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Abstract

Convective cold pools (CPs) result from convective downdrafts that are hori-
zontally deflected when reaching Earth’s surface. While spreading, CPs influ-
ence the distribution of low-level moisture and can trigger new convection by
lifting warmer ambient air. Organizing convection, CPs are directly linked to
extreme events such as mesoscale convective systems and thus crucial for the
understanding of the underlying dynamics. Despite the socio-economic im-
portance of such weather extremes, the role of CPs in convective organization
is not yet sufficiently understood.

One of the main challenges is to accurately track dynamic CP gust fronts
and link them to triggered convection. Although idealized models help us
continuously disentangle the underlying mechanisms, they have so far been
unable to capture the causal chains of CPs and lack observational benchmarks.
Especially over tropical land, where CPs are ubiquitous, CP observations are
mostly limited to event-based case studies due to the lack of relevant high-
resolution data.

The goal of the present thesis is to (i) identify a detectable signature of CPs
in geostationary satellite data, which is globally available with good spatio-
temporal resolutions, and (ii) devise a corresponding approach for detecting
CP regions.

In manuscript I, we address (i) by analyzing the space-borne signatures of
4218 CPs which we identified from almost 43 years of high-resolution near-
surface data collected from twelve automatic weather stations spanning equa-
torial Africa. The identified CPs are accompanied by a mean decrease in
satellite-derived brightness temperature of around 30 K. Moreover, in the ma-
jority of cases, CP gust fronts coincide with maximum brightness temperature
decrease rates.

Modern deep learning methods can learn spatial patterns at various scales,
making them well-suited to detect the identified CP signatures in satellite im-
agery and address (ii). However, their training requires substantial amounts of
annotated ground truth data, which, for satellite data, can only be generated
manually. To facilitate the generation of annotated data, we thus simulate
cloud and rainfall fields based on different environmental conditions and au-
tomatically annotate the simulated scenes using a novel CP detection and
tracking algorithm (CoolDeTA), presented in manuscript II. As CoolDeTA
utilizes both thermodynamic and dynamic variables to detect and track CPs,
the boundaries of the identified CPs align well with satellite-observable cloud
signatures.

Using the annotated simulation scenes, we train convolutional neural net-
works for the segmentation of CPs in cloud and rainfall fields in manuscript
III. Applied to an unknown test set, the trained neural networks achieve pixel
accuracies of around 94% and successfully detect ≥ 83% of the CPs. In an
additional case study, based on a simulation setup with realistic boundary
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conditions for a day over West Africa, the developed method confirmed its
promising performance, further demonstrating its potential with respect to
real satellite data. In the future, our method may open for large-scale obser-
vational studies of mesoscale CP dynamics and convective organization.
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Dansk Resumé

Konvektive cold pools (CPs) opst̊ar fra konvektive nedstigninger, der horison-
talt afbøjes, n̊ar de n̊ar Jordens overflade. Mens de spreder sig, p̊avirker
CPs fordelingen af lavniveau-fugtighed og kan udløse ny konvektion ved at
løfte varmere omgivende luft. Ved at organisere konvektionen er CPs direkte
knyttet til ekstreme begivenheder s̊asom mesoskale konvektive systemer og er
derfor afgørende for forst̊aelsen af de underliggende dynamikker. P̊a trods
af den socioøkonomiske betydning af s̊adanne vejrudsving er rollen af CPs i
konvektiv organisation endnu ikke tilstrækkeligt forst̊aet.

En af de største udfordringer er at nøjagtigt spore dynamiske CP-gustfronte
og forbinde dem til udløst konvektion. Selvom idealiserede modeller hjælper
os med kontinuerligt at adskille de underliggende mekanismer, har de hidtil
været ude af stand til at fange CPs årsagssammenhænge og mangler obser-
vationelle benchmarks. Især over tropiske omr̊ader, hvor CPs er udbredte,
er CP-observationer primært begrænset til hændelsesbaserede casestudier p̊a
grund af manglen p̊a relevant højopløsningsdata.

Målet med nærværende afhandling er at (i) identificere en p̊aviselig sig-
natur af CPs i geostationære satellitdata, som er globalt tilgængelige med gode
rumlige og tidsmæssige opløsninger, og (ii) udvikle en tilsvarende tilgang til
at detektere CP-regioner.

I manuskript I adresserer vi (i) ved at analysere de rumfartssignaturer af
4218 CPs, som vi identificerede fra næsten 43 års højopløselige nær-overfladedata
indsamlet fra tolv automatisk vejrstationer spredt ud over Ækvatorialafrika.
De identificerede CPs ledsages af et gennemsnitligt fald i satellitbaseret lysstyrke
temperatur p̊a ca. 30 K. Desuden falder CP-gustfronte i flertallet af tilfældene
sammen med maksimale fald i lysstyrke temperatur.

Moderne deep learning-teknikker kan lære rumlige mønstre i forskellige
skalaer, hvilket gør dem velegnede til at detektere de identificerede CP-signaturer
i satellitbilleder og adressere (ii). Dog kræver deres træning betydelige mængder
af annoterede ground truth-data, som for satellitdata kun kan genereres manuelt.
For at lette genereringen af annoterede data simulerer vi derfor sky- og nedbørsfelter
baseret p̊a forskellige miljømæssige forhold og annoterer automatisk de simulerede
scener ved hjælp af en ny CP-detektions- og sporing-algoritme (CoolDeTA),
præsenteret i manuskript II. Da CoolDeTA udnytter b̊ade termodynamiske og
dynamiske variabler til at detektere og spore CPs, stemmer grænserne for de
identificerede CPs godt overens med satellit-observerbare sky-signaturer.

Ved at anvende de annoterede simulations-scener træner vi konvolutionelle
neurale netværk til segmentering af CPs i sky- og regnmarkeder i manuskript
III. Anvendt p̊a et ukendt testsæt opn̊ar de trænede neurale netværk pix-
elnøjagtigheder p̊a ca. 94% og detekterer succesfuldt ≥ 83% af CPs. I
et yderligere case-studie, baseret p̊a en simulationsopsætning med realistiske
grænsebetingelser for en dag over Vestafrika, bekræftede den udviklede metode
sin lovende præstation og demonstrerede yderligere dens potentiale med hen-
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syn til ægte satellitdata. I fremtiden kan vores metode åbne for storskala
observationelle studier af mesoskale CP-dynamikker og konvektiv organisa-
tion.



6

Preface

This thesis represents the culmination of three years of dedicated research
conducted between March 2021 and March 2024 at the Leibniz Centre for
Tropical Marine Research in Bremen. Throughout this journey, I was enrolled
at the PhD School of SCIENCE at the University of Copenhagen.

Doctoral candidate and author

Jannik Höller
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Chapter 1

Introduction

High-impact weather events, such as extreme rainfall, are often associated
with organized convective systems (Biagioli & Tompkins, 2023). Due to global
warming, the frequency and intensity of these events have risen over recent
decades (De Paola et al., 2014; Klein et al., 2021; H. Lee et al., 2023; Taylor
et al., 2017, 2018) and are projected to continue increasing in the 21st century
(Taylor et al., 2017). Despite the significant socio-economic consequences
associated with such extreme events, the underlying dynamics, especially the
mesoscale dynamics of thunderstorm outflows and their role in convective
organization, are not yet fully understood.

Over the last decades, numerous studies, primarily relying on idealized
simulations, have helped disentangle the involved mechanisms and have con-
firmed the importance of thunderstorm outflows — often referred to as “con-
vective cold pools” (CPs) — in organizing and initiating convection (Böing,
2016; Droegemeier & Wilhelmson, 1985; Feng et al., 2015; Haerter et al.,
2019; Jeevanjee & Romps, 2015; B. Meyer & Haerter, 2020; Moncrieff & Liu,
1999; Moseley et al., 2016; Schlemmer & Hohenegger, 2014; Tompkins, 2001;
Weisman et al., 1988). However, even in idealized simulations, where all rele-
vant diagnostic variables are available across the entire simulation domain at
high-resolution, discerning the causal chains of convective events proves chal-
lenging. A fundamental challenge in establishing meaningful connections be-
tween convective events lies in accurately tracking CP gust fronts throughout
multiple stages of their life cycle, despite their evolving characteristics. Fur-
thermore, idealized simulation studies often lack observational benchmarks,
primarily due to the limited availability of relevant high-resolution data. This
lack of benchmark observations is particularly pronounced for tropical conti-
nents, although organized convective systems contribute substantially to the
annual precipitation in these regions (Fink et al., 2006; Laurent et al., 1998;
Maranan et al., 2018; Mathon & Laurent, 2001; Mathon et al., 2002) and play
a significant role in natural disasters, such as intense flooding events (Atiah
et al., 2023; De Paola et al., 2014).

13



14 CHAPTER 1. INTRODUCTION

Usually, the identification of CP gust fronts from observations involves
screening near-surface time series of relevant meteorological variables (de Szoeke
et al., 2017; Emmel et al., 2010; Kirsch et al., 2021; Kruse et al., 2022; Redl
et al., 2015; Vogel et al., 2021; Zuidema et al., 2017) or manually inspect-
ing radar images (Borque et al., 2020; Brandes, 1977; Engerer et al., 2008;
Wakimoto, 1982). However, due to the limited availability of such data, par-
ticularly over tropical continents, neither of these approaches is suitable for
global-scale investigations into continental CPs and their impact on convec-
tive organization. Currently, only satellite data offers the potential for such
global-scale investigations.

Recent studies have highlighted the capability of satellite data for detecting
CPs (Caton Harrison et al., 2021; Garg et al., 2020). Yet, the proposed
methods rely on outflow signatures confined to arid regions (Caton Harrison et
al., 2021) or oceans (Garg et al., 2020), making them inapplicable over tropical
continents. To achieve global-scale detection of CPs over tropical continents,
it is necessary to identify and utilize alternative space-borne signatures.

1.1 Objectives

As mentioned before, the mesoscale dynamics of CPs and their role in convec-
tive organization are not yet fully understood. To enhance our comprehension
of the underlying mechanisms, new approaches for detecting and tracking CPs
are required. Of particular importance are space-borne approaches applicable
over tropical continents.

Accordingly, the first goal of the present thesis is to explore the space-
borne patterns associated with CPs and identify a detectable signature. Due
to their relatively high spatio-temporal resolution and independence from so-
lar reflections, the present thesis focuses on brightness temperatures from
geostationary satellites.

The second goal of this thesis is to devise an approach for detecting CPs
in satellite-observable data, leveraging the identified signature. For a given
scene, the desired output is a binary image where each pixel is either black if
it belongs to a CP, or white if it does not, enabling the subsequent tracking
of spatio-temporal relationships among convective events.

The subsequent chapters of this thesis are structured to provide an un-
derstanding of key elements pertinent to this PhD project. Chapter 2 delves
into the fundamentals of atmospheric convection and convective organization,
with a particular focus on the role of cold pools and their signatures in obser-
vational data. Chapter 3 presents an introduction to satellite observations in
the context of earth observation. Chapter 4 offers an overview of image seg-
mentation methods and their applications in earth observation, particularly in
atmospheric science, with a special emphasis on artificial neural networks due
to their significance for the present thesis. Chapter 5 is dedicated to the pre-
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sentation of the manuscripts authored by the PhD candidate, showcasing the
culmination of the research efforts. Finally, Chapter 6 encapsulates the con-
clusions drawn from the PhD project, featuring key findings, their discussion,
and outlining future perspectives.





Chapter 2

Convection and Convective
Organization

Most concepts addressed in this thesis, such as CPs, are linked with the
broader topic of convection and its organization, which will be discussed in
more detail in the following chapter. In this thesis, “convection” specifically
refers to atmospheric convection, given its focus on atmospheric phenomena.

In atmospheric science, convection refers to the vertical movement of air
caused by force imbalances (Markowski & Richardson, 2010). To highlight
relevant forces, the vertical momentum equation for an inviscid fluid

dw

dt
= −1

ρ

∂p

∂z
− g , (2.1)

where w represents the vertical velocity component, ρ denotes air density,
p is pressure and g is the gravitational acceleration, can be rewritten as
(Markowski, 2007)

dw

dt
= −1

ρ

∂p′

∂z
−B, (2.2)

where primes indicate deviations from a hydrostatic reference state. The first
term on the right hand side, −1

ρ
∂p′

∂z , denotes the vertical perturbation pressure
gradient force, while B represents the buoyancy force

B = −g
ρ′

ρ
. (2.3)

A parcel of air less dense than its environment experiences a positive buoyancy
force which gives rise to a vertical ascent unless it is compensated by other
forces. Based on this vertical movement, convection drives the fluid toward a
stable configuration in which it is neutrally stratified again (Stevens, 2005).
This buoyancy-driven type of convection is sometimes referred to as “free con-
vection,” contrasting with vertical fluid flows driven by dynamic perturbation
pressure gradients, known as “forced convection” (Markowski & Richardson,
2010).
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18 CHAPTER 2. CONVECTION AND CONVECTIVE ORGANIZATION

2.1 Parcel Theory

A straightforward approach to assess the static stability of an observed strat-
ification is the parcel theory. By assuming that the density of an imagined
parcel without dimensions is unaffected by pressure perturbations, water va-
por, and liquid water (Markowski & Richardson, 2010), Eq. 2.2 reduces to

dw

dt
= B , (2.4)

and Eq. 2.3 becomes

B = g
T − T

T
, (2.5)

where T represents the air temperature of the parcel and T is the environ-
mental air temperature.

To assess the static stability of an air layer in an observed atmospheric tem-
perature profile, the associated rate at which the temperature decreases with
altitude, known as the “lapse rate,” can be compared against the lapse rate
Γp ≡ ∂zT an air parcel would have if lifted adiabatically. For sub-saturated
(dry) air, Γp equals the dry adiabatic lapse rate, Γd, given by (Markowski &
Richardson, 2010)

Γd ≡ −∂T

∂z
=

g

cp
≈ 9.8K km−1 , (2.6)

where cp is the specific heat at constant pressure. For saturated (moist) air,
Γp equals the moist adiabatic lapse rate, Γm, which is smaller than Γd due to
the latent heat associated with condensing water vapor. The level at which
the air parcel becomes fully saturated, i.e., the level at which the parcel lapse
rate changes from Γd to Γm, is referred to as the lifting condensation level
(LCL). An observed environmental lapse rate, γ, can be considered stable
with respect to infinitesimal vertical displacements if γ < Γp and unstable if
γ > Γp.

Apart from comparing the local environmental lapse rate γ to Γp, the
stability of an observed atmospheric temperature profile can be assessed by
determining the convective available potential energy (CAPE) and the con-
vective inhibition (CIN) as

CAPE =

∫ EL

LFC
B dz , (2.7)

CIN = −
∫ LFC

0
B dz , (2.8)

where LFC denotes the level of free convection, after which the parcel becomes
buoyant and ascends vertically, and EL is the equilibrium level at which the
parcel is no longer buoyant. While CAPE represents the potential energy that
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is released and converted to kinetic energy during the ascent of the parcel from
the LFC to the EL, CIN represents the work required to initially lift the parcel
from the surface (z = 0) to the LFC (Markowski & Richardson, 2010). It can
be shown (Markowski, 2007) that the maximum updraft velocity is linked to
CAPE by

wmax =
√
2CAPE . (2.9)

Due to the assumptions involved, wmax can be considered an upper limit for
free convection, sometimes referred to as the “thermodynamic speed limit”
(Markowski, 2007). Large CAPE values ≳ 2500 J kg−1 are often associated
with severe storms (Markowski & Richardson, 2010).

Fig. 2.1 visualizes an example of a convective event observed in Niamey,
Niger (magenta marker in Fig. 2.1a) on May 21, 2023. At 00:00 UTC, the
sounding (Fig. 2.1b) featured a large CIN of 273 J kg−1 and the correspond-
ing satellite-derived 10.8µm brightness temperatures (Fig. 2.1c) confirm that
mainly stratiform clouds were present, indicative of stable conditions. How-
ever, after sunrise, the 2-m air temperature increased due to solar radiation
(Fig. 2.1g), completely eroding CIN by 12:00 UTC, with CAPE almost dou-
bling to 2955 J kg−1. The corresponding satellite image reveals that by that
time, most of the stratiform clouds have vanished, while the first convective
cells started to develop (Fig. 2.1e). Then, after reaching its peak at around
15:00 UTC, the temperature decreased by approximately 8 °C between 16:00
UTC and 19:00 before stabilizing again (Fig. 2.1g). The relatively rapid cool-
ing compared to the second half of the previous day is most likely associated
with the evaporation of precipitation from the convective event (labeled “A”
in Fig. 2.1f), which formed close to Niamey. Also the second, more rapid
temperature drop of 7 °C observed between 03:00 UTC and 04:00 UTC on the
subsequent night (Fig. 2.1g) can be attributed to a convective system, in this
case, the one labeled “B” in Fig. 2.1f.

2.2 Convective Cold Pools

As observed for the example event presented in the previous section, con-
vective events cool the air when portions of their precipitation evaporate in
a sub-saturated sub-cloud layer. Similar to radiative heating, which induces
buoyancy and initiates convective updrafts, this cooling process makes the air
negatively buoyant. Coupled with the drag of the precipitation, the negative
buoyancy causes the air to descend (Byers & Braham, 1949). Upon reaching
Earth’s surface, such a convective downdrafts is horizontally deflected. The
resulting cold outflow is known as a cold dome (Byers & Braham, 1949) or a
cold pool (Miller & Betts, 1977). Confusion with radiatively cooled pools of
air can be avoided by adding a term such as “convective” or “precipitation-
induced”, i.e., convective cold pool (CP).
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Figure 2.1: Convective event over Niamey, Niger. a, Map of Africa indicat-
ing the location of Niamey and the region of interest (black rectangle). b,
Sounding from Niamey on May 21, 2023, at 00:00 UTC. Profiles for dewpoint
temperature (blue), temperature (black), and temperature of adiabatic par-
cel ascent (green) are shown. CAPE and CIN values from NOAA (2024) are
indicated in the upper right corner. Dewpoint temperature and temperature
data from University of Wyoming (2024). c, Satellite-derived 10.8µm bright-
ness temperatures (see Section 3 for definition) for the region of interest on
May 21, 2023, at 00:00 UTC; computed from Meteosat Second Generation 0°
effective radiances, provided by EUMETSAT. d–e, analogous to (b) and (c)
but for 12:00 UTC. f, analogous to (c) but for 18:00 UTC. g, Hourly 2-m air
temperatures for Niamey from May 20 to May 22, 2023; data from Meteostat
(2024).
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Driven by horizontal pressure gradients, the cold outflow behaves as a den-
sity or gravity current and intrudes into the warmer ambient air (Charba, 1974;
Goff, 1976; Mueller & Carbone, 1987; J. E. Simpson, 1969; Wakimoto, 1982)
(Fig. 2.2). Similar to density currents, fully developed (mature) CPs feature a
head, which can reach several kilometers in height, and a smaller body behind
it (Charba, 1974; Mahoney, 1988). The CP head is associated with peak wind
gusts (Charba, 1974) and followed by a turbulent wake (Shapiro et al., 1985)
resulting from backward-propagating Kelvin-Helmholtz instabilities at its top
(Mueller & Carbone, 1987). The leading edge of the CP is usually referred
to as the gust front due to the strong wind gusts associated with it (Charba,
1974).

The collision of the gust front with ambient air causes a nonhydrostatic
pressure rise ahead of it (Wakimoto, 1982), forcing the ambient air to ascend,
often generating updrafts exceeding 6m s−1 (Goff, 1976). In the formative
stage, when the CP gust front is still close to the convective core of its parent
thunderstorm, triggered updrafts can support the updraft fueling the parent
system (Goff, 1976). As soon as the CP gust front has traveled away from
the convective core, the triggered updraft is no longer coupled to the parent
system but creates a secondary updraft. Depending on the properties of the
CP as well as the environmental conditions, such an updraft can overcome
an existing CIN and trigger new convection (Addis et al., 1984; Droegemeier
& Wilhelmson, 1985; Shapiro et al., 1985). As the CP matures and loses
momentum, the velocity of the triggered updraft tends to decrease (Goff,
1976). Upon dissipation of the parent system, the CP enters its final stage,
where it is no longer supplied with cold air. For cylindrical CPs, Romps and
Jeevanjee (2016) analytically derived that the maximum CP radius is relatively
insensitive to its initial conditions, typically reaching around 14 times its initial
radius, while its duration can vary over multiple orders of magnitude.

2.2.1 The Role of Cold Pools in Convective Organization

In general, self-organization is the result of local interactions between many
elements, or constituents, of a complex system (Christensen & Moloney, 2005),
transferring its state from disordered to ordered spontaneously. Self-organization
can be observed in systems of various scientific disciplines and is often con-
ceptually structured in terms of distinct “universality classes”. Such concepts
have been translated to studies of Earth’s atmosphere (Peters & Neelin, 2006;
Yano et al., 2012). With respect to the organization of convective clouds, self-
organization, has been suggested to be involved in phenomena, such as the
formation and intensification of mesoscale convective systems (MCSs) and
tropical cyclones (Muller & Romps, 2018; Nolan et al., 2007; Parker, 2021;
Parker et al., 2020), as well as the Madden-Julian Oscillation (MJO) (Arnold
& Randall, 2015; Bretherton et al., 2005).

CPs are well-established triggers and organizers of convection (Addis et
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Figure 2.2: Schematic dia-
gram illustrating the life cy-
cle stages of a convective
cold pool. Created based on
figures from Charba (1974),
Goff (1976), and Wakimoto
(1982).
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al., 1984; Byers & Braham, 1949; Feng et al., 2015; Goff, 1976; Haerter et al.,
2020; Shapiro et al., 1985; Tompkins, 2001). While early research focused on
mechanical lifting at the CP gust front as the primary triggering mechanism
(dynamic effect; see previous section), Tompkins (2001) proposed that the
high water vapor content at the CP gust front makes this region favorable for
convection by eliminating CIN (thermodynamic effect). Since then, several
studies have examined the contributions of the dynamic and the thermody-
namic effect to initiating convection (Feng et al., 2015; Fuglestvedt & Haerter,
2020; Jeevanjee & Romps, 2015; Torri et al., 2015). Although neither effect
appears dominant (Fuglestvedt & Haerter, 2020; Torri et al., 2015), mechani-
cal lifting plays a crucial role in triggering boundary layer mass flux, necessary
for convection initiation (Jeevanjee & Romps, 2015). However, buoyancy from
the moist anomaly reduces CIN and assists in reaching the LFC (Torri et al.,
2015). In this regard, Droegemeier and Wilhelmson (1985) demonstrated that
CPs trigger more rapid and intense convection in regions with high low-level
moisture content, while the convection remains shallow in drier regions.

Tompkins (2001) assumed that the high moisture content at the CP gust
front primarily arises from evaporating precipitation. While rain evaporation
does seem to contribute to the excess moisture at the CP gust front compared
to its surroundings (Torri & Kuang, 2016), recent studies have emphasized the
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Figure 2.3: a, Satellite-derived 10.8µm brightness temperatures (see Section 3
for definition) over tropical Africa on May 3, 2022, at 05:00 UTC; computed
from Meteosat Second Generation 0° effective radiances, provided by EU-
METSAT. The dark blue region in the center represents a large dissipating
convective system. b, Similar to (a) but for 17:00 UTC. The large convective
system has dissipated, and new convective cells have developed at its bound-
ary, most likely due to the accumulated moisture.

roles of surface fluxes (Langhans & Romps, 2015; Torri & Kuang, 2016) and
moisture advection (Chandra et al., 2018; Schlemmer & Hohenegger, 2016)
in elevating moisture levels. Moisture advection, where CP gust fronts ac-
cumulate moisture as they spread, appears to be the most significant con-
tributor over both ocean and land surfaces (Schlemmer & Hohenegger, 2016),
particularly since deep convection typically develops in moist environments
(Langhans & Romps, 2015). The resulting accumulation of moisture at CP
boundaries extends from the surface throughout the boundary layer (Schlem-
mer & Hohenegger, 2014). New convection tends to predominantly develop in
such regions of high low-level moisture or “moist patches” (Kurowski et al.,
2018; Schlemmer & Hohenegger, 2014; Wilson & Schreiber, 1986) (Fig. 2.3).

The accumulation of moisture is particularly pronounced during CP col-
lisions, where low-level moisture from a larger area is drawn into the conver-
gence zone along the stationary collision line (Fuglestvedt & Haerter, 2020).
In combination with enhanced updraft velocities (Feng et al., 2015; B. Meyer
& Haerter, 2020) and reduced entrainment drying due to cloud clustering
(Feng et al., 2015; Kurowski et al., 2018), colliding CPs trigger more and
deeper convection compared to isolated CPs (Feng et al., 2015; Wilson &
Schreiber, 1986). Due to mass continuity, triggered updrafts develop before
the actual collision of the CP gust fronts and intensify until the collision oc-
curs (Droegemeier & Wilhelmson, 1985; Wilson & Schreiber, 1986). For the
southeastern United States, Purdom and Marcus (1981) found that 73% of
approximately 10,000 observed afternoon thunderstorms developed from col-
liding CPs. Moreover, several cases of tornado formation along CP collision
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lines have been documented (Holle & Maier, 1980; Weaver & Nelson, 1982;
Wilson & Schreiber, 1986).

Simulations have demonstrated that artificially suppressing CPs can re-
duce or even suppress deep clouds and heavy rainfall (Böing et al., 2012;
Khairoutdinov & Randall, 2006). By influencing the moisture distribution,
including the size and anomaly of moist patches, and generating updrafts, CPs
play a crucial role in transitioning from shallow to deep convection (Böing et
al., 2012; Khairoutdinov & Randall, 2006; Kurowski et al., 2018; Schlem-
mer & Hohenegger, 2014). Additionally, CPs initiate a positive feedback
loop: stronger CPs lead to deeper convection and heavier precipitation, sub-
sequently generating more intense downdrafts and stronger CPs (Böing et al.,
2012; Schlemmer & Hohenegger, 2014). Regarding the contribution of moist
patches, Schlemmer and Hohenegger (2014) argued that the size of the moist
patch, which reduces the entrainment of environmental air experienced by the
updraft, appears more influential than the moisture anomaly itself.

2.2.2 Cold Pool Signatures in Observational Data

In near-surface time series, CP gust fronts are typically characterized by a
rapid drop in temperature and increases in wind speed (Kruse et al., 2022).
The drop in temperature is primarily influenced by evaporative cooling; how-
ever, Kirsch et al. (2021) demonstrated that the downward transport of upper-
level air becomes increasingly significant when CPs are associated with larger
drops in equivalent potential temperature. As CPs propagate, the tempera-
ture drop gradually dissipates due to turbulent mixing and surface fluxes (de
Szoeke et al., 2017; Grant & van den Heever, 2016). Surface characteristics
strongly influence these fluxes, with enhanced surface fluxes within CPs tend-
ing to reduce both CP propagation speed and the occurrence of large CPs
(Gentine et al., 2016). Regarding the spatial temperature structure within
the CP, recent observations from a dense station network in Germany indi-
cate that the strongest temperature drop is typically measured at the CP
center (Kirsch et al., 2023).

The increase in wind speed observed at CP gust fronts stems from the
expansion of the CP, as discussed at the beginning of Section 2.2. Often, this
increase is preceded by an abrupt change in wind direction (Engerer et al.,
2008; Goff, 1976; Provod et al., 2016; Wakimoto, 1982). Due to complex flow
patterns and local turbulence, the propagation speed of CPs may not always
align with locally measured wind speeds at the gust front (Kruse et al., 2022;
Rooney, 2018). Nevertheless, several studies have shown that the movement of
CPs can be effectively described by equations governing the propagation speed
of density currents when considering local temperature and wind observations
(Charba, 1974; Kruse et al., 2022; Mueller & Carbone, 1987; Wakimoto, 1982).
However, on a global scale — when considering spatial averages of a CP’s
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temperature and its radial expansion velocity –— this relationship may not
hold true (Kirsch et al., 2023).

While consistent signals in near-surface temperature and wind time series
are observed across various observational studies, the strength of these signals
varies significantly depending on the environmental conditions. Table 2.1 pro-
vides a summary of identified CP perturbations from selected observational
studies, each based on over 150 CP events. In subtropical and tropical ocean
regions, both the observed temperature drops and increases in wind speed tend
to be weaker compared to those over land. Temperature drops over the ocean
range from 1.2 to 1.8K, contrasting with 2.9 to 3.3K over the Netherlands
and Northern Germany. The ocean-land difference in observed wind increases
is somewhat smaller, with ranges of 1.5 to 3m s−1 over the ocean and 3.6
to 4.4m s−1 over land. However, especially CP properties over land exhibit
substantial variability depending on the region and environmental conditions.
For instance, the strongest CP events identified by Kirsch et al. (2021) showed
near-surface temperature drops of up to 10.8K and wind speed increases of
up to 11m s−1. Additionally, Engerer et al. (2008) observed mean tempera-
ture drops ranging between 5.4K and 9.5K, along with mean wind gusts of at
least 15m s−1 for 39 CP events in Oklahoma associated with MCSs. Daytime
and early evening observations featured even greater mean temperature drops
of 11K. Moreover, in the Sahel region, specifically in Niamey, Niger, Provod
et al. (2016) reported a mean temperature drop of 5.3K based on 38 identified
CP events.

The observed moisture signals over the ocean align with the description
in Section 2.2.1, showing an increase in specific humidity at the CP gust
front followed by a subsequent decrease in the CP interior (Table 2.1). Over
land, however, there is greater variation. While Kirsch et al. (2021) report a
median increase in specific humidity of 1 g kg−1, Kruse et al. (2022) observe
a decrease in water vapor concentration shortly after the temperature drop
begins (no specific value reported). Even within the same location, Provod
et al. (2016) notes substantial differences between CP moisture signals: pre-
monsoon CPs were associated with persistent increases in specific humidity,
while CPs during the monsoon and the subsequent retreat exhibited persistent
decreases. Historical observations by Byers and Braham (1949) of 79 CPs
over Florida and Ohio indicate an average drop in specific humidity of around
3.3 g kg−1.

Fig.2.4 shows the near-surface time series derived from weather stations
for three distinct CP events identified over equatorial Africa as part of this
thesis (manuscript I, Section 5.1), accompanied by corresponding satellite-
derived infrared (IR) observations. Each of these CP events was detected at
two stations, referred to as station 1 and station 2, based on the gust front
arrival times at each location. The two satellite images associated with each
CP event depict snapshots closest to the station-derived gust front passage.
The three examples highlight the diverse near-surface perturbations linked to
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Author Region #CPs ∆T ∆u ∆q
[K] [m s−1] [g kg−1]

Chandra et al. (2018) Eq. Indian Ocean 296 -1.5 2 0.25
1.5 -1

Vogel et al. (2021) Barbados 3889 -1.2 2.81 0.2
-0.43

Wills et al. (2021) Tropical Pacific 382 -1.8 3 0.17
-0.16

Kirsch et al. (2021) Northern Germany 489 -3.3 3.6 1

Kruse et al. (2022) Netherlands 189 -2.9 4.4 n.a.

Table 2.1: Summary of selected observational cold pool (CP) studies with over
150 sampled CP events. The table includes columns for the author and region
of each study, the number of CP events considered, as well as observed CP per-
turbations in near-surface temperature (∆T ), wind speed (∆u), and specific
humidity (∆q). Perturbations are presented as mean values for Chandra et al.
(2018) and Wills et al. (2021), and median values for all other studies. For ∆q,
when two values are provided, they represent the mean or median maximum
(upper value) and minimum (lower value) ∆q, accounting for moister CP gust
fronts and drier CP interiors. Note that the two values provided by Chandra
et al. (2018) for ∆u denote mean perturbations of CPs observed at a research
vessel (103 CPs; upper value) and at Gan Island (193 CPs; lower value).

CPs over land, influenced not only by varying environmental conditions but
also by the temporal evolution of individual CP events.

Apart from near-surface temperature, wind speed and moisture, also the
pressure signal associated with CPs exhibits several notable characteristics.
Prior to the passage of the CP gust front, the surface pressure typically be-
gins to rise due to the collision of the CP with ambient air (Charba, 1974;
Engerer et al., 2008; Goff, 1976; Wakimoto, 1982). The onset of this pressure
increase usually precedes the temperature drop associated with the CP by ap-
proximately 15 minutes (Engerer et al., 2008; Goff, 1976; Kirsch et al., 2021).
Within the CP itself, there is a zone of high pressure known as the “meso-
high” (Engerer et al., 2008). The magnitude of the pressure increase within
the CP is primarily driven by the CP’s temperature and depth, with colder
and deeper CPs giving rise to larger pressure increases (Provod et al., 2016;
Wakimoto, 1982). While most CPs are associated with a pressure rise, it is
worth noting that some CPs can be linked to pressure decreases, for example
due to mesolows (de Szoeke et al., 2017; Engerer et al., 2008; Zipser, 1977).

Weather stations provide localized information, necessitating dense net-
works like the one utilized by Kirsch et al. (2023) to obtain spatial insights into
CPs. Consequently, many studies rely on data from ground-based radars or
satellites to either confirm identified CPs or derive additional details (Borque
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Figure 2.4: Examples of cold pool (CP) passages identified in the study asso-
ciated with manuscript I (Hoeller et al., 2023). a, Time series of near-surface
temperature (T ), wind gust speed (ug), relative humidity (RH), and specific
humidity (q) recorded at two weather stations during a CP event in Uganda on
January 23, 2023 (left panels), along with the two closest satellite snapshots
to the station-derived CP passage (right panels); satellite scenes represent
10.8µm brightness temperatures (see Section 3 for definition), computed from
Meteosat Second Generation 0° effective radiances, provided by EUMETSAT;
station locations are indicated in the satellite scenes by magenta markers; solid
time series correspond to station 1, dashed time series to station 2. b, Similar
to (a) but for a CP event on February 9, 2023. c, Similar to (a) but for a CP
event observed in Cameroon on April 19, 2023.
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Figure 2.5: Radar observations of a convective cold pool over the Netherlands.
Figure adapted from Kruse et al. (2022). Note: The middle panel depicting
snapshots at 16:50 UTC has been omitted for simplicity.

et al., 2020; Engerer et al., 2008; Feng et al., 2015; Goff, 1976; Kirsch et
al., 2023; Kruse et al., 2022; Provod et al., 2016; Redl et al., 2015; Vogel
et al., 2021; Wakimoto, 1982; Wilson & Schreiber, 1986). Fig. 2.5 illustrates
a radar-observed CP over the Netherlands. In radar imagery, CPs are often
recognizable by the presence of radially spreading thin line echoes, indicative
of raindrops, dust, and insects carried with the gust front (Kruse et al., 2022;
Wakimoto, 1982), as well as echo-free regions resulting from drier boundary
layer air within the CP (Feng et al., 2015).

A comparable CP signature is observable in satellite imagery, where CPs
are occasionally accompanied by spreading low-level cloud arcs (Purdom &
Marcus, 1981; Rauber et al., 2007; Shapiro et al., 1985; Vogel et al., 2021)
(Fig.2.6). Such cloud patterns are linked to convective triggering at the CP
gust front, as discussed in Section 2.2.1. At times, CP-associated cloud pat-
terns become apparent only when analyzing a sequence of satellite images
rather than a single snapshot, allowing for the utilization of dynamic informa-
tion associated with the expanding gust front (Shapiro et al., 1985).

However, satellite imagery offers more than just visible cloud patterns.
Caton Harrison et al. (2021) discerned CP gust fronts over the Sahara by
identifying the dust they stir up, leveraging a combination of different IR
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Figure 2.6: True-color satellite imagery depicting cold pools over tropical
Africa. a, Scene from tropical West Africa, captured by the Visible Infrared
Imaging Radiometer Suite (VIIRS) instrument aboard the NOAA-20 satellite
on June 3, 2022. b, Scene from tropical West Africa, captured by the Moderate
Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite
on April 28, 2023. c, Scene from equatorial Africa, captured by the VIIRS
instrument aboard the NOAA-20 satellite on February 6, 2023. d, Analogous
to (c) but for October 30, 2023. All satellite scenes were retrieved from the
NASA Worldview website.

satellite channels sensitive to dust. Meanwhile, Garg et al. (2020) introduced
a novel technique to detect CPs using wind gradients derived from space-
borne scatterometer wind fields. Yet, this approach is not applicable for CP
observations over land, as scatterometers measure the wind field via wave
patterns at ocean surfaces.





Chapter 3

Satellite-Based Earth
Observation

Satellite observations play a crucial role in numerous earth observation ap-
plications, including the monitoring of weather patterns, climate, and envi-
ronmental changes (Kansakar & Hossain, 2016). Given their potential for the
global-scale detection of CPs, they hold significant importance in the con-
text of this thesis. Therefore, this chapter provides a concise introduction to
satellite-based earth observation, with a specific emphasis on the utilization
of geostationary satellite observations in this thesis.

Most satellite observations used in the field of atmospheric science originate
from (near) polar orbiting or geostationary (GEO) satellites. Polar orbiting
satellites traverse the Earth from pole to pole, resulting in an inclination
of approximately 90° between their orbiting plane and the equatorial plane.
With an orbital period of approximately 100 minutes, they make multiple
passes over the equator each day, gradually capturing images of the entire
planet. Typically orbiting at altitudes of 700–800 km above the surface, polar
satellites offer high spatial resolutions, ∼ O(10m). Many of them are in
sun-synchronous orbits, ensuring that they pass over a specific location at the
same time each day to facilitate the monitoring of changes. Examples of (near)
polar orbiting, sun-synchronous satellites include the Earth Observing System
(EOS) satellites Aqua and Terra, operated by the National Aeronautics and
Space Administration (NASA), as well as most of the Sentinel satellites from
the Copernicus program of the European Space Agency (ESA).

GEO satellites, in contrast, orbit at an altitude of approximately 35,786 km
above the surface to match the Earth’s rotational period. This results in a
fixed position relative to the Earth’s surface, enabling the continuous mon-
itoring of a designated area at relatively high temporal resolutions. Three
significant geostationary satellite programs for global earth observation and
weather monitoring are the Geostationary Operational Environmental Satel-
lite (GOES) program, operated by the National Oceanic and Atmospheric
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Administration (NOAA); the Himawari series, operated by the Japan Me-
teorological Agency; and the Meteosat program, managed by the European
Organisation for the Exploitation of Meteorological Satellites (EUMETSAT).
While the GOES satellites cover the Americas and large parts of the Atlantic
and Pacific oceans, the Himawari series serves the Asia-Pacific region. The
Meteosat satellites provide coverage of Europe, Africa, and the Indian Ocean.
Currently, the Meteosat Second Generation (MSG) satellites are operational,
but they will soon be replaced with the Meteosat Third Generation (MTG)
satellites, which offer similar capabilities to the current GOES and Himawari
satellites.

As detecting and tracking CPs requires continuous observations with sub-
hourly resolutions (Section 2.2), the present thesis focuses on data from GEO
satellites. However, to investigate the CP signature in the satellite data,
ground-based observations are needed first to detect reference CPs based on
known signatures. For this purpose, automatic weather stations in equatorial
Africa were used (manuscript I, Section 5.1). Accordingly, the present thesis
relies mainly on imagery captured by the MSG Spinning Enhanced Visible and
Infrared Imager (SEVIRI) (Aminou, 2002), a passive sensor which measures
the electromagnetic energy emitted or reflected by the observed scene. In
total, SEVIRI offers 12 spectral channels spanning the visible, near-IR, and
IR spectrum, with a temporal resolution of 15 minutes. The spatial resolution
at the sub-satellite point is 3 km for all channels, except for one high-resolution
visible (HRV) channel with a resolution of 1 km.

For applications such as cloud segmentation or rainfall estimation, com-
bining satellite channels from both the visible and IR spectrum has proven
beneficial (Ackerman et al., 1998; Ameur et al., 2004; Drönner et al., 2018;
Kühnlein et al., 2014; Saunders & Kriebel, 1988). However, since visible chan-
nels measure reflected sunlight, such approaches work only for daytime appli-
cations and require different strategies for nighttime observations. For this
reason, the present thesis focuses on IR observations which are independent
of reflected sunlight.

For better interpretation, the IR radiances measured by satellites are typi-
cally converted into equivalent brightness temperatures. This is accomplished
by applying the Planck function, which relates the radiance emitted by an
object to its temperature, incorporating sensor-specific regression coefficients.
MSG radiances can be converted to brightness temperatures using Equation
5.3 and the corresponding regression coefficients from Tables 7.2–7.5 provided
by EUMETSAT (2012).



Chapter 4

Image Segmentation

Satellite images contain a wealth of information about the Earth’s surface, at-
mosphere, and dynamic processes. Computer vision techniques, encompassing
tasks such as classification, object detection, and image segmentation, serve
as indispensable tools to extract meaningful insights from these vast data sets
(Asokan & Anitha, 2019; Ferreira et al., 2020; Li et al., 2020). While classifica-
tion involves assigning predefined labels to images, object detection identifies
and locates specific objects within a scene. Segmentation goes a step further
by partitioning an image into distinct regions (Guo et al., 2018).

To reveal the causal chains among convective events and investigate the
role of CPs in convective organization, the approach for detecting CPs in
space-borne data needs to partition the input images into regions. The desired
output of the CP detection method developed as part of this thesis is thus
a binary image where each pixel is either black if it belongs to a CP, or
white if it does not. In image processing, this kind of task is commonly
known as “semantic segmentation” (Guo et al., 2018). The following chapter
presents an overview of commonly used image segmentation methods and their
applications in earth observation, with a focus on atmospheric science.

4.1 Traditional Segmentation Approaches

Traditional image segmentation approaches can be broadly categorized into
three groups, (1) thresholding or clustering, (2) region extraction, and (3)
edge detection (Fu & Mui, 1981).

4.1.1 Thresholding and Clustering

Thresholding approaches partition images by establishing global or adaptive
intensity or color thresholds. In the simplest scenario, binary segmentation
can be achieved by setting pixels with values smaller than a threshold to 0
and those with values equal to or greater than the threshold to 1.
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Clustering can be considered as a multidimensional extension of the thresh-
olding concept (Fu & Mui, 1981). Based on feature similarity, the pixels are
grouped into distinct clusters. A frequently used clustering method is the
k-means algorithm (Lloyd, 1982), an unsupervised technique that divides a
data set into k distinct clusters by assigning data points to the cluster with
the nearest centroid and iteratively updating centroids based on the mean of
the assigned points. Yet, despite its strength in grouping similar data points
together, the k-means algorithm suffers from noise and outliers (Gan & Ng,
2017) and, similar to threshold-based approaches, struggles to segment non-
linearly separable data (Baranwal & Salapaka, 2018).

An example for the application of thresholding and clustering in the field
of earth observation, is the identification and classification of cloud pixels in
satellite images. Saunders and Kriebel (1988) proposed threshold-based day-
time and nighttime tests to identify pixel in polar orbiting satellite images
from Western Europe and the North Atlantic as either cloud-free or cloud-
filled. If the tests neither satisfied all conditions for cloud-free, nor for cloud-
filled pixels, the pixel was considered partly cloudy. Similar tests have been
employed to mask clouds in MODIS images from the Terra and Aqua satel-
lites (Ackerman et al., 1998; Platnick et al., 2003). However, developing such
tests requires expert knowledge, and the thresholds are usually tuned to spe-
cific scenarios, lacking generalizability beyond those cases. To overcome these
shortcomings, Ameur et al. (2004) developed a method to segment clouds in
Meteosat images using a k-means algorithm. To utilize spatial cloud patterns
rather than absolute values for the segmentation, Ameur et al. (2004) applied
the k-means algorithm to textural parameters which they calculated based on
both visible and IR images.

Due to the simplicity and physical interpretation, thresholding and cluster-
ing approaches have also been used to identify simulated CPs or their associ-
ated rain patches (Drager & van den Heever, 2017; Feng et al., 2015; Fournier
& Haerter, 2019; Gentine et al., 2016; Henneberg et al., 2020; Tompkins,
2001). For this purpose, the approaches usually rely on negative buoyancy
anomalies or related quantities, since the air inside CPs is cooler and gener-
ally drier than the surrounding environmental air (Section 2.2.2). However,
the absence of relevant high-resolution observational data restricts the appli-
cation of thresholding- or clustering-based segmentation approaches for CPs
to simulations. While Tompkins (2001) and Feng et al. (2015) used fixed buoy-
ancy thresholds of −0.005m2s−1 and −0.003 m2s−1 to segment CPs in simu-
lations, Gentine et al. (2016) applied a k-means algorithm to the lowest model
level virtual potential temperature field to classify each pixel as either CP
or environment. Similarly, the k-means algorithm was utilized in manuscript
II (Section 5.2) as a component of the CP detection and tracking algorithm
(CoolDeTA) for simulation data, which was eventually employed to derive
ground truth labels for supervised learning (manuscript III; Section 5.3). Rain
patches associated with simulated CPs are typically segmented by applying
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a rainfall intensity threshold of 1 mmh−1 in combination with a minimum
rain patch area (Drager & van den Heever, 2017; Fournier & Haerter, 2019;
Henneberg et al., 2020).

4.1.2 Region Extraction

Region-based segmentation approaches focus on grouping pixels into regions
with shared properties and can be subdivided into region merging, region
splitting, and a combination of both (Fu & Mui, 1981). Region merging
initially treats individual pixels as separate regions. By iteratively merging
neighboring regions with similar characteristics, the regions are expanded until
cohesive regions are formed. Region splitting takes the opposite direction,
starting with the entire image as one region. Based on certain criteria, this
region is divided into smaller sub-regions. The process is repeated for each
sub-region until the desired level of similarity is achieved. An early review of
region growing approaches was presented by Zucker (1976).

A popular region-based approach is the watershed algorithm (Vincent
& Soille, 1991), originally introduced in image processing by Digabel and
Lantuéjoul (1978) and Lantuéjoul (1978). The watershed algorithm treats
pixels as elevations and separates regions based on their topography in the
resulting intensity landscape. The boundaries between different regions repre-
sent the watershed lines. They are typically determined by gradually flooding
the topographic landscape from the points with the lowest elevation or min-
ima (Vincent & Soille, 1991), or by modeling the process of raindrops falling
onto the topographic landscape and following the steepest path down to the
next valley or minimum (Bieniek & Moga, 2000; Kornilov & Safonov, 2018).

By applying the watershed algorithm to the result of a binary masking, it
can also be used to further subdivide contiguous patches of ones. Similar to
the approach by Gentine et al. (2016), CoolDeTA relies on the watershed al-
gorithm to differentiate individual CP instances in cloud-resolving simulation
output. In this case, the intensity landscape is calculated using near-surface
fields of temperature, specific humidity, and vertical wind speed.

4.1.3 Edge Detection

Edge-based segmentation approaches identify distinct regions by detecting the
boundaries between them. To detect these boundaries, they rely on intensity
gradients, leveraging the fact that intensity changes in an image usually corre-
spond to region boundaries (Yu et al., 2023). However, a significant drawback
of edge-based segmentation approaches is their limited robustness, as gaps
in detected edges due to noise or small intensity gradients can hinder the
segmentation of enclosed regions (Fu & Mui, 1981; Yu et al., 2023).
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4.2 Classical Machine Learning-Based Approaches

In contrast to most of the traditional segmentation techniques discussed so
far, classical machine learning (ML) methods, such as support vector machines
(SVMs) (Cortes & Vapnik, 1995) and random forests (RFs) (Breiman, 2001),
can handle more complex relationships and have thus been suggested for many
image processing tasks in remote sensing — for comprehensive reviews see
Mountrakis et al. (2011) and Belgiu and Drăguţ (2016). Both SVMs and RFs
are supervised learning techniques and require labeled data sets to learn how
to map input features to target labels.

SVMs are designed to identify the optimal hyperplane that separates data
points belonging to different classes in feature space (Cortes & Vapnik, 1995).
The hyperplane is selected to maximize the margin, which represents the dis-
tance between the hyperplane and the closest data points, known as support
vectors, from each class (Sehad et al., 2017).

RFs are ensembles of decision tree classifiers (Quinlan, 1986). Decision
trees exhibit tree-like structures composed of nodes and branches. Whereas
the internal nodes in a decision tree represent decisions based on specific fea-
ture values, the leaf nodes denote the predictions or classifications of the deci-
sion tree. The branches connect the nodes based on the decision outcomes at
internal nodes. The final RF output is typically determined using a rule-based
approach, e.g., by selecting the decision tree output with the highest number
of occurrences among all decision trees (Rodriguez-Galiano et al., 2012). Con-
sidering an ensemble of decision trees, as opposed to an individual tree, has
been shown to decrease the variance of the final output (Gislason et al., 2006)
and increase the robustness with respect to noise (Rodriguez-Galiano et al.,
2012).

With regard to cloud detection, Y. Lee et al. (2004) employed multicate-
gory SVMs to classify pixels in simulated and observed MODIS images over
an ocean surface as cloud-free, water cloud, or ice cloud. They found that
SVMs offer advantages over the existing threshold-based MODIS cloud mask-
ing algorithms. Hollstein et al. (2016) compared decision tree classifiers with a
classical Bayesian method, as well as other techniques such as RFs and SVMs
for a similar task but with more classification categories using input Sentinel-
2 Multi-Spectral Imager (MSI) scenes. They discovered that the classical
Bayesian method, RFs and SVMs achieved comparably high skills, outper-
forming individual decision trees.

Kühnlein et al. (2014) and Sehad et al. (2017) developed similar pixel-
based segmentation approaches to estimate rainfall from MSG SEVIRI im-
agery. Kühnlein et al. (2014) proposed a three-step process for the retrieval
of rainfall rates, with each step associated with a different RF model. In the
first two steps, the RF models served as binary classifiers to identify precipitat-
ing cloud areas and distinguish between convective and convective-stratiform
cloud regions. In the final step, they evaluated rainfall rates using a regression
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RF model. On the other hand, Sehad et al. (2017) estimated the 3-hourly and
daily accumulated rainfall using two SVMs, one for daytime and one for night-
time estimations. To train and test the models, both Kühnlein et al. (2014)
and Sehad et al. (2017) utilized ground-based radar observations. Sehad et al.
(2017) further validated their results by comparing them with measurements
from a rain gauge network.

Another prominent segmentation task in Earth observation is land cover
monitoring (Rodriguez-Galiano et al., 2012). While Gislason et al. (2006)
used a RF approach to differentiate between nine forest classes and water in a
mountainous area in Colorado, United States, Rodriguez-Galiano et al. (2012)
applied their RF model to observations from Granada, Spain, distinguishing
14 thematically different categories. As Hollstein et al. (2016), both Gisla-
son et al. (2006) and Rodriguez-Galiano et al. (2012) found that their RF
model outperforms an individual decision tree classifier. Kavzoglu and Colke-
sen (2009) trained SVMs for pixelwise land cover classification in Landsat
Enhanced Thematic Mapper Plus (ETM+) and Terra Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) images recorded over
a district in Turkey.

4.3 Artificial Neural Networks

In image segmentation, context information is often crucial for accurately clas-
sifying a pixel. For instance, when looking at an image snippet it is generally
not possible to determine the object to which a pixel belongs without context
information. Also segmentation tasks in Earth observation, such as the pix-
elwise classification of clouds, benefit from textural information (Giannakos
& Feidas, 2013; Gu et al., 1989). Traditional segmentation approaches, as
well as SVMs and RFs, can indirectly leverage textural information by pro-
viding calculated textural properties as input. However, the success in this
scenario heavily relies on the selection of appropriate textural input features,
and unexplored features will remain unutilized.

Artificial neural networks (ANNs) can capture context information and
model complex nonlinear relationships. Inspired by the structure and func-
tioning of the human brain (Rosenblatt, 1958), ANNs constitute a category
of ML models organized into interconnected nodes across layers.

4.3.1 Multilayer Perceptrons

A common type of ANN is the multilayer perceptron (MLP). It comprises an
input layer, at least one hidden layer, and an output layer (Fig. 4.1). MLPs
are fully connected ANNs, implying that each node links to all nodes in the
adjacent layers.
Forward propagation. During the forward propagation, inputs are passed
through the neural network to generate the outputs. The input layer receives
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Input layer

Hidden layer

Output layer
a b

Figure 4.1: Architecture of a multilayer perceptron (MLP). a, MLP consisting
of an input layer, a hidden layer, and an output layer. Nodes symbolize neu-
rons; text inside nodes indicates each node’s output signal. Each connection
line is associated with a network weight. b, Schematic of the input and output
signals of hidden layer node M . While the node input az,M is computed as
the weighted sum of the connected inputs x1, . . . , xD, the node output zM is
derived based on an activation function f(·) as zM = f(az,M ).

the input variables x1, . . . , xD and forwards them to the connected nodes of
the hidden layer. The connections between the nodes are associated with
tunable weights, wz,ij . While the subscript z indicates the connected layer,
the subscripts i and j denote the indices of that link’s start and end node
(Fig. 4.1). The input az,j to a hidden layer node j is computed as

az,j =
D∑
i=1

wz,ijxi , (4.1)

where i = 1, . . . , D denotes the indices of the connected input layer nodes.
The node inputs a are also referred to as “activations” (Bishop, 2006). To
enable the network to learn nonlinear relationships, the activations are typi-
cally transformed with a nonlinear activation function f(·) before passing to
the next layer. The corresponding output zj of a hidden layer node j can thus
be expressed as

zj = f(az,j) . (4.2)

Using the frequently applied logistic sigmoid function (Bishop, 2006) as acti-
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vation function, zj is computed as

zj =
1

1 + e−az,j
. (4.3)

For networks with multiple hidden layers, the previous steps are repeated for
each hidden layer. In this case, the hidden layer outputs zl of a layer l are
passed to the next layer l + 1, to compute the outputs zl+1.

In the final output layer, the activation ay,k of a node k is analogously
calculated as

ay,k =
M∑
j=1

wy,jkzj , (4.4)

where j = 1, . . . ,M denotes the indices of the connected hidden layer nodes.
However, the final activation function might be adapted to produce the desired
output for the given task (Bishop, 2006). For problems with multiple output
classes, the logistic sigmoid function is generalized to the so called “softmax”
function. For an output layer node k, the softmax function h(·) is written as

yk = h(ay,k) =
eay,k∑K
n=1 e

ay,n
, (4.5)

where n = 1, . . . ,K denotes the indices of the output layer nodes.
Combining all the steps, the computation of the output yk of the sample

MLP from Fig. 4.1 can be expressed as

yk(x,w) = h

 M∑
j=1

wy,jk f

(
D∑
i=1

wz,ijxi

) . (4.6)

Backpropagation. Typically, MLPs find application in supervised learning
tasks, where the network weights are iteratively adjusted during training to
minimize the discrepancy between predicted outputs and actual target values.
For this purpose, the network outputs for a specific data sample are compared
against the desired outputs, also referred to as the “ground truth.” The asso-
ciated error is then propagated backward from the output layer to the input
layer to tune the network weights of each layer based on their contribution
to the overall error. This process is commonly known as “backpropagation”
(Bishop, 2006).

The total error associated with a network prediction can be expressed as

E =
K∑
k=1

Ek , (4.7)

where k = 1, . . . ,K denotes the indices of the output layer nodes. The un-
derlying error function, which is applied to evaluate the outputs, depends on
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the specific task. Common error functions include mean squared error for
regression tasks and cross-entropy loss for classification problems.

Since the error function typically exhibits a highly nonlinear dependence
on the weights (Bishop, 2006), a straightforward approach is to iteratively
adjust the network weights by moving a small step in the direction of the
negative gradient. In this case, the new weight w∗

l,jk connecting nodes j and
k in layer l can be obtained from the current weight wl,jk as

w∗
l,jk = wl,jk − lr ·

∂E

∂wl,jk
, (4.8)

where lr is a parameter modulating the step size, known as the “learning rate”.

The gradient of the total error E with respect to each weight can be cal-
culated using the chain rule. For the weight wy,MK from the final layer of the
sample network (Fig. 4.1), the corresponding computation can be expressed
as

∂E

∂wy,MK
=

∂E

∂yK

∂yK
∂ay,K

∂ay,K
∂wy,MK

, (4.9)

illustrated by the green path in Fig. 4.2. Since wy,MK is only connected to
the output yK , it is solely influenced by the associated error component, EK .

The weight wz,DM in the previous layer is calculated analogously by ex-
tending the chain rule based on the blue path in Fig. 4.2. Its computation
can be expressed as

∂E

∂wz,DM
=

(
K∑
k=1

∂E

∂yk

∂yk
∂ay,k

∂ay,k
∂zM

)
∂zM
∂az,M

∂az,M
∂wz,DM

, (4.10)

where k = 1, . . . ,K denotes the indices of the output layer nodes influenced
by weight wz,DM . Due to its connection to both y1 and yK , its contributions
to both E1 and EK are considered in the sum.

In modern ML frameworks such as PyTorch and TensorFlow, automatic
differentiation methods automate the process of calculating gradients by ap-
plying the chain rule of calculus systematically and efficiently (Baydin et al.,
2018; Paszke et al., 2017). For this purpose, intermediate values and activa-
tions are stored during the forward pass.

Due to their ability to leverage textural features and approximate highly
nonlinear relationships, many approaches based on MLPs have been proposed
for earth observation tasks such as the estimation of precipitation from satel-
lite data (Capacci & Conway, 2005; Chen et al., 2019; Giannakos & Feidas,
2013; Grimes et al., 2003; Hsu et al., 1997; H. Meyer et al., 2017; Rivolta et al.,
2006), outperforming traditional methods such as look-up tables (Capacci &
Conway, 2005) and classical ML methods such as SVMs and RFs (H. Meyer
et al., 2016). Moreover, Wood and Hartmann (2006) employed an MLP to
classify the mesocale structure of approximately 20,000 MODIS scenes from
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Figure 4.2: Error backpropagation paths for the adjustment of two sample
weights, wz,DM (blue path) and wy,MK (green path), from different layers of
the multilayer perceptron presented in Fig. 4.1.

two regions above the subtropical eastern Pacific using four spatial variability
types. For the training and testing of the network, they manually labeled
approximately 1,000 scenes based on visual inspection. Although they used
their MLP for image classification rather than pixelwise classification or seg-
mentation, their work demonstrates the potential of ANNs for studying the
mesoscale organization of convection.

Due to enhanced computer performance and more efficient algorithms,
MLPs in more recent publications, such as those suggested by Chen et al.
(2019), have shown a trend towards deeper networks with more hidden layers
and higher node numbers. This trend is driven by the understanding that
deeper neural networks can generally model more complex relationships (Le
Goff et al., 2017; Wang et al., 2018). However, the rapidly increasing compu-
tational cost of deepening the fully connected network architecture severely
limits the depth of MLPs and has thereby fostered the advancement of other
network architectures like convolutional neural networks (CNNs) (Fukushima,
1980; LeCun et al., 1989). While the term “deep learning” typically encom-
passes ANNs with two or more hidden layers (Nielsen, 2015), modern network
architectures for deep ANNs used in image segmentation often comprise sig-
nificantly more hidden layers (Badrinarayanan et al., 2017; Long et al., 2015;
Noh et al., 2015; Ronneberger et al., 2015).

4.3.2 Convolutional Neural Networks

The architecture of CNNs (Fig. 4.3a) is designed to efficiently process grid-like
data, such as images, and leverages the stronger correlation between nearby
pixels compared to those further apart (Bishop, 2006). This is achieved
through the concept of convolution, where a small convolution filter, also
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referred to as a “kernel,” is slid over the input to extract local features by
computing the dot product between the filter weights and the values in the
input region covered by the filter (Fig. 4.3b). The size of the step taken during
this sliding movement is known as the stride. With a stride of one, the filter
moves over each input pixel, transitioning from one pixel to the next. The
filter weight sharing between neurons (LeCun et al., 1998) drastically reduces
the number of parameters compared to fully connected networks. Further-
more, the weight sharing enables the network to learn translation-invariant
representations, as features identified in one part of the image can be reused
in other regions. To obtain a convolution result with the same dimensions as
the input image, the latter can be extended by adding rows and columns of
zeros at the image boundaries, referred to as “zero-padding” (Albawi et al.,
2017). Similar to MLPs, each convolutional layer is followed by a nonlinear
activation, resulting in abstracted feature maps which are passed to the next
layer.

Further CNN components are pooling layers and fully connected layers.
Pooling layers reduce the spatial dimensions of the generated feature maps
by aggregating several feature map values. A common tiling size for the
aggregation is 2x2, which downsamples the feature map dimensions by a factor
of two. The retained value per tile is generally either the maximum value
within the tile (max pooling) or the average value (average pooling). At the
end of the CNN architecture, fully connected layers identical to MLPs allow
the network to integrate high-level features learned by the convolutional and
pooling layers and perform classification or regression tasks. For this purpose,
the grid-like feature maps are flattened.

Like MLPs, CNNs are feed-forward networks, where input information
flows through the network in a constant direction to generate the output (from
left to right in Fig. 4.3a). Moreover, the use of backpropagation for network
training is typically analogous to MLPs.

Another similarity to MLPs is that CNNs output classifications rather
than segmentations. In this context, Liu et al. (2016) utilized a CNN ar-
chitecture to detect extreme weather events, specifically tropical cyclones,
atmospheric rivers, and weather fronts, in climate data, achieving detection
accuracies ranging between 89% and 99%. Similarly, Cintineo et al. (2020)
trained a CNN for the automated detection of intense convection in geosta-
tionary satellite images from GOES-16. They observed that the model suc-
cessfully learned the significance of complex features such as strong brightness
temperature gradients for identifying intense convection. Both these studies
primarily focused on recognizing the presence of patterns corresponding to
extreme events or intense convection within the input images (classification),
rather than precisely locating them in the image (segmentation).

Using CNNs with a classical architecture, as depicted in Fig. 4.3, for image
segmentation generally requires an approach with multiple classifications, each
associated with a forward pass. While Pan et al. (2019) generated an output
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Figure 4.3: a, Architecture of a convolutional neural network consisting of
a convolutional layer with nonlinear activation, a pooling layer, and a fully
connected layer with two output classes. b, Visualization of the convolution
process, here convolving a zero-padded 3x3 input image with a 3x3 filter and
a stride of one.

for larger sub-regions rather than individual pixels to limit the computational
cost, Maggiori et al. (2016) experimented with a patch-based prediction ap-
proach for pixelwise classification. During each forward pass, their CNN gener-
ated 256 outputs, representing the predicted pixels of a 16x16 patch. The final
segmentation was derived by recombining the predicted patches. Comparing
the final segmentation results to those of a fully convolutional neural network
(FCN) where they replaced the fully connected layers with deconvolution-
based upsampling, they found that the FCN network outperformed the patch-
based approach in terms of accuracy and efficiency. Consistent with these
findings, the classical CNN architecture is typically adapted for image seg-
mentation tasks by integrating a decoder, which upsamples the downsampled
feature maps back to the original image resolution (Section 4.3.3).

4.3.3 Encoder-Decoder Networks

The convolutional and pooling layers in CNNs progressively decrease the res-
olution of the input images to extract diverse features across different scales.
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Figure 4.4: Visualization of the transposed convolution process, depicted here
with a 2x2 input image, a 2x2 filter, and a stride of two. Each pixel in the
input image is multiplied by all filter weights, and each of these multiplication
results is then projected onto an output pixel. The stride determines the step
size of the projection in the output as the filter slides from one input pixel to
the next.

The resultant feature maps can be regarded as a transformed, more abstract
representation of these features. Drawing an analogy to the field of infor-
mation theory, the path responsible for downsampling in neural networks is
commonly referred to as the “encoder”.

Yet, semantic segmentation necessitates an output where each input pixel
is assigned a specific class. For an end-to-end solution, it is thus required
to upsample the encoded feature maps back to the original input resolution.
Analogous to the encoder, this upsampling path is termed the “decoder”. In
recent years, the majority of deep learning models for image segmentation
tasks have adopted an encoder-decoder structure (Minaee et al., 2021).

A common upsampling technique is transposed convolution, also known as
deconvolution or fractionally strided convolution (Dumoulin & Visin, 2016).
As regular convolution, it involves a convolutional filter which slides over the
input to generate an output (Fig. 4.4). However, instead of aggregating infor-
mation, transposed convolution expands the input based on the filter weights
to produce a larger output. The output size can be controlled via the stride:
the larger the stride, the larger the corresponding output. Unlike traditional
upsampling techniques such as bilinear interpolation, where the upsampling
operation is fixed, transposed convolution learns how to properly restore the
decoded spatial information by optimizing the filter weights during training
(Noh et al., 2015).

Skip connections, which directly link encoder and decoder layers, are an-
other crucial component of encoder-decoder architectures. By integrating fea-
ture maps from the encoder into the decoder, skip connections allow the de-
coder to access high-resolution features, thereby enabling more precise seg-
mentation (Long et al., 2015).

A popular example of an encoder-decoder architecture is U-Net (Ron-
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neberger et al., 2015). It was introduced for biomedical image segmentation
tasks and has been successfully applied to numerous segmentation problems
(Siddique et al., 2021). In earth observation, U-Net or its variants have, for
instance, been used for segmenting high-resolution aerial images (Diakogian-
nis et al., 2020; C. H. Simpson et al., 2023), landslide mapping (Meena et al.,
2022; Prakash et al., 2020), and forest cover monitoring (Bragagnolo et al.,
2021; John & Zhang, 2022).

With respect to atmospheric applications, Drönner et al. (2018) employed
a neural network with U-Net architecture for segmenting clouds in multispec-
tral satellite images captured by MSG SEVIRI over Europe. Comparing the
results to an RF approach, they found that the U-Net outperformed the RF
approach in accuracy, efficiency, and robustness. Building on the work of
Wood and Hartmann (2006), Rasp et al. (2020) used a U-Net architecture
to segment mesoscale organizational patterns of shallow convection in Terra
and Aqua MODIS scenes from the trades. To reduce the time for the ground
truth labeling, they utilized a crowdsourcing platform where 67 scientists la-
beled 10,000 satellite scenes by drawing rectangular boxes around detected
organizational patterns. Despite the noise among the labels of different sci-
entists and the rectangular-shaped regions of the target labels, the network
learned the underlying shape of the organizational patterns. Moreover, the
U-Net architecture has been proposed for precipitation nowcasting from radar
data (Han et al., 2021) as well as the segmentation of atmospheric rivers in
ERA5 reanalysis data (Galea et al., 2024).

Due to its strength in leveraging features of different scales for segmenta-
tion, the U-Net was also used as architecture for the approach developed in
the present thesis for the segmentation of CPs from cloud and rainfall fields
(manuscript III, Section 5.3).





Chapter 5

Contributions

The upcoming chapter introduces the manuscripts associated with the candi-
date’s PhD project. Complete references for each manuscript are provided in
the “List of Papers” at the beginning of this thesis. Furthermore, both the
first and second manuscripts are supplemented with additional supporting in-
formation, located immediately after the main manuscript in Section 5.1 and
Section 5.2, respectively.

5.1 Characteristics of Station-Derived Convective
Cold Pools Over Equatorial Africa

The following manuscript presents a statistical analysis of 4218 CPs identi-
fied in near-surface time series data collected from twelve automatic weather
stations across equatorial Africa. The CPs were detected using temperature
and wind criteria similar to those employed by Kirsch et al. (2021) and Kruse
et al. (2022) for CPs in Northern Germany and the Netherlands, and were
automatically verified using satellite imagery. The primary objective was to
investigate space-borne signatures of CPs, with a particular focus on infrared
imagery obtained from geostationary satellites. For this purpose, we analyzed
satellite-derived brightness temperature time series corresponding to the lo-
cations of weather stations around the time of the identified CP gust front
passage. Additionally, the study addresses a critical research gap by present-
ing the first climatology of CPs observed over tropical continents.
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Abstract
Due to their potential role in organizing tropical mesoscale convective systems, a bet-
ter understanding of cold pool (CP) dynamics in such regions is critical, particularly over
land where the diurnal cycle further concentrates convective activity. Numerical mod-
els help disentangle the processes involved but often lack observational benchmarks. To
close this gap, we analyze nearly 43 years of five-minute resolution near-surface timeseries,
recorded from twelve automatic weather stations across equatorial Africa during 2019-
2023. We identify 4218 CPs based on criteria for temperature and wind. The identified
CP gust fronts, which exhibit respective median temperature and specific humidity de-
creases of 5.3K and 2.8 g kg−1, closely correlate with satellite-observed brightness tem-
perature discontinuities. Despite weak diurnal variation in precipitation, observed CP
occurrence shows a pronounced diurnal cycle with an afternoon peak — a feature we at-
tribute to low-level moisture conditions. Our findings can serve as observational bench-
mark to improve simulations of CP organization.

Plain Language Summary

Convective cold pools form when rain evaporates underneath thunderstorm clouds.
The evaporation causes the air to cool and sink toward the ground, where it is deflected
horizontally. Cold pools are thus associated with strong gusty winds, and over tropical
land, they can be especially vigorous. Cold pools are also suggested to contribute to the
organization of thunderstorm clouds into large clusters of rain-producing areas. The widespread,
heavy rainfall can then cause flooding. To better predict such flooding in numerical weather
models, having a precise observational basis for cold pool properties is essential — yet
currently missing in equatorial Africa. We here provide such an observational benchmark
by analyzing thousands of cold pools using timeseries of near-surface temperature, wind,
humidity and precipitation. We additionally show that the cold pools can even be de-
tected from satellite data when analyzing abrupt changes in cloud top temperature. Such
satellite-based detection could open for cold pool studies across all tropical land areas
— of great practical relevance to the prediction of thunderstorm clusters.

1 Introduction

Convective cold pools (CPs) are caused by the evaporation of rainfall beneath deep
convective clouds (Zuidema et al., 2017). The resultant denser air volume spreads out
laterally along the surface and can cause a so-called "gust front" (GF) along its edges
(Charba, 1974). The GF features strong horizontal and vertical winds along with mois-
ture and temperature anomalies which together can give rise to additional deep convec-
tive events, e.g., under collisions (Purdom, 1976; Feng et al., 2015). CPs are thus impor-
tant agents in mediating interactions between deep convective cells and thus the self-organization
of thunderstorm systems (Simpson, 1980; Tompkins, 2001b; Haerter et al., 2019; Jensen
et al., 2021).

Recent idealized cloud-resolving and large-eddy simulations have provided new in-
sight into CP structure and dynamics, such as on required mesh resolution (Fiévet et
al., 2022), moisture rings (Langhans & Romps, 2015; Drager et al., 2020), or general in-
teraction mechanisms (Tompkins, 2001a; Torri et al., 2015; Meyer & Haerter, 2020; Haerter
et al., 2020), and triggered a range of simplified conceptual models (Böing, 2016; Haerter,
2019; Haerter et al., 2019; Nissen & Haerter, 2021; Niehues et al., 2022), which may help
elucidate organizing mechanisms. New methods of CP detection in numerical studies have
also been developed which help automatize the tracking of GFs and their interactions
(Gentine et al., 2016; Torri & Kuang, 2019; Fournier & Haerter, 2019; Henneberg et al.,
2020; Hoeller et al., 2023, 2024a).

–2–
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Despite this progress in numerical and theoretical work, direct measurements of CPs
are still limited to specific geographic regions, such as the tropical and sub-tropical ocean
(Zipser, 1977; Zuidema et al., 2012; Vogel, 2017; Chandra et al., 2018; Vogel et al., 2021),
mid-latitude continental regions in Central Europe (Kirsch et al., 2021; Kruse et al., 2022)
or North America (Mueller & Carbone, 1987; Wakimoto, 1982; Engerer et al., 2008; Hitch-
cock et al., 2019; van den Heever et al., 2021), and — with a focus on dust storms —
semi-arid tropical regions (Redl et al., 2015; Emmel et al., 2010; Caton Harrison et al.,
2021).

Indeed, the importance of collecting information on CPs and precipitation in deep
tropical regions has been pointed out (Adams et al., 2015) but systematic, climatolog-
ical studies on CPs in such regions are still rare or lacking. This may partially be due
to difficult environmental conditions which pose challenging demands on equipment and
maintenance (Parker et al., 2008). Also the availability of funds may hinder systematic
long-term campaigns in some regions. A notable exception is the trans-African hydro-
meteorological observatory (TAHMO) which offers a promising network of station mea-
surements in many sub-Saharan African countries (van de Giesen et al., 2014). Using
a range of stations from the TAHMO network, we here present a climatology of CP mea-
surements for equatorial Africa and compare findings to previous work in other geographic
regions.

2 Data

2.1 Station data

We utilize data from twelve ATMOS41 automatic weather stations (AWS) (Fig. 1),
operated by TAHMO. The stations are situated in Cameroon, the Democratic Repub-
lic of Congo (DR Congo), Nigeria, and Uganda. To investigate the influence of regional
climatic differences on CPs, we group stations according to their respective deployment
countries in our analysis.

The AWS provide data at a five-minute temporal resolution. All stations are in-
stalled at an approximate height of two meters above the surface. We employ the sta-
tion records of precipitation, atmospheric pressure, air temperature, relative humidity,
and wind gust speed. ATMOS41 determines the latter by measuring instantaneous wind
speed every ten seconds and outputting the maximum instantaneous wind speed value
within any given five-minute interval. If an instantaneous wind speed is larger than eight
times the running average of the previous ten instantaneous measurements, the measure-
ment is rejected. While this method may prevent spurious spikes in the wind record un-
der normal conditions, it can cause missing wind data in cases of large and sudden wind
changes. Given the frequent occurrence of such strong wind variations associated with
CP GFs, approximately 22% of all identified CPs have an incomplete wind record.

We analyze the data recorded by these AWSs from January 1, 2019, to Septem-
ber 30, 2023. As not all AWSs were operational throughout the entire period, we limit
our analysis for each station to days with complete air temperature records. Addition-
ally, we require the air temperature to be recorded for a minimum of ten consecutive min-
utes from the previous day and for the subsequent 120 minutes on the following day. The
resulting number of analysis days per station is indicated in Fig. 1. In total, we analyzed
15602 days and thus nearly 43 years of station data.

Based on the station-measured variables, we additionally compute both mixing ra-
tio, r and saturated mixing ratio, rsat (see Text S1), and derive the specific humidity,
q ≡ r/(1 + r) and the specific humidity deficit, qD ≡ qsat − q = rsat/(1 + rsat)− q.
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Figure 1: Weather station data employed. Map of equatorial Africa showing station
locations (filled black circles). Numbers within colored circles and the size of the circle
area represent available days of station data with a complete record of air temperature.
Stations are grouped into four regions denoted by the colored circles: Cameroon (blue),
Democratic Republic of Congo (yellow), Nigeria (green), Uganda (red).

2.2 Satellite data

Apart from the station data, we utilize infrared brightness temperature measure-
ments which we derive from satellite-measured effective radiances. The radiances are ex-
tracted from Meteosat Second Generation (MSG) 0° products provided by the European
Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). The data
has a baseline repeat cycle of 15min and a spatial resolution of 3 km in the sub-satellite
point. To convert the radiances to brightness temperatures we employ equation 5.3 and
the corresponding regression coefficients of EUMETSAT (2012).

3 Methods

3.1 Cold Pool Detection Algorithm

(i) Temperature criterion. A potential CP event is detected at a given time t if three
conditions apply: (1), similar to Kirsch et al. (2021) we require a substantial tempera-
ture decrease ∆T ≤ −2K, within the 20min window from t − 5min to t + 15min.
Additionally, we require (2), the decrease of ∆T to be monotonic and (3), T (t)−T (t−
5min) ≤ −0.5K.

While the chosen conditions minimize the risk of high false alarm rates due to typ-
ical diurnal temperature changes, some weak or dissipating CP GFs might be missed.
Choosing a ∆T of −1.5K as used by Kruse et al. (2022) leads to approximately 28% more
identifications, marginally weakening CP-associated median temperature and specific hu-
midity decreases by 11–12%, without impacting overall results.

(ii) Wind criterion. To confirm detected potential CP events, we adapt the wind cri-
terion introduced by Kruse et al. (2022). For this purpose, we compute the wind gust
speed anomaly for each time t as

∆ug(t) ≡ ug(t)− ug(t) , (1)
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where ug is the wind gust speed (see Sec. 2.1) and ug its centered 2-hour running mean,
i.e., the mean value of the 25 wind gust speeds recorded during the the corresponding
2-hour window.

For a potential CP event at time t we identify the maximum wind gust speed anomaly,
∆umax

g , between t− 20min and t+ 40min. We retain it as potential CP event if

∆umax
g ≥ ∆ug(t) + nw σ∆ug

(t) , (2)

with nw = 3, the centered 24-hour running mean of the wind gust speed anomaly, ∆ug,
and the corresponding 24-hour running standard deviation, σ∆ug

. While higher nw mainly
increase the number of missed CPs, smaller nw values give rise to more false positive de-
tections. For instance, using nw = 2 would yield 12% more identifications, with 2.5 times
as many events that cannot be attributed to convective events in satellite data and, there-
fore, are rejected in step (iv).

As the potential CP onset is defined based on the temperature criterion, we also
search for associated wind gusts in a 20min time window before this onset. We choose
20min rather than the 10min used by Kruse et al. (2022) since our temperature crite-
rion involves a minimum decrease of −0.5K within 5min to define the onset of poten-
tial CPs and might thus delay the onset in comparison to Kruse et al. (2022). The 40min
time window after potential CP onset allows significant wind offsets while ensuring a tem-
poral relation between ∆T and ∆umax

g . Halving both time windows would reduce CP
identifications by about 7%, with negligible impact on overall results.

In case of missing wind gust speed anomalies between t−20min and t+40min,
we identify the maximum wind gust speed, umax

g within this time window rather than
∆umax

g and retain the event as potential CP if

umax
g ≥ ug(t− 80min) + nmiss σug (t− 80min) , (3)

with nmiss = 2, the centered 2-hour running mean, ug, and the corresponding standard
deviation, σug . Approximately 25% of the detected CPs is identified based on Eq. 3 rather
than Eq. 2. By evaluating ug and σug 80min before potential CP onset, we keep again
a 20min offset between the onset and the 2-hour time window of the reference values.
Since portions of the wind record are missing, we choose nmiss conservatively. Yet, nei-
ther the number of identifications nor the results are sensitive to the selection of nmiss.

If no wind gust speed data has been recorded between t−20min and t+40min,
or if the reference values ug(t−80min) and ug(t−80min) could not be computed due
to missing data, we consider the event as "no CP."

Differing from Kruse et al. (2022), we evaluate the wind criterion based on wind
gust speed rather than wind speed. Since we work with station data with a temporal res-
olution of 5min in contrast to 1min in (Kruse et al., 2022), we find wind gust speed a
better indicator for CP GFs than wind speed.

(iii) Duplicate detection check. Often, a CP fulfills the defined criteria (i) and (ii)
not only at time t, but also at subsequent time steps. Depending on the evolution of tem-
perature and wind gust speed behind the CP GF, time steps in which the criteria are
met can even be separated from each other by time steps in which the criteria are not
met. To avoid duplicate detection of a given CP, we drop detected events if at least one
other event was detected within 20min before that particular event. Given the variety
of environmental conditions under which we observe CPs at our station locations, we find
this definition to be more permissive than the absolute 60min time window after detected
temperature decreases, within which Kirsch et al. (2021) considers any detected decrease
as part of the same event.

(iv) Space-borne verification. In some cases, especially during the Nigerian dry sea-
son, neither condition (i) nor (ii) may suffice to completely prevent false positive detec-
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tions caused by strong diurnal temperature changes. Consequently, we validate each de-
tected event using satellite-measured 10.8µm brightness temperatures, BT10.8. We con-
sider an event at time t as CP if the minimum BT10.8 recorded between t − 3h and t
within a 2° radius around the station is less than 240K.

The parameters of the verification ensure the presence of temporally related con-
vective events in the vicinity of the potential CP event. Applying this verification to all
detected events, 71 false positive detections are identified and dropped. Reducing the
radius around the station from 2° to 1.5° would increase the number of rejected events
to 85.

3.2 Determination of Cold Pool Anomalies

We analyze the effects of a detected CP with respect to different station-measured
meteorological variables by considering a time window relative to CP onset, t0, from t0−
40min to t0+120min. Within this time window, we evaluate the CP associated anoma-
lies y′(t) ≡ y(t) − yref for a meteorological variable y based on an unperturbed refer-
ence state yref , which we define as the temporal mean of instantaneous measurements
in a time interval before CP onset. Since the onset is defined based on the temperature
drop and thus could be different for other variables, we choose the time interval from t0−
40min to t0−20min to keep a sufficient margin of 20min to the CP onset while pre-
serving the required temporal proximity. To minimize any distortion of the reference state
through the diurnal cycle, we deviate from this definition only for temperature anoma-
lies and follow the approach of the refined temperature drop from Kruse et al. (2022)
instead, i.e., we consider the maximum temperature of the two measurements in the 10min
time window preceding the CP onset as unperturbed reference temperature.

Due to the coarser temporal resolution, we extend the time window in which we
analyze the anomalies before CP onset to 60min for satellite-measured 10.8µm bright-
ness temperatures, BT10.8, and define the reference brightness temperature, BT ref

10.8, as
the mean of the three observations in the time interval from t0−60min to t0−30min.
As there might not be a brightness temperature observation at the station-derived CP
onset, t0, we define the closest satellite time step as t̂0 and measure the CP time rela-
tive to it. The brightness temperature anomalies, BT ′

10.8, are then computed analogously
to those for station-measured variables. Moreover, to further investigate the space-borne
CP signature, we additionally determine the temporal change of BT ′

10.8, as ∆BT ′
10.8(t) =

BT ′
10.8(t)−BT ′

10.8(t− 15min).

The overall impact of the described parameter choices on the observed anomalies
is relatively weak. For instance, doubling the time interval for computing the unperturbed
reference state from 20min to 40min, while maintaining the 20min offset to CP onset,
would result in a 1.4% enhancement in the median specific humidity drop. Similarly, cal-
culating the unperturbed reference temperature based on the mean value of the four mea-
surements before CP onset, instead of using the maximum of the previous two, would
lead to a 1.3% reduction in the median temperature drop.

4 Results

4.1 Seasonal and Diurnal Cycle of Observed Cold Pools

First, we derive the seasonal and diurnal cycles of CPs in the different sub-regions
(Fig. 1) and relate them with precipitation, convection depth and moisture conditions
(Fig. 2). With about 0.3–0.6 CPs per day in the high seasons (Fig. 2a, Table S2), equa-
torial Africa boasts particular CP abundance compared to previous climatologies in other
continental regions with about 0.1–0.3 CPs per day (Redl et al., 2015; Kirsch et al., 2021;
Kruse et al., 2022). In every sub-region, the number of CPs peaks twice during the course
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of the year with a first maximum between March and May and a second maximum be-
tween September and October. The bi-modality in the annual cycle of CPs largely cor-
responds to the latitudinal migration of the Inter-Tropical Convergence Zone (ITCZ) as
reflected in the precipitation seasonal cycles (Fig. 2c). However, we note that precipi-
tation may not explain all the features of the annual cycle of CPs and the differences be-
tween sub-regions. For instance, Nigeria presents a single precipitation peak in Septem-
ber whereas CP occurrence peaks in both May and September. There, the strong CP
activity during May may be related to the combination of deeper convection (Fig. 2e)
fed by high equivalent potential temperatures (θE ; Fig. S1) and of higher low-level spe-
cific humidity deficit (qD; Fig. 2g) boosting rain evaporation. We also note that Uganda
receives the least precipitation among sub-regions while experiencing most frequent CPs
during the year. We attribute the larger number of CPs in Uganda to generally drier con-
ditions at low levels (Fig. 2g).

The diurnal cycle of CPs strongly peaks between 15 LT and 18 LT in all regions
except Nigeria, where the peak is reached between 18 LT and 21 LT (Fig. 2b). The high
CP activity during the afternoon can be directly related to the afternoon peak in (deep)
convection, highlighted by maxima in precipitation (Fig. 2d) and lower brightness tem-
peratures (Fig. 2f). Consistently with earlier studies (Zhang et al., 2016; Camberlin et
al., 2018; Andrews et al., 2023), precipitation shows secondary nocturnal peaks in Uganda
and Congo, and remains high during the night in Nigeria, whereas the proportion of CPs
displays local minima during these hours. This mismatch between precipitation and CPs
is likely to be related to both the decline of convection during the night (leading to weaker
rainfall intensities and downdrafts) and to moister conditions at the surface (reducing
rainfall evaporative cooling; Fig. 2h) which both inhibit CP formation (Zuidema et al.,
2017).

4.2 Observed Cold Pool Characteristics

We further characterize equatorial African CPs by relating their temperature and
moisture anomalies (defined in Sec. 3.2). On average, such CPs are accompanied by 5K
drops in temperature — compared to 3K in Germany; Kirsch et al. (2021) — occurring
within approximately 30 minutes, with little variability among sub-regions (Fig. 3a, Ta-
ble S2). In distinction to Kirsch et al. (2021), the CPs we analyze here generally show
decreases in specific humidity after CP passage (Fig. 3d). Interestingly, we find that the
magnitude of this decrease is smaller for the elevated (Table S1) stations of Uganda (−1 g kg−1)
characterized by less deep convection (Fig. 2e,f) and drier low-level environments (Fig. 2g,h)
compared to the other sub-regions (about −3 g kg−1). Less deep convection is likely to
be associated with lower (relative to the ground) convective downdrafts origins (Zuidema
et al., 2017), importing less upper-level dry air to the surface. This may combine with
enhanced rain evaporation due to drier environments, thus explaining the more modest
reduction in specific humidity over Uganda. When considering the 25% driest (moistest)
low-level pre-CP environments, we further evidence the large impact of moisture con-
ditions, and thus of rain evaporation, on CP temperature and moisture anomalies in all
sub-regions (Fig. 2b,c,e,f): CP anomalies typically are 3K cooler and 2 g kg−1 moister
in the driest pre-CP conditions than in the moistest pre-CP conditions. We note weak
maxima in specific humidity occurring few minutes after CP onset — so-called moisture
rings (Tompkins, 2001a; Langhans & Romps, 2015; Schlemmer & Hohenegger, 2016) —
over Cameroon, Uganda and Congo for the driest pre-CP environments. Finally, the tem-
poral evolution of qD (Fig. 3g,h,i) reveals that, in the driest environments, rain evapo-
ration may not be sufficient to saturate the low-level air — similar to Germany; Kirsch
et al. (2021).

Addressing CP cloud characteristics, we find that 96% (Uganda) to 100% (Congo)
of CP GFs are accompanied by shallow or deep convective clouds (Fig. S2a). More specif-
ically, CPs are generally accompanied by a strong decrease in BT10.8 (Fig. 4a), e.g., reach-
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Figure 2: Observed seasonal and diurnal cycles. Line colors indicate distinct sub-
regions (see legend). a, Mean number of daily cold pool (CP) events for each month.
Lines interpolate linearly between markers to facilitate the interpretation; colors indi-
cate different regions. The number of CP events is normalized based on the number of
analyzed days per month and region. b, Proportion of CP events at different times of
the day. Each marker represents the proportion of CP events observed within a given 3-
hour time interval, starting with the interval [0,3) for the marker at 0 LT. c, Analogous
to (a) but for precipitation. d, Analogous to (b) but for precipitation. e, Mean 10.8µm
brightness temperature, BT10.8, of deep clouds (BT10.8 ≤ 240K) for each month. f, Mean
BT10.8 of deep clouds at different times of the day. The two lines for Nigeria represent
rainy (Apr–Oct, dotted) and dry months (Nov–Mar, dashed). g, Analogous to (e) but for
mean specific humidity deficit, qD. h, Analogous to (f) but for mean qD.
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Figure 3: Station-derived cold pool (CP) properties relative to CP onset, t0.
a, Mean temperature anomalies, T ′, for different regions; shading indicates the 95% con-
fidence interval. b, Analogous to (a) but for the 25% driest pre-CP environments of each
region w.r.t. the reference specific humidity deficit, qrefD , prior to t0. c, Analogous to (b)
but for the 25% moistest pre-CP environments. d–f, Analogous to (a)–(c) but for mean
specific humidity anomalies, q′. g–i, Analogous to (a)–(c) but for mean specific humidity
deficits, qD. Note that only timeseries of CPs, where t0 is more than 120 minutes apart
from other CP onsets, are included in the analysis.

ing 36K in Congo. The BT10.8 minimum is typically achieved 30–45 minutes after CP
onset. While this minimum is delayed w.r.t. the CP onset, we find a minimum of the
time derivative of BT ′

10.8 to be synchronized with CP onset in all sub-regions (Fig. 4b).
This observation suggests that CPs in equatorial Africa, and potentially other regions,
might be detectable from space-borne satellite data.

5 Summary and Discussion

The present study provides multi-year statistics of cold pool characteristics in equa-
torial Africa, based on five-minute near-surface weather data. Using detection methods
similar to those in previous studies focused on mid-latitude continental regions, key find-
ings include that temperature drops upon gust front passage often exceed 5K and spe-
cific humidities typically decrease by more than 3 g kg−1. Weak moisture rings can only
be identified in some of the sub-regions for the driest pre-cold pool environments — in
agreement with Kruse et al. (2022) for data in the Netherlands where moisture rings were
generally not detected.

Seasonally, the rate of cold pool occurrence roughly follows precipitation statistics.
Diurnally, in contrast, cold pool occurrence sharply peaks during the drier late afternoon
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a

b

Figure 4: Space-borne signatures of cold pools (CPs) relative to CP onset, t̂0.
a, Mean 10.8µm brightness temperature anomalies, BT ′

10.8, of station-derived CPs for
different regions; shading indicates the 95% confidence interval. b, Analogous to (a) but
for the corresponding derivative ∆BT ′

10.8.

times, departing from the weak precipitation diurnal cycle. We suggest this may be due
to the nocturnal boundary layer often being close to saturation, thus diminishing cold
pool occurrence there. This finding may have important implications for thunderstorm
organization through cold pool activity: the limited time window where cold pools ac-
tually occur during the day means that self-organization may be limited to relatively short
periods of the day. One could speculate that it is the lack of cold pool activity that lim-
its the duration of mesoscale convective systems, often less than 12 hours, rather than
the precipitation itself — which is more spread out over the day. Yet, further investi-
gations are needed to substantiate this claim, e.g., by using additional radiosonde data
to explore the vertical coordinate Future studies should also analyze if deep convection
is more scattered during nocturnal periods when fewer cold pools occur. Comparisons
with oceanic cold pools and their organizational effects, which tend to be weaker (Zuidema
et al., 2017), would be insightful.

Our cold pool detection algorithm can be adapted to other regions, provided that
there are in-situ weather stations measuring surface wind and temperature with at least
5-min temporal resolution. However, in-situ weather stations meeting this requirement
are still limited in the tropics, whereas cold pools are abundant. Encouragingly, our find-
ings may have implications for satellite-based cold pool detection: we show that gust front
passage clearly correlates with discontinuities in satellite-derived brightness temperature.
We generally observe a significant decrease in brightness temperatures around the time
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of the gust front passage, with maximum decrease rates at the station-derived cold pool
onset. Our findings thus suggest that cold pools in equatorial Africa, and potentially other
regions, could be directly detectable from geostationary satellite data on a continental
scale. While significant decreases in brightness temperature alone are not a sufficient cri-
terion for identifying cold pool gust fronts, the concurrence with spatiotemporal patterns
like radially spreading cloud arcs and rapidly expanding deep convection (Text S2, Fig. S3)
could aid neural networks, such as those developed by Hoeller et al. (2024a), in limit-
ing the number of false positive detections. Even in cases where not all parts of a cold
pool gust front exhibit brightness temperature drops (Fig. S2b), the presence of such spa-
tiotemporal patterns may enable the neural networks to accurately track the gust front.
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Both the code for the cold pool gust front identification and the processed data sets
are licensed under Creative Commons Attribution 4.0 International and were used in ver-
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Introduction

Text S1 describes the computation employed for mixing ratio, saturated mixing ra-

tio, equivalent potential temperature, and temperature at the lifting condensation level.

Text S2 presents two contrasting examples of observed cold pools (CPs). Table S1 con-

tains geographic information regarding the deployed automatic weather stations. Table S2
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summarizes statistics on the 4218 CPs which we identified in five-minute near-surface data

of twelve automatic weather stations in tropical Africa, recorded between January 1, 2019

and September 30, 2023. Fig. S1 shows the station-derived seasonal and diurnal cycle

of near-surface equivalent potential temperature for different regions across equatorial

Africa. Fig. S2 shows two probability distributions of satellite-derived properties of the

identified CP gust fronts. Fig. S3 visualizes the two contrasting examples of observed

CPs presented in Text S2.

As in the main article, the statistics in Table S2, as well as the data in Fig. S1 and

Fig. S2, are grouped based on the stations’ deployment countries to enable an investigation

of regional differences. In addition to general information on CP occurrence, Table S2

contains data on the strength of station-observed near-surface CP anomalies, as well as

satellite-observed brightness temperatures. We assess the overall strength of a an anomaly

by its largest extreme value in the time window from t0 − 20min to t0 + 120min. Only

for temperature, T , based on which the CP onset was defined, we consider the time

window from t0 to t0 + 120min instead. For simplicity we refer to extreme values of

anomalies as perturbations and denote them with a ”δ”. Whether the identified extreme

values are maxima or minima depends on the variable and the detected CP: While we

exclusively search for minima for T and equivalent potential temperature (θe), we look

for maxima for wind gust speed (ug), relative humidity (RH) and atmospheric pressure

(p). For specific humidity, q, which may exhibit positive as well as negative perturbations,

we search for both minima and maxima and consider the extreme value with the larger

absolute value as perturbation. We define a maximum or minimum, respectively, as the
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largest local maximum or minimum in the corresponding time window. An instantaneous

measurement y(t) at time t is a local maximum if y(t − 5min) ≤ y(t) > y(t + 5min)

and analogously for a local minimum. If a certain anomaly record of an identified CP has

missing values or does not have an extreme value, we do not assign a perturbation. With

respect to satellite-observed brightness temperatures, we evaluate the minimum brightness

temperature, BTmin
10.8 by determining the minimum 10.8µm brightness temperature in the

time window from t̂0−60min to t̂0+120min, i.e., the corresponding time window around

the satellite-observed CP onset, t̂0, which we define in the main article.
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Text S1.

Based on the station-measured variables, we compute the saturated vapor pressure of

water, esat, using equation 10 of Bolton (1980). We then derive the saturated mixing

ratio, rsat, by plugging esat and the station-measured atmospheric pressure, p, into the

following equation from chapter 3.5.1 of Wallace and Hobbs (2006):

rsat = 0.622
esat

p− esat
. (1)

To compute the mixing ratio, r, we adapt equation 3.64 of Wallace and Hobbs (2006).

For the computation of the temperature at the lifting condensation level, TLCL, and the

equivalent potential temperature, θE, we employ equation 22 and 43, respectively, of

Bolton (1980).

Text S2.

The first CP (Fig. S3a) was detected in DR Congo at station TA00673 on November

28, 2021, at 13:40 UTC and associated with a mesoscale convective system, visible in

the satellite-derived 10.8µm brightness temperature image at 13:45 UTC (Fig. S3b).

The corresponding brightness temperature timeseries of all different wavelength channels

(Fig. S3d) show a significant brightness temperature decrease at the station location

around CP onset, with a maximum decrease rate coinciding with the onset. Between

12:30 and 14:45 UTC, the brightness temperature dropped by 85K in the 10.8µm channel

and then slowly increased again. Concurrently, the station record (Fig. S3f) reveals a

massive air temperature drop of 9.6K between 13:40 and 14:00 UTC, accompanied by

increased wind gust speeds of up to 6.5ms−1. By 14:00 UTC, when the temperature had
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stabilized, the air became fully saturated. Five minutes later, the rainfall intensity peaked

at approximately 65mmh−1.

The second CP (Fig. S3; right column) was detected in Uganda at station TA00222 on

July 2, 2021, at 12:05 UTC. During the time it was detected, the CP featured arc-shaped

shallow convection at the gust front, distinctly separated from the parent convection by

clear skies (Fig. S3c). The corresponding brightness temperature timeseries at the station

(Fig. S3e) confirm the passage of low-level clouds precisely coinciding with the time of the

station-derived CP onset. Around the CP onset, no rainfall was measured at the station

(Fig. S3g). The observed wind gust speed increased approximately 5–10 minutes before

the drop in air temperature and reached a peak value of 10ms−1 at CP onset.
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Table S1. Geographic information regarding the deployed automatic weather stations.

Station code Country Latitude [°N] Longitude [°E] Elevation [m]
TA00220 Uganda 1.21 32.74 1047
TA00222 Uganda 1.19 32.02 1069
TA00224 Uganda 0.57 32.64 1168
TA00410 DR Congo 0.82 24.46 464
TA00459 Nigeria 9.07 6.57 198
TA00580 Nigeria 7.84 9.78 162
TA00581 Nigeria 9.35 12.50 220
TA00584 Nigeria 7.80 8.62 104
TA00673 DR Congo 0.07 18.31 311
TA00717 Cameroon 3.90 11.89 734
TA00728 Cameroon 2.82 11.13 581
TA00730 Cameroon 3.47 11.49 665

Table S2. Summary of observed cold pool (CP) statistics including the total number of CPs

and CPs per day, along with median values of different CP properties; sub- and superscripts

indicate the interquartile range.

Cameroon DR Congo (eq.) Nigeria Uganda All
#CPs 788 649 1028 1753 4218
#CPs/day 0.26 0.25 0.18 0.41 0.27
δT −4.90+1.20

−1.70 −5.50+1.60
−1.80 −5.40+1.40

−2.00 −5.30+1.50
−2.00 −5.30+1.50

−1.90

δq −3.08+1.07
−1.13 −3.73+1.04

−1.20 −3.77+1.10
−1.08 −1.92+1.29

−0.95 −2.83+1.26
−1.26

δug 2.85+1.28
−1.00 2.85+1.43

−1.01 4.53+1.91
−1.47 3.18+1.25

−0.90 3.24+1.37
−1.06

δθe −15.94+4.25
−5.10 −18.58+4.64

−6.32 −18.54+5.09
−5.46 −12.54+4.48

−4.58 −15.56+4.84
−5.37

δRH 0.15+0.07
−0.07 0.16+0.07

−0.08 0.14+0.08
−0.05 0.21+0.08

−0.07 0.17+0.07
−0.07

δp 1.23+0.77
−0.67 1.35+0.75

−0.77 1.67+0.83
−0.68 0.85+0.60

−0.45 1.20+0.75
−0.65

BTmin
10.8 211+18

−12 204+12
−8 203+15

−7 217+26
−12 210+20

−11
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a b

Figure S1. Station-derived seasonal and diurnal cycle of near-surface equivalent potential

temperature, θE. a, Mean θE for each month. Lines interpolate linearly between markers to

facilitate the interpretation; colors indicate different regions. b, Mean θE at different times of

the day. Each marker represents the mean value for a given 3-hour time interval, starting with

the interval [0,3) for the marker at 0 LT. Lines and colors analogous to (a). The two lines for

Nigeria represent rainy months (Apr–Oct, dotted) and dry months (Nov–Mar, dashed).
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a b

Figure S2. Probability distributions of satellite-derived cold pool (CP) properties. a, Distri-

bution of the difference between the temperature at the lifting condensation level, TLCL, and the

corresponding 10.8µm brightness temperature, BT10.8 of identified CP gust fronts; to increase

the robustness, the difference is calculated based on the mean values of the two measurements

at the nearest satellite time steps around the station-derived CP onset, t0. Values below zero

represent gust fronts with clear skies. Colors indicate different regions. b, Distribution of the

temporal change of 10.8µm brightness temperature anomalies, ∆BT ′
10.8, at the satellite-observed

CP onset, t̂0; colors analogous to (a).
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a

b c

d e

f g

Figure S3. Cold pool (CP) case studies. a, Map displaying the locations of the stations

utilized in the two case studies. Rectangles indicate the regions depicted in (b) and (c). b,

Satellite-derived 10.8µm brightness temperatures, BT10.8, in the vicinity of station TA00673 on

November 28, 2021, at 13:45, close to a station-derived CP onset at 13:40. c, Analogous to

(b) but for station TA00222 on July 2, 2021, at 12:00 and a CP onset at 12:05. d, Timeseries

of satellite-derived brightness temperatures at station TA00673 during the CP event visualized

in (b). e, Analogous to (d) but for the CP event at station TA00222 visualized in (c). f-g,

Analogous to (d-e) but for different near-surface observations.
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72 CHAPTER 5. CONTRIBUTIONS

5.2 Detecting Cold Pool Family Trees in
Convection Resolving Simulations

The following manuscript introduces a novel algorithm designed for the de-
tection and tracking of CPs in cloud-resolving simulation data. Inspired by
the physical process of CP formation, the algorithm identifies individual CPs
based on labeled rainfall patches that have the potential to give rise to CPs
under specific conditions. Each CP that forms inherits the same label as its
parent rain patch. By tracking the causal relationships between CP events
and the rain patches they trigger, the algorithm facilitates investigations into
the role of CPs in convective organization. Moreover, as the algorithm incor-
porates both thermodynamic and dynamic variables, the boundaries of seg-
mented CPs closely correspond to the locations of new convective initiation.
As a result, the algorithm serves as a valuable tool for automatically gener-
ating ground truth data to train and test neural networks using simulated
satellite observations, a capability utilized in manuscript III (Section 5.3).



Detecting Cold Pool Family Trees in Convection Resolving
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Abstract Recent observations and modeling increasingly reveal the key role of cold pools in organizing the
convective cloud field. Several methods for detecting cold pools in simulations exist, but are usually based on
buoyancy fields and fall short of reliably identifying the active gust front. The current cold pool (CP) detection and
tracking algorithm (CoolDeTA), aims to identify cold pools and follow them in time, thereby distinguishing their
active gust fronts and the “offspring” rain cells generated nearby. To accomplish these tasks, CoolDeTAutilizes a
combination of thermodynamic and dynamical variables and examines the spatial and temporal relationships
between cold pools and rain events. We demonstrate that CoolDeTA can reconstruct CP family trees. Using
CoolDeTA we can contrast radiative convective equilibrium (RCE) and diurnal cycle CP dynamics, as well as
cases with vertical wind shear and without. We show that the results obtained are consistent with a conceptual
model where CP triggering of children rain cells follows a simple birth rate, proportional to a CP's gust front
length. The proportionality factor depends on the ambient atmospheric stability and is lower for RCE, in linewith
marginal stability as traditionally ascribed to the moist adiabat. In the diurnal case, where ambient stability is
lower, the birth rate thus becomes substantially higher, in line with periodic insolation forcing—resulting in
essentially run‐away mesoscale excitations generated by a single parent rain cell and its CP.

Plain Language Summary Cold pools are cooled air masses below thunderstorm clouds, produced
when rain evaporates underneath such clouds. Cold pools are important, as they produce strong gusts and have
been associated with clumping of rain cells, whereby heavy rainfall over relatively small areas could be
generated—with implications for flooding. The current work describes a method that helps identify such cold
pools in computer simulation data. In contrast to earlier methods, we here show that the interaction between a
CP and its surroundings can be reconstructed by the method. We show that this identification works under a
range of contexts, such as when horizontal wind is applied in the simulations or when the surface temperature is
not constant—as might often be the case over a land surface. The identification reveals interesting dynamical
effects, such as that in some cases, cold pools can kick‐start a form of chain reaction, by which “rain cell
children” of it give rise to additional cold pools that again produce children, and so forth. The dynamics revealed
is in line with expectations of widespread, so‐called mesoscale convective systems over land, whereas over an
ocean surface the dynamics is much less explosive.

1. Introduction
Convectively‐generated cold pools are dense air masses forming beneath precipitating thunderstorm clouds when
a fraction of hydrometeors evaporates within the subcloud layer (Droegemeier & Wilhelmson, 1985; Simp-
son, 1980). Besides the higher density compared to their surroundings, cold pools manifest themselves by a
divergent near‐surface wind field and vortical structures along their “dynamical edges,” that is, the demarcation
between the cold pool (CP) and the ambient atmosphere. Many recent studies have considered the characteristics
of cold pools (Drager & van den Heever, 2017; Fournier & Haerter, 2019; Gentine et al., 2016; Henneberg
et al., 2020; Schlemmer & Hohenegger, 2016; Torri & Kuang, 2019), because they have been implicated in the
spatio‐temporal organization of the convective cloud field—thus impacting non‐random organization of rainfall,
with consequences for extreme events, such as flooding (Böing, 2016; Haerter et al., 2019; Jensen et al., 2021;
Schlemmer & Hohenegger, 2016; Simpson, 1980; Tompkins, 2001b).

Observationally, measuring cold pools is difficult, as high‐resolution spatio‐temporal records of the subcloud
boundary layer are required to track a given spreading CP. Field campaigns thus often remain restricted to a
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particular, often spatially confined area (Feng et al., 2015; Hohenegger et al., 2023), use point‐like or lower‐
dimensional measurements (Engerer et al., 2008; Zuidema et al., 2017), or need to resort to indirect signals,
such as cleared areas in radar imagery (de Szoeke et al., 2017) or combinations of point and radar measurements
(Kruse et al., 2022). Yet, from existing observational studies, it is evident that CP interactions help structure the
cloud field and qualify as a mechanism to induce thunderstorm precipitation cells (Moncrieff & Liu, 1999).
Measurements of the ocean temperature after CP events also point to lowered sea surface temperatures after
pronounced CP occurrences (Pei et al., 2018), thus possibly giving rise to locally anti‐correlated rain activity.

Numerical approaches hardly suffer from a lack of data coverage. Yet, in the past, three‐dimensional simu-
lations at cloud‐resolving O(100m) resolution have not been possible over domain sizes of several hundred
kilometers and weeks, required for reaching steady state dynamics. In recent years, however, the required scales
have become accessible, and numerical simulations aimed at improving our understanding of cold dynamics
have become feasible. For instance, process‐oriented computer simulations have helped appreciate the role of
cold pools in organizing the thermal and momentum structure within the subcloud layer (Böing et al., 2012).
Further, numerical studies have helped elucidate the role of surface heat fluxes, induced by cold pools as they
move along (Torri & Kuang, 2016), a dynamics which might affect the formation of so‐called moisture rings
(Chandra et al., 2018). The partitioning of surface heat fluxes into latent and sensible contributions was found
to be strongly dependent on soil moisture, a variable which conversely also affects the size and propagation
speed of cold pools due to changes in boundary layer humidity and rain shaft areas (Drager et al., 2020; Gentine
et al., 2016).

On the larger‐scale level of simulated mesoscale organization, cold pools have been suggested as a possible cause
for non‐random distributions of rain cells in space (Haerter et al., 2019), which may arise when CP gust fronts
collide to trigger new cells at the loci of collision (Böing, 2016; Moseley et al., 2016; Torri & Kuang, 2019). Cold
pools were also found to affect the moisture distribution in the subcloud layer (Böing et al., 2012; Schlemmer &
Hohenegger, 2016) and may thereby aid the transitioning from shallow to deep convection (Kurowski
et al., 2018). Even the paradigmatic “convective self‐aggregation” (CSA), a system‐scale symmetry breaking,
was found to be affected by CP activity (Haerter, 2019; Jeevanjee & Romps, 2013; Muller et al., 2022; Nissen &
Haerter, 2021). In an effort to study more realistic configurations, recent numerical experiments employ
temporally varying surface temperatures to investigate the impact of the diurnal cycle on correlated CP activity,
especially regarding the formation of mesoscale convective systems (MCS) (Haerter et al., 2020; Jensen
et al., 2021), stimulating conceptual models to help explain the complex processes involved (Niehues et al., 2021).

Interestingly, only few attempts have been made at parameterizing cold pools in larger‐scale climate models
(Grandpeix & Lafore, 2010; Rio et al., 2009; Rooney et al., 2021). This may be due to an incomplete under-
standing of the fundamental processes affecting CP interaction, dynamics, and thermodynamic modifications of
the boundary layer, as well as the pre‐moistening of the lower free troposphere. Process‐focused studies that leave
out parts of the components involved (Fiévet et al., 2023; Haerter & Schlemmer, 2018; Meyer & Haerter, 2020;
Romps & Jeevanjee, 2016), may help improve parameterizations further.

Several recent works have brought forward methods to track cold pools, in particular their gust fronts, in nu-
merical simulations (Drager & van den Heever, 2017; Fournier & Haerter, 2019; Henneberg et al., 2020; Hirt
et al., 2020; Rochetin et al., 2021; Schlemmer & Hohenegger, 2016). Yet, the detection of cold pools in numerical
simulations is far from trivial: (a) the area affected by rainfall, where the CP is fed by rain evaporation, is often not
cleanly delimited and subject to setting a threshold value, for example, on the precipitation rate; (b) the CP density
current, as a highly dynamic object, experiences turbulent mixing and heat exchange with the surface and ambient
environment, and is subject to spontaneous symmetry breaking, such as under the formation of “lobe‐and‐cleft”
instabilities—again feeding back on the dynamics (Härtel et al., 2000; Markowski & Richardson, 2010; Simp-
son, 1972; Wakimoto, 2001); (c) the larger‐scale pattern of cold pools and the rain cells produced by their col-
lisions, is highly complex, with families formed by CP‐rain cell networks making for a challenging tracking
problem.

The current work addresses these challenges by building an algorithm which identifies cold pools and their causal
chains based on a combination of buoyancy and dynamical measures. We apply our algorithm to cloud resolving
simulation data based on radiative convective equilibrium (RCE) and diurnal cycle setups with and without wind
shear to examine the impact of the simulation setup on CP dynamics. Based on the identified causal chains of cold
pools, we investigate how the total accumulated rainfall of a given CP relates to (a) its capacity to trigger new rain
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cells and (b) the number of colliding cold pools which triggered its parent convection. Furthermore, we show
examples of derived CP family trees and propose a simple conceptual model that replicates the observed cascade‐
like dynamics of cold pools within MCS.

2. Methods
2.1. Cloud Resolving Simulation Data

We employ the System for Atmospheric Modeling (SAM) (Khairoutdinov & Randall, 2006) to simulate the
convective cloud field for a set of numerical experiments. The horizontal domain size is chosen to be square L× L,
with L = 240 km in all simulations, and the horizontal grid spacing Δh is chosen as Δh = 200 m throughout, thus
yielding N = 1,200 grid boxes in each horizontal dimension. Cyclic boundary conditions are chosen in both
horizontal dimensions. We found this horizontal mesh resolution a suitable compromise, where relatively large
domain sizes can be simulated for several days, yet, key CP effects, such as the dynamic gust front, can be
simulated at satisfactory detail (Bryan et al., 2003; Fiévet et al., 2023; Hirt et al., 2020; Meyer & Haerter, 2020;
Straka et al., 1993). The mesh is discretized along the vertical direction z using 64 levels of increasing depth Δz,
ranging from Δz = 50 m at the first level (z = 25 m) to 1,000 m at the domain's top boundary (z = 26 km). The
model resolves a non‐hydrostatic anelastic form of the Euler equations, and uses the liquid water static energy and
the total precipitating/nonprecipitating water mixing ratios as prognostic variables. We use the embedded one‐
moment microphysics scheme (Khairoutdinov & Randall, 2003) along with a first‐order turbulent subgrid
scheme (Smagorinsky, 1963). The radiative fluxes are calculated using the National Center for Atmospheric
Research Community Atmosphere Model version 3 (Collins et al., 2006).

The surface conditions are prescribed and taken as a (saturated) sea surface of a given, horizontally‐homogeneous
surface temperature Ts, that is, Ts(x, y, t) = Ts(t). We distinguish two sensitivities:

1. To mimic a diurnal cycle, we allow Ts(t) to vary sinusoidally as

Ts(t) = Ts − ΔT cos(2π t/T). (1)

here, Ts = 298K and ΔT is either chosen as 0 K, which we term “rce,” or as 2 and 4 K, respectively,
termed “diu.”

2. To simulate large scale wind shear, we additionally impose a height dependent wind tendency in the x‐di-
rection, with a piecewise linear profile given by

u0(z< 1 km) = 0,

u0(1 km< z< 19 km) = δu(
z − 1 km
18 km

) ,

u0(z> 19 km) = δu.

(2)

The velocity field is nudged toward this profile using a typical linear‐relaxation term in the momentum equation
with a timescale of τ = 1 day. This timescale is chosen to preserve the internal subdiurnal variability occurring
through convective organization, such as through CP dynamics.

The above settings for ΔT and wind shear give rise to the six setups used in this paper, namely rce0K, diu2K, and
diu4K, which can each have δu = 0 or δu = 16 m s− 1. For each setup we run the simulation for 7.5 days.

The integration time step, ∼O(s), varies accordingly with a maximum admissible Courant‐Friedrichs‐Lewy
(CFL) number of 0.8. The simulation output frequency is of one every Δt = 10 min. Each Δt, the following
instantaneous fields are output: surface rainfall intensity I(x, y, t), near‐surface specific humidity q(x, y, t) = q(x,
y, z = 25 m, t), virtual temperature Tv(x, y, t) = Tv(x, y, z = 25 m, t), the horizontal wind vector u ≡ (u, v), with
u = u(x, y, z = 25 m, t) and v = v(x, y, z = 25 m, t) as the lowest‐level horizontal wind components in the x and
y directions, and near‐surface vertical wind speed w = w(x, y, z = 25 m, t). For simplicity, we refer to Δt as the
“time step” throughout the paper. The discrete time t = tn ≡ nΔt, measured from the beginning of the simu-
lation, is often denoted by the integer time step n. Similarly, we use integers i ∈ {1, …, N} and j ∈ {1, …, N} to
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label the two discrete positions x = xi ≡ iΔh and y = yj ≡ jΔh. Note that xi = xi+N and yj = yj+N in accordance
with the cyclic boundary conditions. For a given 2D field Q we often use Q(i, j, n) to refer to the numerical
value of Q at horizontal position (xi, yj) and time tn.

2.2. Cold Pool Detection and Tracking Procedure

The main goal of the proposed algorithm is to detect and track cold pools in data from numerical simulations,
while observing and identifying the involved causal relations between cold pools and rain cells: On the one
hand, cold pools require evaporating precipitation and are thus inevitably linked to particular rain cells. To
accommodate this causal relation, rain cells are taken as the origin of cold pools in the proposed algorithm.
Thus, a rain cell is a required condition for the identification of a CP. Each rain cell in the domain is assigned a
unique rain identification number (ID). In case a rain cell generates a CP, the CP receives the same ID as the
associated rain cell. On the other hand, CP gust fronts can trigger new rain cells, which might again generate
new cold pools (Böing, 2016; Haerter et al., 2019; Tompkins, 2001a). Accordingly, the algorithm stores rain
cells triggered at a CP gust front, as well as potential cold pools emerging from these rain cells, as children of
that particular CP. In this manner, the algorithm not only detects and tracks cold pools, but also their
relationships.

The proposed CP detection and tracking algorithm (CoolDeTA) consists of four main steps: (a) identification of
rain patches (RPs), (b) segmentation of the domain into “potential CP” and “no CP” regions, (c) derivation of
markers, and (d) labeling of cold pools. These steps are performed for every output time step of the respective
simulation or simulation time window.

For notational convenience we introduce several definitions:

• The deviation of any given scalar quantity Q(i, j, n) relative to its spatial mean is denoted as

Q′(i,j,n) = Q(i,j,n) − Q(n), (3)

where Q(n) denotes the spatial mean at tn.
• Occasionally, we require Q at a given time step tn to be normalized to the range between zero and one. This is

accomplished by the rescaling

Q̂(i,j,n) =
Q(i,j,n) − min(Q(n))

max(Q(n)) − min(Q(n))
, (4)

where min(Q(n)) or max(Q(n)) refer to the minimum and maximum of the two‐dimensional field Q(n) at time
step tn.

• For simpler notation we write the Kronecker delta symbol as δ(a, b), which equals unity for a = b and zero
otherwise.

• Two (spatial) indices (i, j) and (i′, j′) are considered contiguous, if dist((i,j) − (i′,j′)) = 1, where dist denotes
the shortest distance operator, which ensures cyclic boundary conditions on the toroidal square lattice
geometry.

• We use pr(i, j, n) and pcp(i, j, n) to indicate N × N integer fields for labeling RPs and CP patches at time step tn.
Analogously, we also define an auxiliary field pseg(i, j, n). For either, we define a superscript m as labeling
the subset of indices (i, j, n) of pr or pcp, where the integer is equal to m, for example,
pmr ≡ {(i,j,n)∈ [1,N] × [1,N] × [1∧pr(i,j,n) = m]}.

(i) Identifying RPs. At any discrete time tn a RP is defined as a spatially contiguous region in which the rain
intensity I(xi, yj, tn) ≥ I0. Generally, we employ I0 = 2 mm hr− 1, which has been determined as critical rate for
downdrafts penetrating into the subcloud layer (Barnes & Garstang, 1982). The algorithm assigns a unique ID to
every RP identified by this procedure. In this way, pr(i, j, n) is populated at each time step tn, where

pr(i,j,n) = {
0 if I(i,j,n)< I0
otherwise: ID of respective rain patch.

(5)
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For robustness, a given RP, labeled m, at time step index n is only retained if its area A(pr,n,m)
≡ Δh2∑N

i,j=1δ(pr(i,j,n),m)≥A0, where we use A0= 2 km2 as a threshold. Otherwise, the corresponding values of
pr are set to zero.

(ii) Segmentation. At each time tn, we use an indicator field

Iseg(i,j,n) = ŝ′(i,j,n) + (1 − T̂′v(i,j,n)), (6)

where s′(i, j, n) are the horizontal wind speed fluctuations, computed as

s′(i,j,n) ≡
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

u′(i,j,n)2 + v′(i,j,n)2
√

. (7)

Iseg(i,j,n) is a measure which we assume to be increased in areas where cold pools are present. Since cold pools
are associated with fluctuating horizontal wind speeds but decreased virtual potential temperatures, T̂′v(i,j,n) in
Equation 6 is subtracted from unity, that is, relatively low Tv increases the probability of a CP. The two quantities
are combined with equal weights to ensure equal importance is given to both thermodynamic and dynamical
features. We choose perturbations rather than absolute quantities in Equation 6 to be able to apply the method to
simulations with other boundary conditions, such as non‐zero surface winds, and thus increase the method's scope
of application.

A k‐means algorithm (Pedregosa et al., 2011) now subdivides every grid cell (i, j) into two cluster groups, namely
“potential CP” or “no CP” by minimizing the one‐dimensional distance metric within both cluster groups. The
result is a horizontalN×N binary segmentation pbin(i, j, n) with pbin(i, j, n)= 1 for all “potential CP” grid cells and
pbin(i, j, n) = 0 for all “no CP” cells. As an example, Figure 1a shows the corresponding histogram of Iseg for
diu4K at time step t471 representing a morning scene. The lower and upper cluster groups represent regions where
cold pools are considered prohibited versus feasible. A “cold pool” grid cell must fall within the feasible cluster
group. Yet, additional criteria below are required.

Spreading quickly beyond the boundaries of their RPs, fully developed cold pools should at least encompass
the same area as their related RPs. Thus, we apply the minimum area A0 criterion from (i) also to the identified
“potential CP” regions. For this reason, spatially contiguous “potential CP” regions in pbin(i, j, n) are identified and
labeled with a unique integer number. The result is, analogous to (i), a horizontal N × N integer field pseg(i, j, n)

where a patch, labeled m, is only retained if its area A( pseg,n,m) ≡ Δh2∑N
i,j=1δ(pseg(i,j,n),m)≥A0.

(iii) Deriving markers. A marker could be defined as a center of mass (COM) of a given RP m at time tn. We
however found that the actual (dynamical) downdraft within this patch more precisely marks the CP center. A
good choice for the downdraft field ITw(i,j,n) was found to be a combination of normalized temperature and
vertical velocity, namely

ITw(i,j,n) = T̂(i,j,n) + ŵ(i,j,n), (8)

so that for a given patch, labeled m,

Immar(i,j,n) = 1 − ÎmTw(i,j,n), (9)

which is large for locations of minimal temperature and vertical velocity. The corresponding COM, (Cmx ,C
m
y ) ,

follows as

Cmx =
∑N
i,j=1xiImmar(i,j,n)

∑N
i,j=1Immar(i,j,n)

, (10)
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and analogously for Cmy . (C
m
x ,C

m
y ) maps onto a 2D index ( immar,jmmar) by determining the nearest integer pixel

indices. We collect these marker indices into a field pmar(i, j, n), where pmar ( immar,j
m
mar,n) = m and which is zero for

all locations without markers.

When the rain associated with a CP labeledm from the previous time step tn− 1 stops, the CP will have no active RP
pmr in pr(i, j, n) anymore, that is,∑N

i,j=1δ(pr(i,j,n),m) = 0. However, cold pools may still spread and trigger new
convection. Therefore, we in this case introduce their latest rain marker to pmar(i, j, n) instead.

Figure 1. Proposed cold pool (CP) detection and tracking algorithm. (a) Histogram of the indicator field, Iseg(i,j,n)
(Equation 6), for diu4K at t471. “no cold pool (CP)” and “potential CP” grid cells, as determined by the k‐means algorithm,
are shown as hatched and striped curve fillings. (b) Main algorithm steps: Rain patches (RPs) and CPs are shown as blue and
orange areas, respectively. Markers (Ms) are denoted as “x”‐symbols; Dashed and dotted lines indicate CP and RP contours,
respectively. The steps are repeated for every simulation output time step Δt. (c) Elevation map values (blue curve),

Itop (AB
↔

,n) , of grid cells on lineAB
↔

defined in (b), step (iv) for time step tn. Hatched areas are locations classified as “no CP” by

the segmentation, and thus not flooded by the watershed algorithm. The elevation of these “no CP” regions can be thought of as
infinite. Orange areas represent labeled CPs which result from flooding the elevation map from the markers M1, M2 and M3.
(d) Example cases for the tracking of RPs and CPs. In time step tn (labeled above panels), RP1, RP3 and RP4 are tracked from
tn− 1. Each marker represents an RP center of mass and acts as starting point for the watershed flooding.
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Apart from the rain marker in the center of the active or latest RP, cold pools which were present in the previous
time step tn− 1 obtain an originmarker. An origin marker represents the first rain marker which initially generated
the CP, that is, the center of its initial RP. Analogous to the rain markers, origin markers are introduced to pmar(i, j,
n). The combination of origin and rain markers increases the robustness of the final CP labeling, which will be
illustrated in step (iv).

(iv) Labeling cold pools. For a time step tn, the final field with labeled cold pools, pcp(i, j, n), is—analogous to the
RP field pr(i, j, n) (compare Equation 5)—a horizontal N×N integer ID field where pcp(i, j, n) specifies the ID of a
CP or pcp(i, j, n) = 0, if no CP is present at (i, j) and time index n. The CP field is obtained using a watershed
algorithm (van derWalt et al., 2014), which can be thought of as placing different water sources in a topographical
map and flooding it up to the highest elevation (see Figure 1c), such that the water table is equal in all basins. The
resulting watersheds represent the boundaries between the different water sources and the corresponding basins
represent regional minima.

In order to derive the labeled CP field, we provide the watershed algorithm with three ingredients: the locations of
the water sources, that is, the marker locations pmar(i, j, n) computed in step (iii), an elevation map Itop, and a
mask, which acts like a stencil preventing certain regions from being flooded. The elevation map is computed as

Itop(i,j) = T̂(i,j) + q̂2(i,j) + ŵ(i,j). (11)

Cold pool regions are characterized by cold (low T̂(i,j)) and often dry air (low q̂(i,j)) which forms basins with
regional minima in the elevation map, whereas horizontal convergence with associated vertical updrafts towers up
walls at CP boundaries (large ŵ(i,j)), thus separating the CP basins from each other. The mask, as a final
ingredient to the watershed algorithm, is provided by the binary segmentation pbin(i, j, n) from step (ii). Whereas
CP1 and CP3 in Figure 1c are separated by the mask's “no CP” region between them, CP2 and CP3 are in contact
with each other. The contact location, that is, the point where the two cold pools collide (in 2D, it is a line),
depends on the elevation map Itop. Since water from different sources, representing different cold pools, does not
mix, the contact location remains constant for the rest of the flooding.

Since only its gust front should separate a CP from its environment, we do not allow holes, that is, enclosed grid
cells with different ID values, within individual cold pools. Thus, we close potential holes within individual cold
pools by assigning each grid cell of the hole the ID of the surrounding CP. By this procedure, we thus merge cold
pools if the grid cells of the hole carry the ID of other cold pools.

In later stages, a CP basin in the elevation map can consist of multiple local minima, caused by newly formed RPs
within the CP area or an advected initial RP. By providing both rain and origin markers to cold pools which were
present in the previous time step tn− 1, we make sure that cold pools in later stages of their life cycle are not
accidently flooded by neighboring cold pools.

Figure 1b summarizes the main steps of CoolDeTA. Note that both tracking and the interactions between steps (ii)
and (iii) will be described separately in the following Sections 2.3 and 2.6, respectively.

2.3. Cold Pool Tracking

Provided that RPs, pr(i, j, n − 1), and/or cold pools, pcp(i, j, n − 1), from the previous time step tn− 1 are available,
we track cold pools already during the identification of RPs in step (i). Since a RP, labeledm in pr(i, j, n), obtains a
corresponding marker pmar ( immar,jmmar,n) = m, an associated CP which might be identified based on the watershed
algorithm in step (iv) would be labeledm in pcp(i, j, n), as well. The labelm thus represents the ID of a RP in pr(i, j,
n) and the ID of an associated CP in pcp(i, j, n). Accordingly, cold pools can be tracked by adjusting the label of
tracked RPs in step (i). For this purpose, we evaluate the spatial overlap of patches from consecutive time steps. A
RP labeled m′ at time step tn is tracked if the overlap with a RP labeled m from time step tn− 1,
Or (m,m′,n − 1,n)≥ fr × A(pm′r ) with fr = 0.01 and

Or (m,m′,n − 1,n) ≡ ∑
N,N

i=1,j=1
1((i,j)∈ S1), (12)
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where 1 is the indicator function and the set S1 ≡ {(i, j) ∈ [1, N] × [1, N], pr(i, j, n − 1)=m ∧ pr(i, j, n)=m′}, or if
the overlap with a CP labeled m from time step tn− 1, Ocp (m,m′,n − 1,n) = fcp × A(pm′r ) with fcp = 1 and

Ocp (m,m′,n − 1,n) ≡ ∑
N,N

i=1,j=1
1((i,j)∈ S2), (13)

where the set S2 ≡ {(i, j) ∈ [1, N] × [1, N], pcp(i, j, n − 1) = m ∧ pr(i, j, n) = m′}. Figure 1d visualizes both cases:
On the one hand, RP3 is tracked in time step tn since the corresponding RP overlaps RP3 from the previous time
step tn− 1. On the other hand, RP4 is tracked in time step tn since the corresponding RP fully overlaps CP4 from
time step tn− 1.

If a RP labeled m′ is overlapped sufficiently by a previous RP labeled m1 and a previous CP labeled m2, that is,
Or (m1,m′,n − 1,n)≥ fr × A(pm′r )∧Ocp (m2,m′,n − 1,n) = fcp × A(pm′r ) , the previous CP provides its label, that is,
the label of RP m′ is replaced with the label m2. In case RP m′ is overlapped by multiple RPs from the previous
time step with deviating labels, the RP with the largest overlap, Omax

r , provides its label. For this reason, the new
RP in time step tn of Figure 1d which overlaps RP1 and RP2 from the previous time step tn− 1 is tracked as RP1.

Apart from the rain markers derived from RPs, all cold pools in pcp(i, j, n − 1), which existed in the previous time
step, receive origin markers and—if they do not have an active RP anymore—also their latest rain marker (see
step (iv)). Accordingly, CP1, CP3 and CP4 in Figure 1d each receive two markers in time step tn, representing the
COM of the current RP and that of the initial RP from the previous time step tn− 1, respectively, whereas CP2 only
receives its latest rain marker from time step tn. However, due to its origin marker CP2 is still present at time step
tn although it does not possess an active RP anymore.

2.4. Cold Pool Relationships

The association of RPs and cold pools allows the method to consistently label cold pools. Beyond this, through the
spatial dependencies, we are also able to capture relationships between individual cold pools. By tracing which
CP (gust front) triggered which RP and thus also a potential CP resulting from it, CoolDeTA reveals CP networks
and their associated causal chains.

In order to describe the relationships between cold pools, we introduce the roles of “parent” and “child.” A RP
labeledm′ at time step tnwhich was not present in time step tn− 1, is a child of a CP, labeledm, from time step tn− 1,
if the overlap 0<Ocp (m,m′,n − 1,n)< fcp × A(pm′r ) , that is, if the RP intersects the boundary of the CP, but is not
fully located within its area. Conversely, CP m becomes a parent of RP m′. If RP m′ is a child of CP m and
generates a new CP m′, the new CP adopts CP m as a parent and becomes its child, as well. Since cold pools can
trigger new rain events, they can become parents—both of RPs and the resulting cold pools—as well as children,
whereas RPs can only be children.

In case a RP labeled m′ at time step tn which was not present in time step tn− 1 overlaps multiple cold pools from
time step tn− 1, any CP m with an overlap 0<Ocp (m,m′,n − 1,n)< fcp × A(pm′r ) becomes a parent of RP m′ and
thus also of potential cold pools resulting from it.

2.5. Cold Pool Dissipation

When the rain associated with a CP stops and thus no longer feeds the density current anymore, the surface
boundary layer recovers until the CP is eventually dissipated. However, providing origin markers to cold pools
from the previous time step tn− 1 in time step tn, cold pools could potentially exist forever, even after their rain has
stopped. To rule out infinite lifetime, we implemented a dissipation mechanism within step (iii) of CoolDeTA. To
this end, we differentiate between “dissipating” cold pools that are still in the process of dissipating and
“dissipated” cold pools that have completely dissipated. We define a CP, labeledm, as dissipating at time step tn if
it has no active rain anymore, that is, ∑N,N

i=1,j=11( (i,j)∈ {(i,j)∈ [1,N] × [1,N],pr(i,j,n) = m)} = 0, and if parts of
its latest RP pmr from time step tlastn are classified as “no CP” in pbin(i, j, n), that is,Oseg (m,1,nlast,n)< 1.0 × A(pmr )
with

Journal of Advances in Modeling Earth Systems 10.1029/2023MS003682

HOELLER ET AL. 8 of 21

 19422466, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003682 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [28/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

80



Oseg (m,1,nlast,n) ≡ ∑
N,N

i=1,j=1
1((i,j)∈ S3), (14)

where the set S3≡ {(i, j) ∈ [1,N] × [1, N], pr(i, j, n
last)=m ∧ pbin(i, j, n)= 1}. For each CP we count the number of

time steps in which it is dissipating, ndis. We consider a CP, labeledm, as dissipated if nmdis ≥ 3 and Oseg(m, 1, n
last,

n) = 0, that is, if it is dissipating for ≥3 time steps (=30 min) and if its latest RP pmr is completely classified as “no
CP” in pbin(i, j, n). A CPwhich is dissipated at time step tn does not obtain markers anymore in pmar(i, j, n) and will
thus not exist in the labeled CP field pcp(i, j, n).

2.6. Additional Algorithm Rules

The evolution of the populated fields of both cold pools, pcp, and RPs, pr, is highly complex. On the one hand,
relatively cool air associated with remnants of dissipated cold pools might lead to the misclassification of grid
cells as “potential CP” in the segmentation, pbin, in time steps with very weak or suppressed convection and thus
only weak down and updrafts. On the other hand, processes such as the merging of RPs or cold pools, as well as
the formation of new RPs at CP gust fronts, complicate the tracking. In the following, we introduce several rules
implemented in CoolDeTA to increase its robustness with respect to these and other cases.

2.6.1. Divergence Criterion

Cold pools are driven by atmospheric density gradients resulting from the evaporation of rain. Evaporative
cooling causes the affected air to sink toward the ground and spread outwards, creating wind gusts. Consequently,
cold pools are associated with a horizontally divergent flow in their center and a horizontally converging flow at
their gust front. Thus, we only keep a “potential CP” region, labeled m in pseg(i, j, n) at time step tn, in the
segmentation, pbin(i, j, n), if the mean divergence of the horizontal wind field, ∇ ⋅ u(i,j,n)≥ 0 for grid cells (i, j) in
its patch interior int pmseg and if ∇ ⋅u(i,j,n)≤ 0 for grid cells in its patch boundary ∂pmseg. The divergence is
approximated using a central difference scheme.We define a grid cell (i, j) as part of the interior int pmseg of patchm
if all contiguous grid cells are contained in pmseg. A grid cell (i, j) is part of the boundary ∂pmseg of patch m if it
encompasses at least one contiguous grid cell contained in pmseg and one contiguous grid cell not contained in pmseg.
Since the “potential CP” region m in pseg(i, j, n) can contain multiple CP instances and thus colliding gust fronts,
we exclude a grid cell (i, j) from int pmseg if ∇ ⋅ u(i,j,n)< ∇ ⋅u(n) − z95th σd(n) where σd represents the standard
deviation of the horizontal wind field divergence and z95th = 1.645.

Furthermore, new rain cells might be triggered at the boundary of the “potential CP” region m compensating
its convergent flow. Analogous to int pmseg we thus exclude a grid cell (i, j) from ∂pmseg if ∇ ⋅u(i,j,n)
> ∇ ⋅u(n) + z75th σd(n)∨I(i,j,n)≥ 1mm/h with z75th = 0.675. We chose deviating factors z95th and z75th for the
exclusion of grid cells fromCP interior and boundary, as colliding CP gust fronts will be associated with relatively
strong convergence in the patch interior, whereas new rain cells triggered at the boundary will be associated with
relatively weak divergence compared to the domain mean. The values of both z95th and z75th were determined by
experiment. The exclusion of potentiallymisleading grid cells, aswell as theweak conditions in terms of int pmseg not
being convergent and ∂pmseg not being divergent ensure that no correctly classified “potential CP” region is dropped.

Due to CP interactions such as collisions and the formation of new cold pools at gust fronts, a CP can loose its
occupied area to another CP. To not supersede this process artificially, a CP, labeled m, at the previous time step,
tn− 1, only obtains an origin marker pmmar ( i

m
mar,j

m
mar,n) = m if it still occupied the marker location ( immar,j

m
mar) at tn− 1,

that is, if pcp ( immar,j
m
mar,n − 1) = m.

Apart from CP interactions, where a CP gust front can be pushed toward the CP center, CP gust fronts spread
outwards only, due to the horizontally diverging flow in the CP interior. As long as a CP, labeled m, is not
dissipated and receives at least one marker at time step tn, we thus adapt the segmentation pbin(i, j, n) in step (iii) so
that all grid cells occupied by the CP at the previous time step tn− 1, pcp(i, j, n − 1) = m, are labeled as “potential
CP” in pbin(i, j, n). Whether CP m looses parts of its occupied area to an intersecting CP in time step n depends on
the topography of the elevation map, Itop(i,j,n), and is determined during the watershed flooding in step (iv).

Journal of Advances in Modeling Earth Systems 10.1029/2023MS003682
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2.6.2. Additional Overlap Criteria

When new cold pools start to form, grid cells with strong negative temperature perturbations inside the downdraft
region might already be classified as “potential CP” in pbin. In order to detect fully developed cold pools only, a
new RP, labeledm, detected at time step n, obtains a rain marker at time step n only ifOseg(m,1,n,n)≥ fs × A(pmr )
with fs = 0.75.

The final check is applied to the labeled CP field pcp derived based on the watershed flooding in step (iv). By
comparing the area, Acp, of newly formed cold pools with the area, Ar, of their RPs, we get an indication of
erroneous labeling. Erroneous labeling can result from cool air remnants being classified as “potential CP” during
time steps with very weak or suppressed convection. In this case, markers of isolated rain events could flood areas
Acp ≫ Ar. Another potential source of erroneous labeling is new RPs, triggered at CP gust fronts: Since not each of
these RPs generates an independent child CP which is separated from its parent CP by their colliding gust fronts,
child cold pools may flood into the area of their parent cold pools and vice versa. Thus, an independent and fully
developed CP should, on the one hand, at least feature the size of its RP. On the other, a new CP cannot occupy an
area substantially larger than its RP, given the time step of Δt = 10 min. To intervene only in erroneous cases, we

keep a new CP, labeled m, if 1≤A(pmcp)/A(pmr )≤ 3. Otherwise, we either drop it, that is, pmcp = 0, if it has no other

CP in its neighborhood, or we assign the label of another CP, labeled m′, that is, pmcp = m′, otherwise. In the latter
case, the CP label m′ is determined based on its number of parents, kp: if kp = 0, it is either the label of the CP

which overlaps the largest area of RP m (if A(pmcp)/A(pmr )< 1), or the label of the CP which lost the largest area

with respect to the previous time step tn− 1 to CP m (if A(pmcp)/A(pmr )> 3). If kp = 1, CP m is simply assigned the

parent label, mp, that is, m′ = mp. The final case, kp > 1, is analogous to the first but based on the parents of CP m.

Table 1 summarizes the parameters and conditions used in the proposed algorithm. Recommendations for the
application of CoolDeTA to other simulation setups are provided in Text S1 in Supporting Information S1.

2.7. Analysis of the Simulation Data

We consider the first 3 days (432 time steps) of the simulations as spin‐up period. The spin‐up period is chosen so
that the total domain rainfall per time step, R, has visibly reached a steady state in both the RCE and diurnal cycle
setups (Figures 2e and 2f). Further time series are visualized in Figure A1. To be able to track the full life cycle of
cold pools and their causal relationships, the onset of convection is an ideal starting point for the analysis with
CoolDeTA. Apart from rce0K, where R is essentially constant (Figure 2f), we identify the corresponding starting
time step based on the standard deviation of the virtual temperature, σTv, and its time derivative, σ̇Tv. Based on
their 1 hr running average, we find σTv ≥ 0.15 K and σ̇Tv ≥ 0.02K s− 1 as good indicators for the onset of

Table 1
Parameters and Conditions in the Proposed Algorithm

Parameter Value/condition used Description

I0 2 mm hr− 1 Surface rainfall intensity threshold

A0 2 km2 Potential CP and RP area threshold

fr 0.01 Tracking factor for RPs overlapping RPs

fcp 1 Tracking factor for RPs overlapping CPs

0 < Ocp < 1.0 × A(pr) Overlap condition for a new RP to become a child of a CP

ndis 3 time steps (30 min) Dissipation threshold

∇ ⋅ u ≥ 0 Divergence criterion for potential CP interior

∇ ⋅ u ≤ 0 Divergence criterion for potential CP boundary

fs 0.75 RP‐potential CP overlap factor

1 ≤ A(pcp)/A(pr) ≤ 3 New CP‐RP area ratio

Note. Parameters handling rain intensity threshold, minimal potential cold pool (CP) and rain patch (RP) areas, overlap
conditions, and CP dissipation. Parameters and conditions below the horizontal line represent additional algorithm rules.
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convection in our simulations. In the diurnal cycle setups, as well as the rce0K setup with wind shear, we choose
the starting time step on day four, tstart, so that the two conditions are fulfilled at least for the next hour (6 time
steps). For rce0K we simply start the analysis with CoolDeTA at the first time step of day four, at t432.

In the diurnal cycle setups, R oscillates nearly periodically (Figure 2f). Especially in the two diu4K simulation
setups, convective activity is largely suppressed during time steps with low Ts. Since the k‐means algorithm
always clusters the horizontal domain into two groups, namely “potential CP” and “no CP,” the segmentation
cannot work properly in the absence of cold pools. In such cases, also the additional rules may be insufficient. For
this purpose, we stop the CoolDeTA analysis if Rpx < 0.001 mm for more than 30 min (3 time steps) or as soon as
σTv < 0.15 K ∧ Rpx < 0.0015 mm, with Rpx = R

N×N . Analogous to the definition of the start time step, we apply the

Figure 2. Comparison of cold pool (CP) detection methods. (a) Time step index 471 of rce0K, showing near‐surface virtual
temperature perturbations, T′v, with superimposed dynamical gust front, that is, w>w + 2σw (red scatter); The superimposed
colors represent contours of CP patches ≥A0 based on different CP detection methods. The enlarged inset shows a magnification
for a subregion highlighting a sequence of four time steps. (b) Analogous to (a) but for diu4K. (c) Analogous to (b) but for time
step index 485, corresponding to the peak of diurnal rainfall. (d) Analogous to (b) but for time step index 499. (e) Surface
temperature, Ts, for the two simulation setups visualized in (a)–(d); Solid vertical lines within the plot denote the time steps
depicted in (a)–(d). (f) Analogous to (e) but for total domain rainfall per time step, R; The chosen spin‐up period of 3 days (432
time steps) is indicated by the vertical dotted line and the horizontal arrow above the panel.
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conditions to the 1 hr running averages of σTv and Rpx. The stop conditions affect only the two diu4K setups, which
we stop at the end of each day and re‐start on the following day based on the defined start conditions.

3. Results
In the following, we present results of our CP detection and tracking method. We first compare our method to
previous ones (Feng et al., 2015; Gentine et al., 2016; Tompkins, 2001a). We then employ our current method to
discuss the effect of the simulation setup, that is, wind shear or diurnal cycles, on CP expansion. Third, we make
use of our method to analyze the causal relationships between cold pools and their effect on CP rainfall. Based on
our findings we then propose a simple model to capture CP spreading‐triggering dynamics. We finish the chapter
by visualizing the family trees of two cold pools.

3.1. Comparison to Other Methods

Several previous CP detection methods have exploited thermodynamic CP features (Feng et al., 2015; Gentine
et al., 2016; Tompkins, 2001a). While Feng et al. (2015) and Tompkins (2001a) use buoyancy thresholds of
− 0.005 m2 s− 1 and − 0.003 m2 s− 1, respectively, for the detection, Gentine et al. (2016) apply a k‐means algorithm
to the horizontal virtual temperature field of the first model level to distinguish cold pools from their environment.
For an RCE‐like setup, rce0K (Figure 2a), as well as a diurnal cycle case, diu4K (Figures 2b–2d), we compare
CoolDeTA to such existingmethods. The time steps shown are highlighted in the time series (Figures 2e and 2f) as
thin vertical lines. Inspecting the different examples (Figures 2a–2d), it is apparent that the CP dynamics in rce0K
occurs at relatively small scalesO(10 km), whereas the dynamics in diu4K ranges from scattered small scale events
during the early stages of the diurnal cycle to elaborate mesoscale features O(100 km) at the late stages of the
diurnal cycle.

A primary goal of CoolDeTA is to detect both thermodynamic and dynamical features of cold pools. To obtain a
reference for the latter, we highlight grid cells of pronounced positive vertical velocity in each panel, typically
indicating locations of dynamical CP gust fronts (red pixels in Figures 2a–2d). Inspecting the plots, it is apparent
that on several occasions, the detection results by all four methods nearly coincide, especially during early stages
of CP expansion. However, important differences can also be seen, notably within the inset to panel (a), where
CoolDeTA is able to capture the locations of the dynamic gust front (red pixels) reliably, whereas methods based
on thermodynamics typically indicate gust fronts that are located further inward, seen for example, by comparing
the lines of different colors in the inset. As is visible on the left side of the larger CP patch in t473 of the inset,
CoolDeTA keeps dissipating CP instances as long as they feature a partly active dynamic gust front.

For the early stage of the diurnal cycle (Figure 2b) the agreement of CoolDeTA, Gentine et al. (2016) and
Tompkins (2001a) is arguably good. However, as cold pools spread in the course of the day, the dynamic gust
fronts tend to detach from the thermodynamic ones, leading to an increased discrepancy between the methods. It
can be visually verified that CoolDeTA is still capable of identifying most regions of strong vertical velocity.

Apart from the common minimum area A0 which we apply in Figures 2a–2d for CP patches of all methods,
CoolDeTA applies the threshold A0 also to RPs associated with individual cold pools and conducts further checks
to confirm the existence of a CP (see Section 2.6). Consequently, the minimum CP area detected by CoolDeTA
tends to be larger than for other methods. As a case in point, some of the smaller patches identified by the other
methods either suddenly disappear or do not feature a spreading dynamic gust front (Figure 2a, enlarged area),
suggesting that CoolDeTA manages to successfully detect only robust cold pools.

3.2. Effect of the Simulation Setup on Cold Pool Expansion

We now employ CoolDeTA to investigate CP temporal expansion and how it depends on the choice of simulation
setup. Cold pool expansion is a basic dynamical CP feature, which we here capture as the change in CP area, Acp,
over time, on the one hand for cold pools without offspring during their lifetime (Figure 3a) and on the other for
cold pools with offspring (Figure 3b). To not distort the results with cold pools which shrink due to CP in-
teractions, we only consider a CP as long as its area is expanding and thus Acp(n) > Acp(n − 1).

Conditioning on cold pools without children (Figure 3a), it is noticeable that within the log‐log representation, all
curves start out following a modest increase of CP area with time. To make contact with previous works sug-
gesting power law dependencies of CP radius on time (Meyer & Haerter, 2020; Rooney, 2015), we indicate a
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dependency of Acp ∼ t
α with α = 1.2 (dashed gray lines). After approximately 1 hr of expansion, the curves of

setups without wind shear somewhat increase in exponent, thus departing from a power‐law dependency. We
attribute this to the higher density of cold pools for setups without wind shear, which increases the probability for
cold pools to merge with others. The departure is even stronger for diu2K and diu4K where cold pools
increasingly cluster within thermodynamically favorable subregions.

The curves for cold pools with children exhibit an increased power‐law exponent already at earlier stages
(Figure 3b). In comparison to the curves of cold pools without children, the exponent seems to be increasing more
strongly, especially during the later stages of expansion. We interpret this strong increase as a consequence of
enhanced triggering near CP edges for cold pools with children, whereby the original CP can merge with
additional offspring excited by it—thus developing into a mesoscale CP. Apart from this, the diurnal cycle again
appears to promote rapid CP expansion, especially during the later stages.

In both Figures 3a and 3b, cold pools under wind shear conditions have larger areas from the outset. A possible
reason is the overlap that a RP is required to have with a “potential CP” region in order to obtain a marker and thus
form an associated CP: when wind shear is present, rain might reach beyond the emerging CP and limit their
overlap.

3.3. Effect of Cold Pool Relationships on Cold Pool Rainfall

Given these findings on CP dynamics we now investigate: (a) how the total accumulated rainfall corresponding to
any given CP relates to its capacity to trigger offspring (Figure 4a); and (b) how this rainfall relates to the number of
parents of a given CP (Figure 4b). For this purpose, we define the total accumulated rainfall of a CP labeled m as

Rcp(m) ≡∑
n
∑
N

i,j=1
Δt I(i,j,n) δ(pr(i,j,n),m). (15)

Overall, the majority of cold pools do not give rise to offspring, with approximately 50% of cold pools without
detectable children (Figure 5a). However, as we inspect the probability distributions, it is found that, moving from
rce0K to diu4K, the distribution function is close to an exponential for rce0K (dotted line), whereas it is well
approximated by a power‐law ∝ k− 1.5 in the case of diu4K (dashed line). This qualitative finding is also mirrored
by the wind shear cases. A power‐law distribution hints at a “rich‐gets‐richer” feedback, where cold pools that
have already grown, may be more likely to grow further.

At the same time, it is clear that for large numbers of CP children, associated RPs tend to have much greater total
rainfall rates (Figure 4a). These rates range from a factor of two for rce0K to more than an order of magnitude for

Figure 3. Cold pool (CP) expansion for various simulation setups. (a) Median CP area, Acp, versus CP age, tcp for cold pools
without any children during their lifetime. Colors represent different simulation setups; Dashed gray lines indicate areas
∝tcp1.2; Only CP ages with ≥50 cold pools are depicted. (b) Analogous to (a) but for cold pools with children during their
lifetime. Note the logarithmic vertical axis scaling.
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diu4K. Notable differences also exist between the different setups: diurnal Ts‐forcing and wind shear seem to
promote larger numbers of children and generally come with greater parent rainfall.

Apart from cold pools with one parent, the relation between parental rainfall and the number of children is almost
perfectly mirrored by the number of parents (Figure 4b): larger total rainfall typically implies a larger number of
parents. Also, for setups with Ts‐diurnal cycles or wind shear, the role of parent cold pools contributing to rain cell
formation increases. Yet, the rainfall rates of cold pools with one parent hardly differ from those of cold pools
without a parent. We attribute this to the higher risk that a single‐parent CP has of getting merged into the parent
CP: whereas multiple parents are associated with CP collisions, which interrupt the expansion of the parents,
single‐parents might still spread and thus merge with excited offspring.

3.4. Simple Cold Pool Offspring Model

To capture CP spreading‐triggering dynamics, we suggest a simple model (Figure 5b) where cold pools primarily
grow by peripheral spawning of new rain cells, thus child cold pools, that then help the CP expand further. The
model is hence different from those in the recent literature (Böing, 2016; Haerter, 2019; Haerter et al., 2019;
Nissen & Haerter, 2021) in that the dynamics described previously was inward‐directed, such that existing cold
pools could excite new convection by collisions among two or three gust fronts. As a result, a given population of
cold pools could topologically only cause new convection within the interior of an ensemble of spreading cold
pools. In the current model we describe an outward‐directed dynamics, where a given evolving mesoscale
convective system, embedded in an unstable environment, can give rise to cascading additional convective ac-
tivity at its periphery—thus leading to an outward expansion of the population of convective cells.

In our model each CP is initialized with an area a of a= a0 ≡ 6 km2 representing the median area of all cold pools
from Figure 3 at tcp = 10 min, and circumference l = 2(πa0)1/2 ≈ 8.7 km. This circumference is subdivided into
segments, each of length l0 ≡ 1.6 km, taken to represent the approximate diameter of a new rain cell of area A0.
Within each segment and time interval Δτ ∼ 20 min, chosen to represent the timescale of a convective rain cell,
the model allows for a new rain cell to be spawned with a small probability 0 < p ≪ 1. The constant l0 ≪ l is
thereby assumed to be substantially less than the total circumference l, such that even small cold pools can have
several segments. Any new rain cell will add an area increment a0 to the existing CP area a. In addition, as the CP
area increases, its total number of segments ns = l/l0 will also increase due to the larger circumference. Thus,
larger cold pools will typically have a larger number of successful spawning events.

As mentioned, the dynamics proceeds in discrete time steps Δτ, during which each segment will be able to
experience spawning at probability p. If none of the segments give rise to spawning during the time step, the CP is
considered terminated and no further expansion is possible. If a numberms > 0 of segments give rise to spawning,
theCParea is incremented byΔa≡msa0 and the expansion proceeds iteratively (tree diagram inFigure 5b).At each
fork of the tree diagram, at probability 1 − P(ai) theCP expansion is terminated. 1 − P(ai) represents the probability
that none of the segments spawn a new rain cell, that is, for ns = l/l0 segments and spawning probability p,

Figure 4. Total cold pool (CP) rainfall. (a) Total accumulated rainfall associated with cold pools, Rcp, depending on their
number of children for different simulation setups. Colored bars represent the interquartile ranges IQR = Q3 − Q1 of the
simulation setups, with the first quartileQ1 and the third quartileQ3, along with the corresponding median (horizontal dash).
Whiskers range fromQ1 − 1.5× IQR (minimum) toQ3+ 1.5× IQR (maximum); Outliers w.r.t. this range are not visualized.
(b) Analogous to (a) but for the number of parents. Note the logarithmic vertical axis scaling.
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1 − P(ai) = (1 − p)ns . (16)

Conversely, the probability for continued CP expansion is

P(ai) = 1 − (1 − p)ns . (17)

As cold pools expand, ns continues to increase and P(ai) → 1—thus allowing larger cold pools to experience a
larger probability of further expansion.

Simulating the model using a total of 30 time steps Δτ and 105 CP realizations allows us to mimic the statistics
found for the cloud‐resolving simulations (Figure 5c): whereas small values of spawning probability, for example,
p= 0.035, yield a nearly exponential distribution of the number of children, a larger value of p= 0.08 gives rise to
approximate power‐law decay. Notably, as cold pools grow to large areas, spawning will be essentially guar-
anteed at subsequent time steps—thus giving rise to run‐away expansion. This is verified by allowing for a greater
number of 60 time steps (thin brown curve), where a fraction of “successful” cold pools accumulates ever larger
numbers of children. Using this model, our interpretation of the CP dynamics is twofold: spawning probability p
may be determined by the convective instability surrounding a given parent CP, and different p can yield very
different offspring distributions.

For the RCE case, pmay be overall modest, as the atmosphere tends to be in a marginally stable state close to the
moist adiabat. For the diu cases the situation is quite different, where activity is invigorated by the destabilizing
effect of the increased diurnal surface heating—thus allowing for larger values of p, yielding potentially long‐
tailed offspring distributions. A complete run‐away effect is likely prevented by the finite duration of the
diurnal heating. It may thus be interesting to revisit the statistics (Figure 5a) for an artificially lengthened diurnal
cycle, say, corresponding to a 48 hr‐day.

Figure 5. Children probability distribution. (a) Exceedance probability for a cold pool (CP) to have a certain number of
children; Colors indicate different simulation setups. (b) Simple model for CP expansion and spawning of new rain cells.
(c) Analogous to (a) but for our simple model.
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3.5. Cold Pool Family Trees

Based on a subsection of the full simulation domain we now visualize an example of the temporal evolution of a
labeled CP field from diu4K (Figures 6a–6c), along with the corresponding family trees of the two initial cold
pools (Figure 6d). The subsection of interest is indicated as black square in the inset which shows the specific
humidity anomalies, q′, for the full simulation domain at t764. Like most of the other regions in which cold pools
start forming (dark red blobs with large gradients), the subsection of interest features a moisture‐rich surface
layer. Here, the two initial cold pools depicted in Figure 6a, CP46 (yellow patch) and CP49 (blue patch), formed at
t763 and t761, respectively (Figure 6d).

In Figure 6b, 80 min later, the two cold pools have expanded and several offspring have been generated. However,
CP848 (red ID in Figure 6d), one of the first children of CP49 which was triggered at the freely expanding gust
front, could only exist for one time step until it was merged by its parent. Although CP848 contributed to the
formation of the new CP CP1169 (see Figure 6d), it is thus not present anymore at t772. Comparing Figures 6b and
6c, it is apparent that also the other cold pools which were triggered at freely expanding gust fronts, namely
CP684, CP982, CP1169 and CP1172, shared the same fate. Only the two cold pools CP466 and CP835 in the
collision zone of CP46 and CP49 are still present at t780 and managed to expand over the former area of CP46 and
CP49. Since it is not evident from Figure 6b we note that CP466 and CP835 formed before the collision of CP46
and CP49, otherwise both CP46 and CP49 would be their parents.

4. Discussion
Cold pools have been implicated in a large range of cloud field properties, including the formation of MCS
(Haerter et al., 2020; Houze Jr, 2004; Jensen et al., 2021; Kain & Fritsch, 1992; Schumacher & Rasmussen, 2020),
the evolution of squall lines (M. D. Parker, 2008; D. J. Parker & Diop‐Kane, 2017; Rotunno et al., 1988; Weisman
et al., 1988), the organization of trade‐wind cumuli (Dauhut et al., 2022; Seifert & Heus, 2013; Vogel et al., 2021;
Zuidema et al., 2012) and stratocumuli (Glassmeier & Feingold, 2017), and idealized studies on convective self‐
aggregation (Haerter, 2019; Haerter et al., 2019; Jeevanjee & Romps, 2013; Muller & Bony, 2015; Nissen &

Figure 6. Cascades of tracked cold pools. (a) Labeled cold pools for a subsection of the full simulation domain at time step
index 764 of diu4K. The inset plot depicts full domain specific humidity anomalies at the same time step; The black square
indicates the subsection of interest. (b) Analogous to (a) but without inset plot and for time step index 772. (c) Analogous to
(b) but for time step index 780. (d) Family tree for CP “46” and CP “49.” The tree features the IDs of all related cold pools
which are present in (a)–(c); Columns represent the time steps indices of CP formation; Filled arrows point from the IDs of
CP parents to the IDs of CP offspring; Empty arrows denote additional parents; Red text indicates the IDs of cold pools that
are not present in the depicted time steps of (a)–(c), but which contributed to the related cold pools.
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Haerter, 2021) and the convective diurnal cycle (Böing, 2016; Böing et al., 2012; Haerter et al., 2019; Haerter &
Schlemmer, 2018; Schlemmer & Hohenegger, 2016). In all of these systems, the exact role of cold pools in giving
structure to the cloud and precipitation fields is still not well‐understood. Yet, it is becoming more and more
obvious, especially as higher model grid resolutions are approached, that cold pools do play a potentially crucial
role in providing an interaction mechanism between rain cells in space and time.

A number of CP detection methods exist, which often make use of a buoyancy threshold (Feng et al., 2015;
Gentine et al., 2016; Tompkins, 2001a) or a detection of the gust front through a criterion on the dynamics
(Fournier & Haerter, 2019; Henneberg et al., 2020). We have presented a method, CoolDeTA, that combines
thermodynamic and dynamic CP signatures. CoolDeTA detects and tracks cold pools as well as the location of
their dynamical gust front. On this basis, CoolDeTA is able to identify relationships between cold pools and
subsequent rain cells and thus CP “offspring.” CoolDeTA therefore can be used to analyze interactions between
one or more cold pools and the ones emerging in the surroundings.

Like most other methods (Drager & van den Heever, 2017; Feng et al., 2015; Fournier & Haerter, 2019; Gentine
et al., 2016; Henneberg et al., 2020), CoolDeTA cannot fully refrain from setting some threshold values. In the
present work we apply a surface rainfall intensity threshold, I0 = 2 mm hr− 1, to delineate spatially contiguous
RPs, and a corresponding area threshold, A0 = 2 km2, for RPs and potential CP regions. Thresholds are generally
case dependent and thus limit a method's scope of application. Although particularly the CP labeling of RCE
frameworks would occasionally benefit from an even smaller A0, we however claim that both of our thresholds
serve only as a preselection of robust rain and CP patches and do not impact the final CP contours: Since we
provide each new RP above A0 one marker in its downdraft COM, all of these RPs have the same chance of
forming a CP. The CP contour, and whether a RP forms a CP at all, depends on the result of the k‐means al-
gorithm. A sufficiently large RP and an associated marker are accordingly necessary, rather than sufficient,
conditions with respect to the formation of a CP. Also the additional conditions summarized in Table 1 serve
solely the purpose of optimizing the preselection in order to increase the robustness of the CP labeling. To verify
this, we deactivated the dissipation threshold, ndis, as well as all additional conditions and reproduced Figures 2
and 6 based on this parameter setup in Figures S1 and S2 in Supporting Information S1, respectively: whereas the
deactivation causes essentially no change in the diu4K plots (Figures S1b–S1d in Supporting Information S1),
several of the smaller patches in the rce0K plot which were identified as cold pools by other methods but not by
CoolDeTA before, get classified as cold pools without the additional conditions (Figure S1a in Supporting In-
formation S1). The same applies to the CP relationships (Figure S2 in Supporting Information S1), which are
identical under deactivated conditions, except for a few additional CPs that disappear shortly after being detected.
With respect to dissipating cold pools, the omission of ndis can even positively affect the results in the rce0K plot
since some of the weak cold pools dissipate in less than 30 min.

We see the benefit of CoolDeTA in allowing for a systematic disentanglement of the processes leading up to
organized convective cloud and rainfall fields in the systems mentioned above. We have shown that the method
can build “cold pool family trees” in RCE and diurnal cycle frameworks, with and without wind shear. These
family trees lay the groundwork for a more elaborate analysis of the evolution of convective organization
throughout longer simulated periods. Moreover, as CoolDeTA considers dynamic CP signatures, the identified
CP boundaries align with the cloud patterns associated with cold pools in satellite images or corresponding
simulation output. CoolDeTA thus offers a systematic and objective ground truth labeling for artificial intelli-
gence methods that detect cold pools from simulated cloud fields and that potentially pave the way for future
satellite‐based CP observations (Hoeller et al., 2024).

As an extension of the current method, it could be interesting to devise a moisture tracking for simulated
convective cloud fields. Especially for hysteretic phenomena, such as convective self‐aggregation, the long‐term
memory of mesoscale moisture anomalies could play a critical role in maintaining a persistent atmospheric
circulation (Bretherton et al., 2005; Jensen et al., 2021; Muller & Bony, 2015). In RCE, horizontal moisture
variations were suggested to give rise to imbalances in thermal radiative emission, which would then drive a
persistent circulation and resultant upstream moisture transport—reinforcing the initial moisture imbalance
(Emanuel et al., 2014). Recent numerical work extends this notion to diurnal cycle simulations, where MCS
emerge and cause abrupt transitions to such a moisture segregated state (Jensen et al., 2021). Importantly, the
mesoscale convective system dynamics was found to occur only at sufficiently high horizontal model grid
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resolution, where CP interactions could be resolved sufficiently. Deciphering the complex moisture and pre-
cipitation dynamics requires a tool, such as CoolDeTA, where causal relations can be objectively mapped.

5. Conclusion
We have devised a CP detection and tracking method, CoolDeTA, which uses a combination of thermodynamic
and dynamical variables to track cold pools from their initial forcing by rainfall evaporation until their dissipation
stage. The method is shown to function well in a range of contexts, involving RCE and diurnal cycle experiments,
as well as simulations with or without wind shear. In comparison to existing buoyancy‐focused CP detection
methods, CoolDeTA offers the additional benefit of determining the actual dynamical gust front, which is often
displaced several kilometers from the thermodynamic boundary. In this way, the method is particularly well
suited for the tracking of CP families, where the entire causal cascade of cold pools and their “offspring” can be
identified. Such offspring tracking and attribution to parent cold pools would be hampered if only the thermo-
dynamic gust front were available—many new rain cells are triggered at the dynamic gust front.

Appendix A: Supplementary Data
The following appendix presents a figure with supplementary data for the assessment of the spin‐up periods in the
conducted simulations (Figure A1).

Figure A1. Definition of spin‐up time steps. (a) Total domain rainfall per time step as running average of 1 day (144 time
steps) for different simulation setups; The dotted black line indicates the chosen spin‐up period of 3 days (432 time steps).
(b) Analogous to (a) but for domain‐standard deviation of virtual temperature, Tv. (c) Analogous to (b) but for domain‐mean.
(d) Analogous to (b) but for horizontal wind speed, s. (e) Analogous to (d) but for domain‐mean.
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Data Availability Statement
Figures were made with Matplotlib version 3.5.2 (Caswell et al., 2022; Hunter, 2007) and seaborn version 0.12.2
(Waskom, 2021). The code for the simple CP offspring model is licensed under MIT and published on GitHub
https://github.com/Shakiro7/coldPool‐detection‐and‐tracking. The CP detection and tracking algorithm (Cool-
DeTA) was used in version 1.0 and is licensed under Creative Commons Attribution 4.0 International (Hoel-
ler, 2023). CoolDeTA makes use of a watershed algorithm (van der Walt et al., 2014) and a k‐means algorithm
(Pedregosa et al., 2011). The simulations are run with the cloud‐resolving three‐dimensional atmosphere simu-
lator System for Atmospheric Modeling (SAM) (Khairoutdinov & Randall, 2003), version 6.11.

References
Barnes, G. M., & Garstang, M. (1982). Subcloud layer energetics of precipitating convection.Monthly Weather Review, 110(2), 102–117. https://

doi.org/10.1175/1520‐0493(1982)110<0102:sleopc>2.0.co;2
Böing, S. J. (2016). An object‐based model for convective cold pool dynamics. Mathematics of Climate and Weather Forecasting, 2(1), 43–60.

https://doi.org/10.1515/mcwf‐2016‐0003
Böing, S. J., Jonker, H. J., Siebesma, A. P., & Grabowski, W. W. (2012). Influence of the subcloud layer on the development of a deep convective

ensemble. Journal of the Atmospheric Sciences, 69(9), 2682–2698. https://doi.org/10.1175/JAS‐D‐11‐0317.1
Bretherton, C. S., Blossey, P. N., & Khairoutdinov, M. (2005). An energy‐balance analysis of deep convective self‐aggregation above uniform

SST. Journal of the Atmospheric Sciences, 62(12), 4273–4292. https://doi.org/10.1175/jas3614.1
Bryan, G. H., Wyngaard, J. C., & Fritsch, J. M. (2003). Resolution requirements for the simulation of deep moist convection. Monthly Weather
Review, 131(10), 2394–2416. https://doi.org/10.1175/1520‐0493(2003)131<2394:rrftso>2.0.co;2

Caswell, T. A., Droettboom,M., Lee, A., de Andrade, E. S., Hoffmann, T., Klymak, J., et al. (2022). matplotlib/matplotlib: Release (version 3.5.2)
[Software]. Zenodo. https://doi.org/10.5281/zenodo.6513224

Chandra, A. S., Zuidema, P., Krueger, S., Kochanski, A., de Szoeke, S. P., & Zhang, J. (2018). Moisture distributions in tropical cold pools from
equatorial Indian Ocean observations and cloud‐resolving simulations. Journal of Geophysical Research: Atmospheres, 123(20), 11–445.
https://doi.org/10.1029/2018jd028634

Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L., et al. (2006). The formulation and atmospheric simulation
of the Community Atmosphere Model version 3 (CAM3). Journal of Climate, 19(11), 2144–2161. https://doi.org/10.1175/JCLI3760.1

Dauhut, T., Couvreux, F., Bouniol, D., Beucher, F., Volkmer, L., Pörtge, V., et al. (2022). Flower trade‐wind clouds are shallow mesoscale
convective systems. Quarterly Journal of the Royal Meteorological Society, 149(750), 325–347. https://doi.org/10.1002/qj.4409

de Szoeke, S. P., Skyllingstad, E. D., Zuidema, P., & Chandra, A. S. (2017). Cold pools and their influence on the tropical marine boundary layer.
Journal of the Atmospheric Sciences, 74(4), 1149–1168. https://doi.org/10.1175/jas‐d‐16‐0264.1

Drager, A. J., Grant, L. D., & van den Heever, S. C. (2020). Cold pool responses to changes in soil moisture. Journal of Advances in Modeling
Earth Systems, 12(8), e2019MS001922. https://doi.org/10.1029/2019ms001922

Drager, A. J., & van den Heever, S. C. (2017). Characterizing convective cold pools. Journal of Advances in Modeling Earth Systems, 9(2),
1091–1115. https://doi.org/10.1002/2016ms000788

Droegemeier, K., & Wilhelmson, R. (1985). Three‐dimensional numerical modeling of convection produced by interacting thunderstorm out-
flows. Part I: Control simulation and low‐level moisture variations. Journal of the Atmospheric Sciences, 42(22), 2381–2403. https://doi.org/10.
1175/1520‐0469(1985)042〈2381:TDNMOC〉2.0.CO;2

Emanuel, K., Wing, A. A., & Vincent, E. M. (2014). Radiative‐convective instability. Journal of Advances in Modeling Earth Systems, 6(1),
75–90. https://doi.org/10.1002/2013ms000270

Engerer, N. A., Stensrud, D. J., & Coniglio, M. C. (2008). Surface characteristics of observed cold pools. Monthly Weather Review, 136(12),
4839–4849. https://doi.org/10.1175/2008mwr2528.1

Feng, Z., Hagos, S., Rowe, A. K., Burleyson, C. D., Martini, M. N., & de Szoeke, S. P. (2015). Mechanisms of convective cloud organization by
cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign. Journal of Advances in Modeling Earth Systems, 7(2),
357–381. https://doi.org/10.1002/2014MS000384

Fiévet, R., Meyer, B., & Haerter, J. O. (2023). On the sensitivity of convective cold pools to mesh resolution. Journal of Advances in Modeling
Earth Systems, 15(8), e2022MS003382. https://doi.org/10.1029/2022ms003382

Fournier, M. B., & Haerter, J. O. (2019). Tracking the gust fronts of convective cold pools. Journal of Geophysical Research: Atmospheres,
124(21), 11103–11117. https://doi.org/10.1029/2019jd030980

Gentine, P., Garelli, A., Park, S.‐B., Nie, J., Torri, G., & Kuang, Z. (2016). Role of surface heat fluxes underneath cold pools. Geophysical
Research Letters, 43(2), 874–883. https://doi.org/10.1002/2015gl067262

Glassmeier, F., & Feingold, G. (2017). Network approach to patterns in stratocumulus clouds. Proceedings of the National Academy of Sciences,
114, 201706495.

Grandpeix, J.‐Y., & Lafore, J.‐P. (2010). A density current parameterization coupled with Emanuel's convection scheme. Part I: The models.
Journal of the Atmospheric Sciences, 67(4), 881–897. https://doi.org/10.1175/2009jas3044.1

Haerter, J. O. (2019). Convective self‐aggregation as a cold pool‐driven critical phenomenon. Geophysical Research Letters, 46(7), 4017–4028.
https://doi.org/10.1029/2018GL081817

Haerter, J. O., Böing, S. J., Henneberg, O., & Nissen, S. B. (2019). Circling in on convective organization. Geophysical Research Letters, 46(12),
7024–7034. https://doi.org/10.1029/2019GL082092

Haerter, J. O., Meyer, B., & Nissen, S. B. (2020). Diurnal self‐aggregation. npj Climate and Atmospheric Science, 3(1), 30. https://doi.org/10.
1038/s41612‐020‐00132‐z

Haerter, J. O., & Schlemmer, L. (2018). Intensified cold pool dynamics under stronger surface heating. Geophysical Research Letters, 45(12),
6299–6310. https://doi.org/10.1029/2017GL076874

Härtel, C., Carlsson, F., & Thunblom, M. (2000). Analysis and direct numerical simulation of the flow at a gravity‐current head. Part 2. The lobe‐
and‐cleft instability. Journal of Fluid Mechanics, 418, 213–229. https://doi.org/10.1017/S0022112000001270

Henneberg, O., Meyer, B., & Haerter, J. O. (2020). Particle‐based tracking of cold pool gust fronts. Journal of Advances in Modeling Earth
Systems, 12(5), e2019MS001910. https://doi.org/10.1029/2019ms001910

Acknowledgments
The authors gratefully acknowledge
funding by a grant from the VILLUM
Foundation (Grant 13168) and the
European Research Council (ERC) under
the European Union's Horizon 2020
research and innovation program (Grant
771859) and the Novo Nordisk Foundation
Interdisciplinary Synergy Program (Grant
NNF19OC0057374). This work used
resources of the Deutsches
Klimarechenzentrum (DKRZ), granted by
its Scientific Steering Committee (WLA)
under project ID bb1166. The authors
would also like to express their sincere
gratitude to the anonymous reviewers for
their valuable feedback and constructive
comments, which have contributed to
improving the quality of this publication.
Open Access funding enabled and
organized by Projekt DEAL.

Journal of Advances in Modeling Earth Systems 10.1029/2023MS003682

HOELLER ET AL. 19 of 21

 19422466, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003682 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [28/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

91



Hirt, M., Craig, G. C., Schäfer, S. A., Savre, J., & Heinze, R. (2020). Cold‐pool‐driven convective initiation: Using causal graph analysis to
determine what convection‐permitting models are missing. Quarterly Journal of the Royal Meteorological Society, 146(730), 2205–2227.
https://doi.org/10.1002/qj.3788

Hoeller, J. (2023). CoolDeTa: Detection and tracking of convective cold pools and their causal chains in cloud‐resolving simulation data release
(version 1.0) [Software & Dataset]. Zenodo. https://doi.org/10.5281/zenodo.10115957

Hoeller, J., Fiévet, R., Engelbrecht, E., & Haerter, J. O. (2024). U‐net segmentation for the detection of convective cold pools from cloud and
rainfall fields. Journal of Geophysical Research: Atmospheres, 129, e2023JD040126. https://doi.org/10.1029/2023JD040126

Hohenegger, C., Ament, F., Beyrich, F., Löhnert, U., Rust, H., Bange, J., et al. (2023). Fesstval: The field experiment on submesoscale spatio‐
temporal variability in lindenberg. Bulletin of the American Meteorological Society, 104(10), E1875–E1892. https://doi.org/10.1175/bams‐d‐
21‐0330.1

Houze, R. A., Jr. (2004). Mesoscale convective systems. Reviews of Geophysics, 42, RG4003. https://doi.org/10.1029/2004RG000150
Hunter, J. D. (2007). Matplotlib: A 2D graphics environment [Software]. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.

1109/MCSE.2007.55
Jeevanjee, N., & Romps, D. M. (2013). Convective self‐aggregation, cold pools, and domain size. Geophysical Research Letters, 40(5), 994–998.

https://doi.org/10.1002/grl.50204
Jensen, G. G., Fiévet, R., & Haerter, J. O. (2021). The diurnal path to persistent convective self‐aggregation. arXiv preprint arXiv:2104.01132.
Kain, J., & Fritsch, J. (1992). The role of the convective “trigger function” in numerical forecasts of mesoscale convective systems.Meteorology
and Atmospheric Physics, 49(1–4), 93–106. https://doi.org/10.1007/bf01025402

Khairoutdinov, M. F., & Randall, D. (2006). High‐resolution simulation of shallow‐to‐deep convection transition over land. Journal of the At-
mospheric Sciences, 63(12), 3421–3436. https://doi.org/10.1175/jas3810.1

Khairoutdinov, M. F., & Randall, D. A. (2003). Cloud resolving modeling of the arm summer 1997 IOP: Model formulation, results, uncertainties,
and sensitivities [Software]. Journal of the Atmospheric Sciences, 60(4), 607–625. https://doi.org/10.1175/1520‐0469(2003)060<0607:
crmota>2.0.co;2

Kruse, I. L., Haerter, J. O., &Meyer, B. (2022). Cold pools over The Netherlands: A statistical study from tower and radar observations.Quarterly
Journal of the Royal Meteorological Society, 148(743), 711–726. https://doi.org/10.1002/qj.4223

Kurowski, M. J., Suselj, K., Grabowski, W. W., & Teixeira, J. (2018). Shallow‐to‐deep transition of continental moist convection: Cold pools,
surface fluxes, and mesoscale organization. Journal of the Atmospheric Sciences, 75(12), 4071–4090. https://doi.org/10.1175/jas‐d‐18‐0031.1

Markowski, P., & Richardson, Y. (2010).Mesoscale meteorology in midlatitudes. John Wiley and Sons. https://doi.org/10.1002/9780470682104
Meyer, B., & Haerter, J. O. (2020). Mechanical forcing of convection by cold pools: Collisions and energy scaling. Journal of Advances in
Modeling Earth Systems, 12(11), e2020MS002281. https://doi.org/10.1029/2020ms002281

Moncrieff, M. W., & Liu, C. (1999). Convection initiation by density currents: Role of convergence, shear, and dynamical organization.Monthly
Weather Review, 127(10), 2455–2464. https://doi.org/10.1175/1520‐0493(1999)127<2455:cibdcr>2.0.co;2

Moseley, C., Hohenegger, C., Berg, P., & Haerter, J. O. (2016). Intensification of convective extremes driven by cloud–cloud interaction. Nature
Geoscience, 9(10), 748–752. https://doi.org/10.1038/ngeo2789

Muller, C., & Bony, S. (2015). What favors convective aggregation and why? Geophysical Research Letters, 42(13), 5626–5634. https://doi.org/
10.1002/2015GL064260

Muller, C., Yang, D., Craig, G., Cronin, T., Fildier, B., Haerter, J. O., et al. (2022). Spontaneous aggregation of convective storms. Annual Review
of Fluid Mechanics, 54(1), 133–157. https://doi.org/10.1146/annurev‐fluid‐022421‐011319

Niehues, J., Jensen, G. G., & Haerter, J. O. (2021). Self‐organized quantization and oscillations on continuous fixed‐energy sandpiles. arXiv
preprint arXiv:2111.04470.

Nissen, S. B., & Haerter, J. O. (2021). Circling in on convective self‐aggregation. Journal of Geophysical Research: Atmospheres, 126(20),
e2021JD035331. https://doi.org/10.1029/2021jd035331

Parker, D. J., & Diop‐Kane, M. (2017). Meteorology of tropical West Africa: The forecasters' handbook. John Wiley & Sons.
Parker, M. D. (2008). Response of simulated squall lines to low‐level cooling. Journal of the Atmospheric Sciences, 65(4), 1323–1341. https://doi.

org/10.1175/2007jas2507.1
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit‐learn: Machine learning in Python

[Software]. Journal of Machine Learning Research, 12, 2825–2830. Retrieved from https://www.jmlr.org/papers/volume12/pedregosa11a/
pedregosa11a.pdf

Pei, S., Shinoda, T., Soloviev, A., & Lien, R.‐C. (2018). Upper ocean response to the atmospheric cold pools associated with the Madden‐Julian
Oscillation. Geophysical Research Letters, 45(10), 5020–5029. https://doi.org/10.1029/2018gl077825

Rio, C., Hourdin, F., Grandpeix, J.‐Y., & Lafore, J.‐P. (2009). Shifting the diurnal cycle of parameterized deep convection over land.Geophysical
Research Letters, 36, L07809. https://doi.org/10.1029/2008gl036779

Rochetin, N., Hohenegger, C., Touzé‐Peiffer, L., & Villefranque, N. (2021). A physically based definition of convectively generated density
currents: Detection and characterization in convection‐permitting simulations. Journal of Advances in Modeling Earth Systems, 13(7),
e2020MS002402. https://doi.org/10.1029/2020ms002402

Romps, D. M., & Jeevanjee, N. (2016). On the sizes and lifetimes of cold pools.Quarterly Journal of the Royal Meteorological Society, 142(696),
1517–1527. https://doi.org/10.1002/qj.2754

Rooney, G. G. (2015). Descent and spread of negatively buoyant thermals. Journal of Fluid Mechanics, 780, 457–479. https://doi.org/10.1017/
jfm.2015.484

Rooney, G. G., Stirling, A. J., Stratton, R. A., & Whitall, M. (2021). C‐Pool: A scheme for modelling convective cold pools in the Met Office
unified model. Quarterly Journal of the Royal Meteorological Society, 148(743), 962–980.

Rotunno, R., Klemp, J. B., & Weisman, M. L. (1988). A theory for strong, long‐lived squall lines. Journal of the Atmospheric Sciences, 45(3),
463–485. https://doi.org/10.1175/1520‐0469(1988)045<0463:atfsll>2.0.co;2

Schlemmer, L., & Hohenegger, C. (2016). Modifications of the atmospheric moisture field as a result of cold‐pool dynamics.Quarterly Journal of
the Royal Meteorological Society, 142(694), 30–42. https://doi.org/10.1002/qj.2625

Schumacher, R. S., & Rasmussen, K. L. (2020). The formation, character and changing nature of mesoscale convective systems. Nature Reviews
Earth & Environment, 1(6), 300–314. https://doi.org/10.1038/s43017‐020‐0057‐7

Seifert, A., & Heus, T. (2013). Large‐eddy simulation of organized precipitating trade wind cumulus clouds. Atmospheric Chemistry and Physics,
13(11), 5631–5645. https://doi.org/10.5194/acp‐13‐5631‐2013

Simpson, J. E. (1972). Effects of the lower boundary on the head of a gravity current. Journal of Fluid Mechanics, 53(4), 759–768. https://doi.org/
10.1017/S0022112072000461

Journal of Advances in Modeling Earth Systems 10.1029/2023MS003682

HOELLER ET AL. 20 of 21

 19422466, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003682 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [28/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

92



Simpson, J. E. (1980). Downdrafts as linkages in dynamic cumulus seeding effects. Journal of Applied Meteorology, 19(4), 477–487. https://doi.
org/10.1175/1520‐0450(1980)019<0477:dalidc>2.0.co;2

Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review, 91(3),
99–164. https://doi.org/10.1175/1520‐0493(1963)091<0099:gcewtp>2.3.co;2

Straka, J. M., Wilhelmson, R. B., Wicker, L. J., Anderson, J. R., & Droegemeier, K. K. (1993). Numerical solutions of a non‐linear density current:
A benchmark solution and comparisons. International Journal for Numerical Methods in Fluids, 17(1), 1–22. https://doi.org/10.1002/fld.
1650170103

Tompkins, A. M. (2001a). Organization of tropical convection in low vertical wind shears: The role of cold pools. Journal of the Atmospheric
Sciences, 58(13), 1650–1672. https://doi.org/10.1175/1520‐0469(2001)058<1650:ootcil>2.0.co;2

Tompkins, A. M. (2001b). Organization of tropical convection in low vertical wind shears: The role of water vapor. Journal of the Atmospheric
Sciences, 58(6), 529–545. https://doi.org/10.1175/1520‐0469(2001)058<0529:ootcil>2.0.co;2

Torri, G., & Kuang, Z. (2016). Rain evaporation and moist patches in tropical boundary layers.Geophysical Research Letters, 43(18), 9895–9902.
https://doi.org/10.1002/2016gl070893

Torri, G., & Kuang, Z. (2019). On cold pool collisions in tropical boundary layers Giuseppe. Geophysical Research Letters, 46(1), 399–407.
https://doi.org/10.1029/2018GL080501

van der Walt, S., Schönberger, J. L., Nunez‐Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., et al. (2014). scikit‐image: Image processing in
Python [Software]. PeerJ, 2, e453. https://doi.org/10.7717/peerj.453

Vogel, R., Konow, H., Schulz, H., & Zuidema, P. (2021). A climatology of trade‐wind cumulus cold pools and their link to mesoscale cloud
organization. Atmospheric Chemistry and Physics, 21(21), 16609–16630. https://doi.org/10.5194/acp‐21‐16609‐2021

Wakimoto, R. (2001). Convectively driven high wind events (pp. 255–298). https://doi.org/10.1007/978‐1‐935704‐06‐5_7
Waskom,M. L. (2021). Seaborn: Statistical data visualization [Software]. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/

joss.03021
Weisman, M. L., Klemp, J. B., & Rotunno, R. (1988). Structure and evolution of numerically simulated squall lines. Journal of the Atmospheric
Sciences, 45(14), 1990–2013. https://doi.org/10.1175/1520‐0469(1988)045<1990:saeons>2.0.co;2

Zuidema, P., Li, Z., Hill, R. J., Bariteau, L., Rilling, B., Fairall, C., et al. (2012). On trade wind cumulus cold pools. Journal of the Atmospheric
Sciences, 69(1), 258–280. https://doi.org/10.1175/jas‐d‐11‐0143.1

Zuidema, P., Torri, G., Muller, C., & Chandra, A. (2017). A survey of precipitation‐induced atmospheric cold pools over oceans and their in-
teractions with the larger‐scale environment. Surveys in Geophysics, 38(6), 1–23. https://doi.org/10.1007/s10712‐017‐9447‐x

Journal of Advances in Modeling Earth Systems 10.1029/2023MS003682

HOELLER ET AL. 21 of 21

 19422466, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003682 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [28/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

93



JAMES

Supporting Information for ”Detecting Cold Pool

Family Trees in Convection Resolving Simulations”

Jannik Hoeller1,2, Romain Fiévet2, Jan O. Haerter1,2,3,4
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1. Text S1

2. Figures S1 to S2

Introduction

Text S1 provides recommendations for the application of the proposed cold pool detec-

tion and tracking algorithm (CoolDeTA) to other simulation setups. Fig. S1 shows cold

pools detected using CoolDeTA with deactivated additional rules and compares them to

cold pools detected based on other methods. Fig. S2 illustrates the cascades of cold pools

tracked by CoolDeTA with deactivated additional rules.
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Text S1.

The proposed cold pool (CP) detection and tracking algorithm (CoolDetA) is designed

for idealized simulations that resolve cold pool dynamics. In our study, we utilized sim-

ulation setups with a horizontal resolution of 200 m. While CoolDeTA can be applied

to simulation data with coarser resolutions of 1–2 km, we recommend using resolutions

equal to or less than 400 m for effective tracking of cold pool relationships. When apply-

ing CoolDeTA to simulation data with different horizontal resolutions, it is important to

adapt the potential CP and rain patch (RP) area threshold, A0, which is defined based on

pixel count rather than patch area. For area thresholds with small pixel counts, it might

be considered to deactivate the divergence criteria by setting the ”patchCheck” variable

in the main.py file to ”False” and to relax the RP-potential CP overlap factor, fs, as well

as the new CP-RP area ratio.

In terms of the temporal resolution of simulation data, we suggest using a minimum

output interval of 10 min when applying CoolDeTA. For simulation setups with longer

CP life times, an interval of 20 min may be sufficient. However, in such cases, it is

important to relax both fs and the new CP-RP area ratio. Otherwise, CPs that form

immediately after the previous output time step may not meet the criteria for new CPs in

the subsequent time step and could be rejected by the algorithm. While smaller output

intervals than 10 min are possible, they generally do not lead to significant improvements

in results.

The applicability of CoolDeTA to simulation data based on realistic setups is limited and

depends on the specific setup employed: CoolDeTA is not applicable if the CP associated

virtual temperature anomalies are weak compared to the gradients of the horizontal virtual

November 12, 2023, 3:54pm
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temperature field at the lowest model level. Similarly, CoolDeTA is not applicable if

the CP associated wind anomalies are weak compared to other wind anomalies in the

domain. For instance, in simulation setups with both ocean and land surfaces, CoolDeTA

may mistakenly identify sea breezes as CPs. In cases where there are large near-surface

temperature differences between land and ocean surfaces, even the entire region of the

colder surface may be classified as a CP, when sufficiently strong rainfall is present. While

strong winds generally do not pose a problem, caution should be exercised if wind shear

reduces the overlap between RPs and CPs significantly. In such situations, we recommend

decreasing the value of fs or even setting it to zero.

We also note that CoolDeTA may not accurately detect CPs with very moist specific

humidity anomalies due to the influence of moisture on the computation of the indicator

field, Iseg, and the elevation map, Itop.
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Figure S1. Comparison of cold pool detection methods. Analogous to Fig. 2a—d

but with CoolDeTA contours based on a setup with ndis = 0, i.e., without minimum dissipation

time for cold pools, and without the additional rules listed in Table 1. Omitted rules comprise

the checks of interior and boundary of ”potential cold pool” regions with respect to their mean

divergence, the required overlap between rain patches and ”potential cold pool” regions to obtain

a marker, and the required ratio between a newly formed cold pool and its rain patch.
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Figure S2. Cascades of tracked cold pools. Analogous to Fig. 6a—d but with CoolDeTA

contours based on a setup with ndis = 0, i.e., without minimum dissipation time for cold pools,

and without the additional rules listed in Table 1. Omitted rules analogous to Fig. S1.
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CHAPTER 5. CONTRIBUTIONS 99

5.3 U-Net Segmentation for the Detection of
Convective Cold Pools From Cloud and
Rainfall Fields

The main goal of the following manuscript is to present a novel method for seg-
menting CPs in satellite-observable data and validate its effectiveness. Given
the limited availability of alternative observational data sources and the preva-
lence of CPs, this study concentrates on CPs over tropical land areas. Based
on the findings of manuscript I and other studies, potential CP signatures
in corresponding satellite data encompass (i) spatial patterns such as deep
convective clouds with pronounced brightness temperature gradients at their
boundaries and the emergence or deepening of clouds at the CP gust front,
as well as (ii) temporal patterns linked to the evolution of the parent convec-
tion and the propagation of the CP gust front. To leverage these signatures
and potentially benefit from additional patterns hidden so far, the devised CP
segmentation method relies on neural networks with a U-Net architecture.
Since CP masks for real satellite observations are rarely accessible and time-
intensive to create, we trained and tested our neural networks using simulated
cloud and rainfall fields. This approach enabled the generation of correspond-
ing ground truth images using the cold pool detection and tracking algorithm
outlined in manuscript II (Section 5.2).



1. Introduction
Cold pools (CPs) are volumes of atmospheric air that are cooled by evaporation of precipitation. The resultant 
denser air experiences negative buoyancy (Markowski & Richardson, 2011), resulting from convective down-
drafts, or microbursts (Lundgren et al., 1992). At Earth’s surface, CPs spread horizontally as density currents 
(Drager & van den Heever, 2017; Droegemeier & Wilhelmson, 1985; Zuidema et al., 2017). While expanding 
radially along the surface, CPs can be characterized as consisting of (a) a head, which can measure hundreds 
to several thousand meters vertically and (b) a shallower interior, which is separated from the head by a wake 
region (Benjamin, 1968; Cafaro & Rooney, 2018; Droegemeier & Wilhelmson, 1987; Fiévet et al., 2023; Kneller 
et al., 1999; Kruse et al., 2022; Markowski & Richardson, 2011; Meyer & Haerter, 2020; Simpson, 1980).

Substantial mechanistic significance has been attributed to the thin surface of horizontal convergence between 
the CP head and the ambient atmosphere, often referred to as CP gust front. On the one hand, this CP gust front 

Abstract Convective cold pools (CPs) mediate interactions between convective rain cells and help organize 
thunderstorm clusters, in particular mesoscale convective systems and extreme rainfall events. Unfortunately, 
the observational detection of CPs on a large scale has been hampered by the lack of relevant near-surface data. 
Unlike numerical studies, where fields, such as virtual temperature or wind, are available at high resolution 
and frequently used to detect CPs, observational studies mainly identify CPs based on surface time series, 
for example, from weather stations or research vessels—thus limiting studies to a regional scope. To expand 
to a global scope, we here develop and evaluate a methodology for CP detection that relies exclusively on 
data with (a) global availability and (b) high spatiotemporal resolution. We trained convolutional neural 
networks to segment CPs in high-resolution cloud-resolving simulation output by deliberately restricting 
ourselves to only cloud top temperature and rainfall fields. Apart from simulations, such data are readily 
available from geostationary satellites that fulfill both (a) and (b). The networks employ a U-Net architecture, 
popular with image segmentation, where spatial correlations at various scales must be learned. Despite the 
restriction imposed, the trained networks systematically identify CP pixels. Looking ahead, our methodology 
aims to reliably detect CPs over tropical land from space-borne sensors on a global scale. As it also provides 
information on the spatial extent and the relative positioning of CPs over time, our method may unveil the role 
of CPs in convective organization.

Plain Language Summary Cold pools come about when rain evaporates underneath thunderstorm 
rain cells. Such cold pools are colder and thus denser than the surrounding air, which makes them flow over 
the surface. The associated gust fronts can often be felt when observing thunderstorm clouds in nature, as 
strong, but relatively short-lasting, winds occurring near the thunderstorm downpour. Such cold pools can bring 
about clumps of thunderstorms, which can deliver large quantities of rainfall within areas of approximately 
100 km across. Thus, detecting cold pools on these and larger scales is important, but so far difficult due to the 
challenge of observing the air currents underneath clouds from satellite. We here present a method that may 
be able to do just that, namely detecting cold pools from above, by identifying signatures left behind in cloud 
patterns, for example, arc-like shapes along the gust front. We demonstrate the algorithms capabilities using 
high-resolution simulation data, where we are able to “know” the true result. We use an artificial intelligence 
framework to carry out this statistical task. We suggest that our method should be applicable to satellite data 
and thus give new insight into cloud organization at large scales.
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features pronounced vertical wind speed. On the other, the initial negative-buoyancy anomaly near the CP’s 
gust front is gradually reduced as the CP spreads, a possible consequence of enhanced surface latent and sensi-
ble heat fluxes (Drager et al., 2020; Tompkins, 2001; Torri & Kuang, 2016). Thus, in the course of the lateral 
expansion, buoyant ambient air can be lifted (Drager & van den Heever, 2017), resulting in further condensation 
and convection. “Communication” between cells (Simpson, 1980) can thus be encoded by such mechanical and 
thermodynamic effects.

Although the relative contributions of the thermodynamic versus the dynamic effect are still under debate 
(Fuglestvedt & Haerter, 2020; Romps & Jeevanjee, 2016; Torri et al., 2015) and can depend on the environmen-
tal and boundary conditions (Feng et al., 2015), there is substantial consensus that CPs can trigger new clouds in 
their vicinity and modify the subcloud moisture distribution (Böing et al., 2012; Drager & van den Heever, 2017; 
Haerter et al., 2020; Jensen et al., 2022; Schlemmer & Hohenegger, 2016).

Due to their ability to influence the organization (Böing, 2016; Haerter et al., 2019; Schlemmer & Hohenegger, 2016), 
the maintenance of squall line structures (Rotunno et al., 1988; Schumacher & Rasmussen, 2020), and potential 
intensification of thunderstorms (Houze & Betts, 1981; Zipser et al., 1981), CP characteristics have been investi-
gated in past decades, often within numerical studies: virtual temperature (Tv) anomalies have been used to track 
CPs in cloud-resolving simulations by patch detection (Schlemmer & Hohenegger, 2016) or by unsupervised 
image segmentation (Gentine et al., 2016). Drager and van den Heever (2017) compared the utility of different 
variables for CP identification in simulations. Torri and Kuang (2019) used a Lagrangian tracking to investigate 
CP collisions. Focusing on the dynamical gust front, Fournier and Haerter (2019) and Henneberg et al. (2020) 
introduced tracking algorithms targeting the thin (dynamic) convergence rings surrounding each CP.

Over continental regions in the tropical climate and during midlatitude summer, CP dynamics has been impli-
cated in the evolution of so-called mesoscale convective systems (MCS; Jensen et al., 2022), which are extended 
clusters, 𝐴𝐴 (100 km) , of thunderstorms cells (Houze,  2004; Schumacher & Johnson,  2008; Schumacher & 
Rasmussen, 2020) and have been found to contribute to the majority of tropical rainfall and dominate potential 
increases in extremes (Tan et al., 2015). Despite their climatic relevance, tropical MCS are still nearly impossible 
to forecast by simulations (Fritsch & Carbone, 2004; Sukovich et al., 2014).

At smaller spatiotemporal scales, idealized simulations allow for detailed analysis of specific mechanisms as they 
provide near-continuous output data for many variables—making CP detection and tracking feasible. Yet, numer-
ical studies still depend on the model and resolution chosen, so that findings do not immediately carry over to the 
real world. Since traditional general circulation models are too coarse to resolve CP processes (Feng et al., 2015; 
Fiévet et al., 2022), CP mechanisms are mostly studied in high-resolution simulations within limited domain sizes 
or, less commonly, by including specific parameterizations (Grandpeix & Lafore, 2010; Rio et al., 2009). In both 
cases, the validity of the outcome is limited by the underlying modeling assumptions.

Observational CP studies are usually hampered by the lack of spatially resolved near-surface data. Using point-
like near-surface station observations at subhourly temporal resolution, the spread of a given CP can however 
be detected as a rapid temperature drop in the time series (de Szoeke et al., 2017; Kirsch et al., 2021; Kruse 
et al., 2022; Vogel et al., 2021; Zuidema et al., 2017). At times, perhaps as a result of strong surface sensible heat 
fluxes (Knippertz et al., 2007), a dew point temperature increase, rather than a temperature drop, is found to be a 
robust characteristic of CP gust fronts, for example, in arid regions (Emmel et al., 2010; Redl et al., 2015). Also 
combinations with dynamic features, such as changes in wind speed have been employed (Emmel et al., 2010; 
Redl et al., 2015). While Emmel et al. (2010) ultimately validated each event subjectively with infrared satellite 
imagery, Redl et al. (2015) implemented a criterion based on satellite microwave data. Making use of the dust 
signature in brightness temperature differences, Caton Harrison et al. (2021) devised an algorithm to automat-
ically identify and track Saharan CP outflows based on gradients of the corresponding brightness temperature 
difference fields. In a validation based on 35 manually identified CP outflows, the approach achieved a detection 
rate of 74.2% (26/35). Also “thin line” echoes associated with the CP leading edge in radar imagery have been 
used in manual CP detections (Borque et al., 2020; Brandes, 1977; Engerer et al., 2008; Wakimoto, 1982).

CP detection over the ocean has occasionally benefited from the imprint that CPs leave on the sea surface 
(Atlas,  1994). During the Variability of American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–
Land Survey Regional Experiment (VOCALS-REx) in the Southeast Pacific, Wilbanks et al. (2015) applied an 
air density increase criterion to detect stratocumulus-topped boundary layer CPs from in situ ship measurements. 

 21698996, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

040126 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [28/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

101



Journal of Geophysical Research: Atmospheres

HOELLER ET AL.

10.1029/2023JD040126

3 of 18

Garg et al. (2020) introduced a method based on wind gradients from space-borne scatterometers to detect CP 
regions over tropical oceans. To validate their method, they employed in situ air temperature measurements 
from buoys and a simulation. As part of the Elucidating the Role of Cloud–Circulation Coupling in Climate 
(EUREC4A) field campaign (Stevens et al., 2021), Touzé-Peiffer et al. (2022) developed a method for detecting 
CPs over tropical oceans based on the mixed-layer height in atmospheric soundings.

Detecting CPs over continents at a spatially extended scale can be more cumbersome. Reaching real-world CP 
detection results for the continental areas is however the only realistic benchmark for CP representation in numer-
ical models, and thus the proper dynamics of MCS. To approach automatized and global-scale CP detection over 
land surfaces, we developed an algorithm using convolutional neural networks (CNNs) which relies only on 
quantities that are observable from geostationary satellite imagery. The algorithm was trained and tested using 
data from idealized cloud-resolving simulations, where all field variables are available over the entire domain. 
The chosen configurations correspond to an atmosphere over tropical land surfaces. To our knowledge, this is the 
first approach for detecting CPs over land on a global scale based on satellite data. Our algorithm may allow for 
new insight into the role of CPs in convective organization and the formation of weather extremes.

2. Methods
CNNs, which gradually coarsen a field of input data through filtering operations, are widely used for classifi-
cation and segmentation problems. Upon each filtering step, spatial correlations at larger and larger scales are 
distinguished. Whereas CNNs for classification problems group the entire input data field into a set of classifiers, 
CNNs for segmentation problems return to the resolution of the input to mark each pixel as being of one of several 
categories. For the problem at hand, we wish to mark each pixel in the 2D plane as either belonging to a CP or 
not—thus the segmentation technique is appropriate.

2.1. Simulation Data

In order to simplify the generation of labeled data sets, the network training and testing is conducted using data 
from numerical simulations. To this end, the cloud-resolving three-dimensional atmosphere simulator System for 
Atmospheric Modeling (SAM; Khairoutdinov & Randall, 2003), version 6.11, is used. It resolves the Euler equa-
tions in the anelastic approximation on a staggered mesh. Convective fluxes are evaluated using a fifth-order finite 
difference scheme from Yamaguchi et al. (2011) and turbulent dissipation is modeled by an eddy-viscosity-based 
closure. Moist thermodynamics is resolved by transporting liquid and ice water static energy, total precipitating 
and nonprecipitating water mass fractions, and uses a bulk single-moment microphysics closure scheme.

The configuration chosen for this study corresponds to an atmosphere over an idealized moist tropical land 
surface. It is similar to the configuration studied by Jensen et al.  (2022) which exhibited strong and complex 
CP activity and is therefore suited to design and test our detection method. Parts of the underlying simulation 
output were used in Hoeller, Fiévet, and Haerter (2023) to devise a detection and tracking method for CPs in 
cloud-resolving simulation data. The computational domain has a size of Lx = Ly = 240 km in the horizontal 
directions and extends vertically to a maximum altitude of Lz = 26 km. It is discretized by an orthogonal mesh 
of horizontal resolution Δx = Δy = 200 m and vertical resolution Δz increasing from Δz(z = 25 m) = 50 m to 
Δz(z = 25 km) = 1,000 m over 100 levels. In the following, we use nx, ny ∈ [0, N], as integers labeling the indices 
of the horizontal model grid, with N = 1,200 the total number of grid points in either horizontal dimension. The 
lateral boundary conditions are set to be periodic. Relevant two-dimensional simulated fields are sampled instan-
taneously every Δt = 10 min. We often denote the discrete time t = tn ≡ nΔt, measured from the beginning of the 
simulation, by the integer time step n.

Surface heat fluxes are evaluated using Monin-Obukhov similarity theory with a saturated humidity (moist 
surface) condition and a prescribed diurnally varying temperature T, with an average of T0 = 298 K. The temper-
ature amplitude ΔT, defined as half the diurnal temperature range between maximum and minimum, is chosen to 
represent plausible ranges measured for tropical land (Sharifnezhadazizi et al., 2019). The effect of the surface 
forcing is to trigger idealized diurnally varying convective activity typical of tropical land surfaces: moist convec-
tion tends to develop and self-organize during the afternoon hours—giving rise to a complex organizational 
pattern. The nocturnal cooling reduces convective activity and precipitation rates typically reach a domain-wide 
minimum during the early morning hours of the subsequent model day. In order to work with a diverse set of 

 21698996, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

040126 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [28/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

102



Journal of Geophysical Research: Atmospheres

HOELLER ET AL.

10.1029/2023JD040126

4 of 18

atmospheric conditions, four different configurations are considered, where ΔT  ∈  {2, 4}  K and wind shear 
is either switched off or set to a temporally and spatially averaged vertical profile over tropical Africa (LAT: 
5.5°–16°N, LON: −20°–10°E) obtained from ERA5 reanalysis data for July 2016. The vertical profile consists 
in a piecewise linear profile with zero velocity below z = 1 km, linearly increasing speeds from 0 to 16 m s −1 up 
to 19 km altitude and 16 m s −1 beyond. Depending on their ΔT, we term the configurations either “diu2K” or 
“diu4K.” Configurations with wind shear further obtain the addition “wind,” that is, “diu2K wind” denotes the 
setup with ΔT = 2 K and wind shear.

2.1.1. Ground Truth Labeling

Labeled data sets are derived from simulation output based on a CP detection and tracking algorithm (CoolD-
eTA) devised by Hoeller, Fiévet, and Haerter (2023). CoolDeTA applies a k-means algorithm to the sum of the 
normalized lowest domain level fields of virtual temperature and horizontal wind speed to classify each pixel in 
the two-dimensional field as either “potential CP” or “no CP” without defining a fixed threshold. We note that, in 
the following, only such potential CP areas can contain actual CPs. Individual CP instances are differentiated and 
labeled based on a watershed algorithm. The starting points for the flooding of the watershed algorithm are the 
downdraft centers within spatially contiguous rain patches with a surface rain intensity, rint, exceeding a threshold 
of rint ≥ r0. Like Hoeller, Fiévet, and Haerter (2023), we apply r0 = 2 mm h −1. Additionally, the flooding starts in 
the centers of tracked CP instances from the previous time step, if there are any. To detect only robust CP instances, 
we keep rain patches and potential CP areas only when their area A ≥ A0 with A0 = 3 km 2, as opposed to the 2 km 2 
threshold used by Hoeller, Fiévet, and Haerter (2023). Valid rain patches with a downdraft center, which is located 
in an area classified as “no CP” by the k-means algorithm, will not be labeled as CPs. The same is true for potential 
CP areas which do not coincide with the center of a downdraft or a tracked CP instance from the previous time step.

Providing the fields of virtual temperature, Tv, and both horizontal and vertical wind speed in the lowest domain 
level, as well as rint, CoolDeTA can identify, label, and track each CP instance individually while storing addi-
tional information. To use the simplest possible case in the present study, we here keep the labels derived based 
on CoolDeTA binary, comprising the two classes “CP” and “no CP.”

2.1.2. Input Variables

Regarding the potential input for the neural network, SAM outputs several variables which are accessible from 
space-borne data. The present study focuses on the cloud top temperature, TCT, and rint. For TCT, we employ the 
standard output of SAM where TCT equals the cloud top temperature for cloudy domain columns and the surface 
temperature otherwise. TCT and rint are readily available from infrared emissions and an increasing number of 
precipitation products. Depending on the region of interest and problem-specific requirements in terms of spatial 
and temporal resolution, as well as accuracy, these precipitation products can be multisatellite products with 
global coverage such as IMERG (Huffman et al., 2015) or even products based on ground-based weather radars.

2.1.3. Training and Test Sets

For each of the four simulation setups, output is available for 7.5 simulation days in total. The first 3 days are 
considered as spin-up phase (Hoeller, Fiévet, & Haerter, 2023). After these spin-up days, we employ the simu-
lation output of day 4 for network training and validation. While we train networks based on the training set, 
the validation set is used to monitor the progress of the training on separate data which has not been trained on. 
As is common in supervised learning, we randomly split the data by assigning each instance with a probability 
of 75% to the training set and with 25% to the validation set. Throughout the entire training, including different 
network trainings, we keep the obtained allocation fixed to facilitate the comparison between networks. Yet, the 
order of  the training data is randomly shuffled every training epoch, that is, every time the training set is passed 
through a neural network.

When all network trainings are completed, the final performance is evaluated based on a test set (Willemink 
et al., 2020) consisting of simulation output of day 6, that is, the test set is not considered at any earlier stage. 
Although the observed CPs, and the complex pattern formed by their interaction, are unique for each simulation 
day, the offset of 1 day between the test set and the training and validation set guarantees fully independent sets 
w.r.t. the distribution of relevant quantities such as humidity.

To ensure sufficient variation between consecutive time steps of the data sets, we consider only every second 
time step of the corresponding simulation output for the training and validation set, and every fourth time step 
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for the test set. This is particularly important for the test set to prevent any distortion of the final results due to 
correlated data.

In order to reduce the computational cost and accelerate network training, we subdivided every N × N pixel 
output field, termed “image,” into 100 subregions, which we refer to as “patches,” of np × np pixels each. As our 
downsampling requires the integer np to be a power of 2 (see Section 2.2) and to compromise between computa-
tional effort and prediction skill, we chose np = 128 as the linear dimension of each two-dimensional patch. To 
accomplish this, each original output image is padded from nx = 1,200 to nx,pad ≡ 1,280 in compliance with the 
periodic lateral boundary conditions.

Eventually, each network prediction requires an input and a corresponding ground truth to optimize and/or eval-
uate the network performance. While the ground truth corresponds to an np × np pixel patch of the output images 
with derived labels, the input consists of stacked patches corresponding to TCT and rint. To compensate for lacking 
context information at patch boundaries, the input patch is np/2 pixels larger than the underlying ground truth 
patch on either side, resulting in an input patch size of 2np × 2np pixels (Figure 1). Although the additional np/2 
pixels on each side are thus ranging into the adjacent ground truth patch, this overlap does not distort the results 
as the final network prediction only comprises the underlying central np × np pixel patch.

To ensure a robust training process and reliable results, we manually checked the ground truth labeling of every 
patch in the data set. We omitted patches if they (a) contained at least 1, but less than 25 pixels (i.e., 1 km 2) of class 
“CP,” (b) were in the center of a larger convective system with a gust front significantly beyond the boundaries of 
the input patch, (c) were poorly labeled by the CP detection algorithm, or (d) featured ambiguous scenes where 
an unequivocal verification of the labeling is not possible. For the evaluation of both (c) and (d), the dynamical 
gust front, that is, 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴 + 2𝜎𝜎𝐴𝐴 served as main indicator: clear offsets between gust front and boundaries of 
ground truth CPs were interpreted as poor labeling, discontinuous, and thus dissipating gust fronts as ambiguous 
cases. Omitted patches were excluded from the data set. We did not modify the individual pixels which belong 
to a certain CP instance. Only if a certain CP instance in an otherwise accurately labeled patch was a complete 
artifact, we set all pixels of that CP instance in the patch to “no CP” and kept the corrected patch in the data set.

As simulation setups affect the cloud and rainfall patterns associated with CPs, we considered patches from 
simulations with different environmental conditions. Yet, both simulations with imposed wind profiles feature 

Figure 1. Defining patches for neural network input and ground truth. (a) Time step 497, that is, 80 min before Tmax on 
simulation day 4, of “diu4K wind,” showing near-surface virtual temperature anomaly, ΔTv, with superimposed dynamical 
gust front, that is, 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴 + 2𝜎𝜎𝐴𝐴 (red scatter). The superimposed grid represents the individual np × np pixel patches, processed 
by the neural network. (b) Analogous to (a) but for surface rain intensity, rint. Patches that were omitted from the data set are 
hatched. (c) Analogous to (a) but for cloud top temperature, TCT. (d) Ground truth labeling showing cold pool (CP) areas as 
black regions; a single patch is enlarged for clarity. (e) Highlighted patch, including padding, for rint. (f) Analogous to (e) but 
for TCT.
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prevailing easterly winds. To allow the network to capture underlying 
patterns independent of the wind direction, we rotate each patch of the two 
simulations with wind by 90°, 180°, and 270° and add the resulting patches 
to the data sets. Extending data sets with slightly modified copies of the data 
based on operations such as rotations or translations is a common approach 
to increase the amount and diversity of data and is called data augmentation 
(Chlap et al., 2021; Shorten & Khoshgoftaar, 2019).

Data imbalances due to the underrepresentation of classes or features in the 
training set are a common issue of learning algorithms (He & Garcia, 2009). 
Taking the reduced convective activity due to nocturnal cooling into account, 
the majority of patches does not contain any CP pixels in the ground truth data 
and features only the class “no CP.” We compensated for this by randomly 
removing a certain number of these patches (Shi et al., 2021). By experiment, 
we selected the number of patches with only class “no CP” to be 4% of the 
training and validation set. The other extreme are patches with class “CP” 
only. Surface temperature oscillations promote the sudden organization of 
CPs into convective systems (Haerter et al., 2020; Jensen et al., 2022). Since 
the surface areas of these convective systems often exceed the patch size, 

a great number of patches have class “CP” only. However, omitting patches in the center of larger convective 
systems according to (b) already lowered the number of patches with class “CP” only to ≈5.5% resulting in a 
sufficiently balanced training and validation set distribution (Figure 3a) with mean class “CP” fractions of 0.26 
(diu2K), 0.31 (diu2K wind), 0.38 (diu4K), and 0.52 (diu4K wind). We chose not to balance the distribution of the 
test set in order to not affect the results in any way.

The resulting data set for training and validation comprises 4,208 patches with 984 different CP instances. Each 
CP instance represents a certain CP event as labeled by CoolDeTA. Depending on both their lifetime and their 
spatial extent, individual CP instances can be present in multiple patches in the data set. Thus, the number of CP 
instances is higher for diu2K (420) and diu4K (389) compared to the two setups with wind shear, diu2K wind 
(107) and diu4K wind (68), which feature less, but often larger and more persistent CP events. The number of 
CP instances provides an indication of the CP variety within the data set. It should be noted though that CPs and 
their patterns are often affected by complex interaction processes. Although a specific CP event might undergo 
significant changes during its lifetime and even merge with other CP events, it would still be counted as one CP 
instance by CoolDeTA. Accordingly, we consider the provided numbers of CP instances a rather conservative 
estimate of the CP variety in the data set. The test set comprises 7,226 patches with 183 CP instances. With 44 
CP instances in diu2K, 31 in diu2K wind, 77 in diu4K, and 31 in diu4K wind, they are more uniformly distributed 
among the different simulations. We attribute this also to the fact that we considered only every fourth time step 
for the test set, thus excluding some short-lived CP instances. Since the test set was not balanced, 6,684 of the 
7,226 patches contain only class “no CP.”

2.1.4. Senegal Case Study

In addition to the network training and testing, we also conducted a numerical simulation over West Africa to 
validate the method under more realistic conditions. For this case study, we used the nonhydrostatic Advanced 
Research Weather Research and Forecasting (WRF) model version 4.3 (Skamarock et  al.,  2021) for a 24-hr 
numerical simulation on 4 August 2022 over Senegal in West Africa (Figure 2). The date was chosen primarily for 
the high frequency of convective systems during this period, as well as the occurrence of smaller-scale convection 
in other parts of the study domain. To obtain numerical simulation data at a relatively high grid resolution, in this 
case 333 m, a nesting approach was necessary. We therefore created four domains with grid spacing of 9, 3, 1, and 
0.333 km with a one-way nesting strategy. Only data from the 0.333 km domain simulation are used in this study.

National Oceanic and Atmospheric Administration/National Centers for Environmental Prediction Global Fore-
casting Model (GFS) forecasts, with a 0.25° horizontal grid spacing, were employed for the initial and boundary 
conditions in the 9 km outer domain, provided at 3 hourly intervals. Fifty-five vertical levels were chosen, such 
that their vertical spacing decreases closer to the surface. To represent surface fluxes, we used the Noah Land 
Surface Model scheme with soil temperature and moisture at four layers. The 3–0.333 km domains were run with 
explicit convection. In the 9 km domain, we used the Kain-Fritsch convection scheme with a mass-flux approach. 

Figure 2. Weather Research and Forecasting (WRF)-nested domains for 
Senegal case study. Map of Africa showing the regional/outer domain 
(dashed), denoted as D1 at 9 km horizontal resolution. D2, D3, and D4 denote 
the nested domain boundaries at horizontal resolutions 3, 1, and 0.333 km, 
respectively. The red domain is the primary region used in this case study.
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Finally, we applied the large-eddy simulation approach to represent the planetary boundary layer (PBL) in the 
333 m domain, while the Yonsei University PBL scheme was employed for the other domains.

2.2. Network Architecture

As mentioned, instead of predicting one specific label per provided input image (classification), the detection 
of CPs requires an output, such as “CP” or “no CP,” for every pixel of the image (segmentation). A common 
architecture used for segmentation is the U-Net (Ronneberger et al., 2015), a CNN that consists of an encoder 
path and a decoder path. In the encoder path, input images are downsampled after every block, allowing the 
network to learn features at larger scales. A common downsampling method, where the output is generated from 
the input by considering only the maximum value of a moving window of size s × s and which we also apply 
in the present study with s = 2, is max pooling. By reducing the resolution of the image in each downsampling 
step,  typically by a factor of 2 as we do here, the network can learn features at different scales. To be able to 
capture the underlying correlations, the number of filter layers is doubled with every downsampling step. In the 
decoder path, on the other hand, the images are upsampled again via transposed convolution or interpolation to 
finally enable pixel-wise predictions. After each upsampling step, concatenated filter layers of the same depth 
encoder block provide additional information. The employed U-Net architecture for the simplified case with three 
vertical blocks (nb = 3) is depicted in Figure 3b.

Figure 3. Training statistics and U-Net architecture. (a) Distribution of the data set used for network training and validation 
w.r.t. the fraction of class “CP” in each patch. (b) U-Net architecture for cold pool segmentation, here for the case with 
three filtering blocks (nb = 3). The number of input channels nc represents the number of different variables provided to the 
network as input. In the case of pseudo-3D models, the number of input channels, nc = number of variables × number of 
utilized time steps, nt. The number of output channels comprises the two classes “CP” and “no CP.” (c) Loss, 𝐴𝐴  , as a function 
of the epoch, et, for the 2D, p3D3t, and p3D5t neural networks. Dashed lines represent running averages of training loss for 
all training runs of a respective neural network type. Thin colored are running averages of validation loss for all training runs 
of a respective neural network type additionally averaged over a centered window of three et; different symbols correspond to 
the validation loss of the different training runs. Note: As the mean variance of the training loss for the three neural network 
types is only between 2.5 × 10 −6 (2D) and 6.1 × 10 −6 (p3D3t), markers for the training loss of different training runs are not 
visualized.
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Apart from nb and the starting number of filter layers nf, neural networks and U-Nets in particular offer a vari-
ety of modeling choices, termed hyperparameters, to tune. After an exploration phase, in which we identified 
hyperparameters significant for our network along with promising orders of magnitude based on training and 
validation performances, we investigated the following seven hyperparameters in more detail: nb, ultimately 
chosen as nb = 6; nf, ultimately chosen as nf = 64; the activation function, ultimately chosen as LeakyReLU; 
the normalization strategy, ultimately chosen as batch normalization; the loss function, ultimately chosen as 
combination of cross entropy loss and dice loss; the learning rate lr, ultimately chosen as exponentially decaying 
function 𝐴𝐴 𝐴𝐴r = 10−5 × 𝛾𝛾

𝑒𝑒t with et as the training epoch and γ = 0.9; and the batch size sb, ultimately chosen as sb = 8. 
Activation functions are nonlinear functions and a fundamental part of CNNs. Following convolutional layers in 
the convolution block (cf., Figure 3b), activation functions enable the network to capture complex patterns. Typi-
cally, convolution blocks are completed by normalization steps, which can support an efficient learning process 
(Ioffe & Szegedy, 2015). While the loss function is the function to be minimized during training, lr controls the 
corresponding optimization step size. The number of instances considered per optimization step is the batch size. 
Typically, training batch sizes are greater one to reduce the risk of getting stuck in local minima.

In order to determine the most promising network configuration w.r.t. the seven hyperparameters, we conducted 
a number of experiments based on the training and validation set. Instead of analyzing all possible combinations 
of configurations, we limited the number of experiments by structuring them in two stages. Starting from a first 
guess reference configuration for which all seven hyperparameters were defined pragmatically, the first stage 
consists of multiple levels, each containing experiments for a group of hyperparameters with all their combina-
tions. After each level, the reference configuration is updated based on the best candidates of those hyperparam-
eters. Due to their close relation, we grouped lr with sb (Group 1), activation function with normalization strategy 
and loss function (Group 2), and nb with nf (Group 3). Whereas the hyperparameters in Group 1 are essential for 
robust learning and thus investigated first, the hyperparameters in Group 3 are examined last as larger numbers 
of nb and nf, which were expected to be advantageous, would slow down the remaining experiments significantly.

Since some hyperparameters could have candidates with similarly good performance so that the best candidate 
might thus change for other configurations, we performed a second stage of experiments with all combinations of 
these candidates plus some fine-tuned ones.

Depending on the convolution kernel, CNNs can be categorized into 2D and 3D CNNs. Conventional end-to-end 
2D CNNs receive 2D input, which may consist of multiple channels, for example, 2D fields of different variables, 
apply 2D convolutions, that is, convolutions with 2D kernel matrix, and generate a corresponding 2D output, 
whereas 3D CNNs analogously process 3D data. At the expense of significantly higher computational cost, 3D 
CNNs are thus able to learn correlations in a third dimension based on the 3D convolution kernel. As we are 
interested in 2D segmentations and the simplest model possible, we selected the 2D version. However, since CPs 
are density currents and exhibit gust fronts typically emanating radially from a precipitation cell center, expan-
sion over time constitutes one of the main CP features (Benjamin, 1968). In order to include this time-dependent 
component and potentially enable the network to learn the correlations between consecutive time steps, we also 
implement the so-called pseudo-3D approach. The term “pseudo-3D,” as introduced by Vu et al. (2020), repre-
sents a model class that is intermediate between conventional 2D CNNs and 3D CNNs. In pseudo-3D models, 
the information of the third dimension (here time) is inserted as additional input channels to the network, there-
fore without modifying the network’s 2D architecture. As a consequence, the total number of input channels of 
pseudo-3D models depends not only on the number of input variables provided, but on the product of the numbers 
of input variables and utilized time steps. Thus, pseudo-3D models might potentially benefit from time-dependent 
information without being as computationally expensive as end-to-end 3D models (Vu et al., 2020). In the present 
study, we investigate the pseudo-3D model with three (p3D3t) and five time steps (p3D5t). Time steps are thereby 
centered about the time step for which a prediction is to be made.

2.3. Loss and Evaluation Metrics

The selection of an appropriate loss function depends on the specific problem at hand. All loss functions use the 
pixel-wise network prediction U = [U (0), U (1)], consisting of the two output channels U (0), 𝐴𝐴 𝐴𝐴

(1) ∈ ℝ
𝑛𝑛p×𝑛𝑛p , where 

indexes “0” and “1” indicate the “no CP” and “CP” channels, respectively, and compare U with the correspond-
ing ground truth derived by CoolDeTA, denoted 𝐴𝐴 𝐴𝐴 ∈ ℕ

𝑛𝑛p×𝑛𝑛p , where Vkl ∈ {0, 1}, indicating “no CP” and “CP,” 
respectively.
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We examined several loss functions during the experiments. For this purpose, we rescaled each pixel 𝐴𝐴 𝐴𝐴
(𝑗𝑗)

𝑘𝑘𝑘𝑘
 in U to 

the range [0,1] so that the “probabilities” of both the “no CP” and “CP” channel sum up to one. We term the result 
of this so-called “softmax” function u. The corresponding function is written as

𝑢𝑢
(𝑗𝑗)

𝑘𝑘𝑘𝑘
≡

𝑒𝑒
𝑈𝑈
(𝑗𝑗)

𝑘𝑘𝑘𝑘

𝑒𝑒
𝑈𝑈
(0)

𝑘𝑘𝑘𝑘 + 𝑒𝑒
𝑈𝑈
(1)

𝑘𝑘𝑘𝑘

, for 𝑗𝑗 ∈ {0, 1}. (1)

In order to compare u to the ground truth, we split V analogously to the prediction via one-hot encoding into two 
slices of binary data v = [v (0), v (1)], that is, 𝐴𝐴 𝐴𝐴

(0)

𝑘𝑘𝑘𝑘
= 1 − 𝑉𝑉𝑘𝑘𝑘𝑘 and 𝐴𝐴 𝐴𝐴

(1)

𝑘𝑘𝑘𝑘
= 𝑉𝑉𝑘𝑘𝑘𝑘 . As loss functions, we employed a cross 

entropy loss which is often used as default in image segmentation and defined as

CE(𝑢𝑢𝑢 𝑢𝑢) =

∑

𝑗𝑗𝑢𝑗𝑗𝑢𝑗𝑗

−𝑢𝑢
(𝑗𝑗)

𝑗𝑗𝑗𝑗
log

(

𝑢𝑢
(𝑗𝑗)

𝑗𝑗𝑗𝑗

)

∑

𝑚𝑚𝑢𝑚𝑚𝑢𝑚𝑚
𝑢𝑢
(𝑚𝑚)

𝑚𝑚𝑚𝑚

𝑢 (2)

a soft Dice coefficient loss, defined as

Dice(𝑢𝑢𝑢 𝑢𝑢) = 1 −

2
∑

𝑗𝑗𝑢𝑗𝑗𝑢𝑗𝑗
𝑢𝑢
(𝑗𝑗)

𝑗𝑗𝑗𝑗
𝑢𝑢
(𝑗𝑗)

𝑗𝑗𝑗𝑗
+ 𝜖𝜖

∑

𝑗𝑗𝑢𝑗𝑗𝑢𝑗𝑗
𝑢𝑢
(𝑗𝑗)

𝑗𝑗𝑗𝑗
+
∑

𝑗𝑗𝑢𝑗𝑗𝑢𝑗𝑗
𝑢𝑢
(𝑗𝑗)

𝑗𝑗𝑗𝑗
+ 𝜖𝜖

𝑢 (3)

where ϵ = 1 is a constant preventing divisions by zero (Jadon, 2020), and a combination of both

(𝑢𝑢𝑢 𝑢𝑢) = 𝛼𝛼Dice(𝑢𝑢𝑢 𝑢𝑢) + (1 − 𝛼𝛼)CE(𝑢𝑢𝑢 𝑢𝑢)𝑢 (4)

with α = 0.5. Whereas 𝐴𝐴 Dice can deal with imbalanced data sets (Milletari et al., 2016) and focuses on how good 
the predicted CPs overlap the ground truth CPs, 𝐴𝐴 CE evaluates the difference between the probability distributions 
of u and v. For our problem, we chose 𝐴𝐴  as loss function as it combines the strengths of both 𝐴𝐴 Dice and 𝐴𝐴 CE and 
outperformed both these functions during the experiments.

For the evaluation of the trained networks, we distinguish between patches containing only one of the two classes 
for the corresponding ground truth data and patches with at least one pixel of both classes. In the former case, 
the only evaluation metric will be pixel accuracy, PA, which evaluates the fraction of predictions that are correct, 
defined as

PA =
TP + TN

TP + TN + FP + FN
. (5)

In Equation 5, TP and TN indicate true positive and true negative predictions, respectively, whereas FP and FN 
denote false positive and false negative predictions, respectively.

In case the ground truth patch contains at least one pixel of both classes, we additionally calculate the intersection 
over union, IOU,

IOU =
TP

TP + FP + FN
. (6)

The IOU score is a measure of how well the specific objects of prediction and ground truth overlap one another, 
ranging from zero, where no overlap is found, to unity, for perfect overlap. Furthermore, we consider Precision 
and Recall, defined as

Precision =
TP

TP + FP
, (7)

and

Recall =
TP

TP + FN
. (8)

As IOU both Precision and Recall range from zero, where no “CP” pixel was correctly identified, to unity, for a 
perfect prediction. However, shedding light on different components of the prediction, they help to understand 
potential sources of good and bad performances.
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To enable a more application-oriented perspective on the performance of the 
three models, we define cold pool objects (CPOs) as spatially four-connected 
regions of ≥25 “CP” pixels (≥1 km 2) and evaluate both the probability of 
detection, POD, and the false alarm ratio, FAR, defined as

POD =
𝐷𝐷

𝐷𝐷 +𝑀𝑀
, (9)

and

FAR =
FA

FA +𝐷𝐷
, (10)

with the numbers of successfully detected CPOs, D, missed CPOs, M, and 
false alarm, FA. The minimum CPO size of 25 “CP” pixels ensures that 
only robust predictions are considered. Ground truth CPOs are considered 
detected if (a) predicted CPOs overlap at least 50% of their area and (b) at 
least 50% of the area of the predicted CPOs falls inside ground truth CPOs. 
Condition (b) makes sure that only skilled predictions with CPO areas in 
the correct order of magnitude are considered successful detections. As the 
smallest ground truth CPO in the test set comprises 59 pixels, the defined 
minimum size does not affect the CPO detection. Undetected ground truth 
CPOs are considered missed CPOs. Predicted CPOs which do not coincide 
with any “CP” pixel of the ground truth are considered false alarms.

2.4. Network Validation

We plot the training and validation losses for the 2D and both pseudo-3D models as a function of the epoch, et 
(Figure 3c). et describes how many times the entire training set has been passed through the neural network. The 
loss measures the quality of the prediction, where a value of zero means perfect prediction. Instead of defining a 
fixed et, we stop the training if the validation loss has not improved for 10 consecutive et. Taking into account the 
stochasticity involved in the training process, we conducted three runs for each model. As might be expected, the 
training loss decreases monotonically with the data employed for learning, that is, et, and reaches a value close to 
zero for our maximum et of 22–24. Notably, for intermediate et, both pseudo-3D neural networks perform better 
than the 2D counterpart, whereas for the final et, the three are essentially indistinguishable.

However, a good value of training loss does not necessarily imply optimal validation loss, a measure of prediction 
quality for a previously unseen data set. Indeed, we find that intermediate et (≈10) yield lowest validation loss for 
all three cases, such that a global minimum occurs. This type of optimum at intermediate et is typical of neural 
networks and is often interpreted as large et constituting a form of overfitting w.r.t. the training data—yielding 
less than optimal behavior for the unknown validation data. Yet, the minimum is characterized by an asymmetric 
increase of validation loss, where somewhat larger et lead to only small increases in validation loss. Further, we 
again find quantitative improvements in validation loss for the pseudo-3D cases, which systematically reach 
lower values of loss than 2D.

3. Results
For the final evaluation of the trained neural networks, we now employ the test set, that is, the data for day 6 of 
each simulation. We ensure that the results obtained are on the conservative side, by considering only the worst 
run with the greatest final validation loss for each model. We conclude this chapter with a case study, where we 
shed light on potential sources of misclassifications through realistic examples from a simulation over Senegal.

3.1. Test Set Performance

We quantify the utility of our segmentation method by applying typical performance metrics (Table 1). A key 
measure is pixel accuracy (PA), which is generally high (mean PA ≳ 94%) for all models, with the pseudo-3D 
models performing slightly better than the 2D model. The intersection over union (IOU) score denotes the fidelity 

Patches Model PA (%) IOU Precision Recall

Both classes 2D 93.8 0.71 0.84 0.83

p3D3t 94.8 0.75 0.83 0.88

p3D5t 94.5 0.74 0.84 0.87

Only no CP 2D 99.8

p3D3t 99.9

p3D5t 99.9

Only CP 2D 92.0

p3D3t 94.1

p3D5t 85.9

Note. Presented are mean performances for pixel accuracy (PA), intersection 
over union (IOU) score, Precision, and Recall for patches with at least one 
pixel of both classes “CP” and “no CP” in the ground truth (both classes) and 
PA for patches with only pixel of class “no CP” (only no CP) or “CP” (only 
CP) in the ground truth.

Table 1 
Mean Test Performances of Different Models
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of spatial overlap of ground truth CPs and neural network-predicted CPs and is thereby sensitive to the underlying 
CP areas, yielding lower values than PA for all models. Again the pseudo-3D models achieve higher mean IOU 
scores of 0.75 (p3D3t) and 0.74 (p3D5t) compared with 0.71 for the 2D model. As mean Precision is almost 
equally high for all models (Table 1), the difference in IOU is mainly driven by the higher mean Recall of the 
pseudo-3D models, that is, they miss less “CP” pixels than the 2D model.

In order to investigate the sensitivity of the network performances w.r.t. the CP fraction in the patch, we group 
PA and IOU score into quartiles of CP fraction. For all these quartiles, PA is high (PA ≳ 0.95) for all models 
(Figure  4a). Yet, systematic differences exist: Generally, PA is greatest for small CP fraction and somewhat 
decreases for intermediate fractions, where it then seems to saturate. This behavior is expected, since (a) the 
majority of the training and validation set patches contained only small fractions of class “CP,” slightly bias-
ing the neural networks toward “no CP” predictions and (b) regions without “CP” pixels often feature neither 
precipitation, nor clouds, simplifying the network prediction. Overall, PA is somewhat greater for the pseudo-3D 
models, however, this benefit is nearly lost for small CP fractions, a finding we attribute to the potential noise at 
the early stages of CP expansion: in p3D3t and p3D5t, where additional time steps are included, data taken before 
the onset of the CP might contribute to the training—thus obscuring the signal of actual CP expansion.

The IOU score (Figure 4b) can be substantially lower for the smallest CP fraction quartile, with some improve-
ment for the pseudo-3D models. This loss for small CP fraction is however not surprising to us, as for small 
CP fraction there will often be only few pixels in a patch which actually qualify as CP pixels and small spatial 
displacements of these pixels in the predicted data can already lead to a drastic reduction of the IOU. Refined 
measures could be designed that still assign a score to a minimally displaced CP pixel. However, physically 
relevant CPs, for example, in terms of collision effects (Fiévet et al., 2023; Meyer & Haerter, 2020) and intense 
precipitation (Jensen et al., 2022) tend to cover larger patch fractions and the IOU score is systematically high—
again with best performances for the pseudo-3D models.

We now turn to test patches which contain only “no CP” or “CP” pixels in the ground truth. For the former case, 
PA yields near-perfect accuracy (Table 1). Thus, the models show high fidelity in capturing cases where CPs are 
not present, most likely due to the absence of precipitating clouds in a majority of the patches. PA is however 
substantially reduced in the latter case (Table 1). The reduction in PA is especially pronounced for p3D5t, thus the 
model where five time steps were used. We attribute this loss of accuracy to the temporal mixing of patches with 
and without CP pixels, whereby the lack of CP pixels at earlier stages may skew the results.

In Figures 4c and 4d, we evaluate the percentage of successfully detected CPOs, POD (see Section 2.3), as a function 
of CPO area. The results are quite clear: larger CPOs are detected at quite high fidelity (≳90%), whereas the fidelity 

Figure 4. Selected test performances of different models. (a) Distributions of pixel accuracy for each neural network, 
grouped into quartiles of cold pool (CP) fraction with ranges, as indicated along the vertical axis. Colored bars represent the 
interquartile range IQR = Q3 − Q1 of the three tested models, with the first quartile Q1 and the third quartile Q3, along with 
the corresponding median (vertical dash). Whiskers range from Q1 − 1.5 × IQR (minimum) to Q3 + 1.5 × IQR (maximum). 
Outliers w.r.t. this range are not visualized. (b) Analogous to (a) but for the intersection over union (IOU) score. Note that for 
both metrics a value of unity reflects a perfect prediction. (c) Distribution of spatially contiguous test set cold pool objects 
(CPOs) w.r.t. their CPO area. (d) Percentage of successfully detected CPOs from (c), POD, for varying CPO area. Note the 
shared horizontal axis between (c, d) and the overlapping markers for the largest two CPO area intervals in (d).
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for the smallest area class is lower (Figure 4d). Again, a clear improvement in 
detection cannot be achieved for either of the three models, even though a slight 
improvement is seen for pseudo-3D models for the intermediate area classes.

Table 2 shows both POD and the false alarm ratio (FAR) for each simula-
tion. Whereas POD is similarly good for all models, the pseudo-3D networks 
feature higher and thus worse FAR of 0.21 (p3D3t) and 0.25 (p3D5t), 
compared to 0.17 of the 2D network. In case of the p3D5t model, this 
means on average one spuriously predicted CPO for every three successfully 
detected CPOs. However, as the mean validation losses of the p3D5t training 
runs are lowest in comparison to the other models (Figure 3c), this should 
not be a problematic characteristic for p3D5t, but is most likely caused by an 
unfavorable epoch to stop the training run. Apart from lower detection rates 
for CPOs from “diu2K,” which are mainly attributed to a high proportion of 
CPOs in the smallest area class, the performance of the networks seems to be 
relatively independent w.r.t. the simulation setup.

As the morphology of patterns is so diverse and quantification of spatial pattern 
overlap always requires to make choices as to the metrics used, we also provide 

a qualitative discussion on typical cases now. We visualize several predictions based on the test set and present 2D 
fields of rainfall intensity (rint), cloud top temperature (TCT), and virtual temperature anomaly (ΔTv) as well as the 
ground truth segmentation and predictions of the three neural network models side by side (Figure 5). The cases 
selected represent a range of circumstances: in some cases, cloud patterns are rather obvious and yield reasonable 
segmentation for all models (Figure 5a). Only in a few cases, some models miss CPOs completely (Figure 5b). As 
in the presented example, these CPOs are generally rather small and weak, and often associated with cloud-free gust 
fronts. Where different aspects overlap temporally, such as cirrus from previous convection obscuring the present 
scene (Figure 5c), all models may struggle with proper segmentation. In fact, cirrus clouds are a major source of 
false positives, as all models  associate very cold TCT with CPs. However, whether cirrus clouds eventually lead to 
false positives depends also on their pattern. For the pseudo-3D models, simultaneous advection seems to increase 
the probability of false positives. Although cases with advection pose additional challenges, all models perform 
well for large CPs with large cloud-free areas, for example, Figure 5d. Yet, for cases in which the parent convection 
partly dissipated (Figure 5e) or dissipates (Figure 5f) pseudo-3D models give results which are physically more 
accurate w.r.t. the plausibility of the gust front. The same seems to be true for scenes with advected parent convec-
tion (Figure 5g)—likely due to the fact that parts of the gust front are obscured when only using single patches, but 
revealed when taking a sequence  of time steps into account. As a general outcome, all models perform reasonably 
well on the test cases described, yet, the distinction between 2D and pseudo-3D quality metrics is not as clear cut and 
should be assessed dependent on the scientific questions in focus.

3.2. Case Study: Detecting Cold Pools Over Senegal

As we trained the neural networks solely with data from idealized simulations, they are not intended for direct 
application to observational data. However, to gain a better understanding of potential challenges associated with 
transitioning to more realistic data, we now apply the neural networks to segment CPs in the case study data 
from Senegal (see Section 2.1). Due to its location in the transition zone from tropical savannah to arid steppe, 
sea breezes from the Atlantic Ocean, and orographic effects of the Northern Guinea Highlands, the region of the 
case study features complex cloud and rainfall patterns and is thus well-suited for a realistic trial. Contrary to the 
evaluation of the test set predictions, we here refrain from analyzing any quantitative metrics based on ground 
truth images. This way, we avoid omitting any patches and can thus test the network performance over the entire 
simulation domain, including patches with ambiguous scenes.

To obtain the predictions for the entire domain, we subdivided the simulation domain into patches of np × np 
pixels, which the networks can process, and recombined the network-generated segmentations. Unlike in the 
network test, we use the neural networks of all three training runs for the prediction of each model: Only if all 
three networks of a certain model segment a pixel as “CP,” it is predicted as “CP.” Otherwise, it is predicted as 
“no CP.” Hereby, we can identify consistent features w.r.t. false negatives and positives, which were learned by a 
certain model during all training runs.

Simulation
Total 
CPOs

2D p3D3t p3D5t

POD FAR POD FAR POD FAR

diu2K 35 0.71 0.24 0.71 0.32 0.83 0.29

diu2K wind 180 0.88 0.15 0.86 0.22 0.87 0.23

diu4K 83 0.90 0.04 0.92 0.04 0.93 0.09

diu4K wind 292 0.80 0.21 0.83 0.23 0.78 0.30

All 590 0.84 0.17 0.84 0.21 0.83 0.25

Note. For each neural network, the probability of detection, POD, and the false 
alarm ratio, FAR, are shown. The test set patches and thus also the contained 
cold pool objects (CPOs) to be detected are identical for all networks. Note 
that only patches with at least one CPO in the ground truth were evaluated 
here.

Table 2 
Detection Performance on the Test Set for the Different Simulations
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In Figure 6, we present examples of the network predictions for the entire domain along with the corresponding 
2D fields of rint, TCT, and ΔTv. The patches processed by the networks are indicated by the superimposed grid. 
The selected cases represent CPs in different stages of their life cycle at different times of the day. In most of 
these cases, all neural networks detect the CPs and their gust fronts reasonably well. When the CP is small enough 
so that the networks can track its gust front (Figures 6a and 6e), the networks are even able to identify most of 
the associated CP region correctly, although parts of the gust front are obscured by deeper clouds (Figures 6a 
and 6e) or rain-free (Figure 6e). In later stages of the life cycle, when the CP is large compared to the patch size, 
the networks may struggle to properly detect CP regions where the gust front is already too far beyond the patch 

Figure 5. Examples of cold pool predictions based on the test set. Two-dimensional fields of surface rain intensity, rint, cloud top temperature, TCT, and near-surface 
virtual temperature anomaly, ΔTv, for various examples, along with ground truth segmentations based on CoolDeTA, as well as predictions of the 2D and pseudo-3D 
neural networks. For comparison, black contours in rint, TCT, and ΔTv indicate the boundary of the corresponding ground truth. (a) Morning cold pool (CP; time step 
740) from “diu2K.” (b) Analogous to (a) but for time step 744. For clarity, rint, TCT, and ΔTv are plotted with their additional overlap while ground truth and predictions 
are only shown for the np × np pixel patch indicated by the gray frame. (c) CP from “diu2K” which developed during the afternoon (time step 780) at the boundary 
of a recently dissipated convective system, represented by high-altitude cirrus remnants. (d) Parts of an eastward propagating gust front of a convective system from 
“diu2K wind” (time step 772) with large cloud-free areas (≳300 km 2) and new emerging rain cells. (e) Afternoon scene (time step 772) from “diu4K” with parts of an 
early stage CP in the north of the upper left patch and parts of a convective system which consists of CPs at different stages. (f) Gust front of a convective system from 
“diu4K” (time step 780) with dissipating parent convection. (g) Northern part of a CP from “diu4K wind” (time step 780) where westward advected parent convection 
masks parts of its CP gust front. Note that superimposed grids represent the individual np × np pixel patches, processed by the neural networks.
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boundaries (Figures 6b and 6d). Yet, enlarging the networks’ field of view by lowering the resolution compen-
sates for this effect for all networks (Figure 6c).

However, the example cases also reveal challenges: The segmentations of (dissipating) CPs in later stages can 
be somewhat noisy (Figures 6d and 6e). This applies to both large convective systems (Figure 6d) and smaller 
systems (southeast in Figure 6e). For large systems, the limited field of view of the neural networks can again 
play a role when the gust front is located too far outside the patch boundaries. In this regard, particularly the 
2D networks tend to uniformly segment patches as only CP when the (cold) cloud cover is much larger than 
the patch (Figures 6a, 6b, and 6d), possibly due to less contextual information compared to the pseudo-3D 
networks with multiple input time steps. Concerning false positive classifications, organized low-level clouds 
seem to constitute a potential source (Figures 6a and 6e), especially when associated with rain. As a result, 
particularly the pseudo-3D networks struggle to distinguish the sea breeze coming from the west in Figure 6e 
from CPs.

4. Conclusion and Outlook
CPs likely play a key role in organizing the atmospheric convective cloud and precipitation field (Böing, 2016; 
Böing et  al.,  2012; Haerter,  2019; Haerter et  al.,  2019,  2020; Muller et  al.,  2022; Nissen & Haerter,  2021; 
Schlemmer & Hohenegger, 2016). Robust detection of CP processes leading to the formation of thunderstorm 
clusters could enable better understanding of how convective systems organize through the interaction of CPs, 
such as lifting and collision processes, and how heavy precipitation events associated with MCS emerge.

The present study demonstrates that CPs can be detected in simulation data via an artificial neural network by 
employing variables readily available from geostationary satellite observations, namely cloud top temperature and 
precipitation. Using these two variables only, our networks were able to detect CPs in data from cloud-resolving 
simulations with an overall mean accuracy between 93.8% (2D) and 94.8% (p3D3t) for patches with at least one 
pixel of both classes, ≥99.8% for patches without any pixel of class “CP,” and between 85.9% (p3D5t) and 94.1% 
(p3D3t) for patches with pixel of class “CP” only.

Figure 6. Examples of cold pool predictions for the case study. Two-dimensional fields of surface rain intensity, rint, cloud top temperature, TCT, and near-surface 
virtual temperature anomaly, ΔTv, for various examples, along with predictions of the 2D and pseudo-3D neural networks. (a) Early stage cold pool (CP) entering the 
northeastern part of the domain at 07:40 UTC. (b) The CP from (a) but in a mature stage at 11:10 UTC. (c) Analogous to (b) but with the resolution lowered by a factor 
of 3 by computing the mean values. (d) The CP from (a) but in a dissipating stage at 14:40 UTC. (e) Late evening scene (22:10 UTC) with two CPs entering the domain 
from the east and the south, a sea breeze coming from the west and the dissipating CP from (a–c) in the center. Note that superimposed grids represent the individual 
np × np pixel patches, processed by the neural networks.
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We conducted several experiments to identify the most promising architecture for our network. The computation-
ally most expensive architecture, using 6 blocks and 64 starting filters, performed best, as might be expected—
given the physical insight that CPs over tropical land are often linked to organized convective systems with spatial 
and temporal correlations at different scales. Whereas already the two-dimensional input fields gave satisfactory 
results, we find that taking into account three to five time steps does improve the performance further, compara-
ble to the improvements found in Vu et al. (2020) for some of their data sets. Including several time steps within 
the input channels is a computationally inexpensive means of mimicking a three-dimensional input data set.

The training and test data sets contain data from different simulation setups, which correspond to an atmosphere 
over an idealized moist tropical land surface. The comparison between the two diurnal forcings is important as 
results show qualitatively different cloud organization, such as the formation of pronounced convective systems 
for a larger diurnal range but more scattered, smaller CPs for a smaller range. Assessing large-scale wind effects 
is important, as it compares the prominent model idealization of no wind shear (Bretherton et al., 2005; Manabe 
et al., 1965; Tompkins & Craig, 1998) with the more realistic sheared case. In the Senegal case study, we addi-
tionally applied the trained neural networks to simulation output from a realistic simulation setup. Our overall 
finding is that the detection works well for all these cases.

While the trained neural networks reliably detected gust fronts obscured by higher clouds in most situations, we 
identified several potential sources of misclassification. Concerning false positives or spuriously predicted CPs, 
the most common sources are (cirrus) clouds with very cold TCT and organized low-level clouds, particularly in 
scenes with simultaneous advection and/or rain. When transitioning to actual satellite data, the former could be 
addressed by replacing the cloud top temperature input with satellite channels or products that also respond to 
cloud opacity. Focusing on false negatives, that is, missed CPs or CP pixels, one of the main sources are patches 
in the center of larger convective systems where the CP gust front is too far beyond the patch boundaries and 
thus out of the networks’ sight. Yet, we showed that enlarging the networks’ field of view by lowering the image 
resolution can compensate for this effect to some extent. Another source of false negatives are CP gust fronts 
without any signal in the cloud or rainfall field, that is, cloud-free gust fronts without any rain. However, unlike in 
our idealized simulations, CPs in more realistic simulations without a fixed surface temperature or even in satel-
lite data would be noticeable in such situations based on their colder air compared to their environment. When 
transitioning to such data, this characteristic could be learned by the neural networks and used for the detection 
of CPs in cases with clear sky gust fronts.

Looking ahead, the obvious next step is to apply the method to actual satellite data. To make full use of the avail-
able satellite channels and address the identified sources of misclassification, this step will most likely involve 
new network training based on real observations. Likely, several new challenges will need to be addressed, such 
as the lower spatial resolution of the available data. The lower resolution may require us to focus on CPs that have 
already evolved into larger-scale structures, thus increasing the minimum detectable CP size. Yet, by training the 
neural networks with some of the multiple available satellite channels instead of the cloud top temperature input 
used so far, the neural network performance may benefit from additional information about the atmosphere, such 
as water vapor content, cloud phase, and cloud particle size and make use of potential patterns hidden so far.

To avoid inconsistencies between the neural network inputs w.r.t. their spatial and temporal resolutions, the 
selected satellite channels could be combined with a precipitation product based on calibrated infrared images. 
Such precipitation products are derived by calibrating infrared images from geostationary satellites with rain rates 
from low Earth orbiting passive microwave satellite sensors. While not applicable for low rain rates, a precipita-
tion product based on calibrated infrared images might provide a sufficient estimate to detect CPs, particularly 
over tropical land. Considering the case-dependent accuracy of these products as well as potential errors asso-
ciated with spatial and temporal interpolations when using IMERG data, it might be worth testing the neural 
networks without precipitation input in future studies based on satellite data.

Ultimately, being able to extract self-organization effects from observational data will enable us to improve 
cloud-resolving models that still struggle to capture organizational effects with high fidelity. For this purpose, the 
network training should additionally focus on minimizing the number of spuriously predicted CPs, for example, 
by adding more examples of organized and/or precipitating clouds to the training set that do not produce any CPs. 
By enlarging the variety of CPs in the data set, also the applicability of the method could be extended. One way 
forward could be to advance CP interaction parameterizations in coarser-scale models.
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Chapter 6

Conclusions

6.1 Key Results and Discussion

The primary objectives of this thesis were to (i) investigate detectable sig-
natures of convective cold pools (CPs) in geostationary satellite data and (ii)
develop a corresponding segmentation approach with a focus on CPs over trop-
ical continents. In these regions, CPs are ubiquitous and play a crucial role
in extreme weather events. However, due to the lack of other observational
data sources such as high-resolution dense station networks and ground-based
radars, which are commonly used for CP detection, there remains a substantial
gap in CP observations over tropical continents.

To address objective (i), 4218 CPs were identified in 5-minute near-surface
time series recorded by twelve automatic weather stations across equatorial
Africa. For this purpose, almost 43 years of data spanning from 2019 to 2023
were scanned using an algorithm based on temperature and wind criteria.
The analysis of satellite-derived brightness temperature time series associated
with the identified CPs showed that gust front passages typically coincide
with rapid drops in brightness temperature, indicating either a deepening
of existing clouds or, if no clouds were present before the CP arrival, an
initiation of new clouds. These findings statistically confirm the prevalence of
corresponding cloud patterns such as low-level cloud arcs, often observed in
conjunction with CPs.

While the analysis primarily focused on one-dimensional time series data
for direct comparison with the “ground truth” observations from the weather
stations, it is crucial to acknowledge that the associated satellite-observed
cloud patterns are inherently three-dimensional, comprising two spatial di-
mensions along with time as the third dimension. Neural networks prove
effective in detecting such intricate patterns, but necessitate substantial an-
notated data for training and testing. To circumvent the laborious manual
creation of pixel-wise annotations for actual satellite images, objective (ii) was
thus pursued by training neural networks using simulated cloud and rainfall
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fields observable from satellites.

To automatically generate precise ground truth data for the simulated
scenes, we developed a novel CP detection and tracking algorithm called
CoolDeTA. CoolDeTA integrates both thermodynamic and dynamic variables
for CP detection, ensuring that the resulting CP boundaries align accurately
with satellite-observable CP gust front signatures, including triggered convec-
tion. In manuscript II, this capability of CoolDeTA was utilized to analyze
the interrelationships among CPs by tracking not only individual CPs but
also the rain patches they initiated, as well as potential CPs resulting from
these rain patches. By reconstructing the family trees of CPs, CoolDeTA en-
abled us to explore the causal chains of CPs and their responses to different
environmental conditions.

In manuscript III, CoolDeTA was employed to prepare CP masks as ground
truth data for the training and testing of the neural networks for the segmen-
tation of CPs in simulated cloud and rainfall fields. The neural networks
utilize a U-Net architecture, a widely adopted encoder-decoder architecture
renowned for its ability to learn features across various scales. Beyond a con-
figuration where a single snapshot of both the cloud and rainfall field serves
as input (2D), we explored two additional configurations receiving temporal
sequences of three and five snapshots, respectively (pseudo-3D). Demonstrat-
ing mean pixel accuracies ranging from 93.8% to 94.8% and CP detection
rates between 83% and 84% against unknown test images containing CP and
environmental pixels, all networks exhibited promising CP detection capabili-
ties. Notably, the pseudo-3D networks achieved higher intersection over union
(IOU) scores of 0.74 and 0.75 compared to the 2D network’s 0.71, likely at-
tributed to the additional temporal patterns they leveraged, aligning with the
three-dimensional nature of CP signatures.

To assess potential challenges associated with transferring the developed
method to real satellite data, we applied the trained neural networks to com-
plex scenes generated from a simulation with realistic forcing, based on a day
of significant convective activity in Senegal. While the networks successfully
detected most CPs, we identified several sources of misclassification. The pri-
mary cause of false negatives, or missed CPs, was the presence of CP gust
fronts devoid of clouds or rainfall. In such cases, the networks need to delin-
eate the CP boundary based on the subtle brightness temperature drop caused
by the cooler CP air compared to its surroundings. However, as the networks
were trained on idealized simulations with fixed surface temperatures, they
could not effectively leverage this signature, even though it was evident in the
Senegal simulation data. False positives, or spuriously detected CPs, were pri-
marily triggered by (cirrus) clouds with relatively cold top temperatures and
organized low-level convection. The latter issue was particularly pronounced
in scenes featuring simultaneous rain or advection due to the background wind
field.
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6.2 Perspectives for Future Research

Despite the potential sources of misclassification discussed in the previous
section, the developed neural networks successfully learned typical satellite-
observable patterns associated with CPs, yielding promising segmentation
performances across various environmental conditions. Up to this point, the
method has solely been evaluated using simulated cloud and rainfall fields.
Nevertheless, the encouraging outcomes suggest that this approach could serve
as a foundation for a new generation of satellite-based CP detection algo-
rithms, potentially applicable on a global scale.

To achieve this, the data set utilized for network training must be ex-
panded to include real satellite scenes. A potential improvement to minimize
the number of spuriously detected CPs involves replacing the cloud top tem-
perature and rainfall inputs with combinations of relevant infrared channels.
This adjustment would provide the networks with additional information re-
garding cloud properties such as phase and particle size.

Two strategies appear particularly promising regarding the data sets used
for network training and testing: a hybrid data set comprising both simu-
lated and observed scenes, and a data set based solely on real satellite images.
The hybrid set would facilitate the development of a CP detection method
capable of segmenting CPs in both simulated and observational data consis-
tently. Additionally, CP masks for simulated scenes could be automatically
generated using CoolDeTA or similar CP detection algorithms, thereby accel-
erating the annotation process. However, this approach necessitates realistic
simulations based on diverse environmental conditions, as well as the capa-
bility to output synthetic satellite data corresponding to individual satellite
channels. Conversely, the satellite image-only data set may offer greater flex-
ibility in selecting relevant satellite products as input data for the network.

When employing a U-Net architecture, augmenting the training data vol-
ume using strategies such as translations is advisable to facilitate efficient
generalization by the network. Additionally, incorporating observations from
stations or radars could assist in manually generating ground truth CP masks
for real satellite scenes, thereby enhancing the quality of annotations. How-
ever, findings from Rasp et al. (2020) indicate that U-Nets can effectively learn
pertinent patterns even from imprecise and noisy ground truth data.

Applying this method to segment CPs in satellite imagery on a global
scale would enable the exploration of various questions concerning mesoscale
CP dynamics and their impact on convective organization. This includes ex-
amining the influence of CPs on thunderstorm clustering and the amount and
intensity of the associated rainfall. To investigate the latter, satellite-derived
rainfall products could be studied along with the derived CP masks. By utiliz-
ing both the rainfall data and the CP masks, CoolDeTA could be adapted for
the detection and tracking of individual CP instances in observational data.
This adaptation would involve replacing the surface rain intensity fields with
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the satellite-derived rainfall estimates, the k-means segmentations with the
derived CP masks, and approximating associated fields such as the elevation
map based on the available satellite data. Similar to the study presented in
manuscript II, this algorithm could be employed to analyze the causal chains
of CP events in observational data.

Another potential application for the developed method is the nowcasting
of areas affected by extreme weather events, particularly heavy rainfall. In
regions like the Sahel zone, heavy rainfall events often lead to severe floods,
endangering lives and infrastructure. Establishing a nowcasting system for
such events could assist local weather services in providing accurate early
warnings. Research by Han et al. (2021) demonstrated the suitability of the
U-Net architecture for nowcasting precipitation using radar data. Given the
correlation between convective rainfall and satellite-derived brightness tem-
peratures, it is plausible that a similar approach could be effective based on
infrared data from geostationary satellites.
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