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The scientist does not study nature because it is useful; he studies it
because he delights in it, and he delights in it because it is beautiful.

— Henri Poincaré

ABSTRACT

Quantum interfaces between light and the collective degrees of freedom
of an ensemble of identical atoms have been proposed as a valuable and
promising alternative to cavity quantum electrodynamics enhanced in-
teraction with single particles, Hammerer et al. (2010). Many features
of the quantum world (e. g. multipartite entanglement, squeezed states),
which are central to the future developments of Quantum Informa-
tion Science and Metrology, can be explored with mesoscopic collective
states of atoms.

An efficient quantum interface needs a high optical depth for the
atomic ensemble and a measurement sensitivity limited by both the
intrinsic quantum noise of light and the quantum projection noise of
atoms. This was achieved in the past in a free space optical dipole trap
ensemble of Nat ∼ 106 atoms, which triggered the operation of a collec-
tive Ramsey atomic clock assisted by entanglement Appel et al. (2009b);
Louchet-Chauvet et al. (2010). We have characterized and prepared
non-classical collective spin-squeezed states of atoms in this setup, with
optical quantum non demolition measurement, Kiesel et al. (2012). We
then pursued the goal of generating other non-classical collective states
of atoms with non-gaussian statistics, conditioned on discrete heralding
optical measurement, Christensen et al. (2014).

In the main part of this thesis, we propose an alternative to free
space atomic ensembles to prepare quantum collective states. We build
and explore a new interface based on the degrees of freedom between
the evanescent fields of an optical nanofiber and fewer atoms Nat ∼ 103.
We experimentally show an improvement of more than 2 orders of mag-
nitude in the single-atom coupling strength and we demonstrate a sim-
ple method to implement an optical non-destructive measurement of
the atomic state populations, which allowed to achieve −14dB atom
number squeezing, in an one-dimensional optical nanofiber lattice trap,
Béguin et al. (2014). This shows the ability to explore spin-squeezing
and quantum state tomography of non-classical states with negative
Wigner functions, using a nanofiber. Finally, we report preliminary ob-
servations of collective atomic Bragg scattering in this extreme one-
dimensional geometry, in view to realize a switchable atomic mirror,
Chang et al. (2012).
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RÉSUMÉ

L’intrication et l’interaction collective d’un grand nombre d’atomes
identiques avec un champ lumineux cohérent représente une alternative
à l’ Électrodynamique Quantique en cavité avec des particules uniques,
Hammerer et al. (2010). La préparation d’un ensemble d’atomes dans
un état de spin collectif, dont les fluctuations quantiques sont com-
primées par rapport à celle d’un ensemble non correlé d’atomes, est
un but reconnu et central en métrologie quantique mais aussi pour le
traitement de l’information quantique.

La réalisation d’une telle interface quantique collective nécessite une
grande section efficace de diffusion entre la lumière et l’ensemble atom-
ique ainsi qu’une précision de mesure limitée en temps réel par le bruit
quantique de la lumière et le bruit quantique des atomes. Ce challenge
a été réalisé dans des ensembes d’atomes froids, Nat ∼ 106, piégés par
les forces optiques de faisceaux laser gaussiens en champ libre. Cela a
permis la réalisation d’horloges atomiques de type Ramsey basées sur la
manipulation de la cohérence collective de superpositions d’états atom-
iques, dont la précision dépasse la limite du bruit quantique standard
grâce à l’introduction de correlations non classiques entre les atomes
via des mesures optiques non destructives opérées sur l’ensemble des
états atomiques Appel et al. (2009b); Louchet-Chauvet et al. (2010).
Nous avons préparé et étudié ces états collectifs, Kiesel et al. (2012)
et nous avons cherché à réaliser des expériences d’interférométrie quan-
tique entre une onde de spins et un état d’excitation atomique collectif
délocalisé, Christensen et al. (2014).
Dans cette thèse, nous proposons une alternative aux ensembles d’atomes

préparés en champ libre, basée sur l’interaction entre un plus petit nom-
bre d’atomes, Nat ∼ 103, et les champs évanescents de la lumière se
propageant dans une nano-fibre optique. Nous démontrons une amélio-
ration de plus de deux ordres de grandeur dans le couplage entre la lu-
mière et un atome, ainsi qu’une méthode simple pour réaliser la mesure
non destructive des états atomiques dont la haute précision permet une
réduction d’incertitude de −14dB sur le nombre d’atomes par rapport
à celle sur un nombre aléatoire, piégé dans un réseau optique unidimen-
sionnel, Béguin et al. (2014). Ces résultats montrent la possibilité de
réaliser des correlations quantiques ainsi que la tomographie quantique
d’états non classiques présentant une fonction de Wigner négative, en
utilisant une nano-fibre optique comme intermédiaire. Enfin, nous re-
portons des observations préliminaires d’un phénomène de diffusion de
la lumière analogue à la diffraction de Bragg dans un ensemble d’atomes
piégés autour d’une fibre optique qui permettrait la réalisation d’un
mirroir atomique pour la lumière, Chang et al. (2012).
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RESUMÉ

En kvantemekanisk grænseflade mellem lys og de kollektive frihed-
grader givet ved et ensemble af identiske atomer er blevet foreslået som
et lovende alternativ til kavitets-kvante-elektrodynamik som et middel
til at øge vekselsvirkningen med enkelte atomare partikler Hammerer
et al. (2010). Således kan adskillige kvantemekaniske fænomener, f.eks.
sammenfiltring mellem mange partikler og klemte tilstande (eng. hen-
holdsvis entanglement og squeezed states) udforskes ved brug af kollek-
tive tilstande i et mesoskopisk atomart ensemble. Dette er afgørende
for den videre udvikling af kvanteinformations videnskab og metrologi.

For at opnåen effektiv kvantemekanisk grænseflade er det nødvendigt
både at have en høj optisk dybde af det atomare ensemble samt en
målings-sensitivitet der kun er begrænset af kvantestøjen fra henholdsvis
lyset (haglstøj) og atomerne (projektionsstøj). Dette er tidligere blevet
opnået i et ensemble bestående af Nat ∼ 106 atomer fastholdt i en
fritsvævende optisk dipolfælde hvilket gav anledning til udviklingen af
et kollektivt Ramsey atomur assisteret af sammenfiltring mellem atom-
erne Appel et al. (2009b); Louchet-Chauvet et al. (2010). Vi har karak-
teriseret og skabt ikke-klassiske kollektive spinklemte atomare tilstande
i denne opstilling via optiske kvantebevarende målinger (eng. quantum
non-demolition measurements) Kiesel et al. (2012). Efterfølgende for-
fulgte vi målet om at skabe andre ikke-klassiske kollektive atomare
tilstande udvisende ikke-Gaussisk statistik skabt via en varsling fra en
diskret optisk måling Christensen et al. (2014).
Størstedelen af denne afhandling består af et forslag til en alter-

nativ opstilling fra hvilken der ligeledes kan skabes kollektive kvan-
tetilstande. Vi har opbygget og udforsket en ny grænseflade baseret
påfrihedsgraderne fra et optisk nærfelt (eng. evanescent field) omkring
en såkaldt optisk nanofiber og fåatomer Nat ∼ 103. Vi vil her gen-
nemgåen eksperimentel måling der viser en forøgelse af enkelt-atom-
koblingsstyrken påmere end to størrelsesordener. Derefter demonstrerer
vi en simpel metode hvormed en optisk ikke-destruktiv måling af popu-
lationerne af de atomare tilstande kan udføres og fra hvilken en −14dB
reduktion påusikkerheden af antallet af atomer fastholdt i en 1D gitter-
fælde omkring den optiske nanofiber blev opnået Béguin et al. (2014).
Dette viser bl.a. muligheden for, ved hjælp af en nanofiber, at udforske
spinklemte tilstande og udføre kvantemekanisk tilstandstomografi af
ikke-klassiske tilstande udvisende negative Wigner funktioner. Endelig
afrapporterer vi de første observationer af kollektiv Bragg spredning fra
atomer siddende in denne ekstreme en-dimensionelle struktur i forsøget
påat realisere en atomkontakt - et tnd/sluk atomspejl Chang et al.
(2012).
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1
GENERAL INTRODUCTION

As the saying goes, the Stone Age did not end because we ran out of
stones. We transitioned to better solutions.

— Steven Chu

The evolution of quantum optics research during the course of the
past decades has been spectacular. This has led to increasingly special-
ized complex experimental and theoretical studies that make it difficult
to have a global view of the field. However, this is the mark of a broad
and vibrant field of research.
Consequently, I would like to take the opportunity of this thesis in-

troduction to also share some general ideas which may help to identify
some of the fundamental challenges that this research field is facing
today where the past notions of particles and waves seem to have tran-
sitioned to a world of pure physical information.

thesis introduction

Many features of the quantum world – quantum superpositions, mul-
tipartite entanglement and squeezed states – are central to the future
developments in metrology and quantum information science but also
to a better fundamental understanding of the laws of Nature. In quan-
tum optics experiments, an excellent test-bed for exploring these quan-
tum effects, there are as many different implementation schemes and
research paths as there are physical systems that exhibit quantum be-
haviour.
This thesis work particularly focuses on basic interactions between

two fundamental quantum systems – a few atoms and weak light. Since
the invention of quantum mechanics, the experimental control and ma-
nipulation of such simple quantum systems have been long standing
and enabling goals, in particular to observe results of thought experi-
ments or perhaps even better to contradict with them. This led both
Serge Haroche and David Wineland to be awarded the Nobel Prize in
Physics in 2012, who contributed significantly to the study of quantum
superpositions and their evolution via light-atom interactions.
In this thesis we explore a compatible alternative to Cavity Quantum-

Electrodynamics (CQED) with single particles by exploiting the last

1



2 general introduction

postulate of quantum mechanics, namely the symmetrization postu-
late which dictates the statistical nature of the quantum state of an
ensemble of identical particles, here neutral atoms.
A particular interest and main challenging objective of our experi-

ments is the ability to prepare and observe in real-time quantum super-
positions of collective atomic states without destroying them. For this,
we will use light as a fundamental tool to manipulate the state of the
atoms but also as a soft measurement device to realize quantum non
demolition light-atom interactions. In turn, we could use the collective
quantum coherence of atoms as a quasi-transparent detector of opti-
cal photons. This idea was achieved in the field of CQED in the group
of Serge Haroche on radio-frequency photons trapped between super-
conducting mirrors using single atom probes. The first non-destructive
detection of an optical photon using quantum superpositions of a single
atom was achieved only recently, also in CQED in the group of Gerhard
Rempe Reiserer et al. (2013).
All these fundamental challenges among others ask for the realization

of an efficient quantum interface between light and atoms. Such an
interface demands a high coupling strength while preserving the lifetime
of quantum superpositions from loss of coherence or decoherence.
This requires a carefull and compatible design of the environment

for both the atoms and the optical light field. To this end, we will
combine the strong confinement and guiding of light with the guiding
and trapping of atoms using a sub-wavelength diameter tapered optical
fiber – one of the most recent achievement in the field of quantum and
atom optics Vetsch et al. (2010); Goban et al. (2012).
This novelty represents a departure from the path originally taken

and explored during the first half of this thesis, namely the manipula-
tion of mesoscopic ensembles of cold atoms trapped with light beams
propagating in free space. My goal will be to show how we have realized
the transition between these two platforms while exploring the benefits
of both approaches.
A quantum interface based on an optical nanofiber offers a leap into

a one dimensional geometry where mesoscopic ensembles of atoms can
be strongly coupled to light on scales thinner than the light wavelength.
It represents a promising scalable platform which could be further aug-
mented with the trapping of light, e. g. using fiber Bragg grating cavities
or perhaps even better using the atoms themselves as mirrors (Chang
et al. (2012)).
As the most recent developments have shown, an optical nanofiber

experiment also provides a environment rich in physics, yet to be ex-
plored. We believe this fundamentally stems from the full complexity
of the dipole electric interaction expressed in three dimensions in this
system due to the presence of longitudinal waves of light.
Before I review in detail the contribution and the content of this

report, I would like to give a broader and personal perspective on major
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challenges of the field in order to share some general motivations. This
will help to introduce some definitions and concepts as well as to show
the broad interest for exploring light and mesoscopic atomic ensembles
interfaces.

This relatively long and detailed thesis report reflects the transition
of the experimental research done in the cold atom quantum optics
group of QUANTOP, from the very last advanced experiments realized
with cold atom ensembles in free space to the construction of a com-
pletely new interface that we had to understand and explored step by
step. The report is therefore intended to serve as a reference, with a
priority on the fundamental, theoretical and experimental challenges I
have encountered while being among the main explorers of this very
challenging transitional work.

broad introduction

The quantum computer contradiction ?

In view to implement the idea of the quantum computer, which is
among the great excitements behind quantum-enabled technologies, it
seems that one is facing a contradiction. One tries to generate more and
more important quantum coherence and entanglement while one knows
this may lead to a faster and faster loss of coherence and entanglement,
as a result of the inexorable leak of information into the environment
(Haroche (2013)).

Quantum superpositions (e. g. |ψ〉 = |↑〉+ |↓〉) has been realized on
simple quantum systems in the laboratory. Small amounts of multipar-
tite entanglement has even allowed to grow embryos of Schrödinger cats,
for instance |ψ〉 = |↑ ⊗ ↑〉+ |↓ ⊗ ↓〉 Bell states or Einstein-Podolsky-
Rosen (EPR) pairs and |ψ〉 = |↑ ⊗ ↑ ⊗ ↑〉+ |↓ ⊗ ↓ ⊗ ↓〉 Greenberger-
Horne-Zeilinger (GHZ) states which are important for quantum telepor-
tation and computing. However, no one has ever seen a macroscopic
cat state, that is |ψ〉 = |↑〉⊗N + |↓〉⊗N for N large. The bigger the cat
is, the faster decoherence brings it into the classical world (as a mix-
ture) Zurek (1991, 2003). There is however hope in the regime of a
mesoscopic number of particles (Zurek (2003)).
Loss of coherence or decoherence can be seen as all phenomena which

bring a physical system from the quantum to the classical realm where
quantum superpositions (wave-like interference) disappear. Note that
the absence of entanglement does not imply classicality (Ollivier and
Zurek (2001)). The notion of what is quantum, which lies in the na-
ture of the correlations between physical systems, is still the source
of active research (e. g. quantum discord). Intense research is therefore
needed and conducted in parallel to preserve a quantum system from
the effects of decoherence or even better to correct for it, increasing the
developments of quantum information science.
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Quantum Information Science (QIS) basically sets what can and can-
not be done with Quantum Information (QI), a physical information
held in the state of a quantum system.

The meaning of a gain in quantum physics

It may then appear that we, experimentalists, or I should say, observers,
have to compete to extract information from a quantum system before
the environment, which interacts with the system, takes it away before
us. In some sense, this thesis work reflects such attempt to tailor the en-
vironment of simple quantum systems by creating an efficient quantum
interface between atoms and light.
We will see that the on-resonant optical depth has appeared as a

figure merit of many realization of interfaces Hammerer et al. (2010).
This quantity plays a role analog to the cooperativity in cavity Quan-
tum Electrodynamics (QED). However, we should try to keep a broader
vision than that given by the characteristics of the achieved interfaces
based on the current limits of technology and a benchmark for a quan-
tum interface should be found in a more subtle general interplay be-
tween gain and loss of information about a physical system following
a particular kind of measurement and what is meant by that. In quan-
tum mechanics, these notions acquire a statistical meaning, e. g. the
quantum efficiency of a photo-detector is not a simple gain or scaling
factor. In addition, measurement takes a central part as it is a physi-
cal process of its own. Measurement precision and estimation through
quantum-assisted metrology is bound by the fundamental nature of
the state of light and atoms involved in the interaction which is nowa-
days expressed by the notion of quantum Fisher information and the
quantum Cramer-Rao inequality.
A flexibility in measurement bandwidth and the ability to perform

real-time observation of quantum fluctuations are also important fac-
tors for a quantum interface as we shall see later.

Light and/or atom perspectives

Light and atoms can play asymmetric role in the interface. One may
want to learn information from atoms by measuring on light as a meter
or by using atoms to measure and probe the state of light. However,
during the interaction it is not possible to attribute an independent re-
ality to these two, they are entangled and mutual measurement occurs.
In other words, the coupling strength of the interface is a property of
the shared or joint system atoms+light. A perspective or unbalanced
role may arise when trying to preserve or change the nature of the co-
herence contained in each systems. We can illustrate this point with
the following example. In a number of realizations, one important de-
coherence mechanism is due to random incoherent scattering between
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atoms and light (e. g. spontaneous emission). Although the number of
incoherent events or the number of scattered photons is the same as
the number of atoms which have scattered a photon, the rate at which
one system will decohere depends on the fragility of its coherence, here
with respect to one-body loss1. Losing a part of a composite quantum
system may be very detrimental for the encoded multipartite entangle-
ment. The nature of the correlations between its parts, i. e. the nature
of the collective state of the system can be robust or not with respect
to such partite loss (e. g. GHZ state versus W state). In that respect,
a type of superposition states of light, coherent states, also known as
“pointer states”, are impervious to entanglement with the environment.
They stay coherent states and only suffer relaxation from incoherent
scattering into the environment (Haroche and Raimond (2006)). This
is a very different behaviour contrary to a superposition of coherent
states (see above Schrödinger cat). Although, they are not states of the
electromagnetic field with well-defined energy, the above makes them
robust atom probes.

Quantum Information Processing

Quantum systems as opposed to classical ones benefit from the essen-
tial holistism of quantum physics - that the whole can be more than the
sum of its parts (partition) - marked by the existence of quantum super-
position of states and unfactorisable or nonseparable states of several
physical systems. Taking this concept further and concrete, one may
want to exploit these quantum features to improve parallel computing
and information processing. Digital information is encoded nowadays
as separate values of 0 and 1, transcripted for instance in two possi-
ble magnetic orientation of a particle. If prepared in a superposition
through quantum interference, the correlated degrees of freedom of two
such particles could hold the following four values 00, 01, 10, and 11 as
a whole. Three particles could hold eight values, four particles sixteen
such that N particles could hold 2N bits of information simultaneously
in parallel. Of course, a N -bit classical register could map each of the
2N combinations but not all of them at once in parallel. This dramatic
theoritical exponential scaling of parallel computing power with the
number of quantum bits or qubits would outperform the amount of
data that can be processed by today’s classical computers. This has
also the potential of opening new ways of “computing”. Here we also
observe that to implement such idea, one will need to manipulate many
quantum systems (or a higher Hilbert space per system).

1 For simplicity we do not comment about dephasing mechanisms here
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Quantum algorithms and simulation

The vision of what can be done with quantum computation can be still
quite blurry until one recall first that the initial proposal, as suggested
by Feynman in a seminal lecture, is to simulate physics with computers.
Nature isn’t classical, dammit, and if you want to make a simulation

of nature, you’d better make it quantum mechanical, and by golly it’s a
wonderful problem, because it doesn’t look so easy. - Feynman (1981)

Simulating the behaviour of complex physical systems and phys-
ical processes seems the first realistic setting for quantum comput-
ers. However, Peter Shor and as well Lov Grover at Bell Laboratories
made the power of quantum computer clearer through the development
of quantum-based algorithms which respectively could factorize large
numbers or search entries in database in a time much faster than classi-
cal algorithms. Exponential gain in large numbers factorization would
for instance render classical cryptographic protocols vulnerable such
as RSA (Rivest, Shamir, Adleman). Search engines will also benefit
greatly. We highlight here that particles trapped in an optical lattices
have proven to be a test-bed of choice for simulating complex physical
systems, for instance condensed matter phenomena, disorder or phase
transitions linked to the dimensionality of the system.
We would like to also bring a wide perspective of the practical ad-

vances of Quantum Information Processing (QIP) in the domain of com-
munication.

Quantum communication, cryptography and teleportation

Demonstrated in the early 1950’s by Shannon but first described by
Frank Miller (1882), there exists an encryption technique for cryptog-
raphy with absolute security that is impossible to crack. Well-known
as one-time pad systems, the encryption algorithm can be as simple
as a xor logic operation between data to be encrypted and a secret
key as long as the data. However the key must not be reused to resist
cryptanalysis and thus as to be generated with pure randomness. For
instance, chaotic sources such as lava lamps or the quantum shot noise
of webcams can be used to generate pure random numbers which would
make absolute security available to everyone. however, the remaining
problem that challenges perfect crytopgrahy is the secure exchange of
the key (for symmetric algorithm unlike RSA) between the emitter
and the receiver. Geared with the “no-cloning theorem” that forbids
the exact copy of an arbitrary quantum state and the uncertainty prin-
ciple which guarantees that measurements on a quantum system always
disturb it, secure key exchange encoded with quantum information is
achieved by providing fundamental law of physics to detect any eaves-
dropping on the quantum communication channel. It is almost impos-
sible to avoid mentioning the initial quantum cryptographic schemes
such as BB84 developped by Charles Bennett and Gilles Brassard and



general introduction 7

Ekert91 proposed by Arthur Ekert were the information is encoded
as qubits of light with different polarization states. The past achieve-
ments have revealed entangled states of photons as a prime ingredient
for quantum communication. Aside secure cryptographic applications,
quantum communication provides a new way of exchanging information
with the excellent example of quantum teleportation.

The basics scheme for teleportation involves transporting a qubit
Q from one location to another without moving its physical support
(e. g. a carrier particle) through the use of a pair of spatially separated
entangled states A and B. Following the entanglement of Q with A, B
can be transformed into Q after a measurement has been performed on
A at the cost of destroying the original state Q.

Quantum communication faces the challenge of the distribution of
entangled pair of photons over long distance while maintaining entan-
glement. The realization of quantum repeater devices that can refresh
entanglement at regular distance intervals is a potential solution.
All of this could be realized efficiently with a quantum interface be-

tween light and atomic ensembles Hammerer et al. (2010). Another field
of research would benefit greatly for these developments is metrology.

Quantum Metrology and Sensing (QMS)

Quantum Metrology and Sensing (QMS) is a very active and funda-
mental domain of research that nowadays aims at exploiting quantum
correlations and entanglement for precision measurement. Quantum
metrology enables unprecedented signal-to-noise ratios and resolution
of measurements, at sensitivities which would outperform classical sys-
tems. Atomic clocks that exploit quantum logic to perform accurate
measurement of frequencies can set new time standard used in telecom-
munication and Global-Positioning System (GPS) satellite systems for
instance. The development of entanglement-enhanced quantum sensors
is a well-pursued goal for the measurement of position and displacement
(gravitational wave detection), magnetic field sensors (with potential
applications for biological analysis). We can also highlight the emer-
gence of optomechanical coupling research for position measurement
that triggers the realization of new highly efficient transducers which I
have witnessed at NBI for the last few years.
All the previous discussion may feel a little bit application oriented.

On a more fundamental aspect, all the fruits provided by quantum
optics experiments followed a century of research aimed at understand-
ing better the nature of light and matter together with its interactions.
Taking a deeper step, as mentioned before, any measurement performed
on a quantum system disturbed it fundamentally such that the eyes or
“sensors” provide us with elements of our own reality which depend on
the nature of the detectors we use. If so-called quantum non demolition
detectors were easily available, we would have a better understanding
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at the elements of the quantum reality to manipulate for instance for
QIP and we could prepare and manipulate highly non-classical states.

The choice of a practical candidate

In quantum optics experiments, there are as many different practical
candidates as there are physical systems that exhibit quantum be-
haviour. This, not only in the realm of atomic and nanoscale tech-
nologies but also with emergent macroscopic mechanical devices. We
can name a few of them: superconducting qubits (based on Josephon-
junction), trapped ions, neutral atoms, atom chips, spin qubits in solid
state material (quantum dots - artificial atoms, nitrogen vacancy in
diamonds, phosphorus atoms in silicon matrix), caged atoms inside
fullerene molecules, flying photons, condensed matter entities (Bose-
Einstein condensates).
For scalable quantum computing, quantum metrology and all entan-

glement enabled technologies, two main approaches seem to be pursued.
The combination of individual trapped particles or single quantum dots
into universal quantum processors. The basic building block of a quan-
tum processor being the quantum logic gate. The second approach,
sometimes referred as top-down, compared to the previous bottom-up
one, consists in employing many particle systems to realize special pur-
poses, for instance quantum simulators, quantum register, repeaters
and memories. A strong emphasis on so-called Distributed Quantum
Computing (DQC) is expressed nowadays which therefore promotes the
realization of intermediate platforms to construct networks of small
groups of entangled systems. Entangling very large number of qubits is
challenging and therefore one might consider combining smaller groups
for the initial practical implementations.
It is extremelly remarkable that the full quantum control of single

quantum systems has been achieved from the standpoint of fundamen-
tal science but also for the realization of a single particle logic gate or
single particle transistor. However, for the challenges of QIS, which re-
quire scalability of such proof-of-principle systems, it seems relevant to
envision another road. Qubits are very fragile and preserving the coher-
ence of many single qubits is hard. In order to protect quantum infor-
mation due to loss of coherence into the environment, Andrew Steane
and Peter Shor have developped the first of the quantum-error correc-
tion schemes, a currently very active branch of quantum information
theory. The idea is simple and consists in spreading the qubit’s logical
information over many physical quantum systems instead of one. While
the Shor code spreads 1 logical qubit over 9 physical qubits, Steane’s
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provides an equivalent fault-tolerant code with 7 qubits, Laflamme’s
only 52.
All the above constitutes additional sources of motivation for the

development of many-body quantum systems where quantum informa-
tion would be stored safely over the collective degrees of freedom of the
ensemble.

Light and atomic ensembles

Either in the discrete or continuous domain, optical light, with its poten-
tial high degrees of freedom3, has proven itself as a robust and reliable
support of quantum information. This choice benefits from the great
speed of light and therefore high throughput of information. However,
exploiting light alone will, at the present state of the art, penalize all
the other tasks of QIP which need information storage. A single photon
can travel in an optical fiber for about tens of kilometers without being
absorbed and breaking the quantum communication link which calls
for the realization of quantum repeaters4.
A very promising medium to store the information carried by light

are atomic ensembles. An ensemble of atoms can interact strongly with
light which enables for efficient quantum state transfert between them.
A quantum memory for light can be implemented for instance through
electromagnetically-induced transparency (EIT). As the main optical
properties of atoms are dictated by the valence electrons, alkali atoms
offer a prime choice as the simple systems to model and interact with
its single valence electron. There are many more merits compared to
others systems (e. g. single ions, quantum dots) that we should cover
further in this thesis. In addition, many-body ensembles of identical
quantum systems render possible the study of collective behaviours,
it unravels complex dense matter effects via simulation and it enables
the exploitation of coherent enhancements. Various physics phenomena
can be explored in different dimensions by a proper arrangement of the
atoms in space made through the past groundbreaking development
in the manipulation, cooling and control of neutral atoms with light.
We note for the moment that neutral atoms offer in general a weaker
coupling to light than ions. The latter being in turn more sensitive
to environmental field fluctuations. Light, as an electromagnetic wave,
interacts with matter through charged particles. Neutral atoms, by def-
inition, have no zero order electrical charge distribution. Thus, light
and neutral atom interactions constitute of higher, hence weaker, order
effect such as polarization. Contrary to artificially engineered atoms

2 According to the quantum Hamming bound, encoding a single logical qubit and
providing for arbitrary error correction in a single qubit requires a minimum of 5
physical qubits.

3 For example, orbital angular momentum of light provides higher-dimensional QI
encoding.

4 Repeaters tamper polynomially bit rate degradiation.
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such as quantum dots, atoms are all identical which makes many-body
systems more tractable. Within the diverse quests of quantum infor-
mation processing, metrology and sensing there is no platform with
“winner takes it all” situation. What research tries nowadays is to com-
bined the pros of all past fundamental proof-of-principle achievements
into elegant and realistic platforms to keep pushing the boundaries
further.

The challenge of detecting light

As detecting light is central to this work and to all the previous tasks,
we ought to mention an important point. With all due respect to the
field of optics, there are today no detectors that can detect light. Con-
trary to Hertzian waves that can be monitored directly on an antenna,
no electronic device has the inertia to follow an optical electromagnetic
field. Instead, we only have at our disposal in the laboratories so-called
square-law detectors (based on photo-absorption) producing a response
proportional to an input photon5 flux. This is a highly destructive mea-
surement process of a fundamental quantum system. Non-linear mixing
processes and interferometric measurement such as optical homodyn-
ing can bypass the detector bandwidth limitation and allow to record
optical phase indirectly, albeit the measured input state of light is still
cast into vacuum. The quantum coherence of collective atomic state
superpositions may provide a mean and a path for a transparent or
non-destructive detection of light based on Ramsey spectroscopy of
optically-induced Stark shift. Behind this idea also lies the realization
of quantum phase gates.

Three enhancement strategies

Most light-matter interactions can be described at first order by the in-
teraction energy between an electrical dipole moment of a charged parti-
cle distribution and the electric field of light. Two obvious directions to
increase this coupling are to increase the strength of the dipole moment
and the strength of the electric field. For atoms, this can imply to con-
sider atomic levels with a large orbital radius such as Rydberg atoms.
Or simply to engineer artificial atoms with large oscillator strength
such as quantum dots. For light in free space, this can be achieved by a
high spatial focusing or tight confinement at the position of the atom.
The third general strategy deals with collective enhancement. The in-
teraction can be scaled up or repeated several times as in CQED where
a single photon can propagate and interact many times with a single
atom. Instead, before diffraction reduces the effective strengh of the
electric field of light, light can be made to propagate over many iden-
tical dipoles. In the first case, the enhancement of the interaction is

5 By a photon, here we mean a light quantum, not a Fock state. Lamb (1995).
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given by the cavity finess. In the second case, the enhancement is given
by the number of coherent atoms.

With this introduction to the context, to the challenging goals of
the field and to several important aspects of light atomic ensembles
interfaces, we are ready to present the structure, the main subjects and
experiments realized in this thesis.

thesis structure

My thesis work started initially with the general subject of quantum
noise limited measurement in atomic ensembles with continuous vari-
ables of light. In essence, the implementation of QND measurement
on collective quantum states of atoms which implies the generation of
multi-atom entanglement and the creation of so-called collective spin-
squeezed states of atoms relevant for Ramsey spectroscopy and magne-
tometry.
Stefan Lund Christensen (SLC) and I started our theses together

on a very advanced setup which were developped during many years
by successful previous generations of students. The creation and char-
acterization of spin-squeezed state (SSS) states were already achieved
through the operation of a quantum atomic clock beyond the standard
atomic projection noise limit, Appel et al. (2009b); Louchet-Chauvet
et al. (2010).
The original experimental platform relied on the interaction of light

and microwave fields with ensembles of cold Cesium Nat ∼ 106 atoms
held in a free space optical dipole trap. While pushing the limit of this
proof-of-concept experimental setup which have now been disassembled
several months ago, we decided to explore in parallel a novel interface
based an optical nanofiber. This thesis reports will then reflect my
parallel efforts in both platforms, starting from a very advanced one,
to building a completely new quantum optics setup from zero with the
hope to realize an efficient interface between atoms and light.

part i: After our successful attempts6 to reproduce, prepare and im-
prove SSS states, the first experiment oriented itself towards the
more challenging task of the creation and characterization of non-
gaussian (non-classical) collective state of atoms, which then de-
fined the main line of SLC’s thesis. Consequently, I will devote the
first part of this thesis to my efforts complementary to Stefan’s
in the following main subjects:

• Real-time and minimally destructive detection of collective
atomic state superpositions at the fundamental quantum
light shot noise and atomic projection noise limits. (QND

6 The vacuum setup broke and it took many months for me and Stefan to eliminate
classical noise sources and operate measurement at the light shot noise limit.
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measurement based on dual-color homodyne detection of
atomic phase shifts).

• The preparation and characterization of spin-squeezed states
in large ensembles of atoms.

• The hybrid discrete and continuous variable ingredients in
the preparation and characterization of the first excited Dicke
state.

My goal will be to keep an eye as close as possible to the exper-
iment while trying to provide a simple and accessible theoretical
description of the fundamental working principles of collective
atomic ensembles which I believe more visual with the help of
Bayesian filtering theory.

part ii: In the second part of this thesis, we start exploring a new
interface to combine the guiding of light and the trapping of atoms
with an optical nanofiber. As I was the first to explore this new
system in our group and as there is still a lot to learn from it,
I will present an analytical derivation of the light modes and I
will try to generalize the theory which should be accessible to the
new PhD students. At the end of this part, I will give a brief
account on the nanofibers we have manufactured with the help
of the group of Prof. Arno Rauschenbeutel.

part ii i: In the third part of this thesis, we will sum up briefly
many months of construction of a new magneto-optical trap setup
for Cold Cesium atoms intented to operate around an optical
nanofiber. After a year of development I was joined by Eva Book-
jans (EB) who contributed significantly to the construction of the
new experimental setup with me. I will present the first success-
ful attempts at interfacing cold atoms with the evanescent field
of an optical nanofiber. I will report both discrete (single photon
counting) and continuous (heterodyne) measurement performed
on a few cold atoms in the magnetic trap.

part iv: In the last part, we try to realize advanced experiments with
atoms trapped in the evanescent field of a nanofiber. We create
an optical lattice in the evanescent field of a nanofiber and we
develop the first minimally destructive and continuous detection
of atomic state in this system, limited by the light shot noise.
Together with a robust measurement of the atom number, we
realize a significant atom number squeezing and demonstrate an
efficient interface between light and nanofiber trapped atoms, in
view to implement spin-squeezing and quantum state tomography
of non-classical state in this platform. We then communicate on
our last exploration, namely, our attempts in the creation of a
one-dimensional atomic mirror.
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Starting from zero, it was a challenging task to now be able to com-
pete7 with the state-of-the-art experiments in the limited PhD time.
This report is my attempt to share both the fundamental and technical
obstacles in this adventure.

7 And the principal ingredient for that, is that we tried to focus on one of the most
important element, the detection scheme.





Part I

C O L L E C T I V E S TAT E S O F AT O M S A N D L I G H T

We measure in real time the evolution of collective quan-
tum states of atoms without destroying them and with a
precision below the standard quantum noise limit.

We present a simple Bayesian approach to the conditional
preparation of spin-squeezed states to focus on the physical
mechanisms of both optical and atomic homodyne detection
in the tomography of non-classical states.

Permutation symmetry of identical particles (atoms and
photons) plays a central role.





2
CONDIT IONAL SQUEEZ ING OF ATOMS
AN EXPERIMENTAL BAYES IAN APPROACH

If there would be atoms (...) there would be indistinguishable ones
(...) which is against all the greatest principles of rationality.

— Leibniz

As long as spontaneous emission remains a single-atom effect, an
interface between light and the collective degrees of freedom of an en-
semble of identical atoms can provide a powerful and rich in physics
alternative to cavity-enhanced interaction with single particles (Ham-
merer et al. (2010)).
In this composite physical system, the enhancement of electrody-

namics interactions has its origin in the cooperation (Dicke (1954)) of
the many atoms. It stems from the local indistinguishability1 of the
identical atoms as the result of the particle exchange symmetry of the
interaction performed on the ensemble. This is one of the most myste-
rious (Feynman (1963)) yet effective prediction from the principles of
quantum mechanics when dealing with many identical body systems.
The ability to observe and exploit in real time the evolution of the

collective quantum state of the atoms without destroying it, and with a
precision measurement only limited by the intrinsic fundamental quan-
tum noise of this system, is one of the most challenging aspect of our
and many other experiments.
In this chapter, we introduce with gradual complexity the ideas that

have been developed to reach this goal. Over the past years, this chal-
lenge has also become a benchmark for the realization of an efficient
quantum interface between light and ensembles of atoms. This first
chapter is also an opportunity to develop a consistent notation. We
present concepts use throughout this thesis work and shared by the
two light atomic ensemble interfaces we have studied. In particular, we
aim at a simple presentation of the conditional preparation of collec-
tive squeezed states achieved experimentally. This is accomplished via

1 Even in situations where the atoms can be approximately considered independent
(e. g. non-overlapping spatial wavefunctions) they can all be coupled to a common-
mode interaction thereby loosing their independent reality (w.r.t the nature of such
mode, e. g. spatial). One then speaks about the dressed or total collective state of
the system.

17
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continuous homodyne measurement of optical light probes interacting
homogeneously and dispersively with the atoms for which we propose a
description in terms of Bayesian filtering theory at the standard quan-
tum noise limit.

2.1 motivational idea

Suppose we have at our disposal simple quantum systems, e. g. isolated
two-level atoms, marked by their ability to exist in a quantum superpo-
sition state. In Dirac’s formalism we could write the state of an atom
|ψ〉 such that

|ψ〉 = |ϕa〉+ e−iφ |ϕb〉 , (2.1)

where |ϕa〉 and |ϕb〉 are two orthogonal basis states and φ an arbitrary
quantum phase. It is remarkable that when |ϕa〉 and |ϕb〉 are eigenstates
of the atomic system with well-defined energy (also known as station-
ary states) quantum mechanics tells us that |ψ〉 is not. Such quantum
superposition has to evolve over time. This evolution is encoded in the
quantum coherence through the atomic phase φ = ∆Et/h+ φ0 where
t is the elapsed time, ∆E is the energy difference of the two states |ϕa〉
and |ϕb〉, φ0 the initial prepared phase and h the Planck constant.
The state |ψ〉 constitutes a fundamental resource to serve as time

keeping, i. e. a quantum clock. Furthermore, it is clear that any modifi-
cation of the energy difference ∆E, as from a perturbating interaction
energy, will translate into a different rate of phase evolution and will
cause the phase of the clock to be ahead or behind the unperturbed iso-
lated atomic phase evolution. This makes the quantum clock a sensor.
A sensor that only works during the lifetime of the quantum superpo-
sition and whose information retrieval is dictated by the fundamental
principles of quantum mechanics.
We note that the strength of the perturbating interaction could be

designed such that φ get shifted by π creating a transistor (quantum
phase gate) between two orthogonal states. Moreover, the measurement
of φ could be used as a feedback onto the external interaction to lock
on universal atomic properties. The application of quantum superposi-
tions to metrology and quantum information are numerous and the pre-
vious recall of the principles of Ramsey spectroscopy (Ramsey (1990);
Haroche et al. (2013); Ramsey (1980)) do not exhaust all of them.
Neutral atoms have many merits but since they do not have a net

electrical charge, their interaction with electromagnetic fields is consti-
tuted of higher order moments of the atomic charge distribution. Hence
the coupling of a single atom with these fields is in general weak and
various strategies need to be devised to build up a significant sensitivity
to φ, e. g. increase of the field amplitude at the atom position, increase
of the atomic moments. Another compatible idea is to use the meso-
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scopic enhancement provided by a collection of identically prepared
atoms, coherently interacting in a delocalized fashion.
To conclude this section, it is possible to envision very interesting

tasks by having many quantum clocks working together. It is possible
to synchronize, correlate or entangled them, which allows to improve
measurement precision over uncorrelated ensembles of clocks and of-
fers a system ready to realize multiple quantum information processing
tasks as presented in the introduction of this thesis. There are as many
experimental paths explored as there are systems that exhibit quan-
tum behaviour where the existence of the previous superposition state
is central. In our group, we manipulate collective atomic states and I
will give in the next section a basic description of such system.

2.2 ensemble of atoms

For a clear exposition of the physical ideas, I will first give a basic de-
scription of our experiments before moving rapidly to its central prin-
ciples and limitations.
We can prepare ensembles of Nat � 1 atoms, where initially the

atoms are isolated and independent within good approximation. We ma-
nipulate and interrogate their internal degrees of freedom by dressing
them with electromagnetic fields. The conservation of angular momen-
tum dictates the evolution of the internal atomic states. However, for
state preparation and measurement, these fields do not act selectively
on each atom. Therefore, identically prepared atoms are a priori indis-
tinguishable from each other. As a result, we only probe the collective
degrees of freedom of the atomic ensemble, which reflects the underly-
ing permutation symmetry or invariance under particle exchange.

2.2.1 Two-level atoms

We restrict the manipulation of the atomic states to two relatively long-
lived states of energy of the atoms and we can prepare any quantum
superposition of those states. This constitutes an example of a physical
implementation of the quantum bit paradigm. We describe the states
by two orthogonal Hilbert vectors |↑〉, |↓〉. In particular, we can prepare
an atom in the following symmetric quantum superposition

| 〉 = |↑〉+ |↓〉√
2

. (2.2)

A concrete practical choice of two such states is represented by the
so-called clock states of neutral alkali atoms. Specifically, they corre-
spond to the two magnetically insensitive Zeeman sub-levels belonging
respectively to the two lowest hyperfine ground states of the atom.
The state (2.2) can be prepared by optical pumping into |↓〉 followed

by a suitable Rabi oscillation duration between the two levels.
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2.2.2 Pseudo spin one-half or two-mode boson

Our previous choice of notation for the basis states is motivated by the
theoretical equivalent description of a two-level quantum system and
a spin one-half particle. The arbitrary Hilbert vectors |↑〉, |↓〉 can be
formally identified as the only two possible orientations of a fictitious
spin one-half projected along an arbitrary given direction2. More fun-
damentally, the state |ψ〉 of the system can also be described within
the density operator formalism. The density operator for the pure state
(2.2) is

ρ̂ = |ψ〉 〈ψ| = | 〉 〈 | .

Recognizing this operator as a dyad or tensor product Fano (1957), rep-
resented in the previous basis as a SU(2) matrix, we can use Schur-Weyl
duality to decompose3 ρ into very basic representations of symmetry
and antisymmetry under exchange of |↑〉 and |↓〉,

ρ = 12
Tr(ρ)

2 +

ρ↓↓−ρ↑↑
2

ρ↓↑+ρ↑↓
2

ρ↓↑+ρ↑↓
2 −ρ↓↓−ρ↑↑

2


︸ ︷︷ ︸

symmetric

+

 0 ρ↓↑−ρ↑↓
2

−ρ↓↑−ρ↑↓
2 0


︸ ︷︷ ︸

fully antisymmetric

.

(2.3)

These can be easily written in terms of the Pauli matrices σx,σy,σz,
where z is identified as the arbitrary quantization axis chosen to define
|↑〉 and |↓〉 earlier. Using the Pauli vector ~σ4, one can find a mapping
(~σ · ŝ) of the density matrix ρ from a vector operator ŝ, which shows
that the state of the two-level atom is completely described by the
components of ŝ defined as,

ŝx =
ρ̂↓↑ + ρ̂↑↓

2 =
1
2 (|↓〉 〈↑|+ |↑〉 〈↓|),

ŝy = −i
ρ↓↑ − ρ↑↓

2 = −i12 (|↓〉 〈↑| − |↑〉 〈↓|),

ŝz =
ρ↓↓ − ρ↑↑

2 =
1
2 (|↓〉 〈↓| − |↑〉 〈↑|),

with ŝ2 =
ρ↓↓ + ρ↑↑

2 =
1
2 (|↓〉 〈↓|+ |↑〉 〈↑|), ρ = ŝ212 + ~σ · ŝ,

where ŝ2 is the trivial5 element of permutation symmetry6. It is inter-
esting to examine that the two possible permutation (ladder or jump)
operation ŝ+ = |↓〉 〈↑| and ŝ− = |↑〉 〈↓| do not commute and that a

2 Note that a direction is a concept invariant with respect to rotations in R3.
3 ρ = (ρ− Tr(ρ)

2 ) + 12
Tr(ρ)

2 where the first traceless matrix can easily be decomposed
into a symmetric and antisymmetric matrice by writting the off-diagonal terms as
ρij =

ρij+ρij

2 +
ρji−ρji

2 =
ρij+ρji

2 +
ρij−ρji

2 where ρij = 〈i|ρ̂|j〉
4 ~σ = σxx̂+ σy ŷ + σz ẑ
5 the second element being the sign or parity of the permutation, i. e. number of

inversions
6 And also the Casimir invariant
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projective measurement on a basis state is the combination of two suc-
cessives different permutations7 (e. g. ŝ+ŝ− = |↓〉 〈↓|), i. e. [ŝ+, ŝ−] =
|↑〉 〈↑| − |↓〉 〈↓|. This shows that the three operators are also cyclic per-
mutations of each others8 (up to a phase) and invariant9 under the
action of ŝ2

[ŝi, ŝj ] = iεi,j,kŝk, (i, j, k) = {x, y, z}, (2.4)

where εi,j,k is the Levi-Civita permutation symbol. From the commuta-
tion rules (2.4), one can recognized the Lie algebra representation. In
other words, the operators are the infinitesimal generators of rotations.
In this two-level space this means that ŝ is formally equivalent to a
spin one-half angular momentum. Our selected two atomic states are
not necessarily eigenstates of the total atomic angular momentum but
their unitary evolution can still be cast into a fictitious spin rotation
description to give a visual geometrical representation (Feynman et al.
(1957)). We consider the description of |↑〉, |↓〉 as the two eigenstates
of a pseudo spin one-half particle projected along a quantization axis
z. With regards to the spin-statistic theorem, note that the pseudo
spin one-half particles described here are not physical fermions but
two-mode bosons.

2.2.3 Collective coherent spin state

We can prepare all the atoms in the state | 〉. Our measurement
method does not act selectively on a particular atom. We act homoge-
neously on the ensemble in such a way that the interaction is invariant
under exchange or permutation of the atoms, intially all independent.
The state of the ensemble is described, in good approximation, by the
factorizable state

|ψcss〉 = | 〉 ⊗ | 〉 ⊗ | 〉 · · · ⊗Nat , (2.5)

=
Nat⊗( |↑〉+ |↓〉√

2

)
. (2.6)

The previous collective state is known as a coherent spin state. A
name following a description of the atomic collective state in terms of
the pseudo-spin angular momentum or spinor formalism of the single
atom, mentioned above (Dicke (1954)). It is indeed customary to intro-
duce the collective spin operators – sum of the pseudo-spin operators
of each individual atom,

Ĵi =
Nat∑
k=1

ŝki , where i = {x, y, z}, (2.7)

7 also known as the Casimir operators
8 (|↓〉 〈↓| − |↑〉 〈↑|)(|↓〉 〈↑|+ |↑〉 〈↓|) = (|↓〉 〈↑| − |↑〉 〈↓|)
9 that is commute with
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to describe the ensemble. From (2.4), the collective spin operators sat-
isfy the Heisenberg-Robertson uncertainty inequality

(∆Ĵx)2(∆Ĵy)2 ≥ 1
4

∣∣∣〈[Ĵx, Ĵy]
〉∣∣∣ = 1

4

∣∣∣〈Ĵz〉∣∣∣2 . (2.8)

The previous collective state |ψcss〉 is known as a minimum uncer-
tainty state in the sense that it saturates the previous inequality. There-
fore, any reduction in uncertainty in one component can be achieved
with an identical reciprocal increase in another. In the following section,
we explain the non-trivial nature of the collective state and operators
introduced above.

2.2.4 Proper complete set of commuting observables

Here, we would like to highlight the very important role of atom per-
mutation or exchange symmetry that applies experimentally for homo-
geneous interrogation of the ensemble. Indeed, the state space spanned
by the tensor product of Nat pseudo-spin s = 1/2 particle or two-
mode bosons is tremendous, (2s+ 1)Nat = 2Nat . A common basis of
states employed to describe the atomic collective state, the so-called
Dicke states, is the standard coupled spin basis, ı.e the angular states
{|J ,M〉} of the total spin operators {Ĵz, Ĵ 2}. In the case where all the
atoms are polarized along the same direction as in |ψcss〉 along10 x, the
total spin number attained11 is J = sNat = Nat/2. This provides a
Dicke state space of 2J + 1 = Nat + 1 which is very small compare to
2Nat for a large number of atoms. These operators (2.7) are not enough
to describe completely the atoms, only the ensemble, that is {J ,M} do
not give enough quantum numbers to describe the state of each atoms.
Therefore it is important to stress that |ψcss〉 is more than the state
of the trivial assembly of Nat labelled particles. Due to the exchange
symmetry of all independent particles

| 〉1 ⊗ | 〉2 ⊗ · · · ⊗ | 〉Nat
= | 〉2 ⊗ | 〉1 ⊗ · · · ⊗ | 〉Nat

= · · ·︸︷︷︸
Nat! exchanges

(2.9)

the total quantum state of the ensemble is a general combination of all
these (spatially) permuted states. The symmetry group of Nat! permu-
tations or exchange Pi,j of an atom i and an atom j commutes12 with

10 Readily, the symmetry of | 〉 is such that it is invariant under (is an eigenstate of)
ŝx.

11 Note that the magnitude of the collective spin is
√〈
Ĵ 2
〉
=
√
J(J + 1) ' J =

Nat/2 only when Nat � 1 and should not be confused with the meaning of the
total quantum spin number J .

12 We have shown for instance, in a different kind of permutation symmetry (of the two
atomic modes) above that the permutation operators ŝ+, ŝ− are also the spherical
components of the spin operators, in terms of second quantization, also creation and
annihilation operators. The symmetric state | 〉 is both an eigenstate of ŝx and ŝy.
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the above collective spin operators when the collective state is symmet-
ric under spatial particle exchange. One should read |ψcss〉 implicitly as
a particular symmetric Dicke state |J = Nat/2,M = 0〉. If we denote
as {|n〉} the basis vectors used to describe the internal atomic states,
then according to the symmetrization postulate, the collective state for
an ensemble of Nat identical bosons (Dalibard and Basdevant (2005))

|ψ〉 = Q−1
√
Nat!

∑
P

|1 : nP (1); 2 : nP (2);Nat : nP (N)〉 , (2.10)

where the sum is carried over all the Nat! particle permutation P . Q =√
N1!N2! . . . is the constant factor given by the occupation numbers of

the different internal states. If all the atoms occupy the internal state
| 〉

|ψ〉 = 1
Nat!

Nat!∑
P

| 〉1 ⊗ | 〉2 ⊗ · · · ⊗ | 〉Nat
, (2.11)

and from (2.9)

|ψ〉 = | 〉⊗Nat

(
1

Nat!

Nat!∑
P

1
)
≡ |ψcss〉 .

From (2.11), the collective state is clearly seen as a constructive inter-
ference between all possible (spatial) permutations of the atoms. Such
collective superposition is in general sensitive to leak of information
that localizes atoms. Conversely, they can be prepared by heralding
information, which do not distinguish the atoms and is a common ex-
perimental strategy to create higher symmetric Dicke state, e. g. W
state for instance Haas et al. (2014); Laurat et al. (2007); Duan et al.
(2001).

The robustness of the many-body or collective states with respect to
single-body loss depends on the type of delocalized symmetry encoded
in the underlying ensemble of atoms. For the coherent superposition
state ((2.11)), a loss of an atom is simply equivalent to a loss of only
one independent (factorizable) part of the collective state, reducing its
size.
In our case and for more general interatomic interference effects

(sub/superadiance), permutation symmetry of locally indistinguishable
atoms is central (Crubellier et al. (1985)).

2.2.5 Partition projection noise

After the preparation of the collective coherent spin state, we perform
a measurement on the ensemble. At some places, I may unfortunately
continue to speak in terms of individual atoms in the ensemble although
we can only speak objectively about the state of the ensemble, here
made of Nat atomic independent parts ((2.5)).
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We have developed experimental methods based on optical light dis-
persive interaction with the atoms which allow us to sense the number
of atoms populating the states |↑〉, |↓〉.
Quantum mechanics forces us to only talk about ensemble average,

and the above state of knowledge described earlier has only a statisti-
cally meaning. The success probability p to find a given atomic partition
in the upper state |↑〉, after a projective measurement when in the initial
state | 〉, is given by the square modulus |〈↑| 〉|2 = p = 1/2. This is
also the probability to find it in the lower state |〈↓| 〉|2 = 1/2 = 1− p
if we were to measure that one as well. Therefore a measurement of the
population of a given state is uncertain and when carried out on an en-
semble of such independent partition | 〉, that is |ψcss〉, the outcomes
will be binomially distributed.

The probability to successfully find N↑ atoms in the state |↑〉 in an
ensemble of Nat in the collective coherent spin state will be

p(N↑) =
Nat!

N↑!(Nat −N↑)!
pN↑(1− p)Nat−N↑ ,

=
Nat!

N↑!(Nat −N↑)!
2−Nat .

The mean and variance of the binominial distribution are given re-
spectively by Natp and Natp(1 − p). Hence the expectation value of
N↑ for the coherent spin state will be 〈N↑〉 = Nat/2 and its variance
(δN↑)

2 = Nat/4. This intrinsic statistical uncertainty of the measure-
ment results of N↑ is known as projection noise and is fundamentally
linked to the nature of the collective state. For large ensembles of atoms,
the binomial distribution can be well approximated by a Gaussian or
normal distribution (with p(N↑ > Nat) = 0). The projection noise
will then be modelled by a fundamental Gaussian white noise in the
experimental measurements.

2.2.6 Population difference measurement

In one experiment, we have been measuring the population difference
between the two atomic states. With the previous single state measure-
ment, an unsucessful measurement outcome cannot be distinguished si-
multaneously for either | 〉 has collapsed in the complementary state
|↓〉 or the physical particle got lost. The population difference mea-
surement on the ensemble, which can be represented by the operator13
as

M̂ =
Nat∑
k=1

(|↓〉〈↓| − |↑〉〈↑|)k = 2Ĵz,

13 The notation M̂ is inspired from theM quantum number of the total spin projection,
up to a factor of 2 to remain the population difference.
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will be less sensitive to classical fluctuations in the total number of
atoms14. The expectation of the measurement here is 〈ψcss|M̂|ψcss〉 = 0
and its fluctuations will have a variance of (〈ψcss|M̂2|ψcss〉 − 0) = Nat.

2.3 atomic state detection

As a concrete implementation of the previous measurements, we exper-
imentally interrogate the population of the two atomic states through
optical light probes propagating in the ensemble. When the properties
of the probes match the selection rules for a transition from one of the
two atomic states |↓〉 or |↑〉 to a higher optical excited state of the rich
internal energy level structure of the atom we have thus ignored, two
well-known phenomena occur on the light probes in the linear interac-
tion regime, namely absorption and dispersion.
The lifetime of the quantum coherence of the atomic state superposi-

tions is ultimately limited by the measurement back-action, often dom-
inated by incoherent spontaneous scattering processes due to probing.
We will now go through a basic description of the light-atom interac-
tion with a focus on the detection of the dispersion, or atom induced
optical phase shift of light. The dispersion measurement allows to min-
imize incoherent scattering events without compromising too much the
signal-to-noise ratio of the atomic population detection compared to an
absorption or fluorescence measurement, while preserving the indistin-
guishability of the atoms. The signal-to-noise ratio (SNR) of the optical
phase shift detection method is limited by the intrinsic quantum noise
of the light probes and scales as the square root of spontaneous emission
for coherent states of light.

2.3.1 Atomic medium delay and attenuation

Again, for clarity of the concepts and figures of merit we neglect de-
tails that add unnecessary complexity. We consider the ensemble of
atoms as a dilute homogeneous isotropic medium. We send through
the ensemble an optical light probe off-resonant to the adequate above
mentioned atomic transition and weaken the light intensity to have a
linear response. The general macroscopic response of the ensemble is
characterized by a complex index of refraction n, the imaginary part of
which is associated with dissipation (absorption). This means for the
positive frequency part of the electric field of a transverse plane wave
travelling along z with wave-vector k = ωn(ω)z/c and optical angular
frequency ω,

E(z, t)(+) = E0e−iωteikz = E0e−
α(ω)

2 ze−i(ωt−z/c)eiϕ(z,ω),

where ϕ(z,ω) is the extra phase delay compared to free propagation
in vacuum and α the intensity (∝ |E|2) absorption coefficient per unit

14 var(N↑ −N↓) = var(2N↑ −Nat)



26 conditional squeezing of atoms

length. To relate the refractive index to the atomic polarization re-
sponse, we introduce the isotropic dielectric susceptibility χ(ω), which
is in general small. Thus we identify

α(ω) =
ω

c
Im(χ(ω)) =

2π
λ0

Im(χ(ω)), (2.12)

ϕ(z,ω) = ω

2czRe(χ(ω)) = zπ

λ0
Re(χ(ω)), (2.13)

from n = (1 + χ)1/2 ' 1 + Re(χ) + iIm(χ)

2 ,

where c and λ0 is the speed and light wavelength in vacuum.
We could explain χ in terms of the optical atomic transition proper-

ties from a classical Lorentz model of damped harmonic oscillators. In
view of further generalization, we adhere to the quantum formalism.

2.3.2 Atom response principle

For instance, the classical or expectation value of each atomic dipole
p̂ = −er̂ under the influence of the electric field is simply given using
the density matrix formalism by the trace15

〈p̂〉 = tr(ρp) = tr(ρ |e〉〈g|)~p+ c.c = ~pρge + c.c,

where ρ and p are the matrix representations of the respective operators
in the same basis, here the ground and excited state pair (|g〉 , |e〉). ρ
describes the state of the atom which evolves according Schrödinger’s
or von Neumman-Liouville’s equation as

∂ρ

∂t
=

[H,ρ]
i h̄

, H = H0 − p̂ · (E+ +E−),

E+ = ~εE0ei(kz−ωt), Ω =
~p ·E+

h̄
, ~p = 〈e|p̂|g〉 .

In practice, atoms are never alone, they are dressed by the fluctuating
vacuum electromagnetic field. The resulting irreversible evolution of the
atom in excited energy levels is taken into account via Fermi golden16
rule giving the probability to remain at time t in an atomic excited
energy level as 1− γ(ω, p)t, (here ρ̇ee = −γρee).
All the above yields17 the well-known result (Grynberg et al. (2010))

ρeg = −Ω
∆− iγ/2

∆2 + (γ/2)2 + 2|Ω|2 ,

15 Atoms in a dilute gas possess inversion symmetry. The energy eigenstates of the
atom are then either symmetric or antisymmetric, that is 〈g|r̂|g〉 = 〈e|r̂|e〉 = ~0.
This also means that an atom in a stable (energy) state has no permanent dipole
moment. It needs to be dressed by an external field in order to have a non-zero
average moment. And this symmetry can be broken in a solid.

16 The irreversibility, in contrast to the time-reversal Rabi oscillation phenomenon,
arises from the coupling between discrete energy levels to a continuum.

17 Within the rotating-wave approximation.
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where ∆ = (ωge − ω) is the angular frequency detuning between the
atomic transition frequency and the light frequency. A volume density
of atoms %at will give rise to a macroscopic polarization18 ~P = %at 〈p̂〉 =
ε0χ~E, this latter relation holding for a dilute19 medium.
Projection onto ~p gives χ = %atρeg ‖~p‖2 /(ε0Ω h̄) which from (2.13)

leads to

ϕ(z,ω) = zπ

λ0
Re(χ(ω)) =

(
− zπ%at
λ0ε0 h̄

)
‖~p‖2 ∆

∆2 + (γ/2)2 + 2|Ω|2 ,

(2.14)

α(ω) =
2π
λ0

Im(χ(ω)) =

( 2π%at
λ0ε0 h̄

)
‖~p‖2 (γ/2)

∆2 + (γ/2)2 + 2|Ω|2 .

(2.15)

The atomic dipole strength ‖~p‖2 plays a central role. For this basic
two-level atom model, γ is fundamentally connected to it via Fermi rule,
that is here to the free space density of electromagnetic field modes near
λ0 as

γ =
8π2

3 h̄ε0λ3
0
‖~p‖2 . (2.16)

This allows to rewrite all the above detectable quantities in terms of
the experimentally known value of γ.

2.3.3 Characteristic parameters

Most of the figure of merits and physical mechanisms of our light atomic
ensemble interface are contained in the previous simple model. Exper-
imentally, we want to obtain the highest atomic signal possible. First
of all, we weaken the probe light intensity such that (|Ω|2) has a neg-
ligible contribution. Otherwise the light intensity would saturate and
broaden the atomic response. This fixes the dynamic range of light in-
put intensity for linear atomic response. The saturation intensity being
usually defined at the 3 dB compression point of the atomic response.
Below saturation, we have in this linear regime,

χ(∆) '
(
%at

3γλ3
0

8π2

)
i(γ/2)− ∆

∆2 + (γ/2)2 , β =

(
γ

2∆

)
, (2.17)

α(β) = α0
(γ/2)2

∆2 + (γ/2)2 = α0β
2
(
1 + β2

)−1
, (2.18)

ϕ(z,β) = −α0
2 z

(γ/2)∆
∆2 + (γ/2)2 = −α0

2 zβ
(
1 + β2

)−1
. (2.19)

The intensity absorption coefficient per unit length achieves its max-
imum value α0 = 3%atλ2

0/(2π) for ∆ = 0 where ϕ vanishes. After

18 see Maxwell-Gauss relation ∇ ·E = −∇ · P/ε0
19 See the general Clausius-Mossotti relation.



28 conditional squeezing of atoms

propagation in the atomic sample over a physical linear length l, the
intensity of the light probe beam is attenuated by a factor e−αl, while
its phase has accumulated a delay ϕ(l) = −αl/(2β).
The above results provide signals that are sensitive to the popula-

tion of the atomic ground state by directly measuring the fraction of
absorbed probe photons from No

ph/N i
ph = e−αl where N i

ph (resp. No
ph)

is the number of input (resp. output) probe photons or by measuring
the number of scattered photons Nsc = (N i

ph −No
ph) and as well as by

detecting the imprinted phase shift ϕ(l) independent of the number of
probe photons in this linear approximation.
All signal strengths depend on the characteristic quantity of the prob-

ing, namely the optical penetration depth of an atomic sample of length
l, d = αl. Below saturation, the optical depth (OD) is independent of
the incident number of photons and only depends on the overlap be-
tween the probe beam and the atom spatial distribution.
As long as spontaneous emission is a single-atom effect, the number

of scattered photons in the probe volume is the same as the number of
atoms which have been scattered. Therefore, in view to preserve quan-
tum superposition of atomic ground states from decoherence induced
by these incoherent scattering events, the total average number of scat-
tering events during the interrogation time has to be kept low. Hence
the average number of scattering events per atom nsc = Nsc/Nat 6 1.
For atom number measurement and a cyclic atomic transition, this
number can be great, limited by plain recoil heating moving the atoms
out of the probe beam volume and again ultimately limited by the satu-
ration of the transition. The heating effects due to the optical detection
triggered the development of nondestructive techniques (Andrews et al.
(1996)) that measure the phase shift imprinted on the forward scat-
tered probe photons rather than measuring absorption or fluorescence
(scattered photons). However, the sensitivity or SNR of the underly-
ing interferometric measurement of the phase shift does not necessarily
perform better and sometimes worse than that of fluorescence measure-
ment techniques (Lye et al. (2003)). We therefore discuss in the next
section within which parameter regime and experimental constraints
does the phase shift measurement appear advantageous.

2.3.4 Phase shift measurement advantage

To preserve the symmetry of the collective atomic state under particle
exchange, it is important to have no prediction power over the posi-
tions of the atoms. To keep the indistinguishability of the atoms, it
is important that the light probe interacts homogeneously with the
ensemble.
To make all the atoms participate equally20 in the interaction and

thereby enhancing their collective effects and minimizing the leak of

20 Maximize the symmetry



2.3 atomic state detection 29

local information into the environment, the spatial variation of the
number of probe photons can be reduced by detuning the probe light far
from the atomic resonance, i. e. by reducing β = γ/(2∆). The fraction
of scattered photons becomes in this limit (d(β) smaller than 1)

N i
ph −No

ph
N i

ph
= 1− e−d(β) ' d0β

2 = d0

(
γ

2∆

)2
, (∆� γ/2)

(2.20)

where we have introduced the ensemble on-resonant optical depth d0 =

α0l. The number of scattered photons will be significant when it is big-
ger than the intrinsic quantum photon shot noise of the probe light. The
above far-off-resonant detuning renders the atomic ensemble transpar-
ent during light propagation. It can be made so transparent that it is
not possible to distinguish it from the inherent light shot noise, set-
ting at the same time a lower limit in the resolution of atomic state
detection based on intensity measurement.
However, while the absorption signal in this limit decays as 1/∆2,

the phase shift decays slower as 1/∆

ϕ ' −α0
2 lβ = −d0

4
γ

∆
. (2.21)

We will see in the next chapter that our interferometric detection of
the optical phase is fundamentally limited by photon shot noise to
δϕ = 1/(2

√
Nph). This gives a fundamental limit to the achievable

SNR as21

|ϕ|
δϕ

= d0
γ

2∆

√
Nph = d0

√(
γ

2∆

)2
Nph =

√
d0
√
Nsc. (2.22)

As promised earlier, we show with our simple model that the SNR of
atomic energy states detection via measurement of optical phase shift
scales fundamentally as the square root of the integrated number of
spontaneous emission events (for a coherent state of light). This is
valid as long as the on-resonant optical depth remains independent
of the number of probe photons (linear regime). Thus the previous
result means that if the number of scattering events is constrained,
only increasing the on-resonant optical depth helps the measurement
precision in the far-off resonant limit.
In addition, since the SNR of the ideal (maximal collection efficiency)

record of scattered photons is limited to
√
Nph due to intensity shot

noise, the dispersive detection becomes advantageous compared to flu-
orescence detection only for optically thick enough ensembles which
satisfy d0 � ∆/(γ/2).
On the other hand ∆/(γ/2)�

√
d0 is required (see (2.20)) for trans-

parency or homogeneous interaction. Therefore, only ODs larger than
one are relevant for such experimental schemes.

21 Here Nsc is given by (2.20) at the same approximation order as ϕ.
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For a given constrained number of scattering events, it is possible to
increase the detuning (if other atomic levels are far apart) and recip-
rocally increasing the number of probe photons without compromising
phase detection SNR, as shown by (2.22). This has the merit to offer
flexibility in the detection bandwidth by increasing the probe power
and reducing the interrogation time in order to overcome uncontrolled
dynamics of the atomic signals. However, the probe power is bound to
a maximum value for validity of the linear regime or non-saturation of
the atomic response.
Note that when the ensemble is not optically thin enough, incoher-

ently scattered photons have a non-negligible probability to be reab-
sorded by other surrounding atoms, a phenomenon known as radiation
trapping that makes spontaneous emission more detrimental22.
For large resonant ODs, an experiment based on the measurement

of the optical phase is suited for many tasks that require orders of
magnitude flexibility in the allowed number of scattering events while
providing a light shot noise limited sensitivity over a widely tunable
measurement bandwidth.

2.3.5 Projection noise limited measurement

We have seen earlier that if the ensemble of atoms is prepared in the
collective coherent spin state, the estimation of the population of one
of the atomic ground states, for instance |↑〉, will contribute to a mean
phase shift signal via 〈N↑〉 = Nat/2. When introducing the effective
cross-sectional probe area A, Nat corresponds to the number of atoms
in the probe volume V = Al as Nat = %atV for our simplified probe
mode geometry. The on-resonant optical depth becomes d0 = lα0 =

3Natλ
2
0/(2πA) = σ0Nat/A, where we have introduced the resonant

single-atom absorption cross-section23 σ0 = 3λ2
0/(2π). From (2.21),

the expectation value of the phase shift when probing the upper state
for an ensemble prepared in the collective state |ψcss〉, is then

〈ϕ〉 = −〈d0↑〉
4

γ

∆
= − γ

4∆
σ0
〈N↑〉
A

= −
(
γ

4∆
σ0
A

)
Nat
2 . (2.23)

The fundamental statistical variance of the measurement due to the
projection noise will be

(δϕ)2
at =

(
γ

4∆
σ0
A

)2
(δN↑)

2 =

(
γ

4∆
σ0
A

)2 Nat
4 .

As already mentioned earlier, the total phase shift measurement is
fundamentally limited by the intrinsic light shot noise of the probe light,
such that the total observed variance will be

(δϕ)2 = (δϕ)2
at + (δϕ)2

light =

(
γ

4∆
σ0
A

)2 Nat
4 +

1
4Nph

. (2.24)

22 Not a single-atom effect anymore
23 for a closed transition
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Clearly, one resolves and at the same time reaches a fundamental atomic
projection noise limited precision when κ2 = (δϕ)2

at/(δϕ)2
light becomes

larger than one. Here,

κ2 = 4
(
γ

4∆
σ0
A

)2
Nph(δN↑)

2 =

(
γ

2∆
σ0
A

)2
Nph

Nat
4 . (2.25)

From (2.20), the number of scattered photons

Nsc = N i
ph −No

ph =
σ0 〈N↑〉
A

(
γ

2∆

)2
N i

ph,

allows to write (2.25)

κ2 =
1
2d0

Nsc
Nat

=
d0
2 nsc = d0↑nsc, (2.26)

where we have introduced the number of scattered photons per atom
nsc and the resonant optical depth of the interacting atomic population
d0↑ = σ0 〈N↑〉/A. For a population difference measurement where the
probe photons interact equally with the two ground states |↑〉, |↓〉, one
would improve κ2 = d0nsc by a factor of 2. We note that d0↑ = d0
if all the Nat atoms are prepared in the state |↑〉. However in this
case κ2 = 0 as the variance of the collective population measurement
N̂↑ =

∑Nat
k=1 |↑〉〈↑|k as well as M̂ on the collective state |↑〉⊗Nat is 0

(hence (δϕ)2
at = 0). Conversely, we could interprete κ2 from the mutual

point of view that the atoms are now used as a meter on the coherent
state of light. Indeed one can write

κ2 = d0nsc = x0εsc, εsc =
σ0Nat
A

(
γ

2∆

)2
, (2.27)

where x0 = σNph/A is a resonant atomic depth and εsc the number of
scattered atoms per photon. Here, we haveNatnsc = Nphεsc. Continuing
with our simple model, we now show one way to overcome the previous
atomic projection noise limit in the estimation of N̂↑ or M̂ with QND
probing via continuous time measurement of ϕ (entanglement-assisted
metrology).

2.4 conditional spin-squeezing

The previous model allows to give a simple presentation of the fun-
damental limit of measurement precision based on coherent states of
atoms and coherent states of light. Aside the fact that the predicted
limited precision is based on a prior knowledge of the state of both
the probe light field and of the collective atomic state, it is impractical.
This is because quantum mechanics forces us to talk only about ensem-
ble averages which are never fully realized. After three years of insigths,
I am going to present a visual approach to the conditional reduction
of atomic projection noise via optical QND measurement as achieved in
Appel et al. (2009b); Schleier-Smith et al. (2010).
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2.4.1 Time continuous measurement

Experimentally we cannot record data for an infinite amount of time,
nor repeat the same experiment infinitely. We have only access to a
finite number of realizations from which we estimate all the previous
expectation values as well as their uncertainty. In particular the mea-
surement of the phase shift as obtained via homodyne detection, to
be presented in details in the next chapter, should be considered as a
continuous time record of the atomic population operator outcomes as
produced by the instantaneous collective state of the atomic ensemble.
In other words, the continuous measurement of the phase will be con-
sidered as a process producing a phase variable ϕ randomly sampled
from the initial or prior probability distribution which is dictated by
quantum mechanics for the underlying operator pi(M̂) or pi(N̂↑). Only
for a large number of identically prepared coherent spin states |ψcss〉
will the distribution p(ϕ) reproduce pi(M̂).

2.4.2 Light noise contaminated sample

For a given experimental realization, we estimate the outcome M of
M̂ with the phase data sampled from a detector photocurrent, which
is host of the random arrival of probe photons. This random arrival of
photons leads to a stochastic fluctuating offset δϕ(t) on the detected
phase shift ϕ. This noisy offset would average to 0 if we could integrate
the photocurrent over an infinite time. This corresponds to perform an
ideal ensemble average over an infinitely long coherent state of light
with constant power. Since this is not realistic, each event of p(M̂)

is blurred by a random variable δϕ(t). This calls for quantum filtering
theory and Bayesian inference as well presented in Geremia et al. (2006)
to optimally extract information from the quantum noise.
By averaging the continuous phase measurement over the interroga-

tion time τ , we can give a “better” estimate of the random outcome of
M̂ via the mean of the instantaneous sampled phase values

ϕτs =
1
τ

∫ τ

0
ϕs(t) dt = ϕτat + δϕτ , (2.28)

where δϕτ is a random phase offset drawn from the probability distri-
bution p(δϕτ ) of Nph photon arrivals during the time τ . Experimentally
this duration can correspond to the time length of a probe square pulse
of light sent through the atomic ensemble. For sufficiently large enough
Nph value, p(δϕτ ) can be considered gaussian or normally distributed
by extension of the Poissonian distribution of photons in a coherent
state of light.
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2.4.3 Bayesian estimation

From our sample mean estimator ϕτs we can now infer knowledge about
the atomic state by estimating the probability distribution p(M̂) con-
ditioned on the observation ϕτs . This allows to test the prior hypothesis
or belief about the collective atomic state. According Bayes rule of in-
ference, the probability distribution p(M|ϕτs ) of a given outcomeM of
the operator M̂ based on the measured sample mean ϕτs is

p(M|ϕτs ) =
p(ϕτs |M)pi(M)

p(ϕτs )
, (2.29)

where pi(M) is the initial prior distribution, p(ϕτs |M) the conditional
probability to observe the value ϕτs from a given outcome M of the
operator M̂ and p(ϕτs ) the unconditional probability distribution of
the measurement ϕτs that is

p(ϕτs ) =
∫
p(ϕτs |M)pi(M) dM. (2.30)

Clearly, p(ϕτs |M) is given by the probability distribution of the noisy
phase offset or light shot noise p(δϕτ ). As mentioned earlier this can
be represented by quantum gaussian white noise

p(δϕτ ) ∼ N (0,σ2
l ) =

1√
2πσ2

l

exp
(
− (δϕ

τ )2

2σ2
l

)
, where σ2

l =
1

4 〈Nph〉

with 〈Nph〉 = Φτ the number of photons in the time τ for a constant
input photon flux Φ. For the moment, we assume that the information
about the outcome valueM contained in the time average quantity ϕτat
is faithfull24 to the prior probability distribution of pi(M). Indeed, we
neglected for the moment the action of light on the collective atomic
state, any measurement back-action, as well as all other perturbation by
the environment during the interrogation time τ (limit of small time).
In addition, (2.28) implicitly assumes the atomic phase shift and light
phase noise smaller than π, i. e. the linearisation of the homodyne signal
near the point of highest phase sensitivity25. Because the relevant phase
shift signal is independent of the probe photon number within all the
above conditions ϕτat = kM, k = −γσ0/(4A∆) (see (2.23)), it is also
independent of the random arrival of photons and of the probe time
(as Nph = τΦ). For a sufficiently large number of atoms Nat, pi(M)

can also be extended to a normal/gaussian distribution with a variance
given by the atomic projection noise σ2

M = Nat and 〈M〉 = 0.

pi(M) ∼ N (〈M〉 ,σ2
M) =

1√
2πσ2

M

exp
(
− (M−〈M〉)

2

2σ2
M

)
.

24 Or at least, that there is a deterministic link between the two, that is fully time
correlated to the prior distribution.

25 Otherwise, the observation variable will be a trigonometric function of the atomic
variable and non-linear filtering theory should be used
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From p(ϕτs |M) ∼ p(δϕτ = ϕτs − kM), the unconditional measurement
distribution p(ϕτs ) (2.30) is therefore a convolution of two gaussian
distributions creating a new gaussian distribution with variance equal
to the sum of the variance of p(ϕτs )|M) and of pi(M), that is the sum
of the phase light noise power and the atomic projection phase noise
power. Such is the distribution of the sum of two normally distributed
random variables (ϕτat + δϕτ ).
Using the well-known gaussian integrale formula26, we find

p(ϕτs ) =
1√

2π (k2σ2
M + σ2

l )
exp

(
− (ϕτs )

2

2 (k2σ2
M + σ2

l )

)
. (2.31)

The variance of the estimated distribution p(M|ϕτs ) is therefore read-
ily obtained from (2.29) and (2.31)

σ2
M|ϕτs =

∫
(M−〈M(ϕτs )〉)

2 p(M|ϕτs ) dM, (2.32)

or given more directly by writting down the expression ((2.29)) of
the newly found probability distribution readily gaussian

p(M|ϕτs ) =
1√
2π

√
k2σ2

M + σ2
l

σ2
Mσ

2
l

exp
(
−k

2σ2
M + σ2

l

2σ2
Mσ

2
l

(M−M0)
2
)

,

(2.33)

with the following constant being introduced

M0 = ϕτsk
σ2
M

k2σ2
M + σ2

l

. (2.34)

We will now discuss the most significant characteristics of this distribu-
tion, that is its mean and variance.

2.4.4 Degree of squeezing

Using the above, we arrive at the important result for the variance of the
estimated atomic population distribution conditioned on a dispersive
light shot noise limited measurement,

σ2
M|ϕτs =

σ2
Mσ

2
l

σ2
l + k2σ2

M
= σ2

Mξ
2, ξ2 =

σ2
l

σ2
l + k2σ2

M
(2.35)

In the previous expression, we deliberately singled out the factor ξ2 =

σ2
M|ϕτs

/σ2
M in such a way that it quantifies the reduction of uncertainty,

the degree of squeezing, which is defined here as the fractional variance
of the estimated population measurement with respect to the prior

26
∫

e−ax
2−bx dx =

√
π
a e

b2
4a for (a > 0).
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variance. Starting with atoms prepared in the collective coherent spin
state, we see that the degree of squeezing

ξ2 =

(
1 + k2σ2

M
σ2
l

)−1

=
1

1 + κ2 , (2.36)

is given by κ2 introduced earlier, which is the ratio between the phase
noise due to atomic projection noise and the phase noise due to light
shot noise. It is clear that if nothing perturbs the collective state, some
squeezing is always achieved by continuous measurement.
It is obvious that by averaging over a longer period of time than τ ,

the phase noise due to the light shot noise will be reduced. If noth-
ing else changes, κ2 will increase as much and the estimation precision
of the population measurement will improve. It is also clear with the
previous general Bayesian approach, that the essence of conditional
spin-squeezing or the reduction of uncertainty requires the notion of
a past/prior knowledge. Without starting in a minimum uncertainty
state or coherent spin state (CSS), it is much harder to beat the stan-
dard quantum limit (SQL) of measurement precision defined by the
fundamental noise level of the collective state CSS.

2.4.5 Degree of shift and future prediction

We note that, besides the previous reduction of the variance compared
to the one of the prior distribution pi(M), the mean value 〈M〉 initially
zero for a CSS is shifted by an amountM0 (see (2.34)). This is remark-
able as the mean of a gaussian distribution is also the most probable
outcome. This tells that the most likely phase shift to observe in the
future conditioned on the above measurement should be ϕ0 = kM0.
We can write it from (2.34) and (2.36) as

ϕ0 = kM0 = ϕτsk
2 σ2

M
k2σ2

M + σ2
l

= ζϕτs , ζ =
κ2

1 + κ2 . (2.37)

The attentive reader would have noticed that ϕ0 does not give directly
the observed phase shift of a second successive measurement ϕτ2

s as
the recorded data will be obscured by the added uncorrelated light
shot noise of the second measurement27 such that the variance of a
successive conditioned phase measurement is different from k2σ2

M|ϕτs
(see ((2.35))) by

var(ϕτ2
s |ϕτs ) = σ2

l + k2(δM(ϕτs ))
2 = σ2

l +
k2σ2

M
1 + κ2 = σ2

l (1 + ζ) ,

(2.38)
while from (2.35) σ2

M|ϕτs = (1− ζ) σ2
M, ξ2 = 1− ζ.

(2.39)

27 The light shot noise of the first measurement is already included in the Bayesian
update, see for instance in κ2.
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The previous optimal prediction is sometimes referred to as a maximum
a posteriori (MAP) estimation.

2.4.6 Combined measurements

Experimentally, the above means that if we perform a second mea-
surement of the same duration yielding the random variable ϕτ2

s , we
should28 observe over many experimental realizations (CSS prepara-
tions) that the distribution of the latter is correlated to the values of
the random variable ϕτ1

s of a first measurement. As derived from (2.37),
the observed value of ϕτ2

s will be centered around the conditioned mean
ζϕτ1

s , when ϕτ2
s was drawn from the same experimental realization as

ϕτ1
s , meaning that they belong to the same so-called quantum trajectory.

The conditional distribution of the second measurement p(ϕτ2
s |ϕτ1

s ) is
therefore also estimated, with the above Bayesian knowledge update,
by the probability distribution p(ϕτ2

s − ζϕτ1
s ). For random variables, it

is well-known that for any constant ζ

var(ϕτ2
s − ζϕτ1

s ) = var(ϕτ2
s ) + ζ2var(ϕτ1

s )− 2ζcov(ϕτ2
s ,ϕτ1

s ).

As we have shown above that the most probable prediction or best
estimate for ϕτ2

s is achieved for ζ = κ2(1 + κ2)−1 (see (2.37)), the
derivative of the previous relation with respect to ζ leads optimally to

ζ =
cov(ϕτ2

s ,ϕτ1
s )

var(ϕτ1
s )

=
κ2

1 + κ2 = 1− ξ2. (2.40)

Since29 var(ϕτ2
s − ζϕτ1

s ) = var(ϕτ2
s |ϕτs ), the combined difference of

two successive measurements provides a simple experimental approach
that allows to directly visualize the reduction of uncertainty in the es-
timation of M. We would like to note that the prior variance should
be taken a priori infinite to avoid any bias in the previous estimation
process in the absence of concrete information about the initial atomic
state. The presentation of the above results was greatly helped by the
approximation of all the initial poissonian noise distributions as gaus-
sian distributions, which is valid for sufficiently large numbers. Once
this approximation cannot be made anymore, one would have to work
with the Poisson and Skellam distributions.

28 if the acquired knowledge or measurement affects the physical reality of the atomic
ensemble.

29 we have implicitly selected from all the possible values of the Bayesian estimatation
based on the first measurement, one value we consider best to estimate the second
measurement and which intrinsically here will also minimize on average the spread of
the second random variable ϕτ2

s about the conditioned value ζϕτ1
s . It is in that sense

that the Bayesian estimation overlaps here with a maximum likelyhood estimation.
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2.4.7 Generic Gaussian QND based squeezing as Kalman filtering

Usually it is possible to arrive at all the previous results via a generic
QND hamiltonian with input-output relations that uses a more alge-
braic language approach in an implicit gaussian description of collec-
tive atomic and light states observables (see Daniel and Stefan’s the-
sis). In light of the previous Bayesian point of view, this common ap-
proach has appeared to me as a Kalman30 filter (Kalman and Bucy
(1961)) for which Heisenberg’s or Schrödinger’s equations give the up-
date rules or evolution of the quantum mechanical statistical state
of the system parametrized by the given set of physical observables.
Quantum Kalman filtering is one of the simplest31 case of recursive
Bayesian estimation applied to a quantum trajectory undergoing our
time continuous measurement process aimed at gradually learning in-
formation about the atoms in presence of noise and potential losses. It
was adopted for instance for atomic magnetometry in Geremia et al.
(2005, 2003). By regarding all the previous measurements of the phase
and estimation of the atomic population difference in presence of the
stochastic noises (light shot noise and atomic projection) from the point
of view of a simple one32 dimensional Kalman filter, it is straighforward
to identify the central characteristic of such measurement filter, giving
us the optimal Kalman gain for the information about M̂ as

Kg =
ζ

k
, with ξ2 = (1− kKg) . (2.41)

This allows us to put into a palpable form what is meant by gain of
information and what can later allow to visualize the trade-off between
gain and loss of information during such a measurement. We note that
the degree of squeezing ξ2 and the previous gain implicitly depend
on the averaging time τ or measurement bandwidth, and should be
interpreted in such a way that Kg is a gain per measurement bandwidth.
This should not be forgotten even if in the absence of losses, its role
is trivial and because of the stochastic (white) light shot noise, this
measurement time bandwidth can be translated at all times into a mean
probe photon number for a constant continuous-wave (CW) probe light
power. One could extrapolate to the notion of a gain per photon. As a
trivial remark, in absence of observation noise (light noise), the Kalman
gain of information about the atomic population from the observed
phase shift is simply given by the reciprocal phase shift per atom33

Kg = k−1.

30 random variable in the gaussian description with linear update relations
31 Gaussian distributed random variables and linear update relations.
32 Only one random variable or observableM is considered here. If we know canonically

conjugated observable toM and their relation, we can increase the dimension of the
filter and looked at the back-action of the filtering ofM onto these other quantities.
Only relevant if we were to also detect them (e. g. anti-squeezing, quantum feedback).

33 or atom per phase shift
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2.4.8 Recursive squeezing

If the approximation remains valid that any loss or perturbation on
the atomic ensemble is negligible, it is possible to keep on squeezing
the precision estimation by recursively updating our knowledge based
on further measurements. That is repeating the Bayesian update condi-
tioned by new successive measurements, which for simplicity we take of
identical duration τ , to have identical phase light shot noise. Because
we take the conditional probability distribution ofM based on the pre-
vious updates p(M|ϕτn−1

s · · ·ϕτ1
s ) as the prior distribution for the n-th

measurement update, we have simply from (2.35)

σ2
M|ϕτns =

σ2
M|ϕτn−1

s

1 + κ2
n−1

where κ2
n−1 = k2σ2

M|ϕτn−1
s

/σ2
l (2.42)

We find that the general term of the previous recurrence relation is

σ2
M|ϕτns =

(
1

σ2
M,i

+ nc

)−1

. (2.43)

where σ2
M,i is the variance of the very prior or initial distribution, and

where the constant c = k2/σ2
l which depends only on the phase shift per

atom and on the phase noise due to light shot noise in the measurement
time τ . Note that the constant c is independent of the number of atoms
and can also be written explicitly here as c =

( γ
2∆

σ0
A

)2
Nph, i. e. as the

product of an effective number of photon scattering event per atom
during τ and an effective on-resonant optical depth per atom. The result
(2.43) means that in the absence of losses and when the measurement
is limited only by the quantum light shot noise, the total amount of
squeezing after n successive small squeezing steps, is the same as the
degree of squeezing achieved by a single measurement with n times
less phase noise due to light shot noise, or equivalently n times more
photons.

ξ2
nτ =

1
1 + nκ2

τ ,i
, where κ2

τ ,i = k2σ2
M,i/σ

2
l (τ )

If now the state of the ensemble evolves during the time continuous
measurement, and if one has a model for that evolution, one needs to
update the best estimation for the prior distribution between each step
with this extra knowledge. Note that the result (2.43) given by a dis-
crete update is identifical to analytically solving (in the limit of short
times/few photons) the differiential equation d

dnσ
2
M|n = −c(σ2

M|n)
2 as

done by Madsen and Mølmer (2004). This is the most trivial34 exam-
ple of a Riccati equation. This is not surprising because the differen-
tial equation for the covariance matrix35 in the continuous version of

34 separate the variable to solve it, d( 1
σ2

M|n

) = cdn and one has (2.43).
35 Which reduces to the variance here in our one-dimensional presentation
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Kalman filtering, known as Kalman-Bucy36 filtering Bucy (1970), is
the general matrix Riccati equation, a nonlinear differential equation
in the presence of measurement-induced decoherence and noise.

2.4.9 Classical versus quantum squeezing

Apart from the quantum origin of the noises introduced in the previ-
ous measurement filtering approach, one might ask where the quantum
is. It is in the experimental observation that the achieved degree of
squeezing in (∆M̂)2 or (∆Ĵz)2 leads to a conjugated anti-squeezing in
the transverse components Ĵx, Ĵy, induced by the minimally destruc-
tive interaction with the probe light. The knowledge of the system
dissipated through the continuous sampling of Ĵz, affects the quantum
state of the ensemble as defined by the Heisenberg principle. In other
words, an explicit quantum filtering description would be to recognize
that quantum mechanics is a probability theory where the multiple ran-
dom variables (observables) do not necessarily commute Bouten et al.
(2007); Stockton et al. (2004), the Heisenberg principle taken ab initio
in Madsen and Mølmer (2004); Colangelo et al. (2013).

2.4.10 Spin-squeezing criteria and multipartite correlations

The experimental observation of squeezing suggests the existence of cor-
relation among the initially Nat uncorrelated (factorizable) partitions
of the initial state37 |ψcss〉, that lead to a variation of the collective
state partition noise.
Irrespective of the basis or quantization axis ~n, the Nat two-level

atoms are said to be in a non-separable or entangled state, or the
collective atomic state is a many-body entangled state (Soerensen et al.
(2001)) when

W =
Nat(∆Ĵn1)

2〈
ˆJn2

〉2
+
〈

ˆJn3

〉2 =
Nat(∆Ĵ‖)2〈
Ĵ⊥
〉2 < 1. (2.44)

Note that this criteria has been derived from the non-separability
criterium of the density matrix which does not exhaust all type of non-
classical (independent of the measurement basis) correlation (Zurek
(2003); Ollivier and Zurek (2001)).

With our choice of quantization axis and when all the atoms are
polarized along x,

〈
Ĵy
〉
= 0, the condition (2.44) reads

36 Here the measurement process is noiseless and the state of the system does not
evolve, one only has light observation noise.

37 We remind that the preparation of the coherence spin state or particular symmetric
Dicke state, a composite state of Nat partition implicitly required particle permuta-
tion symmetry of locally indisguishable atoms.
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(∆Ĵz)2 <

〈
Ĵx
〉2

Nat
or ξ2

W ≡
Nat(∆Ĵz)2〈
Ĵx
〉2 < 1. (2.45)

Because for the particular initially prepared coherent spin state |ψcss〉
we have

〈
Ĵx
〉2

= Nat(∆Ĵz)2
i , the degree of squeezing that we have de-

fined from the intuitive notion of the fractional reduction of uncertainty
compared to the prior uncertainty,

ξ2
ideal =

(∆Ĵz(t))2

(∆Ĵz(t0))2
i

=
σ2
M|ϕτs
σ2
M

< 1, (2.46)

would constitute an experimental witness of the spin-squeezing cri-
terium W (Appel et al. (2009b)). This definition of spin-squeezing
referred to the prior variance of a CSS, also known as the standard
quantum projection noise limit, was introduced by Kitagawa and Ueda
Kitagawa and Ueda (1993),

ξ2
K =

(∆J⊥)2

(∆J⊥)2
CSS

. (2.47)

However, in the context of Ramsey spectroscopy or frequency mea-
surement based on the evolution of the quantum coherence ((2.1)),
atomic phase or also precession angle of the collective spin, the rele-
vant quantity to estimate precisely is

φ = tan−1
(
〈J⊥〉√
〈J 2〉

)
'
(
〈J⊥〉√
〈J 2〉

)
(Nat � 1). (2.48)

Therefore, the improvement of precision compared to the one achieved
by an ensemble of uncorrelated atoms or coherent state is quantitied
by the Kitagawa criteria for φ known as Wineland definition for metro-
logically relevant spin-squeezing (Wineland et al. (1994))

ξ2
W =

(∆φ)2

(∆φ)2
CSS

= Nat
(∆J⊥)2

〈J 2〉
=

Nat

2
√
〈J 2〉

ξ2
K. (2.49)

where we have used that (∆J⊥)2
CSS =

√
〈J 2〉/2 (see Heisenberg-Robertson’s

inequality38 (2.8)) such that (∆φ)2
CSS = (2

√
〈J 2〉)−1 ' 1/Nat. Because√

〈J 2〉 < Nat/2 for any collective state of Nat pseudo spin-one half
particles different than the coherent spin state, Wineland’s squeezing
criteria is more demanding, ξ2

W < ξ2
K (ξ2

W = ξ2
K for a CSS). It also corre-

sponds to the many-body entanglement witness reported above (2.45).
Consequently, Kitagawa’s squeezing is a necessary but insufficient con-
dition for Wineland’s squeezing which quantifies the sensitivity to ro-
tation of angular momentum states. This also means that there are

38 Very recently, Lorenzo Maccone found stronger uncertainty relations than
Heisenberg-Robertson’s uncertainty Maccone and Pati (2014).
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collective spin states39 with uncertainty reduced compared to a coher-
ent state which are not relevant for Ramsey metrology and which are
not multi-atom entangled states.
While it is indeed possible to beat the standard quantum limit achieved

by uncorrelated atoms with spin-squeezed states prepared conditionally
via QND measurement, there is a fundamental limit to the achievable
Wineland squeezing fixed by the Heisenberg principle (ξ2

W > 1/Nat,
Stockton et al. (2003)). The distance to this limit and the achievable
degree of squeezing is constrained by a lower bound for the variance of
any estimated observable expressed by the Cramér-Rao bound which
depends on the quantum Fisher information which is fixed by the na-
ture of the conditional probability distribution of the measurement out-
comes of the estimated observable for a particular collective state.

summary

After starting with the motivional principles of Ramsey spectroscopy,
we introduced a standard description of collective ensembles of two-
level identical atoms in terms of the pseudo spin-one half formalism.
We insisted on the fundamental role of permutation symmetry of Nat
identical boson particles which constrains the total achievable collective
spin to a maximum J = Nat/2.
We then presented the collective coherent spin state of Nat atoms

prepared in a quantum superposition of two long-lived atomic ground
states. We distinguished a dispersive and maximally transparent detec-
tion method to implement optical QND measurements of the collective
populations of these two atomic states with a precision limited by both
the intrinsic quantum noise of light and the quantum atomic projection
noise.
Such QND measurement allows the continuous and conditional prepa-

ration of collective spin-squeezed states which are relevant to entanglement-
assisted metrology to improve measurement precision beyond the one
achieved by uncorrelated ensembles of atoms. To focus on the physical
mechanisms and figures of merits, we presented a simple Bayesian ap-
proach to such continuous measurement process without any algebraic
Hamiltonian formalism or density matrix stochastic master equation.
This was motivated to render accessible and somewhat more visual,
the principles of spin squeezing and conditional spin dynamics to the
new PhD student arriving on our experiments. The fact that we experi-
mentally only record outcomes ruled by fundamental laws of probability
means that our task is often to improve a state of knowledge on a partic-
ular physical system conditioned on measurement. Here, we presented
the dispersive detection of atomic states with light. In the next chapter,
we present how we ultimately measure this light. In the third chapter,
we will be ready to only focus on the experimental protocol and results.

39 For instance, a collective mixture.





3
OPTICAL PHASE DETECTION
AT THE QUANTUM NOISE L IM IT

Electrons behave (...) in exactly the same way as photons; they are
both screwy, but in exactly in the same way.

— Richard P. Feynman

introduction

The fundamental ideas exposed in the previous chapter relies on the
detection of an atomic signal imprinted on the phase of optical probes.
However, as of today, there are no photodetectors available that are fast
enough to detect directly the phase of a field oscillating at an optical
frequency. In this chapter, we present the experimental methods used
to bypass this limitation, which achieve a phase detection sensitivity at
the intrinsic quantum noise level of the probes.
Modern quantum optics is born with Roy Glauber’s work, through a

reinterpretation of the photodetection process Glauber (1963a,b). How
we detect light in the laboratory is both central and fundamental. It
dictates our point of view on the physical systems we tried to observe
first with light. We will first recall some basic notions before we discuss
the main and often the only direct physical observable that we record
in our experiments, namely a photocurrent.
Consequently, we will describe the main features of different homo-

dyne methods we have implemented experimentally in this thesis in
order to estimate the phase of coherent states of light. These methods
are non-linear mixing processes which allow to amplify the signal of an
input state of light together with its intrinsic noise, well-above the clas-
sical technical noise of the detectors. With these methods, one can even
resolve single photons per measurement bandwidth. The estimation of
optical phase with such interferometric measurements is fundamentally
bounded to a so-called SQL due to the intrinsic quantum noise of the
coherent states which do not have a well-defined energy. In connection
with the previous chapter, it is important to recall that this limit scales
as the square root of spontaneous emission.

43
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3.1 detection of light

In our experiments, we use optical light as a meter on atoms. In general,
the simplest of our measurement, based on the light-atom interaction,
only brings into play the electrical part of the electromagnetic field of
light (electrical-dipole hamiltonian). To extract information about the
atomic system carried by light, we need to detect at least the electric
field of light, which has interacted with the ensemble of atoms. We al-
ready encounter then a serious limitation. Contrary to Hertzian waves
that can be monitored directly on an antenna, there are today no ma-
terial detectors available with the inertia to follow a field at an optical
frequency.
By default, we only have at our disposal in our experimental setup

so-called square-law photodetectors based in general on the absorption1
of the input light field. To give a concrete example, most of the vital
light detectors we have built for this thesis work are based on so-called
positive-intrinsic-negative (PIN) junction semiconductor photodiodes.
Measurement is a physical process of its own. It is central in quantum

mechanics. The nature of the detectors we use or built dictates the
nature of the physical reality we can talk about. So before we give
an account of the physical observable we record, we need to recall the
important physical meaning of the annihilation operator. As was shown
in Glauber (1964), a photodetector is only sensitive to the annihilation
operation of the electromagnetic field.

3.2 annihilation operator

In classical physics, we often give a complex representation of the elec-
tric field. For example, in the simplest case of a single time-harmonic
wave E(r, t) = 2E0(r) cos(ωt− φ), one often retains as a representa-
tion Ẽ(r, t) = E0(r,ω,φ)e−iωt with E(r, t) = Ẽ(r, t) + c.c, where c.c
denotes the complex conjugate of Ẽ. The complex representation is mo-
tivated by the great simplification in calculating all the linear equations
that the electric field obeys2 as long as the superposition principle holds.
We observe that classically, it seems a priori equivalent to choose either
Ẽ or its conjugate Ẽ∗ as a complex representation and that in addition,
they just appear as mere convenient mathematical tools. In quantum
optics, they acquire a different meaning, these are respectively associ-
ated to the annihilation and creation operators (here for the simplest
single frequency case).
The attentive reader may note that in the above trivial case, Ẽ is also

the positive frequency part of the time Fourier decomposition of the

1 This type of detection undergoes a time-reversal symmetric breaking linked to the
non conservation of the energy in the light field or irreversible cast of the input state
of light into vacuum.

2 For instance, the electromagnetic energy is non-linear in the fields.
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electric field. The straightforward generalization of the notion of the
complex representation to any (physical) time-varying signal is then
taken as the positive frequency part of its Fourier decomposition. This
bears the name of the analytic signal, α, in classical physics. It leads
us to the more general definition of the annihilation operator â as the
quantum mechanical reintrepretation of the analytical signal of the
electric field or positive frequency part of the field. As is well-known
and vital to this thesis, the real and imaginary parts of this complex or
non-hermitian quantity, are the quadratures or position and canonical
momenta of the light field. We shall see later experimentally how it is
further linked to the Hilbert transform of the electric field signal.
The eigenstates of the annihilation operator are the so-called Glauber

or coherent states whose eigenvalues are nothing but the classical com-
plex value α, which is the value of the analytic signal of the electric field.
These states are the quantum-mechanical reintrepretation of the above
classical representation of light, introduced as an electromagnetic field
wave. By construction, they are thus known as quasi-classical states.
They play an important role as robust3 probes on atoms and provide
an adequate description of the light emitted by the laser sources op-
erating above threshold we have built for our experiments. Now that
we have recalled the physical meaning of the annihiliation operator, we
will relate it to the main detection observable in our experiments, the
photocurrent. In addition, we will see how the basic photodetection
process is fundamentally related to the main concepts of our general
experimental work.

3.3 photocurrent

Classically one assumes that a photodetector is sensitive to a time-
average (due to bandwidth limitation) of the modulus square of the
electric field amplitude, i. e. ∝ |E|2 ∝ ẼẼ∗. We have seen previously
that the complex electric field Ẽ also denoted positive-frequency part
Ẽ+ and its hermitian conjugate (the negative frequency part Ẽ−) are
respectively the annihilation and creation operators which in quantum
mechanics do not commute4. The proper symmetrization of ẼẼ∗ and
in the end ordering of this operator was done by Roy Glauber Glauber
(1964) through a proper choice of the time arrow dictated by the irre-
versibility of the light-matter interaction at play in the detector. This is
central. In this thesis, you will encounter mainly two categories of light-
matter interaction phenomena: irreversible process (e. g. spontaneous
emission) and reversible process (e. g. Rabi oscillations). Spontaneous
emission exemplifies Fermi’s golden rule or Wigner-Weisskopf rule (at

3 Coherent states, also known as “pointer states” are impervious to entanglement with
the environment. They stay coherent and only suffer relaxation when coupled to the
environment (Haroche and Raimond (2006)).

4 This is the direct result of the quantization energy principle.
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long time). It is an incoherent irreversible process whereas Rabi os-
cillations represent a reversible coherent energy exchange5. The latter
fundamentally appears when the dipole-electric interaction couples iso-
lated discrete atomic energy levels while the former appears when the
discrete levels are coupled to a (degenerate) continuum (Grynberg et al.
(2010)).

In a general photodiode, discrete electronic energy levels of the semi-
conductor valence band can be coupled to a continuum of states in the
conduction band. The degeneracy of the continuum of excited states
weights predominantly the evolution of the light-(electric dipole detec-
tor) system in favor6 of −d̂ · Ê+ in front of −d̂ · Ê−.
A photodetector then only probes mainly the annihilation operator

of the input light field, that is Ê+. While Ê− is inexorably lost rapidly
into the environment. This decoherence of the negative frequencies into
the environment represents a spontaneous breaking of the time-reversal
symmetry of the light field evolution7, marked by the non-invariance of
the light-matter interaction under the exchange of â and â†. Whereas
in classical physics the negative frequencies of a real-valued signal are
superfluous due to the hermitian symmetry of the Fourier transform,
they are complementary of the positive ones in quantum mechanics due
to the non-commutation of the associated operators. As we shall see in a
next section, one way to preserve the symmetry in â and â† and prevent
loosing wave (phase) information is the homodyne technique. It consists
in shifting the origin of frequencies of the light field with respect to the
optical frequency associated to the transition energy band gap of the
detector. In other words, homodyne is a non-linear mixing process that
displaces the energy of vacuum, thereby also amplifying the quantum
noise of any coherent state of light.
The evolution of the photodetector state under the presence of the

light field leads irreversibility to an excitation in the conduction band
and depletion in the valence band. The creation of such electron-hole
pair and its routing engineered via p-n regions is not our direct phys-
ical signal. What we measure is the electrical current they produce,
i.e a count rate of pair production. This rate or photocurrent is given
by the probability per unit time to find the detector in an excited
state. This is in quantum mechanics given by the modulus square of
the transition amplitude of the interaction hamiltonian between the
initial and final state. From −d̂ · Ê+ and our simplified ideal approach,
one sees it is proportional to 〈i|Ê−Ê+|i〉 after tracing over all the final
states where |i〉 is the input state of light. The proportionality constant
being dependent on the nature of the detector (transition dipole ma-

5 We cannot tell with certainty in which of the two sub systems, light or atom, where
the interaction energy, that is the energy of the total system light+atom, is localized.

6 The matrix dipole moment element between the detector ground to the excited state
evolves as eiωbt where h̄ωb is the bandgap energy.

7 This is intimately linked to the appearence of light-quanta in quantum optics.
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trix element) and geometry8. One then recognize the photocurrent as
proportional to the ensemble average of the photon number operator9
n̂ = â†â ∝ Ê−Ê+. Therefore the photocurrent will exhibit statistics
and noise of light-quantum nature in addition to the quantum nature
of electricity. In the next section, we present the important meaning of
the quantum efficiency of this detection process. It represents one of
the major technical limit in the resolution of our measurements.

3.4 quantum efficiency

We have seen that the photocurrent produced by a photodiode detector
represents a sampling of the photon number distribution of the input
light state. Detectors are not perfect and in general the mean detected
electron count rate is smaller10 than the mean input photon number
due to (assumed) random losses. Let’s assume that the input light is a
state with well-defined photon number n (a Fock state). For an ideal
detector the success probability q to get an electron from one photon is
one. Therefore, the conditional probability Pn(m) to obtainm electrons
from n photons is also one. In presence of random loss11 q < 1. Due to
the atomic nature of the electron, its loss has a binary nature. Then,
the probability to get 1 electron from 1 photon being q, the conditional
probability to get m electrons from n photons Pm(n) is given by the
binomial law Pn(m) = (nm)q

m(1− q)n−m. If now the number of photons
is not certain due to the nature of the input light state, for example be
it a coherent state, the probability law of the electron events will be the
result of a Bernouilli process. Indeed, if P (n) denotes the probability
distribution of the photon number of the light state, the probability
distribution of the electron number outcomes P (m) is the sum over
the photon number of the product of the conditional probability Pn(m)

and P (n).

P (m) =
∑
n

(
n

m

)
qm(1− q)n−mP (n). (3.1)

Here, n!
m!(n−m)! = (nm) is Newton’s binomial coefficient. For a coherent

state with analytic signal α, the decomposition onto the Fock state basis
gives access to the probability of finding the value n for the number of
photons

P (n) = e−|α|2 (|α|
2)n

n!
. (3.2)

8 One needs to integrate our ideal point-like atom detector model over the cross-section
between the spatial mode of the light field and the detector sensitive area.

9 To go from the Dirac bosonic operators to the electric field operators, one only needs
in a single-mode description the electric field amplitude of a single photon.

10 before any possible avalanche amplification stage
11 that we cannot really distinguish from either electron or photon losses.
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This is a Poisson distribution with mean value |α|2 such that (3.1) will
appear as a convolution between a binomial distribution and a Poisson
distribution.

P (m) =
∑
n

(
n

m

)
qm(1− q)n−me−|α|2 (|α|

2)n

n!
,

=
qme−|α|2

m!

∑
n

1
(n−m)!

(1− q)n−m(|α|2)n,

= qme−|α|2 (|α|
2)m

m!

∑
k

((1− q)|α|2)k

k!
, k = n−m

P (m) = e−q|α|2 (q|α|
2)m

m!
. (3.3)

Implicititly in the above we have m ≤ n (q ≤ 1). We have just shown
that the convolution of the Poisson distribution with mean value |α|2
and the binomial distribution with success q leads to a Poisson distribu-
tion for the electron distribution with mean and hence variance both
reduced by q compared to the statistics of the input coherent states
P (n). This means that one cannot distinguish the output of the pre-
vious detector from an ideal one (q = 1) with an input coherent state
with mean photon number equal to q|α|2. This binomial loss is analog
to the effect a beamsplitter produces when mixing the input coherent
state with vacuum, with electrical amplitude transmission coefficient
√
q. (1− q) percent of the energy is dumped into the (environment)

vacuum port. Throughout this thesis, we take q as the definition of the
input light state detection quantum efficiency (it is unitless).
It is clear that for a n photon number Fock state, the mean value

of the number of produced electrons will be given by the statistical
mean of the binomial distribution, nq. But this is also the mean value
to be expected for the inefficient detection of a coherent state with
mean photon number n. The difference in their nature is to be found
in the noise of the photocurrent. The variance of the binominial distri-
bution is nq(1− q) while for a Poisson distribution the variance is also
the mean nq. The electron count rate from a light Fock state is then
sub-Poissonian with a Fano factor12 equal to the quantum inefficiency
(1− q). Even when the photon number is perfectly defined (Fock state,
zero variance), the discreteness of the electron gives rise to a photo-
electron13 shot noise nq(1− q) on the final photocurrent. Increasing
the quantum efficiency thus increases the fidelity of the reconstruction
of an input state based on the measurement of its statistical outcomes.
We note that the experimental measurement of the quantum efficiency
requires in general an external calibration of the power impinging on

12 ratio of the variance to the poisson variance.
13 To clearly claim the origin of the photocurrent noise from the quantum noise of a

coherent state of light a sufficiently large q is required.
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the detector (unless one has a source of correlated photon pairs, Migdall
(2001)).

3.5 photocurrent shot noise

In the previous simple illustration, there is no mention of any detection
integration time. Experimentally, we cannot measure for an infinitely
long time nor produce infinitely long pulses of light. Therefore P (m)

should be considered as a distribution of electrons produced while sam-
pling the input light photon number statistics during a time τ . If Φ
denotes a constant input photon flux, n should be replaced in the
above by Φτ and the mean of P (m) gives the expectation value of
the photocurrent i = −em/τ . The average number of electrons pro-
duced per interrogation time or14 average photocurrent is then equal to
〈i〉 = −e 〈m〉/τ = −e/τ

∑
mmP (m) = −eq|α|2/τ , with q|α|2 = 〈n〉

the mean number of detected photo-events during the time τ . From,〈
i2
〉
= e2/τ2∑

m

m2P (m) = e2/τ2q|α|2(q|α|2 + 1), (3.4)

we deduce that σ2
i =

〈
i2
〉
− 〈i〉2 = e2/τ2 〈n〉 = −e/τ 〈i〉. Introduc-

ing the electrical bandwidth of the detector as B = 1/(2τ ), the
root-mean-square (RMS) photocurrent noise or shot noise writes as
∆i =

√
−2eB 〈i〉 (see Lye et al. (2003)). We shall discuss this band-

width later in this thesis.

3.6 dominant shot noise

If the previous shot noise is the main source of noise on the output
photocurrent signal during the interrogation time τ , then we naturally
introduce the shot noise limited signal-to-noise ratio of the photocur-
rent measurement for coherent states of light as

SNR =

∥∥∥∥〈i〉∆i

∥∥∥∥ =
√
| 〈i〉 |√
2eB

=
√
〈n〉 =

√
q 〈nexp〉, (3.5)

where 〈nexp〉 is the expected average number of photons impinging on
the detector during the time τ . For the previous time-resolved detection
and a fixed input light power, 〈n〉 is proportional to the average detec-
tion time τ . Therefore, increasing the detection bandwidth decreases
the the signal-to-noise ratio. In general, the previous fundamental shot
noise limit arising from the quantum nature of light, even for an ideal
detection with perfect quantum efficiency q = 1, is not directly observ-
able for any detection bandwidth and input light power due to other
sources of noise linked to the technical design of the detector contam-
inating the final readout photocurrent. As we shall see, it is possible

14 up to the charge of the electron −e where e is the elementary charge.
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to bypass these technical limitations using homodyne detection, which
allows to resolve in real-time (per detection bandwidth) a single photon
(if q = 1). However, the experimental applicability of such technique or
dynamic range of the above shot noise limited signal-to-noise will be
constrained in bandwidth by this extra sources of electronic noise.

3.7 interferometric detection basics

In this section, we present the concepts behind the detection of the
phase shift imprinted by the atoms onto a probe light beam propagating
through the atomic sample (see previous chapter).
We have recalled above that for a single radiation mode with optical

angular frequency ω, the electric field operator Ê+ is equivalent to the
annihilation operator â for that mode, up to a proper choice of normal-
ization. That is, when the latter creates a photon, the electric field op-
erator creates a quantum of electric field amplitude15 ε =

√
h̄ω/2ε0L3

in such a way that the total energy released in the quantization volume
L3 is h̄ω. We ignore for the moment the discussion of the polarization
and consider that all the fields share the same state of polarization.
We have seen that a standard photodetector is only sensitive to the

positive frequency part or analytic signal of the input electric field.
Therefore, by reading the photocurrent, it is not possible to access the
two quadratures of a probe field independently which is necessary to
determine the phase of the field. However, the detector state evolves
linearly with the input electric field. Thus, as long as the superposition
principle holds in the detector, we can obtain a phase sensitive signal by
interfering the signal field of interest with a known reference field before
the detector. That is, we can replace in the above Ê+ = Ê+

signal + Ê+
ref.

The photocurrent will now be given by the expectation value of the
operator

Ê−Ê+ = Ê−signalÊ
+
signal + Ê−refÊ

+
ref + Ê−refÊ

+
signal + Ê+

refÊ
−
signal.

The signal is now sensitive to both the positive and negative frequency
parts of the signal field. The first two terms are optical rectifications16.
The last two terms represent a non-linear mixing process whereby the
signal field is amplified by the reference field.
This is very important as it provides a mean, independent of the

nature of the detector, to amplify the quadratures of the signal field but
also their quantum fluctuations above the noise sources introduced by
the technical detection of the produced photocurrent. It is the key to the
detection of single probe photons without photon counting detectors.

15 This is also the magnitude of the electrical fluctuations of vacuum. Please note that
the vacuum electric field noise ε depends on the frequency of the mode.

16 Energy is non-linear in the fields
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3.7.1 Coated beamsplitter

Experimentally, the previous interference operation can be realized by
overlapping two coherent beams of light into a common spatial mode
via a beamsplitter as depicted in figure 3.1.

E−
PD	  

PD	  
Photocurrent	  
processing	  

Es

E+

Eref

Figure 3.1: Typical coated beamsplitter mixing of the signal field and refer-
ence fields. The two output ports are monitored by single photo-
diode detectors producing the measured photocurrents.

A typical optical beamsplitter is made of a transparent (glass) mate-
rial with a deposited reflective coating (e. g. fused silica) on one surface
whose refractive index is usually lower than that of the glass support.
Classical boundary conditions fix that electromagnetic waves experi-
ence a phase shift of π upon a reflection from one medium to another
with a lower refractive index. The index of air is lower than the coating
material giving a π shift whereas there is no shift in reflection from the
back side of the splitter after propagation in the glass.
The positive frequency part of the total electric field at the two out-

put ports of the beamsplitter are therefore written as a function of the
input fields as

Ê+
+ =

Ê+
s + Ê+

r√
2

, (3.6)

Ê+
− =

Ê+
s + e−iπÊ+

r√
2

, (3.7)

where
√

2 accounts for simplicity for identical power transmission and
reflection coefficients of 50%, and e−iπ the single local dephasing expe-
rienced by the field reflected at the interface.
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3.7.2 Photo-current operators

The detection of either Ê+
± will produce the following photo-current

operators

Î± = Ê−±Ê+
± =

1
2 (Ê

−
s Ê+

s + Ê−r Ê+
r ± Ê+

r Ê−s ± Ê−r Ê+
s ), (3.8)

= ε2î±, (3.9)

î± =
1
2 (â

†
sâs + â†râr ± ârâ†s ± â†râs), (3.10)

where ε is the unit of vacuum noise approximately identical for the
relatively small difference in frequencies between the signal and the
reference fields we have used. We have introduced the annihilitation
operators for the reference and signal modes. We note that the two
modes are not entangled and the above operators apply onto the tensor
product of the two input states before the beamsplitter ψ = ψs ⊗ψr.

3.7.3 Differential photo-current

One might see advantages in measuring the difference between the two
previous photocurrents and define a differential photo-current operator
d̂i with

〈ψ|d̂i|ψ〉 =
〈
î+ − î−

〉
=
〈
ârâ†s + â†râs

〉
=
〈

2Re(â†râs)
〉

. (3.11)

Even though the expectation values of the first two independent terms
from (3.9) subtract out, their uncorrelated fluctuations will add in
quadrature and still contribute to the total detection noise. The advan-
tage of taking the difference apart from increasing the phase-sensitive
signal power is in the suppression of classical intensity fluctuations if
both signal and reference mode are derived from the same light source.
We shall come back later to the sources of noise on the input light field
in addition to the noises linked to the electronic detection as mentioned
previously. We imagine here an ideal situation where the only source
of noise arises from the quantum nature of light.

3.7.4 Balanced homodyne with coherent states

We consider the signal and reference states as coherent states respec-
tively |ψs(t)〉 = |αs(t)eiϕs〉 and |ψr(t)〉 = |αr(t)eiϕr〉. Coherent states
in our choice of Schrödinger representation evolve simply in time as
〈ψs(t)|âs|ψs(t)〉 = e−iωst 〈ψs(0)|âs|ψs(0)〉 in such a way that the ex-
pectation value of the differential photocurrent is independent of time
folllowing our particular case known as homodyne where ωs = ωr.

〈ψ|d̂i|ψ〉 = 2|αr||αs| cos(ϕs −ϕr), (3.12)
= 2|αr||αs| [cos(ϕs) cos(ϕr)− sin(ϕs) sin(ϕr)] . (3.13)
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The phase of the reference field, ϕr, can be adjusted (mod π) to
measure either what will be called the in-phase component of the signal
field (for ϕr = 0) or the one in quadrature (for ϕr = π/2). it is well-
known that these are related to the canonical momenta of the field.
Indeed, the complex-valued analytic signal can also be written as α =

|α|e−iϕ = x+ ip. The real (imaginary) part of the analytical signal is
known classically as the in-phase (quadrature) component of the field.
In quantum optics, this is the expectation value of the real (imaginary)
part of the annihilation operator

√
2â = X̂ + iP̂ . The difference in

this quick reminder with the canonical momenta being found in the
normalization of the field operators, i. e. ε and in the freedom in the
electric field amplitude definition. With the previous definition, we can
indeed rewrite (3.13) as

〈ψ|d̂i|ψ〉 =
〈
î+ − î−

〉
=
〈
X̂rX̂s + P̂rP̂s

〉
, (3.14)

= |αr|
(
cos(ϕr) 〈ψs|X̂s|ψs〉+ sin(ϕr) 〈ψs|P̂s|ψs〉

)
,
(3.15)

which recalls the principle of quantum state tomography.

3.7.5 Light noise amplification

Where the quantum description makes a difference is in the fluctuation
of the photocurrent. Denoting ∆ϕ = ϕs −ϕr, it is easy to show that

〈ψ|d̂2
i |ψ〉 =

〈
(î+ − î−)2

〉
, (3.16)

= (ârâ†s)2 + (â†râs)2 + 2â†rârâ†sâs + â†râr + â†sâs, (3.17)

= 4|αr|2|αs|2
(
1− sin(∆ϕ)2

)
+ |αr|2 + |αs|2. (3.18)

We then see that if the strength of the reference signal is high enough
we can in addition of amplifying the signal in (3.13), also amplifly the
fluctuations in the signal field quadratures above |αs|2 and also above
the potential technical noise of the detector. We recall that the noise
on the photocurrent from coherent states is independent of the relative
phase between the signal and the reference, with (3.13), one can find

σ(d̂i) =
√
〈ψ|d̂2

i |ψ〉 − (〈ψ|d̂i|ψ〉)2 =
√
|αs|2 + |αr|2. (3.19)

However the phase sensitivity of the measurement can depend on the
phase. The intrinsic quatum mechanical statistical noise (3.19) is only
due to the random arrival of photons at the detectors. We recall that
|αs|2 = 〈n̂s〉 = ns (|αr|2 = 〈n̂r〉 = nr) is the mean number of photons
in the signal (reference).
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3.7.6 Phase sensitivity

The measure of the differential photocurrent is said to be phase sensitive
when one can resolve a variation in the phase ϕs which is larger than
the previous intrinsic noise of the measurement. For a reference phase
locked to ϕr = π/2, the mean differential photocurrent will vary to
first order by an amount∣∣∣∣∣δϕs∂ 〈ψ|d̂i|ψ〉∂φs

|ϕr=π
2

∣∣∣∣∣ = 2|αr||αs| cos(ϕs)δϕs, (3.20)

upon a variation δϕs of the signal phase. This quantity will be signif-
icant if it is larger in absolute magnitude than σ(d̂i). We can define
a phase sensitivity δϕs with respect to the lower bound of the chosen
definition of the significance or unit SNR as

δϕs =

√
|αs|2 + |αr|2

2|αr||αs| cos(ϕs)
'
√
|αs|2 + |αr|2
2|αr||αs|

, (3.21)

where the last equality applies for small phases ϕs, (cos(ϕs) ∼ 1),
which is around the so-called point of highest sensitivity (minimum
phase resolution) which happens for ϕs near 0. Otherwise, the phase
sensitivity will vary with the phase.

3.7.7 Balanced versus unbalanced quantum efficiency

If the reference field power is much stronger than that of the signal, one
can gain a factor of

√
2 in sensitivity compared to the situation where

the powers are equal.
For balanced powers |αs|2 = |αr|2, and then from (3.24), one has

δϕs =
1√

2|αs|
=

1√
2|αr|

=
1√

2 〈ns〉
. (3.22)

If |αr|2 � |αs|2, the noise on the photocurrent signal is dominated
by the reference beam fluctuations and therefore the phase sensitivity
is limited by the signal fluctuations !

δϕs =
1

2|αs|
=

1
2
√
〈ns〉

� 1
2|αr|

=
1

2
√
〈nr〉.

(3.23)

Apart from the quantum efficiency q, due to the imperfect nature
of the detector equivalent to a random loss of signal photons, which
will affect the previous sensitivity, any noise free classical gain on the
photocurrent will not change this fundamental limit in the SNR.
Experimentally, the power of the reference is never unlimited nor

infinite. We could thus rewrite

δϕs =

√
|αs|2 + |αr|2
2|αr||αs|

=
1

2
√
qr 〈ns〉

, (3.24)
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and interpret the effect of the finite reference and signal power ratio as
an additional detection quantum efficiency qr, (Appel et al. (2007))

qr =
|αr|2

|αr|2 + |αs|2
=

(
1 + |αs|

2

|αr|2

)−1

, (3.25)

given as the ratio of the intensity noise of the reference beam to the
total photocurrent noise, here in absence of extra technical noise only
due to the total light intensity impinging on the two photodetectors.

3.8 heterodyning

We would like to generalize the previous results to the situation known
as heterodyne where the signal and reference fields evolve in time at
different frequencies. As we shall see, compared to homodyne, hetero-
dyne has a higher shot noise limited minimum phase resolution. But
in many cases during this thesis experimental work, it has appeared
very helpul in physical data recording with dominant low frequency
technical noise and in the first steps towards the real-time detection of
continuous atomic signals.
To avoid rewriting everything, we can simply now consider this dif-

ference in frequencies as an extra time-dependent phase. Without loss
of generality we now replace ϕs(t) = ϕs − δωt, where ϕs will always
refer to the direct current (DC) phase if not specified.
The differential photocurrent now becomes time-dependent

〈ψ|d̂i(t)|ψ〉 = 2|αr||αs| cos(∆ϕ− δωt), (3.26)

where we have set ∆ϕ = ϕs − ϕr. This means now that every half os-
cillation period t = π/2(δω), the photocurrent measures alternatively
the quadratures of the signal, i. e. the quadratures X̂ and P̂ are sam-
pled independently (for ϕr = 0) but not simultaneously. To extract
the phase information, the photocurrent signal is mixed down to base-
band, that is, we bring to DC respectively the in-phase and quadrature
components by multiplying17 it electronically respectively with a radio-
frequency (RF) wave whose phase can be adjusted to produce either
cos(δωt) or sin(δωt). The components are then averaged (low-pass fil-
tered) over a time τ = 2πl/δω where l is an integer. For the component
in quadrature with the RF phase, we have for instance

dsini =
1
τ

∫ τ

0
〈ψ|d̂i(t)|ψ〉 sin(δωt) dt, (3.27)

= 2|αr||αs|
1
τ

∫ τ

0
cos(∆ϕ− δωt) sin(δωt) dt, (3.28)

= |αr||αs| sin(∆ϕ). (3.29)

17 There is no such thing as a multiplier. The electronics frequency mixers we used
turn on and off the input signal at a given frequency.
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Compared to (3.18) we loose a factor of 2 in signal compared to the
homodyne signal. However the noise power also looses a factor of 2 from
the previous signal processing such that (3.19) only reduces by

√
2 and

therefore one only looses a factor
√

2 in phase-sensitivity compared to
(3.24).

δϕhetero
s =

1√
2qr 〈ns〉

=
1√

2qrτ
〈
φ̂s
〉 , (3.30)

where 〈ns〉 is the mean number of the signal photons sampled during
time τ . Indeed, it is important to identify |α|2 = 〈n̂〉 = τ

〈
Φ̂
〉
where

Φ̂ is the photon flux operator. For a fixed input flux or power, we can
increase the phase-sensitivity by averaging longer (i. e. more photons).
It is not trivial to estimate the noise power after the classical multipli-

cation by the electronics reference wave at sin(δwt). To find the above
results we considered that a classical stochastic photocurrent signal is
fed to the mixer. This classical photocurrent presents quantum fluctua-
tions as the result of the random arrival photons on the photodetector.
In this case, the noise is calculated from (3.18) where one should iden-
tify ∆ϕ  ∆ϕ− δωt to keep the definition ∆ϕ = ϕs − ϕr. Therefore,
the instantaneous noise on the input signal is independent of the phase
and random in time. However, upon further mixing at δω with sin(δwt)
the instantaneous input noise power becomes time dependent. The only
contribution that will remain at DC after time-averaging is the instanta-
neous noise power component sin(δωt)2δi2 where δi =

√
|αs|2 + |αr|2

is the stochastic light shot noise fluctuations on top of the classical
photocurrent which have entered the mixer during the integration time
τ such that the time-average or RMS shot noise is

√
|αs|2 + |αr|2/

√
2.

We will comment on this result in more detail in later sections.

3.9 single versus double quadrature measurement

From (3.11), it is clear (if the reference is well-known) that homodyne
or heterodyne does not exactly detect a phase but rather the observ-
able x̂ = eiϕs â†s + e−iϕs âs. Above, we have only commented on single
quadrature measurements. In this case, phase information is extracted
from the photocurrent, for instance in the balanced homodyne case
(3.13) as

ϕs = ϕr + cos−1
(
〈ψ|d̂i|ψ〉
2|αr||αs|

)
. (3.31)

This means that the single quadrature measurement requires a prior
knowledge of both coherent states amplitudes or in classical terms, a
calibration of the amplitude of the interference fringe. In addition, the
extracted phase ϕs is only defined in a π interval. This contrasts with
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an estimation of the phase shift based on independent measurements
of the two quadratures x and p.

ϕs = ϕr + tan−1
( 〈ψ|p̂|ψ〉
〈ψ|x̂|ψ〉

)
. (3.32)

The phase is now well-defined in a 2π interval and there is no explicit
need to know the field strengths. However, the drawback is that the
independent light shot noise from the independent double quadrature
measurement will add in quadrature. In effect, this would mean to ac-
quire twice as many data samples to compensate. For the single quadra-
ture measurement, ϕs−ϕr is adjusted to the point of maximum phase
sensitivity while for the double quadrature measurement, this point
needs to be alternatively shifted by π/2. For heterodyne, this happens
naturally every half period of the beatnote frequency. This has led us
to another strategy we have implemented experimentally at the early
stage without enough electronic equipments (see next section).

3.10 phase estimation via hilbert transform

In the case of heterodyning, the photocurrent reproduces the narrow-
band real quadrature x(t). Clearly, if one could estimate the annihilia-
tion operator, i. e. reconstruct the analytic signal α(t) = x(t) + ip(t),
then the instantaneous phase would be given by the argument of α(t) =
|α|e−iϕ(t) or i ln(x(t) + ip(t)). We can obtain the quadrature p(t) by
taking the Hilbert transform of x(t), which is the convolution18 p(t) =
x(t) ? (1/πt). cosϕ and sinϕ are not independent here in the sense that
they are related by causality19 and the above Hilbert transform is the
mathematical name of the Kramers-Kronig relations20.

3.11 remark on the detected quantum noise

It is possible to find the noise on the differential photocurrent by eval-
uating

σ(d̂i) =
√
〈ψ|d̂2

i |ψ〉 − (〈ψ|d̂i|ψ〉)2 =
√
|αs|2 + |αr|2, (3.33)

where d̂i = î+ − î− is the differential photocurrent operator. Even
though (3.33) would give the right answer for the homodyne case and
for the instantaneous noise of heterodyne, it might be misleading to use
such an operator to predict the noise after the entire detection chain.
It can lead to physical aberration if the photocurrent is further up or
down frequency mixed. This is because we actually do not measure

18 In frequency domain, it is equivalent to a −π/2 phase shift of the positive frequencies
and a π/2 of the negatives ones. This leads to destructive interference of the negative
frequencies when added onto the original signal x.

19 In quantum mechanics, measuring x before p is different than the reversed order.
20 that the imaginary part is the Hilbert transform of the real part.
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î+ − î−. Rather, the expectation value of the latter contributes to the
probability per unit time of creating a photo-electron.
Each detector produces a classical photocurrent corresponding to a

time continuous sampling of the expectation value of the operator î±.
The term (±ârâ†s ± â†râs)/2 has a well-defined expectation value for
coherent states whereas (â†sâs + â†râr)/2 does not. The latter has in-
trinsic ensemble average quantum fluctuations that lead to a stochastic
noise added on top of the former classical well-defined signal, due to
the random arrival of photons on the detectors. This only source of
quantum noise on the photocurrent is independent for each detector in
such a way that they will add in quadrature if one measures a differ-
ential photocurrent. While on average, the differences of these optical
rectification terms cancel out. We could then write the differential pho-
tocurrent signal as s(t) = i(t) + δi(t) where i(t) is the time evolution
of the well-defined expectation value 〈ψ|d̂i(t)|ψ〉 and δi(t) is a random
offset increment from the statistical ensemble average uncertainty of
â†sâs + â†râr. As in Brownian motion, δi(t) is not differentiable at time
t and should be understood as a value sampled from the distribution
of the photon arrival times here for coherent states of light.
Therefore, it is clear that upon mixing the output noisy photocurrent

difference with sin(δωt), the added random fluctuations will also be
multiplied. After a time-average multiple of the mixing period, these
do not contribute to the mean value of the signal. However, the noise
power of the photocurrent, independent of the phase sensitive part i(t)
of the signal, will be reduced by half after the time average∫ τ

0
sin(δωt)2δi2 dt/τ = δi2/2.

The above remark is important as it allows us to simply use the classical
representation to describe the signal as long as the quantum aspect,
here in the existence of a fundamental light shot noise from coherent
states, is taken into account in the final SNR.

3.12 heterodyne with homodyne sensitivity

We would like to anticipate on the ideas we have implemented for the
second of our main investigated thesis project. We have nocited that
the previous penalty of

√
2 in phase sensitivity of single heterodyne

compared to homodyne can be overcome for the same total light power
in the signal. Consider that the signal is now made of the superpo-
sition of two coherent fields with opposite phase ϕs and separated in
frequencies by 2δω. In addition, the fields have equal strength and their
frequencies are symmetric compared to that of the reference field. We
have Ê+

s = Ê+
s+ + Ê+

s− and |ψs〉 = |ψs+〉 ⊗ |ψs−〉. Their explicit rep-
resentation is |ψs±(t)〉 = e−iω± |αs±e±iϕs〉 where |αs+ | = |αs− | and
ω± = ωr ± δω, ωr being the optical frequency of the reference field.
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Starting from (3.13) which involves the sum of â†râs and its hermitian
conjugate operator (twice the classical real part).

〈ψ|d̂i|ψ〉 = 〈ψ|â†râs + h.c|ψ〉 (3.34)
= 2|αs+ ||αr| [cos(δωt− (ϕr + ϕs)) + cos(δωt− (ϕs −ϕr))] .

From the previous result, it seems that upon the previous demodulation
and averaging procedure, we might obtain twice the information about
ϕs as with the earlier single heterodyne. Actually not twice but

√
2,

as we will now see when comparing the methods for identical invested
light power. Both methods require to lock the phase of the reference
ϕr and the previous observation can be read directly from (3.34) if we
measure ∆ϕ = ϕs i. e. ϕr = 0. This would give for the quadrature
component

dsini =
1
τ

∫ τ

0
〈ψ|d̂i(t)|ψ〉 sin(δωt) dt, (3.35)

= 2|αr||αs± | sin(ϕs). (3.36)

Because our two sub-signals have equal strength and each carries half
of the total power of the total single signal in the single heterodyne
method, we identify |αs| =

√
2|αs± | for comparison. In addition their

respective light noise contributions are uncorrelated (product states).
To deduce the phase sensitivty it is easier to see first that in the limit
of a stronger reference beam power, only the shot noise of the reference
contributes to the noise power which is averaged as before and then
reduced by a factor of 2 due to the demodulation. Therefore, (3.23)
gives here

δϕs =
1

2
√

2|αs± |
=

1
2|αs|

=
1

2
√
〈ns〉

, (3.37)

where we have used the previous identification showing that the sym-
metrical dual heterodyne method yields the same phase sensitivity as
homodyne if the powers in the total signal field are identical. The gen-
eral expression for the phase sensitivity is readily obtained by using
again a quantum efficiency

q′r =
b|αr|2

|αr|2 + |αs+ |2 + |αs− |2
, (3.38)

where the factor of b = 2 is due to the reduction in the noise powers
from the averaged demodulation and can be considered as an extra de-
tection inefficiency. It is a matter of choice to keep the earlier definition
of qr and consider the demodulation efficiency b = 2 such that

δϕs =
1

2
√
bqr|αs± |

=
1√

2bqr|αs|
=

1√
2bqr 〈ns〉

, (3.39)

as |αs| =
√

2|αs± |, where qr = q′r/b. Therefore, as long as the noises
of the two signals add in quadrature and the signal measures twice the
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phase compared to single heterodyne we recover the 3dB penalty in sig-
nal power to noise power. Indeed, for a strong reference power qr ∼ 1,
we find the same result as (3.23). All the previous results are based on
(3.34), it is therefore important to mention that to arrive at the latter,
we have assumed that the optical rectification terms â†sâs+ â†râr in (3.9)
have been filtered out by the detection chain. Whereas for homodyne
both terms are DC components, for the dual-heterodyne procedure, the
term associated to the signal â†sâs will give rise to a frequency compo-
nent at 2δω due to interference between the sub-signals. This needs to
be filtered out. We will present in more detailed this dual-heterodyne
technique later in the thesis at the heart of the nanofiber experiment
which is really not suited to detect classical phase dispersion but really
suited to measure anomalous dispersion.

3.13 single photodetector

If only one photodetector is available in the laboratory, then one only
measure either the outcomes of î+ or î−. In this situation, the terms
responsible for the quantum fluctuations are on average not subtracted
out and clearly expose itselves as a non-zero noisy offset. Assuming this
offset is subtracted for homodyne measurement via calibration, we can
show that the phase sensitivity, for a general beamsplitter with R : T
intensity reflection and transmission coefficients, is obtained from21

〈ψ|î±|ψ〉 = R|αs|2 + (1−R)|αr|2 ± 2
√
R(1−R) cos(φs − φr).

If we assume that the light power of the reference at the detector is
infinitely strong compared to the signal power at the detector, R|αs|2 �
(1−R)|αr|2

δϕ =
1

2
√
R|αs|

=
1

2
√
Rns

, (3.40)

or in terms of the mean fraction of signal photons lost, Tns, T = 1−R,

δϕ =
1

2
√
(1− T )ns

. (3.41)

If the signal shot noise is not negligible compared to the reference shot
noise (finite reference power) we will write as earlier

δϕ =
1

2
√
qr(1− T )ns

, (3.42)

where qr =

(
1 + 1− T

T

|αs|2

|αr|2

)−1

. (3.43)

In the case of single heterodyne, the mean DC offset can be high-pass
filtered and as before we loose a factor

√
2 in phase sensitivity from the

effective bandwith of the mixing signal process.
21 we have assumed that the coating and anti-reflection coating coefficients are identi-

cal.
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3.14 differential homodyne

From the previous relations, it is straighforward to find the result for
the general unbalanced (R 6= T ) differential homodyne measurement
with two photodetectors monitoring the two outputs ports (〈ψ|î+|ψ〉 −
〈ψ|î−|ψ〉). We find, as long as the energy is conserved by the linear
optics beamsplitter (R+ T = 1),

δϕ =
1

2√qrns
, (3.44)

where qr = f(R)

(
1 + |αs|

2

|αr|2

)−1

and f(R) = 4(1−R)R.

(3.45)
The most efficient detection that yields the minimum phase resolution is
found at the maximum of f(R). Readily, the balanced mode (R = T =

1/2)) is the optimal one. This is because, even though the shot noises
from both detectors add in quadrature and are independent of R and
T from the conservation of energy, the phase sensitive signal depends
on the amplitude of the fields, proportional to the square roots of the
reflection and transmission coefficients.

3.15 remark on optimal loss

A few insights can be gained by considering that a too familiar tech-
nical limitation is not a fundamental one. It is obvious that with a
single detector and an infinite resource of reference field power, the
minimum phase resolution limited by the signal photons is achieved for
the minimum fraction of signal photon loss R. However, if the ratio
x = |αr|2/|αs|2 is finite before mixing on a beamsplitter, a realistic
situation, what is the optimal value for R ? In the differential measure-
ment, which conserves the total energy found before the beamsplitter,
the optimal value of R is found independent of x. For a single port
measurement, we find instead that there exists an optimal beamsplit-
ter reflection coefficient given by

R =
1√
x+ 1 with x ≥ 0. (3.46)

Here x is always positive and R is the intensity reflection coefficient
of the reference beam always positive and smaller than 1. We assume
that the technical noise of the detectors is not a fundamental limit and
we have neglected it so far. The obvious question will be to compare
the optimal phase resolution in this situation with the differential bal-
anced homodyne case. The quantum efficiency of two-port homodyne
is optimal for R = 1/2 and is qbhr = x/(x+ 1). The optimal quantum
efficiency for single port homodyne and optimal R(x) is given by

qr =
x

(
√
x+ 1)2 , (3.47)
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which saturates to 1 for large x. Thus, we have

qbhr
qr

= 1 + 2
√
x

1 + x
. (3.48)

Already at x ∼ 103, the quantum efficiency a 50 : 50 differential bal-
anced homodyne measurement would provide is only 5% times greater
than the quantum efficiency a single port homodyne measurement with
a 95 : 5 beamsplitter (5% of signal power loss) would achieve. This ob-
servation explains why we decided to build a simple and robust single
photodiode detector in the nanofiber experiment to save time for all
the other important things to be built as well.

3.16 visibility and quantum efficiency

Another important imperfection that can be cast into an additional de-
tection quantum inefficiency is the quality of the mode overlap (e. g. po-
larization mismatch, spatial mode overlap, beam size and divergence
etc) between the probe (signal) field and the optical local oscillator,
called up unitl to now reference field.
This quality is experimentally estimated by measuring the interfer-

ence fringe visibility V given by the beatnote intensity contrast (see for
instance Oblak et al. (2005)). An imperfect visibility (V � 1) is equiva-
lent to an attenuation of the probe field strength (and of the beatnote)
by V. Therefore, it is also equivalent to a loss of probe photons of
(1− V2). Or as before, it is equivalent to the effect of a beamsplitter
with intensity transmission coefficient V = V2 where V is the quantum
efficiency associated to the imperfect visibility V.

V =
Imax − Imin

Imax + Imin − 2f =
〈ψ|d̂i(t)|ψ〉∆ϕ=π − 〈ψ|d̂i(t)|ψ〉∆ϕ=0

〈ψ|d̂i(t)|ψ〉∆ϕ=π + 〈ψ|d̂i(t)|ψ〉∆ϕ=0
(3.49)

V =
2
√
IrIs

Ir + Is
(3.50)

where f is a possible electronic detection measurement offset. Because
the quantum efficiency scales quadratically with the visibility it should
be made as close as possible to unity.

3.17 quantum efficiency in presence of technical noise

In a realistic technical implementation, extra classical noise pollutes
the photocurrent signal. We denote by χ the electronic technical noise
power and we assume it is independent of the input light. Therefore,
it simply adds in quadrature to the photon shot noise power and its
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effect can be accounted for a modification of the detection quantum
efficiency. Here for balanced homodyne,

qr =

(
1 + |αs|

2 + χ(τ )

|αr|2

)−1

. (3.51)

In the next section we shall discuss the main dominant sources of noise
contributing to χ(τ ). To stay in the right units, χ(τ ) should be in-
terpreted in (3.51) as a photon shot noise equivalent electronic noise.
Readily, we explicitly showed that such noise power can have an arbi-
trary (not necessarily stochastic) frequency spectrum, where as before
τ is the measurement averaging time. χ(τ ) is the average technical
noise power during time τ . The overall detection quantum efficiency in
presence of technical noise now becomes measurement time dependent.
This is extremely important because it means that a perfect characteri-
zation or state reconstruction fidely of an input light field is constrained
to a usually narrow detection band where light shot noise dominates
classical technical noise.

I do not have enough time to go through all the technical details of
the design of all the light shot noise limited photodetectors we have
built for the experiments. I will at least finish this chapter by saving
what I believe to be the most important working ideas and ingredients.

3.18 insights into photocurrent measurement

3.18.1 Photovoltage versus photocurrent

In general, when one uses electrical sensors as measurement devices
in the laboratory, one often has to make a choice between measuring
either a voltage or an electrical current. The winner method is often
the one which has the best combination of a wide linearity in response
with respect to the input signal (large linear dynamic range), a quick
time response and a low-level of measurement induced noise. One has
to make this choice for light sensing.

3.18.2 Operation modes

The photocurrent produced from the semi-conductor junction of a pho-
todiode needs to be measured. With a zero external bias voltage, the
photodiode operates in the so-called photovoltaic mode where the pro-
duced photo-electron current cannot flow out of the semi-conductor
and therefore accumulates at its electrodes (after being diffused by the
n-p doped regions) while effectively charging it and building a voltage
across. The already accumulated charges shield the new coming ones
(capacitance effect). The sensitivity of the diode depends on the volt-
age across its junction and therefore this can build a nonlinear response
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with respect to the incident light energy. Such a detection mode can
be interesting to integrate very weak input light power (solar cells).
However, in order to measure such voltage signal one needs to con-
nect the diode electrodes to a voltmeter or oscilloscope with a high
input impedance. Otherwise current will be drawn from the charged
diode junction which would lower the signal voltage. Even though this
is achievable22, a photodiode has a small but non-negligible junction
capacitance which in series to such high impedance measurement point
will make the light measurement sensitivity very slow.

3.18.3 Photoconduction and transimpedance stage

For these reasons, we almost always operate our light detection in the
photoconductive mode where instead we detect a signal current by
applying a constant external reversed bias voltage to the photodiode.
This provides energy for the photo-electrons to flow out of the diode by
lowering their potential barrier. This also helps to prevent recombinai-
son of electron-hole pairs effectively reducing23 the capacitance of the
junction and therefore increasing speed. The applied voltage has the
drawback to ease the apparition of a leakage dark current from charge
carriers thermally excited in the conduction band. The dark current24
is in general not significant for photodiodes as their junction has a rela-
tively high shunt resistance (for a ∼ 10V bias voltage). While for pho-
ton counting based on avalanche photodiode (APD), the dark current
is relatively high due to the much higher required bias voltage. Clearly,
this limitation or temperature dependent dark current, is more serious
when the detector bandgap is designed for the energy of infrared light.
Cooling an APD is therefore a common stragegy albeit increasing the
complexity of a setup.
A typical PIN photodiode detector therefore can be viewed as a rela-

tively simple and compact low-level electrical current source. To mea-
sure such a current, it is possible to measure a voltage drop across a
resistance in series. Increasing the resistance will increase the voltage
or signal gain and as we will mention in the next section it will also re-
duce an intrinsic added thermal noise present in Ohmic circuits known
as Johnson-Nyquist noise. However, increasing this load resistance will
also increase the time response and reduce the detection bandwidth of
the electronic circuit.
Complementary to the voltage measurement where a high impedance

is required to avoid drawing current and affecting the voltage across the
diode, here measuring the photocurrent via a voltage drop without dis-
turbing the voltage across the diode (i. e. keeping the bias voltage con-
stant) calls also for an intermediate transimpedance buffer stage. The

22 using a voltage buffer or differential operational amplifier.
23 increase the depletion width
24 In the ideal photovoltaic mode, there is no dark current.
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latter gives an output voltage signal proportional to the photocurrent
while keeping the bandwidth of the detection circuit independent of
any output load thanks to a fast feedback loop to the bias voltage. The
voltage noise of the transimpedance amplifier always adds up on the
measurement and usually is the limiting source of noise, in particular
at high frequency where the Johnson noise decreases.

3.19 particular limiting noises

The addition of noises, which are independent of the light power, and
therefore add in quadrature on the final photocurrent, is not necessarely
a sign of a poor detection design. We can name a few of them.

3.19.1 Background light noise

An obvious source of noises is the detection of an unwanted light flux
(often spectrally broad but also scattered laser light25) impinging the
detector. This also leads to a background shot noise if the background
photons arrive randomly. We have seen earlier σsn =

√
−2eB 〈i〉 =√

2e2BqΦexp where the expected input photon flux is Φexp = τ 〈nexp〉.
This flux can be augmented by a background photon flux Φb efficiently
detected within the optical bandwidth in such a way that the total shot
noise becomes σsn =

√
2e2Bq(Φexp + Φb).

3.19.2 Johnson-Nyquist noise

The raw photocurrent produced by light is generally weak. To detect
it, we need to transport it into an electronic circuit. The final signal
we process in our experiments is generally a voltage signal to be ac-
quired by an (often digital) oscilloscope. This voltage is often obtained
by a transimpedance amplification stage of the photocurrent. An elec-
tronic circuit operating at a non-zero temperature is prone to the ther-
mal agitation of electrons in the Ohmic elements of the circuit (such
as the feedback resistance of the amplifier or the load resistance of
the detector). This fluctuation is identified as a black-body radiation
thermal equilibrium which due to the finite temporal response of any
realistic electrical system (electrical bandwidth B) leads to the well-
known Nyquist relation of the RMS thermal noise or voltage26 variance
σ2
v = 4kBTRB across a ohmic resistor R and T the temperature. This

average kinetic energy of the conduction electrons due to thermal equi-
librium gives rise to a electric current noise or Johnson-Nyquist noise
σjn =

√
4kBTB/R. The thermal noise can also load a capacitance such

that the RMS voltage across the capacitor reads
√
kbT/C where C is

25 detrimental or highly noticeable during photon counting and requires good shielding.
26 we recall that a voltage is an energy per unit charge.
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the capacitance. It appears as a filtering of the previous current noise
by a low-pass filter bandwidth B = 1/(4RC).

3.19.3 Flicker noise

While the previous noise dominates at high frequencies, another source
of noise dominates at low frequency, σf ∼

√
1/fx (where x is a real

number close to 1.0) known as flicker noise. The sources of this noise
are very diverse (e. g. surface charges). In phase-sensitive (homodyne)
detection, this noise can be bypassed by chopping the incident input
light in case the information encoded on light is contained near zero
frequencies. This strategy has been implemented in the atomic clock
setup.

3.20 summary

In this chapter, we have presented in a simple form the essential ideas
that we have applied and developped experimentally, with the help of
Jürgen Appel (JA) in the two light-atom interface experiments, in order
to be able to detect in real time (continuously) the optical phase of light
probes with a precision only limited by the intrinsic noise of the probe,
ideally independently of the technical classical noise in the detection
process. The most important quantity is the overall detection quantum
efficiency and we identified the main sources of imperfections which
reduce it.
This chapter is intented to be a reference for the merits of the differ-

ent measurement schemes we have implemented, balanced/unbalanced
single/dual port homodyne/heterodyne/dual-heterodyne and it fulfills
a lack. Understanding the light detection process is one of the most
important enabling step in the realization of advanced experiments in
quantum optics, here in particular to implement optical QND measure-
ment of atomic states. As a result, the first two chapters contain most
of the challenging principles that we need and will use to understand
the measurement reported in the next chapter and in the remainder of
this report.

We recommend to read the very recent work published in Locke and
Fertig (2013) where the suppression of the heterodyne precision penalty
has also been observed in parallel to our experimental work.



4
INTERFERENCE BETWEEN AN ATOMIC SP IN
WAVE AND A S INGLE POLARITON

We can easily forgive a child who is afraid of the dark; the real
tragedy of life is when men are afraid of the light.

— Plato

introduction

The two previous chapters contain enough material to understand the
experiments we are going to describe in this chapter. We will start by
giving an overview of the experimental setup that realizes a quantum
interface between free space optical light modes and the collective de-
grees of freedom of mesoscopic (Nat ∼ 106) ensembles of cold Cesium
atoms. We shall highlight the challenging parts in both atomic state
preparation and non-destructive light measurement at the shot noise
limit. We will present the experimental achievement of spin squeezing
in this system in conditions suited to implement a quantum atomic
clock. Then, we will show the steps that have been required to gener-
ate higher symmetric Dicke states at the frontier between continuous
and discrete variables measurements. The objective is to insist on the
experimental aspect and keep our comments as descriptive as possible.
Fundamentally, we would like to extend heterodyne interferometry

with light modes to collective atomic modes. The interference between a
reference atomic local oscillator (mesoscopic collective two-mode atomic
coherent state or simply spin wave) and any mode-matched collective
internal atomic state (if possible highly quantum, i. e. a collective Fock
state or simply a polariton) to be characterized is realized with a 50 : 50
internal atomic state beamsplitter (played by a π/2 Rabi pulse). The
SNR of this atomic state tomography is analogously limited by the in-
trinsic noise of the signal atomic state and the atomic detection quan-
tum efficiency. The challenge is therefore both in the preparation of
non-classical atomic states (high purity) and in their faithfull (high fi-
dely) characterization limited by the latter quantum efficiency which
is function of atomic mode losses, atomic mode-matching visibility and
importantly the ratio of atomic local oscillator noise to total atomic
state detection noise and finally how large the size of this atomic lo-
cal oscillator can be before its intrinsic noise becomes dominated by

67
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classical atomic state noise. We note the further exciting prospect of
squeezing the collective local oscillator (LO) atomic coherent states con-
ditioned on QND light measurement to beat the underlying SQL.

4.1 experimental spin-squeezing in a nutshell

Because during the second part of my thesis work a completely new
experimental setup for cold atoms was built I should go into more
pratical details about the manipulation and trapping of atoms later
and I will try to keep a minimal technical approach here to focus on
the fundamental measurements.

4.1.1 Atomic levels structure

As mentioned in the first chapter, a practical choice of two long-lived
atomic states is given by the so-called clock states of neutral Cesium
atoms. Specifically, they correspond to the two magnetically insensitive
Zeeman sub-levels belonging respectively to the two lowest hyperfine
ground states of the atom. They can be identified in figure 4.1 which
offers a zoom into the hyperfine structure of the ground and first excited
states of the Cesium atom.
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Figure 4.1: Representation of the hyperfine and Zeeman atomic states of the
first fine structure doublet of neutral Cesium atoms.

We briefly recall the physical origin of these two states and introduce
a few notations.
Cesium atoms possess an unpaired single valence electron. Relativis-

tic effects and interaction of the electronic spin (S = 1/2) with its
orbital angular momentum (L) give rise to the fine structure of the
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atomic energy levels shown on the left of the figure which is particu-
larly strong for Cesium. The ground state configuration of the atom is
62S1/2 for which the electronic orbital momentum is nul (L = 0, S or-
bital) and therefore the total electronic angular momentum J = L+S

is only due to the single valence electron spin such that J = 1/2. The
first excited state of the electron into the P orbital (L = 1) gives rise
to the fine structure splitting doublet J = {1/2, 3/2}, shown by the
terms 62P1/2, 62P3/2 on the drawing.
These two excited levels can be coupled to the ground state via per-

mitted1 electric dipole transitions and they form respectively the (dou-
blet) D1 (895 nm or 335THz) and D2 (852 nm or 352THz) lines.
The nucleus of Cesium has a ground state spin I = 7/2. The interac-

tion between the nuclear spin and the total electronic angular momen-
tum gives rise to an additional energy splitting, the hyperfine structure
shown in the middle of figure 4.1. The total angular momentum of
the atom (electronic + nuclear) F = I + J implies the existence of a
hyperfine doublet F = 3, 4 for the ground state corresponding to the
two stationary opposite orientations of the electron spin with respect
to the nuclear spin. The frequency difference between these two states
is exactly2 9.192 631 770GHz. The hyperfine structure of the excited
state of the D2 (D2) line is made of four levels F = 2, 3, 4, 5 the fre-
quency extend of which is about two orders of magnitude smaller that
the ground state hyperfine splitting contrary to the arbitrary scale of
the drawing.
Because of the magnetic moment induced by the angular momentum,

the energy of an atom depends on the orientation of its angular momen-
tum in space when immersed in a magnetic field (e. g. Earth magnetic
field). This gives rises to the additional energy splitting structure or
Zeeman magnetic levels shown in the right of figure 4.1 for the only
2F + 1 stable azimuthal orientations of the atomic magnetic moment3
allowed by quantum mechanics with respect to the external magnetic
field direction.
To anticipate the following sections, we recall that the selection

rules for electric dipole transitions between two Zeeman hyperfine lev-
els |F ,mF 〉 ↔ |F ′,mF ′〉 are is ∆F = F − F ′ = 0,±1 and ∆mF =

mF −mF ′ = 0,±1 with the exception that when F = F ′, the transi-
tion from a Zeeman level mF = 0 to m′F = 0 is forbidden. The D2
line exhibits then two forbidden electric dipole transition in the optical

1 As long as the atom possesses inversion symmetry, its stable energy states are either
symmetric or anti-symmetric under inversion of the atomic charge distribution. This
means that the atoms have no (permanent) electrical dipole moment in a given
(stationnary) energy state.

2 The unit of time (s) and hence frequency is defined upon it until another standard
replaces it.

3 Which orientation that minimizes the energy of the atom (parallel or anti-paralle
to the magnetic field) is given by the sign of the Landé factors, negative for F = 2
and F = 3 (except for the D2 excited state where it vanishes). All the others are
positive.
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domain |F = 4,mF = 0〉 ↔ |F ′ = 4,mF ′ = 0〉 and |F = 3,mF = 0〉 ↔
|F ′ = 3,mF ′ = 0〉 that may be useful for dark optical pumping. Note
that electric dipole transitions within the same electronic orbital are
forbidden (due to inversion symmetry) but magnetic dipole transitions
are allowed. In particular, the clock states can be manipulated with a
magnetic field oscillating in the microwave domain.

4.1.2 Spatial confinement of the atoms

To manipulate the internal and collective states of atoms one needs
to be able to observe and interrogate all the atoms together homoge-
neously in a sufficient time with a sufficient interaction strength. To
this end, atoms are held in a tighly confined volume in space by a
cylindrically symmetric trap potential. This trap is a standard far off-
resonant (1064 nm) light force gradient arising from a gaussian laser
beam mode spatially focused down to waists of about 50 µm and a
nominal power of about 5W. The trap light wavelength is designed to
attract ground state Cesium atoms at the intensity maxima of the light
field, that is, at the beam focus. Note that this simple trap is atomic
state sensitive. That is, we only trap atoms that spend predominantly
their time in the ground state 62S1/2. The applied light force will be
approximatively considered conservative on the atom observation time
scales.

4.1.3 Reservoir of cold atoms

Because such optical dipole trap is relatively shallow (maximum AC
Stark shift of a few MHz), the atoms need to be pre-cooled in order to
be confined in the field of view of the gaussian trap beam. The atomic
trap is realized inside a low vacuum chamber with all optical beams
entering from outside via a near-infrared (NIR) coated rectangular glass
cell connected to the chamber. A three-dimensional MOT designed for
the D2 line of Cesium is built around the cell. It allows to cool Cesium
atoms directly from a background vapor of Cesium atoms released in
the vacuum chamber via dispensers. To compare to slowing and cooling
of thermal atomic beams, loading from a background pressure has the
disadvantage to reduce the mean free time of atoms between collisions.
Yet, the background pressure is optimized for a high repetition rate
of experimental realizations that require the creation of a new MOT
and loading of the optical trap (about a second). The lifetime of the
now cold atoms once transfered in the above optical dipole trap will be
limited by collisions with the room-temperature background atoms to
several milliseconds.
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4.1.4 Atomic state preparation

After loading into the dipole trap, an external DC magnetic field ori-
ented along the gravity axis is applied onto the atoms (about 1.5G).
The trapped atoms are initially populating randomly the Zeeman lev-
els of the hyperfine ground states, that is, the angular momenta of the
atoms in the ensemble point in the allowed random directions about
the external magnetic field. With dark state optical pumping one can
prepare a pure ensemble of atoms which all populate one and the same
clock state. We denote by π for parallel, when the linear polarization of
an external electric or magnetic field is parallel to the quantization axis
or external bias magnetic field direction. We denote by σ (for senkrecht,
German word for perpendicular) when the polarization is perpendicu-
lar to the quantization magnetic field direction. By σ+ (σ−) when it is
in addition right-hand (left-hand) circular polarized along the magnetic
field direction.
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Figure 4.2: Optical dark state preparation and purification. (red) pumping
light; (blue) repumping light; (grey) heating light; (green) pump-
ing microwave.

The preparation of a pure ensemble of atoms populating the same
Zeeman level is performed in four steps. We illustrate the different re-
quired light pulses in figure 4.2. From now one, we use the simplified
notation |F = X,mF = Y 〉 = |X,Y 〉, a single number will alway refer
to the total angular momentum value F and primed quantities to the
excited manifold of the D2 line. First, two quasi-resonant optical fields
with π polarization address simultaneously the atoms on |3〉 → |4′〉
(repumping light, blue color) and on |4〉 → |4′〉 (pumping light, red
color). The repumping light brings all the lowest energy atoms into the
hyperfine manifold |4〉 and also counteracts the allowed decays into |3〉
of atoms excited into |4′〉 by the pumping light. Excited atoms can de-
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cay by emitting photons with π, σ+ or σ− polarizations. As a result,
the ensemble starts to build a macroscopic fraction of atomic popu-
lation in the clock dark state |4, 0〉 which cannot be excited by the
π-polarized pumping light to |4′, 0′〉 (forbidden dipole electric transi-
tion). The atoms brought into |4, 0〉 after a few optical pumping-decay
cycles remain in this state.
The second step consists in turning the pumping light off and shortly

after, the repumping light as well exactly in that order. Next, with the
help of a quasi-resonant microwave magnetic field with π polarization
(dark green arrow), the atoms are pumped (saved) into the lowest clock
state |3, 0〉. Finally the atoms not successfully transfered remaining in
any Zeeman level of the |4〉 manifold are heated away from the trap
using4 blue detuned σ+ polarized light on the |4〉 to |5′〉 transition (gray
snaky arrows). With this sequence, one can prepare pure ensemble of
atoms in the same state while loosing only about 20− 30% of the atoms.

4.1.5 Collective state preparation

The collective coherent spin state is prepared with a π/2 Rabi reso-
nant microwave pulse between the two clock states. The wavelength
of such microwave frequency is on the centimeter scale. That is, the
ensemble of atoms is homogeneously and coherently irradiated. In ad-
dition, the power of the microwave magnetic field falls into the Watt
regime (for kHz Rabi frequency), where the classical (coherent) wave
approximation is very good.

4.1.6 Clock state detection with light

The spatial distribution of cold atoms in the focus of the dipole trap
forms an elongated cigar (prolate) shape. Optical light probes are send
to and propagate through the atomic ensemble along the longitudinal
axis of the atomic trap. The probes are also gaussian beams focused
at the atom position. The perturbation induced by the atoms in the
optical probes is detected via homodyne interferometry, a technique
introduced in the previous chapter. More precisely, the heart of the
experiment setup is a Mach-Zehnder (MZ) interferometer one arm of
which is aligned along the atomic trap axis as shown in the simplified
sketch 4.4.
Two off-resonant optical light probes with identical π polarization ad-

dressing the D2 line of the Cesium atoms are send into the same spatial
mode and port of the interferometer. The frequency difference between
them being on the order of the hyperfine splitting of the ground state.
As shown in figure 4.3, the orange (resp. purple) probe frequency is
chosen such that the light field will experience a phase shift if there is

4 Experimentally, we use one of the MOT beam propagating along the bias magnetic
field.
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atomic energy populating the ground state |4〉 (resp. |3〉). The probe de-
tunings are large enough to apply the homogeneous (transparent ensem-
ble, atoms interacting equally) condition mentioned in the first chapter.
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Figure 4.3: Optical probe frequencies.

In addition, for identical probe intensities, the detunings with respect
to the hyperfine levels of the atomic optical excited state have been
chosen such that the AC stark shifts induced by the two light probes on
the two atomic ground states are identical in magnitude but opposite in
sign while the two light probes experience phase shifts of both identical
sign and magnitude for an atom in any of the two states. These magic
frequencies allow to cancel the differential AC stark shift or shift in
transition frequency of the ground states. This concern is relevant for
ultraprecise atomic clock based on the measurement of the hyperfine
transition frequency but also to preserve the collective state coherence
from dephasing effects due to inhomogeneous AC stark shifts from the
spatial distribution5 of the atoms in the trap with respect to the spatial
variation of the probe intensity.

4.1.7 Dual-color homodyne and Jz

In this section, we give more details about the homodyne detection of
the two color probes and how one can measure the population difference
between the two clock states. We give a simple and light view of the
principle of the experimental setup in figure 4.4.
The (optical) length difference of the MZ interferometer between the

probe path going through the atomic ensemble trap and the reference

5 In addition, the conservatively trapped atoms are moving (quite harmonically) in
the gaussian dipole trap
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Figure 4.4: Simplified principle of the atomic state population measurement.

(LO) arm path is different from zero. In other words, the interferometer
is not operated at the so-called white light position, for which the ac-
cumulated phase difference between the LO arm and the probe arm at
the interferometer output is independent of the absolute frequency of
the propagating optical field. This is convenient to suppress the effect
of laser frequency noise6 on the detected interference fringe. Here how-
ever, the path length difference was chosen such that the accumulated
phase difference for the orange probe is out of phase or 180 degrees
shifted compared to that of the purple probe, which differ in absolute
frequency by about 9GHz. There is an infinite integer multiple choice
for the MZ interferometer path difference to obtain such a condition
and the one that yields the lowest length difference is chosen to remain
as little insensitive as possible to previously mentioned frequency noise.
The phase of a given probe is extracted from differential homodyning
(presented in the previous chapter) which allows to subtract out rela-
tively slow classical intensity noise. In addition, the photodetectors are
not fast enough (maximum 100MHz bandwidth) to be sensitive to a
beatnote between the two probe colors. Therefore, one should regard
the final detected photocurrent for simultaneous probing with the two
colors as produced from the superposition of two independent fringe
intensities.
As the interference fringes of the two color probes are out-of-phase,

the recorded fringe sum photocurrent is only sensitive to the differen-
tial phase between the probes. As the two color probes share a common
spatial mode, any classical noise (acoustic, thermal) that induces fluc-

6 Also, there is no such thing as a monochromatic laser source and any finite frequency
width may lead to significant detected phase noise if the interferometer length dif-
ference is relatively large.
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tuations in the optical path lengths will subtract out when the fringe
amplitudes of the two color are equal. A piezo mounted on one of the
MZ interferometer mirror is used to stabilize the path length difference
at the exact non-white light position by adjusting a piezo offset voltage,
using the fringe signal from an extra independent laser probe. In addi-
tion, the interferometer path length is lock at the zero crossing of the
fringe amplitude such that the differential phase between the two colors
is measured at the point of maximum phase sensitivity. This technical
detection scheme implements in effect a measurement proportional (for
small differential phase shifts near the zero crossing) to Jz or to the
population difference between the two clock states as the two probes
experience atomic phase shift imprints of equal sign due to the previous
choice of detunings to the excited atomic energy levels. When the atoms
are in the equal quantum superposition of the two clock states (2.2),
the mean detected differential phase is zero, and the detected photocur-
rent is maximally sensitivity to differential phase variation arising for
instance from the quantum fluctuations of the collective atomic state.
The rejection of classical fluctuations is good enough such that the MZ
setup operates at light shot noise limited phase sensitivity in adequate
measurement time scales (see previous chapter).

4.1.8 Experimental spin squeezing

We report in figure 4.5, a typical record of the raw differential photode-
tection signal after the atoms were prepared in the collective coherent
spin states. The atoms are interrogated with 10 µs pulses7 generated us-
ing acousto-optic modulator (AOM)s. The first 20 pulses, corresponds
to the simultaneous interaction with both probes while the last two
give access to the phase shifts experienced by the individual colors.
After such measurement sequence, the atoms are pumped to one of

the clock states to estimate the number of atoms. Then the atoms are
re-prepared in the coherent collective spin state and the same interroga-
tion sequence is repeated providing measurements with different total
atom number decaying over the course of the experiment.
As in (2.28), the integration of a pulse signal gives access to a mean

integrated phase value. However, a calibration of the fringe amplitudes
for given probe powers is required to convert the measured displaced
voltage into a phase (as in (3.31)). In figure 4.5, the spikes correspond
to the real time observation of phase noise due to probe photon shot
noise which is also contaminated by the atomic projection noise. In ab-
sence of atoms, the shot-to-shot fluctuations of this value reproduce the
probability distribution of Nph mean photon arrivals during the pulse

7 Aside simplifying the analysis of the effect of a given number of invested probe pho-
tons, such periodic interrogation allows to encode or carry the relevant atomic phase
information at a frequency higher than slow classical frequency noise, in particular
the DC electronic noise of the photodetectors.
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Figure 4.5: Raw homodyne photocurrent voltage while probing a coherent
spin state of atomic populations. (see main text)

duration τ for coherent states if the detected phase noise is dominated
by light shot noise. As long as the measured phases from the different
pulses remain independent (random noise), the scaling of the reciprocal
phase noise power (reciprocal phase variance) should increase linearly
with the number of integrated pulses or the number of probe photons
(see previous chapter) until (relatively low frequency) classical correla-
tions (covariance) between the pulses (e. g. drift of differential phase
baseline of the MZ interferometer, laser noise) affect such scaling and
become the dominant source of phase noise in a given integration time.
In figure 4.5, I explicit show with the coloured pulses, the mean

signal value extracted from an integration time window around the
probe pulses. By repeating this kind of measurement many times with
atoms initially prepared in a coherent spin state, one will obtain a
statistical distribution of such pulse heights which should reproduce
the expected statistical outcomes for the collective atomic state. The
number of photons in a given pulse may be so small that the statistical
variance of the associated phase will be dominated by the light shot
noise which would prevent the observation of the phase noise due to
atomic noise. However, because the photon shot noise from the different
pulses is uncorrelated (or as long as it is) we can reduce the light shot
noise contribution by combining successives together in order to resolve
better the atomic noise. Unfortunately I do not have time to go through
the technical details and the data analysis of this experiment. This has
also been done several times in the litterature Appel et al. (2009b);
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Louchet-Chauvet et al. (2010). I just wanted to give a simple companion
to the group litterature and showing how a ’real signal looks like.
In presence of atoms prepared in the CSS, the analysis of the de-

tected phase noise should reveal the random atomic projection noise
(see (2.24)). In addition, the noise power should scale linearly with the
size or number of atoms in the prepared collective coherent state. Here,
such number of atoms is estimated indirectly as well by a detected
phase shift. One way to estimate the absolute number of atoms is to
know the proportionality constant (phase shift per atom) denoted k in
the first chapter. While the mean detected atomic phase shifts are pro-
portional to k, the phase noise power (variance) due to projection noise
is proportional k2 and both scale linearly with the number of atoms Nat.
Therefore the extracted slope of the linear scaling of the phase noise
power with the mean phase shift for different atom numbers give access
to k.
The demonstration of spin squeezing requires a calibration of the

decoherence induced by the invested probe photons. This is done by
measuring the Ramsey fringe constrast of the coherent spin-state with
and without interacting probe photons.
My first contribution to this experiment, aside from making it op-

erational again with SLC, has been to track and improve on the clas-
sical noise sources affecting the phase shift measurement. A bit after,
I showed that we could actually observe squeezing without the need
to subtract the classical drift of the interferometer between successive
collective state preparation. Indeed, in the past group litterature, the
squeezing was observed on the so-called two-point variance measure-
ment. We then started to investigation more optimal ways to reject
classical noise by combining pulses with different weights and this ul-
timately led me to adhere to the more general Bayesian filtering ap-
proach.
In collaboration with theoretical research on non-classical criteria, we

published our experimental results on the preparation of spin-squeezed
states in Kiesel et al. (2012). After that, I focused with JA our investi-
gations of the atomic projection noise in presence of a relatively high
external magnetic field 20G, which will make the clock states sensitive
to magnetic field fluctuations and will contaminate the observed atomic
noise. We observed that we could still resolve the quantum noise of the
atoms and decided to explore experimentally the proposal of SLC for
the creation of more exotic quantum states in an atomic ensemble. I
will finish this chapter by giving a few more details on this last project.

4.2 w-state preparation and detection

Due to the time constrain in writing this thesis as well as the many
experiments explored in this work, I will only give the essential ideas
as well as my basics point of view on the attempts I tried with SLC
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which could be sumed up as the preparation and characterisation of a
non-classical state stored in a quantum memory based on mesoscopic
ensembles of atoms. It represents a hybrid approach where the non-
classical state is prepared via discrete events and the characterization
of the state is performed using continuous variable measurement.
Our initial ambition was to prepare the first excited symmetric Dicke

state, a non-classical state with a negative Wigner function or non-
Gaussian marginal probability distribution. The proposal was published
in Christensen et al. (2013) and our experimental efforts lead to the re-
sults published in Christensen et al. (2014).
The general idea is the following. With optical pumping and state

purification steps, we can prepare a pure ensemble where all the the
atoms are populating initially the upper ground state clock level

|ψ〉 = |↑〉 ⊗ |↑〉 ⊗ |↑〉 · · · ⊗Nat ≡ |0〉 . (4.1)

In other words, all the atoms are pseudo-spin polarized along the axis
z. We now send an excitation beam propagating through the atomic en-
semble. This excitation light addresses the ground state |↑〉 to a higher
optical excited state of the atom, allowing for the possibility of light
scattering on the atomic ensemble. However, the excitation light pulse
is weak and sufficiently detuned such that it interacts homogeneously
with all the atoms. In an ideal scheme, an atom which would be ex-
cited can only decay back to the lower ground state |↓〉, while emitting
a scattered photon (in our case anti-Stock photon).
By detecting such a photon in the light field scattered by the en-

semble of atoms in the forward propagation direction of the excitation
pulse (which has a different frequency that the anti-Stock photon), the
measurement heralds the preparation of a delocalized collective excita-
tion

|ψ〉 = 1√
Nat

Nat∑
l=1
|↑〉 ⊗ |↓〉l ⊗ |↑〉 ⊗ |↑〉 ⊗ · · · ⊗ |↑〉Nat

≡ |W 〉 . (4.2)

This state is the generalization of the so-called W state. It can be
interpreted as the delocalized interference of a single polariton |↓〉 and
a coherent spin wave with all the remaining atoms in |↑〉. We can rotate
this picture as follows. In order to characterize this state and to measure
its marginal statistics via the experimental atomic population difference
probing method, we apply homogeneously on the ensemble, a π/2 mi-
crowave Rabi pulse to drive coherently the atomic states (|↑〉 → | 〉,
|↓〉 → |  〉) which transforms the W state into

|W ′〉 = 1√
Nat

Nat∑
l=1
| 〉 ⊗ |  〉l ⊗ | 〉 ⊗ | 〉 ⊗ · · · ⊗ | 〉Nat

. (4.3)

In absence of the delocalized spin flip or excitation, the collective
atomic state after this Rabi pulse would be instead the unperturbed
coherent spin state,
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|ψcss〉 = | 〉 ⊗ | 〉 ⊗ | 〉 · · · ⊗Nat .

However, our experimental measurement proposal with a free space
dipole trap ensemble of atoms together with the complexity of the
atomic level structure is such we cannot prepare with 100% certainty
the state W conditioned on the detection of the scattered singe pho-
ton following that the latter photon has a finite probability to arise
from other origins (described in details in the supplementary material
of Christensen et al. (2014)). This non-determinism in the state prepa-
ration implies that the prepared and interrogated state is a general
mixture oft he two pure states |ψcss〉 and |W ′〉, best described by the
density matrix formalism as

ρ̂ = (1− p) |ψcss〉+ p |W 〉′ , (4.4)

where p is the purity or the conditional probability to prepare the W
state. In the reported experiments, we had p = 38%, limited mainly
by the (technical) quality of the rejection of the writing or excitation
light.
Finally, the second important quantity to mention is the atomic state

detection quantum efficiency q, analog to the quantum detection effi-
ciency for optical state measurement presented in the previous chapter.
|0〉 or |ψcss〉 in the measurement basis, plays the role of a vacuum state
for the underlying single excitation state. Our ability to perform the
ideal characterization of (4.4) or indirectly |W 〉′ through a calibration
of the reference state |ψcss〉 is limited by state-independent technical
and fundamental noise of the light measurement (see κ2 in the first
chapter), and other imperfections analog to loss of detection signal and
imperfect visibility of the atomic state similar to optical homodyne
interferometry. In the reported expeirments we had q = 27%. This
imperfect detection efficiency contributes to a final effective purity

peff = pq ' 10%. (4.5)

As a result, there is a no hope to claim non-classicality by reconstruct-
ing a negative Wigner function here (this demands p > 0.5). However,
we observed a significant increase in the atomic spin projection noise
of the heralded state compared to a coherent spin state. Our hopes for
improvement both in state purity and overall atomic state detection
quantum efficiency lies in the new one-dimensional light-atom interface
I started to build from zero and whose first exploration will be the
subject of the remaining parts of this thesis report.





5
A NANOFIBER INTERFACE : WHY ?

Hobson’s choice, the choice of taking what is offered or nothing at all.

— Named after Thomas Hobson (1544-1631), of Cambridge, England,
who rented horses and gave his customer only one choice, that of the

horse nearest the stable door.

The choice to build a new interface from zero to exploit light-atom
interactions based on an optical nanofiber is an important departure,
not arbitrary, and it may be the first question a new student may want
to ask when joining our group in the future. However, it may also be
the most difficult question as there is no single exhaustive answer to
why we dediced to go for this system. And the reader will find in all the
remaining chapters of this thesis a broad list of new features brought
by this system. Perhaps, the value of an experimental hypothesis or
explored path is best judged by the experimental results that I will
present in the next parts. However, in view of the transition from the
old setup to this new interface we have developped, it is important to
highlight how a nanofiber could help in the realization of many tasks for
QIS and metrology but also in simple terms for fundamental research
in the field of light-atom interactions.
They can be different levels of understanding and perspectives. Here

is my personal and non-exhaustive opinion to serve as a smooth transi-
tion to the next part of this thesis. The choice of a nanofiber is clearly
not a Hobson’s choice.

Although it is true that the nanofiber project represents historically
for us a technical improvement to achieve better some of the funda-
mental ideas developped in the past setup, it cannot be reduced only
to a technical device or aspect. It provides a new system rich in physics.
It is a new environment for light and neutral atoms. It exhibits new
symmetries and degree of freedoms for light and the manipulation of
atoms. The use of an optical nanofiber is first intimely connected to
the reasons why we use light and neutral atoms.
Contrary to ions, neutral atoms, by definition, do not possess a net

electric charge. This means that light which is an electromagnetic field,
does not interact with neutral atoms at first sight. The reader may
then ask why not using ions instead. As mentioned in the introduction
of this thesis, there is no “the winner takes it all” situation. Ions will

81
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be for instance sensitive to environment stray fields and will also ex-
hibit different collective behaviours and spatial densities due to obvious
electrical inter-particle interactions (e. g. ion crystals), which may also
turned out to be useful.
A general light-atom interaction will thus find its source in higher

symmetries of the atomic charge distribution, e. g. electric dipole mo-
ment, leading to relatively weaker1 coupling. Already there at the first
next order, atoms do not even possess a permanent dipole moment.
This is due to the fundamental reflection symmetry of the atomic charge
distribution that ensures the stability of the atoms. The light-atom in-
teraction will therefore be limited by the characteristics of the transient
or induced dipole of the atom.
As a result and as is well-known, a whole range of linear quantum

optics experiments based on light-matter interaction is described, at
first order, by a basic electric-dipole interaction

V = −d ·E, (5.1)

from which one can extract the two obvious roads for improving a light-
atom interface such as ours. To increase the interaction, one will try to
find material system with a high electric polarizability to increase the
dipole moment d (e. g. quantum dot, Rydberg atoms). The obvious sec-
ond road consists in increasing the strength of the electric field of light
E at the position of the dipole. Or equivalently, to increase the effec-
tive electric field of a single photon at the atom position. An additional
path to improve the overall interaction is a multi-pass or collective ap-
proach. Light is swifty and do not interact long with the dipole before
it continues its path at the speed of light. CQED as is well-known, is
exactly based on the idea to trap light or to allow multi-pass interac-
tion every cavity round trip with the dipole. The alternative approach
of collective ensembles is to use many identical dipoles on the single
pass trajectory of light. Of course, the last two ideas can be combined
together.
Our choice of light-atom interface finds a trade-off among all these

basic ideas. In particular, for the first proof-of-concepts of interfaces
based on atomic ensembles, the setup was based on the state-of-the-
art techniques to manipulate and trap atoms with light in free space.
To increase the strength of the electric field of light at the position
of the atoms, (5.1), one would focus light on the ensemble of atoms.
In view of the best enhancement of the interaction and effective total
optical depth, which depends on the overlap of the light beam and the
spatial distribution of the atoms, it is important that, as many and as
strongly, atomic dipoles couple to the light beam. Although it would be
possible to prepare ensembles of atoms as elongated as possible along
the beam path direction, the diffraction phenomenon constrains the

1 Compared to the electromagnetic forces exerted by the nucleus on the electrons for
instance.
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length of the homogeneous field of view of the light beams over the
atomic ensemble (Rayleigh range) and the peak intensity of the light
beam (which depends on the beam waist). In free space, diffraction
imposes a trade-off between the highest field strength achievable by
focusing and the spatial extend of the high field region. And we have not
mentioned yet the technical task of achieving a good collection efficiency
of the light once transmitted through the ensemble. For optically dense
ensembles of atoms, the geometry of the atomic ensemble can lead to
new limiting or helping effects, such as lensing effect that would affect
the light scattered by the atoms (e. g. diverging forward scattered light).
Building a new interface between light and atoms based on a nanofiber

will help to improve on many of such aspects. As we will see, the field
of light carried by the fundamental mode of the nanofiber, which we
will design to interact with Cesium atoms, is a type of Bessel field.
This means that it does not diffract over the propagation length. The
field strength therefore remains homogeneous along the propagation
direction. This, while at the same time, confining light on transverse
dimensions which are smaller than the light wavelength itself. At al-
ready a few picowatt light power, the evanescent field intensity reaches
the regime of non-linear response of optical atomic transitions. System-
atic effects in dense ensembles mentioned above, for example radiation
trapping whereby a photon spontaneously scattered by one atom would
scatter neighboring ones before leaving the ensemble, would be reduced
by the extreme 1D geometry of the nanofiber interface. In view of metro-
logic applications, such dimension would be interesting for instance to
measure gradients of electric and magnetic fields using the atoms as
sensors. But there is more to gain than from the geometry of this new
platform.
Until now I only put a stress on the strengths of both electric field

and atomic dipole while an important aspect of the light-atom interac-
tion lies fundamentally in the orientation of the electric field vector and
the dipole vector. In free space, the polarization of light is constrained
to live in a plane orthogonal to the light propagation direction. In a
nanofiber medium, light is not simply a transverse electromagnetic field
anymore. In particular, in the fundamental mode, we will see that it is
a hybrid combination of transverse and longitudinal waves. In addition,
these waves oscillate in quadrature. This gives to the total polarization
of the field a richer three-dimensional complexity. For example, it is
possible to change the dominant polarization at the atoms position, π
or σ, without changing the propagation direction of light and without
changing the quantization axis for the atoms. This has also important
consequences for the directionality of the dipole emission pattern of the
atoms with respect to the propagation direction of light. The probabil-
ity of forward (resp. backward) light scattering into a given nanofiber
guided mode can be enhanced and made Zeeman state dependent2. All

2 Photon path could be entangled with particular internal atomic states.
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these new opportunities come with the existence of orbital momentum
of light carried by nanofiber modes which gives a new twist to light-
atomic ensembles for the rapidly-evoling field of quantum information
with orbital angular momentum states of light.

Obviously, the inherent compatible and existing fiber technology for
this plaftorm, together with its scalability potential, adds to the previ-
ous and already long list of exciting perspectives. It is time to discover
this new interface in the next parts of this thesis.
To finish, I would just like to emphasis that our attempts at an in-

terface between light and atoms based on a nanofiber was primarly de-
signed in view of the coherent manipulation of long-lived atomic states,
here the hyperfine ground states of Cesium.
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INTRODUCTION

Wings are a constraint that makes it possible to fly.
— Robert Bringhurst

In addition to the results reported in the first part, this thesis work
represents the first investigations into the realization of an efficient in-
terface between cold atoms and light based on an optical nanofiber, in
our group. Therefore, I will save in this part some important personal
theoretical efforts in view to understand and to describe the most im-
portant properties of light waves propagating into such system. You
will find some answers I would have enjoyed to find at the beginning of
this thesis. In particular, that the equations I was trying to solve and
understand were already found a while ago by Charles Kao (Physics No-
bel Prize 2009). However, the field has not ceased to grow over the past
three years through a better understanding of the full complexity and
symmetry of light guided in an optical nanofiber. Especially through
the efforts of Fam Le Kien with whom I shared a few correspondence.
In contrast to sound waves, electromagnetic waves are usually given

as a good physical example of transverse waves in the most familiar
situation where they freely propagate in space. A list of such familiar
properties tend to vanish when light propagates in a nanofiber. However
the new unfamiliar properties offer a system richer in physics yet to be
explored; non-diffracting, inhomogeneous and longitudinal waves which
carry orbital momentum. Many non-trivial yet fundamental questions
can be raised in this system. What is the spin of a photon in a medium
of refractive index n ?
The manipulation of both internal and external degrees of freedom

of atoms with light is dictated by the principles of linear and angular
momenta conservation. It might then appear fundamental to find these
in such a system which distinguishes the role of the canonical and
kinetic momenta of light, Barnett and Loudon (2010).
In 2009, Charles Kuen Kao was awarded the Nobel Prize in Physics

for groundbreaking achievements concerning the transmission of light
in fibers for optical communication.
If you really look at it, I was trying to sell a dream ... There was

very little I could put in concrete to tell these people it was really real.
– C. K. Kao

The revolution in communication based on the transmission of opti-
cal energy through optical fibers, has had a formidable impact on re-
search and societies. Aside from the lightning growth of fiber networks
all around the world, sending optical light through pure glass wires is
also very elegant and glass is both abundant and fully recyclable.
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In a seminal paper of 1966, co-written with George Hockham (Kao
and Hockham (1966)), cladded glass fibers are proposed as a transmis-
sion medium for optical communication. Such fiber waveguides consist
of a glass core surrounded by a glass cladding of lower refractive in-
dex. Glass fibers have definetely proved to be a medium of choice for
optical light communication and manipulation, thanks to sufficiently3
low propagation losses. However, one limitation of this medium in the
quest to transmit optical signals over longer and longer distances would
be the co-existence of many signal modes4 which would propagate at
different velocities. This will be the source of signal distortions. There-
fore, one also meet a great interest in so-called single-mode fibers which
are available today, unfortunately at the cost of a generally weak guid-
ance. 5 However, one will discover that the apparent impossibility of
a single-mode operation together with a strong guidance and strong
confinement of light is not a fundamental limitation.
We would like to quote a remark from Kao’s original article:
At the visibible wavelengths, the operation of a dielectric waveguide

with free space as its outer medium is difficult. The physical size, which
is now in the submicron range, becomes a serious snag [...] The radius
for low-loss operation is considerably less than the wavelength [...] This
will cause the waveguide to be invisible.

Delightfully, it happens nowadays that the order of magnitude of
the silica glass wire diameters achievable are below the wavelength of
optical light waves Tong et al. (2003). A dream that would have been
even much harder to sell for Charles Kao in 1966. Kao’s “serious snag”
is part of our thesis project. Not only does the waveguide becomes
invisible, the light guided by the fiber can now be accessed from the
outside. It can therefore be interfaced with other systems such as atoms.
This is remarkable in a view of scalability and insertion of quantum
interfaces into the already existing optical fiber network all over the
world.

In the first chapters, we will derive, solve and put our focus on the fun-
damental equations for the propagation of electromagnetic waves in a
optical nanofiber. In other words, we will study Charles Kao’s transcen-
dental equation without approximation. These solutions are important
for light-atom interactions, for the design of atom traps based on the
optical dipole force and also for a better understanding of the nature of
light in this system. In the remaining chapters, I will briefly recall how
we manufactured optical nanofibers with the help of the group of Pr.
Arno Rauschenbeutel, located6 at the University of Mainz. Then, I will
give some preliminary observations on light propagating in a nanofiber
prepared in a ultra-high vacuum (UHV) chamber.

3 A few decibel per kilometer.
4 this term will make itself clearer and more precise in the next chapter.
5 bending radii that guided light can negotiate before radiating out of the waveguide.
6 Now, in Vienna.



6
THINER THAN L IGHT
A SUB -WAVELENGTH OPTICAL GUIDE

Ideas do not always come in a flash but by diligent trial-and-error
experiments that take time and thought.

— Charles Kao

introduction

We will start the study of the nanofiber light-atom interface by first
presenting a description of the light propagation in a fiber medium
with dimensions smaller than the light wavelength, using the classical
electromagnetic wave theory. We tried to reduce the complexity of the
problem to a simple and accessible step-by-step derivation. The results
presented here in details, although sometimes technical, are not only
important in view of the manipulation of atoms with light using an
optical nanofiber but also in view of understanding the richer properties
of light expressed in this particular medium.
It is remarkable that in such a situation, where the wavelength

of light becomes bigger than the transverse size of a fiber, light can
still be guided. The most important properties are certainly that this
light propagation is theoretically lossless, and that the light is strongly
guided and accompagnied with a non-diffracting and confined evanes-
cent field outside the fiber. This guided evanescent field is an appeal-
ing phenomenon in view to strongly couple light with a surrounding
medium (e.g atoms) which may possess subwavelength scattering cross-
sections.1 The framework of electromagnetic wave propagation is very
general. It renders the description of this phenomenon feasible and in-
teresting despite the simplicity of the model of reality we devise in
the next section. Besides, these solutions are also required in view to
quantize the fields, for whom would like to study nanofiber quantum
electrodynamics (e. g. Purcell enhancement).
The common single-mode fibers one buys everyday from the indus-

try are weakly-guiding fibers. The single-mode operation is achieved
through the design of fibers with small core-cladding refractive in-
dex difference (N.A ∼ 0.15). As a result, one usually approximates

1 overcoming diffraction limitation when manipulating light waves in free space
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Maxwell’s equations to the previous domain of validity which renders
the solutions of the fiber eigenvalue problem more tractable. Here, we
show how to solve the problem exactly with no such approximation and
we will therefore not use the industry standard vocabulary (e. g. LP
modes).

6.1 maxwell’s equations framework

We consider the description of a standard passive optical fiber as an
open waveguide made of a cylindrically symmetric step-index medium
with inner core radius a. n1 will alway refer to the refractive index of
the core and n2 will be the refractive index of the cladding. In order
to extrapolate this simple model to our nanofibers, it is important to
mention that an air-cladd optical nanofiber will be obtained by creating
a tapered section in a standard fiber through combined heating, pulling
and streching of the fiber media. The transition from the standard fiber
to the nanosection is assumed adiabatic and the values of the refractive
indexes in this section should be adapted. For instance, n2 will now
refer to the refractive index of vacuum in the nanofibers section as the
small core medium of the initial standard fiber merged with its initial
cladding medium into a single core medium leaving the role of cladding
to the surrounding fiber environment.

step index n(r) =

n1 if r < a,

n2 if r > a.
with n1 > n2.

In order to find how light fields distribute in and around such het-
erogeneous dielectric subwavelength structure, we will study the so-
lutions of the propagation wave equations, starting from Maxwell’s
macroscopic relations for the case of linear, isotropic and transparent
non-magnetic dielectric media2.

Macroscopic Maxwell’s equations:

∇ ·D = 0 with D = ε0E+P, (6.1)

∇×E = −µ0
∂H
∂t

, (6.2)

∇ ·H = 0 with H =
B
µ0

, (6.3)

∇×H =
∂D
∂t

. (6.4)

For simplicity but also generalization to various optical light frequen-
cies spectrum, we will only consider monochromatic (angular frequency
ω) and harmonic solutions for the fields.

2 Bold letters denote vector quantities
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From the above assumed properties of the medium, we would then
have as one constitutive relation, the linear polarization response

P(t, r) = ε0χ(ω, r)E(t, r).

We have introduced χ(ω, r), here the direct Fourier transform of the
linear response of the medium, also known as the first order dielectric
susceptibility. Just because we only consider here first order responses
does not imply that a silica glass nanowire would not be a good candi-
date for non-linear optics. Abundance, low cost of silica glass and ready
fiber communication technology attract non-linear optics research with
electrically(thermally)-poled silica optical fibers. Although silica glass
has no second-order nonlinearity (glass is centrosymmetric), second-
harmonic generation (SHG) in silica optical fibers was observed (Öster-
berg and Margulis (1986)).

6.2 propagation equation to ansatz solutions

We can rewrite Maxwell’s equations in terms of the electric and mag-
netic fields E and H. Following the electric induction in the medium,
we indeed have

D(t, r) = ε0(1 + χ(ω, r))E(t, r) = ε(r)E(t, r), (6.5)

where ε(r) is the dielectric permittivity of the medium, εr = ε(r)/ε0 =

(1 + χ) the relative permittivity, n(r) =
√

1 + χ =
√
εr the refractive

index of the medium (ε(r) = n2ε0). Thereafter, one would obtain the
following general wave equations (see A.1):

Wave equation for E

4E− µ0ε
∂2E
∂t2

= −∇
[E · ∇(ε)

ε

]
. (6.6)

Wave equation for H

4H− µ0ε
∂2H
∂t2

= ∇ε×E. (6.7)

Since ε(r) is constant when r 6= a, one can solve the homogeneous ver-
sion of our wave equations (6.6) and (6.7) in the core and the cladding
independently. Finally, one would merge the solutions using the conti-
nuity conditions for the fields at r = a.
From the circular symetry around the fiber axis and invariance of all

refractive indices along this axis, a cylindrical coordinate system (r,φ,z)
with the z axis parallel to the fiber axis suggests itself to describe the
fields. As we are interested at the very least in propagation of light
inside the fiber, we are inclined to investigate solutions that propagate
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in the z-direction, that we will characterize by the propagation constant
β. The coupling requirement of any input wave-front into the fiber
physically fixes constraints on β and will thus play a central role in our
description.
To sum up our previous discussion, we will start with solving the

wave equations for the following ansatz forms3:

E(r,φ, z, t) = Re{E(r,φ) exp [i(ωt− βz)]}, (6.8)
H(r,φ, z, t) = Re{H(r,φ) exp [i(ωt− βz)]}, (6.9)

where we have introduced complex amplitudes to make use of the nu-
merous linear relations.

ansatz

As quoted by Feynman in Lectures on Physics, the best way
to solve an equation is to already know the solution. But more
pragmatically, the state of the electromagnetic fields can be de-
composed completely over a given vectorial basis, for instance
the three-dimensional plane waves. The choice of the basis being
guided for simplicity by the symmetry of the problem. The trans-
lational invariance along the fiber axis leads to the separation of
the problem into longitudinal and transverse components. β rep-
resents the longitudinal component of the gradient of the phase
wave-front, i.e the longitudinal wave-vector component.

It should be noted that the previous choice of Ansatz solutions
implies a spontaneous breaking of the time-reserval symmetry. So-
lutions that propagate forward, increasing z, for increasing time
t, are singled out. Causality requirements are also implicitly con-
tained in the susceptibility χ.

6.2.1 Only one cylindrical equation to solve

An helpful property arises from the separation of one coordinate (here z)
in the field expressions. In Appendix A.2, we have arranged ’s equations
by pairs such that one can clearly express the components Er, Hr, Eφ
and Hφ only in terms of Ez and Hz. Therefore we only need to solve
the wave equations for Ez and Hz (which are both identical). Besides,
the z-component of the Laplacian operator is much simpler. Hence (6.6)
and (6.7) become for r 6= a :[

∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂φ2 + (k2 − β2)

]Ez(r,φ)Hz(r,φ)

 = 0, (6.10)

where k = ωn/c, c being the speed of light in free space. This equation
can be further separated in φ and r such that Ez(r,φ) = R(r)Φ(φ).
Denoting the separation constant

3 Calligraphic letters will refer to complex field quantity.
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l2 = − 1
Φ
∂2Φ
∂φ2 ,

we now see that the radial part is a solution of a differential Bessel
equation of order l, up to a change of variable ρ2 = r2(k2 − β2) :[

r2 ∂
2

∂r2 + r
∂

∂r
+ r2(k2 − β2)− l2

]
R(r) = 0, (6.11)[

ρ2 ∂
2

∂ρ2 + ρ
∂

∂ρ
+ ρ2 − l2

]
R(ρ) = 0. (6.12)

The last equation being rewritten in the more suggestive form of a
Bessel equation.

6.2.2 Angular dependence

The solution to the angular dependence equation given previously by
the separation constant l is trivial. In general, the angular dependence
Φ of the field will then be a linear superposition of {exp[+ilφ], exp[−ilφ]}.
Here, we would like to introduce already the notation E±z to distinguish
between both terms, that refers to e±ilφ in the angular dependence of
the field solution. In addition, we acknowledge that the constant l must
be an integer. Indeed, Φ(φ) must be single-valued, which here trans-
lates into 2π-periodicity Φ(φ+ 2π) = Φ(φ).

6.2.3 Radial dependence

As any second order equation, (6.11) admits two linearly independent
solutions. However, we also need to distinguish between the sign of
(k2 − β2):

k2 > β2 : The analytical solutions of (6.11) are known as the Bessel
function Jl of the first kind of order l and Neumman function Yl
of order l (known as the Bessel function of the second kind).

k2 < β2 : (6.11) becomes what is known as the modified Bessel equa-
tion, [

r2 ∂
2

∂r2 + r
∂

∂r
−
(
r2(β2 − k2) + l2

)]
R(r) = 0, (6.13)

whose solutions are analoguous Bessel functions (also known as
the modified Bessel functions) of the first and second kind, Il and
Kl respectively.
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We then get the following general4 solutions for the radial part, de-
pending on the previous value of β, where h and q are real constant:

R1(r) = aJl(hr) + bYl(hr) with h2 = k2 − β2, (6.14)
R2(r) = cIl(qr) + dKl(qr) with q2 = β2 − k2. (6.15)

One can also reformulate these solutions in terms of another basis
set, namely the two linearly independent Hankel functions. Hankel func-
tions are to the Bessel functions (cylindrical harmonics) what e±iθ are
to the trigonometric functions (the circular harmonics, i.e sine and co-
sine). We prefer to work with non-complex constants. Inasmuch as the
previous expressions are about to be greatly simplify in the next sec-
tion.

6.2.4 Lossless propagation requirement

Now, we are going to add physical appreciations for the nature of light
propagation in the fiber which will constrain β. We require radially
confined light in the core with only evanescent field in the cladding for
lossless mode propagation in the whole fiber.
As mentioned before, the wave-vector in the core and the cladding is

naturally decomposed into a longitudinal component and a transversal
component with respect to the fiber axis. A wave-vector can be complex
and propagation is identify with its real part while the imaginary part
represents attenuation of the fields. No propagation occurs if all wave-
vectors are pure imaginary. If all wave-vectors are real, light will be
instead freely radiating without confinement. The moduli of the radial
and longitudinal components satisfy k2 = k2

⊥ + β2 where k = 2πn/λ.
For lossless propagation along the fiber axis, β is real. The sign of

k2 − β2 basically tells us whether the fields are now radially radiating
or decaying. The value of k depends on the local refractive index. If we
want to guide and confine light along the fiber axis, we cannot allow for
radiation outside, that is in the assumed infinitely thick surrounding
cladding. k⊥ will thus have to be purely imaginary in the cladding. To
work with real constant, we will set k⊥ = −iq.

Mathematically, while the normal Bessel functions oscillate, the mod-
ified ones exponentially vanish or explode (figure 6.1). Therefore, to
satisfy the guiding requirement we demand R(r) to be of the kind of
(6.14) in the core and of the kind (6.15) outside. In addition, the fields
must be finite at the center of the fiber r = 0 and they should vanish
in the limit r → ∞. To that end, one would have to set the constants
b = 0 and c = 0 since Yl diverges towards 0 and Il diverges for r →∞.
We are then left with two functions, Jl in the core which has a finite
value at r = 0 and Kl for the cladding field which vanishes at r →∞.

The previous conditions translate for β as follows : In the core (r < a),
k2 = k2

0n
2
1 and we thus require k2 > β2. Outside (r > a), k2 = k2

0n
2
2

4 We will focus on a particular order l of Bessel functions.
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Figure 6.1: Behaviour of Bessel and modified Bessel functions.
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and we require instead β2 > k2. Finally one has to satisfy the important
condition

k2
0n

2
2 ≤ β2 ≤ k2

0n
2
1 with k2

0 =
ω2

c2 . (6.16)

6.2.5 First general solutions

It follows the general form of the field components Ez and Hz. As
mentioned above (6.10), we can deduced all remaining field components
with the knowledge of Ez and Hz alone. All the expressions are given
in Appendix A.3.

In the core, r < a,

E±z (r,φ) = AJl(hr) exp [±ilφ] (6.17)
H±z (r,φ) = BJl(hr) exp [±ilφ] (6.18)

h =
√
k2

0n
2
1 − β2 (6.19)

Outside, r > a,

E±z (r,φ) = CKl(qr) exp [±ilφ] (6.20)
H±z (r,φ) = DKl(qr) exp [±ilφ] (6.21)

q =
√
β2 − k2

0n
2
2 (6.22)

where A, B, C, D are normalization factors to be related by continuity
conditions for the fields at r = a. They will be finally expressed in terms
of the total light field power. However, before we proceed, we are going
to show that these boundary conditions put even more constraints on
the propagation constant β and we will observe how only particular
values for β are singled out from the continuous range obtained at
(6.16). This will lead to the definition of the modes that will propagate
through the thin part of the fiber. From these results, we will then see
how to achieve single-mode propagation for instance.

6.3 continuity and transcendental mode equation

The continuity conditions for the fields at r = a demand that all compo-
nent parallel to the core-cladding interface, Ez, Eφ, Hz and Hφ should
be preserved (A.4). This means four different conditions and we have
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four factors A, B, C and D to find. We can thus solve the following
linear algebraic system:

AJl(ha)−CKl(qa) = 0 (Ez)

BJl(ha)−DKl(qa) = 0 (Hz)

A
[
± lβJl(ha)

h2a

]
+ B

[
i
ωµ0
h
J ′l (ha)

]
+ C

[
±lβKl(qa)

q2a

]
+D

[
iωµ0
q

K ′l(qa)

]
= 0 (Eφ)

A
[
− iωε1

h
J ′l (ha)

]
+ B

[
±lβ Jl(ha)

h2a

]
+ C

[−iωε2
q

K ′l(qa)

]
+D

[
±lβKl(qa)

q2a

]
= 0 (Hφ)

with J ′l (hr) =
dJl(hr)

d(hr)
and K ′l(qr) =

dKl(qr)

d(qr)

We will get a non-trivial solution, that is non-zero fields, whenever the
determinant of the previous system is zero. Its Laplace’s development
(A.5) can be ultimately factorised such

(lβ)2
{( 1

qa

)2
+

( 1
ha

)2
}2

=
ω2

c2

(
J ′l (ha)

haJl(ha)
+

K ′l(qa)

qaKl(qa)

)
(6.23)

×
(
n2

1
J ′l (ha)

haJl(ha)
+ n2

2
K ′l(qa)

qaKl(qa)

)
.

For a given angular frequency ω, as h and q depend solely on β, there
will be a solution for propagation of the fields only if β is solution
of the previous transcendental equation (6.24). As long as these solu-
tions are within the range 6.16, we will call the corresponding allowed
electromagnetic field solutions the modes that can propagate losslessly
through the fiber or simply, guided modes. Each mode will be identi-
fied by a given pair of indices (l,m), where l is the considered order
of the Bessel functions and m denotes an ordinal intersection number
starting from 1, associated with the particular value β for that mode
when graphically solving (6.24). This will be precised in section 6.7.

6.4 general rotating polarization solutions

Directly from the previous linear system 6.3,

A
C

=
B
D

=
Kl(qa)

Jl(ha)
and D

C
=
±ilβ
ωµ0

[ 1
h2a2 +

1
q2a2

](
J ′l (ha)

haJl(ha)
+

K ′l(qa)

qaKl(qa)

)−1

(6.24)

are sufficient relations to express all fields in terms of only one constant,
say C. This arbitrary constant will be further set upon the total input
power of light 6.6 to normalize the field expressions conveniently. We
report here their general expressions as they consitute the backbone of
this chapter. Where β, as well as h, q and thus the fields are given for
a particular mode (l,m), see A.6 for more details.
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In the core section (r < a):

E±z (r,φ) = CJl(hr)
Kl(qa)

Jl(ha)
exp [±ilφ]

E±r (r,φ) = CKl(qa)

Jl(ha)

iβ

2h [Jl+1(hr)(1 + ls)− Jl−1(hr)(1− ls)] exp [±ilφ]

E±φ (r,φ) = ±CKl(qa)

Jl(ha)

β

2h [Jl+1(hr)(1 + ls) + Jl−1(hr)(1− ls)] exp [±ilφ]

H±z (r,φ) = ±s ilβ
ωµ0
CKl(qa)

Jl(ha)
Jl(hr) exp [±ilφ]

H±r (r,φ) = ±CKl(qa)

Jl(ha)
x

[
Jl−1(hr)(ls−

ω2ε1µ0
β2 )− Jl+1(hr)(ls+

ω2ε1µ0
β2 )

]
exp [±ilφ]

H±φ (r,φ) = CKl(qa)

Jl(ha)
ix

[
Jl+1(hr)(

ω2ε1µ0
β2 + ls) + Jl−1(hr)(ls−

ω2ε1µ0
β2 )

]
exp [±ilφ]

In the cladding section (r > a):

E±z (r,φ) = CKl(qr) exp [±ilφ]

E±r (r,φ) = −C iβ2q [Kl+1(qr)(1 + ls) +Kl−1(qr)(1− ls)] exp [±ilφ]

E±φ (r,φ) = ±C β2q [Kl−1(qr)(1− ls)−Kl+1(qr)(1 + ls)] exp [±ilφ]

H±z (r,φ) = ±s ilβ
ωµ0
CKl(qr) exp [±ilφ]

H±r (r,φ) = ±Cy
[
Kl+1(qr)(ls+

ω2ε2µ0
β2 ) +Kl−1(qr)(ls−

ω2ε2µ0
β2 )

]
exp [±ilφ]

H±φ (r,φ) = −Ciy
[
Kl+1(qr)(

ω2ε2µ0
β2 + ls) +Kl−1(qr)(

ω2ε2µ0
β2 − ls)

]
exp [±ilφ]

with s =

[ 1
h2a2 +

1
q2a2

](
J ′l (ha)

haJl(ha)
+

K ′l(qa)

qaKl(qa)

)−1

h =
√
k2

0n
2
1 − β2, x =

β2

2hωµ0

q =
√
β2 − k2

0n
2
2, y =

β2

2qωµ0

We would like now to give a few immediate remarks about the pre-
vious wave field solutions.

6.5 general properties

First, the amplitudes of the field components are described by Bessel
functions. This leads to the particularly interesting behaviour of Bessel
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waves. They do not spread radially while propagating along the fiber
axis (along z). This means that they do not diffract and spreat out
as they propagate as compare to Hermite or Laguerre-gaussian laser
modes for instance. This property makes these nanofiber field solutions
extremely interesting for light beams where tight focus and collima-
tion are very important e.g optical tweezers, strong single atom light
interactions. Nowadays, Bessel beams can be procuded for instance via
axicons5.
We can also note that the fields are in general (for any order l) not

transverse. Indeed, the components of the fields along the propagation
direction (here z) do not vanish. We shall encounter the consequences
of these properties latter.
Outside the core, the field amplitudes are in good approximation

exponentially decaying with the decay constant Λ = 1/q. On the other
hand, k2

0n
2
2 ≤ β2. Therefore, one limit of guidance happens when q

vanishes, that is when the mode extension outside the core of the fiber
is largest, here infinitely wide. Light is indeed not confined anymore. We
can give an estimate of the order of magnitude of the light evanescence
length from 6.16 ⇒ 0 ≤ q2 ≤ k2

0(n
2
1 − n2

1). Setting n2 = 1 and n1 ∼ 1.5
for silica glass, Λ is about a few hundred nanometers for infrared light
(1µm). We shall study more precisely the mode evanescence in later
chapters.
An immediate consequence of the ratio D/C in (6.24) being ± pure

imaginary is that E±r and E±φ are ±π
2 phase-shifted. This means that{

E+r , E+φ
}
will represent a real transverse field to the fiber axis E⊥ with

clockwise rotating polarization, and
{
E−r , E−φ

}
with counter-clockwise

rotating polarization. We prefer to speak in terms of rotating polar-
ization since E±z and H±z are in general non-zero. As a result, one
can only hope to obtain a quasi-linear transverse polarization from
an equal superposition of the + and − solutions. The polarization gra-
dients of the guided modes shall be studied as well in later chapters.
Another consequence of the angular dependance of the optical phase
Φ± = ωt−βz± lφ is that the wavefront of these solutions is not planar.
It is rather helical. We shall study this property in close relation to the
fact that a guided mode can carry orbital angular momentum.

6.6 practical normalization

We now express and relate the normalization constant C in terms of
the light power we send through the fiber along its axis. This relates
directly to the physical quantity we can effectively measure. The total

5 A special lens with a conical surface.
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light power will be given by the average value, over one optical period
2π/ω, of the transverse flux of the Poynting vector :

P in =
∫ 2π

0

∫ a

0

〈
Sinz

〉
2π
ω

r dφ dr,

Pout =
∫ 2π

0

∫ ∞
a

〈
Soutz

〉
2π
ω

r dφ dr,

with Sz = [E×H]z ,

which, following the definition of our complex6 fields (6.8) and account-
ing for the cycle-average, gives

〈Sz〉 2π
ω

=
1
2 [E ×H∗]z .

We find, for both ± rotating polarizations,

C =
√

4ωµ0Ptot
πa2β

((
Kl(qa)

Jl(ha)

)2
T inl + T outl

)− 1
2

with Ptot = P in+Pout.

(6.25)

All new terms introduced can be found in Appendix A.7 together with
the detailed derivation of (6.25).

6.7 hydrid modes propagation
and single-mode condition

We now focus the discussion on the modes that can propagate in the
nanofiber and study the characteristic equation (6.24). In order to con-
template the emergence of new modes while sweeping the wavelength
of input light we need a good representation for this transcendental
equation. Of course, one could be simply satisfied by numerically solv-
ing (6.24) for given interesting parameters. As mentioned above, the
normal Bessel functions are oscillating functions while the modified
Bessel functions have exponential behaviours. In order to graphically
appreciate contributions, from both kind of Bessel functions indepen-
dently, which are currently entangled in (6.24), for any variation of λ,
one needs to isolate J ′l (ha)

haJl(ha)
terms from K′l(qa)

qaKl(qa)
terms. This become

more evident and was brought to mind when considering the case where
l = 0. Therefore, as (6.24) is quadratic in K′l(qa)

qaKl(qa)
and J ′l (ha)

haJl(ha)
, one can

achieved this separation by solving for one or the other, the former
second order equation.

6.7.1 Hybrid mode classes

Solving for the J ′s gives:

∆ =

(
K ′l(qa)

qaKl(qa)

)2 [(
n2

1 + n2
2

)2
− 4n2

1n
2
2

]
+ 4n2

1

(
l
β

k0

)2{( 1
qa

)2
+

( 1
ha

)2
}2

≥ 0

6 H∗ denotes the complex conjugate of H.
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(6.26)

where ∆, the discrimant of the second order polynomial equation, is
positive7.
The roots follow :

J ′l (ha)

haJl(ha)
= −

(
K ′l(qa)

qaKl(qa)

)(
n2

1 + n2
2

2n2
1

)
(6.27)

±

√√√√√(n2
1 − n2

2
2n2

1

)2
( K ′l(qa)

qaKl(qa)

)2

+

(2lβk0n1
h2q2a2

)2
.

An immediat result which stems from our transition to a first order
transcendental equation is that we have shuffled the forest of modes in
two classes following the ± sign. By directly plugging these solutions
into (6.24) one can see an associated property to each class. For the
class + we have Ez > Hz, for the class − we have Hz > Ez. Hence the
notation for these so-called hybrid modes Snitzer (1961), EHlm and
HElm.

6.7.2 TE and TM modes

A special case arises when l = 0. Because
(

K′l(qa)
qaKl(qa)

)
is negative, the

previous two possible roots reduce to

class (+) J ′l (ha)

haJl(ha)
= − K ′l(qa)

qaKl(qa)
, class (-) J ′l (ha)

haJl(ha)
= −n

2
2
n2

1

(
K ′l(qa)

qaKl(qa)

)
.

(6.28)

Class (+) respectively (Class (-)) solutions corresponds to vanishing
constants A and C respectively (B and D), that is Ez = 0 respectively
(Hz = 0), see (6.24). For all HE0m modes, the component Hz then
vanishes and we will label these transverse magnetic modes, TMm.
Respectively, for all EH0m, the component Ez vanishes and we label
these transverse electric modes, TEm. Using geometrical optics, one
can quickly picture the distinction between transverse and these hy-
brid modes with longitudinal components. The light ray either goes
straight through our rigid fiber model or propagates from reflections
onto the walls.

6.7.3 Cutt-off and mode order

In this section, we will understand visually how the fiber modes are
identified and how they arise for different optical input light wavelength.
We have graphically represented (top figure 6.2) the left- and right-hand

7 indeed,
(
n2

1 + n2
2
)2 − 4n2

1n
2
2 =

(
n2

1 − n2
2
)2 ≥ 0
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label modes description

TE Transverse Electric No electric field in the prop-
agation direction

TM Transverse Magnetic No magnetic field in the
propagation direction

TEM Transverse ElectroMagnetic No electric and magnetic
fields in the propagation di-
rection

HE, EH Hybrid modes Non-zero electric and mag-
netic fields in the propaga-
tion direction

Table 6.1: Mode terminology

sides of the two kind of first order transcendental equations (6.28) as
functions of ha to see relative changes between both sides for different
values of the wavelength λ. This becomes more apparent by recalling
the following important fixed relation that always holds here

h2 + q2 =

[2π
λ

]2 (
n2

1 − n2
2

)
. (6.29)

For a given wavelength, the number of possible modes depends on
how many times the right-hand side of (6.28) intersects the left-hand
side before it diverges. For a given order l, we identify each intersec-
tion point with the ordinal number m starting with 1. We know that
1
qa

K′l(qa)
Kl(qa)

diverges whenever qa = 0, that is, as follows from equation
(6.29), when

ha =
2πa
λ

√
n2

1 − n2
2 ≡ Vcut. (6.30)

This characteristic constant of the problem acts as a cut-off parameter
for the number of sustained modes of a given wavelength.

numerical aperture The parameter Vcut is the wave analogue
of the geometrical numerical aperture. The numerical aperture being
the sine of the critical angle for total internal reflection. N .A = sin θc =√
n2

1 − n2
2/n0, where n0 is the refractive index of the medium into which

the fiber is immersed.
The cut-off parameter can be easily understood as follows. The core

of the fiber, in order to guide and confine light waves acts as a trans-
verse ring resonator or a circular cavity for that part of the light field
which propagates radially. Hence the appearance of a discrete number
of modes that maches constructive interference conditions for the ra-
dial field. However, there is a primordial sine qua non condition to be
satisfied to guide light along the fiber axis. Light has to fall back at
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EH02
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HE012 4 6 8 10
ha
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1.0

(a) First modes with l = 0

HE11

HE12

EH11

EH11

EH12

HE12

HE13

HE11

HE11

2 4 6 8 10
ha

-0.5

0.5
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1.5

(b) First modes with l = 1

Figure 6.2: (black) left side of transcendental equation, else right side (dashed
lines for EH modes, solid lines for HE modes) {red 800nm, green
400 nm, blue 200 nm}, a = 200nm, n1 = 1.4469, n2 = 1 (a) . (b)
case l = 1.

the core-cladding interface. Indeed, h is the radial component of the
light wave-vector, that can be written h = k0 sin θ with (β = k0 cos θ,
k0 = 2π/λ) when measuring the angle θ from the fiber axis. As well
known from Snell’s law, total internal reflection only happens if θ is
smaller than the critical angle satisfying sin θc =

√
n2

1 − n2
2. Only when

sin θ, that is h/k0, is smaller than Vcut/a light is reflected. For higher
values, as shown by the divergence of all the coloured traces in figure 6.2,
the fiber will not confine light along z. This should be retained as the
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first meaning of the cutt-off parameter. When the previous condition
is met, due to the wave nature of the light, the reflected Bessel waves
will interfere destructively in general except for the discrete values of
ha or equivalent, discrete values of β.
From top figure 6.2 (see red curve), one can then state for instance

that the fiber will not allow any l = 0 modes to propagate if the cut-off
parameter is smaller than the first vertical asymptote of (6.28)’s left
side. The positions of all these vertical asymptots are given by the zeros
of the Bessel function Jl(ha) according to (6.28)’s left side. The first
zero of J0(x) (a well-known value) is reached when x = x0 ≈ 2.405.
Following bottom figure 6.2, one can choose the wavelength of light

for a given fiber such that 2πa
λ

√
n2

1 − n2
2 < 2.405 which allows the exis-

tence of only one mode, the mode HE11. In fact, this mode will always
exist. It is the so-called fundamental mode of the optical nanofiber. As
near cut-off as it might be, also synonym of weak-guidance, there will
always be an intersection on our previous graph that translates the
existence of the fundamental mode.
To finish we give a visualization of the tranverse field intensity distri-

bution for the first height fiber hybrid modes based on our derivations
in figure 6.3.

summary

In this chapter, I have presented in a simple way how to solve the guided
modes which are allowed to propagate in an optical nanofiber. This
work represents my very first efforts in our nanofiber projects, which
have then allowed to deduce and model all the important characteristics
for light-atom interactions in the evanescent fields of a nanofiber.
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Figure 6.3: Mode map: Tranverse field intensity distribution for the first height
nanofiber modes with rotating polarization.





7
POLARIZAT ION AND TOPOLOGY

Point set topology is a disease
from which the human race will soon recover.

— Henri Poincaré

7.1 rotating polarization

We first start by plotting the transverse electric vector field for the
general solutions found in the previous chapter, at different propagation
time instants.
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Transverse polarization of rotating mode HE11, Λ = 852 nm

Figure 7.1: Tranverse polarization field of the fundamental mode solution.
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Visually (figure 7.1), these solutions correspond to a global rota-
tion of the transverse orientation of the electric field, the solutions
denoted (+) corresponding to clockwise polarization rotation, and (−)
to counter-clockwise rotation.

7.2 geometrical phase

A quick look at the cylindrical components of the electric field solution
reveals the geometrical nature of the phase. As noted before, the phase
of the field components depends on the cylindrical angle φ.

E±z (r,φ) = CKl(qr) exp [±ilφ]

E±r (r,φ) = −C iβ2q [Kl+1(qr)(1 + ls) +Kl−1(qr)(1− ls)] exp [±ilφ]

E±φ (r,φ) = ±C β2q [Kl−1(qr)(1− ls)−Kl+1(qr)(1 + ls)] exp [±ilφ]

This means that in general, the hydrib guided modes of the nanofiber
are characterized by a helical wavefront shape.
Cophasal or constant optical phase points describe an helix. Helical

modes are remarkable from the presence of a topological phase singular-
ity at the beam axis (here the fiber axis). This constitutes the feature
of vortices, therefore a helical mode is an optical vortex. We shall see
later that a pure helical mode with phase lφ corresponds to a light field
carrying orbital momentum equal to l h̄.

7.2.1 Longitudinal component

Readily, the longitudinal component E±z (r,φ) exhibits a pure helical
phase. In figure 7.2, we plot the spatial distribution of this component
for the fundamental mode. Clearly, one observes the topological singu-
larity and the discontinuity about the fiber axis.

7.2.2 Azimuthal harmonics

However, the phase evolution of the transverse components E±r (r,φ)
and E±φ (r,φ), is different from the longitudinal one. Indeed, the cylin-
drical basis is a local basis. Therefore, the transverse polarization of
the field, given by the azimuthal invariant tranverse field amplitude
components, Er and Eφ given above will actually depend harmonically
on φ. This transformation from the cylindrical basis to a fixed cartesian
one is nothing but a rotation around the fiber axis, that is adding or
annihilating a unit of orbital angular momentum.
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er = ex cosφ+ ey sinφ =
(
eiφe−1 − e−iφe1

)
/
√

2 (7.1)

eφ = −ex sinφ+ ey cosφ = i
(
eiφe−1 + e−iφe1

)
/
√

2 (7.2)

The best basis to discuss angular momentum properties is the spher-
ical or irreducible tensor basis.

e−1 =
ex − iey√

2
, e0 = ez, e1 = −ex + iey√

2
. (7.3)

Readily, the transverse field polarization will then contain a super-
position of azimuthal harmonics, a superposition of helical modes with
(l ± 1)φ. For the fundamental mode HE11 with l = 1, the transverse
field will be a superposition of an azimuthally invariant mode (with
l = 0) and an helical mode with l = 2. The rotation of the polarization
is independent of these properties. It comes from the relative constant
dephasing of ±π/2 between the two transverse components.

7.3 quasi-linear polarization

From a balanced superposition of direct and counter-clockwise rotating
polarization modes, we can obtain modes with constant field direction.
The field oscillates along this direction and cancel out every half-period.

The cylindrical components of two orthogonal quasi-linear polarized
fields are given by

Ei↑(r,φ) =
E+i (r,φ) + E

−
i (r,φ)√

2
, i = {r,φ, z} (7.4)

Ei→(r,φ) =
E+i (r,φ)−E

−
i (r,φ)√

2
, i = {r,φ, z} (7.5)

To finish this short chapter, I would like to show one of the main nov-
elty of nanofiber light modes. They are a superposition of longitudinal
and transverse waves. As a result, even if the field as quasi-linear trans-
verse polarization, its longitudinal polarization field is not necessarely
linear. In figure 7.5, we show the longitudinal (Y Z) plane polarization
field for light propagating along the fiber axis (Z) with transverse linear
polarization along X. In the plane (Y Z) the polarization of the light
field clearly rotates and is therefore highly elliptical.
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Figure 7.4: Graphical translation of the previous relations
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8
ABRAHAM-MINKOWSKI ANGULAR MOMENTA

A very small cause which escapes our notice determines a
considerable effect that we cannot fail to see, and then we say that

the effect is due to chance.

— Henri Poincaré.

8.1 introduction

The main objective of this chapter is to study the mechanical properties
of the nanofiber light fields. For instance, one will see that photons from
the hybrid guided light modes propagating in and around an optical
nanofiber carry orbital angular momentum in addition to its standard
spin angular momentum components. Photons with no well defined
spin will challenge, for instance, the pure optical pumping of single
atomic Zeeman levels. The evanescent field of the fundamental mode
of the nanofiber that we used to trap, manipulate and probe the atoms
carries orbital momentum and its three-dimensional polarization field
can lead to non-trivial light shifts on the atomic states. In addition,
the optical pumping of orbital angular momentum can cause atoms to
experience torques and azimuthal shift such as rotational Doppler and
recoil shifts. We will find the trajectory of the energy flow and show
that in its fundamental mode, the nanofiber interface behaves as a light
screw.
This chapter follows the pioneer work of Le Kien and also the re-

cent progress on the fundamental dilemma between the Abraham and
Minkowski momenta of light. We generalize the theory of Kien et al.
(2006) and provide detailed analytical results for any mode order1.

8.2 momentum and conservation of energy

Light has mechanical properties. This is a well-known experimental
fact. However, it is interesting to trace it back as a requirement from
the energy conservation principle and the theory of relativity. One can
also argue that energy and momentum are components of the same

1 We have not found any references to compare with, except for the fundamental
mode.
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four-vector. Indeed, it is classically clear that electromagnetic energy
can not be conserved globally. The energy that would disappear at
a given point A in space would have to reappear somewhere else at
another distant point B, simultaneously, to conserve the total energy
in the universe. The concept of simultaneity being relative, the energy
conservation principle would not be satisfied for all observers.
Electromagnetic energy has to be conserved locally. In absence of

matter, this writes

∂u

∂t
+∇ · S = 0 (8.1)

where u is the energy density and S the energy flux. In words, the
electromagnetic energy that disappears in the infinitely small volume
dV , has to flow through the boundaries of dV . It was Poynting (1884)
who gave the expression widely accepted2 for the flux of electromagnetic
energy S in vacuum.
To this quantity of energy that is flowing in free space, one can

associate, directly from the result of Einstein, the linear momentum
p = S/c. Because this momentum is transported at the constant speed
of light c, the density of linear momentum in vacuum will be

g(r, t) = S(r, t)
c2 . (8.2)

8.3 angular momentum density

In the previous section, we have mentioned how the local conserva-
tion of electromagnetic energy suggests the existence of the linear mo-
mentum of light. Light possesses another degree of freedom, linked to
rotational motion, well-known as angular momentum. It is as well a
fundamental mechanical charateristic of light.

8.3.1 Local definition

From the knowledge of the local linear momentum density of light at a
certain point r in space, we deduce the local angular moment density
at r. Readily,

j(r, t) = r× g(r, t). (8.3)

The first main step in order to study j, is then to determine the value
of linear momentum carried by the guided modes inside and outside
the nanofiber.
All the final analytical results of this chapter are based on the ex-

pressions of the general solutions for the guided modes with rotating

2 There are indeed other valid expressions for energy density and flux
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polarization we have found earlier, see Appendix A.6. There, we consid-
ered modes propagating towards the positive direction of the nanofiber
axis (z). For an observer looking down the negative direction of the
fiber axis, the transverse field components with phase term +lφ repre-
sent clockwise rotation, −lφ counterclockwise rotation. Indeed, with a
proper choice of phase (time) origin, the cylindrical angle of constant
phases is,

±lφ(t) = βz ∓ ωt.

For the sake of generality, we take all cases into account, as well as
quasi-linear polarized fields.

8.4 kinetic momentum of the guided modes

It is well-known that a photon carries a free-space kinetic or linear
momentum p = h̄k, where here the wave-vector of light k as magnitude
ω/c. ω being the angular frequency of the light mode and c the speed
of light in free-space.
However, in a medium of refractive index n, where k gets multiplied

by n(ω), one may think that the linear momentum of a photon within
the medium is

p = h̄kn. (8.4)

This is not correct.

canonical momentum Even though the latter expression is the
momentum that an atom would absorb if placed in the same medium.
The reason being that atoms, in a medium, absorb the canonical mo-
mentum of light, Barnett and Loudon (2010); Barnett (2010). It is the
canonical momentum which is the generator of translations of the light
fields in quantum mechanics.
Instead, the kinetic momentum of a photon in the medium is

p =
h̄k
n

. (8.5)

8.4.1 Free-space linear momentum density

Adding the electromagnetic power loss into motion of charged particles
to the right-hand side of (8.1), Poynting showed that the electromag-
netic energy flux is given by the cross-product of the electric and mag-
netic fields. As referred to in the introduction, one can find without
ambiguity the linear momentum density in vacuum,

gAbra =
E×H
c2 . (8.6)



116 abraham-minkowski angular momenta

8.4.2 Abraham-Minkowski momenta dilemma

In media, we have indeed the choice between either E and D, or H and
B. The displacement field and the induction fields give rise to another
possible expression for a density of field momentum due to Minkowski

gMink = D×B. (8.7)

The expression (8.6) given in vacuum is also valid in a refractive medium
(Abraham). It took a century to solve the dilemma of choice between
these two previous expressions until 2010 [ref barnett]. Indeed, both
theoretical examples and experimental tests confirmed the validity of
both momenta. We now know that the Minkowski momentum repre-
sents the canonical momentum of the fields. This momentum is relevant
in diffraction experiments and light-atom interaction.
This choice dilemma exists therefore also for the angular momentum

(8.3) of any light field in a medium. We will provide results for both
cases even though we will focus on the true kinetic quantities using
Abraham expression.

8.4.3 Cycle-average energy flux

From the definition of the complex field amplitudes we chose (6.8), the
cycle-average Poynting vector can be written as follows, if the harmonic
optical frequency components at 2ω are neglected,

〈S〉 = 〈[E×H]〉 2π
ω

=
1
2 Re [E ×H∗] . (8.8)

no radial flow A quick inspection at the coefficients A.6 shows
that E±φ H±∗z − E±z H

±∗
φ is pur imaginary, both inside and outside the

nanofiber. Therefore we conclude that there is no mean radial flow
of energy, 〈Sr〉 = 0. This important property also holds for an equal
superposition of clockwise and counter-clockwise rotating polarizations.
As expected from the definition of guided modes, we see here that the
energy is indeed confined along the longitudinal fiber axis (z).

circulation Here one might observe the consequence of the exis-
tence of longitunal components of the fields. The azimuthal component
of the cycle-average Poynting vector is different from zero (and only
depends on r). The electromagnetic energy of the guided modes circu-
lates around the nanofiber axis. This is very important as it will give
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birth to angular momentum in a direction parallel to the fiber axis. We
found,〈

S±φ
〉

=
1
2 Re

[
E±z H±∗r −E±r H±∗z

]
〈
S±φ
〉
in

= ∓N 2 h

ωµ0

s

s1
ξJl(hr)

[
Jl+1(hr)(2ls1 + 1 + l2ss1)− Jl−1(hr)(2ls1 − 1− l2ss1)

]
〈
S±φ
〉
out

= ±N 2 q

ωµ0

s

s2
Kl(qr)

[
Kl+1(qr)(2ls2 + 1 + l2ss2) +Kl−1(qr)(2ls2 − 1− l2ss2)

]
where ξ =

(
q

h

Kl(qa)

Jl(ha)

)2
, N = C β2q , si =

β2

k2n2
i

s (i = 1, 2).

The last two constants were introduced to compare our results with [ref
lekien].
〈Sφ〉 is however null for quasi-linear polarized modes which still pos-

sess longitudinal components.

(a) (b)

Figure 8.1: Transverse Poynting vector field density of the fundamental HE11
mode. (a) for (+) solutions, clockwise rotating polarization (b) for
(-) solutions, counter-clockwise rotating polarization.

longitudinal flow We already found the longitudinal compo-
nent of the cycle-average energy flux in the previous chapter in order
to normalize the field expressions to the total transverse input power
in the fiber. Here we rewrite it and try to keep the symmetry in the
expressions. One can notice in the constants, as above, a normalized
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wavelength (s/si) and an effective impedance (transverse for (h, q) and
longitudinal for β).

〈
S±z
〉

=
1
2 Re

[
E±r H±∗φ −E

±
φ H

±∗
r

]
〈
S±z
〉
in = N 2 β

ωµ0

s

s1
ξ
[
J2
l+1(hr)(1 + ls)(1 + ls1) + J2

l−1(hr)(1− ls)(1− ls1)
]

〈
S±z
〉
out = N 2 β

ωµ0

s

s2

[
K2
l+1(qr)(1 + ls)(1 + ls2) +K2

l−1(qr)(1− ls)(1− ls2)
]
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Figure 8.2: Magnitude of energy flow components as a function of the distance
to the fiber axis for the fundamental HE11 mode with rotating
polarization. (a) Transverse energy flow (b) Longitudinal energy
flow.

We have now reached our first goal. Indeed, from equations (8.2)
and (8.6), we obtain the cycle-average kinetic momentum density of
the guided modes. Before we proceed further, it is interesting to study
the trajectory of the linear momentum.

8.4.4 Light momentum trajectory

At a fixed distance away from the fiber axis, the cylindrical components
of 〈S〉 are constant. They do not depend on z nor do they on the angle
φ. However, the cylindrical basis is a local basis. Therefore the direction
of 〈S〉 will vary along the fiber axis. From the constant azimuthal cir-
culation and axial translation of the Poynting vector (having no radial
flow), its trajectory will then describe a spiral. This is how the light
energy is kept guided and confined all along the nanotapered section.
See figure 8.3.
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Figure 8.3: Classical trajectory of a photon particle at the nanofiber surface,
blue (+) mode, red (-) mode.

8.4.5 Light screw periodicity

An important feature of the linear momentum trajectory is its longi-
tudinal periodicity. Besides, it clearly depends on the spiral radius. In
order to obtain an analytical expression for the spatial period, we seek
for a 2π increase in the rotation angle α(z) of the spiral, during prop-
agation.
The transverse arc length increase, during an infinitesimal path step,

is directly linked to the increase in the rotation angle by r dα. It is
coupled to an infinitesimal increase dz along the fiber axis. One can
see that the previous arc length is given by dz|Sφ|/Sz. Thus, we have

dα

dz
=

1
r

|Sφ|
Sz

.
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As commented above, the components of 〈S〉 do not depend on z. A
direct integration gives,

α(z) =
z

r

|Sφ|
Sz

+ α0

where α0 is an arbitrary starting angle constant. From α(z + η) −
α(z) = 2π, the wanted spatial period is found to be

η = 2π(rSz)/|Sφ|. (8.9)

light spiral mechanical advantage The previous param-
eter would be interesting in a view of designing a light screw for ex-
ample. Indeed, the mechanical advantage of this screw would clearly
depend on η, which characterizes the increase in linear motion during
one revolution. An optimal screw will then be found by maximizing the
period η while the light intensity transported in the evanescent leads
is sufficient.

0.7 0.8 0.9 1.0
Λ H Μm L

1.5

1.6

1.7

1.8

Period Η H Μm L

(a)

0.7 0.8 0.9 1.0
Λ H Μm L

1.9

2.0

2.1

2.2

2.3

Period Η � Λ

(b)

Figure 8.4: (a) Light screw period versus light wavelength (b) Ratio of light
screw period to the light wavelength.

It would be very interesting to investigate how the spiral depends
on the light wavelength, on the fiber radius and the refractive index
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Figure 8.5: Light screw period as a function of the distance to the fiber axis.

difference in order to optimize the previous spatial period in the design
of optical light screw.

8.4.6 Modes with quasi-linear polarization

We report our analytical results for modes with equal superposition of
(+) and (-) rotating polarization, that is quasi-linearly polarized modes.
Clearly, the azimuthal symmetry of the longitudinal energy flow is now
broken. Only the longitudinal component remains. Light energy does
not circulate anymore around the fiber axis.

〈Spz〉out =
[
K2
l+1(qr)(1 + ls)(1 + ls2) +K2

l−1(qr)(1− ls)(1− ls2)
]
×N 2 β

ωµ0

s

s2

− 2(l2ss2 − 1) cos(2lφ+ 2α)Kl+1(qr)Kl−1(qr)×N 2 β

ωµ0

s

s2

〈Spz〉in =
[
J2
l+1(hr)(1 + ls)(1 + ls1) + J2

l−1(hr)(1− ls)(1− ls1)
]
× ξN 2 β

ωµ0

s

s1

+ 2(l2ss1 − 1) cos(2lφ+ 2α)Jl+1(hr)Jl−1(hr)× ξN 2 β

ωµ0

s

s1

8.5 linear momentum per photon

In this section, we want to evaluate the final average linear momentum
distributed per photon in the guided modes and compare it to h̄k. To
this end, we will normalize the linear momentum to unit propagation
length, which has to be finite and then to the number of photons per
unit length.

8.5.1 Linear momentum per unit length

The linear momentum per unit length G is given by integration of the
linear momentum density over the infinite transverse plane to the fiber
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(a) (b)

Figure 8.6: Example of the transverse intensity distribution of the longitudi-
nal Poynting vector component Sz for the quasi-linearly polarized
fundamental mode (a) Radial intensity profile along the azimuthal
direction φ = 0,φ/2 (b) Transverse density. We observe a broken
symmetry φ = 0,φ/2.

axis. Because of the azimuthal invariance of 〈Sφ〉, only the longitudinal
component of the average Poynting vector will contribute to the vector
G.

G = z
∫ 2π

0
dφ
∫ ∞

0

〈Sz〉
c2 r dr (8.10)

Gz = πa2N 2βε0
ω

s

s1
ξ
[
(1 + ls)(1 + ls1)LJl+1(a) + (1− ls)(1− ls1)LJl−1(a)

]
+ πa2N 2βε0

ω

s

s2

[
(1 + ls)(1 + ls2)LKl+1(a) + (1− ls)(1− ls2)LKl−1(a)

]
,

with for compactness (Lommel integrations)

LJl (r) =
[
J2
l (hr)− Jl−1(hr)Jl+1(hr)

]
LKl (r) =

[
Kl−1(qr)Kl+1(qr)−K2

l (qr)
]

.

8.5.2 Photon number per unit length

The electromagnetic energy density is given by :

u =
1
2 (D ·E+B ·H) or 〈u〉2π/ω =

1
4
(
ε0n

2|E|2 + µ0|H|2
)

(8.11)

with our definition of the complex amplitudes. It is then remarkable
that the cycle-average electromagnetic energy per unit length is simply
given by the electric field,

U =
ε0
2

∫ 2π

0
dφ
∫ ∞

0
n(r)2|E|2r dr. (8.12)
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Indeed, according an important theorem, the reciprocity theorem, that
applies to guided modes, one can show that the total magnetic energy
per unit length equates the total electric energy per unit length. We
have verified analytically the validity of this result for all mode order.
The difficulty being that the magnetic energy contribution inside (out-
side) the fiber is different from the electric energy inside (outside). Only
the totals are equal. Equation (8.12) turns out to be a consequence of
the fundamental eigenvalue relation 6.3.

Uin = N 2πa2ε0n
2
1ξ

[
LJl+1(a)(1 + ls)2 +LJl−1(a)(1− ls)2 + 2h

2

β2L
J
l (a)

]

Uout = N 2πa2ε0n
2
2

[
LKl+1(a)(1 + ls)2 +LKl−1(a)(1− ls)2 + 2 q

2

β2L
K
l (a)

]

For the fundamental mode with l = 1, we report the analytical ex-
pression in Appendix B. The number of photons per unit length in a
given rotating polarization mode ±l reads

nγ =
Uin + Uout

h̄ω
. (8.13)

8.5.3 Kinetic momentum per photon

We finally obtain the average linear momentum per photon in the con-
sidered modes,

pfl = zGz

nγ
. (8.14)

homogeneous limit For the sake of curiosity, let us consider
from our model the singular case of an homogeneous medium. We take
the limiting case where no polarization gradient subsists between the
core and the cladding, that is, n1 = n2 = n. The latter condition
implies both β = k0n (for example see (6.16)) and h2 = −q2. The
fields components also greatly simplifies following s = 0. Because the
eigenvalue relation vanishes to J ′l (ha)

haJl(ha)
= − K′l(qa)

qaKl(qa)
, one can show that

ξLJl (a)→ LKl (a) that gives

Gz → πa2N 2 ε0
ω

k2
0n

2

β

[
ξ
(
LJl+1(a) +LJl−1(a)

)
+LKl−1(a) +LKl+1(a)

]
nγ → πa2N 2ε0n

2

h̄ω

[
ξ
(
LJl+1(a) +LJl−1(a)

)
+LKl−1(a) +LKl+1(a)

]
(8.15)

A lot of terms cancel out and the linear momentum per photon reduces
to the well-known and expected result given in the introduction for
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the Abraham momentum (8.5) in a linear isotropic and homogeneous
dielectric medium of refractive index n.

pfl =
h̄k2

0
β

z =
h̄k0
n

z.

This is indeed the value one would expect for a plane wave travelling
in the fiber axis direction z, for which gAbra = z · (nε0|E|2/c) and a
uniform density of photons that amounts to ε0n2|E|2/( h̄ω). One could
have also predicted this result if one recognized that the hitherto sim-
plified eigenvalue relation describes transverse electromagnetic modes
(TEM, i.e both TM and TE at the same time, because the two classes
will be degenerated in this case.

Figure 8.7: Average Abraham (blue) and Minkowsky (pink) momenta per pho-
ton in the fundamental mode as a function of the wavelength.

8.5.4 Quasi-linear polarized modes

The azimuthal symmetry is broken for quasi-linear polarized modes.
For instance, the electric field intensity appearing in (8.12) depends
now on the azimuthal angle φ. The corresponding expressions for |E|2
are reported in Appendix B. However, one can show that the energy
per unit length vehicled by a normalized equal superposition of the
clockwise and counter-clockwise modes, remains unchanged. Therefore,
the results given above for Uin and Uout, in case of any rotating mode,
are also valid for a quasi-linear polarized mode.
This observation also applies to the longitudinal component of the

cycle-average Poynting vector given before 8.4.6, for which the az-
imuthal harmonic component will average out after transversal integra-
tion (8.10). Thus, the linear momentum per unit length transported by
the quasi-linear polarized modes Gz is also identical to the expression
found earlier for the rotating modes.
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8.5.5 Energy transport rate

In this chapter, we have obtained an analytical expression for both the
energy density per unit length U and the transversal energy flow c2G.
Clearly, the ratio of the latter to the former has the dimension of a
velocity. It represents indeed, the rate at which the energy carried in
a hybrid mode propagates in the longitudinal direction (parallel to the
fiber axis). From (8.12) and (8.10) one can write

A = n2
1ξ
[
(1 + ls)(1 + ls1)LJl+1(a) + (1− ls)(1− ls1)LJl−1(a)

]
B = n2

2

[
(1 + ls)(1 + ls2)LKl+1(a) + (1− ls)(1− ls2)LKl−1(a)

]
C = n2

1ξ

[
LJl+1(a)(1 + ls)2 +LJl−1(a)(1− ls)2 + 2h

2

β2L
J
l (a)

]

D = n2
2

[
LKl+1(a)(1 + ls)2 +LKl−1(a)(1− ls)2 + 2 q

2

β2L
K
l (a)

]
,

c2Gz

U
=

ω

β

(
A+B

C +D

)
, (8.16)

where the fraction in parenthesis is a dimensionless quantity. In the
short chapter [ref], we have shown that the magnitude of the phase
velocity in the direction of the fiber axis is vph = ω/β. Therefore, in
the very special case of no modal dispersion, that is for the limiting
case of an isotropic homogeneous medium without dispersion where
n2

1 = n2
2, the group velocity will be identical to the phase velocity and

the energy transport rate is then given by vph. In free space, it is well-
known that the electromagnetic energy density and power are related
via the speed of light c as such P = cu.

We found very interesting that even when one neglects the disper-
sion of the core and cladding media of the nanofiber, i.e dn1/dω =

dn2/dω = 0, the energy transport rate is not given by the longitudi-
nal phase velocity, but rather still by the longitudinal group velocity
dω/dβ = 1/β(ω)′. This is due to the refractive index step. In the end,
one obtains an other way of getting an analytical expression for the
group velocity. In order to show that

vgr · z =
1
β′

=
c2Gz

U
=
ω

β

(
A+B

C +D

)
(8.17)

we compared (8.16) to a differentiation of the fundamental transcen-
dental eigenvalue equation of the fiber. We have treated the analysis
for the transverse modes in Appendix B.
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8.6 angular momentum per photon

From the required previous steps, we now want to find the angular
momentum per photon for any mode order. Following the definition
(8.3) and the Poynting vector expression 8.4.3, the cycle-average local
Abraham angular momentum density is3

j(r) = rr× [〈Sz〉 z+ 〈Sφ〉Φ] = r 〈Sφ〉 z− r 〈Sz〉Φ. (8.18)

8.6.1 Total angular momentum per unit length

Again, the last term in (8.18) will not contribute to the total angular
momentum per unit length, such that the latter only depends on 〈Sφ〉.
Its only non-zero component is therefore along z.

J± =
z
c2

∫ 2π

0

∫ ∞
0

r
〈
S±φ
〉
r dφ dr. (8.19)

To avoid reporting heavy formulas, the way we found to integrate the
latter can be found in Appendix B and we obtained the following results

J±in = ∓N 22πa2 ε0
ω

s

s1
ξl
[
J2
l (ha)(1 + l2ss1)− Jl−1(ha)Jl+1(ha)(2s1 + 1 + l2ss1)

]
J±out = ±N 22πa2 ε0

ω

s

s2
l
[
Kl−1(qa)Kl+1(qa)(2s2 + 1 + l2ss2)−K2

l (qa)(1 + l2ss2)
]

.

Readily, only modes with l > 0 possess axial angular momentum.

8.6.2 Angular momentum per photon

As for the kinetic momentum per photon, we normalize the angular mo-
mentum per unit length to the number of photons per unit length and
obtain the average angular momentum carried per photon4 travelling
along the fiber axis,

j±γ =
J±in + J±out

nγ
. (8.20)

From our previous study of the energy flow circulation, we have ob-
served that the angular momentum per photon is null for quasi-linear
polarized modes.

8.7 decomposition into spin and orbital angular mo-
mentum

We have seen previously that once the linear momentum density of the
fields is known, the total local angular momentum follows naturally.

3 (r, Φ, z) are the cylindrical basis unit vectors.
4 in this chapter photon means a quantum of light energy.
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Figure 8.8: Total angular momentum as a function of the wavelength λ.
i. e. the projection on the fiber axis is negative for (+) clockwise
rotating polarization.

However, this total momentum can result from two different contribu-
tions as far as we know. Early quantum mechanics experimental facts
taugh us indeed that light can carry an intrinsic angular momentum,
commonly referred to as spin. Keeping in mind that our treatment of
the electromagnetic field description is classical, we will try to decom-
pose j±γ in spin and orbital angular momentum contributions.

8.7.1 Humblet decomposition

Following [ref lekien], we safely start with the Abraham definition,

J± = J±spin + J±orb = ε0

∫∫
r× (E± ×B±)r dr dφ (8.21)

and then introduce the potential vector A from the familiar result that
for a charge free electromagnetic field in the Coulomb gauge (∇·A = 0)
follows E = −∂A

∂t and B = ∇×A. Replacing the new expression for
the magnetic induction field B, one can show that (8.21) becomes three
terms, that we will call Humblet’s decomposition [ref]. This decompo-
sition is unfortunately not unique because all the terms are not gauge
invariant. However, one of the terms can be associated to the spin con-
tribution. This term is

J±spin = ε0

∫∫
(E± ×A±)r dr dφ. (8.22)

The quantity involved under the integration sign clearly does not de-
pend explicitly on the position r in space where the angular momentum
is computed (see (8.3), (8.21)). It is intrinsic. Moreover, one can observe
that this spin is different from zero if ∂A

∂t and A are not proportional.
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A fact that occurs when the direction of the field changes, here, rotates,
over time.
Clearly, the appearance of the potential vector, unlike E, makes the

previous spin definition not unique, not gauge invariant. One can be
very disappointed and unsatisfied by this fact until one realizes that
the spin of a photon is not a physical observable.
Indeed, the claim is that only observable physical quantity matters

and it has appeared to experience that it is not possible to measure the
spin of a photon while the latter propagates in a direction orthogonal to
the photodetector The observable, that is the only measurable physical
quantity here is the helicity, which corresponds to projections of the
spin along directions parallel to the photon propagation direction.

invisible gauge ? Interestingly, one can show [James H. Crich-
ton] that the gauge freedom introduced by the potential vector in (8.22)
will give rise to an extra spin density term in a direction orthogonal
to the propagation direction of the photon, which is not measurable.
For a brightful example, one can consider a transverse electromagnetic
field where the classical photon particule trajectories point in the same
direction (i.e a plane wave). The nabla operator ∇ can be replaced by
ik in that case and one can then show that adding an arbitrary gradient
gauge field to A adds a term orthogonal to k in the spin density.

8.7.2 Spin per photon

Going back to our definition of the complex amplitudes, together with
the definition of the potential vector given the previous paragraph, we
have

A =
Aei(ωt−βz) +A∗e−i(ωt−βz)

2

with A = i
E
ω

from E = −∂A
∂t

.

Taking the cycle-average of (8.22), then rewrites〈
J±spin

〉
= i

ε0
2ω

∫∫
(E±∗ ×E±)r dr dφ = −ε0

ω
z
∫∫

Im(E±∗r E±φ )r dr dφ.

The last result showing that the only non-zero component of the spin
per unit length is along z can be found in Appendix B. It relies on
the elimination of the radial part from the field expressions and the
azimuthal part vanishes from their azimuthal invariance.

(E∗r Eφ)±in = ±iN 2ξ
[
J2
l−1(qr)(1− ls)2 − J2

l+1(qr)(1 + ls)2
]
(8.23)

(E∗r Eφ)±out = ±iN 2
[
K2
l−1(qr)(1− ls)2 −K2

l+1(qr)(1 + ls)2
]
(8.24)
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They are pure imaginary and bring the important result〈
J±spin

〉
in

= ±ε0
ω
πa2N 2ξ

[
(1 + ls)2LJl+1(a)− (1− ls)2LJl−1(a)

]
〈
J±spin

〉
out

= ±ε0
ω
πa2N 2

[
(1 + ls)2LKl+1(a)− (1− ls)2LKl−1(a)

]
.

Normalizing the result to the density of photon per unit length (see
(8.13) finally yields the average spin per photon,

j±γ,spin =

〈
J±spin

〉
in
+
〈
J±spin

〉
out

nγ
. (8.25)

8.7.3 Orbital angular momentum

The orbital angular momentum contribution can be deduced by sub-
tracting the total angular momentum from the previous spin contribu-
tion.

〈
J±orb

〉
=
〈
J±
〉
−
〈
J±spin

〉
. (8.26)

Figure 8.9: (Pink) Total angular momentum. (Blue) Spin angular momentum.
The difference gives the contribution of orbital momentum (blue
area).

8.8 minkowsky analytical results

Within the framework of our model, it is clear that we have from the
definitions (8.6) and (8.7) that

gMink = n(r)2 · gAbra. (8.27)

Hence, to get the analytical results for the Minkowski formulation one
should just multiply the expressions obtained for the Abraham formu-
lation inside the nanofiber by n2

1 and by n2
2 respectively outside.
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Figure 8.10: Minkowski momentum per photon as a function of the wave-
length, for the fundamental of the nanofiber.



9
ON THE PHASE VELOCITY

Sometimes, you have to go through a phase whether you like it or not.

— Tina Weymouth

In this very short chapter, we would like to share a short observation
about the consequence of the helicity of the hybrid modes on the phase
velocity. We will show that the general phase velocity of any mode
depends on its polarization state and can differ from the familiar result
ω/k for transverse waves.

9.1 the wave phase

Another look at the phase dependence of the general hybrid modes
ref[appendix]

Ξ = ωt− βz ± lφ = ωt− ξ(r), (9.1)

where φ is here a cylindrical angle, clearly reveals that the surfaces
of constant phase, or cophasal surfaces, are not planar but helical. By
taking a time snapshot of the phase wave, the phase points readily
define a helix with rotation angle

φ(z) =
2π
ζ
z − φ0 (9.2)

where ζ is the spatial period of the helix, ζ = (2πl)/β and φ0 is an
arbitrary time origin angle. Before drawing any further comments about
the wave-front, we would like to introduce the phase velocity.

9.2 hybrid phase velocity

The rate in time of the phase of a certain frequency component of a
wave propagating in space, is well understood and known as the phase
velocity. Although the phase velocity does not behave as a vector, its
reciprocal, the phase slowness does. The phase velocity is usually given
as a scalar accounting for the speed of the wavefront in the direction
of the gradient of the phase.

131



132 on the phase velocity

Indeed, at an infinitesimally close time t+ dt, the phase value Ξ(r, t)
will be found at r+ dr, if

ω(t+ dt)− (ξ + dξ) = ωt− ξ → ωdt = dξ = ∇ξ · dr.

In more words, the spatial displacement dr from r of the phase during
the time dt along a arbitrary direction defined by a unit vector u,
dr = dru, is obtained from

ωdt = (∇ξ · u)dr → dr

dt
=

ω

∇ξ · u . (9.3)

The rate dr/dt represents the speed at which the wave-front propa-
gates in the direction u. As the phase increases in the direction of the
gradient, u = ∇ξ/‖∇ξ‖, one naturally defines the phase velocity as

vph =
ω

‖∇ξ‖
=

ω

‖k‖ (9.4)

where we have introduced the wave-vector k as being by definition the
gradient of the phase delay ξ(r) to the origin of time (9.1). Its direction
indicates locally the wavefront propagation direction. In general, k and
the Poynting vector S are not collinear vectors. That is to say that the
propagation direction of the wavefront does not necessarily correspond
to the direction of the energy flow transported by the wave.
With the cylindrical gradient given by

∇ξ = ∂ξ

∂r
r+ 1

r

∂ξ

∂φ
Φ+

∂ξ

∂z
z,

the wave-vector of the general hybrid modes with rotating polarization
becomes

k = βz∓ l

r
Φ. (9.5)

Therefore, it is only for the transverse electric and transverse magnetic
modes TE, TH (l = 0) plus all modes with quasi-linear polarization
that k = βz and that the propagation constant β represents the angular
wavenumber. For modes with rotating polarization, this is no longer the
case. For the former, the phase velocity vph = ω/β and for the latter

vph =
ω√

β2 + (l/r)2
. (9.6)

However, the longitudinal phase speed (ω/β, for u = z) is readily kept
unchanged.
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9.3 phase and energy helices

One could have carefully noticed after introducing the wave-vector k
that the spatial period of the phase helix (see above (9.2)) ζ can be
rewritten as

ζ = 2π(r|kφ|)/kz, (9.7)

that we wish to compare with the period η of the energy flow helix
found in ref[chapter]

η = 2π(rSz)/|Sφ|. (9.8)

The apparent role inversion of the azimuthal and longitudinal com-
ponents of the wave-vector in (9.7) compare to (9.8) arises from the
fact that k is locally normal to the phase helix whereas the Poynting
vector describes tangentially the energy helix. Indeed, for the vector
T = q(βrΦ+ lz) orthogonal to k, q being a arbitrary real number, we
have ζ = 2π(rTz)/|Tφ|.

We have already seen how η depends on the distance to the fiber axis
in the previous chapter. Because on the other hand here ζ is however
constant, it gives a visual way of showing that in general, the propaga-
tion direction of the energy in a hybrid mode of a nanofiber is different
from the wave-vector, i.e the propagation direction of the wavefront.
This is to be expected for an inhomogeneous wave, i. e. when the co-
phasal surfaces are not co-amplitude surfaces. Here, the co-amplitude
surfaces depend both on the cylindrical angle φ and on the radial coor-
dinate r, unlike Ξ.
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FABRICATION OF A NANOFIBER

In this very brief chapter, we just save some accounts about the fabri-
cation of the nanofiber we have used.

Figure 10.1: Success in making a 500 nm tapered-diameter fiber glued on a
U -shaped glass holder. From left to right, Daniel Reitz, Jelmer
Renema, Rudolph Mitsch, Jürgen Appel, and myself behind the
camera capturing this great event.

The nanofibers for this second thesis work were built at the end
of July, 2010 during my master thesis. The nanofibers were made at
the University of Mainz (South Germany) in the group of Pr. Arno
Rauschenbeutel where myself, Jelmer Renema1, Jürgen Appel learned
how to make (and break) nanofiber tapers with the generous help of
Rudolph Mitsch and Daniel Reitz (see figure 10.1). Several fibers were
produced and brought back to Copenhagen. However, we have used one
and the same nanofiber for all the experiments. The nanotapers were
built out of passive fibers (6/125 µm core/cladding diameters), nLight
Liekki™(exact part number P07-050C-01-1A5B).
In figure 10.2 we report the measurement of the transmission of

852 nm laser light propagating in the fibers during the pulling process
which last for about 105 seconds. The transmission is normalized to the

1 A former PhD student at QUANTOP who staid only a few months with us
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136 fabrication of a nanofiber

initial transmission of the unprocessed fiber. The transmission of the
used nanofiber is about 92% while it is a bit higher for the spare fibers
(which were not transported next in a low vacuum tube to Copenhagen).
The choice of this fiber was motivated by the fact that we managed to
put two such nanofibers glued in parallel on the holder, however one of
them did not survive when we arrive at NBI.
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(a) Used nanofiber

0 20 40 60 80 100 120
time (s)

90

92

94

96

98

100

n
o
rm

a
liz

e
d
 t

ra
n
sm

is
si

o
n
 (

%
)

(b) Spare nanofibers

Figure 10.2: Output power of 852 nm laser light transmitted through the fiber
during the pulling process. The transmission is normalized to the
transmission for the initially unpulled fiber. (a) The transmission
is about 92% and corresponds to the fiber used in this thesis. (b)
are the records for the two spare fibers we also created. (200Hz
data point sampling rate)

The fabrication process consists in heating a section of a conventional
single-mode fiber while pulling it in a such way to produce a desired
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target shape. Here, starting from the diameter of the standard fiber,
there is a linear ramp in which the fiber is tapered down from 125 µm
(in diameter) to almost 10 µm. From these 10 µm one has some kind of
continuous and adiabatic decrease of the fiber diameter down to 500 nm.
From here on, the diameter stays at 500 nm over the 5mm long fiber
waist and then increases in the same way as it decreased in the first
part (symmetric taper). This whole tapering happens over ∼35mm.





11
NANOFIBER IRRADIAT ION IMMUNITY

A very small cause which escapes our notice determines a
considerable effect that we cannot fail to see, and then we say that

the effect is due to chance.

— Henri Poincaré.

introduction

The collection and channelling of optical photons from external light
sources was observed at the tapered section of the fiber. This short chap-
ter offers evidences for impurities at the fiber surface from which both
experimental limitations and experimental resources are drawn. Static
light scattering induced by such impurities can introduce unwanted
light intensity landscapes modulation and polarization gradients which
are detrimental for optical traps and coherent probing in the viccinity
of the fiber surface. However, such scattering effects can in turn be ex-
ploited to infer characteristics about the light propagating in the fiber
at the tapered section which allows to control for instance the polar-
ization state of the evanescent light propagating in the fiber as we will
see in the third part of this thesis.
Although this is a very basic yet first observation, it also demon-

strates the strong irradiation immunity of the nanofiber waist. A key
ingredient that enables to resolve for instance a few atoms in the evanes-
cent field of the fiber.

11.1 femtowatt guided in the fiber

I just report the first minute measurement performed once a Single-
Photon Counting Module (SPCM) detector was carefully aligned with
one of the two output modes of the fiber. The fiber was already inte-
grated in a setup ready to trap cold atoms in a MOT around the tapered
section of the fiber that I will present in a different chapter. Before to
perform any experiments with atoms I had a few simple questions in
mind; Can one see guided photons collected at the nano-tapered sec-
tion of the fiber from light beams crossing over it, for instance the MOT
beams ? How big is the signal ? And would that be a limitation for
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instance for fluorescence spectroscopy of atoms actively pumped in the
MOT ?
Counting photons here is limited to a background photon count rate

due to surrounding light sources. This rate was reduced by shielding
the apparatus from the laboratory light pollution to about 2 kHz (raw
electric events). It is as broadband as the light quantum efficiency spec-
trum of the detector (visible light domain). When the detector sensitive
area is physically blocked the count1 rate goes down to below 0.3 kHz.
We will refer to such a device quality dependent rate as the dark count
rate of the detector. The background signal was low enough that we
were able to observe with significance (signal-to-noise ratios ranging
from 6 to 16) -120 dBm of light power incoming from the fiber. Please
note that the other end of the fiber was not blocked (no mirror etc).
The first photons we clearly detected originated from the MOT beams

crossing over the fiber at the taper location. The design of the MOT trap
has been reported in the next part. Three orthogonal pairs of collimated
laser light beams intersect at the nanofiber. Each beam contains two
different light sources for cooling and repumping sharing the same spa-
tial mode. Blocking and unblocking physically either of the two lights
yield the following mean detected count rates: (cooler) 30.34 kHz ±
0.17 kHz (repumper) 10.62 kHz ± 0.06 kHz. The average total cooler
(resp. repumper) light power was 2.40 (resp. 1.15) × 6mW.

An estimate P for the detected light power transmitted through the
fiber can be given from the raw count rates with the knowledge of
the energy Eλ of a photon with wavelength λ = 852nm (cooler and
repumper light wavelengths), the corresponding detector quantum effi-
ciency ηSPCM(λ) = 0.45 and accounting for 3% loss through propaga-
tion across the optical elements from the fiber output to the detector
semi-conductor chip.

SPCM count rate× Eλ
ηSPCM(λ)(1− loss) = P (11.1)

The light power associated to the number of detected cooler photons
in the fiber mode is Pcooler =15.2 fW. It must be mentioned that the
detector monitored only one output of the fiber and there was no in-
tentional back reflection of light at the second output. The fraction of
cooler light, as well as repumper light, collected at the taper of the fiber
yet detectable is then very weak. It is 12 orders of magnitude smaller
than the total light power committed to create the magneto-optical
trap (∼ 20 mW). This constitutes a very high rejection of external ir-
radiation on the waist of the nanofiber, although the MOT beams are
relatively large compare to the nanofiber geometry.
The collected power from the repumper is lower than the cooler,

Prepumper = 4.65 fW but the ratio Pcooler/Prepumper is somewhat larger

1 Building the counting and failsafe electronics for the SPCM was among the first
circuits I worked on for the nanofiber experiment
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than the ratio of the above respective estimated total input powers.
This could indicate a difference in the effective scattering cross-sections
for these two light sources but their frequencies only differ by about 10
GHz. It is more probable to be the result of a systematic error in
the measurement of the input powers that might be due to different
polarization inputs into the MOT couplers.

11.2 femtowatt scattering

A simple hypothesis to understand the observation of guided photons
from the MOT beams would be to consider that the fraction of light from
the MOT beams that collides with the glass fiber surface gets coupled
into it and propagates further to the detector. For the sake of simplicity,
let me neglect any diffraction effect and even overestimate cross-section
geometries. For instance, consider a virtual rectangular bounding box
around the cylindrical taper of the fiber. The MOT beams are collimated
gaussian beams. The order of magnitude of their waist is a centimeter.
Over such a length, that is taken as the length of the bounding box, an
overestimated mean value of 10 µm for the fiber taper diameter can be
retained as the height of the box. The observed ratio of 1012 between
the total MOT light power and the guided power is clearly incompatible
with the ratio of a MOT beam waist to the transverse size of the fiber
that can reach at most 104 when considering extremes. For instance, a
1 cm beam waist and a fiber diameter of 500 nm. Moreover, the real
taper has a diameter of 500 nm over a distance of 5 mm and then 10
µm over 1.7 cm on each side before growing up to 125 µm. So this too
simple beam crossing hypothesis cannot explained by far the detected
count rates.
In the optical domain, silica glass has a refractive index bigger than√
2. This means that the optical numerical aperture of an air-cladd

silica glass fiber is always bigger than 1. The numerical aperture is
the sine of the critical input light ray angle measured from the fiber
axis above which light rays cannot be guided by the fiber, through
total internal reflection. Therefore, even light rays (very well collimated
beams) with grazing incidence can couple and be guided into an air-
cladd silica glass fiber from its ends. This translates into: even light
with grazing incidence cannot couple and then be guided into an air-
cladd silica glass fiber from its surface (the two diopter normals being
at right-angle). As long as geometrical optics is valid, i. e. as long as
one can assume that the well collimated MOT beams are not diffracted
at the fiber, coupling of light into the fundamental single mode of the
fiber is expected to be strongly suppressed.
A contrario, if the above hypothesis were valid, one would have found

an easy way to estimate the diameter of the taper section of the fiber
by detecting guided light from an external beam.
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(a) Top view (b) Side view

Figure 11.1: CCD images of the 5mm nanofiber section when 852nm probe
light is guided in the fiber.

The weak detected power from the MOT lights arised therefore most
probably from leaking photons or impurities at the fiber surface act-
ing as scattering centers. It has not been attempted to distinguish be-
tween the two hypotheses for this particular experiment where the two
phenomena are likely to be realized at once. Yet, polarization measure-
ments performed on the output guided light could reveal a signature for
Rayleight scattering. Indeed, light scattering by particles smaller than
the wavelength of light exhibits a dipole radiation emission pattern.
Due to the strong suppression of emission along the direction of the
dipole moment, such scattering will be sensitive to the input polariza-
tion. ?? and ?? evidence inhomogeneous scattering of light propagating
in the tapered section of the fiber. Here, light is scattered outside the
fiber. One should note that the wavelength used on figure ?, λ = 633
nm, is near the fundamental mode cut-off of the nanofiber. This im-
plies a relatively large evanescent decay length for the fraction of light
travelling outside the fiber as well as a bigger overlap with surface im-
purities. Even if one can have the feeling that this chapter is not that
important, one should remember that defect, impurities and scattering
centers prevent the realization of many proposals that requires nano
and photonic structures combined with optical trap for cold atoms.

11.2.1 Undesirable effects

The consequences of the latter observation should be considered a lit-
tle bit more quantitatively. Indeed, conversely scattering centers that
enable surrounding light to channel into the guided mode may in turn
scatter photons off a probe beam propagating in the fiber at the ta-
pered section. More, in the situation where light is send through the
fiber to create a static evanescent optical light dipole trap potential
for neutral atoms, a non-negligible scattering rate will superimpose a
spatial modulation of light intensity as well as the introduction of po-
larization gradients. These effects are expected to be mainly static as
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Figure 11.2: A photograph of the nanofiber inside the vacuum chamber. He-
Ne laser light sent in the fiber, reveals through scattering, the
position of the 35mm long tapered section.
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long as the fiber does not expand or contract thermally nor vibrate.
Besides, I have observed that when sending cooler or repumper lights
through the fiber, I can perturbe a cloud of atoms in a magneto-optical
trap via scattering off the fiber even when the center of mass of the
cloud is several millimeters away from the fiber surface. Finally, it can
be mentioned that the observed leak light will pollute measurements
aimed at collecting the fluorescence from surrounding cold atoms.

11.3 effective scattering cross-section

An effective scattering cross-section σeff can be introduced to quantity
the probability that a photon from the MOT light beams will couple into
the forwarded nanofiber guided mode. We only want to give orders of
magnitude.

Pguided = σeffIMOT (11.2)

Counter-propagating MOT beams do not interfere as they have op-
posite circular polarization. However, their overlap will lead to polar-
ization gradients. MOT beams propagating in the same direction in the
same plane will interfere. All interference and diffraction effect are ne-
glected and the measurement is not polarization sensitive.
Furthermore, because of the size of the MOT beam waist compare to

the fiber waist and the fact that the beam wave-vectors add up to 0 at
the crossing (center of the MOT), the scattered photons are assumed to
originate from a wide distribution of spatial directions. The intensity
of a MOT beam at the intersection with the fiber is approximated to
the peak intensity of a gaussian beam equal to P/πw0 with waist w0
and power P :

σeff =
πw0

6×Pbeam
Pguided. (11.3)

For cooler light only, σeff = 3.3 · 10−2 µm2 or σeff = 1.4 · 10−2 λ2
D2

for a centimeter large waist. By way of comparison, the effective cross-
section is 5 orders of magnitude bigger than the disc area of a Cesium
atom, 22 Å2( radius 266 pm). However, it is about five time smaller than
the on-resonance light scattering cross-section of the D2 line transition
of Cesium (σ = 1.4 · 10−13 m2).
Lets consider the hypothesis that photons guided and propagating

in the taper section will scatter into MOT beam directions and all other
radiation modes with the previous effective cross-section. An estimate
for the fraction of light lost through impurities scattering after propa-
gating a length w0 along the taper, will be given by the ratio of σeff
to πb2 where b is a worse-case average fiber radius of 1 µm over the
length w0. This would lead to 1% loss. This number is compared to a
measure of the taper transmission in 11.4, independently of the fiber
input coupling efficiency. For the same mean radius b, one can infer an
impurity surface coverage on the order of 1 ppm (∼ σeff/bw0).
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11.3.1 Benefit of light scattering

Sometimes, what appears to be a major source of limitation for a par-
ticular experiment can be turned into a powerful resource for another
experiment. An experimental technique has been implemented to mea-
sure and engineer the polarization state of light at the taper section
of the fiber. It is based on the principle of Rayleight scattering men-
tioned above. The measurements are depicted in details in chapter REF.
Without the presence of impurities scattering light, such information
would be otherwise difficult to access. The quality of the polarization
at the taper is crucial for a non-exhaustive list of experimental abili-
ties: light induced trap geometries, pure optical pumping of targeted
atomic population (addressing single zeeman level) or Faraday rotation
experiments.

11.4 fiber taper loss

The effective propagation loss through the taper of the fiber was evalu-
ated using the cut-back technique. For a fixed light input mode-matching
into the fiber mode, the transmitted light power was compared from
two measurements. The light power emerging at the output of the fiber
was measured. Then the fiber was shortened by cutting it off at its
input end, before the taper. Finally, the power emerging at the new
output of the fiber was measured. The former power found 8% lower
than the latter. This represents a significant attenuation of about 1
dB. The expected attenuation for 852 nm light and a passive silica
glass fiber is about 5 · 10−3 dB after a propagation length of one me-
ter. The splicing2 losses that might have been introduced to preserve
the length of the fiber are trusted to be as well negligible (∼ 0.02 dB,
BBT Fiberoptic™). Therefore the cut-back method can attribute 92%
transmission to the tapered part of the fiber, when located in ultra-high
vacuum chamber. This number can be compared to the performances
achieved by Arno Rauschenbeutel’s group where our fiber was manu-
factured: 97% (REF PRL 104 2010). In Sague thesis, spectroscopy of
cold atoms were achieved with an identically profiled optical tapered
fiber with 93% transmission. These losses are most likely attributed to
the adiabatic conversion between the weakly guided mode LP01 of the
untapered fiber to the strong hybrid fundamental mode HE11 of the
nanosection and vice-versa. This is shown by monitoring the transmis-
sion of the fiber during the pulling process to create the taper (REF).
The contribution to the 8% due to impurities scattering photons off
the light field evanescing out of the tapered section was overestimated
small (∼ 1%). It is negligible compare to the adiabatic conversion loss.

2 For the cut-back technique, about a meter of the same kind of fiber was spliced at
one end of the existing fiber. This part was cut half for the mentioned measurement.
The loose half was spliced back at the other end of the initial fiber.
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11.5 summary

a. A number of about 20 photons in 1 ms from the MOT light chan-
neled into the fiber tapered section was observed. It represents
tens of femtowatt light power.

b. The hypothesis of simple scattering from the MOT light beams
intersecting with the tapered section was refuted. Otherwise, it
would be possible to infer the diameter of the taper section.

c. These photons are most probably either leaking and/or channel
into the guided mode with the help of impurities at the fiber
surface acting as scattering centers as evidenced by imaging the
fiber.

d. An estimate for the impurity surface coverage was given ∼ 1 ppm.
The effects of scattering onto guided probe light and future evanes-
cent dipole trap lights were mentioned and expected to be small.
Further, there are expected to be negligible compare to light scat-
tering occuring at the adiabatic transition parts of the fiber. This
highlight the important quality of the nanofiber waist: strong im-
munity to external irradiation. A key ingredient to resolve a few
MOT atoms.

e. Measurement of the taper transmission loss via the cut-back tech-
nique was explained and reported. It is at least 10 times bigger
than the impurity scattering rate.



Part III

D I S C R E T E A N D C O N T I N U O U S D E T E C T I O N O F
AT O M S I N E VA N E S C E N T L I G H T F I E L D S

We build a completely new three-dimensional magneto-optical
trap setup for cold Cesium atoms, which is compatible with
the operation of an optical nanofiber.

We demonstrate the realization of an interface between a
very small number of cold atoms (Nat ∼ 10) and the funda-
mental guided mode of an optical nanofiber. We realize both
fluorescence and absorption spectroscopy of the atoms with
weak light field, which we detect with single photon count-
ing techniques. Then, we construct a shot noise limited het-
erodyne measurement setup and we realize the first contin-
uous detection of atoms in a nanofiber evanescent field.

Then, we build a radio or superheterodyne detection scheme
to record simultaneously both the continuous absorption
and dispersion of atoms. Finally, we observe inhomogeneous
light shifts induced by far-detuned guided light.
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A NEBULA OF COLD ATOMS
ON A ROOM-TEMPERATURE NANOMETRIC WIRE

A bit of mould is a pleiad of flowers; a nebula1 is an ant-hill of stars.

— Victor Hugo

introduction

In this chapter, we will present the experimental realization of a three-
dimensional magneto-optical trap for cold Cesium atoms, which is com-
patible with the existence of a room-temperature optical nanofiber lo-
cated about the center of the trap, see figure 12.1.

Figure 12.1: Nebula of Cold Cesium atoms in equilibrium around a 500 nm
diameter thin fiber.

This constitutes the first enabling step in order to create an inter-
face between cold atoms and the evanescent field guided by an optical
nanofiber. It is as well the required resource and the setup to have,
in view to load and confine cold neutral atoms into the shallow but
conservative evanescent field traps. Although the operation of a MOT
has became the workhorse of many quantum optics experiments based
on cold neutral atoms, it took many months of my PhD time to build
a completely new setup, starting from the vacuum chamber choice, as-

1 Nebula is the Latin word for cloud, a term introduced by the astronomer William
Herschel who also discovered infra-red light. This term seems to be then approriate
to describe the Cesium cloud emitting in the infrafred.
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sembling and preparation till the construction of all the adequate laser
sources and all the electronics to control it as well as the magnetic field
sources. Unfortunately, I do not have time to write about these steps in
details2 and I will only present the necessary schematics together with
images of the setup, while writing down some important principles that
I would like to remember and also transmit to the next generation of
students who would work on the setup. Then, I will start giving the
first few basic observations on the effect of the nanofiber onto atoms
which were successfully cooled and trap in this new MOT setup.

12.1 vacuum chamber

Along the lines of the vacuum tubes I built to transport the manu-
factured nanofibers from Mainz to Copenhagen, we3 tried to build a
vacuum chamber as simple as possible, with a small volume (wine bot-
tle volume) and an easy optical beam access to create a MOT from
outside the chamber (see figure 12.2). If I would have to redo the cham-
ber today, I would probably go for a rectangular glass cell instead of
the cylindrical one we had available at the time and also rethink the
design of the nanofiber holder because of its relatively long moment
arm which favorizes acoustic vibrations of the nanofiber.

(a) Cylindrical glass cell (b) Chamber ready to bake out

Figure 12.2: Photographs during the construction of the vacuum chamber to
host the nanofiber. The glass cell and the electrical feedthrough
connections to the Cesium dispensers are clearly visible. In addi-
tion, one can see on the right, a part of the attached ion pump
reservoir and finally a valve.

To release on-demand an ultrapure vapor of Cesium atoms in the
chamber, we used common dispensers from the company SAES (see
figure 12.3). I would also like to show a photograph of the flange, which

2 It has been documented internally as best as possible.
3 Me and Jelmer Renema, a former PhD student who participated for the first few
months on the project.
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supports the nanofiber holder (figure 12.3 (b)) to be inserted straight
from the right flange of figure 12.2 (a) to the center of the glass cell.

(a) Cesium dispensers (b) Nanofiber flange holder

Figure 12.3: (a) Photograph showing two pairs of Cesium dispensers mounted
with electrical connections through a flange. (Each pair has two
Cesium dispensers (grey metallic bars) connected in series.). In
(b) One can see the steel rod that will support the nanofiber.

12.2 optical setup

Two extented cavity diode laser (ECDL) light sources using 150mW and
852 nm laser diodes were built for the realization of the MOT lights. One
is dedicated to laser cooling on the cycling transition of the D2 line of
Cesium |4〉 → |5′〉, the so-called cooler. The other one, the so-called
repumper, is used to repump the atoms populating the ground state
|3〉 into the ground state |4〉 via the |3〉 → |4′〉 transition. Although ra-
diative decay from |5′〉 to |3〉 is not allowed at first order, atoms can be
depumped from |4〉 to |3〉 via spin exchange collisions, which would stop
the cooling mechanism. The repumper laser frequency was stabilized,
using a magnetically shielded room-temperature glass cell containing a
saturated vapor of Cesium atoms, via the technique of Doppler-free sat-
uration polarization spectroscopy (Wieman and Hänsch (1976)). While
we accumulated experience with standard saturation absorption spec-
troscopy, the polarization one proved to be more robust and stable. In
addition, it was easy and relatively quick to set up as it does not require
frequency modulation of the laser light. The laser was locked on one sig-
nificant Doppler-free cross-over resonance, the frequency corresponding
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to a transition from |3〉 to the middle of |2′〉 and |3′〉. The repumper
frequency is then adjusted and brought closed to |4′〉 using the first
diffraction order of a double-pass AOM (shift of about +2×125MHz).
The cooler laser frequency is stabilized against the repumper with a ver-
satile and inexpensive phase-locked loop method (Appel et al. (2009a)).
In short, the relative frequency of the cooler compared to the one of the
repumper is measured by recording the interference beatnote of these
two light sources, on a fast photodiode. The frequency of the cooler
is meant to address the cycling |4〉 → |5′〉 transition. The cooler light
used for the MOT is derived in addition from an extra +1 diffraction
order of a single-pass AOM centered at 80MHz, to allow fast switching
times of the cooler light.
We invested in a fiber splitter array that takes two input4 fibers and

produce 6 relatively well power balanced fiber outputs to create three
pairs of counter-propagating MOT beams. The cooler and repumper
lights are sent independently into these two separate input fibers and
are then mixed5 together into the output fibers, which are all polar-
ization maintaining. We built simple output fiber coupler tubes con-
taining first a polarization beam splitter cube6, a quarter waveplate
and then a magnifying lens to create centimeter wide and collimated
beams with the appropriate circular polarization. With this solution,
the setup readily gained in compactness compared to other free-space
MOT designs.

Now that we have presented two of the three ingredients required to
create a MOT (i. e. Cesium atoms, laser lights), we give some comments
about the magnetic trapping part.

12.3 magnetic trap considerations

The magneto-optical trap combines laser Doppler cooling and magnetic
trapping. Although there is no general theory for it in 3D (William D.
Phillips, Les Houches 1964) its experimental working principle is well-
known and I will not explain7 it here. I will just insist on practical
details I would like to save for the future and give selected references.
Whereas cooling increases the density in velocity space, trapping

increases the density in position space. The restoring force here is pro-

4 There are actually two extra inputs but which only connect to four of the outputs.
They could be used to add easily other light frequencies such as depump light for
instance.

5 Very useful for instance to check for any AOM leakage frequency order using a fast
fiber coupled detector.

6 reflected port of the cube goes into a small diode detector to measure each beam
power

7 Moreover, the common description uses only a basic approach with ground J = 0
to excited J = 1 atomic levels. This is a very particular case of a level structure
which hides the possibility of stimulated emission between orthogonal polarization
modes of light and other subtle effects that might appear in the presence of both
polarization gradients and degenerate atomic levels.
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duced by modifying the radiative light force through the Zeeman effect
by application of an inhomogenous magnetic field (B = bz). The MOT
makes then use of both linear and angular momenta transfert and cir-
cumvent the optical Earnshaw theorem8.
The magnetic field gradient produced along all the three dimensions

is generated from a pair of anti-helmoltz coil that creates a quadrupolar
magnetic field distribution.
The group of William Phillips reported, together with Harold Met-

calf, Migdall et al. (1985), the first magnetically trap gas of neutral
atoms in such a quadrupole trap configuration. Therefore, it may be
relevant (to someone building a new one) to read Bergeman et al. (1987)
for the analytical results of the different magnetostatic configurations
explored such as the quadrupole trap, the baseball trap (also coined
“yin-yang” trap) or the Ioffe trap. One finds that the exact expression
of the magnetic field from a circular current loop I with radius R lo-
cated at the distance d from the origin (along the cylindrical basis axis
z sharing the loop axis) can be written in terms of the complete elliptic
integral of the first kind K of the second kind E, (in SI units)

Bz =
µ0I

2π
1√

(R+ ρ)2 + (z − d)2

×
(
K(k2) +

R2 − ρ2 − (z − d)2

(R− ρ)2 + (z − d)2E(k
2)

)
, (12.1)

Bρ =
µ0I

2πρ
z − d√

(R+ ρ)2 + (z − d)2

×
(
−K(k2) +

R2 + ρ2 − (z − d)2

(R− ρ)2 + (z − d)2E(k
2)

)
,

Bφ = 0,

with k2 =
4Rρ

(R+ ρ)2 + (z − d)2 .

The quadrupole magnetic field is produced from a pair of coils with
opposite currents (anti-Helmholtz). The total field near the origin (z =
0, ρ = 0) expands to third order as

Bz = 3µ0I
dR2

(d2 +R2)5/2 z + µ0I
15
24
R2(4d2 − 3R2)

(d2 +R2)9/2 (4z3 − 6ρ2z) + . . .

(12.2)

Bρ = −
3
2µ0I

dR2

(d2 +R2)5/2 ρ+ µ0I
15
16
R2(4d2 − 3R2)

(d2 +R2)9/2 (ρ3 − 4ρz2) + . . .

(12.3)

8 The first experimental demonstration of the magneto-optical trap is reported in
Raab et al. (1987). The principle of Doppler cooling for neutral atom was presented
by Hänsch and Schawlow (1975) in a quite short article (and the same year by David
Wineland and Hans Dehmelt for trapped ions). And then in a Cesium vapor cell
Monroe et al. (1990)
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The axial and radial gradients differ by a factor of 2. Whereas the third
order vanishes for R = d

√
4/3, the gradient is maximized for R = 2d,

∂Bz
∂z

= 2∂Bρ
∂ρ

= µ0I
48

25
√

5R2 . (12.4)

As in the original article, the gradient is actually estimated from the
first order9 term in the general situation

Bz = 3µ0I
dR2

(d2 +R2)5/2 z, (12.5)

Bρ = −3
2µ0I

dR2

(d2 +R2)5/2 ρ. (12.6)

This is a very standard configuration that was also used in the old
experiment. However, with the benefit of hindsight gained after the
construction and from the axial geometry of the nanofiber, I would
really like to consider the idea to create an elontaged10 MOT along the
fiber axis direction by changing the aspect ratio of the magnetic field
gradients (i. e. imposing a two-dimensional quadrupole field) in order to
obtain a higher optical depth from MOT atoms flying in the nanofiber
evanescent field and to increase the effective loading length in view of
nanofiber evanescent field traps.
In addition to the magnetic trap coils, three pairs of Helmholtz coils

were built to compensate for the local Earth magnetic field, by superim-
posing a static offset field. For the Helmholtz configuration, coils that
may be used as well to produce quantization bias fields to split atomic
Zeeman levels, the axis curvature is an important parameter

Bz = µ0I
R2

(d2 +R2)3/2 z + µ0I
3
2
R2(4d2 −R2)

(d2 +R2)7/2 (z2 − ρ2/2) + . . .

(12.7)

Bρ = −µ0I
3
2
R2(4d2 −R2)

(d2 +R2)7/2 (ρz) + . . . (12.8)

(valid up to fourth order, there are no third orders). For 2d = R, the
second orders cancel

Bz = µ0I
8

5
√

5R
+ . . . (12.9)

Bρ = 0 + . . . (12.10)

All the above results considered a theoretical single spire coil. For
MOT coils and the Earth field nulling ones, we do not need to consider
the thickness of the wires for the field calculation, from their relatively

9 The polynomial expansion is given up to order 9 in the above cited article.
10 while this might decrease the radius of the so-called circle of death for Majorana

losses, I observed that blue-detuned MOT light propagating in the nanofiber could
play the role of a plug (personal dreams of Bose-Einstein condensation around a
fiber).
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large distance to the center of the trap. This means that for N spire
coils with I0 as the single coil current, just replace I = NI0 in the
previous results. The series expansions deduce rapidly from the power
series expression of the elliptic integrals.
For a nominal coil current of 5.5A, 40 spires and a minimum coil

radius of 4 cm, the expected optimal longitudinal gradient (12.4) is
about 0.15T/m or 15G/cm. It is possible to already give an estimation
of the expected size of the MOT clouds knowing the previous magnetic
gradient, according to an estimation based on the equipartition theorem
(Cohen-Tannoudji and Guéry-Odelin (2011), page 343). The RMS size
of the MOT is expected to be a few tens of micrometers, which really
underestimates the observed size of the achieved clouds. This is because
for sufficiently large atom number, the MOT becomes a gas rich in
physics with atom-atom interactions limited for instance by radiation
trapping11.
An important parameter to consider when building a coil is the elec-

trical power dissipated and whether one needs to implement a cooling
mechanism. The power dissipated by the coil would be P = RI2

0 where
the resistance of the coil R can be evaluated from the resistivity of
copper in our case, ρ ∼ 1.7× 10−2 Wm (value at room temperature),
and the approximated length l ' 2πNrm where rm is the mean radius
of the coil, R = ρl/A. I used copper wires from the company R/S com-
ponents13 with 1.25mm thickness (1.3 measured). Each MOT coil has
41 windings. For a given magnetic field gradient, the current I0 varies
inversely proportional to N , however the mean resistance of the coil R
is proportional to N/A in such a way that P is inversely proportional
to NA the entire coil section. In designing a coil one would try to re-
duce therefore the effective coil cross section and not necessarily the
number of spires.

P =
2πrmρI2

0
NA

.

Unlike, the resistance R, the resitivity ρ of a material is an intrinsic
property. Copper wires of any shape and length have about the same
resistivity.

ρ =
RA

l

where A is the wire cross-section and l its length.

11 The emission and reabsorption of photons between atoms in the MOT is analog to
a repulsive Coulombian force that limits the volume of a MOT. This happens when
the MOT becomes optically dense. Light-assisted collision also starts to play a bigger
role.

13 Each MOT coil has 41 windings. Heating test: The current is set to 5 A. The
corresponding voltage for the first coil is after 2 hours 1.19 V. Putting the other
one in serie leads to voltage 2.39 V which means the coils have roughly the same
resistance. R = 240mW.
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(a) Close-up at the MOT coils (wrapped with heat resistance tape12)

(b) Wide view of the compact MOT setup

Figure 12.4: Photographs of the constructed MOT setup. The grey and white
plastic frames enclose the three pairs of compensation coils.

When the mean radius of a coil rm is large compared to the mean
thickness of the wire layer 2a, the inductance of a coil is Ramo et al.
(1994)

L ' N2rmµ0

(
ln
(8rm

a

)
− 2

)
.
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The previous estimation supposes that the surrounding environnment
of the coils have a permeability µ close to µ0 (vacuum) that should not
affect the inductance. Moreover, it is important to keep rings away or
open them otherwise their finite resistance will cause eddy currents that
can sustain magnetic fields for relatively long times after the coils are
switched. We note that the stability of the magnetic field here is much
less critical than for Bose-Einstein condensation (BEC) experiments or
experiments based on Feschback resonances for instance. Thermal ex-
pansion of the coil might lead to fluctuations of a few mG that might
be critical otherwise. A measure of the capacitance of the coil, that
depends on the geometry of the wires and their arrangement or more
directly measuring the resonance frequency of the coil might be appro-
priate if one needs to consider RF effects.

12.4 majorana loss

By adjusting the (restoring force) gradient of the B field one can control
the size or density of the atomic cloud. One has to keep in mind that a
magnetic trap works on weak field seeker atomic state (extreme Zeeman
levels) and that magnetic traps are prone to Majorana losses. Indeed,
atoms moving near the center of the trap can experience rapid (non-
adiabatic) variations of the magnetic field. In particular, the B field
direction is reversed across the center of the trap. If this change happens
on a timescale shorter than the Larmor frequency ωL ∼ µBB/ h̄, atoms
can remain polarized into a non-trapping Zeeman state and be expelled.
Superimposing a static magnetic field just displaces the zero of the
quadrupole field and is then not enough to prevent such non-adiabatic
spin flip when an atom passes the center. Atoms which do not possess
a trajectory in the trap with a sufficiently high orbital momentum and
which approach the center of the trap below the radius of the so-called
“circle of death” will be lost.

This effect is revelant for tigh confinement and the pursue of high
density to reach Bose-Einstein condensation for example. In view to
load microscopic optical dipole traps created in the evanescent field of
an optical nanofiber, one might wonder whether one should spatially
overlap the center of the MOT with the taper of the fiber where the
local density of MOT atoms might be affected by this so-called magnetic
“hole”. In that respect, I would like to report a qualitative observation of
a clear increase in the fluorescence light emitted by a cloud of magneto-
optically trapped atoms centered on the nanofiber while milliwatt blue-
detuned light (over a range of many linewidths) to the cooling transition
|4〉 → |5′〉 is guided in the nanofiber. This indicates that we might have
observed an analog of the blue-detuned optical plug effect, one of the
ingredient that suppresses the Majorana “hole” as reported for the first
Bose-Einstein condensation of sodium Davis et al. (1995). A nanofiber
at the center of a MOT guiding in its evanescent field blue-detuned
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light of mW power would produce a similar repulse barrier force as the
focused gaussian beam used by the group of Pr W. Ketterle. This may
allow for high magnetic confinent around a nanofiber and might help to
reach BEC around a nanofiber. In absence of blue-detuned light (repulse
barrier), the room-temperature nanofiber and cold atoms collisions are
inelastic (a momentum of 300K is given to the atoms which are then
ejected). When the repulsive barrier is on, the collisions are instead
elastic and the particle loss rate is lower than without the barrier.

12.5 basic observations

We now report more basic experimental observations during the very
first attempts at interfacing cold atoms with a nanofiber once a CCD
based imaging of the fluorescence emitted by the MOT was set up. We
aligned a pair of digital cameras to image the light emitted at the nano-
taper from orthogonal directions (one looking from the side of the fiber
propagation axis, and the other one from below). The camera model is
Point Grey Firefly FFMV-03M2M (Firewire, IEEE 1394). Each camera
images the fiber with the help of a f = 50mm lens.

(a) MOT above nanofiber

(b) MOT on nanofiber

Figure 12.5: CCD photographs of the fluorescence (fake color) of a MOT of
Cesium atoms on and sideways to the nanofiber. The aspect ratio
is 1:1 and the horizontal dimension corresponds to about 2mm.
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12.5.1 Positioning cold atoms in the vicinity of a nanofiber

The first step in engineering interactions between atoms and the nanofiber
was to bring cold atoms in the evanescent mode volume. This was ac-
complished by modifying the environning magnetic field in all direc-
tions of space via the three orthogonal pairs of Helmholtz coils. These
coils were primarily designed to cancel the Earth magnetic field by su-
perimposing a static offset magnetic field at the location of the atoms.
It has the effective property of moving the center of the quadrupole
magnetic field14 that creates the trapping potential seen by the cold
atoms. A magneto-optical trap is a spontaneous-light force trap. Thus
the trapped atom will keep on emitting photons, here in a 4π solid an-
gle. The size and the shape of the cloud can be imaged by detecting the
spontaneous fluorescence with CCD cameras sensitive to near-infrared
photons. A remarkable change in fluorescence is observed when over-
lapping the center of the atomic cloud onto the nanofiber waist (see
figure 12.5).

12.5.2 Reduction of atomic density

Figures 12.6 and 12.7 evidence a quantitative reduction as large as 70%
in the collected fluorescence when the cloud is brought onto the fiber
waist. This effect is symetric with respect to the fiber axis, i. e. the
fluorescence will grow again when the cloud is moved further below the
fiber. This eliminates possible systematic effects due to misalignment
between the laser beams and the quadrupole magnetic field center. The
observed reduction in fluorescence seems to happen in all directions al-
though we have only imaged the MOT from two angles. The shutter
speed of the camera was adjusted such that the maximum count per
pixel was lower than half the saturation value of a given pixel. The cal-
ibration of the CCD pixel counts in terms of the detected input photon
flux is not needed for the relative comparison of the cloud fluorescence.
The background light scattered by the nanofiber and other impuri-

ties at the surface of the chamber glass cell is quite static and it can
be well subtracted out. The spontaneous emission is proportional to
the number of atoms in the trap. This fluorescence is assumed to be
also proportional to the atomic cloud density if the cloud is still rela-
tively dilute. Therefore, this observation would witness an important
decrease in the effective atomic density which directly affects the num-
ber of atoms in the evanescent probe volume of the fiber. It turned
out that this shrink in the fluorescence was observed as well in Nayak
et al. (2007). A compatible decrease of 2/3 in the atomic density was
reported.

14 The center of the quadrupole field can be identified by looking at oscillations in the
MOT position when turning on and off the quadrupole field for instance.
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Figure 12.6: Fluorescence imaging (pixel counts) of a cloud of cold Cesium
atoms positioned above the nanotaper of the fiber. The y axis
corresponds to the gravity axis. (bottom) Background subtracted
counts.

A different equilibrium between higher atom loss in the vicinity of
the fiber surface and the loading rate of cold atoms in the trap volume
may be inferred. One can bear in mind that the fiber is a relatively hot
object compare to MOT atoms (Doppler cooling temperature ∼ 125 µK).
The fiber is indeed at room temperature, it behaves like a hot needle,
whose thermal conductivity (∼ 1 W m−1 s−1) is weak compared to
metals. This makes it challenging if one would like to cool the fiber
rapidly.

12.5.3 Qualitative observations on MOT fluorescence

It is somewhat interesting to observe that the previous decrease of
fluorescence when the MOT is brought on the fiber can be recovered
when MOT light is sent through the fiber. However, not only locally in
the evanescent field of the fiber. The fluorescence revives in the entire
field of view of the cameras wherever one positions the MOT.
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Figure 12.7: Fluorescence imaging (pixel counts) of a cloud of cold Cesium
atoms positioned on the nanotaper of the fiber. The y axis cor-
responds to the gravity axis. (bottom) Background subtracted
counts.

MOT cooling and repumping light propagating in the fiber affects
the fluorescence. This is not surprising. However, the fluorescence is
only noticeably recovered when the frequency of the cooling light is
blue-detuned compared to the |4〉 → |5′〉 D2 transition, and as far as
1GHz (larger detunings in that order of magnitude has not been at-
tempted). The fluorescence is not recovered when light is red detuned
by more than 2 linewidths from resonance. However, the fluorescence
is not affected by light which is very far detuned to the Cesium D2
line, propagating in the fiber evanescent field. No effects were noticed
with 780 nm and 1064 nm for instance, for light powers up to several
milliwatts.
In addition, in the presence of 852 nm guided light, we observed a

net mechanical displacement of the atom cloud for narrow continua of
frequencies centered on resonance with the expected atomic hyperfine
transition frequencies of Cesium. The cloud of atoms is pushed in a
direction mainly parallel to the fiber axis. This is probably due to the
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radiation pressure unbalancing induced by the extra light propagating
in the fiber. Moreover, the displacement of the cloud is in the same
direction as the fiber light propagation direction, evidencing static mo-
mentum conservation. This simple effect could be interesting in view
to drag cold atoms, on very short time scales, onto longer spatial dis-
tances along the fiber than the cloud diameter. To finish with these
basic observations, which were huge steps for me at the earliest stage
of the construction of the experiment, especially countless hours in the
hope to observe any starting signal of interaction between light propa-
gating the fiber with surrounding atoms, I would like to mention that
the observed variations in the fluorescence of a MOT due to resonant
light propagating in the nanofiber offered me a cheap and visual15 way
to perform hyperfine spectroscopy of the atomic levels and more im-
portantly it will give to someone a fine tuning knob of the equilibrium
number of atoms in the magnetic trap.

summary

In this short chapter, we reported the successful construction and demon-
stration of a three-dimensional magneto-optical trap for Cesium atoms
operated in the presence of a room-temperature nanofiber. We observed
that the equilibrium atomic density or number of trapped atoms in the
MOT is readily affected by this intruder. However, we discovered that
the atom loss mechanism introduced by the presence of the nanofiber
can be tampered by sending near resonant blue-detuned light in the
nanofiber. This may rise some interesting questions as whether it is
possible to cool this nano fiber object using surrounding cold atoms.

15 I also observed some interesting spatial pattern in the fluorescence of the atom cloud
when varying the polarization of the light guided in the nanofiber. Perhaps, it could
be used to map the polarization field of the light scattered by a nanofiber.
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DISCRETE SPECTROSCOPY OF A FEW ATOMS

Cesium melts in the sun of California.

— Eugene Simon Polzik

In this chapter, we experimentally demonstrate, by counting single
photons, the observation of both external channeling and scattering of
weak light guided in the fundamental mode of a nanofiber by the action
of a few number of cold atoms in the vicinity of the fiber tapered section
surface. These results represent the first interfacing and coupling of cold
atoms with the nanofiber. This achievement was made possible through
the discovery and removal of adsorbed atomic layers, which are coating
the fiber glass surface.

13.1 ultra-violet photodissociation assisted mot

Driven by curiousity, we1 explored the effects light from a Ultraviolet
(UV)-laser (∼ 405 nm) pen could potentially have on a cloud of atoms
trap in the MOT sitting on the nanofiber. We shone this well-collimated
light through the glass cell of the vacuum chamber in random directions.
Unexpectedly, we observed a rapid increase in the global fluorescence
emitted by the atomic cloud. We would like to relate this observation
to a phenomenon discovered by accident by Gozzini et al. (1993) in a
cell containing a Sodium vapor. This effect is known as Light-Induced
Atom Desorption (LIAD). It can be summarized as follows; light is shone
on the inner wall of the cell containing an atomic vapor; alkali-atom
coatings are desorbed from the wall; the density of the background
atomic vapor in the cell increases. This leads to an increased loading
rate of atoms in the MOT and to a new equilibrium with the atom loss
rate. A higher number of atoms are trapped thereby augmenting2 the
stationary fluorescence emission.
We set up a proper UV-light source, so as to take advantage of LIAD

to save the lifetime of the Cesium getters. A single packaged diode
(TO3A-H390-180 Roithner lasertechnik) was mounted near the glass

1 Me and EB
2 I would like to mention failed attempts to observe any effect on room-temperature
Cesium microcells of a neighboring experimental research setup (Eugene Polzik’s
teleportation experiment) where the cells are coated with paraffin.

163
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cell. The diode outputs light in the range 382 nm - 390 nm. We ran it
at a current of 140mA such that we do not need to cool it. We clearly
saw the same effect. The use of this new source of light allows one to
run a MOT experiment without the use of getters for several days until
the walls of the chamber are cleaned.

13.2 de-adsorption of atoms induced by weak light

In this section, we report on a more subtle effect concerned with most
likely Cesium atoms sticking on the surface of the optical nanofiber
located in the chamber.

13.2.1 Decay of guided mode transmission

The first attempts at a nanofiber-based light-atom ensemble interface
were focused on the detection of the emission of light as well as the
absorption of light from cold atoms in a MOT, through interaction with
the evanescent guided mode of the nanofiber at the tapered section.
Enough confidence about the position of the atomic cloud on the fiber
was provided with imaging from two CCD cameras. However, no pre-
cise measurement of the quality of the overlap was known as well as
whether atoms could reach close enough to the fiber surface. The first
signal observed from Cesium atoms flying by the fiber surface was a
channeling of spontaneously emitted photons by excited MOT atoms
into the fiber and guided in its fundamental mode towards a SPCM.
This initial detected photon rate was only four times as big compared
to leakage photons coming from all the laser light beams forming the
trap. This weak atomic signal was not enough to claim any coupling
in the evanescent volume as these photons could have been emitted
anywhere in the atom cloud, indirectly scattered or channeled at the
adiabatic taper transitions of the fiber.
With optimism, it was hoped that conversely, photons from resonant

probe light sent into the fiber guided mode would be absorbed by those
same average flying atoms located in the evanescent probe field. Start-
ing from an absorption detection signal one could then seek to improve
it with optimizing the position of the MOT controlled by external bias
magnetic fields or adjust the atomic cloud density and other parame-
ters we can control. However a lot of peculiar and erratic effects were
experienced until we could observe evidences for cold atom absorption.
Those effects cannot be neglected in general for photon-counting based
spectroscopy with atoms around a nanofiber. Yet, they opened the road
towards the first successful interaction between guided mode photons
and cold Cesium atoms as shown in the next sections.
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13.2.2 Photon throughput in presence of Cesium atom vapor

In figure 13.1, we report transmission data for weak (pW) probe light
sent through the fiber, while a magneto-optically trapped ensemble of
cold atoms evolves around the tapered section.
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Figure 13.1: Evolution of the transmission of weak probe light propagating
in the nanofiber guided mode over the course of 4 hours. The
few outliners with negative count values correspond to saturation
events of the single-photon counting detector.

Each point in the figure represents an average over 32 photon count-
ing gated time bins, each of 1ms duration, separated by a 10ms time
interval. The MOT preparation and loading time was set to 2 s, after
which these 32 measurements, corresponding to gate pulses controlling
the SPCM, were acquired. From the knowledge of the absolute input
probe power of 20 µW, the fiber coupling efficiency of 55% together
with the calibration of neutral density filters used to avoid saturation
of the detector as well as preventing the expected saturation of the res-
onant Cesium transition (in the high intensity area of the evanescent
field), the quantum efficiency of the SPCM for 852 nm and optical path
losses, one expects a detected CW photon flux of about Φ = 22 kHz.
Many observations are contained in figure 13.1 that compiles four

hours of data acquisition. First of all, one clearly notice a strong de-
crease and increase in photon transmission, over the course of the ac-
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quisition with a typical time scale of several minutes. As reported in
figure 13.2, these events are fully correlated to the activation and de-
sactivation of the Cesium dispensers employed to populate the vacuum
chamber with a sufficient background atomic vapor pressure to prepare
millimeter size MOT clouds. One can note that as the detected light in-
tensity decreases the fluctuation on the photon number signal decreases
as expected from the photon shot noise of coherent states of light. We
clearly observe that more than 90% of the probe photons can be lost
and scattered off the detection mode.
Different dynamical behaviours in the transmission can be noticed

such as the plato at t ∼ 200min when the previously mentioned ul-
traviolet light source was turn on and irradiates the vacuum chamber.
Many times we would conclude that the use of the UV-light source led
to a faster increase of the background Cesium vapor pressure in the
glass cell and maintained it quite constant. For every two points in the
graph of figure 13.2, that is every MOT reloading phase, the magnetic
field gradient, vital for the creation an atomic cloud on the fiber is turn
on and off. We clearly see no difference or dependence on the observed
probe absorption. What can be the cause of more than 90% drop in
transmission of weak probe light if not atoms from the trap ?
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Figure 13.2: Decrease in the photon number transmitted through the guided
mode of the nanofber. Each black error bar represents the stan-
dard deviation of the 32 raw photon counts used to compute the
mean. The blue traces correspond to the expected photon shot
noise for coherent states of light.

Our main relevant observations are listed as follows. The absorption
of the probe photons clearly depends on:

• Cesium dispenser electric current intensity
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• Duration of the active time of the dispensers

• Ultra-violet irradiation of the chamber

Whereas it is:

• Insensitive to the magnetic field gradient vital to create a MOT

• Insensitive to the probe light frequency over a ∼ 1 GHz interval
centered around the |4〉 ↔ |5′〉 Cesium optical transition

• Independent of the position of the MOT cloud, when displaced
by twice its millimeter diameter away from the nanofiber, in all
direction.

• Not due to an over-exposure of the SPCM detector by having CW
probing.

• Not due to a systematic drifts in the nanofiber input light cou-
pling efficiency.

• Not due to polarization rotation due to heating of the fiber, the
measurement being insensitive to the probe light polarization.

• Insensitive to optical repumping light on the |3〉 ↔ |4′〉 Cesium
transition.

Therefore, it was more likely that the observations betrayed the for-
mation and deposition of layers of Cesium compound on the surface
of the nanofiber. Acting as broadband scattering centers, they absorb
or redistribute photons from the guided mode into free space radia-
tion modes. The formation of this layer as well as its time scale, would
be favorized by a higher and higher Cesium vapor background pres-
sure in the experimental chamber. In general, typical time scales for
the evolution of the background pressure fall in the several minutes
domain. Hopefully, the recovery of the transmission can be achieved
and controlled quite easily as we have found. Without caring for this
effect, experiments based on collecting the fluorescence or absorption
of a probe within a MOT will give rise to lower signal-to-noise ratios,
depending indirectly on the background atomic pressure (related to the
size of the atomic cloud one wants to achieve).

13.2.3 Recovery of transmission through optical heating

To make a long series of attempts short, the transmission was seen to
recover when checking the nanofiber input coupling efficiency at higher
probe power (a few µW) by removing neutral density (ND) filters. The
recovery of the transmission is possible by sending quite different laser
light wavelength in the fiber mode (tested with 780, 852 or 1060 nm).
Whereas the removal process could be a consequence a thermo-optical
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effect discovered during early tests of the nanofiber (nanofiber length
expansion and contraction induced by light pulses), we privileged heat-
ing rather than a direct mechanical action due to light to explain it.
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Figure 13.3: Decay of probe transmission, 20 minutes after the Cesium dis-
pensers are turned on. Then the mechanical shutter of a 60 µW
1060 nm light beam coupled to the nanofiber mode is open be-
tween the SPCM counting measurements. 10 minutes later, the
shutter is left closed.

Even though the light power sent involved is quite weak, the light
intensity grows inversely as the square of the probe beam area. The
intensity at the tapered section of the nanofiber whose radius equal
250 nm can produce enough heating of the silica glass in such a way
that it leads to a longitunal fiber expansion of up to several hundred
micrometers.
We then added in the setup an additional beam to send in the fiber

to clean the nano-taper surface with evanescent light before perform-
ing photon counting measurement. Even if the cleaning light power is
relatively weak, it would totally blind the SPCM detector and without
descent filtering it cannot be done in parallel even if the wavelength
used is far apart from the probe wavelength. At the beginning, an AOM
was set to turn on and off on short time scales (< 1 µs) this so-called
cleaning-heating light pulse between the 32 time bin measurement done
with the photon detector. However, a measured rejection of 107 was not
even enough to prevent saturation of the SPCM from AOM diffraction
order leakage light. A mechanical shutter was built instead, based on a
5200 rpm laptop hard drive to physically chop the cleaning beam. This
beam was activated only once a time before the 32 photon counting
measurements due to the low mechanical speed but was sufficient to
avoid any noticeable decrease of the probe transmission. Figure 13.3
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clearly shows how effective is this cleaning pulse but also how fast the
transmission decays back in its absence. The decay time depends on the
background pressure, here needed to create a normal MOT cloud size
(∼ 1 millimeter diameter). Figure 13.4 exhibits the cleaning effect with
852 nm light by choping manually the beam but also reveals complete
absorption of any probe photon that would propagate in the fiber over
a very long experimental time if no cleaning was performed.
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Figure 13.4: Cleaning with probe light

13.3 high-sensitive fluorescence spectroscopy

13.3.1 Strong evidence for guided spontaneous emitted photons

It has been experimentally shown in the previous section that in con-
ditions required to create a common size MOT atomic cloud, the back-
ground atom pressure in the vacuum chamber is sufficient to spawn the
formation of an atomic layer on the nanofiber section that dramatically
affects the transmission of probe photons guided by the nanofiber. The
coupling of photons emitted by excited cold Cesium atoms into the
nanofiber mode when in the viccinity of the fiber surface is therefore
also strongly perturbed and can be suppressed by such coating. In figure
13.5, we report a successful observation of such spontaneously emitted
photons with a high signal-to-noise ratio by implementing the above
cleaning procedure with 60 µW of 1060 nm fiber coupled light pulses
between the photon counting time bins. We show a carefull hunting
and dissection of all the possible photon sources that are detected by
the SPCM, which contribute to a common random photon noise back-
ground. A logarithm scale helps to present these contributions as in fig-
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ure 13.6. Deprived independently from two of the three vital ingredients
to realized a magneto-optical trap of cold atoms (the third one being
atoms), the different experimental runs indicate that the observed high
fluorescence signal arises from MOT trapped atoms and apparently not
observable for atoms in an optical molasse (see cycle number around
200). Contrary to the absorption effect reported in the previous section,
this fluorescence signal depends strongly on the frequency of the trap
lasers (about two atomic linewidths).
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Figure 13.5: Experimental evidences of the detection of guided photons spon-
taneously emitted from cold Cesium atoms in a magneto-optical-
trap surrounding a nanofiber. The achieved fluorescence signal is
more than 100 times the background counts of photon leakage
into the fiber mode.

We note that photon statistics could be studied if the detected pho-
tons could be time stamped - could one observe photon bunching in
the emission of the few atoms responsible for the signal in figure 13.5 ?
(within the time of flight in the evanescent mode volume). Interestingly,
the noise on the shot-to-shot fluorescence counts is larger than a pois-
sonian photon shot noise, as can be seen clearly on figure 13.5. More
so if we stress again that each plotted data point is a mean number of
32 photon counting time bins. This can be attributed to fluctuation in
the number of atoms leaving and entering the evanescent mode volume
from one MOT loading to the next. On the assumption of both random
entrance and exit of atoms, one would expect the noise to scale as the
square root of the mean number of atoms in the evanescent mode. We
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Figure 13.6: Logarithm scale of the data presented in 13.5.

try to estimate the number of atoms responsible for the fluorescence
signal in the next section.
Our fluorescence measurements open the road for studying dynam-

ics of the fluorescence for various trap parameters. It could for instance
be used in a time-of-flight experiment to measure atomic cloud tem-
peratures and to detect an atom clouds falling due to gravity on the
nanofiber.

13.3.2 Estimation of the number of atoms

In this section, we follow and invert the estimation of the detected fluo-
rescence photon count fc as done in Nayak et al. (2007) fc = NatRβTη,
in order to infer the effective atom number Nat responsible for the de-
tected fluorescence.
The fluorescence photon count is mainly proportional to the number

of Cesium atoms in the effective evanescent probe volume and propor-
tional to the atomic scattering rate R. However, without precise knowl-
egde of the spatial distribution of these atoms in the vicinity of the fiber
surface, one can only give effective parameters. The transient interac-
tion time between theses atoms and the evanescent field of the guided
light mode is expected longer than the optical spontaneous emission
liftetime of the D2 line.
The atomic scattering rate R depends on the total MOT laser in-

tensity, the MOT beam detunings and the saturation intensity of the
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emitting atomic transition. The SPCM detector is quite broadband and
its quantum efficiency around 852 nm is about η = 0.45.
The fraction of fluorescence collected in the nanofiber mode depends

on the coupling efficiency of the spontaneous emitted photons to the
guided mode β ' 6%, which depends on the atom distance to the
fiber surface, was computed in Le Kien et al. (2005a). T represents the
transmission on the photon path from the nanofiber to the detector.
As it turns out that our experimental conditions are very similar

to that of Nayak et al. (2007), we use directly the same value for the
atomic scattering rate and the QED enhancement factor of spontaneous
emission. We estimate an effective atom number Nat ' 9 using fc =

75 kHz3, T = 0.97× 0.046 due to optical loss and a protection neutral
density filter in front the detector, and R = 6.8MHz.
From the previous deduced value of an average of 9 atoms, one could

expect that the signal explores deviation of 30% around its mean value
for a Poissonian distribution of atoms entering and leaving the evanes-
cent volume. This would be in reasonable agreement with the fluctua-
tions observed in figure 13.5. Finally, the estimation of the number of
atoms allows to give an estimate of the resonant optical depth per atom
d/Nat to ∼ 10% as the probe transmission measurement estimates d a
little higher than 1 for the same experimental conditions.

13.3.3 Fluorescence decay

We ask experimentally what happens now if the cleaning procedure
is turned off for experimental conditions associated to the previous
fluorescence records. Figure 13.7 reports the evolution of the number
of spontaneously emitted photons detected over time when the 1060 nm
cleaning light is physically blocked.
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Figure 13.7: Decay dynamics of the fluorescence

The formation of atomic layers deposited on the fiber leads to an
exponential decay of the fluorescence signal. This could either be the

3 In figure 13.5, the time bin duration was 2ms
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consequence of an increase in the mean radial distance for flying MOT
atoms to approach the fiber surface, the evanescent field coupling de-
caying rather exponentially or this atomic crust would absorb or scatter
the fluorescence photons preferentially into free space radiation modes.
I remarked that the decay time of the fluorescence was somewhat dif-
ferent from the decay time of the transmission of fiber guided probe
light. However, they always seemed to stay in a constant ratio, the
fluorescence decreasing about twice as fast as the transmission.

13.4 high-sensitive absorption spectroscopy

Having reported high fluorescence signals from external photons, emit-
ted by cold atoms present most likely in the vicinity of the fiber surface,
and channeled into the fiber guided mode, we now report high absorp-
tion signals of weak light sent into the fiber by cold atoms present in
the evanescent field at the tapered section.

13.4.1 First interaction with guided photons

An important experimental step towards the manipulation of atoms
with light guided in the nanofiber is to observe atoms interacting with
such light. Here we perform transmission measurement and reports
clear absorption signals from resonant probing on the |4〉 → |5′〉 tran-
sition of cold Cesium atoms evolving in a MOT speared by a nanofiber.
We have been able to observe up to 70% absorption from one millimeter
diameter atom clouds.
The detection is similar to that of the fluorescence measurement. We

report in figure 13.8 the average value of identical 32 photon counting
time bins as before (with cleaning pulses etc). The green points corre-
sponds to experimental runs in the absence of the quadrupole magnetic
field required to trap atoms, while the blue points when the latter was
present and a MOT was loaded for about 2 s. Points in red indicates
saturation events of the detector during any of the 32 time bins while
the points in magenta spot records with bunching (at least two consec-
utive) of 0 photons detected. Clearly, the mean detected photons from
the guided mode of the fiber drops from its reference value (green)
when a MOT is created on the fiber (blue). In addition, the figure wit-
nesses that at the beginning of the sequence, we alternatively switched
the quadrupole magnetic field every experimental realization. Then it
shows different phases where the magnetic field was left on for a while
then turned off for a while and also when we blocked the probe light.

13.4.2 Interleaved measurement of fluorescence and absorption

Now being able to detect both fluorescence and absorption of photons
by atoms, we had many experimental questions, for instance: Is the
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Figure 13.8: Consistent observation of guided probe light absorption in pres-
ence of cold Cesium atoms trapped in a MOT overlapping with
the nanofiber. (See main text for legend)

absorption signal maximized when the fluorescence signal is maximized
? We were also curious to compare in general the dynamics of the
fluorescence as compare to probe light transmitted by the nanofiber.
This quite sideways experimental details led us in fact to obtain the

biggest signals from MOT atoms. In this short section I would like to
report the implementation of interleaved fluorescence and absorption
measurement on quite short time scales. It also evidences a somewhat
good duty cycle for applications of MOT atoms interfaced to a nanofiber.
The sequence is as follows.

It was not possible to perform both fluorescence4 and absorption
spectroscopy from the common fiber observation mode with the broad-
band and incoherent detection of photons with the SPCM. Therefore
the idea consists in alternating probe light pulse sent through the fiber
and the cooling light of the MOT. The trap is loaded with atoms and
stays in equilibrium for 2 s (we could have reduced this value) while an
open shutter let the cleaning light beam going through the nanofiber.
Then, the latter shutter is closed and blocks the cleaning beam. Then
the cooler light of the MOT is gated off for 1ms while simultaneously

4 which requires cooler light that would saturate the absorption.
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probe light, controlled with an AOM, is allowed to propagate in the fiber
for the same gate duration to perform absorption spectroscopy. For the
next 10ms, cooling is re-activated and cold atoms are recaptured into
the trap. For the next 1ms, the cooler is kept on while the probe is
off, allowing to observe atom fluorescence without probe photons in
the fiber mode. This alternated cooling-probing process is repeated 16
times until all the 32 registers of the SPCM counting electronics are
filled. Indeed, the photon detector is gated on and counts photons dur-
ing the 1ms time bins. We note that our measurement demonstrated a
duty cycle of 10ms for operations on MOT atoms to perform on demand
fluorescence or absorption spectroscopy.
Each point in figures 13.9 and 13.10 is an average over 16 counting

photon bins following the previous sequence.
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Figure 13.9: Interleaved fluorescence and absorption detection. Here only the
average over the photon counting bins corresponding to fluo-
rescence detection is shown. The probe is resonant with the
|4〉 → |5′〉 transition. (Red) Saturation event of the SPCM (Blue)
Magnetic trap ON (Green) Magnetic trap OFF.

These figures report the raw detected photon flux. A rapid estimates
of the collected fluorescence emission rate into the fiber can be obtained
by multiplying the raw fluxes by a factor 50.

F =
D

qn(1− l) ' 50 ·D

where,
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Figure 13.10: Interleaved fluorescence and absorption detection. Here only the
average over the photon counting bins corresponding to absorp-
tion detection is shown. The probe is resonant with the F4F5
transition. (Red) Saturation event of the SPCM (Blue) Magnetic
trap ON (Green) Magnetic trap OFF.

q = 0.45 quantum efficiency of SPCM at 852 nm,
D raw detected photon flux,
n = 4.6% neutral density filter in front of detector,
l = 3% optical path loss to detector .

Readily on figure 13.9, no photons in the fiber mode are detected in
absence of magnetic field. We note that in the detection time window,
the mean number of dark counts is less than 1. In contrast, a clear
photon flux is detected when MOT atoms evolve in the vicinity of the
nanofiber. In figure 13.10, contrary to figure 13.9, a high photon flux
is detected in absence of a magnetic trap. Indeed, here probe photons
are sent into the fiber mode for absorption spectroscopy. In presence of
atoms in the trap, the signal reduces due to probe photon absorption
or scattering.
To end this section, we present the latest absorption measurement

we have performed with single photons once we optimized all trap pa-
rameters using the previous techniques in figure 13.11. In particular
here, the magnetic field gradient was increased (5.5A current) as well
as the overall position of the MOT cloud on the nanofiber. The observed
signals are very sensitive to the latter.
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Figure 13.11: Optical depth greater than 1.5 is observed from MOT atoms
via absorption measurement. The probe is resonant with the
|4〉 → |5′〉 transition. (Red) Saturation event of the SPCM (Blue)
Magnetic trap ON (Green) Magnetic trap OFF. (Purple) “Sus-
picious” counts (more than 2 consecutives 0 photons).

The absorption is clear and strong. Readily, a transmission smaller
than 25% is observed corresponding to an effective resonant optical
depth of 1.5.

13.4.3 Absorption spectroscopy

By developping further the experimental control which were nearly un-
existent, I was able to modify the frequency of the probe laser every
MOT loading realization and therefore I could start investigating the
resonant property of the interacting atoms. As can be seen in figure
13.12 from the discontinuous steps in absorption, the optical frequency
of the probe is was detuned by random steps around the |4〉 → |5′〉
transition. This ensures experimental consistency, reproducibility and
remove potential biases when measuring the lineshape of the interacting
atomic transition.
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Figure 13.12: Raw absorption spectroscopy around the expected |4〉 → |5′〉
transition: discontinuous and continuous frequency sweeps of
the guided probe light.
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From this data, we can reconstruct the probe transmission versus
probe detuning with respect to the expected resonant transition fre-
quency. The result is shown in figure 13.13.
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Figure 13.13: Transmission/absorption spectroscopy of the cyclic |4〉 → |5′〉
Cesium transition, at the photon shot noise limit. Γ ' 1.05Γ0.

The transmission T is linked to the total atomic optical depth d as
d(∆) = − lnT (∆), where ∆ is the probe detuning. A lorentzian model
for the optical depth fits very well to the data and reveals that the ob-
served atomic resonance as a linewidth almost identical to the expected
value for Cesium and that the position or resonance frequency shows no
shift compared to the expected Cesium frequency. The resonant optical
depth here is d ' 1.
By pushing the limit of the probe laser lock, we can scan the ex-

cited state of the atoms over more than 500MHz and one will observe,
as reported in figure 13.14, different and similar narrow resonances
positioned quasi exactly at the expected resonance frequency of the
different excited hyperfine states of Cesium. The absolute value of the
resonant optical depth depends on the effective number of atoms in the
evanescent probe field, which depends on the surrounding atomic cloud
density. However, the relative strength of the resonant optical depths
depends on the relative absorption strength of these atomic hyperfine
transitions. The extracted values of d from the resonant transmissions
show a very good agreement with the strengths given in Steck (2010).
We therefore experimentally justify the choice of the probing transi-

tion |4〉 → |5′〉 to obtain the highest response and interaction with this
relatively small effective number of atoms Nat ∼ 10 in the evanescent
field.
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Figure 13.14: Spectroscopy of the observed and allowed hyperfine excited state
transitions from the ground state |4〉.

13.4.4 MOT coupling lifetime

Using the photon counting technique and the initial experimental basic
and somewhat slow control, I tried to measure precisely the lifetime of
the atomic signal in the evanescent field.
For measurement that involves quite short time scale, it is relevant

to now look into the different photon time bins instead of averaging
them as before.
In figure 13.15, I report the lifetime of the resonant absorption signal

when the cooling MOT light is suddently switched off. The repumping
light is still active to counteract any depumping that could be caused
by the probe light. In the shown data, the content of the 32 SPCM reg-
isters are displayed. Each corresponds to an acquisition time of 500 µs,
each bin being separated by a 1ms interval. The absorption is seen to
decay exponentially with time constant of about 4ms. One can note
that for this measurement with cold MOT atoms, the signal transmis-
sion starts at about 1/8 of its maximum value in absence of atoms.
This corresponds to a resonant optical depth close to 2, which is re-
markable for the small resident number of atoms present on average in
the evanescent field.
The signal lifetime also tells us that cold atoms flying around the

nanofiber, after stopping MOT magnetic confinement and laser cool-
ing, may still give a significant residual background signal on this time
scale. This would be important in view of probing atoms which would
be trapped in optical dipole force built in the evanescent field of the



180 discrete spectroscopy of a few atoms

Figure 13.15: Evolution of the number of fiber guided and resonant probe
photons, as a function of time, when the quadrupole magnetic
field and laser cooling of the MOT has stopped.

nanofiber that requires to be loaded from a MOT around the fiber. One
way to remove this background signal, corresponding to the expansion
and fall of the cold atom MOT resevoir, when probing on the |4〉 → |5′〉
transition, would be to implement a phase of optical depumping of
these atoms into a dark state. Or simply, to probe the atoms after a
sufficiently long trap storage time if the trap lifetime is sufficient.

summary

In this chapter, we have presented the first observations and experi-
ments performed on cold atoms, which demonstrate significant interac-
tion with the evanescent and guided light mode of an optical nanofiber.
We have detected a few cold atoms by counting a few photons emit-
ted by these atoms in the fiber mode but also we have observed the
reciprocal absorption of guided probe photons.
We were then able to perform fluorescence and absorption spec-

troscopy by counting photons guided in the nanofiber with significant
signal-to-noise ratios which are limited by photon shot noise. We have
observed resonant optical depth as large as d ' 2, which is remarkable
for the small nanofiber geometry. The result indicates that the order
of magnitude of the single-atom optical depth is about 10%. All the
presented achievements were made possible by understanding the for-
mation of atomic layers, which can coat the fiber surface and prevent
or bias the observation of cold atoms.



14
SUPERHETERODYNE DETECTION OF ATOMS

Anyone who has had actual contact with the making of the inventions
that built the radio art knows that these inventions have been the

product of experiment and work based on physical reasoning, rather
than on the mathematicians’ calculations and formulae. Precisely the

opposite impression is obtained from many of our present day text
books and publications.

— Edwin Armstrong

introduction

In this chapter, we make a leap from discrete variables to continuous
variables by demonstrating the first experimental steps in the real-time
and continuous detection of atoms in the evanescent field of an opti-
cal nanofiber. First, I will present some preliminary observations using
the heterodyne technique introduced in chapter 2. In particular, we
will see the real-time detection and narrow-band absorption of weak
(∼ 100 pW) fiber guided probe light by MOT atoms.

Second, following the experimental principles of Edwin Armstrong
developped during the war to detect weak high frequency radio waves,
I will present a superheterodyne measurement which allows to detect
a phase shift induced by atoms. This technique was implemented only
during the early stage of the construction of the experiment because of
the limitations from many missing elements. The coherent signal from
atoms can be brought to an acoustic frequency, this may allow one to
hear cold atoms in real time. Using the superheterodyne technique, we
were then able to measure simultaneously both the absorption and the
dispersion from atoms while changing the probe light frequency across
the atomic resonance. As we will report in the last part of this thesis,
this allowed us to obtain a clear view of the effects of evanescent dipole
light force on MOT atoms in order to capture them in the evanescent
field.

In view of collective measurement and realization of QND interaction
based on the detection of atomic states via phase shift imprints (see
first chapter), we need a coherent detection of the probe light field
propagating in the fiber. Once we finished to build an adequate low-

181
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noise photodetector, we initially tried to implement first the heterodyne
technique to detect coherently quasi-resonant atomic absorption from
MOT atoms (figure 14.1).

AOM 
Ω

PD	  

MOT atoms 

Probe arm (signal) 

90/10 

Photocurrent	  
voltage	  

Reference arm (LO) 

Input Laser light 

Figure 14.1: Simplified experimental principle of the single-port heterodyne
detection of cold atoms in the evanescent field of a nanofiber.
The interference between the probe field and the optical local
oscillator reference oscillates at the RF (angular) frequency Ω =
2π× 62.5MHz.

Unfortunately, even using very weak (non-saturating) probe powers
(∼ 1 pW), we failed to observe any consistent signals due to all the
subtle effects conspiring reported in the previous chapter.
Although we then succeeded to observe a few percent absorption after

implementing the cleaning method it appeared very difficult to optimize
and improve the heterodyne signal (see figure 14.2). It happened that
the amount of fluorescence photons emitted by these atoms into the
nanofiber mode was the most effective and sensitive signal to look at
in order to optimize delicately many of the parameters affecting the
average overlap between the MOT cloud and the fiber in the viccinity
of the taper surface.

14.1 heterodyne detection of absorption

Once a significant absorption of guided probe light was observed with
single photon counting (see previous chapter) it was clear that one
should be able to observe such atomic signal using heterodyne detection
for the same probe parameters (power and frequency detuning), unless
an extremely poor overall detection quantum efficiency.
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Figure 14.2: Indication of guided probe absorption. August 2013, 28th. (yel-
low) MOT gradient coils OFF (pink) ON. ∼ 6% absorption.
Pulsed probing (cooler off when probe on).

14.1.1 Heterodyne lifetime signal

To continue along the lines of the last reported data in the previous
chapter, we report in figure 14.3 a similar measurement of the lifetime
of the atomic absorption (probe transmission) signal which is demon-
strated using continuous heterodyne detection.
The traces shown were recorded with a spectrum analyser in zero-

span mode measuring the RMS alternating current (AC) coupled volt-
age of the output of our homemade single PIN photodiode detector in a
10 kHz narrow bandwidth centered around 62.5MHz. Indeed, the opti-
cal local oscillator had a frequency lower than that of the probe light by
62.5MHz for this heterodyne technique, the absolute frequency of the
probe was adjusted near the expected |4〉 → |5′〉 transition frequency,
while maximizing the observed absorption. Please note that the signal
is directly proportional to the beatnote between the LO and the probe,
that is, proportional to the electric field amplitude of the probe. The
lowest trace represents the detected signal when the probe is (blocked)
in the vacuum state, that is, the sum of LO shot noise and electronic
noise. The highest trace is the signal in absence of MOT atoms showing
the signal level for a DC probe light power of ∼ 100 pW at the position
of the atoms. When a MOT is prepared, the cooling light is switched
off while the spectrum analyser is triggered simultaneously and records
such 10ms long traces. Each shown trace is an average over 10 consecu-
tive acquired traces corresponding to re-preparation of a millimeter size
atom cloud for about 2 s. Note that this data represent a real-time de-
tection of atomic signal and our choice to show overages over 10 traces
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Figure 14.3: Continuous evolution of the narrow band (10 kHz) RMS hetero-
dyne beatnote amplitude, proportional to the electric field am-
plitude of the fiber guided probe in presence of MOT atoms in
the nanofiber evanescent field. At the initial trigger time, the
MOT cooling light is turned off, the repumping light is kept ac-
tive. (Probe frequency blue-detuned +62.5MHz compared to op-
tical LO, absolute PLL LO frequency 896×9.744MHz). Each trace
is an average over 10 (traces) experimental realizations. Probe
power at the atoms ∼ 100pW, LO power at detector ∼ 550 µW.
(top blue) Signal with MOT quadrupole magnetic field off (no
cold atoms) (bottom green) Vacuum probe signal (probe blocked
i. e. electronic noise + optical LO shotnoise). 1060 nm (∼ 60 µW)
cleaning pulse 10ms before measurement.

is just for clarity of the presentation to reduce the light shot noise. See
figure 14.5 for a single-shot measurement limited by the light noise.

14.1.2 Saturation and cooling dynamics

In this short section, we save a few evidence, using the heterodyne
signal, of the saturation and lower absorption of the guided probe when
the MOT is in a stationary regime, that is, when laser cooling is active
on the atomic cycling transition |4〉 → |5〉, which is being used to probe
the atoms. For the previous and current reported data, the repumper
light was always active during the continuous measurement.
As shown in figure 14.4, the longer the cooler is kept off, the longer it

takes to recover an identical absorption level compared to the initial one.
In the subfigure 14.4(d), we show a noteworthy duty cycle for constant
high absorption in a view of experiments and applications based on
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(a) Cooler OFF after 2ms
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(b) Cooler OFF for 2ms, then ON
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(c) Cooler OFF for 4ms, then ON
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(d) 1ms cooler ON/OFF pulses

Figure 14.4: Continuous heterodyne detection of MOT atoms in the nanofiber
evanescent field. Same experimental conditions as in figure 14.3.

MOT atoms. I would like to mention the qualitative observation that,
when sweeping the probe frequency across the atomic resonance while
the saturating cooling light was simultaneously exciting the atoms, I
noted some weak discontinuities in the absorption of the probe that may
indicate the possible observation of Mollow resonances but I have not
had the time to redo this measurement. Indeed, as soon as absorption
was detected coherently, the next experimental challenge to achieve was
to be able to detect a phase shift imprint on the probe induced by the
atoms. This required a fast detection method adapted to very weak
probe light, if possible simple and rapid to implement, and as little
sensitive to classical phase noise (I did not have any hardware built yet
to stabilize and lock the interferometer arms showing in figure 14.1.).
Before I present the first experimental successful measurement, I will
briefly introduce in the next section the experimental setup and the
technique used to reach this goal with nearly few experimental control
at the early stage of the experiment.
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Figure 14.5: Single-shot continuous transmission of the probe light field in a
10 kHz bandwidth. The cooler is turned off after t = 1ms.

14.2 superheterodyne

In this section, I will try to explain in simple terms how one can detect
with little experimental equipment an atomic phase imprint from MOT
atoms onto a weak probe light field propagating in the nanofiber.
The raw output voltage of the photodetector carrying the beat note1

between the probe field and the optical LO at 62.5MHz is band-pass
filtered by combining a low-pass filter (DC - 60MHz) and a high-pass2
filter (27.5 - 800MHz). Then it is electronically amplified before it is
mixed3 down with a RF LO to an intermediate frequency (IF). With
the RF LO frequency of 62.4MHz, the detected signal is carried at
an ultra-acoustic frequency4 of 100 kHz. In this frequency domain, the
electronics is relatively simpler to build compared to the RF domain. It
felt easier to build a narrow low-pass filter window5 (1MHz) on the IF
frequency than a narrow bandpass around 62.5MHz. This idea, known
as superheterodyne, was inspired by Edwin Armstrong who developped

1 oscillation of the optical intensity arising from the superposition of light with differ-
ent optical frequencies

2 Low-pass: Mini-circuits SLP-70+, High-pass: Mini-circuits SHP-25+
3 Or frequency multiplied. However, there is no such thing as a frequency multiplier.
Physically, it is a diode ring mixer. The input signal is switched on and off with the
RF LO frequency.

4 the heterodyne signal at 62.4 + 62.5 MHz will be strongly filtered.
5 In order to be able to observe enough signal in real-time compared to the broad-
band detection noise, for instance, when using an oscilloscope which had 100MHz
bandwidth.
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this technique during the first world war in a view to detect weak high
frequency enemy radio waves, by mixing down the detected frequency
spectrum to intermediate frequencies where amplifiers (rectifiers etc)
were available. In addition, the reason I chose to mixed down to 100 kHz
instead of baseband (DC, 0Hz) is directly linked to the goal of detecting
an atomic phase shift and that I did not have built yet a system to
stabilize the interferometer path length6 or the relative phase between
the probe field and the optical LO.
In addition, I did not have yet a 90° phase shifter and another RF

mixer working around 62.5MHz. Therefore, I could not record indepen-
dently signals sensitive to each quadrature of the probe field. With a
non-zero mix down frequency, I would get them periodically (every mix
down oscillation period) and faifully if this frequency is high enough
compared to classical acoustic frequencies in the interferometer but also
to the dynamics of the expected atomic phase shift.
I will now explain how to extract information about the phase of the

probe light field. The ultra-acoustic signal x(t) is recorded with a digi-
tal oscilloscope. Therefore, it is important to mention that the RF local
oscillator signal generated for frequency mixing, the RF wave gener-
ated to supply the AOM (62.5MHz) creating the probe light (+1 AOM
diffraction order) frequency shifted compared to the optical LO and
also the base time axis of the recording oscilloscope device are derived
from a common time reference. By taking the Hilbert transform of the
recorded signal H(x(t)) = p(t), one can reconstruct the (annihilation)
analytic signal (see chapter 2) a = x+ ip which gives access to both the
instantaneous amplitude (|x|2 + |p|2) and phase (i ln a or tan−1 p/x).
However to obtain the DC phase, one mixes down the analytic signal to
DC. Before adding more details to the data post-processing, I will now
present the measurement sequence.
Because we have observed previously absorption of the probe light

by MOT atoms and more strikingly as a clear step in transmission when
the cooler light was turned off (no saturation of the probing transition),
we were hoping to observe a step in the phase for the same atomic
event. This follows the well-known ideas behind the Kramers-Kronig’s
relations (dispersion from absorption) linked to causality, which are also
connected by the Hilbert transform. The experimental sequence is as
follows. A MOT is loaded on the nanofiber for 2 s, at the end of which a
cleaning light pulse of 1060 nm is sent in the fiber to avoid accumulation
of Cesium layers on the fiber surface between experimental realizations.
The CW probe light propagating in the nanofiber is quasi-resonant with
the atomic transition |4〉 → |5〉’ and has a power of about 100 pW. The
optical heterodyne signal mixed down into the superheterodyne signal
oscillating at 100 kHz is then recorded for 5ms on the oscilloscope after

6 which would make a noisy and randomly unstable homodyne detection sensitivity.
Note also that it was my first personal attempts at doing heterodyne at a few
hundred pW probe power as well
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a trigger event at t = 0ms. During the first 2ms, one has a normal
MOT situation where both the cooler and repumper light is ON. For
the next 1ms, where we put all our attention, both the cooler and
repumper are turned OFF (the repumper is turned off 100 µs after
the cooler to ensure a maximum number of atoms pumped on the
probing transition). The repumper is kept OFF for the rest of the
sequence. In the need of a rapid reference measurement with no atoms,
the cooler is turned ON for 1ms, from t = 3ms to t = 4ms and then
OFF for the rest of the sequence. We record 200 different experimental
realizations (MOT loading) and we report on figure 14.6 the average
instantaneous amplitude and phase. Note that because the initial phase
delay of the superheterodyne signal compared to the trigger instant of
the oscilloscope varies from one record to the next, we do a manual
“dual-trigger” on the data by phase shifting each record signal to have
them in phase at t = 0ms before averaging over all traces. Our goal is
to observe a step in the phase.
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Figure 14.6: Amplitude and DC phase extracted from the Hilbert transform
of the superheterodyne beatnote.

In addition, we have performed a running average of 50 µs on the
data points. In figure 14.6, we clearly observe a step in the transmitted
probe field amplitude but also in the phase after t = 2ms when the
MOT lights are suppressed. This very first observed step in phase is not
significant compared to the noise but this is remarkable in view of our
main objective. In addition, I should recall that for this measurement
the probe light was quasi-resonant with the atomic transition for which
little atomic dispersion is expected (see chapter 1). To quantify the
observations, one would like to have a reference measurement with no
atomic signal in a time closeby to avoid phase drift due to classical
noise. When I first saw that turning the cooler light ON during the
interval t = 3ms to 4ms would reduce completely the absorption, I
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first believed that the measurement interval 4ms to 5ms with all light
off except the probing one, woud be a good measurement interval for
a reference signal for no atomic signal. Curiously, one obtains nearly
the same signal levels as compared to the initial MOT phase situation.
It appeared to me that the main reason for that observation would be
the ineffective pumping of the atoms into the probe dark state F ′ = 3.
Therefore I added yet another laser source to the experiment whose
frequency was quasi-resonant to the |4〉 → |4′〉 transition, which would
provide optical depumping. This light was sent into the same spatial
mode as the MOT beams. Now, with both cooler and optical depumping
light active during step (3), we obtain a reference signal with no atoms
and the signal reported in figure 14.7.
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Figure 14.7: amplitude and phase step

We repeated this measurement idea for various probe frequency de-
tunings across the |4〉 → |5′〉 transition and we obtained the various
following curves.
By compiling all the information gained into a common graph as

a function of the probe detuning with respect to the probing cyclic
transition, one can obtain a combined dispersion and detected atomic
absorption (see figure 14.9). Note that the data reported in this new
figure were taken on a different day and for a different MOT density,
from the traces acquired in 14.8. Here, we show the last data taken
with optimization of all experimental parameters.

Each point is an average over 200 realizations. We directly plot the
measured optical depth (the error bar are smaller than the point in
the figure). From 14.8, one can extract the relative change in transmis-
sion due to atoms between t = 2ms to 3ms compared to the assumed
reference full transmission of the probe t = 4ms to 5ms (we average
the raw data over 600 µs at the center of these intervals). The optical
depth is deduced as before from the opposite natural logarithm of the



190 superheterodyne detection of atoms

Figure 14.8: Results of Hilbert transforms for various probe detunings.
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Figure 14.9: Simultaneous measurement of atomic absorption and dispersion
using the supheterodyne and Hilbert transform method.)

probe transmission7, d = − lnT . We fit independently, the phase dis-
7 The amplitude of the detected beatnote signal is proportional to the electric field
strength of the probe, such that one should not forget to square it to deduce trans-
mission of probe intensity
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persion and optical depth to the expected model for a non-saturated
two-level atom (see first chapter, (2.17)). The black dotted fit is the ex-
pected phase shift from the Lorentzian optical depth (ϕ = −d(∆)∆/γ,
see (2.17) with d = αl). Both measured phase shift and attenuation
indicates a red shift of the atomic transition of about 0.73γ where
γ = 5.234MHz is the expected linewidth of the transition. Note that
the frequency axis given in the figure is expected from the experimen-
tal calibration of the probe frequency (polarization spectroscopy+PLL
lock+AOM shift) and may be prone to systematic error (as experienced
in Dawkins et al. (2011)) although we are quite confident about it. The
quadrupole magnetic field was ON during the measurement and atoms
in a MOT are mainly in weak field seeking state (lowest Zeeman levels
mf = -4) this could indicate such Zeeman red shift. On the other hand,
the probe power at the atoms for the measurement was about 30pW.
The line presents as well broadening (about δν = 1.6γ). In addition,
we note a slight asymmetry of the phase shift value (offset of about
-25mrad). We remind that this simple two-level model ignores the pres-
ence of the hyperfine structure of the excited states of the atoms, which
might be responsible for this small deviation. The optical depth and
phase shifts which are observed are quite remarkable as they originate
from a few MOT atoms flying in the evanescent field of the nanofiber.

14.3 observation of light shifts

I would like now to anticipate the results of the next chapters concerned
with trapping of atoms using optical dipole forces in the evanescent field
of the nanofiber. This is because I believe that the superheterodyne
detection method, even imperfect, played a big initial role in the future
success of the nanofiber experiment. It allowed to apprehend visualy
what happens to the detected atomic signals for instance when one
send in the nanofiber significant far blue or red detuned light power.

14.3.1 Blue-detuned light

Let me start with the simplest case. It is expected that when ground
state Cesium atoms are illuminated by a spatial inhomogeneous light
field, that is far blue detuned compared to the D2 (here 780 nm), they
would experience predominantly an optical dipole force, which would
attract the atoms (the atomic dipoles) towards the intensity minima of
the light field. Because the evanescent field carried by the fundamental
mode of the nanofiber is quasi exponentially decaying a way from the
fiber surface, one expect that the application of blue-detuned field will
repell atoms away from the fiber surface. One would then expect a
higher mean distance of approach of atoms in equilibrium with the
new repelling force and the confining MOT light forces. As a result,
because the strength of the electric field of the guided probe light also
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carried by the fundamental mode decreases as well away from the fiber
surface, one would expect a decrease of the observed optical depths
when increasing the power of the blue-detuned light field. In addition,
the typical effective mode cross section of the fundamental mode is
relatively so small (∼ 1 µm2) that for a few milliwatt of power, one
would expect to observe already a few megahertz light shift of the
atomic transition.
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(b) light power ∼ 1.6mW
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(c) light power ∼ 6.5mW
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Figure 14.10: Continuous heterodyne detection of MOT atoms in the nanofiber
evanescent field in presence of 780 nm evanescent light.

We report in figure 14.10 a few selected measurement where we ap-
proximatively doubled the 780 nm light power. Compared to the typical
values obtained from the observed atomic response in absence of such
a light, we do not observe any extra broadening of line which is still
always on average about 1.5γ. Secondly, we do not see clear frequency
shift of the atomic resonance as the light power is increased. However,
we observe a clear variation of the maximum detected optical depth.

We report in figure 14.11 a more quantitative display of the various
values for all the different light powers we have tried. The maximum or
resonant optical depth measured is seen to decay quasi exponentially as
the light power is increased with a 1/e decay constant of 5.2mW. Note
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Figure 14.11: Effects of far blue-detuned light on the observed resonant optical
depth and resonance frequency.

that if one knows by how much the mean distance between the atoms
and the fiber surface is changed as a function of the light power, one
could map the evanescent field profile of the probe light. Interestingly,
the position of the resonant atomic frequency, with respect to the ex-
pected position, seems to oscillate until it reaches a stationary value at
high power. Note also that there is at least a clear jump in the atomic
resonant frequency from no light to a few milliwatt. In addition, the ob-
served atomic light shift is red, which is expected for blue-detuned light
(on a two-level atom). The atomic transition frequency is reduced com-
pared to the expected frequency of the transition |4〉 → |5′〉 from 3 to
2MHz. We could explain that the observed light shift does not increase
with the light power because it depends primarly on the light intensity
at the atom position, which here depends on the mean position of the
atoms with respect to the fiber surface. As the light power increases, the
mean distance of approach to the fiber surface increases as the atoms
are more and more shielded from the fiber surface by this static elastic
barrier. Because the light field decreases away from the fiber surface,
this tampers the linear increase of the light shift with light power. In
the next subsection, we report observation with far red-detuned light.

14.3.2 Red-detuned light

In this section, we report similar measurement as before but using far
red-detuned light instead. We have built an ECDL laser operating at
1057 nm. In contrast with the above expectation for blue-detuned light,
we expect very simply that the atoms will now be attracted towards
the fiber surface. The atoms approaching closer to the fiber surface will
couple stronger and stronger with the evanescent probe light field. This
should increase the resonant optical depth with increased light powers.
As reported in figure 14.12 and clearly shown as well in figure 14.13

(a) this is not what is observed. The maximum optical depth actually
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(a) light power ∼ 1.2mW
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(b) light power ∼ 3.3mW
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(c) light power ∼ 5.4mW
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(d) light power ∼ 7.5mW

Figure 14.12: Continuous heterodyne detection of MOT atoms in the nanofiber
evanescent field in presence of 1057 nm evanescent light.

decreases with increased light power. The most remarkable feature of
the atomic response compared to the previous observations with blue-
detuned light is the presence of a clear broadening of the atomic signal.
In addition, this broadening, which grows as the light power gets in-
creased, is interestingly asymmetric. Because of such a broadening, it
becomes difficult to estimate properly an atomic resonance frequency.
However, it is seen and perhaps better in figure 14.13 (a), that the
atomic response is now (blue) shifted towards higher transitions fre-
quency as expected from red-detuned light. In addition, also in contrast
with the results for blue-detuned light, the frequency shift is seen to
increase steadily and linearly from its starting value with no light, (see
figure 14.13 (b)). We only reported values for the lowest powers where
the center frequency is extracted from the Lorentzian fit which are in
reasonable correspondence with the data.
The reduced maximum optical depth could be explained by consid-

ering that the atoms are now accelerated towards the fiber surface by
the attractive red-detuned field. They will crash on the surface or may
scatter away. Consequently, the mean time spent by MOT atoms en-
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(a) light power ∼ 9.1mW
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Figure 14.13: (a) effects of blue detuned light on resonant OD and resonant
frequency (b) effects of red detuned light on resonant frequency

tering the evanescent field of the nanofiber is smaller resulting in an
average lower atom density in the evanescent field. The broadening of
the signal could be explained by a signal arising from different atoms
present in the evanescent field of the probe but which are located on av-
erage at different positions in the red-detuned evanescent field, thereby
experiencing different light shift. Note that the red-detuned light field
penetrates deeper outside the nanofiber more than twice as much as
the blue-detuned one (see next chapter).
Based on all these observations, the next natural experimental ques-

tion was to observe whether for instance the reduction in resonant opti-
cal depth caused by the repulsive blue-detuned light could be compen-
sated by simultaneously imposing a red-detuned light field. And also
whether the strong broadening would still be present. These results
were among the first obtained in order to trap atoms using a two-color
evanescent field around a nanofiber. We will present subsequent steps
after a more theoretical chapter about such nanofiber traps.

summary

In this chapter, we have made the first successful transition from dis-
crete to continuous variable detection of atomic signal. We started by
performing absorption spectroscopy from the variation of the beat note
intensity of the probe field with a reference local oscillator using a sim-
ple single-port heterodyne measurement scheme. The results provided a
new point of view on the atoms and confirmed the observations realized
with photon counting in the previous chapter. Then, we presented an
experimental method, called superheterodyning, which we have devel-
opped to detect the phase shift imprinted on the probe light field by the
atoms, without any lock and classical phase stabilization of the probe
and and reference arm path length difference. Moreover, the continu-
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ous measurement of the phase shift was extracted from only ∼ 100 pW
probe field power. With this great initial tool, which allows to visualize
simultaneously atomic dispersion and absorption, we could observe di-
rectly the effects of both far blue and red detuned light propagating in
the evanescent field of the nanofiber. One can cleary observe light shifts
and broadening, which are not necesseraly trivial. However, the qualita-
tive results are fantastic as they show the possibility of non-dissipative
guided light interactions with atoms in the evanescent field and the
perspective of confining these atoms in the evanescent probe field for
long interrogation times.



Part IV

A N E F F I C I E N T AT O M - L I G H T C RY S TA L

We create two one-dimensional optical lattices for Cesium
atoms in the evanescent field of an optical nanofiber.

We develop a minimally destructive probing method which
allows to measure continuously the atomic state population
at the light shot noise limit. With Bayesian filtering we
demonstrate up to −14dB atom number squeezing.

Finally, we explore the novel perpsective of a creating an
atomic mirror in this system.





15
DES IGN OF OPTICAL NANOF IBER TRAPS

As the saying goes, the Stone Age did not end because we ran out of
stones. We transitioned to better solutions.

— Steven Chu

introduction

In this chapter, we prepare the description of the experiments based on
atoms optically trapped around a nanofiber, reported in this last part
of the thesis. We will go through some essential principles of optical
dipole traps based on evanescent fields of light and we will highlight
the merits of nanofibers to create them.

A magneto-optical trap also called in the past a spontaneous optical
force trap, is a non-conservative trap. During their lifetime in the trap,
atoms undergo successively incoherent light scattering events, which
among other constrains is detrimental for the type of quantum state
engineering and study of coherent interactions with cold atoms in our
scope. Rather, a MOT constitutes a precious reservoir of cold atoms
needed to load conservative traps that are a few millikelvin shallow for
neutral alkali atoms.
Neutral atoms require to be polarized in a so-called weak-field-seeker

state to be captured in a quadrupole magnetic trap. Such states with
non-zero magnetic moment are also by definition sensitive to external
magnetic field fluctuations. In that respect, optical dipole traps based
on induced electric dipole interaction with far-detuned light are more
versatile as the above restriction is absent. Moreover, one can control
the dependence of the trap depth on the internal atomic states. How-
ever, as mentioned elsewhere in this thesis, one must look at the flipside
of the coin for high resolution spectroscopy since trapping mechanisms
that rely on the internal electric charge distribution of the neutral atom,
will perturb by definition the internal atomic energy levels, limiting the
measurement accuracy of atomic frequencies (e. g. in atomic clocks).
Note that the induced nature of the dipole force is the only way to

create a conservative trap for atoms with light as neutral atoms do
not have a permanent dipole moment that would otherwise violate the

199
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reflection symmetries (Cohen-Tannoudji and Dupont-Roc (1972)) of
the fundamental interactions at the root of the stability of atoms.

15.1 diffraction limited optical dipole trap

In the disordered atomic ensembles based experiments operated during
the first part of this thesis we have optically trapped cold Cesium atoms
using the simplest optical dipole trap that has many advantages.
Proposed theoretically on two-level neutral atoms in three dimen-

sions by Ashkin (1978), the first demonstration of optically trapped
atoms was reported in Chu et al. (1986). As mentioned before, neu-
tral atoms does not have permanent dipole moment, however one can
be induced optically by the time-dependent electric field of light. The
electrically induced dipole moment d = α(ω)E (linear response) is
characterised by the dynamic atomic polarizability α(ω), with ω the
optical field frequency. The interaction of the induced dipole moment
back onto the electric field of the light provides a conservative force in
presence of gradients of the electric field (in addition to the dissipative
radiation pressure force contribution linked instead to the gradient of
the phase of the field.)
The potential energy of the atom is U = −α(ω)E2/2 that leads to

the force F = −∇U = α(ω)∇(E2)/2. α1 is positive for an atom in its
ground state and would be attrached toward the highest electric field
region. The dipole potential can be described in terms of the optical
Stark shift of the atomic energy levels, that lowers the ground state
energy by U and increases the excited state by the same quantity. This
picture relies on an atom dressed by the field, a process that is linked to
the coherent redistribution of photons with different momenta through
stimulated emission. An atom which spends most its time in the ground
state could be confined by the gradient of an optical field. The simplest
case that was also design in our experiment is a focused Gaussian beam
whose frequency is far-detuned from the atomic transition to reduce the
incoherent scattering due to the radiation pressure force component
(critical in particular in the axial direction).

The spatial distribution of the intensity of such beam writes

I(r, z) = I0

(
w0

w(z)2

)
exp

(
−2r2

w(z)2

)
,

with I0 =
E0
2η , w(z) = w0

√
1 +

(
z

z0

)2
.

η is the vacuum impedance, w the beam waist of the Gaussian beam
and z0 = πw2

0/λ the depth of the focus or Rayleigh range.
In the past experiment, a 5W laser Gaussian beam with a wave-

length λ = 1064nm was focused down to a waist of about 50 µm. The
1 Here we consider the real part of the polarizability
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coolest atoms, that is, with the lowest kinetic energy will experience an
harmonic potential near the focus of the laser beam.

U (r, z) ' U0

(
−1 + 2r2

w2
0
+
z2

z2
0

)
= −U0 +

1
2mω

2
rr

2 +
1
2mω

2
zz

2. (15.1)

Since in general w0 � λ, this kind of trap is very anisotropic ωz � ωr.
We note that the trap frequencies depend on the electric field amplitude
E0 = E(r = 0, z = 0) in contrast to the harmonic frequency of a mass-
spring independent of the gravity field. The confinement can be made
deeper and tighter by respectively increasing the peak light intensity
and decreasing the beam waist w0 for the radial confinement or the
focal depth z0 for the axial confinement. As can be seen clearly from
the divergence angle of the beam tan θ = w(z)/z ∼ λ/πw0, the smaller
the confinement volume, the higher the diffraction of the beam. When
the angle θ is non-negligible the paraxial approximation for the validity
of the above Gaussian beam expression starts to fail.
It is possible to design a trap based on a electromagnetic mode dif-

ferent than the previous TEM00 that does not diffract, that is whose
radial intensity profile is independent of the propagation ordinate z on
the optical axis. Bessel beams do not diffract but are more difficult
to produce in free space. Gaussian dipole traps allow to achieve suf-
ficiently deep and localized optical potential down to several optical
wavelengths which allows relatively high atomic densities. The lifetime
of the atoms in the trap is limited by (in absence of the backgroung
gas collisions) the random fluctuation of the light forces that boil the
atoms out of the trap.
In general, a realistic atom possesses many ground state levels. If all

are displaced by the same mount via optical Stark shift, a situation that
occurs for far enough detuned light, then the general trap properties
are quite simplified and independent of the light polarization.
The potential energy of the dipole force can write for a two-level

atomAshkin (1978); Renn et al. (1995)

U = h̄
ωL − ω0

2 ln
(

1 + Ω2/2
(ωL − ω0)2 + Γ2/4

)
∼ h̄

Ω2

4(ωL − ω0)
,

where the last relation is valid for large detuning |∆ = ωL − ω0| com-
pared both to the Rabi frequency Ω = dE/ h̄ and the linewidth of
the transition Γ. The rate of spontaneous emission or scattering rate
γ = ΓΩ2/4(ωL − ω0)2 satisfies in this limit γ = Γ/U/( h̄∆) that is
γ � U/ h̄ (see Grimm et al. (2000)).
This scattering rate is responsible for heating of the atoms in the

trap through the transfert of random momentum recoil energy.

15.2 roads towards evanescent nanofiber dipole trap

It seems that the experimental road towards using today the evanescent
optical field of a sub-micrometer diameter dielectric glass fiber, to trap
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and guide atoms through the dipole force, has emerged at the crossing
of several past investigations of which we would like to mention a few
examples.

15.2.1 Evanescent mirror

When light impinges at the interface between two media of different
refractive indices at an angle satisfying the total internal reflection con-
dition, no light propagates in the medium with the lowest refractive
index. However an evanescent field penetrates it that decays exponen-
tially on the order of the light wavelength. By using blue detuned light,
one can then create a repulsive potential barrier on a glass surface that
will elastically reflect cold atoms falling onto it. The idea of such evanes-
cent electromagnetic mirror for neutral atoms was proposed by Cook
and Hill (1982). Based on this principle, a so-called gravitational cavity
can be created with a concave glass surface for this first mirror and the
gravity potential acting as the second mirror. This was demonstrated
in the group of Claude Cohen-Tannoudji (Aminoff et al. (1993)) and
in other groups using prisms.

15.2.2 Along thin wires

Magnetic traps for neutral particles (e. g. neutrons, neutral atoms)
which possess a magnetic moment were extensively investigated. In
particular, contrary to the mechanism underlying the magneto-optical
trap were atoms are attracted towards a minimum of a magnetic field,
high-field-seeking state magnetic trapping was pursued and the sim-
plest proposal turned out to be the interaction with the magnetic field
produced by a thin current-carrying wire, Blümel and Dietrich (1991)
(neutrons) Vestergaard Hau et al. (1995) (neutral atoms). This was suc-
cessfully demonstrated by Schmiedmayer (1995) trapping and guiding
Sodium atoms over a distance of one meter along a 150 µm diame-
ter current-carrying tungsten wire. The magnetic field from the wire
only provides an attractive force for the atomic magnetic moment that
would lead the particle to crash on the wire. A potential minimum for
the atom is provided by considering the centrifugal repulsive barrier
that arises from the orbital motion of the particle around the wire.

15.2.3 Hollow core fibers

During the same period, on the other hand, optical traps for neutral
atoms were developed in conjonction with analogous glass wires or op-
tical fibers in attempts to combine trapping and guiding of atoms with
the guiding of light. In particular the transmission and manipulation
of an atomic flow through an hollow-core cylindrical optical waveguide
using the optical dipole force from the core evanescing guided mode was
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suggested in Ol’Shanii et al. (1993). This was successfully demonstrated
by guiding Rubidium atoms through a red-detuned evanescent optical
fied inside a fiber hollow core with a 40 µm diameter Renn et al. (1995).
The channeling of atoms inside such fibers was then optimized using
instead blue-detuned light and smaller hollow core diameters down to
2 µm (Ito et al. (1996)).

15.3 the simplest nanofiber trap

As soon as it became technologically possible to fabricate sub-wavelength
diameter optical fibers Tong et al. (2003), the first proposal that con-
sists in trapping and guiding atoms, instead, outside the core of the
fiber, was published. This idea consists in attracting atoms towards
the fiber surface using far red-detuned evanescent optical light while
balancing the attraction with the repulsive centrifugal force from the
orbital motion of atoms as in Jörg Schmiedmayer experiment for in-
stance (Schmiedmayer (1995)). The evanescent light is produced by
the fundamental mode of the fiber with transverse rotating polariza-
tion which does not break the circular symmetry. In the first proposal
Balykin et al. (2004), the modes taken for the discussion are weakly
guided modes which is questionable as the authors pointed themselves
out. We would to give our remarks on it here.
The existence of a stable trap from the balancing of the centrifugal

force is possible if the fiber evanescent field does not diverge faster
than the centrifugal barrier, that is faster than 1/r2. We found in
earlier chapters that the transverse electric field distribution for any
fiber mode order (with rotating transverse polarization) outside the
core writes

|E|2 = 2N 2
[
K2
l+1(qr)(1 + ls)2 +K2

l−1(qr)(1− ls)2 + 2 q
2

β2K
2
l (qr)

]
.

The (quantum) centrifugal potential energy for the orbital motion of
the cold atoms in a fiber transverse plane is given by

C =
h̄2

2M
m2 − 1/4

r2 .

Please note that when the orbital quantum number m is null Lz =

mh̄, z being the fiber axis, the centrifugal potential energy is attractive.
To grasp this very counterintuitive term that I should highlight that
appears in two dimensions, a very interesting study is presented in
Cirone et al. (2001) about this so-called quantum anticentrifugal force.
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For the fundamental mode HE11 with azimuthal number l = 1, the
effective far-detuned potential can be read,

W/Erec = −χ
[
K2

2 (qr)(1 + s)2 +K2
0 (qr)(1− s)2 + 2 q

2

β2K
2
1 (qr)

]

+
m2 − 1/4
k2r2 ,

with χ = − h̄

Erec

Ω2
s/∆[

K2
2 (qa)(1 + s)2 +K2

0 (qa)(1− s)2 + 2 q2

β2K
2
1 (qa)

]
where Ωs is the Rabi frequency at the fiber surface, Erec = k2 h̄2/2M
is the single photon recoil energy and χ the coupling constant with the
atom following the spirit of Balykin et al. (2004). Clearly the existence
of local extrema for the potential is given by the nulling of its first
derivative leading to the following equation

y(x) = 2q2m
2 − 1/4
k2χ

, (15.2)

with

y(x)

x3 = K2(x) [K3(x) +K1(x)] (1 + s)2

+ 2K0(x)K1(x)(1− s)2 + 2 q
2

β2K1(x) [K2(x) +K0(x)] .

Contrary to the case of evanescent fields from weakly guided modes,
the previous expression is more complex and we will simply try to
answer whether a stable trap exists for a fiber radius a = 0.25 µm
and a few wavelengths. We have plotted on figure 15.1, the function
y for the different parameters. The condition for the existence of an
extremum of potential energy W is clearly that the right-hand side
of (15.2) is smaller than the maximum value of y. This seems to be
satisfied for all given wavelengths. However, when there is one solution,
the extremum is a maximum. For instance, only for the long wavelength
such as λ = 2× 780 µm one can foreseen a local minimum2. Instead of
going into a complex analysis let just ask whether it is realistic to form
a stable trap for cold atoms. One would like to bring the atoms close
enough to the fiber surface such that one can interact strongly with
adequate probe light such as 852 nm for Cesium atoms. A good estimate
for the fiber surface distance is our fiber radius a = 250 nm. The orbital
quantum number we want to trap can be estimated for a realistic milli-
kelvin cold atom from a MOT reservoir. If we take this temperature for
the rms transverse velocity component, that is v =

√
kBT/2M , but

v = Lz/Mr ' h̄m/2Ma (r = 2a being the distance to the fiber axis).
For T = 1mK, we find m ∼ 185. The centrifugal potential energy
would then be about 5.2MHz at r = 2a.

2 one should look at the sign of the second derivative
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We find that trapping cold atoms close the surface of an optical
nanofiber with radius a = 250 nm with the above wavelengths, might
be possible near the telecom wavelengths, based solely on red-detuned
dipole force in the fundamental mode with rotating polarization bal-
anced by the centrifugal force. However, for all the near-infrared wave-
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lengths this seems less realistic and differs somewhat from the results
of Balykin et al. (2004) that we explain graphically in figure 15.3. In
this first proposal, the weakly guided mode expressions were used, that
leads to y(x) = x3K0(x)K1(x) ≡ ref(x). The LP mode K2

0 (x) di-
verges slower than the exact solution for the fundamental mode HE11
compared to the centrifugal barrier in 1/r2.
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Figure 15.3: ratio y/ref

Instead one needs to investigate repulsive barriers other than the
centrifugal one, that would diverge as fast as the single red-detuned
evanescent field. A first simple answer would then be naturally to su-
perimpose a blue-detuned evanescent field of the same mode. We note
that when the optical potential minimum get closer and closer to the
fiber surface, a dielectric object, one must consider its influence via van
der Waals and Casimir-Polder types of interaction.

15.4 dispersive van der waals interaction

A fluctuating dipole would induce a dispersive (in constrast to inductive
for a permanent dipole) van der Waals interaction with the nanofiber
medium. On can understand simply this force as the result of the elec-
tric field produced by the fluctuating dipole that is reflected by the
fiber surface back to the dipole location with certain Fresnel coeffi-
cients. This potential energy correction for trapping atoms, is up to
the current knowledge of the author often referred to the formula re-
ported in Le Kien et al. (2004). However, most the time, the planar van
der Waals approximation is used in the litterature even though we have
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an exact analytical expression for it. This is questionable in as much
as V /Vplanar already differs by a factor of 2 a few hundred nanometers
from the fiber surfaces.
This exact expression for the van der Waals interaction originates

from the group of Jacques Robert in France3. The formula we report
here is a special case of a more general result for an infinite metallic
nanowire which involves non-local responses of the material. But for
a dielectric, using the quasi-static approximation to solve Maxwell’s
equation to find the reflection coefficients appropriate to the cylindrical
geometry is just an analytical puzzle. There will not be any plasmonic
resonances and the formula can be deduced for any degree of multipolar
expansion of the source potential Boustimi et al. (2002) and Boustimi
et al. (2003). Within the isotropic dipole approximation and SI units
(Boustimi results are in CGS from div Φ = −4πδρ),

V =
h̄

π2
1

4πε0

+∞∑
n=−∞

∫ ∞
0

dk

[
k2K

′2
n (kr) + (

n2

r2 + k2)K2
n(kr)

] ∫ ∞
0

dξα(iξ)Gn(k, a, iξ),

(15.3)

with

Gn(k, a,ω) = ∆n(k, a,ω) I
′
n(ka)

K ′n(ka)
,

∆n(k, a,ω) = ∆locn =
[ε(ω)− 1] In(ka)K ′n(ka)

In(ka)K ′n(ka)− ε(ω)I ′n(ka)Kn(ka)
,

where care should be taken to distinguish the derivatives of the mod-
ified Bessel functions, a being the radius of the fiber, r the radial dis-
tance of the dipole to the fibre axis, k a dummy math variable, α the
frequency-dependent atomic polarizability and ε the dynamical permit-
tivity of the dielectric (silica) (i.e ε = n2).
The planar approximation expression is given by McLachlan (1964),

V = − C3
(r− a)3 , (15.4)

C3 =
h̄

4π
1

4πε0

∫ ∞
0

dξα(iξ)
ε(iξ)− ε0
ε(iξ) + ε0

,

where the constant C3, depends on the atomic polarizability α.

15.5 two-color evanescent dipole trap

The first proposal of an atom trap using a two-color evanescent light
field around a nanofiber was published in Le Kien et al. (2004). However,
the idea to use a two-color far off resonant dipole force with evanescent
fields to create a potential for neutral atoms was proposed by Ovchin-
nikov et al. (1991) as a new kind of gradient light force trap in contrast
to strongly focused Gaussian beams in free space.

3 The author master’s thesis co-director.
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Aside from the well-known possibility to use evanescent fields to trap
atoms through far-off-resonant dipole force near a surface, it is primor-
dial to understand the advantages of optical nanofibers through the
main characteristics of the atom traps : the trap depth, the trap lim-
ited coherence time and the heating trap lifetime.
As mentioned before Cook and Hill (1982) suggested to reflect slow

atoms by a non-uniform evanescent light field penetrating outside a
dielectric surface through total internal reflection. Yet, they discussed
only the case of a blue-detuned light field but introduced the concept
of gravitional cavities which all led latter to the idea of atomic cavity
with light-induced mirrors Balykin and Letokhov (1989). The first ex-
perimental realization of an atomic mirror using blue-detuned evanes-
cent field to reflect a thermal atomic beam was reported in Balykin
et al. (1987). Soon, it was realized naturally that the reflection of atoms
could be made atomic-state selective as the detuning between the light
field depends on the atomic state and its sign can revert, that is, the
evanescent field can attract the atoms towards the dielectric surface if
red-detuned which leads to atomic diffuse reflection instead of specular
reflection as in the case of blue-detuning. This was demonstrated in
Balykin et al. (1988) by selectively reflecting the two hyperfine ground
states (3S1/2, F=2 and F=1) of thermal sodium beams. This develop-
ment triggered the idea to combine two evanescent fields with different
atomic detunings to create an atomic trap Ovchinnikov et al. (1991).

The main idea here is to produce a short-range repulsive force and a
long-range attractive force, similar to the repulsive and attractive

forces acting between two atoms in a molecule.

— Yuri B. Ovchinnikov
(Balykin et al.,

1988) (also give
expression for

dipole force with
log, well.. (Cook

and Hill, 1982)
also does)

The russian group has been very prolific in the pionneer development
of the manipulation of atom with light. The previous proposal yet sug-
gested in conjonction with the use of prisms highlight the charateristic
of such trap which helps to bring atoms very close to a dielectric surface
in a tiny trap volume (V ∼ 10−10 cm3) with trap lifetime bigger than a
second. Tiny trap volumes4 help to reach the Lamb-Dicke regime nec-
essary for resolved sideband cooling for instance. Instead of using the
evanescent modes of a flat planar dielectric surface, the group of Jeff
Kimble suggested to build a two-color evanescent light dipole trap for
neutral atoms based on a pair of whispering gallery modes breathing at
the surface of quartz microspheres Mabuchi and Kimble (1994). Atoms
can then be confined in stable orbits in such toroidal potential and
strongly coupled to the microsphere modes.
Barnett et al. (2000) proposed to trap atoms above a rectangular

optical waveguide (0.8 µm × 0.2 µm) which provides a trap depth of

4 which increase the trap vibrational energy spacing compared to a single photon
recoil energy.
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200 µK for Cesium atoms based on two evanescent fields with different
polarizations in the single fundamental mode of the waveguide. Atoms
could then be trapped in a non-diffracting linear channel or pipeline at
a distance of λ/2 above the dielectric slab surface.
We note that in this proposal the important trap properties are stud-

ied and the trap light induced optical Stark shift on the Zeeman mag-
netic sublevels or fictitious magnetic field is presented.
From all this study of history we learn a vital parameter to consider

when designing a two-color evanescent field.
Barnett’s elegant proposal as a free-standing optical waveguide is

demonstrated not suited for integrated optical waveguide or photonic
circuit. The reason, yet simple, is extremely important in view of the
advantage of nanofibers. Burke et al. (2002) theoretically investigated
the design of neutral atom nanotraps with photonic circuit. One learns
that Barnett’s two-color design is sensitive to scattered light from any
defect of the waveguide structure. Indeed, the net trapping potential
formed by the two color evanescent fields is small while the absolute
force each individual field produces is great from their great light power.
The trap is the result of a very delicate balance and any perturbutations
of theses large powers will result in a great effect on the trap. A single-
color trap would be of great advantage in that respect such as the dark-
spot blue-detuned trap implemented in hollow core fibers for instance.
All this development leads us to identify a figure of merit for two-

color evanescent traps, the normalized decay length difference Λ, and
qualitative behaviours with the following simple treatment. Lets con-
sider that the evanescent mode function can be well estimated by an
exponential, as is the case for the planar prism in Ovchinnikov et al.
(1991). The one dimensional net trapping potential from the superposi-
tion of a blue-detuned light field and a red-detuned one, with respective
decay lengths b and r writes

U(x) = Be−x/b −Re−x/r,

where B (resp. R) is proportional to the square of the electric field
intensity of the blue-detuned (resp. red-detuned) field at the dielectric
surface. One easily finds that the single extremum of the total potential
is given by

xm = − ln
(
bR

rB

)
br

r− b
= − ln

(
bR

rB

)
r

Λ
,

where Λ = (r− b)/b is the normalized difference decay length.
A minimum trap potential outside the dielectric exists for r > b (as is

the case for the nanofiber fundamental mode where higher wavelength
penetrates deeper in the cladding) provided that the light intensity of
the blue field at the surface is higher than that of the red, B > R.
For a fixed optimization of both field intensities, the trap minimum
approaches the waveguide surface the higher Λ is. After some math-
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ematical gymnastics, one can show that in addition the depth of the
trap

U(xm) = −Be−xm/bΛ = −ΛB
(
b

r
ξ

)r/(bΛ)

,

scales linearly with Λ for small values, where ξ = R/B is the ratio of
the field intensities at the waveguide surface. By increasing Λ, the po-
tential gets deeper which also means that one can reduce the total light
power (red+blue) invested. This in turn will increase the trap coher-
ence time by reducing the scattering rate (for fixed atomic detunings).
It will also make the trap depth more robust with respect to power fluc-
tuations in each color. Therefore, the strategy in designing a two-color. . . see goodness

factor in (Barnett
et al., 2000)

trap would be to get the highest possible Λ within the atomic line and
dielectric geometry constrains.
This is where one of the advantage of thin optical fiber comes greatly

at the foreground compared to other systems. The decay length con-
stant of the evanescent guided modes of a nanofiber can be character-
isted as shown in previous chapters by the reciprocal of the transverse
radial wave-vector component q = k0

√
β(λ)2/k2

0 − n2
2 with k0 = 2π/λ.

When the diameter of the core is small enough, 1/q becomes a rapidly
varying function of the light wavelength such that Λ augments within
the range of the wavelengths that are allowed below the cut-off of the
fundamental mode. We have for instance: Λblue = 1/q = 0.20 µm for
λ = 780nm and Λred = 0.44 µm for λ = 1057nm for a nanofiber radius
of 250nm (n1 = 1.452, n2 = 1). This gives for the normalized decay
length Λ = 1.2 to be compared for instance with Λ = 0.47 for the
design of a one-dimensional trap above a rectangular dielectric waveg-
uide Barnett et al. (2000). The previous values were given assuming a
circularly symmetry mode of the nanofiber (with rotating polarization)
whereas Barnett’s was already optimized by considering two orthogo-
nal polarizations in the single fundamental mode which differs in decay
length (TM modes being closer to cut-off than TE modes). Clearly, due
to the strong refractive index step at the fiber nanotapered, transverse
linearly polarized mode breaks the symmetry which leads to a great
anisotropy of the transverse intensity profile. See for instance figure
15.4.

One can then feel already that for a given total two-color light power
and fixed trap wavelengths, the best strategy is to use two orthogonally
quasi-linearly polarized mode in the fundamental mode to obtain the
biggest relative difference in decay lengths, that is the biggest Λ. As
seen above, a stable trap will happen along a direction where Λred >

Λblue as along as the intensity of the blue field at the fiber surface is
the highest.
Based on the previous discussion it seems natural that further im-

provement of nanofiber traps will be found in the increase of Λ through
the use of higher guided mode orders. In fact, by superimposing higher
modes with different polarizations one could then create a deep and
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Figure 15.4: Transverse intensity profile of the fundamental mode with trans-
verse quasi-linear polarization for λ = 852nm.

more robust single color blue-detuned trap, Sagué et al. (2008), in the
spirit as the hollow core fiber traps for instance.
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I will now briefly describe the two trap configurations we have imple-
mented experimentally.

15.6 caterpillar trap

The first two-color evanescent trap we have implemented consists in
two running wave and co-propagating beams with orthogonal trans-
verse linear polarization. From the above discussion and the quite el-
liptical spatial distribution of the intensity (see 15.4), the trap minima
will form two lines diametrically opposed, all along and above the fiber
surface. However, I will not reproduce here the theoretical model for
that case as this one as a serious limitation. If you remember, we saw in
chapter 7, that a transverse quasi-linearly polarized mode has a signif-
icant ellipticity in the longitudinal plane containing the fiber axis and
the transverse polarization. As a result here for orthogonal transverse
trap light polarizations, atoms will experience unwanted vectorial Stark
shifts.

Figure 15.5: 20 degrees imperfection in the polarization orientation of the blue
trap light with respect to the orientation of the red trap. Same
parameters as in figure 15.6.

Instead, we have implemented a slightly different trap configuration
where now the red-detuned color is made to propagate in both fiber
directions in a such way that it forms a standing wave. In addition, the
fact that the longitudinal wave components are in quadrature to the
transverse wave components means that whenever the transverse coun-
terpropagating waves interfere constructively, the longitudinal ones in-
terfere destructively. In other words, at the anti-nodes of the standing
wave, there is no longitudinal field and hence elliptical polarization.

The details of the trap configuration is shown in figure 15.6, where
we have used our daily experimental trap power parameters. In short,
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the trap forms two one-dimensional arrays of trapping minima, that is,
two linear optical lattices.
The control of the polarization of the light field at the nanotaper

is therefore important to create such traps. For instance, we show in
figure 15.5 how the transverse potential is affected if the polarization
of the blue trap is tilted by 20 degrees. In addition, this will affect the
longitudinal ellipticity of the polarization at the trap minima.
It might appear challenging to control the polarization as the nan-

otaper was shaped in a nonpolarization maintaining fiber. There is a
need to know and control the polarization of at least three different
wavelengths, two for the trap (780 nm, 1057 nm) and at least one for
probing on the D2 line of Cesium at 852 nm. This is primordial. Unfor-
tunately, I do not have time to go into these details if I want to focus
on the most important experimental results for this report. Our mea-
surement and polarization control protocol is similar to Vetsch et al.
(2012). In addition, I will still attempt to save a personal review of
more advanced issues concerned with optical light shifts, magic wave-
lengths and the expected collisional blockage loading regime for these
microscopic nanofiber traps in Appendix C.
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Figure 15.6: Calculated optical potential for Cesium atoms with a single run-
ning wave blue-detuned λblue = 780nm light field with transverse
linear x polarization, orthogonal to a red-detuned λred = 1057 nm
standing wave light field with transverse linear y polarization.
The nanofiber radius is a = 250 nm and the total trap powers
are Pred = 2× 1.1mW, Pblue = 12mW.
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DUAL -HETERODYNE DETECTION OF
NANOFIBER TRAPPED ATOMS

It is through science that we prove, but through intuition
that we discover.

— Henri Poincaré

introduction

In this chapter, we present experimental results on cold atoms sucess-
fully trapped in the evanescent field of a nanofiber. The key ingredient
in this achievement was the implementation of the blue Sisyphus cool-
ing (BSC) or gray molasses technique.
After some initial observations on atoms trapped in a running wave

trap configuration, we load cold atoms in an optical lattice created in
the evanescent field. More precisely, we create two one-dimensional opti-
cal lattices within the fundamental mode of the fiber. Finally, we intro-
duce a new and somewhat natural progression of the detection method
compared to earlier chapters. We report the first real-time detection of
atoms in a nanofiber trap with a precision measurement limited by the
intrinsic quantum noise of the probe light.
Then, we extract experimental information that will be relevant in

view of atom number measurement, quantum state tomography and
spin-squeezing.

16.1 towards trapping atoms

Our first attempts at trapping atoms in the evanescent field of the
nanofiber were focused on using one the simplest trapping configura-
tion, a single running wave red-detuned light field (1057nm) with trans-
verse quasi-linear polarization together with a single running wave blue-
detuned light field (780 nm) with orthogonal transverse quasi-linear po-
larization.

215
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16.1.1 Balancing light shitfs

With the experimental observation of the effects of such fields on MOT
atoms as reported in chapter 14 with the help of the superheterodyne
experimental technique, the strategy towards confining atoms near the
fiber surface using these dipole forces was first to observe whether the
reduction in optical depth and broadening effect due to the red-detuned
field alone (attractive force) for instance could be compensated by an
approriate amount of power of blue-detuned light (repulsive force). The
next step would be to increase the delay between the atomic signal
measurement and the switching of the MOT forces to see whether cold
atoms remain in the evanescent field without MOT confinement.
As shown in figure 16.1, the first step was indeed possible and this

seemed a promising starting point to trap atoms.
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(a) 1057nm ∼ 4.4mW
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(b) 780nm ∼ 7.5mW
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(c) 1057nm ∼ 4.4mW and 780nm ∼ 7.5mW
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(d) 1057nm ∼ 4.4mW and 780nm ∼ 4.1mW

Figure 16.1: Recovery of optical depth and reduction of broadening through
balancing of attractive and repulsive light shifts.

However, I started to notice little dimples in the blue side of the
phase dispersion signal as in figure 16.1 (c). We discuss this in the next
section.
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16.1.2 Unforeseen effect

A finer scan of the atomic response with shorter probe frequency steps
in the blue side of the atomic resonance revealed a somewhat peculiar
dispersive step. This is shown in figure 16.2. Note that I would not have
been curious to zoom in that frequency region with the knowledge of an
atomic transmission signal alone where there was no noticeable effect.
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Figure 16.2: Atomic dispersion without absorption ? 1057 nm ∼ 4.0mW and
780 nm ∼ 8.2mW, MOT off measurement delay 4ms

This relatively sharp feature in the atomic dispersion happens at the
interesting blue detuning of ' 12γ which is equivalent to the frequency
shift of 62.5MHz between the probe field frequency (+1 AOM diffrac-
tion order) sent into the nanofiber and the optical local oscillator used
for the heterodyne detection. By using the −1 AOM diffraction order to
probe the atoms, the atomic feature is now observed on the red side of
the atomic resonance at a detuning of about ' −12γ from the atomic
resonance. After a thorough investigation of the probe light spectrum
and any AOM leakages that I shall touch upon later, the origin of the
observed effect was to be found elsewhere. This led me to find one
of the most cumbersome paradoxal yet limiting effect not written in
textbooks. Basically, enough photons from the optical LO impinging on
the photodiode of the detector used for heterodyne detection can be
scattered back into the probe mode and back into the nanofiber mode
at the atoms location. Even by tilting the photodiode, adding optical
isolators on the probe path and using the high quality optical elements
is not necessarely enough. The idea of the optical LO is to be sufficiently
strong to amplify the very weak probe field. Optical LO powers are in
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general in the order of a milliwatt. Cesim atoms are already saturated
by a few picowatt near the fiber surface which requires a lot of efforts
to have a high rejection ratio of backscattered light into the probe
mode. Of course, the probability to absorb such photons decreases as
the detuning square 1/∆2. Only when the LO photons approaches the
atomic resonance as in figure 16.2, the upshifted probe interrogating
the atoms at ∆ ' +12γ experiences atoms perturbated by the now
resonant LO photons (red-shifted to the probe by exactly 12γ). This
effect may actually be interesting to exploit as the field probe expe-
riences a controllable and significant dispersion (delay) without being
absorbed. Using a SPCM to measure the amount of LO photons scat-
tered back into the nanofiber mode, we managed to reduce it to an
average photon flux of 10 kHz for about 700 µW of optical LO power at
the heterodyne photodetector.
Although we found in figure 16.1 settings for which a good (high

optical depth, little broadening) atomic signal seems to be recovered for
a given trap power balancing, the observed resonant optical depth as a
function of the time delay between the measurement and the end of the
MOT phase decreases as rapidly as the MOT expansion signal observed
until now. This suggested that atoms are probably to hot compared
to the prepared trap depths. We could not simply increase as much
as one wants this trap depth by increasing the trap light powers. We
indeed mentioned elsewhere in this thesis the observation of the thermal
expansion of the nanofiber and a beginning of non-linear behaviour at
about a total power of 15mW above which we believed the fiber would
break. This always forced us to be very careful and an extra heterodyne
interferometric detection of the fiber length was designed in addition
using the red trap light which would turn all the lasers off in case the
nanofiber length will reach a limit of a few hundreds of micrometer.
Based on the hypothesis that the atoms were too hot and that the

operation of a MOT is not necessarely compatible with the simultaneous
presence of microscopic dipole traps, we modified the MOT setup and
built extra control to implement BSC.

16.1.3 Blue Sisysphus cooling

Having done my Bachelor thesis with Denis Boiron and Chris West-
brook (Alain Aspect’s Helium BEC group in Paris), I was familiar with
the idea of blue Sisysphus cooling also known as gray molasses, Boiron
et al. (1996, 1998), which allows to reduce the kinetic energy of atoms
below the Doppler temperature. BSC is a phenomenon rich in physics
that I will not cover but only state what we did experimentally. The ini-
tial standard bright MOT setup was adjusted to basically invert the role
of the cooler and the repumper laser. For a duration of 20ms, we create
a linear ramp that reduces the frequency of the cooler light by about
62MHz, red-detuning it away from |4〉 → |5′〉, and now blue-detuned
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to |4〉 → |4′〉. The frequency of the repumper is also ramped down by
about 12 linewidths in 15ms, starting at the same time as the previous
ramp, while its power is also linearly attenuated to zero, contrary to the
cooler. The gradient magnetic field is also ramped down to zero during
the repumper transient. Note that during this operation, the two-color
evanescent dipole trap light is on and their powers adjusted as above.
BSC results in sub-Doppler cooled atoms which have been transfered to
a dark state for the cooler, namely the hyperfine ground state |F ′ = 3〉.
At the end of the sub-Doppler cooling technique, any remaining MOT
light is turned off and we let the atoms evolving in the dark. After
some waiting time, weak quasi-resonant probe light is sent through the
nanofiber to perform the continuous heterodyne detection of probe ab-
sorption while the repumper light is turned on to observe any potential
dark state atoms present in the evanescent field. We report in figure
16.3 the first data acquired.

0 1 2 3 4 5 6 7 8
Time after trigger (ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

h
e
te

ro
d
y
n
e
 b

e
a
tn

o
te

 a
m

p
lit

u
d
e
 (

m
V

)

1+2 ms
10+2 ms
20+2 ms

(a) heterodyne beatnote

0 10 20 30 40 50
Time delay after end of sub-Doppler cooling (ms)

0

1

2

3

4

5

6
m

a
x
 O

D

(b) frequency shift

Figure 16.3: (a) Continuous heterodyne beatnote (10 kHz bandwidth). The
elapsed time between the end of the sub-Doppler cooling where
all MOT light and magnetic gradients are off and t = 0ms is
indicated in the legend, after t = 1ms the probe is turned on,
after t = 2ms repumping light is turned on (b) decay of the quasi-
resonant optical depth versus repumping waiting time. 1057 nm
∼ 4.0mW and 780 nm ∼ 8.0mW.

The first observation of nearly 5 times higher optical depths than
observed without the sub-Doppler cooling together with a 1/e (OOE)
decay time of about 16.5ms (figure 16.3 (b)) gives strong support in
favor of the success of the transfert of cold Cesium atoms in the evanes-
cent dipole trap. We measured with the superheterodyne technique the
absorption and dispersion curves across 80 linewidths that I will not
report to lighten this section. However, the position of the atomic res-
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onance is observed slighty blue-shifted compared to the resonance in
absence of sub-Doppler cooling by ∼ 2MHz (or ∼ 100 µK). As shown
in figure 16.3 (a), the probe (field) transmission is seen with two dif-
ferent dynamics when probing the atoms shortly after the end of the
sub-Doppler. One observes a slowler decaying tail but also an attenua-
tion of the probe transient when turning the probe AOM on at t = 1ms
where the trapped atoms have not been repumped into the probe tran-
sition (t = 2ms repumper on). We attribute this signal to residual
atoms from the initial MOT reservoir which have not been transferred
into the dipole trap. It takes a few milliseconds for the residual MOT
cloud background to expand and fall due to gravity. The relatively short
lifetime of the absorption dip indicates a relatively strong effect (heat-
ing) of the probing light (here ∼ 30 pW) on the atoms. This is why I
would like to highlight that this first data acquired do not represent an
optimum configuration of all trap parameters. We will see later in this
chapter how much this signal, constituting a good starting point, has
been improved.

16.2 running wave trap

We explored many parameters (e. g. influence of probe polarization etc)
to improve the optical depth and to have an experimental understand-
ing on the sensitive ones. Here I would like to report the maximum
optical depth observed for 51 different trap power configurations, (see
figure 16.4). For each couple of powers, we had to sweep the probe
frequency across the atomic resonance is order to extract the resonant
optical depth.
Based on all the previous achievement, we did not spend more time

on this running wave trap configuration and directly set the next goal
of trapping atoms in an optical lattice around the nanofiber for the
appeal of trapping single atom per site in the collisional blockade regime
and also in view to reject fictitious magnetic field induced by the red-
detuned trap at the position of the atoms. Before I present our results in
such system, I am going first to describe the method we have developed
to detect in real time the atomic state populations in a minimally-
destructive and homogeneous way (see chapter 1) in order to implement
optical QND measurement in the future.

16.3 dual-heterodyne detection

The detection method we are about to present was designed with hav-
ing in mind the most stringent level of measurement precision, namely
collective spin squeezing prepared by QND probing with light (see first
chapter). Because this requires sufficiently high resonant optical depth
while at the same time both the homogeneous interaction of the probe
light with all the atoms and a low scattering probability per atom,
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Figure 16.4: Evolution of the resonant optical depth as a function of the trap
power configuration.

one needs an approriate probe detuning for the dispersive detection of
the atomic state. Actually, in the limit of large detuning ∆ where the
dispersive signal falls off as 1/∆2, the detuning is constrained with the
probe power for a fixed scattering rate per atom. A constant integrated
spontaneous emission keeps the SNR of the atomic state phase detection
constant (see chapter 1). The relative freedom in detuning should be
kept in mind even though the method I will present was designed with
a fix detuning for simplicity of implementation.
Historically, this fix detuning was choosen as ∆ = 67.5MHz. However,

because the RF signals were generated from a waveform with a DDS
dividing a reference signal at 500MHz, we decided to use ∆ = 62.5MHz
to avoid phase jitter on the signal as the frequency are in a integeter
ratio.
Because the atomic dispersion response for a two-level atom is an-

tisymmetric (anomalous dispersion) across the resonance, two probes
of light detuned symmetrically about the atomic resonance will experi-
ence atomic phase shifts of opposite signs. A measurement which would
be sensitive to the phase difference ∆φ between the two probes, would
yield twice the atomic phase shift signal while at the same time sub-
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tracting out any common-mode classical phase noise that both probes
would experience propagating along the probe path (in the same spa-
tial mode). The last point is very important as the probe path is host
of many sources of noise (mainly acoustic, nanofiber vibrating). In or-
der to observe the quantum projection noise of collective atomic states
around the nanofiber in a non-destructive fashion, we need to be able
to perform dispersive measurement in real-time at the light shot noise
limit. We therefore need to suppress as much as possible classical noise
within a desired measurement bandwidth. We have implemented a de-
tection scheme which realizes a differential measurement of the phases
of two probes based on the heterodyne technique. Let me highlight al-
ready that however the detected differential phase is δϕ = ∆φ/2 such
that one will not measure twice the atomic phase shift with this tech-
nique. However, as shown in chapter 2, the detection method removes
the usual 3 dB penalty in SNR power of heterodyne compared to homo-
dyne. That is the SQL of the method is identical to homodyne with a
single probe with at the same time cancelling common-mode classical
noise. In addition, the choice of the detuning to render the atomic en-
semble transparent also took into account the possible perturbation in-
duced by the presence of the neighboring other excited hyperfine levels
of Cesium. As it is relatively far detuned enough to the other hyper-
fines lines, a nearly symmetric placement of the red and blue detuned
probes (with equal intensities) across the atomic resonance will cancel
the differential AC stark shift induced by the probes on the ground
state, removing another source of measurement back-action.
In the following we give more details on how the technique works

and show a simplified drawing of the experimental detection setup in
figure 16.5.

16.3.1 Detection setup working principles

Starting from a laser light beam source with a frequency tuned to
the resonance of the atomic transition |4〉 → |5′〉, two light beams are
splitted off. One of them will be used as the optical local oscillator
while the other one first propagate through an AOM to create two light
probe beams from the +1 and −1 diffraction orders. By analogy with
carrier-supressed frequency modulation, we will name the + diffraction
order the upper sideband (USB) and the − diffraction order the lower
sideband (LSB). The AOM diffraction operates in the non-linear Raman-
Nath regime, for which the diffraction efficiency is low (∼ 10%). With
a zero input beam incidence angle, we create two symmetrically devi-
ated beams about the zero-order diffraction beam. The three spatially
separated output beams, are collimated and made parallel with a lens
such that the separation distance between the sideband beams matches
the one of a calcite beam combiner.
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Figure 16.5: Simplified probing scheme based on two LO symmetric probe light
fields recombined into a common spatial mode and common po-
larization.

Indeed, we use a birefringent beam combiner to create a beam con-
taining both USB and LSB but free from zero-order light. This probe
beam is spatially filtered by propagating in a fiber and then sent into
the nanofiber.
The AOM is driven by an RF wave at a frequency f = 62.5MHz

(Ω = 2πf) in such a way that the sidebands are symmetrically red and
blue detuned1 to the frequency of the optical local oscillator by ±Ω.
The optical path length difference between the probe path and of the

reference path of the optical LO was made as close as possible to zero
to operate the interferometer at the white light position (over several
gigahertz).
Besides the symmetric placement of the probes about the atomic

resonance, they are also symmetrically placed around the heterodyne
local oscillator. This confers the homodyne sensitivity (first chapter)
but also helps to understand simply the rejection of classical phase
noise. Indeed, the interference between the probe beam containing the
two optical angular frequencies ω± = ωLO ± Ω with the optical LO
(ωLO) will give rise to a total beatnote signal oscillating at Ω given
by the contributing sum of two independent beatnote of each sideband
frequency with the optical LO. Of course, the light field will also con-
tain optical beatnote frequencies around 2ωLO which are too fast for
the detector. However, the interference between the two sidebands at
2Ω, independent of the optical LO will be detected. This signal will be
relatively weak and most importantly it is not enhancemed (amplified)
by the optical LO (and we will filter it out). Similar to the superhetero-

1 we defined the detunings in term of the angular frequencies.
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dyne detection presented in previous chapters, the photocurrent signal
is multiplied electronically by an RF local oscillator which is in phase
with the driving field of the AOM producing the probe sidebands. Using
an I-Q demodulator, we actually extract both in-phase and quadrature
components of the signal with respect to the RF phase which can be
adjusted.
We show in appendix D that after the required filtering of the un-

wanted frequency components at DC and at 2Ω, the in-phase and
quadrature component (with respect to the RF LO phase) of the beat-
note signal carried at Ω are proportional to following expressions.
In-phase component:

S(t)in ∝ ELO {E1 cos(ΦLO −Φ1) + E2 cos(Φ2 −ΦLO)}
S(t)in ∝ ELO

{
Ē cos(Φref) cos(∆Φ̄) + ∆Ē sin(Φref) sin(∆Φ̄)

}
(16.1)

Quadrature component:

S(t)q ∝ ELO {E1 sin(ΦLO −Φ1) + E2 sin(Φ2 −ΦLO)}
S(t)q ∝ ELO

{
Ē cos(Φref) sin(∆Φ̄)− ∆Ē sin(Φref) cos(∆Φ̄)

}
(16.2)

Where we have introduced the electric field amplitude of the sidebands
E1,2 and their DC phase Φ1,2.

Φ̄ =
Φ1 + Φ2

2 , ∆Φ̄ =
Φ2 −Φ1

2 ,

Ē =
E1 + E2

2 , ∆Ē =
E2 −E1

2 ,

Φref = ΦLO − Φ̄.

When the intensities of the sidebands are balanced (equal) the previ-
ous expressions shows that a classical phase fluctuation is transformed
into amplitude modulation (modulation wihch in phase for both de-
tected quadratures). A simple description of the signal will be the
following. When the probe optical path length changes, the interfer-
ence fringe pattern of one sideband with the LO moves left while the
fringe pattern of the interference of the other sideband moves right by
the same amount. As the total signal is the sum of this independent
fringes, a change of optical path length translates into a change of total
fringe amplitude. This also means a change in slope or sensitivity for
differential phase measurement.
Indeed, because of common-mode phase noise rejection → ∆Φ̄ =

∆Φ̄atomic. However, Φ̄ = Φphysical length + Φ̄atomic where Φphysical length
is the probe path phase delay in absence of atoms. When the sidebands
are symmetric around the atomic resonance and if the atomic dispersion
profile is odd to a good approximation, we should nearly have Φ̄atomic ∼
0 in a such way that

Φref ∼= ΦLO −Φphysical length.
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To have the best sensitivity over the atomic phase shifts we want to
extract the term proportional to sin(∆Φ̄). As we want the same cou-
pling with the atoms for the two sidebands, we need ∆Ē ∼ 0. Thus,
measuring S(t)q when Φref = 0 [2π] would be adequate.
In simple terms, the technique is bad for measuring classical phase

shift but good for anomalous dispersion.

16.3.2 Carrier suppression

To look at the frequency spectrum contained in the probe fiber sent
to the nanofiber, we beat the guided light with an external laser refer-
ence (here the cooler). We show the beatnote spectrum in figure 16.6
recorded with a spetrum analyzer. We have modified the frequency axis
to refer it to the external reference laser frequency (cooler) involved in
the beatnote.
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Figure 16.6: Frequency content of the total probe light field sent to the
nanofiber trapped atoms. Resolution bandwidth 10 kHz (RMS).
The origin here corresponds to the frequency of the external ref-
erence laser frequency involved in the interference. (See main text
for legend)

When the probe light is blocked, the red trace gives a calibration
or reference for the spectral content of the cooler. It reveals the pres-
ence of an 80MHz sideband (red peak on the left) due to the way we
sampled this light source from an AOM and this is not releveant here.
When the probe light is unblocked but the probe AOM creating the
sidebands is off (blue trace) we observe zero-order leakage. When the
AOM is activated (green trace) we clearly observe the two symmetric
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sidebands and we conclude that the carrier leakage is more than 50dB
less than the sideband power. In addition, part of this leakage light is
converted in sideband energy when the AOM is activated. Therefore,
any carrier photon are strongly suppressed. Although a single resonant
leakage photon has (1+ 4∆2/Γ2) ' 577 more chance to scatter an atom
than a sideband photon, there will be less than 10−5 carrier photons
compared to sideband photons. Therefore the sideband photons will be
the dominant source of scattering and heating effects in a given con-
tinuous measurement time. Here, I wanted to build the quickiest and
simplest (prototype) setup, which implies that the optical LO frequency
is resonant to the atomic transition. However, it is possible to use two
different AOMs to bypass this design.

16.3.3 Dither lock

As mentioned above, classical phase noise drift between the probe path
and the reference LO path is converted into amplitude modulation of
the differential phase measurement. This means that classical phase
drift is equilivalent to a change in sensitivity of the measured phase
shift. To counteract this, I built a simple servo loop (dither lock) with
the help of JA a to feeback the phase of the LO with a piezo mirror to
alway maximize the absolute value of Sin. Trust me, it hurts me not to
be able to take more time in this important details, they are just too
many of them in this single PhD time.

16.4 optical lattice trap

As mentioned earlier, as soon as the sub-Doppler cooling method worked
and we managed to confine atoms near the fiber surface with the
help of basic dipole trap forces, we tried to realize an optical lattice
trap by using instead two counterpropagating red-detuned light field.
By that time we gained more knowledge about the system and im-
proved many noise sources. In the next chapter, we shall summarize
all these points and gives a more quantitative analysis of the system
when presenting the results connected to Béguin et al. (2014). Here
I would like to present more naturally how all our ideas came about.
Let me start by illustrating concretely the idea of the dual-heterodyne
method by first showing the atomic response from atoms trapped in
two one-dimensional optical lattices around the nanofiber. Using the
superheterodyne technique and probing the atoms with only one of the
two sidebands give the data shown in figure 16.7.
Each curve compiles only 10 averages. Aside from fitting very well

to the two-level atom model, the recorded data reveal clearly the sign
inversion of the dispersion for the two sidebands. With respect to the LO
reference phase, for a given atomic detuning, the phase of one sideband
is retarded while the other is advanced.
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Figure 16.7: Atomic dispersion and absorption from lattice trapped atoms,
detected with superheterodyning (a) Using the single LSB (b)
Using the single USB. Each point is a 10 trap loading realizations
average.

Now, It would like to show what happens when you send both side-
bands together. After balancing the sidebands, activating the interfer-
ometer dither lock and ajusting the phase of the RF LO such that the
demolulated quadrature component is zero in absence of atoms, we
observed the first raw signals reported in figure 16.8. The step in the
quadrature signal is equivalent to about 150mrad close to what is seen
in figure 16.7 for a single sideband.
I would like now to show some initial albeit imperfect data which

demonstrates our first attempts at the real-time detection of atomic
phase shift. In figure 16.9, we report the detected atomic phase shift
taken 4ms after the end of the trap loading. We show the measurement
for 5 different total probe powers. Figure 16.9 (a) shows real-time or
single shot measurement where a post-processing running average of
20 µs was performed for clarity of the data. This time is also short
compared to the observed quasi-exponential dynamics of the atomic
signal. The continuous phase is extracted from tan−1 S(t)in/S(t)q.
One first clearly notices that the noise on the recorded signals de-

pends on the probe power. Using the first 2ms signal without pumped
atoms, we extract the Allan deviation shown in figure 16.9 (d). Briefly,
from a single trace, we average the first data point over a time τ ≤ 1ms
giving us a mean phase ϕ1. We do the same on the successive data
points giving us a mean phase ϕ2 and then compute the difference
ϕ1 − ϕ2. We then calculate the standard deviation of the difference
over many traces. For uncorrelated photon shot noise limited phase
measurement during τ , this Allan deviation should scale as the

√
τ .
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Figure 16.8: Raw demodulated quadratures, S(t)in and S(t)q (average over
100 traces). At t = 2ms, the lattice trapped atoms are pumped
into the probing transition.

In most cases, the detected phase noise scales as expected from the
standard quantum noise limit due to the photon shot noise of coherent
state. The dashed curves are not fits but the expected phase noise lev-
els taking into account all the quantum inefficiencies for the presented
measurement.
The phase noise starts to reveal a limit and a different scaling once

the phase noise due to light shot noise become smaller than the sources
of classical noise. In particular, we always observed a limit once the time
scale or measurement averaging time was comparable to the dominant
nanofiber vibration frequency of 280Hz. The discrepancy between the
expected phase noise from the expected probe power for the lowest
power is caused by systematic errors in the creation of the very weak
powers using stacks of ND filters which tend to affect the coupling
efficiency of the probe beam into the nanofiber.
This systematic error is not a limitation for the future measurement

and the probe powers to be used will be higher.
The maximum observed phase shifts are quite remarkable for one

who observed the same order of magnitude with Nat ' 106 in the first
setup with a free space dipole trap ensemble. Curiously, one may notice
that the maximum observed phase shift depends on the choice of probe
power in figure 16.9. This feature would indicate a saturation of the
atomic transition for instance. However, the probe powers used were
far below the expected saturation ∼ 100nW (see next chapter). Here,
the probe sidebands are detuned from the resonance by 12γ and the
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(a) 20 µs moving average, single trace
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(b) 1 µs moving average, 100 traces average
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(c) 100 µs moving average, 100 traces average
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Figure 16.9: Continuous dual-heterodyne measurement of the atomic phase
shift on the |4〉 → |5′〉 transition, for various probe powers. The
atoms are initially in the dark state |3〉 and are CW repumped
onto |4〉 at t = 2ms. (red) 10 pW, (purple) 47 pW, (green) 78 pW,
(cyan) 1.1nW, (blue) 3.6 nW.

explanation for the observed effect is to be found in the simple pre-
liminary design of the interferometer lock. The dither lock, which was
implemented to stabilize the optical path length difference between the
probe and the optical LO, used the probing beam itself. It required the
probe light to be active all the time in the nanofiber and in particular
during the sub-Doppler cooling transfert of cold atoms into the lattice
trap. This readily affects the number of atoms which can be loaded
in the trap. By adding the option to freeze the slow servo loop of the
stabilization feedback, we could then turn the probe off during the trap
loading phase which only last 20ms, but also we could stop the lock
while measuring on the atoms. In figure 16.10 and as well the following
figures, we show phase shift measurement where this experimental is-
sue was fixed. One observes quasi identical maximum phase shift from
a few picowatt to a few nanowatt total probe power. Any slight differ-
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ence most likely arises from drift of the total number of atoms loaded
into the trap over the course of the many experiment realizations.
Contrary to 16.9 (a), which shows remarkable single-shot measure-

ment, 16.9 (b) shows an important aspect which is the reproducibility
of the experiments. It compiles 100 different lattice trap loading with
the same trap light parameters. The main experimental variable which
would affect significantly the accuracy of the measurement or drift of
the observed phase shift is the change in the number of atoms caused
by a variation of the MOT resevoir density.
So far, the measurement we have presented (fig 16.9 but also 16.10

(a)) were concerned with the continuous probing of the |4〉 → |5′〉 tran-
sition while repumping light is turned on. In figure 16.10 (b) we report
measurement where only a pulse of repumping light was shone on the
atoms at t = 2ms for a duration of 500 µs. During this time, the probe
light was also turned off. The data shown are only an average over 2
trap loadings and post-processed with a running average of 100 µs (or
10 kHz measurement bandwidth). Cleary, compared to the result in fig-
ure 16.10 (a), the atomic signal is now lost faster. This is particularly
evident for the highest probe powers. It indicates that the dynamics of
the atomic signal in absence of repumping light is dominated by probe
induced optical pumping and heating for the relatively high powers.
However, for the very weak powers, the decay is quite similar to the
one with repumping light which would evidence in contrast that the
dynamics of the atomic signal is not limited by those probe induced
effects.
We will continue to discuss these important observations in more

details in connection with the data reported in the next section.

16.4.1 Open transition

By changing the absolute frequency of the probe laser source, which
is identical to the optical LO frequency, it is possible to perform the
differential phase detection of the atomic ground state population |4〉
by probing around another excited hyperfine level. Here, we report
such measurement for the |4〉 → |4′〉 transition (figure 16.11). The
phase shift imprinted on the probe depends on the oscillator strength
of the atomic transition. The cycling transition |4〉 → |5′〉 possesses the
strongest of the D2 line. One may then obtain weaker atomic responses
for another choice but also open more loss channels of atomic signal
due to permitted optical pumping channels.
The transition |3〉 ↔ |4′〉 is indeed allowed (dipole electric) and atoms

initially in |4〉 which absorbed probe photons and are then excited to
|4′〉, can decay back into |4〉 or |3〉.
In figure 16.11 we have reported three different configurations of

repumping light while probing the atoms continuously with the dual
heterodyne technique. At t = 2ms, which corresponds to 4ms after the
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(a) CW repumping
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(b) No CW repumping

Figure 16.10: Continuous dual-heterodyne measurement of the atomic phase
shift on the |4〉 → |5′〉 transition with (a) and without (b) CW
repumping, for various probe powers. (100 µs moving average
on a single trace). (red) 10 pW, (purple) 47 pW, (cyan) 1.1nW,
(blue) 3.6 nW.
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Figure 16.11: Dual-heterodyne probing on the |4〉 → |4′〉 transition for differ-
ent repumping light configuration on the |3〉 → |4′〉 transition.
(dark blue) CW repumping, (green) pulsed repumping, (cyan)
single pulse of repumping light. (Average over 100 traces and
1 µs running average). Probe power 2.8nW

end of the sub-Doppler cooling trap transfert, the repumper was either
turned on continuously (blue curve), turned on only for a pulse dura-
tion of 500 µs (cyan curve) or pulsed with a repetition period of 1ms
(green curve). The measurement were taken in that order such that the
small reduction in maximum observed phase shift is due to reduction
in the size of the MOT reservoir over time. This data shows that the dy-
namics of the atomic signal for the used total probe power here 2.8 nW
(detuning 12γ) is dominated by hyperfine pumping induced by probing.
This depumping can be counteracted by continuous repumping or by
restoring the dark state atoms at a later time which have not been lost
from the evanescent field dipole trap.
Similar to the data presented above, we report on figure 16.12 and

figure 16.13 the continuous probing on the open transition |4〉 → |4′〉
for continuous and single pulse repumping for the same various probe
powers. The data were taken under the same condition as figures 16.9
and 16.10. The measurements confirm indeed the reduction of the max-
imum phase shift but also reveal an even faster loss of atomic signal.
In figure 16.13, one can notice that, for the highest probe powers, the
atomic signal quickly decays but then only slowy it reaches the initial
phase shift level before optical repumping. We attribute this weak sig-
nal to an effect caused by residual atoms from the initial MOT resevoir
around the nanofiber.
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(a) (100 µs moving average, 100 traces average)
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Figure 16.12: Continuous dual-heterodyne measurement of the atomic phase
shift on the |4〉 → |4′〉 transition, for various probe powers. The
atoms are initially in the dark state |3〉 and are CW repumped
onto |4〉 at t = 2ms. (purple) 47 pW, (cyan) 1.1 nW, (blue)
3.6 nW.

After all these observations, that we wanted to keep as qualitative as
possible, we comment in the next section how they are important for
many tasks to be realized with light-atom interfaces.

16.5 light-atom interface challenges

Atoms strongly coupled to the guided mode of an optical nanofiber are
a very promising plateform for many quantum optics experiments. And
over the past three years, new and more interesting studies have been
reported. However, no detection method was reported which would
allows to observe the evolution of the atomic state in real-time. The
other important point is that the measurement can be performed down
to the fundamental intrinsic quantum noise limit of the probe light. On
the one hand one, this one of the greatest benefit of the homodyne
technique which allow to amplify even the probe vacuum state above
the detector technical noise. On the other hand, this is due to the
rejection of classical noise.
In order to improve the precision measurement of the underlying

interferometric detection of the probe beyond the SQL, one may use
non-classical state of light with lower intrinsic noise such as squeezed
state of light. However, the phase noise will now depend on the phase.
Indeed, one quadrature of the probe field will be squeezed but the other
one will be anti-squeezed. In addition such non-classical states are in
general very fragile with respect to energy loss and tend to decohere
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rapidly into the environment. All of this is in contrast with coherent
states which are robust probes. Coherent states stay coherent and only
suffer from relaxation when coupled to the environment.
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Figure 16.13: Continuous dual-heterodyne measurement of the atomic phase
shift on the |4〉 → |4′〉 transition without CW repumping, for var-
ious probe powers. (10 µs moving average, 100 traces average).
(red) 10 pW, (purple) 47 pW, (cyan) 1.1 nW, (blue) 3.6nW.

It is important to highlight that experimentally, a shot-noise limited
measurement precision is bound to a lower limit (for the phase detec-
tion) given by residual classical noise. This classical noise is in general
independent of the number of probe photons. Of course, it is always
possible to reduce enough the number of probe photons to always make
phase noise due to light shot noise dominate over the classical noise.
Although the observed phase shifts are quite high what is most im-

portant for many experimental challenges is often the signal-to-noise
ratio per measurement bandwidth. At the light of the previously re-
ported phase shift measurement, we would like to discuss in connection
with Béguin et al. (2014), three main characteristic challenging levels
in atomic state detection with light, namely atom number measure-
ment, quantum state tomography of non-classical states and finally
spin squeezing.

16.5.1 Atomic state population detection

If ones’ goal is to detect simply the highest atomic signal or the number
of atoms in the lattice trap in real-time, one can pump all the atoms
into the ground state |4〉 and one can use the dual-color probing scheme
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on the strongest transition |4〉 → |5′〉 to detect a phase shift. The
latter being proportional to the atomic state population, a knowledge or
calibration of the convertion factor (phase per atom) would give access
to the number of atoms. We ignore classical phase noise for the moment
and consider that the measurement is alway light shot noise limited.
Then the uncertainty on the number of atoms is ultimately limited by
the light shot noise. For a given probe power, and if the atomic signal
remains constant, one can keep on improving the measurement SNR by
averaging the atomic signal over longer times which is equivalent to
increasing the number of invested probe photons. However, the atomic
signal only lives for a finite duration experimentally.
First of all, independently of any measurement process, the atomic

signal is prone to loss of atoms which have a limited lifetime in the
trap. This is in general mainly caused by collisions with the background
atom gas in the chamber as well as heating from the only approxima-
tively conservative trap light forces. These effects can be considered
in good approximation as random loss processes and characterized by
a OOE lifetime τbg. Therefore, this means that there exists already a
minimum probe power to achieve a given SNR. Indeed, the loss of SNR
due to loss of atomic signal over time, independently of the number
of probe photons, can be overcome by probing with higher power P
and averaging the atomic signal over a duration short compared to the
characteristic lifetime of the signal. While the mean signal would de-
crease exponentially with averaging time, the phase noise due to light
shot noise would decrease as 1/

√
Pt. The other way, using lower pow-

ers and longer averaging time, will eventually lead2 to a poorer SNR.
τbg represents therefore a minimum atomic measurement bandwidth
limited by the temperature and the quality of the confinement of the
atoms.
On the other side, one will encounter a maximum bound to the probe

power, namely, the saturation power of the atomic transition for which
the atomic response ceases to be independent of the probe power and
suffers a reduction and broadening for example. Obviously, one should
not ignore technical limitations and the photodetector should provide
a light shotnoise limited photocurrent with linearity in response over
the wide range of probe powers.
The dynamics of the atomic signal within this probe power range

is even richer as we have ignored so far the dissipation which always
come along with the dispersive interaction between the atoms and the
probing light. Although the probe sidebands are far detuned from the
addressed atomic transition, there is still a finite probability that the
atoms will absorb probe photons. The polarizability of the atom de-
pends on the atomic state and the excitation of the atoms will lead
to a different phase shift. We will ignore this effect as the radiative

2 there is a difference between an atomic signal decreasing exponentially with time or
with a number of probe photons.
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lifetime of the excited states is relatively short and we consider that
far from the saturation power, the fraction of excited atoms is small.
Atoms which are excited to |5′〉 can only decay back to first order to
the ground |4〉 and therefore we do not loose atomic signal on average
(closed transition). However, if an atom would be excited to |4′〉, it has
the possibility to relaxe into a dark state for the probe and this will
lead to a decrease of the atomic signal. The LSB which is blue detuned
to the |4′〉 level can pump atoms into the hyperfine ground state |3〉. By
using continuous repumping light one can counteract this internal state
loss channel. However this may participate in probe-induced heating of
atoms. Indeed, every time an atom absorbs incoherently a probe or re-
pump photon, the atom experiences a recoil momentum. This increases
its kinetic energy on average and eventually give it enough energy to
escape the evanescent dipole trap, leading to a loss of atomic signal3.
The last two probe-induced mechanisms lead to an optical pumping

rate and a heating rate which are expected to grow linearly with the
input probe photon flux below saturation. For sufficiently high probe
powers, it is possible therefore to overcome the dynamics of the atomic
signal due to background collisions for instance. In this limit, where the
rates are proportional the probe photon flux, the average SNR becomes
characterized by the number of scattering events which happened dur-
ing the averaging time.
The phase shift measurement we have reported above shows that our

detection method is widely tunable in bandwidth. In addition, from
the various probe powers, one can outrun the decoherence and loss not
induced by the measurement itself already with probe powers that are
still hundred times below the atomic saturation power. In this situation,
the strength of the measurement will be given by the number of probe
photons. The measured signal lifetime τmeas for interrogation performed
on the |4〉 → |5′〉 transition with continuous repumping will only be
affected by probe heating and atomic decay in the dark (without probe)
such that

1
τmeas

=
1

τheat(P )
+

1
τbg

(16.3)

where the heating rate 1/τheat is expected proportional to the input
probe photon flux. Clearly, in the limit of small probe powers (τheat
large) the time constant τmeas ' τbg extracted from the small probe
power data in figure 16.10 or in figure 16.9 would give access to the
lifetime of the atoms in the trap. This should be independent of the
probe transition (here either |4〉 → |5′〉 or |4〉 → |4′〉). Another way to
measure this lifetime that will be free from residual probe induced ef-
fects, will be to record the maximum observed phase shift as a function
of the time delay between the end of the sub-Doppler cooling transfert

3 In addition, our two-color evanescent trap is state-sensitive. It is designed to trap
atoms that spend predominantly their time in the ground state.
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of the atoms in the trap and the beginning of the phase shift measure-
ment. We found τbg = 6.8ms for the data presented so far. It is also
possible to measure the decay of the total resonant optical depth d0 as
a function of time in the trap via an absorption measurement. However,
it becomes difficult to distinguish between nearly zero transmissions for
large optical depths.
After a carefull study of the trap light laser sources, we reduced signif-

icantly4 the intensity noise on the trap light which allowed to increase
the lifetime τbg ' 20ms comparable to the values of ∼ 12ms reported
respectively in Goban et al. (2012) without extra pulsed polarization
gradient cooling in the trap.
For relative high probe powers such that τ−1

heat(P ) � τ−1
bg , one can

extract τmeas ' τheat(P ). However, in absence of repumping light, the
atomic signal suffers from an extra loss rate and we have

1
τmeas

=
1

τhf(P )
+

1
τheat(P )

+
1
τbg

(16.4)

where the rate of hyperfine pumping in the dark state |3〉, 1/τhf, is also
expected to grow linearly below saturation with the input probe photon
flux. This rate could be then measured step by step for probe powers
that outrun the decay in the dark, and performed with and without re-
pumping light as we have reported earlier, i. e. τhf = (τ−1

meas − τ−1
heat)

−1.
In the next section, we explain why these parameters among others are
important to evaluate in view of important tasks for quantum infor-
mation processing and quantum-assisted metrology with light atomic
ensemble interfaces.

16.5.2 Quantum state tomography and spin-squeezing

We have seen in the first chapter of this thesis that for one of the most
stringent tasks, namely collective spin-squeezing, not only do we want
to detect an atomic state signal with a high SNR in real-time, we also
need to be able to resolve as well the intrinsic atomic noise on the detect
signal. In the situation where the atoms would be prepared in a collec-
tive coherent spin state, we need to be able to resolve the phase noise
due to atomic projection noise imprinted on the probe light, above the
phase noise due to light shot noise. This is more demanding but any
significant finite κ2 would allow to prepare the collective atomic state
in a squeezed state. However, the last but not least challenging require-
ment is that the measurement should preserve the quantum state of
the atoms while achieving the real-time projection noise precision mea-
surement. The absorption of a probe photon will destroy the quantum
superposition of the two ground states of an atom in the CSS. Therefore,
the average number of scattering events per atom during the measure-
ment has to be smaller than 1.

4 As quiet as a DC source of light over 20MHz, which actually allows one to observe
nanofiber torsion mode frequencies in the shot noise of the trap light.
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However, for state tomography, which is essential to characterize the
preparation of a target state, the measurement can be destructive and
hence less stringent than spin squeezing. The idea there would be to
measure the components (populations) of a given quantum atomic state
onto a complete set of basis atomic states, for instance using the two
clock states. However, for the best reconstruction fidelity, the popula-
tions of the basis states should not be mixed. Here, this means that
when measuring the population in |4〉 via |4〉 → |5′〉, one should not
repump population in the other basis state |3〉 into |4〉 which would
bias the tomography. Therefore, probe-induced hyperfine pumping will
be the limiting measurement back-action mechanism for tomography
(when the heating rate is much slower than hyperfine pump rate).

In addition, for the characterization of non-classical states, for which
a well-known and clear indicator of quantum interference is the recon-
struction of a negative Wigner quasi-probability distribution, a mini-
mum degree of squeezing of −3 dB is required. In the language of this
thesis, we mean κ2 ≥ 1 or also that less than half of the total detected
quantum noise should be due to light shot noise. And we have not
mentioned the often imperfect purity of the prepared state to observe
negativities such that realistically, higher degrees of squeezing will help.
In Béguin et al. (2014), we have shown through the experimental

demonstration of −14dB number squeezing, that all three challenging
levels could be accomplished. In particular, we predicted through a
pessimistic model that −8dB would be available for quantum state
tomography and we extrapolated that our probing method should allow
for the preparation of less than −4dB squeezed collective spin states.
Of course, the last two points need to be realized experimentally and
they have not been done so far in this new nanofiber system.
For a given optical depth per atom, the best achievable spin squeezing

can be inferred from the number of atoms and the probe-induced scat-
tering rate per atom. The latter cannot be extracted directly from τmeas
and the knowledge of both τheat and τbg for probing on the |4〉 → |5′〉
transition as atoms relaxing back to |4〉 after being scattered will not
lead to a decay of the detected atomic signal. Of course, a proper mea-
surement of the decoherence induced by probing will be a measure of
the reduction of the Ramsey fringe contrast once quantum state prepa-
ration will be available. An estimation of the scattering rate leading to
decoherence can however be inferred from measurement performed on
the |4〉 → |4′〉 for which there is a fixed decay branching ratio from the
excited state to either |4〉 or |3〉 and then extrapolating to the scatter-
ing rate when probing on |4〉 → |5′〉 from the knowledge of the relative
line strengths.
Actually, this step gave us the idea to implement a robust and fast

measurement method to count the number of atoms in the lattice trap.
This allowed then to estimate the average single-atom coupling strength
in our light-atom interface. A calibration of the average detected phase



16.5 light-atom interface challenges 239

per atom combined with both the real-time resolution and minimally
destructive dispersive detection of the atoms allowed to prepare very
narrow atom number distribution in the trap. We presents these exper-
imental results in the next chapter.

summary

In this experimental and qualitative chapter, we wanted to show the
steps we took in the development of a simple and working detection
technique of atomic state populations. We also started by creating an
optical lattice around a nanofiber, which was loaded via BSC. This was
an important experimental step. Then, we have reported the first real
time measurements of atomic phase shifts ever observed in a nanofiber
experiment. In addition, we managed to perform this dispersive con-
tinuous measurement at the light shot noise limit, with flexibility in
measurement bandwidth. Then, we have shown the different dynamics
of the atomic state population signal in presence of heating, optical
pumping and background collisions.





17
NARROW ATOM NUMBER DISTR IBUT IONS IN
ONE -D IMENS IONAL LATTICES

It is far better to foresee even without certainty
than not to foresee at all.

— Henri Poincaré

introduction

In this chapter, we demonstrate the generation and detection of sub-
Poissonian atom number distributions in optical lattices created in the
evanescent field of an optical nanofiber. First, we use the versatile het-
erodyne detection to measure the absolute number of atoms in the
nanofiber trap by recording optical pumping transients. Then, we use
a calibrated minimally destructive dispersive detection of the atoms to
prepare very narrow atom number distributions, which are estimated
using the principles of continuous Bayesian filtering theory presented
in the first chapter of this thesis.
The minimally destructive preparation of very narrow atom number

distributions and the knowledge of its statistics in real time is a valuable
asset for strongly correlated systems (Eckert et al. (2008)) and many
advanced multi-atom experiments.

17.1 absolute atom number

We could not resolve spatially (optically) the atoms in their single lat-
tice site around the nanofiber using fluorescence imaging for instance.
Instead, we interrogate the entire ensemble of atoms with light propa-
gating in the fiber and we estimate the absolute number of atoms by
measuring the field transmitted by the atoms.

17.1.1 Saturation method

In Vetsch et al. (2010), Goban et al. (2012) and in most recent exper-
iments concerned with an EIT based memory using a nanofiber, the
absolute number of atoms is estimated from a measurement of the to-
tal power absorbed by the ensemble of atoms. There, one exploits the

241
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non-linear response of the atoms obtained by driving an atomic dipole
transition (|4〉 → |5′〉) in the regime of probe light intensity saturation.
The idea is that on resonance, a fully saturated Cesium atom radiates
a nominal power on the cycling transition |4〉 → |5′〉 of

p =
E0

2τrad
' 3.8 pW.

Here, E0 = h̄ω0 ' 0.233 aJ is the energy of the 852 nm emitted pho-
tons and τrad = 1/(2π · 5.234MHz) ' 30.4ns is the radiative lifetime
(1/2τrad saturated decay rate) of the excited state |5′〉. Below satura-
tion, the average power scattered by an atom is proportional to the
input probe photon flux.
By monitoring the total absorbed probe power after propagation

through the ensemble of atoms, as a function of the input probe power,
one should observe two regimes. The absorbed power will first grow lin-
early with the input probe power until it progressively saturates when
the fraction of atoms which are saturated by the input probe power
becomes significant. Dividing the total absorbed power, corresponding
to all the atoms being saturated, by p, will give an estimate of the total
number of atoms. Although we can and did implement this method, we
developed an alternative and robust technique based on optical pump-
ing transients, which allows to estimate much faster the number of
atoms with a good resolution and accuracy.

17.1.2 Optical pumping transient method

The atom number is determined here from optical pumping or dark
state population trapping. At first sight, the simple idea behind this
method is to measure the number of probe photons required to pump
the trapped atoms in a dark state or to bleach the ensemble of atoms.
The technique was brought to our knowledge by Jörg Helge Müller
(JHM), based on the idea of the photon counting technique reported in
Pino et al. (2011) for the detection of Bragg excitations.
We probe the atoms with a single sideband, which is resonant to

the |4〉 → |4′〉 transition. The atoms, which have been excited to any
Zeeman levels of the state |4′〉, can1 decay back into either one of the
two ground state manifolds, |3〉 or |4〉 (see figure 17.1). The lowest
hyperfine ground state |3〉 of this three-level or Λ-type level system is
relatively far detuned ∼ 9GHz from the probe frequency in such a way
that we can neglect the interaction with the probe light on the allowed
|3〉 → |4′〉 transition.
As a result, the atoms which relaxed into the dark state |3〉 will not

interact any further with the probe light and hence will stop absorbing

1 Note that the possible atomic population trapping into the forbidden transition
|4, 0〉 ↔ |4′, 0〉 (for π linear polarization) can be avoided by a suited magnetic field
orientation.
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Figure 17.1: Three-level atomic scheme with resonant probing for atom num-
ber measurement based on dark state pumping.

probe photons. Starting initially with all the atoms in the state |4〉, the
resonant weak probe light, which would be first completely absorbed
and scattered by the optically dense ensemble of atoms, will have its
transmission increasing again over time as the atomic population in
|4〉 decreases due to optical pumping, until the full transmission of the
probe light is recovered.
This method can be modelled quite simply below optical saturation

of the atomic transition. According to Lambert-Beer’s law, the output
probe photon flux Φout(t) is given by the optical penetration depth of
the atomic ensemble d(t) as a function of the input probe photon flux
Φin(t),

Φout(t) = Φin(t) exp(−d(t)). (17.1)

All the atoms are assumed to populate initially the state |4〉 and we
introduce the optical depth per atom αat such that

d(t) = Nat(t)αat. (17.2)

The single-atom coupling strength αat depends on the oscillator strength
of the interacting atomic transition, here the |4〉 → |4′〉 transition. We
assumed that αat is independent of time and identical for each atom.
αat = σ/Aeff depends on the overlap between the effective atomic cross-
section σ and the effective mode area Aeff of the evanescent probe field
at the position of the atoms. In order to estimate the number of atoms
in the trap from the number of missing probe photons, we need to know
the average number of photon scattering events k required to transfert
an atom from |4〉 to the dark state |3〉.
The evolution of the number of atoms Nat in the ground state |4〉

would then be given by the differential equation

dNat
dt = −1

k
(Φin(t)−Φout(t)) . (17.3)
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The quantity we measure experimentally is the transmission of the
probe field deduced from the acquisition of the two quadratures x2 +

p2 of the probe field via heterodyne detection. By combining all the
previous relations, we find for the evolution of the optical depth

dd(t)
dt = −αat

k
(Φin(t)−Φout(t)) = −

αat
k

Φin(t) [1− exp(−d(t))] .
(17.4)

Using a constant input probe power or photon flux Φin, the solution
of (17.4) is

d(t) = ln [1 + (exp(d(t = 0))− 1) exp (−αatΦint/k)] , (17.5)

which models the experimentally measured transmission T (t) as

T (t) =
Φout(t)

Φin(t)
= exp(−d(t))

T (Nat,αat, t) =
1

1 + [exp (αatNat)− 1] exp (−αatΦint/k)
. (17.6)

The merit of this method is that it allows not to only to estimate
the number of atoms with good accuray and speed in a single optical
pumping transient record but also it allows to independently estimate
the optical depth per atom which enters as an additional free parameter.
Before I show some experimental results, I would like to give remarks
on the statistical nature of the optical pumping process and also how
to find the value of k which is required in (17.6).

17.1.3 Statistical nature of the pumping process

First of all, the average number of photon scattering events k, required
to transfert an atom from |4〉 to the dark state |3〉, is evaluated using the
knowledge of the partial decay rates of the excited state |4′〉 into the two
possible ground states |3〉 and |4〉. These partial rates are respectively2
5/12Γ and 7/12Γ, where the branching ratio 7/5 is independent of the
Zeeman levels. To find these values we did the following.
In the Cesium data reference Steck (2010), only the hyperfine line

strengths from ground to excited states are tabulated in Table 8, based
on the equation (41). What we want are the strengths from excited to
ground states. By inverting the role of the ground and excited state in
equation (41) of Steck (2010) together with the invariance of 6-J Wigner
coefficients from column permutation and invariance of the dipole ma-
trix element, we have

s̃F ′,F = SF ,F ′
(2F + 1)
(2F ′ + 1)

(2J ′ + 1)
(2J + 1) .

2 Γ is the decay rate equal to 2π · 5.234MHz for the D2 line of Cesium
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From S4,4′ = 7/24 we find s̃4′,4 = 2×7/24 = 7/12. From S3,4′ = 15/56
we find s̃4′,3 = 5/12.

In order to find k, we consider first P (n), the survival probability
distribution of an atom in |4〉 after n scattering events. Obviously, after
n = 0 scattering event, the survival probability is P (0) = 1. We denote
q = P (1) = 7/12 the probability to spontaneously decay back into the
original state after one scattering event (n = 1). 1− q = p = 5/12 will
be the probability to decay back into the dark state |3〉. It is easy to
find that the survival probability after n events is given by P (n) = qn.
Therefore, the success probability that it takes n sucessive trial scat-

tering events to pump an atom into the dark state |3〉 is given by3

χ(n) = pP (n− 1), (n ≥ 1). (17.7)

It is more than instructive to recognize that χ is the geometric dis-
tribution law4 with parameter p = 1− q. Its mean and variance are
well-known and given respectively by p/(1− q)2 and q/p2.
χ is normalized here following that (1− q) = p. Indeed,

+∞∑
n=1

χ(n) = p
+∞∑
m=0

P (m) = p lim
n→+∞

1− qn+1

1− q =
p

1− q = 1.

The expectation value for the number of scattering events to pump
the atom, which gives the value of k, is indeed

k = 〈n〉 =
∑+∞
n=1 nχ(n)∑+∞
n=1 χ(n)

= (1− q)
+∞∑
n=1

nP (n− 1), (17.8)

= (1− q) ∂
∂q

+∞∑
n=1

qn = (1− q) ∂
∂q

lim
n→+∞

(
1− qn+1

1− q − 1
)

,

(17.9)

k =
1

1− q = 2.4. (17.10)

Using twice the derivative trick, one will find for the variance of the
pumping process

var(n) =
〈
n2
〉
− 〈n〉2 =

q

(1− q)2 =
q

p2 ' 3.36.

The variance is larger than the mean. Therefore, the statistical pump-
ing process is super-Poissonian. Looking at these statistical moments
leads one to find an interesting result. The Fano factor F ,

F =
var(n)
〈n〉

=
q

1− q =
q

p
=

7
5 = 1.4, (17.11)

3 (n− 1) failed previous attempts followed by the finally expected success
4 which is the discrete model of a radioactive decay or death, P (n) = qn = en ln(q) '

e−pn but only when ln(q) = ln(1− p) ∼ −p for p� 1.
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which we use to qualify the statistical nature of the process, i. e. whether
the process is sub-Poissonian F < 1, Poissonian F = 1 or super-
Poissonian F > 1, is given by the branching ratio of the transitions.
Here for the used atomic levels, the optical pumping process is expected
super-Poissonian.

17.1.4 Fano factor versus 3-level scheme

With the benefit of such statistical hindsight, it is interesting to note
that the transitions |4〉 → |4′〉 and |3〉 → |4′〉 have about the same
strengths (7/24 and 15/56). This means that if one would have used
instead the swapped Λ-level system with initially all the atoms in |3〉
and the dark state |4〉, the optical depth per atom αat would have been
similar but the branching ratio would have been inverted in such a way
that the process would become sub-Poissonian, F = 5/7 = 0.71, for a
quasi-identical optical thick ensemble.
The small F and the small q is, k becomes close to 1 and therefore the

optical pumping transient is faster. It takes less photons to bleach the
ensemble of atoms and therefore less photon shot noise. Of course, the
probability of a scattering event at a given time t is also conditioned by
the probability distribution of probe photon arrivals at t. For coherent
states of light, the number of photons in a fixed time window follows
the Poisson distribution. The distribution of the population of pumped
atoms at t will be contaminated by input photon shot noise. However, a
more deterministic pumping process (smaller F) would help to reduce
the statistical error in repeated optical transient measurement.
In that respect, for the future, I would like to draw the attention on

the D1 (D1) line of Cesium which seems even more promising. Inter-
estingly, the partial decay rates are swapped compared to the D2 line,
s̃4′,4(D1) = s̃4′,3(D2) and s̃4′,3(D1) = s̃4′,4(D2) such that the previ-
ous inversion of the branching ratio happens naturally on the D1 line
without inverting the role of the ground states, i. e. keeping all atoms
initially in |4〉 and pumping into the dark state |3〉. In addition, the
strength of the interacting transition |4〉 → |4′〉 and hence the effective
single-atom coupling αat, would be stronger on the D1 line, here for
Cesium by a factor 10/7. Actually, this observation seems to be valid
for all alkali atoms5. Note that Rubidium 87 seems to achieve a perfect
symmetric scenario (and hence on both D1 and D2 line) with a unit
Fano factor or branching ratio, using the two ground states |1〉 and |2〉
and the hyperfine excited state |2′〉.

17.1.5 Nominal number of lattice trapped atoms

We report in figure 17.2 atom number measurement data when prob-
ing the atoms with a continuous 852 nm input light power of 5.0pW

5 I only checked for Cesium 137 and Rubidium 85.
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resonant to the |4〉 → |4′〉 transition. The data reported is an average
over 178 consecutive lattice trap loading realizations. It is important
to mention that this pumping measurement is performed with a trap
storage time of 10ms after the end of the sub-Doppler cooling trans-
fert to avoid reliably residual effects due to background cold atoms
from the initial MOT reservoir flying in the probe evanescent field. The
measurement of the probe transmission is performed at the light shot
noise limit by recording in real time the evolution of the probe field
quadratures using heterodyne detection.
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Figure 17.2: Atom number measurement based on optical pumping transients.
The inset shows the cumulative integration of the number of
missing scattered photons. Dividing the asymptotic value by k

is equivalent to extracting Nat = 1606 from the transmission
curve fit.

For the presented data, we report a mean6 number of trapped atoms,

Nat = 1606± 4stat ± 161sys, (17.12)

where the statistical error on the mean number of atoms is given for
an average over 178 transients. The systematic error accounts for the
propagation of calibration uncertainty of the overall quantum detection
efficiency of probe photons using the heterodyne technique. This uncer-
tainty which amounts7 to 10% experimental confidence, dominates all

6 Mean over individual transient fits
7 A fractional uncertainty of 10% in the inferred number of scattered photons from the
detected number of photons with a finite quantum detection efficiency (and losses)
qe, leads to same fractional uncertainty in the number of atoms, i. e. Nat = Nph/k
and qeNph = Nph,detect.
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other possible sources of systematic effects which may bias the estima-
tion of the number of atoms. It is important to stress that this sys-
tematic calibration source of error does not vary between atom number
measurement realizations and it is left to the care of the experimentalist
in the preparation of the setup.
It is important to mention that because the method requires the

knowledge of k, any modification of the partial decay rates of the atoms
from a modification of the electromagnetic vacuum near the surface of
the dielectric nanofiber medium should be considered. However, this
kind of Purcell enhancement is expected smaller than a percent at the
position of the atoms. In addition, the branching ratio would not be
affected at first order.
The optical pumping technique in itself is robust against effects which

have limited in the past the accurate determination of the number of
atoms such as laser detuning, polarization, population redistribution
among Zeeman sub-levels and inhomogeneous broadening of the probe
transition by trap light (see for instance Chen et al. (2001)). The num-
ber of spontaneous emission cycles needed to bleach the ensemble of
atoms and used to estimate the atom number, is independent of such ef-
fects which may however affect the atomic cross-section or single-atom
coupling.
We have seen that the optical pumping transient method gives access

independently to the single-atom coupling αat. We discuss this point
in the next section.

17.1.6 Dark state pumping kinetics

Inspired by memories of acid-base titration and pH measurement in
chemistry, it is interesting to look at the information contained in the
equivalent time or inflection point

teq = k
ln [exp (αatNat)− 1]

αatΦin
, (17.13)

for which the probe transmission T = 0.5 (see (17.6)) and where the
first derivative of T achieves its maximum. Reading this time directly
gives access to the initial atom number for sufficiently optically thick
initial ensemble,

teq '
Natk

Φin
, exp (d(t = 0))� 1 (17.14)

which happens when the average number of probe photons which have
entered the ensemble, teqΦin/k, is sufficient to bleach the initial number
of atoms Nat. Note that (17.14) is independent of the single light-atom
coupling αat.
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Figure 17.3: (Black dashed lines) Simulated transmission for a fixed single-
atom coupling αat = 0.3% and various atom number Nat =
(1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600). (Red solid
line) average over the various transmissions, (blue solid line)
transmission from average atom number 〈Nat〉 = 1800.

In constrast, the information contained in the slope of T at teq, which
is also the maximum speed of the transmission transient,

∂T

∂t

∣∣∣∣∣
t=teq

=
αatΦin

4k , (17.15)

is independent of the number of atoms and is directly proportional to
the per-atom optical depth αat.
From these two results, one will be able to understand simply the

effects of averaging over several optical pumping transients which may
be prone to fluctuations in Nat or αat from one lattice trap loading
to the next. Another way than (17.14) to see that the atom number
measurement method is robust against variations in the single light-
atom coupling for initially thick ensembles is to consider that Nat is
obtained simply8 from the asymptotic value of the cumulative number
of expected yet missing probe photons, given by subtracting the area or
integrated transmission transient from the rectangular area obtained
in absence of atoms (see inset of figure 17.2).
We sum up all our observations in the following figures. In figure 17.3,

we simulate the effect of large variation in the number of atoms for fix
single-atom coupling in shot-to-shot transient transmission. In figure
17.4, we show the opposite case, fluctuations in coupling constant for

8 dividing by k the missing probe photons
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constant atom number. One sees that for the best estimation of αat or
reduction of random photon shot noise by using averaging over many
transients, one should not simply fit to the average transient response
but extract an average single-atom coupling constant from individual
fit values.
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Figure 17.4: (Black dashed lines) Simulated transmission for a fixed atom
number Nat = 1600 and fluctuating singe-atom coupling αat =
(0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55)%. (Red solid line) average
over the various transmissions, (blue solid line) transmission from
average single-atom coupling αat = 0.375%. (Green dashed line)
αat = 0.08% the initial ensemble is not optically thick (d ∼ 1.3).

For the data associated to (17.12) reported in figure 17.2, we found

〈αat〉 = 0.32%, (17.16)

which corresponds to the per-atom optical depth while probing on the
|4〉 → |4′〉 transition where we expected atoms to be isotropically dis-
tributed in the Zeeman sub-levels. The linear polarization of the probe
was aligned parallel to the polarization of the red trap.

It is possible to extrapolate the expected optical depth for probing
isotropically the atoms on the |4〉 → |5′〉 transition from the knowledge
of the different coupling strengths between the different Zeeman levels.
One will find an average relative coupling strength of ∼ 2.095 which
should scale up 〈αat〉 on the cycling transition, taking into account the
forbidden transition |4, 0〉 → |4′, 0〉. This value is compatible with the
ratio of the line strengths [(11/18)/(7/24)] reported in Table 8 of Steck
(2010). In addition, the most favorable interaction strength would be
gained in interrogating the atoms using the closed transition |4, 4〉 →
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|5′, 5〉 with σ+ polarized light. From Clebsch-Gordan coefficients, one
expects to gain another factor of ∼ 2.46. Therefore, one would estimate
from (17.16) a per-atom optical depth 〈αat〉 = 1.65% on this strong
closed |4, 4〉 → |5′, 5〉 transition.

17.1.7 Single-atom optical depth

Although it is possible to make extrapolations, it is better to measure
more directly the single-atom optical depth. The atom number mea-
surement cannot be applied to extract directly the maximum or reso-
nant single-atom coupling on the cyclic |4〉 → |5′〉 transition. However,
with the knowledge of the total number of atoms combined with a reso-
nant transmission measurement while probing the transition |4〉 → |5′〉,
which gives access to the total resonant optical depth of the ensemble
d0, one can estimate α0 = d0/Nat for that transition. This has been
the method applied in other nanofiber experiments (combined with the
saturation method to estimate Nat).
The results presented in the previous sections were acquired at the

earliest stages of the experimental progress of the setup. In particular,
the OOE trap storage time was somewhat on the lower side, τ ∼ 6.8ms,
due to excess intensity noise on the homebuilt laser sources to produce
the trap lights. After improving on this, the storage time extented up to
20ms. In figure 17.5, we report examples of transmission measurement
of the total resonant optical depth for various trap storage times. More
precisely, we record directly on a spectrum analyser the heterodyne
beatnote amplitude (in a narrow bandwidth 10 kHz) between an optical
LO and the probe light transmitted through the nanofiber, as seen in
the previous chapter. Therefore, the amplitude of the signal here is
proportional to electric field amplitude or to the square root of the
probe intensity transmission.
Remarkably, one can observe that the ensemble of trapped atoms in

the nanofiber evanescent field is so optically thick that almost no probe
light is seen transmitted through the nanofiber mode for a few millisec-
onds until continuous scattering of probe photons heats the atoms away
from the nanofiber trap. It is then clear that for optically thick ensem-
bles, it is difficult to distinguish or measure precisely optical depths
as this requires to be able to distinguish tiny fraction of transmitted
light. For instance, for d0 = 5, 10, 11 the transmission would already
be as small as T = exp(−d0) ' 6.7× 10−2, 4.5× 10−5, 1.6× 10−5. This
makes it difficult in as much as in order to avoid power broadening and
saturation of the atomic transition which would affect the detected opti-
cal depth, it is primordial to keep the input probe power low, therefore
increasing the relative fraction of intensity light shot noise9 if the mea-
surement is not limited already by technical detection noise. The first

9 which is already a few percent in a bandwidth limited by the atomic heating loss
rate for probe picowatt power
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Figure 17.5: Narrow band (10 kHz) continuous heterodyne beatnote showing
the transmission of the probe electric field after propagation
through the nanofiber trapped atoms. At t = 1ms the atoms
are repumped continuously onto the probe transition. The opti-
cal depth is so large that the probe light is completely absorbed
over several milliseconds until atoms are lost due to heating. The
various curves correspond to different accumulated storage times
τ before the measurement trigger at t = 0 (a) (red) τ = 20ms,
(green) τ = 25ms. (b) (red) τ = 40ms, (green) τ = 50ms, (blue)
τ = 60ms.

obvious strategy to improve the precision would be to average over
many measurement and to trap fewer10 atoms such that d0 is not too
large and one could infer an effective resonant single-atom optical depth.
Another strategy that has been done is to measure the optical depth
as a function of the probe detuning (see figure 17.6) which is expected
to be lorentzian. However, as such, the maximum of a Lorentzian or
resonant optical depth is stricktly linked to its width and the resonant
optical depth cannot be distinguished from potential broadening11 of
the atomic transition.
Instead, we decided to follow another approach allowed by the dis-

persive detection of atoms. From (2.19), which is a consequence of

10 without changing the conditions of trap loading, i. e. collisional blockade regime
11 For a lorentz fit, the maximum is not a free parameter compared to the line width.

Even in absence of broadening, it implies an a priori knowledge of the linewidth Γ
which is actually linked to the atomic transition cross-section.
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Figure 17.6: Optical depth measurement as a function of the probe detuning
to the cyclic transition. The measurement is performed after a
storage time of 20ms with fewer atoms than in figure 17.5 to
distinguish the variations in probe transmission. (b) Lorentzian
fit to the extracted optical depth agrees well with the data and
give a linewidth almost identical (1.01Γ) to the expected atomic
transition width.

Kramers-Kronig’s relations, there is a fundamental link between the
observed accumulated phase shift and the resonant optical depth d0 as

ϕ(d0,β) = −d0
2

(γ/2)∆
∆2 + (γ/2)2 = −d0

2 β
(
1 + β2

)−1
, (17.17)

ϕ(d0,β) ' −d0
2 β = −d0

2
γ

2∆
or d0 ' −ϕ(∆)

4∆
γ

(∆� γ/2).

(17.18)

Therefore, a direct measurement of the imprinted phase shift, which
can be performed at the shot noise limit with a good SNR, combined
with the robust measurement of the number of atoms for the same
experimental conditions, would give a reliable estimation of the effective
resonant single-atom optical depth α0 = d0/Nat.
For the relatively far-detuned dual-heterodyne measurement of the

total accumulated phase shift ϕ(∆), we have ∆/(γ/2) ' 24 or β ' 1/24
such that

(
1 + β2)−1 ' 1 and (17.18) is an excellent approximation12

in such way that α0 ' |ϕ(∆)|4∆/(γNat). To remove conservatively any
doubt about the origin13 of the atomic signals, we perform both an
atom number measurement and a phase shift measurement after a trap

12 which would be limited by the applicability of the 2-level atom approximation,
i. e. correction effects due to the presence of other hyperfine levels

13 as mentioned before, after a storage time of 1ms a residual signal from background
cold atoms in the evanescent field, falling due to gravity and free flying after the
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storage time of t = 40ms. For a millimeter size MOT overlapping the
nanofiber, we measured an average number of atoms Nat = 4.2× 102±
42sys and observed an average accumulated maximum phase shift of
ϕ = −0.085 rad giving an estimation of α0 = 9.8× 10−3 or α0 = 2.4%
on the closed transition.
The expected effective single-atom optical depth is given by the ra-

tio of the atomic cross-section σ to the effective probe mode area Aeff
which depends on the position of the atoms. At the expected nominal
trap minimum position rmin = 200 nm for the used trap powers, the
effective probe mode area14 Aeff(rmin,φ = 0) for 852 nm is ∼ 2.6 µm2,
where φ = 0 means that the transverse quasi-linear polarization of the
probe field is aligned with the standing wave red trap field transverse
polarization. This area is to be compared to the expected resonant
isotropic atomic cross-section (π polarization) for the |4〉 → |5〉 tran-
sition σ = 0.14 µm2 (Steck (2010)) or if extrapolated to the closed
transition to σ = 0.35 µm2 for (σ+ polarization). I would like to save
also that Aeff(rmin,φ = π/2) is ∼ 7.4 µm2 if the probe polarization is
aligned along the blue trap (see figure 17.7).
Although the observed effective single-atom optical depth is lower

than the expected value which assumes perfect trap and probe polar-
izations as well as ground state-cold atoms at the exact trap minima,
α0 = 2.4% versus αth = 13%, it still represents an improvement of
more than 2 orders of magnitude compared to the signal from a single
atom obtained in the free space optical dipole trap experiment (Appel
et al. (2009b)) presented in the first part of this thesis. With this great
improvement, we can already draw some important conclusions about
the ability of our light shot noise limited phase detection scheme to
resolve in real time any intrinsic atomic noise on the signal.

17.2 measurement strength

Before we go on more advanced results, it is important to recap, from
the knowledge of the single-atom optical depth, several important char-
acteristics of our dispersive interface between nanofiber trapped atoms
and light.
We have seen in earlier chapters that the SQL of the dual-heterodyne

technique imposes a minimum shot noise limited phase resolution given
by

δϕ =
1

2
√
qNph

. (17.19)

MOT is turned off, can contribute to a few percent on the signal. However, after
10ms this is completely negligible and we never noticed residual signals.

14 Aeff = Ptotal/I(r,φ)
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Figure 17.7: Theoretical effective mode area Aeff for the nanofiber fundamen-
tal mode with transverse quasi-linear polarization, as a function
of the radial distance to the fiber axis. (Red) Along the polariza-
tion direction. (Blue) Orthogonal to the transverse polarization.

When Nph is the number of photons at the position of the atoms, the
nominal value for the overall quantum efficiency of our experimental
setup is given by

q = ε(1− l)ηV ' 0.4, (17.20)

where ε = 0.89 is the finite quantum efficiency of the photodetector,
l = 0.3 is the transmission loss15 along the probe light propagation from
the atom positions to the detector, η is the ratio16 of optical LO photon
shot noise to total detection noise (electronic plus LO shotnoise) and
V is the quantum efficiency associated to the mode matching between
the probe field and the optical LO, i. e. V = V 2 where V = 0.9 is the
interference fringe visibility.
Now, from the knowledge of the single-atom optical depth αat or

more precisely from the above calibration of the measured phase shift
per atom ϕ1 = 0.204mrad, one will see that it only takes Nph =

(2√qNatϕ1)−2 ∼ 4 photons to detect in a single-shot, routinely trapped
ensembles of Nat = 2000. This happens more precisely when the SNR
ratio of accumulated phase shift signal ϕat = Natϕ1 to shot noise lim-
ited detection noise δϕ becomes greater than 1,

SNR =
ϕat
δϕ

=
Natϕ1
δϕ

=
(
2
√
qNph

)
Natϕ1. (17.21)

15 limited by the insertion loss of an optical isolator
16 which depends on the power of the optical LO
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Assuming artificially that the total accumulated phase shift signal ϕat
does not depend on the number of probe photons, it would take Nph =

(2√qϕ1)−2 ' 1.5× 107 to reach a single-atom resolution.
Of course, as we have seen in the previous chapter, the atomic signal

is not immortal and its lifetime is first naturally limited by the trap
storage time τbg, which combines the effects of trap light heating and
background gas collisions. This makes the atomic signal-to-noise ratio
explicitly dependent on time. Therefore, the best signal-to-noise ratio
depends on the measurement bandwidth or on the averaging time of the
signal. However, when we are fundamentally measuring at the photon
shot noise limit, the noise only depends on the mean number of invested
probe photons during the averaging time τ with Nph = τΦin where Φin
is the input probe photon flux. Therefore, without compromising the
fundamental signal-to-noise, one can outrun the dynamics of atom loss
due to the finite trap lifetime τbg by reducing the measurement time τ
below τbg by increasing the input photon flux or probe power. We have
seen in the previous chapter that this is indeed possible for probe powers
which are still far for the regime of saturation and non-linear atomic
response. With the measured value of the resonant optical depth per
atom α0, one can calculated the expected saturation power at the probe
sideband detuning for unpolarized atoms on the cycling transition as

Psat(∆) =
Γ
2
(1 + 4(∆/Γ)2)

α0
h̄ω0 ' 224 nW, (17.22)

following that

Isat(∆) =
h̄ω0
σ(∆)

Γ
2 , (17.23)

σ(∆) =
σ0

(1 + 4(∆/Γ)2)
,

α =
σ

Aeff
and Aeff =

P

I
,

as long as Γ = τ−1
rad = 2π · 5.23MHz is not modified by Purcell effects. If

the optical depth per atom would be as expected for atoms positioned
exactly 200 nm away from the fiber surface, one would have Psat(∆) '
40nW. (See above the difference in measured and expected α). In any
case, this gives several orders of magnitude in the allowed probe powers
to outrun the background collision loss without reaching saturation of
the atomic transition.
In this regime, the dynamics of the atomic signal becomes now only

limited by probe photon induced effects. Therefore, the best measure-
ment signal-to-noise becomes a trade-off between the gain of atomic
information learned by probe photons and achieved through reduction
of measurement stochastic shot noise, via averaging for instance, com-
bined with the measurement back-action with reduces the atomic signal
during the measurement time. For atomic population measurement, the
limiting back-action mechanism is loss of atoms from heating induced
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by the random scattering of probe photons. Here, optical pumping is
not a fundamental limitation and the loss of atomic signal due to probe
induced dark state pumping can be prevented by a suited repumping
light source. Nevertheless, both limiting effects are characterized by a
loss rate which, below saturation of the atoms, is expected proportional
to the input photon flux. As a result, the strength of the measurement
is completely17 characterized by the average number of probe photon
scattering events per atom and therefore it does not depend explicitly
on time in this regime. Consequently, we developped in the next sec-
tion all these ideas with a consistent notation and simple formalism
only based on numbers of scattering events.

17.3 characteristic numbers of scattering events

In the first chapter of this thesis (2.20), we saw that in the far-detuned
limit (∆� γ/2), which is a good approximation for the dual-heterodyne
dispersive measurement, the stationary number of probe photons scat-
tered into free space by an ensemble of 2-level atoms is given by

Nsc = N in
ph −Nout

ph = (1− e−d(β))N in
ph,

' d0β
2N in

ph = d0

(
γ

2∆

)2
N in

ph.

Remembering that d0 = α0Nat, we introduce the average number of
scattering events per atom nsc as

nsc =
Nsc
Nat

= α0

(
γ

2∆

)2
Nph. (17.24)

For a given measurement with constant input photon flux Φin, the
observation of the exponential decay or loss of the mean atomic phase
shift signal (or mean atom number) with the characteristic OOE time
constant τloss allows to introduce the equivalent average number of
scattering events nloss after which an atom would be lost as

nloss = α0

(
γ

2∆

)2
τlossΦin. (17.25)

To all the various time constants linked to the various loss mechanisms
presented in the previous chapter, one can then associate a correspond-
ing critical number of scattering events in a such way that the general
average number of scattering events to loose an atom from the ground
state |4〉 in absence of repumping, reads

nloss =

(
1
nbg

+
1

nheat
+

1
nhf

)−1

, (17.26)

following the same relation between the decay rates. As mentioned ear-
lier, τbg is independent of the probe light and therefore nbg is directly

17 in the far-detuned or homogeneous probing limit
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proportional to the input photon flux. Thus, the hierarchy between the
different numbers depend on the choice of probe powers. In the remain-
ing, we will assume that the probe power was choosen high enough such
that nbg � max(nheat,nhf).
In constrast, the heating decay rate 1/τloss = 1/τheat is expected

to be proportional to the input photon flux Φin below saturation of
the atomic transition. As a result (see (17.25)), the average number
of scattering events to heat an atom away from the trap is indepen-
dent of the input probe power. It is a constant characteristic of the
external degrees of freedom of the atom in the nanofiber trap. For the
nanofiber lattice trap experiments presented in this thesis, the nomi-
nal depth at the trap minimum is about 200 µK which is equivalent
to ∼ 103 Erecoil where Erecoil = 198 nK is the recoil energy of a Ce-
sium atom for momentum exchange on the D2 line. As the average
increase in kinetic energy of an atom per spontaneous scattering cy-
cle is 2Erecoil (see Wolf et al. (2000), recoil heating is a two-photon
process), we expect nheat ' 500. For the data presented in the last
chapter and acquired before improving on the intensity noise of the
trap light, we had the puzzling observation that nheat was varying with
the probe power P , nheat ' 380 for P = 3.6nW, while nheat ' 190 for
P = 1.1 nW and nheat ' 56 only for P = 0.15nW. This would indicate
that the heating rate grows slower than linear with the probe power
(see (17.25)). After we improved on the trap light sources, a study con-
ducted by Freja Thilde Pedersen, clearly concluded that the observed
heating rate was now proportional to the input probe power for the
tested powers ranging from few picowatts to few nanowatts. Unfortu-
nately, we did not have enough time to perform a calibration of the
single-atom optical depth associated to these measurements. A mea-
sured value significantly lower than nheat = 500 could indicate that
the temperature of the atoms loaded in the nanofiber lattice trap is
relatively high compared to the expected trap depth.
Similarly, the rate of hyperfine pumping of atomic population into

the dark state |3〉, which is rendered possible by the finite detunings of
the probe sidebands to the excited state |4′〉, is expected proportional to
the input photon flux. Hence nhf is also a constant. It can be calculated
from the knowlege of the relative strength of the |4〉 → |4′〉 transition
compared to the |4〉 → |5′〉 transition, the partial decay rate from |4′〉
to the ground state |3〉 and finally with the different sideband detunings
with respect to the |4〉 → |4′〉 transition. More precisely, as the probe
sidebands are symmetrically detuned with respect to the excited state
|5′〉, the average number of scattering events per atom nhf (referred to
the |4〉 → |5′〉 transition) required to pump an atom into the ground
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state |3〉 will be given by the harmonic mean of the relative scattering
event of each probe sideband alone. We have18

nhf = 2rk
(

1 + 4(∆/Γ)2

1 + 4(∆l/Γ)2 +
1 + 4(∆/Γ)2

1 + 4(∆u/Γ)2

)−1

, (17.27)

' 67

where r = 2.1 for isotropically distributed atoms and π-polarized light
probing, k = 2.4 as found earlier, and ∆ is the identical sidebands
detuning with respect to |4〉 → |5′〉 while ∆l (resp. ∆u) is the detuning
of the lower (resp. upper) sideband to the |4〉 → |4′〉 transition. Probing
with the lower (resp. upper) sideband alone would give nhf ' 45 (resp.
nhf ' 124). The experimental observed values deduced from τhf and α0
(see (17.25)) is in good agreement with the theory nhf = 67.

The relation (17.21) is equivalent to the expression (2.22) we already
derived in the first chapter, except that we are now taking into account
the quantum efficiency of the photodetection. It is nothing but the
consequence of the Kramers-Kronig’s relations between absorption and
dispersion written in the far-detuned limit. Combining them at the
single-atom level, i. e. using ((2.20) and (2.21)) or equivalently ((17.18)
and (17.24)), gives probably one of the most important relation

ϕ2
1 =

α0
4
nsc
Nph

, (17.28)

which leads to

SNR =
ϕat
δϕ

= Nat
√
qα0nsc. (17.29)

As the mean atomic state population follows the back-action of the
scattering events as

Nat(t) = N i
at exp(−t/τloss),

Nat(nsc) = N i
at exp(−nsc/nloss),

where N i
at is the initial mean number of atoms, we can predict a simple

effective evolution as

SNR = N i
ate
− nsc
nloss
√
qα0nsc (17.30)

which is maximum for nsc = nloss/2.
It is interesting to translate the meaning of the previous ratio of

mean atomic signal to light shot noise as the ability to resolve any
other intrinsic fluctuation in the signal which are not due to the light
shot noise. Indeed, for a given significant SNR, one is able to resolve
relative fluctuation of 1/SNR, here ((17.30)) in the number of atoms

18 n−1
45 = (2 ∗ 0.5)α45(Γ/2∆)2, n−1

44l = α44(Γ/2∆l)
2, n−1

44u = α44(Γ/2∆u)2, α45/α44 =

r, nhf = k[(0.5n44u/n45 + 0.5n44l/n45)
−1]
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populating a given ground state. In the limit of low loss (high nloss),
we have

Nat
SNR =

1
√
qα0nsc

(
1 + nsc

nloss

)
, (17.31)

which shows the characteristic competition between in the one hand,
the increase in resolution thanks to the decrease in phase light shotnoise
with increasing nsc and on the other hand, the decrease in resolution as
intrinsic fluctuations in the number of atoms cannot be distinguished
better than the random variation in the atom number caused by the
random scattering losses induced by the measurement.
We already encounter these ideas when dealing with the conditional

reduction of noise in the preparation of collective spin-squeezed state
of atoms via QND measurement. We also presented this principle from
the point of view of the continuous Bayesian filtering theory. In the
next section, we apply these ideas and we develop a strategy for the
real-time detection and preparation of very narrow (close to Fock state)
atom number distributions.

17.4 low-loss number squeezing

In constrast to the previous presentation of characteristic parameters
of the light-atom interface, we will now use the language of Bayesian
probability as introduced in the first chapter of this thesis. This allows
us to describe more precisely what is meant by the state of knowledge
about a given physical quantity inferred by experimental measurement.

17.4.1 Continuous measurement

Consider the following concrete experimental measurement which can
be generalized to many other experimental situations. First, we trap
atoms in the nanofiber lattice trap which are initially populating the
lowest internal ground state |3〉. After a storage time of t = 10ms, we
prepare all the atoms into the ground state |4〉 using a suited repumping
light on the |3〉 → |4′〉 transition. The repumping remains active for
the rest of the experiment such that the only loss mechanisms would be
heating and background gas collisions. Simultaneously, we continuously
interrogate dispersively the atomic population of the ground state |4〉
using the two probe sidebands heterodyne technique which address the
strong atomic transition |4〉 → |5′〉. We report such real-time or single
shot dispersive observation of the atoms in figure 17.8.
Associated to this measurement, all the various important parame-

ters are provided. The total probe power at the atoms is P = 154 pW.
A calibration of the overall detection quantum efficiency gives q = 0.4
which is consistent with an Allan deviation measurement calibration
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Figure 17.8: (Purple) Real-time detected atomic phase shift at the light shot
noise limit. (Red) Same raw data processed with a running aver-
age of 20 µs. The measurement is performed after a storage time
of 10ms, the total probe sideband power at the atom position is
154pW. At t = 1ms, the atoms are continously repumped into
|4〉.

showing in addition that the real-time or single-shot measurement is
light shot noise limited for an averaging time longer than a millisecond.
For the same experimental preparation of the setup and initial condi-
tions, a calibration of the phase shift per atom is achieved through an
atom number measurement combined with a dispersive measurement
(dual-sideband technique) after a storage time of t = 40ms, for which
the calibration is free of any potential biasing from residual cold atoms
flying from the initial MOT resevoir. This gives ϕ1 = 0.204mrad.
We now ask the challenging question - how much can we infer about

the atom number distribution in the lattice trap via the calibrated
dispersive measurement performed at the intrinsic stochastic quantum
light noise limit in presence of random atom loss ? In short, how much
information can we extract about the atom number observable from
the continuous measurement with light. In particular, we would like to
track in real time the evolution of the atom number, which is the driven
by both reaction and dissipation induced by the interaction with light,
in a such a way that we could estimate what is the atom number with
high precision after a given measurement time t.
To this goal, remember the ideas introduced in the first chapter about

the continuous Bayesian filtering theory.
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17.4.2 Observation model

We consider the regime of a short averaging time τ during which the
atom number loss is negligible and the average number of probe photons
is high enough such that the measurement noise, or the stochastic pois-
sonian light shot noise for a probe in a coherent state, is well described
by Gaussian white noise. This means that our observation model of
the atom number is achieved through the average of the instantaneous
sampled phase values ϕs(t)

ϕτs =
1
τ

∫ τ

0
ϕs(t) dt = ϕτat + δϕτ , (17.32)

together with the prior calibration of the phase shift per atom ϕ1. The
average atomic contribution to the measured signal given by

ϕτat = ϕ1N
τ
at,

is to be understood as an a priori random short-time average variable
drawn from the initially unknown probability distribution p(N τ

at) to
have a mean atom number N τ

at. This short-time average atom num-
ber N τ

at(t) constitutes our quasi-continuous estimator of the number of
atoms which is closest to the real value of Nat(t) when τ → 0 or when
τ is sufficiently small compared to the characteristic evolution time of
the number of atoms. Here, the probe power was chosen such that the
OOE lifetime of the mean number of atoms is limited by the probe in-
duced heating rate which outruns the loss rate due to background gas
collisions. This time (∼ 4ms, fig 17.8) is long enough for a fine data
acquisition of the signal dynamics. Therefore, a good quasi-continuous
atom number estimator is obtained here by taking τ = 5 µs.
In the observation model (17.32), δϕτ corresponds to an observation

noise. As in the first part of this thesis, δϕτ is to be understood as a
random phase offset drawn from the probability distribution p(δϕτ ) of
qNph detected photon arrivals during the time τ which is responsible
for the homodyne phase noise due to photon shot noise. The average
number of photons during τ isNph = 3.3× 103 � 1, hence the following
Gaussian white noise approximation

p(δϕτ ) ∼ N (0,σ2
τ ) =

1√
2πσ2

τ

exp
(
− (δϕ

τ )2

2σ2
τ

)
, (17.33)

with σ2
τ =

1
4q 〈Nph〉τ

.

17.4.3 Atom number squeezing

Based on the principe of Bayesian inference presented earlier, we can
give an estimate of the probability distribution of the atom number
conditioned on the dispersive measurement ϕτs as
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p(N τ
at|ϕτs ) =

p(ϕτs |N τ
at)pi(N

τ
at)

p(ϕτs )
, (17.34)

where pi(N τ
at) is the initial or prior atom number distribution, p(ϕτs |N τ

at)

is the conditional probability to observe the value ϕτs from a given atom
number N τ

at and p(ϕτs ) is the unconditional probability for finding the
measurement outcome ϕτs . It is given by

p(ϕτs ) =
∫
p(ϕτs |N τ

at)pi(N
τ
at) dN τ

at. (17.35)

p(ϕτs |N τ
at) is readily given by the atom number observation model

(17.32) in such a way that the probability to measure ϕτs conditioned
on having a given value of N τ

at is given by the probability distribution
of the light shot noise δϕτ (17.33),

p(ϕτs |N τ
at) ∼ p(δϕτ = ϕτs −ϕ1N

τ
at) =

1√
2πσ2

τ

exp
(
− (ϕ

τ
s −ϕ1N

τ
at)

2

2σ2
τ

)
.

(17.36)

Therefore, if we would know the prior distribution pi(N τ
at), which

implicitly means some degree of state preparation knowledge, we would
be able to tell p(N τ

at|ϕτs ). The uncertainty in the initial number of atoms
could be understood as a very large prior variance (∆N i

at)
2. We could

also say that there is a certain likelyhood that the number of atoms
trapped in the optical lattice is clamped between a minimum and a
maximum filling number, which we can describe as uniform probability
distribution. In absence of more knowledge, we have to gradually learn
more information by repeated measurement. And one of the strong
point of the Bayesian method is that any prior knowledge hypothesis
can be rapidly confirmed or rejected from measurement inference.
We saw in the first part of this thesis the two effects of such continu-

ous light shot noise limited measurement on the prior distribution when
dealing with collective atomic states. Namely, the measurement would
induce both a change in the mean atom number, hence refining the
most probable atom number value, and a reduced variance, improving
the precision on such value. A model for the evolution of the variance
of the atom number estimator after a finite measurement of duration
τ , based on the results of (2.35), would write here as

(∆Nat)
2 =

( 1
(∆N i

at)
2 + c

)−1
, (17.37)

where c = ϕ2
1
σ2
τ

= qα0nsc. (17.38)

Here nsc is the mean number of photon scattering events per atom dur-
ing the finite measurement integration time τ . In absence of informative
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prior ((∆N i
at)

2 → ∞), one has ∆Nat = στ/ϕ1 ≡ ∆N light
at which triv-

ially means that the uncertainty in the atom number is the one which
cannot be distinguished from the uncertainty in the phase noise due
to light shot noise. However, please note that ∆Nat does not depend
on the number of atoms as expected from a dispersive measurement.
In the general case, one can observe that (17.37) reads as half of the
harmonic mean of (∆N i

at)
2 and (∆N light

at )2.
Now comes the difficult part. By applying a recursive Bayesian es-

timation from a repeated number of l successive measurement steps
or identical time bins τ as above, we could keep on improving the
precision on the atom number. We would have as shown in the first
chapter ((2.43)), the same result as (17.37) where instead nsc is the
mean number of photon scattering events per atom during the total
integration time lτ . However, the atom number estimation is not only
subject to observation light noise but also to a fundamental so-called
process noise which we cannot observe directly and constitutes the mea-
surement back-action. We present the recursive strategy in presence of
such loss in the next section.

17.4.4 Recursive Bayesian estimation with Markovian loss

The previous Bayesian inference results are based on the assumption
that the atom number does not evolve during the observation time
which is not realistic in presence of significant loss. In presence of
random or non-deterministic loss, the evolution of the atom number
also becomes non-deterministic. A Bayesian inference step therefore be-
comes additionally probabilitistic and conditioned on a given realized
measurement trajectory of the detected phases.
We consider the evolution of the atom number between the measure-

ment steps as a (memoryless) Markov process. This means that the
probability to lose an atom during a measurement step is fixed and
independent of the measurement step. From the observation of the ex-
ponential decay of the mean phase shift or atom number signal, we
know that it takes on average nloss ' nheat = 56 photon scattering
events to loose an atom. To fix ideas, during the time step τ = 5 µs
for which Nph = 3.3× 103, the average number of scattering events per
atom is nscτ ' 0.057 (see (17.24)) such that η = nscτ/nheat � 1. A loss
of an atom is a discrete event which will be described by the Bernoulli
distribution with loss success η. Assuming uncorrelated single particle
loss, the probability to have Nl atoms in the trap in the l-th measure-
ment step given that the atom number was Nl−1 in the previous step
would be given by the binomial distribution:

p(Nl|Nl−1) =

(
Nl−1
Nl

)
(1− η)NlηNl−1−Nl , (17.39)
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so that on average the atom number evolves as

〈Nl〉 = N0e
−lη = N0e

− t
τ
η. (17.40)

The light shot noise is also stochastic and not correlated between the
different measurement steps. Under the Markov assumption the proba-
bility distribution for the atom number state simply writes

p(Nl|N1, . . . ,Nl−1) = p(Nl|Nl−1), (17.41)

and since the phase measurement outcome ϕl only depends on the
current atom number state

p(ϕl|N1, . . . ,Nl) = p(ϕl|Nl). (17.42)

Therefore, the probability distribution for the atom number after the
measurement step l conditioned on all the previous phase measurement
steps up to l included is

p(Nl|ϕ1, . . . ,ϕl) =
p(ϕl|Nl)p(Nl|ϕ1, . . . ,ϕl−1)

Z
, (17.43)

where p(Nl|ϕ1, . . . ,ϕl−1) is the prior probability distribution of having
Nl atoms, which was inferred from all previous measurements and atom
evolution, and Z is the unconditional probability to measure ϕl,

Z =
∞∑

Nl=0
p(ϕl|Nl)p(Nl|ϕ1, . . . ,ϕl−1).

After a measurement or update step l− 1 (17.43), a new prior or best
estimation distribution for the atom number Nl is made based on the
freshly inferred estimation p(Nl−1|ϕ1, . . . ,ϕl−1) and on the transition
or evolution probability p(Nl|Nl−1) in a such way that

p(Nl|ϕ1, . . . ,ϕl−1) =
∞∑

Nl−1=0
p(Nl|Nl−1)p(Nl−1|ϕ1, . . . ,ϕl−1),

(17.44)

which takes into account the stochastic trajectory of the atom number.
Starting with an initial uniform probability distribution for the atom

number p(N0) (N0 < 4400) we apply this recursive Bayesian estima-
tion to a real-time or single-shot measurement of the calibrated atom
number phase shift measurement. We report the results in figure 17.9.
We introduce again the Fano factor F which quantifies the reduction

in the atom number fluctuations as compared to a Poisson distribution
as F = (∆Nat)2/ 〈Nat〉. A unity Fano factor may be considered as
reaching the SQL if we were dealing with quantum atomic projection
noise. Here, a value of F below unity corresponds to atom number
squeezing. The Fano factor of the atom number estimator as a function
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Figure 17.9: (Top panel) Quasi-continuous Bayesian estimation of the atom
number based on the single-shot dispersive measurement shown
in figure 17.8. The blue points represent data samples averaged
over τ = 5 µs. The red curve is the evolution of the mean atom
number estimator. (Lower panel) Logarithm scale of the Fano
factor as a function of time or equivalently as the number of
invested probe photons.

of time or equivalently as a function of the number of probe photons
reveals a minimum of

Fmin = −14dB, (17.45)

from the knowledge acquired by 5× 105 probe photons. This is remark-
able inasmuch as this high precision is achieved for a loss of only 14%
of the initial atoms. As shown in the reported figure, the Fano factor
converges rapidly to its minimum value and only slowly increases over
time as the number of lost atoms or average number of scattering events
nsc increases.
However, there is a clear distinction to make between the accuracy

with which a given number of atoms can be prepared in the trap ac-
cording to plan and the precision with which the achieved number of
trapped atoms is known.
Here, the data reported in figure 17.9 demonstrates that we can pre-

pare ensembles with arbitrary atom numbers between 1000− 2500 with
Fano factors well below −10 dB. To fix some ideas, this means that one
can resolve

√
F 〈Nat〉 ∼ ±8 atoms in a ensemble containing a mean
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number of atoms Nat = 1000 (or about ±10 atoms in an ensemble of
Nat = 2500 at the minimum Fano factor). In figure 17.10, we show
that such preparation is well reproducible using 200 experimental real-
izations.
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Figure 17.10: (Left) Accuracy of the minimum Fano factor achieved for 200
single-shot measurements. (Right) Histogram

Note that the data analysis based on the recursive Bayesian estima-
tion was done numerically and it would be very instructive to have
an analytical model to understand the behaviour of the variance of
the atom number estimator. We address this point in the next section.
Also note that the method could be ran backward to infer precisely the
initial number of atoms instead of the present one.

17.4.5 Variance estimator model

We will use first a simplified model for the variance of the estimator
(∆Nat)2 based on the model used for the impressive atom number esti-
mation resolution achieved in Zhang et al. (2012). From this work, one
has

(∆Nat)
2 =

c1
τ
+ c2τ , (17.46)

where c1 and c2 are constant. In the previously mentioned article,
(17.46) was applied to model the atom number fluctuations from a mea-
sure of the two-point or Allan atom number variance as a function of
the averaging time τ . This model was also used for a similar impressive
atom number counting in a different system, Hume et al. (2013).
The first term in (17.46) is analog to (17.37) in absence of prior

variance. It is identical to the contribution of light shot noise (∆N light
at )2

(i. e. c−1
1 ≡ qα0ṅsc). The second term models the added partition noise

due to the random loss of atoms. For our experiments, we consider this
as the Poissonian atom loss due to probe light scattering into free space.
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In terms of the integrated number of scattering events during a single
averaging measurement duration τ , the model (17.46) will write

(∆Nat)
2 =

( 1
(∆N i

at)
2 + qα0nsc

)−1
+Nat

nsc
nloss

. (17.47)

where we incoporated any prior knowledge variance. The first term
corresponds to a gain of knowledge19 while the second corresponds
to a loss of information or increase in entropy due to random loss of
atom into the environment. From the appropriate derivative of (17.47),
one readily finds the optimal number of scattering events nsc for the
minimum variance and minimum Fano factor as

nsc =

(
nloss
Natqα0

)1/2
, (17.48)

in a such way that

(∆Nat)
2
min =

( 4Nat
nlossqα0

)1/2
, (17.49)

Fmin =

( 4
Natnlossqα0

)1/2
. (17.50)

For atom number state preparation, where nloss = nheat this model
predicts, for the measured nheat = 56, a metrologically relevant20 Fano
factor of F = −10.7dB for an ensemble of Nat = 2500 remaining
atoms and optimal nsc = 2.4. It is first interesting to mention that
although this simple model is a bit pessimistic compared to (17.45), it
will nonetheless predict an impressive precision for quantum state to-
mography. This is because although quantum state tomography is more
stringent and do not allow repumping light, our probing method is min-
imally destructive enough to acquire a lot of knowledge for such a low
allow average number of scattering events per atom nloss = nheat = 56
which turns out to be comparable to the average number of scattering
events to depump an atom from |4〉 to the ground state |3〉, nhf = 67.
For quantum state tomography, we would have in absence of repumping
light, which cannot be used to avoid mixing of basis state populations21,

nloss =
(
n−1
heat + n−1

hf

)−1
. (17.51)

Here nloss ' 31 which gives a prediction of F = −8 dB where we consid-
ered that Nat = 1250, i. e. performing a tomographic characterization
of a collective hyperfine coherence where half of the atoms populate
the interrogated basis state. This should be compared with F = −3 dB

19 It is interesting to remark that in absence of prior knowedge or variance which in
some sense bias the estimation, the estimation of the atom number is bound to a
minimum (∆Nat)

2 ≥ (qα0nsc)
−1 from which one can read the Fisher information of

the conditional probability distribution for Nat according to the Cramér-Rao bound.
20 The Fano factor is calculated with respect to the current remaining number of atoms.
21 when preparing collective spin state based on such two hyperfine ground states
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required to observe negative Wigner function in the characterization of
non-classical states. Note that the optimal nsc = 2.5 is quasi-identical
to the one for atom number measurement.
Although the model (17.47) is of great help and describe the be-

haviour of the atom number fluctuations in the different limiting regimes
of negligible and high atom loss, we have to keep in mind that it consti-
tutes a great simplification of the recursive Bayesian estimation, namely
a single averaging step.
If all the non-deterministic processes could be described as Gaussian,

we could propagate simply all the results of function convolutions in
the recursive estimation and have an analytical and deterministic equa-
tion of evolution for the variance of the estimated parameter. In other
words, the quasi-continuous Bayesian description would become the
Kalman-Bucy description. Such is actually the essence of the Gaussian
description formalism of continuous variables in quantum mechanics.
Based on the fundamental role of the Riccati equation in quantum

mechanics (Schuch (2014)) in the evolution of the width of a wave-
packet and some hindsights given in the first chapter of this thesis, I
would like to propose a refine prediction for the evolution of the variance
in the next section.

17.4.6 Non-linear Riccati model

We noted in the first chapter of this thesis that in absence of loss,
the evolution of the variance (∆Nat)2 ≡ v(t) is solution of the simple
Riccati equation

dv
dt = −cv2. (17.52)

In presence of an additional rate of increase r of the variance due to
the random loss of atoms, we would like to solve instead

dv
dt = −cv2 + r(t), (17.53)

where the rate is expected to vary in time, here exponentially as does
the mean number of lost atoms N i

at(1− exp(−t/τloss)). (17.53) would
become a non-trivial non-linear differential equation. However, lets con-
sider the lowest order of complexity where the rate r can be assumed
constant. We assume that the recursive Bayesian estimation is per-
formed over a duration for which the loss of atoms is small. This is
actually the observed experimental situation. Then one can solve ex-
actly the equation. Before I give the solution found with the help of
JHM, let me first mention the two important characteristic values of this
non-linear equation, namely the prior variance or initial condition v0
and the asymptotic or stationary variance v∞ readily given by zeroing
the derivative in (17.53)

v∞ =

√
r

c
. (17.54)
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There are two different solutions which depend on whether the prior
variance is larger or smaller than the asymptotic variance, which does
not depend on the prior variance. When v0 > v∞, the asymptotic
variance also becomes the minimum variance that can be reached. The
solution writes

v(t) = v∞
1 + v0−v∞

v0+v∞
exp(−2

√
crt)

1− v0−v∞
v0+v∞

exp(−2
√
crt)

, (17.55)

which is equivalent to a time shifted hyperbolic cotangent

v(t) = v∞ coth(
√
crt+ t0), (17.56)

t0 =
1
2 ln

(
v0 − v∞
v0 + v∞

)
=

1
2 ln

(1− v∞/v0
1 + v∞/v0

)
. (17.57)

In the case where the prior variance is larger than the stationary vari-
ance or if one starts with no prior knowledge (v0 → +∞), t0 → 0 in
such a way that the evolution of the atom number variance is simply

v(t) ' v∞ coth(
√
crt). (17.58)

For the case v0 < v∞ (initial squeezing), the hyperbolic cotangent is to
be replaced by the hyperbolic tangent.
Here, c = c−1

1 = qα0ṅsc and r = c2 = Natṅsc/nloss and we have

(∆Nat)
2
min = v∞ =

√
Nat

nlossqα0
. (17.59)

Interestingly, this result is twice smaller than (17.50) and therefore
will correct for the apparent pessimistic discrepancy of about 3 dB in
the first simple variance estimation model. Instead of predicting F =

−10.7dB, we predict that the Bayesian estimation of the minimally
destructive probing measurement should reach close to F = −13.7dB
when the loss are small which is in very good agreement with the ob-
served value of F = −14 dB. Hence, the expected precision for tomog-
raphy would improve even further.
When the approximation of a constant rate loss r is not valid any-

more, for instance in the case that t becomes comparable to τloss, we
can physically expect the solution to follow locally the behaviour of
(17.57) towards a continuously renewed asymptotic value v∞.

17.4.7 Spin-squeezing outlook

The previously reported precision is a promising perspective for contin-
uous measurement induced collective spin squeezing. However, this is
one of the most challenging tasks as the allowed measurement strength
or number of scattering events per atom has to be weak. The num-
ber of allowed spontaneous emission events need to be below unity
nsqz = nsc ≤ 1 as any spontaneous scattering event will project or
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make the state of an atom collapse. One can draw two immediate con-
sequences. As the measurement strength is weak, the role of the prior
state knowledge (prior variance) becomes significant (see (17.47)). How-
ever, at the same time, the contribution of the loss of atoms becomes
negligible nsc � nloss (second term in (17.47)). The dominant mea-
surement back-action mechanism, which outruns the other effects, and
needs to be addressed for quantum collective states, becomes the reduc-
tion of Ramsey constrast following the scattering induced decoherence
of atomic (hyperfine) state superpositions. This effect needs to be taken
into account for a metrologically relevant degree of squeezing.
To estimate the achievable degree of spin-squeezing, we consider the

scenario of an initially prepared ensemble of Nat 2-level atoms in the
equatorial plane of the collective Bloch sphere or coherent collective
(spin) superposition of the two hyperfine ground states as in the first
part of this thesis. We applied the weak dispersive measurement to the
ground state |4〉 where therefore only half of the atomic population
resides. As a result, the prior variance of the coherent spin state is
(∆Nat)2 = Nat/4 and the average number of scattering events per atom
is halved as half of the sample population in |3〉 is far-detuned and do
not interact with the probe light. After the interaction, the incoherent
photon scattering implies a reduction of the transverse22 collective spin
component, which here is identical to the size of the collective spin
such that we have 〈J〉 → exp(−nsc/2) 〈J〉 (see Saffman et al. (2009)).
Putting all this together (with (2.44)) gives the metrologically revelant
(Wineland) degree of squeezing

ξ ≡ 1
(e−nsc/2)2

(∆Nat)2

Nat/4 =
1

1 + qα0Natnsc/4ensc , (17.60)

=
1

1 + qd0nsc/4ensc , (17.61)

where d0 is the ensemble resonant optical depth. The optimum degree
of squeezing is achieved for

nsc = 1− 4
qd0

, (17.62)

with ξmin =
4
qd0

exp
(

1− 4
qd0

)
= (1− nsc) exp(nsc). (17.63)

Any meaningful and useful squeezing is achieved for nsc > 0 or when
the effective optical depth qd0 > 4. We see that in the limit of high opti-
cal depths (for a descent detection efficiency q), the degree of squeezing
scales as ∼ 1/d0. From (17.63), the degree of squeezing is readily op-
timized for nsc = 1, corresponding to a reduction of Ramsey fringe
contrast of exp(−nsc/2) = 61%. For ensembles of Nat = 2500 pseudo-
spin particles and probing on the closed transition |4, 4〉 → |5, 5〉, which

22 compared to the quantization axis
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would be relevant for instance for quantum-assisted magnetometry us-
ing the hyperfine coherence from |4, 4〉 to |3, 3〉, one can expect up to
−4.2 dB metrologically relevant squeezing.

17.4.8 Summary

In this chapter, we started by presenting a novel and simple, fast and
robust absolute atom number measurement method based on recording
optical pumping transients with heterodyne detection. With the knowl-
edge of the calibrated phase shift per atom, we have applied our dual-
heterodyne dispersive method proposal to the non-destructive real-time
and light shot limited detection of atomic population state. The pro-
posed method reveals impressive resolution for very low average number
of scattering events per atom nsc < 3. As a result, the fundamentally
limited measurement precision left for more stringent tasks such as
quantum state tomography and spin-squeezing, in ensemble of atoms
interfaced to our nanofiber, will be still significant and demonstrate the
future possibility of the generation of collective atomic entanglement
using the principles of optical QND measurement.
In this interface, we have gained more than 2 orders of magnitude

in the coupling of a single-atom compared to past experiments with
ensembles in free space dipole traps.
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A ONE -D IMENS IONAL ATOMIC MIRROR

The scientist is not a person who gives the right answers, he is one
who asks the right questions.

— Claude Lévi-Strauss

This chapter contains results which have not been published yet and
deals with progress in the exploration of coherent and collective effects
in a nanofiber interface.
An essential step missing towards the realization of tomography of

non-classical states as well as spin-squeezing, following the successful
demonstration of a real-time high-resolution and minimally destructive
probing for QND measurement, is the coherent manipulation and prepa-
ration of quantum atomic states (e. g. Ramsey interrogation). We will
briefly sum up the experimental work achieved in this direction before
we rapidly move on a different project in progress. Namely, the realiza-
tion of a one-dimensional atomic Bragg mirror in the evanescent field
of an optical nanofiber.

18.1 towards state preparation

In a few lines, which sum up a few months, we have accomplished a
few experimental progress towards quantum state engineering, which
we focus on the manipulation of the coherence between the two hy-
perfine ground states of Cesium. We have interfaced to the nanofiber
setup, a microwave source (free space antenna) with a power of about
10W, identical to the one used in the old experiment. In the past, we
could drive, with a similar source, Rabi frequencies up to 50 kHz. This
relatively low frequency for such high driving field power is due to the
nature of the ground state hyperfine transition which is electrically
forbidden (first order) and therefore is driven through the interaction
between the magnetic moment of the atom and the magnetic field of
the microwave radiation. This expected Rabi frequency would be suited
for our goals if the coherence time of the levels would be long enough
compared to the Rabi period of 20 µs, which was already close to 100 µs
for the free space dipole trap atomic ensemble. A pessimistic intuition
for the expected coherence time in the nanofiber interface arose from
the existence of fictitious magnetic fields due to the non-trivial polar-
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ization field of the nanofiber trap light. As we have seen earlier in this
thesis, Zeeman atomic levels can be mixed or coupled when the atoms
are dressed by a light field with a significant ellipticity. This would lead
for instance to a loss of coherence between the initially prepared Zee-
man clock states. This led us to develop in parallel another technique to
drive Rabi oscillations faster, optically, namely via a two photon transi-
tion or Raman stimulated transition. The time invested in assembling
the Raman setup will also open the possibility for the study of Raman
sideband cooling. We have not had the time yet to make this important
quantum state preparation step as we encountered another important
one that I will present in the next section. However, let me just report
in figure 18.1 an important achievement showing the successful obser-
vation of microwave photon interaction with Cesium atoms trapped in
a lattice around an optical nanofiber.

Figure 18.1: Continuous heterodyne detection of the transmitted probe field
resonant to |4〉 → 5’̨. The atoms are initially in the dark state |4〉.
(blue trace) field transmission in absence of atoms (no quadrupole
MOT field), (red trace) At t = 1ms CW optical repumping on
|3〉 → 4’̨, (green trace) repumping with an external microwave
sweep. (see main text)

The data reveal a microwave pumping transient following a 10ms
long linear sweep of the external microwave field frequency irradiat-
ing the atoms (2MHz around the resonant transition frequency of
∼ 9.1926GHz). In short, this figure shows the first atomic detection of
microwave radiation by nanofiber trapped atoms in our group. Atoms
are initially trapped in the lowest ground state |3〉. We continuously
perform heterodyne detection of resonant probe light on the |4〉 → |5′〉
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transition. Instead of being pumped into the ground state |4〉 via exter-
nal repumping light on the |4〉 → |4′〉, as we have done several times
in the past, here the atoms are driven into the upper hyperfine state
by the continuous external microwave field interaction which led to the
observation of the resonant absorption of probe photons. To observe
continuously (in real-time) Rabi oscillations, the atomic state popula-
tion needs to be detected non-destructively. And promising steps have
been done through the observation of the same microwave interaction
but as a transient in the phase shift of the dispersively detection hyper-
fine state using the dual-sideband probing technique. I believe that this
important experimental objective will be achieved soon in the future,
once we will finish the characterization of Landau-Zener sweeps.

18.2 atomic bragg mirror

In parallel to the previous developments, we invested time at the end
of this thesis, to rebuilt completely the detection setup. It took more
than four months of intense work to get the setup operational again
with the trapping of atoms in optical lattices and their non-destructive
detection.

18.2.1 New setup

This decision was first triggered by the lack of independent polariza-
tion degrees of freedom for all the different light sources, which are
combined and propagate into the same nanofiber mode, but also in
order to improve the overall detection quantum efficiency. Although
the latter q ' 0.4 is descend, we can improve it by transforming our
prototype detection setup. In particular, we built new shot noise lim-
ited photodetectors peaked around the 62.5MHz heterodyne frequency.
Contrary to the single photodiode prototype detector used so far, these
new detectors are differential detectors based on two photodiodes. This
will allow to perform balanced heterodyning without wasting 90% of
the optical LO power and 10% of the probe signal, resulting in higher
quantum efficiency from the higher ratio of LO shotnoise to electronic
noise and lower probe photon loss.
Not only did we rebuild and optimize the detection system, we built

two of them arranged symmetrically about the nanofiber in such a
way that we can perform the dual-sideband QND measurement inde-
pendently and simultaneously from both propagation fiber ports. This
also means that while probing the atoms along a given propagation
direction and measuring the properties of the forward scattered probe
field in transmission, we can at the same time monitor the light field
in reflection which may be scattered back by the atoms into the fiber
guided mode.
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We started to investigate the back-reflection properties of the probe
light interacting with atoms trapped in the nanofiber lattice, which is
a spatially periodic atomic structure, well known to allow for collective
or interference effects such as Bragg diffraction or scattering analog to
crystal diffraction.

18.2.2 Bragg reflection condition

For the one-dimensional fiber mode geometry, constructive interfer-
ences between all the light fields scattered by the periodically trapped
Cesium atoms may indeed be possible in back-reflection or in other
words in a direction corresponding to a deviation angle of the incident
light by π, if the well-known Bragg condition is met,

2d sin(θ) = nλ, (18.1)

d =
λ

2n. (18.2)

where θ is half the deviation angle (so here sin(θ) = 1), d is the atomic
spacing or lattice period, λ the light wavelength and n the diffraction
order (natural number). Note that the intensity of the back-reflected
light depends on the atomic scattering cross section.
From (18.2), we see that the Bragg condition in reflection is fulfilled

if the atomic spacing is a multiple integer of λ/2. Unfortunately, this
condition is not satisfied for a probe wavelength resonant to the Cesium
D2 line scattering cross section (λp = 852 nm) as it is incommensurate
with the nanofiber optical lattice trap sites period, built from the far
red-detuned (λr = 1057 nm) standing wave, i. e. d = λr/2. Actually,
these values are the wavelengths in vacuum and the longitudinal wave-
length (2π/β) of the guided fundamental mode is lower due to the
effective waveguide refractive index (e. g. λp = 852 nm→ 745 nm).
Consequently, collective back-scattering would be largely suppressed

in our interface and any observed back-scattering would be similar to
the one expected from a disordered medium. Before we show the tech-
nique we have implemented experimentally to bypass the above limita-
tion and observe Bragg reflection, I would like to mention the only (to
my knowledge) two recent articles reporting observations and proper-
ties of light reflected off a nanofiber lattice trap.

18.2.3 Reported work

First, in Goban et al. (2012), reflected light from the disordered sit-
uation (incommensurate lattice trap period and probe wavelength) is
reported by counting photons, i. e. detecting reflected photons. No ab-
solute reflection coefficient is given. The study was focused on the
reflection spectrum, more precisely the frequency dependence of the
reflected light. It reveals a resonant Lorentzian spectrum with a min-
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imum linewidth given by the natural transition linewidth of Cesium
which however presents broadening proportional to the lattice disor-
der or entropy defined as S = ln (Nat

nsite
), where (Nat

nsite
) is the binomial

coefficient with nsite the number of lattice sites.
In Reitz et al. (2014), the entire article is dedicated to the back-

scattering properties, also for the disordered situation and measurement
performed via photon counting. It reports absolute values of the light
power reflected by the atoms which presents a saturation behaviour
with the input power. From the article data, one finds that the typi-
cal reflected DC equivalent light power (inferred from the number of
photons in the 200 ns measurement time bin) is about 10pW for an
ensemble of Nat = 500 atoms. This power is reflected from a typical
resonant and saturating input light power of 10−20nW representing
saturated reflection coefficients ranging from 1× 10−4 to 1× 10−3. In
addition, the reflected light is seen scattered into different polarization
modes than the incident light polarization.

18.2.4 The lattice within the lattice

With the help of Prof. Anders Sørensen and Ivan Iakoupov from the
theoretical quantum optics group, working in close collaboration with
our experiments, we have found a way to bypass the natural mismatch
between the lattice periodicity and the wavelength resonant to the Ce-
sium atomic scattering cross section. This would allow to observe for
the first time in this system collective back-scattering and allow to re-
alize an atomic mirror from a few trapped atoms with total reflection
coefficients on the order of 50%. The theoretical study is based on the
transfert matrix formalism Deutsch et al. (1995). In that respect it
would be possible to realize the interesting hybrid idea (Chang et al.
(2012)) of reaching the regime of cavity QED with atomic ensembles
using the atoms themselves as the mirrors.
To fulfill the Bragg condition for a wavelength resonant to the strong

D2 atomic transition, our approach consists in pumping periodically
and spatially the internal atomic states with the help of a pumping
standing wave field. One should now view the nanofiber optical lattice
dipole trap as a mere tool to hold the atoms in place and consider to
imprint the correct pattern of periodic atomic cross sections for light
diffraction, by manipulating the internal states of the atoms.
Initially prepared in the lowest hyperfine ground state |3〉, atoms

which will seat at the anti-nodes of the optical pumping standing wave
field, which is resonant to the |3〉 → |4〉 transition, will be pumped into
the ground state |4〉, while the atoms seating at the nodes will remain in
their initial dark state |3〉 for the probe light resonant to the |4〉 → |5′〉
that we hope to be Bragg reflected. As we exploit hyperfine pumping,
the optical period of the imprinted pattern is nearly half (λ/2) of the
incident probe wavelength. I personally expect this idea to work even
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better for Rubidium atoms and alkali atoms with a lower ground state
hyperfine splitting. Indeed, although the frequency difference between
the pump and the probe is only about ∼ 9.2GHz for Cesium that cor-
responds to a difference of only 22pm in wavelengths to satisfy the
Bragg condition, the accumulated phase delay and therefore phase mis-
match will reach close to 0.6mrad for after a nominal maximum 5mm
nanofiber propagation length.
Nonetheless, this research project is appealing as the created atomic

mirror, which can be used to reflected single photon backward in a
fiber with a high probability from a few atoms, is switchable and is
created on-demand by optical pumping. Note that one can choose be-
tween making a bright or dark pattern lattice. Above we presented the
bright lattice case but one could start initially with the atoms in |4〉
and depump into |3〉 using the |4〉 → |4′〉 transition. This would have
the other great advantage of improving the phase matching following
that the frequency difference between the pump and the probe would
now fall into a few hundred of megahertz. Such mirror is expected to
have a very narrow bandwidth, limited by the incident resonant light
spectrum and not the atomic transition linewidth as in the case of disor-
dered ensembles. In addition, the state-selective nature of the cold atom
mirror makes it appealing to be controlled by small external field per-
turbations. Last but not least, it may be possible, via optical pumping
into particular Zeeman levels, to make the collective reflection strongly
polarization dependent. It seems therefore that there will be a lot of
interesting things to explore for the next generation of PhD students1.
In the next section, I will describe a few experimental measurement
and data acquired showing progress in this direction.

18.2.5 Experiments

From the current light sources constrains of our experimental setup,
I initially offered to implement with EB the idea of the bright lattice
to start this adventure and to learn as much as possible. Heidi Lund
Sørensen (HLS) has now joined us on this adventure and will be the
principal PhD student on the experiment.
As a novelty compared to the litterature, I propose to use our versa-

tile heterodyne detection chain to monitor any back-reflected light from
the nanofiber. This means that we are looking at a field of light which
is potentially reflected and will most importantly interfere with an op-
tical local oscillator. This has several advantages including that we do
not need to filter the photons coming from all the relatively intense
trap light propagating in the nanofiber, using for instance high quality

1 If you read this, I sometimes asked myself whether the coupling efficiency into a fiber
could be greatly improved via Bragg scattering. In particular, it would be interesting
to see if one could couple light into the nanofiber mode from outside, at the taper
position, exploiting the Bragg condition at a different angle after preparation of an
atomic mirror.
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volume Bragg gratings as in other experiments. Certainly the most im-
portant point is that the detection will allow to monitor continuously
over time the evolution of the light field reflected by the atoms.
In figure 18.2, I report the first demonstration of continuous and

coherent detection of light reflected by a periodically pumped ensemble
of atoms (bright configuration).
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Figure 18.2: Continuous narrow-band detection of reflected light from ordered
nanofiber trapped atoms. (See main text for the legend).

The experimental protocol is as follows. First we trap Cesium atoms
in the nanofiber lattice trap and wait for a storage time of t = 10ms to
remove any potential bias from residual flying MOT atoms. The atoms
are initially in the lowest hyperfine state |3〉 and we send a single side-
band resonant to the |4〉 → |5′〉 to probe the atoms, which then initially
do not interact with the ensemble. We record, for 10 µs, the raw pho-
tocurrent heterodyne beatnote at 62.5MHz and extract the reflected
detected field intensity in a narrow resolution bandwidth (5MHz) to
have similar conditions as the photon counting experiments that re-
ported consistent reflected photon signals only for the first 200 ns (Re-
itz et al. (2014)). The lowest constant signal in figure 18.2 is the total
electronic noise of the detection chain. The green level near 0.010V2

corresponds to optical LO shot noise plus electronic noise. In other
words it is the reference level corresponding to detection of a vacuum
reflected input field. The significant red signal corresponds to a cali-
bration measurement at a relatively high input probe power (several
hundred of nanowatt), which reveals the existence of a finite amount of
classical light which is always reflected by all the optical elements on
the probe path, the dominant ones being the nanofiber input and out-
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put couplers. As clearly seen, the input probe is turned off rapidly at
t = 5.5 µs with an AOM to create a time window at the center of which
we will prepare the atomic ensemble in the bright Bragg lattice with
a 500 ns standing wave repumping pulse. The cyan signal which can-
not be distinguished from the vacuum signal level corresponds to the
same calibration classical back-reflection when the input probe power
is now adjusted to 10nW. Delightfully, repeating the previous cyan
measurement in presence of nanofiber trapped atoms with the periodic
optical pumping scheme reveals the apparition of a reflected pulse of
light (purple curve) as soon as the probe light field is sent towards the
atoms when its AOM is turned back on. This is really the first signal
observed and I need to highlight that the measurement is quite chal-
lenging. The detected pulse contains less than half a photon measured
with heterodyning and all the shown data corresponds to an average
over 500 hundred experimental realizations to resolve clearly this very
weak signal. While for this first data the absolute reflection coefficient is
on the order of 1× 10−4 we are nowadays approaching the few percent
level by a better understanding of the quality of the standing wave re-
pump parameters and the fact that the theory was originally calculated
for single input probe photons. Here our first attempts were motivated
to observe first what has been reported before and the probe power
used there were meant to saturate disordered atomic ensembles.
We can repeat the experiment by blocking only one of the beams

forming the optical repumping standing wave, creating a disordered
ensemble of atoms, and we will fail to the reflected peak. This peak
is sensitive to various parameters and in particular to the input probe
frequency with respect to the |4〉 → |5′〉 transition. By adjusting the
starting origin of the data acquisition we can look at later times which
reveal the existence of a flat tail following the peak as seen in figure
18.3.

This tail is also present when blocking one of the standing wave re-
puming beams, which gives indication that this might represent a signal
from disordered atoms. The Bragg diffraction condition is perfectly re-
alized if atoms are not moving, which is not realistic in the nanofiber
trap (expected trap oscillation frequencies from 0.1 to 1MHz). And we
can understand that the perfect phase matching for Bragg diffraction
will be rapidly smeared out by many effects. Because of the relatively
long lifetime of the trail signal, one can average or decrease the het-
erodyne detection bandwidth to improve the signal in contrast to the
short lifetime of the coherent pulse.
To finish this chapter, I would like to mention the observation of

revivals or oscillations in the reflected light field as in figure 18.4 after
an attempt to improve the contrast of the repumping standing wave.
We need to understand better all the characteristics of this new system
and we are currently exploring the creation of the dark atomic Bragg
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Figure 18.3: Longer acquisition of the reflection signal showing a double struc-
ture, a peak and trailing tail. (Blue) electronic noise, (Green)
vacuum signal, (Red) Reflected light from ordered atoms
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Figure 18.4: Observation of oscillations in the reflected light field. (Blue) elec-
tronic noise, (Green) vacuum signal, (Red) Reflected light from
ordered atoms

lattice scheme and the effects of external bias fields and input probe
polarization on the reflected signals.
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summary

In this chapter, we started by reporting some progress towards the
coherent preparation of quantum superposition of atomic states in
nanofiber trapped atoms. Then, we presented the possible realization of
collective Bragg scattering in reflection from nanofiber trapped atoms
with a simple idea based on periodically pumped atomic states. Finally,
we reported some preliminary exciting experimental results showing the
observation of reflected light fields from ordered atoms, which are de-
tected continuously with the heterodyne technique.
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CONCLUS ION AND OUTLOOK

We have finally reached the conclusion of this thesis report. In the
first part, I tried to present in a simple form the experimental work
and ideas conducted with SLC on the manipulation and preparation of
non-classical collective states of atoms in free space optical dipole trap
ensembles of cold Cesium atoms. With complementary experimental
efforts, we succeeded in the preparation and characterization of col-
lective spin-squeezed states of atoms, which were demonstrated highly
non-classical albeit Gaussian states, in Kiesel et al. (2012). We then
pursued the experimental goal of creating the first excited Dicke state
or the creation of a single delocalized atomic spin excitation in the
ensemble, heralded by a forward scattered photon. We next tried to
characterize this state via atomic state interferometry and continuous
measurement of atomic state populations. We observed a significant
macroscopic increase in the quantum noise of the heralded state as
compared to a coherent spin state Christensen et al. (2014).
Although I spent two intense years working on these projects, I had

the parallel challenging proposal of building a completely new experi-
mental quantum optics setup for cold Cesium atoms in view to create
a new interface based an optical nanofiber. As a result of the limited
time constrain of a PhD, I tried to focus my efforts on the develop-
ment of a simple and versatile detection scheme for the various tasks
of light atomic ensemble interfaces. It was a challenge to explore both
theoretically and experimentally this new experiment and I ought to
save the important enabling steps to the future generation of students
who will work on the setup. This explains why this report is detailed
on the nanofiber interface exploration.
We successfully demonstrated an interface between light and atoms

trapped in an optical lattice in the evanescent field of a nanofiber
Béguin et al. (2014). We realized the first non-destructive real-time and
light shot noise limited detection of atomic state population around the
fiber.
The future seems then well defined. We will next try to prepare non-

classical collective states of atoms around an optical nanofiber. We
will also continue to explore the realization of an atomic Bragg mirror.
To give a few ideas of improvement in this interface, I can mention the
prospect of nanofibers with fiber Bragg gratings (cavity) to enhance the
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interaction. On the atomic side, one can also imagine to manipulate and
couple Rydberg atoms to a nanofiber. Due to their high orbital radius
(∼ 100 nm) one has to take care of the effects of the fiber surface or
align the electronic orbital plane parallel to the fiber surface.

I would like to finish by showing a rapid theoretical calculation I did
at the very first order, of the effect of bending our optical nanofiber,
on the transverse intensity profile of the evanescent fundamental mode
with linear polarization, see figure 19.1. Would it be possible to create
a nanofiber loop or create a ring-cavity-like resonator where atoms are
trapped all around its circumference ? According to figure 19.1, the
local transverse evanescent field is not seen affected by a loop radius as
small as 50 µm. However, the mode starts to whisper towards the outer
loop diameter or outer right edge side on the figures for 5 µm.

Figure 19.1: Transverse intensity profile of the nanofiber fundamental mode
with quasi-linear transverse polarization (horizontal in this figure)
and λ = 1057 nm. The bending curvature radii are given in units
of the nanofiber radius a = 250nm.
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A
ACCOMPANYING MATHEMATICAL
DEVELOPMENTS

a.1 wave equations

- Wave equation for E : Taking the curl of (6.2), inserting (6.4)
and using a useful vectorial relation leads to

∇× (∇×E) = −µ0
∂(∇×H)

∂t
= −µ0ε

∂2E
∂t2

= ∇(∇ ·E)−4E

Plus (6.1), ∇ · [ε(r)E] = E · ∇ε(r) + ε(r)∇ · E = 0 that gives
∇ ·E = − [E.∇(ε)] /ε

4E− µ0ε
∂2E
∂t2

= −∇
[E · ∇(ε)

ε

]
(A.1)

- Wave equation for H :

4H− µ0ε
∂2H
∂t2

= ∇ε×E (A.2)

a.2 relations between cylindrical components

We can explicit the relations between all the components of the fields
with the help of the following operators in cylindrical coordinates :

∇ ·A =
1
r

∂

∂r
[rAr] +

1
r

∂Aφ
∂φ

+
∂Az
∂z

∇×A =

[1
r

∂Az
∂φ
− ∂Aφ

∂z

]
ur+

[
∂Ar
∂z
− ∂Az

∂r

]
uφ+

1
r

[
∂

∂r
(rAφ)−

∂Ar
∂φ

]
uz

∇×Ecr =
1
r

∂Ez
∂φ

+ iβEφ = −iωµ0Hr

∇×Hcφ = −iβHr −
∂Hz
∂r

= iωεEφ
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1
r

∂Ez
∂φ
− ωµ0

β

∂Hz
∂r

= i
h2

β
Eφ

Hr = i
1
β

∂Hz
∂r
− ω

β
εEφ

∇×Ecφ = −iβEr −
∂Ez
∂r

= −iωµ0Hφ

∇×Hcr =
1
r

∂Hz
∂φ

+ iβHφ = iωεEr

β

h

{
±mBJm(hr)

hr
− iωε1

β
A∂Jm(hr)

∂(hr)

}
= Hφ

1
r

∂Hz
∂φ

+
k2

0n
2
1

βωµ0

∂Ez
∂r

= i
h2

β
Hφ

ωµ0
β

1
hr

∂Hz
∂φ

+
∂Ez
∂(hr)

= i
h

β
Er

∇×Ecz =
1
r

[
∂

∂r
(rEφ)−

∂Er
∂φ

]
= −iωµ0Hz

∇×Hcz =
1
r

[
∂

∂r
(rHφ)−

∂Hr
∂φ

]
= iωεEz

a.3 φ and r components

E±φ (r < a, φ) =
β

h

{
iB ∂J l (hr)

∂ (hr)

ωµ0
β
± lA J l (hr)

hr

}
exp [±ilφ ]

E±φ (r > a, φ) = − β
q

{
iD ∂K l (qr)

∂ (qr)

ωµ0
β
± lCK l (qr)

qr

}
exp [±ilφ ]

E±r (r < a, φ) = − β
h

{
iA ∂J l (hr)

∂ (hr)
− (±l) ωµ0

β
B J l (hr)

hr

}
exp [±ilφ ]

E±r (r > a, φ) =
β

q

{
iC ∂K l (qr)

∂ (qr)
− (±l) ωµ0

β
DK l (qr)

qr

}
exp [±ilφ ]

H±r (r < a, φ) = − β
h

{
(±l) ωε1

β
A J l (hr)

hr
+ iB ∂J l (hr)

∂ (hr)

}
exp [±ilφ ]

H±r (r > a, φ) =
β

q

{
(±l) ωε2

β
CK l (qr)

qr
+ iD ∂K l (qr)

∂ (qr)

}
exp [±ilφ ]

H±φ (r < a, φ) =
β

h

{
(±l)B J l (hr)

hr
− i ωε1

β
A ∂J l (hr)

∂ (hr)

}
exp [±ilφ ]

H±φ (r > a, φ) = − β
q

{
(±l)DK l (qr)

qr
− i ωε2

β
C ∂K l (qr)

∂ (qr)

}
exp [±ilφ ]
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a.4 continuity condition derivation

a.5 laplace developpment

( lβ )2
{ 1
q4a2 +

1
a2q2h2 +

1
h2a

( 1
q2a

+
1
h2a

)}
− J ′lK

′
l

JK

ω2µ0
hq

(ε1 + ε2 ) −

ω2µ0

(
ε1

(
J ′l
J h

)2
+ ε2

(
K ′l
Kq

)2)
= 0

a.6 general solutions for rotating polarization

Inside :

E±z (r,φ) = CJl(hr)
Kl(qa)

Jl(ha)
exp [±ilφ]

E±r (r,φ) = CKl(qa)

Jl(ha)

iβ

2h [Jl+1(hr)(1 + ls)− Jl−1(hr)(1− ls)] exp [±ilφ]

E±φ (r,φ) = ±CKl(qa)

Jl(ha)

β

2h [Jl+1(hr)(1 + ls) + Jl−1(hr)(1− ls)] exp [±ilφ]

H±z (r,φ) = ±s ilβ
ωµ0
CKl(qa)

Jl(ha)
Jl(hr) exp [±ilφ]

H±r (r,φ) = ±CKl(qa)

Jl(ha)

β2

2hωµ0

[
Jl−1(hr)(ls−

ω2ε1µ0
β2 )− Jl+1(hr)(ls+

ω2ε1µ0
β2 )

]
exp [±ilφ]

= ±CKl(qa)

Jl(ha)

β2

2hωµ0

[
Jl−1(hr)(ls− 1)− Jl+1(hr)(ls+ 1)− 2l h

2

β2
Jl(hr)

hr

]
exp [±ilφ]

H±φ (r,φ) = CKl(qa)

Jl(ha)

iβ2

2hωµ0

[
Jl+1(hr)(

ω2ε1µ0
β2 + ls) + Jl−1(hr)(ls−

ω2ε1µ0
β2 )

]
exp [±ilφ]
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Outside :

E±z (r,φ) = CKl(qr) exp [±ilφ]

E±r (r,φ) = −C iβ2q [Kl+1(qr)(1 + ls) +Kl−1(qr)(1− ls)] exp [±ilφ]

E±φ (r,φ) = ±C β2q [Kl−1(qr)(1− ls)−Kl+1(qr)(1 + ls)] exp [±ilφ]

H±z (r,φ) = ±s ilβ
ωµ0
CKl(qr) exp [±ilφ]

H±r (r,φ) = ±C β2

2qωµ0

[
Kl+1(qr)(ls+

ω2ε2µ0
β2 ) +Kl−1(qr)(ls−

ω2ε2µ0
β2 )

]
exp [±ilφ]

H±φ (r,φ) = −C iβ2

2qωµ0

[
Kl+1(qr)(

ω2ε2µ0
β2 + ls) +Kl−1(qr)(

ω2ε2µ0
β2 − ls)

]
exp [±ilφ]

with s =

[ 1
h2a2 +

1
q2a2

](
J?l (ha)

haJl(ha)
+

K?
l (qa)

qaKl(qa)

)−1

using

K?
l (qr) = −1

2 [Kl+1(qr) +Kl−1(qr)]

Kl+1(qr) =
2l
qr
Kl(qr) +Kl−1(qr)

J?l (hr) = −1
2 [Jl+1(hr)− Jl−1(hr)]

Jl+1(hr) =
2l
hr
Jl(hr)− Jl−1(hr)

a.7 normalization constant

For both 1 ± rotating polarizations,

〈
Sinz

〉
2π
ω

=

(
CKl(qa)

Jl(ha)

)2 β3

4h2ωµ0
×{

J2
l+1(hr)(1 + ls)

[
h2

β2 + 1 + ls

]
+ J2

l−1(hr)(1− ls)
[
1− ls+ h2

β2

]}
〈
Soutz

〉
2π
ω

= C2 β3

4q2ωµ0
×{

K2
l+1(qr)(1 + ls)

[
1 + ls− q2

β2

]
+K2

l−1(qr)(1− ls)
[
1− ls− q2

β2

]}

and from Lommel’s integrals∫ r

0
J2
l (hr)r dr = r2

2
[
J2
l (hr)− Jl−1(hr)Jl+1(hr)

]

1 Using ω2ε1µ0/β2 = h2/β2 + 1 and ω2ε2µ0/β2 = 1− q2/β2
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P in +Pout = C2βπa
2

4ωµ0

((
Kl(qa)

Jl(ha)

)2
T inl + T outl

)

T inl = (1 + ls)

(
1 + β2

h2 (1 + ls)

)[
J2
l+1(ha)− Jl(ha)Jl+2(ha)

]
+ (1− ls)

(
1 + β2

h2 (1− ls)
)[

J2
l−1(ha) + J2

l (ha)−
2(l− 1)
ha

Jl(ha)Jl−1(ha)

]

T outl = (1 + ls)

(
1− β2

q2 (1 + ls)

)[
K2
l+1(qa)−Kl(qa)Kl+2(qa)

]
+ (1− ls)

(
1− β2

q2 (1− ls)
)[

K2
l−1(qa)−K2

l (qa) +
2(l− 1)
qa

Kl(qa)Kl−1(qa)

]
Finally

C =
√

4ωµ0Ptot
πa2β

((
Kl(qa)

Jl(ha)

)2
T inl + T outl

)− 1
2

with Ptot = P in+Pout.

(A.3)

a.8 fundamental hydrib mode HE11 with quasi-linear
polarization

Inside the core:

Ex (r , φ) = C iβ

h
√

2
K1 (qa)

J1 (ha)
[J2 (hr)(1 + s) cos(2φ − φ0 ) − J0 (hr)(1 − s) cos(φ0 )]

Ey (r , φ) = C iβ

h
√

2
K1 (qa)

J1 (ha)
[J2 (hr)(1 + s) sin(2φ − φ0 ) − J0 (hr)(1 − s) sin(φ0 )]

Ez (r , φ) =
√

2CJ1 (hr)
K1 (qa)

J1 (ha)
cos(φ − φ0 )

Outside2 :

Ex(r,φ) = −C iβ

q
√

2
[K2(qr)(1 + s) cos(2φ− φ0) +K0(qr)(1− s) cos(φ0)]

Ey(r,φ) = −C iβ

q
√

2
[K2(qr)(1 + s) sin(2φ− φ0) +K0(qr)(1− s) sin(φ0)]

Ez(r,φ) =
√

2CK1(qr) cos(φ− φ0)

2 One can notice that Ez is π/2 dephased from the transverse components {Ex, Ey}
then also leading to rotating polarization while observing light from a plan parallel
to the fiber axis.





B
ANGULAR MOMENTUM DERIVATIONS

(since J−1 = −J1 and K−1 = K1)

Uin = N 2πa2ε0n
2
1ξ
[(
J2

2 (ha)− J1(ha)J3(ha)
)
(1 + s)2 +

(
J2

0 (ha) + J2
1 (ha)

)
(1− s)2

+ 2h
2

β2

(
J2

1 (ha)− J0(ha)J2(ha)
)]

Uout = N 2πa2ε0n
2
2

[(
K1(qa)K3(qa)−K2

2 (qa)
)
(1 + s)2 +

(
K2

1 (qa)−K2
0 (qa)

)
(1− s)2

+ 2 q
2

β2

(
K0(qa)K2(qa)−K2

1 (qa)
)]

We first find the need to rewrite
〈
S±φ
〉
,

〈
S±φ
〉
in

= ∓N 2 h

ωµ0

s

s1
ξJl(hr)

[
Jl+1(hr)(2ls1 + 1 + l2ss1)− Jl−1(hr)(2ls1 − 1− l2ss1)

]
〈
S±φ
〉
in

= ∓N 2 h

ωµ0

s

s1
ξJl(hr)

[
2ls1(Jl+1(hr)− Jl−1(hr)) + (1 + l2ss1)(Jl+1(hr) + Jl−1(hr))

]
〈
S±φ
〉
in

= ∓N 2 h

ωµ0

s

s1
ξJl(hr)

[
2ls1 (−2J ′l (hr)) + (1 + l2ss1)

( 2l
hr
Jl(hr)

)]
〈
S±φ
〉
in

= ∓N 2 h

ωµ0

s

s1
ξ

[
−2ls1

dJ2
l (hr)

d(hr) + (1 + l2ss1)

( 2l
hr
J2
l (hr)

)]

∫ r

0
r2
〈
S±φ
〉
in

dr = ∓N 2 h

ωµ0

s

s1
ξ(−2ls1A+ (1 + l2ss1)B)

A =
∫ r

0
r2 dJ2

l (hr)

d(hr) dr =
∫ x/h

0
x2J

2(x)′

h3 dx =
1
h3

{[
x2J2(x)

]x/h

0
− 2

∫ x/h

0
xJ2(x) dx

}

The last term is a Lommel integration as well as B,

A =
1
h

{
r2J2

l (hr)− r2J2
l (hr) + r2Jl−1(hr)Jl+1(hr)

}
=
r2

h
Jl−1(hr)Jl+1(hr)

B =
∫ r

0
r

2l
h
J2
l (hr) dr = l

h
r2
[
J2
l (hr)− Jl−1(hr)Jl+1(hr)

]
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Rotating modes

Inside the fiber

|E|2 = 2N 2ξ

[
J2
l+1(hr)(1 + ls)2 + J2

l−1(hr)(1− ls)2 + 2h
2

β2J
2
l (hr)

]
(B.1)

Outside

|E|2 = 2N 2
[
K2
l+1(qr)(1 + ls)2 +K2

l−1(qr)(1− ls)2 + 2 q
2

β2K
2
l (qr)

]
(B.2)

b.1 quasi-linear polarization

Ep =
E+ +E−√

2
= Re

[
ei(ωt−βz)

E+ + E−√
2

]
= Re

[
Ep · ei(ωt−βz)

]
Ep =

E+ + E−√
2

Inside

Epz(r,φ) =
√

2CKl(qa)

Jl(ha)
Jl(hr) cos(lφ)

Epr(r,φ) = C
Kl(qa)

Jl(ha)

iβ√
2h

[Jl+1(hr)(1 + ls)− Jl−1(hr)(1− ls)] cos(lφ)

Epφ(r,φ) = C
Kl(qa)

Jl(ha)

iβ√
2h

[Jl+1(hr)(1 + ls) + Jl−1(hr)(1− ls)] sin(lφ)

Hpz(r,φ) = −
√

2CKl(qa)

Jl(ha)

slβ

ωµ0
Jl(hr) sin(lφ)

Hpr(r,φ) = C
Kl(qa)

Jl(ha)

iβ2
√

2hωµ0
×[

Jl−1(hr)(ls−
ω2ε1µ0
β2 )− Jl+1(hr)(ls+

ω2ε1µ0
β2 )

]
sin(lφ)

Hpφ(r,φ) = C
Kl(qa)

Jl(ha)

iβ2
√

2hωµ0
×[

Jl+1(hr)(
ω2ε1µ0
β2 + ls) + Jl−1(hr)(ls−

ω2ε1µ0
β2 )

]
cos(lφ)
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Outside

Epz(r,φ) =
√

2CKl(qr) cos(lφ)

Epr(r,φ) = −i Cβ√
2q

cos(lφ) [Kl+1(qr)(1 + ls) +Kl−1(qr)(1− ls)]

Epφ(r,φ) = −i Cβ√
2q

sin(lφ) [Kl+1(qr)(1 + ls)−Kl−1(qr)(1− ls)]

Hpr = i
Cβ2
√

2qωµ0
sin(lφ)

[
Kl+1(qr)(ls+

ω2ε2µ0
β2 ) +Kl−1(qr)(ls−

ω2ε2µ0
β2 )

]

Hpφ = −i Cβ2
√

2qωµ0
cos(lφ)

[
Kl+1(qr)(ls+

ω2ε2µ0
β2 )−Kl−1(qr)(ls−

ω2ε2µ0
β2 )

]

Hpz = − slβ
ωµ0

CKl(qr)
√

2 sin(lφ)

To vary arbitrarily the direction of the quasi-transverse polarization
direction, one can introduce for convenience an arbitrary dephasing
constant term between the left and right rotating parts of the field. Let
it be 2α, such that the cartesian components of the fields become, after
contravariant rotation,


Ex
Ey
Ez

 =


cosφ − sinφ 0
sinφ cosφ 0

0 0 1



Er
Eφ
Ez


Inside,

Epx(r,φ,α) = CKl(qa)

Jl(ha)

iβ√
2h

[Jl+1(hr)(1 + ls) cos(φ(l+ 1) + α)− Jl−1(hr)(1− ls) cos(φ(l− 1) + α)]

Epy(r,φ,α) = CKl(qa)

Jl(ha)

iβ√
2h

[Jl+1(hr)(1 + ls) sin(φ(l+ 1) + α) + Jl−1(hr)(1− ls) sin(φ(l− 1) + α)]

Epz(r,φ,α) =
√

2CKl(qa)

Jl(ha)
Jl(hr) cos(lφ+ α)

Outside,

Epx(r,φ,α) = −i Cβ√
2q

[Kl+1(qr)(1 + ls) cos(φ(l+ 1) + α) +Kl−1(qr)(1− ls) cos(φ(l− 1) + α)]

Epy(r,φ,α) = −i Cβ√
2q

[Kl+1(qr)(1 + ls) sin(φ(l+ 1) + α)−Kl−1(qr)(1− ls) sin(φ(l− 1) + α)]

Epz(r,φ,α) =
√

2CKl(qr) cos(lφ+ α)
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〈Spz〉out =
[
K2
l+1(qr)(1 + ls)(1 + ls2) +K2

l−1(qr)(1− ls)(1− ls2)
]
×N 2 β

ωµ0

s

s2

− 2(l2ss2 − 1) cos(2lφ+ 2α)Kl+1(qr)Kl−1(qr)×N 2 β

ωµ0

s

s2

〈Spz〉in =
[
J2
l+1(hr)(1 + ls)(1 + ls1) + J2

l−1(hr)(1− ls)(1− ls1)
]
× ξN 2 β

ωµ0

s

s1

+ 2(l2ss1 − 1) cos(2lφ+ 2α)Jl+1(hr)Jl−1(hr)× ξN 2 β

ωµ0

s

s1

Quasi-linear modes
Inside

|E|2 = 2N 2ξ
[
J2
l+1(hr)(1 + ls)2 + J2

l−1(hr)(1− ls)2
]

+ 2N 2ξ [−2Jl+1(hr)Jl−1(hr)(1 + ls)(1− ls) cos(2lφ+ 2α)]

+ 2C2
(
Kl(qa)

Jl(ha)

)2
J2
l (hr) cos(lφ+ α)2

Outside

|E|2 = 2N 2
[
K2
l+1(qr)(1 + ls)2 +K2

l−1(qr)(1− ls)2
]

+ 2N 2 [2Kl+1(qr)Kl−1(qr)(1 + ls)(1− ls) cos(2lφ+ 2α)]
+ 2C2K2

l (qr) cos(lφ+ α)2



C
OPTICAL L IGHT INDUCED ZEEMAN SH IFTS

I see a tremendous amount of intricacy in the world and we have
probably only begun to scratch at the surface of its intricacy.

— Roy J. Glauber

In this appendix chapter, we review, address and share our personal
point of views on a few important fundamental challenges to consider
for a nanofiber light-atom interface.

introduction

The strong interaction of nonresonant light with atoms, such as in an
optical trap for neutral atoms, can lead to both significant energy shifts
and broadening of the internal states of the irradiated atoms Cohen-
Tannoudji and Dupont-Roc (1972). The perturbation on the atomic
states induced by light can be described in terms of fictitious magnetic
fields and fictitious electric fields (in general static) as long as the dipole
approximation is valid for the perturbed atomic charge distribution.
In relatively weak external magnetic fields, such perturbations can

lift the Zeeman degeneracy of atomic states but also can couple dif-
ferent Zeeman levels together at a significant rate. These effects are
detrimental for high resolution spectroscopy of atomic frequencies as
well as for the manipulation and preservation of quantum coherence
between Zeeman levels.

Using arguments based on the symmetry of the polarization of light
beams1, we explain the state-of-the-art strategies to eliminate or at
least reduce the effect of light on the multiplicity of the hyperfine
ground state of Cesium atoms. We will also mention the design of
so-called state-intensitive optical dipole trap for neutral atoms based
on magic wavelengths. In the dipole-electric interaction approximation,
the nature of the fictitious magnetic and electric field is dictated by the
polarization of the electric field at the atom location. Such field however
has non trivial orientation and spatial distribution in the fundamental
mode of an optical nanofiber comparedd to freely propagating light
beams.

1 which is connected to the symmetry of the spin of the photons in a given light mode.
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We will mention situations where one would like to exploit such per-
turbating effects instead of avoiding them to prepare coherent superpo-
sition of Zeeman sublevels or to design subtle fictitious magnetic trap
(Schneeweiss et al. (2014)) for instance. Finally we should find in these
fictitious electric and magnetic interaction description nothing but the
real composition of two angular momenta: the atom total angular mo-
mentum and the intrinsic angular momentum of light. When an atom
gets dressed by a light field, one cannot consider these physical systems
as separated anymore and their spin will compose to a new equilibria.
Along the line of the physical mechanisms behind the fine and hyper-
fine structures of an atom one can view this additional spin coupling
as an ultrafine structure.

c.1 interaction hamiltonian and the symmetry of light

c.1.1 Light polarization

When we consider the interaction between atoms and light within the
dipole-electric approximation, aside from the strength, the coupling is
entirely dictated on the light side by the orientation of the electric field
vector at the location of the atom. This means that any transforma-
tion performed on the given interacting light mode, such as rotations,
that leaves the electric field orientation at the position of the atom un-
changed should leave the interaction energy invariant. Using symmetry
arguments about the light mode, we will simplify greatly the physical
understanding of the effects of light shifts on Zeeman atomic levels.

c.1.2 Atom good quantum number

We will assume that the generator of rotations is still given by the
total angular momentum of the atoms. That is we consider F to be a
“good” quantum number even in the presence of light if we assume that
the light shifts and Zeeman degeneracy lifts are still a small deviation
compared to the atomic hyperfine splitting. Such approximation is in
general relevant for the ground states of alkali atoms where this split-
ting amounts to a few gigahertz or a thousand free radiative linewidths2.
We then describe the atomic states in the eigenstate basis of the atom
total angular momentum to exploit rotational symmetries.

2 To compare with light scalar shift of a few megahertz for standard millikelvin shallow
conservative optical traps
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c.2 scalar, vector and tensor light shifts

c.2.1 Effective hamiltonian

The effective hamiltonian that describes optically induced Zeeman shifts
is in principle not hermitian to account for both energy shift and broad-
ening (Cohen-Tannoudji and Dupont-Roc (1972)). It was given in the
formalism of the density matrix in Claude Cohen-Tannoudji’s thesis
and his derivation can be found also in Barrat and Cohen-Tannoudji
(1961) where the secular3 approximation and adiabatic elimination4
techniques were used. Here we only discuss light shifts and we shall
postpone for the moment the broadening effects or in modern terms
we will only look at the real part of the atomic response. Starting
from H = −d̂ · Ê and decomposing both operators into their analytic
parts, one arrives at the following effective hamiltonian (Geremia et al.
(2006))

Ĥ =
∑
f ,f ′

Ê(−) ·
P̂f d̂P̂f ′d̂†P̂f

h̄∆f ,f ′
· Ê(+) (C.1)

with the help of the rotating wave approximation and perturbation
theory for instance. The positive (resp. negative) frequency part of
the field Ê(+) (resp. Ê(−)) represents the annihilation (resp. creation)
of a photon for the given interacting light mode. While d̂† (resp. d̂)
is the atomic dipole operator raising (resp. lowering) excitation. The
other unity scalar operators are projectors. P̂f =

∑
m |f ,m〉 〈f ,m| is

the projection onto the ground state f whereas P̂f ′ is the projector for
the excited states f ′.

c.2.2 Atomic polarizability tensor

The atomic contribution in the effective hamiltonian appears as a dyadic
or tensor product of two dipole vector operators. It is known nowadays
as the atomic polarizability tensor α̂ which between two particular
ground and excited states is

α̂f ,f ′ = P̂f d̂P̂f ′d̂†P̂f . (C.2)

We shall comment it after explaining the effect of the hamiltonian onto
the atomic Zeeman levels.

c.2.3 Simplest case: interaction with F = 1/2

We consider first the simplest non-trivial case of a total atomic spin
F = 1/2. That is we only look at the effects of a light beam onto a

3 known nowadays as the rotating wave approximation.
4 Alternative techniques to perturbation theory lead to the same hamiltonian, for
instance the resolvent method in .



300 optical light induced zeeman shifts

given ground state F . Readily, its Zeeman multiplicity (2F + 1) spans
only a two-dimensional Hilbert space. This implies that the effective
hamiltonian will read as a two-dimensional square matrix. Such matrix
can be decomposed onto the Pauli matrices that form a basis of the Lie
algebra of the SU(2) group.

Heff(f = 1/2) = c0I2 +
∑
i

ciσi. (C.3)

Here I2 denotes the 2× 2 identity matrix. A spin 1/2, which can be ex-
pressed here as F̂ = h̄

2 σ̂, possesses a magnetic moment ~µ = γ ~F where γ
is the gyromagnetic ratio. Thus the scalar product in the above hamil-
tonian can be interpreted as a fictitious magnetic interaction −~µ · ~B by
fixing the coefficients to ci = − h̄γ2Bi. We then conclude that in general,
the interaction between light and a spin 1/2 ground state would result
in two contributions behaving differently with respect to rotations. We
have a scalar part which is independent of the angular orientation of
the atomic spin equivalent to a constant center of mass light shift onto
all the Zeeman level |f ,m〉 and a pseudo-vectorial5 light shift Zeeman
state dependent.

consequences of the light polarization Consider a light
beam circularly polarized propagating along the z axis in free space.
Any proper rotation of the beam around its propagating direction leaves
its polarization invariant. Consequently, in the dipole-electric approx-
imation, the effective hamiltonian should remain as well unchanged.
Therefore any decomposition onto σ̂x and σ̂y should vanish such that
the only remaining component of the fictitious magnetic field is along
the propagation direction z. Heff = c0I2 + czσz. Now consider that the
helicity of the circular polarization is reversed which is like a xy plane
mirroir reflection, then the projection of the fictitious magnetic field will
have also its sign reversed, Heff = c0I2− czσz. One will conclude that if
one sends a superposition of σ+ and σ− circular polarization with equal
intensity, the vector shift will cancel out such that an atomic spin 1/2
only experiences scalar shifts from linearly polarized light. Aside this
particular case, any unbalanced combination of circular polarizations,
that is elliptical polarization, will induce a fictitious magnetic field. We
shall see later that is then convenient to define a degree of ellipticity
for the polarization that characterizes the strength of the vector light
shift.

5 A magnetic field is a pseudo-vector or fully anti-symmetry rank 2 tensor with respect
to rotations in 3D. i. e.depends on the sign of the rotation angle or the orientation
of the basis axes.
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c.2.4 Fictitious magnetic field or spin composition

Consider the following identity

(~a · ~σ)(~σ ·~b) = (~a ·~b)I2 + i~σ · (~a×~b) (C.4)

that holds when the vectors commute with the Pauli matrices. We
remark that it can be applied to the effective hamiltonian (C.1) on the
multiplicity of a ground state F = 1/2, where the electric field operator
that acts on the field commutes with the atomic dipole operator. This
would give for the vectorial shift σ ·

[
iÊ(−) × Ê(+)

]
. Interestingly, we

have shown in an earlier chapter that the right vector in this scalar
product is nothing but the intrinsic angular momentum of the light
field. One can then interprete light shifts as the composition of the
light intrinsic angular momentum with an atomic angular momentum.
That is here the composition of two spin6 1/2 leading to the direct sum
of a spin 0 contribution and a spin 1. However, even though the true
spin of light appears above, the atomic spin here is fictif as it maps
the atomic dipole vector operator as SU(2) does for SO(3) (Feynman
et al. (1957)). The previous results concerning the orientation of the
fictitious magnetic field then readily resumes to the orientation of the
spin angular momentum of light which can only be ported along the
propagation direction in free space.

c.2.5 General case F > 1/2: tensor shift

A true vector, such as an atomic dipole, is by definition in physics
an irreducible tensor of rank 1 with respect to rotations in the three-
dimensional euclidian space. This is a requirement from the classical
principle of relativity. However the composition of two such vectors
through a dyadic product or tensor product forms a new representa-
tion, a rank 2 tensor that is not irreducible anymore. This is the case
for instance in the effective hamiltonian (C.1) where one recognizes
the dyadic product of two vector operators. To exploit the rotational
symmetries of the atomic configuration, the most we can do is to decom-
pose it into a direct sum of irreducible representations that transform
independently among themselves with rotations. This decomposition is
known as the Clebsch-Gordan decomposition. In the general case, the
effective hamiltonian is a (2F + 1)× (2F + 1) matrix. We decompose
it into irreducible tensor operators of rank k T (k)

q with spherical com-
ponents −k ≤ q ≤ k (k = 0, 1, . . . , 2F ). Only up to the second rank, as
this is the maximum rank that can be obtained by composition of two
rank 1 tensors.

6 Light carries spin 1 in free space (photons are bosons) but only two components
along the propagation can be detected.
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H(f) = c
(0)
0 +

1∑
q=−1

c(1)q T (1)
q +

2∑
q=−2

c(2)q T (2)
q (C.5)

The summation over the components of the rank 1 tensor can be
rewritten as a linear combination of the cartesian components of the
total angular momentum operator (T (1)

0 ∝ Fz and T (1)
±1 ∝ (∓Fx± iFy)).

That is interpreted as before as a fictitious magnetic interaction with
the dipole moment of the state f . In addition here the hamiltonian
has a rank-2 tensor part leading to tensor shifts contrary to the case
F = 1/2. The components of spherical rank 2 tensor can be expressed7
from the ones of the rank 1 tensor

T
(2)
±2 ∝ (Fx ± iFy)2

T
(2)
±1 ∝ ∓ [Fz(Fx ± iFy) + (Fx ± iFy)Fz ]

T
(2)
0 ∝ 3F 2

z − F (F + 1)

This may appear ugly to anyone who just sees component multi-
plications. However, the above expression is beautiful with respect to
rotations. A magnetic dipole moment is a rank 1 tensor with respect to
proper rotation8 and a traceless symmetric rank 2 tensor with respect
to SO(3) is nothing but a pure quadrupole moment. Because a spin
1/2 has only two "polarities" that is only two opposite orientations, it
cannot possess a quadrupole moment.
To sum up, the effects of light onto the Zeeman multiplicity of an

atomic ground state f can be viewed as a monopole interaction (center
of mass light shift), a dipole interaction (here a fictitious magnetic in-
teraction) and a quadrupole interaction with the gradient of the electric
field in the general case.

consequences of the light polarization Again, the ro-
tational invariance of a circularly polarized beam of light propagat-
ing along the z axis would require that the contribution of all tensor
components involving Fx and Fy should vanish. Therefore, H(f) =

a+ bFz + c
[
F 2
z − F (F + 1)

]
where only b changes sign for opposite cir-

cular polarization. For linear polarization, one only has a tensor shift
in addition to the scalar shift.

7 Following the famous decomposition of a rank 2 cartesian tensor (i.e dyad product of
two rank 1 tensor) into traceless fully antisymmetric tensor and symmetric tensors.

8 It is actually a rank 2 with SO(3) reduced to rank 1 as fully antisymmetric. It is a
pseudo tensor but transform like rank 1 tensor upon proper rotation that is without
inversion.The group of rotation is not continous but composed of two disjoints sets
(proper and improver rotations).
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c.3 state-insensitive optical trap

We want to discuss in this section methods to minimize the effect of
trap light onto the internal atomic states without calculation. The idea
is to emphasize on the underlying physical mechanisms.

c.3.1 Back-Goudsmit effect

There is a very noteworthy comment at the end of the short article
reporting the first significant light Zeeman shift (Dupont-Roc et al.
(1967)). Light shifts can play the role of the atomic hyperfine struc-
ture. In view of designing an optical light trap for neutral atoms, the
modification of the internal atomic states by the trapping mechanism
is the last wanted effect for high resolution spectroscopy based on the
measure of atomic frequencies but also for coherent and precise ma-
nipulation of the atomic states that would not be stationary anymore.
However, in other situations, it is interesting that light can replace the
role of the nuclear spin coupling. When the interaction with light is
strong enough, one can actually uncouple the total electronic angular
momentum J to the nuclear spin I leading to the Back-Goudsmit effect
(Goudsmit and Bacher (1929); Gawlik (1991); Gawlik and Zachorowski
(2002)). This effect is analog to the Paschen-Back effect where the total
orbital momentum of the electron L gets decouple to its own spin S

from a strong interaction with an external magnetic field.

c.3.2 Magic and tune-out wavelengths

Common optical light traps are based on the scalar or ac Stark shift
when the electric field is inhomogeneous thereby creating a restoring
gradient force. However the overall sign of the atomic polarizability de-
pends on the relative position (detuning) of the light wavelength to the
electronic states of the atoms which would either attract or repell the
neutral atom from electric field intensity spatial maxima. This entails
a limiting effect best summarized in the simple case where the light is
assumed to act predominantly9 on only two such atomic levels. When
the energy of the ground state gets red shifted the excited state gets
blue shifted. Atoms in the excited state will then be anti-trapped. If one
desires to also trap excited states10 (which have a short radiative life-
time contrary to ground states) it is possible to find so-called “magic”
wavelengths (Ye et al. (2008)) that exploit the multi-level structure of
the atom to produce a nearly identical scalar polarizability for a cou-
ple of levels that ensures a state-independent trap potential and a zero
differential scalar shift.

9 when light is quasi-resonant with a transition
10 to exploit optical coherences between atomic states for instance
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There also exists so-called “tune-out” wavelengths for which the
dynamic scalar polarizability of ground state alkali atoms vanishes
(LeBlanc and Thywissen (2007)). For instance, for Cesium atoms, the
ground state will experience a zero Stark shift from an optical wave-
length of 880.25nm situated between the D1 and D2 lines (Arora
et al. (2011)). There are more tune-out wavelengths for Cesium (460.22,
457.31, 389.029 in nanometres) which may be more difficult to produce.
Obviously they cannot be used to optically trap directly a ground
atomic state based on the scalar ac Stark shift. However, they per-
mit novel trap schemes based on pure vectorial light shift for instance
(that is light-induced magnetic trap) (Schneeweiss et al. (2014), here
in a nanofiber). They initially have applications for sympathetic cool-
ing where the tune-out wavelength could optically trap another atomic
specie while a pre-cool buffer of tune-out alkali atoms would be little
affected by the trap.

c.3.3 Differential Stark shift

To sound repetitive, for atomic clocks or quantum atomic coherences
for metrology and computing, one should seek to design an optical light
trap that little affects the frequency of the working atomic transition.
And we have seen that the energy difference between two levels exhibits
in general a non-zero differential Stark shift from the dressing of the
trap light. On the one hand this affects the accuracy of the measure-
ment of the transition frequency but also, on the other hand, leads to
inhomogeneity from the motion of the atoms in the spatial profile of
the trap light mode.

cancellation for optical transitions When the detun-
ing of light is large compared to the hyperfine structure of the atomic
excited states, its dressing will become independent of them, that is
independent of f ′. The indirect angular coupling with the nuclear spin
through the electron angular momentum becomes negligible. In mathe-
matical terms, this means that the total electronic angular momentum
becomes a good quantum number for the rotational invariance of the
dipole interaction. The atomic dipole operator acts only directly on the
electronic variables. The tensor shift will therefore depend on J which
for the ground states of alkali atoms J = 1/2 (L = 0, S = 1/2) will
vanish (as the highest possible tensor rank is 2J + 1 = 1). In absence
of light polarization ellipticity, the vector shift vanishes as well. The
remaining contribution to the differential Stark shift from the scalar
shifts can be tackle using magic wavelengths. Cancellation of differen-
tial scalar shifts has been achieved very well for optical transition levels
(see for example Brusch et al. (2006); Boyd et al. (2006); Takamoto et al.
(2005)).
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no magic wavelength For the manipulation of hyperfine quan-
tum coherences instead of optical ones, as more revelant to our work,
the situation is more difficult. For instance, it was shown that there
is no magic wavelength to cancel the differential Stark shift11 on the
clock states of Cesium Rosenbusch et al. (2009).
Indeed for atomic hyperfine transitions this is more difficult as the

atomic polarizability of different f states of the same electronic state
have quite the same dependence with the optical trap light frequency
because this is actually what does12 the far-detuned approximation
which neglect the hyperfine structure from nuclear interaction. Indeed,
we should strongly emphasize that the above results are for far-detuned
light. It is possible to null the differential scalar shift on the ground
hyperfine states by finding magic wavelengths provided now that they
are near-detuned, that is falling between the hyperfine levels, whereby
the frequency dependence of the hyperfine atomic polarizabilities can
cross over. A smaller detuning has the cost of an increased scattering
rate which is incompatible with the design of an optical light trap with
deep depth and both long storage and coherence time.

vector shift and magic magnetic field As the most re-
cent development in optical traps has shown, light vector shifts are
important to discuss as they may be the source of increased trap losses.
These trap losses will depend onto the spin polarization of the trapped
atomic states (Corwin et al. (1999)). But again, the bilan is never black
and white in physics.
It is interesting to consider that vector shifts could in turn be used

to fight against differential scalar shifts when there is exist no magic
wavelengths to make them vanish. With elliptical light trap, it is then
possible to program vector shifts to compensate scalar shifts Chicireanu
et al. (2011). This idea has improved the coherence time of the hyperfine
levels of trapped atoms Dudin et al. (2010).
The proposal of Flambaum et al. (2008) is worthnoting. Starting

with a counter-intuitive circularly polarized optical light trap, one can
find “magic” external magnetic field to subject the atoms to in order to
compensate the scalar shifts with the vector shifts. When the magnetic
field is large enough, it dictates the quantization axis. Henceforth, the
relative angle θ between the magnetic field and the light propagation
direction will modulate the vector shift contribution with cos θ. By
varying the angle, which is found optimal close to π/2, any trap light
frequency can be made magical. In fact, this shift is also proportional
to the ellipticity of the light and then could alleviate the effect of the
magnetic field orientation in traps with controlled polarization.

11 the result implicitly mean in conditions where light was linearly polarized for which
the vector shifts cancel out. The tensor shift being absent in the ground state.

12 the polarizability of an hyperfine is in this approximation mainly given by the one
of the fine structure up to the different detunings.
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quadractic zeeman effect strategy Such previous com-
pensation scheme can appear challenging. It requires first magnetic
sensitive levels (mf 6= 0) for which the vector shifts13 are in general
much greater than both the scalar and the tensor parts. This would de-
mand a very fine control of the ellipticity of light and/or of the overall
orientation of the atom (through the fine control of the total magnetic
field, effective + bias quantization field).
In order to tackle this shift on the clock states of the primary and

secondary frequency standard (i. e. Cesium and Rubidium Zeeman hy-
perfine ground states with mf = 0) the experimental demonstration of
Lundblad et al. (2010) outstands. The idea may appear simple. It con-
sists of making the originally first order magnetic Zeeman shift insen-
sitive clock states mf = 0, magnetically sensitive using the quadratic
Zeeman shift in presence of a larger external magnetic field to create a
vector shift of order comparable to the scalar shift. The obvious draw-
back of pursuing trap light intensity insensitivity with this method is
making the atomic states sensitive to magnetic field fluctuations. For
Cesium, this sensitivity, independent of the trap light detuning, is found
to be 23 kHz/mT14 (Lundblad et al. (2010)).

c.3.4 Transition shift versus trap loading

There is a very important issue of the light shifts with respect to the
efficient loading of atoms into an optical dipole trap. By design purpose,
the detuning of a Far-off resonant trap (FORT), for already several
nanometers is such that the photon scattering rate is very low. This
makes the optical FORT truly conservative. Atoms are in general pre-
cooled before they can be transferred into such shallow trap. Because it
is a conservative potential, the efficient loading of atoms into the optical
trap requires a dissipative force such as a friction force that can be
provided by the Doppler cooling effect at play in aMOT cooling reservoir
for instance. Clearly, the existence of a large change in the atomic
frequencies due to the Stark shift from the presence of the optical trap
light is in general not compatible with Doppler cooling. Indeed, it can
create a large red-shift or simply blue detune the MOT beams. This
can be a great concern when trying to load into microscopic traps or
into tighly-focused laser beam. By alternating optical trapping and
dissipative (Doppler cooling) phases by chopping the dipole trap laser
beam one would bypass this difficulty Miller et al. (1993).
To make optical trapping and optical cooling compatible for neutral

atoms is actually the goal of sympathetic cooling but here in this thesis
we are only working with a single atomic specie.

13 The atomic polarizability exhibits a vectorial nature already without the hyperfine
interaction. It is a lower order contribution in perturbation theory compared to the
scalar and tensor which are proportional to the hyperfine interaction.

14 1 milli-tesla = 10 Gauss.
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For a conservative trap, the maximum number of atoms that can be
loaded into the trap can simply be estimated by the product nV of the
trap volume V and the density of cold atoms from the MOT cloud n.
Small trap volumes thus impose low number of atoms as it is difficult to
increase n. Moreover, the volume can be small enough that the average
number of atoms from a MOT cloud in the trap volume can be smaller
than one.
Magic wavelengths, first for single color red-detuned FORT were then

a great experimental advance in the loading of atoms. Not only did it
solve the efficient loading of atoms in the small volume of an optical
cavity for instance, the cancellation of the differiential Stark shift also
permitted the continuous observation of atoms in the trap. Such state-
intensitive cooling and trapping was reported in McKeever et al. (2003)
where a red-detuned magic-wavelength of 935 nm was used to cancel the
differential shift on the cooling cyclic transition of Cesium atoms. This
novel idea of such FORT compatible with Doppler cooling thanks to
state-insensitive trapping via a magic wavelength was proposed and
demonstrated by Katori et al. (1999) and Ido et al. (2000)
However, the transfert of atoms from a magneto-optical trap to an

optical dipole trap is a dynamical and more subtle process. In the impor-
tant experimental study of Kuppens et al. (2000), three key ingredients
are highlighted for an efficient loading: increased detuning of the MOT
light, reduction of the hyperfine repumping light and displacement of
the center of the dipole trap with respect to the MOT. There is a note-
worthy experimental curiousity in their report. The loading was also
improved on the attempt to introduce a geometrical shadow in the re-
pumping light beam whereby a disk protect the FORT region from being
illuminated by repump light while it is still irradiating the surrounding
MOT atoms. Could this shadow be realized with a nanofiber sustaining
a dipole trap ?
Being able to operate a MOT with a dipole trap allows to reach

high phase-space density that makes it possible to obtain Bose-Einstein
condensation using fast optical methodsBarrett et al. (2001); Salomon
et al. (2014). After the efficient loading of a great number of atoms
in the dipole trap, evaporative cooling could then be performed to
reach the remaining needed phase-space density. Instead of the chop-
ping method of Miller et al. (1993), a FORT can be efficiently loaded
continuously from MOT cloud overlapping it by understanding the phys-
ical mechanisms that lead to losses during the transfert. An improve-
ment of three orders of magnitude in the number of loaded atoms was
achieved in Adams et al. (1995). This work highlights the central im-
portance of the MOT repumping light during the loading stage. The
repumping light scattering rate, which controls the number of atoms
in the lowest ground state as well as the number of excited atoms, can
damp density limiting processes such as radiative repulsion forces, light-
assisted collisions and spin exchange/ground-state hyperfine changing
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collisions. The last inelastic process leads to an energy exchange of
about h9.2GHz ' kB0.45mK for Cesium. This would eject an atom
from the shallow dipole trap of a nanofiber but could be re-captured in
the MOT volume. Instead of ramping down the intensity of the repump-
ing light of a standard MOT, one might consider applying the idea of the
gray molasses or blue Sisyphus cooling to load into a nanofiber dipole
trap to alleviate the effect of spin exchange collisions. The idea of Bo-
iron et al. (1998, 1996) should not represent an experimental challenge
for our nanofiber experiment.
We note that the idea of the geometrically shadow in the repumping

beam, overlaps with the principle of the dark MOT or dark Spontaneous-
Force Optical Trap (SPOT) Ketterle et al. (1993).

c.3.5 Magic wavelengths for optical nanofiber traps

To allow for the simultaneous operation of a magneto-optical trap with
a dipole trap engineered in the evanescent field of the fundamental
mode carried by an optical nanofiber, Le Kien et al. (2005b) has found
magic wavelengths compatible with the single-mode cut-off condition.
Aside such fiber geometric criteria (evanescent decay length), the magic
wavelengths are solely dictated by the atomic polarizability. The red-
detuned magic wavelength of 934.5 nm for Cesium ground states is
retained as in McKeever et al. (2003). For the two-color evanescent
nanofiber trap, blue detuned magic wavelengths are in addition found
to be 613 nm and 685.5 nm. The former being disregarded as too close
to the fundamental cut-off wavelength of the fiber. For this choice, the
maximally inhomogenous light shifts on the D2 line transition are shown
to be only tens of megahertz. They will allow not only simultaneous
operation of the trap with slightly detuned MOT light but also with
simultaneous probing (continuous observation during trap motion). Fi-
nally, they offer the opportunity to trap both ground and excited states.
However, vector-shifts due to the ellipticity of the polarization of the
proposed trapping scheme therein were not investigated. Only the ef-
fects of the scalar and tensor shifts were studied.
In view of manipulating optical quantum coherence of atoms trap

around an optical nanofiber, the group of Jeff Kimble, investigated the
light shifts more precisely by taking into account the local ellipticity of
the nanofiber mode field, that is, they studied the vector shifts for the
nanofiber platform (Lacroûte et al. (2012)). They proposed and experi-
mentally demonstrated a state-intensitive two-color dipole trap around
a nanofiber based on the initial scheme presented and demonstrated
in Balykin et al. (2004); Vetsch et al. (2010); Dawkins et al. (2011). It
therefore comes with no surprise that the magic wavelengths given to
cancel the scalar shifts are similar to those of Le Kien et al. (2005b).
However, it could have been that from the many possible blue tuned
wavelengths Arora et al. (2007) another one would have been better
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suited for a deep trap with few scattering events. The slight difference
in wavelengths arises from the will to cancel exactly the differential
scalar shift between the ground and F ′ = 4′ excited state with zero
magnetic moment projection mf = 0 of its respective hyperfine man-
ifold. Indeed, also as in Goban et al. (2012), they report for the red
wavelength 937 nm and for the blue one 687 nm.

As we have seen in previous sections, vector shifts arising from the
ellipticity of the trapping light can be suppressed by using instead lin-
ear polarization (e. g. sending a counter-propagating trap beam with
opposite ellipticity) or by orienting the total magnetic moment of the
atom in a direction orthogonal to the local spin angular momentum
orientation of light using an appropriate external bias magnetic field.
The last point may be hardly applicable experimentally in the situation
where the ellipticity of the light field is first inhomogeneous and second
if its spatial variation happens on a scale smaller than the wavelength.
This is the general situation for the evanescent fundamental mode of a
nanofiber.
The main observations are as follows. Due to the presence of a longitu-

dinal component of the electric field in the fundamental mode in quadra-
ture to the transverse components, there can exist a significant elliptical
polarization in the longitudinal plane even though the polarization in
the transverse plane is quasi-linearly polarized. The polarization of a
nanofiber mode is richer than a free space electromagnetic mode and
exhibits the full complexity of a three-dimensional nature. The longitu-
dinal component at the source of the ellipticity is maximum in a longi-
tudinal plane containing the tranversal linear polarization and vanishes
in a longitudinal plane orthogonal to this first plane. From this we draw
two temporary conclusions. In the two-color evanescent nanofiber trap
scheme with orthogonal linear polarization (to ensure azimuthal con-
finement), atoms, which are trapped along the polarization direction of
the red-detuned field, should experience then a non-neglegible ellipti-
cal polarization. However, the red-detuned field is a standing wave one,
such that the superposition of the counter-propagating red-detuned
field with identical transverse linear polarization will balance out the
longitudinal ellipticity. Because the blue-detuned field is singly propa-
gating, it has the potential to introduce ellipticity at the trap location.
However, it is polarized orthogonally to the red field polarization (along
which the trap minimum is located) such that according to our previous
remarks, the vector shifts should be cancelled at the trap minimum.
The main argument of the work reported in Lacroûte et al. (2012) is

focused on the fluctuations of the atom position in the trap such as its
natural harmonic motion around the minimum. This will lead to non-
zero vector shifts. The azimuthal exploration of an atom in the trap
motional ground state corresponds to tens of nanometers. This leads,
through spatially inhomogenous vector shift, to hundreds of kilohertz
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splitting between the Zeeman sublevels of the ground state |F = 4〉.
This estimates a spin coherence time of a few microseconds.

By adding a counter-propagating blue-detuned beam, one will reduce
this vector shift along the same result as for the pair of red beams.
However, the counter-propagating beam has to be detuned from its
companion in order to avoid creating a blue-detuned standing wave,
which would not be matched to the red one. The detuning is chosen
such that the beat frequency is great compared to the atomic motion
(trap frequency). The atom then sees an adiabatic total potential, being
the sum of two independtly blue-detuned intensity with no interferences.
The hyperfine coherence lifetime could then be limited only by residual
scalar shifts for instance.

c.4 a comment on the collisional blockade regime

In this section, we argue whether the collision blockage regime is real-
istic in our nanofiber experiment.
The initial litterature, Sagué et al. (2008); Vetsch et al. (2010), on the

trapping of atoms around a nanofiber expects the loading to operate in
the particular collisional blockade regime. This belief may have turned
into a claim even though no direct experimental evidences has been
provided15 apart from expectation.

c.4.1 Microscopic trap loading regimes

Nanofiber traps have a small volume < λ3 and one should expect its
loading mechanism from a low density MOT to be the one of a micro-
scopic optical dipole trap Schlosser et al. (2002). The equation for the
evolution of the number of atoms N in a dipole trap is given as

dN

dt
= R− γN − β′N(N − 1). (C.6)

Here R, is the loading rate into the trap, γ the one-body loss rate and β′
the two-body collisional loss rate. γ is attributed to mainly collisions of
the trapped atoms with the room-temperature background gas atoms.
β′ sums up all kind of two-body inelastic collisions that eject the atoms
from the trap. From (C.6), three loading regimes can be inferred in
steady state.

weak loading When the third collisional term is neglegible, we
have in the steady state, dN/dt = 0, 〈N〉 = R/γ. This happens for
instance for very low loading rate R for which we imagine that the
probability to have two-body collisions in the trap, before a collision
with a background gas atom occurs, is low.

15 up to the knowledge of the author
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strong loading When the loading rate R is high we imagine the
opposite effect. The trap loss from background gas collisions becomes
neglegible due to the high flux of incoming atoms that participate in
two-body collisions in the trap. One has 〈N〉 =

√
R/β′.

collision blockade loading When β′ � γ, as soon as there
is an atom in the trap brought by a loading rate comprise between γ
and β, the much higher-occurence of two-body collision will lock the
statistics of the number of atoms in the trap to either 0 or 1 but never
more than 1 such that on average 〈N〉 = 0.5.
Therefore to ascertain the collisional blockage regime one needs the

knowledge of the loading rate into a single nanofiber trap, the back-
ground gas loss and the two-body collisional rate. The first would be
difficult to measure without single trap site resolution. We could then
consider the process identical for all sites and then divide the total
loading rate into the whole lattice by the number of trap sites. Even
though this assumption would be valid, the loading rate, from the sub-
Doppler cooling phase that changes the MOT light parameter largely
and quickly for the efficient transfert will be a doubful estimate.

c.4.2 Estimation of the rates

loss rate due to background The trap loss rate due to col-
lision with the background gas is estimated from the background gas
pressure in the chamber. More precisely from the different partial pres-
sures of all different species (e. g. CO2, N2, H2O) that possess different
scattering cross-section with Cesium atom. For a van der Waals inter-
nuclear distance interaction potential to the sixth power the collision
rate of Bjorkholm (1988) becomes as in Arpornthip et al. (2012) as
follows

γi = 1/τi ' 6.8 Pi
(kBT )2/3

(
Ci
mi

)1/3
(Dm0)

−1/6. (C.7)

Here, Pi = nikBT is the partial pressure of a given specie i, D the trap
depth, m0 the mass of the alkali atom and mi of the background specie,
Ci is the van der Waal potential approximation parameter −Ci/r6. It
can be estimated from the Slater-Kirkwood formula that takes into
account the static polarizability and the number of valence electrons
of the species. As a result it depends on the state of the atom and
excited state will have a bit higher values. But we will estimate the
order of magnitude of Ci from the collision rate between ground-state
Cesium atom and hydrogen molecules, for a typical 1K MOT deep trap
and a room-temperature 300K background gas. From Bali et al. (1999),
CCs-H2 = 170 and CCs-Cs = 6330 in atomic units. This gives a reported
value of γH2 /P = 4.9× 10−7 Torr−1s−1. Knowing the pressure in the
chamber will allow to estimate the lifetime due to background collisions
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with residual gas. γi depends weakly on the trap depth. Extrapolating
to a milli-kelvin shallow trap will only multiply it by about 3. It actually
depends in general weakly on all the specie parameter as well.

chamber pressure The volume of the vacuum chamber was
measured to 810ml16 by filling it up with acetone. The pressure in
the chamber can be measured with the current of the ion pump (Var-
ian Starcell 20L/s pumping speed). Such measurement is less robust
than from an ionization gauge as it is prone to leakage currents and
other limiting offsets. After subtracting the offset from the ion pump
indicator of 3.9mV from the measured value of 4.8mV from a good mul-
timeter, we find a current of about 0.9 µA (the conversion factor being
1V = 1mA). From Figure C.1, (1mbar ∼ 0.75 Torr or mmHg) this
brings us to a few 10−9 Torr. This value which has not changed over
three years is compatible with a gauge measurement of about 2× 10−9

Torr during the preparation of the vacuum with a turbo pump.

Figure C.1: Ion pump technical pressure current calibration

The ion pump pressure measurement is a technique with comparable
resolution has a pressure measurement infered from the loading time τ
of a magneto-optical trap. The low pressure floor being ultimately lim-
ited by collisions between atoms within the trap to less than 1× 10−9

Torr. From the recent interesting work of Arpornthip et al. (2012), a re-
liable convertion17 to vacuum pressure is given by (2× 10−8 Torr s)/τ .
Our pressure measurement is then compatible to our common 1/e load-
ing time upper estimation of about 0.5 s.

16 comparable to the volume of a wine bottle.
17 The conversion factor is compatible with (Prentiss et al., 1988).
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Based on all the above, a good range for the trap loss rate or trap
lifetime due to background collision will be 0.1/s ≤ γ ≤ 1.0/s for
a pressure ranging18 from 1 to 10 × 10−9 Torr, compatible with the
estimation of Sagué et al. (2008). Any trap loading rate above γ/2
that is lower than the two-body collision loss rate (β′/4) (see Schlosser
et al. (2002)) will fall into the collisional blockade regime. Interestingly,
in the latter reference, a value of γ = 0.2Hz for a vacuum chamber of a
few 10−9 Torr is quoted showing that an estimation compatible to ours.
Note that γ = 1/τbr+ 1/τCs if we were to take into account precisely
additional collision due to untrapped Cesium atoms.

collisional rate From Kuppens et al. (2000) β′ = 0.016Hz
for a gaussian trap volume with waist w0 = 40 µm and wavelength
∼ 785 nm. The trap volume approximated to a cylinder depends on the
fourth power of the waist (V ∝ w2

0zR where zR ∝ w2
0 is the Rayleight

range such that β′ is rapidly varying function of the waist. This is why
a value of β′ = 1000Hz as taken in Schlosser et al. (2002) will be a more
than conservative value for a trap volume with typical sub-wavelength
dimensions.
The collision blockage regime would then be accessible for at least

three orders of magnitude of atom loading rate. We note that these
regimes are expected to exhibit loading sub-Poissonian distribution of
atom number in the trap.

loading rate estimation Sagué et al. (2008) took the load-
ing rate of the trap of Schlosser et al. (2002) to obtain the one for a
single nanofiber trap. We know that the presence of the nanofiber af-
fects the equilibrium number of atoms in a MOT. Collisions with the
fiber itself or the presence of atoms sticking its surface might affect
the dynamics of the loading as well as complex light assisted collisions
from the MOT light crossing on the fiber. From the common number
of atoms measured in the nanofiber trap and an estimate of the num-
ber of occupied sites from the volume overlap between the MOT and
the dipole trap, after a sub-Doppler cooling transfert that last a time
τsub-Doppler between 10 to maximum 100ms, we would give a compati-
ble estimate of R ∼ 1/τ ∼ 100Hz with the litterature. This shall not
be taken as granted until experimental work provides quantitative mea-
surement of the loading rate into a single nanofiber trap. In the recent
work of Vetsch et al. (2012) a better experimental characterization of
the nanofiber trap was conducted carefully to check a priori expecta-
tions about the trap, although evidences (sub-Doppler trap tempera-
ture) show that the laser cooling and loading mechanisms seem to work
better than what might be expected in the vicinity of a nanofiber. How-
ever, the estimation of the loading rate, without direct measurements,
is a guess similar as we just did. What is likely is that the loading rate

18 γ/P = 1× 10−8 Torr−1s−1
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is bigger and not too far from γ and that β/γ � 1 due too the small
trap volume.



D
DUAL -HETERODYNE NOTES

d.1 notations

assumption 1 Linear Response Detector Signal

S(t) =
∫ +∞

−∞
R′(τ )|Etot(t− τ )|2 dτ ,

S(t)
=

causality
∫ +∞

−∞
θ(τ )R(τ )︸ ︷︷ ︸
R′(τ ), τ≥0

|Etot(t− τ )|2 dτ .

assumption 2 Amplitudes and phases of all fields are slowing vary-
ing in time, i.e nearly constant over an optical period oscillation.

Etot(t) = Etot(t)/2 + c.c,

with

Etot(t) = E1e
i(Φ1−ω1t) + E2e

i(Φ2−ω2t) + ELOei(ΦLO−ωLOt),

ω1 = ωLO + Ω and ω2 = ωLO −Ω.

|Etot|2 =
1
4

E2
tot + E∗2tot︸ ︷︷ ︸
optical freq.

+2|Etot|2
 .

Therefore

S(t) ∼=
1
2

∫ +∞

−∞
R′(τ )|Etot(t− τ )|2 dτ . (D.1)

quick proof

E2
tot = E2

1e
2i(Φ1−ω1t) + E2

2e
2i(Φ2−ω2t) + E2

LOe
2i(ΦLO−ωLOt)

+ 2E1E2e
i(Φ1+Φ2−2ωLOt) + 2E1ELOei(Φ1+ΦLO−2ωLOt−Ωt) + 2E2ELOei(Φ2+ΦLO−2ωLOt+Ωt)

S ′(t) =
1
4

∫ +∞

−∞
R′(τ )

[
E2
tot(t− τ ) + E∗2tot(t− τ )

]
dτ

=
first term

∫ +∞

−∞
R′(τ )E2

1 (t− τ )
[
cos(Φ1 − ω1(t− τ ))2 − 1/2

]
dτ ∼ 0
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Within the previous assumption and if the detector response is very
slow compare to 1/ωi, all terms average to 0.

d.2 filtering

For real field amplitudes,

|Etot(t)|2 = Etot(t)∗Etot(t)
= E2

1 + E2
2 + E2

LO︸ ︷︷ ︸
to high-pass filter

+ 2E1E2 cos(2Ωt+ ∆Φ)︸ ︷︷ ︸
to low-pass filter (NOT LO quantum enhanced)

+ 2E1ELO cos(Ωt+ ΦLO −Φ1) + 2ELOE2 cos(Ωt+ Φ2 −ΦLO)

with ∆Φ = Φ2 −Φ1.
Of course the best approach is to reason in the frequency space, once

the bandwith of the detector is fully analytically known

S(t) = R′ ∗ |Etot|2 = F−1
(
FR′(t) · F|Etot(t)|2

)
(D.2)

And if we simply consider the bandwith of the detector centered on
Ω and the electric field spectrum relatively sharp, we have, after the
previously mentioned filtering stages,

S(t) ∼=
Gain(Ω)

2 cos(Ωt) {E1ELO cos(ΦLO −Φ1) + ELOE2 cos(Φ2 −ΦLO)}

− sin(Ωt) {E1ELO sin(ΦLO −Φ1) + ELOE2 sin(Φ2 −ΦLO)}

d.3 mixing

After mixing, the in-phase component of the signal will be proportional
to

S(t)in ∝ ELO {E1 cos(ΦLO −Φ1) + E2 cos(Φ2 −ΦLO)} (D.3)
S(t)in ∝ ELO

{
Ē cos(Φref) cos(∆Φ̄) + ∆Ē sin(Φref) sin(∆Φ̄)

}
.(D.4)

and the quadrature one

S(t)q ∝ ELO {E1 sin(ΦLO −Φ1) + E2 sin(Φ2 −ΦLO)} (D.5)
S(t)q ∝ ELO

{
Ē cos(Φref) sin(∆Φ̄)− ∆Ē sin(Φref) cos(∆Φ̄)

}
(D.6)

if we introduce

Φ̄ =
Φ1 + Φ2

2 , ∆Φ̄ =
Φ2 −Φ1

2 ,

Ē =
E1 + E2

2 , ∆Ē =
E2 −E1

2 ,

Φref = ΦLO − Φ̄.

Common-mode phase noise rejection→ ∆Φ̄ = ∆Φ̄atomic. However Φ̄ =

Φphysical length + Φ̄atomic but the sidebands are symmetric around the
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resonance and the dispersion profile is odd, we should nearly have
Φ̄atomic ∼ 0 such that

Φref ∼= ΦLO −Φphysical length.

To have the best sensitivity over the atomic phase shifts we want to
extract the term proportional to sin(∆Φ̄). As we want the same cou-
pling with the atoms for the two sidebands, we need ∆Ē ∼ 0. Thus,
measuring S(t)q when Φref = 0 [2π] would be adequate.
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