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English abstract

The topic of this thesis is understanding and application of the phenomenon of stationary
light. Stationary light arises in atomic ensembles with certain energy level configurations,
when two counter-propagating classical drives (lasers) are applied. Probe light coupled
to a different energy level transition than the classical drives can be completely stopped,
while still retaining its light character. This is very different from a related phenomenon
of slow light or electromagnetically induced transparency (EIT), where stopping propa-
gation of light completely converts it into an atomic excitation instead. More generally,
we will be interested in the regime of stationary light, where the probe light still prop-
agates through the atomic ensemble, but extremely slowly. In other words, probe field
has a very low group velocity, which increases its interaction time with any optical non-
linearity. Group velocity can be obtained from the dispersion relation. Therefore, the
dispersion relations for various stationary light schemes are studied in detail. The study
of the dispersion relations is carried out both in the continuum approximation of atomic
ensembles and the discrete model where each atom is assumed to be a linear scatterer.

The enhancement of the effective nonlinear strength by stationary light is then used
to propose a two-qubit (controlled-phase) quantum gate for the optical photons, which
can in principle work deterministically. We do find, however, that a heralded operation
of the proposed gate achieves much higher conditional fidelity (overlap of the ideal state
with the actual one), since most of the error in the unconditional fidelity is due to loss
of photons, which can be detected. We also find that the gate can approach the ideal
limit (both in the deterministic and heralded operation) by increasing the total number of
atoms in the atomic ensemble to compensate for a limited single-atom coupling strength.

Before discussing stationary light and its application, we also analyse the different
fidelity measures that could be applied to the proposed gate (and related proposals).
We show that all of the considered fidelity measures are (approximately) equal due to
particular features of the considered physical system. This result allows one to reduce
the number of expressions to be evaluated if the performance of the gate is to be analyzed
for different applications at the same time.



Dansk resumé

Emnet for denne afhandling er forst̊aelse og anvendelse af fænomenet af stationært lys.
Stationært lys opst̊ar i atomare ensemler med en bestemt konfiguration af energiniveauer,
n̊ar to modpropagerende klassiske drev (lasere) er anvendt. Probelys koblet til et an-
det energiniveau overgang end de klassiske drev kan blive fuldstændigt stoppet men
stadig bevare sin lys karakter. Det er meget forskelligt fra det relaterede fænomen af
langsomt lys eller elektromagnetisk induceret gennemsigtighed (EIT), hvor standsning
af lyspropagation konverterer lyset fuldstændigt til en atomar excitation i stedet for.
Mere generelt vil vi være interesseret i regimet af stationært lys, hvor probelys stadig
propagerer gennem det atomare ensemble, men meget langsomt. Med andre ord, pro-
belys har en meget lav gruppehastighed, som øger dens vekselvirkningstid med enhver
optisk ikke-linearitet. Gruppehastighed kan beregnes fra dispersionsrelationen. Derfor
studerer vi dispersionsrelationer af forskellige former af stationært lys i detaljer. Studiet
af dispersionsrelationer er udført b̊ade i kontinuumsapproksimationen af de atomare en-
sembler og den diskrete model, hvor hvert atom er antaget at være en lineær spreder.

Forbedring af den effektive ikke-lineære styrke med stationært lys er brugt til at
foresl̊a en to-qubit (controlled-phase) kvantegate for de optiske fotoner, som kan i prin-
cippet fungere deterministiskt. Dog finder vi, at betinget m̊ade at anvende gaten giver
større betinget fidelity (overlap af den ideelle tilstand med den faktiske), eftersom det
meste af fejlen i den ubetingede fidelity er pga. tab af fotoner, som kan detekteres. Vi
ogs̊a finder, at gaten kan komme arbitræt tæt p̊a den ideelle grænse (b̊ade for determin-
istisk og betinget m̊ade at anvende den) ved at øge det samlede antal atomer i ensemblet
for at kompensere for en begrænset enkelt atom koblingsstyrke.

Før vi diskuterer stationært lys og dens anvendelse, vi analyserer ogs̊a de forskel-
lige slags fidelity m̊al, som kan blive andvendt til den foresl̊aede gate (og de relaterede
forslag). Vi viser, at alle de betragtede fidelity m̊al er (approksimativt) lig med hinan-
den pga. bestemte egenskaber af den betragtede fysiske system. Dette resultat gør det
muligt at reducere antallet af udtryk, som skal evalueres, hvis ydeevnen af gaten skal
analyseres for forskellige anvendelser samtidig.
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Chapter 1

Introduction

Optical photons are ideal carriers of quantum information over long distances, and such
quantum communication may enable a wealth of applications [6]. Quantum information
processing with photonic qubits is, however, severely limited by the lack of efficient two-
qubit gates. In principle, such gates could be realized by strongly coupling photons to a
single atom [7, 8]. Experiments have pushed towards realizing such strong coupling, e.g.
in cavity QED structures [9–13] and optical waveguides [14–17], but the realization of
gates remains challenging. An alternative approach to strong single-atom coupling is to
use atomic ensembles where a large number of atoms compensates for a small coupling
efficiency of the individual atoms [18]. The latter kind of systems will be the focus of
this thesis. Making two-qubit gates for photons in systems consisting of many atoms is
challenging, since using many atoms often decreases the effective nonlinearity. A simple
explanation is that a single two-level atom can absorb exactly one photon, and hence
will behave differently for the second incoming photon. An ensemble of two-level atoms
can absorb as many photons as there are atoms and thus will behave linearly for a
number of photons much smaller than the number of atoms. There are ways to remedy
this shortcoming. One of them is to use non-local interactions between the atoms. A
popular choice is the dipole-dipole interaction between Rydberg atoms [19, 20]. In a
certain regime, this can make atoms within the interaction radius behave very similar to
a single atom, forbidding multiple excitations. Rydberg interaction will be touched upon
only briefly in this thesis. An alternative to Rydberg interaction is to make the entire
atomic ensemble itself behave more like a cavity [21, 22]. Multiple excitations are then
suppressed by the first photon destroying the mode-matching condition of the cavity
and making it reflective. Compared to the conventional cavity QED, this avenue is not
well explored and may lead to an interesting contender for an approach to implement
two-qubit gates for optical photons.

Ideally, for making a cavity out of the atomic ensemble, we would like to have both
strong single-atom coupling strengths and a large number of atoms. However, it seems
that larger single-atom coupling strengths present in a given physical system correlate
with lower total number of atoms. Hence, it is important to have a figure of merit to
judge the physical systems than could be used to implement a cavity with an atomic
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CHAPTER 1. INTRODUCTION 5

ensemble. One such figure of merit was found in the analysis of Ref. [22] to be the
product of the single-atom coupling strength squared and the number of the atoms.
Using this figure of merit, the systems with intermediate single-atom coupling strength
but still a sizable number of atoms currently seem attractive. Examples of such systems
are tapered optical fibers [23–27] and hollow core photonic-crystal fibers [28, 29].

The complexity with implementing two-qubit photon gates is not only due to the diffi-
culty of engineering strong light-matter interactions. Propagating photonic wave packets
are in general spread over more than than one field mode (frequency component). This
lead to conjectures that gates between propagating photons are impossible, even if an
optical nonlinearity is present to mediate the effective interactions [30, 31]. The usual
setup in these no-go results is to send two co-propagating photons through a nonlinear
medium, and it was shown that no problems seem to arise for counter-propagating pho-
tons [32–34]. Nevertheless, it is possible to side step this problem entirely by temporarily
storing one or both of the photons inside the nonlinear medium. In this thesis, we will
be looking at the setup, where one of the photons is stored inside the nonlinear medium
and can control the scattering properties of the medium in such a way that the second
photon obtains phase shift only, when the first photon was stored in the ensemble. At the
end of the interaction the first photon is retrieved from the atomic ensemble. Thereby
a two-qubit (controlled-phase) gate is implemented between the photons.

The structure of the thesis is as follows. In Chapter 2 we develop the formalism to
evaluate the performance of controlled-phase gates for photonic qubits for a certain class
of physical systems. In Chapter 3, we look at the linear properties of stationary light,
which is necessary prerequisite for considering the nonlinear properties. In Chapter 4,
we use the enhancement of the optical nonlinearities by stationary light to propose a
controlled-phase gate for photons. In Chapter 5 we recap the major accomplishments of
the thesis and provide possible directions for further research.



Chapter 2

Fidelity measures

2.1 Acknowledgements

This chapter is based on the theory of fidelity calculations that was developed for the
analysis of the controlled-phase gate in Ref. [1]. The application of this general theory
to the specific controlled-phase gate considered in Ref. [1] was done by Sumanta Das
and Andrey Grankin. The details of the general theory can be found in the unpublished
Supplemental Material [2]. In this chapter, this theory has been expanded to be able to
deal with the additional complexity of the controlled-phase gate in chapter 4.

2.2 Introduction

The ultimate goal of this thesis is to propose a controlled-phase gate for photons in
chapter 4. It has a sequential “store, scatter, retrieve” operation principle that is in-
creasingly popular for proposals and implementations of photonic switches and quantum
gates [1, 7, 8, 10, 35, 36]. In this chapter, we develop the theory for evaluating perfor-
mance of this class of photonic quantum gates. While the analysis for the case, when
the atomic ensemble consists of a single atom, can be considerably simplified, usage of
many atoms is still very attractive in enhancing the linear and nonlinear interactions of
a controlled-phase gate. Hence, the additional complexity can be worth it.

2.3 Preliminaries

First, we do a small review of the mathematical formalism of quantum mechanics. The
most basic concept is of a quantum state. Pure states are elements (vectors) of a Hilbert
space. If we denote the Hilbert space by H, the pure states in the Dirac ket notation are
|ψ〉 ∈ H. The Hilbert space is endowed with an inner product operation, where for two
states |ψ〉 and |ψ′〉, the inner product is denoted by 〈ψ|ψ′〉. The inner product gives rise
to the definition of norm. The norm of the state |ψ〉 is denoted by ‖ψ‖ and is given by
‖ψ‖ =

√
〈ψ|ψ′〉. The states |ψ〉 are usually assumed to be normalized, i.e. ‖ψ‖ = 1. In

6



CHAPTER 2. FIDELITY MEASURES 7

some of the derivations below, we will also encounter states with ‖ψ‖ < 1. This is often
done to model loss processes that inevitably occur in real physical systems. Presence of
loss mechanisms means that the physical system is coupled to the environment, which
we have little control over. In this case, representing a quantum state as a vector is, in
general, not sufficient. The reason why we would want to do it anyway is to simplify
calculations in specific cases, where the effective description of losses is just as valid
as the full one. In fact, one of the major themes of this chapter is simplification of
the fidelity calculations using exactly this type of effective description of losses. In this
chapter, our goal is to compute fidelity between two quantum processes. The fidelity of
quantum processes is based on the definition of fidelity of quantum states, which we can
define already at this point for pure states. For two states, |ψ〉 and |ψ′〉, the fidelity is
given by

F = |〈ψ|ψ′〉|2. (2.1)

Continuing with our review of the formalism of quantum mechanics, we need to
define how evolution of pure states is represented. In the differential form, the evolution
is determined by a Hamiltonian H and the Schrödinger equation

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉. (2.2)

This equation can be formally integrated from the initial time t0 to the final time t to
yield

|ψ(t)〉 = U |ψ(t0)〉, (2.3)

with

U = e−iH(t−t0)/~. (2.4)

The Hamiltonian is a Hermitian operator, i.e. H† = H, and hence U is a unitary
operator, i.e. U †U = I, where I is the identity operator. Often, the state evolution is
given by unitary operators directly without any reference to the Hamiltonian that has
generated the evolution. Note that unitary operators preserve inner products and hence
norms of the states, since any two states |ψ〉 and |ψ′〉 evolved with a unitary operator
U have the inner product 〈ψ|U †U |ψ′〉 = 〈ψ|ψ′〉. Just we have been discussing states
with norm less than one, the operators representing evolution can also be non-unitary
as a way to have an effective description of the loss processes. The Hamiltonians that
generate them are non-Hermitian.

To describe losses in the general case, we can no longer use pure states and have to use
mixed states instead, represented by density matrices (operators). A density matrix ρ is
Hermitian, positive semidefinite and has trace equal to unity. The positive semidefinite
property means that for any pure state (vector) |ψ′〉, it holds that 〈ψ′|ρ|ψ′〉 ≥ 0. This is
also the definition of fidelity of a pure state |ψ′〉 and a mixed state ρ, i.e.

F = 〈ψ′|ρ|ψ′〉. (2.5)
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This definition reduces to equation (2.1), if ρ is also a pure state, i.e. ρ = |ψ〉〈ψ|.
We will not need the definition of the fidelity for two mixed states, since we want the
controlled-phase gate to produce pure states as the output in the ideal limit.

Description of evolution of density matrices can be very challenging in the general
case. The complexity stems from coupling to a reservoir (environment), which has a large
number of degrees of freedom and usually cannot be described explicitly. Fortunately, in
many situations the reservoir can be assumed to be Markovian, which basically means
that the evolution only depends on the current state of the system and not on the entire
history of the evolution. This allows to describe evolution of the density matrix ρ by
a linear ordinary differential equation, which is usually called the master equation. Its
general form is

d

dt
ρ = − i

~
[H, ρ]− 1

2

∑
j

(
L†jLjρ+ ρL†jLj − 2LjρL

†
j

)
, (2.6)

where H is the Hamiltonian for the system, and the operators Lj describe incoherent
decay processes. This equation can be formally integrated from the initial time t0 with
the initial condition ρ(t0) to find the density matrix for any later time t. This procedure
can be used to define a superoperator, i.e. an operator that acts linearly on operators
(density matrices) through

V(ρ(t0)) = ρ(t), (2.7)

where ρ(t) is computed using equation (2.6). In principle, starting from equation (2.6) is
not necessary to define a superoperator. Any linear completely positive trace preserving
(CPTP) map will do. One of the several equivalent definitions of a CPTP map V is that
it can be written

V(ρ) =
∑
l

AlρA
†
l (2.8)

for a set of operators Al that fulfills
∑

lA
†
lAl = I, where I is the identity operator. This

is the so-called Kraus (operator-sum) decomposition of a superoperator.
For every pure state |ψ〉, the density matrix is

ρ = |ψ〉〈ψ|. (2.9)

Therefore for pure states, the vector and the density matrix can be used interchangeably,
and superoperators that, in general, act on density matrices ρ can also be thought of
acting on vectors via the relation (2.9).

It is possible to write down a formal solution to equation (2.6). First we rewrite it
as

d

dt
ρ = − i

~
(Heffρ− ρH†eff) +

∑
j

LjρL
†
j , (2.10)
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where

Heff = H − i~
2

∑
j

L†jLj (2.11)

is the effective non-Hermitian Hamiltonian. A formal solution to equation (2.10) is

ρ(t) = e−iHeff(t−t0)/~ρ(t0)eiH
†
eff(t−t0)/~ + J (ρ(t0)), (2.12)

where the first term on the right hand side represents the evolution with the effective
non-Hermitian Hamiltonian. The second term (the superoperator J ) can be written in
terms of the definitions

Stt′(ρ) = e−iHeff(t−t′)/~ρeiH
†
eff(t−t′)/~, (2.13)

Lj(ρ) = LjρL
†
j . (2.14)

It is [37]

J (ρ) =
∑
j

∫ t

t0

dt1Stt1 ◦ Lj ◦ St1t0(ρ)

+
∑
j

∫ t

t0

dt2

∫ t2

t0

dt1Stt2 ◦ Lj ◦ St2t1 ◦ Lj ◦ St1t0(ρ)

+ . . .

(2.15)

In the above, circles mean composition of the superoperators, so that for instance

Lj ◦ St1t0(ρ) = Lje
−iHeff(t1−t0)/~ρeiH

†
eff(t1−t0)/~L†j . (2.16)

Mathematically, the formal solution (2.12) is of the form (2.8), so equation (2.12) can
be thought of as a particular Kraus decomposition of the superoperator that maps the
initial state ρ(t0) to the final state ρ(t). Physically, the formal solution (2.12) sums over
all possible ways one can do evolution with the effective Hamiltonian Heff interrupted in
by abrupt jumps [38] described by the superoperators Lj . Hence, the superoperator J
describes the part of the evolution, where at least one quantum jump has occurred.

Often, we want to build up more complicated Hilbert spaces by combining several
smaller subsystems. The operation that represents this is the tensor product. The tensor
product of two Hilbert spaces, HA and HB is denoted by HA ⊗HB. We will be mostly
interested in the case when HA and HB are the same Hilbert space. If |xA〉 is the basis
for HA and |xB〉 is the basis for HB then any pure state |ψ〉 ∈ HA ⊗HB can be written

|ψ〉 =
∑
xA,xB

cxA,xB |xAxB〉, (2.17)

Here and below, |xAxB〉 means |xA〉 ⊗ |xB〉 (the tensor product of the states |xA〉 and
|xB〉), however we will also use |xA〉|xB〉 for the same purpose to more clearly separate
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different states. If |ψ〉 can be written as a tensor product of two states |ψA〉 ∈ HA and
|ψB〉 ∈ HB (i.e. |ψ〉 = |ψA〉|ψB〉), then we say that |ψ〉 is separable. Any state that is
not separable is entangled.

In the context of tensor products, we also need to discuss the concept of partial trace.
If we take a density matrix ρ in defined on the Hilbert space HA ⊗ HB, then the full
trace is tr(ρ) = 〈xAxB|ρ|xAxB〉 = 1 a number, while the partial trace with respect to the
space HB is trB(ρ) = 〈xB|ρ|xB〉 = ρA, which is a density matrix on HA. A maximally
entangled state on a tensor product of two copies of the same Hilbert space is the one,
whose density matrix after partial trace of one of them is diagonal.

The simplest non-trivial Hilbert space contains two basis states, |0〉 and |1〉. This is
the Hilbert space representing a single qubit. As we will be considering two-qubit gates,
the relevant Hilbert space is the tensor product of two copies of single-qubit Hilbert
space with the basis consisting of the states |00〉, |01〉, |10〉 and |11〉. This is what we
will refer to as the computational basis. Additionally, we will also use the Bell basis,
consisting of the states

|φ00〉 = |φ+〉 =
1√
2

(
|00〉+ |11〉

)
,

|φ01〉 = |ψ+〉 =
1√
2

(
|01〉+ |10〉

)
,

|φ10〉 = |φ−〉 =
1√
2

(
|00〉 − |11〉

)
,

|φ11〉 = |ψ−〉 =
1√
2

(
|01〉 − |10〉

)
.

(2.18)

Note that these states are the maximally entangled states in the Hilbert space of two
qubits. In addition to the conventional names, we also give numbers to the Bell states,
which will allow us to express summations in a simple way below.

In principle, now we have the necessary formalism to characterize the performance
of the quantum gates. Since superoperators are linear maps, one can choose a basis
for the quantum states (density matrices), compute the action of the superoperators
representing the real and ideal physical implementations of a quantum gate on each
of those basis states and thereby find the process matrices [39] for the superoperators.
Having obtained the process matrices, any fidelity measure can be computed. This
general procedure can involve complicated calculations, and our goal is to find a simpler
way to calculate the different fidelity measures of a quantum gate exploiting the features
of the specific physical system that we consider.

2.4 Overview of the fidelity measures

2.4.1 General approach

Our goal is to find how close a particular physical implementation of a quantum gate,
represented by the superoperator V, is to the ideal operation, represented by the su-
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peroperator U . The computation of all the fidelity measures below will follow the same
pattern:

1. Choose a particular input state ρin.

2. Find the output states

ρV = V(ρin),

ρU = U(ρin).
(2.19)

3. Find the state fidelity between ρV and ρU .

Calculation of the fidelity between the output states ρV and ρU is simplified by the
fact that the chosen input states ρin = |ψin〉〈ψin| are pure, and the ideal superoperators
U are unitary, i.e. U(ρ) = UρU †, where U is a unitary operator. Therefore, ρU =
U |ψin〉〈ψin|U † is pure and the fidelity is given by

F = 〈ψin|U †ρVU |ψin〉. (2.20)

For fidelities, where the operation of the controlled-phase gate is conditioned on presence
of all input photons after the gate operation, the end result is that the expression above
is normalized by the success probability Psuc. I.e., the conditional fidelities have the
form

Fcond =
F

Psuc
. (2.21)

The reason why we are interested in the conditional versions of all the fidelities is that in
the considered class of physical implementations of the controlled-phase gate for photons,
the dominant error in the unconditional fidelity is due to photon loss. If photon loss
can be postselected, the end result is a heralded gate with fidelity that is much closer to
unity.

The procedure outlined above makes it unnecessary to calculate the full process
matrix for the superoperator, and finding action of the superoperator on a particular
input state is sufficient. Initially, we will also ignore the fact each computational basis
state is physically represented by a traveling photon that has a distribution of the wave
vectors, and that the physical system that implements a controlled-phase gate will in
general do a different transformation for the different wave vectors.

2.4.2 Fidelity of creation of a Bell state

The simplest fidelity measure that we will consider is creation of an entangled state
(a Bell state) from a separable input state. Deterministic entangling operations are
notoriously difficult for the photonic qubits and can only be achieved in a heralded
fashion with linear optics [40, 41]. Therefore, creation of entangled states is a highly
interesting application of a controlled-phase gate for photons.
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As the input state, we choose

|ψin〉 =
1

2

(
|00〉+ |01〉+ |10〉+ |11〉

)
=

1

2

1∑
x,x′=0

|xx′〉.
(2.22)

To see that this state is separable, we can write it

|ψin〉 = (H ⊗H)|00〉, (2.23)

where H is the Hadamard operator defined by

H|0〉 = (|0〉+ |1〉)/
√

2, (2.24)

H|1〉 = (|0〉 − |1〉)/
√

2. (2.25)

The ideal operation of the controlled-phase gate is defined by

U |00〉 = |00〉,
U |01〉 = |01〉,
U |10〉 = |10〉,
U |11〉 = −|11〉.

(2.26)

Hence, the ideal output state is

U |ψin〉 =
1

2

(
|00〉+ |01〉+ |10〉 − |11〉

)
. (2.27)

To see that this state is entangled, it can be written

U |ψin〉 = (I ⊗H)|φ+〉, (2.28)

where I is the identity operator, and |φ+〉 is one of the Bell states (2.18).
Using the formal solution (2.12) for the final state of the real evolution ρV and

defining V = e−iHeff(t−t0)/~, the fidelity (2.20) is

FBell =
∣∣∣〈ψin|U †V |ψin〉

∣∣∣2 + 〈ψin|U †J (|ψin〉〈ψin|)U |ψin〉. (2.29)

We can also define a conditional fidelity using the projection (measurement) operator

P =

1∑
x,x′=0

|xx′〉〈xx′|. (2.30)

In the dual-rail computational basis for photons discussed in section 2.6 below, it can
happen that the physical processes during operation of the controlled-phase gate bring
the state of the system to a state, which is outside of the computational basis. Therefore,
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in general, P 6= I. We can define fidelity, which is conditioned on still remaining within
the computational basis. The conditional state is

ρ′V =
PρVP

†

tr
(
PρVP †

) . (2.31)

and the conditional fidelity is FBell,cond = 〈ψin|U †ρ′VU |ψin〉 = FBell/Psuc,Bell with the
success probability

Psuc,Bell = tr
(
PρVP

†
)
. (2.32)

2.4.3 Fidelity of entanglement swap

The entanglement swap operation takes as input two Bell states, |φ+〉A′A and |φ+〉BB′ ,
where the subscripts indicate the labels of the individual qubits in the Bell states. After
a unitary evolution (see figure 2.1), measurement and a single-qubit unitary correction,
the ideal output is the state |φ+〉A′B′ , i.e. a Bell state, but now involving different
combination of the individual qubits. This operation is central in quantum repeaters [42,
43], which can be a natural application of a controlled-phase gate for photons.

A′

A

B

B′

ϕ

H

HH

Figure 2.1: Circuit diagram for the entanglement swap operation. The letters to the
left are labels of each of the four qubits. Boxes with H denote single-qubit Hadamard
operations, and the box with ϕ on qubits A and B denotes the controlled-phase opera-
tion. Absence of a box is an implicit identity operation I. The operations represented
by those boxes act sequentially on the input state, starting with the leftmost operation
(IA′ ⊗ IA ⊗HB ⊗ IB′ , where subscripts indicate the labels of the qubits).

The fidelity of entanglement swap is a conditional fidelity measure, since the state of
the qubits A and B need to be measured after the unitary evolution to determine, which
kind of the unitary corrections must be applied to obtain |φ+〉A′B′ and not any other
Bell state. Here we note that both this unitary operation and the Hadamard operators
in figure 2.1 will be assumed to be lossless, since our main focus is the error introduced
by the controlled-phase gate. As shown below, assuming lossless Hadamard operators in
figure 2.1 also makes the fidelities of the controlled-phase gate itself and the full circuit
for qubits A and B in figure 2.1 equal, which reduces the complexity of the analysis. To
make a distinction between the superoperators U and V for the controlled-phase gate
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itself, we will also define the superoperators Ũ and Ṽ for the full circuit for qubits A and
B in figure 2.1. Hence, the maps that act on the initial state

|ψin〉 = |φ+〉A′A|φ+〉BB′ (2.33)

are IA′B′ ⊗ ŨAB and IA′B′ ⊗ ṼAB, where I is the identity superoperator. For the ideal
operation, we see that ŨAB(ρ) = ŨABρŨ

†
AB, where the operators ŨAB fulfill

ŨAB|φxx
′〉AB = |xx′〉AB, (2.34)

where x, x′ ∈ {0, 1} and using the numbered definitions of the Bell states (2.18) for
brevity. I.e. the ideal operation of the circuit for qubits A and B in figure 2.1 is to
transform Bell states into computational basis states. In this sense, this circuit accom-
plishes the reverse of what was considered for the fidelity of creation of a Bell state in
section 2.4.2 above.

For the real evolution, the final state before the measurement is

ρṼ = [IA′B′ ⊗ ṼAB]
(
|ψin〉〈ψin|

)
. (2.35)

The conditional nature of the entanglement swap fidelity is described by defining the
quantum states conditioned on measuring states |xx′〉AB (where x, x′ ∈ {0, 1}) after the
unitary evolution. We use the projection operators IA′B′ ⊗ Pxx′,AB with

Pxx′,AB = |xx′〉AB〈xx′|AB. (2.36)

Hence, the states after the measurement are

ρxx′ =
(IA′B′ ⊗ Pxx′,AB)ρṼ(IA′B′ ⊗ Pxx′,AB)†

tr
(
(IA′B′ ⊗ Pxx′,AB)ρṼ(IA′B′ ⊗ Pxx′,AB)†

) . (2.37)

Since the single-qubit correction unitary after measurement is assumed to be lossless,
for defining fidelity, we can skip this step and directly project the states (2.37) onto
the appropriate Bell state. Therefore, for each of these states, we define the conditional
fidelities

Fxx′ = 〈φxx′ |A′B′trAB(ρxx′)|φxx
′〉A′B′ , (2.38)

where we first take a partial trace over the qubits A and B and then project the remaining
qubits A′ and B′ onto the expected Bell state.

Due to the definition (2.36), we can write the fidelity (2.38)

Fxx′ =
〈φxx′ |A′B′〈xx′|ABρṼ |xx′〉AB|φxx

′〉A′B′
Psuc,xx′

, (2.39)

which is of the form (2.21) with the success probability

Psuc,xx′ = tr
(

(IA′B′ ⊗ Pxx′,AB)ρṼ(IA′B′ ⊗ Pxx′,AB)†
)
. (2.40)
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In the ideal limit, Psuc,xx′ = 1/4, so that the total success probability

Psuc,swap =

1∑
x,x′=0

Psuc,xx′ (2.41)

is unity. In expression (2.39), we have ignored the multi-mode nature of the computa-
tional basis states discussed in section 2.6 below, which affects the definition of trace.

Finally, we can define the average entanglement swap fidelity by

Fswap =
1

4

1∑
x,x′=0

Fxx′ . (2.42)

2.4.4 Choi-Jamiolkowski fidelity

The Choi-Jamiolkowski fidelity is among the “general purpose” fidelities recommended
by Ref. [39] (also known as “Jamiolkowski process fidelity” [39] and “entanglement fi-
delity” [44, 45]). This fidelity measure is based on the fact that every superoperator
can be mapped onto a density matrix on a higher-dimensional space by the Choi-
Jamiolkowski isomorphism [46, 47]. The Choi-Jamiolkowski fidelity of two superop-
erators U and V is then the state fidelity of the two density matrices ρU and ρV that
correspond to the superoperators. To compute ρU and ρV , we take the modified super-
operators I ⊗ U and I ⊗ V (tensor products with the identity superoperator I), and let
them act on a particular input state |Φ〉. If H the Hilbert space, for which U and V are
defined, then |Φ〉 ∈ H ⊗ H, i.e. |Φ〉 is an element on the tensor product of the original
Hilbert space with a copy of itself.

By the discussion above, besides extending the Hilbert space and redefining the
superoperators, the computation of the Choi-Jamiolkowski fidelity is no different from
the more specialized fidelity measures discussed earlier. In the general case, the input
state for I ⊗ U and I ⊗ V can be written [39]

|Φ〉 =
∑
x

|x〉|x〉/
√
d, (2.43)

where {|x〉} is an orthonormal basis set for the considered Hilbert space H, and d is
its dimension. Thus, |Φ〉 is a maximally entangled state on H ⊗ H. We will only be
concerned with the two-qubit case, where d = 4. Using the formal solution (2.12) for the
final state of the real evolution ρV and defining V = e−iHeff(t−t0)/~, the final states (2.19)
are

ρU = [I ⊗ U ]
(
|Φ〉〈Φ|

)
= (I ⊗ U)|Φ〉〈Φ|(I ⊗ U †),

ρV = [I ⊗ V]
(
|Φ〉〈Φ|

)
= (I ⊗ V )|Φ〉〈Φ|(I ⊗ V †) + [I ⊗ J ](|Φ〉〈Φ|).

(2.44)

Hence, the expression (2.20) for Choi-Jamiolkowski fidelity is

FCJ =
∣∣∣〈Φ|(I ⊗ U †V )|Φ〉

∣∣∣2 + 〈Φ|(I ⊗ U †)[I ⊗ J ](|Φ〉〈Φ|)(I ⊗ U)|Φ〉. (2.45)
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The conditional Choi-Jamiolkowski fidelity using the projection operator I ⊗ P with P
given by equation (2.30) is FCJ,cond = FCJ/Psuc,CJ with the success probability

Psuc,CJ = tr
(

(I ⊗ P )ρV(I ⊗ P )†
)
. (2.46)

We will show that for the considered class of physical systems, the Choi-Jamiolkowski
fidelity of a controlled-phase gate is the same as the fidelity of creation of a Bell state.
The conditional versions of those two fidelities will be shown to be equal to the en-
tanglement swap fidelity in certain limit. Relating Choi-Jamiolkowski fidelity to the
fidelity of creation of a Bell state is best seen in the computational basis, where the
input state (2.43) can be written

|Φ〉 =
1

2

(
|00〉|00〉+ |01〉|01〉+ |10〉|10〉+ |11〉|11〉

)
=

1

2

1∑
x,x′=0

|xx′〉|xx′〉.
(2.47)

On the other hand, the relation to the entanglement swap fidelity will use the Bell
basis (2.18) instead, in which the input state (2.43) can be written

|Φ〉 =
1

2

(
|φ+〉|φ+〉+ |ψ+〉|ψ+〉+ |φ−〉|φ−〉+ |ψ−〉|ψ−〉

)
=

1

2

1∑
x,x′=0

|φxx′〉|φxx′〉.
(2.48)

The similarity of the conditional Choi-Jamiolkowski fidelity and the entanglement swap
fidelity can be seen from the fact that the initial state for the entanglement swap oper-
ation (2.33) can be written

|φ+〉A′A|φ+〉BB′ =
1

2

(
|φ+〉A′B′ |φ+〉AB + |ψ+〉A′B′ |ψ+〉AB

+ |φ−〉A′B′ |φ−〉AB + |ψ−〉A′B′ |ψ−〉AB
)

= |Φ〉A′B′AB,

(2.49)

which is the same as the input state for calculating the Choi-Jamiolkowski fidelity given
by equation (2.48). Not only is the input state the same, but the evolution has the
same structure of a tensor product with identity. The only difference are (lossless)
Hadamard operators in the evolution of entanglement swap operation compared to just
a controlled-phase gate.

2.5 Interlude: Electromagnetically induced transparency
and Rydberg atoms

To have a concrete physical system to refer to while we are developing the abstract for-
malism below, we briefly discuss the electromagnetically induced transparency (EIT) [48,
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49] and Rydberg dipole-dipole interactions [19, 20]. These phenomena are the key in-
gredients in the implementations of the controlled-phase gate in Ref. [1].

(a)

|c〉

Ω

∆
δ

Γ′

Ê

|a〉

∆c

|b〉

|a〉

(b)

|b〉

|c〉
|d〉

atom 1

δ
∆c

∆

|d〉
|c〉

|b〉

atom 2
|a〉

Γ′ Γ′

Ω Ω
δ

∆c
∆

Ê Ê

∝ 1/r6

Figure 2.2: (a) Level diagram of a Λ-type atom. (b) Level diagrams of two Rydberg
atoms. Two different Rydberg levels, |c〉 and |d〉, for each atom are shown. If one of the
atoms is initialized in state |d〉, the state |c〉 of another atom will experience an energy
shift ∝ 1/r6.

The phenomenon of EIT arises in three-level Λ-type atoms (see figure 2.2(a)). EIT
is often implemented in such a way that |a〉 and |c〉 are the two hyperfine levels of
the atom, which ensures that state |c〉 has very long lifetime (meta-stable). Hence, in
the theoretical models in this thesis, the spontaneous emission from state |c〉 will be
neglected. Presence of a classical drive (with the Rabi frequency Ω) on the transition
|b〉 ↔ |c〉 renders the transition |a〉 ↔ |b〉 transparent for incoming probe light (labeled by
the electric field operator Ê) for the two-photon detuning δ = 0. Additionally, the group
velocity of the probe light is greatly reduced compared to free space. The group velocity
can be further reduced to zero and thereby store the probe pulse in state |c〉 [50–52].
Importantly, the qualitatively different behavior of Λ-type atoms compared to two-level
atoms happens only for a certain range of frequencies. Outside of the (possibly narrow)
EIT window, the atom behaves like a two-level atom.

EIT can also be implemented such that state |c〉 is the Rydberg state (see fig-
ure 2.2(b)). Rydberg states have a very high principal quantum number and a lifetime
much longer than the excited state |b〉 (e.g. a lifetime of ∼ 50 ns for state |b〉 compared
to a lifetime of ∼ 2.65 µs for state |c〉 [1]). Hence, also in this case we assume that state
|c〉 has negligible spontaneous emission for simplicity. The Rydberg levels of different
atoms have dipole-dipole interactions, which amounts to an energy shift ∝ 1/r6 of the
states, where two atoms close to each other are both in a Rydberg level. This energy
shift can be used to change the behavior of nearby Rydberg atoms by shifting them out
of the EIT resonance window. In figure 2.2(b), two different Rydberg levels, |c〉 and
|d〉 for each atom are indicated. In this way, an excitation stored in level |d〉 can be
completely decoupled from the EIT dynamics by ensuring that the classical drive in EIT
does not couple to state |d〉.
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The spontaneous decay rates Γ′ from the excited state |b〉 indicated in figure 2.2 are
described in the master equation (2.6) by operators

Lj =
√

Γ′|aj〉〈bj |, (2.50)

where j is the index of the atom. Hence, the assumption is that spontaneous emission
from the excited state |b〉 brings the atom to the state |a〉. After the spontaneous emission
process (a quantum jump), the system is effectively decoupled from the dynamics, since
the classical drive is only coupled to the transition |b〉 ↔ |c〉. Hence, the final state (with
formal solution (2.12)) will have an incoherent part (described by the superoperator J )
that consists solely of vacuum state.

For the level diagram of figure 2.2(a), spontaneous emission can also make the atom
in state |b〉 transition to the meta-stable state |c〉. In this case, the state of the system
is not decoupled from the dynamics, since the the state can be excited by the classical
drive. Looking at the solution (2.12), we see that this results in additional non-vacuum
incoherent terms in the final density matrix. In the regime, where there are many
atoms in the ensemble, the photonic wavepackets propagating through the ensemble
will be spread over many atoms to reach the regime of low losses. On the other hand, a
quantum jump caused by the operators (2.50) will localize the excitation in a single atom.
Due to the lack of mode-matching, such localized excitation cannot exit the ensemble
with high efficiency and will be instead repeatedly reabsorbed by other atoms. At each
reabsorption, there is a chance that spontaneous emission will transition the atom to
the ground state |a〉 thereby decoupling from the dynamics. Hence, the non-vacuum
incoherent terms in equation (2.12) in this case are expected to be negligible.

2.6 Computational basis states

|0〉 |1〉 |vac〉

Figure 2.3: Dual-rail computational basis states (|0〉 and |1〉). The vacuum state |vac〉
is outside of the computational basis.

We will use the dual-rail encoding of the photonic qubits. In this encoding, the two
states of the qubit, |0〉 and |1〉, correspond to a single photon traveling along either one
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or the other path (rail) in the photonic circuit (see figure 2.3). Importantly, the vacuum
state |vac〉 is outside of the computational basis, and this gives a straightforward way
to detect the photon loss errors: if no photons are detected for any pair of rails that
represent a single photonic qubit, then an error must have occurred.

Another thing to note about the encoding is that, in general, only using states |0〉 and
|1〉 is a too simplistic way to describe the actual physical system. Any traveling photon
will necessarily have a distribution of wave vectors, and this distribution can change
during the operations on the logical states. We will only look at the one-dimensional
case, where the wave vectors are scalars. We can define the annihilation operators â0(k)
and â1(k) for modes with the wave vector k in the rail corresponding to the logical states

|0〉 and |1〉 respectively. The commutation relation is [âx(k), â†x′(k
′)] = δx,x′δ(k − k′) ,

where δx,x′ is the Kronecker delta, and δ(k − k′) is the Dirac delta function. Also, here
and for the rest of this section, x and x′ mean either 0 or 1. The wave vector k is related
to the frequency ωk by some dispersion relation, which in the simplest case of vacuum
is ωk = |k|c, where c is the speed of light. Then we can write the logical states

|x〉 =

∫ ∞
−∞

φ(k)â†x(k)|vac〉dk, (2.51)

where the wave function (wave vector distribution in this case) φ fulfills the normalization
condition ∫ ∞

−∞
|φ(k)|2 dk = 1. (2.52)

This function φ can, in principle, be different for the two logical states, but we assume
it to be the same for simplicity.

The free evolution under the Hamiltonian

Ĥfree = ~
1∑

x=0

∫ ∞
−∞

ωkâ
†
x(k)âx(k) dk (2.53)

results in time dependence of the logical states given by

|x(t)〉 =

∫ ∞
−∞

φ(k)e−iωktâ†x(k)|vac〉dk. (2.54)

The basis states can also be regarded in real space by doing the Fourier transform
of the operators

âx(z) =
1√
2π

∫ ∞
−∞

âx(k)eikz dk. (2.55)

With this definition we have

|x(t)〉 =

∫ ∞
−∞

φ(z, t)â†x(z)|vac〉 dz, (2.56)
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where

φ(z, t) =
1√
2π

∫ ∞
−∞

φ(k)eikze−iωkt dk. (2.57)

In the case of the vacuum dispersion relation, if φ is sharply peaked around some large
positive k0, then we can approximate ωk = kc (where c is speed of light in vacuum or
more generally group velocity in the waveguide), since the contribution of the negative k
can be neglected, and we get φ(z, t) = φ(z−ct). If φ were centered on −k0, then we could
have approximated ωk = −kc and obtained φ(z, t) = φ(z + ct). This property is usually
the motivation for treating the right- and left-moving fields completely separately [53].

To make two-qubit gates, the photons need to interact, and to induce the interaction,
we will assume that one of the photons is stored in the atomic medium, then the second
photon is scattered off the ensemble, and finally the first photon is retrieved. Therefore,
we first look at the storage and retrieval of the first photon without scattering of the
second photon. Storage and retrieval is assumed to use EIT, although there many
variations of EIT storage and retrieval [54, 55]. We do not specify the exact protocol in
this chapter and limit ourselves to the discussion in terms of general storage and retrieval
kernels.

Even if the input state before storage is pure, the output after storage and retrieval is,
in general, a mixed state due to imperfections. Another complication is that storage and
retrieval can depend on some classical stochastic parameters. This can be fluctuations
in power and phase of the applied classical drives (lasers), inhomogeneous broadening
of atoms due to trapping lasers, positions of the atoms (assumed classical) within the
trapping potential etc. Below, a single realization of the atomic ensemble will be assumed
to have some definite values for these classically fluctuating parameters. For storage and
retrieval of a single photon, the output state for a realization n of the atomic ensemble,
results in the output state

ρx,out,n = |xout,n〉〈xout,n|+ (1− ηEIT,n)|vac〉〈vac|, (2.58)

where the part |xout,n〉〈xout,n| is in the single-photon manifold (spanned by the states

â†x(z)|vac〉), and ηEIT,n = 〈xout,n|xout,n〉 is the efficiency of the EIT storage and retrieval
this realization of the atomic ensemble. The output state should be statistically averaged
over all the different realizations. In practice, we can consider a large finite number Nr

of randomly chosen different realizations, such that the averaged output state is

ρx,out =
1

Nr

Nr∑
n=1

ρx,out,n. (2.59)

Hence, this can be thought of as a kind of a Monte Carlo method to describe the classical
fluctuations.

For calculation of some of the fidelity measures below, one also has to choose pure
computational basis states to use as the reference. For the photon that is stored and
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then retrieved, we will make the choice

|xout〉 =
1

N
∑
n

|xout,n〉, (2.60)

where N is chosen such that the state |xout〉 is normalized, and the index n runs over
the different realizations of the atomic ensemble. If there is only a single realization, N 2

is the EIT storage and retrieval efficiency. For more than one realization, the average
EIT storage and retrieval efficiency

ηEIT =
∑
n

ηEIT,n =
∑
n

〈xout,n|xout,n〉 (2.61)

is different from

N 2 =
∑
n,n′

〈xout,n|xout,n′〉, (2.62)

since the states |xout,n〉 are, in general, not orthogonal.
For the calculations of the fidelities, we will need to find inner products between real

and ideal photonic states. By the definition of the states in equation (2.56), the inner
products of two such states,

|xout,real(t)〉 =

∫ ∞
−∞

φout,real(z, t)â
†
x(z)|vac〉 dz, (2.63)

|xout,ideal(t)〉 =

∫ ∞
−∞

φout,ideal(z, t)â
†
x(z)|vac〉dz, (2.64)

is given by

〈xout,real(t)|xout,ideal(t)〉 =

∫ ∞
−∞

φ∗out,real(z, t)φout,ideal(z, t) dz. (2.65)

The limits for integration in the above expression are infinite, but we can argue that
in a specific situation, we can impose finite limits on physical grounds. We need to
compare the states after they have interacted with the atomic ensemble. Suppose that
the ensemble is placed in the interval z ∈ [0, L] (see figure 2.4), and that the photons
enter the ensemble from the left (z < 0) and exit from the right (z > L). For the sake
of illustration, we can assume that we are calculating fidelity of single photon storage
and retrieval, i.e. compared to efficiency we also want a particular shape of the retrieved
photon wave packet given by φout,ideal. We want to calculate the inner product (2.65) at
a time t large enough that all of the photon has exited the ensemble. Hence, the lower
bound in equation (2.65) can be set to L. On the other hand, if we assume that the
excitation was entirely within the the ensemble at t = 0, then by causality, the upper
limit in equation (2.65) is L+ ct.

After imposing finite limits of integration in equation (2.65), we would like to switch
from integration over z to integration over t, since in the discussion of the operation of
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To be stored Retrieved

z

Ensemble

Figure 2.4: The setup of storage and forward retrieval of a single photon.

the controlled-phase gate below, interactions of the incoming or outgoing field with the
atomic ensemble are formulated in terms of time-dependent signals at a fixed position.
This view is entirely equivalent to the spatial one, since in vacuum (outside of the atomic
ensemble), the electric field evolves according to the Hamiltonian (2.53), that simply
makes the wave function propagate either in the positive or the negative direction. For
retrieved photons propagating to the right, as discussed above, we have φout(z, t) =
φout(L, t− (z − L)/c). Hence, equation (2.65) with finite limits of integration is

〈xout,real(t)|xout,ideal(t)〉 =

∫ L+ct

L
φ∗out,real(L, t− (z − L)/c)φout,ideal(L, t− (z − L)/c) dz

=

∫ t

0
φ∗out,real(L, t

′)φout,ideal(L, t
′) dt′.

(2.66)

The details of the storage and retrieval setup can vary. For instance, retrieval could
happen such that the outgoing photon is to the left of the ensemble (z < 0) instead of
being to the right (z > L) as indicated in figure 2.4. The bottom line is the same: the
photonic wavepackets can be described by time-dependent signals at a particular fixed
position. Below, this fixed position will be implicit, since it depends on the particular
setup.

2.7 Ideal and real operation of the controlled-phase gate

The operation of the controlled-phase gate between two photonic qubits is assumed to
be sequential. The first photon is stored in the atomic ensemble, the second photon is
scattered by the ensemble and obtains a conditional-phase shift, and finally the the first
photon is retrieved.

Both the controlled-phase gates in Ref. [1] and chapter 4 are applied to the entangle-
ment swap operation shown as a circuit in figure 2.1. In the dual-rail encoding, the setup
for qubits A and B can be implemented as shown in figure 2.5. Each line of figure 2.1
needs to be represented by two rails in figure 2.5. Hadamard operators are implemented
with beam splitters, and the controlled-phase gate is implemented by two ensembles
(represented by triangles) and a beam splitter. In the setup of figure 2.5, photon A is
stored and retrieved, and photon B is scattered by the lower atomic ensemble or passes
through a beam splitter with transmission coefficient tb (explained below). Out of the
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|0〉A

|1〉A

|1〉B

|0〉B
tb

CPHASE

BS

BSBS

Figure 2.5: Entanglement swap in the dual-rail encoding. The labels of the individual
rails indicate, where the photonic wavepacket is present for the shown basis state. The
elements corresponding to the controlled-phase gate are within the dotted rectangle with
the label “CPHASE”, where triangles represent atomic ensembles (coupled to some linear
optics elements). After exiting the atomic ensembles, the photons take the path at the
intersections as to continue propagation to the right. This diagram corresponds to the
circuit for the qubits A and B in figure 2.1. The Hadamard operators are implemented
by beam splitters (BS). In the implementation of the controlled-phase gate, there is an
additional beam splitter with transmission coefficient tb. The photons propagate from
left to right and get affected by the linear and nonlinear optics elements.
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two ensembles, the upper one (coupled to the rail corresponding to state |0〉A) only
functions a memory, while the lower one (coupled to the rails corresponding to states
|1〉A and |1〉B) functions both as a memory for photon A and a scatterer for photon B.
The need for two ensembles is due to the fact that the state of photon A can be in a
superposition, and both of the states |0〉A and |1〉A need to be stored before scattering
photon B. The ensembles could be coupled to linear optics elements (an optical cavity
like in Ref. [1] or a Sagnac interferometer like in chapter 4).

The role of the beam splitter in the implementation of the controlled-phase gate
shown in figure 2.5 is to add loss in the heralded operation of the gate, which can
improve conditional fidelity at the expense of decreasing success probability. To explain
the intuition behind improvement of conditional fidelity by additional loss, consider the
fidelity of creation of creation of a Bell state with the input state (2.22). The output
state of the controlled-phase gate using the effective description of loss and written in
the simplified single-mode basis is

|ψout〉 =
1

2

(
tb|00〉AB +R0|01〉AB + tb|10〉AB +R1|11〉AB

)
, (2.67)

where tb is the transmission coefficient of the beam splitter in figure 2.5 and R0 (R1)
is the reflection coefficient of the atomic ensemble without (with) a stored photon. If
we set tb = R0 = −R1, the output state (2.67) is proportional to the ideal state (2.27).
Hence, the operation has unit conditional fidelity. Due to the multi-mode nature of the
traveling photons, it may not be possible to reach unit conditional fidelity, but adding
loss can allow us to cancel lower order error terms in the conditional fidelity and thus
make it is closer to unity (see chapter 4 for a concrete example).

Another note here is that we only talk about the reflection coefficients R0 and R1

and not the transmission coefficients for example. This is mainly to be consistent with
the setups of Ref. [1] and chapter 4. In those setups, the linear optics elements coupled
to the ensemble (one-sided cavity and Sagnac interferometer respectively) are such that
everything is reflected in the same rail as the incident photon or dissipated. In general,
R0 and R1 are just factors that the respective photonic basis states acquire as a result
of interactions with the atomic ensemble. Below, we will continue calling these “the
reflection coefficients” for simplicity.

Now we discuss the real and ideal evolution of the controlled-phase gate using the
multi-mode computational basis as described in section 2.6. Since photon A is stored and
retrieved, and photon B is scattered, it is most natural to describe the former as a time-
dependent signal and the latter through a frequency distribution. We define â†A,0(tA) and

â†A,1(tA) to be the creation operators for photon A at time tA, corresponding respectively
to the states |0〉A and |1〉A. These operators have the commutation relations

[âA,x(tA), â†A,x′(t
′
A)] = δx,x′δ(tA − t′A), (2.68)

where x, x′ ∈ {0, 1}. For photon B, the operators corresponding to the states |0〉B and

|1〉B are respectively â†B,0(ωB) and â†B,1(ωB), where ωB is the frequency of the photon.
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They have commutation relations

[âB,x(ωB), â†B,x′(ω
′
B)] = δx,x′δ(ωB − ω′B), (2.69)

where x, x′ ∈ {0, 1}. For notational convenience, we define the states |0tA〉 = â†A,0(tA)|vac〉,
|1tA〉 = â†A,1(tA)|vac〉, |0ωB 〉 = â†B,0(ωB)|vac〉, and |1ωB 〉 = â†B,1(ωB)|vac〉. With these
definitions, the initial computational basis states can be written

|00〉AB =

∫ ∫
φA,in(tA)φB(ωB)|0tA0ωB 〉 dtA dωB,

|01〉AB =

∫ ∫
φA,in(tA)φB(ωB)|0tA1ωB 〉 dtA dωB,

|10〉AB =

∫ ∫
φA,in(tA)φB(ωB)|1tA0ωB 〉 dtA dωB,

|11〉AB =

∫ ∫
φA,in(tA)φB(ωB)|1tA1ωB 〉 dtA dωB.

(2.70)

We define the ideal unitary evolution corresponding to the controlled-phase gate such
that the effects of EIT storage and retrieval of photon A are included. Hence, the input
photon wave function φA,in is transformed into output wave function φA,out in addition
to the phase transformation according to equation (2.26). The intermediate step is that
the photon is stored inside the ensemble in the single excitation states. For the EIT
setup in figure 2.2, the single excitation states are the ones, where atom with the index
j is in state |c〉, and all the rest are in state |a〉. We denote these states |cja〉.

The relation between the input wave functions and the output wave functions of the
photons does, in general, depend on the values of the classically fluctuating parameters.
For a given realization of the atomic ensemble n, we can define

φA,out,n,0(tA) =
∑
j

∫
Kr,n,0,j(tA)Ks,n,0,j(t

′
A)φA,in(t′A) dt′A, (2.71)

where Ks,n,0,j and Kr,n,0,j are the EIT storage and retrieval kernels respectively, the
index j runs over the individual atoms, and the label “0” on the state and kernels
indicates that storage and retrieval happens using the upper ensemble in figure 2.5.
This distinction is due to the fact that, if we have two atomic ensembles with classically
fluctuating parameters, then for each realization they will, in general, have different
values of those parameters. If the only stochastic parameter is the positions of the
atoms, storage and retrieval for each realization will be approximately the same in the
limit of small coupling strength of the individual atoms and a large number of them. This
is the basis of the continuum approximation that is often used to describe EIT storage
and retrieval [55]. We note that after storage, the atoms are in the state ρstored,0,n =
|ψstored,0,n〉〈ψstored,0,n|+ (1− ηstorage)|a〉N 〈a|N , where

|ψstored,0,n〉 =
∑
j

(∫
Ks,n,0,j(t

′
A)φA,in(t′A) dt′A

)
|cja〉, (2.72)
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|a〉N is the state, where all atoms in the ensemble are in state |a〉, and

ηstorage = 〈ψstored,0,n|ψstored,0,n〉. (2.73)

According to equation (2.60) we take the reference wave function to be

φA,out,0(tA) =

Nr∑
n=1

φA,out,n,0(tA), (2.74)

where Nr is the number of realizations of atomic ensemble that we sample over. The
states below will be properly normalized below by adding factors of

N =

√∫
|φA,out,0(tA)|2 dtA. (2.75)

Having defined φA,out,0, we can now define the action of the unitary operator UAB for
the ideal evolution on the basis states. It is

UAB|00〉AB =
1

N

∫ ∫
φA,out,0(tA)φB(ωB)|0tA0ωB 〉 dtA dωB,

UAB|01〉AB =
1

N

∫ ∫
φA,out,0(tA)φB(ωB)|0tA1ωB 〉 dtA dωB,

UAB|10〉AB =
1

N

∫ ∫
φA,out,0(tA)φB(ωB)|1tA0ωB 〉 dtA dωB,

UAB|11〉AB = − 1

N

∫ ∫
φA,out,0(tA)φB(ωB)|1tA1ωB 〉 dtA dωB.

(2.76)

When defining the ideal evolution in equation (2.76), we have taken the ideal output
wave packets for photon A to be the ones, which are obtained after storage and retrieval
in the absence of scattering. For photon B, we take the ideal frequency distribution to
be equal to the input frequency distribution. This is a natural choice, but there may
exist more optimal wave functions which give better fidelities.

The operator UAB above can be used to define a map acting on the density matrices
instead of states, i.e. UAB(ρ) = UABρU

†
AB. The real physical implementation of the

controlled-phase gate, can, in general, be written only as such a map VAB, due to
incoherent processes. Generalizing equation (2.12) to many realizations of the atomic
ensemble, the map VAB can written

VAB(ρ) =
1

Nr

Nr∑
n=1

(
Vn,ABρV

†
n,AB + Jn,AB(ρ)

)
, (2.77)

where Vn,AB = e−iHeff,n(t−t0)/~ is the operator describing the evolution under the effective
non-Hermitian Hamiltonian Heff,n (for a particular realization n of the atomic ensemble),
and the superoperators Jn,AB describe the processes, where at least one quantum jump
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occurs. We do not need to calculate the exact form of the superoperators Jn,AB, since
we assume that they produce states with zero overlap with the computational basis, i.e.

〈xt′Ax
′
ω′B
|Jn,AB(ρ)|ytAy′ωB 〉 = 0 (2.78)

for x, x′, y, y′ ∈ {0, 1}. This statement is another way of putting the result of the
discussion in section 2.5 above, where we have argued that spontaneous emission in
the atoms will bring the atom into a state that is decoupled from the dynamics and
ultimately result in a vacuum state, which is outside of the computational basis.

After solving the scattering problem, the action of the operators Vn,AB on the basis
states can be written

Vn,AB|00〉AB = tb

∫ ∫
φA,out,n,0(tA)φB(ωB)|0tA0ωB 〉 dtA dωB,

Vn,AB|01〉AB =

∫ ∫
R0,n(ωB)φA,out,n,0(tA)φB(ωB)|0tA1ωB 〉 dtA dωB,

Vn,AB|10〉AB = tb

∫ ∫
φA,out,n,10(tA)φB(ωB)|1tA0ωB 〉 dtA dωB,

Vn,AB|11〉AB =

∫ ∫
φA,out,n,11(tA, ωB)φB(ωB)|1tA1ωB 〉dtA dωB,

(2.79)

where

φA,out,n,10(tA) =
∑
j

∫
Kr,n,1,j(tA)Ks,n,1,j(t

′
A)φA,in(t′A) dt′A, (2.80)

φA,out,n,11(tA, ωB) =
∑
j

∫
Kr,n,1,j(tA)R1,n,j(ωB)Ks,n,1,j(t

′
A)φA,in(t′A) dt′A. (2.81)

The only difference between φA,out,n,10 in equation (2.80) and φA,out,n,0 in equa-
tion (2.71) is that φA,out,n,0 results from storage and retrieval in the upper ensemble in
figure 2.5 (subscript “0” in the storage and retrieval kernels), while φA,out,n,10 results
from storage and retrieval in the lower ensemble (subscript “1” in the storage and re-
trieval kernels). As discussed above, for each realization, the two ensembles will have
different values of the stochastic parameters, which can influence storage and retrieval.
If no stochastic parameters are assumed in the model, φA,out,n,10 and φA,out,n,0 are the
same.

The wave function φA,out,n,11 in equation (2.81) additionally contains the reflection
coefficient R1,n,j(ωB), which describes scattering of photon B, while photon A is stored
in the ensemble. The reflection coefficient R1,n,j(ωB), in general, depends on the position
(index j) of the atom, where photon A was stored. It is, however, assumed to be diagonal,
i.e. scattering of photon B does not redistribute the stored photon A among the atoms.
Physically, this can be realized by storing photon A in internal states of the atom that
are decoupled from the dynamics during scattering as discussed in section 2.5 above for
Rydberg atoms and similarly for the controlled-phase gate in chapter 4.
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The action of operators Vn,AB in equation (2.79) illustrates the fact that real physi-
cal systems usually act differently on the different frequency components of the photons,
which makes a single-mode computational basis insufficient for description of the prob-
lem. Another remark is that the errors of the real evolution described by equations (2.79)
never make the states of the computational basis transition to other states within the
basis. In other words, the evolution of the real physical system preserves the diagonal
property of the ideal controlled-phase evolution (2.76). This is a consequence of sequen-
tial operation of the gate and the dual-rail encoding. Only the rails corresponding to
states |1〉A and |1〉B could possibly mix, which could introduce logic errors. The sequen-
tial operation makes it possible to filter any leakage during scattering of photon B into
the rail corresponding to state |1〉A, since photon A is stored in the atomic ensemble
at this point. The diagonal property of VAB will be important for showing that the
different fidelity measures are equal to each other.

Having defined the evolution of the states for the multi-mode basis states, we also
need to discuss the projection operators corresponding to the conditional fidelities. The
multi-mode version of the projection operator (2.30) is

PAB =

1∑
x,x′=0

∫ ∫
|xtAx′ωB 〉〈xtAx

′
ωB
|dtA dωB. (2.82)

Physically, this corresponds to a quantum nondemolition (QND) measurement of photon
number without projecting on any particular computational basis state. Doing such a
QND measurement efficiently is challenging, and hence conditional fidelity of creation of
a Bell state and conditional Choi-Jamiolkowski fidelity can be considered in the abstract
sense.

For entanglement swap, the multi-mode version of the projection operators (2.36)
are IA′B′ ⊗ Pxx′,AB with

Pxx′,AB =

∫ ∫
|xtAx′ωB 〉〈xtAx

′
ωB
| dtA dωB. (2.83)

Compared to equation (2.82), the projection operators in equation (2.83) project onto
a particular computational basis state. This is implemented by having a (destructive)
single-photon detector at the end of each of the 4 rails in figure 2.5. Such detectors are
routinely used and can reach very high efficiencies [56].

Another thing to note about the projection operators (2.82) and (2.83) is that we
have not specified the range of frequencies and times for integration. In principle, the
integration limits may be different from the the limits in the definition of the basis
states and their evolution in equations (2.70), (2.76) and (2.79) (where the integration
limits are also implicit). For simplicity we will assume that the limits of integration in
all the mentioned equations are the same. For the frequency variable ωB, we assume
integration over the whole real line. For the time variable tA, by the discussion at the
end of section 2.6 above, the integration is from 0 to some final time t. Using these
limits in the projection operators (2.82) and (2.83) means in particular that we assume
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the detector to perform with unit efficiency across all frequencies and times, which is
an idealization. Non-unit efficiency dependent on frequency or time could be modeled
by using a weight function in the integrands of equations (2.82) and (2.83). Frequency
and time independent non-unit efficiency of the detector ηdetector can be introduced in
the model by e.g. replacing P by

√
ηdetectorP in equations (2.31) and (2.32). We see

that such a replacement will only decrease the success probability, while the conditional
fidelity will remain the same.

For the calculation of some of the fidelities and success probabilities, we will also
need a definition of the Hadamard operator in the multi-mode basis. It is

HA|0tA〉 = (|0tA〉+ |1tA〉)/
√

2,

HA|1tA〉 = (|0tA〉 − |1tA〉)/
√

2
(2.84)

for photon A, and

HB|0ωB 〉 = (|0ωB 〉+ |1ωB 〉)/
√

2,

HB|1ωB 〉 = (|0ωB 〉 − |1ωB 〉)/
√

2
(2.85)

for photon B. These two definitions reduce to the original definition (2.24) for the input
basis states (2.70).

2.8 Fidelities in the multi-mode basis

Using the above definitions, we can now find the fidelities and success probabilities. The
details of the derivation are in appendix A. The fidelity for creation of a Bell state FBell

and the Choi-Jamiolkowski fidelity FCJ are the same and can be calculated using the
expression

FBell = FCJ =
1

16NrN 2

Nr∑
n=1

∣∣∣∣∣
(
tb +

∫
R0,n(ωB)|φB(ωB)|2 dωB

)
×
∫
φ∗A,out,0(tA)φA,out,n,0(tA) dtA

+ tb

∫
φ∗A,out,0(tA)φA,out,n,10(tA) dtA

−
∫ ∫

φ∗A,out,0(tA)φA,out,n,11(tA, ωB)|φB(ωB)|2 dtA dωB

∣∣∣∣∣
2

.

(2.86)
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The conditional fidelities are FBell,cond = FBell/Psuc and FCJ,cond = FCJ/Psuc, with the
same success probability

Psuc =
1

4Nr

Nr∑
n=1

((
t2b +

∫
|R0,n(ωB)|2|φB(ωB)|2 dωB

)∫
|φA,out,n,0(tA)|2 dtA

+ t2b

∫
|φA,out,n,10(tA)|2 dtA

+

∫ ∫
|φA,out,n,11(tA, ωB)|2|φB(ωB)|2 dtA dωB

)
.

(2.87)

Hence, we also have that FBell,cond = FCJ,cond. The entanglement swap fidelity is slightly
different and has the expression

Fswap =
1

16NrPsuc

Nr∑
n=1

∫ ∫
|φB(ωB)|2

∣∣∣ (tb +R0,n(ωB)
)
φA,out,n,0(tA)

+ tbφA,out,n,10(tA)− φA,out,n,11(tA, ωB)
∣∣∣2 dtA dωB,

(2.88)

where the success probability is given by the same expression (2.87). Compared to
FBell,cond and FCJ,cond, the difference is that for calculation of Fswap, no projection is
made on a reference wave function, and the terms are integrals over all the time and
frequency components of the output photons.

Using the Cauchy-Schwarz inequality∣∣∣∣∫ ∫ u∗(tA, ωB)v(tA, ωB) dtA dωB

∣∣∣∣2 ≤ ∫ |u(tA, ωB)|2 dtA dωB

∫
|v(tA, ωB)|2 dtA dωB

(2.89)

on functions

u(tA, ωB) = φA,out,0(tA)φB(ωB), (2.90)

v(tA, ωB) = φB(ωB)
((
tb +R0,n(ωB)

)
φA,out,n,0(tA) + tbφA,out,n,10(tA)

− φA,out,n,11(tA, ωB)
)
,

(2.91)

we see that FBell,cond = FCJ,cond ≤ Fswap.

2.9 Further simplifications

Here we discuss the simplifications in the case when there is only a single realization
of the atomic ensemble, i.e. storage and scattering does not depend on any classical
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stochastic parameters. There are only two output wave functions to consider,

φA,out,0(tA) =
∑
j

∫
Kr,j(tA)Ks,j(t

′
A)φA,in(t′A) dt′A, (2.92)

φA,out,1(tA, ωB) =
∑
j

∫
Kr,j(tA)R1,j(ωB)Ks,j(t

′
A)φA,in(t′A) dt′A. (2.93)

The wave function φA,out,0 has the same definition as φA,out,n,0 in equation (2.71), and
the wave function φA,out,1 has the same definition as φA,out,n,11 in equation (2.81). We
omit the index of realization n and use “1” instead of “11”, since there is no wave
function with the subscript “01”. The storage and retrieval kernels (Ks,j and Kr,j

respectively) are the same for both ensembles. The storage and retrieval efficiency is
ηEIT =

∫
|φA,out,0(tA)|2 dtA (i.e. ηEIT = N 2, where N is given by equation (2.75))

Using above definitions, equation (2.86) simplifies to

FBell = FCJ =
ηEIT

16

∣∣∣∣∣2tb +

∫
R0(ωB)|φB(ωB)|2 dωB

− 1

ηEIT

∫ ∫
φ∗A,out,0(tA)φA,out,1(tA, ωB)|φB(ωB)|2 dtA dωB

∣∣∣∣∣
2

,

(2.94)

equation (2.87) simplifies to

Psuc =
ηEIT

4

(
2|tb|2 +

∫
|R0(ωB)|2|φB(ωB)|2 dωB

+
1

ηEIT

∫ ∫
|φA,out,1(tA, ωB)|2|φB(ωB)|2 dtA dωB

)
,

(2.95)

and equation (2.88) simplifies to

Fswap =
1

16Psuc

∫ ∫
|φB(ωB)|2

∣∣∣ (2tb +R0(ωB)
)
φA,out,0(tA)− φA,out,1(tA, ωB)

∣∣∣2 dtA dωB.

(2.96)

Here we also note that Fswap can be equal to FBell,cond and FCJ,cond for certain
conditions. This happens, when the non-zero bandwidth of the photon B is neglected
by assuming |φB(ωB)|2 = δ(ωB − ω0) and

φA,out,1(tA, ωB) = R1(ωB)φA,out,0(tA), (2.97)

instead of the definition (2.93). These two assumptions result in

FBell,cond = FCJ,cond = Fswap =
ηEIT

16Psuc

∣∣∣2tb +R0(ω0)−R1(ω0)
∣∣∣2. (2.98)
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The assumption (2.97) is satisfied if R1,j in equation (2.93) is independent of the
index of the atom j, i.e. R1,j = R1. Alternatively, that assumption can be satisfied if
it is possible to do filtering of the retrieved excitation, e.g. by use of an optical cavity
coupled to the ensemble (as in Ref. [1]). In the latter case, the general form of the
storage and retrieval kernels could be written

Ks,j(tA) = φ∗A,in,ref(tA)Sj , (2.99)

Kr,j(tA) = φA,out,ref(tA)S∗j . (2.100)

The above expressions are designed to model the fact that presence of an optical cav-
ity restricts storage of only a single mode of the incident photon [54] with temporal
shape φA,in,ref(tA), so that the coefficients of the state (2.72) are all weighted by the pro-
jection of φA,in(tA) and φA,in,ref(tA). Hence, the highest storage efficiency is obtained if
we choose φA,in(tA) = φA,in,ref(tA). The coefficients of the single excitation states inside
the ensemble are set by Sj , which describe the single spatial mode of the ensemble that
the incident photon can be stored into. During retrieval, again only this spatial mode
given by the coefficients Sj can be retrieved in the output photon, so that application
of the retrieval kernel is effectively a projection of any state inside the ensemble onto
this spatial mode. The end result is that insertion of equations (2.99) and (2.100) into
equations (2.92) and (2.93) gives

φA,out,0(tA) =

∑
j

|Sj |2
φA,out,ref(tA)

∫
φ∗A,in,ref(tA)φA,in(t′A) dt′A, (2.101)

φA,out,1(tA, ωB) =

∑
j

|Sj |2R1,j(ωB)

φA,out,ref(tA)

∫
φ∗A,in,ref(tA)φA,in(t′A) dt′A.

(2.102)

These equations satisfy equation (2.97) with

R1(ωB) =

∑
j |Sj |2R1,j(ωB)∑

j |Sj |2
. (2.103)

2.10 Discussion

The main result of this chapter are the fidelity expressions in sections 2.8 and 2.9, which
were used in Ref. [1] and will be used in chapter 4. On a more general note, we have
illustrated the difficulties of defining the meaning of fidelity for photon gates, which is
mainly a consequence of the multi-mode nature of the traveling photon wavepackets.
Among other things, this gives a lot more freedom in the choice of the input states. In
the single-mode case, the general pure two-qubit input state is

|ψin〉 = c00|00〉+ c01|01〉+ c10|10〉+ c11|10〉 (2.104)
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for some complex numbers c00, c01, c10 and c11, which are only constrained by the
normalization condition ‖ψin‖ = 1. For the multi-mode case, the input state can be
written

|ψin〉 =

∫ ∫ (
φ00(tA, ωB)|0tA0ωB 〉+ φ01(tA, ωB)|0tA1ωB 〉

+ φ10(tA, ωB)|1tA0ωB 〉+ φ10(tA, ωB)|1tA0ωB 〉
)

dtA dωB,

(2.105)

where the choice is now over complex-valued functions φ00, φ01, φ10 and φ11 (also con-
strained by the normalization condition).

In chapter 4, we find the optimal input wave packets of the photons for a single
operation of the gate, but the analysis of the scenario, when the output the controlled-
phase gate is used in further computation (possibly as an input for another controlled-
phase gate) is out of scope for this thesis. It is clear that the multi-mode nature of
the photons will greatly complicate the analysis of such a scenario. However, it is not
obvious, whether such analysis is needed, since repeated application of entangling gates
(e.g. controlled-phase gates) on the same quantum state is only needed in the so-called
circuit model of the quantum computation (i.e. representable by a circuit similar to
figure 2.1 but arbitrarily complicated), which may be not a good fit for qubits encoded
in photons.

For comparison, the best bet to achieve general purpose quantum information pro-
cessing with linear optics seems to be using measurement-based computation [57, 58],
where the entanglement is generated offline in a probabilistic but still efficient manner
similar in some sense to quantum repeaters, and the final state is measured is a partic-
ular way to implement quantum computation equivalent to a circuit. This might also
be a viable path forward for the class of controlled-phase gates for photons discussed in
this chapter, since they can be operated in a heralded fashion with higher fidelities, as
exemplified by Ref. [1] and chapter 4.



Chapter 3

Dispersion relations for stationary
light

3.1 Acknowledgements

This chapter is based on the material published in Ref. [4]. The derivation of the
dispersion relations for the continuum model is based on the one by Johan R. Ott. One
of the dispersion relations for the discrete model (quadratic, with Nu = 2) has already
been obtained in the Master’s thesis [59].

3.2 Overview

The controlled-phase gate in chapter 4 uses the phenomenon of stationary light for
enhancement of the nonlinear interaction strength of the photons. To use stationary
light for enhancement of the nonlinear interactions, it is essential to first understand
the linear properties (dispersion relations), which is the focus of this chapter. Since,
we have already discussed EIT in section 2.5, we first remark, why EIT in itself is not
enough to get enhancement of the nonlinear interaction strength. The relevant figure of
merit is the interaction time of the photons, which is proportional to the inverse of the
group velocity. For EIT, decreasing the group velocity of the polaritons (coupled light-
matter excitations) simultaneously makes them increasingly atomic and less photonic in
character [52] thus also decreasing the optical nonlinearity. These two effects cancel each
other, which results in no enhancement of the effective nonlinear interaction strength. In
this context, proposals for “stationary light” have emerged as a way of creating polaritons
with very small (or even vanishing) group velocities within the atomic medium, while
retaining a non-zero photonic component [60, 61]. Building upon the enhanced nonlinear
interactions, it is in principle possible to observe the rich physics of nonlinear optics at
the level of a few photons [22, 62].

We will consider the dispersion relation for three different stationary light schemes
(see figure 3.1). The dispersion relation gives the frequency (two-photon detuning) δ in

34
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Figure 3.1: Level diagrams of the three schemes that we consider. The blue circles
on state |a〉 indicate that the atoms are assumed to be initialized in this state. The
arrows with small wiggly lines originating on the excited states |b±〉 and |b〉 indicate
spontaneous emission with a decay rate Γ′. The arrows between different states indicate
either quantum fields (wiggly lines), or classical drives (double straight lines). The small
horizontal arrows on each of these coupling arrows indicate the propagation direction.
All the transitions are assumed to couple equally to both the right-moving and left-
moving fields, but the arrows pointing only in a single direction on the classical drives
for dual-V and dual-color schemes instead indicate that the externally applied drives
propagate in the shown direction. The excited level |b〉 for the dual-color scheme is
shifted vertically in order to be able to clearly show all the different detunings.
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terms of the Bloch vector q. From the dispersion relation, the group velocity vg = ∂δ
∂q can

be readily obtained, and by the discussion above, it can therefore provide an intuition
about how strong the nonlinear interaction strength is expected to be. For the analysis,
we will use two different theoretical models. The first is the continuum model, in which
the atomic operators are defined for any real position coordinate z between 0 and L (the
total length of the ensemble). The second is the discrete model, where each atom is a
linear point scatterer. The latter model is motivated by a growing interest in considering
systems, where the number of atoms is relatively small, while the coupling strength and
control over placement of the individual atoms are greatly improved. Examples are
tapered optical fibers [23–27] and photonic crystal waveguides [16, 63]. In the discrete
model, we find that placing the atoms in a particular way provides an additional handle
for controlling the dispersion relation [64, 65].

The dispersion relations for the continuum model have already been derived else-
where [66–68]. However, as we will show below, the results of the discrete model can be
understood better, if they are set in context by rederiving the results of the continuum
model in a different way compared to the previous publications. Additionally, even when
restricted to the continuum model, treating every stationary light scheme in the same
framework allows for a much easier comparison of the schemes and also for tracking
the various (physically motivated) approximations that are employed in the derivations.
By doing numerical calculations with the discrete model afterwards, we can test the
validity of some of these approximations. We will show that for some of the stationary
light schemes, the dispersion relations derived analytically using the continuum model,
can also be obtained numerically as limiting cases of the discrete model with randomly
placed atoms.

We will consider one-dimensional ensembles of atoms with three different level and
coupling schemes where stationary light can be observed (see figure 3.1). We will focus
on the case of cold atoms, although for completeness we will also briefly discuss hot
Λ-type atoms, which was the scheme used for the first prediction and observation of
stationary light [60, 61]. Common to all stationary light schemes is the presence of
two counter-propagating classical drives which couple the right-moving and left-moving
modes of the quantum field through four-wave mixing [66]. One way to explain the
origin of the four-wave mixing is that an incident photon of the quantum field will be
temporarily mapped to the meta-stable state |c〉 by the classical drive propagating in the
same direction. The other classical drive can then retrieve this temporary excitation into
a photon of the quantum field propagating in the opposite direction. In this picture,
stationary light can be viewed as simultaneous EIT storage and retrieval in both the
forward and backward directions [55].

For the Λ-type scheme (figure 3.1(b)), a different intuitive explanation of station-
ary light can be given in terms of Bragg scattering. In this scheme, the two counter-
propagating classical drives produce a standing wave, which modulates the refractive
index of the ensemble such that it behaves as a Bragg grating. Hence, the coupling
of the right-moving and left-moving modes of the quantum field happens due to the
reflection of one into the other by the Bragg grating. The dynamics of the cold Λ-type
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scheme is, however, more complicated, which can be illustrated in terms of the allowed
processes. Since both counter-propagating drives are applied on the same transition
|b〉 ↔ |c〉, it is possible for the atom to be excited by one of the classical drives and
de-excited by the other. This leads to the build up of higher order Fourier components
of the atomic coherence resulting in a rich and complicated physics of stationary light
for cold Λ-type atoms [69–74]. We will show that depending on the precise details of
the system and the approximations used, it is possible to get dispersion relations with
three different scalings close to the two-photon resonance (δ = 0): δ ∝ q2 (quadratic
dispersion relation of stationary light), δ ∝ ±q (EIT-like linear dispersion relation), and
δ ∝ ±|q|4/3 [68]. In the derivations below, the first two cases will arise in the contin-
uum model due to different truncations of the set of higher order modes of the atomic
coherence. Afterwards, in the discrete model, we will show that these truncations can
actually be realized physically by positioning the atoms in certain ways. The dispersion
relation δ ∝ |q|4/3 is obtained in the continuum model, when all the higher order Fourier
components of the atomic coherence are summed to infinite order [68]. In the discrete
model, such a scaling can be reproduced in the limit of an infinite number of randomly
placed atoms.

A common trait of the two other schemes for stationary light, dual-V [67] and dual-
color [66] (figures 3.1(a) and 3.1(c) respectively) is the separation of the right-moving
and left-moving fields (both classical and quantum) into different modes, either with
different polarizations for dual-V or with different frequencies for dual-color. The main
purpose of this separation is to suppress the higher order Fourier components of the
atomic coherence since excitation and de-excitation with two different classical fields are
no longer allowed. The end result of this, is that both the dual-V and dual-color schemes
have quadratic dispersion relations δ ∝ q2, just like stationary light in hot Λ-type atoms,
where the higher order Fourier components of the atomic coherence are washed away by
the thermal motion of the atoms [60, 61].

3.3 Continuum model

3.3.1 Dispersion relations for cold dual-V atoms

The dual-V scheme as shown in figure 3.1(a) has already been studied in Ref. [67] and
was shown to have a quadratic dispersion relation. Here we do a different derivation
of this result to serve as the context for the discussion of the other stationary light
schemes. We take the dual-V scheme as the starting point, because the derivation of the
dispersion relation is more straightforward, even if the additional atomic energy level
and two different polarizations of the electric fields make the setup of the problem more
complicated. In the course of the derivation we will introduce most of the definitions
that we will also use for the other schemes (Λ-type and dual-color).

The atomic ensemble is assumed to be a one-dimensional medium of length L con-
sisting of N atoms. In the continuum model, the atomic density n0 = N/L is assumed
to be constant throughout the length of the ensemble. The atoms are described by the
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collective operators

σ̂αβ(z) =
1

n0

∑
j

δ(z − zj)σ̂αβ,j (3.1)

where σ̂αβ,j = |αj〉〈βj | is the atomic coherence (α 6= β) or population (α = β) of atom
j. These collective operators have the equal time commutation relations

[σ̂αβ(z), σ̂α′β′(z
′)] =

1

n0
δ(z − z′)(δβ,α′ σ̂αβ′ − δβ′,ασ̂α′β). (3.2)

Throughout this chapter (and the next one), all operators are defined to be slowly-
varying in time, since we work in the interaction picture relative to the carrier frequencies
of the fields.

The dual-V scheme has two excited states, |b+〉 and |b−〉, which both couple to the
ground state |a〉 but with the different polarization modes, σ+ and σ−, of the quantum
field. The σ+ mode only couples the |a〉 ↔ |b+〉 transition, and the σ− mode only couples
the |a〉 ↔ |b−〉 transition. The operator for the total quantum field Êσ± for the different
polarizations can be decomposed as

Êσ± = Êσ±,+eik0z + Êσ±,−e−ik0z, (3.3)

where k0 is the wave vector corresponding to the carrier frequency of the quantum fields
ω0, i.e. k0 = ω0/c. For the σ+ fields, Êσ+,+(z) is the spatially slowly-varying annihilation

operator at position z for the field moving to the right (positive direction), and Êσ+,−(z) is
the operator for the field moving to the left (negative direction). Analogous definitions
hold for the σ− fields. We will be concerned with the dynamics within a frequency
interval around atomic resonances that is much smaller than the carrier frequencies
of the fields. Therefore, the right-moving and left-moving quantum fields (for each
polarization mode) can be regarded as being completely separate [53] with the equal
time commutation relations

[Êα(z), Ê†β(z′)] = δαβδ(z − z′), (3.4)

where α and β each denote one of the four possible combinations of polarization (σ±)
and propagation direction (±).

The transition frequencies between the atomic energy levels |α〉 and |β〉 will be de-
noted by ωαβ. The quantum fields are detuned from the atomic transition frequencies

by ∆
(±)
0 = ω0 − ωab± . The excited states |b+〉 and |b−〉 are assumed to have the same

incoherent decay rate Γ′ to modes other than the forward and backward propagating

ones. We account for Γ′ by making the detunings complex: ∆̃
(±)
0 = ∆

(±)
0 + iΓ′/2. In

the calculations below, we will employ Fourier transformation, where the Fourier fre-
quencies ω will be defined relative to the carrier frequency ω0. For ease of notation we

therefore define the detunings ∆(±) = ∆
(±)
0 + ω. As opposed to the detunings of the

carrier frequency ∆
(±)
0 , the detunings ∆(±) additionally include the shift due to the finite

bandwidth of the quantum field.
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The two counter-propagating classical drives are in the two different polarization
modes. Here, the polarization and the propagation direction are chosen such that Ω+ is
the Rabi frequency of the σ+ classical drive propagating in the positive direction that
couples the transition |b+〉 ↔ |c〉, and Ω− is the Rabi frequency of the σ− classical
drive propagating in the negative direction that couples the transition |b−〉 ↔ |c〉. The
classical drives have frequency ωc and are detuned from the respective transitions by

∆
(±)
c = ωc − ωb±c. Furthermore, we define the two-photon detuning δ0 = ω0 − ωc − ωac,

which has a unique definition, since the quantum fields have the same carrier frequency
(ω0) for both polarizations, and the classical drives have the same frequency (ωc) for

both polarizations. In terms of ∆
(±)
0 and ∆

(±)
c above, we also have δ0 = ∆

(+)
0 −∆

(+)
c =

∆
(−)
0 − ∆

(−)
c . Similar to ∆(±) above, there is a complementary definition of the two-

photon detuning δ = δ0 +ω that takes into account the finite bandwidth of the quantum
field. The wave vector of the classical drive is kc = ωc/c, but throughout our calculations
we are going to assume kc ≈ k0.

The Hamiltonian for the dual-V scheme can be decomposed as ĤV = ĤV,a + ĤV,i +

ĤV,p, where ĤV,a describes the atoms, ĤV,p describes the photons, and ĤV,i describes
the light-matter interactions. In the interaction picture and the rotating wave approxi-
mation, the parts are

ĤV,a = −~n0

∫  ∑
α∈{+,−}

∆̃
(α)
0 σ̂bαbα(z) + δ0σ̂cc(z)

dz, (3.5a)

ĤV,i = −~n0

∫ ∑
α∈{+,−}

{[
σ̂bαc(z)Ωαe

αikcz + H.c.
]

+ g
√

2π
[
σ̂bαa(z)Êσα(z) + H.c.

]}
dz,

(3.5b)

ĤV,p = −i~c
∫ ∑

α∈{+,−}

[
Ê†σα,+(z)

∂ Êσα,+(z)

∂z
− Ê†σα,−(z)

∂ Êσα,−(z)

∂z

]
dz, (3.5c)

where g = µ
√
ωab±/(4π~ε0A) (in this constant, we assume that ωab+ ≈ ωab−), µ is the

matrix element of the atomic dipole, and A is the effective area of the electric field mode.
The Heisenberg equations of motion for the electric field operators are given by(

∂

∂t
± c ∂

∂z

)
Eσ+,± = ig

√
2πn0σab+e

∓ik0z. (3.6a)(
∂

∂t
± c ∂

∂z

)
Eσ−,± = ig

√
2πn0σab−e

∓ik0z. (3.6b)

Here and in the following we will omit the hats above the operators as soon as the
Heisenberg equations of motion are found, since we will be considering linear effects for
which the operator character does not play any role. The noise operators, normally
included in the Heisenberg equations of motion whenever incoherent losses are present
(Γ′ > 0), are also omitted, since they can be shown to not have any effect [54, 55, 67].
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The equations of motion for the atoms are found under the assumption that the probe
field is weak and that the ensemble is initially prepared in the ground state. Hence, we
set σ̂aa ≈ 1, σ̂b±b± ≈ σ̂b±b∓ ≈ σ̂cc ≈ σ̂b±c ≈ 0, and get the equations

∂σab±
∂t

= i∆̃
(±)
0 σab± + iΩ±σace

±ikcz + ig
√

2πEσ± , (3.7a)

∂σac
∂t

= iδ0σac + iΩ∗+σab+e
−ikcz + iΩ∗−σab−e

ikcz. (3.7b)

We note that it is in equations (3.7) that the continuum approximation is first applied,
since both the Hamiltonian (3.5) and equations (3.6) in principle retain the discrete
nature of the atoms due to the definition (3.1). Equations (3.7) are derived under the
approximation σaa ≈ 1, which can be viewed as two separate approximations. The first
is that σaa,j ≈ 1 for all the individual atoms j. Together with the definition (3.1), we
see that σaa ≈ 1 also means approximating

∑
j δ(z− zj) ≈ n0, and this is what we mean

by the continuum approximation. In the analysis done in Ref. [75] it was shown in a
perturbative calculation that this is a good approximation for randomly placed atoms.
Using the discrete model in section 3.4 below, we will verify it explicitly without any
perturbative assumptions.

We make two assumptions for simplicity and to be able to relate this derivation to
the secular approximation for Λ-type atoms, which we discuss below. First, we assume

equal atomic transition frequencies, ωb+c = ωb−c, so that ∆
(+)
0 = ∆

(−)
0 = ∆0, and

∆
(+)
c = ∆

(−)
c = ∆c. Second, we assume equal classical drive strengths, Ω+ = Ω− = Ω0/2.

With the above assumptions and defining the slowly-varying versions of σab± by

σ±ab = σab±e
∓ik0z, (3.8)

the equations of motion become

∂σ±ab
∂t

= i∆̃0σ
±
ab + i

Ω0

2
σac + ig

√
2πEσ±e∓ik0z, (3.9a)

∂σac
∂t

= iδ0σac + i
Ω∗0
2

(σ+
ab + σ−ab), (3.9b)

and after the Fourier transform in time,

0 = i∆̃σ±ab + i
Ω0

2
σac + ig

√
2πEσ±e∓ik0z, (3.10a)

0 = iδσac + i
Ω∗0
2

(σ+
ab + σ−ab). (3.10b)

Here, we have absorbed the Fourier frequency variable ω into the detunings by defining
∆̃ = ∆̃0 + ω and δ = δ0 + ω. Isolating σac from equation (3.10b) and inserting into
equations (3.10a) gives two coupled equations

0 =

(
1− δS

2δ

)
σ±ab −

δS

2δ
σ∓ab +

g
√

2π

∆̃
Eσ±e∓ik0z. (3.11)
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Here, we have introduced

δS =
|Ω0|2
2∆̃

. (3.12)

For δ,Γ′ � ∆c, δS ≈ |Ω0|2/(2∆c) is the total AC Stark shift induced by the classical
drives on the state |c〉. We will focus on the case when |δ| � |δS|. For |δ| & |δS|, the
frequency is outside the scale of the strongest effect induced by the classical drives.
Therefore, the dispersion relations for the different schemes all cross over to the disper-
sion relation corresponding to a two-level atom, as can be seen in figure 3.2.

Solving equations (3.11), we find

σ±ab = −g
√

2π

∆̃

[
δ − δS/2

δ − δS
Eσ±e∓ik0z +

δS/2

δ − δS
Eσ∓e±ik0z

]
. (3.13)

We insert equations (3.13) into the Fourier transformed versions of equations (3.6) and
remove terms with rapid spatial variation, i.e. terms containing factors eink0z with the
integer n fulfilling |n| > 0. As a consequence, Eσ+,+ and Eσ−,− form a closed set of
equations, separate from Eσ+,− and Eσ−,+. We therefore find(

−i ω
cn0
± 1

n0

∂

∂z

)
Eσ±,± = −iΓ1D

2∆̃

[
δ − δS/2

δ − δS
Eσ±,± +

δS/2

δ − δS
Eσ∓,∓

]
, (3.14a)(

−i ω
cn0
∓ 1

n0

∂

∂z

)
Eσ±,∓ = −iΓ1D

2∆̃

δ − δS/2

δ − δS
Eσ±,∓, (3.14b)

where we have introduced the decay rate Γ1D = 4πg2/c which describes the photon
emission rate into the one-dimensional modes (the sum of right-moving and left-moving)
from the atoms. The total decay rate of an excited atom is then Γ = Γ′ + Γ1D. In
the absence of inhomogeneous broadening, the decay rate Γ1D is related to the resonant
optical depth dopt through dopt = 2NΓ1D/Γ.

Since the Hamiltonian (3.5) is periodic in space with period 2π/k0, we can invoke
Bloch’s theorem and look for solutions to equations (3.14) of the form

Eσ±(z, ω) =
(
Eσ±,+(0, ω)eik0z + Eσ±,−(0, ω)e−ik0z

)
eiqz. (3.15)

In general by Bloch’s theorem, equation (3.15) should have been a product of a periodic
function and the factor eiqz, where q is the Bloch vector. In equation (3.15) we have
effectively written the periodic function as a Fourier series and kept only the ±1 terms,
which were then identified with the components Eσ±,+ and Eσ±,− at z = 0. Remov-
ing higher order modes is justified, since we are interested in the dynamics, for which
|k0| = |ω0/c| � |q|. Effectively, after applying the derivative ∂/∂z in equations (3.14),
the higher order modes will have an energy difference that is multiple of ck0, which
corresponds to a multiple of the optical frequency of the atomic transition.

On the other hand, the frequency ω in equations (3.14) is relative to the carrier
frequency ω0 and is assumed to fulfill |ω/c| � |q|, i.e. within the narrow frequency
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Figure 3.2: Log-log plot of the dispersion relations for the different setups. The upper
solid black curve is for EIT (see equation (3.29)). The lower solid red curve is the
quadratic dispersion relation for the dual-V setup (or the secular approximation for the
Λ-type scheme) given by equation (3.23). The dashed green curves are the dispersion
relations for the truncations of equations (3.33) with increasing number of the Fourier
components of σab and σac. The dispersion relations for small Re[q]/n0 alternate between
linear and quadratic depending on the truncation. The solid blue curve is the analytical
limit of these dispersion relations given by equation (3.48). The lower dashed cyan
curve is for the dual-color scheme with ∆d/Γ = 1. It overlaps the quadratic dual-V
curve, so that the difference is not visible. The common parameters for all the curves
are Γ1D/Γ = 0.1, ∆c/Γ = −90, and Ω0/Γ = 1. The curves are obtained by using a real δ,
calculating complex q and then plotting δ/Γ as a function of Re[q]/n0. The alternative
approach: using real q, calculating complex δ and then plotting Re[δ]/Γ as a function
of q/n0 will produce results that are indistinguishable for this parameter regime (big
∆c/Γ and ∆d/|δS|). For all the dispersion relations we pick the branches such that
Re[q]/n0 > 0.
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range of interest, the stationary light dispersion is the dominant contribution to the
dispersion relation, and the vacuum dispersion relation can be neglected. Therefore, we
remove the terms ω/(cn0) in the following.

The form of equation (3.15) implies that we should insert

Eσ±,±(z, ω) = Eσ±,±(0, ω)eiqz, (3.16)

into equations (3.14a) and

Eσ±,∓(z, ω) = Eσ±,∓(0, ω)eiqz, (3.17)

into equations (3.14b). After removing terms with rapid spatial variation, this gives

± q

n0
Eσ±,± = −Γ1D

2∆̃

[
δ − δS/2

δ − δS
Eσ±,± +

δS/2

δ − δS
Eσ∓,∓

]
, (3.18a)

∓ q

n0
Eσ±,∓ = −Γ1D

2∆̃

δ − δS/2

δ − δS
Eσ±,∓. (3.18b)

The equations above describe coupling between the different electric field modes.
We first solve for the field modes moving in the opposite direction compared to the
classical fields of the same polarization (Eσ±,∓). Due to momentum conservation (or
equivalently the lack of mode matching), these do not couple to any other field modes.
As a consequence, we essentially have two separate Λ-systems. One of them involves
the states |a〉, |b+〉, and |c〉, which are coupled by the fields Eσ+,− and Ω+. The other
one involves the states |a〉, |b−〉, and |c〉, which are coupled by the fields Eσ−,+ and Ω−.
From equations (3.18b) we immediately find the dispersion relations

q

n0
= ±Γ1D

2∆̃

δ − δS/2

δ − δS
. (3.19)

Solving these equations for δ and expanding for small q/n0 gives

δ ≈ δS

2
∓ |Ω0|2

2Γ1D

q

n0
. (3.20)

This is the regular EIT dispersion relation (c.f. equations (3.29) and (3.30) below) only
shifted by the AC Stark shift of the classical drive not participating in the EIT (since it
is only shifted by one of the fields, the shift is δS/2).

The quadratic dispersion relation is obtained from equations (3.18a). Here, the
forward and backward propagation are coupled and can be written in matrix form as(

α1 + q
n0

α2

α2 α1 − q
n0

)(
Eσ+,+

Eσ−,−

)
=

(
0
0

)
(3.21)

with

α1 =

(
Γ1D

2∆̃

)
δ − δS/2

δ − δS
, α2 =

(
Γ1D

2∆̃

)
δS/2

δ − δS
. (3.22)
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In order for equation (3.21) to have non-trivial solutions, the determinant of the matrix
on the left hand side has to be zero. This produces the equation(

q

n0

)2

=

(
Γ1D

2∆̃

)2 δ

δ − δS
, (3.23)

which determines the dispersion relation. Solving equation (3.23) for δ, and expanding
the solution for small q/n0, we get the quadratic dispersion relation

δ ≈ 1

2m

(
q

n0

)2

(3.24)

with the effective mass

m = − Γ2
1D

4(∆c + iΓ′/2)|Ω0|2
. (3.25)

The quadratic dispersion relation (3.24) is the same as for the original stationary light
in hot Λ-type atoms [60, 61] (see below for a discussion of the connection between
cold dual-V and hot Λ-type schemes). We plot the full dispersion relation given by
equation (3.23) in figure 3.2 as the solid red curve.

Having gone through the derivation, we now return to highlight some important
parts, which will be of relevance later. We note that when solving the atomic equations
(equations (3.9)), the full spatial dependence of the field was included, i.e. no attempt
was made to remove fast-varying terms at this level. Such a procedure was only made
after substituting the atomic solutions into the Fourier transforms of the field equa-
tions (3.6). We will show below, that for the cold Λ-type atoms, it is very important, at
which point and how the removal of the fast-varying terms is performed.

3.3.2 Dispersion relations for cold Λ-type atoms

We now turn to the Λ-type scheme shown in figure 3.1(b). The atoms have fewer
energy levels than in the dual-V scheme, but the dynamics in the case of cold atoms is
complicated by presence of higher order Fourier components of the atomic coherence [69–
74]. The dispersion relation for the cold Λ-type scheme, that effectively sums all the
Fourier components to the infinite order, has been found in Ref. [68]. However, the
result in Ref. [68] does not provide much intuition about the underlying physics. Here,
we will do a different derivation that explicitly tracks the different Fourier components
of the atomic coherence. This will illustrate the differences from the dual-V scheme and
lead to the discussion of the “secular approximation” for the Λ-type scheme, which makes
the two schemes equivalent. This derivation will also serve as a connection between the
continuum and discrete models of the Λ-type scheme. In short, the different truncations
of the infinite set of Fourier components that we will discuss in the continuum model can
physically be implemented by positioning the atoms in the discrete model the certain
way (see section 3.4.5). For completeness, we will also do a second derivation of the
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dispersion relation for the Λ-type scheme that is more similar to Ref. [68], but with
more focus on the off-resonant regime (∆c 6= 0, δ 6= 0).

Compared to the dual-V scheme, the Λ-type atoms have only one excited state |b〉,
and there is only one polarization mode for both the quantum and the classical fields.
The quantum field has detuning ∆0 from the |a〉 ↔ |b〉 transition, and the classical drive
has detuning ∆c from the |b〉 ↔ |c〉 transition. The operator for the total quantum field
Ê can be decomposed as Ê = Ê+e

ik0z + Ê−e−ik0z, where Ê± are the spatially slowly-
varying components. The classical drive is given by the sum of the two parts moving in
both directions, Ω(z) = Ω0 cos(k0z) (assuming kc ≈ k0). Similar to the dual-V scheme
and using the definitions above, the Hamiltonian is Ĥ3 = Ĥ3,a + Ĥ3,i + Ĥ3,p (sum of the
atomic, interaction, and photonic parts), where

Ĥ3,a = −~n0

∫ [
∆̃0σ̂bb(z) + δ0σ̂cc(z)

]
dz (3.26a)

Ĥ3,i = −~n0

∫ { [
σ̂bc(z)Ω(z) + H.c.

]
+ g
√

2π
[
σ̂ba(z)Ê(z) + H.c.

]}
dz (3.26b)

Ĥ3,p = −i~c
∫ [
Ê†+(z)

∂ Ê+(z)

∂z
− Ê†−(z)

∂ Ê−(z)

∂z

]
dz. (3.26c)

With this Hamiltonian, the Heisenberg equations of motion for the electric field opera-
tors and the atomic operators are given by(

∂

∂t
± c ∂

∂z

)
E± = ig

√
2πn0σabe

∓ik0z, (3.27)

and

∂σab
∂t

= i∆̃0σab + iΩσac + ig
√

2πE , (3.28a)

∂σac
∂t

= iδ0σac + iΩ∗σab. (3.28b)

If Ω were independent of position (Ω(z) = Ω0), equations (3.28) would describe the
usual EIT system, which can be shown to have the dispersion relation

q

n0
= ±Γ1D

2∆̃

δ

δ − 2δS
, (3.29)

or for small q/n0,

δ ≈ ±2|Ω0|2
Γ1D

q

n0
. (3.30)

We note that for the Λ-type scheme, δS has a different meaning. For EIT with Ω(z) = Ω0,
it is a half of the AC Stark shift induced by the field. For Ω(z) = Ω0 cos(k0z) below, it
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is the average of the AC Stark shift. Also note that the group velocity (factor in front of
q) in equation (3.30) differs by a factor of 4 from the group velocity in equation (3.20).
This difference arises from the fact that the strength of the field participating in the EIT
in that case is given by Ω± = Ω0/2.

We now calculate the dispersion relation for the case when Ω is a standing wave
(Ω(z) = Ω0 cos(k0z)). The Fourier transform in time of equations (3.28) gives

0 = i∆̃σab + iΩσac + ig
√

2πE , (3.31a)

0 = iδσac + iΩ∗σab, (3.31b)

where, as before, we have absorbed the Fourier frequency variable ω into the detunings
by defining ∆̃ = ∆̃0 + ω and δ = δ0 + ω.

By Bloch’s theorem, σab, σac and E need to be periodic functions in space multiplied
by the factor eiqz, with q being the Bloch vector. The periodic parts have the same
periodicity as Ω(z), and we write each one of them as a Fourier series

σab(z, ω) =
∞∑

n=−∞
σ

(n)
ab (ω)eink0zeiqz, (3.32a)

σac(z, ω) =

∞∑
n=−∞

σ(n)
ac (ω)eink0zeiqz, (3.32b)

E(z, ω) =
(
E+(0, ω)eik0z + E−(0, ω)e−ik0z

)
eiqz, (3.32c)

where we have kept only the lowest order terms in the Fourier series for the field, similar
to equation (3.15).

After inserting equations (3.32a) and (3.32b) into equations (3.31) and collecting the
terms with equal exponents of ink0z, we obtain an infinite set of coupled equations

0 = i∆̃σ
(n)
ab + i

Ω0

2

(
σ(n+1)
ac + σ(n−1)

ac

)
+ ig
√

2π
(
E+δn,1 + E−δn,−1

)
, (3.33a)

0 = iδσ(n)
ac + i

Ω∗0
2

(
σ

(n+1)
ab + σ

(n−1)
ab

)
, (3.33b)

where δj,j′ is the Kronecker delta.
From the above equations, we see the crucial difference between the dual-V scheme

and the cold Λ-type scheme. In the dual-V scheme, described in equations (3.10), there
are only two components of the atomic coherence for the excited states (σab±). For the
cold Λ-type atoms, by writing σab as a Fourier series, we have obtained an infinite set
of coupled components. This can be explained by the fact that a dual-V atom in state
|c〉 can transition to state |b+〉 (i.e. be excited) by absorbing a photon of the classical
drive propagating in the positive direction, and can only transition back to state |c〉 (i.e.
be de-excited) by emitting a photon in the same direction. On the other hand, a cold
Λ-type atom in state |c〉 can transition to state |b〉 by a photon of the classical drive
coming from one direction and transition back to state |c〉 by emitting a photon in the



CHAPTER 3. DISPERSION RELATIONS FOR STATIONARY LIGHT 47

opposite direction. This couples a Fourier component σ
(n)
ab with a certain wave number

n to components differing by two wave numbers, i.e. σ
(n±2)
ab (through σ

(n±1)
ac ), and leads

to an infinite set of coupled equations.
To obtain any results from equations (3.33), truncation of the Fourier components of

σab and σac is needed. The smallest non-trivial truncated set of equations involves σ
(±1)
ab

and σ
(0)
ac and can be written

0 = i∆̃σ
(±1)
ab + i

Ω0

2
σ(0)
ac + ig

√
2πE±, (3.34a)

0 = iδσ(0)
ac + i

Ω∗0
2

(
σ

(+1)
ab + σ

(−1)
ab

)
. (3.34b)

This particular truncation is also known as the “secular approximation” in the liter-
ature [67, 70]. If we had approximated Eσ±e∓ik0z ≈ Eσ±,± in equations (3.10) (which
would not have changed the quadratic dispersion relation for the dual-V scheme), then
equations (3.34) would have had exactly the same form as equations (3.10).

The equations for the electric field (3.27), in principle, contain all the Fourier com-

ponents σ
(n)
ab , but, as for the dual-V scheme, we will make the approximation, where we

remove terms with rapid spatial variation. This effectively means that we approximate

σabe
∓ik0z ≈ σ

(±1)
ab eiqz in equations (3.27). Fourier transforming these equations, we end

up with (
−iω ± c ∂

∂z

)
E± = ig

√
2πn0σ

(±1)
ab eiqz. (3.35)

Proceeding as for the dual-V case, equations (3.34) and equations (3.35) together with
the sought form of the Bloch solutions

E±(z, ω) = E±(0, ω)eiqz, (3.36)

which is similar to equations (3.16) and (3.17) for the dual-V scheme, result in the
coupled equations for the fields(

α1 + q
n0

α2

α2 α1 − q
n0

)(
E+

E−

)
=

(
0
0

)
. (3.37)

This is the same as equation (3.21) with the same α1 and α2 (but with different definitions
of the electric fields). Hence, exactly the same quadratic dispersion relation (3.24) is
obtained.

A completely different dispersion relation can be found by considering the next small-

est truncated set of equations. That set additionally involves σ
(±2)
ac , so that the system

of equations is

0 = i∆̃σ
(±1)
ab + i

Ω0

2

(
σ(0)
ac + σ(±2)

ac

)
+ ig
√

2πE±, (3.38a)

0 = iδσ(0)
ac + i

Ω∗0
2

(
σ

(+1)
ab + σ

(−1)
ab

)
, (3.38b)

0 = iδσ(±2)
ac + i

Ω∗0
2
σ

(±1)
ab . (3.38c)
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Following the same procedure as above, we get the dispersion relation(
q

n0

)2

=

(
Γ1D

2∆̃

)2 δ2

(δ − δS/2)(δ − 3δS/2)
, (3.39)

which for small q/n0 can be approximated by

δ ≈ ±
√

3|Ω0|2
2Γ1D

q

n0
. (3.40)

This dispersion relation is linear instead of quadratic. Comparing it with the dispersion
relation for EIT (3.30), we observe that equation (3.40) only differs by a constant factor.

One could continue calculating dispersion relations for even higher order truncations.
As the analytical calculations quickly become complicated, we only do it numerically,
as described in appendix B. The resulting dispersion relations are shown in figure 3.2.

We find that truncations which contain Fourier components up to and including σ
(±n)
ab

with odd n, result in a quadratic dispersion relation for small q/n0. On the other hand,

truncations that contain Fourier components up to and including σ
(±n)
ac with even n,

result in a linear dispersion relation for small q/n0.
It is possible to find the limiting dispersion relation (n → ∞) analytically [68]. To

derive it, we will not use the Fourier series representation in equations (3.32a) and
(3.32b), but instead solve equations (3.31) directly. Isolating σac from equation (3.31b)
and inserting in equation (3.31a) gives

σab(z, ω) = −g
√

2π

∆̃
γ(k0z)E(z, ω), (3.41)

where we have defined the dimensionless position dependent coupling parameter

γ(k0z) =
1

1− (2δS/δ) cos2(k0z)
. (3.42)

We then introduce the Fourier series of γ, i.e.

γ(k0z) =
∞∑

`=−∞
γ(`)e2i`k0z, (3.43)

with

γ(`) =
1

π

∫ π
2

−π
2

γ(k0z)e
−2i`k0z d(k0z) = 3F̃2

[{
1

2
, 1, 1

}
, {1− `, 1 + `}, (2δS/δ)

]
, (3.44)

where pF̃ q is the regularized generalized hypergeometric function. The terms with ` = 0
and ` = ±1 are

γ(0) =
1√

1− (2δS/δ)
, (3.45a)

γ(±1) = −2
√

1− (2δS/δ) + (2δS/δ)− 2

(2δS/δ)
√

1− (2δS/δ)
. (3.45b)
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Inserting equation (3.43) into equation (3.41) we can write

σab = −g
√

2π

∆̃

∞∑
`=−∞

[γ(`)E+ + γ(`+1)E−]ei(2`+1)k0z. (3.46)

In equations (3.35), we only need the terms from equation (3.46) that have the factors
e±ik0z, i.e. the terms corresponding to ` = 0 and ` = −1. Inserting those terms into
equations (3.35) and proceeding as for the previous calculations we get two coupled
equations for the fields as in equations (3.37), but with the different α1 and α2:

α1 =
Γ1D

2∆̃
γ(0), α2 =

Γ1D

2∆̃
γ(±1). (3.47)

Finally, we get the dispersion relation

(
q

n0

)2

=

(
Γ1D

2∆̃

)2

4
(
−1 +

√
1− (2δS/δ)

)2

√
1− (2δS/δ)(2δS/δ)2

 (3.48)

which for small real q/n0 can be approximated by

δ ≈ (−∆c − iΓ′/2)1/3|Ω0|2

Γ
4/3
1D

∣∣∣∣ qn0

∣∣∣∣4/3 , (3.49)

where we have restricted the solution to the branch with Re[δ] having the same sign
as −∆c (∆c 6= 0), and (−∆c − iΓ′/2)1/3 means third root of −∆c − iΓ′/2 such that
Re[(−∆c − iΓ′/2)1/3] has the same sign as −∆c.

We see that for small q/n0, the dispersion relation is neither quadratic, nor linear,
but goes as δ ∝ |q|4/3. The dispersion relation (3.48) is shown by the solid blue curve
in figure 3.2. It is seen to lie in between the curves for the EIT and dual-V results and
is the limiting case as we increase the number of Fourier components for the atomic
coherence.

3.3.3 Dispersion relations for cold dual-color atoms

We now consider the dual-color scheme shown in figure 3.1(c). The dispersion for this
scheme has been originally derived in Ref. [66] under the secular approximation. Using
the secular approximation for this scheme makes the dual-color scheme equivalent to the
dual-V scheme. However, in the analysis below, we want to illustrate the fact that the
dynamics of the dual-color scheme can potentially be much more complex compared to
the dual-V and Λ-type schemes.

The atomic level structure of the dual-color scheme is the same as for the Λ-type
scheme, but the two counter-propagating classical drives are at two different frequencies
instead of only one. The detuning ∆c now has a different meaning—it is relative to
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the mean of the two frequencies. Hence, if ωc± are the frequencies of the two classical
drives, then ∆c = (ωc+ +ωc−)/2−ωbc. We also define the detuning ∆d = |ωc+−ωc−|/2,
which measures how far the two frequencies are separated from each other. With the
modified definition of ∆c, the Hamiltonian is the same as for the Λ-type atom, i.e. it
is given by equations (3.26), but with Ω(z, t) = Ω0 cos(∆dt + kcz). The Heisenberg
equations of motion are also the same as for the Λ-type scheme (equations (3.27) and
equations (3.28)), just with the different definition of Ω(z, t).

Compared to the Λ-type scheme, the dual-color scheme has a time-dependent Hamil-
tonian, but since it is periodic in time, it allows us to use Floquet’s theorem in addition
to Bloch’s theorem [76, 77]. According to the two theorems, σab, σac and E need to be
periodic functions in space and time multiplied by the factor eiqz−iωqt, with q being the
Bloch vector, and ωq being the Floquet quasi-energy divided by ~. The periodic parts
have the same periodicity as Ω(z, t), and we write each one of them as a Fourier series

σab(z, t) =
∞∑

n1=−∞

∞∑
n2=−∞

σ
(n1,n2)
ab ein1k0zein2∆dteiqz−iωqt, (3.50a)

σac(z, t) =

∞∑
n1=−∞

∞∑
n2=−∞

σ(n1,n2)
ac ein1k0zein2∆dteiqz−iωqt, (3.50b)

E(z, t) =
(
E+(0, 0)eik0z+i∆dt + E−(0, 0)e−ik0z−i∆dt

)
eiqz−iωqt, (3.50c)

where we have kept only two terms in the Fourier series for the electric field and removed
all other terms. The justification for removing the terms with e∓ik0z±i∆dt is that we
expect them to only add separate linear dispersion bands, similar to the linear bands for
Eσ±,∓ for the dual-V scheme. Also, we have not included other n∆d terms except the
ones for n = ±1, since the other terms will not contribute to the dynamics for ∆d � |δS|.

Inserting equations (3.50) into equations (3.28), and collecting terms of equal expo-
nents gives

0 = i(∆̃− n∆d)σ
(n)
ab + i

Ω0

2

(
σ(n+1)
ac + σ(n−1)

ac

)
+ ig
√

2π
(
E+δn,1 + E−δn,−1

)
, (3.51a)

0 = i(δ − n∆d)σ(n)
ac + i

Ω∗0
2

(
σ

(n+1)
ab + σ

(n−1)
ab

)
, (3.51b)

where by σ
(n)
ab and σ

(n)
ac we mean σ

(n,n)
ab and σ

(n,n)
ac respectively. The absence of σ

(n1,n2)
ab and

σ
(n1,n2)
ac for n1 6= n2 in this system of equations is a consequence of the classical drive only

coupling the Fourier terms to the ones with both an increased (decreased) wave vector
and increased (decreased) detuning, combined with only considering the lowest order
quantum field components in equation (3.50c). We have absorbed ωq into the detunings
by defining ∆̃ = ∆̃0 + ωq and δ = δ0 + ωq. The only but important difference from
equations (3.33) is that the frequencies of the different Fourier components are shifted
by n∆d in equations (3.51). The result of this difference is that the higher order Fourier
components of the atomic coherence contribute little for ∆d � |δS| and therefore can
be neglected, thus giving the same effect as in the secular approximation. Hence, the
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dispersion relation will be the same as the quadratic dispersion relation of the dual-V
scheme. We verify numerically (see figure 3.2 and appendix B) that this is the case for
∆d/Γ = 1 and |δS|/Γ ≈ 10−2.

The summary of the discussion in section 3.3.2 is that the reason for the difference
in the dispersion relation between dual-V and the cold Λ-type schemes is that the cold
Λ-type scheme allows excitations and de-excitations by the classical fields from different
directions, whereas the dual-V does not due to separation of the different directions into
different polarization modes. For the dual-color scheme, such mismatched excitations
and de-excitations are suppressed by the frequency difference between the right-moving
and left-moving fields.

3.3.4 Dispersion relations for hot Λ-type atoms

Stationary light was first considered for hot Λ-type atoms, where a quadratic dispersion
relation was predicted [60, 61]. For completeness, we will briefly discuss how this result
arises from the results of the dual-color scheme [74]. The main difference between the
cold atoms and the hot atoms is that the latter ones move and hence have an associated
Doppler shift in the transition frequency. In the one-dimensional approximation this
amounts to having the right propagating fields being shifted by ωD, and the left prop-
agating fields being shifted by −ωD, where ωD is the Doppler shift that is determined
by the velocity of the atoms. For each individual velocity class with the same ωD, the
dynamics will be completely equivalent to the dual-color setup, where instead of ∆d we
now have ωD. That is, the system is described by equations (3.27) and equations (3.28)
with Ω(z, t) = Ω0 cos(ωDt + kcz). Hence, for ωD � |δS|, the quadratic dispersion rela-
tion is valid. If the width of the distribution of ωD is much bigger than |δS|, then the
contribution of the velocity classes, where ωD � |δS| is not fulfilled, is small, and the
quadratic dispersion relation (3.24) should be true for the ensemble as a whole.

In the original derivations of stationary light [60, 61] the dispersion relation was
obtained by arguing that the thermal motion of the atoms washes out any spatial co-
herences with Fourier components |n| ≥ 2. This argument is essentially equivalent to
the Doppler shift argument above, except that it is formulated in time rather than fre-
quency. As originally noted in Ref. [67] the level structure of the dual-V scheme does
not allow these higher order Fourier components. Hence, the dispersion relation (3.24)
originally derived for hot Λ-type atoms also applies for the dual-V system regardless of
the temperature.

3.4 Discrete model

3.4.1 Scattering matrix for Λ-type atoms

To support some of the conclusions reached above and to provide additional possibilities
for how the dispersion relation can be controlled, we will now consider a model where
we account for the individual atoms instead of using the continuum model. The discrete
model will use the (multi-mode) transfer matrix formalism, which we will discuss in detail
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below. In this and the following sections we will first derive the scattering coefficients for
the Λ-type and dual-V atoms respectively, which is the necessary first step in applying
the transfer matrix formalism.

The derivation of the scattering matrix (i.e. the reflection and transmission coeffi-
cients) for a Λ-type atom (see figure 3.1(b)) is based on Ref. [65]. The electric field is
given by the operator

Ê(z) = Ê+(z)eik0(z−zj) + Ê−(z)e−ik0(z−zj). (3.52)

Compared to the continuum model, we have shifted the spatial phases such that they
vanish at the position of the atom zj (j is the index of the atom). The effects of the
propagation phases will be accounted for separately by the transfer matrices of free
propagation.

The Hamiltonian (3.26), which we have used for the continuum model, can also be
used to describe a single Λ-type atom, since the discrete nature of the atoms is still
present due to the definition of the atomic operators given by equation (3.1). Because of
considering only a single atom, equation (3.1) becomes σ̂αβ(z) = 1

n0
δ(z − zj)σ̂αβ,j , and

inserting this into equations (3.26) results in

Ĥ3,a = −~
[
∆̃0σ̂bb,j + δ0σ̂cc,j

]
, (3.53a)

Ĥ3,i = −~
[
σ̂bc,jΩ(zj) + H.c.

]
− ~g

√
2π
[
σ̂ba,j Ê(zj) + H.c.

]
, (3.53b)

Ĥ3,p = −i~c
∫ [
Ê†+(z)

∂ Ê+(z)

∂z
− Ê†−(z)

∂ Ê−(z)

∂z

]
dz. (3.53c)

From the Hamiltonian, we get the Heisenberg equations for the atom

∂σab,j
∂t

= i∆̃0σab,j + iΩ(zj)σac,j + ig
√

2πE(zj , t), (3.54a)

∂σac,j
∂t

= iδ0σac,j + iΩ∗(zj)σab,j . (3.54b)

These equations are similar to equations (3.28), except that here we do not make the
continuum approximation.

For the electric field we have the equations(
∂

∂t
± c ∂

∂z

)
E±(z, t) = ig

√
2πδ(z − zj)σab,j , (3.55)

which are exactly the same as equations (3.27) due the definition (3.1). In this form,
however, we can formally solve them [21], so that we obtain

E±(z, t) = E±,in(z ∓ ct) +
ig
√

2π

c
θ
(
±(z − zj)

)
σab,j

(
t∓ z − zj

c

)
, (3.56)

where E±,in(z ± ct) are the input fields, and θ is the Heaviside theta function.
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Since the scattering problem is symmetric, and since the equations are linear, we can
gain full information about the scattering by setting E+,in(z−ct) = 1 and E−,in(z+ct) = 0
in equations (3.56). Then we find the total electric field (3.52) to be

E(zj , t) = 1 +
ig
√

2π

c
σab,j (t) (3.57)

Upon inserting this expression into (3.54a), we obtain

∂σab,j
∂t

= i

(
∆̃0 + i

Γ1D

2

)
σab,j + iΩ(zj)σac,j + ig

√
2π. (3.58)

After Fourier transforming equations (3.56) we get the reflection and transmission coef-
ficients

rj = E−(z−j , ω) =
ig
√

2π

c
σab,j(ω), (3.59a)

tj = E+(z+
j , ω) = 1 + rj , (3.59b)

where z+
j = zj + ε and z−j = zj − ε in the limit ε→ 0. This limit expresses the fact that

the atoms are assumed to be point scatterers with no spatial extent.
We also Fourier transform equation (3.54b) and equation (3.58) and get

0 = i

(
∆̃ + i

Γ1D

2

)
σab,j + iΩ(zj)σac,j + ig

√
2π, (3.60a)

0 = iδσac,j + iΩ∗(zj)σab,j , (3.60b)

where, as before, we have absorbed the Fourier frequency variable ω into the detunings
by defining ∆̃ = ∆̃0 + ω and δ = δ0 + ω.

Now we solve equations (3.59) and (3.60) and find

rj = − i(Γ1D/2)δ

(∆̃ + iΓ1D/2)δ − |Ω(zj)|2
, (3.61a)

tj =
∆̃δ − |Ω(zj)|2

(∆̃ + iΓ1D/2)δ − |Ω(zj)|2
. (3.61b)

Below, transfer matrices will be written in terms a single parameter βj , which in this
case is

βj = −rj
tj

=
i(Γ1D/2)δ

∆̃δ − |Ω(zj)|2
. (3.62)

3.4.2 Scattering matrix for the dual-V atoms.

The derivation of the scattering matrix for the dual-V atoms proceeds in a similar manner
as the derivation for the Λ-type atoms in section 3.4.1. Similar to equation (3.52) we
define the electric field operators

Êσ±(z) = Êσ±,+(z)eik0(z−zj) + Êσ±,−(z)e−ik0(z−zj). (3.63)
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The Hamiltonian for a single dual-V atom interacting with light is given by equa-
tions (3.5) with the atomic operators σ̂αβ(z) = 1

n0
δ(z − zj)σ̂αβ,j (special case of the

definition (3.1)). Therefore, equations (3.5) can be written

ĤV,a = −~

 ∑
α∈{+,−}

∆̃
(α)
0 σ̂bαbα,j + δ0σ̂cc,j

 , (3.64a)

ĤV,i = −~
∑

α∈{+,−}

{[
σ̂bαc,jΩαe

αikczj + H.c.
]

+ g
√

2π
[
σ̂bαa,j Êσα(zj) + H.c.

]}
, (3.64b)

ĤV,p = −i~c
∫ ∑

α∈{+,−}

[
Ê†σα,+(z)

∂ Êσα,+(z)

∂z
− Ê†σα,−(z)

∂ Êσα,−(z)

∂z

]
dz. (3.64c)

From the Hamiltonian, the equations for the atom are

∂σab±,j

∂t
= i∆̃

(±)
0 σab±,j + iΩ±σac,je

±ikczj + ig
√

2πEσ±(zj , t), (3.65a)

∂σac,j
∂t

= iδ0σac,j + iΩ∗+σab+,je
−ikczj + iΩ∗−σab−,je

ikczj . (3.65b)

The formal solutions to the equations for the field are

Eσ+,±(z, t) = Eσ+,±,in(z ∓ ct) +
ig
√

2π

c
θ
(
±(z − zj)

)
σab+,j

(
t∓ z − zj

c

)
, (3.66a)

Eσ−,±(z, t) = Eσ−,±,in(z ∓ ct) +
ig
√

2π

c
θ
(
±(z − zj)

)
σab−,j

(
t∓ z − zj

c

)
. (3.66b)

Because of the symmetry of the system, we only need to consider two cases: Eσ+,+,in(zj−
ct) = 1 with the rest of the input fields being zero, and Eσ−,+,in(zj − ct) = 1 with the
rest of the input fields being zero.

Starting with the first case (Eσ+,+,in(zj − ct) = 1) and Fourier transforming, equa-
tions (3.65) become

0 = i∆̃
(+)
tot σab+,j + iΩ+σac,je

ikczj + ig
√

2π, (3.67a)

0 = i∆̃
(−)
tot σab−,j + iΩ−σac,je

−ikczj , (3.67b)

0 = iδσac,j + iΩ∗+σab+,je
−ikczj + iΩ∗−σab−,je

ikczj , (3.67c)

with ∆̃
(±)
tot = ∆̃

(±)
0 + i(Γ1D/2) + ω defined for notational convenience, such that we have

now absorbed the total decay rate Γ = Γ′ + Γ1D into ∆̃
(±)
tot ; and δ = δ0 + ω. From

equations (3.66) we have the relations

rj,++ = Eσ+,−(z−j , ω) =
ig
√

2π

c
σab+,j(ω), (3.68a)
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tj,++ = Eσ+,+(z+
j , ω) = 1 + rj,++, (3.68b)

rj,+− = Eσ−,−(z−j , ω) =
ig
√

2π

c
σab−,j(ω), (3.68c)

tj,+− = Eσ−,+(z+
j , ω) = rj,+−. (3.68d)

After solving equations (3.67) and (3.68) (with kc ≈ k0) we get

rj,++ = −
i(Γ1D/2)

(
∆̃

(−)
tot δ − |Ω−|2

)
∆̃

(+)
tot ∆̃

(−)
tot δ − ∆̃

(+)
tot |Ω−|2 − ∆̃

(−)
tot |Ω+|2

, (3.69a)

tj,++ = 1 + rj,++, (3.69b)

rj,+− = tj,+− =
Ω−Ω∗+e

−2ik0zj

∆̃
(−)
tot δ − |Ω−|2

rj,++. (3.69c)

For the second case (Eσ−,+,in(zj − ct) = 1), instead of equations (3.67) we have

0 = i∆̃
(+)
tot σab+,j + iΩ+σac,je

ikczj , (3.70a)

0 = i∆̃
(−)
tot σab−,j + iΩ−σac,je

−ikczj + ig
√

2π, (3.70b)

0 = iδσac,j + iΩ∗+σab+,je
−ikczj + iΩ∗−σab−,je

ikczj . (3.70c)

Instead of equations (3.69) we have

rj,−− = Eσ−,−(z−j , ω) =
ig
√

2π

c
σab−,j(ω), (3.71a)

tj,−− = Eσ−,+(z+
j , ω) = 1 + rj,−−, (3.71b)

rj,−+ = Eσ+,−(z−j , ω) =
ig
√

2π

c
σab+,j(ω), (3.71c)

tj,−+ = Eσ+,+(z+
j , ω) = rj,−+. (3.71d)

After solving equations (3.70) and (3.71) we get

rj,−− = −
i(Γ1D/2)

(
∆̃

(+)
tot δ − |Ω+|2

)
∆̃

(+)
tot ∆̃

(−)
tot δ − ∆̃

(+)
tot |Ω−|2 − ∆̃

(−)
tot |Ω+|2

, (3.72a)

tj,−− = 1 + rj,−−, (3.72b)

rj,−+ = tj,−+ =
Ω+Ω∗−e

2ik0zj

∆̃
(+)
tot δ − |Ω+|2

rj,−−. (3.72c)
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In terms of equations (3.69) and (3.72), the blocks of the scattering matrix in equa-
tion (3.77) with the definition of the fields in equation (3.76) are

Sj,t = Sj,11 = Sj,22 =

(
tj,++ tj,−+

tj,+− tj,−−

)
, (3.73a)

Sj,r = Sj,12 = Sj,21 =

(
rj,++ rj,−+

rj,+− rj,−−

)
. (3.73b)

Using the above expressions for the elements of these matrices, we also see that Sj,t = I + Sj,r
holds (I is a 2× 2 identity matrix). This, in turn, allows to write the transfer matrix in
terms of a single parameter βj = −S−1

j,t Sj,r.
As for the calculations using the continuum model in section 3.3.1, we will also use

ωb+c = ωb−c and Ω+ = Ω− = Ω0/2 in the discrete model. This implies that rj,+− = rj,−+,
and hence that the matrices Sj,kl are symmetric, i.e. Sj,kl = ST

j,kl, where ST
j,kl is the

transpose of Sj,kl . Since the product of commuting symmetric matrices is symmetric,
it also follows that βj is symmetric.

3.4.3 Multi-mode transfer matrix formalism

Now we describe the multi-mode transfer matrix formalism that we use in the discrete
model. The approach is very similar to the transfer matrix theory used in elastostat-
ics [78]. This is a more general version of the single-mode transfer matrix formalism [79]
that is commonly used for calculating electric fields in one-dimensional systems.

In the transfer matrix formalism, the electric field at the position z is represented by
the vector

E(z) =

(
E+(z)
E−(z)

)
. (3.74)

The two parts E±(z) (right-moving and left-moving fields) are, in general, vectors with
nm elements—one for each of nm different modes of the electric field. For the Λ-type
scheme (see figure 3.1(b)), only a single polarization mode of the field is necessary, so
that we have nm = 1, and E±(z) are scalars (omitting the bold script). In terms of the
definitions of the fields for the continuum model we have

E±(z) = E±(z)e±ik0z, (3.75)

i.e. contrary to E±, these fields are not slowly-varying in space. For the dual-V scheme
(see figure 3.1(a)), we have nm = 2 (for the σ+ and σ− polarization modes), and the
vectors are similarly related to the continuum model definitions by

E±(z) =

(
Eσ+,±(z)
Eσ−,±(z)

)
e±ik0z. (3.76)
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When one solves the scattering problem for an atom j with position zj , the result is
the scattering matrix (see sections 3.4.1 and 3.4.2 above). In terms of the right-moving
and left-moving parts of the electric field vector defined by equation (3.74), the relation
is of the form (

E+(z+
j )

E−(z−j )

)
=

(
Sj,11 Sj,12

Sj,21 Sj,22

)(
E+(z−j )

E−(z+
j )

)
, (3.77)

where the blocks Sj,kl are in general nm × nm matrices. The scattering matrix thus
relates output fields on both sides of the scatterer to the inputs.

A transfer matrix for the atom

Ta,j =

(
Ta,j,11 Ta,j,12

Ta,j,21 Ta,j,22

)
(3.78)

is a relation of the form (
E+(z+

j )

E−(z+
j )

)
= Ta,j

(
E+(z−j )

E−(z−j )

)
, (3.79)

i.e. it relates the fields on one side of the atom to the fields on the other side. By
rearranging equation (3.77) into the form of equation (3.79) one can show that

Ta,j,11 = Sj,11 − Sj,12S
−1
j,22Sj,21, (3.80a)

Ta,j,12 = Sj,12S
−1
j,22, (3.80b)

Ta,j,21 = −S−1
j,22Sj,21, (3.80c)

Ta,j,22 = S−1
j,22. (3.80d)

In section 3.4.1 and section 3.4.2 we have shown that the blocks of the scattering matrix
for the Λ-type and dual-V atoms fulfill

Sj,11 = Sj,22 = Sj,t, (3.81a)

Sj,12 = Sj,21 = Sj,r, (3.81b)

where the matrices Sj,r and Sj,t are related by

Sj,t = I + Sj,r, (3.82)

with I being the nm×nm identity matrix. From equation (3.82) we see that the matrices
Sj,r and Sj,t commute. By writing

Sj,rSj,t = Sj,tSj,r (3.83)

and multiplying both sides by S−1
j,t from right and left, we get

S−1
j,t Sj,r = Sj,rS

−1
j,t , (3.84)
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which implies that Sj,r and S−1
j,t commute. This allows us to write equations (3.80) in

terms of a single matrix

βj = −S−1
j,t Sj,r. (3.85)

We obtain

Ta,j,11 = Sj,t − S−1
j,t S

2
j,r = I − βj , (3.86a)

Ta,j,12 = S−1
j,t Sj,r = −βj , (3.86b)

Ta,j,21 = −S−1
j,t Sj,r = βj , (3.86c)

Ta,j,22 = S−1
j,t = I + βj . (3.86d)

For the Λ-type atoms and dual-V atoms with Ω+ = Ω− and ωb+c = ωb−c, βj is a
symmetric matrix or a scalar (see sections 3.4.1 and 3.4.2). Using this fact we also see
that the transfer matrix Ta,j is symplectic. This means that if we define a matrix

J =

(
0 I
−I 0

)
, (3.87)

where zeros mean nm × nm matrices with all elements equal to zero, then it holds that

TT
a,jJTa,j = J. (3.88)

This can be seen from the fact that if βj is symmetric, then so is I ± βj , and equa-
tion (3.88) can be shown by writing out the left hand side using equations (3.86).

Free propagation of the electric field with the wave vector k0 for a distance d has the
transfer matrix

Tf =

(
eik0dI 0

0 e−ik0dI

)
. (3.89)

The free propagation matrix Tf,j between atoms j and j + 1 at positions zj and zj+1

fulfills E(z−j+1) = Tf,jE(z+
j ) and is given by equation (3.89) with d = zj+1 − zj . For the

last transfer matrix Tf,N , we define E(z−N+1) = E(L), where N is the total number of
atoms, and L is the total length of the ensemble.

The free propagation transfer matrices Tf,j are always symplectic. Therefore, the
transfer matrix of a unit cell (or the whole ensemble), which is a product of the matrices
Ta,j and Tf,j , is symplectic if Ta,j is symplectic for all j. This can be seen by considering
a product of two symplectic transfer matrices, T1 and T2. It holds that

(T1T2)TJ(T1T2) = TT
2 T

T
1 JT1T2 = TT

2 JT2 = J, (3.90)

hence the matrix T1T2 is symplectic.
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The transfer matrix of the whole ensemble is the product of the transfer matrices of
each atom in the ensemble and the free propagation between them. We will consider
two types of placement of the atoms: periodic with respect to the classical drives and
completely random. The former will allow us to tailor the properties of the stationary
light, and the latter is used to reproduce the results of the continuum model investigated
above. If the arrangement of the atoms is periodic, then studying the repeated unit cell
is sufficient to obtain full information about the system. If the arrangement of the atoms
is random, then we need to do statistical averaging over placement of the atoms inside
a single period of the classical drives.

For the random placement of the atoms, the starting point is the observation (shown
in sections 3.4.1 and 3.4.2) that the scattering matrix for both the Λ-type and dual-V
atoms with applied counter-propagating classical drives is invariant under shift of the
atomic position by π/k0 (assuming kc ≈ k0) and not 2π/k0, which is the periodicity of
each of the classical drives. For the Λ-type atoms, this is due to the fact that the two
classical drives form a standing wave, which has half the period of the individual running
waves. For the dual-V atoms, it is also true, even though there is no obvious standing
wave pattern due to the two classical drives.

Having identified π/k0 as the period of the effective potential due to the two classical
drives, we can now explain the statistical averaging procedure. The basic idea is to take
an integer number of periods as the length Lu of the unit cell and randomly place Nu

atoms within this unit cell with a uniform distribution. Then this unit cell is used to find
the dispersion relation in the same way as the unit cells for the periodic placement of the
atoms (with one technical difference as discussed below). To obtain a better statistical
averaging, we increase the number of periods in Lu, while simultaneously increasing the
number of atoms Nu, such that the density n0 = Nu/Lu is held fixed.

In the transfer matrix theory, Bloch’s theorem is a statement about the eigenvalues
and eigenvectors of the transfer matrix for the unit cell Tcell. Assuming that the unit
cell has length Lu and starts at z = 0, we have the relation(

E+(L+
u )

E−(L+
u )

)
= Tcell

(
E+(0−)
E−(0−)

)
. (3.91)

If Eλ is an eigenvector of Tcell with the eigenvalue λ, then Eλ is the periodic part of
the Bloch wave (that spatially varies in discrete steps by successively applying transfer
matrices whose product is equal to Tcell), and the eigenvalue λ is related to the Bloch
vector. One natural relation is

λ = exp(iq̃Lu) , (3.92)

where we denote the Bloch vector with q̃ to make it distinct from the Bloch vector q that
we used in the continuum model. The difference is entirely due to defining the electric
fields either slowly varying in space (continuum model) or not (discrete model).

For consistency with the continuum model, we will also use a slightly modified re-
lation. Since the elements of the electric field vectors (equations (3.75) and (3.76)) are
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defined not to be slowly varying in space, the length of the unit cell Lu = nuπ/k0 with
integer nu results in free propagation factors e±ik0Lu = (−1)nu being multiplied onto the
vectors. Therefore, we take the relation between the eigenvalue and the Bloch vector to
be

λ = (−1)nu exp(iqLu) . (3.93)

which is equivalent to a constant shift of q compared to q̃.
As discussed above, for the Λ-type atoms and dual-V atoms with Ω+ = Ω− and

ωb+c = ωb−c, Tcell is symplectic. Using the eigenvalue relation

TcellEλ = λEλ. (3.94)

and the symplectic property TT
cellJTcell = J we have

TT
cell(JEλ) = TT

cellJTcell(1/λ)Eλ = (1/λ)(JEλ). (3.95)

Therefore, JEλ is an eigenvector of TT
cell with the eigenvalue 1/λ. Since Tcell and TT

cell

have the same set of eigenvalues, 1/λ is also an eigenvalue of Tcell. Hence, if q is a Bloch
vector, then −q is also a Bloch vector.

Inverting equation (3.93), we can find the Bloch vector from the eigenvalue through

q

n0
= − i

Nu
Log

(
(−1)nuλ

)
, (3.96)

where Log is the complex logarithm.
When using equation (3.96) to determine the Bloch vector, care is required in se-

lecting the right branch of the complex logarithm, when q is calculated as a function of
δ. If the principal branch of the complex logarithm is always used, then Im[Log(λ)] is
constrained to the interval (−π, π], so that equation (3.96) will result in Re[q]/n0 being
constrained to the interval (−π/Nu, π/Nu]. As we let Nu go to infinity to obtain good
statistical averaging, this interval becomes arbitrarily small. In practice, this means that
as δ is increased, and if Re[q]/n0 increases and reaches π/Nu, all the subsequent values
of Re[q]/n0 will be shifted by −2π/Nu. In the numerical evaluation of the dispersion
relations with statistical averaging we thus need to undo these shifts, which is equivalent
to selecting different branches of the complex logarithm.

3.4.4 Dispersion relations for cold dual-V atoms

We first use the transfer matrix formalism to find the dispersion relations for ensembles
of randomly and regularly placed dual-V atoms. In figure 3.3 we plot the dispersion
relations for the randomly placed atoms. The dashed yellow curve is the linear dispersion
relation and the dashed green curve is the quadratic dispersion relation. They have an
excellent agreement with the analytical solutions given by equations (3.19) and (3.23),
which are shown by the solid cyan and red curves respectively. The curves showing the
linear dispersion relation for the dual-V scheme have a non-zero Re[q] for δ = 0 (see
equation (3.19)), and hence look vertical for small δ/Γ on the log-log plot.
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Figure 3.3: Log-log plot of the dispersion relations calculated analytically with the
continuum model and numerically with the discrete model for randomly placed atoms.
The solid black (upper), red (lower) and blue (in between) curves are as in figure 3.2
and are shown for reference. The middle dashed magenta curve is for Λ-type scheme
computed numerically with the discrete model. It overlaps with the solid blue curve (the
same dispersion relation computed analytically), so that the difference is not visible. The
lower dashed green curve is the quadratic dispersion relation for the dual-V scheme found
numerically with the discrete model. The solid cyan and dashed yellow curves that are
almost vertical for small δ/Γ show the linear dispersion relation for the dual-V scheme.
The solid cyan curve is the analytical result given by equation (3.19), while the dashed
yellow curve is computed numerically with the discrete model. Both the numerical curves
for the two dispersion relations for the dual-V scheme (linear and quadratic) overlap with
the respective analytical solutions, so that the difference in not visible. The common
parameters are: Γ1D/Γ = 0.1, ∆c/Γ = −90, Ω0/Γ = 1, k0/n0 = π/2 and Nu = 104 (i.e.
Lu = (104/2)π/k0).
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If the dual-V atoms are placed regularly, the only noticeable difference we have
found between the continuum and discrete theory is when the atoms in the discrete
model are spaced with either d = π/k0 or d = π/(2k0). The former is equivalent to the
atomic mirror [21], and since we neglect the vacuum dispersion relation, for d = π/k0

we find the constant Bloch vector q independent of δ. The latter, d = π/(2k0), changes
the linear dispersion relation (3.19). The reason for this is that in the derivation of
equation (3.19), we have neglected the terms with e±2ik0z and e±4ik0z. For discrete
positions z = jd = jπ/(2k0) (j is an integer), these factors are e±2ik0z = e±iπj and
e±4ik0z = 1. We see that for discrete atoms with spacing d = π/(2k0), the factors
e±4ik0z = 1 should not be neglected, since they are constant and not rapidly varying.
With this correction, equations (3.18b) become

∓ q

n0
Eσ±,∓ = −Γ1D

2∆̃

[
δ − δS/2

δ − δS
Eσ±,∓ +

δS/2

δ − δS
Eσ∓,±

]
, (3.97)

which makes them of exactly the same coupled form as equations (3.18a) and therefore
results in the same quadratic dispersion relation (3.23) instead of a linear one. This
behavior is reproduced by the numerical calculations with the discrete model.

3.4.5 Dispersion relations for cold Λ-type atoms

As for the dual-V atoms above, we can calculate the dispersion relation of an ensemble
with randomly placed Λ-type atoms. As shown in figure 3.3, the dispersion relation
obtained in this way (dashed magenta) matches the one that was found analytically for
the continuum model (solid blue).

For the regularly placed Λ-type atoms, we can also obtain dispersion relations, which
are different from the predictions of the continuum model. To this end we consider the
ensembles shown in figure 3.4. The atoms are spaced with a distance d = π/(Nuk0),
where we only take even Nu for simplicity. (As explained above, adding integer multiples
of π/k0 to d does not change the results.) A unit cell consists of Nu − 1 atoms, which
experience a non-zero classical drive, and one atom, which is placed such that the classical
drive is zero, i.e. on the node of the standing wave of the classical drive. For such a
setup, we show in appendix C that the dispersion relation for two-photon detunings
fulfilling

δ � 2|δS| cos2

(
π

2
− π

Nu

)
≈ 2|δS|

(
π

Nu

)2

(3.98)

(i.e. if frequency is within the smallest EIT window of the atoms that are not placed on
the node) is given by

δ ≈ 1

2m

(
q

n0

)2

, (3.99)

where n0 = 1/d, and

m = − (Nu − 1)Γ2
1D

2N2
u(∆c + iΓ′/2)|Ω0|2

(3.100)
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Figure 3.4: Placement of atoms for periodic ensembles. At the top, the standing wave
of the classical drive is plotted. In the table below, the crosses indicate the positions of
the atoms in the standing wave of the classical drive for different values of the number
of atoms per unit cell Nu. The thick crosses are the atoms in the chosen unit cell, and
the thin crosses are the other atoms in the ensemble. The particular choice of the unit
cell (gray) is such that the atoms with the non-zero classical drive are taken first (when
propagating from the left), and the last atom is placed on the node of the classical drive
(at k0z = π/2) which effectively makes it a two-level atom.
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is the effective mass. Note that the quadratic dispersion relation in equation (3.99) is
of the same form as equation (3.24), but with the effective mass in equation (3.100)
differing by a factor 2(Nu − 1)/N2

u from the one in equation (3.25).
The above quadratic dispersion relation is obtained by placing the atoms such that

one of them coincides exactly with the node of the standing wave of the classical drive.
The dispersion relation can be completely changed, however, by shifting the position of
the atoms relative to the drive. This can be achieved if the classical drive is given by
Ω(z) = Ω0 cos(k0z +ϕ) (with the situation above corresponding to ϕ = 0). By choosing
ϕ = k0d/2 = π/(2Nu), the node of the standing wave is placed exactly in the middle of
the free-space separation between two atoms.

We show the numerically calculated dispersion relation for ϕ = 0 and ϕ = k0d/2 in
figure 3.5. For ϕ = 0 (dashed green curves), the dispersion relation becomes quadratic
for small Re[q]/n0 as given by equation (3.99). The range of validity of the quadratic
approximation becomes smaller for increasing Nu, as predicted by the condition in equa-
tion (3.98). For ϕ = k0d/2 (dash-dotted magenta curves), the dispersion relation be-
comes linear (parallel to the EIT dispersion relation) instead of quadratic for small
Re[q]/n0. As Nu increases, both for ϕ = 0 and ϕ = k0d/2, the dispersion relation ap-
proaches the one for an ensemble of cold randomly placed Λ-type atoms (solid blue).
The two choices of the phase, ϕ = 0 and ϕ = k0d/2, are thus similar to respectively the
odd and even n truncations in figure 3.2. In essence, having a finite number of atoms
per unit cell gives a truncation because a finite number of atoms can only support a
finite number of Fourier components of σab and σac.

The two situations, ϕ = 0 and ϕ = k0d/2, considered in figure 3.5, represent the
two extreme cases with the node of the classical drive either coinciding with an atom or
being placed as far away from the atoms as possible. In between these extremes there
is a whole continuum of possibilities. In general, if no atoms are placed at the nodes,
all atoms will have a finite EIT window and hence the dispersion relation will be linear
for sufficiently small δ. This also implies that with a finite number of randomly placed
stationary Λ-type atoms, it is impossible to realize a δ ∝ |q|4/3 dispersion in the limit
δ → 0, as there is formally zero probability for the point-like atoms to sit exactly at the
nodes, and hence the dispersion relation will eventually cross over to the linear one.

3.5 Scattering properties

3.5.1 Methods

A different way to compare the ensembles with regularly and randomly placed Λ-type
atoms is to look at the scattering properties (transmission and reflection coefficients)
of the whole ensemble. Contrary to the dispersion relation, which, in principle, is only
valid for an infinite ensemble, the total number of atoms does matter for the scattering
properties. If the number of the atoms is sufficiently large, the dispersion relation is
still reflected in the behavior of the transmission and reflection coefficients. Hence, the
scattering properties can also be used to characterize the dispersion relation.
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Figure 3.5: Log-log plot of the dispersion relations for Λ-type atoms with different
placement of the atoms within the unit cell. The solid black (upper), red (lower) and
blue (in between) curves are as in figure 3.2 and are shown for reference. The dashed
green curves are for ensembles with regularly placed atoms (see figure 3.4) for the period
lengths Nu = 2, 4, 8, 16, 32. The dash-dotted magenta curves are for the same setups,
but with a shifted standing wave of the classical drive: Ω(z) = Ω0 cos(k0z + ϕ) with
ϕ = π/(2Nu). The common parameters are: Γ1D/Γ = 0.1, ∆c/Γ = −90, Ω0/Γ = 1. The
density of the atoms n0 is related to the spacing between the atoms d by n0 = 1/d. The
distance d depends on the desired period length and is given by d = π/(Nuk0) (plus any
integer multiple of π/k0).
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Below, the transmission coefficients t and reflection coefficients r will be obtained
numerically by multiplying the transfer matrices for the atoms and free propagation
to obtain the transfer matrix for the whole ensemble Te and afterwards extracting the
scattering coefficients from Te. Assuming that the ensemble has length L and starts at
z = 0, we have the relation(

E+(L+)
E−(L+)

)
=

(
Te,11 Te,12

Te,21 Te,22

)(
E+(0−)
E−(0−)

)
. (3.101)

For concreteness, we assume a two-mode transfer matrix as is relevant for the dual-V
scheme. Hence, the vectors E± have two elements. We adopt the convention that the
first element is a σ+ component, and the second element is the σ− component of the
field (the same definition as in equation (3.76)). As an example, consider a scattering
problem with the incoming fields

E+(0−) =

(
1
0

)
, E−(L+) =

(
0
0

)
, (3.102)

i.e. there is only a σ+ input field from the left. We want to find the outgoing fields:
E+(L+) (the transmitted field) and E−(0−) (the reflected field).

After insertion of equations (3.102) into equation (3.101) we find

E−(0−) = −T−1
e,22Te,12E+(0−), (3.103a)

E+(L+) = (Te,11 − Te,12T
−1
e,22Te,21)E+(0−). (3.103b)

For the single-mode transfer matrices, Te,kl are scalars. Furthermore, from equations
(3.86) and (3.89) we see that the transfer matrices for atoms and free propagation have
determinants equal to unity. Using the fact that det(T1T2) = det(T1) det(T2) for any
two square matrices T1 and T2, we have Te,11Te,22 − Te,12Te,21 = det(Te) = 1. This leads
to a simplification of equations (3.103), so that they become

E−(0−) = −(Te,12/Te,22)E+(0−), (3.104a)

E+(L+) = (1/Te,22)E+(0−). (3.104b)

For regularly placed discrete atoms and the continuum model, one can derive closed-
form expressions for the Te. The assumption is that the ensemble either consists of ne

copies of the same unit cell with the transfer matrix

Tcell =

(
T11 T12

T21 T22

)
(3.105)

in the discrete case, or is governed by the equations of the form

∂

∂z

(
E+

E−

)
= in0

(
−α1 −α2

α2 α1

)(
E+

E−

)
(3.106)
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in the continuum case. For the continuum case, we note that equations (3.14a) for the
dual-V scheme and the equivalent equations for the Λ-type scheme can be written in the
form above (neglecting the vacuum dispersion relation) with α1 and α2 being given by
either equations (3.22) or equations (3.47), depending on the scheme.

The starting point of the derivation is diagonalizing either the transfer matrix in
equation (3.105) or the matrix in equation (3.106). This gives(

T11 T12

T21 T22

)
= VcellDcellV

−1
cell , (3.107)(

−α1 −α2

α2 α1

)
= VαDαV

−1
α , (3.108)

where the diagonal matrix Dcell has elements (eigenvalues) exp(±iq̃Lu), and the diagonal
matrix Dα has elements ±q/n0. Here we use the relation (3.92) between the Bloch vector
and the elements of Dcell for brevity. The eigenvector matrices are

Vcell =

(
1 1

(eiq̃Lu − T11)/T12 (e−iq̃Lu − T11)/T12

)
, (3.109)

Vα =

(
1 1

−(q/n0 + α1)/α2 −(−q/n0 + α1)/α2

)
. (3.110)

In the discrete case, the transfer matrix for the whole ensemble is Te = Tne
cell, where

ne = L/Lu is an integer. This expression can be written as

Te = VcellD
ne
cellV

−1
cell

= Vcell

(
cos(q̃L)I + i sin(q̃L)σz

)
V −1

cell

= cos(q̃L)I + i sin(q̃L)VcellσzV
−1

cell ,

(3.111)

where I is the identity matrix and

σz =

(
1 0
0 −1

)
. (3.112)

By doing the matrix multiplications and using 2 cos(q̃Lu) = tr(Tcell) = T11 + T12 and
det(Tcell) = 1, we find

VcellσzV
−1

cell =
1

sin(q̃Lu)

(
i
2(T22 − T11) −iT12

−iT21 − i
2(T22 − T11)

)
. (3.113)

In the continuum case, the transfer matrix for the whole ensemble is

Te = exp

in0

(
−α1 −α2

α2 α1

)
L


= cos(qL)I + i sin(qL)VασzV

−1
α ,

(3.114)
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where (using α2
1 − (q/n0)2 − α2

2 = 0)

VασzV
−1
α =

1

q/n0

(
−α1 −α2

α2 α1

)
. (3.115)

3.5.2 Results

In figures 3.6 and 3.7(a), we plot transmittance |t|2 and reflectance |r|2 for ensembles with
regular (Nu = 2) and random (average of 100 ensemble realizations) placement of Λ-type
atoms. As discussed above, the latter case can also be calculated using the continuum
model. The main visible difference between the discrete model with random placement
and the continuum model is that the former has noise in the region −0.01 . δ/Γ ≤ 0
due to finite number of ensemble realizations. In figure 3.7(a) we additionally show
the reflection coefficient for randomly placed dual-V atoms (single ensemble realization)
with σ+ input incident from the left and finding the left-moving σ− field to the left
of the ensemble (such that the quadratic dispersion relation is valid). The reflection
coefficient of the dual-V scheme overlaps completely with the reflection coefficient of the
regularly placed Λ-type scheme, because we have increased the classical drive strength
Ω0 of the dual-V scheme by a factor of

√
2 to make the masses in equation (3.25) and

equation (3.100) equal.
The plots and the chosen parameters are similar to the ones in Ref. [22]. As opposed

to Ref. [22], however, we do not make the secular approximation for the Λ-type scheme,
and this leads to very different results, which depend on how the atoms are placed (and
whether we use the dual-V scheme instead). For the regularly placed Λ-type atoms, we
see a clear signature of a photonic band gap in the region −0.01 . δ/Γ ≤ 0, where there
is a near unit reflectance and negligible transmittance. For the randomly placed Λ-type
atoms, the situation is more complex with a similar negligible transmittance but a rather
limited reflectance. For δ > 0, the position of the resonances with low reflection and high
transmission corresponds to the condition sin

(
Re[q]L

)
= 0, i.e. there is a standing wave

of the Bloch vectors inside the ensemble. Specifically, the high transmission resonance
occurs each time Re[q]/n0 crosses a multiple of π/N , as can be seen in figure 3.7(b).
This behavior can also be seen from the closed-form expressions in section 3.5.1. Due to
non-zero incoherent decay rate Γ′, the sum |t|2 + |r|2 is in general not equal to unity.

As we have shown above, the regularly and randomly placed Λ-type atoms have
very different dispersion relations, and this translates into very different positions of
the high transmission resonances in figures 3.6 and 3.7(a). For the randomly placed
Λ-type scheme, there additionally occurs a high transmission resonance at δ = 0, since
no atoms are placed exactly at the node of the standing wave of the classical drive, and
hence all the atoms are transmissive due to EIT. For the regularly placed setup with
Nu = 2, half of the atoms are placed on the nodes and therefore behave as effective
two-level atoms. For δ = 0, the other half of the atoms becomes transparent, and the
whole ensemble is exactly equivalent to the atomic mirror [21]. For the dual-V atoms,
as shown in section 3.4.2 the reflection coefficients of a single atom do not become zero
for δ = 0, regardless of how the individual atoms are placed.



CHAPTER 3. DISPERSION RELATIONS FOR STATIONARY LIGHT 69

−0.02 −0.01 0.00 0.01

δ/Γ

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.6: Plot of transmittance |t|2 and reflectance |r|2 of ensembles with N = 4 · 104

atoms. The dotted magenta and solid blue curves are respectively the transmittance
and reflectance of an ensemble with regularly placed Λ-type atoms and Nu = 2 (with
the placement shown in figure 3.4). The dash-dotted cyan and dashed green curves
are respectively the transmittance and reflectance of an ensemble with randomly placed
Λ-type atoms and is averaged over 100 ensemble realizations. The other parameters are:
Γ1D/Γ = 0.1, ∆c/Γ = −90, Ω0/Γ = 1, k0/n0 = π/2. The interval around δ = 0 is shown
in more detail in figure 3.7(a).
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Figure 3.7: (a) Same as figure 3.6, but zoomed in around δ = 0. Additionally, the
reflectance for an ensemble with randomly placed dual-V atoms is plotted (dashed red),
and it completely overlaps the reflectance for the regularly placed Λ-type scheme. The
dual-V scheme has the same parameters except that Ω0 is multiplied by

√
2 to make the

dispersion relation equal to the one of the regularly placed Λ-type scheme. (b) Dispersion
relations for Λ-type scheme: regularly placed (solid blue) and randomly placed (dashed
green). The dispersion relation was calculated numerically with the transfer matrix
formalism for the regularly placed ensemble, and using equation (3.48) for the randomly
placed ensemble. The two horizontal dotted lines at Re[q]/n0 = π/N and Re[q]/n0 =
2π/N , give the condition for the first and the second high transmission resonance. At
each intersection (for δ > 0) of these horizontal lines with the dispersion relation curves,
vertical dotted lines are drawn, which can be seen to coincide with the high transmission
resonances in (a).



Chapter 4

Controlled-phase gate

4.1 Acknowledgements

This chapter is based on the material in Ref. [5]. The application of the proposed
controlled-phase gate to quantum repeaters was done by Johannes Borregaard. Experi-
mental parameters of Ref. [3] are used in the discussion.

4.1.1 Introduction

In this chapter, we build upon the understanding of the linear properties of stationary
light in chapter 3 to make a controlled-phase for photons. First, we do a short description
of the gate, omitting some technical details, which can then be found the later sections
of this chapter.

4.2 Short description

4.2.1 Overview

We consider two different level schemes for the atoms in the ensemble: Λ-type and dual-V
(figures 4.1(a) and 4.1(b), respectively). The linear properties of these two schemes are
described in detail in chapter 3. For the Λ-type scheme, we assume that the atoms are
placed at positions zj = jπ/(2k0) with 0 ≤ j ≤ N − 1. (In other words, atoms are
assumed to be placed a quarter of a wavelength λ = 2π/k0 from each other, but any odd
number of quarter wave lengths will produce the same results.) This is the setup from
section (3.4.5) with Nu = 2 and φ = 0, where every other atom is placed on the node
of the standing wave of the classical drive. This setup is chosen since the effective mass
is the biggest, which translates in the lowest possible group velocity. Due to regular
placement of the atoms, this scheme is easier to analyze, and all our analytical results
in this chapter are obtained for this scheme. To produce an optical nonlinearity, the Λ-
type level scheme is extended by two additional levels |d〉 and |e〉, which can separately
function as a two-level atom. This two-level atom is always assumed to be resonant with
the incident single photon (probe field).

71
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Figure 4.1: (a) Level diagram of a Λ-type atom (levels |a〉, |b〉, and |c〉), which can be
switched to a two-level atom (levels |d〉 and |e〉) by the storage of a photon followed by
a π-pulse. The green dots indicate the initial state of the atoms. (b) Level diagram
of a dual-V atom which can be switched to a V-type atom. (c) A dual-rail Bell-state
measurement setup with the controlled-phase gate (labeled by CPHASE) as a part of it.
An ensemble of atoms is placed inside a Sagnac interferometer, shown as a triangle in
(c) and defined by (d). In the rail corresponding to state |0〉B, a beam splitter is added
with transmission coefficient tb. All the other beam splitters (BS) are 50:50.

As discussed in chapter 3, the dual-V scheme with appropriately chosen combination
of polarization and propagation directions always has a quadratic dispersion relation
regardless of positioning of the atoms. To produce an optical nonlinearity, the dual-V
scheme is extended by three additional states |d〉, |e+〉 and |e−〉, which can function as
a V-type atom. For the dual-V scheme, we only verify numerically that the gate errors
have the same scaling as for the Λ-type scheme.

The coupling of the atoms to the waveguide is characterized by the parameter Γ1D/Γ
(half of the resonant optical depth per atom), where Γ1D is the decay rate from each
of the states |b〉 and |e〉 for the Λ-type scheme into both right-moving and left-moving
guided modes (assumed to be equal), Γ′ is the decay rate into all the other modes, and
Γ = Γ1D + Γ′ is the total decay rate. For the dual-V scheme, Γ1D is the decay rate from
each of the states |b±〉 and |e±〉. In the dual-rail encoding of photonic qubits shown
in figure 4.1(c), two identical atomic ensembles are required, where the upper one only
functions as a memory. Alternatively, the single-rail encoding can also be implemented
with one atomic ensemble [1], but the dual-rail encoding allows heralded operation, which
has better fidelity. Each ensemble is placed inside a Sagnac interferometer (figure 4.1(d)).

The operation of the CP gate is sequential. First, photon A is stored either in the
upper (|0〉A) or the lower (|1〉A) ensemble using electromagnetically induced transparency
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(EIT) [55]. Then photon B is scattered from the lower ensemble under conditions of
stationary light (|1〉B) or passes through a beam splitter with transmission coefficient tb
(|0〉B). The role of this beam splitter will be explained below. The Sagnac interferometer
can be set up such that most of the incident power in each of its two input ports is
reflected back through the same port, regardless of whether the ensemble is reflective or
transmissive [80, 81] (see section 4.4 below). Reflection or transmission of the ensemble
instead controls the phase of the reflected field. The scattering of photon B can be
arranged such that if there is no stored photon in the lower ensemble (photon A is in
the state |0〉A), the atomic ensemble is completely transmissive in the ideal case, and
photon B is reflected from the Sagnac interferometer with no additional phase. If there is
a stored photon (photon A is in state |1〉A), photon B is reflected from the interferometer
with a π phase shift. The latter case performs the desired controlled-phase gate operation
|11〉AB → −|11〉AB, while the rest of the basis states are unchanged. Finally, photon A
is retrieved using EIT.

For the dual-V scheme, it is in principle possible to store the photon such that it
is incident only from one side instead of symmetrically from both sides, as required for
the Λ-type scheme (explained below). If one-sided storage is desired, a different setup
can be used, where the photons are incident on the ensemble directly (without placing
the ensemble inside a Sagnac interferometer). To convert between conditional reflection
or transmission and conditional phase shift, a mirror behind the ensemble can be used.
This setup may require less stabilization of path lengths than a Sagnac interferometer.
The unconditional fidelity in this setup is found to be approximately the same, but the
conditional fidelity has a worse scaling. The latter is because in equations (4.3) and (4.4)
below, the terms linear in (z̃− 1/2) do not cancel as in the symmetric case (also see the
fidelity derivations in section 4.6 below). Therefore, we focus only on two-sided storage
below.

4.2.2 Storage and retrieval

Under EIT storage and retrieval, the incident photon is assumed resonant with the
classical drive (i.e. the two-photon detuning δ is zero), and the classical drive is incident
from one side and is assumed to be resonant with its transition for simplicity (∆c = 0).
Hence, for storage and retrieval, the Λ-type scheme and the dual-V scheme behave in
exactly the same way. After entering the Sagnac interferometer, photon A will be split
into two halves by the 50:50 beam-splitter (see figure 4.1(d)), which upon reaching the
ensemble from the opposite sides will have opposite spatial phase factors eik0z and e−ik0z

and interfere inside the ensemble resulting in a spatially modulated cos(k0z) stored spin
wave. Such storage procedure is necessary for the Λ-type scheme, since the part of the
excitation that is stored on the nodes of the standing wave of the classical drive (that
is applied during scattering of photon B) does not change the scattering properties of
the ensemble. Before the EIT storage, all atoms are initialized in state |a〉, and after
storage, the incident photon is mapped onto an atom being in state |c〉. To produce
an optical nonlinearity, we assume that state |c〉 is subsequently transferred to state |d〉
using a π-pulse.
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Figure 4.2: Reflectances (|r0|2, |r1|2) and transmittances (|t0|2, |t1|2) of an ensemble of
Λ-type atoms without (|r0|2, |t0|2) and with (|r1|2, |t1|2) a stored photon for different
frequencies (two-photon detunings) δ in units of the total linewidth Γ. The vertical
dotted line marks the operation point. The parameters are: number of atoms N = 1000,
Γ1D/Γ = 0.5, ∆c/Γ = −16, and Ω0/Γ = 10.

4.2.3 Reflection and transmission

We use the (multi-mode) transfer matrix formalism (see sections 3.4.3 and 3.5.1 above)
to model the scattering process. To illustrate the scattering behavior, we assume that
photon A was stored in the center of an atomic ensemble of Λ-type atoms at an anti-
node of the classical drive. The reflectances and transmittances of the ensemble are
plotted in figure 4.2(a) as functions of the two-photon detuning δ = ∆ − ∆c, where
∆ (∆c) is the detuning of the probe field (classical drive). The reflectance |r0|2 (|r1|2)
and transmittance |t0|2 (|t1|2) are for an ensemble without (with) a stored photon. The
ensemble is seen to have transmittance resonances with a large transmittance and a
small reflectance, similar to the transmission of a cavity. These resonances occur when
the standing wave condition is fulfilled, i.e. sin(qL) = 0, where q is the Bloch vector
of the stationary light polaritons and L is the length of the ensemble (see section 3.5
above). When a photon is stored in the ensemble, an atom changes from state |a〉 to |d〉.
In state |d〉, the atom acts as a two-level atom that is resonant with the incident photon
(see figure 4.1(a)). Since the effective interaction is enhanced by the cavity-like behavior
of the ensemble, this single two-level atom can have a strong effect of an incident photon,
even though the atom in itself has a limited coupling.

We focus on the behavior at the resonance nearest δ = 0 (vertical dotted line in
figure 4.2(a)). In the limit of large atom number N and for |∆c| 6= 0, this resonance is at
a two-photon detuning δres ≈ −4∆cπ

2|Ω0|2/(Γ2
1DN

2), for which we obtain (see section 4.3
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below)

r0 ≈
Γ1DΓ′N

16∆2
c

+
Γ′|Ω0|2π2

2∆2
cΓ1DN

, (4.1)

t0 ≈ 1− r0, (4.2)

r1(z̃) ≈ 1− 4π2Γ′∆2
c

Γ3
1DN

2
+

32π4∆2
cΓ′|Ω0|2

Γ5
1DN

4
− 4iπ2∆c

Γ1DN

(
z̃ − 1

2

)
− 4π4∆2

c(2Γ1D + Γ′)

Γ3
1DN

2

(
z̃ − 1

2

)2

,

(4.3)

t1(z̃) ≈ 4π2∆2
cΓ′

Γ3
1DN

2
− 32π4∆2

cΓ′|Ω0|2
Γ5

1DN
4

+
8π4∆2

cΓ′

Γ3
1DN

3

(
z̃ − 1

2

)
+

4π4∆2
cΓ′

Γ3
1DN

2

(
z̃ − 1

2

)2

.

(4.4)

Here, t1 and r1, were obtained by solving the discrete problem, where a photon is stored
in a single discrete atom and then taking the continuum limit such that the index of the
atom is replaced by its position inside the ensemble z̃ = z/L. The Ω0 dependent terms are
only relevant for determining the gate time and will be ignored for now. By aligning the
interferometer, the reflection coefficients of the combined interferometer-ensemble system
are given by R0 = −(r0− t0) and R1(z̃) = −(r1(z̃)− t1(z̃)) (see section 4.4 below). If we
take z̃ = 1/2 and a detuning |∆c| ∼ Γ1DN

3/4, we have r0, t1 ∼ Γ′/(Γ1D

√
N), r1 ≈ 1− t1,

and t0 ≈ 1 − r0. Hence, regardless of the value of Γ′/Γ1D we can achieve an ideal CP
gate R0 = 1, R1 = −1 with sufficiently many atoms.

4.2.4 Fidelity

To quantify the errors of the gate, we calculate the Choi-Jamiolkowski (CJ) fidelity (see
chapter 2). The EIT storage is described using the storage Ks and retrieval Kr kernels
derived in Ref. [55] (suitably modified to take into account storage from both directions
as shown in section 4.5 below). When photon A is stored and retrieved without a scat-
tering taking place, its wave function is φA,out,0(t) =

∫ ∫
Kr(z̃, t)Ks(z̃, t

′)φA,in(t′) dt′ dz̃,
where φA,in is the wave function of the input photon A. Here, we use a continuum
approximation of the kernels, which is relevant for the analytical calculations. For
the numerical calculations, discrete definitions of the kernels are used (see e.g. equa-
tions (2.92) and (2.93)). The efficiency of the storage and retrieval is then ηEIT =∫
|φA,out,0(t)|2 dt. If photon B was reflected from the interferometer, while photon A

was stored in the ensemble (computational basis state |11〉AB), the wave function of
the retrieved photon A is instead φA,out,1(t) =

∫ ∫
Kr(z̃, t)R1(z̃)Ks(z̃, t

′)φA,in(t′) dt′ dz.
Neglecting bandwidth effects of photon B, we obtain the CJ fidelity (equation (2.94)
with |φB(ωB)|2 = δ(ωB − δres) if we assume that the frequency ωB means two-photon
detuning)

FCJ =
ηEIT

16

∣∣2tb +R0 −R1,1

∣∣2 , (4.5)
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where R1,1 = (1/ηEIT)
∫
φ∗A,out,0(t)φA,out,1(t) dt. If the gate is conditioned on the pres-

ence of two photons after the gate operation, we find that the success probability is
(equation (2.95) with |φB(ωB)|2 = δ(ωB − δres))

Psuc =
ηEIT

4

(
2|tb|2 + |R0|2 +R1,2

)
, (4.6)

with R1,2 = (1/ηEIT)
∫
|φA,out,1(t)|2 dt, and the conditional CJ fidelity is

FCJ,cond = FCJ/Psuc. (4.7)

To optimize the performance of the gate, we set tb = 1 and optimize ∆c and the
width of the stored spin wave σ̃ = σ/L such that FCJ is maximal. Afterwards, for fixed
optimal ∆c and σ̃ we explore the effect of tb < 1. As shown below, FCJ,cond can be
substantially improved by choosing a particular tb < 1 at the cost of increasing 1−Psuc

by a constant factor. Whether this is a desirable trade off, depends on the particular
application. In figure 4.3(a) we plot the numerically calculated FCJ ≈ Psuc and FCJ,cond

for the Λ-type scheme, where photon A was chosen to have a Gaussian temporal profile,
and photon B is centered on δ = δres and assumed to be narrow in frequency compared
to the resonance width. As seen in the figure, both FCJ and FCJ,cond approach their
ideal value of unity for large N , but FCJ,cond approaches it much faster.

For large N , we can find analytical expressions for the curves in figure 4.3(a). The
stored spin wave will be approximately Gaussian so that it has the form

S(z̃) = (2πσ̃2)−1/4 exp
(
−(z̃ − 1/2)2/(4σ̃2)

)
. (4.8)

Consequently, ηEIT ≈ 1−Γ′/(2NΓ1Dσ̃
2) (see section 4.5.2 below). Neglecting distortions

of photon A under storage and retrieval, but still accounting for errors due to the spatial
extent of the stored excitation, we approximate R1,1 ≈

∫
R1,s(z̃)|S(z̃)|2 dz̃ and R1,2 ≈∫

|R1,s(z̃)|2|S(z̃)|2 dz̃. Here, R1,s(z̃) = (R1(z̃) + R1(1 − z̃))/2 is a symmetrized version
of R1, which accounts for storage and scattering from both sides of the ensemble due to
the Sagnac interferometer.

For fixed Γ1D and large N , after choosing σ̃2 = 1/(π3/2N1/4)
√

Γ′/(Γ1D + Γ′), ∆2
c =

(Γ2
1DN

3/2)/(8π), and tb = 1, such that FCJ is maximal, we get (see section 4.6 below)

FCJ,tb=1 ≈ Psuc,tb=1 ≈ 1− πΓ′

Γ1D

√
N
, (4.9)

FCJ,cond,tb=1 ≈ 1− π2Γ′2

4Γ2
1DN

. (4.10)

If tb = R0, FCJ,cond is maximal, and we get

FCJ,tb=R0 ≈ Psuc,tb=R0 ≈ 1− 2πΓ′

Γ1D

√
N
, (4.11)

FCJ,cond,tb=R0 ≈ 1− 11π3
(
Γ1D + Γ′

)
Γ′

16Γ2
1DN

3/2
. (4.12)
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Figure 4.3: (a) Numerically calculated fidelities for the Λ-type scheme. For tb = 1, FCJ ≈
Psuc and FCJ,cond are shown by dotted green and dash-dotted black curves respectively.
For tb < 1 chosen such that FCJ,cond is maximal, FCJ ≈ Psuc and FCJ,cond are shown
by solid blue and dashed red lines respectively. (b) The same as in (a), but using the
dual-V instead and interatomic spacing d = 0.266π/k0. The common parameters are
Γ1D/Γ = 0.5, and Ω0/Γ = 1. Under EIT (storage and retrieval), Ω(z) = Ω0. Under
stationary light (scattering), Ω(z) = Ω0 cos(k0z) and Ω±(z) = Ω0e

±ik0z for Λ-type and
dual-V respectively.

These expressions confirm that the gate fidelity improves with N and that the conditional
fidelities have better scaling.

In figure 4.3(b) we plot the numerically calculated fidelities FCJ and FCJ,cond for
the dual-V scheme. In the simulation, the distance between the atoms was set to be
incommensurate with the wavelength of the classical drive d = 0.266π/k0. The results
are, however, almost independent of d, and the gate can function even with completely
random placement of the atoms (see section 4.7 below). The dual-V scheme is seen to
have a very similar behavior to the Λ-type scheme.

4.2.5 Gate time

The gate time will be set both by the storage and retrieval time of photon A and the
necessity of the scattered photon B to be narrow in frequency. The EIT storage and
retrieval time is limited by 1/(Γ1DN) [55] and decreases with larger N . We therefore
focus on the scattering of photon B.

Due to non-zero bandwidth of photon B, the reflection coefficient R0 (at δ = δres) in
equation (4.5) should be replaced by

∫
R0(δ)|φB(δ)|2 dδ (see section 4.6 below), where

φB is the frequency distribution of photon B. Since r1 and t1 vary much slower than
r0 and t0 around δ = δres (vertical dotted line in figure 4.2(a)), we ignore a similar
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modification to R1,1 in equation (4.5).
We first expand the reflection coefficient r0 around δres. We thereby obtain

r0(δ) ≈ (2/w2)(δ − δres)
2 + r0(δres) (4.13)

with

w = (32
√

2∆2
c |Ω0|2π2)/(Γ3

1DN
3) (4.14)

being the resonance width. Defining the spectral width of photon B by

σB =

∫
(δ − δres)

2|φB(δ)|2 dδ, (4.15)

we get
∫
R0(δ)|φB(δ)|2 dδ ≈ R0(δres) − (4/w2)σ2

B. We now include the Ω0 dependent

terms in equations (4.1) and (4.2). For optimal |Ω0|2 = (Γ
5/3
1D N

11/6σ
2/3
B )/(25/3π5/3Γ′1/3),

we get

FCJ,tb=1,σB ≈ FCJ,tb=1 −
3π4/3Γ′2/3σ

2/3
B

22/3Γ
4/3
1D N

2/3
. (4.16)

Requiring the error from finite bandwidth to be proportional to the error in equa-
tion (4.9), we find that the required time is

1/σB ∼ 1/(
√

Γ1DΓ′N1/4). (4.17)

Hence, the gate time decreases with N .

4.2.6 Repeater secret key rate

As a direct application of the proposed CP gate, we consider quantum repeaters based
on atomic ensembles [42, 43]. We modify one of the fastest known repeater protocols
for atomic ensembles [82] by implementing the proposed CP gate instead of linear optics
for entanglement swapping using the setup in figure 4.1(c). The secret key rate per
repeater station is calculated as described in Ref. [83] and compared to the results of
the original protocol (see figure 4.2(b)). This analysis is similar to the CP gate in
Ref. [1] with the difference that we also consider the possibility of generating the initial
entanglement using the CP gate. For a fair comparison, we consider equal storage and
retrieval efficiencies for both protocols. As seen in figure 4.2(b) for Γ1D/Γ = 0.5, the
proposed gate allows improving the rate of quantum repeaters if N & 1000.

4.3 Scattering coefficients for the ensemble

4.3.1 Reflection and transmission for the Λ-type scheme

4.3.1.1 Without a stored photon

Here, we derive the scattering coefficients r0 and t0 given by equations (4.1) and (4.2).
For the Λ-type atoms, we use single-mode transfer matrices, and hence the parameter βj
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Figure 4.4: Secret key rate rsecret per repeater station as a function of the number of
atoms N with fixed Γ1D/Γ = 0.5 for dual-V atoms and a communication distance of 1000
km. We compare the protocol of Ref. [82] (“linear”) with a modified protocol where the
entanglement swapping (and also initial entanglement generation if it improves rsecret) is
performed with the proposed stationary light CP gate (“SL”). We consider two different
source repetition rates: 100 MHz and 1 MHz. We assume an attenuation length of 22
km in the fibers and an optical signal speed of 2× 105 km/s. The ensemble storage and
retrieval efficiency increases with N and is set to the same value in the original protocol
as for the modified one. The photodetector efficiency is assumed to be 90%. The steps
in the curves occur when the fidelity of the CP gate allows additional swap levels.

in the elements of the transfer matrices Ta,j describing the atoms with elements (3.86) is
a scalar. For the Λ-type scheme, the atoms are regularly placed with distance π/(2k0),
as shown in figure 4.5. Hence, the ensemble consists of repeated unit cells, and one can
instead exponentiate the transfer matrix for a single unit cell to find the transfer matrix
for the whole ensemble. We consider a unit cell that consists of two atoms and two
lengths of free propagation (see figure 4.5). One of the atoms is placed on the anti-node
of the standing wave of the classical drive, and the other is placed on the node. The
scattering from the former (j = 1) is described by the parameter (3.62) with Ω(zj) = Ω0,
i.e.

β1 =
Γ1Dδ

(Γ′ − 2i∆)δ + 2i|Ω0|2
, (4.18)

while the scattering for the latter (j = 2, an effective two-level atom) is described by the
parameter (3.62) with Ω(zj) = 0, i.e.

β2 =
Γ1D

Γ′ − 2i∆
. (4.19)
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Figure 4.5: Standing wave of the Rabi frequency of classical drive for the Λ-type scheme.
The circles with 2 or 3 energy levels below the plot represent how the atoms will effec-
tively behave in the different positions, i.e. either as two-level atoms on the nodes or as
Λ-type atoms on the anti-nodes. The unit cell is shown by the dotted rectangle.

The transfer matrices for the atoms Ta,j have elements given by equations (3.86). The
transfer matrices of free propagation Tf are given by equation (3.89) with k0d = π/2.
The transfer matrix for the unit cell is then

Tcell = TfTa,2TfTa,1. (4.20)

Carrying out the above matrix multiplications results in

Tcell =

(
−(1− β2)(1− β1)− β2β1 β1(1− β2)− β2(1 + β1)
β2(1− β1)− β1(1 + β2) −β2β1 − (1 + β2)(1 + β1)

)
. (4.21)

From equations (3.111) and (3.113), we then have

Te = Tne
cell = cos(neθ)

(
1 0
0 1

)
+

sin(neθ)

sin(θ)

(
β2 + β1 −β2 + β1 − 2β2β1

β2 − β1 − 2β2β1 −β2 − β1

)
(4.22)

with θ = q̃Lu given by cos(θ) = tr(Tcell)/2 = −1 − 2β2β1. From this matrix, we obtain
the reflection and transmission coefficients

r0 = −Te,21

Te,22
=

−β2 + β1 + 2β2β1

cos(neθ)
sin(neθ)

sin(θ)− (β2 + β1)
, (4.23)

t0 =
1

Te,22
=

1

cos(neθ)− sin(neθ)
sin(θ) (β2 + β1)

. (4.24)

The minima of r0 and maxima of t0 (see figure 4.2) occur when sin(neθ) in equa-
tion (4.22) is approximately equal to zero. However, exact equality is never satisfied,
since θ is complex (a consequence of Γ′ > 0). In the regime, where losses are small
(Im[tr(Tcell)]� 1), the approximate resonance condition is

sin
(
ne arccos(Re[tr(Tcell)]/2)

)
= 0. (4.25)
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In the coefficients (4.23) and (4.24) we can approximate

θ = arccos(tr(Tcell)/2)

≈ arccos(Re[tr(Tcell)]/2)− i Im[tr(Tcell)]/2√
(1− Re[tr(Tcell)]/2)(1 + Re[tr(Tcell)]/2)

.
(4.26)

From equation (4.25) we have

ne arccos(Re[tr(Tcell)]/2) = πk (4.27)

for some integer k. Since the are interested in the first reflection minimum closest to
δ = 0, we choose k = ne − 1. For large n, we have

Re[tr(Tcell)]/2 = cos(π(ne − 1)/ne) ≈ −1 + π2/(2n2
e). (4.28)

Hence, equation (4.26) can be approximated as

θ ≈ π(ne − 1)/ne − ine Im[tr(Tcell)]/(2π), (4.29)

and we also obtain the approximate expressions:

sin(neθ) ≈ (−1)ne−1
(
−in2

e Im[tr(Tcell)]/(2π)
)
, (4.30)

cos(neθ) ≈ (−1)ne−1, (4.31)

sin(θ) ≈ π/ne. (4.32)

With these approximations and using the fact that Im[tr(Tcell)] = −4 Im[β2β1], equa-
tions (4.23) and (4.24) become

r0 ≈
−β2 + β1 + 2β2β1

− iπ2

2n3
e Im[β2β1]

− β2 − β1

, (4.33)

t0 ≈
(−1)ne−1

1− 2in3
e Im[β2β1]
iπ2 (β2 + β1)

. (4.34)

To determine the dominant terms in equations (4.33) and (4.34), we write the approxi-
mate expressions for equations (4.18) and (4.19) in the limit, where δ is small, and |∆c|
is large (∆ = ∆c + δ). We thereby get

β1 ≈ −i
Γ1Dδ

2|Ω0|2
, (4.35)

β2 ≈ i
Γ1D

2∆
+

Γ1DΓ′

4∆2
. (4.36)

The second term on the right hand side of equation (4.36) is included for the sole
purpose of finding an approximation for Im[β2β1] ≈ Re[β2] Im[β1]. An expression for the
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detuning δ can be found using equation (4.28). Expanding its left hand side in δ around
0 to second order results in

Γ2
1D

2∆c|Ω0|2
δ − Γ2

1D(|Ω0|2 −∆2
c)

2∆2
c |Ω0|4

δ2 +
π2

2n2
e

= 0. (4.37)

We choose the solution, where δ and ∆c have opposite signs (we assume δ > 0 and
∆c < 0, but the opposite case should also work). Hence,

δ

|Ω0|2
=

∆c

(
−Γ1D +

√
Γ1D − 4(∆2

c − |Ω0|2)π2/n2
e

)
2Γ1D(∆2

c − |Ω0|2)
(4.38)

Expanding this around the limit of large n we find

δ

|Ω0|2
≈ − ∆cπ

2

Γ2
1Dn

2
e

− ∆3
cπ

4

Γ4
1Dn

4
e

+
∆c|Ω0|2π4

Γ4
1Dn

4
e

. (4.39)

The first term on the right hand side of equation (4.39) could also be derived from the
dispersion relation (3.99) (with Nu = 2), and setting Re[q]/n0 = π/N , as discussed
in section 3.5.2, but the other two terms in equation (4.39) result from higher order
corrections to the quadratic approximation.

When we calculate the fidelity FCJ in section 4.6 below, we find that it is maximal
for a detuning

|∆c| ∝ Γ1Dn
3/4
e . (4.40)

If we insert this expression into (4.39), we find that the first term on the right hand

side is proportional to n
−5/4
e , and the second one is proportional to n

−7/4
e . Hence, the

second one is smaller for large ne and can be neglected. We keep the third term, since
it depends on Ω0 and will be important when accounting for the non-zero bandwidth of
the scattered photon.

Using only the first term in equation (4.39) and inserting it into the first term of
equation (4.36), we find

β2 ≈ i
Γ1D

2∆c

(
1− (π2|Ω0|2)/(Γ2

1Dn
2
e)
) ≈ iΓ1D

2∆c
+ i

|Ω0|2π2

2∆cΓ1Dn2
e

. (4.41)

Inserting into the second term of equation (4.36) gives

Re[β2] ≈ Γ1DΓ′

4∆2
c

(
1− (π2|Ω0|2)/(Γ2

1Dn
2
e)
)2 ≈ Γ1DΓ′

4∆2
c

+
|Ω0|2π2Γ′

2∆2
cΓ1Dn2

e

. (4.42)

Using the first and the third terms of equation (4.39) and inserting them into equa-
tion (4.35), we find

β1 ≈ −i
Γ1D

2

(
− ∆cπ

2

Γ2
1Dn

2
e

+
∆c|Ω0|2π4

Γ4
1Dn

4
e

)
≈ i ∆cπ

2

2Γ1Dn2
e

− i∆c|Ω0|2π4

2Γ3
1Dn

4
e

. (4.43)
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Combining equations (4.42) and (4.43) and neglecting a term of order n−6
e results in

Im[β2β1] ≈ Re[β2] Im[β1] ≈ π2Γ′

8∆cn2
e

+
|Ω0|2π4Γ′

8∆cΓ2
1Dn

4
e

. (4.44)

Invoking equation (4.40) again and neglecting the Ω0 dependent terms for a moment,

we see that β2 ∝ n
−3/4
e , β1 ∝ n

−5/4
e and n3

e Im[β2β1] ∝ n
1/4
e . Hence, β1 � β2; β2, β1 �

(n3
e Im[β2β1])−1, and we can approximate equations (4.33) and (4.34) (now including the

Ω0 dependent terms) by

r0 ≈ −i
2n3

e

π2
β2 Im[β2β1] ≈ Γ1DΓ′ne

8∆2
c

+
|Ω0|2π2Γ′

4∆2
cΓ1Dne

, (4.45)

t0 ≈ (−1)ne−1

(
1 + i

2n3
e

π2
β2 Im[β2β1]

)
≈ (−1)ne−1

(
1− Γ1DΓ′ne

8∆2
c

− |Ω0|2π2Γ′

4∆2
cΓ1Dne

)
.

(4.46)

Since the number of atoms is N = 2ne, the above expressions correspond to equations
(4.1) and (4.2), except for the removal of the overall phase factor (−1)ne−1 for the
transmission coefficient t0 (discussed in section 4.4 below). In figure 4.6(a) we plot |t0|2
as a function of Ω0 and show that the analytical expression in equation (4.46) matches
the full expression in equation (4.24) evaluated at the resonance frequency.

To account for the non-zero bandwidth of the scattered photon, we also need the
width of the resonance. After expanding the reflection coefficient r0 around δres, we get

r0(δ) ≈ (2/w2)(δ − δres)
2 + r0(δres), (4.47)

where r0(δres) is given by equation (4.45) and

w =
32
√

2∆2
c |Ω0|2π2

Γ3
1DN

3
, (4.48)

is the width. Since we approximately have that t0 ≈ 1− r0, the width of the transmis-
sion resonance is w. In figure 4.6(b) we compare equation (4.48) with the numerically
computed width.

4.3.1.2 With a stored photon

Here, we derive the scattering coefficients r1 and t1 given by equations (4.3) and (4.4).
The starting point is the assumption that the photon has been stored in a single atom
that is placed at the anti-node of the standing wave of the classical drive (storing in
an atom that is on the node will have a negligible change in the scattering properties,
unless Γ1D/Γ is close to unity). The storage of a photon in the atom transfers it from
state |a〉 to state |d〉, such that it behaves like a resonant two-level atom (given by the
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Figure 4.6: (a) Reflectance with a stored photon |r1|2 and transmittance without a stored
photon |t0|2 of an ensemble of Λ-type atoms plotted as functions of the Rabi frequency
of the classical drive Ω0 and evaluated at the transmission resonance closest to δ = 0
(see figure 4.2), i.e. at δ = δres ≈ −4∆cπ

2|Ω0|2/(Γ2
1DN

2). Both t0 and r1 are calculated
either directly from the transfer matrix with no approximations (“full”), which for t0
is given by equation (4.24), or from the approximate expressions in equations (4.46)
and (4.58) respectively (“approximate”). (b) The width of the transmission resonance

calculated either from the full expression as w = Re

[√
4/∂2

δ t0(δ)

]∣∣∣
δ=δres

or using the

approximate expression (4.48) (dash-dotted black). The parameters for both (a) and
(b) are: number of atoms N = 1000, Γ1D/Γ = 0.5, and ∆c/Γ = −16. (The same as in
figure 4.2 except for Ω0, which is varied here.)

|d〉 ↔ |e〉 transition). Therefore, the transfer matrix for the first atom in the unit cell
Ta,1 with β1 given by equation (4.18) is replaced by the transfer matrix Ta,1,de with

β1,de =
Γ1D

Γ′
. (4.49)

Hence, the transfer matrix for the unit cell containing the stored photon will be given
by

Tcell,ph = TfTa,2TfTa,1,de. (4.50)

instead of equation (4.20). If we assume that the photon is stored in the unit cell with
index nph, the transfer matrix for the whole ensemble Te,nph

is given by

Te,nph
= T

ne−nph

cell Tcell,phT
nph−1
cell . (4.51)
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From equation (4.51) we can find the scattering coefficients using

r1,nph
= −

Te,nph,21

Te,nph,22
, (4.52)

t1,nph
=

1

Te,nph,22
, (4.53)

where Te,nph,xx′ are the elements of the matrix Te,nph
similar to the definition (3.101)

of the elements of the matrix Te. For the numerical calculations, equations (4.52) and
(4.53) are used directly.

For the analytical calculations, we can find approximate expressions for the scattering
coefficients, but the procedure is rather involved. We shall therefore restrict ourselves
to a brief discussion of the main steps. We do several simplifications on the (very
complicated) expressions resulting from equations (4.52) and (4.53). We use the fact that
β2β1 = (−1− cos(θ))/2 and the approximate expression θ ≈ π(ne − 1)/ne. Also, while

expanding the numerator and denominator around large ne, we use that β2 ∝ n
−3/4
e (a

consequence of equations (4.19) and (4.40)) to determine which terms can be neglected.
Then we replace the index of the unit cell with the stored photon nph by nez̃, where
z̃ = z/L is the rescaled position coordinate. After further approximating 1/ne ≈ 0 and
ne ± 1 ≈ ne, we get

r1(z̃) = − β2,de(π cos(πz̃)− 2β2ne sin(πz̃))2

sin2(πz̃)
(
π2 − 4β2

2β2,den2
e

)
− 2πβ2

2β2,dene sin(2πz̃) + π2(β2,de + 1) cos2(πz̃)
,

(4.54)

t1(z̃) =
(−1)ne−1π2

sin2(πz̃)
(
π2 − 4β2

2β2,den2
e

)
− 2πβ2

2β2,dene sin(2πz̃) + π2(β2,de + 1) cos2(πz̃)
.

(4.55)

Next, we insert the expressions for β2 and β2,de with the approximation ∆ ≈ ∆c,

expand around z̃ = 1/2, and use |∆c| ∝ Γ1Dn
3/4
e to identify which terms are dominant

for large ne. This results in

r1(z̃) ≈ 1− π2Γ′∆2
c

Γ3
1Dn

2
e

− 2iπ2∆c

Γ1Dne

(
z̃ − 1

2

)
− π4∆2

c(2Γ1D + Γ′)

Γ3
1Dn

2
e

(
z̃ − 1

2

)2

, (4.56)

t1(z̃) ≈ (−1)ne−1

(
π2∆2

cΓ′

Γ3
1Dn

2
e

+
π4∆2

cΓ′

Γ3
1Dn

3
e

(
z̃ − 1

2

)
+
π4∆2

cΓ′

Γ3
1Dn

2
e

(
z̃ − 1

2

)2
)
. (4.57)

We see that the resulting expressions do not depend on Ω0. This is a consequence
of approximating ∆ ≈ ∆c. If we use ∆ = ∆c + δ together with equation (4.39), we find
corrections from the dependence on Ω0. We only need the first term in equation (4.39)
to find the lowest order correction due to Ω0. At z̃ = 1/2, and expanding around large
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ne, we have

r1 ≈ 1− π2∆2
cΓ′

Γ3
1Dn

2
e

+
2π4∆2

cΓ′|Ω0|2
Γ5

1Dn
4
e

, (4.58)

t1 ≈ (−1)ne−1

(
∆2

cπ
2Γ′

Γ3
1Dn

2
e

− 2π4∆2
cΓ′|Ω0|2

Γ5
1Dn

4
e

)
. (4.59)

In figure 4.6(a), we plot |r1|2 as a function of Ω0 and show that the analytical expression
in equation (4.58) matches the full expression calculated using equation (4.52) (evaluated
at the resonance frequency) without doing any approximations. In equation (4.3), we
include all error terms of equation (4.56) and also add the Ω0 dependent error term from
equation (4.58). Likewise, in equation (4.4), we include all error terms of equation (4.57)
and also add the Ω0 dependent error term from equation (4.59).

4.3.2 Reflection and transmission for the dual-V scheme

For the dual-V scheme, we need two-mode (4× 4) transfer matrices to describe the σ+

and σ− polarized modes. The transfer matrices can be calculated using sections 3.4.2
and 3.4.3. To recap, the four blocks of the transfer matrices for the atoms are given by
equation (3.86), where

βj = −(I + Sj,r)
−1Sj,r, (4.60)

and

Sj,r =

(
rj,++ rj,−+

rj,+− rj,−−

)
. (4.61)

If the atom is in state |a〉 (without a stored photon), we use the expressions for the
elements of Sj,r are given by equations (3.69) and (3.72). Under the assumptions

ωb+c = ωb−c and Ω+ = Ω− = Ω0, we have ∆̃
(+)
tot = ∆̃

(−)
tot = ∆̃tot, and the elements of

Sj,r become

rj,−− = rj,++ = −
i(Γ1D/2)

(
∆̃totδ − |Ω0|2

)
∆̃2

totδ − 2∆̃tot|Ω0|2
, (4.62)

rj,−+ = − i(Γ1D/2)|Ω0|2
∆̃2

totδ − 2∆̃tot|Ω0|2
e2ik0zj , (4.63)

rj,+− = − i(Γ1D/2)|Ω0|2
∆̃2

totδ − 2∆̃tot|Ω0|2
e−2ik0zj . (4.64)

If the atom is in state |d〉 (with a stored photon), it acts as a resonant V-type atoms,
and hence the elements of Sj,r are given by

rj,−− = rj,++ = −Γ1D

Γ
, (4.65)

rj,−+ = rj,+− = 0. (4.66)



CHAPTER 4. CONTROLLED-PHASE GATE 87

We will only calculate the reflection and transmission of ensembles of dual-V atoms
numerically.

4.4 Sagnac interferometer and adjustment of the phases

Here, we calculate the result of scattering from the Sagnac interferometer shown in
figure 4.1(d). The sequential picture of the scattering is that the incident field on one of
the ports is split by the 50:50 beam splitter, gets scattered by the ensemble, and then
the transmitted and reflected parts will again interfere on the same beam splitter. Thus
the matrix that relates the outputs to the inputs can be written

MSagnac = HSH, (4.67)

where the matrixH describes the beam splitter, and the matrix S describes the ensemble.
We choose the phases of the beam splitter, such that it performs the Hadamard operation
on the field, i.e.

H =
1√
2

(
1 1
1 −1

)
, (4.68)

The ensemble can, in general, have different transmission and reflection coefficients de-
pending on, whether the field is incident from the left or right. Therefore, we write

S =

(
r+ t+
t− r−

)
, (4.69)

where r+ and t+ are respectively the reflection and transmission coefficients when the
field is incident from the left (propagating in the positive direction), and r− and t− are
respectively the reflection and transmission coefficients when the field is incident from
the right (propagating in the negative direction).

Multiplying the matrices, we get

MSagnac =
1

2

(
r+ + t+ + (r− + t−) r+ − t+ − (r− − t−)
r+ + t+ − (r− + t−) r+ − t+ + (r− − t−)

)
. (4.70)

For a standard (non-rotating) Sagnac interferometer where r+ = r− and t+ = t−, we
recover the well known result, that light always leaves the port in which it is incident [80,
81]. Because the equality r+ = r− need not be true, the off-diagonal entries of MSagnac

are, in general, not zero and describe the leakage of the incident power to the other
port of the Sagnac interferometer. However, due to the sequential operation of the gate,
this leakage does not introduce any logic errors. Since scattering of photon B happens,
while photon A is stored inside the ensemble, leakage of photon B into the rail that
encodes state |1〉A (see figure 4.1(c)) is separated in time from the subsequent retrieval
of photon A and hence can be either absorbed or rerouted along a different path.
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Even though the off-diagonal entries of MSagnac are non-zero in general, they are
strongly suppressed in the ideal limit, since e.g. both r+ and r− approach the same
value (either 1 or 0 depending on, whether a photon was stored in the ensemble or not).
As a concrete example, for the Λ-type scheme, we can use equation (4.22) and find

r0+ = −Te,21

Te,22
=

−β2 + β3 + 2β2β3

cos(neθ)
sin(neθ)

sin(θ)− (β2 + β3)
, (4.71)

r0− =
Te,12

Te,22
=

−β2 + β3 − 2β2β3

cos(neθ)
sin(neθ)

sin(θ)− (β2 + β3)
, (4.72)

where r0+ is the same as r0 (4.23), and r0− is the reflection coefficient where the field
is incident from the right instead of the left. The difference between equations (4.71)
and (4.72) is only in the sign of the term 2β2β3 in the numerator. As discussed above
equation (4.45), this term is much smaller than β2 in the limit of large number of atoms
and has therefore been neglected in equation (4.45). Hence, equation (4.45) can serve as
an approximate expression for both r0+ and r0−. We also note that it can be shown that
the transmission coefficient for any 2× 2 transfer matrix is independent of whether the
field is incident from one side or the other (given by equation (4.24) for t0). However,
we still account for the possible difference in the scattering coefficients in the numerical
calculations (both for 2 × 2 and 4 × 4 transfer matrices) by defining the scattering
coefficients R0 and R1 in equations (2.93) and (2.94) as

R0 = −(r0+ + r0− − (t0+ + t0−))/2, (4.73)

R1 = −(r1+ + r1− − (t1+ + t1−))/2, (4.74)

where the scattering coefficients with “+” in the subscript assume incident photon from
the left of the ensemble and the scattering coefficients with “−” in the subscript assume
incident photon from the right of the ensemble. Similar definitions are made for the
scattering coefficients R0,n and R1,n in equations (2.79) and (2.81).

We also need to discuss the choice of the phases in the interferometer. In equa-
tion (4.67) there is an implicit assumption that the lengths of free propagation in the
interferometer are chosen such that the distance from the beam splitter to either end
of the ensemble is a multiple of the wavelength λ = 2π/k0. Hence, the phase of free
propagation is equal to unity for these parts. What we call “ensemble” may also contain
some length of free propagation to the right of the ensemble to adjust the phases of its
scattering coefficients.

To illustrate the necessity of phase adjustment, note that there is an overall phase
factor (−1)ne−1 in equations (4.46), (4.57), and (4.59) compared with equations (4.2) and
(4.4). When r0± ≈ 0 and |t0±| ≈ 1, the factor (−1)ne−1 directly appears as the overall
phase of R0. Hence, the ideal value R0 = 1 can only be obtained for odd ne. There
are similar phase factor considerations for R1 due to the phase factor of the reflection
coefficient r0− (r0+ is assumed to be at z = 0 and hence does not acquire phase factors
with changing ensemble length). If the overall phase of the transmission coefficients
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is adjusted, the correct phase of R0 and R1 is obtained and the controlled-phase gate
operation can approach the ideal limit as the number of the atoms is increased.

For the dual-V scheme, we can choose any inter-atomic spacing d, which is not a
multiple of π/(2k0) (see figure 4.11 below). For this general case, we expect that instead
of the overall phase factor (−1)ne−1, the transmission coefficients have the phase factor
exp(ik0L+π), which we likewise remove by adding a distance of free propagation dextra to
the right of the ensemble chosen such that exp(ik0dextra) = exp(−ik0L−π). Multiplying
this extra matrix of free propagation modifies the scattering coefficients according to

r0+ → r0+,

r0− → r0− exp(2ik0dextra)

t0± → t0± exp(ik0dextra).

(4.75)

The physical interpretation of this mathematical result is that, since the free propagation
was added on the right of the ensemble, then reflection for the field incident from the
left (r0+) is unaffected, while the reflection coefficient for fields incident from the right
(r0−) acquires twice the propagation phase. The transmission coefficients only acquire
the propagation phase once.

The phase adjustments above effectively force the interferometer round trip length
to be equal to an odd multiple of half wavelengths (exp(ik0(L+ dextra)) = −1). Hence,
the phase adjustment can be made independent of the number of atoms.

4.5 EIT storage and retrieval

4.5.1 Overview

We will model the EIT storage and retrieval process in three different ways:

1. Using the dispersion relation (see for instance Ref. [65] and section 4.5.2 below).

2. Using the fully discrete theory (see Ref. [84] and section 4.5.3 below).

3. Using the storage and retrieval kernels (see Ref. [55] and section 4.5.4 below).

We will consider the so-called adiabatic EIT storage [55], where a single-photon wave
packet is incident on the ensemble and is mapped onto a spin wave (a superposition of
states, where a single atom is in state |c〉 and the rest are in state |a〉). We assume a
constant Rabi frequency of the classical drive Ω(z, t) = Ω0, but choosing a co-propagating
classical drive with Rabi frequency Ω(z, t) = Ω0e

±ik0z will only change the spatially-
dependent phase factor of the stored spin wave. In the limit of high storage efficiency,
the temporal profile of the photon and the spatial profile of the stored spin wave will
approximately have the same form. E.g. if a photon with Gaussian temporal wave
packet is stored, the resulting spin wave will have a Gaussian spatial profile. This is a
consequence of the time-independent Rabi frequency of the classical drive and allows us
to use the EIT dispersion relation to describe the storage and retrieval.
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Figure 4.7: The stored Gaussian spin wave computed using three different models for EIT
storage: the dispersion relation of section 4.5.2 (“dispersion”), the fully discrete theory
of section 4.5.3 (“discrete”), and the storage kernel of section 4.5.4 (“kernel”). Contrary
to the fidelity calculations, here we assume EIT storage from one side (left) only, to show
the influence of random placement of the atoms more clearly. The common parameters
for the two subplots are Γ1D/Γ = 0.5, N = 1000, Ω0/Γ = 1, σ/L = 0.1 (width of the
stored Gaussian spin wave). (a) Regularly placed atoms are assumed with inter-atomic
distance d = 0.266π/k0. All three curves are nearly indistinguishable from each other.
(b) Randomly placed atoms, where the position of each atom is chosen from a uniform
distribution over the whole ensemble. The average density is the same as in (a). The
curve for the fully discrete storage is clearly distinct from the two others and exhibits
rapid variation with position.

The EIT dispersion relation is used to gain intuition about the storage and retrieval
process and also for the analytical calculations. In the numerical calculations of the
fidelities and success probability, the atoms are always modeled as being discrete. Using
the fully discrete EIT storage and retrieval model (section 4.5.3) becomes very costly
as the number of atoms increases. Therefore, to be able to calculate fidelities with a
large number of atoms, we instead use the less computationally demanding storage and
retrieval kernels derived in the continuum model and suitably discretized (section 4.5.4).
In figure 4.7, we show that the three models agree very well for the case of regularly
placed ensembles with large optical depth dopt = 2NΓ1D/Γ = 1000. For randomly placed
atoms, the fully discrete theory gives noticeably different results compared to using the
discretized continuum theories (dispersion relation or storage kernel). Since we assume
regular placement for the curves in figure 4.3, the discretized storage and retrieval kernels
are sufficient. We also verify this in figure 4.8 below for the Λ-type scheme, and the same
conclusion holds for the dual-V scheme. In figure 4.12 below, where we show fidelities for
randomly placed atoms, we only use the fully discrete model for storage and retrieval,
even though it limits the maximal number of atoms that can be used in the calculations.
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4.5.2 Using the dispersion relation

The adiabatic EIT storage and retrieval can be modeled in a particularly simple way if
the influence of the interface between the atomic medium and vacuum is ignored. To
use the EIT dispersion relation, we need to assume that the ensemble is of an infinite
extent. However, to compute the the storage and retrieval efficiency, we need to assume
propagation through a finite ensemble. In the calculations below, this is reflected in
infinite bounds for the integration but a finite propagation length. The only processes
that happen in this model is that the stored photon wave packet broadens in space as
it propagates, and its norm decays due to spontaneous emission. The EIT storage and
retrieval efficiency will then be the norm of the wave packet that has propagated for the
full length of the ensemble L (with a stop at L/2 to allow for the second photon to be
scattered off the ensemble).

The EIT dispersion relation is [65]

δk ≈ vg(k − k0) +
1

2
α(k − k0)2 (4.76)

with

vg =
2L|Ω0|2
NΓ1D

, α = −i4L
2|Ω0|2Γ′

N2Γ2
1D

. (4.77)

In rescaled coordinates z̃ = z/L and wave vectors k̃ = kL the dispersion can be
written

δk̃ ≈ ṽg(k̃ − k̃0) +
1

2
α̃(k̃ − k̃0)2 (4.78)

with

ṽg =
vg

L
=

2|Ω0|2
NΓ1D

, α̃ =
α

L2
= −i4|Ω0|2Γ′

N2Γ2
1D

. (4.79)

We only consider incident photons where the temporal profile is Gaussian. When
such a photon is mapped onto a stored excitation, this results in an approximately
Gaussian spatial profile of the form

S(z̃) =
1

(2πσ̃2)1/4
exp

(
−(z̃ − µ̃)2

4σ̃2

)
eik̃0z̃, (4.80)

where the rescaled quantities are σ̃ = σ/L, µ̃ = µ/L, k̃0 = k̃0L. By Fourier transforming
this wave function to get S̃(k̃), multiplying the Fourier transform by exp(−iδk̃t) and
Fourier transforming back we find

S(z̃, t) =
1

(2πσ̃2)1/4

√
1

1 + iα̃t/(2σ̃2)
exp

(
− (z̃ − µ̃− ṽgt)

2

4σ̃2
(
1 + iα̃t/(2σ̃2)

)) eik̃0z̃. (4.81)
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The norm squared of the wave packet at time t ≥ 0 is given by

N 2
S(t) =

∫ ∞
−∞
|f(z, t)|2dz =

1√
1 + iα̃t/(2σ̃2)

. (4.82)

The combined storage and retrieval efficiency is given by equation (4.82) with t = 1/ṽg =
L/vg, i.e. the time required to pass the whole ensemble. We thereby get

ηEIT = N 2
S(t = 1/ṽg) =

1√
1 + Γ′

NΓ1Dσ̃2

≈ 1− 1

2

Γ′

NΓ1Dσ̃2
. (4.83)

4.5.3 Using the fully discrete theory

Using the intuition about EIT from section 4.5.2, one can implement the numerical
simulations of EIT storage and retrieval accounting for the discrete nature of atoms.
This approach is very similar to the “electric field elimination” approach of Ref. [84].
The main difference is that, since storage and retrieval of a single photon only requires
calculating the dynamics in the atomic single-excitation manifold, we can eliminate the
electric field directly in the Schrödinger picture instead of the Heisenberg picture like in
Ref. [84].

The Hamiltonian for the ensemble of Λ-type atoms coupled to the electric field is
given by equations (3.26), where the atomic operators are given by equation (3.1) and
preserve the discrete nature of the atoms. For EIT storage and retrieval we assume
that the detuning ∆0 is always set to zero during storage and retrieval (this was also
assumed in section 4.5.2 above). However, if desired, off-resonant (∆0 6= 0) EIT storage
and retrieval is also possible [55], and hence we keep the ∆0 term in the equations of
motion below. On the other hand, we set Ω(z) = Ω0 from the beginning.

Compared to chapter 3, where we have calculated the dynamics using Heisenberg
equations of motion and subsequently reinterpreted operators as complex-valued func-
tions, we will use the Schrödinger picture here to be more explicit about the states of the
atoms and the field. These two ways are entirely equivalent. On the single-excitation
manifold, the state can be written

|ψ(t)〉 =
∑
j

(
Pj(t)σ̂ba,j + Sj(t)σ̂ca,j

)
|a〉N |vac〉

+

(∫
Φ+(z, t)√

c
Ê†+(z)|vac〉 dz +

∫
Φ−(z, t)√

c
Ê†−(z)|vac〉 dz

)
|a〉N .

(4.84)

From the Schrödinger equation, we get the equations of motion for the atomic coefficients

∂Pj
∂t

= i

(
∆0 + i

Γ′

2

)
Pj + iΩ0Sj + i

√
Γ1D

2

(
Φ+(zj , t)e

ik0zj + Φ−(zj , t)e
−ik0zj

)
, (4.85)

∂Sj
∂t

= iδ0Sj + iΩ∗0Pj , (4.86)
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where Γ1D = 4πg2/c. For the electric field coefficients Φ± we have the equations(
∂

∂t
± c ∂

∂z

)
Φ±(z, t) = ic

√
Γ1D

2

∑
j

δ(z − zj)Pje∓ik0zj . (4.87)

These equations can be formally solved, so that we obtain

Φ±(z, t) = Φ±,in(z ∓ ct) + i

√
Γ1D

2

∑
j

θ
(
±(z − zj)

)
Pj

(
t∓ z − zj

c

)
e∓ik0zj , (4.88)

where Φ±,in(z ± ct) are the input fields, and θ is the Heaviside theta function. Inserting
these solutions into equation (4.85) and approximating Pj

(
t− |z − zj |/c

)
≈ Pj(t) [84],

we find

∂Pj
∂t

= i

(
∆0 + i

Γ′

2

)
Pj + iΩ0Sj +

Γ1D

2

∑
j′

Pj′e
ik0|zj−zj′ |

+ i

√
Γ1D

2

(
Φ+,in(zj − ct)eik0zj + Φ−,in(zj + ct)e−ik0zj

)
.

(4.89)

The fidelity calculations in chapter 2 are formulated in terms of φA,in(t) and φA,out(t),
which are respectively the input field to be stored and the retrieved output field. In
that chapter, several kinds of retrieved output fields are defined, but for the general
discussion of storage and retrieval, the difference between them is not important. We
need to account for the beam splitter in the Sagnac interferometer. Hence, the relations
between the fields in this section and chapter 2 are

Φ+,in(zj − ct) =
1√
2
φA,in(t− zj/c), (4.90)

Φ−,in(zj + ct) =
1√
2
φA,in(t− (L− zj)/c), (4.91)

φA,out(t) =
1√
2

(
Φ+(L, t) + Φ−(0, t)

)
. (4.92)

Note that storage is done from two directions in order to ensure that no excitations are
stored on atoms at the nodes of the standing wave of the classical drive applied during
the scattering for the Λ-type scheme. The conditions for this may not necessarily be
the same as the conditions derived for scattering from the Sagnac interferometer (see
section 4.4). If this is an issue, it can be compensated by adjusting the position of the
atoms between storage and scattering, e.g., by adjusting the phases of the trapping lasers
or of the classical drives. For the dual-V scheme, there is no phase requirement during
storage and this is not a concern.

As the input wave function, we assume

φA,in(t) =
1

(2πσ2
in)1/4

exp

(
−(t− µin/c)

2

4σ2
in

)
(4.93)
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where the width and central time

σin = σ/

(
vg

√
1 + iαL/(4σ2vg)

)
, (4.94)

µin = 4σin, (4.95)

are defined in terms of the EIT group velocity (4.77). The factor
√

1 + iαL/(4σ2vg) (a
real number, since α is imaginary) in the definition of σin is introduced to compensate for
the spin wave becoming wider as it propagates inside the ensemble (see equation (4.81)).
This particular factor is chosen such that the stored Gaussian spin wave (centered at the
position L/2) has width σ. In the end, since we optimize over σ, this adjustment has no
effect on the final values of the numerically calculated fidelities and success probability.
However, it ensures that the optimal σ in the numerical calculations is similar to the
optimal value found by neglecting broadening of the spin wave under propagation.

In the fully discrete model, we do not explicitly calculate the storage and retrieval
kernels that appear in equations (2.71), (2.80), (2.81), (2.92) and (2.93). Instead, we
calculate the action of these kernels on respectively a specific φA,in(t) or a spin wave
given by the coefficients Sj . For storage, this amounts to numerically solving equations
(4.86) and (4.89) for a given φA,in(t) and the initial condition Pj = Sj = 0 at t = 0.
We take the stored spin wave to be the coefficients Sj at t = µin/c + L/(2vg). This
final time is the sum of the time for propagation through vacuum and (half of) the EIT
medium. For retrieval, equations (4.86) and (4.89) are solved with φA,in(t) = 0 under
the initial conditions that at t = 0 the coefficients Sj(t = 0) are set to the spin wave
that is to be retrieved, and Pj(t = 0) = 0. At each time step, we calculate φA,out(t)
using equations (4.88) with Pj

(
t∓ (z − zj)/c

)
≈ Pj(t) along with equation (4.92). We

assume that the retrieval happens until t = L/vg, i.e. the time that it takes for the EIT
polaritons to move through the whole ensemble.

4.5.4 Using the storage and retrieval kernels

As an approximation to the fully discrete theory of section 4.5.3, one can use the contin-
uum theory of Ref. [55]. The continuum approximation allows the derivation of explicit
expressions for the linear maps (given in terms of integration with a particular kernel)
describing storage and retrieval.

To make the continuum approximation, we use the Hamiltonian in the form (3.26)
(with Ω(z) = Ω0). Instead of the state (4.84), we use

|ψ(t)〉 =

∫ (√
N

L
P (z, t)σ̂ba(z) +

√
N

L
S(z, t)σ̂ca(z)

)
|a〉N |vac〉 dz

+

(∫
Φ+(z, t)√

c
Ê†+(z)|vac〉 dz +

∫
Φ−(z, t)√

c
Ê†−(z)|vac〉 dz

)
|a〉N .

(4.96)

Note that if, for example, the excitation is entirely in the metastable states at a time t,
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we have

1 = 〈ψ(t)|ψ(t)〉 =
N

L2

∫ ∫
S∗(z, t)S(z′, t)[σ̂ab(z), σ̂ba(z

′)] dz =
1

L

∫ ∫
|S(z, t)|2 dz,

(4.97)

where we have used the continuum approximation
∑

j δ(z − zj) ≈ n0 (as discussed in
section 3.3.1 for the Heisenberg picture) together with the low excitation approximation
σaa,j ≈ 1 to get σaa(z) ≈ 1 and σbb ≈ 0. Equation (4.97) also gives the normalization
condition for S in the continuum model (and similarly for P ).

The equations for the coefficients are(
∂

∂t
± c ∂

∂z

)
Φ±(z, t) = ic

√
Γ1DN

2

1

L
P (z, t), (4.98)

∂

∂t
P (z, t) = i

(
∆0 + i

Γ′

2

)
P (z, t) + iΩ0S(z, t)

+ i

√
Γ1DN

2

(
Φ+(z, t)eik0z + Φ−(z, t)e−ik0z

)
,

(4.99)

∂

∂t
S(z, t) = iδ0S(z, t) + iΩ∗0P (z, t). (4.100)

As an extension to the theory of Ref. [55], we want to consider an input field which is,
in general, incident from both sides instead of only one. The approach that we use is
to consider the parts of the single photon excitation incident from both sides as being
stored separately from each other. When doing this we ignore the fact that the two
parts have opposite spatial phases e±ik0z, which interfere inside the ensemble to produce
a spatially modulated spin wave with amplitude proportional to cos(k0z).

This spatial modulation of the stored spin wave is very important for the Λ-scheme,
since the part of the excitation that is stored on the nodes of the standing wave of the
classical drive does not significantly change the scattering properties of the ensemble (see
section 4.3.1.2). Expressed in terms of the notation introduced in the fidelity calculations
(see equations (2.93) and (2.94)) we have R1,j(ωB) ≈ R0(ωB) for odd j with atoms
placed at positions zj = jπ/(2k0) (0 ≤ j ≤ N − 1), i.e. k0zj being an odd multiple of
π/2. With the photon incident from both sides, we ensure that there is no amplitude
on these atoms, since S(zj) ∝ cos(k0zj) = 0 for odd j. This is correctly reproduced
by the fully discrete model of section 4.5.3, since it always accounts for the phases of
free propagation. On the other hand, due to the removal of the rapidly varying spatial
phases in the continuum theory, this factor cos(k0zj) is not present in the two separate
parts of the stored spin wave. To compensate for this, we set R1,j(ωB) = R1,j−1(ωB)
for odd j. As we show in figure 4.8, this phenomenological adjustment of the reflection
coefficient gives results that are essentially indistinguishable from the results produced
by the fully discrete model of section 4.5.3. For the dual-V scheme, no such adjustment
of the reflection coefficients is needed neither in the continuum nor the discrete model,
which also produce indistinguishable results.
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Figure 4.8: Comparison of (a) unconditional and (b) conditional Choi-Jamiolkowski fi-
delities for the Λ-type scheme with different models used for EIT storage and retrieval
plotted as functions of the number of atoms N with fixed Γ1D/Γ = 0.5. The “discrete”
plots use the fully discrete theory of section 4.5.3, and the “kernel” plots use the dis-
cretized storage and retrieval kernels derived in section 4.5.4. In both cases, the optimal
∆c and σ̃ (width of the stored Gaussian spin wave) are found by doing numerical opti-
mization using the discretized storage and retrieval kernels, since the fully discrete model
is much more computationally demanding.

The photons incident from the left and right couple to different components of the
atomic coefficients, which can be written

P (z, t) = P+(z, t)eik0z + P−(z, t)e−ik0z, (4.101)

S(z, t) = S+(z, t)eik0z + S−(z, t)e−ik0z. (4.102)

After inserting these definitions into equations (4.98), (4.99) and (4.100) and separating
the components, we get(

∂

∂t
± c ∂

∂z

)
Φ±(z, t) = ic

√
Γ1DN

2

1

L
P±(z, t), (4.103)

∂

∂t
P±(z, t) = i

(
∆0 + i

Γ′

2

)
P±(z, t) + iΩ0S±(z, t) + i

√
Γ1DN

2
Φ±(z, t), (4.104)

∂

∂t
S±(z, t) = iδ0S±(z, t) + iΩ∗0P±(z, t), (4.105)

To solve for Φ+, P+ and S+, the approach in Ref. [55] can be directly used. It consists
of transforming into the coordinates z̃ = z/L and t̃ = t − z/c, Laplace transforming in
space, solving the algebraic equations of the Laplace transforms (under the adiabatic
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approximation ∂
∂tP+ ≈ 0) and then Laplace transforming back. As a minor modification,

we also transform back from the co-propagating time coordinate t̃ = t−z/c to the original
t (by replacing all t̃ by t in the final expressions). Solving for Φ−, P− and S− is simply
a spatial reflection of the original problem around z̃ = 1/2. We find that the stored spin
wave is

S+(z̃, t) =

∫ t

0
Ks(z̃, t− t′)Φ+(z̃ = 0, t′) dt′, (4.106)

S−(z̃, t) =

∫ t

0
Ks(1− z̃, t− t′)Φ−(z̃ = 1, t′) dt′, (4.107)

where the storage kernel (in the adiabatic approximation) is

Ks(z̃, t) ≈ −
√
bΩ∗0e

iδ0t

(Γ′/2)− i∆0
I0

(
2

√
|Ω0|2tbz̃

(Γ′/2)− i∆0

)
exp

(
− |Ω0|2t+ bz̃

(Γ′/2)− i∆0

)
, (4.108)

written in terms of b = (NΓ1D)/2 (related to the resonant optical depth by dopt = 4b/Γ)
and the modified Bessel function of the first kind I0. The retrieved field is

Φ+(z̃ = 1, t) =

∫ 1

0
Kr(z̃, t)S+(z̃, t = 0) dz̃, (4.109)

Φ−(z̃ = 0, t) =

∫ 1

0
Kr(1− z̃, t)S−(z̃, t = 0) dz̃, (4.110)

where the retrieval kernel is

Kr(z̃, t) ≈ −
√
bΩ0e

iδ0t

(Γ′/2)− i∆0
I0

(
2

√
|Ω0|2tb(1− z̃)
(Γ′/2)− i∆0

)
exp

(
−|Ω0|2t+ b(1− z̃)

(Γ′/2)− i∆0

)
. (4.111)

The stored spin waves are chosen such that they are centered at z̃ = 1/2 and be-
come narrower in space for increasing optical depth (see the fidelity derivations in sec-
tion 4.6 below). The input and output photon wave functions are centered around
times t ∝ L/vg = NΓ1D/(2|Ω0|2) = b/|Ω0|2. Inserting these mean values into equa-
tions (4.108) and (4.111), we see that the argument of I0 becomes very big, since√
|Ω0|2tbz̃ =

√
|Ω0|2tb(1− z̃) ∝ b and ∆0 = 0. This allows us to use the asymptotic

expansion I0(x) ≈ exp(x)/
√

2πx, which is valid for |x| � 1 and arg(x) < π/2. In this
limit, the kernels become

Ks(z̃, t) ≈ −
√
bΩ∗0e

iδt

2
√
π
√

(Γ′/2)− i∆0

1(
|Ω0|2tbz̃

)1/4 exp

−
(√
|Ω0|2t−

√
bz̃
)2

(Γ′/2)− i∆0

 , (4.112)

Kr(z̃, t) ≈ −
√
bΩ0e

iδt

2
√
π
√

(Γ′/2)− i∆0

1(
|Ω0|2tb(1− z̃)

)1/4 exp

−
(√
|Ω0|2t−

√
b(1− z̃)

)2

(Γ′/2)− i∆0

 .

(4.113)
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These formulas have a better numerical behavior compared to equations (4.108) and
(4.111), since one does not need to multiply the value of the I0 (exponentially large)
with an exponentially small factor. Hence, we always use equations (4.112) and (4.113)
in the numerical calculations.

The relations between the fields in this section and chapter 2 are

Φ+(z̃ = 0, t) =
1√
2
φA,in(t), (4.114)

Φ−(z̃ = 1, t) =
1√
2
φA,in(t), (4.115)

φA,out(t) =
1√
2

(
Φ+(z̃ = 1, t) + Φ−(z̃ = 0, t)

)
. (4.116)

The results of this section assume that the atoms can be modeled as a continuum, but
the scattering coefficients in equations (2.81) and (2.93) are only given at the discrete
atom positions. Hence, we need to sample the resulting continuum solutions at the
discrete positions of the atoms. In the numerical calculations, the continuum solutions
are always sampled as if the atoms were placed regularly independent of the actual
placement. To justify regular sampling, we note that instead of the rescaled position
coordinate z̃ = z/L, one could use z̃ =

∫ z
0 (n0(z′)/N) dz′ [55], where n0(z) is the local

density of the atoms. For an average density n0 = N/L, this rescaled coordinate is
equivalent to z̃ = z/L. For the local density n0(z) =

∑
j δ(z − zj), the rescaled position

becomes z̃ =
∑

j θ(z − zj)/N , where θ is the the Heaviside theta function. With the
convention θ(0) = 0, each zj is transformed into z̃ = (j − 1)/N regardless of the actual
value of zj . As shown in figure 4.7(b) for random placement of the atoms, even though
the continuum solutions seem to be able to reproduce the results of the fully discrete
theory to some degree, there are still significant differences, which we believe to be
caused by reflection of parts of the propagating excitation due to disorder, which are not
accounted for in the continuum theory. Hence, with randomly placed atoms, the fully
discrete model is required.

Having in mind both the separation of the spin waves into two independent parts
and the sampling of the continuum solutions at regular intervals, we can define the
storage and retrieval kernels that will be used in equations (2.92) and (2.93). (We use
the fidelity expressions with a single realization of the atomic ensemble, since in the
continuum approximation, there is no difference between regular and random placement
of the atoms.) We define the vector representing the spin wave to have 2N elements—for
two separately stored spin waves that have fields incident either from the left or from
the right as the input. Using the same storage time µin/c + L/(2vg) as for the discrete
model in section 4.5.3, the storage kernel is

Ks,j(tA) = Ks

(
z̃ = j/N, t = µin/c+ L/(2vg)− tA

)
/
√
N for 0 ≤ j ≤ N − 1, (4.117)

Ks,j(tA) = Ks

(
z̃ = 1− (j −N)/N, t = µin/c+ L/(2vg)− tA

)
/
√
N for N ≤ j ≤ 2N − 1,

(4.118)
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where we have assumed that the coefficients corresponding to S+ are stored in the part
of the vector with indices 0 ≤ j ≤ N − 1, and the coefficients corresponding to S− are
stored in the part of the vector with N ≤ j ≤ 2N − 1. The retrieval kernel is

Kr,j(tA) = Kr(z̃ = j/N, t = tA)/
√
N for 0 ≤ j ≤ N − 1, (4.119)

Kr,j(tA) = Kr(z̃ = 1− (j −N)/N, t = tA)/
√
N for N ≤ j ≤ 2N − 1. (4.120)

As a consequence of having a spin wave vector with 2N elements, in equation (2.93) we
define R1,j(ωB) = R1,j−N (ωB) for N ≤ j ≤ 2N − 1.

4.6 Analytical fidelity of the gate with Λ-type atoms

Here, we derive equations (4.9) to (4.12). We also derive the bandwidth dependent
correction to equation (4.9), which is used in the discussion of the gate time.

From equations (4.1) to (4.4), we find the approximate reflection coefficients of the
combined system of the atomic ensemble and the Sagnac interferometer. They are

R0 = −(r0 − t0) ≈ −
(

Γ1DΓ′N

16∆2
c

−
(

1− Γ1DΓ′N

16∆2
c

))
= 1− Γ1DΓ′N

8∆2
c

, (4.121)

R1,s(z̃) =
1

2
(R1(z̃) +R1(1− z̃)) = −1

2

(
r1(z̃) + r1(1− z̃)−

(
t1(z̃) + t1(1− z̃)

))
≈ −

(
1− 8π2∆2

cΓ′

Γ3
1DN

2
− 8π4∆2

c(Γ1D + Γ′)

Γ3
1DN

2

(
z̃ − 1

2

)2
)
.

(4.122)

Note that in the symmetrized reflection coefficient R1,s(z̃), the linear terms proportional
to ±(z̃ − 1/2) (which are present in equations (4.3) and (4.4)) cancel each other. Using
the expression for the spin wave given by equation (4.80) with µ̃ = 1/2 we get

R1,1 ≈
∫
R1,s(z̃)|S(z̃)|2 dz̃ = −

(
1− 8π2∆2

cΓ′

Γ3
1DN

2
− 8π4∆2

c(Γ1D + Γ′)

Γ3
1DN

2
σ̃2

)
(4.123)

Using equation (4.5), an approximation for the unconditional CJ fidelity is

FCJ ≈ 1− εb −
Γ1DΓ′N

16∆2
c

− 4π2∆2
cΓ′

Γ3
1DN

2
− 4π4∆2

c(Γ1D + Γ′)

Γ3
1DN

2
σ̃2 − 1

2

Γ′

NΓ1D

1

σ̃2
, (4.124)

where εb = 1− tb, and all the error terms (including εb) are assumed to be small.
In principle, if we want to optimize the above expression, we should optimize with

respect to ∆c and σ̃ simultaneously (we do this in the numerical calculations). Here, we
use an approximate optimization procedure, which ignores the fact that one of the error
terms depends on the product of ∆c and σ̃. As we will see, however, this error term is
smaller than the error terms, which only depend on ∆c for fixed Γ1D/Γ and large N .
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Therefore, we first optimize FCJ over ∆c separately and then use the optimal value of
∆c to optimize over σ̃. The optimal value of ∆c is determined by the condition that the
third and fourth error terms on the right hand side of equation (4.124) are equal, i.e.

Γ1DΓ′N

16∆2
c

=
4π2∆2

cΓ′

Γ3
1DN

2
. (4.125)

This results in

∆2
c =

Γ2
1DN

3/2

8π
. (4.126)

Inserting this value of ∆c into equation (4.124) we obtain

FCJ ≈ 1− εb −
πΓ′

Γ1D

√
N
− π3(Γ1D + Γ′)

2Γ1D

√
N

σ̃2 − 1

2

Γ′

NΓ1D

1

σ̃2
. (4.127)

We use this expression to optimize over σ̃. The optimal σ̃ is obtained when

π3(Γ1D + Γ′)

2Γ1D

√
N

σ̃2 =
1

2

Γ′

NΓ1D

1

σ̃2
. (4.128)

From this condition we get

σ̃2 =
1

π3/2N1/4

√
Γ′

Γ1D + Γ′
(4.129)

and with this value of σ̃, equation (4.127) becomes

FCJ ≈ 1− εb −
πΓ′

Γ1D

√
N
− π3/2

√
Γ1D + Γ′

√
Γ′

Γ1DN3/4
. (4.130)

We see that for N → ∞, the last term in this expression approaches zero faster than
the second one. Hence, in equations (4.9) and (4.11) we have omitted this term. The
difference between equation (4.9) and equation (4.11) is whether we set respectively
εb = 0 or εb = 1−R0 = (Γ1DΓ′N)/(8∆2

c) = (πΓ′)/(Γ1D

√
N).

Next we calculate the conditional fidelity FCJ,cond. Since it is given by FCJ,cond =
FCJ/Psuc, the expansion of the ratio will contain higher order error terms than the
expansion of the unconditional fidelity FCJ. Hence, we need an expansion of FCJ with
more terms than in equation (4.124). Including the second order terms and dividing out
ηEIT (since it gets canceled in FCJ,cond), we get

FCJ

ηEIT
≈ 1− εb −

Γ1DΓ′N

16∆2
c

− 4π2∆2
cΓ′

Γ3
1DN

2
− 4π4∆2

c(Γ1D + Γ′)

Γ3
1DN

2
σ̃2 (4.131)

+

(
1

2
εb +

Γ1DΓ′N

32∆2
c

+
2π2∆2

cΓ′

Γ3
1DN

2
+

2π4∆2
c(Γ1D + Γ′)

Γ3
1DN

2
σ̃2

)2

(4.132)
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Using equation (4.6), we also get the success probability

Psuc

ηEIT
=

1

4

(
2(1− εb)2 +

(
1− Γ1DΓ′N

8∆2
c

)2

+R1,2

)
, (4.133)

where

R1,2 ≈
∫
|R1,s(z̃)|2|S(z̃)|2 dz̃

= 1− 16π2∆2
cΓ′

Γ3
1DN

2
− 16π4∆2

c(Γ1D + Γ′)

Γ3
1DN

2
σ̃2 +

(
8π2∆2

cΓ′

Γ3
1DN

2

)2

+

(
8π4∆2

c(Γ1D + Γ′)

Γ3
1DN

2

)(
3σ̃4
)

+ 2

(
8π2∆2

cΓ′

Γ3
1DN

2

)(
8π4∆2

c(Γ1D + Γ′)

Γ3
1DN

2

)
σ̃2.

(4.134)

Using the above expressions, the conditional fidelity can be written

FCJ,cond ≈ 1− εcond,1 − εcond,2, (4.135)

where

εcond,1 =
1

4

2ε2b +

(
Γ1DΓ′N

8∆2
c

)2

+

(
8π2∆2

cΓ′

Γ3
1DN

2

)2
− 1

16

(
2εb +

Γ1DΓ′N

8∆2
c

+
8π2∆2

cΓ′

Γ3
1DN

2

)2

,

(4.136)

εcond,2 =
44π8∆4

c(Γ1D + Γ′)2

Γ6
1DN

4
σ̃4. (4.137)

Using the ∆c from equation (4.126), we get

εcond,1 =
1

2

ε2b +

(
πΓ′

Γ1D

√
N

)2
− 1

4

(
εb +

πΓ′

Γ1D

√
N

)2

, (4.138)

εcond,2 =
11π6(Γ1D + Γ′)2

Γ2
1DN

σ̃4. (4.139)

If we choose εb = 0, εcond,1 is the dominant error term with the value

εcond,1 =
1

4

(
πΓ′

Γ1D

√
N

)2

, (4.140)

in which case εcond,2 can be neglected. If we choose εb = (πΓ′)/(Γ1D

√
N), we get

εcond,1 = 0, and we need to keep εcond,2. The value of εcond,2 depends on the width of the
stored Gaussian σ̃. For simplicity, we use the value of σ̃ given by equation (4.129), which
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Figure 4.9: Comparison of (a) unconditional and (b) conditional Choi-Jamiolkowski fi-
delities for the Λ-type scheme plotted as functions of the number of atoms N with fixed
Γ1D/Γ = 0.5. Dotted green curves are the numerically calculated fidelities with tb = 1.
Dash-dotted black curves are the approximate analytical results given by equation (4.9)
(unconditional) and equation (4.10) (conditional). Solid blue curves are the numerically
calculated fidelities with tb chosen such that the entanglement swap fidelity (which is ap-
proximately equal to the conditional Choi-Jamiolkowski fidelity as shown in figure 4.10)
is maximal. The dashed red curves are the approximate analytical results given by
equation (4.11) (unconditional) and equation (4.12) (conditional). For storage and re-
trieval in the numerical calculations, we use the discretized continuum theory described
in section 4.5.4.

makes the unconditional fidelity maximal. With this choice, the conditional fidelity is
given by equation (4.12). A comparison of the analytical formulas and the numerical
results for FCJ and FCJ,cond is shown in figure 4.9.

As discussed in chapter 2, the abstract Choi-Jamiolkowski fidelity considered above
can be related to more concrete figures of merit, such as entanglement swap fidelity
and success probability in the setting of quantum repeaters. Furthermore, since FCJ

measures the probability for the photons to be in the right modes with the right phase,
whereas Psuc measures whether the photons are coming out, it holds that FCJ ≤ Psuc.
For our particular implementation of the controlled-phase gate, most of the error in FCJ

is caused by photon loss, and hence we have FCJ ≈ Psuc. At the same time, FCJ,cond

is a lower bound and an approximation for the entanglement swap fidelity Fswap. In
figure 4.10, we illustrate the approximate equalities of FCJ with Psuc and FCJ,cond with
Fswap.

Now we derive the correction to the unconditional fidelity due to non-zero band-
width of the scattered photon B. The general expression for the fidelity is given by
equation (2.94). As discussed in section 4.2 above, we ignore the non-zero bandwidth
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Figure 4.10: (a) Comparison of the Choi-Jamiolkowski fidelity FCJ for deterministic
operation of the controlled-phase gate with the success probability Psuc for heralded
operation of the gate. (b) Comparison of the conditional Choi-Jamiolkowski fidelity
FCJ,cond with the entanglement swap fidelity Fswap for heralded operation of the gate.
Both for (a) and (b), dotted green and dash-dotted black curves are calculated with
tb = 1, while the solid blue and dashed red curves are calculated with tb chosen such
that the entanglement swap fidelity Fswap is maximal. All quantities are plotted as
functions of the number of atoms N with fixed Γ1D/Γ = 0.5. For storage and retrieval,
we use the continuum theory described in section 4.5.4.

in the last term since the variation of r1 and t1 with frequency around the resonance
detuning δres is smaller than variation of r0 and t0. Hence, we approximate

1

ηEIT

∫ ∫
φ∗A,out,0(tA)φA,out,1(tA, ωB)|φB(ωB)|2 dtA dωB

≈ (1/ηEIT)

∫
φ∗A,out,0(t)φA,out,1(t) dt = R1,1

(4.141)

such that the expression for the fidelity becomes

FCJ =
ηEIT

16

∣∣∣∣2tb +

∫
R0(ωB)|φB(ωB)|2 dωB −R1,1

∣∣∣∣2 . (4.142)

Using equations (4.47) and (4.48) together with expressions t0 ≈ 1 − r0 and R0 =
−(r0−t0) and defining the spectral width of photon B by σB =

∫
(δ−δres)

2|φB(ωB)|2 dωB,
we get∫

R0(δ)|φB(ωB)|2 dωB ≈ R0(δres)− (4/w2)σ2
B

≈ 1− Γ1DΓ′N

8∆2
c

− Γ′|Ω0|2π2

∆2
cΓ1DN

− Γ6
1DN

6

512∆4
c |Ω0|4π4

σ2
B.

(4.143)
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Using the optimal ∆c from equation (4.126), this becomes∫
R0(δ)|φB(ωB)|2 dωB ≈ 1− πΓ′

Γ1D

√
N
− 8Γ′|Ω0|2π3

Γ3
1DN

5/2
− Γ2

1DN
3

8|Ω0|4π2
σ2
B. (4.144)

To minimize the sum of the two last error terms in this expression, we optimize over Ω0

and get ∫
R0(δ)|φB(ωB)|2 dωB ≈ 1− πΓ′

Γ1D

√
N
− 3× 21/3π4/3Γ′2/3

Γ
4/3
1D N

2/3
σ

2/3
B (4.145)

for the optimal

|Ω0|2 =
Γ

5/3
1D N

11/6σ
2/3
B

25/3π5/3Γ′1/3
. (4.146)

Then the fidelity (4.142) is

FCJ ≈ 1− εb −
πΓ′

Γ1D

√
N
− π3/2

√
Γ1D + Γ′

√
Γ′

Γ1DN3/4
− 3π4/3Γ′2/3

22/3Γ
4/3
1D N

2/3
σ

2/3
B , (4.147)

i.e. compared to equation (4.130), there is an extra error term that depends on σB.

4.7 Dependence on positions of the atoms

While the Λ-type scheme is highly sensitive to the exact placement of the atoms, the
dual-V scheme is much less sensitive. To verify this, we numerically evaluate the gate
performance for various placements of the atoms. First, we investigate the dependence
for regularly placed dual-V atoms with different interatomic spacings d. In figure 4.11, we
see that for k0d different from multiples of π/2, both the conditional and unconditional
fidelities are approximately constant.

Second, we consider randomly placed dual-V atoms. In figure 4.12, the fidelities with
regular and random placement are seen to have qualitatively the same behavior, but the
performance with random placement is slightly worse.

4.8 Relation to the atomic mirror

The controlled-phase gate proposed in this chapter is very demanding to experimental
parameters. For example, the relevant parameters of the setup in Ref. [3] are Γ1D/Γ =
0.0051/2 and N = 1300. With such parameters, realization of the controlled-phase gate
discussed in chapter 4 is impossible. Therefore, the experiment of Ref. [3] had a simpler
goal of making a so-called atomic mirror [21]. This effect can be observed with two-
level atoms and is remarkable in itself, because it is very different to the behavior of
atomic ensembles, where two-level atoms have random placement. For the latter case,
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Figure 4.11: Comparison of (a) unconditional and (b) conditional Choi-Jamiolkowski
fidelities for the dual-V scheme plotted as functions of the interatomic spacing d times
the photon wave vector k0 for fixed number of atoms N = 1000 and Γ1D/Γ = 0.5.
For storage and retrieval, we use the discretized storage and retrieval kernels derived in
section 4.5.4.

the Lambert-Beer law is valid, and the behavior of the probe pulse is such that the
transmittance and reflectance on resonance are given by

|t|2 = exp(−2NΓ1D/Γ), (4.148)

|r|2 ≈ 0, (4.149)

where the factor 2NΓ1D/Γ is the resonant optical depth. The main message here is that
with random placement, increasing the number of atoms just results in bigger losses of
the transmitted signal and virtually nothing gets reflected. On the other hand, if the
atoms are placed regularly with inter-atomic spacing of half of a wavelength, then the
transmittance and reflectance on resonance are instead given by [21]

|r|2 =
(NΓ1D)2

(Γ′ +NΓ1D)2
, (4.150)

|t|2 =
Γ′2

(Γ′ +NΓ1D)2
. (4.151)

With regular placement, we can arrange for almost perfect reflection of the signal for high
optical depths. In contrast with the random placement, the signal does not experience
losses in the ideal limit. Such kind of operation is necessary for coherent operation
of light and is required for deterministic controlled-phase gates for photons. In fact,
the controlled-phase gate for photons described in chapter 4 can be thought of as an
extension of the atomic mirror concept by making it a conditional atomic mirror. The
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Figure 4.12: Comparison of (a) unconditional and (b) conditional Choi-Jamiolkowski
fidelities for the dual-V scheme with different placement of the atoms (regular or random)
plotted as functions of the number of atoms N with fixed Γ1D/Γ = 0.5. The regularly
placed atoms have have positions zj = jd for d = 0.266π/k0 and 0 ≤ j ≤ N − 1. The
positions of the randomly placed atoms are chosen from the uniform distribution over the
whole ensemble and then sorted in increasing order. For random placement, we average
over 1000 ensemble realizations. For storage and retrieval, the fully discrete model of
section 4.5.3 is used. For regular placement, it gives the same results as the discretized
storage and retrieval kernels derived in section 4.5.4, but for random placement, the fully
discrete model has significant deviations from the discretized storage and retrieval kernels
as shown in figure 4.7. The optimal ∆c and σ̃ (width of the stored Gaussian spin wave)
are found by doing numerical optimization using the discretized storage and retrieval
kernels, since the fully discrete model is much more computationally demanding.

analogy is most apparent for the Λ-type scheme of the controlled-phase gate, where we
simply insert Λ-type atoms between the two-level atoms of the atomic mirror.



Chapter 5

Conclusion and outlook

The contributions of this thesis consist of three major parts. The first part is develop-
ment of the theory to characterize the performance of two-qubit (controlled-phase) gates
for photons with attention to specifics of the considered implementations. One of those
specific things is that errors are mostly limited by photon loss, which motivated a heavy
focus on conditional fidelities instead of unconditional ones. Even if, in general, it is not
clear how to postselect photon loss efficiently, for at least one application, such postse-
lection comes naturally. This application is quantum repeaters, where the entanglement
swap operation is conditioned on measurement of qubits in the computational basis.
Due to use of the dual-rail encoding of the photonic qubits, it is possible to discriminate
between measuring one of the four states of the computational basis (each including two
photons) and measuring vacuum (less than two clicks on the detectors), which indicates
that an error has occurred.

The second part of the thesis is focusing on the physics of stationary light. The
enhancement of light-matter interactions using stationary light can be explained in (at
least) two ways. One explanation is that the coupled light-matter excitations under
stationary light can have a small or even vanishing group velocity while maintaining a
large photonic component. Since small group velocity implies bigger interaction time of
the photons, this can give an increase in the effective photon-photon interaction strength.
A different explanation is that under stationary light, the ensemble behaves similar to an
optical cavity, which is often used to enhance light-matter and photon-photon interaction
strengths in conventional cavity QED. The main goal of this part was to understand the
behavior of each of different ways one can implement stationary light such that the best
one can be selected for a given purpose.

The third part of the thesis is about applying the theory and understanding of the first
two parts to propose a controlled-phase gate for photons. This gate uses additional level
in the atoms to add optical nonlinearity in the system and stationary light to enhance
it. Effectively the setup resembles a single two-level atom in a conventional optical
cavity. The quality of the effective stationary light induced cavity is determined by the
total number of the atoms in the ensemble and the single-atom coupling strength. In
particular, this implies that nonlinear interactions can be enhanced by the total number
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of atoms in the ensemble, which is often not the case. By a particular choice of the linear
optics elements coupled to the ensemble we also ensure that the fidelity conditioned on
presence of two photons after the gate operation, converges much more rapidly towards
unity than the unconditional fidelity. This is very important for quantum repeaters,
where extremely high conditional fidelities are required for achieving good secret key
rates. We thus investigate, how good the parameters of the gate have to be able to
compete with linear optics for this application.

Moving on to the discussion of possible extensions of the presented results, one spe-
cific thing which seems interesting is the combination of stationary light and Rydberg
blockade. In the systems that we have considered for the stationary light gate in chap-
ter 4, the moderate coupling strength of a single atom to light is accomplished by having
a dielectric medium close to the atom (e.g. a tapered optical fiber). This precludes usage
of Rydberg levels, since they will be disturbed by the dielectric medium close by. On the
other hand, if the atomic ensemble is in free space, the single-atom coupling strength is
so small that enhancing it by stationary light is virtually impossible. The hope is that
for these systems, one can use Rydberg blockade such that it is not the coupling strength
of a single atom that matters but the blockaded optical depth.

On a higher level, we see that there have been several proposals for deterministic
controlled-phase gates recently, including the one discussed in this thesis. Even though
many of them promise perfect deterministic operation in some limit of the experimental
parameters, attaining those parameters is still extremely challenging. At the same time,
we found that for quantum repeaters, deterministic operation of the controlled-phase
gate in chapter 4 was unable to compete with linear optics for any realistic parameters.
It is only when heralded operation of the stationary light gate was considered that
improvement over linear optics for reasonable (but still challenging) parameters could
be achieved. The intuitive reason is that linear optics can do the entanglement swapping
operation with 50% probability but with unit conditional fidelity. The stationary light
controlled-phase gate always has fidelity (conditional or unconditional) less than unity
and after few swap levels the errors grow even more. Here, it helps tremendously that
the proposed controlled-phase gate can operate in a heralded fashion with conditional
fidelity that is much closer to unity than the unconditional one. The same analysis
applies to the Rydberg blockade gate in Ref. [1].

If this is seen to be a general trend for the recently proposed controlled-phase gates
for photons, then the focus would need to shift to heralded operation of those gates, even
though they can operate deterministically in principle. Therefore, it would become a
search not for a completely deterministic controlled-phase gate for photons but a heralded
gate, which is better than linear optics for the given application. Ideally, the applications
of the controlled-phase gates for photons will not limited to quantum repeaters. The
linear optics was shown to be enough to realize universal quantum computation [40, 41],
but has prohibitively high resource requirements (in terms of the number of photon
detectors) [58]. It would be an interesting to find out, whether the stationary light
controlled-phase gate of chapter 4 (or any of the others in the literature) can bring down
the resource costs significantly, and how good it has to be for this to happen.



Appendix A

Derivation of the fidelity
expressions

A.1 Introduction

Here, we derive the expressions in section 2.8.

A.2 Fidelity of creation of a Bell state

We start with the fidelity of creation of a Bell state. To account for possibility of
many different realizations of the atomic ensemble, we use equation (2.20) together with
equation (2.77) to get

FBell =
1

Nr

Nr∑
n=1

(∣∣∣〈ψin|U †ABVn,AB|ψin〉
∣∣∣2 + 〈ψin|U †ABJn,AB

(
|ψin〉〈ψin|

)
UAB|ψin〉

)
. (A.1)

This expression reduces to equation (2.29) in the case of a single ensemble realization.
Due to the assumption (2.78), the term involving Jn,AB in equation (A.1) vanishes.
Using the definition (2.22) of the input state |ψin〉, the non-zero term can be written

∣∣∣〈ψin|U †ABVn,AB|ψin〉
∣∣∣2 =

1

16

∣∣∣∣∣∣
1∑

x,x′=0

1∑
y,y′=0

〈xx′|ABU †ABVn,AB|yy′〉AB

∣∣∣∣∣∣
2

. (A.2)

Since the operators for the ideal and real evolution of the controlled-phase gate given
by equations (2.76) and (2.79) are diagonal in the computational basis states, the cross
terms (x 6= y and x′ 6= y′) in equation (A.2) vanish, and we get fidelity (2.86)

To find the success probability, we start with equation (2.32). Using equations (2.77)
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and (2.82), we get

Psuc,Bell =
1

Nr

Nr∑
n=1

1∑
x,x′=0

∫ ∫ (∣∣∣〈xtAx′ωB |Vn,AB|ψin〉
∣∣∣2

+ 〈xtAx′ωB |Jn,AB
(
|ψin〉〈ψin|

)
|xtAx′ωB 〉

)
dtA dωB.

(A.3)

Again, due to the assumption (2.78), the term involving Jn,AB vanishes. Rewriting the
non-zero term, we get

Psuc,Bell =
1

4Nr

1∑
x,x′=0

1∑
y,y′=0

∫ ∫ ∣∣∣〈xtAx′ωB |Vn,AB|yy′〉AB∣∣∣2 dtA dωB. (A.4)

Using equations (2.79), we thus get the success probability (2.87).

A.3 Choi-Jamiolkowski fidelity

For the Choi-Jamiolkowski fidelity, using equations (2.20) and (2.77), we get

FCJ =
1

Nr

Nr∑
n=1

(∣∣∣〈Φ|(IA′B′ ⊗ U †ABVn,AB)|Φ〉
∣∣∣2

+ 〈Φ|(IA′B′ ⊗ U †AB)[IA′B′ ⊗ Jn,AB]
(
|Φ〉〈Φ|

)
(IA′B′ ⊗ UAB)|Φ〉

)
.

(A.5)

The expression above is a generalization of equation (2.45) for many different realizations
of the atomic ensemble. The term, involving Jn,AB can be rewritten to show more clearly
that it vanishes due to the assumption (2.78). Since UAB (ideal evolution operator) maps
basis states onto basis states, it suffices to show that for all

x1, x2, y1, y2, x
′
1, x
′
2, y
′
1, y
′
2 ∈ {0, 1} , (A.6)

it holds that

〈x′1x′2|A′B′〈x1x2|AB[IA′B′ ⊗ Jn,AB]
(
|Φ〉〈Φ|

)
|y′1y′2〉A′B′ |y1y2〉AB = 0. (A.7)

Using the definition (2.47) of the input state |Φ〉, we have

[IA′B′ ⊗ Jn,AB]
(
|Φ〉〈Φ|

)
=

1

4

1∑
x3,x4=0

1∑
y3,y4=0

[IA′B′ ⊗ Jn,AB]
(
|x3x4〉A′B′ |x3x4〉AB〈y3y4|A′B′〈y3y4|AB

)
=

1

4

1∑
x3,x4=0

1∑
y3,y4=0

IA′B′
(
|x3x4〉A′B′〈y3y4|A′B′

)
⊗ Jn,AB

(
|x3x4〉AB〈y3y4|AB

)
=

1

4

1∑
x3,x4=0

1∑
y3,y4=0

|x3x4〉A′B′〈y3y4|A′B′ ⊗ Jn,AB
(
|x3x4〉AB〈y3y4|AB

)
,

(A.8)
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we see that equation (A.7) holds because of the assumption (2.78), which implies that

〈x1x2|ABJn,AB
(
|x3x4〉AB〈y3y4|AB

)
|y1y2〉AB = 0. (A.9)

The non-zero term in equation (A.5) can also be rewritten. For all x, x′, y, y′ ∈ {0, 1},
we have∣∣∣〈Φ|(IA′B′ ⊗ U †ABVn,AB)|Φ〉

∣∣∣2
=

1

16

∣∣∣∣∣∣
1∑

x,x′=0

1∑
y,y′=0

〈xx′|A′B′〈xx′|AB(IA′B′ ⊗ U †ABVn,AB)|yy′〉A′B′ |yy′〉AB

∣∣∣∣∣∣
2

=
1

16

∣∣∣∣∣∣
1∑

x,x′=0

1∑
y,y′=0

〈xx′|yy′〉A′B′〈xx′|ABU †ABVn,AB|yy′〉AB

∣∣∣∣∣∣
2

=
1

16

∣∣∣∣∣∣
1∑

x,x′=0

〈xx′|ABU †ABVn,AB|xx′〉AB

∣∣∣∣∣∣
2

.

(A.10)

This is the same as equation (A.2), except for the cross terms (x 6= y and x′ 6= y′ in
equation (A.2)). Since both the ideal and real evolution of the controlled-phase gate
given by equations (2.76) and (2.79) is diagonal in the computational basis, the cross
terms vanish, and hence equations (A.10) and (A.2) are the same. The conclusion is
that Choi-Jamiolkowski fidelity is the same as the fidelity of creation of a Bell state,

FCJ = FBell. (A.11)

To find the conditional Choi-Jamiolkowski fidelity, we need to calculate the success
probability (2.46). We can write it

Psuc,CJ

= trA′B′AB

(
(IA′B′ ⊗ PAB)ρV(IA′B′ ⊗ PAB)†

)
= trA′B′AB

(
(IA′B′ ⊗ PAB)[IA′B′ ⊗ VAB]

(
|Φ〉〈Φ|

)
(IA′B′ ⊗ PAB)†

)
=

1

4

1∑
x,x′=0

1∑
y,y′=0

trA′B′
(
|xx′〉A′B′〈yy′|A′B′

)
trAB

(
PABVAB

(
|xx′〉AB〈yy′|AB

)
P †AB

)

=
1

4

1∑
x,x′=0

trAB

(
PABVAB

(
|xx′〉AB〈xx′|AB

)
P †AB

)
.

(A.12)

Using equation (2.77), and the assumption (2.78) the above becomes the same as equa-
tion (A.4). Hence, the success probabilities for heralded operation of the gate are the
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same both for the fidelity of creation of a Bell state and the Choi-Jamiolkowski fidelity,
i.e.

Psuc,CJ = Psuc,Bell. (A.13)

We also want to show that Choi-Jamiolkowski fidelity of the full circuit in figure 2.5
has the same fidelity. We assume that Hadamard operators are lossless and hence unitary.
In general, any unitary operator acting after the controlled-phase gate has no effect, since
fidelity is invariant unitary transformations. What is left to show is that any unitary
acting before the controlled-phase gate has no effect on Choi-Jamiolkowski fidelity.

We can show it in the general case, assuming that a unitary OAB acts before the
controlled-phase gate. In our specific case,

OAB = (IA ⊗HB). (A.14)

Then we can choose to use a different basis for writing the initial state |Φ〉. We choose
a transformed computational basis, where

|Φ〉 =
1

2

1∑
x,x′=0

(O†A′B′ ⊗O
†
AB)|xx′〉A′B′ |xx′〉AB. (A.15)

We denote the superoperators for ideal and real operation of the whole circuit for entan-
glement swap by respectively Ũ and Ṽ. The relation to the superoperators for the ideal
and real operation of the controlled-phase gate itself is

ŨAB(ρAB) = (HA ⊗HB)U
(
(IA ⊗HB)ρAB(IA ⊗HB)

)
(HA ⊗HB), (A.16)

ṼAB(ρAB) = (HA ⊗HB)V
(
(IA ⊗HB)ρAB(IA ⊗HB)

)
(HA ⊗HB). (A.17)

In terms of the operators ŨAB and Ṽn,AB that correspond to the superoperators ŨAB
and ṼAB, we have

ŨAB = (HA ⊗HB)UAB(IA ⊗HB), (A.18)

Ṽn,AB = (HA ⊗HB)Vn,AB(IA ⊗HB). (A.19)

Doing the same calculation as in equation (A.10), we get

∣∣∣〈Φ|(IA′B′ ⊗ Ũ †ABṼn,AB)|Φ〉
∣∣∣2 =

1

16

∣∣∣∣∣∣
1∑

x,x′=0

〈xx′|ABOABŨ †ABṼn,ABO
†
AB|xx′〉AB

∣∣∣∣∣∣
2

=
1

16

∣∣∣∣∣∣
1∑

x,x′=0

〈xx′|ABU †ABVn,AB|xx′〉AB

∣∣∣∣∣∣
2

,

(A.20)

where in the last line we have used equations (A.14), (A.18) and (A.19). The end result
is the same as in the calculation (A.10).
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For calculating the success probability in this case, we use the input state (A.15) and
tracing over the transformed basis states

(HA ⊗HB)|xtAx′ωB 〉 (A.21)

for all x, x′ ∈ {0, 1} (using the definitions of the Hadamard operators (2.84) and (2.85)).
We do the same calculation as in equation (A.12) and get

Psuc,CJ =
1

4Nr

1∑
x,x′=0

1∑
y,y′=0

∫ ∫ ∣∣∣〈xtAx′ωB |(HA ⊗HB)Ṽn,ABO
†
AB|yy′〉AB

∣∣∣2 dtA dωB

=
1

4Nr

1∑
x,x′=0

1∑
y,y′=0

∫ ∫ ∣∣∣〈xtAx′ωB |Vn,AB|yy′〉AB∣∣∣2 dtA dωB,

(A.22)

which is the same as equation (A.4).

A.4 Fidelity of entanglement swap

To calculate the fidelity of entanglement swap, we use equations (2.35), (2.37), (2.38)
and (2.83). (Also we call the input state |ψin〉 by |Φ〉, since it is the same as the input
state for Choi-Jamiolkowski fidelity, as discussed in section 2.4.4.) We can write

Fxx′ =
1

Psuc,xx′
〈φxx′ |A′B′trAB

(
(IA′B′ ⊗ Pxx′,AB)ρṼ(IA′B′ ⊗ Pxx′,AB)†

)
|φxx′〉A′B′ ,

(A.23)

where the success probability is given by equation (2.40). Using the Bell basis represen-
tation (2.48) of the initial state |Φ〉, we have

ρṼ = IA′B′ ⊗ ṼAB
(
|Φ〉〈Φ|

)
=

1

4

1∑
y1,y2=0

1∑
y3,y4=0

IA′B′ ⊗ ṼAB
(
|φy1y2〉A′B′ |φy1y2〉AB〈φy3y4 |A′B′〈φy3y4 |AB

)
=

1

4

1∑
y1,y2=0

1∑
y3,y4=0

|φy1y2〉A′B′〈φy3y4 |A′B′ ⊗ ṼAB
(
|φy1y2〉AB〈φy3y4 |AB

)
.

(A.24)

Using this and carrying out the projections onto |φxx′〉A′B′ in equation (A.23), it can be
written

Fxx′ =
1

4Psuc,xx′
trAB

(
Pxx′,ABṼAB

(
|φxx′〉AB〈φxx

′ |AB
)
P †xx′,AB

)
. (A.25)



APPENDIX A. DERIVATION OF THE FIDELITY EXPRESSIONS 114

Using equation (2.77) and the assumption (2.78), it can be further simplified to

Fxx′ =
1

4NrPsuc,xx′

Nr∑
n=1

∫ ∫ ∣∣∣〈xtAx′ωB |Ṽn,AB|φxx′〉AB∣∣∣2 dtA dωB, (A.26)

where Ṽn,AB is defined in terms of Vn,AB by equation (A.19).
The expressions for the success probabilities Psuc,xx′ can be written starting from

equation (2.40), which gives

Psuc,xx′ = trA′B′AB

(
(IA′B′ ⊗ Pxx′,AB)ρṼ(IA′B′ ⊗ Pxx′,AB)†

)
. (A.27)

Using equation (A.24), this becomes

Psuc,xx′ =

1∑
y,y′=0

trAB

(
Pxx′,ABṼAB

(
|φyy′〉AB〈φyy

′ |AB
)
P †xx′,AB

)
. (A.28)

Using equation (2.77) and the assumption (2.78), it can be further simplified to

Psuc,xx′ =
1

4Nr

Nr∑
n=1

1∑
y,y′=0

∫ ∫ ∣∣∣〈xtAx′ωB |Ṽn,AB|φyy′〉AB∣∣∣2 dtA dωB. (A.29)

To find the expressions for equations (A.26) and (A.29) we first calculate the states
Vn,AB(IA ⊗ HB)|φyy′〉AB. Using the definition of the Bell basis (2.18) and the real
evolution given by equation (2.79), they are

Vn,AB(IA ⊗HB)|φ00〉AB =
1

2

∫ ∫
φB(ωB)

(
tbφA,out,n,0(tA)|0tA0ωB 〉

+R0,n(ωB)φA,out,n,0(tA)|0tA1ωB 〉
+ tbφA,out,n,10(tA)|1tA0ωB 〉
− φA,out,n,11(tA, ωB)|1tA1ωB 〉

)
dtA dωB,

(A.30)

Vn,AB(IA ⊗HB)|φ01〉AB =
1

2

∫ ∫
φB(ωB)

(
tbφA,out,n,0(tA)|0tA0ωB 〉

−R0,n(ωB)φA,out,n,0(tA)|0tA1ωB 〉
+ tbφA,out,n,10(tA)|1tA0ωB 〉
+ φA,out,n,11(tA, ωB)|1tA1ωB 〉

)
dtA dωB,

(A.31)

Vn,AB(IA ⊗HB)|φ10〉AB =
1

2

∫ ∫
φB(ωB)

(
tbφA,out,n,0(tA)|0tA0ωB 〉

+R0,n(ωB)φA,out,n,0(tA)|0tA1ωB 〉
− tbφA,out,n,10(tA)|1tA0ωB 〉
+ φA,out,n,11(tA, ωB)|1tA1ωB 〉

)
dtA dωB,

(A.32)
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Vn,AB(IA ⊗HB)|φ11〉AB =
1

2

∫ ∫
φB(ωB)

(
tbφA,out,n,0(tA)|0tA0ωB 〉

−R0,n(ωB)φA,out,n,0(tA)|0tA1ωB 〉
− tbφA,out,n,10(tA)|1tA0ωB 〉
− φA,out,n,11(tA, ωB)|1tA1ωB 〉

)
dtA dωB.

(A.33)

The states Vn,AB(IA⊗HB)|φyy′〉AB are then projected onto the states (HA⊗HB)|xtAx′ωB 〉
in the integrands of equations (A.26) and (A.29). The latter states can be written

(HA ⊗HB)|0tA0ωB 〉 =
1

2

(
|0tA0ωB 〉+ |0tA1ωB 〉+ |1tA0ωB 〉+ |1tA1ωB 〉

)
, (A.34)

(HA ⊗HB)|0tA1ωB 〉 =
1

2

(
|0tA0ωB 〉 − |0tA1ωB 〉+ |1tA0ωB 〉 − |1tA1ωB 〉

)
, (A.35)

(HA ⊗HB)|1tA0ωB 〉 =
1

2

(
|0tA0ωB 〉+ |0tA1ωB 〉 − |1tA0ωB 〉 − |1tA1ωB 〉

)
, (A.36)

(HA ⊗HB)|1tA1ωB 〉 =
1

2

(
|0tA0ωB 〉 − |0tA1ωB 〉 − |1tA0ωB 〉+ |1tA1ωB 〉

)
. (A.37)

Using the above expressions, the success probability in equation (A.29) becomes

Psuc,xx′ =
1

64Nr

Nr∑
n=1

∫ ∫
|φB(ωB)|2

(∣∣f1 + f2 + f3 − f4

∣∣2
+
∣∣f1 − f2 + f3 + f4

∣∣2
+
∣∣f1 + f2 − f3 + f4

∣∣2
+
∣∣f1 − f2 − f3 − f4

∣∣2)dtA dωB,

(A.38)

where

f1(tA, ωB) = tbφA,out,n,0(tA),

f2(tA, ωB) = R0,n(ωB)φA,out,n,0(tA),

f3(tA, ωB) = tbφA,out,n,10(tA),

f4(tA, ωB) = φA,out,n,11(tA, ωB),

(A.39)

and the arguments of f1, f2, f3 and f3 in the integrand of equation (A.38) are omitted
for brevity. Note that the success probability (A.38) is independent of x and x′. Using
the parallelogram law,

|a|2 + |b|2 =
1

2
(|a+ b|2 + |a− b|2), (A.40)

in two stages, we see that

4
(
|f1|2 + |f2|2 + |f3|2 + |f4|2

)
= 2

(
|f1 + f2|2 + |f1 − f2|2 + |f3 + f4|2 + |f3 − f4|2

)
= |f1 + f2 + f3 − f4|2 + |f1 − f2 + f3 + f4|2

+ |f1 + f2 − f3 + f4|2 + |f1 − f2 − f3 − f4|2,
(A.41)
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Hence, we can further simplify equation (A.38) to

Psuc,xx′ =
1

16Nr

Nr∑
n=1

∫ ∫
|φB(ωB)|2

(
|f1|2 + |f2|2 + |f3|+ |f4|2

)
dtA dωB, (A.42)

such that the success probability Psuc,xx′ is is the success probability (2.87) divided by
4. Hence, the total success probability for a Bell measurement (2.41) is the same as
equation (2.87). Hence, together with the result (A.13) we have shown that

Psuc,CJ = Psuc,Bell = Psuc,swap. (A.43)

The fidelities Fxx′ (equation (A.26)) can also be shown be be independent of x and
x′ in the same way as the success probabilities Psuc,xx′ above. All Fxx′ result in the
equation (2.88), such that the same equation trivially gives the average entanglement
swap fidelity (2.42).



Appendix B

Numerical methods for the
continuum model

The truncations of both equations (3.33) for the Λ-type scheme and equations (3.51) for
the dual-color scheme can be written

0 = Mσ + g
√

2πV E, (B.1)

where

σ =



...

σ
(+2)
ac

σ
(+1)
ab

σ
(0)
ac

σ
(−1)
ab

σ
(−2)
ac
...


, V =



...
...

0 0
1 0
0 0
0 1
0 0
...

...


, E =

(
E+

E−

)
, (B.2)

and the definition of the matrix M depends on whether we consider equations (3.33) or
equations (3.51). For equations (3.33), we have

M =



. . .
...

...
...

...
...

...

· · · δ Ω∗0/2 0 0 0 · · ·
· · · Ω0/2 ∆̃ Ω0/2 0 0 · · ·
· · · 0 Ω∗0/2 δ Ω∗0/2 0 · · ·
· · · 0 0 Ω0/2 ∆̃ Ω0/2 · · ·
· · · 0 0 0 Ω∗0/2 δ · · ·

...
...

...
...

...
...

. . .


. (B.3)

For equations (3.51), we subtract n∆d (n is the number of the row such that the middle
one has n = 0) from the diagonal elements of the above matrix.
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We can write the equations for the electric field as(
q
n0

0

0 − q
n0

)
E =

g
√

2π

c
V Tσ, (B.4)

where V T is the transpose of the matrix V . Using equation (B.1) and defining

ME = (Γ1D/2)V TM−1V, (B.5)

equations (B.4) become (
ME,11 + q

n0
ME,12

ME,21 ME,22 − q
n0

)
E =

(
0
0

)
, (B.6)

where ME,kl are the elements of ME . This equation is the equivalent of equation (3.37),
but more general, since it is possible that ME,11 6= ME,22 (for the dual-color scheme).
For equation (B.6) to have non-trivial solutions, the determinant of the matrix on the
left hand side should be equal to zero. Hence, we get the equation(

q

n0

)2

+
q

n0
(ME,11 −ME,22)− det(ME) = 0, (B.7)

where det(ME) is the determinant of ME . The dispersion relation is found by solving
equation (B.7).



Appendix C

Effective mass for the regularly
placed Λ-type scheme

In this appendix, we derive the expression for the effective mass (3.100). For the single-
mode case, we have that

tr(Tcell) = λ+ 1/λ, (C.1)

where tr(Tcell) is the trace of Tcell, and λ is one of the eigenvalues of Tcell. Since the
length of the unit cell is Lu = π/k0, equation (C.1) together with equation (3.93) implies
that

cos(qLu) = −1

2
tr(Tcell), (C.2)

The right hand side of this equation is a function of δ. We will solve it perturbatively to
find δ as a function of q. Then the mass is found as the coefficient of the second order
term in q in the series expansion.

For small δ and Ω0 6= 0, the scattering coefficient βj (given by equation (3.62) with
Ω(zj) = Ω0 cos(k0zj)) can be approximated by

βj ≈ −i
Γ1D

2|Ω0|2 cos2(k0zj)
δ. (C.3)

The precise condition for this approximation to be valid is that

δ � |Ω0|2
|∆̃|

cos2(k0zj) (C.4)

has to be fulfilled for all the atoms in the unit cell which experience non-vanishing
classical drive, i.e. the frequency has to be within their EIT windows. The right hand
side of equation (C.4) is smallest for the atoms placed at k0zj = ±(π/2 − π/Nu) (see
figure 3.4). This leads to the condition given by equation (3.98) of the main text.

For the chosen unit cells in figure 3.4 and numbering the atoms from the left (such
that the leftmost atom in the unit cell has index j = 1), we have within the approximation
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above that βj for 1 ≤ j ≤ Nu − 1 is inversely proportional to the classical field strength.
We define

βc = −i Γ1D

2|Ω0|2
δ, (C.5)

so that for the chosen unit cells we have

βj ≈
βc

cos2((j −Nu/2)k0d)
(C.6)

with d = π/(Nuk0).
On the other hand, the last atom in the unit cell, which is positioned at the node

of the standing wave of the classical drive, will instead be described by equation (3.62)
with Ω(zj) = 0, i.e.

βNu ≈
Γ1D

Γ′ − 2i∆c
, (C.7)

where we have approximated ∆ ≈ ∆c, since we assume δ � ∆c. This last atom effec-
tively behaves as a two-level atom.

The claim now is that in this approximation and for even Nu, we have to first order
in βc that

1

2
tr(Tcell) ≈ −1− 2(Nu − 1)βNuβc. (C.8)

We will prove this claim below, but first we show how it leads to the desired expression
for the effective mass (3.100). If we expand the left hand side of equation (C.2) around
qd = 0, we find

cos(qLu) = cos(Nuqd) ≈ 1 +
1

2
N2

u (qd)2 . (C.9)

Then, using equations (C.8) and (C.9) for respectively the right hand side and the left
hand side of equation (C.2) together with equations (C.7) and (C.5), we get

1

2
(qd)2 ≈ − (Nu − 1)Γ2

1D

2N2
u(∆c + iΓ′/2)|Ω0|2

δ. (C.10)

Comparing this expression with equation (3.99), we find the mass given by equation (3.100).
Now we prove the claim (C.8). The transfer matrices for the atoms have elements

given by equations (3.86) with the scalar βj given by either equation (C.3) or equa-
tion (C.7). We first find the product of the transfer matrices for the atoms with
1 ≤ j ≤ Nu − 1 and free propagation between them. If Ta,j is the transfer matrix for
the atom with βj , and Tf is the free propagation matrix given by equation (3.89) with
d = π/(Nuk0), then we can recursively define the partial product by T (j) = TfTa,jT

(j−1)



APPENDIX C. EFFECTIVE MASS 121

for 2 ≤ j ≤ Nu − 1, and T (1) = TfTa,1. In terms of the elements of the matrix T (j) we
have to first order in βj that

T
(j)
11 ≈

1−
j∑

j′=1

βj′

 eijk0d (C.11a)

T
(j)
22 ≈

1 +

j∑
j′=1

βj′

 e−ijk0d (C.11b)

T
(j)
21 ≈

j∑
j′=1

βj′e
i(2j′−j−2)k0d (C.11c)

T
(j)
12 ≈ −

j∑
j′=1

βj′e
−i(2j′−j−2)k0d (C.11d)

We can now find

tr(Tcell) = tr
(
TfTa,NuT

(Nu−1)
)
. (C.12)

After writing the matrix product out, taking the trace and using exp(iNuk0d) = −1 we
get

tr(Tcell) ≈ −2− 4βNu

Nu−1∑
j=1

βj cos2((j −Nu/2)k0d) (C.13)

Using equation (C.6), the above simplifies to

tr(Tcell) ≈ −2− 4βNu

Nu−1∑
j=1

βc, (C.14)

which is the same as equation (C.8).
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