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ABSTRACT

For my PhD I have explored our Universe from its smallest scales with stars and galaxies to its
largest to understand its cosmological evolution.

On the largest scales, the universe seems to be speeding up faster and faster. Our current
cosmological model indicates this acceleration could be due to a component known as dark
energy. From observations we find that the Universe consist of about 70% dark energy, but its
fundamental properties are completely unknown. To address this question, I did a study on
how well we can measure its possible evolution as a function of cosmic time. I especially fo-
cused on dark energy which could be present shortly after the big bang as this could strongly
challenge our current picture of the Universe. My collaborators and I used temperature mea-
surements of the cosmic microwave background (CMB) observed by the Planck satellite, to look
for any variations in this dark component. This work was followed up by how we can measure
dark energy at later times. For this we instead used redshift and angular position observations
of millions of galaxies. The central problem was here how well we need to know how galaxies
move and clump together during cosmic history. We explored a new model independent way
of doing this which also seems promising for measuring modifications to the theory of gravity
itself.

On slightly smaller scales I looked into what happens when two dark matter structures
merge. Numerical simulations show that a smaller fraction of the dark matter particles are
kicked out during the merger process. In my work I discovered a dynamical mechanism ex-
plaining this. The mechanism is a double scattering process where a particle gains energy by
undergoing two gravitational defelctions during the merger. From this model I can explain re-
cent observations of high velocity stellar systems. I further did a study on how well one can
measure the 3D shape of a single dark matter structure. Dark matter structures attract a huge
amount of gas during their formations which heats up and emit X-rays. I showed that one can
estimate the dark matter structure shape from observation of these X-rays alone. This has im-
plication for mass measurements which can be used for constraining the amount of matter and
dark energy we have in our universe.

On even smaller scales I did an interesting study on the interaction between stars and black
holes. I especially looked into the interaction where a binary stellar system is hit by a third
object. In my calculations I included the possibity for the system to emit gravitational waves
(GWs), these waves carry both energy and momentum. By performing millions of scatterings
I discovered a new outcome where a binary stellar system quickly merge by sending out GWs.
The two stars merge with very high eccentricty which makes this outcome very unique. My
collaborators and I estimated this new outcome to be the most likely way of generating high
eccentric binary mergers. This have huge implications for future GW measurements.
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1

INTRODUCTION

This thesis is a compilation of my recent work and includes very different topics from stellar
interactions to the expansion of the universe. Instead of writing one big introduction I have
instead chosen to write short individual resumes for each project I present. These resumes are
found after the abstract of each paper presented in the chapters below.

The first part of the thesis will mainly be on dark energy and how to constrain its possible
evolution in a model independent way. From my publications I present some recent work I
did at Berkeley, where I explored the possibility of measuring dark energy at early times. As
presented in chapter 2, my collaborators and I first did a principal component study on how
well one is able to measure time evolving dark energy from CMB observations alone. Since the
CMB originates from only 300.000 years after the big bang, we are here constraining what is
known as an early dark energy component. This work was followed up by an analysis using
real Planck data as presented in chapter 3. Further studies on varying dark energy and modified
gravity is presented in chapter 4. In this work, my collaborator and I looked into the possibility
of using galaxy redshift and angular position measurements to constrain dark energy and a
possible deviation to general relativity. For this we used a framework known as redshift space
distortions as described in the resume of the paper.

In the second part of the thesis I turn to more astrophysical topics including stellar dynamics,
halo mergers and X-ray galaxy clusters. The first work presented in this part is a study I did on
the role of gravitational wave (GW) emission in binary-single interactions between objects such
as white dwarfs, neutron stars and black holes. This project was done with people at UCSC and
is presented in chapter 5. The main result from this work was the discovery of a new channel
for generating GW inspiraling binaries with extremely high eccentricity. My collaborators and
I found this to be the leading channel for high eccentric inspirals which has major implications
especially for GW detections using LIGO. In chapter 6 is presented work I have done on dark
matter halo mergers. It is well known that halo particles are energetically kicked away during
a merger between their own halo and a target halo, in my work I was able to explain this by
introducing a new dynamical mechanism. It is a double scattering process where a particle
gains energy by undergoing two deflections in two different velocity frames. From this model I
am able to explain the velocity of the first observed high velocity globular cluster. In chapter 7
is presented earlier work I did with collaborators at DARK. We examined how to measure the
3D shape of X-ray galaxy clusters using the X-ray signal only. This have implications for halo
mass measurements from which our cosmological model can be constrained.

Enjoy!
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EARLY DARK ENERGY - FORECASTS

Model Independent Early Expansion History and
Dark Energy

Johan Samsing1,2, Eric V. Linder1,3, Tristan L. Smith1

1 Berkeley Center for Cosmological Physics & Berkeley Lab, University of California, Berke-
ley, CA 94720, USA
2 Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej
30, 2100 Copenhagen, Denmark
3 Institute for the Early Universe WCU, Ewha Womans University, Seoul, Korea

Abstract

We examine model independent constraints on the high redshift and prerecombination expan-
sion history from cosmic microwave background observations, using a combination of principal
component analysis and other techniques. This can be translated to model independent limits
on early dark energy and the number of relativistic speciesNeff . Models such as scaling (Doran-
Robbers), dark radiation (∆Neff ), and barotropic aether fall into distinct regions of eigenspace
and can be easily distinguished from each other. Incoming CMB data will map the expansion
history from z = 0–105, achieving subpercent precision around recombination, and enable de-
termination of the amount of early dark energy and valuable guidance to its nature.
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2.1 SUMMARY

Current observations are in agreement with a dark energy (DE) component behaving as a vac-
uum energy having negative pressure and constant energy density. In this picture the DE den-
sity is greatly suppressed at earlier times relative to the background. However, several physical
mechanisms could give rise to an early DE excess, e.g. dilaton models, k-essence or dark ra-
diation. Allowing for a non-standard DE in the analysis, could therefore lead to fundamental
breakthroughs in our understanding of the acceleration of the universe.

To investigate this further, I first studied how we optimally extract information about a pos-
sible existence and evolution of an early DE component. I used the CMB power spectrum as
observable which is currently the best probe of early time physics. An evolving DE affects this
spectrum both through its possible clustering and its varying energy density which impacts
the expansion. The expansion changes, e.g., the evolution of the horizon, the time of matter-
radiation equality and the distance to last scattering, where the clustering affects the growth of
perturbations by its inhomogenoues density distribution.

I modeled the DE as a fluid that only interacts with matter through gravity, but in contrast to
the standard LCDM model, I allowed a completely free functional form for its density, ρDE(t).
I properly modified CAMB and used it to solve for the coupled background evolution and
perturbations equations including our new DE model specified by ρDE(t). The resultant CMB
spectra including temperature and polarization, was then used in a Fisher code I wrote specif-
ically for this project. In a first paper (first below), my collaborators and I investigated which
functional forms for the DE density ρDE(t) the new Planck data would allow us to constrain
the best - before the data was released. From this we estimated an optimal way of binning the
function ρDE(t) in scale factor a into an MCMC tractable 5 bins. This was done by a joint Fisher
information matrix and principle component analysis. In a following paper (second below), this
optimal binning was then used in an analysis where we measured ρDE using the new Planck
data. This gave model independent constraints equivalent to ∆Nν,eft ∼ 0.3.
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2.2 INTRODUCTION

The expansion history of the universe is a fundamental property of cosmology, reflecting the
energy density constituents and their evolution. Yet remarkably little is known in detail about
it, other than in a coarse grained average. For redshifts between 3000 and 109, the universe was
mostly radiation dominated, for redshifts between 3000 and ∼ 1 it was mostly matter domi-
nated, but excursions are possible – in the effective number of relativistic species Neff say, or
even temporary breakdown of such domination – and the level of subdominant components is
not well constrained. Only around the epoch of primordial nucleosynthesis and of recombina-
tion is the expansion rate (Hubble parameter) better constrained, but even there at the ∼ 5%

level averaged over the epoch (1; 2).

Given the importance of the expansion history, and the improvement in cosmic microwave
background (CMB) data, we investigate what constraints can be placed on it in a model inde-
pendent way, i.e. other than fitting for a deviation of a particular functional form such as extra
Neff or a specific dark energy model. This would fill in a vast range of cosmic expansion where
almost no precise constraints have been placed. That is, an error band for the Hubble parameter
H(z) at z > 1000 should be a staple of cosmology textbooks, and yet does not exist.

The early expansion history has an important bearing on understanding the nature of dark
energy as well, the question of persistence of dark energy. For a cosmological constant Λ, the
dark energy density contributed at recombination is ΩΛ ≈ 10−9, while the current upper limit
from data is above 10−2. This gives substantial unexplored territory. Moreover, the current
constraints use a specific functional form for the dark energy evolution (usually the Doran-
Robbers form (12)), but other models could lead to significantly different limits (4). Thus, model
independent limits on early dark energy are needed. Physics origins for early dark energy can
be quite diverse, e.g. from dilaton models (as in some string theories) to k-essence (noncanonical
kinetic field theories) to dark radiation (as in some higher dimension theories) (5). Establishing
whether CMB observations could distinguish these classes is another important question.

Improvement of CMB data recently by higher resolution observations extending the tem-
perature power spectrum to multipoles ` ≈ 3000 by the Atacama Cosmology Telescope (ACT
(8)) and South Pole Telescope (SPT (9)) gives valuable leverage since higher multipoles are sen-
sitive to modes crossing the cosmological horizon at earlier times. This advance was used in
(4) to rule out in a model independent manner the presence of any epoch of cosmic acceleration
between z ≈ 2 and 105 (supplementing the limits from growth of structure post-recombination
in (5)). Upcoming Planck and ground based polarization experiment data will also map out the
polarization power spectra, giving additional constraints.

To carry out a model independent analysis of the early expansion history, we use a combi-
nation of redshift binning and principal component analysis. In Sec. 2.3 we lay out the method-
ology for describing arbitrary H(z). Analyzing the results in Sec. 2.4, we identify the redshifts
ranges where the CMB observations are most sensitive to expansion variations. We project
three classes of models representing different physical origins onto the eigenmodes to explore
the discriminating power of the data in Sec. 2.5. In Sec. 4.6 we discuss the results and future
prospects.
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2.3 EXPANSION HISTORY

The expansion Friedmann equation directly relates the expansion rate of the universe, or Hub-
ble parameter, to the energy density constituents,

H2(a) =
8πG

3

∑
ρi(a) , (2.1)

where we neglect curvature (from a theoretical prior for flatness and because we mostly treat
high redshift where it would be negligible). At high redshift the canonical expectation is that
the universe is matter or radiation dominated, so we write

H2(a) =
8πG

3
[ρm(a) + ρr(a) + ρΛ] + δH2(a) (2.2)

= H2
fid + δH2(a) (2.3)

= H2
fid [1 + δ(a)] . (2.4)

Deviations δ(a) to the fiducial expansion rate can also be interpreted as an effective dark
energy density differing from that of the cosmological constant, with

ρde(a) = ρΛ +
3H2

fid

8πG
δ . (2.5)

We can write the dark energy density evolution as

ρde(a) = ρde,0 f(a) = ρΛ f(a) (2.6)

f(a) = 1 +

(
1 +

ρbg
ρΛ

)
δ , (2.7)

where ρbg is the background energy density excepting dark energy, i.e. usually the dominant
component, matter or radiation. More simply, the fraction of critical density contributed by the
effective dark energy is

Ωde(a) =
8πGρΛ

3H2
fid (1 + δ)

+
δ

1 + δ
=

ΩΛ(a) + δ

1 + δ
. (2.8)

We can readily see that at high redshift we obtain a fractional early dark energy density contri-
bution of approximately δ(a), for ΩΛ(a) � δ � 1. During epochs when δ is constant, this is a
constant fractional contribution.

Our goal is to analyze constraints on the variations δ(a) from the canonical model with δ = 0.
We begin by writing δ(a) as a linear combination in an orthogonal bin basis,

δ(a) =
∑

βibi(a) , (2.9)

where bi(a) is a tophat of amplitude 1 over a given range of scale factor a, and 0 otherwise.
That is, the Hubble parameter deviations δ(a) are given as a linear combination of piecewise
constant values. We can then constrain H(a) in bins of a, a model independent description. The
bin basis is also the standard first step in principal component analysis (see, e.g., (10)), as we
will pursue in the next section. We choose N bins per decade of scale factor over the range of
log a = [−5, 0], beginning with N = 20.

Since we are interested in the expansion history we deal directly with the Hubble parameter
(or effective dark energy density). Treating bins of the dark energy equation of state, or pressure
to density, ratio w(z) would have some drawbacks here. Most severe is that to obtain H(z) one
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must integrate w(z′) over all redshifts from zero to z. This makes it difficult to explore the
early expansion history in a model independent manner. Moreover, the instantaneous w(z) is
not fully informative: during matter domination, for example, any level of dark energy density
from Ωde = 10−9 to 10−2 or whatever that scales as the matter has w = 0. Thus we aim to derive
constraints directly on variations in H(z), and consider the interpretation of these as a further
step.

The expansion history directly feeds into the CMB power spectra, through changing the
distance scales, e.g. of the sound horizon or damping scale, and the relation of multipole ` (or
angular scale θ) to wavenumber k = `/η(z), where η is the conformal distance. It also affects
the decoupling of photons from baryons and the growth of perturbations in both.

The treatment of perturbations requires some attention. The description of the cosmic ex-
pansion gives the evolution of the homogeneous background, but consistency of the field equa-
tions requires consideration of perturbations in all components of energy density. Unless the
deviation in H(z) is interpreted purely in terms of a cosmological constant (which indeed is
purely homogeneous), spatial perturbations have to be accounted for, at least formally and gen-
erally in actual practice. The perturbation evolution equations for the additional energy density
involve the quantitiesw(z), w′(z) = dw/d ln a, the initial conditions on the density perturbation,
and the sound speed of the effective fluid cs(z). (One could also add a viscous sound speed or
anisotropic stresses, see (11).)

The first three of these are fairly straightforward. For any deviation δ(a) one can define an
effective equation of state

w = −1− 1

3

d ln ρde
d ln a

(2.10)

= −1− a

3[1 + δ(1 + ρbg/ρΛ)]

[(
1 +

ρbg
ρΛ

)
dδ

da
+

δ

ρΛ

dρbg
da

]
(2.11)

≈ wbg −
1

3

d ln δ

d ln a
, (2.12)

where the last line holds when ρΛ gives negligible contribution to the effective dark energy
density. One can take a further derivative to obtain w′. Initial conditions are usually taken
as adiabatic and stresses are taken to vanish. However, one does have to specify the sound
speed. If one interprets the extra energy density as arising from quintessence, i.e. a minimally
coupled, canonical scalar field, then cs = 1. In general, the necessary inclusion of perturbations
in whatever is the origin of the deviations in the expansion history prevents a purely model
independent treatment – one has to make some assumptions about the physics. Here we fix cs
to that for the particular cases we consider, but in future work we will fit for it.

We modified CAMB (13) to allow a general H(z), with the w(z) that goes along with this.
We then solve the coupled background evolution, and photon, matter, and effective dark energy
perturbations equations to obtain the CMB power spectra. For evaluating binned H(z) mod-
els, using the orthogonal bin basis introduced in Eq. (2.9), we slightly smooth the bin edges,
using a Gaussian smoothing of width 0.075 times the bin width, to prevent infinite derivatives.
We extensively test convergence and numerical stability of the results (also see (4) where this
procedure was found to be robust).

Figure 2.1 shows the bins in log scale factor (20 bins per decade) and the conversion to
multipole space (overlaid with the CMB temperature power spectrum) by ` ≈ η0/η(a), which
approximately relates a given wavenumber k ≈ `/η0 to the time it entered the horizon. Note
that a uniform binning in log a, which is the expected characteristic scale for physical variations
in the expansion, is not uniform in multipole space.
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Figure 2.1 [Top] The bin basis for expansion variations δ(ai) is plotted vs log a. [Bottom] The
scale factors ai of the center of each bin in the top panel (with matching colors) are approxi-
mately mapped into multipoles by ` ≈ η0/η(ai), with the CMB temperature power spectrum
overplotted. (Amplitudes of the colored lines are arbitrary.)
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To place constraints on allowed deviations δ(a) we carry out a Fisher matrix calculation. The
Fisher matrix elements are given by

Fij =
∑
l

∑
X,Y

∂CXl
∂pi

(COVl)
−1
XY

∂CY l
∂pj

(2.13)

where X,Y is any combination of the CMB temperature power spectrum (T), E-mode polariza-
tion power spectrum (E), and temperature-polarization cross power spectrum (TE). The covari-
ance matrixCOV is given by the measurement uncertainties of the CMB observations; we adopt
the characteristics of the Planck satellite experiment (13). The parameter set {pi} includes the
usual cosmological parameters – the physical baryon density Ωbh

2, physical cold dark matter
density Ωch

2, total present matter density Ωm (the present Hubble constant h is a derived quan-
tity), primordial scalar perturbation power law index ns, optical depth τ , and present amplitude
of mass fluctuations σ8 – and the Nbin expansion variation parameters δ(ai). The uncertainties
on each δ(ai) are given by the (square root of the) respective diagonal element of the inverse of
the Fisher matrix.

Figure 2.2 shows the sensitivity
√
Fii,` of the weighted combination of CMB power spectra

(T, E, TE) to the expansion deviations in each redshift bin for each multipole. Sensitivity peaks
around the acoustic peaks and is reduced at low multipoles due to cosmic variance and at high
multipoles due to the finite resolution from the instrument beam size. Since the polarization
power spectrum is out of phase with the temperature power spectrum, dips in the temperature
sensitivity are filled in by polarization information.

Figure 2.3 shows the actual Fisher and covariance submatrices corresponding to the expan-
sion bin parameters (marginalized over other parameters in the case of the covariance matrix).
First, we notice the maximum of the information content is near decoupling (log a ≈ −3), as
expected. Earlier times, log a < −4, map to multipoles on the damping tail and so have less
leverage, while recent times, log a > −3, are on the Sachs-Wolfe plateau and again have lim-
ited information. The Fisher matrix is not diagonal because expansion deviations affect all later
times, e.g. perturbation evolution once the wavemode is within horizon and integral quantities
such as the sound horizon. This will be one of the motivating factors for carrying out princi-
pal component analysis (PCA) in Sec. 2.4. The covariance matrix (inverse of the Fisher matrix),
however, has a more diagonal structure, and so bins can be a useful parameter set if carefully
chosen (see Sec. 4.6).

Most importantly, Figure 2.4 shows the constraints on the expansion history

σ(H)

Hfid
=

σ(δ)

2
√

1 + δ
, (2.14)

i.e. the fractional uncertainty on H(a) due to deviations δ, marginalized over the other cosmo-
logical parameters. This is the “textbook” plot, showing the state of our knowledge of the early
expansion history of the universe when given CMB data of Planck sensitivity. The constraints
depend on what bandwidth we wish to constrain the expansion history: the top curve shows
10 bins per decade, the bottom curve 2 bins per decade. One can trade off sensitivity to fine
features vs overall level of constraints. With 10 bins per decade one can achieve percent level
constraints on H2(a) near decoupling, while with 2 bins per decade one obtains subpercent
constraints over more than two decades in scale factor. The relation between 10 bins and 2 bins
is not simply a

√
5 scaling due to correlations between bins (the offdiagonal elements of the

covariance matrix), and the lowest redshift bin is particularly affected by covariance with the
other cosmological parameters.
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Figure 2.2 The fractional Fisher sensitivities,
√
Fii,`, to the expansion variations δ(ai) in each

bin, color coded as in Fig. 2.1, are plotted vs multipole. The top panels use log scale in multi-
pole, the bottom panels a linear scale to highlight different regions. The left panels are for the
temperature power spectrum only, while the right panels use the variance weighted sum of the
T, E, and TE power spectra entering the Fisher information matrix. Polarization information
fills in the sensitivity gaps due to the acoustic troughs.

2.4 PRINCIPAL COMPONENTS OF EXPANSION

Expansion deviations at some redshifts may have substantially the same consequence for the
observables as deviations at some other redshift, or deviations may be correlated in such a
way that only the difference between them is important. This leads to the idea of compressing
the 100 bins between log a = [−5, 0], or at least the information contained in them, into fewer
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Figure 2.3 The Fisher information submatrix (left) corresponding to the expansion variation
parameters δ(ai) is plotted with redder shades representing larger absolute values (more infor-
mation). The color bar gives the log of the absolute value of elements. The covariance matrix
(middle), marginalized over other cosmological parameters, follows the same color scheme, so
the best determined parameters (smallest errors) are bluest. Diagonal elements of the Fisher ma-
trix (right), as a fraction of the largest diagonal element, quantify for which redshifts the CMB
data is most sensitive to the expansion history. The bump at log a ≈ −1.1 reflects reionization.

variables. One might for example speculate that the major effect of expansion deviations for
a > 10−3 comes from shifting the distance to CMB last scattering, and whether the variation
occurs at a = 0.01 or a = 0.1 is less crucial.

Principal component analysis (PCA) can provide an efficient way to compress the influence
on the observables. For some uses probing dark energy and the CMB, see for example (14; 10;
15; 16; 17; 18) (and dark matter and the CMB in (19)). By diagonalizing the Fisher matrix we can
find its eigenvectors that best summarize the sensitivity of the observations to the expansion
deviations. We can then transform the bin basis to an orthogonal eigenmode basis of principal
components (PCs), writing

δ(a) =
∑

mi ei(a) , (2.15)

where mi is the amplitude of mode i and ei(a) is the eigenvector. Since the modes are orthogo-
nal, the errors σi ≡ σ(mi) on the amplitudes are uncorrelated. Using the entire set of bins or the
entire set of PCs is equivalent, but using only a few PCs with the highest eigenvalues (smallest
σi) in general allows one to approximate the full set more accurately than the same number of
bins. That is, the information can be compressed.

Figure 2.5 illustrates some of the PCs for the CMB Fisher matrix, ordered from highest to
lowest eigenvalues (best to worst determined). Note that as expected most of the activity in the
first PCs is prerecombination, associated with the acoustic peaks. In modes 7-10, there is some
low redshift action coming primarily from the integrated distance to last scattering and the
reionization epoch. Higher PC modes tend to be more oscillatory (essentially high derivatives
of the expansion behavior) and localized.

By taking the cumulative sum of the eigenvalues, we find that the first 7 PCs contain 99% of
the variance. That is,

∑7
1 σ
−2
i /

∑100
1 σ−2

i = 0.99. This means that the great majority of expansion
behaviors, as far as their observational detectability is concerned, can be described with just 7
parameters m1, . . .m7.

It is convenient to normalize the PCs such that
∑
n ei(an)ej(an) = δij , where δij here is the
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Figure 2.4 The fractional precision with which the expansion history can be determined by
projected Planck CMB data is plotted vs scale factor, for two different bandwidths. The top
(bottom) curve is for 10 (2) bins per decade in scale factor. Subpercent precision can be achieved
around decoupling but large swaths of the cosmic history will remain unknown.

Kronecker delta, and then the mode coefficients mi give the amplitudes for a given model of
expansion history deviation,

mi =
∑
n

δ(an)ei(an) , (2.16)

where an denotes the bin centers. For many narrow bins the sum can be converted to an integral.
The amplitudes mi only have meaning when discussing a specific model; note the canonical
model ΛCDM has all mi = 0. Since the mode amplitude mi has no a priori magnitude, we do
not know whether its uncertainty σi = 0.01, say, is a small or large number. We can compare
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Figure 2.5 Principal components of the CMB observational sensitivity to expansion history are
plotted vs log a, for the first 10 and last 2 modes. The bottom plot shows the σi for all modes.
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σi’s to each other (but if the mi are 0 this is irrelevant), or for a specific model we can form a
signal to noise ratio for a mode,

(S/N)i = mi/σi . (2.17)

If (S/N)i � 1, then it does not matter if σi looks small, the mode cannot be well measured.
Thus caution must be used in interpreting PCA (for more details see (17; 20)).

Although PCA certainly compresses the information content into fewer parameters, the
number of PCs required to describe arbitrary expansion histories is still large for the purposes
of, say, Monte Carlo simulations. We can therefore use PCA instead as a guide in two ways:
to examine the ability to discriminate among different classes of models for the expansion de-
viation, and to indicate which regions in a show the most sensitivity to deviations and hence
which of the original bins are most useful. These are treated respectively in Sec. 2.5 and Sec. 4.6.

2.5 COMPARING EARLY DARK ENERGY MODELS

While we wish to concentrate, as much as possible, on a model independent approach to con-
straining the expansion history, it is useful to make contact with various classes of models to
make sure that important behaviors are captured. In broad strokes, one can consider cases
where the expansion deviations decline at times earlier than recombination, increase at earlier
times, or remain constant. This can be translated into early dark energy models that contribute
a lower fraction of the total energy density in radiation vs matter domination, a higher frac-
tion, or a constant fraction. This tilt of the expansion rate can be an important discriminant,
somewhat analogous to the tilt of the primordial power spectrum for inflation.

Early dark energy models have been proposed with each of these behaviors. Examples of the
three classes respectively are 1) Barotropic dark energy with sound speed c2s = 0 (21), sometimes
called aether models, 2) Barotropic dark energy with sound speed c2s = 1/3 (21), sometimes
called dark radiation, and 3) Scaling dark energy such as the commonly used Doran-Robbers
model with c2s = 1 (12).

Barotropic models have w(a), ρde(a), and hence δ(a), all determined by c2s(a). The dynamics
is given by (21)

w′ = −3(1 + w)(c2s − w) , (2.18)

with solution for constant cs of

w(a) =
c2sBa

−3(1+c2s) − 1

Ba−3(1+c2s) + 1
, (2.19)

where B = (1 + w0)/(c2s − w0). For the c2s = 0 aether model,

ρae(a) = ρ∞ + Ωeρm,0a
−3 (2.20)

δae(a) = Ωe
Ωm(a−3 − 1)

Ωm(a−3 − 1) + Ωra−4 + 1
(2.21)

ρ∞/ρcrit,0 = 1− Ωm(1 + Ωe) = (−w0)(1− Ωm) (2.22)

w0 = −1 +
ΩeΩm

1− Ωm
, (2.23)

where during matter domination the dark energy contributed a constant fractional density Ωe,
but this declines at earlier times as radiation becomes important.
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For the c2s = 1/3 dark radiation model,

ρdr(a) = ρ∞ + Ωeρr,0a
−4 (2.24)

δdr(a) = Ωe
Ωr(a

−4 − 1)

Ωr(a−4 − 1) + Ωm(a−3 − 1) + 1
(2.25)

ρ∞/ρcrit,0 ≈ 1− Ωm (2.26)

w0 ≈ −1 , (2.27)

where during radiation domination the dark energy contributed a constant fractional density
Ωe, but this declines at later times as matter becomes important.

The most commonly used early dark energy is the Doran-Robbers form (12),

Ωde(a) =
1− Ωm − Ωe(1− a−3w0)

1− Ωm(1− a3w0)
+ Ωe(1− a−3w0) , (2.28)

where during both matter and radiation domination the dark energy contributed a constant
fractional density Ωe. The sound speed is conventionally taken to be c2s = 1.

Thus the three models we consider have expansion history deviations with complementary
behaviors: rising, falling, and constant. This range should give a good indication of how PCA
can characterize the expansion, while also having physical motivations. Of the physics origins
mentioned in the Introduction, some string theories give Doran-Robbers behavior, some non-
canonical kinetic fields give aether behavior, and some higher dimension theories give dark
radiation.

Once we calculate the mi for a model through Eq. (2.16), we have a better indication of the
importance of a PC mode through the signal to noise criterion of Eq. (2.17) – recall that the σi
alone say little about whether the mode is relevant. To choose the number of modes to keep in
describing a model, we can simply impose a S/N cutoff, or ask that the cumulative S/N of the
modes kept be above some fraction, e.g. 95% of the total S/N from all modes.

Another indicator is the statistical risk, or mean squared error. This takes into account that
more modes decrease the bias from the true model, but increase the accumulated variance in δ.
The risk RN is

RN =
√
b2N + σ2

N (2.29)

b2N =
∑
n

[δmodel(an)− δN PCs(an)]2 (2.30)

σ2
N =

∑
n

N∑
i=1

σ2
i e

2
i (an) . (2.31)

One could choose to keep that number N PCs where RN is minimized.
Figure 2.6 shows for each of the three models the approximation to δ(a) as more PCs are

added, the values mi, and the cumulative S/N and risk as a function of number of PCs used.
In general we find the risk requires more PCs than the S/N criterion; this makes sense since
S/N concentrates on those PCs fitting the observable (CMB power spectra) while risk attempts
to fit the unobservable expansion deviation. Another drawback to risk is that it does not scale
with the amplitude of the modes, i.e. while S/N increases linearly with Ωe, the bias term in the
risk scales but the variance does not, so the risk is weighted unevenly depending on deviation
amplitude.

For the dark radiation, aether, and Doran-Robbers models, respectively, we should keep the
first 6, 7, and 5 PCs according to S/N , and 10, 14, and 15 PCs according to risk. However, we
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note that this is if we keep the PCs in order according to σi. If we choose the highest S/N modes
individually, we only require 4, 3, and 3 modes to attain 95% of the full S/N (but this requires
knowing the correct model, or assuming a given set of models).

Figure 2.6 Three models of early dark energy are analyzed – dark radiation (top row), aether
(middle row), and Doran-Robbers (bottom row) – with different recombination era behaviors.
The leftmost column shows δ(a) built up out of PCs, with the thick red line giving the exact
model. The second column gives the PC amplitudes mi and the third column shows the cumu-
lative S/N , summing Eq. (2.17) over the first i PCs in quadrature. The rightmost column shows
the bias squared (falling curve), variance (rising curve), and risk squared (top curve) when in-
cluding the first i PCs. One might choose to keep those PCs that either give the largest jumps in
S/N , or all those up to the minimum in the risk curve.

Let us examine these models in more detail. Figure 2.7 shows how these models are well sep-
arated in eigenmode coefficient space. Considerable discriminating power occurs using modes
1 and 7, for example, with the separations between the three models many times the uncertain-
ties σi. From the shape of the modes in Fig. 2.5, we can see that mode 1 is roughly measuring the
amplitude of the expansion deviation at recombination, and whether it is increasing or decreas-
ing (thus distinguishing all three models), and mode 7 is sensitive to more recent deviations
such as occurring in Doran-Robber and aether, but not dark radiation, cases. Thus these two
modes together are adept at distinguishing between the rising, falling, and constant deviation
classes of expansion history, and early vs late deviations.

We emphasize that the PCs are really telling us about fits to the observable power spectra
and not reconstruction of the expansion deviation in a fine grained sense. While Fig. 2.6 shows
that ∼ 50 PCs are needed to model δ(a) well for these example, Fig. 2.8 demonstrates that only
∼ 10 PCs are needed to give accurate agreement in C`. Figure 2.8 shows the residual of the
CMB temperature power spectrum from the sum of the first N PCs (in S/N ordering, and also
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Figure 2.7 (Top) Differences between each PC amplitude mi are shown for pairs (X,Y ) of early
dark energy models, with solid curves comparing Doran-Robbers to dark radiation, dashed
Doran-Robbers to aether, and dot-dashed dark radiation to aether. The highest peaks indicate
the modes with strong discriminating power. (Bottom) Amplitudes of modes 1 and 7 are plot-
ted for the three models, with the +’s indicating the values mi and the ellipses showing the
uncertainties σi. These two modes can clearly distinguish between each of the three models.
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shown in σi ordering for the aether model) relative to the true model for the three models, as
well as the χ2 summed over multipoles, and the reconstructed expansion history. Although
the reconstructed expansion history may only agree over certain ranges of a, this can still give
excellent agreement for the observables as the power spectra are not equally sensitive to all
scale factors.

Figure 2.8 PCA of three models of early dark energy – dark radiation (top row), aether (mid-
dle row), and Doran-Robbers (bottom row) – is compared to the exact models in terms of the
observable CMB power spectrum. The left column shows the deviation in the temperature
power spectrum for the sum of the first 4, 8, 12, 15 modes using S/N ordering of the modes
(see Fig. 2.6). The χ2 of the deviations summing over multipoles is in the middle panels, with
the dashed curve using ordering by σi instead. Reconstruction of the theoretical δ(a) appears
in the right panels; note how only certain epochs need be fit well to reproduce the observable
CMB. For the aether model (middle row) dashed curves show also the σi ordering results for
the N = 8, 15 cases, which do much worse than S/N ordering.

The numbers of PCs required to ensure an accurate estimation of the observables, say χ2 <

10 (summed over 3000 multipoles), is generally greater than 10, rendering cumbersome a straight
application of mode amplitudes as parameters in a Monte Carlo simulation. (And recall that for
a model independent analysis we do not know a priori the S/N ordering, so one would need
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to include many more PCs using σi ordering.) Moreover, PCs per se are not always easy to
interpret in terms of physical effects. Therefore it is both clearer and more efficient to use the
PCA instead to guide an effective, low order binning basis.

2.6 CONCLUSIONS

Our knowledge of the expansion history of our universe, even at the level of degree of mat-
ter domination or radiation domination at early epochs, is remarkably imprecise. Cosmic mi-
crowave background radiation measurements from ACT, Planck, and SPT (and later ACTpol
and SPTpol) will shed light on the times around recombination and reionization. We quantify
the model independent state of our knowledge through a combination of redshift bin and prin-
cipal component analysis, finding that subpercent level constraints will be placed by Planck
over log a = [−2.5,−5] for a bandwidth of ∆ log a = 0.5.

CMB data will address one of the key aspects of dark energy – its persistence, a characteristic
of many high energy physics origins – and we find that several different classes of early dark
energy are well separated in PCA space. The limits can also be interpreted in terms of the
number of effective relativistic species, Neff , such as an extra neutrino type, with current data
mildly preferring further contributions. A thermal relativistic neutrino species adds 23% to the
photon energy density, so δ = 0.13 ∆Neff , giving tight limits on extra relativistic degrees of
freedom from the forthcoming data.

We explore three specific models, representing different classes for early dark energy, possi-
bly corresponding to different physical origins. The commonly used Doran-Robbers form has a
dark energy fraction Ωe that is constant through the recombination epoch. We also investigate a
dark radiation model with Ωde(a) rising to the past and a barotropic aether model with Ωde(a)

falling to the past, and find that the dominant PC mode is well able to distinguish between these
behaviors. Since the amplitude of that mode is greatest for the Doran-Robbers model, we expect
that data constraints on Ωe in the other classes will be weaker than in this model (such as from
(22) using current CMB data), allowing for nonnegligible persistence of dark energy (see (4) for
further demonstrations of this). Our general approach, however, does not rely on assuming the
form for the new component or expansion deviation.

Figure 2.3 is in a sense the textbook picture of what Planck CMB data will say in a model
independent manner about early universe expansion. For postrecombination epochs this will
improve with further ground based polarization measurements (especially of CMB lensing)
and inclusion of growth of structure data. Understanding early expansion is in fact crucial for
accurate interpretation of large scale structure, and feeds directly into the early time gravita-
tional growth calibration parameter g? (23); ignorance of this can bias cosmological parameter
estimation and tests of gravity.

Expansion history is not the whole story as the effective fluid behind the expansion devia-
tions has perturbations and can have internal degrees of freedom. We treat the perturbations
consistently – the dark radiation and barotropic aether models for example have sound speeds
different from the speed of light. We do not include viscosity, however, as the data has poor
leverage on this (24; 4; 25). Another difficulty for model independent analysis is having δ < 0,
since perturbations are difficult to treat when the effective density deviation passes through
zero; models such as nonthermal neutrinos, with energy densities below the standard, could
realize such a condition. We will consider such cases in future work.

Principal component analysis provides a valuable guide to the key epochs of sensitivity
and the amount of information contributed from different times. However, we emphasize and
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demonstrate that the raw uncertainty σi on an eigenmode has very limited meaning; the first 15
modes ordered by σi can give a highly inaccurate reconstruction relative to a smaller number
of modes ordered by signal to noise. Redshift bins can be more clearly interpreted. Employ-
ing the best aspects of each can result in physically clear, well characterized expansion history
constraints.
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Abstract

Cosmic microwave background measurements have pushed to higher resolution, lower noise,
and more sky coverage. These data enable a unique test of the early universe’s expansion rate
and constituents such as effective number of relativistic degrees of freedom and dark energy.
Using the most recent data from Planck and WMAP9, we constrain the expansion history in
a model independent manner from today back to redshift z = 105. The Hubble parameter is
mapped to a few percent precision, limiting early dark energy and extra relativistic degrees of
freedom within a model independent approach to 2–16% and 0.71 equivalent neutrino species
respectively (95% CL). Within dark radiation, barotropic aether, and Doran-Robbers models,
the early dark energy constraints are 3.3%, 1.9%, 1.2% respectively.
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Except for the last e-fold of cosmic expansion, our knowledge of the state of the universe
arises directly only through measurements of the cosmic microwave background (CMB) radi-
ation or indirectly (as in models of its influence on growth of large scale structure). Recent
CMB data (1; 2) provides a clear window on an additional 10 e-folds of history (back to redshift
z = 105), a vast improvement in mapping the universe.

The expansion rate, or Hubble parameter, is a fundamental characterization of our universe,
and includes information on its matter and energy components, their evolution, and the over-
all curvature of spacetime. Moreover, the CMB encodes linear perturbations in the photons
and the gravitational potentials they experience, providing sensitivity to the microphysics of
components, e.g. their sound speed.

These observations lead to constraints on quantities such as early dark energy and extra
neutrino species or other relativistic degrees of freedom. However most analyses assume a
specific model for these deviations, enabling stringent but model dependent constraints. In this
Letter our approach is to map the cosmic state and history in as model independent fashion
as practical, guided by the data. We utilize the results of the principal component analysis
of (3) to define localized bins of Hubble parameter in log scale factor that are most sensitive
to the data, and then carry out a Markov Chain Monte Carlo (MCMC) analysis to constrain
them. Finally we discuss the implications for dark energy, relativistic degrees of freedom, and
spacetime curvature. For data we use the most recent CMB results from the Planck satellite (1)
and WMAP satellite (2).

Cosmic History Mapping – For robust, model independent results we adopt a combination of
principal component analysis (PCA) and binning. This avoids assuming a specific functional
form for the Hubble parameter or dark components and allows the data itself to inform where
the greatest sensitivity lies. Such PCA on the Hubble parameter for projected mock CMB data
was used in (3) to predict the strength of constraints at various epochs of cosmic history.

This identification of the key epochs where physical conditions most affect the observations
enables informed choice of bins in log scale factor to use in a MCMC fit. Bins have several
advantages over the raw PCA: 1) they are localized and can be clearly interpreted physically –
the Hubble parameter during a specific epoch, 2) they avoid negative oscillations that can cause
unphysical results (while the sum of all PCs will give a positive, physical Hubble parameter
squared, this is not guaranteed for a subset), and 3) they are well defined, not changing when
new data is added.

The Hubble parameter, or logarithmic derivative of the scale factor, H = d ln a/dt, is then
written as

H2(a) =
8πG

3
[ρm(a) + ρr(a) + ρΛ] [1 + δ(a)] , (3.1)

where δ accounts for any variation from ΛCDM (cosmological constant plus cold dark mat-
ter plus standard radiation) expansion history, and ρm is the matter density, ρr the radiation
density, and ρΛ the cosmological constant density. The bins in the deviation δ(a) are slightly
smoothed for numerical tractability, with

δ =
∑
i

δi

[
1

1 + e(ln a−ln ai+1)/τ
− 1

1 + e(ln a−ln ai)/τ

]
. (3.2)

Within bin i, δ = δi and far from any bin δ = 0. A smoothing length τ = 0.08 was adopted
after numerical convergence tests. (A similar binned approach was used in (4; 5) to bound early
cosmic acceleration.)

We modify CAMB (13) to solve the Boltzmann equations for the photon perturbations in
this cosmology. The dark energy density contributed by the deviations δ and the cosmological
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constant term (which becomes negligible at high redshift) has an effective equation of state

1 + w =
Qδ

1 + δ(1 +Q)
(1 + wbg)−

1

3

1 +Q

1 + δ(1 +Q)

dδ

d ln a
, (3.3)

whereQ = (ρm+ρr)/ρΛ andwbg is the background equation of state of the combined matter and
radiation (e.g. 1/3 during radiation domination, transitioning to 0 during matter domination).
Thus w and w′ = dw/d ln a, entering into the Boltzmann equations, are defined fully by Eq. (3.2)
for δ. We choose the associated sound speed to be the speed of light, as in quintessence dark
energy, but explore variations of this later.

Guided by the PCA of (3), where the first few PCs show greatest sensitivity in log a ∈
[−4,−2.8], we choose bins δ1−5 in the logarithmic scale factor log a = [−5,−4], [−4,−3.6],
[−3.6,−3.2], [−3.2,−2.8], [−2.8, 0] so the finest binning is near CMB recombination at a ≈ 10−3.
(Future CMB data could change the PCs, but we could keep the same bins, or not.) The cosmo-
logical parameters we fit for are the six standard ones: physical baryon density Ωbh

2, physical
cold dark matter density Ωch

2, acoustic peak angular scale θ, primordial scalar perturbation in-
dex ns, primordial scalar amplitude ln(1010As), and optical depth τ , plus the five new deviation
parameters δ1−5. Additional astrophysical parameters enter from the data, as discussed next.

Constraints – To constrain the cosmology with the data we use MCMC analysis, modifying
CosmoMC (7). The likelihood involves the temperature power spectrum from the two satel-
lite experiments, and the E-mode polarization and TE cross spectrum from WMAP (the first
Planck likelihood release does not include polarization, or the high multipole likelihoods from
Atacama Cosmology Telescope (8) or South Pole Telescope (9); in the future such data should
become available). Astrophysical nuisance parameters characterizing foregrounds (see (1)) are
marginalized over.

Figure 3.1 shows the constraints on the standard cosmological parameters, in the ΛCDM case
(fixing δi = 0) and when allowing variations in the expansion history (fitting for the δi). Here
the Hubble constant H0 replaces the θ parameter and we omit showing τ . Including the fitting
for expansion history deviations induces roughly a factor of two larger marginalized estimation
uncertainties for most of the standard cosmology parameters, and significantly shifts the cold
dark matter density value. This is due to the deviations in the Hubble parameter having similar
effects on the expansion near recombination to those in matter, so δ takes the place of some of
ρm. We discuss this degeneracy further later. The best fit for the ΛCDM case remains within the
68% confidence contour when allowing expansion deviations.

Figure 3.2 shows the constraints on the expansion history deviations. Note that to ensure
positive energy density (and Hubble parameter squared) we restrict δ ≥ 0, i.e. equal or more
early energy density than in the ΛCDM case (which has ΩΛ ≈ 10−9 at a = 10−3; allowing
the limiting non-negative energy density δ ≈ −10−9 would have negligible impact on the dis-
tributions). Note that these binned deviations do not have appreciable covariances with each
other, with the correlation coefficients under 0.26 except for δ2–δ3 at 0.49. This is a useful fea-
ture adding near independence to localization, making their interpretation transparent, and is
a result of the careful choice of bins based on the PCA of (3).

Table 3.1 gives the 95% confidence upper limits on each expansion deviation parameter,
showing that recent CMB data provides 2–16% constraints on the expansion history back to
z = 105. The earliest bin, of δ1, is reasonably constrained despite being well before recombi-
nation, and should improve further when adding high resolution (high multipole l) measure-
ments. The second bin has equivalent constraints when taking into account its narrowness.
Around recombination, however, δ3 and δ4 have looser bounds because all the standard cos-
mological parameters also enter strongly at this epoch, and so the increased covariance dilutes
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Figure 3.1 Joint 68% confidence contours on the standard cosmological parameters are shown
when allowing for expansion history deviations from ΛCDM (black), and fixing to ΛCDM
(smaller contours or dashed curves). Plots on the diagonal give the 1D marginalized proba-
bility distributions.

their estimation. They have the two highest correlation coefficients, of 0.89 between δ3 and
Ωch

2 and −0.76 between δ4 and Ωbh
2. Finally, the late, broad bin of δ5 has strong constraints.

These behaviors are all consistent with the pre-Planck, Fisher matrix predictions of (3) (see their
Fig. 4). Adding late time data or priors (which we avoid; see concluding section) can shrink
some uncertainties by up to 60%.

The expansion history does not completely define the system of Boltzmann equations: the
effective dark component can have internal degrees of freedom such as sound speed cs that
determine the behavior of its perturbations and hence the gravitational clustering of the photons
(10). Therefore we also show in Table 3.1 the constraints when this sound speed is equal to
that of a relativistic species (c2s = 1/3), or is much smaller than the speed of light, cold dark
energy with cs = 0. The cs = 0 case has looser bounds, due to the additional influence on the
photon clustering with the strengthened gravitational potentials, and covariance with matter
parameters during matter domination. For the c2s = 1/3 case, where the extra expansion rate
corresponds to extra relativistic degrees of freedom, the constraints are weaker during radiation
domination. This is a combination of the expansion deviation acting just like the photons, and
a slight preference of the data for additional radiation energy density, in accord with previous
hints that the number of effective neutrino species, Neff , might be greater than the standard
model value of 3.046. Indeed, the mean value of δ2 = 0.026 in this case corresponds to ∆Neff =

0.31, in good agreement with the Planck values of Neff = 3.39. Recall that ∆Neff denotes the
equivalent number of relativistic neutrino species corresponding to the extra energy density.
Since δ2 is not in the fully radiation dominated era, we must translate it to the constant early
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Figure 3.2 Joint 68% and 95% confidence contours on the expansion deviation parameters are
shown. Plots on the diagonal give the 1D marginalized probability distributions.

dark energy density using Eq. (25) of (3) and then to the asymptotic relativistic ∆Neff using
Eq. (6) of (11).

In all other parts of the article we keep cs = 1.

Case δ1(10−4.5) δ2(10−3.8) δ3(10−3.4) δ4(10−3.0) δ5(10−1.4)

c2s = 1 0.036 0.050 0.160 0.095 0.018
c2s = 1/3 0.053 0.054 0.067 0.038 0.013
c2s = 0 0.060 0.069 0.109 0.184 0.223

Table 3.1 95% confidence upper bounds are given for the expansion history deviations δ, listed
by the bin number and midpoint of the log a bins, for cases with different sound speeds.

Figure 3.3 shows the mean value and 68% uncertainty band of the expansion deviations δ(a)

given by the Monte Carlo reconstruction using the recent CMB data. This figure represents
the best current model-independent knowledge of the early expansion history of our Universe.
Setting all δi = 0, i.e. ΛCDM, is consistent with these results at the 95% confidence level. The
mean value does show a very slight preference for a faster expansion rate, as in early dark
energy or extra relativistic degrees of freedom, before recombination.

Physical Implications – This analysis has been model independent, allowing individual epochs
to float freely without assuming a functional form. If we do assume a specific model, then
constraints will in general be tighter, with each epoch having leverage on others through the
restricted form.
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Figure 3.3 Reconstruction of the expansion history deviations δ(a) from ΛCDM is shown, with
the mean value (solid line) and 68% uncertainty band (shaded area).

Three distinct families of early dark energy might be considered: where the early dark en-
ergy density rises, falls, or stays constant across CMB recombination. These were investigated
in (3) in terms of the (somewhat motivated) models of barotropic aether, dark radiation, and
Doran-Robbers (12) forms, respectively (see (3) for more detailed discussion). We compute the
constraints on the fraction Ωe of critical density contributed by early dark energy (approxi-
mately equivalent to δ) within each of these models (not using the δi bins), giving the results
in Table 3.2. (Note that Planck finds Ωe < 0.009 at 95% CL for the Doran-Robbers model when
also including high multipole data (13).)

Aether Dark Radiation Doran-Robbers
Ωe 0.019 0.033 0.012

Table 3.2 The 95% confidence level uncertainties are presented for three early dark energy mod-
els. For small values, Ωe ≈ δ. The Doran-Robbers model has an additional parameter w0; we
find w0 = −1.49+0.69

−0.57 (95% CL).

Two aspects of the models impact their detectability: the presence of the expansion history
deviation at a sensitive epoch and its persistence over time, and its clustering behavior. The
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common Doran-Robbers form has the tightest bounds (despite the extra parameter), due to its
persistence pre- and post-recombination and its distinction from matter clustering since it has
c2s = 1. The aether model only begins to deviate around recombination, and has c2s = 0 so there
is more covariance with the dark matter component. Dark radiation has influence only before
recombination and its c2s = 1/3 makes it more covariant with the photons (and neutrinos). A
key conclusion is that early dark energy could in fact be more prevalent than apparent from
bounds in the literature on the Doran-Robbers model.

Since dark radiation density at early times scales like radiation, it acts like the addition of
relativistic degrees of freedom. Taking into account the definition of extra degrees in terms of
the number of effective neutrino species Neff , the constraint on Ωe within the dark radiation
model translates to (11)

∆Neff(a� aeq) = 7.44 Ωe/(1− Ωe) . (3.4)

Thus Ωe < 0.033 for the dark radiation model becomes ∆Neff < 0.25 at 95% CL. This puts
a tighter global bound on ∆Neff compared to our model independent value from δ2 before
recombination (∆Neff < 0.71 at 95% CL, where again we have to account for δ2 not being in the
fully radiation dominated era).

Another implication of the expansion history is its relation to the spacetime itself. The Ricci
scalar curvature is the central quantity in the Einstein-Hilbert action for general relativity, and
plays a key role as well in extensions to gravity such f(R) theories. The curvature history of the
Universe has been explored from a theoretical perspective recently by (14). Since

R = 3H2

[
1− 3wbg

H2
fid

H2
− 3w

δH2

H2

]
(3.5)

= 3H2
fid [1− 3wbg + δ(1− 3w)] , (3.6)

observational constraints on δ (and hence w through Eq. 3.3) can be used to cast light on the
curvature history.

Conclusions – We have used the recent advances in CMB data to constrain the fundamental
quantity of the expansion history of our Universe. The results from the model independent
analysis bound deviations from ΛCDM at 2–16% (95% CL), depending on the epoch. This con-
strains any deviations, whether due to, e.g., some form of dark energy or a nonstandard number
of relativistic degrees of freedom. It also relates directly to the Ricci spacetime curvature.

Adding late time data that helps to constrain H0 or Ωm, say, would help break the degen-
eracy around recombination that led to the loosest, 16% upper bound on deviations. However,
proper treatment of this would require many low redshift bins to reflect the density of the data,
while our focus here is on the early expansion history.

We regard the model independence of the analysis as a signal virtue; however we can also
compare the bounds for specific early dark energy models. For the barotropic aether, dark
radiation, and Doran-Robbers models we derive 95% CL limits of less than 0.019, 0.033, 0.012
in early dark energy density Ωe, respectively. We emphasize that bounds appear tightest when
assuming the conventional Doran-Robbers form, and so early dark energy should be not be
thought ruled out based purely on constraining this model. In terms of extra effective neutrino
species the model independent results imply ∆Neff < 0.71 at 95% CL.

Future CMB data, such as the release of polarization data from Planck, ACTpol (15), Polar-
Bear (16), SPTpol (17) experiments will enhance our knowledge of the history back to z ≈ 105.
Exploring the even earlier universe will require neutrino, dark matter, or gravitational wave
astronomy. Late time probes will continue to map the last e-fold of cosmic expansion in greater
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detail. Over just a few years cosmological observations have taken us from order unity uncer-
tainty (with & 10% in narrow epochs around recombination and today) to a few percent level
knowledge over more than 10 e-folds of cosmic history.
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Abstract

Redshift space distortions in galaxy clustering offer a promising technique for probing the
growth rate of structure and testing dark energy properties and gravity. We consider the issue
of to what accuracy they need to be modeled in order not to unduly bias cosmological conclu-
sions. Fitting for nonlinear and redshift space corrections to the linear theory real space density
power spectrum in bins in wavemode, we analyze both the effect of marginalizing over these
corrections and of the bias due to not correcting them fully. While naively subpercent accuracy
is required to avoid bias in the fixed case, in the fitting approach the Kwan-Lewis-Linder re-
construction function for redshift space distortions is found to be accurately selfcalibrated with
little degradation in dark energy and gravity parameter estimation for a next generation galaxy
redshift survey such as BigBOSS.
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4.1 SUMMARY

The growth of structures is a promising way of testing gravity and the evolution of the energy
density of DE. The basic idea is to observationally estimate how the force from the matter field
itself and the friction force term from the expanding background each impact the dynamical
evolution of structures. Both modified gravity and evolving DE models can change these terms
which directly impacts the growth amplitude δ and the growth rate fG of matter at different
redshifts. However, the parameters δ and fG are not easily measured because we observe angles
and redshifts rather than real positions and velocities. To extract full cosmological information
from observations we therefore need to model how we go from the observed redshift space to
position and velocity space. Current analytical models fail at this reconstruction on small scales
where the density field stops being linear, k & 0.1h/Mpc, which greatly limit us in extracting
the full information.

To address this reconstruction problem, I did a study with a collaborator on how well we
need to do this modeling in order not to unduly bias cosmological conclusions. For this I wrote
a Fisher code to study uncertainties and biases in redshift space reconstructions for a galaxy
redshift survey experiment similar to BigBOSS. We included modified gravity and DE using
the parametrizations w(a) = w0 + wa(1 − a) and fG = Ωm(a)γ for the DE equation of state
and growth rate, respectively. Our approach was to first model the full non-linear redshift
space matter power spectrum using the linear Kaiser formula corrected at non-linear scales
using the numerically estimated KLL reconstruction function F (k, µ, z). We then allowed F

to vary, dividing it into bins in wavenumber k to study how the bin values, or reconstruction
parameters, impact the cosmological fit including gravity and DE.

First we studied the bias due to systematic errors in these reconstruction parameters. We
found that the cosmological fit depends mostly on parameters associated with the non-linear
part of the real space matter power spectrum and secondarily on the peculiar velocity effects
beyond the KLL reconstruction. This serves as a guidance to where future models should im-
prove. We then investigated the possibilities for including the reconstruction parameters in
the fit to remove biases. Surprisingly, we found the parameters to be highly ’self-calibrating’
leading to only weak degradations in the cosmological parameters.
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4.2 INTRODUCTION

The pattern of galaxy clustering in three dimensions, and its evolution, encodes abundant infor-
mation on the cosmological parameters affecting matter growth. Ongoing and next generation
spectroscopic galaxy surveys will vastly increase our measurements of this clustering, and our
knowledge of cosmology if we can accurately interpret the results in terms of theory. Measure-
ments accrue an extra contribution to the redshift, and hence apparent position along the sight,
from the galaxy peculiar velocities induced by the inhomogeneous density field; this gives rise
to an anisotropy in the observed clustering known as redshift space distortions (RSD).

These distortions carry information on the growth rate, as opposed to just the growth am-
plitude, and so are valuable for probing cosmology, as well as the gravitational strength driving
the growth. However, linear theory is insufficient for accurate relation of the redshift space
galaxy power spectrum to the true (real space) matter density power spectrum, even on quite
large scales, or wavenumbers k > 0.05h/Mpc, where the vast majority of the statistical lever-
age lies (1; 2; 3; 4; 5; 6). Numerous corrections involving higher order perturbation theory
have been employed (7; 8; 9; 10) that extend the validity but the region k > 0.1h/Mpc is still
problematic, especially for quantities involving the growth rate and the gravitational growth
characterization. For example, (6) demonstrates that these first principles approaches deliver
results for the growth rate that are biased by several standard deviations when using modes
out to k = 0.2h/Mpc.

Here we investigate a basic question: how accurately does one actually need to know the
redshift space distortion mapping in order to extract the cosmological and gravitational param-
eter information without substantial bias or degradation? Similar questions have been consid-
ered for weak gravitational lensing, for example, where one asks how well the nonlinear matter
power spectrum needs to be known to estimate cosmology from the lensing shear power spec-
trum (11; 12).

In Section 4.3 we introduce the correction, or reconstruction, function for the redshift space
power spectrum and review the KLL (6) form for it. Section 4.4 uses the Fisher bias method
to compute both the individual parameter bias and joint confidence contour bias due to mis-
estimated RSD, thus giving criteria for the accuracy to which the RSD effects must be known.
Adding fit parameters for uncertainties in the reconstruction function in Sec. 4.5, we assess the
impact of marginalizing over them on the cosmological parameters, in particular for tests of
dark energy and gravity. Section 4.6 summarizes the results and conclusions.

4.3 GALAXY POWER SPECTRUM

4.3.1 REDSHIFT SPACE POWER SPECTRUM

In real space the matter density power spectrum is expected to be isotropic, and the linear
power spectrum grows in a scale independent manner through the growth factorD(z), where z
is the redshift. The observed, redshift space galaxy power spectrum involves a transformation
to redshift space due to the velocity effects, and a bias relation b(z), usually taken to be scale
independent, converting the dark matter overdensity to galaxy overdensity, and the effects of
nonlinear structure formation. Each of these is modeled in various ways, with attendant uncer-
tainties.

We write the anisotropic redshift space galaxy power spectrum as

P (k, µ, z) = P r(k, z)M(k, µ, z)F (k, µ, z) (4.1)



36 4. Dark Energy Evolution and Modified Gravity

where P r is the isotropic real space matter power spectrum,M is an approximate model for red-
shift space distortions (including galaxy bias), and F is the reconstruction function accounting
for nonlinearities and more exact velocity effects.

The linear mass power spectrum P r is given by a Boltzmann numerical code such as CAMB
(13). It depends on the cosmological parameters through its shape as a function of wavenumber
k and through the growth factor D(z) giving its amplitude evolution. Since we will correct the
RSD modeling by the reconstruction function, we choose M to be simply given by the linear
theory prediction, the Kaiser approximation (14),

M(k, µ, z) = [b(z) + f(z)µ2]2 , (4.2)

where b is the galaxy bias, f = d lnD/d ln a the growth rate of density perturbations that in
the linear regime grow as δ ∼ D(a), where the scale factor a = 1/(1 + z), and µ is the cosine
of the angle made by the perturbation wavevector ~k with respect to the line of sight. Beyond
the linear regime, b could be scale dependent, i.e. b(k), but we will absorb that possibility into
the reconstruction function. The reconstruction function is fitted to N-body simulations by the
analytic form of Kwan, Lewis, & Linder (KLL; (6)),

F (k, µ, z) =
A(k, z)

1 +B(k, z)k2µ2
+ C(k, z)k2µ2 . (4.3)

This form has been found to reproduce accurately results of N-body simulations over a wide
range of redshifts, and for halos of various masses as well as dark matter; see (6; 15) for details.
Note that A, B, C may be cosmology dependent, just as f and P r are, and their universality is a
subject of ongoing research, but here we treat them as independent parameters (as an analogy,
recall how people treat coefficients within Halofit also as universal, though here we let the
values of A, B, C float; also see Sec. 4.5.4). The factor A characterizes nonlinearity of the real
space power spectrum, B describes velocity effects such as damping from a Lorentzian velocity
dispersion but also higher order multipole terms, while C describes nonlinear enhancement for
large kµ and possibly breaks the degeneracy in the two roles of B.

4.3.2 GALAXY CLUSTERING INFORMATION

The cosmological information inherent in the galaxy power spectrum can be estimated through
the Fisher information matrix. The full set of parameters {pi} includes the cosmological pa-
rameters, astrophysical parameters such as galaxy bias, and parameters for the reconstruction
function. Sensitivity to cosmology enters through the derivatives ∂P/∂pi and the error covari-
ance matrix for the redshift space galaxy power spectrum P .

We follow the usual prescription (16; 17; 18) where the covariance matrix comes from sample
variance (finite volume) and shot noise (finite resolution of the density field by sparse galaxies).
Taken together, the error can be thought of as depending on the number of modes that the
galaxy redshift survey samples. Treated as Poisson sampling of the density field, the statistical
error is

σP = P + n−1 (4.4)

from these two effects. The number of Fourier modes is the volume of a Fourier cell times the
number of cells,

Nmodes = 2πk2dk dµ× Vsurvey/(2π)3 . (4.5)

Therefore the error covariance matrix C is

C = P 2

(
1 + nP

nP

)2
8π2

Vsurveyk2dkdµ
. (4.6)
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Since the Fisher information matrix is constructed from C−1 multiplied by the sensitivity
derivatives ∂P/∂pi, we can use the P 2 factor to convert the derivatives to involve lnP , which
will be useful in treating the multiplicative factors in Eq. (4.1). In summary, the Fisher matrix is

Fij =
∑
z

∑
µ

∑
k

∂ lnP

∂pi

∂ lnP

∂pj
Veff(k, µ, z)

k2∆k∆µ

8π2
, (4.7)

where the survey volume is reduced by the shot noise to a z, k, and µ dependent effective
volume

Veff(k, µ, z) = Vsurvey(z)

[
n(z)P (k, µ, z)

n(z)P (k, µ, z) + 1

]2

. (4.8)

When the galaxies densely sample the underlying field, the effective volume approaches the
survey volume, otherwise modes are lost, diluting the effective volume due to increased noise.

Note that the logarithmic derivatives can be written as

∂ lnP

∂pi

∂ lnP

∂pj
=

(∂ lnP r + ∂ lnM + ∂ lnF )

∂pi

× (∂ lnP r + ∂ lnM + ∂ lnF )

∂pj
(4.9)

so only the ∂ lnF term depends on A, B, and C.
The reconstruction function derivatives are

∂F

∂A
=

1

1 +Bk2µ2
(4.10)

∂F

∂B
=

−Ak2µ2

(1 +Bk2µ2)2
(4.11)

∂F

∂C
= k2µ2 , (4.12)

and are otherwise taken not to depend on cosmology. This is because we use A, B, C purely as
fiducial values, and investigate how their variation (from astrophysics or cosmology) impacts
the cosmological parameter estimation.

Our fiducial case attempts to match F to the simulation results in (6), with estimated

A(k) = 1 +

(
k

0.39h/Mpc

)1.58

(4.13)

B(k) = 20 (Mpc/h)2 (4.14)

C(k) = 8 e−k/(0.176h/Mpc) (Mpc/h)2 . (4.15)

The resulting redshift space distortion reconstruction function of Eq. (4.3) is shown in Fig. 4.1.
We emphasize that these are merely the fiducials; we allow the values of A, B, C to float freely
in bins of wavenumber. This provides a model independent variation of the power spectrum
(within the reconstruction form) and we can then investigate the influence of such variations
on the cosmological parameter estimation. Conversely, the question can be phrased as “what
is the accuracy required on knowledge of the galaxy power spectrum in order to deduce the
cosmology with confidence?”

We later contrast this fiducial with fiducial (A,B,C) = (1, 0, 0), i.e. assuming that pertur-
bation theory (for example linear theory in the Kaiser case, although F also works with higher
order perturbation theory (6)) fully captures RSD effects in the model M .
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Figure 4.1 The redshift space distortion reconstruction function F (k, µ) is plotted for the fiducial
expressions for A, B, C for three values of angle µ.

The analysis is carried out in the next sections in two ways: in Sec. 4.4 we compute the effect
that a given level of unrecognized power spectrum deviation in some k bin, i.e. a systematic
error in modeling, has in biasing the cosmological conclusions, and in Sec. 4.5 we recognize the
existence of systematic uncertainties and treat them by marginalizing over the A, B, C values
for each k bin.

4.3.3 SURVEY CHARACTERISTICS AND PARAMETERS

For the galaxy redshift survey data we consider a next generation spectroscopic survey of the
quality proposed for BigBOSS (19), covering 14000 deg2 from z = 0.1 − 1.8, with a galaxy
number density n of approximately 3 × 10−4 h3 Mpc−3. For the exact distribution adopted see
Table 4.1. There are actually two populations of galaxies: luminous red galaxies (LRG) and
emission line galaxies (ELG), each with their own galaxy bias value. These galaxy biases are
taken as free parameters to be marginalized over, for each redshift bin of width 0.1. Their
fiducials are b(z) = b0D(z = 0)/D(z) with bELG

0 = 0.8 and bLRG
0 = 1.6, which provide good fits

to observations. Galaxy populations with different biases can help reduce sample variance (20),
with the Fisher matrix involving a sum over populations, i.e.

∑
XY

∂ lnPX
∂pi

∂ lnPY
∂pj

[
nXPX

nXPX + 1

] [
nY PY

nY PY + 1

]
. (4.16)

Note that for multiple populations the factor Veff in Eq. (4.8) involves the shot noise, i.e. nP , of
each population.

For the cosmological parameters we use the physical baryon density Ωbh
2 and physical cold

dark matter density Ωch
2, reduced Hubble constant h, scalar perturbation tilt ns and amplitude

As, dark energy equation of state parameters w0 and wa, and gravitational growth index γ. The
gravitational growth index gives an accurate description of the growth rate for both general
relativity and a range of modified gravity models, and looking for deviations from its general
relativistic value of γ = 0.55 acts as a test of gravity (21; 22). The growth index is treated as
an independent parameter (not a function of w0, wa) and determines the growth factor at scale
factor a = 1/(1 + z),

D(a) = e
∫ a
0

(da′/a′) Ωm(a′)γ , (4.17)

that in this ansatz is used to convert the linear power spectrum delivered by CAMB at z = 0

to another redshift z, to account for the effects of modified gravitational growth. Note that the
growth rate f = Ωm(a)γ , and redshift space distortions were highlighted as a test of gravity in
(23).

For the central question of RSD uncertainties we employ up to 12 free parameters, taking A,
B, C with independent values in each bin of width 0.1 in wavenumber above k = 0.1h/Mpc
out to some kmax. This corresponds to uncertainties ∆Pk. For the current work we follow
(11; 12) and consider the uncertainties only as a function of wavenumber, not redshift, except in
Sec. 4.5.3; we also take the KLL form to be accurate while allowing freedom in the parameters
A, B, C. In summary we fit for 8 cosmological parameters and up to 39 systematics parameters.
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z nELG nLRG

0.15 22.6 30.1
0.25 8.45 3.04
0.35 4.02 3.07
0.45 2.65 3.09
0.55 2.99 3.10
0.65 3.99 3.11
0.75 5.15 3.12
0.85 5.36 1.89
0.95 5.02 0.33
1.05 4.80 0.04
1.15 4.49 –
1.25 4.04 –
1.35 3.02 –
1.45 2.00 –
1.55 1.15 –
1.65 0.43 –
1.75 0.12 –

Table 4.1 Spectroscopic survey number densities adopted for emission line galaxies and lumi-
nous red galaxies, in units of 10−4 h3/Mpc3, for each redshift shell.

4.4 FISHER BIAS

The first question we are interested in answering is what is the sensitivity of the cosmological
parameter determination to errors in modeling RSD. One might have M or F wrong, but if this
does not mimic a change in cosmology then no harm is done. The Fisher bias formalism (see,
e.g., (24; 25)) propagates misestimation of the observable or theoretical prediction, in this case
the redshift space power spectrum, into biases on the fit parameters. Specifically, we consider
the effect of errors in the k bin values of A, B, C.

The Fisher bias on a parameter pi from misestimating parameter pa is

δpi = δpa
∑
j

(F sub)−1
ij (F full)ja , (4.18)

where δpa = pa(true)−pa(fiducial). The superscript “sub” denotes the Fisher submatrix without
entries for the parameters whose misestimation we are studying. (For the specific case here, the
submatrix will be 35×35 for the cosmology and galaxy bias parameters, and the full matrix adds
the reconstruction parameters one at a time. We later consider all the reconstruction parameters
at once.) By evaluating the ratio dpi/dpa for a = A,B,C we can assess the sensitivity of the
parameter estimation to the RSD modeling. To take a weak lensing example, (26) found that a
particular form of matter power spectrum distortion with amplitude ANL at high k distorted
estimation of wa derived from shear power spectrum measurement by a leverage factor of 18: a
misestimation of 10% in ANL yielded a 1.8σ bias in wa.

The bias δpi can be compared to the statistical uncertainty σ(pi) on the parameter, either
directly or through the risk statistic

Ri ≡
√
σ2(pi) + δp2

i . (4.19)
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Treating the bias as a systematic error in this way, to restrict the degradation in the statistical
error to less than 20%, say, requires δpi/σ(pi) < 0.66, thus putting a constraint on the allowable
modeling error δpa etc. We examine two, converse statistics: the cosmological degradation
caused by a certain fractional misestimation of the reconstruction parameters δpa/pa, and the
requirement on the reconstruction parameter to bound the cosmological parameter bias to less
than a given factor of the statistical uncertainty, δpi/σi. These are respectively

Ri
σi

=

√
1 +

(
δpi
δpa

δpa
pa

pa
σi

)2

(4.20)

δpa
pa

=

(
δpi
δpa

)−1
δpi
σi

σi
pa

. (4.21)

Figure 4.2, left panel, shows the matrix of degradations Ri/σi for fixed δpa/pa = 0.01 (i.e.
1% uncertainty on the reconstruction parameters), where the columns are the dark cosmologi-
cal parameters and the rows are the reconstruction parameters. The right panel gives a similar
matrix of the reconstruction requirements δpa/pa for fixed δpi/σi = 1 (which corresponds to
Ri/σi = 1.41). One can scale the results for different fixed values according to the above equa-
tions. The stripe structure arises because the bias from A0.45, where the subscript indicates the
center of the k bin, is of opposite sign from that of A0.25, and A0.35 lies in between near null
effect, and similar for B and C.

The degradations in determination of the dark parameters w0, wa, γ are less than 22% for
1% shifts in the reconstruction parameters in all cases except A0.25, A0.45, and B0.45. For A0.25

and A0.45 the risk error on wa can exceed the statistical uncertainty by a factor 3. For the B
parameters the worst case is degradation by 1.5. These results offer indications of what physics
must be most accurately understood, i.e. the nonlinearity from A and, somewhat less critically,
the velocity effects from B.

In the converse analysis of what accuracy is required on the reconstruction parameters to
ensure that a bias is restricted to below 1σ, we find that 5% accuracy is sufficient for all param-
eters except for the Ak, plus B0.25 and B0.45. Knowledge of A0.25 and A0.45 are needed to 0.3%,
B0.45 to 0.9%, B0.25 to 1.4%, A0.35 to 1.5%, and A0.15 to 3.1%.

While these approaches give indications of sensitivity, they treat the cosmological parame-
ters one by one while a power spectrum misestimation will generally impact several at once.
This can either tighten or loosen overall requirements, depending on the covariances. To take
this into account we use the ∆χ2 method (27; 28). This describes the fuller impact of biasing
cosmology through quantifying how far from the fiducial the best fit cosmology is shifted rela-
tive to the confidence contour, taking into account degeneracies between the reconstruction and
cosmological parameters. This measure is given by

∆χ2 =
∑
ij

δpi F
(red)
ij δpj , (4.22)

where the sum runs only over the reduced parameter set whose bias we are interested in, e.g.
w0 and wa for a 2D w0–wa joint likelihood contour plot. The reduced Fisher matrix F (red) is
marginalized over all other cosmological and galaxy bias parameters (the reconstruction pa-
rameters have already been taken into account in obtaining δw0 etc.). The bias ∆χ2 accounts for
the property that biases in, say, the direction of the narrow axis of the Fisher ellipse are more
detrimental than those along the degeneracy direction.

Figure 4.3 illustrates the 2D bias induced in the dark energy and growth parameters, here
for a 1% misestimation in the reconstruction parameters one by one. Most such reconstruction
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Figure 4.2 [Left panel] The ratio of the root mean squared error, or risk, to the statistical uncer-
tainty, Ri/σi, is plotted for each dark cosmological parameter in the case of a 1% deviation in a
reconstruction parameter. [Right panel] The fractional requirement on each reconstruction pa-
rameter δpa/pa needed to ensure bias less than 1σ, i.e. δpi/σi < 1 is plotted. Dark red indicates
danger (high risk or tight requirement), with lighter colors showing reduced impact. For the
left panel the color scale is Ri/σi > 2 (dark red), 1.4–2 (medium orange), 1.05–1.4 (light yellow),
and 1–1.05 (white). The right panel has |δpa/pa| < 0.01 (dark red), 0.01–0.05 (medium orange),
0.05–0.2 (light yellow), > 0.2 (white). Here kmax = 0.5h/Mpc.
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parameter errors do not significantly affect the joint parameter likelihood. In the w0–wa plane,
none of the C parameters and three of the B parameters do not bias the best fit outside the 1σ

contour, andB0.45 remains within the 2σ contour. Only errors on theA0.25 andA0.45 parameters
are particularly damaging, causing a bias of up to ∆χ2 = 39 (approximately at the 6σ level). The
covariance between the shifts in w0 and wa is crucial; if the same bias in wa and an even larger
bias in w0 occurred such that the joint shift lay along the degeneracy axis, then the 2D bias
would be scarcely outside the 2σ uncertainty contour. For the wa–γ plane, the biases are less
severe, with only A0.25 and A0.45 causing more than a 2σ joint bias, at ∆χ2 ≈ 16.

Treating the reconstruction errors one by one effectively takes a localized bump in the re-
construction function. A smooth variation would instead affect several of the reconstruction
parameters at once; this has a different effect on the cosmological parameter bias. As an exam-
ple, we simultaneously vary all four A parameters by 1%. Since A0.25 and A0.45 have nearly
opposite effects this reduces substantially the ∆χ2 due to varying just one of them, e.g. from 39
to 7.7. The 2D bias due to such smooth variation is shown in the figures by the magenta squares.

Figure 4.3 The biases in the w0–wa and wa–γ planes due to 1% misestimation in the 12 recon-
struction parameters, one by one, are shown by x’s (along with the ∆χ2 if larger than 2.8). The
contours give the joint 2D 1σ and 2σ confidence levels on the cosmological parameters when the
reconstruction parameters take their fiducial (“true”) values. Magenta squares show the biases
when varying all bins of A simultaneously; such smooth variations are much less damaging,
e.g. reducing the individual ∆χ2 = 39 and 34 biases to a joint ∆χ2 = 7.7 offset (or the 16 and 15
in the wa–γ panel to 2.8).

While we have thus far been model independent in taking A, B, C to be independent from
one k bin to the next, we can now consider the difference between two fiducial models for the
overall reconstruction function F . This then includes the effects of variations at all k’s simulta-
neously, and allows a study of bias as a function of kmax. As we consider each successive bin at
higher k, we increase the number of modes, reducing the statistical uncertainty, but also often
increase the deviation in the power spectra, increasing the bias in the cosmological parameters
if we assume the wrong fiducial as the truth. The truth is taken to be F as given by Eqs. (4.13)–
(4.15) in Eq. (4.3), while the incorrect assumption is pure linear theory, i.e. simply the Kaiser
form for redshift space distortions, equivalent to A = 1, B = C = 0.

This misestimation of the redshift space galaxy power spectrum causes a bias in cosmologi-
cal parameters of

δpi =
(
F sub

)−1

ij

∑
z

∑
µ

∑
k

P (A,B,C)− P (1, 0, 0)

P (A,B,C)

×∂ lnP

∂pj
Veff(k, µ, z)

k2∆k∆µ

8π2
. (4.23)

The systematic biases tend to worsen with increasing kmax, reaching 1.4 in w0, −8 in wa, and
0.2 in γ for kmax = 0.5h/Mpc, and are much larger than the statistical uncertainties for all kmax.
This is not surprising since FKaiser can deviate by a factor 2 from the KLL form. Thus, neglecting
the uncertainties in the reconstruction parameters is not a viable option: we must take them into
account.
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4.5 MARGINALIZATION AND SELFCALIBRATION

As an alternative to requiring the power spectrum to subpercent accuracy and computing the
bias from misestimated reconstruction parameters, we can fit for those parameters and calculate
the increased uncertainty in cosmological parameters due to marginalization over the extra in-
puts. The basic question is how well the model needs to be known for precision determination
of cosmology with RSD. This is similar to what (11; 12) did for matter power spectrum uncer-
tainties applied to weak lensing cosmology. They used fractional power spectrum uncertainties
in wavenumber bins, assumed constant with redshift, and applied some level of priors.

4.5.1 GLOBAL FIT

Now our quantities Ak, Bk, Ck in each wavenumber bin become fit parameters. Again, we can
study the effects as we extend kmax, using more bins and hence more parameters. Including
these parameters means that we will not be biased any more with respect to the fiducial, but the
enlarged parameter space will lead to some level of degradation of the statistical uncertainties,
relative to fixing the reconstruction parameters, at the same kmax.

Table 4.2 shows the effect of extending the data to higher kmax, while simultaneously allow-
ing for the additional reconstruction parameters in each bin. Despite the additional degrees of
freedom in the fit, the cosmological parameter estimation sharpens with increasing kmax. As
long as the form of the reconstruction function holds, we obtain an accurate and unbiased cos-
mology even allowing for fitting variation in the amplitudes of A, B, C in each k bin. This is an
extremely promising initial result for use of the reconstruction.

Ωbh
2 Ωch

2 h ns 109As w0 wa γ Ωm
Fiducial 0.0226 0.112 0.7 0.96 2.47 -0.99 0 0.55 0.275
σ(kmax = 0.1) 0.00524 0.0189 0.0542 0.0524 0.538 0.599 2.23 0.177 0.0302
σ(kmax = 0.2) 0.00284 0.0102 0.0284 0.0288 0.325 0.197 0.779 0.0519 0.0159
σ(kmax = 0.3) 0.00219 0.00760 0.0219 0.0198 0.248 0.112 0.478 0.0272 0.0122
σ(kmax = 0.4) 0.00148 0.00508 0.0150 0.0130 0.170 0.0824 0.347 0.0193 0.00834
σ(kmax = 0.5) 0.00141 0.00478 0.0142 0.0119 0.158 0.0713 0.306 0.0163 0.00794

Table 4.2 1σ constraints from future galaxy power spectrum data on cosmological parameters,
marginalized over galaxy bias and redshift space distortion reconstruction. Note Ωm is a de-
rived parameter; kmax is in units of h/Mpc. Despite the addition of more fit parameters when
increasing kmax, the cosmological parameters can be better determined.

To better understand why the added fit parameters do not cause an overall degradation,
we look at the correlation matrix of the 47 parameters in Fig. 4.4. The block of parameters 36–
47, representing the reconstruction parameters, is not highly correlated with other parameters:
correlation coefficients are below 0.58 (0.38 for parameters other than ns). (Even within the
block, only B0.15 and C0.15, other than between the Ak, have a correlation coefficient exceeding
0.8, reaching 0.90; this is expected since for a low k expansion both B and C contribute as µ2.)
This means that the change in power spectrum shape due to adjusting the amplitudes of these
parameters in F is not degenerate with a change due tow0 or other such parameters. That is, the
influence of these parameters have different k and µ dependences than those of cosmological
parameters and so we find they can be separately fit.

Moreover, the reconstruction parameters are selfcalibrated by the data to good precision.
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Figure 4.4 Correlation matrix of the 47 parameters for kmax = 0.5h/Mpc is shown with color
shading reflecting the absolute value of the correlation coefficient rij = Cij/

√
CiiCjj . The cor-

relation matrix is mostly block diagonal and the cosmological parameters are not strongly cor-
related with the reconstruction (or galaxy bias) parameters, so marginalization does not badly
degrade cosmological parameter estimation.

All are determined to better than 3% (except C0.15, to 8%) and most to subpercent level. These
propagate into determination of the power spectrum to the subpercent level for variation of
each one individually by 1σ, except for the extreme cases of µ = 1 and B0.15 (C0.15) which gives
1.1% (1.2%) uncertainty. Most combinations, however, give subpercent precision. Adding all
their uncertainties in the most unfavorable way generates an extreme of 2.6% power spectrum
uncertainty. Thus unlike the weak lensing probe analyzed by (11; 12), redshift space distortions
do not require any priors to be placed on the power spectrum parameters (assuming that the
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KLL reconstruction form is valid).
Remarkably, in addition to selfcalibration, the additional fit parameters have little impact

on the cosmological parameter estimation, enlarging the uncertainties by only 9%, 22%, and
7% on w0, wa, and γ. And of course including the extra parameters removes any cosmology
bias as suffered in the previous section (modulo model validity). Regarding the 12 extra recon-
struction parameters, from Fig. 4.1 we see that F is smooth in k so taking bins of width 0.1 in
k is reasonable. For completeness, for bins of width 0.02 (and hence 60 extra parameters) we
find that cosmological parameter estimation is mildly degraded, with uncertainties on w0, wa,
γ increasing relative to 0.1 width by 16%, 33%, 17%.

4.5.2 MAXIMUM WAVENUMBER

Let us examine the dependence of the results on the maximum wavenumber kmax used. Note
that for the kmax = 0.1 case, the cosmology parameters are not determined particularly well
even though no reconstruction parameters are used for k ≤ 0.1h/Mpc. This is due to strong
covariance with the 27 galaxy bias parameters. Once beyond the linear regime, this degeneracy
is broken and the correlation coefficients drop, greatly improving the cosmological parameter
determination (e.g. by factors of 2.9–3.4 on the dark parameters, for kmax = 0.2 relative to
kmax = 0.1). This continues for higher kmax, despite the addition of further reconstruction
parameters, but gradually saturates. For example, while relative to the kmax = 0.5 case the
uncertainties on w0, wa, or γ at kmax = 0.2 are greater by a factor ∼ 3, at kmax = 0.3 the factor
is 1.6, and at kmax = 0.4 is 1.15, as seen in Fig. 4.5. Thus, having an accurate reconstruction
form out to kmax ≈ 0.4 − 0.5 is sufficient for robust cosmological parameter estimation, while
selfcalibration obviates the need for any prior knowledge of the values of the reconstruction
parameters.

Figure 4.5 Extending kmax to values above 0.1h/Mpc breaks degeneracies, leading to improve-
ments in cosmological parameter estimation as shown here, even given the addition of recon-
struction parameters to marginalize over. Reconstruction to kmax = 0.4−0.5h/Mpc is sufficient
to plateau the cosmology estimation precision.

Binning such as we use is model independent and closest to the weak lensing work. This
model independence is important since in the absence of a large suite of simulations we may
have no particular confidence in parametrizations such as those in Eqs. (4.13-4.15). Recall that
those equations merely give the fiducial values in each k bin, and then we allow the bin values
to float freely and marginalize over them. Given simulations we might be able to adopt specific
forms and fit for a reduced set of parameters, e.g. the coefficients in those equations.

4.5.3 REDSHIFT DEPENDENCE

To give a first indication of whether adding redshift dependence to A, B, C affects the conclu-
sions we include a variation of the characteristic wavenumber scale entering in the nonlinearity
amplitude A in Eq. (4.13), i.e. the 0.39h/Mpc, writing this as

k?(z) = 0.39 (1 + z)α/1.58 h/Mpc , (4.24)

and adding this evolution parameter α to the fit. The simulation results in (15) indicate that
relative toA, the parametersB andC have negligible additional redshift dependence. Therefore
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we scale B and C by the same factor as A, i.e.

B(k, z) = B(k, 0)A(k, z)/A(k, 0) (4.25)

= B(k, 0)
1 + [A(k, 0)− 1](1 + z)−α

A(k, 0)
, (4.26)

and the same for C.
The introduction of redshift dependence through α has little impact on the cosmological pa-

rameter estimation; the largest correlation coefficient of α cosmologically is 0.31, with γ, and
overall 0.83 with B0.45, while α itself is determined to within 0.025. Figure 4.6 shows the in-
fluence on dark cosmology parameter estimation of marginalization over the reconstruction
parameters with and without redshift dependence, and fixing the reconstruction parameters
(i.e. with a total of 48, 47, or 35 parameters). Uncertainties on w0, wa, and γ increase by only
0.8%, 0.2%, 5% respectively upon including α. Other forms of redshift dependence may have
different cosmological impact, and this deserves further analysis through simulations, but the
scaling of the characteristic wavenumber as used here should give a reasonable first indication.

Figure 4.6 Joint 2D 1σ confidence contours on the dark cosmology parameters are shown for
the cases of all reconstruction parameters being fixed (dotted red), marginalized over without
redshift dependence as in most of the article (solid black), and additionally marginalizing over
a redshift evolution parameter α (dashed blue). Here kmax = 0.5h/Mpc. Note that the fixed
F case, shown here centered on the true cosmology, could be strongly biased if F was misesti-
mated (see Sec. 4.4).

4.5.4 NONLINEAR POWER SPECTRUM

The greatest effect of uncertainty in the reconstruction function comes from the parameters Ak,
as seen in Fig. 4.1 and in Sec. 4.4 regarding the parameter bias. Recall that A(k) arises from
the nonlinear effects in the density field, and even exists when µ = 0. In this limit A(k) acts
to map the linear real space density power spectrum to the nonlinear regime. Therefore, if we
had a robust nonlinear (or quasilinear) real space power spectrum then we would have no need
of a separate parameter as then A(k) = 1 (this has been tested and found accurate to subper-
cent level by (15)). Substantial effort is going into developing cosmic emulators (29) that could
provide accurate nonlinear power spectra, eventually including the full set of cosmological pa-
rameters and redshifts considered here. Since that is still in the future, we consider the nonlinear
prescription of Halofit (30) to get an indication of the potential impact on our conclusions.

The linear power spectrum at a given redshift is fed into Halofit to give the approximate
nonlinear form. This removes the need for A(k), setting this equal to one for all k and z. As
indicated earlier in this section, the simulation results from (15) imply that for such a normal-
ized A then the quantities B and C become substantially redshift independent. Therefore we
do not need any hypothetical model such as the α parametrization, making the entire analy-
sis more robust. Furthermore, Halofit includes cosmology dependence and so no assumption
about universality of A is needed.

We show the results for cosmological parameter estimation in Table 4.3, for kmax = 0.5h/Mpc,
for the three cases of using the model independent approach of fitting for A(k) in bins, using
Halofit and A = 1, and using the revised version of Halofit from (31) and A = 1. In all cases we
still fit for the binned values ofB andC. The use of functional forms for the nonlinear real space
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power spectrum allows better determination of the cosmological parameters, by 12%, 28%, 12%
for w0, wa, γ respectively (15%, 33%, 15% for revised Halofit, which has slightly more quasilin-
ear power). This offers some promise for the future use of cosmic emulators, but in this paper
we prefer to be conservative in the estimations and use the model independent approach.

w0 wa γ Ωm
Fit A(k) 0.0713 0.306 0.0163 0.00794
Halofit 0.0624 0.220 0.0143 0.00678
New Halofit 0.0603 0.206 0.0139 0.00608

Table 4.3 1σ constraints as in Table 4.2, using kmax = 0.5h/Mpc, but for three different methods
of treating nonlinearities.

4.6 CONCLUSIONS

With the ability to map galaxy clustering in three dimensions over large volumes of the universe
comes the necessity for accurate theoretical interpretation. This entails linking the isotropic,
linear theory real space density power spectrum to the observed anisotropic, nonlinear redshift
space galaxy power spectrum. We have investigated here some of the relevant issues involving
nonlinearities in the density field and velocity effects, using the Kwan-Lewis-Linder analytic
redshift space reconstruction function calibrated from numerical simulations.

The main question addressed is to what accuracy the anisotropic redshift space power spec-
trum must be known in order to achieve robust cosmological conclusions. We propagate un-
certainties in the power spectrum through a model independent binning of reconstruction am-
plitudes with wavenumber and assess the effects of deviations from fiducial values. To avoid
biasing cosmological parameters such as the dark energy equation of state and gravitational
growth index requires down to 0.3% accuracy on the reconstruction parameters in the most
stringent cases, while smoother deviations give more tractable requirements. Note that it is
only those deviations that mimic cosmological variations that are most important.

A more flexible and robust approach is to carry out a global fit for the binned reconstruction
parameters simultaneously with the cosmological parameters, which avoids biasing the results
so long as the form of the KLL function is a good approximation. With 8 cosmology parameters
and 39 systematics parameters we find that a next generation galaxy redshift survey such as
BigBOSS can tightly and accurately constrain cosmology, for example determining the equation
of state time variation wa to 0.3 and testing gravity through the growth index γ to 3%. No
external priors on the reconstruction parameters are necessary as they are selfcalibrated by the
survey, most at the subpercent level. This also corresponds to subpercent calibration of the
redshift space power spectrum.

We have tested the robustness of the conclusions by adding redshift evolution, which has
little effect, varying the number of wavenumber bins, and exploring the leverage from in-
creasing the maximum wavenumber used, kmax. Cosmological leverage plateaus by kmax =

0.4 − 0.5h/Mpc so the KLL form need only apply up to this scale. We made no assumptions
about the departure from linearity, allowing the nonlinearity amplitude to float in a model in-
dependent manner in bins of k, but also then analyzed the impact of adopting a nonlinear
prescription such as Halofit (or its revision). This improved the cosmology estimation and of-
fers a promising sign to motivate continued development of cosmic emulators for the nonlinear
power spectrum.
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Several areas exist for further development. The KLL form has been tested for dark matter,
but (15) indicates it is successful for halos as well. Eventually this must be extended to galaxies,
a major undertaking. On the positive side, we achieved excellent results using reconstruction
starting from simple linear theory (Kaiser approximation); higher order perturbation theory
approaches extend the range where reconstruction is milder. Universality, i.e. cosmology de-
pendence, of the reconstruction is a major topic for future investigation, requiring large suites
of cosmological simulations, again suited for emulators. We have taken a first step toward ad-
dressing this effect by exploring the influence of using Halofit and new Halofit cosmological
dependences for the nonlinearity. Simulations may also enable us to compress the information
in bins down to a smaller set of parameters.

Redshift space distortions provide a powerful tool for measuring the growth rate of cosmic
structure, and delivering insights on the competition between the gravitational laws driving
clustering and accelerated expansion suppressing it. The results here give encouraging indi-
cations, and quantitative measures, that theoretical analysis can take into account robustly the
nonlinear and velocity effects to extract accurate cosmology from the forthcoming large volume
redshift surveys.
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Abstract

The inspiral and merger of eccentric binaries leads to gravitational waveforms distinct from
those generated by circularly merging binaries. Dynamical environments can assemble bina-
ries with high eccentricity and peak frequencies within the LIGO band. In this paper, we study
binary-single stellar scatterings occurring in dense stellar systems as a source of eccentrically-
inspiraling binaries. Many interactions between compact binaries and single objects are charac-
terized by chaotic resonances in which the binary-single system undergoes many exchanges be-
fore reaching a final state. During these chaotic resonances, a pair of objects has a non-negligible
probability of experiencing a very close passage. Significant orbital energy and angular mo-
mentum are carried away from the system by gravitational wave (GW) radiation in these close
passages and in some cases this implies an inspiral time shorter than the orbital period of the
bound third body. We derive the cross section for such dynamical inspiral outcomes through
analytical arguments and through numerical scattering experiments including GW losses. We
show that the cross section for dynamical inspirals grows with increasing target binary semi-
major axis, a, and that for equal-mass binaries it scales as a2/7. Thus, we expect wide target
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binaries to predominantly contribute to the production of these relativistic outcomes. We esti-
mate that eccentric inspirals account for approximately one percent of dynamically assembled
non-eccentric merging binaries. While these events are rare, we show that binary-single scat-
terings are a more effective formation channel than single-single captures for the production of
eccentrically-inspiraling binaries, even given modest binary fractions.
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5.1 SUMMARY

In globular clusters and galactic nuclei a large fraction of the stars are believed to be in binaries
with other stars or compact objects. The density in these environments can be up to a mil-
lion times higher than that in our solar neighborhood, making it highly possible that a binary
will experience at least one single encounter within its lifetime. This leads to a three-body, or
binary-single, interaction. These interactions not only give rise to a large variety of observable
phenomena, but also play an important role in the evolution of e.g. globular clusters, by storing
or releasing binding energy into the surrounding field stars.

I investigated the role of gravitational wave (GW) radiation in these binary-single interac-
tions. For this study I wrote an N-body code including GWs in the post-Newtonian framework.
By performing millions of binary-single scattering experiments using this code, I discovered a
completely new outcome never characterized before: during a chaotic three-body interaction a
temporarily formed binary can spiral in by emitting GWs while the third object is still bound.
This inspiraling binary has an extremely high eccentricity when it passes through the observ-
able LIGO band, which is in contrast to ordinary field binaries that circularize long before they
become observable. This new outcome therefore gives a unique possibility to observe how GR
impacts high eccentricity systems.

To estimate the probability for this new GR outcome, I calculated the associated cross section
σ(a) as a function of the semi-major axis a of the target binary by numerical scattering experi-
ments. I found surprisingly that σ(a) increases with a - a very counterintuitive result. I managed
to also develop a theoretical description and calculated analytically the relation σ(a) ∝ a2/7,
which is in perfect agreement with the numerical simulations. I performed a broad range of
simulations, from equal mass scatterings to situations with white dwarf - neutron star target
binaries. Using the resultant cross sections folded with a typical globular cluster model, my col-
laborators and I estimated this new outcome to be the dominant GW source of high eccentricity
mergers visible by LIGO. This work has therefore great impact on not only stellar dynamics,
but also future searches for GWs.
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5.2 INTRODUCTION

The density of stars in galactic nuclei and in the centers of some globular clusters can be more
than a million times higher than that in our solar neighborhood (76). In such cases, a primor-
dial binary will undergo a close encounter with at least one other star with high probability
within its lifetime (e.g. 100). It is in these environments, called dense stellar systems, that bi-
nary populations will no longer be truly primordial as their stellar composition, eccentricity,
and period distributions will be largely determined by past interactions with other stars (e.g.
81; 56; 57; 60; 51; 62; 28; 61; 59). This transformation of binary systems was envisioned by Hills
(49), who suggested that exchanging neutron stars into preexisting binaries might be a natural
way to form X-ray binaries as byproducts.

Dynamical friction causes the heaviest stars and primordial binaries to concentrate towards
the cluster’s core (85; 32; 31). Since the heaviest stars tend to be left in the binary following
such three-body encounters (this can be understood as consequence of the tendency toward
energy equipartition, in which the lighter star would have the highest velocity in the final state),
binaries are quite effective at soaking up heavy stars such as neutron stars and heavy white
dwarfs (50; 116; 117; 45), even if none of them originally had a companion.

After such an exchange, the binary will not only be slightly wider but also heavier, which
will result in gravitational focusing being more effective. The binary’s cross section for encoun-
ters will thus be larger than before the exchange. For this reason, a binary likely to undergo
one exchange over some time period is likely to have several more encounters coming rapidly
after the first exchange (116). The tendency to exchange the heaviest compact stars also has the
consequence that the rates of ejection of binaries involved in three-body exchanges are less than
those predicted by models in which all stars have equal masses. The recoil speeds of the light,
single stars are consequently larger.

A large fraction of the encounters where the field star approaches within approximately a
binary semi-major axis (SMA), a0, of the binary center of mass result in resonant interactions,
in which the three stars wander for a long time on chaotic orbits and approach each other re-
peatedly (43; 54). During these chaotic encounters, the stars have many opportunities for close
encounters. If the stars are compact, angular momentum loss due to gravitational radiation may
become a noticeable effect during close passages (97), and could cause the two stars to be driven
together. It is the interplay between binaries and compact objects in such dense environments
and their ability to manufacture eccentric merging binaries in three-body exchanges that forms
the main topic of this work.

Our main goal in this paper is to study how the inclusion of gravitational wave (GW) losses
modifies the compact binary outcomes that originate from three-body scatterings, in particu-
lar during resonant interactions. The inclusion of GW losses into the binary-single dynamical
system, we argue, introduces a new potential outcome in which a pair of objects may dynami-
cally inspiral and merge while the three-body system is still in resonance. These outcomes are
rare, and they are typically only realized during resonant interactions. Chaotic, resonant or-
bits augment the probability of very close passages when compared to direct interactions, and
they can produce systems with correspondingly short GW inspiral time. Gültekin et al. (40)
first explored the cross section for these inspiral outcomes in the context of IMBH formation
and growth. A surprising result of Gültekin et al.’s simulations is that the cross section for in-
spiral outcomes increases with increasing binary SMA. This is perhaps counterintuitive because
one might expect that the cross section for relativistic outcomes would be largest in very tight
binaries. However, we will show that this is a natural consequence of resonant binary-single
interactions, and that the scaling with binary SMA can be analytically derived.
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In this paper, we explore the cross section for dynamical inspiral outcomes during binary-
single interactions through numerical experiments and analytic calculations. In Section 5.3, we
review some of the dynamical properties and outcomes of binary-single interactions. In order
to build intuition for how the inclusion of GW losses modifies binary-single interaction dy-
namics, in Section 5.4 we summarize the results binary-single scatterings with point masses in
Newtonian gravity. Readers familiar with previous work in binary-single dynamics may wish
to skip to Section 5.5, in which we describe the inclusion of post-Newtonian (PN) corrections
to the binary-single system equation of motion. Section 5.6 describes the formation of dynam-
ical inspirals from resonant interactions between hard binaries and single objects. We explain
the origin of these inspirals through numerical scattering experiments, and use our results to
motivate an analytic derivation of the scaling of the inspiral cross section with binary SMA.
In Section 5.7, we show that dynamical inspirals give rise to inspirals that pass with high ec-
centricity through the LIGO1 band. We compare this process to eccentric inspirals arising from
single-single interactions and show that the cross section is greatly enhanced in binary-single
interactions. In Section 5.8, we extend our calculations to consider binaries containing white
dwarfs, we discuss binary lifetimes and the role of GW emission, and we estimate whether the
products of binary-single interactions are ejected or retained in their host stellar system. Finally,
we estimate the rates of eccentric inspirals given typical globular cluster core properties.

5.3 BINARY-SINGLE ENCOUNTERS

Binary-single stellar encounters in dense stellar systems may be broadly divided into a few
well-defined categories. In the majority of encounters, the incoming object passes on a hyper-
bolic trajectory relative to the binary at a distance large compared to the binary separation (43).
The passage time is greater than the binary’s orbital period and the binary is subjected to a
weak perturbation (WP). A strong perturbation (SP) is possible (43) when the incoming object
approaches the binary on a hyperbolic trajectory that happens to pass at a distance comparable
to the binary SMA. In this case, the interaction time is less than or similar to the binary’s orbital
period.

The accumulation of WPs and SPs across the lifetime of a binary in a dense stellar system
modifies the expected eccentricity and SMA distributions as compared to more isolated bina-
ries. To quantify this effect, one must rely on integrations of the coevolution of binaries and
their parent clusters over the cluster’s relaxation time (e.g. 1; 47; 48; 43; 76; 80; 6; 30; 58; 33; 31).

5.3.1 CLOSE INTERACTIONS AND THEIR CROSS SECTION

A close interaction (CI), by contrast, occurs when the incoming object passes within a sphere
of influence marked by the binary’s separation. In these cases, the gravitational interaction
between all three bodies may be of similar strength, and the outcomes are chaotic. In this work,
we will focus on CIs and the dramatic role they play in reshaping binaries. Figure 5.1 shows a
schematic overview of the different interactions and their expected outcomes.

We define a CI to have occurred when the third body passes within a distance rCI from the
binary center of mass. We choose rCI as the distance from the center of mass to the lighter object
in the binary,

rCI =
m2

m1 +m2
a0, (5.1)

1http://www.ligo.caltech.edu/
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where 1, 2 are the binary members in order of ascending mass (m2 > m1), 3 is the incoming
object, and m1 + m2 is the mass of the target binary. This value is always between a0/2 (if
m1 = m2) and a0 (if m2 � m1).

Whether a CI will occur is analytically predictable given the impact parameter, b, and veloc-
ity, v∞, of the third body relative to the target binary. At large separations between the binary
and the incoming object, the fact that the binary is composed of two objects is unimportant and
thus the encounter can realistically be treated as the interaction between two point masses: the
binary with total mass mbin = m1 + m2 and the incoming object with mass m3. In this case, a
given distance of closest approach between the incoming single and the center-of-mass of the
binary, rmin, corresponds directly to an impact parameter, b, defined at infinity (116),

b = rmin

√
1 +

2Gmtot

rminv2
∞
, (5.2)

where v∞ is the initial relative velocity at infinity of the binary center of mass and the single ob-
ject, and mtot = mbin +m3. The second term in this expression corresponds to the gravitational
focusing of trajectories from an initially large impact parameter to a closer pericenter distance.
Because the argument of the square root is always larger than unity, b is always greater than
rmin.

If we now consider the interactions with a closest approach less than the sphere of the binary,
rCI, then we see that all encounters with impact parameter less than the corresponding bCI =

b(rCI) will have rmin < rCI. Therefore, all encounters coming from within the area σCI = πb2CI

will lead to an interaction with rmin ≤ rCI. This area σCI is defined as the cross section for a close
interaction. Given the definition of b above, this may be written

σCI = πb2CI = πr2
CI

(
1 +

2Gmtot

rCIv2
∞

)
. (5.3)

Whether the first (geometric) or second (gravitational focus) term in parenthesis dominates de-
pends on the relative binding energy of the binary and the kinetic energy of the incoming object.

Given a distribution of single stars, the CI cross section, σCI, gives an estimate of how often
such interactions can occur. As σCI increases, the more encounters will be focused into the bi-
nary system. In a stellar system with an isotropic stellar density, n, and typical relative velocity,
v∞, this rate of CIs per binary may be approximated as

ΓCI ' nσCIv∞. (5.4)

Thus, given a stellar distribution, the cross section is the only factor that determines the relative
rates of different processes. For this reason, significant effort will be invested in deriving the
cross sections of the various outcomes of CIs as fractions of the total CI cross section. In the
following section, we explore the role of the relative energy of the binary and the single object
in shaping binary-single interactions.

5.3.2 HARD AND SOFT TARGET BINARIES

The relative velocity of the binary and the single object, v∞, as compared to the characteristic
velocity of a binary, vc, determines the outcomes that are possible in a binary-single interaction.
A binary’s characteristic velocity is defined as (55)

v2
c = G

m1m2(m1 +m2 +m3)

m3(m1 +m2)

1

a0
. (5.5)
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Strong Perturbation (SP)

:  Inspiral - bound companion

:  Collision - bound companion

:  Collision - unbound companion

:  Exchange

:  Fly-by

:  Intermediate State (IMS)

:  3-body State (3BS)

Resonance Interaction (RI)

...

Direct Interaction (DI)

: Single 2-body Interaction

Close Interaction (CI)Weak Perturbation (WP)

Final States

Figure 5.1 Schematic illustration of binary-single interactions and their final states. The top panel
shows three different types of interactions. The top left panel shows a weak perturbation (WP)
where the single encounter is only weakly perturbing the binary, but over several orbital peri-
ods. The top right panel shows a short but strongly perturbing encounter (SP). A close interaction
(CI) is shown in the middle panel. The evolution of the system from this CI channel can further be
divided into the two interaction channels: direct interaction (DI) and resonant interaction (RI).
These are illustrated in the middle panel. The RI channel can be decomposed into intermediate
binary-single states (IMS), where an intermediate binary is formed with a bound companion.
Several IMS are created and destroyed in the chaotic RI before a final state is reached. The RI
erases any information of initial conditions. The DI channel is on the other hand very fast and,
as a result, the endstate depends sensitively on the initial state. Which channel dominates de-
pends particularly on the mass ratio between the objects and the velocity of the incoming object.
The set of endstates from both the RI and the DI interactions are listed in the middle panel where
the individual interaction diagrams are defined in the bottom panel. There is, in general, a similar
final state scheme for each permutation of the objects.
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Scan for animation

Figure 5.2 Examples of binary-single resonance interactions between equal mass black holes.
Left: The close interaction forms a few intermediate binary states (red-green) with a bound
companion (blue). We denote these intermediate binary-single states (IMS). Scan the QR code2

to see an animation of this interaction. The last frame in the animation is shown in the plot. Mid-
dle: This interaction have the same total energy as in the left panel but the energy is distributed
differently in the system. Right: A relative rare interaction class is displayed in this panel, with
a system composed of a binary (blue and green) that remains bound to a companion (red) for
many orbits. The final state is a collision. The interactions shown in the left and middle panels
are generally refer to as democratic resonances where the right panel shows an example of an
hierarchical resonance. The many IMS created during these resonant interactions aid the forma-
tion of eccentric binaries with short inspiral times. Binaries that inspiral and merge due to GW
radiation during a resonance interaction are called inspirals. An example is shown in Figure 5.3.

This velocity is written such that if the relative velocity at infinity is larger than vc (v∞ > vc),
then the total energy of the three-body system is positive (43).

A binary with v∞ > vc is described as a soft binary (SB) relative to its environment. The cross
section for close interaction, equation (5.3), is well approximated by the binary’s geometrical
cross section, πr2

CI. Because the velocity at infinity is greater than the binary’s orbital velocity,
the binary appears nearly static during the interaction. The resultant encounters can thus be
viewed mainly as two-body interactions that are well described by impulsive approximations
(43; 53). Additionally, with v∞ > vc the incoming body carries a large amount of energy when
compared to the binary’s binding energy. That excess of energy can effectively be utilized to
split the binary (43).

Hard binaries (HB) are characterized by v∞ < vc. In this case, the cross section for CI is
dominated by the gravitational focus term, and

σCI '
2πGmtotrCI

v2
∞

(5.6)

Thus, in this limit, σCI ∝ a0/v
2
∞. Further, the energy carried from the encounter into the system

is relatively small and a temporary bound triple state can be formed (53).
In dense stellar systems, the HB limit is typically the relevant limit for the steady-state binary

population. Equation (5.5) can be re-written for equal mass encounters as

vc ≈ 36.5 (m/M�)
1/2

(a0/AU)
−1/2 km s−1. (5.7)

Values for v∞ are in the 10-50 km s−1 range for galactic GCs (76). Thus any binaries with SMA
smaller than ≈ 1 AU will be in the HB limit. In clusters, HBs tend to be the ones that survive
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as encounters tend to split soft binaries (43). Further, based on a statistical trend toward energy
equipartition (43; 48), hard binaries tend to become harder (as energy is transferred from the
binary to put the single on an unbound orbit) while soft binaries get softened or disrupted (as
the incoming single star pumps energy into the system before leaving). This natural selection
makes a hard binary population even harder and causes a soft binary population to evaporate.

Binary-single CIs involving HBs may be decomposed into direct interactions (DIs) and res-
onant interactions (RIs). DIs are brief, two-body interactions which occur when the incoming
body passes very close to only one of the binary members. In these cases, the interaction is brief
and the initial conditions with which the single object entered the binary are key in determin-
ing the outcome. By contrast, a RI is comprised of many intermediate exchanges of binary and
single star hierarchy. We denote these temporary triple-object states, comprised of a binary and
a bound single, as intermediate states (IMSs). The IMS decomposition is illustrated in Figure
5.1.

The number of resonances a system undergoes during a RI depends on the mass ratio of
the interacting objects and is maximized for equal mass objects (116). In the equal mass case,
these RIs can have lifetimes extending from one to several hundred times the orbital period
of the initial target binary. If one of the objects is lighter compared to the others, this object is
likely to be dynamically kicked out, leaving the heavier objects behind as a binary (116). An
illustration of the possible orbital morphologies of RIs is shown in Figure 5.2. Examples of
both democratic (similar pairwise binding energy) and hierarchical (disparate pairwise binding
energies) resonances can be clearly seen in Figure 5.2.

Compared to the entire duration of a RI, the lifetimes of individual IMSs are relatively short.
This implies that a single RI encompasses many IMS exchanges in which close encounters oc-
cur and the binary-single system is transformed. The IMSs themselves are unstable because
they are disrupted every time the current bound single object makes a close passage. Over the
course of several such IMS changes (through three-body interaction knots), the triple system
evolves chaotically, loosing memory of the initial conditions with which the single object first
entered the binary (43). Rare outcomes may be achieved with higher likelihood in RIs for the
simple reason that the single object makes many randomized close passages through the binary
system. This is particularly significant when GW radiation is included into the three-body equa-
tion of motion because there is a non-negligible probability that a very close (and thus highly
dissipative) passage will take place.

5.3.3 OUTCOMES OF CLOSE INTERACTIONS

In the previous section we have described how CIs arise in binary-single star encounters and
how their likelihood can be quantified by their cross section, σCI. During a CI, the system is
in a three-body state, but no three-body state is stable (54) and the system will thus invariably
evolve (through the DI or the RI channel) into one out of the several possible final-states (or
outcomes) as illustrated in Figure 5.1. In general, there is a given cross-section for each of these
possible outcomes to occur. In Section 5.3.4, we describe how we compute these outcome cross
sections statistically based on the fraction of binary-single scatterings that can generate a given
outcome. In the two sections below we describe in detail the particular final outcomes expected
from CI interactions.
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Figure 5.3 Example of a binary-single interaction which ends as an inspiral. These are the new
general relativistic (GR) endstates that are the main focus of our work. Inspirals are IMS-formed
binaries that merge due to GW radiation during the resonance interaction, i.e. while the single
object is still bound. The color across all plots denotes time. Top: Fraction between the energy
loss of the system after a time t and the initial energy of the systemE0. Any deviations from zero
are due to energy radiated away by GWs. Middle: Energy loss dE/dt as a function of time. The
oscillating form of dE/dt arises because the system evolves between multiple IMS. Bottom: The
ensuing binary-single trajectories. The interaction starts at the left where the binary interacts
with the incoming object. The final state seen at the far right is an IMS binary that inspirals
due to GW radiation while the third object is still bound. The final inspiral is as expected
characterized by a large and rapid increase in GW losses. These inspirals can by observed with
LIGO and as we will show later are likely to be highly eccentric at the time of observation, which
makes them particularly interesting.
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Outcomes from Newtonian Gravity

In Newtonian gravity, a binary-single interaction can result in a binary with an unbound com-
panion, a collision, or three unbound objects. The cases in which a binary is left behind may be
further subdivided based on the properties of the surviving binary (43; 55). If the binary is com-
posed of the original two objects (1,2) then we refer to the encounter as a fly-by even though the
endstate binary may be the result of a more complex interaction than the fly-by label suggests.
If instead the binary is composed of one of the original binary members and the third body,
we denote the encounter an exchange. In this case, the binary may either be (1,3) or (2,3). An
outcome in which all three members are mutually unbound is possible when the total system
energy is positive, v∞ > vc. This outcome is denoted as an ionization. Collisions are possible at
all values of v∞, but they are most likely to occur at negative total binding energies where the
gravitational focus cross sections of the individual objects are larger.

Inspiraling Binaries due to GW Emission

With GW emission included in the three-body equation of motion, a new outcome is possible:
dynamical inspirals. Inspirals are characterized by the gravitational radiation driven inspiral of
an IMS binary, while the third object is bound to the binary. Inspirals are particularly likely to
occur during RIs. The magnitude of GW emission depends strongly on the distance of closest
approach between two objects (e.g. 97). In relatively widely separated binaries, inspirals do not
result from tightly bound circular orbits, but rather they are the product of orbits of very high
eccentricity in which the objects experience close pericenter passages that generate significant
GW emission and thus substantially reduce their orbital energy and angular momentum. High
eccentricity orbits are most readily achieved in the chaotic environment of RIs, where despite
the e = 0 initial conditions we impose on the binaries, the angular momenta of the three bodies
is randomized and approaches an isotropic distribution with increasing number of passages.

Figure 5.3 shows an inspiral from one of our simulations. The binary-single interaction
happens at the left of the plot and then propagates towards the right, terminating with the
inspiral. One important feature of this interaction is that the bulk of the energy losses occur in
three body knots, where the relative orbital angular momenta of the bodies is randomized, and
the objects undergo very close pericenter passages, which in turn give rise to the spikes seen in
the energy loss rate. Inspirals are of particular interest, as we will show in this paper, because
they occur more frequently in widely separated target binaries, and they give rise to eccentric
compact object mergers.

5.3.4 NUMERICAL APPROACH

Here we study the outcomes of binary-single interactions and their associated cross sections by
performing large sets of numerical scattering experiments. To this end, we have developed a
new N-body code to integrate the equation of motion of the three bodies using a fourth order
Hermite integration scheme. The equation of motion including the effect from GW emission is
discussed in Section 5.5.1. For a full description of the code and the exact state classification
criteria employed, the reader is referred to the Appendix.3 For each scattering experiment the
target binary was randomly orientated in phase and orbital plane orientation.

We estimate the cross section numerically for a given outcome type Oi by performing Ntot

3In the Appendix we also directly test the code against the Peters (97) analytic solution for binaries inspiraling due
to GW emission.
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binary-single interactions with isotropic sampling across a disc at infinity with radius b. If
the total number of outcomes of type Oi from that scattering set is denoted by Ni, then the
corresponding cross section for outcome Oi can be estimated by

σi =
Ni
Ntot

πb2 (5.8)

with a corresponding error given by

∆σi =

√
Ni

Ntot
πb2. (5.9)

This, in turn, implies a rate of a given outcome Oi,

Γi ' nσiv∞ (5.10)

expected from a distribution of single objects with number density n and typical relative veloc-
ity v∞. Thus, the rate of outcomes of type Oi compared to the rate of CIs is defined by the ratio
of their cross sections, Γi/ΓCI = σi/σCI.

5.4 NEWTONIAN POINT-PARTICLE LIMIT

To build intuition and to provide a direct link to previous studies in Newtonian gravity, we will
first describe the most salient features of binary-single encounters of point masses in Newtonian
gravity. These interactions and their final states, or outcomes, are well studied numerically and
theoretically, especially in the pioneering series of work by Hut & Bahcall (55); Hut (53, 54);
Heggie & Hut (44); Goodman & Hut (36); McMillan & Hut (82); Heggie et al. (46). More recent
work by Fregeau et al. (29) and Fregeau & Rasio (33) have extended such studies to calculate
the probability for collisions, and the coevolution of binaries and their host clusters.

When the three objects are equal point-masses, the outcome of an interaction will always be
either a fly-by, an exchange or an ionization. These outcomes were described in Section 5.3.3. In
this Section, we calculate their associated cross section over a broad range of encounter veloci-
ties v∞/vc using a series of numerical scattering experiments. In our equal mass case,

v∞
vc

= v∞

√
2a0

3m
, (5.11)

thus any defining characteristics of the system can be rescaled using this ratio. We perform a
total of 8× 105 binary-single scatterings divided into 40 sets each with 2× 104 interactions. For
each scattering experiment, the target binary is randomly orientated in phase and orbital plane.
The velocities of the encounters for the 40 sets are equally spaced in log(v∞/vc) from 0.01 to
8. The maximum impact parameter, bmax, is kept fixed for all scatterings at 5a0. In this setup,
outcomes from all the three interaction channels WP, SP and CI will occur depending on v∞/vc.
Our numerical approach is closely related to the one used in (55). We also refer the reader to the
Appendix for further details on our numerical approach.

Figure 5.4 shows the results from our scattering experiments. Both panels show the cross
sections for exchange, fly-by, and ionization outcomes as a function of v∞/vc. The upper panel
includes outcomes from all interactions including DIs and RIs, while the lower panel shows
the outcomes coming from the RIs only. In what follows, we detail the outcomes and their
dependence with v∞/vc.
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Figure 5.4 Integrated cross sections for the classical outcomes: exchange (brown triangles), ion-
ization (green squares) and fly-by (orange stars) as a function of v∞/vc, where v∞ is the relative
velocity of the incoming object at infinity and vc the characteristic velocity given by equation
(5.5). The dashed lines show analytical approximations to the exchange (equation 5.13) and ion-
ization (equation 5.14) cross sections. The vertical dotted lines indicate two characteristic veloci-
ties, the gravitational focusing velocity vfoc/vc(bmax = 5a0) ≈ 0.28 and the velocity that divides
the system into having total positive or negative energy, v∞ = vc. Top: Cross sections calculated
from all interactions including RIs and DIs. Bottom: Cross sections only including endstates
coming from RI encounters. This channel erases any information about initial conditions and
all the three objects have thus equal probability to be kicked out. As a result, the fly-by and
exchange cross sections are identical. Because a fly-by can not result from a DI, the exchange and
fly-by cross sections are separated in the top panel. As can be clearly seen, the cross section for a
RI is independent of v∞ as long as v∞ < vfoc. Each plot is based on a total of 8× 105 scatterings.

5.4.1 LOW VELOCITY (v∞/vc � 1)

At low velocities, gravitational focus leads to all interactions happening via the CI channel.
Therefore, all final state outcomes will be a result from either the DI or the RI channel. Since the
total energy of the three-body system is initially negative and no bound triple state can form a
stable final state (54), the only possible outcome is a binary (carrying the negative energy part
in form of binding energy) and a single unbound object. Depending on which two objects that
form the binary the outcome will either be labeled as an exchange or a fly-by.

Within the CI channel the probability for a given outcome depends on whether the binary
has experienced a RI or a DI. If the outcome is a result of the RI channel, then any permutation of
the three objects in the final state is equally likely since the RI erases any memory of the binary’s
initial configuration. As a result, the exchange and fly-by outcomes have the same cross section
when the system has evolved through a RI. This can be seen in the lower panel of Figure 5.4.

For interactions passing through the DI channel, fly-bys have a negligible probability to
occur. The reason is that a DI is characterized by having only a single interaction that in the ma-
jority of cases leads to an exchange between the incoming object and one of the binary members.
A typical fly-by involves at least two closest IMS pairs leading these interactions to be classified
as arising from the RI channel. This leads to the cross section difference between exchange and
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fly-by when all interactions are included as seen in the upper panel of Figure 5.4.
The critical velocity that defines the transition to all interactions happening through the CI

channel, vfoc, is found from equation (5.3),

vfoc

vc
=
√

2

(
a0

bmax

)
, (5.12)

which, in our numerical setup with bmax = 5a0, gives vfoc/vc = 0.28. This critical velocity
transition is illustrated with a vertical dotted line in Figure 5.4. It is clear in the lower panel in
Figure 5.4 that this line accurately separates the plot into two regimes. The cross sections are
approximately flat to the left of this line, when v∞ < vc. This tells us that the relative numbers
of RIs and DIs are nearly constant, and as a result, independent of the exact impact parameter
and encounter velocity as long as the interaction is a CI.

5.4.2 INTERMEDIATE VELOCITY (v∞/vc ≈ 1)

At intermediate velocities, the resultant encounters are a mixture of CIs, SPs and WPs, and
the velocity dependence shapes the resultant cross-sections. CIs can still occur at intermedi-
ate velocities, but their probability decreases as σCI ∝ (v∞/vc)−2, as given by equation (5.3).
This scaling solely determines the shape of the exchange cross section in this regime, since ex-
changes only can happen via a CI. This is seen in Figure 5.4 where the exchange cross section is
observed to clearly transition from being flat at low velocities to decreasing as ∝ (v∞/vc)−2 at
intermediate velocities.

WPs and SPs happen with increasing frequency as the velocity is increased since more en-
counters pass by the binary instead of making a CI. These perturbative encounters necessarily
result in a fly-by classification since the encounter never comes close enough to make an ex-
change, thus leading to a velocity dependent increase in the associated cross section.

5.4.3 HIGH VELOCITY (v∞/vc > 1)

In high velocity interactions (v∞ > vc), the total energy of the three-body system is positive and
ionization becomes a possible outcome. Ionization occurs when all three objects are unbound
with respect to each other. This outcome dominates over the exchange outcome in this high
velocity regime as seen in the upper panel in Figure 5.4.

Because of the high velocity, CIs are rare. The CI cross section is determined by the geomet-
rical term in equation (5.3). Since the geometrical term only depends on the size of the target
binary, the occurrence of a CI is independent of velocity. By contrast to the intermediate veloc-
ity range, the observed steep decrease in both the exchange and ionization cross sections as the
velocity increases is a result of properties of the interactions themselves, rather than a varying
number of CIs.

As observed in the lower panel of Figure 5.4, RIs do not occur at high velocity. All outcomes
from the CI channel are, therefore, only arising from the DI channel. The main reason for this
is that the incoming object enters the binary with such a high velocity that the pair appears to
be approximately stationary. The majority of interactions between the single and the binary
will therefore be a DI between the incoming single and its nearest binary object. The problem
therefore reduces to a two-body interaction between the encounter and one of the binary mem-
bers. This setup has an analytical solution and cross sections for exchange and ionization can
be analytically estimated in this so called impulsive regime. This was first done by (53) who
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calculated in this high velocity regime the exchange cross section

σex =
320

81

πa2
0

v6
∞
, (5.13)

and the ionization cross section

σion =
40

9

πa2
0

v2
∞
. (5.14)

These scalings are also shown in Figure 5.4. The similarity of this three-body scattering problem
to atomic physics can be seen by comparing the exchange scenario, in the limit where one of
the binary members are very light, with electron capture (or charge transfer) in heavy nucleus
interactions (113).

5.5 GRAVITATION WAVE LOSSES AND THREE BODY DYNAM-
ICS

In this section, we describe how general relativity (GR) corrections are included into the equa-
tion of motion in our three-body integration code, and highlight the dynamical consequences
of these loss terms.

5.5.1 ADDING GENERAL RELATIVISTIC CORRECTIONS

In this work, we include the energy and angular momentum losses by GW radiation using the
PN formalism (10). In this formalism, the acceleration experienced by an object of mass m1 due
to the gravitational force from a second object of mass m2 is expanded in series as

a = a0 + c−2a2 + c−4a4 + c−5a5 +O(c−6). (5.15)

The standard Newtonian force per unit mass, a0 is

a0 = −Gm2

r2
12

r̂12, (5.16)

where the separation vector is r12 = r1 − r2, its magnitude is r12 = |r12|, and its direction is
r̂12 = r12/r12. The terms a2 and a4 account for the periastron shift. The leading order term that
represents the radiation of energy and momentum from the system, a5, is also known as the
2.5PN term. This term takes the following form

a5 =
4

5

G2m1m2

r3
12

[(
2Gm1

r12
− 8Gm2

r12
− v2

12

)
v12

+ (r̂12 · v12)

(
52Gm2

3r12
− 6Gm1

r12
+ 3v2

12

)
r̂12

]
,

(5.17)

where the relative velocity scalar, v12, and vector, v12, are defined following the same conven-
tions as in Blanchet (10). We use the modified acceleration a = a0 + c−5a5 in our numerical
treatment instead of the Newtonian a0. A fundamental difference between the purely New-
tonian acceleration and the 2.5PN acceleration is that a5 depends not only on the separation
between the objects but also on their relative velocity.

The energy and angular momentum losses through the 2.5PN term should coincide with
those calculated using the quadripolar formalism for two bodies. To this end, the orbit-averaged
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equations for the time dependent evolution of SMA, a, and eccentricity, e, of a two-body system
emitting GWs derived by Peters (97) have provided a useful test framework to many authors,

da

dt
= −64

5

G3m1m2(m1 +m2)

c5a3(1− e2)7/2

(
1 +

74

24
e2 +

37

96
e4

)
, (5.18)

and
da

de
=

12

19

a

e

[
1 + (73/24e2) + (37/96)e4

]
(1− e2) [1 + (121/304)e2]

. (5.19)

By including the comparable 2.5PN terms directly in our three-body integration of the equation
of motion we can capture losses in three-body interaction knots as well as reproduce equations
(5.18) and (5.19) in the case where the system develops strong hierarchy and two bodies evolve
following the secular evolution described by Peters (97). In the Appendix, we show compar-
isons between the orbit-averaged equations (5.18) and (5.19) and a direct numerical integration
in our code.

With the inclusion of losses to GW radiation, binaries have a finite lifetime. If, for example,
we consider a binary with objects of equal mass, m, and a circular orbit with initial SMA a0,
equation (5.18) reduces to the form da/dt ∝ (m/a)3 with the solution

tlife(a0) = 1.6× 1017
( a0

au

)4
(
m

M�

)−3

yr. (5.20)

Here tlife is the GW inspiral time, or the time it takes for the initial binary to evolve from a = a0

to a = 0. The dependence on the SMA to the fourth power makes the lifetime very sensitive to
small changes in a0. In the other limit, where the initial eccentricity e0 is not far from unity, the
inspiral time is

tlife(a0, e0) ' tlife(a0)
768

425

(
1− e2

0

)7/2
. (5.21)

The lifetime of a very eccentric binary is shorter than that of a binary in a circular orbit with
similar SMA because as the eccentricity increases the pericenter distance, which is given by
rmin = (1− e)a, decreases. This results in a higher GW flux every pericenter passage, which in
turn decreases the lifetime and gradually circularizes the orbit of the binary.

An analytical solution for the coupled evolution in a and e also exists (97)

a(e) =
c0e

12/19

1− e2

(
1 +

121

304
e2

)870/2299

, (5.22)

where c0 is a constant with dimensions of length, set according to the initial conditions (a, e) of
the binary system. From this expression we see that in the high eccentricity limit, where e ≈ 1,
the SMA scales as a(e) ∝ (1−e)−1. As a result, the orbital SMA (and thus also the orbital energy)
must change by many orders of magnitude before the eccentricity becomes significantly less
than unity. Inspiraling binaries thus only become approximately circular during the last phases
of their inspiral.

5.5.2 SIGNIFICANCE OF PN CORRECTIONS

The binary’s compactness determines many of the important dynamical properties of the sys-
tem, especially the importance of PN corrections and collisions. A dimensionless compactness
can be defined as (10)

γ =
Gm

rc2
. (5.23)
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Using γ, we can write the acceleration, a = a0 +c−5a5, in terms of the dimensionless radius and
mass, r̃ = r/ru and m̃ = m/mu. In these units, the acceleration is ã = a/(Gmu/r

2
u) and we have

ãtot = ã0(m̃, r̃) + γ5/2ã5(m̃, r̃, ṽ). (5.24)

For systems that are strongly relativistic, the SMA a0 ≈ Gm/c2 and, as a result, PN corrections
become very important. For weakly PN systems, a0 � Gm/c2 and the compactness of the orbit
provides an estimate for the importance of the PN corrections to the equation of motion of a
circular, e ≈ 0, orbit. However, a key point that we emphasize in this work is that measuring
the strength of the PN corrections only in terms of the compactness of the initial binary orbit
can be misleading. In chaotic three-body interactions, the eccentric orbits and close passages
that arise make it possible for strong PN corrections to be realized even in systems with initially
wide SMA. As we will discuss later, the initial compactness of the binary system still determines
the probability that a very strong encounter will occur.

Close approaches in eccentric orbits lead to strong PN corrections to the equation of motion.
They also may lead to direct collisions. The maximal strength of PN corrections to the accel-
eration is therefore set by the physical size and mass of the objects, rather than by the initial
SMA of their orbits. This can be quantified by calculating the compactness γ for the interact-
ing objects themselves using their mass and radius. For example, if the objects are black holes,
their compactness γ ∼ 1, and PN corrections can therefore reach their maximal strength. If
the constituent objects are not black holes, then γ < 1, and the magnitude of the maximal PN
corrections for that three-body system is reduced. Neutron stars have typical dimensionless
compactness of γ ≈ 0.2, while a 0.6 M� white dwarf is characterized by a γ ≈ 10−4. Interacting
WDs will therefore in general collide before PN corrections become strong.

If a system of N interacting objects is only composed of BHs, then the dynamics of the system
becomes scale free (e.g. 114; 40). The reason is that the equation of motion scales with the
masses of the BHs, as do the BH gravitational radii. For example, for a binary-single interaction
involving three equal mass BHs, the expected dynamics for a system with a0 = 10−3 AU and
mBH = 1M� will be equivalent to that of a system with a0 = 10−1 AU andmBH = 102 M�. This
allows us to identify dynamically similar systems that occur in different astrophysical contexts.
If the N interacting objects are not BHs, then the system looses its scale-free behavior as the
object radius no longer scales with mass. Neutron stars, for example, exhibit relatively constant
radius across their observed mass range (119), while white dwarfs have an inverse mass radius
relationship RWD ∝ m−1/3

WD .

5.5.3 ENERGY LOSSES

The effects of GW energy loss can be most easily seen by examining equation (5.17) in the
context of a circular binary of equal mass objects. In that case, r̂ · v12 = 0, leaving only the
first term in equation (5.17). For equal mass objects, the term in parenthesis in equation (5.17)
evaluates to a negative number and the direction of a5 is determined by −v12, directly against
the motion of the two bodies. As a result, the orbiting objects essentially experience a drag force

F2.5PN =
32
√

2

5

G7/2

c5

(m
r

)9/2

(5.25)

This follows directly from equation (5.17) by substituting v =
√

2Gm/r. The energy leaving the
system per unit time can be easily calculated by using ∆Eorb = force×distance = F2.5PN2πr,
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Figure 5.5 GW energy loss in binary-single interactions between equal mass BHs. The panels
show an extreme HB case with a0 = 10−5 AU and mBH = 1 M�. The black lines indicate
scatterings where GR is included in the simulation and the blue lines indicate those for which
GR is not included. Softer binaries will have energy losses within the grey shaded region and
quickly end up near the blue line, which indicates no energy loss. Both panels include only
states from the RI channel with a finale state where the single object is unbound. Top: Average
energy change scaled by the initial energy E0 after a certain number of intermediate binary-
single states. Fractional energy losses of the order of∼ 10% can be achieved just after the second
instance a new binary-single state is produced. The average energy loss increases with the
number of identified IMS, indicating that energy has being extracted from the system. Bottom:
Cumulative distribution for the fractional energy difference between the total final state energy
and the initial energy. The figures are based on 2× 104 binary-single interactions with v∞ � vc.

from which it follows that
dE

dt
' ∆Eorb

Torb
= −64

5

G4

c5

(m
r

)5

(5.26)

where Torb = 2π(2Gm/r3)−1/2 is the orbital period. One should notice that the distance r
is changing as a function of time with a rate that can be calculated by using the Newtonian
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Figure 5.6 Number of three-body interactions between equal mass BHs arising from binary-
single scatterings. Both panels include only states from the RI channel. The target binary is
chosen to be initially very hard with a0 = 10−5 AU and mBH = 1 M�. The black lines indicate
scatterings where GR corrections have been added while blue lines show experiments with no
GR corrections included. The two plots differ in the way the number of interactions are counted.
Top: Number of times an intermediate binary-single state (IMS) is observed to occur during a
resonant interaction. Bottom: Number of times a new closest pair has been identified during the
resonant interaction. A high number of close-pairs indicates highly chaotic motion during the
encounter (see Figure 5.1) which occurs between each IMS.

relation dE/dr = −Gm2/2r2.
The above formalism can be extended to a binary-single interaction. The distribution of

GW energy radiated during a resonant encounter is shown in Figure 5.5. The upper panel
shows how energy from the system is depleted as new intermediate binary-single state are
created. The fractional energy loss is relatively small, especially for binaries with large SMA,
but at each encounter the binaries are effectively hardened and the relative likelihood for the
system to undergo a collision or a merger is increased. The lower panel shows the cumulative
distribution of the fractional energy loss between the initial state and the final state for the same
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Figure 5.7 Integrated outcome cross sections from binary-single interactions between equal
mass BHs including 2.5PN corrections. Similar to Figure 5.4 but now including collisions (pur-
ple) and inspirals (grey). The initial SMA of the target binary is a0 = 10−4 AU and mBH = 1M�.
Top: All interactions including RIs and DIs. Bottom: Outcomes arising from the RI channel only.
The new outcome from including GR is a population of objects that gravitationally inspiral dur-
ing the interaction. We denote such endstates as inspirals. The inspiral cross section flattens out
below the gravitational focusing velocity, vfoc, which implies that these end states are not sensi-
tive to the exact value of the impact parameter, b, and velocity, v∞, as long as the interaction is
a CI.

set of interactions. Figure 5.6 shows the corresponding cumulative distributions of the number
of IMS (top panel) and the number close-pairs (bottom panel) in a binary-single interaction. The
number of close-pairs is greater than the number of IMS since it also includes all close passings
that can occur within a single state (see Figure 5.1). For the set of scatterings ending with an
unbound companion (exchange or fly-by) the number of three-body interactions are reduced
when GR is included. For example, without GR 20% of all scatterings shown in Figure 5.6
have more than 50 close interactions, but only about 25 when GR is included. The reason is
simply that the possibility of the system inspiraling when GR is included, truncates the chain
of resonance interactions.

5.6 THE FORMATION OF DYNAMICAL INSPIRALS

With the inclusion of energy and angular momentum losses from GW emission a new class of
dynamical outcomes appears, which we denote here as inspirals. These are interactions in which
two of the objects inspiral and merge while all three objects are still in a bound three body state;
that is, before one of the classical outcomes of exchange, flyby or ionization is achieved. An
example of an inspiral end state is shown in Figure 5.3.

In order to understand how the inclusion of GR corrections changes the binary-single out-
come landscape, we recompute the Newtonian scattering experiments shown in Figure 5.4 with
the addition of the 2.5PN term in the equation of motion. Our results are illustrated in Figure
5.7. The revised cross sections include inspirals and collisions between solar mass black holes
with an initial binary SMA of 10−4 AU. The top panel shows the resultant cross sections from
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all interaction channels including DIs and RIs while the bottom panel includes only endstates
arising from the RI channel. By comparing the two panels one can conclude that inspirals (and
collisions) are dominated by the RI channel, an observation that will become useful when we
derive the analytical treatment for inspiral occurrence in Section 5.6.2.

Another important point is that the cross section for inspirals is approximately flat when
v∞ < vfoc. This implies that the probability for an inspiral to occur is not sensitive to the
exact value of the impact parameter, b, or velocity, v∞, as long as the single object experiences
a CI with the binary. The lack of a dependence on the initial conditions arises because nearly
all inspirals are generated from RIs (for which memory of the initial conditions is rapidly lost
through ensuing resonances) and because the fraction of RIs and DIs is approximately constant
for v∞ � vc (see Section 5.4.1). This observation makes it possible to write the probability for
an outcome to be an inspiral given the interaction is a CI as

Pinsp ≡ Ninsp/NCI, (5.27)

and the corresponding inspiral cross section as

σinsp = PinspσCI,

' Pinsp
3πGma0

v2
∞

,
(5.28)

where the last equality holds for the equal mass case. This factorization is useful in the sense
that it separates the contribution coming from the chaotic RIs from the standard focusing cross
section that simply acts as a weight factor. It is important to notice that Pinsp depends on the
compactness of the initial binary, i.e. its SMA a0 and massmbin, as we will show in Section 5.6.2.

5.6.1 PHASE SPACE DISTRIBUTION OF INSPIRALS

Figure 5.8 shows distributions of the orbital parameters (a, e) for all exchange and fly-by bina-
ries (orange) and intermediate state binaries (blue) from 2 × 104 HB binary-single interactions.
The division at a/a0 indicates energy conservation between the newly formed binary with SMA
a and initial binary with SMA a0. The target binary must shrink if the single object becomes un-
bound, i.e. exchange and fly-by binaries have a < a0 while IMS binaries have a > a0.

Inspirals appear in grey in the right-hand panel in Figure 5.8 where the 2.5PN term is in-
cluded in the equation of motion. These inspirals form from the subset of IMS binaries that
merge while the three-body system is still bound and are therefore (mainly) initially created
with a > a0. Since GWs in general carry energy out of the system before an endstate is reached,
then IMS can flow across the initial a/a0 = 1 border line. This means that all outcome dis-
tributions are slightly changed when GR is included. Inspiral states are, however, those that
experience the highest energy losses.

Immediately after an inspiralling binary has formed, it evolves according to equation (5.22).
Several of these evolutionary trajectories are shown with thin black lines in Figure 5.8. GW
emission circularizes the binary as its SMA is decreased. This migrates binaries from their initial
formation region in the right hand side of the (a, e) phase space to the lower left. Therefore, the
exact location of the inspiral event in Figure 5.8 depends on when the system was identified in
the code (see Appendix A for a discussion of the selection criteria for states). It is therefore not
necessarily representative of the binary’s initially assembled position in the formation locus for
inspirals.

The phase space accessible for inspirals depends on γ (equation 5.23). At particular (a, e)

combinations with close pericenter approaches, direct collisions can also occur. A direct tradeoff
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Figure 5.8 Distribution of orbital parameters (a, e) for all identified binaries from 2×104 binary-
single interactions between equal mass BHs. The target binaries have a SMA of a0 = 10−5AU

and mBH = 1 M�. The encounters occur with an incoming velocity of 10 km s−1 and as such
are in the extreme HB limit where v∞ � vc. Left: Without GR. Right: With GR. The blue points
represent IMS binaries, which are the candidates for inspiral end states. The sampling of these
IMS is nearly homogenous. The orange symbols show the endstate binaries from the classical
outcomes: exchanges and fly-bys. Inspirals that arise when GR is included are seen in the right
panel as grey squares. Each identified binary separation, a, is scaled with the initial a0. This is
because if there is no energy loss and v∞ � vc, then all intermediate states must have a/a0 > 1

and all final states with an unbound companion should satisfy a/a0 < 1. This follows directly
from conservation of energy (a ∝ 1/E) and helps illustrate how binaries tend to harden after
a HB interaction. If energy is leaking out of the system by GW emission, then the resultant
states shown by the blue-points can flow across the a/a0 = 1 boundary as seen on the right
panel. The orbital parameters for inspirals are fast evolving and the grey region is therefore only
showing a snapshot of the phase space distribution of these states. The thin black lines show a
few examples of the evolution contours the inspirals follow in the (a, e) space. The black solid
line shows the diameter of a 1 M� BH, and the dashed shows the diameter of a NS with 12 km
radius. In this example, where the interacting objects are three stellar mass BHs, any formed
binary above the BH limit would lead to a collision. Many of the BH inspirals would have been
collisions instead, if the objects would have been NSs.

can the be found between the number of collisions and the number of inspirals. The rates for
these particular end states cannot be independent because they originate from a similar phase
space region. Not surprisingly, extended objects produce relatively fewer inspirals and more
collisions than compact ones. The importance on th object’s size is illustrated in Figure 5.8, in
which we plot the boundaries defined by the BH and NS diameters, respectively.

5.6.2 ANALYTIC DERIVATION OF INSPIRAL CROSS SECTIONS

In this section, we develop an analytical understanding of what determines the occurrence rate
of inspirals and collisions, including how the outcomes depend on the initial SMA and on the
mass of the target binary. Each IMS is characterized by three parameters: the SMA (a) and
eccentricity (e) of the IMS binary and the orbital period of the bound companion, which we
denote here as the isolation time (tiso). Since the single object is bound to the binary during
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Figure 5.9 Inspirals in (a, 1 − e) space produced by IMS binaries. Blue points indicate IMSs
whose endstate is not an inspiral. Grey squares show inspirals at the time of identification. The
x-axis on all three panels show a/ai = Etot,i/Ebin,i where Etot,i and Ebin,i are respectively the
total energy of the three-body system and the energy of the IMS binary at the time of identifi-
cation: ti. Top: Sampling of IMS near e ≈ 1. This distribution is relatively uniform in (a, 1 − e)
space, an observation that makes it possible to estimate how the number of inspirals produced
scales with initial SMA a0 (equation 5.36). Middle: Same distribution as in the top panel but with
the y-axis in logarithmic scale. To illustrate which IMS can form inspirals when GR is included,
we have plotted using equation (5.34) a few lines showing where tlife = tiso. An inspiral can
form when tlife < tiso. Bottom: Results from numerical scattering experiments including GR and
a finite radius, rNS, for the interacting objects. The NS radius introduces a collision boundary
given by rmin = 2rNS where rmin is the the pericenter distance of the IMS binary. As shown in
the plot, the (a, 1 − e) IMS space divides into three distinct regions: (1) IMS with rmin < 2rNS

will produce direct collisions, (2) IMS with rmin > 2rNS and tlife < tiso will form inspirals, and
(3) IMS with rmin > 2rNS and tlife > tiso can be followed by further interactions. As inspirals
formed in region (2) spiral in, they diffuse into region (3). All three panels are based on 2× 104

scatterings between equal 1.4 M� objects with rNS = 12 km.
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an IMS, tiso is finite. It then follows that if an IMS binary is formed with tlife < tiso, then the
binary will inspiral before the return of the bound companion. The lifetime, tlife, is determined
by equations (5.18) and (5.19) but can be estimated by equations (5.20) and (5.21) in the circular
and eccentric limits, respectively. In all of the following calculations, we assume the hard binary
limit (v∞ � vc).

The probability for a particular outcome to be an inspiral can be estimated by considering the
fraction of states during a RI that satisfies tlife(a, e) < tiso(a). The isolation time tiso is described
by Keplers law

tiso = 2π

√
a3

bs

Gmtot
, (5.29)

where abs is the SMA of the hierarchical triple. This SMA, abs, can be expressed in terms of the
initial binary SMA, a0, and the SMA of the IMS binary, a, by making use of energy conservation

Etot ' −
Gm1m2

2a0
= Ebin + Ebs = −Gmimj

2a
− Gmbinmsin

2abs
(5.30)

where ‘bin’ and ‘sin’ respectively refer to the binary and the single bound object in the hierar-
chical triple. In the equal mass case, equation (5.30) reduces to

abs =
2a0

1− 1/a′
(5.31)

such that

tiso =

(
2

1− 1/a′

)3/2

2π

√
a3

0

Gmtot
, (5.32)

where a′ = a/a0 and the last term in equation (5.32) is the orbital time of the initial binary
system, Torb,0. Equation (5.32) relates the normalized SMA, a′, of a given IMS binary to the time
it remains isolated from its bound companion. Since a′ > 1 during a resonance, it follows that
tiso > Torb,0.

We can now compare tiso to tlife, which, in the high eccentricity limit, is given by equation
(5.21). The ratio Finsp = tlife/tiso describes the lifetime relative to the binary isolation time and
can be written as

Finsp =
CFc

5

G5/2

(a0

m

)5/2

(1− e2)7/2a′5/2(a′ − 1)3/2 (5.33)

where CF = (3
√

3)/(680π
√

2) ≈ 1.7× 10−3. If Finsp < 1, the binary will inspiral before the third
body returns. If, on the other hand, Finsp > 1 another three-body encounter will take place.
The boundary defined by Finsp = 1 produces a clear division in the (a′, e) phase space plane,
clearly separating IMSs that will inspiral to those that can be followed by further three-body
interactions (Figure 5.9).

Defining the allowed phase space region for inspirals as ∆insp = 1− e and setting Finsp = 1

in equation (5.33), we get

∆insp ≈
1

2

G5/7

C
2/7
F c10/7

(
m

a0

)5/7

a′−5/7(a′ − 1)−3/7, (5.34)

which implies ∆insp ∝ (m/a0)
5/7. Assuming that the (a, e) sampling of IMSs is relatively uni-

form where e ∼ 1, as observed in Figure 5.9, we conclude that the number of IMSs within the
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inspiral region is ∝ (m/a0)
5/7. This means that the probability for an outcome to be an inspiral

given that the interaction is a CI (see 5.27) scales as

Pinsp ∝
(
m

a0

)5/7

∝ γ5/7, (5.35)

such that

σinsp = PinspσCI ∝ a2/7
0

m12/7

v2
∞

. (5.36)

This illustrates that the cross section for inspirals is expected to increase with the SMA of the tar-
get binary. The dominant inspiral-producing targets in a cluster are thus not extremely compact
binaries, but instead wide ones.

Collisions occupy a similar phase space region to that populated by inspirals, with the size
of the interacting objects and the initial SMA of the target binary determining their relative cross
sections. If an IMS binary is formed with a periapsis rmin = a(1 − e) that is smaller than twice
the radius robj of the interacting objects, then a collision will occur. Using ∆coll = 1 − e, the
collision boundary is simply given by

∆coll = (2robj/a0)(a′)−1, (5.37)

which leads to the result that the probability for a collision is Pcoll ∝ a−1
0 . The associated cross

section, σcoll, can be estimated using equation (5.28), and it is thus independent of a0.
If we compare equations (5.34) and (5.37), we can see that the probability for a collision

(∝ a−1
0 ) decreases faster than the inspiral probability (∝ a−5/7

0 ) as a0 increases. This means that
collisions will occupy a progressively smaller fraction of the available inspiral phase space as
the SMA of the target binary increases. Inspirals arising from widely separated binaries are
therefore less likely to be depleted by collisions, which in turn makes widely separated binaries
even better targets for inspiral production.

5.6.3 NUMERICAL DETERMINATION OF THE CROSS SECTION

Figure 5.10 shows the formation probability and corresponding cross sections of inspirals and
collisions as a function of initial SMA derived using numerical scattering experiments. The
symbols show results from our numerical simulations while the dashed lines show the results
from our analytical estimates giving by equation (5.36). As discussed in Section 5.6.2, the inspi-
ral cross section increases with SMA. This is because the gravitational focusing cross section for
a CI increases faster with SMA (∝ a0) than the probability for an inspiral decreases (∝ a−5/7

0 ).
As can be seen in Figure 5.10, the numerical and analytical scalings are in agreement in the

asymptotic limit but show small differences in slope at low SMA. These differences are caused
by having neglected a series of physical effects in the analytical scaling, such as collisions and
GW energy losses before the interaction has reached its final endstate. However, these correc-
tions are only important for target binaries in the high compactness limit. From an astrophysical
perspective, these binaries are believed to be a negligible target population as these they are ex-
pected to merge before a CI can take place. The reader is refered to Section 5.8 for further
discussion.

Since we have now shown that inspirals are a likely outcome even from widely separated bi-
naries, it is important to compare them with mergers arising from the widely-discussed single-
single GW capture scenario (41; 120; 67; 23; 22).
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Figure 5.10 Formation of inspirals (grey) and collisions (purple) in equal mass binary-single inter-
actions between either BHs (squares) or NSs (stars) as a function of the initial SMA of the target
binary. All BHs have a 1 M� mass where the NSs have a 1.4 M� mass and a 12 km radius.
The corresponding analytical estimates, given by equation (5.36), are shown as dashed lines.
The general normalization is found by numerical experiments, but as can be seen our analytical
model correctly separates the cross sections between NSs and BHs based solely on their mass
difference. The reader is refered to the text for a discussion explaining the slight difference at
low SMA between the simple analytical scaling and the simulations. Top: The probability for
an outcome to result either in a collision or an inspiral given a CI. Bottom: The corresponding
total integrated cross sections for each outcome. As expected, the probability for an inspiral
decreases with SMA (equation 5.35) while the total cross section increases with SMA (equation
5.36). Widely separated binaries are thus expected to be the dominant target for producing
inspirals. Our numerical results used 2× 105 scatterings per SMA.
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5.6.4 COMPARISON TO SINGLE-SINGLE CAPTURE

Inspirals resulting from binary-single interactions and mergers resulting from single-single GW
capture can create binaries with extremely short merger times and, in some cases, with very
high eccentricity. Comparing the formation probabilities for eccentric mergers arising from
both mechanisms is thus of great interest.

A single-single capture occurs when two objects pass close enough to each other that the
resulting GW energy losses are larger than their initial positive energy. To first order, the energy
radiated away during the first passage can be obtained by integrating the GW energy losses
along the initial, unperturbed unbound orbit (41):

∆E = − 2

15

G7/2

c5
m2

1m
2
2(m1 +m2)1/2

rmin(a, e)
7/2

h(e), (5.38)

where rmin = a(1 − e) is the minimum distance between the two objects in the unbound orbit
and h(e) is a dimensionless constant for which h(e = 1) = 425π/(8

√
2). For capture to occur,

we require ∆E > (1/2)µv2
∞, where µ is the reduced mass. Combining this with equation (5.38),

we find the maximum allowed rmin for a capture, which we denote rcap (71),

rcap =

(
85π

6
√

2

)2/7
Gm

2/7
1 m

2/7
2 (m1 +m2)3/7

c10/7v
4/7
∞

. (5.39)

All single-single encounters with pericenter distance smaller than rcap become bound.
In analogy with the CI interaction cross section derived in Section 5.3.1, the cross section for

a single-single interaction with pericenter distance less than rp,max can be written as

σSS(rmin < rp,max) ' 2πGmtotrp,max

v2
∞

. (5.40)

The capture cross section can be estimated by inserting rp,max = rcap in equation (5.40),

σcap = 2π

(
85π

6
√

2

)2/7
G2m

2/7
1 m

2/7
2 (m1 +m2)10/7

c10/7v
18/7
∞

. (5.41)

This cross section can then be compared directly with the cross section for inspirals arising from
binary-single encounters. The ratio between the two cross sections can be approximated using
equation (5.36),

σinsp

σcap
∝
(
a0v

2
∞

m

)2/7

. (5.42)

The number of inspirals relative to single-single captures is then expected to increase with a0

and v∞, but decrease as the mass increases.
Figure 5.11 shows the numerically derived ratio of binary-single inspirals to single-single

captures based on 8 × 105 binary-single scatterings. The two mechanisms have similar cross
sections for tight binaries and typical cluster velocity dispersions. For binary SMA larger than
10−3 AU, binary-single inspiral interactions clearly dominate. This implies that inspirals result-
ing from binary-single interactions may contribute substantially to the inspiraling and eccentric
merging binary population in globular clusters. In the next section, we will explore the particu-
larly interesting case of binaries that pass through the LIGO detector frequency band with high
eccentricity.
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5.7 ECCENTRIC INSPIRALS IN THE LIGO BAND

Compact merging binaries will be observed by advanced LIGO in the near future (42; 78; 2;
77). To detect these inspirals, templates must be convolved with the timeseries data from the
interferometer (2; 123; 90; 14). The waveforms of relatively high eccentricity differ from those
of circular binaries. For example, Huerta & Brown (52) find that for eccentricities greater than
about e ≈ 0.2, the match to circular templates is degraded by more than 50%. An understanding
of the quantity and origin of eccentric binaries that pass through the LIGO band is therefore
extremely important for future GW searches.

In the GW inspirals and mergers, one might expect that the majority of binaries will be
nearly circular when entering the LIGO band, since GWs carry away both energy and angular
momentum at a rate such that the circularization time is similar to the merging time (97; 39; 40).
However, as we show in this paper, the dynamical inspiral states formed in binary-single en-
counters are formed with very high initial eccentricity and rapid merger times. As a result, most
of these dynamical formed inspirals will be directly observable in the LIGO band at the time of
formation, i.e. when they are still highly eccentric. In what follows, we explore in detail the
fraction of highly eccentric LIGO sources one expects to come from binary-single interactions
as well as making a direct comparison to highly eccentric inspirals formed via single-single
interactions.

To quantify the number of eccentric binary mergers in our scattering experiments, we use
an approximate form for the gravitational peak frequency (128),

fGW =
1

π

√
Gmtot

a3

(1 + e)1.1954

(1− e2)1.5
, (5.43)

where
√
a3/Gmtot is the orbital time, Torb.

5.7.1 ECCENTRIC BINARIES FROM BINARY-SINGLE INTERACTIONS

The eccentricity distribution of binaries resulting from binary-single interactions includes bi-
naries that evolve into the LIGO band and binaries that are born in the LIGO band. Figure 5.12
shows the results from binary-single interactions between NSs with 1.4 M� masses and 12 km

radius for different initial SMA of the target binary. The top panel shows the distribution of
all binaries in the log(a, 1 − e2) plane immediately after final-state identification. Inspirals are
shown with large square symbols. The distribution of inspirals is not static. Instead, each binary
evolves due to GW radiation according to equation (5.22). The dotted black lines show a few of
these evolutionary tracks. The two dashed-black lines show constant gravitational peak frequen-
cies fGW = 101, 104 Hz, which have been chosen to illustrate the sensitivity window range for
advanced LIGO (42; 77).

By comparing the orbit evolution trajectories in Figure 5.12 with the lines of constant fGW,
we can see that they are parallel for log(1 − e2) � 0. This is because the evolution of a for
both scales as

(
1− e2

)−1. This implies that high eccentricity mergers that are not born in the
LIGO band cannot evolve into it with high eccentricity. The binaries that are identified inside
the LIGO band are thus the only ones that are able to be detected with high eccentricity. This
set of binaries is the dynamically formed inspirals. From the (a, e) distributions shown in the
top panel in Figure 5.12 one can calculate the corresponding fGW distributions by making use
of equation (5.43) (bottom panel in Figure 5.12). The values of fGW are observed to change
only slightly during inspiral, since the binaries spiral in with almost constant peak frequency.
As observed in Figure 5.12, target binaries with a ∼ 10−2 − 10−3 AU produce inspirals with
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fGW distributions that peak around the most sensitive LIGO frequency ≈ 200 Hz. The relative
normalizations of the distributions shown in the bottom panel of Figure 5.12 can be derived from
Figure 5.10.

5.7.2 ECCENTRIC BINARIES FROM SINGLE-SINGLE CAPTURE

Once a binary is formed via single-single GW capture, its subsequent evolution can be followed
in the (a, e) plane according to equation (5.22). By analogy with arguments presented above for
the binary-single capture case, we can conclude that if binaries formed through single-single
capture are not formed with fGW that places them in the LIGO band, they will circularize before
LIGO can observe them as eccentric binaries.

To estimate the cross section for highly eccentric LIGO sources resulting from single-single
captures, we first rewrite equation (5.43) in the equal mass case and in the high eccentricity limit
(e ∼ 1),

r0 '
(

22.3908

4π2

Gm

f2
0

)1/3

, (5.44)

where m is the mass of each of the objects, and r0 is the required pericenter distance for an
eccentric binary to have a peak frequency f0. It then follows that all encounters with pericenter
distance rmin < r0 will have fGW > f0. Therefore, the cross section for a single-single encounter
having fGW > f0 can be simply calculated by setting rp,max = r0 in equation (5.40),

σSS(fGW > f0) =
4πGm

v2
∞

(r0 − 2robj) . (5.45)

To account for the object’s finite size (robj), we have subtracted the cross section for direct colli-
sions in equation (5.45). The velocity dependence (v−2

∞ ) in equation (5.45) implies that the cross
section for high eccentricity single-single captures scales as the gravitational focusing cross sec-
tion. The single-single capture cross section scales as v−18/7

∞ such that σSS(fGW > f0)/σcap ∝
v

4/7
∞ . As the velocity increases, the single-single high eccentricity cross section relative to the

capture cross section will also increase. The dashed-black line in the bottom panel in Figure 5.12
shows the eccentricity distribution given by equation (5.45) for single-single encounters, which
we confirmed using scattering experiments of single-single objects. In Figure 5.13, we show
the different cross sections and corresponding scalings for the various outcomes expected from
single-single and binary-single encounters.

5.7.3 COMPARISON BETWEEN BINARY-SINGLE AND SINGLE-SINGLE

In previous sections, we have computed the scalings for the cross sections of binary-single in-
teractions and single-single captures; a summary of our results is given in Figure 5.13. We now
turn our attention to the relative normalization of eccentric inspirals arising from binary-single
and single-single capture as a function of binary SMA and GW frequency threshold. Figure 5.14
shows the normalization of the numerically computed inspiral cross sections for interacting NSs
given three frequency thresholds f0 = 10, 30, and 100 Hz as a function of the initial binary SMA.
The upper panel shows the resulting cross sections in AU2 for encounters with v∞ = 10 km s−1.
The lower panel shows these cross sections normalized to the corresponding single-single cross
sections. Inspirals become increasingly dominant relative to the number of single-single eccen-
tric binaries as the frequency threshold and the SMA increases. The ratio between the two cross
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sections is independent of velocity because both cross sections scale with the gravitational fo-
cusing cross section, v−2

∞ . This general behavior can be understood analytically by writing out
the ratio

σinsp

σSS(fGW > f0)
' 3

4

Pinspa0

r0 − 2robj
∝ a2/7

0 f
2/3
0 . (5.46)

The estimation of Pinsp in this limit is given by equation (5.35). Our numerical and analytical
results strongly suggest that the cross section for the formation of eccentric compact binary
inspirals is significantly larger in the binary-single case than in the single-single case even when
the fraction of compact objects in binaries is relatively modest.

5.8 DISCUSSION

We have discussed the formation of eccentric inspirals in the context of binary-single interac-
tions and compared them to the more widely discussed single-single capture scenario. The ex-
pected outcomes for binary-single and single-single interactions of equal mass NSs are shown in
Figure 5.15. The solid-black line shows the binary-single CI cross section. Other outcomes shown
are sub-categories of the CI cross section. The solid-red line shows exchange, the solid-grey inspi-
rals, and the solid-purple collisions. The green line shows binaries with merger lifetimes less than
a Hubble time, which will be discussed in Section 5.8.2. Similarly, the dashed-black line shows
the total cross section for single-single capture, while the dashed-red line shows only eccentric
captures for which fGW > 10 Hz, and the dashed-purple line shows the collision cross section. As
we emphasized in the previous section, most inspirals occur with fGW & 10 Hz, so the inspiral
cross section may be directly compared to the eccentric component of the single-single cross
section. The upper x-axis label shows the GW inspiral lifetime for binaries separated by a given
initial SMA (bottom x-axis labels).

Here we turn our attention to the implications of our results and illustrate how they change
with the inclusion of a more extended binary companion by calculating scatterings for WD-NS
binaries in Section 5.8.1. We discuss the merger lifetime and resulting center-of-mass kicks in
Sections 5.8.2 and 5.8.3, respectively. We provide a simple estimate of typical event rates in
dense stellar systems in Section 5.8.4. Finally, we present our conclusions in Section 5.8.5.

5.8.1 TARGET BINARIES CONTAINING WHITE DWARFS

We have seen that wider binary SMAs lead to an enhancement in the cross section for inspiral
outcomes in the case of binaries comprised of NSs and BHs. In widely separated binaries, the
binary members need not be compact objects. In this section, we consider the case where the
target binary contains a white dwarf (WD) companion (125).

WDs have a well defined mass-radius relationship, which takes the following form for
lower-mass WDs,

rWD ' 1

m
1/3
WD

(18π)2/3

10

~2(mp/0.5)−5/3

Gme
, (5.47)

≈ 2.9× 109 (mWD/M)
−1/3 cm, (5.48)

where me is the electron mass and mp the proton mass (15).
Another characteristic scale imposed by the size of the WD is the separation at which the

WD fills its Roche lobe,

aMT ' rWD
0.6q2/3 + ln(1 + q1/3)

0.49q2/3
, (5.49)
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where q = mWD/mNS (24). In WD-NS binaries containing moderately massive WDs, the result-
ing mass transfer is stable, and the binary overcomes the destabilizing effects produced by GW
radiation due to the ongoing mass transfer (e.g. 79; 96).

The phase space of NS-NS binary outcomes that result from NS scatterings including a com-
panion WD are shown in the upper panel of Figure 5.16, which can be directly compared to
the upper panel of Figure 5.12. These experiments involve a 1.4 M� NS encountering a WD-
NS binary containing a 0.5 M� WD and a 1.4 M� NS. A comparison to Figure 5.15 shows the
increased importance of collisions in the WD-NS target case when compared to NS-NS targets.
However, we see that inspiral outcomes between two NSs are still possible, despite the pres-
ence of the WD. By contrast, inspirals between the WD and the NS typically do not occur due
to the extended radius of the WD (see e.g. 129, for double WDs seen by LISA4). However, the
cross-section for inspirals is reduced somewhat as compared to NS-NS target binaries. This is
partially due to the fact that there is one (rather than three) possible pairwise combination that
can result in double NS binaries. Additionally, in tight binaries with a ≈ aMT, collisions with
the WD play an important role in depleting inspiral outcomes (74). The hierarchy of masses
in the system also likely plays a role by somewhat reducing the typical number of resonances
(116). Despite these effects which tend to deplete the number of inspiral outcomes, we find that
NS-NS inspirals have a larger cross section than single-single captures with fGW > 10 Hz as
long as the binary SMA a0 & 10−3 AU. Thus we still expect wide binaries containing WDs to
contribute meaningfully to the eccentric inspiral channel, in particular if they dominate the NS-
hosting binary population as in Grindlay et al. (37). A concern for systems containing extended
objects is that tidal dissipation may play in important role in modifying the dynamics (e.g. 80),
an effect we ignore here and hope to implement in future work.

5.8.2 BINARY LIFETIMES

Even if the initial binary lifetime is greater than a Hubble time, tHubble, a fraction of binaries
that undergo a scattering will be either deposited or exchanged into orbits with very short
lifetimes (17). Thus a fraction of even very widely separated binaries can produce mergers with
tlife < tHubble. Figure 5.17 shows the distribution of final binary lifetimes realized following
binary-single scatterings with varying binary SMA. In the classical point-mass limit, we see
that an approximate power-law distribution is produced. The inclusion of GW radiation and
finite radii introduces two physical scales that break the self-similarity of the problem. The
hard cutoff corresponds to the scales of the objects themselves and depletion by collisions. The
inspiral population manifests itself as a knee at scales corresponding to the typical pericenter
distances of the rapid inspiral outcomes.

The cross section for creation of binary products whose lifetime are less than a Hubble time
is plotted in Figure 5.15 for encounters involving NS. The key feature of this cross section is that
it does not vanish when a0 & 10−1.7 AU, where t0 > tHubble. Instead this cross section remains
approximately flat. The reason for this is that resultant binaries generally have a much smaller
pericenter distance than the target binary and therefore also a shorter lifetime as seen in Figure
5.17.

4http://lisa.nasa.gov/
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5.8.3 RETENTION OR EJECTION OF BINARY-SINGLE OUTCOMES

A remaining question is whether final binaries resulting from binary-single interactions are
kicked out, or whether they merge in-situ. Kicks relative to the initial center of mass occur
when a fraction of the initial binary’s binding energy is transferred to the relative motion of the
binary and the single (98). We denote the resulting binary kick velocity as vkick. The associated
hardening of these binaries leads to a shorter binary lifetime (since tlife ∝ a4) and one therefore
expects that a high kick velocity is associated with a short lifetime. A binary that receives a
high-velocity kick will therefore not necessarily merge outside of its environment.

This tradeoff between lifetime and kick velocity is evident in Figure 5.18. The Figure shows
a scatter plot of kick velocity vkick and survival distance, defined as vkick × tlife for all endstate
NS binaries with respect to the initial center of mass. We use the survival distance to estimate
where the binary will merge. Radius and escape velocity for a typical globular cluster are shown
with dashed lines. In this simple calculation only final binaries in the upper right quadrant
merge outside the cluster. If we now assume that binary SMAs are lognormally distributed and
we only consider binaries that merge in less than a Hubble time (below the dash-dotted line in
Figure 5.18), we calculate that ∼ 30% (10%) of all merging binaries arising from NS-NS (NS-
WD) targets are kicked out with a median distance of ∼ 80 (50) kpc. While there is little direct
evidence that close double neutron star binaries can form and merge in globular clusters, the
double neutron star system PSR B2127+11C in the Galactic GC M15 (3) is an example of such a
system and has tlife ≈ 2× 108 years.

The retention or ejection of binaries has implications for cluster dynamics and merger-
induced transients such as e.g. short gamma-ray bursts (8; 73). If binaries are retained, they
participate in the continued cluster evolution acting as a heat source or sink depending on
their SMA. In some cases the binary distribution may reach a steady-state (e.g. 58). Merging
binaries are expected to show environmental dependance in their electromagnetic signatures
(95; 110; 83; 64; 109).

If a relativistic (short-gamma-ray burst) or a mildly relativistic mass ejection resulted from
the merger of two compact objects, the resulting afterglow could then, at least in part, be due
to the interaction of the ejecta with the stellar winds of the red giant cluster members (18). Due
to the large stellar density in the cluster core, the external shock would then take place within
a more dense medium than the IGM (74). In addition, the merger sites of compact binaries will
determine whether we expect the electromagnetic signatures of binary mergers to statistically
trace the globular cluster distribution around galaxies (37; 74; 16) or the galactic potential (11;
112; 8; 131; 130; 26; 65; 27).

5.8.4 RATES

Given distributions of target binaries and single encounters, we can convert the calculated cross
sections into event rates. In this section we present some simple order-of-magnitude estimates
of the rates of dynamical NS-NS inspirals achieved in globular cluster environments. We denote
the total number of NSs by NNS, and assume that some fraction fb are in Nbin binary systems
(target binaries). The remaining fraction remains single (encounter population), fs = 1−fb. The
target binaries are distributed according to their SMA dNbin/da, which we assume is lognormal,
dNbin/da ∝ a−1. The differential rate of inspirals per SMA can then be written

dΓinsp

da
=
dNbin

da
nsσinspv∞, (5.50)
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where ns is the number density of single NSs, ns = fsNNS/Vcore, and Vcore is the volume of the
cluster core over which both single and binary objects are distributed. To obtain the total rate of
inspirals, we integrate over the binary distribution,

Γinsp =

∫
dΓinsp

da
da. (5.51)

We note here that while we need to evaluate this integral for a given binary distribution and
inspiral cross-section as a function of SMA, it will generally scale as Γinsp ∝ N2

NSfb(1− fb)v−1
∞ .

Below we provide some rate estimates based on simple examples that describe the distribution
of NSs in globular clusters.

In a typical globular cluster, there may be as many asNNS ∼ 103, for example, as modeled in
the case of M15 by Murphy et al. (88) whose best fit model has 1500 NSs with a half-mass radius
of 0.17 pc. In what follows, we take Vcore = (0.17pc)3, a typical relative velocity v∞ = 10km s−1,
and NNS = 103. If 30% of these NSs are in NS-NS binaries distributed between 10−3 and 1 AU
in SMA (fb = 0.3), the rate of NS inspirals will be

Γ
(NS−NS)
insp ≈ 0.7 yr−1 Gpc−3. (5.52)

To express the above rate in units of volume, we have assumed that the density of galax-
ies is ngal = 0.1 Mpc−3 and each galaxy has 100 globular clusters, NGC = 102, implying 10
GC/Mpc−3 (13).

If we instead assume NSs are in WD-NS binaries distributed between 10−3 and 1 AU in SMA
(fb = 0.3) and treat our WD-NS scattering cross section as representative for these binaries, we
find

Γ
(WD−NS)
insp ≈ 0.3 yr−1 Gpc−3. (5.53)

As with the NS-NS case, this numeric result scales ∝ N2
NSfb(1 − fb)v−1

∞ . This estimate should
be treated as an upper limit, because, if, for example the NS is in a binary with a main sequence
star, the effects of collisions will be more significant than those with a WD companion.

These same assumptions imply a rate of single-single NS captures in globular clusters,

Γcap = fsNNSnsσcapv∞ ≈ 0.5 yr−1 Gpc−3 (5.54)

where we note that the velocity dependence in this case is v−11/7
∞ . By the same token, we can

calculate the rate of eccentric binaries in the LIGO band arising from single-single encounters

ΓSS(fGW > 10 Hz) ≈ 0.15 yr−1 Gpc−3, (5.55)

which has a velocity dependence v−1
∞ . Thus, if the binary fraction fb > 0.18 (for WD-NS bina-

ries) or fb > 0.08 (for NS-NS binaries), the binary-single channel will dominate the formation
of eccentric NS inspirals over the widely discussed single-single channel.

We can also compare to the number of non-eccentric mergers which occur from dynamical
interactions. These are defined in our scattering experiments as those binaries arising from ei-
ther an exchange or flyby interaction whose lifetime is less than a Hubble time, tlife < tHubble. If
we take our NS-NS target binary simulations as representative, non-eccentric merger outcomes
have a rate of approximately

Γ(NS−NS)
merge ≈ 120 yr−1 Gpc−3. (5.56)

Binaries with tlife < tHubble are thus more common by a factor of approximately 160 than in-
spirals. Grindlay et al. (37), whose rate estimate is in rough agreement with equation (5.56),
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concludes that ∼ 10% of all mergers may be dynamically assembled in globular clusters. The
remainder of mergers are expected to arise from binaries assembled in the field (e.g. 19; 20).
However, the exact fraction of mergers in clusters depends sensitively on the distribution of
wide binaries containing compact objects which is difficult to constrain observationally. If this
estimate is correct, then the inspiral rate represents a ∼ 1% fraction of the anticipated total
compact object merger rate assembled in cluster.5

Normalized to the rate of eccentric NS mergers from single-single capture for which fGW >

10 Hz, We can write a hierarchy of rates as

ΓSS(fGW > 10 Hz) : Γ
(WD−NS)
insp : Γ

(NS−NS)
insp : Γ(NS−NS)

merge

≈ 1 : 2 : 5 : 800. (5.57)

The expected number, and correspondingly the number density, of BHs in globular clus-
ters remains uncertain. Mass-segregation, for example, has been argued to give rise to a BH-
dominated subsystem that collapses and dynamically decouples from the remainder of the stel-
lar system (118; 69; 92). In this case, very high BH number densities can be achieved, leading to
the formation of a binary population through GW capture. Binary-single and single-single BH
interactions are expected to rapidly eject BHs from the cluster after the formation of binaries
(69; 115). However, these binary interactions may also produce inspirals and mergers, perhaps
even leading to the runaway formation of a massive black hole (99). Even if the number of BH
binaries is small, the number density of single black holes may be high enough to produce an
inspiral rate comparable to the NS inspiral rate (92; 91). However, it is probably unreasonable
to expect that a fraction of order unity of globular clusters might undergoing such an extreme
phase at a given time. We therefore expect NS-NS inspirals rather than BH-BH inspirals to
dominate the inspiral rate.

5.8.5 SIGNIFICANCE OF ECCENTRIC INSPIRALS

We have demonstrated that binary-single scatterings are likely to dominate the production of
eccentric binaries. In such GW-driven inspirals, the energy change is much more rapid than
the angular momentum change, such that the circularization time and inspiral time are similar,
tinsp ≈ tcirc (97). One consequence of this is that binaries whose peak frequency, equation
(5.43), is at lower frequency than the LIGO band will enter the LIGO band with relatively low
eccentricity since these objects tend to circularize as they inspiral. This can be seen most clearly
in the trajectories drawn in Figures 5.12 and 5.16. For a binary to be seen as eccentric in a given
waveband, it must have been formed with high eccentricity in that band. Eccentric inspirals
produce gravitational waveforms which are distinct from those of circularly inspiraling binaries
(68; 120; 21; 35; 23; 34; 52). These may be so distinct that non-circular binaries will go undetected
without uniquely created waveform templates (22; 52), and the timing between pre-merger GW
bursts will contain valuable information about the equation of state. Close encounters in these
systems can also lead to tidal deformations strong enough to crack the crust of the NS and tap
into the ∼ 1046 erg stored in elastic energy, potentially generating flaring activity prior to the
merger (126; 127). In contrast to quasi-circular NS-NS mergers, eccentric binary mergers can
also result in massive disks even for equal mass binaries (23).

Neutron stars that merge with high eccentricity have potentially unique gravitational and
post-merger electromagnetic signatures (e.g. 74; 23). The merger of these binaries may eject

5This estimate neglects other channels that could lead to eccentric binaries mergers, such as Kozai resonance in a
triple systems (87; 124).
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copious neutron rich material in tidal tails that will synthesize significantly larger masses of
r-process rich material (74; 109) than the widely discussed, non-eccentric binary mergers (70;
107; 106; 103; 73; 84; 101; 7; 63; 4; 121; 38).

Multi-messenger astronomy offers tantalizing prospects for probing the nature of compact
objects, their binary assembly, evolution, and eventual merger (105; 104; 12; 74; 108; 25; 83; 75;
64; 89; 93; 94; 9; 122; 5), in addition to possible insights into the origin of r-process nucleosyn-
thetic elements and short gamma-ray bursts (70; 72; 111; 102; 86; 101; 7). An eccentric GW signal
detection might be one of the most exciting prospects, as it would provide a clear signature of
the dynamical binary assembly process. In the explicit absence of such detection, the use of
eccentric waveform template searches could help exclude a significant dynamically assembled
population of merging compact binaries in dense stellar systems.

It is a pleasure to thank J. Goldstein, J. Guillochon, S. H. Hansen, J. Hjorth, D. Kasen, L.
Kelley, W. Lee, L. Lehner, I. Mandel, C. Miller, F. Pretorius, S. Rosswog, and D. Tsang for helpful
discussions. M.M. and E.R-R. thank the DARK cosmology centre for its hospitality. We ac-
knowledge support from the David and Lucile Packard Foundation, NSF grant: AST-0847563
and the NSF Graduate Research Fellowship (M.M.). The Dark Cosmology Centre is funded by
the Danish National Research Foundation.

5.9 N-BODY INTEGRATOR WITH GW ENERGY LOSS CORREC-
TION

We use a Fourth-Order Hermite Integrator with a variable time step to evolve the N-body sys-
tem. The dynamical effect from GW radiation is included using the Post-Newtonian (PN) for-
malism (10) by modifying the Newtonian acceleration term from a0 to a0 + c−5a5 as described
in Section 5.5.1. This modified PN expansion of the acceleration is strictly valid only for two iso-
lated objects. However, one can still make use of this approach without introducing significant
errors for N > 2 objects since the 2.5PN term has a much steeper dependence on the distance
r than the Newtonian acceleration (r−9/2 vs r−2 for a circular binary). The contribution from
the closest pair will therefore always dominate. Further justification for this formalism can be
found in (40). The 2.5PN term is the first term in the expansion that acts like an energy sink, i.e.
carries energy out of the system. The energy loss from this term is, when orbit averaged, equiv-
alent to the loss calculated from the quadrupole formalism described in (97). A comparison
between the two approaches is shown in Figure 5.19, which plots the orbital evolution in the
(a, e) plane for a binary that inspirals (top panel) because of GW radiation and for a single object
that captures another single one by emitting GW (bottom panel). The black-solid lines are from our
N-body code where the red dots show the result from solving for (a, e), using the quadrupole
formalism: equations (5.18) and (5.19). Very good agreement in these tests was found, as can be
seen in Figure 5.19.

To speed up the binary-single scattering experiments we have propagated the encounter
from infinity to a distance rproj from the center-of-mass (COM) of the target binary by modeling
the binary-single system as a two-body system. The distance rproj was chosen to be a fraction
of the maximum value of either rbs or ab, where rbs is the minimum distance between the COM
of the binary and the interloper in the two-body frame and ab is the SMA of the binary. This
approach ignores the effect from the binary’s dipole gravitational field on the encounter for
r > rproj, but the error is insignificant. Further details on the errors related to this strategy can
be found in (55).
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5.10 IDENTIFYING STATES

5.10.1 BINARY-SINGLE STATE

Following (29) we state that the three interacting objects are in a binary-single state if the binary
objects are bound to each other and the tidal force from the single at the binary’s apocenter (Ftid)
is smaller than the relative force at apocenter (Frel) by some fraction δtid, i.e. if Ftid/Frel < δtid.
The two force terms are simply given by

Frel =
mbin,1mbin,2

[a(1 + e)]2
(5.58)

and
Ftid '

2(mbin,1 +mbin,2)ms

r3
a(1 + e), (5.59)

where mbin,i is the mass of binary object i, ms the mass of the single object, r the distance
between the single object and the center-of-mass of the binary and a, e are the semi-major axis
and eccentricity of the binary, respectively.

If a three-body state is identified as a binary-single state and the single object is unbound
from the binary, the state is labeled either as an exchange or a fly-by depending on which objects
the binary is composed of. If the single object is instead bound to the binary, the state is denoted
as an intermediate binary-single state (IMS). In this case, the bound single is chosen to have a finite
minimum distance to the binary. The chosen threshold, δtid, will thus have an influence on the
identified number of IMS and the corresponding distribution in (a, e). There is no dependence
on δtid if the single is unbound. For this work we use a δtid = 0.5 for identifying IMS and
δtid = 0.1 for identifying exchange or a fly-by.

5.10.2 INSPIRALS

A binary with a bound single companion that inspirals due to GW radiation is denoted an
inspiral. Since the binaries that inspirals have a bound companion, the inspiral state is a subclass
of the IMS discussed above. In these cases, the (a, e) values for the orbital parameters of the
inspiraling binary are set at initial identification, when the three-body state is identified as an
IMS. The value for this first set of (a, e) depends strongly on the threshold δtid since a smaller
δtid allows more time for the binary to spiral in. However, the total number of inspirals is not
affected, and therefore the resulting cross sections are also not sensitive to the choice of δtid.

5.10.3 COLLISIONS

We assume in all scattering experiments that the objects are rigid spheres with radius ri. We
say that object i and j have collided if these spheres ever overlap, rij < ri + rj . To distinguish
collisions from inspirals we say that collisions are colliding objects that are not in an IMS binary.
This definition is practical, but there is some gray-zone between collisions and inspirals. One
can for example have an IMS binary with initial pericenter distance rmin < ri + rj , or a config-
uration where enough GW energy is radiated away such that two objects collide before an IMS
is identified by the code. In general, this overlap is only important at the very smallest binary
SMAs, in which the SMA begins to become comparable to the size of the objects, of order 10−5

AU for solar mass compact objects. At larger separations, any sensitivity is lost because the
number of inspirals greatly dominates over the number of direct impacts.
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Figure 5.11 Ratio between GW single-single capture cross section and binary-single inspirals
cross section, σinsp/σcap, as a function of relative velocity at infinity v∞ and SMA, a0, of the
target binary. All interactions are between equal mass objects. Top: σinsp/σcap for 1 M� BHs.
Bottom: σinsp/σcap for 1.4 M� NSs with radius 12 km. The red, green and light blue colors respec-
tively mark the regions where σinsp < σcap, σcap < σinsp < 10σcap and 10σcap < σinsp.
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Figure 5.12 Distribution of orbital parameters in the (a, 1 − e2) plane and the corresponding
gravitational peak frequency fGW(a, e) for all endstate binaries resulting from binary-single in-
teractions between NSs with 1.4 M� masses and 12 km radii. The relative velocity between the
encounter and the target binary is v∞ = 10 km s−1. The plot includes the classical outcomes
exchange and fly-by (plus symbols) and the GR outcome inspirals (squares). Different colors de-
note different initial SMA of the target binary. Top: Orbital parameters at the time of final state
identification. The inspirals fade away as the SMA increases. The dashed-black lines show the
GW peak frequencies 101, 104 Hz that are approximately representative of the advanced LIGO
window. The dotted black lines show a few examples of the inspiral orbital evolution due to GW
radiation given by equation (5.22). When (1− e2)� 1, these evolutionary tracks are parallel to
the gravitational peak frequency lines. This implies that if a binary with high eccentricity is not
formed in the LIGO band, then it will never evolve into it with high eccentricity. Inspirals are
therefore the only states arising from a binary-single interaction that will have the potential of
being observable as high eccentric mergers. Bottom: Distributions of gravitational peak frequen-
cies from all identified inspirals. These distributions stay almost unchanged during the inspiral
since the binaries evolve with approximately constant GW frequency. The sensitivity of LIGO
peaks around ∼ 200 Hz. The dashed-black line shows the eccentricity distribution expected from
merging binaries resulting from single-single captures. For illustration purposes, all histograms
have been normalized to their peak values.
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Figure 5.13 Diagram illustrating different outcome cross sections arising from single-single (top)
and binary-single (bottom) interactions. Also shown are the approximate dependence of the
various cross sections on the encounter velocity, v, the SMA of the target binary, a, the object
radius, robj, and the gravitational peak frequency, fGW. The single-single capture cross section
is denoted by σcap (equation 5.41), the high eccentric single-single capture cross section with
fGW > f0 by σSS(fGW > f0) (equation 5.45), the direct collision cross section by σcoll (equation
5.40), the CI cross section by σCI (equation 5.3) and the binary-single inspiral cross section by
σinsp (equation 5.36). It is particularly interesting to compare σSS(fGW > f0) with σinsp because
the inspiralling binaries formed in each of these cases give very similar observational signatures.
For example, both channels can form inspirals that enter the LIGO band with high eccentricity,
an event that is not observed when field binaries merge. Since both channels scale as ∝ v−2,
their ratio is independent of v as shown in equation (5.46).
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Figure 5.14 Numerically calculated cross sections for high eccentricity binaries (e ∼ 1) arising
from binary-single encounters and their relative importance when compared to those produced
by single-single encounters. We divide the merging binaries based on their gravitational peak
frequency at formation: fGW > 10, 30, 100 Hz. During the inspiral, the orbital parameters (a, e)

change according to equation (5.22) but fGW remains relatively constant, which means that the
results are not altered significantly as the binary evolves. All results are for scatterings between
NSs with 1.4 M� masses and 12 km radii. Top: Inspiral cross sections. Solid lines show inspirals
formed by binary-single interactions and dashed lines show inspirals formed by single-single
captures. The resultant high eccentricity binaries formed via binary-single and single-single
encounters have different gravitational peak frequencies at formation as shown in Figure 5.12.
Each line defined by fGW denotes a cross section that only includes inspirals that are born
with a gravitational frequency above the given threshold. Bottom: Ratio between the single-
single and binary-single cross sections shown in the top panel. As described in the text, both
high eccentricity single-single and binary-single inspirals scale as ∝ v−2

∞ . This makes the ratio
independent of velocity.
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Figure 5.15 Summary of relevant outcome cross sections arising from binary-single and single-
single encounters between equal mass NSs. Each NS has a mass of 1.4 M� and radius of 12 km.
The dashed lines show results from single-single encounters while the solid lines show results
from binary-single interactions. The black solid line shows the CI crossection, the dark-grey line
the inspiral cross section and the purple and brown lines the cross sections for collisions and ex-
changes, respectively. The green line shows the cross section for binaries that merge in less than
a Hubble time. The black-dashed shows the single-single capture cross section and the red-dashed
line shows the cross section for single-single high eccentric (e ∼ 1) binary with gravitational
peak frequency fGW > 10 Hz. The vertical-black-dashed line shows the single-single pericenter
distance for a capture rcap. We note that the scaling between lines depends on velocity, here
assumed to be 10 km s−1.
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Figure 5.16 Results from scatterings between a NS(1.4 M�, 12 km)−WD(0.5 M�) binary and a
NS(1.4 M�, 12 km) encounter with v∞ = 10 km s−1. Top: Scatter plot of the orbital parameters
(a, 1 − e2) for all endstate NS-NS binaries (similar to Figure 5.12). The resulting inspirals are
shown with square symbols. Each color show results for a given SMA. The radius of the WD is
shown as a dashed-dotted line. As can be seen, this line is well above the region where inspirals
form implying that WD inspirals are very unlikely. Bottom: Similar to Figure 5.15 but for target
binaries including a WD companion with 0.5 M�. The cross section for inspirals is significantly
smaller here than in the equal mass NS case. The three main reasons for this are that only 1 out
of 3 endstates can result in a NS-NS inspiral, collisions with the WD deplete inspiral outcomes,
and the relatively small mass of the WD suppresses resonances which could otherwise form
inspirals.
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Figure 5.17 Lifetime distributions including all endstate binaries. Colors denote initial binary
SMA, a0, from 10−4 − 10−1 AU (blue to red). In the Newtonian point-mass case, all initial
SMAs would follow the same distribution, but when collisions and GR are included then the
initial SMA a0 plays a role in forming the final distribution. The knee that appears for each
distribution is the fast merging inspirals.



94 5. Stellar Interactions and Gravitational Wave Astronomy

Figure 5.18 Resulting kick velocities vkick and travelled distance before merger defined as vkick×
tlife for endstate NS-NS binaries. The kick velocity is with respect to the initial center of mass
of the interaction. In all scatterings, the encounter comes from infinity with v∞ = 10 km s−1.
Top: Results from the scattering NS → NS−WD (0.5 M�). Bottom: Results from the scattering
NS → NS−NS. The dashed lines show characteristic values for a typical globular cluster. In
this simple picture all binaries in quadrants II-IV will merge within the cluster while binaries
in the upper right corner will merge outside. The corresponding single object will be kicked in
the opposite direction with a fraction mbin/msin of the binary’s kick velocity. The dash-dot line
shows where the binary lifetime is equal to the Hubble time. All binaries below the line will
have a lifetime less than a Hubble time. Different colors indicate different initial SMA.
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Figure 5.19 Comparison between our N-body code (solid-black lines) and the analytical solution
from (97) (red points). Top: A circular binary that spirals in due to GW radiation. The upper left
plot shows the trajectory of one of the objects. The upper right plot shows how the distance
between the two objects decreases with time. Bottom: Evolution of an initial highly eccentric
binary. The two objects are initially not bound to each other, but enough energy is radiated
away in terms of GW to make the system bound after the first orbit. This is an illustration of a
single-single capture. The lower left plot shows the evolution of the incoming single in the rest-
frame of the target object. To the right is shown the evolution in the (a, e) plane. The wiggles
in the lower left corner (for low a and e) illustrate the limitation of the integration scheme. As
seen, we find good agreement between our code and the analytical prediction in both cases.
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GENERATING HIGH VELOCITY OBJECTS

A Gravitational Double Scattering Mechanism for
Generating High Velocity Objects
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1 Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Copenhagen, Den-
mark

Abstract

We present a dynamical model describing how halo particles can receive a significant energy
kick from the merger between their own host halo and a target halo. This is relevant for un-
derstanding the growth of cosmological halos and could also provide an explanation for high
velocity objects ranging from stars to galaxies. The model we present is a double scattering mech-
anism where a halo particle is given a significant energy kick by undergoing two subsequent
gravitational deflections during the merger: The first deflection is by the potential of the target
halo, whereas the second is by the particle’s original host halo potential. The kick is generated
because the two deflection frames are moving relative to each other. We derive an analytical
solution for this dynamical energy kick in case of a head-on merger between two Hernquist
halos. From this we find that the particles receiving a significant positive energy kick are all
located in a cone pointing along the velocity vector of their host halo, where the maximum kick
is given to particles located ∼ 0.1Rvir from the center. We estimate for a 1 : 10 merger that a
kicked particle can be observed with a radial velocity exceeding ∼ 2 times the virial velocity of
the target halo at its virial sphere. This motivate us to explain the high velocity of the recently
discovered globular cluster HVCG-1 (19). Our proposed double scattering mechanism is not
only applicable to halo mergers, but can be applied to nearly any merging system. For instance,
within the field of heavy nuclei scatterings it is well known that an electron can be ejected or
captured by undergoing a similar double scattering process.
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6.1 INTRODUCTION
Several high energy objects on seemingly unbound orbits have been observed, ranging from
stellar objects (16; 117), supernovae (SNe) (88; 37), gamma ray burst (GRBs) (105; 35; 12) to ex-
tended objects like globular clusters (GCs) (19; 73) and dwarf galaxies (65; 23). In many of these
observed cases the kick energy mechanism is unknown and a range of mechanisms have been
suggested. One of the proposed ways is binary-single interactions where the binding energy
of a binary is dynamically released into to a third object which thereby can escape with high
velocity (44). These interactions can either be between stellar objects (96; 40) or between stars
encountering either single or binary massive black holes (BHs) (47; 115; 14). Several observa-
tions indicate in fact that stellar interactions with the massive BH at the center of our galaxy is a
very likely explanation for at least some high velocity stars (15; 38). More extended objects like
GCs are probably not kicked by BH binary interactions due to the high probability for disrup-
tion, however the outcome from such an interaction is still uncertain (19). Dark matter (DM)
subhalo interactions on the other hand can dynamically kick extended objects up to ∼ 3 times
the virial velocity of the host halo without major disruptions as indicated by numerical simu-
lations (63). High velocity stars can also be created in isolated binaries if the heavier member
undergoes a violent mass loss, a channel first suggested by (11) to explain the high number of
"run away" O-B stars. More exotic kick mechanisms to describe hostless stellar remnants, pul-
sars and possible hyper velocity BHs have also been suggested from the role of asymmetric GW
radiation (28; 74; 86; 34; 8) to the asphericity of supernovae explosions (53; 18; 17).

Unbound particles have also been discussed from a cosmological perspective. Recent stud-
ies (7) illustrate that ∼ 10% of all the DM at the virial radius are in fact unbound. Luminous
matter with no specific host halo have also been observed in especially galaxy clusters, a com-
ponent also known as intra cluster light (ICL). This has been extensively studied both through
observations (e.g. (83; 39; 118)) and numerically (111) and is believed to be a direct consequence
of the dynamical evolution of galaxies which includes e.g. tidal stripping and mergers (68).
Theoretical attempts have also been made to understand the final distribution of particles in
DM halos. This include models from spherical collapse (e.g. (27; 9)) to statistical mechanics
(e.g. (71; 64; 99; 41; 79; 48)). Especially concerning the unbound and high velocity component,
recent work by (103; 55; 20) show that high velocity particles are likely generated in mergers due
to rapid mean field changes in the potential. This was also noted by (1) who further proposed a
direct connection to the observed population of high velocity B-type stars.

Data from upcoming surveys like LSST1 and especially Gaia2 will in the near future also
measure positions and velocities for more than ∼ 150 million stars with unprecedented preci-
sion. This not only offers unique possibilities for mapping out the current Milky Way potential
and its past evolution (e.g. (84; 89; 72; 116)), but will also make it possible to make detailed
studies of the past dynamical interactions (38). A central question could here be if the Milky
Way in its past had a SMBH binary dynamically interacting with the environment. Detections
of high velocity objects are here again playing a central role.

In this paper we present a new dynamical mechanism in which high velocity particles are
created in the merger between two halos consisting of DM particles. It is well known that halo
mergers produce an unbound component (46), but no clear dynamical explanation has been
given yet. In this work we seek to present such an explanation. The mechanism we propose is
a double scattering mechanism where a given subject particle gets a significant energy kick by
undergoing two deflections during the merger. We derive analytically the energy kick for two

1http://www.lsst.org/lsst/
2http://sci.esa.int/gaia/
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merging Hernquist halos (45), but the mechanism is not limited to this scenario. For instance,
we note that a very similar mechanism has been described within heavy nuclei interactions
where an electron can be ejected into the continuum (unbound orbit) or captured by a passing
nucleus (dynamical capture) by undergoing a double collision3(95).

The paper is organized in the following way: In section 6.2 we give a description of our
proposed double scattering mechanism and introduce a model describing the orbit of a particle
undergoing a double scattering. From this model we derive in section 6.3 an analytical solution
for estimating the kick energy of the particle as a function of its position in the incoming halo
prior to the merger. In section 6.4 we describe observational signatures. Here we especially dis-
cuss the possibility that the high velocity of HVGC-1 recently discovered by (19) was generated
by our double scattering mechanism during a merger between a dark matter halo and Virgo.
Conclusions are given in section 6.5.

6.2 KINEMATICS OF THE DOUBLE SCATTERING MECHANISM

We will now describe the kinematics of the double scattering mechanism. In section 6.2.1 we
provide a simple explanation for how the kick energy is generated during the merger, and in
section 6.2.2 we introduce a slightly more detailed picture of the merger process. This picture
will play a central role when we use it for deriving an analytical solution.

6.2.1 ORIGIN OF THE KICK ENERGY

The double scattering mechanism is a process where a particle is gravitationally deflected two
times during the merger between its own host halo (H2) and a target halo (H1). The first de-
flection is by the potential of H1 which is momentarily dominating as the two halos overlap,
whereas the second is by the potential of H2 which dominates at a later stage in the merger pro-
cess. We will refer to the deflection by H1 as the ’first deflection’ and the subsequent deflection
by H2 as the ’second deflection’. The two merging halos are moving relative to each other dur-
ing the merger and the two deflections are therefore happening in two different velocity frames.
The energy of the particle during each deflection is approximately conserved in the frame of de-
flection, but because of the velocity difference between the frames, the deflection in one frame
can result in an energy change in the other. The second deflection by H2 therefore provides the
explanation for how a given particle can change its energy during the merger relative to H1.

An N-body simulation of a merger is shown in Figure 6.1, where we have highlighted the
orbits of two particles, one that receives a positive kick and thereby escapes (green) and one that
gets bound as a result of a negative kick (red). The orange dots illustrate all the particles which
prior to the merger are located within 10% of the virial radius of the incoming DM halo (black).
We can think about these as the luminous ’galactic component’ of the halo. We clearly see that
before the merger the green particle is only on a slightly larger orbit than the galactic orange
particles, whereas after the merger they have greatly separated as a result of the dynamical kick
mechanism. The green particle is now likely to be observed and classified as a ’hostless high
velocity object’ as e.g. the HVGC-1 (19).

3The quantum-mechanical solution to this interaction was not found until 1955 (30) due to the fascinating fact that
the second Born term is here dominating over the first due to the double scattering nature, or two-step process, of the
problem.
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Figure 6.1 Illustration of a 1 : 10 merger between two DM halos merging with the escape veloc-
ity of the target halo. The particles in the smaller incoming halo are shown in black while the
particles of the larger target halo are shown in grey. The panels from top to bottom show three dif-
ferent times (A,B,C) during the merger. In the bottom panel the full trajectories of two selected
particles are also shown. The green particle gains a positive energy kick during the merger and
as a result kicked away, whereas the red particle looses energy and becomes bound to the target
halo. The orange dots illustrate the particles which are located within 10% of the virial radius
of the smaller halo prior to the merger. These could illustrate a luminous ’galactic component’.
The merger has clearly separated the green particle from the orange particles and the green
particle could therefore be observed as a ’hostless high velocity object’. This separation and
clear velocity difference are due to our proposed double scattering mechanism. Properties of
the ejected green particle are shown in Figure 6.3 and 6.4.
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6.2.2 A PARTICLE UNDERGOING TWO DEFLECTIONS

We now turn to a more detailed kinematical description of a particle receiving an energy kick
by undergoing two deflections. For this we consider a particle initially bound to halo H2 with
an initial orbital velocity v0 and polar position (l, θ) measured in the rest frame (RF) of H2.
Details are shown in Figure 6.2. During the merger betweenH2 and a target haloH1 the particle
receives an energy kick by undergoing two deflections. We consider the case where the mass of
H2 is much smaller than the mass of H1 and the two halos merge with zero impact parameter.
For developing an analytical model for the double scattering mechanism we now approximate
the full orbit of the particle by a simpler orbital model which we divide into two phases:

In the first phase, H2 is passing through H1 on a radial orbit from −l to +l with radial
dependent velocity w(r), where r is the distance between the two halos. The potential of H1 is
greatly dominating and the particle is therefore not moving by the influence of H2, but instead
following an orbit in the potential of H1 with velocity ∼ w and impact parameter b ∼ lsin(θ).
The energy is conserved along any orbit in a static potential (10), the energy of the particle in
the RF of H1 is therefore approximately conserved during this phase. In the RF of H2 the strong
perturbation from H1 results in a large velocity kick ∆v of the particle relative to the center
of mass (CM) of H2. This relative velocity arises because the particle and the CM of H2 are
displaced relative to each other and will therefore experience different accelerations during the
merger. In our analytical model we assume the particle is not moving relative to H2 during this
first phase. The particle is therefore still at its initial position in H2 at the end of the phase, but
its velocity has changed by an amount ∆v. This first phase is shown in Figure 6.2 from number
(1)− (3).

In the second phase, the two merging halos are moving away from each other at a distance
r > l. Halo H1 is now only influencing the particle by a tidal force and the potential of H2 can
therefore again affect the motion. In the RF of H2 is the particle moving from its initial position
(l, θ) with a velocity v1 composed of its initial velocity and its kick velocity, i.e. v1 = v0 + ∆v.
In the limit where the kick velocity is completely dominating the motion, the particle is moving
on an almost straight line through H2 until it reaches the central part where it slightly deflects.
This last deflection rotates the velocity vector of the particle v1 by an angle α into a new vector
v2, as illustrated in Figure 6.2. The energy of the particle is conserved during this deflection in
the RF of H2, but due to the relative velocity between H1 and H2 the energy is not conserved
in the RF of H1. The particle can therefore gain or lose energy from the second deflection by
H2, where a forward deflection along the motion of H2 results in a positive energy kick or vice
versa. This second phase is shown in Figure 6.2 from number (3)− (5).

6.3 ANALYTICAL MODEL

We now develop an analytical expression for the dynamical energy kick a particle can receive
from our proposed double scattering mechanism. We assume the two merging halosH1 andH2

are described by Hernquist (HQ) profiles (45) with an anisotropy parameter β = 0 and a mass
profile given by

Mi(r) = Mi
(r/ai)

2

(1 + r/ai)2
, (6.1)

and a corresponding potential

Φi(r) =
GMi

ai

1

(1 + r/ai)
, (6.2)
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Figure 6.2 Schematic illustration of a particle (black dot) gaining an energy kick from the merger
between its original host haloH2 (light grey) and a target haloH1 (dark grey). The top plot shows
the orbital trajectory of the particle in the RF of H1 while the bottom plot shows the trajectory in
the RF of H2. As illustrated, the particle undergoes two clear deflections during its orbit; the
first is by the momentarily dominating potential of H1 while the second is by the potential of
its original host halo H2. The first deflection by H1 results in a strong velocity change ∆v of the
particle in the RF of H2 as illustrated in the bottom plot. The energy of the particle is conserved
during this first deflection in the RF of H1, but not in H2. The particle now travels through H2

on its new perturbed orbit where it scatters off the central parts of H2 at a peri-center distance
∼ ε. The energy of the particle during this second deflection is conserved in the RF of H2, but
not in the RF of H1 since H1 and H2 are moving relative to each other. As a result of the two
deflections the particle gains energy in the RF ofH1 and thereby emerges with a higher velocity.
The numbers from (1-5) denote five important moments in the orbital history of the particle and
is used for reference in the text.
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where Mi is the total mass of halo i, r is the distance from the center, Φ(r) is the potential at
distance r and a is a characteristic scale radius. In the following we occasionally use units of a1

and we use a ’prime’ to denote this, e.g. x′ ≡ x/a1. By energy conservation we can also write
down the relative radial velocity between halo Hi and a particle moving in its potential on a
radial orbit

w2(r) = 2Φi(r) + (w2(0)− 2Φi(0)), (6.3)

where w(r) is the radial velocity of the particle at distance r and Φi(0) is the value of the poten-
tial at the center. We will use this relation to calculate the relative velocity between halo H1 and
the incoming halo H2. The estimate for w(r) in the above equation (6.3) ignores the effect from
dynamical friction which causes H2 to loose orbital energy by exchanging momentum with the
surrounding particles in H1 (22). In our case dynamical friction will actually play a minor role
when describing particles on large orbits, but for now we will ignore it to keep the analysis
as simple as possible. We further assume that the two halos merge with zero impact parameter
and that the mass of the target haloH1 is much larger than the incoming haloH2, i.e. M1 �M2.
This mass hierarchy is relevant for the growth of cosmological halos that are believed to build
hierarchically by hundreds of minor mergers (32).

The simulations we compare with along the way are performed using Gadget II (100) with
the HQ halos set up in equilibrium by Eddington’s Method (31) using a well tested code pre-
viously used for studying the anisotropy in HQ halo mergers (97; 98). The halo concentration
ci ≡ Ri,vir/ai is set to 5 for both halos where the virial radius Ri,vir is calculated by requiring the
mean density inside the halo to be 200 times the mean matter density of the universe at redshift
z = 2 (67; 109). We fix the merger mass ratio at 1 : 10 for all simulations and the incoming halo
H2 is set to have zero kinetic energy at infinity with respect to the target halo H1. These ICs are
typical in a cosmological perspective (82), however a wide range of both encounter velocities
and impact parameters are of course seen in full cosmological simulations (110).

The calculations below are divided into steps based upon our simplified orbital picture de-
scribed in section 6.2.2. We therefore first calculate the kick velocity ∆v the particle receives
from its ’first deflection’ by H1. We then use this kick to model the new orbit of the particle
through H2 where it makes a ’second deflection’ and is deflected by an angle α. From this de-
flection we then calculate the resultant energy change of the particle ∆E in the RF of H1. We
further show that the change in angular momentum ∆J also can be calculated from our model.
We can therefore in principle reconstruct the resultant mass profile of the disrupted halo which
is particular interesting for the understanding of the growth of DM halos. In the end we dis-
cuss the final energy of a dynamically kicked particle and how this energy is affected by the
particle’s initial kinetic and potential energy.

6.3.1 VELOCITY KICK ∆v FROM HALO H1

The particle receives a velocity kick ∆v relative to H2 because the CM of H2 and the particle
experience different accelerations during the merger. This is illustrated in the top plot of Figure
6.4 which shows the velocity of the particle from Figure 6.3 as a function of time. We can
analytically estimate the velocity kick in the impulsive limit where one assumes the particle
is not moving during the encounter (see e.g. (50)). In this approximation, the velocity kick is
found by integrating over the time dependent force from H1

∆v ≈
∫ +T

−T
a(t)â(t)dt =

∫ +R

−R

1

w(x)

GM1(d)

d2
â(t)dx, (6.4)
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Figure 6.3 Orbital trajectory of a halo particle (green) gaining a significant energy kick from the
merger between its own original host halo H2 (black) and a target halo H1 (grey). The particle
is the same as the green one shown in Figure 6.1, but is here plotted in the RF of H2 instead
of H1. The smaller black dots are H2 particles at the time of merger. The horizontal thick grey
line shows the orbit of the target halo H1 which in this frame is moving from left to right. The
smaller stars on the plotted orbits indicate equal time intervals, where the numbered squares
indicate five important moments as explained in Figure 6.2. The first deflection by H1 (phase
1 from 1-3) gives the particle a huge velocity kick ∆v pointing towards the upper left corner.
Along this new perturbed orbit the particle will undergo a second deflection (phase 2 from 3-5)
by the central potential ofH2. This second deflection gives the particle the resultant energy kick
as explained in section 6.2.2. Plots of the corresponding time dependent velocity and energy of
the particle are shown in Figure 6.4.
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where a(t) is the acceleration, â(t) = (âx(t), ây(t)) is the corresponding unit vector, d is the
distance between the particle and the CM of H1 and w(x) is the relative velocity between H1

and H2. From choosing symmetric integration limits from −R to +R, the resulting force on the
CM of H2 is equal to zero. The expression above therefore directly give us the kick velocity of
the particle in the RF of H2. The horizontal and the vertical components of the kick velocity,
∆v = (∆vx,∆vy), will be calculated below.

6.3.2 HORIZONTAL KICK VELOCITY ∆vx

Following the orbital model described in section 6.2.2 we are interested in the velocity kick
∆vx the particle receives in the first phase where H2 is passing through H1 from −l to +l. By
integrating equation (6.4) over this range and using the relation âx = a(d)(x − xp)/d, where
xp = lcos(θ) is the x-coordinate of the particle in the frame of H2, we find

∆vx ≈
Φ1(0)

w(l)

(
1

1 + l′
√

2
√

1− cos(θ)
− 1

1 + l′
√

2
√

1 + cos(θ)

)
(6.5)

where we have assumed thatw is constant. By comparing with equation (6.2) we see that the ex-
pression, except for the 1/w term, is exactly equal to the difference in potential energy of the par-
ticle between the initial configuration, where H1 is at −l, and the final configuration, where H1

is at +l. This is consistent from the perspective of energy conservation where the particle must
receive a kinetic energy kick to ’compensate’ for the potential energy difference ∆Φ−l,+l. To
illustrate this we note that in the RF of H1 the kinetic energy of the particle is Ekin(l) ≈ w(l)∆vx
and from energy conservation the kick must therefore be ∆vx ≈ ∆Φ−l,+l/w(l) as was also found
in equation (6.5). The horizontal velocity kick is therefore not due to a real dynamical deflection,
but it arises purely from an energy difference. This difference can be calculated exactly and as
a result is our estimate for ∆vx also relative accurate. In practice it is useful to approximate
equation (6.6) by ∆vx(θ)≈∆vx(0)cos(θ), where ∆vx(θ) denotes the solution including the full θ
dependence. Using this approximation we find

∆vx ≈
Φ1(0)

w(l′)

2l′

1 + 2l′
cos(θ) (6.6)

In the limit where H2 passes with the escape velocity of H1 this reduces to the simple form:
∆vx ≈

√
2Φ1(0)l′cos(θ)

√
1 + l′/(1 + 2l′).

6.3.3 VERTICAL KICK VELOCITY ∆vy

The particle receives a vertical velocity kick ∆vy in the RF of H2 because it briefly follows an
orbit in the potential of H1 which momentarily dominates when the two merging halos pass
each other. The velocity kick ∆vy can therefore be estimated from writing down the orbital so-
lution for a particle with encounter velocity ∼ w and impact parameter ∼ lsin(θ) moving in the
HQ potential of H1. However, there are no analytical solutions for the majority of DM density
profiles including the HQ profile (10) and we must therefore use the impulsive approximation
presented in equation (6.4). Assuming the particle is only deflected by the mass of H1 enclosed
by a sphere with radius b = lsin(θ), we find

∆vy ≈
Φ1(0)

w(x′p)

2b′

(1 + b′)2
, (6.7)
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where w again is assumed constant and w(x′p) is the relative velocity at the time H1 has it first
closest distance to the particle (at time ’(2)’ shown in Figure 6.2). In the limit where H2 passes
with the escape velocity ofH1 the above expression reduces to ∆vy ≈

√
2Φ1(0)b′

√
1 + x′p/(1 + b′)2.

In contrast to the horizontal kick ∆vx, the vertical kick ∆vy arises from a real dynamical deflec-
tion which makes it hard to estimate precisely. By comparing with simulations we find that our
above estimation for ∆vy unfortunately is about a factor of ∼ 1.5 too low. One reason for this is
that we only include the mass of H1 enclosed by a finite radius b. However, including the full
HQ profile in the integration leads to a divergent result which clearly illustrates the limits of the
impulsive approximation.

6.3.4 THE ’SECOND DEFLECTION’ BY HALO H2

After the particle has received the velocity kick ∆v, it will start to move along a new orbit
towards the central region ofH2 where it undergoes a ’second deflection’ by the potential ofH2.
This changes the velocity vector of the particle from v1 to v1 + δv which results in an energy
change in the RF of halo H1. To estimate the components of v2 we first calculate the impact
parameter, ε, for the deflection by H2, as illustrated in Figure 6.2. Assuming |∆vx/∆vy|tan(θ) <

1 we find from simple geometry

ε = |xp(∆vy −∆vxtan(θ))/∆v| (6.8)

where ∆v2 ≡ ∆vx
2 + ∆vy

2. Using the relation α ≈ δv/∆v and equation (6.4) to estimate δv, we
can now write down an expression for the deflection angle α,

α ≈ 2GM2(ε)

ε∆v2
=

2Φ2(0)

∆v2

(ε/a2)

(1 + ε/a2)2
(6.9)

In the last equality we have inserted the HQ mass profile of H2 and we assume that the particle
is only perturbed by the mass of H2 enclosed by ε. This deflection by H2 conserves the length
of v1 in the RF of H2, i.e. |v1| = |v2|, but rotates it by the angle α into a new vector v2 = v1 + δv

with components given by
v2,x = v1,xcosα+ v1,ysinα

v2,y = v1,ycosα− v1,xsinα
(6.10)

As we will shortly illustrate, the particle will only receive a positive energy kick in the forward
direction if v2,x > v1,x, i.e. if the kick velocity ∆v and deflection angle α fulfill the inequality
∆vy/∆vx > tan(α/2) in the limit where ∆v � v0.

From the definition of δv = v2 − v1 we now find the change in velocity due to the second
deflection,

δvx ≈ |∆vy|α
δvy ≈ |∆vx|α

(6.11)

where we have assumed that α � 1 and that the kick velocity dominates the motion of the
particle along its new perturbed orbit, i.e. v1 ≈ ∆v. This last assumption is not only necessary
for the double scattering mechanism to effectively work, but also a very good approximation as
we confirmed by simulations.

6.3.5 CHANGE OF ENERGY ∆E

To calculate the change in energy ∆E of the particle we first assume that the second deflection
by H2 happens instantaneously, i.e. the velocity vector of the particle changes from v1 to v2
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Figure 6.4 Velocity and energy as a function of time for a particle gaining a positive energy kick.
The particle is the same as shown in Figures 6.1 and 6.3. The vertical dashed line indicates the
time the two merging halos pass each other. Top: Horizontal and vertical velocity of the particle
in the RF of its original host halo H2 as a function of time. The numbered squares (1,3) indicate
when H2 passes H1 from −l to +l as illustrated in Figure 6.2. The particle gains a significant
velocity kick ∆v during this passage as discussed in section 6.3.1. Bottom: Energy of the particle
in the RF of H1 as a function of time. The energy of the particle increases just after the dashed
line (time 3-5) by an amount ∆E. Comparing with Figure 6.3, we see that the increase happens
when the particle undergoes its second deflection by H2. This is in complete agreement with
our double scattering model. On the same plot we also show the potential of H2 at distance l,
Φ2(l). As seen is the particle approximately losing this energy in the RF of H1 as it travels away
from H2. However, the disruption of H2 during the merger weakens the potential which makes
it slightly easier for the particle to escape.
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at a single point. This deflection point will occur when the particle passes the H2 center at a
distance∼ ε as shown in Figure 6.2. From this assumption it naturally follows that the potential
energy of the particle is approximately constant during the deflection and the change in total
energy will therefore be dominated by the change in kinetic energy. The kick energy ∆E can
therefore be estimated by,

∆E(l, θ) ≈ 1

2
(v2 + w(r′ε))

2 − 1

2
(v1 + w(r′ε))

2 = w(r′ε)δvx, (6.12)

where δvx is the x-component of the velocity change in the RF of H2 given by equation (6.11),
r′ε is the distance between H1 and H2 at the time the particle undergoes its second deflec-
tion by H2 and w(r′ε) is the corresponding relative velocity between H1 and H2. In the limit
where the two halos pass each other with the escape velocity of H1, r′ε is found by solving
the differential equation w(r) = dr/dt =

√
2Φ1(r). The solution can be written in the form

r′ε = (3∆t
√

2Φ1(0)/(2a1) + (1 + l′)3/2)2/3− 1, where ∆t ≈ l/∆v is the time from the first deflec-
tion by H1 to the second deflection by H2.

From our analytical solution given by the above equation (6.12), we can now estimate the
dynamical kick energy a halo particle receives from the merger between its own original host
halo and a target halo. Figure 6.5 shows results for two 1 : 10 merger examples. As seen in
the top panel predicts our model that the particles which receive a positive energy kick are all
located in a cone with two wings pointing along the velocity vector of H2. The overall kick
energy is also clearly increasing with concentration which is somewhat expected since a larger
concentration results in more mass in the center and thereby a larger forward deflection α. From
the bottom panel we see that the maximum energy is given to particles located at a distance
∼ 10%R2,vir from the center of H2. Stars are typically located within 1 − 5%Rvir of their DM
host halo (58), we therefore expect only the outer parts of a possible stellar halo to be effectively
kicked by our proposed mechanism. These outer parts are usually populated by loosely bound
stars and stellar systems such as GCs and dwarf galaxies (81). We especially note that GCs are
possible to observe at large distances due to their large number of stars (∼ 106), we therefore
suggest these could be observable tracers of our proposed kick mechanism.

A comparison between simulations and our analytical calculation for the kick energy ∆E

is shown in the top plot of Figure 6.6. For the analytical calculation we have used equation
(6.12) with numerical values for ∆v and w to completely isolate the prediction from the double
scattering mechanism itself. We see a good agreement and perfect convergence as the kick
velocity, ∆v, becomes increasingly dominating over the initial motion of the particle, v0.

6.3.6 CHANGE OF ANGULAR MOMENTUM ∆J

The change in angular momentum can also be estimated from our model. Using the same
approximations as in section 6.3.5 and the definition of angular momentum J ≡ r × v, the
change in angular momentum ∆J from the merger is given by,

∆J(l, θ) ≈ rε×(v2 + w(r′ε))− rε×(v1 + w(r′ε)) = rε×δv (6.13)

where rε is the vector from the CM of H1 to the point where the particle is deflected by H2 at
the time of deflection and δv the change in velocity given by equation (6.11). The components
of the position vector rε are simply given by rx = rε − ε∆vy/∆v and ry = ε∆vx/∆v.

We are now in a position to actually predict the orbit of individual particles after the merger
since we know both the change in energy and angular momentum, i.e., we can in principle
model the whole resultant mass profile of the particles originally bound to H2. This is highly
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interesting for understanding how DM profiles are build up over time which has for decades
been an active field of research. However, it is beyond the scope of this paper to extend our
model for applying it to better understand the growth of DM halos, our focus will therefore
only be on explaining the kick energy.

6.3.7 FINAL ENERGY OF THE PARTICLE

The final energy of a particle is generally given by a sum of its dynamical kick energy ∆E and a
component coming from its initial kinetic and potential energy. To see this we now consider the
lower plot in Figure 6.4. We first notice that the energy of the particle in the RF of H1 oscillates
before the merger. This is because the particle moves on an orbit inside H2 with a velocity v

which translates into an energy change in the RF of H1 of order ∼ vw. This energy variation
will be comparable to the dynamical kick energy from the double scattering if v ∼ α∆vy . A
slight orbital motion at the time of merger can therefore easily give rise to a significant energy
excess. This is also seen in the bottom plot of Figure 6.6, which shows the the final energy
(y-axis) as a function of the dynamical kick energy (x-axis) for particles undergoing a double
scattering. The majority of the particles escape with a higher energy than their kick energy due
to their initial orbital motion.

Right after the particle has been dynamically kicked from the double scattering, we see on
the bottom plot in Figure 6.4 that its energy slightly decreases before it reaches a final value. This
decrease is due to the fact that the particle has to use energy for traveling out of the potential
of H2 from a distance ∼ l. The potential the particle experiences is actually slightly lower than
the initial unperturbed potential Φ2(l) because H2 is getting disrupted during the merger. This
weakens the potential and the particle will therefore need less energy to escape. This explains
why the particle energy shown in the bottom plot in Figure 6.4 approaches a slightly higher
value than predicted from using the unperturbed Φ2(l).

6.4 OBSERVATIONAL SIGNATURES

A clear observational consequence of the double scattering mechanism is that energetically
kicked particles will move around with a relatively high velocity compared to the virialized
particles bound to H1. From energy conservation we can easily find the velocity of a particle
moving on a radial orbit in H1 from its total energy,

urad(r) =
√

2(Ei + ∆E + Φ1(r)) (6.14)

where urad(r) is the radial velocity of the particle at distance r, Ei is the initial energy of the par-
ticle, Φ1(r) is the radial dependent potential ofH1 and ∆E any additional energy contributions.
All quantities are here defined in the RF of H1.

The question is now what the velocity difference is between dynamically kicked particles,
particles receiving no kick and the virialized particles of H1 here characterized by the virial
velocity V1,vir =

√
GM1,vir/R1,vir. Figure 6.7 illustrates these velocity differences relative to H1

when measured at the virial sphere and infinity, respectively. As seen can the energy contri-
bution from the double scattering mechanism generate particles with a velocity ∼ 2V1,vir at the
virial sphere of H1 and ∼ 1V1,vir at infinity. In the section below we will discuss the possibility
that that the recently discovered HVGC-1 has been kicked by our proposed double scattering
mechanism.
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6.4.1 IS HVGC-1 KICKED BY A DOUBLE SCATTERING?

The first detection of a high velocity globular cluster (HVGC-1) was recently reported by (19).
This high velocity object was identified as a GC from spectroscopy and uiK photometry and
was found between GC candidates collected over several years by Keck/DEIMOS, LRIS and
MMT/Hectospec (87; 102). The GC is located in the Virgo cluster at a projected distance of∼ 84

kpc from M87 with a radial velocity relative to Virgo and M87 of about 2100 and 2300 km s−1,
corresponding to∼ 2 and∼ 7 times their virial velocities, respectively. The interesting question
is now, how did this GC get this high velocity? As discussed in the report by the authors, the
GC could have been kicked by a SMBH binary located in the center of M87. However, it is very
uncertain if a GC can survive this due to the possibility of disruption. Subhalo interactions near
M87 could also be an explanation, but no subhalos have been observed in its close vicinity yet.
The nature of the kick is therefore still unsolved.

We here suggest that the GC could have been kicked by our presented double scattering
mechanism. This would be a possible explanation if the GC was initially bound to a DM halo
merging nearly head-on with Virgo. For a 1 : 10 mass ratio we have shown that this scenario
can generate objects with a radial velocity of∼ 2 times the virial velocity of the target halo at its
virial radius. In case of Virgo, this would mean a velocity of about ∼ 2 × 1100 = 2200 km s−1

(The virial velocity of Virgo is somewhere between ∼ 900 − 1300 km s−1 (102)), which is com-
pletely consistent with the observed value.

We also note that HVGC-1 is at present observed to be hostless and isolated. This picture is
easily explained by our mechanism if the GC initially was on a slightly larger orbit in its original
host halo than the central galactic stellar component. This is a very likely scenario which have
been observed for many galaxies (51; 81). Due to its larger orbit the GC could therefore receive
a significantly larger energy kick than the central stellar component as we analytically derived
and discussed in section 6.3.5. This kick would lead to a large spatial separation between the
two systems at the time of observation and thereby explain its observed isolation. This was
numerically illustrated in Figure 6.1. The original host galaxy of HVGC-1 should therefore
now be among the Virgo galaxies according to this model. Full numerical simulations can of
course be used for exploring this in more detail including the role of encounter velocity, halo
concentrations and mass profiles, impact parameter and mass ratio. We leave that for a future
study.

6.5 CONCLUSION

We present a dynamical double scattering mechanism describing how halo particles can get
a significant energy kick from the merger between their original host halo and a target halo.
According to this mechanism a particle can gain a significant energy kick by performing two
deflections during the merger. The first deflection is by the mass of the target halo while the
second is by the mass of the particle’s original host halo. The resultant energy kick of the particle
arises because the two frames of deflection, i.e. the two halos, are moving relative to each other
during the merger.

From our proposed mechanism we analytically derive the dynamical kick energy of a par-
ticle as a function of its position in its original host halo just prior to the merger. In case of a
1 : 10 head-on merger we illustrate that the particles which receive the largest energy kick are
all located in a cone tracing the motion of their host halo. We further find that the largest kick
is not given to particles in either the center or in the outskirts, but to particles located at around
∼ 0.1Rvir from their host halo center.
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For a 1 : 10 merger we estimate the maximum kick energy of a particle to be ∼ 0.3Φ1(0)

which can be translated into a velocity ∼ 2 times the virial velocity of the target halo measured
at the virial sphere. Our dynamical mechanism is therefore a natural channel for generating
high velocity objects. We show e.g. that the high velocity of the recently discovered globular
cluster HVGC-1 (19) can straight forward be explained by our double scattering mechanism.
We believe this serves as a more natural explanation than other proposed ideas which include
3-body interactions with a possible SMBH binary in M87.

We further note that it is possible from our model to not only calculate the change in energy
of individual particles, but also the change in orbital momentum. It is therefore in principle pos-
sible to estimate the full resultant mass profile of the incoming disrupted halo, which is highly
interesting in the perspective of structure formation and evolution of DM halos. However, the
merger history of cosmological DM halos is highly non trivial and we must make major exten-
sions to our model to make any real predictions for this case.

It is pleasure to thank S. H. Hansen, J. Zavala, R. Wojtak, M. Sparre, J. Hjorth, S. Pedersen, J.
Fynbo, J. Zabl, Kristian Finlator, Sebastian Honig, M. MacLeod for comments and helpful dis-
cussions. The Dark Cosmology Centre is funded by the Danish National Research Foundation.
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Figure 6.5 Dynamical kick energy ∆E calculated from our proposed double scattering model
for a 1 : 10 head-on merger between two HQ halos passing each other with the escape velocity
of the larger halo. We show the result of two examples, one where the halo concentrations are
equal (c1 = 5, c2 = 5) and one where the incoming halo H2 is much more compact, (c1 =

5, c2 = 10). We see that a higher concentration leads to a higher kick energy. Top: Contour plots
showing our theoretical calculated kick energy ∆E(x, y) given by equation (6.12), as a function
of the position (x, y) of the particle in H2 prior to the merger. The plots only show the right
hand side of the incoming halo H2 that in this picture is moving from right to left towards H1.
The particles which receive a positive energy kick are all located in a cone pointing along the
motion of H2. The left plot is for c2 = 5 and the right is for c2 = 10. Both contour plots only
include regions where the kick energy is positive. Bottom: The maximum kick energy ∆E(l) as
a function of the particle distance l =

√
x2 + y2 from the CM of H2. The black solid line shows

the maximum ∆E for c2 = 10 where the black dotted line is for c2 = 5. In both plots we have
used 1.5∆vy to correct for the known bias as explained in section 6.3.3.
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Figure 6.6 Dynamical kick energy and final escape energy. Top: Comparison between our analyt-
ical calculation for the dynamical energy kick (x-axis) and the ’true’ simulation values (y-axis).
The three symbol sizes indicate different thresholds between the dynamical kick velocity, ∆v,
and the peculiar motion of the particle, v0, at the time of merger. We see that our model per-
forms successfully and converges as expected as ∆v becomes increasingly dominating over v0.
For the analytical calculation we have used equation (6.12) with measured values for ∆v and
w(r) to completely focus on how the mechanism performs. Bottom: Scatter plot of the numerical
measured kick energy (x-axis) and the final energy of the particle (y-axis). The majority of the
particles which clearly undergo a double scattering (blue/black) end up with an energy equal
or larger than their kick energy. As explained in section 6.3.7, the extra energy contribution is
coming from slight peculiar motions of the particles of order v0 ∼ α∆vy . The data used for this
figure is the same as used in Figure 6.1.
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Figure 6.7 The solid (dotted) lines show the maximum radial velocity a dynamical kicked par-
ticle will have after the merger at distance r relative to H1 for a 1 : 10 merger with Ei = 0 and
concentration c2 = 5 (c2 = 10). The dashed lines show the velocity if the particle do not receive
any kick, i.e. when ∆E = 0, and therefore just fall unperturbed through the target halo H1. The
velocity is calculated from equation (6.14) using our analytical estimate for the kick energy ∆E

given by equation (6.12). The x-axis is the radial position of the kicked particle in its original
host halo H2 just prior to the merger. The figure is similar to the lower plot in Figure 6.5 except
that here is the energy kick converted to a radial velocity which is a more direct measurable
quantity. As seen can our proposed double scattering mechanism generate a population of dy-
namical ’hot’ objects that far away from the target halo will move around with a velocity about
1-2 times the virial velocity of the target halo, V1,vir. At distances closer to the target halo H1 can
kicked particles be observed with velocities exceeding ∼ 2 times V1,vir.
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Abstract

Observations and numerical simulations of galaxy clusters strongly indicate that the hot intra-
cluster x-ray emitting gas is not spherically symmetric. In many earlier studies spherical sym-
metry has been assumed partly because of limited data quality, however new deep observations
and instrumental designs will make it possible to go beyond that assumption. Measuring the
temperature and density profiles are of interest when observing the x-ray gas, however the
spatial shape of the gas itself also carries very useful information. For example, it is believed
that the x-ray gas shape in the inner parts of galaxy clusters is greatly affected by feedback
mechanisms, cooling and rotation, and measuring this shape can therefore indirectly provide
information on these mechanisms. In this paper we present a novel method to measure the
three-dimensional shape of the intracluster x-ray emitting gas. We can measure the shape from
the x-ray observations only, i.e. the method does not require combination with independent
measurements of e.g. the cluster mass or density profile. This is possible when one uses the
full spectral information contained in the observed spectra. We demonstrate the method by
measuring radial dependent shapes along the line of sight for CHANDRA mock data. We find
that at least 106 photons are required to get a 5 − σ detection of shape for an x-ray gas having
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realistic features such as a cool core and a double powerlaw for the density profile. We illustrate
how Bayes’ theorem is used to find the best fitting model of the x-ray gas, an analysis that is
very important in a real observational scenario where the true spatial shape is unknown. Not
including a shape in the fit may propagate to a mass bias if the x-ray is used to estimate the total
cluster mass. We discuss this mass bias for a class of spacial shapes.
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7.1 SUMMARY

The largest relaxed dark matter (DM) structures we see today in our universe are galaxy clusters
containing baryons in the form of stars and gas. The gas represents around 15−20% of the total
mass and is heated to a virial temperature of ∼ 107 K resulting in strong X-ray emission. If the
cluster is relaxed the gas will be in hydrostatic equilibrium, which make it possible to estimate
the cluster mass profile and its spacial shape through observations of the X-ray (90). Both the
cluster mass and the shape play an important role in constraining the cosmological parameters.
However, including a non-spherical shape is problematic mainly due to degeneracies in the
observations between the shape and the density profile. The shape is therefore often assumed
spherical, an assumption generally leading to a wrong cluster mass estimation at the ∼ 10%

level and no measurement of the shape.
To address this problem, I developed a new numerical method to measure the cluster mass

and shape. With this method, I am in particular able to measure radial shape variations, which
is in contrast to previous studies. This becomes possible by using the full spectral information,
taking into account that the observed spectrum is a sum of different spectra along the line of
sight.

To first study the possibility for measuring the shape, I emulated an observation of a realis-
tic X-ray cluster gas with cool core, double power law density profile and a radial dependent
shape with ellipticity ε(r) following the form ε(r) = αlog(r) + β. For this I created a full nu-
merical package to fit CHANDRA X-ray spectra including X-SPEC as spectrum generator. By
performing an MCMC analysis I estimated a minimum of ∼ 106 photons are needed for a 5σ

detection of all cluster parameters including the shape. This suggests a radial shape could be
measured for e.g. A1689 with slightly improved data. I also investigated how the choice for the
input parametrizations that my method relies on impacts the estimation for shape and mass.
For this I did a Bayesian model comparison analysis and showed, among other things, how an
input function with slightly insufficient freedom to model the true density profile easily results
in a fairly biased shape estimation.
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7.2 INTRODUCTION

Galaxy clusters are the largest bound objects in the universe and they provide unique and in-
dependent information on the cosmological evolution. The standard LCDM parameters and
a possible redshift varying dark energy component has accurately been measured and con-
strained from cluster observations in a variety of ways ((108), (2), (66), (3), (107)). They reveal
the distant universe behind them through gravitational magnification ((57), (4), (13)), and they
are even sensitive to the initial perturbations of our universe ((33), (25), (91)). Clusters not only
serve as excellent laboratories for constraining the standard cosmology, but because of their
relative high mass and cosmological size they also provide a unique possibility to test general
relativity itself in several independent ways, e.g. from measurements of cosmic growth ((85))
to gravitational redshift ((112)) and gravitational waves ((114)). Other probes have also been
suggested such as lensing, cluster abundance and the integrated Sachs-Wolfe effect ((52)). De-
spite their importance in modern cosmology, basic properties such as spatial shape is still not
well measured for individual clusters. One reason is simply that the main part of a cluster is
composed of dark matter which can only be measured indirectly by its gravitational interaction.
The indirect measurements of the dark matter and its radial distribution are usually done using
either lensing ((80), (101)), by studying the dynamics of the intracluster galaxies ((113), (62),
(61)) or by the hot baryonic x-ray emitting gas located in the inner regions of all clusters (for
a review of x-ray physics and applications see e.g. (90)). Especially observations of the intra-
cluster x-ray gas in terms of spacial shape, density and temperature profiles, play a key role for
estimating local properties of the cluster. Many earlier studies assume a spherical shape of the
gas ((78), (49), (56), (75), (42), (85)), however there are several strong motivations why a precise
estimation of the shape is interesting. One is a precise estimation of the cluster mass profile.
This profile can directly be measured if the radial shape, temperature and density profiles of
the gas are known and the gas is in hydrostatic equilibrium. Only recently it was shown that
allowing the gas to have a triaxial shape is necessary for the estimated mass profile from x-ray
to agree with the mass estimated from lensing ((70), (94), (69)), a result in good agreement with
numerical simulations ((43)). This overall triaxiality is mostly due to the underlying shape of
the dark matter potential. However, in the central cluster regions it is believed that a possible
non-spherical x-ray shape is more affected by microphysical processes such as radiative cool-
ing, turbulence and different feedback mechanisms ((60)) than the dark matter potential shape
is. These mechanisms change the gas shape into having relatively high ellipticity towards the
center compared to the underlying dark matter potential shape. It is therefore possible to infer
properties of these mechanisms if the shape of the gas, temperature and density profiles are
known to high precision.

In this paper we suggest and develop a method from which a possible radial dependent
shape of an x-ray gas can be extracted from the x-ray observations only. We explicitly demon-
strate the possibilities for measuring the shape by fitting to CHANDRA mock data and we es-
timate the mass bias if a shape is not treated correctly in the fitting. The method we use is a
parametrized approach, i.e. we assume that the shape and profiles can be described by a set
of well defined functional forms. We also discuss the complications of choosing the best set of
functions, i.e. a model, to describe the data.

The paper is organized in the following way; The method for measuring shape is explained
in section 7.3.1. We apply the method in section 7.4 on CHANDRA mock data. We discuss how
to quantify the goodness of fit in section 7.4.3. Mass bias from not including the shape in the
fitting is discussed in section 7.5.
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7.3 EXTRACTING 3D X-RAY INFORMATION FROM 2D
OBSERVATIONS

An intracluster x-ray emitting gas has a three dimensional extension, spherical or not, but an
observer will only see the two dimensional projected image on the sky. Therefore, a given
observed spectrum is a sum of all emission spectra along the line of sight through the gas (for a
discussion see figure 7.1).

Figure 7.1 Simplified description of how information propagates from three dimensions to a two dimen-
sional observation. The figure shows two free-free emission X-ray spectra (the two lowest spectra at 3
keV in black), the sum of these two spectra (second spectrum from the top at 3 keV in red), and a best fit
free-free spectrum to the red spectrum (upper spectrum at 3 keV in blue). This could correspond to a part
of a gas with two temperature components (one spectrum for each component) projected along the line of
sight (observed data). By comparing the blue and the red spectra one notices that the red spectrum cannot
simply be fitted accurately with a free-free emission X-ray spectrum. This is true in the general case; a sum
of free-free spectra cannot in general be fitted by another free-free spectrum. If the observed red spectrum
is not correctly fitted one could incorrectly conclude the presence of either a non thermal hard X-ray excess
or non thermal soft X-ray excess component, depending on the shape of the red spectrum. In our example
one would report a hard excess component since the red spectrum is above the blue in the tail (see e.g. (36)
for a hard excess discussion for Abell 2256).

Each spectrum has a spectral shape determined by the local temperature and a scaling pro-
portional to the local density squared ((90)). Mathematically, no unique mapping can construct
the true three dimensional shape, density and temperature profiles using only the observed two
dimensional image. However, if one makes prior assumptions it can be done. For instance by
assuming that the gas is spherical the density and temperature profiles can be found. From
this assumption several previous groups have measured the temperature and density profiles
of the x-ray gas using either projection or de-projection techniques (see e.g. the XSPEC packages
’deproject’ and ’projct’)
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The method we present in this paper for extracting three-dimensional information relies on
the assumption that the x-ray gas shape, density and temperature profiles can be described by
parametrizations. This means that shape and profiles are believed to be well described by a set
of functions. In contrast to several previous studies we use the whole spectral information from
the integrated observed picture of the x-ray gas. It means that we take into account that the
actual observed spectra is a sum of spectra along the line of sight, and can not simply be fitted
by a single free-free spectrum. See figure 7.1 for a discussion. We allow a radial dependent
shape in contrast to previous studies. The tradeoff for including this extra freedom is that we
limit our analysis to structures that are seen spherical on the sky. This is for purely practical
reasons: in theory the fitting method we describe is not limited by this assumption, but with
present day available data it is simply not possible to resolve a radial dependent shape if the
3D-shape and orientation of the gas is completely free to vary. In other words, the symmetry
in the sky makes it possible to extract higher order corrections to the usual assumption about
either sphericity or triaxiality with constant axis ratios. The method and procedure will be
described in the following sections, and technical details are found in the appendix together
with illustrations of generated spectra and an x-ray structure.

7.3.1 FITTING SHAPE AND PROFILES USING THE PARAMETERIZATION AP-
PROACH

The procedure needed in order to measure spatial shape, temperature and density profiles of
an observed x-ray gas using the parametrization approach is as following: First we choose a
model, i.e. a set of parametrizations, that are believed to generally describe the form of density,
temperature and spatial shape (along the line of sight) for the observed structure. The chosen
parameterizations must be sufficiently general to accurately describe observations of real and
simulated structures. We then calculate the agreement between an artificial generated dataset
(see appendix section .1 for how we generate artificial datasets and mock data) created from the
chosen model given a specific combination of parameter values and the observed dataset. In
our case we quantify the agreement by a simple χ2 statistic which simply can be related to a
probability by exp(−χ2/2) when the noise is gaussian. This routine of comparing artificial gen-
erated datasets with the observed dataset is then repeated for a wide range of parameter value
combinations until a good estimate of the underlying probability distribution function (PDF)
for our model has been made. For this we use standard Monte Carlo techniques as described in
section .1 in the appendix. From the parameter combination having the maximum PDF value,
the best estimate for profiles and shape, given our prior input parameterizations, can then be
made. The overall procedure can then be repeated for different models, until the best model is
found. We will discuss this in more detail in section 7.4.3.

7.4 RESULTS FROM FITTING SHAPE AND PROFILES
OF SELECTED X-RAY MODELS

In the following we show the possibilities of measuring radial profiles of non-spherical x-ray
structures with varying radial dependent shape along the line of sight. As briefly discussed in
the end of section 7.3, we only consider structures that are spherical on the sky. We consider two
simulated structures in our analysis; First a simple toy model to clearly illustrate the method,
and second a more realistic model with features such as a cool core and a double powerlaw
for the density profile. The shape parameterizations are described later. In this part of the
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Table 7.1. Simulated profiles

Model equation n0 rc β α/2 T0 a b rt s1 s2

shM1 1,2,3 · · · 0.11 0.6 0 5.0 0 0.14 0.09 0.3 0.83
shM2 4,6,7 · · · 0.15 0.76 1.2 4.3 2.45 0.7 0.13 0.94 0.2

analysis we fit for profiles and shape using the same set of parameterizations that are used to
generate the data. In this way we get the cleanest picture of how a shape signal propagates to
observables.

We present results in terms of a virial radius rv . The shape, temperature and density profiles
we use, are consistent with a virial radius similiar to r500 ((106)).

7.4.1 A SIMPLE TOY MODEL

We consider a dataset denoted by ’shM1’ where the density and temperature profiles are mod-
eled by simple broken powerlaws

ρ(r) = n0(1 + (r/rc)
2)−3β/2 (7.1)

T (r) = T0(1 + (r/rt)
2)−b (7.2)

known as beta-models. Parameter n0 acts as a normalization factor and is regulated such that
the artificial dataset has a fixed number of total (photon) counts. The shape parametrization we
consider is a simple linear function for ellipticity

ε1(r) = s2 · r + s1 (7.3)

where ε ≡ b/a is defined as the ratio between the radius perpendicular to the observer (b) and
the radius along the line of sight (a) of the observer. The parameter values for shM1 are listed
in table 7.1, and figure 7.2 shows the corresponding shape and profiles. The chosen parameters
for the density and temperature profiles are in fair agreement with typical observed values.
The priors on the shape parametrization we use in this example are: a) 0.2 < b/a ≤ 1 and b)
ε1(r/rv = 1) > 0.5. In general, a structure could naturally have an axis ratio b/a ≥ 1 and still be
spherical on the sky, and therefore in a scenario where no prior shape information is available,
shapes with b/a ≥ 1 must be included in the fit as well.

The left plot of figure 7.3 shows the maximized PDFs for the fitted density, temperature
and shape parameters for a total of 3 · 104 photon counts (≈ 10 ks CHANDRA observation of
A1689). The width of the projected PDFs, i.e. a measure of the fitting error for each parameter,
is simply related to the number counts by ∼ 1/

√
N where N is the number of photons. The

right plot of figure 7.3 shows the corresponding correlation matrix defined in the usual way
as CORR(X,Y ) = 〈(X−µX)(Y−µY )〉

σXσY
where X,Y are random variables with expectation values

µX , µY and standard deviations σX , σY . In our case, to find e.g. the correlation coefficient
CORR(pi, pj) X must be replaced with the vector of MCMC sampled pi values and Y of sam-
pled pj values. The correlation matrix is symmetric by construction and the shading goes from
0 (black) to 1 (white). The correlation matrix can be divided up in several regions. On the plot
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Figure 7.2 Shape and profiles for dataset shM1 (red, solid lines) and shM2 (blue, dashed lines). Left: El-
lipticity of the x-ray gas along the line of sight. Central: x-ray gas density profile. Right: x-ray gas temper-
ature profile. Black, dotted lines: Best estimate from a MCMC fitting to shM2 using the true parametriza-
tions for temperature and density, but assuming spherical symmetry.

is highlighted a region bounded by a dotted line and a solid line. The dotted region is the part
which shows the correlation between temperature and density and the solid is the region that
shows the correlation between temperature and shape. In the lower left corner of the corre-
lation matrix is the region showing the correlation between shape and density. In general we
see that the temperature is weakly correlated with the rest of the parameters, especially when
compared to the correlation between shape and density. The physical reason is simply that their
individual contributions to a spectrum by nature are completely different; temperature affects
the spectral form, but density and shape affect only the normalization. This is clearly seen in
the analytic form for the bremsstrahlung spectrum I(T, ρ, ν) ∝ ρ2T−1/2exp(−ν/T ) ((90)).

Among our chosen priors, the prior on s1 (s1 > 0.2) is the one that affects the shape of the
PDFs the most. Besides a trivial truncation on the s1 parameter axis it is also responsible for
especially the truncation (or skewness) of the n0 distribution. The reason is the relative strong
correlation between these two parameters. This correlation is clearly seen on the correlation
matrix and can be understood in the following way: The degree of constant ellipticity captured
by s1 effectively acts as mass scaling term when the structure is projected along the line of sight.
This is simply because an ellipticity “stretches” the structure and therefore “allows” more mass
along the line of sight. This is exactly how n0 affects the projected dataset too. So if we increase
the overall scaling (increasing n0) we can compensate by decreasing the ellipticity (increasing
s1), that means the lower truncation of s1 also shows up as a lower truncation on n0. In fact,
a constant ellipticity along the line of sight ε is completely degenerate with the overall density
scaling ρ0 by ρ2

0ε. This is an intrinsic degeneracy and can only be broken by including other
observations, e.g. SZ observations which effectively traces ρ0εT (see e.g. (77), (29), (26), (93)).

The overall conclusion from the fitting results is that the parameter values specifying the
true shape as well as temperature and density are exactly reconstructed. This is an ideal case,
but it is clearly showing that temperature, density and shape in principle can be separated.

From the correlations we can conclude that the temperature profile is well and almost inde-
pendently fitted. In perspective of optimizing the fit for shape, this also implies that indepen-
dent measurements of the density will directly result in a better fit for the shape.
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Figure 7.3 Fitting results for dataset ’shM1’. Left: Maximized PDFs along each of the 8 parameters in
the model. Right: Correlation matrix for the 8 parameters in the model. The lower left part of the matrix
shows the absolute value of the correlation coefficient where the upper right corner shows the sign of the
coefficient in black (negative) and white (positive). The results are based on a dataset scaled to have a total
of 3 · 104 photon counts.

7.4.2 A MORE REALISTIC MODEL

We now perform an analysis on a dataset, denoted by ’shM2’, describing a structure with cool
core and a double powerlaw for the density profile. Including these features are motivated by
real observations ((106)). The temperature and density profiles are now parameterized as

ρ(r) = n0
(r/rc)

−α/2

(1 + (r/rc)2)3β/2−α/4 (7.4)

T (r) = T0
1 + a(r/rt)

(1 + (r/rt)2)b
, (7.5)

and the shape is parameterized by

ε2(r) = s2 · log10(r) + s1 (7.6)

This shape parametrization approximately describes the gas shape seen in the inner parts (r ≤
r500) of clusters in numerical simulations ((60)). We use the same shape priors as used in the
previous toy model example. A list of temperature and density parameterizations are found in
((106)).

The true parameter values for ’shM2’ are listed in table 7.1 and the corresponding shape and
profiles are plotted in figure 7.2. Figure 7.4 shows the PDF and the correlation matrix for the 10
parameter model fitting.

An inner density slope captured by α is now one of the new parameters compared to the
toy model. Since both the shape and this inner slope have a logarithmic dependence, there is
a strong correlation between α and s2. This is clearly seen in the correlation matrix and the
PDF plot where the lower cut on s2 directly relates to the skewness in the α distribution. This
freedom in the inner slope is the main reason for the fitting to require many more photons than
the toy model. This is discussed in more detail in section 7.4.3 below.
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Figure 7.4 Fitting results for dataset ’shM2’. Left: Maximized PDFs along each of the 10 parameters in
the model. Right: Correlation matrix for the 10 parameters in the model. The lower left part of the matrix
shows the absolute value of the correlation coefficient where the upper right corner shows the sign of the
coefficient in black (negative) and white (positive). The results are based on a dataset scaled to have a total
of 1 · 106 photon counts.

The overall conclusion is that the true parameter values are reconstructed, but to keep down
the statistical errors a relative high number of photons are required. This is mostly due to the
similar parameterizations for shape and density. In agreement with intuition, we see that it is
much harder to extract a logarithmic shape when the density is varying logarithmically too,
compared to e.g. a linear dependent shape. From the correlation matrix we see that the temper-
ature fitting is nearly unaffected as we also concluded in the previous toy model example.

7.4.3 QUANTIFYING THE GOODNESS OF FIT

In this section we will discuss how to quantify the goodness of fit for the parameters within
a given model, as well as the goodness of fit for the model itself relative to other competitive
models.

Individual parameters within a model

The best fit parameter values for a given model are located at the likelihood maximum, or the
minimum χ2 if the measurement noise is gaussian. To quantify the goodness of the fit is not
unique in the same way. To quantify this one must often combine statistical estimators with
prior knowledge. An often used estimator is the reduced chi square, χ2

red = χ2/K, where K
is the number of degrees of freedom. However, this estimator has two major problems. First,
χ2 itself have a significant noise due to random noise of the data, and second, the number of
degrees of freedom is not in general well defined ((5)). Another, maybe more intuitive, estimator
is the the ratio p̂i/σi where p̂i is the best estimate for parameter pi and σi the associated standard
deviation. If we denote this ratio by n we can quantify the goodness of fit by reporting n for
each parameter or the minimum n for the whole model. For the fitting examples we presented
above, it is then of interest to know the number of photons required for e.g. a minimum n = 5

(or 5 − σ) detection for all parameters. We will investigate this in the following. Figure 7.5
shows the ratio p̂i/σi as a function of total photon counts for the parameter that have the largest
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Figure 7.5 The plot shows the ratio n = p̂i/σi for the most difficult parameters to estimate when fitting
for structure ’shM1’ (left figure) and ’shM2’ (right figure) in black lines. The worst estimated parameter
in terms of n when fitting to ’shM1’ is rt and s2 when fitting to ’shM2’. The red dashed line in the left
plot shows the ratio for parameter s1 which is the worst determined of the two shape parameters when
fitting to ’shM1’. It can be read of the figure that ≈ 4.2 · 106 number total photon counts are required for
a minimum 5 − σ detection on all parameters when fitting to ’shM2’. The radial and spectral binning is
kept constant in the plot.

ratio, i.e. the parameter which is most difficult to estimate, for the two structures ’shM1’ (left
plot) and ’shM2’ (right plot). In the ’shM1’ example the most difficult parameter to estimate in
terms of n is rt, to reach a minimum 5 − σ detection of this (and thereby for each parameter of
the whole model) we find from the figure that more than ≈ 2.5 · 105 photons are required. If we
instead only require that the shape parameters must be estimated with a minimum 5 − σ each
we find a limit of ≈ 1.4 · 105 photons, or roughly a factor of 2 less compared to an overall 5− σ
detection. Following the same procedure for the more realistic example ’shM2’ we find that a
minimum of ≈ 4.2 · 106 photons are required for a minimum 5− σ detection on all parameters.
The same number of photons are required for the shape fitting because s2 is the most difficult
parameter to estimate in terms of n.

Model comparison

Assuming that the quantities we try to measure for a gas can be parameterized, we still have the
problem that we have no idea of how the “true” or best parametrization for the gas looks like
in a real observation. This means e.g. that a set of shape parameters defined in a specific gas
parametrization do not have to describe a real shape at all. The parameters could in principle
just capture higher order corrections to the density profile, because of the general tight correla-
tion between shape and density. In this case, the real problem is to realize that your model does
not return information about the system in the way you believe. The question is therefore how
to quantify how a specific model performs relative to one or several other competitive models.
A useful measure of this can be found using Bayes’ theorem. From this theorem it is possible
to calculate the relative probability, also known as the posterior odds, of two competing models
((54), (104)). In the case where we assume flat parameter and model priors, the posterior odds



130 7. The Shape of Galaxy Clusters and X-ray Observations

ratio reduces to the simple ratio

F(H1, H0) =

∫
L(D | H1, β)dβ/

∫
L(D | H0, α)dα (7.7)

where L(D | H,β) is the likelihood for getting the data D given the model H which depends on
the parameterset β. This ratio F is often denoted the evidence ratio between model H1 and H0.
Model H0 is often a ’null’ or default model where H1 is a competing and often more compli-
cated model. In our case, H0 could be a model assuming spherical symmetry and H1 a model
allowing the shape to vary. The evidence threshold, or critical threshold, between rejecting or
accepting a competitive model is often taken to be Jeffreys threshold 1:148 ((54)). Let us now go
through a few examples.

First suppose we want to compare two models, M1 and M2, given the data set shM2. Both
models are using the correct parameterizations for temperature and density, but not the same
parametrization for shape; model M1 includes the true parametrization of shape in the fitting,
but model M2 assumes spherical symmetry. We can now use Bayes’ theorem to show if e.g. a
5 · 105 photon exposure carries enough information to distinguish between M1 and M2. Per-
forming the two integrals in equation 7.7 for a 5 · 105 photon exposure we find F ∼ 900, i.e. we
can correctly conclude that M1 is strongly favored over M2. The slightly biased estimations for
the density and temperature when shM2 is fitted assuming M2 is seen in figure 7.2.

Another scenario could be that we fit the shape with a parametrization that is different from
the true one. In that case, suppose we fit dataset shM1 with two models M1 and M2. Both
of them are using the true temperature and density parameterizations, but model M1 is using
equation 7.3 for the shape parameterization in contrast to model M2 that is using equation 7.6.
For a 3·104 photon exposure we findF ∼ 6700, concluding correctly thatM1 is strongly favored
over M2.

The last example is a case where the true structure has temperature and density profiles as
’shM2’, but have a spherical shape. We now make a fit including shape, but we use equation
7.1, i.e. a simple beta-model, to describe the density instead of the true equation 7.4 that has one
extra degree of freedom. The interesting thing is now that the best fit using the beta-model will
show clear detection of shape away from spherical. This is seen on figure 7.6. The under fitted
density profile is simply compensated by allowing a non-spherical shape in the inner parts.
This is a false detection. In a real case where the true shape of the gas is not known, this can be
very hard to realize. Comparing this fit using Bayes’ theorem with a fit using the more general
density profile in equation 7.4 we find F ∼ 300 for a 6 · 104 photon exposure. Which correctly
means a spherical model is favored.

It is possible to write up a simple scaling relation between number photons and the evidence
ratio given that the PDF approximately can be described by a multidimensional gaussian near
its peak; Assume from aN2 photon exposure we have calculated the evidence ratioFN2

between
two models MA and MB , from that we can simply calculate the ratio FN1

for a N1 photon
exposure by FN1

≈FN2
(P ∗MA

/P ∗MB
)(N1/N2−1) where P ∗ is the value of the PDF at its maximum

for the N2 photon exposure. Here we have used the analytical solution to equation 7.7 (see e.g.
(54) eq. 8). This scaling relation can be useful for forecasting the case where a correct integration
is limited by, e.g. computational power. However, this estimator can be relative noisy because
of its dependence on the value at the PDF maximum. One way to reduce this scatter could be
to fit a gaussian to the PDF near its peak.
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Figure 7.6 Example of a false detection of shape. Maximized PDFs for the two shape parameters s1 and
s2 when fitting to a spherical version of ’shM2’, but using a beta-model for the density instead of the true
equation 7.4. The peaks in the shape parameters are real, but are not representing shape. They reflect that
the parameterization for density used in the fitting is not having enough freedom to describe the variation
of density in the inner parts. As described in the text, Bayes’ theorem can be used to quantify if this is a
true signal of shape or not. The plot is for a 6 · 104 photon exposure.

7.5 X-RAY GAS SHAPE AND CLUSTER MASS BIAS
By knowing the 3D x-ray gas temperature and density profiles one can calculate the underlying
total cluster density, and hence mass, by combining the hydrostatic equilibrium (HE) equation

∇(ρgasTgas) = −ρgas∇Φtotal (7.8)

with the poisson equation

∇2Φ = 4πGρtotal (7.9)

where the index ’total’ indicates that the contribution is from both gas and dark matter. When
x-ray observations are possible for a cluster and the x-ray gas is in HE, this method is one of the
most precise ways to estimate the cluster mass as a function of radius within the visible x-ray
region. However, as we can see, the estimated cluster mass will be wrong if the gas is not in
HE or if ρgas, Tgas is not correctly known. One way of misestimating ρgas and Tgas is fitting a
spherical model to data for an intrinsic non-spherical gas structure. Depending on the shape,
this assumption will propagate to a bias in the estimated total cluster mass. In this section we
will study the cluster mass bias as a function of different shapes along the line of sight.

7.5.1 MASS BIAS

The upper plot in figure 7.7 shows the shape along the line of sight for four different x-ray
structures. We take the four structures to have temperature and density profiles similar to shM2,
but different spacial shapes. Fitting temperature and density profiles to these four structures
assuming spherical symmetry, will result in biased mass profiles. The ratio between the biased
and the true mass profile is shown in the lower plot in figure 7.7. We have only included the
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mass contribution within rv . Taking the rest of the mass of the cluster into account, requires
an extrapolation of the dark matter potential form beyond the visible x-ray region. This is
necessary when combining or comparing with other mass probes such as lensing.

Figure 7.7 Mass bias from assuming spherical symmetry when fitting to non-spherical x-ray structures.
Upper: Shape along the line of sight for four different prolate x-ray structures. Lower: Ratio between the
true total mass profile and the mass profile estimated from a spherical fit to dataset ’shM2’ having the
shapes shown at the upper plot. Opposite bias (i.e. Mtrue/Msphfit < 1) is expected for oblate structures.

As seen on the plot, the shapes we are considering leads to small biases at the 10 percent
level, dependent on the radius. This difference can be important for doing future precision
cosmology using clusters. However, at this level the degree of hydrostatic equilibrium may
lead to higher uncertainties in the mass estimation ((59), (76), (21)).
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7.6 CONCLUSIONS
We have presented a new method for measuring a radial dependent shape along the line of
sight of the intracluster x-ray emitting gas. The method uses the assumption that the shape,
temperature and density profiles can be described by parameterized functions. Compared to
several previous studies, we use the whole spectral information. Using this method we have
demonstrated the possibilities for measuring shape on CHANDRA mock data.

We find that around 106 photons are required to get a 5− σ detection of shape when fitting
to a model showing realistic features of the gas, such as cool core and a double powerlaw for
the density profile. We have seen, by presenting correlations matrices, that density and shape
have a strong correlation, whereas temperature is essentially uncorrelated. This strong correla-
tion indicates that independent measurements of the density profile can strongly improve the
estimation of shape.

We demonstrated that Bayes’ theorem very effectively can be used to compare different prior
input models for our approach. This is of great importance since the actual science one extracts
in the end has to be read off from the input model.

Finally we showed the effect on the mass profile estimation from assuming spherical sym-
metry when fitting structures with non-spherical shapes. Within our considered class of shapes,
we found the mass estimation to be biased at the 10% level.

In a future paper we will use our framework on real data.
We warmly thank Martina Zamboni for useful discussions. The Dark Cosmology Centre is

funded by the Danish National Research Foundation.

.1 APPENDIX
Creating artificial observations of an x-ray gas

In our analysis we have two different situations where we need to simulate a dataset. The first is
as input to the MCMC routine when fitting to a given dataset. The second is where we actually
simulate the dataset that has to be fitted, i.e. the mock data. The first steps for both are the same,
and is described in the following; Given a set of parameterized profiles and shape we create a
three dimensional x-ray gas on a grid. The local spectral information is calculated by XSPEC’s
(see e.g. (6), (92)) model mekal (http://heasarc.nasa.gov/xanadu/XSPEC/manual/XSmodelMekal.html
and references within) at redshift zero including galactic absorption. We use five times higher
spatial resolution in the inner regions compared to the outer parts, to make sure no resolu-
tion effects propagate into the results. We then project all the spectral information onto the 2D
observational plane defined such that the x-gas structure is spherical symmetric in that plane.
The projected data is then convolved in XSPEC with an instrumental response function, here
chosen to be from CHANDRA, to create a final observed picture. In an ideal world this is the
picture read out from the instrument assuming pixelation from the CCD is unimportant. In a
real world, a spacial and spectral rebinning is done at this step. When we create a dataset as
input to the MCMC routine, the binning is done so that it matches the binning of the observed
dataset. When generating a mock dataset we do the binning such that the radial bins have the
same number photon counts and the spectral bins have more than a given threshold. This en-
sures equally statistical weights for each bin. For the fits in this paper, we fixed the number of
radial bins to 12 for all datasets. Because an x-ray gas density profile usually have a logarithmic
shape, the radial bins are therefore also approximately logarithmic linear spaced. Our spectral
threshold is chosen such that the number of new spectral bins are around 200, of originally
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1024. This corresponds to a threshold of 20 counts per spectral bin for a 6 · 104 number photons
observation. It was not computationally possible to scan over different binning strategies, but
the chosen binning is believed to match a real case scenario fairly well.

Figure 8 (left) illustrates a noise free generated x-ray gas map with a non-spherical shape
and its temperature profile. The shape and the temperature profile is the one used for ’shM2’
introduced in section 7.4.2. The right plot in figure 8 shows two spectra generated from the
region between the two black lines shown in the left plot. The spectrum in red is a free-free
spectrum generated with XSPEC using the mean projected temperature and the spectrum in
blue is the true projected spectrum, i.e. the sum of many free-free spectra each generated locally
in the x-gas. The difference seen in the lower part of the right plot is basically what give us
information about shape and profiles.

5 keV

9 keV

Figure 8 Left: A generated x-ray gas map with no noise added in the plane along the line of sight for
structure ’shM2’ introduced in section 7.4.2. The color indicates the temperature in keV. Right: Upper
plot shows two spectra generated from the region between the two black lines shown in the left plot.
The spectrum in red is a free-free spectrum generated with the mean x-ray temperature from the region
between the two black lines in the left plot and the spectrum in blue is the true projected spectrum, i.e. the
sum of many free-free spectra each generated locally in the x-gas. The lower plot shows the ratio between
the red and the blue spectra.

Monte Carlo Technics used for this paper

We wrote a Monte Carlo Markov-Chain (MCMC) algorithm for fitting to a data set. The MCMC
uses a Metropolis-Hastings sampling ((24)) with a flat and symmetric proposal density. The size
of this proposal density was tuned to reach an acceptance rate of around 0.2-0.3 which has been
shown to be the most optimal for sampling higher dimensional distributions. The width of the
proposal density along each parameter axes was tuned in units of the root mean square for the
individual PDF for each parameter. For all runs the sampling space was limited by bounds on
each parameter axes and realizations with a temperature profile exceeding 15 kev or going be-
low 0.5 kev was given zero probability. Among numerous tests of possible resolution, boundary
or sampling effects we tested that the codes reproduced the theoretical expected degeneracy be-
tween an overall density scaling and a fixed axis ratio along the line of sight. We tested this up
to a total number of 500.000 photons. A sample of tests was also done against an independently
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written code which generates artificial x-ray data using the “shell binning” approach (see e.g.
http://cxc.harvard.edu/contrib/deproject/). We tested convergence by starting chains at ran-
dom places and with different scalings (number photons) of the PDF. All distributions shown
in the paper are based on 5 · 106 samplings. The fitting results presented are based on one re-
alization of data, marginalizing over several realizations was not computationally possible. We
assumed a diagonal covariance matrix for the observed photon measurements and the noise to
be gaussian.
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