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Abstract

Super Yang-Mills with a co-dimension one defect is studied, in particular, the field

theory setup that arises in the D3-probe-D5 brane construction of the Karch-Randal

idea. We look at the case where k ≥ 2 D3-branes are absorbed by the D5, giving

rise to a domain wall defect that separates the field theory into an SU(N − k) theory

and a broken SU(N) theory. The defect allows for interesting one-point functions

in the SU(2) sub-sector already at tree-level. One-point functions in this sub-sector

are computed, key results include the closed determinant formula at tree-level valid

for all k, and subsequently a concise one-loop result for k = 2. The one-loop result is

conjectured to be exact for the BMN vacuum tr ΦL
1 . A major feat is the diagonalization

of the bulk action around the fuzzy-funnel background, as it opens up for many novel

tests of the AdS/dCFT correspondence. Results for the BMN one-point functions

are compared with string theory in the double-scaling limit. Agreement is found at

tree-level and subsequently an all loop conjecture is made based on integrability.
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1 Introduction

When a problem is getting overly complicated, it is usually a good idea to look at

the simplest non-trivial example. N = 4 Super Yang-Mills (SYM) is such an example

in the space of four-dimensional non-Abelian gauge theories. It is a field theory that

enjoys superconformal symmetry in four-dimensions. It possesses conformal symmetry,

not only at the level of the action, but also at the level of quantum field theory – the

coupling constant does not scale with energy, the beta function is identically zero.

This implies that the coupling constant gYM is dimension less, and ultimately implies

that the theory lacks any notion of absolute distance or mass scale.

The theory was thought to be overly constrained by its symmetries, and thus not

of interest, however recent advances have revealed that in a certain limit this theory is

far from boring. The limit is one in which the rank N of the gauge group (for instance

SU(N)) is taken large while the coupling constant is sent to zero

N →∞, gYM → 0, while g2
YMN = fixed. (1.1)

This is the so called planar limit and leads to a new theory called planar SYM whose

interactions are governed by the ‘t Hooft coupling constant

λ = g2
YMN. (1.2)

The limit kills all non-planar Feynman graphs as they are suppressed by inverse powers

of N as discovered by ‘t Hooft [1].

This limit of SYM is very special, as it is conjectured that planar SYM is exactly

dual to free type-IIB strings floating around in an anti-de Sitter spacetime, namely

the background of AdS5×S5. This is known as the weak formulation of the archetypal

version of the AdS/CFT correspondence conjecture first by Maldacena in 1997 [2].

N = 4 SYM on R4 ↔ Type IIB string theory on AdS5 × S5. (1.3)

We will refer to the left hand side as the gauge (field) theory side, and the right hand

side as the gravity (string) theory side.

There is a lot of excitement surrounding this correspondence due to its potential

for applicability [3]. Firstly it relates a gauge theory without gravity to a candidate

theory for quantum gravity, and secondly it is a strong-weak duality. The latter entails

that when one side of the correspondence becomes difficult to tackle computationally

(due to breakdown of perturbation theory), the other side becomes more manageable.

This feature of the correspondence has been fruitful, notably in the study of condensed
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matter physics, but also in aspects of nuclear physics as well as the study of quantum

chromodynamics (QCD). In these fields the correspondence has enabled researchers to

translated hard to compute problems into more tractable string theory computations.

There is a large amount of literature on the AdS/CFT correspondence, it’s triumphs

and it’s recent history, some pedagogical accounts are [4–6]. Some of the more recent

developments involve the discovery of hidden integrable structures within the gauge

theory. It is now reckoned that a key feature of the AdS/CFT correspondence in

the planar/free limit, is its conjectured integrability. The study of integrability in

the context of the AdS/CFT correspondence is vast. A standard starting point, and

overview is the very useful review [7].

Integrability has proved to be a very fruitful tool when it comes to computing the

spectrum of the theory at various loop orders. Brilliant accounts of the development,

in terms of the construction of the dilatation operator of N = 4 SYM, as well as

integrability in the context of AdS/CFT correspondence are plentiful, here are two in

particular [8, 9].

We will be focusing our attention on the applicability of integrability in a setup that

takes a slight departure from the regular AdS/CFT correspondence. The departure is

called AdS/dCFT, where the d is short for defect. As it turns out there are reasons to

believe that certain probe branes on the gravity side, are dual to defects in the field

theory. Specifically, we consider the Karch-Randall idea [10, 11], namely that inserting

an AdS4 × S2 probe D5 brane on the gravity side, is equivalent to having a domain

wall defect of co-dimension one in the boundary field theory. This brane configuration

is special when compared to other setups, in that it keeps in tact half the original

supersymmetries.

There are two scenarios to consider in these types of setups. On the one hand, one

may consider the case where all the D3 branes are intersecting with the probe brane,

which we shall call the standard defect. On the other hand, when a number of D3

branes end on the probe the setup is much richer resulting in a domain wall defect. For

the defect case, DeWolfe, Freedman and Ooguria have extensively developed both the

gravity and the field theory side of the D3-probe-D5 system [12]. They also provided

arguments for conformality of the theory, which have later been reaffirmed in [13].

For the domain wall defect scenario, the field theory has not yet been fully developed,

however this is likely to be addressed in the near future [14].

Despite incomplete knowledge of the domain wall scenario, a lot of interesting

computations can be carried out. When some of the D3 branes end on the D5, it turns

out that the setup allows for non-trivial one-point functions of certain scalar operators
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at tree-level. Early investigations into this specific scenario were first carried out by

Nagasaki et al. In [15] they consider the potential energy between a test particle

and the domain wall on the field theory side and find agreement with string theory.

Subsequently they look at one-point functions of certain chiral primaries at tree-level

[16] and also find a match with string theory. Similar tests have been carried out for

chiral primaries in the related D3-probe-D7 setup by Kristjansen et al. [17].

Making tests of AdS/CFT or in this case, the AdS/dCFT correspondence, is no-

toriously difficult due to the fact that it is a strong-weak duality. To overcome this

difficulty it is useful to have other parameters at play. One of the first ways by

which such an extra parameter was made available was in the study of long opera-

tors, that corresponded with rapidly spinning strings on the string theory side, the

study by Berenstein, Maldacena and Nastase (BMN) [18]. When taking this angular

momentum quantum number J large, and correspondingly increasing the length of

the operators, the two sides of the correspondence start to overlap, and comparison

becomes a possibility. We shall see in detail how a similar line of reasoning is what

makes it possible to compare with string theory in the present D3-probe-D5 setup.

Such defect theories are interesting in their own right, as the presence of the defect

gives rise to interesting new observables, such as one-point functions. The standard

AdS/CFT correspondence makes it natural to conjecture that these one-point func-

tions are dual to string states. Moreover, appropriate brane constructions result in

defect theories that are relevant as descriptions of condensed matter systems, such as

a mono-layer of graphene. In particular the D3-probe-D7 setup has been studied in

depth as a means of giving a potentially useful strong coupling description via holog-

raphy (AdS/dCFT) [19]. Although the defect that we will study is not intended to

model graphene like the D3-probe-D7 setup, it will undoubtedly shed light on relevant

aspects of such defect theories as a whole, and likely illuminate the general idea of

AdS/dCFT. Indeed the D5 brane preserves half of the supersymmetries while the D7

brane breaks all of them. Among other things, this means that the D3-probe-D5 setup

potentially retains N = 2 superconformal symmetry in 3 dimensions at the quantum

level, which may constrain the theory enough to make it computationally tractable.

As we will see in the thesis, there are signs of integrability, even beyond tree-level.

The present thesis is devoted to further elucidating the domain wall defect sce-

nario. Specifically, we will dive deeper into the computation of one-point functions,

considering general non-protected operators in the SU(2) sector. Computations will be

carried out at both tree-level and loop-level, and comparisons with string theory will

be made whenever possible. Major results include the closed determinant formulas at
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tree-level for one-point functions in the full SU(2) sector, the expansion of the SYM

action around the fuzzy-funnel background and an all loop conjecture.

We will start off with some short remarks on integrability in the context of planar

SYM, followed by motivating and introducing the details of the D3-probe-D5 brane

setup. We then proceed to the one-point functions and compute their expectation

values at tree-level. We shall see that these computations boil down to computing

overlaps between matrix product states (familiar to condensed matter physics) with

Bethe states. The most important parameter to us will be k - the number of D3 branes

that end of the D5. This parameter is both a blessing and a curse, in that it both

allows for stringy comparison, but also presents the greatest computational difficulties.

Despite computational hurdles, a recursion relation will be proved which subsequently

gives a closed determinant formula valid for any k ≥ 2. The final sections of the thesis

are devoted to the loop-corrections. These computations firstly require expanding

the bulk action around the VEVs φ1, φ2, φ3, and secondly the diagonalization of the

resulting mass mixing matrix using fuzzy spherical harmonics. The loop computations

are outlined and compared with string theory followed by conclusions and an outlook.

Published papers are appended at the very end.
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2 Integrability

As a feature of a theory, integrability is very much sought after as it in principle means

that the theory is in some sense exactly solvable. To understand what this might look

like for a theory, consider the basic example of such a theory, say the Heisenberg

XXX1/2 spin-chain.

Figure 1. Periodic XXX1/2 spin chain state example, with 14 spin sites.

The number of physical degrees of freedom of the system (L number of spin-cites),

is constrained by an equivalent number of symmetries. One of these being the Hamil-

tonian of the system itself. This feature sets enough constraints on the spectrum of

the theory, so that in practice the Hamiltonian is readily diagonalized. In the present

case, by a simple plane wave type ansatz as first discovered by Bethe in 1931 [20].

Without the Bethe Ansatz it would be unfeasible to consider the spectrum of spin

chains states of chains with very many site.s, i.e L� 1.

Two dimensional systems have a tendency to be integrable since their kinematics

are simple - all scattering processes usually factor into two-body scattering processes

(a hallmark of integrability). It is far less trivial to see how planar SYM is integrable.

However, the fact that planar SYM is conjecture to be dual to type IIB free strings

hints at the origin of it’s integrability. The duality makes integrability seem more

likely since the dual strings are described by a two-dimensional worldsheet sigma model

whose integrability is not as far fetched. Indeed it has been found that classical strings

on AdS5 × S5 are integrable [21]. For a relevant review on the integrability of the

AdS5 × S5 superstring see [22].

The integrability is primarily motivated by the successes of numerous computa-

tions that have been carried out under the assumption that planar SYM is integrable.

Famous examples include the computation of the cusp anomalous dimension [23] and

that of the Konishi operator. Both of which have yielded results that smoothly inter-

polate between weak and strong coupling. However, as of yet, to the understanding

of the author, there is no strict proof. A true proof would involve showing that the

5



theory is invariant with respect to the Yangian, the associated quantum algebra of

the underlying symmetries, in the case of planar N = 4 SYM the relevant Yangian is

Y [PSU(2, 2|4)]. Recent progress in this direction of a proof has been made [24].

Although the integrability of planar N = 4 SYM may not have a strict proof as of

yet. The evidence is mounting, starting with the dilatation operator, that in itself can

be viewed as the Hamiltonian of an underlying integrable spin-chain. The integrability

of which greatly simplifies the problem of operator mixing. We will see in detail how

this works out in the SU(2) sector of single trace operator, which is the simplest case.

Amazingly the story that we will present in the SU(2) sector is only a small part of

the bigger picture, in which the complete one-loop dilatation operator is realized as

the Hamiltonian of an underlying SU(2, 2|4) super spin chain [25]. Beyond one-loop,

evidence suggests that the corrections do not spoil integrability as their integrability

breaking terms are precisely canceled by terms at the loop order beyond it. Therefore

it is believed that the complete all-loop dilatation operator should correspond to the

Hamiltonian of a long-range integrable spin chain [26].

3 The D3-probe-D5 Brane-Intersection

Figure 2. A depiction of how the D5 brane intersects with stacks of D3 branes (gray). The

D3 branes are shown separated, in reality they are coincident!

Various brane configurations naturally arise in the setting of 10-dimensional super

string theory. A well studied example is a stack of coincident D3-branes, as they

make up the ingredients of the fruitful AdS/CFT correspondence. Succinctly, the

correspondence is one between two equivalent descriptions of the brane configuration.

On the one hand the open strings ending on the D3-branes see it as a super-conformal

field theory N = 4 SYM, whilst on the other hand, the closed strings propagating near
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the D3 branes see them as a black brane, and feel the near horizon geometry which is

that of AdS5 × S5. The brane configuration that we will consider is the D3-probe-D5

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D5 × × × × × ×
D3 × × × ×

Table 1. The dimensions along which the branes are extended. An × indicates that the

dimension is occupied by the brane, whilst empty indicates that it is not.

setup, with worldvolume embedding coordinates show in table 1. Stack’s of D3-branes

are bisected by a probe D5-brane.

As shown in figure 2, we will be considering the case where k of the N D3 branes

end on the D5. We will consider a probe brane computation that supports the idea

that the D5 brane is wrapping an AdS4 × S2 submanifold of AdS5 × S5, as depicted

in figure 3. This computation will show us how the parameter k appears on the string

theory side of the correspondence.

Figure 3. Visualization of the D5 embedding in AdS5 × S5.

We follow Karch and Randall who found in investigations of locally localized gravity

[10, 11, 27] that in the near horizon limit of this kind of D3-D5 brane system one would

have an AdS4 brane living inside the AdS5 submanifold. Specifically the D5-brane

wraps the S2 given by R2 = x2
4 + x2

5 + x2
6, and is stretched along the slice x3 = 0. To

see this, we first note that the background metric of AdS5×S5 can be written in terms

of the embedding coordinates as

ds2 = R2

(
− 1

v2
dv2 + v2

(
dx2

0 − dx2
1 − dx2

2 − dx2
3

)
+ dΩ2

5

)
(3.1)
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with

v2 =
1

R4
(x2

4 + x2
5 + x2

6 + x2
7 + x2

8 + x2
9), R2 = `2

s

√
4πgsN, (3.2)

where `s is the string length scale. The string coupling gs relates to gYM as

4πgs = g2
YM (3.3)

hence

R2 = `2
s

√
λ. (3.4)

Following [11], the action relevant (in the large λ strong coupling limit where clas-

sical string theory applies) from describing the probe D5 brane consists of the Dirac-

Born-Infeld (DBI) and Wess-Zumino (WZ) terms

SD5 = −T5

∫ √
− det(G+ F) + T5

∫
F ∧ C4. (3.5)

Here F = 2π`2
sF is the D5 world volume gauge flux and G is the induced world-volume

metric. We have only background flux through S2, i.e
∫

S2

F = 2πk, F = 1
2
k volS2 . (3.6)

In addition we also have the N units of five-form flux stemming from the D3 branes

that carry charge associated with he Ramond-Ramond four-form potential

C4 = R4v4dx ∧ dy ∧ dz ∧ dt. (3.7)

One may then check an ansatz for the D5 embedding of the form

v = v(x3). (3.8)

As is readily apparent, the action SD5 factorizes, in particular

det(G+ 2π`2
sF ) = detGAdS4 × det(GS2 + 2π`2

sF ). (3.9)

The induced world-volume metric G is readily computed from the background metric

(3.1), and one finds

ds2
G = R2v2(dx2

0 − dx2
1 − dx2

2)− R2

v2

(
v4 + (∂3v)2

)
dx2

3. (3.10)

The determinants are also straight forward to compute and one finds that the world-

volume action (3.5) is equivalent to the four-dimensional action on the profile v(x3)

SD5

∣∣∣
v=v(x3)

= −4πR4 T5

∫
d4x

(
v2
√

(R4 + π2k2`4
s)(v

4 + (∂3v)2)− πk`2
s v

4
)
. (3.11)
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The resulting equation of motion for v can then be calculated from the variational

principle, and one finds that it reads

v4 + 1
2
(∂3v)2

√
v4 + (∂3v)2

− κ v2

√
1 + κ2

=
1

4 v

d

dx3

v2 ∂3v√
v4 + (∂3v)2

. (3.12)

As noted by Karch and Randall, this indeed has a particularly simple solution reading

v(x3) =
κ

x3

, κ =
πk√
λ
. (3.13)

Note that the relation between R, `s and λ (and thus also κ and k) is given in (3.4).

This analysis shows that the AdS4 part of the D5 brane embedding intersects the

stack of D3 branes at an angle κ. The interpretation is that the excess k number of D3

branes pull on the D5, bending it into the x3 direction, the angle being proportional

to the number k of extra D3 branes as well as the ratio of brane tensions

T3

T5

= 4π2`2
s. (3.14)

4 The Field Theory

On the one hand, from the open string perspective, the D3-probe-D5 intersection can

be viewed as N = 4 SYM with a co-dimension one defect. Whilst on the other hand,

the closed strings see a probe brain in an AdS5× S5 background. Specifically the field

theory setup is that of a domain wall (the defect), that separates the N = 4 SYM

theory in two half spaces figure 4. On the left (x3 < 0), we have gauge group SU(N−k)

while on the right (x3 > 0) we have (broken, or Higgsed) SU(N).

The defect is special in the sense that it preserves half of the supersymmetries

of the bulk, which turns out to be the maximum number of supersymmetries, while

simultaneously breaking translational invariance in the co-dimension. This is ensured

by the vacuum expectation values (VEVs) of the scalars satisfying the relevant Nahm’s

equations.

Setups like this one, have much in common with the introduction of supersymmetric

boundary conditions. In fact the problem of constructing supersymmetry preserving

domain walls in N = 4 SYM can be mapped to the construction of supersymmetry

preserving boundary conditions. The map involves a simple ”folding” trick, that is,

you copy paste the theory on the left over to the right, and discard the left hand side.

In the present case, the associated boundary problem is that of describing boundary

conditions of N = 4 SYM with gauge group SU(N − k)× SU(N). The trick requires

also to change the sign of the three scalars that support the domain wall. This point
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Figure 4. The co-dimension one defect is illustrated, it is located at x3 = 0 and stretches

into x0, x1, x2. It separates the field theory into two regions (x3 > 0, x3 < 0).

is made by Gaiotto and Witten in [28] where they address supersymmetric boundary

conditions in N = 4 SYM. It is thus possible to construct a myriad of domain wall

setups, similar to the one we are addressing, by simply unfolding boundary conditions

on N = 4 SYM with gauge group G1 ×G2.

The present setup is of particular interest in that it is one of the more minimal

ways of departing from the regular AdS/CFT correspondence, while possibly still

retaining a duality, an AdS/dCFT correspondence. To be clear, it has been conjectured

that this domain wall of type SU(N − k)|SU(N) is the field theory dual to the usual

AdS5×S5 setup but with the introduction of a probe D5-brane that wraps an AdS4×S2

submanifold. That is to say that the field theory should describes the decoupling limit

of the D3-probe-D5 brane-intersection. 1

We will be dealing with computations on the field theory side of the AdS/dCFT

correspondence. On the field theory side of this setup we have usual N = 4 SYM in

the bulk, coupled to a 3D boundary CFT

S = SN=4 + SD=3. (4.1)

The SD=3 part is not well understood for k > 0. However, the terms in the action

proportional to the boundary theory will not play a role for us. We will at most be

computing up to one-loop level for which the SD=3 doesn’t contribute. We will be

focusing entirely on the SN=4 bulk action from now on.

1As pointed out in [29] the setup can be viewed as having holography acting twice!
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The standard N = 4 SYM action takes the form

SN=4 =
2

g2
YM

∫
d4x tr

[
− 1

4
FµνF

µν − 1

2
DµφiD

µφi +
i

2
Ψ̄ΓµDµΨ

+
1

2
Ψ̄Γ̃i[φi,Ψ] +

1

4
[φi, φj][φi, φj]

]
.

(4.2)

Here Greek indices run over the four space-time dimensions {0, 1, 2, 3} whilst Latin

indices take on the range {1, 2, 3, 4, 5, 6} and are understood to implicitly correspond

to the space-time dimensions {4, 5, 6, 7, 8, 9} from the ten-dimensional perspective.

The spinors Ψ are ten-dimensional Majorana-Weyl spinors, and the gamma matri-

ces {Γµ, Γ̃i} satisfy the ten-dimensional Clifford algebra. The components of the field

strength are what remain after the reduction of the ten-dimensional ancestors, and the

rest have been demoted to scalar fields. The field strength and covariant derivative

are given by

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ],
Dµφi = ∂µφi − i[Aµ, φi],
DµΨ = ∂µΨ− i[Aµ,Ψ].

(4.3)

The action enjoys the following supersymmetry

δAµ = iε̄ΓµΨ,

δφi = iε̄ Γ̃iΨ,

δΨ = 1
2
FµνΓ

µνε+DµφiΓ
[µΓ̃i]ε− i

2
[φi, φj]Γ̃

ijε,

(4.4)

which is simply the manifestation of

δAI = iε̄ΓIΨ

δΨ =
1

2
ΓIJFIJε,

(4.5)

in four-dimensions. More details on conventions for gamma matrices, and ten-dimensional

Majorana-Weyl fermions can be found in appendix B.

The setup involves a co-dimensions one defect located at x3 = 0 whose boundary

conditions are such that we retain maximal supersymmetry. Since the commutator

of two supersymmetries is a translation generator, it is impossible to preserve all

the supersymmetry and at the same time break translation by introducing such a

defect. At most one can hope for preserving half the supersymmetries. It will turn

out that one of the minimal ways to break the full SUSY is to give three of the scalars

Xi = (φ1, φ2, φ3) VEVs that depend on the x3 coordinate, while the rest of the fields

are simply given zero VEVs, in particular Yi = (φ4, φ5, φ6) = ~0. This will break the
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full N = 4 SUSY which is PSU(4|4) to the unbroken subgroup OSp(4|4). The bosonic

part of the remaining OSp(4|4) SUSY is SO(3)X × SO(3)Y × SO(2, 3). Where SO(3)X

(SO(3)Y ) are the preserved R-symmetry of the symmetry breaking fields Xi (Yi), and

SO(2, 3) is the group of conformal transformations that preserves the plane x3 = 0

(the defect) [28]. The equations of motion subject to this type of ansatz reduce to

∂2
3Xi = [Xj, [Xj, Xi]]. (4.6)

Furthermore (4.4) implies the fermion condition

δΨ = 0 ⇒ ∂3XiΓ
[3Γ̃i]ε− i

2
[Xi, Xj]Γ̃

ijε = 0. (4.7)

It turns out that the only non-trivial way to preserve maximal supersymmetry

is to impose Dirichlet boundary conditions on either Xi or Yi [28]. Clearly we are

considering imposing Dirichlet conditions on Yi, and there is a particular scenario for

which the VEVs Xi are compatible with half of the original supersymmetry, namely

when they satisfy Nahm’s equations:

∂3φi = − i
2
εijk[φj, φk]. (4.8)

It is relatively straight forward to see that the fermion condition then reduces to the

following constraint [15] on the remaining supersymmetries

(1− Γ[3Γ̃123])ε = 0, (4.9)

hence showing that indeed satisfying (4.8) is sufficient for maximal SUSY.

We will consider a particular solution to Nahm’s equations (4.8) that also satisfies

(4.6), namely

φcl
i = − 1

x3

ti ⊕ 0(N−k)×(N−k), (x3 > 0). (4.10)

Here ti are SU(2) generators of dimension k × k satisfying the algebra

[ti, tj] = iεijktk, i, j, k = 1, 2, 3. (4.11)

These particular VEVs correspond to a discontinuity in the number of D3’s on either

side of the D5, in the brane setup. Specifically k counts the number of D3’s ending on

the D5, in other words, the world-volume flux is k.

This particular type of co-dimension one defect effectively splits the theory into

two domains, hence it is often referred to as a domain wall. On the left (x3 < 0) we

have reduced gauge group SU(N − k), whilst on the right (x3 > 0) we have Higgsed

SU(N) gauge theory. We will be concerned with the region x3 > 0, and discuss the

effects of the Higgsing from the Xi VEVs in greater detail in subsequent sections. It

will turn out to yield mass mixing matrices that mix color and flavor, and furthermore

give rise to position dependent masses.
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5 One-point Functions in the SU(2) Sector

Before computing one-point functions, some general remarks on operators and scaling

dimensions are useful to be reminded of.

In a conformal field theory, there is no mass or length scale, instead of a mass

spectrum, one speaks of a spectrum of scaling dimensions. The scaling dimension of

an operator simply encodes how the operator transforms in response to a scaling of

the coordinates:

O(λx) = λ−∆O(x). (5.1)

In a free field theory, ∆ is just a number and is equal to the engineering dimension of

O. For interacting conformal field theories, it is a function of the coupling constant,

that is, the engineering dimension gets quantum corrections

∆(g) = ∆0 + γ(g), γ(0) ≡ 0, (5.2)

where γ(g) is the so called anomalous dimension.

There are several ways to compute scaling dimensions in a conformal field theory.

Computing two-point functions of a specific operator will give it’s scaling dimension,

due to the relation

〈O(x)O(y)〉 =
C(g)

|x− y|2∆(g)
, (5.3)

where C(g) is an unphysical normalization constant stemming from renormalization of

the fields. Similarly one can gain information from computing higher n-point functions.

Another approach, is to consider the generator of dilatations D, which encodes the

action of dilatations on the fields themselves, such that operators with well defined

scaling dimension are eigenstates

DO∆ = ∆O∆. (5.4)

For N = 4 planar SYM the dilatation operator approach to computing the spec-

trum of the theory has proven particularly fruitful. Thanks to the rich symmetries

of the theory, the full one-loop dilatation operator has been successfully constructed

without the need to compute involved higher-loop field theory computations [30]. The

dilatation operator approach was in particular sought after in the context of the BMN

correspondence, as this correspondence deals with operators consisting of a large num-

ber of fields. The construction of a dilatation operator, transforms the problem of

solving the spectrum into a purely algebraic one, rendering previously cumbersome

field theory computations into comparatively straight forward combinatorial problems
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[31]. This approach will be utilized in the following, when we compute one-point

functions of operators of well defined anomalous dimension.

Much like two-point functions, one-point functions are constrained as well, thanks

to conformal invariance. However, this constraint is usually too strong for one-point

functions to be of interest. In our case though, thanks to the co-dimension one defect,

the symmetry constraints are reduced and one-point functions may now depend on

the distance to the defect

〈O∆(x)〉 =
C(g)

x
∆(g)
3

. (5.5)

Although we have introduced a defect, we expect two-point functions far from the

defect, that is, |x− y| � x3 to coincide with those of regular SYM. It stands to reason

that operators of well defined anomalous scaling dimensions in vanilla N = 4 are good

candidate building blocks for studying the corresponding dCFT. Therefore we will

be able to make heavy used of the discoveries already made regarding the dilatation

operator.

We will consider single trace operators of the SU(2) sub-sector, that is

OL = Oi1i2···iL tr[Φi1Φi2 · · ·ΦiL ], Oi1i2···iL ∈ C (5.6)

where

Φ1 = φ1 + iφ4, Φ2 = φ2 + iφ5. (5.7)

This is the simplest non-trivial sector of SYM to consider, as it is closed, meaning that

these operators do not mix with other operators, and that this is valid to any order

in perturbation theory. This is directly related to the fact that the full dilatation

operator should commute with Lorentz generators and the R-symmetry generators

implying that the dilatation operator can only mix operators of equal Lorentz or R

charges. One can check that it is impossible to reproduce the R charges within the

SU(2) sector from other operator constructions outside this sector [32].

We will use a normalization consistent with [16], this normalization is chosen such

that two-point functions far from the defect are normalized to unity

〈OL(x)OL(y)〉 =
1

|x− y|2L . (5.8)

Since the two point function of fundamental scalar fields is given by

〈φi(x)φj(y)〉 =
g2

YM

8π2

δij
|x− y|2 , (5.9)
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it follows via standard computations like the one shown in [32], that we should nor-

malize our operators (5.6) as follows

OL =
1√
L

(
8π2

λ

)L/2
Ψi1i2···iL tr[Φi1Φi2 · · ·ΦiL ], λ = g2

YMN. (5.10)

In this way the dependence on gYM and N has been made explicit, that is to say,

Ψi1i2···iL are coefficients completely independent of N and gYM.

We will be dealing with the quantum field theory perturbatively, that is, anything

depending on the coupling constant will be a polynomial in

g2 =
λ

16π2
. (5.11)

In particular we use the following notation for the loop expansion of the dilatation

operator and correspondingly the scaling dimension

D =
∞∑

n=0

Dng
2n, ∆ =

∞∑

n=0

∆ng
2n. (5.12)

A given loop order corresponds to a given order in g2, such is the nomenclature, and

it’s origin lies in the Feynman diagrams.

As first realized by Minahan and Zarembo, in [33], finding operators of well defined

anomalous dimension at one-loop (O(g2)), is mapped to the familiar problem of diag-

onalizing the hamiltonian of a spin-chain. If we think of Φ1 as representing ↑ and Φ2

as representing ↓, it becomes natural to interpret OL as states of a periodic spin chain

of length L. Remarkably, it turns out that the one-loop dilatation operator is pre-

cisely the Hamiltonian of the simplest spin chain we know of, namely the Heisenberg

XXX1/2 spin-chain.

D1 = 2
L∑

j=1

Hj,j+1, Hj,j+1 = Ij,j+1 − Pj,j+1 (5.13)

This spin-chain was first solved by a plane-wave ansatz made by Hans Bethe in 1931

[20]. We will refer to his approach as the coordinate formulation of the Bethe Ansatz,

to distinguish it from the more modern algebraic approach pioneered by Faddeev [34].

We shall take a closer look at the algebraic approach later.

The upshot is that operators of well defined anomalous dimension have their co-

efficients Ψi1i2···iL given by the position basis wave function coefficients of the energy

eigenstates of the spin-chain. The operators are thus labeled by their total length L,

number of magnons (excitations) M and as will become clear, their momenta (rapidi-

ties).
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Let us start by introducing basis operators

OL|n1,n2,...,nM 〉 (5.14)

that is, e.g

O8|1,3,4,8〉 = tr[Φ2Φ1Φ2Φ2Φ1Φ1Φ1Φ2] 7→ |↓↑↓↓↑↑↑↓〉. (5.15)

Following in Bethe’s footsteps, an operator of well defined anomalous dimension would

then be a linear combination

OL({pj}) =
1√
L

(
8π2

λ

)L/2 ∑

1≤n1<n2<···<nM≤L

Ψ({pj}, {nj})OL|n1,n2,...,nM 〉, (5.16)

the coefficients are those of a plane wave ansatz with scattering phases

Ψ({pi}, {ni}) = Nθ

∑

σ∈SM

exp

[
i
M∑

j

pσ(j)nj +
i

2

M∑

j<k

θσ(j)σ(k)

]
. (5.17)

Here SM denote the set of permutations of M objects, and θjk are a useful parameter-

ization of the scattering matrix

Sjk ≡ exp[θjk − θkj] = −1 + eipj+ipk − 2eipj

1 + eipj+ipk − 2eipk
. (5.18)

However, we shall choose the normalization Nθ such that the σ = 1 term has a

scattering factor equal to one, i.e

Nθ = exp

[
− i

2

M∑

j<k

θjk

]
. (5.19)

This makes the Bethe wave-function (5.17) explicitly dependent on the scattering

matrix elements Sjk instead of the phases θjk, for instance

|p1, p2〉 =
∑

1≤n1<n2≤L

(
eip1n1+ip2n2 + S21e

ip2n1+ip1n2

)
|n1, n2〉. (5.20)

Subject to periodic boundary conditions, this ansatz only yields proper eigenstates

when the momenta satisfy the Bethe Ansatz Equations.

eipjL =
M∏

k 6=j

Sjk. (5.21)

Which is often viewed as taking a single magnon and transporting it once around the

chain, which should be equivalent to scattering it with all of the other magnons.
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We will often parametrize the momenta {pj} in terms of so called rapidities {uj}

pj =
1

i
ln
uj + i

2

uj − i
2

, (5.22)

in terms of which (5.21) takes the form

(
uj + i

2

uj − i
2

)L
=

M∏

k 6=j

uj − uk + i

uj − uk − i
. (5.23)

This parameterization is the more natural one, and yields more compact expressions.

It should be stressed that what has been discussed up to this point is nothing but the

usual coordinate Bethe Ansatz in the context of operators in the SU(2) sector of SYM.

One-point functions of general unprotected operators of the SU(2) sector acquire

non-trivial expectation values already at the classical level, thanks to the VEVs of

φ1, φ2, φ3, in particular

〈Φ1〉(tree) = 〈φ1〉(tree) = − 1

x3

t1 ⊕ 0(N−k)×(N−k),

〈Φ2〉(tree) = 〈φ2〉(tree) = − 1

x3

t2 ⊕ 0(N−k)×(N−k).
(5.24)

Investigation such one-point functions is a natural starting point for investigating the

present dCFT setup. At tree-level, expectation values of SU(2) basis states, like the

example

O8|1,3,4,8 = tr[φ2φ1φ2φ2φ1φ1φ1φ2], (5.25)

simply equate to

〈O8|1,3,4,8〉(tree) =
1

x8
3

tr[t2t1t2t2t1t1t1t2]. (5.26)
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6 Tree-level One-point Functions

Figure 5. Feynman diagram at tree-level. The operator’s location in space-time is rep-

resented by a dot whilst the cross’ depict the insertions of classical fields. In this case

the diagram is equivalent to the tree-level one-point function of an operator consisting of 8

fundamental fields.

From the discussion so far it is apparent that the tree-level computation of one-

point functions of SU(2) operators of well defined anomalous dimension, boils down to

computing linear combinations of traces whose coefficients are the Bethe coefficients

(5.17)

〈OL〉tree = Oi1i2···iL tr[φcl
i1
φcl
i2
· · ·φcl

iL
]. (6.1)

It can be useful to visualize these expectations values at this order in perturbation

as done in figure 5. All the fundamental fields are evaluated at the same location in

space-time, the location of the dot. The lines that connect a cross to the dot are not

propagators. Instead they reflect the fact that each field is inserted into the trace and

evaluated at the same location (the dot). This visual representation will be used later

on in the section on one-loop corrections.

A concise way to represent this computation is as an overlap between a Bethe state

and a matrix product state (MPS). To this end, let us first introduce notation for

Bethe states, namely, we denote a position state of given length as

|n1, n2, . . . , nM〉L, e.g |1, 3, 4, 8〉8 = |↓↑↓↓↑↑↑↓〉. (6.2)

A Bethe eigenstate of the XXX1/2 spin chain is then denoted

|{pi}〉L =
∑

{ni}

Ψ({pi}, {ni})|n1, n2, . . . , nM〉L, (6.3)

which is precisely (5.16), just with a slightly more convenient notation. Now we can

express the tree-level computation of the one-point functions as

〈OL({pi})〉(tree) =
1

xL3

1√
L

(
8π2

λ

)L/2 〈MPS|{pi}〉L
〈{pi}|{pi}〉

1
2
L

(6.4)
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where

|MPS〉L = tr
L∏

`=1

(t1 ⊗ |↑`〉+ t2 ⊗ |↓`〉), (6.5)

for instance

〈MPS|0〉4 = tr[t1t1t1t1]. (6.6)

From now on we will focus our attention to

〈MPSk|{uj}〉
〈{uj}|{uj}〉

1
2

, (6.7)

where the subscript k indicates the important k dependence of the MPS while the sub-

script L has been dropped for the sake of brevity. The k dependence of the generators

t1, t2, t3 will only be indicated when necessary, by a superscript t
(k)
i . To the author’s

knowledge, computing an overlap between this particular matrix product state and

Bethe states was first done in [35]. On the other hand, the norm’s 〈{uj}|{uj}〉 are well

known from the literature. Our Bethe states are normalized such that the norm takes

the form

〈{uj}|{uj}〉 =
M∏

j=1

(
u2
j + 1

4

)
det
M×M

∂mfn, ∂m =
∂

∂um
(6.8)

where

fm = −i log

[(
um − i

2

um + i
2

)L M∏

m 6=n

um − un + i

um − un − i

]
. (6.9)

This was first conjectured by Gaudin [36] and later rigorously proved by Koripin [37].

Notice that fm is simply the logarithm of the BAE equations (5.23).

Since it is not clear how to construct the matrix product state in the algebraic

framework, we will stick to the coordinate framework for now. Our focus will be on

computing

〈MPS|{pj}〉 =
∑

1≤n1<n2<···<nM≤L

Ψ({pj}, {nj}) tr[tn1−1
3 t1t

n2−n1−1
3 t1 · · · t1tL−nM3 ], (6.10)

where we have taken the liberty to swap around the generators as this is a symmetry

of the algebra. Working with t3 and t1 is easier.

We will later return to the algebraic framework, in which the Bethe states are

constructed from creation operators

|{uj}〉ABA = B(u1)B(u2) · · · B(uM)|0〉. (6.11)

These operators stem from the transfer matrix,

T (λ) =

(
A(λ) B(λ)

C(λ) D(λ)

)
. (6.12)
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For more details see appendix A. For now we turn our attention to the coordinate

framework. The connection between the algebraic formalism and the coordinate for-

malism with our chosen normalization Nθ is [35]

|{uj}〉ABA =
M∏

j

(
uj − i

2

)L
(

i

uj + i
2

) M∏

m<n

(
1 +

i

um − un

)
|{pj}〉. (6.13)

6.1 Properties of the MPS

There are several interesting properties of the MPS (6.5) and it’s overlap with a generic

Bethe state (6.10). Keep in mind the fact that for a given L the MPS contains terms

of the form

tr[tj1tj2 · · · tjL ]|sj1sj2 · · · sjL〉, sj ∈ {↑, ↓}, (6.14)

where the number of excitations M associated with a given term is allowed to be

anything from 0 up to L. It can then be worked out that

1. The overlaps 〈MPS|{pj}〉 = 0 when P =
∑M

j pj 6= 2πZ

2. The coefficients tr[tj1tj2 · · · tjL ] 6= 0 only when both M and L are even.

3. The third charge kills it : Q3|MPS〉 = 0

4. The MPS has positive parity : P|MPS〉 = |MPS〉

The first follows straight forwardly from trace-cyclicity and inserting the shift operator

into the overlap

〈MPS|U |{pj}〉, U = eiP . (6.15)

The result should be the same regardless of whether U acts to the left or the right,

hence

P =
M∑

j=1

pj = 2πn, n ∈ Z. (6.16)

The second property follows from the existence of two similarity transformations that

act as trivial automorphisms on the k×k generators ti [35]. The third property is a bit

involved to arrive at, a proof can be found in [35]. The final property is a statement

in terms of a so called parity operation

P|s1s2 · · · sL〉 = |sLsL−1 · · · s1〉, sj ∈ {↑, ↓}. (6.17)
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It implies that we only get contributions to the overlap from Bethe states satisfying

P|{uj}〉 = |{uj}〉. (6.18)

The reason this holds has to do with the fact that a similar operation can be defined

on the traces in the MPS. Together these properties imply that we only get non-trivial

overlaps when the Bethe states are so called un-paired states, that is, when they are

labeled by rapidities that come in pairs with opposing sign

|{uj}〉, {uj} = {u1, . . . , uM
2
,−u1, . . . ,−uM

2
}. (6.19)

Un-paired Bethe states are annihilated by all of the odd charges Q2n+1.

6.2 Un-paired Bethe Norms

When restricting to un-paired states, the determinant in (6.8) nicely factors into a

product of two determinants

〈{uj}|{uj}〉 =

M/2∏

j=1

(
u2
j + 1

4

)2
detG+ detG−. (6.20)

This follows from the fact that

∂mfn =

(
G1 G2

G2 G1

)
, (6.21)

where G1 and G2 are M
2
× M

2
matrices. In this way the determinant is simply

det ∂mfn = detG+ detG−, where G± = G1 ±G2. (6.22)

The G matrices have components given by

G±jk =


 L

u2
j + 1

4

−
M/2∑

n=1

K+
jn


 δjk +K±jk (6.23)

where

K±jk =
2

1 + (uj − uk)2
± 2

1 + (uj + uk)2
. (6.24)

6.3 Constructing a k × k Representation of SU(2)

It turns out that SU(2) generators t1, t2, t3, in particular k × k matrices satisfying

[ti, tj] = iεijktk (6.25)
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can be written as sums of matrix unities. Matrix unities Ei
j of dimension k × k have

only one non-trivial component, namely a value of 1 at location (i, j), i.e, the 2 × 2

matrix unity

(E1
1)2×2 =

(
1 0

0 0

)
. (6.26)

Matrix unities have the useful property that

Ei
jE

k
` = δkjE

i
`. (6.27)

The construction of the generators is as follows

t+ =
k−1∑

j=1

ck,jE
j
j+1, t− =

k−1∑

j=1

ck,jE
j+1

j, t3 =
k∑

j=1

dk,jE
j
j,

t1 =
t+ + t−

2
, t2 =

t+ − t−
2i

(6.28)

where

ck,j =
√
j(k − j), dk,j = 1

2
(k − 2j + 1). (6.29)

From (6.27) it is not difficult to show that the above constructed matrices indeed

satisfy te SU(2) algebra for any value of k ≥ 2.

The following matrices provide a trivial automorphism on the algebra

U = U−1 =
k∑

i=1

Ei
k−i+1, V = V −1 =

k∑

i=1

(−1)iEi
i, (6.30)

Ut1U
−1 = t1, Ut2,3U

−1 = −t2,3, V t3V
−1 = t3, V t1,2V

−1 = −t1,2. (6.31)

6.4 A Determinant Formula for Tree-level

We will start out by considering the simpler cases. In particular it is straight forward

to compute the overlap for the vacuum M = 0. We will also refer to this as the

BMN vacuum and denote it sometimes in the standard notation tr ΦL
1 , where recall

Φ1 = φ1 + i φ4. At the classical level clearly tr ΦL
1 = tr[(φcl

1 )L]. The related MPS

overlap is readily computed using (6.28) and one finds

〈MPSk|0〉 = tr[tL3 ]

=
k∑

j=1

dLk,j

= ζ−L(1−k
2

)− ζ−L(1+k
2

),

(6.32)
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where ζn are the generalized Riemann-Zeta function. This result is valid for any value

of k ≥ 2, which allowed for an early check with string theory [38]. We will discuss

comparisons with string theory further in later sections.

Recall from (6.10), that the general expression we want to compute is

〈MPS|{pj}〉 =
∑

1≤n1<n2<···<nM≤L

Ψ({pj}, {nj}) tr[tn1−1
3 t1t

n2−n1−1
3 t1 · · · t1tL−nM3 ], (6.33)

where Ψ was given in (5.17). We start by getting a better handle on the traces, using

cyclicity we can write them in the more suggestive form

tr[tn1−1
3 t1t

n2−n1−1
3 t1 · · · t1tL−nM3 ] = tr[tL−nM1

3 t1t
n21−1
3 t1t

n32−1
3 · · · tnM(M−1)−1

3 t1]

= tr
M∏

j=1

[
t
n(j+1)j−1

3 t1

]
,

(6.34)

were the last line is concise at the expense of needing to define

nij = ni − nj, nM+1 = n1 + L. (6.35)

What we see is that the separation between the magnons is the important variable,

not their absolute positions.

A lot of what follows is all about studying (6.34) for different values of k. At least

there is no shortcut found thus far in the computation of these traces for arbitrary k

and M . However for M = 2 one can make use of the representation (6.28) as done in

[35] to find

〈MPSk|u1,−u1〉 = L

(
u1 − i

2

u1

) k−1
2∑

j=− k−1
2

jL
u2

1(u2
1 + k2

4
)(

u2
1 + (j − 1

2
)2
)(
u2

1 + (j + 1
2
)2
) . (6.36)

The computation leading to the above result follows the same style as the ones in the

following sections.

6.5 MPS Overlap for k = 2

For k = 2 we are in luck, since the 2 × 2 representation is just spin-1
2
, so they are

simply Pauli matrices

t
(2)
1 =

1

2

(
0 1

1 0

)
, t

(2)
2 =

1

2

(
0 −i
i 0

)
, t

(2)
3 =

1

2

(
1 0

0 −1

)
. (6.37)

They are nice as they satisfy

titi =
1

4

(
1 0

0 1

)
, {ti, tj} = 0, i 6= j. (6.38)
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In particular this allows us to massage (6.34) to get

tr
M∏

j=1

[
t
n(j+1)j−1

3 t1

]
= (−1)n1+n2+···+nM+M/2 tr[tL−M3 tM1 ]

= 2× 2−L(−1)n1+n2+···+nM+M/2.

(6.39)

This was used in [35] to reduce the inner sum over magnon positions to a set of nested

geometric sums that in turn have closed forms

〈MPS2|{pj}〉 =
(−1)M/2

2L−1
Nθ

∑

σ∈SM

e
i
2

∑M
j<k θσ(j)σ(k)

∑

1≤n1<···<nM≤L

xn1

σ(1)x
n2

σ(2) · · ·xnMσ(M),

(6.40)

where xj = eipj . The nested geometric sums are given by

∑

1≤n1<···<nM≤L

xn1
1 x

n2
2 · · ·xnMM =

M∏

n=1

xL+1
n +

M∑

a=1

[
1−

a∏

n=1

xL+1
n

][
a∏

m=1

xmm
1−∏a

n=m xn

][
M∏

m=a+1

xL+1
m∏m

n=a+1 xn − 1

]
.

(6.41)

Using this, the inner sum in (6.40) can be carried out.

It is important to note that if one simply were to impose the Bethe equations at

this stage of the computation, one would find that the result vanishes, as it should in

general for rapidities that do not satisfy (6.19). Thus to get the full picture for what

happens when the rapidities are un-paired, i.e when they do indeed satisfy (6.19), one

should take care to impose this constraint from the very start. It should also be noted

that the geometric sums are most readily computed before imposing the un-pairing,

however, then one should take care to series expand these geometric sums around

the un-paired point as they have fictitious poles there. Finally a last caveat is that

the normalization chose in (5.19) gives states |{pj}〉 that are only equivalent up to a

phase subject to permutations of the set {pj}. To avoid ambiguity we will therefore

specifically be un-pairing neighboring momenta, i.e

p2j → −p2j−1, j = 1, . . . , M
2
. (6.42)

After constraining the rapidities to be un-paired one can proceed to get rid of all

factors of the form xLn by using the Bethe Equations (5.21). Remarkably when carrying

out this computation for M = 4 for instance, the result collapses to a surprisingly neat

result. Overall the structure hints at a determinant formula, and indeed, as was first

conjectured and proved in [35], the overlap is proportional to one of the determinants
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in (6.20)

〈MPS2|{pj}〉 = 21−L

[
M/2∏

j=1

u2
j + 1

4

uj
(uj − i

2
)

]
detG+. (6.43)

This implies that

〈MPS2|{uj}〉
〈{uj}|{uj}〉

1
2

= 21−L

√√√√
[
M/2∏

j=1

u2
j + 1

4

u2
j

]
detG+

detG−
, (6.44)

where the residual phase from the numerator was chose to be it’s absolute value, i.e

uj + i
2
→
√
u2
j + 1

4
. (6.45)

In general we will of course find results that are ambiguous up to a phase, and will

always choose to fix it to its absolute value. Finally, the result (6.44) can be proved to

hold for all even M by relating the overlap to the computation of an overlap between a

generalized Neél state and a Bethe state [35]. We will discuss this in a bit more detail,

but first we shall consider the cases k = 3 and k = 4.

6.6 MPS Overlap for k = 3

For k = 3 the situation is quite peculiar as we will see. The matrices

t
(3)
1 =

1√
2




0 1 0

1 0 1

0 1 0


 , t

(3)
2 =

i√
2




0 −1 0

1 0 −1

0 1 0


 , t

(3)
3 =




1 0 0

0 0 0

0 0 −1


 (6.46)

have some nice properties, but it is slightly trickier than the k = 2 case. The properties

are

t2n+1
i = ti, t2ni = t2i , for n ∈ N. (6.47)

titjti = 0, for i 6= j, (6.48)

and

[t2i , t
2
j ] = 0, tr[t2i t

2
j ] = 1. (6.49)

From these properties it follows that all traces either vanish or evaluate to unity as

follows

tr[tN1
3 tN2

1 tN3
3 tN4

1 · · · ] =

{
1, Ni ∈ 2N

0 otherwise.
(6.50)

This means that in the computation of the overlap, only spin-chain position states

that have local spin states clustered in even bunches of the same spin will contribute.

This enables a rather easy counting for M = 4 magnons, which is the computation
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that will give the necessary information about the functional dependence on rapidities,

while at the same time being computationally feasible.

The position basis states that will contribute in the overlap will be in two categories

|n, n+ 1, n+ 2`+ 2, n+ 2`+ 3〉 (6.51)

and

|1, 2n, 2n+ 1, L〉, (6.52)

where in the first category the position parameters ` and n live in

` ∈ {0, 1, . . . , 1
2
L− 2} and n ∈ {1, 2, . . . , L− 2`− 3} (6.53)

respectively whilst for the second category n ∈ {1, 2, . . . , 1
2
L − 1}. In this way the

original sum over the four magnon positions Σ(σ) in the computation of

〈MPS3|p1, p2,−p1,−p2〉 = Nθ

∑

σ∈S4

exp
[ i

2

∑

j<k

θσ(j)σ(k)

]
Σ(σ) (6.54)

becomes a sum over ` and n. This sum is readily evaluated and yields the result

Σ(σ = 1) =
x1

1x
2
2x

3
3x

4
4

1− x1x2x3x4

[
1− (x3x4)L−2

1− (x3x4)2
− (x1x2x3x4)L−3 1− (x1x2)−(L−2)

1− (x1x2)−2

]

+ x1
1x

2
2x

3
3x

L
4

1− (x2x3)L−2

1− (x2x3)2

(6.55)

where again xj = eipj .

When un-pairing the momenta

p2 → −p1,

p4 → −p3

(6.56)

and subsequently imposing the Bethe Equations, the result is summarized nicely in

terms of rapidities, and leads one to conjecture the general M result

〈MPS3|{uj}〉 = 2

[
M/2∏

j=1

uj(uj − i
2
)

]
detG+, (6.57)

hence

〈MPS3|{uj}〉
〈{uj}|{uj}〉

1
2

= 2

√√√√
[
M/2∏

j=1

u2
j

u2
j + 1

4

]
detG+

detG−
. (6.58)

This closed determinant formula is very reminiscent of the one for k = 2, and purely

based on the computation for M = 4. Nevertheless it can readily be seen to hold for
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larger values of M using brute force numerical checks. However, a proof similar in

nature to the one for k = 2 has not been found.

This result by itself is very similar to the k = 2 result, and it is hard to make an all

k conjecture purely based on these results. To appreciate the full blown complexity,

we have to look at the k = 4 case, where there are no longer any nice relations among

the generators.

6.7 MPS Overlap for k = 4

For k = 4 the matrices are not particularly nice

t
(4)
1 =




0
√

3
2

0 0
√

3
2

0 1 0

0 1 0
√

3
2

0 0
√

3
2

0



, t

(4)
2 = i




0 −
√

3
2

0 0
√

3
2

0 −1 0

0 1 0 −
√

3
2

0 0
√

3
2

0



, t

(4)
3 =




3
2

0 0 0

0 1
2

0 0

0 0 −1
2

0

0 0 0 −3
2



.

(6.59)

However it is still possible to find a closed formula for the traces that appear for the

computation of the overlap involving four magnons. For M = 4 one has

tr[tn54−1
3 t1t

n43−1
3 t1t

n32−1
3 t1t

n21−1
3 t1]

=
1

16

k∑

a,b,c,d

k−1∑

`,m,n,o

dL−n41−1
a dn21−1

b dn32−1
c dn43−1

d c`cmcnco

× tr
[
Ea

a(E
`
`+1 + E`+1

`)E
b
b(E

m
m+1 + Em+1

m)

× Ec
c(E

n
n+1 + En+1

n)Ed
d(E

o
o+1 + Eo+1

o)
]
.

(6.60)

Only 6 of the 16 terms inside the trace over matrix unities survive. The computation

is tedious but straight forward, and one finds for k = 4 a rather involved set of

7 terms that are all simply products of exponentiated integers or rationals, thus the

computation boils down to computing geometric sums as previously. It is a tremendous

mess, where each of the seven terms in the trace give rise to different nuances to the

geometric sums. Remarkable, after taking the limit

p2 → −p1, p4 → −p3 (6.61)

and furthermore imposing the Bethe Ansatz Equations, the entire mess compressed

into something just slightly more complicated than what we have found previously.

One finds, in particular noting (6.36), that it is natural to conjecture the all k and M
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expression

〈MPSk|{uj}〉
〈{uj}|{uj}〉

1
2

= 2L−1 〈MPS2|{uj}〉
〈{uj}|{uj}〉

1
2

k−1
2∑

j=− k−1
2

jL
M/2∏

m=1

u2
m(u2

m + k2

4
)(

u2
m + (j − 1

2
)2
)(
u2
m + (j + 1

2
)2
) .

(6.62)

This was first conjectured and proved in [38].

We should also point out that similar analysis has also lead to a conjectured closed

determinant formula in the SU(3) subsector [39]. The conjecture therein is based

on the analysis of the SU(2) case, however, to the authors knowledge it is purely a

conjecture and remains to be proved. The SU(3) subsector is an interesting first step

towards the full SO(6) sector. As a sector, the SU(3) sector is only closed to one-loop,

thus we should stick to the SU(2) sector when considering higher loop corrections.

As we shall see in the following sections, there is a partial proof of the closed

determinant formula for the SU(2) sector.

6.8 Proof of a Recursion Relation

In [38] the determinant formula (6.62) was proved, at least for all even values of k.

The caveat being that since the recursion relation jumps by k+ 2, the proof for k = 2

only carries over to even values of k. Thus far a proof for k = 3 is still lacking, but

there may be ways to arrive at a recursion relation that jumps by k + 1.

The recursion was originally motivated by the very nature of (6.62). Note how all

higher k overlaps are related to the overlap for k = 2 - the k dependence factors out

into the factor
k−1
2∑

j=− k−1
2

jL
M/2∏

m=1

u2
m(u2

m + k2

4
)(

u2
m + (j − 1

2
)2
)(
u2
m + (j + 1

2
)2
) . (6.63)

In particular, it just so happens that for k = 4 this factor is identical to the transfer

matrix eigenvalue for the corresponding Bethe state, evaluated at spectral parameter

λ = i, that is
〈MPS4|{uj}〉
〈MPS2|{uj}〉

= Λ(i|{uj}) (6.64)

where

T (λ)|{uj}〉 = Λ(λ|{uj})|{uj}〉, (6.65)

and the eigenvalue is given by

Λ(λ|{uj}) =

(
λ+ i

2

λ− i
2

)L M∏

j=1

λ− uj − i
λ− uj

+
M∏

j=1

λ− uj + i

λ− uj
. (6.66)
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Playing around a bit one is lead to conjecture the relation

〈MPSk+2|{uj}〉 = Λ( ik
2
|{uj})〈MPSk|{uj}〉 −

(
k + 1

k − 1

)L
〈MPSk−2|{uj}〉, (6.67)

with

〈MPS0|{uj}〉 ≡ 0. (6.68)

Clearly

Λ( ik
2
|{uj})〈MPSk|{uj}〉 = 〈MPSk|T ( ik

2
)|{uj}〉, and S+|{uj}〉 = 0 (6.69)

and hence the recursion (6.67) implies

|MPSk+2〉 = T ( ik
2

)|MPSk〉 −
(
k + 1

k − 1

)L
|MPSk−2〉+ S−|· · ·〉. (6.70)

It just so happens that

|MPSk+2〉 = T ( ik
2

)|MPSk〉 −
(
k + 1

k − 1

)L
|MPSk−2〉, (6.71)

that is, it is an exact identity on the space of states, not simply a cohomological state-

ment. We will proceed to prove this, after which a proof of (6.67) follows immediately.

We start out by looking at the local construction of the transfer matrix, and cor-

respondingly the MPS, respectively

T (λ) = tra
[
La,1(λ) · · · La,L(λ)

]
, La,n(λ) = Ia,n +

i

λ− i
2

Pa,n, (6.72)

|MPSk〉 = tr
L∏

`=1

(t
(k)
1 ⊗ |↑`〉+ t

(k)
2 ⊗ |↓`〉). (6.73)

Thus, when the transfer matrix acts on the matrix product state we get

T ( ik
2

)|MPSk〉 = tra tr
L∏

`=1

La,`(t(k)
1 ⊗ |↑`〉+ t

(k)
2 ⊗ |↓`〉)

= tra tr
L∏

`=1

(τ
(k)
1 ⊗ |↑`〉+ τ

(k)
2 ⊗ |↓`〉)

(6.74)

where if you work it out you find

τ
(k)
1 =

(
k+1
k−1

t
(k)
1 0

2
k−1

t
(k)
2 t

(k)
1

)
, τ

(k)
2 =

(
t
(k)
2

2
k−1

t
(k)
1

0 k+1
k−1

t
(k)
2

)
. (6.75)

These are matrices in C2 whose entries are k× k color space matrices. Note that here

tra denotes specifically the trace in C2 whilst tr denotes the trace in color.
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Knowing how the transfer matrix acts on the MPS we are now ready to re-examine

the proposition (6.72), which is now seen to imply the following identity among traces

tr tra[τ
(k)
j1
· · · τ (k)

jL
] = tr[t

(k+2)
j1

· · · t(k+2)
jL

] +

(
k + 1

k − 1

)L
tr[t

(k−2)
j1

· · · t(k−2)
jL

]. (6.76)

This might look strange at first sight, but it works out naturally thanks to the trace in

C2 taken on the left hand side. However, with the caveat that we require the following

simultaneous similarity transformation to hold

AτjA
−1 =

(
t
(k+2)
j 0

?j
k+1
k−1

t
(k−2)
j

)
, j = 1, 3. (6.77)

All we need is to prove the existence of such a similarity. A straight forward approach,

involving some triagonalizability argument would be nice, but the author does not see

one in sight. At present however, a constructive proof exists, as was given in [38].

Such a similarity transformation was found by careful guess work. The trick is to

construct similarity transformation for various values of k, by restricting to a sparse

checkered type ansatz, with alternating zero entries. A set of 30 or so matrices were

found explicitly using Mathematica. Find sequence was then used on patterns in these

matrices to find a construction in terms of matrix unities. The construction was then

proved to facilitate the similarity for arbitrary values of k using hard coded matrix

unity identities in Mathematica. This concludes the proof of the recursion relation

(6.72) and hence (6.67). The details of the construction have been deferred to the

appendix in [38].

6.9 Proof of Tree-level Determinant Formula

The determinant formula (6.62) conjectured to be valid for all k and M is proved via

the recursion relation (6.67) provided that k = 2 and k = 3 determinant formulas can

be proved to hold for all values of M . The all M , k = 2 result was proved for the

case M = L/2 in [35], and later extended to the general M case in [38]. It relied on

mapping the computation to a similar one, namely the overlap between a Bethe state

and a generalized Neél state. The starting observation is the following,

PM |MPS2〉 =
1

2L( i
2
)M
|NéelM〉+ S−|· · ·〉, (6.78)

where PM is a projector onto the basis states of definite number of M excitations, and

|NéelM〉 =
∑

1≤n1<···<nM≤L
|ni−nj | ∈ even

|n1, · · · , nM〉, (6.79)
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is the generalized Néel state. This relation is proved in [35] using a certain hybrid

state. From this relation it follows that

〈MPS2|{uj}〉 =
1

2L( i
2
)M
〈NéelM |{uj}〉. (6.80)

It was noted first in [38] that this completes the proof for all M since this overlap is

known already, hiding in plain sight as the overlap

〈Néel|(S−)2m|{uj}〉 (6.81)

which was computed in [40]. The overlap relates directly to the overlap with the

generalized Néel state since

|NéelL
2
−2m〉 =

1

(2m)!
(S+)2m|Néel〉. (6.82)

Less is known in terms of an all M proof for k = 3. One idea, which could

generalized the recursion (6.67), to one that relates k + 1 to k, as opposed to k + 2 to

k, is facilitated by Baxters Q-operators. Namely

lim
φ→0

Q( i
2
)−1Q(0)|MPS2〉 = 2−L|MPS3〉+ S−|· · ·〉. (6.83)

However there are issues with performing the limit φ→ 0 in general, as the left-hand-

side is divergent, and the divergence is captured by terms proportional to S−|· · ·〉
which is hard to track and generalize to a proof valid for all M . The above remains

a conjecture, tested for states of length up to L = 8. If proved, this relation would

immediately imply the relation between the k = 2 and k = 3 determinant overlap.

Further details on this observation can be found in [38].

Another potential route, would be to try to generalize the proof technique used in

[41], where Foda and Zarembo present a proof of the k = 2 all M determinant formula

based on the intimate relationship with partition functions of the six-vertex model.

They establish certain reflective boundary conditions satisfying the boundary Yang-

Baxter equations, that correspond with the generalized Néel state. And the overlap

then follows from the derivation of the partition function subject to the boundary

conditions. The unique solution that satisfies 4 constraints dictated by integrability,

is then the determinant formula. Perhaps it would be possible to construct boundary

states that are cohomologically equivalent to |MPS3〉, and derive the partition function

for the six-vertex model in this case.
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7 One-loop Corrections to One-point Functions

We now proceed to go beyond tree-level. This is no small task as quantum corrections

are generally not very easy to handle. In the present case there are further complica-

tions beyond the standard treatments of quantum corrections. We will be presented

with position dependent masses, and mass mixing matrices mixing both color and fla-

vor components of the fields. The latter is solved by fuzzy-sphere coordinates, while

the former leads to an equivalent description in terms of anti de-Sitter propagators,

instead of the usual Minkowski ones. The details of the resolutions to these obstacles

are presented in great detail in [42], and in this section we will simply present some of

the main results and conclusions. We will begin by expanding the action around the

fuzzy-funnel background.

7.1 Expanding the Action around the Fuzzy-funnel

When computing quantum corrections to the the one-point functions, we need to

consider quantum fluctuations around the fuzzy-funnel background, i.e

Φ = Φcl + Φ̃ (7.1)

usually Φcl = 0 and there’s no fuzz to deal with. However, in our case we have non-

trivial vacuum expectation values attributed to the co-dimension one defect, that is

we have three of the six scalars around which we must expand the action (4.2). In

particular

φi = φcl
i + φ̃i, i = 1, 2, 3, (7.2)

where φcl
i are those given in (4.10). The expansion gives rise to a rather involved

action, not only do mass terms arise that couple different color and flavor components,

but also, these masses are position dependent due to the x3 dependence of the VEVs.

We will not look at all the details, as that would be repeating what has already been

fleshed out in great detail in the long paper [42]. Let us cite the main results for the

expansion and show details behind the bosonic mass terms.

Firstly one notices that the expansion of the scalar kinetic term gives

− 1

2
DµφiD

µφi = −1

2
∂µφ̃i∂

µφ̃i + i[Aµ, φcl
i ]∂µφ̃i + · · · (7.3)

where the dots indicate terms that are either involve a single factor of φ̃i or do not

involve derivatives of quantum fields. The terms involving only a single φ̃i do not

contribute, as is readily seen that these terms add up to zero when φcl
i is a solution of

the equations of motion, as it is.
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The second term i[Aµ, φcl
i ]∂µφ̃i is problematic in that it is first order in derivative,

however we can cancel it choosing to fix the gauge by adding

− 1

2
trG2, G = ∂µA

µ + i[φ̃i, φ
cl
i ], (7.4)

to the action. As is readily seen this cancels the unwanted kinetic term, and all

together, the kinetic part of the action is given by

Skin =
2

g2
YM

∫
d4x tr

[
1

2
Aµ∂ν∂

νAµ +
1

2
φ̃i∂ν∂

νφ̃i + · · ·
]

(7.5)

where again terms have been omitted, this time fermionic and ghost kinetic terms. As

explained in [42], the price for introducing the gauge fixing term is that the ghosts

acquire now a mass term as well. The ghosts and fermions have been omitted in this

recapitulation for the sake of brevity.

The scalar kinetic term and the gauge fixing term also give rise to bosonic mass

terms. This along with the expansion of the quartic

1

4
tr[φi, φj][φi, φj] (7.6)

is what gives rise to the terms in Sm,b. In particular the contributions are

1

4
tr[φi, φj][φi, φj] =

1

2
tr
[
[φcl
i , φ

cl
j ][φ̃i, φ̃j] + [φcl

i , φ̃j][φ
cl
i , φ̃j] + [φcl

i , φ̃j][φ̃i, φ
cl
j ]
]

+ · · ·

−1

2
tr[G2] =

1

2
tr
[
[φcl
i , φ̃i][φ

cl
j , φ̃j] + 2i[Aµ, φ̃i]∂µφ

cl
i

]
+ · · ·

−1

2
trDµφiD

µφi =
1

2
tr
[
[Aµ, φ

cl
i ][Aµ, φcl

i ] + 2i[Aµ, φ̃i]∂µφ
cl
i

]
+ · · ·

(7.7)

where terms that do not contribute to mass terms have been omitted. The sum of

these terms is given in equation (2.16) in [42], as well as the various other terms

Skin + Sm,b + Sm,f + Scubic + Squartic, (7.8)

that can be found in equations (2.12 - 2.19).

7.2 Diagonalization of the Mass Mixing Matrix

As is apparent already by just looking at the bosonic mass term, there is a lot of

mixing of color and flavor going on. However for some of the flavors the mixing is less

complex. One finds that the mixing is complicated for the aptly named, complicated

scalars

C =




φ̃1

φ̃2

φ̃3

A3




(7.9)
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and easy for the rest

E =




A0

A1

A2

φ̃4

φ̃5

φ̃6




. (7.10)

The mass term for the easy scalars is readily diagonalized, while the one for the complex

scalars requires the use of fuzzy-spherical harmonics. The complete mass term can be

rewritten in terms of the adjoint action of the generators

Li = Ad(ti), L2 = LiLi (7.11)

where L2 is the Laplacian of the fuzzy sphere. Further changing the basis of the

complex bosons and the fermions renders the following expression for the mass term

Sm =
2

g2
YM

∫
d4x

1

x2
3

tr

[
−1

2
ETL2E − c̄L2c− 1

2
C†t (L

2 − 2σiLi)Ct

]

+
2

g2
YM

∫
d4x

1

x3

tr

[
1

2
ψ̄tσiLiψt

]
+ (t→ b)

(7.12)

where σi are the Pauli matrices acting in flavor space and Ct, Cb, ψt, ψb are two com-

ponent vectors in flavor, specifically




ψt,+

ψt,−

ψb,+

ψb,−




=
1√
2




−ψ3 − iψ4

+ψ2 + iψ1

−ψ1 − iψ2

−ψ4 − iψ3



, (7.13)




Ct,+

Ct,−

Cb,+

Cb,−




=




+iφ̃1 + φ̃2

−iφ̃3 − A3

−iφ̃3 + A3

−iφ̃1 + φ̃2



. (7.14)

The Pauli matrices appear via matrices like the Gi matrices derived in appendix B.

The rest of the details can be found in [42].

This form of the mass term makes it clear that we need to diagonalize L2 for the

easy scalars and the ghosts, while we need to diagonalize J2 with

Ji = Li + 1
2
σi, (7.15)
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for the complicated fields.

It is already known how to diagonalize L2 and J2. The latter is a bit more involved

but is equivalent to the addition of spin and orbital angular momentum of the Hydrogen

atom, and is diagonalized by fuzzy-sphere harmonics. The details are left for the paper

[42] to elaborate on. Here’s a table showing the spectrum that arises

Multiplicity ν(φ̃4,5,6, A0,1,2, c) m(ψ1,2,3,4) ν(φ̃1,2,3, A3)

`+ 1 `+ 1
2

−` `− 1
2

` `+ 1
2

`+ 1 `+ 3
2

(k + 1)(N − k) k
2

−k−1
2

k−2
2

(k − 1)(N − k) k
2

k+1
2

k+2
2

(N − k)(N − k) 1
2

0 1
2

(7.16)

where ` = 1, . . . , k − 1 and

ν =

√
m2 +

1

4
. (7.17)

The relevant Breitenlohner-Freedman bound [43] is

m2 ≥ −1

4
(7.18)

which is seen to hold for all the masses in table 7.16. It is saturated only for k = 2.

This serves as a sanity check on these preliminary results.

The bosonic mass terms come with factors of 1/x2
3 while the fermionic mass terms

come with factors of 1/x3 . This renders the masses position dependent and it is in

principle rather tricky to solve the appropriate Klein-Gordon equations. However, as

is quite easy to see, the position dependence can be traded for replacing Minkowski

propagators with propagators in AdS4, that is

ηµν → gµν =
1

x2
3

ηµν . (7.19)

The x3 coordinate plays the role of the radial coordinate in this AdS4 space-time where

the defect is at it’s boundary. The propagators are worked out in full detail in [42].

7.3 Contributions at One-loop

We now consider the one-loop corrections to

OL(x) = Oi1i2···iL tr[Φi1Φi2 · · ·ΦiL ](x), (7.20)

where recall that

Oi1i2···iL =
1√
L

(
8π2

λ

)L/2
Ψi1i2···iL . (7.21)
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(a) (b)

Figure 6. Feynman diagrams at one-loop order for an operator of length 8 ((a) tadpole and

(b) lollipop). The operators location in space-time is represented by a dot whilst the cross’

depict the insertions of classical fields. Lines not touching crosses are propagators.

There are several contributions towards the one-loop expectation value, firstly there

are those you get directly from expanding out in powers of the quantum fields, i.e

Φi = φcl
i + φ̃i, (7.22)

and then there are corrections due to renormalization of OL and quantum corrections

to Ψi1i2···iL . One might worry that there are one-loop corrections that we have omitted

here, that involve the 3D theory on the defect. However, the only way to achieve a

contribution at one-loop involving an operator in the bulk, and a point on the defect,

is to have a loop running in the defect theory. The defect itself has full N = 2

superconformal symmetry, and hence these loops do not contribute.

We will start off considering the expansion in quantum fields (7.22) in the trace.

Gathering all terms quadratic in quantum fields one finds many terms, however we’re

interested in the planar limit, contractions between quantum fields that are not adja-

cent, will be suppressed. The surviving contributions are thus

〈OL〉tadpole(x) = Oi1i2···iL
L∑

j=1

tr[φcl
i1
· · · φ̃jφ̃j+1 · · ·φcl

iL
](x). (7.23)

〈OL〉lollipop(x) = Oi1i2···iL
L∑

j=1

tr[φcl
i1
· · · φ̃j · · ·φcl

iL
](x)

∫
d4y

∑

Φ1,Φ2,Φ3

V3(Φ1,Φ2,Φ3)(y),

(7.24)

where ∑

Φ1,Φ2,Φ3

V3(Φ1,Φ2,Φ3)(y) (7.25)

denotes the sum over all three-point interactions in the theory. These contributions

〈OL〉tadpole and 〈OL〉lollipop correspond with the Feynman diagrams shown in figure 6.
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In addition to these terms we also have a contribution from the one-loop renormal-

ization of the operator itself

OL → OL + g2Z1OL +O(g4) (7.26)

as well as finally the one-loop corrections to the Bethe coefficients

Ψi1···iL → Ψi1···iL + g2Ψi1···iL
1 +O(g4). (7.27)

The one-loop correction to the Bethe coefficients stem from the fact that at one-loop

order we need the operators OL to have well defined anomalous dimension at two-loop

order. This requirement translates to the need for the Bethe states to be eigenstates

with respect to the two-loop dilatation operator. These states are referred to as two-

loop eigenstates which we will address in a later section.

Let us now consider these terms separately and how they contribute. The contri-

bution 〈OL〉lollipop turns out to vanish as it is directly proportional to 〈φi〉lollipop which

equates to zero2, as verified in great detail in [42]. We therefore find that the terms

contributing at one-loop amount to

〈OL〉one-loop = 〈OL〉tadpole + g2Z1〈OL〉tree +Oi1i2···iL1 tr[φcl
i1
φcl
i2
· · ·φcl

iL
]. (7.28)

Let us start with the tadpole term, and although we will be following [42] we will be

skipping some of the details therein concerning propagators and their renormalization.

Instead we will focus our attention on aspects pertaining to the color structure, in

particular computations of a novel overlap. We have

〈OL〉tadpole(x) = Oi1i2···iL
L∑

j=1

tr[φcl
i1
· · · φ̃jφ̃j+1 · · ·φcl

iL
](x), (7.29)

where the wick contraction implies the insertion of a bosonic propagator. The compu-

tation leads to

〈O〉tadpole(x) =
g2

(x3)2

∑

j

δsj=sj+1
Os1...sj sj+1...iL tr(φcl

s1
. . . φcl

sj−1
φcl
sj+2

. . . φcl
sL

)(x)

+ 1
2
g2∆1

(
2Ψ(k+1

2
)− 2 log(x3)− 1

ε
− log(4π) + γE

)
〈O〉tree(x) (7.30)

where ∆1 is the eigenvalue of the one-loop dilatation operator, Ψ is the digamma

function and γE the Euler-Mascheroni constant. Furthermore the UV divergence above

is precisely canceled by the renormalization of the operator, i.e

Z1 = 1
2
∆1(1

ε
+ 1 + γE + log π). (7.31)

2Whether or not this holds true beyond one-loop is not immediately clear from that analysis, and

remains an open interesting question.
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This is the subtraction that gives the one-loop correction to the bulk two-point function

standard norm far away from the defect.

The derivation of this result is not straight forward and requires the full machinery

of the setup as presented in [42]. We will proceed to take a closer look at the first

term
g2

(x3)2

∑

j

δij=ij+1
Oi1...ij ij+1...iL tr[φcl

i1
. . . φcl

ij−1
φcl
ij+2

. . . φcl
iL

]. (7.32)

This is very similar to the expression for the computation at tree-level (6.1)

〈OL〉tree = Oi1i2···iL tr[φcl
i1
φcl
i2
· · ·φcl

iL
] (7.33)

which as we saw was equivalent to computing the overlap between a Bethe state and a

matrix product state. Similarly, this one-loop contribution (7.32) can be expressed as

the overlap between a Bethe state and an amputated matrix product state (AMPS).

7.4 Amputated Matrix Product States

A concise way to write down the amputated matrix product state is in terms of the

matrix product state

|AMPS〉 =
L∑

`=1

A`,`+1|MPS〉, L+ 1 ∼ 1 (7.34)

where the operator A`,`+1 acts on the color space and removes matrices inside the trace

at locations ` and `+ 1 iff they are identical matrices. The first term (7.32) now reads

in terms of the AMPS

g2

2
× 1

xL3

1√
L

(
8π2

λ

)L
2

〈AMPS|{uj}〉 (7.35)

Just as for the overlap between a matrix product state and a Bethe state, we here

have the parameters M and k, whose values will dictate whether the computation is

tricky or straight forward. For the vacuum, i.e M = 0 the computation is very straight

forward, one has, similar to (6.32)

〈AMPS|0〉 =
L∑

`=1

δij ,ij+1
Ψi1···ijij+1···iL tr[ti1 · · · tij−1

tij+2
· · · tiL ]

= L tr[tL−2
3 ]

= L
(
ζ−(L−2)(

1−k
2

)− ζ−(L−2)(
1+k

2
)
)
.

(7.36)

For a general number of excitations the first line in the above computation is best

expressed as a sum over magnon positions as

〈AMPS|{pj}〉 =
∑

1≤n1<···<nM≤L

Ψ({pj}, {nj})
L∑

`=1

A`,`+1 tr
M∏

j=1

[
t
n(j+1)j−1

3 t1

]
, (7.37)
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and the first hurdle is to compute the subexpression

L∑

`=1

A`,`+1 tr
M∏

j=1

[
t
n(j+1)j−1

3 t1

]
. (7.38)

We are here using notation introduced in (6.34 - 6.35). This is non-trivial to compute

since the matrices are not all of the same kind. In particular it is difficult to compute

in general for any number of magnons M and any rank k. It is however doable for

special cases, and a conjecture can be made for k = 2 that is checked up to M = 6

and L = 16. It is also possible to find a closed form for M = 2 and any k. We will

proceed to carry out those two cases separately.

7.5 AMPS Overlap for k = 2

For k = 2 things are special, as we already noted in section 6.5. These identities allow

for easier computation of (7.38) for any M . We will derive a close expression for (7.38)

valid for any M , to derive it you need only to consider the case M = 4 as it generalizes

to all M , it is simply tedious and cluttered to make the argument explicitly valid for

all M . For M = 4 and any k we have that (7.38) reads

L∑

`=1

A`,`+1 tr[tn21−1
3 t2t

n32−1
3 t2t

n43−1
3 t2t

n54−1
3 t2]. (7.39)

Depending on which segments of matrices t3’s or t2’s the amputation operator hits, we

get differing results. Working it out one is lead to

L∑

`=1

A`,`+1 tr[tn21−1
3 t2t

n32−1
3 t2t

n43−1
3 t2t

n54−1
3 t2]

= + δn21>1(n21 − 2) tr[tn21−3
3 t2t

n32−1
3 t2t

n43−1
3 t2t

n54−1
3 t2]

+ δn32>1(n32 − 2) tr[tn21−1
3 t2t

n32−3
3 t2t

n43−1
3 t2t

n54−1
3 t2]

+ δn43>1(n43 − 2) tr[tn21−1
3 t2t

n32−1
3 t2t

n43−3
3 t2t

n54−1
3 t2]

+ δn54>1(n54 − 2) tr[tn21−1
3 t2t

n32−1
3 t2t

n43−1
3 t2t

n54−3
3 t2]

+ δn21=1 tr[tn21−1
3 ��t2 t

n32−1
3 t2t

n43−1
3 t2t

n54−1
3 ��t2 ]

+ δn32=1 tr[tn21−1
3 ��t2 t

n32−1
3 ��t2 t

n43−1
3 t2t

n54−1
3 t2]

+ δn43=1 tr[tn21−1
3 t2t

n32−1
3 ��t2 t

n43−1
3 ��t2 t

n54−1
3 t2]

+ δn54=1 tr[tn21−1
3 t2t

n32−1
3 t2t

n43−1
3 ��t2 t

n54−1
3 ��t2 ],

(7.40)

keep in mind that n5 ≡ n1 + L. Here the first four terms stem from amputating t3’s,

and the last four from amputating t2’s. The delta functions result from the fact that

amputation is only possible for certain values of ni.
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Now, so far this is an equality valid for all M and all k. We proceed to make use

of the fact that for k = 2 the matrices square to 1/4, in fact this is all that is needed.

From the squaring property, it follows that we may insert factors of t23 at will at the

expense of multiplying by an overall factor of 4. Simply inserting the missing t3’s in

the first four traces makes it clear that the first four traces are identical, and given by

4 tr[tn21−1
3 t2t

n32−1
3 t2t

n43−1
3 t2t

n54−1
3 t2], (7.41)

which we already know how to compute, see (6.39). The last four terms also have

identical traces, since they are all of the form

δn(m+1)m=1 tr[· · · tnm(m−1)−1

3 t
n(m+1)m−1

3 t
n(m+2)(m+1)−1

3 · · · ], (7.42)

hence we can always insert a t22 to the right of the t
n(m+1)m−1

3 term at the expense of

an overall factor of 4. Notice how even though the t
n(m+1)m−1

3 terms are trivial due to

the delta’s, they are left in as it makes this argument clearer. We now see that all the

traces are identical to (7.41). It is clear that each of the first four terms in (7.40) nicely

pair up with each of the last four terms. Indeed, since the traces are all identical, and

since

δn>1(n− 2) + δn=1 = 2(δn=1 − 1) + n, (7.43)

it follows that

L∑

`=1

A`,`+1 tr[tn21−1
3 t2t

n32−1
3 t2t

n43−1
3 t2t

n54−1
3 t2]

= (−1)
∑
i ni23−L

(
L+ 2(δn21=1 + δn32=1 + δn43=1 + δn54=1 − 4)

)
,

(7.44)

where the expression was simplified further using the definitions given in (6.34 - 6.35),

that is

nij = ni − nj, with n5 ≡ n1 + L. (7.45)

It is clear that the above arguments generalize in a straight forward manner to larger

values of M . The upshot is that for k = 2

L∑

`=1

A`,`+1 tr
M∏

j=1

[
t
n(j+1)j−1

3 t1

]
= (−1)

M
2

+
∑
i ni23−L

[
L+ 2

M∑

m=1

(δn(m+1)m=1 − 1)

]
(7.46)

gives the amputated trace for any number of magnons M .

Now that we have a closed expression for the amputated trace for k = 2 we can

plug it into (7.37) and proceed with the rest of the computation. At first sight, one

can’t help but notice how much of (7.46) is directly proportional to the computation

40



of overlap between the regular matrix product state and a Bethe state. Yet, the part

of (7.46) that makes the computation tricky are the delta terms. Unfortunately, to the

knowledge of the author there is no obvious way of dealing with these delta terms in

full generality. However, it is not too difficult to carry out the computation for M = 4

for example, which leads to the result and subsequent conjecture

〈AMPS2|{uj}〉 = 4


L−

M/2∑

j=1

1

u2
j + 1

4


 〈MPS2|{uj}〉. (7.47)

It is a neat little exercise to derive this for M = 2 which is surprisingly easy, since in

this case the delta terms in (7.46) are very constraining along side the un-pairing. The

Bethe wave function for M = 2 subject to un-pairing is simply

Ψ(n1, n2) = e−ip n21 + eip (n21−1) (7.48)

thus

〈AMPS2|p〉 = 24−L
∑

1≤n1<n2≤L

(−1)n1+n2+M
2 (δn21=1 + δn32=1)Ψ(n1, n2)

= 24−LL(1 + e−ip)

= 4

(
L− 1

u2 + 1
4

)
〈MPS2|u〉

(7.49)

from which (7.47) in the case M = 2 follows immediately provided our previous knowl-

edge of the MPS overlap.

Carrying out the computation for M = 4 is more involved, as in general the delta

terms give rise to modified geometric sums. The conjecture (7.47) has been checked

up to M = 6 and L = 16 numerically. In order to prove this conjecture one would

simply need to show that

24−L
∑

1≤n1<···<nM≤L

Ψ({pk}, {nj})(−1)
M
2

+
∑
i ni

M∑

m=1

(δn(m+1)m=1 − 1)

= −4



M/2∑

j=1

1

u2
j + 1

4


 〈MPS2|{uj}〉,

(7.50)

since the rest of the details follow from the MPS analysis. Finding such a proof remains

an interesting open problem.

41



7.6 AMPS Overlap for M = 2 any k

Computing the amputation of the trace for any value of k is tricky. However it is

doable for M = 2, we find

L∑

`=1

A`,`+1 tr[tn21−1
3 t2t

n32−1
3 t2] = δn21>2(n21 − 2) tr[tn21−3

3 t2t
n32−1
3 t2]

+ δn32>2(n32 − 2) tr[tn21−1
3 t2t

n32−3
3 t2]

+ δn21=1 tr[tn21−1
3 ��t2 t

n32−1
3 ��t2 ]

+ δn32=1 tr[tn21−1
3 ��t2 t

n32−1
3 ��t2 ].

(7.51)

For general k the traces involved amount to three unique traces (the last two are

identical). The three traces are

tr[tn21−3
3 t2t

n32−1
3 t2] =

k∑

i=1

Ak,i(n21),

tr[tn21−1
3 t2t

n32−3
3 t2] =

k∑

i=1

Ak,i(n21)

(
k − 2i− 1

k − 2i+ 1

)2

,

tr[tL−2
3 ] = 22−L

k∑

i=1

(k − 2i+ 1)L−2,

(7.52)

where

Ak,i(m) = 23−L i(k − i)
(k − 2i)2 − 1

[
k − 2i+ 1

k − 2i− 1

]m
(k − 2i− 1)L−2. (7.53)

Thus

L∑

`=1

A`,`+1 tr[tn21−1
3 t2t

n32−1
3 t2]

=
k∑

i=1

[
(n21 − 2 + δn21=1)Ak,i(n21)

+ (L− n21 − 2 + δL−n21=1)Ak,i(n21)

(
k − 2i− 1

k − 2i+ 1

)2

+ 22−L(δn21=1 + δL−n21=1)(k − 2i+ 1)L−2
]
.

(7.54)
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This can then be plugged into (7.37) and one can compute directly symbolically in

Mathematica the result

〈AMPSk|u1〉 = L
(u1 + i

2

u1

) k−1
2∑

j=− k−1
2

jL−2 Q(0)Q( ik
2

)

Q(ij−)Q(ij+)

×
[
L− 2 +

Q(j−)
(
Q(j+) +Q( ik

2
)
)

Q( i
2
)Q( ik

2
)

+
4j2

Q( i
2
)

(
j2
−

Q(ij−)
+

j2
+

Q(ij+)
−

k2

4

Q( ik
2

)
+ 1

)]
,

(7.55)

where Q is the relevant Baxter polynomial

Q(λ) = λ2 − u2
1, (7.56)

and

j± = j ± 1

2
. (7.57)

Since the sum is over a symmetric interval, only the symmetric part of the summand

contributes. Most of the terms have been symmetrized, those that have not been are

left as they were for conciseness. The factor in front of the square brackets is readily

recognized as the summand in the regular MPS overlap, and for k = 2 the above can

be seen to reproduce (7.47) with M = 2.

It should be possible to continue in the same vain to get a general k result for

M = 4. However the computations are rather tedious and involved, and at the end of

the day we are not interested in the AMPS overlap by itself, but the total contribution

to the one-loop correction. As we will see it turns out that the total contribution takes

on a nicer expression than the above result, one that generalizes straight forwardly to

higher k and M .

7.7 The Full One-loop One-point Function

The full one-loop one-point function amounts to

〈OL〉tree + 〈OL〉one-loop, (7.58)

where

〈OL〉one-loop = 〈OL〉tadpole + g2Z1〈OL〉tree +Oi1i2···iL1 tr[φcl
i1
φcl
i2
· · ·φcl

iL
]. (7.59)

So far we have considered everything but the two-loop Bethe eigenstate term

Oi1i2···iL1 tr[φcl
i1
φcl
i2
· · ·φcl

iL
]. (7.60)
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To our delight the two-loop corrected eigenstates have been carefully studied by Gro-

mov et al. in [44, 45]. They are constructed by means of introducing impurities θj on

the spin cites. Specifically this involves acting with modified creation operators

B̂(u) = 〈↑|
L⊗

j=1

(
1j,0 +

i

u− θj − i
2

Pj,0

)
|↓〉 (7.61)

to construct impurity Bethe states

|θ,u〉 = B̂(u1) · · · B̂(uM)|0〉. (7.62)

Note that this is the straightforward generalization of the standard impurity free al-

gebraic creation operator see appendix A.

The two-loop eigenstate may then finally be constructed via taking the theta-

morphism of this impurity Bethe state. The action of the theta-morphism is defined

via partial derivatives with respect to the impurities θj

{f}Θ ≡ f +
g2

2

L∑

j=1

(
∂

∂θj
− ∂

∂θj+1

)2

f +O(g4)

∣∣∣∣∣
θj→0

. (7.63)

It turns out that the story is not quite so straight forward, but that the subtle correc-

tions that need to be made to {|θ, u〉}Θ are simply encoded at the edge, that is, the

one-loop corrected eigenstate is given by

|u〉 ≡
(
1− 1

2
g2∆1HL,1

)
{|θ,u〉}Θ. (7.64)

There is one last caveat though, and that is that the rapidities now have to satisfy the

two-loop Bethe equations which belong to the types of Bethe equations applicable for

spin chains with longer range interactions [46]. These Bethe equations turn out to be

a generalization i.e (
x(uj + i

2
)

x(uj − i
2
)

)L
=

M∏

k 6=j

uj − uk + i

uj − uk − i
(7.65)

where

x+
1

x
=
u

g
(7.66)

are the Zhukowski variables [26]. Expanding x to leading order in g gives the first

correction to the Bethe equations, the two-loop Bethe equations.

The total one-loop result can then be expressed as

1

x∆
3

1√
L

(
8π2

λ

)L/2 [〈MPS|u〉
〈u|u〉 12

+ g2 〈AMPS|u〉
〈u|u〉 12

]
(
1 + g2∆1(Ψ(k+1

2
) + γE − log 2 + 1

2
)
)

(7.67)
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where |u〉 denotes specifically the one-loop corrected Bethe state, i.e (7.64).

We have already presented the result for the AMPS overlap to leading order, and

the MPS overlap with the one-loop corrected Bethe state can be computed with the

prescription presented above for various values of k and M as was presented in [47].

The result can be nicely summarized in terms of new G̃± matrices given by (6.22) with

fm replaced by f̃m that is

G̃± = ∂mf̃n ± ∂m+M
2
f̃n, (7.68)

with

f̃m = −i log

[(
x(uj − i

2
)

x(uj + i
2
)

)L M∏

k 6=j

uj − uk + i

uj − uk − i

]
. (7.69)

In full the proposed general result is then

〈OL(x)〉 =
1

x∆
3

1√
L

(
8π2

λ

)L/2
iLT̃k−1(0)

√
Q( i

2
)Q(0)

Q2( ik
2

)

√
det G̃+

det G̃−
Fk, (7.70)

where

T̃n(λ) = gL

n
2∑

j=−n
2

[x(u+ ij)]L
Q(u+ n+1

2
j)Q(u+ n+1

2
j)

Q(u+ (j − 1
2
)i)Q(u+ (j + 1

2
)i)

(7.71)

is the transfer matrix of the Heisenberg spin chain in the (n + 1)-dimensional repre-

sentation. The factor

Fk = 1 + g2
(
Ψ(k+1

2
) + γE − log 2

)
∆1 +O(g4) (7.72)

is a flux factor that captures corrections due to operator renormalization.

This conjecture was originally motivated by its simplicity and the concrete results

for k = 2, M = 2, notably (7.47) and the results for 〈MPS2|u〉

〈MPS2|u〉
〈u|u〉 12

=

√√√√√
L

L− 1

u2 + 1
4

u2

1 + g2 4
u2+ 1

4

1 + g2

L−1

6u2− 1
2

(u2+ 1
4

)2

(7.73)

presented in [47].

The flux factor is unity for protected operators like the BMN vacuum for which

∆1 = 0, indeed (7.71) simplifies considerably for this operator

〈tr[ΦL
1 ](x)〉 =

1

xL3

1√
L

(
8π2

λ

)L/2
iLT̃k−1(0). (7.74)

Moreover the transfer matrix evaluates to

T̃k−1(0) =

k−1
2∑

j=− k−1
2

gLxL(i j) (7.75)
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and one finds the finite expansion in g

〈tr[ΦL
1 ](x)〉 =

1

xL3

1√
L

(
8π2

λ

)L/2 L
2∑

n=0

(
L− n
n

)
L

L− n
BL−2n+1(1−k

2
)

L− 2n+ 1
g2n. (7.76)

where Bn are Bernoulli polynomials og degree n.

As we will see in the next sections this result seemingly agrees with results from

string theory to all loop orders. This seems to be thanks to the fact that the expansion

arranges itself in powers of λ
k2

, however this is unfortunately not true for unprotected

operators, the double scaling limit is broken by the flux factor (7.72), in particular by

the term

Ψ(k+1
2

) ∼ log k for k � 1. (7.77)
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8 Comparison to String Theory

We will proceed to make comparisons with string theory for the BMN vacuum as

the string counterpart has already been computed for this state [16]. First some short

remarks on how to compare results on the two sides of the correspondence are in order.

8.1 Circumventing the Strong-Weak Obstacle

The GKPW (Gubser-Klebanov-Polyakov-Witten) prescription [48, 49] relates com-

putations on the two sides of the correspondence. In particular it tells us that the

generating functional on the field theory is related to the path integral in the string

theory 〈
e
∫
d4xs0(x)O(x)

〉
CFT

= e−Scl(s0).

On the left hand side is a gauge theory expectation value, and on the right hand side

the supergravity counterpart. The source on the field theory side s0 is identified with

the boundary condition on the scalar field s, which is the scalar field on the gravity side

corresponding to O. It should be stressed that the right hand side is a simplification

of a path integral in the gravity theory under the assumption that it is dominated

by the classical contribution Scl. This is a valid approximation when the background

curvature R is much larger than the string length scale `s, i.e when λ� 1.

A priori, the classical computation in string theory therefore relates to a computa-

tion in the gauge theory at strong coupling. For this reason, it is usually difficult to

verify the correspondence. However, additional tuneable parameters of the theory can

circumvent this. This was the idea in the BMN limit, where the additional parameter

J made available a double scaling limit. Presently the idea is similar, our additional

parameter will be the world-volume flux k, which as we saw appears on the gravity

side as an angle

κ =
πk√
λ
. (8.1)

On the field theory side, as explained in [15] the gauge theory computation should

arrange itself in powers of λ/k2. Thus we can keep λ� 1 justifying the GKPW, and

at the same time consider
λ

k2
� 1, (8.2)

by sending

k →∞, but k � N. (8.3)

Implicitly we are doing a double scaling limit, as it is understood that we are

working in the planar limit, and must therefore send also N → ∞, while λ = fixed.
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This can lead to an order of limits problem, as turned out to be the case for the BMN

limit, however, whether this is the case presently remains to be seen.

Such a double scaling limit was taken in [16] where they compared the one-point

functions of the chiral primary operator to string theory. Agreement between the field

theory computation and the string theory computation are found at leading order in
λ
k2

.

In [38] we are able to make use of the fact that the vertex operator is known for

the chiral primary tr[ΦL
1 ] to make a direct comparison with string theory at tree-level.

That string theory computation however, is only carried out to exponential accuracy

and doesn’t hold at next to leading order, except for in the large L limit. Therefore

we will later make use of another independent result. Namely we will use the string

theory computation done in [16], which can be expanded beyond tree-level.

8.2 Comparing Results with String Theory

The GKPW relation (8.1) implies that one-point functions in the field theory are given

by

〈O(x)〉 = − δScl

δs0(x)
. (8.4)

Normally this would simply equate to zero, since the supergravity background is a

classical solution to the equations of motion of Scl, and hence all variations on it

vanish. However, presently we have the case where there is also a D5 brane in the

game, which from the string theory point of view is what gives rise to non-trivial

one-point functions.

In [16] the computation of the variations of the D5 brane part of the action, namely

SD5 = −T5

∫ √
− det(G+ F) + T5

∫
F ∧ C4 (8.5)

is carried out. It is a rather lengthy computation, but at the end of the day it amounts

to

− δScl

δs0(x)
= CL

√
λ2L/2Γ(L+ 1/2)

π3/2
√
LΓ(L)

1

(x3)L

∫ ∞

0

du
uL−2

[(1− κu)2 + u2]L+1/2
. (8.6)

This result is specifically for a variation with respect to a source scalar that corresponds

to the SO(3)× SO(3) chiral primary field theory operator

ÔL = CL

{( 3∑

i=1

φ2
i

)L/2
+
( 6∑

i=4

φ2
i

)
QL−2

( 3∑

i=1

φ2
i ,

6∑

i=4

φ2
i

)}
(8.7)

where CL is a normalization constant and QL−2(a, b) is a homogeneous polynomial of

a and b of degree 1
2
(L− 2).
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Important to us is that the first term makes it clear that these operators ÔL
have non-zero overlaps with the chiral primary that we are considering, the BMN

vacuum tr ΦL
1 . We may therefore compare the ratios of the one-loop to the tree-level

contributions for these operators, and expect agreement, in particular

〈tr ΦL
1 〉one-loop

〈trΦL
1 〉tree-level

∣∣∣∣∣
gauge

=
〈ÔL〉one-loop

〈ÔL〉tree-level

∣∣∣∣∣
string

. (8.8)

This was first noted in [42], where we also found that the results indeed matched to

one-loop order. From [16], specifically equation (4.7) therein one finds after identifying

2` with our L

〈ÔL〉one-loop

〈ÔL〉tree-level

∣∣∣∣∣
string

=
λ

4π2k2

L(L+ 1)

L− 1
. (8.9)

And on the other hand from (7.76) one finds

〈tr ΦL
1 〉one-loop

〈trΦL
1 〉tree-level

∣∣∣∣∣
gauge

=
λ

4π2k2

(
L(L+ 1)

L− 1
+O(k−2)

)
. (8.10)

To see that simply expand the Bernoulli polynomials in 1/k for large k and then finally

take the first couple of terms in the sum over n.

Remarkably this game can be continued to higher orders, by expanding the integral

in (8.6) and the all-loop conjecture (7.76) and comparing order by order in the λ/k2

expansion. As can be seen the two continue to agree order by order, in fact they

continue to agree to all orders which was first demonstrated in [47]. This can be seen

by noting that ∫ ∞

0

du
uL−2

[
(1− κu)2 + u2

]L+1/2
= I(κ, L), (8.11)

where

I(κ, L) =
[
κ2 + 1

] 3
2

∫ π/2

− arctanκ

dθ cos2L−1 θ (κ+ tan θ)L−2 . (8.12)

The ratio of higher orders to tree-level on the string theory side is then

I(κ, L)

I(∞, L)
=

Γ(L+ 1
2
)

κL+1
√
π Γ(L)

[
κ2 + 1

] 3
2

∫ π
2

− arctanκ

dθ cos2L−1 θ (κ+ tan θ)L−2. (8.13)

The integral above was carried out in [47] giving the results

〈ÔL〉one-loop

〈ÔL〉tree-level

∣∣∣∣∣
string

=
I(κ, L)

I(∞, L)
=

(
κ+
√
κ2 + 1

)L (
L
√
κ2 + 1− κ

)

2L(L− 1)κL+1
. (8.14)

49



Now on the other hand the field theory result (7.76) takes also on a very nice closed

form in the double scaling limit, noting that the Bernoulli polynomials simplify greatly

Bn

(1− k
2

)
→ −

(
k

2

)n
(8.15)

one finds

〈tr ΦL
1 〉one-loop

〈trΦL
1 〉tree-level

∣∣∣∣∣
gauge

→


1 +

L/2∑

n=1

(
L− n
n− 1

)
L

n

L+ 1

L− n

(
2g

k

)2n

 . (8.16)

This sum is readily computed and gives

〈tr ΦL
1 〉one-loop

〈trΦL
1 〉tree-level

∣∣∣∣∣
gauge

→

(√
λ

π2k2
+ 1 + 1

)L (
L
√

λ
π2k2

+ 1− 1
)

2L(L− 1)
. (8.17)

Remarkably this coincides exactly with (8.14) once we remember that κ is the angle

of the D5 embedding and given by

κ =
πk√
λ
. (8.18)

This makes it an example of a non-trivial computation in support of AdS/dCFT, at

least in the context of the present double scaling limit. Outside this special limit, one

would possibly need to take into account further corrections from the dressing phase

and wrapping interactions. Normally one also needs to take into account Lüscher

corrections, however this is probably not necessary in the present case due to the lack

of excitations in the vacuum state considered.
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9 Conclusion and Outlook

As we have seen, the defect N = 4 SYM theory arising in the D3-probe-D5 brane setup

features new and interesting observables, such as one-point functions. In this thesis the

focus has been on the SU(2) sector of operators, as they elegantly map to the simplest

spin-chain we know. However, there are other observables of interest, both one-point

functions of operators that do not belong to the SU(2) sector, as well as Wilson loops

and two-point functions between operators of differing conformal dimensions. The

results discussed in this thesis have opened up the possibilities for novel exploration

into these kinds of observables.

Recently the interface-particle potential has been computed at one-loop level via

a Wilson line [50], and furthermore [14, 51] have initiated the study of two-point

functions involving operators of differing conformal dimensions, and in particular [14]

tested the boundary conformal bootstrap equations. The Wilson loop computation

showed perfect agreement with string theory result. Along with the results herein for

the BMN vacuum (7.76), the all-loop conjecture, these results make a compelling case

for the AdS/dCFT program. In addition it would seem that integrability is still a

central piece of the story, without which these results would be hard to obtain. Lastly,

the defect in this setup breaks the vanilla N = 4 supersymmetry to N = 2, and as

such, this analysis is at the forefront of holography and integrability in a setting with

reduced symmetries, when compared with the standard.

That being said, the tests so far have been for highly special observables, like

the chiral primary tr ΦL
1 , an operator that is protected from quantum corrections in

vanilla N = 4 SYM. Although the computations in the defect scenario still allow them

to gain quantum corrections, these corrections are less involved than the corrections

that the unprotected operators are subject to. In particular, the double scaling limit

that enables the success of the comparisons with string theory in the λ/k2 expansion,

break down for the unprotected operators. This is encoded in the flux factor in (7.72)

which explicitly breaks the λ/k2 expansion for operators with non-trivial anomalous

dimension.

In general it would be interesting to look at the nature of the proposed AdS/dCFT

correspondence for non-protected operators. However, their dual string states have

thus far not been obtained. The string state dual to tr ΦL
1 is a string stretching between

the D5 and the insertion point on the stack of D3’s. The equivalent for non-protected

SU(2) operators, would be a rapidly spinning string that should somehow also span

from the D5 to the stack of D3’s, but a solution to this boundary problem is far more
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involved.

Aside from further advanced tests of the AdS/dCFT correspondence. It would

be a good idea to revisit a proof for the tree-level one-point functions. As mentioned

there seems a possibility that Baxter Q-operators might facilitate a much more concise

proof. Furthermore, the proof rests presently on the existence of a similarity transfor-

mation (6.77), which so far only has a rather involved constructive proof. It would be

interesting to investigate the nature of (6.77) in further detail, and potentially find a

deeper connection.

In general, the results at one-loop order for arbitrary k and M that lead to (7.70)

are mostly conjectures. It would be desirable to obtain proofs, in particular of the

all-loop conjecture. A first step in that direction would be to address proofs of the

results for the amputated matrix product state overlaps (7.37). A natural starting

place might be to look for a proof of the special case k = 2, where (7.50) is found to

hold for arbitrary M , proving this might be easier than the author is able to gauge at

present.

Other than the already mentioned desirable continuations of this work, there is

the closely related D3-probe-D7 brane setup. A notable key difference in that setup

is the fact that there is no longer any remnant supersymmetry, in other words the

defect breaks it all. Furthermore the defect is now associated with the probe D7 brane

which is still an AdS4 brane, but that wraps an S4 or S2× S2 inside the S5. This gives

rise to two world volume fluxes, one for each S2. Thus the k we have seen appearing

in the present D3-probe-D5 brane setup is appearing twice, i.e, one gets two ranks

k1, k2. This case has been studied so far at tree-level in [17]. Going beyond tree-level,

following the same ideas as in the one-loop study of the D3-probe-D5 setup, is not out

of the question, however it is likely more involved due to lacking symmetries. Aside

from that, the setup is very reminiscent, and clearly a potentially interesting candidate

for an AdS/dCFT setup that no longer preserves any of the original supersymmetries

of the archetypal AdS/CFT correspondence.

In general, it is safe to say that interacting defect conformal field theories in four

dimensions have not been studied as much as the very well understood two-dimensional

cousins. Indeed there are not many known interacting four-dimensional conformal field

theories, in that sense N = 4 SYM is rather unique. It remains to be seen whether or

not the present D3-probe-D5 dCFT retains it’s classical symmetries at the quantum

level, in particular the conformal symmetries that leave the defect invariant. Evidence

points towards this being the case when k = 0, where [12, 13] make compelling argu-

ments for why this should be the case. However a strict proof still seems desirable, and
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much less is known in general for k ≥ 2. Mapping out the complete theory, including

the interactions with the defect theory for k ≥ 2 is necessary to go to higher loop

orders, and could present us with a much interesting picture of the present setup. The

recent paper [14] is a first step in this direction, but it would seem that a lot of work

still lies ahead.
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A Algebraic Bethe Ansatz

The works of Faddeev and the Leningrad group have lead to the very useful algebraic

approach to the problem of diagonalizing integrable models, such as the XXX1/2 spin-

chain. We will proceed to give a quick rundown of some constructions relevant to the

current context based on the lecture notes [34].

In the algebraic language the spin chain is an object whose state is constructed

from the product of local spaces V n. In the case of spin-1
2

these local spaces can be

identified with V 2 = C2. Each of these cites can be in a local state of either spin up ↑
or spin down ↓. The Hilbert space is in other words taken to be

HL = C2
1 ⊗ C2

2 ⊗ · · · ⊗ C2
L. (A.1)

On this space the Hamiltonian takes the neat form

H =
L∑

j=1

Hj,j+1, Hj,j+1 = Ij,j+1 − Pj,j+1 (A.2)

where the indices indicate that the operators work on cites C2
j ,C

2
j+1. The marvelous

realization was that all of the conserved charges of this system could be generated by

the expansion of a transfer matrix in the spectral parameter. The transfer matrix is

constructed via the Monodromy which in turn is a product of Lax matrices. The Lax

matrix is admittedly a bit taken out of the blue, and given by

Ln,a(λ) = (λ− i
2
)In,a + iPn,a. (A.3)

The Monodromy is then given by

Ma(λ) = L1,a(λ)L2,a(λ) · · ·LL,a(λ) (A.4)

and finally the transfer matrix is simply its trace over the auxiliary space a

T (λ) = traMa(λ). (A.5)

The tower of conserved charges are then found by expanding around λ = i
2

log T (λ) =
L∑

n=1

Qn(λ− i
2
)n. (A.6)

Notably Q1 gives the total momentum of the chain, and Q2 gives the total energy, up

to shift, specifically

H =
i Q2

2
− L

2
. (A.7)
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The algebraic framework gives us much more than just the charges. Taking a peek

back at the Monodromy, we see that it is a 2×2 matrix in the auxiliary space, that is

Ma(λ) =

(
A(λ) B(λ)

C(λ) D(λ)

)
, (A.8)

where each entry A,B,C,D can be understood as an operator acting on the entirety

of the chain. Indeed,

T (λ) = A(λ) +D(λ), (A.9)

and since H ∝ T (λ) we understand that states of definite energy must be eigenstates of

the transfer matrix. As explained in more detail in [34], it becomes natural to associate

the operators B(λ) with creation operators provided that we choose a vacuum state

|0〉 that satisfies

C(λ)|0〉 = 0. (A.10)

The upshot is that, not only do we get a ladder of commuting charges, but also, a

prescription for how to generate eigenstates, namely

B(u1)B(u2) · · ·B(uM)|0〉, (A.11)

which remarkably, like the plane wave ansatz, are only eigenstates provided that the

rapidities satisfy (
uj + i

2

uj − i
2

)L
=

M∏

k 6=j

uj − uk + i

uj − uk − i
. (A.12)

To see this requires a bit of work, but it is a very approachable exercise.

Note that the Lax matrix as defined in (A.4) coincides with the one in [34], but

it is not the same as the one we use elsewhere in this thesis. Here it is simply used

because it is convenient for the story above. Otherwise we use

La,n(λ) = Ia,n +
i

λ− i
2

Pa,n, (A.13)

which only means that we get factors of (u− i
2
). For instance, using (A.13) we would

have

B(u) = 〈↑|
L⊗

j=1

(
Ij,0 +

i

u− i
2

Pj,0

)
|↓〉 (A.14)

whilst using Faddeev prescription we find

B(u) = (u− i
2
)LB(u). (A.15)

In general calligraphic typesetting is used for the objects that are derived from the

prescription (A.13).
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B SYM from 10 dimensions and getting the fermions right

We proceed to construct N = 4 SYM in four spacetime dimensions from the reduction

of N = 1 SYM in ten spacetime dimensions, following Brink and Schwarz [52].

The 10 dimensional action reads

S10 =

∫
d10xTr

{
−1

4
FMNFMN + i

2
Ψ̄ΓMDMΨ

}
, (B.1)

where N,M = 0, 1, 2, . . . , 9 are Lorentz indices. The field-strength tensor is given by

FMN = i[DM , DN ], DM = ∂M − iAM , (B.2)

on adjoint field

DM = ∂M − i[AM , ], (B.3)

and recall that under a gauge transformation U we have

A→ AU = UAU−1 + iU∂U. (B.4)

The fermions Ψ satisfy simultaneously the Majorana and the Weyl condition

Ψ = C10Ψ̄T , Γ11Ψ = −Ψ. (B.5)

Lastly ΓM are 10-dimensional gamma matrices satisfying

{ΓM ,ΓN} = −2ηMN . (B.6)

with mostly positive signature.

We use the following conventions for gamma matrices, and since the aim is to

reduce to four-dimensions we begin with those. We denote them γµ, µ = 0, 1, 2, 3 and

use the representation

γµ =

(
0 σµ

σ̄µ 0

)
, {γµ, γν} = −2ηµν (B.7)

in mostly positive signature. We also have

γ5 = iγ0γ1γ2γ3, (B.8)

and the charge conjugation matrix C is give by

C =




0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0



, γTµ = −CγµC−1. (B.9)
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The following relations hold

γ†µ = γ0γµγ0, γ∗µ = −γ0C γµ C−1γ0 (B.10)

and it follows that the Lorentz invariant reality condition for Dirac spinors in four-

dimensions is

Ψ∗ = αγ0CΨ, |α|2 = 1. (B.11)

This reality condition can be written as

Ψ = ΨC , ΨC ≡ CΨT
, (B.12)

where Ψ = Ψ†γ0. To see this consider [γµ, γν ]Ψ and take it’s complex conjugate and

find a consistent reality condition of the form

Ψ∗ = βΨ, Ψ∗∗ = Ψ. (B.13)

Now on to the ten-dimensional gamma matrices. We choose to express them in

terms of the four-dimensional ones as follows

Γµ = γµ ⊗ 1, µ = 0, 1, 2, 3,

Γ4 = γ5 ⊗ 1 ⊗ iγ0,

Γa+4 = γ5 ⊗ 1 ⊗ γa, a = 1, 2, 3

Γ8 = γ5 ⊗ σ1 ⊗ iγ5,

Γ9 = γ5 ⊗ σ2 ⊗ iγ5.

(B.14)

In this basis one finds that

C10 = C ⊗ σ2 ⊗ C, ΓTM = −C10ΓMC−1
10 (B.15)

and

Γ11 = Γ0Γ1 · · ·Γ9 = −γ5 ⊗ σ3 ⊗ γ5. (B.16)

This is quite nice, it turns out however that we can do better. Using a unitary trans-

formation

U = 14 ⊗ U8, U8 =




0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0

0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0

i 0 0 0 0 0 0 0

0 i 0 0 0 0 0 0

0 0 0 0 0 0 i 0

0 0 0 0 0 0 0 i




(B.17)
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does the job. In the transformed basis Γ→ UΓU † we have

C10 = C ⊗
(

0 14

14 0

)
, Γ11 = γ5 ⊗

(
−14 0

0 14

)
. (B.18)

where we also made sure to transform the charge conjugation matrix appropriately,

i.e

C10 → U∗C10U
†, (B.19)

such that it still satisfies (B.15) in the new basis. Note here that it would seem that

the original Brink and Schwarz paper has a sign missing in Γ11. The tensor product

nicely hints at the spinor decomposition

Ψ =




χ1

...

χ8


 (B.20)

where χi, i = 1, 2, 3, . . . 8 are for the moment unconstrained Dirac spinors in four-

dimensions.

We notice that the Weyl condition

Γ11Ψ = −Ψ (B.21)

implies 


χ1

...

χ4

χ5

...

χ8




=




+γ5χ1

...

+γ5χ4

−γ5χ5

...

−γ5χ8




=⇒




χ1

...

χ4

χ5

...

χ8




=




Lψ1

...

Lψ4

Rψ5

...

Rψ8




(B.22)

where

L = 1
2
(1+ γ5), R = 1

2
(1− γ5), (B.23)

are respectively left and right projectors that act on the four-dimensional spinors. Note

that γ5L = L while γ5R = −R. Furthermore the Majorana condition reads

Ψ = C10Γ0Ψ∗ ⇐⇒ Ψ = ΨC = CΨT
. (B.24)
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From Cγ0γ5ψ
∗
i = −Cγ0γ5γ0Cψi = −γ5ψi, it follows that




Lψ1

...

Lψ4

Rψ5

...

Rψ8




= ΨC =




Cγ0Rψ
∗
5

...

Cγ0Rψ
∗
8

Cγ0Lψ
∗
1

...

Cγ0Lψ
∗
4




=




Lψ5

...

Lψ8

Rψ1

...

Rψ4




. (B.25)

This implies that

Ψ =




Lψ1

...

Lψ4

Rψ1

...

Rψ4




(B.26)

is the form of the general ten-dimensional Majorana-Weyl spinor. The spinors sitting

inside it are four-dimensional Majorana spinors. We see that we have precisely four

of them, ψi, i = 1, 2, 3, 4 and they are Majorana as they satisfy the four-dimensional

Majorana condition ψi = CψTi .

Now that we have the Majorana-Weyl spinor decomposed in terms of four-dimensional

Majorana spinors, we are almost ready to do the dimensional reduction. We should

also decompose the gauge field

Aµ = Aµ, µ = 0, 1, 2, 3,

Ai = φi, i = 4, 5, 6, 7, 8, 9.
(B.27)

The reduction ansatz is then to“freeze”all dependence on coordinates xi, i = 4, 5, . . . 9.

We find that the gauge kinetic term reduces to

FMNFMN = F µνFµν + 2F µiFµi + F ijFij, (B.28)

with
F µiFµi =

(
∂µφi − ∂iAµ − i[Aµ, φi]

)(
∂µφi − ∂iAµ − i[Aµ, φi]

)

= DµφiDµφi,
(B.29)

and
F ijFij =

(
∂iφj − ∂jφi − i[φi, φj]

)(
∂iφj − ∂jφi − i[φi, φj]

)

= −[φi, φj][φi, φj].
(B.30)
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While the fermionic kinetic term reduces to

iΨ̄ΓMDMΨ = iΨ̄ΓµDµΨ + Ψ̄Γi[φi,Ψ], (B.31)

where the term proportional to ∂i was omitted since it gives no contribution due to

reduction ansatz.

So the resulting four-dimensional theory has the action

∫
d4xTr

{
−1

4
F µνFµν − 1

2
DµφiDµφi + iΨ̄ΓµDµΨ + Ψ̄Γi[φi,Ψ] + 1

4
[φi, φj][φi, φj]

}
.

(B.32)

We can make it more explicit, by using the gamma matrix decomposition (B.14).

Specifically Γµ = γµ ⊗ 18 makes it possible for us to write

iΨ̄ΓµDµΨ = i(Lψi)
†γ0γ

µDµLψi + i(Rψi)
†γ0γ

µDµRψi

= iψ̄iγ
µDµLψi + iψ̄iγ

µDµRψi

= iψ̄iγ
µDµψi,

(B.33)

where we used that Lγ0 = γ0R and RR = R,LL = L and furthermore that ψ =

Lψ + Rψ. It would seem that in Brink and Schwarz they have forgotten the term

involving R and hence have not arrived at as simple of a kinetic term.

For the remaining fermionic term we write

Ψ̄Γi[φi,Ψ] = Ψ̄jγ5Γ̃ijk[φi,Ψk] (B.34)

where

Ψj = Lψj, j = 1, 2, 3, 4, Ψj = Rψj, j = 5, 6, 7, 8, (B.35)

and it is hopefully understood that γ5 acts on the four-dimensional spinors sitting

inside Ψi.

Since RL = 0 we conclude that only the blocks of Γ̃ijk that mix right and left

contribute, since (Rψ) = ψ̄L and (Lψ) = ψ̄R. But indeed this is a mute statement

since Γ̃i has the form

Γ̃i =

(
0 (−1)iGi

Gi 0

)
, i = 4, . . . , 9. (B.36)
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It will turn out to be convenient for us to shuffle around the definitions of our 10-

dimensional gamma matrices as we defined in (B.14). Specifically

Γ4 → Γ5,

Γ5 → Γ7,

Γ6 → Γ9,

Γ7 → Γ4,

Γ8 → Γ6,

Γ9 → Γ8.

(B.37)

Now we have

Γ̃i =

(
0 −Gi

Gi 0

)
, i = 4, 5, 6, Γ̃i =

(
0 Gi

Gi 0

)
, i = 7, 8, 9. (B.38)

Now that means that we can write

Ψ̄jΓ
i
jk[φi,Ψk] =

6∑

i=4

Ψ̄jγ5Γ̃ijk[φi,Ψk] +
9∑

i=7

Ψ̄jγ5Γ̃ijk[φi,Ψk]

=
6∑

i=4

(
ψ̄j+4Lγ5G

i
jk[φi, Lψk]− ψ̄jRγ5G

i
jk[φi, Rψk+4]

)
+

9∑

i=7

({L}+ {R})i

=
6∑

i=4

ψ̄jG
i
jk[φi, ψk] +

9∑

i=7

ψ̄jG
i
jk[φi, γ5ψk]

cl
=

6∑

i=4

ψ̄jG
i
jk[φ

cl
i , ψk]

!
=

3∑

i=1

ψ̄jG
i
jk[φ

cl
i , ψk]

(B.39)

In going from the second to the third line a sign change is induced by the fact that

Lγ5 = L while Rγ5 = −R, furthermore note that ψj+4 = ψj due to Majorana-Weyl

constraint in 10-dimensions. Lastly we see that when we only have φcl
i 6= 0 for i =

4, 5, 6. From now on we will shift the indies i, j · · · by −3 so that we sum from 1 to 3,

Here are the relevant Gi matrices

G1 =




0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0



, G2 =




0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0



, G3 =




0 −i 0 0

i 0 0 0

0 0 0 −i
0 0 i 0



, (B.40)
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G4 =




0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0



, G5 =




0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0



, G6 =




0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0



.

(B.41)

It is straight forward to check that

{Gi, Gj} =

{
+2δi,j, i, j = 1, 2, 3,

−2δi,j, i, j = 4, 5, 6.
(B.42)

[Gi, Gj] = 0, i = 1, 2, 3, j = 4, 5, 6. (B.43)

62



References

[1] G. Hooft, “A planar diagram theory for strong interactions,” Nuclear Physics B 72

no. 3, (1974) 461 – 473.

http://www.sciencedirect.com/science/article/pii/0550321374901540.

[2] J. M. Maldacena, “The Large N limit of superconformal field theories and

supergravity,” Int. J. Theor. Phys. 38 (1999) 1113–1133, arXiv:hep-th/9711200

[hep-th]. [Adv. Theor. Math. Phys.2,231(1998)].

[3] M. Natsuume, “AdS/CFT Duality User Guide,” Lect. Notes Phys. 903 (2015)

pp.1–294, arXiv:1409.3575 [hep-th].

[4] J. Erdmenger, Introduction to Gauge/Gravity Duality, pp. 99–145. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2012.

https://doi.org/10.1007/978-3-642-25947-0_3.

[5] J. Polchinski, “Introduction to Gauge/Gravity Duality,” in Proceedings, Theoretical

Advanced Study Institute in Elementary Particle Physics (TASI 2010). String Theory

and Its Applications: From meV to the Planck Scale: Boulder, Colorado, USA, June

1-25, 2010, pp. 3–46. 2010. arXiv:1010.6134 [hep-th].

https://inspirehep.net/record/875017/files/arXiv:1010.6134.pdf.

[6] A. V. Ramallo, “Introduction to the AdS/CFT correspondence,” Springer Proc. Phys.

161 (2015) 411–474, arXiv:1310.4319 [hep-th].

[7] N. Beisert et al., “Review of AdS/CFT Integrability: An Overview,” Lett. Math. Phys.

99 (2012) 3–32, arXiv:1012.3982 [hep-th].

[8] D. Serban, “Integrability and the AdS/CFT correspondence,” J. Phys. A44 (2011)

124001, arXiv:1003.4214 [hep-th].

[9] N. Beisert, “The Dilatation operator of N=4 super Yang-Mills theory and

integrability,” Phys. Rept. 405 (2004) 1–202, arXiv:hep-th/0407277 [hep-th].

[10] A. Karch and L. Randall, “Localized gravity in string theory,” Phys. Rev. Lett. 87

(2001) 061601, arXiv:hep-th/0105108 [hep-th].

[11] A. Karch and L. Randall, “Open and closed string interpretation of SUSY CFT’s on

branes with boundaries,” JHEP 06 (2001) 063, arXiv:hep-th/0105132 [hep-th].

[12] O. DeWolfe, D. Z. Freedman, and H. Ooguri, “Holography and Defect Conformal Field

Theories,” Phys. Rev. D66 (2002) 025009, arXiv:hep-th/0111135 [hep-th].

[13] J. Erdmenger, Z. Guralnik, and I. Kirsch, “Four-dimensional superconformal theories

with interacting boundaries or defects,” Phys. Rev. D66 (2002) 025020,

arXiv:hep-th/0203020 [hep-th].

63

http://dx.doi.org/http://dx.doi.org/10.1016/0550-3213(74)90154-0
http://dx.doi.org/http://dx.doi.org/10.1016/0550-3213(74)90154-0
http://www.sciencedirect.com/science/article/pii/0550321374901540
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.1007/978-4-431-55441-7
http://dx.doi.org/10.1007/978-4-431-55441-7
http://arxiv.org/abs/1409.3575
http://dx.doi.org/10.1007/978-3-642-25947-0_3
https://doi.org/10.1007/978-3-642-25947-0_3
http://dx.doi.org/10.1142/9789814350525_0001
http://arxiv.org/abs/1010.6134
https://inspirehep.net/record/875017/files/arXiv:1010.6134.pdf
http://dx.doi.org/10.1007/978-3-319-12238-0_10
http://dx.doi.org/10.1007/978-3-319-12238-0_10
http://arxiv.org/abs/1310.4319
http://dx.doi.org/10.1007/s11005-011-0529-2
http://dx.doi.org/10.1007/s11005-011-0529-2
http://arxiv.org/abs/1012.3982
http://dx.doi.org/10.1088/1751-8113/44/12/124001
http://dx.doi.org/10.1088/1751-8113/44/12/124001
http://arxiv.org/abs/1003.4214
http://dx.doi.org/10.1016/j.physrep.2004.09.007
http://arxiv.org/abs/hep-th/0407277
http://dx.doi.org/10.1103/PhysRevLett.87.061601
http://dx.doi.org/10.1103/PhysRevLett.87.061601
http://arxiv.org/abs/hep-th/0105108
http://dx.doi.org/10.1088/1126-6708/2001/06/063
http://arxiv.org/abs/hep-th/0105132
http://dx.doi.org/10.1103/PhysRevD.66.025009
http://arxiv.org/abs/hep-th/0111135
http://dx.doi.org/10.1103/PhysRevD.66.025020
http://arxiv.org/abs/hep-th/0203020


[14] M. de Leeuw, A. C. Ipsen, C. Kristjansen, K. E. Vardinghus, and M. Wilhelm,

“Two-point functions in AdS/dCFT and the boundary conformal bootstrap

equations,” JHEP 08 (2017) 020, arXiv:1705.03898 [hep-th].

[15] K. Nagasaki, H. Tanida, and S. Yamaguchi, “Holographic Interface-Particle Potential,”

JHEP 01 (2012) 139, arXiv:1109.1927 [hep-th].

[16] K. Nagasaki and S. Yamaguchi, “Expectation values of chiral primary operators in

holographic interface CFT,” Phys. Rev. D86 (2012) 086004, arXiv:1205.1674

[hep-th].

[17] C. Kristjansen, G. W. Semenoff, and D. Young, “Chiral primary one-point functions in

the D3-D7 defect conformal field theory,” JHEP 01 (2013) 117, arXiv:1210.7015

[hep-th].

[18] D. E. Berenstein, J. M. Maldacena, and H. S. Nastase, “Strings in flat space and pp

waves from N=4 superYang-Mills,” JHEP 04 (2002) 013, arXiv:hep-th/0202021

[hep-th].

[19] C. Kristjansen and G. W. Semenoff, “The D3-probe-D7 brane holographic fractional

topological insulator,” JHEP 10 (2016) 079, arXiv:1604.08548 [hep-th].

[20] H. Bethe, “Zur Theorie der Metalle,” Zeitschrift für Physik 71 no. 3, (Mar, 1931)

205–226. http://dx.doi.org/10.1007/BF01341708.

[21] I. Bena, J. Polchinski, and R. Roiban, “Hidden symmetries of the AdS(5) x S**5

superstring,” Phys. Rev. D69 (2004) 046002, arXiv:hep-th/0305116 [hep-th].

[22] G. Arutyunov and S. Frolov, “Foundations of the AdS5 × S5 Superstring. Part I,” J.

Phys. A42 (2009) 254003, arXiv:0901.4937 [hep-th].

[23] Z. Bern, M. Czakon, L. J. Dixon, D. A. Kosower, and V. A. Smirnov, “The Four-Loop

Planar Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric

Yang-Mills Theory,” Phys. Rev. D75 (2007) 085010, arXiv:hep-th/0610248

[hep-th].

[24] N. Beisert, A. Garus, and M. Rosso, “Yangian Symmetry and Integrability of Planar

N = 4 Supersymmetric Yang-Mills Theory,” Phys. Rev. Lett. 118 (Apr, 2017) 141603.

https://link.aps.org/doi/10.1103/PhysRevLett.118.141603.

[25] N. Beisert and M. Staudacher, “The N=4 SYM integrable super spin chain,” Nucl.

Phys. B670 (2003) 439–463, arXiv:hep-th/0307042 [hep-th].

[26] N. Beisert and M. Staudacher, “Long-range psu(2, 2|4) Bethe Ansatze for gauge theory

and strings,” Nucl. Phys. B727 (2005) 1–62, arXiv:hep-th/0504190 [hep-th].

64

http://dx.doi.org/10.1007/JHEP08(2017)020
http://arxiv.org/abs/1705.03898
http://dx.doi.org/10.1007/JHEP01(2012)139
http://arxiv.org/abs/1109.1927
http://dx.doi.org/10.1103/PhysRevD.86.086004
http://arxiv.org/abs/1205.1674
http://arxiv.org/abs/1205.1674
http://dx.doi.org/10.1007/JHEP01(2013)117
http://arxiv.org/abs/1210.7015
http://arxiv.org/abs/1210.7015
http://dx.doi.org/10.1088/1126-6708/2002/04/013
http://arxiv.org/abs/hep-th/0202021
http://arxiv.org/abs/hep-th/0202021
http://dx.doi.org/10.1007/JHEP10(2016)079
http://arxiv.org/abs/1604.08548
http://dx.doi.org/10.1007/BF01341708
http://dx.doi.org/10.1007/BF01341708
http://dx.doi.org/10.1007/BF01341708
http://dx.doi.org/10.1103/PhysRevD.69.046002
http://arxiv.org/abs/hep-th/0305116
http://dx.doi.org/10.1088/1751-8113/42/25/254003
http://dx.doi.org/10.1088/1751-8113/42/25/254003
http://arxiv.org/abs/0901.4937
http://dx.doi.org/10.1103/PhysRevD.75.085010
http://arxiv.org/abs/hep-th/0610248
http://arxiv.org/abs/hep-th/0610248
http://dx.doi.org/10.1103/PhysRevLett.118.141603
https://link.aps.org/doi/10.1103/PhysRevLett.118.141603
http://dx.doi.org/10.1016/j.nuclphysb.2003.08.015
http://dx.doi.org/10.1016/j.nuclphysb.2003.08.015
http://arxiv.org/abs/hep-th/0307042
http://dx.doi.org/10.1016/j.nuclphysb.2005.06.038
http://arxiv.org/abs/hep-th/0504190


[27] A. Karch and L. Randall, “Locally localized gravity,” JHEP 05 (2001) 008,

arXiv:hep-th/0011156 [hep-th]. [,140(2000)].

[28] D. Gaiotto and E. Witten, “Supersymmetric Boundary Conditions in N=4 Super

Yang-Mills Theory,” J. Statist. Phys. 135 (2009) 789–855, arXiv:0804.2902

[hep-th].

[29] N. R. Constable, J. Erdmenger, Z. Guralnik, and I. Kirsch, “Intersecting D-3 branes

and holography,” Phys. Rev. D68 (2003) 106007, arXiv:hep-th/0211222 [hep-th].

[30] N. Beisert, “The complete one loop dilatation operator of N=4 superYang-Mills

theory,” Nucl. Phys. B676 (2004) 3–42, arXiv:hep-th/0307015 [hep-th].

[31] N. Beisert, C. Kristjansen, J. Plefka, G. W. Semenoff, and M. Staudacher, “BMN

correlators and operator mixing in N=4 superYang-Mills theory,” Nucl. Phys. B650

(2003) 125–161, arXiv:hep-th/0208178 [hep-th].

[32] J. A. Minahan, “Review of AdS/CFT Integrability, Chapter I.1: Spin Chains in N=4

Super Yang-Mills,” Lett. Math. Phys. 99 (2012) 33–58, arXiv:1012.3983 [hep-th].

[33] J. A. Minahan and K. Zarembo, “The Bethe ansatz for N=4 superYang-Mills,” JHEP

03 (2003) 013, arXiv:hep-th/0212208 [hep-th].

[34] L. D. Faddeev, “How algebraic Bethe ansatz works for integrable model,” in

Relativistic gravitation and gravitational radiation. Proceedings, School of Physics, Les

Houches, France, September 26-October 6, 1995, pp. pp. 149–219. 1996.

arXiv:hep-th/9605187 [hep-th].

[35] M. de Leeuw, C. Kristjansen, and K. Zarembo, “One-point Functions in Defect CFT

and Integrability,” JHEP 08 (2015) 098, arXiv:1506.06958 [hep-th].

[36] Gaudin, M., “Diagonalisation d’une classe d’hamiltoniens de spin,” J. Phys. France 37

no. 10, (1976) 1087–1098. https://doi.org/10.1051/jphys:0197600370100108700.

[37] V. E. Korepin, “Calculation of norms of Bethe wave functions,” Comm. Math. Phys.

86 no. 3, (1982) 391–418. http://projecteuclid.org/euclid.cmp/1103921777.

[38] I. Buhl-Mortensen, M. de Leeuw, C. Kristjansen, and K. Zarembo, “One-point

Functions in AdS/dCFT from Matrix Product States,” JHEP 02 (2016) 052,

arXiv:1512.02532 [hep-th].

[39] M. de Leeuw, C. Kristjansen, and S. Mori, “AdS/dCFT one-point functions of the

SU(3) sector,” Phys. Lett. B763 (2016) 197–202, arXiv:1607.03123 [hep-th].

[40] M. Brockmann, “Overlaps of q-raised Néel states with XXZ Bethe states and their
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Abstract

One-point functions of certain non-protected scalar operators in the defect
CFT dual to the D3-D5 probe brane system with k units of world volume flux
can be expressed as overlaps between Bethe eigenstates of the Heisenberg
spin chain and a matrix product state. We present a closed expression of
determinant form for these one-point functions, valid for any value of k. The
determinant formula factorizes into the k = 2 result times a k-dependent pre-
factor. Making use of the transfer matrix of the Heisenberg spin chain we
recursively relate the matrix product state for higher even and odd k to the
matrix product state for k = 2 and k = 3 respectively. We furthermore find
evidence that the matrix product states for k = 2 and k = 3 are related via
a ratio of Baxter’s Q-operators. The general k formula has an interesting
thermodynamical limit involving a non-trivial scaling of k, which indicates
that the match between string and field theory one-point functions found
for chiral primaries might be tested for non-protected operators as well. We
revisit the string computation for chiral primaries and discuss how it can be
extended to non-protected operators.
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1 Introduction

Holographic modeling of spontaneously or explicitly broken symmetries typ-
ically involves probe branes. An interesting class of quantum field theory
set-ups arises when the probe brane breaks translational invariance and in-
troduces a defect in the dual field theory. Internal degrees of freedom on the
defect then originate from open strings and belong to the fundamental rep-
resentation of the gauge group, while the fields in the bulk arise from closed
strings and transform in the adjoint. Such defect field theories allow for novel
types of correlation functions that are not possible without the defect. Exam-
ples are one-point functions of bulk fields and correlation functions involving
operators localized on the defect.
In the present paper we concentrate on the defect CFT dual to the D3-D5
probe brane system with k units of background gauge field flux [1]. The
brane intersection introduces a domain wall that separates the vacua with
respectively unbroken SU(N) and SU(N − k) gauge symmetry in the N = 4
supersymmetric Yang-Mills (SYM) theory, with additional degrees of free-
dom living on the defect [2, 3]. One-point functions in this dCFT were
studied in [2, 4, 5, 6] whereas two-point functions of defect operators were
considered in [2, 7, 8], where integrability of the underlying N = 4 SYM
proved particularly useful. The defect operators are mapped to spin chains
with open boundary conditions and are dual to open strings attached to the
probe D5-brane. We approach the problem from a different angle by pic-
turing the D5-brane as a boundary state that can emit and absorb closed
strings. An absorption of a single string state is represented, in the field
theory, by a one-point function of a bulk operator.
The non-vanishing flux on the D5-brane represents k D3 banes dissolved in
its world-volume, while in the field-theory language the symmetry-breaking
is described by a non-zero vacuum expectation value of scalar fields, that
form a k-dimensional unitary representation of su(2) [9, 10]. In the present
paper we continue our study [6] of the one-point functions in the defect CFT
resulting from this semiclassical description. We also do some rudimentary
analysis on the strong-coupling side of the AdS/CFT duality.
Our work relies in many ways on methods borrowed from solid state physics.
It is already well-known that probe brane systems can be used to model
various strongly coupled condensed matter systems (see [11] for an overview).
Furthermore, the spin-chain picture of the single-trace operators in N = 4
SYM uncovers the integrable structure of the theory [12, 13] and paves the
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way for the use of the Bethe ansatz techniques that greatly facilitate the
spectral analysis of theory. Apart from these well-known points of contact
we find that so-called matrix product states (MPS), which in the condensed
matter context have been used in the evaluation of quantum entanglement
in one-dimensional systems, have exactly the right properties to act as a
”defect state”. The computation of the one-point functions in the dCFT
maps to the computation of an overlap between the MPS and the Bethe
eigenstates of the spin chain. Finally, the Néel state, i.e. the ground state of
the classical Heisenberg anti-ferromagnet, plays a surprisingly central rôle in
our investigations.
A simple set of scalar operators in the D3-D5 dCFT with non-trivial one-
point functions are the operators of the form trZL−MWM , where Z andW are
complex scalar fields from the N = 4 supermultiplet. Conformal operators
belonging to this SU(2) sub-sector are known to be expressible as Bethe
eigenstates of the Heisenberg XXX1/2 spin chain of length L in the sector
with L−M spins up and M spins down. Each operator is characterized by a
set of M Bethe roots and, as shown in [6], only parity-symmetric operators

with paired rapidities {uj,−uj}
M/2
j=1 and even length, L, can have non-trivial

one-point functions at tree level. The one-point functions are constrained by
conformal symmetry to take the form

⟨OL(x)⟩ =
Ck({uj})

xL
, (1.1)

where x is the distance to the defect.
In our previous work we found a closed expression for C2({uj}) valid for any
value of L and any value of M [6]:

C2 ({uj}) = 2 [(
2π2

λ
)

L 1

L
∏
j

u2
j +

1
4

u2
j

detG+

detG−
]

1
2

, (1.2)

where G± are M
2 × M

2 matrices with matrix elements:

G±
jk = (

L

u2
j +

1
4

−∑
n

K+
jn) δjk +K

±
jk, (1.3)

and K±
jk are defined as

K±
jk =

2

1 + (uj − uk)
2 ±

2

1 + (uj + uk)
2 . (1.4)
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The main result of the present paper is the general formula for the one-point
function with arbitrary k:

Ck ({uj}) = 2L−1C2 ({uj})

k−1
2

∑
j= 1−k

2

jL
M
2

∏
i=1

u2
i (u

2
i +

k2

4 )

[u2
i + (j − 1

2)
2] [u2

i + (j + 1
2)

2]
. (1.5)

The multiplicative factor which relates C2n to C2 is simply the eigenvalue of a
product of transfer matrices of the Heisenberg spin chain when acting on the
Bethe state in question and C2n+1 is related to C3 in a similar manner. Finally
C3 is related to C2 via the eigenvalues of a ratio of Q-operators. Apart from
being deeply rooted in integrability the formula (1.5) also has the appealing
property that it allows us to take a classical, thermodynamical limit which
involves scaling ui in the same way as k. An interesting semi-classical limit
with k → ∞, λ → ∞ and λ/k2 finite exists and allows for a comparison
of string and gauge theory results. So far, in this limit a match has been
found between one-point functions of chiral primaries on the string and the
gauge theory side [4, 5]. Formula (1.5) opens the possibility of extending the
comparison to massive string states.
The outline of our paper is as follows. In section 2 we describe in slightly
more detail the D3-D5 probe brane set-up and, in addition, recapitulate why
matrix product states constitute a convenient tool for the calculation of one-
point functions. Section 3 contains some additional insights on the k = 2 case.
Subsequently, in section 4 we proceed to prove the multiplicative relation
between C2 and C2n as well as between C3 and C2n+1 for n ⩾ 2. Details are
relegated to an appendix. The special case k = 3 is treated in section 5. In
section 6 we consider the behavior at large-k and in the thermodynamical
limit. The latter limit, in principle, allows for a comparison with string theory
and in section 7 we revisit calculation of the one-point functions of the chiral
primary states, now from the classical string theory perspective. This set-up
bears promise of an extension to massive states. Finally, section 8 contains
some concluding remarks.

2 One point functions from matrix product

states.

As mentioned above, AdS/CFT set-ups relating probe brane systems with
fluxes to defect conformal field theories allow for non-trivial one-point func-
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tions. In the simplest such set-up, the D3-D5-brane system, the D5-brane
has the geometry AdS4 × S2 and carries k units of magnetic flux on S2 [1].
On the field theory side one finds N = 4 SYM with a co-dimension one defect
separating a region, x > 0, where the gauge group is SU(N) from one where
it is SU(N − k) [2, 3]. For x > 0 the classical equations of motion then allow
for a non-trivial x-dependence for some of the scalar fields, namely [10]

Φcl
i =

1

x
(

(ti)k×k 0k×(N−k)
0(N−k)×k 0(N−k)×(N−k)

) , i = 1,2,3, Φcl
i = 0, i = 4,5,6, (2.1)

where the three k × k matrices ti constitute a unitary k-dimensional repre-
sentation of su(2), that is, they satisfy

[ti, tj] = iεijktk. (2.2)

The remaining bulk fields can consistently be set to zero at the classical level.
Hence, at tree level the only operators with non-trivial one-point functions
(discarding derivatives) are those which take the form

O = Ψi1...iL tr Φi1 . . .ΦiL , (2.3)

with i1, . . . , iL ∈ {1,2,3} and, obviously, these one-point functions are ob-
tained simply by replacing each field with its classical value, i.e.

Ψi1...iL tr Φi1 . . .ΦiL Ð→ Ψi1...iL tr ti1 . . . tiL . (2.4)

The natural basis of operators consists of the operators with well-defined
conformal dimensions and for simplicity we will restrict our analysis to oper-
ators from an SU(2) sub-sector, a sub-sector known to be closed to all loop
orders. We therefore define

Z = Φ1 + iΦ4,

W = Φ2 + iΦ5, (2.5)

and consider only single trace operators built from these two complex scalar
fields. Aiming only at tree-level one-point functions it suffices to know the
conformal operators of the theory to one-loop order. It is well-known that
the conformal operators in the SU(2) sub-sector of N = 4 SYM at one-loop
order can be identified with the zero-momentum Bethe eigenstates of the
XXX1/2 Heisenberg spin chain upon mapping each Z-field to a spin up and

4



each W -field to a spin down [12]. This result is unchanged by the presence of
the defect [7]. Working within the approach of the algebraic Bethe ansatz the
eigenstates of the XXX1/2 Heisenberg spin chain can be written as a series of
creation operators acting on the ferromagnetic vacuum (that we can take to
be the state with all spins up), i.e.

∣{uj}⟩ = B(u1) . . .B(uM) ∣0⟩L , (2.6)

where L denotes the length of the chain, the operator B(u) creates an ex-
citation (a flipped spin) of rapidity u and in order for the state to be an
eigenstate the rapidities {uj} have to fulfill a set of Bethe equations, see for
instance [14]. The state (2.6) has a total of L spins and M of these are
down-spins. It maps to an SU(2) operator built of L −M fields of type Z
and M fields of type W .
As pointed out in [6] one can implement the transformation (2.4) for a given
Bethe eigenstate by taking the inner product of the state with a matrix
product state, defined as

⟨MPSk ∣ = tra
L

∏
l=1

(⟨↑l∣⊗ t
(k)
1 + ⟨↓l∣⊗ t

(k)
2 ) , (2.7)

where the index a is an auxiliary space index associated with the ti’s (and
thus takes k different values for a representation of dimension k). Choosing
the canonical normalization of the field theory two-point functions (from
the theory without the defect) one can hence express the desired one-point
functions as

Ck ({uj}) = (
8π2

λ
)

L
2

L−
1
2
⟨MPSk ∣ {uj}⟩

⟨{uj}∣{uj}⟩
1
2

. (2.8)

Without reference to the dimension of the representation, k, one can show
that [6]

• Ck ({uj}) vanishes unless L and M are both even.

• Ck ({uj}) vanishes unless {uj} = {−uj}.

The states which fulfill the second criterium are the so-called unpaired states
which can also be characterized as states being invariant under spin-chain
parity, cf. f.inst. [15]. In particular, we note that the one-point function thus
effectively depends only on M/2 rapidities.
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3 The k = 2 case

The overlap for k = 2 was found in [6] and is given by eq. (1.2) in the
introduction. It was observed in [6] that for M = L/2 the overlap, up to a
simple factor, coincided with the overlap between the Bethe eigenstate and
the Néel state, i.e. the state with alternating spins which is the ground state
of the anti-ferromagnetic Heisenberg spin chain

∣Néel⟩ = ∣↑↓↑↓ . . . ↑↓⟩ + ∣↓↑↓↑ . . . ↓↑⟩ . (3.1)

This fact could be exploited to construct a proof of the formula (1.2) for
M = L/2 as it could be proved that, restricted to the components with half-
filling, the matrix product state is cohomologically equivalent to the Néel
state

∣MPS2⟩ ∣
M=L

2

=
1

2L( i2)
M

∣Néel⟩ + S− ∣. . .⟩ . (3.2)

Here Si is the total spin operator, and S− is its lowering component that flips
in turn all the spins in the chain with weight one. Since Bethe eigenstates
are highest-weight:

S+ ∣{uj}⟩ = 0, (3.3)

the second term in (3.2) does not contribute to the inner product between the
matrix product state and the Bethe state. In this way the result for the one-
point function corresponding to a Bethe eigenstate with half filling followed
from the overlap formula for the Néel state derived in [16], see also [17]. Away
from half-filling the formula (1.2) continues to hold. This can be understood
from an earlier result for the overlap between a Bethe eigenstate and the
(2m)-fold raised Néel state [18].1 More precisely, it follows by noting

∣MPS2⟩ ∣
M=L

2
−2m

=
1

2L( i2)
M

1

(2m)!
(S+)2m ∣Néel⟩ + S− ∣. . .⟩ . (3.4)

This result directly follows from the fact that the (2m)-fold raised Néel state
is equivalent to the generalized Néel state (compare eq. (5.5) from [6] and
eq. (38) from [18]), which was shown to be cohomologically equivalent to
the matrix product state in [6]. See [19] for a rederivation of the k = 2
overlap formula away from half-filling using reflecting-boundary domain-wall
boundary conditions.

1We thank Stefano Mori for pointing this out to us.
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4 The general k case

As explained in [6] one can explicitly evaluate the overlap (2.8) for lower
values of L, M and k by choosing a specific k-dimensional representation
of su(2) and making use of the well-known coordinate space version of the
Bethe eigenstates. It was the results of such evaluations that first lead us to
the main result (1.5).
In this section we will prove a recursive relation between matrix product
states with different values of k. More precisely, we will shown that all matrix
product states with even k are recursively related to the matrix product state
with k = 2 via the action of a series of transfer matrices of the Heisenberg
spin chain. Similarly, all matrix product states with odd k are shown to
be recursively related to the matrix product state with k = 3, and finally
evidence is presented that the matrix product state for k = 3 can be generated
from the matrix product state for k = 2 by the action of a ratio of Baxter’s
Q-operators. The general result (1.5) then follows from the fact that the
Bethe eigenstates are eigenstates of the transfer matrix as well as of Baxter’s
Q-operator with known eigenvalues.
For illustrative purposes, let us spell out the general formula (1.5) in a few
cases

C3 ({uj}) = C2 ({uj}) 2L
M
2

∏
i=1

u2
i

u2
i +

1
4

, (4.1)

C4 ({uj}) = C2 ({uj})

⎡
⎢
⎢
⎢
⎢
⎣

3L
M
2

∏
i=1

u2
i

u2
i + 1

+

M
2

∏
i=1

u2
i + 4

u2
i + 1

⎤
⎥
⎥
⎥
⎥
⎦

, (4.2)

C5 ({uj}) = C3 ({uj})

⎡
⎢
⎢
⎢
⎢
⎣

2L
M
2

∏
i=1

u2
i +

1
4

u2
i +

9
4

+

M
2

∏
i=1

u2
i +

25
4

u2
i +

9
4

⎤
⎥
⎥
⎥
⎥
⎦

. (4.3)

The previously announced recursive relation between matrix product states
with different values of k takes the following form

∣MPSk+2⟩ = T ( ik2 ) ∣MPSk⟩ − (
k + 1

k − 1
)

L

∣MPSk−2⟩, (4.4)

where k ⩾ 2 and ∣MPS0⟩ = 0. Here T (v) is the transfer matrix of the XXX1/2

Heisenberg spin chain

T (v) ∶= tra(La1 . . .LaL), (4.5)
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with L the Lax operator

La,i(v) = 1 +
i

v − i
2

P, (4.6)

which is expressed in terms of the permutation operator P . As usual the
label a refers to an auxiliary 2-dimensional space, C2, which is traced over
in the definition of T (v). For details we refer to [14]. The idea behind the
proof of formula (4.4) is to consider the local action of the Lax operator. The
matrix product state (2.7) is an element of C2L and it is constructed out of
the local building blocks

( ⟨↑∣⊗ t
(k)
1 + ⟨↓∣⊗ t

(k)
2 ) ∈ C2 ⊗GL(Ck). (4.7)

Now, we add an additional auxiliary C2 space and consider the action of the
Lax operator on the physical space and the new auxiliary space which gives

Li,a(
ik
2 ) [⟨↑i∣⊗ t

(k)
1 + ⟨↓i∣⊗ t

(k)
2 ] =∶ (⟨↑i∣⊗ τ

(k)
1 + ⟨↓i∣⊗ τ

(k)
2 ) ∈ C2 ⊗GL(C2k),

where the matrices τ
(k)
1,2 are given by

τ
(k)
1 = (

k+1
k−1t

(k)
1 0

2
k−1t

(k)
2 t

(k)
1

) , τ
(k)
2 = (

t
(k)
2

2
k−1t

(k)
1

0 k+1
k−1t

(k)
2

) . (4.8)

In the appendix we show explicitly for even as well as for odd k ⩾ 2, that
there exists a similarity transformation A such that

Aτ
(k)
i A−1 = (

t
(k+2)
i 0

⋆i
k+1
k−1t

(k−2)
i

) . (4.9)

This relation immediately proves the recursion relation (4.4) for k ⩾ 2.
The transfer matrix is the key ingredient of the Algebraic Bethe ansatz. In
particular, the Bethe states ∣{ui}⟩ are eigenvectors of the transfer matrix
with eigenvalues

Λ(v∣{ui}) = (
v + i

2

v − i
2

)

L

∏
i

v − ui − i

v − ui
+∏

i

v − ui + i

v − ui
. (4.10)
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The recursion relation (4.4) hence allows us to fix all overlap functions C2n

with n ⩾ 2 in terms of C2 and C0 ≡ 0, as well as all C2n+1 with n ⩾ 2 in terms
of C3 and C1 ≡ 0 by means of the following recursion relation

Ck+2 = Λ( ik2 ∣{ui})Ck − (
k + 1

k − 1
)

L

Ck−2. (4.11)

It is easily checked that (1.5) (for k ⩾ 2) is the unique solution to this equa-
tion.

5 The special case k = 3.

The analysis of the previous section involving the transfer matrix did not al-
low us to prove the relation (4.1) for C3({uj}). However, this relation, which
was observed by studying short chains of length L ⩽ 10, seems to indicate that
a ratio of two so-called Q-operators could relate ∣MPS3⟩ and ∣MPS2⟩. The Q
operator was originally introduced by Baxter in connection with his solution
of the 8-vertex model [20]. Only recently, an explicit algebraic construction,
especially adapted to the XXX1/2 Heisenberg chain was carried out [21], see
also [22]. The Bethe eigenstates are eigenstates of the Q-operator, i.e. they
fulfill a relation like

Q̂(u) ∣{uj}⟩∝
M

∏
j=1

(u − uj) ∣{uj}⟩ . (5.1)

The algebraic construction of the Q-operator from [21] is strictly speaking
only well-defined for the Heisenberg spin chain when a certain twist, φ, is
introduced. The twist can be introduced either at the level of the Hamiltonian
or entirely via the boundary conditions. In the latter case the spin chain
boundary conditions turn into

SzL+1 = S
z
1 , S±L+1 = e

∓iφS±1 . (5.2)

In the presence of the twist, the action of the Q operator on a Bethe eigen-
state gives rise to a product of not only M , but a larger number of factors of
the type (u − uj), hence involving an extra set of rapidities which, however,
all tend to infinity when the twist is sent to zero. The extra rapidities con-
tain information about Bethe eigenstates in the twisted model which become
descendent states in the limit φ → 0. Although the Q-operator itself is thus
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ill-defined in the zero twist limit, a ratio of two Q-operators is generically
finite and can give rise to exactly the pre-factor in (4.1).
In analogy with the transfer matrix, the Q-operator can be defined as the
trace of a certain monodromy matrix [21]. The auxiliary Hilbert space asso-
ciated with the monodromy is infinite dimensional, namely the Fock space,
F , associated with the usual harmonic oscillator algebra

[a,a†] = 1. (5.3)

In other words the auxiliary Hilbert space F is spanned by the vectors ∣n⟩,
n ∈ Z0 which fullfil

a†∣n⟩ = ∣n + 1⟩, a∣n⟩ = n∣n − 1⟩. (5.4)

The Q operator itself then takes the form

Q(u) ∶=
e
φ
2
u

trF (e−iφh)
trF (e−iφhLL(u)⊗ . . .⊗L1(u)) , (5.5)

where φ is the twist, h = a†a + 1
2 , and

Ll(u) = (
1 a†

−ia u − ih
)
l

. (5.6)

This explicit form of the Q operator makes it straightforward to implement
it in Mathematica and by explicit computations one can demonstrate that
for short matrix product states (L ⩽ 8) one has

lim
φ→0

Q( i2)
−1Q(0) ∣MPS2⟩ = 2−L ∣MPS3⟩ + S

−∣ . . .⟩. (5.7)

Note that Q( i2)
−1Q(0) is divergent in the φ → 0 limit due to the fact that

u = i
2 corresponds to a singular point for the Bethe equations for any L.

However, it turns out that the divergencies in the vector Q( i2)
−1Q(0)∣MPS2⟩

appear in prefactors of terms of the type S−∣ . . .⟩ which have zero overlap
with a Bethe eigenstate.2 We would also like to note that the term S−∣ . . .⟩
first appears for L = 8,M = 4. In particular, for the other values of L,M that

2 Thus, strictly speaking in order to have a well-defined version of eqn. (5.7), one
would have to redefine the left hand side with a term proportional to S−. This is a further
complication of the φ→ 0 limit.
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were checked, the left hand side of (5.7) is finite and the ratio of Q-operators
exactly relates the matrix product states.3

If formula (5.7) could be proved true for any length it would immediately
imply relation (4.1) as the Bethe eigenstates of the untwisted Heisenberg
spin chain are highest weight states. The construction of the Q operator as
a monodromy matrix makes it tempting to speculate about the possibility of
a proof relying only on the local operator Ll(u), similar in idea to the proof
of the recursive structure of the overlap formula. However, the need for an
inversion of Q, a limiting procedure as well as the appearance of the term
involving the lowering operator complicate matters.

6 Large k

The general formula for the one-point function (1.5) is valid for any k under
the assumption that k ≪ N . An interesting limit to consider is to take k very
large (but still small compared to N). At strong coupling, k quite naturally
scales with λ such that the ratio k/

√
λ remains finite at λ → ∞. This ratio

controls the field strength of the internal gauge field on the world-volume
of the D5-brane, the holographic dual of the domain wall that separates the
two vacua. The classical solution for the D5-brane [1] depends only on k/

√
λ,

but not on λ or k separately.
In this paper we study the weak-coupling regime when scaling k with λ
makes little sense, but we can still take k ≫ 1. The large-k limit of the
overlap that involves a small number of excitations (up to M = 4) has already
been considered in [6]. With the explicit expression at hand, we can now
take the large-k limit in full generality, for any M . We can also consider
the thermodynamic limit when the length of the spin chain L, the number
of excitations M and the rank of the su(2) representation k go to infinity
simultaneously such that L ∼M ∼ k.
When k is large, while L and M are of order one, the sum over j in the general

3 One can also consider the equation

Q(0) ∣MPS2⟩ = 2−LQ( i
2
) ∣MPS3⟩ + S− ∣. . .⟩ , (5.8)

which we found to hold for L ⩽ 10 and any value of φ. This equation is also divergent in
the limit of vanishing twist and again the divergencies are of the form S− ∣. . .⟩.
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formula (1.5) is saturated on the upper (or lower) limit of summation:

Ck ({uj}) ≃ 2L−MC2 ({uj})

M
2

∏
i=1

u2
i

k
2

∑
j=1

jL−2M , (6.1)

and yields the following result

Ck ({uj}) ≃
2M−1∏

M
2
i=1 u

2
i

L − 2M + 1
C2 ({uj}) k

L−M+1 +O(kL−M), (6.2)

whose dependence on k agrees with the scaling indicated in [6] and reproduces
in detail the particular cases M = 0,2,4 studied there.
Alternatively, we can take k to infinity simultaneously with L and M . The
limit when the spin chain becomes infinitely long and is populated by a large
number of low-lying excitations is the semiclassical limit of the Heisenberg
model. The Bethe roots in this regime scale as uj ∼ L, while M ∼ L → ∞

[23, 24]. Bethe states of this type describe macroscopic, essentially classical
waves of coherent spin precession [25].
While taking the semiclassical limit at weak coupling is not exactly the same
as considering classical strings in AdS5×S5, quantities calculated in classical
string theory depend on λ through the combination λ/L2. By re-expanding
the string results in this parameter one can often reproduce the weak-coupling
perturbation theory up to some fixed order in λ/L2. The agreement of the
BMN spectrum [26] with magnon energies in the spin chain, or comparison
of classical spinning strings in S5 [27] with semiclassical Bethe states [24, 28]
are two well-known examples where this approach works. In the context of
the defect CFT, the one-point functions of protected operators with small
L and M = 0 also perfectly agree with the classical supergravity calculation
expanded in λ/k2 [4, 5]. Keeping in mind possible comparison to semiclassical
string theory (rather than supergravity), we will compute one-point functions
of non-protected operators with M ∼ L in the thermodynamic limit, taking
in addition k ∼ L at L→∞.
The Bethe roots in the thermodynamic limit condense on a number of cuts
in the complex plane and can be characterized by a continuous density

ρ(x) =
1

L

M
2

∑
j=1

(δ (x −
uj
L

) + δ (x +
uj
L

)) . (6.3)
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The density satisfies a singular integral equation, as a consequence of the
Bethe equations for uj’s:

2⨏
C

dy ρ(y)

x − y
=

1

x
+ 2πni, x ∈ Ci. (6.4)

Each of the cuts Ci is associated with an integer mode number ni. The
normalization of the density is the filling fraction,

∫
C

dxρ(x) =
M

L
≡ α, (6.5)

and α ⩽ 1/2 for physical, highest-weight Bethe states.
The ratio of determinants in (1.2) tends to a constant in the thermodynamic
limit [6], while the products over Bethe roots in (1.5) exponentiate and can
be replaced by convolution integrals with the density. Approximating sum-
mation over j by integration over ξ = j/L, we find:

Ck ≃ const
√
L(

8π2L2

λ
)

L
2

χ

∫
−χ

dξ e LSeff(ξ), (6.6)

where

χ =
k

2L
(6.7)

and

Seff(ξ) =
1

2 ∫
dxρ(x) ln

x2 (x2 + χ2)

(x2 + ξ2)
2 + ln ∣ξ∣. (6.8)

The integral is again saturated at ξ = ±χ, and we get for the following result
for the overlap in the thermodynamic limit:

Ck ∼
const
√
L

(
2π2k2

λ
)

L
2

e −AL, (6.9)

where

A =
1

2 ∫
dxρ(x) ln

x2 + χ2

x2
. (6.10)
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The simplest example is the BMN vacuum of the spin chain, the empty state
with no Bethe roots that corresponds to the chiral primary operator trZL.
In this case A = 0, and with exponential accuracy

⟨trZL⟩
def

≃ (

√
2πk
√
λ

)

L
1

RL
, (6.11)

where R is the distance from the operator insertion to the defect.
The simplest non-trivial solution of the finite-gap (classical Bethe) equations
(6.4), which is symmetric under x→ −x, has two cuts (x1,x2) and (−x1,−x2)

symmetrically located in the complex plane, such that x2 = x̄1. The mode
numbers of this solution are n and −n. The density can be expressed through
elliptic integrals [24], but it is more convenient to characterize the solution
by the quasi-momentum

p(x) = ∫
dy ρ(y)

x − y
−

1

2x
, (6.12)

whose differential is meromorphic on the two-sheeted cover of the complex
plane with cuts. For the two-cut solution [28],

dp =
1
2 − α −

x1x2

2x2
√

(x2 − x2
1) (x

2 − x2
2)
dx. (6.13)

The solution is parameterized by a single complex variable

r =
x2

1

x2
2

, (6.14)

through which the endpoints are expressed as

x1 =
1

4nK
, x2 =

1

4n
√
rK

, (6.15)

while the filling fraction is given by

α =
1

2
−

E

2
√
rK

, (6.16)

where E ≡ E(1 − r) and K ≡ K(1 − r) are the complete elliptic integrals of
the second and first kind.
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To compute (6.10) we first express its derivative with respect to χ through
the quasi-momentum:

∂A

∂χ
= i

iχ

∫
−iχ

dp(x) +
1

χ
. (6.17)

Integrating (6.13) twice we obtain:

A =
χ

x1K
(EF (ϕ) −KE (ϕ)) − (1 − 2α) ln

√
χ2 + x2

1 +
√
χ2 + x2

2

x1 + x2

+
1

2
ln
χ2 (x2

1 + x
2
2) + 2x2

1x
2
2 + 2x1x2

√
(χ2 + x2

1) (χ
2 + x2

2)

4x2
1x

2
2

−
x1

x2

¿
Á
ÁÀχ2 + x2

2

χ2 + x2
1

+ 1, (6.18)

where F (ϕ) and E(ϕ) are the incomplete elliptic integrals of the same mod-
ulus 1 − r, and argument

tanϕ =
χ

x1

. (6.19)

The one-point function exponentiates in the thermodynamic limit, which
suggests a semiclassical interpretation. Since the exponent is always nega-
tive (it is easy to see that A > 0), the overlap is exponentially suppressed and
perhaps can be interpreted as a tunneling amplitude of a transition between
a Bethe eigenstate and the MPS or generalized Néel state. If this interpre-
tation is correct the transition amplitude could probably be described in the
semiclassical regime by an instanton solution of the Landau-Lifshitz equa-
tions, the classical equations of motion of the Heisenberg model. We are not
in a position to construct such a solution here. Instead we will study the
one-point function at strong coupling, where the description from the very
beginning is in classical terms.

7 Comparison to string theory

In string theory, the defect that separates the SU(N) and SU(N − k) vacua
is described by a D5-brane embedded in AdS5 × S5, and carrying k units of
magnetic flux on its world-volume. The magnetic flux naturally scales with
λ such that

κ =
πk
√
λ

(7.1)
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remains finite in the strong-coupling limit.
The brane embedding is very simple in Poincaré coordinates

ds2 =
dx2 + dz2

z2
. (7.2)

The brane intersects AdS5 along the AdS4 hyperplane, tilted with respect to
the boundary at an angle that depends on the magnetic flux [1, 4]:

x = κz, (7.3)

where x is the direction perpendicular to the defect (for instance, x = x3 if the
defect is the domain wall in the x1−x2 plane). The remaining two dimensions
of the brane wrap the equatorial two-sphere in S5. The orientation of the
S2 within S5 is dictated by the R-symmetry quantum numbers of the defect.
The solution (2.1) involves scalar fields Φ1, Φ2, Φ3. When S5 is represented
by a unit sphere in R6, each Φi is dual to the i-th coordinate direction,
and consequently the D-brane intersects the S5 along the 123-plane. The
background gauge field is a constant (monopole) magnetic field with k units
of field strength on S2.
The process of emitting or absorbing a string by a D-brane is described by a
string world-sheet attached to the D-brane at its constant-τ section, which we
take to be τ = 0. The boundary conditions are then of the Dirichlet type for
the coordinates transverse to the brane (X i) and mixed Neumann-Dirichlet
for the longitudinal coordinates Xµ:

∂σX
i = 0,

∂τXµ +
2π
√
λ
Fµν ∂σX

ν = 0, (7.4)

where Fµν is the internal gauge field on the D-brane world-volume.
The one-point function of a local operator is computed by inserting a vertex
operator in the string path integral:

⟨O(x)⟩def = ∫ DXM
∫ d2wVO (X(w)∣x) e −

√
λ

2π
Sstr[X]. (7.5)

The vertex operator, schematically, has the following form:

V (X ∣x) = ∂X ∂X e Σ(X), (7.6)
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where, roughly speaking, e Σ is the wave function of the corresponding string
mode in AdS5×S5. The exponent is proportional to the quantum number of
the string state, and for large quantum numbers, Σ ∼ Q ∼

√
λ is of the same

order of magnitude as the string action.
In the semiclassical approximation, valid at λ → ∞, the path integral over
XM , as well as the integration over the position of the vertex operator, are
saturated on the saddle point of the integrand:

⟨O(x)⟩def ≃ VO (Xcl(w0)∣x) e −
√
λ

2π
Sstr[Xcl], (7.7)

where ≃ denotes equality with exponential accuracy, and XM
cl is the solution

of the string equations of motion [29]:

δSstr

δXM
=

2π
√
λ

∂Σ

∂XM
δ (w −w0) . (7.8)

The boundary conditions are the Dirichlet-Neumann ones (7.4) on the end
of the string which is attached to the D-brane. The delta-function source in
the equations of motion can be traded for boundary conditions at the other
end (at w → w0). In the simplest case both the equations of motion and the
source can be linearized near w = w0:

δSstr

δXM
= −∂2XM + . . .

Σ = QMX
M + . . .

The delta-function then produces a logarithmic singularity at w0 in XM :

XM = −
QM
√
λ

ln ∣w −w0∣ + . . . (7.9)

It is convenient to introduce exponential coordinates near w:

w −w0 = e iσ−τ , (7.10)

The boundary conditions then take the familiar form of the string moving in
the direction XM with momentum QM :

XM =
QM
√
λ
τ + . . . (7.11)
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In this paper we only consider the simplest case of the chiral primary operator
O = trZL. The dual vertex operator is known exactly [30], but for our
purposes the exponential accuracy would suffice:

VCPO ≃ 2
L
2 z−L e iLϕ. (7.12)

Here ϕ is the angle in the 14-plane in R6 (the orientation is again dictated
by the R-symmetry quantum numbers of the field Z in (2.5)).
The classical string solution with the boundary conditions described above
can be constructed by the method of images, placing a fictitious source at the
same distance R on the other side of the defect and considering a two-point
function ⟨tr Z̄L(−R) trZL(R)⟩. The classical solution for the latter is the
Euclidean continuation of the BMN geodesic [31]:

ϕ = iωτ,

x = R tanhω (τ + τ0) ,

z =
R

coshω (τ + τ0)
. (7.13)

We take the τ > 0 portion of the world-sheet as the solution for the string end-
ing on the D-brane. The solution automatically satisfies the right boundary
conditions at the operator insertion point (τ =∞), provided that

ω =
L
√
λ
, (7.14)

which follows from comparing (7.11) with (7.12).
As for the boundary conditions on the D-brane, the solution can be made
compatible with them by adjusting the constant of integration τ0. For a
point-like string the boundary conditions are Dirichlet in the transverse di-
rections and purely Neumann in the longitudinal ones (the magnetic field
plays no rôle because ∂σXµ = 0). Geometrically, these boundary conditions
mean that the string world-sheet should meet the D-brane (7.3) at the right
angle. And indeed, the string forms a semi-circle centered at zero, for which
the D5-brane (projected onto the xz plane) is a radius and so the two are
perpendicular at the point of intersection (fig. 1). The same is true on S5,
where the string trajectory approaches the brane, sitting in the 123-plane,
perpendicularly, along the 14-plane.
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string 

D5 

AdS 5 S 5 

Figure 1: The BMN string ending on the brane can be constructed by the method
of images from the solution that describes the two-point function of the operators
inserted at points −R and R placed symmetrically on the two sides of the defect.
Since the string world-line in AdS5, geometrically, is a semicircle, it is perpendic-
ular to the D5-brane and hence satisfies the correct Dirichlet-Neumann boundary
conditions.

It is only necessary to make sure that string emission is simultaneous in S5

and AdS5. This can done by adjusting the parameter τ0. The condition for
XM(0) to lie on the D-brane worldvolume (7.3) is

κ =
x(0)

z(0)
= sinhωτ0, (7.15)

which determines τ0 in terms of κ.
The relevant part of the string action (the solution is in the conformal gauge),

S =
1

2 ∫
dτdσ [

(∂x)
2
+ (∂z)

2

z2
+ (∂ϕ)

2
] , (7.16)

evaluates to zero on the classical solution (7.13), so the contribution to the
one-point functions comes entirely from the vertex operator. From (7.12) we
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find:

⟨trZL⟩
def

≃
2
L
2

RL
lim
τ→∞

coshL ω (τ + τ0) e −ωLτ = (
κ +

√
κ2 + 1

√
2

)

L
1

RL
, (7.17)

where we have used (7.15) in the last equality. This result agrees with the
supergravity calculation [4] in their overlapping regime of validity. One can
check that at large4 L , the integral (3.15) in [4] is saturated by the saddle-
point which results in (7.17). This is not surprising, since at large L the
geodesic approximation should be valid for the supergraviton propagator in
AdS5, making string and supergravity calculations manifestly equivalent.
This result is valid at λ → ∞, k → ∞, with k/

√
λ fixed. In this approxi-

mation the one-point function does not depend on λ and k separately but
only on their ratio, and we have not made any assumptions on whether this
ratio is big or small. Assuming that κ is big we can expand the answer in
1/κ2 = λ/π2k2 getting a power series that resembles in form the ordinary
perturbation theory. To leading order we get:

⟨trZL⟩
def

≃
1

RL
(

√
2πk
√
λ

)

L

(1 +O (
λ

k2
)) , (7.18)

in complete agreement with the weak-coupling prediction (6.11).

8 Conclusions

Our general form for the one-point function (1.5) hints that integrability may
play a more profound role in the present context than we have so far been
able to reveal. First, the recursive structure of the one-point function formula
hinges on the properties of the transfer matrix of the Heisenberg spin chain
and seems to indicate the possibility of a proof which builds more directly
on the algebraic Bethe ansatz approach. Secondly, the relation between the
results for the two- and three-dimensional representation points towards a
novel application of Baxter’s Q-operator.
As pointed out previously, one-point functions of chiral primary operators
calculated in dCFT’s have been successfully matched to one-point functions
calculated in a supergravity approach [4, 5]. The fact that we have derived

4The R-charge is denoted by l in [4].
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an overlap formula valid for any value of k opens up a vast new arena for the
comparison between field theory and string theory, namely the comparison of
one-point functions of massive operators. We have taken a first step towards
entering this arena by re-formulating the gravity computation of the chiral
primary one-point function in a way which in principle allows for a gener-
alization to massive states. Implementing this generalization constitutes an
interesting and challenging future line of investigation.
Our work points towards several other possible lines of investigation. One-
point functions on the field theory side could be studied at higher loop orders,
in bigger sectors or for other types of defect field theories resulting from
probe-brane set-ups with fluxes. It would also be interesting to investigate
in further detail the exact role of the Q-operator in the present context and
to find a proof of (5.7).
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A Similarity transformation

In this section we present a similarity transformation matrixA and the matrix
quantities ⋆i which fulfill

Aτ
(k)
i A−1 = t̂

(k)
i , i = 1,2, (A.1)

where

t̂
(k)
i = (

t
(k+2)
i 0

⋆i
k+1
k−1t

(k−2)
i

) . (A.2)
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The quantities A, A−1 and ⋆i are expressed in terms of the matrix unities Ei
j

for which
Ei
j E

k
l = δ

k
j E

i
l . (A.3)

It is then a tedious albeit straightforward computation to show that

AA−1 = 1, and Aτ
(k)
i = t̂iA. (A.4)

Constructing A

We define the following functions

K[k, j] = (
k + 1

k − 1
)

(j−2)(j+1)
4

(
k − 2

k
)

(j−2)(j−1)
4

, (A.5)

F [k] =
k(k − 1)

k + 1

√
k − 1

k − 2
, (A.6)

H[k] =

√
2

k + 1

√
k − 1

k − 2
(A.7)

and
G[j] =

√
j(j + 1). (A.8)

Furthermore the matrix structure is such that we can write it in terms of the
matrices

Zn
m = En

m + iEn
k+m, and W = ZT , (A.9)

where En
m are the 2k×2k matrix unities – the one appears in the n-th row in

column m. We will also use the complex conjugates of these matrices, and
we denote them Z̄, W̄ .

Even k

The similarity transformation for even values of k is given by

Aeven = Z
k+3
1 − Z̄2k

k +H[k] (Z2k
k−2 − Z̄

k+3
3 ) (A.10)

+
k

∑
j =1

G[j]

G[k − 1]
(Zj+2

j + Z̄k−j+1
k−j+1) +

⌊k/2−1⌋

∑
j =2

F [k]

G[j]
(Z2k−j+1

k−j−1 − Z̄k+j+2
j+2 )
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and its inverse by

A−1
even =

1

2

3

∑
j =1

K[k, j] (W j
j + W̄

k−j+1
k−j+3 ) +

1

2

G[1]

G[k − 1]
(W k

k + W̄
1
3 ) (A.11)

+
1

2

k−2

∑
j =1

G[j]

F [k]
(W̄ k−j−1

2k−j+1 −W
j+2
k+j+2) +

1

2

⌊k/2−1⌋

∑
j =2

G[k − 1]

G[j]
(W k−j+1

k−j+1 + W̄
j
j+2) .

Odd k

For odd values of k the similarity transformation is given by

Aodd = Aeven +
F [k]

2G [k−1
2

]
(Z

3(k+1)
2

k−1
2

− Z̄
3(k+1)

2
k+3
2

) (A.12)

and its inverse by

A−1
odd = A

−1
even +

G[2k]

G[2k + 1]
(W

k+3
2

k+3
2

+ W̄
k+3
2
−2

k+3
2

) . (A.13)

Constructing ⋆i

We define the following functions

F ⋆[k, j] = k (
k − 1

k + 1
)

√
k

k − 2

√
k − 2 − j

(j + 1)(j + 2)(j + 3)
, (A.14)

G⋆[k] = (k − 1) (
k − 1

k + 1
)

√
k

k − 2

√
k + 2

k − 2
, (A.15)

H⋆[k] =
k

2
(
k − 1

k + 1
)

√
k

k − 2

√
k + 3

k − 1
, (A.16)

I⋆[k] =
k

2

√
k

k − 2

√
k − 1

k − 3
, (A.17)

and

J⋆[k] =
k + 1

2

√
k

2

√
k − 3

k − 1
. (A.18)
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Then ⋆i (i = 1,2) is given by

⋆i = (−1)
i−1
2 [

⌊k/2−3⌋

∑
j =1

F ⋆[k, j](E2k−j
k−j−1 + (−1)iEk+j+3

j+4 ) (A.19)

− J⋆[k](Ek+4
3 + (−1)iE2k−1

k ) −
k + 3

2k
F ⋆[k,0] (E2k

k−1 + (−1)iEk+3
4 ) +R⋆

i [k]]

where

R⋆
i [k] =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

G⋆[k](E
3k+4

2
k+2
2

+ (−1)iE
3k+2

2
k+4
2

), even k

I⋆[k](E
3k+5

2
k+3
2

+ (−1)iE
3k+1

2
k+3
2

) +H⋆[k](E
3k+3

2
k+1
2

+ (−1)iE
3k+3

2
k+5
2

), odd k

(A.20)
Note that we have written ⋆i as a 2k × 2k dimensional matrix. To be clear
this is just to ease the computation, and strictly speaking ⋆i denotes the
(k − 2) × (k + 2) matrix sitting inside t̂

(k)
i . It’s simply a matter of taking

En
m → Ěn−k−2

m where the latter is a matrix unity of dimension (k−2)×(k+2).
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One-loop one-point functions in gauge-gravity dualities with defects
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We initiate the calculation of loop corrections to correlation functions in 4D defect CFTs. More
precisely, we consider N = 4 SYM theory with a codimension-one defect separating two regions of
space, x3 > 0 and x3 < 0, where the gauge group is SU(N) and SU(N − k), respectively. This
set-up is made possible by some of the real scalar fields acquiring a non-vanishing and x3-dependent
vacuum expectation value for x3 > 0. The holographic dual is the D3-D5 probe brane system where
the D5 brane geometry is AdS4 × S2 and a background gauge field has k units of flux through
the S2. We diagonalise the mass matrix of the defect CFT making use of fuzzy-sphere coordinates
and we handle the x3-dependence of the mass terms in the 4D Minkowski space propagators by
reformulating these as standard massive AdS4 propagators. Furthermore, we show that only two
Feynman diagrams contribute to the one-loop correction to the one-point function of any single-
trace operator and we explicitly calculate this correction in the planar limit for the simplest chiral
primary. The result of this calculation is compared to an earlier string-theory computation in a
certain double-scaling limit, finding perfect agreement. Finally, we discuss how to generalise our
calculation to any single-trace operator, to finite N and to other types of observables such as Wilson
loops.

INTRODUCTION

Introducing boundaries or defects in conformal field
theories leads to novel features concerning correlation
functions [1]. For instance, one-point functions can be
non-vanishing and operators which have different confor-
mal dimensions can have a non-vanishing overlap. Fur-
thermore, such set-ups typically involve additional fields
which are confined to the defect and these fields can have
overlaps with the bulk fields. Via the Karch-Randall
idea [2], several examples of defect conformal field theo-
ries (dCFTs) with holographic duals have been identified.

Our focus is on a particular such 4D defect confor-
mal theory, namely N = 4 supersymmetric Yang-Mills
(N = 4 SYM) theory with a codimension-one defect sep-
arating two regions of space-time where the gauge group
is SU(N) and SU(N − k), respectively [3–6]. The holo-
graphic dual is the probe D3-D5 brane system involving
a single probe D5 brane with geometry AdS4×S2 where
a background gauge field has k units of flux on the S2 [6].

A number of one- and two-point functions involving
both bulk and defect fields have been analysed in the
zero flux case [7–11], but the study of correlation func-
tions in the presence of flux was only initiated recently. In
[12, 13], tree-level one-point functions of chiral primary
operators were calculated. For non-protected operators,
tree-level one-point functions are only meaningful for op-
erators which are one-loop eigenstates of the dilatation
generator. As is well known, such operators can be de-
scribed as Bethe eigenstates of a certain integrable spin
chain [14, 15]. A systematic method for the calculation of
tree-level one-point functions of non-protected operators
was presented in [16, 17], in which the one-point function
was expressed as the overlap between a Bethe eigenstate
and a certain matrix product state. Using the tools of

integrable spin chains, it was possible to derive a closed
expression for the one-point function of any operator in
the SU(2) sector valid for any value of the flux, k. The
method can be extended to the SU(3) sector, which is a
closed sector at the one-loop level [18].

In the present letter, we initiate the calculation of
quantum corrections to the observables of the above
dCFT. We focus on the one-loop corrections to one-point
functions, but our work also paves the way for the anal-
ysis of other types of correlators, of Wilson loops and of
computations to higher loop orders. The major obstacle
in moving on to one-loop level is that the vacuum ex-
pectation values (vevs) of the scalar fields, that realise
the difference in the gauge group on the two sides of the
defect, introduce a highly involved mass matrix, which
needs to be diagonalised. We perform this diagonalisa-
tion by making use of fuzzy-sphere coordinates. Another
complication is that the masses in the spectrum all de-
pend on the distance from the defect, which invalidates
many of the traditional field-theoretical methods. We
deal with this problem by working with propagators in
an auxiliary AdS4 space instead of usual 4D Minkowski
space propagators. For the one-loop corrections to the
one-point functions of single-trace operators, we find that
only two Feynman diagrams contribute and we regulate
these using dimensional reduction. As expected, the de-
pendence of the regulator, ε, drops out and we end up
with a finite result. We relegate many details of our anal-
ysis to a forthcoming article [19].

THE DEFECT THEORY

Our starting point is the dCFT formulated in [7]. It
consists ofN = 4 SYM theory coupled to a 3D hypermul-
tiplet of fundamental fields living on a codimension-one
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defect, a set-up which preserves half of the supersym-
metries of N = 4 SYM theory as well as the defect-
preserving conformal symmetries [7, 20].

The action of the system is the sum of the usual N = 4
SYM action and an action describing the self-interactions
of the defect fields and their couplings to the fields of
N = 4 SYM theory. It will turn out that the defect
fields play no role at the loop order we consider. We use
the N = 4 SYM action in the form

SN=4 =
2

g2YM

∫
d4x tr

[
−1

4
FµνF

µν − 1

2
Dµ φi Dµ φi

+
i

2
ψ̄Γµ Dµ ψ +

1

2
ψ̄Γ i[φi, ψ] +

1

4
[φi, φj ][φi, φj ]

]
, (1)

where Fµν = ∂µAν−∂νAµ− i[Aµ, Aν ], Dµ = ∂µ− i[Aµ, ·]
and {Γµ, Γi} are the 10-dimensional gamma matrices in
the Majorana-Weyl representation. A situation where
the defect separates two regions of space with different
ranks of the gauge group is realised by the so-called fuzzy-
funnel solution [6], in which three of the scalar fields of
N = 4 SYM theory acquire a non-vanishing vev on one
side of the defect. If the codimension-one defect is placed
at x3 = 0, the vevs of the scalar fields take the form

〈φi〉tree = φcli = − 1

x3
ti ⊕ 0(N−k)×(N−k) , x3 > 0 , (2)

where i = 1, 2, 3 and where all other classical fields are set
to zero. Here, t1, t2 and t3 are generators of the SU(2) Lie
algebra in the k-dimensional irreducible representation.
With this set-up, the gauge group is (broken) SU(N) for
x3 > 0 and SU(N − k) for x3 < 0.

To perform perturbative calculations, we expand the
scalar fields around their classical values

φi = φcli + φ̃i , i = 1, 2, 3 . (3)

Furthermore, we fix the gauge by adding the following
term to the action (1):

Sgf = −1

2

2

g2YM

∫
d4x tr(G2) , G = ∂µA

µ + i[φ̃i, φ
cl
i ] .

(4)
This also cancels an unwanted term linear in the deriva-
tive, which arises when expanding (1) around the classi-
cal solution.

The resulting gauge-fixed action is

SN=4 +Sgf +Sghost = Skin +Sm +Scubic +Squartic , (5)

where the Gaussian part consists of the kinetic terms

Skin =
2

g2YM

∫
d4x tr

[
1

2
Aµ∂ν∂

νAµ +
1

2
φ̃i∂ν∂

ν φ̃i

+
i

2
ψ̄Γµ∂µψ + c̄ ∂µ∂

µc

]
, (6)

and the mass terms

Sm =
2

g2YM

∫
d4x tr

[
1

2
[φcli , φ

cl
j ][φ̃i, φ̃j ]+

1

2
[φcli , φ̃j ][φ

cl
i , φ̃j ]

+
1

2
[φcli , φ̃j ][φ̃i, φ

cl
j ]+

1

2
[φcli , φ̃i][φ

cl
j , φ̃j ]+

1

2
[Aµ, φ

cl
i ][Aµ, φcli ]

+ 2i[Aµ, φ̃i]∂µφ
cl
i +

1

2
ψ̄Γ i[φcli , ψ]− c̄ [φcli , [φ

cl
i , c]]

]
. (7)

The interactions are given by the cubic vertices

Scubic =
2

g2YM

∫
d4x tr

[
i[Aµ, Aν ]∂µAν + i[Aµ, φ̃i]∂µφ̃i

+ [φcli , φ̃j ][φ̃i, φ̃j ] + [Aµ, φ
cl
i ][Aµ, φ̃i] +

1

2
ψ̄Γµ[Aµ, ψ]

+
1

2
ψ̄Γ i[φ̃i, ψ] + i(∂µc̄)[A

µ, c]− c̄ [φcli , [φ̃i, c]]

]
, (8)

plus a number of standard quartic vertices which will not
play any role. Here, c and its conjugate c̄ are fermionic
(but Lorentz scalar) ghost fields.

Note that (7) are not usual mass terms, as they depend
on the classical solution φcli and hence on the distance x3
to the defect. Moreover, they are non-diagonal in both
flavour and colour. Not all flavours mix, though. The
colour components of the gauge field A0 only mix among
themselves and not with colour components of any other
fields. The same is true for the colour components of A1

and A2 as well as for the colour components of the scalars
φ̃4, φ̃5 and φ̃6 and the ghosts. For the remaining bosonic
fields φ̃1, φ̃2, φ̃3, A3 and the original fermions, the mixing
problem is more complicated and involves both flavour
and colour. We find that the mixing problem can be com-
pletely solved by making use of fuzzy-sphere coordinates.
We present the eigenvalues and corresponding multiplic-
ities in table I, while deferring the detailed derivation to
a forthcoming paper [19]. Notice that we have left out
the factor 1/x3 in table I, which multiplies all masses in
the diagonalised action. For the bosonic fields, the mass
eigenvalues are expressed in terms of

ν =

√
m2 +

1

4
. (9)

The mass matrix of the fermions ψ has positive as well
as negative eigenvalues. In order to obtain the canonical
form of the action with positive masses, the sign of the
latter can be changed via a chiral rotation of the fermions.

Once we have diagonalised the mass matrix, the prop-
agators are obtained in the usual way. Hence, a scalar
propagator K(x, y) is the solution to

(
−∂µ∂µ +

m2

(x3)2

)
K(x, y) =

g2YM

2
δ(x− y) , (10)

where the derivatives are with respect to x. If one com-
pares this to the definition of the propagator KAdS(x, y)
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Multiplicity ν(φ̃4,5,6, A0,1,2, c) m(ψ1,2,3,4) ν(φ̃1,2,3, A3)

`+ 1 `+ 1
2

−` `− 1
2

` `+ 1
2

`+ 1 `+ 3
2

(k + 1)(N − k) k
2

− k−1
2

k−2
2

(k − 1)(N − k) k
2

k+1
2

k+2
2

(N − k)(N − k) 1
2

0 1
2

TABLE I. Masses and multiplicities of the different fields with
` = 1, . . . , k − 1, partially given in terms of ν defined in (9).

of a scalar in AdS4 with mass m̃

(−∇µ∇µ + m̃2)KAdS(x, y) =
δ(x− y)√

g
, (11)

with the metric of AdS4 given as gµν = (x3)−2 ηµν , one
concludes that

K(x, y) =
g2YM

2

KAdS(x, y)

x3y3
, (12)

with the identification m̃2 = m2 − 2. We notice the sat-
isfying fact that none of the scalar masses in table I
leads to a violation of the Breitenlohner-Freedman (BF)
bound [21], since m̃2 ≥ − 9

4 , which is exactly the BF
bound for AdS4. The bound is only saturated in the
special case k = 2. Closed expressions for KAdS(x, y) in
terms of hypergeometric functions can be found in the
literature, see e.g. [22, 23]. A representation which is
particularly useful for our purpose is [24]

K(x, y) =
g2YM

√
x3y3

2∫
d3~k

(2π)3
ei
~k·(~x−~y) Iν(|~k|x<3 )Kν(|~k|x>3 ) ,

(13)

where Iν and Kν are modified Bessel functions with ν
given in (9) and with x<3 (x>3 ) the smaller (larger) of

x3 and y3. Furthermore, ~k = (k0, k1, k2) denotes the
directions parallel to the defect. For the propagators of
the spinor fields, one finds by similar considerations

KF (x, y) =
g2YM

2

KF
AdS(x, y)

(x3)3/2(y3)3/2
, (14)

this time with m̃F = mF . For more details, we refer
to [19]. Our considerations are an elaboration of the
statement already made in [25] that the mass terms could
be rendered position independent by performing a Weyl
transformation to AdS4 space.

ONE-POINT FUNCTIONS

With the classical fields given by (2), single-trace op-
erators built from the scalar fields φ1, φ2 and φ3 will have

t
(a)

t
(b)

t
(c)

FIG. 1. Tree-level (a) and one-loop ((b) tadpole and (c) lol-
lipop) contributions to one-point functions. A cross stands
for the insertion of the classical solution, while the operator
is depicted as a dot.

non-vanishing one-point functions on one side of the de-
fect, x3 > 0, already at tree level with the expected space-
time dependence [1]:

〈O∆〉 =
C

x∆3
, (15)

where C is a constant and ∆ denotes the scaling dimen-
sion of O. For simplicity, we illustrate our method by
considering operators which do not get corrected (in the
theory without the defect), i.e. the chiral primaries of
N = 4 SYM theory. Furthermore, we will consider the
simplest such operator

O(x) = tr(ZL)(x) , Z(x) = φ3(x) + iφ6(x) . (16)

At tree level, the one-point function of O is given by
inserting (2) into (16), as depicted in figure 1(a). This
yields [16]

〈O〉tree-level = − 2

xL3 (L+ 1)
BL+1

(
1− k

2

)
(17)

for L even and vanishes when L is odd. Here, BL+1(u) are
the Bernoulli polynomials. We have not divided by the
norm of the two-point function, since this normalisation
factor will not play any role in our analysis [26].

At one-loop order, there are two possible Feynman dia-
grams which we depict in figures 1(b) and 1(c) and denote
as the tadpole and the lollipop diagram. Symbolically,
the tadpole contribution looks like

〈O〉1-loop,tad ∼
1

xL−23

∑

m

K(x, x) . (18)

The sum is over the spectrum of the relevant (scalar)
modes, and we have omitted the similarity transforma-
tions that change between the original and mass-diagonal
basis. Symbolically, the lollipop diagram contributes as
follows:

〈O〉1-loop,lol ∼
g−2YM

xL−13

∑

m1,m2

∫
d4y K1(x, y)V K2(y, y) .

(19)
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Here, m1 ranges only over bosonic modes, whereas m2

also includes fermions. The vertex factor V is ∝ 1/y3 for
scalars, gluons and ghosts in the loop but just a num-
ber for fermions. Again, we have neglected many fac-
tors. One can convince oneself that the quartic interac-
tion terms do not contribute at one-loop order. Likewise,
the defect fields do not play any role at one-loop order;
the only way a defect field could contribute at one-loop
order would involve a tadpole diagram of the 3D the-
ory living on the defect, which vanishes due to conformal
invariance.

Both the scalar and the fermion loop are divergent and
require regularisation. We regulate using dimensional re-
duction [27] in the d = 3− 2ε dimensions parallel to the
defect and show that all dependence on the regulator, ε,
cancels out in the final result. This constitutes a strong
consistency check of our calculations. For the scalar loop
K(x, x) with m 6= 0, dimensional regularisation leads to
[19]

K(x, x) =
g2YM

2

1

16π2 x23

(
m2

[
−1

ε
− log(4π) + γE

−2 log(x3) + 2Ψ(ν + 1
2 )− 1

]
− 1

)
.

(20)
Here, γE is the Euler-Mascheroni constant and Ψ is the
Euler digamma function. The fermion loop in dimen-
sional regularisation reads

trKF (x, x) =

m

|m|
g2YM

2

1

4π2x33

[
|m|3 + |m|2 − 3|m| − 1 + |m|(|m|2 − 1)

×
(
−1

ε
− log(4π) + γE − 2 log(x3) + 2Ψ(|m|)− 2

)]
,

(21)
where the sign of the mass, m/|m|, stems from the afore-
mentioned chiral rotation of the fermions.

In the present letter, we shall restrict ourselves to cal-
culating the large-N contribution to the one-point func-
tion. The evaluation of the finite-N contribution poses
no conceptual problems but involves colour components
of the fields which can be ignored in the large-N limit.
We refer to [19] for a more detailed discussion. In the
large-N limit, only tadpole diagrams where the tadpole
connects neighbouring fields contribute and there are L
such terms. The excitations which run in the loop can ei-
ther be φ̃3 or φ̃6 and both of the associated contributions
can be calculated explicitly. This leads to the following
result, valid for even L

〈O〉1-loop,tad = − λ

16π2

2L

xL3 (L− 1)
BL−1

(
1− k

2

)
. (22)

The contribution vanishes for odd L.

The evaluation of the contribution from the lollipop
diagram is considerably more involved. First, the large-
N limit only constrains the type of colour components
for the fields which run in the loop and not for the fields
which run in the stick. Second, one needs to repeat-
edly use the similarity transformation which relates the
mass eigenstates to the various field components. Finally,
the use of a supersymmetry-preserving renormalisation
scheme is crucial. Assembling the numerous contribu-
tions, we find that the lollipop contribution vanishes:

〈O〉1-loop,lol = 0 . (23)

For details on the calculation, in particular on the sim-
ilarity transformation to the mass eigenbasis which fea-
tures heavily in it, see [19]. Notice that in both (22)
and (23) all dependence on the regulator ε has can-
celled out and so have the various logarithms and the
Euler-Mascheroni constant. Note also that the contribu-
tion of the lollipop diagram can be equivalently obtained
from the one-loop correction to the vev of the scalars,
〈φi〉1-loop, which equally vanishes.

COMPARISON TO STRING THEORY

The present calculations open a new possibility of com-
paring results between gauge and string theory with less
(super) symmetries. In particular, we have at our dis-
posal a novel parameter k. In [12, 25], it was suggested
to consider a limit which consists in letting N → ∞
and subsequently k → ∞ (but k � N) while keeping
λ/k2 � 1.

In the string-theory language, the N →∞ limit elim-
inates string interactions and the limit λ → ∞ justifies
a supergravity treatment. The string configuration dual
to a one-point function is that of a string stretching from
the boundary of AdS5 (more precisely from the inser-
tion point of the dual gauge-theory operator) and ending
on the D5-brane in the interior of AdS5 × S5. In the
case of a chiral primary, the string can be considered
point-like and the one-point function can be computed
using a variant of the Witten prescription [12, 17, 28].
In the limit described above, the result organises into a
power series expansion in λ/k2. This led the authors of
[12] to suggest that the result might match the result of
a perturbative gauge-theory computation, which, how-
ever, would require that the gauge-theory perturbative
result would likewise organise itself into a power series
expansion in λ/k2. This idea is very reminiscent of the
BMN idea [29] fostered in connection with the study of
the spectral problem of N = 4 SYM theory. Here, an-
other quantum number, J , which had the interpretation
of an S5 angular momentum of a spinning string, was
considered large as well as λ while λ/J2 was assumed to
be finite. In the BMN case, it eventually turned out that
starting at four-loop order the perturbative gauge-theory
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expansion of anomalous dimensions did not organise it-
self into powers of λ/J2 [30–32].

The authors of [12] showed that the leading term in
the λ

k2 expansion matches the tree-level gauge-theory re-
sult. Their supergravity result, however, also implies a
prediction for the one-loop gauge-theory correction to
the one-point function. The chiral primary of length
L considered in [12] is not the same as (16) but has a
non-vanishing projection onto the latter. Thus, the ratio
of the next-to-leading-order term and the leading-order
term in λ/k2 should match the ratio between our one-
loop and tree-level result. The prediction for this ratio
following from [12] reads

〈O〉1-loop
〈O〉tree-level

∣∣∣∣
string

=
λ

4π2k2
L(L+ 1)

L− 1
. (24)

For the tadpole diagram and the vanishing lollipop dia-
gram, we find

〈O〉1-loop
〈O〉tree-level

∣∣∣∣
gauge

=
λ

4π2k2

(
L(L+ 1)

L− 1
+O(k−2)

)
,

(25)
which is identical to the supergravity result in the double-
scaling limit. This match provides a highly non-trivial
check of the gauge-gravity duality in the case of partially
broken supersymmetry as well as conformal symmetry!

CONCLUSIONS & OUTLOOK

With the present work, we have laid the foundation
for a detailed analysis of a class of dCFTs based on
N = 4 SYM theory, which have holographic duals in-
volving background gauge fields with flux. The flux,
which is related to the difference in rank of the gauge
group on the two sides of a defect, constitutes an in-
teresting extra tunable parameter of the AdS/dCFT set-
up. Its presence severely complicates the field-theoretical
analysis since some of the scalar fields of N = 4 SYM
theory acquire non-vanishing and space-time-dependent
vevs, which leads to a highly non-trivial mixing both
at the flavour and at the colour level. We have solved
this mixing problem and diagonalised the mass matrix
of the theory. In addition, we have shown how to trade
Minkowski space propagators with space-time-dependent
mass terms for AdS space propagators with standard
mass terms. With these two steps accomplished, the per-
turbative calculation of observables in the dCFT can be
carried out by standard methods. We illustrated this
by calculating the planar one-loop correction to the one-
point function of the chiral primary operator tr(ZL). In a
certain double-scaling limit, our gauge-theory result per-
fectly agrees with an earlier prediction for the same quan-
tity from string theory. This provides a strong test of the
AdS/dCFT duality at quantum level.

Our analysis can be extended in numerous directions.
First, it is straightforward to extend the calculation to fi-
nite N . Second, the calculation can be generalised to any
operator built of scalars. This might reveal interesting
novel structures, as integrability has recently shown its
face in the calculation of tree-level one-point functions in
the SU(2) sector [16, 17]. It would also be interesting to
investigate the types of correlators special to dCFTs such
as two-point functions between bulk operators with dif-
ferent conformal dimensions and two-point functions in-
volving both bulk and defect fields. Moreover, one could
envision going to higher loop orders where presumably
starting from two-loop order the defect fields would come
into play and present further challenges. Finally, some
simple examples of Wilson loops in the present defect
set-up were considered in [25], where a tree-level compu-
tation was carried out on the field-theory side and com-
pared to a supergravity computation. As for one-point
functions, agreement was observed between the tree-level
and the supergravity result in the double-scaling limit de-
scribed above. It would be interesting to address this at
one-loop order.
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Abstract

We build the framework for performing loop computations in the defect version of
N = 4 super Yang-Mills theory which is dual to the probe D5-D3 brane system with
background gauge-field flux. In this dCFT, a codimension-one defect separates two
regions of space-time with different ranks of the gauge group and three of the scalar
fields acquire non-vanishing and space-time-dependent vacuum expectation values. The
latter leads to a highly non-trivial mass mixing problem between different colour and
flavour components, which we solve using fuzzy-sphere coordinates. Furthermore, the
resulting space-time dependence of the theory’s Minkowski space propagators is handled
by reformulating these as propagators in an effective AdS4. Subsequently, we initiate
the computation of quantum corrections. The one-loop correction to the one-point
function of any local gauge-invariant scalar operator is shown to receive contributions
from only two Feynman diagrams. We regulate these diagrams using dimensional
reduction, finding that one of the two diagrams vanishes, and discuss the procedure
for calculating the one-point function of a generic operator from the SU(2) subsector.
Finally, we explicitly evaluate the one-loop correction to the one-point function of the
BPS vacuum state, finding perfect agreement with an earlier string-theory prediction.
This constitutes a highly non-trivial test of the gauge-gravity duality in a situation
where both supersymmetry and conformal symmetry are partially broken.

Keywords: Super-Yang-Mills; Defect CFTs; One-point functions; D5-D3 probe brane
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1 Introduction

Defect conformal field theories (dCFTs) with holographic duals constitute an interesting
new arena for precision tests of the AdS/CFT correspondence [1] and for the search for
integrable structures [2]. Moreover, for such quantum field theories new types of correlation
functions come into play. For instance, fields living on the defect can mix with bulk fields
and two-point functions of bulk fields with unequal conformal dimensions need not vanish [3].
Further interesting features emerge if one considers set-ups where some of the bulk fields
acquire a vacuum expectation value (vev), in which case the theory can have non-vanishing
one-point functions already at tree level [3, 4]. The study of one-point functions is a natural
first step when entering the realm of dCFTs. Tree-level studies carried out within the
AdS/dCFT framework show that one-point functions, interestingly, have many features in
common with three-point functions of the standard AdS/CFT set-up, e.g. determinant-based
expressions, integrable structure and an accessible strong-coupling limit [5–7].

In the present paper, we shall develop the necessary tools to go beyond tree-level
computations in certain dCFTs with vevs and with holographic duals, an endeavour which
will make possible the extraction of large amounts of new data from these theories as well
as the initiation of new directions of study. We already briefly presented one example of
a one-loop analysis in such a dCFT in the letter [8], where we calculated the one-loop
correction to the one-point function of a chiral primary and compared it to the result of a
string-theory computation in a certain double-scaling limit, finding exact agreement. Here,
we present the derivations which made the field-theoretic part of that computation possible,
give the details of the computation and extend these results to finite N as well as to general
single-trace operators built out of scalar fields.

The dCFT we are going to consider consists of N = 4 super Yang-Mills (N = 4 SYM)
theory with a codimension-one defect inserted at x3 = 0 [4]. Three of the scalar fields of
the theory are assigned specific, x3-dependent vevs on one side of the defect, x3 > 0, while
all classical fields vanish for x3 < 0. This Higgsing results in a highly non-trivial mass
mixing problem where different colour components for both bosonic and fermionic fields
mix with each other and where in addition one space-time component of the gauge field
mixes with the scalars. Moreover, all mass terms become x3-dependent. The motivation
for this particular Higgsing comes from the string-theory set-up, where the vevs represent
the so-called fuzzy-funnel solution of the probe D5-D3 brane system where the probe-D5
brane is embedded in AdS5 × S5 so that it shares three dimensions (the defect) with the
N D3 branes. More precisely, the geometry of the D5 brane is AdS4 × S2 and a certain
background gauge field has a non-vanishing flux, k, on S2 meaning that k out of the N
D3 branes get dissolved in the D5 brane [9–12]. On the gauge theory side, the parameter
k appears as the difference in rank of the gauge group on the two sides of the defect, cf.
figure 1.

Due to the Higgsing, the theory has non-vanishing one-point functions already at tree
level. Tree-level one-point functions of chiral primaries were calculated for this particular
theory in [13] as well as in a closely related one in [14], and a match with a string-theory
computation was found at the leading order in a certain double-scaling limit. Moreover,
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N D3N − k D3

D5

(a)

x3

x0

x1,2

SU(N − k) (broken) SU(N)

(b)

Figure 1. Illustration of the set-up: (a) k of the N D3 branes get dissolved in the D5 probe brane
(b) the rank of the gauge group differs on the two sides of the defect.

making use of the tools of integrability, it was possible to derive a closed expression of
determinant form for the tree-level one-point functions of non-protected operators belonging
to an SU(2) subsector of N = 4 SYM theory [5, 6]. An empirically based proposal for how
to extend this to an SU(3) sector likewise exists [7].

Due to the mass mixing problem, going beyond tree-level for the Higgsed theory is
considerably more complicated than for N = 4 SYM theory itself. It turns out, however,
that the language of fuzzy-sphere coordinates is tailored for the diagonalisation of the mass
matrix. In these coordinates, the mixing problem can literally be viewed as the spin-orbit
interaction of the hydrogen atom of the 21st century, N = 4 SYM theory. Furthermore, it is
possible to avoid the space-time dependence of the masses by formulating the propagators
in an effective AdS4 space. The radial coordinate of this AdS4 space is x3, the coordinate
perpendicular to the defect, and the defect itself plays the role of the AdS4 boundary. With
these steps accomplished, the theory is in principle amenable to the standard program of
perturbation theory. We show that the one-loop correction to any (single-trace) operator
built from scalars obtains contributions from only two Feynman diagrams and we calculate
these using dimensional regularisation in combination with dimensional reduction carefully
adjusted to respect the symmetries of the present set-up. One of the two relevant Feynman
diagrams corresponds to the one-loop correction to the vevs of the scalars and cancels
exactly.

We discuss in some depth the computation of one-loop corrections to one-point functions
in the SU(2) subsector and, in particular, we present the details of the calculation of the
planar correction to the one-point function of the BMN vacuum state, the result of which
we presented in the letter [8]. Here, we adress the finite-N case as well.

The first step of our perturbative calculation consists in expanding the SYM action
around the classical fields and fixing an appropriate gauge. This step is carried out in
section 2. Section 3 is devoted to the resolution of the mass mixing problem. First, we
rewrite the mass term in terms of irreducible SU(2) representations in flavour space. Then,
we explicitly construct the eigenstates via fuzzy-sphere coordinates and a Clebsch-Gordan
decomposition. The section closes with a table of the resulting spectrum of the theory,
cf. page 13. As all mass terms carry space-time dependence, being proportional to 1/x3
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for fermions and 1/(x3)2 for bosons, the propagators of the theory are not of standard
Minkowskian type. We show in section 4 that the propagators can be viewed as standard
propagators of AdS4 instead. Moreover, we translate the propagators in the mass eigenbasis
to the flavour and colour basis. We discuss the dimensional regularisation of the occurring
integrals as well as dimensional reduction in section 5. Section 6 deals with the computation of
one-loop corrections to one-point functions of scalar operators, first in general, subsequently
for operators belonging to the SU(2) subsector and finally for the BMN vacuum state.
We are mainly working in the planar limit but include a number of finite N results as
well. The computation of the one-loop correction to the vevs of the scalar fields, which is
required for the analysis of this section, is relegated to appendix D. Section 7 is devoted to
the comparison to string theory and finally section 8 contains a conclusion and outlook,
where we discuss a number of other interesting quantum computations for dCFTs which our
work makes feasible. Five appendices provide details on various aspects of our work: the
irreducible SU(2) representations (A), the fuzzy-sphere coordinates (B), our conventions for
the ten-dimensional gamma matrices (C), the aforementioned calculation of the vevs of the
scalars (D) and the alternative Hadamard and zeta-function regularisation (E).

2 The action

The action of the dCFT is the sum of the usual N = 4 SYM action in the bulk and an
action describing the self-interactions of a 3D hypermultiplet of fundamental fields living
on the defect and their couplings to the fields of N = 4 SYM theory:

S = SN=4 + SD=3 . (2.1)

The defect fields will turn out to play no role at the loop order we consider. We will use the
action of N = 4 SYM theory in the following form

SN=4 = 2
g2

YM

∫
d4x tr

[
− 1

4FµνF
µν − 1

2 Dµ φi Dµ φi + i

2Ψ̄Γµ Dµ Ψ

+ 1
2Ψ̄Γ̃i[φi,Ψ] + 1

4[φi, φj ][φi, φj ]
]
, (2.2)

where
Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] ,

Dµ φi = ∂µφi − i[Aµ, φi] , Dµ Ψ = ∂µΨ− i[Aµ,Ψ] .
(2.3)

Here, the field Ψ is a ten-dimensional Majorana-Weyl fermion and {Γµ, Γ̃i} are the corre-
sponding ten-dimensional gamma matrices, which we explicitly give in appendix C. The
ranges of the indices are µ, ν = 0, 1, 2, 3 and i, j = 1, 2, 3, 4, 5, 6. We are using a mostly-plus
convention for the metric.

We wish to expand the fields around the classical solution

〈φi〉tree = φcli = − 1
x3
ti ⊕ 0(N−k)×(N−k) , (2.4)
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where i = 1, 2, 3 and the ti constitute a k-dimensional irreducible representation of the Lie
algebra SU(2); expressions for the representation matrices in our conventions can be found
in appendix A. All other classical fields vanish. This solution is the gauge-theory dual of
the fuzzy-funnel solution of the probe D5-D3 brane set-up [12].

We expand the action around the classical solution, writing

φi = φcli + φ̃i , (2.5)

where φcli denotes the classical part and φ̃i the quantum part. Terms which upon expansion
do not depend on any quantum fields can be ignored as can all terms linear in the quantum
fields as these should vanish by the equations of motion. This latter fact can also be checked
explicitly.

2.1 Gauge fixing

As usual, we have to fix a gauge in order to perform calculations. Moreover, we notice that
the expansion of the gauge-kinetic term of the scalar contains

i[Aµ, φcli ]∂µφ̃i , (2.6)

which would lead to complications in computing the propagators. Hence, we want to
cancel this term while fixing the gauge. Following [15], this can be achieved by adding the
gauge-fixing term

− 1
2 tr(G2) with G = ∂µA

µ + i[φ̃i, φcli ] (2.7)

to the action. The price for doing this is a massive ghost field that couples to the scalars.
Explicitly, we add to the action (2.2) the BRST exact term

Sgh = 2
g2

YM

∫
d4x tr

[
−s
(
c̄(∂µAµ − i[φcli , φ̃i]) + 1

2 c̄B
)]

, (2.8)

where s is the BRST variation defined by

sAµ = Dµ c = ∂µc− i[Aµ, c] , sφi = −i[φi, c] , sΨ = i{Ψ, c} ,
sc = ic2 , sc̄ = −B , sB = 0 .

(2.9)

One can check that with this definition s2 = 0. The ghosts c, c̄ are fermionic (Lorentz)
scalars, while the auxiliary field B is a bosonic scalar. The BRST variation only acts on the
quantum part of φi, i.e.

sφcli = 0 , sφ̃i = −i[φcli + φ̃i, c] . (2.10)

We now find, noting that moving s past a fermion introduces a sign,

Sgh = 2
g2

YM

∫
d4x tr

[
c̄(∂µ Dµ c− [φcli , [φcli + φ̃i, c]]) +B(∂µAµ − i[φcli , φ̃i]) + 1

2B
2
]
. (2.11)
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Since B is not dynamical, we can immediately integrate it out; its equation of motion is
B = −∂µAµ + i[φcli , φ̃i]. After rearranging the result a bit, this yields

Sgh = 2
g2

YM

∫
d4x tr

[
c̄(∂µ Dµ c− [φcli , [φcli + φ̃i, c]])−

1
2(∂µAµ)2 + i[Aµ, φ̃i]∂µφcli

+ i[Aµ, ∂µφ̃i]φcli + 1
2[φcli , φ̃i]2

]
. (2.12)

We note that this cancels the unwanted mixing between Aµ and ∂µφ̃i, as mentioned above.
We also see that the kinetic term for the gluons is changed to

− 1
4(∂µAν − ∂νAµ)2 − 1

2(∂µAµ)2 = 1
2Aµ∂ν∂

νAµ , (2.13)

which is invertible and diagonal in the Lorentz index. Notice that for φcli = 0 our gauge
choice reduces to Feynman gauge.

2.2 The expanded action

We can write the gauge-fixed action as

SN=4 + Sgh = Skin + Sm,b + Sm,f + Scubic + Squartic . (2.14)

The Gaußian part consists of the kinetic terms

Skin = 2
g2

YM

∫
d4x tr

[1
2Aµ∂ν∂

νAµ + 1
2 φ̃i∂ν∂

ν φ̃i + i

2 ψ̄γ
µ∂µψ + c̄∂µ∂

µc

]
, (2.15)

the bosonic mass terms

Sm,b = 2
g2

YM

∫
d4x tr

[1
2[φcli , φclj ][φ̃i, φ̃j ] + 1

2[φcli , φ̃j ][φcli , φ̃j ] + 1
2[φcli , φ̃j ][φ̃i, φclj ]

+ 1
2[φcli , φ̃i][φclj , φ̃j ] + 1

2[Aµ, φcli ][Aµ, φcli ] + 2i[Aµ, φ̃i]∂µφcli
]
, (2.16)

and the fermionic mass terms

Sm,f = 2
g2

YM

∫
d4x tr

[1
2 ψ̄G

i[φcli , ψ]− c̄[φcli , [φcli , c]]
]
, (2.17)

where we have reduced the ten-dimensional Majorana-Weyl fermion to four four-dimensional
Majorana fermions ψj , j = 1, 2, 3, 4, as explained in appendix C, and the 4× 4 matrices Gi
that describe their coupling to the scalars are given in (C.10). The interaction is given by
the cubic vertices

Scubic = 2
g2

YM

∫
d4x tr

[
i[Aµ, Aν ]∂µAν + [φcli , φ̃j ][φ̃i, φ̃j ] + i[Aµ, φ̃i]∂µφ̃i + [Aµ, φcli ][Aµ, φ̃i]

+ 1
2 ψ̄γ

µ[Aµ, ψ] +
3∑

i=1

1
2 ψ̄G

i[φ̃i, ψ] +
6∑

i=4

1
2 ψ̄G

i[φ̃i, γ5ψ] + i(∂µc̄)[Aµ, c]− c̄[φcli , [φ̃i, c]]
]

(2.18)
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and the quartic vertices

Squartic = 2
g2

YM

∫
d4x tr

[1
4[Aµ, Aν ][Aµ, Aν ] + 1

2[Aµ, φ̃i][Aµ, φ̃i] + 1
4[φ̃i, φ̃j ][φ̃i, φ̃j ]

]
. (2.19)

We shall see below that Squartic is not relevant for the one-loop corrections in this article.
In the remainder of the paper, we will work in Euclidean signature.

3 The mass matrix

The mass terms of the action (2.16) and (2.17) involve mixing between fields of different
flavour as well as mixing between colour components of the same field. To prepare for
perturbative calculations of correlation functions, we first have to solve this highly non-trivial
mixing problem. Notice that the mass terms are also unconventional in the sense that they
depend via the classical fields on the distance x3 to the defect. This x3-dependence renders
some of the traditional tools of quantum field theory in Minkowski space inapplicable.
We will show how to deal with this issue by trading x3-dependent 4d Minkowski space
propagators for x3-independent propagators in AdS4 in the next section.

Let us now diagonalise the mass matrix. First, in subsection 3.1 we rewrite the mass
terms in close analogy to the spin-orbital interaction of the hydrogen atom, so that they are
easy to diagonalise. Subsequently, in subsection 3.2 we explicitly carry out the diagonalisation
and read off the spectrum including its degeneracies. We summarise our results on the
spectrum in subsection 3.3.

3.1 Rewriting of the mass terms

For a sub-set of the fields, the mass terms are diagonal in the flavor index (but not in
the colour index) and we denote the corresponding fields as easy fields. Accordingly, the
remaining fields are denoted as complicated fields. The easy fields consist of the three scalars
φ4, φ5, φ6, the three gauge fields A0, A1, A2 and the ghost c.

For the easy fields, say A0 for concreteness, the mass term is proportional to

tr([ti, A0][ti, A0]) = − tr(A0[ti, [ti, A0]]) = − tr(A0L
2A0) , (3.1)

where
Li = Ad(ti) , L2 = LiLi (3.2)

are satisfying the well-known commutation relations of angular momenta:

[Li, Lj ] = iεijkLk . (3.3)

The operator L2 is the Laplacian on the so-called fuzzy sphere. The field A0 transforms in
a – in general reducible – representation of the Lie algebra SU(2). We will decompose this
representation into irreducible representations with definite orbital quantum number ` and
magnetic quantum number m in the next subsection.
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The mass term for the complicated bosons, i.e. φ1, φ2, φ3 and A3, reads

Sm,cb = 2
g2

YM

∫
d4x

1
x2

3
tr
[
−1

2 φ̃iL
2φ̃i −

1
2A3L

2A3 + iεijkφ̃iLjφ̃k + iφ̃iLiA3 − iA3Liφ̃i

]
,

(3.4)
where i = 1, 2, 3. We can write this in the more suggestive way

Sm,cb = 2
g2

YM

∫
d4x

1
x2

3
tr
[
CT (−1

2L
2 + 2SiLi)C

]
, (3.5)

where we have introduced the combined field

C =




φ̃1
φ̃2
φ̃3
A3



, (3.6)

and where the matrices Si acting on the ‘flavour’ index of C are given by

S1 = −1
2

(
0 σ2
σ2 0

)
, S2 = i

2

(
0 12
−12 0

)
, S3 = 1

2

(
σ2 0
0 σ2

)
(3.7)

with the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.8)

It is easy to verify that the matrices Si form a four-dimensional representation of the SU(2)
Lie algebra:

[Si, Sj ] = iεijkSk . (3.9)

This representation is reducible and its explicit decomposition into irreducible representations
is

U †SiU =
(

1
2σi 0
0 1

2σi

)
, U = 1√

2




−i 0 0 i

1 0 0 1
0 i i 0
0 −1 1 0



. (3.10)

The eigenvectors of the irreducible representations are



Ct,+
Ct,−
Cb,+
Cb,−




= U †C = 1√
2




+iφ̃1 + φ̃2
−iφ̃3 −A3
−iφ̃3 +A3
−iφ̃1 + φ̃2



, (3.11)

which have spin 1
2 and spin magnetic quantum number ±1

2 . It now follows that the compli-
cated boson problem can be solved by the usual procedure of adding angular momentum
as it occurs in the well-known spin-orbit interaction of the hydrogen atom. Concretely, we
define the total angular momentum operator

Ji = Li + 1
2σi , (3.12)
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and find that
σiLi = J2 − L2 − 3

4 . (3.13)

We will construct the simultaneous eigenstates of L2, J2 and J3 in the next subsection.
The fermionic mass term is proportional to

tr[ψ̄Gi[ti, ψ]] = tr[ψ̄GiLiψ] , (3.14)

where the matrices Gi are given by

G1 = i

(
0 −σ3
σ3 0

)
, G2 = i

(
0 σ1
−σ1 0

)
, G3 =

(
σ2 0
0 σ2

)
. (3.15)

These matrices satisfy the commutation relations

[Gi, Gj ] = −2iεijkGk (3.16)

and thus also form a representation of the Lie algebra SU(2), at least after a rescaling. This
representation is equally reducible and explicitly reduced as

Ũ †GiŨ =
(
−σi 0

0 −σi

)
, Ũ = 1√

2




0 −i −1 0
0 1 i 0
−1 0 0 i

i 0 0 −1



. (3.17)

The eigenvectors of these irreducible representations are



ψt,+
ψt,−
ψb,+
ψb,−




= Ũ †ψ = 1√
2




−ψ3 − iψ4
+ψ2 + iψ1
−ψ1 − iψ2
−ψ4 − iψ3



, (3.18)

which have spin 1
2 and spin magnetic quantum number ±1

2 . The mixing problem of the
fermions can now be solved in complete analogy to the one of the complicated bosons.

To summarise, the complete mass term (2.16), (2.17) can be written as

Sm,b + Sm,f = 2
g2

YM

∫
d4x

1
x2

3
tr
[
−1

2E
TL2E − c̄L2c− 1

2C
†
t (L2 − 2σiLi)Ct

]
(3.19)

+ 2
g2

YM

∫
d4x

1
x3

tr
[1

2 ψ̄tσiLiψt
]

+ (t→ b) ,

where

E =




A0
A1
A2
φ̃4
φ̃5
φ̃6




. (3.20)
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Note that the conjugation here is understood to be outside of the indices, i.e.

C†t ≡ (Ct)† , ψ̄t ≡ (ψt)†γ0 , (3.21)

and similarly for t→ b. Correspondingly, C†t/b,± and ψ̄t/b,± are related to C and ψ̄ via U
and Ũ , respectively.

3.2 Explicit diagonalisation of the mass matrix

We decompose the different fields with respect to their matrix elements in colour space as

Φ = [Φ]n,n′Enn′ + [Φ]n,aEna + [Φ]a,nEan + [Φ]a,a′Eaa′
+Φtr((N − k)1k×k +k 1(N−k)×(N−k)) ,

(3.22)

where Φ ∈ {A0, A1, A2, φ̃4, φ̃5, φ̃6, c, Ct,±, Cb,±, ψt,±, ψb,±}, n, n′ = 1, . . . , k and a, a′ = k +
1, . . . , N . Moreover, we have split the diagonal components into individually traceless blocks,∑
n[Φ]n,n = 0 = ∑

a[Φ]a,a, and a component Φtr proportional to the identity in each block.
Note that the matrix elements above are not independent degrees of freedom; apart from
the aforementioned tracelessness condition, they are also (partially) related to each other
via reality conditions.

The matrices Eaa′ are annihilated by the Li and the corresponding components [Φ]a,a′
in the (N − k)× (N − k) block of all fields are hence massless. Moreover, the Li annihilate
((N − k)1k×k +k 1(N−k)×(N−k)) such that Φtr is also massless.

The matrices Ena and Ean in the off-diagonal k × (N − k) and (N − k) × k blocks
transform in the irreducible k-dimensional representation of SU(2) with angular momentum
` = k−1

2 and magnetic quantum number m = ±
(
k+1

2 − n
)
:

LiE
n
a = En

′
a[ti]n′,n , LiE

a
n = −[ti]n,n′Ean′ . (3.23)

The same holds for the corresponding components of the fields.
The standard matrices Enn′ in the k × k block do not transform in an irreducible

representation of SU(2) yet. The desired eigenstates yielding the decomposition to irreducible
representations are provided by the spherical harmonics Ŷ m

` of the fuzzy sphere, where
` = 1, . . . , k − 1 and m = −`, . . . , `. They are explicitly given in appendix B and satisfy

L3Ŷ
m
` = mŶ m

` , L2Ŷ m
` = `(`+ 1)Ŷ m

` . (3.24)

We thus write
[Φ]n,n′Enn′ = Φ`,mŶ

m
` , (3.25)

where the traceless Ŷ m
` implement the tracelessness condition ∑n[Φ]n,n = 0. This concludes

the diagonalisation of L2.
For the easy bosons and ghosts, only L2 occurs in the mass term, and Φ`,m, [Φ]n,a,

[Φ]a,n, [Φ]a,a′ and Φtr completely diagonalise it. In terms of these components, the mass
term reads

− 1
2x2

3
tr(A0L

2A0) = − 1
2x2

3

(
2k

2 − 1
4 [A0]†n,a[A0]n,a + `(`+ 1)(A0)†`,m(A0)`,m

)
, (3.26)
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where we again have chosen A0 for concreteness and used (B.11). Here, [A0]†n,a ≡ ([A0]n,a)† =
[A0]a,n and (A0)†`,m ≡ ((A0)`,m)† = (−1)m(A0)`,−m. Comparing this to the kinetic term

− 1
2 tr(A0∂

2A0) = −1
2
(
2[A0]†n,a∂2[A0]n,a + (A0)†`,m∂

2(A0)`,m
)

+ massless fields , (3.27)

we immediately see that we have the nonzero mass eigenvalues m2

x2
3

= k2−1
4x2

3
with multiplicity

2k(N − k) and m2

x2
3

= `(`+1)
x2

3
with multiplicity 2`+ 1 for ` = 1, . . . , k − 1. Note that in both

equations we have used the first reality condition to remove [A0]a,n, resulting in the relative
factor 2 in front of the fields from the k × (N − k) block compared to those from the k × k
block.

For the complicated bosons and the fermions, we have to diagonalise J2 with Ji =
Li + 1

2σi in addition to L2, see the discussion in the previous subsection. Let Φ± be a
field with definite angular momentum `, magnetic quantum number m, spin 1

2 and spin
magnetic quantum number ±1

2 , i.e. [Ct,±]n,a, [Ct,±]a,n, (Ct,±)`,m as well as the corresponding
components of Cb,±, ψt,±, ψb,±, ψt,± and ψb,±. The field can then be written in terms of
the desired eigenstates of L2 and J2 as

Φ± = +
〈
j1 = `, j2 = 1

2 ;m1 = m,m2 = ±1
2

∣∣∣j = j1 − 1
2 ,mj

〉
Φ��,mj

+
〈
j1 = `, j2 = 1

2 ;m1 = m,m2 = ±1
2

∣∣∣j = j1 + 1
2 ,mj

〉
Φ��,mj .

(3.28)

Here, Φ��,mj denotes the eigenstate with total angular momentum j = ` − 1
2 and Φ��,mj

denotes the eigenstate with total angular momentum j = `+ 1
2 , i.e.

L2Φ��,mj = `(`+ 1)Φ��,mj , L2Φ��,mj = `(`+ 1)Φ��,mj ,

J2Φ��,mj = (`− 1
2)(`+ 1

2)Φ��,mj , J2Φ��,mj = (`+ 1
2)(`+ 3

2)Φ��,mj .
(3.29)

The explicit expressions for the occurring Clebsch-Gordan coefficients are
〈
j1, j2 = 1

2 ;m1,m2 = +1
2

∣∣∣j = j1 + 1
2 ,mj

〉
= δmj ,m1+m2

√
j1 +m1 + 1√

2j1 + 1 , (3.30)
〈
j1, j2 = 1

2 ;m1,m2 = −1
2

∣∣∣j = j1 + 1
2 ,mj

〉
= δmj ,m1+m2

√
j1 −m1 + 1√

2j1 + 1 , (3.31)
〈
j1, j2 = 1

2 ;m1,m2 = +1
2

∣∣∣j = j1 − 1
2 ,mj

〉
= −δmj ,m1+m2

√
j1 −m1√
2j1 + 1 , (3.32)

and
〈
j1, j2 = 1

2 ;m1,m2 = −1
2

∣∣∣j = j1 − 1
2 ,mj

〉
= δmj ,m1+m2

√
j1 +m1√
2j1 + 1 . (3.33)

Using the above eigenstates, we can write the mass term of the complicated bosons as

− 1
2x2

3
tr[CT (L2 − 4SiLi)C]

= − 1
2x2

3

(
2(k + 2)2 − 1

4 C†at��,mjCat��,mj + 2(k − 2)2 − 1
4 C†at��,mjCat��,mj

+ (`2 + 3`+ 2)C†`t��,mjC`t��,mj + (`2 − `)C†`t��,mjC`t��,mj + (t→ b)
)
, (3.34)

12



where C†at��,mj ≡ (Cat��,mj )†, etc. We have the (mostly) non-zero mass eigenvalues m2

x2
3

=
(k+2)2−1

4x2
3

with multiplicity 4(k− 1)(N −k), m2

x2
3

= (k−2)2−1
4x2

3
with multiplicity 4(k+ 1)(N −k),

m2

x2
3

= `2−`
x2

3
with multiplicity 4(`+1) and m2

x2
3

= `2+3`+2
x2

3
with multiplicity 4` for ` = 1, . . . , k−1.

Similarly, we can write the fermion mass term as

− 1
2x3

tr[ψ̄GiLiψ] = − 1
2x3

(
2k + 1

2 ψ̄at��,mjψat��,mj − 2k − 1
2 ψ̄at��,mjψat��,mj

+ (`+ 1)ψ̄`t��,mjψ`t��,mj − `ψ̄`t��,mjψ`t��,mj + (t→ b)
)
,

(3.35)

where ψ̄at��,mj ≡ (ψat��,mj )†γ0, etc. In this case, we have the nonzero mass eigenvalues
m
x3

= k+1
2x3

with multiplicity 4(k − 1)(N − k), m
x3

= −k−1
2x3

with multiplicity 4(k + 1)(N − k),
m
x3

= − `
x3

with multiplicity 4(`+ 1) and m
x3

= `+1
x3

with multiplicity 4` for ` = 1, . . . , k − 1.

3.3 Summary of the spectrum

Defining

ν =
√
m2 + 1

4 , (3.36)

we find the following pattern for the masses and ν’s:

Multiplicity ν(φ̃4,5,6, A0,1,2, c) m(ψ1,2,3,4) ν(φ̃1,2,3, A3)
`+ 1 `+ 1

2 −` `− 1
2

` `+ 1
2 `+ 1 `+ 3

2
(k + 1)(N − k) k

2 −k−1
2

k−2
2

(k − 1)(N − k) k
2

k+1
2

k+2
2

(N − k)(N − k) 1
2 0 1

2

(3.37)

where ` = 1, . . . , k − 1.

4 Propagators

Having diagonalised the quadratic part of the action, we can derive the propagators of the
mass eigenstates. Anticipating the use of dimensional regularisation and taking into account
the symmetries of the problem, we will work in d+ 1 dimensions with d referring to the
dimension of the codimension-one defect. For notational simplicity, we will keep denoting
the coordinate transverse to the defect as x3. We derive the scalar and fermionic propagators
in subsections 4.1 and 4.2, respectively, by expressing them in terms of propagators in
AdSd+1. We translate the propagators of the mass eigenstates to those of the flavour and
colour eigenstates in subsection 4.3.

4.1 Scalar propagators

The scalar Minkowski space propagator K(x, y) is the solution to
(
−∂µ∂µ + m2

x2
3

)
K(x, y) = g2

YM

2 δ(x− y) , (4.1)
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where the derivatives are all with respect to x, µ = 0, 1, . . . , d takes d+ 1 different values
and m

x3
is the “mass” coming from the classical expectation value. The factor g2

YM/2 stems
from the normalisation of the action in (2.2).

As noted in [13], K(x, y) is basically the usual propagator of a massive scalar in AdSd+1.
To see this, we write

K(x, y) = g2
YM

2
K̃(x, y)

(x3y3) d−1
2
. (4.2)

Equation (4.1) then becomes

δ(x− y) =
(
−∂µ∂µ + m2

x2
3

)
K̃(x, y)

(x3y3) d−1
2

= 1
(x3y3) d−1

2

(
−∂µ∂µ + (d− 1) 1

x3
∂3 +

m2 − d2−1
4

x2
3

)
K̃(x, y) ,

(4.3)

or
(
−x2

3∂µ∂
µ + (d− 1)x3∂3 +m2 − d2 − 1

4

)
K̃(x, y) = (x3y3)

d−1
2 x2

3 δ(x− y) = xd+1
3 δ(x− y) .

(4.4)

Let us now compare this to the AdSd+1 case. We choose coordinates such that the (Euclidean)
metric is

gµν = 1
x2

3
δµν , gµν = x2

3δ
µν ,

√
g = 1

xd+1
3

. (4.5)

The AdS propagator with mass m̃ is defined by

(−∇µ∇µ + m̃2)KAdS(x, y) = δ(x− y)√
g

. (4.6)

Inserting the explicit expression (4.5) for the metric, we find

xd+1
3 δ(x− y) = (−∇µ∇µ + m̃2)KAdS(x, y)

= − 1√
g
∂µ(√ggµν∂νKAdS(x, y)) + m̃2K(x, y)AdS

=
(−x2

3 δ
µν∂µ∂ν + (d− 1)x3∂3 + m̃2)KAdS(x, y) .

(4.7)

We see that the equations for K̃(x, y) and KAdS(x, y) coincide, and hence that

K(x, y) = g2
YM

2
K̃(x, y)

(x3y3) d−1
2

= g2
YM

2
KAdS(x, y)
(x3y3) d−1

2
, (4.8)

with the identification
m̃2 = m2 − d2 − 1

4 . (4.9)

Notice that the above implies that the coordinate transverse to the defect, x3, plays the role
of the radial coordinate of an AdS4 space with the defect as its boundary. This interpretation
continues to hold when fermions are taken into account, cf. the next subsection. Notice also
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that none of the scalar masses in (3.37) violate the Breitenlohner-Freedman (BF) bound [16],
since m̃2 ≥ −9/4, which is precisely the BF bound for AdS4. The bound is saturated only
for the special case k = 2.

Closed expressions for KAdS(x, y) in terms of hypergeometric functions can be found in
the literature, see e.g. [17, 18]. Another representation, which is useful for our purpose, can
be found in [19], and reads

KAdS(x, y) = (x3y3)d/2
∫ dd~k

(2π)d
∫ ∞

0
dw w

w2 + ~k2
ei~k·(~x−~y) Jν(wx3)Jν(wy3),

= (x3y3)d/2
∫ dd~k

(2π)d ei~k·(~x−~y) Iν(|~k|x<3 )Kν(|~k|x>3 ) ,
(4.10)

where I and K are modified Bessel functions with x<3 (x>3 ) the smaller (larger) of x3 and
y3 and ν was defined in (3.36).

4.2 Fermionic propagators

For the fermions, after diagonalisation and when working in Euclidean space where
{γµ, γν} = −2δµν , the propagator KF (x, y) fulfils

(
−iγµ∂µ + m

x3

)
KF (x, y) = g2

YM

2 δ(x− y) . (4.11)

To relate this propagator to the propagator of fermions on AdSd+1, we introduce

KF (x, y) = g2
YM

2
K̃F (x, y)

(x3)d/2(y3)d/2
. (4.12)

Then, we find

δ(x− y) =
(
−iγµ∂µ + m

x3

)
K̃F (x, y)

(x3)d/2(y3)d/2

= 1
(y3)d/2

(
− i

(x3)d/2
γµ∂µ + d

2 iγ
3 1
(x3)d/2+1 + m

(x3)d/2+1

)
K̃F (x, y) ,

(4.13)

or
(
−x3iγ

µ∂µ + d

2 iγ
3 +m

)
K̃F (x, y) = (x3)d/2+1(y3)d/2δ(x− y) = (x3)d+1δ(x− y) . (4.14)

Using again the AdS metric given in (4.5), the fermion propagator KF,AdS(x, y) solves

(−i/D + m̃)KF,AdS(x, y) = δ(x− y)√
g

, (4.15)

where
/D = x3∂µγ

µ − d

2γ
3 (4.16)

is the spinor covariant derivative; see [20] and also [21]. Thus, we have

KF (x, y) = g2
YM

2
K̃F (x, y)

(x3)d/2(y3)d/2
= g2

YM

2
KF,AdS(x, y)

(x3)d/2(y3)d/2
, (4.17)
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with m = m̃.
In [22], the following useful expression for the fermionic propagator KF,AdS in AdSd+1

in terms of the bosonic one is given:

Km
F,AdS(x, y) =

√
y3
x3

[
i/D + i

2γ
3 +m

] [
K
ν=m−1

2
AdS (x, y)P− +K

ν=m+ 1
2

AdS (x, y)P+

]
, (4.18)

where
P± = 1

2(1± iγ3) . (4.19)

From this, we can express the flat space fermionic propagator in terms of the bosonic one
as follows

Km
F (x, y) = x

− d+1
2

3

[
x3iγ

µ∂µ −
d− 1

2 iγ3 +m

]
x
d−1

2
3

[
Kν=m−1

2 (x, y)P− +Kν=m+ 1
2 (x, y)P+

]

=
[
iγµ∂µ + m

x3

] [
Kν=m−1

2 (x, y)P− +Kν=m+ 1
2 (x, y)P+

]
. (4.20)

For future reference, we note that the fermionic propagator enjoys the charge conjugation
symmetry

C(KF (x, y)
)TC−1 = KF (y, x) , (4.21)

where the transpose acts in spinor space, and C is defined in (C.5).

4.3 Colour and flavour part of propagators

Using the mass eigenstates derived in section 3.2, we can now rewrite the propagators of
the fields with definite flavour in terms of the propagators of the mass eigenstates.

We begin with the fields in the k×k block. For the easy fields, the propagator is already
diagonal in the Ŷ m

` basis, so we have e.g.

〈(φ̃4)`,m(x)(φ̃4)†`′,m′(y)〉 = δ`,`′δm,m′K
m2=`(`+1)(x, y) . (4.22)

Here, (φ̃4)†`,m ≡ ((φ̃4)`,m)† = (−1)m(φ̃4)`,−m and Km2 is the propagator for a scalar mode
with squared mass m2, see section 4.1.

Calculating the propagators for the complicated fields takes a little more effort. It is
useful to first consider the Ct,± fields. Using the relation to the diagonal fields (3.28) and
suppressing space-time positions for brevity, we find

〈(Ct,+)`,m(Ct,+)†`′,m′〉 = δ`,`′δm,m′

(
`+m+ 1

2`+ 1 Km2=`(`−1) + `−m
2`+ 1K

m2=(`+1)(`+2)
)
,

(4.23)

〈(Ct,−)`,m(Ct,−)†`′,m′〉 = δ`,`′δm,m′

(
`−m+ 1

2`+ 1 Km2=`(`−1) + `+m

2`+ 1K
m2=(`+1)(`+2)

)
,

(4.24)

〈(Ct,+)`,m(Ct,−)†`′,m′〉 = δ`,`′
[t(2`+1)
− ]`−m+1,`−m′+1

2`+ 1 (Km2=`(`−1) −Km2=(`+1)(`+2)) , (4.25)
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and

〈(Ct,−)`,m(Ct,+)†`′,m′〉 = δ`,`′
[t(2`+1)

+ ]`−m+1,`−m′+1
2`+ 1 (Km2=`(`−1) −Km2=(`+1)(`+2)) . (4.26)

Here, t(2`+1)
i are the generators of the (2`+ 1)-dimensional irreducible representation of the

Lie algebra SU(2) defined in appendix A with k → 2`+ 1. The propagators with t→ b are
identical, while the mixed ones vanish. Using (3.11), we express the original fields in terms
of Ct,± and Cb,±. We can now compute e.g.

〈(φ̃1)`,m(φ̃2)†`′,m′〉 = 1
2
(
−i〈(Ct,+)`,m(Ct,+)†`′,m′〉+ i〈(Cb,−)`,m(Cb,−)†`′,m′〉

)

= −iδ`,`′
[t(2`+1)

3 ]`−m+1,`−m′+1
2`+ 1 (Km2=`(`−1) −Km2=(`+1)(`+2)) .

(4.27)

Repeating this exercise, we finally find

〈(φ̃i)`,m(φ̃j)†`′,m′〉 = δi,jδ`,`′δm,m′

(
`+ 1
2`+ 1K

m2=`(`−1) + `

2`+ 1K
m2=(`+1)(`+2)

)
(4.28)

−iεijl[t(2`+1)
l ]`−m+1,`−m′+1δ`,`′

1
2`+ 1(Km2=`(`−1) −Km2=(`+1)(`+2)) ,

〈(A3)`,m(A3)†`′,m′〉 = δ`,`′δm,m′

(
`+ 1
2`+ 1K

m2=`(`−1) + `

2`+ 1K
m2=(`+1)(`+2)

)
(4.29)

and

〈(φ̃i)`,m(A3)†`′,m′〉 = −〈(A3)`,m(φ̃i)†`′,m′〉 (4.30)

= iδ`,`′
[t(2`+1)
i ]`−m+1,`−m′+1

2`+ 1 (Km2=`(`−1) −Km2=(`+1)(`+2)) .

Similarly, we obtain the propagators of the fermions as

〈(ψi)`,m(ψj)`′,m′〉 = δi,jδm,m′δ`,`′

(
`+ 1
2`+ 1K

m=−`
F + `

2`+ 1K
m=`+1
F

)

−δ`,`′ [Gl]i,j
[t(2`+1)
l ]`−m+1,`−m′+1

2`+ 1
(
Km=−`
F −Km=`+1

F

)
,

(4.31)

where (ψj)`′,m′ ≡ ((ψj)`′,m′)†γ0 = (−1)m′(ψ̄j)`′,−m′ , Gl are the 4 × 4 matrices defined in
(3.15) and Km

F denotes the fermionic propagators of definite mass m derived in section 4.2.
To obtain the propagator between the matrix elements, one can write

〈[Φ1]n1,n2 [Φ2]n3,n4〉 = [Ŷ m
` ]n1,n2 [(Ŷ m′

`′ )†]n3,n4〈(Φ1)`,m(Φ2)†`′,m′〉 (4.32)

and use (B.12) to get an explicit expression. In practice, however, it is often more convenient
to work directly in the Ŷ m

` basis.
We have now written all the propagators for the k×k block. To obtain the corresponding

expressions for the k × (N − k) and (N − k) × k blocks is mostly a matter of replacing
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(Φ)`,m → [Φ]n,a and `→ (k − 1)/2 in the above formulae. In particular, we have

〈[φ̃4]n,a[φ̃4]†n′,a′〉 = δn,n′δa,a′K
m2= k2−1

4 , (4.33)

〈[A3]n,a[A3]†n′,a′〉 = δn,n′δa,a′

(
k + 1

2k Km2= (k−2)2−1
4 + k − 1

2k Km2= (k+2)2−1
4

)
, (4.34)

〈[φ̃i]n,a[φ̃j ]†n′,a′〉 = δi,jδn,n′δa,a′

(
k + 1

2k Km2= (k−2)2−1
4 + k − 1

2k Km2= (k+2)2−1
4

)
(4.35)

−iεijl[tl]n,n′δa,a′
1
k

(
Km2= (k−2)2−1

4 −Km2= (k+2)2−1
4

)
,

〈[φ̃i]n,a[A3]†n′,a′〉 = −〈[A3]n,a[φ̃i]†n′,a′〉 = i[ti]n,n′δa,a′
1
k

(
Km2= (k−2)2−1

4 −Km2= (k+2)2−1
4

)

(4.36)

and

〈[ψi]n,a[ψj ]n′,a′〉 = δa,a′δi,jδn,n′
1
k

(
k + 1

2 K
m=− k−1

2
F + k − 1

2 K
m= k+1

2
F

)
(4.37)

−δa,a′ [Gl]i,j
[tl]n,n′
k

(
K
m=− k−1

2
F −Km= k+1

2
F

)
,

where [φ̃4]†n′,a′ ≡ ([φ̃4]n′,a′)† = [φ̃4]a′,n′ , [ψj ]n′,a′ ≡ ([ψj ]n′,a′)†γ0 = [ψ̄j ]a′,n′ , etc.
Fermionic propagators with bars added and/or removed can be obtained from those

given above using the Majorana condition ψi = Cψ̄Ti ; see appendix C. In particular, we will
need the propagator

〈[ψi]a,n[ψj ]a′,n′〉 = δa,a′δi,jδn,n′
1
k

(
k + 1

2 K
m=− k−1

2
F + k − 1

2 K
m= k+1

2
F

)
(4.38)

+δa,a′ [Gl]i,j
[tl]n′,n
k

(
K
m=− k−1

2
F −Km= k+1

2
F

)
.

Here, we have used the charge conjugation symmetry (4.21) to simplify the expression.

5 Dimensional regularisation

For our one-loop computation, we need to evaluate K(x, x) as well as trKF (x, x) and we
hence need to regulate these quantities. Dimensional regularisation has been used successfully
in combination with dimensional reduction in a number of higher loop computations in
standard N = 4 SYM theory, see e.g. [23, 24] and references therein, but neither have been
tested in the defect setup. In this section, we determine K(x, x) as well as trKF (x, x) in
dimensional regularisation and discuss the preservation of supersymmetry in analogy to
dimensional reduction.

Results for K(x, x) and trKF (x, x) in Hadamard as well as zeta-function regularisation,
which are commonly used in AdS, can be found in the literature and for completeness we
summarise these in appendix E.
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Bosonic fields In order to evaluate K(x, x) using dimensional regularisation, we use as
our starting point the expression (4.10), consider the ~k integral in d = 3− 2ε dimensions,
set ~x = ~y and go to polar coordinates. The expression (4.8) then turns into

Km2=ν2− 1
4 (x, x) = g2

YM

2 x3
2π3/2−ε

Γ(3/2− ε)

∫ ∞

0
dk k2−2ε

(2π)3−2ε Iν(kx3)Kν(kx3) , (5.1)

where k denotes the radial component of ~k and 2π3/2−ε
Γ(3/2−ε) is the area of the unit sphere in

d = 3− 2ε dimensions resulting from the angular integration. Expanding in small ε and
dropping terms of O(ε), we find
∫ ∞

0
dk k2−2εIν(kx3)Kν(kx3) = 1

8x3
3

(
2m2

[1
2 + Ψ(ν + 1

2)− log 2x3 −
1
2ε

]
− 1

)
. (5.2)

This means that the total, regularised propagator is given by

Kν(x, x) = g2
YM

2
1

16π2 x2
3

(
m2

[
−1
ε
− log(4π) + γE − 2 log(x3) + 2Ψ(ν + 1

2)− 1
]
− 1

)
,

(5.3)

where γE is the Euler-Mascheroni constant.
The form of the bosonic spectrum found in the previous section means that the digamma

function Ψ simplifies. We first observe that the eigenvalues come in two families. The first
family is

m2 = (k + 2s)2 − 1
4 , s ∈ {−1, 0, 1} , (5.4)

and the second family is

m2 = j(j − 1), j = 1, . . . , k + 1 . (5.5)

The digamma terms then reduce to

Ψ



√

(k + 2s)2 − 1
4 + 1

4 + 1
2


 =




−γE − 2 log 2 +∑ k

2 +s
n=1

2
2n−1 , k even ,

−γE +∑ k−1
2 +s

n=1
1
n , k odd ,

(5.6)

and

Ψ
(√

j(j − 1) + 1
4 + 1

2

)
= −γE +

j−1∑

n=1

1
n
, (5.7)

respectively.

Fermionic fields The other quantity that is relevant for our one-loop computation is
the trace of the fermionic propagator. In this case, we will use as our starting point the
formula (4.20). Since the γ matrices are traceless and furthermore satisfy tr(γiγ3) = 0, what
remains to evaluate is then effectively

trKm
F (x, y) = 2

[
−∂3 + m

x3

]
Kν=m−1

2 (x, y) + 2
[
∂3 + m

x3

]
Kν=m+ 1

2 (x, y) , (5.8)
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where we have used that trm = 4m and tr(γ3)2 = −4. Now, we have to find the regularised
version of this expression at coinciding points, KF (x, x).

Using the fact that trKF (x, y) and K(x, y) are symmetric under interchanging x and
y,1 we can write

trKm
F (x, y) =

[
−∂x3 − ∂y3 + m

x3
+ m

y3

]
Kν=m−1

2 (x, y)

+
[
∂x3 + ∂y3 + m

x3
+ m

y3

]
Kν=m+ 1

2 (x, y) .
(5.9)

In the limit y → x, we have (∂x3 + ∂y3)K(x, y)→ ∂x3K(x, x), such that

trKm
F (x, x) =

[
−∂x3 + 2m

x3

]
Kν=m−1

2 (x, x) +
[
∂x3 + 2m

x3

]
Kν=m+ 1

2 (x, x) . (5.10)

Substituting the regularised expression (5.3) for the boson into this then leads to

trKm
F (x, x) = g2

YM

2
1

4π2x3
3

[
m3 +m2 − 3m− 1

+m(m2 − 1)
(
−1
ε
− log(4π) + γE − 2 log(x3) + 2Ψ(m)− 2

)]
. (5.11)

The diagonalisation of the fermionic mass terms yields both positive and negative
eigenvalues. By chirally rotating the fermion fields, one can argue that the sign of the
mass should only affect the overall sign of the fermion loop; cf. also the expression for the
propagator in [25]. Hence, the full m dependence of (5.11) is

trKm
F (x, x) = sgn(m) g

2
YM

2
1

4π2x3
3

[
|m|3 + |m|2 − 3|m| − 1

+ |m|(|m|2 − 1)
(
−1
ε
− log(4π) + γE − 2 log(x3) + 2Ψ(|m|)− 2

)]
. (5.12)

Dimensional reduction Dimensional regularisation alone breaks supersymmetry, as the
number of components of the gauge field Aµ is changed from nA = 4 to nA = D = 4− 2ε
while the numbers of fermions nψ = 4 and real scalars nφ = 6 remains unchanged. In usual
N = 4 SYM theory, a supersymmetry-preserving alternative to dimensional regularisation is
dimensional reduction [26, 27].2 It uses the fact that N = 4 SYM theory in four dimensions is
the dimensional reduction of N = 1 SYM theory in ten dimensions. Dimensionally reducing
to D = 4− 2ε dimensions instead leads to a supersymmetry-preserving regularisation with
nψ = 4 fermions but nφ = 6 + 2ε real scalars.

Our regularisation will follow the spirit of dimensional reduction adapted to the situation
with the defect and the classical vevs. In our dCFT, the gauge fields and scalars are split into
easy and complicated fields: nA = nA,easy+nA,com. = 4−2ε and nφ = nφ,easy+nφ,com. = 6+2ε.

1For trKF (x, y), this follows from (4.21).
2Note that dimensional reduction is inconsistent at sufficiently high loop orders though [28–31].
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In the calculation above, we have only touched the d dimensions parallel to the defect,
such that the codimension of the defect remains one. Thus, we have nA,easy = 3− 2ε and
nA,com. = 1. Furthermore, we have left untouched the three scalar fields which acquire vevs
as this ensures that the classical equations of motion and the Nahm condition which define
the fuzzy-funnel solution continue to be fulfilled away from d = 3. Thus, we are led to
conclude nφ,com. = 3 and nφ,easy = 3 + 2ε.

Further support for the above conclusion comes from the construction via the D5-D3
probe-brane set-up. The easy gauge fields corresponds to the directions in which both the
D5 and the D3 brane extend, while the easy scalars correspond to the directions into which
none of the branes extend. The complicated scalars (gauge field) correspond to the directions
in which only the D5 (D3) extends. For the D5-D3 probe-brane set-up, supersymmetry
requires that the number of Neumann-Dirichlet directions, i.e. the number of dimensions in
which only the D5 brane or the D3 branes extend, is 0, 4 or 8; see for instance [32, 33]. Thus,
supersymmetry requires that we further keep nA,com. + nφ,com. = 10− nA,easy + nφ,easy = 4
fixed, which indeed leads to nφ,com. = 3 and nφ,easy = 3 + 2ε.

6 One-loop corrections to one-point functions

For operators O with definite scaling dimension ∆, conformal symmetry constrains the
one-point function to be of the form [3]

〈O∆〉(x) = C

x∆
3
, (6.1)

where C is a constant and x3 denotes the distance to the defect.
Let us consider a general single-trace operator built out of L real scalars:

O(x) = Oi1i2...iL tr(φi1φi2 . . . φiL)(x) . (6.2)

The classical one-point function is simply given by inserting the classical solution (2.4) into
(6.2):

〈O〉tree(x) = Oi1i2...iL tr(φcli1φ
cl
i2 . . . φ

cl
iL

)(x) . (6.3)
This is depicted in figure 2(a). We now calculate the first quantum correction to this
quantity.

6.1 One-loop one-point functions of general operators
At one-loop order, two different diagrams can contribute to the one-point function of any
operator. We call them the lollipop diagram and the tadpole diagram and depict them in
figure 2(c) and 2(b), respectively.

The lollipop diagram is obtained by expanding the operator to linear order in the
quantum fields and connecting this quantum field with a propagator to a quantum field in
a cubic vertex whose other two quantum fields are connected with each other by a second
propagator:

〈O〉1-loop,lol(x) = Oi1i2...iL
L∑

j=1
tr(φcli1 . . . φ̃ij . . . φ

cl
iL

)(x)
∫

d4y
∑

Φ1,Φ2,Φ3

V3(Φ1,Φ2,Φ3)(y) ,

(6.4)
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(a) (b) (c)

Figure 2. The diagrams which contribute to the one-point functions of scalar fields at tree level (a)
and one-loop order ((b) tadpole and (c) lollipop). The operator is represented by a dot and a cross
symbolises the insertion of the classical solution.

where the second sum is over all cubic vertices V3 in the theory. Note that this diagram is
1-particle-reducible and effectively is expressed in terms of the contribution of the one-loop
correction to the scalar vevs:

〈O〉1-loop,lol(x) = Oi1i2...iL
L∑

j=1
tr(φcli1 . . . 〈φij 〉1-loop . . . φcliL)(x) , (6.5)

where

〈φi〉1-loop(x) = φ̃i(x)
∫

d4y
∑

Φ1,Φ2,Φ3

V3(Φ1,Φ2,Φ3)(y) . (6.6)

We calculate 〈φi〉1-loop in appendix D, finding

〈φi〉1-loop(x) = 0 . (6.7)

Thus,

〈O〉1-loop,lol(x) = 0 , (6.8)

independently of which operator we are looking at.
The tadpole diagram is obtained by expanding the operator to quadratic order in the

quantum fields and connecting the resulting two quantum fields with a propagator:

〈O〉1-loop,tad(x) =
∑

j1,j2

Oi1...ij1 ...ij2 ...iL tr(φcli1 . . . φ̃ij1 . . . φ̃ij2 . . . φ
cl
iL

)(x) . (6.9)

In the large-N limit, the tadpole integral only contributes when the two quantum fields are
neighbouring, i.e. when j ≡ j1 = j2− 1; the components in the off-diagonal k× (N − k) and
(N − k)× k blocks can contribute only in this case, and only they scale with N .3 Inserting

3Recall that the fields in the (N − k) × (N − k) block do not directly couple to the classical fields.
Moreover, they are massless such that their tadpole integrals vanish.
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the decomposition (3.22), we find

〈O〉1-loop,tad(x) =
∑

j

Oi1...ij ij+1...iL tr(φcli1 . . . E
n
aE

a
n′ . . . φ

cl
iL

)(x)〈[φ̃ij ]n,a(x)[φ̃ij+1 ]a,n′(x)〉

+ (k × k)-contributions .
(6.10)

The occurring propagator is only non-vanishing for ij = ij+1 = 4, 5, 6 and ij , ij+1 = 1, 2, 3.
All required cases are given in subsection 4.3.

At one-loop order, the one-point functions do not receive contributions from the quartic
vertices as the occurrence of such a vertex would require an additional propagator in
comparison with a cubic vertex. The one-point functions do not receive any contributions
from the fields living on the defect either. This is due to the fact that any such one-loop
diagram would involve a loop consisting of a single propagator of a defect field, which
vanishes due to conformal invariance.

In general, there are two further contributions at one-loop level. The first originates from
the need to renormalise the operator via the renormalisation constant Z = 1+Z1-loop+O(λ2):

〈O〉1-loop,Z(x) =〈Z1-loopO〉tree(x) . (6.11)

This contribution cancels the UV divergence in (6.10), see also the discussion underneath
(6.17). The second additional contribution originates from the first quantum correction
to the one-loop eigenstate, i.e. the two-loop eigenstate, if we are looking at operators of
definite scaling dimension ∆:

〈O〉1-loop,O(x) = Oi1i2...iL2-loop tr(φcli1φ
cl
i2 . . . φ

cl
iL

)(x) . (6.12)

Thus, we have for the planar one-loop one-point function of any single-trace operator
built out of scalar fields:

〈O〉1-loop(x) = 〈O〉1-loop,tad(x) + 〈O〉1-loop,Z(x) + 〈O〉1-loop,O(x) . (6.13)

6.2 One-loop one-point functions in the SU(2) sector
Let us now consider operators in the SU(2) sector, which are built from the complex scalars
Φ↓ ≡ X = φ1 + iφ4 and Φ↑ ≡ Z = φ3 + iφ6. Consider the operator

O(x) = Os1s2...sL tr(Φs1Φs2 . . .ΦsL)(x) , (6.14)

where si =↑, ↓. The tree-level one-point functions of these operators were computed using
integrability in [5, 6].

Of the above diagrams contributing to the one-loop one-point function, only the tadpole
diagram simplifies further if we restrict ourselves to the SU(2) sector. Using the explicit
expressions for the propagators given in section 4.3, we find

〈O〉1-loop,tad(x) = λ

16π2
1

(x3)2
∑

j

δsj=sj+1Os1...sj sj+1...sL tr(φcls1 . . . φ
cl
sj−1φ

cl
sj+2 . . . φ

cl
sL

)(x)

+ λ

8π2

(
− 1

2ε −
1
2 log(4π) + 1

2γE − log(x3) + Ψ(k+1
2 )
)

(6.15)

×
∑

j

Os1...sj sj+1...sL tr(φcls1 . . . φ
cl
sj−1 [φclsj , φ

cl
sj+1 ]φclsj+2 . . . φ

cl
sL

)(x) .
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We observe that the third line is precisely proportional to the one-loop dilatation operator
in the SU(2) sector originally obtained in [34]. For one-loop eigenstates, the third line is
proportional to the one-loop anomalous dimension multiplied by the tree-level one-point
function:

〈O〉1-loop,tad(x) = λ

16π2
1

(x3)2
∑

j

δsj=sj+1Os1...sj sj+1...iL tr(φcls1 . . . φ
cl
sj−1φ

cl
sj+2 . . . φ

cl
sL

)(x)

+ λ

8π2

(
− 1

2ε −
1
2 log(4π) + 1

2γE − log(x3) + Ψ(k+1
2 )
) ∆1-loop

2 〈O〉tree(x) . (6.16)

As Z1-loop = λ
16π2

∆1-loop
2ε when using minimal subtraction, we have

〈O〉1-loop,Z(x) = λ

16π
∆1-loop

2ε 〈O〉tree(x) . (6.17)

Thus, this contribution cancels the divergence above.4 Moreover, the prefactor of log(x3)∆1-loop
has the expected form coming from the one-loop correction to the scaling dimension.

The two-loop eigenstates are also known and can be efficiently obtained using one of
the two recently developed technologies [35, 36] and [37, 38], both of which build on the
manipulation of an inhomogeneous version of the Heisenberg spin chain. Hence, it only
remains to calculate two overlaps, one involving a matrix-product state and an amputated
one-loop Bethe state, and the other one involving a matrix product state and a two-loop
correction to a Bethe state. These calculations should be doable [39] adapting the technique
developed in [5, 6].

6.3 One-loop one-point functions of tr(ZL)

Finally, let us consider the special case of the BPS operator tr(ZL), i.e.Oi1...iL = ∏L
j=1(δij=3+

iδij=6).
At tree level, we have [5]

〈tr(ZL)〉tree(x) = (−1)L
xL3

k∑

i=1
dLk,i =





0 , L odd ,
− 2
xL3 (L+1)BL+1

(
1−k

2

)
, L even ,

(6.18)

where dk,i given in (A.3) denotes the diagonal entries of t3 and BL+1(u) is the Bernoulli
polynomial of degree L+ 1.

The one-loop contributions 〈O〉1-loop,Z(x) and 〈O〉1-loop,O(x) vanish for this operator,
and (6.10) reduces to

〈tr(ZL)〉1-loop,tad(x) =L tr((φcl3 )L−2EnaE
a
n′)(x)

(
〈[φ̃3]n,a[φ̃3]a,n′〉 − 〈[φ̃6]n,a[φ̃6]a,n′〉

)

+ (k × k)-contributions ,
(6.19)

where we have suppressed the argument x of both propagators and the trivial summation
over j has produced a factor L. Inserting (4.35) and (4.33), the summation over a produces

4When using modified minimal subtraction, Z1-loop = λ
16π2

∆1-loop
2ε e−εγE (4π)ε and also the − 1

2 log(4π) +
1
2γE is cancelled.
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a factor (N − k) and the summation over n, n′ reduces the matrix unities to a unit matrix.
Thus, we find5

〈tr(ZL)〉1-loop(x) = 〈tr(ZL)〉1-loop,tad(x) = 〈tr(ZL−2)〉tree(x) 1
x2

3

λ

16π2L+O( 1
N ) . (6.20)

6.4 Finite-N results

In order to check our formalism and results, we have also computed the one-point functions
explicitly in colour components for small N, k using Mathematica. In this way, we explicitly
diagonalised the mass matrix and used the mass eigenstates to find the propagators in
colour space. We find that the mass spectrum perfectly matches (3.3). Moreover, from
our explicit results for N, k < 9, we were able to extract closed formulas for the one-point
functions for any N, k. We find that they agree with (6.8) and (6.20) in the large-N limit.
The cancellations of divergencies for small mass, the regulator and irrational terms like γE
all provide non-trivial consistency checks of our approach.

One-loop correction to vev From computations for N, k < 9, we were able to find a
closed expression for the vev of the scalar fields. In particular, our explicit computations
show that the planar result

〈φi〉1-loop = 0 (6.21)

is actually exact.

Tadpole correction to tr(ZL) Similarly, we have explicitly checked the tadpole dia-
grams for N, k < 9. Again, we were able to find an exact expression for any N, k, L. It is
given by

〈tr(ZL)〉1-loop,tad(x) = L
g2

YM

8π2
1
xL3

{
BL−1

(
k+1

2

)

1− L

[
N − k + k − 1

k

L− 1
2

]

+
b k−2

2 c∑

i=0
(Hk−i−1 −Hi)

[
k − 2i− 1

2

]L−1 }
, (6.22)

where Hn = ∑n
i=1 i

−1 are the harmonic numbers. Notice that (6.22) reduces to (6.20) in
the large-N limit.

7 Comparison to string theory for 〈tr(ZL)〉

When we wish to compare our perturbative, planar gauge-theory results to string theory,
we are of course facing the eternal problem (and virtue) of the AdS/CFT correspondence
that it is a strong-weak coupling duality. A proposal for how to circumvent this issue in the
present set-up was put forward by Nagasaki, Tanida and Yamaguchi [13]. They pointed out
that, compared to the usual AdS/CFT scenario, we here have at our disposal one extra

5Recall that the lollipop contribution vanishes for all operators, cf. (6.7).

25



tunable parameter, namely k, which plays the role of the background gauge-field flux in
the string-theory picture and corresponds to the dimension of the SU(2) representation
associated with the classical fields around which we expand on the gauge-theory side. Hence,
one can consider the double-scaling limit

λ→∞, k →∞, λ/k2 finite, (7.1)

and furthermore consider λ/k2 to be small. The limit λ → ∞ justifies a supergravity
approximation on the string-theory side, whereas the assumption of λ/k2 being small might
bring one to the realm of perturbation theory for the field theory. This, however, requires
that the gauge-theory perturbation series for the observables of interest organises into
an expansion in powers of λ/k2. This idea is analogous to the BMN construction [40],
where another large quantum quantum number, J , with the interpretation of an angular
momentum, was considered to be large and was combined with λ to form the double-scaling
parameter λ/J2. In the study of the spectral problem of N = 4 SYM theory, it was found
that the perturbative expansion ceased to be an expansion in the parameter λ/J2 at four
loops [41–43].

In [13], the authors calculated in a supergravity approximation the one-point function of
a special chiral primary of even length L, namely the unique one which carries SO(3)×SO(3)
symmetry:

O(x) = CL tr



( 3∑

i=1
φ2
i

)L/2
+
( 6∑

i=4
φ2
i

)
QL−2

( 3∑

i=1
φ2
i ,

6∑

i=4
φ2
i

)
 (x) , (7.2)

where CL is a normalisation constant and QL−2(y, z) is a homogeneous polynomial of degree
L−2

2 in y and z. This was done by considering the bulk-to-boundary propagator carrying
the quantum numbers characteristic of the chiral primary, fixing one of its endpoints to
the point x in the AdS boundary and integrating the other one over all points belonging
to the D5-brane in the interior of AdS5 × S5. We note in passing that the computation
can be considerably simplified, not necessitating any integration, if one is only interested
in the leading large-L behaviour [6]. However, we will include finite-L corrections in the
following discussion. The result for the string-theory one-point function found in [44] turned
out to be expandable as a series in the double-scaling parameter λ/k2 and the leading term
in this expansion was shown to agree with the result of a tree-level computation in the
gauge theory, which simply amounts to inserting the classical value for the fields into (7.2).
The string-theory result of [44] also implies a prediction for the gauge-theory result for
the one-point function of the operator above at next-to-leading order in the double-scaling
parameter. The chiral primary (7.2) differs from the one we focused on in section 6.3, namely
tr(ZL), but one can easily convince oneself that the latter has a non-vanishing projection
on the former. This implies that the ratio between the next-to-leading-order contribution
and the leading-order contribution in λ/k2 should be the same for the two operators. The
prediction for this ratio following from the analysis of [44] reads

〈O〉1-loop
〈O〉tree-level

∣∣∣∣
string

= λ

4π2k2
L(L+ 1)
L− 1 . (7.3)
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Combining (6.18) and (6.20), we likewise have a result for this quantity:

〈O〉1-loop
〈O〉tree-level

∣∣∣∣
gauge

= λ

4π2k2

(
L(L+ 1)
L− 1 +O(k−2)

)
, (7.4)

which perfectly matches the string-theory prediction. This constitutes a highly nontrivial
test of the AdS/dCFT correspondence! Whether the field theory result continues to organise
into a power series expansion in the double-scaling parameter λ/k2 at higher loop order is
obviously a question which requires further investigation. As already mentioned, the BMN
expansion broke down at four-loop order. Nevertheless, the BMN idea was instrumental
in catalysing the integrability approach to AdS/CFT. One could dream that the present
double-scaling idea would play a similarly instrumental role for the study of AdS/dCFT.

8 Conclusion and outlook

With the present paper, we have performed a non-trivial, positive test of the gauge-gravity
correspondence in a set-up where both the supersymmetry and the conformal symmetry are
partially broken. In order to carry out the test, we had to set up the framework for loop
computations in a Higgsed defect version of N = 4 SYM theory, dual to a D5-D3 probe
brane system with flux. This framework now opens the possibility of calculating a large
amount of observables of the theory and hence obtaining more insight into the properties of
the AdS/dCFT setup in general and the specific dCFT in particular. As an application,
we formulated the precise line of action for calculating the one-loop correction to any
scalar operator, leaving only a combinatorial problem that should be solvable invoking the
tools of integrability. In particular, we have found that only two Feynman diagrams are
relevant for the calculation and we have evaluated these using dimensional regularisation
finding that one of them vanishes. So far, we have completed the calculation of the one-loop
correction to the one-point function of the BMN vacuum which we previously summarised
in [8]. For this particular correlator, a comparison with string theory is possible in a certain
double-scaling limit and a perfect match is found. A similar situation occurs in a calculation
of the expectation value of a straight Wilson line [45].

Apart from the two simple observables just mentioned, there exist at the time of writing
no other string-theory results that one could compare to and it would be interesting and
important to extend the string-theory computations to other cases. The most immediate one
would be one-point functions of spinning strings corresponding to non-protected operators
of the SU(2) subsector.

One-point functions only constitute one out of several novel types of correlators specific
to dCFTs. Another class of such operators are two-point functions between operators with
different conformal dimensions. General arguments constrain the space-time dependence
of such two point functions [3] and it would be interesting to demonstrate by explicit
computation that the constraints are met both from the particular dCFT considered here
and from its string-theory counterpart.

Until now, we have focused on one-loop computations for which the defect fields do not
play any role. A natural new direction of investigation would be to consider situations where
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the defect fields come into play. We expect that this will happen if the present calculation
is carried on to higher-loop order. Defect fields can of course also appear in correlation
functions either with other defect fields or with bulk fields. Correlation functions between
defect and bulk fields again constitute a novel type of observables for which only very few
explicit results are known [4].

The D5-D3 probe brane set-up is only one out of a number of probe brane set-ups
which have dual dCFTs, see for instance [33]. Another set-up which is very reminiscent of
the one considered here is the D7-D3 probe brane system where the geometry of the D7
brane is either AdS4 × S4 or AdS4 × S2 × S2 and where again a certain background gauge
field has a non-vanishing flux through either S4 or S2 × S2, making possible the definition
of a double-scaling parameter. The dual dCFT is again a defect version of N = 4 SYM
theory but the set-up is no longer supersymmetric. So far, for this dCFT only tree-level
one-point functions of chiral primaries have been calculated and these were found to match
a string-theory prediction to the leading order in the double-scaling parameter [14]. It would
be interesting to extend this study to non-protected operators [46] as well as to generalise
the approach presented in this paper to proceed to one-loop order. The latter endeavour,
however, is likely to involve novel complications and subtleties due to the complete absence
of supersymmetry.

The development of the last 15 years has lead to numerous discoveries of novel features of
N = 4 SYM theory and the AdS/CFT correspondence as well as novel techniques applicable
to this set-up, such as integrability [2], localisation [47], the conformal bootstrap [48] and
the duality between Wilson loops and correlators [49]. The tools of integrability have already
proven useful in the present set-up, in particular at tree level where they permitted the
derivation of a close form for the one-point function valid for any operator in the SU(2)
subsector and for any value of the parameter k [5, 6], but also for the present one-loop
considerations where they come into play for instance in section 6.2. Whether integrability
tools will facilitate going to higher loop orders or to other subsectors remains to be seen. A
generalisation of the conformal bootstrap approach to the defect set-up has been studied
in [50–53]. It would be interesting to investigate in more detail how far this as well as the
other above mentioned techniques can be taken in the context of the present dCFT.
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A Explicit form of the representation matrices

We present here explicit expressions for the representation matrices ti in the k-dimensional
irreducible representation of the Lie algebra SU(2).

Following [5], we define the standard matrices Eij satisfying

EijE
k
l = δkjE

i
l . (A.1)

We define

t+ =
k−1∑

i=1
ck,iE

i
i+1 , t− =

k−1∑

i=1
ck,iE

i+1
i , t3 =

k∑

i=1
dk,iE

i
i , (A.2)

where
ck,i =

√
i(k − i) , dk,i = 1

2(k − 2i+ 1) . (A.3)

The standard k-dimensional representation of the Lie algebra SU(2) is then given by

t1 = t+ + t−
2 , t2 = t+ − t−

2i and t3 . (A.4)

B ‘Spherical’ colour basis and the fuzzy sphere

In this appendix, we summarise some properties of the spherical harmonics of the fuzzy
sphere, which are used in the diagonalisation of the mass matrix in section 3.2.

Let Φ be any adjoint field. It transforms naturally under SU(2) as

Φ→ e−iλiti Φ eiλiti , (B.1)

or infinitesimally
δΦ = −iλi Ad(ti)Φ = −iλi[ti,Φ] . (B.2)

As usual, we can decompose this representation into a sum of irreducible representations.
To do this explicitly for the components in the k × k block, we use the spherical harmonics
Y m
` ; see [54, 55]. We start by remembering that r`Y m

` can be written as a homogeneous
polynomial of order ` in the Cartesian coordinates. In detail, we have

r`Y m
` = (−1)m

√
2`+ 1Π̄m

` (x1 + ix2)m , r`Y −m` =
√

2`+ 1Π̄m
` (x1 − ix2)m , (B.3)

for m ≥ 0 and with

Π̄m
` =

√
(`−m)!
(`+m)!

b(`−m)/2c∑

s=0
(−1)s2−`

(
`

s

)(
2`− 2s

`

)
(`− 2s)!

(`− 2s−m)!r
2sx`−2s−m

3 . (B.4)

Note that x1, x2, x3 have nothing to do with the physical coordinates. It follows that there
is a symmetric set of coefficients f `mi1,i2,...i` such that

r`Y m
` =

∑

{i}
f `mi1,i2,...i`xi1 · · ·xi` . (B.5)
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We now want to define a N ×N matrix corresponding to Y m
` . We rescale the SU(2)

generators to

x̂i =
√

4
k2 − 1 ti . (B.6)

These are coordinates on the fuzzy unit sphere. In particular, we have

x̂2 = x̂ix̂i = 1 (B.7)

as an operator identity. Substituting these operators into (B.5), we obtain the operators6

Ỹ m
` =

∑

{i}
f `mi1,i2,...i` x̂i1 · · · x̂i` , ` = 1, . . . , k − 1 . (B.8)

These operators achieve the decomposition of the SU(2) representation (3.25) in the k × k
block, cf. [54, 55]. In particular, they satisfy (3.24).

The Ỹ m
` form a orthogonal basis for the traceless k × k matrices, but they are not

normalised. If we define7

Ŷ m
` =

√
(k − `− 1)!

(k + `)! 2`
(
k2 − 1

4

)`/2
Ỹ m
` , (B.9)

we have
tr[(Ŷ m

` )†Ŷ m′
`′ ] = δ``′δmm′ , where (Ŷ m

l )† = (−1)mŶ −ml , (B.10)

and thus
tr[Ŷ m

` Ŷ m′
`′ ] = (−1)mδ``′δm+m′,0 . (B.11)

The matrix elements of the fuzzy spherical harmonics can be found in [56] up to
normalisation; we normalise them to satisfy (B.10). They are given explicitly by

[Ŷ m
` ]n,n′ = (−1)k−n

√
2`+ 1

(
k−1

2 ` k−1
2

n− k+1
2 m −n′ + k+1

2

)
, n, n′ = 1, . . . , k ,

(B.12)
where the large parenthesis denote Wigner’s 3j symbol. Hence,

Ŷ m
` = [Ŷ m

` ]n,n′Enn′ . (B.13)

Inverting this equation using the orthogonality and normalisation of Ŷ m
` and Enn′ , we find

Enn′ = [Ŷ m
` ]n,n′ Ŷ m

` . (B.14)

Note that Ŷ m
` transforms in the spin-` representation under Li, i.e.

LiŶ
m
` = [t(k)

i , Ŷ m
` ] = Ŷ m′

` [t(2`+1)
i ]`−m′+1,`−m+1 , (B.15)

6Note that for ` ≥ k this construction simply gives zero.
7The normalisation constant follows from [54].
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where t(k)
i ≡ ti denotes the generators of the k-dimensional irreducible representation given

in appendix A and t
(2`+1)
i denotes the analogous generators of the (2` + 1)-dimensional

irreducible representation.
Finally, for ` = 1 the spherical harmonics can be explicitly related to our ti matrices:

t1 = (−1)k+1

2

√
k(k2 − 1)

6 (Ŷ −1
1 − Ŷ 1

1 ) ,

t2 = i
(−1)k+1

2

√
k(k2 − 1)

6 (Ŷ −1
1 + Ŷ 1

1 ) ,

t3 = (−1)k+1

2

√
k(k2 − 1)

3 Ŷ 0
1 .

(B.16)

C Decomposition of 10-D Majorana-Weyl fermions

In this appendix, we present our conventions for the decomposition of the ten-dimensional
fermion into the four-dimensional fermions and the corresponding gamma matrices.

The ten-dimensional Majorana-Weyl fermions satisfy

Ψ = C10Ψ̄T , Γ11Ψ = −Ψ , (C.1)

where ΓM are ten-dimensional gamma matrices satisfying8

{ΓM ,ΓN} = −2ηMN . (C.2)

We proceed to decompose the ten-dimensional gamma matrices in term of four-dimensional
ones. The four-dimensional gamma matrices are γµ, µ = 0, 1, 2, 3, and we choose the
representation

γµ =
(

0 σµ

σ̄µ 0

)
, {γµ, γν} = −2ηµν , (C.3)

where σµ = (12, σi) and σ̄µ = (12,−σi). We also have

γ5 = iγ0γ1γ2γ3 (C.4)

and the charge conjugation matrix

C =




0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0



, γTµ = −CγµC−1 . (C.5)

It follows that a Lorentz invariant reality condition is

ψ = ψC , ψC ≡ Cψ̄T , (C.6)

where ψ̄ = ψ†γ0.
8Recall that we are using mostly-positive signature.
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We adopt the following representation for the ten-dimensional Clifford algebra

Γµ = γµ ⊗ 18 , µ = 0, 1, 2, 3, (C.7)

Γi+3 = Γ̃i = γ5 ⊗
(

0 −Gi
Gi 0

)
, i = 1, 2, 3, (C.8)

Γi+3 = Γ̃i = γ5 ⊗
(

0 Gi

Gi 0

)
, i = 4, 5, 6, (C.9)

where Gi are the 4× 4 matrices

G1 = i

(
0 −σ3
σ3 0

)
, G2 = i

(
0 σ1
−σ1 0

)
, G3 =

(
σ2 0
0 σ2

)
,

G4 = i

(
0 −σ2
−σ2 0

)
, G5 =

(
0 −12
12 0

)
, G6 = i

(
σ2 0
0 −σ2

)
.

(C.10)

The latter satisfy

{Gi, Gj} =
{

+2δi,j , i, j = 1, 2, 3,
−2δi,j , i, j = 4, 5, 6, (C.11)

[Gi, Gj ] =





−2i εijkGk, i, j = 1, 2, 3,
+2 εijkGk, i, j = 4, 5, 6,
0, i = 1, 2, 3, j = 4, 5, 6.

(C.12)

Finally, the ten-dimensional charge conjugation matrix and Γ11 are given by

C10 = C ⊗
(

0 14
14 0

)
, Γ11 = γ5 ⊗

(
−14 0

0 14

)
. (C.13)

Imposing the Majorana-Weyl constraint (C.1) on a ten-dimensional fermion is now seen to
imply

Ψ =




Lψ1
...

Lψ4
Rψ1
...

Rψ4




, (C.14)

where
L = 1

2(1 + γ5), R = 1
2(1− γ5) (C.15)

act on four-dimensional Majorana fermions ψi satisfying (C.6).
Using the above decomposition of the ten-dimensional fermions and gamma matrices,

we find
1
2Ψ̄jΓ̃ijk[φi,Ψk] = 1

2

3∑

i=1
ψ̄jG

i
jk[φi, ψk] + 1

2

6∑

i=4
ψ̄jG

i
jk[φi, γ5ψk] , (C.16)

and hence the fermion mass term reads

− 1
2x3

3∑

i=1
ψ̄jG

i
jk[ti, ψk] . (C.17)
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D One-loop correction to the scalar vevs

In this appendix, we compute the one-loop correction to the vevs of the scalar fields. To
this loop order, we only need to take cubic vertices into account as only diagrams of lollipop
type contribute. The one-loop correction takes the form

〈φi〉1-loop(x) = φ̃i(x)
∫

d4y
∑

Φ1,Φ2,Φ3

V3(Φ1(y),Φ2(y),Φ3(y)) . (D.1)

There are three parts to the computation of the above vev: the contractions of the fields
in the vertex, the integral and the external contraction corresponding to the stick of the
lollipop. However, we will see that the sum of all the contractions in the vertex already
vanishes after partial integration, and thus

〈φi〉1-loop(x) = 0 . (D.2)

Moreover, the one-loop corrections to the vevs of all other individual fields also vanish.

D.1 Contractions of the fields in the loop

From the cubic interaction terms in the action (2.18) and the form of the propagators in
section 4.3, we find the externally contracted field in the vertex can be either Φ1 = φ̃i or
Φ1 = Aµ.9 There are then three possible types of loops. We can have easy bosons E and
ghosts, complicated bosons C or fermions running in the loop. When we evaluate the loop,
all the propagators are taken at the same point y in space-time. Moreover, we will also
work in the planar limit.

Contribution of easy scalars, easy gauge fields and ghosts in the loop Let us
first consider the contribution of easy scalars, easy gauge fields and ghosts running in the
loop of the lollipop diagrams, where we restrict ourselves to the off-diagonal k × (N − k)
and (N − k)× k blocks that contribute in the large-N limit.

We start with diagrams for which Φ1 = φ̃i. For the sake of concreteness, we focus on the
easy scalar φ̃4 running in the loop; the contributions of all other easy fields are essentially
the same. The corresponding interaction term is (2.18)

+ tr([φcli , φ̃4][φ̃i, φ̃4]) = + tr(φ̃i[φ̃4, [φcli , φ̃4]]) = − 1
y3

tr(φ̃i[φ̃4, [ti, φ̃4]]) . (D.3)

From the decomposition (3.22) of φ̃4, we find

tr(φ̃i[φ̃4, [ti, φ̃4]]) ' −〈[φ̃4]n,a[φ̃4]a,n′〉
(
tr(φ̃iEnn′ti) + tr(φ̃itiEnn′)

)
, (D.4)

where we have dropped the contributions from the components in the k×k block, which are
irrelevant in the large-N limit. We denote the restriction to terms relevant in the large-N
limit by '. Using the explicit form of the propagator (4.33), the matrices Enn′ become unit

9We have no non-vanishing contraction for Φ1 = ψ, which would lead to a potentially non-vanishing vev
of a single fermion.
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matrices after the summation over n, n′, the a summation yields a factor N − k and we
find in the large-N limit

+ tr(φ̃i[φ̃4, [φcli , φ̃4]]) ' 2N
y3
Km2= k2−1

4 tr(φ̃iti) . (D.5)

In total, this contribution has a prefactor of nφ,easy + nA,easy − nc.
Let us now turn to the effective vertices that involve Φ1 = Aµ. We again focus on the

easy scalar φ̃4 running in the loop. The corresponding vertex is

i tr([Aµ, φ̃4]∂µφ̃4) = i tr(Aµ[φ̃4, ∂µφ̃4]) . (D.6)

We contract the scalar fields and obtain

i tr(Aµ[φ̃4, ∂µφ̃4]) ' i[〈[φ̃4]n,a∂µ[φ̃4]a,n′〉 − i〈∂µ[φ̃4]n,a[φ̃4]a,n′〉
]
tr(AµEnn′) = 0 , (D.7)

where the last step follows from the symmetry of the propagator. Similarly, the contractions
of

i[Aµ, Aν ]∂µAν , i(∂µc̄)[Aµ, c] (D.8)

with the easy gauge fields and ghosts running in the loop are also vanishing.

Contribution from complicated bosons in the loop For the case of complicated
bosons contracted in the loop, there are two vertices with insertions of the classical fields
that can contribute:

+ tr([φcli , φ̃j ][φ̃i, φ̃j ]) = − 1
y3

tr(φ̃i[φ̃j , [ti, φ̃j ]]) ,

+ tr([Aµ, φcli ][Aµ, φ̃i]) = − 1
y3

tr(φ̃i[Aµ, [ti, Aµ]]) . (D.9)

The requirement that the boson in the loop is complicated effectively fixes i, j = 1, 2, 3 and
µ = 3.

The fields at the vertex can be contracted in three different ways. Let us for simplicity
restrict to the vertex with Φ1 = φi. We can connect φ̃j to φ̃j and there are two ways we
can connect φ̃j to φ̃i:

tr(φ̃i[φ̃j , [ti, φ̃j ]]), tr(φ̃i[φ̃j , [ti, φ̃j ]]), tr(φ̃i[φ̃j , [ti, φ̃j ]]) . (D.10)

The terms with A3 can be contracted analogously.
Out of the above three contractions, the easiest one to compute is the first one. Again,

we work in the planar limit and the computation is similar to the easy bosons discussed
above. From (4.35), we then immediately find

tr(φ̃i[φ̃1, [ti, φ̃1]]) ' −N
[
k + 1
k

Km2= (k−2)2−1
4 + k − 1

k
Km2= (k+2)2−1

4

]
tr(φ̃iti) . (D.11)

From (4.35), it is easy to see that all the complicated bosons give the same contribution,
which results in an overall factor of nφ,com. + nA,com..
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The other two contractions are more involved but share a similar structure. Let us
work out the last one first. We obtain

tr(φ̃i[φ̃j , [ti, φ̃j ]]) ' (〈[φ̃i]a,n[φ̃j ]n′,a〉 − 〈[φ̃j ]a,n[φ̃i]n′,a〉) tr(Enn′ [ti, φ̃j ]) . (D.12)

Inserting the explicit form of the propagator (4.35), it is easy to see that the contribution
of the term with δn,n′ cancels and we are left with

tr(φ̃i[φ̃j , [ti, φ̃j ]]) ' −2iN
k

(
Km2= (k−2)2−1

4 −Km2= (k+2)2−1
4

)
εijk tr(tk[ti, φ̃j ])

= 2N
k

(
Km2= (k−2)2−1

4 −Km2= (k+2)2−1
4

)
εijkεkil tr(tlφ̃j)

= 2(nφ,com. − 1)N
k

(
Km2= (k−2)2−1

4 −Km2= (k+2)2−1
4

)
tr(tiφ̃j) . (D.13)

The final contraction gives

tr(φ̃i[φ̃j , [ti, φ̃j ]]) ' 〈[φ̃i]a,n[φ̃j ]n′,a′〉 tr(Enn′tiφ̃j) + 〈[φ̃j ]n,a[φ̃i]a′,n′〉 tr(Enn′ φ̃jti) . (D.14)

The second term in the propagator (4.35) evaluates in the same way as above, but the δn,n′
term now also contributes and we obtain

tr(φ̃i[φ̃j , [ti, φ̃j ]]) ' N
(
k + 1
k

Km2= (k−2)2−1
4 + k − 1

k
Km2= (k+2)2−1

4

)
tr(φ̃iti)

+ (nφ,com. − 1)N
k

(Km2= (k−2)2−1
4 −Km2= (k+2)2−1

4 ) tr(φ̃iti) . (D.15)

The vertices from (D.9) with Φ1 = A3 instead of Φ1 = φ̃i contribute with

tr(φ̃i[A3, [ti, A3]]) = tr(φ̃i[A3, [ti, A3]]) ' 0 , (D.16)

as can be seem from a short analogous calculation.
Finally, there is a non-trivial contribution from the vertex

tr(i[Aµ, φ̃i]∂µφ̃i) , (D.17)

which can be contracted non-trivially in two different ways that contribute for Φ1 = φi:

tr(i[A3, φ̃i]∂3φ̃i) , tr(i[A3, φ̃i]∂3φ̃i) . (D.18)

In the large-N limit, the only terms that survive are

tr(i[A3, φ̃i]∂3φ̃i) ' 2i〈[A3]n,a[φ̃i]a,n′〉 tr(Enn′∂3φ̃i)

' 2N
k

(
Km2= (k−2)2−1

4 −Km2= (k+2)2−1
4

)
tr(ti∂3φ̃i) (D.19)
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and

tr(i[A3, φ̃i]∂3φ̃i) ' 2i〈[∂3φ̃i]n,a[A3]a,n′〉 tr(Enn′ φ̃i)

' −N
k
∂3

(
Km2= (k−2)2−1

4 −Km2= (k+2)2−1
4

)
tr(tiφ̃i) . (D.20)

In the last line, we expressed the propagator with a derivative on the field as a derivative of
the propagator. It follows from the identity

lim
x→y〈[A

3(x)]n,a[∂3φ̃i(y)]a,n′〉 = 1
2∂y3 lim

x→y〈[A
3(x)]n,a[φ̃i(y)]a,n′〉 , (D.21)

which follows from the explicit form of the propagator (4.10) and the following property of
the Bessel functions

1
2∂x

[
Iν−1(x)Kν−1(x)− Iν+1(x)Kν+1(x)

]
=
[
∂xIν−1(x)

]
Kν−1(x)−

[
∂xIν+1(x)

]
Kν+1(x).

(D.22)

The third contraction of (D.17), which corresponds to Φ1 = A3, vanishes in complete
analogy to (D.7).

Contribution of fermions in the loop The relevant vertices read

1
2

3∑

i=1
tr(ψ̄j [Gi]jk[φ̃i, ψk]) + 1

2

3+nφ,easy∑

i=4
tr(ψ̄j [Gi]jk[φ̃i, γ5ψk]) + 1

2 tr(ψ̄jγµ[Aµ, ψj ]) , (D.23)

which contribute for Φ1 = φ̃i,com., Φ1 = φ̃i,easy and Φ1 = Aµ, respectively. The first term
gives

1
2 tr(ψ̄j [Gi]jk[φ̃i, ψk]) '

1
2[Gi]jk

(
〈[ψ̄j ]a,n[ψk]n′,a〉 tr(En

′
nφ̃i)− 〈[ψ̄j ]n,a[ψk]a,n′〉 tr(Enn′ φ̃i)

)

= N [Gi]jk[Gl]kj
[tl]n,n′
k

(
trKm=− k−1

2
F − trKm= k+1

2
F

)
tr(Enn′ φ̃i) ,

(D.24)

where we used the fermionic propagator (4.37) and the trace of KF is with respect to its
spinor indices. Using the anti-commutator relation (C.11) for the Gi matrices, we then find

1
2 tr(ψ̄j [Gi]jk[φ̃i, ψk]) '

N

2k tr({Gi, Gl})(trKm=− k−1
2

F − trKm= k+1
2

F ) tr(tlφ̃i)

= N

k
nψ(trKm=− k−1

2
F − trKm= k+1

2
F ) tr(tiφ̃i) .

(D.25)

The evaluation of the second and third term in (D.23) is similar to the discussion above,
but with Gi replaced by Gi with easy index i and γµ, respectively. It then follows directly
that this contribution vanishes because of the orthogonality of these matrices, cf. appendix
C.
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D.2 Total effective vertex

All vertices come with an overall factor of 2
g2
YM

. Adding all the contributions derived above,
we arrive at the following total contribution

Veff(y) = neasy
2N
y3
Km2= k2−1

4 tr(φ̃iti)
2
g2

YM

+nφ,com.
N

y3

(
k + 1
k

Km2= (k−2)2−1
4 + k − 1

k
Km2= (k+2)2−1

4

)
tr(φ̃iti)

2
g2

YM

−3(nφ,com. − 1)N
y3

1
k

(
Km2= (k−2)2−1

4 −Km2= (k+2)2−1
4

)
tr(φ̃iti)

2
g2

YM

+nA,com.
2N
k

(
Km2= (k−2)2−1

4 −Km2= (k+2)2−1
4

)
tr(ti∂3φ̃i)

2
g2

YM

−nA,com.
N

k
∂3

(
Km2= (k−2)2−1

4 −Km2= (k+2)2−1
4

)
tr(tiφ̃i)

2
g2

YM

+nψ
N

k

(
trKm=− k−1

2
F − trKm= k+1

2
F

)
tr(tiφ̃i)

2
g2

YM
, (D.26)

where all propagators are taken at y and for conciseness we introduced neasy = nφ,easy +
nA,easy−nc. In particular, the total contribution from all externally contracted fields except
for Φ1 = φi,com. vanishes.

When contracting the effective vertex (D.26) with a propagator such as in (D.1), the
derivative term can be partially integrated. When we then substitute the dimensional
regularised expressions for the propagator from section 5, the effective vertex becomes

Veff(y) = N tr(tiφ̃i)
16π2y3

3

[
k2(neasy + nφ,com. − 2nψ) + neasy − 11nφ,com. − 2nψ + 24nA,com. + 12

2

×
{1
ε
− γE + log(4π) + 2 log(y3)− 2Ψ(k+1

2 )
}

(D.27)

− k2(neasy + nφ,com. − 2nψ) + 5nφ,com. − 3neasy + 6nψ − 24nA,com.
2

]
.

We see that the above vanishes exactly when

nA,com. = 1, nφ,com. = 3, neasy = 2nψ − 3 . (D.28)

In four dimensions, we have neasy ≡ nφ,easy + nA,easy − nc = 3 + 3 − 1 = 5 and nψ = 4,
which satisfies (D.28) such that the effective vertex vanishes. In dimensional regularisation,
however, the number of easy gauge fields is d = 3−2ε. In dimensional reduction, the number
of easy scalars is also changed in order to preserve supersymmetry, cf. the discussion at the
end of section 5, and the total number of easy fields stays five. In other words, the one-loop
correction to the vacuum expectation value of all fields vanishes. For the scalar fields, this
happens exactly because of supersymmetry. It would be interesting to see whether there is
a general argument based on supersymmetry that implies that the quantum corrections to
(scalar) vevs vanish also at higher loop orders.

37



E Hadamard and zeta-function regularisation

In this appendix, we summarise the results for K(x, x) and trKF (x, x) obtained in section 5
in the alternative Hadamard as well as zeta-function regularisation, which are commonly
used in AdS.

Bosonic fields The expression for the scalar loop K(x, x) in zeta-function renormalisation
can be found in [57], and it reads

Km(x, x) = g2
YM

2x2
3

(
−

1
3 +m2

16π2 + m2

8π2

[
Ψ
(
ν + 1

2

)
− logµ

])
. (E.1)

Here, µ is the renormalisation (mass) scale, and Ψ is the digamma function. In [58], K(x, x)
is found using Hadamard renormalisation:

Km(x, x) = g2
YM

2x2
3

(
−

1
3 +m2

16π2 + m2

8π2

[
Ψ
(
ν + 1

2

)
− log

(√
2M e−γE

)])
, (E.2)

where M is the Hadamard renormalisation scale. We notice, as also pointed out in [58],
that the two expressions agree with the identification

µ =
√

2M e−γE . (E.3)

Fermionic fields The trace of the fermion loop in the Hadamard renormalisation scheme
can be extracted from [59]:10

trKm
F (x, x) = g2

YM

2x3
3

( 1
4π2

[
m3 +m2 + m

6 − 1
]

+ m(m2 − 1)
2π2

[
Ψ (m)− log

(√
2M e−γE

)])
.

(E.4)
In [59], it is likewise stated (for the stress-energy tensor) that the Hadamard renormalisation
for fermions agrees with the zeta-function one via the identification (E.3). However, note
that the fermion loop is also calculated using Schwinger-de Witt renormalisation in [59], and
this result does not match with the Hadamard expression. Zeta-function renormalisation
for fermions was first carried out in [60]. The same remark as made under the discussion of
dimensional regularisation concerning the chiral rotation of fermions with negative mass
applies here.

Implementation For the tadpole diagram, zeta function regularisation gives the same
result as dimensional regularisation, presented in (6.20). However, zeta-function regularisa-
tion of the lollipop diagram does not reproduce (6.8) but gives a non-vanishing result. More
precisely, inserting (E.1) and (E.4) into the effective vertex (D.26) yields a non-vanishing
result, which remains non-vanishing after the contraction with the quantum scalar and the
subsequent integration over the vertex position. The reason for this appears to be that zeta
function regularisation breaks supersymmetry as observed in other situations [60, 61]; recall
that supersymmetry in the form of dimensional reduction was crucial for the vanishing of
the lollipop diagram in dimensional regularisation.

10There is a misprint in [59] in the overall sign in the equivalent of (E.4). We thank the authors for
communications on this point.
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Asymptotic one-point functions in AdS/dCFT
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We take the first step in extending the integrability approach to one-point functions in AdS/dCFT
to higher loop orders. More precisely, we argue that the formula encoding all tree-level one-point
functions of SU(2) operators in the defect version of N = 4 SYM theory, dual to the D5-D3
probe-brane system with flux, has a natural asymptotic generalization to higher loop orders. The
asymptotic formula correctly encodes the information about the one-loop correction to the one-
point functions of non-protected operators once dressed by a simple flux-dependent factor, as we
demonstrate by an explicit computation involving a novel object denoted as an amputated matrix
product state. Furthermore, when applied to the BMN vacuum state, the asymptotic formula gives
a result for the one-point function which in a certain double-scaling limit agrees with that obtained
in the dual string theory to all orders in the double-scaling parameter.

INTRODUCTION

Apart from observables which are protected by super-
symmetry, the AdS/CFT correspondence has not pro-
vided us with many examples of quantities which can be
explicitly calculated to all orders in the coupling constant
in both string theory and field theory and successfully
matched. The main examples are the cusp anomalous
dimension [1] and the expectation value of the circular
Maldacena-Wilson loop [2–4]. An instructive attempt to
arrange for a situation which could allow an all-order
comparison between gauge and string theory was made
with the invention of the Berenstein-Maldacena-Nastase
(BMN) limit, where a certain double-scaling parameter
combining the ’t Hooft coupling constant λ with a large
angular momentum quantum number was introduced and
certain observables being close to protected were con-
sidered [5]. However, it turned out that for the observ-
ables considered the BMN expansion became inconsistent
starting at four-loop order in the field theory [6–8].

In a variant of the AdS/CFT correspondence which in-
volves a D5-D3 probe-brane set-up on the string-theory
side and a codimension-one defect in N = 4 supersym-
metric Yang-Mills (SYM) theory, another double-scaling
limit has recently been proposed [9]. It consists of send-
ing the ’t Hooft coupling as well as a certain background
gauge field flux k to infinity while keeping a certain ra-
tio involving the two parameters fixed. While the study
of the BMN expansion acted as a seed for the develop-
ment of the integrability approach to N = 4 SYM the-
ory [10], at the present stage we already have available a
vast amount of integrability tools that we can make use
of when investigating the defect set-up and the associated
novel double-scaling limit. In addition, in the defect case
we have an entirely new collection of observables includ-
ing one-point functions, two-point functions between op-
erators of unequal conformal dimension and correlators
between bulk and boundary fields [11]. In particular,
we can consider the BMN vacuum states, BPS states of
N = 4 SYM theory whose two- and three-point functions

do not get quantum corrections in pure N = 4 SYM the-
ory but whose one-point functions are non-vanishing and
receive quantum corrections in the defect theory.

One-point functions of protected operators were cal-
culated at tree level in the above mentioned defect CFT
in [12] and in a closely related theory building on a non-
supersymmetric D7-D3 probe-brane system in [13]. Fur-
thermore, exploiting the integrability structure of N = 4
SYM theory and introducing an appropriate boundary
state in the form of a matrix product state, one-point
functions of non-protected operators were calculated at
tree level for the SU(2) sector in [14, 15]. This approach
was generalized to the SU(3) sector [16] as well as to the
SO(6) sector of the non-supersymmetric cousin [17].[18]
Most recently, the one-loop correction to the one-point
function of the BMN vacuum was calculated [19, 20] and
shown to match the string-theory prediction of [12]. In
addition, a strategy for computing the one-loop correc-
tion to the one-point functions of non-protected opera-
tors was presented [20]. This involved the introduction of
a new object denoted as the amputated matrix product
state.

In the present letter, we will argue that the integra-
bility approach to one-point functions suggests a certain
generalization of the tree-level formula for the SU(2) sec-
tor to higher loop orders. We shall furthermore con-
cretely implement the above mentioned strategy for the
calculation of one-loop corrections to one-point functions
and show that the results can be accounted for by the
suggested asymptotic formula when dressed by a sim-
ple flux-dependent factor. This flux factor leads to a
breakdown of the above mentioned double-scaling limit
for non-protected operators at one-loop order. For pro-
tected operators, the flux factor is absent and we will
show that the proposed formula implies that the one-
point function of the BMN vacuum state has an expan-
sion in the double-scaling limit that to all orders matches
the corresponding expansion found on the string-theory
side by a supergravity calculation.
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OUR PROPOSAL

The defect version of N = 4 SYM theory which is
dual to the D5-D3 probe-brane system with flux k is
characterized by having a codimension-one defect, say
at x3 = 0, separating two regions of space, x3 > 0 and
x3 < 0, where the gauge group is respectively (broken)
U(N) and U(N − k). The difference in the rank of the
gauge group implies assigning the following vacuum ex-
pectation values to three out of the six scalar fields of
N = 4 SYM theory:

〈φi〉tree = − 1

x3
ti ⊕ 0(N−k)×(N−k), i = 1, 2, 3, (1)

where the ti are the generators of a k-dimensional irre-
ducible representation of SU(2). For a precise description
of the holographic set-up, we refer to [20] as well as the
original papers [21, 22].

As usual, we identify two complex scalars of N = 4
SYM theory with spins of an integrable SU(2) spin chain
as ↑≡ X = φ1 + iφ4 and ↓≡ Y = φ2 + iφ5. A Bethe
(eigen)state of this spin chain is characterized by two
Dynkin labels L,M corresponding respectively to the
length and the number of excitations, and in addition by
M rapidities {ui} that satisfy certain Bethe equations.
For a given eigenstate |u〉, we define the corresponding
single-trace operator from the SU(2) sector as

O ≡
(

4π2

λ

)L
2 Z√

L

tr
∏L
l=1

(
〈↑l| ⊗X + 〈↓l| ⊗ Y

)
|u〉

√
〈u|u〉

.

(2)
Far away from the defect, the tree-level two-point func-
tion of O is normalized to unity, and we will use the
freedom in the choice of the finite part of the renormal-
ization constant Z to enforce this also at loop level. The
one-point function then takes the form

〈O(x)〉 =

(
4π2

λ

)L
2 Ck√

L

1

x∆3
, (3)

where ∆ denotes the scaling dimension of the operator.
The calculation of Ck will be the subject of this letter.

Tree level At tree level, the one-point function can
be written as the overlap of a Bethe eigenstate of the
Heisenberg spin chain with a matrix product state [14,
15]. The corresponding Bethe equations read

1 =

(
uk − i

2

uk + i
2

)L M∏

j=1
j 6=k

uk − uj + i

uk − uj − i
≡ exp[iΦk] . (4)

Using the algebraic Bethe ansatz approach [23], the
Bethe state can be built from the ferromagnetic vacuum
|0〉L with all spins up via the creation operators B(u):

|u〉 = B(u1) · · ·B(uM )|0〉L . (5)

Defining the matrix product state as

〈MPS| = tr
L∏

l=1

(
〈↑l| ⊗ t1 + 〈↓l| ⊗ t2

)
, (6)

the tree-level one-point function of O is given as

Ck =
〈MPS|u〉√
〈u|u〉

. (7)

In [14], it was shown that only operators with L and M
even and with paired rapidities {ui} = {−ui} have non-
trivial one-point functions [24]. For k = 2, the tree-level
one-point function can be elegantly described in terms of
the Bethe function Φ introduced above. Let us order the
roots as {u1, . . . , uM

2
,−u1, . . . ,−uM

2
} and introduce the

following M
2 × M

2 dimensional matrices G±:

G± = ∂mΦn ± ∂m+M
2
Φn , (8)

with ∂m ≡ ∂
∂um

. Then, the one-point function for k = 2
can be written as

C2 = 21−L

√
Q( i2 )

Q(0)

√
detG+

detG−
, (9)

where Q(u) =
∏M
i=1(u− ui) is the Baxter polynomial.

According to [15], the one-point function for k > 2
then takes the form

Ck = iLTk−1(0)

√
Q( i2 )Q(0)

Q2( ik2 )

√
detG+

detG−
, (10)

where

Tn(u) =

n
2∑

a=−n2

(u+ ia)L
Q(u+ n+1

2 i)Q(u− n+1
2 i)

Q(u+ (a− 1
2 )i)Q(u+ (a+ 1

2 )i)

(11)

can be identified as the transfer matrix of the Heisenberg
spin chain in the (n+ 1)-dimensional representation [25].
Quantization Bearing in mind the integrability ap-

proach to the spectral problem of N = 4 SYM theory, it
is natural to introduce the coupling constant dependence
via the Zhukovsky variable x [26]:

x+
1

x
=
u

g
, x =

u

g
− g

u
+O(g2) , (12)

where the effective planar coupling constant g2 is related
to the ’t Hooft coupling λ = Ng2YM as g2 = λ

16π2 . This
entails the following all-loop asymptotic Bethe equations
[27]:

1 =

(
x(uk − i

2 )

x(uk + i
2 )

)L∏

j 6=k

uk − uj + i

uk − uj − i
≡ exp[iΦ̃k] . (13)
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The natural generalization of (9) is then obtained by
replacing the classical Bethe function Φ by the quan-
tum Bethe function Φ̃. Furthermore, the transfer matrix
should get modified accordingly:

T̃n(u) = gL

n
2∑

a=−n2

x(u+ ia)L

× Q(u+ n+1
2 i)Q(u− n+1

2 i)

Q(u+ (a− 1
2 )i)Q(u+ (a+ 1

2 )i)
. (14)

This gives us a natural expression for (10) at the quan-
tum level. Of course, the roots ui appearing in the Baxter
polynomials satisfy the all-loop Bethe equations (13). Fi-
nally, we also need to allow for a flux factor Fk, such that
we find

Ck = iLT̃k−1(0)

√
Q( i2 )Q(0)

Q2( ik2 )

√
det G̃+

det G̃−
Fk . (15)

The flux factor Fk is 1 for protected operators and its
general form at one-loop order turns out to be

Fk = 1 + g2
[
Ψ(k+1

2 ) + γE − log 2
]
∆(1) +O(g4) , (16)

where ∆(1) = 2
∑M
i=1

1
u2
i+

1
4

is the one-loop correction to

the scaling dimension. Note that the Euler digamma
function Ψ can be reexpressed in terms of the harmonic
number H, which is generalized to non-integer arguments
via Hx = Ψ(x+ 1) + γE .

CHECKS

We now check our proposal – first at one-loop order
for non-protected operators in the SU(2) sector and then
at all loop orders for the BMN vacuum. Finally, we will
discuss the flux factor and the fate of the double-scaling
limit.

SU(2) at one-loop

In [20], we have shown that the one-loop one-point
function is given by the sum of three contributions: a) the
manifestly finite overlap of the Bethe eigenstate with a
special spin-chain state, denoted as an amputated matrix
product state, b) an ultraviolet (UV)-divergent contri-
bution proportional to the one-loop dilatation operator,
which requires operator renormalization, and c) the one-
loop correction to the Bethe state. Demanding that the
two-point function far away from the defect remains unit-
normalized also at one-loop order fixes the renormaliza-

tion constant to be Z = 1+g2∆
(1)

2

(
1
ε + 1 + γE + log π

)
+

O(g4), see for instance [28]. The one-loop one-point func-
tion then reads [20]

Ck =
(〈MPS|+ g2〈AMPS|)|u〉√

〈u|u〉
× (17)

[
1 + g2

(
Ψ(k+1

2 ) + γE − log 2 + 1
2

)
∆(1)

]
+O(g4) ,

where |AMPS〉 denotes the amputated matrix product
state, to be explicated below, and |u〉 denotes the loop-
corrected Bethe state. In order to evaluate (17) explicitly,
we need two ingredients. We need to evaluate the overlap
of 〈AMPS| with the Bethe state and we need to compute
the first correction to the Bethe state, i.e. the two-loop
Bethe eigenstate.
Overlap with 〈AMPS| The amputated matrix prod-

uct state 〈AMPS| is defined as [20]

〈AMPS| =
L∑

l=1

Al,l+1〈MPS| , (18)

where Ai,i+1 removes the matrices at positions i and i+1
(with L+ 1 ∼ 1) if they are identical and otherwise kills
the trace, cf. (6).

Let us consider the overlap between a Bethe state and
the amputated matrix product state. The overlap is only
non-zero for an even number of magnons M , and in the
coordinate formulation it reads

〈AMPS|u〉 =
∑

n∈{n}M
ΨB(n,u)

L∑

l=1

Al,l+1

× tr

[
M∏

i=1

(
t
n(i+1)i−1
3 t2

)]
,

(19)

where {n}M denotes the usual set of ordered magnon po-
sitions (n1 < · · · < nM ) and ΨB(n, {ui}) is the Bethe
wave-function. Furthermore, the shorthand notation
nij ≡ ni − nj and nM+1 ≡ n1 + L is used throughout.

For any even M and k = 2, one can compute directly
the action of

∑Al,l+1 on the traces in (19):

L∑

l=1

Al,l+1 tr
M∏

i=1

(
t
n(i+1)i−1
3 t2

)

k=2
= (−1)

M
2 +

∑
i ni23−L

[
L+ 2

M∑

i=1

(
δn(i+1)i=1 − 1

)
]
.

(20)

Using this, the rest of the computation can be carried
out symbolically by brute force in Mathematica, at least
for smaller values of M . This was done for M = 2, 4 and
leads to the conjecture

〈AMPS|u〉 k=2
=
(

4L−∆(1)
)
〈MPS|u〉 , (21)

which was subsequently tested numerically up to and in-
cluding M = 6 and L = 16. A closed formula for M = 2
and any k can likewise be obtained.
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Two-loop Bethe states The first loop correction to the
Bethe state, i.e. the two-loop Bethe state, can be gener-
ated via the so-called Θ-morphism [29]. To this end, we
consider the Heisenberg spin chain with impurities θi.
The one-loop Bethe state can again be constructed using
the algebraic Bethe ansatz approach:

|θ;u〉 = B̂(u1) . . . B̂(uM )|0〉L , (22)

where the B̂-operator is

B̂(u) = 〈↑ |
L⊗

j=1

(
1j,0 +

i

u− θj − i
2

Pj,0

)
|↓〉 . (23)

The two-loop eigenstate is then

|u〉 ≡
(

1− g2∆
(1)

2
HL,1

){
|θ;u〉

}
Θ
, (24)

where Hj,j+1 = 1j,j+1−Pj,j+1 is the Heisenberg spin
chain Hamiltonian density. The Θ-morphism {}Θ is de-
fined via

{
f
}
Θ
≡ f+

g2

2

L∑

i=1

[
∂

∂θi
− ∂

∂θi+1

]2
f+O(g4)

∣∣∣∣
θj→0

. (25)

The rapidities {ui} have to satisfy the two-loop Bethe
equations (13). For instance, the easiest case is M =
2, k = 2, where we find for the overlap with the matrix
product state

〈MPS|u〉√
〈u|u〉

=

√√√√√
L

L− 1

u2 + 1
4

u2

1 + g2 4
u2+ 1

4

1 + g2

L−1
6u2− 1

2

(u2+ 1
4 )

2

. (26)

A closed expression for M = 2 and any k can similarly
be derived.

General formula Now that we have all the ingredi-
ents, we are ready to check if (15) reproduces (17). In-
deed, one can analytically show that for M = 2 both for-
mulas agree. Moreover, we numerically compared (15)
and (17) for L = 8 and M = 4 excitations for various
values of k and again find perfect agreement.

BMN vacuum at all loop orders

A particularly simple situation arises if we consider the
spin-chain vacuum, which corresponds to the protected
operator tr(XL).

Our proposal For the vacuum, there are no Bethe
roots and our proposal (10) greatly reduces:

Ck = iLTk−1(0) , (27)

i.e. the only contribution stems from the transfer matrix
for the vacuum

Tk−1(0) =

k−1
2∑

a= 1−k
2

gLx(ia)L. (28)

In particular, the contribution from the flux factor trivi-
alizes. For even k, the one-point function formula can be
readily expanded as a power series in g with the result

Ck(g) = −2

L
2∑

n=0

(
L− n
n

)
L

L− n
BL−2n+1( 1−k

2 )

L− 2n+ 1
g2n ,

(29)

where Bn is the Bernoulli polynomial with index n. At
one-loop level, we find that this exactly agrees with [20].
Moreover, notice that, remarkably, this is a finite sum
[30].
String theory We can compare this result to a string-

theory prediction in the double-scaling limit proposed in
[9]. This limit consists in taking

λ→∞ , k →∞ ,
λ

k2
fixed and small, (30)

on top of the planar limit. In [12], the one-point function
of a specific SO(3)×SO(3)-invariant chiral primary was
calculated by a variant of the Witten prescription, in
particular implying a supergravity approximation, which
is justified here due to the assumption of λ → ∞. As
explained in [20], the result of this computation can be
turned into a prediction for the one-point function we are
considering divided by its tree-level value.

The prediction from string theory reads

Ck(g)

Ck(0)

∣∣∣∣
st

=
Γ(L+ 1

2 )

κL+1
√
πΓ(L+ 1)

[
κ2 + 1

] 3
2 (31)

×
∫ π

2

− arctanκ

dθ cos2L−1 θ (κ+ tan θ)
L−2

.

The leading two terms of the integral above in the large
κ = πk√

λ
expansion were already given in [12] and we can

even evaluate the integral exactly to get

Ck(g)

Ck(0)

∣∣∣∣
st

=

(
κ+
√
κ2 + 1

)L (
L
√
κ2 + 1− κ

)

2L(L− 1)κL+1
. (32)

Comparison In the double-scaling limit, we have
Bn( 1−k

2 )→ −(k2 )n and the gauge-theory one-point func-

tion (29) becomes a power series in
(
g
k

)2
, which we can

sum directly:

Ck(g)

Ck(0)

∣∣∣∣
gt

→


1 +

L
2∑

n=1

(
L− n
n− 1

)
L

n

L+ 1

L− n

(
2g

k

)2n



=

(√
(4g)2

k2 + 1 + 1
)L(

L
√

(4g)2

k2 + 1− 1
)

2L(L− 1)
.

(33)

Remarkably, we find agreement with the string-theory
prediction to all loops after identifying κ = k

4g = πk√
λ

!
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Flux factor

The flux factor in our proposal (15) has no counter-
part at tree level and depends on the anomalous scaling
dimension ∆− L such that it vanishes for protected op-
erators.

At one-loop order, the corresponding contribution in
(17) has been calculated in [20]. It is the finite part of
the UV-divergent integral whose UV divergence is sub-
tracted by the renormalization constant and yields the
one-loop scaling dimension ∆(1). Since UV divergences
exponentiate, it seems well motivated to propose

Fk = 2L−∆ exp
[
(∆− L)(Ψ(k+1

2 ) + γE)
]
. (34)

A direct field-theoretic check of (34) at two-loop order
would clearly be desirable, though very demanding.

An independent consequence of the flux factor is that
it leads to a breakdown of the double-scaling limit for
non-protected operators starting already at one-loop or-
der. As an example, let us consider the Konishi operator,
which has L = 4,M = 2 and u1 = −u2 = 1

2
√
3

+ O(g2).

Its one-loop one-point function can be explicitly worked
out to be

Ck =
k(k2 − 1)

12
√

3

(
1 + 12g2

[
Ψ(k+1

2 ) + γE − log 2 + 5
6

] )
,

(35)

where we used that ∆(1) = 12. Since Ψ(k+1
2 ) ∼ log k for

large k, the perturbative expansion in the double-scaling
limit does not arrange itself in powers of λ

k2 .

CONCLUSIONS & OUTLOOK

We have argued that the recently derived,
integrability-based formula for tree-level one-point
functions in the SU(2) sector of a specific defect version
of N = 4 SYM theory points towards a natural higher-
loop generalization. The generalization is based on an
idea which worked successfully for the spectral problem
of N = 4 SYM theory, and which consists of introducing
the coupling constant via a Zhukovski transformation of
the Bethe roots characterizing the conformal operators.
More precisely, the Zhukovski variables should replace
the Bethe roots both in the Bethe equations and the
transfer matrix of the system. Furthermore, here an
additional flux factor contributing to the higher-loop
one-point function formula is needed.

We have performed a number of non-trivial tests of the
generalized one-point function formula and these have
come out positive. First, we have compared the higher-
loop one-point function formula to an honest field-theory
calculation of the one-loop one-point function of non-
protected operators in the SU(2) sector. This calcula-
tion is technically demanding, involving the evaluation

of the overlap of an uncorrected Bethe eigenstate and a
so-called amputated matrix product state as well as the
overlap between a loop-corrected Bethe eigenstate and
an uncorrected matrix product state [20]. Results can
be obtained analytically for BMN operators, whereas for
more complicated operators one has to resort to numer-
ical computations. For all cases tested, the field-theory
computation agreed with the proposed higher-loop for-
mula. As a second test, we have carried out a detailed
analysis of the higher-loop formula when applied to the
BMN vacuum state tr(XL). For this state, it is possi-
ble to impose a certain double-scaling limit, proposed in
[9], and to write the result for the one-point function as a
power series in the double-scaling parameter. This power
series expansion can be compared to a similar expansion
obtained by a string-theory analysis using a supergravity
approximation and exact agreement is found to all loop
orders in the double-scaling parameter. These two pos-
itive tests constitute a strong indication that we are on
the right track when trying to move towards higher loop
orders.

The flux factor we propose depends on the anoma-
lous dimension of the operator considered and leads to a
breakdown of the double-scaling limit in the case of non-
protected operators starting at one-loop order. While the
proposed exponentiation of the one-loop term is certainly
natural, an explicit field-theoretic check at two-loop or-
der is clearly required.

The presented higher-loop one-point function formula
is expected to be only an asymptotic formula in the sense
that we expect there to be further corrections from the
dressing phase of N = 4 SYM theory [31, 32] and from
wrapping interactions, likewise known from N = 4 SYM
theory [27, 33]. Nevertheless, for the BMN vacuum state
we have found an all-loop match between our formula and
the string-theory prediction of [9] in the earlier mentioned
double-scaling limit. This is presumably due to the fact
that neither Lüscher corrections, nor corrections from the
dressing phase of N = 4 come into play for states with no
excitations. The one-point function of the BMN vacuum
hence seems to provide us with a novel example of an
observable which can be calculated to all orders in the
coupling constant both in string theory and field theory,
at least in a certain limit, and successfully matched.

It would be interesting to investigate whether the inte-
grability approach can be used to infer some properties of
the higher-loop contributions to other observables in the
present defect CFT such as Wilson loops [9, 34, 35] or less
studied objects such as two-point functions of operators
of unequal conformal dimension [36].
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