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Abstract

Convective storms. We have most probably all experienced them. In Northern

Europe, sporadically in the summer season. In the tropics, several times a week in

the rainy season. The most organized storms highly contribute to extreme rainfall,

both in Europe and in the tropics. The frequency of these very storms is increasing

with a warmer climate, making the mechanistic understanding of the upscale

growth of a storm, and the predictability of its onset essential today.

In this dissertation we explore the effect of a large diurnal cycle in surface temper-

atures, typical of tropical land, on organizing small convective clouds into large

storms - mesoscale convective systems (MCSs) - and how these MCSs can in turn

organize the surrounding moisture field into a breeding ground for even more

organized storms, that can persist in less favorable environments, like over the

ocean, hinting at a path to cyclone formation. We then focus on cold pools (CPs), a

defining feature of precipitating convective clouds. CPs are both a key ingredient in

the organization of these into larger systems, and an easy-to-interpret measure of

storms from the ground. After learning key properties of real-world CPs by analyz-

ing measurements over 10 years from a weather tower in Northern Europe, we turn

to the practicality of portable automatic weather stations in regions of the world

with less weather monitoring capacity. We set these up in two locations in Senegal,

and develop an AI-based nowcasting tool with long short-term memory neural

networks (LSTMs), trained to predict the advent of CPs in the city of Dakar.

With the combination of observation and simulations, we thus dive into the core

of MCSs and their associated CPs, and turn our findings into an application useful

to society in improving convective weather forecasting.
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Resumé

Konvektive storme. Vi har sikkert alle sammen oplevet dem. I Nordeuropa spo-

radisk i sommerhalvåret. I troperne flere gange om ugen i regntiden. De mest

organiserede storme bidrager i høj grad til ekstrem nedbør, både i Europa og i

troperne. Hyppigheden af netop disse storme stiger med et varmere klima, hvilket

gør den mekanistiske forståelse af en storms opskalering og forudsigeligheden af

dens begyndelse vigtig i dag.

I denne afhandling undersøger vi effekten af en stor døgncyklus i overfladetemper-

aturer, som er typisk for tropisk land, på organiseringen af små konvektive skyer til

store storme - mesoskala konvektive systemer (MCS’er) - og hvordan disse MCS’er

igen kan organisere det omgivende fugtfelt til en grobund for endnu mere organis-

erede storme, der kan fortsætte i mindre gunstige miljøer, som over havet, hvilket

antyder en vej til cyklon-dannelse. Derefter fokuserer vi på ’cold pools’ (CP’er),

som er et definerende træk ved udfældende konvektive skyer. CP’er er både en

nøgleingrediens i organiseringen af disse i større systemer og et let fortolkeligt mål

for storme fra jorden. Efter at have lært de vigtigste egenskaber ved virkelighedens

CP’er ved at analysere målinger over 10 år fra et vejrtårn i Nordeuropa, vender

vi os mod den praktiske anvendelighed af bærbare automatiske vejrstationer i

regioner af verden med mindre vejrovervågningskapacitet. Vi sætter dem op to

steder i Senegal og udvikler et nowcasting-værktøj med neurale netværk med lang

korttidshukommelse (LSTM’er), der er trænet til at forudsige fremkomsten af CP’er

i byen Dakar.

Med kombinationen af observationer og simuleringer dykker vi således ned i

kernen af MCS’er og deres tilknyttede CP’er og omsætter vores resultater til en

applikation, der er nyttig for samfundet og til at forbedre prognoser for konvektivt

vejr.
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1Rationale

This thesis encompasses three stories, which all have the same narrative thread:

Convective storms.

It all starts with convection, a crucial process in meteorology that describes the

vertical movement of heat and moisture within the Earth’s atmosphere. In a physics

laboratory, this phenomenon arises when you have a fluid trapped between two

plates, with the lower plate being much warmer than the upper one. Initially, the

fluid is still, but as it heats up, it starts to move in a pattern called Rayleigh-Bénard

convection. In your kitchen, you’ll see it in the form of rising of bubbles in a pot of

water on a hot stove.

Figure 1.1: The life cycle of a convective storm. Solar radiation heats the surface; moist
air rises in the form of a thermal; water vapor condenses forming a cloud and
heating the atmosphere; rain forms and falls to the ground, evaporating, and
extracting heat from the lower atmosphere; cold, dense air hits the ground
and spreads out - forming a cold pool.

In the atmosphere, convection is driven by differential heating of the Earth’s surface

by the sun’s radiation (Figure 1.1, starting from the left). When sunlight strikes the

Earth’s surface, it warms it up, heterogeneously depending on the type of surface,

some which absorb and retain heat more effectively than other surfaces. As the

surface heats up, it, in turn, heats up the air directly above it through a process

called conduction. The warmer air near the ground becomes less dense than the
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cooler air surrounding it, causing it to rise in columns known as thermals. These

thermals act as conduits for transporting heat and moisture from the surface into

the atmosphere.

Now, we need to add an important physical fact here, which is necessary to un-

derstand the rest of this thesis. When water changes phase, energy is transferred.

When water vapor condenses, it releases energy (heat) to its surroundings. When

liquid water evaporates, it takes energy (heat) from its surroundings.

Condensation. Coming back to our thermals: when the warm air rises, it carries

moisture with it, leading to the formation of clouds under the right atmospheric

conditions. If the rising air contains sufficient moisture and continues to ascend, it

cools as it reaches regions of lower atmospheric pressure. This cooling can cause

the moisture in the air to condense into water droplets or ice crystals, releasing

heat to its surroundings and further fueling the ascent. The condensed water

droplets (which we know as clouds) are the visible manifestations of the convective

process in the atmosphere and can take various forms, such as cumulus or cumu-

lonimbus clouds. Cumulonimbus clouds, are associated with intense atmospheric

phenomena such as thunderstorms, lightning, and heavy precipitation. This con-

vective precipitation occurs when the convective clouds contain enough moisture

to produce rain or other forms of precipitation.

Evaporation. When it rains, the falling rain can in turn evaporate, extracting heat

from the air. This leads to the formation of a region of cold, dense air, that falls

to the ground and spreads out, similarly to a density current. This cold air, called

a convective cold pool (CP), produces a strong wind gust spreading around the

storm, potentially triggering new convection around it, and can linger for hours

after the rain has stopped, as a footprint of the storm that prevents new convection

from happening in its place.

This all seems straightforward, yet there is still a world of complexities to un-

derstand. Convective storms come in many sizes, starting from single isolated

convective cells that are typically 1 to 10km in diameter (Figure 1.2, starting from

the left). These isolated convective cells can organize into one large system, called

a mesoscale convective system (MCS), by definition larger than 100 km horizon-

tally. If we add in the swirling Coriolis force, we end up with tropical cyclones

(hurricanes, typhoons) which can be 1000 km in diameter. This upscale growth of

convection is not yet fully understood, albeit years and years of research. Because
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these processes are not fully understood, their predictability is impacted. Weather

forecasting models are often run at spatial resolutions that are too coarse to resolve

convective processes, with the consequence that these processes need to be in-

cluded as parameterizations learnt from higher resolution simulations. However,

even with these parameterizations, the skill in predicting convective rain in specific

locations is still poor, globally, due to the stochastic nature of convection. On top

of that, the weather monitoring network in terms of radar coverage, is extremely

unbalanced, with tropical countries experiencing the largest storms on Earth with

the highest frequency often having limited weather monitoring capacity.

Figure 1.2: Understanding the upscale growth of convection. Spatial scales of: isolated
deep convective cell; a mesoscale convective system; a tropical-cyclone like
organized deep convective system. The upscale growth is yet to be fully
understood.

In this dissertation we will explore the upscale growth of convection. Thanks to

results from high resolution simulations based on observational data from the

tropics, we will describe a theory on how convective storms organize into MCSs

thanks to the diurnal cycle. We will define how these in turn affect the atmosphere

they are embedded within, creating a state that favors clustering of convection,

due to the interplay of processes mentioned above. We will present a conceptual

model which encompasses the convective processes leading up to the formation

of MCSs and the self-aggregated state. We will then dive into analysing CPs, a

handy way to measure convective storms from the ground. We will find the typical

properties of CPs thanks to 10 years of measurements from a unique 200-meter

weather tower in Cabauw, the Netherlands. Thanks to this characterization of CPs

from time series, we will turn our focus back to the tropics, to the West African

country of Senegal. Here, where MCSs traverse the country regularly in the rainy

season, we will develop a machine learning-based tool to predict the onset of CPs

in the capital city of Dakar, that can be used as a warning mechanism before it

starts raining (Figure 1.3).
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The structure of the thesis is as follows. To set the stage, Chapter 2 will introduce

the Groundwork that has laid the foundations to this thesis. We will get acquainted

with MCSs and CPs, through the lense of historical observations; convective self-

aggregation, a puzzling (but enlightening) phenomenon arising in simulations;

and the concept of nowcasting including how to use AI for this purpose. After

presenting the work that has preceded this dissertation, in the three novel studies

contained here we will: (Chapter 3) Explore how MCSs developed over tropical

land strongly contribute to convective self-aggregation; (Chapter 4) Characterize

convective CPs in the midlatitudes from a weather tower; (Chapter 5) Describe

the first pillars of a field campaign to monitor MCSs in West Africa with automatic

weather stations, and explore how the new observational data can be used, with

the help of machine learning, to nowcast CPs.

Figure 1.3: Predicting convective storms ahead of time. In the culmination of this
thesis, we will explore a way to predict the arrival of a convective storm from
its associated cold pool in the absence of radar, using automatic weather
stations situated upstream of the location of interest (here Dakar, Senegal).
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2The Groundwork

2.1 Mesoscale Convective Systems
(MCSs) and Cold Pools (CPs)

–Through the Lense of Historical Observations–

Excerpt from Nature, 1896:

Symons’s Monthly Meteorological Magazine, July.
"The International Cloud Atlas." – Mr. Symons takes the opportunity pro-
vided by the publication of this work, of which only a very few copies have yet
been distributed, to briefly mention the principal works on clouds that have
recently preceded the present one. These include L. Weilbach’s "Nordeuropas
Skyformer" (Copenhagen, 1881), the "Wolken-Atlas" by H. H. Hildebrandsson,
Koppen, and Neumayer (Hamburg, 1890), M. Singer’s "Wolkentafeln" (Mu-
nich, 1892), the "Classificazione delle nubi" by the Specola Vaticana, which
contains some excellent reproductions of M. Mannucci’s photographs (Rome,
1893), and the Rev. W. Clement Ley’s "Cloud Land" (London, 1894). The "Inter-
national Cloud Atlas" (Paris, 1896) has been prepared under the supervision
of the International Meteorological Committee and includes twenty-eight
colored reproductions of clouds. Although none of them is from an English
photograph, Mr. Symons believes that our countrymen may be satisfied
to see how much the international system of 1896 is based on the work of
Luke Howard and that the classification adopted is essentially that of the
collaborative effort of Dr. Hildebrandsson and the Hon. Ralph Abercromby.

As I was digging into archives about definitions of Mesoscale Convective Systems, I

found the International Cloud Atlas (1896), the first published photographic collec-

tion of clouds on an international level. The classification by which the clouds are

named, follows that proposed by the Scottish meteorologist Ralph Abercromby and

the Swedish meteorologist Hugo Hildebrand Hildebrandsson, and the publication

of the first edition was arranged by Hildebrandsson himself and the members of the
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Clouds Commission of the International Meteorological Organization (now: the

World Meteorological Organization). The Atlas consists of color plates of clouds,

with descriptive text in English, French, and German. The collaborative effort

extended mere visual representation, serving as a resource for meteorological

education and promoting uniform terminology in cloud description - marking a

significant step forward in weather forecasting and fostering clearer communica-

tion and consistency among meteorologists. As you might have read above, several

nation-bound works preceded this Cloud Atlas, however the truly revolutionary

novelty behind this work, in my eyes, is the realization that clouds exist in the same

general forms everywhere in the world.

Figure 2.1: Cumulonimbus cloud, as depicted in the International Cloud Atlas (1896)

This entire dissertation will focus on the cloud first classified in the International

Cloud Atlas as the cumulonimbus (Figure 2.1). In layman terms: A stormy cloud.

These clouds have a dense, cauliflower-like appearance and can take the form of

thunderstorms, with heavy rain, lightning, and hail. Cumulonimbus clouds form

through the process of atmospheric convection, where warm, moist air rises rapidly,

cools, and condenses into a towering cloud structure. The World Meteorological

Organization today defines the cumulonimbus cloud in the following way: "A heavy

and dense cloud, with a considerable vertical extent, in the form of a mountain

or huge towers. At least part of its upper portion is usually smooth, or fibrous or

striated, and nearly always flattened; this part often spreads out in the shape of

an anvil or vast plume". Hildebrandsson in his times, described the upper part of

the cumulonimbus as “towering up to colossal proportions as mountain ranges,
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or a gigantic mushroom, with a flat layer of ‘false cirrus’ around or on the top.”

However, at the end of the 1800s, without airplanes, radar or satellites, it was nearly

impossible to fully recognize the horizontal dimensions of these storms.

Mesoscale Convective Systems. It took a World War and two Royal Air Force

officers stationed in Nigeria in 1945, to figure out the dimensions that convective

storms could actually take on, albeit within a questionable frame. Combining

ground-based station data, soundings and aircraft flights in tropical Western Africa,

it was established that storms could be more than 100 km wide and more than

10 km tall (Hamilton et al., 1945). A few years later, the "Thunderstorm Project"

was carried out in postwar US (Byers et al., 1949). Led by Byers and Braham, from

Chicago University, this was one of the largest meteorological field campaigns in

history, using aircrafts, radiosondes and radars left over from the war, and solely

focused on understanding thunderstorms. The pilots flew inside storms over

Ohio and Florida over the summers of 1946 and 1947, gathering data. Notably, it

became clear that thunderstorms in a mature phase comprised both of updrafts

and downdrafts, as shown in Figure 2.2, and typical vertical dimensions of more

than 10 km were quantified.

Figure 2.2: Conceptual drawing of a thunderstorm cell in its developing, mature and
dissipating phases. From the Thunderstorm Project (1949) (Byers et al., 1949).
Note: The lower and upper boundaries of the mature cloud, 5000 and 40000
feet, correspond to approximately 1.5 and 12 km.

Using time series from US ground-based meteorological stations in 1955, Fujita

was able to quantify the dimensions of storms without needing to fly into them with

airplanes (Fujita, 1955). He was the first in the field to establish a very simple space-

time conversion, to go from point-measured time series to the spatial dimensions

of a storm, knowing the relative velocity of the storm with respect to the station (this
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could be extrapolated when there are two stations separated in space, measuring

the storm at different times). With this approach he was able to estimate that

storms could reach even 300 km in horizontal dimensions. This dimensional scale,

larger than an isolated cloud, and smaller than synoptic weather systems, takes on

the term meso-scale, and alludes to the fact that storm systems are often organized

structures comprising of more than one cloud within. Referring to the mesoscale,

Fujita coined the field of study of "Meso-meteorology".

Figure 2.3: Conceptual drawing of a thunderstorm organized on the mesoscale. From
Fujita (1955). Note: the horizontal extent of the storm, 200 miles, corresponds
to approximately 320 km.

The next leap in storm research came with the advent of radar technology. The

bridge between radar and weather research was built rather accidentally: Radar

echoes were used for spotting ships and aircrafts during WWII, and echoes of rain,

snow, and hail were seen as noise that needed to be filtered out. Only after the war,

did military scientists in civilian costume start focusing on that "noise" for weather

forecasting, finding that radar echoes can quantify the size and shape of the rain-

drops they encounter. With radar it became possible to spatially characterize the

precipitation distribution in a passing storm (as in Figure 2.4, which distinguished

between two types of precipitation in MCSs: convective and stratiform), and to

quantify the precipitation intensity in space. With more and more mesoscale ob-

servations of storms, Mesoscale Convective Systems were coined in literature, and

the general textbook definition by Houze (1993), that will be the definition used in

this dissertation, is the following:

Mesoscale Convective System (MCS): "A cumulonimbus cloud system that
produces a contiguous precipitation area of ∼ 100 km or more in at least one
direction."
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Figure 2.4: Example of radar echo of rainfall in two MCSs (top-down view) that lead to
severe weather reports in 1980s Oklahoma. Darker shades represent stronger
echoes (convective rain), and lighter shades represent weaker echoes (strati-
form rain). Outer circle denotes 240 km range from radar. From Houze et al.
(1990).

Radar-based studies were and are in nature regionally-based to this day, since

radars are not present everywhere on the globe (and especially not over the oceans)

and the coverage of a single radar tower is only within the 100s of kilometers. In

fact, there is barely any radar coverage on the African continent. On the other hand,

Europe is thoroughly covered, and we will use radar data from the Netherlands in

Chapter 4 of this dissertation to characterize convective rainfall.

An enormous field campaign that combined all the above-mentioned ways to

study an MCS, was the Global Atmospheric Research Program Atlantic Tropical

Experiment (GATE), carried out in 1974 over the Eastern tropical Atlantic Ocean,

off the coast of West Africa. Interestingly, the campaign was inspired by the still-to-

be-proven hypothesis based on Lorenz’s work on weather predictability (Lorenz,

1963), that a better understanding of tropical convection could lead to the pre-

diction of global weather up to two weeks in advance. GATE included reasearch

aircrafts and ships, equipped with radar, soundings and ground-based stations.

This gave a means of comparison between MCSs measured in the continental US

in the preceding radar studies, and MCSs measured over the tropical Atlantic. The

common factor to both the midlatitude and tropical MCSs was the upscale growth

of a region of deep convection so that the rain covered an area of mesoscale extent,

and the existence of a mesoscale region of stratiform precipitation occurring in

association with the deep convective rain (Houze, 2018). Thanks to measurements

from GATE, the main life stages of an MCS were defined, as depicted in Houze’s
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schematic (Figure 2.5) (Houze, 1982): the early stage consists of isolated precipitat-

ing convective towers, which merge into one large unified entity containing deep

convective cells and stratiform cloud in the mature phase. The overall precipitation

then weakens to being only stratiform before it totally disappears in the dissipating

stage when the clouds break apart.

A significant finding in this conceptual study is that MCSs have the key property of

substantially heating the upper troposphere through condensational heating and

radiative effects, to the point that this can alter larger scale circulations. Quantifying

these larger scale circulations due to MCSs remains a topic of interest.

Figure 2.5: Schematic of an MCS in four stages of development, from Houze (1982). (a)
Early stage; (b) Mature stage; (c) Weakening stage; (d) Dissipating stage. Top
row shows the top-down view, and bottom row shows the side section.

To study MCSs on a global level, and to observe the full evolution throughout the

lifetime of an MCSs, one more technological development was necessary: The

launch of weather satellites from the 1960s and onwards. Satellites equipped with

infrared imagers were particularly useful for storm research, as they could detect

storms well beyond national scales, during the day and the night. MCSs have a

typical footprint in the infrared retrievals: since they reach 10+ kilometer heights

in the atmosphere, they result as very cold, large areas. Satellite-borne radar, in

addition to infrared retrievals, has allowed the characterization of the precipitation

within the MCSs, on a global scale since the 1990s. In recent times, thanks to 30

years of measurements, we are seeing the first MCS climatologies. In fact, with a

threshold on infrared temperature and area, or on radar rainfall and area, MCSs

can be detected - and with higher and higher temporal and spatial resolutions

on geostationary satellites, they can be tracked and characterized globally, with

methods that are still being improved to this day.
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To track tropical MCSs in Chapter 3 of this dissertation we will use the "Tracking Of

Organized Convection Algorithm through a 3-D segmentatioN" (TOOCAN) (Fiol-

leau and Roca, 2013) applied to infrared satellite retrievals. This innovative tracking

algorithm from 2013 stands out, as it uses the definition of an MCS throughout

its lifetime, as depicted in Figure 2.6, to construct a cloud volume in space and

time around any detected deep convective core. It is quite fascinating to compare

Figure 2.6 with the 1982 MCS schematic by Houze (Figure 2.5), showing how the

conceptual understanding of MCSs from the 80s is still very much the groundwork

of MCS research of the last decade.

Figure 2.6: Schematic of an MCS for successive time steps and from satellite perspectives,
as a base for TOOCAN algorithm. From Fiolleau and Roca (2013). (a) Red part
corresponds to the convective core, black line represents the high cold cloud
shield boundaries. (b) Minimum brightness temperature in an X cross section.
(c) Associated convective system. (d) Minimum brightness temperature.

One of the most recent comprehensive MCS tracking studies is Feng et al. (2020),

which quantifies for the first time the statistics of MCSs globally, along with the

precipitation attributable to MCSs (Figure 2.7) and the average movement of MCSs

across the globe (Figure 2.8). It is worth highlighting in these Figures, that tropical

Africa stands out as a very large land-region that has a particularly high number of

MCSs annually, which contribute to more than 70% of the total annual rainfall, and

have a general westward motion. When focusing on extreme convective rainfall,

there is a strong preference for extreme events to be located over land, as Zipser

et al. (2006) found in an earlier satellite-based study focused on the tropics. They

also found that there is a clear tendency for the most intense storms over oceans to

be adjacent to land, in locations favoring storm motion from land to ocean, such

as the tropical ocean west of west Africa (Zipser et al., 2006).
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Figure 2.7: Annual mean global distribution of (a) number of MCSs, (b) MCS precipita-
tion amount, and (c) percentage of MCS precipitation to total precipitation
between 2001 and 2019. From Feng et al. (2021).

Figure 2.8: MCS translation speeds and directions for (a) June-July-August and (b)
December-January-February, from satellite-tracked MCSs between 2001 and
2019. From Feng et al. (2021).
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Cold pools. While the focus so far has been on the cumulonimbus cloud, and

the organization of multiple convective clouds into an entity much larger than the

single cloud, I will now lower the perspective to what happens below a precipitating

convective cloud. When it rains into a subsaturated lower troposphere, the falling

raindrops can evaporate, cooling the surrounding air. This cold, dense air, falls to

the ground and spreads out around the precipitating cloud.

In the early conceptual drawings of thunderstorms, the region below the cloud was

merely hinted at. In the conceptual drawing of a mature MCS from the 1946-1947

Thunderstorm Project (back to Figure 2.2), small diverging arrows are drawn below

the thunderstorm cloud. Digging deeper into the Thunderstorm Project archives,

I found this to be the first time that, thanks to the analysis of surface measure-

ments during storms, thunderstorm downdrafts at surface level were quantitatively

described in literature. The observations showed that a thunderstorm passing a

ground-based station coincided with a sudden drop in temperature, and subse-

quent rain (see Figure 2.9). The cold air associated with the term "thunderstorm

downdraft" had many interesting features already mentioned in the final document

of the project, such as having a dry interior, and having the capacity to produce

new convective updrafts on their leading edge.

In Fujita’s drawing from 1955 (Figure 2.3), the downdraft receives its own outline

and the words ’COLDER AIR’ and ’HIGH SPEED AIR’ appear below the thunder-

storm cloud. The PhD work by Charba (1974) contained the first detailed analysis

of an MCS downdraft from a network of ground-based weather stations spread

over Oklahoma, combined with a 444 meter television tower equipped with meteo-

rological instruments along its height. Many similarities were found between the

dynamics of the gust front and those of a gravity current. This work was succeeded

by Goff (1976) with an analysis of 20 gust fronts over Oklahoma from the TV-tower

measurements. It became clear that the sequence of meteorological events mea-

sured during the passage of a thunderstorm downdraft were the following: a rise

in pressure; a shift in wind direction; a sudden increase in wind speed; a drop in

temperature; and finally rainfall.

Downdrafts are generally invisible to the eye, unless located in a desert-like envi-

ronment, in which the outflow air forms a haboob, a literal moving wall of sand.

In other environments, the border of a downdraft, or the "gust front", can be seen

sometimes in radar echoes due to water particles, dust, and insects brought aloft

in the convergence zone between the outflowing cold air, and the surrounding
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Figure 2.9: Time series of (upper left) measured temperature, (lower left) relative humid-
ity and (right) precipitation at ground level, in correspondence with a passing
thunderstorm. From the Thunderstorm Project (Byers et al., 1949). Note: The
temperature drops approximately from 86 to 68 F (30 to 20 °C), the relative
humidity increases, but not to saturation, and precipitation is recorded in the
30 minutes succeeding the temperature drop.

warmer air. Thanks to this feature, Wakimoto, in the 1980s was able to study the

internal velocities of gust fronts, resulting in a conceptual diagram of the stages of

a gust front throughout time (Figure 2.10) (Wakimoto, 1982). In this work, it was

also shown that the equation governing the propagation speed of a density current

can serve to predict the movement of a gust front.

From the 2000’s, the term cold pool (CP) started being used in literature, as a

replacement for thunderstorm downdraft, convective outflow and gust front. In

fact, in December 2022, about 30 atmospheric scientists from around the world

sat in a castle in the mountains of southern Germany, namely Schloss Ringberg,

discussing the weather-dictionary definition of the term "(convective) cold pool",

to officially coin the downdrafts measured 75 years earlier in the Thunderstorm

Project.

One of the most important effects of CPs is, as already suggested by the early studies,

that they act as density currents and trigger new convection at their leading edges,

an effect that is accentuated by the collision with one or more CPs. A beautiful
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Figure 2.10: The four stages of a thunderstorm gust front. From Wakimoto (1982).

depiction and analysis of this effect is shown in Figure 2.11 from Meyer and Haerter

(2020).

As Houze (2018) puts it, "cold pools can be thought of as a medium of communica-

tion between existing and future convection". CPs regained attention in the last

decade due to their potential involvement in facilitating the transition from shallow

to deep convection (suggested by e.g. Rowe and Houze Jr. (2015)), for organizing

deep convective clouds into MCSs and for capturing the correct diurnal cycle of

convection in models (Schlemmer and Hohenegger, 2014).

However, while the origin of CPs across the globe is quite similar in terms of

general characteristics, i.e. in the form of precipitating convection, the surface

and boundary layer with which a CP interacts varies greatly based on the location.

The surface fluxes determine a CP’s lifetime, and these can be very different over

continental land, tropical ocean, or coastal midlatitudes. Moreover, the properties

of the surrounding boundary layer, which can vary greatly based on the location,

will determine the strength of the CP and its ability to create new convection. The

observational CP studies mentioned until now were case studies of thunderstorms

primarily over continental United States. A first statistical study of more than
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Figure 2.11: Simplified schematic of CPs linking convective events over space and time
by converting the initial potential energy (Generation 1) from evaporatively
cooled air into kinetic energy of a CP, which by triggering convection trans-
fers it back to potential energy (Generation 2). From Meyer and Haerter,
2020.

200 CPs from observational data, over the central Indian Ocean, was presented

in Szoeke et al. (2017), using the station data from the 2011 ship-based campaign

DYNAMO. Composite time series of oceanic CPs resulting from this work can be

seen in Figure 2.12. Inspired by this way of analyzing CPs, and by the lack of

CP studies from coastal Europe, we conducted a statistical study of midlatitude

(coastal) CPs from observational data, presented in Chapter 4, with the use of a

213 meter boundary layer measurement tower and collocated radar data.

The first field campaign solely focused on studying CPs over land was recently

carried out in Germany with a spatially dense station network (FESSTVAL) (Ho-

henegger et al., 2023). With the data from this campaign, we are seeing the first

analyses of CPs observed throughout their lifetimes, with spatially and temporally

high resolution measurements (Kirsch et al., 2024). However, CPs have yet to be

characterized in a global sense. Progress is underway in terms of using satellite

retrievals innovatively to measure the shapes and sizes of CPs across the world.

Scatterometer retrievals have been used to analyze patches of high surface rough-

ness over the ocean, corresponding to CP gust fronts. The diurnal cycle of CPs and

their typical area across the tropical oceans have been quantified this way (Garg
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Figure 2.12: Time series analysis of 200+ cold pools measured over the Indian Ocean.
Mean (a) 10-m air temperature, (b) specific and relative humidity, (c) wind
speed, and (d) sea surface temperature composited on time elapsed from
the start and end of the cold pool front. From Szoeke et al. (2017).

et al., 2021), however this technique can only be applied over the ocean. Thanks to

AI algorithms, such as the one proposed by Hoeller, Fiévet, et al. (2024) which could

be applied to geostationary infrared satellite imagery, we can expect to see global

statistics of CPs, along the lines of the global studies of MCSs (like the one shown

in Figure 2.8), coming out in the next few years, along with further enlightenment

regarding the way CPs act in organizing convection across the globe.

Throughout this dissertation, CPs and MCSs will have a very strong association. The

presence of an MCS, the organized form of deep convection, implies the presence

of CPs covering areas proportional to the mesoscale size of the MCS. The presence

of a CP does not necessarily imply the presence of an MCS, however in the right

conditions, the CP is the essential ingredient for a deep convective cloud to become

an MCS (as presented in Chapter 3). The presence of precipitating deep convection

implies the presence of a CP, and the precipitation can be characterized by the

measured CP itself (as presented in Chapter 4). Finally, the CP can be seen as a

precursor to the precipitation of an MCS, a useful feature for short-term forecasting

(as presented in Chapter 5).
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2.2 Convective Self-Aggregation (CSA):
–A Puzzling Phenomenon Arising in Simulations–

Figure 2.13: Snapshot of a September day, from "A Year of Weather 2019", a video by
EUMETSAT. Composition of satellite infrared data layer, provided by Météo-
France, superimposed over NASA’s ’Blue Marble Next Generation’ ground
maps. Named hurricanes are labelled.

Convective clouds display a wide array of spatial arrangements, spanning from

randomly distributed convective cells on the order of 10 km horizontally, to or-

ganized structures like MCSs on the order of 100 km horizontally, to cyclones on

the order of 1000 km horizontally, and even planetary-scale cloud envelopes. In

Figure 2.13, the global composition of infrared satellite retrievals from a day in

September 2019, highlight precisely these different forms that convection can take

on. If we focus on the African continent, it is daytime and there is a variety of small

to enormous convective cloud clusters over the tropical African land belt, the larger

ones being strongly organized MCSs. If we bring our focus westward across the

Atlantic Ocean, we notice a cyclone formation hitting the East coast of the United

States, namely hurricane Dorian. The fascinating question of what determines

the upscale organization of deep convective cells to MCSs, and potentially on to

cyclones, is, to this day, not fully resolved.

In meteorology, the search for an answer to this question, is driven by the evidence

that the organization of convection significantly influences the prediction of severe

weather events, with more organized events leading to more severe weather (as

already hinted to with the analysis on the degree of MCS organization from radar

imagery and the severity of weather reports in Houze et al. (1990)). In climatology,

the grand challenge today is to understand how a change in convective organization
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might make a difference to the overall radiative budget, contributing to warming

or cooling the climate.

But what is the intrinsic difference between a single deep convective cloud and a

large organized system of deep convective clouds? Houze (1982), with simple cal-

culations of condensation and evaporation rates within cloud clusters of different

precipitating areas, revealed a fundamental distinction in the vertical distribution

of diabatic heating between isolated convective towers and mature convective

cloud clusters, the latter heating more aloft (see idealized profiles in Figure 2.14).

Figure 2.14: Vertical profiles of idealized heating distributions for one convective cloud
(here CP for convective plume - not to be confused with cold pool!) and a
mature cloud cluster (here MC). From Hartmann et al. (1984).

The characteristic top-heavy heating profile of larger convective clusters arises

from the presence of the extensive cloud deck connecting the active cumulonimbus

cells within a cloud cluster, which reinforces the heating of convective towers at

higher altitudes and counteracts heating at lower levels. This difference in heating

profiles in turn affects the large scale circulation around the cloud.

It is known that large organized convective clusters contribute to approximately

half of the total tropical precipitation (Mapes and Houze, 1993), playing a crucial

role in modulating the moisture distribution and hydrological cycle. Observational

data suggests that the occurrence of organized convection has risen throughout

the tropics over the last decades, and a majority of the regional increases in tropical

precipitation are linked to this increase (Tan et al., 2015). Moreover, apart from

their impact on tropical cloud cover and rainfall, tropical cloud clusters serve as
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significant precursors to tropical cyclones, with approximately 6.4% of such clusters

globally transitioning into tropical cyclones annually (Hennon et al., 2013).

Efforts have been ongoing to reconcile the clustering of tropical convection with

basic theoretical frameworks. Randall and Huffman (1980) suggested that clus-

tering arises when clouds can generate a surrounding environment that is more

conducive to future convection compared to more distant areas. But what exactly

creates the prolific surrounding environment? What determines the transition of a

single cumulonimbus, to an MCS, to a hurricane? There is not a clear consensus on

this in the scientific community. If we knew the answer, we could predict the birth

of a hurricane from the point in time that it was just a single, seemingly innocuous,

cloud.

Until this point, we have primarily focused on MCS and CP characteristics derived

from observational analyses from the last 80 years, i.e. measurements from weather

stations, weather towers, soundings, radar and satellites. A milestone in weather

and climate research was the possibility to simulate the evolution of the governing

equations of the weather. Solving the Navier-Stokes equations and energy con-

servation laws on a discretized grid requires a potent calculator, and this became

possible with the advent of the computer in the 1960s. The first models consisted of

representing the atmosphere as one single column. With more computing power,

this increased to more columns (higher resolutions), covering larger and larger

areas (larger domains). Besides giving the ability to simulate the future, for weather

forecasting and climate projections, the capacity to simulate weather phenomenon

accurately is important diagnostically because some features of the weather are

almost impossible to observe. In this dissertation, we will focus on simulations

from cloud resolving models (CRMs). These models run at a high enough resolu-

tion horizontally and vertically to resolve many of the important kilometer-scale

processes involved in the creation and development of convective clouds.

There is a simple fundamental principle which governs the global atmosphere:

the time-averaged radiative cooling of the atmosphere must be balanced by latent

heating from condensation and the supply of sensible heat from the surface. Man-

abe and Strickler (1964) were the first to use a single-column model to show that

the radiative cooling balanced by convective overturning could explain the vertical

temperature structure of the tropical atmosphere (Manabe and Strickler, 1964).

This contributed to developing a framework for studying the atmosphere from a

simplified point of view: Radiative-convective equilibrium (RCE), i.e. the statistical
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equilibrium state that the atmosphere and surface would be in, in the absence of

lateral energy transport, consisting of a balance between net radiative cooling and

convective heating. RCE is a valid approximation of the global atmosphere, and

has in particular been used for investigating the behavior of moist convection in

2D and 3D CRMs (e.g. Held et al., 1993; Robe and Emanuel, 1996; Tompkins and

Craig, 1998). RCE simulations are often used to model the atmosphere over the

tropical ocean with CRMs, because of the simple framework applicable here where

the sea surface temperature (SST) variations can be relatively small, both in space

and time, and there are fewer external perturbations to the atmosphere than in the

midlatitudes (where frontal dynamics are predominant).

This is where an intriguing phenomenon arises: CRM simulations run in RCE with a

constant SST and homogeneous boundary conditions, while initially characterized

by randomly distributed convective cells, can spontaneously generate a highly

localized and well-organized cluster of convection surrounded by a cloud-free

domain after 10s of days of simulation time, as in Figure 2.15.

Figure 2.15: Snapshot of outgoing longwave radiation (OLR) at (a) day 10 and (b) day 80
of a radiative-convective equilibrium simulation at 305 K. From Wing and
Emanuel (2014).
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The individual convective rain cells at the beginning of the simulations measure

only few kilometers horizontally, while the clusters they form after tens of days of

simulation can span hundreds or even thousands of kilometers. This phenomenon

is known as convective self-aggregation (CSA), and has been extensively studied in

the last two decades - first, to understand the processes that lead to clumping of

convection starting with otherwise homogenous boundary conditions (reviewed

thoroughly in Wing et al. (2017)); second, to understand if the simulation-born

phenomenon can be found in reality (a still emerging field of research presented

in the review by Holloway et al. (2017)). While CSA was initially found in simple

RCE set-ups with fixed sea surface temperatures and homogeneous boundary

conditions, it has been shown to be robust to the presence of rotation (Bretherton

et al., 2005; Khairoutdinov and Emanuel, 2013; Wing et al., 2016), vertical wind

shear (Bretherton et al., 2005), two-dimensional or three-dimensional settings

(Jeevanjee and Romps, 2013), an interactive ocean mixed layer (Hohenegger and

Stevens, 2016), and to occur in global climate simulations with parameterized

convection in aquaplanet non-rotating settings (Coppin and Bony, 2015).

CSA spontaneously emerges from the very small scales of individual convective

clouds, but it can show effects at the synoptic scale. The clumping of convection

is in fact associated with changes in the large-scale state of the atmosphere, such

as a drying of the atmosphere, a shrinking of upper-tropospheric clouds, and an

enhanced ability of the atmosphere to loose heat to space (e.g., Wing and Emanuel,

2014; Wing and Cronin, 2016; Bony et al., 2016). In the course of an aggregating

simulation, dry regions that are initially small tend to expand and merge, often

leading to only one persistent dry region that covers most of the domain. The

remainder of the domain features an intensely convecting moist patch, with strong

convective updrafts, reduced outgoing longwave radiation and heavy precipitation.

The transient approach to the fully aggregated state can be described as “dry gets

drier” and “moist gets moister” (Haerter and Muller, 2023). The exact processes

behind CSA have been investigated in depth in simulations, and there is not one

process that rises over the rest in literature. We will briefly approach them one by

one, while deeper explanations can be found in the recent reviews by Muller et al.

(2022) and Haerter and Muller (2023).

22 Chapter 2 The Groundwork



Key processes influencing CSA.

Figure 2.16: Schematic of key processes leading to CSA. (1) enhanced radiative cooling
in dry regions and associated shallow divergent circulation (red arrow),
(2) turbulent entrainment of environmental air at the edge of clouds, (3)
evaporation-driven cold pools in the boundary layer, (4) boundary layer
wave emission. From Muller et al. (2022).

1. Radiative feedbacks are critical for CSA (Bretherton et al., 2005) to develop

and persist in a CRM. Longwave radiative cooling is increased in dry regions:

clear-sky areas don’t obstacle outgoing longwave radiation emitted to space

by the surface. On the other hand, longwave radiative cooling is reduced in

moist regions, which are covered by high clouds which trap outgoing long-

wave radiation emitted to space by the surface. This results in a differential

cooling between dry and moist regions, with cooling in the dry regions pro-

moting subsidence (also known as a dry pool), and reduced cooling/heating

in the moist regions promoting upward motion, thus generating a circulation

with a near-surface flow directed from the dry areas to the moist areas. This

flow acts by bringing more moisture to the moist areas, creating a positive

feedback loop (process 1 in Figure 2.16).

2. Moisture feedbacks contribute to maintaining CSA in a CRM. Cloudy up-

drafts, through turbulent motions, entrain neighboring air at their edge: This

decreases the buoyancy and upward motion of the updrafts (through drying

and evaporatively driven latent cooling). In self-aggregated simulations, the

air surrounding updrafts is relatively moist, since the updrafts are in moist

areas of the domain, which reduces the negative effect of entrainment and
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further favors the aggregation of updrafts in the moist region (Tompkins and

Semie, 2017) (process 2 in Figure 2.16).

3. Cold pools have a dual role in CSA, notably through their ability to trigger

new convection around a precipitating cloud and to redistribute moisture

in the boundary layer (process 3 in Figure 2.16). The edge of a CP, with its

internal vortical structure, can cause mechanical lifting of air around the

original cloud, leading to the rapid development of new convective clouds in

the vicinity of the precipitation, which can obtain even more energy where

two or more CPs collide (Meyer and Haerter, 2020; Torri et al., 2015). Fur-

thermore, the presence of enhanced moisture on the edge of CPs ("moisture

rings”) as seen primarily in simulations following Tompkins (2001a) and in

observations of CPs over tropical ocean (Szoeke et al., 2017; Zuidema et al.,

2017), can also contribute to new convection forming on the edges of a CP,

albeit on longer timescales than mechanical lifting. However, the CP also

has a cold, dry interior, which tends to stabilize the atmosphere below the

precipitating cloud, and suppress new convection in place of the previous

precipitation. A CP can therefore act as a means to redistribute moisture

back away from the moist convective area, thus acting against the moisture

feedback (process 2) in the boundary layer. While the role of CPs in CSA is not

entirely settled, it is important to note that large scale radiation and moisture

feedbacks tend to dominate, once the domain-wide anomalies such as dry

patches, exceed the typical size of individual CPs. We will explore this further

in Chapter 3.

4. Gravity waves can trigger CSA in the absence of the other feedbacks (process

4 in Figure 2.16). As proposed by Yang (2021), CSA can spontaneously emerge

through the formation of standing wave packets by convectively coupled

gravity waves, which segregates the domain into regions of convective activity

and inactivity.

The four key processes above have been extracted by Muller et al. (2022) from the

many CRM simulations in literature focused on CSA. To complement the simu-

lations, there is a growing pool of literature that focuses on building conceptual

models that can explain the onset and development of CSA in the CRM simulations,

with the aim of gaining deeper understanding through lower-complexity models.

We will focus primarily on the radiative feedbacks and CPs.
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Simplified models to explain CSA.

We will approach the simplified models by thinking of them in terms of the di-

rections along which the processes act, i.e. in the vertical (radiation), and in the

horizontal (CPs).

In the vertical.

Emanuel et al. (2014) coined the concept of "Radiative convective instability",

exploring CSA as a linear instability of the tropical atmosphere with an elegant

theoretical emissivity model, consisting of a two-layer atmosphere (Figure 2.17)

which represents humidity in the upper and lower troposphere.

Figure 2.17: The two-layer model by Emanuel et al. (2014). Surface temperature and the
temperatures of each layer are specified and constant. The emissivities, ϵ,
updraft and downdraft mass fluxes, Mu and Md , large-scale vertical veloci-
ties, w, and specific humidities, q, are variable. The vertical arrows depict
the convective and radiative fluxes.

They found that above a critical SST threshold, the RCE state becomes linearly

unstable, leading to the emergence of large-scale overturning circulations. This

happens in particular when the lower troposphere becomes so optically thick due

to high specific humidity, that its cooling to space depends only on the humidity in

the upper troposphere.

The instability in Emanuel et al. (2014) represents a subcritical bifurcation of the

RCE state (Figure 2.18). Below a critical SST, the RCE state is stable to small pertur-

bations in humidity, but large enough perturbations can result in the emergence of
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either a dry state characterized by widespread subsidence or a moist state marked

by overall ascent. Above the critical SST, these transitions are spontaneous. Since

the Emanuel et al. (2014) model is a one-column model, CSA in a CRM can be seen

as a combination of the two equilibria in distinct parts of the domain.

Figure 2.18: Schematic diagram of equilibrium states, showing the large-scale vertical
velocity w as a function of SST. Above the critical SST, the RCE state is linearly
unstable. Question marks denote unexplored regions. From Emanuel et al.
(2014).

It is worth noting that there is no consensus regarding the effect of SST on CSA,

as shown in the comprehensive RCE model intercomparison study by Wing et al.

(2020). The model in Emanuel et al. (2014) focuses entirely on free-tropospheric

moisture and radiation feedbacks, neglecting any boundary-layer processes that

act to redistribute moisture (CPs). In Figure 2.18, there are question marks denot-

ing the unexplored regions of the regime diagram: The transition areas between

the unstable equilibria and the stable equilibria, which leads us to explore the

horizontal direction.
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In the horizontal.

A conceptual model to explain CSA emergence that focuses solely on the boundary-

layer processes involved and disregards radiation feedbacks is found in Haerter

et al. (2019). This model introduces a mechanism for phase separation similar to

CSA, which relies solely on CP collisions and a global energy constraint. Here, CPs

are conceptualised as growing circles, new rain cells originate at the intersections

of the circles (mimicking CP collisions triggering new convection), and rain activity

ceases when the global energy budget is "used up". With random initial conditions,

where the CP center density is evenly distributed across the area, the model’s

dynamics progressively lead to the formation of increasingly larger clusters of

convective activity, and inactive areas, like what is seen in classic CSA - all thanks

to CPs. Nissen and Haerter (2020) built on to this by adding two properties of the

circles: a radius Rmi n - within which rain is suppressed, and Rmax , the maximum

radius at which the CP can trigger new convection. Figure 2.19 shows 2D snapshots

in time of various steps of the "circle model".

Figure 2.19: The "Circle model" capturing CP dynamics leading to CSA. Seven snapshots
running forward in time from one model run: Snapshots 1–2 show the initial
first generation rain-cell positions. Snapshot 3 shows the emergence of
circles (CPs). Snapshots 4–5 and 6–7 show representative pictures of the
high state and the low state. From Nissen and Haerter (2020).

By testing the two parameters, Nissen and Haerter (2020) find that smaller CPs

(smaller Rmax), and CPs with larger suppression areas (larger Rmi n), tend to fa-

cilitate the emergence of CSA, suggesting that large CPs actually hamper CSA.

This work, in a way, focuses on the development and initial growth of the first

dry patches in CSA, attributing it to CP effects, when the CPs have the "right"

properties.

An incredibly simple conceptual model that manages to efficiently explain the

effect of CPs on CSA in relation to the larger scale radiative feedbacks, is found in

Yanase et al. (2020). They first compare 20 CRM simulations run in RCE with con-

stant SST (set to 300K) for many different horizontal resolution and domain sizes,

and they find a critical domain size around 500 km, above which all simulations

with this SST (even at high resolutions) develop CSA, suggesting the existence in the
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real atmosphere of a characteristic length in the interaction of convective clouds

with the larger scale environment. Their conceptual model is explained through

the competition of opposite effects on the moisture variance in the boundary layer:

CPs and the subsiding radiatively driven dry pool (see schematic in Figure 2.20).

Figure 2.20: Schematic of the competition between the two opposite feedbacks by hori-
zontal divergent flows in a subsidence area and a convective area accom-
panied by temporal evolution. (a) Scattered case and (b) aggregated case.
From Yanase et al. (2020).

CPs, constantly redistributing moisture in the boundary layer and suppressing

new convection where rain was present, tend to act against CSA in small domains

(the "scattered" state in Figure 2.20). However, as the domain size increases, the

positive feedback from the radiatively driven dry pool, and its associated low-level

horizontal divergent flow strengthens. When the domain size exceeds the critical

length, the positive feedback wins over the negative feedback due to the CPs in the

convective region.

It seems to emerge from these conceptual models that CPs with specific proper-

ties and with a global constraint can determine the onset of CSA, and radiative

feedbacks can maintain CSA once this wins over the CPs. We will combine these
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concepts and build our own toy model operating both in the horizontal and in the

vertical, in Chapter 3, with the "Game of Cloud".

Time-varying surface temperatures. The majority of the presented studies men-

tioned until here, refer to simulations with constant SSTs, mimicking tropical sea

surfaces. Haerter et al. (2020) instead applied diurnal variations to the surface tem-

perature to mimic both land surfaces (5K diurnal cycle amplitude) and sea surfaces

(2K diurnal cycle amplitude) - and found qualitatively different behaviors between

the two. With the stronger surface temperature forcing, MCSs in fact emerge in

the time scale of days, stretching over 100 kilometers horizontally, self-organizing

within the domain and leaving other regions predominantly rain-free (Figure 2.21).

Figure 2.21: Day averages of surface rainfall during day 1, day 4 and day 5 for CRM
simulations with (top row) 2K amplitude diurnal cycle and (bottom row) 5K
amplitude diurnal cycle. From Haerter et al. (2020).

This phenomenon, referred to as "diurnal self-aggregation" in Haerter et al. (2020)

is attributed to the higher spatial density of rain cells in a short window of time.

Under the windows of high convective activity during the diurnal cycle, the CPs

under nearby convective rain cells in fact tend to merge, forming a super CP of

much larger extent, spatially and temporally. This larger CP then triggers more

convection along its gust front, setting off a cascade of convective rain cells, adding
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to the combined CP. The thermodynamic anomalies generated by these combined

CPs in the boundary layer dissipate relatively slowly, suppressing further convec-

tion in the same region on subsequent days. A beautiful analysis of the described

CP-cascade happening already on the first day of a simulation with a 5K amplitude

diurnal cycle was shown in the more recent work by Jensen et al. (2022), seen in

Figure 2.22.

Figure 2.22: (top row) Instantaneous vertical velocity fields at z=50m during day 1 of a
CRM simulation with 5K amplitude diurnal cycle, showing the evolution
after the first CP. (bottom row) Same as top but showing virtual temperature
anomaly field. Arrows highlight new CPs. From Jensen et al. (2022).

Jensen et al. (2022) took the Haerter et al. (2020) study further by running longer

simulations with the 5K and 2K amplitude diurnal cycles. They find that with the

stronger surface temperature forcing, not only do MCSs emerge, but also a domain-

scale dry patch, reminiscent of CSA. The emergence of a dry patch is attributed to

the action of MCSs and their associated CPs: the CP cascades are in fact shown

capable of clearing large-scale (∼ 100km) areas from moisture and suppressing

convective activity, leading to a subsiding circulation over the already dry regions

which then permanently drives moisture out toward the already moist (convective)

regions - just like the radiatively driven CSA feedbacks. Jensen et al. (2022) checked

whether eliminating the temporal oscillation in surface temperatures would result

in the disappearance of the dry patches once they had formed due to the diurnal

temperature fluctuation: however dry patches persisted even when the surface

temperature was set to constant. This results in a form of hysteresis, which we will

explore further in Chapter 3.

Haerter et al. (2020) concluded their study with a hypothesis on a shortcut to

observed clustering over sea: "clustering may emerge over land surfaces, where

a strong diurnal cycle prevails, and may then be advected over the sea, where it

could grow further under more RCE-like conditions." Jensen et al. (2022) concluded
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their study with a hypothesis on a path to persistent clustering over sea: "when

organized convective cloud clusters, produced under a high-amplitude surface

temperature forcing, are eventually advected over regions with little surface tem-

perature variation, the clustered pattern may persist and even intensify further.

Such a situation could be found at the interface between tropical continents and

oceans, for example, at the west coast of Africa."

We will follow these hypotheses, by focusing, in Chapter 3 on the transition from

tropical land to tropical sea. We will impose realistic surface temperature forcings

found over tropical African land and the adjacent Atlantic Ocean, and analyse the

emergent hysteresis arising in the CSA developed by MCSs over land and advected

over the ocean, hinting at a potential path to the formation of large scale hurricanes

over the ocean.
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2.3 Nowcasting and Recurrent Neural
Networks (RNNs):

–Towards Real-World Applications–

We investigate the upscale growth of MCSs over tropical land and the transition to a

self-aggregated state in cloud-resolving simulations in Chapter 3, and we measure

CPs with a weather tower and radar in the Netherlands in Chapter 4. These MCSs

and CPs, which have an obvious impact on society due to the extreme rainfall and

high wind gusts associated with their occurrence, are incredibly difficult to predict

in real time in the real world due to the apparently random nature of convection.

Numerical models used for operational forecasting, also called Numerical Weather

Prediction (NWP) models, are run at a resolution that is too coarse for capturing

the initiation and development of convective clouds bearing rain. The "skill" for

predicting convective rain in the short-term future is therefore low for NWPs. Even

with high-resolution cloud resolving models, the predictability of convective rain

is poor (Hohenegger and Schär, 2007).

Nowcasting. In Chapter 5, we will step out of the theoretical world and look at a

more immediate application of atmospheric sciences in society. Nowcasting is a

branch of forecasting that utilizes different techniques than the traditional NWP

modeling, to predict weather conditions ranging from 0 to several hours ahead. A

common technique used for locally nowcasting rainfall, which outperforms NWP

modeling for the near future, is the extrapolation of rainfall trajectories from radar

imagery, once a storm has formed. Radar-based nowcasting can be effectively

implemented thanks to spatially dense radar networks present in many areas

of the world, that provide data in real time with updates every 5 minutes. The

problem is, in the locations of the world where there is sparse radar coverage, or

no radar coverage at all, there is very little accessible short-term information about

rainfall.

Tropical Africa is both a region of the world that hosts the largest MCSs in the world

(as we saw in Figure 2.7) and with the absolute least radar coverage in the world

(see Figure 2.23 showing the curent global radar coverage). Long-lived MCSs play

a crucial role in extreme precipitation events in this part of the world (Roca and

Fiolleau, 2020), particularly over the Sahel (Figure 2.24), where they contribute up

to 90% of seasonal rainfall (Nesbitt et al., 2006). Improving the prediction of these
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Figure 2.23: A snapshot of radar coverage in the world, as of February 2024 (Tropical
Globe Radar Database Accessed: 2024-02-26). Locations of existing radars
in red and range of publicly available radar data in green.

Figure 2.24: Sahel region of Africa. (Encyclopædia Britannica Accessed: 2024-02-28[a])

events is vital due to the rising frequency and intensity of extreme rainfall in the

Sahel (Taylor et al., 2017), which has led to escalating socio-economic impacts from

floods in recent decades (Di Baldassarre et al., 2010; Tramblay et al., 2020). We put

our focus on the Sahel in Chapter 3 due to the large MCSs that are formed in this

region thanks to the strong diurnal cycle, and advected westward over land and

towards the Atlantic Ocean. There, we use satellite data to monitor the MCSs and

we run high-resolution simulations to gain insight about the interplay between

MCSs and the larger-scale dynamics. What can we then do to nowcast these
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enormous storms, to provide an early-warning signal of incoming rain and wind

gusts to the people living in flood-prone urban areas and fishermen that risk being

caught at sea? These questions, alongside the research-driven questions about the

initiation and development of MCSs, brought us to think of a field campaign to

take place in Senegal, the Western-most country of the Sahel.

Rainfall in West Africa is closely associated with the West African Monsoon (WAM):

A seasonal wind system that brings significant rainfall to the region annually (Fig-

ure 2.25). It typically occurs from June to September, peaking in July and August,

Figure 2.25: Wind and rainfall patterns of the WAM. (left) June-September; (right)
January-March (Encyclopædia Britannica Accessed: 2024-02-28[b])

which we will call "rainy season". The WAM is driven by the differential heating

between the African landmass and the surrounding oceans, particularly the Gulf

of Guinea and the Atlantic Ocean. During the summer months, the land heats up

more quickly than the ocean, creating a low-pressure area over land. This contrast

in pressure causes moist air from the ocean to flow inland, where it rises and cools,

leading to the formation of clouds and precipitation. The WAM interacts with

the Intertropical Convergence Zone (ITCZ), a band of low pressure near the equa-

tor where the trade winds of the Northern and Southern Hemispheres converge.

During the WAM season, the ITCZ also shifts northward, following the seasonal

migration of the Sun. This northward movement brings the ITCZ and its associated

band of deep convection into closer proximity to West Africa, enhancing the con-
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vergence of moist air masses from both the Atlantic Ocean and the Gulf of Guinea.

As a result, the convergence of these air masses intensifies the monsoon circulation

and contributes even more to the onset of the rainy season in West Africa. The

rainy season in this region, a product of the WAM and the ITCZ, plays a crucial role

in the climate and ecosystems of West Africa, providing much-needed rainfall for

agriculture and sustaining river systems. However, it is also the season of severe

weather events, bringing MCSs and associated floods. It is important to underline

here that the deep convection in the ITCZ tends to be transported westward across

the continent with the African Easterly Jet (AEJ), as highlighted by the average MCS

velocity vectors over the Sahel in Figure 2.8.

A dense network of weather stations, especially in the absence of radar, is a way to

monitor the WAM, the associated MCSs, study the heterogeneous rain rates within

MCSs, and the abrupt changes in temperature and the wind gusts due to CPs -

the variables that ultimately affect humans. However, as stated in Knippertz et al.

(2020), "The meteorological station network in West Africa is sparse and existing

data are not always available for research and operations, limiting evaluation of

model and satellite products." Efforts have been made to install ground-based

instruments in this region: Both the AMMA (African Monsoon Multidisciplinary

Analysis) field campaign and the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud

Interactions in West Africa) project aimed to deepen the general understanding

of atmospheric processes in West Africa, a region heavily influenced by the WAM.

The AMMA initiative (Lebel et al., 2011), spanning from 2002 to 2010, conducted

extensive long-term monitoring efforts and deployed a network of instrumenta-

tion across multiple countries, with longer term ground-based measurements in

Mali, Niger and Benin, enhancing West Africa’s visibility in global meteorological

systems. The DACCIWA project (Kohler et al., 2022), active from 2013 to 2018,

focused on enhancing understanding of meteorology and air quality in the region,

particularly during the summer of 2016 when a comprehensive field campaign was

conducted in southern West Africa. This campaign involved three research aircrafts

and various surface-based instruments across sites in Ghana, Benin, and Nigeria,

generating a comprehensive atmospheric dataset that supported the evaluation of

dynamical models and satellite data. Besides the importance of installing more

ground-based instruments with easy data-access, there is a need for improved

forecasting tools and approaches (Fletcher et al., 2023). The African Science for

Weather Information and Forecasting Techniques (SWIFT) program (Fletcher et al.,

2023) is the most recent large-scale effort aimed at addressing this challenge, by

enhancing forecasting capabilities through collaboration between researchers and
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operational forecast services in Kenya, Nigeria, Ghana, Senegal, and the UK. No-

table steps forward in nowcasting for the Sahel are already being seen through

the use of geostationary satellite data. Infrared cloud-top temperature retrievals

cannot give direct measurements of precipitation, however, filtering algorithms

can be applied to identify convective cores within MCSs, strongly linked to heavy

precipitation (Klein et al., 2018). The most recent studies on nowcasting in this

region have shown novel approaches to produce probabilistic nowcasts of convec-

tive activity with satellite imagery (Anderson et al., 2023). Another approach for

nowcasting MCSs is to use land surface temperature retrievals from satellites as a

proxy for soil moisture levels, since dry soils early in the day have shown a strong

correlation with MCS activity in the Sahel (Taylor et al., 2022). These exciting ideas

have yet to be implemented in operational centers.

The path to a field campaign. Throughout my PhD, thanks to periodic meetings

between the Laboratory of the Atmosphere and the Ocean at the University Cheikh

Anta Diop (UCAD) of Dakar, the National Agency of Civil Aviation and Meteorology

of Senegal (ANACIM), the UK Centre for Ecology and Hydrology (UKCEH) and our

Bremen-based research group, a field campaign slowly came to the surface, to

study MCSs and CPs over Senegal, with a dense weather station network sending

real time measurements to a cloud-server at 1-minute update intervals. I had the

opportunity to participate in the planning phase of what we will call the DakE

(Dakar-East) campaign, the testing of weather stations in Bremen, the installation

of the first two pillars of this campaign, namely two weather stations set up, one in

Dakar, and one East of Dakar, in the last two weeks of September 2023. Due to the

Figure 2.26: Locations of the first two stations of the DakE field campaign in Senegal: the
town of Pout and the University of Cheikh Anta Diop (UCAD).

monsoonal dynamics, the rainy season in Senegal is approximately from June to

September, and we successfully managed to measure a handful of rain events in

the last two weeks of September 2023, before the dry season kicked in.
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While the rest of the measurement network is being set up by my colleagues and

we wait for the rainy season of 2024, in Chapter 5 we focus on creating a simple

nowcasting tool to be used with the two first stations we set up in September

2023. Since we do not have a full rainy season of real-time data yet, we run a

weather forecasting model at a 1 km horizontal resolution over Senegal, with

realistic boundary conditions, to simulate a full rainy season from 2019. From

this simulation we extract time series from the locations of the installed weather

stations, thus a full rainy season of "synthetic station data". We know that an MCS

produces CPs, and that CPs can be detected and measured from ground-based

weather stations (Chapter 4). We can then detect CPs in the synthetic station data

from Senegal and study the time series of measured data leading up to the CPs.

Here is where machine learning comes in: we can train a machine learning algo-

rithm to identify certain patterns in the measured variables that are precursors to

the CPs, so it can learn to predict, or nowcast, a CP in a specific location before

its arrival. Using machine learning in weather forecasting is an exploding field

of research, thanks to the abundant amount of weather data (measurements and

simulation output) to train algorithms on. Think of the recent boom in machine

learning applied to language models, for instance, ChatGPT. This language model

is trained on books, articles and websites, to predict the next word in a sequence of

text based on the words that came before it. By repeating this process millions of

times with different sequences of text, the model also learns patterns and relation-

ships in the data. We want to do something very similar, but with time series data.

We will now break down the pieces to understand what algorithm we will use in

Chapter 5 to learn to predict CPs in our time series data.

Neural networks. A neural network is a computational model inspired by the

structure and function of the human brain’s interconnected neurons. It consists

of interconnected nodes, or "neurons," organized in layers in the case of feed-

forward networks, which we will explore. Each neuron receives input, processes

it, and produces an output that serves as input to other neurons. In a typical

neural network, there are three main types of layers: the input layer (receives

the initial data or input features typically in the form of multidimensional arrays,

and produces a hidden state), the hidden layers (perform computations on the

hidden state), the output layer (produces the network’s output, which could be a

prediction based on the input data). During training, a neural network learns to

perform tasks by adjusting the strengths of connections between neurons, called

"weights," based on examples of input-output pairs, mimicking the human brain’s
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ability to make new connections. This process, known as "training" or "learning,"

involves forward propagation of input data through the network, comparing the

predicted output to the actual output through a loss function, backpropagation of

the loss function, and adjusting the weights to minimize the difference between

them using optimization algorithms.

Recurrent Neural Networks. Recurrent Neural Networks (RNNs) are a type of

neural network architecture commonly used for sequential data processing tasks,

thanks to the presence of loops and a hidden memory state that allows for informa-

tion to persist. While feedforward neural networks process input data sequentially

without any memory of past inputs, recurrent neural networks can retain infor-

mation about past inputs through their recurrent connections, enabling them to

capture temporal dependencies in sequential data. Thus, RNNs are well-suited for

tasks where the input and output data are sequences of variable length or where

there is a temporal dependency between elements in the sequence. One can see

an RNN as a sequence of many neural network cells. In each cell of the RNN, the

input of the current time step xt (present value) and the hidden state ht−1 of the

previous time step (past value) are combined, and then limited by an activation

function to determine the hidden state ht of the current time step (see conceptual

diagram in Figure 2.27).

Figure 2.27: Schematic of an unfolded RNN. From Dancker (2022).

RNNs are used in various applications such as natural language processing for tasks

like language modeling, machine translation, and text generation. There, RNNs

process sequences of words or characters, capturing contextual information and

dependencies between words. They are also used in speech recognition systems,

where the input is an audio waveform represented as a sequence of samples over

time. Most importantly, RNNs are used in time series analysis, where they can

model and predict future values based on past observations. They are used in
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financial forecasting, weather prediction, and other domains where predicting

future events based on historical data is important.

Long Short-Term Memory Networks. Long Short-Term Memory (LSTM) is a

special kind of RNN architecture designed to overcome the limitations of traditional

RNNs in capturing long-term dependencies in sequential data. First introduced

in 1997 by Hochreiter and Schmidhuber (1997), LSTMs are particularly useful for

tasks involving time series data, natural language processing, and other sequential

data analysis tasks. In addition to a traditional RNN, an LSTM has a cell state, which

represents the memory of the cell and is updated over time through a combination

of forgetting old information, adding new information, and maintaining existing

information (top horizontal line in the LSTM schematic, Figure 2.28).

At the core of an LSTM unit are three gates: the forget gate (decides what informa-

tion to discard from the cell state), the input gate (decides what new information

to store in the cell state), and the output gate (decides what information to output

from the cell state).

Figure 2.28: Schematic of an unfolded LSTM. From Dancker (2022).

These gates allow LSTMs to learn long-term dependencies by selectively remem-

bering or forgetting information over time. Unlike traditional RNNs, LSTMs can

maintain information over many time steps, making them well-suited for tasks

requiring memory over time. When referring to observational time series, LSTMs

take a sequence of data points as their input, where each data point represents an

observation at a specific time step. The input sequence is then fed into one or more

LSTM layers, which process the sequential input data and capture dependencies

between time steps, generating an output array containing all desired time steps

for prediction.
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An auto-regressive LSTM, which we will use alongside a traditional LSTM in Chap-

ter 5, furthermore combines the capabilities of LSTM cells with auto-regressive

modeling. This means using the network’s output from previous time steps as

input to predict the next time step, instead of directly predicting the next time

step’s value based solely on the current input. In other words, the model learns

to predict future values in the sequence based on its own past predictions. The

final output of both an LSTM and an auto-regressive LSTM can be, for example,

a sequence of predicted values for future time steps in the input sequence, and

both are geared toward capturing complex temporal patterns and both long and

short-term dependencies in sequential data.

With these methods in mind, we will try to answer the following question in Chapter

5: Can we train an LSTM with time series data from two weather stations situated

upstream and downstream of the general path of MCSs, to predict incoming CPs,

before they arrive to the capital city of Dakar?
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Figure 3.1: 3D rendering of deep convective clouds and rain in SAM simulation output
(simulation DIU in Table 3.1). Thanks to Weria Pezeshkian for helping with
this visualization.
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Abstract

Radiative-convective equilibrium simulations were suggested to resist self-aggregation

within a linearly-stable regime at low surface temperatures. Recent numerical work

shows that this linearly-stable regime can rapidly transition to an aggregated state

when exposed to realistic diurnal surface temperature variations. The resultant

aggregated state is then stable, even when the surface temperature is set constant.

Here we argue, by constructing a reaction-diffusion model, that this tipping pro-

cess can be explained by the formation of mesoscale convective systems under

the diurnal forcing. The model implies that strong cold pool interactions, invoked

by the diurnal cycle, drive the self-organization of long-term buoyancy memory.

Thus, whereas previous conceptual work disregarded the boundary layer, we here

attribute key organizing mechanisms to it: namely the ability to cause rapid self-

aggregation over continents and its advection over the ocean — with potential

implications for hurricane formation.
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3.1 Introduction

In Earth’s atmosphere, convection can organize across many spatial scales, from

local thunderstorms, to mesoscale convective systems (MCSs), tropical cyclones,

and synoptic-scale waves. MCSs are organized clusters of thunderstorms spanning

more than 100 km horizontally, persisting often for multiple hours (Houze, 2018).

They are known to be the dominant source of rainfall in the tropics, and the longest-

lived MCSs are shown to be largely responsible for tropical extreme precipitation

(Tan et al., 2015; Roca and Fiolleau, 2020). Globally, the most extreme storms

tend to be located over land, and the most intense storms over oceans tend to be

adjacent to land, where motion is favored from land to ocean, e.g. tropical West

Africa and the adjacent Eastern Atlantic Ocean (Zipser et al., 2006). However, the

fundamental mechanisms driving the formation, intensification and dissipation of

MCSs is not well established yet.

In an effort to better-understand the physics of convective storms, the atmospheric

modeling community has been focusing for many years on the concept of Convec-

tive Self-Aggregation (CSA). In an idealized environment of radiative convective

equilibrium, with homogeneous initial conditions and a constant-temperature

tropical sea surface, convection can spontaneously clump, or aggregate, into

domain-wide patterns of persistent dry areas and confined rainy areas over a

temporal time-scale of weeks to months (Held et al., 1993; Tompkins and Craig,

1998; Emanuel et al., 2014; Muller et al., 2022). CSA, albeit still a modeling paradigm,

could reveal the mechanisms behind some of the convective organization observed

in the tropics (Holloway et al., 2017). The process of forming domain-wide struc-

ture can be achieved within few days by imposing oscillating surface temperatures

with a large enough amplitude (Haerter et al., 2020). The ‘diurnally aggregated’

cloud field is similar to CSA as it also constrains the surface rain field to certain

parts of the domain. In fact, in the simulations by Haerter et al. (2020) mesoscale

organization vanished when the diurnal cycle was removed.

The idealized tropical atmosphere, simulated under RCE conditions, is known

to exhibit hysteresis effects (Khairoutdinov and Emanuel, 2010; Muller and Held,

2012). Recent work however describes a plausible route to such an aggregated state:

under diurnally varying surface temperature forcing, multi-day spatiotemporally

persistent dry patches can form. These first initiate in the uppermost atmospheric

layers and subsequently penetrate through to the subcloud layer. When removing
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the diurnal forcing after a number of days, the persistently dry patches remain and

are reminiscent of a classical aggregated state (Jensen et al., 2022).

Conceptual models offer a tool to further understand convective self-aggregation

(CSA) mechanisms (Emanuel et al., 2014; Nissen and Haerter, 2021; Biagioli and

Tompkins, 2023). Emanuel et al. (2014) explore CSA as a linear instability of the trop-

ical atmosphere, focusing on radiative convective instability and free-tropospheric

moisture, neglecting boundary-layer processes. In contrast, Haerter et al. (2020)

and Nissen and Haerter (2021) emphasize the role of convective cold pools (CPs)

in CSA emergence, with CP collisions driving phase separation akin to CSA forma-

tion. In Yanase et al. (2020), the interplay between CPs and radiatively driven dry

pools in promoting or inhibiting CSA is investigated, highlighting the importance

of the domain size. More recently, Biagioli and Tompkins (2023) build on Craig

and Mack (2013) to simulate convective organization. They propose horizontal

transport efficiency and subsidence rate as key parameters determining an "area of

influence." Importantly, their model can estimate how a specific domain size and

resolution is prone to aggregate, at least for constant surface temperatures. While

the models above offer valuable insights, they individually overlook key aspects,

lack the possibility to resolve both land and sea configurations, disregard boundary

layer dynamics, or the integration of CPs contributing as both a negative feedback

inside raincells and positive in their immediate surroundings. Together, these

shortcomings point to the need of a conceptual model that integrates both vertical

and horizontal dynamics influencing CSA, valid in different environments.

In this work we aim to strengthen the bridge between the modeling paradigm

of CSA and the real atmosphere. Specifically, we build upon the reasoning of

Jensen et al. (2022) that if an organized convective cloud field, produced under a

high-amplitude surface temperature forcing, is eventually advected over regions

with little surface temperature variation, the clustered pattern may persist and

even intensify further. In the real atmosphere, the spatio-temporal scales of this

phenomenon can be found over the tropical African continent and the adjacent

Atlantic Ocean. There, land-born mesoscale convection is advected over the ocean,

at times even maturing to tropical cyclones when reaching higher latitudes and

thus acquiring rotation. Hereby, we explore how diurnal surface temperature

amplitudes, typical of tropical land, affect the formation of persistent dry patches

and the spatio-temporal extent of the emergent mesoscale convective systems.
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To this end, we run a set of cloud resolving simulations initialized with typical

vertical profiles of temperature and humidity. A large-amplitude diurnally oscil-

lating surface temperature is imposed, which is then set to constant at different

times, to see the effect on the diurnally aggregated cloud field. By tracking ob-

served MCSs over West Africa and the adjacent Atlantic, we first show that our

simulations give realistic deep convective diurnal cycles under the imposed surface

temperature conditions. Analogous to Jensen et al. (2022), persistent mesoscale

organization arises in the land simulations after running them for several days.

When switching to constant surface temperatures, we find strong dependence

on the degree of aggregation over ‘land,’ in determining its persistence over ‘sea,’

thus implicating a form of hysteresis. We capture this hysteresis by deriving a

simplified conceptual model. Our model discretizes the boundary layer using a

spatial grid scale corresponding to that of typical cold pools and captures basics

of convective dynamics, radiative effects and cold pool interaction, both under

diurnal and constant-temperature surface conditions.

The paper is organized as follows. Section 3.2 has two chapters which each encom-

pass methods and relevant results: in section 3.2.1 we introduce the numerical

model used to simulate MCSs over tropical Africa and the adjacent Atlantic Ocean

and observation dataset used to calibrate and validate the former; subsequently

we introduce the methods to study self-aggregation and show the emergence of

bi-stability in the transition from land to sea; In section 3.2.2 we introduce the

conceptual model that can capture the bi-stability in self-aggregation from land

to sea and its parameter space. In Section 3.3 we discuss the implications of our

results.
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3.2 Methods and Results

3.2.1 Idealized Simulations of Organized
Convection

Numerical methods

Our numerical simulations (Table 3.1) are conducted using the System for Atmo-

spheric Modeling, version 6.11 (Khairoutdinov and Randall, 2003). The model

uses a single-moment microphysics scheme, the RRTM radiation scheme and a

1.5-order sub-grid scale closure scheme for subgrid turbulent processes. Surface

fluxes are evaluated based on the Monin-Obukhov similarity. The computational

domain consists of 480×480 grid points in the horizontal, with doubly periodic

lateral boundary conditions, and a horizontal resolution of 1 km, respectively 500

m for the high-resolution simulations. We use 64 levels in the vertical, with a log-

arithmic scaling stretching from 50 m at the lowest level to 1000 m at the top of

the model, which is set at 27 km and has a sponge layer above. We do not account

for Coriolis forces. The vertical profiles are initialized using a tropical sounding

without horizontal wind derived from ERA5 dataset, averaged over the Atlantic

and tropical West Africa (5:10N,-40:10E) in the months of June-August 2020. For

all ‘ocean’ simulations (OCEAN), constant surface temperatures Ts(t ) = T0 = const

conditions are prescribed domain-wide. As is appropriate for a water surface, the

specific humidity at the surface is assumed to be at saturation. For ’land’ simula-

tions (DIU), we impose sinusoidally-oscillating surface temperatures Ts(t), that

is:

Ts(t ) = T0 −∆T cos(2πt/t0) , (3.1)

where T0 is the average surface temperature, ∆T is the surface temperature am-

plitude and t0 = 24h is the one-day period. For DIU, surface latent heat fluxes are

reduced to 0.7 of those obtained for the (saturated) oceanic surface, in an effort

to mimic an unsaturated surface and to keep the Bowen ratio from becoming too

unrealistically low. The temporally-averaged Bowen ratio in the DIU simulation is

0.2 with this LAND set-up, and 0.1 for the OCEAN simulation. These Bowen ratios,

calculated from the time-averaged latent heat flux and sensible heat flux over the
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whole simulations, are approximately representative of tropical rain forest and

tropical ocean, respectively.

Finally, as this study focuses on the effects surface temperature variation have on

CSA, we remove the top-of-the-atmopshere radiative cycle. It is set to a constant

average incoming radiation calculated from July 1st, at 10 degrees North.

Table 3.1: Summary of simulations. Table 3.1 indicates the horizontal domain sizes Lx

and Ly , the horizontal grid resolution ∆x, the duration of each simulation, as
well as the imposed surface temperature T0 and its diurnal amplitude ∆T . We
also provide the start time of each simulation. For the branch cases, the initial
condition is the state of DIU at the start time specified.

Case name Lx Ly ∆x Duration T0 ∆T Start time
[km] [km] [km] [d ay s] [K ] [K ] [d ay]

DIU 480 480 1 56 305 10 0
OCEAN 480 480 1 42 300 0 0
DIU hires 480 480 0.5 28 305 10 0
DIU lores 480 480 4 28 305 10 0
OCEAN hires 480 480 0.5 28 300 0 0
OCEAN lores 480 480 4 28 300 0 0
OCEAN warm 480 480 1 28 305 0 0

branches:
DIU2OCEAN A1 480 480 1 28 300 0 DIU 13.25
DIU2OCEAN B1 480 480 1 28 300 0 DIU 13.5
DIU2OCEAN C1 480 480 1 28 300 0 DIU 13.75
DIU2OCEAN D1 480 480 1 28 300 0 DIU 14
DIU2OCEAN A2 480 480 1 42 300 0 DIU 27.25
DIU2OCEAN B2 480 480 1 42 300 0 DIU 27.5
DIU2OCEAN C2 480 480 1 42 300 0 DIU 27.75
DIU2OCEAN D2 480 480 1 42 300 0 DIU 28
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Observational analysis

In an effort to design realistic tropical conditions for our idealised simulations, we

first scrutinize satellite imageries over tropical continental Africa, where MCSs are

systematically formed over land and advected over the adjacent Atlantic Ocean. In

the month of July, which coincides with the beginning of the local monsoon season

as well as the Atlantic hurricane season, there is a peak of MCS activity between the

latitudes of 0 and 20 degrees N, meaning the MCSs caught in the African Easterly

Jet have the longest possible travel time over land. To obtain information on the

environment that MCSs are embedded within, in their transition from tropical

African land to the adjacent ocean, we use a 5 year-long database of MCSs tracked

from geostationary infrared satellite observations (TOOCAN, Fiolleau and Roca,

2013). In Figure 3.2a, we show the area of interest along with TOOCAN-tracked

MCS cloud shields on July 14 2016. The evolution of groups of MCSs is followed

using a Lagrangian frame.

To do this, we place a 15×15 degree frame at the time of maximum convective

activity of the Eulearian frame (18UTC), that is in the same initial location over

tropical West Africa (10:25 N, 6:21 E) as shown in Figure 3.2a. Then, we follow the

movement of the tracked MCSs for every day in July for the 5 years of available

TOOCAN data (2012-2016). The frame moves along with the average movement of

the areal centers of mass of all the MCSs contained within it. When there are no

MCS cloud shields present in the frame, e.g., as is common at night over land, the

frame continues moving with the average velocity of the previous 3 time steps. The

velocity vector of the frame is approximately always westward and the latitudinal

component near-zero. While the frame is fully over land, we classify it in the land

regime, while if it is partially over land and partially over the ocean, we classify it as

a transition regime. Once the frame is fully over the ocean, we classify it as in the

ocean regime. We find that the average westward velocity is larger in magnitude

when the frame is over land, compared to when it is over the ocean (Figure 3.2b).

The mean longitudinal velocities of the frame while it is over land is -2.8 m/s, and

-1.7 m/s while it is fully over the ocean. Within the Lagrangian frame tracks, we

record domain-averaged values of skin temperature, using ERA5 reanalysis data,

along with the TOOCAN MCS fraction within the box. We superimpose all the

tracks, take diurnal composites of these, of which we plot the 24 hour timeseries

showing the first diurnal cycle from midnight to midnight over land and then over

ocean, in 3.2c.
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Figure 3.2: Mimicking realistic diurnal cycle dynamics with idealised cloud resolving
simulations. a. Satellite-observed MCSs over tropical Africa (white areas) and
15 deg × 15 deg Lagrangian frame (thin red square); b. Longitudinal velocity
of Lagrangian frame when over land, ocean, and in the transition zone. The
mean values of the ocean and land velocity distributions are indicated by the
small vertical lines. c. Imposed SSTs, and domain mean high cloud fraction.
The latter is calculated within the simulation domain of DIU and OCEAN
respectively. Dotted lines show domain-mean skin temperature (from ERA5
reanalysis) and MCS cover (from TOOCAN tracked MCSs), calculated within
the Lagrangian frame that follows tracked MCSs across tropical African land
and onto the adjacent Atlantic Ocean, in July 2012-2016. d. Representative
instantaneous horizontal plots of outgoing longwave radiation, OLR, and
near-surface specific humidity, qv for DIU and OCEAN, as labeled.
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From the Lagrangian tracks, we find a clear diurnal cycle in the frame-averaged skin

temperature over land. It has an amplitude of approximately 10 K and oscillates

from 295 K to 315 K. Conversely, the MCS cover over land has a clear diurnal cycle

which lags behind the skin temperature diurnal cycle. Over the ocean, the frame-

averaged temperature is constant at approximately 300 K. Compared to land, the

MCS cover over the ocean is relatively low and does not exhibit a clear diurnal

cycle. We note that the composites are calculated within a moving box, that moves

towards the West, i.e. with the sun. This means that the diurnal cycles shown in

Figure 3.2c have a slightly longer period than 24 hours.

Comparison between observational and numerical MCSs

We then seek to reproduce the observational findings in Figure 3.2c (dotted lines)

using our idealised cloud resolving model output, calibrated with the aforemen-

tioned surface temperature time-varying conditions. To this end we calculate

composite of consecutive one-day time series of the simulated variables. In Fig-

ure 3.2c, first row, we see the imposed SSTs for the DIU and OCEAN simulations,

mimicking best the observations, and consequently the high cloud fraction, which

should be compared with the TOOCAN MCS cover. In our idealised simulations,

we do capture the diurnal cycle in deep convection seen over land, and a nearly

constant deep convective time series over the ocean. However, the high cloud

fraction in our simulations nearly reaches zero during the night hours, while MCSs

on average persist through the night in the observations, likely aided by realistic

phenomena such as wind shear which are not included in our idealised simulations.

When investigating the other variables in the simulations, two striking differences

are noticeable between DIU and OCEAN: 1) the patterns of the deep convective

clouds and 2) their footprint in the cold pool field. In DIU, in the convective win-

dow of the afternoon, large organized deep convective structures appear that can

easily take up a quarter of the domain, reaching sizes of MCSs (Figure 3.2 d). Below

these MCS structures large cold pools are present — that is, cold patches of air

with dry interiors and moist borders, as seen in the near surface specific humidity

field in (3.2 d). These cloud structures disappear at night in the outgoing longwave

radiation field, but persist in the moisture field as dry patches. In the OCEAN

simulations, on the other hand, the deep convection remains relatively small and

sparse around the domain, and there is no notion of "day" and "night." Finally, the

collocated cold pools are also more homogeneous.
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Convective self-aggregation and bi-stability

Further, we investigate the emergence of self-aggregation of convection in our

suite of simulations. Similar to previous measures (Wing et al., 2018) we use the

normalized spatial variance of precipitable water,

V ar (PW ) ≡ 〈(PW −〈PW 〉)2〉/〈PW 〉2 , (3.2)

as a measure of aggregation of the moisture field. The pointed parentheses here

indicate an average over all horizontal grid cells. The normalization ensures that

overall changes in moisture do not appear as changes in variance. High values of

V ar (PW ) reflect a more aggregated field, since aggregated convection is charac-

terized by the striking segregation of moist, strongly convecting regions embed-

ded within an otherwise very dry and non-precipitating domain. We calculate

V ar (PW ) in each time step for all our simulations (Tab. 3.1).

Figure 3.3: Emerging self-aggregation of convection. Normalized spatial variance
(Eq. 3.2) of precipitable water (PW) for the cloud-resolving simulation re-
sults using the System for Atmospheric Modeling (SAM) as described in Tab.
3.1. Note that the DIU simulations (green curves) consistently show a system-
atic increase in PW over time whereas OCEAN (all other curves) consistently
fluctuates around a state of low PW. As indicated in the legend, the simula-
tions explore the sensitivity to numerical model grid resolution and SST in
the case of OCEAN. Note the logarithmic vertical axis scaling.

In the first 14 days of simulation the main difference between DIU and OCEAN

(Figure 3.3) is that DIU shows a large day-to-night variation, with peaks in V ar (PW )

during the day, when the MCSs form, and minima during the night - where MCS-

produced moisture anomalies slowly diffuse to even out (Figure 3.2d). However,

during this time interval, the daily average V ar (PW ) remains relatively constant

for all simulations, even though it is already considerably larger for DIU. After
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day 14, DIU starts showing an increase in V ar (PW ) whereas OCEAN continues to

show near-zero V ar (PW ). Repeating these simulations for two-folder higher and

two-fold lower horizontal resolution shows qualitative similar results (Figure 3.3).

We note that we ran an OCEAN warm simulation, to highlight that even with a

higher SST that matches the average SST in DIU, the OCEAN simulation does not

aggregate in this time frame (Figure 3.3).

Similar to Jensen et al. (2022), we mimic the land-sea transition of the deep con-

vective cloud field, by branching off from the DIU simulation onto a constant SST

(DIU2OCEAN). Here, however, we repeat the branching at different times of day

(A: 6am, B: 12 noon, C: 6pm, D: 12am) and on different days of the simulation

(days 14 and 28 (Figure 3.4). This allows us to study whether the diurnal phase of a

branching — that is whenever a land-born MCS moves over the ocean — matters

to its growth. Further, we also observe how MCS residence-time over land — akin

to their "maturity” — matters to determine whether the system will aggregate over

the ocean.

Figure 3.4: Bistable switching through MCSs. Analogous to Figure 3.3, however
now allowing for a branching off between DIU and OCEAN simulations.
DIU2OCEAN branches originate near day 14 and day 28, respectively and are
shown in light blue colors. OCEAN simulations without branching are shown
in light purple colors (see legend). Steady-state regions of high and low nor-
malized PW variance are indicated by light gray shades. Insets b–e exemplify
the spatial pattern of PW anomalies at specific times of the simulation (see
red arrows and panel labels for the exact timing). Note again the logarithmic
vertical axis scaling.
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The effects of land-sea transition appears clearly when comparing the branches ini-

tialized from DIU day 14 (branches A1B1C1D1) to the branches initialized from DIU

day 28 (branches A2B2C2D2). Branches A1B1C1D1 fail to maintain the degree of ag-

gregation already acquired in the DIU simulations (Figure 3.4) and their V ar (PW )

gradually returns to the values obtained by the original OCEAN simulation. In-

terestingly, the DIU2OCEAN D1-branching (occurring at midnight) does appear

to resist the change better than the other phases, suggesting that MCSs crossing

the coastline at this time of the day have better chances of strengthening over

the ocean. On the other hand, branches A2B2C2D2, proceed to aggregate further

and even more rapidly than the continuation of DIU (Figure 3.4), reaching a fully

aggregated state with characteristic low frequency fluctuations, similar to those

seen and described in Patrizio and Randall (2019). This time, the time-of-transition

appears not to the matter, and all trajectories behave similarly, suggesting that the

MCS was already strong enough over the land to quickly dissipate over the ocean.

Thus, we can conclude that the system shows bi-stability, with one low and one

high spatial variance state. A transition between the low and the high variance

state can be achieved by diurnal surface temperature forcing and the resultant

MCS, but not through constant temperature lower boundary conditions.

Notably, our current simulations differ from those in Jensen et al. (2022) in that we

use a different CRM, namely SAM vs UCLA-LES in their study. Still, our results are

in agreement with Jensen et al. (2022), as they also suggest that the diurnal cycle

in surface temperature can induce persistent moisture patterns that profoundly

impact on the multi-day precipitation distribution. Thus, our simulations add

additional robustness to the mechanism proposed in their work. On a time scale

of hours, simply imposing a realistic diurnal cycle in the surface temperature of

a cloud resolving model can produce large MCS-like deep convective structures

during the afternoon hours. These structures do not develop at these time scales

in simulations with constant surface temperature conditions, which rather mimic

the observed oceanic deep convection that occurs irrespective of day and night

and has smaller spatial extent. On a time scale of days, the land-like simulations

furthermore develop a typical self-aggregated state in the moisture field, where

parts of the domain become too dry to support any new convection, whereas

such persistent drying does not develop at these timescales in the ocean-like

simulations. Ocean-like simulations are able to maintain the aggregated moisture

field, once this is sufficiently developed in land-like simulations. The fact that an

earlier branching after 14 days does not yield persistent aggregation suggests that
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a substantial perturbation away from a linearly stable, homogeneous RCE state is

needed.

Bringing our results into a realistic context, if we consider self-aggregation to be

present to some extent in the real atmosphere, and land-produced MCSs to be a

path to self-aggregation, then the residence time of a volume of atmosphere over

land is an important factor in determining the maintenance of an aggregated state

once it is advected over the ocean. This could mean that MCSs — produced over

tropical African land — could be the key player needed in pushing the moisture

distribution of the volume of atmosphere they are embedded within to an aggre-

gated state, which might then be able to persist over the ocean — given that spatial

moisture variance is high enough. This could be a so-far-missing ingredient for

tropical cyclogenesis from the CSA point of view.
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3.2.2 Conceptualizing the bi-stability of
self-aggregation

We implement a conceptual cellular automaton model, the "Game of Cloud", to

study the basic physical mechanisms that can drive diurnal self-aggregation and

the resulting bi-stability.

Figure 3.5: The Game of Cloud. Conceptual schematic of our model to study CSA devel-
oping from MCSs. From bottom layer to the top: surface temperature, Ts , is
either prescribed as oscillating with a diurnal frequency (land) or constant
(ocean); near-surface temperature, Tns , is discretized on a 2D grid, where
each grid cell assumes a value based on Ts , caused by surface heat fluxes, its
neighbors, due to diffusion, and boundary-layer CP dynamics. Tropospheric
temperature, Ttr op , assumes one value for the entire troposphere. When
Tns > Ttr op , deep convection can arise in the corresponding column, which
triggers CP dynamics, decreasing Tns beneath the rain cell and enhancing
Tns for its neighboring grid cells, and increases Ttr op . Ttr op gradually cools
at a set rate.
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Conceptual model description

We demand that the model captures: (i) the spatial segregation effect which is seen

in DIU but is absent in OCEAN; (ii) long-term persistence for DIU; (iii) the hys-

teresis effect described for the DIU2OCEAN branches; (iv) realistic domain-mean

diurnal cycles of convective rain. The model assumes three layers and describes the

dynamics of buoyancy in each of the three. We use the term "temperature" in the

following to refer to an appropriate measure of buoyancy for the moist atmosphere,

such as entropy. We distinguish such temperature within (see also Figure 3.5):

(i) the surface, which has a spatially-homogeneous and prescribed temperature

Ts(t) and is assumed to be at saturation, thus representing a water surface or a

swamp. (ii) the near-surface atmosphere temperature Tns(x, y, t ), where we retain

a horizontal spatial variation, as described further below; (iii) the free-tropospheric

temperature, which responds to Tns(x, y, t ) but acts as a spatially equilibrated field

Ttr op (t ), such that it remains spatially-homogeneous.

Spatial and temporal discretization. The model uses for horizontal coordinate

system (x, y), a uniformly-discretized square domain with periodic boundary con-

ditions. A spatial resolution of ∆s ≡ 10km is chosen, which represents a typical

spatial scale of isolated deep convective raincells and their individual cold pools.

Therefore, each discrete coordinate (x, y) = (xi , y j ) simply corresponds to the posi-

tion (x, y) = (i , j )∆s, where i and j take integer values between 0 and N −1, where

N is the number of pixels in each horizontal dimension. The near-surface tem-

perature Tns(x, y, t ) is defined at the discrete spatial coordinates described above.

The typical temporal scale is assumed to be ∆t ≡ 30mi n, representing the period

between triggering of a given raincell and the initiation of the resultant rain event.

For both model variables, Tns and Ttr op , the dynamics therefore evolve in discrete

time steps of ∆t , that is, each time point is defined as k∆t , where k = 0,1, . . . is an

integer.

Boundary conditions. As explained before, the surface temperature, Ts(t), is

spatially homogeneous and prescribed as the harmonic function defined in Eq. 3.1.

It is represented in the bottom layer of the schematic in Figure 3.5. Importantly,

Ttr op (t ) is globally increased by any deep convective event — wherever it occurs

— which is assumed to release a fixed quantity c0 of latent heat of condensation

(the plus signs in Figure 3.5). Further, the troposphere continuously cools under

radiative emission at a constant rate R ≈ 3K d ay−1, as a simple approximation
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of the daily averaged tropospheric cooling that one could expect in the tropics

(Jeevanjee and Fueglistaler, 2020; Fildier et al., 2023). The instantaneous rate of

change of Ttr op reads as:
dTtr op (t )

d t
=C (t )−R , (3.3)

where C (t ) would be the convective heat flux into the free troposphere at time t . In

our discretized model dynamics, Eq. 3.3 becomes

∆Ttr op = nc0 −R∆t . (3.4)

Equation 3.4 is applied at every timestep ∆t , and the integer n counts the number

of convective events within the given timestep. It is assumed that the horizontal

domain size is small enough such that the weak temperature gradient approxi-

mation applies (Sobel et al., 2001), thus justifying the assumption of a spatially

homogeneous field Ttr op (t ).

Near surface conditions and diffusivity. For the near-surface atmospheric (virtual)

temperature, Tns(x, y, t ), the continuum version of the basic model dynamics can

be summarized as a prognostic equation, namely

d

d t
Tns(x, y, t ) = 1

τ
(Ts(t )−Tns(x, y, t ))︸ ︷︷ ︸

surface-atmosphere heat flux

+Dh∇2Tns(x, y, t )︸ ︷︷ ︸
horizontal diffusion

(3.5)

+ R(x, y, t ; {xi }, {y j }, {tl })︸ ︷︷ ︸
reactive processes

(3.6)

+ b1 T ′
ns(x, y, t )(1−b2T ′2

ns(x, y, t ))︸ ︷︷ ︸
moisture-radiation-circulation feedback

, (3.7)

In Eq. 3.7, T ′
ns(x, y, t ) ≡ Tns(x, y, t )−Tns(t ), with Tns(t ) the spatial mean of Tns(x, y, t )

at time t . The surface-atmosphere heat flux is a diffusive flux generated by the

temperature difference between the surface and the atmosphere, and modulated

by the time scale τ. Wind speed effects on surface-atmosphere heat fluxes are

neglected for simplicity. The horizontal diffusion is implemented to capture all

horizontal mixing processes taking place through eddy-diffusive motion within the

boundary layer.

Positive feedback mechanism. The term in Eq. 3.7 describes a moisture-radiation-

circulation feedback, mimicking the "rich-gets-richer" dynamics invoked in previ-

ous works on convective self-aggregation (Bretherton et al., 2005; Wing et al., 2018;

Muller et al., 2022). In effect, the resultant action of sustained subsidence is to dry
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the near-surface atmosphere, thus leading to further drying in regions that are

already dry. Conversely, we allow moist regions to moisten further. The positive

coefficients b1 and b2 in Eq. 3.7 prohibit unbounded decrease or increase of buoy-

ancy, thus ensuring a naturally occurring maximum or minimum in buoyancy. In

our cellular automaton model Eqs 3.5—3.7 are discretized in spatial and temporal

steps of ∆s and ∆t to match the typical convective scales assumed.

Triggering of convection. We now turn to the reactive term R (Eq. 3.6), which

introduces a measure of stochasticity into the model. R(x, y, t ; {xi }, {y j }, t ) models

the threshold-like triggering of a convective event at any discrete location (x, y) at

time t . The reactive term consists of two parts of which the first allows individual

locations (x, y) to interact with other locations through the "mean field" Ttr op (t ):

during a given timestep ∆t , all locations (x, y) with Tns(x, y, t) > Ttr op (t) are con-

sidered potentially unstable. To each of these locations (x, y) we therefore assign a

triggering probability

p(x, y, t ) ∝ Tns(x, y, t )−Ttr op (t ) > 0, (3.8)

which assumes that locations with buoyancy exceeding that of the free troposphere

may be unstable to convection. In a random procedure, we now sequentially draw

locations from the list of unstable locations according to their probabilities p(x, y, t )

and for each of them transfer condensation heat c0 to the free troposphere, thus,

for each of them, increasing Ttr op (t ). We therefore then update all p(x, y, t ) as the

increase in Ttr op (t ) will often have stabilized a number of the previously unstable

locations. During the given timestep this stochastic procedure is repeated until all

locations are stable.

The second part of R models the suppression and activation of new convective

raincells through cold pools. Cold pool effects are incorporated in a two-fold

manner, reflecting known physical processes: at each timestep t , the temperature

Tns(x, y, t ) at any given location (x, y) which was occupied by raincells at time t−∆t

is lowered by ∆Tcp , mimicking the well-known near-surface evaporative cooling

experienced beneath deep convective clouds. Further, to mimic thermodynamic

and mechanical triggering at the edges of existing cold pools, such as by forced

lifting or collision effects, the Tns(x, y, t ) at any such location (x, y) is incremented

by an enhancement that is proportional to the number of surrounding locations

that had active rainfall at t −∆t , where the 8-neighborhood of the location (x, y) is

used to define the neighborhood. This weighting ensures that locations surrounded

58 Chapter 3 Tipping to an Aggregated State by MCSs



by one or several cold pools are more likely to experience convective triggering. We

note here that a rainy pixel is considered "active" for two time steps, that is, one

hour, to increase the chance of nearby raincells to interact with each other.

In a cellular automaton step, denoted by an arrow below, a temperature enhance-

ment is applied specifically to any pixel (x, y) that is inactive (not raining) at time t

as:

Tns(x, y, t ) → Tns(x, y, t )+ I |∆Tcp |T ns(t ) ·n/8 (3.9)

where n is the number of active neighbors of the pixel (x, y) at time t . The propor-

tionality with T ns(t) ensures that the triggering effect does not dominate when

T ns(t) is low, such as at night for DIU, or generally for OCEAN, and the propor-

tionality with ∆Tcp ensures that the triggering effect is stronger (weaker) for strong

(weak) cold pools when changing ∆Tcp (as in Figure 3.8).

Conceptual model properties

With the parameters chosen (Tab. 3.2), our model captures the mean diurnal cycle

of convection of land and sea (Figure 3.6) by imposing ∆T = 10K for land and

T0 = 305K for land and ocean.

Figure 3.6: Diurnal time series in the Game of Cloud. a, Diurnal cycle of temperatures
Ts , Tns and Ttr op for the DIU configuration. b, As (a) but for OCEAN. Note
that Tns = Ts = 305K here. c, d, Convective precipitation diurnal cycle for
DIU and OCEAN, respectively.
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Table 3.2: Parameters used in the Game of Cloud. Table indicates the parameters used
in the conceptual model, including the mathematical symbol, the numerical
value and notes on the respective physical meaning.

Symbol Numerical value Notes
∆s 10 km spatial scale of individual deep convective events
N 50 linear dimension in units of ∆s (grid size)
∆t 30 min time step approximating a convective life cycle
∆T 10 K diurnal surface temperature amplitude
∆Tcp -2 K cooling induced by a CP
Dh 100 m2 s−1 horizontal eddy diffusion coefficient
τ 10 hours surface-atmosphere heat diffusion time scale
I 0.7 K −1 scaling coefficient for CP triggering of convection
b1 0.06 s−1 moisture-radiation feedback coefficient 1
b2 1 K −2 moisture-radiation feedback coefficient 2
c0 4K /∆s2 tropospheric heating due to a single convective event
R 3K d ay−1 free tropospheric diurnal cooling rate

We compute the normalized spatial variance of Tns (Figure 3.7), which shows

constantly small values throughout the timeseries for the ∆T = 0 case, whereas

∆T = 10K yields a systematic increase over the course of 28 days and subsequent

saturation. When switching to ∆T = 0 after 28 days of ∆T = 10K , our model also

Figure 3.7: Bistable switching through MCSs in the Game of Cloud. Conceptual model
analog of Figure 3.4 showing the normalized spatial variance of near surface
temperature, Tns , for DIU, OCEAN and DIU2OCEAN branches originating
near day 28. Light shading indicates spread over ten simulations. Insets b–e
show the spatial pattern for specific times and simulations. Note again the
logarithmic vertical axis scaling.
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shows that variance is preserved, thus capturing the hysteresis effect. Examining

spatial patterns at day 42 reveals that Tns is structured into mesoscale clusters for

the oscillating case, whereas Tns remains scattered for the constant-Ts counter-

part.

Qualitatively, the conceptual model dynamics compares well to the variance of

precipitable water for the SAM simulations, as the spatial segregation effect seen

in DIU but not in OCEAN is reproduced, long-term persistence for DIU is captured

and the hysteresis effect described for the DIU2OCEAN branches is mimicked.

Furthermore, the diurnal cycles of convective rain are realistic (Figure 3.6).

Parametric sensitivity study

In an effort to better illustrate the model’s driving mechanisms, a parametric study

is carried out within the (∆T ,∆TC P ,Dh)-space. As a reminder, these parameters

respectively quantify 1) the diurnal cycle amplitude - which determines the surface

temperature forcing regime (DIU/OCEAN) - and 2) the cold pool cooling strength

and 3) the rate at which horizontal temperature is homogenized. These parameters

are varied sequentially two-by-two while the third one retains its default value,

as presented in Sec. 3.2. The parametric space was chosen as wide as possible

while retaining physically-relevant bounds. Further, each parameter was varied 50

times, resulting in a total of 7,500 configurations, which all ran for 100 model days.

Finally, over the course of these 100 days, two metrics were evaluated to quantify

the model’s response to a particular (∆T ,∆TC P ,Dh)-solution: 1) the spatial variance

of Tns on day 100 and 2) the day when this quantity reached a threshold of 0.05.

The resulting contour maps are presented in Figure 3.8, with the default values

represented with dashed red lines. The OCEAN configuration is marked by a

dashed blue line, while the DIU configuration studied above is marked by a green

dashed line.

Diurnal amplitude ∆T. An increase in ∆T consistently enhances both CSA met-

rics (Figure 3.8a—d): large ∆T overcomes the anti-aggregating dynamics caused

by a high horizontal diffusion or strong cold pools. A ∆TC P of 1.5 K can consis-

tently prevent aggregation until the diurnal cycle amplitude reaches about 6 K,

at which point it seems to be the dominating organizational driver (Figure 3.8d).
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Figure 3.8: Exploring the parameter space of the Game of Cloud. Left column indicates
the level of aggregation (measured by spatial variance of Tns) as a function of
parameter space after 100 days of simulation. Right column indicates day of
the simulation that the level of aggregation has surpassed the value of 0.05.
The parameter space explored comprises the diurnal cycle ∆T , cold pool
strength ∆TC P and horizontal diffusion Dh . Green dotted lines indicate the
chosen ∆T for DIU, blue dotted lines indicate the chosen ∆T for OCEAN, red
dotted lines indicate the chosen parameters for ∆TC P and Dh in our default
runs.

This is consistent with findings from Jensen et al. (2022), where strong surface

temperature amplitude would trigger convective aggregation. Importantly, the

(∆T = 0)-case - corresponding to OCEAN - is still capable of aggregating under

specific circumstances, such as weak cold pools (i.e. low ∆TC P ) or little horizontal

diffusion (i.e. low Dh). This captures findings from a range of RCE simulations

(Wing et al., 2018).

Cold pool cooling strength∆TCP. Strikingly,∆TC P = 0 K - corresponding to no cold

pool dynamics - invariably leads to aggregation, regardless of the other parameter

values. The de-aggregating force of cold pools is consistent with the observa-

tion from idealized RCE studies (Jeevanjee and Romps, 2013; Muller and Bony,

2015; Nissen and Haerter, 2021) where disabling rain evaporation in the lower
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levels - thereby removing cold pools - enhanced CSA. Conversely, increasing ∆TC P

progressively overwhelms the other parameters’ importance, suggesting that the

de-aggregating force increases with cold pool strength. This is also consistent

with the work of Meyer and Haerter (2020), who observed how both the size and

propagating velocity of cold pools increases with the initial temperature reduction.

Interestingly, stronger cold pools may speed up aggregation at low horizontal eddy

diffusivity and in the presence of a diurnal cycle (Figure 3.8f). This, again, echoes

the recent work of Jensen et al. (2022) who observed numerically how strong macro-

cold pools could contribute to a form of self-aggregation by forming persistently

dry regions.

Horizontal eddy diffusivity Dh. Strong horizontal diffusion is capable of com-

pletely shutting down aggregation through brute-force damping of any spatial

heterogeneities (Figure 3.8a,b,e,f). Overall, our model’s response to enhanced Dh

is similar to that of Biagioli and Tompkins (2023), for the evolution of column-

integrated relative humidity. They also observe that horizontal diffusivity acts to

counter-balance CSA by redistributing moisture away from rainy clusters into dry

regions.

In summary, the model is shown to behave consistently with more complex and

idealized studies of CSA. However, we note that all our simulations are deliberately

idealized, to reveal the key mechanisms involved in the hysteresis-like effect of

induced self-aggregation by the diurnal forcing. Important factors, such as wind

shear, the Coriolis force, two-way coupling to the land or water surface, as well as

topographic forcing and land-sea breezes, are left out and should be explored in

follow-up works.
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3.3 Conclusions

We have simulated tropical land-like MCSs by incorporating a realistic diurnal

cycle in surface temperatures within a cloud resolving model, and we mimic the

transition to the ocean by removing the diurnal cycle for ocean-like deep convec-

tion. Our results suggest that the diurnal cycle in surface temperature can induce

persistent moisture patterns that profoundly impact the multi-day precipitation

distribution, through the presence of MCSs, consistent with the recent literature

(Jensen et al., 2022). On a time scale of hours, simply imposing a realistic diurnal

cycle in the surface temperature of a cloud resolving model can produce large

MCS-like deep convective structures during the afternoon hours. These structures

do not develop under constant surface temperature conditions, mimicking oceanic

deep convection that occurs irrespective of day and night and has smaller spatial

extent. On a time scale of days, the land-like simulations furthermore develop a

typical self-aggregated state where parts of the domain become too dry to support

any new convection, whereas such persistent drying does not develop at these

timescales in the ocean-like simulations.

Expanding on the finding of hysteresis in cloud resolving simulations transitioning

from a diurnal cycle to none (Jensen et al., 2022) we here explore branching from

the land-like to ocean-like simulations at different days and find that ocean-like

simulations are able to maintain the aggregated moisture field only once this has

reached a certain level of aggregation. To deepen our understanding of the key

processes acting in these simulations, we develop a discrete reaction-diffusion-

type model, characterized by three key parameters: the diurnal cycle, cold pool

strength, and horizontal diffusion. This model successfully captures the bi-stability

observed in the transition from dispersed to aggregated states.

We conclude that the MCSs produced over land can induce domain-wide CSA in

the time scale of weeks, which persists even in ocean-like conditions that would

not typically aggregate on these timescales, i.e., when the system has been "tipped"

towards an aggregated state by the influence of diurnal cycle-induced MCSs. We

thus propose a regime diagram (Figure 3.9). There are two stable equilibria that

the volume of atmosphere (the grey ball in Figure 3.9 a and b) can be in: the

"Not aggregated state" and the "Aggregated" state, identifiable by proxies like the

spatial variance of precipitable water that we used in our study, as a function of the

amplitude of the diurnal cycle in surface temperatures (∆T ). The "Not aggregated"
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state is the equilibrium state for low ∆T , such as over the tropical ocean. The

"Aggregated" state is the equilibrium state for high ∆T , such as over tropical land.

The blue ball can be transported from the "Not Aggregated" equilibrium to the

"Aggregated" state via the action of MCSs that can help overcome the barrier.

It is also useful to understand the relation to the seminal model by Emanuel et al.

(2014). There, classical convective self-aggregation was proposed to be the depar-

ture from a linearly stable regime. In their model, the spatially homogeneous steady

state is linearly stable at low sea surface temperatures but is unstable at higher sea

surface temperatures. Thus, as temperature is increased above a certain critical

value, the linearly stable regime disappears at the benefit of a structured state,

where a system-scale subdomain shows subsiding conditions, that is, negative ver-

tical velocity w , whereas the remainder of the domain shows strongly convecting

conditions with w > 0 (Figure 3.9 c). Our current results are obtained at relatively

low sea surface temperatures where the cloud resolving model is linearly stable,

that is, there is no classical CSA. The diurnally-induced mesoscale organization

however allows the transition to a persistently organized state. We thus propose

that the boundary layer moisture dynamics, disregarded in the elegant model by

Emanuel et al. (2014), are key to capturing the departure from the linearly-stable

regime proposed in their work. Indeed, it is the strong feedback between cold

pool dynamics and the subsequent, long-lasting suppression of convection in

mesoscale areas that allows for the tipping to take place.

Figure 3.9: Schematic regime diagram for equilibrium states in (a) low SST regime, (b)
high SST regime and their relation to (c) Figure 7 from Emanuel et al. (2014).
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While we suggest that land-produced MCSs are the process by which a tropical

atmospheric volume can "tip" to an aggregated state, the present work still leaves

open which exact process within MCSs determines the emergence of persistent

drying — and thus CSA. Haerter et al. (2020) suggested that so called ’diurnal self-

aggregation’ occurs with a large enough diurnal cycle in surface temperature, due to

the higher spatial density of rain cells within a short time window during the diurnal

cycle, leading to the merging of convective cold pools (CPs) and the formation

of a super CP. This larger CP triggers a cascade of convective rain cells along its

gust front, contributing to the combined CP, whose thermodynamic anomalies

dissipate slowly, subsequently suppressing further convection in the same region

on subsequent days, creating large dry areas that shut off convection and kick

starting the radiative feedback. An alternate explanation could be that there is

large subsidence around an MCS, which could, in principle, also create a large dry

area that could first form in the higher levels of the troposphere, as seen in Jensen

et al. (2022), then extend to the full atmospheric column and kickstart the radiative

feedback.

In either case, the origin of CSA would be intimately tied to the presence of MCSs.

Yet, as we cannot pinpoint the cause of the "first dry region" in our simulations,

we suggest this aspect to be explored further. Assuming that CPs of MCSs over

land initially contribute to accelerating the onset of CSA, we point out that once

the system is aggregated, these MCS-scale CPs act to redistribute moisture and

oppose the radiative feedback over land by counteracting the radiative dry pool in

the boundary layer (Yanase et al., 2020) and slow down self-aggregation. When the

aggregated state then transitions to constant SSTs mimicking an ocean surface, the

disappearance of MCSs replaced by isolated deep convection and their associated

small CPs, cannot counteract the radiative dry pool - so at this stage the small

sparse CPs are not an obstacle to aggregation at all. This is an explanation to the

slowdown of the DIU curve in Figure 3.4 as opposed to the DIU2OCEAN branches,

after about six weeks of simulation. The dual effect of CPs based on their size is not

included in our conceptual model and could be further explored.

Follow-up work could include incorporating a westerly flow and wind-shear, to

explore the effect of realistic wind profiles on the self-aggregated state transitioning

from land to sea. A complementary observational study to ours could also be

explored, to detect the footprint of CSA (as in high variance in precipitable water,

or large dry areas in the upper troposphere) around MCSs created over land, to see

if these exist and if they persist when advected westward.
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Our CRM simulations as well as the conceptual model suggest that land-produced

MCSs can be a path to self-aggregation and that the residence time of a volume of

atmosphere over land is crucial in determining the maintenance of an aggregated

state once it is advected over the ocean. MCSs — produced over tropical African

land — may thus carry the moisture feedback mechanisms needed in eventually

yielding an aggregated state which might then be able to persist over the ocean –—

given that spatial moisture variance is high enough. In contrast to the classical CSA

mechanisms alone, where the process of full aggregation is rather slow, MCS-based

aggregation may be the missing ingredient for more speedy tropical cyclogenesis.
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3.4 Supplement

This section was not included in the manuscript, but serves as a suplementary

analysis of the incorporation of realistic wind shear in the previously described

cloud resolving simulations. Two extra simulations are described in Tab. 3.3,

analogous to the DIU (OCEAN) simulations in Tab. 3.1 with (without) an imposed

diurnal cycle in surface temperature, but with a wider domain and an imposed

wind shear from realistic ERA5 reanalysis data averaged over the Atlantic and

tropical West Africa (5:10N,-40:10E) (Figure 3.10). We call these simulations DIU

Wind and OCEAN Wind.

Case name Lx Ly ∆x Duration T0 ∆T
[km] [km] [km] [d ay s] [K ] [K ]

DIU Wind 1440 480 1 42 305 10
OCEAN Wind 1440 480 1 42 300 0

Table 3.3: Summary of simulations. Horizontal domain sizes Lx and Ly , the horizontal
grid resolution ∆x, the duration of each simulation, imposed surface tempera-
ture T0 and its diurnal amplitude ∆T .

Figure 3.10: Idealised westward wind shear profile. ERA5 data averaged over the At-
lantic and tropical West Africa (5:10N,-40:10E) over the month of July 2016,
idealised wind profile (red) imposed in the simulations DIU Wind and
OCEAN Wind from Tab. 3.3.

We first compare the simulated diurnal cycle of deep convection in the simulations

with imposed wind and wind shear in Table 3.3, to the simulations without wind
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described earlier and observations, in Figure 3.11. We include a measure of pre-

cipitation from the simulations and from the observational Lagrangian frame (the

latter is calculated from IMERG satellite data (Huffman et al., 2019)). We notice

that the inclusion of wind shear flattens the peak of MCSs in DIU Wind compared

to DIU, moving the peak to later afternoon hours, and increases the night-time

minimum, to a value that indicates a persistence of deep convection through the

night thanks to wind shear. The same behavior can be seen for precipitation, low-

ering the maximum and shifting it forward in time, closer to the observed values.

In the OCEAN Wind simulation, the high cloud fraction is lowered compared to

the OCEAN simulation towards the observed value of MCS fraction, and the pre-

cipitation stays close to the observed value. We are thus towards a more realistic

representation of convection even within a very idealised set up, thanks to the

addition of imposed (realistic) wind shear.

Figure 3.11: Mimicking realistic diurnal cycle dynamics with idealised cloud resolving
simulations. Imposed SSTs, and domain mean high cloud fraction and
precipitation. The latter two are calculated within the simulation domain of
DIU and OCEAN respectively. Dotted lines show domain-mean skin tem-
perature (from ERA5 reanalysis), MCS cover (from TOOCAN tracked MCSs),
and satellite inferred precipitation rate (from IMERG) calculated within the
Lagrangian frame that follows tracked MCSs across tropical African land
and onto the adjacent Atlantic Ocean, in July 2012-2016.

When investigating the emergence of self-aggregation in the two simulations with

wind shear, a similar property arises: namely, the spatial variance of precipitable
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Figure 3.12: Emerging self-aggregation of convection in simulations with wind. Aggre-
gation of convection for DIU Wind vs OCEAN Wind simulations described
in Tab. 3.3, measured with the normalized spatial variance of precipitable
water.

water starts increasing in the DIU Wind simulation and diverges from the OCEAN

Wind simulation after about 3 weeks of simulation (see Figure 3.12), increasing at a

similar rate in 3.3. So the addition of wind does not seem to affect the aggregation

of a simulation with a large amplitude of diurnal cycle in surface temperatures.

The self-aggregation of the OCEAN Wind simulation seems to be aided by the

wind shear and slowly reaches values of normalized spatial variance of precipitable

water of 0.01, as opposed to the low levels of 0.001 for all OCEAN simulations

in Figure 3.3. This alludes to the fact that the wind shear does not necessarily

impact the strong aggregation due to diurnal-cycle induced MCSs, but could act to

aid the formation of convective aggregation in simulations with no diurnal cycle,

through the sustenance of deep convection in the form of long lived squall lines

(as described in Rotunno et al. (1988)), that then act like the diurnal MCSs on the

moisture field.

Deeper insight into the different mechanisms of aggregation of the DIU and OCEAN

simulations with wind, can be gained by calculating the spatial correlation between

two moisture fields at different levels. We calculate this as the pixel-by-pixel Pear-

son correlation between the horizontal moisture distribution at the surface level of

the model and at mid-cloud level (3500m) as in equation 3.10. For the moisture

distribution at mid-cloud level we use the total specific humidity qt (kg/kg) which

includes water vapor, cloud condensate and ice; while for the moisture distribution

at the surface we use the water vapor specific humidity qv (kg/kg).

cor r (t ) =
N∑

i , j=1
qvSU RF (t ) ·qt3500(t ) (3.10)
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Figure 3.13: Spatial correlation between two moisture levels in simulations with wind.
Spatial correlation between two moisture levels: total specific humidity
at 3500 m (QT 3500) and specific humidity at surface level (QV SRFC) for
DIU Wind vs OCEAN Wind simulations described in Tab. 3.3. Thick lines
represent 24-h running mean, and thin lines represent all time steps.

Figure 3.14: Spatial correlation between two moisture levels in simulations without
wind. Spatial correlation between two moisture levels: total specific humid-
ity at 3500 m (QT 3500) and specific humidity at surface level (QV SRFC) for
DIU vs OCEAN simulations described in Tab. 3.1. Thick lines represent 24-h
running mean, and thin lines represent all time steps.

The correlation essentially tells us when the mid cloud moisture matches up with

the low-level moisture, and when it does not. In Figure 3.13, we see the correlation

between moisture levels, for DIU Wind and OCEAN Wind simulations. The 24

hour running mean stays around the value 0 for both simulations for the first

four weeks, indicating that on average, there is no spatial correlation between the

two levels. A large difference appears when focusing on the individual time steps:

DIU Wind, after the first few days of spin-up, exhibits large oscillations between

positive and negative correlations between the two levels of moisture. The positive

correlation during the day can be attributable to the formation of MCSs thanks

to the diurnal cycle, which are collocated in the moist columns within which they

are triggered during the day, exhibiting thus a positive correlation between the

lowest level and the mid-cloud level. The negative correlation during the night can
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be attributable to the aftermath of large CPs created by MCSs, that dry the lowest

level of moisture of the column they were produced in, while the remnants of the

MCSs have moistened the top level of that same column, exhibiting thus a negative

correlation between the lowest level and mid-cloud level. In the OCEAN Wind

simulation, there are small oscillations towards positive and negative correlation

values, but these stay small, intuitively due to the small size of the (unorganized)

deep convective cells. This behavior was seen for DIU and OCEAN (see Figure 3.14),

but seems to be robust with the inclusion of westward wind and shear. Things get

interesting around week 4 of the simulation, when the moisture field starts to self-

aggregate for DIU Wind, as we had seen for DIU. This is indicated by the increase

in the 24 hour running mean correlation, which stays strongly positive. From

analyzing the 2D fields of moisture, and as was found also in Jensen et al. (2022),

this is due to dry moisture patch, that grows and extends to the whole column,

kick-starting the radiative feedbacks akin to self-aggregation. As this dry region

of the domain expands, the 24 hour average correlation between the mid-cloud

moisture field and low-level moisture field stays positive (compare Figures 3.13

and 3.14) for DIU wind and DIU) - and the fact that this feature is also robust with

the inclusion of wind (and thus, advection), suggests that an aggregated moisture

field can both be formed and advected.

When observing the output of the simulations in Hovmöller diagrams (Figure 3.15

c and d), we observe an interesting phenomenon: deep convective clouds advected

with an imposed wind profile are on average faster than the advected moisture

field they are embedded within. However, when there is also a diurnal cycle, the

large convective clusters tend to slow down, converging to the advection speed of

the surrounding moisture field. To produce the Hovmöller diagrams in Figure 3.15

c and d, we average over the latitudinal dimension of our simulations and visualize

each time step as a line. We compare the fields of Longwave Radiation at Top of

Atmosphere (LW at TOA) as a proxy for deep convection and total specific humidity

field at 3500 m (QT at 3500 m), to understand where the deep convective clouds

form with respect to the moisture field at cloud height. Due to the imposed west-

ward wind, and the associated advection of high clouds, the deep convection and

collocated moisture travels from the East to the West of the domain, as indicated

by the inclined lines in Figure 3.15 c and d.

We calculate the advection velocity of the various fields, in Figure 3.15 a and b. It

emerges that the high cloud field in DIU Wind is much faster than the advected

moisture field at mid-cloud level, but it slows down gradually throughout the
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Figure 3.15: Deep convection embedded in a moisture field, with imposed background
wind shear. a) Time series of advection speed of Longwave Radiation at Top
of Atmosphere (LW at TOA) compared to advection speed of total specific
humidity field at 3500 m (QT at 3500 m) for DIU Wind (a) and OCEAN Wind
(b). Hovmöller diagrams of LW at TOA and QT at 3500 for DIU Wind (c) and
OCEAN Wind (d).

simulation - converging fully with the moisture field after 6 weeks of simulation.

MCSs moisten the upper troposphere and thus leave behind a moist trail when

advected. For the OCEAN Wind simulation in Figure 3.15 d, the high clouds are

initiated and advected in a more ordered manner, traveling as a wave packet and

leaving behind a more slowly advected moist trail. There might eventually be

convergence of the two advection speeds in OCEAN Wind, but not within this time

frame. Jung et al. (2021) investigated how the presence of a mean flow affects the

propagation of organized deep convection in an RCE framework with constant

SSTs and found that the convective cluster initially moves slower than the pure

advection imposed, eventually becoming stationary regardless of wind speed.
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They find that the near surface wind responds to the mean flow by altering the

surface fluxes, thereby decreasing the near-surface wind on the upwind side of

the cluster and enhancing it on the downwind side, acting thus as a drag on the

mean background wind. This could be an explanation to the DIU Wind simulation

showing a more rapid slow-down, due to the large clusters created, with larger CPs

and stronger near-surface winds (Figure 3.16 shows the surface winds in the DIU

and OCEAN simulations without imposed winds - it is clear that the surface winds

are inherently larger in DIU).

Figure 3.16: Near Surface Wind Field in DIU and OCEAN. Cumulative Distribution Func-
tion (1 - CDF) of near-surface wind values for DIU and OCEAN simulations.

We can assume this effect to explain why the DIU simulations show a slow-down of

the deep convective cloud field - when this converges with the advective speed of

the moisture they are embedded within, the atmospheric volume is free to aggre-

gate with all the processes akin to CSA, as if there were no prescribed wind profile

advecting the clouds. MCSs produced with the diurnal cycle, again, accelerate the

way to this state, paving the way for a segregation of the (advected) simulation

domain into persistent dry regions of the simulation domain, and moist regions

where the MCSs continue to be produced.

That our results remain valid in simulations with imposed wind shear, thus ide-

alised simulations that are brought even closer to reality, increases our confidence

in CSA emerging in the real tropical atmosphere, where deep convection is strongly

influenced by the key forcing conditions imposed, i.e. diurnally varying land sur-

face temperatures, near-constant sea surface temperatures, and westward wind

shear.
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Figure 4.1: Boundary Layer Measurement Tower in Cabauw, the Netherlands
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Abstract

We provide a detailed analysis of convectively-generated cold pools (CPs) over flat

mid-latitude land, combining a ten-year high-frequency time series of vertical

measurements from the 213m tower observatory at Cabauw, the Netherlands, with

a collocated 2D radar rainfall dataset. This combination of data allows to relate

observations of the CP’s temporal and vertical structure with the properties of

each CP’s parent rain cell, which we identify by rain cell tracking. Using a new

detection method, based on the anomalies of both the vertically-averaged wind

and the temperature, we monitor the arrival and passing of 189 CPs during ten

summers (2010-2019). The time series show a clear signature of vortex-like motion

along the leading CP edge in the vertical and horizontal wind measurements. The

arrival of the CP gust fronts is characterized by a steep decrease in both temper-

ature and moisture with a recovery time of approximately two hours. We see no

evidence of moisture rings on the gust front edge, and therefore no indications for

thermodynamic convective triggering. From the tower data we obtain a median

CP temperature drop of Tdr op ≈ −2.9K and a height-averaged horizontal wind

anomaly of ∆umax ≈ 4.4ms−1. Relating the individual CP horizontal wind anoma-

lies and temperature drops, we confirm the validity of the theoretical, density

current relationship ∆umax ∝ Tdr op
1/2. We propose a simple statistical model to

relate CP strength defined by Tdr op , to the environmental properties mostly influ-

encing the CP: rain intensity and lower boundary layer saturation. A multi-variate

linear regression suggests a 1K colder CP for a 4mmh−1 more intense rain cell

(instantaneous area-averaged rain intensity) or for a 2.5K larger pre-CP dew point

depression.
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4.1 Introduction

A convectively generated cold pool (CP) is a sub-cloud volume of air, which is

cooled by the partial evaporation of precipitation. This dense, cold air descends as

it is negatively buoyant relative to its surroundings and is often further accelerated

by the drag exerted by the falling hydrometeors (Wakimoto, 2001). When hitting the

ground, the CP spreads along the surface away from its source as a density current

(Charba, 1974), introducing cold dense air underneath warmer environmental air.

Thereby, vortical motion builds up, which is measurable as the combination of

horizontal wind, distinctive horizontal convergence lines, and vertical mass fluxes

— often referred to as the “CP outflow boundary”, or “CP gust front.” The amount

of evaporation, and hence cooling within a CP, depends on rain intensity and area

of the generating rain cell, as well as the environmental atmospheric profiles of

temperature and relative humidity. The coldest outflows thus stem from high-

based thunderstorms that precipitate into very dry boundary layers (Markowski

and Richardson, 2010). Beyond these macrophysical conditions, microphysical

parameters, crucially the drop size distribution, influence the rain evaporation

(Seifert, 2008).

CP characteristics are often studied using numerical simulations that now ap-

proach the fine scales needed to resolve some CP properties, that is, horizontal

grid resolutions of substantially less than one kilometer (Drager and Heever, 2017;

Fournier and Haerter, 2019; Cafaro and Rooney, 2018; Meyer and Haerter, 2020;

Drager et al., 2020). Observational work is however indispensable as a mean of com-

parison and validation for numerical studies. Oceanic measurement campaigns

have provided insight into the dynamics of ensembles of CPs over the tropical and

subtropical oceans (Szoeke et al., 2017; Zuidema et al., 2012; Vogel, 2014; Young

et al., 1995; Chandra et al., 2018). As in simulations, CPs observed over the tropical

oceans show relatively weak temperature anomalies of typically −1K to −1.5K and

wind gusts of 2−2.5ms−1. An important morphological feature arising in simulated

oceanic CPs are so-called moisture rings, that is, bands of enhanced water vapor,

which build up near the gust front as the CP spreads. Oceanic studies find minor

increases in moisture, 0.25gkg−1 (Szoeke et al., 2017), measured ahead of the gust

front, whereas subsequent decreases in moisture, measured behind the gust front,

are nearly an order of magnitude larger. CPs over land vary much more strongly

than those over ocean and can reach temperature anomalies as deep as −17K and

wind gusts larger than 15ms−1 (Engerer et al., 2008). Observational studies of CPs
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over land are often focused on case studies and are mostly based in the continental

US (Mueller and Carbone, 1987; Wakimoto, 1982; Engerer et al., 2008; Hitchcock

et al., 2019; Heever et al., 2021). In contrast to oceanic CPs, the moisture signal

is not always prevalent in observations over land: a recent statistical analysis of

mid-latitude CPs over Hamburg, Germany, finds no strong signature of moisture

rings near the gust front, but the authors do find a pronounced, longer-lasting

moisture signal that increases up to one hour after the first detection of the CP

(Kirsch et al., 2021). Simulating continental CPs and detecting their edges through

a buoyancy anomaly method, Drager et al. (2020) conclude that moisture rings over

land may only occur in conditions of moist surfaces, but not for drier conditions.

A CP can interact with its environment and other CPs, producing updrafts and

potentially triggering new convective clouds (Purdom, 1976; Weaver and Nelson,

1982; Droegemeier and Wilhelmson, 1985a; Droegemeier and Wilhelmson, 1985b;

Wilson and Schreiber, 1986; Moncrieff and Liu, 1999; Tompkins, 2001a; Torri et al.,

2015). The triggering of new convection can happen through mechanical forcing,

due to the lifting of air along the gust front of the CP, or thermodynamic forcing, due

the above-mentioned moisture rings that provide additional buoyancy, favouring

new convection at the edge of the CP (Tompkins, 2001b; Torri et al., 2015; Drager

et al., 2020). An incessant sequence can unfold, where the new precipitating clouds

themselves may create new CPs that in turn can result in a new precipitation event,

which then produces a new CP, etc. CPs may therefore be a key ingredient to the

understanding of how clouds organize spatially and temporally into larger-scale

precipitating systems (Böing, 2016; Haerter et al., 2019; Haerter, 2019). The "up-

scale communication" between small-scale individual CPs (∼ 10km horizontally

and ∼ 1h temporally) and the larger-scale spatial organization of the cloud field

(≳ 100km, respectively ≳ 3h, such as mesoscale convective systems) has been

explored in both theoretical (Rotunno et al., 1988; Jeevanjee and Romps, 2013;

Haerter et al., 2019; Haerter et al., 2020) and observational studies (Zipser, 1977;

Feng et al., 2015; Zuidema et al., 2017). All the more, there is a need for better under-

standing of the processes that determine the temporal evolution of CP properties,

such as their spatial extent, lifetime, and strength (Drager and Heever, 2017). Defin-

ing the relationship between the properties of a given CP and the precipitation cell

that produces this CP (termed “parent” rain cell) can serve as a useful benchmark

for numerical simulations.

In this study, we provide an observation-based analysis of CPs over mid-latitude

coastal land, relating CP properties to their parent rain cell and the environment.
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We use weather measurements from the Netherlands, a region whose climate is a

hybrid between a moist oceanic and a drier continental regime and thus interesting

to study CPs, which are strongly affected by boundary layer moisture. We combine

meteorological tower data and radar data and further develop a method to detect

CPs from weather tower measurements based on a previous study by Szoeke et al.

(2017). The measured horizontal wind and temperature at the time of CP detection

allow us to empirically test the theoretical scaling between CP propagation speed

and temperature depression (Karman, 1940; Benjamin, 1968). Radar imagery is

then utilized to visualize and track the rain cells in the tower’s surroundings. Using

the distance of the rain cells to the measurement tower and the wind direction

during CP passage, we attribute a specific parent rain cell to each CP. Combining

the point measurements from the tower with the tracked rain cells, allows us to

analyse the relation between CP temperature anomaly, the pre-event saturation of

the boundary layer, and the rain intensity of the CP’s parent rain cell.

4.2 Methods

4.2.1 Data

We use data from a 213m boundary layer measurement tower at the Cabauw Ex-

perimental Site for Atmospheric Research (CESAR observatory), located in Cabauw

(51.971 N, 4.927 E), the Netherlands. These data enable us to study the temporal

evolution of lower boundary layer properties before, during and after the passage

of a CP gust front over land, in a temperate maritime climate. We focus on the

summer period (May to September), to capture the maximum convective activity

in the region. The data sets used consist of one-min averaged measurements of

temperature, dew point temperature, horizontal wind speed, and wind direction at

six different heights (10m, 20m, 40m, 80m, 140m, 200m) for the period 2010-2019.

Temperature is measured with Pt500 elements, placed in unventilated screens

to minimize influence of radiation and precipitation; dew point temperature is

measured with EplusE 33 polymer-based relative humidity sensors, which are

heated to decrease measurement problems during humid conditions; horizontal

wind speed and wind direction is measured with a cup-anemometer and vane

combination that rotate with the direction of the wind and record the velocity of

the propellers (Bosveld et al., 2020). We additionally use 0.1-sec records of water

vapor concentration and vertical wind speed measured at heights of 60m and
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180m that are available only for the summer of 2019, measured with a Gill-R50

sonic anemometer (Bosveld et al., 2020). Tower data was retrieved from the CESAR

Data Portal (Cesar (Cabauw experimental site for atmospheric research) Database

2020).

Additionally, we use a rainfall radar dataset from the Royal Netherlands Meteoro-

logical Institute (KNMI) to track and study the rain events generating the CPs for

the period 2010-2019. These 2D horizontal data are composites of radar reflec-

tivities from both of the KNMI weather radars, Den Helder and Herwijnen. The

resultant dataset encompasses five-minute precipitation heights on a 1km×1km

grid, which have been adjusted employing validated and complete rain gauge data

from the KNMI rain gauge networks and provides data for the entire land surface

of the Netherlands.

To look for visible gust fronts, we further use 5-min time resolution radar imagery

from the Herwijnen C-band polarimetric Doppler radar tower (51.837 N, 5.138 E).

The Herwijnen radar scans the surrounding atmosphere at 15 different elevation

angles, starting from the horizontal and upwards. The finest radial resolution

of the Herwijnen radar is approximately 225m and the azimuthal resolution is

approximately 1degree.

All the radar data was retrieved from the open-access KNMI Data Portal (KMMI,

2020).

4.2.2 Algorithm for the Detection of Cold Pools
from Tower Measurements

We build an algorithm to detect CPs from tower measurements, based on a tem-

perature detection algorithm used previously for oceanic CPs (Szoeke et al., 2017).

We modify this algorithm by tailoring the temperature threshold to continental

conditions, imposing a time constraint on the temperature anomaly and adding

a criterion on the horizontal wind anomaly. This additional criterion is imposed

to ensure the existence of a wind gust along with the detection of cold air, thus

incorporating the two main characteristics of a CP. For any given day, we use the

one-min time series of temperature at the 10m tower level, and one-min time

series of wind speed at the six tower levels (10, 20, 40, 80, 140, and 200m).
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Temperature Criterion. The algorithm by Szoeke et al. (2017) identifies CP gust

fronts from one-min surface temperature over a tropical oceanic surface. It is

“designed to be sensitive to asymmetric cooling events visible in the time series,

yet insensitive to high-frequency noise, to exclude false positives". We use this

algorithm as a first step in CP detection. We first smoothen the temperature time

series with a running 11-min centered window. A series of threshold operations is

then applied to the smoothed time series, to identify and “record" CPs along with

their properties (Fig. 4.2a):

1. A CP candidate is identified when the smoothed temperature reaches a

minimum within the preceding 20-min window. This minimum temperature

is the first Tmi n of a possible CP event (left cross in Fig. 4.2a).

2. Multiple temperature minima are combined to one CP event, if they are

consecutive (i.e., separated by one min), or if lying within 20 min of each

other given that the temperature during that time window does not exceed

either of them by 0.5K. This way we allow for small temperature fluctuations

within the CP interior without detecting it as two separate CP events. We

choose these values following the algorithm proposed in Szoeke et al. (2017).

3. For each detected CP event, the temperature drop δT is defined as the abso-

lute difference between the last Tmi n and the maximum smoothed tempera-

ture in the 20-min time window preceding the first Tmi n (Fig. 4.2a). A time

interval ∆t is defined as the time elapsed between the first and the last Tmi n .

4. An event is recorded if δT exceeds a 1.5K threshold, and the time interval ∆t

does not exceed 60min. The temperature threshold is raised compared to

the one used in Szoeke et al. (2017) (aimed at detecting CPs over a tropical

oceanic surface) to reduce the signal-to-noise ratio, caused by the higher

temperature fluctuations over land compared to the (tropical) ocean.

5. A refined temperature drop Tdr op is defined as the difference between the

maximum unfiltered temperature within 10 min preceding the first Tmi n ,

and the minimum unfiltered temperature within the temperature drop. We

use this stronger temperature drop to have a more accurate measure of

the effective cooling due to the CP. We note that while the δT -values are

systematically too low due to smoothing, may at times be very high if it

includes local fluctuations.
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Wind criterion. A further criterion is then added to the detection algorithm, as a

novelty with respect to the algorithm used by Szoeke et al. (2017), to ensure that

there is a wind gust associated with each detected temperature decrease. For this

purpose we use the time series of horizontal wind speed at the six tower levels. For

each day we smooth the one-min time series with a running two-hour centered

window and subtract the smoothed time series from the original time series to

obtain the “horizontal wind anomaly". We choose the two-hour smoothing window

to extract short-term fluctuations from long-term wind variability. To extract the

vertically-coherent signals in the data set, we compute the average wind speed of

all six tower heights. This way, we reduce random (or turbulent) fluctuations, and a

wind gust visible at all six heights will rise above the noise. We call this variable the

“height-averaged horizontal wind anomaly" (∆u). For simplicity, we will name the

maximum of this variable in a given time window “wind peak" ∆umax .

The detection algorithm then scans the events recorded by the temperature crite-

rion, and ultimately saves an event as a “cold pool" if there is a wind peak within

ten minutes preceding the first Tmi n and the time of the last Tmi n , that exceeds

four standard deviations (4σ) of the daily one-min ∆u time series. An example,

illustrating the algorithm (Fig. 4.2), shows the ten-meter temperature time series

and the height-averaged horizontal wind anomaly time series of a specific day

where a CP was detected (August 27, 2019).

Parameter Sensitivity. The parameters for the algorithm were initially tuned based

on two case studies, where the front of the CPs was clearly visible in the radar

images due to dust and/or insects drafted up in the convergece zone (Herwijnen

radar images, May 29 2018 14:30-15:30 UTC and Aug 27 2019 16:30-17:00 UTC

(Fig. 4.4), presented in Kruse (2020)). This allowed to visually determine the

time instance when the CP front should be detected at the measurement tower,

revealing typical CP signals in the time series we should look for and against which

the algorithm was calibrated. The thresholds on temperature and wind peak were

chosen to capture these CP cases from the daily temperature and wind time series,

and were kept as high as possible in order to find similar cases of strong, clear CP

signals throughout the year, and to exclude sea breezes. Reducing the threshold in

temperature anomaly from 1.5K to 1K adds only very few extra cases (additional

15% for year 2019). By contrast, reducing the threshold on the wind speed from

4σ to 3σ nearly doubles the number of cases detected. However, the additional

cases are of very similar nature, i.e., the gust fronts are detected shortly prior to

the presence of a rain cell over tower, with the only difference that the rain cells
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are weaker. This means that the additional CPs detected are generated by rain

cells with intensities that are often lower than the threshold of 1mmh−1, set for the

detection of convective rain cells (Section 4.2.3).

Figure 4.2: Exemplifying cold pool detection by two-step criterion. (a) Daily time series
of temperature, measured at the 10m-level at one-min temporal resolution
and smoothed with an 11-min centered window. The red symbols and two
horizontal lines mark the respective first and last values of Tmi n of a detected
cold pool event, denoting the initial temperature drop δt ; (b) Horizontal
wind anomaly averaged over all tower heights (Sec. 4.2.2) measured at one
minute temporal resolution. The anomaly is computed with respect to a
two hour centered running temporal average. The horizontal dashed blue
line indicates four standard deviations from the daily mean horizontal wind
anomaly, exceedance of which is used as a criterion for the detection of strong
wind anomalies. (c) Sketch of a cold pool (blue shaded area) crossing the
Cabauw tower. The red arrows indicate the propagation velocity and internal
circulation of the cold pool, together composing the measured horizontal
wind anomaly. The levels of temperature and horizontal wind measurements
(10m, 20m, 40m, 80m, 140m, 200m) are indicated by solid horizontal black
lines.
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4.2.3 Attribution of a Rain Cell from Radar
Data

Rain Cell Tracking. We use an Iterative Raincell Tracking (IRT) method (Moseley

et al., 2014; Moseley et al., 2019) to track rain cells in time and space from the

gridded radar rainfall product. The IRT locates spatially contiguous areas of rainfall,

termed objects, and tracks them in time if they overlap with objects in subsequent

time steps. This allows the definition of rain cell tracks, extending over a time

window t ∈ [tmin, tmax]. For the object identification, a threshold of 0.08mm per

5min, corresponding to I ≈ 1mmh−1 is imposed and a minimum of 4 contiguous

rainy pixels (one pixel corresponds to an area of approximately 1km×1km). To

each detected CP a rain cell track is then attributed based on a multi-step algorithm

(Fig. 4.3): First, we select all rain tracks that exist for at least ∆ = 10min during

the time interval δ= 30min preceding the CP detection time t0 at any point in the

domain. The tracks are allowed to end before the CP is detected, defining a “rain

cell timestep” tRC = min(t0, tmax) ∈ [t0 −δ+∆, t0]. In a second step, all rain tracks

are discarded, whose closest edge is further than rmax = vmax ·δ= 18km away from

the location of the Cabauw tower (⃗xCabauw) at time step tRC. The choice of this

radius is based on the assumption of an upper bound on CP propagation speed

vmax = 10ms−1, implying that gust fronts generated by rain that falls further away

cannot reach the tower in time. In a final step, the domain is cut in half-planes

based on the wind direction measured at the tower during CP passage (φCP): all rain

cells with centers of mass (COM) located in a direction relative to Cabauw tower

that deviates by more than 90◦ from φCP are discarded (Fig. 4.3). In the majority

of cases this three-step process allows for the identification of a unique rain cell,

which is assumed to be the parent rain cell of the gust front measured in the tower

time series. We point out that the number of CPs with a unique attributable rain

cell is 116 out of 189 - meaning the statistics involving CPs in connection to the

rain, have fewer data points. We note that in general, the detected CPs are located

close to the edge of their parent rain cell. This is quantified by the relative distance

of the RC’s COM to Cabauw tower, divided by the approximate radius of the RC

when assuming circular shape, both taken at tRC

d = x⃗RC, COM − x⃗Cabauwp
ARC/π

, (4.1)

where x⃗RC,COM is the position of the rain cell’s center-of-mass, and ARC is the area

of the rain cell. We find that d is distributed around a mean value of 〈d〉 = 1.7 with

84 Chapter 4 CPs Over the Netherlands



a heavy tail to large values up to d = 5 (Appendix Fig. 4.9), where d = 1 corresponds

to the CP gust front being detected directly at the edge of the rain cell. The relatively

large number of cases with d < 1 is an artefact of the definition of d being based

on the assumption of circular RCs. In reality, many CPs are generated by RCs of

elongated shape that are oriented perpendicular to the vector x⃗RC, COM − x⃗Cabauw

(Appendix Fig. 4.10).

Qualitative Analysis of Weather Situations. The combination of radar data with

the CP detection from tower measurements allows the observation of the large-

scale weather situation in which the CPs live. As expected, the algorithm detects

gust fronts in very diverse weather situations, which we qualitatively identify as

isolated convection (Appendix Fig. 4.10a), elongated precipitation cells resembling

squall-lines (Appendix Fig. 4.10b), large-scale fronts (Appendix Fig. 4.10c) and

mesoscale convective systems, characterised by low large-scale wind (Appendix

Fig. 4.10d). The different weather situations that the CPs are nested in are each

defined by a particular boundary layer wind shear, background wind direction with

respect to the direction of propagation towards the tower, soil moisture, etc. These

factors are contributing to the spread in the measurements of CP properties (Sec.

4.3).

Figure 4.3: Schematic of rain cell attribution algorithm. (a) Overview of radar data
domain with the location of the Cabauw tower marked. Black contour line
marks the political boundary of the Netherlands.; (b) Schematic of geomet-
rical requirements on the rain cell position during t ∈ [t0 −δmin(t0, tmin)]
based on the wind direction of the detected CP gust front at time t0. Only rain
cells within the yellow half-circle are accepted; (c) Schematic of requirement
on temporal overlap of rain cells, that exist in the time window t ∈ [tmin, tmax].
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4.3 Results

4.3.1 Cold Pool Structure

Case Study. We first discuss an individual CP event as seen in C-band radar imagery.

In the radar reflectivity, measured at the Herwijnen radar tower (Fig. 4.4, left

panels), one can clearly see the development of a quasi-circular gust front (light

green shades), the CP edge, spreading around an area of high-reflectivity (dark blue)

that we associate with the rain event. The gust front is visible in the reflectivity due

to insects and/or dust carried aloft by the convergence of air at the CP boundary

(Markowski and Richardson, 2010).

In the radial Doppler velocity measurements (Fig. 4.4, right panels), one can

see that the area delimited by the gust front is characterized by outward move-

ment (positive radial velocities ranging from 5−10ms−1.). If we approximate the

spreading gust front with a temporally growing circle of radius r (t), we obtain a

near-constant horizontal propagation speed v(r ) ≡ dr (t)/d t ≈ 7ms−1. We note

that this is a unique case, as we have a strong CP signal that spreads almost per-

fectly around the radar tower - this is generally not the case in the rest of our data

set. Interestingly, the wind peak measured at Cabauw tower at the time when the

radar gust front seems to pass by the tower, actually comes from the direction of

the smaller rain cell, located South-West of the tower. We use this example to stress

the added benefit of verifying the wind direction of the wind gust when attributing

a generating rain cell to a CP signal.

CP Composite Time Series. The composites for horizontal wind anomaly and tem-

perature anomaly (Fig. 4.5) are drawn from 189 CPs detected in the 10 summers

from 2010 to 2019, while the composites for vertical wind and moisture anomaly

(Fig. 4.6) are drawn from only 18 CPs detected in the summer of 2019. The dis-

crepancy in CP count is due to the availability of data from different measurement

instruments (Sec. 4.2.1). Most CPs are detected in the afternoon, coinciding with

the time of day when convection is most active over land (Appendix Fig. 4.11).

We compute the composites by first centering the individual CP time series on

their respective times of maximum horizontal wind anomaly (t0) and retain the

data for 60min before and 120min after t0, resulting in a set of time series which
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Figure 4.4: Cold pool developing around Herwijnen radar tower. The Herwijnen tower
is marked as an “x" in each figure. Radar reflectivity (left column) and Doppler
radial velocity (right column) were recorded on August 27, 2019 in ten-minute
steps from 16:40 to 17:00 as marked in panels a-c, respectively. The gust front
is clearly seen as a ring of low reflectivity values spreading around the the
largest rain event. This ring corresponds to positive radial velocities. We note
that the measurements shown are taken at an elevation angle of 1.20◦. In
panel a), the gust front is observed at approximately 200masl, whereas in
panel c) the observed height is approximately 400masl.

each have the same number of time steps. For each time step we then average over

all time series, yielding the mean time series. To compute the composites of the

anomalies x ′(t ) of a quantity x(t ), such as horizontal wind, temperature and water

vapor concentration, we first remove the respective pre-CP temporal mean from

the time series, that is,

x ′(t ) ≡ x(t )−x , (4.2)

where x is the time average over the 51 one-min time steps from t0 −60mi n to

t0 −10mi n, hence the time window preceding the arrival of the CP. The ten-min

margin was chosen to ensure that the CP signal does not influence the mean.

Furthermore, for the temperature anomaly, we remove the effects of the diurnal

cycle by subtracting the two-hour running mean. We verified that the one year
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composites of temperature and wind, although they are somewhat more noisy,

are comparable to the ten year composites of the same variables. This makes us

confident that one year of data is representative of a larger data set.

The edge of the composite CP is characterized by a strong positive horizontal wind

anomaly (gust front) seen at all tower heights (Fig. 4.5a). Before and after passage of

the gust front, the wind anomaly increases monotonically with the tower height, as

one would expect in the surface layer (see Fig. 4.5d). By contrast, within a window

of approximately six minutes enclosing t = t0, the largest value of horizontal wind

anomaly is measured at an intermediate tower level, near z = 80m (Fig. 4.5c).

Since the measured horizontal wind anomaly corresponds to the superposition

Figure 4.5: Composite time series of horizontal wind and temperature anomalies. Mea-
sured time series of composited cold pools, showing (a) the anomaly of hor-
izontal wind u′, and (b) the anomaly of temperature T ′. These composites
include 189 CPs detected in the summers 2010-2019. Blue lines show en-
semble mean; blue shaded areas show the standard deviation, computed
from the CP ensemble, indicating the ensemble spread between the different
CPs at each given time, and computed the height of strongest signal for each
variable (80m for the horizontal wind, 10m for the temperature). Vertical
lines highlight times ∆t = 0min (red) and ∆t = 10min (blue). Insets show c)
u′ at the heights measured at the tower at ∆t = 0min; d) analogous to c) but
at∆t = 10min; e) T ′ at the heights measured at the tower at∆t = 10min, with
linear fit used to estimate CP height (intercept: 503.8, slope:-304.7).

of the propagation speed of the CP front and internal CP circulation (Rooney,

2018), we interpret this window as the time interval where the vortical circulation

within the CP head affects the measured horizontal wind speeds. If we assume the

average CP gust front to be propagating at u ≈ 0.67u′(t0)10m = 2.7ms−1, following

88 Chapter 4 CPs Over the Netherlands



the relation found in Goff (1976), this would imply that the width of the CP head is

approximately 1km, considering the transit time of six minutes.

The horizontal wind anomaly is preceded by a negative temperature anomaly that

occurs simultaneously and at the same rate at all tower heights. After t0 the lower

heights z show systematically deeper anomalies T ′(z). We linearly interpolate

T ′(z) at 10min towards T ′(z) = 0, to obtain a rough estimate of the height z0 where

the temperature anomaly disappears (Fig. 4.5b, inset). We estimate z0 ≈ 500m,

as an indication for a height scale for the body of the composite CP. We note

that the temperature anomaly is fully recovered at all measurement heights after

approximately two hours from the beginning of the temperature drop.

The circulation within the CP head is further characterised by the vertical wind

peak (updraft) that precedes the horizontal wind anomaly, as reflected in a positive

vertical wind anomaly 1-2 minutes before t0, that exceeds four standard deviations

of the fluctuations in the time series (Fig. 4.6 b). Here, the standard deviation

represents the fluctuation of the composite vertical velocity time series in the

time window [t0 −60mi n, t0 +120mi n], so although the vertical wind is noisy, the

exceedance of this line indicates a clear signal of a strong updraft. The updraft

signal is strongest at the highest measurement level (180m).

The water vapor concentration starts decreasing at the same time as the vertical

wind peak occurs, at both measurement heights, confirming the dry CP interior.

There is not a clear signal of enhanced moisture before t0, indicating that moisture

rings may not be a evident characteristic of the CPs in this study. We note however

that the water vapor concentration starts decreasing four to five minutes after the

temperature has started decreasing, meaning that the CP head is more moist than

the body. The moisture anomaly is recovered within one to two hours. While all

previously discussed composite characteristics are mostly in line with the findings

from Kirsch et al. (2021) for CPs over Hamburg, Germany, the moisture signal differs

significantly, which show moistening rather than drying in the interior of the CPs.

The absence of a wind criterion with a high threshold may lead to the inclusion of

CPs measured at different points of their lifetime, or from different types of rain

events, which would affect the moisture signal. Furthermore, Drager et al. (2020)

show in their simulations that the moisture content in the interior and ahead of

CP fronts crucially depends on the soil moisture: over dry soils, their CPs show an

increase in moisture, similar to the observations in Kirsch et al. (2021), while for

wet soils, the moisture signal shows the same characteristics as our measurements
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Figure 4.6: Composite time series of vertical velocity and water vapor concentration
anomaly. Measured time series of composited cold pool, showing (a) the
vertical velocity and (b) the anomaly of water vapor concentration (WVC).
These composites include 18 CPs detected in the summer of 2019. Blue
shaded areas in each panel show the standard deviation, computed from the
CP ensembles, indicating the ensemble spread between the different CPs at
a given time, and computed the height of strongest signal for each variable
(180m for the vertical velocity, 180m for the WVC). Vertical red line highlights
time ∆t = 0min .

with dry air in the interior, but with the addition of moisture rings ahead of the CP

front.

In Fig. 4.7 we provide a sketched summary of the observed CP characteristics. The

circulation, temperature and moisture signal indicate that the CP edge (measured

at t0 −5min) is characterized by a moist, cold, updraft; the CP head (measured at

t0) is characterized by cold, dry air and increased vorticity; and the body of the

CP (measured at t0 +10min) is characterized by dry air, with largest temperature

anomalies at the surface. The thermodynamic structure of the CP interior is char-

acterised by increased atmospheric stability of approximately 5Kkm−1, as can be

seen in the stratification of the temperature anomaly (Fig. 4.5b), where the lowest

level shows the largest cooling. This stratification does not exist in the moisture

signal, which appears to be homogeneous drying through the CP’s height since

the anomalies at 60 m and 180 m are similar in value (Fig. 4.6b). The recovery time

for temperature and moisture after the passage of the CPs seems to vary strongly

among CPs, as indicated by the ensemble variance in temperature and moisture

anomaly (blue shading in Figures 4.5 and 4.6).
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Figure 4.7: Summarizing sketch of measured CP properties. On the left, an approximate
sketch of which part of the CP is being measured at the tower at a given point
in time: (a) at t = t0−5min the edge of the CP is being measured at the tower;
(b) at t = t0 the head of the CP; (c) at t = t0+10min the body of the CP. On the
right, a depiction of the measured CP properties corresponding to each part
of the CP measured at its lowest 200 meters: the edge of the CP shows moist,
well-mixed air, along with an updraft; the head of the CP shows dry, colder,
well-mixed air, and the signature of a vortex ring is reflected in the horizontal
wind anomaly; the body of the CP shows dry air and a layered temperature
anomaly, with the largest cold anomaly within the bottom layers.

4.3.2 CP Strength

The “strength” of a CP can be characterizied dynamically, by its propagation speed,

and thermodynamically, by its temperature anomaly. Here we wish to quantify the

strength of an ensemble of CPs. Early studies show that for incompressible, invis-

cid, and irrotational (i.e., no internal motion) density currents in unstratified flows,

the propagation speed u can be related to the relative density difference between

the interior of the density current and its surrounding environment (Karman, 1940;

Benjamin, 1968). Considering that the relative density difference can be approxi-

mated with the relative temperature difference, a general equation describing the

relationship between the propagation speed u and the temperature anomaly ∆T

is:

u = k

√
g H

∆T

T0
. (4.3)

where k is the ‘internal Froude number’ k (Benjamin, 1968; Wakimoto, 2001), g

is the gravitational acceleration, H the CP height, ∆T the temperature difference
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between the CP and its environment and T0 is the air temperature of the environ-

ment. Since CPs are density currents in a non-idealized environment, they are

exposed to dissipation effects, such as surface friction and turbulent mixing, which

are usually included within k. The inviscid case hereby represents a special case

with k =p
2, while meteorological studies have found values k ≈ 0.7 to be more

realistic (Markowski and Richardson, 2010; Wakimoto, 1982; Wakimoto, 2001). We

here test the above relation, assuming a Froude number of k = 0.7.

For each CP, we estimate the environmental temperature T0 from the temperature

at 10m, averaged over the time window [t0 −60min, t0 −10min], as done previ-

ously. A scatter plot of the wind peak ∆umax against the relative temperature drop

Tdr op /T0 for the 189 CPs detected in the ten summers 2010-2019 (Fig. 4.8) indeed

suggests increasing gust front speed for larger temperature drops. Viewing ∆umax

as a proxy for the CP’s total kinetic energy density and Tdr op as a representation

of the CP’s potential energy density, this indicates a monotonic relation between

the kinetic and potential energy of the CP (Meyer and Haerter, 2020). We note

that the median value of Tdr op is −2.9K and of ∆umax is +4.4m/s. Comparing a

linear least squares fit (green line), constrained to passing through zero (∆umax = 0

should correspond to Tdr op = 0), to a square-root least squares fit (red curve, Eq.

4.3) by inspecting the residuals (Figures 4.8b, c), indicates that the latter is a more

appropriate fit, given that there is no trend in the residuals of the square root fit.

Figure 4.8: Cold pool property relationship compared to theoretical model. (a) Gust
front strength ∆umax vs. relative temperature drop Tdr op /T0 for all CPs de-
tected in 2010-2019. Considering equation 4.3, the fitting constant a can be
understood as an estimate of the CP height. (b) Residuals from square-root fit
(Eq. 4.3), trend shown as a thin dotted black line. Approximately symmetric
spread around zero (red line). (c) Same as b, but for linear fit. Systematic
tendency with an underestimation (overestimation) of ∆umax for low (high)
Tdr op /T0.
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By assuming a fixed internal Froude number k = 0.7, the fitting constant a = 478m

can be understood as an estimate of the CP height H (Eq. 4.3). This estimate is

highly sensitive to the chosen value for the Froude number k. Underestimating k

will lead to an overestimation of H (and vice versa). Nevertheless, the estimated

value is comparable to the CP height estimate based on the temperature anomaly

extrapolation z0 ∼ 500m discussed earlier. Our value is higher than the average

300m CP heights over tropical oceans inferred from aircraft pressure measure-

ments (Terai and Wood, 2013) and lower than the height of 746m found for CPs

over Hamburg, Germany, with a pressure anomaly based extrapolation from tower

measurements (Kirsch et al., 2021). We point out that our CP height value is much

lower than the 1.5−2km heights found for early simulated thunderstorm outflows

(e.g. Droegemeier and Wilhelmson, 1987; Liu and Moncrieff, 1996).

4.3.3 How Does Rain Intensity Influence CP
Strength?

CPs develop primarily through the evaporation of rain in the sub-cloud layer

(Kurowski et al., 2018). The evaporation is enhanced in rain showers with high drop

number density, though decreases with high ambient relative humidity (Seifert,

2008). We here test this bi-variate relationship between the CP, the parent rain cell,

and their mutual environment.

Relative humidity can directly be estimated from the measured dew point depres-

sion T̃ ≡ T −T d , where T and T d are averages of temperature and dew point tem-

perature over the 50-min time interval preceeding CP detection ([t0 −60min, t0 −
10min]) at the 140m level of Cabauw tower. Whereas the data used in this study

do not contain explicit microphysical information, rain intensity, I , is a rough

proxy for rain drop number density. Its spatial average over the entire rain cell area,

denoted 〈I 〉, is computed at a single time step tRC (Sec. 4.2.3).

While crude, this spatial average lowers the sensitivity to biases of the radar mea-

surement, such as due to the presence of ice, artificially increasing the reflectivity

locally.

4.3 Results 93



Using linear regression on the data from the ten summers of CP data (2010-2019),

we expand the temperature drop Tdr op in terms of the low-order terms:

Tdr op ∼α0 +α1 〈I 〉+α2T̃ +α3〈I 〉2 +α4T̃ 2 +α5〈I 〉T̃ +O(3). (4.4)

The regression analysis indicates that significant non-linearity enters through the

quadratic terms of rain intensity 〈I 〉2 and T̃ 2, whereas the mixed term ImeanT̃

shows non-significant correlation, that is, α5 shows very high standard error, and

is thus neglected. To avoid that the simple model predicts CPs at vanishing rain in-

tensities or in a totally saturated atmosphere, we impose the physically meaningful

restriction of zero intercept, that is, α0 = 0. Together, we retain the fit function:

Tdr op ∼α1〈I 〉+α2T̃ +α3〈I 〉2 +α4T̃ 2 +O(3). (4.5)

We here compare a linear regression, whereα3 =α4 = 0 and a non-linear regression,

where α3 and α4 may vary (Tab. 4.1). In both models, the CP strength is positively

correlated with the dew point depression T̃ and mean rain intensity 〈I 〉, confirming

that CPs are measurably strengthened by drier environmental conditions and

larger rain intensities. In the non-linear regression, all four remaining regression

coefficients are found to be statistically significant. We speculate that the negative

dependence on 〈I 〉2 (α3 < 0) stems from very strong rain quickly saturating the

sub-cloud atmosphere, thus diminishing further rain evaporation.

To give a more tangible interpretation of the linear multivariate regression, we note

that with the coefficients in Table 4.1, a CP becomes 1K colder if the rain inten-

sity of its parent cell is incremented by 4mmh−1 (instantaneous area-averaged

rain intensity) or if the ambient relative humidity is increased according to a 2.5K

larger dew point depression. We compare with a recent study by Kirsch et al. (2021)

for CPs over Hamburg, Germany, hence a similar geographic region. The study

shows two separate regressions to determine the relationship between CP temper-

ature perturbation and point-measured accumulated rainfall, and CP temperature

perturbation and pre-event saturation deficit. CP strength is found to increase

with increasing point-measured rainfall, and with increasing pre-event saturation

deficit, in line with our model.
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linear regression non-linear regression
coeff. std. error coeff. std. error

α1 [K h mm−1] 0.25 0.03 0.44 0.09
α2 [-] 0.40 0.03 0.51 0.08
α3 [K h2 mm−2] −0.020 0.007
α4 [K −1] −0.021 0.007
R-squared (uncentered) 0.89 0.92

Table 4.1: Fitted coefficients for the linear and non-linear regression models (Eq.4.5).
α1 and α2 represent the coefficients of the terms linear in rain intensity and
temperature respectively, whereas α3 and α4 represent the coefficients of the
terms quadratic in rain intensity and temperature respectively.

4.4 Conclusions

In this study we design and validate a methodology to detect convectively-generated

cold pools (CPs) and their gust fronts over the Netherlands and relate them to their

parent rain cell and environment. CP characteristics have been studied over many

years from an observational point of view, however there are very few statistical

studies of CPs over mid-latitude coastal land. Our study stands out by combining

tower and radar measurements to analyze 100+ CPs in relation to their generating

rain cells. We wish to highlight the following findings:

• the patterns in the horizontal and vertical wind measurements confirm the

existence of a vortex ring in the CP head;

• the detected CPs show weak or absent moisture rings, while the CP interior

shows a negative moisture anomaly;

• a simple model consisting in a multi-variate linear combination of pre-event

dew point depression and area-averaged rainfall intensity allows a prediction

of the generated CP’s strength.

To study the evolution of CPs in time and their properties in relation to their parent

rain cell and environment, we use the combination of local measurements from a

213-m meteorological tower located in Cabauw, the Netherlands, and precipitation

radar output. To identify CPs from time series of point measurements, an existing

algorithm for detecting CPs over the ocean (Szoeke et al., 2017) is extended to cap-

ture CPs over land by (i) an increased threshold on the temperature anomaly (1.5K)

and (ii) an additional criterion on the horizontal wind speed anomaly. Studying a
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few exemplary CPs revealed a vertically coherent signal in horizontal wind velocity

(“wind peak”) at the tower during the passage of a CP gust front. Therefore, in

our algorithm we record events as CPs if they are characterised both by a tem-

perature drop and a coherent wind peak. This allows us to isolate the CPs from

the temperature fluctuations over land which come without, or with a very weak,

wind signal. The algorithm shows low sensitivity to the threshold on temperature

anomaly but high sensitivity to the wind peak threshold. We thus recommend to

keep the threshold on temperature at 1.5K, whereas the threshold on the wind

peak should be varied in accordance with the threshold on precipitation intensity

of the parent rain cells under consideration. Our choice of parameters may bias

the algorithm to detecting only strong CPs whose fronts are often found to be very

close to the parent rain cell at the time of detection, indicating a young age of the

CPs at the time of detection or a squall-line like system, where the CP is advected

along with the cloud. However, we find that, by this constraint, it is ensured that all

identified cases can be attributed to the passage of a CP rather than other forms of

fluctuations. Our method’s reliability is confirmed by the associated updrafts and

succeeding dry moisture anomalies measured for all detected CPs.

The composites of 189 CPs from measurements taken during ten summers (May-

September 2010-2019) allow to study statistical CP properties and their radial

structure. The CP gust front is characterised by a strong updraft, which temporally

coincides with the beginning of the negative temperature anomaly, and precedes

the positive horizontal wind anomaly and negative moisture anomaly. The pres-

ence of a vortex ring on the edge of the CPs is confirmed by the changing signal in

horizontal wind measurements at different heights, in the window of time around

CP passage. In contrast to studies of oceanic CPs (Szoeke et al., 2017; Zuidema

et al., 2017), we do not detect a clear signature of moisture rings, that is, areas

of elevated moisture, on the edges of the CPs. This might be due to the smaller

magnitude of latent heat fluxes over land with respect to the tropical ocean (Drager

et al., 2020). The absence of CP moisture rings in our observations suggests that

for our ensemble of CPs, the thermodynamic triggering of new rain events is less

important than the mechanical triggering of new rain events, particularly driven

by the collision of strong gust fronts (Tompkins, 2001b; Torri et al., 2015; Drager

et al., 2020). The interior of the CPs in our analysis is characterized by enhanced

horizontal wind anomalies, and longer-lasting cold, dry air. The dry anomaly

stands in contrast to a recent study of CPs over Germany (Kirsch et al., 2021), which

finds enhanced moisture in CP interiors. The thermodynamic anomaly recovers

within two hours of the passage of the gust front, which is clearly shorter than
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the convectively active time in a day. It is, therefore, possible for multiple CPs to

occur in the same location within one day, despite the inhibiting effect of a cold,

dry lower boundary layer on the formation of new convection. We do indeed, in

some cases, detect more than one CP on the same day. Regarding the scale of

CPs, our current results indicate that typical dynamical gust fronts have a width of

1km. For the CP height, we extrapolate two values from (i) the vertical gradient in

temperature anomalies measured at different tower levels, and (ii) the relationship

between CP temperature anomaly and CP speed. Both estimates (∼500 m) are

lower than the typical CP height over continental land, and higher than the typical

CP height over the ocean. This might be due to the coastal location which provides

an interesting environment to study CPs that are neither fully oceanic nor fully

continental. Furthermore, the examination of radar images and attribution of gen-

erating rain events reveals that some CPs that we detect emerge from large-scale

weather patterns with lower rain intensity than convective thunderstorms. We

suspect that this contributes weaker and shallower CPs to the ensemble.

By combining the tower measurements with the radar data and using a wind

direction criterion, we were able to attribute a parent rain cell to the majority of

detected CPs. This allows to confirm the positive relation between CP strength

and precipitation intensity with a bi-variate, linear regression of CP temperature

anomalies against the pre-CP dew point depression and rain intensity averaged

over the full rain cell area. Our simple model allows the prediction of CP strength

(temperature anomaly), conditioned on both microphysical and environmental

parameters. Knowledge on the relation between a given population of rain cells

and the CPs initiated by any of them is important as a benchmark for numerical

simulations, both idealised studies and comprehensive high-resolution climate

models.

Outlook. Numerous recent studies have highlighted the importance of CP effects

in structuring the convective cloud and precipitation field over space and time

(Rio et al., 2009; Böing et al., 2012; Schlemmer and Hohenegger, 2014; Szoeke et al.,

2017; Böing, 2016; Haerter and Schlemmer, 2018; Haerter et al., 2019; Haerter

et al., 2020). Further observational studies along the lines presented here may help

clarify pressing modelling questions, such as how parameterized CPs are affected

by large-scale weather conditions, or the numerical grid resolution required to

appropriately resolve the gust fronts of spreading CPs. Future research is required

to study the last step in the causal chain of convection, namely the attribution of

the triggering of new convective cells to the detected CPs and their parent rain
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cells. The current study, and work following up on it, can help improve the realism

of models and decipher how mesoscale convective systems build up dynamically

and which role CPs play in correlating the dynamics of the individual rain cells

involved.

4.4.1 Appendix Figures
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Figure 4.9: Relative distance d between detected CP gust front and the rain cell edge for
all CPs detected in the 10 summers 2010-2019. The CP gust front is detected
directly at the edge of the rain cell for d = 1, ahead of the rain cell for d > 1 or
below the rain cell, i.e. it rains at the tower’s location, for d < 1.
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Figure 4.10: Rain intensity from radar data, exemplifying different weather situations
at moments of CP-detection. Note the proximity of the rain cells to the
Cabauw tower (red dot). Red contours indicate the intensity threshold
used to track the rain cells. a) Isolated rain cells (2019/08/19, 15:25), b)
Squall-line like convective cell (2019/05/08, 15:25, c) Extensive front ap-
proaching from the Atlantic (2018/08/24, 21:30), d) Mesoscale convective
system (2019/06/07, 15:10). In cases a and b, the isolated rain cells with
well-defined COM allow a unique attribution, whereas in cases c and d the
COM can be ill-defined and the attribution is more ambiguous.
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Figure 4.11: Time of occurrence of all CPs detected in the 10 summers 2010-2019. Note
that the local summer time in the Netherlands is CEST, corresponding to
UTC+2.
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5Nowcasting Cold Pools in Dakar with
Long Short-term Memory Networks:
The First Two Pillars

Before proceeding to the last study of this dissertation, I’d like to here acknowledge

Leif Denby at the Danish Meteorological Institute for introducing me to the exciting

field of machine learning and guiding me through my first AI-driven steps, Edward

Engelbrecht for running the simulations in this chapter, Jan Haerter for making the

DakE field campaign possible, Yahaya Bashiru for sparring with me in Bremen and

Dakar, and the rest of the Complexity and Climate group at Leibniz ZMT for station

testing and logistics. A large token of appreciation goes to the Physics Laboratory

of the Atmosphere and the Ocean at UCAD, in particular Abdou Lahat Dieng, Salif

Diedhiou, Dame Gueye and Noreyni Fall; and Abdoulahat Diop at ANACIM, for

sharing their invaluable knowledge and expertise with me while in Dakar.

Figure 5.1: Mesoscale Convective System off the coast of Dakar,
September 21 2023, 19:31 GMT. Photo taken while in front of the University of
Dakar Cheikh Anta Diop after installing one of two weather stations discussed
in this chapter.
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Abstract

Frequent floods during the rainy season in Senegal underscore the need for ad-

vanced weather monitoring capabilities in tropical West Africa. Currently, the

region lacks high-resolution temporal and spatial weather monitoring instruments

with accessible data. In response, we have planned a field campaign in Senegal, of

which the first two pillars are two automatic weather stations in Senegal, located in

Pout and Dakar, operating at a one-minute temporal resolution and transmitting

near real-time data to a cloud infrastructure.

Our research focuses on the development of a nowcasting tool to predict the arrival

of cold pools (CPs) in Dakar. To achieve this, we employ Long-Short Term Memory

networks (LSTMs) trained on simulated time series data generated from Weather

Research and Forecasting (WRF) simulations of the 2019 rainy season over Dakar,

mimicking automatic weather station data in Pout and Dakar. The LSTMs are thus

trained to capture the intricate patterns associated with the onset of CPs and have

notable skill in nowcasting the arrival of CPs in Dakar with a 30 min warning time,

providing crucial lead time for mitigating the impact of strong wind gusts and heavy

rain leading to potential floods. Our approach represents a novel application of

advanced machine learning techniques to enhance short-term weather prediction

capabilities in a region prone to weather-related hazards.

The integration of high-resolution weather stations and LSTMs holds promise for

improving the accuracy and lead time of real weather predictions, particularly in

regions with limited monitoring infrastructure.
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5.1 Introduction

Meteorological monitoring and accurate short-term weather predictions are critical

for various sectors globally, ranging from agriculture to disaster management.

Sub-Saharan Africa in particular faces a pressing need to enhance predictions of

high-impact weather events, primarily due to the frequent occurrence of intense

convective storms in the tropical band leading to severe flooding, strong winds,

and lightning. These hazards pose significant threats to humans, infrastructure,

and the economy. Currently, numerical weather prediction in Africa lacks accuracy,

especially for lead times less than 24 hours, emphasizing the critical necessity for

immediate event prediction, known as nowcasting (Roberts et al., 2022).

Nowcasting services are generally lacking across Africa, with a notable absence

of automated nowcasting systems or tools. This deficiency hampers the ability of

national meteorological services to issue timely warnings, potentially resulting in

loss of life and substantial economic losses. Very recent research on nowcasting

in this area has introduced innovative methods for generating probabilistic now-

casts of convective activity using satellite imagery (Anderson et al., 2023). Another

strategy for nowcasting mesoscale convective systems (MCSs) involves utilizing

satellite-derived land surface temperature data as an indicator of soil moisture

levels, given the strong correlation observed between dry soils in the early hours

of the day and MCS activity in the Sahel (Taylor et al., 2022). Our study takes on a

more localized approach by harnessing novel measurements collected from two

automatic weather stations installed in Pout and Dakar, Senegal, to enhance our

understanding of local weather patterns, with a specific emphasis on nowcasting

gust fronts from storms in Dakar.

Senegal, situated in West Africa and in the Sahel, experiences a diverse climate with

a pronounced rainy season spanning from June to October, during which organized

convective storms contribute to 90% of the seasonal rainfall (Mathon et al., 2002).

These storms lead to the formation of cold pools (CPs), cold downdrafts generated

from the evaporation of precipitation, and their associated gust fronts, sudden

increases in wind speed at the leading edge of a CP. Monitoring and predicting these

gust fronts, especially in large urban areas like the capital Dakar, with a population

of 3.9 million, are crucial for effective risk management and early response (Merz

et al., 2020).
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Figure 5.2: Aftermath of rain events in Dakar on (left) the morning of September 20th,
2023 (photo taken at 8:45 UTC), and (right) the morning of September 25th,
2023 (photo taken at 09:30 UTC). Photos taken in the Point E district of Dakar.

It is noteworthy that Dakar and its surroundings are particularly vulnerable to

flooding during the rainy season (Mbow et al., 2008). The combination of con-

vective storms and the geographical characteristics of the area contributes to a

heightened risk of flooding, impacting local communities and infrastructure (Fig-

ure 5.2). Monitoring and predicting weather events, including gust fronts, hold

particular significance in flood-prone regions for timely and effective disaster

preparedness.

Our research leverages data obtained from two automatic weather stations installed

in Senegal – the first two pillars of the ongoing field campaign DakE (Dakar East).

The weather stations were installed in the town of Pout, East of Dakar, and the

capital city of Dakar in September 2023. They are approximately 50 km from

each other: the former upstream and the latter downstream of convective systems

traveling westward with the African Easterly jet. The two stations installed provide

high-resolution meteorological data, including atmospheric pressure, temperature,

humidity, wind speed, and direction. The utilization of this detailed observational

data opens avenues for a deeper understanding of local weather phenomena.

Recent techniques have been developed and employed to detect and analyse CPs

from observational time series from land-based weather stations (Kirsch et al.,
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2021; Kruse et al., 2022), the former used in particular for ground based automatic

weather station networks set up to study CPs (Hohenegger et al., 2023).

In this study, we use Weather Research and Forecasting (WRF) simulations at 1km

resolution to generate synthetic station data for one rainy season, and we extract

the time series for the locations of Pout and Dakar. The simulated data is used to

train the Long Short-Term Memory (LSTM) networks. LSTMs, a type of recurrent

neural network (RNN) known for capturing temporal dependencies, are employed

here for nowcasting gust fronts associated with convective storms in Dakar. The

LSTM network’s ability to learn patterns and relationships within time series data

makes it a promising tool for nowcasting. By training the network on simulated

data, and successively testing it on observed data from the automatic weather sta-

tions, we aim to develop a robust model capable of accurately forecasting the onset

of CPs, contributing to improved weather-related decision-making in Dakar.
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5.2 Methods and Results

5.2.1 Measuring CPs with Automatic Weather
Stations

The automatic weather stations we used to measure CPs are described in Table

5.1. Both stations were set up to send data to a cloud via the cellular network, at a

1-minute temporal resolution and are powered by a combination of batteries and

solar panels, to have the option to be off the grid.

Testing the Automatic Weather Stations in Germany

The Davis VantagePro2 and Meter Atmos41 stations were first tested in a field in

Bremen, Germany, for the summer season of 2023, before being transported to

Senegal (Figure 5.3). During the testing phase in Germany, we investigated the

Figure 5.3: Automatic Weather Stations. Testing the automatic weather stations in
Bremen, Germany. On the left: VantagePro2; On the right: Atmos41

ease of deployment and the differences in measurements capabilities. The stations

are comparable in price range with the full set-up. With our set-up, both stations

can measure at a 1-min temporal resolution, the following variables: temperature,

wind speed, rain, pressure, humidity, solar radiation and soil moisture at several

levels, with the Atmos41 additionally measuring lightning strikes. We note here that
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the Atmos41 has a drop counter for precipitation measurements, which captures

low rain rates more accurately, but measures systematically lower rain rates, than

the VantagePro2 which has a tipping spoon mechanism. Furthermore, the sonic

wind anemometer on the Atmos41, during very high rain rates and strong wind,

can experience measurement issues most probably due to water entering the sonic

sensor. We found both stations to be adequate for further testing in Senegal, since

the issues mentioned above were only discovered later, in tropical conditions. In

Figure 5.4: CP measured in Bremen. CP event measured in Bremen, August 27, 2023.
Weather station: Atmos41. Temperature, wind speed and rain (top panel),
pressure, lightning strikes and specific humidity (bottom panel).

Figure 5.4 we show a CP event measured in Bremen by the Atmos41 during the

testing phase. The event was measured by both automatic weather stations, set

up on 2-meter poles side-by-side in a field (coordinates: lat = 53.15, lon = 8.77).

We see the temperature drop by about 6 degrees Celsius, a wind gust of about 10

m/s, followed by precipitation for about 30 minutes. The interior of the CP is dry,

with the dry anomaly recovering after about 1.5 hours. There is a clear increase in

pressure collocated with the decrease in temperature. Interestingly, the lightning

strike measurements serve as a 30-minute warning to the rain event.
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Measuring a CP event upstream and downstream of Dakar,
Senegal

The stations were installed in Senegal in the second half of September 2023, cap-

turing the last few weeks of the rainy season including several rain events, and

continuing to measure to this day. The locations of the stations, Pout and Dakar,

are shown in Figure 5.5 with details in Table 5.1. The town of Pout is upstream of

Dakar with respect to the MCSs that tend to travel westward in the African Easterly

Jet.

Figure 5.5: Domain of study. On the left, zoom over Senegal. Locations of automatic
weather stations in Pout (black dot) and Dakar (orange dot).

Location Coordinates (lat, lon) Station Type Resolution
Pout (14.76, -17.07) Davis VantagePro2 1 min
Dakar (14.68, -17.47) Decentlab+Meter Atmos41 1 min

Table 5.1: Coordinates, Station Type and Temporal Resolution for first two stations of
DakE.

We successfully measured one CP event that occurred both in Pout and in Dakar,

with the two respective weather stations, on September 25, 2023. The MCS that

produced the CP, as seen from satellite, is shown in Figure 5.6. The cloud-top

temperature shown is from thermal infrared images from Meteosat Second Gener-

ation (MSG). The convective cores, which identify the coldest areas within large

storm clouds and responsible for intense rain rates are visualized with blue outlines

thanks to the algorithm developed by Klein et al. (2018). The MCS, with a radius of
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roughly 200 km, traveled from East to West of Senegal in the early morning hours

of September 25, 2023, reaching Dakar at around 7:30 UTC.

Figure 5.6: MCS over Senegal from satellite imagery. MCS over Senegal on September
25, 2023, as seen from infrared satellite data (UKCEH Nowcasting Portal,
Accessed: [March 2024]). Deep convective cores from Klein et al. (2018),
indicators of precipitating regions, are outlined in light blue. The associated
CP was measured in Pout and Dakar in Figure 5.7. The associated flooding in
Dakar can be seen in Figure 5.2.

From the station measurements in Figure 5.7, it is clear that the CP associated with

the MCS in Figure 5.6, is measured first in Pout at around 7:00 UTC, and then in

Dakar at around 7:30 UTC.

There is a temperature drop of about 6 K, an increase in wind speed of 10 m/s, and

precipitation measured in both locations, lasting for 20-30 minutes. The interior

of the CP is dry (the difference between the specific humidity before and after

the onset of the CP is about 3 times larger than for the CP measured in Bremen),
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Figure 5.7: CP measured in Senegal. CP measured in Pout and Dakar with VantagePro2
and Atmos41 respectively, on September 25, 2023. Temperature, wind speed
and rain in top two panels. Pressure and specific humidity in bottom two
panels. Note: Soil moisture (measured at -0.1 m) is additionally shown for the
Pout station and lightning strikes for the Dakar station, based on availability
of measurements.

and this anomaly does not recover in the 2-hour time window visualized. The

pressure increases, the soil moisture increases after the rain event, and there is a

signal of lightning strikes in Dakar, that precedes the CP by 30 minutes. This is our

first measurement of a CP in Senegal at 1-min resolution, and we are waiting to

measure more. We want to build a nowcasting algorithm by training a machine

learning model to nowcast these events in Dakar before they happen. However,

to train a machine learning model like an LSTM, we need many more examples

of CPs in Senegal. For this we turn to high-resolution cloud resolving simulations

with realistic boundary conditions, to simulate a full rainy season over Dakar,
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and extract simulated "station data" to train our LSTM. The new measurements

that will be obtained in the rainy season of 2024, will be further used for training,

validation and testing.

5.2.2 Simulating Station Data with WRF for
training LSTM networks

Simulation set-up

The simulation data used to train the LSTM networks were obtained using the non-

hydrostatic Advanced Research WRF model version 4.3 (Skamarock et al., 2021).

The simulation period spans a 7 month period encompassing a full rainy season,

from April 1 to November 30, 2019, over Senegal in West Africa, with the simulation

domain shown in Figure 5.8. The rainy season of 2019 was chosen primarily for the

high frequency of mesoscale convective systems. We applied a nesting approach in

order to obtain numerical simulation data at a relatively high grid resolution, in this

case 1 km. To achieve this, we created three domains at grid spacings 9, 3, and 1 km

with a one-way nesting approach. We use only the data from the 1km resolution

simulation in this study. We choose the following variables to output at a 1-min

temporal resolution, to best-represent the weather stations: 2-meter temperature

(T2m), 2-meter specific humidity (q2m), zonal and meridional components of the

10-meter wind speed (U10m and V10m), which can be combined to represent wind

speed, surface pressure (pSU RF ), and rain.

National Oceanic and Atmospheric Administration / National Centers for Envi-

ronmental Prediction Global Forecasting Model (GFS) analysis and t+3 hourly

historical forecast data were used to drive the initial and boundary conditions in

the 9km outer domain. It is therefore one continuous forecast, restarted at weekly

model simulation intervals, with the aim to preserve rainfall continuity. This set-up

allows model nests to develop and maintain their internal dynamics, while bound-

ary conditions at or close to the global initialization times are provided to the outer

domain (D1).

To represent land surface fluxes, we used the Noah Land Surface Model scheme

with soil temperature and moisture at four layers (Niu et al., 2011). 55 vertical
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Figure 5.8: WRF set-up. Weather Research and Forecasting (WRF)-nested domains for
the Senegal rainy season of 2019. Map of West Africa (top right corner) show-
ing the outer domain (dashed), denoted as D1 at 9 km horizontal resolution
and the second domain of 3km denoted as D2. The principal domain used in
this study is D3 which denotes the nested domain boundaries (red dashed) at
horizontal resolution of 1km.

atmospheric levels were chosen, such that their vertical spacing decreases closer

to the surface. The outer 9km domain used the Kain-Fritsch convection scheme

with a mass-flux approach, while domains 2 and 3 were run with no convective

parameterization. To parameterize the Planetary Boundary Layer (PBL) we used

the Yonsei University PBL scheme for all domains.

Deep moist convection, in particular MCSs, can be strongly influenced by hetero-

geneous soil moisture, particularly mesoscale dry soil moisture anomalies over the

Sahel (Taylor et al., 2012; Klein et al., 2018). To maintain a high quality soil moisture

state, we start the model simulation three months ahead of the rainy season to

allow for spin-up time of modeled soil moisture. NOAA National Center for En-

vironmental Prediction (NCEP) optimum interpolation sea surface temperature

(SST) analysis data, provided at weekly intervals, was used for boundary conditions

of the sea surface (NCEP, 1986).

112 Chapter 5 Nowcasting CPs in Dakar



Analyzing the simulated station data

We then extract two locations from the simulation, corresponding to the coordi-

nates of the Pout and Dakar stations. The rain accumulated over the full simulation

in the two locations, is shown in Figure 5.9. The simulated rainy season spans from

mid-July to late October, with single rain events contributing to large increases in

rain at a time. The step-like cumulative function is a clear signal of large MCS rain

events contributing to most of the rain in a rainy season, as expected. Interestingly,

the Dakar location received about half the amount of rain compared to Pout, in the

simulation. This could be due to the fact that some MCSs passing over Pout do not

make it to Dakar, either because they are deviated towards the North/South, due to

interactions with sea-breezes or because they dissipate before reaching the coast.

Most importantly, this means that the CPs of some of the MCSs measured in Pout,

will not make it to Dakar.

Figure 5.9: Cumulative rain in Pout and Dakar from simulation. Cumulative rain in
WRF simulation of rainy season over Senegal in 2019, at the two locations of
interest.

CPs in the simulation output. We now analyze the CPs in the WRF simulation

output, as "measured" in Pout and Dakar. We run a CP detection algorithm tailored

for ground station data (see Kirsch et al. (2021) for details on the algorithm) on

the time series of 1-min simulated station output from both Pout and Dakar, and

analyse the key variables related to CPs, as in Kruse et al. (2022). The algorithm

detects CPs in time series when there is a temperature drop larger than 2K, with

the criterion that this drop is followed by precipitation. In Figure 5.10 we see the
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composite time series of all the detected CPs in the simulation output for Pout

and Dakar. We find a total of 56 CP events partitioned as follows: 42 in Pout and

14 in Dakar. The median temperature drop is -3.3 K. The significant disparity

between the number of cold pools (CPs) detected in Pout and the notably fewer

CPs detected in Dakar reflects the cumulative rainfall patterns illustrated in Figure

5.9, suggesting that Pout experiences a higher frequency of rain events than Dakar.

The anomalies are computed with respect to the 60-min mean of the variable,

preceding the temperature drop at time 0. The CPs exhibit the expected behavior

for all variables: a sudden drop in temperature, of approximately 3 K, an increase in

wind speed and an increase in surface pressure. The moisture also drops, indicating

a dry interior, however the standard deviation is large, indicating CPs ranging from

very dry interiors, to moist.

Figure 5.10: Analysis of CPs from simulation. Composite time series of 2-meter tem-
perature, 2-meter moisture, 10-meter horizontal wind speed and surface
pressure anomalies, related to the passage of 56 CP events (from WRF sim-
ulation output of rainy season of 2019). Shading indicates one standard
deviation.

We focus on one case, to compare to the measured data in Figure 5.7. We take a CP

from a large MCS over Senegal, occurring on September 23, 2019 in our simulation.

The 2D snapshots of 2-meter temperature at three time steps are show in Figure

5.12. The CP is progressing from East to West, reaching Pout at approximately 13:30

UTC, and Dakar at approximately 14:00 UTC, so with a lag of 30 minutes, similar

to what we had seen in the real measurements. When looking at the time series

extracted from the simulation in the locations of Pout and Dakar, in Figure 5.12,

we see a CP structure that is very similar to our one measured CP, albeit smoother

curves due to the coarse nature of the simulation. In both locations, with a lag
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of 30 minutes, there is a sudden temperature drop in each location consecutively

of approximately 5 K, a collocated wind gust of 10 m/s, an increase in pressure, a

decrease in moisture, and subsequent rain for 30-60 minutes.

Figure 5.11: CP from simulation over Senegal. 2 meter temperature field of CP event
over Senegal from WRF simulation output. Simulated date: September 23,
2019. Time series of same CP in Figure 5.12.

5.2 Methods and Results 115



Figure 5.12: CP from simulation over Senegal: time series. Time series of CP event over
Senegal from WRF simulation output. Simulated date: September 23, 2019.
2D snapshots of same CP in Figure 5.11.

5.2.3 Training an LSTM to Nowcast CPs

LSTM set-up

We train an LSTM to predict the advent of CPs in Dakar, with time series from

Dakar and Pout. The dataset comprises the time series from the simulation output

of the two locations corresponding to the stations of Pout and Dakar. Since we

are interested solely in the rainy season, we extract the time series ranging from

July 1, 2019 to October 31, 2019. We aggregate the 1-minute time series data by

computing the average value over non-overlapping 10-minute intervals. This
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process involves grouping consecutive 10-minute time intervals and calculating

the mean value of the data points within each interval. The resulting aggregated

dataset represents a temporal resolution of ∆t = 10 minutes, providing a broader

overview of the underlying trends and patterns while reducing the granularity of

the native 1-minute data.

Data Processing. We pre-process the dataset to make it compatible with the

model architecture. This involves two primary steps: feature selection and feature

normalization. Feature selection entails identifying and choosing the variables or

features from the dataset that hold significance to detecting CPs. We choose the

following five variables: 2-meter temperature (T2), 2-meter specific humidity (Q2),

surface pressure (PSFC), 10-meter longitudinal wind velocity (U10) and 10-meter

latitudinal wind velocity (V10). The latter two features are also combined into one

positive wind speed (WS), with W S =
√

(U 10)2 + (V 10)2 to be used later. Feature

normalization then ensures that these numerical features are scaled to a mean

of 0 and a standard deviation of 1. This step is crucial for stabilizing the training

process and enhancing the model’s convergence speed. The distributions of the

various normalized features can be seen in Figure 5.13. We here note the original

means and standard deviations of the 10-min dataset:

Table 5.2: Means and Standard Deviations (Std) of Features Before Normalization

T2 Pout [K] T2 Dakar [K] Q2 Pout [kg/kg] Q2 Dakar [kg/kg]

Mean 300.6 300.5 0.017 0.018
Std 2.9 1.7 0.0021 0.0016

PSFC Pout [Pa] PSFC Dakar [Pa] U10 Pout [m/s] U10 Dakar [m/s]

Mean 100724 100734 2.0 2.1
Std 165 162 2.2 2.0

V10 Pout [m/s] V10 Dakar [m/s] WS Pout [m/s] WS Dakar [m/s]

Mean -0.5 -0.7 3.5 3.6
Std 2.5 2.4 1.6 1.2

Data Windowing. We create input-output pairs, or windows, from the time

series data, configured with the parameters input width, label width, and shift as

visualized in Figure 5.14. We define these parameters so that we have an input

window x of two hours (input width = 12 time steps) and label window y of one hour

(label width = 6 time steps), which serves as the ’truth’ for the prediction window ŷ

of the same length. This complies with training the model to predict the advent
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Figure 5.13: Variable distributions. Normalized variables from simulated station time
series. These variables are then used as input features for the LSTM, to
predict T2 Dakar.

and evolution of CPs in Dakar, given a two hour input of recent measurements.

We insert a lag between input and the first prediction step (shift = 2 time steps), to

demand a 30-minute predictive capability.

Figure 5.14: Data Windowing. Parameters for windowing as defined in this study: input
width = 12 time steps, shift = 2 time steps and label width = 6 time steps.
Note that one time step is ∆t = 10 minutes.
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The inputs used to train and evaluate the LSTM are the five features for each

station (T2, Q2, PSFC, U10, V10), for a total of 10 features. The label is the 2-meter

temperature in Dakar (T2 Dakar), as visualized in the schematic 5.15.

Figure 5.15: Data Structure. Schematic of input and output data for LSTM model.

To make sure that the dataset contains enough cases of CPs, we run the CP detection

algorithm as before, on the native 1-min simulated time series of Pout and Dakar.

We divide the dataset windows into three subsets, as schematized in Figure 5.16.

The first subset comprises cold pools (CPs) that are detected first in Pout and then

in Dakar (we call these "Propagating CPs"). The second subset consists of CPs

detected in Pout but not in Dakar ("Not-Propagating CPs"). Lastly, the third subset

comprises randomly sampled data points excluding the previous subsets ("Not

CPs"). Since we only have 12 CP cases of propagating CPs, we randomly sample

the windows related to these CPs, selecting different starting points between 10

steps before and after the temperature drop, to increase the size of the subset. We

do the same for the not-propagating CPs. We randomly select an equal number of

windows for each category, to ensure that each subset is of equal size.

Data Partitioning. We partition the collection of windows containing equal

representation of the three CP categories, into distinct subsets, for training (70%),

validation (20%), and testing (10%) purposes. The partitioning of windows consists

of 980 windows, 280 windows, and 141 windows respectively. This partitioning is

essential to assess the model’s performance accurately and avoid overfitting, and

ensures that the model learns from a diverse range of data while providing robust

performance evaluations.

Model Compilation. With the data prepared and split, we can build and compile

the model. Leveraging TensorFlow’s Functional API, the architecture of the model
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Figure 5.16: CP classification. Simplified schematic of classification between "Propagat-
ing CPs", "Not-Propagating CPs" and "Not CPs".

is defined. We here use two different LSTM architectures: "one shot" and "auto-

regressive".

The one shot LSTM consists of an input layer, an LSTM cell layer with 100 hidden

units for capturing temporal dependencies, and a dense layer which transforms

the features learned by the LSTM layer into predictions for the target variable. It

processes the input sequence and generates predictions for multiple future time

steps by outputting a single vector representing the final prediction for the entire

sequence. A schematic of the one-shot LSTM is seen in Fig. 5.17 a.

The auto-regressive LSTM similarly consists of an input layer, an LSTM cell layer

with 100 hidden units and a dense layer for generating predictions, with the addi-

tion of a warmup method which initializes the model by processing the input data

through the LSTM layer and generating an initial prediction, and a call method

which extends the prediction over multiple time steps by iteratively feeding the

previous prediction back into the model. Each iteration involves passing the pre-

diction through the LSTM cell and generating an output prediction using the dense

layer. Finally, the predictions are stacked and transposed to match the desired

output shape, and the model returns the predicted values for each time step into

the future. A schematic of the auto-regressive LSTM is seen in Fig. 5.17 b.

Irrespective of the selected architecture, we compile the LSTM models with a mean

squared error loss function, Adam optimizer, and mean absolute error metric.
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Figure 5.17: LSTM structure. Simplified schematic of (a) one shot, and (b) auto-
regressive LSTM models, with input inputs and labels as defined in Figure
5.14.

The optimizer handles parameter updates during training, while the loss function

computes the disparity between model predictions and true labels. We train the

model in batches, with a batch size of 64. We fit the model to the training data after

the appropriate number of epochs with validation data used for monitoring. We

prevent overfitting by monitoring the validation loss and stopping training if the

loss does not improve after a certain number of epochs, and halting the training

when this has stopped decreasing for 15 consecutive epochs, indicating a potential

convergence of the model. The model is thus trained on the training data using

the fit method, iteratively adjusting its parameters to minimize the defined loss

function. The model’s performance is evaluated on the validation set, providing

insights into its generalization ability and effectiveness in making predictions.

We finally test its ability in making predictions with the test set, and check the

capabilities of the model of accurately predicting windows from all three sets,

"Propagating CPs", "Not-Propagating CPs" and "Not CPs" in Dakar. For prediction

accuracy, we calculate the Mean Average Error (MAE), which measures the average

absolute difference between the predicted and actual values.

Calculating importance of variables. To understand the learning process of the

LSTM we calculate the "Relative Score" of each input feature after training, by

applying the L1 normalization technique to the weights of the LSTM model. This

process involves summing the absolute values of the weights associated with each

input variable across all time steps. Subsequently, the weights for each variable are

divided by the sum of these absolute values, resulting in normalized weights that

reflect the relative importance of each input feature within the model. The resulting

Relative Score represents the magnitude of influence that each feature exerts on
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the model’s predictions, relative to other variables, without being constrained

by specific units. A negative importance score in this context indicates that the

corresponding feature has a negative impact on the prediction, i.e. an increase in

the value of that feature is associated with a decrease in the predicted outcome.

LSTM evaluation

One shot LSTM vs auto-regressive LSTM. We first compare the one shot and the

auto-regressive LSTM in terms of training. Both are able to improve with enough

training epochs, reaching a training loss of 0.01 (Figure 5.18), and a validation loss

of 0.03 after respectively 80 and 100 epochs. The Relative Importance Scores of the

input variables are similar for both architectures: the 2-meter temperature (T2)

in Dakar is highly influential on the predictions, along with the surface pressure

(PSFC) in Pout, which gains even higher importance for the auto-regressive LSTM.

The 10-meter longitudinal wind (U10) in Pout also wins in importance in both

models, with anti-correlated influence that we might expect in the advent of CPs

(increase in U10 in Pout indicates decrease in T2 in Dakar). The auto-regressive

LSTM tends to use more information from all the features than the One-shot LSTM,

which bases its predictions fully on the temperature in Dakar, the surface pres-

sure in Pout, and the longitudinal winds of both locations. Strikingly, the 2-meter

temperature in Pout (T2 Pout) has very little influence on the predictions, in both

models. One could rather expect that the temperature drop in Pout, the character-

istic property of cold pools, would have a large impact on the predictability of CPs

in Dakar, but here other features seem to surpass in importance.

We evaluate our two LSTMs on the task they were designed to do: predicting CPs

in Dakar. We want to check that the LSTMs have skill in predicting "Propagating

CPs" measured first in Pout and then Dakar, but we also want to make sure that

"Not-Propagating CPs" measured in Pout are not erroneously predicted as CPs

in Dakar, and that the normal time windows without CPs are also predicted well.

To do this, we calculate the Mean Average Error (MAE) between the predictions

and the labels related to the three categories, in the test set (Figure 5.19). We

compare the MAE of the one shot LSTM against the auto-regressive when asked

to predict "Propagating CPs", "Not-Propagating CPs" and "Not CPs", and find

that the one shot LSTM is best at predicting the temperature of "Not-Propagating

CPs" in Dakar with an MAE of 0.1. The worst predictions being the ones by the
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Figure 5.18: Training the LSTMs. Training and validation loss during training of a) one
shot and b) auto-regressive LSTMs. Bottom row show Relative Importance
Score for each Input Variable.

one shot LSTM on the temperature in Dakar of the "Propagating CPs", with an

MAE of 0.25. To interpret MAE values in a physical sense, we need to consider the

normalized scale of the output labels and then convert it back to the original scale.

In the normalized scale (mean 0 and std 1), an MAE of x indicates that, on average,

the predictions deviate from the actual values by x standard deviations. Now, to

interpret this in the original scale: Given that the original label data had a mean

of approximately 300K and a standard deviation of approximately 2K (see mean

and standard deviation of "T2 Dakar" in Table 5.2), we can compute the equivalent

deviation as x ·2K . Thus, on average, the predictions deviate from the actual values

by approximately 0.1 ·2K = 0.2K in the best cases and 0.25 ·2K = 0.5K in the worst,

in the original temperature scale. The two algorithms are overall quite skilled in all

three subcategories.

Predicting CPs in the simulated data.

We confirm the predictive skill of the LSTMs by visualizing how the auto-regressive

algorithm predicts the time series relative to the three subcategories from the test

set, in Figure 5.20 (the windows for the one shot LSTM are very similar). For this

visualization, we un-normalize the inputs, labels and predictions to have relatable

units. We show the inputs that the model sees, in blue. To make interpretation
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Figure 5.19: Predictive skill of LSTMs on CPs. Skill of LSTMs in predicting "Propagating
CPs", "Not-Propagating CPs" and "Not CPs", evaluated as the Mean Average
Error (MAE) of the one shot and auto-regressive LSTMs on all samples of
each category contained in the test set.

easier, we include only two input features in the visualization: T2 Pout and T2

Dakar. (However, note that there are 8 additional input features!). We also show

the original T2m temperatures from the dataset, which the model does not see, in

thin grey lines. The labels that the model is aiming to predict are shown with green

dots and the actual predictions with red crosses. From Figure 5.20, it is clear that

the LSTM is able to capture the time series from all three categories. Notably, it

can predict the advent of a CP in Dakar (Figure 5.20 a), with a 30-minute warning.

Interestingly, it predicts the CP temperature drop, even without knowing how

much the temperature has dropped in Pout (the input is only up to time step 11

but we can see that full temperature drop occurs in time step 12, which the model

has not seen yet). Furthermore, it is able to tell apart a "Propagating CP" from a

"Not-Propagating CP" (Figure 5.20 b), where there is a clear temperature drop in

Pout, and we deliberately show the instance where that first drop is included in

the inputs. The fact that the prediction in Figure 5.20 b does not foresee a CP in

Dakar, shows that the LSTM is not merely repeating the temperature pattern it sees

in Pout, but finding patterns in all the variables that determine whether or not the

CP measured in Pout will make it to Dakar. Finally, we note that the LSTM is also

able to simply predict random snippets of temperature, that do not include CPs

(Figure 5.20 c).

124 Chapter 5 Nowcasting CPs in Dakar



Figure 5.20: Predictive skill of auto-regressive LSTM across different categories of sim-
ulated CPs. a) "Propagating CP", b) "Not-Propagating CP" and c) "Not CP"
from the test set, with inputs, labels and predictions of the auto-regressive
LSTM. Note: The time steps here are ∆t = 10 minute time intervals.

Towards predicting CPs in real weather station data.

That the LSTMs are good at predicting CPs in the simulation data, is a good step

towards applying this method to real station data in Senegal. As we wait for our

real stations to measure the upcoming rainy season to further test our LSTM, we

do a simple test on our data from the end of the rainy season of 2023.

Since the two automatic weather stations measure wind differently, we simplify the

feature space, by using wind speed (WS) instead of the latitudinal and longitudinal

winds. We retrain our model on the simulated data, with only 4 input features

per station (T2, Q2, PSFC and WS), for a total of 8 input features. The skill of both

LSTMs on simulation data remains largely unaffected. However, interestingly, the

relative importance scores of the variables change when U10 and V10 are removed

from the inputs (Figure 5.21), with WS Pout joining the important features, and

T2 Pout suddenly becoming an important feature, with a negative correlation,

taking the previous spot of U10 Pout. While before, the LSTMs had directional

information of the wind (in the form of U10 and V10), now there is no information
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about the direction, but only wind speed. The wind direction was clearly important

for both LSTMs in determining the temperature (and temperature drops) in Dakar

- possibly a signal of sea breeze and land breeze, which would be influential on the

propagation of a CP. When removing this information, the temperature in Pout

seems to be redeemed, potentially carrying similar information relative to sea

breezes, that the wind direction previously contributed.

Figure 5.21: Relative Importance Score for each Input Variable, for a) one shot LSTM and
b) auto-regressive LSTM, with 8 input features instead of 10.

We process the station data to match the structure of the data that the LSTMs need.

We then take the two LSTMs, trained on simulation data with 8 input features, and

test them on the real station data, using consecutive windows before and after the

temperature drop of a "Real Propagating CP". The prediction of the auto-regressive

LSTM shown in Figure 5.22, with three sequential instances visualized. About 30

minutes before the CP has been seen in either station (i.e., before the temperature

drop is included in the input features), the LSTM is correctly predicting the 2-m

temperature in Dakar (Figure 5.22 a). When the CP has been seen in Pout, the LSTM

predicts a temperature drop in Dakar (2K), albeit with a third of the magnitude of

the real temperature drop (6K). After the CP has been measured in both Pout and

Dakar, the predictions are closer to the labels but still too warm by about 2K. This

offset could be due to a large number of factors and a more thorough evaluation

would need more real CP cases. It is important to remember that the median

temperature drop of the simulated CPs that the LSTM has been trained on is -3.3 K,

while this measured CP has a temperature drop of 6K both in Pout and in Dakar,

so it is probably an extreme on the distribution of CPs that the LSTM has "seen

before".
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Figure 5.22: Predictive skill of auto-regressive LSTM on real CP. Windowing samples
shown are a) before the CP has been measured in either station, b) when the
CP has been measured in Pout, and b) after the CP has been measured in
Pout and Dakar. The time steps here are ∆t = 10 minutes.

5.3 Conclusions

This study represents a significant step toward the development of a nowcasting

tool for predicting the onset of cold pools (CPs) in Dakar, Senegal, leveraging data

from two automatic weather stations located approximately 50 kilometers apart,

and delivering real-time measurements at 1-minute intervals.

Measuring CPs with automatic weather stations. Through careful analysis of CPs

measured by our stations, both in Germany and Senegal, we identify a consistent

sequence of events preceding the onset of rain, indicative of CPs. This sequence

typically includes a sudden increase in windspeed, followed by a temperature drop,

a decrease in moisture, and an increase in pressure. Notably, our observations in

Senegal suggest that these events tend to occur first in the town of Pout and then

(albeit not always) propagate to Dakar, with a lag of approximately 30 minutes.

Training LSTMs to predict CPs from simulated time series. In response to the

challenge of predicting CPs in Dakar, we turn to machine learning methodologies,
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specifically leveraging the power of long-short term memory networks (LSTMs).

LSTMs, being a type of recurrent neural network capable of learning temporal

dependencies and patterns, offer a promising approach for forecasting CPs. To

compensate our lack of historical measurements to train the LSTMs on, we simu-

late an entire rainy season over Senegal using the Weather Research and Forecasting

(WRF) model at a resolution of 1km. From these simulations, we extract simulated

"weather station" time series data for both Pout and Dakar. Subsequently, we train

LSTM models on this simulated station data to predict the 2-meter temperature in

Dakar. Encouragingly, our findings indicate that these LSTM models are capable

of accurately capturing the onset of CPs in Dakar, providing a valuable 30-minute

lead time for forecasters and disaster management authorities. The visualization of

predictive outputs from our two LSTM models confirms their efficacy in capturing

complex temporal patterns within simulated convective systems. The LSTM suc-

cessfully anticipates the onset of convective phenomena in Dakar with a 30-minute

lead time, showcasing its predictive skill on simulated data. Additionally, the model

can discern between propagating and non-propagating convective events, illustrat-

ing its capacity to extract meaningful patterns from multivariate inputs. Moreover,

our analysis reveals that the LSTM can accurately predict random temperature

fluctuations, demonstrating its versatility across various scenarios.

Using LSTMs trained on simulated time series to predict CPs from real time

series. In addition to our current findings, the LSTM models trained on simulated

time series exhibit promising capabilities in predicting CPs before their occurrence

in Dakar, based solely on real measured inputs from automatic weather stations.

This provides compelling evidence for the efficacy of LSTMs trained on simulation

data for nowcasting CPs, highlighting their potential for continued development in

nowcasting applications.

In summary, our study underscores the potential of LSTM models in forecast-

ing convective phenomena, bridging the gap between simulation and real-world

applications. By leveraging insights from simulated data, we pave the way for

robust applications of LSTM models in operational forecasting, providing valuable

insights for weather monitoring and prediction.
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Perspectives. To further enhance the algorithm’s performance, several avenues

for development are worth exploring. Firstly, expanding the dataset by simulating

additional rainy seasons would augment the pool of training data, enabling the

LSTM models to learn from a broader range of convective events. Moreover, the

temporal resolution of the input and output data could be enhanced for a higher

temporal accuracy in predicting CP onset, given that we have 1-minute resolution

in both the simulations and the measurements. This would also require a larger

training dataset, considering that, to accommodate 1-hour long predictions, we

would need 60 output steps at ∆t = 1 minute. Precipitation intensity could also be

included as a feature to train on and predict. Finally, the integration of data from

additional weather stations, such as those being established as part of the DakE

network, presents an opportunity to enrich the input features and enhance the

predictive skill of the models.

Looking ahead, the imminent availability of a full rainy season’s worth of measured

data in late 2024 offers a significant opportunity for further refinement of the LSTM

models. By training, validating, and testing the models solely on measured data

from Pout, Dakar, or the entire DakE network, we can tailor the algorithms to

accurately predict real convective events, thereby advancing the capabilities of

nowcasting techniques in weather monitoring and prediction.
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6Extrapolation

6.1 The New

In this dissertation, we have explored the dynamics of mesoscale convective sys-

tems (MCSs), and convective cold pools (CPs). Three distinct studies contribute

to our understanding of these convective phenomena and the development of

predictive tools:

Understanding the Impact of MCSs on Convective Self-Aggregation.

Our simulations of tropical land-like MCSs shed light on the profound influence

of diurnal cycles in surface temperature on precipitation distribution. The pres-

ence of a diurnal cycle induces persistent moisture patterns, leading to multi-day

precipitation distributions characterized by the formation of large MCS-like deep

convective structures during afternoon hours. Notably, land-like simulations ex-

hibit a self-aggregated state, which can then persist in less favourable conditions,

highlighting the significance of the diurnal cycle in shaping convective behav-

ior. We have developed a novel cellular automaton-based conceptual model, the

"Game of Cloud", which encompasses the key processes related to MCSs, with

a focus on the role of CPs. The conceptual model is able to replicate the self-

aggregation of the atmosphere over land, and the persistence of this aggregated

state over the ocean. Linking the abstract to reality, our findings could have impli-

cations for understanding hurricane formation, which could be regarded in this

context as self-aggregation starting over tropical African land and intensifying over

the Atlantic Ocean.

Detecting and Analysing Convective CPs from Weather Station Time Series.

We have developed and validated a methodology for detecting convective CPs over

flat mid-latitude coastal land from weather station time series. Through statistical

analysis of 189 composited CPs from 10 years of data from the Netherlands, we
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have characterized CP properties over land, including strong updrafts, horizontal

wind anomalies, a dry interior without moisture rings, and 1-2h recovery times

of thermodynamic anomalies post-CP passage. Our findings furthermore lay the

groundwork for creating a simple model for CP strength based on precipitation

rate and atmospheric saturation.

Developing an AI-Based Tool for Nowcasting CPs in Senegal.

Leveraging machine learning methodologies, specifically LSTM networks trained

on simulated data, we have developed a predictive tool capable of accurately

anticipating the onset of CPs in Dakar, Senegal. The LSTM models demonstrate

the ability to capture complex temporal patterns and provide a valuable 30-minute

lead time for nowcasting. The nowcasting tool has been developed to be used with

measurements from automatic weather stations recently set up in Senegal as a

part of an emerging field campaign, DakE. Our findings underscore the potential

of LSTM models in operational forecasting, bridging the gap between simulation

and real-world applications.

In summary, our dissertation contributes to a deeper understanding of convective

systems and their dynamics, while also paving the way for improved forecasting

and nowcasting techniques. The insights gained from these studies have implica-

tions for weather monitoring and prediction in various regions around the world,

offering valuable insights for advancing the field of meteorology. Future research

endeavors may build upon these findings to further enhance our ability to forecast

convective phenomena and mitigate the impacts of extreme weather events.

132 Chapter 6 Extrapolation



6.2 The Future

A Benchmark for CP Studies.

Our study of CPs over the Netherlands (Chapter 4, i.e., Kruse et al. (2022)) marked

one of the first comprehensive statistical analyses of CPs over land, alongside the

work of Kirsch et al. (2021), thereby supplementing the already existing studies

focused on oceanic CPs. These two studies have thus established a benchmark for

comparing other observed composites of land-based CPs. For example, Mai et al.

(2023) recently used data from a 356-meter weather tower in Southern China to

analyze a CP case study, with comparisons to our CPs in the Netherlands, notably

finding a similarly dry interior at all tower levels, as opposed to the moister CPs

in Kirsch et al. (2021). Hoeller, Haerter, et al. (2024), leveraging data from ground-

based automatic weather stations located across several countries in Equatorial

Africa (Cameroon, Democratic Republic of Congo, Nigeria and Uganda) adapted

our CP detection algorithm for temporally lower-resolution data. Their analysis

has revealed more robust and drier CPs than those observed in the Netherlands,

reaffirming our finding of the absence of CP moisture rings over land. Very in-

teresting data has emerged from Kirsch et al. (2024) thanks to the dense network

of weather stations of the FESSTVAL field campaign in Germany. Their findings

have challenged the traditional density current theory that we employed in Kruse

et al. (2022). The spatially dense measurements, as opposed to point-data, have

provided a clearer picture of the observed temperature difference between the

inside and outside of a CP, and with the propagating velocity of the gust front, they

show that the precipitation-driven volume increase of a CP describes the growth

process better than its mean density excess.

Towards a Unified Parameterization Scheme for Deep Convection.

Models operating at lower resolutions, such as those utilized in climate projections

spanning extended periods or in global models serving as boundary conditions for

weather forecasts, encounter a dilemma, facing the choice of either awaiting ad-

vancements in computational technology to support high-resolution global models

operating over centuries or developing suitable parameterizations for MCSs and

CPs. Current convective parameterizations, which rely on distinguishing between

convective and synoptic scales, prove inadequate due to the spatial dimensions

of MCSs and CPs. The effective integration of MCSs and CPs into weather and

climate models, whether through cloud-resolving modeling or parameterization, is

therefore imperative. A conceptual model such as the "Game of Cloud" presented
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in Chapter 3, could be used as a parameterization for the formation of MCSs over

land, advected over the ocean, for simulations coarser than the single isolated

convective cell or CP. Since we only considered the organizational effect of CPs

in this model, thus after the onset of rain (green shading in Figure 6.1), a unified

parameterization could also include the upscale growth of thermals, that create

the first deep convective cells to begin with, which has been interestingly theorized

in our recent collaborative work, Vraciu et al. (2023).

Figure 6.1: Parameterizing the life cycle of a convective storm. Revisiting Figure 1.1: In
this dissertation, we have presented a conceptual model which describes the
stages of the life cycle of convection involving precipitation and CP forma-
tion (green shaded box). Further work could include adding the first stages
involving how thermals lead to deep convection (red box).

Encouraging the Link to Tropical Cyclogenesis.

While we have touched upon the relationship between the upscale growth of

convective cells and tropical cyclones, a comprehensive exploration of tropical

cyclogenesis was not within the scope of this thesis. The realm of tropical cyclones

constitutes a distinct field of research, yet overlaps with our investigation arise

when applying the Coriolis force to Radiative Convective Equilibrium (RCE) simu-

lations, leading to the emergence of cyclones (Carstens and Wing, 2020; Carstens

and Wing, 2022). Additionally, notable observational studies have delved into

tropical cyclones originating off the coast of West Africa, particularly in connection

to African Easterly Waves (Ocasio et al., 2020). Future studies could merge these

areas of research, potentially leveraging machine learning algorithms to discern

complex patterns within observational and simulated data. This could lead to a

deeper examination of the signatures of Mesoscale Convective Systems (MCSs) de-

veloped over African land potentially akin to convective self-aggregation, untangle

the factors propelling them towards tropical cyclogenesis over the Atlantic Ocean,

and ultimately enhance the ability to forecast their origins and landfall with a lead

time of weeks.
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Figure 6.2: The link to tropical cyclones? We have found how MCSs produced over
tropical Africa, impact the atmospheric state advected westward, which can
lead to convective self-aggregation persisting over the ocean in simulations -
indicating a possible path to developing tropical cyclones.

A Promising Tool for Nowcasting Deep Convection.

Our nowcasting tool for CPs in Dakar, presented, in Chapter 5, serves as an en-

couraging example of the significant advancements possible in convective weather

forecasting. It demonstrates how with affordable, easy-to-install automatic weather

stations, coupled with a weather simulation and a few AI techniques, it is possible

to produce accurate predictions of convective events on the short-term time scale.

This is already promising with just with two weather stations, and the ongoing

addition of more stations to the DakE network in Senegal and the expected mea-

surements of the 2024 rainy season will be an exciting test-bed for our nowcasting

tool. While I am writing this (March 2024), 10 more automatic weather stations

have been established, and inserted into an online, open-source portal maintained

by the UK Centre for Ecology and Hydrology (Figure 6.3). It is worth noting, that

while our CP nowcasting tool was developed in the context of a field campaign in

Senegal, the concept could be tailored to any location on the globe experiencing

deep convective events.

As a final note - MCSs and CPs persist as significant societal challenges worldwide,

often implicated in severe weather events including flooding and strong wind gusts.

With the Earth experiencing warming, the distribution patterns and frequency of

MCS occurrences are expected to shift, increasing the frequency of the extreme

events. It thus becomes increasingly important to fundamentally understand con-

vective storms, and to be able to predict them ahead of time - as the fundamental

review paper "100 Years of Research on Mesoscale Convective Systems" concluded
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Figure 6.3: Open-source forecasting portal by UKCEH. This portal has been designed by
the UK Centre for Ecology and Hydrology to help forecasters in Sub-Saharan
Africa to predict severe convective storms (UKCEH Nowcasting Portal, Ac-
cessed: [March 2024]). It now includes the full DakE network with 1-min
real-time updates (the station in Pout we use in chapter 5 is visualized). The
portal could be the optimal location for the incorporation of our new CP
nowcasting algorithm.

in 2018: “Forecasting MCSs both in real time and projecting their future occurrence

in a changing climate remains a grand challenge for meteorology and climate.

(Houze, 2018)" We have contributed to this grand challenge with this dissertation,

and as we extrapolate our findings, the research continues.
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I’ve looked at clouds from both sides now
From up and down and still somehow
It’s cloud illusions I recall
I really don’t know clouds at all.
– Joni Mitchell (Both Sides Now, 1967)
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Taylor, Christopher M., Danijel Belušić, Françoise Guichard, Douglas J. Parker, Théo

Vischel, Olivier Bock, Phil P. Harris, Serge Janicot, Cornelia Klein, and Gérémy

Panthou (2017). „Frequency of extreme Sahelian storms tripled since 1982 in

satellite observations“. en. In: Nature 544.76517651, pp. 475–478.

Taylor, Christopher M., Cornelia Klein, Cheikh Dione, et al. (2022). „Nowcasting

tracks of severe convective storms in West Africa from observations of land

surface state“. en. In: Environmental Research Letters 17.3, p. 034016.

Terai, C. R. and R. Wood (2013). „Aircraft observations of cold pools under marine

stratocumulus“. In: Atmospheric Chemistry and Physics 13.19, pp. 9899–9914.

Tompkins, A. M. (2001a). „Organization of tropical convection in low vertical

wind shears: The role of cold pools“. In: Journal of the Atmospheric Sciences

58, pp. 1650–1672.

148 Chapter 7 Bibliography



Tompkins, A. M. (2001b). „Organization of Tropical Convection in Low Vertical

Wind Shears: The Role of Water Vapor.“ In: Atmos. Sci. 58.6, pp. 529–545.

Tompkins, Adrian M. and George C. Craig (1998). „Radiative–convective equilib-

rium in a three-dimensional cloud-ensemble model“. en. In: Quarterly Journal

of the Royal Meteorological Society 124.550, pp. 2073–2097.

Tompkins, Adrian M. and Addisu G. Semie (2017). „Organization of tropical con-

vection in low vertical wind shears: Role of updraft entrainment“. en. In: Journal

of Advances in Modeling Earth Systems 9.2, pp. 1046–1068.

Torri, G., Z. Kuang, and Y. Tian (2015). „Mechanisms for convection triggering by

cold pools“. In: Geophysical Research Letters 42.6, pp. 1943–1950.

Tramblay, Yves, Gabriele Villarini, and Wei Zhang (2020). „Observed changes in

flood hazard in Africa“. en. In: Environmental Research Letters 15.10, 1040b5.

Tropical Globe Radar Database (Accessed: 2024-02-26). http://tropicalglobe.

com/radar_database/. Accessed: 2024-02-26.

UKCEH Nowcasting Portal (Accessed: [March 2024]). Nowcasting Portal. https:

//eip.ceh.ac.uk/hydrology/sub-saharan-africa/nowcasting/.

Vogel, R. (2014). „The influence of precipitation and cconvective organization on

the structure of the trades“. PhD thesis. Max-Planck-Institut für Meteorologie,

Hamburg.

Vraciu, Cristian V., Irene L. Kruse, and Jan O. Haerter (2023). „The Role of Passive

Cloud Volumes in the Transition From Shallow to Deep Atmospheric Convec-

tion“. In: Geophysical Research Letters 50.23, e2023GL105996.

Wakimoto, R. M. (1982). „The Life Cycle of Thunderstorm Gust Fronts as Viewed

with Doppler Radar and Rawinsonde Data.“ In: Monthly Weather Review 110,

pp. 1060–1082.

Wakimoto, R. M. (2001). „Severe Convective Storms.“ In: Meteorological Mono-

graphs. American Meteorological Society, Boston, MA. Chap. Convectively Driven

High Wind Events, pp. 255–298.

Weaver, John and Stephan Nelson (1982). „Multiscale Aspects of Thunderstorm

Gust Fronts and Their Effects on Subsequent Storm Development“. In: Monthly

Weather Review 110, pp. 707–718.

Wilson, James W. and Wendy E. Schreiber (1986). „Initiation of Convective Storms

at Radar-Observed Boundary-Layer Convergence Lines“. In: Monthly Weather

Review 114.12, pp. 2516–2536.

Wing, A. A., K. Emanuel, C. Holloway, and C. J. Muller (2017). „Convective self-

aggregation in numerical simulations: A review“. In: Surveys in Geophysics 142.694,

pp. 1–15.

149

http://tropicalglobe.com/radar_database/
http://tropicalglobe.com/radar_database/
https://eip.ceh.ac.uk/hydrology/sub-saharan-africa/nowcasting/
https://eip.ceh.ac.uk/hydrology/sub-saharan-africa/nowcasting/


Wing, A. A., C. L. Stauffer, T. Becker, K. A. Reed, M.-S. Ahn, and N. P. Arnold (2020).

„Clouds and convective self-aggregation in a multimodel ensemble of radiative-

convective equilibrium simulations“. In: Journal of Advances in Modeling Earth

Systems 12.9, e2020MS002138.

Wing, Allison A, Kerry Emanuel, Christopher E Holloway, and Caroline Muller

(2018). „Convective self-aggregation in numerical simulations: A review“. In:

Shallow clouds, water vapor, circulation, and climate sensitivity, pp. 1–25.

Wing, Allison A., Suzana J. Camargo, and Adam H. Sobel (2016). „Role of Ra-

diative–Convective Feedbacks in Spontaneous Tropical Cyclogenesis in Ideal-

ized Numerical Simulations“. EN. In: Journal of the Atmospheric Sciences 73.7,

pp. 2633–2642.

Wing, Allison A. and Timothy W. Cronin (2016). „Self-aggregation of convection

in long channel geometry“. en. In: Quarterly Journal of the Royal Meteorological

Society 142.694, pp. 1–15.

Wing, Allison A. and Kerry A. Emanuel (2014). „Physical mechanisms controlling

self-aggregation of convection in idealized numerical modeling simulations“. en.

In: Journal of Advances in Modeling Earth Systems 6.1, pp. 59–74.

Yanase, Tomoro, Seiya Nishizawa, Hiroaki Miura, Tetsuya Takemi, and Hirofumi

Tomita (2020). „New Critical Length for the Onset of Self-Aggregation of Moist

Convection“. en. In: Geophysical Research Letters 47.16, e2020GL088763.

Yang, Da (2021). „A Shallow-Water Model for Convective Self-Aggregation“. EN. In:

Journal of the Atmospheric Sciences 78.2, pp. 571–582.

Young, G.S., S. M. Perugini, and Fairall C. W. (1995). „Convective Wakes in the Equa-

torial Western Pacific during TOGA“. In: Monthly Weather Review 123, pp. 110–

123.

Zipser, E. J. (1977). „Mesoscale and Convective–Scale Downdrafts as Distinct Com-

ponents of Squall-Line Structure“. In: Monthly Weather Review 105.12, pp. 1568–

1589.

Zipser, E. J., Daniel J. Cecil, Chuntao Liu, Stephen W. Nesbitt, and David P. Yorty

(2006). „WHERE ARE THE MOST INTENSE THUNDERSTORMS ON EARTH?“ en.

In: Bulletin of the American Meteorological Society 87.8, pp. 1057–1072.

Zuidema, P., Z. Li, R. Hill, L. Bariteau, B. Rilling, C. Fairall, W. Brewer, B. Albrecht, and

J. Hare (2012). „On Trade Wind Cumulus Cold Pools“. In: Journal of Atmospheric

Sciences 69, pp. 258–280.

Zuidema, P., G. Torri, and C. Muller (2017). „A Survey of Precipitation-Induced

Atmospheric Cold Pools over Oceans and Their Interactions with the Larger-

Scale Environment.“ In: Surv Geophys 38, pp. 1283–1305.

150 Chapter 7 Bibliography


	Acknowledgements
	Abstract
	Resume
	1 Rationale
	2 The Groundwork
	2.1 Mesoscale Convective Systems (MCSs) and Cold Pools (CPs)
	2.2 Convective Self-Aggregation (CSA)
	2.3 Nowcasting and Recurrent Neural Networks (RNNs)

	3 Tipping to an Aggregated State by MCSs
	3.1 Introduction
	3.2 Methods and Results
	3.3 Conclusions
	3.4 Supplement

	4 CPs Over the Netherlands
	4.1 Introduction
	4.2 Methods
	4.3 Results
	4.4 Conclusions

	5 Nowcasting CPs in Dakar
	5.1 Introduction
	5.2 Methods and Results
	5.3 Conclusions

	6 Extrapolation
	6.1 The New
	6.2 The Future

	7 Bibliography

