the system constituted by theN identical TF molecules
in the volume V is Z = Z(ON) + Z(OFF ). Hence, the probability PON to find
the system in the ON state is

PON = Z(ON)
Z

(1.17)

8



Chapter 1. Introductory Concepts 1.2. Modeling Chemical Reactions

and the probability POFF for the system to be in the OFF state

POFF = Z(OFF )
Z

. (1.18)

The ratio between the proability of the ON state and the OFF state is

PON
POFF

= ρ

c
e
− ∆G′
kBT . (1.19)

The latter is equivalent to the ratio between the bound and free fraction of the
operator calculated in the previous section using the laws of mass action

PON
POFF

= [OTF]
[O] = [TF]

K
(1.20)

with K dissociation constant for the binding reaction 1.1. If we identify ρ with
[TF] we can unify the statistical mechanics description and the one based on the
law of mass action by identifying

K = c · e
∆G′
kBT . (1.21)

Both the dissociation constant and the factor c have the dimension of amount of
substance per unit volume, i.e of a concentration. If we define ∆G as binding
energy per mole and we measure the volumes in liters, we obtain the final equality

K = [1M ] · e∆G
RT . (1.22)

The statistical weights obtained can be normalized with respect to Z(OFF), we
then write

Z(ON) = [TF ]e−∆G
RT and Z(OFF ) = 1. (1.23)

By substituting the statistical weights in the form just presented into the proba-
bility of the ON state we obtain

PON = Z(ON)
Z(ON) + Z(OFF ) = [TF ]e−∆G

RT

1 + [TF ]e−∆G
RT

(1.24)

which is completely equivalent to the result obtained by applying the law of mass
action, provided that one identifies e−∆G

RT with 1
K

as in equation 1.22.

9



Chapter 1. Introductory Concepts 1.3. Modeling Gene Expression

1.3 Modeling Gene Expression

1.3.1 Transcription Regulation : the ODE approach

In this section I address the problem of quantitatively describing gene expression
as a dynamical process.

Let us consider the expression of gene g encoding for a protein, G, in the
simple case where the regulation occurs at the transcriptional level. In the simplest
level of description, this is a process consisting of two-steps, mRNA synthesis
(transcription) and protein synthesis (translation). The dynamics of the process
can be described by a set of Ordinary Differential Equations (ODE). The behavior
over time of the concentration of the mRNA (m) and of the protein G is governed
by the balance between synthesis of new molecules and degradation as follows:

dm
dt = P − γmm (1.25)
dG
dt = βm− γGG, (1.26)

where P represents the rate (concentration per unit time) of production, β is the
translation rate per mRNA molecule, while γm and γG are the degradation rates1.
The production term P will be described according to the exact mechanism of
regulation of transcription. In particular, we need to distinguish between two
cases:

A) transcription of g is initiated by the transcription factor TF binding to the
operator site of the promoter - TF is an activator.

B) transcription of g is inhibited by the transcription factor TF binding to the
operator site of the promoter - TF is an repressor.

In case A) the production rate will be proportional to the probability of the oper-
ator site to be occupied by the transcription factor TF. Conversely, in case B), P
will be proportional to the probability of the operator site to be free. Taking into
account the formulas for the probability of occupation obtained in the previous
section 1.7,1.8 we can write

A) P ∝
[TF ]
K

1+ [TF ]
K

1for the sake of simplicity i only illustrate the simple case where degradation is linear

10



Chapter 1. Introductory Concepts 1.3. Modeling Gene Expression

B) P ∝ 1
1+ [TF ]

K

where, again, K is the dissociation constant for the binding reaction of TF to the
operator. Equations 1.25, for case A) can be then written as

dm
dt = α[TF ]

K + [TF ] − γmm (1.27)

dG
dt = βm− γGG. (1.28)

Instead for case B) the ODE system 1.25 becomes

dm
dt = αK

K + [TF ] − γmm (1.29)

dG
dt = βm− γGG. (1.30)

where in both cases α represents the maximal level of mRNA synthesis.
The production rate in both equations 1.27 and 1.29 has the form of the famous

Michaelis-Menten equation relating the reaction rate to the substrate concentration
for an enzymatic reaction [4,5], provided that TF has the role of the substrate and
mRNA synthesis rate is interpreted as the reaction rate.

In the case illustrated, we have assumed that the binding of the transcription
factor to the operator is not cooperative. Extension to the case where the binding
involves cooperativity is straightforward, provided that we express the occupancy
probability of the operator (or the probability to be free) as in 1.11. In the case
where cooperative-binding of 2 TF is needed to activate transcription, for example,
transcription of g mRNA be described by the following equation:

dm
dt = α[TF ]2

K + [TF ]2 − γmm. (1.31)
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1.3.2 The Gillespie Algorithm

The ODE approach suggested in the previous section, although appropriate in
several circumstances, does not allow to take into account explicitly the discrete
and stochastic nature of a process involving several interacting chemical species.
In these cases it becomes relevant to include the fluctuation in the level of the
molecular species involved, in the description of the process.

The standard approach for a stochastic description of such system is to write
down the Master Equation. This governs the time evolution of the probability
distribution of the system to be found in a state characterized by a given molecular
level for each of the N molecular species.

It is also possible to simulate numerically the time evolution of the system,
through the implementation of an algorithm for stochastic simulations proposed
by Gillespie in 1977 [6], commonly referred to as the Gillespie algorithm. I will now
describe the basic structure of the algorithm, after having introduced some basic
concepts regarding the probabilistic description of the system and the notation
used.

Let us assume, in a fixed volume V , we have a spatially uniform mixture of Xi

molecules of chemical species Si with i = 1, ..N , interacting through M specified
reaction channels, each labelled as Rµ, with µ = 1, ...M .

The basic assumption is that for each reaction channel Rµ the reaction rate
aµ at a given time t, is fully determined by the number of molecules per chemical
species −→X = (X1, ...XN).

The time evolution of the system depends on the probability P (τ, µ)dτ that
given the state of the system −→X at time t, the next chemical reaction will occur
between t+ τ and t+ τ + dτ AND it will be of the kind µ.

P (τ, µ) can be expressed as the product between the probability that given
the state −→X no reaction will occur between t and t + τ , and the probability of a
reaction of the type Rµ occurring within the time interval t+ τ and t+ τ + dτ . It
can be shown that one then obtains [6]

P (τ, µ) =

 aµe
−a0τ if 0 ≤ τ ≤ inf

0 otherwise

where a0 = ∑M
ν=1 aν is the probability per unit time that any reaction would occur,

given the system is in the state −→X . It is possible to generate a pair of random
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variables (τ, µ) distributed according to P (τ, µ) as follows:

τ = 1
a0
ln( 1

r1
) (1.32)

µ : so that
∑µ−1
ν=1 aν
a0

< r2 ≤
∑µ
ν=1 aν
a0

(1.33)

where r1 and r2 are random numbers uniformly distributed within the interval
[0, 1]. A stochastic simulation of the system described above can be implemented
as follows:

Initialization
Set initial values for Xi; i = 1, ..N
Set t = 0

Step 1
Caculate aµ according to Xi; i = 1, ..N
Calculate a0 = ∑M

ν=1 aν

Step 2
Generate r1 and r2 from a uniform random number distribution in [0, 1]
Calculate τ = 1

a0
ln( 1

r1
)

Take µ so that
∑µ−1

ν=1 aν
a0

< r2 ≤
∑µ

ν=1 aν
a0

Step 3
Update time t = t+ τ

Update Xi; i = 1, ..N according to Rµ

Go to Step 1.

A stochastic simulation method of the kind described above can be called
exact [6], in the sense that each Gillespie realization represents a random trajectory
in phase space, that reflects the probability distribution that one would obtain
by solving analytically the Master Equation governing the time evolution of the
system.
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1.4 Prokariotic Toxin-Antitoxin Loci

1.4.1 Toxin-Antitoxin Loci

In this work, the dynamics of expression of the TA loci is investigated in con-
nection to their involvment in the response to amino-acid starvation, and in the
phenomenon of bacterial persistence. These concepts are going to be clarified in
the following sections.

Procaryotic toxin-antitoxin loci (TA loci) are frequently found both in bacteria
and archae [7,8]. A TA locus encodes for two components: a toxin that inhibits cell
growth, and an antitoxin that counteracts this toxic activity. So far, three types
of Toxin-Antitoxin loci have been identified. In Type I and Type III TA loci, the
role of the antitoxin is played by small RNAs [9, 10], while in the case of type
II TA systems, the antitoxin is a protein that inhibits the toxin by forming tight
complexes with it [11]. The study presented in this thesis is only concerned with
type II TA loci. Type II Toxin-Antitoxin loci have been divided into gene families
according to toxin sequence similarities, some are plasmid-encoded (e.g. ccd locus
on the plasmid F, parDE on the RK2 plasmid, highBA locus on the Rts1 plasmid
and phd/doc on the P1 plasmid), while the remaining are chromosome-encoded
(e.g relBE and mazEF of E.coli and vapBC of Salmonella Enterica) [11]. In this
thesis, we focus on the activity of TA loci in E.coli. This contains 11 TA loci: 10
of those, encodes for a toxin that is an mRNA endonuclease (mRNase), namely
an enzyme that mediates cleavage of the mRNA. More specifically, six of them
cleave mRNA positioned at the ribosomal A-site (RelE, YoeB, HigB,YahV, YafO
and YafQ) [12–16], while the remaining 4 (MazF, ChpB, MqsR and HicA) cleave
mRNA in a site-specific but ribosome-independent fashion [7,17,18]. The 11th TA
locus is hipAB, that does not belong to any of the previously mentioned families.
The toxin HipA, inhibits translation by phosphorilation of the Elongation Factor
TU [19]. TA loci in E.coli have the following common features [20]:

• The toxin inhibits translation.

• The antitoxin auto-regulates transcription of the TA locus [11].

• The toxin and the antitoxin form complexes that bind stronger than the sole
antitoxin, and cooperatively, to the operator region, hence the toxin work as
a co-repressor of transcription [21].
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• Transcription of all investigated TA loci is regulated trough a complex mech-
anism named conditional cooperativity, basically consisting in the toxin work-
ing both as a co-repressor and a de-repressor of transcription according to
the ratio between the concentration of the toxin and the antitoxin. This will
be discussed in further detail in the next section [21–24].

• The antitoxin is translated at a higher rate than the toxin [20].

• The antitoxin is degraded by the cellular protease Lon [7, 25–27].
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1.4.2 Biological Role of TA loci

Nutritional Stress Response

Bacteria have evolved strategies to cope with the stress induced by shortage or
lack of nutrients, such as amino-acids, glucose or carbon sources. The response
to nutritional stress consists in a down-regulation of protein and nucleic acids
production, and a concomitant up-regulation of amino-acid synthesis and proteins
degradation. In other words, the cell goes into its metabolic base level in order to
optimize resource utilization and maximize its chances of survival during the period
of crisis. These adjustments are known as stringent response [28]. The well known
trigger to activation of stringent response is the accumulation of the alarmone
guanosin-tetra-phosphate (ppGpp) and guanosine-penta-phosphate (pppGpp) [29].

A TA locus can work as a module that has the capability of inducing rapid
adjustments of protein synthesis, through modulation of the toxin acitivity. Such
a tool, would provide a strong benefit to a bacterium that is facing amino-acid
starvation. This argument is topped with accumulating experimental evidences
suggesting that TA loci might be involved in the cellular response to amino-acid
starvation. As it will be discussed in further detail in the next chapter, in fact,
Christensen et al in 2001 [25] discovered that amino-acid starvation stimulates
transcription of one of the TA loci in E.coli K-12, the relBE locus, and that the
presence of the relBE locus facilitates growth slow-down in starved cells. Fur-
thermore, the protease that is responsible for degradation of all the anti-toxins in
E.coli TA loci, Lon, is known to be activated during amino-acid starvation [30].

Bacterial Persistence

In 1994 Joseph Bigger discovered that that if a culture of Sthaphylococcus that had
been treated with penicillin, was re-plated and incubated for 24 hours, surviving
colonies would be recorded. These colonies could re-grow into a population that
was again susceptible to penicillin. Bigger named these cells persisters to distin-
guish them from cells that had evolved a genetic mutation that conferred them
resistance [31].

Persister cells correspond to a sub-population of multi-drug tolerant bacteria,
that are genetically indistinguishable from the rest of bacterial population. The
phenomenon of persistence can be then described as the emergence of phenotypical
heterogeneity within a genetically homogenous population.

16



Chapter 1. Introductory Concepts 1.4. Prokariotic Toxin-Antitoxin Loci

Persisters are currently understood as cells that enter a dormant state via a
mechanism that is drug-independent and stochastic [32, 33]. A common interpre-
tation [20, 34] is that being in a slow- or non-growing state, protects them from
the antibiotics, since most antibiotics efficiently kill only growing bacteria [35].
In particular, experiments performed by Balaban et al. on E.coli in micro-fluidic
chambers, in fact, confirmed that persister cells belong to a pre-existing (with re-
spect to addition of antibiotic) sub-population of non- or slow-growing cells. If
this subpopulation is generated during stationary phase, when the bacterial popu-
lation is characterized by an over-all slow growth because of external factors such
as nutritional stress, they are referred to as Type I persisters. When instead per-
sisters are formed because of spontaneous switching from exponential growth to a
dormant state, they are referred to as Type II peristers [32]. Although bacterial
persistence constitutes obviously a problem of medical relevance, as it compro-
mises the effectiveness of anti-microbials, the exact molecular mechanism behind
it is not understood yet.

The first evidence for a genetic basis of persistence was the discovery of the hip
(HIgh Persistence) phenotype of E.coli-K12. It has been shown that mutations in
the hipA gene resulted in a strongly increased persistence frequency [36–39].

Interestingly, it was discovered that the hipA gene actually belongs to a Toxin-
Antitoxin module, the hipAB locus [40, 41]. The intriguing connection between
bacterial persistence and the activity of TA loci in E.coli spans far beyond the dis-
covery of the hip phenotype. For example, a correlation between high TA-mRNA
level and persisters fraction, has been demonstrated. [33,42]. Furthermore Maison-
neuve et al. in 2011. [43] showed that progressive deletion of the 10 chromosome-
encoded TA loci in E.coli-K12 resulted in a significant reduction in the persisters
fraction, conferming the involvement of the TA modules activity in the persistent
phenotype.
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Chapter 2

The relBE system and its role in
the nutritional stress response

In 2001, Christensen et al. [25] discovered the first (p)ppGpp-independent nutri-
tional stress response module in E. coli : The relBE locus. The relBE locus is
a Toxin-Antitoxin module that encodes for the cytotoxin RelE and the antitoxin
RelB. Christensen et Al. showed that over-expression of RelE severely inhibits
translation and that the presence of the relBE toxin-antitoxin locus causes a sig-
nificant reduction in the translation level during amino acid starvation. They com-
pared the rate of translation in wild type (relBE+) E.coli K-12 and the ∆relBE
strain with deletion of the relBE locus, before and after induction of starvation
for serine. As expected the rate dropped quite significantly in both cases, but for
the strain where the relBE locus was present, the post-starvation level was almost
2-fold lower than the value for the ∆relBE strain. These results suggest that
amino acid starvation is responsible for activation of the toxin RelE.

In order to investigate the role played by the relBE locus in the response to
starvation, and comprehend the mechanism characterizing its transcriptional reg-
ulation, I propose a model of the dynamics of the relBE operon activity. The
results of this study, carried through via mathematical modeling and numerical
simulations, are presented in this chapter.

The work discussed in this chapter resulted in a publication, that is attached
in appendix G.
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2.1 The relBE locus

The relBE locus is a chromosome-encoded Toxin-Antitoxin locus in E.coli K-12. It
is constituted by two genes relB and relE. relE encodes for the cytotoxin RelE and
relB for the antitoxin RelB, that inhibits RelE toxicity by forming tight complexes
with it. The two genes belong to the same operon and are transcribed by the
same promoter situated upstream of relB [44]. The antitoxin RelB is degraded
by the protease Lon [25], at a high rate, with its halflife been measured to be
∼ 3 min [21]. The toxin RelE, on the other hand, is metabolically stable and its
concentration decays solely because of dilution due to cell division. Its turnover
time, in fast growth conditions, is thus ∼ 30 min, the extimated average doubling
time for exponentially growing E.coli cells.

The steady state concentrations of the toxin and the antitoxin have been mea-
sured [45] to be around 500− 1000nM for RelB and 50− 100nM for RelE. RelB
level is thus ∼ 10 times higher than RelE during the exponential growth phase.
Given the 10 fold difference in the half-lives, is then safe to assume that RelB is
translated 100 times more often than RelE.

The toxin RelE is an RNA-interferase that cleaves mRNA positioned at the ri-
bosomal A-site in a codon-dependent fashion, impairing translation. Consequently
RelE expression inhibit cell growth and colonies formation [12].

When RelE is sequestered in complexes with the antitoxin RelB, the cleavage
of mRNA is inhibited, and cell growth is not affected. RelB is mostly found in the
form of dimers RelB2 and the toxin and the antitoxin can form complexes in the
two stoichiometric ratios RelB2RelE and RelB2RelE2 [45].

RelB and RelE contribute to auto-regulate the relB locus expression: RelB
dimers repress the promoter while RelE acts as a co-repressor, namely when it
binds RelB dimers, it enhances their affinity for the operator region [21, 45]. The
details of this interaction will be discussed in the next subsection.

2.1.1 Conditional Cooperativity

The relBE operon relO consists of two binding sites.
Overgaard et al. in 2008, showed that toxin-antitoxin complexes, in the sto-

ichiometric ratio of RelB2RelE, can bind cooperatively to the two binding sites,
with a much higher affinity than the RelB dimers alone, conferring strong repres-
sion of the promoter. The same study also showed that over-expression of RelE
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in living cells causes an increase in the synthesis of relBE mRNA, suggesting that
the over-expression induces de-repression of the relBE promoter.

It was shown in conclusion, that the ON/OFF state of the promoter depends
on the RelB:RelE ratio, rather than on the absolute concentration of the two pro-
teins. RelE acts as a co-repressor at low concentration and as a de-repressor at
higher concentrations. In particular, for RelB:RelE ratios above 2:1 RelE strongly
enhances RelB binding to the operator relO, thus inducing repression of the pro-
moter. For ratios below 2:1 further addition of RelE doesn’t affect the promoter
state, until RelB:RelE ≈ 1, when over-expression of the toxin results in disruption
of previously formed repressor complexes [21].

This peculiar behavior can be understood by realizing the fact that toxin-
antitoxin complexes can be formed in two different stoichiometric ratios : RelB2RelE
and RelB2RelE2 and the latter has no affinity to the operator region of the relBE
promoter. [46]. For RelB:RelE ratios 2:1 and above, the most abundant stoi-
chiometric form of the toxin-antitoxin complex is RelB2RelE, resulting in strong
repression of the promoter. But when RelE level exceedes RelB and the ratio is
close 1:1 and below, the equilibrium is pushed towards the alternative stoichio-
metric ratio, RelB2RelE2, titrating away RelB2RelE and inducing de-repression of
the promoter.

The relBE locus complex auto-regulation mechanism, with the state of the
promoter determined by the relative concentration of the proteins encoded by the
locus, is called Conditional Cooperativity [21]. The term conditional in conditional
cooperativity, refers to the promoter state depending on the ratio, rather then
absolute concentration of the regulator proteins, while the term cooperativity is
used because regulation of the promoter is achieved through cooperative binding
of complexes of the regulators to the operator sites.

A schematic visualization of the discussed effect of conditional cooperativity
on the promoter activity in two different RelB:RelE ratios range is given in Fig2.1.

21



Chapter 2. The relBE system 2.2. The Model

Figure 2.1: Visualization of conditional cooperativity due to the formation of RelB2RelE2, that
does not repress the promoter

2.2 The Model

2.2.1 The relBE regulatory network

In this section I will clarify what are the essential features that define the relBE
regulatory network and how they have been included in the model. A graphical
depiction of the relBE network is given in Fig.2.2.

When the two binding sites of the operator site relO (indicated as O in figure)
of the relBE promoter are empty, the promoter is de-repressed and relBE mRNA
(m) is synthetized. The relBE mRNA is then translated to produce both RelB
and RelE molecules.

In the model, transcription of the relBE locus and translation of the relBE
mRNA are considered separately.

RelB forms tight dimers, so from now on we assume that RelB is always in the
form of dimers RelB2. In Figure 2.2 RelB dimers are indicated as B2 and RelE
monomers are referred to as E. Free RelE monomers (Ef ) cleave intra-cellular
mRNA, including relBE mRNA, resulting in a negative feedback on their own
production. Apart from the RelE-mediated cleavage, the mRNA is also subject
to active degradation. The relBE mRNA halflife has not been measured, but in
the model I used ∼ 5 min, corresponding to the high-end of a typical half-life of
mRNA in E.coli, so that it is possible to keep the maximal promoter activity and
the translation rate within biologically plausible range, given the constraint of the
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Figure 2.2: relBE locus regulatory network as considered in the model. O represents the operator
site relO, m is the relBE mRNA while B and E are RelB and RelE, respectively. The toxin-
antitoxin complexes in the two stoichiometric form RelB2RelE and RelB2RelE2 are indicated
by B2E and B2E2. The arrows with a flat ending represent negative interaction, as in repression
or degradation. Positive interactions, the ones that result in an increase in the concentration of
one molecule type or in a higher reaction rate, are indicated by arrows with a pointy ending.
Finally, the dashed-lined arrows indicate weak or indirect interactions.

measured steady-state value for the concentration of RelE and RelB.

It is worth mentioning at this point, that on average there are 4 chromosomes in
an exponentially-growing E.coli cell. The maximal promoter activity is calculated
from the overall steady state mRNA level (as shown in detail in appendix A),
so it refers to the total transcription product of the 4 loci belonging to the 4
chromosomes.

As mentioned in section 2.1 free RelB has a fast turnover, while RelE is
metabolically stable and it is only diluted because of cell division. Degradation
of RelB depends on whether it is in its free RelB2 form or in complex with RelE.
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The latter have been observed to be more stable [45], thus the half-life of RelB2 in
complexes, τc, is taken to be 4 times longer than for free dimers. Cell division has
not been taken into account in the model explicitly, but it affects RelE halflife.

RelB2 and RelE bind to each other to form RelB2RelE. Two RelB2RelE com-
plexes can form a strong cooperative binding to the operator site and repress the
promoter. RelB2 dimers alone also bind to the operator and repress the promoter,
but this repression is much weaker than the one conferred by cooperative binding
of RelB2RelEs.

Repression by a single RelB2RelE has not been considered in the model, since
the Hill coefficient for the binding to relO has been measured to be close to 2 [21].
But binding of the two RelB2RelEs to the operator is assumed to be happen-
ing in two steps, one molecule at the time, with binding of the second molecule
showing a much lower value of the dissociation constant (KD3 > KD2). Binding
constants are estimated to reproduce the experimentally observed repression fold
of the promoter, that is ∼ 800 in fast growth conditions [44].

RelB2RelE complexes also bind free RelE monomers to form RelB2RelE2 com-
plexes, which have no affinity to the operator region. Formation of these RelB2RelE2

complexes depletes the repressor complex pool, counteracting repression of the pro-
moter. This is the main feature of conditional cooperativity.

We further consider that RelB2RelE complex formation can occurr on the oper-
ator, resulting in de-repression of the promoter. We call this mechanism stripping,
as it consists in a free RelE molecule binding a B2E complex already bound to the
operator and cause its release from the binding site, with consequent de-repression
of the promoter. This mechanism has been shown to happen in vitro [21].

24



Chapter 2. The relBE system 2.2. The Model

2.2.2 The Stochastic Model

The relBE regulatory network described in the previous section, consists of a set
of chemical reactions involving a certain number of molecular species. We perform
stochastic simulations of this chemical process, where the amount of each molecular
species is considered as a discrete variable, i.e. as the number of molecules of that
kind. Concentrations are converted to number of molecules considering that one
molecule in an average E.coli cell, corresponds to 1 nM1.

2.2.3 The reactions scheme

The state of the system at a given time is defined by the amount of the following
molecular species

• m - relBE mRNA

• Bf - Free RelB dimers

• Ef - Free RelE monomers.

• B2E - RelB2RelE complex

• B2E2 - RelB2RelE2 complex

The total copy number of RelB2 and RelE are given by

BT = Bf +B2E +B2E2

ET = Ef +B2E + 2B2E2

1 E.coli cells have a volume ≈ 1µm3 and

1nM = 10−9mol

dm3 = 10−24mol

µm3 = 10−24 ·NA
µm3 molecules ≈ 1

µm3molecule (2.1)
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We simulate the behavior of the system over time by means of Gillespie Al-
gorithm. Each chemical reaction is then treated as a discrete stochastic event,
happening at a given rate. The reactions that involve synthesis, degradation,
complex formation and dissociation are the following:

m
α0/4·# of unrepressed promoters−−−−−−−−−−−−−−−−−−−−−−→ m+ 1

m
kc·m·Ef−−−−→ m− 1

Bf
transB ·m+B2E·KDB2E ·kb−−−−−−−−−−−−−−−→ Bf + 1

Bf
Bf/τB−−−−→ Bf − 1

Ef
B2E2/τc−−−−−→ Ef + 2

Ef
transE ·m+B2E·KDB2E ·kb+B2E2·KDB2E2·kb+B2E/τc−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Ef + 1

Ef
Ef/τE−−−→ Ef − 1

B2E
Bf ·Ef ·kb+B2E2·KDB2E2·kb−−−−−−−−−−−−−−−−→ B2E + 1

B2E
B2E·KDB2E ·Kb+B2E/τc−−−−−−−−−−−−−−→ B2E − 1

B2E2
B2E·Ef ·kb−−−−−−→ B2E2 + 1

B2E2
B2E2·KDB2E2·kb+B2E2/τc−−−−−−−−−−−−−−−−→ B2E2 − 1

The following reactions refer to the operator (O) dynamics.

O +Bf
kb·Bf ·O−−−−→ O ·Bf

O ·Bf
KD1·kb·(O·Bf )−−−−−−−−→ O +Bf

O +B2E
kb·O·B2E−−−−−→ O ·B2E

O ·B2E
KD3·kb·(O·B2E)−−−−−−−−−→ O +B2E

O ·B2E +B2E
kb·B2E·(O·B2E)−−−−−−−−−→ O · (B2E)2

O · (B2E)2
KD2·kb·(O·(B2E)2)−−−−−−−−−−−→ O ·B2E +B2E

(2.2)

The last set of reaction describes this peculiar mechanism that we refer to as
stripping, that was mentioned in the previous section. It consists in free RelE
molecules binding a RelB2RelE complex that is already bound to the operator,
causing the release of the latter from the operator, and the reverse reaction of
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those.

O ·B2E + Ef
kb·Ef ·(O·B2E)−−−−−−−−→ O +B2E2

O +B2E2
kb·(KDB2E2/KD3)·O·B2E2−−−−−−−−−−−−−−−→ O ·B2E + Ef

O · (B2E)2 + Ef
kb·Ef ·(O·(B2E)2)−−−−−−−−−−→ O ·B2E +B2E2

O ·B2E +B2E2
kb·(KDB2E2/KD2)·O·B2E2−−−−−−−−−−−−−−−→ O · (B2E)2 + Ef (2.3)

Description
Symbol and Meaning Value Units Reference
α0 total promoter activity 154.665 nM min−1 see tex

[B2]ss steady state total concentration of RelB dimers 200 nM see text cf [45]

[E]ss steady state total concentration of RelE 44 nM see text cf [45]

τm mRNA halflife 7.2 min see text cf [47]

τB RelB halflife 4.3 min see text cf [45]

τE RelE halflife 43 min see text

τc RelB2 halflife in complexes 17 min see text cf [45]

nH Hill’s coefficient 2.3 [45]

transB RelB translation rate 15 min−1 see text

transE RelE translation rate transB/50 0.3 min−1 see text

kbind binding on-rate 4πDa/Vcell 3.8 min−1 [2]

KdB2E dissociation constant for B2E complexes formation 0.3 nM [21]
[B2][E]
[B2E] = KdB2E

KdB2E2 dissociation constant for B2E2 complexes formation 0.3 nM
[B2E][E]

[B2E2] = KdB2E2

kuB2E dissociation rate for B2E 1.14 nM

kuB2E = kbind ×KdB2E

kuB2E2 dissociation rate for B2E2 1.14 nM

kuB2E2 = kbind ×KdB2E2

KD1 dissociation constant for B binding to DNA 10 nM see text cf [44]

KD2 dissociation constant for second B2E bound to DNA 0.04 nM see text cf [44]

KD3 dissociation constant for first B2E binding to DNA 30 nM see text cf [44]

kc cleavage rate 2.0 nM−1min−1 see text cf [12]

Table 2.1: Set of parameters used in the stochastic simualation, in exponential growth condition.
The value of the maximal promoter activity α0 (cfr Table 2.1) calculation is shown in appendix
A.

In each run the behavior of the system is simulated over a total time range
of 600 minutes, through three different phases. From t = 0 to t = 200 the set of
parameters used in the simulation is the one given in Table 2.1 and it is relative
to a cell in fast growth conditions. At time t = 200, as it will be described in
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more detail in section 2.3 the value of some of the parameters is modified to mimic
amino acid starvation conditions. The system is let evolve in such conditions for
300 minutes. At time t = 500 all the paramters are moved back to their original
values, decribing fast growth (see Table 2.1). This is done to investigate the system
recovery once the nutritional stress is over.

2.2.4 Modeling the transition to amino-acid starvation

There are three main processes taking place during amino-acid starvation

• The overall translation rate in the cell is reduced to 1
10 of the pre-starvation

level , independently of the relBE, as measured by Christensen et al. in the
relBE− strain [25].

• Cell division slows down dramatically or stop completely, affecting dilution
of RelE.

• The activity of the protease Lon, responsible for degradation of RelB in-
creases [30].

According to these observation, the value of some key parameters were changed
to mimic amino-acid starvation (AS) conditions. Table 2.2 summarizes the param-
eters defining the transition and their values pre- and post- starvation.
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Parameter Pre-Starvation Post-Starvation
transB 15 min−1 1.5 min−1

transE 0.3 min−1 0.03 min−1

τE 43 min 24 h

τB 4.3 min 0.5375 min

τc 17.2 min 2.15 min

Table 2.2: transB and transE are the translation rates of, respectively, RelB and RelE. Their
values change to 1

10 of pre-starvation, in accord with the drop in overall translation detected
in the experiments. [25]. The halflife of RelE, τE , becomes 24h, since it reflects cell division,
that stops during amino-acid starvation. The value of 24h is somewhat arbitrary, it was chosen
to be much longer than the total simulated time (5 hours). This way within the investigated
time-range the toxin can virtually accumulate indefinitely. At last, the Increased activity of Lon
protease upon starvation, is reflected in a shorter halflife for RelB2 dimers, both in their free
form (τB) and in complexes with the toxin (τc)

2.3 Results

2.3.1 Aminoacid starvation drives the switch to toxin ac-
tivation

Figure 2.3 illustrates the population averaged response of the relBE locus expres-
sion to amino-acid starvation. As it can be seen in the upper panel of fig. 2.3 ,the
transition to AS condition happening at 200 min, induces a dramatic increase in
the level of free toxin. Concomitantly with the accumulation of free toxin, a drop
in the concentration of the free antitoxin RelB2 is detected, as it is shown in the
middle panel of 2.3. This is expected, given the lower translation rate, toghether
with the enhanced degradation of the antitoxin. Finally in agreement with the
experimental results by Christensen et al [25], the onset of amino-acid starvation
coincides with a spike in the relBE mRNA level. This spike is explained as follows:
as accumulation of free RelE starts, the promoter gets de-repressed resulting in a
rapid increase in the relBE mRNA level. As RelE keeps accumulating, though, it
cleaves relBE mRNA, with a consequent drop in the concentration of the mRNA.

Comparison between Fig. 2.3 and 2.4 shows that toxin activation depends on
degradation of RelB2 in complexes. If this feature is removed, in fact, one is faced
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Figure 2.3: Time courses averaged over 1000 cells, for free RelE (upper panel), RelB (middle
panel) and relBE mRNA (bottom panel), illustrating how the system switches between a state
of high antitoxin to a state of high free toxin.

with only a modest increment in RelE concentration, that remains on average
below 1nM - which translates into less than one molecule per cell.
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Figure 2.4: Development of free RelE in case that there is no active degradation of RelB in
complexes, thus RelB in complex the same half-life as τE . Free RelE is seen to remain low, in
contrast to behavior of standard model (Fig 2.3 middle panel) where RelB in complex is degraded
a factor 4 times slower than in complex but still degrated much fater than RelE.

Once starvation is over at 500 min, translation, alongside with cell division, is
restored. At this point in time the promoter is de-repressed because of conditional
cooperativity. Therefore RelB production is heavily boosted. On top of that, RelB
turnover slows down because Lon activity is not enhanced in rich medium condi-
tions. The resulting increase in the concentration of RelB2 allows the free RelE
level to return to non-starved levels quite fast, as it can be noticed by observing
the behavior of RelBf , RelEf and relBE mRNA in Fig 2.3.
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Stripping

In Section 2.2 I briefly mentioned a mechanism that I referred to as stripping. It
consist in free RelE molecules invading the relO · RelB2RelE complex inducing
the release of RelB2RelE from the operator.

Stripping contributes to the excess-RelE mediated de-repression of the pro-
moter. Conditional cooperativity consists in the formation of RelB2RelE2 com-
plex in the bulk that depletes the repression factors (RelB2RelE) pool resulting,
effectively, in de-repression of the promoter. With stripping in addition, RelE
actively pulls away the transcription factor from the operator binding site. It Is
possible to have conditional cooperativity without stripping, but not vice-versa.

If the on-off dynamics was fast, the presence of stripping would not affect the
time-scale of the accumulation of RelE upon starvation. In this case, though, the
average residence time of (RelB2RelE)2 on the operator is long, estimated to be
roughly 6 min 2. In this case stripping facilitates de-repression of the promoter
at lower concentrations of free RelE. This, in turn, means that relBE mRNA
synthesis is boosted before RelE has accumulated enough to make mRNA cleavage
significant, resulting in the peak in relBE mRNA. Increased relBE mRNA level
means, of course, increased synthesis of RelB, that can "fight back", despite the
enhanced degradation rate, delaying further accumulation of free RelE. Figure 2.5
shows the behavior of the system without stripping. As it can easily be seen, no
peak in the level of relBE mRNA is detected upon starvation, and the rise in the
concentration of free RelE is much faster than in the standard case.

2.3.2 Single Cell activation of RelE is binary

In this section I describe the dynamics of protein concentration at single cell level.
In Fig 2.3 one observes a steady accumulation of free toxin over time, over the

starvation period.
When looking at single trajectories, as in Figure 2.6 it becomes immediately

clear that increase in the concentration of RelE upon starvation, doesn’t happen in
a graded fashion. It is a sudden switch that typically does not occur immediately
after the onset of starvation but rather with a certain time delay.

Figure 2.7 shows the probability distribution P ([Ef , t]) of a cell having a certain

2Calculated considering a repression fold due to two RelB2RelE binding to the operator ∼ 800
and a diffusion limited on-rate estimated to be 0.06 min−1 molecule−1 [2]
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Figure 2.5: Average trajectory of relBE mRNA and free RelE without stripping. Compared to
in Fig. 2.3, entry into the toxin dominated state is faster.
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Figure 2.6: The dynamics at entrance to the starvation at the single cell level. Three examples
are shown, and the total amount of free RelE is plotted as function of time, from time 180 to
time 300.

concentration Ef of free RelE at time t. There is a high peak at low RelE free
concentration at the very onset of starvation. But a second peak, corresponding
to high (∼ 45nM) free RelE concentration, appears already after 10 minutes from
the transition to starvation conditions. The low probability for an intermediate
[Ef ] value suggests that each cell switches from a state with low concentration of
free toxin to a toxin-dominated state quickly.
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Figure 2.7: Probability distribution P ([Ef ], t) of a cell having a certain concentration [Ef ] nM
of free RelE at a given moment t.

2.3.3 Conditional Cooperativity primes fast exit from RelE
dominated state and prevents random toxin activa-
tion

In order to unravel the role of conditional cooperativity, we compared the be-
havior of the system with and without conditional cooperativity. For the latter
case, we prevent RelB2RelE2 formation completely. This way accumulation of free
RelE, even above 2[RelB2], will not result in a decrease in the abundance of the
reperession factor RelB2RelE.

Figure 2.8 A. shows that the presence of conditional cooperativity guarantees
fast recovery from the toxin-dominated state, once starvation is over. During
the starvation period, [RelE] � [RelB2], in this circumstance conditional coop-
erativity guarantees that the promoter is de-repressed already during starvation,
accelerating the exit from the toxin-dominated state as soon as the stress is termi-
nated. The lack of conditional cooperativity also allows the system to reach higher
level of free RelE during the starvation phase, making, of course recovery harder.

Our model also shows conditional cooperativity to have an effect on keeping
homeostasis. In fact, it reduces the probability of having a high level of RelE in
the non-starved phase, as it is shown in Figure 2.8 B. In fast growth conditions
the total concentration of RelB is ∼ 10 times higher than total RelE, implying
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Figure 2.8: Role of conditional cooperativity. A: The time evolution of free RelE level for the
system with (red) and without (blue) conditional cooperativity. The system is starved for amino
acid from 200 to 500 min. B: Probability distribution of free RelE in the non-starved state
without conditional cooperativity (blue) and with conditional cooperativity (red). Free RelE
takes higher value without conditional cooperativity.

that all the toxin is sequestered in complex with the antitoxin and there is no free
RelE available. If the level of RelB drops, allowing the presence of free RelE ,
conditional cooperativity ensures additional RelB.

2.3.4 Robustness against parameter change

The model of the relBE system presented involves several parameters. To make
sure that the main results are not dependent on fine-tuning of the parameters I
tested the robustness of the model against parameter change. The parameters
used in table 2.1 have been changed one by one, by 2n-fold with n ∈ [−3, 3] and I
tested that the model still work within the new paramter set. The model is defined
as working if the following conditions are satisfied:

i) [RelEf ] < 1nM in fast growth state; ii) [RelEf ] ≥ 10nM within 20 minutes
from the switch to starvation; iii) [RelEf ] < 1nM within 5 minutes after starvation
is terminated.

The results of the test are summarized in Fig.2.9. Condition i) - that states
that the level of free RelE has to be below 1nM in non-starved state, is very easily
satisfied. Only if the dissociation constant KDB2E for RelB2RelE complex forma-
tion becomes very weak, preventing RelB from efficiently keeping RelE sequestered
in complexes, i) is compromised.

Condition ii) - fast accumulation of free RelE upon starvation - is the most
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Figure 2.9: Summary of the model behavior against parameter changes. For each parameters
(horizontal axis), fold change of the values from our reference values are tried one by one. The
color gradients indicate how the model deviates from the reference behavior: yellow indicates too
many free toxins in the healthy states, green indicates too slow rise of free RelE at aa starvation,
and red indicates too slow drop of toxins after the removal of aa starvation. In the first entry,
KdB2E = KdB2E2, the ratio of the dissociation constants KdB2E and KdB2E2 are kept to be
one, but the value itself is changed. In the second entry, the ratio KdB2E/KdB2E2 is changed,
while keeping smaller dissociation constant to be the reference value 0.3 nM. For the entry trans,
the translation rates for RelB and RelE are changed by the given folds, while transB/transE and
transB/transB(AS) (transB(AS) is the translation rate of RelB during the aa starvation) are
kept to the reference values. For the entry transB/transE and transB/transB(AS) the given
ratio is changed with keeping the value of the translation for RelB transB to be 15 /min. For
the entry τB (τC), the lifetime of the RelB2 (RelB’s in the complexes) are changed with keeping
the 1/8 fold reduction of the lifetime during the aa starvation. For the entry kc (the 12th entry),
the value of the cleavage rate is changed, while for the entry kc(kc × F = 16) (the last entry),
the value of kc and the fold-change of the RelB degradation rate F are changed, so that kc × F
is kept to the reference value 16.

delicate criterion. In the relBE system, in normal growth condition, it is vital
that the level of free toxin is kept as low as possible, even fluctuations in RelE
concentration have to be kept under control. For this reason it is not surprising
that most of the reference parameters cited in Table 2.1 lie in a region of the
parameter space where inhibition of raise is the free toxin is a priority, and they
are just borderline sufficient to satisfy condition ii).

The third criterion iii) -namely fast exit from the toxin-dominated state - is
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violated when production of RelB becomes impaired. This circumstance can occur
because the ratio transB

transE
between the translation rate of RelB and RelE is too low,

or if the repression of the promoter provided by RelB2RelE is too intense.
Finally, the robustness of the model against change in the maximal transcrip-

tion rate α0 it’s biologically important. Even though this effect was not taken into
account explicitly in the model, it is very natural to assume that accumulation of
free RelE would provide a negative feedback on the cell growth rate, that, in turn,
would negatively affect the transcription rate [48]. We find that our model is ro-
bust against a 1

8 - to 2-fold change in α0, which suggest that including the negative
feedback on growth rate in the model would not invalidate the conclusions.

2.4 Conclusion
I built a model of the relBE locus transcription regulation that takes into account
explicitly the intrinsically stochastic nature of the chemical reactions that compose
the regulatory network. The latter was then used to investigate the dynamical
behavior of the system through the transition from rich-medium culture conditions
to amino-acid starvation, and to monitor how a cell would recover once starvation
is over.

The model allowed to unravel several interesting features concerning the relBE
locus activity.

• a fast entry into a toxin-dominated state requires RelB dimers to be degraded
by Lon not only in their free form, but also when in complex with RelE.

• The activation of the toxin, RelE, in response to amino-acid starvation is not
graded, but switch-like.

• Conditional cooperativity mediates fast recovery from the toxin-dominated
state and prevents random activation of the toxin in non-starved state.

Switching behavior is known to be related to a positive feedback loop in many
biological systems [49, 50]. In the present case the positive feedback loop facil-
itating the switch is given by accumulation of toxin that leads to inhibition of
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antitoxin synthesis through relBE mRNA cleavage, which, in turn, allows RelE to
accumulate further.

Conditional cooperativity, preventing unwanted activation of the toxin in the
exponential growth phase, plays a role in ensuring survival itself, to a cell that is
provided with a toxin-antitoxin module. This conclusion is intriguing, especially
when one considers that all the bacterial toxin-antitoxin modules studied so far
present a similar mechanism [20].
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Chapter 3

Conditional Regulation and
Bistability

In the previous chapter we demonstrated that conditional cooperativity in the reg-
ulation of the relBE locus is involved in the cell’s ability to recover effectively
and efficiently after having been exposed to amino-acid starvation, and prevents
random toxin activation in non-starved state.

As briefly mentioned in Chapter 1 section 1.4, all chromosome and plasmid-
encoded Toxin-Antitoxin loci that have been investigated so far have been shown
to be regulated through conditional cooperativity. The relBE locus of E.coli [21,45],
vapBC of Salmonella enterica, phd/doc of plasmid P1 [23,51,52] and ccdA/ccdB of
plasmid F are included among those. This circumstance suggests a biological rele-
vance for conditional cooperativity, beyond the response to amino-acid starvation
observed in the case of the relBE locus.

In the previous chapter the function of conditional cooperativity has been in-
vestigated in a set-up that takes into account details that are rather specific to
the relBE system. The aim of the study presented in this chapter is to explore the
features and the potential biological role of conditional cooperativity, in a more
general perspective, that can be applied to the regulation of type II TA loci in
general.

As mentioned in Chapter 1 Toxin-Antitoxin loci have been suggested to be
involved in the phenomenon of bacterial persistence [20,32,38,39,43], whereas the
exact underlying molecular mechanism is not understood yet and it is currently a
hot research topic [53].

Nevertheless, if we keep in mind that persisters are currently understood as
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cells in a slow- or non-growing state, a possible interpretation of the phenomenon
is then that this dormant (persister) state might be a consequence of stochastic
activation of the toxin. This would be supported by the TA locus regulatory
network exhibiting bi-stability between a fast-growing antitoxin-dominated state
and a dormant toxin-dominated one. This hypothesis has been investigated, with
focus on the hipAB locus in particular, by Lou et al. in 2008. [54]. They concluded
that the above mentioned bistability is possible, as long as a high (≥ 4) Hill
coefficients are assumed in the binding of the Toxin-Antitoxin complex to the
operator, along with growth-inhibition mediated by free toxin. In their study
conditional cooperativity was not taken into account.

In the current chapter we investigate conditional cooperativity as a mecha-
nism that can mediate bistability between growth and dormancy, via heteromer-
formation, without the need of a high hill coefficient.

The work presented in this chapter resulted in the publication attached in
Appendix H.
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3.1 Conditional Regulation

To analyze the function of conditional cooperativity as a regulatory mechanism
mediated by heteromer formation, and to explore the potential of such mechanism,
I built a simplified model of a generic type II Toxin-Antitoxin locus, inspired on
the relBE system, where the antitoxin A and the toxin T can form complexes in
two stoichiometric forms

A+ T ↔ AT, (3.1)
AT + T ↔ ATT, (3.2)

where AT is the only active complex, that confers repression to the promoter, while
free A, T and ATT do not exert direct transcriptional regulation. For simplicity,
weak repression of the promoter due to binding of the antitoxin A alone is not
considered, and the binding of AT to the operator is not assumed to be cooperative.

Since we are not considering cooperativity in the binding of AT to the operator
anymore, from now on I will refer to the regulatory mechanism examined simply
as conditional regulation, instead of conditional cooperativity.

The concentration of AT and ATT are calculated according to the laws of mass
action as follows :

[AT] = [Af ][Tf ]
KT

(3.3)

[ATT] = [AT][Tf ]
KTT

(3.4)

where KT and KTT are the dissociation constants for, respectively AT and ATT
complex formation, and [Af ] and [Tf ] are the concentration of free A and T calcu-
lated considering conservation of mass :

[A] = [Af ] + [AT] + [ATT] (3.5)
[T] = [Tf ] + [AT] + 2[ATT] (3.6)

Figure 3.1 shows the behavior of the concentration of [AT] as a function of [T]
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Figure 3.1: Concentration of the heteromer AT as function of the toxin concentration [T], for
a fixed value of the antitoxin concentration [A] = 100 and KT = KTT = 1. Notice that the
concentrations are given as a-dimensional quantities.

for a fixed value of [A]. As expected [AT] concentration starts accumulating from
0 as [T] increases, and it peaks at [T] = [A]. For [T] ≥ [A], [AT] starts decreasing,
as a consequence of formation of [ATT] complexes that sequester away ATs. For
[T] ≥ 2[A] virtually all ATs have been sequestered by free T into ATT complexes
and [AT] drops to 0.

3.1.1 The Promoter Activity
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Figure 3.2: Promoter activity ∝ 1
1+[AT] as function of the toxin concentration [T], for a fixed value

of the antitoxin concentration [A] = 100 and KT = KTT = 1. Notice that the concentrations
are given as a-dimensional quantities
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Figure 3.2 shows the promoter activity as a function of [A], for fixed [A] = 100.
The behavior of the promoter activity ∝ 1

1+[AT] mirrors the behavior of [AT] as a
function of [A]and [T] shown in 3.1.

The promoter is de-repressed for [T]' 0, when [AT] is also ∼ 0, it undergoes
maximal repression for [T] = [A], where [AT] peaks, and transcription is finally
resumed for [T] ≥ 2[A], thanks to the sequestration of the repression units AT
into ATT heterocomplex, mediated by accumulation of free T. The derepression
around [T] = 2[A] shows ultra-sensitive behavior, if the dissociation constants KT

and KTT are small enough1. This behaviors is a straightforward consequence of
the ultra-sensitive behavior of [AT] around [T] = 2[A], where just a factor two
change in [T] results in dramatic sequestration of AT, as it can be seen in Fig. 3.1.

Another peculiar feature of the present system, whose consequences will be
discussed later, is that the promoter activity is a non-monotonic function of [T].
At low absolute concentration, an increase in [T] induces repression, while in the
T-dominated regime ([T] > [A]) further accumulation of the toxin results in de-
repression.

3.1.2 Bistability in a simple feedback motif

I investigate the dynamical behavior of the concentration of the toxin T in the
case where its production is negatively regulated by the AT complex, as described
in the previous section, and the value of A is kept fixed. The simple regulatory
network is described by the equation:

d[T]
dt

= σ

1 + [AT]
KO

− [T], (3.7)

where σ is the maximal production rate for T and KO is the dissociation constant
for AT binding to the promoter. [AT] is calculated, for a given [A] and [T], as in
Eq. 4.32. The concentration of [A] is kept fixed, which is equivalent to make the
assumption that production of A is controlled by a constitutive promoter, and [A]
level is in steady-state. So [A] plays the role of an external parameter.

Transcription of T-encoding mRNA and translation of T proteins are not taken
into account as separate processes in this model. The maximal production rate
σ incorporates the mRNA steady state level and the translation rate per mRNA

1in the case of the In relBE system the dissociation constants are indeed very strong, in the
nanomolar regime, cfr Table 2.1 in Chapter 2
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molecule. In this section we set KT = KTT = 1 and express all the concentrations
in units of toxin-antitoxin binding strength. The time unit is chosen to be the
life-time of the toxin T.
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Figure 3.3: Production term of Eq.3.7 as a function of T, for K0 = 1 (solid lines), K0 = 10
(dashed lines) and for three different values of [A]. [A] = 20 = blue line, [A] = 100 = red line,
[A] = 400 = green line. The solid black line represents the degradation term.

In figure 3.3 the production term of Eq 3.7 as function of [T], for three different
values of [A], is plotted in color lines. Solid and dashed lines refer, respectively, to
stronger and weaker AT binding to the promoter. The solid black line represent the
linear degradation term in Eq 3.7. The repression is strongest at [T] = [A] in all
cases, as that depends on the stoichiometric ratio of the toxin-antitoxin complexes
only, and analogously sharp de-repression always happens at [T] = 2[A]. The
higher the value of [A], though, the higher the repression factor at [T] = [A].
For a given value of [A], a tighter binding of AT to the promoter also confers
stronger repression. Each crossing of the production and degradation terms in the
plot represents a steady state for equation 3.7. For KO = 1 and low value of the
antitoxin concentration, [A] = 20, equation 3.7 admits only one solution, for high
values of T, [T] ' 1000. As the values A is shifted to a higher level ([A] = 100), the
production and degradation term cross three times, namely the system exhibits
bistability. The two stable solutions correspond to a low T (uninduced) state
and a high T (induced) state respectively, while the unstable solution occurs at
an intermediate value. If the value of A is pushed even further ([A] = 400), the
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stable state corresponding to high T concentration is lost, and the system becomes
mono-stable, with solution at low T concentration.

The dashed lines show that, for weaker binding of AT to the promoter KO =
100, bi-stability is still supported, as long as the value of A is increased accordingly
(cf. Fig.3.3, green-dashed line).

Figure 3.4: Region in the parameter space that shows bistability for KO = 1. Each point on the
plot represent a combination of σ and [A] that allows the equation to have two stable solutions.
The color of the point reflect the T (low)/T (high) ratio.

Figure 3.4 shows the robustness of bistability with respect to change in relevant
parameters, i.e. the maximal production rate for T, σ, and the total concentration
of the antitoxin [A].

For each value of σ, if the concentration of A is too low, the system is monos-
table and induced, while if [A] exceeds a certain threshold, the high T fixed point
is lost, and the system is monostable, with a fixed point corresponding to low T
concentration. Analogously, for a given value of [A], for too high values of σ the
antitoxin-dominated fixed point vanishes, while on the contrary, if production of
T is insufficient, achieving a high T state becomes impossible.

The color of each bistable point in the phase diagram represent the ratio be-
tween the low-T and the high-T fixed point. Higher values of σ result in higher [T]
in the T-dominated solution, and thus in a lower ratio. The effect of the value of
[A] on the ratio, instead, appears to be less pronounced. Remarkably, conditional
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regulation in the simple regulatory network provides bi-stability in a wide range of
parameters, in absence of cooperativity in the binding of AT to the operator. The
reason behind this is that in Eq 3.7 the non-linearity in the denominator, neces-
sary to achieve bi-stability, is obtained through the ultra-sensitive decrease in AT
concentration around [T] = 2[A] mediated by protein-protein sequestration. The
minimal requirements to obtain bi-stability in the level of a protein in a genetic
regulatory network are a positive feedback and a source of ultra-sensitivity resulting
in a sigmoidal response function to the input signal [55–57]. In the present case,
conditional regulation provides a positive feedback to accumulation of toxin, T,
and sequestration mediated by formation of heteromers provides ultrasensitivity.
Bistability in a genetic network, mediated by sequestration due to protein-protein
interaction alone has also been demonstrated in literature before [58].

The other peculiar feature of the promoter activity with conditional regulation,
the non-monotonic behavior, guarantees the un-induced steady state to occur al-
ways for a finite amount of [T]. The biological relevance of this circumstance will
be discussed later.
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3.2 A Simple Peristers Model

3.2.1 Conditional Regulation and Peristers

In the previous section it has been shown that conditional regulation supports bi-
stability in a wide range of parameters in a simple feedback loop motif. In order
to explore the essential features of the mechanism of persister formation, in this
section we build a model of the activity of a TA module, regulated via conditional
regulation.

The reference to the relBE system is maintained in the choice of parameters,
because details of molecular mechanisms and parameters (cf. Table 2.1) are well
known for this system.

The model consists in the following equations :

d[A]
dt = σA

1 + [AT]
KO

− ΓA[A], (3.8)

d[T]
dt = σT

1 + [AT]
KO

− [T] (3.9)

where the concentration of [AT] is calculated as in eq. 4.32. A graphic representa-
tion of the model in eq. 3.8 and 3.9 is given in fig. 3.5 A1. In equations 3.8 and 3.9
A and T production is considered coupled, in the sense that they are assumed to
be encoded from the same promoter. Their translation rates, though, are different,
as it is reflected by the different values of σA and σT . In particular, σA is assumed
be ∼ 100 times higher, in analogy with the case of the relBE locus. This does
not result in a loss of generality in the model, since in all the Type II TA loci
investigated so far, the translation rate of the antitoxin has been measured to be
higher than the one of the toxin [11].

The other common features of all known type II TA loci are the fact that the
toxin is metabolically stable, while the antitoxin has a fast turnover and conditional
cooperativity mediated autoregulation. The half-life of the toxin is then set by the
E.coli doubling time in log-phase growth in rich medium to be ∼ 30 min, while
for the antitoxin is set to be ∼ 3 min.

The feedback loop described by equations 3.8 and 3.9, however, cannot exhibit
bi-stability. The reason lies in the fact that in this simple motif, the toxin and
the antitoxin production are regulated identically. When the promoter undergoes
sharp de-repression around [T ] = 2[A] the production of the antitoxin is also
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Figure 3.5: (A1) Schematic representation of the genetic circuit described by our model eqs.
( 3.8 and 3.9) for TA system with CR. (A2) Null-clines for the system of eqs. ( 3.8 and 3.9).
Blue line dT

dt = 0, Red line dA
dt = 0. No combination of parameters gives bistable steady states.

Infact, for comparable values of A and T the two null clines become parallel, as shown in the area
highlighted in grey. Dashed lines with arrows show the flow to the fixed point. (B1) Schematic
representation of the genetic circuit described by the model (3.11). (B2) Null-Clines for the
system of eqs. (3.11). with βM = βC ≈ 10. Blue line dT

dt = 0, Red line dA
dt = 0. Dashed lines

with arrows show the flow to the stable fixed points.

enhanced, and the latter is large enough that it is impossible to achieve a stable
steady state in the toxin-dominated regime. Figure 3.5 A2, shows an example of
null clines for the system given by eq 3.8 and 3.9. It can be clearly seen that only
one fixed point is found, occurring for high A and low T. For comparable values
of T and A the null clines become almost parallel, as shown in the grey area,
as a consequence of the identical regulation of production of T and A. Parameter
scanning spanning from 1

8 to 8 fold of the reference parameters (listed in Table 3.1)
were performed, and no combination of them showed bi-stability.
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σA 10000
σT 100
ΓA 10

KT = KTT 0.004
KO 0.15

Table 3.1: Reference Parameters. The values of the parameter are unitless. The cell generation
constitutes the unit time τu = 43 min, while the concentration unit is 1/10000 of the maximal
production of antitoxin per cell generation. Cu ' 70 to keep the reference to the relBE system.

3.2.2 Toxin Accumulation feedbacks on growth rate

Toxins encoded by Type II TA loci, by mean of inhibition of translation [20], slow
down or completely halt cell growth. Variations in the growth rate are known to
affect transcription, translation and cell division rate [48, 59]. For these reasons,
the toxin-induced growth-arrest needs to be taken into account explicitly in a
meaningful description of the activity of a TA locus. Within the framework of the
present model this consists in including two effects :

• Free toxin accumulation inhibits protein synthesis: by free toxin activity.
This inhibition can also happen indirectly, via growth-rate dependent inhi-
bition of global transcription [48].

• The toxin turnover depends on dilution due to cell division. If cell division
is inhibited by the free toxin activity, the half-life of the toxin is prolonged
accordingly.

A graphics representation of the extended regulatory network is given in fig. 3.5
B1. The extension of the model in 3.8 and 3.9 is expressed by the following set of
equations :

dT
dt = σT(

1 + [AT]
KO

)
(1 + βM [Tf ])

− 1
1 + βC [Tf ]

· [T] (3.10)

dA
dt = σA(

1 + [AT]
KO

)
(1 + βM [Tf ])

− ΓA · [A]

[Tf ] reduces protein production, and the parameter βM quantifies this effect, per
[Tf ] molecule. The choice to use the same parameter, βM , for the inhibition of
translation of both T and A is justified by the assumption that accumulation
of free toxin acts on the mRNA level, where toxin and antitoxin are coupled.
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Analogously, βC represents the cell growth-inhibition per free toxin molecule. The
degradation rate of A is not affected by changes in the growth rate, since it is very
fast. We are introducing in the model a positive feedback on accumulation of free
toxin: inhibition of translation impairs the antitoxin capability of counteracting
the toxin and the toxin half-life is prolonged. In principle, the term dependent on
βM reduces production of both T and A to the same extent, but the antitoxin,
with its short lifetime is effectively more affected.

As it can be seen in Fig. 3.5 B2, including the effect of the growth-rate mediated
positive feedback on toxin accumulation, allows the system to show bi-stability. In
Fig 3.5 B we use βM = βC ≈ 11 so that the effect on [T] of the newly introduced
term, is balanced off and the shape of the T-null cline is conserved in fig 3.5 A and
B. On the contrary, the A-null cline is affected, as for high values of [T], solutions
of dA

dt = 0 tend to occurr for lower values of [A].
As it was mentioned before, the toxin-mediated inhibition of protein production

and cell division is caused by the combination of several effects. Thus the numerical
values of βM and βC are not easy to infer. It was thus necessary to evaluate the
robustness of the bistable behavior, with respect to significant change in the value
of βM and βC .

Figure 3.6 shows the results of parameter scanning over several order of mag-
nitude in the value of βM and βC . Each point on the plot is a combination of
βM and βC that gives bi-stability. The color coding represents the ratio between
the dilution rate at low and high T steady state [1 + βcTf (high)]/[1 + βcTf (low)].
The system exhibits bi-stability for a wide range of βM and βC values, but the
increase in the generation time, parametrized by βC , plays a more fundamental
role in bi-stability. For too large values of βM the positive effect of the βC term
on accumulation of T is counteracted by the strong inhibition of T production.
For similar values of βM and βC the system is always bi-stable, provided that
βM = βC > 1

3.2.3 Robustness to parameter change

The dependence of the system behavior on βM and βC has been discussed in the
previous section. We also study the effect of the ratio between the translation
rate of the antitoxin and the toxin σA

σT
on bistability, as it determines the relative

steady state concentration of the two proteins, and expect a pretty significant
effect. Figure 3.7 shows the area, in the βM - βC plane where the system exhibits

50



Chapter 3. CR and Bistability 3.2. A Simple Peristers Model

Figure 3.6: The state diagram of the bistability. Every point in the plot represents a combination
of (βM , βC) that makes the system bistable. The color code represents ratio between T dilution
rate calculated upon the low-T steady state and the high-T steady state, [1 + βcTf (high)]/[1 +
βcTf (low)].

bi-stability for four different values of the σA
σT

ratio. The ratio is varied by keeping
σT fixed to 100 and changing σA. Only ratios σA

σT
> 10 are considered, since lower

ratios would represent non-biological circumstances, as an antitoxin-dominated
state would not be possible because of the fast antitoxin degradation. As expected,
when the value of the ratio is large, a stronger growth-rate mediated feedback is
needed to stabilize the toxin-dominated steady state, and this is reflected by the
shift of the bistable region towards higher values of βM and βC . On the contrary,
for relatively small value of the ratio, σA

σT
= 20, for high values of βC , the stability

of the antitoxin-dominated steady state is lost, as a very small amount of free toxin
is enough to activate the postive feedback via growth rate.

To underline the generality of the presented results we performed scanning of
the rest of the parameters. We fixed one parameter at the time, while the remaining
where scanned randomly, over a sample of 1000 parameters sets, with the change
in each parameter spanning between 1

8 and 8 fold from the reference value in
Table 3.2, on a logarithmic scale. The results of the scanning are summarized in
figures 3.8. Bistability is a robust feature of the discussed feedback loop motif.
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Figure 3.7: Bistable region for various values of σA

σT
, with σT = 100. The remaining 6 parameters

are fixed to the reference values. The shaded regions represents the area in the 2D parameters
space βM , βC that shows bistable behavior.

The fraction of the samples that show bistability spans from a minimum of 20%
to a maximum of 80%.

Finally, we investigated the effect of the change in the values of the dissociation
constant for the AT and ATT toxin-antitoxin complex formation more extensively.
The value of KT = KTT was changed up to 64-fold higher than the reference value.
The role of these parameters is particularly relevant, as the value of KT and KTT

quantifies the sharpness of the transition to de-repressed promoter occurring at
[T]=2[A], or in other words, they determine the ultra-sensitivity of the conditional
regulation. As it can be seen in Fig 3.9, the fraction of parameter sets that allow
bi-stability decrease gradually with increasing value of KT and KTT . But even
with a rather extreme 64-fold increase up to 20% of the sample shows bistability.
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X [60] → → X̃

σA 16628nMmin−1 σA·τu
Cu

16628nMmin−1·43min
71.5nM 10000

σT 166.28nMmin−1 σT ·τu
Cu

166.28nMmin−1·43min
71.5nM 100

KO 1 nM KO
Cu

1nM
71.5nM 0.015

KT 0.3 nM KT
Cu

0.3nM
71.5nM 0.004

KTT 0.3 nM KTT
Cu

0.3nM
71.5nM 0.004

ΓA 0.2min−1 ΓA · τu 0.2min−1 · 43min 10
ΓT 0.02min−1 ΓT · τu 0.02min−1 · 43min 1
βC 0.16nM−1 βc · Cu 0.16nM−1 · 71.5nM 11
βM 0.16nM−1 βc · Cu 0.16nM−1 · 71.5nM 11

Table 3.2: Reference parameter values used in used in Fig 3.5. The cell generation constitutes
the unit time τu = 43 min, while the concentration unit is 1/10000 of the maximal production
of antitoxin per cell generation. Cu ' 70 to keep the reference to the relBE system.

Figure 3.8: Robustness of bistability against parameters change. We fix σT = 100 and Γ0 = 1,
and vary rest of the parameters. In (a) βM is changed systematically between 1

8 and 8 fold of
the value used in the main text βM 0 = 11.4475; we change it between 1

8 · βM
0 = 1.4309 and

8 · βM 0 = 91.58 with a pace given by 2n · β0
M with an integer n ∈ [−3, 3]. For each value of βM ,

we sample the rest of the parameters randomly and independently of each other, and they can
take any values from the set 2n·(the reference value) with n ∈ [−3, 3]. The reference values are
given in Table 3.2. We collect a sample of 1000 points in the parameter space. The bars in the
histogram represent the fraction of this sample of points in the parameter space that still shows
bistable behavior. The same procedure is then carried out for βC (b), ΓB (c), KT (d), KTT (e),
KO (f) and σA (g)
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Figure 3.9: Robustness of bistability against the change of the dissociation constants KT and
KTT . We set KT = KTT , and increase them systematically from the reference value (0.004) to
64 fold of the reference value. Since the dissociation constants set the concentration of A and T
at which AT and ATT formation is significant, we fix σA = 10000 and ΓA = 10 in addition to
fixing σT = 100 and Γ0 = 1. We then sample the rest of the parameters randomly in the base
2 logarithmic scale, within 1/8 to 8 fold of the reference value. We tried 1000 parameter sets
for each values of KT = KTT . The plot shows the fraction of the parameter set that shows the
bistability. We see that the number of bistability parameter sets decrease gradually with fold
increase of the dissociation constants.

3.3 Conclusion

Equations 3.11 constitute a minimal model of the activity of a Toxin-Antitoxin
module, that includes the two key ingredient of conditional regulation and growth-
rate mediated positive feedback on toxin accumulation. It was shown that the de-
scribed system exhibits robust bi-stability in a wide range of parameters, between
a growing, antitoxin-dominated state, and a toxin-dominated state, characterized
by a significant slow down in growth-rate.

The robustness against parameter change, combined with the fact that the
model does not include details of the molecular mechanism on how the toxin
functions, ensures that the results presented do not refer uniquely to the relBE
system. The validity of the presented results can be extended to describe the
behavior of all the type II TA loci in E.coli that are confirmed to be regulated via
conditional cooperativity, provided that the following common characteristics are
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included [20,21,24,45,51]

• conditional-cooperativity mediated auto-regulation

• stable toxin mainly diluted because of cell division and unstable antitoxin

• toxin-mediated inhibition of protein synthesis and thus cell growth

. The simple model presented only provides the minimal ingredients to obtain
a persister state, namely bistability between a toxin-dominated and and anti-
toxin dominated steady state. However, to capture the stochastic nature of the
phenomenon of bacterial persistence, it is necessary to include in the model the
intrinsic stochasticity of the dynamics, as it will be discussed in further detail in
the next chapter.

Nevertheless, the results obtained with the present model, contain interesting
insights on the connection between conditional regulation and persisters formation.

Persister cells can be classified in two fundamental categories, known as Type
I and Type II persisters. [32, 38]. Switch to persisters state caused by external
stress generates Type I persisters, while formation of Type II persisters relies on
a spontaneous occurrence.

Conditional regulation mediated bi-stability offers the basis for the existence
of a persister state for the TA system described by equations 3.11, thus can be
related to type II persisters formation. On the other hand, as briefly mentioned
before, the non-monotonic behavior of the promoter activity in a TA system with
conditional regulation ensures that the low-toxin steady state occurs at finite [T].
The latter circumstance means, that there is always a finite amount of toxin stored
in the cell in the form of AT complex. When the concentration of the anti-toxin
is sufficiently high, the toxin is sequestered in complexes and no toxic activity
detected. However, when the overall protein production is impaired by external
factors, like nutritional stress, the stored toxin can be used for fast switching to a
dormant state. Therefore, the non-monotonicity can be responsible for facilitating
the switch to type I persister state.

The role of conditional regulation with respect to type I and II persisters for-
mation is schematically summarized in Figure 3.10. The plot in the upper panel
shows conditional-regulation mediated bi-stability, suggesting that a spontaneous
switching between the two stable fixed point might be the key mechanism of type
II persisters formation. The plot in the grey area in the lower panel shows, how
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a drop in the overall translation rate can push the system towards a stable state,
charachterized by a higher toxin concentration, potentially a type I persister state.

Conditional regulation is a mixed feedback motif, where protein-protein inter-
action is combined with transcriptional regulation. In literature there exist several
examples of system showing bistable behavior thanks to ultra-sensitivity medi-
ated by protein-protein interaction [58, 61, 62]. Furthermore, the effect of growth
rate-mediated feedbacks on bistable systems has been discussed in recent litera-
ture [48,59]. The uniqueness of the regulatory feedback investigated in this study is
that it includes combination of both effects. The need for taking into account both
these mechanisms stems from the fact that T and A are produced from the same
operon, and hence identically regulated at the transcriptional level. When only
one of the mechanisms mentioned is present it is then difficult to obtain bistabil-
ity [54], which is instead achieved by regulating the level of products of the operon
through a combination of growth modulation and hetero-complex formation.
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Figure 3.10: Schematic role of conditional regulation in persisters formation: The red curves show
the toxin production rate and the blue lines give the degradation rate, both from eq. (3.11).
Both terms depend on A, and here we make approximation that A is always in steady state
(eq.3.11 with dA/dt = 0) for given T , because dynamics of A is much faster than T due to
high production and degradation rate. Since production term of A and T are proportional to
each other and A is degraded at a constant rate, resulting A concentration is proportional to the
production term of T (red curves). The scales of curves are modified from actual functional forms
so that the characteristic behaviours can be grasped easily. The ultra-sensitivity mediated by
protein-protein binding combined with feedback from free toxin activity is reflected in the peak
of the production rate and drop of the degradation rate, resulting in bistability of the system.
This accounts for the type II persister where a cell can spontaneously switch to and out of the
persister state. The non-monotonicity of the conditional regulation secures that some toxins are
stored in antitoxin dominated state, helping the transition to the stress-induced activation of
toxin [60], which becomes the base for type I persister formation.
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Chapter 4

Stochasticity in the activity of TA
systems and Persisters

So far we have shown that the presence of TA a locus regulated by conditional
cooperativity provides the basis for robust bi-stability between a fast growing
A-dominated state and a T-dominated, perister state [63]. Identifying the key
ingredients for the bi-stable behavior is, though, not enough for capturing the
essence of bacterial persistence, that is an intrinsically stochastic phenomenon.
It is necessary to address the problem of cells switching between the two steady
states.

In this chapter I provide a stochastic description of the TA module activity. In
order to do so, the chemical reactions that constitute the regulatory network of
the TA system, must be described through a master equation [64, 65]. The latter
follows the evolution of the probability of the system to be in a state characterized
by certain concentrations values, rather than the time evolution of average con-
centrations. We then derive the potential landscape function for the network [66]
and through an implementation of the Kramers escape rate calculation [67] we
address the problem of the switch between the two steady states. Furthermore, to
address the details of the dynamics of the stochastic process I perform simulations
of a stochastic version of model of the TA activity proposed in the previous chap-
ter, and extend it to be able to simulate the behavior of a system constituted by
multiple cross-interacting TA systems.

The results shown in this chapter are not yet conclusive. Further investigation
has to be carried on to fully understand the connection between the stochasticity
in the dynamics of the TA activity and persisters formation, as it will de discussed
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in detail in the conclusion.

60



Chapter 4. Stochasticity in TA systems 4.1. The switching rate

4.1 The switching rate

4.1.1 Master Equation

In the ODE model defined in eq. 3.11, the state of the TA activity at time t, is
fully characterized by the concentration the toxin T and the antitoxin A. The level
of the two stoichiometric forms of the toxin-antitoxin complexes AT and ATT was
calculated, for a given A and T, through the laws of mass action, considering the
conservation of mass (see equations 3.3 and 3.5 in chapter 3).

This model can be formulated in terms of master equations. However, in the
attempt to attain the simplest level of description possible, we assume A to be
always in the steady state for a given level of toxin, because of its fast turnover
dynamics. This approximation results in no loss of generality, as all Type II TA
loci are characterized by a stable toxin, while the antitoxin is degraded by cellular
protease [20]. The steady state value of A, for a given value of T, is obtained, from
equations 3.11, with dA

dt
= 0, as follows:

A(T, t) =
σA
ΓA

(1 + βMTf (A,T))(1 + AT (A,T)
KO

)
. (4.1)

Equation 4.1, solved taking into account the conservation law and law of mass
action 3.3 and 3.5, yelds the A level for a given T, which in turn allows to de-
termine AT (T) and ATT (T) as functions of the sole T. The state of the system
can then be described by the discrete stochastic variable T, total number of toxin
molecules, and the activity of the TA system is modeled through the following
Master Equation:

∂P (T, t)
∂t

= σT

(1 + AT (T−1)
KO

)(1 + βMTf (T− 1))
· P (T− 1, t)

− σT

(1 + AT (T)
KO

)(1 + βMTf (T))
· P (T, t)

+ Γ0 · (T + 1)
(1 + βCTf (T + 1)) · P (T + 1, t)

− Γ0 · T
(1 + βCTf (T)) · P (T, t). (4.2)

Equation 4.2 describes the time evolution of the probability P (T, t) of the system
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to be in a state characterized by a given value of T at time t. As in the deterministic
model 3.11, σT is the maximal production rate for the toxin, KO is the dissociation
constants for the binding of the AT complex to the operator, βM and βC quantify
the negative feedback on the growth rate due to accumulation of toxin and Γ0 is
the rate of toxin dilution due to cell division.

The notation in equation 4.2 can be simplified by defining :

r(T, t) = σT

(1 + AT (T,t)
KO

)(1 + βMTf (T, t))
(4.3)

s(T, t) = Γ0 · T
(1 + βCTf (T, t))

(4.4)

where r(T, t) expresses the rate of production of one molecule of toxin, while s(T, t)
is the rate of degradation of one molecule of toxin. With this simplification Eq. 4.2
becomes

∂P (T, t)
∂t

= r(T− 1) · P (T− 1, t)

− r(T) · P (T, t)
+ s(T + 1)P (T + 1, t)
− s(T) · P (T, t). (4.5)
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4.1.2 Potential Landscape

For a one-dimensional master equation as in eq. 4.2, one can define the potential
landscape that characterize the steady state distribution, which in turn can be
used to evaluate the switching rate as a Kramers escape problem.

In order to derive it, I perform the Kramer-Moyal expansion of the master
equation 4.5, truncate it at the second order and obtain a second-order Fokker-
Planck equation. By comparison with the standard form of the Fokker-Plank
equation for a particle in a potential, I obtain the desired potential landscape for
the bi-stable dynamics of the TA system.

From Master Equation to Fokker-Plank Equation

In the formalism of the step operators ES defined as ESf(x) = f(x+S) Equation
4.5 can be re-written as:

∂P (T, t)
∂t

= (E−1 − 1)r(T)P (T, t) + (E1 − 1)s(T)P (T, t). (4.6)

By treating T as a continuos variable, x, and assuming P (x, t) is a smooth function
of x, the step operator can be expanded as ES = 1 + ∑∞

k=1
(S∆x)k
k!

∂k

∂xk
. If the

expansion is truncated at the second order one obtains

∂P (x, t)
∂t

= − ∂

∂x


(r(x)− s(x)

)
· P (x, t)

− ∂

∂x

1
2

(
s(x) + r(x)

)
· P (x, t)


= − ∂

∂x


[(

σT

(1 + AT (x)
KO

)(1 + βMTf (x))
−
( Γ0 · x

(1 + βCTf (x))
))
P (x, t)

]

− ∂

∂x

[
1
2

(( Γ0 · x
(1 + βCTf (x))

)
+ σT

(1 + AT (x)
KO

)(1 + βMTf (x))

)
P (x, t).

]
(4.7)

where obviously,

r(x) = σT

(1 + AT (x)
KO

)(1 + βMTf (x))
(4.8)

s(x) = Γ0 · x
(1 + βCTf (x)) . (4.9)
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Derivation of the potential energy landscape

Now we consider the standard form of the Fokker-Plank Equation in a potential
U(x) :

∂P

∂t
= − ∂

∂x

− µ(x)dU
dx
· P (x, t)− ∂

∂x

(
D(x)P (x, t)

) (4.10)

This can be re-written in term of the effective potential defined by dV (x,t)
dx

= (dU
dx

+
1

µ(x)
dD
dx

) as

∂P

∂t
= − ∂

∂x

−
µ(x)dV

dx

 · P (x, t)−D(x) · ∂P (x, t)
∂x

 (4.11)

V (x, t) is the effective potential that includes both the ’drift’ term and the contri-
bution given by noise. We are interested in finding its functional form. It is worth
noticing that, by comparison of Equation 4.11 with the continuity equation 4.12
we obtain the flux J(x, t) as

∂P

∂t
= −∂J

∂x
, (4.12)

J = −
µ(x)dV

dx

 · P (x, t) +D(x) · ∂P (x, t)
∂x

 (4.13)

If we now compare equations 4.7 and 4.10 we can indentify

D(x) = 1
2

(
s(x) + r(x)

)
(4.14)

dU

dx
= s(x)− r(x)

µ(x) . (4.15)

If we further identify D(x) = µ(x), P0(x) ∼ e−V (x) is the steady-state distribution
satisfying J(x, t) = 0 and

dU

dx
= s(x)− r(x)

1
2

(
s(x) + r(x)

) ,
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that implies

dV (x)
dx

= dU

dx
+ 1
µ(x)

dD

dx

=
2
(
s(x)− r(x)

)
+ ds

dx
+ dr

dx

s(x) + r(x) (4.16)

Integration of 4.16 yelds the functional form of the effective potential landscape
for the system described by Equation 4.2.

An example of the potential V (x), obtained through numerical integration, is
given in Fig 4.1. The parameters used to numerically evaluate V (x) are indicated
in Table B.1 V (x) has the form of a bistable potential, with two well-separated
minima. One occurs at low values of x, and the other at high values of x.
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Figure 4.1: Result of the numerical integration of equation 4.16. The potential V (x, t) exhibiits
two well-separated minima, xminlow and xminhigh and a maximum xmax. The minima are labelled
low and high since they correspond to states of the system described in 4.7 charchterized by,
respectively, low and high amount of toxin. The parameter set used is listed in appendix
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4.1.3 Kramer’s escape rate

The Kramers escape technique [67] allows to calculate the rate at which a Brownian
particle trapped in a potential well escapes over a potential barrier.

In the previous section it has been shown how the present problem of the
dynamics of the activity of a TA system can be mapped onto the description,
through Fokker-Plank equation, of the motion of a Brownian particle subject to a
bi-stable potential. The analogy holds as long as we consider that in the case of
the TA system, the stochastic variable X(t) represents, instead of the position of
the particle, a given concentration of the toxin. Furthermore, the source of noise
in the case of Brownian motion is thermal fluctuation, while in the present case is
the fluctuation in the number of particles given by intrinsic noise [68].

In figure 4.1 we have shown a typical potential landscape V (x). The two
minima are labelled as xminlow and xmaxlow . In the present section we calculate the
escape rate from xminlow to xmaxlow (and vice-versa), describing the A-dominated and T-
dominated states respectively. One necessary assumption for the Kramers escape
calculation to be used, is the quasi-stationary assumption, namely ∂P (x,t)

∂t
≈ 0. The

latter assumption holds, if the flux from xminlow to xmaxlow and vice-versa is low1.
Taking into account µ(x) = D(x) equation 4.13 for the flux J becomes:

J = −D(x)
dV

dx P (x, t) + ∂P (x, t)
∂t

 (4.17)

Because of the quasi-stationary approximation, the flux J , from xminlow to xmaxlow (and
vice-versa), has to be independent of both x and t. In particular, for each direction
we assume

J = p · r, (4.18)

where p is the probability to initially be in the potential well, and r is the rate of
escape from the well.

Using the quasi-stationary approximation and assuming that the probability
distribution around each minima can be approximated with the equilibrium prob-
ability distribution that would be obtained if the potential barrier located at xmax

were infinite, it is possible to calculate p. Once p is known, the rate r can be cal-

1Within the current framework, the quasi-stationary approximation should be a safe assump-
tion for biologically relevant cases
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culated from eq. 4.17. Following the derivation shown in appendix F, one obtains:

rA→T = D(xmax)
2π e−(V (xmax)−V (xminlow ))

√
|V ′′(xmax)|

√
V ′′(xminlow ), (4.19)

rT→A = D(xmax)
2π e−(V (xmax)−V (xminhigh))

√
|V ′′(xmax)|

√
V ′′(xminhigh), (4.20)

where D(x) is given in eq. 4.14 and xmax, xminlow , xminhigh are the stationary points
of the bi-stable potential, as noted in Fig. 4.1. rA→T is the escape rate from the
minimum of V (x, t) located at xminlow and can be identified with the rate of persisters
formation. rT→A is the rate at witch a persisters cell switches back to fast growth
rate, or the escape rate from xminhigh.
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4.1.4 The switching rate strongly depends on the param-
eters choice

The reference parameters used to evaluate the potential V (x, t) in Fig. 4.1 are
listed in Table B.1 in Appendix B. The reason behind the choice of parameters
was to keep within the same order of magnitude of the measures relative to the
relBE system, to avoid parameter range that are not biologically plausible. In
the described parameters set, calculation of the escape rates yields the following
results:

rA→T ' 10−13 (generation time)−1 (4.21)
rT→A ' 3× 10−07 (generation time)−1 (4.22)

Notice that these rates describe the probability of a cell to switch to persistence
per cell generation, in the growing state. The rates can be then mapped onto the
probability of one switch to happen within a cell population that is constituted
by r−1 cells, and this way one can relate the rate rA→T to persistence frequency,
provided that one assumes that the growth rate in the T-dominated state is neg-
ligible and both the switching rates are low. Measured values for the frequency
of persisters are ∼ 10−4, for type II persisters [43]. Direct measures of the re-
suscitation rate rT→A are hard to perform, given the low frequency of persisters
cell, so the only reference point is the value estimated in the model of persistence
as a switch in a two-state model by Balabanet. al., where the presented value is
∼ 0.07 (generation time)−1 [32].

Obviously the results obtained using the reference parameters set are not suited
to reproduce the observed rates. We performed parameters scanning, in order to
search for calculated rates closer to the experimental observation, and investigate
the sensibility of the model with respect to the key-parameters in the model.

Dependence on σT
σA

The ratio in the translation rate of the toxin and the antitoxin σT
σA

, is obviously
a critical parameter in determining the value of the switching rate. Figure 4.2
illustrates how a higher σT

σA
ratio results in a lower potential barrier to overcome

to switch from the low toxin to the high toxin steady state, facilitating the switch
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to persister state. On the other hand, though, higher σT
σA

stabilizes the high toxin
steady state, inhibiting resuscitation.
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Figure 4.2: Potential landascape V (x, t) as a result of the numerical integration of equation 4.16.
Green line σT

σA
= 0.016, Red line σT

σA
=0.012. The remaining parameters are fixed to the values

indicated in Table B.1

In figure 4.3 and figure 4.4 the dependence of the switching to persister and
resuscitation rates on the σT

σA
is explored in a more systematic way. From the

above consideration follows that the rate of persisters formation increases with
increasing σT

σA
, while on the contrary the resuscitation rate descreases. In both

cases the dependence of the rate on the ratio is quite dramatic, a change in the
ratio around 20% can result, for example, in 4 order of magnitude difference in the
rate of switch to persistence (cf. σT

σA
= 0.016 and σT

σA
= 0.02).

Dependence on βM and βC

As explained in detail in Section 3.2.2, the presence of a positive feedback on toxin
accumulation, mediated by growth inhibition, is a necessary ingredient in obtaining
bi-stability. For this reason we investigate how the form of the potential landscape
and consequently the rate to and from the persister state depends on the strength
of the feedback. For simplicity we assume βM = βC = β. As Figure 4.5 shows,
increasing the strength of the positive feedback on the toxin, lowers the height of
the potential barrier to overcome to switch to persistence but it stabilizes the high
toxin steady state, inhibiting this way, resuscitation. As a consequence, as it can
be inferred form Figures 4.6 and 4.7 rA→T increases with increasing β, while rT→A
decreases. It is worth noticing, though, that within the constraint of βM = βC = β

the absolute value of the resuscitation rate is so low that the dependence on the
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Figure 4.4: Dependence of the resuscitation
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Figure 4.5: Potential landascape V (x, t) as a result of the numerical integration of equation 4.16.
Green line βM = βC = 1 nM−1 , Red line βM = βC = 4 nM−1 The remaining parameters are
fixed to the values indicated in Table B.1

exact value of β within the investigated range is practically irrelevant. As in
previous case, both rates are very sensitive to change in β.

Dependence on ΓA

The importance of exploring the dependence on the degradation rate of the an-
titoxin ΓA lies in the fact that all investigated antitoxin belonging to E.coli K-12
TA loci are substrate of the protease Lon [14,25,27], that is known to be activated
during nutritional stress [30]. A connection between persistence and growth-arrest
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switching to persister rate rA→T on β. β
is varied between 0.5 nM−1 and 3.5 nM−1
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Figure 4.7: Dependence of the resuscitation
rate rT→A on β . β is varied over the same
range mentioned in the caption of Fig 4.3
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Figure 4.8: Potential landascape V (x, t) as a result of the numerical integration of equation 4.16.
Green line ΓA = 10 (generation time)−1, Red line ΓA = 15 (generation time)−1. The remaining
parameters are fixed to the values indicated in Table B.1

induced by nutritional stress [32], as well as a correlation between persisters forma-
tion and fluctuation in the level of (p)ppGpp, the alarmone that triggers stringent
response, has been shown in literature [69], as it will be discussed in the end of
this chapter.

The reference value of ΓA is ∼ 10 (generation time)−1. A higher degradation
rate for the anti-toxin results in a more stable high toxin state and in a lower
potential barrier for the transition to persistence, as it can be seen in Fig 4.8.
Thus, as expected, it favors the persister state.

This results in rA→T increasing as ΓA is increased, while the resuscitation rate
rT→A decreases. Both rates are extremely sensitive to the degradation of the
antitoxin. Increasing ΓA of about 50% (cfr ΓA = 10 (generation time)−1 and
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Figure 4.10: Dependence of the resuscita-
tion rate rT→A on the life-time of A ΓA .
ΓA is varied over the same range mentioned
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ΓA = 15 (generation time)−1) can determine a change in the value of rA→T up to
6 orders of magnitude (cf. ΓA = 10 and ΓA = 15).
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4.2 Stochastic Model of TA activity

So far we have been concerned with addressing the rate of switching between the
steady states of the TA module regulatory network by Kramers escape approach.
In order to capture the full dynamics of the system and test the prediction obtained
through the Kramers escape calculations, we simulate a stochastic model of the
TA activity using the Gillespie algorithm.

The state of the system at each time t is completely defined by the total amount
of the antitoxin A and toxin T. The formation of toxin-antitoxin complex is not
modeled explicitly. At each time-step, for a given value of A and T, the amount
of AT and ATT complex is computed numerically, solving equations:

[AT] = [Af ] · [Tf ]
KT

(4.23)

[ATT] = [AT] · [Tf ]
KTT

(4.24)

with the constraint:

A = [Af ] + [AT] + [ATT] (4.25)
T = [Tf ] + [AT] + 2[ATT] (4.26)

.
The list of reaction included in the model is:

A

σA(
1+ AT

KO

)
·

(
1+βMTf

)
−−−−−−−−−−−−→ A+ 1

T

σT(
1+ AT

KO

)
·

(
1+βMTf

)
−−−−−−−−−−−−→ T + 1

A
ΓAA−−→ A− 1

T

Γ0(
1+βCTf

)
−−−−−−→ T − 1

(4.27)

As in the deterministic model presented in 3.11, the rate of production, of both T
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and A is limited by the amount of free toxin Tf . Analogously, the rate of dilution
of T through cell division, is affected by the amount of free toxin.

Figure 4.11 shows the typical outcome of a simulation. The parameters used
are relatively far from the reference parameters shown in Table B and were chosen
to be able to observe both the switches on a time-scale that is possible to simulate
numerically. The Kramers escape rate predictions for the current set of parameters
are indicated in 4.28 and show a reasonable agreement in the switching time scale.

rA→T ' 10−4 (generation time)−1 (4.28)
rT→A ' 2× 10−4 (generation time)−1 (4.29)
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Figure 4.11: Time course of a Gillespie simulation as described in 4.31. The time evolution of
the amount of Toxin (T) is indicated in green, while the red line refers to the amount of antitoxin
(A). Within the chosen set of parameters, listed in C, it is possible to detect both the switch
from fast growth to persister state and the resuscitation from persistence to growth.
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4.3 Considering the effect of multiple TA sys-
tems

In 2011 Maissoneuve et al. investigated the effect on the persister frequency, of
progressive deletion of the 10 TA loci of E.coli K-12. They demonstrated that the
deletion of 10 TA loci results in a dramatic ∼ 102-fold decrease in the frequency
of persister cell formation. Nevertheless, the reduction due to progressive deletion
of TA loci is gradual, as the effect of multiple TA loci is cumulative and deletion
of a single TA locus, independently of its identity, has a small effect on persister
rate [43].

In this section I propose an extension of the model of TA activity aimed at
addressing the combined effect on bi-stability and persister formation of multiple
TA loci.

4.3.1 Stability consideration

The equivalent formulation of 3.11, for the i−th TA system, in the case of combined
effect of n TA systems is

dAi
dt = σA

(1 + ATi
KO

) · (1 + βM
∑n
i=1 Tfi)

− ΓAA (4.30)

dTi
dt = σT

(1 + ATi
KO

) · (1 + βM
∑n
i=1 Tfi)

− Γ0

(1 + βC
∑n
i=1 Tfi)

, i = 1, 2...n

where, for the sake of simplicity, the value of the parameters is assumed to be
the same for each TA system. The cross-interaction between different TA system
is mediated by Tf , and is fully contained in the terms 1 + βM

∑n
i=1 Tfi and 1 +

βC
∑n
i=1 Tfi. The underlying assumption is that the n TA modules only "feel" each

other through the slow-down in protein production and growth due to the additive
contribution of the n free toxins. In the present study n = 10 unless otherwise
noted.

Within the strong assumption of all TA systems being identical, the steady-
state with T1 = T2 = ...Tn = T̃ and A1 = A2 = ...An = Ã should exist, which im-
plies that, at least around this steady-state, the coupling of n TA systems corre-
sponds to changing βM and βC simultaneously by n fold in one TA system. Hence,
the strong dependence of the switching rate on βM = βC = β seen in figures 4.6
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and 4.7 translates into a strong dependence on the number of TA systems.
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4.3.2 Stochastic model of interaction of 10 TA systems

In order to investigate the dependence of the rate of switching to persisters on the
numbers of interacting TA systems, and discuss it in the light of the experiments
from Maisonneuve et al. [43], I built a stochastic version of the model specified
in Equations 4.30 for the dynamics of multiple interacting TA system. Stochastic
simulation were performed via a Gillespie algorithm implemented as follow :

The state of each TA system (labelled by i) is specified by the discrete variables
corresponding to the amount of toxin Ti and antitoxin Ai relative to that system.
At each time step one of the 10 TA system is chosen randomly, and its state
updated according to:

Ai

σA(
1+ [ATi]

KO

)
·

(
1+βM

∑10
1 Tfi

)
−−−−−−−−−−−−−−−−→ Ai + 1

Ti

σT(
1+ [ATi]

KO

)
·

(
1+βM

∑10
i
Tfi

)
−−−−−−−−−−−−−−−−→ Ti + 1

Ai
ΓAAi−−−→ Ai − 1

Ti

Γ0(
1+βC

∑10
i
Tf

)
−−−−−−−−−→ Ti − 1

(4.31)

where for each system i, ATi and Tfi are computed numerically according to:

[ATi] = [Afi] · [Tfi]
KT

(4.32)

[ATTi] = [ATi] · [Tfi]
KTT

(4.33)

with the constraint:

[Ai] = [Afi] + [ATi] + [ATTi] (4.34)
[Ti] = [Tfi] + [ATi] + 2[ATTi] (4.35)

.
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The interaction between the different systems is considered to be additive, as
described in detail in the previous section 4.3.1.
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Figure 4.12: Left Panel: Stochastic time course of the activity of 10 cross-interacting TA systems.
Each plot represent the time course of a single TA. The green line : Toxin (T) level, red line
Antitoxin A. The switch to persisters state is detected within ∼ 20 generation time. Right Panel:
Stochastic time course of the activity of 9 cross-interacting TA systems. Each plot represent the
time course of a single TA. The green line : Toxin (T) level, red line Antitoxin A. Within
200 generation time no switch to persister state is detected.

Figure 4.12 shows the time evolution of 10 (left panels) and 9 (right panel)
interacting TA system. Each system is started from initial conditions that mimic
the low-T state, and the the switch to a persister state, characheterized by T�A
is monitored. In the case of 10 TA systems, the switch is detected within a very
short time (∼ 20 generation time). Removing only one TA system, already results
in a dramatic change in the dynamics, as no switching is detected within 200
generations time.

To give any precise quantitative conclusion on the dependence of life-time of the
A-dominated state on the number of TA systems, one should compare, of course,
quantities averaged over a statistically significant sample of gillespie simulations,
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rather than a single trajectory. Nevertheless the observed dynamics suggests that
the persisters level is extremely sensitive to the number of interacting TA systems
present. This circumstance is not in agreement with the weak dependence of the
persisters level on one further TA module deletion observed by Maisonneuve et
al [43].
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4.4 Conclusion and future work

We built a model in the attempt to explaini bacterial persistence in terms of
stochastic activation of the toxin in TA systems. We calculated the rate of persis-
ter formation and the resuscitation rate, using an implementation of the Kramers
escape rate calculation. Furthermore, to capture the full dynamics of the TA activ-
ity and observe the switch, we performed stochastic simulation, using the gillespie
algorithm. The results of the Gillespie simulations show reasonable agreement
with the calculated rates, therefore ensuring that the approximation used for the
calculation of the switching rates, consisting in A being kept constantly in steady
state, is not too strong.

Unfortunately it was not possible to find a combination of parameters that
gives a value for the rate of persister formation and a value of the resuscitation
rate compatible with the measured values [32, 43]. At the same time, the model
lacks robustness to parameter change, as the computed value of both the persister
and resuscitation rate are extremely susceptible to change in the parameters value,
as shown in section 4.2.

When analyzing the behavior of the system against parameter change, we ob-
served that the level of persister increases with increased degradation rate for the
antitoxin. This finding is compatible with the emerging idea, supported by recent
literature, of a connection between fluctuations in the level of cellular (p)ppGpp
and higher levels of persistence [69]. The alarmone (p)ppGpp is the triggering
signal for stringent response, and is known to up-regulated the activity of the Lon
protease, that degrades the anti-toxins [30]. Within the scenario of (p)ppGpp me-
diated persistence, the persister formation rate would be dominated by (p)ppGpp
fluctuations, and the resuscitation could be interpreted as being due to the ex-
istence of a slow-growth mediated negative feedback on (p)ppGpp. This would
explain why in the present model, we cannot reproduce plausible rates.

Furthermore the effect of taking into account the activity of 10 cross-interacting
TA systems has been investigated through stochastic simulations. We observed
that the presence of multiple 10 systems stabilizes the high T state, facilitating
the switch from fast-growth to persistence. This is in qualitative agreement with
what has been observed by Maisonneuve et al. in 2001 [43]. However, in the
stochastic simulation, the dependence of the rate of persisters formation on the
number of TA system, was unfortunately found to be very sharp, which is in
contrast with the gradual dependence found in [43].
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On the other hand, when considering persisters formation as triggered by
fluctuations in (p)ppGpp, one can imagine a relation between the fraction of a
population showing (p)ppGpp level above a certain threshold and the fraction of
the population that undergoes the transition to persistence. In the framework of
our model, variation in the degradation rate of the anti-toxin ΓA is a proxy for
a variation in the (p)ppGpp level, because stringent response is known to acti-
vate Lon [30]. Furthermore, as discussed in section 4.3.1 increasing the value of
βM = βC = β in the system described by eq. 3.11 in chapter 3, can be used as
a proxy for increasing the number of cross-interacting TA modules in the system
described by eq. 4.30, within the strong approximation of all TA loci to be identical
and in the same steady-state. Figure 4.13 is shown to discuss the interplay between
(p)ppGpp-mediated higher degradation of the antitoxin and multiple TA system.
It summarizes the stability of the steady states of system 3.11 for increasing ΓA
and β. The fact that the dependence of the threshold value for ΓA above which the
fast-growth state looses stability on the number of TA systems is graded, roughly
linear, may be compatible with the observations by Maisonneuve et al. of a graded
dependence of the persisters fraction on the number of interacting TA systems.

In conclusion, within the framework of our model, the sole stochasticity in the
activation of the Toxin in the TA systems, is not a satisfactory explanation for
the formation of persister cells. Although the presented model allows to repro-
duce some qualitative features of the process of persisters formation, additional
mechanism need to be taken into account in order to be able to capture fully the
quantitative aspects of the phenomenon.

As it will be discussed in further detail in the next chapter, future develop-
ment of this work could consist in coupling the activity of the TA systems to the
(p)ppGpp regulatory network.
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Figure 4.13: Each point represents a combination of parameters that allows bi-stability. ΓA is
varied between 30 (generation time)−1 and 50 (generation time)−1 while β is varied between
0.02 nM−1 and 0.2 nM−1. The rest of the parameters is set to the values shown in Appendix D.
Notice that in the current parameter set, the T-dominated state exhibit a clear T/A� 1 ratio,
while the other steady state is actually T/A ' 1. The area of the parameter space that shows
no bistability, is monostable and T-dominated.

82



Chapter 5

Conclusive Remarks

This thesis is the result of three years of work that revolved around one main
thread, the study of toxin-antitoxin loci in E.coli aimed at addressing the question
of identifying their biological function. The projects described have stemmed from
one another in a very natural fashion. The starting point was reproducing the dy-
namics of the expression of one particular TA locus in E.coli, relBE, and monitor its
behavior in response to amino-acid starvation, motivated by experimental obser-
vations that suggested this system to be particularly relevant in such response. In
the process, the peculiar auto-regulation mechanism of transcription of the relBE
locus called conditional cooperativity cought our attention. We showed, among
other results, that conditional cooperativity is necessary for the cell to recovery af-
ter amino-acid starvation, and that it provides buffering against potentially lethal
fluctuations in the level of free toxin. Intrigued by the peculiarity of this regula-
tory mechanism and by the fact that it appears to be a common trait for the TA
loci in E.coli, we decided to ’abandon’ the relBE system, to explore the potential
function of conditional regulation, as a feedback motif, rather than in connection
with the specificity of one locus. We concluded that the coupling of conditional
regulation with a feedback on protein synthesis and cellular growht mediated by
accumulation of free toxin, allows the activity of a TA locus to be characterized by
robust bi-stability between a toxin-dominated and an antitoxin-dominated state.
The toxin-dominated state is obviously either slow- or non-growing. Consider-
ing that TA systems have often been invoked in literature in connection to the
phenomenon of bacterial persistence, bistability provides us with an intriguingly
simple explanation for the mechanism of persister formation. However, persistence
is an intrinsically stochastic phenomenon, and the dynamics of the switch between
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Chapter 5. Conclusive Remarks

the fast-growing and the dormant state needs to be addressed. Hence, we worked
on a stochastic description of the activity of a TA locus. Furthermore, E.coli cells
are known to be provided not with one, but eleven toxin-antitoxin loci, so we also
tested the effect of considering the dynamics of the expression of multiple cross-
interacting TA systems and showed that the presence of several TA loci facilitate
the switch to a toxin-dominated state and stabilizes it.

As far as the mechanism of persisters formation is concerned, the work per-
formed in this thesis can not provide a unified description of the stochastic switch
between growth and dormancy. It only goes as far as showing that TA loci provide
the cell with an effective machinery capable of mediating bistability between those
two states. This is not the same as claiming that this bistability in the activity of
the TA system is the sole mechanism behind persister formation. First of all, per-
sistence might not necessarily be interpreted as corresponding to one steady state
in a system that exhibit bistable behavior. An alternative interpretation could
be, for example, to identify persisters with the occurrence of a temporary toxin-
dominates state, corresponding to long-lived fluctuations in the proteins concen-
tration, within a system that is, in a deterministic description, monostable. This
interpretation has been discussed in very recent literature [70]. Furthermore, the
natural future development of this work should be, I think, to shift the focus from
the activity of TA loci to the phenomenon of persistence itself. In particular, one
could embrace the idea that the stochastic activation of the E.coli TA loci could
be only one component of a more intricate process involving, among other mech-
anisms, the coupling with fluctuations in the intracellular level of (p)ppGpp [69],
as discussed in the conclusion of chapter 4.
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Appendix A

Extimation of Maximal Promoter
Activity α0

The value of α0 (cfr Table 2.1) was calculated as follows, assuming a simple
Michaelis-Menten kinetics for both mRNA and RelB synthesis, and assuming the
steady state concentration of RelB and RelE and mRNA half-life noted in Ta-
ble 2.1. The dynamics of the system is described by:

dm

dt
=

α0(1 + B2E
KD2

)
1 + B2E

KD3
+ (B2E

KD2
)2 + Bf

KD1

− m

τm
, (A.1)

dB

dt
=transB ·m−

B

τB
, (A.2)

in steady state this becomes

α0(1 + B2E
KD2

)
1 + B2E

KD3
+ (B2E

KD2
)2 + Bf

KD1

− mss

τm
= 0, (A.3)

mss = Bss

transBτm
. (A.4)

The last result, together with

BT = Bf +B2E +B2E2 (A.5)
ET = Ef +B2E + 2 ·B2E2 (A.6)

(A.7)
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and the laws of mass action

B2E = Bf · Ef
KdB2E

(A.8)

B2E2 = B2E · Ef
KdB2E2

(A.9)

allows to calclulate α0.
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Appendix B

Reference parameters in
calculation of rates of persistence

Parameter V alue

σA 102200 nM(generation time)−1

σT
σA

0.012
kO 0.15325 nM
kT = kTT 1.8705 nM
ΓA 10 (generation time)−1

Γ0 1 (generation time)−1

βM 4.0 nM−1

βC 1.0 nM−1

Table B.1: Reference parameters used in the comuputation of V (x, t) in Fig 4.1. The notation
generation time refers to the time being measured in units of average E.coli generation time.
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Appendix C

Reference parameters in the
stochastic model of TA activity

Parameter V alue

σA 5000 (generation time)−1

σT
σA

1
30

kO 10 nM
kT = kTT 10 nM
ΓA 10 (generation time)−1

Γ0 1 (generation time)−1

βM 0.2 nM−1

βC 0.2 nM−1

Table C.1: Reference parameters used in Fig 4.11 of section 4.2. The notation generation time
refers to the time being measured in units of average E.coli generation time
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Appendix D

Reference parameters in stability
analysis for the multiple TA
systems

Parameter V alue

σA 5000 (generation time)−1

σT
σA

1
30

kO 10 nM
kT = kTT 1 nM
Γ0 1 (generation time)−1

Table D.1: Reference parameters used in Fig 4.13 of conclusion of chapter 4. The notation
generation time refers to the time being measured in units of average E.coli generation time
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Appendix E

Reference parameters in the
stochastic model for the multiple
TA systems

Parameter V alue

σA 5000 (generation time)−1

σT
σA

1
30

kO 10 nM
kT = kTT 1 nM
ΓA 10 (generation time)−1

Γ0 1 (generation time)−1

βM 0.02 nM−1

βC 0.02 nM−1

Table E.1: Reference parameters used in Fig 4.12 of section 4.3. The notation generation time
refers to the time being measured in units of average E.coli generation time
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Appendix F

Derivation of Kramers escape rate

From eq 4.17 from chapter 4 we have

J = −D(x)[dV
dx

P (x, t) + ∂P

∂x
] (F.1)

This is equivalent to

J = −D(x)e−V (x) ∂

∂x
(P (x, t)eV (x)) (F.2)

hence
J
eV (x)

D(x) = − ∂

∂x
(P (x, t)eV (x)). (F.3)

By integrating both sides of eq. F.3 between xminlow and xminhigh, we obtatin

∫ xminhigh

xmin
low

J
eV (x)

D(x) dx. = −
∫ xminhigh

xmin
low

∂

∂x
(P (x, t)eV (x)) dx. (F.4)

The quasi-stationary approximation (∂P (x,t)
∂t
≈ 0) implies, because of the equation

of continuity in eq. 4.12 of chapter 4, that the flux J is constant (∂J
∂x

= 0). Hence
J can be taken out of the integral:

J
∫ xminhigh

xmin
low

eV (x)

D(x) dx = −J
∫ xminhigh

xmin
low

∂

∂x
(P (x, t)eV (x)) dx. = [P (x)eV (x)]x

min
high

xmin
low

(F.5)
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it follows

J = −
[P (x)eV (x)]x

min
high

xmin
low∫ xmin

high

xmin
low

eV (x)

D(x) dx
. (F.6)

Because J is constant, and it represents the out-flux from the potential well located
at xminlow , it can be written as the product

J = p ∗ r (F.7)

where p is the probability to be in the well (p =
∫ xminlow +∆
xmin
low
−∆ P (x, t) dx ) and r, the

rate of escape from the well over the potential barrier, is the quantity we are
intereseted in calculating. Hence, we need to evaluate J from eq. F.6 and write
it down as a function of p, to obtain r. In order to do so, we evaluate numerator
and denominator of eq. F.6 separately.

Denominator

Let us first evaluate the denominator
∫ xminhigh

xmin
low

eV (x)

D(x) dx in eq. F.6. The largest contri-
bution to the integral comes from the peak of eV (x), corresponding to the maximum
xmax, the integral can be evaluated by taylor expanding V (x) around x = xmax,
as follows:

V (x) ' V (xmax) + 1
2V

′′(xmax)(x− xmax)2 (F.8)

Integral F.8 then becomes

∫ ∞
−∞

eV (xmax)+ 1
2V
′′ (xmax)(x−xmax)2

D(x) dx = (F.9)

= eV (xmax)

D(xmax)

∫ ∞
−∞

e
1
2V
′′ (xmax)(x−xmax)2

dx (F.10)

The latter is a simple gaussian integral of the kind
∫∞
−∞ e

−x2
dx =

√
π, hence

∫ xminhigh

xmin
low

eV (x)

D(x) dx =
√

2πeV (xmax)

D(xmax)
√
−V ′′(xmax)

(F.11)
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that in turn implies that eq. F.6 becomes

J = −
[P (x)eV (x)]x

min
high

xmin
low√

2πeV (xmax)

D(xmax)
√
−V ′′ (xmax)

. (F.12)

Numerator

Let us now evaluate the numerator of eq. F.6: [P (x)eV (x)]x
min
high

xmin
low

in order to relate it
to the previously defined probability to be found in the well, p.

[P (x)eV (x)]x
min
high

xmin
low

= P (xminhigh)eV (xminhigh) − P (xminlow )eV (xAxminlow ). (F.13)

Assuming that the particle in initially in the well, and considering the quasi-
stationary approximation we obtain:

P (xminhigh) = P0(xminhigh) ≈ 0 (F.14)

hence
[P (x)eV (x)]P (xminhigh)

P (xmin
low

) = −P (xminlow )eV (xminlow ). (F.15)

Furthermore, if we assume the probability distribution around the well to be
close to the local equilibrium value, for infinitely high barrier, namely:

P (x) = Ne−V (x) (F.16)

one can write
P (xminlow ) = Ne−V (xminlow ) (F.17)

which implies

N = P (xminlow )eV (xminlow ) (F.18)

and hence

P (x) = P (xminlow )e−(V (x)−V (xminlow )) (F.19)
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for |x− xminlow | << |x− xmax|.

The potential V (x) has a minimum in xminlow , thus we can taylor expand it
around xminlow and obtain

V (x) = V (xminlow ) + 1
2V

′′(xminlow )(x− xminlow )2 (F.20)

The latter allows us to approximated the probability distribution in the neighbor-
hood of xminlow as follows:

p =
∫ xminlow +∆

xmin
low
−∆

P (x, t) dx ' P (xminlow )
∫ ∞
−∞

e−
1
2V
′′ (xminlow )(x−xminlow )2

dx (F.21)

Considering that the latter integral is again a simple gaussian integral we obtain

p = P (xminlow )
√

2π√
V ′′(xminlow )

(F.22)

which implies

P (xminlow ) = p

√
V ′′(xminlow )
√

2π
. (F.23)

Finally, the numerator in eq F.6 can be written as follows:

[P (x)eV (x)]x
min
high

xmin
low

= −p

√
V ′′(xminlow )
√

2π
eV (xminlow ). (F.24)

In conclusion from equations F.6, F.24, F.12 we obtain:

J = p ·

√
V ′′ (xmin

low
)√

2π eV (xminlow )

√
2πeV (xC )

D(xC)
√
−V ′′ (xC)

= p · D(xmax)
2π e−(V (xmax)−V (xminlow ))

√
−V ′′(xmax)

√
V ′′(xminlow )

(F.25)

remembering eq.F.7 one finally obtains the rate of escape from the potential well
located in xminlow , over the potential barrier situated in xmax as follows.

r(xminlow → xminhigh) = D(xmax)
2π e−(V (xmax)−V (xminlow ))

√
−V ′′(xmax)

√
V ′′(xminlow ). (F.26)

The latter coincides with rA→T of equation 4.19 of chapter 4. The back-rate
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rT→A = r(xminhigh → xminlow ) can be calculated following the same procedure described
so far, provided that the roles of xminlow and xminhigh are swapped.
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ABSTRACT

Many toxin–antitoxin (TA) loci are known to strongly
repress their own transcription. This auto-inhibition
is often called ‘conditional cooperativity’ as it relies
on cooperative binding of TA complexes to operator
DNA that occurs only when toxins are in a proper
stoichiometric relationship with antitoxins. There
has recently been an explosion of interest in TA
systems due to their role in bacterial persistence,
however the role of conditional cooperativity is still
unclear. We reveal the biological function of condi-
tional cooperativity by constructing a mathematical
model of the well studied TA system, relBE of
Escherichia coli. We show that the model with the
in vivo and in vitro established parameters repro-
duces experimentally observed response to nutri-
tional stress. We further demonstrate that
conditional cooperativity stabilizes the level of anti-
toxin in rapidly growing cells such that random in-
duction of relBE is minimized. At the same time
it enables quick removal of free toxin when the
starvation is terminated.

INTRODUCTION

Toxin–antitoxin (TA) loci are present in many bacteria
and archaea (1). Toxin normally inhibits cell growth,
whereas antitoxin neutralizes the activity of toxin by
forming a tight TA complex.
One of the known functions of TA loci is to respond to

nutritional stress, namely, toxins are activated upon nutri-
tional starvation and slow down the rate of translation (2).
Another significant feature of TA loci is that they contrib-
ute to persister cell formation in growing bacterial cultures

(3–5). Persisters are cells that have entered a slow-growing
or dormant state in which the cells are tolerant to envir-
onmental insults such as antibiotics; thus persisters
are multidrug tolerant and therefore pose a medical
problem. Especially, the recent experiments by
Maisonneuve et al. (5) demonstrated that successive
deletion of 10 mRNase-encoding TA loci of Escherichia
coli progressively reduced the level of persisters. TA loci
have multiple complex levels of regulation involving both
positive and negative feedbacks and sequestration through
binding. The importance and role of these regulations is
still an open question.

The relBE locus of E. coli is one of the best studied TA
model systems. The relBE locus encodes for antitoxin
RelB and toxin RelE. RelE is an mRNase that cleaves
mRNA positioned in the ribosomal A site (6), including
its own mRNA, while RelB inactivates RelE by forming a
tight complex with it (7). RelB is a metabolically unstable
protein whereas RelE is stable (2). However, RelB
is translated at a higher rate than RelE, and in exponen-
tially growing cells the abundant RelB molecules
{[RelB]& 10[RelE] (8)} will quench RelE activity
completely.

It has been shown that RelB and the RelB-RelE complex
autoregulate relBE transcription in a complex way (9)
(Figure 1): if only RelB is present then a RelB dimer
(RelB2) will repress relBE transcription. When RelE is
present at a concentration such that [RelB2]> [RelE] then
a RelB2RelE complex binds strongly and cooperatively
to the relBE promoter and represses transcription (9).
In contrast if RelE increases such that [RelE]> [RelB2],
then the excess RelE molecules will destabilize the
RelB2RelE-operator complex and thereby induce strong
transcription from the relBE promoter (8). This sensitivity
to the proper ratio between RelBE proteins is called condi-
tional cooperativity (9, 10).
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Conditional cooperativity has been found in all
plasmids and chromosome-encoded TA loci investigated
so far, including relBE of E. coli (8), vapBC of Salmonella
enterica (11), phd/doc of plasmid P1 (12) and ccdA/ccdB of
plasmid F (13). These systems belong to evolutionary in-
dependent families (14) and function by different molecu-
lar mechanisms. Thus conditional cooperativity must have
an essential role in the biology of the TA genes. This
role is difficult to analyse because of the complex
interweaving of the components that control TA operon
transcription.

The relBE locus is also one of the first systems whose
response to nutritional stress has been studied in detail (2).
It has been found that exponentially growing wild type
E. coli cells that are starved for amino acids reduce their
global translation rate to a new steady state level of �5%
of that of the non-starved level. This dramatic change
occurs within 20 min after starvation. Interestingly,
deletion of relBE instead results in a post-starvation
level of translation of �10%. This 2-fold increase in trans-
lation is consistent with RelE being a global inhibitor of
translation.

A

B

Figure 1. (A) Model description: antitoxin RelB (B) and toxin RelE (E) are encoded on the same mRNA (m), with only 1/100 of the ribosome that
translate relB continues to translate relE. RelE cleaves mRNAs when it is free. RelB forms dimer RelB2 when it is free, and RelB2 and RelE can form
two kinds of complexes: RelB2RelE and RelB2RelE2. For simplicity, we use RelB2 as a unit for RelB and do not consider RelB monomers explicitly.
Translation rates for RelB2 is transB=15/min, and for RelE is transE=0.3/min. In our simulation there will be 44 nM RelE and 200 nM of RelB2 in
total in the non-starved condition. A list of parameters and references used are given in the ‘Materials and Methods’ section. (B) Visualization of
conditional cooperativity due to the formation of RelB2RelE2, that does not repress the promoter.
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In an attempt to understand the biological role of con-
ditional cooperativity and to analyse the TA operon tran-
scription in general we present a mathematical model of
relBE operon activity that takes into account the known
features. We subsequently investigate the role of condi-
tional cooperativity, and show that it provides a mechan-
ism to stabilize the level of antitoxin in rapidly growing
cells such that random induction of relBE is minimized.
Another important prediction is that conditional
cooperativity enables quick recovery from the RelE-
mediated reduction of translation when the starvation is
terminated.

MATERIALS AND METHODS

In our mathematical model of the relBE system, the tran-
scription of the relBE operon (production of mRNA) and
translation of relBE mRNA (proteins production) are
taken into account as two separate processes. RelB form
tight dimers, hence we can assume that RelB is always
present as a dimer. In addition, RelB2 and RelE can
form complexes in the two stoichiometric forms
RelB2RelE and RelB2RelE2 (32).
A key goal of our model is to investigate the complex

autoregulation feedback of relBE promoter activity. RelB2

represses transcription. With moderate amount of RelE
added, this repression become stronger because the
RelB2RelE has larger affinity to the operator. When
RelE is further increased, however, the promoter is
de-repressed because RelB2RelE2 does not bind to the
operator.
RelE works as an mRNase only in free form, by

degrading the relBE mRNA as well as all other mRNAs
in the cell. In our modeling, only the cleavage action of
RelE on relBE mRNA is directly taken into account.
Free RelB2 has a very short half-life since it is actively

degraded by Lon protease. RelB half-life was measured to
be �3min (9), whereas RelE is stable and its half-life is
equal to the average E. coli doubling time (�30 min in
normal growing condition). We do not model the cell
division explicitly, it only enters implicitly into the RelE
half-life.
Based on the fact that roughly 10 times more RelB

monomers than RelE monomers are present during
steady state cell growth in spite of the 10-fold difference
in the half-life, we assume that the translation rate of RelB
(monomers) is 100-fold higher than that of RelE.
RelB2 in complex with RelE is known to be relatively

stable (8). However, for RelE to become active, RelB in
complex with RelE must be degraded at some rate. We
assume RelB2 in RelB2RelE and RelB2 RelB2 complexes
has a half-life roughly 3-4 to fold longer than the free
RelB2 (�12 min).
The half-life of relBE mRNA is not known, and in our

model it is set to 5 min. This is on the long side of typical
E. coli mRNA half-life (29), which helps to keep the
maximal promoter activity and the translation rate
within biologically plausible values while having enough
proteins.

The behavior of the system is investigated throughout
three different phases.

A first phase, from time 0 to time 200 min in the plots, is
what we call the ‘non-starved state’, where all the param-
eters used in the simulation refer to the exponential
growth phase of the cell.

At time 200min we switch to the nutritional stress phase
(amino acid starvation). Within the framework of our
model this means a sudden decrease in translation rate
for both RelB and RelE by 10-fold, based on the obser-
vation that a relBE� deletion strain shows a reduction of
translation to a post-starvation level of 10%. Because the
dilution by cell division does not happen in this phase, the
half-life of tE is changed to 24 h, which is much longer
than the examined amino acid starvation duration (5 h).
We investigate whether enough free RelE can be released
upon nutritional stress, since this circumstance could
explain the 2-fold difference of the translation rate in
starvation between wild type and relBE� strain (2). In
addition, starvation is known to significantly increase
Lon activity (17), thus during starvation the half-life of
the RelB2 is reduced by a factor of 8, both in the free
form and in complex.

At time 500min, we then switch-back to the non-
starved set of parameters corresponding to refeeding of
the cells with amino acids and monitor the recovery of
the system during the switch-back to exponential growth.

Note that the change of the parameters at the switching
of the states has been done instantaneously. We discuss
the effect of a time delay in the parameter change later.

We used the Gillespie algorithm (15) and performed
stochastic simulations (simulation procedures given
below). relBE mRNA, RelB2, RelE, RelB2RelE and
RelB2RelE2 are the molecular players in the simulations.
The concentrations are converted to number of molecules
so that 1 nM corresponds to 1 molecule in a cell, which is a
typical estimate based on the size of E. coli. Each chemical
reaction event happens at a random time and it is chosen
according to the reaction rates in Table 1. The possible
reaction events are listed in Table 2.

In the results in the main text, we consider the presence
of four chromosomes in each cell, that means four relBE
promoters, which is an average number of chromosomes
for exponentially growing E. coli cells. We also tried
the one chromosome case, which exhibit increased noise,
but the average trajectories remains similar. Each chromo-
some has two operators: each of them can be bound either
by a RelB2RelE complex or RelB. Since cooperativity in
the interaction between RelB2 and the relBE operator is
not proven (9) we assume that only one RelB2 can bind to
the promoter at a given time, while either one or two
RelB2RelE can be bound to the operator (9). When
the promoter is free, it shows maximal promoter
activity, and �0=4 relBE mRNA {per promoter} per
minute are produced. When either one RelB2 is bound
to the promoter or two RelB2RelE bind cooperatively,
the promoter is repressed and no relBE mRNAs are pro-
duced. In the present simulation, we did not consider the
repression by one RelB2RelE because experimentally
the Hill coefficient close to 2 in repression is observed
in the wide range of RelB2RelE concentration (9).
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Table 1. Set of parameters

Description
Symbol and meaning Value Units Reference

a0 total promoter activity 154.665 nM min�1 See text
[B2]ss steady state total concentration of RelB dimers 200 nM See text c.f. (8)

[E]ss steady state total concentration of RelE 44 nM See text c.f. (8)

tm mRNA half-life 7.2 min See text c.f. (29)

tB RelB half-life 4.3 min See text c.f. (8)

tE RelE half-life 43 min See text

tc RelB2 half-life in complexes 17 min See text c.f. (8)

nH Hill’s coefficient 2.3 (8)

transB RelB translation rate 15 min�1 See text

transE RelE translation rate transB/50 0.3 min�1 See text

kbind binding on-rate 4p Da/Vcell 3.8 min�1 (28)

KdB2E dissociation constant for B2E complexes formation 0.3 nM (9)
½B2�½E�
½B2E� ¼ KdB2E

KdB2E2 dissociation constant for B2E2 complexes formation 0.3 nM
½B2E�½E�
½B2E2� ¼ KdB2E2

kuB2E dissociation rate for B2E 1.14 nM

kuB2E= kbind�KdB2E

kuB2E2 dissociation rate for B2E2 1.14 nM

kuB2E2= kbind�KdB2E2

KD1 dissociation constant for B binding to DNA 10 nM See text c.f. (16)

KD2 dissociation constant for second B2E bound to DNA 0.04 nM See text c.f. (16)

KD3 dissociation constant for first B2E binding to DNA 30 nM See text c.f. (16)

kc cleavage rate 2.0 nM�1 min�1 See text c.f. (6)

Table 2. Events and rates in the simulation

Event Rate

mRNA transcription �0
4 � no: of operators with two free binding sites

RelB dimers translation [mRNA] * transB

RelE translation [mRNA] * transE

relBE mRNA degradation ½mRNA�
tm

RelB dimer degradation by Lon ½RelB2 �

tB

RelE degradation due to cell dilution ½RelE�
tE

RelB2RelE formation kbind * [RelB2] * [RelE]

RelB2RelE2 formation kbind * [RelB2RelE] * [RelE]

RelB2RelE dissociation kuB2E * [RelB2 RelE]

RelB2RelE2 dissociation kuB2E2 * [RelB2RelE2]

degradation of RelB2RelE due to cell dilution ½RelB2RelE�
tE

degradation of RelB2RelE2 due to cell dilution ½RelB2RelE2 �

tE

degradation of RelB2 in RelB2RelE complex ½RelB2RelE�
tc

degradation of RelB2 in RelB2RelE2 complex ½RelB2RelE2 �

tC

binding of RelB2 to operator kbind * [RelB2] * no. of operators with two free binding sites

binding of RelB2RelE to operator kbind * [RelB2] * no. of operators with at least one free binding site

unbinding of RelB2 from operator (KD1 * kbind) * no. of operators with 1 RelB2 bound

unbinding of one out of two RelB2RelE from operator (KD2 * kbind) * [RelB2] * no. of operators with two RelB2RelE bound

unbinding of single RelB2RelE from operator (KD3 * kbind) * [RelB2] * no. of operators with a single RelB2RelE bound

cleavage of relBE mRNA kc * [RelE]

stripping of RelB2RelE complex bound to operator from it by RelE kbind * [RelE] * no. of operators with at least on RelB2RelE
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Algorithm of the Gillespie simulation

We use the Gillespie algorithm in our simulation, where
the chemical reactions are treated as discrete stochastic
events that happen at given rates with time interval
between events drawn from the exponential distribution
(15).
The state of the system at each time step is defined by

the concentrations of the five molecular players, i.e. RelBE
mRNA (m), free RelE (Ef), free RelB2 (Bf), RelB2RelE
(B2E) and RelB2RelE2 (B2E2). The total copy number of
RelB2 (BT) and RelE (ET) are given by

BT ¼ Bf þ B2Eþ B2E2;

ET ¼ Ef þ B2Eþ 2B2E2:

The chemical reaction with a rate specified by the param-
eters showed in Table 1 results in a change in the number
of molecules as follows.

m
�0=4 � no:of unrepressed promoters

) mþ 1

m
kc�m�Ef

) m� 1

Bf
transB�mþB2E�KDB2E�kb

) Bf þ 1

Bf
Bf=�B

) Bf þ 1

Ef
B2E2=�c

) Bf þ 2

Ef
transE�mþB2E�KDB2E�kbþB2E2�KDB2E2�kbþB2E=�c

) Ef þ 1

Ef
Ef=�E

) Ef � 1

B2E
Bf�Ef�kbþB2E2�KDB2E2�kb

) B2Eþ 1

B2E
B2E�KDB2E�KbþB2E=�c

) B2E� 1

B2E2
B2E�Ef�kb

) B2E2 þ 1

B2E2
B2E2�KDB2E2�kbþB2E2=�c

) B2E2 � 1

In addition, RelB2 and RelB2RelE can bind to the four
operator sites. The binding happens to each operators in-
dependently, and the binding rates are given as follows
(O expresses the operator):

Oþ Bf
kb�Bf�O

) O � Bf

O � Bf
KD1�kb�ðO�BfÞ

) Oþ Bf

Oþ B2E
kb�O�B2E

) O � B2E

O � B2E
KD3�kb�ðO�B2EÞ

) Oþ B2E

O � B2Eþ B2E
kb�B2E�ðO�B2EÞ

) O � ðB2EÞ2

O � ðB2EÞ2
KD2�kb�ðO�ðB2EÞ2Þ) O � B2Eþ B2E

O � B2Eþ Ef
kb�Ef�ðO�B2EÞ

) Oþ B2E2

Oþ B2E2
kb�ðKDB2E2=KD3Þ�O�B2E2

) O � B2Eþ Ef

O � ðB2EÞ2 þ Ef
kb�Ef�ðO�ðB2EÞ2Þ) O � B2Eþ B2E2

O � B2Eþ B2E2
kb�ðKDB2E2=KD2Þ�O�B2E2

) O � ðB2EÞ2 þ Ef

ð1Þ

The last four reactions are what we call ‘stripping’ (18,19),
where RelE forming complex with RelB2RelE bound on
the operator and removing it, and the reverse reaction of
the stripping.

Each run is from time 0 to time 600. At time t=200
min the values of tB, tc, tE, transB and transE are changed
from values that mimic fast growth conditions to values
typical of amino acid starvation. At time t=500 the same
parameters are changed back to the fast growth value.

All the presented results refer to the averages of the
concentrations over a sample of 1000 simulations, unless
otherwise noted.

RESULTS

Outline of the model

The overall regulations and feedbacks in our model are
summarized in Figure 1A. The mechanism of the condi-
tional cooperatively is illustrated in Figure 1B. RelB and
RelE can form two types of complexes, namely RelB2�

RelE (B2E) and RelB2�RelE2 (B2E2). B2 and B2E repress
the promoter activity of relBE operon, while B2E2 does
not. This is a scenario proposed to reproduce the observed
conditional cooperativity (9). Both RelB2RelE complex (9,
32) and RelB2RelE2 complex (as heterotetramer); (32)
have been observed in vitro.

All the molecules are exposed to either degradation by
proteases or dilution by cell division, where the details are
described in the next subsection. The mRNA m can be
also actively degraded by the free toxin E.

Model parameters

The parameters of the model are constrained by (i)
Stoichiometric data showing that when [total amount of
RelE]:[total amount of RelB monomer] is in 1:2 ratio,
RelB2RelE and operator O complex, (RelB2RelE)2� O,
is formed, while increasing the ratio of RelE further
destabilizes the complex (9). This can be reproduced
when the binding of RelE to RelB2 and binding of
RelE to RelB2RelE occur with similar dissociation
constants, hence when the total amount of RelE exceeds
the total amount of RelB2, RelB2RelE are converted
to RelB2RelE2 (See Supplementary Material A for
detail).

(ii) That under normal growth in rich medium the in
vivo concentration of RelE is about one-tenth of that of
RelB (8). The actual concentration level was estimated to
be 550 – 1100 nM for RelB while 50–100 nM for RelE (8).
Here we choose parameters so that total RelB is �500 nM
and the total RelE is �50 nM in non-starved exponential
growth condition.

The in vivo lifetime of RelB is �4.3 min, whereas RelE is
metabolically stable but diluted by a rate set by cell
division, giving it a characteristic lifetime of �43min in
the exponential phase. This 10-fold shorter lifetime for
RelB than RelE, with the 10-fold higher concentration
of RelB in the exponential growing condition mentioned
above gives us a translation rate of RelE �1% of that of
RelB. [Since the estimate of the RelB and RelE levels in
vivo was difficult due to the low cellular amounts of the
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proteins (8), the 10-fold difference in concentration can be
smaller in reality, which would indicate higher translation
rate ratio (up to 10%).] (iii) That RelB2 represses RelBE
promoter by a factor 16, whereas (RelB2RelE)2 represses
the same promoter by a factor 800 under exponential
growth in normal medium. These repression folds are
about one-tenth of what was observed using lacZ fusion
on low copy number (�10) plasmids (16). We adapted
these repression folds mainly because they are close to
the upper limit of the repression folds which can give

biologically plausible promoter strength for the relBE
promoter and translation rate with still being able to
reproduce the observed concentrations of RelB and
RelE in exponential growth, where promoters are fully
repressed.
In the next subsections, we demonstrate that the model

with these evaluated parameter values show expected
response to amino acid starvation and recovery when
the starvation is over. We also investigate the robustness
of the behavior against the parameter changes.

A

B

C

Figure 2. Response to amino acid starvation and later recovery. The system is starved for amino acids from 200 min to 500 min. (A) Probability
distribution P([Ef], t) of a cell having a certain concentration [Ef] nM of free RelE at a given moment t. (B) Time courses averaged over 1000 cells, for
free RelE, free RelB and relBE mRNA, illustrating how the system switches between a state of high antitoxin to a state of high free toxin. (C) The
dynamics at entrance to the starvation at the single cell level. Three examples are shown, and the total amount of free RelE is plotted as function of
time, from time 180 to time 300.
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Amino acid starvation drives the switch to toxin activation

The model is examined when switching from rich medium
to amino acids starvation, and subsequently exposed
to refeeding after 5 h. There are three main processes
taking place during starvation: (i) The overall translation
rate is reduced, because of the lack of amino acids, here
simulated by a 10-fold reduction. (ii) Cells stop dividing,
thus dilution of RelE decreases, allowing for accumulation
of this long lived protein. (iii) Lon activity is believed to be
increased under starvation (17), increasing the degrad-
ation rate of RelB. We chose to make the degradation
8-fold stronger during amino acid starvation. The result
presented here holds as long as the degradation of RelB in
the RelB2RelE complex is large enough during the starva-
tion, and the 8-fold is close to the minimum fold needed.
Figure 2 shows switching from the antitoxin dominated

state to the toxin dominated state elicited by amino acid
starvation. Importantly, in order to make this response
work we had to assume that RelB in complex with RelE
must be actively degraded, at least during starvation.
If such degradation was not included, then the transition
to the high-RelE state cannot be achieved. Here, we
assume that RelB is degraded 4-fold less effectively when
in complex with RelE than when it is free (in vitro data
supports that RelB is partly protected from degradation
when it is in complex with RelE (8)). To demonstrate the
necessity of this process, we compare the model with and
without active degradation of RelB in the complex in the
Supplementary Material B.
From Figure 2B, we also see that there is a some time-

lag to enter the toxin dominated state, while the time to
exit this state is very short. This time lag is due to the com-
bined effect of ‘stripping’ and conditional cooperativity.
By ‘stripping’ we mean the process where a free toxin
molecules ‘invades’ the RelB2RelE complex bound to the
promoter inducing the complex to be released from
operator DNA. This has been shown to occur both
in vitro and in vivo (8). Note that it is possible to have
conditional cooperativity without stripping, in which
case excess RelE will form RelB2RelE2 complex in the
bulk and thus sequester RelB2RelE, but does not
remove bound RelB2RelE actively from the operator site.
The conditional cooperativity with stripping opens for

an active and relatively long battle between degradation of
RelB and a de-repression of the promoter with an
associated rise of relBE mRNA (2,8) and hence increase
in production of RelB. [It should be noted that in the
experiment that relBE mRNA level was observed to rise
�30-fold just after the amino acid starvation (2,8),
while in the present model we observe only �2-fold rise
(Figure 2). The height of this peak depends strongly on the
cleavage rate of mRNA by free RelE, kc, but just lowering
this value delays to reach the high free toxin state at the
starvation (details in Supplementary Material C). This dis-
agreement can be in principle improved if we take into
account the fact that free RelE will interact with all the
mRNAs in the cell, thus it is quite likely that free RelE will
be sequestered and will not cleave much of relBE mRNA
when its concentration is very low, which should give
bigger rise for relBE mRNA. In the present model,

however, we do not take this effect into account because
of large ambiguity in detailed interactions between all
mRNAs the free RelEs.] Without stripping, this rise
becomes much smaller than this, and hence the delay
becomes less (details in Supplementary Material D).
Central in this ‘battle’ is cleavage of mRNA by free
RelE, since it reduces the relBE mRNA for both RelE
and RelB, and thereby favor the long-lived toxin RelE.
The cleavage rate kc of relBE mRNA by toxin is not
known in vivo, and we use kc=2/min/nM to obtain rea-
sonably fast rise of the toxin upon starvation. For com-
parison, the in vitro cleavage activity per codon with
empty ribosome A-site was estimated to be between
0.000042 to 2.4 /min/nM depending on the codon (6).
Considering there are 79 codons for RelB, one expect
2–3 ribosomes at any time to translate the mRNA, and
thus an effective cleavage rate that should not exceed
5/min/nM. Thus our assumed value is in the high end,
but using for example a 10 times smaller value of kc
would delay the transition into toxin dominated state by
hours, as shown in Supplementary Material E.

Single cell activation of RelE is binary

The behavior of single cells are summarized in Fig. 2A
as the probability distribution P([Ef], t) of a cell having
a certain concentration [Ef] nM of free toxin at a given
moment t. We can see that the response is binary. There
is a high peak at low toxin at the start of starvation
(time 200), but another peak for high free toxin state
(around [Ef]& 45 nM) appears already at 10 min after
starvation. The low probability to take the value in
between (10 nM< [Ef]< 30 nM) suggest that each cell
switches from low (<10 nM) to high free toxin (>30 nM)
quickly. On cell population level (Figure 2B) in contrast it
takes almost 40 min for free RelE to reach 30 nM. This
contrast reflects the big variation in switching time
between different cells.

Figure 2C shows three representative trajectories of
single cells entering starvation. At the beginning, free
RelE is almost zero because RelE are bound by RelB’s,
but after some time the balance switches and the concen-
tration of free RelE rises quickly to high level.
The examples show variation in switching timing over
60 min but none of them spend much time at the
intermediate free toxin level. Overall this shows the signifi-
cance of stochastic modeling of this type of system as
well as the need for single cell measurement of the TA
systems.

Amino acid starvation is terminated at t=500 min in
Figure 2. Compared with the entry to the starved state, the
recovery from the starved state is found to be extremely
quick both on average and at the single cell level. As
demonstrated below the fast recovery depends on condi-
tional cooperativity.

Conditional cooperativity primes fast exit from the toxin
dominated state
To clarify the role of conditional cooperativity, we
compare the system with conditional cooperativity (the
same system as in Figure 2: referred as ‘cc’) and the
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system without conditional cooperativity (referred as ‘no
cc’): We removed the conditional cooperativity by pre-
venting RelB2RelE2 complex formation completely,
while keeping the other parts of the system unchanged.
Therefore, regardless of the relative concentrations of
total RelE and total RelB, the only possible complex
they can form is RelB2RelE. Figure 3A illustrates that
the conditional cooperativity is required for the fast
recovery from the toxin dominant state under starvation

to the non-starved state. Mechanistically this reflects that
formation of RelB2RelE2 derepresses the promoter in the
high-RelE state and thereby primes the system for
recovery already during starvation.
Figure 3B shows that conditional cooperativity also

reduces the probability to have high free toxin in the
non-starved state. In the non-starved state the excess of
RelB buffers for an increase in free RelE (by the se-
questration into the complex RelB2RelE). If RelB by

Figure 4. Summary of the model behavior against parameter changes. For each parameters (horizontal axis), fold change of the values from our
reference values are tried one by one. The color gradients indicate how the model deviates from the reference behavior: yellow indicates too many
free toxins in the healthy states, green indicates too slow rise of free RelE at amino acid starvation and red indicates too slow drop of toxins after the
removal of amino acid starvation. In the first entry, KdB2E=KdB2E2, the ratio of the dissociation constants KdB2E and KdB2E2 are kept to be one,
but the value itself is changed. In the second entry, the ratio KdB2E/KdB2E2 is changed, while keeping smaller dissociation constant to be the
reference value 0.3 nM. For the entry trans, the translation rates for RelB and RelE are changed by the given folds, while transB/transE and transB/
transB(AS) [transB(AS) is the translation rate of RelB during the amino acid starvation] are kept to the reference values. For the entry transB/transE
and transB/transB(AS) the given ratio is changed with keeping the value of the translation for RelB transB to be 15/min. For the entry tB (tC), the
lifetime of the RelB2 (RelB’s in the complexes) are changed with keeping the 1/8-fold reduction of the lifetime during the amino acid starvation. For
the entry kc (the 12th entry), the value of the cleavage rate is changed, while for the entry kc(kc�F=16) (the last entry), the value of kc and the
fold-change of the RelB degradation rate F are changed, so that kc�F is kept to the reference value 16.

A B

Figure 3. Role of conditional cooperativity. (A) The time evolution of free RelE level for the system with (red) and without (blue) conditional
cooperativity. The system is starved for amino acid from 200 to 500 min. (B) Probability distribution of free RelE in the non-starved state without
conditional cooperativity (blue) and with conditional cooperativity (red). Free RelE takes higher value without conditional cooperativity.
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fluctuations becomes low, the conditional cooperativity
provides a negative feedback that secures additional
RelB. This reduces free RelE by complex formation
and thus the concentration of free toxin is kept low.

Robustness of the observed behaviors against the
parameter changes

Finally, we study the robustness of the observed behaviors
against parameter changes. This is not only to see how
general our conclusion is regarding the choice of the par-
ameter values, but also to indirectly test how the feedbacks
that are not modeled in the present framework would
affect the behavior. Especially, growth-rate dependences
(24–27) are observed in cell physiology through for ex-
ample the partitioning of the ribosomes (which affects
the translation rate) or the RNAP availability (which
affects the transcription rate). Such dependences will
affect parameter values upon amino acid starvation. The
robustness test gives idea about how significant such a
feedback can be in the studied behavior.
In Figure 4, we summarize the robustness of the

observed behaviors against parameter changes. We
change parameters (or ratio of parameters) one by one
by 2n-fold, with �3� n� 3, and we check whether the
model is working with that parameter value based on
the following criteria: (i) The free RelE level in the
healthy state is <1 nM. (ii) The free RelE level reaches
>10 nM within 20 min after the start of the amino acid
starvation. (iii) The free RelE level drops <1 nM within
5 min after starvation is stopped.
The robustness analyses shows that the condition (ii) is

hardest to satisfy. Most parameters are split in two sub-
regions, i.e. the model is very sensitive to the change in one
direction (increase or decrease) but insensitive to change in
another direction. This is because our reference parameter
is at borderline, i.e. just fast enough, to satisfy the criterion
(ii). Even at this borderline we had to introduce the faster
degradation of RelB’s in complexes during starvation, to
achieve fast increase in free RelE. This again support the
necessity of the fast degradation of the antitoxins at amino
acid starvation.
The only case where condition (i) tends to be violated is

when the dissociation constant KdB2E for RelB2RelE for-
mation is very large, hence RelE are not tightly seques-
tered in the complex. Increasing both KdB2E and KdB2E2
has similar effect, but it affects stronger on the recovery
from the free high-toxin state (iii), by freeing up toxin
easier at the transient state.
In addition, the third criterion (iii) is violated when the

unstable antitoxin RelB is not produced high enough,
which happens when the ratio between the translation
rate of RelB and RelE (transB/transE) is too small or the
repression by RelB2RelE (characterized by KD2) is too
tight. When KdB2E/KdB2E2 is too small (1/4-fold or
less), RelB2RelE2 is not formed as much and the condi-
tional cooperativity becomes ineffective, which also makes
the recovery slow.
The robustness of the transcription rate a0 and the

translation rate (trans) is of particular interest in the
context of the growth-rate dependent feedback. We see

that the model behavior is robust 1/8- to 2-fold change
of these parameters. Namely, even if there is a feedback
from the growth rate to these parameters, the model
behavior will not be altered as long as the change is
within this fold. Especially, the transcription rate a0 is
expected to decrease upon slower growth (24), which
is the direction where the model behavior is robust.

We also investigated how the time scale of the param-
eter changes (when the conditions are shifted to or from
starvation) affect the kinetics of the transitions between
two states. The relevant parameters changed are the RelB
lifetime and the translation rates. Overall, we find that the
time scale of parameter changes is rate-limiting for the
entry into the starved state, i.e. the kinetics of the transi-
tions is fully determined by how rapidly we change these
parameters (Supplementary Material E). This is again
because our reference parameters are at the borderline
to reproduce the fast entry.

The recovery phase is, however, less sensitive to the time
scale of the parameter changes. The translation rate has
the biggest effect, but as soon as the translation rate in-
creases by some amount, the RelB accumulate enough and
free RelEs are repressed (Supplementary Material E).
Furthermore, the main result regarding the conditional
cooperative is robust: the recovery is always much faster
for the model with conditional cooperativity than without
conditional cooperativity (Supplementary Material F).

DISCUSSION

We constructed a mathematical model of how relBE is
regulated, with the main focus centered around the condi-
tional cooperativity in the autoregulation of relBE operon.
With our model we inteded to capture the available
experimental data, test the known and estimate the
values of unknown parameters and investigate the
systems dynamics when the cells are shifted between
non-starved and starved states.

Our current modeling framework highlights several
interesting features:

(1) A fast entry to the high-toxin state can only be
realized if antitoxin is degraded both when it is free
and in complex with toxin during amino acid
starvation.

(2) The transition from the antitoxin dominated state to
the toxin dominated state upon sudden amino acid
starvation is not graded but binary at the level of
single cells.

(3) When amino acid starvation is terminated condi-
tional cooperativity mediates fast recovery from the
toxin dominated to the growing state.

(4) Conditional cooperativity also reduces the occasional
occurrence of high free toxin state in the non-starved
condition.

In the following we discuss these four features. Active
degradation of antitoxin in the TA complex during the
starvation [Feature (1) above] should be closely coupled
to Lon protease activation during amino acid starvation
(17). More detailed understanding of Lon activity during
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the starvation as well as fluctuations of Lon activity in
growing cell will provide more insights about toxin acti-
vation through this pathway, which can be included in the
future development of the model.

The switch-like activation of the toxin at the single cell
level [Feature (2) above] comes from the positive feedback;
when free toxin starts to increase, the cleavage-rate of TA
mRNA increases, that in turn reduces the amount of anti-
toxin and thereby forces more free toxin to accumulate
(see also Figure 1). Positive feedback facilitated switches
have been seen in many other systems that require decision
making, for example, the lysis/lysogeny switch in temper-
ate phage (20), sugar utilization in bacteria (21) and cell
differentiation (22). In the present case, the decision that a
cell needs to make is whether it should translate or shut
down translation; we believe that it makes biological sense
that the cells do not waste time between these two states.

Conditional cooperativity [Feature (3)] facilitates the
switch to work in a robust manner, favoring the antitoxin
dominated state by making the switching back dynamics
fast and by reducing the probability to randomly switch to
toxin dominated state without stress [Feature (4)].

Even though the present modeling relies on parameters
measured for relBE systems, we believe that our model is
relevant for the mRNase TA systems in general, where the
basic framework of the regulations is believed to be similar
to the one in RelBE. Especially, the observed switching—
between low- and high-toxin states upon starvation and re-
covery—is interesting in relation to persisters. A current
view on the persister mechanism suggest that by toxin
fluctuations some cells happen to end in a toxin dominated
state [cf. (4,23,24)], while the present study shows that if
the TA system has the conditional cooperativity such fluc-
tuations will be strongly suppressed (Figure 3B). The
extent to which the system is subject to fluctuations, i.e.,
how often a cell can be in high-toxin state by chance
without amino acid starvation, is an important quantity
to study in the future in relation to the persister formation.
It is in general an interesting theoretical and experimental
problem to understand the role of TA system in persister
cells formation in the light conditional cooperativity.

In order to generalize the present model, especially to
the persister system, it should be noted that the several
known feedbacks are not taken into account in the
present model. As mentioned earlier, a number of param-
eters are growth-rate dependent (24–27) due to e.g. RNAP
availability, stringent response via ppGpp, DksA regula-
tion, etc. In the present level of modeling, these factors
would mainly affect the transcription rate. Within the
interest of the present work, the conclusions remain quali-
tatively the same for changing the transcription rate by
1/8- to 2-fold (Figure 4). However, the feedback where
high-toxin state imposes slow growth and slow transcrip-
tion which in turn favors high-toxin state opens for an
interesting direction as it can have a strong effect on the
stability of the persister state (24).

Finally, we propose several possible experiments based
on the present results.

The direct test of the predictions of the model about the
conditional cooperatively would be to construct a mutant
that does not form RelB2RelE2 and yet keep other

properties of RelB and RelE, and then compare the
dynamics with the wild type scenario. This, however,
requires the detailed structural knowledge of the proteins.
The observation of the dynamics of the entrance to and

recovery from the starved state at the single cell level will
give a lot of information about the system. Especially, the
binary response [Step (2)] should be confirmed experimen-
tally, by for example visualizing the RelE level or relBE
mRNA level in each cell.
The low copy number of RelE (�50 nM) or relBE

mRNA (�a few molecules) makes it challenging to
monitor these molecules using usual fluorescent micros-
copy, to overcome this challenge superresolution micros-
copy (e.g STORM) has been successfully used to monitor
the single cell/single molecule dynamics in bacterial cells
(31). The dynamics of the recovery is also interesting to
observe, especially the expected short recovery time due to
the conditional cooperativity.
Another interesting experiment is to study the depend-

ence of recovery dynamics on the duration of the amino
acid starvation. The duration of typical experiments is
�5 h, and the toxin RelE is expected to be stable on that
time scale. This is consistent with (7), where a pulse of
RelE found to sufficient to prevent cell division for
similar time scale. The limit of the stability of RelE in
non-dividing cells, though, is not known. This factor, ac-
cording to our model, can have a strong effect on the
recovery behavior from high-toxin state after very long
lasting amino acid starvation.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Data A–F and Supplementary
References [33,34].
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Supplement A: Parameter constraint for dissociation constants to re-
produce the conditional cooperativity
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Figure 5: Concentration of RelB2RelE as a function of (total RelE)/(total RelB monomer)
calculated according to law of mass action. The amount of total RelB monomer is fixed to 200
nM. KB2E is set to 0.3 nM, and the cases where KB2E2=0.03nM, 0.3nM, 3nM are shown.

In the in-vitro experiment on the conditional cooperativity by Overgaard
et al. [9], it has been shown that the formation of the operator-(RelB2RelE)2
complex depends on the RelE/RelE molar ratio. Especially, in Fig.2C in [9],
the amount of RelB monomer is fixed to 200nM, and the amount of RelE is
changed from (total RelB monomer):(total RelE)=16:1 to 1:4, and it has been
found that the amount of operator-(RelB2RelE)2 complex gradually increases
upto 2:1 ratio, and suddenly drops to almost zero at 1:1 ratio and beyond.

Inspired by this experiment, we calculated the the amount of RelB2RelE
complex according to the law of mass action

[B2E] =
[B2][E]

KB2E
, (2)

[B2E2] =
[B2E2][E]

KB2E2
(3)

[B2T ] = [B2] + [B2E] + [B2E2], (4)

[ET ] = [E] + [B2E] + 2[B2E2]. (5)

(6)

with keeping [B2T ]=100 nM (therefore relB monomer concentration is 200 nM).

1



KB2E is fixed to 0.3nM, and the cases with KB2E2= 0.03 nM, 0.3 nM (the
reference parameter value), 3nM are shown. With the reference parameter,
KB2E2= 0.3 nM, a clear peak of RelB2RelE is found at 2:1 ratio, while at 1:1
ratio it drops lower than the level at 16:1 ratio. When KB2E2= 3 nM, the drop
at 1:1 ratio is not as strong. When KB2E2= 0.03 nM, the peak of RelB2RelE
is not as high. Therefore, we conclude that the conditional cooperativity is the
best reproduced when KB2E and KB2E2 are at similar value.
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Figure 6: A,B,C: The repression fold of the relBE promoter for various total amount of RelB
and RelE, with changing the dissociation constant of RelB2RelE2 formation KB2E2. The
white point shows the total amount of RelE and RelB in the non-starved state. For all the
figure, the dissociation constant of RelB2RelE formation is fixed to be KB2E=0.3nM. A:
KB2E2 =0.3 nM, which is the value used in the paper. B: KB2E2 =3 nM. C: KB2E2 =30
nM. The solid line in the figure shows the line where the amount of total RelE is equal to
that of total RelB2 (i.e., RelEt: RelBt =1:2), while the dashed line shows the line where the
amount of total RelE is equal to the double amount of total RelB2 (i.e., RelEt: RelBt =1:1).

Furthermore, Figs. 6 show the the repression fold of the relBE promoter for
various total amount of RelB and RelE, keeping KB2E=0.3nM but changing
KB2E2. In 6A with KB2E2 =0.3 nM, we can see that when RelBt: RelBt =1:2
(here RelBt is total concentration in monomer) the system stay repressed since
there are many RelB2RelE, while almost complete de-repression happens when
total RelE exceed the RelEt: RelBt =1:1 line because most of the RelB2RelE
is converted to RelB2RelE2. However, as we increase KB2E2, this sharp de-
repression gets blurred.

Supplement B: Switch to high RelE require degradation of RelB in
complex
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Figure 7: Development of free RelE in case that there is no active degradation of RelB in
complexes, thus RelB in complex the same half-life as ⌧E . Free RelE is seen to remain low, in
contrast to behavior of standard model (Fig2B) where RelB in complex is degraded a factor
4 times slower than in complex but still degrated much fater than RelE.
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The response to starvation in Fig2 depends on the possible ways that RelB
can be degraded. In particular, the starved state depends critically on our
assumption of increased degradation of RelB during starvation, and also on the
assumption that RelB can be degraded in the RelB2RelE complex. Fig7 shows
that the toxin dominated state is not reached when RelB is completely protected
in complex, thus having the same life time as RelE in complex. In summary,the
necessary feaure to obtain toxin activation is a high degradation-rate of RelB
not only in the free state but also in the complex with RelE.

Supplement C: E↵ect of the cleavage rate of mRNA by toxin
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Figure 8: E↵ect of changing the kc value on evolution of free RelE and relBE mRNA. At time
t = 200 minutes the system is switched to aminoacid starvation.
A: Concentration of free RelE over time. The higher the value of kc the sooner a substantial
raise in the concentration is recorded. In order for free RelE to raise above 1 nM within 20
minutes kc needs to be higher than 1 nM�1min�1. A slower raise also results in higher accu-
mulation of RelE on the long period. This is a direct consequence of the higher concentration
of RelB2RelE complexes due to higher RelB level, that act as a reservoir for free toxin once
the antitoxin starts getting degraded.
B: Concentration of relBE mRNA over time. Lower values of the cleavage rate kc result in
a higher increase in the amount of mRNA at the onset of starvation, allowing an e↵ective
production of antitoxin RelB that slows down the raise in the concentration of RelE shown
above.
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Fig8 shows how lower values of kc allow a stronger increase in relBE mRNA
at the onset of starvation, enhancing RelB’s ability to fight back, and thus
slowing down the raise in free RelE.

Supplement D: Stripping delays entry into high free toxin state

We now investigate the e↵ect of only removing the possibility for RelB2RelE2

complex formation when this is bound to the operator, in other word we inves-
tigate the role of the assumed reaction where free RelE directly “strips” [18] the
operator and thereby derepresses it. If RelB2RelE and the operator as well as
the complex formations by RelB’s and RelE’s were characterized by a fast on
and o↵ dynamics, the e↵ect of such a stripping would be small. This is because
the speed of the reaction determines the relaxation time to the thermal equilib-
rium, where the stripping and the reverse reaction satisfies the detailed balance
and hence cancels out. However, when the unbinding rate of (RelB2RelE)2
bound to the operator is estimated to be low, stripping modifies the temporal
behavior significantly. For example, it has been suggested that the stripping
plays a crucial role in quickly deactivating human NF-B [19, 18]. In the RelBE
case, with a di↵usion limited on-rate of about 0.06/sec/molecule, and a repres-
sion factor of 800 in the non-starved conditions, the residence for the complex
(RelB2RelE)2 on the operator is estimated to be long (⇠ 6 min), and the e↵ect
of stripping can be substantial.
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Figure 9: The model behavior without stripping. A: Time development of the probability
distribution of free RelE, sampled over 1000 cells. B: Average trajectory of relBE mRNA and
free RelE without stripping. Compared to in Fig. 2B, entry into the toxin dominated state is
faster.

Fig. 9 shows the behavior of the system without stripping, demonstrating
that absence of stripping results in faster transition into the RelE dominated
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state, and increases fluctuations of RelE during starvation (compare it with
Fig. 2). That is, without stripping, it takes more time before the operator is de-
repressed when RelE becomes dominant, because the system needs to wait until
bound RelB2·RelE leaves from the operator. In this scenario, the system cannot
“fight back” by strong de-repression and hence strong production of RelB does
not occur as fast as in the case with stripping. Thus, without stripping the
toxin is much more prone to be activated.

Note that our assumption of a di↵usion limited on-rate may be incorrect:
On the one hand, DNA facilitated search increases the on-rate in vitro [20], but
in vivo unspecific bindings of RelB2RelE typically slow down the search [21]. If
the on-rate of (RelB2RelE)2 is lower than assumed here, the e↵ect of stripping
becomes even more pronounced than illustrated in the figure.

Supplement E: E↵ect of time delay in the change of parameters at
transitions between the starved and the non-starved states

In the main text the switching from one level of nutrients to another (amino-
acid starvation to rich medium and vice versa) was achieved by changing some
key parameters, namely, the free RelB halflife ⌧B , the halflife of RelB in com-
plexes ⌧c, the translation rate for RelB (and consequently the translation rate
for RelE), and the halflife of free RelE. The changes in the parameters were
treated as happening istantaneously for simplicity of the model.

Here we investigate the e↵ect of varying the life time of RelB and the trans-
lation rate slower (linearly over time) at the transition to understand the the
role of these time scales. 3

3The change of the life time of free RelE ⌧E does not have significant e↵ect in the transition
because ⌧E is at shortest 43 min, much longer than the systems dynamics at the transitions.
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Figure 10: E↵ect of changing the halflife of free RelB (⌧B) and RelB in complexes (⌧c) from
fast grow conditions levels (⌧B = 3min and tauc = 12min) to amino-acid starvation estimated
level (⌧B = 0.375min and ⌧c = 1.5min) linearly over time in two di↵erent cases : over a time
interval of 30 min (A) and 5 min (B)
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Figure 11: E↵ect of changing the halflife of free RelB (tauB) and RelB in complexes (⌧c)
from amino-acid starvation estimated levels (⌧B = 0.375min and ⌧c = 1.5min) to fast grow
conditions level (⌧B = 3min and ⌧c = 12min) linearly over time in two di↵erent cases : over
a time interval of 30 min (A) and 5 min (B)

E↵ect of the RelB degradation. Figure 10 shows the e↵ect of varying ⌧B and ⌧c

over 30 min (A) and 5 min (B) at the transition from fast growth conditions to
amino-acid starvation. The time scale of the change is directly reflected to the
time for free RelE to rise (a2). This is expected from the fact that this change
was required to have the fast enough entrance to the high-toxin state at the
starvation. In order to reproduce the experimental observation that the e↵ect
of RelE seen on the protein level about 10 min after the amino acid starvation,
we predict that the e↵ect of activation of Lon on ⌧B and ⌧c should be significant
after 10 min.

On the other hand, as can be seen in fig. 11, the dynamics of recovery from
starved state is little a↵ected the time scale of change of ⌧B and ⌧C . We conclude
that recovery behavior is robust with respect to a slower change of ⌧B and ⌧c.

7



 0

 2

 4

 6

 8

 10

 12

 1  4

 16

 10  20  30 0

tr
an

sl
at

io
n
 r

at
e

tr
an

sl
at

io
n
 r

at
e

 0

 2

 4

 6

 8

 10

 12

 1  4

 16

 10  20  30 0

FAST GROWTH          AMINO-ACID STARVATION AMINO-ACID STARVATION         FAST GROWTH          

re
lB

E
 m

R
N

A
(n

M
)

R
el

E
f(

n
M

)
R

el
B

f(
n

M
)

re
lB

E
 m

R
N

A
(n

M
)

R
el

E
f(

n
M

)
R

el
B

f(
n

M
)

lin var 30 min
lin var 5 min
istantaneous

AA B

 1

0

 160  180  200  220  240  260  280  300

t(min)

 0.01

 0.1

 1

 10

 100

 160  180  200  220  240  260  280  300

t(min)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 160  180  200  220  240  260  280  300

t(min)

 1

 10

 460  480  500  520  540

t(min)

 0.01

 0.1

 1

 10

 100

 460  480  500  520  540

t(min)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 460  480  500  520  540

t(min)

a1

a2

a3

b1 

b2 

b3 

Figure 12: E↵ect of continuos variation of the translation rate for RelB and RelE continuosly
over time on the dynamics of the transitions from fast growth conditions to amino-acid star-
vation and vice-versa. Panel A) Behaviour over time of free RelB (a1), free RelE (a2) and
relBE mRNA (a3) at the transition from fast growth conditions to amino-acid starvation in
three di↵erent cases : translation rate is changed abrubtly at the switching time from fast
growth level (15 nM/mRNA/min) to amino-acid starvation level (1.5 nM/mRNA/min)(red
line), translation rate is changed linearly over a time span of 5 minutes (blue line), translation
rate is changed linearly over a time span of 30 minutes (green line). Panel B) Behaviour over
time of free RelB (b1), free RelE (b2) and relBE mRNA (b3) at the transition from amino-
acid starvation to fast growth conditions in three di↵erent cases : translation rate is changed
abrubtly at the switching time from fast growth level (15 nM/mRNA/min) to amino-acid
starvation level (1.5 nM/mRNA/min)(red line), translation rate is changed linearly over a
time span of 5 minutes (blue line), translation rate is changed linearly over a time span of 30
minutes (green line).

E↵ect of the translation rate. We explore the e↵ects of changing the value of the
translation rate at the two switching point (fast growth to amino-acid starvation
and vice-versa) linearly over time instead of abruptly as it was done in the
main text. We took into account two extreme cases, in one case the change in
translation rate happens over a time span of 5 minutes (blue lines in fig. 12)
and in the other case the time span is 30 minutes.

In the case of transition to amino-acid starvation (fig. 12 A) the activation of
free RelE is delayed by almost the same amount as the time interval over which
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the translation rate is changed. This is natural because the high translation
rate gives RelB to fight back against the rise of RelE.

In the case of transition to recovery phase (fig. 12 B), even though also in
this case we see a noticeable delay in the fall of free RelE, the free RelE falls
to low level much faster than the introduced time delay. This is because the
system need enough number of RelBs produced to repress RelE, and this can
be realized even before the translation happens at full speed.

Supplement F: Conditional cooperativity gives faster recovery from
amino-acid starvation induced growth-arrest than without conditional
cooperativity independent of the delay in the recovery of the trans-
lation rate

As it has been shown in supplement E, the time scale over which the trans-
lation rate increases after starvation phase a↵ect the time scale of the fall of
the free RelE. Here we confirm that the conditional cooperativity will still give
faster recovery than without consitional cooperativity even if the translation
rate increase slower.

Figure 13 compare without conditional cooperativity case (top) and with
conditional cooperativity case (bottom), when the translation rate changes in-
stantaneously (circles) or over 30 min. In both cases we see that the case without
conditional cooperativity is much slower in recovery. We conclude that our qual-
itative conclusion of importance of conditional cooperativiy for recovery from
the high-toxin phase is robust against the detail of the time scale of parameter
change.

9



tr
an

sl
at

io
n

 r
at

e

 0

 2

 4

 6

 8

 10

 12

 1  4

 16

 10  20  30 0

 0.01

 0.1

 1

 10

 100

 460  480  500  520  540  560  580  600

E
f(

n
M

) 
(c

c)
 

t(min)

linear variation
istantaneous variation

 0.1

 1

 10

 100

 460  480  500  520  540  560  580  600

E
f(

n
M

) 
(n

o
 c

c)

t(min)

linear variation
istantaneous variation

Figure 13: Comparison between time-scale over which recovery takes place without (A) and
with (B) conditional cooperativity, in the case where translation rate is changed abruptly from
amino-acid starvation value to fast-growth value (blue line) and in the case where it’s changed
linearly with time over an interval of 30 minutes.

10



Appendix H

Attached article: Conditional
Cooperativity of Toxin-Antitoxin
Regulation Can Mediate
Bistability between Growth and
Dormancy

133



Conditional Cooperativity of Toxin - Antitoxin Regulation
Can Mediate Bistability between Growth and Dormancy
Ilaria Cataudella1, Kim Sneppen1, Kenn Gerdes2, Namiko Mitarai1*

1 Niels Bohr Institute/CMOL, University of Copenhagen, Copenhagen, Denmark, 2 Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle

University, Newcastle, United Kingdom

Abstract

Many toxin-antitoxin operons are regulated by the toxin/antitoxin ratio by mechanisms collectively coined ‘‘conditional
cooperativity’’. Toxin and antitoxin form heteromers with different stoichiometric ratios, and the complex with the
intermediate ratio works best as a transcription repressor. This allows transcription at low toxin level, strong repression at
intermediate toxin level, and then again transcription at high toxin level. Such regulation has two interesting features; firstly,
it provides a non-monotonous response to the concentration of one of the proteins, and secondly, it opens for ultra-
sensitivity mediated by the sequestration of the functioning heteromers. We explore possible functions of conditional
regulation in simple feedback motifs, and show that it can provide bistability for a wide range of parameters. We then
demonstrate that the conditional cooperativity in toxin-antitoxin systems combined with the growth-inhibition activity of
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Introduction

Many bacteria and archaea have multiple Toxin-Antitoxin (TA)

loci [1], where the toxin normally inhibits cell growth, while the

antitoxin neutralizes the activity of the toxin by forming a tight TA

complex. One of the known functions of TA loci is to respond to

nutritional stress [2], namely, toxins are activated upon nutritional

starvation and slow down the rate of translation. When cells are

under normal fast growth conditions, on the other hand, the

majority of the cells will be in the antitoxin-dominated state, such

that toxin activity is fully inhibited.

It has been found that many bacterial TA loci are auto-

regulated at the transcriptional level by a mechanism called

‘‘Conditional Cooperativity’’ (CC) [3], where the transcription

factor can bind cooperatively to the operator only if the

concentrations of two different proteins satisfy a certain

stoichiometric ratio. CC was quantitatively studied in one of

the Escherichia coli TA loci, relBE [3–6]. Here the two proteins,

the toxin (mRNase) RelE and the antitoxin RelB, are encoded

by the same operon, which is negatively auto-regulated. The

tight dimer RelB2 is a weak transcriptional auto-repressor, but

this repression is strongly enhanced by the presence of RelE

and becomes strongest at RelB2 : RelE ratio 1 : 1. Over-

expression of RelE above twice of RelB2, though, will result in

an abrupt de-repression of the promoter. This unique behavior

is a consequence of formation of alternative hetero-complexes

of RelB and RelE; RelB2RelE and RelB2RelE2. Two

RelB2RelEs bind to the promoter site cooperatively to repress

the promoter strongly, while RelB2RelE2 does not bind to the

promoter.

Interestingly, all plasmid and chromosome-encoded TA loci

investigated are found to be regulated by CC so far, including

relBE of E. coli [3,4], vapBC of Salmonella enterica [7], phd/doc of

plasmid P1 [8,9] and ccdA/ccdB of plasmid F [10]. This suggest

that CC is a common feature for TA loci.

In our previous work, we have explored the function of CC in

the starvation response of the RelBE system, and showed that CC

prevents random toxin activation and promotes fast translational

recovery when starvation conditions terminate. However, to

reproduce the full dynamics of the starvation response, we took

into account details of the RelBE system, which made the model

rather specific to it. The primary purpose of this paper is to

construct a simple mathematical model that demonstrates the

functions of CC in a more general perspective.

TA loci have been suggested to be involved in persister

formation [11–16]. When an antibiotic is applied to a growing

bacterial population, the majority of the bacteria are killed.

However, a very small fraction of them survives and re-grows after

the antibiotic is removed. If the progeny of the bacteria is again

sensitive to the same antibiotic, they are called persisters, in

contrast to the resistant bacteria that have acquired resistance to

antibiotic by mutation. Persisters are genetically identical to the

sensitive cells, but believed to be in a non- or slow-growing,

dormant state. Since the majority of antibiotics interferes with the

cell growth and division process, cells can survive if they grow

slowly or not at all.

The exact molecular mechanism underlying persistence is not

fully understood. However, it has been found that mutations in

hipAB genes severely increase the level of of persisters formation.

Interestingly hipAB is one of the TA loci in E. coli [11,13,14]. In
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addition, recent experiments [15] showed that removal of 10

mRNase-encoding TA loci reduced the persister fraction signifi-

cantly. These observations strongly suggest that TA loci are

important factors for persister formation.

One of the possible explanations is that stochastic activation of

the toxin will slow down cell growth, resulting in a dormant state.

This will be possible if the TA locus dynamics exhibits bistability,

where a cell can be either in the antitoxin-dominated state that

ensures the growth or in the toxin-dominated state that inhibits the

growth. This viewpoint is also consistent with the observation that

the persister state can be described as a metastable state with a

constant stochastic switching rate to and from normal growing

state [12].

This idea was theoretically pursued by Lou et al. [17] with a

simple mathematical model that did not take CC into account.

They concluded that, for bistability to be achieved, high

cooperativity (Hill-coefficients *4) is necessary, both in transcrip-

tional auto-regulation of the TA operon and in the free toxin

activity.

In this paper, we explore the basic features of CC as a

regulation mechanism mediated by heteromer formation. We

demonstrate that CC provides bistability in a simple feedback

motif in a wide range of the parameters. We then construct a

simplified model of TA system regulation and demonstrate that

CC with growth rate-mediated feedback via toxin activity can

provide the bistable alternatives between the antitoxin-dominated

and the toxin-dominated states.

Results

Conditional regulation
Complex formation. We examine a simplified system, where

protein A and T can form two kinds of heteromers, AT and ATT

(Fig.1A):

AzTzT<ATzT<ATT: ð1Þ

Here, we assume that AT is the active molecule that act as a

transcriptional repressor, whereas free A, free T, and ATT are not

active in transcriptional control. This is a simplification of the

transcriptional regulation by RelBE, where RelB2 corresponds to

one A, while RelE corresponds to one T.

The amount of active molecule ½AT � shown in Fig. 1 is

determined from total A and T distributed among complexes

½AT � and ½ATT � according to

½AT �~ ½Af �½Tf �
KT

, ð2Þ

½ATT �~ ½Tf �½AT �
KTT

, ð3Þ

Here KT and KTT are the dissociation constants for AT and ATT,

respectively, whereas the concentration of free A (T) is denoted

½Af ] (½Tf �).

Figure 1. Heterocomplex formation in a TA system. (A) Reaction
scheme of the heterocomplex formations, implying that the active
complex [AT] is constrained by through A~½Af �z½AT �z½ATT � and
T~½Tf �z½AT �z2½ATT � with complex concentrations expressed by
eq. (2). (B) Concentration of AT heteromers for a fixed value of A~100
as a function of T with KT~KTT ~1. Note that it has a peak at A~T .
In the strong binding limit of KT?? with KTT ~rKT (r kept constant),

½AT � for Tv2A is given by
1

4{r
{rAz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2A2z(4{r)rT(2A{T)

p� �
for r=4 and T(2A{T)=(2A) for r~4, where ½AT � always has a peak at
A~T . In this limit, ½AT �~0 for T§2A. (C) The behavior of ½AT � shown
in (B) is reflected in the behavior of the repression factor
1=(1z½AT �=KO) as a function of T , calculated for fixed A~100, and
dissociation constant for AT-DNA binding KO~1.
doi:10.1371/journal.pcbi.1003174.g001

Author Summary

The effectiveness of antibiotics on many pathogenic
bacteria is compromised by multidrug tolerance. This is
caused by a small sub-population of bacteria that happen
to be in a dormant, non-dividing state when antibiotics are
applied and thus are protected from being killed. These
bacteria are called persisters. Unraveling the basic mech-
anism underlying this phenomenon is a necessary first step
to overcome persistent and recurring infections. Experi-
ments have shown a connection between persister
formation and the battle between a toxin and its antitoxin
inside an E. coli cell. Toxin inhibits the cell growth but is
neutralized by the antitoxin by forming a complex. The
proteins also regulate their own production through this
complex, thereby forming a feedback system that controls
the growth of the bacterium. In this work we provide
mathematical modeling of the feedback module and
explore its abilities. We find that the auto-regulation with
reduced growth associated with free toxins allows the cell
to be bistable between two states: an antitoxin-dominated,
normal growing one, or a dormant one caused by the
activity of the toxin. The latter can be the simplest
description of persister state. The toxin-antitoxin system
presents a powerful example of mixed feedback design,
which can support epigenetics.

Conditional Cooperativity Mediates Bistability
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Fig. 1B shows ½AT � as a function of T for fixed A, pinpointing

that when TvA, T is limiting the amount of AT, while TwA
implies that a substantial fraction of A is sequestered in the ATT

complex. For Tw2A, ATT formation sequesters nearly all AT

and ½AT � drops sharply to a value close to zero. This last transition

can be ultrasensitive, provided that the binding between AT and

ATT is strong, KTT%A. For RelB-E system the binding is indeed

very strong, with a measured KTT in the nanomolar regime [6]. A

sequestration-mediated ultra-sensitivity is also known in small

RNA regulation [18–21] as well as in transcription factors [22–

25]. In the present case, just a factor two difference in T around

T&2A can change ½AT � dramatically.

This ultra-sensitivity is reflected in the promoter activity

behavior, that shows a sharp de-repression occurring at T&2A
(Fig. 1C), where ½AT � drops. Another unique feature of CC is its

non-monotonicity, and an associated derepression for small T
because ½AT � is small, see Fig. 1B,C.

Note that Fig. 1C does not include possible cooperativity in AT-

DNA binding. The unique characteristics of CC, ultra-sensitivity

by sequestration and non-monotonicity, do not require this

cooperativity. For simplicity, therefore, we focus on regulation

by AT without cooperativity, and we call it ‘‘conditional

regulation’’ (CR), rather than CC. Of course, adding cooperativity

will make the response even sharper, and the following results hold

for the cooperative case, too.

Bistability in a simple feedback motif. We now study

production of T repressed by AT, while A is fixed. The regulatory

circuit is described by

dT

dt
~

s

1z
½AT �
KO

{T , ð4Þ

where s is the maximum production rate of T, and KO is the

dissociation constant of AT molecule to DNA. We assume that

total A can be controlled and maintained at a steady state by a AT

independent promoter. In this subsection, we take the lifetime of T

to be the time unit and set KT~KTT~1 for the dissociation

constants, thus measuring concentrations of AT and ATT in units

of their mutual binding strength. Further, focusing on CR, we

assume that there is no cooperativity in binding of AT to

promoter.

Fig. 2(A) shows the production term of eq.(4) as a function of T ,

for three different values of A with each of them two different

values of KO. The repression is always strongest at T~A, and

sharp de-repression happens at Tw2A for all the cases. The

higher A, the more ½AT � will present when A~T , resulting in

stronger repression at A~T for larger A. The AT-DNA

dissociation constant KO also contribute to the repression strength.

The thick black line represents the degradation term in eq.

(4), and the intersection between this and the production gives

the steady state values of T . For small A ( = 20) with KO = 1,

there is only one crossing, happening at a relatively high value

of T (&900.). At intermediate A (~100), there are two stable

fixed points and one unstable fixed point in between (T&200),

reflecting a bistable system. At high A (~400), the high T fixed

point vanishes and the system settles at a monostable state with

low T . We have also analyzed the systems systematically for

weaker repression, i.e. higher values of KO, and again found

bistability provided that A (and thus T ) is increased accord-

ingly.

In addition, the non-monotonicity of the CR has a striking

implication in regulation at low T values: It guarantees that the

low (uninduced) T steady state value has finite amount of T that

is maintained at a level nearly independent of A (Fig. 2A,

compare A~100 and 400 with KO~1.). This is an important

feature for TA system in terms of the starvation response, as

discussed later.

Remarkably, the system exhibits bistability without cooper-

ative binding to DNA. In the TA system the cooperativity is

instead provided by the ultrasensitive de-repression at T = 2A

that is facilitated by a very strong protein-protein binding [22–

25]. This bistability is seen in a wide range of A and s values as

shown in Fig. 2(B). The larger s and A, the high-T steady state

value increase proportionally, while the low-T steady state value

remains practically unchanged. Thus, as externally imposed A is

increased, the model predict a larger contrast between the two

steady states. If the binding to DNA is cooperative, the de-

repression at ATT formation becomes even sharper, thereby

favouring bistability.

We have also studied other possible motifs, where either T or A

is repressed or activated by AT complex (data not shown). For

example we found that if AT activate A while T is kept constant,

one can obtain bistability between a high A state and a low A state

in a wide range of parameters. This bistability is again supported

by the ultrasenstivity of AT sequestration, as ½AT � increase sharply

with increasing A around *T=2.

Figure 2. Conditional regulation of T with fixed A concentra-
tion. (A) Production term of eq. (4) as a function of T for s~1000, for
A~20 (blue line), 100 (red line), and 400 (green line). The solid lines
represent KO~1 case, and the dashed lines represent KO~100 case,
where KO is the dissociation constant for the binding of AT-DNA. (B)
Region in the parameter space (A, s) that shows bistability for KO = 1.
The color of each bistable point represents the ratio between the low-T
fixed point and the high-T fixed point.
doi:10.1371/journal.pcbi.1003174.g002
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Simple model of persister formation
In this section, we construct a simple model of TA activity

control with CR, a model aimed at capturing the central features

of persister formation. We use the RelBE system as a reference

because the molecular interactions and parameters are best known

here. The reference parameters are listed in Materials and

Methods.

In RelBE [6], the antitoxin RelB and the toxin RelE are

encoded by the same operon, and transcriptionally auto-regulated

by CC. RelE is metabolically stable, and its concentration

decreases only by dilution due to cell division (generation time

,30 min in log phase growth in rich medium). On the other hand,

RelB is actively degraded by protease Lon, resulting in its very

short half-life of *3 min. In spite of this, the RelB concentration

in a normally growing cell is about 10 times of that of RelE [4],

suggesting that the RelB mRNA is translated about 100 times

more often than RelE mRNA [6].

This situation is depicted in Fig. 3A1. Since both toxin T and

antitoxin A are regulated by the same promoter, the correspond-

ing equations apply:

dT

dt
~

sT

1z
½AT �
KO

{T and
dA

dt
~

sA

1z
½AT �
KO

{CA
:A, ð5Þ

where sT and sA are the maximal production rate for T and for

A, respectively. The dilution rate of T is given by cell division,

and is taken as a unit rate, while CA is the active degradation

rate of A.

This motif, however, cannot exhibit bistability. Fig. 3A2 shows

example null-clines, which have only one stable fixed point at the

antitoxin dominated state. We performed parameter scan span-

ning from 1/8 to 8 fold relative to the values used for Fig. 3A2, but

did not find any combination of parameters that gives bistability,

even if we allow cooperative binding of AT to DNA with Hill

coefficient 2 (data not shown). This absence of bistability is due to

A being regulated identically to T. Accordingly, the de-repression

of the promoter around T&2A increases not only the toxin

production but also the antitoxin production, and the latter is so

large that the system remains in the antitoxin-dominated state.

When we include the activity of free toxin on cell growth,

however, the model system can show bistability. This is because

the toxin-induced arrest of cell growth prolong lifetime of T, while

leaving A being degraded by Lon at a high rate. The mathematical

formulation of this extended model is

dT

dt
~

sT

1z
½AT �
KO

� �
(1zbMTf )

{
1

1zbC ½Tf �
:T ð6Þ

dA

dt
~

sA

1z
½AT �
KO

� �
(1zbM ½Tf �)

{CA
:A: ð7Þ

Figure 3. TA system with CR without and with feedback through free toxin activity. (A.1) Schematic representation of the genetic
circuit described by eq. (5) for TA system with CR, without considering toxic activity of free T. (A.2) Null-clines for eq. (5). Blue line represents
dT

dt
~0, and red line represents

dA

dt
~0. For comparable values of A and T the two null clines become parallel and does not cross, as shown in the area

highlighted in grey, i.e. the system does not show bistability. The parameters used are listed in Table 1 in Materials and Methods. Dashed lines with
arrows show the flow to the fixed point. (B.1) Schematic representation of the genetic circuit described by the model (6) and (7). (B.2) Null-clines for

the system of eqs. (6) and (7) with bM~bC&11. Blue line
dT

dt
~0, Red line

dA

dt
~0. Dashed lines with arrows show the flow to the stable fixed points.

doi:10.1371/journal.pcbi.1003174.g003
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expressing that ½Tf � reduces all protein production, and accordingly

also decreases the dilution by cell growth. bM represents the

reduction of protein expression per free toxin (Tf ) molecule, and bC

represents the growth inhibition per free toxin molecule. Notice that

½Tf � does not influence degradation of A, because it is anyway so

unstable that cell division hardly affects its concentration.

These terms correspond to the growth-rate dependent feedback

[17,26,27]. The reduction of the protein production (bM term) can

account for both direct activity of free toxin to TA locus and the

global slowdown of the transcription rate due to change of

physiological conditions [26]. Comparison of the present model

with the steady state growth data in Ref.[26] is given in Text S1.

We expect bM&bC because the slowing down of the growth rate

is due to the global slowing down of the protein production. At the

same time, there can be some quantitative difference because bM

may include the effect specific to the TA locus.

The growth-rate reduction mediated by T constitutes a positive

feedback [17,26,27] on T accumulation, which is essential for

bistability and persister formation. The term with bM reduces the

production of both antitoxin and toxin, and thus overall weaken

the ability to maintain the bistability. Note that bM primarily

influences the transition state from A to T dominated state,

because the reduction of production targets the short lived A

protein first.

Fig. 3B1 examines eqs. (6)–(7) with parameters extracted from

the RelBE system [6] (see the figure caption of Fig. 3). The null-

clines in Fig. 3B2 are from the bM~bC&11 case, exhibiting two

stable fixed point, one at the antitoxin-dominated state (the low-T
state, A&10, T&1) and another at the toxin dominated state (the

high-T state, A&1, T&100). Note that the antitoxin dominated

state has almost the same concentrations as the stable fixed point

in Fig. 3A2 with bM~bC~0. The antitoxin dominated state

scarcely depends on bM and bC , since there is almost no free toxin

(½Tf �&0) in the antitoxin dominated state.

Figure 4A shows the ratio between the T dilution rates at the

low and high T steady state, ½1zbcTf (high)�=½1zbcTf (low)�.

The figure illustrates that our model predicts bistability for a wide

range of parameters, and further that this bistability is indeed

governed by the increase in cell generation parameterized by the

bC term. For too large bM the bistability is counteracted because

the toxin production is reduced too much by free toxin to

accumulate enough for the stable high toxin state. Remarkably, for

proportional reduction of protein production and increased cell

generation, bM~bC , the model predicts bistability for all

bM~bCw1.

We also studied the robustness of the bistability against

parameter change. One of the most crucial parameters for the

bistability is the ratio sA=sT , because this determines the

difference of the concentration of A and T . We therefore varied

sA=sT with keeping sT constant, and searched for the bistable

regime in (bM ,bC) space. The rest of the parameters are kept same

as those used in Fig. 4A. Only sA=sTw10 is considered, because

lower ratios prevent antitoxin domination due to its 10 times

higher degradation rate. For rather small sA=sT (&20), too large

bC makes the anti-toxin dominated state unstable, because very

small amount of free toxin is enough to activate the positive

feedback to toxin via the growth rate. With even larger sA=sT ,

stronger feedback is needed to stabilize toxin-dominated state,

reflected in larger values of bC and bM .

We further performed scanning of other parameters. We fixed

one parameter at a time and sampled the rest of the parameters

randomly to test 1000 samples in logarithmic scale within the

range between 1/8 to 8 fold of the reference values. We then

systematically changed the fixed parameters between 1/8 to 8 fold

and repeated the procedure, to see the effect of the parameter. We

found that 20% to 80% of the samples showed bistability. The

detailed results are given in Text S2. We also explored the effect of

the dissociation constant KT and KTT more intensively, by

changing KT~KTT from the reference value to 64 fold, since they

describe the sharpness of the CR and this is expected to influence

the bistability. We find that the number of bistability parameter

sets decreases gradually with the fold change of KT and KTT .

Details are given in Fig. S4.

Figure 4. The state diagram of the bistability. Colored region represents the combinations of (bM , bC ) that makes the system bistable. (A)
Reference parameters in table 1 are used except for bM and bC . The color code represents ratio between T dilution rate calculated upon the low-T

steady state and the high-T steady state, ½1zbcTf (high)�=½1zbcTf (low)�. (B) Bistable region for various values of
sA

sT

, with sT ~100. The remaining 6

parameters are fixed to the reference values. The shaded regions represent the areas in the 2D parameters space bM ,bC that show bistable behavior.
doi:10.1371/journal.pcbi.1003174.g004

Conditional Cooperativity Mediates Bistability

PLOS Computational Biology | www.ploscompbiol.org 5 August 2013 | Volume 9 | Issue 8 | e1003174



Discussion

Using known parameters for the RelBE system in E. coli, we

constructed a minimal model for TA activity, combining

conditional regulation with a feedback from free toxin to the

cell growth. It was demonstrated that this model shows

bistability for a wide range of parameters, with a stable state

corresponding to the antitoxin-dominated, normal growing

state, and another metastable state corresponding the toxin

dominated state, potentially corresponding to the persister

state.

Noticeably, the model eqs. (6)–(7) did not rely on details of the

molecular mechanisms of how the toxin works, and therefore the

model is not limited to the RelBE system. The important

assumptions are: (i) The TA system is conditionally regulated, (ii)

toxins are stable and diluted mainly by cell division, while

antitoxins are metabolically unstable, and (iii) free toxins reduce

the productions of proteins and hence cell growth. All the

Figure 5. Schematic summary of the role of conditional regulation in persister formation. The red curves show the toxin production rate
and the blue lines give the degradation rate, both from eq. (6). Both terms depend on A, and here we make approximation that A is always in steady
state (eq. 7 with dA=dt~0) for given T , because dynamics of A is much faster than T due to high production and degradation rate. Since production
term of A and T are proportional to each other and A is degraded at a constant rate, resulting A concentration is proportional to the production
term of T (red curves). The scales of curves are modified from actual functional forms so that the characteristic behaviours can be grasped easily. The
ultra-sensitivity mediated by protein-protein binding combined with feedback from free toxin activity is reflected in the peak of the production rate
and drop of the degradation rate, resulting in bistability of the system. This accounts for the type II persister where a cell can spontaneously switch to
and out of the persister state. The non-monotonicity of the conditional regulation secures that some toxins are stored in antitoxin dominated state,
helping the transition to the stress-induced activation of toxin [6], which becomes the base for type I persister formation.
doi:10.1371/journal.pcbi.1003174.g005
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conditions are satisfied in the TA loci that are confirmed to be

regulated by conditional cooperativity [3,4,7–10].

Our simple model pinpoints minimal ingredients for obtaining a

persister state, but did not include stochastic production and/or

degradation, and therefore cannot address the switching rates. In

order to understand stochastic persister formation in E. coli, just

performing stochastic simulation of the present motif is not enough,

because the frequency of persisters depends on multiple parallel TA

systems. In E. coli, 11 simultaneously interfering TA systems

maintain a probability of persisters to be about 0.01%, while this

probability is changed substantially first when about 50% of the TA

systems is removed [15]. This clearly suggests that the interference

of parallel systems has a strong influence to the switching behavior.

Furthermore, comparing the stochastic simulations with the

experimentally observed frequency of persisters requires a knowl-

edge of the underlying distribution of the T expression levels and

corresponding growth rates in the cell population. It is not a simple

task when the single cell growth rate depends on T expression levels,

because it feedbacks to the frequency of the cells as pointed out by

Nevizhay et al. in [28]. In addition, it has been suggested that there

is a strong link between the activation of the protease Lon and the

TA-mediated persister formation, through the increase of the

antitoxin degradation rate [15,16]. The fluctuation of the Lon

activity may be particularly important in determining switching

rates, because it can provide coherent noise that favours simulta-

neous switching of many TAs to the persister state. It should also be

noted that the Lon activity is activated by polyphosphate, which is

regulated by the stringent response signalling molecule (p)ppGpp

[16]. We plan to extend the present model to include these features

and study the switching behavior in near future.

It is still interesting to think about possible implication of the

observed switching rate to the present model. The fact that the

persister formation is a rare event may indicate that the actual

parameter value in the real system is located close to the boundary

between the bistable region and the monostable region of the

antitoxin-dominated state. Such parameter values can be chosen

through selection process in a fluctuating environment, where slow

growth of the persister pays off as a risk hedging strategy; the

switching rate is expected to reflect the time scale of the temporal

fluctuation of the environment [29].

Conditional regulation is an example of mixed feedback motifs

[30], where protein-protein interactions and transcriptional repres-

sion are combined. In natural systems, protein-protein interaction

mediated bistable switch was previously found for example in the

epigenetic switch of the TP901 phage [23,25] and in the sigma-

factor/antisigma-factor system [24]. Conditional cooperativity in

TA systems opens for a toolbox of regulatory units that can exhibit

sufficient bistability to support also epigenetics. When removing the

toxic ability of toxin, which has been done for RelE [3], and

separating antitoxin from the operon to allow independent control,

the strong binding between RelE and RelB should provide extreme

ultrasensitivity, and thus very well separated metastable states. This

conditional cooprativity-mediated bistability is the base for the

bistability in full TA systems, and thus for the type II persister

formation [12,13], where a cell can spontaneously switch between

the dormant state and the growing state (Fig. 5).

While simple protein-protein heteromers could produce ultra-

sensitivity, the non-monotonicity of the conditional cooperativity

also secure that the antitoxin dominated state has a substantial

amount of toxins present (Fig. 5). These toxins’ activity is normally

inhibited by short lived antitoxins, but the stored toxins can be

used for faster switching to a dormant state if overall protein

productions are externally inhibited, for example by starvation

(Fig. 5). Therefore, the non-monotonicity may enhance the

transition to type I persister formation [12,13], where environ-

mental stress triggers persister formation.

The importance of the protein-protein interaction mediated

ultrasensitivty [22–25] and the growth rate-mediated feedback

[17,26–28] to bistable systems have been discussed as independent

regulatory features in recent literature [31]. The uniqueness of the

bistability in the TA system is that it combines both of these mechanisms.

The need for combining these two mechanisms is closely

associated with the fact that T and A are produced from the

same operon, and thus are exposed to identical transcription

regulation. Though it is difficult to get bistability with only one of

the mechanisms [17], the TA system realizes a persister state by

regulating the products of one operon through a combination of

growth modulation and hetero-complex formation.

Materials and Methods

Numerical solutions of the model equations
All the numerical analyses are done using C++ codes developed

by the authors. When necessary, ½AT � was calculated by solving

algebraic equations (2) and (3) with conservation of mass for a

given amount of (A,T) by Newton’s method [32]. The bistable

solutions in Fig. 2 B (Fig. 4) were obtained by finding the fixed

points for dT=dt~0 with eq. (4) (dT=dt~0 and dA=dt~0 with

Table 1. Reference parameter values.

X [6] R R ~XX

sT 166:28nMmin{1 sT
:tu

Cu

166:28nMmin{1:43min

71:5nM

100

KO 1 nM KO

Cu

1nM

71:5nM

0.015

KT 0.3 nM KT

Cu

0:3nM

71:5nM

0.004

KTT 0.3 nM KT T

Cu

0:3nM

71:5nM

0.004

CA 0:2min{1 CA
:tu 0:2min{1:43min 10

CT 0:02min{1 CT
:tu 0:02min{1:43min 1

bC 0:16nM{1 bc
:Cu 0:16nM{1:71:5nM 11

bM 0:16nM{1 bc
:Cu 0:16nM{1:71:5nM 11

doi:10.1371/journal.pcbi.1003174.t001
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eqs. 6 and 7) by Newton’s method and then evaluating the stability

based on the Jacobian. The trajectories that constitute the flux in

Figs. 3A2 and 3B2 were calculated by the 4th-order Runge-Kutta

method [32].

Reference parameters
The values of the parameters used in the ODEs correspond to a

conversion to dimensionless numbers of the parameters relative to

the RelBE system we studied in [6].

In particular we used the lifetime of RelE in exponential growth

conditions (
1

C0
) as time-unit (tu) and the maximal amount of A

proteins produced in the unit time as concentration unit (Cu). In

the RelBE system
sA

C0
^715000 nM thus fixing sA~10000 we

obtain Cu~71:5 nM, while tu~
sA

C0
~43 min. The value of bM in

the starved condition [6] was evaluated to be around 1000 in this

units. However, it is expected to be smaller in the normal

condition, since RelE cleaves mRNA at the ribosomal A-cite,

which is expected to be more accessible at the starvation.

Therefore, we mostly explore bM values smaller than 1000.

The reference parameters are shown in table 1.

Supporting Information

Figure S1 Fit of the free toxin activity parameters to the
grown-rate dependent global transcription rate. Left: Red

points: Global transcription rate am(C) from Klumpp et al. [26].

Green Line: normalised production rate a(C) from our model with

b~0:4. Right: Red points: Normalized global transcription rate

multiplied by gene copy number, am(C)g(C)=g(1) from Klumpp et

al. [26]. Green Line: normalised production rate a(C) from our

model with b~1:2.

(EPS)

Figure S2 bM=bC fitted to the global transcription rate
lies in the bistable region. Each green dot in the plot

represents a combination of bM and bC that give bistable results.

The red line represents bM=bC~0:4, and and the black line

bM=bC~1:2.

(EPS)

Figure S3 The robustness of the bistability against
parameter change. We fix sT~100 and C0~1, and vary rest

of the parameters. In (a) bM is changed systematically between
1

8
and 8 fold of the value used in the main text bM

0~11:4475; we

change it between
1

8
:bM

0~1:4309 and 8:bM
0~91:58 with a pace

given by 2n:b0
M with an integer n[½{3,3�. For each value of bM ,

we sample rest of the parameters randomly and independently of

each other, and they can take any values from the set 2n:(the

reference value) with n[½{3,3�. The reference values are given in

Table 1. We collect a sample of 1000 points in the parameter

space. The bars in the histogram represent the fraction of this

sample of points in the parameter space that still shows bistable

behavior. The same procedure is then carried out for bC (b), CB

(c), KT (d), KTT (e), KO (f) and sA (g).

(EPS)

Figure S4 The robustness of the bistability against the
change of the dissociation constants KT and KTT . We set

KT~KTT , and increase them systematically from the reference

value (0.004) to 64 fold of the reference value. Since the

dissociation constants set the concentration of A and T at which

AT and ATT formation is significant, we fix sA~10000 and

CA~10 in addition to fixing sT~100 and C0~1. We then

sample the rest of the parameters randomly in the base 2

logarithmic scale, within 1/8 to 8 fold of the reference value.

We tried 1000 parameter sets for each values of KT~KTT . The

plot shows the fraction of the parameter set that shows the

bistability. We see that the number of bistability parameter sets

decrease gradually with fold increase of the dissociation

constants.

(EPS)

Text S1 Correspondence of parameters with the growth
rate dependence data of protein production rate in the
steady state growth.

(PDF)

Text S2 Parameter scan by Monte Carlo sampling to
test the robustness of bistability.

(PDF)
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Supplement: Conditional cooperativity of Toxin - Antitoxin regu-
lation can mediate bistability between growth and dormancy
Ilaria Cataudella, Kim Sneppen, Kenn Gerdes, and Namiko Mitarai

Text S1: Correspondence of parameters with the
growth rate dependence data of protein produc-
tion rate in the steady state growth

Klumpp et al. [1] reported that a decrease in cellular growth rate results in
a global slow down of transcription, and provided the relative change of the
transcription rate for steady state growth.

In our model equations,

dT

dt
=

�T⇣
1 + [AT ]

KO

⌘
(1 + �M [Tf ])

� �0

1 + �C [Tf ]
· T (1)

dA

dt
=

�A⇣
1 + [AT ]

KO

⌘
(1 + �M [Tf ])

� �A · A. (2)

the growth rate slows down due to the free toxin, characterised by �C , while
the protein production rate is reduced at the same time, which is characterised
by �M . We can reproduce the relation in [1] when �C and �M satisfy a certain
relation as follows.

In our model, the term � ⌘ �0

1+�C [Tf ] in equation is the division rate. In

ref. [1], cell division rate is measured in terms of doubling per hour, while our
�0 is estimated to be 30 minutes doubling time [2]. Namely, we have

� =
2dbl/hour

1 + �C [Tf ]
, (3)

and we get the amount of free toxin as a function of �[dbl/hour]:

[Tf ] =
2 � �

�C · � . (4)

This gives the growth-rate dependent protein production change in our model
to be

↵̃(�) =
1

1 + �M [Tf ]
=

�/(2�)

1 + 1��
2� �

,

where � ⌘ �M/�C .
In ref. [1], the growth-rate dependent change of the transcription rate ↵m(�)

normalised by the value at � = 1 and the gene copy number g(�) is given. In
Fig. S1 left, we plotted ↵m(�) and fitted � so that normalised growth-dependent
production rate

↵(�) =
↵̃(�)

↵̃(1)
=

1+�
2� · �

1 + 1��
2� · �

(5)

1



agrees best with the data. With � ⇡ 0.4, we get a good fit to the data.
If we also take into account the change in the gene copy number, we should

compare apha(�) with ↵m(�)g(�)/g(1), which is shown in Fig. S1 right. In this
case, we get � ⇡ 1.2.

In fig S2, we plotted the lines � = �M

�C
= 0.4 and � = �M

�C
= 1.2 in the phase

diagram for the bistability with reference parameters, which demonstrate that
we can get bistability with satisfying the relation from [1].

It should be noted that the growth-rate change in [1] is obtained by the
steady state exponential growth, and the relation may not be the same if the
growth rate is changed dynamically by the overproduction of toxin.
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Figure S1: Fit of the free toxin activity parameters to the grown-rate
dependent global transcription rate. Left: Red points: Global transcrip-
tion rate ↵m(�) from Klumpp et al. [1]. Green Line: normalised production rate
↵(�) from our model with � = 0.4. Right: Red points: Normalized global tran-
scription rate multiplied by gene copy number, ↵m(�)g(�)/g(1) from Klumpp
et al. [1]. Green Line: normalised production rate ↵(�) from our model with
� = 1.2.
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lation can mediate bistability between growth and dormancy
Ilaria Cataudella, Kim Sneppen, Kenn Gerdes, and Namiko Mitarai

Text S2: Parameter scan by Monte Carlo sam-
pling to test the robustness of bistability.

We tested the robustness of the bistabilty against parameter change by using
the Monte-Carlo sampling. We fixed �T and �0, which define the units, and
scanned �M , �C , �A, KT , KTT , KO, and �A. In order to understand the
systematic dependence on the parameter, if any, we change one of the parameters
systematically, and sample the rest of the parameters randomly in the base 2
logarithmic scale, with in 1/8 to 8 fold of the reference value. We summarise
the result in this section.

In fig S3 a) the e↵ects of changing the value of �M are investigated. The
value used in the main text is �M

0 = 11.4475 and we change it between
1
8�M

0 = 1.4309 and 8 · �M
0 = 91.58. �M quantifies the entity of the negative

feedback on production of both A and T due to the increase in the concentra-
tion of Tf . The fraction of the sample of parameter sets that shows bistability
decreases with increasing �M . For high values of �M bistability is lost because
the high T fixed point tends to disappear. This is because an increase in Tf

will result in a strong inhibition in production of both A and T , but T maximal
production rate is , in the best case scenario, 10 times less than A’s, thus the
e↵ect of the inhibition will be stronger on T , the rise in Tf will be counterbal-
anced and achieving a high T fixed point becomes harder.

Analogous reasoning can be carried out when looking at the e↵ects of chang-
ing �C in fig.S3 b). Again, �0

C = 11.4475 and is varied between 1
8�C

0 = 1.4309

and 8 · �C
0 = 91.58. �C quantifies the positive feedback on accumulation of

T provided by increasing Tf (that slows down translation reducing frequency
of cell division and thus degradation of T ). Here the fraction of the sample of
parameter sets that exhibits bistability tends to increase with increasing �C , it
peaks for �C ' 2 � 4 · �0

C and goes slightly down again at 8 · �0
C . The reason

for this behavior is the following: for low values of �C an increase in Tf will not
be su�cient to inhibit cell division enough to sustain the increase in T , thus
it’s hard to obtain a high T fixed point. As �C increases it becomes easier and
easier to achieve a high T fixed point, but if �C becomes too high, a very small
increase in Tf can be amplified to the point that it becomes harder and harder
to sustain a low T fixed point, thus bistability is lost again for a higher fraction
of parameter sets.

In Fig S3 c) the e↵ect of changing the degradation rate for A is explored.
The value of �A used in the main text is �0

A = 10 and hereby we change it
between 1

8�A
0 = 1.25 and 8 · �A

0 = 80. The highest fraction of bistable set of
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parameters is detected for the value of �A used in the main text. Both for lower
and higher values the bistabilty fraction decreases. In fact, for high values of
�A it becomes hard to obtain high A domniated fixed points. The toxin is de-
graded at the rate 1, so if �A is low, considering the fact that A produced more
than T, the system will in most cases (parameter sets) end up in a monostable
high A state.

In Fig. S3 d) and e) the e↵ect of changing respectively KT and KTT between
1
8K0

T (T ) = 0.0005 and 8 · KT (T )
0 = 0.032 (K0

T (T ) = 0.004) is investigated. The
e↵ect of changing KT is practically irrelevant in this range, because the refer-
ence parameter is already in very strong binding limit for AT formation. Higher
values of KTT , on the other hand, results in a slightly lower fraction of bistable
sets of parameters. As stated in the main text one of the key ingredient for
achieving bistability is the protein sequestration mechanism, and in particular,
the resulting ultrasensitive behavior. High values of KTT (weak binding) will
weaken ultrasensitivity, resulting in a decrease in the bistable fraction.

In Fig S3 f) we study the e↵ect of changing the binding constant of the
repression factor AT to the operator. The value used in the main text for K0

O

is 0.015. Thus we explore the behavior of the system for values of KO ranging
between 1

8K0
T (T ) = 0.001875 and 8 · KT (T )

0 = 0.12. The fraction of bistable
parameter set increases with increasing KO. This is because if the binding of
AT complexes to the operon region is very tight, a low concentration of AT is
enough to keep the promoter repressed all the time, making the A dominated
state, which requires high production of A due to high degradation rate, di�cult
to maintain.

Finally we investigate the robustness against change of the value of �A. As
in can be seen in fig S3 (g), the consequences are not dramatic within this range,
but it is evident that for low values of �A, the production advantage with respect
to T becomes insu�cient to compensate for high degradation rate for A, thus
for many parameter combinations it is hard to obtain a high A fixed point. In
the main text, we show systematic dependence on �A/�T for wider range.
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Figure S3: The robustness of the bistability against parameter change.
We fix �T = 100 and �0 = 1, and vary rest of the parameters. In (a) �M is
changed systematically between 1

8 and 8 fold of the value used in the main text

�M
0 = 11.4475; we change it between 1

8 ·�M
0 = 1.4309 and 8 ·�M

0 = 91.58 with
a pace given by 2n · �0

M with an integer n 2 [�3, 3]. For each value of �M , we
sample rest of the parameters randomly and independently of each other, and
they can take any values from the set 2n·(the reference value) with n 2 [�3, 3].
The reference values are given in Table ??. We collect a sample of 1000 points
in the parameter space. The bars in the histogram represent the fraction of this
sample of points in the parameter space that still shows bistable behavior. The
same procedure is then carried out for �C (b), �B (c), KT (d), KTT (e), KO (f)
and �A (g).
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Figure S4: The robustness of the bistability against the change of the
dissociation constants KT and KTT . We set KT = KTT , and increase
them systematically from the reference value (0.004) to 64 fold of the reference
value. Since the dissociation constants set the concentration of A and T at
which AT and ATT formation is significant, we fix �A = 10000 and �A = 10
in addition to fixing �T = 100 and �0 = 1. We then sample the rest of the
parameters randomly in the base 2 logarithmic scale, within 1/8 to 8 fold of the
reference value. We tried 1000 parameter sets for each values of KT = KTT .
The plot shows the fraction of the parameter set that shows the bistability. We
see that the number of bistability parameter sets decrease gradually with fold
increase of the dissociation constants.
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