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Chapter 1

Introduction

The main theme in this thesis is noise in measurements on quantum systems. In particular, we will

consider the noise in measurements on atoms and on light. The contributions to the measured noise can

be classi�ed as shown in the scheme in Fig. 1.1. In this thesis we will present experimental work within

each of the six boxes in the �gure. We will start with the simplest experiments within the "upper right"

triangle in Fig. 1.1 and work our way down to the "lower left" triangle, with the demonstration of spin

squeezed atoms as the prime topic.

The variables of the electromagnetic �eld are typically measured with an arrangement of photodetec-

tors, whereas the atomic variables can be measured in several di�erent ways. Throughout this thesis we

will use spectroscopy with a probe beam of light to read out information about the atoms. The probe

�eld interacts with our atomic sample and subsequently carries information about the atoms. The noise

in the transmitted probe �eld is a sum of the light noise originally present in the probe and the atomic

noise added by the atom-light interaction.

The noise of the measured variables can be grouped into classical noise and quantum noise contri-

butions. When we talk about classical noise, we will not distinguish between a modulation we apply on

purpose and the unavoidable classical/technical noise like e.g. acoustic noise. In other words, we use

the term classical noise for any classical time dependent oscillations/uctuations. The classical noise

can be explained without using quantum mechanics. For example, if a classical electromagnetic �eld is

modulated in amplitude, it will have classical intensity noise at the frequency of modulation. The rms

value of this modulation is proportional to the intensity of the �eld; if we attenuate the intensity of the

�eld by a factor of two, the rms value drops by a factor of two1. The classical atomic noise is seen if we

somehow apply an external modulation to the atomic sample. The modulated atoms will, through the

atom-light interaction, result in a modulated atomic contribution to the probe signal. The rms value of

the atomic noise is proportional to the number of atoms interacting with the probe �eld. This classical

atomic noise is often considered to be "the signal" in atomic spectroscopy. In chapter 2 we describe a

spectroscopy experiment where the signal is induced by classical modulation of the atoms. However, as

we will also see in chapter 2, the distinction between signal and noise is decided by the actual experiment;

the classical atomic noise considered to be a signal in one experiment may in a di�erent experiment be

a noise source that we would rather be without.

The quantum noise contribution is the noise level basically dictated by the Heisenberg uncertainty

relation for noncommuting quantum operators. But even the quantum uctuations can be divided further

into two groups. One group contains the uctuations from systems of uncorrelated particles. In the other

group, the quantum noise is manipulated by the use of quantum correlated or entangled particles. These

particles can in our experiments be either atoms or photons.

The quantum state of light corresponding to uncorrelated photons is the coherent state. In a photon

picture the photon distribution in the coherent state is described by a stochastic Poisson process. In

1This holds for an applied amplitude modulation as well as for the amplitude modulation caused by e.g. acoustic noise.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Classi�cation of atom and light noise. The two main groups are classical and quantum noise.

The quantum noise can be divided further into noise from uncorrelated particles and noise from quantum

correlated particles. The gray "upper right" triangle covers the most simple experiments whereas the

experiments in the "lower left" triangle confront the experimentalist with a real challenge.

other words, all photons arrive at random to the photon detector. As a result the rms uctuations are

proportional to the square root of the average number of photons measured in a given measurement

time. The di�erent scaling for classical noise and quantum noise of uncorrelated photons makes it easy

to characterize the actual light source. Just double the optical power and see if the noise increases by

a factor of 2 (predominantly classical noise) or a factor of
p
2 (predominantly quantum noise). The

coherent state is the most classical state of light, and the output of many lasers approaches the coherent

state at high detection frequencies. At low frequencies the technical (e.g. acoustic) noise gives a huge

classical noise contribution on top of the coherent state quantum uctuations. By band pass �ltering of

the photocurrent produced by the photodetector, we can reach the coherent state quantum noise (also

called shot noise) at frequencies above, typically, a few MHz. Today the signal-to-noise ratio in atomic

spectroscopy is often fundamentally limited by the shot noise of the probe light. The experiment in

chapter 2 is such an example.

The physics becomes more challenging when we go from the "upper right" triangle to the "lower left"

triangle in the scheme in Fig. 1.1. The quantum noise of quantum correlated particles is interesting

from two di�erent viewpoints. One of them is the viewpoint of a spectroscopist. Systems of correlated

particles can have uctuations in collective observables below the standard quantum limit (SQL) set by

the uctuations of uncorrelated particles. Quantum correlations can therefore be utilized in ultra sensitive

spectroscopy with a noise level below the SQL. This holds in ordinary spectroscopy where the limiting

factor often is the shot noise of the probe �eld. But also the atomic quantum noise of uncorrelated atoms

can be a limiting factor. This is seen in the state of the art atomic clocks based on fountains of cold

atoms. The frequency stability of the clock is today limited by the atomic quantum noise (or projection

noise) from uncorrelated atoms [1]. The other viewpoint comes from quantum information, where an

essential part is control and manipulation of quantum states of systems composed of several qubits. Our

experiment on quantum correlated atoms involves manipulation of a quantum system of many atoms.

Although we do not have control at the qubit level, the scheme we use for correlating our atoms may

be extended in that direction. The measurement of reduced quantum noise is, within this context, our

evidence for successful manipulation and generation of multi-atom quantum correlations.

The �rst experiment within the "lower left" triangle was generation of squeezed light by R. E. Slusher

et al. in 1985 [2]. In the squeezed light the photons are pair-wise correlated so that e.g. the amplitude

of the �eld has uctuations below the shot noise level. Still, Heisenberg's uncertainty relation must be

ful�lled and the conjugate variable (the phase of the �eld) will have increased uctuations. In chapter

3 we describe our source of squeezed light together with an experiment on sub-shot noise polarization

spectroscopy of classically modulated atoms.

The rms quantum noise of uncorrelated atoms scales with the square root of the number of atoms
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being probed. Thus, just as with classical and quantum light noise, we can distinguish between classical

and quantum atomic noise by the dependence on the number of probed atoms. The �rst experiment,

where the atomic noise was observed and the
p
N scaling was indicated, utilized up to a few hundred

trapped ions and was carried out by W. M. Itano et al. in 1993 [3]. A much more reliable measurement of

the
p
N dependence was measured by our group in a polarization spectroscopy setup with cold trapped

atoms in 1998 (chapter 7 and Ref. [4]). Subsequently, the atomic quantum noise has been observed in

the atomic fountain clock [1] and in atomic QND measurements [5].

The most challenging experiment is the observation of a change in the atomic noise properties caused

by quantum correlated atoms. In Ref. [6] we report on the observation of reduced uctuations in a

collective atomic spin component due to quantum correlated atoms. The e�ect is analogous to squeezing

of light where correlations reduce the uctuations in a given observable below the quantum uctuations

of uncorrelated photons. The analogy also goes into the terminology; the prepared quantum correlated

atomic ensemble is said to be spin squeezed. The detection of reduced quantum noise in spin squeezed

atoms is the main topic in this thesis. The spin squeezed atoms are generated by mapping the quantum

state of squeezed light onto certain atomic spin components. This mapping of quantum correlations

from one quantum system to another quantum system links our experiment to the notion of quantum

information. We could consider the correlated photons to be the quantum information carriers and the

atoms to be the storage medium for quantum information [7]. In this thesis we consider mapping of

squeezed light, but other nonclassical states of light may be used too, as proposed theoretically in Ref.

[8].

The initial theory behind the spin squeezing experiment is given in Ref. [9]. In chapter 4 we extend

this theory to atoms with nonzero ground state angular momentum and for an arbitrary polarization

squeezed excitation �eld. This extension is found to be nontrivial and brings the theory closer to the

experimental realization. Chapter 5 introduces the concept of spin squeezed states, and the results of

chapter 4 are related to the notion of spin squeezing. In chapter 6 we present the theory for the readout

of atomic uctuations using a coherent state probe of light. Note that the theoretical chapters include

the coherent �eld excitation and the quantum noise of uncorrelated atoms as a special case. We therefore

choose to present the full theory before the two experimental chapters on quantum noise of uncorrelated

atoms (chapter 7) and quantum noise of spin squeezed atoms (chapter 8).

The future prospects for spin squeezed atoms are discussed in chapter 9. A new project based on an

atomic fountain (similar to the fountains used in frequency standards [1]) is currently under construction

in our laboratory. The new experiment involves spin squeezing in the atomic ground state and quantum

memory. The ideas and advantages behind this new experiment are presented.

The �nal chapter is a r�esum�e of the thesis with emphasis on the main results and conclusions from

each chapter.
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Chapter 2

Spectroscopy on classically

modulated atoms

In this chapter we investigate the classical contributions to the signal and noise when atoms are probed by

a beam of light. Although the main theme in this thesis is the quantum noise in atom-light interactions,

it is instructive �rst to consider the classical counterparts. In particular, we consider the polarization

and intensity noise of a probe �eld after interaction with a classically modulated atomic ensemble.

The measured probe noise induced by this classical modulation is usually referred to as the signal in

atomic spectroscopy. However, the distinction between "signal" and "noise" is not unique. What in one

experiment is considered to be a signal, may in other experiments be a noise source. We will see such an

example at the end of this chapter. The classical noise is described by a semi-classical theory involving

classical electromagnetic �elds and mean values of atomic observables. In the following chapters we will

extend this theory to include quantized �elds as well as quantum uctuations of the atomic observables.

We begin this chapter with an introduction to our atomic sample. We use cesium atoms, which are

cooled and trapped in a magneto-optical trap (MOT). The MOT is an important tool in our experiments,

and the working principles of the MOT are important for the understanding of the experiments presented

later on. The MOT parameters relevant for our experiments are mainly the density of atoms and the

overall number of trapped atoms. These two parameters are measured by absorption spectroscopy with

a weak probe �eld. We continue with a section on double-optical resonance, which is a technique used

extensively throughout this thesis. We use double-optical resonance with a weak probe on the upper

transition to probe certain properties of the atoms in the intermediate state. In this chapter, we also

introduce the polarization interferometer (PI). This device is used along with the double-optical resonance

technique for probing atoms. When the PI is employed, we get access to certain intermediate state atomic

spin components. We complete this chapter with our experiments concerning spectroscopy on classically

modulated atoms.

2.1 The magneto-optical trap

The atomic samples used in the experiments presented in this thesis are cesium atoms trapped and

cooled in a magneto-optical trap (MOT). Cesium is very convenient for interaction with squeezed light

due to the atomic transitions frequencies. Some of the best sources for production of squeezed light

are based on the sub-threshold OPO with KNbO3 as the non-linear material (see chapter 3). The

non-critical phase matching of a-cut KNbO3 can be achieved for the 850nm-920nm wavelength range

by adjusting the crystal temperature between 0ÆC and 130ÆC: Thus, both the 6S1=2 ! 6P3=2 (852nm)

and the 6P3=2 ! 6D5=2 (917nm) transitions in Cs are covered by the KNbO3 based squeezing source.

Furthermore, the relatively simple level structure of cesium makes cooling and trapping in a MOT quite

5



6 CHAPTER 2. SPECTROSCOPY ON CLASSICALLY MODULATED ATOMS

Figure 2.1: a) The 1D absorption pro�les the for �+ and �� polarized counterpropagating laser �elds

versus the atomic velocity. The net e�ect is a damping force on the atoms. b) The 1D position dependent

energy levels are the result of the magnetic �eld gradient. At positive z the �� �eld is resonant and

pushes atoms back to z = 0. The �+ �eld is resonant at negative z. The net e�ect is a "spring force" on

the atoms.

easy, and the trapping transition at 852nm can be reached by inexpensive diode lasers. Since the �rst

demonstration of magneto-optical trapping in 1987 [10], the MOT properties (e.g. temperature, density

and overall number of atoms) have been studied extensively. Densities on the order of 1012cm�3 and

temperatures as low as 4�K have been achieved for a small Cs MOT with a trap diameter below 50�m

[11]. The small, dense and cold MOT was the �rst step in generation of Bose-Einstein condensation in

a dilute Rb gas [12]. The MOT has also been used in a number of quantum optics experiments where

the demands on temperature and density are less stringent. In these experiments, as well as in ours, the

basic requirements to the atomic sample are a Doppler width much smaller than the natural linewidth

and enough atoms for eÆcient light-atom interaction. A standard MOT is used because it is robust and

easy to operate. Very large traps (1.1cm diameter) containing a large number of atoms (3�1010) can
be obtained by the use of large and powerful laser beams [13]. The uorescence photons in the large

traps experience multiple scattering before escaping the atomic cloud. This radiation trapping heats the

atoms, and the temperature can reach the mK level [14, 15]. However, the Doppler width is still small

compared to the natural linewidth.

2.1.1 The basic MOT theory

The theory behind the MOT is most easily explained in one dimension. Two forces are needed to cool

and trap atoms; a damping force, which always acts in the direction opposite to the atomic velocity,

and a "spring force", which acts towards the center of the trap. The damping force is provided by

two counterpropagating, red-detuned and circularly polarized laser beams (Fig. 2.1a). If an atom is

moving towards one of the laser beams, it will, because of the Doppler shift, absorb more photons

from the counterpropagating laser beam than from the copropagating beam. Each photon absorption is

accompanied by a momentum kick in the laser beam direction and followed by a spontaneous emission

together with a momentum kick in a random direction. After many absorption/emission cycles, the

atomic velocity is reduced by this cooling method known as Doppler cooling.

The spring force requires Zeeman degeneracy of the atomic excited state and a magnetic �eld gradient.



2.1. THE MAGNETO-OPTICAL TRAP 7

We consider for simplicity a Fg = 0! Fe = 1 transition, where Fg and Fe are the total atomic angular

momentum in the ground- and excited state. The position dependent splitting of the Zeeman levels due

to the magnetic �eld gradient is shown in Fig. 2.1b. At positive z positions the �� polarized �eld is

close to resonance with the jFg ; 0i ! jFe;�1i transition, whereas the �+ �eld is far from resonance with

the jFg ; 0i ! jFe;+1i transition1. The situation is opposite at negative z. Atoms at positive (negative)

z positions mostly absorb photons from the �� (�+) �eld and they are hence pushed towards z = 0.

In real life things are a bit more complicated. First of all, atoms are trapped and cooled in three

dimensions. This is easily achieved by using three pairs of counterpropagating laser �elds - one pair for

each dimension. A pair of coils in the anti-Helmholtz con�guration provides the necessary magnetic �eld

gradients in all three dimensions with zero magnetic �eld in the center. Most atoms have Zeeman degen-

erate ground states (Fg > 0). The Doppler cooling mechanism still works with a minimum temperature

given by the Doppler limit TD = ~=2kB, where  is the linewidth of the cooling transition. It is possible

to go below TD when the polarization gradients of the overall excitation �eld and the degeneracy of the

ground state is taken into account [16, 11].

2.1.2 Characterization of the MOT by absorption spectroscopy

The basic component of the vapor cell MOT is a vacuum chamber with viewports for three pairs of

counterpropagating laser beams in three dimensions. A cesium cell with a valve is connected to the

chamber so that the cesium pressure inside the vacuum chamber can be adjusted by opening/closing the

valve. The atoms are trapped from the low velocity tail of the Maxwell distribution of atoms at room

temperature. An ion-pump is used to keep the pressure of gases other than Cs at around 10�9torr. The
typical Cs pressure is 10�8torr. A pair of coils in an anti-Helmholtz con�guration provides a quadrupole

magnetic �eld with a maximum �eld gradient at the center of about 10gauss/cm.

Besides the chamber we also need the lasers. In all experiments presented in this thesis we use the

same vacuum chamber for the MOT, whereas di�erent lasers are used for the cooling and trapping. In

the �rst experiments we use a diode laser (SDL 5401), which is stabilized by optical feedback from a

grating. The construction of the MOT based on diode lasers is described in detail in Ref. [17]. The

diode laser is inexpensive and easy to operate. However, the large excess phase noise of the diode laser

[18, 19] is found to be a major obstacle in observation of the quantum noise of independent atoms [20].

In the measurements on atomic noise, we substitute the diode laser for trapping with a much more

quiet Ti:Sapphire laser. Besides having better noise properties, the Ti:Sapphire laser also produces more

power, and that improves the number of atoms trapped in the MOT. In the �rst setup we use only �ve

laser beams although the standard MOT geometry consists of six laser beams as described above. Two

beams are counterpropagating and the other three beams are in the plane perpendicular to the �rst two

beams and at an angle of 120Æ to each other. This geometry is not eÆcient in terms of laser power since

three of the beams cannot be reused by simple retroreection. When we modi�ed the trap to utilize the

Ti:Sapphire laser, the con�guration was changed to a standard six beam MOT with retroreection of

the three beams. At the same time the size of the beams was increased from about 6mm to 25mm in

diameter. The increase in beam size is required for optimum trapping with the larger power provided

by the Ti:Sapphire laser [13]. The diode laser gives us about 15-20mW for trapping, whereas we have

150-200mW optical power for trapping when the Ti:Sapphire laser is used. At the end of this chapter we

show a picture of the MOT vacuum chamber and the surrounding optics for the six-beam con�guration,

(Fig. 2.8, page 22).

The relevant atomic levels in cesium are shown in Fig. 2.2a. Trapping and cooling take place on

the closed transition 6S1=2F = 4 ! 6P3=2F = 5. The splitting between 6P3=2F = 5 and 6P3=2F = 4 is

around 250MHz (50=2�), and there is a small probability (� 10�4) of exciting atoms on the 6S1=2F =

4 ! 6P3=2F = 4 transition. Atoms can subsequently decay to the other ground state 6S1=2F = 3. A

repumping laser on 6S1=2F = 3 ! 6P3=2F = 4 pumps atoms in the F = 3 ground state back into the

1
�
+ and �

� do not refer to the helicity of the �elds (quantization along the direction of �eld propagation). Instead, we

describe the polarizations of the two �elds using a common quantization axis.
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Figure 2.2: a) The relevant energy levels in Cs and the three �elds interacting with the atoms (trapping,

repumping and probe �eld). The decay from 6D to 7P has a branching ratio of only 0.4%, but this is

enough to observe the blue uorescence at 456nm when a strong probe �eld is present, see Fig. 2.8 page

22. b) Absorption spectra for a weak 852nm probe scanned across the atomic resonance in the "dark".

Narrow pro�le (dots): reduced atomic density. Broad pro�le (triangles): maximum trap density. Solid

lines: Fit to Eq. (2.1).

cooling cycle. In all experiments we use a diode laser (SDL 5401) for repumping with around 30mW of

available power. The laser frequencies are locked close to the atomic transitions by an electronic feedback

loop, utilizing an error signal obtained from standard FM saturation spectroscopy methods [21, 22]. The

repumping laser is locked at exact resonance, whereas the trapping laser is detuned between 5 and 15MHz

to the red. The tuning of the trapping laser is made possible by an acousto-optical modulator (AOM)

in the probe path of the saturation spectroscopy setup. The RF frequency of the AOM supply sets the

frequency of the trapping laser relative to the atomic transition frequency.

Initially we had a single Ti:Sapphire laser (Microlase MBR-110) pumped by an Ar-ion laser (Spectra-

Physics 2080). This laser was used for probing the atoms in the MOT on the 6P3=2 ! 6D5=2 transition

at 917nm (Fig. 2.2a). When we realized that the phase noise of the diode laser prevented us from

observing the quantum noise of independent atoms, we decided to build a second Ti:Sapphire laser. The

construction of this laser is described in detail in Ref. [23]. Both Ti:Sapphire lasers are pumped by the

same Ar-ion laser. In the �rst atomic quantum noise experiment we use the home-made Ti:Sapphire

laser for trapping and the MBR-110 for probing. In the spin squeezing experiment we �nd it more

advantageous to change the role of the two lasers. However, the trapping parameters in terms of beam

size, power and detuning are similar in the two experiments.

The most relevant MOT parameter for our experiments is the optical depth � for a probe of light. �

describes the eÆciency at which the probe interacts with the atomic sample, and it is de�ned through

the transmission as T = exp (��). Depending on the type of experiments, we either require � to be

large or small compared to 1. It also depends on the experiment whether it is the optical depth on the

852nm transition or on the 917nm transition which is of importance. In the experiment on modulated

MOT spectroscopy (section 2.4) we do not need a large � because of the high eÆciency of the modulation

technique. In the squeezed probe experiment (chapter 3) � should be small since large absorption will

deteriorate the squeezing. In the �rst experiment where the atomic quantum noise is observed (chapter

7) it is an advantage to have large � on the probe transition because the quantum noise (variance) scales

linearly with the number of atoms. Finally, in the spin squeezing experiment (chapter 8) we need a large

optical depth on the pump transition (852nm) in order to eÆciently map the quantum correlations of
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light onto the atoms.

Here we consider the optical depth on the 6S1=2F = 4 ! 6P3=2F = 5 (852nm) transition when a

Ti:Sapphire laser is used for trapping. We turn o� the trapping beams in order to probe the atoms

without the inuence of the strong trapping beams. In the following "dark" period we measure the

absorption of a weak probe scanned across resonance with a rate of 0.4MHz/�s. The probe �eld comes

from the laser used for trapping, and it is scanned in frequency by the use of two AOMs. We turn o�

the current in the coils generating the quadrupole magnetic �eld at the time when the trapping beams

are turned o�. The measured absorption spectra for maximum � and a somewhat reduced � are shown

in Fig. 2.2b (dots and triangles). The optical depth is reduced by attenuation of the repumping �eld.

Without any excess broadening, the absorption spectrum is given by

T (�) = exp (�� (�)) = exp

�
�

�0�l

1 + 4�2=2

�
(2.1)

�0 =
2F + 3

2F + 1

�2

2�

� = !atom � !field is the atom-laser detuning, � is the density of atoms, l is the diameter of the

atomic cloud,  is the natural linewidth and �0 is the resonant absorption cross section. The expression

for �0 is valid for an F ! F 0 = 1 transition with unpolarized atoms and arbitrary polarization of the

probe �eld, see chapter 6, Eq. (6.16). Fitting the small � data in Fig. 2.2b to Eq. (2.1) with � and 

as free parameters gives fit=2� = 5:42MHz. An average over six independent absorption measurements

gives fit=2� = 5:58 � 0:05MHz. We can deduce the density of trapped atoms by �tting the large �

measurements in Fig. 2.2b to Eq. (2.1). For a large resonant optical depth �0 we can approximate Eq.

(2.1) by T (�) ' exp
�
��02=�2

�
, and we can no longer �t  and �0 independently. We therefore �t the

large � measurements to the absorption spectrum in Eq. (2.1) with =2� �xed at 5.58MHz. The �t is

shown in the �gure as a solid line2, and it gives a resonant optical depth of �0 = 23�3. The discrepancy

between the �t and the measurements at detunings below -20MHz is explained by the probe moving o�

the trap when the AOM frequency is scanned very far. Only the data between �22MHz are used in the

�t. The diameter of the trap is estimated from uorescence pictures taken with a CCD camera. The

measured diameters in the horizontal and vertical plane agree within 10%, and the maximum FWHM

diameter observed is 6.2�0:5mm [23]. For large traps the density is almost constant within the trap [15],

and we can estimate the density and overall number of trapped atoms as

� =
�0

�0l
=(2:6� 0:4) � 1010cm�3 (2.2)

N =
4�l3�

24
=(3:2� 0:9) � 109

The measured density is in agreement with previous results for a large Cs MOT with similar parameters

[13]. When we use the diode laser for trapping, the MOT is somewhat smaller with a diameter of about

1.5mm and a density near 3�109cm�3.
The measured linewidth fit=2� is about 7% larger than the known natural linewidth of 5.23MHz

[24]. Several possible contributions to the excess broadening exist: power broadening by the probe,

Doppler broadening from nonzero temperature, optical pumping, magnetic broadening, and nonzero

laser linewidth (about 100kHz). In the following we discuss the importance of each contribution.

The power broadened linewidth is given by 
p
1 + 2s0, where we have de�ned the resonant saturation

parameter as s0 = �0�=�w
2 with � as the probe photon ux and 2w as the probe diameter. s0 can

be written in terms of a saturation intensity as s0 = I=Isat with Isat = 5:50mW/cm2. For a 2�W probe

with a beam radius of 0.7mm, we deduce a power broadened linewidth of 1.02.

2We explain the 2.5% transmission at � = 0 by a small fraction of non-resonant light in the probe. This is possible if

a small part of the travelling soundwave in the AOM is reected on the crystal surface. The -1 order of the reected wave

will be di�racted into the same spatial mode as the +1 order di�raction of the main soundwave.
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The �nite temperature of the atoms adds Doppler broadening to the measurement with a FWHM

linewidth of Æ�D = 243
p
T=TD kHz. The Doppler limit for Cs is given by TD = ~=2kB = 125�K. The

temperature in a MOT with powerful trapping beams scales as [15, 11]

T = A+BN1=3 
p
st0

�
(2.3)

st0 is the total saturation parameter for the trapping beams. The constants A and B are in our notation

given by A=30�K and B=0.36�K. Using 6 trapping beams with a 2.5�0:2cm diameter and 60�5mW in

each beam gives an average saturation parameter in the center of st0 = 27� 5. With �=2� = 12� 2MHz

we get a MOT temperature of T = 1:2�0:3mK. The Doppler width is then found to be Æ�D ' 0:75MHz.

For the small � measurement in Fig. 2.2b, the number of atoms are somewhat smaller. The trap size is

measured to be about 4mm and with �0 ' 1 we get N ' 6 � 107 and Æ�D ' 0:4MHz. Addition of the

independent contributions from Doppler broadening and laser linewidth gives Æ� =
�
Æv2

D
+ Æ�2

L

�1=2 '
Æ�D:

Optical pumping by the weak probe beam can decrease the observed linewidth. When the �+

polarized probe approaches resonance it will start to optically pump atoms into the jF = 4;m = 4i
state. The absorption cross section on the j4; 4i ! j5; 5i transition is almost 3 times larger than �0 from

Eq. (2.1), and consequently the absorption is increased at resonance. This problem can be circumvented

by optically pumping of all atoms into j4; 4i before doing the spectroscopy. However, optical pumping

is not that easy in the presence of a magnetic �eld perpendicular to the circularly polarized probe �eld.

The typical time scale for optical pumping is given by the inverse excitation rate (s0)
�1 ' 1:5�s. The

pumping is destroyed by Larmor precession of the atomic spin around the direction of the magnetic �eld.

The Larmor period for the 6S1=2 F = 4 state in a 1gauss �eld (the typical residual �eld from ion-pump,

earth �eld etc.) is 2.7�s. With the Larmor period comparable to the optical pumping time we neglect

the e�ect of optical pumping.

The magnetic broadening has two contributions. In a homogeneous magnetic �eld, the di�erent

jF = 4;mi ! jF 0 = 5;m+ 1i transitions have di�erent resonance frequencies because the gyromagnetic
ratios for the upper and lower state are unequal. The predominant contribution with a magnetic �eld

gradient present is the di�erent Zeeman splittings for di�erent atoms/positions. We can estimate the

gradient contribution to the magnetic broadening by the product of the �eld gradient (10gauss/cm), the

diameter of the trap (4mm), and the ratio of the Larmor frequency to the magnetic �eld (0:37MHz/gauss),

and we get Æ�B ' 1:5MHz. The measured linewidth for small �0 is found to increase by 1.2MHz to

6.80�0:10MHz when the magnetic �eld gradient is present during the probe absorption measurement.

The measurements in Fig. 2.2b are taken after the trapping beams and the current to the coils are turned

o�. However, the chamber itself has the shape of a torus and is made of stainless steel. It is possible that

a current is induced in the chamber when the gradient coils are shut down. A measurement with a small

probe coil close to the chamber indicates that this is in fact the case, although a careful measurement at

the center of the chamber was never done.

If we add the Doppler broadening to the power broadened natural linewidth we get a Voigt pro�le

with Lorentz=2� = 5:3MHz and Gauss=2� = 0:4MHz. However, this pro�le is still well �tted with a

pure Lorentzian lineshape with  = 5:3MHz. We believe that the observed excess broadening is caused

mainly by the residual magnetic �eld gradient together with the bias �eld from ion-pump, earth magnetic

�eld etc. The di�erence in excess broadening for the small and large �0 measurements in Fig. 2.2b is

expected to be small compared to 5.58MHz, and its e�ect on the measured maximum optical depth �0
is within the stated uncertainty.

2.2 Double-optical resonance

We now consider the probing of excited state Cs atoms on the 6P3=2F = 5! 6D5=2F = 6 transition at

917nm (Fig. 2.2a). The atoms are excited to the F = 5 state by the rather strong trapping �elds, and we
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probe the atoms while the MOT is running. Closely related experiments on excited state spectroscopy

on cold trapped atoms can be found in Ref. [25, 26].

The experimental situation can be described by a three-level atom interacting with two near-resonant

laser �elds if we neglect the Zeeman degeneracy of the atomic states. The theory for this system, known

as double-optical resonance or cascade two-photon transitions, is derived for arbitrary intensities and

detunings for the two �elds in Ref. [27]. We will use the terms pump �eld or excitation �eld for the

laser �eld exciting atoms on the lower transition
�
6S1=2F = 4! 6P3=2F = 5

�
and probe �eld for the �eld

interacting with atoms on the upper transition
�
6P3=2F = 5! 6D5=2F = 6

�
. It is possible to arrive at

rather simple analytical expressions for this system under the constraints of a weak probe. The results

in Ref. [28] can be used to derive the following expression for the complex probe susceptibility

� = �r + i�i =
13��3

11 � 8�2
s0

2s0 + 1 + 4�2=2
� (i21 ��0) 0

(i21 ��0) (i0=2����0)� s02=4
(2.4)

The susceptibility is de�ned through the relation P = "0�E, where P and E are the polarization

density and the probe electric �eld. s0 is the resonant saturation parameter for the pump �eld. We use

a prime on the variables related to the probe transition. ; 0 are the spontaneous decay rates for the

two states, 21 = ( + 0) =2, and �; �0 are the detunings of the two �elds. We use 0=2� = 3:1MHz for

the 6D5=2 state natural linewidth [29]. � is the probe wavelength and � is the density of atoms. Note

that the second fraction in (2.4) is the intermediate state population. The optical depth on the probe

transition is given by

�0
i
(�0) = 2�

l�i (�
0)

�
(2.5)

In the limit of a weak resonant pump �eld (s0 � 1), the expression for the probe optical depth in Eq.

(2.5) is identical to the optical depth for the probing of ground state atoms if, in Eq. (2.1), we substitute

the density of atoms in the intermediate state for �. For large s0 the absorption line splits up into an

AC Stark doublet [28].

In Fig. 2.3a we plot the measured probe transmission T = exp (��0 (�0)) versus the probe detuning.
The measurement is carried out while the MOT is on and the trapping beams excite atoms to the

intermediate level. We use a powerful Ti:Sapphire for trapping with a value for the average saturation

parameter similar to the value in the previous section; s0 = 27 � 5: However, we cannot neglect the

interference of the �elds in the 3D con�guration with circularly polarized laser beams. We can write one

pair of counterpropagating trapping �elds as

~E�+ (z; t) = E0 (cos (kz � !t+ �1) ex � sin (kz � !t+ �1) ey) (2.6)

~E�� (z; t) = E0 (cos (�kz � !t+ �2) ex + sin (�kz � !t+ �2) ey)

Here ex;y are the unit polarization vectors along the x- and y axis. The other four beams are given by

similar expressions. Adding the six �elds and calculating the intensity gives for all phases �i set to zero���~Etotal

���2 = E2
0 (6 + 4 [cos (kz) sin (ky)� cos (kx) sin (kz) + cos (ky) sin (kx)]) (2.7)

We see that the total intensity has a strong position dependence. Since the relative phases �i are not

stabilized, we calculate the probability distribution for the total intensity assuming uniform distributions

of all phases and positions. This is easily done in a Monte Carlo simulation, and one �nds that the average

intensity is indeed the sum of the intensities in each of the six beams. The maximum intensity is twice the

average, and the minimum intensity is zero. We make the further assumption that the atomic density is

proportional to the local �eld intensity. This is explained by the dipole force of the red-detuned trapping

�eld [26]. The probability for an atom to be at a position with �eld intensity x (normalized to the average
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Figure 2.3: a) Dots: the measured probe transmission spectrum in double-optical resonance. Line:

theoretical spectrum, Eq. (2.11). Three hyper�ne components are seen together with AC Stark splitting

of the F = 6 component. b) Theoretical transmission spectra for a single hyper�ne component. Dotted

line: without any broadening; based on �0
i
(�0) Eq. (2.5). Solid line: including polarization gradient

e�ects; �0
ii
(�0) Eq. (2.8). Dashed line: including magnetic broadening; �0

iii
(�0) Eq. (2.9). All three

spectra are normalized to the same maximum absorption. Note the di�erent detuning scale in a) and b).

intensity) is termed P (x). The probe optical depth including polarization gradient e�ects is then given

by

�0
ii
(�0) =

2�l

�

Z 2

0

�i (�
0; �s0 � x)P (x) dx (2.8)

�s0 is the average saturation parameter.

Besides the spatially dependent intensity, we also have the magnetic �eld gradient, which broadens

the line. It is not possible to model the magnetic broadening accurately without including the Zeeman

sublevels in the theory. The measurements from the previous section show that the width of the 6S1=2F =

4 ! 6P3=2F = 5 transition with the magnetic �eld gradient present is 6.8MHz for a Lorentzian �t. In

a Voigt �t with the Lorentzian width set to 5.3MHz, this corresponds to a inhomogeneous Gaussian

broadening of 3.7MHz. A simple way of including the magnetic broadening consists of averaging �0
ii
over

a Gaussian distribution of detunings with identical width for the pump and probe transition. We then

obtain

�0iii (�
0) =

1
p
�

Z 1

�1
�0ii (�

0 + b y;�+ b y) e�y
2

dy (2.9)

b=2� =
Æ�Gauss

2
p
ln 2

Æ�Gauss is the FWHM Gaussian width. We use Æ�Gauss = 5:2MHz to account for the larger trap size in

the measurement in Fig. 2.3a (about 6mm).

The last complication is the small hyper�ne splitting in the 6D5=2 state. The strength of the

(J1; F1) ! (J2; F2) transition with an unpolarized F1 state (equal population in all Zeeman sub-levels)

is for arbitrary F2 proportional to [30]

(2F2 + 1)

�
F2 1 F1
J1 I J2

�2
(2.10)
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I is the nuclear spin (I = 7=2 for 133Cs) and f�g is the 6j symbol. We �nd the relative strengths of the

dipole allowed transitions 6P3=2F = 5 ! 6D5=2F = 6; 5; 4 to be 1 : 77
325

: 21
650

. The hyper�ne splitting

in the 6D5=2 state is given by [31] ÆF = 1
2
A (F (F + 1)� J (J + 1)� I (I + 1)) with A=2� = �4:69MHz

[29]. The �nal expression for the measured probe absorption spectrum is given by

T (�0) = exp (��0iv (�
0)) (2.11)

�0iv (�
0) = �0iii (�

0 � Æ6) +
77

325
�0iii (�

0 � Æ5) +
21

650
�0iii (�

0 � Æ4)

In Fig. 2.3a we show, as a solid line, the theoretical absorption spectrum from Eq. (2.11) with the

parameters =2� = 5:2MHz, 0=2� = 3:1MHz, �s0 = 20, �=2� = 4:2MHz, Æ�Gauss = 5:2MHz, l = 6:2mm,

� = 917nm and � = 2:0 � 1010cm�3. The parameters �, �s0, and � are chosen for the best agreement

between theory and experiment. A careful measurement of the experimental detuning is not carried

out for the actual measurement, but we estimate it to be in the range of 5 � 10MHz. An increase in

� in the theoretical graph will increase the asymmetry between the two components of the F = 6 AC

Stark doublet. The small "theoretical" detuning indicates that the measured asymmetry is smaller than

expected theoretically. A similar observation is found in section 2.4.2 and in Ref. [26]. Equation (2.5) is

valid when radiative decay is the only source to atomic decoherence. The asymmetry in the AC Stark

doublet will typically be reduced in the presence of excess atomic decoherence [28]. It is therefore not

unlikely that the discrepancy between the estimated experimental detuning and the theoretical detuning

can be caused by a too simple implementation of e.g. the magnetic �eld, the Zeeman degenerate atoms,

and the neglected trap dynamics. Otherwise the agreement between measurement and theory is good,

and it con�rms the atomic density measured in section 2.1.2. The hyper�ne splitting in 6D5=2 and the

AC Stark splitting of the 6P3=2F = 5 state are almost identical, and this results in overlapping lines.

This explains why we only see four absorption lines and not all six lines from the AC Stark doublets for

each hyper�ne component. For comparison we show in Fig. 2.3b the theoretical curves corresponding to

the incomplete expressions in Eq. (2.5), (2.8) and (2.9).

2.3 The polarization interferometer

We proceed with a simple description of the polarization interferometer (PI), and we explain which

atomic variables we can probe by utilizing the PI. In chapter 6, we give a more complete description of

atomic measurements with the PI, which is necessary for a complete understanding of the spin squeezing

experiment. For now the following simple analysis using classical �elds will be suÆcient.

The polarization interferometer consists of two polarizing beamsplitters (PBS) and a half-wave re-

tarder in between, (see the setup in Fig. 2.4, page 16, which involves the PI). The �rst polarizer is used

to give a probe light beam a well de�ned polarization. In chapter 3, this polarizer is also used to mix

the coherent state probe with a squeezed vacuum �eld for spectroscopy below the standard quantum

limit. The wave plate rotates the polarization of the light by 45Æ before the second polarizer splits the

beam into two components with intensities I1 and I2. The optical power in each of the two output arms

is detected with two photodetectors, and the di�erence (i�) between the resulting two photocurrents

(i1; i2) is measured. i� is obviously proportional to the di�erence in the optical intensities, I1 � I2. The
intensities in the two output arms are identical without anything else in the interferometer. If we now

place an anisotropic medium between the two polarizers, the probe polarization may be rotated further

giving a nonzero current i�. The anisotropic medium will, of course, be our sample of cold and trapped

cesium atoms.

We can use the Jones formalism to describe the e�ect of the anisotropic medium on the two circu-

lar components of the probe polarization [32]. The general expression for the change in the complex

amplitudes of the two orthogonal circular polarizations after propagating a small distance dz, is given
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by

dE = (A�
��

2
1)Edz (2.12)

Here E = (E+; E�)
T
are the circularly polarized �eld amplitudes, 1 is the identity matrix, � is the

atomic cross section averaged over polarizations, � is the density of atoms being probed, and A is given

by

A =
1

l

�
��+ � i�+ ��+� � i�+�

���+ � i��+ ��� � i��

�
(2.13)

l is the geometrical length of the anisotropic medium. A describes the anisotropic properties of the

medium. The solution to Eq. (2.12) is given by

E (z) = exp (Az) exp(���z=2)E (0) ' (1+Az) exp(���z=2)E (0) (2.14)

Here it is assumed that the expansion is valid for all z � l; that is, the anisotropy is assumed to be

small. On the other hand, the sample may be optically thick since a large common absorption for both

polarizations is included in the �� term. A common phase shift is not relevant in our experiments, but

it may of course be included together with ��.

We now have to i) relate the coeÆcients in A to the detected signal i� and ii) relate the coeÆcients

to certain atomic properties. Once this is accomplished, we can use the polarization interferometer

to measure properties of the atomic sample placed inside the interferometer. For a probe with linear

polarization along the x-axis (horizontal) and propagating along the z-axis, we have E� (0) = E0 =p
I0= (2"0c) with I0 as the incident probe intensity. Propagating E (l) through the half wave retarder,

the polarizing beamsplitter and deducing the resulting photocurrents i1;2 _ I1;2 is a trivial calculation

with the �nal lowest order (in Aij) result

i� = 2�i+ (2.15)

2� =
�
�� � �+ + ��+ � �+�

	
i+ = i0e

��

The product ��l is now identi�ed as the optical depth �. i+ is the sum of the two detected photocurrents.

The interpretation of Eq. (2.15) is quite simple. The term �� � �+ is twice the polarization rotation

angle in the presence of optical activity (circular birefringence) with di�erent refractive indices for the

two circularly polarized components. The refractive indices have a dispersion-like pro�le as a function

of probe frequency, and we expect the �� � �+ term to contribute o� resonance. Transforming the

calculation above into a basis of linear polarization oriented at �45Æ to the x-axis shows that ��+��+�

is the di�erence in absorption for the +45Æ and �45Æ polarizations (linear dichroism). The absorption
coeÆcients have a Lorentzian pro�le, and consequently the ��+ � �+� contribution will peak for a

resonant probe. It is seen that the PI is sensitive only to deviations from an isotropic atomic sample.

For a perfect isotropic ensemble of atoms we have i� = 0.

The PI is very similar to a Mach-Zehnder interferometer, except that the two modes in the PI have

di�erent polarizations instead of di�erent paths. The circular birefringence in the PI correspond to

di�erent phase shifts in the to arms of a Mach-Zehnder interferometer. The linear dichroism, which

mixes the two circularly polarized modes in the PI, has no counterpart in a Mach-Zehnder with spatially

separated modes.

There are some advantages in the use of a PI instead of the conventional crossed-polarizers setup

[33], where the transmission of two nearly crossed polarizers with the sample in between is observed. For

small � the balanced detection in the PI will substantially suppress possible technical (classical) noise in
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the probe laser, but still all photons of the probe are detected. This is of great importance when squeezed

light is applied to the setup, see chapter 3. In terms of signal-to-noise ratio, the PI performs equally to

the crossed-polarizer setup when the noise in the detected di�erential photocurrent i� is limited by the

intrinsic quantum noise of the probe. In the PI it is easy to switch to the sum of the two photocurrents,

which gives access to the probe absorption; the same signal as one would measure with just a single

detector behind the atomic sample.

In chapter 6, we will calculate, in detail, the relation between atomic observables and the optical

activity and linear dichroism. For now, we just state the results [34]

�� � �+ _
�=

1 + 4�2=2
hF̂zi (2.16)

��+ � �+� _
1

1 + 4�2=2
hF̂xF̂y + F̂yF̂xi

� is the probe detuning and  is the linewidth of the probed atomic transition. hF̂zi is the mean value of
the z-component of the atomic spin in the lower state of the probe transition. hF̂zi is proportional to the
atomic orientation. hF̂xF̂y+F̂yF̂xi is proportional to the mean value of the di�erence in atomic alignment
along the axes at +45Æ and �45Æ. A nonzero value for hF̂zi can be generated if the atoms are optically

pumped by a circularly polarized pumping �eld. In the same way we have nonzero hF̂xF̂y + F̂yF̂xi if the
atoms are optically pumped with a �eld linearly polarized along +45Æor �45Æ with respect to the x-axis.

Equation (2.16) can also be used for double-optical resonance experiments with a weak resonant pump

and a probe �eld used to probe atoms in the intermediate state. When the pump �eld is strong enough

to induce AC Stark splitting of the intermediate state, the line shapes in (2.16) should be modi�ed to

be proportional to �r and �i from equation (2.4).

2.4 Spectroscopy on a modulated magneto-optical trap

We now apply the results of the previous two sections to do very sensitive spectroscopy on a magneto-

optical trap (MOT). The experiments in this section can be seen as the classical counterpart to the

atomic quantum noise and spin squeezing experiments (chapter 7 and 8). In the latter, we measure the

probe noise induced by quantum uctuations of the atoms. In the present experiments we use a similar

setup to measure the probe noise induced by classical modulation of the atoms. The probe noise induced

by classical modulation is in the context of spectroscopy considered to be our spectroscopic signal. The

experiments in this section are also the subject of Ref. [35].

Similar to more traditional gas samples, trapped atoms require modulation techniques, e.g. frequency

modulation of the probe, for increased sensitivity [22, 36]. This is because of the low frequency amplitude

noise of most lasers, which reduce the signal-to-noise ratio (S/N) obtainable at low frequencies or at

DC. Frequency modulation (FM) is usually generated with an electro-optical modulator or by current

modulation of a diode laser. In both methods the frequency modulation is usually accompanied by

residual amplitude modulation [37]. Therefore, in FM detection with a modulated probe, the noise level

is set by the residual amplitude modulation and not the fundamental quantum noise (shot noise) of the

probe �eld. Quantum-limited spectroscopy can be achieved by utilizing techniques for suppression of the

amplitude modulation [38, 36]. In the present experiment we use the approach of sample modulation

instead. Since MOT's are sustained with light, modulation of this trapping light is a natural way of

modulating the trapped atoms. In fact, usually the trapping laser is locked to an atomic transition by

means of a FM spectroscopy signal from a gas cell, and hence the trapping light is frequency modulated

anyway. The idea uses the atomic third order nonlinearity to convert frequency modulation of the

pump/trapping beams into amplitude modulation of the probe. Although we, in this experiment, �nd

the classical modulation of atoms useful, we will in the end of this section show how unintentional classical

noise in the atomic sample can be a limiting factor in observation of atomic quantum uctuations.
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Figure 2.4: The setup used for spectroscopy on a magneto-optical trap sustained by classically modulated

trapping �elds. We use a polarization interferometer, which gives polarization sensitive spectroscopy in

the di�erential photocurrent i� and absorption spectroscopy in the sum i+. The inset shows the Cs

levels used for the double-optical resonance interaction.

2.4.1 Experimental setup

The setup in Fig. 2.4 includes the polarization interferometer described in the previous section. The

two high-quality polarizers (PBS1, PBS2) are of the Glan-Thompson type with an extinction ratio

better than 10�5. The intensities in the two output arms are detected with two photodetectors, and

the emerging photocurrents can be either added or subtracted in a hybrid junction. The photodiodes

have a speci�ed quantum eÆciency of more than 99%, and the detectors are optimized for detection

at 3.0MHz with a peaked response. The bandwidth (FWHM) of the response is 640kHz. The signal

after the hybrid junction is fed into a spectrum analyzer (SA, Anritsu MS710A) used at zero span

(�xed frequency 
=2� = 3:0MHz). When the di�erential current (i�) is detected, the setup works as a

polarization interferometer and is sensitive to polarization rotations and hence to atomic spin orientation

and alignment. When the sum current (i+) is detected, we simply measure the absorption caused by the

trapped atoms.

In this experiment we use a diode laser for trapping. The laser drive current is frequency modulated

at 3.0MHz to produce FM of the output. The FM is used both for locking of the laser to the Cs transition

as well as for modulating the trap. We use �ve trapping beams with circular polarizations. The two

horizontal trapping beams are counter-propagating with a relatively small angle (�15Æ) to the probe

direction (z-axis). The atoms are probed on the 917nm 6P3=2 ! 6D5=2 transition utilizing a Ti:Sapphire

laser (Microlase MBR-110). The noise of probe �eld is set by the intrinsic quantum noise for a coherent

state (shot noise) in both phase and amplitude at the detection frequency 
. The DC-absorption of the

probe, when it is send through the trapped atoms, is measured to be 3% at the two photon resonance

during this experiment, (compare to Fig. 2.3).
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2.4.2 FM absorption spectroscopy

An experimental trace of FM absorption with the probe scanned across resonance is shown in �gure

2.5a (dots). The �gure shows the noise or modulation of the photocurrent i+ measured by the spectrum

analyzer as a function of the atom-probe detuning. The frequency scale is obtained from the known

hyper�ne splitting (see Eq. (2.11)), and we choose zero detuning at the largest double-peaked structure.

We can explain the main features in the measured signal by a simple steady-state three-level theory

based on Eq. (2.4). For the modulated pump frequency/detuning we have � (t) = �0 +M cos (
t) ;

where M is the frequency modulation index. For small absorption and modulation depth, we can write

the transmitted probe power as

Pt (t) = P0e
��(�) ' P0

�
1�

2�l

�
�i (�)

�
' P0

�
1�

2�l

�

�
�i (�0) +

@�i

@�
M cos (
t)

��
(2.17)

�i is the imaginary part of the probe susceptibility in double-optical resonance, see Eq. (2.4). The SA

gives the rms power or the spectral density of the photocurrent component oscillating at frequency 
.

The photocurrent is given by i+ (t) = egPt (t) =h�, where e is the elementary charge, g is the detector

gain, and we take the detector quantum eÆciency to be unity. Hence, the observed signal is given by

(i+)
2


 =
1

2

�
MP0

eg2�l

hc

@�i

@�

�2
(2.18)

(i+)
2

 as function of probe detuning is plotted in Fig. 2.5b (dotted line). For the plot we use the

parameters s0 = 17 and �=2� = 8:9MHz. The theoretical curve is scaled so that the improved theory

below agrees with the experiment. We see that the qualitative shape of the theoretical curve is in

agreement with the experimental data for a single hyper�ne component. In both experiment and theory

the absorption signal is split into an AC Stark doublet. One component of the doublet is single peaked

and the other component consists of a double peak.

The pump modulation method is not inferior to the usual probe modulation with respect to the

signal size. In Ref. [22] it is shown that the probe modulation signal is given by: (i+)
2


;probe =
1
2
(geP0�MÆ= (hc
))

2
, where Æ is the di�erence in absorption of the upper and lower sidebands of the

modulated probe. For our parameters, we �nd that the ratio (i+)
2

 = (i+)

2

;probe is on the order of one.

The size of the signals obtained from the two methods are nearly the same, but the physics behind is

di�erent. In probe modulation the two RF-sidebands experience di�erent absorption/phase shift when

they propagate through the medium. As a result the beat notes between the carrier and the two side-

bands no longer cancel and a signal is seen at frequency 
. In pump modulation the modulated sample

gives rise to a modulation of the transmitted intensity.

The current modulation of the trapping laser causes not only frequency modulation but also amplitude

modulation. The amplitude modulation is measured to be around 5%. The estimated size of the AM

signal is found to be around 1% of the FM signal. In other words, the atoms are much more sensitive to

frequency modulation than to amplitude modulation of the saturating pump.

The noise equivalent power of the detection system is around 80�W; at this optical power level the

electronic noise is equal to the intrinsic quantum noise of the coherent state probe (shot noise). The shot

noise of the coherent state probe adds a frequency independent noise power of 2egi0�RB to the measured

rms power of the photocurrent. i0 is here the average photocurrent and �RB is the resolution bandwidth

of the spectrum analyzer (�RB =100kHz in the experiment). In the experiment we use a rather weak non-

saturating probe of 3�W, and because of imperfect detectors we have only an insigni�cant contribution

from shot noise to the o�-resonant noise level. This, however, is a technical problem that can be overcome

by using low-noise narrow band detectors, larger probe diameter, and increased probe power. The signal-

to-noise ratio (S/N) in the experiment is about 30dB or 103. For comparison the S/N in a DC-absorption

measurement with the same measurement time is below 1. The S/N obtained with pump FM can in

principle be increased further by reducing the bandwidth �RB and increasing the probe power P0 and

modulation index M .
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Figure 2.5: a) Dots: experimental FM absorption spectrum; shows three hyper�ne components and AC

Stark splitting. Solid line: complete theory. b) Dotted line: steady-state theory from Eq. (2.18). Dashed

line: theory including �nite atomic response time. Solid line: theory including polarization gradients and

excess broadening (e.g. magnetic �eld gradient), but only one hyper�ne component. The o�-resonant

noise level sets the reference for the dB scale. Note the di�erent scales in a) and b).

A qualitative understanding of the shape of the signal can be given by the following argument, which

is valid for a not too large s0
3. The absorption signal can be separated into a coherent part centered

at � + �0 ' 0 and an incoherent part centered at �0 ' 0 - these are the two resonance conditions

obtained from Eq. (2.4). The coherent resonance condition depends in the same way on the pump

and probe frequency, and we expect this part to contribute with the derivative of a Lorentzian as in

ordinary probe FM spectroscopy. Hence the coherent signal from the SA has a double-peaked structure

(squared dispersion pro�le). The resonance condition for the incoherent term does not depend on �,

but this term is still modulated through the � dependence of the intermediate state population. This

is more like AM spectroscopy, which does not alter the Lorentzian line shape, and we get an incoherent

single-peak structure.

In the experiment the 3.0MHz modulation frequency is comparable to the natural linewidth of 5.2MHz

for the 6P3=2 state. Such a high modulation frequency allows to reach shot-noise limited sensitivity,

but makes the validity of Eq. (2.18) questionable. The atoms can no longer follow the modulation

adiabatically when they are modulated at frequencies comparable to  owing to the �nite atomic response

time. This e�ect can also be seen in a frequency-domain picture. The FM of the pump introduces

sidebands on the pump displaced at �
 with respect to the pump carrier frequency. If the modulation is

faster than , the sidebands are shifted more than one linewidth away from resonance (the pump carrier

is always quasi-resonant). These non-resonant sidebands do not have a large e�ect on the atoms, and

the e�ect goes down when 
 is increased further.

To investigate the e�ect of fast pump modulation, we solve numerically the semi-classical Bloch

equations for a three-level atom interacting with two classical �elds. The di�erential equation for the

time evolution of the density matrix for the three-level atom can be found in Ref. [28]. The di�erential

equation is integrated numerically with a fourth order Runge-Kutta algorithm with the phase of the

classical pump-�eld modulated at 3MHz with a phase modulation index of 0.5. The calculation gives

the time dependent probe susceptibility � (t) = �r (t) + i�i (t) _ �32 (t) with �32 as the density matrix

element for the optical coherence on the probe transition. The modulation in the measured photocurrent

is proportional to the imaginary part �i (t) for small absorption; i+ (t) = geP0 (h�)
�1 �

1� 2�l��1�i (t)
�
.

3We are not really in the limit of small s0, but the qualitative explanation still describes the line shape well
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The spectral density (i+)
2


 measured by the spectrum analyzer is then proportional to the absolute

square of the Fourier transform of �i (t) at frequency 


(i+)
2


 = 2

����Z 1

�1
i+ (t) e�i
tdt

����2 _ ����Z 1

�1
�i (t) e

�i
tdt

����2 (2.19)

We calculate the Fourier transform from the numerical solution to �i (t), and the resulting signal is

plotted in Fig. 2.5b (dashed line). Compared to the curve from Eq. (2.18) we see that the fast

modulation increases the linewidth by about 50% and reduces the S/N by 3dB. We checked that our

numerical calculations give the same signal as Eq. (2.18) in the limit 
� .

Finally, we have to include the e�ects of polarization gradients, excess broadening from e.g. the

magnetic �eld gradient and the small hyper�ne splitting of the 6D5=2 state into the calculations. When

these e�ects are modelled in the numerical calculation of � (t) in the same way as in section 2.2, we get

the theoretical curve shown as a solid line in Fig. 2.5a (and in Fig. 2.5b for just the F = 6 hyper�ne

component). For this theoretical curve we used the parameters s0 = 17, �=2� = 8:9MHz, Mphase = 0:5

and Æ�B = 5:2MHz. The parameters for the theoretical curve are chosen for the best agreement between

theory and experiment. The pump detuning measured in the experiment is 12 � 1MHz and, just as

in section 2.2, the theory �ts with a pump detuning a little smaller than the experimental value. The

broadening Æ�B is somewhat larger than expected for the small trap diameter (around 1.5mm) in this

experiment. Part of that can be the diode trapping laser linewidth, which is larger than the linewidth

of the Ti:Sapphire laser used in section 2.2. The saturation parameter s0 is close to the experimental

value of s0 = 19 for a total trapping power of 15mW and 6mm beam diameter. The modulation index

is measured by injecting a part of the trapping beam into an optical resonator and comparing the

transmission modes for the carrier and the sidebands. The measurement gives Mphase = 0:5 although

with a large uncertainty (� 50%) because of extrapolation down to the modulation frequency and depth

used in the experiment. All the theoretical curves are scaled so that the �nal result �ts the experimental

data.

The discrepancy between theory and experiment at the F = 5 hyper�ne component can be due to

partly polarized atoms caused by an anisotropic trapping �eld. The ratio between the line strengths as

given by Eq. (2.10) is only valid for unpolarized atoms. The shape for the smallest hyper�ne component

F = 4 show a clear disagreement with the theory. The reason for that is unknown, but perhaps it is

related to the fact that the 6P3=2F = 5 ! 6D5=2F = 4 transition is modelled as a closed transition in

the theory.

2.4.3 FM polarization rotation spectroscopy

We now turn to the polarization rotation signal obtained from the di�erential photocurrent i�. i� gives

information about the deviations from an isotropic distribution of atoms as explained in section 2.3. The

measured rms power (i�)
2

 as a function of probe detuning is, for balanced trap intensities, plotted in

Fig. 2.6a. These data are taken under the exact same conditions as the FM absorption measurements

in Fig. 2.5a. The intensities in the horizontal trapping beams, which are at a small angle to the probe

beam, are adjusted to maximize the FM absorption and to minimize the FM polarization rotation. In

this way the sample is made as isotropic as possible, and consequently the polarization rotation signal

in Fig. 2.6a is rather small.

We can make the sample anisotropic by using unequal intensities in the two horizontal trapping beams.

The trapping �eld then contains mainly one circular polarization, and the atoms in the 6P3=2 state will

acquire a nonzero orientation (hF 0
z
i 6= 0). According to Eq. (2.16) and the text below this equation, we

expect the polarization rotation spectrum to be described by the real part of the probe susceptibility �r
and to be proportional to hF 0

zi. In Fig. 2.6b (solid line) we show the FM polarization rotation spectrum

measured for unbalanced trapping intensities. The corresponding FM absorption spectrum has a signal

7dB smaller than the FM absorption spectrum measured with balanced intensities. This shows that the

larger signal in Fig. 2.6b, as compared to Fig. 2.6a, is not caused by improved trapping conditions
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Figure 2.6: a) Experimental FM polarization rotation signal for balanced trap intensities. b) Solid line:

experimental FM polarization rotation signal for unbalanced intensities (induced orientation). Dotted

line: theoretical calculation.

(more trapped atoms). The unbalanced trap does not work as well as the balanced trap, but it is clearly

anisotropic.

We obtain a theoretical FM polarization rotation spectrum by using the same calculation as for the

FM absorption spectrum in Fig. 2.5a, except we use �r (t) _ Re (�32 (t)) instead of �i (t) in the Fourier

transform for (i�)
2


. That is

(i�)
2


 = 2

����Z 1

�1
i� (t) e�i
tdt

����2 _ ����Z 1

�1
�r (t) e

�i
tdt

����2 (2.20)

All the parameters of the calculation are identical to the FM absorption calculation except that we scale

the signal to �t the experimental polarization rotation data, and we only include one hyper�ne transition

(6P3=2F = 5 ! 6D5=2F = 6). It can be shown that the polarization rotation signals from the other

two hyper�ne components are insigni�cant. The argument is simple, but it depends on results from

the subsequent chapters, and it is therefore given in Appendix A. The calculated spectrum is shown

as the dotted line in Fig. 2.6b, and we see a �ne qualitative agreement in the shape of the theoretical

and experimental spectra. The detuning scale in Fig. 2.6b is identical to the scale in Fig. 2.5a, and

we see that the FM polarization rotation signal at positive frequencies (around 50MHz) goes to zero

more slowly than the FM absorption signal. This is a signature of the fact that the polarization rotation

signal, caused by circular birefringence, is related to a dispersion pro�le.

The small FM polarization rotation signal in Fig. 2.6a looks a little like the FM absorption spectrum

in Fig. 2.5a. This can either be caused by an imperfectly balanced polarization interferometer or because

of alignment anisotropy, which gives a spectrum like FM absorption according to the comments below

Eq. (2.16).

The agreement between theory and experiment for FM polarization rotation is not quite as good as for

FM absorption spectroscopy. The polarization rotation is caused by an anisotropic atomic sample with

unequal populations in the di�erent Zeeman levels. Since each Zeeman level is independently a�ected

by magnetic and electric �elds, we expect that the three-level calculation is less successful for the FM

polarization rotation spectrum.

2.4.4 Diode laser phase noise

Diode lasers are today inexpensive and compact devices with enough power for many atomic physics

experiments. Although the tunability is limited to a few nm, it is possible to purchase lasers for most
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Figure 2.7: FM absorption spectroscopy using the intrinsic diode laser phase noise and no external

modulation.

near infrared wavelengths including the Cs D2 line at 852nm. The intensity of the diode laser output

is usually very stable, and it is even possible to reduce the uctuations below the standard quantum

limit (shot noise) [39]. On the other hand, the phase uctuations are usually far above the standard

quantum limit and extend into the GHz regime [18, 19]. The phase uctuations are caused by the

spontaneous emissions into the lasing mode, and the bandwidth of the excess uctuations is set by the

laser cavity linewidth. The very short cavity and large output coupler for the diode laser result in the

very large bandwidth of phase uctuations, even when the diode laser is externally stabilized by the

grating feedback.

The diode laser phase noise can be utilized for FM spectroscopy without applying any external phase

modulation as demonstrated in Ref. [40, 41]. In our setup we also observe a FM absorption signal when

the SA detection frequency is di�erent from the modulation frequency of the diode laser drive current.

In Fig. 2.7 we show a FM absorption spectrum using the intrinsic phase noise of the diode laser and no

external modulation.

The intrinsic phase noise is an essential problem in measurements of the excited state atomic quantum

noise when the readout is performed with a probe �eld (see sections 7 and 8). If a diode laser is used

for the pump �eld, the spectroscopic signal from the phase noise will surpass the atomic quantum noise.

This problem is recognized in Ref. [20], and the solution is to use a Ti:Sapphire laser for the pump �eld.

The noise of the Ti:Sapphire laser is found to be at the standard quantum limit in both amplitude and

phase at frequencies above 2MHz and for the optical power of a few mW. The phase noise is checked

by sending the �eld through an optical resonator, which converts phase noise into amplitude noise. The

amplitude noise is measured directly with a photodetector and a spectrum analyzer.
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Figure 2.8: a) The MOT setup with the vacuum chamber in the middle and surrounded by the optics for

a six-beam con�guration. The "yellow rings" on the chamber are the anti-Helmholtz coils. The larger

rectangular coils are used to produce a bias �eld. b) The blue uorescence of the trap in double-optical

resonance. Atoms in 6D5=2F = 6 decay with a small probability to 7P3=2 and subsequently to the ground

state on a 456nm transition (see also Fig. 2.2, page 8). The picture is shown with the true colors. The

blue spot to the right is a reection from a viewport.



Chapter 3

Squeezed states of light

The squeezed states of light are one of the most important ingredients in the experiments presented

in this thesis. Squeezing can be used for improved sensitivity in atomic spectroscopy, as demonstrated

later in this chapter, but we also use the squeezed light as a source of quantum correlations. In the spin

squeezing experiment, the quantum correlated photons constituting the squeezed light are mapped onto

a cold ensemble of atoms and thereby producing quantum correlated atoms.

The Heisenberg uncertainty relation for noncommuting observables can be used to de�ne a standard

quantum limit (SQL) for quantum uctuations. For the quantized electromagnetic �eld we introduce

the two quadrature phase amplitudes X̂ and Ŷ as the real and imaginary part of the �eld annihilation

operator â for a single �eld mode. X̂ and Ŷ are noncommuting with [X̂; Ŷ ] = i=2, and they therefore

obey the uncertainty relation

(�X̂)2(�Ŷ )2 �
1

16
(3.1)

(�X̂)2 is the usual quantum mechanical variance of X̂ . For the coherent state of light, which is a good

approximation for the output of many lasers far above threshold, the two quadratures have identical

minimum uctuations. The coherent state uctuations can also be explained in a photon picture, where

the photon distribution is described as a stochastic Poisson process. The level of quantum noise or

uctuations for the coherent state de�nes the standard quantum limit or the shot noise level. The

coherent states, which include the vacuum state, are the most classical states of light [42].

It is not prohibited by quantum mechanics to redistribute the uctuations in the two quadratures.

The squeezed states are de�ned as having the uctuations in one quadrature below the standard quantum

limit. The squeezed states are so-called nonclassical states as they cannot be expanded on the set of

coherent states with a positive-de�nite weighting function. In other words, we cannot consider the

squeezed states to be a classical distribution over the (almost) classical coherent states. The noise

reduction in one quadrature is a consequence of the quantum correlations present in the squeezed �eld.

Several methods for generation of squeezed light have been explored since the �rst demonstration

in 1985, which utilized four-wave mixing in atomic sodium [2]. The most eÆcient process today is the

optical parametric oscillator (OPO) operating below threshold. The best measured squeezing is obtained

in a monolithic OPO made of MgO:LiNbO3 with 7.0dB noise reduction in one quadrature at the 1064nm

Nd:YAG laser wavelength [43]. However, the phase of the squeezing is not actively stabilized in this

experiment, which means that the quadrature being squeezed changes with time. 6.2dB of squeezing

with a stabilized phase is measured in Ref. [44]. This experiment is also based on MgO:LiNbO3 at

1064nm. 6.0dB of noise reduction with stabilized phase is reported in Ref. [45] with KNbO3 as the

nonlinear material and at 852nm. When the KNbO3 based squeezing source is driven by a Ti:Sapphire

laser, the wavelength of squeezing can be tuned by tuning of the laser frequency. Noncritical temperature

phase matching and hence squeezing can be obtained in the 850nm-920nm wavelength range by adjusting

23
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the a-cut KNbO3 temperature between 0
ÆC and 130ÆC. The tunability is an important requirement when

the squeezed light is used for atomic physics, and this is not ful�lled by the MgO:LiNbO3 based squeezing

source driven by a Nd:YAG laser.

A completely di�erent source of squeezed light is the diode laser with amplitude noise below the shot

noise level. This can be achieved by e.g. suppression of pump noise using a stable current source [39]

or by injection locking to a stable master laser [46]. In the latter experiment they observe 4.5dB noise

reduction. However, the squeezing of diode lasers always takes place in the amplitude of the �eld, and

the observed squeezing to date for collimated laser output is below the OPO performance.

The main goal in a large group of atomic physics experiments utilizing a squeezed state of light has

been to demonstrate improved sensitivity in spectroscopy owing to the reduced quantum noise of the

probe light [47, 45, 48, 49, 50]. Only a few atomic physics experiments use the properties of the squeezed

light directly in the atom-light interaction. These experiments include the two-photon excitation of Cs

atoms using squeezed vacuum [51], detection of quantum correlations at ultrahigh frequencies using atoms

as nonlinear mixers [52], squeezed excitation in cavity QED [53], and our experiment on generation of

spin squeezed atoms by squeezed light excitation (Ref. [6] and chapter 8 in this thesis). A large number

of theoretical publications on atom-squeezed light interaction exist with the most important listed in

Ref. [53]. However, these calculations often require the squeezed vacuum to occupy a large solid angle in

order to minimize atomic interaction with other unsqueezed vacuum modes. EÆcient interaction with a

single squeezed mode can also be achieved with the atom sitting in a cavity pumped by squeezed light.

This was attempted in Ref. [53] but only with a limited success.

Other fascinating experiments with continuous squeezed light includes quantum teleportation [54],

QND measurements [55], and quantum state reconstruction [56, 57].

The electromagnetic �eld is basically described as a harmonic oscillator (one oscillator for each �eld

mode). The squeezed states are based on the properties of the harmonic oscillator, and therefore other

quantized harmonic oscillators can be squeezed as well. The motion of an ion in a harmonic potential

can be squeezed as demonstrated in Ref. [58]. The two conjugate variables are the ion position and

momentum. Squeezing of the atomic motion in a harmonic dipole trap is demonstrated in Ref. [59].

Note that this squeezed state of many atoms does not involve any multi-particle entanglement, and it is

not the same as the spin squeezed atomic states discussed later in this thesis. The squeezed state in Ref.

[59] is a pure single atom e�ect.

In this chapter, we continue with a section about the basic properties of the squeezed states followed

by a brief review of the OPO as a squeezing source and a section on polarization squeezing. In the

last two sections we describe our experimental squeezing setup and present our experimental results on

squeezed probe polarization spectroscopy.

3.1 Basic properties of the squeezed states

An introduction to the squeezed states can be found in many textbooks (e.g. Ref. [42, 60, 61, 62]).

Squeezing is a fundamental concept in this thesis, and a short introduction here is instructive and will

furthermore introduce some of the notation used later on. The starting point is the general expression

for the quantized electric �eld speci�ed by the polarization e and spatial mode u

Ê (r) = i

Z 1

�1
�!
�
eu (x; y) â (k) eikz � e�u� (x; y) ây (k) e�ikz

�
dk (3.2)

k = !=c and � =
p
~!=4�"0. The continuous annihilation and creation operators ful�l [â (k) ; ây (k0)] =

Æ (k � k0). The integral can often be truncated at �nite limits given by k0 � �=L. L should be chosen so

that the �eld amplitude remains approximately constant on length scales shorter than L. We will use

this truncation in the next chapter, where the quantum �eld is absorbed in a gas of atoms.

The polarization is usually described in a basis of either linear or circular polarizations, and e is the

corresponding unit vector. Ê (r) is time dependent in the Heisenberg picture through the Heisenberg



3.1. BASIC PROPERTIES OF THE SQUEEZED STATES 25

equation for the annihilation operators. The spatial mode is most often the lowest order Gaussian mode.

If the beam diameter 2w is (almost) constant over the dimensions of interest we have

u (x; y) =

r
2

�w2
eik(x

2+y2)=2Re�(x
2+y2)=w2 (3.3)Z Z

dxdy ju (x; y)j2 = 1

Z Z
dxdy ju (x; y)j4 =

1

�w2

R is the radius of curvature of the Gaussian mode.

In some situations it is convenient to work with discrete annihilation and creation operators de�ned

as

âkn =
p
L=2�

Z kn+
�

L

kn� �

L

â (k) dk (3.4)h
âkn ; â

y
kn

i
= 1 ; kn = n

2�

L
; n: integer

The discrete operators are used in e.g. optical resonators where L is chosen as the resonator length, and

kn = n2�=L ensures the periodic boundary conditions required for the resonating �eld. The discrete

operators can also be used for free propagating �elds, where we �nd the usual single mode description

in the limit where L goes to in�nity. The physical problem can often be described by the use of only

one discrete mode, and for the rest of this chapter we take â as the discrete annihilation operator for a

single mode �eld. The �eld is normalized so that n = hâyâi is the overall photon number in the mode.

The photon ux1 for the free propagating �eld is given by � = hâyâic=L.
It is convenient to introduce the Hermitian quadrature phase operators X̂; Ŷ , which can be measured

in the experiment, instead of the non-Hermitian operators â and ây. X̂, Ŷ , and their commutator are

given by

X̂ =
â+ ây

2
; Ŷ =

â� ây

2i
;

h
X̂; Ŷ

i
= i=2 (3.5)

We can rewrite a single mode of Ê in terms of the two quadrature phase operators, where we for simplicity

assume R� w and linear polarization (e = e�)

Ê (r; t) = 2�u (x; y) e
h
X̂0 sin (!t� kz)� Ŷ0 cos (!t� kz)

i
(3.6)

Here we write the free �eld time evolution explicitly, and we use the notation X̂0 = X̂(t = 0), Ŷ0 =

Ŷ (t = 0). The equal uncertainties in the two quadratures for a coherent state can be illustrated in a

phasor diagram as shown in Fig. 3.1a. The mean value of the complex �eld amplitude is represented by

an arrow, and the uctuations are shown as a "noise circle" on top of the arrow. The orientation of the

vector or phasor in the diagram is set by the phase � of the �eld. The phasor can be rotated by choosing

e.g. a di�erent time reference. The uctuations in the X and Y quadratures are for all coherent states

given by the minimum equal uncertainties (�X̂)2 = (�Ŷ )2 = 1=4.

For a squeezed �eld the uctuations in one quadrature are reduced below the standard quantum limit

of 1=4, whereas the conjugate quadrature is antisqueezed so that the Heisenberg uncertainty relation is

still ful�lled. The squeezed state is represented in the phasor diagram by a noise ellipse as shown for

two examples in Fig. 3.1b,c. When the phase between the squeezing ellipse and the mean �eld is 0Æ or
180Æ, we have reduced phase uctuations as shown in Fig. 3.1b. With a phase di�erence of �90Æ, the
uctuations in the absolute amplitude are reduced below the standard quantum limit; Fig. 3.1c. The

1"Photon ux" does not have an unambiguous meaning in the literature. We use the de�nition � = P=h� where P is

the optical power in the mode and h� is the photon energy.
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Figure 3.1: a) Phasor diagram representing the coherent state. b) Squeezed state with reduced phase

uctuations (Æ�). c) Squeezed state with reduced amplitude uctuations (Æ jaj).

squeezing in Fig. 3.1b,c is found in the new quadratures X 0 and Y 0 corresponding to a rotation of the

phasor diagram by about 45Æ.
It is also possible to have a squeezed state with zero mean amplitude. This state is termed squeezed

vacuum, and it can be given a nonzero amplitude by mixing it with a coherent �eld on e.g. a highly

asymmetric beamsplitter. The orientation of the squeezing ellipse relative to the coherent mean �eld is

then set by the relative phase of the two modes combined on the beamsplitter.

Mathematically, the squeezed vacuum state is generated from the ordinary vacuum by applying the

unitary squeeze operator [42]

Ŝ (z) = exp

�
1

2

�
z�â2 � zây2

��
; z = rei� (3.7)

The parameter � sets the orientation of the squeezing ellipse for the squeezed vacuum state Ŝ (z) j0i and
r sets the degree of squeezing or noise reduction. The variances of the quadrature phase operators in the

state Ŝ (z) j0i are

(�X̂)2 =
1

4

�
e2r cos2 � + e�2r sin2 �

�
(3.8)

(�Ŷ )2 =
1

4

�
e2r sin2 � + e�2r cos2 �

�
We see that for e.g. � = 0 the Y -quadrature is squeezed whereas the X-quadrature is antisqueezed. The

exponent in the squeeze operator looks very similar to the Hamiltonian for a �(2) nonlinear process. In

the following section we will see that squeezing can, in fact, be generated by the �(2) parametric process.

3.2 Squeezing from the optical parametric oscillator

We move on with a brief introduction to the most successful source of squeezed light, the optical para-

metric oscillator (OPO). A more thorough treatment of squeezing in the OPO can be found in Ref. [63].

The OPO consists of an optical resonator with a nonlinear crystal as sketched in Fig. 3.2. The OPO

is pumped with a nonresonant strong coherent (classical) pump �eld at frequency 2!. The pump �eld

is coupled through the nonlinear medium to modes at frequency !� with !+ + !� = 2!: Here we only

consider the degenerate mode (!� = !), which is assumed to be resonant in the cavity. The Hamiltonian

for the parametric process is given by

Ĥ = ~!âyâ� i~g
�
â2b̂y � ây2b̂

�
(3.9)
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Figure 3.2: A sketch of the resonator with the �(2) nonlinear crystal which constitutes the OPO. HR:

High reector for cavity �eld â at frequency !. T : Output coupler transmission. L: cavity losses except
for T:

g is a real nonlinear coupling strength. â is the discrete annihilation operator for the resonant cavity

mode at frequency !. b̂ is the annihilation operator for the pump �eld, which we, for the classical

pump, can substitute by its mean value �. The chosen phase of the nonlinear term in H is found to be

convenient below, but it can in principle be changed by changing the complex phase on �. The nonlinear

part of H describes parametric down conversion, where one pump photon is annihilated and two photons

at frequency ! are generated, as well as the opposite process of second harmonic generation. The �rst

process will dominate because of the strong pump and the weak �eld at frequency !.

The time evolution of â is set by the Heisenberg equation together with the dissipation due to cavity

losses and mirror transmissions. For simplicity we consider here the ideal cavity without losses, except

for the output coupler with the transmission T . The equation for â is

@

@t
â =

1

i~

h
â; Ĥ

i
+ dissipation (3.10)

)
:

~a = 2g�~ay � �~a+
p
2�c=l~v

We have introduced the slowly varying operators given by ~a = âei!t. The �rst term is the nonlinear

coupling of the pump �eld and the cavity �eld. The second term is the decay of the cavity �eld through the

output coupler, and the last term is the vacuum �eld coupled into the cavity through the output coupler.

We assume that the cavity output coupler transmission is small so that we can write the amplitude

reection and transmission coeÆcients as r = 1� �l=c and t =
p
T =

p
2�l=c with r2 + t2 ' 1: l is the

cavity length and 2� is the rate at which photons leave the resonator through the coupler. The validity

of Eq. (3.10) is discussed further in Ref. [64].

We can rewrite Eq. (3.10) and its Hermitian conjugate in terms of the slowly varying quadrature

phase operators
:

~X = �� ~X + 2g� ~X +
p
2�c=l ~Xv (3.11)

:

~Y = ��~Y � 2g� ~Y +
p
2�c=l ~Yv

For simplicity we assume the pump �eld amplitude, �, to be real and positive and ~Xv ; ~Yv are the

quadrature phase operators for the vacuum mode v̂. A nonzero steady-state solution for the mean value
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h ~Xi is found for � = �=2g. This is the condition for parametric oscillation. �2 is proportional to the

pump power, and we can de�ne the pump parameter as � =
p
P=Pth = 2g�=�, where Pth is the threshold

power.

We continue with the uctuations for the sub-threshold OPO; i.e. for � < 1. If we apply a Fourier

transform to both sides of Eq. (3.11), we get

~X (
) =

p
2c=l� ~Xv (
)

1� � + i
=�
(3.12)

~Y (
) =

p
2c=l�~Yv (
)

1 + � + i
=�

We de�ne our Fourier transform as ~X (
) =
R
~X (t) e�i
tdt, and we use the same notation for an operator

and its Fourier transform except for the argument. Equation (3.12) relates the intracavity quadrature

phase operators to the vacuum coupled into the OPO through the output coupler. The output of the

OPO, which is what we are really interested in, is obtained from the beamsplitter relation used on the

output coupler; ~Xout (
) = t ~X (
) � ~Xv (
) and similar for ~Y out. The �rst term is the intracavity

�eld transmitted through the coupler, and the second term is the vacuum �eld reected o� the coupler

assuming high reectivity. The minus sign is required for a unitary beamsplitter. The quadrature phase

operators ~Xout and ~Y out are related to the number of photons in the mode, which depends on the

quantization length L chosen for the free propagating �eld. It is convenient to introduce new operators

that are independent of the quantization length and related to the photon ux. These operators are

de�ned as ~X out (
) =
p
c=L ~Xout (
) and ~Yout (
) =

p
c=L~Y out (
).

The spectral density of uctuations (or noise power) for the output quadrature phase operators is

now given by2 �
~X out

�2


=

1

2�

Z 1

�1
h ~X out (
0) ~X out (
)id
0 =

R+ (
)

4
(3.13)�

~Yout

�2


=
R� (
)

4

R� (
) =

 
1� �

4�


2=�2 + (� � 1)
2

!

We have used that the vacuum uctuations in the v̂-�eld are delta-correlated with ( ~Xv)2
 = 1=4. This

follows from the commutation relation for the free �elds in the Heisenberg picture�
~a (t) ; ~ay (t0)

�
'
L

c
Æ (t� t0) (3.14)�

~a (
) ; ~ay (
0)
�
'
L

c
2�Æ (
 + 
0)

These commutation relations follow from Eq. (3.4) and the Heisenberg equation for â = ~ae�i!t, and
they become exact in the limit of small L.

� in Eq. (3.13) is a parameter used later on to include imperfections like losses in the squeezing path,

cavity losses etc. For the ideal OPO considered so far we have � = 1. We see from Eq. (3.13) that

the uctuations in the ~Y quadrature at frequency 
 are reduced below the vacuum uctuations (or shot

noise) and hence the ~Y quadrature is squeezed. On the other hand, the ~X uctuations are above the

vacuum noise level and this quadrature is antisqueezed. The functions R� (
) give the noise level of the

2The spectral density of i, which is measured by the spectrum analyzer, was introduced in Eq. (2.19) as ji (
) j2.
However, this quantity is divergent if i is a stationary random process. If the process is truncated by setting i (t) = 0 for

jtj > T , then we can de�ne a spectral density by (i)2
 = limT!1
hji(
)j2i

2T
. This de�nition is equivalent to Eq. (3.13) with

~X out instead of i [42].
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squeezed and antisqueezed quadrature relative to the shot noise level. The mean values h ~X outi, h ~Youti
are zero, and the OPO output is a squeezed vacuum state. The e�ect can be compared to the degenerate

optical parametric ampli�er, where a classical �eld is injected into the resonator through the output

coupler. The output of the cavity is then either ampli�ed or reduced in power, depending on the relative

phase between the pump �eld and the injected �eld. With the subthreshold OPO we inject ordinary

vacuum, and the OPO ampli�es or reduces the vacuum uctuations in a given quadrature, depending

on the pump phase.

The squeezed vacuum from the OPO is not squeezing in a single mode. Instead we see from Eq.

(3.13) that correlations between modes displaced by �
 with respect to half the pump frequency are

responsible for the noise reduction at frequency 
. The physics behind the noise reduction is down

conversion of a pump photon at frequency 2! into a pair of photons at frequency ! � 
. Energy

conservation requires that the phases of photons at ! � 
 add up to a phase set by the pump photon.

The down converted photons are thus pair-wise phase locked at the quantum level, and the sum of their

quadrature uctuations will either add or cancel depending on the quadrature. The minimum squeezing

bandwidth is set by the HWHM cavity bandwidth �. Even for a moderate pump parameter of � = 1=2,

the ideal OPO produces 89% or 9.5dB noise reduction at frequencies 
� �.

In the experiments we do not measure the quantum noise in terms of variances. Instead we measure

the spectral density uctuations of the relevant observable integrated over a narrow resolution bandwidth

around a frequency 
. We choose 
=2� to be a few MHz so that we are free of the low frequency technical

noise of the laser.

Any losses in the squeezing path will degrade the squeezing. Losses can be modelled by a beamsplitter

that couples out quantum correlations and couples in vacuum uctuations. Imperfect spatial mode

matching of the OPO squeezed vacuum output and the coherent �eld will also reduce the observed noise

reduction. These imperfections can be included in the � parameter as [63] � = �2
he
�qe�pe�ee. �he is the

homodyne eÆciency or the visibility of the spatial mode matching of a coherent �eld and the squeezed

vacuum. �qe is the quantum eÆciency of the detectors used to measure the �eld uctuations. Silicon

based photodiodes can have quantum eÆciencies of more than 98% in our wavelength range (850nm-

920nm). �pe is the propagation eÆciency from the OPO output to the detectors. �pe is set by the losses

on mirrors, windows, polarizing optics etc. Finally, �ee is the OPO escape eÆciency related to the OPO

losses, L, apart from the output coupler transmission T . �ee is the probability that a photon in the cavity

eventually escapes through the output coupler; �ee = T=(T + L). The extra cavity losses also modi�es

the cavity linewidth to � = c (T + L) =2l.
The intracavity photon number in the â-mode is [63] hâyâi = �2=(2 � 2�2). For a typical pump

parameter of � = 1=2, an output coupler transmission of T = 0:10, and a cavity length of 50cm we get a

power of about 2pW in the free propagating squeezed vacuum �eld at 850nm. This power level is many

orders of magnitude smaller than the typical laser power used in atomic spectroscopy, and the squeezed

vacuum photon ux can be neglected when the squeezed vacuum is combined with a coherent �eld.

3.3 Polarization squeezed light

In the discussions in the previous sections, only one polarization of the electromagnetic �eld was consid-

ered. However, it is possible to have the nonclassical correlations of squeezed light distributed over two

orthogonal polarizations. This is easily seen if we take our squeezed light in one polarization (e.g. linearly

polarized along x) and rotate our linear basis by 45Æ. In the new basis we need both the component at

+45Æ and the component at �45Æ in order to fully describe our squeezed �eld polarized along x. Hence,

in the new basis the correlations are distributed over two orthogonal polarizations.

In certain situations it is not only possible, but also necessary to describe the �eld using two orthogonal

polarizations. An example is shown in Fig. 3.3; a strong coherent (classical) �eld polarized along x and

a squeezed vacuum �eld polarized along y are overlapped in the same spatial mode propagating in the z

direction. The overlapping is easily done on a polarizing beamsplitter (used to combine the �elds rather
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Figure 3.3: A picture of a classical �eld which is polarized along x and overlapped with a squeezed vacuum

�eld polarized along y. a) The squeezed vacuum uctuations are out of phase with the classical �eld. The

direction of polarization is squeezed (small uctuations Æ ). b) The squeezed vacuum uctuations are in

phase with the classical �eld. The ellipticity is squeezed and the direction of polarization is antisqueezed

(large Æ ).

than splitting them). The interesting cases are when the relative phase between the squeezed vacuum

uctuations and the coherent �eld is either�90Æ (Fig. 3.3a) or 0; 180Æ (Fig. 3.3b). In the �rst situation we
see, as illustrated in the �gure, that the orientation of the electric �eld vector is well de�ned corresponding

to small uctuations in the direction of the linear polarization (Æ in the �gure). Figure 3.3a thus

represents a polarization squeezed state, where the uctuations in the (linear) polarization direction is

below the standard quantum limit (SQL). The SQL corresponds to ordinary vacuum uctuations in the

y-polarized mode. In the second situation we have large transverse uctuations at the coherent �eld

antinodes. The �eld polarization direction is then poorly de�ned and hence antisqueezed.

The interpretation of the squeezing in Fig. 3.3b is diÆcult in a linear basis. However, in a circular basis

(�+, �� polarizations) the well de�ned polarization direction corresponds to a well de�ned relative phase

between the two circularly polarized components. Figure 3.3b represents a state with equal intensities in

the two circular polarizations. Taken separately the intensities will uctuate, but the intensity di�erence

is very stable.

The �elds described here look a lot like the twin-beams [65], where the intensity uctuations in

two modes are strongly correlated with the noise in the intensity di�erence below the SQL. The states

discussed here are, however, not twin-beams. The individual intensities in the twin-beams do not have

their noise level below the SQL. In the polarization squeezed states discussed here, the two intensities

taken separately do uctuate less than the SQL, but the maximum noise reduction within a single

polarization is only 3dB. The noise in the di�erence can ideally be completely suppressed. The correct

analogy is the 50/50 beamsplitter in an ordinary squeezed �eld. Correlations exist within each of the two

beamsplitter outputs, but correlations also exist between the two outputs. In the polarization squeezed

states the modes are separated in polarization (�+, ��) and not spatially as with the 50/50 beamsplitter.

A more quantitative characterization of the polarization state can be given by introducing the Stokes

parameters. The Stokes parameters are used to describe the polarization state of a classical �eld [32],

but they can also be used for quantized modes of the �eld [66]. The four Stokes parameters are de�ned

as
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Ŝ0 = n̂ = â
y
+â+ + â

y
�â� (3.15)

Ŝ1 = 2Ŝx = â
y
+â� + â

y
�â+ = âyxâx � âyyây

Ŝ2 = 2Ŝy = i
�
ây�â+ � ây+â�

�
= ây

x0
âx0 � ây

y0
ây0

Ŝ3 = 2Ŝz = â
y
+â+ � â

y
�â�

Ŝ2 = Ŝ2
x
+ Ŝ2

y
+ Ŝ2

z
=
n̂

2

�
n̂

2
+ 1

�
The indices +�, xy and x0y0 refer to the chosen basis (circular, linear x � y and linear �45Æ) for the
particular mode operator. Ŝ0 = n̂ is the overall number of photons. In a basis of orthogonal linear

polarizations along x and y, we see that Ŝ1 is the di�erence between the photon numbers in the two

linearly polarized components. Ŝ2 is similar to Ŝ1 except that the linear basis x0 � y0 is rotated +45Æ

with respect to the x � y basis. Ŝ3 is the di�erence between the photon numbers in the right- and left

hand circularly polarized components of the �eld. Instead of the Stokes parameters directly, we will often

concentrate on the parameters Ŝx, Ŝy and Ŝz. These components ful�l the equal time angular momentum

commutation relation [Ŝx; Ŝy] = iŜz together with the relations obtained by cyclic permutations of the

indices. We can then consider Ŝx, Ŝy and Ŝz as the three components of an angular momentum or

spin for the �eld (Stokes spin). For completeness, we have included the expression for the square of the

angular momentum operator (Ŝ2).

In the experiments we cannot measure the Stokes spin components directly since they depend on the

chosen quantization length (L). Instead we measure the power of the �eld, which in units of photons per

second corresponds to the observables Ŝx;y;z = c

L
Ŝx;y;z.

A polarization squeezed state of light can be generated by combining a strong coherent �eld polarized

along x (~axe
i�) and the squeezed vacuum output of the OPO polarized along y (~ay) on a polarizing

beamsplitter, (see PBS1 in Fig. 3.4). The photon ux in the coherent �eld is given by � = c

L
jh~axij

2
: � is

the relative phase between the two �elds. Calculation of the Stokes parameters in the x�y basis involves
products like ei�~ax~a

y
y
= ei� (h~axi+ Æ~ax) ~a

y
y
. We de�ne the uctuating quantity Æ~ax as Æ~ax = ~ax � h~axi.

By a strong coherent �eld we mean that hÆ~a2
x
i � h~axi2, and the operator product can be linearized to

give ei�h~axi~ayy. With this linearization it is straight forward to get

Ŝy (
) =
p
�
�
~X out (
) cos � + ~Yout (
) sin �

�
(3.16)

~X out, ~Yout are the quadrature phase operators for the OPO output from Eq. (3.13): From the previous

section we know that ~X out / ~Xv and ~Yout / ~Yv . Since the vacuum uctuations are uncorrelated

(h ~Xv ~Yv + ~Yv ~Xvi = 0) we �nd that h ~X out (
) ~Yout (
0)+ ~Yout (
0) ~X out (
)i = 0, and the spectral density

for Ŝy is (together with the other Stokes components) found to beD
Ŝx
E
= �=2;

D
Ŝy
E
=
D
Ŝz
E
= 0 (3.17)

(Ŝx)2
 =
�

4

(Ŝy)2
 =
�

4

�
R+ (
) cos2 � +R� (
) sin2 �

�
(Ŝz)2
 =

�

4

�
R+ (
) sin2 � +R� (
) cos2 �

�
R� (
) =

 
1� �

4�


2=�2 + (� � 1)
2

!
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Figure 3.4: Schematic picture of the squeezing setup consisting of the cavity for second harmonic gen-

eration (SHG), the blue reference cavity, and the OPO producing the squeezed vacuum. Polarization

squeezed light is generated at the polarizing beamsplitter PBS1 by adding a coherent �eld and the

squeezed vacuum in orthogonal polarizations. The relative phase between the two �elds is adjusted by

the piezo-mounted mirror Mp. The spatial mode of the coherent �eld is cleaned in a mode cleaning

cavity. The half-wave plate, PBS2 and the two photodetectors produce a di�erential photocurrent which

is proportional to the Stokes spin Ŝy. The quantum uctuations in Ŝy are analyzed on the spectrum

analyzer.

We de�ne a polarization squeezed state as a state with the uctuations in one of the three Stokes

spin components below the standard quantum limit set by the coherent state. The example in (3.17) is

polarization squeezed for any � as long as � > 0. The situation in Fig. 3.3a corresponds to squeezed

Ŝy, whereas Ŝz is squeezed in Fig. 3.3b. As discussed later in this thesis (chapter 5), a spin state with

uctuations in one component reduced below the standard quantum limit is a spin squeezed state.

3.4 Experimental squeezing setup

Our squeezed light source can run in the wavelength range between 850nm and 920nm. The 917nm

wavelength is used in the squeezed probe polarization spectroscopy experiment discussed in the following

section. In the spin squeezing experiment, which is the principal work in this thesis (Chapter 8), we run

at 852nm. The construction of the squeezing source and its characterization around 917nm is discussed

in great detail in Ref. [67]. A similar squeezing setup is presented in Ref. [47, 45]. In this section we give

an overview of the setup and compare the parameters at 852nm and 917nm. Although the setup was

completely rebuilt when we went from 917nm to 852nm, the geometry, mirrors, and crystals for the two

main parts of the setup (doubling cavity and OPO) are identical for the two setups3. The parameters

given below are for 852nm unless otherwise stated.

The setup is outlined in Fig. 3.4. A powerful Ti:Sapphire laser (Microlase MBR-110) drives the

squeezing source. About 600mW of the IR laser output pumps a doubling cavity used for second harmonic

generation. The doubling cavity is a four-mirror ring resonator with a �(2) nonlinear crystal between

3This rebuilding was not required by the change in wavelength, but we had to move and compress the squeezing setup

in order to get room for a second Ti:Sapphire laser (home-made) on the optical table.
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the two curved mirrors (radius of curvature 5cm). The nonlinear crystal is KNbO3, which can be non-

critically phase matched at around 5ÆC (130ÆC @ 917nm). The IR light is coupled into the resonator

through an input coupler with a transmission of 10.7% (7.3% @ 917nm). The three other mirrors are all

high reectors at the IR wavelength,. but transmit about 80% of the blue second harmonic �eld (slightly

higher transmission at 917nm). Optimum focusing of the IR �eld in our 10mm long crystal requires a

waist of about 15�m [68], and the cavity geometry is adjusted accordingly. The doubling cavity can

give an output of up to 200mW blue light (300mW at 917nm). A doubling eÆciency of 80% has been

reached at 917nm, but the performance at 852nm is not quite as good. The mirrors and crystal are

broadband coated but centered around 920nm. This partly explains the inferior performance at 852nm.

Another limiting factor is the blue-light-induced infrared absorption (BLIIRA) present in KNbO3 [69].

The blue light generated by the second harmonic process in the crystal induces losses for the IR pump

�eld. The BLIIRA is smaller at large wavelength (higher phase matching temperature) [70], and this

also contributes to the superior doubling eÆciency at 917nm.

The OPO cavity is a ring resonator similar to the doubling cavity, except that the cavity length is

shortened by using mirrors with 2.5cm radius of curvature. The short cavity is chosen because it increases

the squeezing bandwidth (Eq. (3.13)). The OPO is pumped by the blue light from the doubling cavity

and produces a squeezed vacuum �eld as described in the previous section. It is important that the

spatial mode of the blue pump �eld is well matched to OPO cavity. However, the blue light is not

resonated in the OPO, and hence the mode matching is not trivial. To circumvent this problem we

pump the OPO with IR light through the output coupler and let the OPO generate blue light. This

generated blue �eld is in the spatial mode that should be used for pumping the OPO. The blue OPO

output is matched from one side to a blue reference cavity (see Fig. 3.4). We then match the blue output

of the doubling cavity to the same reference cavity, but from the other side. Now the blue �eld reected

o� the reference cavity goes into the correct mode for pumping the OPO. The estimated mode matching

of the blue to the OPO is mm852 = 0:72 with 80% from the doubling cavity to the reference cavity and

90% from the OPO to the reference cavity. For 917nm we estimate mm917 = 0:85. The typical blue

power used for pumping the OPO, when mode matching (0.72), blue transmission through curved mirror

(0.80), and reection and bulk losses in crystal (0.91) are taken into account, is about 70mW at 852nm.

The e�ective pump power is about 130mW at 917nm.

The nonlinearity of the KNbO3 crystal is speci�ed in terms of the nonlinearity ENL de�ned through

the relation P2! = ENLP
2
!
. P2! is the single pass generated second harmonic power for a pump power

of P!. In the OPO we measure E852
NL

= 1:6%W�1 (E917
NL

' 0:5%W�1). The inferior nonlinearity

at 917nm is not well understood, but our measurements indicate that the nonlinearity su�ers at the

increased temperature. On the other hand, the cavity round trip losses at 852nm are somewhat higher;

L852 = 2:2% � 0:3%. L852 includes about 1.3% BLIIRA at 70mW blue pump power, but excludes the

output coupler transmission T 852 = 10:7%. The numbers for 917nm are L917 = 1:2% including 0.7%

BLIIRA. The pump threshold for the OPO can be calculated to be [71] Pth = (T + L)2 =(4ENL), and

we �nd P 852
th

= 260mW and P 917
th

= 360mW. The corresponding pump parameters are �852 = 0:52 and

�917 = 0:60.

The imperfections quanti�ed by the �-parameters are dominated by the escape eÆciencies �852
ee

=

T 852=
�
T 852 + L852

�
= 0:83 and �917ee = 0:86. The other parameters are homodyne eÆciency (�852

he
=

0:96, �917
he

= 0:98), detector quantum eÆciency (�852
qe

= 0:98, �917
qe

= 0:99 - factory speci�cations), and

propagation eÆciency from the OPO to the detectors (�852pe = 0:91, �917pe = 0:90). The large propagation

losses come from imperfect polarization optics, windows and mirrors4.

The length of the OPO is about 20cm and the corresponding HWHM cavity linewidths are �852=2� =
c

2l
T+L
2�

= 15MHz and �917=2� = 10MHz. The bandwidth of the squeezing spectra is given by � (1 + �),

which for our � � 0:5 gives a squeezing bandwidth about 50% larger than the cavity linewidth.

From Eq. (3.13) we can calculate the expected squeezing/antisqueezing at our 
=2� =3MHz detection

frequency. We get for the 852nm setup R852
� (
) = 0:40 (�4:0dB) and R852

+ (
) = 6:3 (+8.0dB). For the

4One of the mirrors in the 852nm setup is the surface of a gold coated mechanical chopper wheel. The use of this

chopper wheel is discussed in Chapter 8. Here we just note that the reectivity was measured to be 95%.
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917nm setup the numbers are: R917
� (
) = 0:33 (�4:8dB) and R917

+ (
) = 8:1 (+9:1dB).

To generate the polarization squeezed light, we must overlap the squeezed vacuum output of the

OPO with a coherent �eld in the orthogonal polarization. This is done on the polarizing beamsplitter

PBS1 in Fig. 3.4. The spatial mode of the coherent �eld is cleaned in the mode cleaning cavity for

better homodyne eÆciency. The half-wave retarder, in front of the mode cleaning cavity, ensures that

the coherent �eld and the squeezed vacuum have orthogonal polarizations on PBS1. The spatial modes

of the �elds are overlapped by injecting a coherent IR �eld into the OPO without the blue pump �eld.

The transmission of this IR �eld is in the same spatial mode as the squeezed vacuum output. The overlap

of the two modes on PBS1 is measured by mixing the two polarizations with a half-wave retarder and

a second PBS. The interference fringe is monitored as the relative phase (or path length di�erence) is

scanned by the mirror Mp mounted on a piezoelectric transducer (PZT) (Fig. 3.4).

The output of the Ti:Sapphire laser is frequency modulated at 20MHz with an electro-optical mod-

ulator. The modulation is used for locking the doubling cavity and the OPO at resonance by standard

FM techniques [72]. A weak IR �eld used for locking is injected into the OPO through one of the high

reectors. The locking �eld and the generated squeezed vacuum �eld are counterpropagating in the

resonator. Ideally, none of the locking �eld leaves the OPO in the same spatial mode as the squeezed

vacuum. However, the normal cut KNbO3 surfaces reect a small fraction of the locking �eld into the

opposite direction. Therefore, a very weak coherent �eld of about 50nW is present in the squeezed vac-

uum output. This coherent component can be neglected as long as the squeezed vacuum is mixed later

on with a much stronger coherent �eld.

The mode cleaning cavity is locked in transmission on the side of a fringe. In this way a feedback to

the cavity length ensures a constant intensity of the transmitted �eld. In the experiments later on, it

is important with good long term stability. We use the mode cleaning cavity to obtain a clean spatial

mode as well as to compensate for the slow intensity uctuations of the Ti:Sapphire laser.

The noise properties of the polarization squeezed state, generated on PBS1, is analyzed in the polar-

ization interferometer consisting of PBS1, PBS2 and the half-wave retarder in between (Fig. 3.4). The

di�erential photocurrent i� from the photodetectors PD1,2 is proportional to the Stokes spin component

Ŝy; de�ned with respect to the polarizations at PBS1, when the half wave retarder rotates the horizontal

and vertical polarizations by 45Æ. The two photodetectors are the same 3.0MHz detectors as in section

2.4.1, except that the bandwidth is reduced to 180kHz. The noise equivalent power for both detectors is

consequently reduced to about 25�W. The spectral density of the photocurrent uctuations is given by

(i�)
2

 = 4e2g2(Ŝy)2
 (3.18)

e is the elementary charge, g is the detector gain, and we have assumed unity quantum eÆciency. In

practice, the spectral density is normalized to the coherent state uctuations, and detailed knowledge

about e2g2 is not necessary. Replacing the half-wave retarder with a correctly oriented quarter-wave

retarder gives i� / Ŝz , whereas no retarder gives i� / Ŝx (the last option is less interesting as it always

gives the shot noise level, see Eq. (3.17)).

Fig. 3.5 shows the photocurrent uctuations ((i�)
2


 / (Ŝy)2
) measured with the 852nm setup.

The measurement is carried out with the spectrum analyzer (SA, Anritsu MS710A) set at frequency


=2� = 3MHz and with zero span. The SA integrates the spectral density over a resolution bandwidth

of 100kHz, and the sweep time is about 60ms. Curve a is the shot noise level with the squeezed vacuum

path blocked. The laser output is checked to be shot noise limited at the actual detection frequency and

power by doubling the power in the coherent �eld and observing a noise increase of 3dB, as expected for

shot noise limited light. In curve b the relative phase between the coherent �eld and the squeezed vacuum

is scanned by means of the PZT mounted mirror (Mp in Fig. 3.4). We observe the phase sensitive Ŝy
noise going below and above the shot noise level in accordance with Eq. (3.17). The electronic noise

(detector noise) for these measurements is about 12dB below the sum of electronic noise and shot noise

of light. We have subtracted the (small) electronic noise background in the graphs in Fig. 3.5. The

nonlinearity of the horizontal axis in Fig. 3.5 is caused by phase drifts during the scan. The dotted

line on top of curve b is a �t to Eq. (3.17) taking the dB scale, the known ratio 
=�, and the slightly
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Figure 3.5: Noise in the di�erential photocurrent (i�)
2


 / (Ŝy)2
 measured with the 852nm setup. a) The

shot noise level. b) Phase sensitive noise with a scanned optical phase. The dotted line is a theoretical

�t to Eq. (3.17) allowing for a slightly nonlinear scan and taking the dB scale into account. Parameters

from the �t: � = 0:57, � = 0:56. c) Squeezing with the phase actively stabilized. d) Antisqueezing with

stable phase. Resolution bandwidth: 100kHz. Averaging time for c) & d): about 10 sec. The reference

for the vertical dB scale is the coherent state shot noise.

nonlinear scan into account. The result of the �t gives � = 0:57 and � = 0:56. This indicates that e.g.

the propagation losses are somewhat higher than expected. One parameter that we did not measure is

the direction of polarization for the squeezed vacuum output. If the KNbO3 crystal is tilted in the OPO,

the squeezed vacuum polarization and PBS1 will be misaligned and hence losses are introduced.

In order to have stable squeezing, it is important that the relative phase � between the squeezed

vacuum �eld and the coherent �eld is actively stabilized. This is done by dithering the phase at 2kHz

using the PZT mounted mirror. The classical di�erential photocurrent is split into two parts; one goes to

the SA used for monitoring the Ŝy noise, and the other goes to a home-made SA. A lock-in ampli�er with

the output of the home-made SA as the signal input and the 2kHz modulation as the reference provides

an error signal with zero crossings when the measured noise (i�)
2


 is at a maximum or a minimum. A

low frequency feedback loop to the same PZT mounted mirror compensates uctuations in the phase �.

The home-made SA is build around a mixer, where the di�erential photocurrent goes into the RF input

and an external function generator delivers the LO input (around 
). The mixer output is subsequently

squared electronically and then �ltered by a low-pass �lter. The principles behind the spectrum analyzer

are discussed in more detail in Appendix E.

In Fig. 3.5 we show as curve c and d the observed polarization squeezing and antisqueezing at 852nm

with the phase � actively stabilized. All data in Fig. 3.5 correspond to the same parameters and are

taken within a few minutes. The values for the squeezing and antisqueezing with stabilized phase are

-3.0dB and +7.9dB - quite close to the minimum and maximum of -3.1dB and +8.2dB from the �t to

curve b.

The squeezing at 852nm is clearly limited by the propagation and intracavity (BLIIRA) losses. The

pump parameter is large enough for very strong squeezing. The squeezing can be improved by the use of

better optics, but for the spin squeezing experiment this is hardly worth the e�ort. The eÆciency of map-
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ping the quantum correlations of light onto atoms is very low as we will see in chapter 4. Consequently,

this low mapping eÆciency and not the degree of polarization squeezing will be the main limiting factor

in the spin squeezing experiment.

At 917nm we measure -3.1dB squeezing and +7.8dB antisqueezing in the polarization interferometer

setup. Also these numbers are somewhat smaller than expected theoretically. In a balanced homo-

dyne detection using a 50/50 beamsplitter, we measure close to 5dB of squeezing at 917nm with the

improvement due to very low propagation losses (�917
pe

= 0:99). The 852nm setup is clearly limited in

performance by the BLIIRA. Increasing � further by stronger pumping just increases the BLIIRA, and

hence the escape eÆciency su�ers. At 852nm we measure a decrease in the squeezing when the e�ective

pump power is increased above the typical 70mW. The advantage of the 917nm setup with respect to

low BLIIRA is more or less cancelled by the reduced nonlinearity. With the optics optimized speci�cally

for 852nm and for a good crystal and very low propagation losses, it should be possible to reach -6.0dB

of squeezing as demonstrated in Ref. [45].

3.5 Sub-shot noise polarization spectroscopy

We now employ our polarization squeezed light at 917nm together with our cold trapped atoms in

the MOT in a spectroscopy experiment with sensitivity beyond the standard quantum limit. The �rst

demonstration of improved sensitivity in a polarization interferometer utilizing squeezed light is given

in Ref. [73]. Here the authors place a Faraday rotator with an applied oscillating voltage inside the

polarization interferometer. The Faraday rotator produces a signal, which is measured with 1.8dB

improved sensitivity when the squeezed light is applied. In the present experiment we use a cold atomic

gas as the anisotropic medium. The atoms respond only to a resonant probe �eld, and the tunability of

our squeezing source is therefore important.

The squeezing setup is similar to Fig. 3.4 where the polarization squeezed �eld between PBS1 and

PBS2 now passes through the atomic sample. The setup is also equivalent to Fig. 2.4 with the squeezed

vacuum �eld injected into the empty port of PBS1. In this experiment we use the diode laser for atom

cooling and trapping. Just as in the previous chapter, we use double-optical resonance with the trapping

beams present all the time and probing on the 6P3=2F = 5 ! 6D5=2F = 6 transition. We detect

the spectral density of the di�erential photocurrent on the spectrum analyzer as the frequency of the

polarization squeezed light is scanned across the 917nm atomic resonance. The squeezed probe is scanned

in frequency by scanning the laser driving the squeezing source. The SA works in zero span mode at

the �xed frequency 
=2� = 3:0MHz. In order to observe an atomic signal at 3.0MHz, we modulate the

atomic sample. The atoms are modulated by applying intensity modulation to one of the horizontal

trapping beams. The squeezed probe �eld propagates along the z-axis at a small angle with respect to

the horizontal trapping beams. The modulation of the trapping light results in a modulated imbalance

in the intensity of the two circularly polarized components of the trapping �eld. An imbalance in

circular polarizations results in nonzero orientation (hF̂zi) in the 6P3=2F = 5 state. Consequently hF̂zi
is modulated at 3.0MHz, and from Eq. (2.16) we expect to observe a modulation or a signal in the

di�erential photocurrent at 3.0MHz when the probe �eld approaches the 917nm resonance.

The observed signals are plotted in Fig. 3.6. Curve a is a measurement with the squeezed vacuum

path blocked (coherent state probe). Near resonance we observe the atomic signal whereas the noise

level o� resonance is set by the coherent state shot noise. Curve b is a similar measurement, except that

we now employ the polarization squeezed probe. The o� resonant noise level is now set by the reduced

Ŝy noise with the optical phase between the squeezed vacuum and the coherent �eld actively stabilized

to � = �=2. The home-made spectrum analyzer, used for locking the optical phase, is now analyzing the

photocurrent uctuations a few hundred kHz away from the 3.0MHz modulation frequency. The atoms

are modulated only within a narrow bandwidth around 3.0MHz, and the phase locking signal is therefore

not inuenced when we scan across the atomic resonance. Curve c is the electronic noise when no light

reaches the detectors.
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Figure 3.6: Polarization spectroscopy on atoms with sub-shot noise sensitivity. a) Coherent state probe.

b) Polarization squeezed probe for increased sensitivity. c) Electronic noise level. The data are taken

with a resolution bandwidth of 30kHz. The reference for the dB scale is the sum of the coherent state

shot noise plus the small amount of electronic noise.

The peak from the atomic signal plus shot noise is for the coherent state probe measured to be 4.8dB

above the shot noise level. The corresponding signal-to-noise ratio (S/N) is given by S/N= 104:8=10�1 =

2:0. For the polarization squeezed probe we infer a signal-to-noise ratio of S/N= 3:9. We see that the

use of a polarization squeezed probe increases the S/N by a factor of 2.0. This is close to the S/N

increase of 1.8 that we expect from the �2.5dB of squeezing available in this experiment. We attribute

the discrepancy to drifts in the amplitude of the atomic signal.

It is in this experiment, as well as in most experiments demonstrating sub-shot noise sensitivity,

important that the probe optical depth is very small. For an appreciable absorption, the propagation

eÆciency (�pe) will su�er, and the probe �eld will be less squeezed on resonance. The reduced squeezing

on resonance is diÆcult to distinguish from the true atomic signal, and one may arrive at the (false)

conclusion that the increase in S/N is larger than predicted by the actual degree of squeezing. In the

present experiment we have a resonant optical depth below 3%, and the e�ect of reduced squeezing at

resonance can safely be neglected for the moderate squeezing of �2.5dB.
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Figure 3.7: A picture of the setup used for generation of squeezed light around 852nm. The doubling

cavity (SHG) is placed inside the plastic box to the right. The generated blue light pumps the OPO in

the plastic box to the left. The blue reference cavity is located behind the doubling cavity. The Ar-ion

laser pumping the Ti:Sapphire laser is seen in the background.



Chapter 4

Mapping the quantum state of light

onto atoms

We move on with a theoretical chapter about mapping of the quantum state of light onto an ensemble

of multi-level atoms. The idea is that the quantum correlated photons in a nonclassical state of light

are absorbed in an optically thick atomic gas and thereby generate quantum correlated or entangled

excited state atoms. By entanglement we mean that the quantum state is non-separable, i.e. it cannot

be written as a product of single atom states. This quantum state mapping is interesting from, at least,

two di�erent viewpoints.

As we know from the squeezed light theory, multiparticle entanglement can be used to reduce quantum

uctuations in certain observables. This is useful in spectroscopy experiments as we have demonstrated

with squeezed light in the previous chapter. In some experiments the obtainable signal-to-noise ratio is

limited by the quantum noise of uncorrelated atoms. We will give an example of that in chapter 7. A

more persuasive example is the state of the art atomic fountain clock, which is limited in stability by the

atomic projection noise from uncorrelated atoms [1]. The frequency stability of the atomic clock can be

improved by utilizing quantum correlated atoms as discussed in Ref. [74, 75].

The other point of view comes from quantum information. Atoms can be used to store qubits by

utilizing long-lived internal states. Photons are the obvious carriers when quantum information is to

be transferred from one "quantum memory cell" to another. This approach is discussed theoretically in

Ref. [7], where single atoms in cavities act as the quantum memory, and information is transferred by

coupling the cavities via an electromagnetic �eld (photons). The cavities are, in this approach, required

for eÆcient interaction between atoms and photons. Here we follow a di�erent strategy. We do not

require strong interaction between the �eld and a single atom. Instead we use a large number of atoms

to ensure complete transfer of the quantum state of a freely propagating continuous wave light beam.

Although we in this thesis limit the mapping discussion to the squeezed states of light, other nonclassical

states may be mapped in a similar way as shown in Ref. [8]. A very recent proposal involves mapping

of the quantum states of travelling light waves onto collective states of atoms in a cavity by utilizing

an adiabatic transfer technique [76]. This proposal does not require high-Q cavities, but it relies on

strong coupling to the collective atomic variables of a large ensemble of atoms. It is a proposal in the

intermediate regime between the "high-Q cavity - one atom" approach of Ref. [7] and our "no cavity -

many atoms" approach.

Even if we disregard the two motivating viewpoints above, the manipulation of atoms and photons

at the quantum level is basically interesting physics, and our interests in the subject do not even need

possible applications in order to be justi�able.

One of the �rst publications on transferring of the quantum state of squeezed light onto an ensemble

of two-level atoms comes from G. S. Agarwal et al. in 1990 [77]. Their calculations do predict generation

of entangled atoms and squeezing of a collective spin component. However, the premises for their

39
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calculations are diÆcult to comply with experimentally. It is assumed that all atoms see the same

squeezed vacuum mode, and that no unsqueezed (normal) vacuum modes interact with the atoms. This

is the "large solid angle"-problem mentioned in the introduction to chapter 3. In the same introduction

we note that the "large solid angle"-problem perhaps can be circumvented by using a cavity to enhance

the squeezed light interaction. Even more problematic is the assumption that all atoms are contained

within a volume much smaller than �3, where � is the wavelength of the atomic resonance frequency.

This requirement comes from the two non-degenerate atomic levels, which constitute the upper and

lower levels in the dipole coupling to the electromagnetic �eld. The multiparticle entanglement involves

correlations between the dipole moments of di�erent atoms. An e�ective dephasing takes place and ruins

any correlations when the atoms are distributed over a volume larger than �3, since the phase of the

dipole oscillations is set by the spatially dependent phase of the excitation �eld (eikz).

An improved proposal in terms of experimental feasibility is presented in Ref. [9]. Here the atomic

correlations are related to two degenerate excited atomic states, and this degeneracy removes the �3-

volume problem. Furthermore, the squeezed excitation �eld is propagated through the atomic medium

without assumptions about tight focusing and consequently no "large solid angle"-problem. The e�ect of

the unsqueezed vacuum modes is reduced to a decay of correlations, which limits the spin noise reduction

to 50% of the standard quantum limit set by the uctuations of uncorrelated atoms. The results of Ref.

[9] are the starting point for our spin squeezing work.

A closely related proposal involves complete absorption of twin-beams in an atomic gas of three-level

atoms [78]. The e�ects are very similar to those in Ref. [9], and the twin-beam theory is much simpler

and easier to understand intuitively.

We consider in this thesis the entangling of a large ensemble of atoms through the light-atom mapping,

with this chapter presenting the theory behind the experiment in chapter 8. The results presented here

are generalizations of the work in Ref. [9]. We allow for an arbitrary polarization squeezed excitation �eld,

and we generalize to Zeeman degenerate atoms with the squeezed light interacting on a F ! F 0 = F +1

transition. The results of Ref. [9] are restricted to the three-level system with F = 0 and a speci�c

polarization squeezed state of the excitation �eld. For simplicity, we assume that the atoms in the ground

state F are unpolarized. In chapter 6 we will discuss the readout of the atomic quantum correlations; a

subject which is only super�cially treated in Ref. [9]:

This chapter is organized as follows: In the �rst section we introduce the notation and the equations

that drive our system of atoms and �elds. In the second section we consider mapping of the Stokes spin

component Ŝz onto the collective excited state atomic spin component F̂
0

z . The third section includes

the calculation of mapping of the Stokes spin components Ŝx and Ŝy onto the atomic variables F̂
02
x � F̂ 02

y

and F̂ 0
x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x
. We end this chapter with a few comments on the applied linearization approach.

4.1 The fundamental equations

The physical system, which we investigate in this theoretical chapter, consists of a Gaussian mode

quantum �eld and a sample of Zeeman degenerate atoms (Fig. 4.1). The quantum �eld is in a polar-

ization squeezed state. This means that the �eld description includes both circular polarizations with a

monochromatic coherent (classical) component at the carrier frequency !0 on top of a broad band, zero

mean quantum �eld. The internal level structure of the atoms is shown in Fig. 4.1b. The total angular

momentum of the ground and excited state is respectively F and F 0 = F + 1. The atomic ground

and excited state couple to the quantum �eld through the dipole interaction. The atomic resonance

frequency is given by !a, and we will assume that the carrier of the excitation �eld is at exact resonance;

!a = !0. The coherent component of the excitation �eld is assumed to be small compared to the atomic

saturation intensity, so that the excited state population is much smaller than the ground state popu-

lation at all positions within the atomic cloud. Furthermore, to simplify the equations for propagation

of the quantum �eld in the atomic medium, we take the atomic ground state to be unpolarized. The

calculations are also simpli�ed by the assumption that the characteristic length scales are well separated,
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Figure 4.1: a) The freely propagating quantum �eld with a Gaussian transverse mode is (almost) com-

pletely absorbed in a cloud of cold atoms. By this process the quantum properties of the �eld are

transfered to the atomic sample. b) The atomic level scheme with the Zeeman degenerate ground and

excited state. F , F 0 are the total angular momentum quantum numbers and a� are the �eld amplitudes

of the two circular polarizations of the quantum �eld.

i.e. � � L � ÆV 1=3 � L0 . l. � is the wavelength of the atomic resonance. L is a length, which sets

the number of modes included in the expansion of the quantized electromagnetic �eld. L0 is the charac-
teristic length scale for changes in the amplitude of the quantum �eld due to absorption or dispersion

in the atomic medium. ÆV is a small volume used in the de�nition of continuous atomic operators. l

is the "length" of the atomic cloud (see Fig. 4.1a). Finally, we assume that the transverse size of the

atomic cloud is larger than the diameter of the Gaussian mode quantum �eld. The theory is based on

the Heisenberg-Langevin equations [79] for the �eld and the atomic operators. We will linearize these

equations (similar to e.g. Ref. [9, 80, 81, 82]) and arrive at an analytic expression for the uctuations

in the collective (i.e. summed over all atoms) excited state observables F̂
0

z , F̂
02
x � F̂ 02

y and F̂ 0
xF̂

0
y + F̂ 0

yF̂
0
x.

These uctuations will be expressed through the uctuations in the Stokes parameters of the quantum

excitation �eld. The starting point for the calculations is the Hamiltonian for the system of atoms and

�elds, which we derive in the following subsection.

4.1.1 The Hamiltonian

The excitation �eld is propagating along the z-axis (quantization axis) with a transverse spatial mode

function u (x; y). The expression for the excitation �eld in the basis of right- and left circular polarizations

is given by

Ê (r) = i�

Z k0+
�

L

k0� �

L

h
e+u (x; y) â+ (k) eikz � e�+u

� (x; y) ây+ (k) e�ikz
i
dk (4.1)

+ i�

Z
k0+

�

L

k0� �

L

h
e�u (x; y) â� (k) eikz � e��u

� (x; y) ây� (k) e�ikz
i
dk

� =

r
~!0

4�"0
; ! = kc ; [â� (k) ; â

y
� (k0)] = Æ (k � k0)

e� = (ex � iey) =
p
2 are the unit vectors for circular polarizations. The �eld is time dependent in the

Heisenberg picture due to time dependent annihilation and creation operators. The frequency compo-
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nents very far from atomic resonance do not contribute in the theory, and the integrals are truncated

with the limits k0 � �=L. L is the "quantization length", and it is assumed to be smaller than the

characteristic length, L0, for changes in the excitation �eld due to absorption and dispersion. In Eq.

(4.1) we use the assumption �� L to pull the frequency ! out of the integral and include it in � as !0.

The carrier frequency !0 = k0c is the only frequency component of the �eld that has a nonzero mean

value.

The Hamiltonian for the system of atoms and �elds is given by

Ĥ = ~c

Z
k0� �

L

k0� �

L

k
h
â
y
+ (k) â+ (k) + â

y
� (k) â� (k)

i
dk (4.2)

� ~!a

FX
m=�F

Z
V

��̂Fm;Fm (r) d3r

�
Z
V

D̂ (r) �Ê (r) d3r

The Hamiltonian describes the interaction between the excitation �elds and the atoms within a volume

V � l3. The �rst term is the free Hamiltonian for the excitation �eld. The second term is the free

Hamiltonian for the atoms with the energy �~!a in the ground state and zero energy in the excited

state. Instead of a discrete sum over all atoms in the volume V , we integrate over the continuous atomic

operators de�ned below. The last term is the dipole interaction between the atoms and the �eld with

D̂(r) as the polarization operator. � is the (constant) density of atoms.

The normalized continuous atomic operators are de�ned as (see also Ref. [83])

�̂F 0m;F 0n (r) =
1

�ÆV

X
i

jF 0mi
i;i
hF 0nj (4.3)

�̂Fm;Fn (r) =
1

�ÆV

X
i

jFmi
i;i
hFnj

�̂F 0m;Fn (r) =
1

�ÆV

X
i

jF 0mi
i;i
hFnj eik0(zi�z)

�̂Fm;F 0n (r) =
1

�ÆV

X
i

jFmi
i;i
hF 0nj e�ik0(zi�z)

ÆV is assumed to be large enough to include many atoms (�ÆV � 1). On the other hand, we assume

ÆV 1=3 to be small compared to the characteristic absorption length L0. The sum extends over all atoms

within the volume ÆV around r: jF 0mi
i;i
hFnj is the usual single-atom projection operator with jF 0mi

i

as the excited state, Zeeman level m, atom number i, and jFni
i
as the ground state, Zeeman level n,

atom number i. The optical coherences for di�erent atoms in ÆV have di�erent phases due to the spatial

phase change of the excitation �eld (ÆV � �3 ). The exponentials e�ik0(zi�z) in Eq. (4.3) compensate

for this e�ect. These exponentials have the same e�ect as moving all atoms within ÆV into the same

point r:

The commutators for the continuous atomic operators are derived from the single atom commutators

with the result

[�̂a;b (r) ; �̂c;d (r
0)] = ��1 [�̂a;d (r) Æc;b � �̂c;b (r) Æa;d] Æ (r� r0) (4.4)

This commutator with the Dirac delta function is valid in integrals where the integrand is slowly varying

on the length scale ÆV 1=3.

The atomic polarization operator D̂ (r) is given by the density of single atom dipole operators in the

volume ÆV around r. The single atom dipole operator can be written as

d̂ =
X
n;m

hnj d̂ jmi jni hmj (4.5)



4.1. THE FUNDAMENTAL EQUATIONS 43

where the sum runs over all atomic Zeeman levels in the ground- and excited state. The dipole matrix

elements are easily evaluated using the spherical tensor theory and the Wigner-Eckart theorem [31]. The

nonzero matrix elements of the d̂�1 = �(d̂x � id̂y) components are found to be (see e.g. Ref. [30] for

details)

hFmj d̂�1 jF 0m� 1i = �hF 0m� 1j d̂�1 jFmi = g
p
(F + 2�m) (F + 1�m) (4.6)

g =

s
3"0~�3

8�2 (2F + 1) (2F + 2)

 is the excited state decay rate. The polarization operator is given by

D̂ (r) = D̂+ (r) e+ + D̂
y
+ (r) e�+ + D̂� (r) e� + D̂

y
� (r) e�� (4.7)

D̂� (r) = �
FX

m=�F
�g
p
(F + 2�m) (F + 1�m)�̂Fm;F 0m�1 (r)

We can now write the interaction term in the Hamiltonian in Eq. (4.2) as

�
Z
V

D̂ (r) �Ê (r) d3r = (4.8)

i~�

FX
m=�F

Z
V

n
�+mu

� (x; y) �̂Fm;F 0m+1 (r) â
y
+ (z)� �+mu (x; y) �̂F 0m+1;Fm (r) â+ (z)

+ ��mu
� (x; y) �̂Fm;F 0m�1 (r) â

y
� (z)� ��mu (x; y) �̂F 0m�1;Fm (r) â� (z)

o
d3r

��
m
=
��g
~

r
2�

L

p
(F + 2�m) (F + 1�m)

We used the rotating wave approximation where the fast oscillating terms in the Hamiltonian are ne-

glected [79]. The spatial dependent annihilation operators are given by

â� (z) =

r
L

2�

Z k0+
�

L

k0� �

L

â� (k) eikzdk (4.9)h
â� (z) ; â

y
� (z)

i
= 1

Note that we go from â� (k) to â� (z) by a spatial Fourier transform involving only the important k-

components. We use the same notation for an operator and its Fourier transform and distinguish the

two by the arguments.

4.1.2 The �eld propagation equation

The equation describing propagation of the �eld through the atomic sample is obtained from the Heisen-

berg equation for the �eld operators. We have

:

â� (k) =
1

i~
[â� (k) ; H ] = �ick â� (k) + �

r
L

2�

FX
m=�F

��
m

Z
V

u� (x; y) �̂Fm;F 0m�1 (r) e
�ikzd3r (4.10)

Multiplying both sides by eikz
0
p
L=2� and integrating over k from k0 � �=L to k0 + �=L gives

:

â� (z0) + c
@

@z0
â� (z0) = �

L

2�

FX
m=�F

��
m

Z
u� (x; y) �̂Fm;F 0m�1 (r)

(Z
k0+

�

L

k0� �

L

eik(z
0�z)dk

)
d3r (4.11)
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It is convenient to introduce operators that are slowly varying in time and space. For the �eld annihilation

operators we separate the carrier component by writing

â� (z; t) = ~a� (z) e�i(!0t�k0z) (4.12)

The continuous atomic optical coherences in steady state oscillate in time and space due to the excitation

�eld. This is similar to the damped harmonic oscillator with a driving force; the steady state oscillator

follows the oscillations of the driving force. The slowly varying atomic operators ~� are then given by

�̂F 0m;Fn (r; t) = ~�F 0m;Fn (r; t) e
i(!0t�k0z) (4.13)

�̂Fm;F 0n (r; t) = ~�Fm;F 0n (r; t) e
�i(!0t�k0z)

�̂F 0m;F 0n (r; t) = ~�F 0m;F 0n (r; t)

�̂Fm;Fn (r; t) = ~�Fm;Fn (r; t)

Substituting the slowly varying operators into Eq. (4.11) gives

:

~a� (z0) + c
@

@z0
~a� (z0) = �L

FX
m=�F

��
m

Z
u� (x; y) ~�Fm;F 0m�1 (r)

�
sin (� (z0 � z) =L)

� (z0 � z)

�
d3r (4.14)

The slowly varying atomic operator ~�Fm;F 0m�1 (r) is de�ned so that it only changes substantially over

distances much larger than L, and we can substitute the f�g-factor by the Dirac delta function Æ (z � z0)
with the �nal result

:

~a� (z) + c
@

@z
~a� (z) = �L

FX
m=�F

��
m

Z Z
u� (x; y) ~�Fm;F 0m�1 (x; y; z) dxdy (4.15)

The right hand side of this equation is the source term for the �eld propagation in the atomic sample.

It can be rewritten as
p
2�L �

~c

R R
u� (x; y) D̂� (r;
) dxdy. Equation (4.15) is, with this identi�cation,

equivalent to the classical Maxwell equation for slowly varying amplitudes [42]. We use Eq. (4.15) in

the same way as the Maxwell equation; that is, for propagation of quantum �elds in a medium.

We continue by applying a Fourier transform in time to Eq. (4.15), which results in

i
~a� (z;
) + c
@

@z
~a� (z;
) = �L

FX
m=�F

��
m

Z Z
u� (x; y) ~�Fm;F 0m�1 (x; y; z;
) dxdy (4.16)

We identify the operators in frequency domain by the argument 
. We can compare the two terms on

the left hand side, and we �nd that the second term is typically much larger than the �rst term. In

general, only frequency components of the excitation �eld within the atomic linewidth are a�ected by

the medium, and we are therefore only interested in frequencies 
 . . The second term is on the order

of c~a� (z;
) =L0, where L0 is the characteristic length over which the �eld amplitude changes. Later on

we will require complete absorption of the excitation �eld, and therefore L0 . l, (l is the diameter of the

atomic cloud). Thus, we can neglect the �rst term in Eq. (4.16) if �1 � l=c, i.e. if light travels through

the sample fast compared to the excited state lifetime. This requirement is easily ful�lled experimentally.

Consequently, we have

@

@z
~a� (z;
) =

FX
m=�F

���mL

c

Z Z
u� (x; y) ~�Fm;F 0m�1 (x; y; z;
) dxdy (4.17)

In order to proceed we have to express the source term ~�Fm;F 0m�1 (x; y; z;
) in terms of the excitation
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�eld. We continue with the Heisenberg-Langevin equation for ~�Fm;F 0m�1 [79]

:

�̂Fm;F 0m�1 (r) =
1

i~
[�̂Fm;F 0m�1 (r) ; H ] + LLangevin (4.18)

)
:

~�Fm;F 0m�1 (r) = �u (x; y)
�
��
m
~�Fm;Fm (r) ~a� (z) + ��

m�2~�Fm;Fm�2 (r) ~a� (z)
�

+ u (x; y)
�
��m~�F 0m�1;F 0m�1 (r) ~a� (z) + ��m~�F 0m�1;F 0m�1 (r) ~a� (z)

�
�


2
~�Fm;F 0m�1 (r) +FFm;F 0m�1 (r)

Here we use that the carrier frequency of the �eld matches the atomic resonance frequency (!0 = !a).

The Langevin terms, in the last line, describe the e�ect of spontaneous decay caused by the coupling to

all the vacuum modes. The atomic coherence decays with the rate =2, where �1 is the excited state

lifetime. The random decay process adds noise to the atomic operators represented by the Langevin

force FFm;F 0m�1 (r). The mean value of the Langevin forces is always zero, whereas the higher order

moments contribute to the variance of the atomic operators. We calculate the second order moments

(or correlation functions) of the Langevin forces in Appendix B. An alternative approach is to include

the coupling to the vacuum modes explicitly in the Hamiltonian as in Ref. [9]. However, we �nd the

Langevin approach to be simpler in the present calculation, which allows for a Zeeman degenerate ground

state.

We now write the operators as ~a (t) = �a+Æ~a (t) and ~�Fm;F 0n (t) = ��Fm;F 0n+Æ~�Fm;F 0n (t). We de�ne

�a and ��Fm;F 0n as the quantum mechanical mean values; �a = h~a (t)i, ��Fm;F 0n = h~�Fm;F 0n (t)i. We assume

that the system is in steady state so that the mean values are constant in time. The excitation �eld has

a nonzero mean amplitude only at the carrier frequency, and the rotating frame mean value �a is time

independent and equal to this mean amplitude. We can simplify Eq. (4.18) if we linearize the operator

products. Our linearization uses the following assumptions. The excitation �eld is assumed to be weak,

whereby the excited state mean populations and coherences are much smaller than the mean ground

state populations, i.e. j��F 0m;F 0n (r) j � ��Fm;Fm (r). In this chapter we calculate the uctuations in the

excited state in a pertubative approach assuming weak excitation. Fluctuations in the excited state are

only present when the excitation �eld is on. The Æ~�F 0m;F 0n terms in Eq. (4.18) are therefore of higher

order in the excitation �eld, and they can be neglected in this equation. We assume that the atomic

ground state is unpolarized1, which, together with the weak excitation, gives: ��Fm;Fn = Æm;n(2F +1)�1.
We also assume that the �elds (or at least one of the polarizations) have a coherent amplitude much larger

than the quantum uctuations2, i.e. jÆ~a� (z) j � j�a� (z) j. Finally, we assume that atomic uctuations
in the ground state populations/coherences are much smaller than the mean populations in the following

sense jÆ~�Fm;Fn (r) j �
jÆ~a

�
j

�a
�

(2F + 1)�1; the validity of this assumption is based on the weak excitation

and the large bandwidth of the �eld uctuations as compared to the bandwidth of atomic ground state

uctuations. This is discussed further in Appendix C. These assumptions allow us to rewrite Eq. (4.18)

as

Æ~�Fm;F 0m�1 (r;
) =
�u (x; y)��

m
(2F + 1)

�1
Æ~a� (z;
) +FFm;F 0m�1 (r;
)

(i
+ =2)
(4.19)

��Fm;F 0m�1 (r) =
�u (x; y)��m (2F + 1)

�1
�a� (z)

=2

We arrive at the �rst equation after a Fourier transform in time, and the second equation is the steady-

state solution to Eq. (4.18) for the mean values. Substituting Eq. (4.19) into Eq. (4.17) gives the

1This assumption is important in the following derivation. In chapter 8 we discuss to what extend the assumption is

ful�lled in the experiment.
2The comparison of uctuating operators on the left and mean values (c-numbers) on the right should not be taken too

literally. It is merely a somewhat sloppy notation for the comparison of terms that enter in a subsequent calculations of

spectral densities.
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following equation for the quantum �eld as it propagates through the atomic medium

Æ~a� (z;
) = e��(
)zÆ~a� (0;
) +

Z z

0

� (
) e��(
)(z�z
0)F�

1 (z0;
) dz0 (4.20)

�a� (z) = e��0z�a� (0)

� (
) =
!0g

2�

"0c~

(F + 1) (2F + 3)

3 (i
+ =2)
; �0 = �(0)

F�
1 (z;
) =

FX
m=�F

2�L��
m

c�0

Z Z
u� (x; y)FFm;F 0m�1 (r;
) dxdy

This expression for the �eld as a function of position in the atomic sample is an essential part in the theory

for mapping the state of light onto atoms. The interpretation of the result is as follows. The amplitude

of the �eld operator is attenuated and phase-shifted according to the usual absorption and dispersion in

the atomic medium. The attenuation/dispersion is set by � (
) and depends on the actual frequency

component of the of the �eld through the parameter 
. We know from the ordinary beamsplitter theory

that the �eld transmitted through the beamsplitter is not only attenuated. Vacuum uctuations are

added from the other port of the beamsplitter in order to preserve the commutation relation for the

transmitted �eld. The Langevin force F�
1 acts as the vacuum noise that is added to the �eld as the

atoms absorb the incoming �eld. We calculate correlation functions similar to hF�y
1 (z0;
0)F�

1 (z;
)i
in Appendix B, and with these results it is easy to verify that the mean value of the commutator

[Æ~a� (z;
) ; Æ~a
y
� (z;
0)] is preserved for all z. The decoupling of the equations for ~a+ and ~a� is a result

of the assumption about the unpolarized ground state.

4.2 Fluctuations in the collective spin F̂
0
z

We continue with the calculation of the noise properties of the z-component of the collective excited

state atomic spin F̂ 0
z . The observable F̂

0
z is proportional to the collective orientation of the excited state.

F̂ 0
z
is a sum over the spin components of the individual atoms and is diagonal in the chosen atomic basis

with

F̂ 0
z = �

F
0X

m=�F 0
m

Z
V

~�F 0m;F 0m (r) d3r (4.21)

We apply a Fourier transform to the linearized Heisenberg-Langevin equation for ~�F 0m;F 0m to get the

result

i
Æ~�F 0m;F 0m (r;
) = �u (x; y)�+
m�1 (��F 0m;Fm�1 (r) Æ~a+ (z;
) + �a+ (z) Æ~�F 0m;Fm�1 (r;
)) (4.22)

� u� (x; y)�+
m�1

�
��Fm�1;F 0m (r) Æ~a

y
+ (z;
) + �a�+ (z) Æ~�Fm�1;F 0m (r;
)

�
� u (x; y)��

m+1 (��F 0m;Fm+1 (r) Æ~a� (z;
) + �a� (z) Æ~�F 0m;Fm+1 (r;
))

� u� (x; y)��
m+1

�
��Fm+1;F 0m (r) Æ~a

y
� (z;
) + �a�� (z) Æ~�Fm+1;F 0m (r;
)

�
� Æ~�F 0m;F 0m (r;
) + FF 0m;F 0m (r;
)

The steady state result for the mean value is given by

��F 0m;F 0m (r) = �
1


�+
m�1

�
u (x; y) ��F 0m;Fm�1 (r) �a+ (z) + u� (x; y) ��Fm�1;F 0m (r) �a�+ (z)

�
(4.23)

�
1


��
m+1

�
u (x; y) ��F 0m;Fm+1 (r) �a� (z) + u� (x; y) ��Fm+1;F 0m (r) �a�� (z)

�
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Similar equations can be derived for Æ~�F 0m;Fm�1, ��F 0m;Fm�1, and their Hermitian conjugate. Substi-

tuting these results into Eq. (4.22) and (4.23) and applying the same approximations as used in deriving

Eq. (4.19) gives

Æ~�F 0m;F 0m (r;
) = (4.24)

1

2F + 1

4ju (x; y) j2

2 + i2


n
�+2
m�1[�a+ (z) Æ~a

y
+ (z;
) + �a�+ (z) Æ~a+ (z;
)]

+��2
m+1[�a� (z) Æ~a

y
� (z;
) + �a�� (z) Æ~a� (z;
)]

o
�

2

( + i
) ( + i2
)

n
�+
m�1

�
u (x; y) �a+ (z)Fy

Fm�1;F 0m (r;
) + u� (x; y) �a�+ (z)FFm�1;F 0m (r;
)
�

+��
m+1

�
u (x; y) �a� (z)Fy

Fm+1;F 0m (r;
) + u� (x; y) �a�� (z)FFm+1;F 0m (r;
)
�o

+
1

 + i

FF 0m;F 0m (r;
)

For the mean value we get

��F 0m;F 0m (r) =
1

2F + 1

4ju (x; y) j2

2

�
�+2
m�1�a+ (z) �a�+ (z) + ��2

m+1�a� (z) �a�� (z)
	

(4.25)

We continue by summing Eq. (4.24) over m and integrating over the transverse coordinates x and y. We

use the de�nitions of �, ��
m
, and � (
) from Eq. (4.1), (4.8), and (4.20) together with the fact that the

mode function is normalized, Eq. (3.3), to obtain

ÆF̂ 0
z
(z;
) = �

Z Z
dxdy

F
0X

m=�F 0
mÆ~�F 0m;F 0m (r;
) (4.26)

=
(F + 2) c

L
� (
)

n
�a+ (z) Æ~a

y
+ (z;
) + �a�+ (z) Æ~a+ (z;
)

� �a� (z) Æ~a
y
� (z;
)� �a�� (z) Æ~a� (z;
)

o
�

2�

( + i
) ( + i2
)

n
�a+ (z)F+y

2 (z;
) + �a�+ (z)F+
2 (z;
)

+ �a� (z)F�y
2 (z;
) + �a�� (z)F�

2 (z;
)
o

+
�

 + i

F3 (z;
)

The new Langevin forces are de�ned as

F�
2 (z;
) =

Z Z
dxdy

F
0X

m=�F 0
mu� (x; y)��

m�1FFm�1;F 0m (r;
) (4.27)

F3 (z;
) =
Z Z

dxdy

F
0X

m=�F 0
mFF 0m;F 0m (r;
)

We should now integrate ÆF̂ 0
z (z;
) over z from 0 to l in order to obtain the z-component of the collective

excited state spin. We will assume complete absorption3 of the quantum �eld, so that the upper limit can

3We can, of course, not have complete absorption of all the frequency components of the quantum pump. We require

complete absorption of the frequency components within the frequency, 
, at which we later on detect the atomic spin

noise. In the experiments in chapter 8 we have 
= = 0:4:
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be taken at1 instead of l. After a substantial absorption, the �elds consist only of vacuum uctuations,

and they do not give any contribution to the excited state spin. Note that if we do not require complete

absorption, then a large fraction of the quantum �eld will leave the atoms, and the correlations initially

present in the quantum �eld will be distributed over the atoms and the transmitted quantum �eld. We

will have correlations between atoms and photons, but not optimum atomic correlations.

The most diÆcult part of the integration over z is the terms like �a+ (z) Æ~a
y
+ (z;
). We apply the

results in Eq. (4.20) to write

Z 1

0

�a�� (z) Æ~a� (z;
) dz =

Z 1

0

e��0z�a�� (0)
h
e��(
)zÆ~a� (0;
) (4.28)

+

Z
z

0

� (
) e��(
)(z�z
0)F�

1 (z0;
) dz0
�
dz

=
1

�0 +�(
)

�
�ain�� Æ~ain� (
) + � (
) �ain�� F�

a (
)
�

F�
a
(
) =

Z 1

0

e��0zF�
1 (z;
) dz

We emphasize that ~a (0) is the �eld amplitude right before the atomic cloud by writing it as ~ain. The trick

in solving the double integral is to change the order [9], i.e.
R1
0
dz
R z
0
dz0 !

R1
0
dz0
R1
z0
dz. Combining Eq.

(4.26) and (4.28) and linearizing the operator products in the de�nition of the Stokes spin components,

Eq. (3.15), gives

ÆF̂ 0
z (
) =

Z 1

0

ÆF̂ 0
z (z;
) dz (4.29)

=
(F + 2)

 + i

ÆŜin

z
(
)

+
�2 (
)

�0 +�(
)

(F + 2) c

L

�
�ain+F

+y
a

(
) + �ain�+ F+
a
(
)� �ain�F

�y
a

(
)� �ain�� F�
a
(
)
	

�
2

( + i
) ( + i2
)

n
�ain+F

+y
b

(
) + �ain�+ F+
b
(
) + �ain�F

�y
b

(
) + �ain�� F�
b
(
)
o

+
1

 + i

Fc (
)

The new collective Langevin forces are de�ned as

F�
b
(
) = �

Z 1

0

e��0zF�
2 (z;
) dz (4.30)

Fc (
) = �

Z 1

0

F3 (z;
) dz

We see from Eq. (4.29) that a part of the uctuations in F̂ 0
z
is set by the quantum uctuations in the

excitation �eld (the Ŝinz -term). All the Langevin force terms represent the noise entering through the

coupling of the atoms to the vacuum modes. This vacuum noise limits the amount of noise reduction or

squeezing in F̂ 0
z
that we can obtain with a perfectly polarization squeezed excitation �eld.

We need the correlation functions for the Langevin forces in Eq. (4.29) before we can �nalize the

calculation of the spectral density of F̂ 0
z
uctuations. The derivation of the correlation functions is pure

mathematics, and it is given in Appendix B. With the results from Appendix B, Eq. (B.5), and Eq.
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(4.29), we arrive at the �nal expression for the spectral density of uctuations�
F̂ 0
z

�2


=

1

2�

Z 1

�1
hÆF̂ 0

z
(
0) ÆF̂ 0

z
(
)id
0 (4.31)

=
(F + 2)

2

2 +
2

�
Ŝin
z

�2


+ N 0

�
(F + 2) (4F + 5)

10 (2 +
2)
+

9F (F + 2)2

20 (2 +
2) (2 + 4
2)

�
We see that the uctuations in F̂ 0

z
have two contributions; the �rst term comes from the quantum

properties of the excitation �eld, and the last term is the noise from the coupling to the vacuum modes.

The last term is proportional to the number of atoms, N 0, in the excited state F 0. We can write N 0 in
terms of the total photon ux (�+ +��) from the coherent state component as4 N 0 = (�+ +��) = =
(�ain�+ �ain+ + �ain�� �ain� )c=(L):

To quantify the eÆciency of the light-atom mapping, we introduce the mapping eÆciency of quantum

correlations, �z, by comparing the noise reduction (squeezing) of the excitation light to the resulting

atomic noise reduction. �z is de�ned through the relation�
F̂ 0
z

�2


=

1

�z + 1
(1 + �zRz (
))

�
F̂ 0
z

�2

;coh

(4.32)

where Rz (
) = 4(Ŝz)2
= (�+ +��) is the degree of squeezing (or antisqueezing) in the excitation �eld,

see Eq. (3.17), and (F̂ 0
z)
2

;coh is the spectral density with a coherent state excitation (Rz (
) = 1).

We can compare the mapping of light on atoms with the "mapping" of squeezed light from one side

of a beamsplitter to the other side. If we de�ne �BS = T=R as the ratio between the beamsplitter

transmissivity and reectivity, we �nd the following relation for the Stokes parameter Ŝab
z

after the

beamsplitter �
Ŝabz
�2


=

1

�BS + 1
(1 + �BSRz (
))

�
Ŝabz
�2

;coh

(4.33)

Again, Rz (
) is the degree of squeezing before the beamsplitter, and (Ŝab
z
)
2

;coh is the uctuations after

the beamsplitter for a coherent state. We see that we have no transmission of squeezed light for �BS = 0,

and we are left with the coherent state (vacuum) uctuations, which come from the empty input port of

the beamsplitter. When �BS approaches in�nity, we have perfect transmission of the squeezed light, and

we do not add any vacuum uctuations. The mapping eÆciency �z plays the same role in light-atom

mapping as the �BS parameter in light-light mapping through a beamsplitter.

�z can easily be derived from Eq. (4.31). In Fig. 4.2a we plot �z as a function of F for 
= = 0:4,

(solid line). The chosen ratio for 
= is close to the ratio we use in the measurements in chapter 8. The

maximum value for �z is at F = 0, where �z = 1. In the beamsplitter analogy this corresponds to a 50/50

beamsplitter, where half of the noise in the transmitted �eld comes from the incident squeezed �eld and

the other half is the vacuum uctuations from the empty port. In Fig. 4.2b we plot the relative noise

reduction that can be achieved with a perfectly squeezed excitation �eld, �z= (�z + 1), as a function of

F for 
= = 0:4, (solid line). The relative noise reduction is increased at larger 
=, but the absolute

amount of noise is small at 
= & 1.

If we integrate the spectral density over all frequencies, we get the variance�
�F̂ 0

z

�2
=

Z 1

�1

�
F̂ 0
z

�2



d


2�
(4.34)

4This expression is trivial; the number of atoms in the excited state is, for complete absorption, equal to the photon

ux divided by the excited state decay rate. The same result is obtained when Eq. (4.25) is summed over all m; multiplied

by � and integrated over the atomic volume.
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Figure 4.2: a) Theoretical eÆciency for mapping quantum correlations from light onto the atomic spin

F̂ 0
z . b) Noise reduction in F̂ 0

z for perfectly squeezed Ŝz relative to the F̂ 0
z noise for coherent excitation.

a+b) Solid line: spectral density at 
= = 0:4. Dotted line: variance (�F̂ 0
z
)2:

We �nd from Eq. (4.31) and by assuming that the bandwidth of squeezing is much larger than 

(Rz = Rz (
))

�
�F̂ 0

z

�2
=

"
(F + 2)

2

8
Rz +

(F + 2) (11F + 10)

40

#
�+ +��


(4.35)

Using the de�nition of �z on the variance gives �z = 5(F + 2)=(11F + 10). This expressions for �z as

well as the relative noise reduction, �z= (�z + 1), are plotted in Fig. 4.2 as dotted lines.

Finally, we give the mean value of collective spin component F̂ 0
z
, which is derived from Eq. (4.25)

and (4.21)

hF̂ 0
z
i =

F + 2

2

�+ ���


(4.36)

4.2.1 Direct calculation of (�F̂ 0
z
)2 for uncorrelated atoms

Equation (4.35) gives the variance of F̂ 0
z for coherent light excitation when Rz = 1. We can test the

consistency of the theory by calculating this variance directly without using linearized uctuations,

Langevin correlation functions, complicated spectral densities etc.

We �rst note that (�F̂ 0
z)
2 = h(ÆF̂ 0

z)
2i where ÆF̂ 0

z = F̂ 0
z �hF̂ 0

zi. The collective uctuating operator can
be written as a sum over all atoms

ÆF̂ 0
z =

X
i

F
0X

m=�F 0
mÆ�̂iF 0m;F 0m (4.37)

Æ�̂i
F 0m;F 0m

= �̂i
F 0m;F 0m

�h�̂i
F 0m;F 0m

i is the single atom operator for atom number i. We �nd for the
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F̂ 0
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variance

(�F̂ 0
z
)2 = h(ÆF̂ 0

z
)2i =

X
i;j

X
m;n

mn hÆ�̂i
F 0m;F 0m

Æ�̂j
F 0n;F 0n

i (4.38)

=
X
i

X
m;n

mn hÆ�̂i
F 0m;F 0m

Æ�̂i
F 0n;F 0n

i

=
X
i

F
0X

m=�F 0
m2h�̂iF 0m;F 0mi �

X
i

X
m;n

mn h�̂iF 0m;F 0mih�̂
i

F 0n;F 0ni

We assumed here that the atoms are uncorrelated, that is, hÆ�̂i
F 0m;F 0m

Æ�̂
j

F 0n;F 0n
i = 0 for i 6= j. The two

terms in the last line are most easily calculated by converting the sum over i into an integral over space.

We can then use the mean value of the continuous atomic operator ~�F 0m;F 0m (r) in Eq. (4.25). Note

that Eq. (4.25) is derived without any assumptions about linearized uctuations or Langevin forces.

Equation (4.25) just gives the average population in the excited state from standard perturbation theory

with a weak excitation �eld. We �nd for the �rst term in Eq. (4.38)

X
i

F
0X

m=�F 0
m2h�̂i

F 0m;F 0m
i =

F
0X

m=�F 0
m2

Z
V

� ��F 0m;F 0m (r) d3r (4.39)

=
(F + 2) (4F + 5)

10

�+ +��


In the same way we derive for the second term in Eq. (4.38)X
i

X
m;n

mn h�̂i
F 0m;F 0m

ih�̂i
F 0n;F 0n

i =
X
m;n

mn

Z
� ��F 0m;F 0m (r) ��F 0n;F 0n (r) d

3r (4.40)

=
(F + 2)

2

8
(s0;+ � s0;�)

�+ ���


We have introduced the resonant saturation parameters (see chapter 2) for the two polarizations of the

pump �eld, s0;� = ���0=( �w2). The resonant absorption cross section �0 for the unpolarized ground

state is given in Eq. (2.1). 2w is the diameter of the excitation �eld. The general assumption about

weak excitation (i.e. s0;� � 1) allows us to discard the second term in Eq. (4.38), and we have

(�F̂ 0
z
)2=

(F + 2) (4F + 5)

10

�+ +��


(4.41)

This is identical to the expression in Eq. (4.35) for excitation with coherent light (Rz = 1). The

identical expressions for the F̂ 0
z variance support our general assumption that coherent light excitation

produces uncorrelated atoms in the excited state. A reduction in variance below the expression in Eq.

(4.41) requires multi-atom correlations. Excitation with polarization squeezed light (Rz < 1) results in

multi-atom correlations according to Eq. (4.35).

4.3 Fluctuations in F̂
02
x � F̂

02
y and F̂

0
xF̂

0
y + F̂

0
yF̂

0
x

We continue with a calculation of the quantum noise in the two collective observables F̂ 02
x
� F̂ 02

y
and

F̂ 0
x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x
. The calculation shows that their quantum noise is set partly by the quantum noise in

the Stokes spin components Ŝx and Ŝy of the excitation �eld. F̂ 02
x � F̂ 02

y is proportional to the di�erence

between the excited state collective alignment along the x-axis and along the y-axis. F̂ 0
xF̂

0
y + F̂ 0

yF̂
0
x is
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identical to F̂ 02
x � F̂ 02

y , except that the alignment di�erence is measured along the x0 and y0 axes obtained
by rotating the x and y axes through 45Æ around the z-axis. We will go through the calculations for

F̂ 02
x � F̂ 02

y and apply a geometrical rotation to the �nal result, whereby we obtain the F̂ 0
xF̂

0
y+ F̂

0
yF̂

0
x result.

The single atom operators (F̂ 02
x � F̂ 02

y )j and (F̂ 0
xF̂

0
y + F̂ 0

yF̂
0
x)j for atom number j can be expressed

through the angular momentum step-up and step-down operators (F̂ 0
�;j = F̂ 0

x;j
� iF̂ 0

y;j
)

(F̂ 02
x
� F̂ 02

y
)j � i(F̂ 0

x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x
)j = (F̂ 0

�;j)
2 (4.42)

We use the standard properties of the step-up/step-down operators to arrive at the following expansion

on our atomic basis

(F̂ 02
x
� F̂ 02

y
)j =

1

2

F
0X

m=�F 0

p
F 0 (F 0 + 1)�m (m+ 1)

p
F 0 (F 0 + 1)� (m+ 1) (m+ 2) (4.43)

�
�
jF 0m+ 2i

j;j
hF 0mj+ jF 0mi

j;j
hF 0m+ 2j

�
The collective operator F̂ 02

x
� F̂ 02

y
can now be written as

F̂ 02
x
� F̂ 02

y
=

1

2

F
0X

m=�F 0

p
F 0 (F 0 + 1)�m (m+ 1)

p
F 0 (F 0 + 1)� (m+ 1) (m+ 2) (4.44)

� �

Z
V

(�̂F 0m+2;F 0m (r) + �̂F 0m;F 0m+2 (r)) d
3r

Note that the collective operator F̂ 02
x
� F̂ 02

y
does not involve products of collective operators although the

notation might indicate that. As seen in Eq. (4.44), F̂ 02
x
� F̂ 02

y
is just a sum over single atom operators.

The starting point is again the Heisenberg-Langevin equation

:

�̂F 0m+2;F 0m (r) =
1

i~
[�̂F 0m+2;F 0m (r) ; H ] + LLangevin (4.45)

After the usual linearization procedure and a Fourier transform in time we �nd

i
Æ~�F 0m+2;F 0m (r;
) = (4.46)

� �+
m�1u (x; y) (��F 0m+2;Fm�1 (r) Æ~a+ (z;
) + �a+ (z) Æ~�F 0m+2;Fm�1 (r;
))

� �+
m+1u

� (x; y)
�
��Fm+1;F 0m (r) Æ~a

y
+ (z;
) + �a�+ (z) Æ~�Fm+1;F 0m (r;
)

�
� ��

m+1u (x; y) (��F 0m+2;Fm+1 (r) Æ~a� (z;
) + �a� (z) Æ~�F 0m+2;Fm+1 (r;
))

� ��
m+3u

� (x; y)
�
��Fm+3;F 0m (r) Æ~a

y
� (z;
) + �a�� (z) Æ~�Fm+3;F 0m (r;
)

�
� Æ~�F 0m+2;F 0m (r;
) +FF 0m+2;F 0m (r;
)

We derive similar expressions for the mean values and uctuations of the optical coherences which enters

into Eq. (4.46). Substituting these results into Eq. (4.46) and applying the same approximations as

used in deriving Eq. (4.19) gives us

Æ~�F 0m+2;F 0m (r;
) =
4

2 + i2


ju (x; y) j2

2F + 1
�+
m+1�

�
m+1[�a� (z) Æay+ (z;
) + �a�+ (z) Æa� (z;
)] (4.47)

�
2

( + i
) ( + i2
)

�
u� (x; y)

�
�+
m+1�a

�
+ (z)FFm+1;F 0m (r;
) + ��

m+3�a
�
� (z)FFm+3;F 0m (r;
)

�
+ u (x; y)

�
�+
m�1�a+ (z)FF 0m+2;Fm�1 (r;
) + ��

m+1�a� (z)FF 0m+2;Fm+1 (r;
)
��

+
1

 + i

FF 0m+2;F 0m (r;
)
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Substituting Eq. (4.47) and its Hermitian conjugate into Eq. (4.44) gives, after some algebra which is

very similar to the derivation of Eq. (4.29), the following

Æ
�
F̂ 02
x � F̂ 02

y

�
(
) = (4.48)

�
(F + 2) (2F + 5)

5 ( + i
)
ÆŜin

x
(
)

�
�2 (
)

�0 +�(
)

(F + 2) (2F + 5) c

5L

�
�ain�F

+y
a

(
) + �ain�� F+
a
(
) + �ain+ F

�y
a

(
) + �ain�+ F�
a
(
)
	

�
2

( + i
) ( + i2
)

n
�ain+ F

+y
d

(
) + �ain�+ F+
d
(
) + �ain�F

�y
d

(
) + �ain�� F�
d
(
)
o

+
1

 + i

Fe (
)

The Langevin force F�
a is de�ned in Eq. (4.28) and F�

d
and Fe are given in Appendix B, Eq. (B.8). We

calculate the spectral density of quantum uctuations from Eq. (4.48) and (B.9)�
F̂ 02
x � F̂ 02

y

�2


=

(F + 2)
2
(2F + 5)

2

25 (2 +
2)

�
Ŝinx
�2


+ N 0 (F + 2) (2F + 5)

�
8F 2 + 10F + 7

�
70 (2 +
2)

(4.49)

+ N 0 3F (F + 2) (2F + 5) (66F + 37) 2

700 (2 +
2) (2 + 4
2)

After a geometrical rotation through 45Æ around the z-axis, we get�
F̂ 0
xF̂

0
y + F̂ 0

yF̂
0
x

�2


=

(F + 2)
2
(2F + 5)

2

25 (2 +
2)

�
Ŝiny
�2


+ N 0 (F + 2) (2F + 5)

�
8F 2 + 10F + 7

�
70 (2 +
2)

(4.50)

+ N 0 3F (F + 2) (2F + 5) (66F + 37) 2

700 (2 +
2) (2 + 4
2)

We observe that the expression for the uctuations in F̂ 0
x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x
has the same structure as the

F̂ 0
z result in Eq. (4.31). The main di�erence is in the Stokes parameter that contributes to the atomic

noise; the F̂ 0
xF̂

0
y + F̂ 0

yF̂
0
x uctuations are set partly by the quantum noise in Ŝy . We will consider the

quantum noise in F̂ 0
x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x
to be "spin noise" in the same way as the F̂ 0

z
noise, although F̂ 0

x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x

is a more complicated combination of spin components. The eÆciency of the quantum state mapping is

again quanti�ed by the mapping eÆciency �y de�ned by the relation�
F̂ 0
xF̂

0
y + F̂ 0

yF̂
0
x

�2


=

1

�y + 1
(1 + �yRy (
))

�
F̂ 0
xF̂

0
y + F̂ 0

yF̂
0
x

�2

;coh

(4.51)

We de�ne Ry (
) = 4(Ŝy)2
= (�+ +��). We derive �y from Eq. (4.50) and (4.51) and plot it in Fig.

4.3a (solid line) as a function of F for the ratio 
= = 0:4. The maximum relative noise reduction in

F̂ 0
xF̂

0
y + F̂ 0

yF̂
0
x is given by �y=(�y + 1) for perfect squeezing in Ŝy, and we plot this result versus F for


= = 0:4 in Fig. 4.3b (solid line).

We get the full variance by integrating the spectral density over 
. The result for constant Ry (
)

within the atomic bandwidth  is�
�(F̂ 0

x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x
)
�2

= (4.52)"
(F + 2)

2
(2F + 5)

2

200
Ry +

(F + 2) (2F + 5)
�
146F 2 + 137F + 70

�
1400

#
�+ +��
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Figure 4.3: a) Theoretical eÆciency for mapping quantum correlations from light onto the collective

atomic variable F̂ 0
x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x
. b) Noise reduction in F̂ 0

x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x
for perfectly squeezed Ŝy relative to

the F̂ 0
x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x
noise for coherent excitation. a+b) Solid line: spectral density at 
= = 0:4. Dotted

line: variance (�(F̂ 0
xF̂

0
y + F̂ 0

yF̂
0
x))

2.

The steady state solution to Eq. (4.45) gives the mean values

hF̂ 02
x
� F̂ 02

y
i =

(F + 2) (2F + 5)

5
�Sin
x

(4.53)

hF̂ 0
xF̂

0
y + F̂ 0

yF̂
0
xi =

(F + 2) (2F + 5)

5
�Siny

In general we observe a reduction in the mapping eÆciency and in the maximum noise reduction when

the ground state angular momentum is increased; this holds for both F̂ 0
z and F̂

0
xF̂

0
y+ F̂

0
yF̂

0
x, (Fig. 4.2 and

4.3). We also see that the best noise reduction is obtained in F̂ 0
z
. In chapter 8 we employ a sample of Cs

atoms with F = 4 for our spin squeezing experiment. For F = 4, 
= = 0:4, and perfectly squeezed Ŝz
(Ŝy) we expect according to Fig. 4.2b (4.3b) about 32% (12%) noise reduction in F̂ 0

z (F̂
0
xF̂

0
y + F̂ 0

yF̂
0
x).

The variance of F̂ 0
x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x
for uncorrelated atoms can easily be derived from a direct calculation

similar to the (�F̂ 0
z
)2 calculation in section 4.2.1. The conclusion for F̂ 0

x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x
is similar to the

conclusion for F̂ 0
z; the variance in Eq. (4.52) for coherent excitation (Ry = 1) equals the variance for

uncorrelated atoms. This again supports the validity of the linearized operator approach, and it shows

that we can use the atomic spin noise observed with coherent light excitation as the standard quantum

limit, i.e. the quantum noise limit for uncorrelated particles.

In chapter 5 we investigate the atom-light mapping further in the context of spin squeezed states.

In that chapter we also give simple explanations of why the squeezed light excitation results in reduced

atomic uctuations. In addition, the limitations in the mapping eÆciencies are explained in qualitative

terms in chapter 5.

4.4 Comments on the applied linearization approach

Our solutions to the Heisenberg-Langevin equations are based on a linearization of operator products.

Similar linearizations can be fund in e.g. Ref. [9, 80, 81, 82] as mentioned earlier. A di�erent and often

used approach is to transform the Heisenberg-Langevin equations for operators into c-number equations

[83, 84]. For consistency, a certain order of the operators is chosen in this "c-number approach". Together

with the transformation into c-numbers, the Langevin correlation functions are modi�ed to make the
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operator equations and the c-number equations equivalent for calculations of second order moments

within the chosen order. The c-number equations are then solved by linearization and a Fourier transform;

this part is similar to our calculations. Finally, the c-number solutions are used to calculate the variance

or spectral density of the operators of interest. However, for consistency the variance of these operators

(i.e. the square of the operators) must be written in the chosen operator order. Some commutators may

enter into the expression for the variance because of this ordering.

We have also carried out our calculations within this "c-number approach" for the F 0 = 1 case.

The results obtained with the "c-number approach" are identical to the results presented in the previous

sections. We �nd that the modi�cations of the Langevin correlation functions cancel out the commutators

added in the �nal normally ordered spectral density expressions.



56 CHAPTER 4. MAPPING THE QUANTUM STATE OF LIGHT ONTO ATOMS



Chapter 5

Spin squeezed states and

entanglement

It is possible to introduce squeezed states in collective quantum systems composed of spin subsystems

in a way very similar to the squeezed states of light. In general, the squeezed states are characterized

by a redistribution of quantum uctuations between two conjugate variables. In addition, the squeezed

light belongs to the class of nonclassical states of light. This nonclassicality is caused by the presence of

quantum correlations in the squeezed light. It is possible to give a de�nition of spin squeezed states that

incorporates both these characteristics; reduced quantum uctuations in one collective spin component

and quantum correlations (entanglement) between the subsystems, which constitute the collective spin

state (see Fig. 5.1). In this chapter we discuss some of the properties of the spin squeezed states.

We introduce a spin-s system, which is described by the operator ŝ = (ŝx; ŝy; ŝz) and the commutation

relation [ŝy; ŝz] = iŝx together with similar relations obtained by cyclic permutations. The Heisenberg

uncertainty relation, which follows from this commutation relation, is

(�ŝy)
2
(�ŝz)

2 �
1

4
hŝxi2 (5.1)

This uncertainty relation di�ers substantially from the corresponding uncertainty relation for the quadra-

ture phase operators for a single mode electromagnetic �eld, see Eq. (3.1). The standard quantum limit

(SQL) for quantum uctuations in a single mode of the electromagnetic �eld is basically set by the

"1=16"-right hand side in Eq. (3.1). In Eq. (5.1) the right hand side depends on the actual spin state.

It is more diÆcult to identify the SQL for the quantum uctuations in a spin system because of this spin

state dependence. Several proposals for a SQL de�nition for spin systems can be found in the literature

but, as we will see, only one of them can be used to distinguish the nonclassical (entangled or quantum

correlated) states from the "classical" states.

In this chapter we will also look at the results from chapter 4. We will present a simple qualitative

explanation of the mechanism behind the atomic noise reduction, and we discuss the fundamental lim-

itations in light-atom mapping. In particular, we will see that the atomic states produced by mapping

polarization squeezed light onto a large ensemble of atoms can be considered to be generalized spin

squeezed states.

5.1 De�nition of spin squeezed states

It is convenient to de�ne the x axis to be along the direction of the mean spin; ĥsi = hŝxiex. A natural

basis for the spin states is the eigenstates of ŝ2 and ŝx given by js;msi. The only states in this basis that
have an equality in the uncertainty relation are js;ms = �si. These minimum uncertainty states de�ne

57
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Figure 5.1: Illustration of the idea behind the spin squeezed states. On the left we have four correlated

spin 1/2 systems. The thick arrow is the mean spin and the dotted arrow is the transverse spin uctuation

which is con�ned within the shaded uncertainty disc. The four spins are pair-wise correlated so that the

uctuations along the z-axis cancel and the uctuations along the y-axis add. This system can also be

described by the squeezed collective spin on the right with Ŝz uctuations below the standard quantum

limit and increased Ŝy uctuations.

the coherent spin states (CSS) [85], which have transverse uctuations given by

(�ŝy)
2
= (�ŝz)

2
= hŝxi=2 = s=2 (5.2)

The analogy between the coherent spin state and the coherent state of light is clear; the coherent spin

state is a minimum uncertainty state with equal uctuations in the two conjugate variables.

We can add N spin-s systems to obtain a collective spin Ŝ =
P

i
ŝi with S = Ns. The CSS of the

collective spin have transverse uctuations given by (�Ŝy)
2 = (�Ŝz)

2 = S=2 = N s=2, and we see the

linear N -dependence of the uctuations, which is characteristic for uctuations of independent systems.

The linear N -dependence only holds when the state is composed of independent spins (i.e. a product

state;
��s1m1

s

� ��s2m2
s

�
� � �
��sNmN

s

�
or an incoherent mixture of product states). A state like jS;MS = 0i

can only be written as a coherent superposition of product states, and the transverse noise for this state

does indeed have a term quadratic in N .

We �rst consider the special case of N spin-1/2 systems (s = 1=2, S = N=2). We will say that the

collective spin composed of N spin-1/2 systems is in a spin squeezed state if the following inequality is

ful�lled �
�Ŝ?

�2
<
jhŜij2

2S
=
jhŜij2

N
(5.3)

Ŝ? is the collective spin component orthogonal to the mean spin hŜi with the smallest variance.

It is obvious that this de�nition gives spin squeezed states with the uctuations in one of the transverse

components reduced below the coherent spin state uctuations. The spin component orthogonal to both

Ŝ? and hŜi will have uctuations above the coherent spin state uctuations so that the uncertainty

relation is not violated. We prove in appendix D that entanglement among the N spin-1/2 subsystems

is required in order to ful�l the spin squeezing de�nition.
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The de�nition given above is identical to the de�nition used in Ref. [74, 75]. Here the spin squeezed

states are de�ned as the states that can improve the signal-to-noise ratio in an frequency standard based

on Ramsey's separated oscillatory method. Several explicit examples of spin squeezed states are given

in Ref. [75], and a theoretical limit for the degree of spin squeezing is found to be

� + 1 �
2S
�
�Ŝ?

�2
jhŜij2

� N�1 = (2S)
�1

(5.4)

This inequality is easily proven from the uncertainty relation in Eq. (5.1) and the fact that an upper

limit on the variance of any collective spin component is given by1 S2 = N2=4. � is a measure of the

amount of spin squeezing with � = 0 for the coherent spin state and � < 0 for the nonclassical (entangled)

states. It is not proved in Ref. [74, 75] that � < 0 is possible only for quantum correlated spin states,

although this is implicitly assumed.

Mainly three di�erent de�nitions of spin squeezing have been used in the literature, (see e.g. Ref.

[75]). Many authors do not distinguish between these three de�nitions, although only the de�nition

given above ensures entanglement. For completeness, we discuss the limitations of the other two spin

squeezing criteria. A criterion, which is not as strong as Eq. (5.3), is introduced in Ref. [74, 86] by the

inequality �
�Ŝ?

�2
< jhŜij=2 (5.5)

In one of the original papers on squeezed spin states, Ref. [85], as well as in Ref. [87], the authors

introduce a spin squeezing criterion that is even weaker�
�Ŝ?

�2
< S=2 (5.6)

It is claimed in Ref. [85] that the requirement in Eq. (5.6) is enough to ensure entanglement or

correlations in the collective system. A similar assertion is found about Eq. (5.5) in Ref. [86]. However,

this is clearly not the case as it is seen from the general product state of two spin-1/2 systems. Consider

two spin-1/2 systems ŝ1 and ŝ2 in a product state. We can choose the x-axis to be parallel to the

collective mean spin ĥs1 + ŝ2i; and the z-axis so that the z-x plane is spanned by the two mean spin

vectors ĥs1i and ĥs2i as shown in Fig. 5.2. We de�ne � as the angle between the x-axis and each of the

two mean spins ĥs1i and ĥs2i. We �nd

hŜxi = hŝ1;xi+ hŝ2;xi = cos� (5.7)�
�Ŝz

�2
= h(ŝ1;z + ŝ2;z)

2i � h(ŝ1;z + ŝ2;z)i2

= hŝ21;zi+ hŝ
2
2;zi+ 2hŝ1;z ŝ2;zi

=
1

4
+
1

4
+ 2hŝ1;zihŝ2;zi =

1

2
cos2 �

We have used that the state is a product state to write hŝ1;z ŝ2;zi = hŝ1;zihŝ2;zi. We see that the weakest

spin squeezing criterion in Eq. (5.6) is reduced to cos2 � < 1 for the general product state of two spin-1/2

systems. Thus, all product states, except for the coherent spin states, will be spin squeezed if we use

Eq. (5.6) as the de�nition. This is clearly not satisfactory, and it is in clear contrast to the assertions in

Ref. [85, 86]. The stronger spin squeezing criterion in Eq. (5.5) gives cos2 � < cos�, and it is ful�lled for

product states with � 2]� �=2; �=2[nf0g; i.e. about 50% of all product states composed of two spin-1/2

systems. The strongest criterion (our spin squeezing de�nition, Eq. (5.3)) requires cos2 � < cos2 �, which

is never ful�lled. This proves that only the strongest requirement may be used as a satisfactory de�nition
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Figure 5.2: A sketch of a general product state composed of two spin-1/2 systems ŝ1 and ŝ2. We have

chosen a coordinate system with the x-axis parallel to the collective mean spin ĥs1 + ŝ2i and the z-axis

so that the two individual mean spins ĥs1i and ĥs2i span the z-x plane. � is the angle between the x-axis

and each mean spin ĥs1i, ĥs2i.

of spin squeezing, if we require spin squeezed systems to be entangled.

When the spin squeezing de�nition in Eq. (5.3) is applied to higher angular momentum subsystems

(s > 1=2), we can have spin squeezing without entanglement between the subsystems. This is possible for

a spin squeezed state with quantum correlations within each subsystem but without correlations among

the subsystems. The maximum spin squeezing without entangled subsystems is set by the maximum

squeezing within each subsystem; i.e. Eq. (5.4) with s substituted for S.

Although it is often argued that the spin squeezed states require some kind of quantum correlations,

a direct proof of this statement has, to our knowledge, never been published. We present in appendix D

such a proof, which is supplied by I. Cirac [88]

5.2 Realization of spin squeezed states

Several proposals for generation of spin squeezed states exist. A general idea is to couple the spin-

1/2 subsystems to a common harmonic oscillator through a Jaynes-Cummings type interaction. The

harmonic oscillator is prepared in a squeezed state, and the coupling to the spin system transfers the

squeezing from the oscillator to the collective spin. This approach is discussed in Ref. [74, 75] for

ions trapped in an ion trap. The harmonic oscillator is the collective motion of the ions in a harmonic

potential. The coupling between the oscillator and the collective spin can be achieved via e.g. a magnetic

interaction �0B � Ŝ with B as the magnetic �eld. The collective motion is now coupled to Ŝ through a

position dependent B.

The Jaynes-Cummings interaction can also be realized in the interaction between light and two-level

atoms. The two-level atoms constitute the spin system and the squeezed resonant electromagnetic �eld

is the squeezed harmonic oscillator. This approach is used in Ref. [77], but it is hardly experimentally

feasible for the reasons of tight focusing and strong atomic con�nement, as discussed in the introduction

to chapter 4. The idea of squeezing of the collective atomic spin by excitation with squeezed light is

discussed further in Ref. [89]. Here the spin squeezing is obtained in an excited state manifold, which

removes the strong requirements of squeezing from a large solid angle and con�nement of atoms within

a cubic wavelength. The excited state spin squeezing idea is re�ned in Ref. [9] where the spontaneous

decay and the quantum �eld propagation are included.

A completely di�erent suggestion for generation of atomic spin squeezed states is based on QND

1This is seen by a simple argument. Choose the quantization axis (x0) parallel to the spin component of interest. In

general we can write the pure states of the collective spin as j	i =
PS

i=�S ci jS;MSi and we have (�Sx0)
2 =

P
c
2
iM

2 �
�P

c
2
iM

�2
�
P

c
2
iM

2 � S
2. We �nd (�Sx0)

2 = S
2 for ci =

1p
2

�
Æi;S + Æi;�S

�
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measurements of the collective atomic spin [90, 91]. The spin is measured by monitoring the polarization

rotation of an o�-resonant probe �eld after interaction with an oriented atomic sample, see Eq. (2.15)

and (2.16). A measurement of the rotation angle provides the QND measurement of the atomic spin.

After the measurement, the collective spin is projected onto an entangled state with reduced quantum

uctuations. The �rst experimental results utilizing this idea are presented in Ref. [5, 92].

Finally, we mention a recent idea for generation of spin squeezing in an optical lattice [93]. The

authors consider two-level atoms where each level is trapped in its own lattice. Initially the two lattices

are on top of each other. Shifting the relative position of the two lattices for a short time results in

atomic interactions which depend on the atomic state of neighboring atoms. The theory predicts that

the collective atomic spin can be squeezed from this nearest neighbor interaction.

In all the proposals above, the spin squeezing takes place in a collection of atomic spins. However,

the general de�nition of spin squeezing is valid for any spin system. A particular spin, which comes to

mind, is the Stokes spin used to characterize the polarization squeezed state of light. The only problem

with the polarization squeezed light is that the number of subsystems (i.e. the number of photons) is

not a constant. Instead of the number of subsystems N = 2S, we now have the photon number operator

n̂. If we generalize Eq. (5.3) so that the denominator on the right hand side is 2hSi = hn̂i, we see that
the polarization squeezed state in Eq. (3.17) ful�ls the requirements for being spin squeezed with e.g.

� = 0, R� (
) < 1 and

(�Ŝz)
2 =

L2

c2

Z
B=2

�B=2
(Ŝz)2
 d
 (5.8)

hŜxi = �L=2c

2hSi = hn̂i = �L=c

The bandwidth B, over which the spectral density is integrated, is the inverse measurement time cor-

responding to detection of n = �L=c photons; i.e. B = c=L. The entangled subsystems in this spin

squeezed state are the photons which can be described as spin-1/2 systems due to their polarization.

Thus, spin squeezed states have been produced in the laboratory for some time, although this is not

always realized in the literature.

5.3 Generation of spin squeezed states by mapping light onto

atoms

We now return to the results of section 4.2 and 4.3 and link these results to the notion of spin squeezing.

We consider �rst the particular case of a F = 0 ! F 0 = 1 transition and rewrite Eq. (4.35), (4.36),

(4.52) and (4.53) as

hĴzi =
hŜzi


�
�Ĵz

�2
= 1

8
[Rz + 1]N 0

hĴxi =
hŜxi


�
�Ĵx

�2
= 1

8
[Rx + 1]N 0

hĴyi =
hŜyi


�
�Ĵy

�2
= 1

8
[Ry + 1]N 0

(5.9)

N 0 = �++��


is the average number of atoms in the excited state, Ri = 4(Ŝi)2
= (�+ +��) with i =

x; y; z, and the spectral densities of uctuations in the excitation �eld are assumed to be constant over
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the atomic linewidth . We have de�ned the collective pseudo-spin Ĵ by

Ĵz =
1

2
F̂ 0
z (5.10)

Ĵx =
1

2

�
F̂ 02
x � F̂ 02

y

�
Ĵy =

1

2

�
F̂ 0
xF̂

0
y + F̂ 0

yF̂
0
x

�
Ĵ is easily seen to ful�l the angular momentum commutation relations, but only for F 0 = 1. At the single

atom level we see that Ĵ describes spin-1/2 systems based on the two excited atomic states jF 0;m = �1i.
From Eq. (5.9) we see that in the process of complete absorption of the quantum excitation �eld, we

map the uctuations in the three Stokes component of the polarization squeezed light onto the three

components of the collective pseudo spin. In other words, the quantum correlations in the squeezed light

are converted into atomic correlations during the absorption process.

For the polarization squeezed state in Eq. (3.17), we �nd for R� (
) < 1 within the atomic linewidth

 �
�Ĵz

�2
<
hĴi2

N 0 ; for � = 0 (5.11)�
�Ĵy

�2
<
hĴi2

N 0 ; for � = �=2

Thus, the produced atomic states seem to have a spin squeezed pseudo-spin according to the de�nition

in Eq. (5.3). However, a closer look shows that this spin squeezing de�nition is not strictly ful�lled. The

single atom subsystems consist of three coupled atomic states; jF;m = 0i and jF 0;m = �1i. The pseudo
spin Ĵ is only de�ned on the two excited states. Similar to the polarization squeezed light, the number

of subsystems (atoms in the excited state) contributing to the collective spin in a given measurement

is not a constant number. The proof in appendix D, which shows that spin squeezing according to Eq.

(5.3) requires entanglement, cannot easily be extended to the current system of three-level atoms with

the spin de�ned only on the excited state manifold and with �nite probability amplitudes on the ground

states. We do, however, strongly believe that multi-atom entanglement is required in order to ful�l Eq.

(5.11). A computer search for a disentangled state, which ful�ls Eq. (5.11), has been carried out to

support our belief. About 108 randomly generated states have been tested. Each state is a random

statistical mixture over three product states. Each product state is composed of three three-level atoms

with arbitrary but normalized amplitudes. In none of the cases did the variance of the collective spin

components orthogonal to the mean collective spin ful�l Eq. (5.11).

We can give a somewhat qualitative argument for the requirement of entanglement in order to ful�l

Eq. (5.11). When we probe the collective spin, we only see atoms in the excited states. In this way

we e�ectively probe two level atoms (or spin-1/2 systems), and within this interpretation the proof in

appendix D is valid with the number of probed spin-1/2 systems (N 0) instead of total number of atoms

(N). In other words, the subset of atoms measured to be in the excited state is in a spin squeezed state.

The fact that only atoms in the excited state are probed, i.e. only the small spin squeezed fraction of

all the atoms is probed, is one of the great advantages of this idea. The imperfect mapping of light on

all atoms is not a problem; only the atoms that absorb the squeezed light are spin squeezed, and only

these atoms are subsequently probed. The disadvantage of this proposal is that the spin squeezing (noise

reduction) cannot be larger than 50%.

The inequalities in Eq. (5.11) become equalities when coherent light excitation is used (i.e. the

squeezed vacuum path is blocked). Thus, the standard quantum limit (SQL) of atomic uctuations is

measured with coherent light excitation. The coherent state of light can be interpreted as a ux of un-

correlated photons. Therefore, the excitation with coherent light does not cause any atomic correlations.

In section 4.2.1 we showed explicitly that the atomic noise level for coherent light excitation is indeed

identical to the noise level for uncorrelated atoms.
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The 50% noise reduction limit can be explained by the continuous creation and destruction of corre-

lated atoms. In a simple picture, we can think of the squeezed light as a ux of pair-correlated photons.

When one photon pair is absorbed, we create one pair of correlated atoms. The rate at which correlated

atom pairs are created is then set by half the photon ux (�=2) because of the complete absorption. A

pair correlation is destroyed whenever a single atom of the pair decays spontaneously. Hence, we loose

the correlations at a rate of 2. The correlations are lost twice as fast as the excited state population;

this is similar to the e�ect of losses on a squeezed light beam (see page 29). With Pc as the number of

correlated pairs in the excited state we have

@

@t
Pc = �=2� 2Pc (5.12)

The steady state number of correlated pairs is Pc = �=(4). The overall number of atom pairs in the

excited state is N 0=2 = �= (2). Thus, on average half of the excited state atoms are part of a correlated

pair. This explains the 50% noise reduction when 50% of the excited state atoms are perfectly pair-wise

correlated.

A simple argument shows why the uctuations in Ĵz (or F̂
0
z) are reduced when the atoms are excited

by polarization squeezed light with sub-shot noise in Ŝz . Ŝz is proportional to the di�erence between the
�+-polarized photon ux and the ��-polarized photon ux. Photons with �+-polarization mainly excite
atoms into the positive m Zeeman levels, whereas ��-polarized photons excite atoms into the negative m
Zeeman levels. With the reduced (squeezed) uctuations in the di�erential photon ux (Ŝz), we expect
reduced uctuations in the di�erence between the number of excited atoms in positive m Zeeman levels

and the number in negative m Zeeman levels. This di�erence is quanti�ed by the Ĵz (or generally F̂ 0
z)

operator, and hence the atomic spin squeezing is explained. The three spin operators in Eq. (5.10) are

fully equivalent for the simple F = 0 ! F 0 = 1 transition; a simple unitary transformation (rotation)

can change one into another. When such a rotation is accompanied by a unitary transformation of the

polarization basis for the excitation �eld, we �nd that any pair (Ĵi, Ŝi), i 2 fx; y; zg can be rotated into

(Ĵz ; Ŝz). We know how to explain the spin squeezing qualitatively for Ĵz, and the same arguments can,

with the unitary transformation, be used on any spin component.

Because of technical reasons we are not able to carry out a spin squeezing experiment on a F = 0!
F 0 = 1 transition. We can, however, do the experiment on a F = 4 ! F 0 = 5 transition as shown in

chapter 8. The relevant atomic variables can only be described by a pseudo spin in the F = 0 case.

However, the derivations in section 4.2 and 4.3 are valid for any F , and the physical interpretation of

the process in terms of quantum state mapping from light onto atoms is also F -independent. We know

from above that the noise reduction in the atomic variables beyond the SQL (measured by coherent

light excitation) is caused by multi-atom entanglement in the case of F = 0. We therefore argue that

a demonstration of uctuations below the SQL in one of the collective observables F̂ 0
z
, F̂ 02

x
� F̂ 02

y
, or

F̂ 0
x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x
is a demonstration of multi-atom entanglement even for F > 0. Moreover, we will refer to

this noise reduction as spin squeezing. It is not spin squeezing in the sense of Eq. (5.11) or Eq. (5.3),

but it does ful�l the two main requirements: noise reduction in a spin component (especially when F̂ 0
z

uctuations are reduced) and multi-particle entanglement.

The commutation relation for the pseudo-spin components in the F = 0 case is for the larger angular

momentum states generalized to

[F̂ 0
z
; F̂ 0

x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x
] = �2i

�
F̂ 02
x
� F̂ 02

y

�
(5.13)

The corresponding uncertainty relation is�
�F̂ 0

z

�2 �
�(F̂ 0

xF̂
0
y + F̂ 0

yF̂
0
x)
�2
� hF̂ 02

x � F̂ 02
y i

2 (5.14)

For the excitation with polarization squeezed state in Eq. (3.17) we have hF̂ 02
x � F̂ 02

y i 6= 0 (see (Eq.

4.53)) and quantum noise in F̂ 0
z and F̂

0
xF̂

0
y + F̂ 0

yF̂
0
x is therefore expected. The atomic state produced by
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coherent or squeezed light excitation is only a minimum uncertainty state when F = 0; this is seen from

Eq. (4.35) and (4.52).

The optimum noise reduction in the observables F̂ 0
z , F̂

02
x � F̂ 02

y or F̂ 0
xF̂

0
y + F̂ 0

yF̂
0
x is a decreasing

function of F (Fig. 4.2 and 4.3). This is because of the increase in the number of transitions on which a

photon of a given polarization can be absorbed. Moreover, the strengths of the di�erent transitions are

di�erent although all the excited states decay with the same rate. Two correlated photons of opposite

polarization can be absorbed on a multitude of transitions, and not all the possibilities lead to eÆcient

noise cancellation in the collective atomic observables.



Chapter 6

Theory for the atomic state readout

The theory of mapping the quantum state of light onto atoms, which we derived in chapter 4, leaves

one question unanswered; how do we verify experimentally that an entangled, or spin squeezed, atomic

state is actually produced? We clearly have to somehow probe the atomic state, and this probing is the

subject of this chapter. When we consider the probing of spin squeezed atoms, we should keep in mind

that the generated spin squeezed state only exists as long as the quantum pump continuously regenerates

the atomic correlations, which are lost due to spontaneous decay. Thus, we must probe the atoms in the

excited state in the presence of the excitation �eld.

The authors of the original paper on generation of spin squeezing in the excited state [9] suggest

to use a probe of light, which is near-resonant with an excited state transition F 0 ! F 00, to read out

information about the quantum properties of the collective atomic state in F 0. In this chapter we discuss
this idea in more detail, and we derive quantitative expressions for the transfer of atomic properties

onto a probe beam of light. The process we investigate in this chapter (transfer of atomic properties

onto light) is in a sense opposite to the process explored in the two previous chapters (transfer of the

properties of light onto atoms). It is advantageous for the readout process to have a strong atom-light

interaction. However, the interaction should not be as strong as in the mapping process, where we �nd

the complete absorption to be the optimum. In the readout process we obtain information about the

atoms by analyzing the transmitted probe �eld, and a too large absorption of the probe will obviously

reduce the readout eÆciency. A trade o� must be made between eÆcient interaction and probe signal left

for analyzing. The optimum probe optical depth is �0 = 1, but this is hardly realizable in a spin squeezing

experiment. The requirement for a completely absorbed weak excitation �eld results in a small number

of atoms in the excited state. Consequently, the probe optical depth cannot be very large. Moreover,

it is important that the properties of all excited state atoms are read with the same strength, otherwise

the readout of the collective state cannot be ideal. We cannot tolerate a too large probe absorption since

the strength in the readout depends on the probe power. In chapter 7 we will see that it is possible to

have �0 ' 1 in experiments on spin noise of uncorrelated atoms.

The e�ects of the atomic properties such as orientation and alignment on a near-resonant probe of

light are well known when the discussion is limited to atoms in the ground state and mean values of

the atomic and �eld variables [34]. In this chapter, we extend the discussion to probing of excited state

atomic quantum uctuations in double-optical resonance. The theory and the physical interpretation of

double-optical resonance in the weak �eld limit (weak probe and pump) including Zeeman degenerate

atomic states have not attracted much attention; most discussions focus on the strong �eld aspects in

double-optical resonance with pure three-level atoms. In the �rst section of this chapter we discuss the

use of double-optical resonance for probing excited state atomic properties. In the second section we

�nalize the theory for the readout of atomic uctuations. In the last section we discuss the e�ect of

inhomogeneous broadening on the calculated probe noise spectrum.

65
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Figure 6.1: a) Atomic level scheme with the ground state (F ), the intermediate state (F 0) and the

upper state (F 00). The quantum excitation �eld (pump) and the probe �eld are decomposed into circular

polarizations. b) The con�guration used for probing the spin squeezed state of atoms. The quantum

pump is completely absorbed by the atoms, whereas the probe is only slightly absorbed. The angle

between the pump and the probe beams is assumed to be small. The probe is analyzed by the half-wave

retarder, the polarizing beamsplitter and two photodetectors. The spectrum analyzer measures the noise

in the di�erential photocurrent.

6.1 Probing excited state atoms in double-optical resonance

It seems very natural to assume that the properties of the spin squeezed atoms in the intermediate1

state F 0 can be read out by utilizing a probe that is near-resonant with an excited state transition

F 0 ! F 00 = F 0+1 as shown in Fig. 6.1a. However, this would imply that the dynamics of the pump and

probe transitions can be separated, which in general is not possible. By separation of the dynamics we

mean that all properties of the probe interaction can be calculated from a Hamiltonian including only

the atomic states F 0 and F 00, the probe �eld, and the known properties of the atomic variables for the F 0

state. We show below that the probe interaction can be interpreted as being separated from the pump

interaction in experiments on cold atoms with a radiation limited linewidth and weak copropagating

�elds.

We are interested in the change in the probe polarization caused by the atomic quantum uctuations.

The direction of the probe polarization, or more generally Ŝ 0outy ; is measured in a polarization interfer-

ometer setup consisting of a half-wave retarder, a polarizing beamsplitter, and two photodetectors; see

page 13 for further details. The setup is very similar to Fig. 2.4 with the essential parts redrawn in Fig.

6.1b. We derive an expression for the uctuations in the probe Stokes parameter Ŝ 0outy measured after

interaction with the atomic sample. This derivation is based on the full Hamiltonian for the pump and

probe interaction. We assume that the angular momentum quantum numbers for the upper state (F 00),
the intermediate state (F 0), and the ground state (F ) ful�l F 00 = F 0 + 1 = F + 2. The Hamiltonian for

1
F
0 used to be the excited state in chapter 4, but now a higher lying state, F 00, is introduced, and we will then call F 0

the intermediate state.



6.1. PROBING EXCITED STATE ATOMS IN DOUBLE-OPTICAL RESONANCE 67

the system consisting of the atomic sample, the pump �eld, and the probe �eld is given by

Ĥ = Ĥpump + Ĥprobe (6.1)

Ĥpump is identical to Eq. (4.2) and Ĥprobe is similar to Ĥpump, except that it involves the variables

relevant for the probe transition

Ĥprobe = ~c

Z
k
0

0� �

L

k0
0
� �

L

k
h
b̂y+ (k) b̂+ (k) + b̂y� (k) b̂� (k)

i
dk (6.2)

+ ~!0
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F
00X

m=�F 00

Z
V

��̂F 00m;F 00m (r) d3r

+ i~�

F
0X

m=�F 0

Z
V

n
�+
m
u0� (x; y) �̂F 0m;F 00m+1 (r) b̂

y
+ (z)� �+

m
u0 (x; y) �̂F 00m+1;F 0m (r) b̂+ (z)
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m
u0� (x; y) �̂F 0m;F 00m�1 (r) b̂

y
� (z)� ��

m
u0 (x; y) �̂F 00m�1;F 0m (r) b̂� (z)
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d3r

The constants relevant for the probe transition are given by

��
m
=
�� 0g0

~

r
2�

L

p
(F 0 + 2�m) (F 0 + 1�m) (6.3)

� 0 =

s
~!00
4�"0

g0 =

s
3"0~�030

8�2 (2F 0 + 1) (2F 0 + 2)

We use a prime on the parameters related to the probe transition ( g0, � 0, !
0

0, !
0

a, 
0, u0 (x; y) and �0) in

order to distinguish them from the corresponding pump parameters. b̂� are the probe �eld annihilation

operators. We assume, for simplicity, identical quantization length L for the probe and the pump and a

common direction of propagation.

The propagation equation for the probe �eld is obtained from the Heisenberg equation for the anni-

hilation operators b̂� with a result similar to Eq. (4.17)

@

@z
~b� (z;
) =

F
0X

m=�F 0

���mL

c

Z Z
u0� (x; y) ~�F 0m;F 00m�1 (x; y; z;
) dxdy (6.4)

The tilde-notation is again introduced for the slowly varying operators, i.e. b̂� (z; t) = ~b� (z; t) e�i(!
0

0t�k00z),

�̂F 00m;F 0n (r; t) = ~�F 00m;F 0n (r; t) e
i(!00t�k00z) and �̂F 00m;Fn (r; t) = ~�F 00m;Fn (r; t) e

i((!00+!0)t�(k00+k0)z). An
operator and its Fourier transform are distinguished by the arguments, e.g. t and 
.

In order to calculate the properties of the transmitted probe �eld, we look into the source term given

by the atomic operators ~�F 0m;F 00m�1. From the Heisenberg-Langevin equation for �̂F 0m;F 00m�1 we have

:

~�F 0m;F 00m�1 (r) = (�i�0 � [0 + ]=2) ~�F 0m;F 00m�1 (r) +FF 0m;F 00m�1 (r) (6.5)

� u0 (x; y)
n
��
m
~�F 0m;F 0m (r)~b� (z) + ��

m�2~�F 0m;F 0m�2 (r) ~b� (z)
o

� u� (x; y)
n
�+
m�1~�Fm�1;F 00m�1 (r) ~a

y
+ (z) + ��

m+1~�Fm+1;F 00m�1 (r) ~a
y
� (z)

o
We introduce the probe detuning �0 = !0

a
�!00, and we assumed that the upper state populations/coherences

are much smaller than the intermediate state populations/coherences, (weak probe approximation). If
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we compare Eq. (6.5) to the corresponding expression for the pump transition, Eq. (4.18), we see that

the last line in Eq. (6.5) does not have a counterpart in Eq. (4.18). It is because of these F � F 00

coherence terms in Eq. (6.5) that the pump and probe interaction cannot be separated immediately.

The probe interaction in double-optical resonance is often interpreted as if it is composed of two

contributions known as the two-step (or incoherent) and the two-photon (or coherent) processes [28, 94].

The two-step process describes a sequential absorption from the pump and the probe �elds, and it is

included in the second line of Eq. (6.5). The two-photon process involves the atomic coherence between

the ground state F and the upper state F 00, and it is often interpreted as a process that requires two

photons simultaneously. The third line in Eq. (6.5) is the contribution from the two-photon process.

In general the two processes can have di�erent resonance conditions, di�erent linewidths, and di�erent

amplitudes. Such e�ects have been discussed extensively in the literature, see e.g. the references in

Ref. [28]. If the decay rate for the atomic F � F 00 coherences is large compared to intermediate state

decay rate, then the two-photon contribution can be neglected. This can be caused by e.g. collisions

or uctuating laser �elds. The remaining two-step contribution is fully described by a separation of the

pump and probe interactions, and we can use a two-level Hamiltonian (Hprobe in Eq. (6.2)) to derive

the atom-probe interaction if the intermediate state atomic variables are known. The probe linewidth

for the two-step process is set by the sum of the intermediate state and the upper state decay rates, just

as for a two-level system where the lower state is not the ground state but is populated by incoherent

pumping [95]. However, our system is assumed to be an ideal sample of cold atoms with a radiation

limited linewidth together with laser �elds without excess noise, and we cannot rely on a destruction of

coherences for the separation to be valid.

The notion of a two-step and a two-photon process only makes sense in the presence of e.g. a

strong and detuned pump �eld, collisions, large Doppler broadening, or uctuating laser �elds. The two

processes cannot be distinguished in the case of weak �elds and radiation limited linewidths. We can see

that by rewriting the last line in Eq. (6.5) in terms of the intermediate state populations/coherences.

The Heisenberg-Langevin equations for �̂Fm�1;F 00m�1 gives

:

~�Fm�1;F 00m�1 (r) = (�i�0 � 0=2) ~�Fm�1;F 00m�1 (r) + FFm�1;F 00m�1 (r) (6.6)

� u0 (x; y)
n
��m~�Fm�1;F 0m (r) ~b� (z) + ��

m�2~�Fm�1;F 0m�2 (r)
~b� (z)

o
In this expression we utilized that the pump �eld is weak and at exact resonance. After the usual

linearization and a Fourier transform in time, we �nd

��Fm�1;F 00m�1 (r) =
�u0 (x; y)
i�0 + 0=2

�
��
m
��Fm�1;F 0m (r) �b� (z) + ��

m�2��Fm�1;F 0m�2 (r)
�b� (z)

	
(6.7)
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m
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~b� (z;
) + ��
m�2Æ~�Fm�1;F 0m�2 (r;
)

�b� (z)
o

We now use Eq. (4.19), (4.24), (4.47), (6.5), (6.7), and the similar equation for ~�Fm+1;F 00m�1 to

obtain

Æ~�F 0m;F 00m�1 (r;
) =
�u0 (x; y)
i�0 + 0=2

fF (r;
) (6.8)

+ ��
m
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) + ��
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+��m��F 0m;F 0m (r) Æ~b� (z;
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m�2��F 0m;F 0m�2 (r) Æ~b� (z;
)

o
We have in this derivation assumed that 
� ; 0. All the Langevin force contributions are lumped into
F , which we do not specify explicitly. We see that Eq. (6.8) does correspond to the two-step process
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in Eq. (6.5) except for a modi�cation of the linewidth to 0 instead of 0 + . This modi�cation of the

linewidth is the sole e�ect of the two-photon process.

The disappearance of the intermediate state decay rate in Eq. (6.8) is explained physically in Ref.

[94]. The excitation �eld can excite atoms from the ground state F to the intermediate state F 0, and
in this process an energy of ~!0 is transferred to the atoms. The probability for excitation of an atom

depends on the ratio of the pump detuning to the linewidth of the state F 0. The excited atoms are

subsequently probed on the F 0 ! F 00 transition. The energy of the atoms in F 0 is not uncertain as with

incoherent pumping; it is set by the pump photon energy ~!0: Therefore, the linewidth of the probe

transition depends only on the linewidth of the upper state F 00, as con�rmed experimentally in Ref. [96].
The probe �eld is resonant when the sum of the probe and pump frequencies corresponds to the atomic

transition frequency from F to F 00. We can think of a mechanism that makes the F�F 00 coherence decay
fast, e.g. atomic collisions, as a mechanism which redistributes the energy of the atoms in F 0 within the

intermediate state linewidth and thereby gives a probe linewidth which is the sum of the decay rates for

the states F 0 and F 00:

Following this simple picture and the result in Eq. (6.8), we can treat our atom{probe interaction

as if we are probing Zeeman degenerate two-level atoms prepared by the pump, provided that we only

include the decay rate of the F 00 state (0) in the linewidth and take the detuning (�0) to be the sum

of the pump- and probe detunings. Since our pump �eld is at exact resonance, we do not have to

distinguish between the probe detuning and the sum of the pump- and probe detunings. We conclude

that double-optical resonance can indeed be used to probe the properties of the intermediate atomic

state.

In the spin squeezing experiment in chapter 8 we have 
=2� = 1:9MHz, =2� = 5:2MHz and 0=2� =
3:1MHz. Hence, the requirement 
 � ; 0, used in deriving Eq. (6.8), is not really ful�lled in the

experiment. A natural way to include (at least partly) the nonzero detection frequency 
 into Eq. (6.8)

is to add the detection frequency to the probe detuning in the denominator. This is the exact inclusion

when the F � F 00 coherences can be neglected (incoherent pumping), or when ground state atoms are

probed. In addition, this inclusion is found to improve the agreement with the experimental data in

chapter 8. We will therefore use the following two expressions in the calculations of the spectrum of

probe polarization uctuations
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o
After this discussion about atomic probing in double-optical resonance, we continue to calculate the

uctuations in the probe polarization, quanti�ed by the Stokes parameter Ŝ 0outy .

6.2 The readout of atomic uctuations

We use Eq. (6.9) and (6.4) to derive

@

@z
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) (6.10)
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where
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o
An;m are the components (row, column) in the 2 � 2 matrix A and similar for ~Bn;m. The atomic

operators P̂ 0 (r) and F̂ 02
z
(r) are de�ned by

P̂ 0 (r) = �

F
0X

m=�F 0

�
F 02 + 3F 0 + 2

�
~�F 0m;F 0m (r) (6.12)

F̂ 02
z
(r) = �

F
0X

m=�F 0
m2~�F 0m;F 0m (r)

The rest of the atomic variables in Eq. (6.11) are de�ned in chapter 4. We do not specify the Langevin

force in Eq. (6.10). In chapter 4 (Eq. (4.20) and the discussion below), we saw that the e�ect of the

Langevin force is to ensure that a coherent state �eld remains in a coherent state as it propagates through

the atomic sample2. This is similar to the attenuation of a coherent state by a beamsplitter; the vacuum

uctuations entering through the empty port ensures that the transmitted �eld is in a coherent state.

We will assume that our atomic sample acts like a simple beam splitter if the atomic noise contribution

is ignored (i.e. for ~B = 0). Instead of keeping track of the Langevin forces, we ensure by addition of a

vacuum �eld that the coherent state probe remains in a coherent state when ~B = 0, i.e. that the probe

�eld commutator is preserved; [Æ~bout� ; Æ~b
out y
� ] = [Æ~bin� ; Æ~b

in y
� ]. We use the indices in and out for the �elds

before (z = 0) and after (z = l) the atomic sample.

6.2.1 Correlated atoms and small optical depth.

In the readout of correlated atoms we would like Æ~bout (
) to carry information about the collective

intermediate state atomic operators. This requires, as we see by formally integrating Eq. (6.10) over z,

that �b (z) and ju0(x; y)j2 are constant over the volume with appreciable intermediate state population. In
other words, the absorption and phase shift of the probe should be small, and the probe beam diameter

should be much larger than the pump beam diameter.

The use of a large diameter probe beam does have a drawback in the experimental implementation

as discussed at the end of this section. Nevertheless, we will, for simplicity, assume in the theory derived

here that the probe diameter is much larger than the pump diameter.

2This is, of course, only true in the absence of atomic uctuations. In chapter 4 we neglect the atomic uctuations due

to the arguments in Appendix C.
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The maximum absorption (optical depth) of the probe �eld can be estimated as �0 = N 0�00=(�w
02),

see Eq. (6.16) below. N 0 is the number of atoms in the intermediate state, �00 is the resonant absorption
cross section, and 2w0 is the probe beam diameter. N 0 is for a completely absorbed pump �eld given

by N 0 = �= = s0�w
2=�0. The resonant pump saturation parameter s0 is de�ned on page 9, and 2w

is the pump diameter. For w . w0 we �nd �0 . s0�
0
0=�0. The ratio between the probe and pump cross

sections for the cesium transitions used in chapter 8 is about 1.1, and accordingly �0 . s0: Thus, a weak

pump �eld (small s0) results in a small probe absorption. The weak absorption can also justify the use

of a z-independent spatial mode function.

With these arguments we can pull the �b (z) and Æ~b (z;
) factors out of the integral over z of Eq.

(6.10). We �nd

Æ~bout (
) =
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Z
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A (z) dz

!
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Z
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0

~B (z;
) dz �bin +Q~v (
) (6.13)
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Z l
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!
�bin

~v =(~v+ ; ~v�)T are the vacuum �elds, which mimic the e�ect of the Langevin forces. The vacuum

operators commute with all other operators and [~v� (
) ; ~v
y
� (
0)] = 2�Æ (
 + 
0)L=c, see Eq. (3.14): Q

is a matrix chosen to preserve the probe �eld commutators for ~B = 0:

We will, for simplicity, assume that the major contribution to the changes in �b� is identical for the

two circular polarizations. This assumption is not critical for the derivation below, but it is ful�lled in

the experimental implementation, and it will simplify the notation. More quantitatively we assume

jhP̂ 0 + F̂ 02
z
ij � (2F 0 + 3) jhF̂ 0

z
ij ; jhF̂ 02

x
� F̂ 02

y
ij ; jhF̂ 0

x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x
ij (6.14)

We can then write �bout� = (1� �0=2� i�)�bin� , where �0 is the probe optical depth and � is a common

phase shift. The explicit expression for the optical depth is

�0=2 + i� =
3�02

32� (2F 0 + 1) (F 0 + 1)

02 � i2�0

�02 + 02=4

Z
V

d3r ju0(x; y)j2hP̂ 0 (r) + F̂ 02
z
(r)i (6.15)

The expression for the optical depth becomes even simpler when the atoms are unpolarized. We then

have hF̂ 02
x;y;z

(r)i = �0 (r)F 0 (F 0 + 1) =3 and hP̂ 0 (r) + F̂ 02
z
(r)i = �0 (r) 2 (F 0 + 1) (2F 0 + 3) =3 with �0 as

the density of atoms in the intermediate state F 0. The optical depth for unpolarized atoms is then

�0
unpol

=
�00

1 + 4�02=02

Z
V

d3r ju0(x; y)j2�0 (r) (6.16)

�00 =
(2F 0 + 3)

(2F 0 + 1)

�02

2�

�00 is the resonant absorption cross section for unpolarized atoms. Equation (6.16) is not only valid in

double-optical resonance; it can also be used in the probing of unpolarized ground state atoms with F 0

as the angular momentum of the lower state. The integral over ju0(x; y)j2�0 (r) reduces to just �0l for a
uniform atomic density and to 2N 0=�w02 for a large probe diameter.

We can now write Eq. (6.13) as

Æ~bout (
) = (1� �0=2� i�) Æ~bin (
) +

Z
l

0

~B (z;
) dz �bin +
p
�0~v (6.17)

�bout = (1� �0=2� i�) �bin
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Finally, we assume that the probe diameter is large enough to allow the ju0(x; y)j2 factor in the de�nition
of ~B to be replaced by its peak value 2=(�w02). We then �nd

Æ~bout� (
) = (1� �0=2� i�) Æ~bin� (
) +
�3�02

4� (2F 0 + 1) (2F 0 + 2)�w02
0
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(6.18)
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The atomic operators in this equation are the collective operators de�ned in the chapter 4.

From the Stokes parameter de�nition in chapter 3, we �nd to the lowest order in �0 and �
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~Xv
�, ~Y

v
� are the quadrature phase operators for the vacuum �elds ~v�. �Xout

� , �Y out
� are the average of the

quadrature phase operators for the transmitted probe �eld. �0 is the incoming probe photon ux, and

the functions D and L are de�ned by

D (
;�0) =
8�00

4�02 + (0 + i2
)
2

(6.20)

L (
;�0) =
40 (0 + i2
)

4�02 + (0 + i2
)
2

The noise in the di�erential photocurrent i� is analyzed on a spectrum analyzer (SA), see Fig. 6.1b.

The SA measures the power spectrum, or spectral density, of the di�erential photocurrent. For unity

quantum eÆciency, a gain of g; and with e as the electron charge, we have

(i�)
2


 = 4e2g2
�
Ŝ 0outy

�2


=

4e2g2

2�

Z 1

�1

D
ÆŜ 0outy (
0) ÆŜ 0outy (
)

E
d
0 (6.21)

We will assume that the uctuations in the di�erent atomic operators are uncorrelated. For a coherent

state probe polarized along x or y we have j �S 0inx j = �0=2, �S 0iny = �S 0inz = 0, and (Ŝ 0iny )2
 = �0=4, see Eq.
(3.17). The power spectrum is then given by

(i�)
2

 = e2g2�0 (1� �0) + e2g2�0s00�

0
0;unpol

90

32N 0 (F 0 + 1)
2
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In this derivation we use the expressions for the resonant probe saturation parameter s00 = �00�
0=0�w02

and the resonant optical depth �00;unpol from Eq. (6.16). The �rst term is simply the shot noise of

the coherent state probe, which is attenuated by �0 because of the atomic absorption. The second term

represents the excess noise transferred from the atomic spin F̂ 0
z onto the probe. For small 
 the spectrum

of this term as a function of the probe detuning �0 is the square of a dispersion pro�le. The last term

comes from the noise in the atomic alignment di�erence F̂ 0
xF̂

0
y+ F̂

0
yF̂

0
x. The spectrum of this contribution

for small 
 is a squared Lorentzian. Note that we will have an extra contribution proportional to

the real part of D (�
;�0)L (
;�0) if cross correlations between ÆF̂ 0
z
and Æ(F̂ 0

x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x
) exist. This

contribution will be asymmetric in the probe detuning and in contrast to the terms in Eq. (6.22), which

are symmetric in �0. We will discuss the asymmetric contribution further in chapter 8.

The signal-to-noise ratio (S/N) in the atomic state readout is set by the ratio of the atomic noise

contribution to the probe shot noise. The S/N scales with the probe power, probe diameter, and the

number of atoms within the probe as s00N
0=w02. We have assumed here that the spectral densities of

the atomic variables are linear in the number of probed atoms; this holds in the case of uncorrelated

atoms. The weak probe assumption sets an upper limit on s00. We can gain in S/N by reducing the

probe diameter until it becomes comparable to the pump diameter. The physical explanation for this

gain is that the probe photons outside the region with atomic excitation do not contribute to the atomic

signal, but they are still detected and hence add to the measured probe shot noise. We can only gain

in the readout of quantum correlations until the probe diameter approaches the pump diameter. With

the probe diameter smaller than the pump diameter, we cannot probe all the entangled atoms, and the

noise reduction caused by quantum correlations will su�er. In the spin squeezing experiment in chapter

8 we use a pump and a probe with about the same diameter.

For uncorrelated atoms we have nothing to loose by using a probe beam smaller than the pump beam.

But we do not gain either. The number of probed atoms, N 0; is for the small probe proportional to the
square of the probe diameter. Thus, the S/N is independent of probe diameter for uncorrelated atoms

in the small probe limit.

For completeness, we also give the expression for the average Stokes parameter �S 0outy : We �nd for an

arbitrarily polarized probe without the assumption about identical changes in �b�

�S 0outy (
) =
ic

2L

�
�bout�� �bout+ � �bout�+

�bout�
�

(6.23)

= (1� �0) �S 0iny +
3�020

8�2w02 (2F 0 + 1) (F 0 + 1) (02=4 +�02)

�
�
�2 (2F 0 + 3)�0 �S 0inx �F 0

z (
)� 2�0 �S 0inz hF̂ 02
x � F̂ 02

y i+
0�0

2
hF̂ 0

xF̂
0
y + F̂ 0

yF̂
0
xi
�

Here we use the de�nition of �0 given in Eq. (6.15).

6.2.2 Uncorrelated atoms and large optical depth

It is, as discussed above, not important to match the pump and the probe beam pro�les in the readout

of the quantum noise of uncorrelated atoms. In fact, in our �rst experiment on observation of the atomic

quantum noise (chapter 7), we use excitation with large diameter beams from six di�erent directions (the

trapping beams of the MOT). It is then possible to have a large probe optical depth. The large probe

absorption prevents an ideal readout of the collective atomic state as discussed in the previous section.

However, we do not need a perfect readout of the collective state when the atoms are uncorrelated. In

this section we derive an expression for the measured spectral density under the conditions of chapter

7. We will allow for a large probe optical depth, but this generalization is not for free. We now have

to assume that the average density of atoms in the intermediate state F 0 is constant over the probe

interaction volume (�0 (r) = �0), whereby A (z) becomes independent of z. The isotropic excitation in
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chapter 7 makes this a valid assumption. With A (z) = A we �nd from Eq. (6.10)

Æ~b (z;
) = exp (�A z) Æ~bin (
) +

Z
z

0

exp (�A [z � z0]) ~B (z0;
) �b (z0) dz0 +Q~v (
) (6.24)

~v =(~v+ ; ~v�)T are again the vacuum �elds, which mimic the e�ect of the Langevin forces. Q is a matrix

chosen to preserve the probe �eld commutators for ~B = 0:

In accordance with the experiment we assume almost identical changes in the two polarization com-

ponents. Thus, we can de�ne an absorption coeÆcient � and a refractive index n so that A = (�+ in)1,

�l = �0=2 and nl = �. From Eq. (6.24) and (6.10) we deduce

Æ~b (z;
) = e�(�+in)zÆ~bin (
) + e�(�+in)z
Z z

0

~B (z0;
) dz0 �bin +
p
1� e�2�z~v (
) (6.25)

From this expression we derive the uctuations in the probe Stokes parameter Ŝ 0out
y

for a probe �eld

initially polarized along x

ÆŜ 0out
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We can write the atomic correlation functions for the uncorrelated atoms as (compare to e.g. Appendix

C, section C.1)

hÆF̂ 0
z
(r;
) ÆF̂ 0

z
(r0;
0)i = �0(F̂ 0

z
)2
sa;
Æ (r� r0) Æ (
 + 
0) (6.27)
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We use the subscript sa on the single atom spectral densities. We can now calculate the spectral density

of the detected di�erential photocurrent i�

(i�)
2


 = e2g2e��
0

�0 + e2g2�0e�2�
0

�00;unpols
0
0

90

64 (F 0 + 1)
2
(2F 0 + 3)
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(6.28)
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We have again used the expressions for s00 and �00;unpol (for the small probe). The variance of a sum

of uncorrelated variables equals the sum of the variances of each variable. Therefore we expect that for

uncorrelated atoms (F̂ 0
z
)2
 = N 0(F̂ 0

z
)2
sa;
. This is indeed what makes Eq. (6.22) and (6.28) equal, except

for a factor of two and the validity of Eq. (6.28) for large �0. This factor of two is the e�ect of the

Gaussian probe pro�le; in Eq. (6.22) we use the peak intensity to probe all atoms, whereas in Eq. (6.28)

we use the whole probe with a smaller average intensity. A result very similar to Eq. (6.28) is used in

Ref. [5] for the readout of atomic ground state uctuations in a pulsed experiment.

It is possible to give a simple interpretation of the noise formulas (6.22) and (6.28) based on the

classical description of the polarization interferometer in section 2.3. The incoming probe with a ux

�0 is polarized along x, and the half-wave retarder and the polarizing beamsplitter (PBS) is oriented

to measure the �eld components along x0 and y0. As a result, the photon ux di�erence between the

two output arms of the PBS is proportional to the rotation angle � of the probe polarization caused
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by the atomic interaction. We can write the di�erence in the uxes as �0� = �01 � �02 = 2��0+ with

�0+ = �01 + �02 = e��
0

�0, see Eq. (2.15). If the mean value of � is small, we can write the uctuations

in the di�erential ux as Æ�0� = 2��0+Æ�. Three possible contributions to � exist. The �rst contribution
is the optical activity, where the two circular polarization components of the probe experience di�erent

phase shifts. The rotation angle is proportional to the di�erence between the phase shifts, and the

spectrum of � versus probe detuning �0 is a dispersion-like pro�le. Optical activity occur when the

atomic sample is oriented along the z axis, that is, for non-zero F̂ 0
z . The second contribution is related to

linear dichroism with di�erent absorption of the linearly polarized components along the x0- and y0 axis.
This e�ect has a Lorentzian spectrum and depends on the di�erence in atomic alignment along the x0-
and y0 axis quanti�ed by F̂ 0

xF̂
0
y + F̂ 0

yF̂
0
x. The calculations above show that if the atomic parameters are

noisy, then this noise is converted into noise in the probe polarization angle �, which is directly observed

in the noise of the di�erential ux. Finally, the quantum uctuations in the coherent state polarization

give a shot noise contribution to Æ� as discussed in chapter 3. The shot noise contribution to the variance

of the angle � is given by (��)2
SN

= 1=(4�0+); the stronger the coherent state is the more well-de�ned
is the polarization direction. The atomic contribution to the variance of � is for uncorrelated atoms

given by a sum over the contributions from each atom. Since each atom is assumed to add the same

amount of noise, we �nd that (��)2
atom

= kN 0. For a weak probe the atomic response is linear, and

the proportionality constant k is independent of the photon ux. Thus, for the total variance in the

di�erential photon ux we have�
��0�

�2
= 4��

02
+(��)

2 = e��
0

��0 + 4kN 0e�2�
0

��0 2 (6.29)

The dependence on the probe ux and the number of atoms (optical depth) is identical to the result of the

more thorough calculation in Eq. (6.28). The signal-to-noise ratio in the readout of atomic uctuations

is given by the ratio of the atomic noise to the shot noise in Eq. (6.29). Since N 0 / �0 we �nd that the

signal-to-noise ratio has a maximum at �0 = 1.

6.3 Inhomogeneous broadening of the atomic noise spectrum

It turns out that we have some excess line broadening in the experimental realization of the spin squeezing

proposal in chapter 8. One reason is that the weak unidirectional excitation �eld accelerates and heats

the atoms, even though the atoms are �rst cooled to the mK level. In this section we look at an

atomic sample with a distribution of atomic resonance frequencies. We consider in particular a velocity

distribution with a Doppler width comparable to the linewidths  and 0, but the �nal results will be
valid for any kind of inhomogeneous broadening. The excitation �eld is still assumed to be completely

absorbed, and we will not look at the e�ect of the Doppler broadening on the generation of spin squeezed

atoms. We limit the discussion to a simple model for the e�ect of the velocity distribution on the readout

process.

Consider the term proportional to ÆF̂ 0
z (
)D (
;�0) in the ÆŜ 0outy (
) expression in Eq. (6.19). ÆF̂ 0

z

is a collective atomic operator that represents a sum over all single atom operators,
P

j
ÆF̂ 0

z;j
. We can

also express the collective operator as a spatial integral over the continuous atomic operators introduced

in chapter 4. Here we introduce, in the same way, continuous operators in velocity space together with

a density function �v. We de�ne

ÆF̂ 0
z
(v;
) =

1

�v (v)�v

F
0X

m=�F 0
m
X
i

Æ~�i
F 0m;F 0m

(
) (6.30)

N�v (v)�v is the number of atoms with a velocity in the z-direction in the interval �v around v. �v is

normalized so that3
R
�v (v) dv = 1. The sum over i is a sum over all atoms with the z-component of the

3Note that we use a di�erent normalization for the density in velocity space �v (v) as compared to the spatial density

� (r), which integrates up to N:
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velocity in the small interval �v around v. �v is chosen to be large enough to include many atoms, but

small compared to the width of the velocity distribution. We then have

ÆF̂ 0
z
(
) =

Z
�v (v) ÆF̂

0
z
(v;
) dv (6.31)

The di�erent atomic velocity groups have di�erent detunings because of the Doppler shift. We write the

velocity dependent detuning as �0 (v) = �0�2�v=�t. The detuning in the probe interaction is in fact the

sum of the probe and the pump detuning (see page 69), and hence �t is the wavelength corresponding

to the two-photon excitation from the ground state F to the upper state F 00. We can now substitute the

ÆF̂ 0
z
(
)D (
;�0) factor by a corresponding factor which includes the atomic velocity distributionZ

�v (v) ÆF̂
0
z (v;
)D (
;�0 (v)) dv (6.32)

The F̂ 0
z
-contribution to the detected spectral density is then proportional toZ

d
0
Z Z

dv dv0 �v (v
0) �v (v) hÆF̂ 0

z
(v;
) ÆF̂ 0

z
(v0;
0)iD (
;�0 (v))D (
0;�0 (v0)) (6.33)

Some general statements about the correlation function for ÆF̂ 0
z
(v;
) can be given: We �rst consider a

sample of uncorrelated atoms. From the de�nition in Eq. (6.30) we �nd that hÆF̂ 0
z (v;
) ÆF̂

0
z (v

0;
0)i�v =
0 for v0 6= v: For v0 = v we have
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=
1

�v (v)
f (v;
) Æ (
 + 
0)

f (v;
) Æ (
 + 
0) is the average single atom correlation function for atoms with a velocity in the z-

direction around v.

In general we can have correlations between the atoms, which we describe by a function g (v; v0). In
the continuous limit we can then write the correlation function as

hÆF̂ 0
z (v;
) ÆF̂

0
z (v

0;
0)i = Æ (
 + 
0)
�
��1v (v) f (v;
) Æ (v � v0) + g (v; v0;
)

	
(6.35)

We now assume that the functions f and g are independent of v; v0 and insert this correlation function

into Eq. (6.33) with the result

f (
) fD2 (
;�0) + g (
) ~D2 (
;�0) (6.36)

The new functions fD2 and ~D2 are de�ned by

fD2 (
;�0) =

Z
dv �v (v)D (�
;�0 (v))D (
;�0 (v)) (6.37)

~D2 (
;�0) =

�Z
dv �v (v)D (�
;�0 (v))

��Z
dv �v (v)D (
;�0 (v))

�

In the limit of small 
 the �rst function, fD2, is a Doppler broadening of a squared dispersion pro�le.

This function is for a nonzero Doppler width strictly positive for all �0. The function ~D2 (0;�0) is the
square of a Doppler broadened dispersion pro�le. This function always goes to zero at resonance. We
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introduce Doppler broadened versions of L (
;�0) in a similar way. With these simple modi�cations we

can rewrite Eq. (6.22) as

(i�)
2
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0
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0
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�
Here the spectral densities of the atomic uctuations have been separated into two contributions. We

use the index uc for the spectral densities for uncorrelated atoms and the index c for the corrections due

to multi-atom correlations. Thus, the c-terms like (F̂ 0
z)
2
c;
 are not true spectral densities in themselves,

and they may even be negative. We only see the uc terms when coherent light is used for excitation. The

c terms are added when e.g. polarization squeezed light is used for excitation. The spectral densities

for atomic uctuations of uncorrelated atoms are, per de�nition, always nonnegative. However, the

corrections in the presence of atomic correlations may be negative and thereby reduce the spectral

density of the collective spin below the standard quantum limit set by uncorrelated atoms.

We have in Eq. (6.38) included the "large optical depth" exponentials from the previous section. This

joins Eq. (6.22) and (6.28) in one equation, which furthermore allows for an inhomogeneously broadened

medium. Note that the atomic noise contributions in Eq. (6.38) should be reduced by a factor of two in

the small probe diameter limit.

In the experiment it is quite easy to measure the sum of the photocurrents i1 and i2 instead of the

di�erence. The corresponding spectral density for i+ is derived in a way similar to Eq. (6.38). The result

for uncorrelated atoms is

(i+)
2

 = e2g2�0e��

0

+ e2g2�0e�2�
0
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0
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90

32N 0 (F 0 + 1)
2
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(6.39)

�
�
F̂ 02
x � F̂ 02

y + F̂ 02
z + P̂

�2
uc;


fL2 (
;�0)

We �nd in chapter 8 that the experimental data for (i+)
2

 �t the fL2 (
;�0) pro�le better than the

~L2 (
;�0) pro�le when uncorrelated atoms are probed. We �nd that the contribution to (i�)
2


 from

multi-atom correlations matches the ~D2 (
;�0) pro�le when non-coherent light is used to induce atomic

correlations in F̂ 0
z
: In conclusion we �nd that this simple theory for the inhomogeneous broadening is

suÆcient to explain the experimental data.
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Chapter 7

Quantum noise of uncorrelated

atoms

In the previous three chapters we discussed the theory behind excited state atomic uctuations and the

readout of these uctuations. We now return to the experiments, and in this chapter we describe our

measurements on the quantum noise of uncorrelated atoms. The experiments presented in this chapter

can be considered as the �rst step towards generation of a macroscopic entangled spin squeezed state of

atoms. Before we suppress the atomic spin uctuations by means of quantum correlations, we have to

demonstrate that we, in fact, can measure these uctuations; this is the subject in this chapter.

Atomic uctuations are important in a number of physical systems or processes. The eÆciency of

squeezed light generation by four-wave mixing in an atomic gas can be limited by the atomic noise due

to spontaneous decay [2]. The momentum di�usion for the atomic motion within an optical �eld can

be limited by atomic dipole uctuations [97]. The signal-to-noise ratio in spectroscopy experiments can

be limited by the atomic noise [1, 3, 4, 98, 99]. Atomic noise in the resonance uorescence spectrum is

investigated in Ref. [100, 101].

The quantum noise of uncorrelated atoms (i.e. the variance of a collective atomic operator) has

a characteristic linear dependence on the number of atoms which contribute to the noise. This is for

example seen in Eq. (6.29) in the limit of small optical depth. The physical argument for this dependence

is simple; the variance of a sum of uncorrelated atomic variables, e.g.
P

i
F̂z;i, is the sum of the single

atom variances. We �nd the overall contribution to be proportional to the number of atoms (N) if all

atoms have identical variances. If, on the other hand, all the atoms uctuate in phase (i.e. correlated),

then we can substitute the sum byNF̂z;i, and the variance of the collective atomic variable is proportional

to N2. The N2 dependence is, for example, seen when all the atoms are exposed to the same laser �eld,

which is modulated in intensity or frequency. Thus, the N2 dependence is typical for atoms that are

exposed to some kind of classical modulation or noise. This is very similar to the uctuations in light;

a shot noise limited light �eld (a coherent state) will have intensity uctuations that scale linearly with

the mean intensity. If the �eld is exposed to any classical or technical noise, the intensity uctuations

will scale quadratically with the mean intensity.

The linear dependence on N does not necessarily ensure that the observed noise is of quantum origin.

If the number of atoms under investigation uctuates in time in a random but classical way, then the

same linear N -dependence can be found. This is the case for the thermal uctuations of unpolarized

atoms in a gas cell probed by a small diameter laser beam [98]. If the number of atoms is �xed, or if

the number uctuations happen with a frequency much smaller than the frequency at which we detect

the noise spectral density, then we expect that noise observed with a linear N -dependence is of quantum

origin.

Only a few experiments have aimed at probing the quantum noise of atoms with a demonstration

of the characteristic N -dependence. The �rst experiment is based on a few trapped ions, which are

79
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prepared in a superposition of two eigenstates [3]. A subsequent measurement of the number of ions in a

given eigenstate results in a projection of the wave function with a random outcome. The observed noise

is termed projection noise, and the variance is found experimentally to scale linearly in N , although not

with overwhelming statistics.

In this chapter we present our experiments where the quantum noise of excited state atoms is measured

and found to be in agreement with the expected linear N -dependence. These results are also published

in Ref. [4]. In contrast to the ion experiment, we do not observe the quantum noise induced by

our measurements of an atomic variable (the projection noise). Our quantum noise is caused mainly

by the coupling of the atoms to the electromagnetic vacuum modes, which leads to the spontaneous

decay. In a qualitative picture we can think of this quantum noise as the projection noise induced by

the "measurements" carried out by the vacuum �elds. We use a weak probe of light to readout the

quantum noise, and this probing is assumed not to contribute to the atomic noise. Besides the noise

from spontaneous decay, we also have a contribution from the quantum noise of the �eld used to excite

the atoms back into the excited state. The fast spontaneous decay results in a broad band atomic noise

spectrum. This is advantageous when the noise is read out by a probe of light. The typical low frequency

technical noise of the probe laser requires a detection frequency above a few MHz, and we measure the

spectral density of atomic uctuations at 3MHz. The atoms are trapped in a magneto-optical trap

(MOT) where they live for about one second before they escape due to collisions. The probe diameter is

somewhat smaller than the size of the atomic sample, but the atomic velocity in the MOT is very small,

and trapped atoms enter/leave the probe region quite slowly. Thus, the detection frequency is much

higher than the frequency at which atoms enter/leave the probe region, and we do not have to worry

about classical number uctuations.

Subsequently, the linear N -dependence have been observed in the frequency uctuations of an atomic

fountain frequency standard [1]. The frequency uctuations are caused by the quantum projection noise

as in Ref. [3]. Finally, the linear N -dependence is found in the variance of a collective spin measurement

on cesium atoms in the ground state [5].

We continue this chapter with a description of the setup used in the experiment. In the second section

we present the experimental results.

7.1 The setup for detection of atomic quantum noise

The setup for this experiment is very similar to the setup in Fig. 2.4. A sketch of the setup with

the elements relevant for the present experiment is shown in Fig. 7.1. The cesium atoms are trapped

in a MOT as described in chapter 2. The noise of the excited state atoms in the MOT is probed on

the 917nm 6P3=2 ! 6D5=2 transition utilizing a Ti:Sapphire laser (Microlase MBR-110). We use the

polarization interferometer setup to analyze the transmitted probe �eld as described in chapter 2 and 6.

The polarization interferometer and the two photodetectors in the output arms of PBS2 are the same

as in section 2.4.1. The 3MHz detectors are set at the broad 640kHz bandwidth with a noise equivalent

power (for both detectors) of about 80�W. The di�erential photocurrent i� holds information about the

polarization of the probe �eld after the atomic interaction. i� is proportional to the Stokes parameter

Ŝ 0out
y

for the probe �eld. Fluctuations in Ŝ 0out
y

induced by the atoms are measured on the spectrum

analyzer (SA) as uctuations in i�. The SA measures the spectral density (i�)2
 at the frequency


=2� = 3:0MHz. The SA runs in the following at zero span with a resolution bandwidth of 300kHz,

unless other parameters are given explicitly.

In the �rst attempt at observing the atomic quantum noise, we use the diode laser for trapping in the

MOT. The intrinsic broad band phase noise of the diode laser output results in a classical modulation

of the trapped atoms (Ref. [20, 35] and section 2.4.4). It seems like a bad idea to use a noisy trapping

laser when the goal is to observe the quantum noise of atoms. However, if the atomic sample is perfectly

isotropic, then the classical noise of the diode laser will have the same inuence on both circular polar-

ization components of the linearly polarized probe, and the polarization of the probe is not modulated.
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Figure 7.1: The setup used to observe the quantum noise of uncorrelated atoms. A MOT is sustained

by six laser beams at 852nm (not shown). A probe �eld at 917nm probes the atomic uctuations in the

6P3=2 F = 5 state. The abbreviations OSC, LIA, SA, BS and PBS stand for digital oscilloscope, lock-in

ampli�er, spectrum analyzer, beamsplitter and polarizing beamsplitter. Further details about the setup

are given in the text.

This is similar to what we see in section 2.4.3 with balanced trapping beams. The induced modulation

of the probe amplitude is balanced out in the polarization interferometer. Accordingly, it is in principle

possible to see the quantum spin noise with a noisy pump laser. Even if some of the classical noise is

transferred into polarization noise owing to a slightly non-isotropic trap, one might still hope to see the

quantum noise prevailing at small1 N . However, we did not succeed in observing the quantum noise

with a diode trapping laser; the classical noise was persistently prevailing at lowest possible N [20].

To circumvent the classical noise problem, a second Ti:Sapphire laser was constructed [23]. This

home-made laser, as well as the Ti:Sapphire probe laser, provides light that is shot noise limited in both

amplitude and phase above 2MHz for an optical power at the mW level. The available trapping power

increases to 200mW with the Ti:Sapphire laser. Furthermore, the MOT is changed from a �ve beam

con�guration to a six beam con�guration with retro-reected beams. That gives improved trapping

conditions with a 6mm trap diameter (FWHM of 852nm uorescence) and an optical depth of more than

one for the 917nm probe. For comparison the measured optical depth at 917nm with a diode trapping

laser is only about 0.05. The locking of the laser frequency to the atomic transition is done by standard

FM saturation spectroscopy techniques, where an electro-optical modulator running at 20MHz is used

for frequency modulation. Only the part of the laser output that is used for locking is modulated in

order to keep the trapping light as quiet as possible.

1The quantum noise is linear in N , whereas the classical noise is quadratic in N in the limit of small optical depth.

Thus the quantum noise may be predominant at small N .
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The probe laser can be locked to the atomic resonance at 917nm by an error-signal from a (almost)

Doppler-free two-photon FM spectroscopy setup. Cs atoms in a gas cell are excited by a fraction of

the 852nm light with 20MHz frequency modulation. A counterpropagating 917nm beam completes the

Doppler-free two-photon transition [28]. The frequency modulation at 852nm is converted into amplitude

modulation of the 917nm beam, just as in the experiments in section 2.4. An error signal is �nally derived

by phase sensitive demodulation of the detected 20MHz signal in the 917nm �eld. Two acousto-optic

modulators (AOM's) in the locking setup allow us to tune the locked laser around the closely spaced

atomic resonances 6P3=2F = 5! 6D5=2F = 4; 5; 6.

The output of the probe Ti:Sapphire laser has slow intensity uctuations (up to about �5%), which
limits the accuracy when long integration time is required. We therefore actively stabilize the probe

power with a feedback loop. An AOM is placed in the probe beam, and the unshifted zeroth order is

used for the probe. The intensity in the probe is set by the RF power supplying the AOM. A part of the

probe beam is split o� onto a photodiode before the polarization interferometer, and by comparing the

resulting photocurrent with a reference, we obtain an error signal for the intensity stabilizing feedback

loop. The probe is initially polarized along the x-axis and it has a diameter of about 1.5mm. We use

probe powers between 0.10mW and 1.0mW.

A 2% beamsplitter is placed in the setup right after the MOT. The beamsplitter reects a small

fraction of the probe light onto a DC detector. The detector signal goes to a digital oscilloscope (OSC,

HP 54601B), and it is used to measure the transmission of the probe through the atomic sample. The

transmission (e��
0

) is used later on to extract the probe optical depth �0.
The chopper wheel, the lock-in ampli�er (LIA), and the square box (x2), shown in Fig. 7.1, are not

used in the �rst part of the experiment. The purpose of these devices will be described later on.

7.2 Measurements and results

The purpose of the experiments in this chapter is to demonstrate the observation of atomic quantum

noise of uncorrelated atoms. In chapter 6 we derived an expression, Eq. (6.28), for the spectral density

of the di�erential photocurrent with contributions from the probe shot noise and the atomic spin noise

added by the probe-atom interaction. In the present experiments we use the rather strong trapping

beams for excitation. In the derivation of Eq. (6.28) we assumed that the atoms are excited by a weak,

resonant pump �eld. However, the general dependencies in Eq. (6.28) are found not to depend critically

on this assumption. We will take Eq. (6.28) as our starting point and then discuss the limitations or

the required modi�cations due to the strong excitation �eld. We �rst rewrite the spectral density of the

di�erential photocurrent

(�{�)
2

 = (�{�)

2
E;
 + e��

0

+ �00;unpole
�2�0s00

90

64 (2F 0 + 3)
2
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2
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�
We have normalized the spectral density to the shot noise of the unabsorbed probe; e2g2�0. We use a

bar on i� to indicate this shot noise normalization. In addition, we have added the electronic noise of

the detectors as (�{�)
2

E;
. The electronic noise represents the noise seen on the spectrum analyzer when

no light hits the detectors. The electronic noise is not correlated to the light or atom noise and just adds

to the i� spectral density. The main double-optical resonance transition is 6S1=2F = 4! 6P3=2F = 5!
6D5=2F = 6. The quantum numbers F and F 0 for the lower and intermediate state are F 0 = F + 1 = 5.

We can from simple arguments derive an estimate of the atomic noise contribution to (�{�)
2


. We

start with the single atom spectral density (F̂ 0
z)
2
sa;
. It follows from the de�nition in section 6.2.2 that

the integral of (F̂ 0
z)
2
sa;
 over 
 is equal to the variance of the single atom operator F̂ 0

z;i
divided by the
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probability P 0 for the atom to be in the intermediate state. That is,

hF̂ 02
z;i
i � hF̂ 0

z;i
i2 = P 0

Z
(F̂ 0

z
)2
sa;


d


2�
(7.2)

The atoms are excited with laser beams from six directions with di�erent polarizations, so we ex-

pect the atomic state to be almost unpolarized. Thus, we have for the single atom operator hF̂ 02
z;i
i =

P 0F 0 (F 0 + 1) =3 and hF̂ 0
z;i
i = 0. We assume for simplicity that (F̂ 0

z)
2
sa;
 is constant within the band-

width of spin uctuations spin and zero outside. This gives (F̂ 0
z
)2
sa;
 = �F 0 (F 0 + 1) =(3spin). A similar

approximation gives (F̂ 0
x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x
)2
sa;
 = �F 0 (F 0 + 1) (2F 0 � 1) (2F 0 + 3) =(15spin). Inserting these

results into Eq. (7.1) shows that the F̂ 0
z
noise predominates. We evaluate D (
;�0) and L (
;�0) at the

detuning for maximum D (
;�0) and assume 
� 0. This gives us for small detection frequencies 


� = (�{�)
2


 � (�{�)
2

E;
 � e��
0

= 0:54
0

spin
�0e�2�

0

s00 (7.3)

Here we introduce � as the atomic noise contribution normalized to the shot noise of the unabsorbed

probe. Furthermore, we do the measurements close to resonance, and for the estimate of � we do not

distinguish between �00 and �0. We note that the atomic noise is increased when the bandwidth of

the spin uctuations is reduced. Hence, it is advantageous to use atomic states with long-lived spins.

However, we use a probe of light to read out the uctuations, and we have to detect at frequencies above

a couple of MHz to avoid the low frequency technical laser noise. In our case the bandwidth of spin

uctuations cannot be smaller than the spontaneous decay rate and we take spin = . It is possible that

the magnetic �eld gradient and the strong �elds e�ectively increase the bandwidth of spin uctuations.

With spin=2� = =2� = 5:3MHz and 0=2� = 3:0MHz we �nd

� = (�{�)
2

 � (�{�)

2
E;
 � e��

0

= �0�
0e�2�

0

s00 (7.4)

where �0 = 0:16 is the theoretical estimate. This is a crude estimate of the atomic noise contribution,

but this is all we can hope for in the current experiment. The trap environment modi�es the line shape

with AC Stark splitting, polarization gradient e�ects and the magnetic �eld broadening (see section

2.2). Equation (7.4) also includes crude estimates of the bandwidths, and it assumes a small detection

frequency. Nevertheless, we can compare the measured dependencies on the optical depth and probe

power with the predictions of Eq. (7.4), and we will also see that the measured ratio of atomic noise to

shot noise (�0) is not far from the estimated value.

The atomic noise term in Eq. (7.4) is clearly linear in �0 for small �0. This is just as it should be for

the atomic noise from uncorrelated atoms since the optical depth is proportional to the number of atoms.

The nonlinearity at larger �0 is not a deviation from the linearN -dependence for uncorrelated atoms. The

exponential e�2�
0

merely represents the attenuation of the probe power and the subsequent reduction in

the readout eÆciency. If classical atomic noise is present, we should add a term like �0;cl�
02e�2�

0

to Eq.

(7.4). The �02 factor is the quadratic dependence on the number of atoms and the exponential e�2�
0

is

again just the probe attenuation.

7.2.1 The spectrum of atomic spin noise

We �rst scan the 917nm probe across the atomic resonance while monitoring the transmission from the

DC detector on the oscilloscope and the spectral density (i�)2
 on the spectrum analyzer. The result of

the measurement is shown in Fig. 7.2 with curve 2 as the DC measurement of the probe transmission

and curve 1 as the spectral density of the di�erential photocurrent i�. The electronic noise (i�)
2
E;


is measured with blocked detectors and subtracted in curve 1. The remaining noise is normalized to

the shot noise of the o�-resonant probe. In the same way we normalize the DC measurement to the
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Figure 7.2: Atomic spin noise as a function of probe detuning. 1) Spectral density noise at 3.0MHz with

a 300kHz resolution bandwidth. 2) DC transmission; corresponds to the probe shot noise. 3) Atomic

spin noise (di�erence between 1 and 2).

o�-resonant DC level. The absorption spectrum is identical to the spectrum that we analyzed in section

2.2, and it includes di�erent hyper�ne components as well as AC Stark splitting.

If the atoms are passive absorbers2, then curve 1 and 2 would be indistinguishable; the probe would

remain shot noise limited and shot noise is proportional to the optical power. The discrepancy between

curve 1 and 2 clearly shows that atoms are not passive absorbers. The atoms do not just attenuate the

coherent state probe; extra noise is added to the probe �eld by the atom-probe interaction. The extra

atomic noise is given by the di�erence between curve 1 and 2 and is shown as curve 3 in Fig. 7.2.

We can see from curve 3 that the atomic noise contribution is largest (when normalized to the optical

depth) at the resonance close to 30MHz. This resonance is one of the AC Stark components of the

6P3=2F = 5 ! 6D5=2F = 6 transition. In the following we consider the dependence of the atomic noise

on the optical depth and the probe power at �xed probe detuning.

7.2.2 Atomic noise versus optical depth

The probe laser is now locked and tuned to the atomic resonance at 30MHz (Fig. 7.2). We can derive

the atomic spin noise as a function of optical depth from the measured spectral density (i�)2
 and the

DC absorption. We implement a lock-in technique to improve the quality of our measurements [102].

The idea, which is sketched in Fig. 7.1, is to chop the probe beam with an optical chopper at a frequency

around 1KHz. The spectral density measured by the SA then alternates between the background noise

and the full spectral density, which includes the noise of the probe light. The background noise is mainly

the electronic noise (i�)2E;
, but it also includes any contribution from stray light that may hit the

detectors. The SA has a video output, which gives a voltage proportional to
p
(i�)2
 when the SA runs

on the linear scale. The SA output is subsequently squared electronically to get a voltage proportional

to (i�)2
, and this voltage is fed into a digital lock-in ampli�er (LIA, Stanford Research Systems, model

SR810). The reference for the LIA is the frequency of the chopper wheel. The output of the LIA

2We de�ne a passive absorber as an absorber which gives an attenuated coherent state output for a coherent state input.

The ideal beamsplitter is a passive absorber.
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Figure 7.3: Normalized spin noise plus shot noise versus the probe optical depth. 1a) The noise for

0.34mW probe power. 1b) The noise for 0.95mW probe power. 2) Shot noise from passive absorption

(for comparison).

is a voltage, which is proportional to amplitude of the alternating input signal; i.e. proportional to

(i�)2
 � (i�)2E;
, where we now use (i�)2
 for the spectral density with the probe on. In this way we

subtract the background noise very eÆciently, and we are left with a signal that is proportional to the

probe and atom contribution to the spectral density. The LIA output is �nally averaged on the digital

oscilloscope together with the signal from the DC detector. The signal from the DC detector is of course

now modulated due to the chopped probe, but the peak-to-peak voltage is still proportional to the probe

transmission.

We can vary the number of atoms in the trap by changing the power in the repumping beam for the

MOT. The importance of the repumping beam is discussed in chapter 2. The atoms interact only with

the repumping beam in a small fraction of their time in the trap. For this reason, we do not expect

that the changes in the repumping power will change any important trapping parameters except for the

number of trapped atoms. The important parameters, like the power on the trapping transition, the

detuning of the trapping �eld, the magnetic �eld gradient, and the Cs pressure in the vacuum chamber,

are kept constant.

We now measure corresponding values for the optical depth �0 (derived from the DC transmission

measurement) and the spectral density of the probe uctuations. We normalize the spectral density to

a measurement without atoms in the trap (no repumping beam). In this way we arrive at experimental

measurements of (�{�)2
 � (�{�)2E;
 versus �0. The results are shown in Fig. 7.3 for two di�erent probe

powers (circles: 0.34mW, squares: 0.95mW). Each data point is a result of about 30 seconds of averaging

on the digital oscilloscope. The data are �tted to Eq. (7.4) with �0s
0
0 as a free parameter, and the �ts

are shown in the �gure as solid lines. The �t in curve 1a gives �0s
0
0 = 0:38 and for curve 1b we get

�0s
0
0 = 1:15. We see that the agreement between the measurements and the �ts is excellent. With the

larger probe power we approach the atomic saturation. Moreover, the data in curve 1a and 1b are from

di�erent days with possibly di�erent trap conditions. This explains the smaller maximum optical depth

in curve 1b.

For comparison, we have carried out similar measurements with a passive absorber instead of the
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Figure 7.4: a) The spin noise � normalized to exp (�2�0) versus �0. 1) Quantum noise for 0.34mW probe

power. 2) Classical noise for 0.30mW probe power. b) "Slope of spin noise versus optical depth" as a

function of the classical modulation index.

trapped atomic sample. We use a half-wave plate followed by a polarizer as our passive absorber. The

absorption is changed simply by a rotation of the wave plate. We derive the (e�ective) optical depth

of the passive absorber in the same way as for the atomic absorber. The data are shown in Fig. 7.3

(triangles), and they �t the e��
0

curve very well (solid line). The e��
0

dependence is expected for a shot

noise limited probe and passive absorption according to Eq. (7.4) with �0 = 0.

We expect from Eq. (7.3) that the atomic spin noise will increase if the bandwidth of the atomic

spin uctuations spin is reduced. This is in fact observed in a recent publication [5], where a graph very

similar to Fig. 7.3 shows the atomic spin noise of ground state atoms.

We now subtract the �tted shot noise graph in Fig. 7.3 (trace 2) from the measured noise data (trace

1a) and obtain the pure spin noise, that is, � in Eq. (7.4). The spin noise � is then multiplied by e2�
0

and

plotted as function of the optical depth �0 on a log-log scale in Fig. 7.4a (graph 1). The data are plotted

on dB scales, although the optical depth is not a "power measurement". The dB is merely a short-hand

notation for a plot of 10 log[�e2�
0

] versus 10 log(�0). According to the theory, Eq. (7.4), the data should
fall on a straight line with a slope of one. This slope of one is the characteristic linear dependence of

the quantum noise of uncorrelated atoms on the number of atoms; the number of atoms is proportional

to the optical depth. The e�2�
0

normalization of the data compensates the readout reduction due to

the probe absorption. The slope from a least square �t to the data in Fig. 7.4a (including error bars)

is 1.07�0.03. This shows that the observed noise is indeed predominated by the noise of uncorrelated

atoms, and from the previous bandwidth considerations regarding the classical number uctuations, we

conclude that the atomic quantum noise is observed.

We have previously in this chapter argued that classical atomic noise is quadratic in the number of

atoms. The quadratic dependence can also be seen directly from Eq. (2.4) and Eq. (2.20). Equation

(2.4) shows that the probe susceptibility is proportional to the density of atoms in the intermediate state.

Equation (2.20) shows that the classical probe signal is quadratic in the susceptibility. A log-log plot of

the classical atomic noise versus optical depth should therefore give a slope of two. We apply a 3MHz

frequency modulation to the trapping laser to check that we actually do get a slope of two when classical

noise is the predominant noise contribution. The modulation is achieved by applying a 3MHz voltage to

a KNbO3 crystal placed in the path of the trapping beams. The frequency modulation, obtained from

the electrooptic properties of KNbO3, turns out to be very sensitive to temperature uctuations. Hence,

the measured data show more scatter than the data without modulation, even though the temperature

of the crystal is actively stabilized.
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Note that this situation with a frequency modulated trapping/pump �eld is identical to the experi-

mental conditions in section 2.4. Here we concentrate on the signal strength as a function of modulation

index and the number of atoms, whereas in section 2.4 we investigated the spectrum with a scanned

probe frequency and a very strong modulation.

Graph 2 in Fig. 7.4a shows the observed noise versus optical depth when a substantial frequency

modulation is applied to the trapping laser. The data points in graph 2 are obtained in the same way as

the quantum noise data in graph 1. The linear �t gives a slope of 2.08�0.08. This is in �ne agreement

with the expected quadratic dependence for the classical noise. The �t does not include any error bars on

the log scale. This is because the scatter in the data at large modulation depth increases with increasing

optical depth (signal size) on a linear scale. Hence, on the log scale all the data points have the same

uncertainty, independent of the optical depth.

Figure 7.4b shows what happens to the spin noise when the amount of classical FM applied to the

trapping laser is varied. In the �gure the slope calculated from graphs like Fig. 7.4a is plotted as a

function of the modulation index. As a measure of the modulation index we could have used the rms

voltage applied to the KNbO3 crystal. However, because of the temperature and laser frequency drifts

we use, instead, the square root of the recorded noise level at large optical depth as our modulation index

measure.

The transition from (almost) quantum spin noise with a slope of one to (almost) classical noise with

a slope of two is obvious in Fig. 7.4b. The data in Fig. 7.4b are taken over two days, and this can

explain some of the scatter.

7.2.3 Atomic noise versus probe power

The resonant two-level saturation parameter can be expressed through a saturation power Psat and the

actual power P as s00 = �0�00=�
0w02 = P=Psat. The saturation power for our 1.5mm probe diameter is

Psat = 46�W. It is this saturation parameter (s00) that enters into Eq. (7.4). It is interesting to compare
this saturation parameter to the actual degree of saturation in the experimental situation with a probe

and a detuned strong pump in double-optical resonance

The resonant optical depth for two-level atoms scales with increasing probe power as (1 + 2s00)
�1

in

the limit of small absorption. For arbitrary absorption we have

@

@z
P (z) =

�k
1 + 2P (z) =Psat

P (z) (7.5)

�0 = � ln

�
P (l)

P (0)

�
l is the length of the atomic sample and k is a constant.

Figure 7.5a shows an actual measurement of the probe optical depth at the resonance at 30MHz as

a function of probe power. The measurements (dots) are �tted to the solution of Eq. (7.5) with k and

Psat as free parameters. The �t gives an e�ective saturation power of3 P
eff

sat = 0:95mW. The excited

state transition is clearly not saturated as fast as the theoretical saturation power Psat predicts. This is

related to the AC Stark splitting of the intermediate state, which reduces the excitation probability on

the upper transition even when the probe is resonant with one of the AC Stark components.

The �t to the 0.34mW data in Fig. 7.3 gave �0s
0
0 = 0:38. With Psat = 46�W we �nd s00 = 7:4, and

the experimental �0 parameter is �0;exp = 0:05. Note that the large resonant saturation parameter is not

necessarily in contradiction to the theoretical assumptions. The theory assumes weak probe excitation,

and that can still be ful�lled with e.g. a detuned probe or an AC Stark splitted intermediate state.

The result for �0;exp is not that far from the theoretical value given below Eq. (7.4); �0;theo = 0:16.

We cannot expect a better agreement with all the crude estimates and assumptions together with the

3We use P
eff
sat for the saturation power obtained from the �t in order to distinguish it from the theoretical value for the

resonant saturation power Psat = 46�W.
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Figure 7.5: a) Probe optical depth versus probe power. A �t to the saturation formula (solution to Eq.

(7.5)) gives an e�ective saturation power of P
eff

sat = 0:75mW. b) The normalized quantum spin noise

�e2�
0

measured at �0 = 0:32 (�5dB) as a function of probe power. The scales are logarithmic with 1�W

as the reference for the probe power.

nonideal experimental situation with a strong pump �eld, magnetic �eld gradients, polarization gradients

etc.

The last test for the quantum spin noise is the dependence on probe power. This is not a test of

the quantum nature, but it is still a test of the expected dependence in Eq. (7.4). The spin noise

level at an optical depth of �0 = 0:32 (-5dB on the log-scale) is measured as a function of probe power.

The measurements are shown in �gure 7.5b on a log-log scale; i.e. 10 log[�e2�
0

] at �0 = 0:32 versus

10 log[P=1�W]. The theory for the measurements in Fig. 7.5b predicts a linear dependence with a

slope of one on the log-log plot. The slope from a least square linear �t gives 0.92�0.06 - an acceptable

agreement.

7.2.4 A quantum spin noise limited experiment

We have performed a simple experiment, which shows a reduction in the signal-to-noise ratio (S/N)

due to the atomic spin noise. The experiment is invented just to demonstrate that fundamental atomic

quantum noise can limit the S/N in spectroscopy. A much more sophisticated demonstration is the

atomic quantum noise limited stability of the atomic fountain frequency standard [1].

The probe laser is still locked at the resonance at 30MHz, but we remove the chopper and look at the

signal directly on the spectrum analyzer. The SA frequency span is increased from zero to about 70kHz,

and we apply frequency modulation to the trapping beams at 3.0MHz. We want in this experiment to

measure the size of the modulation transferred from the pump laser via the atoms to the probe laser

polarization. The signal from the SA is shown in Fig. 7.6. At 3.0MHz we see the peak from the classical

modulation of the atoms (trace 1). The width of this peak is set by the 30kHz resolution bandwidth of

the SA. The noise level outside the classical noise peak is given by the shot noise and the atomic quantum

spin noise. This noise level sets the noise oor for our experiment, and it is also shown in trace 2 with

the classical modulation turned o�. For the same detected intensity but without the atoms present (in

fact, slightly higher detected intensity just to be on the safe side), we get the shot noise level shown in

trace 3. The shot noise is 0.3dB below the shot noise plus quantum spin noise level. We deduce that

the spin noise contribution in curve 2 is about 8% of the shot noise level in curve 3. If perfectly spin

squeezed atoms are used for this experiment (i.e. no contribution from the atomic quantum noise), we

will gain 8% in the signal-to-noise ratio for the classical modulation measurement. This demonstrates
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Figure 7.6: Spectroscopy signal with �xed laser frequencies and nonzero SA-span. 1) The "signal"

consisting of shot noise + spin noise + classical signal. 2) The noise oor of shot noise + spin noise.

3) The shot noise level measured with a "passive" absorption equal to the atomic absorption in curve 1

and 2. SA settings: 70kHz full span and 30kHz resolution bandwidth. The reference for the vertical dB

scale is the shot noise in curve 3.

that atomic quantum noise can be a limiting factor, and that spin squeezed atoms may be advantageous

in spectroscopy experiments. A squeezed probe of light may be useful too, as we saw in chapter 3.

However, the squeezed light probe only makes sense for small optical depth; just a moderate absorption,

which corresponds to losses, deteriorates the squeezing substantially.

The 8% contribution from the atomic quantum noise is a small e�ect, but it can in principle be much

larger if e.g. long-lived atoms are probed, see Eq. (7.3). The atomic quantum noise can indeed be the

predominating noise source, as shown in the atomic fountain clock[1].
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Chapter 8

Spin squeezing in a cold atomic

ensemble

In the previous chapter we demonstrated that we indeed can observe the quantum noise of uncorrelated

atoms. In chapter 4 we presented the theory for mapping the statistics of nonclassical light onto atoms.

Thus, we are now ready to demonstrate a macroscopic entangled ensemble of atoms in a spin squeezed

state. This demonstration is the topic of this chapter.

To the best of our knowledge, there are only two other experiments demonstrating atomic entan-

glement. Both of these experiments deal with only one pair of atoms at a time. The �rst experiment

is by the group of S. Haroche [103], where highly exited Rydberg atoms exchange single photons with

high �nesse RF-cavities. One excited state atom can leave "half" a photon while traversing a cavity; i.e.

the atom and the cavity mode are subsequently entangled as (j1; gi+ j0; ei) =
p
2, where the �rst number

is the cavity photon number and the second letter is the internal atomic state. When a second atom

is injected into the cavity, it can pick up the "half" photon, and it becomes entangled with the �rst

atom. This method for producing entanglement utilizes a strong coupling between a single cavity mode

of the electromagnetic �eld and a single atom. This interaction allows an exchange between the atomic

excitation and the excitation of the electromagnetic �eld.

Two ions in an ion trap have been prepared in an entangled state in the group of D. J. Wineland

[104]. The ions are cooled to the vibrational ground state and subsequently entangled by utilizing laser

pulses and a coupling of the ions through the collective vibrational motion.

We presented the �rst demonstration of multi-atom entanglement in a large ensemble of atoms in Ref.

[6]. We also rely on an exchange between atomic excitation and excitation of the electromagnetic �eld.

However, we do not require strong coupling between the �eld and individual atoms. Instead, we use a

free propagating quantum �eld and a large ensemble of atoms. In this way we can have a strong coupling

to the collective atomic properties although the single atom coupling is weak. In contrast to the previous

experiments, we generate entanglement between a large number of atoms. In the present experiment we

do not have a spatial separation of the entangled components as in the other two experiments. However,

this may be achieved by the use of two Einstein-Podolsky-Rosen-correlated light beams for the quantum

excitation instead of a single squeezed light beam [8].

A very recent experiment demonstrates spin squeezing in an ensemble of atoms after a quantum non-

demolition (QND) measurement of a single component of the collective atomic spin with an o�-resonant

probe of light [92]. The QND experiment uses the idea that the polarization of an o�-resonant probe �eld

is rotated after interaction with an oriented atomic sample, see Eq. (2.15), (2.16) or (6.23). A measure-

ment of the rotation angle provides the QND measurement of the atomic spin. After the measurement,

the collective spin is projected onto a spin squeezed state with reduced quantum uctuations [90, 91].

We continue this chapter with a section about the setup used in the spin squeezing experiment. This

is followed by a section where we give a characterization of the physical system based on simple DC

91
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Figure 8.1: The experimental setup used for atomic spin squeezing measurements. Note that the two

choppers in the �gure are in the experiment one rotating disc with two sets of holes. The abbreviations

BS and PBS stand for beamsplitter and polarizing beamsplitter. Further details about the setup are

given in the text.

measurements. In the third section, we continue with the atomic noise measurements on uncorrelated

atoms in a weak excitation �eld. Section four describes noise measurements on classically correlated

atoms. In section �ve we �nally demonstrate the spin squeezed state of atoms, and in the last two

sections we analyze the spin squeezing data in more detail.

8.1 The spin squeezing setup

The setup for the spin squeezing experiment basically combines the squeezed light source setup in chapter

3 and the setup for the readout of atomic uctuations in chapter 7. This means that we use the sub-

threshold OPO for generation of polarization squeezed light. We use the magneto-optical trap (MOT)

to collect a cold sample of cesium atoms, and we use a near-resonant probe �eld and a polarization

interferometer to read out the atomic uctuations. These devices or techniques have been described

previously, but the implementation for the current experiment is somewhat di�erent. The quantum

pump acts on the 6S1=2F = 4 ! 6P3=2F = 5 transition, and the intermediate state atoms are probed

on the 6P3=2F = 5! 6D5=2F = 6 transition. As usual we use F , F 0 and F 00 for the angular momentum
quantum numbers for the ground, intermediate, and excited state, that is F 00 = F 0+1 = F +2 = 6. The

basic components of the setup are shown in Fig. 8.1 and will be described below.
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8.1.1 The atomic sample and laser sources

The atomic sample used for observation of spin squeezing is a collection of cesium atoms trapped and

cooled in a vapor-cell MOT (chapter 2). The diameter of the six trapping beams is about 25mm,

and the typical power in each beam is 60mW. The laser generating the trapping light is the Microlase

MBR-110 Ti:Sapphire laser pumped by an Ar-ion laser. The Ti:Sapphire laser is locked exactly at

the 6S1=2F = 4 ! 6P3=2F = 5 resonance, and the light used for trapping is subsequently detuned

around 13MHz to the red by two acousto-optic modulators (AOMs) running at 124MHz and 111MHz

respectively. We have about 300-350mW of resonant light before the two AOMs. The trapping beams

go through an optical chopper running at about 500Hz. That gives "dark" periods of about 1ms to do

measurements on the atoms without the presence of the strong trapping �eld. The atoms are recaptured

and cooled again in the "bright" periods. The magnetic �eld gradient for the MOT is turned o� at the

time when the chopper turns o� the trapping beams. The current in the coils generating the magnetic

�eld gradient decays in about 200�s:We do not attempt to cancel out the residual �eld (ion pump, earth

�eld etc.) in the dark periods. In fact, the residual �eld may be advantageous since the theory in chapter

4 is derived for an unpolarized ground state, and the residual magnetic �eld will help to prevent optical

pumping due to the quantum excitation �eld. The repumping �eld (chapter 2) is not chopped; it is on

all the time. The repumping �eld cannot do any harm; the atoms rarely end up in the F = 3 ground

state and hence rarely see the repumping �eld.

The squeezed light source is driven by the same Ti:Sapphire laser as we use for trapping. This explains

why the trapping/squeezing laser is locked at exact resonance. The center frequency of the squeezed

vacuum �eld is needed exactly at the 6S1=2F = 4 ! 6P3=2F = 5 resonance, whereas the trapping light

must be red-detuned by a few atomic linewidths. Our squeezed light source takes about 700mW of laser

power at 852nm, whereas the MOT can do with only 200mW. The cheapest solution in terms of laser

power is to lock the laser at resonance and downshift the frequency of the trapping light. We require a

total power of about 1.1W from the Ti:Sapphire laser, but because of losses in an optical isolator and

an electro-optic modulator (EOM), the actual laser output is about 1.6W.

The demands on laser power also explain why the trapping/pump laser at 852nm and the probe laser

at 917nm have been swapped since the experiments in the previous chapter. The commercial Ti:Sapphire

laser (MBR-110) is designed to give a large and frequency stable output. With only 20W of green light

from a single Ar-ion laser for pumping both Ti:Sapphire lasers, we choose to use the MBR-110 for

trapping and squeezing at 852nm and the home-made Ti:Sapphire laser for the 917nm probe. In the

experiments we only need about 15mW of power at 917nm (including locking and intensity stabilization),

so the threshold of the home-made laser is minimized by the use of a very small output coupler.

8.1.2 The quantum pump

We generate the squeezed vacuum �eld in the same way as we described in detail in chapter 3. The

basic parts of the setup are shown in Fig. 3.4, except that we now split o� about 350mW of the laser

output for the MOT trapping beams. The coherent component of the quantum excitation �eld, which

is resonant with the 6S1=2 F = 4 ! 6P3=2 F = 5 transition, is provided by a part of the MBR-110 laser

output. The pump �eld has typically a power of 50�W and a beam diameter of 2w = 4:0mm at the trap

site. The coherent part of the pump is mode cleaned and stabilized in power by the mode cleaning cavity

in Fig. 3.4. This �eld is linearly polarized along the x-axis and mixed with the orthogonally polarized

squeezed vacuum �eld on PBS1 (Fig. 8.1).

The polarization squeezed light must be (almost) completely absorbed by the atoms in order to

produce the spin squeezed state. The typical resonant optical depth �0 for the pump �eld is in the

range of three to �ve. It is important that the relative phase between the squeezed vacuum �eld and

the coherent �eld is actively stabilized at e.g. � = 0 for squeezed Ŝz or � = ��=2 for squeezed Ŝy,
see Eq. (3.17). We cannot absorb the squeezed light in the atoms and at the same time measure the

degree of squeezing on a pair of photodetectors as required for the phase stabilization loop (see page

35). The solution to this dilemma comes from the fact that the quantum pump is only used for atomic
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excitation in about 25% of the time; this is discussed in more detail in section 8.1.3. In the remaining

75% of the time, the quantum pump is reected o� a gold coated chopper disc and onto a detection

setup used for Ŝy measurements and for the phase locking loop. The phase locking detection system is

identical to the detection system in Fig. 3.4, and it is composed of the half-wave plate, PBS2, and a pair

of photodetectors with a peaked response at 3.0MHz, (the phase locking setup is not included in Fig.

8.1). We use the same 3MHz detectors as described in section 2.4.1 except for a reduced bandwidth.

Here we use a bandwidth of about 180kHz, which lowers the noise equivalent power to nearly 25�W.

The phase locking method is described in detail on page 35. In each measurement cycle we use about

3ms for phase stabilization and 1ms for quantum excitation of the atoms. The lock-in ampli�er in the

phase locking feedback loop has a time constant of 33ms. The chopping of the phase locking signal

reduces the quality of the phase lock, and that reduces the average amount of squeezing. Moreover,

each spin squeezing experiment is carried out over several hours (up to 12h). It is diÆcult to keep the

crystal temperatures and all the alignment at the optimum over this extended period, and the typical

squeezing measured on the phase locking detectors is around -2.3dB relative to the shot noise level. The

fact that the squeezing path is di�erent for the phase locking and for excitation of atoms is found to

deteriorate the squeezing even more. This can be caused by di�erent phase shifts or absorptions for the

two polarizations in each of the two paths. The squeezing at the trap site is estimated to be �1:8�0:2dB.
This estimate is based on a squeezing measurement with a pair of detectors right after the MOT vacuum

chamber and with the phase locking system running as in the spin squeezing experiments, but without

atoms in the trap. The amount of anti-squeezing available at the trap site is estimated to be 4:5� 0:6dB

for the data presented in this chapter. This squeezing/antisqueezing is unfortunately not at the level of

the best observed squeezing/antisqueezing at 852nm in Fig. 3.5; -3.0dB and +7.9dB. However, we do

not expect an eÆcient mapping of correlations from the squeezed light onto the atoms. The theoretical

(ideal) mapping eÆciencies are shown in Fig. 4.2 and 4.3. Therefore, it will be the mapping eÆciency

and not the available squeezing in light that ultimately limits the observed amount of spin squeezing.

We note that the bandwidth of the produced squeezing and antisqueezing is given by �cav (1� �).

�cav is the OPO bandwidth of �cav=2� = 15MHz (page 33), � is the pump parameter, which in our

case is around 0.5 (section 3.4), and +=� is for squeezing/antisqueezing. We see that the squeez-

ing/antisqueezing bandwidths are much larger than the frequency at which the phase locking system

measures squeezing (3.0MHz) and the detection frequency for the atomic spin squeezing (1.9MHz, see

the following section).

8.1.3 The probe and the lock-in detection scheme

The home-made Ti:Sapphire laser generates the probe light at 917nm. The probe frequency is close to the

6P3=2 F = 5! 6D5=2 F = 6 resonance in Cs. We lock the probe frequency in the same way as described

in section 7.1. We actively stabilize the probe power by using the transmission of an optical resonator

locked on the side of a fringe. This is similar to the locking of the mode cleaning cavity described on page

34. This stabilizes the probe power over hours to better than 1%, and in addition we get a nice Gaussian

beam pro�le. The probe is linearly polarized along x; and it is propagating at an angle of about 1.5Æ

relative to the quantum pump beam. The two �elds are overlapped at the trap site. The typical probe

power for the experiments is 190-250�W with a beam diameter at the trap site of 2w0 = 3:7mm. Before

the probe polarization is analyzed, we reect 4% of the light onto a DC photodetector. This detector is

used to measure the probe transmission e��
0

, from which we can derive the optical depth �0. We use

a �=2 plate to rotate the probe polarization by 45Æ followed by a polarizing beamsplitter (PBS2, Fig.

8.1) to analyze the probe polarization. The di�erence in the photon uxes in the two output arms of

PBS2 is proportional to the probe Stokes parameter Ŝ 0y. The two photon uxes are measured by two

fast photodetectors producing photocurrents i1 and i2. Two interference �lters, with a transmission of

82% at 917nm and less than 10�5 at 852nm, are placed right in front of the two photodetectors in order

to prevent any stray light at 852nm from hitting the detectors.

The two detector photodiodes have a quantum eÆciency better than 98%, and the detectors are tuned
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Figure 8.2: Schematic picture of the lock-in technique. a) The trapping beam power versus time. b)

The power in the weak excitation �eld; out of phase and at half the frequency of the trapping beam

modulation. c) The signal from the spectrum analyzer after the electronic gate. A is the noise level for

the probe shot noise when no atoms are in the F 0 state. B is the noise level with (reduced) shot noise

plus atomic noise. The RF lock-in ampli�er measures �VRF _ A�B:

to 1.9MHz with a 100kHz bandwidth. The two currents i1 and i2 are subtracted in a hybrid junction,

and the di�erential photocurrent i�, which is proportional to Ŝ 0y , is sent to a spectrum analyzer (SA)

used for noise measurements. The SA is set at the frequency 
=2� =1.9MHz with zero frequency span.

The resolution bandwidth is set at 300kHz, and the video bandwidth is set at 10kHz. The resolution

bandwidth is larger than the detector bandwidth, and the latter sets the e�ective bandwidth in the

experiment. When the SA runs on a linear scale, it provides a video output which is proportional toq
(i�)

2


. The video output of the SA is squared electronically to obtain a signal proportional to (i�)
2




with a small contribution from the electronic noise. The noise equivalent power for this detection system

is approximately 10�W, and it is set mainly by the electronic noise of the photodetectors.

The hybrid junction has an output junction, which gives the sum of the two photocurrents. We will

use the sum junction and the resulting spectral density (i+)
2

 for comparison measurements in one of

the subsequent experiments.

The quantum pump is only turned on in half of the dark periods, as shown in Fig. 8.2. This is

done by using a second set of holes in the chopper used for chopping the trapping beams. In Fig.

8.1 we represent the chopper with two sets of holes by two choppers running out of phase and with

twice as many holes in the trapping beam chopper. In this way we have weak excitation of the atoms

in every second dark period. The probe, which is on all the time, interacts with the excited atoms

in F 0 in every second dark period, and that results in a 250Hz modulation of the transmitted probe

power. We use two digital lock-in ampli�ers (Stanford Research Systems, model SR810) with a 250Hz

reference signal to measure the di�erence in the probe signals when the weak pump is on and when

the weak pump is o�; this is illustrated in Fig. 8.2. One lock-in ampli�er (DC) is used for the signal

from the DC photodetector, and it gives a voltage proportional to 1 � e��
0

. We de�ne �VDC as the

DC lock-in voltage; �VDC = kDC(1 � e��
0

). kDC is a proportionality constant, which depends on the

probe power, the detector gain, and the lock-in ampli�er gain. We can measure kDC by comparing
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�VDC to a direct measurement of the probe absorption. Another lock-in ampli�er (RF) is used after

the squared video output of the spectrum analyzer to measure the change in the probe polarization

noise. We de�ne �VRF as the RF lock-in voltage; �VRF = kRF (1� e��
0

� �). The �rst two terms are

similar to the terms in �VDC , and they represent the reduction in shot noise due to probe absorption. �

represents any excess probe noise caused by interaction with the atoms. The parameter kRF depends on

probe power, detector gain, resolution bandwidth, and the lock-in ampli�er gain. The theory predicts

�VRF =kRF = 1�
�
e2g2�0

��1
(i�)

2


 with (i�)
2


 given by Eq. (6.38)1. We can measure kRF by applying

a passive absorption modulated at 250Hz to the probe �eld. The pump �eld is not present when this

calibration is made, which means that � = 0. Instead we reduce the probe power in every second dark

period by an amount that corresponds to the typical atomic probe absorption. This modulation of

the probe power is achieved by adding a small modulated voltage to the feedback loop that stabilizes

the probe power. Knowing �0 from �VDC and measuring �VRF makes it possible to determine kRF .

We tested that �VRF and �VDC are proportional for the passive modulation, and this shows that the

probe is indeed shot noise limited. Note that the measured lock-in voltage �VRF is insensitive to the

background noise (electronic noise).

The probe absorption and the probe polarization noise from the bright periods will not show up in

the average lock-in signals because the frequency for this modulation is 500Hz; this is twice the lock-

in reference frequency. However, the signals from the bright periods will, for a �nite averaging time,

contribute to the uctuations in the measured lock-in voltages. We use an electronic gate just before the

two lock-in ampli�ers to reduce especially the uctuations in �VRF . The gate is only open in the dark

periods, and hence any signals or uctuations from the bright periods are eliminated. Furthermore, the

gate is kept closed in approximately the �rst 250�s of the dark periods, while the magnetic �eld gradient

decays.

In the atomic noise measurements we generally average the lock-in voltages for about six minutes with

all parameters �xed. We use a time constant of three seconds with a 24dB/oct roll o� on both lock-in

ampli�ers. The lock-in voltages are monitored on a digital oscilloscope (HP 54601B), which averages

over the last eight measurements. A computer reads the oscilloscope signals once a second and stores

the data on a disk. The data are stored for about six minutes for adequate statistics.

8.2 DC absorption measurements

We can obtain useful information about the properties of the atomic sample from DC measurements.

We measure the absorption spectrum (optical depth) obtained from the DC lock-in voltage as a function

of probe detuning. We do not apply the squeezed vacuum to the pump; we merely excite the atoms with

a coherent �eld. The pump frequency is �xed at the 6S1=2 F = 4 ! 6P3=2 F = 5 resonance, while the

probe frequency is scanned across the 6P3=2 F = 5! 6D5=2 F = 6 resonance. The probe laser frequency

is locked during the measurement, but an AOM in the locking setup makes it possible to change the

locking point and hence scan the probe frequency. We derive the probe detuning from the frequency of

the RF signal driving the AOM.

We �rst consider the case of a weak probe and a weak pump �eld. Fig. 8.3a shows the measured probe

optical depth as the probe detuning is scanned across resonance (dots). We take zero detuning to be at

the frequency of maximum optical depth. The probe and pump powers are 2�W and 11�W respectively.

This corresponds to a resonant saturation parameter s00 = 7 � 10�3 for the probe and s0 = 1:7 � 10�2 for
the pump. The measured resonant optical depth is �00 = 0:083. We can calculate the theoretical optical

depth from the formula �00 = �00N
0=�w02. We assume that the atomic sample is almost unpolarized and

use Eq. (6.16) for the resonant absorption cross section. N 0 = �= is the number of atoms in the excited

state, and � is the photon ux in the (almost) completely absorbed pump �eld. We �nd the theoretical

resonant optical depth to be 0.021, and it is reduced to 0.019 when the Gaussian pro�les of the pump

1This expression for �VRF assumes that we actually look at the di�erential photocurrent. If we choose to look at the

sum i+ = i1 + i2, we should use (i+)
2

 and Eq. (6.39) instead.
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Figure 8.3: a) Dots: Probe optical depth as a function of probe detuning. Probe power: 2�W, pump

power: 11�W. The sweep time for the scan is 14sec., the time constant on the DC lock-in ampli�er is

3ms and the signal is averaged over 8 sweeps. Solid line: Voigt �t. Dotted line: theoretical curve. b)

The same as a), except for a pump power of 54�W.

and the probe beams are taken into account. We �nd that the theoretical optical depth is about four

times smaller than the measured value. We believe that this discrepancy is a result of radiation trapping

in the optically dense atomic sample. The uorescence photons are reabsorbed before they escape the

atomic cloud if the optical depth is large. Radiation trapping can be avoided if one uses a pencil shaped

atomic sample with a length much larger than the diameter. This gives a small transverse optical depth,

and the uorescence photons can escape in the transverse directions. However, our MOT produces an

almost spherical cloud of atoms. The e�ect of radiation trapping can be estimated by a simple Monte

Carlo simulation of the di�usion of photons in the optically dense gas. We use a Gaussian density pro�le

for the MOT and a Gaussian spatial mode for the pump �eld in such a simulation. The simulation

neglects saturation e�ects, and it assumes that all photons are at exact resonance. We �nd for the

typical resonant optical depths (�0) for our MOT that each pump photon will scatter about 0.9�0 times

before it escapes the atomic cloud. This corresponds roughly to an e�ective increase in the pump power

by a factor of (1 + 0:9�0). The typical pump optical depth for the experiments in this chapter is in the

range of three to �ve. Thus, the e�ectively increased pump power, due to radiation trapping, explains

the measured probe optical depth in Fig. 8.3a.

The reemitted photons are not correlated because of the random atomic decay process. Hence, the

radiation trapping results in a substantial atomic excitation caused by uncorrelated photons even for a

perfectly squeezed pump �eld. We will later in this chapter look into this undesirable e�ect of radiation

trapping in relation to spin squeezing.

The theoretical absorption lineshape for the weak probe in Double-optical resonance with a weak

pump is a Lorentzian pro�le with a linewidth set by the upper state decay rate 0, see Eq. (6.15) and
(2.4). The decay rate 0 is measured to 0=2� = 3:1� 0:1MHz in Ref. [29], although the authors note

that the true decay rate may be a little smaller. The solid line in Fig. 8.3a is the result of a �t to a

Voigt2 pro�le with a Gaussian width of 3:8� 0:1MHz and a Lorentzian width of 3:1� 0:1MHz. If we �t

the data in Fig. 8.3a with a pure Lorentzian (Gaussian) pro�le, we get a �2 value for the �t that is 2.3

(2.9) times larger than for the Voigt �t. We conclude from the Gaussian contribution to the lineshape

that some excess broadening is present in Fig. 8.3a.

We can learn more about the excess broadening by looking at the probe absorption with a stronger

2We choose a Voigt �t because it has the expected Lorentzian shape in the wings, but allows for some non-Lorentzian

broadening closer to resonance. The true pro�le is probably not an exact Voigt pro�le.
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pump �eld. In Fig. 8.3b we show the absorption measurements for a 54�W pump �eld (s0 = 0:080)

and with the rest of the parameters as in Fig. 8.3a. We observe that the increased pump power results,

as expected, in an increased resonant optical depth. Furthermore, the linewidth is increased, and the

detuning for maximum absorption is shifted to -0.9MHz. The displacement of the absorption pro�le is

explained by the Doppler shift induced by acceleration of the atoms. This acceleration is caused by photon

absorption from the unidirectional pump �eld. The atoms are accelerated during each measurement cycle

of 1ms (Fig. 8.2). The acceleration, and hence the average Doppler shift, depends on the photon ux in

the pump �eld. The observed displacement is consistent with a simple estimate of the total number of

photons (or photon momenta) absorbed by a single atom during 1ms.

A Voigt �t to the data in Fig. 8.3b gives a Lorentzian width of 2:9� 0:1MHz and a Gaussian width

of 6:0�0:1MHz (solid line). The linewidth increase, as compared to Fig. 8.3b, has several contributions.

The acceleration during the 1ms measurement cycle results in some broadening of the line. The atomic

velocity changes in time, and in the measurement we e�ectively add the contributions corresponding

to the velocities (or Doppler shifts) at di�erent times within the 1ms measurement cycle. In addition,

the e�ective intensity in the pump �eld approaches the saturation intensity when the e�ect of radiation

trapping is included. We see from Eq. (2.4) that the pro�le becomes non-Lorentzian at small probe

detunings when s0 approaches unity.

We can write the theoretical optical depth spectrum including saturation and the average over atomic

velocities as

�0 (�0) =
2�l

�as0

Z a s0

0

�i

�
�+

917

852
x;�0 + x; s0

�
dx (8.1)

�i (�;�
0; s0) is the imaginary part of the probe susceptibility in double-optical resonance for the pump

detuning �, probe detuning �0, and a resonant pump saturation parameter s0. The explicit expression

for �i is given in Eq. (2.4). The ratio 917=852 is the ratio between the Doppler shifts on the pump

and probe transition. The integral over x includes the changing velocity (Doppler shift) during the

measurement. We assume that the maximum Doppler shift is linear in the pump power. This allows us

to write the upper limit as as0, with a as a constant. We take s0 to be the same for all atoms, whereby we

neglect the attenuation of the pump beam and the transverse beam pro�le. We use the pump detuning

� that gives the maximum probe absorption for the 11�W pump in accordance with the measurements.

We use s0 values that are six times larger than for the pump �eld alone to include the e�ect of radiation

trapping. We �nd a ' 2 if we require a displacement of the absorption pro�le by 0.9MHz when we go

from s0 = 6�0:017 to s0 = 6�0:08. The calculated optical depth spectra �0 (�0) for a = 2 and s0 = 0:10

(s0 = 0:48) are shown in Fig. 8.3a (8.3b) as dotted lines, and they are scaled in amplitude to match the

measurements.

A comparison of the measurements and the theoretical spectra in Fig. 8.3 shows that the measured

linewidths cannot be fully explained by pump saturation, radiation trapping, and acceleration. If the

theoretical spectra in Fig. 8.3a and 8.3b are further averaged over a Gaussian distribution with a width

of 3.8MHz, they do coincide with the actual measurements. The broadening e�ects discussed so far

have all been homogeneous, i.e. all atoms have the same resonance frequency at a given time. It is not

unlikely that inhomogeneous contributions, like the thermal Doppler broadening, will have a signi�cant

contribution to the linewidth. The temperature of the usual "large" MOT gives relatively small Doppler

broadening (chapter 2). However, the present situation is somewhat di�erent with the chopped trapping

beams and the unidirectional pump �eld in the dark periods. In addition, the non-uniform pump intensity

results in di�erent accelerations of atoms at di�erent positions, and this also adds to the inhomogeneous

line broadening.

In most of the spin noise experiments presented in the following sections, we use a probe power of

about 190�W. This corresponds to a resonant saturation parameter of s00 = 0:69. The stronger probe

is required for an adequate signal-to-noise ratio in the atomic noise experiments (see page 73). The

drawback of the stronger probe is additional modi�cations of the lineshape. In Fig. 8.4 we plot optical

depth measurements for 190�W probe power and 46�W pump power. The data are taken together with
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Figure 8.4: Probe optical depth versus detuning. The three di�erent symbols represent data from three

di�erent days. The solid line is a Voigt �t with a Lorentzian linewidth of 4.6MHz and a Gaussian

linewidth of 5.4MHz.

the coherent excitation spin noise data presented in the following section. The three di�erent symbols in

Fig. 8.4 correspond to data from three di�erent days. The data are averaged measurements at di�erent

�xed detunings, i.e. we do not scan the probe frequency in these measurements. The absorption data for

each day is scaled to the average of the three days. The relative change in amplitudes by this scaling is

less than 12%. The data �t a Voigt pro�le (solid line) with a Gaussian width of 5.4MHz and a Lorentzian

width of 4.6MHz. The increase in the Lorentzian component is expected for the larger probe power. The

power broadened absorption linewidth for a two-level atom is given by 0
p
1 + 2s00, with 

0 as the upper
state decay rate. Although the two-level result is not exact in the double-optical resonance situation, it

still explains the origin for the increase in the Lorentzian component in Fig. 8.4.

The theory for the spin noise spectra in chapter 4 and 6 is developed in the limit of weak pump and

probe �elds and with a possible inhomogeneous broadening. It is diÆcult to incorporate all the e�ects

that modify the DC absorption spectrum in Fig. 8.4 into the spin noise theory. We will instead use the

lineshapes determined by the functions fD2, ~D2, fL2, and ~L2 from chapter 6, but with the Lorentzian width

adjusted to the value for the Lorentzian width in the �t in Fig. 8.4. For the inhomogeneous broadening

we use a simple Gaussian distribution with the Gaussian width from the �t in Fig. 8.4. Although this

is a somewhat heuristic inclusion of the experimental imperfections, it does give a adequate description

of the spin noise measurements in the following sections.

8.3 Atomic spin noise - coherent excitation

We now return to the atomic spin noise in the case of coherent light excitation. This subject was

investigated in the previous chapter, but only for a strongly saturating pump �eld. In this section we

consider a non-saturating pump �eld, and we look into the details of the spectrum of atomic noise versus

probe detuning.

The relevant quantity in the measurements of atomic spin noise is �, which is de�ned as the atomic

noise transferred from the atoms onto the probe and normalized to the shot noise of the probe in the

absence of atoms. The theoretical expression for � is for i� measurements derived from Eq. (6.38)
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Figure 8.5: Normalized atomic noise �e2�
0

versus probe optical depth for resonant probe and pump

�elds. Probe saturation parameter s00 = 0:40. The solid line is a linear �t to with a slope of 0:97� 0:04.

The theoretical slope for the quantum noise of uncorrelated atoms is one. By the units "dB" we mean

a plot of 10 log�e2�
0

versus 10 log�0.
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 in Eq. (6.38) do not contribute for coherent

excitation. The spectral densities (F̂ 0
z)
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uc;
 and (F̂ 0

xF̂
0
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yF̂
0
x)
2
uc;
 are calculated from Eq. (4.31) and

(4.50) with Rz;y (
) = 1 for the coherent pump �eld. With these results inserted into Eq. (8.2) together

with 
=2� = 1:9MHz and =2� = 5:2MHz, we �nd

� = �00;unpole
�2�0s00

0



�
0:20fD2 (
;�0) + 0:021fL2 (
;�0)

�
(8.3)

The current setup is di�erent and the pump power is much smaller than in chapter 7. The �rst

thing to check with the new setup is whether it is possible to see the atomic quantum noise. The

atomic quantum noise for uncorrelated atoms is for small �0 linear in the number of probed atoms and

hence linear in �0. On the other hand, classical or technical noise is found to produce noise quadratic

in the number of probed atoms. In the same way as in chapter 7, we identify the quantum noise of

uncorrelated atoms by a linear dependence on �0. The optical depth is adjusted by varying the power

in the repumping beam and thereby the number of trapped atoms. The optical depth of the pump

�eld can of course not be sustained at a high level in this experiment, but this is not a problem for the

coherent excitation. In Fig. 8.5 we plot the measurements of �e2�
0

= (1 � e��
0

��VRF =kRF )e
2�0 as a

function of �0 = � ln (1��VDC=kDC). We use the same logarithmic scales (dB) as in Fig. 7.4a. The

measurements are carried out close to resonance, and each data point is averaged for about six minutes
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Figure 8.6: Measured atomic noise � as a function of probe detuning. Measurements from di�erent days

have di�erent symbols. a) Atomic noise when the photocurrents are added (i+). The solid line is a �t

to afL2 (
;�0) e�2�
0

with a as a free parameter. b) Atomic noise when the photocurrents are subtracted

(i�). The dotted line is a �t to afL2 (
;�0) e�2�
0

with a as a free parameter. The solid line is a �t to

[bfD2 (
;�) + cfL2 (
;�)]e�2�0 with b and c as free parameters.
as described in section 8.1.3. The probe power for this experiment is 110�W and the pump power is

50�W. In this particular measurement we use a somewhat larger pump diameter (2w = 4:7mm) than in

the other experiments in this chapter. The solid line in Fig. 8.5 is linear �t with a slope of 0:97� 0:04.

The �t con�rms that the atomic noise is linear in the number of probed atoms, and we conclude that the

quantum spin noise of uncorrelated atoms can be observed in the dark periods with a weak unidirectional

pump beam.

In the next experiment we maximize the number of trapped atoms and look at the atomic noise as a

function of probe detuning. We �rst look at the measured noise when the two photocurrents i1 and i2
are added. We use the subscript + on � for the atomic noise measured in i+. We �nd the theoretical

expression for �+ from Eq. (6.39)

�+ =
(i+)

2
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We plot the measured atomic noise �+ as a function of probe detuning �0 in Fig. 8.6a. Each data point

is obtained by averaging the two lock-in voltages �VDC and �VRF for about six minutes while keeping

all parameters constant. This long averaging time is important because the atomic noise contribution

is quite small compared to the shot noise of the probe. The di�erent symbols in Fig. 8.6a correspond

to measurements from di�erent days (same symbols/days as in Fig. 8.4). We choose to make the same

scaling of the data sets in Fig. 8.6a as in Fig. 8.4 to compensate for the di�erent resonant optical depths

on the di�erent days. This scaling is valid because the atomic noise is (almost) linear in �0 at small �0.
The probe and pump parameters for the data in Fig. 8.4 and in Fig. 8.6 are identical. We have tested

that the noise observed in the sum photocurrent i+ is linear in the number of atoms; i.e. we do observe

the atomic quantum noise in i+.

The solid line in Fig. 8.6a is a �t to the theoretical expression afL2 (
;�0) e�2�
0

from Eq. (8.4)

with the amplitude a as only the free parameter and e�2�
0

from the Voigt �t in Fig. 8.4. The functionfL2 (
;�0) depends on three parameters besides the probe detuning �0, see Eq. (6.20) and (6.37).
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These parameters are the detection frequency 
, the "Lorentzian" linewidth 0 and the inhomogeneous

linewidth Dop. We use the detection frequency 
=2� = 1:9MHz. We include the saturation e�ects

and the possible inhomogeneous broadening by using the Lorentzian and Gaussian widths from the �t

in Fig. 8.4 for the parameters 0 and Dop. Hence, we use a Gaussian inhomogeneous broadening with

Dop=2� = 5:4MHz and a "Lorentzian" width of 0=2� = 4:6MHz in fL2 (
;�0).

We see in Fig. 8.6a that the measured noise spectrum is well described by the function fL2 (
;�0).
The �2 value for the �t is 1:4 � 10�4. If we instead use a model with 
 = 0, then the �2 value increases

by a factor of 2.5. If the "correlated noise" expression a~L2 (
;�0) e�2a
0

is used, we get an increase in �2

by a factor of 2.3.

We now return to the noise that we observe when the two photocurrents i1 and i2 are subtracted.

In Fig. 8.6b we plot the atomic noise � for the di�erential photocurrent (i�) measurements. The three
di�erent symbols correspond to the symbols in Fig. 8.4, and we have made the same scaling of the

atomic noise data as in Fig. 8.4 and 8.6a. The dotted line in Fig. 8.6b is a �t to the same expression,

afL2 (
;�0) e�2�
0

, as we used in Fig. 8.6a. The �t is clearly not very good. We do, of course, not expect a

good �t according to the theoretical expression in Eq. (8.3). The width of the noise spectrum measured

in i� is clearly larger than for the spectrum measured in i+. The solid line in Fig. 8.6b is a �t to the

theoretical lineshape [bfD2 (
;�0) + cfL2 (
;�0)]e�2�
0

with two free parameters, b and c. This �t gives a

�2 value of 2:0 � 10�4 with b = 3:4 � 10�3 and c = 3:2 � 10�3. The dotted curve gives a 3.4 times larger �2

value. These data show, in agreement with the theory, that a resonant (Lorentzian like) as well as an

o�-resonant (dispersive like) noise contribution is present when we look at the i� noise.

Two of the measurements in Fig. 8.6b (a triangle at 1.8MHz and a circle at -4.8MHz) seem to deviate

substantially more from the solid line than the typical scatter. These deviations may be caused by a

change in the experimental conditions due to some external perturbation; e.g. someone is slamming the

door next to the lab with in an unhappy laser as the result. With the very long integration time, we

become rather sensitive to such perturbations.

We can compare the parameters b and c from the �t to a theoretical estimate from Eq. (8.3). In this

estimate we have to include the propagation losses in the probe path after the probe-atom interaction.

The overall losses are measured to be around 25% (4% on the beamsplitter after the MOT, 2% on

the detector quantum eÆciency, 18% on the 917nm interference �lters and 3% on imperfect mirror

and window coatings). These losses reduce the measured atomic noise � by 25% since the measured

atomic noise is quadratic in probe power whereas the shot noise is linear in probe power. After inserting

�00;unpol ' �00 = 0:12, s00 = 0:69, and 0= = 3:1=5:2 into Eq. (8.3) and including the 25% probe

losses, we obtain the theoretical values btheory = 7:4 � 10�3 and ctheory = 7:7 � 10�4. An individual

comparison of btheory and ctheory to the experimental b and c values shows an acceptable agreement with

b=btheory ' 0:5 and c=ctheory ' 4. The discrepancy can be caused by experimental imperfections such as

pump and probe saturation e�ects, the inuence on �0 from excess broadening, comparable probe and

pump beam diameters, possible homogeneous broadening, and maybe the theoretical assumption about

an unpolarized ground state is not truly ful�lled. If we instead look at the ratios b=c and btheory=ctheory,

we see a larger di�erence between theory and experiment. We do not know the origin for this discrepancy,

but it is possible that the experimental imperfections have a di�erent e�ect on the resonant (fL2) and
the o�-resonant (fD2) contributions. It is also possible that other noise sources, besides the uctuations

in the spin of the intermediate state, contribute at resonance. This could for example be the e�ect of

spontaneous decay from the 6D5=2F = 6 state, which may become important at resonance for the actual

probe power. The noise induced by spontaneous emission into the spatial mode of the probe beam is

investigated in Ref. [101].
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8.4 Atomic spin noise - excitation with classical noise

Before we carry out the experiments with squeezed or antisqueezed quantum pump, we look at the change

in the atomic spin noise spectrum when a pump �eld with huge classical noise is used for excitation.

These classical noise measurements can be used to estimate the e�ect of antisqueezed/squeezed light

excitation. We can model the noise properties of antisqueezed light (noisy Ŝy or Ŝz) by using a very

weak classical �eld with strong amplitude modulation in place of the squeezed vacuum �eld. The weak

noisy �eld is mixed with the strong coherent �eld on PBS1 (Fig. 8.1) in the same way as the usual

mixing of the squeezed vacuum and the coherent component. We can write the classical �eld after PBS1

as

exEcoh cos (!0t) + eyEcl cos (!0t+ �) f (t) (8.5)

Ecoh and Ecl are the amplitudes of the strong coherent �eld and the weak modulated �eld. The two

�elds are mixed in orthogonal linear polarizations. We use the subscript cl for classical modulation.

f (t) is a function, which describes the amplitude modulation of the weak �eld. We can easily calculate

the classical contribution to the spectral density of the Stokes parameters Ŝy and Ŝz. After adding the

coherent state shot noise, we �nd �
Ŝy
�2


=

�

4
Rcl (
) cos

2 � +
�

4
(8.6)�

Ŝz
�2


=

�

4
Rcl (
) sin

2 � +
�

4

Rcl (
) = �cl (f)
2



� and �cl are the photon uxes in the coherent �eld and in the weak modulated �eld (�cl � �).

Equation (8.6) includes the coherent state shot noise given by �=4. We note that the classical excess

noise is very similar to the antisqueezed excess noise in Eq. (3.17). The main di�erence between the

classically induced noise and polarization squeezing is that the classical noise contribution is always

positive. We cannot get below the shot noise level without quantum correlations, but we can still use

the classical noise to model the e�ect of antisqueezing.

In this section we are interested in the excess atomic spin noise induced by the excess noise in the

excitation �eld Stokes parameters. We de�ne �cl as the atomic spin noise with the classically modulated

weak beam present, and �coh as the atomic spin noise for coherent excitation, i.e. with the weak noisy

�eld blocked. The theoretical expression for the di�erence �cl � �coh is derived from Eq. (4.31), (4.50)

and (6.38)

�cl � �coh = e�2�
0

s00�
0
0;unpol

9

128

0

2 +
2
(8.7)

�
�
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)� 1] ~D2 (
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25
[Ry (
)� 1]~L2 (
;�0)

�
As usual, we de�ne Rz;y (
) as the ratio of the spectral density (Ŝz;y)2
 to the spectral density for a

coherent state pump �eld (�=4).

In practice, we generate the noisy excitation �eld in the following way. An AOM is inserted in the

path of a weak 852nm coherent �eld. We can modulate the intensity in the zeroth order from the AOM

by amplitude modulation of the RF signal that drives the AOM. For this purpose we use a function

generator (HAMEG 1831-2) that has a "white noise" output with a 10MHz bandwidth. The RF signal,

which drives the AOM, is amplitude modulated by the white noise signal from the function generator

by means of an electronic attenuator. We block the blue beam pumping the OPO and instead we inject

the weak zeroth order from the AOM into the OPO. This weak �eld is transmitted through the OPO

output coupler, and it emerges in the same spatial mode as the squeezed vacuum output. The average

power in the weak noisy beam after the OPO is around 5nW.
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With a strong modulation it is possible to achieve up to 20dB of excess noise relative to the shot noise

level. Ideally, when the noise in one Stokes component (e.g. Ŝy) is maximized (� = 0), we have only shot

noise in the other Stokes component (Ŝz). However, this is not possible to achieve in the experiment

since the phase lock is not ideal. We use the same phase locking setup as described in section 8.1.2 for the

polarization squeezed light. The detectors in the phase locking setup are arranged to measure the noise

in Ŝy . In the experiment we typically have 19-20dB excess noise in Ŝy when we lock to the maximum

noise (� = 0) and 3-4dB excess noise in Ŝy when we lock to the minimum noise (� = �=2). This is when

the phase � is stabilized without chopping the optical �elds. When the �elds (and the phase locking

signal) are chopped, we �nd that the noise in Ŝy drops about 1dB when we lock at � = 0. This is a

relatively small change in the Ŝy noise, but it results in a huge change in the "quiet" Ŝz component. A
change in the Ŝy noise from 19.5dB to 18.5dB above the shot noise level results in about 13dB of excess

noise in the quiet Ŝz because the sum (Ŝy)2
 + (Ŝz)2
 is a constant according to Eq. (8.6).

In the experiment, we have 46�W in the resonant 852nm pump and 190�W in the 917nm probe. We

measure the two lock-in voltages �VDC and �VRF while the probe frequency is scanned slowly across

the resonance. The measured voltage versus frequency spectra are typically averaged over 50 individual

frequency scans on the digital oscilloscope. The scan rate for each scan is 4.5MHz/s, and we use a

time constant of 30ms on the lock-in ampli�ers. From the measured voltages we calculate the atomic

spin noise � as a function of probe detuning. A noise measurement with classical noise is followed by

a measurement with the weak noisy beam blocked. The di�erence between the two measured spectra

gives the excess noise �cl��coh as a function of probe detuning. In Fig. 8.7 we plot the measured excess

atomic noise �cl � �coh for the two phases � = �=2 (solid line) and � = 0 (dotted line).

We observe for � = �=2 that the excess noise is peaked o�-resonance at around �5:0MHz. This is

exactly what we expect from Eq. (8.7). Excess noise in Ŝz leads to excess noise in F̂ 0
z , which we measure

with an o�-resonant probe. The � = 0 spectrum has in general a smaller amplitude than the � = �=2

spectrum. However, the �gure indicates that the noise on resonance is comparable for � = 0 and for

� = �=2. This is again consistent with the theory; noisy Ŝy gives noisy F̂ 0
xF̂

0
y + F̂ 0

yF̂
0
x, which is seen with

a resonant probe. The amount of o�-resonant noise in the � = 0 measurement is clearly too large for

the pro�le expected from Eq. (8.7), ~L2 (
;�0) e�2�
0

. This can be explained by the imperfect phase lock.

We estimated above that the imperfect phase lock at � = 0 results in about 13dB of excess noise in Ŝz .
This corresponds to about 28% of the Ŝz noise at � = �=2. This is in agreement with Fig. 8.7, where

the o�-resonant excess noise is reduced to about 25-30% when we go from � = �=2 to � = 0.

The smooth solid line in Fig. 8.7 is a �t to the � = �=2 data with the expression d[Rz (
) �
1] ~D2 (
;�0) e�2�

0

. We use the same parameters in ~D2 (
;�0) as we used for fL2 (
;�0) in the previous

section. d is the only free parameter, and we �nd d = (4:6�0:7)�10�4 forRz (
) = 71�9, (18:5dB�0:5dB).
We note that the measured spectrum for � = �=2 and the �tted curve agree quite well. The fact that

the data in Fig. 8.7 do not go all the way to zero at zero detuning can be explained by frequency drifts

during the averaging of the many scans, F̂ 0
x
F̂ 0
y
+F̂ 0

y
F̂ 0
x
noise from the imperfect phase lock, and broadening

e�ects that are not included in ~D2 (
;�0). The small asymmetry in the measured data can also be a

result of the imperfect phase lock. The uctuations in Ŝz and Ŝy are correlated at phases between � = 0

and � = �=2. This results in correlated uctuations in the atomic variables F̂ 0
z
and F̂ 0

x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x
, and

according to page 73 that can explain an asymmetric lineshape. The excitation �eld either goes to the

phase locking setup or to the atomic sample. If birefringence is present in one of the two paths, we may

have � = 0 at the phase locking setup and � 6= 0 at the atomic sample and hence correlations between

the uctuations in F̂ 0
z and F̂

0
xF̂

0
y + F̂ 0

yF̂
0
x.

If we subtract the estimated contribution from F̂ 0
z
noise due to the imperfect phase lock from the

� = 0 data in Fig. 8.7, we get a noise spectrum that is peaked at resonance. The theoretical pro�le for

this spectrum is, according to Eq. (8.7), given by the function e[Ry (
)�1]~L2 (
;�0) e�2�
0

. If we adjust

the parameter e to �t the experimental data, we �nd e = (4:0� 1:1) � 10�5 for Ry (
) = 71� 9.

We can compare the experimental values for d and e with the theoretical values obtained from

Eq. (8.7). With the experimental parameters s00 = 0:69, �00;unpol ' �00 = 0:11, 0=2� = 3:1MHz,
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Figure 8.7: Measured atomic excess noise �cl � �coh as a function of probe detuning. The solid line is

measured with � = �=2 (noisy Ŝz). The smooth solid line is a �t to the expression d ~D2 (
;�0) e�2�
0

with d as the free parameter. The dotted line is measured with � = 0 (noisy Ŝy).

=2� = 5:2MHz, 
=2� = 1:9MHz, and inclusion of the 25% losses in the probe path after the atomic

sample, we �nd dtheory = 2:1 � 10�3 and etheory = 8:4 � 10�5. In general we �nd that the observed

amount of excess noise is smaller than the theoretically predicted excess noise with d=dtheory = 0:22 and

e=etheory = 0:5. This indicates that our mapping of the classical correlations in the pump �eld onto

the atomic sample is less eÆcient than predicted. The reason for that can be the previously mentioned

experimental imperfections, but it is likely that the essential cause is radiation trapping of the pump

photons. We will discuss this e�ect in more detail in section 8.7. The experimental data as well as

the theoretical estimates show that we are much more sensitive to o�-resonant excess noise due to F̂ 0
z

uctuations than to the resonant excess noise caused by uctuations in F̂ 0
xF̂

0
y + F̂ 0

yF̂
0
x.

It is convenient to introduce the experimental mapping-readout eÆciencies similar to the theoretical

mapping eÆciencies in chapter 4, Eq. (4.32) and (4.51). We de�ne ~�z and ~�y through

�cl =
1

~�z + 1
(1 + ~�zRz (
))�coh (8.8)

�cl =
1

~�y + 1
(1 + ~�yRy (
))�coh

We use a tilde on the experimental mapping-readout eÆciencies to distinguish them from the theoretical

mapping eÆciencies. The experimental eÆciencies include the eÆciency of mapping the correlations onto

the atoms as well as the eÆciency for the readout of the atomic correlations. For a given eÆciency (~�z
or ~�y), we measure the atomic noise at the probe detuning that maximizes j�cl � �cohj. Thus, for ~�z we
measure the atomic noise around �0=2� ' 5:0MHz and for ~�y we measure at �0 = 0. From the graphs

in Fig. 8.7 together with the measurements of �coh (similar to Fig. 8.6b), we derive ~�z = 6%� 2% and

~�y = 0:7% � 0:5%. These mapping-readout eÆciencies are much smaller than the theoretical mapping

eÆciencies from chapter 4. This can be explained by the readout method and the e�ect of radiation

trapping, which we discuss in section 8.7. For now we will just use the eÆciencies to estimate the degree

of atomic spin squeezing and spin antisqueezing for a polarization squeezed excitation �eld.
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8.5 Atomic spin noise - excitation with nonclassical light

We are now ready to shine polarization squeezed light onto our atoms and see how they react. The

theory for mapping quantum correlations in light onto atoms together with the theory for the readout

of the produced atomic correlations show that the best mapping-readout eÆciency is obtained for o�-

resonant F̂ 0
z measurements. This is con�rmed by the experimental results with classical modulation in

the previous section. In this section we will therefore concentrate on squeezing/antisqueezing of the

uctuations in the collective atomic spin component F̂ 0
z and a subsequent readout with an o�-resonant

probe. The estimated degree of antisqueezing/squeezing available at the trap site is +4:5� 0:6dB and

�1:8� 0:2dB relative to the shot noise level. On a linear scale that converts into Rz (
) = 2:8� 0:4 for

� = �=2 and Rz (
) = 0:66 � 0:03 for � = 0. We use the notation �sq for the atomic noise measured

with squeezed light excitation. We de�ne the observed degree of spin squeezing as � = (�sq��coh)=�coh.
If � is negative, we have spin squeezing. For positive � we have spin antisqueezing. In the case of spin

squeezing, � is equivalent to the relative spin noise reduction (see Fig. 4.2b and Fig. 4.3b) except for a

change in sign3. We can estimate the degree of observed F̂ 0
z
spin squeezing if we use the mapping-readout

eÆciency from the last section, ~�z = 6%� 2%, and Eq. (8.8) with �sq instead of �cl. We �nd

� =
[Rz (
)� 1]

~��1z + 1
(8.9)

Inserting the values for ~�z and Rz (
) gives � = 10%� 4% for � = �=2 and � = �1:9%� 0:6% for � = 0.

The typical amount of spin noise for coherent excitation is from Fig. 8.6b found to be �coh ' 0:014 at

�0=2� = �5:0MHz. We �nd for � = 0 that the expected atomic noise reduction is �sq��coh ' �3 �10�4

in units of the probe shot noise. This is an extremely small signal compared to the overall noise level,

which is predominated by the probe shot noise. Instead of going directly for the demonstration of atomic

spin squeezing, we start with the spin antisqueezing measured o� resonance with � = �=2. The signal-to-

noise ratio (S/N) in the spin squeezing/antisqueezing measurement is proportional to j�j. We estimate

that the S/N should be about 5 times larger for antisqueezing in F̂ 0
z
than for F̂ 0

z
squeezing. However,

in the actual experiment it turns out to be more like a 10 times di�erence. Thus, we can do the spin

antisqueezing measurement with about two orders of magnitude shorter integration time than the spin

squeezing measurement for the same S/N.

8.5.1 Spin antisqueezing - � = �=2

We apply the polarization squeezed excitation �eld by mixing the coherent component and the squeezed

vacuum �eld in orthogonal polarizations on PBS1 (Fig. 8.1). The relative phase between the two �elds

is actively stabilized at � = �=2, and the Stokes component Ŝz for the excitation �eld has a noise level

about 4:5dB above the standard quantum limit (shot noise). The quantum correlations between the

atomic spins induced by absorption of the nonclassical light are expected to give excess noise in the

excited state collective atomic spin variable F̂ 0
z
. This is accompanied by a small reduction below the

standard quantum limit in the noise of the spin variable F̂ 0
xF̂

0
y + F̂ 0

yF̂
0
x. Consequently, we expect to

measure excess atomic noise (ksq � �coh > 0) with the o�-resonant probe

We use a 46�W nonclassical pump �eld and a 190�W probe �eld. The measurements for � = �=2

are all from the same day as the data with circle symbols in Fig. 8.4 and Fig. 8.6b. To obtain a single

(individual) spin noise measurement we �rst average the two lock-in voltages �VRF and �VDC for six

minutes with all parameters �xed and with the squeezed vacuum present. This measurement is followed

by six minutes of averaging with the squeezed vacuum path blocked and hence coherent excitation. From

the lock-in voltages we calculate the atomic noise with nonclassical excitation (�sq) and the atomic noise

with coherent excitation (�coh). The circles in Fig. 8.6b are the �coh measurements scaled by the factor

0.89, and the circles in Fig. 8.4 are the corresponding optical depths scaled by the same factor 0.89.

3This de�nition of � is analogous to the � de�nition in chapter 5.
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Figure 8.8: Atomic excess noise for nonclassical excitation. a) � = �=2 which results in antisqueezed

F̂ 0
z
uctuations measured o� resonance. Circles: the measurements. Dashed and solid lines: predicted

line shape, see the text for the details. Dotted line at zero: the standard quantum limit. Note that

the vertical scale is expanded by a factor of 100. b) � = 0 with squeezed F̂ 0
z uctuations measured o�

resonance. The "excess noise" is now negative o� resonance. Dots: measurements. Solid line: predicted

spectrum. Dotted line: the standard quantum limit. Note that the antisqueezed F̂ 0
xF̂

0
y+F̂

0
yF̂

0
x uctuations

at resonance become signi�cant at � = 0.

The reason for this scaling is explained in section 8.2. The results for �sq � �coh averaged over 1 to 4

individual measurements are shown in Fig. 8.8a for di�erent probe detunings. The error bars in the

�gure are based on the statistical uncertainty in the measurements of �sq and �coh, and they do not

include any uncertainty or drift in the degree of antisqueezing in the excitation �eld.

Equation (8.7) is also valid for the nonclassical pump �eld if we substitute �sq for �cl. We have

�sq � �coh =
n
d[Rz (
)� 1] ~D2 (
;�0) + e[Ry (
)� 1]~L2 (
;�0)

o
e�2�

0

(8.10)

The parameters d and e can be derived from the theoretical expression in Eq. (8.7), but we found in

section 8.4 that the experimental mapping-readout eÆciencies are signi�cantly smaller than the theo-

retical values. We will therefore use the experimental parameters from the data in Fig. 8.7 for d and

e. The dashed line in Fig. 8.8a is the expected atomic noise level from Eq. (8.10) with d = 4:6 � 10�4,
e = 4 � 10�5, Ry (
) = 0:66, and Rz (
) = 2:8. The functions ~D2 (
;�0) and ~L2 (
;�0) are the same
as we used in section 8.4. The dashed line in Fig. 8.1a has the same double peaked structure as the

actual measurements, but the amplitude of the graph seems to be too small. This can be explained by

the relatively large uncertainty in d and Rz (
). The solid line in Fig. 8.8a is also from Eq. (8.10), but

now with d = 5:3 � 10�4 and Rz (
) = 3:2: We note that the predicted noise reduction (spin squeezing)

at zero detuning is indeed very small, and it is limited to a small frequency interval. The small line

broadening from the atomic acceleration during the 1ms measurement cycle will be enough to "wash

out" the resonant noise reduction4.

We can derive the mapping-readout eÆciency ~�z;nc for nonclassical excitation in the same way as we

derived ~�z in the previous section. We �nd ~�z;nc = 8% � 2%. This eÆciency is in agreement with the

measured mapping-readout eÆciency for classical noise in the excitation �eld, ~�z = 6%� 2%.

4The acceleration broadening is an homogeneous e�ect, where all atoms have same resonance frequency. However, this

resonance frequency is changing during the 1ms measurement cycle, and this leads to line broadening. This homogeneous

broadening is not included in the spectra described by ~D2 and ~L2.
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8.5.2 Spin squeezing - � = 0

With the phase �xed at � = 0, we now expect the o�-resonant atomic noise �sq to go below the standard

quantum limit set by �coh. The experimental data for �sq��coh is plotted in Fig. 8.8b. Each o�-resonant
data point in Fig. 8.8b corresponds to one run. Each run lasts between 4 and 12 hours and includes

between 13 and 45 individual measurements. The total number of o�-resonant individual measurements

is 263. An individual measurement consists again of six minutes averaging of the lock-in voltages while

nonclassical excitation is applied followed by six minutes of averaging with the squeezed vacuum path

blocked (coherent excitation). The error bars in Fig. 8.8b are given by the statistical uncertainty in

�sq � �coh for each run. The dotted line at �sq � �coh = 0 represents the standard quantum limit.

Measurements below the standard quantum limit require spin squeezed atoms. The probe power is in

this experiment increased to 235�W, except for the run at 6.2MHz, which is taken with 190�W. The

pump power is at the usual 46�W. In about 1/3 of the measurements we use a probe polarized along the

y-axis instead of polarized along x. We do not see any dependence on the probe polarization. This is in

agreement with the theory; we are not sensitive to the sign of the probe Stokes parameter �S 0in
x

, only the

amplitude is important. Three runs are taken at zero detuning including one run with only 9 individual

measurements and consequently an uncertain average. We are not that interested in the resonant excess

noise, and we average all the individual resonant measurements into just one data point in Fig. 8.8b.

The solid line in Fig. 8.8b is the expected atomic noise level from Eq. (8.10) with d = 5:7 � 10�4,
e = 5 � 10�5, Rz (
) = 0:66, and Ry (
) = 2:8. We have taken into account that most of the data in Fig.

8.8b are taken with 24% more probe power than the corresponding measurements with classical noise in

Fig. 8.7. The atomic noise � is linear in s00, and we include the larger probe power by increasing the d

and e parameters by 24%.

The experimental data in Fig. 8.8b show on average a noise reduction (spin squeezing) o� reso-

nance and a noise increase on resonance, just as we expected. The resonant noise increase is smaller

than predicted, but that can be explained by the uncertainty in the e parameter and in the degree of

antisqueezing, Ry (
). Nevertheless, the resonant excess noise is comparable to the o�-resonant noise

reduction because the degree of antisqueezing in Ŝy is "larger" than the degree of squeezing in Ŝz. If we
neglect the positive resonant contribution in the predicted spectrum (the solid line in Fig. 8.8b), we get

a 33% increase in the predicted o�-resonant noise reduction. Thus, the resonant excess noise does have

some inuence on the observed spin squeezing, although the actual measurement at resonance indicates

more like a 15% e�ect.

In the following section we discuss the statistics of the o�-resonant spin squeezing data in more detail.

8.6 Analysis of the spin squeezing data

The spin squeezing measurements presented in Fig. 8.8b do indicate that the atomic noise have been

reduced beyond the standard quantum limit. However, a more quantitative analysis of the data is required

before we conclude that a macroscopic spin squeezed state of entangled atoms have been generated and

observed. Each data point in Fig. 8.8b is not far below the standard quantum limit. It is therefore

relevant to ask the question: "What is the probability for observing a data set as in Fig. 8.8b if the

true mean value is at the standard quantum limit or above?". In this section we will try to answer this

question.

It is convenient to use the observed degree of spin squeezing � = (�sq � �coh) =�coh, which normalizes

the observed spin noise reduction to the spin noise for coherent excitation. This normalization has the

advantage that measurements at slightly di�erent probe optical depth, probe frequency, or probe power

can be compared since both the numerator and the denominator in the � de�nition have (almost) the same

dependencies on these parameters. Thus, we expect the distributions of the individual � measurements

from the 11 o�-resonant runs to be described by normal distributions with almost identical mean values.

The variances of the distributions for the di�erent runs do not have to be identical; in fact, a Bartlett test

[105] shows that the variances are most likely not identical. In section 8.7 we show that the statistical
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Figure 8.9: The average observed degree of spin squeezing � from each run. The error bars represent the

statistical errors within each run. The numbers above the measurements show the number of individual

� measurement within the actual run. The solid line is the average �� with the 1� con�dence interval

represented by the dotted lines. The dashed line at � = 0 sets the standard quantum limit.

error on the � measurements can be explained by the fundamental quantum noise (shot noise) of the

probe that is used to read out the atomic uctuations. In section 8.7 we also explain why di�erent

runs have di�erent variances. Figure 8.9 shows the average degree of spin squeezing � together with its

statistical error for each o�-resonant run.

We can combine the 11 measurements in Fig. 8.9 into a single number by taking a weighted average

with the square of the inverse errors as the weights [106].

�� = S2
11X
i=1

s�2
i
�i (8.11)

S�2 =
11X
i=1

s�2
i

�i is the estimated mean value for � from run number i, and si is the corresponding estimate of the

standard error. �� is the estimated mean value of the combined 11 runs, and S is the estimated standard

error for ��. We �nd for the data in Fig. 8.9 that �� = �1:16%� 0:32%. Hence, the 263 spin squeezing

measurements give an average observed degree of spin squeezing which is about 3.6 standard errors below

the standard quantum limit. We note that �� represents the observed degree of spin squeezing. The actual

squeezing of F̂ 0
z is probably greater than what we observe due to an imperfect readout. The quality of

the readout is discussed in section 8.7.

The overall probability distribution for all the individual spin squeezing data can be described by a

weighted sum of normal distributions. The mean and the variance for each normal distribution is given

by the estimates from the corresponding run, and the weight is the relative number of measurements in

the run. The accumulated probability distribution for this sum of normal distributions is plotted in Fig.

8.10 (solid line) together with the measured probability distribution (dots). The measured probability

distribution is given by points (xi; yi) ; where yi is the fraction of all the individual measurements with
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Figure 8.10: Probability distribution which includes all 263 individual spin squeezing measurements.

Dots: the measured distribution. Solid line: a weighted sum of normal distributions; see the text for

details. Dotted line: approximation to a (single) normal distribution. The vertical "probability scale"

makes normal distributions linear.

� � xi. We �nd good agreement between the measurements and the probability distribution based on

the assumption about normally distributed data within each run.

We can make a simple test of our data by dividing them into two groups; one with � � 0 and the

other with � < 0. We will assume that the atomic spin noise measured with squeezed Ŝz is the same

as with coherent excitation, i.e. that the squeezed vacuum �eld does not make a di�erence. Hence, the

true value of � is zero, and we have the probability of 1=2 for obtaining a positive as well as a negative

� measurement. The distribution of data in the two groups is a simple binomial distribution. A total of

167 measurements are negative. The probability for getting 167 or more negative measurements out of

a total of 263 measurements is for a binomial distribution given by

P =

263X
i=167

�
263

i

��
1

2

�263
= 7 � 10�6 (8.12)

We see that it is highly unlikely that we obtain such an asymmetric distribution of data around zero.

We conclude that the assumption must be wrong, and that the squeezed vacuum in the excitation �eld

really does make a di�erence.

A more thorough analysis includes the continuous distribution of the observed data. An interesting

hypothesis to test is whether it is possible to obtain the measured data from a distribution whose

true mean value is nonnegative. We can test this hypothesis if we approximate the actual distribution

(estimated by the solid line in Fig. 8.10) with a normal distribution having the same mean and variance

(dotted line in Fig. 8.10). The mean and standard deviation for the two distributions are (�; �) =

(�1:36; 6:33). We use the Student's t-test [105] to test the hypothesis. The t-test gives a test probability

of " = 0:03%. " is the probability for getting a set of data, under the hypothesis about a nonnegative

mean value, which is "worse" than the actual data set. We reject the hypothesis about the nonnegative

mean value because of the small ".

We can now conclude that spin squeezing in a macroscopic entangled atomic sample has been gener-
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ated and observed.

8.7 The limiting factors - radiation trapping and probe shot

noise

In the previous section we measured the observed degree of spin squeezing to be �� = �1:16%�0:32%. The
signal-to-noise ratio (S/N) for the spin squeezing measurements is the absolute ratio of the mean value

to the estimated error, i.e. S=N = 1:16=0:32 = 3:6. The S/N is limited by the degree of spin squeezing

and the uctuations in the individual spin squeezing measurements. The degree of spin squeezing is set

by the mapping-readout eÆciency and the available squeezing in the quantum pump. In the following

subsection we will discuss e�ects that limit the mapping-readout eÆciency. In particular, we will see that

radiation trapping plays an important role in the eÆciency at which quantum correlations are mapped

from the light onto the atoms. In the second subsection we show that the probe shot noise can explain

the uctuations in the individual spin squeezing measurements.

8.7.1 The degree of spin squeezing and radiation trapping

We found in section 8.4 that the mapping-readout eÆciency for classical correlations in F̂ 0
z
is ~�z =

6%� 2%. The corresponding eÆciency for quantum excitation with excess noise in Ŝz is about the same
with ~�z;nc = 8%�2%, see section 8.5. Thus, the experimental mapping-readout eÆciency is substantially
smaller than the theoretical mapping eÆciency �z = 47% from chapter 4, Fig. 4.2a. The small eÆciency

~�z results in a small degree of spin squeezing. In this subsection we discuss the most important reasons

for the low mapping eÆciency and the small degree of spin squeezing.

Reabsorption of spontaneously emitted photons at the pump wavelength can put severe limits on the

produced spin squeezing. The quantum correlations between pairs of photons in the squeezed excitation

�eld are lost when the photons are absorbed by the atoms. We expect no correlations between the

subsequently emitted photons from di�erent atoms, since the atoms decay at random. As a result, the

uorescence �eld consists of uncorrelated photons, which do not produce any spin squeezing. Neverthe-

less, the uorescence photons can excite atoms and thereby generate uncorrelated atomic noise as for a

coherent state excitation �eld.

The total noise in the Stokes parameter Ŝz of the excitation �eld can be written as a sum of the noise

from the incoming pump �eld, (Ŝz)2
;i, and the noise from the uorescence �eld, (Ŝz)2
;f , i.e. (Ŝz)2
 =

(Ŝz)2
;i+(Ŝz)2
;f . The Ŝz noise, normalized to the shot noise level, de�nes the degree of squeezing Rz (
).

We use the notation Rz;i (
) for the degree of squeezing in the incoming pump �eld. We assume that

the uorescence �eld is shot noise limited. The total noise normalized to the total shot noise level can

then be written as

Rz (
) = Rz;i (
)
�i

�i +�f

+
�f

�i +�f

(8.13)

�f and �i are the photon ux in the incoming �eld and the uorescence �eld. We will use the assumption

that �f = 0:9�0�i, see page 97. �0 is the resonant optical depth for the pump �eld.

We do not have an ideal transfer of correlations if the incoming �eld is not completely absorbed.

In a simple picture we can imagine the partial absorption as a beamsplitter with a reectivity of e��0

followed by an atomic cloud, which completely absorbs the rest of the pump5. The beamsplitter e�ect

reduces the e�ective degree of squeezing in the absorbed pump �eld. The overall degree of squeezing in

the pump �eld is

Rz (
) = 1�
1� e��0

1 + 0:9�0
[1�Rz;i (
)] (8.14)

5This is a simple picture, which neglects the frequency response of the atoms. We measure the probe uctuations at

1.9MHz, and it is suÆcient to assume that the atomic response is frequency independent within a 2MHz bandwidth.
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Figure 8.11: The predicted degree of spin squeezing versus the pump optical depth when incomplete

absorption and radiation trapping are included. Solid line: perfect squezing in the quantum pump and a

mapping eÆciency of �z = 0:47. Dotted line: as the solid line, but for -1.8dB of squeezing in the pump.

The denominator, 1+ 0:9�0, represents the e�ective reduction in squeezing due to the uorescence �eld.

The numerator, 1� e��0 , is the squeezing reduction due to incomplete absorption.

From Eq. (8.9) we have

� =
�sq � �coh

�coh
=
Rz (
)� 1

��1z + 1
(8.15)

In Fig. 8.11 we plot � versus �0 using Eq. (8.14) and (8.15). The solid line is the best we can hope for in

the actual light-atom con�guration with perfect squeezing of the excitation �eld (Rz;i (
) = 0) and the

theoretical mapping eÆciency �z = 0:47. We see that the reabsorbed uorescence reduces the maximum

spin squeezing from �32% (Fig. 4.2b) to only �11%, with the best spin squeezing at �0 ' 1:3. With

the actual polarization squeezing of �1:8dB, we see from the dotted line in Fig. 8.11 that we should not

expect more than about �2:5% spin squeezing for the typical pump optical depth of �0 ' 3 � 4. The

typical pump optical depth is somewhat larger than the optimum �0 according to Fig. 8.11. However,

the model used in the �gure and in Eq. (8.14) is quite crude, and it is better to have �0 a little too large

rather than too small. The e�ect of radiation trapping can be reduced if the atomic sample is shaped

like a pencil with a length much larger than the diameter, but this is not possible with our MOT.

The observed degree of spin squeezing is also inuenced by the fact that the readout method is

not perfect. We cannot read out the o�-resonant F̂ 0
z
uctuations around �5MHz without seeing the

resonant contribution. We see from the �t in Fig. 8.6b that the resonant part contributes with about

45% of the atomic noise measured at �5MHz for coherent excitation. We found in section 8.5.2 that

the resonant contribution from antisqueezed F̂ 0
x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x
can reduce the measured o�-resonant noise

reduction �sq � �coh by up to 30%. Hence, these noise contributions, which are not related to F̂ 0
z

uctuations, can reduce the observed degree of spin squeezing by another factor of two.

In conclusion, we �nd that the small observed degree of spin squeezing can be explained by the

theoretical eÆciency of mapping light onto atoms, the e�ect of radiation trapping, and the fact that

the readout of F̂ 0
z
uctuations is not perfectly separated from the uctuations that predominate at

resonance. Other experimental imperfections like the matching of the spatial modes of the pump and
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probe �eld, optical pumping, residual magnetic �eld e�ects, saturation e�ects, and excess broadening

can also inuence the mapping-readout eÆciency, but these e�ects are diÆcult to quantify.

8.7.2 Fluctuations in the spin squeezing data

In appendix E we derive an expression for the S/N in the spectral density measurement of the probe

shot noise. If Y is the stochastic variable that represents the output of the spectrum analyzer (SA), we

have according to Eq. (E.7)

hY ip
Var (Y )

= ksc

r
�RB

�V B
(8.16)

�RB is the resolution bandwidth, and �V B is the video bandwidth. The parameter �sc is expected to be

close to one. If we implement the lock-in method described in section 8.1.3, then the combined system of

spectrum analyzer, electronic squaring device, and the lock-in ampli�er measures the di�erence between

two stochastic variables, A and B. These two variables correspond to the shot noise levels A and B in

Fig. 8.2c. We assume here that the di�erence between A and B is due a 250Hz intensity modulation of

the probe; the same modulation as used for the shot noise calibration and determination of kRF in section

8.1.3. A and B are independent variables, but the distribution for B is identical to the distribution for

(1� a)A, where a is the small modulation depth. If we de�ne Z = A�B, we have

Z = A�B (8.17)

hZi = hAi � hBi = ahAi
Var (Z) = Var (A) + Var (B) ' 2Var (A)

The SA is in the spin squeezing experiment set to a resolution bandwidth of 300kHz, but the e�ective

bandwidth for the measurements is set by the narrower detector bandwidth so that �RB = 100kHz. The

video bandwidth of the SA is set to 30kHz. This gives a suÆciently short averaging time so that the

signals in each of the dark periods in Fig. 8.2 (i.e. A and B) are completely independent. The lock-

in ampli�er and the following data acquisition set the e�ective video bandwidth of the measurements,

which last about six minutes. Half of these six minutes consist of bright periods, which are not used; an

electronic gate is used to switch o� the signal from these periods. The remaining time is divided between

B measurements and A measurements. The fact that the electronic gate is closed in the �rst part of

the dark periods leaves us with about 74 seconds for A measurements. This corresponds to an e�ective

video bandwidth of �V B = 13:6mHz. With these numbers, we have from Eq. (8.16) and (8.17)

hZip
Var (Z)

=
a
p
2

hAip
Var (A)

=
a
p
2
ksc

r
�RB

�V B
= 1920ksca (8.18)

We have carried out 14 independent measurements of Z with 4:1% modulation of the shot noise level,

six minutes of averaging, 235�W probe power, and the bandwidths given above. The conditions for

these measurements are the same as for the spin squeezing measurements, except for the passive shot

noise modulation. From the statistics of these 14 measurements we deduce a S/N of 82, and we conclude

that the experimental value for the scaling constant is ksc = 1:0. This is in perfect agreement with the

estimate in appendix E.

We can use Eq. (8.18) to derive the uncertainty in � due to the shot noise uctuations of the probe.

From the de�nition � = (�sq � �coh) =�coh, we �nd for the error s (�)

s (�) =
1

�coh

s�
�sq

�coh

�2
s (�coh)

2
+ s (�sq)

2
(8.19)

=
p
2
s (�coh)

�coh
=
p
2
�0 � �coh

�coh

s (�0 � �coh)

�0 � �coh
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Figure 8.12: The statistical error on the individual spin squeezing measurements for each run as a function

of the estimated error due to the probe shot noise uctuations. Circles: o�-resonant runs. Squares: runs

at resonance. Solid line: a straight line with a slope of one.

We use the fact that the e�ect of the squeezed pump is small so that �sq=�coh ' 1 and s (�coh)
2
+s (�sq)

2 '
2s (�coh)

2
. We furthermore assume that we can measure the probe optical depth �0 with high precision

from the DC lock-in voltage so that s (�coh � �0) = s (�coh). The RF lock-in voltage for coherent

light excitation is given by �VRF = kRF (1 � e��
0

� �coh) ' kRF (�0 � �coh). The modulation depth

a = �0 � �coh has a contribution from the reduction in shot noise (�0 term) and a contribution from the

atomic spin noise (�coh). Although the atomic noise �coh has a signi�cant inuence on the modulation

depth, �coh is still very small compared to the overall probe shot noise. The last factor in Eq. (8.19)

represents the relative error (or inverse S/N) in the measurement of the spectral density modulation

depth, and we can substitute it with Eq. (8.18) to get the estimated error due to shot noise uctuations

s0 (�) =
p
2
�coh � �0

�coh

1

1920 (�coh � �0)
(8.20)

=
1

1360�coh

In Fig. 8.12 we plot the statistical error s (�) on an individual spin squeezing measurement for all the

spin squeezing runs as a function of the error calculated from Eq. (8.20), with �coh averaged over all the

measurements within each run. The statistical errors s (�) are just the length of the error bars in Fig.

8.9 multiplied by the square root of the number of measurements within the actual run. The �coh values

for the di�erent runs are di�erent because of di�erent probe detunings and di�erent trapping conditions

(e.g. optical depth). The solid line in Fig. 8.12 is a straight line with a slope of one. We conclude from

this �gure that the fundamental quantum noise of the coherent state probe indeed limits the S/N in the

spin squeezing measurements. We know from Eq. (8.16) that there is only two ways of reducing the

e�ect of the shot noise; either average for a longer time (smaller �V B) or measure the uctuations in a

larger bandwidth (larger �RB). Alternatively, we could use a squeezed probe, but that would require a

second squeezing setup. It is now clear that we could have improved the statistics of our spin squeezing

data if we had used detectors with a bandwidth equal to the spectrum analyzer resolution bandwidth of

300kHz. The next resolution bandwidth on the Anritsu MS710A spectrum analyzer is 1MHz, and this is
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Figure 8.13: Atomic spins are being squeezed in the lab. On the left we have the vacuum chamber which

holds the MOT. On the right we �nd Jens who is generating a squeezed quantum pump. The blue light

at the squeezing setup is the pump �eld for the OPO produced by second harmonic generation.

too large since we measure the atomic noise close to the low frequencies, where the pump and the probe

lasers have excess classical/technical amplitude noise.

In conclusion, we have in this chapter observed the spin squeezed state of atoms. We believe that

we can explain the relatively small degree of spin squeezing from the theoretical limitations and the

experimental imperfections such as the e�ect of radiation trapping. The accuracy of the observed degree

of spin squeezing is limited by the fundamental quantum uctuations in the probe used to read out the

atomic state.
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Chapter 9

Future prospects for spin squeezed

atoms

We have in this thesis investigated the concept of spin squeezing in a large ensemble of atoms. The discus-

sion has focused on generation of spin squeezing in a short-lived excited state by continuous absorption

of squeezed light. We found a theoretical maximum noise reduction of 50% due to the spontaneous decay

of the atoms. In chapter 4 we deduced that the degree of spin squeezing is further reduced when the

atomic Zeeman degeneracy is increased. For our Cesium atoms in 6P3=2F = 5, the theory predicts a

maximum noise reduction in F̂ 0
z
of about 32%. Because of the short lifetime of the spin squeezed state, we

cannot store the quantum correlations for an extended period. Hence, we cannot demonstrate quantum

memory.

In chapter 8 we veri�ed experimentally that spin squeezing in the excited state can be generated

by squeezed light absorption. The observed noise reduction in F̂ 0
z is just 1:16% � 0:32%, although the

theory predicts about 11% for the actual degree of squeezing in the excitation �eld. We �nd that

experimental imperfections, like the e�ect of radiation trapping and imperfect readout of the relevant

atomic spin variable, can explain the small observed degree of spin squeezing. Furthermore, the readout

with an o�-resonant probe gives a very small signal as compared to the shot noise of the coherent state

probe. An extremely long averaging time is therefore required in order to see the small e�ect of spin

squeezing. Hence, we cannot claim that our spin squeezing results are directly useful in terms of improved

spectroscopy or as a quantum information tool. But our results are important as a proof-of-principle

experiment, and it is very well possible that spin squeezed atoms will play a signi�cant role in future

applications.

The theoretical limits and the experimental imperfections discussed above are not fundamental lim-

itations in atomic spin squeezing. Theoretical calculations [82] show that 100% spin squeezing can be

generated in the ground state by squeezed light interaction. The atomic fountain frequency standard [1]

uses a method to read out the �nal atomic state that is much more eÆcient than the method we have

used in chapter 7 and 81. This frequency standard is today limited in stability by the atomic quantum

noise, and it can therefore take advantage of quantum correlated atoms with reduced spin noise.

An experiment on spin squeezed atoms in an atomic fountain setup is currently prepared in our group

in collaboration with the group of Christophe Salomon at �Ecole Normale Sup�erieure in Paris. The goal

for this project is to demonstrate that quantum correlated atoms in principle can be used to improve

the stability of a frequency standard. Furthermore, this project will be aimed at a demonstration of

storage of the atomic correlations for some time in an interaction free region, i.e. a quantum memory

demonstration. In the following we present the basic ideas behind this experiment as a demonstration

1The method used in Ref. [1] for the readout cannot be used for spin squeezing in the excited state. It can only be

applied to correlations between long-lived states.
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Figure 9.1: a) Schematic overview of the atomic fountain setup. Atoms are �rst trapped and cooled in

a MOT. The atoms are then launched by detuning of the vertical trapping beams. After preparation of

the atoms in the F = 3, m = 0 state, they interact with the 9.2GHz microwave �eld. This interaction

results in a �=2 rotation of the atomic pseudo spin. Finally, the populations in the two m = 0 states are

measured by uorescence detection. b) The e�ective two-level atom. A pseudo spin-1/2 system is de�ned

from these two levels. c) Representation of the �=2 rotation of the collective pseudo spin. The "noise

circles" represent the quantum uctuations in the directions orthogonal to the mean spin (arrows).

of the potential of spin squeezed states of atoms.

9.1 The atomic fountain

The basic parts of the projected fountain setup are shown in Fig. 9.1a. Cesium atoms are collected and

trapped in a magneto-optical trap. With rectangular current coils for the magnetic �eld gradient, we get

larger gradients in the radial directions than in the longitudinal direction. This produces a cigar shaped

cloud of atoms elongated in the vertical direction as demonstrated in Ref. [107]. After collection of a

large number of atoms in the MOT, we will launch the cloud in the vertical direction by detuning of the

vertical trapping beams. In a normal fountain the atomic cloud expands in the transverse directions after

the launch. However, when the squeezed light is shined onto the atoms, we must have a large optical

depth to get an eÆcient transfer of correlations. It is therefore important that we somehow prevent this

transverse spread so that a large optical depth is preserved. This can be accomplished by using a strong

far-detuned laser beam, which guides the atoms in a dipole potential. The guiding laser �eld will be

traveling vertically through the fountain setup. We plan to use a standard Nd:YAG laser at 1064nm

with about 10W of optical power for the guiding. The guiding is most eÆcient when the initial atomic

cloud in the MOT is shaped like a cigar. A similar guiding of rubidium atoms launched from a MOT is

demonstrated in Ref. [107].

To obtain a simple, clean two-level system, we have to prepare all our atoms in the same quantum
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state. By a combination of microwave pulses and laser pulses, we can clean up the atomic sample so that

about 10% of the atoms are put into the 6S1=2F = 3;m = 0 state and all other atoms are removed [108].

After the atoms are prepared in a single quantum state, we can apply our squeezed light and produce

the correlated atomic sample. The squeezed light will be applied in a pulse of a few ms duration. We

discuss the squeezed light interaction in more detail in the following section; here we continue under the

assumption that no squeezed light is applied as for an ordinary fountain clock.

The atoms continue their journey into a resonator, which holds a microwave �eld near-resonant with

the well-known 9.2GHz clock transition, j1i = 6S1=2F = 3;m = 0 ! j2i = 6S1=2F = 4;m = 0, see Fig.

9.1b. When the fountain is used as an atomic clock, the amplitude of the microwave �eld is adjusted

so that the atoms experience a � pulse when the �eld is at exact resonance. The �eld is then slightly

detuned so that the pulse area is close to �=2 and each atom ends up in a superposition; c1 j1i + c2 j2i
with jc1j2 ' jc2j2 ' 1=2. The population in each of the two states (i.e. jc1j2 and jc2j2) depends on
the exact pulse area, which again depends on the microwave frequency. A population measurement can

therefore produce a feedback signal to the frequency of the microwave �eld, which is then locked to the

atomic transition.

The populations in the two atomic states are measured by uorescence detection. After the atoms

have left the microwave cavity, they go into a standing wave laser beam, which is resonant with the

optical transition 6S1=2F = 4! 6P3=2F = 5. A fraction of the uorescence from the atoms is detected

with a signal which is proportional to the number of atoms in j2i. A traveling wave laser beam resonant

with the same transition is subsequently used to push away all atoms in the j2i state. A second standing

wave with light on the 6S1=2F = 4! 6P3=2F = 5 and 6S1=2F = 3! 6P3=2F = 4 transitions provides a

uorescence signal proportional to the number of atoms in j1i. Usually hundreds of uorescence photons
from each atom are detected [1]. This detection technique is very eÆcient and without the huge noise

we found for the readout with a near-resonant probe.

The atoms are in a superposition state before the population measurement, and hence the mea-

surement results in a projection with a random outcome. This randomness in the measurement is the

fundamental quantum projection noise [1, 3]. The projection noise can also be seen as spin noise if we

introduce a pseudo spin Ĵn for atom number n by

Ĵnx =
1

2

�
j2i

n;n
h1j+ j1i

n;n
h2j
�

(9.1)

Ĵn
y
=

1

2i

�
j2i

n;n
h1j � j1i

n;n
h2j
�

Ĵn
z
=

1

2

�
j2i

n;n
h2j � j1i

n;n
h1j
�

The collective spin is given by the sum Ĵ =
P

n
Ĵn. Before the microwave interaction, we have all N

atoms in the state j1i, i.e. hĴzi = �N=2, and the spin is in a coherent spin state as shown in Fig. 9.1c,

(the coherent spin state is de�ned on page 57) . The �=2 pulse rotates the mean spin into the x � y

plane while the spin remains in a coherent spin state. The di�erence between the population in j2i and
j1i is given by 2Ĵz, and the projection noise is basically the variance of Ĵz; (�Ĵz)

2 = N=4: In Fig. 9.1c

we represent the noise in the spin components orthogonal to the mean spin by a "noise circle".

The description above is, apart from the squeezed light interaction and the dipole guiding, very

similar to the working principles of PHARAO - an atomic clock designed for microgravity conditions

[109]. Earth based atomic fountain clocks usually use the separated oscillatory method of Ramsey [75],

where the atoms passes through the microwave resonator twice before detection. The long interrogation

time between the microwave interactions, which is set basically by the gravity, gives narrow fringes (steep

population versus frequency slope) and hence high stability of the clock.

In our initial experiment we will probably not work in this "clock mode". We are interested in

the projection noise and squeezing hereof, and we will be less sensitive to frequency uctuations if we

use broad fringes and a resonant �=2 pulse. When the projection noise for uncorrelated atoms, which
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Figure 9.2: a) The scheme for generation of spin squeezing in the ground state. Eq and Es are the

squeezed vacuum �eld and the strong coherent �eld which interact with the states j1i and j2i in a

Raman process. Both �elds are far from resonance with the intermediate state jii. �q is the bandwidth
of squeezing and � is the dephasing rate for the j1i $ j2i coherence. b) Theoretical spin noise versus

optical depth for the quantum �eld. The spin noise is normalized to the noise of the coherent spin state.

Solid line: in�nite bandwidth �q. Dotted line: �q=� = 50. Dashed line: �q=� = 10. The �gure is

borrowed from Ref. [82].

establishes the standard quantum limit of spin noise, is measured in this setup, we can apply the squeezed

light interaction to produce spin squeezing and demonstrate quantum memory.

9.2 Spin squeezing in a fountain

It is shown in Ref. [74, 75] that spin squeezing can improve the sensitivity in a system which is completely

equivalent to the fountain setup described in the previous section. A method for generation of spin

squeezed atoms in the fountain setup is proposed in Ref. [82]. This proposal is based on the scheme

shown in Fig. 9.2a. After the atoms are prepared in the state j1i, we apply a pulse of squeezed vacuum

(Eq) together with a strong coherent �eld (Es). The two �elds constitute the two arms of a Raman

process, and they are far detuned from the intermediate state jii. Multi-atom correlations are induced

by absorption of the squeezed vacuum �eld. These correlations reduce the uctuations in the transverse

pseudo spin components Ĵy at the expense of excess noise in the other spin component Ĵx. The typical

photon number in a squeezed vacuum �eld is very small. Thus, the absorption does not transfer any

signi�cant population from j1i to j2i and hĴzi remains (almost) unchanged. The �elds Es and Eq are

on for a time longer than the inverse dephasing time ��1 for the j1i $ j2i coherence. � includes the

power broadening from the strong �eld Es caused by spontaneous Raman scattering. Thus, � is large

in the presence of Es and small in the absence of Es. We will therefore reach the steady state spin

squeezing relatively fast when the �elds are on. The induced correlations will be preserved after the

�elds are turned o�, because � then becomes small. After the squeezed light interaction, the pseudo spin

is rotated by the microwave interaction so that Ĵy ! Ĵz, and consequently the measured spin component

Ĵz will have the projection noise reduced. The calculated variance of the �nal Ĵz variable, normalized

to the coherent spin state variance, is plotted in Fig. 9.2b as a function of the optical depth for the

quantum �eld Eq . The solid line is for in�nite bandwidth �q of the perfectly squeezed vacuum �eld.

The dotted line is for �q=� = 50, and the dashed line is for �q=� = 10. We see that a signi�cant noise

reduction is possible with this scheme.
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Figure 9.3: A picture of the atomic fountain vacuum chamber. 1: ion pumps. 2: small glass vacuum

chamber for the MOT. 3: Cs reservoir. 4: the chamber for the microwave resonator. 5: detection zone.

The theory used to derive the graphs in Fig. 9.2b is based on an elimination of the intermediate

state jii, which is valid for a large intermediate state detuning. The atoms can after the elimination be

treated as e�ective two-level systems. The equations for this two-level system are fully equivalent with

the Heisenberg-Langevin equations for the �elds and the optical coherences in chapter 4. The equations

can be solved with the same techniques as we used in chapter 4, with the result shown in Fig. 9.2b.

The proposal for generation of spin squeezing via a Raman interaction has some advantages over

spin squeezing in the excited state. The fact that the atoms remain in the ground states removes the

fundamental limit on the degree of spin squeezing due to spontaneous decay. Furthermore, the long-lived

states make it possible to store the quantum information for some time after the �elds Eq and Es have

been turned o�. The quantum information will be stored for the time it takes atoms to travel from the

squeezed light interaction zone to the detection zone. In contrast, the excited state spin squeezing requires

continuous regeneration of atomic correlations. The Raman interaction idea also has a drawback which

is not present in the excited state spin squeezing. In the Raman process it is important that all atoms

see the squeezed light, otherwise only some of the atoms will participate in the collective correlated state.

On the other hand, we must absorb all the squeezed light in the atomic sample so that no correlations

are lost. This requires a careful matching of the quantum �eld intensity pro�le and the density pro�le

of the atomic sample. This problem does not exist in the excited state spin squeezing. In this case only
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the atoms that interact with the squeezed light are excited, and only the excited atoms are detected in

the readout process.

Our project on spin squeezing in a fountain is in progress, but there is still a long way to go before we

can demonstrate storage of quantum correlations and improved performance of the atomic clock. So far

we have �nished the construction of the fountain vacuum chamber. A picture of the vacuum chamber is

shown in Fig. 9.3.



Chapter 10

R�esum�e

In the last chapter of this thesis, we give a short r�esum�e of the main results and conclusions from the

previous chapters.

10.1 Introduction

In the �rst chapter of this thesis we motivate the work on interaction between nonclassical (squeezed)

light and atoms. Squeezed light can be used for improved sensitivity in spectroscopy, where the limiting

factor often is the shot noise of the coherent state probe. We can get below the shot noise level when

a probe of squeezed light is utilized. However, more interesting experiments involve quantum control

and manipulation, which are essential elements in the context of quantum information. Squeezed light

can also be used for experiments within this area. One example is generation of spin squeezed atoms,

where the quantum correlations between photons in the squeezed light beam are converted into quantum

correlations between atoms in a gas. This idea about mapping the statistics of light onto atoms can also

be seen as storage of the quantum information in light on a medium of atoms. The spin squeezed atoms,

which have reduced quantum uctuations in one collective spin component, can subsequently be used in

experiments that are limited in sensitivity by the atomic quantum noise. The demonstration of atomic

spin squeezing is the prime experiment in this thesis.

10.2 Spectroscopy on classically modulated atoms

In chapter 2 we introduce our magneto-optical trap for neutral cesium atoms. The trap is characterized

by means of absorption spectroscopy, and we �nd an average density of about � = 3�1010cm�3 with nearly
3�109 atoms in the trap. These numbers are typical for a large MOT. The large MOT is important for

our experiments because the interaction strength between a nonclassical excitation �eld and the atomic

sample is set by the resonant optical depth �0. We have measured �0 ' 23 with a weak resonant probe

beam in the absence of the MOT trapping beams.

We introduce the double-optical resonance technique as a tool to read out the properties of an inter-

mediate atomic state with a probe of light. The readout is re�ned by using a polarization interferometer,

which gives access to the anisotropic e�ects such as circular birefringence and linear dichroism. The

measured anisotropy is related to the intermediate state atomic variables.

A new method for eÆcient spectroscopy on a MOT is demonstrated. We apply frequency modulation

to our MOT trapping beams, which are near the 6S1=2F = 4 ! 6P3=2F = 5 transition at 852nm. The

atoms in the 6P state are probed on the 6P3=2F = 5 ! 6D5=2F = 4; 5; 6 transitions at 917nm. The

frequency modulation of the trapping beams is converted in the amplitude and polarization modulation of

the resonant probe. This provides a large spectroscopy signal measured at the frequency of modulation.
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The pump modulation technique is an easy way to achieve shot noise limited spectroscopy in contrast

to ordinary FM spectroscopy, where the (imperfect) frequency modulation is applied to the probe. The

measured FM absorption and polarization rotation spectra are compared to simple theoretical models.

The modulated pump spectroscopy is not only interesting from a spectroscopists viewpoint, it is also

a natural starting point for our subsequent study of the e�ects of quantum uctuations in the pump

�eld. Finally, we demonstrate how the intrinsic phase noise of the diode trapping laser provides enough

"modulation" to give a clear signal on the probe transition. This shows that diode lasers cannot be used

to study the fundamental quantum noise of excited state atoms.

10.3 Squeezed states of light

The squeezed states of light are introduced in chapter 3. We show how the sub-threshold optical para-

metric oscillator (OPO) provides a squeezed vacuum output. When the squeezed vacuum is mixed with

a strong coherent �eld in the same polarization, we get the usual quadrature squeezed states. In this

thesis we are more interested in the polarization squeezed states, which we obtain when the squeezed

vacuum beam and the coherent state beam are overlapped in orthogonal polarizations. The polarization

squeezed state is described by an angular momentum operator which is closely related to the usual Stokes

parameters.

Our source of polarization squeezed light, which is build around the OPO, can run at wavelengths

between 850nm and 920nm. We have used 917nm for the excited state transition 6P3=2F = 5 !
6D5=2F = 6 in cesium and 852nm for the 6S1=2F = 4! 6P3=2F = 5 transition. We �nd almost identical

squeezing at the two wavelengths with a spectral density about 3.0dB below the shot noise level. The

factors that limit the squeezing are somewhat di�erent for the two wavelengths. At 917nm we have

low passive losses and small blue-light-induced infrared absorption (BLIIRA), but we also have a small

nonlinearity of our KNbO3 crystal. At 852nm we �nd larger passive losses and BLIIRA, but this is

compensated by a larger nonlinearity. We �nally demonstrate that the squeezed light can be used for

polarization spectroscopy on cold atoms trapped in a MOT with the sensitivity beyond the standard

quantum limit.

10.4 Mapping the quantum state of light onto atoms

The theory for mapping the statistics of polarization squeezed light onto an ensemble of atoms is derived

in chapter 4. The theory assumes complete absorption of a weak quantum �eld on a F ! F 0 = F + 1

transition, where F is the total atomic angular momentum. In addition, the theory assumes that the

atomic ground state F is unpolarized. We use the method of linearized Heisenberg-Langevin equations

to derive explicit expressions for the uctuations in the excited state variables F̂ 0
z, F̂

0
xF̂

0
y + F̂ 0

yF̂
0
x, and

F̂ 02
x � F̂ 02

y . We show that excitation with a coherent state of light gives the same atomic quantum

noise as if we assume that the atoms are uncorrelated. This is not a surprise since the coherent state

can be described as a stream of uncorrelated photons. The noise level measured with coherent light

excitation can thus be used to establish the standard quantum limit (SQL) of atomic uctuations. If

a polarization squeezed state of light is used for excitation, we have uctuations below the SQL in one

of the atomic variables. The noise reduction takes place in a continuous scheme, where we constantly

absorb correlated photons in order to regenerate the atomic correlations lost by spontaneous decay. The

atomic variable with suppressed noise is determined by the Stokes parameter which is squeezed. A

maximum of 50% noise reduction is found for F = 0; this limit is due to the random spontaneous decay.

We �nd the noise reduction to be even smaller when the Zeeman degeneracy is increased; about 32% for

F̂ 0
z
noise and 12% for F̂ 0

x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x
noise, when a perfectly polarization squeezed �eld is applied on the

6S1=2F = 4! 6P3=2F = 5 transition of cesium.
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10.5 Spin squeezed states and entanglement

The concept of spin squeezed states is introduced in chapter 5. The commutation relations for the spin

components result in Heisenberg uncertainty relations given by (�ŝy)
2(�ŝz)

2 � hŝxi2=4, together with
cyclic permutations of this expression. It seems natural to de�ne spin squeezing in analogy with the

squeezed states of light by taking hŝxi=2 as the SQL and just require that either (�ŝy)
2 or (�ŝz)

2 is

below the SQL. However, this de�nition does not guarantee that a spin squeezed collection of spin-1/2

systems has any nonclassical correlations or entanglement between the individual spins. In order to

make spin squeezed states something special, we require from our de�nition that spin squeezing implies

entanglement. Several di�erent de�nitions of spin squeezing have been given in the literature, and

although they have been said to imply correlations, we show that only one of the de�nitions ful�ls our

requirements.

We end this chapter by relating the concept of spin squeezing to the results derived in chapter 4.

We �nd the F = 0 case of chapter 4 to be spin squeezed when a polarization squeezed excitation �eld is

applied. We choose to use the term "spin squeezing" for the situations with F > 0 since they also show

noise reduction in a spin component because of multi-atom entanglement.

10.6 Theory for the atomic state readout

In chapter 4 we derived the theory for generation of spin squeezing in the excited state, but we still need a

method to read out the excited state properties to prove that the spin noise is below the SQL . In chapter

6 we show that a near resonant probe in double-optical resonance with the quantum pump will do the job.

The excited state spin uctuations result in uctuations in the linear dichroism and circular birefringence

on the probe transition. Hence, the atomic uctuations are mapped onto the polarization state of the

probe, which can then be analyzed in a polarization interferometer. We discuss the requirements for an

eÆcient readout of the collective atomic spin state, and we derive explicit expressions for the spectral

density of the di�erential photocurrent from the polarization interferometer. We �nd that the resonant

probe is sensitive to noise in F̂ 0
x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x
, whereas F̂ 0

z
noise is prevailing for the o�-resonant probe.

We complete this chapter by a discussion of the e�ect of inhomogeneous broadening (e.g. Doppler

broadening).

10.7 Quantum noise of uncorrelated atoms

The noise (i.e. the variance) for a sum of identically distributed but independent (uncorrelated) stochastic

variables scales linearly with the number of variables. On the other hand, if the variables are perfectly

correlated (e.g. all identical), we �nd the variance to scale with the square of the number of variables.

The same is true for atomic noise. The cesium cloud in the MOT is believed to be an undisturbed

sample with a �xed number of atoms. Hence, only the quantum noise of uncorrelated atoms should be

seen when we probe the sample.

In chapter 7 we report observations of the atomic noise when the atoms are excited by the rather

strong trapping beams. A probe on the 6P3=2F = 5 ! 6D5=2F = 6 transition, which completes the

double-optical resonance, is used to read out the atomic noise in the F = 5 state. The atomic noise is

found to be linear in the number of probed atoms, which shows that the noise of the atomic sample is

limited by the quantum noise of uncorrelated atoms. Only in one previous experiment has this linear

dependence been observed, and that with rather poor statistics [3]. We observe that the atomic noise

is predominated by a term quadratic in the number of atoms when frequency modulation is applied to

the trapping beams. The gradual change from predominantly quantum noise (linear dependence) to

predominantly classical noise (quadratic dependence) is observed when the FM index is varied. We end

the chapter by an experiment which shows that the quantum spin noise of an atomic sample can indeed

limit the signal-to-noise ratio in spectroscopy.
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These experiment are the �rst step towards the observation of spin squeezed atoms. They show

that it is possible to observe the atomic quantum noise with the readout method that we investigated

theoretically in chapter 6.

10.8 Spin squeezing in a cold atomic ensemble

In chapter 8 we continue our experimental investigation of the spin noise of atoms in the excited state.

The experiment is re�ned so that the excitation is obtained with a weak unidirectional pump beam on

exact resonance with the 6S1=2F = 4 ! 6P3=2F = 5 transition. The spin noise in F = 5 is read out

with a copropagating probe �eld on the 6P3=2F = 5 ! 6D5=2F = 6 transition. We use the coherent

light excitation to establish the standard quantum limit of atomic spin uctuations. We can induce

classical excess noise in the Stokes parameter Ŝz or Ŝy by adding a vertically polarized, weak, amplitude
modulated �eld to the horizontally polarized coherent excitation �eld. We observe o�-resonant excess

noise in our probe signal when the noise in the Stokes parameter Ŝz is above the SQL. This is in agreement
with the theory from chapter 4 and 6, which predicts that a noisy Ŝz results in a noisy F̂ 0

z
, which is seen

by an o�-resonant probe. When the classical noise gives excess noise in Ŝy, we �nd a resonant excess

noise contribution in the probe signal. The noisy Ŝy results in a noisy F̂ 0
x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x
, which is seen by a

resonant probe. We �nd that we are much more sensitive to the F̂ 0
z
noise than to the F̂ 0

x
F̂ 0
y
+ F̂ 0

y
F̂ 0
x
noise,

and we therefore choose to look for spin squeezing in F̂ 0
z
.

Only a nonclassical pump �eld can have the Ŝz noise below the SQL as required for generation of spin

squeezing. After 53 hours of e�ective data acquisition, we �nd that the observed F̂ 0
z
noise is changed by

�1:16%� 0:32% due to the nonclassical correlations in the excitation �eld. This is in agreement with

the estimates from the classical noise measurements and the �1:8dB of squeezing in the pump �eld. The

very long measurement time is required because the noise reduction is only about 0.02% of the probe shot

noise level. The theory of chapter 4 predicts a spin squeezing of about �11% for �1:8dB of squeezing

in the pump �eld. We �nd that the uorescence �eld caused by radiation trapping and an imperfect

readout of F̂ 0
z
can explain the major part of the discrepancy between theory and experiment.

We conclude that spin squeezing due to multi-atom entanglement is observed, although the noise

reduction is too small for a direct application in spectroscopy or quantum information. Our experiment,

which is a proof-of-principle experiment, is the �rst demonstration of spin squeezed atoms. It is the �rst

experiment that demonstrates mapping of the quantum properties of a nonclassical beam of light onto a

large ensemble of atoms.

10.9 Future prospects for spin squeezed atoms

The excited state spin squeezing, which we demonstrate in chapter 8, has some practical disadvantages.

First of all, the degree of spin squeezing is theoretically limited to 50% because of the spontaneous decay

whereby atomic correlations are lost. Furthermore, the atomic correlations are lost almost immediately

after the quantum pump is turned o�. Thus, we cannot use the excited state spin squeezing idea to store

quantum information for an extended period. We have also seen that our experimental implementation

has imperfections, which severely reduce the degree of spin squeezing. However, these drawbacks are not

fundamental to spin squeezed states of atoms generated by squeezed light interaction.

In chapter 9 we outline the ideas behind a new project, which is designed for demonstration of spin

squeezing in the atomic ground state. The squeezed light together with a strong coherent �eld couples

two ground states in a Raman process. Ideally the ground states do not decay, and we can have 100%

spin squeezing. The spin squeezing will stay after the nonclassical �eld is turned o�, and this allows for

a demonstration of quantum memory. We will use a setup similar to the atomic fountain clock setup for

detection of the spin squeezed atoms in the ground state. The state of the art atomic fountain clock is

today limited in stability by the fundamental atomic quantum noise, and it will gain in stability if a spin
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squeezed sample of atoms is utilized. This project is in progress, but a lot of hard work is still needed

before the demonstration of quantum memory and an atomic clock based on entangled atoms.
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Appendix A

Circular birefringence for two

di�erent transitions

We show in this Appendix that the circular birefringence on the 6P3=2F = 5 ! 6D5=2F = 6 transition

is substantially larger than on the 6P3=2F = 5 ! 6D5=2F = 5 transition for a given orientation in the

6P3=2F = 5 state. The derivation in this appendix is based on the results of chapter 6.

The absorption and birefringence is calculated from the Maxwell equation in Eq. (6.4) and the

equation for the source term in Eq. (6.9). Combining these two equations gives

@

@z
�b� (z) =

�u0 (x; y)
i�0 + 0=2

�L

c

Z Z
u0� (x; y) (A.1)

�
F
0X

m=�F 0
��
m

�
��
m
�b� (z) ��F 0m;F 0m (r) + ��

m�2
�b� (z) ��F 0m;F 0m�2 (r)

	
dxdy

The circular birefringence does not mix the two circular polarizations, they just experience di�erent

phase shifts. Hence, the last term in the sum over m can be ignored in the present calculations. We can

now write the refractive indices (n�) and the absorption coeÆcients (��) as

�� + in� =
C

i�0 + 0=2

F
0X

m=�F 0
��2m ��F 0m;F 0m (A.2)

C is a proportionality constant, and we have ignored the spatial dependence. The coupling strengths ��
m

are given in Eq. (6.3) for the F = 5! F = 6 transition

��2m =
c�2

352�L
(7�m) (6�m) (A.3)

The �� + in� expression in Eq. (A.2) for the F = 5! F = 6 transition can then be written as

�� + in� =
C

i�0 + 0=2

c�2

352�L

�
42�0 � 13 �F 0

z
+ F 02

z

�
(A.4)

�0 is the density of atoms in the 6P3=2F = 5 state. �F 0
z
is the average z-component of the spin of the

atoms in 6P3=2F = 5, and F 02
z

is the average of the squared z-component of the spin. It is the term

proportional to �13 �F 0
z that is responsible for the circular birefringence.

The coupling strength ~��
m
for the F = 5! F = 5 transition can be derived from the results in Ref.

[30]

~��2m =
7c�2

4000�L
(6�m) (5�m) (A.5)
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The refractive indices and the absorption coeÆcients for the F = 5! F = 5 transition are

~�� + i~n� =
C

i�0 + 0=2

7c�2

4000�L

�
30�0 � �F 0

z � F 02
z

�
(A.6)

A comparison between Eq. (A.3) and (A.6) shows that the circular birefringence on the F = 5! F = 5

transition (i.e. ~n+ � ~n�) is only 4.8% of the birefringence on the F = 5 ! F = 6 transition for the

same orientation ( �F 0
z
) in the 6P3=2F = 5 state. The FM polarization rotation spectra in section 2.4.3 are

proportional to the square of the susceptibility. Hence, we expect the size of the FM polarization rotation

signal from the F = 5! F = 5 transition to be only about 0.2% of the signal from the F = 5! F = 6

transition.

For unpolarized atoms in the 6P3=2F = 5 state, we have hF 02
x;y;zi = �0 F (F + 1) =3 = 10�0 and �F 0

z = 0.

In this situation the ratio of the absorption on F = 5 ! F = 5 and on F = 5 ! F = 6 is found to be
77
325

; the same result as we obtain from Eq. (2.10).



Appendix B

Correlation functions of Langevin

forces

We will use the generalized Einstein relation to derive the correlation functions of Langevin forces. The

generalized Einstein relation for the single atom operators (e.g. �a;b = jai hbj) and the corresponding

Langevin forces (fa;b) can be written as [79]

hfa;b (t) fc;d (t0)i = hD (�a;b�c;d)�D (�a;b)�c;d � �a;bD (�c;d)iÆ (t� t0) (B.1)

Here D (�a;b) is the expression for _�a;b obtained from the Heisenberg-Langevin equation for �a;b but

without the Langevin force term. Note that the operator product �a;b�c;d can be reduced to either one

single atom operator (�a;d) if b = c or the product equals zero. The Dirac delta function in Eq. (B.1)

represents the short memory of the reservoir of vacuum modes responsible for the Langevin forces.

The single atom correlation functions can be calculated in the absence of the excitation �eld â�
because the coupling to the vacuum modes is independent of the coupling to the excitation �eld â�.
This can also be seen explicitly; we can write D (�a;b) = [�a;b; H ]=(i~) + �a;b, where the �rst term

is the Heisenberg term and �a;b represents the damping term. The interaction with the excitation

�eld is included in the Heisenberg terms in Eq. (B.1), but these terms cancel because of the equality

[�a;b�c;d; H ] = �a;b[�c;d; H ] + [�a;b; H ]�c;d.

From Eq. (B.1) we derive the following single atom correlation functions

hfFm;F 0n (t) fF 0k;F l (t
0)i = h�Fm;F liÆn;kÆ (t� t0) (B.2)

hfF 0m;F 0n (t) fF 0k;F l (t
0)i = h�F 0m;FliÆn;kÆ (t� t0)

hfFm;F 0n (t) fF 0k;F 0l (t
0)i = h�Fm;F 0liÆn;kÆ (t� t0)

hfF 0m;F 0n (t) fF 0k;F 0l (t
0)i = h�F 0m;F 0liÆn;kÆ (t� t0)

These are the only nonzero correlation functions of single atom Langevin forces, except for

hfFm;Fn (t) fFk;F l (t
0)i; which we do not need. In the �rst of the listed correlation functions in Eq.

(B.2), we assume that the excited state population is much smaller than the ground state population.

We can use the equality f
y
a;b

= fb;a in the correlation functions that involve the hermitian conjugate of

a Langevin force .

The Langevin forces in the equations for the continuous atomic operators are de�ned from the single

atom Langevin forces, in the same way as the continuous atomic operators are de�ned from the single

atom operators, that is

Fa;b (r; t) =
1

�ÆV

X
i

f i
a;b

(t) (B.3)
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The sum is over all atoms within the small volume ÆV around r. We will assume that di�erent atoms

couple to independent vacuum modes, which means that Langevin forces for di�erent atoms are uncor-

related. With this assumption we arrive at the following relations for the nonzero correlation functions

of the continuous Langevin forces

hFFm;F 0n (r; t)FF 0k;F l (r0; t0)i = ��1��Fm;F l (r) Æn;kÆ (t� t0) Æ (r� r0) (B.4)

hFF 0m;F 0n (r; t)FF 0k;F l (r0; t0)i = ��1��F 0m;Fl (r) Æn;kÆ (t� t0) Æ (r� r0)

hFFm;F 0n (r; t)FF 0k;F 0l (r0; t0)i = ��1��Fm;F 0l (r) Æn;kÆ (t� t0) Æ (r� r0)

hFF 0m;F 0n (r; t)FF 0k;F 0l (r0; t0)i = ��1��F 0m;F 0l (r) Æn;kÆ (t� t0) Æ (r� r0)

The continuous Langevin forces also ful�l Fy
a;b

= Fb;a. We can express the average continuous atomic

operators in terms of the mean amplitude of the excitation �eld if we apply the Heisenberg-Langevin

equations in steady state, and use the assumptions about weak excitation and an unpolarized ground

state. The calculations are similar to those leading to Eq. (4.19) and (4.25). After a Fourier transform

in time, we have the following expressions for the correlation functions

hFFm;F 0n (r;
)FF 0k;F l (r0;
0)i = 2���1Æn;kÆ (
 + 
0) Æ (r� r0) Æm;l (2F + 1)
�1

(B.5)

hFF 0m;F 0n (r;
)FF 0k;F l (r0;
0)i = �4���1Æn;kÆ (
 + 
0) Æ (r� r0)u� (x; y)�

(2F + 1)
�1 �

Æm;l+1 �
+
m�1�a

�
+ (z) + Æm;l�1 �

�
m+1�a

�
� (z)

	
hFFm;F 0n (r;
)FF 0k;F 0l (r0;
0)i = hFF 0l;F 0k (r;
)FF 0n;Fm (r0;
0)i�

hFF 0m;F 0n (r;
)FF 0k;F 0l (r0;
0)i = 2���1Æn;kÆ (
 + 
0) Æ (r� r0)��
Æml

4ju (x; y) j2

(2F + 1)

�
�+2
m�1�a+ (z) �a�+ (z) + ��2

m+1�a� (z) �a�� (z)
	

+ Æm+2;l

4ju (x; y) j2

(2F + 1)
�+
m+1�

�
m+1�a+ (z) �a�� (z)

+Æm�2;l
4ju (x; y) j2

(2F + 1)
�+
m�1�

�
m�1�a

�
+ (z) �a� (z)

�

B.1 Langevin forces used in the F 0
z calculations

The Langevin forces that enters into the �nal expression for ÆF̂ 0
z
in Eq. (4.29) are de�ned in Eq. (4.20),

(4.27), (4.28), and (4.30), and they are summarized here

F�
a
(
) =

2�L

c�0

FX
m=�F

��
m

Z 1

0

dz e��0z
Z Z

dxdy u� (x; y)FFm;F 0m�1 (r;
) (B.6)

F�
b
(
) = �

F
0X

m=�F 0
m��

m�1

Z 1

0

dz e��0z
Z Z

dxdy u� (x; y)FFm�1;F 0m (r;
)

Fc (
) = �

F
0X

m=�F 0
m

Z 1

0

dz

Z Z
dxdyFF 0m;F 0m (r;
)

It is now a straight forward calculation to derive the correlation functions of the Langevin forces F�
a
,

F�
b

and Fc. In the derivation we use the de�nitions in Eq. (4.1), (4.8), and (4.20) together with the

expressions in this Appendix. The nonzero correlation functions are listed here
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hF+
a (
) ;F+y

a (
0)i = hF�
a (
) ;F�y

a (
0)i =
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Æ (
 + 
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B.2 Langevin forces used in the F̂ 02
x � F̂

02
y calculations

The Langevin forces that enters into the expression for Æ(F̂ 02
x � F̂ 02

y ) are, besides F�
a in Eq. (B.6), de�ned

by

F�
d
=
�

2

F
0X

m=�F 0

p
F 0 (F 0 + 1)�m (m+ 1)

p
F 0 (F 0 + 1)� (m+ 1) (m+ 2) (B.8)
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The nonzero correlation functions involving F�
a , F

�
d
, and Fe are
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Appendix C

The ground state uctuations in

light-atom mapping

We show in this appendix that the ground state uctuations can be neglected in the calculations on

mapping of light onto atoms in chapter 4. We consider here only the ground state uctuations present

in the absence of the excitation �eld. This is in accordance with the applied perturbative approach,

where the excitation �eld is assumed to be weak. The existence of ground state uctuations for F > 0

can easily be seen from the ground state angular momentum commutator, e.g. [F̂x; F̂y] = iF̂z, and the

corresponding uncertainty relation. Only a F = 0 ground state does not have uctuations in the absence

of an excitation �eld.

The ground state uctuations are, in the perturbative limit, not correlated with the uctuations in

the excitation �eld or the uctuations caused by the coupling to the electromagnetic vacuum (represented

by Langevin forces). We can therefore calculate the e�ect of the ground state uctuations by repeating

the derivation in chapter 4, except that we now keep terms proportional to e.g. Æ~�Fm;Fn (r) and neglect

the Langevin force contribution. We can always add the Langevin contribution from chapter 4 to the

�nal result. Here we consider only the contribution to (F̂ 0
z)
2

 from the ground state uctuations. We

assume that the contribution to (F̂ 02
x � F̂ 02

y )2
 is of a similar negligible magnitude.

We �rst rewrite Eq. (4.19) to include the uctuating ground state populations and coherences

Æ~�Fm;F 0m�1 (r;
) =
�u (x; y)
(i
+ =2)

(C.1)

�
h
��
m
�a� (z) Æ~�Fm;Fm (r;
) + ��

m�2�a� (z) Æ~�Fm;Fm�2 (r;
) + ��
m
(2F + 1)

�1
Æ~a� (z;
)

i
Substituting this result into Eq. (4.17) gives for the �eld uctuations at position z

Æ~a� (z;
) = e��(
)zÆ~a� (0;
) +
3� (
)

2 (F + 1) (2F + 3)

Z
z

0

dz0e��(
)(z�z
0) (C.2)

�
Z Z

dx0dy0 ju (x0; y0) j2
�
�a� (z0) Æ��1 (r0;
) + �a� (z0) Æ��2 (r0;
)

�
Here we have introduced the uctuating atomic variables Æ��1;2, which are de�ned by

Æ��1 (r;
) =

FX
m=�F

(F + 2�m) (F + 1�m) Æ~�Fm;Fm (r;
) dxdy (C.3)

Æ��2 (r;
) = �
FX

m=�F

p
(F + 2�m) (F + 1�m) (F �m) (F � 1�m)Æ~�Fm;Fm�2 (r;
) dxdy
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We take Eq. (4.22) as our starting point for the calculation of F̂ 0
z-noise. In contrast to the derivation

in chapter 4, we now keep the lowest order contribution to Æ~�F 0m;F 0m (r;
) from the ground state

uctuations and neglect the Langevin forces. After substitution of Eq. (C.1) and the mean value in Eq.

(4.19) into Eq. (4.22) we obtain

Æ~�F 0m;F 0m (r;
) = (C.4)
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(2F + 1) (2 + i2
)
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��
We use Eq. (C.4) in the de�nition of ÆF̂ 0

z (
) in Eq. (4.21). Before the �nal integration over z we have

ÆF̂ 0
z
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F
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=
(F + 2) c

L
� (
)

n
�a�+ (z) Æ~a+ (z;
) + �a+ (z) Æ~a

y
+ (z;
)

+�a�� (z) Æ~a� (z;
) + �a� (z) Æ~a
y
� (z;
)

o
+

3c� (
) (F + 2)

( + i
) 2L (F + 1) (2F + 3)

Z Z
dxdy ju (x; y) j2

�
�a+ (z) �a�+ (z) Æ�+

3 (r;
)

+�a� (z) �a�� (z) Æ��3 (r;
)� �a+ (z) �a�� (z) Æ�4 (r;
)� �a�+ (z) �a� (z) Æ�
y
4 (r;
)

o
The uctuating atomic variables Æ��3 and Æ�4 are de�ned by

Æ��3 (r;
) =
2

F + 2

F+1X
m=�F�1

m (F + 1�m) (F �m) Æ~�Fm�1;Fm�1 (r;
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We now integrate Eq. (C.5) over z and use the complete absorption to set the upper integration limit at

in�nity. The integration is carried out by a change in the integration order, similar to Eq. (4.28). The

result is
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�o
The correlation functions for the Æ�-operators are calculated in the subsequent section. We use the

results of Eq. (C.15) to calculate the spectral density of uctuations (F̂ 0
z)
2

. We assume for simplicity
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equal photon ux in the two circularly polarized components; �+ = �� = �=2. The derivation is lengthy

but trivial, with the result�
F̂ 0
z

�2


=

(F + 2)
2

2 +
2

�
Ŝinz
�2



(C.8)

+
(F + 2)

2
�

4 (2 +
2)

s0

(1 + 4
2=2) 
2

F
�
158F 2 + 477F + 394

�
35 (F + 1) (F + 2) (2F + 3)

The �rst term is the uctuations in the excited state spin component induced by the uctuations in the

excitation �eld; the same term as in Eq. (4.31). The second term is the contribution from the ground

state uctuations. We have introduced the saturation parameter (see page 9) s = ��0=(�w
2) with 2w

as the diameter of the Gaussian mode excitation �eld (Eq. (3.3)) and �0 = (2F +3)�2=2�(2F +1) as the

resonant absorption cross section, see Eq. (6.16). 0 is de�ned in the following section as the bandwidth

of ground state uctuations. The �rst factor in the second term is equal to the �rst term for a coherent

state excitation �eld. The last factor in the second term is zero at F = 0, and it approaches 79=35 ' 2:3

asymptotically for large F: Thus, we conclude that the contribution from the ground state uctuations

can be neglected if the second factor in the second term is much smaller than one, i.e.

s0

(1 + 4
2=2) 
2
� 1 (C.9)

The typical parameters are s . 0:1 (weak excitation), and 
= ' 0:5. Hence, we can safely neglect the

ground state uctuations if 0 � , i.e. if the bandwidth of ground state uctuations is much smaller

than the bandwidth of excited state uctuations; a requirement which is easily ful�lled. If s � 1, we

can neglect the ground state uctuations when the variance (�F̂ 0
z)
2 is derived by integrating (F̂ 0

z)
2

 over


. This is easily seen when the full expression for W (
;
0) in Eq. (C.14) is used in the correlation

functions.

Note that the contribution from the ground state uctuations in Eq. (C.8) is quadratic in the photon

ux of the excitation �eld. In the experiments we �nd (F̂ 0
z
)2
 to be linear in the number of excited state

atoms, N 0 = �=. This also shows that the ground state uctuations play no role in the excited state

uctuations.

C.1 Correlation functions of ground state variables

We �rst calculate the equal time correlation functions for the uctuating part of the ground state popu-

lations and coherences. We have from the de�nition in Eq. (4.3)Z
V

d3r0hÆ~�Fi;Fj (r) Æ~�Fm;Fn (r
0)i =

1

ÆV �2

X
l;k


�
~�lF i;F j � ��lF i;F j

� �
~�kFm;Fn � ��kFm;Fn

��
(C.10)

The sum over l is a sum over all single atom operators for the atoms within the small volume ÆV around

r. The sum over k is a sum over all the atoms in the volume V � ÆV . We assume that the ground state

uctuations for di�erent atoms are uncorrelated, which for l 6= k gives
�
~�l
F i;F j

� ��l
F i;F j

� �
~�k
Fm;Fn

� ��k
Fm;Fn

��
=

�
~�l
F i;F j

� ��l
F i;F j

�� 
�
~�k
Fm;Fn

� ��k
Fm;Fn

��
= 0 (C.11)

For the remaining terms with l = k we haveZ
V

d3r0hÆ~�Fi;Fj (r) Æ~�Fm;Fn (r
0)i =

1

ÆV �2

X
l


�
~�l
F i;F j

� ��l
F i;F j

� �
~�l
Fm;Fn

� ��l
Fm;Fn

��
(C.12)

=
1

�

�
(2F + 1)

�1
Æj;mÆi;n � (2F + 1)

�2
Æi;jÆm;n

�
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In the last equality we used the "unpolarized ground state"-assumption; ��Fm;Fn = (2F + 1)
�1
Æm;n. We

now assume that the correlations decay exponentially in time, i.e.

hÆ~�Fi;Fj (r; t) Æ~�Fm;Fn (r
0; t0)i = hÆ~�Fi;Fj (r) Æ~�Fm;Fn (r

0)ie�0jt�t
0j (C.13)

=
1

�

�
(2F + 1)

�1
Æj;mÆi;n � (2F + 1)

�2
Æi;jÆm;n

�
Æ (r� r0) e�0jt�t

0j

In the frequency domain we �nd after a Fourier transform

hÆ~�Fi;Fj (r;
) Æ~�Fm;Fn (r
0;
0)i =

1

�

�
(2F + 1)

�1
Æj;mÆi;n � (2F + 1)

�2
Æi;jÆm;n

�
Æ (r� r0)W (
;
0)

(C.14)

W (
;
0) =
2�10

1 + 
2=20
2�Æ (
 + 
0) '

4�0


2
Æ (
 + 
0)

The last approximation is valid for 0 � 
. In the limit of unperturbed or isolated atoms in the ground

state we expect 0 to approach zero, i.e. in�nite "lifetime". We can therefore assume 0 � 
 to be

ful�lled at typical detection frequencies 
. With Eq. (C.14) we can calculate the correlation functions

involving the Æ�-operators de�ned in the previous section. The calculation is trivial but lengthy with

the following �nal result for the nonzero correlation functions

hÆ��1 (r;
) Æ��1 (r0;
0)i =
4F (F + 1) (2F + 3) (8F + 11)

45

Æ (r� r0)

�
W (
;
0) (C.15)

hÆ��1 (r;
) Æ��1 (r0;
0)i =
�2F (F + 1) (2F + 3) (14F + 23)

45

Æ (r� r0)

�
W (
;
0)

hÆ��2 (r;
) Æ��2 (r0;
0)i =
2F (F + 1) (2F � 1) (2F + 3)

15

Æ (r� r0)

�
W (
;
0)

hÆ��3 (r;
) Æ��3 (r0;
0)i =
4F (F + 1) (2F + 3)

�
194F 2 + 549F + 349

�
315 (F + 2)

Æ (r� r0)

�
W (
;
0)

hÆ��3 (r;
) Æ��3 (r0;
0)i =
4F (F + 1) (2F + 3)

�
82F 2 + 381F + 461

�
315 (F + 2)

Æ (r� r0)

�
W (
;
0)

hÆ�4 (r;
) Æ�
y
4 (r

0;
0)i = hÆ�y4 (r;
) Æ�4 (r
0;
0)i

=
8F (F � 1) (F + 1) (2F � 1) (2F + 3)

105 (F + 2)

Æ (r� r0)

�
W (
;
0)

hÆ��3 (r;
) Æ��1 (r0;
0)i = hÆ��1 (r;
) Æ��3 (r0;
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�4F (F + 1) (2F + 3) (14F + 17)

45

Æ (r� r0)

�
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0)
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) Æ��1 (r0;
0)i = hÆ��1 (r;
) Æ��3 (r0;
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�4F (F + 1) (2F + 3) (10F + 19)
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Appendix D

Proof of entanglement in spin

squeezed states

We prove in this appendix that the spin squeezing de�nition in Eq. (5.3) can only be ful�lled for an

entangled ensemble of spin-1/2 subsystems. The proof, which is unpublished, is supplied by I. Cirac

[88].

We �rst assume that we have an ensemble of N spin-1/2 systems that are disentangled (i.e. without

entanglement). We show that the collective spin cannot ful�l Eq. (5.3) under this assumption. We

therefore conclude that Eq. (5.3) can only be ful�lled for an entangled ensemble of spin-1/2 systems.

We de�ne a disentangled or separable state as a state with a density matrix that can be written as

a direct product of density matrices for each of the N spin-1/2 systems [110]

� =
X
i

pi �
i; �i = �i1 
 �i2 
 � � � 
 �iN (D.1)

The sum over i includes an average over a statistical ensemble with
P

i
pi = 1 and pi � 0 for all i. Each

of the density matrices �i is a direct product of the reduced density matrices for each spin-1/2 subsystem.

The mean value of an operator Ô is given by hÔi = Tr
�
�Ô
�
=
P

i
pi hÔii =

P
i
piTr(�

iÔ).

We de�ne the x-axis to be parallel to the mean collective spin hŜi, and we take the z-component

of the collective spin to be the orthogonal component with the smallest variance, i.e. Ŝ? = Ŝz . We

introduce a new set of operators for the individual spins with zero mean values; Æŝnz = ŝnz � hŝnz i. The
linearity in the de�nition of the collective spin gives ÆŜz =

P
N

n=1 Æŝ
n
z
. We can now �nd a lower limit for

the Ŝz variance

�
�Ŝz

�2
= hŜ2

z
i � hŜzi2 = hÆŜ2

z
i =

NX
n;m=1

hÆŝn
z
Æŝm

z
i =

NX
n=1

hÆŝn 2
z
i+

X
n6=m

hÆŝn
z
Æŝm

z
i (D.2)

1
=

NX
n=1

hÆŝn 2z i+
X
i

pi

 X
n;m

hÆŝnz iihÆŝ
m

z ii �
NX
n=1

hÆŝnz i
2
i

!

=
X
i;n

pihÆŝn 2z ii +
X
i

pihÆŜzi2i �
X
i;n

pihÆŝnz i
2
i

2

�
X
i;n

pi
�
hÆŝn 2

z
ii � hÆŝnz i

2
i

�
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=
X
i;n
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�
hŝn 2
z
ii � hŝnz i

2
i

� 3
=
X
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pi

�
1

4
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z
i2
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�
4
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i;n
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�
hŝn
x
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+ hŝn

y
i2
i

�

=
1

N

0@X
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pi

1A0@X
i;n

pihŝnxi
2
i

1A+
1

N

0@X
i;n

pi

1A0@X
i;n

pihŝny i
2
i

1A
5

�
1

N

0@X
i;n

pihŝnxii

1A2

+
1

N

0@X
i;n

pihŝny ii

1A2

=
hŜxi2 + hŜyi2

N
=
hŜxi2

2S

The less trivial steps in the derivation above are now explained in detail.

� 1. It follows from the direct product expression for �i that the mean value of the product of

operators belonging to di�erent subsystems can be written as the product of the mean values;

i.e. hÆŝnz Æŝmz ii = hÆŝnz iihÆŝmz ii for all m 6= n. This factorization is identical to the de�nition of

uncorrelated random variables in classical probability theory. We cannot use this factorization

as a de�nition of quantum correlations since for a statistical mixture we can have hÆŝnz Æŝmz i 6=
hÆŝn

z
ihÆŝm

z
i because of classical correlations. An example of classical correlations without

entanglement is found in the statistical mixture of the two product states j"i j#i and j#i j"i.

2. We simply drop the nonnegative sum in the middle. The inequality is an equality in the

absence of the statistical average.

3. For any spin-1/2 system we have hŝn 2
z
ii = 1=4.

4. Consider the scalar product of the average (with respect to �i) of spin number n with itself;

ĥsnii �ĥsnii = hŝnxi2i+hŝny i2i+hŝnz i2i . The scalar product is independent of the coordinate system,
and in the system with the x0 axis parallel to the mean spin we have ĥsnii �ĥsnii = hŝn

x0
i2
i
= 1=4.

Consequently, 1=4� hŝn
z
i2
i
= hŝn

x
i2
i
+ hŝn

y
i2
i
.

5. We apply the Cauchy/Schwarz' inequality; x2y2 � (x �y)2 for any vectors x;y 2 RN . We use

the inequality with xi;n =
p
pi and yi;n =

p
pihŝnxii.

This ends our proof, and we conclude that a squeezed spin state ful�lling the de�nition in Eq. (5.3)

is composed of entangled spin-1/2 systems.



Appendix E

The uncertainty in a spectral density

measurement

In many of the experiments presented in this thesis we use a spectrum analyzer (SA) to measure the

noise or the uctuations in a photocurrent iin at a given frequency 
. The noise at the frequency 


is quanti�ed by the spectral density (iin)
2

, see Eq. (6.21). The main contributions to (iin)

2

 in the

spin noise experiments are the fundamental quantum noise of the light probe and the atomic noise,

which is transferred to the probe by the atom-light interaction. We usually do not care about how the

SA measures the spectral density. However, this is important in the �nal spin squeezing experiment in

chapter 8. In this experiment our signal is a change in the atomic noise contribution, which we derive

from spectral density measurements. The uncertainty in the spin squeezing measurement depends on

the uncertainty in the (iin)
2

 measurement. In other words, the signal-to-noise ratio (S/N) in our spin

squeezing experiment depends on the noise of the "noise measurement". The purpose of this appendix

is to derive an expression for this "noise of noise" which we can compare with the estimated standard

error in the spin squeezing measurement.

In Fig. E.1 we show a schematic diagram of a spectrum analyzer [48, 111, 62]. The input signal iin
from the photodetectors is divided into two paths. In one path we multiply the signal iin by a signal that

oscillates as cos (
t). After the multiplication, we �lter the product in the band pass �lter (BPF). We

consider a BPF which is centered at zero frequency. In most commercial spectrum analyzers the BPF is

centered at a large frequency [111], but this is due to technical reasons, and it is of no importance in the

present discussion. Thus, the BPF is here a low-pass �lter with a resolution bandwidth �RB . The �ltered

signal is subsequently squared and added to the other component, which was multiplied by a sin (
t)

signal. Finally, the video �lter (VF) averages the signal for a time set by the inverse video bandwidth

��1
V B

. For a long averaging time (�V B � �RB), the output signal iout is proportional to the spectral

density (iin)
2


 integrated over the resolution bandwidth �RB . This is quite easy to verify for any input

signal that can be written as a Fourier transform

iin (t) =

Z 1

0

[is (

0) cos (
0t) + ic (


0) sin (
0t)] d
0 (E.1)

In the diagram in Fig. E.1, the BPF and the VF are both low-pass �lters. The di�erent e�ects of the

two �lters are due to the di�erent positions in the circuit relative to the squaring device.

The home-made SA, which we use in chapter 3 and 8 to actively stabilize the relative phase between

the squeezed vacuum �eld and the overlapped coherent state, is based on the same principles as in

Fig. E.1. We do not explicitly have a BPF in the home-made SA. The resolution bandwidth of the

measurement is set by the 50kHz bandwidth of the electronic squaring device. Furthermore, the home-

made SA includes only one quadrature (or one path in Fig. E.1). This is suÆcient when the input signal

is random noise without any phase information.
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Figure E.1: Schematic diagram of a spectrum analyzer. The input signal iin is divided into two paths.

The upper path is multiplied by a signal oscillating as cos (
t). The signal is subsequently �ltered by the

band pass �lter (BPF), which is centered at zero frequency and has a resolution bandwidth of �RB . The

�ltered signal is squared and added to the other component which was multiplied by a sin (
t) signal.

The video �lter �nally averages the signal for a time given by the inverse video bandwidth ��1
V B

. The

output signal iout is proportional to the spectral density (iin)
2

 integrated over the resolution bandwidth

�RB .

We now consider the situation where the input iin consists of random Gaussian noise which is delta-

correlated in time. This is the situation when iin is the photocurrent produced by detection of a shot

noise limited (coherent) state of light. We limit the discussion to include only one quadrature; the two

quadratures of the noisy input are uncorrelated and contribute with the same amount of signal. The

mixer converts the noise at frequency 
 into low frequency noise around zero frequency. In this way

we limit the detection to the uctuations around 
, and we avoid the low frequency uctuations in iin,

which may be predominated by classical/technical noise. The BPF is a low-pass �lter with a bandwidth

�RB < 
. Hence, the BPF averages the uctuations at frequency 
 for a time ��1
RB

. The probability for

observing a signal after the BPF in an interval dx around x is now given by the Gaussian distribution

fBPF (x) dx =
1

p
2��

exp
�
�x2=2�2

�
dx (E.2)

The average signal for the random Gaussian noise is zero, but the variance of the signal is nonzero.

We expect the variance to be linear in the inverse averaging time of the BPF, i.e. �2 = �20�RB , because

the signal before the BPF is delta-correlated in time. The interesting parameter is �20 , which represents

the noise in the input signal per unit bandwidth. We can extract �20 by squaring the signal. That

converts the distribution in Eq. (E.2) into

fx2 (x) dx =

�
fBPF (

p
x) 1p

x
dx for x > 0

0 for x � 0
(E.3)

The average and the variance for a stochastic variable Xx2 with a fx2 distribution are given by

hXx2i = �2 = �20�RB (E.4)

Var (Xx2) = 2�40�
2
RB

Thus, the average of the signal after the squaring device holds information about �0. However, this

signal is quite noisy with a standard deviation that is larger than the mean value. The VF averages

the output of the squaring device for a time ��1
V B

. The signal after the squaring device changes on a
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time scale set by the inverse bandwidth of the �rst �lter, ��1
RB

. Hence, the VF e�ectively averages over

�RB=�V B independent measurements of the signal after the squaring device. The output of the VF can

therefore be described by the stochastic variable Y

Y =
�V B

�RB

�RB=�V BX
i=1

Xx2;i (E.5)

Xx2;i are independent stochastic variables with the same distribution as Xx2 . The average and the

variance of the SA output are then given by

hY i = �20�RB (E.6)

Var (Y ) = 2�40�RB�V B

The S/N for a noise or spectral density measurement on the SA is now given by1

hY ip
Var (Y )

= ksc

r
�RB

�V B
(E.7)

We see that the S/N is increased when �RB is increased. In other words, the S/N is increased when we

measure the uctuations in a larger frequency interval. The S/N is also increased when �V B is reduced,

that is, when the signal is averaged for a longer time. This scaling becomes invalid when �V B approaches

�RB ; a video bandwidth comparable to or larger than the resolution bandwidth does not make much

sense according to the derivation above. The scaling factor ksc in Eq. (E.7) depends on the precise

de�nitions of the bandwidths. The derivation above gives ksc = 1 when the contributions from both

quadratures are added, but a careful measurement should be used to establish the scaling factor for

the spectrum analyzer applied in the experiment. Such a measurement for the lock-in detection scheme

used in chapter 8 (Fig. 8.2) gives ksc = 1:0. Furthermore, the predicted scaling with �RB and �V B is

con�rmed experimentally.

1Note that the "signal" in S/N is actually the noise of the SA input, whereas the "noise" in S/N is the noise of the noise

of the input.
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