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Abstract

The collective motion of driven or self-propelled interacting units is in many natural systems

known to produce complex patterns. This thesis considers two continuum field theories com-

monly used in describing pattern formation and dynamics: The first one, the phase field crys-

tal model, which describes the dynamical and equilibrium properties of crystalline material,

is used to study the coarsening dynamics of polycrystalline materials in two and three dimen-

sions. A generalization introducing a faster elastic relaxation time scale is then used to study

the plastic deformation and dislocation dynamics of single crystals. Secondly, a continuum

theory describing mesoscopic turbulence of biological active matter, which is used to study

long-range ordered vorticity patterns generated by cell divisions in a endothelial cell layer.
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Chapter1

Introduction

Throughout nature there exists countless physical systems which experience a transition from

random or uniform motion to a state described by the collective motion or collective assembly,

generating large-scale patterns in both time and space. The scales describing these patterns can

be many orders of magnitude larger than the local length and time scales of the system and

often play an important role in determining both equilibrium states as well as non-equilibrium

dynamics.

These system span a wide variety of physical phenomena at different spatial and temporal

scales from inert metals and dynamics of biological cell layers to flame fronts and flocking

of birds. Even so, these systems have several essential features in common. In all of them a

larger number of smaller “particles” try to follow their neighbours through time and space and

the interaction between the particles is short range, meaning that there is no global “ordering

field”. The resulting large-scale patterns are an emergent phenomenon from the microscopic

system.

Describing these types of systems mathematically can be challenging, since the large-scale

structures are not immediately apparent in the microscopic formulation of the problem. In

this context “microscopic” is used to denote the description of a system by the building blocks

of the problem, which could be birds in a flocking model or cells in cell layer dynamics. It is

therefore often necessary to reformulate the problem from a microscopic to a mesoscopic point

of view, in order to efficiently study these systems at the length and time scales of the large-

scale pattern formation. This simplification process requires careful considerations and it is

rarely obvious how the mesoscopic equations should look like. Efficient modelling can become

difficult, if too much of the microscopic information is kept within the mesoscopic framework.

Conversely, if to little information is kept, detailed information regarding the pattern formation

may be lost. In the case of flocking of birds the pattern evolution can adequately be described

by a set of equations for the concentration of birds instead of the individual birds [3], while for

1



2 Introduction

(a) A flock of birds [1]. (b) The vorticity field of swimming Bacillus subtilis
[2]. The colorbar indicates the magnitude of the vor-
ticity in s−1.

Figure 1.1: Examples of systems showing a characteristic length scale.

cell dynamics the discrete motion of cells can sometimes be satisfactorily described by a set of

continuum equations for a whole sheet of cells [4, 5]. It is also a question of what features of the

microscopic system should stay intact in the mesoscopic model. In the case of a solidification

process it is important to realise whether the interesting questions are about the large-scale

dendritic structures or the emergence of anisotropic surface patterns due to the inherent lattice

structures of the metal.

In other cases the physical phenomenon is not well enough understood to allow for an

accurate microscopic description. In these cases it can be necessary to start at the phenomeno-

logical level and directly state mesoscopic equations, which are assumed to capture the correct

physics. While this method seems ad-hoc, there are some guidelines which should be followed

in order write down a set of physical equations.

In general the microscopic equations governing the pattern formation are often complex

non-linear partial differential equations for which the amount of information that can be ex-

tracted often is quite limited. One method to describe pattern formations is to assume that the

transition from a disordered or uniform state to an ordered state can be described by an order

parameter [6]. Assuming the system becomes unstable when the order parameter reaches some

critical value K = Kc, perturbations with frequency ω0 and wavevector q0 will start to grow.

For q0 6= 0 the system exhibits spatial patterns while ω0 6= 0 will give oscillatory patterns. In

these cases information about the pattern evolution can be derived by expanding the micro-

scopic equations around the transition point and looking at the long time limit. This thesis will

mainly be concerned with the case where q0 6= 0 and ω0 = 0. In this case the instabilities are

periodic in space and stationary in time. In the simplest case with only one dominant mode,



Introduction 3

this instability describes a roll pattern in two dimensions and planes in three dimensions. By

superimposing elementary rolls, more complex lattice structures in two dimensions and three

dimensions can be formed such as hexagonal and face-centered-cubic lattices [7].

A classical example of a system which can be analysed in this way is the onset of convection

rolls in Rayleigh-Bénard convection in which a fluid is trapped between a hot and a cold

plate [8]. The governing equation is known as the Oberbeck-Boussinesq, which is a Navier-

Stokes equation with a buoyancy force added due to gravitational acceleration and thermal

expansion coupled to a heat diffusion equation. For sufficiently low temperatures the liquid is

stationary with a linear temperature gradient from bottom to top. At a critical temperature the

heat diffusion is no longer powerful enough to stabilize the system and convection patterns

in the fluid velocity develop as well as patterns on the fluid surface called Rayleigh-Bénard

cells. In order to describe the evolution of the patterns, Swift and Hohenberg expanded the

Oberbeck-Boussinesq equation around a stationary flow resulting in an eigenvalue equation.

For a specific set of material parameters and a critical temperature difference of the plates,

the eigenvectors of the system split into a fast and a slow eigenvector, with the slow one

corresponding to the pattern formation with its governing equation given by

∂φ

∂t
= εφ−

(
q2

0 +∇2
)2

φ + N-L, (1.1)

where ε is dependent on the temperature difference between the hot and the cold plate and

triggers the transition from uniform to a periodic state, q0 is dependent on the spatial size

of the system and determines the equilibrium wavelength of the periodic solution and N-L is

some non-linear term left over from the microscopic equations. For ε > 0 the uniform phase

becomes dynamically unstable and a periodic state emerges as shown in fig 1.2a. For a simple

cubic non-linearity, −φ3, the equilibrium pattern will be stripes in two dimensions. In two,

and higher dimensions, the patterns can become unstable to wavelength perturbations as well,

resulting in an Eckhaus instability adding to the complex dynamics of the equation [9]. The

Swift-Hohenberg equation has been widely studied due to its simplicity and for its pattern

formation qualities. Furthermore, its complex generalization can be used to study lasers with

a negative detuning [10], while its generalization to curved space recently has found use in

describing buckling and folding in biological tissue as well as structure formation in thin films

[11].

In the case of simple non-linear terms the equations of motion can be described on varia-

tional form, ∂tφ = −δF [φ]/δφ, where F is an effective free-energy describing the equilibrium

properties of the system. Using the classification scheme of Hohenberg and Halperin [12],

the Swift-Hohenberg equation falls into the model-A type of equations, meaning the order

parameter φ is not a conserved quantity during evolution. The model described by the Swift-
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Hohenberg free energy and model-B conservative dynamics, ∂tφ = ∇2δF [φ]/δφ, is called the

phase field crystal model and is used to study crystals and their evolution as well as elastic

and plastic deformations [13].
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(a) Snapshot from a two-dimensional simulation of the
Swift-Hohenberg equation (1.1) with a cubic non-linearity.
The colours correspond to the magnitude of φ. The system
is evolving slowly with the evolution of ordered domains
following a power law.
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(b) Time evolution of the one-dimensional Kuramoto-
Sivashinsky equation. The colors correspond to the mag-
nitude of u. The temporal dynamics shows a chaotic be-
haviour.

Figure 1.2: A snapshot of (1.1) and time evolution of (1.2).

In a similar fashion to the method outlined above, a broad class of coupled reaction-

diffusion equations can be analysed and their pattern equations derived [14]. In common

with the Swift-Hohenberg equation, these equations have slow eigenvectors that are described

by a high-order partial differential equation working on time scales longer than the original

microscopic system.

A perhaps even more famous example of a pattern equation is the Kuramoto-Sivashinsky

equation from the mid-1970s, which was among others derived by Kuramoto and Tsuzuki

when studying a reaction-diffusion equation [15] and Sivashinsky and co-workers in the study

of the evolution of laminar flame fronts [16]. The equation has also found its use in the asymp-

totic behaviour of two phase flow in pipes [17] as well as models of ion-sputtered surfaces [18].

In one dimension the equation is given by

∂u
∂t

= −
(

∂4

∂x4 +
∂2

∂x2

)
u− u

∂u
∂x

. (1.2)

The Kuramoto-Sivashinksy equation has attracted a lot of attention both due to its diverse

use, but also since it is one of the simplest non-linear differential equations showing complex
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spatial and temporal dynamics as shown in fig 1.2b. There has been a large amount of both

analytical [19] as well as numerical [20] studies of the one dimensional equation.

The pattern-forming properties of the Swift-Hohenberg equation (1.1) and the Kuramoto-

Sivashinsky equation (1.2) can be better understood by plotting the dispersion relation of the

linear part of the equations. As shown in fig 1.3a, both curves have a non-zero maximum

corresponding to the maximally unstable wavelength, which for long time scales will be the

dominant wave length of the system. This is either the wavelength of the rolls or a typical

wavelength the system will fluctuate around. Generally, if the linear dispersion relation for a

model has a non-zero maxima, the equations will tend to generate solutions with a well-defined

length scale. The stability of the solutions is, however, highly dependent on the non-linearity in

the equations. In fig 1.3b the magnitudes of the Fourier transforms for the numerical solutions

of eq. (1.1) and eq. (1.2) are plotted, showing the large difference in the time evolution between

the two equations due to the difference in the non-linearity.
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(a) The linear dispersion relation for (1.1) and (1.2). The
non-zero maximum in the dispersion relation induces a
length scale in the solutions of the equations.
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(b) The magnitude of the Fourier transform of the nu-
merical solution of equation (1.1) and the time averaged
Fourier transform of (1.2). For the relaxational dynamics
of (1.1) the spectrum will slowly evolve towards a delta-
function like shape. For the chaotic dynamics of (1.2) the
spectrum will retain its width.

Figure 1.3: Dispersion and equilibrium properties of (1.1) and (1.2).

The non-zero maximum in the spectrum is also the starting point for a more pragmatic

approach of Brazovskii [21], who argues that as long as the system has a non-zero maxima

in its fluctuation spectrum, it is mathematically allowed to expand the dynamics around the

maximum in momentum-space in order to derive the equations of motion. These ideas have

recently been used to derive phenomenological hydrodynamic models for cell layer motion

[4, 5], where the typical Navier-Stokes type of dissipation operator has been replaced by a

higher order differential operator inducing a typical length scale to the system mimicking the

cell scale.
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An implicit assumption in the method above is that boundary effects of a finite system can

be neglected as small perturbations. When performing the expansion around the transition

point it is assumed that the system can be described by a spatially infinite uniform state. This

is not a valid assumption in the class of problems described by moving boundary equations

such as dendritic crystallization [22], viscous fingering in a Hele-Shaw cell [23] and phase

separation in a binary fluid [24]. In these cases the pattern formation is driven by the boundary

conditions between two different phases of matter and can not be neglected.

Some of these problems involve far from equilibrium diffusional limited dynamics and

are modelled directly at the mesoscopic level with a diffusion equation in the bulk phase

supplemented with flux and transport boundary equations at the interface between the phases.

In order to include a length scale into the equations, the transport boundary conditions usually

have a Gibbs-Thomson relation between the different phases at the boundary and the curvature

of the boundary layer [25]. To find the temporal evolution of a characteristic length scale it is

necessary to solve the full equation with boundary conditions, which can be a considerable

challenge.

In order to simplify the problems it was found that a wide class of phase field models with

dynamics described by model-A, B and C type equations of motion [12], could be shown to

follow the same dynamical equations as the moving boundary problems over large time scales

[26]. A large part of phase field models can be put into variational forms making it simpler to

derive asymptotic estimates [27]. Typical features of these models are that pattern formation is

at the boundary of well defined spatial regions, which is in contrast to the patterns observed

in the Swift-Hohenberg type equations.

In the phase field approach the moving boundary problem is reformulated as a set of

partial differential equations for the phase field. In practice, the phase field models smear

out the otherwise sharp interface over a finite region. The entire structure of the system can

then be continuously represented by the new field, with distinct values in the different bulk

phases and an interpolating region mimicking the interface [28]. This greatly reduces the

computational complexity and allows for other analytical methods when studying solutions to

the moving boundary problems. In this way phase field models have played an important part

in quantifying solutions to classical moving boundary problems.



Chapter2

Phase Field Crystal Model

The phase field crystal model is a continuum field theory used in modelling of the dynam-

ics and equilibrium properties of crystals. It was developed in order to study the macroscopic

properties due to complex microstructures in polycrystals formed during non-equilibrium pro-

cesses [29]. It exploits the fact that some crystal properties are completely determined by the

symmetry of the lattice, such as the type and movement of dislocations and the symmetry of

the elastic coefficients. Due to the equilibrium properties of the field, it naturally describes

a polycrystal composed of grains with different sizes, shapes and coordination, which can be

important parameters for macroscopic properties of materials. The model is based on an atom-

istic free energy functional while the equation of motion is described by conservative model-B

dynamics. This couples the small length-scale of the atomistic free energy with long diffusional

time-scales, making it an efficient model for studying complex polycrystalline structures and

their evolution.

The model can be considered as a generalization of phase field models of nonequilibrium

phenomena such as spinodal decomposition. Often these types of systems can be described

by spatially uniform fields with a rapidly changing interface showing a complex morphology.

The phase field model for spinodal decomposition can be described by a free-energy functional

and model-B type dynamics given by

F =
∫

dV
(

f (φ) +
K
2
|∇φ|2

)
(2.1)

∂φ

∂t
= Γ∇2 δF

δφ
, (2.2)

where φ is a concentration field and f (φ) is the bulk free-energy, usually chosen to be a double-

well potential. The gradient term will lead to a surface tension which will split the system into

smaller domains separated with domain walls and Γ is a phenomenological diffusion constant.

This set of equations is also known as the Cahn-Hilliard equations [24] and the model is based

on the assumption that the bulk regions should be translationally and rotationally invariant,

7
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(a) A single crystal grown from a small seed in a supersat-
urated solution. The hexagonal lattice structure generates
an anisotropic surface tension resulting in a large scale
structure. The inset is a zoom in showing the crystal lat-
tice.

(b) A polycrystal grown from randomly placed seeds
in a supersaturated solution. The individual seeds
have been colored according to their orientation.

Figure 2.1: Examples of dynamically grown crystals using (2.7).

while the gradient interaction term can be derived as a continuum limit of a next-nearest

neighbour interaction [30]. For quite general f (φ) it can be shown that the interface in the

model is described by the moving boundary equations [31]

∂µ

∂t
= Γ∇2µ (2.3)

µ = d0κ + βVn on Λ (2.4)

Vn =
[ µ

∂n

]+
−

on Λ, (2.5)

where the chemical potential is given by µ = δF/δφ, d0 is the capillary length dependent

on the surface tension, κ is the curvature of the interface, β is a kinetic coefficient, Vn is the

normal velocity, Λ is the interface position and []+− is the difference between the two sides of the

interface. Due to the equilibrium distribution of the concentration field in the bulk regions, it is

not straight forward to introduce elastic interactions and lattice properties into the model. To

induce an anisotropic surface tension it is necessary to modify the phenomenological constants

d0 and β to depend on the normal orientation of the interface [32], however, introducing elastic

interaction as well as motion of defects requires more complex additions to the model [33, 34]

Instead of the above additions to phase field models it is more natural to formulate a

theory in which elastic and plastic features such as dislocation motion and anisotropic surface

tension are emergent properties from the lattice structure. A simple way to do this is to make
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the equilibrium configuration a periodic structure similar to a crystal lattice. Interpreting the

gradient term above as a lowest order term in a general gradient expansion and using ideas

similar to Brazovskii [21], the next order free-energy after integration by parts can be written

as

F =
∫

dV
[

f (φ) +
φ

2

(
q2

0 +∇2
)2

φ

]
, (2.6)

which coincides with the Swift-Hohenberg free energy [8], where q0 is the equilibrium wave

number. Due to translational invariance all odd gradient terms have been neglected in the

general gradient expansion. By assuming the gradient terms originate from an approximation

of the two-point correlation function,
∫

dr′φ(r)C2(r, r′)φ(r′) ≈ φ(r)
(
q2

0 +∇2)2
φ(r), a more

formal derivation can be performed by fitting a typical pair-correlation function at liquid solid

coexistence and using classical density functional theory of freezing.

Figure 2.2: A sketch of a typical two-point correlation function at liquid solid coexistence [35].
The dashed line is the approximation discussed in the text, which gives rise to the gradient
term in the free energy in (2.6).

This derivation also highlights that the field φ should be interpreted as a time averaged

atomic density and the bulk free-energy should take the form f (φ) = εφ2/2 + φ4/4, which is

a truncated expansion of an ideal gas self interaction term [35].

Due to mass conservation the relevant dynamics are of model-B type yielding the equation

of motion
∂φ

∂t
= ∇2

((
q2

0 +∇2
)2

φ + εφ + φ3
)

, (2.7)

which together with (2.6) is the simplest form of the Phase Field Crystal model.

As in the case of the Swift-Hohenberg equation, the parameter ε can be thought of as a

quenching temperature which determines the phase transition between a uniform state to an

ordered state. However, due to the conservation of mass in the dynamics it is not only ε which

determines the phase transition, but also the mean density of the system. The conservation

of mass also helps to stabilizes phases other than the striped phase such as a hexagonal and

body-centered cubic phase in two and three dimensions and introduces coexistence regions in

the phase diagram of the model.
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Figure 2.3: The magnitude of the circularly averaged Fourier transform of the density field,
〈|φ̂|〉 for an equilibrium structure computed using (2.7). 〈|φ̂|〉 has been normalized by the
mean density. Notice the dominance of the first peak at |k| ≈ 1 compared to the next mode at
|k| ≈

√
3.

2.1 Static Properties

Some of the static properties of the phase field crystal model such as the phase diagram and the

elastic constants, can be analytically studied by substituting a periodic solution into the free-

energy in (2.6). In three dimensions the relevant structures in the small ε region are planes,

hexagonal rods, body-centered cubic and a uniform phase interpreted as a liquid phase. In

order to study these structures the density field is expanded as

φ = φ0 + ∑
G

AG exp (iG · r) + c.c, (2.8)

where φ0 is the mean density, G is the reciprocal lattice vectors of the different lattices and AG

is the amplitude for each vector. Due to the functional form of (2.6) the equilibrium state is

dominated by a single mode corresponding to the smallest G’s in (2.8), as can be seen for a

two-dimensional system in fig 2.3. Therefore, when deriving the equilibrium properties only

the modes corresponding to the shortest reciprocal lattice vectors will be retained in (2.8).

The phase diagram can be derived by calculating the free-energy for each of the different

phases and using Maxwell’s common-tangent construction to find the phase transition lines

and coexistence regions [29]. In equilibrium the amplitude of the different modes with the

shortest reciprocal lattice vector will be equal and a constant. Using the shortest set of recipro-

cal lattice vectors the uniform, planes, hexagonal and body-centered cubic density expansions
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are given by

φ0 = φ0 (2.9)

φ1 = φ0 + A1 cos (qx) (2.10)

φ2 = φ0 + A2

(
1
2

cos
(

2qy√
3

)
− cos (qx) cos

(
qy√

3

))
(2.11)

φ3 = φ0 + A3 (cos (qx) cos (qy) + cos (qx) cos (qz) + cos (qy) cos (qz)) , (2.12)

To calculate the equilibrium free-energy, the expansions above are inserted into (2.6) and inte-

grated over one unit cell. The detailed calculation of the functional form of the equilibrium free

energy is given in Appendix A. The phase diagram is then found by using Maxwell’s common-

tangent construction. A sample plot of the liquid and body-centered cubic free energies with

a common tangent and the phase diagram is shown in figs 2.4a and 2.4b.

φ
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(a) The free-energies of the liquid and body-centered cu-
bic lattice. The intercept with the common tangent deter-
mines the coexistence region.

(b) The three-dimensional phase diagram for the phase
field crystal model. For smaller ε regions of face-centered
cubic and hexagonal close packing can also be observed.
The white parts from left to right are the regions where the
liquid, body-centered cubic lattice, hexagonal rods and
planes are the stable configuration, respectively.

Figure 2.4: Static properties of the phase field crystal model in three dimensions.

To derive the elastic coefficient for the equilibrium structures the amplitude expansions

is perturbed by a small arbitrary vector and once again inserted into the free-energy [36].

In order to get the elastic constant known from continuum elasticity theory it is necessary to

coarse grain the free energy over one unit cell, which amounts to ignoring cross coupling terms

such as Ai Aj in the free-energy, since such terms phase factor add up to terms fluctuating on

scales smaller than the lattice spacing. For the calculation of the elastic coefficients only the

integral over the gradient term
(
q2

0 +∇2)2 needs to be evaluated since it is the sole contributor

to the elastic properties. Inserting the amplitude expansion (2.8) into (2.6) with the perturbed

amplitude Aj = Aeq exp
(
iGj · u

)
, where Aeq is the amplitude of the equilibrium state and u is
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an arbitrary displacement vector, the gradient terms become∫
dV ∑

j

1
2

(
A∗j L2

j Aj + Aj

(
L∗j
)2

A∗j

)

=
∫

dV ∑
j

((
∇2Gj · u

)2
+ 4

(
1
2
|∇Gj · u|2 + Gj · ∇Gj · u

)2
)

A2
eq

≈
∫

dV ∑
j

4
(
Gj · ∇Gj · u

)2 A2
eq, (2.13)

where Lj is defined by A∗j exp(−iGj · r)
(
1 +∇2)2 Aj exp(iGj · r) = A∗j L2

j Aj and explicitly

given by Lj = ∇2 − 2iGj · ∇. The last approximation in (2.13) is done assuming small dis-

placements on long wave lengths. Using (2.13) and the definition σij = δF/δuij the stress-strain

curves of the model can be derived. In fig 2.5 the stress-strain curve for an area preserving

strain in two dimensions is shown.
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Figure 2.5: The stress-strain curve for a two dimensional hexagonal lattice under an area
preserving strain for different quenching temperatures.

In general the elastic free energy can be written as [37]

Fel =
1
2

∫
dVCijkluijukl , (2.14)

where Cijkl is the elastic constant tensor and uij = 1
2
(
∂iuj + ∂jui

)
is the linear strain tensor.

Inserting the shortest reciprocal lattice vectors for the body-centered cubic lattice the elastic

contribution becomes∫
dV ∑

j
4
(
Gj · ∇Gj · u

)2 A2
eq =4

( (
u2

xx + u2
yy + u2

zz

)
+ 2

(
u2

xy + u2
yz + u2

xz

)
+
(
uxxuyy + uxxuzz + uyyuzz

) )
A2

eq (2.15)

from which the elastic constants can be read off as, Cxxxx = Cyyyy = Czzzz = 8A2
eq and

Cxxyy = Cxxxx/2 and similarly for the rest of the off-diagonal constants which is the sym-
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metry expected for a body-centered cubic lattice with Aeq given in (A.14). Similarly the two-

dimensional hexagonal lattice vectors can be substituted into (2.13) yielding their elastic con-

stants, which are also found to obey the relevant symmetry of the lattice. In the uniform liquid

phase the equilibrium-amplitude is zero such that the elastic constants self-consistently vanish.

It can be shown that the free-energy (2.6) also gives the correct non-linear elastic behaviour,

when retaining the full differential operator instead of using the long wavelength approxima-

tion in (2.13) [38].

Further static properties of the free-energy (2.6) such as an anisotropic surface tension

between the liquid and the crystal state can with some effort also be shown to be an emergent

feature of the one-mode dominance of the model and the inherent lattice structure in the

equilibrium density distribution [39].

The accuracy of the phase diagram, elastic coefficients and surface tensions all derived with

the one mode approximation have been tested and found to be reasonably accurate for small

ε [7, 13, 40].

Apart from analytic results, a large amount of numerical studies have been performed

in order to quantify the static properties of the crystal structures in the phase field crystal

model. To name a few, it has been shown that the grain boundary energy obeys the Read-

Shockley relation for the energy associated with two neighbouring grains with a small mutual

misorientation [13] and the reverse Hall-Petch effect known from nano scale materials, where

the yield stress increases with increasing gain size, was found and studied in [41].

2.2 Coarsening Dynamics

Most macroscopic materials consist of an assembly of small crystal grains of different lattice

orientation and sizes. The properties of these polycrystalline materials are highly dependent

on grain sizes and grain boundaries. Grain boundaries in polycrystals have been studied for

a long time both experimentally [42] and numerically [43]. These materials typically form

from the nucleation and growth of grains with different lattice orientations in a quenched or

annealed melt. Depending on temperature and external forces such as an applied stress, these

grain boundaries can become mobile and will rearrange in time. When the grain boundaries

are mobile the polycrystalline matrix starts to coarsen in time, reducing grain boundary length

by eliminating smaller grains while larger grains becomes bigger.

There have been multiple attempts at theoretically modelling the grain coarsening mech-

anism in polycrystals. Classically grain growth in two dimensions have been assumed to be

driven by the minimization of the surface energy resulting in a power-law coarsening given by

〈L〉 ∼ t1/2 [44], where L is a characteristic length scale for the domains in the system. However,
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in three dimensions the increased geometrical complexity does not allow for a simple universal

growth law [45, 46]. For models described with model-B dynamics general arguments set the

upper bound for coarsening dynamics in higher dimensions as 〈LD〉 ∼ tD/2, coinciding with

the surface energy minimization models in two dimensions [27], implying that the classical

coarsening exponent of 1/2 is an extremal exponent for coarsening dynamics.

General domain coarsening has been widely studied numerically using model-A and model-

B type of models with equations of motion given by

∂φ

∂t
= −

(
∇2n

)n δF
δφ

, (2.16)

where n = 0 is model-A type and n = 1 is model-B type. For the simple case of uniform bulk

regions described by the free energy F =
∫

dV
(

f (φ) + K
2 |∇φ|2

)
, the coarsening follows a

power law 〈r〉 ∼ tα with exponent α = 1/2 and α = 1/3 for model-A and model-B, respectively.

The evolutions of roll patterns have been investigated in several numerical studies using model-

A dynamics finding the coarsening exponent to be α = 1/4− 1/5 [47–49].

Two dimensional coarsening in the phase field crystal model has also been studied in

[50, 51], finding coarsening exponents in the range α = 1/4 − 1/20. Furthermore, it was

found that the coarsening exponents to some degree were time-dependent. The large spread

in coarsening exponents suggests that the coarsening mechanism is quite different from model-

A to model-B types of models. In [50] we found that supplementing the slow coarsening rate

was also a stagnating regime, where the coarsening dynamics for general initial conditions

stopped all together, see fig 2.6a. This behaviour is in contrast to the theoretical modelling of

coarsening dynamics, which predicts perpetual domain growth. Based on molecular dynam-

ics simulations it has been argued that the roughness of the grain-boundary controls the grain

growth, and that the presence of a small fraction of low-mobility, smooth grain boundaries can

lead to stagnation [52].

In order to quantify the grain dynamics in the coarsening and stagnation regime we mea-

sured the change in orientation and grain area for each grain. In fig 2.6b the mean orientational

change is plotted from which it is seen that rotation plays an important part in the coarsening

dynamics in this model. To further quantify rotation for the individual grains, it was found

that in general change in the ratio of the change in orientation over change in area followed a

power law as ∣∣∣∣ ∆θ

∆A

∣∣∣∣ ∼ A−β2 , (2.17)

with the exponent β2 = 1.25± 0.06. In comparison, the expected exponent for grain rotation

obeying conservation of dislocations is given by β = 3/2 [53], implying that to a high degree

the coarsening dynamics obeys conservation of dislocations.
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The high dependence on grain rotation and the large spread in the coarsening exponent

suggests that the power law coarsening is non-universal with respect to the temperature pa-

rameter ε in two dimensions. Instead, the dynamics of the combination of local grain rotation

and grain growth was shown to be independent of ε. Experimentally, both rotation as well as

a large spread in coarsening exponents have also been found [54, 55].

(a) The mean grain size as a function of time for systems at
different quenching temperatures. In this formulation of
PFC a2 ∼ ε. There is a continuous decrease in coarsening
exponent towards the stagnating state.

(b) The average rotational change as a function average
mean grain area. For systems close to the melting temper-
ature the grain coarsening is supplemented by a decrease
in grain rotation. Stagnating systems is characterized by a
rapid decrease in mean grain rotation.

Figure 2.6: Results from coarsening study in two dimensions [50]

In [56] we generalized the study of coarsening dynamics to three dimensional coarsening

of crystals with body-centered cubic symmetry. We once again observed a cross-over from a

stagnating regime to a coarsening regime both greatly influenced by grain rotation. The initial

dynamics for the stagnating regime was once again found to be supplemented by a decrease in

the amount of average rotation in the system until complete stagnation was reached as shown

in fig 2.8c.

In the coarsening regime the grain size distribution was found to be highly heterogeneous

with a few large grains growing faster than the rest of the crystal matrix resulting in abnormal

grain growth, see figs 2.8a and 2.8d. Similar dynamics have been reported in both numerical

as well as experimental studies [57, 58].

Independent of the quenching temperature parameter, it was found that the ratio of the

change in orientation over the change in volume followed a power law as∣∣∣∣ ∆θ

∆V

∣∣∣∣ ∼ V−β3 , (2.18)

with exponent β3 = 1.24 ± 0.06. In three dimensions the geometrical arguments from [53]

for shrinking rotating crystals obeying conservation of dislocations implies an exponent of
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Figure 2.7: Snapshot of the evolution of a polycrystal. The colour denotes the individual grains
lattice orientation[50].

β3 = 4/3 in fair agreement with the measured quantity.

The coarsening regime was found to be further divided between an initial power law coars-

ening with a transition to exponential coarsening, see fig 2.8b. To explain this behaviour,

consider a model where the coarsening is predominantly due to grain coalescence of rotating

grains. Introducing a characteristic time for coalescence, tl , the dynamics of the number of

grains can be described by
1
N

dN
dt

= − 1
tl

, (2.19)

where N is the number of grains. Assuming that tl is inversely proportional to the mean

grain rotational velocity 1/〈∆θ〉 and that we have the relation 〈∆θ〉 = Ctγ while using the

conservation of volume N(t)〈V〉 = Vsys, the average volume can be shown to be given by

〈V(t)〉 = V0

(
t
t0

)CKθ

, γ = −1 (2.20)

〈V(t)〉 = V0 exp
(

CKθ

(γ + 1)

(
tγ+1 − tγ+1

0

))
, γ 6= −1 (2.21)

where Kθ is a dimensionless constant describing the time scale over which grain rotation will

result in coalescence between neighbouring grains. As shown in fig 2.8c the coarsening regime
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shows little to no decrease in average rotation during the time evolution and consequently it

is to be expected from (2.21) that the system exhibits exponential coarsening. Extracting C and

CKθ from figs 2.8b and 2.8c we find that C scales linearly with ε and for Kθ ∼ 40 the two curves

collapse consistent with the assumption that grain growth is predominantly mediated by grain

rotation and coalescence.

(a) A snapshot of a three-dimensional polycrystal. The
convoluted grain geometry of some of the grains is a sign
of coalesced grains due to rotation. The color is only a
label for the different grains.
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(b) The time evolutions of the coarsening parameter on
double logarithmic axes. The inset is the same data on
semilogarithmic axes, showing the transition to exponen-
tial coarsening. Note a2 = ε.
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(c) The average rotational velocity for individual grains.
The straight line corresponds to a power law with expo-
nent α = −1.
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(d) Ratio of the standard deviation in grain size and
the mean size as a function of mean size. For self-
similar growth the standard deviation on the grain vol-
umes increases proportionally to the mean grain volume.
The non-constant evolution is a sign of abnormal grain
growth.

Figure 2.8: Results from coarsening study in three dimensions [56].

Recently, it has been argued that the dynamical equation in (2.7) is not appropriate for real
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crystal dynamics [59]. Due to the lack of Galilean invariance in (2.7), rotation of an equilibrium

density distribution produces an energy dissipation contrary to atoms governed by Newton’s

Second Law for which there is no energy dissipation associated with rotation of a grain. It can

be shown that the anomalous energy dissipation scales with the area in two dimensions and

the volume in three dimensions of a grain and is supposed to suppress rotation of large-scale

structures. For single grain inclusion experiments the energy dissipation results in a grain

shrinkage rate dependent on the size of the grain, which was interpreted as a possible reason

for the small coarsening exponents measured in coarsening experiments using the free energy

in (2.6). However, in [56] we found a large degree of rotation on all grain size scales as well

as exponential coarsening due to the rotation and coalescence of grains. Therefore, it is not

entirely clear at what scales the anomalous dissipation becomes an important factor for three

dimensional coarsening in polycrystals.

2.3 Plasticity and Dislocation Dynamics

Polycrystalline materials exhibit complex plastic deformation behaviour due to the non-trivial

response of single crystals to external forces. Contrary to the smooth macroscopic plastic flow,

small-scale deformations of single crystals is highly intermittent in time and heterogeneous in

space. Experimentally it has been found that the small-scale deformations are characterized

by strain-rate fluctuations and strain avalanches, which obey scale free power law statistics

[60, 61].

The macroscopic deformations can be linked to the microscopic dislocation dynamics using

for example acoustic emission measurements of crystals under external loads which links the

amplitude of the emission to the collective motion of dislocations using the connection [60, 61]

A ∼ bρd〈v〉 = γ̇, (2.22)

where A is the measured amplitude, b is the magnitude of the Burgers vector for the disloca-

tions, ρd is the density of mobile dislocations, 〈v〉 is the mean velocity of dislocations and γ̇ is

the strain rate which is related to the other quantities through Orowan’s relations.

Due to the lattice properties of the density field in the phase field crystal model, dislocation

creation and annihilation are emergent characters of the model contrary to more traditional

approaches such as discrete dislocation dynamics models [? ], which makes it an alternative

choice for investigating dislocation dynamics. However, in order to investigate the dynamics of

dislocations, the equation of motion has to be generalized. The simple form of equation (2.7)

propagates all disturbances in the density field diffusively. This includes elastic and plastic

deformation as well as disturbances in the density field due to grain boundary motion. In real
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(a) Acoustic emmision signal. (b) Probabillity distribution of the maximum amplitude in
an avalanche.

Figure 2.9: Results from an ice compression experiment[61].

materials the relaxation of elastic strains happens on a time scale much faster than the diffusive

propagation. In order to include a faster propagation mechanism equation (2.7) was modified

to [62]
∂2φ

∂t2 + β
∂φ

∂t
= α2∇2

((
q2

0 +∇2
)2

φ + εφ + φ4
)

. (2.23)

Choosing the effective speed of sound α and the damping coefficient β, it is possible to set

an elastic interaction and time scale over which waves in the density field will propagate

undamped after which the density disturbance will become diffusive again. In this way it is

possible to have dynamics including rapid elastic relaxation and large scale diffusion evolution.

Equation (2.23) has been used to study the event energy distribution of avalanches of a

sheared crystal [63]. Using a shearing term employed at the boundary of the simulation box,

it is possible to shear a perfect crystal until the crystal breaks and dislocations are created.

Measuring the total velocity of dislocations V(t) = ∑N
i |vi| the event energy was extracted

by thresholding V(t) and calculating
∫ t f

ti
V(t)2dt. It was found that the energy distribution

followed a power law as P(E) ∼ Eτ with τ = 1.5 in agreement with experimental results

[64, 65], implying that the distribution of energy in dislocation mediated avalanches is correctly

described in the phase field crystal model.

In [66] we used the emergent dislocation dynamics to study the fluctuations in the number

density of dislocations using the modified dynamical equation (2.23) in a sheared crystal. We

used the same boundary conditions as in [63] to shear a perfect crystal in order to generate

dislocations. In a perfect two dimensional hexagonal lattice every atom will have six nearest

neighbours. An easy method to locate dislocations is to use a Voronoi tessellation to find atoms

with five and seven nearest neighbours, see fig 2.10. Due to annihilation and creation events
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the density of dislocations becomes a fluctuating variable, whose power spectrum was found

to follow a power law with exponent −2 as shown in fig 2.11a. The probability distribution of

the number of dislocations was shown to be unimodal for large shearing rates while for lower

rates the distribution becomes bimodal as shown in fig 2.11b. In order to explain the probability

distribution we introduced a Langevin equation for the density of dislocations given by

Figure 2.10: Different dislocation configurations visualized using a Voronoi tessellation to-
gether with the trajectories of the dislocations. The left panel is in the regime of slow shear
rate with a dilute configuration with fast moving dislocations. The right panel shows a more
dense distributions with dislocations assembled into grain boundaries [66].

dρd
dt

= f (ρd) + g(ρd)ξ(t), (2.24)

where ρd is the density of dislocations and the noise term is related to dislocation interaction

and is approximated by Gaussian white noise with a zero mean and variance given by

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′), (2.25)

where D describes the amplitude of the noise due to interactions. The deterministic part of

(2.24) describing the dislocation reaction rate is given by a double-well potential as f (ρd) =

−dU(ρd)/dρd with

U(ρd) =
1
4

(ρ2

m
− 1
)4
− 1

2

(ρd
m
− 1
)2
− κ

(ρd
m
− 1
)

. (2.26)
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The two minima of the potential corresponds to the state with zero dislocations and a state with

a non-zero mean number of dislocations. The scaling parameter m locates the mean number of

dislocations and depends on the shear rate. κ is a parameter favouring the state with a finite

mean density of dislocations. Finally, the noise intensity in the system should depend on the

density of dislocations and is assumed to be a linear approximation g(ρd) = 1 + ρd/m. The

steady state solution of the Fokker-Planck equation associated with (2.24) is given by

P(ρd) = N
(

1 +
ρd
m

)−1−11/D
exp

(
−L(ρd)

2D

)
, (2.27)

where N is a normalization constant and L(ρd) = ρd
m2(m+ρd)

(
ρ2

d − 9mρd − 2m2κ − 22m2). As

shown in fig 2.11b this probability distribution gives an excellent fit to the data both in the

unimodal as well as bimodel regime. Using the results of [67–69] it can be further shown that

the high frequency limit of the power spectrum of the signal generated with (2.24) gives the

observed exponent of −2.

Together with [63] our results show that the phase field crystal model is able to generate

power law statistics as seen in experimental studies of small-scale plasticity. Furthermore, our

results in [66] together with Orowan’s relation (2.22) suggests that it is not only the mean

velocity of dislocations that plays a role in strain rate fluctuations.

(a) Power spectrum of the dislocations number fluctua-
tions for different strain rates. The red lines shows a
power law with exponent −2. The insets shows the con-
stant C as a function of mean dislocation number, with
C found be fitting the power spectra to C f−2. For small
mean dislocations number the signal behaves as a sum of
uncorrelated dislocations with C ∼ 〈ρd〉, with a cross over
to a power law scaling for C for higher mean density of
dislocations.

(b) Probability distribution of numbers of dislocations for
the different shear rates. For low shear rates the sys-
tems shows a bimodal behaviour while the distribution
becomes unimodal with a well defined mean for higher
strain rates.

Figure 2.11: Results for the dislocations dynamics in a two-dimensional sheared crystal [66].





Chapter3

Biological Active Matter

Living material such as schools of fish and flocking birds or on a smaller scale confluent cell

layers are a form of active matter being composed of self propelled entities. The complex dy-

namics exhibited by active matter is in many ways different from classical passive materials

such as water and air. Due to the constant energy injection at the local scale of the “particles”,

these systems are maintained in a perpetual non-equilibrium state that in some instances can

lead to large-scale self-organised patterns and turbulent-like dynamics. This behaviour is con-

trary to classical non-equilibrium systems, which in most situations is driven by imposed

boundary conditions such as an applied stress or other external forces.

An early model for studying self-propelled active systems is the particle-based Vicsek

model [70] which has been used to describe the movements of locusts [71] as well as the

landing of flocking birds [72]. In its simplest form the model describes particles that are self-

propelled maintaining a constant speed with its orientation being dependent on the orientation

of its immediate neighbours. The local aligning interaction will eventually lead to swarming

behaviour, demonstrating that large-scale behaviour can emerge from very simple local inter-

action rules, as shown in fig 3.1

Models based on hydrodynamics serve as an alternative to particle based approaches. For

cells suspended in a liquid medium these models are a natural starting point.

Using the simplifying assumption that a cell moves in a completely overdamped medium,

highly specific models for cell dynamics and the resulting velocity field of the fluid can be de-

veloped. In this case, the general Navier-Stokes equation reduces to the linear Stokes equation

and the cell movement can be approximated by a sum of fundamental solutions to the Stokes

equation [73]. For a general system of dilute cell suspension the cell density can be coupled

to the full Navier-Stokes equation from which a Fokker-Planck equation for the probability

density function of the swimming direction of the cells can be derived [74].

A completely phenomenological approach to modelling active matter phenomena, and es-

23
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Figure 3.1: For some parameters the Vicsek model displays flocking behaviour [70]. The veloc-
ities of the particles are shown by an arrow.

pecially flocking, was given in [3] where the equation of motion of a velocity field for the

collective motion of the flock was expanded in a gradient expansion to second order under

the assumption that the equations of motion should be rotationally invariant. By sacrificing

Galilean invariance it is possible to include a generalized material derivative as well as a po-

tential term driving the system towards a mean velocity. The full set of equations can be seen

as a generalized Navier-Stokes type of equation given by

∂v
∂t

+ λ1 (v · ∇) v + λ2 (∇ · v) v + λ3∇|v|2 = −∇p−
(

α + β|v|2
)

v

+ DB∇ (∇ · v) + DT∇2v + D2 (v · ∇)2 v + f (3.1)

∂ρ

∂t
+∇ · (vρ) = 0, (3.2)

where v is the velocity, ρ is a density, and f is a random driving force. In principle all the

constants can depend on ρ and |v|2. The left hand side of (3.1) is the generalized material

derivative. On the right hand side p is the pressure, which for incompressible fluids is deter-

mined by ∇ · v = 0. For compressible fluids another equation relating p to ρ or v is needed.

The gradient terms are a general second-order expansion accounting for viscous effect in the

system due to particle interactions. Finally, the local term parametrized by α, β can be inter-

preted as originating from a Landau type potential

U(|v|) = α

2
|v|2 + β

4
|v|4, (3.3)

where stability requirements demand β > 0. For α > 0, the potential is a single well potential

describing a system with mean velocity at the minima in |v| = 0, while for α < 0 the potential
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is a double-well giving rise to a non-zero mean velocity at the minima in |v| =
√
−α/β.

Equation (3.2) is a continuity equation making the set of equations satisfy mass conservation.

While there is no physical microscopic origin of the different terms or parameters in equation

(3.1), its generality has made it possible to use it as a starting point for modelling a wide range

of active matter phenomena [75].

Recently, a generalization of (3.1) has been used in the study of the dynamics of bacteria

in a dense suspension and the dynamics of an endothelial cell layer [4, 5]. Experiments with

active matter have found the emergence of a characteristic vortex distance and turbulent like

dynamical behaviour with long spatial correlations [76].

Figure 3.2: The vorticity field for a highly concentrated two-dimensional bacterial
suspension[4]. Scale bar is 50µm.

In classical fluid dynamics turbulent flow and vortex structures arise from imposed bound-

ary conditions in the limit of large Reynolds numbers, corresponding to large inertial forces

compared to the viscous forces [77]. In contrast, the estimated Reynolds number for an en-

dothelial cell layer showing turbulent-like behaviour can be estimated to Re = 10−9 [5], and is

an emergent feature independent of imposed boundary conditions. It has been found that one

way to enable that equations similar to (3.1) can describe low Reynolds number turbulence is

to extend the gradient expansion from second order to fourth order.

3.1 Cell Division in an Endothelial Cell Layer.

Endothelial cells line the blood vessels in a tightly bound layer causing the cells to have a highly

collective dynamic behaviour. Due to the tight adhesion, mechanical forces are transmitted

over large distances [78], which can serve as a guide for the cells as they most often prefer to
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migrate in the direction of least shear stress [79] and seem to navigate towards empty spaces

[80]. In ref. [5] we investigated the influence of cell division of endothelial cells on the collective

dynamics of the cell layer. The cell layer was modelled using a hydrodynamics approach, while

cell division was described by a localized energy injection.

Figure 3.3: Velocity field around a cell division in an endothelial cell layer. The left picture
is right after the division of the cell in the center while the picture to the right is ten minutes
later. The white scale bar is 50µm

For an endothelial cell layer the higher order extension of (3.1) starts out by assuming the

active matter obeys the general momentum balance equations for constant density given by

∂v
∂t

=
1
ρ
∇ · σ−

(
α + β|v|2

)
v, (3.4)

where ρ is the density, v is the local velocity and σ is the stress tensor. The second term on

the right hand side is once again a potential term driving the system towards a mean velocity.

For an endothelial cell layer the cells move with an average velocity, implying that α < 0 and

β > 0 with the characteristic cell velocity given by vc =
√
−α/β. Assuming the projected area

of each cell is conserved, the velocity field in (3.4) will be incompressible and obeys ∇ · v = 0.

In order to describe the dynamical pattern formation, the stress tensor is generalized beyond

the Newtonian fluid approximation. The higher order stress tensor is taken to be [4]

σij = −pδij + η0

(
∂vj

∂xi
+

∂vi
∂xj

)
− η2∇2

(
∂vj

∂xi
+

∂vi
∂xj

)
+ S

(
vivj −

δij

D
|v|2

)
, (3.5)

where p is the pressure and the subscripts denote coordinates. The second and third terms are

the viscosity terms. The last term is a nematic term similar to the Q-tensor for nematic crystals

[81], with S being a fitting parameter, which in our case was found to be S/ρ = 2.1± 0.2 and

D is the dimension of the system. In the endothelial cell layer the cells continuously inject

energy at the cell length scale when moving due to the effect of viscosity. In accordance with

the analysis of classical higher-order differential equations [8, 15, 21], we model this by letting
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η0 < 0 while keeping η2 > 0, thereby generating a non-zero maxima in the linear dispersion

relation of (3.4). In our experiment the relevant length scale introduced into the dispersion

relation is the cell scale. Inserting (3.5) into (3.4) we get the equations of motion

∂v
∂t

= −1
ρ
∇p +

S
ρ
(v · ∇) v− S

ρD
∇|v|2 + ν0∇2v− ν2∇4 −

(
α + β|v|2

)
v (3.6)

∇ · v = 0, (3.7)

where ν0 = η0/ρ and ν2 = η2/ρ.

Taking the curl of (3.6) and linearising around v = 0, the equation of motion for the vorticity

in two dimensions becomes

∂ω

∂t
= −ν2

(
∇2 − ν0

2ν2

)2
ω−

(
α−

ν2
0

4ν2

)
, (3.8)

where ω = ∇× v is the vorticity. For ν0 < 0, equation (3.8) coincides with the linear part of

a Swift-Hohenberg type of equation [8], generating vorticity structures with a wavelength of

2π
√
−2ν2/ν0. For our experimental set-up this wavelength was set to approximately 1.5 cell

diameters corresponding to the tendency of nearby cells to rotate in opposite directions.

For α < 0 equation (3.6) has two uniform steady states. The isotropic state with v = 0 and

the polar state with v = v0 where |v0| =
√
−α/β. To examine the stability of the uniform

fixed points, equation (3.6) and (3.7) are expanded around the two steady-state solutions.

Perturbing around the zero solution as v = 0 + δv and p = p0 + δp, where p0 is a constant,

equation (3.6) and (3.7) reduces to first order in the perturbations to

∇ · δv = 0 (3.9)

∂δv
∂t

= −∇δp− αδv + ν0∇2δv− ν2∇4δv. (3.10)

Considering perturbations of the form (δv, δp) = (δv̂, δ p̂) exp (ik · r + σt), the above equations

reduce to

k · δv̂ = 0 (3.11)

σδv̂ = −ikδ p̂−
(

α + ν0k2 + ν2k4
)

δv̂, (3.12)

where k = |k|. Using the incompressibility condition (3.11) leads to δ p̂ = 0 and

σ(k) = −
(

α + ν0k2 + ν2k4
)

. (3.13)

For σ(k) > 0 perturbations will exponentially grow implying that the fixed point (v, p) =

(0, p0) is unstable. The range of stable wave numbers is found by solving σ(k) = 0 whose

solutions are

k2
± =

|ν0|
ν2

(
1
2
±
√

1
4
− αν2

ν2
0

)
, for α <

ν2
0

4ν2
. (3.14)
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For η0 < 0 and η2 > 0 the fixed point will have a band of unstable wavenumbers as shown in

fig 3.4a.

For the other fixed point equation (3.6) and (3.7) are expanded around v = v0 + δv and

p = p0 + δp. To simplify the analysis the constant vector is rotated to align with the x-axis

v0 = (v0, 0) and the perturbation to δv = (ε‖, ε⊥). Inserting the perturbations into (3.6) and

using the relation v0 =
√
−α/β the linear order equation becomes

k · δv̂ = 0 (3.15)

∂δv
∂t

= −∇
(

p +
2Sv0

D
ε‖

)
+

(
ν0∇2 − ν2∇4 + Sv0

∂

∂x

)
δv− 2βv0ε‖v0 (3.16)

Once again, considering perturbations of the form (δv, δp) = (δv̂, δ p̂) exp (ik · r + σt) and us-

ing the incompressibility condition (3.15), the above equations reduces to the eigenvalue equa-

tion

σ(k)δv̂ = −M

(ν0k2 + ν2k4 − iSkxv0)I−

2α 0

0 0


 δv̂ (3.17)

Where I is the identity matrix and

M =

1− k2
x

k2 − kxky
k2

− kxky
k2 1− k2

y
k2

 . (3.18)

The eigenvalues describing the stability of the polar solution is then given by λ = 0 and

λ = −
(
ν0k2 + ν2k4 − iSkxv0

)
+ 2αk2

y/k2. For ν0 < 0 and ν2 > 0 there is once again a region

of unstable wavenumbers, where perturbations will exponentially grow as shown in fig 3.4b.

For both α < 0 and ν0 < 0 both fixed points are unstable to small wavenumber perturbations

implying that (3.6) describes an inhomogeneous velocity field as observed in simulations and

pictured in fig 3.5.

To examine the pattern formation properties of (3.6), we will simplify the equation by

restricting the analysis to two-dimensional flows in the limit of S = 0. From the stability

analysis it was found that the S-term was the only term contributing with a complex oscillatory

term to the eigenvalue. From simulations it was found that (3.6) has a stable equilibrium state

for S = 0 given by a square lattice of vortices as shown in fig 3.6a. To examine the stability of

the pattern with respect to the other parameters in (3.6), the equation is rewritten as a vector

model-A equation
∂vi
∂t

= − δF
δvi

, (3.19)

where vi is the components of v and the effective free-energy is given by

F =
∫

dA
(

p∇ · v +
1
2
(
vxLvx + vyLvy

)
+

α

2
|v|2 + β

4
|v|4

)
, (3.20)
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(a) Linear stability region for the v = 0 fixed point. For
σ(|k|) > 0 the fixed point is dynamically unstable.
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(b) Linear stability for the fixed point with v = v0. The
coloured region represents the unstable wavenumbers.

Figure 3.4: Stability regions for the uniform fixed points derived from the linear stability
analysis.
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Figure 3.5: Snapshot of the vorticity field of a solution of (3.6). The vorticity peaks move
around dynamically in time.

where L = −ν0∇2 + ν2∇4. From (3.20) we find that if vi is an eigenfunction of L, the energy of

the state will only depend on the magnitude of v. In order to asses the stability of the square

vorticity pattern, a square and hexagonal vorticity pattern and the uniform velocity solutions

are substituted into (3.20) to find their relative stability.

In two dimensions incompressible velocity fields can be formulated as vx = ∂φ
∂y and vy =

− ∂φ
∂x , which gives ∇2φ = ω. Furthermore, for incompressible velocity fields the pressure term
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in (3.20) drops out. The expressions for a square and hexagonal vorticity are given by

ωs = qAs (cos(qx) + cos(qy)) (3.21)

ωh = qAh

(
cos

(
q

(√
3

2
x +

1
2

y

))
+ cos (qy) + cos

(
q

(√
3

2
x− 1

2
y

)))
. (3.22)

When solving the Poisson equation for φ, calculating the velocity fields, substituting into (3.20),

and averaging over one period we find the energies

Fs =
A2

s
16

(
8q4ν2 + 5A2

s β + 8q2ν0 + 8α
)

(3.23)

Fh =
3A2

h
32

(
8q4ν2 + 9A2

hβ + 8q2ν0 + 8α
)

(3.24)

Fu = − α2

4β
, (3.25)

where Fu is found by substituting in a uniform velocity field with magnitude v =
√
−α/β.

Minimizing the expressions with respect to q and Ai, we find that both patterns have wave

number qeq =
√
|ν0|/2ν2 and the square vorticity lattice is the most stable pattern for all

(β, ν0, ν2) for α < 0. Due to the symmetry of (3.20) the one parameter family consisting of

rotations in the velocity plane (vx, vy) will generate solutions with equal energy and rotated

vorticity pattern. This suggest that (3.6) with S = 0 will exhibit different domains with dif-

ferent velocity profiles with grain boundary-like structures in between, as was also found in

simulation, shown in fig 3.6b. For S 6= 0 the square lattice becomes unstable and we once again

find the dynamic state discussed earlier with the mean of |v|2 dropping from A2
s towards zero

with increasing S, as shown in fig 3.7.

The effect of cell division on the dynamics of the cell layer was studied experimentally by

tracking the motility of cells around a cell division using particle image velocimetry. To get a

better signal-to-noise ratio the velocity fields was extracted from an averaged signal using 100

aligned cell divisions.

30 minutes after cell division a distinct vorticity pattern emerges, see fig 3.9a. Adjacent

to the division site two primary vortex pairs appear, with a clockwise (red) and a counter-

clockwise (blue) vortex flanking each daughter cell. These are located approximately one

cell diameter away from the division site as shown by the full line in fig 3.9a. Well-ordered

secondary and tertiary vortices are also induced by the cell division and appear farther from

the division site. At approximately two cell diameters away an ordered ring of eight vortex

pairs is observed, the dashed line in fig 3.9a. At a distance of three cell diameters away from

the division site another ordered ring of eight vortices emerges, as shown by the dotted line

in fig 3.9a. The last vortex pattern is somewhat noisy due to the effects of cell divisions taking

place outside the framed region.
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(a) Stable square vorticity pattern generated by (3.6) with
S = 0.
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(b) Snapshot of vx generated by (3.6) with S = 0 show-
ing multiple domains with different velocity profiles de-
scribing patches of rotated square vorticity patterns. The
domains will coarsen in time towards the stable one do-
main equilibrium

Figure 3.6: Dynamic and equilibrium properties of (3.6) with S = 0
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Figure 3.7: The average of |v|2 as a function of S.

We found that the continuum model in (3.6) reproduces the overall velocity field of a cell

layer with a fitted mean velocity given by 1.4µm/min that is close to the experimental velocity

of 0.9µm/min as well as reproduces the correct peak velocities and magnitude of the diver-

gence field after cell division. In order to quantify the vorticity patterns from the experiment

we performed a Fourier analysis at the bands in 3.9a corresponding to one, two and three

cell diameters away from cell division. The same analysis was performed on the simulated

cell division vorticity in fig 3.9b. We used the power spectrum of the signals to quantify the

emergent patterns at the different lengths which is shown in fig 3.10. Both the experimental

and the simulated vorticities show periodic patterns with similar periodicity. Taken together
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Figure 3.8: Average nuclei positions and divergence of the velocity field around a cell division
using 100 cell divisions. t = 0 is right after cell division. The left series of pictures is from the
phase contrast microscopy while the right series is the calculated divergence field.

with the similar velocity field and peak values, these results implies that the continuum model

in (3.6) does capture some of the relevant physics for an active cell layer.

For modelling the hydrodynamics of biological tissue the use of higher order extensions to

(3.4) is quite new and the microscopic origin of the negative viscosity term is still an open issue.

While similar high-order differential equations for scalar fields can be derived in a variety of

ways [8, 15] the generalization to biological systems described by a vector field is not obvious.

For some types of flow it can be shown that local perturbations can lead to negative viscosities

[82], but often the initial flow has to be periodic or simple in some other sense. Recently, a

microscopic model for a self-propelled particles with short-ranged alignment and long-range

anti-alignment has been shown to generate a negative viscosity term in the continuum limit

[83]. This suggests that a full microscopic derivation of (3.6) can soon be developed.
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(a) The experimental vorticity field emerging 30 minutes
after cell division. The left picture is the vorticity in
Cartesian coordinates. The right picture is the vorticity
in polar coordinates. Images are the result of averaging
over 100 cell divisions. The full, dashed and dotted line
denoted D.I, D.II and D.III are one, two and three cell
diameters from the centre corresponding to 40, 80 and
120 µm.

(b) Vorticity pattern arising from the numerical simula-
tion of (3.6). The left picture is the vorticity in Cartesian
coordinates. The right picture is the vorticity in polar
coordinates. The full, dashed and dotted lines are anal-
ogous of the lines in the experimental vorticity.

Figure 3.9: Comparison of the vorticity pattern induced by a cell division ina a experimentally
set-up and in the continuum model equation (3.6).

Figure 3.10: Quantification of primary, secondary and tertiary induced vortices. On the left
side are the averaged measured vorticity patterns after 30 minutes in polar coordinates at one,
two and three cell diameters obtained in experiment. The solid line is the averaged vorticity
signal of the gray lines. The inset is the power spectrum of the signal used to quantify the
pattern. To the right side are the simulated counter parts.





Chapter4

Conclusion

In this thesis we have studied two models for pattern formations used in describing passive

and active matter systems.

The phase field crystal model has been introduced and shown to qualitatively describe

equilibrium properties of crystalline materials. The simplest form of the equation of motion is

an overdamped diffusion equation, which has been used to study the coarsening dynamics of

two and three dimensional polycrystalline structures [50, 56].

In two dimensions it was found that the coarsening dynamics is highly dependent on

the quenching temperature, grain rotation, and complex interaction between neighbouring

grains, resulting in a large spread in coarsening exponents terminating in a stagnating regime,

where the coarsening dynamics stops all together. For individual grains it was found that the

ratio of rotation and growth followed robust power law statistics independent on quenching

temperature.

In three dimensions similar dynamics was observed with an added exponential coarsening

regime due to rapid rotation of smaller crystals. The coarsening dynamics was furthermore

driven by anomalous growth, where a few grains grow faster than the rest of the crystal matrix.

To study plastic deformations a modified phase field crystal model has been introduced,

which generalizes the dynamical equation into a damped wave equation, thus introducing a

faster time scale for elastic relaxation of the density field. The modified equation was used

to study the fluctuating dislocation number density in a continuously sheared crystal [66]. It

was found that the power spectrum of the fluctuating signal follows a power law, while the

probability density function evolves from a bimodal function to a unimodal function with the

strain rate. It was showed that both the power spectrum and functional form of the probability

density could be described by a solution to a Langevin equation for the density of dislocations.

To study the dynamics of an endothelial cell layer, a hydrodynamical vector model has been

introduced, which could be seen as a generalization of the scalar field theory used in describing

35
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crystals. It was shown that it could describe the long range ordered vorticity patterns observed

in cell division in an endothelial cell layer [5], and that a simplified version could be formulated

as a vector model-A theory from which the amplitude of the equilibrium square pattern could

be derived.

While higher order hydrodynamical models can be used to describe mesoscopic low Reynolds

number turbulence and give rise to a characteristic vorticity length scale, it is a problem that no

clear microscopic derivation exists. It is also an open question how to generalize these models

to other symmetries besides square lattices. Taking inspiration from the scalar phase field crys-

tal model [84, 85], other lattice structures such as hexagonal might be possible by generalizing

the linear differential operator to higher orders which, however, will probably only complicate

the task of performing a microscopic derivation.



AppendixA

Static Properties of the Phase Field

Crystal Model

A.1 The phase field crystal phase diagram

In order to calculate the phase diagram we need to calculate the energy densities for the

relevant phases, which in 3 dimensions are planes, hexagonal rods and body-centered cubic

and use the equal tangent construction to find the coexistence regions and transition lines. The

phase field crystal free energy is given by

F =
∫

dV
(

1
2

φ
(
∇2 + 1

)2
φ +

ε

2
φ2 +

1
4

φ4
)

. (A.1)

In general the density field can be expanded as

φ = φ0 + ∑
G

AG exp (iG · r) + c.c, (A.2)

where Gi are reciprocal lattice vectors. Due to mass conservation and in order to derive the

coexistence regions it is necessary to keep the constant mean density φ0 in the expansion.

Because of the one mode dominance of (A.1) the sum will be truncated using the set of smallest

lattice vectors corresponding to the lattice.

The density expansion for planes is simply

φ = φ0 + A1 cos(qx). (A.3)

Substituting into (A.1) and integrating over 1 period we find

F(q, A1, φ0) =
3

32
A4

1 +

(
1
4

q4 +
3
4

φ2
0 −

1
2

q2 +
1
4

ε +
1
4

)
A2

1 +
1
4

φ4
0 +

1
2

εφ4
0. (A.4)

Minimizing with respect to q and A1 we find the equilibrium expressions

qeq = 1 (A.5)

Aeq
1 =

2
3

√
−9φ2

0 − 3ε. (A.6)
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The density expansion for hexagonal rods to lowest order is given by

φ = φ0 + A2

(
1
2

cos
(

2qy√
3

)
− cos (qx) cos

(
qy√

3

))
. (A.7)

Inserting into (A.1), integrating over 1 unit cell and minimizing with respect to q and A2 we

find

F(q, A2, φ0) =
45
512

A4
2 −

3
16

A3
2φ0 +

(
1
3

q4 +
9

16
φ2

0 −
1
2

q2 +
3

16
(ε + 1)

)
A2

2

+
1
4

φ4
0 +

1
2
(ε + 1)φ2

0 (A.8)

qeq =

√
3

2
(A.9)

Aeq
2 =

4
5

φ0 +
4

15

√
−36φ2 − 15ε. (A.10)

The density expansion for a body-centered cubic lattice to lowest order is given by

φ = φ0 + A3 (cos (qx) cos (qy) + cos (qx) cos (qz) + cos (qy) cos (qz)) . (A.11)

Inserting into (A.1), integrating over 1 unit cell and minimizing with respect to q and A3 we

find the last energy is given by

F(q, A3, φ0) =
135
256

A4
3 +

3
4

A3
3φ0 +

(
2
3

q4 +
9
8

φ2
0 −

3
2

q2 3
8
(ε + 1)

)
A2

3

+
1
4

φ4
0 +

1
2
(ε + 1)φ2

0 (A.12)

qeq =
1√
2

(A.13)

Aeq
3 =− 8

15
φ0 +

4
15

√
−11φ2

0 − 5ε. (A.14)

The free energy for the uniform liquid state is simply given by

F =
1
4

φ4
0 +

1
2
(ε + 1)φ2

0. (A.15)

The Maxwell common tangent is constructed by numerically solving the 2 coupled equa-

tions for fixed ε

∂Fi
∂φ0

=
∂Fj

∂φ0
(A.16)

Fi −
∂Fi
∂φ0

φ0 = Fj −
∂Fj

∂φ0
φ0, (A.17)

from which we can draw the phase diagram in fig A.1b.

A.2 Stress-strain curve for area preserving strain in 2 dimensions

The 2 dimensional density with hexagonal symmetry is expanded as

φ = φ0 + A2

(
1
2

cos
(

2qyy
√

3

)
− cos (qxx) cos

(
qyy
√

3

))
. (A.18)
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(b) The phase diagram found using the common tangent
construction.

Figure A.1: The phase field crystal phase diagram.

Inserting into (A.1), integrating over 1 unit cell and minimizing with respect to A2 to find the

free energy F(qx, qy, A2, φ0). Using qx = 1 + δ, qy = 1/(1 + δ) and ∂F
∂δ = σ we can find the

stress strain curve.
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Figure A.2: Stress-strain curve for a 2 dimensional hexagonal lattice under area preserving
strain. For small strains the curve is linear as predicted by the long wave length approximation
discussed in the phase field crystal chapter.
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Integration schemes

B.1 The Phase Field Crystal Model.

The overdamped equations of motion for the phase field crystal model

∂φ

∂t
= Lφ +∇2φ3, (B.1)

where L = ∇2
((

1 +∇2)2
+ ε
)

has been solved using an explicit exponential time integration

scheme in Fourier space given by[86],

φ̂n+1 = exp(L̂dt)φ̂n −
k2

L̂

(
exp(L̂dt)− 1

)
φ̂n

3, (B.2)

where hats denotes Fourier transformed quantities and k is the magnitude of the wavenumber

vector k. The non-linear term was evaluated by transforming back to real space, performing

the exponentiation and transforming back to Fourier space. To suppress aliasing errors we

used a 2/3-rule.

In order to solve the modified phase field crystal model the equation was rewritten as

∂b
∂t

= Mb + f, (B.3)

where we have defined

b =

 φ

∂tφ

 , M =

 0 1

α2∇2
((

1 +∇2)2
+ ε
)
−β

 and f =

 0

α2∇2φ

 . (B.4)

Due to stability issues the equations of motion was solved by an semi implicit exponential

integration scheme with the update equations given by [86, 87]

b̂n+1 = exp(Mdt)b̂n + M−1 (exp(Mdt)− I) f̂n + M−2 (exp(Mdt)− I−Mdt)
(

f̂n+1 − f̂n

)
,

(B.5)

where I is the identity matrix and f̂n+1 is approximated by the solution of (B.5) without the

M−2 term.
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B.2 Vector Model for Active Matter

The vector model for active matter is given by

∂v
∂t

= −1
ρ
∇p +

S
ρ
(v · ∇) v− S

ρD
∇|v|2 + ν0∇2v− ν2∇4 −

(
α + β|v|2

)
v (B.6)

∇ · v = 0. (B.7)

Taking the divergence of (B.6) and using the incompressibility condition we find the Poisson

equation for the pressure

∇2 p =
S
ρ

(
∇vx · ∂xv +∇vy · ∂yv

)
− S

ρD
∇2|v|2 − βv · ∇|v|2. (B.8)

To keep the velocity field divergence free the Poisson equation is modified with an divergence

damping term to [88]

∇2 p =
S
ρ

(
∇vx · ∂xv +∇vy · ∂yv

)
− S

ρD
∇2|v|2 − βv · ∇|v|2 + ζ∇ · v. (B.9)

To see why this dampens the divergence of the velocity field, once again take the divergence

of (B.6) to get
∂δ

∂t
=

S
ρ
(v · ∇) δ + ν0∇2δ− ν2∇4δ−

(
α + β|v|2 + ζ

)
δ, (B.10)

where δ = ∇ · v. For sufficiently large ζ the last term will be a linear damping term exponen-

tially damping δ.

The velocity equation (B.6) was solved in Fourier space using the explicit exponential time

integration scheme in (B.2) with the pressure equation solved in Fourier space. All non-linear

terms was evaluated in real space and transformed back.

The scheme has been tested for a wide range of parameters and was found to generate

average and peak values of δ far below the numerical truncation errors of the update scheme.
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