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Abstract

The Standard Model of particle physics (SM) is our best description of matter
and interactions at subatomic scales. Despite its flawless record at describing
the results of high-energy experiments, it cannot be a fundamental theory, for
it fails to describe a number of well-established observational phenomena: it
contains massless neutrinos (in contradiction to the observed neutrino flavor
oscillations), cannot explain the observed matter-antimatter asymmetry of our
Universe, and does not provide a candidate for the elusive dark matter.

One of the simplest extensions of the Standard Model which could address
several — if not all — of these shortcomings consists in adding back the “miss-
ing” gauge singlet counterparts to neutrinos. These SM singlets can have a
Majorana mass, whose scale is a priori unknown. If this Majorana mass is at
or below the electroweak scale, the corresponding mass eigenstates — heavy
neutral leptons (HNLs) — would interact solely through a small mixing with
neutrinos. As a prime example of feebly interacting particles, they might have
evaded detection so far due to their tiny interactions. HNLs are currently being
actively searched by multiple experiments, and are among the main motivations
for future “intensity-frontier” facilities, which will be uniquely sensitive to rare
processes.

This thesis, presented as a collection of three articles, investigates phe-
nomenological aspects of heavy neutral leptons, in relation to their search at
current or proposed experiments. It concentrates on testing those properties
of HNLs which are essential for resolving the aforementioned shortcomings
of the SM. The first article discusses whether one could test the HNL mass
degeneracy — a core requirement for HNLs to generate the observed baryon
asymmetry of the Universe — by observing their oscillations at the proposed
SHiP experiment. The second investigates whether a new search channel at
the NA62 experiment could be used to close a currently unconstrained region
in parameter space. The last article reinterprets the results of an existing ex-
perimental search for HNLs by the ATLAS experiment within a minimal yet
realistic model of neutrino oscillations. By providing a scheme which allows to
easily recast their exclusion limits for arbitrary model parameters, this work
could greatly increase the scientific return of collider searches for HNLs.

In summary, this thesis demonstrates how a minimal, realistic model of
heavy neutral leptons can nonetheless have a rich phenomenology, and discusses
some important implications for experiments. In particular, it highlights the
impact of model assumptions on experimental limits, and the need to interpret
results within realistic models.
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Synopsis

Inden for partikelfysik giver Standardmodellen (SM) os den bedste beskrivelse
af stof og interaktioner ved subatomare skalaer. På trods af at SM stemmer ov-
erens med tidligere højenergieksperimenter, kan den ikke betegnes som en fun-
damental teori, da den ikke korrekt beskriver en række veletablerede observer-
bare fænomener: herunder indeholder den masseløse neutrinoer (hvilket mod-
siger de observerede neutrino-oscillationer), den forklarer ikke den observerede
stof-antistof-asymmetri i vores univers, og den foreskriver ikke en kandidat til
det flygtige mørke stof.

En af de simpleste udvidelser af Standardmodellen, som kunne løse en del -
hvis ikke alle - af disse mangler, består i at tilføje de “manglende” højrehånd-
ede gauge singlet modparter til neutrinoerne. Disse SM-singlets kan have en
Majorana-masse, hvis skala er ukendt a priori. Hvis denne Majorana-masse
er mindre end den elektrosvage skala, vil de tilsvarende masse-egentilstande —
heavy neutral leptons (HNL’er) — udelukkende interagere ved at mixe svagt
med neutrinoerne. Da de er et hovedeksempel på svagt interagerende partikler,
kan dette muligvis være forklaringen på, hvorfor de indtil videre har kunnet
undgå at blive detekteret. På nuværende tidspunkt søges HNL’er aktivt efter
ved flere eksperimenter, og de er blandt hovedmålene for fremtidige “højinten-
sitetseksperimenter”, som vil have en unik følsomhed over for disse sjældne
processer.

Denne afhandling, der præsenteres som en samling af tre artikler, under-
søger fænomenologiske aspekter af heavy neutral leptons i forbindelse med,
hvordan de bliver søgt efter ved nuværende eller fremtidige eksperimenter.
Den sporer ind på at teste egenskaberne for HNL’er, som er essentielle for
at finde løsninger på de førnævnte mangler i SM. Den første artikel diskuterer,
hvorvidt man kan undersøge massedegenerationen af HNL’er — som kræves,
for at HNL’er genererer baryon-asymmetrien i universet — ved at observere
deres oscillationer ved det fremtidige SHiP-eksperiment. Den anden artikel
undersøger, hvorvidt en ny kanal ved NA62-eksperimentet kunne bruges til at
afgrænse det ellers ubegrænsede parameterrum. Den sidste artikel genfortolker
resultaterne af en eksperimentel søgen efter HNL’er ved ATLAS-eksperimentet
ved brug af en minimal, dog realistisk model for neutrino-oscillationer. Ved
at give en metode, som gør det muligt enkelt at genfortolke afgrænsingen for
vilkårlige modelparametre, kan dette arbejde i høj grad øge den videnskablige
værdi af søgninger efter HNL’er ved collider-eksperimenter.

For at opsummere, demonstrerer denne afhandling, hvordan en minimal,
realistisk model for heavy neutral leptons kan have en rig fænomenologi, og
den diskuterer nogle vigtige følger for eksperimenterne. Den understreger i
særdeleshed, hvilken virkning antagelser for modeller har på eksperimentelle
afgrænsninger samt nødvendigheden af at fortolke resultater med realistiske
modeller.
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1.4 Recap & introduction to the articles . . . . . . . . . . . . . . . 31

1.1 The Standard Model of particle physics

1.1.1 Brief introduction1

The Standard Model of particle physics [3–6] (SM) is the culmination of more
than a century of experimenting with matter at the subatomic scale. It is the
quantum field theory (QFT) which, as of today, best describes the known forms
of matter and their interactions (with the notable exception of gravity). While
quantum electrodynamics only merged quantum mechanics with electrodynam-
ics, the Standard Model generalizes the approach to the weak and strong forces
by describing them as non-abelian (Yang-Mills) gauge theories. More specifi-
cally, the Standard Model is based on the gauge group 𝑆𝑈(3)c×𝑆𝑈(2)L×𝑈(1)Y
which defines the structure of its various interactions. Their strength, as well

1This brief introduction is inspired by ref. [1], but focuses on the aspects which are most
relevant to this thesis. In order to simplify the description of Majorana particles, fermions
are described using two-component spinors, following the formalism from ref. [2].
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10 CHAPTER 1. INTRODUCTION

as the particle content of the SM, are only fully specified by its Lagrangian
ℒSM, which contains a number of terms.

First, the gauge term ℒgauge defines the structure of interactions and the
strength of their self-interaction:

ℒgauge = −1
4 ∑

𝑖=1…8
𝐺𝑖𝜇𝜈𝐺𝑖

𝜇𝜈 − 1
4 ∑

𝑗=1,2,3
𝑊 𝑗𝜇𝜈𝑊 𝑗

𝜇𝜈 − 1
4𝐵𝜇𝜈𝐵𝜇𝜈 (1.1)

where 𝐺𝑖𝜇𝜈, 𝑊 𝑗𝜇𝜈 and 𝐵𝜇𝜈 respectively denote the gauge fields in the adjoint
representations of 𝑆𝑈(3)c, 𝑆𝑈(2)L and 𝑈(1)Y, defined as:

𝐺𝑖𝜇𝜈 = 𝜕𝜇𝐺𝑖𝜈 − 𝜕𝜈𝐺𝑖𝜇 − 𝑔𝑠𝑓𝑖𝑗𝑘 𝐺𝑗𝜇𝐺𝑘𝜈

𝑊 𝑖𝜇𝜈 = 𝜕𝜇𝑊 𝑖𝜈 − 𝜕𝜈𝑊 𝑖𝜇 − 𝑔𝜀𝑖𝑗𝑘𝑊 𝑗𝜇𝑊 𝑘𝜈

𝐵𝜇𝜈 = 𝜕𝜇𝐵𝜈 − 𝜕𝜈𝐵𝜇

with 𝐺𝑖𝜇, 𝑊 𝑖𝜇 and 𝐵𝜇 respectively denoting the fundamental representations
of these same fields, 𝑓𝑖𝑗𝑘 and 𝜀𝑖𝑗𝑘 the respective structure constants of 𝑆𝑈(3)
and 𝑆𝑈(2), and 𝑔𝑠 and 𝑔 the respective couplings constants of the strong and
weak forces.

The matter content of the Standard Model is defined by the fermionic term:

ℒ𝑓 = ∑
𝛼=1,2,3

⎛⎜
⎝

∑
𝑓=𝑄L,𝐿L

𝑖𝑓†
𝛼�̄�𝜇𝐷𝜇𝑓𝛼 + ∑

𝑓†=𝑢†
R,𝑑†

R,𝑒†
R

𝑖𝑓𝛼𝜎𝜇𝐷𝜇𝑓†
𝛼

⎞⎟
⎠

(1.2)

where 𝛼 is the generation / flavor index, 𝑓 denotes the left-handed fermion
fields and 𝑓† the right-handed2,3 ones (following the conventions from ref. [2],
with the fermion indices omitted), �̄�𝜇 and 𝜎𝜇 are the “covariant” Pauli matrices,
and 𝐷𝜇 is the covariant derivative:

𝐷𝜇 = 𝜕𝜇 + 𝑖𝑔𝑠
𝜆𝑖

2 𝐺𝑖
𝜇 + 𝑖𝑔 𝜎𝑗

2 𝑊 𝑗
𝜇 + 𝑖𝑔′𝑞Y𝐵𝜇 (1.3)

with, respectively, 𝑔𝑠, 𝑔 and 𝑔′ the coupling constants for 𝑆𝑈(3)c, 𝑆𝑈(2)L and
𝑈(1)Y, 𝑖 and 𝑗 the adjoint representation indices for 𝑆𝑈(3)c and 𝑆𝑈(2)L, 𝜆𝑖

the Gell-Mann matrices, 𝜎𝑗 the Pauli matrices (those are the generators of the
respective Lie algebras, up to a factor of 1/2), and 𝑞Y the hypercharge. In
eq. (1.2), the “left-handed” fields 𝑄L = (𝑢L, 𝑑L) and 𝐿L = (𝜈L, 𝑒L) are 𝑆𝑈(2)L
doublets while the “right-handed” ones 𝑢†

R, 𝑑†
R and 𝑒†

R are singlets. Note the
absence of a right-handed (𝑆𝑈(2)L singlet) neutrino field 𝜈†

R in this “classical”
version of the Standard Model.

2Note that there are a number of close but different definitions of “handedness”. Here,
by “left-handed” or “right-handed” we will never refer to the helicity of a specific particle;
rather, we use it to denote the chirality (i.e. the corresponding spin- 1

2 representation) of the
field. Since the hermitian conjugate of a field with left chirality is equivalent to a field with
right chirality (and reciprocally) — as our notation makes manifest — to avoid confusion we
will denote by “left-handed” and use the L subscript for the 𝑆𝑈(2)L doublets (for which the
“particle” field is left-handed, and the anti-particle field right-handed) and by “right-handed”
(with the R subscript) the 𝑆𝑈(2)L singlets (for which the opposite is true).

3Note that 𝑓𝜎𝜇𝜕𝜇𝑓† = 𝑓†�̄�𝜇𝜕𝜇𝑓+𝜕𝜇(𝑓𝜎𝜇𝑓†) [7], where the last term is a total divergence
that is usually irrelevant.
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These first two terms are sufficient to define the gauge structure of the SM
and the interactions of fermions at sufficiently high energies. But they still lack
a crucial ingredient: masses, which are necessary to account for the observed
fermion masses as well as for the “weakness” of the weak interaction at low
energies. Masses have proven to be particularly tricky to implement in gauge
theories without breaking the gauge invariance. In the Standard Model, it is the
well-known Higgs mechanism [8–11] which generates the masses of fermions and
bosons while preserving gauge invariance. It introduces a new pair of complex
scalar fields 𝜙 = (𝜙+, 𝜙0) — the Higgs field — which transforms as an 𝑆𝑈(2)L
doublet with hypercharge 𝑦𝜙 = 1

2 and couples to left-right fermion pairs (of
potentially different generations) through the so-called Yukawa couplings 𝑌 𝑓

𝛼𝛽,
𝑓 = 𝑢, 𝑑, 𝑒:

ℒYuk = − ∑
𝛼,𝛽=1,2,3

(𝑌 𝑢
𝛼𝛽(𝑄†

L𝛼 · ̃𝜙)𝑢†
R𝛽 + 𝑌 𝑑

𝛼𝛽(𝑄†
L𝛼 · 𝜙)𝑑†

R𝛽 + 𝑌 𝑒
𝛼𝛽(𝐿†

L𝛼 · 𝜙)𝑒†
R𝛽)+h.c.

(1.4)

where ̃𝜙 = 𝜀𝜙†. Note the absence of a Yukawa term for neutrinos, which lack
a right-handed / 𝑆𝑈(2)L singlet component in the SM.

In the Standard Model, the dynamics of the Higgs field are described using
an ad-hoc potential 𝑉 (𝜙), built by imposing the requirement of 𝑆𝑈(2)L ×
𝑈(1)Y gauge invariance, keeping only the relevant terms of dimension ≤ 4 and
requiring the presence of a non-trivial minimum at 𝜙 ≠ 0:

𝑉 (𝜙) = 𝜇2𝜙†𝜙 + 𝜆(𝜙†𝜙)2 where 𝜇2 < 0 and 𝜆 > 0 (1.5)

resulting in the Lagrangian term:

ℒ𝜙 = (𝐷𝜇𝜙)†(𝐷𝜇𝜙) − 𝑉 (𝜙) (1.6)

with the usual covariant derivative 𝐷𝜇𝜙 = (𝜕𝜇 + 𝑖 𝑔
2 𝜎𝑗𝑊 𝑗

𝜇 + 𝑖 𝑔′

2 𝐵𝜇)𝜙. This
formally completes the Standard Model Lagrangian:

ℒSM = ℒgauge + ℒ𝑓 + ℒYuk + ℒ𝜙 (1.7)

However, due to the non-trivial minimum of the potential at |𝜙| = √−𝜇2/2𝜆,
the ground state (or vacuum) of the theory corresponds to a non-zero vacuum
expectation value (v.e.v) ⟨𝜙⟩ of the Higgs doublet. Although the 𝑆𝑈(2)L×𝑈(1)Y
invariance allows to freely choose this value using a suitable gauge transforma-
tion, the ground state of the theory is no longer invariant under this gauge
group once the value is set (i.e. the choice of the vacuum acts as a gauge fixing
condition). A typical choice for representing the Higgs field in the broken phase
is the so-called unitary gauge:

𝜙 = 1√
2

( 0
𝑣 + ℎ) (1.8)

where 𝑣 = √−𝜇2/𝜆 and ℎ is the dynamical part of the Higgs field in the broken
phase, i.e. the Higgs boson, first observed by ATLAS [12] and CMS [13] in
2012 at the Large Hadron Collider (LHC) at CERN, with a (tree-level) mass
𝑚ℎ = √−2𝜇2 ≈ 125 GeV. Even in this broken phase, the Higgs field retains a
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residual 𝑈(1) gauge invariance, generated by 𝑄 = 1
2 𝜎3+𝑌 , which is nothing else

than the electromagnetic charge we are all familiar with. This phenomenon (of
the Higgs field acquiring a non-trivial v.e.v) is called the electroweak symmetry
breaking (EWSB), and is often expressed as

𝑆𝑈(2)L × 𝑈(1)Y
ewsb−−−→ 𝑈(1)Q.

The two main consequences of the Higgs mechanism come from the Yukawa
couplings and from the Higgs kinetic term. Of most interest to this thesis is
the Yukawa term. After expanding the Higgs field (1.8) in eq. (1.4), we obtain
Dirac mass terms4 for left-right fermion pairs:

ℒYuk
ewsb−−−→ − ∑

𝛼,𝛽=1,2,3
(𝑚𝑢

𝛼𝛽𝑢L𝛼𝑢R𝛽 + 𝑚𝑑
𝛼𝛽𝑑L𝛼𝑑R𝛽 + 𝑚𝑒

𝛼𝛽𝑒L𝛼𝑒R𝛽) + h.c. + 𝒪(ℎ)

(1.9)

where the Dirac masses are obtained as 𝑚𝑓
𝛼𝛽 = 𝑣√

2 (𝑌 𝑓
𝛼𝛽)∗. These mass “matri-

ces” (with flavor indices 1, 2, 3 corresponding to the three generations) are in
general non-diagonal. As arbitrary complex 3 × 3 matrices, they can only be
diagonalized by applying different unitary transformations 𝑉 𝑓

L𝛼𝑖 and 𝑉 𝑓
R𝛼𝑖 to

the left- and right-handed fields:5

𝑓L𝛼 = 𝑉 𝑓
L𝛼𝑖𝑓 ′

L𝑖 (1.10)
𝑓R𝛽 = 𝑉 𝑓

R𝛽𝑖𝑓 ′
R𝑖 (1.11)

𝑚𝑓
𝛼𝛽𝑓L𝛼𝑓R𝛽 = (𝑉 𝑓

L𝛼𝑖𝑉 𝑓
R𝛽𝑗𝑚𝑓

𝛼𝛽⏟⏟⏟⏟⏟
=𝑚𝑓

𝑖 𝛿𝑖𝑗

)𝑓 ′
L𝑖𝑓 ′

R𝑗 = 𝑚𝑓
𝑖 𝑓 ′

L𝑖𝑓 ′
R𝑖 (1.12)

(with implicit summation over repeated indices, and ′ indicating fields in the
diagonal basis). These unitary transformations leave all kinetic terms invariant:

𝑖𝑓†
L𝛼�̄�𝜇𝐷𝜇𝑓L𝛼 = 𝑖(𝑉 𝑓

L𝛼𝑖𝑓 ′
L𝑖)†�̄�𝜇𝐷𝜇𝑉 𝑓

L𝛼𝑗𝑓 ′
L𝑗 = 𝑖𝑓 ′†

L𝑖�̄�𝜇𝐷𝜇𝑓 ′
L𝑖 (1.13)

𝑖𝑓R𝛼𝜎𝜇𝐷𝜇𝑓†
R𝛼 = 𝑖𝑉 𝑓

R𝛼𝑖𝑓 ′
R𝑖𝜎𝜇𝐷𝜇(𝑉 𝑓

R𝛼𝑗𝑓 ′
R𝑗)† = 𝑖𝑓 ′

R𝑖𝜎𝜇𝐷𝜇𝑓 ′†
R𝑖 (1.14)

For the right-handed (singlet) fields, one can always perform such a transfor-
mation. However, for the left-handed (doublet) ones, the same transformation
must be applied to the entire 𝑆𝑈(2)L doublet in order not to spoil the gauge
invariance of the theory. Therefore the mass matrices of (left-handed) fields
from a same doublet (such as 𝑢L and 𝑑L) can never be simultaneously diago-
nalized. E.g. if we choose to diagonalize the Dirac mass matrix of “up” quarks,
then the “dynamical” down quarks (which enter the kinetic term and couple
to vector bosons through the covariant derivative) will be different from the

4Note that Majorana mass terms, of the form 𝑚𝑓𝑓 + h.c. (i.e. coupling a fermion field 𝑓
with itself) would require Yukawa terms which are not compatible with the gauge symmetries
of this model. Such Majorana mass terms are only possible for Standard Model singlets.

5Our choice of parametrization (using two-component spinors [2] 𝑓L and 𝑓R) makes it
manifest that the left- and right-handed fields are separate degrees of freedom which can be
operated on independently.
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“massive” down quarks (which are the propagating states, in the limit of asymp-
totic freedom). The mismatch between the dynamical and massive quarks is
quantified by the Cabibbo-Kobayashi-Maskawa (CKM) matrix:

(𝑉CKM)𝛼𝛽 = (𝑉 𝑢
L )𝛼𝑖(𝑉 𝑑†

L )𝑖𝛽 = 𝑉 𝑢
L𝛼𝑖𝑉 𝑑∗

L𝛽𝑖 (1.15)

This phenomenon is referred to as mixing. A similar phenomenon, in the case
of neutrinos, will be of crucial importance for this thesis.

The second consequence of the Higgs mechanism is the generation of (gauge
invariant) mass terms for three electroweak vector bosons. Due to its charge
under 𝑆𝑈(2)L × 𝑈(1)Y, the Higgs field couples to all the electroweak vector
bosons through the covariant derivative 𝐷𝜇𝜙 = (𝜕𝜇 +𝑖 𝑔

2 𝜎𝑗𝑊 𝑗
𝜇 +𝑖 𝑔′

2 𝐵𝜇)𝜙. After
electroweak symmetry breaking, and defining 𝑊 ±

𝜇 = 1√
2 (𝑊 1

𝜇 ∓𝑖𝑊 2
𝜇), the kinetic

term (𝐷𝜇𝜙)†(𝐷𝜇𝜙) generates a mass term for the electroweak vector bosons:

(𝐷𝜇𝜙)†(𝐷𝜇𝜙) ewsb−−−→ 𝑀2
𝑊 𝑊 +𝜇𝑊 −

𝜇 + 𝑀2
𝑍

2 𝑍𝜇𝑍𝜇 + 𝒪(ℎ) + 𝒪(𝜕ℎ) (1.16)

where

𝑀𝑊 = 𝑔𝑣
2 𝑀𝑍 = √𝑔2 + 𝑔′2𝑣

2 𝑍𝜇 = −𝑔′𝐵𝜇 + 𝑔𝑊 3
𝜇

√𝑔2 + 𝑔′2

These vector bosons have absorbed the three “broken” components of the Higgs
doublet by each acquiring a new longitudinal polarization. Defining 𝐴𝜇 =
(𝑔′𝑊 3

𝜇 +𝑔𝐵𝜇)/√𝑔2 + 𝑔′2, we see that this combination of fields produces a zero
contribution to the covariant derivative 𝐷𝜇𝜙 in the unitary gauge. Therefore
this last vector field does not get a mass from the Higgs mechanism, nor does
it couple to it. It is nothing else than the photon field of electrodynamics.

The model described above is still, at the time of writing, our best descrip-
tion of nuclear and high-energy physics. Unchallenged by accelerator experi-
ments, which have largely contributed to its development, it nonetheless fails
decisively to describe a number of well-established observations. These are the
topic of the next section.

1.1.2 Observational shortcomings of the Standard Model
Neutrino masses

Starting with the Homestake experiment [14] in 1968, it was observed that the
flux of electron neutrinos from the Sun did not match the expectation from the
Standard Model (in which neutrino flavor is conserved). This “solar neutrino
problem” lasted for more than three decades, until Super-Kamiokande [15] in
1998 and SNO [16] in 2001 finally produced decisive evidence for lepton flavor
non-conservation. By looking at the atmospheric neutrino flux as a function
of the zenith angle (and thus of the distance travelled through the Earth) and
observing an angle dependent deficit of muon neutrinos, Super-Kamiokande
provided conclusive evidence for neutrino oscillations, first proposed in refs. [17,
18]. It is SNO which resolved the actual solar neutrino problem, by measuring
both the electron neutrino flux (through charged-current interactions) as well
as the rate of elastic scattering of electrons (which is sensitive to the fluxes of
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all three flavors). By observing a ratio of electron flavor < 1, it gave credence to
the hypothesis that neutrinos produced inside the Sun undergo resonant flavor
transitions due to the MSW effect [19, 20]. Both neutrino oscillations and
the MSW effect can only be explained if neutrinos have a (very small) mass,
in direct contradiction with the usual formulation of the Standard Model, in
which they are massless.

Neutrino oscillations can be schematically understood using a simple quan-
tum mechanical argument6. If neutrinos are massive, there will be a mismatch
between the mass eigenbases of charged leptons and neutrinos, like in the quark
sector. This mismatch is quantified by the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix 𝑉PMNS [21]. Neutrinos are typically produced in charged-
current decays, where they couple to a charged lepton. Unlike neutrinos,
charged leptons have very distinct masses, and thus constitute distinguishable
quantum states: |𝑒⟩, |𝜇⟩ and |𝜏⟩. It is therefore convenient to use them for
defining the corresponding neutrino flavor (i.e. interacting) states |𝜈𝑒⟩, ∣𝜈𝜇⟩
and |𝜈𝜏⟩. They are related to the massive neutrinos states7 |𝜈𝑖⟩ (𝑖 = 1, 2, 3) by:

|𝜈𝛼⟩ = (𝑉PMNS)∗
𝛼𝑖 |𝜈𝑖⟩ (1.17)

Now consider the space-time evolution of a flavour state |𝜈𝛼(𝑥)⟩, within the
Schrödinger picture. This is most conveniently done by applying the space-
time translation operator 𝑒−𝑖�̂� ·𝑥 to the quantum state:

|𝜈𝛼(𝑥)⟩ = 𝑒−𝑖�̂� ·𝑥 |𝜈𝛼⟩ = (𝑉PMNS)∗
𝛼𝑖𝑒−𝑖�̂� ·𝑥 |𝜈𝑖⟩ = (𝑉PMNS)∗

𝛼𝑖𝑒−𝑖𝑝𝑖·𝑥 |𝜈𝑖⟩ (1.18)

where 𝑝𝑖 is the momentum of the plane wave described by the state |𝜈𝑖⟩. We now
need to make two assumptions which can only be justified with a rigorous quan-
tum field theoretical treatment. We assume 𝑥 = (𝑡, x) to be the same for all
the mass eigenstates8, and in addition we also assume the three-momentum p
to be the same9, such that 𝑝𝑖 = (𝐸𝑖, p) with 𝐸𝑖 = √𝑚2

𝑖 + p2.
After a finite time, the flavor state |𝜈𝛼⟩ will have evolved into a state |𝜈𝛼(𝑥)⟩

with a non-zero overlap with the other flavor states ∣𝜈𝛽⟩: it has oscillated. The
probability of such a transition can be computed using Born’s rule:

𝑃𝛼→𝛽(𝑥) = ∣⟨𝜈𝛽|𝜈𝛼(𝑥)⟩∣2 = ∣(𝑉PMNS)𝛽𝑗(𝑉PMNS)∗
𝛼𝑖𝑒−𝑖𝑝𝑖·𝑥 ⟨𝜈𝑗|𝜈𝑖⟩⏟

=𝛿𝑖𝑗

∣2

= ∣(𝑉PMNS)𝛽𝑖(𝑉PMNS)∗
𝛼𝑖𝑒−𝑖𝑝𝑖·𝑥∣2

(1.19)

For an ultra-relativistic neutrino measured at a distance 𝐿 (in the laboratory)
from its production site, the phase can be well approximated as:

𝑝𝑖 · 𝑥 = 𝐸𝑖𝑡 − |p|𝐿 ≅ (𝐸𝑖 − |p|)𝐿 ≅ 𝑚2
𝑖

2|p|𝐿 (1.20)

6A much more accurate model will be used in section 1.3.2 to describe HNL oscillations.
This model is also suitable for describing the oscillations of light neutrinos.

7The relation 𝜈L𝛼 = (𝑉PMNS)𝛼𝑖𝜈𝑖 for fields implies |𝜈𝛼⟩ = (𝑉PMNS)∗
𝛼𝑖 |𝜈𝑖⟩ for states.

8In the external wave packet model, this is justified because the interference is computed
by integrating the wave packet product 𝜓𝛽(𝑥)∗𝜓𝛼(𝑥) over the same space-time coordinate 𝑥.

9In a QFT treatment, this is justified because we can choose p as the common integration
variable when integrating over phase space.
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leading to the well-known formula for the oscillation probability:

𝑃𝛼→𝛽(𝐿) = ∣(𝑉PMNS)∗
𝛼𝑖(𝑉PMNS)𝛽𝑖𝑒−𝑖 𝑚2

𝑖
2|p| 𝐿∣

2
(1.21)

This simplified quantum mechanical treatment has a number of issues, which
are discussed at length in ref. [22] and references therein. When we will later
describe the oscillations of heavy neutral leptons, we will therefore use a more
robust quantum field theoretical treatment.

Baryon asymmetry of the Universe

The observable Universe contains a manifest excess of matter over anti-matter.
This baryon asymmetry of the Universe (BAU) can be quantified by the ratio
𝜂 of the baryon number density over the photon density:

𝜂 = 𝑛𝑏 − 𝑛�̄�
𝑛𝛾

∼ 6 · 10−10 (1.22)

where 𝑛𝑏, 𝑛�̄� and 𝑛𝛾 respectively denote the number densities of baryons, anti-
baryons and photons.

In order for this matter-antimatter asymmetry to be dynamically generated
(by opposition to resulting from initial conditions or from a local overdensity
of matter which must be at least of the size of the observable universe [23]), it
has been shown that three conditions — the so-called Sakharov conditions [24]

— must be satisfied:

• The baryon number 𝐵 cannot be conserved. Although 𝐵 is conserved
at the perturbative level in the SM, this condition is actually satisfied,
since the non-perturbative “sphaleron” processes [25] violate 𝐵 + 𝐿 (but
preserve 𝐵 − 𝐿), where 𝐿 stands for the total lepton number.

• 𝐶𝑃 symmetry (and therefore 𝑇 symmetry) must be violated. This is
to ensure that the baryon asymmetry generated by a given 𝐵-violating
process is not compensated by its 𝐶𝑃 conjugate. Although the Standard
Model contains 𝐶𝑃 violation in the quark sector due to the CKM matrix,
it turns out to be too small to explain the observed value of 𝜂 [23].

• At some point during its evolution, the Universe must depart from ther-
modynamic equilibrium. This is because, at equilibrium, the forward and
reverse processes compensate each other exactly, such that all densities
remain constant.

These three conditions are necessary, but not sufficient, to generate the ob-
served baryon asymmetry of the Universe. In particular, the Standard Model
cannot generate the observed value of 𝜂 despite satisfying these conditions [23].
It therefore needs to be extended. The mechanisms capable of dynamically
generating a sufficiently large baryon asymmetry are collectively referred to as
baryogenesis.

Dark matter

A number of cosmological and astrophysical observations — such as galaxy
rotation curves, peculiar velocities of galaxies in clusters, the age of galaxies
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and cosmological fits (see ref. [26], ch. 27 for a review) — cannot be explained
solely with the Standard Model (along with general relativity). Among the
proposed solutions to these problems, the most consensual — and arguably
the most parsimonious, in the sense that it can resolve all of these problems
simultaneously — consists in postulating the existence of a new, invisible form
of matter: dark matter. The nature of dark matter is essentially unconstrained;
only its abundance is known. However, in the spirit of the Standard Model, it
is not unreasonable to expect dark matter to take the form of one or more new
particles, which would couple only very feebly to the SM in order to remain
“dark” (i.e. not interact electromagnetically) and stable on cosmological time
scales. The possibility that such feebly interacting particles exist beyond the
SM and may have evaded detection so far is currently being taken very seriously,
and constitutes the primary physics goal of a new generation of experiments.
Among these particles are heavy neutral leptons, which will be the main focus
of this thesis.

1.2 Heavy Neutral Leptons

1.2.1 Motivation
The observations of the MSW effect and of neutrino flavor oscillations (dis-
cussed in section 1.1.2) provide unambiguous evidence for physics beyond the
Standard Model. Indeed, both of these effects rely on non-zero mass splittings
between different mass eigenstates, implying that at least two neutrino mass
eigenstates must have non-zero masses. This is in direct contradiction with the
SM, in which neutrinos are massless Weyl fermions. In order to give neutrinos
a mass, it is necessary10 to introduce additional degrees of freedom in the SM.
Arguably, the simplest implementation of massive neutrinos consists in gen-
erating Dirac neutrino masses from the Yukawa couplings through the Higgs
mechanism, just like for the other fermions. This requires introducing three
new “right-handed” (i.e. 𝑆𝑈(2)L singlet) neutrinos 𝜈R𝛼 (𝛼 = 1, 2, 3), effectively
restoring some sort of symmetry between the quark and lepton sectors:

ℒDirac 𝜈 = ℒSM + 𝑖𝜈R𝛼𝜎𝜇𝜕𝜇𝜈†
R𝛼 − 𝑌 𝜈

𝛼𝛽(𝐿†
L𝛼 · ̃𝜙)𝜈†

R𝛽 − (𝑌 𝜈
𝛼𝛽)∗(𝐿L𝛼 · ̃𝜙)𝜈R𝛽

ewsb−−−→ ℒSM + 𝑖𝜈R𝛼𝜎𝜇𝜕𝜇𝜈†
R𝛼 − (𝑚𝜈

𝛼𝛽𝜈L𝛼𝜈R𝛽 + h.c.)
(1.23)

where 𝑚𝜈
𝛼𝛽 = 𝑣√

2 (𝑌 𝜈
𝛼𝛽)∗ is the Dirac mass matrix of neutrinos and we have

replaced 𝐷𝜇 → 𝜕𝜇 because these right-handed neutrinos turn out to be SM
singlets, i.e. they are neutral under all the SM gauge interactions. One can
then, similarly to the case of quarks (discussed in section 1.1.1), use a pair
of unitary transformations to diagonalize one of the leptonic mass matrices
(either 𝑚𝑒

𝛼𝛽 or 𝑚𝜈
𝛼𝛽). The usual choice is to diagonalize the charged fermion

mass matrix 𝑚𝑒
𝛼𝛽, since the electron, muon and tau “mass eigenstates” have

very distinct signatures, which makes them more convenient than neutrinos for
defining lepton “flavor”. The mismatch between the interacting and massive

10Since the left-handed SM neutrinos are not neutral, they cannot have a Majorana mass
term.
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neutrino fields is then quantified by the PMNS matrix [21] (𝑉PMNS)𝛼𝛽, which
is the leptonic counterpart to the CKM matrix.

Although this minimal model is sufficient to account for neutrino masses
and oscillations, it is often regarded as unsatisfactory, for two main reasons.
First, the absolute scale of neutrino masses is quite puzzling, since it is at
least 11 orders of magnitude lower than the electroweak scale [26]. There is no
shortage of models to explain this oddity, which is often considered as a hint
that neutrino masses are not produced by the same mechanism that generates
the other fermion masses. Second, the new Standard Model singlets 𝜈R𝛼 can
also, by virtue of being completely neutral, accommodate a Majorana mass
term:

ℒMajorana mass = −𝑀𝛼𝛽
2 𝜈R𝛼𝜈R𝛽 + h.c. (1.24)

This term has dimension 3 and is therefore relevant. Since the Standard Model
seems to contain all relevant (𝑑 < 4) and marginal (𝑑 = 4) terms which are
compatible with its symmetries and can be built out of its field content, one
could reasonably expect a Majorana mass term to be present for right-handed
neutrinos if they are present in the model.

Among the models of neutrino mass generation, the most popular has long
been the so-called type-I seesaw mechanism [27–34], which postulates that
neutrinos acquire their mass by mixing with very heavy Majorana neutrinos
through “natural” Yukawa couplings |𝑌 𝜈

𝛼𝛽| ∼ 1. If the Majorana mass of the
singlets 𝜈R𝛼 is around some GUT scale (|𝑀𝛼𝛽| ∼ 1015 GeV), then the light
neutrinos acquire at tree level a mass 𝑚light ∼ ⟨|𝜙|⟩2/|𝑀𝛼𝛽| ∼ 0.1 eV, in agree-
ment with observations. This model will be discussed in greater details in
section 1.2.2.

It was later realized [35] that a type-I seesaw with a Majorana mass well be-
low the GUT or Planck scale, combined with small (but not unnaturally so11)
Yukawa couplings, can provide an equally viable explanation for the smallness
of neutrino masses. Although there is no unambiguous prescription to deter-
mine the scale of the Majorana mass, “low-scale” seesaw models with Majorana
masses at or below the electroweak scale — such as for instance the neutrino
Minimal Standard Model [35,36] (𝜈MSM), which posits that at least two right-
handed neutrinos are nearly degenerate in mass — have received considerable
attention in recent years, for two main reasons. First, the 𝜈MSM has been nu-
merically proven to be capable of generating the observed baryon asymmetry of
the universe (BAU) in a large fraction of its allowed parameter space [35–37],
and in part of this parameter space the lightest right-handed neutrino even
becomes a viable dark matter candidate [38]. Thus the 𝜈MSM is capable of
simultaneously explaining not only neutrino masses, but also the BAU and
dark matter, a feat which the Standard Model is unable to achieve. Second,
the mass range of the right-handed neutrinos of the 𝜈MSM is within the reach
of current facilities, the sensitivity of which is only limited by the potentially
small mixing between the flavor eigenstates and the “heavy” mass eigenstates

— dubbed heavy neutral leptons (or HNLs) owing to their experimental signa-
ture. This makes HNLs a prime target for future intensity frontier experiments,
and several of them have already published sensitivity estimates [39–44].

11The electron Yukawa coupling in the SM (in the diagonal basis) is measured to be
|𝑌 𝑒

11| ∼ 3 · 10−6, and a low-scale seesaw could work for |𝑌 𝜈
𝛼𝛽| ≳ 10−6.
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In order to generate a sufficiently large baryon asymmetry, the 𝜈MSM re-
lies on the ARS mechanism [45], or baryogenesis through sterile neutrino os-
cillations, which postulates that 𝐶𝑃 -violating oscillations between at least two
HNLs generate nonzero individual lepton numbers 𝐿𝑒,𝜇,𝜏 ≠ 0, only part of
which is converted to baryon number through sphaleron transitions, due to
differences in couplings 𝑈2

𝛼 and equilibration rates between generations. Such
oscillations obviously require at least two heavy neutrino mass eigenstates to
be nearly-degenerate (see [37] for accurate bounds on the degeneracy). More-
over, if the lightest HNL 𝑁1 is sufficiently long-lived to be a viable dark matter
candidate, it has been shown [38] that the 𝜈MSM can account for the observed
(warm) dark matter abundance, provided that the physical mass splitting 𝛿𝑚2

between the two heaviest HNLs 𝑁2,3 is much smaller than Δ𝑚2
atm. Such a small

mass splitting could lead to an oscillation length long enough to be resolved in
laboratory experiments.

1.2.2 The type-I seesaw mechanism12

The type-I seesaw mechanism [27–34] extends the Standard Model with 𝒩
right-handed neutrinos 𝜈R𝐼 (𝐼 = 1 … 𝒩), which are spin- 1

2 SM singlets with
Majorana masses13 𝑀𝐼 , and new Yukawa couplings 𝑌 𝜈

𝛼𝐼 :

ℒseesaw = ℒSM+ 𝑖
2𝜈†

R𝐼 �̄�𝜇𝜕𝜇𝜈R𝐼 −(𝑌 𝜈
𝛼𝐼)∗(𝐿L𝛼 · ̃𝜙†)𝜈R𝐼 − 𝑀𝐼

2 𝜈R𝐼𝜈R𝐼 +h.c. (1.25)

After electroweak symmetry breaking, the Yukawa interaction generates a
Dirac mass term (𝑚𝐷)𝛼𝐼 = 𝑣√

2 (𝑌 𝜈
𝛼𝐼)∗, resulting in a non-diagonal, complex,

symmetric Dirac-Majorana mass matrix for neutrinos [46]:

ℒDM = −1
2(𝜈𝑇

L 𝜈𝑇
R) ( 0 𝑚𝑇

𝐷
𝑚𝐷 𝑀𝑅

) (𝜈L
𝜈R

) + h.c. (1.26)

where 𝑀𝑅 = diag (𝑀𝐼 … ) and the various flavors have been combined into
vectors: 𝜈L = (𝜈L𝛼 … ), 𝛼 = 1, 2, 3 and 𝜈R = (𝜈R𝐼 … ), 𝐼 = 1 … 𝒩. Using the
Takagi factorization [47], the mass matrix can be brought to a diagonal form:

𝑉 𝜈𝑇 𝑀DM𝑉 𝜈 = diag (𝑚𝑖 … ) 𝑖 = 1, … , 3 + 𝒩. (1.27)

Assuming that the charged lepton Yukawa couplings 𝑌 𝑒
𝛼𝛽 are initially diagonal,

the required unitary transformation of the neutrino fields is:

(𝜈L
𝜈R

) = 𝑉 𝜈𝑛 (1.28)

where 𝑛 = (𝑛1 … 𝑛3+𝒩) denotes the mass eigenstates, resulting in the Majorana
mass term:

ℒDM = −𝑚𝑖
2 (𝑛𝑖𝑛𝑖 + 𝑛†

𝑖 𝑛†
𝑖 ) 𝑖 = 1, … , 3 + 𝒩. (1.29)

12This section partially overlaps with (and improves upon) section 2.2.1. It is reproduced
here for completeness, and the notations have been made consistent with the rest of chapter 1.

13One can always diagonalize the Majorana mass matrix with a suitable unitary transfor-
mation of the 𝜈R𝐼 fields. Here we assume it to be in diagonal form already.
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In the limit |𝑀𝑅| ≫ |𝑚𝐷|, we can use an approximate block factorization,
leading to the mass sub-matrices:

𝑚𝛼𝛽 ≅ − ∑
𝐼=1…𝒩

(𝑚𝐷)𝛼𝐼(𝑚𝐷)𝛽𝐼
𝑀𝐼

(1.30)

𝑚𝐼𝐽 ≅ 𝑀𝐼𝛿𝐼𝐽 (1.31)

and to the mass eigenstates 𝜈 = (𝑛1, 𝑛2, 𝑛3) and 𝑁 = (𝑛4 … 𝑛3+𝒩) mixing with
the flavor fields 𝜈L𝛼 and 𝜈R𝐼 as follows:

𝜈R𝐼 ≅ 𝑁𝐼 (1.32)
𝜈L𝛼 ≅ 𝑉 PMNS

𝛼𝑖 𝜈𝑖 + Θ𝛼𝐼𝑁𝐼 (1.33)
Θ𝛼𝐼 ≅ 𝑀−1

𝐼 (𝑚𝐷)𝛼𝐼 (1.34)

𝑉 PMNS
𝛼𝑖 is numerically equal to the usual PMNS matrix, and the parameters

Θ𝛼𝐼 (called mixing angles) represent the mixing between the HNLs 𝑁𝐼 and the
“active” flavor states 𝜈L𝛼, which are charged under 𝑆𝑈(2)L (by opposition to
the “sterile” flavor states 𝜈R𝐼 which are singlets). It is due to this mixing that
HNLs interact like heavy neutrinos with suppressed couplings.

If we take the Yukawa couplings to be uncorrelated and 𝒪(1), as originally
assumed, then eq. (1.30) leads to light neutrino masses of order 𝑣2/|𝑀𝑅|. For
𝑀𝑅 about some GUT scale ∼ 1015 GeV, this results in |𝑚𝛼𝛽| ≲ 10−1 eV, in
agreement with current bounds [26]. In the past decade, a class of low-scale see-
saw models have risen in popularity, such as the 𝜈MSM [35], not least because
of their falsifiability at existing or proposed experiments. In these models,
𝑀𝑅 is postulated to be around the electroweak scale. The smallness of the
light neutrino masses is then achieved either through small Yukawa couplings
|𝑌 𝜈

𝛼𝐼 | ∼ 1
𝑣 √|𝑚𝛼𝛽||𝑀𝑅|, which are too small to be accessible at current exper-

iments, or through a cancellation between the terms of the sum in eq. (1.30).
Such a cancellation (which could e.g. arise from a new symmetry) can be im-
plemented by having two HNLs form a quasi-Dirac pair [48], i.e. be almost
degenerate in mass, with mixing angles related by Θ𝛼2 ≈ ±𝑖Θ𝛼1. This would
result in an approximate conservation of the total lepton number, the conse-
quences of which will be reviewed in sections 1.2.4 and 1.3.

1.2.3 Parameter space of HNLs
The type-I seesaw Lagrangian (1.25) introduces a significant number of new
parameters into the model: a Majorana mass 𝑀𝐼 for each HNL, and a 3 × 𝒩
complex matrix 𝑌 𝜈

𝛼𝐼 of Yukawa couplings. In the case of the 𝜈MSM, this trans-
lates into six complex and two real parameters which are relevant to laboratory
searches: the mixing matrix elements Θ𝛼𝐼 and the masses 𝑀2 and 𝑀3 of the
two heaviest HNLs. It is convenient to redefine the latter in terms of the cen-
tral mass 𝑀 and the physical mass splitting 𝛿𝑀 , such that 𝑀2 = 𝑀 − 𝛿𝑀

2 and
𝑀3 = 𝑀 + 𝛿𝑀

2 . In this model, the mixing angles associated with the lightest
HNL must be tiny14, causing it to decouple. Due to eq. (1.34), this requires

14In the 𝜈MSM, the lightest HNL, 𝑁1, is a dark matter candidate. The magnitude of its
Yukawa couplings is thus strongly constrained by Lyman-𝛼 and X-ray observations [49, 50].
This indirectly sets an upper bound on the mass of the lightest neutrino.
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one of the light neutrinos to be much lighter than the other two. All physical
masses are thus constrained.

Not all these parameters are independent. Not only they are related through
the Takagi factorization (1.27), but they must also reproduce the observed
light neutrino mass-squared differences and the PMNS matrix (i.e. the PMNS
matrix must be embedded in the extended unitary transformation matrix 𝑉 𝜈

which appears in the Takagi factorization). In particular, for large HNL mixing
angles — much larger than the naive seesaw expectation of |Θ|2 ∼ |𝑚𝛼𝛽|/|𝑀R|

— eq. (1.30), combined with eq. (1.34), leads to particularly strong constraints.
In order to keep the light neutrino masses 𝑚𝛼𝛽 light, a cancellation must take
place in the right-hand side. For two HNLs 𝑁2,3 and in the limit of massless
neutrinos (𝑚𝛼𝛽 = 0), this cancellation must be exact, and it has been shown
in ref. [48] that the only solution that is stable under radiative corrections is:15

𝑀3 = 𝑀2 and Θ𝛼3 = ±𝑖Θ𝛼2 for all 𝛼. (1.35)

As will be discussed in section 1.2.4, in this limit the lepton number violating
effects coming from the HNL Majorana masses cancel out exactly, leading to
a phenomenology similar to that of a Dirac fermion. For this reason, the two
HNLs are said to form a quasi-Dirac HNL pair.

Going back to the general case, a convenient method to express all physical,
non-equivalent choices of parameters was provided in ref. [51] (see also ref. [52]
for a detailed derivation). This Casas-Ibarra parametrization relates the HNL
mixing angles Θ𝛼𝐼 to the light neutrino masses �̂�𝜈 = diag (𝑚1, 𝑚2, 𝑚3), the
HNL masses �̂�𝑁 = diag(𝑀 − 𝛿𝑀

2 , 𝑀 + 𝛿𝑀
2 ) and the PMNS matrix 𝑉PMNS

(including one Majorana phase16 𝜂) through the matrix equation:17

Θ = 𝑖𝑉PMNS�̂�
1
2𝜈 Ω�̂�− 1

2
𝑁 (1.36)

where Ω is a 3 × 2 matrix in which is embedded an arbitrary 2 × 2 complex or-
thogonal matrix, such that Ω𝑇 Ω = 𝟙2×2. Depending on the neutrino hierarchy
(normal: NH or inverted: IH), such a matrix can be parametrized as:

Ω = ⎛⎜
⎝

0 0
cos(𝜔) sin(𝜔)

−𝜉 sin(𝜔) 𝜉 cos(𝜔)
⎞⎟
⎠

(NH) or ⎛⎜
⎝

cos(𝜔) sin(𝜔)
−𝜉 sin(𝜔) 𝜉 cos(𝜔)

0 0
⎞⎟
⎠

(IH)

(1.37)

where 𝜔 is a complex angle, and 𝜉 ∈ ±1 is a parity which can be set to +1
without losing generality18. We are thus left with one complex free parameter,
𝜔, and three real ones: the HNLs mass 𝑀 , their mass splitting 𝛿𝑀 , and the
Majorana phase 𝜂. The remaining parameters are not specific to HNLs, but
rather represent input from neutrino oscillations; as such, they can be measured

15Keeping the 𝜈MSM notations, with indices 𝐼 = 2, 3 denoting the two heaviest HNLs.
16The PMNS matrix for Majorana neutrinos is related to the usual one by redefining

𝑉PMNS → 𝑉PMNS ⋅ diag (1, 𝑒𝑖𝜂, 1), where 𝜂 is the Majorana phase (there is only one such
phase when considering two HNLs). For 𝒩 > 2 HNLs, additional Majorana phases appear.

17This equation is formally valid for all 𝒩, for suitable definitions of �̂�𝑁 and Ω.
18The case 𝜉 = −1 can then be recovered by simultaneously redefining 𝜔 → −𝜔 and

𝑁3 → −𝑁3 [53].
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or constrained. We estimate them using the global fit from the latest NuFIT
publication [54,55].

Armed with the Casas-Ibarra parametrization, we can then proceed to scan
the parameter space allowed by neutrino oscillations. For convenience, we of-
ten define 𝑋𝜔 = 𝑒Im(𝜔). This parameter is closely related to the magnitude of
the HNL mixing angles, which aro minimal for Im(𝜔) = 0, and behave asymp-
totically as |Θ𝛼𝐼 | ∼ 𝑒|Im(𝜔)| for large |Im(𝜔)| [37]. It is noteworthy that we
automatically recover the quasi-Dirac limit when 𝑀2 ≈ 𝑀3 and | Im(𝜔)| ≫ 1.
In this limit, and considering for example the 𝜈MSM with two HNLs, the com-
binations of HNL mixing angles which are compatible with neutrino oscillation
data are quite constrained. This is represented in figure 1.1 using a ternary
plot, which shows all the possible ratios of |Θ𝑒𝐼 |2 ∶ |Θ𝜇𝐼 |2 ∶ |Θ𝜏𝐼 |2 (𝐼 = 2 or
3 since the magnitudes are the same) as a function of the neutrino hierarchy
and the level of agreement with the NuFIT 5.0 global fit.19 This plot was
obtained by scanning over the neutrino oscillation parameters within a Δ𝜒2

(with respect to the best-fit point for the given hierarchy) corresponding to
the specified confidence level, and then scanning over the remaining free pa-
rameters of the Casas-Ibarra parametrization. It is remarkable that the ratios
corresponding to “single-flavor mixing” — often used by experiments to report
their sensitivity or limits — which are represented by the three vertices of the
triangle, are incompatible with neutrino oscillation data within this model.

1.2.4 Lepton number violation

Due to their mixing with neutrino flavor fields, HNLs are unstable particles.
Here we shall focus on the case where they are weakly produced on their mass
shell, typically in the decay of a heavy meson or vector boson, and then decay
weakly. The Feynman rules for Majorana HNLs contain four different propa-
gators [2]. They are represented in figure 1.2 for a generic electroweak process,
along with the mixing angles corresponding to both interaction vertices. Two
of them (figures 1.2a and 1.2b) conserve the total lepton number, like Dirac
fermions, and lead to lepton number conserving (LNC) processes, while two
others (figures 1.2c and 1.2d) violate it by two units — leading to lepton num-
ber violating (LNV) processes — and are only possible if HNLs are Majorana
fermions. The flow of lepton number, as well as the various charges, can be
inferred from the direction of the arrows.

Suppose now that 𝒩 HNLs are nearly degenerate in mass 𝑀 and satisfy
eq. (1.30). Additional HNLs can be omitted if they are sufficiently decoupled,
like e.g. 𝑁1 in the 𝜈MSM. All HNLs taking part in the process are therefore al-
most indistinguishable, except for their small mass splittings. If those are small
enough (such that coherence is maintained by the production, propagation and
decay processes [22]), the transition amplitudes for different propagating HNLs
will interfere, and need to be summed when computing the total amplitude for
the decay chain. If we were to omit the space-time-dependent part of the am-
plitude introduced by the phase 𝑒−𝑖𝑞𝐼⋅𝑥 in the HNL propagator, then, factoring
out the common part ̂𝐴±±

𝛼𝛽 from the amplitude20 (since it is nearly equal for all

19Without the Super-Kamiokande atmospheric data.
20The kinematical variables have been omitted for brevity.
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Figure 1.1: Representation of the set of HNL mixing angles Θ𝛼𝐼 which are
compatible with the neutrino oscillation data [54, 55] at various levels, within
the 𝜈MSM with two HNLs forming a quasi-Dirac pair. |Θ𝐼 |2 is defined as
∑𝛼=𝑒,𝜇,𝜏 |Θ𝛼𝐼 |2 and 𝐼 = 2 or 3.

the nearly degenerate HNLs), we would obtain for the total amplitude:

𝒜±±
𝛼𝛽,tot = ( ∑

𝐼
Θ±

𝛼𝐼Θ±
𝛽𝐼) ̂𝐴±±

𝛼𝛽 (1.38)

where − denotes the HNL interacting through its left chiral component (𝑁𝐼),
+ through its right one (𝑁†

𝐼 ), 𝛼 and 𝛽 are the flavors through which it respec-
tively interacts during production and decay 21, and we have used the compact
notation Θ−

𝛼𝐼 = Θ𝛼𝐼 and Θ+
𝛼𝐼 = Θ∗

𝛼𝐼 . The total amplitude for a LNV process is
therefore proportional to ∑𝐼 Θ𝛼𝐼Θ𝛽𝐼 or its complex conjugate. However, sub-
stituting eq. (1.34) into eq. (1.30) and factoring out the common mass leads
to:

𝑚𝛼𝛽 ≅ −𝑀 ∑
𝐼

Θ𝛼𝐼Θ𝛽𝐼 (1.39)

The empirical requirement that |𝑚𝛼𝛽| ⋘ 𝑀 thus implies that the mixing
angles must satisfy ∣ ∑𝐼 Θ𝛼𝐼Θ𝛽𝐼 ∣ ⋘ 1, a priori leading us to the conclusion that

21For instance, for a LNC process involving the sub-diagram in figure 1.2a, where the HNL
mixes with flavor 𝛼 through it right chiral component (+) during production, and with flavor
𝛽 through its left chiral component (−) during decay, the total amplitude will be denoted by
𝒜+−

𝛼𝛽,tot.
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Figure 1.2: The four propagators involved in the production in ̄𝑥𝑃 (left vertex),
propagation and then destruction in ̄𝑥𝐷 (right vertex) of a Majorana HNL. The
charge/helicity of the accompanying leptons can be inferred from the direction
of the arrows.

LNV amplitudes must be suppressed in order for light neutrinos to remain light,
as found in [48] in a more general case. LNC amplitudes being proportional to
∑𝐼 Θ∗

𝛼𝐼Θ𝛽𝐼 or its complex conjugate, this argument does not apply to them.
In the next section, we shall see how including the space-time-dependent phase
in the amplitude affects our conclusion.

1.3 Coherent HNL oscillations

If we reintroduce the space-time-dependent phase 𝑒−𝑖𝑞𝐼·𝑥 into the amplitude,
we immediately see that multiple mass eigenstates will produce interference
terms of the form 𝑒𝑖(𝑞𝐽−𝑞𝐼)·𝑥, resulting in space-time-dependent interference, i.e.
oscillations. However, the precise form taken by these oscillations is not ini-
tially obvious. Although HNL oscillations share a similar origin with neutrino
flavor oscillations, we can reasonably expect their phenomenology to be quite
different, since HNLs are heavy, unstable particles coming from the addition
of sterile / right-handed flavor states. In particular, while lepton number vio-
lating effects are kinematically suppressed in the interactions of light neutrinos
(if they are Majorana particles), there is no such suppression in decays of on-
shell particles [56, 57], and we therefore expect some HNL decays to be lepton
number violating. We also need to ensure that no decoherence takes place, as
it would destroy the oscillations. In order to determine the precise form of
these oscillations, it seems reasonable to follow an ab-initio approach based on
quantum field theory and on existing knowledge about oscillations of unstable
particles. After a brief (and non-exhaustive) review of the existing literature
in section 1.3.1, the external wave packet model is employed in section 1.3.2 to
derive a description of HNL oscillations. Sections 1.3.3 to 1.3.5 are then dedi-
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cated to the phenomenology of these oscillations, and discuss some interesting
limits and implications.

1.3.1 Literature review
Neutrino-antineutrino oscillations have been considered ever since Pontecorvo’s
seminal article [17], by analogy with meson-antimeson oscillations. It was only
later that the possibility of flavor oscillations was contemplated [18]. In these
first articles, no explicit model was ever considered, but the implicit assumption
was that neutrinos were Majorana particles [58]. In ref. [59], the standard Dirac-
Majorana mass term made an apparition, and a formula for 𝜈𝑒 disappearance
was derived, and then generalized in ref. [60] to obtain the standard formula
of neutrino oscillations (minus 𝐶𝑃 violation). The focus had then moved to
flavor oscillations, and neutrinos were still assumed to be ultra-relativistic. The
introduction of the seesaw mechanism [27–34] popularized the idea of heavy
Majorana neutrinos. Unfortunately, in its initial form, it resulted in GUT-scale
neutrinos which were way out of the experimentally testable realm. Although
oscillations of heavy, unstable particles have been studied in the literature
[22], the aim was then mostly to describe heavy meson oscillations, and no
phenomenological study of HNL oscillations was done until very recently. The
growing popularity in the past decade of the 𝜈MSM as a viable BSM theory
has put sub-electroweak-scale HNLs under the spotlight, and led to a renewed
interest in HNL oscillations. A first study of flavor oscillations of HNLs was
conducted in ref. [61], but helicity was averaged out and the formalism was not
very suitable for calculations using S-matrix scattering theory. A similar study
was conducted in ref. [62] but, while technically correct, the formalism is not
straightforward to reconcile with the S-matrix one either, and lepton-number-
violating (LNV) oscillations were only considered in the specific case where
HNLs form a quasi-Dirac pair (𝐶𝑃 eigenstate). To the best of the author’s
knowledge, the first phenomenological studies of HNL oscillations are refs. [63]
and [64]. The first study of HNL oscillations in relation to LHC experiments
is ref. [65], which focused again on the quasi-Dirac limit (hence neglecting 𝐶𝑃
violation), and derived an observable 𝑅𝑙𝑙 based on the same-sign to opposite-
sign dilepton ratio, which can take non-trivial values (𝑅𝑙𝑙 ≠ 0, 1) when the HNL
lifetime is of the same order of magnitude as the oscillation frequency of the
quasi-Dirac pair. The study was limited to the case of the inverse seesaw in a
left-right symmetric model. Ref. [66] additionally considered the linear seesaw,
and computed regions where 𝑅𝑙𝑙 is non-trivial for specific models. Resolvable
HNL oscillations were also discussed briefly. A more comprehensive study
of resolvable HNL oscillations, in the context of the 𝜈MSM, can be found
in ref. [67]. Finally, in ref. [68], the angular distribution of the HNL decay
products was studied in an 𝑒+𝑒− collider setting, as a function of the mass
splitting 𝛿𝑚 of the quasi-Dirac pair. As we shall see in chapter 2, this effect
can be understood as the kinematical counterpart to the 𝑅𝑙𝑙 ratio. Further
phenomenological studies of HNL oscillations can be found in refs. [56, 69–72].

The observation of HNL oscillations would prove the existence of not only
one, but (at least) two nearly-degenerate HNLs, which would be a smoking gun
for the ARS mechanism. By allowing us to measure the HNL mixing angles and
relevant phases, it would shed light on the structure of the extended neutrino
sector and provide a stringent test of the seesaw mechanism. Moreover, HNL
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Figure 1.3: Schematic process with the intermediate HNLs and the external
wave packets represented.

oscillations must be allowed for when carrying out displaced vertex searches
at colliders. A complete, accurate and usable model of HNL oscillations, valid
even near the seesaw bound (where 𝐶𝑃 -violating effects cannot be neglected),
is therefore essential when studying HNLs.

1.3.2 The external wave packet model
In order to accurately describe processes involving multiple intermediate HNLs,
it is essential to treat them coherently, i.e. compute a single amplitude for the
entire process, comprising the HNL production, propagation and decay. In-
deed, only external particles result in a projection of the quantum state of the
system when they eventually interact with the environment. Since multiple
intermediate HNLs have a different dispersion relation 𝑞2 = 𝑀2

𝐼 , they each
contribute a different complex phase 𝑒−𝑖𝑞⋅𝑥. When the phase shift between
two mass eigenstates becomes sufficiently large, it can significantly alter the
total amplitude, ultimately leading to oscillations. It is therefore fundamental
to carefully treat the space-time dependence of the amplitude. In many mod-
els, HNLs are sufficiently long-lived to leave a displaced vertex when decaying.
However, the usual 𝑆-matrix scattering theory is only suitable to describe plane
waves, which are inherently delocalized. A natural framework to study HNL
oscillations is thus the external wave packet model [73,74] (see also [22,75–77]
and references therein for recent reviews), in which only external particles are
treated as asymptotic states, and are localized by associating them with fi-
nite wave packets. Wave packets are required in order to obtain interference
between multiple mass eigenstates while preserving exact momentum conser-
vation at every vertex [76, 78]. We do not lose any generality by employing
this framework, since it is a superset of the standard scattering theory. In this
section, we shall briefly sketch the derivation of HNL oscillations within the ex-
ternal wave packet model, without carrying out the explicit computation. The
interested reader is referred to chapter 4 from [22] for a detailed proof (see also
the author’s master thesis [67] or a recent, independent derivation in ref. [79]).

Consider now the generic process depicted in figure 1.3. Incoming particles
are respectively denoted by |Ψ𝑖

𝑃 ⟩ and |Ψ𝑖
𝐷⟩ at the HNL production and destruc-

tion vertices 𝑥𝑃 and 𝑥𝐷, and outgoing particles by |Ψ𝑓
𝑃 ⟩ and |Ψ𝑓

𝐷⟩. For HNL
decays, |Ψ𝑖

𝐷⟩ = |0⟩. External particle states are assumed to be uncorrelated,
such that the initial and final states |Ψ𝑖⟩ and |Ψ𝑓⟩ can be written as tensor
products of the individual particle states |Ψ1⟩ ⊗ |Ψ2⟩ ⊗ … (anti-/symmetrized
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as needed). Blobs denote the processes involved in the HNL production or
destruction, which only trivially depends on 𝑁𝐼 , i.e. through the mixing an-
gles Θ𝛼𝐼 and kinematic variables. Each external particle state |Ψ𝑗⟩ can be
decomposed into Fourier modes |k𝑗⟩:

∣Ψ𝑗⟩ = ∫dΩk𝑗
𝜓𝑗(k𝑗) ∣k𝑗⟩ (1.40)

where dΩk𝑗
is the Lorentz-invariant integration measure and 𝜓𝑗(k𝑗) is the wave

packet of the particle (i.e. its one-particle wave-function in the asymptotic,
non-interacting limit). This allows expressing the total transition amplitude
𝒜(Ψ𝑖 → Ψ𝑓) in terms of plane-wave amplitudes 𝒜pw

𝐼 ({k𝑗}), which can be
readily computed with the usual methods:

𝒜(Ψ𝑖 → Ψ𝑓) = ⟨Ψ𝑓 | ̂𝑆|Ψ𝑖⟩

= ∫dΩk𝑓
1…k𝑓

𝑚
dΩk𝑖

1…k𝑖𝑛
𝜓𝑓∗

1 (k𝑓
1) … 𝜓𝑖

1(k𝑖
1) … ⋅ ∑

𝐼
𝒜pw

𝐼 (k𝑖
1 … k𝑖

𝑛 → k𝑓
1 … k𝑓

𝑚)

(1.41)

For brevity we have omitted the dependence on external spins, which can be
factored out for nearly-degenerate HNLs (cf. ref. [22], sec. 4.3), but we have kept
the sum over mass eigenstates 𝑁𝐼 . We have also included the mixing angles
Θ𝛼𝐼 in 𝒜pw

𝐼 . Equation (1.41) does not explicitly depend on any space-time
coordinates. We can reveal this dependence by noticing that plane waves from
eq. (1.40) only lead to constructive interference in a small region of space-time
near the trajectory of each particle. The product of all wave packets is thus non-
vanishing only in the vicinity of 𝑥𝑃 or 𝑥𝐷, where they overlap. Following [22],
we can without losing generality work with zero-centered wave packets ̄𝜓𝑗(𝑘𝑗) =
𝑒−𝑖𝑘𝑗⋅𝑥𝐷/𝑃 𝜓𝑗(𝑘𝑗), which simplify the definition of the overlap region. Shifting
the wave packets introduces a complex phase 𝑒∓𝑖𝑘𝑗⋅𝑥𝑃 for particles interacting
at 𝑥𝑃 and 𝑒∓𝑖𝑘𝑗⋅𝑥𝐷 for those interacting at 𝑥𝐷, where the − sign is for incoming
particles and the + sign for outgoing ones. Using momentum conservation, this
results in an overall phase factor of 𝑒−𝑖𝑞⋅(𝑥𝐷−𝑥𝑃 ).

Let us now focus on the case where the separation between the production
and decay vertex is much larger than the wave packet width. This is always
the case if the HNL leaves a displaced vertex, but it might still be true even
if the vertex is not experimentally resolvable. As we shall see in section 1.3.5,
this implies that the coherence production / detection condition is satisfied. In
this case, the residual space-time dependence, of the order of the width 𝜎𝑥 of
the overlap region, can be shown to be negligible. For sufficiently degenerate
HNLs, we can factor out the kinematical part of the amplitude from the sum
over 𝐼 , leaving only the HNL propagators, the mixing angles Θ𝛼𝐼 and the phase
𝑒−𝑖𝑞⋅(𝑥𝐷−𝑥𝑃 ). We can finally perform the integration over external momenta
k𝑗. For on-shell HNLs, the only contribution to the integral comes from the
pole in each propagator, which imposes the dispersion relation 𝑞2 = 𝑀2

𝐼 −
𝑖𝑀𝐼Γ𝐼 . Combined with momentum conservation at each vertex, it effectively
results in an integration over the 3-momentum q, where 𝐸𝐼(q) is treated as
a dependent variable. The different dispersion relations lead to a systematic
phase shift 𝑒−𝑖(𝑞𝐼−𝑞𝐽)⋅(𝑥𝐷−𝑥𝑃 ) between the contributions of two HNLs 𝑁𝐼 and
𝑁𝐽 to the integrand, where we have defined 𝑞𝐼 ≡ (𝐸𝐼(q), q). Since HNLs are
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heavy, the phase (including the absorptive part) can in good approximation
be evaluated in their common rest frame, yielding 𝑒−𝑖(𝑀𝐼−𝑀𝐽)𝜏− Γ𝐼−Γ𝐽

2 𝜏 , where
𝜏 = √(𝑥𝐷 − 𝑥𝑃 )2 is the proper time between the HNL production and decay
vertex. If wave packets are sufficiently peaked in momentum space (but not so
much as to allow us to determine the mass eigenstate), we can finally factor
out the slowly-varying part of the phase from the integral. Using the same
compact notation as in eq. (1.38):

𝒜±±
𝛼𝛽 (Ψ𝑖 → Ψ𝑓) = (

𝒩
∑
𝐼=1

Θ±
𝛼𝐼Θ±

𝛽𝐼𝑒−𝑖(𝑀𝐼−�̂�)𝜏− Γ𝐼
2 𝜏) ⋅ ̂𝐴±±

𝛼𝛽 (Ψ𝑖 → Ψ𝑓) (1.42)

where ̂𝐴±±
𝛼𝛽 (Ψ𝑖 → Ψ𝑓) is the common part of the amplitude, for a single HNL of

reference mass �̂� ≈ 𝑀𝐼 , and without the absorptive part nor the mixing angles.
In practical calculations, this one-HNL amplitude can easily be evaluated using
the usual plane-wave scattering theory. Taking the absolute square of the
amplitude and introducing the relevant phase-space factors, we then obtain
the relation between the coherent differential event rates (or cross-sections) for
𝒩 HNLs and 1 HNLs:

dΓ±±
𝛼𝛽 (𝜏) = ∣

𝒩
∑
𝐼=1

Θ±
𝛼𝐼Θ±

𝛽𝐼𝑒−𝑖𝑀𝐼𝜏− Γ𝐼
2 𝜏 ∣

2

dΓ̂±±
𝛼𝛽 (1.43)

where dΓ̂±±
𝛼𝛽 is computed for a single HNL with unit mixing angles and no

absorptive part 𝑒−Γ𝜏 . Let us emphasize that dΓ̂±±
𝛼𝛽 may in general result in

very different kinematics for the various combinations of chiralities ±. If we
were to omit the interference terms (for instance if coherence is lost), we would
obtain instead the incoherent width:

dΓ±±
𝛼𝛽,inc(𝜏) = (

𝒩
∑
𝐼=1

|Θ𝛼𝐼 |2 ∣Θ𝛽𝐼 ∣2 𝑒−Γ𝐼𝜏) dΓ̂±±
𝛼𝛽 (1.44)

Finally, let us briefly mention the case where the wave packets are much wider
(in position space) than the separation between the production and decay ver-
tex. This corresponds to a prompt HNL decay, and wave packets can be
well-approximated as plane waves, up to negligible boundary effects. In this
limit, there are no oscillations, but the finite decay width Γ𝐼 (which is encoded
in the self-energy of the propagator) will typically introduce a dependence of
the final amplitude on 𝛿𝑀/Γ and 𝛿Γ/Γ. This case is already well-covered in the
literature; see for instance [68,80]. Interestingly, the plane-wave width matches
the 𝜏 -integrated coherent width, i.e. integrating over space-time at the ampli-
tude or squared amplitude level yields the same result. This suggests a smooth
transition between the two regimes when looking only at space-time integrated
observables. Incidentally, it also explains why [68] obtains the correct result
while using the plane-wave formalism despite considering displaced HNLs.

1.3.3 Oscillations of quasi-Dirac HNLs
Let us now specialize eq. (1.43) to the case of two HNLs 𝑁1 and 𝑁2 forming a
quasi-Dirac pair (introduced in section 1.2.3), i.e. 𝑀1 = 𝑀 − 𝛿𝑀

2 , 𝑀2 = 𝑀 + 𝛿𝑀
2
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and Θ𝛼2 = ±𝑖Θ𝛼1. In this limit, eq. (1.43) becomes:

dΓ±±
𝛼𝛽 (𝜏) = 2 (1 ± cos (𝛿𝑀𝜏)) 𝑒−Γ𝜏dΓ̂±±

𝛼𝛽 (1.45)

where the + sign is for lepton-number-conserving processes (dΓ+−
𝛼𝛽 and dΓ−+

𝛼𝛽 ),
and the − sign for lepton-number-violating ones (dΓ++

𝛼𝛽 and dΓ−−
𝛼𝛽 ). The corre-

sponding 𝜏 -integrated differential width is:

∫
∞

0
d𝜏 dΓ±±

𝛼𝛽 (𝜏) = ( 1
Γ ± Γ

Γ2 + (𝛿𝑀)2 ) dΓ̂±±
𝛼𝛽 (1.46)

Integrating over phase-space and considering the “standard” LNV / LNC ratio
𝑅𝑙𝑙, we recover the usual expression:

𝑅𝑙𝑙 = (𝛿𝑀)2

2Γ2 + (𝛿𝑀)2 (1.47)

In order to clarify when lepton-number violation is possible, let us now consider
various limits. If the HNL is short-lived (i.e. it is observed at Γ𝜏 ≳ 1), only the
integrated rate can be measured:

1. If Γ ≫ 𝛿𝑀 , then the HNL pair behaves like a single Dirac HNL22 and
𝑅𝑙𝑙 → 0 (the HNLs do not have time to oscillate before decaying).

2. If Γ ≪ 𝛿𝑀 , then the HNL pair behaves like a single Majorana HNL23

and 𝑅𝑙𝑙 → 1 (the HNLs undergo many oscillations before decaying).
3. For Γ ∼ 𝛿𝑀 , non-trivial 𝑅𝑙𝑙 ratios are possible.

If the HNL is long-lived (i.e. it is observed at Γ𝜏 ≪ 1), then its behaviour
depends not only on the mass splitting 𝛿𝑀 , which is an intrinsic parameter
of the theory, but also on the range of proper time 𝜏 accessible at a given
experiment:

1. If 𝛿𝑀𝜏 ≪ 2𝜋, the HNL pair is observed before the onset of oscillations,
and it behaves like a single Dirac HNL, with 𝑅𝑙𝑙 → 0.

2. If 𝛿𝑀𝜏 ≫ 2𝜋, oscillations are averaged out, and the HNL pair behaves
like a single Majorana HNL, with 𝑅𝑙𝑙 → 1.

3. If 𝛿𝑀𝜏 ∼ 2𝜋, then oscillations must be accounted for. If it is possi-
ble to experimentally reconstruct, for each event, the proper time 𝜏 =
√(𝑥𝐷 − 𝑥𝑃 )2 between the production and decay vertex of the HNL, then
oscillations can be resolved, i.e. the 𝜏 -differential event rate will show a
periodic modulation according to eq. (1.45). These oscillations can be in-
terpreted as particle-antiparticle oscillations between a Dirac fermion 𝑁
and its antiparticle ̄𝑁 (like neutral meson oscillation).

We will from now on refer to case 1. as the Dirac-like limit of quasi-Dirac
HNLs, and to case 2. as their Majorana-like limit, regardless of whether the
HNLs are short-lived or long-lived.

These results are well known in the quasi-Dirac limit (see e.g. [66]), but
eq. (1.43) makes it straightforward to generalize them to arbitrary numbers of

22With a 4× enhancement of all cross-sections and a lifetime only half as long.
23With a 2× enhancement of all cross-sections and the same lifetime.
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nearly-degenerate HNLs and arbitrary mixing angles. It is also interesting to
notice that HNLs may behave as Dirac in one experiment and as Majorana
in another, if the two experiments probe sufficiently different 𝜏 ranges. This
could in principle allow to bisect 𝛿𝑀 without explicitly observing oscillations.

1.3.4 𝐶𝑃 violation
Recently, there has been a strong interest in observing 𝐶𝑃 -violating HNL oscil-
lations [69–72, 80, 81]. In this section, we aim to clarify whether 𝐶𝑃 violation
is possible at all for quasi-Dirac HNLs, if it is allowed in LNC channels, and
which models can give rise to it. To this end, let’s introduce an additional
complex phase between the mixing angles of the two HNLs: Θ𝛼2 = ±𝑖𝑒𝑖𝜃𝛼Θ𝛼1.
To remain generic, we let it depend on flavor. The coherent width becomes
(where for brevity we have included the exponential decay in the one-HNL
width dΓ̃±±

𝛼𝛽 (𝜏) = dΓ̂±±
𝛼𝛽 𝑒−Γ𝜏):

dΓ+−
𝛼𝛽 (𝜏) = 2 (1 + cos (𝛿𝑀𝜏 + 𝜃𝛼 − 𝜃𝛽)) dΓ̃+−

𝛼𝛽 (𝜏)
dΓ−+

𝛼𝛽 (𝜏) = 2 (1 + cos (𝛿𝑀𝜏 − 𝜃𝛼 + 𝜃𝛽)) dΓ̃−+
𝛼𝛽 (𝜏)

dΓ++
𝛼𝛽 (𝜏) = 2 (1 − cos (𝛿𝑀𝜏 + 𝜃𝛼 + 𝜃𝛽)) dΓ̃++

𝛼𝛽 (𝜏)
dΓ−−

𝛼𝛽 (𝜏) = 2 (1 − cos (𝛿𝑀𝜏 − 𝜃𝛼 − 𝜃𝛽)) dΓ̃−−
𝛼𝛽 (𝜏)

We immediately see that the phases 𝜃𝛼 are 𝐶𝑃 -violating. If the phase 𝜃𝛼 ≡ 𝜃LV
does not depend on the generation, then it only leads to 𝐶𝑃 violation in LNV
channels. But this assumption does not hold in general. We may wonder if
it is possible to keep the light neutrinos light when introducing 𝐶𝑃 violation.
This can be studied directly by making use of eq. (1.39).

𝑚𝛼𝛽 ≅ −𝑀Θ𝛼1Θ𝛽1 (1 − 𝑒𝑖(𝜃𝛼+𝜃𝛽)) (1.48)

Consider the Frobenius norm tr(𝑚†
𝜈𝑚𝜈) of the light neutrino mass matrix. In

the mass basis:

tr(𝑚†
𝜈𝑚𝜈) =

3
∑
𝑖=1

𝑚2
𝑖 (1.49)

while in the flavor basis:

tr(𝑚†
𝜈𝑚𝜈) = ∑

𝛼,𝛽
𝑚∗

𝛼𝛽𝑚𝛼𝛽 = 2𝑀2 ∑
𝛼,𝛽

|Θ𝛼1|2 ∣Θ𝛽1∣2 (1 − cos(𝜃𝛼 + 𝜃𝛽)) (1.50)

Each term in the sum is positive definite, therefore if any 𝜃𝛼 + 𝜃𝛽 ≠ 0, the
norm, and therefore at least one light neutrino mass, will be non-zero. In order
to keep the light neutrino masses small, the phases must satisfy 𝜃𝛼 +𝜃𝛽 ≅ 0 for
all 𝛼 and 𝛽, and in particular for 𝛼 = 𝛽. The only solution is that all 𝜃𝛼 ≅ 0,
which directly shows that 𝐶𝑃 violation must be suppressed for quasi-Dirac
HNLs. More precisely, the knowledge of the light neutrino masses allows us to
place an upper bound on 𝐶𝑃 -violating phases:

|𝜃𝛼| ≲ ∣𝑚𝛼𝛽∣
2𝑀 |Θ𝛼1| ∣Θ𝛽1∣ (1.51)
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This expression tells us that no matter how large the mixing angles are, the ab-
solute scale of 𝐶𝑃 violation will always remain approximately the same, around
the naive seesaw expectation |𝑚𝜈|/𝑀. With only two HNLs, 𝐶𝑃 violation should
therefore be experimentally unobservable. It has nonetheless been shown to
still be sufficient for producing the baryon asymmetry of the Universe [37,82].

The case of three quasi-degenerate HNLs turns out to be qualitatively dif-
ferent. Using the Casas-Ibarra parametrization described in section 1.2.3 (but
for three HNLs), it is straightforward to show that “typical” choices of mixing
angles produce non-zero 𝐶𝑃 -odd phases 𝜑(3)

𝛼𝛽,𝐼𝐽 = arg(Θ±
𝛼𝐼Θ±

𝛽𝐼Θ∓
𝛼𝐽Θ∓

𝛽𝐽) for all
combinations of flavors 𝛼 and 𝛽, and 𝐼 ≠ 𝐽 = 1, 2, 3, resulting in 𝐶𝑃 violation
in lepton number violating decays. Therefore, detecting 𝐶𝑃 violation in HNL
oscillations or decays would indicate the presence of at least three right-handed
neutrinos.

1.3.5 Coherence conditions

In order for coherent oscillations to be possible, two conditions must be satis-
fied, as discussed in ref. [22,77]. The coherent production / detection condition
is the requirement that a precise measurement of the external momenta (at ei-
ther vertex) should not allow to distinguish which particular mass eigenstate
mediated a specific instance of the process. More technically, the energy and
momentum spread of the wave packets must be sufficiently large so that the
integration over external momenta hits all HNL poles in the propagator. As
shown in ref. [83], due to the uncertainty principle, this condition has an in-
tuitive counterpart in position space. It is equivalent to the statement that
the width of the overlap region in position space is smaller than the oscillation
wavelength. For all cases where oscillations (and not just their integrated effect)
are of practical relevance, this condition is trivially satisfied due to the (classi-
cal) requirement that the vertexing resolution be smaller than the oscillation
wavelength.

The second condition is the coherent propagation. It is the requirement that
the wave packets do not separate due to their different group velocities, and
as such it crucially depends on the temporal resolution of the detector [84]. In
other words, it must not be possible to distinguish wave packets using a time-
of-flight measurement. This condition is satisfied provided the observation
distance 𝐿 and energy width 𝜎𝐸 of the wave packets are such that:

2𝜋 𝐿
𝐿osc

≪ 𝐸
𝜎𝐸

(1.52)

where 𝐿/𝐿osc is the number of oscillation periods. This condition is also triv-
ially satisfied in all relevant cases, due to the (classical) requirement that the
energy resolution 𝛿𝐸 > 𝜎𝐸 must be sufficiently small in order to reconstruct the
oscillating signal without smearing it. We thus see that the production, prop-
agation and decay processes remain coherent in all situations where resolving
oscillations would make any sense. Ambiguities may only arise for prompt
HNLs, for which the above reasoning does not hold. However, in this case, we
can only look at space-time-integrated observables which, as we noticed, do
not depend on the coherence of the process.
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1.4 Recap & introduction to the articles

After a short introduction to the Standard Model of particle physics in sec-
tion 1.1.1, we have highlighted in section 1.1.2 a number of observational short-
comings in this otherwise very well tested model: non-zero neutrino masses, the
matter-antimatter asymmetry, dark matter — and we have briefly reviewed the
evidence supporting these observations.

Heavy neutral leptons were then introduced in section 1.2 as a minimal, yet
powerful extension of the Standard Model, which could potentially resolve all
of these problems simultaneously (as in the neutrino minimal standard model).
After presenting the rationale behind this model in section 1.2.1 and introduc-
ing the type-I seesaw mechanism in section 1.2.2, sections 1.2.3, 1.2.4 and 1.3
discussed several aspects of the phenomenology of HNLs, such as their viable
parameter space, the (non-)conservation of the total lepton number and the
signatures resulting from multiple interfering HNLs (lepton number conser-
vation and HNL oscillations). In particular, section 1.3 focused on HNL os-
cillations, which is the most distinctive feature of models featuring multiple
nearly-degenerate HNLs. Using an ab-initio treatment based solely of QFT
with wave packets, we obtained in section 1.3.2 an unambiguous description of
HNL oscillations for any number of nearly-degenerate HNLs, with any mixing
angles. The next sections then discussed several aspects of these oscillations,
such as the simplified form that they take for quasi-Dirac HNLs (section 1.3.3),
the presence or absence of 𝐶𝑃 violation (section 1.3.4) and the conditions under
which the process remains coherent (section 1.3.5).

This introduction underscores how, despite being one of the simplest pos-
sible extensions of the Standard Model, heavy neutral leptons can nonetheless
feature a very rich phenomenology, including coherent oscillations, CP violation
and lepton number violation, all of which may be either present or suppressed
depending on the specific parameters of the model. It is particularly notewor-
thy that all of these aspects of the phenomenology of HNLs are directly linked
to the resolution of Standard Model deficiencies.

In light of the above, and considering that HNLs are one of the main moti-
vations for several upcoming intensity-frontier experiments, it appears essential
that this potentially complex phenomenology is taken into account by experi-
mental searches, in particular when deriving sensitivity or exclusion limits. To
this end, the main objective of this thesis is to investigate several aspects of the
phenomenology of HNLs, in relation to current or proposed searches at CERN.

The first article, presented in chapter 2, investigates to which extent the
proposed SHiP experiment could probe lepton number violation and HNL os-
cillations, despite being a beam-dump experiment which a priori should not
be able to distinguish lepton number conserving (LNC) and violating (LNV)
processes. However, by leveraging the angular distributions resulting from the
different spin correlations of LNC and LNV processes, it turns out that SHiP
should have a non-trivial sensitivity to lepton number violation, and might
even be able to resolve HNL oscillations.

The second article, presented in chapter 3, focuses on a small region of
the 𝜈MSM parameter space which was recently found to be still allowed [85] by
experimental constraints. As an attempt to close this region, a new search chan-
nel — consisting of the decay in flight of a 𝐾+ meson into a 𝜋0, a positron 𝑒+

and an HNL 𝑁 — is investigated at the NA62 experiment. Due to a previously-
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unidentified source of background, the sensitivity turns out to be only marginal,
unless significant modifications are made to the experiment.

The last article, presented in chapter 4, undertakes to consistently combine
the results from an ATLAS search for prompt HNLs [86, 87] with neutrino
oscillation data [54, 55] within the 𝜈MSM with two nearly-degenerate HNLs.
This requires reinterpreting the ATLAS results, and to this end we have imple-
mented a simplified version of their analysis. The reinterpreted limits show a
strong dependence on the chosen benchmark point, and often end up above the
limit reported for single-flavor mixing. For Dirac-like HNL pairs, non-trivial
indirect limits are obtained, where there were previously none. This article
emphasizes how limits derived under the single-flavor mixing assumption can
greatly differ from limits on the individual mixing angles obtained for non-
trivial mixing patterns, thus underscoring the need for reinterpretable results.

In conclusion, the articles collected in this thesis highlight the rich phe-
nomenology of heavy neutral leptons and demonstrate the importance of con-
sidering realistic models when performing searches and deriving limits. They
show that such models do not necessarily lead to a poorer sensitivity compared
to simplified benchmarks, but instead may open new opportunities to probe
the underlying theory.
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Abstract

SHiP is a proposed high-intensity beam dump experiment set to operate at
the CERN SPS. It is expected to have an unprecedented sensitivity to a va-
riety of models containing feebly interacting particles, such as Heavy Neutral
Leptons (HNLs). Two HNLs or more could successfully explain the observed
neutrino masses through the seesaw mechanism. If, in addition, they are quasi-
degenerate, they could be responsible for the baryon asymmetry of the Uni-
verse. Depending on their mass splitting, HNLs can have very different phe-
nomenologies: they can behave as Majorana fermions—with lepton number
violating (LNV) signatures, such as same-sign dilepton decays—or as Dirac
fermions with only lepton number conserving (LNC) signatures. In this work,
we quantitatively demonstrate that LNV processes can be distinguished from
LNC ones at SHiP, using only the angular distribution of the HNL decay prod-
ucts. Accounting for spin correlations in the simulation and using boosted
decision trees for discrimination, we show that SHiP will be able to distinguish
Majorana-like and Dirac-like HNLs in a significant fraction of the currently
unconstrained parameter space. If the mass splitting is of order 10−6 eV, SHiP
could even be capable of resolving HNL oscillations, thus providing a direct
measurement of the mass splitting. This analysis highlights the potential of
SHiP to not only search for feebly interacting particles, but also perform model
selection.
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2.1 Introduction

The experimentally observed non-vanishing neutrino mass differences are among
a few firmly established deviations from the Standard Model (SM) predictions.
An economic way of generating the light neutrino masses is to introduce heavy
singlet fermions with Majorana mass terms into the model [27,30,31,33,34,88].
The masses of the active neutrinos in this extension of the SM are determined
by the type-I seesaw formula and at least two singlet fermions are needed to
accommodate the two observed mass differences of light neutrinos. A conse-
quence of this mechanism is the presence of heavy Majorana fermions which
mix with active neutrinos. The mass scale of these Majorana fermions—Heavy
Neutral Leptons (HNLs)—is not fixed. It can be below the electroweak scale,1

1An argument in favour of the low-scale seesaw comes from the measured values of the
Higgs and top masses. HNLs with masses below the electroweak scale are not destabilising
the Higgs mass [89,90].
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Figure 2.1: Sketch of the SHiP experiment, with the decay chain 𝐻 →
ℎ′𝑙𝛼(𝑁 → 𝑙𝛽ℎ″).

like in the 𝜈MSM [35, 36], where two HNLs are responsible for the light neu-
trino masses and generating the Baryon Asymmetry of the Universe (BAU) via
𝐶𝑃 -violating oscillations during their production.

From the FIP (feebly interacting particles) search point of view, HNLs
with masses below that of a 𝐵 meson are the most accessible in the foreseeable
future [91]. There is a vast program to search for HNLs at intensity frontier
experiments, either LHC-based, such as MATHUSLA [41, 92, 93], FASER [94–
96], CODEX-b [97, 98], AL3X [43, 99] and ANUBIS [100], or at beam-dump
facilities, such as DUNE [101–103] (using the near detector), NA62++ [42,104]
(in dump mode) and SHiP [39,105,106]. Comparative studies of the exclusion
limits expected from these experiments have been performed in refs. [107–110].
If a candidate HNL signal were to be observed, the latter three experiments
would be sensitive to both its mass and mixing angles.

SHiP is a proposed beam-dump experiment (represented in figure 2.1) set
to operate at the CERN SPS. It will use an intense, 400 GeV proton beam
from the SPS, dumped on a thick target in order to produce a large number
of heavy hadrons, which subsequently decay into Standard Model (SM) or
feebly-interacting particles. SHiP is designed to provide a background-free
environment to look for the decays of these heavy FIPs. To this end, a hadron
absorber located right after the target absorbs most SM particles. It is followed
by an active muon shield which deflects the muons away from the experimental
cavern. The main detector consists of a decay volume—evacuated in order to
reduce the neutrino background, and surrounded by vetos—with a tracker and
a calorimeter located at its far end, enabling it to reconstruct the decay event.

In order to generate the light neutrino masses via the seesaw mechanism,
HNLs must be Majorana fermions, which violate the total lepton number.
However, if the mass splitting is small enough, they can pair to form a co-
herent superposition of two quasi-degenerate Majorana fermions, which be-
haves almost like a Dirac fermion. Such a combination is dubbed “quasi-
Dirac pair”. In this case, the mixing angles can exceed the naive seesaw limit
𝑈2 ≈ 𝑚𝜈/𝑀𝑁 [48,111,112], where 𝑚𝜈 and 𝑀𝑁 are respectively the mass scales
of light neutrinos and HNLs. This is possible because a quasi-Dirac fermion
approximately conserves the total lepton number, hence protecting the light
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neutrino masses. For instance, the 𝜈MSM [35, 36] contains such a quasi-Dirac
pair if one requires the mass degeneracy which is needed for baryogenesis [35,45]
and especially for late-time leptogenesis [82]. Quasi-Dirac pairs also naturally
appear in some models of neutrino mass generation, such as the inverse see-
saw [113,114] and the linear seesaw [115,116]. This near degeneracy of the HNL
masses leads to coherent HNL oscillations. In the 𝜈MSM, these oscillations in
the early Universe are responsible for baryogenesis.

For sufficiently light (≲ 10 GeV) HNLs like the ones accessible at SHiP,
LNV may be experimentally observable even when they form a quasi-Dirac
pair [65, 117]. We can distinguish three cases,2 depending on the scale of the
oscillation phase 𝛿𝑀𝜏 , where 𝛿𝑀 is the mass splitting of the quasi-Dirac pair
and 𝜏 the typical proper time probed:

1. Dirac-like HNL: One Dirac HNL or a quasi-Dirac pair with an oscil-
lation period exceeding the HNL lifetime or detector size (𝛿𝑀𝜏 ≪ 2𝜋).3
Only LNC processes can be observed.

2. Majorana-like HNL: One Majorana HNL or a quasi-Dirac pair with a
lifetime and detector size exceeding the oscillation period (𝛿𝑀𝜏 ≫ 2𝜋).
Both LNC and LNV processes can be observed, with equal integrated
rates (see section 2.2.2).

3. Manifestly quasi-Dirac HNLs: An interesting case occurs when the
oscillation period is comparable to the HNL lifetime or to the size of
the detector4 (𝛿𝑀𝜏 ∼ 2𝜋): the experiment may then be sensitive to the
coherent oscillations of HNLs.

If HNLs were to be observed at SHiP, the detection or non-observation of
lepton number violation and HNL oscillations would allow constraining models
and their parameters. The most relevant LNV process at SHiP is the well-
studied same-sign dilepton decay: 𝐻 → [ℎ′]𝑙+𝛼(𝑁 → ℎ″𝑙+𝛽 ), where 𝐻, ℎ′ and ℎ″

are hadrons (with ℎ′ possibly missing), and 𝑙+𝛼, 𝑙+𝛽 , 𝛼, 𝛽 = 𝑒, 𝜇, 𝜏 are charged
leptons of potentially different generations. Due to suppressed background, this
type of signature is a smoking gun for HNLs in accelerator searches. However,
at beam-dump experiments, the heavy hadron decay which produces the HNL
takes place inside the target, and therefore the charge of the primary lepton
𝑙𝛼 cannot be observed. Naively, it seems that the information about the HNL
production is lost, since the charge of the secondary lepton 𝑙𝛽, by itself, is
not enough to tell apart LNC and LNV processes. As we shall see in this
paper, it turns out that the HNL decay products nevertheless carry important
information. Namely, their distribution is different for LNC and LNV processes.
Not only does this allow distinguishing Majorana-like from Dirac-like HNLs
given sufficiently many events, but the knowledge of these distributions can also
be used to resolve HNL oscillations and directly measure the mass splitting.

Estimating these two distributions is complicated by the presence of a va-
riety of two- and three-body production channels. In addition, the parent

2To be generic, we have included the more exotic cases of a single Dirac or Majorana
HNL. The limits presented below are for a quasi-Dirac pair, which only differs from those in
the number of events produced.

3As pointed out in ref. [117], for most experiments, this possibility might be technically
unnatural due to the very small mass splitting needed to satisfy the inequality.

4Interestingly, the mass difference needed to generate DM in the 𝜈MSM, as found in
ref. [82], is exactly in this borderline range.
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hadrons are produced with a finite spectrum. As we shall see in section 2.3.3,
this smears the distributions, making them look more similar. Therefore, in
order to assess whether SHiP will be able to discriminate between Majorana-
and Dirac-like HNLs, an accurate treatment of all production channels, includ-
ing spin correlations, is required. This is accomplished using a Monte-Carlo
simulation.

The angular distribution of HNL decay products has been studied in a col-
lider setting for decays which are not fully reconstructible [68,118,119] (such as
trilepton decays), as well as for beam-dump experiments [120, 121]. Our anal-
ysis improves on the latter by not relying on HNLs being produced as helicity
eigenstates, by handling a larger class of production channels, by considering
the full phase-space distribution of the HNL decay products (instead of just
their energy) and by producing a concrete sensitivity estimate using a realistic
geometry and heavy meson spectrum for SHiP.

This paper is organized as follows. In section 2.2, we review the Standard
Model extended with HNLs, and discuss lepton number violation and coherent
HNL oscillations. In section 2.3, we analyze the different signatures of LNC and
LNV processes at the SHiP experiment. In section 2.4, we propose a strategy
to detect LNV and reconstruct HNL oscillations. Finally, in section 2.5, we
present the sensitivity of SHiP to LNV achieved through this method, as well as
a possible signature of HNL oscillations. Technical details about the simulation
and the statistical analysis are respectively provided in sections 2.A and 2.B.

2.2 Model

2.2.1 Heavy Neutral Leptons
We consider the Standard Model extended with 𝒩 HNLs 𝑁𝐼 , which are spin- 1

2
SM singlets with Majorana masses 𝑀𝐼 , and new Yukawa couplings 𝑌 𝜈

𝛼𝐼 , with
𝛼 = 𝑒, 𝜇, 𝜏 the lepton flavor index. Using the conventions from [2]:

ℒ = ℒSM + 𝑖
2𝑁†

𝐼 (�̄� ⋅ 𝜕)𝑁𝐼 − (𝑌 𝜈
𝛼𝐼)∗(𝜙 ⋅ 𝐿𝛼)𝑁𝐼 − 𝑀𝐼

2 𝑁𝐼𝑁𝐼 + h.c. (2.1)

After electroweak symmetry breaking, the Yukawa interaction generates a
Dirac mass term (𝑚𝐷)𝛼𝐼 = 𝑣√

2 (𝑌 𝜈
𝛼𝐼)∗, resulting in a non-diagonal, symmet-

ric Dirac-Majorana mass term for neutrinos [46]:

ℒDM = −1
2 (𝜈𝑇 𝑁𝑇 ) ( 0 𝑚𝑇

𝐷
𝑚𝐷 𝑀𝑀

) ( 𝜈
𝑁) + h.c. (2.2)

where 𝑀𝑀 = diag (𝑀𝐼 … ). Using a unitary transformation of the fields (Takagi
factorization [47]), the mass matrix can be brought to a diagonal form:

𝜈𝛼 = 𝑈𝛼𝑖𝑛𝑖 and 𝑁𝐼 = 𝑈𝐼𝑖𝑛𝑖 (2.3)

ℒDM = −𝑚𝑖
2 (𝑛𝑖𝑛𝑖 + 𝑛†

𝑖 𝑛†
𝑖 ) (2.4)

In the limit |𝑀𝑀 | ≫ |𝑚𝐷|, we can use an approximate block factorization,
leading to the mass eigenstates 𝑛𝑖 ≅ 𝜈𝑖, 𝑁𝐼 mixing with the flavor fields as:

𝜈𝛼 ≅ 𝑈PMNS
𝛼𝑖 𝜈𝑖 + Θ𝛼𝐼𝑁𝐼 (2.5)

Θ𝛼𝐼 ≅ 𝑀−1
𝐼 (𝑚𝐷)𝛼𝐼 (2.6)
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Figure 2.2: Lepton number conserving and violating decay chains for 𝐻 →
ℎ′𝑙𝛼(𝑁 → 𝑙𝛽ℎ″).

and the following mass sub-matrices:

𝑚𝛼𝛽 ≅ − ∑
𝐼

(𝑚𝐷)𝛼𝐼(𝑚𝐷)𝛽𝐼
𝑀𝐼

≅ − ∑
𝐼

𝑀𝐼Θ𝛼𝐼Θ𝛽𝐼 (2.7)

𝑚𝐼𝐽 ≅ 𝑀𝐼𝛿𝐼𝐽 (2.8)

The choice of the mass scale 𝑀𝑀 and Yukawa couplings 𝑌 𝜈
𝛼𝐼 is not uniquely

dictated by low-energy neutrino observables, and should be fixed otherwise.
The Standard Model features an accidental symmetry—lepton number—

which, at tree level, is conserved for massless or Dirac neutrinos, but is vio-
lated by the Majorana mass term of HNLs. Charged leptons and neutrinos
have lepton number +1, while charged anti-leptons and anti-neutrinos have
lepton number −1. If lepton number is conserved (LNC), then the only al-
lowed Feynman diagrams are those with a conserved flow of lepton number
(represented by the arrow on the fermion lines of leptons), like the opposite-
sign dilepton decay of a heavy hadron shown in figure 2.2a. On the other hand,
in the presence of lepton number violating (LNV) operators, processes like the
same-sign dilepton decay shown in figure 2.2b become possible. Lepton number
violation can also manifest itself in neutral-current processes or in neutrinoless
double-𝛽 decay. Whether such LNV transitions actually happen depends on
the specific model.

In the past decade, a class of low-scale seesaw models have risen in popular-
ity, such as the 𝜈MSM [35], not least because of their falsifiability at existing or
proposed experiments. In these models, 𝑀𝑀 is postulated to be below the elec-
troweak scale. The seesaw formula (2.7) requires at least 2 HNLs to explain the
two observed mass differences. If their parameters are arbitrary, then the small-
ness of the light neutrino masses is achieved through small Yukawa couplings of
order 𝑌 𝜈 ∼ 1

𝑣 √|𝑚𝜈||𝑀𝑀 |, leading to squared mixing angles |Θ|2 ∼ |𝑚𝜈|/|𝑀𝑀 |.
For a typical HNL with 𝑀𝑀 ∼ 1 GeV, this gives |Θ|2 ∼ 10−11, a number that
is too small to be probed at any current or proposed experiment.

However, multiple HNLs can have mixing angles well above the seesaw
limit, yet at the same time produce the correct neutrino masses in a technically
natural way, if a certain symmetry is imposed on their Yukawa couplings. If
we consider for simplicity 𝒩 = 2 nearly degenerate HNLs 𝑁1,2, their mixing
angles should be related by Θ𝛼2 ≈ ±𝑖Θ𝛼1 [48, 111]. Such HNLs form a quasi-
Dirac fermion, which approximately conserves the total lepton number. This
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implies that the usual searches for naive LNV effects (e.g. same-sign dilepton
decays), may return null results even if HNLs are there.

Below we discuss an important consequence of the approximate nature of
this lepton number conservation: HNL oscillations, and how quasi-Dirac HNLs
can phenomenologically behave either as Majorana or Dirac HNLs depending
on their mass splitting 𝛿𝑀 and the length scale probed at the experiment.

2.2.2 Coherent oscillations of Heavy Neutral Leptons
The SHiP experiment is only sensitive to GeV-scale HNLs, with mixing angles
significantly above the seesaw limit [39]. Therefore it can only probe the quasi-
Dirac regime described above. Apart from a small mass splitting 𝛿𝑀 ≪ 𝑀 ,
the two HNLs are otherwise identical. Since these two HNLs cannot be dis-
tinguished in any realistic experiment, they both mediate the same processes
and each contribute to the total transition amplitude, resulting in interference.
Only the initial and final-state particles, which strongly interact with the en-
vironment, are measured in the quantum mechanical sense. In order to accu-
rately describe processes involving multiple HNLs, it is therefore necessary to
consider them as intermediate particles within a larger process consisting of the
HNL production, propagation and decay, and only square the overall transition
amplitude between the observed, external particles. This can be formulated
rigorously within the framework of the external wave packet model [73,74] (see
also [22, 75–77] and references therein for recent reviews). Let us note in pass-
ing that this description automatically takes care of spin correlations between
the particles taking part in the HNL production and decay.

In what follows, we consider a typical reconstructible decay chain at SHiP,
as depicted in figure 2.2. We will postpone the detailed discussion of this
process to section 2.3. A heavy hadron 𝐻 produced in the target decays at
space-time coordinates 𝑥𝑃 into an HNL 𝑁𝐼 , a charged lepton 𝑙𝛼 (the primary
lepton), and an optional hadron ℎ′. If the HNL is sufficiently long-lived, it
can propagate a macroscopic distance before decaying at 𝑥𝐷 into a charged
lepton 𝑙𝛽 (the secondary lepton) and a hadron ℎ″.

The slightly different masses of the HNLs mediating the process lead to
different dispersion relations 𝑞2

𝐼 = 𝑀2
𝐼 . As a consequence, the space-time-

dependent phase 𝑒−𝑖𝑞𝐼⋅(𝑥𝐷−𝑥𝑃 ) acquired by the HNL between its production and
decay will differ slightly for each mass eigenstate. When squaring the amplitude
in order to obtain the differential decay rate, the interference terms between
the partial amplitudes coming from different mass eigenstates will therefore
feature a space-time-dependent modulation: HNL oscillations. The external
wave packet model allows one to unambiguously establish the expression for
the oscillation phase and check that the entire process remains coherent in all
experimentally relevant situations.

The present paper does not aim to be a detailed study of HNL oscil-
lations, which have already been covered in various settings and limits in
the literature [35, 37, 63–66, 68, 69, 80]. Therefore, we will only quote the
main result. Let dΓ̂±±

𝛼𝛽 be the differential rate for the above-described pro-
cess 𝐻 → [ℎ′]𝑙±𝛼(𝑁 → 𝑙±𝛽 ℎ″) mediated by a single Majorana HNL 𝑁 , in the
(unphysical) limit of a unit mixing angle between the HNL and the active fla-
vor 𝛼 at its production vertex, with flavor 𝛽 at its decay vertex, and without
the absorptive part. The coherent differential rate dΓ±±

𝛼𝛽 (𝜏) in the presence of
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𝒩 nearly degenerate HNLs mediating the process, as a function of the proper
time 𝜏 = √(𝑥𝐷 − 𝑥𝑃 )2 between the HNL production and decay vertex, is then:

dΓ±±
𝛼𝛽 (𝜏) = ∣

𝒩
∑
𝐼=1

Θ±
𝛼𝐼Θ±

𝛽𝐼𝑒−𝑖𝑀𝐼𝜏− Γ𝐼
2 𝜏 ∣

2

dΓ̂±±
𝛼𝛽 (2.9)

where 𝑀𝐼 is the (Majorana) mass of the 𝐼-th heavy mass eigenstate, Γ𝐼 its
total width, and we have used the shorthand notation Θ+ ≝ Θ∗ and Θ− ≝ Θ.

In the case of 𝒩 = 2 HNLs forming a quasi-Dirac pair, i.e. 𝑀1 = 𝑀 − 𝛿𝑀
2 ,

𝑀2 = 𝑀 + 𝛿𝑀
2 , Θ𝛼2 ≅ ±𝑖Θ𝛼1 and Γ1 ≅ Γ2 ≝ Γ, the coherent differential rate

reduces to:

dΓ±±
𝛼𝛽 (𝜏) ≅ 2 |Θ𝛼1|2 ∣Θ𝛽1∣2 (1 ± cos (𝛿𝑀𝜏)) 𝑒−Γ𝜏dΓ̂±±

𝛼𝛽 (2.10)

where the + sign is for lepton number conserving processes (dΓ+−
𝛼𝛽 and dΓ−+

𝛼𝛽 ),
and the − sign for lepton number violating ones (dΓ++

𝛼𝛽 and dΓ−−
𝛼𝛽 ). Notice

how in the quasi-Dirac limit, the oscillation pattern does not explicitly depend
on the lepton flavors 𝛼 and 𝛽, but only on whether the process is LNC or
LNV. If 𝛿𝑀 vanishes exactly, HNLs form a Dirac fermion and LNV effects
are completely absent. Recently, 𝐶𝑃 -violating HNL oscillations have attracted
some interest [70–72, 122]. However, here we can see that 𝐶𝑃 -violation is
suppressed in the quasi-Dirac limit.

Throughout this paper, we will focus on the case where Γ𝜏 ≪ 1, which is the
most relevant for SHiP, and drop the exponentially decaying factor. Analysing
formula (2.10), we see that there are three regimes of interest, depending on
the mass splitting 𝛿𝑀 and proper time scale 𝜏 probed at the experiment:

• If 𝛿𝑀𝜏 ≪ 2𝜋, the HNL pair is observed before the onset of oscillations,
and it behaves like a single Dirac HNL, i.e. we cannot observe lepton-
number violation.

• If 𝛿𝑀𝜏 ≫ 2𝜋, fast oscillations are averaged out, and the HNL pair be-
haves like a single Majorana HNL, with equal integrated decay rates for
LNC and LNV channels.5

• If 𝛿𝑀𝜏 ∼ 2𝜋, oscillations must be accounted for. If it is possible to
experimentally reconstruct, for each selected event, the proper time 𝜏
between the production and decay vertex of the HNL, then oscillations
can be resolved, i.e. the 𝜏 -differential event rates for LNC / LNV will
show a periodic modulation according to eq. (2.10).

At SHiP, the proper time scale 𝜏 is about 2 m for sufficiently long-lived HNLs.
It corresponds to the average time between the production and decay of an
observed HNL, in its rest frame. Therefore, the critical mass splitting separating
the three regimes—near which oscillations are resolvable—is about 10−6 eV.

5In the rest frame of a single on-shell, Majorana HNL, the only “memory” of the produc-
tion process is the HNL spin. To perform the phase-space integration for the HNL decay,
one can always choose a frame where the HNL is at rest and with a fixed spin projection,
hence resulting in the same integrated rates for LNC and LNV processes.



2.3. PROBING LEPTON NUMBER VIOLATION AT SHIP 41

2.3 Probing lepton number violation at SHiP

Many collider searches for Majorana HNLs [123–126] are sensitive to lepton
number violation through the charges of the leptons produced at the HNL
production and decay vertex. Indeed, due to the chiral nature of the weak
interaction, they unambiguously tell the chiral projection through which the
HNL interacts at a given vertex. In theory, a same-sign dilepton decay (either
prompt or displaced) would thus provide clear evidence for lepton number
violation (although, in practice, significant standard model backgrounds exist
for prompt decays).

At SHiP, similar numbers of mesons and anti-mesons are expected to be pro-
duced.6 This leads to similar numbers of HNLs being produced along with pos-
itively and negatively charged primary leptons. Consequently, the secondary
lepton charge contains very little information as to whether the process is LNC
or LNV. To lift this degeneracy, it becomes necessary to look at new observ-
ables.

Luckily, the HNL lepton number is not the only quantum number conserved
by the weak interaction. The HNL also carries spin 1

2 , and the total angular mo-
mentum is always conserved. When the HNL is produced, its spin is correlated
(opposite if 𝐻 and ℎ′ are pseudoscalar) with that of the primary lepton. Due
to chiral suppression, the spin of the primary lepton is itself correlated with its
lepton number (see for example the left part of figure 2.3). This suggests that
by looking at the angular distribution of the secondary particles—which may
be observable—we should be able to obtain information about the primary in-
teraction, and thus whether the process was LNC or LNV (see the right part of
figure 2.3). This realization was the starting point of the present work. More
generally, we expect LNC and LNV decay chains to have different kinematics
due to their different Lorentz structures, potentially allowing us to distinguish
them without directly observing the primary decay.

In section 2.3.1, we describe the relevant HNL production and decay chan-
nels at SHiP; in section 2.3.2, we quantitatively compare the angular distri-
butions for LNC and LNV processes, and in section 2.3.3 we discuss how this
affects the observable momenta in a beam-dump setting.

2.3.1 HNL production and decay at SHiP
At SHiP, most HNLs are produced in heavy meson decays through flavor-
changing charged currents, as discussed in ref. [129]. In addition, for the
present analysis, we will only consider fully reconstructible HNL decays such as
𝑁 → 𝑙∓𝛽 𝜋±, producing only charged particles which are sufficiently long-lived
to be detected by the tracking station located at the end of the decay vessel.
Those are also mediated by the charged-current interaction.

Without losing generality, we can therefore consider the generic lepton num-
ber conserving and violating processes 𝐻 → [ℎ′]𝑙𝛼(𝑁 → 𝑙𝛽ℎ″) represented in
figures 2.2a and 2.2b, respectively, as well as their 𝐶𝑃 -conjugates. 𝐻 denotes
a heavy hadron (typically a 𝐷[𝑠] or 𝐵[𝑐] meson at SHiP), ℎ′ and ℎ″ are hadrons

6Unless cascade production significantly alters the results from [127]. The charm spec-
trum will be measured at SHiP prior to data taking [128]. Asymmetries, if present, can only
improve the classification accuracy, since the secondary lepton charge would then carry some
information.
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Figure 2.3: This sketch explains the origin of the different angular correlations
for LNC and LNV processes. For simplicity, here we consider two-body primary
and secondary decays involving only pseudoscalar mesons, and the masses of
the charged leptons and of ℎ″ are neglected. For definiteness, the charge of the
primary lepton—which is produced inside the target and thus inaccessible—is
also fixed to +. Since the HNL is a Majorana fermion, the secondary lepton 𝑙𝛽
can have either charge. However, due to angular momentum conservation, the
lepton 𝑙+𝛼 and the HNL 𝑁 are produced with opposite spin projections in the
rest frame of the heavy meson 𝐻. Because of chiral suppression (which is more
effective for light fermions), the charge of the primary lepton is correlated with
its spin (e.g. in the massless limit, 𝑙+𝛼 has helicity + 1

2 ) and hence with the HNL
spin. For the same reason, the angular distribution of the decay products of
the resulting HNL spin eigenstate (which is unaffected by a boost along the
quantization axis) will therefore depend on the secondary lepton charge. The
very same formula for the probability 𝒫 also holds for 𝐶𝑃 -conjugated channels,
with the + sign for LNC and the − sign for LNV. The general case (massive,
with two- or three-body primary decay) is discussed in section 2.3.2.

(with ℎ′ missing for two-body primary decays), and 𝑙±𝛼 and 𝑙±𝛽 are respectively
the primary and secondary leptons.

Since the heavy hadron 𝐻 is typically short-lived, the primary decay takes
place inside the target and cannot be observed. If the HNL is sufficiently
long-lived (we will assume this to be the case throughout this paper), it can
propagate a macroscopic distance before decaying, and leave a very displaced
vertex inside the SHiP decay vessel. For the selected decay channels 𝑁 → 𝑙∓𝛽 𝜋±,
this secondary vertex can be fully reconstructed.

In the present study, we will restrict ourselves to HNL masses between
the 𝐾 and 𝐷𝑠 thresholds. Masses below the 𝐾 threshold have already been
heavily constrained [91], while above the 𝐷𝑠 mass, HNLs are mainly produced
in 𝐵 meson decays, whose spectrum cannot be directly measured at the beam
dump, making our analysis more sensitive to modeling errors.

2.3.2 Angular correlations in LNC and LNV decay chains
In order to study the angular correlations between all final-state particles, spin
correlations between the primary and secondary decay must be accounted for.
Those result from the non-observation of the HNL spin, which leads to inter-
ference between the two spin eigenstates 𝑁𝑠, 𝑠 = ± 1

2 (similarly to how the
non-observation of its precise mass allows for flavor oscillations). To compute
the overall transition amplitude, we can therefore use the same trick as for
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oscillations, i.e. treat the primary and secondary decays as a single process.
To simplify the calculations, in this section we will focus on the case of a

single Majorana HNL, which mediates both LNC and LNV decay chains with
equal rates, and we will omit the absorptive part of the amplitude (i.e. we will
study dΓ̂±±

𝛼𝛽 instead of dΓ±±
𝛼𝛽 (𝜏)). We do not lose generality in doing so, because

the effect of multiple nearly degenerate HNLs and their finite lifetime can be
factored out, and subsequently recovered, using eqs. (2.9) and (2.10). To keep
the notation light, we will from now on drop the HNL index 𝐼 = 1.

Since we are only concerned with long-lived HNLs, which are produced on
their mass shell and have well separated, localized production and decay ver-
tices, the momentum 𝑞 of the HNL is practically fixed, which allows factorizing
the transition amplitude as:

𝒜 (𝐻 → ℎ′𝑙𝛼𝑙𝛽ℎ″)∣
𝑁 long-lived

∝ ∑
𝑠=± 1

2

𝒜 (𝐻 → ℎ′𝑙𝛼𝑁𝑠(𝑞)) 𝒜 (𝑁𝑠(𝑞) → 𝑙𝛽ℎ″)

(2.11)

where we have omitted the complex phase 𝑒−𝑖𝑞⋅(𝑥𝐷−𝑥𝑃 ) resulting from the HNL
propagation, which is unimportant in the case of one HNL. The sub-amplitudes
for the primary and secondary polarized decays are then straightforward to
compute using the usual Feynman rules with two-component spinors [2].

Consider now the LNC and LNV processes 𝐻 → [ℎ′]𝑙𝛼(𝑁 → 𝑙𝛽ℎ″) where
𝐻, ℎ′, ℎ″ are pseudoscalar mesons and ℎ′ may be missing. They are respectively
represented in figures 2.2a and 2.2b, with the arrows denoting the flow of
lepton number. Their 𝐶𝑃 -conjugates have been omitted, since in the absence
of oscillations (as is the case for the incoherent width), 𝐶𝑃 is conserved. As can
be seen in figure 2.5, the primary decays 𝐻 → [ℎ′]𝑙𝛼𝑁 with ℎ′ a pseudoscalar
meson or missing indeed produce the majority of HNLs with masses ≳ 0.7 GeV
and below the 𝐷𝑠 mass.7 Let 𝐽ℎ

𝑊𝜇 be the hadronic charge-lowering current,
𝑗−

1𝜇 = ⟨𝑏𝑖𝑔⟩ℎ′|𝐽ℎ
𝑊𝜇|𝐻 and 𝑗∓

2𝜇 = ⟨𝑏𝑖𝑔⟩ℎ″|𝐽ℎ(†)
𝑊𝜇 |0 the hadronic matrix elements,

𝑝𝛼,𝛽 the charged lepton momenta, and 𝑞 the HNL momentum. If the primary
decay is purely leptonic, then |ℎ′⟩ = |0⟩. Since SHiP cannot directly measure
the spin or helicity of the particles detected, we sum incoherently over all
possible spin configurations of final state particles. The spin-summed, squared
amplitudes are then, in the Fermi approximation:

∣𝒜LNC(𝐻 → ℎ′𝑙+𝛼𝑙−𝛽 ℎ″)∣2 = |Θ𝛼|2 ∣Θ𝛽∣2

𝑣8 tr (𝑃𝑅/𝑝𝛼/𝑗∗
1/𝑞/𝑗∗

2/𝑝𝛽/𝑗2/𝑞/𝑗1) (2.12)

∣𝒜LNV(𝐻 → ℎ′𝑙+𝛼𝑙+𝛽 ℎ″)∣2 = |Θ𝛼|2 ∣Θ𝛽∣2

𝑣8 𝑀2
𝑁 tr (𝑃𝑅/𝑝𝛼/𝑗∗

1/𝑗∗
2/𝑝𝛽/𝑗2/𝑗1) (2.13)

where we have omitted the ± for brevity if they can be inferred from context,
Θ𝛼,𝛽 are the mixing angles, and 𝑣 = ⟨|𝜙|⟩ ≈ 246 GeV is the vacuum expectation
value of the Higgs field. These results are consistent with the polarized decay
rates from [103], but generalize to the case where the primary decay produces a
superposition of HNL helicity eigenstates. The above two expressions differ in

7Below 𝑀𝑁 ≈ 0.7 GeV, a non-negligible fraction of HNLs is produced along with a
vector meson. In this case, we expect the angular correlations to reverse compared to the
pseudoscalar case.
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Figure 2.5: Fraction of HNLs pro-
duced at SHiP as a function of the
primary decay multiplicity and spin of
the outgoing meson, for a coupling to
one flavor.

the trace, therefore we generically expect them to produce different momentum
distributions for LNC and LNV processes. However, in their current form, this
difference is not manifest. To understand it, it is interesting to consider the
special case where the production process is a two-body decay. As can be seen
in figures 2.4 and 2.5, it is actually the main production channel for HNLs with
masses ≳ 1 GeV and below the 𝐷𝑠 mass.

When both the production and decay process are two-body decays, the
hadronic matrix elements are 𝑗𝜇

1 = −𝑖𝑉𝑈𝐷𝑓𝐻𝑝𝜇
𝐻 and 𝑗𝜇

2 = +𝑖𝑉𝑈′𝐷′𝑓ℎ″𝑝𝜇
ℎ″ ,

where 𝑉𝑈𝐷 denotes the relevant CKM matrix element and 𝑓ℎ is the meson
decay constant. Neglecting the masses of the final state particles, which give
𝒪 (𝑚2

𝛼,𝛽,ℎ″/𝑀2
𝐻,𝑁) corrections, the traces from eqs. (2.12) and (2.13), respectively

for LNC and LNV processes, simplify to:

tr (𝑃𝑅/𝑝𝛼/𝑗∗
1/𝑞/𝑗∗

2/𝑝𝛽/𝑗2/𝑞/𝑗1) ≅ |𝑉𝑈𝐷|2 |𝑉𝑈′𝐷′ |2 𝑓2
𝐻𝑓2

ℎ″ ⋅ 𝑀6
𝑁 (𝑀2

𝐻 − 𝑀2
𝑁 − 𝑠𝑙𝑙)
(2.14)

𝑀2
𝑁tr (𝑃𝑅/𝑝𝛼/𝑗∗

1/𝑗∗
2/𝑝𝛽/𝑗2/𝑗1) ≅ |𝑉𝑈𝐷|2 |𝑉𝑈′𝐷′ |2 𝑓2

𝐻𝑓2
ℎ″ ⋅ 𝑀6

𝑁𝑠𝑙𝑙 (2.15)

where 𝑠𝑙𝑙 ≝ (𝑝𝛼 + 𝑝𝛽)2 is the invariant dilepton mass. Note the linear and
opposite dependences of the LNC and LNV spin-summed squared amplitudes
on 𝑠𝑙𝑙. To understand their origin, it is enlightening to reexpress 𝑠𝑙𝑙 in the rest
frame of the HNL, in terms of the angle 𝜃CM

𝑙𝑙 = ∠(pCM
𝛼 , pCM

𝛽 ) between the two
lepton momenta. Still in the massless limit, we find:

𝑠𝑙𝑙 = 𝑀2
𝐻 − 𝑀2

𝑁
2 (1 − cos (𝜃CM

𝑙𝑙 )) (2.16)

Therefore,

∣𝒜LNC∣2 ∝ 1 + cos (𝜃CM
𝑙𝑙 ) (2.17)

∣𝒜LNV∣2 ∝ 1 − cos (𝜃CM
𝑙𝑙 ) (2.18)
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We observe that opposite-sign leptons (LNC) tend to be produced in the same
direction, and same-sign leptons (LNV) in opposite directions. As explained
in figure 2.3, this is a consequence of the chirality of the weak interaction and
the conservation of the total angular momentum. In the absence of any other
dynamics, spin projections lead to the characteristic angular dependence in
cos (𝜃CM

𝑙𝑙 /2) and sin (𝜃CM
𝑙𝑙 /2) of the transition amplitude, respectively for LNC

and LNV. Equations (2.17) and (2.18) then directly follow from squaring the
amplitude.

In the massive case, the finite masses of the decay products can result in
helicity flips, and in the three-body case, the QCD matrix elements lead to
non-trivial correlations between the momenta of the primary decay products.
These effects complicate the correlations between the various momenta. Nev-
ertheless, they can be accounted for when sampling events. To this end, we
have implemented the full matrix elements from eqs. (2.12) and (2.13) in our
Monte-Carlo simulation, as discussed in section 2.A.4.

2.3.3 Angular distribution in the laboratory frame
At SHiP, the invariant mass 𝑠𝑙𝑙 (or angle 𝜃CM

𝑙𝑙 ) cannot be reconstructed. This
is because neither the heavy hadron momentum nor the momenta of its decay
products (other than the HNL) can be determined. Indeed, the heavy hadrons
producing the HNLs do not have a monochromatic spectrum, and the primary
decay cannot be observed since it takes place inside the target. One can then
reasonably wonder if some difference between the LNC and LNV distributions
subsists when looking only at the (observable) secondary decay products, in
the laboratory frame, or if it is washed out.

To start answering this question, it is instructive to go back to the sim-
plified case discussed in section 2.3.2, where the HNL is produced and decays
through two-body processes involving pseudoscalar mesons. In the HNL rest
frame, we obtained the following correlation: for LNV processes, the direction
of the secondary lepton momentum is positively correlated with the boost di-
rection (denoted by 𝑧 on figures 2.3 and 2.6) from the heavy meson rest frame
to the HNL rest frame; while for LNC processes it is anti-correlated. This
is depicted in the left panel of figure 2.6. Furthermore, in two-body decays,
the magnitudes of all momenta in the rest frame of the parent particle are
fixed by four-momentum conservation, and depend only on the particle masses.
Consequently, in the heavy meson rest frame, the magnitude of the secondary
lepton momentum will on average be larger for LNV processes compared to
LNC ones. This argument is still valid for three-body decays involving pseudo-
scalar mesons. A non-trivial asymmetry thus subsists in the heavy meson rest
frame (see the middle panel of figure 2.6).

As a final step, the momenta must be boosted back to the laboratory frame.
Since the heavy hadron momentum is not fixed, this has the potential to wash
out the correlations. At SHiP, heavy mesons have a large momentum spread
along the beam axis (𝒪(10 GeV), much larger than the yield of the meson
decay), and a significantly smaller one (𝒪(1 GeV)) in the transverse direction
(see section 2.A.3). The asymmetry between the LNC and LNV distributions is
therefore more likely to be visible in the transverse plane than along the beam
axis. For it to be significant, the HNL kinetic energy in the heavy hadron rest
frame should be similar to or exceed the transverse momentum spread of the
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Figure 2.6: This sketch shows how the different distributions of 𝑙𝛽 in the HNL
rest frame for LNC vs. LNV processes affect the corresponding distributions in
the rest frame of the heavy hadron 𝐻 and in the laboratory frame. The various
momenta shown for 𝑙𝛽 represent multiple realizations of the decay. In the 𝐻
frame, LNV processes typically result in larger momenta for 𝑙𝛽 than LNC ones.
In the laboratory frame, this effect partly survives the averaging over the heavy
hadron spectrum and manifests itself as a broadening of the distribution of the
secondary lepton momentum 𝑝𝛽.

hadron spectrum. As a result, we expect the 𝑝𝑇 spectrum of the secondary
lepton 𝑙𝛽 to be broader for LNV processes than for LNC ones (see the right
panel of figure 2.6), provided that both of them are broader than the irreducible
𝑝𝑇 spread of the heavy meson spectrum.

Alternatively, one could try to approximate the angle 𝜃CM
𝑙𝑙 in the HNL rest

frame. If the heavy hadron momentum is fixed, this can be done exactly, and
results in the maximal classification accuracy allowed by spin projections (e.g.
𝑎 = 3/4 in the two-body, massless case). It is then equivalent to measuring the
(observable) momentum 𝑝CM of the secondary lepton 𝑙𝛽 in the HNL rest frame.
However, when the heavy hadron has a finite spectrum, the boost direction
from its rest frame to the HNL rest frame is not fixed any more. This partially
decorrelates 𝜃CM

𝑙𝑙 and 𝑝CM, hence reducing the discriminating power of the
latter.

As we shall see in section 2.4.2, the features discussed above can indeed
be used to discriminate between LNC and LNV processes (see for example
figure 2.7). More generally, any difference—in the laboratory frame—between
the distributions of the visible decay products of LNC and LNV processes opens
up the possibility of measuring their relative rates, given sufficiently many
events. Although discriminating between these two classes of events would
be very challenging analytically, this problem is well suited to multivariate
analysis.

Further complications arise, however, due to HNLs being produced from
a mix of various two- and three-body decays, and because of the geometrical
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acceptance of the experiment, which alters the distribution of visible particles.
Generating a training set which faithfully reproduces the angular correlations
discussed above while including these effects is therefore best done using a
Monte-Carlo simulation. In the next section, we discuss the simulation used to
generate the training set (section 2.4.1), then how we use it to train a binary
classifier (section 2.4.2), and finally how we use the classifier output in order
to perform model selection (section 2.4.3) and reconstruct HNL oscillations
(section 2.4.4). In section 2.4.5, we discuss the applicability of the method
presented here to other proposed experiments.

2.4 Simulation and analysis

2.4.1 Simulation
In order to accurately estimate the distribution of the momenta of the HNL
decay products, we have devised a simple Monte-Carlo simulation, which gen-
erates the primary and secondary decays at once, using the matrix elements
presented in section 2.3.2. The first step is to generate 𝐷 mesons with a real-
istic spectrum. Generating these spectra from simulation would be a difficult
undertaking, so instead we chose to use experimental data collected by the
LEBC-EHS collaboration [127], at the CERN SPS running at 400 GeV with
a hydrogen target. We then randomly select a production and decay channel
according to the relative abundances of charmed mesons from [106] and the
branching fractions from [129]. Finally, we generate the momenta of both the
primary and secondary decay products at once. This is done by first sampling
all the momenta according to phase-space, independently for each decay, and
finally performing rejection sampling on these momenta using the matrix ele-
ment for the combined process. As a last step, we simulate the geometrical
acceptance by requiring the HNL to decay within the hidden sector decay vessel,
into two long-lived, charged particles which both intersect the tracking station.
In order to account for the (small) probability of the HNL decaying inside the
fiducial volume, each event is weighted by 𝑃decay(𝜏) = Γ𝑒−Γ𝜏 , where 𝜏 is the
proper time between the HNL production and decay. Throughout this paper,
we assume the particle identification to be perfectly efficient, which should be
a reasonably good approximation at SHiP [130]. The simulation is described
in details in section 2.A.

2.4.2 LNC / LNV classification

For a given choice of relative squared mixing angles |Θ𝛼|2 (which are supposed
to be known by the time LNV is studied at SHiP), we generate a dataset for a
range of HNL masses between the 𝐾 and 𝐷𝑠 thresholds. For each HNL mass,
we sample 3 ⋅ 106 events with uniform weights, and keep only those passing the
acceptance cuts. The HNL is simulated as a single Majorana particle, which
ensures that the dataset contains equal numbers of LNC and LNV events, and
is also balanced with respect to the primary and secondary lepton charges.

Each event is labelled with a boolean flag set to false for LNC and true
for LNV, using the MC truth. The only observable quantities come from the
HNL decay in the vacuum vessel. They are: the momenta and charges of
the lepton 𝑙±𝛽 and pion 𝜋∓, and the decay vertex 𝑥𝐷. Of these quantities, we
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Figure 2.7: Corner plot showing the correlations between five selected features,
for a 1 GeV HNL coupling to the muon. See table 2.1 for a description of the
features. Each subplot shows, on the same scale, the marginal distributions of
LNC and LNV events as a function of either one (on-diagonal plots) or two
(off-diagonal plots) features. 1d distributions are represented as histograms,
and 2d distributions as contour plots of the probability density.

record a total of 19 primary or derived features. Their definitions can be found
in table 2.1, and some typical distributions are presented, as an example, in
figure 2.7, for both LNC and LNV processes. Finally, from each dataset, we
set aside 30% of events for testing and 20% for validation, leaving us with 50%
of events for training the classifier.

For each dataset, we train a binary classifier to discriminate between LNC
and LNV decay chains. For this study, we use the LightGBM [131] decision tree
boosting algorithm, through the Python interface to the reference implemen-
tation [132]. In order to perform simple classification, we choose the binary
objective. The training is discussed in more details in section 2.B.2. The ac-
curacy of the trained classifier (as evaluated on the test set) is presented in
figure 2.8 as a function of the HNL mass for three scenarios, corresponding to
an HNL coupling to electrons, muons, or equally to both.
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Feature(s) Description
Ql2 Charge of the secondary lepton 𝑙𝛽
E1, p1x, p1y, p1z Reconstructed HNL momentum 𝑝𝑁 = 𝑝𝑙𝛽

+ 𝑝𝜋 (lab frame)
E2, p2x, p2y, p2z Secondary lepton momentum 𝑝𝑙𝛽

(lab frame)
E3, p3x, p3y, p3z Secondary pion momentum 𝑝𝜋 (lab frame)
pCMx, pCMy, pCMz Secondary lepton momentum 𝑝CM (HNL frame)
xD, yD, zD Decay vertex (lab frame)

Table 2.1: The 19 features recorded for each event.
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Figure 2.8: Classification accuracy as
a function of the mass, for an HNL
coupling to 𝑒, 𝜇, or equally to both.
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Figure 2.9: Number of fully recon-
structible events required to detect
LNV at 90% CL, for an HNL coupling
to 𝑒, 𝜇, or equally to both.

2.4.3 Model selection
Assuming the true event distribution to match (or be sufficiently close to) the
simulated one, we can then use our trained classifier to classify each event as
either LNC or LNV. As stated in section 2.1, our main goal is to distinguish
the following two hypotheses:

• ℋ1: HNLs are Dirac or quasi-Dirac with 𝛿𝑀𝜏 ≪ 1 (LNC decays only).
• ℋ2: HNLs are Majorana or quasi-Dirac with 𝛿𝑀𝜏 ≫ 1 (as many LNC /

LNV decays).

Since the classifier is not perfectly accurate, its decision cannot be used to
directly confirm the presence of LNV processes, or constrain their existence. If
we knew the full distribution in feature space 𝜌(𝑧) for each hypothesis, we could
obtain an optimal test statistics by constructing the corresponding likelihood
ratio [133]. However, accurately estimating 𝜌(𝑧) is a non-trivial task and would
be error-prone, so we elected to use a less powerful but more reliable, simplified
model. Knowing the classification accuracy 𝑎 for a given binary classifier, we
compute the likelihood of classifying 𝑘 events out of 𝑁 as LNV, and 𝑁−𝑘 events
as LNC (independently of their specific feature vectors 𝑧) assuming that the
true fraction of LNV events is 𝑓 . We then compute the best-fit value for 𝑓 and
use Wilk’s theorem [134] in order to determine whether it significantly deviates
from either 𝑓 = 0 (corresponding to ℋ1) or 𝑓 = 1

2 (corresponding to ℋ2).
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In order to estimate the “model-selection” sensitivity of SHiP, we then com-
pute, under each hypothesis and as a function of the HNL mass 𝑀𝑁 and squared
mixing angles |Θ𝛼|2, the median confidence level at which we can exclude the
other hypothesis assuming 5 years of nominal operation (i.e. 2 ⋅ 1020 protons
on target). For each true hypothesis, we finally draw the sensitivity limit by
plotting, for each 𝑀𝑁 , the smallest |Θ𝛼|2 for which this median confidence
level is at least 0.9. In other words, for mixing angles above this limit, SHiP
has a probability of at least 1/2 of disfavouring one hypothesis at CL = 0.9 if
the other is realized. The number of fully reconstructible events correspond-
ing to this limit is plotted in figure 2.9 (when the null hypothesis is taken to
be ℋ1). The construction of these confidence limits is described in details in
section 2.B.3, and the resulting sensitivity plots are presented in section 2.5.1.

2.4.4 Resolving HNL oscillations
So far we have only considered the two extreme cases (ℋ1 and ℋ2), where
the HNL(s) behave either as a single Dirac or Majorana particle. However, as
discussed in section 2.2.2, if two nearly degenerate HNLs form a quasi-Dirac
pair, both LNC and LNV decay chains will be present, with a non-trivial ratio
≠ 0, 1, and the corresponding decay rates will feature oscillations as a function
of the proper time 𝜏 between the HNL production and decay events, with
the characteristic 1 ± cos(𝛿𝑀𝜏) dependence described by eq. (2.10), where (+)
corresponds to LNC and (−) to LNV.

For 𝛿𝑀 ∼ 10−6 eV, 𝛿𝑀𝜏 will be of order 2𝜋 at SHiP, leading to poten-
tially resolvable oscillations, provided we can accurately reconstruct the proper
time 𝜏 between the HNL production and decay. Expressing it as 𝜏 = 𝐿/𝛽𝛾, we
see that this can be accomplished if we have sufficiently accurate vertexing and
energy reconstruction. At SHiP, the precision on 𝐿 will be limited by the im-
possibility of reconstructing the primary vertex within the target. The energy
resolution, despite being sufficient for particle identification, is not enough for
reconstructing 𝜏 (see sections 4.7 and 4.10 in ref. [105]). However, the momen-
tum resolution, combined with the dispersion relation (assuming the HNL mass
to be known already with sufficient accuracy) should allow reconstructing 𝛾
much more precisely. The high vertexing and momentum resolution permitted
by the SHiP tracker, together with our method for (statistically) distinguishing
LNC from LNV processes (described in section 2.4.3), should therefore make
it possible to resolve the oscillation pattern in part of the parameter space.

In order to search for HNL oscillations, we first classify the observed events
using a model trained (for one HNL) at the corresponding mass. We thus
assume again that we have sufficiently many events that the HNL mass 𝑀𝑁 is
well known. The events are then binned in proper time 𝜏 , which is the relevant
variable for oscillations of massive, relativistic particles. Instead of using the
predicted class, here we implement the classifier decision as a weight for the
binned events, using the predicted probability 𝑝LNV. This weight contains
more information than the class does, since it acts as a measure of uncertainty
by taking values close to 1/2 for ambiguous events, and closer to 0 or 1 for
unambiguous ones. However, without applying further corrections, the sum of
these probabilities would average to 𝑁 ⟨𝑝LNV⟩ for the entire sample of 𝑁 events.
If used directly as weights, they would therefore cause the oscillatory pattern
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to be hidden among Poisson fluctuations. In order to reveal this pattern, we
instead weight the events by 𝑝LNV − 𝑝LNV, where 𝑝LNV is the sample average
of the estimated 𝑝LNV. This weight averages to zero over the entire sample,
which limits the impact of Poisson fluctuations.

HNL oscillations are implemented in our simulation by first generating
events without taking interference into account then, in a second time, perform-
ing rejection sampling based on the proper time 𝜏 , following eq. (2.10). The
results obtained using this simulated data set are presented in section 2.5.2.

2.4.5 Applicability of the method to other experiments

The present study crucially relies on the identification of the HNL decay prod-
ucts and the measurement of their momenta. However, a number of proposed
experiments to search for HNLs, such as MATHUSLA [41, 92, 93], CODEX-
b [97, 98] (in its baseline configuration) and ANUBIS [100], cannot measure
the momenta of the decay products. Since low-mass HNLs (𝑀𝑁 < 𝑀𝐵𝑐

) at
the LHC are also mostly produced in the decays of heavy mesons, one can
wonder to which extent the present analysis would apply to these experiments.
Training a classifier using only the directions of the tracks of the visible de-
cay products and the same geometry as SHiP reveals that the distributions of
LNC / LNV for a given set of HNL parameters can still be distinguished, with
an accuracy only slightly lower than the one obtained using the full momenta.
There are, however, two caveats. First, training the classifier requires know-
ing the HNL mass, which cannot be obtained without measuring the momenta
of its decay products (or matching the displaced decay to its reconstructed
production process in the main detector, if this is feasible). In addition, the
large center-of-mass energy at the LHC could result is a very broad heavy
meson spectrum, which would smear out the LNC / LNV distributions and
make them indistinguishable. It therefore seems unlikely that MATHUSLA,
CODEX-b or ANUBIS could benefit from this method.

Other planned or proposed detectors, such as NA62++ [42, 104] (in beam-
dump mode), the DUNE near detector [101–103], FASER [94–96] and AL3X [43,
99], are in principle capable of reconstructing the HNL mass. The AL3X detec-
tor, thanks to its large time projection chamber and its magnetic field, should
be able to directly measure both the charges and momenta of the two leptons,
making the method described here unnecessary. It is unclear to the authors,
however, whether FASER could benefit from it. The answer likely depends on
the spectrum of the heavy mesons producing the HNLs which eventually inter-
act with the detector. A Monte-Carlo simulation would provide a definitive
answer to this question. The remaining beam-dump experiments: NA62++ and
DUNE, share a similar geometry with SHiP and face the same challenge (no
observation of the primary charged lepton 𝑙±𝛼). As such, we generically expect
the method presented here to be applicable to these experiments, within the
mass range where it is valid, and subject to the heavy meson spectrum being
similar to the one at SHiP. This could be ascertained using a Monte-Carlo
simulation. Whether these experiments can also resolve HNL oscillations will
depend on how accurately they can reconstruct the HNL momentum.
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2.5 Results

2.5.1 Sensitivity to Lepton Number Violation
In order to easily compare our results to existing exclusion bounds or to the
sensitivities of future experiments, let us consider two simplified models where
a single HNL exclusively mixes with the electron or muon neutrino.8 As can
be seen in figure 2.8, more generic mixing patterns with the 𝑒 and 𝜇 flavors
do not significantly degrade the classification accuracy; therefore they should
leave the limits presented below mostly unchanged. However, if a significant
fraction of HNLs is produced through mixing with the 𝜏 neutrino, then the
present analysis would need to be modified to handle secondary production of
HNLs in 𝜏 decays, including spin correlation effects.

As discussed in section 2.4.3, we define the sensitivity to lepton number
violation as the smallest mixing angles for which SHiP has a 1/2 probability
of either rejecting or detecting LNV, if it is respectively absent or present with
the same rate as LNC. The results are presented in figure 2.10, along with
various existing exclusion bounds and detection sensitivity9 limits for planned
or proposed experiments, extracted from the report of the Physics Beyond
Colliders working group [91]. We only show the sensitivities of experiments
which can not only set exclusion bounds, but also reconstruct the HNL mass,
should it be observed. Note that in order to be consistent with the SHiP
detection sensitivity, which was computed for one Majorana HNL, we present
our results for one HNL as well. In the realistic case of 𝒩 ≥ 2 HNLs, both
curves must be scaled down by a factor of 𝒩1/2. Above the black dashed
line, SHiP should be able to distinguish Dirac-like (ℋ1) and Majorana-like
(ℋ2) HNLs. We have discarded the HNL masses for which the early stopping
criterion returned the first iteration as the best, since it suggests that the
classifier has failed to learn anything about the data. Below 0.7 GeV, additional
production channels 𝐻 → ℎ′

𝑉 𝑙𝛼𝑁 (where ℎ′
𝑉 denotes a vector meson) become

significant, and have not been implemented with spin correlations in our Monte-
Carlo simulation. Therefore we also restrict the HNL mass to 𝑀𝑁 ≳ 0.7 GeV.
Additionally, since the sensitivity is almost identical for excluding ℋ1 or ℋ2,
we only plot one limit, which corresponds to excluding ℋ1 at 90% CL if LNV
is actually present.

We can see that the larger number of accepted events (indicated in fig-
ure 2.10 by the thin dashed grey lines) at higher masses initially compensates for
the worse classification accuracy, but is not sufficient any more as we approach
the 𝐷 threshold. In practice, we expect that systematic uncertainties about
the 𝐷 spectrum and the simulation will decrease the sensitivity at both ends of
the mass range, where the classification accuracy is already close to 1/2. Com-
paring the results to the SHiP detection sensitivity, we see that around 1 GeV,
the model-selection sensitivity limit is about one order of magnitude above the
detection one, while remaining well below the planned NA62++ limit as well as
existing bounds.

8Within the seesaw mechanism, it is impossible to generate the two observed light neu-
trino mass differences with a single HNL, or if HNLs mix with one generation only [135].
The two benchmarks presented in figures 2.10a and 2.10b are thus simplifications, used here
because they are consistent with the parametrization employed by the PBC working group.

9The usual sensitivity, by opposition to the sensitivity to lepton number violation dis-
cussed here.
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(a) HNL mixing with 𝜈𝑒.
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(b) HNL mixing with 𝜈𝜇.

Figure 2.10: SHiP sensitivity to lepton number violation. The thick dashed
curve is the “model-selection” sensitivity computed in this work. The thin
dashed grey lines show the number of fully reconstructible events which would
be observed at SHiP for a given mass and mixing angle. Dotted curves are the
(lower) detection sensitivities for the proposed or planned experiments which
can reconstruct the HNL mass. Coloured, filled areas are regions of parameter
space which have been excluded by previous experiments. The grey filled area
denoted by BBN indicates the region which is incompatible with Big Bang
Nucleosynthesis. Below the seesaw limit10(hatched region), mixing angles are
too small to produce the observed neutrino masses.

This leads us to an interesting conclusion: there exists a non-trivial region of
parameter space, unconstrained by current or near-future experiments, where
SHiP would not only be able to detect HNLs, but also characterize them as
either Dirac-like or Majorana-like particles. As discussed in sections 2.A.3
and 2.B.4, this conclusion is robust with respect to uncertainties on the heavy
meson spectrum.

2.5.2 Resolvable quasi-Dirac oscillations
The result of the procedure described in section 2.4.4 is presented in figure 2.11
for a new simulated dataset (independent from the training set), corresponding
to a quasi-Dirac pair of mass 𝑀𝑁 = 1 GeV, mass splitting 𝛿𝑀 = 4 ⋅ 10−7 eV,
and mixing with muon neutrinos only, with a squared mixing angle ∣Θ𝜇𝐼 ∣2 =
2 ⋅ 10−8, 𝐼 = 1, 2. The oscillatory pattern is manifest at 𝜏 < 5 m, where most of
the events fall. At larger 𝜏 it is hidden in Poisson fluctuations. The uncertainty
on 𝜏 at SHiP is dominated by the (boosted) length of the target ∼ 0.1 m, which
contains the unresolved primary vertex. It could smear out fast oscillations,

10The seesaw limit can only be rigorously computed if the mixing angles are consistent
with the seesaw equation (2.7). This is not possible for HNLs mixing with only one generation,
nor for a single HNL. The limits presented here instead correspond to the “naive” estimate
∑ 𝑚𝜈 ≤ 𝑀𝑁 ⋅ ∑𝛼 |Θ𝛼|2, where we have assumed the lightest neutrino to be massless.
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Figure 2.11: Events binned by proper time 𝜏 and weighted by 𝑝LNV − 𝑝LNV,
revealing the oscillatory pattern, for two HNLs with 𝑀𝑁 = 1 GeV, ∣Θ𝜇𝐼 ∣2 =
2 ⋅ 10−8, |Θ𝑒𝐼 |2 = |Θ𝜏𝐼 |2 = 0 and 𝛿𝑀 = 4 ⋅ 10−7 eV.

in which case an accurate treatment of this uncertainty would be needed in
the simulation. However, for longer oscillation periods like the one shown in
figure 2.11, its effect should be negligible. Deriving precise sensitivity limits
for HNL oscillations is beyond the scope of this paper, since it is likely that
no simple analytical expression exists for them, due to the more complex test
statistics required, compared to the detection or model-selection limits. HNL
oscillations might for instance be amenable to methods such as maximum likeli-
hood estimation, wavelets, or matched filtering, for which the null distribution
can be estimated numerically using a (computationally expensive) bootstrap-
ping procedure.

2.6 Conclusions

The SHiP experiment is set to have an unprecedented detection reach for a va-
riety of models containing feebly interacting particles, such as Heavy Neutral
Leptons (HNLs). A distinctive feature of SHiP among other intensity frontier
experiments is its decay spectrometer, which allows it to not only place ex-
clusion bounds, but also perform event reconstruction and measure the HNL
properties. The simplest consistent HNL model accessible at SHiP contains two
nearly degenerate HNLs, which can undergo oscillations. Their mass splitting
𝛿𝑀 is of particular interest, since it greatly influences their phenomenology as
well as early-Universe cosmology (specifically, baryogenesis and dark matter
production).

In the present work, we have investigated to which extent SHiP may be
able to constrain or even measure 𝛿𝑀 . Depending on the scale of the oscil-
lation phase 𝛿𝑀𝜏 accessible at an experiment, HNLs may or may not exhibit
lepton number violation (LNV). The problem thus amounts to distinguishing
LNC from LNV decay chains (figure 2.2) in a beam-dump setting (figure 2.1),
where the primary lepton cannot be observed. We have shown that the angular
distribution of the visible secondary decay products provides a partial solution
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to this problem, since, depending on the HNL mass, it can significantly differ
between LNC and LNV in the laboratory frame (figure 2.7). This result has
been qualitatively understood in the simplified case of two-body decays in the
massless limit (figures 2.3 and 2.6). In order to handle more realistic cases, a
Monte-Carlo simulation has been employed to generate accurate data sets of
LNC and LNV events, including spin correlations and geometrical acceptance.
The different distributions of the kinematic variables thus allow discriminating
between LNC and LNV events using multivariate analysis; and with sufficiently
many events, it becomes possible to statistically detect or exclude lepton num-
ber violation.

In order to produce sufficiently accurate training sets, our simulation must
satisfy several requirements. It should be able to generate all the relevant two-
and three-body meson decays containing an HNL (figure 2.4), as well as the
selected HNL decay channel 𝑁 → 𝜋∓𝑙±𝛽 . It should be accurate for GeV-scale
HNLs, and should account for the spin correlations between the primary and
secondary decays. Finally, it should run sufficiently fast to allow producing
large training sets for various hypotheses and parameters. In order to meet
all these requirements, we have written our own Monte-Carlo simulation, the
output of which is used to train a binary classifier.

Knowing the accuracy of the classifier decision (figure 2.8) for a given mass
and (relative) mixing angles, we can finally draw a “model-selection” sensitivity
limit in the (𝑀𝑁 , |Θ|2) plane (shown in figures 2.10a and 2.10b), above which
SHiP should be able to either discover or rule out lepton number violation
from HNLs. Interestingly, this limit lies below the detection sensitivity of near-
future experiments such as NA62++. This leads to a striking conclusion: SHiP
might be able to not only discover HNLs, but also characterize them as either
“Dirac-like” or “Majorana-like” fermions (depending on whether they feature
LNV) even if previous experiments see no signal at all. Better yet, if the mass
splitting between the two HNLs is of order 𝛿𝑀 ∼ 10−6 eV, SHiP should be
able to resolve the oscillations of HNLs (figure 2.11), given sufficiently many
events. Intriguingly, this mass splitting falls within the range required for
producing dark matter in the 𝜈MSM [82]. Its measurement—or constraining—
would therefore be an important test of cosmological models.
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Appendix

2.A Simulation

2.A.1 Overview
It is not obvious whether the different angular correlations of LNC and LNV
events lead to an observable effect in a realistic beam-dump experiment. To
answer this question, we have devised a toy Monte-Carlo simulation, inspired
from the one used in ref. [39], to simulate the production and decay of HNLs
at the SHiP experiment [105,106] (represented on figure 2.1).

The simulation of rare BSM processes with spin correlations entails two
main requirements. First, we cannot afford to simulate all the possible pro-
cesses, since, due to the small HNL mixing angles, the decay chains mediated
by an HNL only represent a tiny fraction of all decays. Instead, we only simu-
late the BSM processes, and use importance sampling (i.e. introduce weights)
in order to obtain the correct absolute number of events and expectation values
(section 2.A.2).

Secondly, we cannot sample the primary and secondary decays separately,
since they are not independent. Instead, we construct all possible decay chains
for the production and decay processes of interest, and sample the entire chain
at once, with a probability proportional to its combined branching fraction.
The momenta of all the decay products are then sampled simultaneously, using
the matrix element for the entire chain (section 2.A.4).

In addition, in order to accurately model the SHiP experiment, we need to
sample the heavy meson momenta from a realistic spectrum (section 2.A.3) and
take into account the finite size of SHiP and its geometrical acceptance (sec-
tion 2.A.5). Finally, since most machine learning algorithms take unweighted
data points as input, it is necessary to perform a last step of rejection sam-
pling in order to produce a training set consisting of events with equal weights
(section 2.A.6).

2.A.2 Decay chains
As discussed in ref. [129], the dominant HNL production process at SHiP is
from weak decays of the lightest charmed or beauty mesons. In the present
study, we focus on HNL masses below the 𝐷𝑠 mass, and only select the fully
reconstructible secondary decays 𝑁 → 𝜋±𝑙∓𝛽 , By producing long-lived, charged
particles which can be measured by the decay spectrometer located at the end
of the decay vessel, they allow the HNL momentum to be reconstructed. The
efficiency of particle identification at SHiP is high enough [130] that we can
approximate it as one for the present estimate. Therefore we do not need to
simulate decay chains containing any other secondary decays.

For the mixing angles of interest (i.e. below existing bounds), the fraction
of all decays which are mediated by an HNL is tiny. We therefore need to
use importance sampling in order to efficiently simulate only the processes of
interest. For every proton on target (POT), the probability of producing a
charmed hadron of species 𝐻 is:

𝑃(𝐻) = 𝜎𝑐𝑐
𝜎𝑝𝑁

⋅ 𝐴𝐻 (2.19)
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where 𝜎𝑐𝑐 is the production cross-section for charmed hadrons, 𝜎𝑝𝑁 the interac-
tion cross-section for protons hitting the target nuclei, and 𝐴𝐻 is the relative
abundance of the charmed hadron species 𝐻 (as given in appendix A of [106]).
The nominal (i.e. physical) probability of producing an HNL which mediates
a given decay chain 𝐻 → [ℎ′]𝑙𝛼(𝑁 → 𝑙𝛽ℎ″) (irrespective of whether the decay
is observed in the detector) is then:

𝑃 (𝐻 → [ℎ′]𝑙𝛼(𝑁 → 𝑙𝛽ℎ″)) = 𝑃(𝐻) ⋅ 𝑃 (ℎ′𝑙𝛼𝑁|𝐻) ⋅ 𝑃 (𝑙𝛽ℎ″|ℎ′𝑙𝛼𝑁)
= 𝜎𝑐𝑐

𝜎𝑝𝑁
⋅ 𝐴𝐻 ⋅ Brprod(𝐻 → [ℎ′]𝑙𝛼𝑁) ⋅ Brdecay(𝑁 → 𝑙𝛽ℎ″) (2.20)

where the last two terms are the production and decay branching ratios for
HNLs in the considered decay chain. The importance distribution 𝑃 ′ is defined
as a uniform scaling for decay chains involving an HNL, and as zero for all
other outcomes:

{𝑃 ′ (𝐻 → [ℎ′]𝑙𝛼(𝑁 → 𝑙𝛽ℎ″)) = 1
𝑤prod

𝑃 (𝐻 → [ℎ′]𝑙𝛼(𝑁 → 𝑙𝛽ℎ″))
𝑃 ′(no HNL) = 0

(2.21)

where 𝑤prod is the weight to be applied to all the chains sampled from the
importance distribution, and corresponds to the total probability of producing
an HNL according to the nominal distribution:

𝑤prod = ∑
chains

𝑃 (𝐻 → [ℎ′]𝑙𝛼(𝑁 → 𝑙𝛽ℎ″)) (2.22)

When computing expected numbers of events over the entire duration of
the SHiP experiment, which represents an integrated 𝑁POT = 2 ⋅ 1020 protons
on target for 5 years of nominal operation, we must further multiply by 𝑁POT
the expectation values obtained for one event. This is most easily done by
simply multiplying the total weights by 𝑁POT.

2.A.3 Heavy meson spectrum
Once a chain is selected, we sample the momentum of the corresponding
charmed meson from the spectrum measured by the LEBC-EHS collabora-
tion [127] at the CERN SPS running at 400 GeV with a hydrogen target. The
differential cross-section is parametrized as the product of a 𝛽 distribution
in 𝑥𝐹 and an exponential distribution in 𝑝2

𝑇 :

d2𝜎
d𝑥𝐹 d𝑝2

𝑇
= 𝜎 (𝑛 + 1)𝑏

2 (1 − |𝑥𝐹 |)𝑛𝑒−𝑏𝑝2
𝑇 (2.23)

with the best-fit values 𝑛 = 4.9 ± 0.5 and 𝑏 = (1.0 ± 0.1) GeV−2. We thus
implicitly assume the spectrum to be separable. Due to their very similar
mass, and to compensate for the lack of data, we assume 𝐷𝑠 mesons to share
the same spectrum as 𝐷 mesons.

By using the spectrum for a hydrogen target, we effectively neglect cascade
production of heavy hadrons inside the target, leading us to underestimate the
number of hadrons produced at the low-energy end of the spectrum. This could
be problematic if their 𝑝𝑇 spectrum happens to be significantly different from
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Figure 2.A.1: Effect of varying the width of the heavy meson 𝑝𝑇 spectrum
on the sensitivity to lepton number violation (90% CL), for an HNL coupling
to the muon. Black lines represent the model-selection sensitivity of SHiP
for various values of ⟨𝑝2

𝑇 ⟩. The dashed line corresponds to the best-fit value
⟨𝑝2

𝑇 ⟩ = 1 GeV2 from the LEBC-EHS collaboration [127].

that of primary hadrons produced in 𝑝𝑝 collisions. However, the lower accep-
tance for these softer hadrons should help mitigate the issue. In figure 2.A.1,
we show how varying the width of the heavy meson 𝑝𝑇 spectrum affects the
final sensitivity. As expected, a larger 𝑝𝑇 spread reduces the sensitivity, while
a narrower spectrum improves it.

2.A.4 Decay product momenta

In order to preserve spin correlations between the HNL siblings and its decay
products, we simulate both the HNL production and decay processes at once.
For the masses and mixing angles of interest, the HNL is long-lived and can be
assumed to be on its mass shell. Therefore the phase-space sampling can be
performed independently for the primary and secondary decays. We use the 𝑚-
generator algorithm [136] for that, as described in ref. [137]. In order to sample
events with a probability proportional to the squared transition amplitude,
we then perform rejection sampling, taking the phase-space distribution as
proposal distribution, and an acceptance probability proportional to the spin-
summed, squared matrix elements (2.12) and (2.13) for the entire decay chain.
Only the spin states of the external particles (which interact with the detector
and are thus “measured” in the quantum mechanical sense) are summed over.
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2.A.5 Geometry
In order to model the geometry of the SHiP experiment, we must account for
the finite size of the detector and its geometrical acceptance. In the current
SHiP design (represented on figure 2.1), the fiducial volume consists of an
evacuated right pyramidal frustum of length 50 m, located at a distance of
50 m from the target, and with horizontal and vertical sides 5 m and 10 m
respectively at the far end. It is followed by a 10 m long tracking station.

To estimate the probability of the HNL decaying within the fiducial volume
and passing the acceptance cuts, we use once again importance sampling for
sampling the decay vertex. This is required in order to overcome the potentially
very long lifetime of HNLs, which could cause most of them to decay away
from the experiment. We choose an importance distribution (approximately)
covering the fiducial volume, by sampling the decay vertex uniformly along the
HNL momentum, at a distance such that it falls inside the decay vessel. The
nominal decay probability density is, as a function of the proper time 𝜏 (or
boost factor 𝛾 and distance 𝐿) between the HNL production and decay:

𝑃decay(𝜏) = Γ𝑒−Γ𝜏 ⟹ 𝑃decay(𝐿|𝛾) = Γ
𝛽𝛾 𝑒− Γ𝐿

𝛽𝛾 (2.24)

The partial weight resulting from this importance sampling step is therefore:

𝑤decay(𝐿|𝛾) = Γ𝐿DV
𝛽𝛾 cos(𝜃)𝑒− Γ𝐿

𝛽𝛾 (2.25)

where 𝐿DV = 50 m is the length of the decay vessel and 𝜃 the angle between
the HNL momentum and the beam axis. In the linear regime, where Γ𝜏 ≪ 1,
this partial weight reduces to 𝑤decay(𝐿|𝛾) ≅ Γ𝐿DV/𝛽𝛾 cos(𝜃).

We finally apply acceptance cuts by requiring the HNL to decay within
the decay vessel, and the trajectories of its two decay products (𝑙∓𝛽 and 𝜋±) to
intersect the tracking station located at its far end.

2.A.6 Unweighting
As a last step, we perform again rejection sampling on the weighted events in
order to obtain a set of events with equal weights, which are easier to analyse
and process with machine learning algorithms. This is done by accepting events
with a probability proportional to their weight, and can be justified as follows.

Let 𝑋 denote a random variable representing the simulated event, and 𝑥
a concrete realization of it. Let 𝑓(𝑥) = 𝑃(𝑋 = 𝑥) be the nominal (i.e. true)
distribution and 𝑔(𝑥) the importance distribution, such that 𝑔(𝑥) > 0 for all
outcomes 𝑥 in the domain of interest Ω (i.e. all relevant observables must have
their support in Ω). If 𝑥 is sampled from the importance distribution 𝑔(𝑥),
its associated weight will be 𝑤(𝑥) = 𝑓(𝑥)/𝑔(𝑥). Let 𝑀 be an upper bound
on 𝑤(𝑥), i.e. 𝑀 ≥ 𝑤(𝑥), ∀𝑥 ∈ Ω. If we choose the acceptance probability to
be 𝑎(𝑥) ≝ 𝑤(𝑥)/𝑀 ≤ 1, then it immediately follows that the accepted events,
effectively drawn from the new importance distribution 𝑔(𝑥) ⋅ 𝑎(𝑥), will have
uniform weight 𝑀 .

It is therefore possible to perform rejection sampling a posteriori in order to
produce uniformly weighted events. However, storing all the generated events,
many of which will eventually be rejected, would be inefficient from a memory
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perspective. A more economical solution, which we decided to use, consists
in performing rejection sampling directly as events are being generated. This
requires estimating an upper bound 𝑀 on the weights, during an initial burn-in
phase.

2.B LNC/LNV classification

At leading order in the light lepton and hadron masses, the matrix elements
for LNC and LNV decay chains have a straightforward analytical dependence
on the invariant mass 𝑠𝑙𝑙 of the charged lepton pair. However, unlike in collider
experiments, this variable is not readily available in a beam-dump setting, due
to the primary lepton being unobservable. As we saw in section 2.3.2, the
different angular correlations between the charged leptons can nevertheless lead
to residual correlations between the visible HNL decay products. The absence
of an obvious test statistics, along with the almost background-free conditions
and highly efficient PID at SHiP [130], makes the task of distinguishing LNC
from LNV ideally suited for multivariate analysis. In the following subsections,
we describe how we generate the training set (section 2.B.1), the classifier used
to discriminate between LNC and LNV events (section 2.B.2), how to produce
a sensitivity limit from its output (section 2.B.3), and finally how sensitive
is the classification to systematic uncertainties on the heavy meson spectrum
(section 2.B.4).

2.B.1 Dataset
As mentioned in section 2.4.2, we need to generate datasets for various HNL
masses 𝑀𝑁 and rays in |Θ𝛼|2 space, where 𝛼 = 𝑒, 𝜇 (the overall normalization
does not matter). In practice, we choose a mass range spanning the region
between the 𝐾 and 𝐷𝑠 thresholds, and consider several benchmark models
with fixed |Θ𝑒|2 ∶ ∣Θ𝜇∣2 ratios.11 For each choice of physical parameters, we
sample 3⋅106 events with uniform weights. This is done by sampling sufficiently
many weighted events and, as they are being generated, “unweighting” them by
performing rejection sampling with an acceptance probability proportional to
their weight. Only events which pass the acceptance cuts are used for training.
In the simulation, the HNL is taken to be a single Majorana particle, such that
the dataset contains equal numbers of LNC and LNV events and is balanced
with respect to the primary and secondary lepton charges. We select only
the fully reconstructible HNL decays 𝑁 → 𝜋∓𝑙±𝛽 , which do not contain an
unobservable light neutrino, and produce long-lived charged particles which
can be measured by the decay spectrometer. For the sake of simplicity, we
will assume the PID to be perfectly efficient throughout this analysis. Non-
trivial efficiencies are expected to slightly reduce the final sensitivity reach. As
explained in section 2.4.2, each event is labelled as being either LNC or LNV,

11We do not consider HNL production through 𝜏 mixing in this work, since it would have
required to implement secondary production from 𝜏 decays. It is negligible in the considered
mass range unless the Θ𝜏 mixing angle is significantly larger than the others, as can be seen
in figure 2.4. In addition, visible HNL decays through 𝜏 mixing are forbidden below the
𝜏 threshold.
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Feature p2y p3y p2x p3x pCMz zD xD yD p1x pCMy
# splits 302 282 243 238 141 114 105 97 91 85

Feature pCMx p1y E1 E2 E3 p3z p2z p1z Ql2
# splits 77 74 69 67 61 53 34 14 9

Table 2.B.1: Feature importance for a 1 GeV HNL coupling to 𝜇.

and we record the 19 observable features listed in table 2.1. The dataset is split
into training / validation / test sets with respective proportions 0.5 ∶ 0.2 ∶ 0.3.

2.B.2 Classifier
We employ the LightGBM [131] gradient boosting algorithm, accessed through
the Python interface to the reference implementation [132]. For classification,
we choose the binary objective. We use early stopping based on the binary
log-loss (binary_logloss) and the area-under-curve (auc) metrics, with a
10 round threshold. The hyperparameters num_leaves and learning_rate
are manually optimized by maximizing the above two metrics on the valida-
tion set. The classification accuracy is presented in figure 2.8 as a function of
the HNL mass 𝑀𝑁 for two orthogonal scenarios, corresponding to the HNL
coupling exclusively to electrons (|Θ𝑒|2 ∶ ∣Θ𝜇∣2 ∶ |Θ𝜏 |2 = 1 ∶ 0 ∶ 0) or muons
(|Θ𝑒|2 ∶ ∣Θ𝜇∣2 ∶ |Θ𝜏 |2 = 0 ∶ 1 ∶ 0), and a third one where it couples equally to
both (|Θ𝑒|2 ∶ ∣Θ𝜇∣2 ∶ |Θ𝜏 |2 = 1 ∶ 1 ∶ 0).

It is instructive to understand the origin of this dependence, if only to
make sure that it corresponds to a physical effect. LightGBM provides a way
to estimate the feature importance, by counting the number of times a feature
is used to split a tree. Those are listed in table 2.B.1 for a 1 GeV HNL coupling
to muons (which results in a classification accuracy of 63.5%). They reveal that
the most important features are the transverse components of the momenta of
the HNL decay products. Indeed, it is possible to successfully train a model
using a single feature such as the transverse momentum 𝑝𝑇 ,𝜇 of the secondary
muon, while still obtaining a classification accuracy of 61.5% (for the same
dataset).

Inspecting the results more closely (see figure 2.7) shows that LNV events
have on average a slightly larger transverse momentum than LNC ones. This is
consistent with our discussion from section 2.3.2, and allows us to understand
the mass dependence. At large HNL masses, as we approach the closing mass
of 𝐷 meson leptonic decays, the kinetic energy of the HNL in the heavy meson
rest frame decreases, until it becomes so small that the difference between LNC
and LNV becomes negligible compared to the transverse momentum spread of
the heavy meson spectrum. As the HNL mass decreases, 3-body semileptonic
decay channels open, and become dominant at lower masses. The additional
meson takes away part of the energy from the HNL, leaving it with insufficient
kinetic energy to “escape” the transverse momentum spread of the heavy meson
spectrum. Finally, the large boost of the heavy mesons along the beam axis
washes out most of the information contained in the longitudinal part of all
laboratory frame momenta, which explains their low importance.
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2.B.3 Sensitivity to lepton number violation
As stated in section 2.4.3, our main goal is to distinguish between the following
two hypotheses using exclusively the classifier decision (i.e. not the underlying
feature vector 𝑧):

• ℋ1: HNLs are Dirac or quasi-Dirac with 𝛿𝑀𝜏 ≪ 1 (LNC decays only).
• ℋ2: HNLs are Majorana or quasi-Dirac with 𝛿𝑀𝜏 ≫ 1 (LNC and LNV

decays).

Those can be expressed as special cases of a more general hypothesis ℋ(𝑓),
𝑓 ∈ [0, 1], parametrized by the relative frequency 𝑓 of LNV events:

• ℋ(𝑓): (LNV rate) = 𝑓 × (total rate).
such that ℋ1 = ℋ(𝑓 = 0) and ℋ2 = ℋ(𝑓 = 1/2).

We model the classifier decisions using a 2 × 2 confusion matrix 𝐶𝑖𝑗 =
𝑃(𝑖 classified as 𝑗), where 𝑖, 𝑗 = 1, 2 correspond to the two classes, respectively
LNC and LNV. The confusion matrix can be expressed in terms of the classifi-
cation accuracies as:

𝐶 = ( 𝑎1 1 − 𝑎1
1 − 𝑎2 𝑎2

) (2.26)

Suppose we observe 𝑁 events passing the selection cuts, 𝑘 of which are classified
as LNV. Then, under ℋ(𝑓), the likelihood of classifying 𝑁 −𝑘 events in class 1
(LNC) and 𝑘 in class 2 (LNV) is given by the following binomial distribution:

ℒ(𝑘; 𝑓) = (𝑁
𝑘 )(𝑎2𝑓 + (1 − 𝑎1)(1 − 𝑓))𝑘(𝑎1(1 − 𝑓) + (1 − 𝑎2)𝑓)𝑁−𝑘 (2.27)

Under hypothesis ℋ1, i.e. all events are LNC, this likelihood reduces to:

ℒ1(𝑘) = ℒ(𝑘; 𝑓 = 0) = (𝑁
𝑘 )(1 − 𝑎1)𝑘𝑎𝑁−𝑘

1 (2.28)

while under hypothesis ℋ2, i.e. events come from either class with equal prob-
ability, it becomes:

ℒ2(𝑘) = ℒ(𝑘; 𝑓 = 1/2) = (𝑁
𝑘 )(1 + 𝑎2 − 𝑎1)𝑘(1 + 𝑎1 − 𝑎2)𝑁−𝑘

2𝑁 (2.29)

For many models, including LightGBM (with a balanced training set), 𝑎1 ≈
𝑎2 ≝ 𝑎. In this limit, ℒ2(𝑘) simplifies to (𝑁

𝑘 )2−𝑁 .
Since ℋ1,2 and ℋ(𝑓) are nested, then, assuming we have sufficiently many

events, we can use Wilk’s theorem12 to try to exclude ℋ1,2 . To this end, we
construct the two likelihood ratios Λ1,2(𝑘) as:

Λ𝑖(𝑘) = ℒ𝑖(𝑘)
ℒ(𝑘; ̂𝑓)

, 𝑖 = 1, 2 (2.30)

12A potential issue in the case of ℋ1 could be that the null value 𝑓 = 0 lies on the boundary
of the domain [0, 1] of 𝑓, while Wilk’s theorem requires the true value to be in the interior of
the parameter space. However, ln(ℒ(𝑘; 𝑓)) has a well-behaved analytical continuation over
a domain larger than [0, 1]. As long as the estimator ̂𝑓 has a sufficiently small variance, this
boundary effect can therefore be ignored and Wilk’s theorem still applies. See [138] for a
comprehensive discussion of the validity conditions of Wilk’s theorem.
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where ̂𝑓 is the maximum likelihood estimator for 𝑓 :

̂𝑓 = 1 − 𝑎 − 𝑘/𝑁
1 − 2𝑎 (2.31)

Wilk’s theorem states that if ℋ𝑖 (𝑖 = 1 or 2) is realized, then −2 ln(Λ𝑖(𝑘))
follows a 𝜒2 distribution with one degree of freedom. Conversely, if we observe
−2 ln(Λ𝑖(𝑘)) > 2.7, then ℋ𝑖 will be disfavoured at 90% CL. If both hypothe-
ses ℋ1,2 were disfavoured simultaneously, this would suggest 𝛿𝑀𝜏 ∼ 2𝜋 and
potentially resolvable HNL oscillations.

If hypothesis ℋ1 is actually realized, we expect 𝑘 to take a value around the
expected number of events misclassified as LNV: (1 − 𝑎)𝑁 , which, for large 𝑁 ,
is approximately equal to the median. The median of the log-likelihood-ratio
when testing for ℋ2 is therefore:

med1 (ln(Λ2)) ≈ −𝑁 ( ln(2) + 𝑎 ln(𝑎) + (1 − 𝑎) ln(1 − 𝑎))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≝ 𝑙1(𝑎)>0

(2.32)

If, instead, ℋ2 is realized, then we expect 𝑘 to take a median value of approx-
imately 𝑁/2, such that:

med2 (ln(Λ1)) ≈ 𝑁 (ln(2) + 1
2 ln(𝑎) + 1

2 ln(1 − 𝑎))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≝ 𝑙2(𝑎)<0

(2.33)

For a fixed confidence level, we can invert these two formulas to estimate, for
each true hypothesis ℋ𝑖, 𝑖 = 1, 2, the median number of events 𝑁𝑖(𝑎) required
to exclude the other hypothesis:

𝑁𝑖(𝑎) = ∣ ln(Λcr)
𝑙𝑖(𝑎) ∣ (2.34)

with −2 ln(Λcr) ≈ 2.7 for a 90% CL. The higher the classification accuracy,
the less events are required to reach the target, while accuracies close to 1/2
do not allow distinguishing the two hypotheses, as 𝑁𝑖(1/2) → ∞. So far we
have only considered the two extreme cases 𝑓 = 0 or 1/2, i.e. 𝛿𝑀𝜏 ≶ 2𝜋. We
can generalize this analysis to the case where the true hypothesis or the null
hypothesis have a non-trivial LNV fraction 𝑓 . A larger number of events will
then be required to reach the same confidence level. We will not discuss these
cases further in this paper, in order to avoid making the discussion unnecessarily
complicated.

As a final step, for each HNL mass 𝑀 and ratio |Θ𝑒|2 ∶ ∣Θ𝜇∣2 ∶ |Θ𝜏 |2, we
compute the squared mixing angles |Θ𝛼|2𝑖 (𝑀) required to produce 𝑁𝑖(𝑎(𝑀))
events, thus producing for each true hypothesis ℋ𝑖 a sensitivity limit, above
which SHiP should be able to exclude the other hypothesis with a probability
of at least 1/2. The resulting sensitivity plots are presented in section 2.5.1.

2.B.4 Systematic uncertainties coming from the heavy
meson spectrum

For a classifier to generalize well out of sample, i.e. on real-world data, the distri-
bution used for training should match the true, physical distribution of features.
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Figure 2.B.1: Effect on the LNV sensitivity (90% CL) of computing the classifi-
cation accuracy on a test set generated with a different 𝑝𝑇 spectrum compared
to the training set, for an HNL coupling to the muon. Black lines represent the
model-selection sensitivity of SHiP for various true ⟨𝑝2

𝑇 ⟩. Here, the training set
is always generated with ⟨𝑝2

𝑇 ⟩ = 1 GeV.

This is in general not the case, since a simulation never perfectly represents
reality. We can, however, work around this requirement by explicitly evaluat-
ing the classification accuracy over a set of test distributions which is likely to
encompass the true distribution. This requires knowing and parametrizing the
uncertainties coming from the simulation. We can then obtain a conservative
estimate for the classification accuracy by varying the unknown parameters
within their uncertainties, and taking a lower bound. If this lower bound is
high enough, we should still be able to probe lepton number violation on real
data.

At SHiP, the main uncertainty affecting the LNC / LNV classification ac-
curacy comes from the transverse momentum spread of the heavy meson spec-
trum, which is only known with limited accuracy. In order to estimate the
actual sensitivity of SHiP to LNV for a realistic dataset, we therefore compute
the classification accuracy for a family of test sets generated using slightly dif-
ferent 𝑝𝑇 spectra, and we take the lowest value as our estimate. The change in
the sensitivity resulting from varying ⟨𝑝2

𝑇 ⟩ by a factor of two up and down with
respect to the best-fit value from LEBC-EHS [127] is shown in figure 2.B.1. The
planned charm spectrum measurements at SHiP should be able to constrain
⟨𝑝2

𝑇 ⟩ to a much better accuracy than the range displayed in the figure.
Interestingly, when comparing this result with figure 2.A.1, we observe that

the classification accuracy seems to mostly depend on the ⟨𝑝2
𝑇 ⟩ of the test set,
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but not much on the one used for training. This suggests that we might be able
to safely use the best-fit spectrum for training without worrying about biasing
the results should the true spectrum turn out to be different, provided that we
use a conservative estimate for the accuracy. In a more comprehensive study,
one would likely want to vary additional parameters related to the spectrum,
geometry and simulation.
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Abstract

Heavy neutral leptons (HNLs) appear in many extensions of the Standard
Model of particle physics. In this study, we investigate to which extent the
NA62 experiment at CERN could improve the existing bounds on the HNL
mixing angle |𝑈𝑒|2 by performing a missing mass search in 𝐾+ → 𝜋0𝑒+𝑁
decays in flight. We show that the limit |𝑈𝑒|2 ≃ 2 × 10−6 can be reached
with the currently available data in the mass range 125 – 144 MeV, which
is currently not well covered by production searches. Future data, together
with a dedicated trigger and/or improvements in rejection of out-of-acceptance
photons, can improve this limit by another order of magnitude.
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3.1 Introduction

3.1.1 Heavy Neutral Leptons
Despite its astounding success in describing the outcomes of collider experi-
ments, the Standard Model of particle physics (SM) fails to account for mul-
tiple reliable observations: the baryon asymmetry of the Universe (BAU, see
e.g. ref. [23]), dark matter (see e.g. ref. [139]), as well as neutrino flavor mixing
and oscillations [140]. The latter observations provide unambiguous evidence
for non-zero neutrino masses, which call for the introduction of additional de-
grees of freedom into the SM. Among many models explaining neutrino masses,
those that introduce no new particles above the electroweak scale are of spe-
cial interest, since they do not destabilize the Higgs mass [89, 90, 141] and are
accessible already by the current generation of experiments (see e.g. ref. [91]).

Such particles may appear for example in extensions of the neutrino sector
(see e.g. refs. [106,142]) such as the type-I seesaw theories [27,30,31,33,34,88].
The assignment of charges in the SM predicts that hypothetical right-handed
counterparts to neutrinos would be completely neutral, i.e. transform as singlets
under the SM gauge group. As such, they also admit a Majorana mass term
whose value is not predicted from neutrino data. The physical spectrum of
these theories contains three light neutrino mass states 𝜈L𝑖 plus a number of new
heavy neutral leptons (HNLs) 𝑁R𝐼 (conventionally defined as right-handed to
be consistent with other 𝑆𝑈(2)𝐿 singlet fermions). These heavy neutral leptons
inherit from the active neutrino flavor states their weak-like interactions with
𝑊 and 𝑍 bosons, albeit with a coupling suppressed by the (flavour-dependent)
elements of the mixing matrix Θ𝛼𝐼 ≪ 1. In what follows, we will refer to
the elements of this matrix as mixing angles. The active neutrino flavors 𝜈L𝛼
(𝛼 = 𝑒, 𝜇, 𝜏) are then a superposition of light and heavy mass states: 𝜈L𝛼 =
𝑉 PMNS

𝛼𝑖 𝜈L𝑖 +Θ𝛼𝐼𝑁𝑐
R𝐼 , where 𝑉 PMNS

𝛼𝑖 is the (now non-unitary) PMNS matrix (see
e.g. ref. [143]).

HNLs can by themselves resolve the aforementioned beyond-the-Standard-
Model puzzles, as in the Neutrino Minimal Standard Model (𝜈MSM) [35, 36].
Or they can serve as a portal (mediator) between the SM sector and other hy-
pothetical sectors containing new particles (see e.g. refs. [91,106] and references
therein). In the latter case HNLs can possess other types of interactions (see
e.g. refs. [31,32,114,144–153]), in addition to those inherited from their mixing
with the active flavor states.

In this paper, we consider a simplified model containing one HNL 𝑁 with
three flavour mixing angles 𝑈𝛼 ≪ 1. It can be thought either as a single
Majorana mass state, or several HNLs degenerate in mass, in which case the
equivalent mixing angle that we constrain is |𝑈𝛼|2 = ∑𝐼 |Θ𝛼𝐼 |2.

3.1.2 Missing mass searches
Intensity frontier experiments like NA62 at CERN are, thanks to the high statis-
tics available, well suited to constrain HNLs. There are two main experimental
methods to search for HNLs: production and decay searches [91]. Production
searches consist in reconstructing the “missing” momentum of invisible parti-
cles from an otherwise known kinematical configuration, and searching for a
mass peak emerging over a smooth background — which indicates the presence
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of a new particle. They can be performed only if the kinematics of the process
are fully known, as e.g. at kaon factories or 𝑒+𝑒− colliders. Decay searches con-
sist in identifying visible final states in the HNL decays and can be performed
at fixed-target, beam dump, 𝑒+𝑒− or 𝑝𝑝 collider based experiments. Production
searches are sensitive to the HNL production rate alone, but not to its lifetime1

or decay modes. In typical models, the production rate is proportional to the
square of a single mixing angle active in the production process, |𝑈𝛼|2 (𝛼 = 𝑒,
𝜇 or 𝜏). A non-observation can therefore be directly translated into a limit
on this mixing angle, with little model dependence. On the other hand, decay
searches are sensitive to a combination of the various squared mixing angles
involved in the HNL production, multiplied by the partial HNL decay width2,
which in typical models also depends on squared mixing angles. The signal
is thus proportional to a combination of fourth powers of mixing angles. In
non-minimal models, it will depend on additional parameters. To be translated
into a set of exclusion limits, a non-observation must therefore be interpreted
within a specific model to disentangle the contributions of the various flavors,
hence introducing model dependence.

3.1.3 The NA62 experiment

The NA62 experiment at CERN [104] employs a high intensity, almost mono-
chromatic secondary 𝐾+ beam of 75 GeV momentum to measure the rate of
the ultra-rare 𝐾+ → 𝜋+𝜈 ̄𝜈 decay to a 10% precision using the decay in flight
technique [104]. The beam is delivered into a 80 m long vacuum tank, giving
rise to a 𝐾+ decay rate in the tank of about 5 MHz. Both the incoming kaons
and their visible decay products are detected, allowing to reconstruct the miss-
ing momentum. The experiment is equipped with a system of veto detectors
for both charged and neutral particles. In particular, the photon veto helps
reducing the contribution of undetected photons and 𝜋0 mesons to the miss-
ing momentum. This leads to favourable background conditions, and provides
sensitivity to 𝐾+ decays with invisible particles in the final state, which are
reconstructed using the missing mass technique. Such searches have been per-
formed [154,155] or are planned both for HNLs and for other feebly interacting
particles [42,156–159].

The NA62 collaboration has recently performed a search for HNL (𝑁) pro-
duction in the 𝐾+ → 𝑒+𝑁 decay with the full Run 1 (2016 – 2018) data set, and
established stringent limits at the level of |𝑈𝑒|2 ∼ 10−9 in the HNL mass range
144 – 462 MeV [155]. The sensitivity of this search deteriorates abruptly at
lower HNL masses due to the shape of the background. On the other hand, the
upper limits on |𝑈𝑒|2 established by the searches for the 𝜋+ → 𝑒+𝑁 process are
at the 10−8 level up to a mass of about 120 MeV, and weaken sharply above
this point [160]. As a result, production searches only weakly constrain the
mass range 120 – 144 MeV, and they do not currently provide any constraints
in the range 135 – 144 MeV.

1Provided it is long enough that the HNL does not decay within the experimental setup.
2Unless the HNL decays promptly, in which case it is the branching fraction that matters.
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3.1.4 Previous bounds
It should be noted that beam dump experiments, notably PS191 at CERN [161],
have obtained competitive bounds in the above mass range (see also ref. [162]
for a re-analysis including the neutral current contribution). The PS191 ex-
periment was designed specifically to detect decay products of heavy neutrinos
in a low-energy neutrino beam produced by kaon and pion decays. Such a
method hinges on the assumption that not only production, but also the visi-
ble decay of HNLs is determined by the mixing angles |𝑈𝛼|2 and |𝑈𝛽|2, where
𝛼 and 𝛽 may be the same or different flavours (the so-called |𝑈|4 experiments,
see e.g. refs. [106, 162]). The missing mass searches, although less sensitive in
the case of the minimal (type I) seesaw model, are applicable to a wider class
of models. In particular, those models where, due to other interactions, HNLs
decay before reaching the PS191 detector (∼ 70 meters away from the target)
and therefore evade PS191 constraints, can still be probed by missing mass
searches. This motivates the present study, which consists in probing the 120
– 144 MeV mass range for the electron mixing at NA62 using the missing mass
technique in the 𝐾+ → 𝜋0𝑒+𝑁 channel.

3.2 Signal simulation

The proposed search involves the final state consisting of a positron and two
photons originating from a prompt 𝜋0 decay. The expected number of signal
events is

𝑠tot = 𝑁𝐾 × BR(𝐾+ → 𝜋0𝑒+𝑁) × 𝜖sig × (1 − 𝑃decay), (3.1)

where 𝑁𝐾 denotes the effective number of 𝐾+ decaying within the fiducial
volume, 𝑃decay is the probability that the HNL decays visibly inside the detector
(in which case the event is ignored by the present analysis), and 𝜖sig is the
signal detection efficiency (including the geometrical acceptance, but not the
probability of the HNL decaying outside the detector).

𝑃decay is a model-dependent parameter determined by the specific HNL
decay channels. However, for sufficiently long-lived HNLs, 1 − 𝑃decay ≈ 1
and this factor can be omitted. The matrix element of the decay, and the
branching ratio BR(𝐾+ → 𝜋0𝑒+𝑁), both of which depend on the assumed
HNL mass 𝑚𝑁 , are computed following refs. [129, 163], using the measured
form factors from ref. [164]. The branching ratio is shown as a function of 𝑚𝑁
as the blue dashed line in figure 3.2.1. The NA62 Run 1 data sample currently
available for the 𝐾+ → 𝜋0𝑒+𝑁 search, collected using a 1-track trigger with
an effective prescaling factor of about 150, corresponds to 𝑁𝐾 ≈ 3 × 1010 [155].
The acceptance 𝜖sig is computed by interfacing our matrix element sampler
with the full Geant4-based NA62 simulation framework [165], and employing
a basic event selection requiring a positron and two photons from a 𝜋0 → 𝛾𝛾
decay in the geometric acceptance of the detector. The acceptance is found to
be about 10% for HNL masses below 150 MeV, and to decrease as a function
of 𝑚𝑁 for higher masses towards the kinematic endpoint.

The events are binned in squared missing mass 𝑚2
miss = (𝑝𝐾+ − 𝑝𝜋0 − 𝑝𝑒+)2.

The finite momentum and energy resolution of the detector causes the re-
constructed signal 𝑚2

miss distribution to follow a Gaussian profile centered at
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Figure 3.2.1: HNL production branching ratios in leptonic and semileptonic
𝐾+ decays, normalised to the squares of the relevant mixing angles. Contrary
to the 𝐾+ → 𝑒+𝑁 decay, the 𝐾+ → 𝜋0𝑒+𝑁 decay considered in this study is
not helicity-suppressed for 𝑚𝑁 ≪ 𝑚𝐾+ .

𝑚2
𝑁 . The typical NA62 resolution on 𝑚2

miss is about 10−3 GeV2. A value of
𝜎𝑚2 = 1.7 ⋅ 10−3 GeV2 obtained for the 𝐾+ → 𝑒+𝜈 decay [155] is assumed
conservatively for this study.

3.3 Background estimate

The dominant source of background to the 𝐾+ → 𝜋0𝑒+𝑁 process comes from
the radiative 𝐾+ → 𝜋0𝑒+𝜈𝑒𝛾 inner-bremsstrahlung decay with the radiative
photon escaping detection, thus causing 𝑚2

miss to be mis-reconstructed. The
expected reconstructed 𝑚2

miss spectrum of the 𝐾+ → 𝜋0𝑒+𝜈𝑒𝛾 process, sim-
ulated according to ref. [166], taking into account the NA62 acceptance and
resolution, and assuming that the radiative photon is not detected, is shown
in figure 3.3.1. The principal contribution to the background for HNL masses
above 100 MeV comes from the radiative tail, while the contributions from the
main 𝐾+ → 𝜋0𝑒+𝜈𝑒 peak at 𝑚2

miss = 0 (caused by the finite mass-squared res-
olution) and non-Gaussian reconstruction tails are subleading. The origin and
properties of this background are similar to those encountered in the search for
the 𝐾+ → 𝜇+𝑁 decay at NA62 [167].

Other background sources, such as 𝐾+ → 𝜋0𝜋0𝑒+𝜈𝑒 decays with both pho-
tons from a 𝜋0 decay evading detection, or 𝐾+ → 𝜋0𝜇+𝜈𝜇 decays followed by
𝜇+ → 𝑒+ ̄𝜈𝜇𝜈𝑒 decays, are found to be subleading. In particular, misreconstruc-
tion of the 𝐾+ → 𝑒+ decay vertex position in the latter case typically leads to
the invariant mass of the two photons from the 𝜋0 → 𝛾𝛾 decay, reconstructed
assuming photon emission at the decay vertex, being incompatible with the 𝜋0
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Figure 3.3.1: Reconstructed squared missing mass spectrum of the 𝐾+ →
𝜋0𝑒+𝜈𝑒𝛾 background, obtained by modelling the NA62 acceptance and reso-
lution, and assuming that the radiative photon is not detected. The total
number of reconstructed events in the spectrum is 1.5 × 108, corresponding
to 𝑁𝐾 = 3 × 1010 kaon decays considered. A ±1.4𝜎𝑚2 wide signal region for
𝑚𝑁 = 150 MeV is shown for illustration.

mass.
The background from radiative photons is largely reducible thanks to the

NA62 photon veto system, which provides hermetic geometric coverage for
photon emission angles 𝜃𝛾 up to 𝜃max = 50 mrad with respect the beam axis,
and partial geometric coverage (of approximately 𝜃max/𝜃𝛾) for larger emis-
sion angles. The nominal detection inefficiency for energetic photons is 10−3

for the large-angle system (for photon energies in excess of a few hundred
MeV), and well below 10−3 for the intermediate and small angles [104]. As
seen in figure 3.3.2, most of the photons from 𝐾+ → 𝜋0𝑒+𝜈𝑒𝛾 decays sus-
ceptible to contaminate the relevant signal regions (for 𝑚𝑁 ≳ 100 MeV, i.e.
𝑚2

miss ≳ 0.01 GeV2) are emitted within 50 mrad of the beam axis. A simplified
photon detection efficiency model is used in this study: the nominal detection
inefficiency of 10−3 is assumed for 𝜃𝛾 < 𝜃max (this assumption is valid as the en-
ergy of the photons intercepting the large-angle veto acceptance for the 𝑚2

miss
range of interest is always above 200 MeV, and is typically in the GeV range),
and zero detection efficiency is assumed conservatively for the (softer) photons
emitted at 𝜃𝛾 ≥ 𝜃max. In this model, the background events are dominated by
those with soft photons emitted at angles above 50 mrad outside the hermetic
coverage zone. Therefore the accuracy of the detection efficiency model does
not significantly affect the background estimate.

3.4 Projected NA62 sensitivity

To estimate the projected sensitivity, we use for simplicity a cut-and-count
analysis. We expect that the actual search will instead involve spectrum shape
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Figure 3.3.2: 𝐾+ → 𝜋0𝑒+𝜈𝑒𝛾 background event density as a function of the
true missing mass squared and angle 𝜃𝛾 between the photon and the beam axis.
Hermetic geometric coverage is provided for photons with 𝜃𝛾 < 50 mrad.

analysis. We define the signal region for a HNL of mass 𝑚𝑁 as a rolling window
of missing mass squared 𝑚2

miss ∈ [𝑚2
𝑁 − 𝑘𝜎𝑚2 , 𝑚2

𝑁 + 𝑘𝜎𝑚2 ], where the width
𝜎𝑚2 = 1.7 ⋅ 10−3 GeV2 corresponds to the approximate mass-squared resolution
of the detector [155] and the constant 𝑘 = 1.4 is chosen to maximize the 𝑠/

√
𝑏

ratio (where 𝑠 and 𝑏 respectively represent the numbers of signal and back-
ground events) and therefore the power of the search. A typical signal region is
shown in figure 3.3.1. Real photon emissions produce a smoothly falling back-
ground in 𝑚2

miss. The search is performed by looking for a significant excess of
events over the background count 𝑏 in each signal region. The detection sensi-
tivity is expressed as a 90% confidence limit (local significance), which roughly
corresponds to 𝑠 ≳ 1.282

√
𝑏 in the limit 𝑏 ≫ 1, with 𝑠 = erf(𝑘/

√
2) × 𝑠tot the

approximate number of signal events inside the signal region. The projected,
median exclusion limit is similarly obtained, by replacing

√
𝑏 with

√
𝑏 + 𝑠. The

background 𝑏 from real photon emissions, integrated over a small 𝑚2
miss window,

is approximately:

𝑏(𝑚2
miss) ≈ 2𝑘 × 𝜎𝑚2 × ⟨𝜖bkg⟩ × d𝑁(𝐾+ → 𝜋0𝑒+𝜈𝑒𝛾)

d𝑚2
miss

(3.2)

where ⟨𝜖bkg⟩ denotes the mean background efficiency of the veto system in this
window. This results in a detection sensitivity of:

|𝑈𝑒|2 ≳ 2.56
𝑁𝐾

√⟨𝜖bkg⟩
𝜖sig(1 − 𝑃decay)

√𝜎𝑚2

BR(𝐾+ → 𝜋0𝑒+𝑁; |𝑈𝑒|2 = 1)

× √d𝑁(𝐾+ → 𝜋0𝑒+𝜈𝑒𝛾)
d𝑚2

miss
(3.3)
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The median projected exclusion limit on |𝑈𝑒|2 from NA62 in the 𝐾+ → 𝜋0𝑒+𝑁
channel (valid for any number of quasi-degenerate HNLs) is presented in fig-
ure 3.4.1, along with the limits set by previous searches using the missing mass
technique at KEK [168], PIENU [160] and NA62 [155], as well as the so-called
seesaw “bounds” for both the normal and inverted hierarchy. These lines are
the model dependent lower bounds on the mixing angle3 |𝑈𝑒|2 = ∑𝐼=1,2 |Θ𝑒𝐼 |2
in the type-I seesaw with two Majorana HNLs forming a quasi-Dirac pair
(and assuming 𝑃decay ≪ 1). As discussed in section 3.3, we have assumed
𝜖bkg = 10−3 for in-acceptance photons, which results in an overall background
efficiency of ⟨𝜖bkg⟩ ≈ 1.7% mainly driven by out-of-acceptance photons. If the
HNL has visible decay channels and its lifetime is comparable to or smaller
than the size of the detector, then the sensitivity to |𝑈𝑒|2 will be reduced by
a factor of (1 − 𝑃decay)−1 due to fewer events being available for the analysis.
The approach considered here has no sensitivity to promptly decaying HNLs.

3.5 Discussion and outlook

The black solid line in figure 3.4.1 represents the sensitivity4 achievable with the
currently available dataset, corresponding to an effective number of 𝐾+ decays
of 𝑁𝐾 ≈ 3 × 1010. The NA62 collaboration is planning to collect an additional
dataset in 2021 – 2024 [169]. Assuming no changes to the pre-scaling factors
applied to the minimum-bias triggers, this leads to an estimated additional
6 × 1010 effective kaon decays. Considering in addition 𝐾+ → 𝜋0𝑒+𝑁 decays
followed either by the Dalitz decay 𝜋0 → 𝛾𝑒+𝑒− (which has branching fraction
1.17% [26]) or by a 𝜋0 → 𝛾𝛾 decay with one of the photons converting just
upstream of the trigger hodoscope, both of which are recorded by the current di-
electron trigger [170], we expect an additional sample corresponding to 5×1010

kaon decays, bringing the total to 1.4 × 1011 by 2024. The corresponding
sensitivity is shown by the black dashed line.

In order for the 𝐾+ → 𝜋0𝑒+𝑁 search at NA62 to become truly compet-
itive in the region of interest, and start filling the current gap between 125
and 144 MeV, a dedicated trigger line (without the current prescaling factor of
∼ 150) is required. If NA62 were to implement such a trigger for its 2021 –
2024 run, it would be able to establish a limit at the level of |𝑈𝑒|2 ≈ 10−7 (rep-
resented by the black dotted line) assuming a fully efficient trigger. Finally,
any improvement in the rejection of out-of-acceptance photons, for instance
through optimized selection or increased veto coverage, would push the sensi-
tivity further down until the missed in-acceptance photons become the leading
source of background.

The limits discussed in this paper present little model dependence, so long
as the HNL is produced in a flavor-changing kaon decay. The remaining depen-
dence comes from the possibly short lifetime of the HNL, which could induce
additional activity in the detector when decaying, resulting in the event be-
ing excluded from the present analysis. In order to overcome this limitation, it
would be interesting to allow for a displaced vertex compatible with the missing

3For consistency, we have plotted the lower bound on the mixing angle |𝑈𝑒|2 instead of
the commonly used total mixing 𝑈2. Our limit is therefore below the usual seesaw bound.

4The (𝑚𝑁 , (1 − 𝑃decay)|𝑈𝑒|2) coordinates of the estimated sensitivity curves can be
extracted from the file figures/sensitivity.tex in the LATEX source of the arXiv version.
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Figure 3.4.1: Projected exclusion reach of NA62 to HNLs in the 𝐾+ → 𝜋0𝑒+𝑁
channel (solid line), compared to the exclusion limits set by previous missing
mass searches. The extra 1−𝑃decay factor corrects for the possibility that HNLs
visibly decay inside the detector due to other types of interactions. Such events
are not included in the present analysis, and would cause a weakening of the
bound. For HNLs whose lifetime (in the laboratory frame) is significantly larger
than the detector size, 𝑃decay ≪ 1 and the quantity probed is the usual mixing
angle |𝑈𝑒|2. The seesaw “bounds” on |𝑈𝑒|2 are plotted under the assumption
that two quasi-degenerate HNLs are fully responsible for neutrino oscillations
(see the main text for details).

momentum. Finally, in order to probe the shorter lifetimes allowed by some
non-minimal models (such as the one discussed in ref. [171]), dedicated searches
involving prompt HNL decays will be needed. These searches are, however, in-
herently model dependent, since they target specific decay channels.
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Abstract

Heavy neutral leptons (HNLs) are hypothetical particles, motivated in the first
place by their ability to explain neutrino oscillations. Experimental searches
for HNLs are typically conducted under the assumption of a single HNL mixing
with a single neutrino flavor. Such exclusion limits do not directly constrain
the corresponding mixing angles in realistic HNL models — those which can
explain neutrino oscillations. The reinterpretation of the results of these ex-
perimental searches turns out to be a non-trivial task, that requires significant
knowledge of the details of the experiment. In this work, we perform such
a reinterpretation for the ATLAS search for promptly decaying HNLs in the
tri-lepton final states. We show that in realistic HNL models, the actual lim-
its may vary by several orders of magnitude, depending on the remaining free
parameters of the model. Marginalizing over unknown model parameters leads
to an exclusion limit on the total mixing angle which can be up to 3 orders of
magnitude weaker than the limits reported in ref. [86]. This demonstrates that
the reinterpretation of results from experimental searches is a necessary step
to obtain meaningful limits on realistic models. We detail a few steps that can
be taken by experimental collaborations in order to simplify the reuse of their
results.
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4.1 Introduction

4.1.1 Heavy neutral leptons

The idea that new particles need not be heavier than the electroweak scale, but
rather can be light and feebly interacting is drawing increasing attention from
both the theoretical and experimental communities, see e.g. [91, 106, 141, 142].
In particular, the hypothesis that heavy neutral leptons are responsible for
(some of the) beyond-the-Standard-Model phenomena has been actively ex-
plored in recent years, see e.g. [35, 36, 49, 106, 141, 172, 173] and refs. therein.
Heavy neutral leptons (HNLs) are massive particles that interact similarly to
neutrinos, but with their interaction strength suppressed by flavor-dependent
dimensionless numbers — mixing angles — (𝑈2

𝑒 , 𝑈2
𝜇, 𝑈2

𝜏 ). HNLs first appeared
in the context of left-right symmetric models [174–177] which required an ex-
tension of the fermion sector with Standard Model (SM) gauge singlet particles,
and then in the (type I) see-saw mechanism [27–34] in which heavy Majorana
neutrinos lead to light Standard Model neutrinos. The interest for these mod-
els increased when it was recognized that the same particles could also be
responsible for the generation of the matter-antimatter asymmetry of the Uni-
verse [178]. This scenario (known as leptogenesis) has been actively developed
since the 1980s (see reviews [179, 180]). In particular, it was found that the
Majorana mass scale of right-handed neutrinos could be as low as the TeV,
GeV or even MeV scale [35,38,45,181–183]; for a recent overview see e.g. [184].
While two HNLs are sufficient to explain neutrino masses and oscillations as
well as the origin of the matter-antimatter asymmetry, a third particle can
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play the role of dark matter [35, 36, 49, 50, 185] within the Neutrino Minimal
Standard Model (𝜈MSM).

Many experiments have searched for HNLs in the past (as summarized
e.g. in refs. [91, 106, 163, 173, 186, 187]). Current generation particle physics
experiments, including LHCb, CMS, ATLAS, T2K, Belle and NA62, all include
HNL searches into their scientific programs [86, 97, 123–125, 155, 158, 188–193].
However, most of the existing or proposed analyses concentrate on the case of
a single HNL mixing with only one flavor. Such a model serves as a convenient
benchmark, but cannot explain any of the BSM phenomena that served as
initial motivations for postulating HNLs. The same benchmarks are used when
estimating the sensitivity of future experiments see e.g. [91], with an exception
of the SHiP experiment, that provided sensitivity estimates for arbitrary sets
of mixing angles [39]. This raises a few questions:

1. What HNL models explaining neutrino oscillations and/or other BSM
phenomena are allowed or ruled out by previous searches? What parts
of the HNL parameter space will be probed by future experiments?

2. What information do experimental groups need to provide in order to
facilitate the answer to such questions in the future?

A number of tools exists, see e.g. [194–201] that allow for recasting of the LHC
results for new sets of models, see also [202]. These tools have mostly been
developed in the context of supersymmetry and similar searches at the LHC and
are not readily applicable to the HNL models whose collider phenomenology is
quite different.

In this work we perform a step in the direction of recasting LHC results.
Specifically, we recast the ATLAS tri-lepton search [86] in the case of the
simplest realistic HNL model of neutrino oscillations. This model features two
heavy neutral leptons with (almost) degenerate masses. The possible values of
the HNL mixings are constrained by neutrino oscillation data. In what follows
we will refer to this model as a realistic HNL model.1 As we shall see below,
even in this simple model, the interpretation of the results is a non-trivial task.

4.1.2 Motivation for a reinterpretation
The realistic seesaw model describing neutrino oscillations brings several changes
as compared to the single-HNL, single-flavor model analyzed by the ATLAS
collaboration [86]. The analysis from ref. [86] concentrated on the following
process:

𝑝𝑝 → 𝑊 ± +𝑋 with 𝑊 ± → ℓ±
𝛼 +𝑁 followed by 𝑁 → ℓ±

𝛼 +ℓ∓
𝛽 + (−)𝜈𝛽 (4.1)

where ℓ±
𝛼 are light leptons (𝑒± or 𝜇±), 𝛼 ≠ 𝛽 and

(−)𝜈𝛽 is a neutrino or anti-
neutrino with flavor 𝛽. They have performed two independent analyses: one
for the 𝑒±𝑒±𝜇∓+MET final state (“electron channel”) and one for the 𝜇±𝜇±𝑒∓+
MET final state (“muon channel”). In both cases, only a single process (cor-
responding to diagram (b) in figure 4.1.1), along with its CP-conjugate, con-
tributed to the final signal. The upper limit on an admissible signal was thus

1Notice that in the model with three HNLs the constraints on the mixings are much more
relaxed [203,204].
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Figure 4.1.1: Lepton number conserving (LNC) and violating (LNV) diagrams
contributing to the same 𝜇+𝜇+𝑒− + missing transverse energy (MET) final
state.

directly translated into an upper bound on the mixing angle 𝑈2
𝑒 or 𝑈2

𝜇, depend-
ing on the channel. The situation changes once we consider a realistic seesaw
model with 2 HNLs:

1. In the two-HNLs model several processes contribute incoherently2 to
each final state. The upper bound on an admissible signal in any chan-
nel thus translates non-trivially into limits on all three mixings angles
(𝑈2

𝑒 , 𝑈2
𝜇, 𝑈2

𝜏 ).
2. Any set of mixing angles consistent with neutrino oscillation data leads to

observable signals in both the 𝑒±𝑒±𝜇∓ and 𝜇±𝜇±𝑒∓ channels, therefore the
statistical procedure should be changed and the predicted signal should
be simultaneously fitted to both channels.

3. Different processes that contribute to the same tri-lepton final state have
different kinematics (due in part to spin correlations [56]). Therefore the
signal efficiencies need to be evaluated separately for every process.

4. We consider 2 HNLs with nearly degenerate masses. Due to HNL os-
cillations (cf. [56] or [63–66, 68, 69, 80] for earlier works) tiny mass dif-
ferences (well below the mass resolution limit of ATLAS) can signifi-
cantly affect the interference pattern, leading to the suppression or en-
hancement of some processes as compared to the single HNL case, see
e.g. [48, 65, 111, 117]. For example, the kinematics of the two processes
shown in figure 4.1.1 (and therefore their efficiencies) are different in the
case of 1 and 2 HNLs given the same set of mixing angles. Thus the
overall signal efficiency depends not only on the mixing angles, but also
on the level of the HNL mass degeneracy.
In order to account for this, we present our analysis for two limiting cases:
the “Majorana-like” and “Dirac-like” (which we will define in section 4.2).

All these points make it impossible to reinterpret the ATLAS results by just
rescaling them (as done e.g. in [85]). Instead one should perform a full signal
and background modeling and evaluate the signal selection efficiencies. Al-
though this can be properly done only by the collaboration itself, thanks to

2Their diagrams all produce different final states (when taking the light neutrino and its
helicity into account) and therefore they do not interfere.
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their access to the full detector simulation, the analysis framework and the ac-
tual counts in the signal regions, we will demonstrate that one can nonetheless
reproduce the original ATLAS limits sufficiently well for the purpose of rein-
terpretation. Finally, we will briefly discuss what data from the collaboration
could simplify our analysis and make it more precise, in the spirit of the LHC
reinterpretation forum [202].

The present paper is organized as follows: In section 4.2 we introduce
the notion of “realistic” seesaw models. To this end, we review the so-called
type-I seesaw mechanism, discuss how neutrino oscillation data constrains its
parameters, and examine how interference effects between multiple HNLs can
completely change their phenomenology. We then describe our analysis proce-
dure in section 4.3: we present the event selection, detail the calculation of the
expected signal and efficiencies, and discuss our background model as well as
the statistical method used to derive the exclusion limits. In section 4.4, we
finally present our reinterpretation of the ATLAS limits on promptly-decaying
HNLs within a realistic seesaw model with 2 HNLs, and we comment on these
results. We conclude in section 4.5, and summarize what data should ideally
be reported by experiments in order to allow reinterpreting their limits easily
and accurately within different models.

4.2 Realistic neutrino oscillation models

4.2.1 The Lagrangian of the model
Our starting point is the type I seesaw mechanism [27, 28, 30, 31, 33, 34], that
we briefly review below. The exposition is fairly standard and can be found,
e.g. in refs. [49, 50, 106] and [26], ch. 14. The reader can skip it, taking notice
of the definitions (4.3)–(4.4).

The Lagrangian of the model reads

ℒSM+HNL = ℒSM + 𝑖 ̄𝜈𝑅𝐼
/𝜕𝜈𝑅𝐼

− 𝐹𝛼𝐼(�̄�𝛼 ⋅ Φ̃)𝜈𝑅𝐼
− 1

2𝑀𝐼 ̄𝜈𝑐
𝑅𝐼

𝜈𝑅𝐼
, (4.2)

where ℒSM is the usual SM Lagrangian, 𝜈𝑅𝐼
are new, right-handed, particles

that are SM gauge singlets. In the present paper we will consider the case
of two HNLs, therefore the index 𝐼 runs over 1, 2. 𝐿𝛼 are the left-handed
lepton doublets labeled with the flavor index 𝛼 = 𝑒, 𝜇, 𝜏 and Φ̃ = 𝑖𝜎2Φ, where
Φ is the Higgs doublet. 𝐹𝛼𝐼 is the matrix of Yukawa couplings in the basis
where the Yukawa couplings of charged leptons and the Majorana mass 𝑀𝐼
of the right-handed neutrinos are both diagonal. After electroweak symmetry
breaking, the Higgs field in the Lagrangian (4.2) obtains a vacuum expectation
value ⟨Φ⟩ = (0 𝑣)𝑇 and the Yukawa interaction terms in eq. (4.2) effectively
become Dirac mass terms coupling the left and right chiral components of the
neutrinos. Since the right-handed neutrinos have, in addition, a Majorana
mass, the spectrum of the theory is obtained by diagonalizing the full mass
matrix.

For |𝐹𝛼𝐼𝑣| ≪ |𝑀𝐼 | one finds after the diagonalization 3 light mass eigen-
states 𝜈𝑖 with masses 𝑚1, 𝑚2, 𝑚3 and two heavy mass eigenstates 𝑁𝐼 — the
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HNLs — with masses 𝑀1 and 𝑀2.3 As a consequence, the flavor eigenstates
(SM neutrinos) 𝜈𝐿𝛼 can be expressed as a linear combination of the 5 mass
eigenstates as

𝜈𝐿𝛼 = 𝑉 pmns
𝛼𝑖 𝜈𝑖 + Θ𝛼𝐼𝑁𝑐

𝐼 , (4.3)
where 𝑉 pmns is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix (see
e.g. [140]). As a result, the heavy mass eigenstates 𝑁𝐼 contain an admixture of
SM neutrinos 𝜈𝐿𝛼, and therefore possess “weak-like” interactions, suppressed
by the mixing angles Θ𝛼𝐼 , approximately given by

Θ𝛼𝐼 ≃ 𝑣𝐹𝛼𝐼
𝑀𝐼

. (4.4)

4.2.2 Parametrization of the Yukawas
The Lagrangian (4.2) contains 11 new parameters, as compared to the SM
one [106]. These parameters are, however, constrained by neutrino oscillation
data [206]. Five neutrino parameters have already been measured: two mass
differences (Δ𝑚2

atm and Δ𝑚2
sun) and three mixing angles (𝜃12, 𝜃23, 𝜃13). The

remaining unknown parameters are the mass of the lightest neutrino, two Ma-
jorana phases, and the 𝐶𝑃 -violating phase 𝛿. Our a priori choice of two HNLs
restricts the mass of the lightest neutrino to be zero and only allows a certain
combination of the Majorana phases to be independent. As a result, we are left
with only two unknown parameters in the active neutrino sector, in addition
to the discrete choice of the mass ordering.4

The measured low-energy parameters mean that for any choice of heavy
neutrino masses 𝑀𝐼 , the Yukawa couplings 𝐹𝛼𝐼 are not completely free. To
account for this, we can parametrize the neutrino Yukawa couplings using the
Casas-Ibarra parametrization [51]:

𝐹 = 𝑖
𝑣𝑉 pmns√𝑚diag

𝜈 𝑅√𝑀diag , (4.5)

where the matrix 𝑀diag = diag (𝑀1, 𝑀2), and 𝑅 is a complex 3 × 2 matrix sat-
isfying 𝑅T𝑅 = 12×2. For the PMNS matrix we use the standard parametriza-
tion [26]. We parametrize the relevant combination of the Majorana phases in
the PMNS matrix as 𝜂 = 1

2 (𝛼21 − 𝛼31) for the normal neutrino mass hierarchy
(NH), and 𝜂 = 1

2 𝛼21 for the inverted hierarchy (IH), with 𝜂 ∈ [0, 2𝜋[. The light
neutrino mass matrix is 𝑚diag

𝜈 = diag(𝑚1, 𝑚2, 𝑚3) with 𝑚1 = 0 for NH, and
𝑚2 = 0 for IH.

In the model with two right-handed neutrinos, the matrices 𝑅 depend on
the neutrino mass hierarchy and are given by

𝑅NH = ⎛⎜
⎝

0 0
cos 𝜔 sin 𝜔

−𝜉 sin 𝜔 𝜉 cos 𝜔
⎞⎟
⎠

, 𝑅IH = ⎛⎜
⎝

cos 𝜔 sin 𝜔
−𝜉 sin 𝜔 𝜉 cos 𝜔

0 0
⎞⎟
⎠

(4.6)
3Given the Lagrangian (4.2) with two right-handed neutrinos, the lightest neutrino is

massless (up to quantum corrections [205].
4These parameters may be probed in the not so distant future: for the inverted hierarchy,

the next generation of neutrinoless double beta decay experiments may provide information
on the Majorana phases [207], while the 𝐶𝑃 -violating phase 𝛿 is already constrained by
T2K [208], with further improvements expected from the DUNE experiment [209].
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with a complex angle 𝜔 = Re 𝜔 + 𝑖 Im 𝜔, and a discrete parameter 𝜉 = ±1.
Changing the sign of 𝜉 can be undone by 𝜔 → −𝜔 along with 𝑁2 → −𝑁1 [53],
so we fix 𝜉 = +1.

4.2.3 Heavy neutrino mixing
The weak-like interactions of HNLs are suppressed by the mixing angles Θ𝛼𝐼 de-
fined in eq. (4.4). These mixing angles may contain complex phases, which play
no role for the processes that we consider.5 Only the cumulative effects of both
𝑁1 and 𝑁2 contributes to the observed signal and therefore the experimentally
measurable quantities are

𝑈2
𝛼 ≡ ∑

𝐼
|Θ𝛼𝐼 |2 and 𝑈2

tot ≡ ∑
𝛼,𝐼

|Θ𝛼𝐼 |2 , (4.7)

which respectively quantify the total HNL mixing to a particular flavor and
the overall mixing between HNLs and neutrinos of definite flavor. The latter
quantity has a particularly simple form in terms of the neutrino masses and
Casas-Ibarra parameters:

𝑈2
tot = ∑𝑖 𝑚𝑖

𝑀𝑁
cosh (2 Im 𝜔) (4.8)

where 𝑀𝑁 = 1
2 (𝑀1 + 𝑀2). For the corresponding expressions of 𝑈2

𝛼, see e.g.
ref. [37].

As we have already mentioned, not all values of the Yukawa couplings 𝐹𝛼𝐼 —
and hence of 𝑈2

𝛼 — are compatible with neutrino oscillation data. Only certain
regions are allowed in (𝑈2

𝑒 , 𝑈2
𝜇, 𝑈2

𝜏 ) space. For | Im 𝜔| ≫ 1 and |𝑀1 − 𝑀2| ≪
𝑀𝑁 , the shape of these regions does not depend on 𝑀𝑁 , |𝑀1 − 𝑀2|, or 𝑈2

tot.
Taking into account that

𝑈2
𝑒 /𝑈2

tot + 𝑈2
𝜇/𝑈2

tot + 𝑈2
𝜏 /𝑈2

tot = 1 , (4.9)

we can display the combinations of 𝑈2
𝛼 which are compatible with neutrino

oscillation data using a ternary plot as in figure 4.2.1, cf. [42, 85, 147]. In
our analysis, we used the most recent global fit to neutrino oscillation data,
NuFIT 5.0 [54,55]. The shape of the allowed regions depends on the values of
the Dirac phase 𝛿 and of the active neutrino mixing angle 𝜃23. We have used
the three-dimensional projections of Δ𝜒2 provided by NuFIT 5.0 in order to
determine the 1, 2 and 3𝜎 contours presented in figure 4.2.1. In order to better
visualize the correspondence between the exclusion limits and various points
in the allowed regions, we have defined a number of benchmarks, which are
represented in figure 4.2.1.

4.2.4 Quasi-Dirac HNLs, lepton number violating effects and
relevant limits

As neutrino oscillations do not constrain the masses of HNLs, 𝑀1 and 𝑀2 can
be arbitrary. In this work we choose to consider the case where 𝑀1 ≈ 𝑀2, i.e.

Δ𝑀 ≡ |𝑀1 − 𝑀2| ≪ 𝑀𝑁 = 𝑀1 + 𝑀2
2 . (4.10)

5These complex phases can be important if the period of HNL oscillations is comparable
with the size of the experiment, see e.g. [56] and references therein.
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Figure 4.2.1: Ternary plot showing the combinations of mixing angles 𝑈2
𝛼/𝑈2

tot,
𝛼 = 𝑒, 𝜇, 𝜏 , which are consistent with the NuFIT 5.0 [54, 55] fit to neutrino
oscillation data, at the 1, 2 and 3𝜎 levels, for the normal and inverted hierar-
chies. The markers denote the selected benchmark points, which are meant to
represent both typical and extreme ratios of the squared mixing angles.

The motivation for this scenario is twofold. First, the mass degeneracy of two
HNLs allows for sizable mixings between active neutrinos and HNLs in a tech-
nically natural way [48,111,114,117,210–215]. Secondly, low-scale leptogenesis
(see the recent work [184] and references therein) requires a mass degeneracy
between two heavy neutrinos. The mass splitting between the HNLs needs to
be especially tiny if one wants to create the initial conditions required for the
generation of sterile neutrino dark matter in the early Universe [38,82,185].

In the limit 𝑀1 ≈ 𝑀2 there is an approximate global 𝑈(1) symmetry in the
theory.6 In this quasi-Dirac limit of the two-HNLs model, the lepton number
violating (LNV) processes (such as 4.1.1(b)) are suppressed compared to the
lepton number conserving (LNC) processes. When 𝑀1 ≠ 𝑀2 but Δ𝑀 ≪ 𝑀𝑁 ,
HNL oscillations take place, as discussed in e.g. [35, 56, 63–66, 68, 69, 80]. As a
result, lepton number violation may not be suppressed any more. Rather, the
rates of LNC and LNV processes undergo a periodic modulation as a function
of the proper time 𝜏 = √(𝑥D − 𝑥P)2 between the HNL production and decay

6The symmetry becomes exact when 𝑀1 = 𝑀2 and Θ𝛼1 = ±𝑖Θ𝛼2. In this limit active
neutrinos become massless and the two HNLs form a single Dirac particle Ψ such that
1+𝛾5

2 Ψ = 𝜈𝑅1 +𝑖𝜈𝑅2√
2 .



4.3. PROCEDURE 85

vertices [56]:

dΓlnc/lnv
𝛼𝛽 (𝜏) ≅ 2 |Θ𝛼1|2 ∣Θ𝛽1∣2 (1 ± cos (Δ𝑀𝜏))𝑒−Γ𝜏dΓ̂lnc/lnv

𝛼𝛽 (4.11)

with the (+) sign for LNC and (−) for LNV, and where dΓ̂lnv/lnc
𝛼𝛽 is the differ-

ential rate for a tri-lepton process mediated by a single Majorana HNL 𝑁 in
the (unphysical) limit of a unit mixing angle between the HNL and the active
flavor 𝛼 at its production vertex, with flavor 𝛽 at its decay vertex, and without
the absorptive part; where Γ ≝ Γ1 ≅ Γ2 and by assumption Θ𝛼2 ≅ ±𝑖Θ𝛼1.
Notice how in this quasi-Dirac limit, the oscillation pattern does not explicitly
depend on the lepton flavors 𝛼 and 𝛽, but only on whether the process is LNC
or LNV. If Δ𝑀 vanishes exactly, then HNLs form a Dirac fermion and LNV
effects are completely absent. Equation (4.11) demonstrates the two limiting
cases of the two-HNLs seesaw model:

Δ𝑀𝜏 ≪ 2𝜋 (Dirac-like limit) dΓlnv
𝛼𝛽 ≈ 0, dΓlnc

𝛼𝛽 is enhanced by ≅ 2
Δ𝑀𝜏 ≫ 2𝜋 (Majorana-like limit) integrated partial widths Γlnv

𝛼𝛽 ≅ Γlnc
𝛼𝛽

(4.12)

where 𝜏 must satisfy both 𝜏Γ𝑁 ≲ 1 and 𝛾𝜏 ≲ 𝐿det (whichever is stronger),
with Γ𝑁 denoting the total HNL width, 𝛾 its boost factor, and 𝐿det the typical
detector size.

In this work we will consider these two limiting cases for quasi-Dirac HNLs:

• Dirac-like: the pure Dirac (Δ𝑀 = 0) limit where all LNV effects are
completely absent, and LNC rates are coherently enhanced by a factor
of 2;

• Majorana-like: the Δ𝑀𝜏 ≫ 2𝜋 limit where both LNV and LNC pro-
cesses are present, with the same integrated rates.

Comparing these two limiting cases for the same benchmark models allows to
assess the level of uncertainty introduced by the unknown Δ𝑀 .

4.3 Procedure

In order to reinterpret the limits from the ATLAS prompt search [86] (with
extra details in the Ph.D. thesis [87]) we have tried to reproduce the AT-
LAS analysis as accurately as possible. Our signal is simulated using Mad-
Graph5_aMC@NLO [216] with the HeavyN model [217,218] (section 4.3.2).
For the event selection (section 4.3.1), we have implemented the ATLAS cut
flow and obtained comparable efficiencies (section 4.3.3). We take the total
background counts from the ATLAS publication [86] (section 4.3.4). Finally,
in order to compute the limits (section 4.3.5), we use the CL𝑠 test statistics,
along with a very simplified treatment of uncertainties.

4.3.1 Event selection
The prompt ATLAS analysis [86] considers the final states consisting of three
isolated charged leptons (with electron or muon flavor) with no opposite-charge
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same-flavor lepton pairs (in order to limit the background from 𝑍 decays), i.e.
only 𝑒±𝑒±𝜇∓ (electron channel) and 𝜇±𝜇±𝑒∓ (muon channel) are considered.
It focuses on HNLs which are sufficiently short-lived that their decay vertex
can be efficiently reconstructed using the standard ATLAS tracking algorithm.
Since our reinterpretation will include a number of processes not included in the
original ATLAS analysis and having different kinematics (e.g. LNC processes,
which are absent in the single-flavor mixing assumption), we cannot use the
published ATLAS efficiencies and we have to compute them on our own.

As we will see, imposing the same analysis cuts only is sufficient to accu-
rately reproduce the ATLAS efficiencies. This seems to indicate that these cuts
are stronger than the requirements imposed by trigger, tracking, etc. Therefore
we need not worry about the technical details of the experiment or detailed de-
tector simulations, and we can just focus on the “cut flow”. The list of cuts is
shown in table 4.3.1, and their order roughly follows that of ref. [87].

1. We start by applying a cut on the distance of closest approach to the
origin in the 𝑟–𝑧 plane, i.e. |Δ𝑧0 sin(𝜃)| < 1 mm for all three leptons.

2. We then apply the transverse momentum and pseudorapidity require-
ments on the three changed leptons, i.e. 𝑝T ≥ 4.5 GeV and |𝜂| ∈ [0, 1.37[∪
]1.52, 2.47] for all electrons7 and 𝑝T ≥ 4 GeV and |𝜂| ≤ 2.5 for all muons.

3. Next, we apply a 𝑝T-dependent weight to each electron in order to sim-
ulate the efficiency of the lepton identification requirement (using the
“loose” working point). We use for that the 𝑝T-differential efficiency re-
ported in ref. [219]. For muons, the efficiency is close to 1 [220], so we do
not apply any weight.

4. Next, we require the tri-lepton invariant mass 𝑀3𝑙 to be in the interval
]40, 90[ GeV.

5. Next, we apply the trigger offline requirements on the two leading lep-
tons, i.e. 𝑝T(𝑒lead) > 27 GeV and 𝑝T(𝑒sublead) > 10 GeV for the electron
channel and 𝑝T(𝜇lead) > 23 GeV and 𝑝T(𝜇sublead) > 14 GeV for the muon
channel.

6. Next we apply a weight to each lepton in order to simulate the efficiency of
lepton isolation. We use the 𝑝T-differential isolation efficiencies reported
in ref. [219] for electrons and ref. [220] for muons, using the “loose” work-
ing point in both cases.

7. For the electron channel only, a further cut is applied on the invariant
mass of the 𝑒±𝑒± pair, 𝑀(𝑒, 𝑒) < 78 GeV, in order to veto the background
from 𝑍 → 𝑒+𝑒− where one of the electron charges is misreconstructed.

8. Finally, the missing transverse energy is restricted to 𝐸miss
T < 60 GeV.

Our cut flow is summarized in table 4.3.1. One notable difference from the
ATLAS paper is the absence of a 𝑏-jet veto in our analysis, which we omitted
since it almost does not affect the signal. A further difference comes from
the cuts related to the displacement of the leading lepton. ATLAS imposes
|Δ𝑧0 sin(𝜃)|(𝑙lead) < 0.5 mm and |𝑑0/𝜎(𝑑0)| < 5 (electron) or < 3 (muon), while
we impose |Δ𝑧0 sin(𝜃)|(𝑙) < 1 mm on all leptons8 and omit the 𝑑0 cut. This

7We use the 2016 values here.
8We followed ref. [87] here, but we plan to change our cuts to match ref. [86] in the final

publication.
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# Electron channel Muon channel
1 |Δ𝑧0 sin(𝜃)|(𝑙) < 1 mm

2 𝑝T(𝑒) ≥ 4.5 GeV, 𝑝T(𝜇) ≥ 4 GeV
|𝜂(𝑒)| ∈ [0, 1.37[∪]1.52, 2.47], |𝜂(𝜇)| ≤ 2.5

3 “Loose” electron ID
4 40 GeV < 𝑀(𝑙, 𝑙, 𝑙′) < 90 GeV

5 𝑝T(𝑒lead) > 27 GeV 𝑝T(𝜇lead) > 23 GeV
𝑝T(𝑒sublead) > 10 GeV 𝑝T(𝜇sublead) > 14 GeV

6 “Loose” lepton isolation
7 — 𝑍 veto: 𝑀(𝑒, 𝑒) < 78 GeV
8 𝐸miss

T < 60 GeV

Table 4.3.1: Our cut flow for the electron and muon channels.

Electron channel (𝑒±𝑒±𝜇∓)
Process Δ𝐿 𝛼 𝛽 MadGraph process string
𝑊 + → 𝑒+(𝑁 → 𝜇−𝑒+𝜈𝑒) 0 𝑒 𝜇 p p > e+ n1, n1 > mu- e+ ve
𝑊 − → 𝑒−(𝑁 → 𝜇+𝑒− ̄𝜈𝑒) 0 𝑒 𝜇 p p > e- n1, n1 > mu+ e- ve~
𝑊 + → 𝑒+(𝑁 → 𝑒+𝜇− ̄𝜈𝜇) −2 𝑒 𝑒 p p > e+ n1, n1 > e+ mu- vm~
𝑊 − → 𝑒−(𝑁 → 𝑒−𝜇+𝜈𝜇) +2 𝑒 𝑒 p p > e- n1, n1 > e- mu+ vm

Table 4.3.2: Signal processes contributing to the electron channel.

does not affect the signal since the leading lepton has a very small displacement
≪ 1 mm in all relevant cases.9

Finally, the events passing the above cuts are binned in 𝑀(𝑙sublead, 𝑙′), which
approximates the invariant mass of the HNL for small HNL masses (for which
the leading lepton is usually the prompt lepton). The bins are [0, 10[, [10, 20[,
[20, 30[, [30, 40[ and [40, 50[ GeV.

4.3.2 Signal
In order to reinterpret the sensitivity of the ATLAS prompt HNL search for
arbitrary combinations of HNL masses 𝑀𝑁 and ratios of mixing angles, we
need to be able to compute the expected signal counts in each 𝑀(𝑙sublead, 𝑙′)
bin in each signal region, for any model parameters. We do so using a simple
model, described below.

MadGraph setup

The signal processes contributing to each channel are listed in tables 4.3.2
and 4.3.3.10 For Majorana-like HNL pairs, all processes contribute, while for
Dirac-like HNL pairs only those which conserve the total lepton number (Δ𝐿 =
0) contribute (with a factor-of-2 enhancement for the total cross section).

9For light HNLs, the leading lepton is almost always the prompt lepton from the 𝑊
decay, while heavier HNLs decay with a very short displacement due to their much shorter
lifetime.

10In the “Process” column, we use a bar to indicate the chirality of the produced light
neutrinos. Their Majorana nature does not play a role here.
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Muon channel (𝜇±𝜇±𝑒∓)
Process Δ𝐿 𝛼 𝛽 MadGraph process string
𝑊 + → 𝜇+(𝑁 → 𝑒−𝜇+𝜈𝜇) 0 𝜇 𝑒 p p > mu+ n1, n1 > e- mu+ vm
𝑊 − → 𝜇−(𝑁 → 𝑒+𝜇− ̄𝜈𝜇) 0 𝜇 𝑒 p p > mu- n1, n1 > e+ mu- vm~
𝑊 + → 𝜇+(𝑁 → 𝜇+𝑒− ̄𝜈𝑒) −2 𝜇 𝜇 p p > mu+ n1, n1 > mu+ e- ve~
𝑊 − → 𝜇−(𝑁 → 𝜇−𝑒+𝜈𝑒) +2 𝜇 𝜇 p p > mu- n1, n1 > mu- e+ ve

Table 4.3.3: Signal processes contributing to the muon channel.

For each process, we generate a Monte-Carlo sample which will be used to
compute both the cross section and the efficiency. Each sample consists of ∼
40000 weighted events generated at leading order using MadGraph5_aMC@
NLO v2.8.x [216] along with the HeavyN model [217, 218] (specifically, we
use the SM_HeavyN_NLO model). The center of mass energy is set to√𝑠 = 13 TeV and the integrated luminosity to ℒint = 36.1 fb−1, in order to
match the parameters of the 2019 prompt analysis. We generate the processes
listed in the “MadGraph process string” column in tables 4.3.2 and 4.3.3,
with up to two additional hard jets. Pythia 8 is then used (through the
MadGraph interface) to shower and hadronize the events. We use the event
weights and the merged cross section reported by Pythia.

Signal computation for arbitrary model parameters

In order to obtain the physical cross section, a number of model parameters
need to be specified: the HNL mass 𝑀𝑁 , its mixing angles11 |Θ𝑒|, |Θ𝜇| and
|Θ𝜏 | and its total decay width Γ𝑁 . Generating a new sample for every set of
parameters would be computationally prohibitive. Fortunately, we can leverage
the scaling properties of the cross section in order to exactly recompute the
cross section to each new sets of mixing angles. This is done as follows.

As a first step, we generate Monte-Carlo samples for all the processes listed
in tables 4.3.2 and 4.3.3, for each HNL mass 𝑀𝑁 ∈ {5, 10, 20, 30, 50} GeV
and using the reference parameters |Θ|ref = 10−3 and Γref = 10−5 GeV as
placeholders for the remaining model parameters.12 For each process 𝑃 , we
only set the relevant mixing angle |Θ𝛼(𝑃)| and |Θ𝛽(𝑃)| to |Θ|ref, where 𝛼(𝑃)
and 𝛽(𝑃) respectively correspond to the generations coupling to the HNL at
production and decay, as listed in tables 4.3.2 and 4.3.3.

The key observation here is that the branching fraction of 𝑊 + → 𝑙𝛼𝑁 is pro-
portional to |Θ𝛼|2, while the branching fraction of 𝑁 → 𝑙𝛽𝑙𝛾𝜈𝛾 is proportional
to |Θ𝛽|2/Γ𝑁 . Therefore, the cross section for a given process 𝑃 is proportional
to |Θ𝛼(𝑃)|2|Θ𝛽(𝑃)|2/Γ𝑁 . Starting from the reference cross section 𝜎ref

𝑃 obtained
for the reference parameters, this allows to extrapolate the physical cross sec-
tion to new parameters:

𝜎𝑃 (𝑀𝑁 , Θ𝑒, Θ𝜇, Θ𝜏) = 𝜎ref
𝑃 ×

|Θ𝛼(𝑃)|2|Θ𝛽(𝑃)|2
|Θ|4ref

× Γref
Γ𝑁(𝑀𝑁 , Θ𝑒, Θ𝜇, Θ𝜏) (4.13)

11Since we are dealing with 2 HNLs far from the seesaw line, Θ𝛼2 ≅ ±𝑖Θ𝛼1 [48,111]. We
generate the Monte-Carlo samples for a single HNL with parameters Θ𝛼 ≝ Θ𝛼1, such that
|Θ𝛼| = |Θ𝛼1| ≅ |Θ𝛼2| = 1

2 𝑈2
𝛼, see eq. (4.7).

12These parameters allow for the successful numerical integration in the narrow width
approximation.
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Nature 𝑐𝑃 , 𝑃 ∈ LNC 𝑐𝑃 , 𝑃 ∈ LNV 𝑐Γ = Γ𝑁/ΓMaj.

One Majorana HNL (reference) 1 1 1
One Dirac HNL 1 0 1/2
Quasi-Dirac pair: Majorana-like 2 2 1
Quasi-Dirac pair: Dirac-like 4 0 1

Table 4.3.4: Multiplicative coefficients 𝑐𝑃 to be applied to the cross section of
each process 𝑃 , and 𝑐Γ to be applied to the total HNL width Γ𝑁 , depending
on the HNL(s) nature and on whether the process is LNC or LNV.

Since the total HNL width enters this formula, we need to be able to compute
it for arbitrary parameters too. To this end we follow a similar approach. We
notice that the partial width into a given decay channel 𝐷 is proportional
to |Θ𝛽(𝐷)|2, where 𝛽(𝐷) denotes the flavor with which the HNL mixes when
decaying. Summing over all decay channels and all three flavors, we can then
express the total decay width as:

𝜏−1
𝑁 = Γ𝑁(𝑀𝑁 , Θ𝑒, Θ𝜇, Θ𝜏) = ∑

𝛽=𝑒,𝜇,𝜏
|Θ𝛽|2 × Γ̂𝛽(𝑀𝑁) (4.14)

where Γ̂𝛽(𝑀𝑁) = Γ𝑁(𝑀𝑁 , 𝛿𝛽𝑒, 𝛿𝛽𝜇, 𝛿𝛽𝜏) is the total decay width obtained by
setting Θ𝛽 = 1 and the two other mixing angles to zero. It can be easily com-
puted with MadGraph by generating the n1 > all all all process. This
extrapolation method, which makes use of the scaling properties of the relevant
branching fractions, has been successfully validated by explicitly computing the
cross section for a few non-trivial benchmark points and comparing the results.
The contribution 𝑁𝑃 of a given process 𝑃 to the total event count (before ap-
plying any selection) is then obtained by multiplying the relevant cross section
by the integrated luminosity: 𝑁𝑃 = ℒint × 𝜎𝑃 .

Signal computation for quasi-Dirac HNLs

Finally, since the signal samples have been computed for a single Majorana
HNL, we need to apply a correction factor 𝑐𝑃 to each cross section when con-
sidering a quasi-Dirac HNL pair. If this HNL pair is Majorana-like (i.e. it has
both LNC and LNV processes with equal rates), then all cross sections must
be multiplied by 2, since there are two mass eigenstates whose event rates add
incoherently. However, for a Dirac-like HNL pair (which only has LNC pro-
cesses), the LNC cross sections must be multiplied by 4 due to the coherent
enhancement discussed in section 4.2.4, while the LNV ones should all be set
to zero. Unlike in the case of a single Dirac fermion, no correction to the total
HNL width needs to be applied. The correction factors are summarized in
table 4.3.4.

4.3.3 Efficiencies
In order to obtain a sensitivity estimate, we must compute the expected signal
count in every 𝑀(𝑙sublead, 𝑙) bin reported by the ATLAS collaboration.13. This

13We consider both signal regions (for the 𝑒±𝑒±𝜇∓ and 𝜇±𝜇±𝑒∓ signatures) simultane-
ously, so there are 10 bins in total: 5 in the electron channel and 5 in the muon channel.
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is done by multiplying the true signal count by a signal efficiency. Since the
relative contributions of the various diagrams — which all have different kine-
matics and therefore different efficiencies — depend on the model parameters,
in general we expect the signal efficiency to depend on the mass 𝑀𝑁 , nature
(Majorana-like or Dirac-like), lifetime 𝜏𝑁 and all the mixing angles of the quasi-
Dirac HNL pair. However, when considering a single process / diagram, the
nature and mixing angles “factor out” such that the efficiency for this process
depends only on the mass and lifetime. We therefore need to compute one
efficiency 𝜖𝑃,𝑏(𝑀𝑁 , 𝜏𝑁) for every process 𝑃 and every bin 𝑏. The total event
count in bin 𝑏 is then computed by summing over all the processes:

𝑁𝑏 = ℒint × ∑
𝑃

𝜖𝑃,𝑏(𝑀𝑁 , 𝜏𝑁) × 𝑐𝑃 × 𝜎𝑃 (𝑀𝑁 , Θ𝑒, Θ𝜇, Θ𝜏) (4.15)

where 𝑐𝑃 is the correction factor applied to the cross section for quasi-Dirac
HNLs.

For a given process 𝑃 and bin 𝑏, the efficiency 𝜖𝑃,𝑏(𝑀𝑁 , 𝜏𝑁) is computed by
filtering the corresponding Monte-Carlo sample through the cut flow described
in section 4.3.1 and table 4.3.1. The binned efficiency is then:

𝜖𝑃,𝑏 = ∑ (weights of events after cuts, which end up in bin 𝑏)
∑ (weights of all events before cuts, from any bin) (4.16)

where the sums run over all events generated for the process 𝑃 and the events
which fail to pass a given cut have their weight set to zero.14 Similarly, we can
obtain the unbinned efficiency as:

𝜖𝑃 = ∑ (all event weights after cuts)
∑ (all event weights before cuts) . (4.17)

The unbinned efficiencies for the four LNV processes are plotted in fig-
ure 4.3.1 along with the efficiencies reported for ATLAS in ref. [87], while
those for LNC processes are plotted in figure 4.3.2. Since the efficiency of a
process depends on both the HNL mass and its lifetime, we had to choose some
benchmark points to produce figures 4.3.1 and 4.3.2. In order to be able to
compare our efficiency calculation with the ATLAS efficiencies, we have cho-
sen the same benchmarks as reported in ref. [87] and reproduced in table 4.3.5.
Our estimate is accurate for three LNV processes (with a mean relative error of
0.07), while for 𝑊 − → 𝑒−(𝑁 → 𝑒−𝜇+𝜈𝜇) the relative error can be as high as 0.5.
Error bars denote the rounding error of ±5 × 10−3 in the ATLAS efficiencies
listed in ref. [87], and the missing entries in the electron channel correspond to
efficiencies which have been rounded down to zero. Comparing figure 4.3.2 with
figure 4.3.1, notice how the efficiencies for LNC processes are measur-
ably smaller than for LNV processes, sometimes by up to a factor of ∼ 2.
This is mostly due to the different spin correlation patterns for LNC vs. LNV
leading to different lepton 𝑝T spectra and to different geometrical acceptances
of the lepton 𝑝T cuts.

Even using the extrapolation method described above and eq. (4.15), one
efficiency 𝜖𝑃,𝑏(𝑀𝑁 , 𝜏𝑁) must in principle still be computed for every process 𝑃 ,

14Some cuts (such as lepton ID and isolation cuts) are implemented by reweighting events
using tabulated efficiencies.
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Figure 4.3.1: Cumulative unbinned signal efficiencies (for the total event count,
i.e. summed over all bins) after applying each cut listed in table 4.3.1, computed
for the benchmark points found in ref. [87]. The black dashed line denotes the
total efficiencies reported in ref. [87], and should be compared to the gray line
with diamond markers (which corresponds to all cuts being applied). These
efficiencies are for lepton number violating (LNV) processes only, since these
were the relevant processes in the original prompt search.

HNL mass 𝑀𝑁 5 GeV 10 GeV 20 GeV 30 GeV 50 GeV
HNL lifetime 𝜏𝑁 1 mm 1 mm 0.1 mm 0.01 mm 1 µm

Table 4.3.5: Benchmark points (taken from ref. [87]) used to plot the efficiencies
in figures 4.3.1 and 4.3.2. Note that our calculation is more general, and works
for any combination of 𝑀𝑁 and 𝜏𝑁 .
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Figure 4.3.2: Cumulative unbinned signal efficiencies (for the total event count,
i.e. summed over all bins) after applying each cut listed in table 4.3.1, computed
for the benchmark points found in ref. [87], for lepton number conserving (LNC)
processes. The gray line with diamond markers corresponds to the total effi-
ciency.

bin 𝑏, HNL mass 𝑀𝑁 and lifetime 𝜏𝑁 . However, several simplifications exist.
First, the efficiencies for the full set of 𝑀(𝑙sublead, 𝑙′) bins (keeping the other pa-
rameters fixed) can be computed simultaneously, since the events only need to
go through the cut flow once, before the binning is applied. More interestingly,
it also turns out that the 𝜏𝑁 dependence can be quite accurately parametrized
using a simple functional form 𝜖(𝜏𝑁). This functional form can be constrained
by requiring the following asymptotic behavior:

• 𝜖(𝜏𝑁) → 𝜖0 (prompt efficiency) as 𝜏𝑁 → 0.
• 𝜖(𝜏𝑁) ∝ 1

𝜏𝑁
for sufficiently large 𝜏𝑁 .

The “simplest” functional form satisfying these two conditions is:

𝜖(𝜏𝑁) = 𝜖0
1 + 𝜏𝑁

𝜏0

(4.18)

with 𝜖0 the prompt efficiency and 𝜏0 the typical lifetime after which the effi-
ciency starts to drop due to the HNL displacement. After fitting it to the effi-
ciencies which have been explicitly computed for a number of lifetime points,
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Figure 4.3.3: Binned and unbinned efficiencies as a function of the HNL lifetime
𝜏𝑁 , for the process 𝑊 + → 𝑒+(𝑁 → 𝑒+𝜇− ̄𝜈𝜇) with 𝑀𝑁 = 30 GeV. The dots
represent the efficiencies calculated explicitly, while the lines correspond to the
fitted model. Error bars denote an estimate of the statistical uncertainties from
the finite size of the Monte-Carlo sample.

this model can be used to extrapolate the efficiency to arbitrary HNL lifetimes.
As an example, the model, along with the lifetime points used for the fit, are
presented in figure 4.3.3 for both the binned and unbinned efficiencies, for the
𝑊 + → 𝑒+(𝑁 → 𝑒+𝜇− ̄𝜈𝜇) process with a 30 GeV HNL. The relative error be-
tween the data and the model is ≲ 10% (on top of the statistical error). The
efficiencies for other processes and mass points display a similar behavior.

Thanks to these simplifications, for each HNL mass 𝑀𝑁 and process 𝑃 ,
the efficiencies need only be computed for 3 or more lifetime points in order to
obtain the full lifetime dependence along with an error estimate. This amounts
to 12 or more Monte-Carlo samples per mass point for Dirac-like HNL pairs,
and 24 or more for Majorana-like HNL pairs.15 This makes the approach
computationally tractable (although expensive) for experiments who would like
to report their efficiencies in a benchmark-agnostic way, while still using their
full detector simulation.

4.3.4 Background
A number of Standard Model processes can mimic the signatures that we are
looking for. This can happen if these processes have the same final state (ir-
reducible background) or if they are misreconstructed as the same final state
(reducible background) due to fake leptons (i.e. non-prompt leptons from jets
or leptons from pileup). ATLAS has found the irreducible background to be
subdominant [86], and the main background components to be multi-fakes (mul-
tiple fake leptons coming from 𝑊+jets or multiple jets) as well as 𝑡 ̄𝑡 with a
fake lepton.

15Plus three samples for computing the HNL lifetime, but these only need to be run at
parton level and therefore have a negligible computational cost.
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Each of these background sources comes with statistical uncertainties. The
kinematic distribution of the multi-fake sample is estimated from data using a
number of estimation regions, then normalized by fitting a normalization factor
𝜇mf to the three control regions. Due to the finite sizes of the data samples,
both of these steps introduce statistical errors into the multi-fake estimate,
with potentially non-trivial correlations between the 𝑀(𝑙sublead, 𝑙′) bin counts,
which we are ultimately interested in. Similarly, the finite size of the 𝑡 ̄𝑡 Monte-
Carlo sample and the finite event counts in the control regions used to estimate
its normalization factor 𝜇𝑡 ̄𝑡 also introduce statistical errors into the 𝑡 ̄𝑡 estimate.

The detailed uncertainties (including correlations) of the individual back-
ground components are not listed in ref. [86]. Performing a detailed background
analysis is out of the scope of the present paper. Instead, we have decided to
use a simplified background model, which only takes into account the total
background count in each bin, but is nonetheless capable of providing a good
enough approximation of the sensitivity for the purpose of this reinterpretation.

To this end, the total background count in each channel and each 𝑀(𝑙sublead,
𝑙′) bin, along with its uncertainty band, is digitized from figure 5 in ref. [86].
Since the statistical errors on the normalization factors 𝜇mf and 𝜇𝑡 ̄𝑡 are among
the leading uncertainties, we will assume that the uncertainty bands reported in
this figure are entirely caused by a single normalization factor 𝜇tot, or in other
words that the uncertainties in the various 𝑀(𝑙sublead, 𝑙′) bins are maximally
correlated. The accuracy of this simplified model will be explicitly tested in
section 4.3.5.

4.3.5 Statistical limits
Ref. [86] found a very good compatibility between the observed counts and
the background-only hypothesis. They then proceeded with exclusion limits by
testing the compatibility of the observed counts under the signal + background
hypotheses for five different benchmark points in the (mass, lifetime) space,
each for two different mixing patterns: with electron or muon flavor.

In order to define the exclusion limit, ATLAS uses the CL𝑠 test [221]. For
completeness, a quick reminder about the CL𝑠 technique follows in section 4.3.5.
Knowledgeable users are welcome to skip it and go directly to section 4.3.5.

CL𝑠 technique: a general reminder

The CL𝑠 technique is based on the likelihood-ratio test statistics, more specifi-
cally on:

𝑡(𝑥) ≡ 2 ln (ℒ(𝑥|𝐻𝑠+𝑏)
ℒ(𝑥|𝐻𝑏) ) (4.19)

where ℒ denotes the likelihood, 𝑥 the data, 𝐻𝑏 the background-only hypoth-
esis and 𝐻𝑠+𝑏 a signal + background hypothesis. Larger values of 𝑡 indicate
more signal-like data. The distribution of 𝑡 is estimated under each hypothesis
through the use of pseudo-experiments 𝑋: 𝑝𝑏(𝑡) = 𝒫(𝑡(𝑋)) for 𝑋 ∼ 𝐻𝑏 and
𝑝𝑠+𝑏(𝑡) = 𝒫(𝑡(𝑋)) for 𝑋 ∼ 𝐻𝑠+𝑏. Given an observation 𝑥obs and the corre-
sponding value of the test statistics 𝑡obs = 𝑡(𝑥obs), the CL𝑏 and CL𝑠+𝑏 values
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are then computed as:

CL𝑏 = 𝒫 (𝑡(𝑋) < 𝑡obs|𝐻𝑏) = ∫
𝑡obs

−∞
d𝑡 𝑝𝑏(𝑡) (4.20)

CL𝑠+𝑏 = 𝒫 (𝑡(𝑋) < 𝑡obs|𝐻𝑠+𝑏) = ∫
𝑡obs

−∞
d𝑡 𝑝𝑠+𝑏(𝑡) (4.21)

In other words, CL𝑏 and CL𝑠+𝑏 are the probabilities of obtaining a dataset
that is more background-like than the observed one, respectively under the
background and signal + background hypotheses. Both increase for increas-
ingly signal-like 𝑥obs. Finally, the value of the CL𝑠 test statistics is given by
the ratio:

CL𝑠 = CL𝑠+𝑏
CL𝑏

(4.22)

and a given signal + background hypothesis 𝐻𝑠+𝑏 is considered to be excluded if
CL𝑠 < 0.05. For any signal stronger than the CL𝑠 = 0.05 limit, the probability
of a type-I error (false exclusion) will always be less than 0.05. In order to
complete the statistical analysis, the likelihood remains to be specified. We
will proceed with this in the following section.

CL𝑠 technique: implementation

The observables in question are the event counts in the two signal regions (for
the electron and muon channels), each channel consisting of 5 𝑀(𝑙sublead, 𝑙′)
bins. Since we will be dealing with non-trivial combinations of mixing angles,
we simultaneously include both channels in our likelihood. We thus end up
with 10 bin counts {𝑥𝑖}, with 𝑖 = 1 … 5 for the electron channel and 𝑖 = 6 … 10
for the muon channel. As discussed in section 4.3.4, we model the background
as a set of expectation values {𝑏𝑖} for each bin 𝑖 = 1 … 10 (taken from the
ATLAS paper) along with a Gaussian-constrained normalization factor 𝜇tot
with standard deviation 𝜎tot = ∑𝑖(𝑏+

𝑖 − 𝑏−
𝑖 )/(2 ∑𝑖 𝑏𝑖), where the − and + su-

perscripts respectively denote the lower and upper uncertainty bands from the
ATLAS plot (see table 4.3.6). The signal is modeled as a set of signal expecta-
tions {𝑠𝑖}, 𝑖 = 1 … 10, which we compute for each set of the model parameters
(𝑀𝑁 , Θ𝑒, Θ𝜇, Θ𝜏) using the method described in sections 4.3.2 and 4.3.3. Con-
trary to ATLAS, we do not use a signal strength parameter 𝜇, since this would
amount to rescaling the mixing angles without changing the lifetime, leading to
inconsistent results.16 We neglect all uncertainties on the signal counts, which
we have estimated to be at the sub-percent level. The bin counts 𝑥𝑖 are as-
sumed to be Poisson distributed, with expectation values of respectively 𝜇tot𝑏𝑖
for the background-only hypothesis and 𝜇tot𝑏𝑖 +𝑠𝑖 for the signal + background

16In the prompt limit (𝜏𝑁 ≡ 0), the approach taken by ATLAS would work. However,
HNLs in the lowest two mass bins (5 and 10 GeV) have a small displacement, which can
strongly affect the efficiency.
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𝑒𝑒𝜇 background 𝜇𝜇𝑒 background
𝑏𝑖 𝑏−

𝑖 𝑏+
𝑖 𝑏𝑖 𝑏−

𝑖 𝑏+
𝑖

19.0 14.9 23.1 21.3 17.5 25.1
18.0 14.4 21.7 13.8 10.6 17.0
21.0 17.4 24.7 18.7 15.1 22.3
13.6 10.9 16.2 13.3 10.6 16.1
6.1 4.2 7.8 13.1 10.2 15.9

Table 4.3.6: Background in 5 invariant mass bins (rows) for the searches in
𝑒±𝑒±𝜇∓ and 𝜇±𝜇±𝑒∓ channels correspondingly. The background is taken from
Figure 5 in [86]. Only the total value (without individual contributions) is
shown.

hypothesis. The full likelihood for the signal + background hypothesis is thus:

ℒ(𝑥|𝐻𝑠+𝑏) = 𝒫(𝜇tot|𝒩(1, 𝜎tot)) ×
10
∏
𝑖=1

𝒫(𝑥𝑖|Pois(𝜇tot𝑏𝑖 + 𝑠𝑖))

where 𝜇tot = ∑𝑖(𝑥𝑖 − 𝑠𝑖)
∑𝑖 𝑏𝑖

(4.23)

The likelihood for the background-only hypothesis 𝐻𝑏 is obtained by setting
the signal 𝑠𝑖 to zero in eq. (4.23).

In order to validate our simplified statistical analysis, we can compare the
limits that it produces to the limits obtained by ATLAS, when using the exact
same counts as ATLAS (extracted again from figure 5 in ref. [86]). In order to
perform this comparison, a few changes need to be made. First, we need to
reintroduce the signal strength parameter 𝜇. Second, we need to consider both
channels separately. After making these changes, we obtain the limits shown
in figure 4.3.4. The mean ratio between our limits and the ones from ATLAS
is 64%, and the worst-case ratio is 42%. Although not fully satisfactory, this
discrepancy should still be small enough to allow us to reliably compare limits
which differ by an order of magnitude or more, as we will do in the next section.
This is especially true when the reinterpreted limits are all computed using the
same method.

4.4 Results

In this section, we present and analyze the reinterpreted exclusion limits ob-
tained using the analysis described in section 4.3. We use the benchmark points
defined in figure 4.2.1. These benchmarks have been chosen to represent both
typical and extreme ratios of the mixing angles 𝑈2

𝑒 ∶ 𝑈2
𝜇 ∶ 𝑈2

𝜏 .
The reinterpreted exclusion limits for the total mixing angle 𝑈2

tot (eq. (4.8))
are presented in figures 4.4.1 and 4.4.2, for the Majorana- and Dirac-like cases
respectively. The limits for the individual mixing angles 𝑈2

𝛼 = ∑𝐼=1,2 |Θ𝛼𝐼 |2
are presented in figures 4.4.3 to 4.4.6.

The legend, for all plots, is as follows. The thick dashed and dotted lines
represent the exclusion limits obtained under the assumption of a Majorana-
like HNL pair mixing with a single flavor. Up to a factor of 2, this corresponds
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Figure 4.3.4: Comparison of the limits obtained using our simplified statistical
model with the ones observed by ATLAS, using the exact same dataset (i.e.
event counts, total background and expected signal).
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Figure 4.4.1: Original and reinterpreted exclusion limits (at 95% CL) on the
total mixing angle 𝑈2

tot = ∑𝛼=𝑒,𝜇,𝜏 ∑𝐼=1,2 |Θ𝛼𝐼 |2 for a Majorana-like HNL
pair, and for the normal (left) and inverted (right) hierarchies. The black
lines denote the limits observed under the single-flavor assumption, while the
solid colored lines denote those obtained for the benchmark points defined
in figure 4.2.1. The filled area represents the set of all possible (benchmark-
dependent) 95% exclusion limits when considering all the ratios of mixing an-
gles allowed by neutrino oscillation data (corresponding to the 2𝜎 region in
figure 4.2.1). The red hatched area is excluded at CL > 95% for all possible ra-
tios of mixing angles, and thus constitutes a benchmark-independent exclusion
limit.
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Figure 4.4.2: Same as figure 4.4.1, but for a Dirac-like HNL pair. The single-
flavor mixing limits are grayed out because this search has no sensitivity to the
Dirac-like case under this assumption; instead the limits for the Majorana-like
case are given for comparison purpose.

to the scenario considered by ATLAS in the current prompt search. These lim-
its are grayed out in the plots for the Dirac-like pair in order to emphasize that
this search has no sensitivity to the Dirac-like case for single-flavor mixing. The
solid colored lines denote the exclusion limits obtained for the various bench-
mark points defined in figure 4.2.1, and the benchmarks can be identified using
the numbers in the right margin. All these limits correspond to the observed
exclusion limit, and have all been derived using the same statistical method,
which we described in 4.3.5. Therefore, they might slightly deviate from the
actual ATLAS limits from ref. [86], but they should be comparable among
themselves. The colored, filled area represents the set of possible (benchmark-
dependent) limits spanned by all the combinations of mixing angles allowed by
the NuFIT 5.0 neutrino data (at 2𝜎 ≈ 95% CL17). In other words, it shows
the dependence of the exclusion limits on the choice of the benchmark point,
within the constraints from neutrino oscillation data which are represented by
the similarly-colored area in figure 4.2.1. For each point within this area, there
exists at least one valid combination of mixing angles which produces a limit
at this level. Finally, the hatched red area denotes the set of mixing angles
which are excluded for all allowed ratios of mixing angles. It thus represents the
most conservative (benchmark-independent) limit that can be obtained for a
given model18. No choice of mixing angles which is in agreement with neutrino
oscillation data (within the 2 HNL seesaw model) can produce a limit within
the red hatched region, for any of the mixing angles.

17The 2𝜎 confidence limit is given assuming the specified hierarchy.
18The limits that we call “benchmark-dependent” rely on a specific set of model parameters

(here: mixing angles), while the ones we call “benchmark-independent” have been obtained
by marginalizing over these parameters; however, they still rely on the general properties of
the model, such as the number of HNLs, the neutrino mass ordering or whether the HNLs
behave as a Dirac-like or Majorana-like particle.
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Figure 4.4.3: Original and reinterpreted exclusion limits (at > 95% CL) on the
individual mixing angles 𝑈2

𝛼 = ∑𝐼=1,2 |Θ𝛼𝐼 |2 = 𝑥𝛼𝑈2
tot and the total mixing

angle 𝑈2
tot = ∑𝛼=𝑒,𝜇,𝜏 𝑈2

𝛼 for a Majorana-like HNL pair and for the normal
hierarchy. The legend is the same as in figure 4.4.1.

4.4.1 Majorana-like HNL pair
Let us first consider the case of a Majorana-like HNL pair, which is phenomeno-
logically closest to the “single Majorana HNL” model considered by ATLAS
and many other experiments. This corresponds to figures 4.4.1, 4.4.3 and 4.4.4.
Apart from a trivial factor of two due to the fact that we have two nearly de-
generate mass eigenstates, the only difference with ATLAS is that we consider
a realistic seesaw model, which forces the HNLs to mix with all three mixing
angles at the same time. Looking at the total mixing angle in figure 4.4.1, we
immediately notice that the limits on 𝑈2

tot are weaker than the single-flavor
mixing limits for all our benchmarks, sometimes by more than an order of
magnitude.19 The pattern is obvious for the normal hierarchy (but also visible
for the inverted one): the benchmark points which have the strongest tau frac-
tion 𝑥𝜏 = 𝑈2

𝜏 /𝑈2
tot also have the worst sensitivity. This is the manifestation

of a well-known phenomenon in non-minimal HNL models: the introduction of
new decay channels (here mediated by the tau mixing) reduces the branching
fraction of the HNLs into the search channels. This has an important con-
sequence: exclusion limits derived for 𝑈2

𝛼 under the single-flavor assumption
do not translate directly into limits on 𝑈2

𝛼 in a model where HNLs mix with
multiple flavors.20 Instead, such limits must always be recast!

When we look at the exclusion limits obtained for the individual mixing
angles (in figure 4.4.3 for the normal hierarchy and figure 4.4.4 for the inverted
hierarchy), we observe another striking effect: for specific benchmarks, the
exclusion limits on individual mixing angles can sometimes be significantly
stronger than the single-flavor limits. This actually reflects a rather trivial
phenomenon: by fixing the 𝑈2

𝑒 ∶ 𝑈2
𝜇 ∶ 𝑈2

𝜏 ratio and setting a limit on one of the
mixing angles (e.g. the largest, such as 𝑈2

𝑒 for benchmark 10 in the inverted

19It is also possible to obtain a stronger exclusion limit on 𝑈2
tot (such as the lower limit

of the green band in the inverted hierarchy), but this seems to occur only for very specific
combinations of the mixing angles.

20Similarly, such limits do not apply if the HNLs have new interactions.
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Figure 4.4.4: Same as figure 4.4.3, for a Majorana-like HNL pair and the
inverted hierarchy.
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Figure 4.4.5: Same as figure 4.4.3, for a Dirac-like HNL pair and the normal
hierarchy. The legend is the same as in figure 4.4.2.
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Figure 4.4.6: Same as figure 4.4.5, for a Dirac-like HNL pair and the inverted
hierarchy.

hierarchy; see figure 4.4.4), we immediately obtain indirect limits on the other
mixing angles (such as 𝑈2

𝜇), which are enhanced by the ratio of the two mixing
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angles (in this case 𝑈2
𝜇/𝑈2

𝑒 = 𝑥𝜇/𝑥𝑒 ∼ 1/2000). Notice, in particular, how
within this two-HNLs seesaw model we obtain an indirect limit (hatched region)
on the tau mixing angle, which was not directly probed by this search. This
simply reflects the fact that no valid combination of mixing angles which passes
the constraints set by ATLAS in both the electron and muon channels, can have
a mixing angle 𝑈2

𝜏 with tau above this limit. Although the fact that introducing
new constraints (such as fixing the ratio of mixing angles) can increase the
sensitivity is not unexpected, it may still be useful when one considers specific
sets of model parameters. This situation is not so far-fetched, since this is
exactly what happens when performing a scan over the parameter space in
order to e.g. combine constraints from multiple different sources. We would
also expect future experimental results (such as excluding one neutrino mass
hierarchy, or observing / setting limits on neutrinoless double-beta decay) to
introduce additional constraints on the possible combinations of mixing angles,
thus leading to a more predictive model. These potential use cases once again
support the reinterpretation of exclusion limits.

4.4.2 Dirac-like HNL pair
Let us now turn our attention to the case of a Dirac-like HNL pair. Unlike
in the Majorana-like case, there is no observable lepton number violation in
this case, since the HNLs do not have enough time to oscillate among them-
selves. Its phenomenology thus significantly departs from the one of a single
Majorana HNL, usually considered by experiments. In particular, the only
lepton-number-conserving contributions to the experimental signatures consid-
ered in [86] come from processes in which the HNL mixes with different flavors
during its production and decay (due to the veto of opposite-charge same-flavor
trilepton events). This search therefore has no sensitivity to HNLs mixing with
a single flavor!

By reinterpreting the limits (obtained for one Majorana HNL) within a
realistic seesaw model (which requires HNLs to mix with all three flavors), we
are nonetheless able to set some exclusion limits for this model. These limits
are presented in figures 4.4.2, 4.4.5 and 4.4.6. The legend is the same as for
the Majorana-like HNL pair, except for the single-flavor mixing limits which
are grayed out in order to emphasize that they were computed for a different
model (Majorana-like HNLs) and are only present here for comparison purpose.
Looking at our benchmark points, we immediately notice that their limits for
the total mixing angle (figure 4.4.2) are always weaker than the Majorana-
like/single-flavor limits, sometimes by more than three orders of magnitude.
The weakest limits are obtained when one of 𝑈2

𝑒 or 𝑈2
𝜇 is suppressed compared

to the other, which is unsurprising given that this approximates the single-
flavor mixing case, to which we have no sensitivity. Looking at the filled area,
we also observe a wider possible range of limits (with variations by more than
two orders of magnitude) compared to the Majorana-like case, depending of
the specific mixing pattern. This reflects the fact that the limits now depend
mainly on two mixing angles instead of just one, which enhances the benchmark
dependence. Finally, similarly to the Majorana-like case, we observe that we
can obtain strong benchmark-dependent limits on the individual mixing angles
(see figures 4.4.5 and 4.4.6), as well as some benchmark-independent limits
(for this specific seesaw model with a Dirac-like HNL pair). The latter are
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significantly weaker (by up to two orders of magnitude) than for a Majorana-
like HNL pair, due to the larger variation among benchmarks.

We can summarize the case of Dirac-like HNLs by emphasizing how, despite
the absence of sensitivity to the single-flavor mixing case, we nonetheless man-
aged to obtain both benchmark-dependent and benchmark-independent (but
still model-dependent) exclusion limits by reinterpreting the ATLAS results
within a realistic seesaw model featuring a Dirac-like HNL pair. Since the rele-
vant processes now depend on the product of two different mixing angles, lim-
its for Dirac-like HNLs are more benchmark dependent than for Majorana-like
HNLs, resulting in weaker benchmark-independent exclusion limits (hatched
area) for this model. Yet, the reinterpretation allowed us to obtain a limit on
all three mixing angles (as well as their sum), where there was previously none.

4.5 Conclusion & outlook

4.5.1 Reinterpretation
Heavy neutral leptons (HNLs) are promising candidates for explaining neu-
trino masses and oscillations. Within the seesaw model, their mass scale is
not predicted by neutrino masses. Experiments searching for HNLs typically
report null results in the form of exclusion limits on the mixing angle with
one of the lepton flavors. We emphasize that these constraints are neither
model nor benchmark independent. Rather they correspond to limits obtained
within a specific model where one HNL mixes with a single flavor. These sim-
plified models are incompatible with the observed neutrino masses and mixing
patterns. One may then wonder if the exclusion limits reported within these
models remain valid when considering more realistic and theoretically moti-
vated models of HNLs. In this work, we have performed a reinterpretation of
the latest ATLAS prompt search for heavy neutral leptons [86] within one of
the simplest realistic models: a low-scale seesaw mechanism with two quasi-
degenerate HNLs. At least two HNLs are required in order to be compatible
with neutrino oscillation data, and the combination of their mixing angles is
constrained by the seesaw relation. In particular, for two HNLs, no mixing
angle can be zero.

Our aim was to study to which extent the exclusion limits on the HNL mix-
ing angles are model or benchmark dependent and by how much they change
when considering our more realistic model.

Furthermore, the two HNLs must form a “quasi-Dirac” pair (i.e. be nearly
degenerate, with a specific mixing pattern) for sufficiently large mixing angles
(which may be accessible at current experiments) to be viable. Depending on
the specific value of the mass splitting as well as the length scale over which the
HNLs are observed, this quasi-Dirac pair may behave either as a Majorana-like
or a Dirac-like particle, due to quantum interference between the two mass
eigenstates. Only Majorana-like HNL pairs feature lepton number violating
decays, and the different spin correlation patterns for LNC and LNV decay
chains lead to different signal efficiencies for Majorana- and Dirac-like HNLs.
Moreover, due to the veto applied by ATLAS on opposite-charge same-flavor
lepton pairs, different diagrams, which depend on different combinations of
mixing angles, contribute for Majorana- and Dirac-like HNLs. In particular,
the only diagrams contributing to the signal in the case of Dirac-like HNLs
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involve two different mixing angles, such that there can be no sensitivity at
all under the single-flavor mixing assumption! In order to handle both the
Majorana- and Dirac-like cases, we perform the reinterpretation for each of
them separately.

For Majorana-like HNL pairs, we have observed that:

• The exclusion limit on the total mixing angle 𝑈2
tot is almost always weaker

(sometimes by more that one order of magnitude) in realistic models than
for single-flavor mixing. This is essentially caused by the opening of new
decay channels (hence reducing the other branching fractions) which do
not contribute to the search signature.

• Fixing the ratio of the mixing angles can result in (sometimes signifi-
cantly) stronger indirect constraints on some of the mixing angles. This
can be useful when performing scans over the models parameters.

• Assuming the two-HNLs seesaw model and marginalizing over the ratio of
mixing angles while keeping the HNL mass fixed, we can obtain limits on
the individual mixing angles (including the tau mixing angle, which was
not probed directly by this search) which do not depend on the specific
mixing pattern.

For Dirac-like HNLs pairs, we have observed that:

• Contrary to the single-flavor mixing where the signal was identically zero,
in our realistic model no single mixing angle can ever be zero, which
ensures that we can always set an indirect (model-dependent) limit.

• The limits on the total mixing angle are, however, almost always weaker
(by up to three orders of magnitude) than in the Majorana-like/single-
flavor case.

• The weakest limits are obtained when one of 𝑈2
𝑒 or 𝑈2

𝜇 is suppressed
compared to the other. This is expected, since these mixing patterns
approximate the single-flavor case.

• Compared to the Majorana-like case, the dependence of the limits on the
specific benchmark (mixing pattern) is stronger. This is likely caused by
the fact that the product of two different mixing angles enters the cross
section as a factor (instead of a single mixing angle) thus enhancing the
parametric dependence.

• Similarly to the Majorana-like case, we can also set strong benchmark-
dependent limits on the individual mixing angles by fixing their ratio.
However, the corresponding marginalized/benchmark-independent limits
are significantly weaker (by up to two orders of magnitude) due to the
increased benchmark-dependence.

These results, despite having been obtained in the specific case of two heavy
neutral leptons and the ATLAS experiment, emphasize the importance of al-
ways reinterpreting the experimental limits within the model of interest in
order to obtain reliable exclusion limits. Failure to distinguish “limits on indi-
vidual mixing angles obtained within a realistic model” from “limits obtained
under the assumption of single-flavor mixing” can lead to incorrect conclu-
sions! When assuming specific choices of model parameters (as in parameter
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scans), stronger constraints can be derived for the individual mixing angles.
Benchmark-independent constraints can also be derived by marginalizing over
the set of parameters allowed within a specific model. In order for experimental
results to be truly usable for constraining models, experiments should strive to
make their results readily reinterpretable within closely related models, keeping
in mind that the main users of these results — theorists — are typically unfa-
miliar with the inner workings of the experiment. Below we outline a concrete
proposal for reporting these results in the case of heavy neutral leptons, that
would allow easily reinterpreting the exclusion limits. It is not precise enough
to allow users to perform a search, for which only the full analysis should be
used.

4.5.2 Recommendations for experiments
In order to produce reinterpretable exclusion limits on heavy neutral leptons,
we recommend that experiments report the following data, ideally as data files21

in a common format and with a documented structure left to their discretion:

• The observed bin counts.
• For the signal, both:

1. The prompt efficiency 𝜖0,𝑃,𝑏(𝑀𝑁) = 𝜖𝑃,𝑏(𝑀𝑁 , 𝜏𝑁 = 0) for every
Feynman diagram 𝑃 and every bin 𝑏 in all signal regions. All pos-
sible processes which contribute to the search signature for at least
one combination of the mixing angles should be included, in order
to be able to compute the signal outside specific flavor mixing as-
sumptions.

2. If the parametrization in eq. (4.18) (or a modification thereof) allows
reproducing the actual efficiency even approximately, report the rel-
evant parameters such as the lifetime cutoff 𝜏0 (possibly for every
process 𝑃 if a single value does not give a good enough fit). The
chosen parametrization should always have the same asymptotes as
eq. (4.18).

• For the background, either:
– The “full” likelihood, including every background component and

nuisance parameter used in the analysis (to the extent that this is
possible). This should ideally be reported as working code.

– A simplified likelihood, containing only the dominant background
components and nuisance parameters.

– The covariance matrix for all the signal bins, across all signal regions.
Regardless of their choice, we recommend that experiments validate the
accuracy of the simplified background model by comparing the resulting
limits with those obtained using the full analysis.

21As an example, the final publication will include the data files produced for this reinter-
pretation.
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