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Abstract

During the last couple of decades, quantum mechanics has moved from being primarily

a theory describing the behaviour of microscopical particles in advanced experiments

to being the foundation of a novel technology. One of the cornerstones in this new

quantum technology is the strong correlations that can exist between remote quantum

systems called entanglement. These correlations are exploited to detect eavesdroppers

and construct unconditionally secure communication channels, enhance the sensitivity

in various metrology schemes and construct powerful quantum computers, which can

solve extremely hard problems. Quantum technology is, however, still premature, which

is partly due to the fragile nature of these quantum correlations to noise. Extended

research is therefore taking place to find robust quantum systems and protocols, which

can move quantum technology from the specialized laboratories to practical applica-

tions. In this thesis, I describe me and my collaborator’s work along these lines. The

first part of the thesis describes our work on optimizing a novel protocol of how to

distribute entanglement over large distances for the construction of secure communica-

tion channels. We modify a previous protocol, thereby enabling fast local processing,

which greatly enhances the distribution rate. We then move on to describe our work

on improving the stability of atomic clocks using entanglement. Entanglement can po-

tentially push the stability of atomic clocks to the so-called Heisenberg limit, which is

the absolute upper limit of the stability allowed by the Heisenberg uncertainty relation.

It has, however, been unclear whether entangled state’s enhanced sensitivity to noise

would prevent reaching this limit. We have developed an adaptive measurement proto-

col, which circumvents this problem and allows for near-Heisenberg limited stability of

atomic clocks. Furthermore, we describe how the operation of a clock can be altered

to gain an exponential improvement of the stability even without entanglement. In the

next part of the thesis, we describe our work on a novel type of heralded quantum gates

with integrated error detection, which greatly enhances the performance of the gates at

the expense of a finite but possible small failure probability. Such gates may facilitate

fault tolerant quantum computation or high rate entanglement distribution. In the final

part of the thesis, we describe our work on room temperature quantum memories and

single photon sources. We have introduced a novel concept of motional averaging, which

can be used in room-temperature systems, where fluctuations due to thermal motion

is an issue. In particular, we have considered a system based on microcells filled with

Cs-atoms, which can facilitate e�cient quantum memories and coherent single photon

sources at room temperature. Finally, we describe our work on optimizing entanglement

distribution protocols based on optical cavitites and single emitters. We have compared

entanglement generation schemes based on single - and two-photon detection and imple-

mented the heralded gate described above together with a similar deterministic gate in

order to swap the entanglement to large distances. We have then found the combination

resulting in the highest distribution rate, which is shown to outperform one of the fastest

distribution protocols based on atomic ensembles.



Dansk resumé

I løbet af de sidste par årtier har kvantemekanik ændret sig fra at være en under-

fundig teori, der beskrev opførelsen at mikroskopiske partikler i komplicerede eksperi-

menter, til at være fundamentet for en helt ny teknologi. En af hjørnestenene i denne

nye kvanteteknologi er de stærke korrelationer, kaldet entanglement, der kan eksistere i

mellem adskilte kvantesystemer. Disse korrelationer kan udnyttes til at skabe ubetinget

sikre kommunikationkanaler, forbedre sensitiviteten af præcisionsm̊alinger og konstruere

kraftfulde kvantecomputere, der kan løse ekstremt svære problemer. Kvanteteknolo-

gien er dog stadig kun i sin spæde begyndelse, hvilket bl.a. skyldes kvantekorrelation-

ernes skrøbelighed overfor støj. Meget forskning fokuserer derfor p̊a at finde robuste

kvantesystemer og protokoller som vil være i stand til at bringe kvanteteknologien ud

af de specialiserede laboratorier og frem til praktisk anvendelse. I denne afhandling

beskriver jeg mit og mine samarbejdspartneres arbejde i denne retning. Den første del

af afhandlingen beskriver vores arbejde omkring optimeringen af en ny type protokol til

at distribuere entanglement over store afstande. Vi har modificeret en tidligere protokol

s̊aledes, at de lokale operationer kan gøres hurtigt, hvilket øger distributionsraten sig-

nifikant. Herefter beskriver vi vores arbejde omkring at forbedre stabiliteten af atomare

ure med entanglement. Entanglement kan potentielt set bringe stabiliteten af atomare

ure til den s̊akaldte Heisenberg grænse, hvilket er den absolutte øvre grænse for sta-

biliteten tilladt af Heisenberg’s usikkerhedsrelation. Der har dog været uklart, hvorvidt

entanglements øgede sensitivitet overfor støj ville bringe denne grænse ud af rækkevidde.

Vi har udarbejdet en protokol baseret p̊a tilpassede m̊alinger som undg̊ar dette prob-

lem og tillader nær-Heisenberg begrænset stabilitet. Derudover beskriver vi, hvordan

betjeningen af et atomart ur kan ændres s̊aledes, at en eksponential forbedring af sta-

biliteten kan opn̊as selv uden entanglement. I den næste del af afhandlingen beskriver

vi vores arbejde omkring en ny type betinget kvantegate med indbygget fejldetektering.

S̊adanne kvantegates kan bruges til robust kvantecomputation eller e↵ektive entangle-

ment distributionsprotokoller. I den sidste del af afhandlingen beskrives vores arbejde

omkring kvantehukommelser og enkelt-foton kilder ved stuetemperatur. Vi har intro-

duceret bevægelsesmidling som kan bruges i systemer, hvor fluktuationer for̊arsaget af

termisk bevægelse er et problem. Specielt viser vi, hvordan et system baseret p̊a mikro-

celler fyldt med Cs-atomer kan bruges til at lave e↵ektive kvantehukommelser og enkelt-

foton kilder ved stuetemperatur. Til sidst beskriver vi vores arbejde med at optimere

entanglement distributionsprotokoller baseret p̊a optiske kaviteter og enkelte atomer.

Vi har sammenlignet forskellige skemaer til at skabe entanglement og implementeret

en række kvantegates for at kunne teleportere entanglement over store afstande. Vi

har derefter fundet den kombination, der giver den højeste distributionsrate som viser

sig at være højere end en af de hurtigste distributionsprotokoller baseret p̊a atomare

ensembler.
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• J. Borregaard, P. Kómár, E. Kessler, A. S. Sørensen and M. D. Lukin, ”Heralded

Quantum Gates with Integrated Error Detection”, in preparation...
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Chapter 1

Introduction

A little over a hundred years ago in 1913, Niels Bohr wrote a revolutionary paper on

the structure of the hydrogen atom [1]. In this paper, Bohr discretized the energy levels

of the electron orbiting the nucleus. A few years before, Einstien had proposed the

excitence of photons as quanta of light in order to explain the photoelectric e↵ect [2]. The

birth of quantum mechanics had begun. This new theory was fundamentally di↵erent

from the deterministic nature of established physical theories referred to as classical

physics. Heisenberg’s famous uncertainty relations [3] reject the idea of being able to

deterministically predict the bevaiour of microscopical particles, which was otherwise

believed to be possible according to classical physics. As the theory developed, strange

and counter-intuitive phenomenons such as entanglement referred to as ”spooky action at

a distance” by Einstein emerged. It is well known, that Einstein and Bohr had lengthy

discussions trying to understand the predictions of this new theory.

Whether quantum mechanics is well understood today is a hard question to answer.

Since Bohr and Einstein’s discussions, the field of quantum mechanics has undergone

a vast expansion and new theories and mathematical frameworks have been developed.

Many predictions made by quantum mechanics have been validated in experiments and

new quantum mechanical systems have been developed. It is thus clear that the physics

community understands how to use quantum mechanics. The deeper philosophical un-

derstanding of quantum mechanics is, however, still a topic, which could foster lengthy

discussions among physicist even today.

People have none the less got used to quantum mechanincs at a level where part of the

research have moved from simply describing quantummechanical phenomenons in nature

to actually employing quantum mechanincs in the developement of new technologies.

These new quantum technologies have revolutionary potentials for a broad range of

fields ranging from ultra precise sensing and metrology [4, 5] over quantum computation

1
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[6, 7] to completely secure communication channels [8, 9]. Commen to many of these

technologies is that they exploit the very same counter-intuitive phenomenon, which was

discussed exhaustively by Bohr and Einstein, namely entanglement. Entanglement is

thus one of the strangest but at the same time one of the strongest assets of quantum

mechanical systems.

Quantum computation and quantum communication are branches of quantum infor-

mation theory, which in general describes how information is stored and processed in

quantum systems. The holy grail of quantum computation is to construct a computer

based on quantum systems, which can have a fundamentally di↵erent computational

power than any classical computer. As a result, such a computer would be able to eas-

ily solve problems, which are extremely hard on a classical computer [6, 10]. At the

present stage, a quantum computer is, however, not something to expect in the stores

tomorrow, even though some commercial variants of a quantum computer has already

been developed (at the modst cost of a couple of millions of dollars)1. The main prob-

lem is that information stored in quantum systems is very fragile and quickly decoheres

due to the influence of the enviroment surrounding the systems. When the information

is processed, there is enevitable some coupling to the enviroment and this can have a

detrimental e↵ect on the peformance of e.g. a quantum computer. Nonetheless, new

computational schemes and physical systems are continously developed and proof-of-

principle experiments have already demonstrated promising candidates for realizing the

constituents of a quantum computer [11, 12].

A perhaps more mature technology than the quantum computer is quantum cryptogra-

phy [9, 13, 14]. Because the information stored in quantum systems is so sensitive to the

enviroment, it can be used to ensure the privacy of information transfer. To be specific,

two parties, usually referred to as Alice and Bob, can distribute a secret key between

them by encoding information in quantum systems, which are then communicated be-

tween them. Any eavesdropper, who tries to get the quantum information, will inevitably

disturb the system, which can subsequently be detected by Alice and Bob. Note that in

principle nothing stops the eavesdropper from getting the quantum information but Bob

and Alice will always find out. They can therefore simply discard all the information

that could have been compromised by the eavesdropper and use the remaining, secure in-

formation to create a secret key. The secret key can then be used to encrypt information

and Alice and Bob thus have an unconditional secure communication channel. A key

ingredient in quantum cryptography schemes is, once again, entanglement, which needs

to be distributed between Alice and Bob without any eavesdropper being able to access

the information stored in the quantum systems. This is a very demanding task since the

1A device referred to as a quantum computer has been developed by the company D-Wave. See
http://www.dwavesys.com/

http://www.dwavesys.com/
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direct transmission of a quantum signal is extremely hard over large distances due to

losses. Usually photons are used as information carriers and for losses present in todays

optical fibers, it would take many years to transmit just a single photon over a distance

of 1000km. The solution to this problem was proposed in Ref. [15] and is referred to as

a quantum repeater. The quantum repeater basically divides the distance into smaller

segments, where direct transmission of a quantum signal is possible. The information

is then teleported between the segments until it is distributed over the entire distance.

Since the first proposal in Ref. [15], there have been numerous proposals of quantum

repeaters [16–19] and many promising proof-of-principle experiments [20–23] have been

developed. The need of quantum cryptograhy can actually be linked with the possiblity

of a quantum computer. The commonly used RSA crytography scheme relies on the

assumption that it is hard to factorize large numbers into prime numbers. However, in

1994, Shor [6] showed that this problem is actually not a hard problem on a quantum

computer. Quantum cryptography is thus needed to ensure secure communication if a

quantum computer should appear.

During my Ph. D. study, I have been investigating various aspects of quantum technol-

ogy. My primary focus point has been quantum repeaters and the various constituents

of these, such as quantum memories and teleportation protocols. The goal has been

to find e�cient schemes, which allow for high communication rates even over large dis-

tances. In addition, I have examined how some existing experimental systems could be

the building blocks in quantum technology. Finally, I have worked on atomic clocks,

where I have investigated how entanglement can increase the precision of current clocks

and analysed how to operate a clock e�ciently.

1.1 Thesis Outline

The first part of the thesis, consisting of Chap. 2, describes some of the general concepts

referred to in the remaining parts of the thesis. Some of these have already been dis-

cussed briefly in the above introduction such as entanglement and quantum repeaters.

These are, however, treated in more detail in Chap. 2. Furthermore, two di↵erent kinds

of physical systems, single emitters and atomic ensembles are briefly introduced as build-

ing blocks of quantum repeaters. Finally, the basic concepts behind atomic clocks are

presented.

The rest of the thesis describes me and my collaboraters’s work on quantum repeaters,

atomic clocks, quantum gates and quantum memories. Chap. 3 describes our work

on optimizing an existing hybrid repeater protocol [24], which combines single photon

detection with amplitude detection of electrical fields referred to as homodyne detection.
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We present two ways of improving this protocol. In the previous protocol, entangled

single-photon states are produced and grown into superpositions of coherent states,

known as two-mode cat states. The entanglement is then distributed using homodyne

detection. To improve the protocol, we replace the time-consuming nonlocal growth of

cat states with local growth of single-mode cat states, eliminating the need for classical

communication during growth. Entanglement is generated in subsequent connection

processes. Furthermore, the growth procedure is optimized. These two modification

leads to a significantly better performance than the original protocol.

In Chap. 4, we describe our work on realizing near-Heisenberg limited stability of atomic

clocks. The ultimate stability of atomic clocks is limited by the quantum noise of the

atoms. To reduce this noise it has been suggested to use entangled atomic ensembles

with reduced atomic noise. Potentially this can push the stability all the way to the limit

allowed by the Heisenberg uncertainty relation, which is denoted the Heisenberg limit.

In practice, however, entangled states are often more prone to decoherence, which may

prevent reaching this performance. In Chap. 4, we present an adaptive measurement

protocol that, in the presence of a realistic source of decoherence, enables us to get

near Heisenberg limited stability of atomic clocks using entangled atoms. The protocol

may thus realize the full potential of entanglement for quantum metrology despite the

detrimental influence of decoherence.

We pursued the topic of atomic clocks a bit further and looked into the basic operation

of a clock. Atomic clocks are typically operated by locking a local oscillator (LO) to a

single atomic ensemble. In Chap. 5, we describe a scheme where the LO is locked to

several atomic ensembles instead of one. This results in an exponential improvement

compared to the conventional method and provides a stability of the clock scaling as

(↵N)�m/2, with N being the number of atoms in each of the m ensembles and ↵ is a

constant depending on the protocol being used to lock the LO.

Chap. 6 describes our work on heralded quantum gates in optical cavities. This work

was inspired by the nanovavity experiment conducted in Prof. Lukin’s group at Harvard

[25]. We describe a scheme where an auxiliary atom heralds that a successful gate

occurred. In this manner, the errors, which would have corrupted a determinsitc gate,

are converted into a non-unity probability of success, and once successful, the gate will

have a much higher fidelity than a similar deterministic gate. Specifically, we show how

to make a heralded and near-deterministic controlled phase gate between two atoms,

where the conditional error can be arbitrarily close to zero for realistic atomic systems

and where the success probability approaches unity as the cooperativity of the system,

C, becomes large. Furthermore, we show how to make a heralded, cavity-assisted and

near-deterministic N -qubit To↵oli gate with a favorable error scaling of 1/C.
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The work desribed in Chap. 7 is also inspired by a current experimental system. The

experimental quantum optics group of Prof. Polzik at NBI is currently investigating

microcells filled with Cs-atoms at room temperature. In Chap. 7, we describe the

concept of motional averaging to enable quantum memories and coherent single photon

sources with atomic ensembles at room temperature. We show that by choosing the

interaction so that atoms can cross the light beam many time and by suitable spectral

filtering, we erase the ”which atom” information and obtain an e�cient and homogenous

coupling between all atoms and the light. Single excitations can thus be created as

collective spinwaves, which can later be readout to produce coherent single photons in

a scalable fashion.

Finally, we describe our work on optimizing repeater structures based on single emitters

in optical cavitites in Chap. 8. We make a detailed analysis of the constituents of

such a quantum repeater in order to find the optimal repeater architecture for a given

distance. We consider various schemes for both entanglement generation, purification

and entanglement swapping and find the combination resulting in the highest secret key

rate for a given quality of the cavities and number of qubits pr repeater station.

Chap. 9 is a brief summary of the results presented in Chaps. 3-8 and a small outlook

based on these.



Chapter 2

General concepts

In this chapter, I will introduce some of the common concepts used troughout the thesis.

These concepts will be quite general but will be put into a more specific context in the

subsequent chapters. There will not be given an introduction to the fundamentels of

quantum optics and, if necessary, the reader is referred to e.g. the book by Gerry and

Knight [26].

2.1 Qubits and Entanglement

Two essential ingredients in quantum information theory are the concepts of qubits

and entanglement. These are the key constituents in almost any aspect of information

processing, where quantum systems are considered to potentially outperform classical

systems.

The qubit is a quantum analog of the classical bit, which is used to express information

in binary form. Any system with two orthogonal states such as ”spin up” and ”spin

down” can be used to make the physical qubit and the two states are denoted as |0i
and |1i in the computational basis. This way of handling information is very e↵ficient

for computation since it allows for decomposing complicated functions into a series of

simple operations involving only one or two bits at a time. A so called universal set

of gates is a collection of two and single qubit operations called gates, which can be

used to construct any quantum computation [27]. An example of such a set is single

qubit rotations and the CNOT gate. The CNOT gate is a two-qubit gate that makes

the transformation

|0ia|0ib ! |0ia|0ib, |0ia|1ib ! |0ia|1ib
|1ia|0ib ! |1ia|1ib, |1ia|1ib ! |1ia|0ib, (2.1)

6
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where the qubit with subscript a is referred to as the control qubit and the other is

called the target qubit. In Chap. 6, we will also refer to a To↵oli gate and a CZ -gate.

The To↵oli gate is a multi-qubit gate, which leaves all qubit states unchanged except

the state |11 . . . 1i, which obtains a phase of ⇡. The Cz-gate is simply the two-qubit

To↵oli gate. Note that the CNOT gate and the CZ-gate are identical up to single qubit

rotations and the CZ-gate can thus also be used to form a universal set.

Most often, one discriminates between stationary and flying qubits where an example

of the first could be the electronic levels of an atom and an example of the latter could

be the polarization states of a single photon. The crucial di↵erence between the bit and

the qubit is that the physical qubit is a quantum system, i.e it is goverened by the rules

of quantum mechanics. As a result, the qubit does not always evolve according to being

in either state |0i or |1i but can be in a superposition of the two. A general qubit state,

| i can thus be written as

| i = ↵|0i+ �|1i, (2.2)

where |↵|2 (|�|2) is the probability of measuring the qubit in state |0i (|1i) and |↵|2 +
|�|2 = 1. The ability to evolve as a superposition between two orthogonal states is one

of the strongest assets of using quantum systems for information processing.

Entanglement is an extenstion of the superposition principle to include more than one

qubit. The joint state of two qubits is called a maximally entangled state, if it is in an

equal superposition between two orthogonal states. Such a state can be written as

| +i = 1p
2
(|0ia|1ib + |1ia|0ib) , (2.3)

where |0ia (|0ib) refers to qubit a (b) being in state 0. Imagining a continous supply

of these states, we could repeatedly measure the states of the two qubits. The mea-

surements collapse the superpositions and we would find that both qubits had a 50-50

distribution of being in state |0i and |1i. Nonetheless, there would be a complete cor-

relation between the states of the two qubits. Everytime qubit a was found in state

|0i, qubit b was measured to be in state |1i and vice versa. Note that this situation

is independent of the distance between the two qubits. In principle, one could be on

the Moon while the other was down on Earth and they would still have this correlation

between them. In a way, the two qubits simultanously decide to be in opposite states

upon a measurement since the state of the two qubits is in a superposition before the

measurement. This sort of correlation has no classical counter part and is what allows

for exotic phenomenon like teleportation with quantum systems [28]. The state in Eq.

(2.3) is one of the four possible, maximally entangled two-qubit states referred to as the
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Bell states. The remaning three Bell states are

| �i =
1p
2
(|0ia|1ib � |1ia|0ib) , (2.4)

|�±i =
1p
2
(|0ia|0ib ± |1ia|1ib) , (2.5)

Note, that entanglement can in general exist for an arbitrary number of qubits, e.g.

the GHZ states, 1p
2

(|0i|0i . . . |0i+ |1i|1i . . . |1i) are examples of multi-qubit, entangled

states.

2.2 Quantum Repeaters

Entanglement can be used in protocols for secret key sharing between to remote parties

[9, 13]. The idea is to distribute an entangled pair between two parties, ususally referred

to as Alice and Bob. This is repeated many times so that they both end up with a

big collection of qubits. By measuring their qubits in di↵erent bases and sharing their

measurement strategy, they can obtain a secret key to be used for encryption/decryption.

The correlation contained in the qubit pairs are disturbed if any eavesdropper tries to get

some information about the key by, e.g. measuring the state of a qubit before it arrives

at Bob. Alice and Bob can therefore check for eavesdroppers by comparing the states of

their qubits for a small subset from which they estimate the information an eavesdropper

could have obtained. In this way, entanglement can be used to make unconditionally

secure communication channels [13].

Distributing entanglement over a large distance is, however a challenging task because

quantum information is very sensitive to noise. Entanglement can be established between

to parties by sending a quantum signal, e.g. a single photon in a specific quantum state,

between them. The probability to loose the photon will, however, scale exponentially

with the distance if no intermediate signal processing is employed [15]. This means that

the rate of entanglement distribution will decrease exponentially with the distance. In

classical communication, intermediate repeater stations are therfore used to amplify and

purify the signal before it is transmitted to the next station. The same architecture is

necessary to transmit a quantum signal but an amplification of the signal would mean

to interact with it and this adds noise that destroys the quantum information [29, 30].

In a quantum repeater, the losses are instead avoided by teleporting the entanglement

from one repeater station to the next. This is called entanglement swapping [15, 16].
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2.2.1 Entanglement swapping

The first step in a quantum repeater is to divide the total distribution distance, Ltot, into

smaller segments, called elementary links, in which entanglement can be established by

direct transmission of a quantum signal (see Fig. 2.1). The generation of entanglement

is often probabilistic and done with flying qubits. Therefore, it is necessary to use

so-called quantum memories, where the quantum information is stored as stationary

qubits until there is entanglement in two neighboring links. Once entanglement has

been established in two neighboring links, the entanglement is swapped by making a

Bell state measurement on a qubit from each entangled pair (Fig. 2.1). A Bell state

measurement is a projection of a two-qubit state onto one of the four Bell states. Note

that this requires som ingenuity since a simple measurement of the individual qubit

states will only descriminate between | ±i and |�±i. However, one can, e.g. make use

of a CNOT gate to perform the entanglement swap. Entanglement swapping can be

expressed in simple mathematical terms. Assume, that two neighboring links contain

the Bell states | +iab and | +icd, where qubits a, b belongs to the first link and qubits

c, d belongs to the second link. The joint state of both links is then

| +iab| +icd =
1

2
(|00ibc|11iad + |00ibc|11iad + |01ibc|10iad + |10ibc|01iad) (2.6)

=
1

2

�|�+ibc|�+iad � |��ibc|��iad + | +ibc| +iad � | �ibc| �iad
�

.(2.7)

So far, this is only rewriting the terms of the intial state with the notation |00iab =

|0ia|0ib. Nonetheless, Eq. (8.14) illustrates that a projection of the qubits b and c

onto a Bell state will leave the qubits a and d in one of the four Bell states. Thus, by

performing a Bell state measurement on qubit b and c and sending the measurement

result to the stations containing qubit a and d, appropriate single qubit rotations 1 can

be applied to obtain the desired Bell state of qubit a and d. In summary, entanglement

has been swapped to qubit a and d by means of a local Bell measurement, sending a

classical signal (the measurement result) and local single qubit rotations. No quantum

signal needs to be transmitted between qubit a and d and the classical signal can easily

be amplified using conventional techniques. The same procedure is now repeated until

entanglement has been established over the total distance. The number of swap levels,

n, determines the length, L
0

, of the elementary lengths, i.e. L
0

= Ltot/2n. Fig. 2.1

shows two swap levels.

1A single qubit rotation would e.g. be to flip |0i $ |1i of one of the qubits
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Figure 2.1: The total distance is divided into smaller segments, where entanglement
can be established by direct transmission of a quantum signal. By performing Bell
measurements, the entanglement is swapped to larger distances. The result of the
measurements are communicated to the end stations so that the appropriate single
qubit rotations can be applied. Note, that the repeater requires quantum memories,

where the signals can be stored and processed.

2.3 Single emitters and atomic ensembles

The quantum repeater can potentially overcome the problem of losses and enable secure

quantum networks. However, the constituents in a quantum repeater such as entan-

glement generation, quantum memories and Bell state measurements are challenging to

realize. As a result, much of the work presented in this thesis, focusses on the building

blocks of a quantum repeater. Generally, we have considered two kinds of quantum sys-

tems that can be used to make a repeater namely single emitters and atomic ensembles.

2.3.1 Single emitters

A single emitter could be an atom, ion or a doped diamond crystal or semiconductor

material [11, 12, 31–33]. What characterizes a single emitter is that it can be described

as a single object with a given internal energy structure. Single emitters can be very

e�cient single photon sources since they never emit more than a single photon. An atom

can decay from an excited state by emitting a single photon and the reverse process,

where a photon is absorbed by the atom and excites it, can also take place. In that

sence, the single emitter can be considered as a quantum memory with a stationary

qubit consisting of two stable ground states, which can be converted into a flying qubit
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by emitting a photon as depicted in Fig. 2.2, which shows some of the hyperfine energy

levels of a 133Cs atom.

Figure 2.2: A 133Cs atom can be used as a single emitter by exploting the hyperfine
level structure. The 62S1/2 manifold is stable and can be used as qubit states. The atom
can be brought to the excited manifold 62P3/2 by absorbing light with a wavelength
of 852 nm. The figure shows how a control laser can be applied to drive the |0i $ |ei
transition. By emitting a single photon, the state can move from |0i ! |1i and by
absorbing a photon, the state can move from |1i ! |0i. In this fashion a flying qubit
can be converted to a stationary qubit and vice versa. The three levels |0i, |1i, and |ei

constitutes what is referred to as a ⇤-system.

Single emitters can, however, in general emit light in any spatially direction. To use a

single emitter as a quantum memory, it is therefore necessary to have an e�cient method

of guiding the light emission to a specific direction/mode. To this end, one can use, e.g.

waveguides and optical cavities [34–38]. Waveguides and cavities confines the light to a

small number of well-defined modes. Other modes are simply not allowed due to, e.g.

interference e↵ects. Placing the single emitter inside one of these constructions can solve

the problem of collecting the emitted light. At the same time, the process of storing light

in the emitter also benefits from this. There are several ways of obtaining a cavity to

confine light. Nonetheless, a generic cavity is simply two mirrors, which reflect the light

such that the intracavity fields is build up by counter-propagating electromagnetic fields,

which interfere to form a standing wave between the two mirrors [26]. This standing

wave has nodes and anti-nodes and by placing the single emitter in the vicinity of one

of the nodes, a very strong coupling can be achieved. Recently, nanocavities realized in

photonic crystals have demonstrated very strong coupling between a single atom and a

light field [25, 36]. In such cavities, light is confined by changing the index of refraction

for the light in a periodic manner by e.g. edging holes in a semiconductor material.
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Single emitter systems have long been considered for quantum information processing

because they usually o↵er a large degree of control. Furthermore, systems like trapped

ions and atoms have demonstrated very long coherence times [11, 12, 31] allowing for

extended manipulation of the quantum information before initialization of the system is

necessary. Experiments with trapped ions have demonstrated many of the constituents

of a quantum computer such as entanglement and two qubit gates [11, 12]. Nonetheless,

these systems are hard to scale since the ions need to be kept in traps, which can

only contain a limited number of qubits. A solution to this could be to move ions

between di↵erent traps in the line of Ref. [12]. Other more scalable systems, which

have been considered for quantum information processing, are semiconductor systems

like quantum dots and NV centers [32, 33]. The coherence times of these systems are

much smaller than for ions or atoms but this is not necessarily a problem as long as

gates can be implemented fast enough. Long coherene times are however needed for

quantum memories in a repeater. Recent experiments on quantum dots in nanophotonic

waveguides have also demonstrated e�cient collection of light emitted from the dots,

which could realize single photon sources for quantum information processing [39].

2.3.2 Atomic ensembles

With single emitters, a cavity can be used to enhance the coupling to light. Another way

of improving this coupling is to increase the number of emitters that the light can interact

with. This is the basic idea behind using atomic ensembles for quantum information

processing. Here, the stationary qubit is no longer the internal energy levels of a single

atom but the collective state of all the atoms. Atomic ensembles can consist of billions

of atoms and can thus increase the interaction with light significantly. This is often

described in terms of the optical depth, which is the fraction of light being scattered or

absorbed passing through a medium. The optical depth is directly proportional to the

number of atoms [40].

When describing an ensemble of atoms, it is commen to refer to the collective spin of

the atoms. This terminology is used because any two-level system can be thought of as

the spin-1/2 system like e.g. an electron, which has either spin up or down wrt. some

reference frame. Referring to the single emitter picture of 133Cs depicted in Fig. 2.2 we

can think of the qubit states in an ensemble of 133Cs atoms to be

|0i = |0i
1

|0i
2

. . . |0iN (2.8)

= |0
1

0
2

. . . 0N i,

|1i =
1p
N

N
X

j=1

|0
1

0
2

. . . 1j . . . 0N i (2.9)
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|0i is the state where all atoms are in the ground state |0i while |1i is the symmetric

superposition of all the possible states with a single atom being in state |1i and all the

rest being in state |0i. This state is called a Dicke state. Another very useful picture

of a collective atomic state is as a vector on a so-called Bloch sphere. To clarify the

spin-1/2 analogy we let |0i = | "i and |1i = | #i and define the following spin operators

of the j’th atom

Ŝ(j)
x =

~
2
(| "ijh# |+ | #ijh" |) , (2.10)

Ŝ(j)
y =

i~
2
(| #ijh" |� | "ijh# |) , (2.11)

Ŝ(j)
z =

~
2
(| "ijh" |� | #ijh# |) . (2.12)

These operators can be used to define a coordinate system with an x, y, and z axis. The

spin state of the j’th atom is now a spin vector Sj = (S(j)
x , S(j)

y , S(j)
z ) where S(j)

a is the

coordinate from projecting on Ŝ(j)
a . The vector has a fixed length of 1/2 since a two

level atom will always be in some spin state | i = ↵| "i + �| #i with |↵|2 + |�|2 = 1.

The atomic spin state can therefore be depicted as a point on a sphere called a Bloch

sphere (see Fig. 2.3)2.

Figure 2.3: The state of a two level atom can be described as a vector lying on a
sphere called a Bloch sphere. The axis are defined by the atomic spin operators Ŝ

x

, Ŝ
y

,

and Ŝ
y

.

We can generalize the Block sphere to describe N atoms by defining collective spin

operators Ĵa =
PN

j=1

Ŝ(j)
a where a = x, y, z. The total angular momentum vector is

J =
PN

j=1

Sj and lies on a Block sphere with radius N/2. Like the single atom spin

2The picture is a modified version of the one found at
http://nbi.ku.dk/forskningsgrupper/Kvanteoptik/english/qoptlab/research/exp-clock/bloch/

http://www.nbi.ku.dk/forskningsgrupper/Kvanteoptik/english/qoptlab/research/exp-clock/bloch/
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operators Ŝa, the collective spin operators obeys the standard commutation relation

h

Ĵx, Ĵy
i

= iĴz. (2.13)

The collective spin operators is a nice way of describing the total atomic spin state. For

a coherent spin state with e.g. all atoms in state | "i, we can treat Ĵz as a classical

number, Ĵz ⇡ hĴzi = N/2 and define new canonical position and momentum operators

X̂A = Ĵx/
q

hĴzi, P̂A = Ĵy/
q

hĴzi and it follows from Eq. (2.13) that they obey the stan-

dard position and momentum commutation relation. We can then define the collective

annihilation operator

âA =
X̂A + iP̂Ap

2
=

1p
N

N
X

j=1

|0ijh1|, (2.14)

and it is seen that the Dicke state defined in Eq. (2.9) is now â†A|0i. Note that the

collective operators are only a good description when all the atoms in the ensemble

evolve equally. For an extensive review on atomic ensembles and light-matter interaction

the reader is referred to Ref. [40].

2.4 Atomic clocks

Atomic ensembles can be used as quantum memories in quantum repeaters but they are

also used in metrology experiments like atomic clocks [5, 41, 42]. Atomic clocks provide

some of the mose precise measurements in physics and have applications ranging from

ultra precise GPS systems to gravitational wave detectors. The underlying assumption

in an atomic clock is that the atoms have well defined transition frequencies, which are

constants of nature. The idea is to lock a laser to such a transition frequency resulting

in an ultra stable laser. Time can then be measured by counting the laser periods.

Some of the first atomic clocks were based on atomic ensembles of 133Cs atoms, which

lead to a definition of the second as being 9192631770 periods of radiation corresponding

to the transition between the two hyperfine levels of the ground state 6S
1/2. Since then

a lot of di↵erent types of atomic clocks have emerged, which have continously improved

the precision and accuracy of the clocks [43–46]. So-called ion clocks use only one or a

few ions to lock the laser while others, like optical clocks, use thousands of atoms held

in an optical lattice. The stability of a clock is a measure for how well the laser is locked

at a given frequency while the precision of a clock is how well this frequency match the

atomic transition frequency. The dominant limitation of present atomic clocks is the

stability and most research focus on improving this.
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The fundamental operation used in atomic clocks is Ramsey spectroscopy [47]. Consider

a collection of N two level atoms, where we want to measure the transition frequency

!
0

between the two levels with a laser. We describe the atoms as a spin system and

prepare them in a coherent spin state with a mean spin hĴz(0)i = �N/2 and hĴx(0)i =
hĴy(0)i = 0. We now apply a laser, hereafter referred to as the LO (Local Oscillator),

with frequency ! to the atoms. In a reference frame rotating with the LO frequency,

the interaction between the atoms and the laser is described by the Hamiltonian [5, 48]

Ĥ =
~�
2

⇣

Ĵz + 1
⌘

� ~
2
Re {⌦} ˆ̃Jx � ~

2
Im {⌦⇤} ˆ̃Jy, (2.15)

where ⌦ is the Rabi frequency of the interaction, � = !
0

� ! and ˆ̃Jx ( ˆ̃Jy) is the Ĵx

(Ĵy) spin operator in the rotating frame. Note, that we have assumed all atoms to have

the same interation with the LO. The constant term in the Hamiltonian can be ignored

since it only gives an overall phase to the system. Using the Bloch sphere picture with

axis defined by ˆ̃Jx,
ˆ̃Jy, and Ĵz, the equations of motions in the Heisenberg picture can

be written as [5, 48]
d

dt
J̃ = ⌦⇥ J̃. (2.16)

Here ⌦ = (�Re {⌦} ,� Im {⌦} , �) and J̃ =
⇣

J̃x, J̃y, Jz
⌘

is the spin vetor in the rotating

frame. Eq. (2.16) describes the dynamics in Ramsey spectroscopy which consists of the

following steps (see also Fig. 2.4a)

1. Apply a LO pulse for a short time t⇡/2 = ⇡/(2 Im {⌦}) such that the atomic state

is rotated ⇡/2 around the y axis. This is called a ⇡/2-pulse.

2. For a time, T , called the interrogation time, the detuning � makes the atomic state

rotate � = �T around the z-axis.

3. Apply a final ⇡/2 pulse, which rotates the atomic state to lie in the xy-plane and

measure the atomic spins, i.e. a measurement of Ĵz(2t⇡/2 + T ) = Ĵz(tf )

The expression for hĴz(tf )i is hĴz(tf )i = cos(�)hĴz(0)i + sin(�)hĴy(0)i = �N/2 cos(�).

Fig. 2.4b shows the Ramsey resonance curve, which results from plotting hĴz(tf )i against
�.

The measurement of hĴz(tf )i can provide an estimate of �, which can be used to lock the

frequency of laser to the atomic transition. In an atomic clock, the laser should be kept

at a frequency ! = !
0

� ⇡/(2T ) such that � ⇠ ⇡/2 since at this point, the measured

signal (hĴz(tf )i) has a maximum sensitivity to fluctuations in �. All practical lasers

will experience frequency fluctuations and the drifted phase can therefore be written as

� = ⇡/2 � ��, where �� is the contribution from the frequency fluctuations. �� can
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Figure 2.4: (a) The Ramsey sequence depicted on the Bloch sphere of the collective
state and (b) sketch of the Ramsey resonance curve obtained with Ramsey spectroscopy.

be estimated from the measurement of hĴz(tf )i and a suitable frequency correction can

be applied to the laser. Thus, the frequency fluctuations of the LO can monitored and

corrected for by repeatedly doing Ramsey spectroscopy.

The stability of the clock depends on how well we can estimate ��. The atomic spin

operator, that we measure at the end of the Ramsey sequence, is Ĵz(t) = sin(��)Ĵz(0)+

cos(��)Ĵy(0), assuming that � = ⇡/2� ��. A good estimate of �� is therefore

��e =
hĴz(t)i
hJz(0)i . (2.17)

The accuracy of the estimate is characterized by the variance ���e = h��2ei1/2, where
we have assumed that h��ei = 0. For �� ⌧ 1, the dominant term of ���e is ⇠
�Ĵy(0)/hĴz(0)i, which for a coherent spin state is ⇠ 1/

p
N . This limit, where the

accuracy of the phase estimate is limited by the uncertainty from the atomic measure-

ment, is called the standard quantum limit. The standard quantum limit shows that the

stability of the clock improves with the number of atoms in the clock. However, having

many atoms also leads to other decoherence e↵ects than the frequency fluctuations of

the LO such as atomic dephasing. This limits the interrogation time T , which also af-

fects the stability of a clock. The stability of a clock can be characterized by the Allan

deviation defined as [49]

��(⌧) = h(�!̄(⌧)/!)2i1/2, (2.18)

where ⌧ ⌧ T is the total time the clock is running and �!̄(⌧) is the mean frequency

o↵set of the LO. The mean frequency o↵set of the LO after each Ramsey sequence is



Chapter 2. General concepts 17

estimated as !̄e = ��e/T and subsequently a correction is made to the LO to correct

for this. This results in a scaling ⇠ 1p
TN

of ��(⌧). The stability of a clock can thus

be improved both by increasing the number of atoms or by increasing the interrogation

time. For ion clocks, N is small but in return T is large while the opposite is, in general,

the case for clocks based on atomic ensembles.



Chapter 3

Hybrid quantum repeater

protocol with fast local processing

Quantum communication generally works in two regimes; the discrete and the contin-

uous variable regime. In the discrete variable regime, information is carried by single

photons and measurements rely on single photon detection (SPD). This facilitates detec-

tion and correction for loss, but the e�ciency of most available single-photon detectors

is low, reducing the rate of entanglement distribution. High-e�ciency (> 90%) SPD is

possible, but requires detectors, such as superconducting transition-edge sensors, which

are expensive and not widely available [50]. In the continuous variable regime, informa-

tion is encoded in operators with a continuous spectrum such as the field quadratures of

the electromagnetic field. These are measured using homodyne detection, which is very

e�cient in practice (⇠ 99%) but has the drawback that loss is not as easily detected as

in the discrete variable regime. Recently, hybrid quantum repeater protocols, combining

the two regimes, were proposed first for spin systems in cavities [19] and later for atomic

ensembles [24]. The performance of the repeater protocol in Ref. [24] is comparable

to the best proposed atomic-ensemble based repeaters in the discrete variable regime if

these are operated using realistic SPD with limited e�ciency [18, 51, 52].

In this chapter, I describe the work of me and my collaborators on two modifications

to the protocol of Ref. [24]. The work has been carried out in collaboration with J. B.

Brask and A. S. Sørensen and is described in Ref. [53], which is the basis of this chapter.

18
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3.1 Introduction

The hybrid repeater protocol in Ref. [24] creates entanglement between two repeater

stations in the form of single-photon superpositions |01i + |10i ignoring normalization

for simplicity. Through a probabilistic procedure, these states are then grown into states

resembling

|�(✓,↵)i _ ei✓|↵ia|↵ib + e�i✓|� ↵ia|� ↵ib, (3.1)

by means of local operations and classical communication. Here |↵ia denotes a coherent

state with amplitude ↵ in mode a, and ✓ is a phase. We refer to states of the form in

Eq. (3.1) as two-mode cat states since they are two-mode superpositions of two ”clas-

sical” states |↵i, | � ↵i. Because classical communication between distant stations is

time consuming, the growth procedure is slow. In particular, the single-photon entan-

glement generation step, which has low success probability, needs to be repeated every

time the growth step fails. In a related setup, a solution to this problem was suggested

in Ref. [17]. To improve the communication rate, it was proposed to replace the low suc-

cess, non-local entanglement generation by a rapid preparation of a suitable local states.

Because local operations do not rely on communication with distant parties, they have

a much higher obtainable rate. The locally generated states are more suitable for en-

tanglement generation and can be connected with a much higher probability reducing

the time spent on the slow non-local operations. We have followed a similar path and

considered interchanging the first two steps of the repeater protocol in Ref. [24] such

that states resembling one-mode cat states,

|⇠(✓,↵)i _ ei✓|↵i+ e�i✓|� ↵i, (3.2)

are first grown locally and then subsequently connected to create entanglement by means

of non-local single-photon subtraction. Such a modification reduces the need for classical

communication and allows a higher repetition rate to be reached. This is the main idea

behind the new repeater protocol we have proposed and which is detailed below. In

addition, we have optimized the cat-state growth procedure of Ref. [24], improving the

rate further.

3.2 Review of previous scheme

The repeater protocol of Ref. [24] consists of three steps, (i) heralded entanglement

generation based on sources of two-mode squeezed vacuum and SPD, (ii) growth of

two-mode cat states from entangled single photons by means of homodyning, and (iii)

entanglement swapping based on homodyning. The steps are outlined in Fig. 3.1.
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In step (i) (see Fig. 3.1(i)), two sources produce two-mode squeezed vacuum states of

the form

|00i+p
ppair|11i+O(p), (3.3)

where ppair is the probability to produce a photon pair. These sources can be realized

using parametric downconversion crystals or ensembles of ⇤-type atoms [51, 54]. One

output mode from each source is read into a quantum memory while the remaining

modes are sent to a balanced beam splitter positioned between the two sources. The

beam-splitter outputs are measured and a single SPD click projects the two modes in the

quantum memories into an entangled state |01i+ |10i. The pair-production probability

ppair (and hence the squeezing) needs to be small to ensure that the final state does not

contain more than a single photon.

In step (ii) (see Fig. 3.1(ii)), two entangled single-photon states are combined on bal-

anced beam splitters and the X̂ quadratures of one output mode from each beam splitter

are measured (a related procedure to perform distillation of continuous-variable entan-

glement was shown in Ref. [55, 56]). Whenever the sum of the measurement outcomes

fulfill |xa + xb|  �, for a certain acceptance interval, �, the state is kept. The process

can be iterated by combining two states resulting from successful growth at the previous

level and repeating the procedure. In the limit of small �, the final output resulting

from this procedure approaches a non-locally squeezed two-mode cat state of the form

Ŝ
+

(2)|�(0, µm/
p
2)i, (3.4)

where µm =
p

2m + 1/2 and m is the number of iterations. Ŝ
+

(2) denotes non-local

squeezing in the variance of X̂a + X̂b by a factor of two. The squeezing operator has

the general form Ŝ(⇣) = exp
�

1

2

⇣⇤â2 � 1

2

⇣â†2
�

. The acceptance interval, �, determines

the probability for successful growth, and hence the rate, as well as the fidelity of the

output state with respect to the state in Eq. (3.4). Larger � corresponds to higher

success probability but lower fidelity. The choice of � thus defines a tradeo↵ between

the rate and the fidelity. In Ref. [24], � was fixed to take the same value for all m.

The final step (iii) (see Fig. 3.1(iii)) is entanglement swapping where neighboring en-

tangled segments are combined to create longer segments. Two modes, one from each

entangled pair, are combined on a balanced beam splitter and the X̂ and P̂ quadratures

of the output modes are measured. Whenever |x|  �, x being the outcome of the X̂

measurement, the entanglement swapping is considered to be a success and the output

state is kept. The process is iterated until entanglement is distributed over the total

length, L of the repeater. This is obtained by first dividing L into 2n segments of length

L
0

= L/2n over which entanglement is created. At each swap level, every two neigh-

bouring segments are connected, such that the entanglement distance is doubled. After
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Figure 3.1: Steps of the protocol in Ref. [24]. (i) Entanglement is generated using
two sources of two-mode squeezed vacuum. One mode from each source is transmitted
to a balanced beam splitter and the outputs are measured. Detection of a single photon
heralds entanglement between the remaining modes stored in quantum memories (QM).
(ii) Growth of cat states. Two entangled states are combined locally on balanced beam
splitters and the X̂ quadrature is measured. Success is conditioned on the sum of the
outcomes taking a value close to zero. (iii) Entanglement swapping. One mode from
each state is combined on a balanced beam splitter and the X̂ and P̂ quadrature of
the outputs are measured. Success is conditioned on a value of the X̂-outcome close to

zero.

n swap levels, entanglement is distributed over the entire length L. In the limit of small

�, the state produced after n swap levels approaches a locally squeezed two-mode cat

state

| idealiab = Ŝa(
p
2)Ŝb(

p
2)|�(�n, 2�5/4µm)iab, (3.5)

where the phase �n depends on the P̂ -measurement outcomes from the previous levels.

This state contain one ebit of entanglement and is used to quantify the performance of

the repeater via the fidelity

Fprev = h ideal| ⇢̂ | ideali , (3.6)

where ⇢̂ is the density matrix of the final output state of the repeater. As for the

growth step (ii), there is a tradeo↵ between fidelity and rate through the acceptance

parameter �. The upper limit to the success probability of entanglement swapping is

1/2 for the simple procedure considered here but the success probability can in principle

be increased by using a more complicated procedure (see Ref. [57]).
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Figure 3.2: Steps of the modified repeater. (i) Local growth of cat states. The out-
put modes from two sources of two mode squeezed vacuum states are combined on a
balanced beamsplitter and the X̂ quadrature of one of the outputs is measured condi-
tioned on a click in both SPD-detectors. Conditioned on the measurement outcome the
resulting state is kept for further processing. (ii) Entanglement generation from single-
mode cat states. Small parts are tapped o↵ from two input cat states at two separate
locations, and the remaining parts are stored in quantum memories (black dots). The
fraction tapped o↵ is controlled by the reflectivity r of the local beam splitters. The
reflected signals are transmitted to a central, balanced beam splitter, and the output
ports are measured. Conditioned on a click in either of the detectors, the memories are

prepared in an entangled state.

3.3 The modified scheme

To improve the rate of entanglement distribution, we have interchanged steps (i) and

(ii) above, resulting in a new protocol based on local growth of single-mode cat states

and subsequent non-local single-photon subtraction. The steps of the new protocol are

sketched in Fig. 3.2. Entanglement swapping is performed in the same manner as in

step (iii) above.

3.3.1 Growth of cat states

The first step of the modified protocol is growth of states approximating squeezed single-

mode cat states

|⇣mi = Ŝ(2)
1

q

N+

µ
m

(|µmi+ |� µmi), (3.7)

where Ŝ(2) denotes squeezing by a factor of two in the variance of the X̂ quadrature,

|µmi is a coherent state with amplitude µm =
p

2m + 1/2 and N+

µ
m

is a normalization

constant. These states can be grown by a setup very similar to step (ii) of the original

protocol, as explained in Ref. [24]. The input states are single-mode, one-photon states,

generated by detecting one half of a two-mode squeezed state with small pair-production
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probability ppair. To understand the growth procedure, we consider the ideal limit where

each source produces a pure single-photon state |1i with corresponding wave function

for the x-quadrature

 
0

(x) =

p
2

⇡�1/4
e�

1

2

x2

x. (3.8)

The joint wave function before the beam splitter is  
0

(x) 
0

(y). At the output of

the balanced beam splitter, this is transformed into  
0

((x + y)/
p
2) 

0

((x � y)/
p
2) _

e�
1

2

(x2

+y2)(x2 � y2). Now mode y is measured and the state is kept if y
0

2 [��,�]

where y
0

is the measurement outcome. Taking the limit � ! 0 we find the output state

 
1

(x) _ e�
1

2

x2

x2. Then the process is iterated with  
1

(x) as input. After m iterations,

the output wave function becomes

 m(x) = �

✓

2 +
1

2

◆� 1

2

x2
m

e�
1

2

x2

. (3.9)

The overlap of this state with the state in Eq. (3.7) exceeds 99% for m � 2 and approx-

imate squeezed cat states can thus be grown this way.

As in the previous section, there will be a tradeo↵ between the fidelity and the rate

controlled by �. In Ref. [24], � was kept fixed at the same value in every iteration but

here we investigate the improvement by allowing di↵erent values of � for each m. To

understand the possible improvement allowed by varying the interval, we first analyze

how the growth procedure works. The output wave function of the growth procedure

(approximately  m(x) for small �) is symmetric with two peaks; one at x < 0 and one at

x > 0. Suppose that the measurement is performed in the symmetric output of the beam

splitter with quadrature operator X̂
+

= X̂
1

+ X̂
2

. In this mode the quadratures add. If

the two peaks with positive x are combined, the measurement outcome will likely have

a positive value. Similarly, combining the negative peaks leads to a negative outcome.

These two possibilities are not desirable since the wave function in the antisymmetric

mode X̂� = X̂
1

� X̂
2

essentially will be a peak around zero, because in this mode

the quadratures subtract. However, when a negative and a positive peak combine, the

measurement outcome will be in the vicinity of zero. Since there are two paths leading

to this result, corresponding to two di↵erent states in the antisymmetric output mode,

the desired cat state is generated. The acceptance interval must be chosen such that one

avoids outcomes resulting from the tail of the distribution coming from the combination

of two positive or two negative peaks. The closer the peaks are to each other at the

input, the smaller acceptance interval is allowed. As the growth process is iterated, the

peaks become more separated and larger acceptance intervals can be chosen, resulting

in a higher probability of success.
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Figure 3.3: Optimized production rate of approximate squeezed cat states after (a)
m=2,3 iterations (b) m=4,5 iterations. The dashed lines are the optimal curves and
the solid curves are obtained for identical acceptance intervals in all iterations. The
fidelity was calculated with the target state in Eq. (3.7) and the rate is given in units

of the source repetition rate.

We have optimized the acceptance interval to achieve the highest possible probability

for a fixed target fidelity

Fgrowth = h⇣m| ⇢̂m |⇣mi (3.10)

of the output state ⇢̂m of the growth procedure. We assume perfect one-photon states

at the inputs, and calculate the fidelity and rate on a grid of values for each acceptance

interval, �m under the constraint that �m+1

� �m. The optimization was made using

Wigner functions, since these provide a natural description of mixed continuous-variable

states and make it possible to compute the average output fidelity. Details are given in

App. A.1. The rate, in units of the source repetition rate is approximated by

Rgrowth =

✓

2

3

◆m�1

P
1

P
2

. . . Pm, (3.11)

where Pm is the probability of successful growth in iteration m. This expression as-

sumes that the outcomes of successful events can be stored while unsuccessful events

are repeated until they succeed [18]. Note, that by assuming that successful events are

stored in quantum memories, we avoid the usual exponential scaling with the number

of conversion events (recall that the number of down conversions is 2m). The result

of the optimization is shown in Fig. 3.3 where we plot Fgrowth against Rgrowth. Note

that the fidelity does not reach unity as Rgrowth ! 0 since we take the fidelity with the

approximate cat state in Eq. (3.7) and not the state in the ideal limit in Eq. (3.9). The

calculation was restricted to m  5 for runtime reasons.

Fig. 3.3 shows that the growth procedure is indeed improved by allowing for di↵erent

acceptance intervals in every iteration. However, the rate is not significantly improved for
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a small number of iterationsm. Nonetheless, Fig. 3.3 indicates that the improvement will

increase with m since for larger m the peaks in the input states become more separated.

For an output fidelity of 0.9 the ratio of the modified rate to the previous rate is 1.03,

1.10, 1.21, and 1.53 for m = 2, 3, 4, and 5 respectively. For very large m, the two peaks

will be so far separated that we can choose an acceptance interval for which the success

probability approaches 1

2

without a↵ecting the fidelity.

3.3.2 Connection of cat states

The second step of the new protocol is to create entanglement by connecting the single-

mode cat states from the first step. The method we employ was proposed by N. San-

gouard and coworkers in Ref. [52] and the setup is shown in Fig. 3.2(ii).

A small part is subtracted from each input state by means of asymmetric beam splitters

with low reflectivity r. The remaining parts of the states are stored and the reflected

parts are transmitted to a central station. Here, the two signals are combined on a

balanced beam splitter and the two output ports are measured with photodetectors.

Successful entanglement generation is conditioned on a click in exactly one of the detec-

tors. When a click is observed in the symmetric output port of the beam splitter, the

quantum memories are projected into an entangled state approximating the two-mode

cat |�(0,↵p1� r)i. For a click at the antisymmetric output, the state is identical up to

a local phase shift. The procedure can be understood easily in the ideal case where the

inputs are exact cat states |⇠(0,↵)i and r ! 0. In this limit, a click heralds non-local

subtraction of a single photon from the joint state of the memories. The memories are

thereby projected into the (unnormalized) state

(â± b̂)|⇠(0,↵)ia|⇠(0,↵)ib, (3.12)

where a, b label the output modes. Inserting the definition Eq. (3.2) and recalling

that coherent states are eigenstates of the annihilation operators, we notice that the

component of the wave function, where the a and b mode have the opposite (same)

phase e.g. |↵ia|�↵ib (|↵ia|↵ib), vanish by interference for the plus (minus) combination.

Therefore the resulting state is

|↵ia| ± ↵ib � |� ↵ia|⌥ ↵ib. (3.13)

Comparing to Eq. Eq. 3.1, we see that up to a local phase shift this state is equal to

|�(⇡/2,↵)i.
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In practice, it is very hard to create genuine cat states. Therefore, we shall use the

approximate squeezed cat states from the previous step of the repeater protocol. We

now examine the behaviour of these states under entanglement generation in the ideal

limit � ! 0, in which case they are given by Eq. (3.9), and taking again the limit r ! 0,

we find

| miab = (â± b̂)| mia| mib,

/ 1p
2
(|0mia|1mib ± |1mia|0mib),

(3.14)

where

hx|0mi = hx| a | mi = �(2m � 1/2)�1/2x2
m�1e�

1

2

x2

,

hx|1mi =  m(x) = �(2m + 1/2)�1/2x2
m

e�
1

2

x2

.
(3.15)

Here, |1mi is a superposition of even photon states and |0mi is a superposition of odd

photon states, and for m � 2 they resemble squeezed, even and odd, single-mode cat

states respectively i.e:

|1mi ⇡ Ŝ(2)
1

q

N+

µ
m

(|µmi+ |� µmi) (3.16)

|0mi ⇡ Ŝ(2)
1

q

N�
µ̃
m

(|µ̃mi � |� µ̃mi) (3.17)

where µ̃m =
p

2m � 1/2, µm =
p

2m + 1/2 and N+

µ
m

, N�
µ̃
m

are normalization constants.

For m � 2 the fidelities between |1mi, |0mi and the respective cat states are both � 99%.

The state | mi contains one ebit of entanglement and is obtained in the low-rate limit of

small acceptance intervals during growth and small reflectance during connection. | mi,
however, deviates from the squeezed two-mode cat state that was shown to be useful

for entanglement swapping in Ref. [24]. For m = 2 the overlap with a locally squeezed

two-mode cat state of the form used in Ref. [24]

Ŝ(2)aŜ(2)b|�(0, 2m/2)iab, (3.18)

is 96% and for m = 3 it is 97%. As we will see, this discrepancy has a detrimental

e↵ect on the overall performance of the repeater. This could be avoided by unsqueezing

the approximate squeezed cat states going into the entanglement connection. Such

unsqueezing operations may, however, be technically demanding, and we prefer not to

include them here. We therefore consider the simplest situation, where we directly

connect the states generated in the first step. Alternatively, the problem could be
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Figure 3.4: The fidelity of the connected state with respect to the state | 
m

i plotted
against the rescaled probability of a successful connection. We have assumed the input

states to be of the form in Eq. (3.9).

mitigated by increasing m. E.g. for m � 5 we get an overlap of 99% with the state in

Eq. (3.18). However, going to such high m would also be very demanding in practice.

Below, we analyse the full repeater protocol, including entanglement swapping. Before

proceeding, we first examine the performance of the connection step itself. We compute

the output state for finite r and lossy transmission channels. Loss is modelled by ficti-

tious beam splitters of transmittivity ⌘, such that the probability for a photon to get

lost on the way to the central station is 1 � ⌘. We assume that the photodetectors do

not resolve the photon number. Details of the calculation are given in App. A.2. First,

we study the output fidelity, Fconnect of the connected state with respect to | mi as a

function of the reflectivity, r of the first two beamsplitters. For this purpose, we simulate

the connection of states of the form in Eq. (3.9) for a fixed number of iterations (m).

We restrict the simulations to small r since this is the relevant regime of the repeater.

This implies that the probability of a successful connection is Pconnect ⇡ Pc,noloss(r)⌘

where Pc,noloss(r) is independent of the losses in the optical fibers. The results of the

simulations are shown in Fig. 3.4.

Fig. 3.4 shows that the fidelity depends linearly on Pconnect/⌘ in the limit of small

r. Furthermore, the rate of the connection step for a fixed distance is more or less

independent of m for small r. These results can be understood by noting that the

connection fails if a second photon is tapped o↵ at the beam splitters. The probability

for this to happen conditioned on at least a single photon being tapped o↵ is ⇠ Pconnect/⌘

regardless of m.
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Figure 3.5: Influence of finite acceptance intervals in the growth on the state after
connection. The fidelity of the connected state is w.r.t. the state | 

m

i and ~� is
represented through R

growth

. Here, we have neglected losses in the optical fibers and
R

growth

is in units of the rate at which the one-photon input states for the growth can
be provided.

The second parameter to consider in the connection step is the vector of acceptance

intervals for the growth step, ~�, which determines the fidelity of the input states with

respect to | mi. To determine the e↵ect of finite acceptance intervals in the growth

procedure on the state after connection, we simulate the connection step for di↵erent ~�,

taking the limit of r ! 0 and ⌘ ! 0. We take ~� to be the vectors giving the optimal

fidelity for a given rate Rgrowth in Fig. 3.3. The result of the simulations is shown in

Fig. 3.5.

Fig. 3.5 shows the same kind of behavior as Fig. 3.3 taking into account that the fidelity

in Fig. 3.3 is w.r.t. the squeezed one mode cat state in Eq. (3.7), i.e. as opposed to

Fig. 3.3, the fidelity approaches unity. For optimizing the performance of the full repeater

it is advantageous to have an analytical understanding of the entanglement generation.

We have therefore fitted the graphs to functions of the form Fconnect = 1� c ⇤ ed⇤Rgrowth .

The details of the fits are shown in App. A.4 and Tab. 3.1. Fig. 3.4 and Fig. 3.5 show

that the highest rate of entanglement generation is obtained for m = 1 but, as we will

see below, we need to go to higher m for the swapping procedure to function.

3.3.3 Entanglement swapping

The final step of our altered repeater is to merge entangled segments via entanglement

swapping. The method is the same as in the protocol of Ref. [24] and is illustrated in
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Fig. 3.1(iii). Two modes, at the same location from two entangled pairs, are connected

on a balanced beam splitter and the X̂ and P̂ quadratures are subsequently measured.

Whether the swap attempt was successful is conditioned on the outcome of the X̂ mea-

surement. When swapping two states of the form Eq. (3.18), the wave functions of the

states have two peaks; one at x > 0 and one at x < 0. Thus, following similar arguments

as for the growth procedure, there are two paths leading to outcomes in the vicinity of

zero, |x|  �. Measuring the plus combination, there is one from the first mode having a

positive value of x combined with a negative value from the second mode and vice versa.

If x ⇠ 0, the two remaining quantum memories are projected into an entangled state of

the form in Eq. (3.18) with a phase determined by the outcome of the P̂ measurement.

The entangled states produced in the connection step are, however, not exactly of the

ideal form in Eq. (3.18). Therefore, we need to investigate how the swapping performs

with the actual states generated by our protocol. To this end, we first identify the

entangled state that most closely resembles the result of swapping after ideal growth

and connection by swapping states of the form in Eq. (3.14). Swapping two copies of

| mi using the approximations Eqs. (3.16) -(3.17) to determine how the two modes gets

mixed, we find

|�mi =A|0mi|0mi �A⇤|1mi|1mi+
C|1mi|0mi+ C⇤|0mi|1mi, (3.19)

where the coe�cients depend on the measurement outcomes of the X̂ and P̂ measure-

ments in both the current and previous swap levels (see App. A.3 for details). This

state contains one ebit of entanglement, and we will use it as our target state when

evaluating the performance of the repeater. That is, we measure the quality of a final

state ⇢̂ produced by the repeater by the fidelity

F (⇢̂) = h�m| ⇢̂ |�mi . (3.20)

The approximate form in Eq. (3.19) is however only obtained in the limit of large m.

For finite m, even the state | mi, obtained in the limit of ideal growth and connec-

tion, will produce less than one ebit of entanglement. To quantify this, we examine the

dependence of F on the outcome of the P̂ measurement. This behavior is shown in

Fig. 3.6 where we plot F against the P̂ -outcome for di↵erent values of m. For small

values of m, there is a strong dependence. However, as m increases, the P̂ dependence

decreases because the states begin to resemble locally squeezed two mode cat states,

which are insensitive to the P̂ -outcome when swapped. The probability of a successful

swap is determined by the acceptance interval � for the outcome of the X̂-measurement

and has an upper bound of 1/2, which is approached for high m as in the protocol of
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Figure 3.6: Upper curves (left axis): The fidelity after entanglement swapping as a
function of the P̂ -outcome for (a) m = 1, (b) m = 2 and (c) m = 3, and various values
of the X̂-outcome. The fidelity is F (⇢̂ ) where ⇢̂ results from swapping two copies of
| 

m

i. Lower curves (right axis): The corresponding probability distributions of p for
each X̂-outcome.
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Ref. [24]. Near-deterministic swapping can in principle be achieved following the method

of Ref. [24] using auxiliary single-mode cat states but we will not consider this possibility

here.

The strong P̂ dependence for small m in the fidelity of the swapped state was not seen in

the original hybrid repeater [24], where the the outcome of the P̂ measurement merely

resulted in an overall phase in the swapped state. As a consequence, the states produced

in the connection step of the altered repeater do not swap as well as those in the original

repeater for the same number of iterations m. For long distances, a large number of

swap levels is needed. One therefore needs to go to higher m in the altered repeater

as compared to the original repeater to reach a given output fidelity of the distributed

state.

3.4 Performance

The full repeater protocol is the nested collection of the three steps described in the

previous sections i.e. growth of cat states, connection, and entanglement swapping. To

quantify the performance of the repeater, we use the fidelity F , as given in Eq. (3.20),

and the production rate for the final entangled states. We set a target value of F � 80%

and make a numerical optimization of the rate as a function of distance by simulating

the repeater for di↵erent values of the control parameters at each step. The relevant

parameters are given in Tab. 3.1. We perform a full optimization over all the parameters

in Tab. 3.1, under the constraint that the final state should have a minimum fidelity

F � 80%. We do this optimization for each distance and for each value of the local

repetition rate. For the simulation, we assume perfect quantum memories, perfect ho-

modyning, and a SPD e�ciency ⌘spd = 50%. For a repeater of total length L and n swap

levels, the distance between the stations is L
0

= L/2n and the transmission e�ciency

incurred in the entanglement generation step is e�L
0

/2L
att , where Latt is the attenuation

length of the channels. The total e�ciency incurred is thus ⌘ = ⌘spde�L
0

/2L
att . We

assume Latt = 20km corresponding to optical fibers at telecom wavelengths. The time

needed for classical communication during entanglement generation is given by L
0

/c,

where c is the speed of light in the channels. We assume c = 2 · 105km/s. The time

required for local operations (measurements and memory operations) is assumed to be

negligible compared to the classical communication time, such that the characteristic

rates in the protocol are c/L
0

and the source rate for the two-mode squeezing sources,

rrep. The latter is taken to be the repetition rate of a single two mode squeezing source,

i.e. the rate at which down conversion is attempted in a single crystal. The optimal
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pair production probability ppair is found in the numerical optimization of the rate of

the repeater for a given rrep. The e↵ect of two-photon contributions in the input states

is treated by perturbation in the pair-production probability ppair, as in Ref. [24]. rrep

determines the rate of the growth, which is the first step of the protocol and thus has a

large e↵ect on the overall rate of the repeater. For runtime reasons, we have restricted

the number of growth steps to m  3 and the number of swap levels to n  4.

For simulating both the growth and the connection step of the repeater, we use Wigner

functions to obtain the average output fidelity for a given set of values of the control

parameters (see App. A.1 and App. A.2). However, this is not possible when simulating

the entanglement swapping since the target state depends on the outcomes of the X̂ and

P̂ measurements. To obtain an average fidelity of the entanglement step, we therefore

pick the measurement outcomes according to the probability distributions of X̂ and P̂

and calculate the fidelity of the resulting state. We repeat this procedure 100 times for

each swap level and calculate the average output fidelity. This gives a standard deviation

of the mean of the fidelity of about 1%.

When performing the numerical optimization of the rate, we calculate the fidelity of

the distributed state and the rate on a grid of values for all the control parameters. The

parameters a↵ecting the performance of the repeater are summarized in Tab. 3.1. In

order to pinpoint the relevant parameter regime, we use the fits listed in Tab. 3.1 to

make an analytical approximation of how the fidelity depends on the di↵erent param-

eters. We use this approximation to optimize the rate using the method of Lagrange

multipliers to find the optimal rate for a target fidelity of 80%. The resulting values

of the control parameters is then used to make a grid of values for the numerical opti-

mization around the analytical results. Finally, we pick the grid point with the highest

rate where F � 80%. The optimal rate as a function of distance is shown in Fig. 3.7 for

di↵erent values of rrep.

Naturally the rate of the altered repeater is very dependent on the source repetition

rate. With a fast local repetition rate, cat states can be grown rapidly thus removing a

time consuming step of the original repeater where this was done non-locally. Assuming

an experimentally accessible repetition rate of 1MHz, the present protocol achieves a

rate of ⇠ 0.08 pairs/min at L = 1000km while the rate of the previous protocol for the

same distance and target fidelity is ⇠ 0.004 pairs/min. The altered repeater thus gives

a significant increase in the rate. For rrep = 1GHz, the task of storing the signals in

quantum memories will be challenging but a rate of ⇠ 1.5 pairs/min would in this case

be reachable within the above assumptions. The ratio of the rate of the modified to

that of the original repeater decreases as a function of the distance. This is because the

states produced in the modified protocol are less robust to the swapping procedure than
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Description E↵ect Fidelity-fit

ppair Pair-production
probability of the
sources of two-
mode squeezed
vacuum states.

Small ppair ! low pro-
duction rate of input
states.
Large ppair ! large two-
photon component.

F = (1�⌧ · ppair)F1

+⌧ · ppair · F2

~� Vector of accep-
tance intervals in
the growth proce-
dure.

Large acceptance inter-
vals ! high growth
rate.
Small acceptance inter-
vals ! high fidelity
of the one-mode states
state in (3.9).

F = 1�c̃n,me
˜d
n,m

R
growth

m Number of it-
erations in the
growth step.

High m ! low growth
rate.
Low m ! poor swap-
ping states.

F = ĩn + j̃n ·m2 + k̃n ·m

r Reflectivity of the
first two beam
splitters in the
connection step.

Large r ! high connec-
tion rate.
Small r ! high fidelity
with the state (3.14).

F = 1�ãn,m(Pconnect

⌘ )2

�b̃n,m
P
connect

⌘

� Acceptance inter-
val in the swap-
ping procedure.

� determines the prob-
ability of a successful
swap and the fidelity of
the output state.

F = ẽn,me
˜f
n,m

�

+g̃n,me
˜h
n,m

�, m  2
F = ẽn,3 +f̃n,3 · �, m = 3

n Number of swap
levels.

n determines the classi-
cal communication time
(L

0

/c) between the sta-
tions in the elementary
segments and hence the
loss in the fibers during
connection.

F = 1� l̃m · n2

Table 3.1: Parameters considered in the numerical optimization of the repeater. The
last column is a functional fit of how the fidelity Eq. (3.20) depends on the param-
eter when the other parameters assume their ideal values i.e. p

pair

! 0, ~� ! 0,
r ! 0, � ! 0. r is represented through P

connect

in the fit where P
connect

is the prob-
ability of a successful connection and ~� is represented through R

growth

. The fits for
R

growth

, P
connect

and � are made for a specific choice of n and m. See App. A.4 for
details on the matrices containing ã

n,m

..h̃
nm

and the vectors containing ĩ
n

..k̃
n

and l̃
m

.
The expression for the fidelity’s dependence on p

pair

is calculated by perturbation in
p
pair

. F1 is the fidelity with pure one-photon input states for a given set of parameters
and F2 is the fidelity for the same set of parameters but with one of the input states
being a two-photon state. ⌧ = f2

4 2
m+n+1, where f2 is a factor that accounts for the

di↵erent acceptance probabilities for a one-photon state and a two-photon state in the
repeater.
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Figure 3.7: The optimal rates of the present and previous repeater protocols for
di↵erent values of r

rep

. The protocols are optimized over the parameters listed in Table
1, under the constraint F � 80%. The altered repeater performs significantly better

than the previous protocol even for r
rep

= 1MHz.

the states produced in the original repeater. When the distance increases the number

of swap levels increase, which results in a decrease of the ratio of the rates for a fixed

fidelity of the distributed state.

3.5 Conclusion and discussion

We have modified the quantum repeater protocol of Ref. [24] to improve the entan-

glement distribution rate. By interchanging the order of entanglement generation and

growth of cat states, we have made the latter a local, hence faster, process, thus increas-

ing the rate if local operations can be done rapidly. Furthermore, we have optimized

the growth protocol. For entanglement generation, we have incorporated the method

for connecting cat states of Ref. [52]. We have performed a numerical simulation of

our protocol, confirming that it does indeed lead to an increased rate. The final rate

depends on the repetition rate of the two-mode squeezing sources at the base level of

the protocol. For a moderate repetition rate of 1MHz, our protocol is 20 times faster

than the repeater considered in Ref. [24], achieving a rate of ⇠ 0.08 pairs/min over

1000km. This rate is comparable to the best proposed atomic-ensemble based repeaters

for similar detection e�ciencies (taking into account that we have optimized for a final

fidelity of 80%) [58]. Working with discrete variables requires SPD e�ciencies of ⇠ 90%
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to obtain similar rates or complicated swapping procedures [17]. Much higher source

repetition rates than 1 MHz are plausible with parametric down conversion in nonlinear

crystals, but compatible quantum memories operating at such high frequencies may be

very di�cult to implement. For quantum repeaters of this kind, the most feasible quan-

tum memories are currently those based on atomic ensembles. The high optical depth

of a dense ensemble of cold atoms enables a strong coupling even for a few photons and

this can provide an increase of the bandwidth scaling as �d, with � being the decay

rate and d the optical depth. For a su�ciently high d, the bandwidth may enable high

repetition rates [59]. Progress along this line was recently reported in Ref. [60], which

showed memory operations with pulses of spectral bandwidth exceeding 1 GHz. The

storage-and-retrieval fidelities currently achievable are far from the perfect case assumed

in the present analysis [61]. The e�ciency of an atomic ensemble memory can, however,

in principle be made close to 100% [62]. Since the modified repeater does not operate

with bigger cat states than the original repeater, we do not expect di↵erent scaling of

the two when including ine�cient quantum memories. Furthermore, since the modified

repeater operates faster than the original repeater, the states do not need to be stored

for as long a time, and the e↵ects from decoherence will thus be smaller [63]. Thus,

we expect the improvement of the present protocol over the previous protocol to persist

with at least the same factor even with non-ideal memories. It would be an interesting

extension of this work to include non-ideal memories in the simulations, giving a more

realistic calculation of the distribution rates but this this is beyond the scope of our

work.



Chapter 4

Near Heisenberg limited atomic

clock

Atomic clocks provide some of the most accurate time measurements in physics. One

of the main limitations to the stability of atomic clocks is the quantum noise of the

atoms, which leads to the standard quantum limit (SQL), where the stability scales as

1/
p
N with N being the number of atoms [41, 42]. To overcome this noise, it has been

suggested to use entangled states with reduced atomic noise [5, 49, 64–66]. Ultimately

this may lead to a stability at the Heisenberg limit, where the resolution scales as 1/N ,

and recently, the first proof-of-principle experiments have demonstrated these concepts

experimentally [67–72]. In practice, however, entangled states are often more prone to

decoherence, and to fully assess the advantage, it is essential to study the performance

in the presence of decoherence [73]. In Ref. [49], it was proven that entanglement can be

used to improve the long-term stability of atomic clocks in the presence of the dominant

practical source of decoherence, but the improvement identified was rather limited.

In this chapter, I present the work of me and Anders S. Sørensen on how to obtain

near Heisenberg limited atomic clocks in the presence of decoherence by combining

entanglement with an adaptive measurement protocol (inspired by Ref. [74, 75]). The

work has been described in Ref. [76], which is the basis of this chapter. With our adaptive

measurement protocol, the entangled states are not more sensitive to the decoherence

than disentangled states. As a consequence, the long term stability of the atomic clock

can be improved almost to the Heisenberg limit even in the presence of decoherence.

36
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4.1 Decoherence and spin squeezing

Many atomic clocks are operated by locking a local oscillator (LO) to an atomic transi-

tion via a feedback loop. The feedback is typically based on a measurement of the LO

frequency o↵set �! compared to the atomic transition through Ramsey spectroscopy [47].

The details of Ramsey spectroscopy was presented in Sec. 2.4 but here, we briefly state

the main points. The atoms are first prepared in one of the two clock states by e.g. a

laser pulse. During the Ramsey sequence, the atoms interact with the LO field. This

interaction consists of three parts; first the atoms are subject to a near-resonant ⇡/2-

pulse from the LO followed by the Ramsey time T of free evolution, and finally another

near-resonant ⇡/2-pulse is applied to the atoms. During the free evolution, the LO ac-

quires a phase �� = �!T relative to the atoms. Due to the last ⇡/2-pulses, this phase

can be measured as a population di↵erence between the two clock levels. �! can thus

be estimated from the measurement and used for a feedback that steers the frequency

of the LO to the atomic frequency. The stability of the clock will improve with T since

a longer T improves the relative sensitivity of the frequency measurement. For current

atomic fountain clocks, T is limited by gravity and can hardly be varied [41]. Here,

on the other hand, we consider trapped particles, where T can be increased until it is

limited by the decoherence in the system [77–79]. The long term stability thus depends

on the nature of the decoherence.

To take decoherence into account, Ref. [73] considered single atom dephasing. For this

model, Ref. [73] showed that entanglement can not improve the stability of atomic

clocks considerable (although an improvement is possible for non-Markovian noise [80,

81]). A more realistic model of the decoherence was described in Ref. [49], where the

primary noise source is the frequency fluctuations of the LO [82]. In this work, a small

improvement in the long term stability, scaling as ⇠ N1/6, was identified for entangled

atoms. Here we use the same decoherence model and disregard any decoherence of atoms,

to show that entanglement and adaptive measurements may improve the performance

and give near Heisenberg limited atomic clocks. Although the assumption of negligible

atomic decoherence may be hard to fulfill for the highly entangled states considered here,

our results highlight that there is no fundamental obstacle to reaching the Heisenberg

limit. Another approach to increase the stability is to increase T [83–85]. In particular,

Ref. [85] increases T through a measurement protocol highly related to ours. However

that work considers a scenario where the clock is limited by technical noise so that a

direct comparison with our results is not possible. Which protocol is advantageous is

thus an open question, which we have not addressed.
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Figure 4.1: The atomic state just before the measurement of J
z

for (A) uncorrelated
atoms, (B) moderately squeezed atoms and (C) highly squeezed atoms.

4.1.1 Spin squeezing

We consider an ensemble of N two-level atoms, which we model as a collection of spin-

1/2 particles with total angular momentum ~J . The angular momentum operators Ĵx,y,z

give the projections of ~J on the x, y and z-axis. The atoms are initially pumped to

have a mean spin along the z-axis, hĴxi = hĴyi = 0. After the Ramsey sequence the

Heisenberg evolution of Ĵx, Ĵy and Ĵz is Ĵ1(��) = Ĵx, Ĵ2(��) = sin(��)Ĵy�cos(��)Ĵz and

Ĵ
3

(��) = cos(��)Ĵy +sin(��)Ĵz. At the end of the Ramsey sequence Ĵ
3

is measured and

used to estimate ��. The Ĵy term in Ĵ
3

results in the so called projection noise in the

phase estimate ⇠ �Jy/|hJzi|. For uncorrelated atoms, �Ĵy�Ĵx = hĴzi/2 ⇡ N/4 and the

projection noise causes the stability of the clock to scale as ⇠ 1/
p
N . For a spin squeezed

state [86] the variance of Ĵy is reduced to obtain a better phase estimate. Such a spin

squeezed state is depicted in Fig. 4.1, which shows how the spin squeezed state looks

like a ”flat banana” on the Bloch sphere. The more we squeeze, the longer and more

narrow the banana is and significant extra noise is added to the mean spin direction.

For a phase estimate based on a direct measurement of Ĵ
3

, this gives an additional noise

term ⇠ ���Ĵz/|hJzi|. This extra noise limited the performance in Ref. [49] if strongly

squeezed states were used. We avoid this problem by using an adaptive scheme with

weak measurements to make a rough estimate of �� and then rotate the spins of the

atoms such that the mean spin is almost along the y-axis. The flat banana depicted

in Fig. 4.1 will then lie in the xy-plane and this will decrease the noise from �Ĵz in

subsequent measurements (see Fig. 4.2). Having eliminated the noise from �Ĵz, we can

allow strong squeezing in �Ĵy and obtain near Heisenberg limited stability.
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Figure 4.2: Operation of an atomic clock. A clock cycle of duration T
c

starts with
initializing the atoms and ends with the measurements and feedback on the LO. The
bottom part of the figure shows the adaptive protocol consisting of a series of weak
measurements with intermediate feedback. The feedback seeks to rotate the atomic
state to have mean spin almost along the y-axis before the final projective measurement

and subsequent feedback on the LO.

4.2 Clock operations and adaptive measurements

The operation of the clock consists of repeating the clock cycle illustrated in Fig. 4.2.

The total cycle duration, Tc, will be larger than the period of free evolution, due to the

time spent on preparation and measurement of the atoms, and this dead time introduces

Dick noise to the stability [87]. To focus on the atomic noise we assume that the dead

time is negligible (Tc ⇠ T ) so that we can ignore the Dick noise. We will discuss this

assumption further in sec. 4.5. We discretize time in the number of clock cycles (k)

such that at time tk = kT the frequency correction �!(tk) = �↵��e(tk)/T is applied

to the LO, where ↵ sets the strength of the feedback loop and ��e(tk) is the estimate

of the accumulated phase ��(tk) between time tk�1

and tk. The frequency o↵set of the

LO at time tk is then �!(tk) = �!
0

(tk) +
Pk

i=1

�!(ti), where �!0

(tk) is the frequency

fluctuation of the unlocked LO. The mean frequency o↵set, after running for a period

⌧ = lT (l � 1), is

�!̄(⌧) =
1

l

l
X

k=1

��(tk)� ��e(tk)

T
, (4.1)
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resulting in the long term stability of the atomic clock,

��(⌧) = h(�!̄(⌧)/!)2i1/2 (4.2)

=

r

1

⌧!2

 

1

l

h(Pl
k=1

��(tk)� ��e(tk))2i
T

!

1/2

(4.3)

We initially assume that the phase o↵set of the unlocked LO ��
0

is due to frequency

fluctuations in the LO with a white noise spectrum. Later, we will also consider the

case where the fluctuations have a 1/f spectrum. For white noise, we have h��2
0

i = �T

(h��
0

i = 0), where � is a parameter characterizing the fluctuations. We will argue below

that in the limit ↵⌧ 1, the phases are uncorrelated such that ��(⌧) =
p

�/⌧!2(h(��
0

�
��e)2i/�T )1/2. This expression shows that for fixed � and ⌧ the stability of the clock

only depends on how precisely we can estimate ��
0

.

4.2.1 Adaptive measurements

Our weak measurements is based on the strategy developed and demonstrated in Refs. [69,

70, 88, 89], where a light field dispersively interact with the spin and is subsequently

measured. This is described by a Hamiltonian Hint = ��
1

Ĵ
3

X̂
1

where �
1

is the in-

teractions strength and X̂
1

is the canonical position operator of the light [90–92]. The

measurement results in a rotation around Ĵ
3

described by the rotation matrix R
3

(⇧̂
1

),

where ⇧̂
1

= ⌦
1

X̂
1

. ⌦
1

= �
1

µ
1

is the measurement strength and µ
1

is the measurement

time. The canonical momentum operators of the light before, P̂
1

, and after, P̂
0
1

, the

interaction are then related by P̂
0
1

= P̂
1

� ⌦
1

Ĵ
3

. P̂
0
1

is measured using homodyne detec-

tion [40] and the phase is estimated as ��e
1

=
��

1

ˆP
0
1

⌦

1

h ˆJ
z

i where the factor �
1

is found from

minimizing h(��
0

���e
1

)2i. Based on the phase estimate, we rotate the spin of the atoms

around Ĵ
1

in order to compensate for the extra noise added (�Jz) by the spin squeez-

ing. This is described by a rotation matrix R
1

(��e
1

). The process can be iterated such

that after n�1 weak measurements, the Heisenberg evolution of the original operators

(Ĵ
1

, Ĵ
2

, Ĵ
3

) is:
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(4.4)

The final measurement is assumed to be a projective measurement and the final phase

estimate ��en is thus ��en = �
n

ˆJ
3,n

h ˆJ
z

i . The factors of �i in the phase estimates are found by

minimizing h(��
0

�Pi
j=1

��ej)
2i with respect to �i after each measurement. The final
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estimate of ��
0

at the end of the measurement sequence is ��e =
Pn

i=1

��ei , where ��
e
i

is the phase estimate after the i’th measurement.

4.3 Near Heisenberg limited stability

We will now show semi-analytically that the measurement strategy contained in Eq. (4.4)

allows for near Heisenberg limited stability. For simplicity, we set all �i = 1 in our

analytical calculations. Note that this choice is not ideal and the true performance of

the clock will thus be better than what we estimate analytically. Later we will argue

that for white noise, and in the limit of a weak feedback (↵⌧ 1), we can determine the

stability of the LO from looking at the the error between the estimated phase and the true

phase of the LO for each Ramsey sequence independently. After j weak measurements

the di↵erence between the true phase and the estimated phase ��j is

��j = ��
0

�
j
X

i=1

��ei = ��
0

�
j�1

X

i=1

��ei � ��ej . (4.5)

Using equation (4.4) to get an expression for ��ej and the fact that ��j�1 = ��
0

�
Pj�1

i=1

��ei , we can express the phase error as

��j ⇡ ��j�1(1�Ĵz/hĴzi)�(Ĵy + �Ĵ
3,j�P̂j/⌦j)/hĴzi, (4.6)

where we have assumed ��j�1 ⌧ 1. The first term in (4.6) gives a contribution ⇠
��j�1�Jz/hĴzi to ��(⌧) from the noise in the mean spin direction as discussed previ-

ously. Note that this term is proportional to the phase estimation error at the previous

measurement stage, since it depends on how well the ’banana’ in Fig. 4.1 is rotated into

the xy-plane. For a useful adaptive protocol, ��j�1 gets smaller for growing j and the

noise that enters through �Ĵz is reduced. The last terms in Eq. (4.6) gives the noise

from �Ĵy, the accumulated back action of the previous measurements (h�J2

3,ji), and the

noise from the incoming light in the measurement (�P̂ 2

j = hP̂ 2

j i).

The stronger a measurement is, the less noise is added through �P̂ 2

j /⌦2

j since the mea-

surement is more precise. Any imprecision �P̂ 2

i<j/⌦2

i<j from previous measurements is

contained in ��j�1 and is corrected for in the subsequent stages of the protocol, which

estimate how well we corrected the phase in previous measurements. This means that

we can initially work with weak measurements, which only give a rough estimate since

later stronger measurements correct for the imprecision in the initial measurements.

The accumulated back action noise, �Ĵ
3,j , originates from the disturbance caused by the

measurements. The measurements add noise in Ĵ
1

, Ĵ
2

, which is mixed into Ĵ
3

when the
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atomic state is rotated to have mean spin almost along the y-axis. We will later show that

the dominant term in �Ĵ
3,j is �Ĵ3,j ⇠

Pj�1

i=1

��ei⌦iX̂iĴx. The stronger a measurement is,

the more noise is added to the stability. For a useful adaptive protocol, however, ��ei

gets smaller for growing i, which means that the i’th measurement can be stronger than

the previous (i�1)’th measurements without adding more noise to the stability.

Above we have argued that we can suppress the noise terms originating from �Jz, �P̂j ,

and �Ĵ
3,j using an adaptive protocol with weak initial measurements. A remaining ques-

tion is how well this suppression work. We therefore consider the expressions for the dif-

ferent noise terms in Eq. (4.6) in more detail. To this end, we write the phase dependence

of Ĵ
2

and Ĵ
3

explicitely, i.e. Ĵ
2

(✓) = sin(✓)Ĵy�cos(✓)Ĵz, Ĵ
3

(✓) = sin(✓)Ĵz+cos(✓)Ĵy

and expand Eq. (4.4) in an iterative way. The Heisenberg evolution of the operators

after the first weak measurement and subsequent feedback is:
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Ĵ
2

(��
0

)

Ĵ
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Ĵ
3

(��
0

� ��e
1

)

1

C

C

A

+

0

B

B

@

�Ĵ
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where the operators

�Ĵ
1,2 = (cos(⇧̂

1

)�1)Ĵ
1

�sin(⇧̂
1

)Ĵ
2

(��
0

) (4.10)

�Ĵ
2,2 = cos(��e

1

) sin(⇧̂
1

)Ĵ
1

+ cos(��e
1

)(cos(⇧̂
1

)�1)Ĵ
2

(��
0

) (4.11)

�Ĵ
3,2 = sin(��e

1

) sin(⇧̂
1

)Ĵ
1

+ sin(��e
1

)(cos(⇧̂
1

)�1)Ĵ
2

(��
0

) (4.12)

describe the noise due to the back action of the measurement. Note that the back action

also a↵ects Ĵ
3

even though Ĵ
3

is conserved and hence una↵ected during the measurement.

This is because the rotation during the feedback mixes back action noise into Ĵ
3

.

The process is now iterated such that the Heisenberg evolution after n � 1 weak mea-

surements and subsequent rotations is
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where the iterative expressions for �Ĵ
1,j�1

, �Ĵ
2,j�1

and �Ĵ
3,j�1

are

�Ĵ
1,j = (cos(⇧̂j�1)�1)Ĵ

1

�sin(⇧̂j�1)Ĵ2

 

��
0

�
j�1
X

i=1

��ei

!

+ cos(⇧̂j�1)�Ĵ1,j�1

�sin(⇧̂j�1)�Ĵ2,j�1

(4.14)

�Ĵ
2,j = cos(��ej�1) sin(⇧̂j�1)Ĵ1+ cos(��ej�1)(cos(⇧̂j�1)�1)Ĵ

2

 

��
0

�
j�1
X

i=1

��ei

!

+cos(��ej�1) sin(⇧̂j�1)�Ĵ1,j�1

+ cos(��ej�1) cos(⇧̂j�1)�Ĵ2,j�1

�sin(��ej�1)�Ĵ3,j�1

(4.15)

�Ĵ
3,j = sin(��ej�1) sin(⇧̂j�1)Ĵ1+ sin(��ej�1)(cos(⇧̂j�1)�1)Ĵ

2

 

��
0

�
j�1
X

i=1

��ei

!

+sin(��ej�1) sin(⇧̂j�1)�Ĵ1,j�1

+ sin(��ej�1) cos(⇧̂j�1)�Ĵ2,j�1

+cos(��ej�1)�Ĵ3,j�1

(4.16)

with �Ĵ
1,1 = �Ĵ

2,1 = �Ĵ
3,1 = 0. In the final projective measurement, we measure

Ĵ
3,n and obtain a phase estimate ��en = Ĵ

3,n/hĴzi. Our final estimate of ��
0

is then

��e =
Pn

i=1

��ei , i.e. ��
e
i refers to a phase estimate during the adaptive measurement

sequence while ��e is the final phase estimate at the end of the adaptive measurement

sequence. The di↵erence, ��n, between ��e and the true phase is given in Eq. (4.5) with

j = n. Using equation (4.13), we can express ��n using the previous phase estimation

error (��n�1) and the last measurement

��n = ��n�1 �
⇣

sin(��n�1)Ĵz + cos(��n�1)Ĵy + �Ĵ
3,n

⌘

/hĴzi (4.17)

⇡ ��n�1(1�Ĵz/hĴzi)�Ĵy/hĴzi � �Ĵ
3,n/hĴzi (4.18)

where ��n�1 = ��
0

�Pn�1

i=1

��ei and we have assumed ��n�1 ⌧1 to expand the sine and

cosine. As noted above, we will argue later that the stability of the LO will be given

by the phase error h��2

ni1/2 for each Ramsey sequence independently. We will therefore

explore the limitations to the stability from the noise terms in h��2

ni1/2 in this limit.

Note that Eq. (4.18) is similar to Eq. (4.6) with j = n except that the light noise P̂n is

not included. This is because the final measurement is a projective measurement and

the light power is therefore assumed strong enough for this noise to be neglected.

We now analyze the various terms in h��2

ni in more detail. The estimated phase in the

j’th weak measurement is

��ej =
⇣

sin(��j�1)Ĵz + cos(��j�1)Ĵy + �Ĵ
3,j � P̂j/⌦j

⌘

/hĴzi. (4.19)
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Using Eqs. (4.14)-(4.16) and Eqs. (4.18)-(4.19), we can express the three dominant

contributions to the stability due to the noise in Ĵz as

1. h��2
0

ih(1�Ĵz/hĴzi)2ni (4.20)

2. 2h��
0

(sin(��
0

)� ��
0

)ih(1�Ĵz/hĴzi)2n�1Ĵz/hĴzii (4.21)

3. h(sin(��
0

)� ��
0

)2ih(1�Ĵz/hĴzi)2n�2Ĵ2

z /hĴzi2i. (4.22)

Here ”dominant” refers to decreasing slowest with N .

The above expressions are independent of the atomic state but we will now focus on

a specific type of states in order to treat the system in more detail. We consider spin

squeezed states of the form | ()i = N ()
P

m(�1)me�(m/)2 |mi, where |mi are eigen-

states of Ĵy with eigenvalue m, N () is a normalization constant and the sum is from

�J to J where J = N/2 is the total angular momentum quantum number. This form

gives a simple family of states characterized by a single parameter (), which can ex-

trapolate between uncorrelated states,  =
p
N , and highly squeezed states approaching

the |m = 0i Fock state  ! 0. It may be possible to identify more optimal states [93]

but this simple form is su�cient for our present purpose. We consider the limit where

N � 1 such that we can replace sums with integrals when calculating the moments of

the angular momentum operators. This allows us to get analytical expressions for the

moments of Jz in Eqs. (4.20)-(4.22). All these terms will decrease with growing  since

�Jz decreases for growing , e.g., for a coherent spin state  =
p
N we have �Jz ⇠ 0.

For a fixed , all three terms will also decrease with a growing number of measurements

n until a certain nmax() is reached. Since we have set all �i = 1 in our analytical

calculations, we find that for n > nmax() the noise will increase and nmax() is thus a

minimum indicating that there is an optimal number of measurements. In our numer-

ical simulations, however, we include the correct �i’s and find that increasing n above

nmax() have no e↵ect, i.e. there are no further noise reduction or enhancement. This is

because the optimal feedback algorithm (with �i 6= 1) knows not to react too strongly to

measurements, which provide to little useful information. At nmax() the uncertainty in

Ĵz prevents us from gaining information by introducing more measurements. We believe

that this e↵ect is due to the finite probability of measuring a Jz with opposite sign than

hĴzi, which spoils the measurement strategy. Note that nmax() grows with  since the

width of Ĵz decreases with .

Of the three therm in Eqs. (4.20)-(4.22), the term in equation (4.22) is decreasing the

slowest with n since this contains (1� Ĵz/hĴzi) to the lowest power. In the following,

we therefore focus on this term. In order for the performance to be nearly Heisenberg

limited, we need the contribution from this term to be close to or smaller than the

Heisenberg limit, and this put restrictions on the possible values of . To determine the
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conditions for , we have numerically solved the equation h(1�Ĵz/hĴzi)2n�2Ĵ2

z /hĴzi2i =
1/N2 since 1/N2 is the Heisenberg limit of h��2

ni. This condition thus determines the

parameters for which the noise from �Jz is comparable to the Heisenberg limit. For

N in the range N = 103 � 109, we have found the minimum  for which the equation

is fulfilled with n = nmax() i.e. assuming the optimal number of measurements. The

result is that  needs to grow with increasing N to suppress the noise in Jz, but the

growth can be slower than  ⇠ log
p
N + 2 if n = nmax ⇠ 3 logN measurements are

used. Thus, if we choose  ⇠ log
p
N + 2 and n ⇠ 3 logN the noise terms in equation

(4.20)-(4.22) will decrease as . 1/N2, which is the Heisenberg limit.

We now turn to the measurement noise, which consists of two parts. One is the ac-

cumulated back action contained in h�Ĵ2

3,ni (see Eq. (4.18)) while the other is due to

the noise in the probe light (the last term in Eq. (4.19)). For now, we consider the

accumulated back action. Using Eqs. (4.14)-(4.16), we find that this is dominated by
Pn�1

i=1

⌦2

i hX̂2

i ih(��ei Ĵx/hĴzi)2i and that the dominant terms from each measurement are

i = 1 :
1

2
hsin(��

0

)2ih(1�Ĵz/hĴzi)2Ĵ2

x/hĴzi2i⌦2

1

(4.23)

i > 1 :
1

2
h(sin(��

0

)� ��
0

)2ih(1�Ĵz/hĴzi)2i�2Ĵ2

z Ĵ
2

x/hĴzi4i⌦2

i (4.24)

where we have assumed that the probe light has vacuum statistics such that hP̂ i =

hX̂i = hX̂P̂ i = 0 and hX̂2i = hP̂ 2i = 1/2. Again, we can get analytical expressions

for h(1� Ĵz/hĴzi)2Ĵ2

x/hĴzi2i and h(1� Ĵz/hĴzi)2i�2Ĵ2

z Ĵ
2

x/hĴzi4i by using the Gaussian

approximation. Motivated by the previous numerical calculations, we set  = log
p
N+2,

n ⇠ 3 logN and by numerically evaluating the terms for N = 103 ! 109 we find that

for ⌦i = N�1+

i

n+1 all terms will be . 1/N2, i.e. at the Heisenberg limit.

We now consider the part of the measurement noise that comes from the noise in the

probe light. From Eqs. (4.14)-(4.16) and Eq. (4.19), we find that the dominant terms

are
Pn�1

i=1

h(1�Ĵz/hĴzi)2n�2iihP̂ 2

i i/(hĴzi2⌦2

i ). Again, by numerically evaluating the terms

for N = 103 ! 109, we get the scaling of the terms and we find that for  = log
p
N +2,

n ⇠ 3 logN and ⌦i = N�1+

i

n+1 all the terms will be . 1/N2.

So far, we have found that we can make the noise from the measurements and from

�Jz be . 1/N2, which is the Heisenberg limit. The limiting noise in h�2

ni is then the

noise from �Jy. From Eq. (4.18), we find that this has a contribution of hĴ2

y i/hĴzi2 =

�Ĵ2

y/hĴzi2. For the states | ()i, we find that �Ĵ2

y/hĴzi2 ⇠ 2/N2. We thus get

�� ⇠ 2 + log
p
N

N
p
�T

, (4.25)
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for  = log
p
N + 2, n ⇠ 3 logN and ⌦i = N�1+

i

n+1 . Note that we are in the limit

of N � 1 and that �� is in units of (�/(!2⌧))1/2 (see Sec. 4.2). For comparison,

the Heisenberg limit for the same Ramsey time is �� = 1/(N
p
�T ) in the same units.

Hence, our results show that near Heisenberg limited stability can be obtained with the

adaptive protocol. It is seen that for N = 106 the upper limit of the stability will di↵er

from the Heisenberg limit by a factor of ⇠ 5.

4.4 Numerical optimization

To verify the semi-analytical findings in the previous section and to get the optimal

stability, we numerically minimized �� . We have simulated an atomic clock with a LO

subject to both white and 1/f noise. For both types of noise, we have simulated the clock

for atom numbers ranging from 100 to 106. For N  1000 we simulate the full quantum

evolution during the measurements by bringing the input state | ()i trough a Ramsey

sequence and mixing it with a light state, which is assumed to have vacuum statistics.

We pick the measurement outcome of P̂
0
according to the corresponding probability

distribution and subsequently update the state of the atoms for the next measurement

etc. We denote this as ’full quantum simulation’. For N > 1000, we approximate the

probability distributions of Ĵx,y,z with Gaussian distributions with moments calculated

from | ()i in the limit of N � 1 such that we can replace the sum over m with an

integral. We denote this as ’Gaussian simulation’.

4.4.1 Final phase correction

For a fixed Ramsey time, the feedback strength (↵) determines how long time the clock

has to run before the LO is locked to the atoms. Since we simulate a clock running for a

long but finite time there will be some remaining information from the last measurement

results, which have not been fully exploited by the feedback loop. In our simulations,

we therefore do an additional phase correction to the LO after the final measurement.

In principle the influence of the last few measurements could also have been reduced

by running the simulation for a longer time, but by doing the correction we reduce the

required simulation time. To find the required phase correction and obtain an expression

for the stability of the clock, we study the phase of the locked LO. At time tk = kT the

phase of the LO is

��(tk) =

Z t
k

t
k�1

 

�!
0

(t) +
k�1

X

i=1

�!i

!

dt, (4.26)



Chapter 4. Near Heisenberg limited atomic clock 47

where �!
0

(t) is the frequency fluctuations of the unlocked LO and �!i is the frequency

corrections applied at time ti. Using that �!i = �↵��e(ti)/T where ��e(ti) is the

estimated phase of the LO at time ti, we can write

��(tk) = ��
0

(tk)� ↵
k+1

X

i=1

��e(ti), (4.27)

where ��
0

(tk) =
R t

k

t
k�1

�!
0

(t)dt. The mean frequency o↵set of the LO after running for

a period ⌧ = lT (l � 1) is

�!̄(⌧) =
1

⌧

 

l
X

i=1

��(ti)� �
final correct

!

, (4.28)

where �
final correct

is the phase correction that we apply after the final measurement.

Combining Eqs. (4.27) and (4.28), we find that �
final correct

=
Pl

i=1

�

(1 � ↵)l�i��e(ti)

+
Pi�1

j=1

↵(1�↵)l�i��e(tj)
�

will give the ideal performance. For this choice of �
final correct

the mean frequency o↵set becomes

�!̄(⌧) =
1

l

l
X

i=1

��(ti)� ��e(ti)

T
, (4.29)

i.e. the error is determined by the sum of the phase estimation errors. We use this expres-

sion to determine the stability of the clock, which is given by ��(⌧) = h(�!̄(⌧)/!)2i1/2.
Note that while the sum is over di↵erent time intervals, we cannot in general determine

the stability by looking at di↵erent intervals independently since the phases are corre-

lated for finite ↵ or for correlated noise in the free running LO e.g. 1/f noise. In our

analytical calculations, however, we assumed white noise and ↵ ! 0 so that we could

ignore the correlations and consider each Ramsey sequence independently.

4.4.2 Locking of the LO

The adaptive measurement protocol and the feedback on the LO are simulated as de-

scribed in Eq. (4.1) and below and the clock cycle is pictured in Fig. 4.2. The feedback

e↵ectively locks the LO to the atoms, and lowers the noise level of the LO as shown

in Fig. 4.3, where the noise spectrum S(f) of the LO is plotted against the frequency,

f . The noise spectrum is here defined as S(f)�(f + f 0) = h�!(f)�!(f 0)i, where �!(f)
is the Fourier transform of the frequency fluctuations �!(t) of the LO. For a free run-

ning LO with white noise, we use S(f) = � while for 1/f noise, we use S(f) = �2/f ,

where � is a parameter characterizing the fluctuations of the LO. Fig. 4.3 shows that for

high frequencies, the locked LO has the noise of the free running oscillator but for low
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frequencies, the LO is locked to the atoms and is limited by the atomic noise. Further-

more, Fig. 4.3 shows how squeezing improves the stability of the clock by lowering the

noise level of the locked LO more than for uncorrelated atoms. While the conventional

Ramsey scheme works ideally for  ⇠ 14, the adaptive protocol allows for  ⇠ 3 at the

atom number N = 1000 used in the figure, and thus leads to an improved stability.
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Figure 4.3: Noise spectrum of the slaved LO for (a) white noise and (b) 1/f -noise.
The noise spectrum is defined as S(f)�(f + f 0) = h�!(f)�!(f 0)i where �!(f) is the
Fourier transform of the frequency fluctuations �!(t) of the LO. The plots show how
the feedback e↵ectively locks the LO to the atoms so that the noise in the LO becomes
limited by the atomic noise for low frequencies. Furthermore, it is seen how squeezing
lowers the atomic noise and hence the noise of the locked LO. The plots were made for
N = 1000 and �T = 0.1. Counting from above the curves show the noise spectrum for
a unlocked LO, the conventional protocol with uncorrelated atoms, the conventional
protocol with the optimal squeezing of  ⇠ 14 and the adaptive protocol with optimal
squeezing of  ⇠ 3. Note that the optimal performance of the adaptive protocol is

reached at higher �T and further improvement is thus possible.
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4.4.3 Limit of the Ramsey time

For the model investigated here, the stability increases with the Ramsey time T , but T

is limited by two types of error. For experiments or simulations running with a fixed

Ramsey time, there will always be a finite probability that the feedback loop jumps

to a state with a phase di↵erence of 2⇡ (so called fringe hops [65]) or that a phase

jump that is large enough to spoil the measurement strategy occurs. For the adaptive

scheme, this happens for phase jumps & ⇡ while it happens for phase jumps & ⇡/2 for

the conventional protocol. The reason for this is that the adaptive protocol is able to

distinguish whether the phase lies in the intervals [0;⇡/2] or [⇡/2;⇡] since they will lead

to di↵erent responses when we rotate the state during the feedback. On the contrary, the

conventional protocol only has a single projective measurement and cannot distinguish

in which of the two intervals the phase lies. In our simulations, we see the phase jumps

as an abrupt break down as we increase the width of the distribution of the acquired

phase, i.e. as we increase T , since the variance is �2 = �T for white noise. This break

down is clearly visible in Fig. 4.4. Ideally, we should include correction strategies for the

errors due to large phase jumps in our simulations (e.g. running with di↵erent Ramsey

times would correct for fringe hops), but for simplicity, we ignore this. This means that

our simulations have a weak dependence on the number of steps we simulate, but it

is shown in App. B.1 that this is only a logarithmic correction and we do not expect

this to change our results significantly. Instead, we find the upper limit of �T from

the simulations plotted in Fig. 4.4, where l = 106 (for 1/f noise we average over 100

independent runs with l = 104).
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Figure 4.4: Stability as a function of the Ramsey time (�T ) for (a) white noise and (b)
1/f noise in the LO. The plots were made with N = 105. ⌅,H are the best non-linear
protocol of Ref. [49] while •,N are the adaptive protocol discussed in this article. The
adaptive protocol allows for �T ⇠ 0.3 and 0.2 for white and 1/f - noise respectively
while the conventional protocol of Ref. [49] only allows for �T ⇠ 0.1 for both white
and 1/f noise. H,N correspond to uncorrelated atoms while •,⌅ are the ideal choices
of squeezing in the adaptive and conventional protocols respectively. The probabilistic
nature of the errors that limits �T is visible in (a) where the stability for the adaptive

protocol jumps back and forth for �T > 0.3 before it is definitely diminished.

We have used ↵ = 0.1 in our simulations and do not expect our results to change

significantly for a di↵erent choice of ↵. As previously mentioned ↵ determines how long

time it takes for the feedback to lock the LO to the atoms (the LO is locked after a time

⇠ T/↵). As long as the long term stability is considered at a time ⌧ � T/↵ the LO is

e↵ectively locked to the atoms and the stability does not depend on ↵ (as mentioned

above the final phase correction also correct for the influence of the last measurements).

To support this, we have repeated the simulations of Fig. 4.4b with ↵ = 0.5, 0.8, and 0.9.

The simulations show basically the same limits to �T as seen in Fig. 4.4b and more or

less identical results for the long term stability for �T below these limits, which supports

the above analysis. For �T exceeding the maximal limit for the adaptive protocol, the

phase jump errors diminish the stability even more than shown in Fig. 4.4b for larger ↵,

i.e. stronger feedback. This is because the probability of a phase jump error to result in

a fringe hop is greater for a stronger feedback. For the conventional protocol, we do not

see this e↵ect right above the maximal limit of �T because the probability of a phase

jump error to result in a fringe hop is small. However, we expect to see the same e↵ect

if we increased �T well above the maximal limit of the conventional protocol.
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Figure 4.5: Optimized stability of an atomic clock for a LO subject to (a) white noise
and (b) 1/f -noise. �,⇤,M,O are the full quantum simulation while •,⌅,N,H are the
Gaussian simulation. The Gaussian simulation can be extended down to N = 100,
which give more or less identical results to the full quantum simulation. �,• (N,M)
are the adaptive scheme and ⇤, ⌅ (O,H) are the conventional protocol with (without)
entanglement. The dotted lines are the analytical results and the solid line is the

Heisenberg limit for the maximal Ramsey time �T = 0.3 (a) and �T = 0.2 (b).

4.4.4 Numerical minimization

We have numerically minimized ��(⌧) in the degree of squeezing, the number of weak

measurements and the strengths of the measurements. Fig. 4.5a shows the result of the

optimization for both the adaptive protocol and the conventional protocol with/without

squeezing. Here we have assumed that the LO has a white noise spectrum. The adaptive

protocol gives a significant improvement compared to using uncorrelated atoms resulting

in near Heisenberg limited stability. The numerical calculations also agree nicely with

the analytical calculations. Note that with the adaptive protocol, the Ramsey time can

be as large for highly entangled states as for disentangled states and there is thus no

di↵erence in the relevant coherence time. Furthermore, because the adaptive protocol

can determine phases . ⇡, it allows longer interrogation times �T . 0.3 than the

conventional protocol �T . 0.1, which begins to give ambiguous results for phases⇠ ⇡/2.

This gives an improvement in the stability of roughly a factor 1.6 for uncorrelated atoms.

In practice, the noise of the LO is, however, more likely to have a nontrivial spectrum

like 1/f -noise. We have therefore repeated the numerical optimization with 1/f -noise

in the LO and the results are shown in Fig. 4.5b. The improvement obtained using the

adaptive scheme with correlated atoms persists also for 1/f noise as shown in the figure.

Again near-Heisenberg limited stability is obtained using the adaptive protocol. The

longer Ramsey time of the adaptive scheme compared to projective measurements gives

an improvement of roughly a factor 1.3 for uncorrelated atoms.
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4.5 Conclusion and discussion

In conclusion, we have developed an adaptive measurement protocol, which allows oper-

ating atomic clocks near the Heisenberg limit using entangled spin squeezed ensembles

of atoms. Our adaptive measurements consist of a series of weak measurements with

subsequent phase estimations and feedbacks on the atomic state. The objective of the

feedbacks is to rotate the atomic state such that the phase estimate after the final pro-

jective measurement, where the main information about the atomic state is extracted,

is not influenced by the extra noise added to the mean spin direction, when the atoms

are in a highly spin squeezed state. This allows us to fully exploit the advantage of spin

squeezing and we show semi-analytically how this can be used to make the stability ��

of a clock near-Heisenberg limited with a small logarithmic correction. We have also

performed a numerical simulation of spin squeezed clocks operated with adaptive mea-

surement, which confirmed our semi-analytical calculations. We have done this both

for a LO with white and 1/f noise. Our results clearly demonstrate that entanglement

can be an important resource for quantum metrology. Importantly our results are ob-

tained under realistic assumptions, where we account for the dominant source of noise

in practice. We find that in this situation, we can gain nearly the full potential of en-

tanglement estimated without accounting for decoherence. Furthermore, the adaptive

protocol allows for a higher Ramsey time, which gives an improvement even for uncorre-

lated atoms. It should be noted that recently another approach to increase the stability

of atomic clocks using GHZ states was proposed in Ref. [94]. Here the interrogation of

the LO with a cascade of GHZ states allows to obtain near-Heisenberg limited stability

with a logarithmic correction similar to what we have found in our protocol.

As stated in Sec. 4.2, the initialization time, the measurement time, and the time of the

two ⇡/2 pulses result in the dead time Tdead of the clock, where we do not monitor the

fluctuations of the LO. This dead time results in the Dick noise [87], which may limit the

stability of the clock. It is therefore desirable to have the ratio T/Tc as close to unity as

possible, to minimize the Dick noise, but this ratio depends on the experimental setup

used to realize the clock. By technical improvements in the setups being used, e.g., by

decreasing the dead time and improving the LO stability, it is in principle possible to

reduce the Dick noise. Ultimately the clock will then be limited by the quantum noise of

the atoms, which is denoted the standard quantum limit (SQL) for uncorrelated atoms.

For current optical lattice clocks, the limit of the stability is not the SQL but rather the

Dick limit but a significant amount of research is put into pushing the stability towards

the SQL [79, 95, 96]. Clocks based on trapped ions and atomic fountain clocks can,

however, be operated with a small Dick noise and demonstrations of SQL limited clocks

have been reported [41, 77, 78] (Although the fountain clock are not limited by LO
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decoherence and are thus less relevant for our study). Alternatively, some clock based

measurements can be performed, which circumvent the Dick noise [45, 95, 96]. The

adaptive measurement protocol, that we propose, will inevitably increase the dead time

of the clock compared to a clock operated with projective measurements but this increase

depends only logarithmically on N since the number of weak measurement is ⇠ 3 logN .

Furthermore, we increase the Ramsey time of the clock by a factor of 3 for white noise

in the LO. The ratio between the measurement time and the Ramsey time thus only

increases with a factor proportional to logN where the proportionality constant is the

ratio between the time of a weak measurement plus subsequent feedback and a projective

measurement We therefore do not expect our scheme to significantly enhance the Dick

e↵ect compared to a conventional Ramsey clock operated with projective measurements.



Chapter 5

E�cient atomic clocks operated

with several atomic ensembles

As mentioned in Sec. 4.1, the stability of an atomic clock can also be enhanced by

increasing the Ramsey time T , resulting in an improvement scaling as 1/
p
T [44, 82, 97].

For clocks with trapped atoms, where there are no other limitations, T becomes limited

only by the decoherence in the system. As previously described, this decoherence in

practice often originates from the frequency fluctuations of the local oscillator (LO)

used to drive the atomic clock transition [82]. Hence, the stability can be increased by

simply devising methods to increase the Ramsey period by stabilizing the LO [85].

In this chapter, I present the work of me and Anders S. Sørensen on a scheme where the

frequency of the LO is locked to the atomic transition using several ensembles of atoms.

This procedure allows increasing the Ramsey period each time another ensemble is used.

As a result, we find that the stability of the clock can increase exponentially with the

number of ensembles. The work has been described in Ref. [84], which is the basis of

this chapter. It should be noted that independently from and simultaneously with our

work, T. Rosenband and D. R. Leibrandt worked out essentially the same scheme [83].

Taking the di↵erent figures of merit into account, they arrived at results consistent with

ours.

5.1 Introduction

Fig. 5.1 illustrates the idea behind the scheme. The feedback of the first ensemble locks

the frequency of the LO thus reducing the noise to the atomic noise. Having reduced

the noise in the LO, the second ensemble can be operated with a longer Ramsey time.

55
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Figure 5.1: Illustration of locking the LO using several ensembles. The feedback of
the first ensemble stabilizes the LO such that the second ensemble can be operated with
a longer Ramsey time. The feedback from the second ensemble then further stabilizes

the LO.

Through a second feedback, the noise of the LO can be further reduced as shown in

the simulation in Fig. 5.2 (details are given later). The procedure can be extended to

any number of ensembles and for uncorrelated atoms, the stability of the LO will scale

as
p
�(�T

1

N)�m/2, where m is the number of ensembles (each containing N atoms), �

is a parameter characterizing the frequency fluctuations of the unlocked LO, and T
1

is

the Ramsey time of the first ensemble. Hence, the scheme can provide an exponential

improvement in the stability with the total number of atoms. In order for the clock

to be stable, we need �T
1

⌧ 1 and hence the protocol requires a minimum number of

atoms to improve the performance. With the conventional Ramsey protocol, we find

that the scheme works for a minimum ensemble size of 20 atoms. To further optimize

the performance of the scheme, we have studied an adaptive measurement protocol for

estimating the LO frequency o↵set, which extends the applicability of the scheme down

to ensembles with only 4 (7) atoms for white (1/f) noise in the LO. A related procedure,

involving multiple measurements on a single ensemble, was proposed in Ref. [85]. By

using multiple ensembles, our procedure avoids disturbances from the measurements

a↵ecting later measurements.
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Figure 5.2: Numerical simulation of the frequency noise spectrum S(f) of the LO
when locked to between 1 and 3 ensembles. The data was simulated as described in
Sec. 5.3 for N = 20 and T1 = 0.1/� for the conventional Ramsey scheme. The first
feedback lowers the noise of the LO and whitens the spectrum even though the unlocked
LO was assumed to be subject to 1/f noise. The second and third feedbacks further

lowers the noise of LO by a constant factor.

5.2 Locking of the LO

We assume that the LO is locked to the atomic transition using Ramsey spectroscopy.

Similar to the approach described in Sec. 4.1.1, we model an ensemble of N atoms

as a collection of spin-1/2 particles with total angular momentum ~J . We define the

angular momentum operators Ĵx, Ĵy and Ĵz in the usual way and initially, the atoms are

pumped to have h ~Ji along the z-direction, hĴxi = hĴyi = 0. The Heisenberg evolution

of Ĵz after the Ramsey sequence is Ĵ
3

= cos(��)Ĵy + sin(��)Ĵz where �� = �!T is the

acquired phase of the LO relative to the atoms. At the end of the Ramsey sequence Ĵ
3

is measured and used to make an estimate ��e =�arcsin(2Ĵ
3

/N) of ��. The feedback

loop then steers the frequency of the LO towards the atomic transition by applying a

frequency correction of �! = �↵��e/T to the LO where ↵ sets the strength of the

feedback loop. As in Chap. 4, we assume a negligible Dick noise [87].

We now consider an atomic clock with two atomic ensembles operated with di↵erent

Ramsey times and show how this can improve the stability of the clock. These con-

siderations can then easily be extended to several ensembles. Note that we assume the

intrinsic linewidth of the atoms to be negligible such that the atomic linewidth is only

limited by the Ramsey time. The first ensemble is operated with Ramsey time T
1

and

we assume that the second ensemble is operated with Ramsey time T
2

= nT
1

where n
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is an integer. We can make two discrete time scales describing ensemble one and two

respectively. Ensemble one is measured at tk = kT
1

and ensemble two is measured at

ts = sT
2

= s · nT
1

. The frequency o↵set of the LO between time tk�1 and tk is then

�!(t) = �!
0

(t) + �!
1

(tk�1

) + �!
2

(ts�1

), (5.1)

where �!
0

(t) is the frequency fluctuation of the unlocked LO, �!
1

(tk�1

) is the sum of

the frequency corrections applied up to time tk�1

from the first ensemble and �!
2

(ts�1

)

is the sum of the frequency corrections applied up to time ts�1 from the second ensemble

(ts�1

 tk�1

). The feedback loops are described by the equations

�!
1

(tk�1

) = �!
1

(tk�2

)� ↵��e1(tk�1

)/T
1

(5.2)

�!
2

(ts�1

) = �!
2

(ts�2

)� ↵��e2(ts�1

)/T
2

, (5.3)

where ��e1(tk�1

) and ��e2(ts�1

) are the estimated phases from the first and second

ensemble at times tk�1

and ts�1

respectively. Using Eq. (5.1), we can write the phase of

the LO relative to the atoms of the second ensemble at time ts as

��
2

(ts) =

Z T
2

0

dt0�!(ts�t0) = ��s�1

+ ��̃(ts), (5.4)

where ��s�1

=
R T

2

0

�!
2

(ts�1

)dt0 is the accumulated phase due to the feedback of the

second ensemble and

��̃(ts)=

Z T
2

0

dt0�!̃(ts�t0)=

Z T
2

0

dt0�!
0

(ts�t0)+�!
1

(ts�t0) (5.5)

is the accumulated phase due to the frequency oscillations of the LO when locked by the

feedback of the first ensemble. For now, we assume that T
2

� T
1

such that the feedback

of the first ensemble has stabilized the LO but later we will relax this assumption. From

Eqs. (5.3)-(5.4), we then derive the di↵erence equation

��
2

(ts)���2(ts�1

) = ��̃(ts)���̃(ts�1

)�↵��e2(ts�1

). (5.6)

From this expression, we see that the evolution of the second phase ��
2

is essentially

driven by the noise of the stabilized LO from the first step ��̃ but is stabilized by the

second feedback loop described by ↵��e2 .

To solve Eq. (5.6), we need to characterize the width of the noise of the stabilized LO

from the first stage, h��̃2i = R T
2

0

dt
R T

2

0

dt0h�!̃(t)�!̃(t0)i. From Eq. (5.2) and (5.5), we can

derive a di↵erence equation for ��̃(tk) =
R T

1

0

�!̃(tk�t0)dt0, which is the acquired phase

of the LO relative to the first ensemble between time tk�1

and tk (we can neglect the
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feedback from the second ensemble since T
2

� T
1

),

��̃(tk)���̃(tk�1

) = ��
0

(tk)���0(tk�1

)�↵��e1(tk�1

). (5.7)

Here ��
0

(tk) =
R T

1

0

�!
0

(tk � t0)dt0 is the phase of the unlocked LO. In comparison to

Eq. (5.6), we see that the evolution of the phase ��̃ is driven by the noise of the unlocked

LO but is stabilized by the first feedback loop described by ↵��e1 . To solve this equation,

we follow the lines of Ref. [98], where the locking of the LO to a single ensemble is

described. First, we derive a di↵erential equation from Eq. (5.7) in the limit N � 1,

treating Ĵx, Ĵy, and Ĵz as Gaussian variables and considering, for now, a LO subject to

white noise. Assuming that the atoms start out in a coherent spin state, we can solve

this equation to obtain

h��̃2i = T
2

/NT
1

= �̃T
2

, (5.8)

where we have defined the parameter �̃ = 1/NT
1

, which characterizes the noise of the

stabilized LO. This noise is e↵ectively white for both white and 1/f noise in the unlocked

LO (Fig. 5.2 and Ref. [98]). The second ensemble thus sees an e↵ective white noise in

the LO with �̃ = 1/(T
1

N).

We now return to Eq. (5.6). Writing ��
2

(t) ⇠ �!(t)T
2

, the stability of the clock after

running for a time ⌧ � T
2

is

��(⌧)=
1

!⌧T
2

✓

Z ⌧

0

dt

Z ⌧

0

dt0h��
2

(t)��
2

(t0)i
◆

1

2

, (5.9)

where ! is the frequency of the atomic transition. Following similar arguments as before,

we can derive and solve a di↵erential equation from Eq. (5.6) to obtain an expresion for

h��
2

(t)��
2

(t0)i. Inserting this into Eq. (5.9) and taking the limit of ⌧ � T
2

results in

��(⌧) =
1

!

r

1

⌧NT
2

. (5.10)

Eq. (5.10) describes how the stability improves with T
2

and N . The longest T
2

, we can

allow, is determined by how well the LO is stabilized by the first ensemble as contained

in �̃ and we parameterize it by T
2,max = �

2

/�̃. In a similar fashion, we assume that

T
1,max = �

1

/� for the first ensemble. With these parameterizations, we can express the

stability as

��(⌧) =
1

!

r

�

⌧N2�
1

�
2

=
1

!

s

��
1

/�
2

⌧(N�T
1,max)2

. (5.11)

With white noise in the unlocked LO, we can pick �
1

= �
2

. As previously noted the

noise of the LO will also be approximately white with �̃ ⇠ 1/NT
1

after locking it to

the first ensemble also for other types of noise, e.g. 1/f noise. In that case, it is
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desirable to have �
2

6= �
1

but we still expect �
1

/�
2

to be of order unity. Eq. (5.11)

shows that by locking the LO to two ensembles of uncorrelated atoms the stability can

be significantly improved. If N�T
1

� 1 the stability obtained from Eq. (5.11) is much

better than the single ensemble result in Eq. (5.10) (with T
2

! T
1

). The arguments

leading to Eq. (5.11) can be generalized in a straight forward way to show that if the

LO is locked to m ensembles each containing N atoms, the stability of the clock is

��(⌧) =
p

(�
1

/�)(m�1)�/(!2⌧)(N�T
1,max)�m/2 (since the noise of the LO is white after

locking it to the first ensemble we use � = �
2

= . . .=�m). By continuing the procedure,

we thus improve the stability exponentially!

5.3 Numerical simulation I: Conventional Ramsey

For the analytical calculations in the previous chapter, we have assumed N � 1. To

investigate the performance for smallerN , we simulate an atomic clock locked to between

1 and 4 atomic ensembles each with atom numbers from N = 20 to N = 100. From the

simulations, we can generalize to the case where the LO is locked to m ensembles. We

simulate the full quantum evolution of the atomic state through the Ramsey sequences

and subsequent measurements and implement the feedback on the LO similar to the

description in Eq. (5.1) and above. The assumption of T
2

� T
1

can be relaxed by

applying a phase correction in the measurement (see App. C.1). Note that we also

include a final phase correction in our simulations in order to decrease the necessary

simulation time as described in App. C.1.

The number of atoms required in each ensemble to increase the Ramsey time by a factor

a at each level is set by the white noise level of the stabilized LO. Using Eq. (5.8)

and remembering that � parameterize the maximal Ramsey time for white noise, we

have that T
2

/NT
1

= �̃T
2

= �. Assuming T
2

= aT
1

, we find that N ⇠ a/� atoms are

required in each ensemble to increase the Ramsey time by a factor of a at each level.

The minimum number of atoms required for our protocol to work is thus obtained by

setting a = 2.

To determine �, we need to investigate the errors that limit the Ramsey time T for a

LO subject to white noise characterized by �. This was already done in Sec. 4.4.3 for

N � 1 using a Gaussian approximation for the probability distributions of Ĵx,y,z. We

can e↵ectively use the same procedure to find the limit of T in our setup as described in

App. C.2. We find that Ramsey spectroscopy with projective measurements only allows

for � ⇠ 0.1 and thus Nmin = 20. We find the same limit of �
1

⇠ 0.1 for a LO subject to

1/f noise (see App.C.2). Note that our results have a weak (logarithmic) dependence

on the number of steps that we simulate as described in App. B.1.
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Figure 5.3: The stability of atomic clocks for a LO subject to (a) white noise and (b)
1/f -noise. •,⌅,N, and H is the stability of a clock with the LO locked to 1,2,3, and 4
ensembles containing N atoms each. The clocks were simulated with � = �1 = 0.1 and
T
j

= nT
j�1. Counting from the left (low N) the points are for integers n from 2 to 10.

The dashed lines are the analytical calculations.

We have simulated clocks with an unlocked LO subject to both white and 1/f noise

with the constraint � = �
1

= 0.1. In Fig. 5.3, the stability of the clocks are plotted

against the ensemble size N . Fig. 5.3 confirms that the scheme works down to atom

numbers of N = 20, where we gain a factor of ⇠ 2m�1 in �2�(⌧) by locking the LO to

m ensembles for both white and 1/f noise. Furthermore, the numerical results are seen

to agree nicely with the analytical calculations. We obtain practically the same long

term stability for 1/f noise as for white noise since the first feedback whitens the noise

for small frequencies (cf. Fig. 5.2). We have used a feedback strength of ↵ = 0.01 for

white noise and ↵ = 0.5 for 1/f noise in the LO in our simulations. The strong feedback

strength of ↵ = 0.5 is only used for the first ensemble for 1/f noise since the noise seen

by the other ensembles is white for which a weaker feedback strength is desirable (see

App. C.2).

5.4 Adaptive measurements

The conventional Ramsey protocol considered so far has a lower limit of Nmin = 20 in

order for our protocol to work. This limit is due to the inability of the conventional

protocol to e↵ectively resolve phases larger than ⇡/2. The adaptive protocol described

in Sec. 4.2.1, however, e↵ectively resolves phases . ⇡. In App. C.2, we show that

this protocol enables us to extend the Ramsey time to � ⇠ 0.3 for white noise and to

�
1

⇠ 0.2 for a LO subject to 1/f noise. However, the type of weak measurements used

in this protocol is hard to implement for ensembles with few atoms. We have therefore

modified the protocol such that individual atoms are read out one at a time and a
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Bayesian procedure similar to that of Ref. [74, 75] is used for the phase estimation and

atomic feedback. We perform intermediate feedbacks during the measurements to rotate

the atomic state to be almost in phase with the LO. Due to the rotations, the protocol

can resolve phases . ⇡ as the previous protocol.

We will now describe the details of the modified protocol. At the end of the Ramsey

sequence, i.e. after the second ⇡/2 pulse, an atom can either be detected in a spin up

state, s = 0, or a spin down state, s = 1. The probability of measuring s = 0, 1 depends

on the acquired phase �� of the LO relative to the atoms during the free evolution in

the following way

P (s|��) = s cos (⇡/4� ��/2)2 + (1� s) sin (⇡/4� ��/2)2 . (5.12)

According to Baye’s theorem, we can write the probability density of ��, conditioned

on the measurement result, as

P (��|s) = P (s|��)P (��)

P (s)
, (5.13)

where P (s) =
R

P (��)P (s|��)d(��) is the total probability of measuring s and P (��) is

the a priori probability distribution of ��, which is determined from characterizing the

frequency fluctuations of the LO. We choose a Gaussian distribution with zero mean

and variance �T as the a priori distribution. This a priori distribution is exact for a

LO subject to white noise but a better a priori distribution could possibly be found for

1/f noise. We will, however, use this a priori distribution in both cases, which results

in our modified protocol not being as e↵ective for 1/f noise as for white noise in the

LO. Note that this inaccuracy in our a priori distribution only introduce a less ideal

performance in our phase estimate. In our numerical simulations, we retain the full

information about the phase evolution so that our suboptimal assumption about the a

priori distribution only degrade the performance of the scheme. We estimate the phase

based on the measurement as

��e =

Z

��P (��|s)d(��). (5.14)

We then apply a feedback to the remaining atoms, which in the Block sphere picture

rotates them by an angle ��e around the Ĵx axis, i.e. the feedback tries to bring them

into phase with the LO. Generalizing this procedure to a measurement record Sm =
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s
1

s
2

. . . si . . . sm, where the measurement result of the i’th atom is si, we obtain

P (Sm|��,
n
m

X

k=1

��ek) =
m
Y

i

"

si cos

 

⇡/4� ��/2 +
n
i

X

k=1

��ek/2

!

2

+(1� si) sin

 

⇡/4� ��/2 +
n
i

X

k=1

��ek/2

!

2

#

, (5.15)

where P (Sm|��,Pn
m

k=1

��ek) is the probability of obtaining the measurement record Sm

conditioned on a drifted phase �� with a total feedback of
Pn

m

k=1

��ek applied during the

measurements (
Pn

i

k=1

��ek is the feedback experienced by the i0th atom before it is read

out). Note that in general ni 6= i� 1, i.e. we might read out more than one atom before

we do a phase estimate and a subsequent feedback on the remaining atoms. In our

simulations, we group the measurements such that we perform ⇠ 4 feedbacks in total

as in the protocol of Ref. [76] for uncorrelated atoms. The final phase estimate ��en
m

+1

,

after having readout m atoms, is

��en
m

+1

=

R

(���Pn
m

k=1

��ek)P (Sm|��,Pn
m

k=1

��ek)P (��)d(��)
R

P (Sm|��,Pn
m

k=1

��ek)P (��)d(��)
, (5.16)

where we have used Baye’s theorem as described above. All the phase estimates and

the feedbacks are performed after the final ⇡/2 pulse in the Ramsey sequence. Thus,

the final estimate of the drifted phase is ��e =
Pn

m

+1

k=1

��ek, i.e. the sum of the rotations

performed during the measurements and the final phase estimate.

5.5 Numerical simulation II: Adaptive measurements

With the modified adaptive measurement strategy, we simulate clocks locked to between

1 and 4 ensembles for atom numbers from N = 4 to 34 with an unlocked LO subject to

both white and 1/f noise with the constraint � = 0.3 and �
1

= 0.2. The upper limits

of the Ramsey time were found as described in App. C.2 using the adaptive protocol

descibed in Chap. 4 since this simplified the numerics and the Baysian protocol is

assumed to lead to similar results. In Fig. 5.4, the stability of the clocks is plotted

against the ensemble size N . Fig. 5.4 shows that the adaptive measurement protocol

works and allows us to extend the applicability of the scheme of locking to several

ensembles down to ensemble sizes of N = 4 (7) for white (1/f) noise, where we gain

a factor of ⇠ 2m�1 in �2�(⌧) by locking the LO to m ensembles. We have used the

same feedback strengths of ↵ = 0.01 for white noise and ↵ = 0.5 for 1/f noise as in

the simulations of the conventional measurements. The minimal number of atoms is

higher for 1/f noise due to the shorter required Ramsey time for the first ensemble
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Figure 5.4: The stability of atomic clocks with adaptive measurements for a LO
subject to (a) white noise and (b) 1/f -noise. •,⌅,N, and H is the stability of a clock
with the LO locked to 1,2,3, and 4 ensembles of N atoms each. The adaptive protocol
allows for �1 = 0.3 (a) and �1 = 0.2 (b). The clocks were simulated with T

j

= nT
j�1

and counting from the left (low N) the points are for integers n from 2 to 10. The
dashed lines are fits of the simulated data.

(�
1

⇠ 0.2) and the incomplete characterization of the a priori probability distribution in

the Bayesian approach (see Sec. 5.4). The adaptive protocol is therefore not as e↵ective

as for white noise, where we have a better understanding of the a priori distribution.

It should be noted, however, that in principle it is only in the first ensemble that we

need more atoms than for white noise since the feedback of the first ensemble whitens

the noise. The adaptive protocol is thus more e↵ective for the subsequent ensembles.

We estimated the minimum number of atoms required for the scheme to work to be

Nmin ⇠ 2/�, which would give Nmin ⇠ 7 for � = 0.3. In this estimate of Nmin, we

assumed that the adaptive protocol leads to a stability at the SQL. This is only true for

large N and there are corrections to this for small N . From our simulations, we find that

with the modified adaptive protocol, and white noise in the unlocked LO, the feedback

of the first ensemble stabilizes the LO to a white noise floor below 1/NT
1,max, i.e. better

than what we expect from the SQL. As a result, we can extend the applicability of the

protocol to atom number N = 4 as shown in Fig. 5.4a.

5.6 Conclusion and discussion

In conclusion, we have demonstrated a scheme for locking the LO in an atomic clock tom

ensembles of N atoms each. We have shown how the locking of the LO to one ensemble

increases the stability of the LO such that a second ensemble can be interrogated with

a longer Ramsey time. As a result, the second ensemble can be used to further increase

the stability of the LO. This scheme can be etended to locking the LO to m ensembles
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fo which the stability of the clock will scale as
p
�(�T

1

N)�m/2 where T
1

is the Ramsey

time of the first ensemble. Our scheme thus provide an exponential improvement in the

stability with the number of atoms. This was shown analytically in the limit of N � 1

and by simulation in the limit of small N . For the conventional Ramsey protocol, our

scheme is applicable down to ensemble sizes of N = 20 atoms but using a Baysian

measurement protocol, it is possible to push this limit. From our simulations, we found

that the scheme could be applied down to ensemble sizes of N = 4(7) for white (1/f)

noise in the LO. This makes the scheme relevant for atomic clocks with trapped ions,

which are typically constructed with only a few ions [44].

One could think of combining this scheme with the spin squeezed states considered

in Chap. 4 in order to improve the stability of clocks even further. In the limit of

large N , where the adaptive protocol considered in Sec. 4.2.1 can be employed instead

of the Bayesian protocol, we would expect the spin squeezing to improve the phase

estimations such that the stability of a clock locked to m ensembles would scale as ⇠
p
�(�T

1

N2)�m/2 up to a logarithmic correction in N . It is, however, not straightforward

how spin squeezing should be combined with the Baysian measurement strategy used

for small N since we are e↵ectively reading out single atoms at a time. It might be

necessary to employ another measurement strategy or consider other correlated atomic

states in this limit in order to benefit from entangling the atoms.

Both the adaptive measurement strategy described in Chap. 4 and the Baysian strat-

egy described in this chapter only consider the phase estimation after a single Ramsey

sequence, i.e. each run of the clock is considered independently from the others. As a re-

sult neither one exploits the combined information from several runs. One can therefore

think of a more optimal measurement strategy, which also uses the information from

previous runs to optimize the measurement strategy/interrogation time in the next run

in line with the protocol of Ref.[99].



Chapter 6

Heralded quantum gate

For the construction of functional quantum computers, one of the main challenges is to

make gates of su�ciently high quality so that the remaining errors can be suppressed

by error correction codes, which makes the computation fault tolerant [100]. On the

other hand, long distance quantum communication is envisioned to be enabled by the

construction of quantum repeaters, which combine probabilistic entanglement generation

over short distances with (probabilistic) entanglement swaps for creating long distance

entanglement [16]. For these protocols, the probabilistic nature of the entanglement

generation is of less importance, but it is essential that high quality entanglement is

achieved conditioned on a heralding measurement. Experimentally, such high fidelity

entanglement is often much easier to implement and may be realised in situations, where

it would be impossible to perform any quantum operations deterministically.

In this chapter, I present the work of me and and my collaborators on introducing a

similar concept to gate operations and developing heralded quantum gates in optical

cavities with integrated error detection. In the resulting gates, the infidelity, which

would be present for deterministic gates, is converted into a failure probability, which is

heralded by an auxiliary atom. Once successful the resulting gate can have an arbitrarily

small error. The work was done in collaboration with Peter Kómár, Eric Kessler, Anders

S. Sørensen and Mikhail D. Lukin and is described in Ref. [101], which is the basis of

this chapter.

6.1 Introduction

Optical cavities are ideal for e�cient conversion between the stationary gate qubits and

flying qubits in the form of photons, which is a fundamental building block of quantum

66
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networks [31, 102, 103]. Gates can, in principle, also be implemented in optical cavities

[104], but the experimental requirements for doing this are very challenging due to the

detrimental e↵ect of spontaneous emission and cavity loss. The essential parameter

quantifying this is the cooperativity of the atom-cavity system, C, and it can be argued

that deterministic gates have a poor error scaling of 1 � F / 1/
p
C, where F is the

fidelity of the gate [105, 106]. To circumvent this limitation, we introduce heralded

quantum gates with integrated error detection. As a result of the error detection, the

gates exhibit high fidelities when successful. We propose a two-qubit gate where the

heralded fidelity of the gate can be arbitrarily close to unity. Furthermore, we present

a scheme for an N qubit To↵oli gate where the heralded fidelity have a more favourable

scaling of 1 � F / 1/C, than the cooresponding deterministic gate. This comes at the

cost of a non-unity but possibly large success probability Ps scaling as 1� Ps / 1/
p
C.

The basic idea behind our scheme is to have a combination of qubit atoms and a heralding

auxiliary atom in the same cavity. One of the atomic qubit states, e.g. state |1i, couples
to the cavity mode while |0i is completely uncoupled (see Fig. 6.1a). Such a system has

previously been considered for quantum information processing in several papers, e.g.

Refs. [36, 106–110]. If any of the qubit atoms is in state |1i, the cavity resonance is

shifted compared to the bare cavity mode, which can be exploited to make a gate between

two or more qubits by reflecting single photons o↵ the cavity [107]. The e�ciency of such

schemes, however, is limited by photon losses, ine�cent detectors and non-ideal single

photon sources [36, 110]. We circumvent these problems by introducing an auxiliary

atom in the cavity to serve as both an intra-cavity photon source and a detector. The

final heralding measurement on the atom can then be performed very e�ciently as

opposed to previous heralded gates in optical cavities, which relied on the null detection

of photons leaving the cavity [111–113]. The auxiliary atom is considered to have two

ground states |gi, |fi, which can be coupled through an excited state |Ei (see Fig. 6.1a).
We assume the |Ei $ |fi transition to be energetically close to the cavity frequency and

to be a closed transition, so that we need to drive the |gi ! |Ei transisiton, e.g with a

two-photon process (see below). The gate can be understood through the phase evolution

imposed on the atoms. By weakly driving the |gi $ |Ei transition o↵-resonance, an AC

stark shift is normally introduced on the level |gi. If all the qubit atoms are in state |0i
we are, however, driving a resonant, cavity-assisted Raman transition between |gi and

|fi, which does not give an AC stark shift. If, however, at least one qubit atom is in

state |1i, it changes the cavity resonance, and the AC stark shift persists. All states but

the completely uncoupled qubit state |00...0i will thus acquire a phase, the magnitude

of which depends on the length of the driving pulse. With an appropriate pulse length

and simple single qubit rotations, we can use this to realize a general N -qubit To↵oli

gate or a control-phase (CZ) gate.
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Figure 6.1: (a) Level structure of the qubit atoms. Only state |1i couples to the
cavity and we assume that the excited level decays to some level |õi, possible identical
to |fi or |0i. (b) Level structure of the auxiliary atom and the transitions driven by the
weak laser (⌦) and the cavity (g

f

). We assume that |Ei $ |fi is a closed transition,
i.e. �

g

= 0.

Gate Origin of error Error

CZ-gate
�g = 0
�g > 0

0
⇠ �

g

�
p
C

To↵oli
�i 6= �j

�g > 0

. 1

C
⇠ �

g

�
p
C

Table 6.1: The errors of the N -qubit To↵oli gate and the CZ-gate. Note that the
branching fraction �

g

/� can be made arbitrarily small using a far detuned two-photon
driving as explained in the Sec. 6.3. �

i

is the rate of detectable errors for the qubit
state with i qubits in state |1i.

Naively, the gates will be limited by errors originating from cavity decay and spontaneous

emission from the atoms, which carry away information about the qubit state. These

errors are, however, detectable since the level structure of the auxiliary atom is such that

it will be trapped in state |fi if either a cavity excitation or an atomic excitation is lost.

Conditioning on detecting the auxiliary atom in state |gi at the end of the gate thus

rules out the possibility of any dissipative quantum jumps having occurred during the

gate. As a result, the conditional fidelity of the gate is greatly enhanced at the modest

cost of a finite but potentially low failure probability.

6.2 Gate dynamics

We now go through the details of the gates and derive the success probabilities, gate

times and gate errors (see Tab. 8.1). The Hamiltonian in a proper rotating frame is (see
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Fig. 6.1)

Ĥ = Ĥe + V̂ + V̂ †, (6.1)

Ĥe = �E |EihE|+ gf (â|Eihf |+H.c)

+
X

k

�e|eikhe|+ g(â|eikh1|+H.c), (6.2)

V̂ =
⌦

2
|Eihg|, (6.3)

where we have assumed for simplicty that all couplings (g,⌦) are real and k labels the

qubit atoms (~ = 1). We have defined �E = !E�!g�!L, and �e = !e�!g�!L+!f�!1

where !L is the laser frequency and otherwise !x is the frequency associated with level

x. The dissipation in the system is assumed to be described by Lindblad operators such

that L̂
0

=
p
â describes the cavity decay with decay rate , L̂g =

p
�g|gihE2

|, L̂f =
p
�f |fihE| describe the decay of the auxiliary atom, and L̂k =

p
�|õiihe| describes the

decay of the qubit atoms (k = 1, 2 . . . N) to some arbitrary ground state |õi. The nature
of |õi is not important for the dynamics of the gates and it may, or may not, coincide

with |0i or |1i. For the sake of generality, we have included a decay from |Ei ! |gi with
decay rate �

0

in order to show the e↵ect of such a decay but, as previously mentioned,

we will for now assume that �
0

= 0.

We assume a weak laser field justifying for a perturbative treatment of V̂ as described in

Ref. [114]. The dynamics of the system is then governed by an e↵ective master equation

of the form

⇢̇ = i
h

⇢, Ĥeff

i

+
X

x

L̂eff
x ⇢(L̂eff

x )† � 1

2

⇣

(L̂eff
x )†L̂eff

x ⇢+ ⇢(L̂eff
x )†L̂eff

x

⌘

, (6.4)

where ⇢ is the density matrix of the system, Ĥeff is an e↵ective Hamiltonian, and Leff
x

are e↵ective Lindblad operators with x = 0, g, f, k. The e↵ective operators are found

from

Ĥeff = �1

2
V̂ †
⇣

Ĥ�1

NH + (Ĥ�1

NH)†
⌘

V̂ (6.5)

L̂eff
x = L̂xĤ

�1

NH V̂ , (6.6)

where

ĤNH = Ĥe � i

2

X

x

L̂†
xL̂x, (6.7)

is the no-jump Hamiltonian. The Hilbert space of the e↵ective operators can be described

in the basis of {|gi, |fi} of the auxiliary atom and the states {|0i, |1i, |õi} of the qubit

atoms. To ease the notation, we define the projection operators P̂n, which projects on
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to the states with n qubits in state |1i. From Eq. (6.5) and (6.6) we find that

Ĥeff =
N
X

n=0

�⌦2

4�
Re

(

i�̃e/2 + nC

�̃e(i�̃E/2 + Cf ) + �̃EnC

)

|gihg|⌦ P̂n

=
N
X

n=0

�n|gihg|⌦ P̂n (6.8)

L̂eff
0

=
N
X

n=0

1

2
p
�

p

Cf �̃e⌦

�̃e(i�̃E/2 + Cf ) + n�̃EC
|fihg|⌦ P̂n

=
N
X

n=0

reff
0,n |gihf |⌦ P̂n (6.9)

L̂eff
g =

N
X

n=0

1

2

(i�̃e/2 + nC)⌦

�̃e(i�̃E/2 + Cf ) + n�̃EC

p
�g
�

|gihg|⌦ P̂n

=
N
X

n=0

reffg,n |gihg|⌦ P̂n (6.10)

L̂eff
f =

N
X

n=0

1

2

(i�̃e/2 + nC)⌦

�̃e(i�̃E/2 + Cf ) + n�̃EC

p
�f
�

|fihg|⌦ P̂n

=
N
X

n=0

refff,n |fihg|⌦ P̂n (6.11)

L̂eff
k =

N
X

n=1

� 1

2
p
�

p

Cf

p
C⌦

�̃e(i�̃E/2 + Cf ) + n�̃EC
|fihg|⌦ |õikh1|⌦ P̂n

=
N
X

n=1

reffn |fihg|⌦ |õikh1|⌦ P̂n, (6.12)

where we have defined the cooperativities C
(f) = g2

(f)/� for the qubit (auxiliary) atoms

and the complex detunings �̃E� = �E�i�f/2 and �̃e� = �e�i�/2. Note that we have

defined the parameters reff
0,n , reffg,n , refff,n and reffn in Eqs. (6.9)-(6.12) to characterize the

decays described by the Lindblad operators. In the perturbative description, we have

adiabatically eliminated the coupled excited states of the atoms and the cavity, which

leads to an energy shift of the ground states (see Eq. (6.8)) but otherwise conserves them

since the Hamiltonian in Eq. (6.1) cannot connect di↵erent unexcited states without

decay. We parameterize the di↵erence between the auxiliary atom and the qubit atoms

by Cf = ↵C and �f = �� to easier treat the limit of C � 1 that we are interested in

for future calculations.

The e↵ective Hamiltonian given in Eq.(6.8) describes the basic mechanism of the gates.

In the limit of C � 1 the energy shift for n = 0 becomes very small �
0

⇠ �E⌦2/(16�C2),

i.e. the resonant Raman transition surpresses the AC stark shift as assumed in the

description of the gates in Sec. 6.1. On the contrary, for n > 0, the C in the nominator
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of �n shows how the coupling of the qubit atoms shifts the Raman transition out of

resonance and as a result the AC stark shift ⇠ ⌦2/�E persists.

6.2.1 Success probability and fidelity

Eqs. (6.9)-(6.12) show that the e↵ect of all Lindblad operators, except L̂eff
g , is that

the state of the auxiliary atom is left in state |fi. All these decays are thus detectable

by measuring the state of the auxiliary atom at the end of the gate. For a heralded

gate, where we condition on measuring the auxiliary atom in state |gi at the end of the

gate, these detectable decays therefore do not e↵ect the fidelity of the gate but only the

success probability. The rate �n of the detectable decays for a state with n qubits in

state |1i is �n =
�

�

�

reff
0,n

�

�

�

2

+
�

�

�

refff,n

�

�

�

2

+
�

�

�

reffn

�

�

�

2

and assuming an initial qubit state described

by density matrix ⇢qubit, the success probability of the gates is

Psuccess =
N
X

n=0

Tr
n

e��

n

t
gate⇢qubitP̂n

o

, (6.13)

where tgate is the gate time and Tr{. . .} denotes the trace.

Having removed the detrimental e↵ect of the detectable errors by heralding on a mea-

surement of the auxiliary atom, the fidelity of the gates will be determined by more

subtle, undetectable errors (see below). We define the fidelity, F of the gate as

F =
1

Psuccess
h |hg|⇢̃qubit|gi| i, (6.14)

where we have assumed that the ideal qubit state after the gate is a pure state | i and
⇢̃qubit is the actual density matrix of the qubits and the auxiliary atom after the gate

operation.

6.2.2 N-qubit To↵oli gate

The dynamics described by Ĥeff can be used to implement a To↵oli gate. Putting the

qubit atoms on resonance (�e = 0) and having �E / �
p
C gives energy shifts �n>0

/
⌦2/(4�

p
C) while �

0

⇠ O(C�3/2) since the resonant Raman transition suppresses the

AC stark shift such that |00...0i is the only state, which remains unshifted. Provided

there is no decay, we can thus choose a gate time of tT ⇠ 4⇡
p
C�/⌦2 to make a To↵oli

gate. By conditioning on measuring the auxiliary atom in state |gi at the end of the

gate, the fidelity becomes limited by the undetectable errors listed below.
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• The energy shifts of the coupled qubit states are all �n>0

/ ⌦2/(4�
p
C) in the limit

C � 1. However, to higher order in C we find corrections on the order O(C�3/2)

to the energy shifts, which depend on the number of qubits that couples. The gate

time of the To↵oli gate is tT ⇠ 4⇡
p
C�/⌦2 and, as we will argue below, ⌦ ⇠ �.

As a result, the higher order corrections give uneven phase shifts on the order of

O(C�1) for the coupled qubit states at the end of the gate. This leads to a phase

error in the fidelity of O(C�2).

• The di↵erence between the rates of detectable errors (�n) for di↵erent qubit states

changes the relative weight of the qubit states during the gate. This error wil be

O(C�1) as shown below.

• For �g > 0 the undetectable decay from |Ei ! |gi in the auxiliary atom will

destroy the coherence between the qubit states. We find that this error will be

⇠ �
g

�
p
C
. For now we will assume that �g = 0 and thus ignore this error since we

will show that we can suppress the branching fraction �g/� arbitrary close to zero

by having a two photon driving.

Assuming that �g = 0, the dominating source of error error, limiting the performance

of the To↵oli gate, is thus the di↵erence between the rates of the detectable errors for

the qubit states. To characterize the gate, we consider two cases namely the worst

case and average fidelity. First, we analyse the worst case scenario. We tune �E such

that �
0

= �
1

and the largest di↵erence between the detectable errors is between the

completely uncoupled state and the state with all qubit atoms in state |1i. The worst

case scenario is then realized by the initial state |0i⌦N + |1i⌦N because these states

experience the largest di↵erence between the number of coupled and uncoupled qubits.

For the worst case fidelity and success probability we find

Fworst ⇠ 1� ⇡(↵� 2↵N + ↵N2)

16(↵+ �)N2

1

C
(6.15)

Psuccess,worst ⇠ 1� (↵+ ↵N + 2�N)⇡

2
p
↵
p
↵+ �N

1p
C
. (6.16)

It is seen that both quantities only depend weakly on the number of qubits N when

N � 1, assuming that ↵ ⇠ � ⇠ 1. Futhermore, it is seen that the error of the gate scales

as 1/C while the succes probability increases as
p
C. The gate is thus near-deterministic

for large cooperativities.
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Figure 6.2: (a) Gate error of the To↵oli for di↵erent initial states plotted against the
cooperativity. We have plotted the average error for N = 5, 10, and 15 and the worst
case error for N = 3 and in the limit N � 1. Note that the average error decreases as
N increases. We have fixed �

E

such that �0 = �1 and have assumed that ↵ = � = 1.
The worst case error is more or less independent of N . (b) The success probability (P

s

)
plotted against the cooperativity. We have used the same assumptions as in (a). P

s

only have a weak dependence on N . Note that the line for N = 5 coincides with the
worst case probability for N � 1.

To get an approximation to the average fidelity, we consider an input state (|0i+ |1i)⌦N

with the same parameters as for the worst case scenario. In this case, we find

Fav ⇠ 1� k(N)
↵⇡2

↵+ �

1

C
(6.17)

Psuccess,av ⇠ 1� (
⇡p

↵
p
↵+ �N

+ d(N))
1p
C
, (6.18)

where k(N), d(N) are scaling factors which depend on the number of qubits N . It is

seen that the average fidelity and success probability have the same C dependence as

in the worst case scenario. We calculate k(N) and d(N) numerically for N = 1 � 100

using the perturbation theory and find that that they both decrease slowly with N (see

Fig. 6.2). The worst case and average fidelities and success probabilities are shown in

Fig. 6.2 for di↵erent number of qubits, N . As N increases, we obtain higher average

fidelity whereas the probability and worst case error are almost independent of N .

6.2.3 CZ-gate

So far, we have shown that we can make a heralded, near-deterministic N -qubit To↵oli

gate with an error scaling as / 1/C, which is due to di↵erent rates of decay for di↵erent

qubit states. In the special case of only two qubits, the To↵oli gate is referred to as a

CZ-gate, and in this case, we can improve the gate to have an arbitrarily small error
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by combining it with single qubit rotations. Making the single qubit transformations

|0i ! e�i�
0

t/2|0i and |1i ! e�i(�
1

��

0

)t/2|0i, at the end of a driving pulse of length

tCZ = |⇡/(�
2

� 2�
1

+ �
0

)|, ensures the right phase evolution and gives an ideal CZ-

gate, provided we can eliminate the detrimental e↵ect of having di↵erent decay rates.

For the general To↵oli gate discussed above, we needed �E = 0 to ensure the correct

phase evolution, but by combining the CZ-gate with single qubit rotations, we can relax

this assumption and ensure that �
0

= �
1

= �
2

by choosing

�E =
�

2

p

�
p

4↵C + � (6.19)

�e =
↵C�2

2�E
. (6.20)

We can thereby completely remove all dissipative errors from the CZ-gate, i.e. we have a

gate with a conditional error limited only by non-adiabatic e↵ects, that can in principle

be made arbitrarily small by, e.g. reducing the driving strength. The success probability

is

Psuccess ' 1� ⇡
8�2 + 6�↵+ ↵2

8�3/2
p
↵

1p
C
, (6.21)

which approaches 1 as C increases. The gate is thus near-deterministic for high cooper-

ativities (see Fig. 6.3a).

6.2.4 Gate time I: Simple scheme

The gate time of the To↵oli gate is tT ⇠ 4⇡
p
C�/⌦2 and for the CZ-gate, we have

tCZ ' �⇡
p
↵(↵+ 2�)(↵+ 4�)

2�3/2⌦2

p
C, (6.22)

for C � 1. Since tCZ > tT we focus on tCZ . The gate time is set by the strength

(⌦) of the driving pulse, i.e., stronger driving gives shorter gate time. On the other

hand, we need a weak drive to suppress non-adiabatic e↵ects and to ensure the validity

of our perturbative treatment. A necessary criterion for our pertubation theory to be

valid is that the energy shifts �n (see Eq. (6.8)) are small compared to the driving, i.e.

�2

n/⌦2 ⌧ 1. From Eq. (6.8), we find that �2

n/⌦2 ⇠ ⌦2/(16�2

E) to leading order in the

cooperativity C and this criterion is therefore met for ⌦ ⌧ 4�E .

However, there is another criterion that we need to meet in order for our perturbation

theory to be valid. In order not to drive the system strongly between |gi|0 photon in cavityi $
|fi|1 photon in cavityi, we need the e↵ective driving (⌦eff ) of this process to be weak

compared to the decay () of the cavity photon. We find that we need ⌦eff/ ⇠
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Figure 6.3: (a) Failure probability (1�P
s

- left axis) and gate time (t
CZ

-right axis)
as a function of the cooperativity (C) for the CZ gate. The gate time is in units of
the inverse linewidth 1/� of the qubit atoms. Both quantities increases as

p
C and we

thus have a near deterministic gate for large C. (b) Gate error (left axis) and gate
time (right axis) as a function of the cooperativity for the two-photon-driven CZ-gate.
We have assumed that ⌦

MW

= 4�C1/4. The gate error is plotted for �
E2/� = 50, 100

and 200 showing how the error decreases as �2�2
E2. The gate time increases as

p
C

and is plotted in units of the inverse linewidth (1/�) of the qubit atoms. We have
assumed ⌦ ⇠ �

E2/(8C1/4). Solid lines are analytical results and symbols are numerical
simulations (see App. D).

⌦

p
C

�

E

q

�
 ⌧ 1 in order for this to be satisfied. The di↵erent criterions for the validity of

the perturbation theory are summarized in Table 6.2.

Adiabaticity criterions

⌦/(4�E) ⌧ 1
⌦

p
C

�

E

q

�
 ⌧ 1

Table 6.2: The criterions for our perturbation theory to be valid.

Assuming that  � � such that the second criterion in Table 6.2 is fulfilled, we find

that we can have ⌦ ⇠ �/2 and keep the expression for the first criterion . 1%. For

this driving strength, the gate time is / p
C as shown in Fig. 6.3a. For cooperativities

C . 1000 this gives a gate time . 100 µs for typical atomic decay rates.

6.3 Two-photon driving

So far, we have assumed a model where there is no decay from |Ei ! |gi. In real atoms

there will, however, always be some decay |Ei ! |gi with a decay constant �g > 0.

The result of such an undetectable decay is that both the CZ-gate and the To↵oli gate

will have an error ⇠ �g/(�
p
C), which could dominate the total infidelity. To make this
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Figure 6.4: (a) Level structure of the auxiliary atom and the transitions driven by
a weak laser (⌦), a microwave field (⌦

MW

) and the cavity (g
f

). We assume that
|Ei $ |fi is a closed transition and for simplicity, we also assume that |E2i $ |gi is
a closed transition but this is not a necessity. Here |r(e), r(e)i with r = 1, 2, 3 refers
to how the atom may be realized in the (52P3/2) states |F (e) = r,m(e) = ri 52S1/2 of
Rb87. (b) E↵ective three level atom realized by mapping the two-photon drive to give

an e↵ective decay rate �̃
g

and an e↵ective drive ⌦̃.

error small, it is thus essential to suppress the branching ratio �g/�. Below we show

how one can suppress the branching ratio to an arbitrary level by driving the |gi ! |Ei
transition with a two photon process. As a result, we realize a CZ gate with an error

arbitrary close to zero and a To↵oli gate with an error scaling as 1/C even for a realistic

atomic system.

A more realistic level structure of the auxiliary atom is shown in Fig. 6.4, where we still

assume |Ei $ |fi to be a closed transition. For simplicity we also assume |E
2

i $ |gi
to be a closed transition but this is not a necessity. Such a level structure could e.g. be

realized in 87Rb as shown in Fig. 6.4. We assume that a microwave field couples the

two excited states such that we can have a two photon transition from |gi ! |Ei. The

Hamiltonian in a proper rotating frame is

Ĥ = Ĥe + V̂ + V̂ †, (6.23)

Ĥe = �E |EihE|+ �E2

|E
2

ihE
2

|+ gf (â|Eihf |+H.c)

+
⌦MW

2
(|EihE

2

|+H.c.)

+
X

k

�e|eikhe|+ g(â|eikh1|+H.c.), (6.24)

V̂ =
⌦

2
|Eihg|, (6.25)

where we have now defined �E = !E � !g � !L � !MW , �E2

= !E2

� !g � !L and

�e = !e � !g � !L � !MW + !f � !
1

. Here !L is the frequency of the laser, !MW is

the frequency of the microwave field and otherwise !x is the frequency associated with

level x. We assume that the frequency of the cavity is !c = !L + !MW + !g � !f
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such that the three-photon Raman transition from |gi ! |fi is resonant. The Lindblad

operators describing the system are the same as described below Eq. (6.1) except that

now L̂g =
p
�g|gihE2

|. Assuming a weak drive ⌦, we can follow the same recipe as before

to find the following e↵ective operators describing the dynamics of the system.

Ĥ(2)

eff =
N
X

n=0

⌦2

4�
Re

(

��̃e(i�̃E/2+Cf )�n�̃EC

�̃E2

�̃e(i�̃E/2+Cf )+n�̃E�̃E2

C�i�̃e⌦̃2

MW /8�n⌦̃2

MWC/4

)

⇥|gihg|⌦ P̂n

=
N
X

n=0

�(2)

n |gihg|⌦ P̂n (6.26)

L̂eff(2)
0

=
N
X

n=0

�1

4
p
�

p

Cf �̃e⌦⌦̃MW

�̃E2

�̃e(i�̃E/2 + Cf ) + n�̃E2

�̃EC � i�̃e⌦̃2

MW /8� n⌦̃2

MWC/4

⇥|fihg|⌦ P̂n

=
N
X

n=0

reff(2)
0,n |fihg|⌦ P̂n (6.27)

L̂eff(2)
g =

N
X

n=0

⌦

2

�̃e(i�̃E/2 + Cf ) + n�̃EC

�̃E2

�̃e(i�̃E/2 + Cf ) + n�̃E2

�̃EC � i�̃e⌦̃2

MW /8� n⌦̃2

MWC/4

p
�g
�

⇥|gihg|⌦ P̂n

=
N
X

n=0

reff(2)g,n |gihg|⌦ P̂n (6.28)

L̂eff(2)
f =

N
X

n=0

�⌦

4

(i�̃e/2 + nC)⌦̃MW

�̃E2

�̃e(i�̃E/2 + Cf ) + n�̃E2

�̃EC � i�̃e⌦̃2

MW /8� n⌦̃2

MWC/4

p
�f
�

⇥|fihg|⌦ P̂n

=
N
X

n=0

reff(2)f,n |fihg|⌦ P̂n (6.29)

L̂eff(2)
k =

N�1

X

n=0

1

4
p
�

p

Cf

p
C⌦̃MW⌦

�̃E2

�̃e(i�̃E/2 + Cf ) + n�̃E2

�̃EC � i�̃e⌦̃2

MW /8� n⌦̃2

MWC/4

⇥|fihg|⌦ |õikh1|⌦ P̂n

=
N�1

X

n=0

reff(2)n |fihg|⌦ |õikh1|⌦ P̂n, (6.30)

where we have defined the complex detuning �̃E2

� = �E2

� i�g/2 and the parameters

reff(2)
0,n , reff(2)g,n , reff(2)f,n and reff(2)n to characterize the decay described by the Lindblad

operators.

We are interested in the limit of large detuning, �E2

and large cooperativity, C. In this

limit, we find that the dynamics of the system can be mapped to a simple three level
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atom with e↵ective driving ⌦̃ ⇠ ⌦⌦MW /�E2

and an e↵ective decay �̃g ⇠ �g⌦2

MW /�2

E2

as shown in Fig. 6.4. In principle, the e↵ective operator L̂eff(2)
0

leads to an e↵ective

decay rate of �̃ ⇠ �g⌦2/�2

E2

to lowest order in C but we find that this first order term

do not destroy the coherence between the qubit states since it is independent of n. There

is, therefore, no detrimental e↵ect of these scattering events and the performance of the

gate behaves as if there is an e↵ective decay rate of �̃g ⇠ �g⌦2

MW /�2

E2

. Note that we

also have an AC stark shift imposed on the level |gi by the laser characterized by ⌦.

This will give an overall phase to the system ⇠ ⌦2/(4�E2

)t which we can neglect since

it does not influence the gates. Since we can do the mapping to the simple three level

atom, we find similar results for the performance of the gates for the two-photon scheme

as for the simple three level scheme only with e↵ective decay �̃g and drive ⌦̃ given by

the two-photon process. Note, however, that we now assume �g > 0, which introduces

an undetectable error as previously mentioned. We find that this introduces an error in

the fidelity of both gates of roughly

⇠ (↵2 � 4↵� � 6�2)⇡2

128�2
�4g

�4�4

E2

+
(↵2 + 4↵� + 6�2)⇡

16
p
↵�(↵+ 2�)(↵+ 5�))

�g⌦2

MW

��2

E2

1p
C
. (6.31)

Nonetheless, this error can be suppressed arbitrarily much be increasing �E2

, which

enable us to have a heralded CZ-gate with arbitrarily small error in a realistic atomic

setup using the two-photon drive. The error of the CZ-gate for di↵erent �E2

is shown

in Fig. 6.3b assuming an initial state of (|0i+ |1i)⌦2. Note that in order to prevent an

increasing scattering probability of level |E2i we need ⌦MW / C1/4 as described in the

next section. The success probability and time of the gates are the same as before with

⌦ ! ⌦̃ ⇠ ⌦

MW

⌦

2�

E2

.

6.3.1 Gate time II: Two-photon driving

In order to find out how strongly we can drive the two photon transition, we make similar

considerations about the validity of our perturbation as for the simple scheme. From

Eq. (6.26)) we find that (�(2)

n )2/⌦2 ⇠ ⌦2/(16�2

E2

), to leading order in C and we thus

need ⌦ ⌧ 4�E2

. In order not to have strong driving between |gi|0 photon in cavityi $
|fi|1 photon in cavityi, we need ⌦⌦

MW

p
C

�

E2

�

E

q

�
 ⌧ 1.

Finally, we need to consider the scattering of photons from the level |E2i. If the number

of scattering events, nscat is large compared to ⌦2/(4�2

E2

), the perturbation theory is

not valid even though the other criterions are met. We find that nscat ⇠ 12

p
C�2

⌦

2

MW

for the

CZ-gate and we thus need to have 3

p
C�2

⌦

2

�

2

E

⌦

2

MW

⌧ 1
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The di↵erent criterions for the validity of the perturbation theory are summarized in

Table 6.3.

Adiabaticity criterions

⌦/(4�E2

) ⌧ 1
⌦⌦

MW

p
C

�

E2

�

E

q

�
 ⌧ 1

3

p
C�2

⌦

2

�

2

E

⌦

2

MW

⌧ 1

Table 6.3: The criterions for our perturbation theory to be valid.

Assuming again that  � � such that the second criterion is met, we find from Table

6.2 that we can meet the two remaining criterions using ⌦ ⇠ �E2

/(4C1/4) and ⌦MW ⇠
4�C1/4 for the two-photon process. For these driving strengths, all the expressions in

Table 6.2 are . 1%. These driving strengths result in a gate time / p
C as shown in

Fig. 6.3b.

A candidate for realizing the gate is described in Ref. [25] where single Rb atoms are

placed in a nanocavity using an optical tweezer. This system is expected to reach coop-

erativities of several thousands. Having a detuning of �E2

= 50� and a cooperativity

of C ⇠ 100 would enable a heralded CZ gate with ⇠ 50% success probability and a

heralded error ⇠ 10�3 in ⇠ 120 µs time.

6.4 Additional errors

There are some additional errors in a realistic atomic setup that we have not treated

in detail so far. Here we estimate the dominant errors and determine under which

conditions, they can be su�ciently suppressed such that they do not limit the perfor-

mance of the gates. We assume a realistic atomic setup where 87Rb atoms are used

both for the auxiliary atom and the qubit atoms. In the 87Rb atoms, we assume that

|gi = |1, 1i, |fi = |2, 2i and |E
2

i = |2e, 2ei, |Ei = |3e, 3ei where |r(e), r(e)i with r = 1, 2, 3

refers to state |F (e) = r,m(e) = ri in 52S
1/2 (52P

3/2). In this case, we estimate that the

dominant errors are:

• In our perturbative theory, we have assumed that the laser field (⌦) only couple

|gi ! |E2i in the auxiliary atom. However, for a large detuning �E2

it may also

couple |fi ! |Ei, which could lead to an undetectable error where the auxiliary

atom is pumped back to |E2i from, which it decays to |gi. This error is, however,
suppressed by the large frequency separation, �g of |gi and |fi, which is �g ⇠
1000� for 87 Rb. We estimate the error using e↵ective operators to find the decay
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rate back to |gi, assuming that the auxiliary atom starts in |E2i and treating the

drive ⌦ as a perturbation while neglecting the cavity coupling. This is valid as

long as �g � �E , which is fulfilled for C . 10000 since �E ⇠ p
C. The error

increases with �E2

but even for �E2

⇡ 400� we find that for ⌦MW = 4�C1/4,

⌦ = �E2

/(8C1/4) the error is . 10�4.

• The microwave might also couple the ground states |0i� |1i of the qubit atoms and

the ground states |gi � |fi of the auxiliary atom. The coupling of |0i � |1i means

that the qubit atoms also couple to the cavity even though they are in state |0i. We

estimate the error from this to be on the order of ⌦2

MW /(�g�(�E2

��E+�
2!3

))2

where �
2!3

is the splitting between |E
2

i and |Ei. For 87Rb, �
2!3

⇡ 44�. Below

we argue that we need �E < 0 and as a result �E2

> 0. Since �E ⇡ �p
C�

this error will increase slowly with cooperativity but it is surpressed by �g. For

⌦MW = 4�C1/4, we find that the error is . 10�4 for C . 1000 even for �E2

⇡
400�. The errors from the coupling of the states |gi � |fi in the auxiliary atom

will likewise be surpressed by the large energy splitting �g. These errors can also

be further surpressed by decreasing ⌦MW at the cost of a larger gate time.

The above errors can be highly suppressed using e.g.88Sr, 138Ba+ or 40Ca+ instead of
87Rb. For these atoms, the ground states can be encoded in the S

0

and P
0

manifoldes

for 88Sr and the S
1/2 and D

3/5 manifolds for 138Ba+ and 40Ca+, which have separations

at optical frequencies between the stable states.

A final error that we will consider is that the transition |Ei $ |fi will not be completely

closed if the cavity is linearly polarized. This will, e.g. be the case for the system

in Ref. [25]. Such a cavity also couples |fi to the states |1e, 1ei, |2e, 1ei and |3e, 1ei.
From |1e, 1ei and |2e, 1ei there might be an undetectable decay back to |gi, which will

introduce an error / 1/
p
C in the gates. The probability of an undetectable decay from

these states should be compared to the probability of the detectable decays where the

cavity photon is scattered of the qubit atoms instead. For 87Rb, we estimate this error

by compairing the strengths of the e↵ective couplings from |fi to |1e, 1ei and |2e, 1ei
with a subsequent decay to |gi with the strength of the e↵ective coupling from |1i to

|ei in the qubit atoms with a subsequent decay back to |1i. The latter process has a

detuning of �E while the first two are additional detuned by the energy gaps between

|3e, 3ei and |1e, 1ei and |3e, 3ei and |2e, 1ei respectively, assuming that �E < 0. We find

that since |�E | grows as
p
C the error increases from ⇠ 5 ·10�5 at C = 1 to a maximum

value of ⇠ 2·10�3 for C ⇠ 3000 for which �E is comparable to the extra detunings of the

|1e, 1ei and |2e, 1ei transitions compared to the |ei transition. For C > 3000 the error

decreases as 1/
p
C. Note that this error could be removed by making a 4 photon drive

from |gi to |Ei by letting |gi = |1,�1i. Another approach is to consider other atoms
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such as 40Ca+, with more favorable levelstructures. The state |gi could be encoded in

the 32D
5/2 subspace while the state |fi could be encoded in the 42S

1/2 subspace and

similarly for the qubit states |0i and |1i. In such a setup, we will have separations

of optical frequencies between the qubit states and we can remove the decay from the

excited state back to |gi by, e.g. driving from 32D
5/2 to 42P

1/2 through 32D
3/2.

6.5 Conclusion and discussion

In conclusion, we have demonstrated the concept of heralded quantum gates where the

fidelity is greatly enhanced at the expense of a finite but possible small failure probability.

The gates are implemented in optical cavities and use an auxiliary atom to detect errors

from spontaneous emission and cavity decay. We have demonstrated an N qubit To↵oli

gate with an error scaling as 1/C and a failure probability decreasing as 1/
p
C, which

performance is not degraded as N increases. Furthermore, we have shown that in the

special case where N = 2, we can completely remove all errors from the gate and thus

realize a CZ-gate with perfect fidelity. Together with single qubit rotations, this gate

could e.g. enable high fidelity entanglement swapping in quantum repeaters, which can

greatly enhance the communication rate (see Chap. 8). Finally, we have considered

the CZ-gate in a specific setup where 87Rb atoms are used for both qubit atoms and

the auxiliary atom. We showed how a two-photon driving can be used to su�ciently

surpress the errors of the gate resulting in a highly e�cient CZ gate. Such a gate could

be realized with the nanocavity system described in Ref. [25].

Our gates have a built in error detection process, which removes the necessity of extract-

ing the error by the more complicated process of entanglement purification or quantum

error correction. Even though the gates are designed for the specific case of optical cav-

ities, which is particularly relevant for quantum communication, similar advantages can

be realised in other systems, where certain errors could be heralded and thus alleviate

the daunting requirements of fault tolerant computation. The concept of heralded gates

could thus be an interesting path to realize not only quantum communication but also

quantum computation with more modest requirements for the experimental systems.

In order to confirm our results from perturbation theory, we have numerically integrated

the full Master equation, defined by the Hamiltonian in Eq. (6.1) and the Lindblad

operators, L̂
0

, L̂g, L̂f , L̂i (i = 1, 2). This work was primarily done be Peter Kómár and

it is described in App. D. We find that the numerical calculations confirm our analytical

results obtained from the perturbation theory. The same caluclations were performed by

Peter Kómár for the situation with the two-photon drive described by the Hamiltonian

in Eq. (6.23) (see App. D). Once again the numerics agree with the analytical results.



Chapter 7

Room temperature single photon

sources and quantum memories

A major challenge in the construction of reliable quantum technology is to have simple

and coherent quantum systems to function as qubits. Single photons are ideal infor-

mation carriers for quantum communication. Nonetheless the information needs to be

stored as stationary qubits in a quantum memory in order to process the information.

Ensembles of cold atoms have previously been considered for qantum memories since the

large number of atoms enables a strong and coherent light-atom interaction [59, 115–

117]. But cold atoms require extended cooling apparatus, which makes the scalability of

such systems a great challenge. Room temperature atoms allow for a range of operations

with continuous quantum variables [40] for scalable architectures [16] but the e�ciency

of such systems is limited by the incoherent atomic motion.

In this chapter, I describe the work of me and my collaborators on quantum memories

and single photon sources based on room temperature microcells. The work has been

done in collaboration with Jonas M. Petersen, Michael Zugenmaier, Heng Shen, Georgios

Vasilakis, Kasper Jensen, Eugene S. Polzik and Anders S. Sørensen and is described

in Ref. [118], which is the basis of this chapter. As opposed to previous ensemble

based experiments, which typically rely on performing operations su�ciently fast that

the atoms remain inside the laser beams, we employ motional averaging, where atoms

move in and out of the beam several times during the interaction while maintaining

the phase information for much longer times. This conceptually new approach thus

alleviates the detrimental e↵ects of atomic motion for room temperature ensembles. To

be specific, we describe the concept and idea behind motional averaging in the context of

an experimental realisation currently being investigated in the laboratory. Nonetheless,

82
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Figure 7.1: Sketch of (a) the atomic levels structure and (b) the experimental setup.
(a) We assume that all atoms are initially pumped to state |0i. The transition |0i ! |ei
is then driven by a weak laser field (⌦) while the cavity mode couples |ei and |1i. (b)
The atomic ensemble is kept in a small cell inside a single sided cavity with limited
finesse. The single cavity photon (thin arrows) is coupled from the cell-cavity into a high
finesse cavity, which separates it from the calssical field (broad arrows) and averages

over the atomic motion.

the ideas leading to the motional averaging are generally applicable and may be used

also in other systems where fluctuations of the coupling strength is an issue.

7.1 Introduction

We consider a setup, where an ensemble of ⇤-atoms are kept in a small cell coated with

an alkene coating to preserve the spin coherence during wall collisions [119] as depicted

in Fig. 7.1. Such cells enable atomic coherence times of ⇠ 8 ms, making them suitable

as quantum memories. The ensemble is kept at room temperature of ⇠ 300K and, to

increase the interaction with the light, the cell is placed inside a single sided optical

cavity, which we shall refer to as the cell -cavity. The cell-cavity is considered to have

a modest finesse due to the losses possibly introduced by placing the cell inside. The

light leaving the cell-cavity is therefore coupled into another high finesse cavity, which

we shall refer to as the filter -cavity. The purpose of this cavity is two-fold as we describe

below.

Initially, the atoms are all pumped to the state |0i. We want to create a single col-

lective excitation in the ensemble thereby producing the symmetric Dicke state | Di =
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Figure 7.2: Simulated mean power spectral density (PSD) for a 0.05 ms long light
pulse interacting with the atoms. The broad feature originates from the short time
correlations of atoms interacting with the light while the sharp peak is the uncorrelated
interaction of the atoms at points well seperated in time. Note that the width (⇠
1/t

pulse

) and height of the sharp peak is determined by the length t
pulse

of the light
pulse, assuming that t

pulse

is much smaller than the coherence time of the atoms.

Ŝdicke|00 . . . 0i where Ŝdicke = 1p
N

P

j |1ijh0| and N is the number of atoms in the en-

semble. We refer to this as the write process. To obtain the single excitation, we drive

the |0i ! |ei with a far-detuned laser pulse such that the Doppler broadening of the

atomic levels can be neglected (see below) and su�ciently weak that multiple excitations

can be neglected. We condition on detectecting the single photon emitted in a Raman

transition from |0i ! |1i, which we refer to as the quantum photon. Opon detection, we

project the atomic state into the symmetric Dicke state, if all the atoms have had the

same interaction with the light, i.e. if the amplitude of di↵erent atoms to have emitted

the photon is equal. In a realistic setup, the laser beam does not fill the entire cell and

only atoms that are in the beam at any given time will thus contribute to the cavity

field. Since the atoms are at room temperature, they will, however, continously move

in and out of the beam and we exploit this to make a motional averaging of the atomic

interaction with the light. If the interaction time is long enough to allow the atoms to

move in and out of the beam several times, they will on average have had the same in-

teraction with the light and a detection of a cavity photon will to a good approximation

project the atomic state to a Dicke state. Since the cell-cavity have a limited finesse, it

may in practice not have a su�ciently narrow line width to allow this averaging. We

therefore introduce a second filter cavity. As we shall see, the output from the cell cavity

consist of a spectrally narrow coherent beam and a broad incoherent contribution (see

Fig. 7.2). By selecting out the coherent part, the filter cavity thus e↵ectively increases

the interaction time and allows the motional averaging. The filter-cavity will also help
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separate the quantum photon from the classical drive by having a small frequency dif-

ference between the classical drive and single photon such that only one frequency is

substained in the filter-cavity while both are substained in the cell-cavity. After a suc-

cessful creation of an excitation in the ensemble, the state can be kept until readout.

In the readout process, a long classical pulse is applied to the |1i ! |ei transition such

that the single excitation is convert into a photon on the |ei ! |0i transition (g and ⌦

are interchanged in Fig. 7.1a). The long readout pulse serves the same purpose as the

filtering cavity in the write process.

The quality of our system when considered as a part of a repeater scheme, like the DLCZ

protocol [16], is characterized by both the e�ciency of the write and readout processes

and the quality of the single photons being readout. We first go through the details of

the setup shown in Fig. 7.1b to derive the e�ciency of the write and readout processes

and later discuss the quality of the single photons.

7.2 Write process

The interaction between the atoms and the light in the write process is described by the

Hamiltonian

Ĥwrite =
N
X

j=1

���̂(j)ee �
✓

⌦j(t)

2
�̂(j)e0 +gj(t)âcell�̂

(j)
e1 +H.c.

◆

, (7.1)

where we have defined the detuning � = !L � !e + !
0

where !L is the frequency

of the driving laser and !e (!
0

) is the frequency associated with level |ei (|0i). The

cell-cavity field is described by the annihilation operator âcell and we have defined the

atomic operators �(j)xy = |xijhy| for the j’th atom. From this Hamiltonian, we obtain the

equations of motion

dâcell
dt

= �1
2
âcell + i

N
X

j=1

g⇤j (t)�̂
(j)
1e + F̂

1

(7.2)

d�̂(j)
1e

dt
= �

⇣�

2
� i�

⌘

�̂(j)
1e � igj(t)âcell(�̂

(j)
ee � �̂(j)

11

)� i
⌦j(t)

2
�̂(j)
10

+ F̂ (j)
1e (7.3)

d�̂(j)
10

dt
= �ig⇤j (t)âcell�̂

(j)
e0 + i

⌦⇤
j (t)

2
�̂(j)
1e , (7.4)

where we have included the cavity decay with a rate 
1

and the spontaneous emission

of the atoms with a rate �. Associated with these decays, are corresponding Langevin

noise operators F̂
1

for the cavity decay and F̂ (j)
1e for the atomic decay [120]. Note that

we have neglected dephasing of the atoms, e.g. due to collisions. We assume that all
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the atoms are initially in the ground state |0i and that the interaction with the light

is a small perturbation to the system. We can therefore assume that �̂(j)ee � �̂(j)
11

⇡ 0

and ignore the noise operators since they never give rise to clicks in the detector (see

Fig. 7.1b). Furthermore, we assume that �̂
10

(t) is slowly varying so that we can treat

it as almost contant in time. We can then formally integrate Eqs. (7.2) and (7.3) to

obtain

âcell(t
0) = �1

2

N
X

j=1

Z t0

0

dt00
Z t00

0

dt000e�
1

/2(t0�t00)e�(�/2�i�)(t00�t000)gj(t
00)⌦j(t

000)�̂(j)
10

. (7.5)

To find the field at the detector, we need to propagate the field through the filter-

cavity, which is assumed to have a decay rate of 
2

. The input/output relations for the

filter-cavity are

dâfilter
dt

= �2
2
âfilter +

p


2


1

/2âcell (7.6)

â =
p


2

/2âfilter (7.7)

where 
2

is the decay rate of the filter cavity, âfilter describes the field inside the filter-

cavity and â describes the field outside the filter cavity, i.e. at the detector. We neglect

any input noise from the cavity decay since it never gives a click in our detector and we

have also neglected intra-cavity losses. Formally integrating Eq. (7.6) and using Eq. (7.7)

gives

â = �2
p

1

4

N
X

j=1

✓j(t)�̂
(j)
10

, (7.8)

where

✓j(t) =

Z t

0

dt0
Z t0

0

dt00
Z t00

0

dt000e�
2

(t�t0)/2e�
1

(t0�t00)/2e�(�/2�i�)(t00�t000)gj(t
00)⌦j(t

000).

(7.9)

We condition the write in on the measurement of a quantum photon at the detector. We

therefore define the write e�ciency ⌘write as the conditional overlap between the actual

atomic state, | a(t)i, upon detection of a quantum photon at time t, and the Dicke state

| Di. ⌘write is thus

⌘write =
h D|

R t
int

0

p(t)| a(t)ih a(t)|dt| Di
R t

int

0

p(t)dt
, (7.10)

where p(t) is the probability density of detecting the photon at time t. Inserting Eq. (7.8)

into Eq. (7.10) and treating the interaction as a perturbation to the atomic state we
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obtain [121]

⌘write =

R t
int

0

|h✓j(t)ie|2 dt
R t

int

0

h|✓j(t)|2iedt
N � 1

N
+

1

N
⇡
R t

int

0

|h✓j(t)ie|2 dt
R t

int

0

h|✓j(t)|2iedt
. (7.11)

Here we have defined the ensemble average h. . .ie = 1

N

PN
j h. . .i and assumed N � 1 in

the last step. We first focus on the expression in Eq. (7.9) for ✓j(t) in order to derive

a simple expression for ⌘write. To perform the integration over t000 we assume that the

couplings can be expressed as

⌦j(t
000) = ⌦(j)

xy (t
00) sin(kc(zj(0) + v(j)z (0)t000)) (7.12)

gj(t
00) = gxy(t

00) sin(kq(zj(t
00)), (7.13)

where kc (kq) is the wavenumber of the classical (quantum) field and zj(t) (v
(j)
z (t)) is the

z components of the position (velocity) of the j’th atom at time t. The cavity field is

thus assumed to be a standing wave along the z-direction and both modes are assumed

to have a node at the center of the cell at z = 0. This geometry ensures an ideal overlap

between the two modes. Note that an ideal overlap could also be obtained by assuming

antinodes at z = 0. The xy-dependence of ⌦j(t000) (⌦
(j)
xy (t000)) is assumed to be constant

for the integration over t000, i.e. on a time scale of 1/� (we assume that � � �). For

atoms at room temperature, we need � ⇠ 1 GHz in order to be detuned far from the

Doppler broadening of the atomic levels, which gives a time scale of ⇠ 1 ns. The average

velocity of room temperature atoms is ⇠ 200 m/s and the atoms will thus only move ⇠
0.1 µm on this timescale, which is small compared to the transverse size of the beam,

which is several µm. It is thus justified to assume that ⌦(j)
xy (t000) is constant for the

intergration over t000. The z dependence of the coupling, however, vary rapidly due to

the standing wave in the cavity and cannot be assumed to be constant. Nonetheless,

the velocity of the atom can be assumed to be constant since a change in the velocity

requires a collision with the cell walls. We perform the integration over t000 by adiabatic

elliminating the decay of the atoms since we are far detuned. As a result, we find that

✓j(t) =
�1

4

Z t

0

dt0
Z t0

0

dt00e�
2

/2(t�t0)e�
1

/2(t0�t00)g(j)xy (t
00)⌦(j)

xy (t
00)

⇥
 

e�i(k
c

�k
q

)z
j

(t00) � e�i(k
c

+k
q

)z
j

(t00)

��/2 + i(� + kcv
(j)
z (t00))

+
ei(kc�k

q

)z
j

(t00) � ei(kc+k
q

)z
j

(t00)

��/2 + i(� � kcv
(j)
z (t00))

!

. (7.14)

To find the e�ciency, we wish to obtain an expression for h✓j(t)i (see Eq. (7.11)). To this

end, we assume that the spatial distribution of the atoms is uniform and that the velocity

distribution of the atoms follows the Maxwell-Boltzmann distribution with temperature

T . Both distributions are assumed to be independent of time. We also assume that
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kc ⇠ kq = k and that kLz � 1 such that he±2ikzi ⇡ 0. Here 2Lz is the length of the

cell in the beam direction. The xy-dependence of the couplings are assumed to have the

same Gaussian form such that

⌦(j)
xy (t) = ⌦e

�x

2

j

(t)�y

2

j

(t)

w

2 (7.15)

g(j)xy (t) = ge
�x

2

j

(t)�y

2

j

(t)

w

2 , (7.16)

where w is the waist of the beam and xj (yj) is the x (y) component of the position of

the j’th atom. With these assumptions we obtain

h✓j(t)ie = �1

4

Z t

0

dt0
Z t0

0

dt00e�
2

/2(t�t0)e�
1

/2(t0�t00)hgxy(t00)⌦xy(t
00)i

⇥
*

1� e�2ikz
j

(t00)

��/2 + i(� + kv(j)z (t00))
+

1� e2ikzj(t
00
)

��/2 + i(� � kv(j)z (t00))

+

e

(7.17)

=
⇡3/2g⌦

16�d
w [(� + i�/2)/�d]

w2

L2

Z t

0

dt0
Z t0

0

dt00e�
2

/2(t�t0)e�
1

/2(t0�t00) (7.18)

=
⇡3/2g⌦

4�d
w [(� + i�/2)/�d]

w2

L2

1


1


2

, (7.19)

where we have assumed that e�(
1

/2)t ⇡ e�(
2

/2)t ⇡ 0 in going from Eq. (7.18) to (7.19).

Furthermore, we have assumed that the cell dimensions (x⇥y⇥z) are 2L⇥2L⇥2Lz and

that erf
�

p
2L/w

�

2 ⇡ 1 meaning that we ignore any small portion of the beam, which

is outside the cell. w[. . .] is the Faddeeva function defined as w[z] = e�z2(1� erf(�iz))

and �d =
p

2kbT/mk is the Doppler width of the atomic levels at temperature T where

m is the atomic mass and kb is the Boltzmann constant.

Having obtained an expresion for h✓j(t)i, we now focus on h|✓j(t)|2i. It follows from

Eq.(7.14) that

h|✓j(t)|2ie =
1

16

Z t

0

dt0
1

Z t0
1

0

dt00
1

Z t

0

dt0
2

Z t0
2

0

dt00
2

e�
2

/2(t�t0
1

)e�
1

/2(t0
1

�t00
1

)e�
2

/2(t�t0
2

)e�
1

/2(t0
2

�t00
2

)

⇥hXY ⇤
j (t

00
1

)XYj(t
00
2

)Z⇤
j (t

00
1

)Zj(t
00
2

)ie, (7.20)

where we have defined

XYj(t) = g(j)xy (t)⌦
(j)
xy (t) (7.21)

Zj(t) =
1� e�2ikz

j

(t)

��/2 + i(� + kv(j)z (t))
+

1� e2ikzj(t)

��/2 + i(� � kv(j)z (t))
. (7.22)

To proceed we write Zj(t) = hZi+�Zj(t) and XYj(t) = hXY i+�XYj(t), i.e. we assume

that the terms consist of large average parts (hZi, hXY i) and small time-dependent per-

turbations (�Zj(t), �XYj(t)). To second order in the perturbations, we get the single
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atom correlation terms h�Z⇤
j (t

00
1

)�Zj(t00
2

)i and h�XY ⇤
j (t

00
1

)�XYj(t00
2

)i. These terms rep-

resent the correlations between the atomic positions at di↵erent times. After several

collisions with the walls, the atoms loose all memory of their initial position and ve-

locity, and hence for large |t
1

� t
2

|, the correlations are only through the mean values

and all the fluctuations disappear. From now on, we neglect the terms / e2ikzj in

Eq. (7.22) since these average to zero very fast. For simplicity, we assume the decay of

the correlations to be exponential such that we can write

h�Z⇤
j (t

00
1

)�Zj(t
00
2

)i =
⇣

h|Zj |2i � |hZji|2
⌘

e��|t00
1

�t00
2

| (7.23)

h�XY ⇤
j (t

00
1

)�XYj(t
00
2

)i =
⇣

h|XYj |2i � |hXYji|2
⌘

e��|t00
1

�t00
2

|, (7.24)

where � is the decay rate of the correlations. We will later justify this assumption

by simulating the correlations for a box of non-interacting atoms (see Sec. 7.2.1). In

the simulations, we find good agreement with an exponential model with decay rate

� = ↵vthermal/w, where vthermal is the average thermal velocity of the atoms and ↵ is a

numerical constant on the order of unity. � is thus given by the average transient time

of the atoms through the beam. Employing the exponential decay model, we evaluate

the averages, with similar assumptions as before, and arrive at the following expression

for h|✓j(t)|2i after performing the integrals and assuming that e�(
1

/2)t ⇡ e�(
2

/2)t ⇡ 0

h|✓j(t)|2i = |h✓j(t)ie|2
✓

1� 2
1

2
2

A(
1

,
2

,�)

8

◆

+
|g|2 |⌦|2A(

1

,
2

,�)

4

⇥
 

⇡5/2

128�d

w4

L4

✓

Re {w [(� + i�/2)/�d]}
�/2

+
Im {w [(� + i�/2)/�d]}

�

◆

+
⇡2

16�2

d

|w [(� + i�/2)/�d]|2 w
2

L2

!

, (7.25)

where we have defined

A(
1

,
2

,�) =
16(2� + 

1

+ 
2

)


1


2

(2� + 
1

)(2� + 
2

)(
1

+ 
2

)
. (7.26)

Using Eqs. (7.19) and (7.25) we can directly evaluate the write e�cency from Eq. (7.11).

In the limit of 
1

� (�,
2

) and � � �d � �, the expression for ⌘write reduces to

⌘write ⇡ 1

1 + 
2

2�+
2

⇣

4L2

⇡w2

� 1
⌘ , (7.27)

Note, we have assumed that the Gaussian xy dependence of the couplings have a waist of

w < L. Eq. (7.27) shows that ⌘write ! 1 as 
2

/� ! 0, i.e. the write e�cency improves

with the length of the e↵ective interaction time. This is the motional averaging of the
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atomic interaction with the light. Note that Eq. (7.27) also shows how the e�ciency

improves as the ratio between the beam area and the cell area ⇡w2/L2 increases.

7.2.1 Numerical simulation I: Write

To justify our assumption of an exponential decay of the correlations appearing in

h|✓j(t)|i2, and to qualitatively characterize the readout e�cency, we perform a numerical

simulation of a gas of non-interacting atoms in a cell. We have based the simulation

on the microcells filled with Cs-atoms, which are currently being considered for future

proof-of-principle experiments in the laboratory. These cells have dimensions of 300

µm ⇥ 300 µm ⇥ 1 cm. The cells have been placed inside a cavity with a linewidth of


1

⇡ 2⇡ ·46 MHz and both the field from the quantum photon and the classical drive are

assumed to have approximately a cylindrical shape with a waist of 55 µm. The modest

beam waist ensures that we can neglect losses from the walls of the cell. An approximate

⇤ atom can be realized in the hyperfine states of Cs with state |0i = |F = 4,mF = 4i
and state |1i = |F = 3,mF = 3i in the 62S

1/2 manifold. The Doppler width of the

atomic levels, at a temperature of T = 293 K, is �d ⇠ 2⇡ ·225 MHz and we assume to be

detuned � ⇠ 4�d from the excited level such that the Doppler broadening is negligible.

The starting point of our simulations is Eq. (7.20) but we do not make the assumption

of kc ⇡ kq ⇡ k, as in our analytical calculations, since we have the 2⇡ · 9.2 GHz splitting

between the ground states, which corresponds to kq � kc = �k ⇡ 193 m�1. As a result,

the expression for Zj(t) is

Zj(t) =
ei(�k

)z
j

(t) � e�i(k
c

+k
q

)z
j

(t)

��/2 + i(� + kcv
(j)
z (t))

+
e�i(�

k

)z
j

(t) � ei(kc+k
q

)z
j

(t)

��/2 + i(� � kcv
(j)
z (t))

, (7.28)

which reduces to Eq. (7.22) for �k = 0. The extra terms / e±i�
k

z
j will approximately

result in a factor of

c
�k =

hcos (�kzj)i2
hcos (�kzj)

2i (7.29)

multiplying the analytical expression for the write e�cency, which was obtained assum-

ing �k = 0. Fig. 7.3 shows how c
�k depends on the length of the cell assuming that

the atoms are equally distributed in the entire cell. It is seen from Fig. 7.3 that as long

as the length of the cell is 2Lz . 1 cm then c
�k & 0.97 for �k ⇡ 193 m�1 and hence

the frequency di↵erence between the quantum and classical fields does not significantly

degrade the write e�ciency. In all our numerical simulations, we, however, keep the

terms / e±i�kz
j for completeness.
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Figure 7.3: c�k

plotted against the length 2L
z

of the cell for �
k

⇡ 193 m�1 corre-
sponding to the 2⇡ · 9.2 GHz splitting between the hyperfine ground states of 133Cs.
The atoms are assumed to be evenly distributed in the cell. c�k

& 0.97 for 2L
z

. 1
cm.

The correlations appearing in hXY ⇤
j (t

00
1

)XYj(t00
2

)Z⇤
j (t

00
1

)Zj(t00
2

)ie (see Eq. (7.20)) depend

on |t00
1

� t00
2

| and we therefore introduce the shorthand notation hXY ⇤
j (t

00
1

)XYj(t00
2

)Z⇤
j (t

00
1

)Zj(t00
2

)ie =
hXY,Zie(t00

1

�t00
2

). We change to the variables u = t00
1

+t00
2

and s = t00
1

�t00
2

and by changing

the order of integration, we can perform the integrals over t, t0
1

, t0
2

and u. To obtain the

write e�cency ⌘write, we need to perform an additional integration over t (see Eq. (7.11)).

We are therefore left with

Z t
int

0

h|✓(t)|2iedt =
Z t

int

0

h(tint,1,2, s)hXY,Zie(s)ds, (7.30)

where h(tint,1,2, s) is a function of u obtained by performing the integrals over t, t0
1

, t0
2

and u. We can evaluate the integral over u numerically by simulating the correlations

hXY,Zie(s). Since the atoms do not interact with each other, we independently simulate

the motion of N = 5000 atoms through the cell and evaluate the correlations of atoms at

points separated in time by s and then average over many realizations. The atoms are

assumed to be evenly distributed in the cell and their velocity distribution is assumed

to follow a Maxwell Boltzmann distribution at temperature T = 293 K. We assume that

the atoms are rethermalized completely after every collision with the walls of the cell

but qualitatively similar results are obtained for a balistic model without thermalization.

For the ballistic model, the Zj parts of the couplings in principle do not average down

and Eq. (7.23) is no longer strictly valid. In principle, this could lead to e↵ects not

averaged away by using narrow filter cavitites. However, we are far detuned compared
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to the Doppler width of the atoms and the cavity fields are standing waves, which can

be viewed as the superposition of two counter propagating waves. As a result, the e↵ect

of the velocity fluctuations of the atoms cancel and the fluctuations in the Zj terms are

greatly suppressed. This is in contrast to what happens in ensemble based schemes with

a laser coming from one side where Doppler e↵ects do not go away by working far of

resonance [120]. We therefore obtain similar results for the ballistic model as for the

model with complete thermalization. The result of a simulation with thermalization is

seen in Fig. 7.5a, which shows how the correlations decay as a function of s such that

for s ! 1, we have hXY,Zie(s) ! |hXY ie|2 |hZie|2. This enables us to introduce a

maximal cuto↵, smax, in the numerical integral appearing in Eq. (7.30), above which,

the correlations have e↵ectively vanished. As a result, we can semianalytically evaluate

⌘write for an arbitrary pulse length tint without additional numerical di�culty. Note

that Fig. 7.5a also shows that the exponential model of the decay of the correlations

assumed in our analytical calculations is a good approximation.

The result of our semianalytical calculation of the write e�ciency is shown in Fig. 7.4.

Here, the write e�ciency is plotted against the linewidth of the filter cavity.

Figure 7.4: Write e�cency plotted against the linewidth of the filter cavity. We have
simulated a Cs cell with L = 150 µm and w = 55 µm corresponding to the experimental
cells considered for future proof-of-principle experiments. We have assumed a detuning
of � ⇠ 2⇡ · 900 MHz, a pulse length of t

int

= 10/2 and that the cell cavity has
1 = 2⇡ · 46 MHz. Furthermore, we have assumed a perfect detection e�ciency and

that the filter cavity removes all classical photons.
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Figure 7.5: (a) Simulation of the correlations hXY ⇤
j

(0)XY
j

(t)Z⇤
j

(0)Z
j

(t)i
e

. The cor-
relations are normalized to be unity for t ! 1 where there are no correlations and
hXY ⇤

j

(0)XY
j

(t)Z⇤
j

(0)Z
j

(t)i
e

! |hXY i
e

|2 |hZi
e

|2. The data from the simulation have
been fitted with an exponential model validating our assumption of an exponential de-
cay of the correlations. The fit gives a decay rate of � = 2⇡ · 0.75 MHz corresponding
to � ⇠ 1.3v

thermal

/w. (b) Sketch of the 62S1/2 and 62P3/2 hyperfine levels in 133Cs. A
⇤-atom is realized with |0i = |F = 4,m

F

= 4i, |1i = |F = 3,m
F

= 3i as ground states
in 62S1/2 and |ei = |F 0 = 4,m

F

0=4i as the excited level in 62P3/2. To characterize the
optical depth, we assume that g = 0.

It is seen that we reach ⌘write ⇠ 90% for 
2

⇠ 2⇡ · 10 kHz, which translates into a write

time of t ⇡ 140 µs.

7.3 Number of photons

As mentioned in Sec. 7.1, the purpose of the filter cavity is both to increase the averaging

time and to filter the quantum photon from the classical photons. We will now estimate

the number of classical photons, which needs to be filtered from the single quantum

photon. In order to do this, we need to characterize the ensemble and therefore introduce

the optical depth.

To obtain an expression for the optical depth, we assume that we are working with the

previously mentioned Cs-cells. The relevant level structure is shown in Fig. 7.5b. Note

that with this field configuration, the cell-cavity in principle also mediate the transition

|F = 4,mF = 4i ! |F = 4,mF = 3i in the write setup but this transition is suppressed

by the 2⇡ · 9.2 GHz splitting between the ground states, which makes the corresponding

photon non-resonant with the subsequent filter-cavity. This transition will, therefore,

never give a click in the detector. Since the interaction is only a perturbation to the

system, we can therefore neglect this transition in our numerical simulations. All atoms
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in the ensemble are initially pumped to the ground state |0i = |F = 4,mF = 4i and, in
order to characterize the optical depth, we assume g = 0 such that the cavity field only

couples |0i ! |e
1

i and |0i ! |e
2

i with coupling constants g̃
1

and g̃
2

. Here |e
1

i = |F 0 =

4,mF 0 = 4i and |e
2

i = |F 0 = 5,mF 0 = 4i (see Fig. 7.5b).

The equations of motion for the cavity field, âcav, and the relevant atomic operators in

a suitable rotating frame are

˙̂acav = �(/2)âcav + i
N
X

j=1

h

g̃(j)
1

(t)�̂(j)e
1

0

+ g̃(j)
2

(t)�̂je
2

0

i

(7.31)

˙̂�(j)e
1

0

= �(�
1

/2� i�
1

)�̂(j)e
1

0

+ ig̃(j)
1

(t)âcav (7.32)

˙̂�(j)e
2

0

= �(�
2

/2� i�
2

)�̂(j)e
2

0

+ ig̃(j)
2

(t)âcav, (7.33)

where �(j)e
l

0

= |elijh0| (l = 1, 2) and we have assumed that �(j)e
l

e
l

��(j)
00

⇡ �1. For simplicity,

we have assumed the couplings (g̃) to be real. �
1

= !
1

� !cav (�
2

= !
2

� !cav) is the

detuning of |e
1

i (|e
1

i), while �
1

(�
2

) is the corresponding decay rate. Here !
1

(!
2

) is the

frequency associated with the atomic level and !cav is the frequency of the cavity field.

Formally integrating Eqs. (7.32)-(7.33), assuming that �(j)e
1

0

= �(j)e
2

0

= 0 at time t = 0,

and inserting the resulting expression for �(j)e
1

0

and �(j)e
2

0

into Eq. (7.31) gives

˙̂acav = �(/2)âcav �
N
X

j=1

"

g̃(j)
1

(t)

Z t

0

e�(�
1

�i�
1

)(t�t0)g̃(j)
1

(t)âcav(t
0)dt0

+g̃(j)
2

(t0)

Z t

0

e�(�
2

�i�
2

)(t�t0)g̃(j)
2

(t0)âcav(t
0)dt0

#

, (7.34)

where we have explicitely written the time dependence of âcav inside the integrals. We

evaluate the integrals in Eq. (7.34) assuming that we can treat âcav(t0) as a constant in

time and move it outside the integrals. Furthermore we write the couplings g̃(j)l (t0) =

g̃(j)l,xy(t) sin(k(zj(0)+v(j)z (0)t0)) similar to the procedure described in Eq. (7.12) and below.

Note that k is the wavenumber associated with the cavity field while zj(0) (v
(j)
z ) is the

z-part of the position (velocity) of the j’th atom. After evaluating the integrals, we

obtain

˙̂acav = �(/2)âcav +
âcav
4

N
X

j=1



�

�

�

g̃(j)
1,xy(t)

�

�

�

2

Zj(�1

, �
1

, k) +
�

�

�

g̃(j)
2,xy(t)

�

�

�

2

Zj(�2

, �
2

, k)

�

,

(7.35)

where we have adiabatically elliminated the decay of the atoms and have rewritten Zj(t)

defined in Eq. (7.22) to

Zj(�, �, k) =
e2ikzj(t) � 1

�/2 + i(kvj(0)� �)
� 1� e�2ikz

j

(t)

�/2� i(kvj(0) + �)
, (7.36)
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such that �,�, and k become variable parameters. We now perform an ensemble average

of Eq. (7.35) assuming that the atoms are evenly distributed in the cell and that their

velocity distribution follows a Maxwell Boltzmann distribution, as previously considered.

Furthermore, we assume that the xy-dependece of the couplings are Gaussians similar

to Eq. (7.15) and that we are detuned far from the Doppler width of the atoms. This

results in

˙̂acav = �(/2)âcell � âcellN

4

"

|g̃
1

|2 �
1

�2
1

/4 + �2

1

+
|g̃

2

|2 �
2

�2
2

/4 + �2

2

#

⇡

8

w2

L2

+ i[. . .], (7.37)

where the imaginary part is contained in [. . .]. The second term in Eq. (7.37) is iden-

tified as the single pass optical depth d̃ divided by the cavity round trip time ⌧ , where

exp(d̃) is the attenuation of the field of the light after passing through the ensemble.

Since d̃ depends on e.g., the detuning, it is, however, a direct characterisation of the

ensemble. Instead, we characterise the ensemble by d, the hypothetical optical depth,

which would be obtained for resonant fields in the absence of doppler broadening and

hyperfine interaction, i.e., Eg. (7.37) with �
1

= �
2

= 0. Furthermore, we assume that

�
1

= �
2

= � such that the optical depth is

d =
N⌧

�

⇣

|g̃
1

|2 + |g̃
2

|2
⌘

↵xy (7.38)

where we have defined the factor ↵xy = ⇡
8

w2

L2

. Note that Eq. (7.38) can be rewritten to

the following well known formula for the optical depth [122]

d = 6⇡
N

(2L)2
�̃2
✓

�
1

+ �
2

�

◆

, (7.39)

where 2L is the transverse size of the cell, �̃ = �/2⇡ is the rescaled wavelength of the

light, and �s is the spontaneous decay rate of level es back to |0i (s=1,2). The optical

depth can also be related to the Faraday rotation angle, ✓F , which is typically measured

in experiments and used to estimate the number of atoms, N in the ensemble [40, 123].

For 133Cs, the relation between ✓F and N is [123]

N =

�

�

�

�

32⇡L2✓F�
2

a
1

(�
2

)��2

�

�

�

�

(7.40)

where a
1

(�
2

) is the vector polarizability given by

a
1

(�
2

) =
1

120

✓

� 35

1� �
3

0
5

0/�
2

� 21

1� �
4

0
5

0/�
2

+ 176

◆

, (7.41)
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with �x0
5

0 denoting the hyperfine splitting between level F 0 = x and F 0 = 5. Combining

Eq. (7.39) and Eq. (7.40) gives the following relation between d and ✓F

d =

�

�

�

�

12�
2

✓F
a
1

(�
2

)

�
1

+ �
2

�2

�

�

�

�

(7.42)

For the cells considered for future proof-of-principle experiments, the Faraday rotation

angle has been measured to be 4.4o for a detuning of � = 2⇡ · 850 MHz. This translates

into an optical depth of d ⇡ 84.

Having defined the optical depth, we can now estimate the number of classical pho-

tons that need to be filtered from the quantum photon. The field at the detector (see

Fig. 7.1b) is described by the operator â in Eq. (7.8). Assuming a write pulse of length

tint, we write the average number of quantum photons, Nquant at the detector as

Nquant = hâ†â · tinti = 1

16
2
2


1

Nh|✓j |2ie, (7.43)

where we have used that h|✓j |2ie is independent of time as shown in Eq. (7.25). Note

that h|✓j |2ie / |g|2 |⌦|2 and we estimate the number of classical photons contained in the

write pulse as Nclas ⇠ |⌦|2 tint1/(4 |g̃|2) = |⌦|2 tint1/(4� |g|2), where � = |µ
⌦

|2 / |µg|2
is the ratio between the Clebsh-Gordan coe�cients (µ) of the transitions characterized

by g̃ and g (see Fig. 7.5b). From Eq. (7.43), we then get

Nclas ⇠ Nquant

N

4

|g|4 h|✓|2i�2
2

. (7.44)

The number of classical photons that needs to be filtered is then estimated by settting

Nquant = 1. Using Eqs. (7.38)-(7.39), we can express Nclas in terms of the optical

depth and the finesse of the cell-cavity, defined as F = 2⇡/(⌧
1

), where ⌧ is the cavity

roundtrip time. Furthermore, we assume that h|✓j |2ie ⇡ |h✓jie|2 such that the number

of classical photons can be estimated as

Nclas ⇠ 8⇡�2
2

L2�2

3��̃2�(�
1

+ �
2

)

1

dF2

, (7.45)

where we have expanded the espression for |h✓ji|2 in the limit of large detuning. � =
|µ

g1

|2+|µ
g2

|2

|µ
g

|2 is the ratio between the Clebsh-Gordon coe�cents of the transitions char-

acterized by g̃
1

, g̃
2

and g in Fig. 7.5b. For the experimental Cs-cells and a detuning of

� = 2⇡ · 898 MHz, we find that Nclas ⇠ 7.4·1011
dF2

. With d = 84 and F = 100 this gives

Nclass = 9 · 105. Since the quantum and classical field di↵er both in polarisation and

frequency this level of filtering is expected to be easily obtained using both polarization

filtering and the filter-cavity.
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7.4 Readout

In this section, we go through the details of the readout process. As it was the case in

the analytical treatment of the write process, we will, for now, assume that the atoms

are perfect ⇤-atoms. We will later include the complex level structure of 133Cs in a

numerical treatment of the readout e�ciency. The interaction between the atoms and

the light is described by the Hamiltonian

Ĥread =�
N
X

j=1

��̂(j)ee +

✓

⌦j(t)

2
�̂(j)e1 +gj(t)âcell�̂

(j)
e0 +H.c.

◆

, (7.46)

which is identical to Ĥwrite if gj(t) and ⌦j(t) are interchanged (see Eq. (7.1)). Including

spontaneous emission and cavity decay, as in the write process, we obtain the equations

of motion for the cavity field, âcell, and the atomic operators �̂j
0e and �̂j

01

dâcell
dt

= �1
2
â+ i

N
X

j=1

g⇤j (t)�̂
(j)
0e (7.47)

d�̂(j)
0e

dt
= �

⇣�

2
� i�

⌘

�̂(j)
0e + igj(t)âcell + i

⌦j(t)

2
�̂(j)
01

(7.48)

d�̂(j)
01

dt
= i

⌦⇤
j (t)

2
�̂(j)
0e , (7.49)

where we have assumed that �̂(j)ee � �̂(j)
00

⇡ �1 and that the dynamics of �̂(j)
10

are gov-

erned by the classical drive (⌦). Furthermore, we have neglected the noise operators

associated with spontaneous and cavity decay, as in the write process. We can formally

integrate Eq. (7.48), assuming the xy-dependence of the couplings to be constant for the

integration while the z-dependent parts are of the form sin(k(zj(0)+v(j)z (0)t)), as in the

write process. Note, that the z-part of the couplings are sinusoidal due to the standing

wave in the cavity. Futhermore, we need to integrate over the motion in the z-direction

since the coupling changes rapidly with z while the xy-dependent parts vary relatively

slowly with x and y due to the broad Gaussian profile of the beams compared to the

wavelength. The integration gives a set of coupled equations

dâcell
dt

= A(t)âcell +
N
X

j=1

Bj(t)�̂
(j)
01

(7.50)

d�̂(j)
01

dt
= Bj(t)âcell + Cj(t)�̂(j)

01

, (7.51)
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where

A(t) =
�

1

2
+

1

4

N
X

j=1

�

�

�

g(j)xy (t)
�

�

�

2

 

e2ikzj(t) � 1

�/2� i(� � kv(j)z (t))
� 1� e�2ikz

j

(t)

�/2� i(� + kv(j)z (t))

!

(7.52)

Bj(t) =
1

8
g(j)xy (t)⌦

(j)
xy (t)

 

e2ikzj(t) � 1

�/2� i(� � kv(j)z (t))
� 1� e�2ikz

j

(t)

�/2� i(� + kv(j)z (t))

!

(7.53)

Cj(t) =
1

16

�

�

�

⌦(j)
xy (t)

�

�

�

2

 

e2ikzj(t) � 1

�/2� i(� � kv(j)z (t))
� 1� e�2ikz

j

(t)

�/2� i(� + kv(j)z (t))

!

. (7.54)

We have assumed that kc ⇡ kq ⇡ k and for simplicy we have also assumed the couplings

(g,⌦) to be real. We now write

A(t) = hA(t)ie + �A(t) = Ā+ �A(t) (7.55)

Bj(t) = hBj(t)ie + �Bj(t) = B̄ + �Bj(t) (7.56)

Cj(t) = hCj(t)ie + �Cj(t) = C̄ + �Cj(t), (7.57)

and assume that the couplings consist of large, average and time-independent parts

(Ā, B̄, C̄) and small, time-dependent perturbations (�A(t), �Bj(t), �Cj(t)). Furhermore,

we define

Ŝl =
1p
N

N
X

j=1

e2i⇡(j�1)l/N �̂(j)
01

(7.58)

B0
l(t) =

1p
N

N
X

j=1

e2i⇡(j�1)l/NBj(t) (7.59)

Cl,l0(t) =
N
X

j=1

e2i⇡(j�1)(l�l0)/NCj(t), (7.60)

which allows us to transform the system of equations described by Eqs. (7.50)-(7.51)

into
dx(t)

dt
= (M

0

+ �M(t))x(t), (7.61)
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where x =
⇣

âcell, Ŝ0

, Ŝ
1

. . . ŜN�1

⌘

and

M
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@
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p
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A

, (7.62)
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0

B

B

B

B

B

B

B

B

B

B

B

@

�A(t) B0
0

(t) B0
�1

(t) B0
�2

(t) . . . B0
1�N (t)

B0
0

(t) C
0,0(t) C

0,1(t) C
0,2(t) . . . C

0,N�1

(t)

B0
1

(t) C
1,0(t) C

1,1(t) C
1,2(t) . . . C

1,N�1

(t)
...

...
...

. . .
...

...
...

...
. . .

...

B0
N�1

(t) CN�1,0(t) CN�1,1(t) . . . . . . CN�1,N�1

(t)

1

C

C

C

C

C

C

C

C

C

C

C

A

.(7.63)

With this transformation, we thus keep the mean values in M
0

, which describes the

strongly coupled symmetric mode Ŝ
0

and the cavity mode âcell as well as an overall

damping. All fluctuations, on the other hand, are contained in �M(t), which we will

treat perturbatively. Assuming that the initial state of the atoms before readout is the

symmetric Dicke state, we have that Ŝl 6=0

= 0 and we find that, to second order in

�M(t), the cavity field can be expressed as âcell ⇠ â(0)cell + â(2)cell. Here we have omitted

the first order term, which originates from the fluctuations in �A(t) and B0
0

since we

find that they are surpressed by a factor of at least dF/N compared to the other terms

where d is the optical depth defined in Eq. (7.38) and F is the finesse of the cell-cavity.

The readout e�cency is ⌘read =
R t

read

0

dt
1

â†cellâcell, which to second order is

⌘read ⇡ 
1

Z t
read

0

dt(â(0)cell(t))
†â(0)cell + 2

1

Real

✓

Z t
read

0

dt(â(0)cell(t))
†â(2)cell

◆

(7.64)

⇡ ⌘read,0 + ⌘read,2 (7.65)

Including only the mean value terms we find that

⌘read ⇡ ⌘read,0 = 
1

Z t
read

0

dt(â(0)cell(t))
†â(0)cell

⇡ 
1

Z t
read

0

dt
N
�

�B̄��2
|D| eReal(

¯A+

¯C)t
⇣

e
1

2

p
Dt � e�

1

2

p
Dt
⌘⇣

e
1

2

p
D⇤

t � e�
1

2

p
D⇤

t
⌘

, (7.66)
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where D = (C̄ � Ā)2 + 4N B̄2. In the limit of weak driving ⌦ and consequently a long

readout pulse Eq. (7.66) reduces to

⌘read,0 ⇡ 1
⇡
dF + 1

. (7.67)

⌘read,0 is the upper limit of the readout e�ciency reached for a weak drive ⌦ and a long

readout pulse. Eq. (7.67) is equivalent to the result for cold atomic ensembles [120] and

represents the long time limit of perfect motional averaging where the e�cency improves

with optical depth and finesse of the system. Note that we define the readout rate from

Eq. (7.66) as �read ⇡ Real(Ā+ C +
pD).

For the second order term ⌘read,2 we find

⌘read,2 = 2
1

Real
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iĀ�C̄+pD
2
pD

!

+e
1

2

p
D(t�t00�t0)

 

⇥

⇣
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Here we have once again neglected the contributions from the fluctuations contained in

�A(t) and B
0

since they are surpressed by a factor of at least dF/N compared to the

terms above. In deriving Eq. (7.68), we have used that â(2)cell consists of sums of the form

1

N

N�1

X

l=1

N
X

j=1

N�1

X

j0=0

e�2i⇡/N(j�j0)l�Xj(t
0)�Xj0(t

00), (7.69)

where Xj could e.g. denote Bj . For ⌘read,2, we calculate hâ(0)cellâ
(2)

celli and the average of

Eq. (7.69) is ⇡ Nh�Xj(t0)�Xj(t00)ie since h�Xj(t0)�Xj0(t00)i = 0 by construction if j 6= j0

and we have assumed that N � 1 ⇡ N . All correlations appearing in Eq. (7.68) are

thus single atom correlations and the index j is kept to indicate this. The correlations

contained in ⌘read,2 can be treated analytically in a similar fashion as the correlations in

h|✓j(t)|2i for the write process but we have, however, treated the correlations numerically

by simulating the previously mentioned Cs-cells.

7.4.1 Numerical simulation II: Readout

The simulations are performed in the same way as for the write process. An extra

di�culty is, however, that we need to consider the coupling between the light fields and

the extra levels in 133Cs. We assume that the readout process has the level structure

shown in Fig. 7.6.
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Figure 7.6: Schematic view of the readout realized in the hyperfine levels of 62S1/2 and
62P3/2 in 133Cs. We imagine the single exitation to be stored in state |F = 3,m

F

= 3i
while the macroscopically populated state is |F = 4,m

F

= 4i. Note that the classical
drive also couples |F = 4,m

F

= 4i to |F 0 = 4,m
F

0 = 4i and |F 0 = 5,m
F

0 = 4i, which
can pump atoms out of the ground state. These couplings are however su�ciently

surpressed by the large splitting of 2⇡ · 9.2 GHz between the ground states.

The couplings to the extra levels result in extra coupling terms in the expressions for

A,Bj and Cj , which we include, but the expression for ⌘read,2 is still the same as given

in Eq. (7.68). Note, however, that a cavity detuning of the quantum field (appearing in

the expression for A) is needed to compensate the phases resulting from some of these

additional couplings (see App. E). The starting point of our numerical simulations is

therefore Eq. (7.68), where we can change the order of integration and introduce the

variables u = t0 + t00 and s = t0 � t00 since the correlations only depend on the time

di↵erence |t0 � t00|. Performing the integrals over t and u analytically, allows us to write

⌘read,2 =

Z t
int

0

(h
1

(tint, s)h�B, �Bie(s) + h
2

(tint, s)h�B, �Cie(s)
+h

3

(tint, s)h�C, �Bie(s) + h
4

(tint, s)h�C, �Cie(s))ds, (7.70)

where h
1

(tint, s), h2(tint, s), h3(tint, s) and h
4

(tint, s) are functions of s and tint, which

are obtained from the integration over t and u. We have once again introduced the short

notation for the correlations h�Bj(t0)�Cj(t00)ie = h�B, �Cie(s). Note that h�B, �Cie(s) ! 0

for s ! 1 similar to the situation in the write process, i.e. the coupling of an atom at

time t is uncorrelated from its initial coupling if t is large. We can therefore introduce

a cuto↵ smax in the integral in Eq. (7.70) such that we can evaluate ⌘read,2 for an

arbitrary length of the readout pulse tint without additional numerical di�culty. We then
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Figure 7.7: Read out e�ciency plotted against the readout time ⌧
read

for di↵erent
values of the finesse (F). The e�cency was simulated for the same Cs cells as the write
e�ciency and we have assumed that ⌧

read

= 3/�
read

where �
read

is the readout rate.
The optical depth was assumed to 84 which corresponds to measurements.

numerically evaluate ⌘read,2 from Eq. (7.70) by simulating the decay of the correlations

similar to the simulation of the write process. From the numerical simulation, we find

that the term h�Cj�Cjie dominates ⌘read,2. This term describes loss of the excitation

due to spontaneous emission to modes not confined by the cavity. Fig. 7.7 shows the

readout e�cency for di↵erent values of the finesse plotted against the readout time

⌧read = 3/�read where �read is the readout rate, which is proportional to the classical

drive. The Cs-cells used have a measured optical depth around 84, which means that

for a finesse of 100 we can obtain ⌘read ⇡ 90% for a readout time of t ⇡ 183 µs.

7.5 DLCZ repeater

So far, we have demonstrated how motional averaging enables e�cient write and read

processes at room temperature. The necessary time of the write and readout processes

can be kept well below the reported coherence times of such systems enabeling an e�cient

quantum memory. We will now consider, some of the errors that limit the performance

of the system when being a part of a DLCZ protocol [16].

The write e�cency ⌘write as defined in Eq. (7.10) can also be viewed as the conditional

fidelity of the atomic state with the symmetric Dicke state following a click in the de-

tector. In the entanglement setup of a DLCZ repeater, two ensembles are driven weakly
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and any emitted quantum photons are send to a central balanced beam splitter and

subsequently detected. If the excitation probability is small, the detection of a photon,

to good approximation, heralds a Bell-type state between the two ensembles, where the

single excitation is shared between them. In such a setup, the write e�cency would

translate into an error in the fidelity of the entangled state. However, a write e�ciency

of 90% means that the atomic state basically contains a mixture of 10% vacuum, which

can never subsequently produce a photon upon readout. The entanglement swap in a

DLCZ repeater relies on reading out the stored excitation and the vacuum part would

therefore not result in a detection event. Hence the error from the writing is converted

into a total e�cency of ⌘write⌘read. Ine�cient motional averaging in the write process

thus degrades the e�ciency but not the fidelity. The same argument applies if a single

ensemble is simply used as a single photon source.

In order to create a single excitation in the write process, we have assumed that the

ensemble is driven weakly. There is, however, always a finite probability of creating mul-

tiple excitations in the ensemble during the write process, which can introduce an error

in the fidelity of the entanglement setup in a DLCZ repeater. Multiple excitations would

also creates multiple quantum photons, which could in principle be discriminated from

the situation with a single quantum photon using perfect number resolving detectors

and assuming that no photons were lost between the cavity and the detectors. However,

assuming number resolving detectors, but finite detection probability, ⌘detect, the multi-

ple excitations will introduce an error of ⇠ 2(1�⌘detect)↵ where ↵ / R t
int

0

h|✓j(t)|2i is the
excitation probability. This error can be made arbitrarily small by simply decreasing

↵, i.e. decreasing the strength of the classical drive. This will, however, also increase

average number of times, the entangling process needs to be repeated until successful

and hence decrease the rate of entanglement creation.

There are a number of errors, which cannot simply be described as an ine�ciency.

The photons being read out from two ensembles should be coherent, i.e. they should be

indistinguishable. Any incoherence will e.g. translate into an error in the average fidelity

in a DLCZ protocol. During the readout process, the excitation may not be readout

collectively but rather as a single atom readout. As a result, the photon will have a

random phase depending on which atom was readout, which degrades the coherence

when using the ensemble as a single photon source. We characterize the error from

this process by considering a Hong-Ou-Mandel experiment [124]. We assume, that we

have successfully stored two single excitations in two ensembles. The excitations are

readout simultaneously and combined on a balanced beam splitter. Each output port

of the beamsplitter are detected with a single photon detector. If indistinguishable

photons are incident on the beam splitter, they will bunch together and only one of

the output detectors will give a click. If, however, they are distinguishable there is a
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50 % probability that both detectors clicks. Letting â (b̂) characterize the photon from

ensemble one (two) we can write the probability of a click in both detectors as

✏c =
1

2⌘2read

Z 1

0

dt

Z 1

0

dt0
D

(â(t))†(b̂(t0))†b̂(t0)â(t) + (â(t0))†(b̂(t))†b̂(t)â(t0)

�(â(t))†(b̂(t0))†b̂(t)â(t0)� (â(t0))†(b̂(t))†b̂(t0)â(t)
E

, (7.71)

where the factor of 1/(2⌘2read) ensures correct normalization (⌘read is the total readout

e�ciency) such that for perfectly coherent photons ✏c = 0 while for completely distin-

guishable photons ✏c = 1. From our pertubative calculation of the redout e�ciency,

we have, â ⇠ â
0

+ â
2

and b̂ ⇠ b̂
0

+ b̂
2

to second order, assuming that single symmetric

excitations were stored in both ensembles. Inserting these expressions into Eq. (7.71)

gives, to second order in â
2

and b̂
2

,

✏(2)c =
1

⌘2read

Z 1

0

dt

Z 1

0

dt0
D

2(â
2

(t))†(b̂
0

(t0))†b̂
0

(t0)â
2

(t) + (â
2

(t0))†(b̂
0

(t))†b̂
2

(t)â
0

(t0)

�2(â
2

(t))†(b̂
0

(t0))†b̂
2

(t)â
0

(t0)� (â
2

(t0))†(b̂
0

(t))†b̂
0

(t0)â
2

(t)
E

, (7.72)

where we have used that e.g. h(â
2

(t))†(b̂
0

(t0))†b̂
0

(t0)â
2

(t)i = h(â
0

(t0))†(b̂
2

(t))†b̂
2

(t)â
0

(t0)i
since the two setups are identical. The expression for â

0

(b̂
0

) and â
2

(b̂
2

) are found from

Eqs. (7.66)-(7.68). Note, that while ⌘read,2 contains two-point correlations of the form

h�Bj(t)�Bj(t0)i, we find that these cancel in Eq. (7.72) and we are left with four-point

correlations of the form h�Bj(t)�Bj(t0)�Bj(t00)�Bj(t000)i. These are suppressed by a factor

of 1/N compared to the two-point correlations and since N � 1 (N ⇠ 107 in the Cs-

cells we consider), the error from ✏(2)c can be neglected compared to e.g. the error from

assymetric excitations discussed below.

Another source of incoherence originates from ine�cent optical pumping and scattering

of atoms through spontaneous emission during the write process. Both of these processes

results in excitations being stored in assymmetric modes described by the operators

Ŝl 6=0

(see Eq. (7.58)), which upon readout can degrade the coherence of the photons.

The contribution to the single photon field from these assymetric modes can be found

from our perturbative treatment of âcell in the readout process. Letting ppump denote

the probability of an atom being in the wrong state, this translates into an average

excitation of the asymmetric mode of ppump. We find that the assymetric modes gives a
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first order contribution of

â
1

(t) =
p

1

ppump

Z t

0

dt0
e

1

2

(A+

¯C)(t�t0)

2
pD e

¯Ct0 1p
N

N�1

X

l=1

N
X

j=1

e�2i⇡(j�1)l
⇣

⇣

e
1

2

p
D(t�t0) � e�

1

2

p
D(t�t0)

⌘

��A� C̄� �Bj(t
0) + 2B̄�Cj(t0)

�

Ŝl

+
⇣

e
1

2

p
D(t�t0) + e�

1

2

p
D(t�t0)

⌘p
D�Bj(t

0)Ŝl

⌘

. (7.73)

where 
1

is the decay rate of the cavity. Employing the Hong-Ou-Mandel analysis

described above, we find that the resulting incoherence to lowest order is

✏(1)c =
1

⌘2read

Z 1

0

dt

Z 1

0

dt0
D

2(â
1

(t))†(b̂
0

(t0))†b̂
0

(t0)â
1

(t)

�(â
1

(t0))†(b̂
0

(t))†b̂
0

(t0)â
1

(t)
E

. (7.74)

We can numerically evaluate the correlations contained in Eq. (7.74) in a similar fashion

as for the correlations in ⌘read,2, i.e. we simulate the experimental Cs-cells. We find that

the second term in Eq. (7.74) can be neglected since the readout rate of the assymetric

excitation described by â
1

is much smaller than the readout rate of the symmetric

excitation described by â
0

. The numerical simulation of ✏(1)c is shown in Fig. 7.8 where

we have assumed a readout time of ⌧read = 3/�read where �read is the readout rate of the

symmetric excitation. The choice of readout time is made such that most of the coherent

photons are being being readout while only a small part of the incoherent photons are

being readout since the readout rate of incoherent photons is much smaller than the

readout rate for coherent photons.
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Figure 7.8: ✏(1)
c

plotted against the readout time defined as ⌧
read

= 3/�
read

where
�
read

is the readout rate of the symmetric excitation. The optical depth was assumed
to be 84, as measured. F in the figure is the finesse of the cell-cavity. Note that the

readout rate of the assymetric excitation is much slower than �
read

and ✏(1)
c

will thus
increase (decrease) if ⌧

read

�
read

increases (decreases).

Increasing the readout time to e.g. 4/�read will increase ✏(1)c since we will read out more

of the assymetric excitation. In a similar fashion ✏(1)c will decrease if we have a smaller

readout time. The increase in ✏c/ppump seen in Fig. 7.8 for small readout time is because

⌘read decreases (see Fig. 7.7). It is seen that for a finesse of F = 100 and a readout time

of ⇡ 180 µs for which ⌘read ⇡ 90%, we have an error of ✏(1)c ⇡ 35ppump. Assuming that

ppump = 0.03% we would thus get an error of ⇡ 1%.

7.6 Conclusion and discussion

In conclusion, we have introduced the concept of motional averaging, which can be used

to make e�cient and scalable single photon sources and quantum memories based on

atomic ensembles at room temperature. We have demonstrated the concept in a specific

setup, where the atomic ensemble is kept in a small cell inside a cavity and shown how

both write and read e�ciencies above 90% can be achieved for a realistic experimental

system based on Cs-atoms.

To fully exploit the e↵ect of motional averaging, the length of the write and readout

pulses need to be long enough for all atoms to have interacted equally with the light.

Thus the necessary write and readut times depend strongly on the fraction of the atoms
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inside the beams. If this fraction is increased, higher e�ciencies can be obtained in

shorter times. The size of the beams are limited by the experimental details of the setup

such as losses from the cell walls. For the current experimental parameters considered

in this work, the fraction of atoms inside the beam was only 10%. Improving this by a

factor of two will greatly increase the performance compared to what is shown in Figs.

7.4 and 7.7.

The main limitations to the quality of the photons being readout from the ensemble are

the probability of multiple excitations, which can be suppressed with e�cient detection,

and ine�cient optical pumping. Ine�cient optical pumping results in asymmetric ex-

citations of the ensemble, which will give an error during readout since they can lead

to ’false’ clicks. Note that increasing the fraction of atoms in the beam also decreases

the e↵ect of ine�cient optical pumping. For a fraction of 10% we found an error of

⇡ 37ppump for an optical depth of 84 and a finesse of 100. Increasing the fraction to 20%

the error would decrease to ⇡ 17ppump for the same optical depth and finesse.

The scalable property of the room temperature system considered here makes it a can-

didate to realize a DLCZ-like repeater protocol with spatial multiplexing. As shown in

Ref. [18] spatial multiplexing can greatly enhance the rate of entanglement distribution

and decrease the necessary memory time. Other applications of the system could be in

photonic quantum simulators [125, 126]. Such simulators require the creation of several

photons, which can be realized using the room temperature ensembles. The excitations

are simply kept in their ensembles until the apropriate number of excitations is reached.

Subsequently, the excitations are readout to produce the photons for the simulation. To

fully characterize the performance of the room temperature systems in these setups it

would be necessary to include the e↵ect of limited memory time, which we have not

treated in our work.



Chapter 8

Optimization of repeater

structures based on optical

cavitites

a

Much e↵ort has been devoted to the construction of quantum repeaters based on atomic

ensembles, where the large number of atoms can, in principle, enables highly e�cient

quantum memories [17]. However the contruction of a practical quantum repeater re-

mains a great challenge with the limited e�ciencies demonstrated in current experiments

[18, 40].

Recently, single emitter systems such as NV-centers and trapped ions have been con-

sidered for quantum repeaters [127, 128]. Such systems have long been considered for

quantum computation due to the high level of control and their advantageous coherence

properties [11, 12]. The long coherence times demonstrated with e.g. trapped ions make

them desirable as quantum memories but in the primary step of a repeater, entanglement

needs to be created non-locally between two memories. This requires e�cient transfer

of information from the quantum memories into light modes such as single photons.

To this end, the emitter can be placed inside a cavity, which can greatly enhance the

coupling to the light [31, 103]. The cavity can, however, also increase the experimental

di�culty of performing the subsequent step of entanglement swapping in a repeater due

to the detrimental e↵ect of cavity loss and spontaneous emission from the single emitter.

The parameter characterizing this, is the cooperativity C of the emitter-cavity system.

While high fidelity logic operations such as the CNOT gate have been demonstrated

without cavities [11, 129, 130], it can be argued that transferring these techniques to

109



Chapter 8. Optimization of repeater structures 110

a cavity system will make the gate fidelity, F , have a poor scaling of 1 � F ⇠ 1/
p
C

[105, 106]. It is thus very demanding to integrate these techniques in a cavity based

quantum repeater to realize entanglement swapping. It has been suggested to employ

entanglement purification after each swap operation to boost the entanglement but this

often requires a large number of resources or time consuming sequential generation of

purification pairs [14, 131–133]. Alternatively it has also been suggested to physically

move the emitters out of the cavities to perform the swap operation, which requires

excellent experimental control and complex apparatus [128].

In this chapter, I describe the work of me and my collaborators on cavity based quan-

tum repeaters without intermediate entanglement purification. The work was done in

collaboration with Peter Kómár, Eric Kessler, Mikhail D. Lukin and Anders S. Sørensen

and is described in Ref. [134], which is the basis of this chapter. Without intermediate

entanglement purification, it is necessary to increase the performance of of the gates

from the detrimental 1/
p
C scaling in order to have long distance distribution of entan-

glement. To this end, we have considered the deterministic CNOT gate suggested in

Ref. [106], implemeted with the entanglement scheme of Ref. [109] and the heralded CZ-

gate described in Chap. 6. Note that a CZ-gate is identical to a CNOT gate up to single

qubit rotations and we will therefore refer to the heralded gate as a CNOT gate. The

deterministic gate has a more favorable scaling of the fidelity as 1� F ⇠ 1/C while the

heralded gate has perfect conditional fidelity at the expense of a finite failure probability.

Because of the e�cient entanglement swapping obtainable with these gates, it is possi-

ble to distribute entanglement over a large distances without intermediate purification,

which greatly simplifies the experimental requirements for realizing the repeater and

enhances the rate of entanglement distribution. Furthermore, we investigate two di↵er-

ent entanglement generation schemes, namely one that relies on single-photon detection,

similar to Ref. [135], and one that uses two-photon detection, similar to Ref. [136]. We

determine under which conditions one is favorable over the other in terms of achiving

the highest secret key rate (see below). We include initial purification in the repeater

but consider only scenarios with 2 or 4 qubits pr. repeater station. Finally, we opti-

mize the general repeater architecture to obtain the highest secret key rate over a given

distance. The essential parameter characterizing the performance of the repeater, is

the cooperativity C of the emitter-cavity systems and we perform the opmization for

a range of cooperativites allowing us to find the optimal repeater structure for a given

cooperativity.
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Figure 8.1: The general architecture of a quantum repeater. The total distance, over
which entanglement should be distributed, is divided into elementary links of length L0

connected by repeater stations pictured as cavitites containing single emitters. After
creating entanglement in the elementary links the entanglement is swapped to larger
distances by combining the elementary links. The numbers on the figure referes to the
swap level of the repeater. The total number of swap levels is 2 for this depicted setup.

Figure 8.2: Entanglement generation in the elementary links. (a) is the situation of
the single-photon detection scheme and (b) is the two-photon detection scheme. Both
schemes use a central station with either (a) a single balanced beam splitter (BS) and
two single-photon detectors or (b) three polarizing beam splitters (PBS) and four single-
photon detectors. The relevant level structure of the emitters are also shown. g denotes
the cavity coupling. For the two-photon scheme the levels |0i and |1i are assumed to

have equal couplling of g/
p
2 to the excited state |ei.

8.1 Entanglement generation

The first step in a quantum repeater is to create non-local entanglement in the elemen-

tary links (see Fig. 8.1). To this end, it has been suggested to use single photon detection

(SPD) and beam splitters to entangle two emitters. In general, the di↵erent proposals

rely on either single-photon detection [135, 137] or two-photon detection [136].

In a single-photon detection scheme, we assume that the two emitters are initially pre-

pared in a state (see Fig. 8.2)

(1� ✏2)|00i+ ✏2|eei+ ✏
p

1� ✏2 (|0ei+ |e0i) (8.1)
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by a weak excitation pulse such that the excitation probability is ✏2. An emitter can go

from state |ei to state |1i by emitting a cavity photon. The emitted photons are readout

from the cavities and combined on a balanced beam splitter (BBS) on a central station

between the two cavities. If losses are neglected, the detection of a single photon after

the BBS will project the state of the emitters into the Bell state | +i = 1p
2

(|01i+ |10i)
up to a single qubit rotation. Assuming that the decay rate of the cavity, , is much

larger than the cavity coupling, g, the probability Pphot of an emitter to go from |ei to
|1i, by creating a cavity photon during a time interval [0;T ], is

Pphot =
4C

1 + 4C

⇣

1� e��(1+4C)T
⌘

, (8.2)

where we have defined the cooperativity C = g2/�, where � is the spontaneous emission

rate of the emitters. Including various losses, the total probability of a single click at the

detectors is P
1click = 2⌘Pphot✏2(1� ✏2) + (2⌘� ⌘2)P 2

phot✏
4, where ⌘ is the total detection

probability including ine�cent outcoupling of the cavity light, imperfect detectors and

losses in the transmission fibers. The second term is the probability of emitting two

cavity photons but only getting a single click. Note that we have not assumed number-

resolving detectors. The probability, to have a single click and have created the state

| +i, is Pcorrect = 2⌘Pphot✏2(1�✏2). The average, heralded fidelity following a single click

is thus F
1

= Pcorrect/P
1click. To lowest order in ✏, we have that 1�F

1

⇠ (1�⌘/2)Pphot✏2

while the success probability is P
1click ⇠ 2⌘Pphot✏2. There is thus a tradeo↵ between the

success probability and the fidelity.

The situation in a two-photon detection scheme is also shown in Fig. 8.2. Both emitters

are initailly prepared in the excited state |ei by a strong excitation pulse and the cavity is

assumed to couple both |ei ! |1i and |ei ! |0i with equal coupling strength g/
p
2. The

two transitions are, however, assumed to produce photons with di↵erent polarizations

such that the emission of a cavity photon creates an entangled state between the photon

and the emitter of the form 1p
2

(|0i|1
1

iL + |1i|1
2

iL) where |1
1

iL (|1
2

iL) is the single

photon state with polarization 1 (2). The probability of one of the emitters to create a

cavity photon of either polarization is Pphot (see Eq. (8.2)) under similar assumptions as

for the single-photon detection scheme. The photons are readout from the cavities and

combined on a central polarizing beam splitter (PBS) such that if two photons of the

same polarizations are incident on the PBS, we always get a photon in each output port,

while photons of di↵erent polarization always end up in the same output port. Both

output ports are then send to a second set of polarizing beam splitters and both output

ports of these are finally measured with single photon detectors. A click in a detector in

each arm heralds the creation of the Bell state | +i between the emitters up to a local

qubit rotation. Note, that neglecting dark counts of the detectors, the heralded fidelity
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Scheme Fidelity Probability
Single-photon F ⇠ 1� (1� ⌘)Pphot✏2 Pclick ⇠ 2⌘Pphot✏2

two-photon F ⇠ 1 P
2click = 1

2

⌘2P 2

phot

Table 8.1: The characteristics of the schemes of entanglement generation that we
consider. ⌘ is the total detection e�ciency of a cavity photon including ine�cient
outcoupling, fiber losses and ine�cent SPD. ✏2 is the excitation probability in the
single-photon detection scheme and P

phot

is the probability of an emitter to emit a
cavity photon from the excited state |ei (see Fig. 8.2).

Figure 8.3: The success probability, P0 for the one-photon and two-photon scheme
plotted against 1� ⌘ where ⌘ is the total detection e�ciency. The fidelity of the two-
photon scheme is 1 while the rate of the one-photon scheme is plotted for final fidelities
F � 0.9, F � 0.95 and F � 0.99. For the one-photon scheme P0 = P1click and for the

two-photon scheme P0 = P2click. Note that we have neglected dark counts.

is unity. The success probability of the scheme is, however, P
2click = 1

2

⌘2P 2

phot, which

decreases rapidly with the detection e�ciency.

The fidelities and success probabilities of the single-photon and two-photon schemes are

summarized in Table 8.1 and illustrated in Fig. 8.3

Fig. 8.3 shows that if the detection e�cency ⌘ is large, the two-photon scheme will be

desirable since it will have both a high success probability and a high fidelity. However,

if ⌘ is small, the single-photon scheme might be desirable since it has a relatively high

succes probability. ⌘ is, among other things, determined by the losses of the fiber trans-

mission. We write the transmission e�ciency as ⌘f = e�L
0

/2L
att , where L

0

is the length

of the elementary links of the repeater and Latt is the fiber attenuation length. Which

entanglement generation scheme that are advantageous thus depends on the length of

the elementary links, which is set by the number of swap levels and the total distance to

distribute entanglement over. Note that due to the possible high succes probability but
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Figure 8.4: (a) Level structure of the qubit atoms where only state |1i couples to the
cavity. (b) Level structure of the auxiliary atom and the transitions driven by the weak

laser (⌦) and the cavity (g). We assume that |Ei $ |fi is a closed transition.

limited fidelity of the single-photon scheme, it might be desirable to combine this with

entanglement purification to increase the final fidelity. We have therefore also considered

the possibility of initial entanglement purification in the repeater.

8.2 CNOT gates

The basic operation of entanglement purification and our entanglement swapping is a

CNOT gate. As previously mentioned, we consider two CNOT schemes. The first

scheme we consider is the heralded CNOT gate described in Chap. 6. We will refer to

this gate scheme as gate 1. Though the scheme was considered in particular for trapped

atoms in nanocavitites, it can easily by generalized to any set of emitters, which have

the appropriate level structures (see Fig. 8.4). By tuning the detunings �
1

and �
2

(see

Fig. 8.4) correctly the conditional fidelity of the gate is unity while the success probability

scales as 1 � Pg ⇠ 6/
p
C as described in Chap. 6. The gate time will increase with

the cooperativity as tgate,1 ⇠ 100
p
C/�. We assume that the atomic detection of the

auxiliary atom is 100% e�cient.

The second CNOT gate we consider is the determinstic gate proposed in Ref. [106] but

realized with the entanglement generation scheme of Ref. [109]. We will refer to this

gate as gate 2. This gate does not require an auxiliary atom but rather two auxiliary

levels in the qubit atoms as shown in Fig. 8.5a. The quantum information is stored

in the horizontal/qubit degree of freedom (subscripts 0 and 1) and the vertical/level

degree of freedom (denoted g and f) is used to make an entanglement assisted CNOT

gate between the atoms. Separating the qubit degree of freedom from the level degree

of freedom, the ideal gate makes the transformation

|q1i|q2i ⌦ |ggi ! |q1i|q2i ⌦ 1p
2
(|gfi+ |fgi) , (8.3)
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Figure 8.5: (a) Level structure of the qubit atoms. The levels |r0i and |r1i where
r = g, f or e are assumed to be degenerate such that the quantum information is
incoded in the horizontal degrees of freedom. (b) The setup to create entanglement
between the level states |gi, |fi of the atoms. Weak coherent light is shined on the

cavity and any reflected light is measured with a SPD.

where |gi, |fi denote the vertical states and |q1i (|q2i) is the qubit state of the first

(second) qubit, which could be entangled with atoms at neighboring repeater stations.

The entanglement between the levels can be used to make a CNOT gate, if the levels

of the atoms can be measured non-destructively, i.e. without revealing any information

about the qubit state as described in Ref. [106]. Both the transformation shown in

Eq. (8.3) and the non-destructive measurements can be obtained by shining a weak

coherent pulse on a two-sided cavity and detecting any reflected light (see Fig. 8.5b). If

the light is resonant with the empty cavity mode, photons will only be reflected if one

or both atoms are in the f -level. This results from the atom-cavity coupling shifting

the cavity resonance from the empty cavity frequency. Note that an equivivalent setup

is measuring the phase of the reflected light from a single sided cavity. Ideally single

photons are used but we assume the more realistic scenario, where the light is a weak

coherent pulse. We assume that the coherent light is continously shined on the cavity

such that at most one photon is in the cavity at all times. A single-photon detector

continously monitors if any photons are reflected from the cavity and the coherent light

is blocked if a click is recorded before nmax photons on average have been shined on the

cavity. If no click was recorded during this time, both atoms are interpreted as being in

the g levels. The entangling scheme is then

1. Both atoms are initially prepared in the superposition |gi + |fi by a e.g. a ⇡/2-

pulse.

2. Coherent light is shined on the cavity. if a click is recorded before on average

nmax photons have been shined on the cavity, the levels of the atoms are flipped

(|gi $ |fi). If no click is recorded, the atoms are interpreted as being in |ggi and
the procedure is repeated from step 1.
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Gate Fidelity Probability

1 F = 1 Pg ⇠ 1� 6/
p
C

2 F ⇠ 1� 1/(⌘dC) Pg = 1

3 F ⇠ 1� 3/
p
C Pg = 1

Table 8.2: The characteristics of the three gates considered for the repeater. C is the
cooperativity of the atom-cavity system and ⌘

d

is the single photon detection e�ciency
in gate 2

3. Conditioned on the first click, another coherent light pulse is shined on the cavity

after the levels of the atoms have been flipped. If a click is recorded before n =

nmax � n
1

photons on average have been shined on the cavity, the entangling

scheme is considered to be a success. Here n
1

is the average number of photons

that had been shined on the cavity before the first click. If no click is recorded,

the atoms are interpreted to be in |ggi and the procedure is repeated from step 1.

As seen above the entangling scheme is repeated until successful such that the operation

is determinsitic. As described in Ref. [106] a series of non-destructive measurements of

the atoms together with single qubit rotations are required to make the CNOT operation

after the entanglement has been created. The non-destructive measurements can be

performed using the same technique of monitoring reflected light as in the entangling

scheme and we assume that we can e↵ectively tune the couplings to the cavity such that

possibly only a single atom couples. Spontaneous emission from the atoms will limit

the fidelity of the gate to 1 � F ⇠ 1/(⌘dC), where ⌘d is the detection e�cency and

C = g2/� is the cooperativity. The time of the gate is limited by the time of the single

qubit rotations and the coherent pulses. We assume that this gives a gate time on the

order of 10 µs.

We also consider the naive approach, where the setup of gate 1 is used to make a

deterministic gate by simply ignoring the heralding condition. This is to characterize

the situation where a no-cavity gate scheme is directly transferred to a cavity setup. We

will refer to this gate as gate 3. For such a gate, we find that the gate fidelity will scale

as 1� F ⇠ 3/
p

(C) and the time of the gate will be tgate ⇠ 50
p
C/�.

The characteristics of the three gates we consider are summarized in Table 8.2 and

illustrated in Fig. 8.6

It is clear, that a repater based on gate 3 will never be advantageous but we consider

it for comparison. The heralded gate has a finite probability, which decreases the rate

of the repeater but in return, the gate has perfect heralded fidelity. This might increase

the number of possible swap levels, which can increase the rate of the entanglement

generation step and thus the total rate of the repeater. The deterministic gate works
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Figure 8.6: Characteristics of the three gates described in the text. Gate 2 (black,
dashed line) and gate 3 (blue, dashed/dot line) are both deterministic and the errors
(left axis) of the gates are plotted against the cooperativity. The error is defined as
1� F where F is the fidelity of the gate. Gate 1 has conditional fidelity 1 but a finite

failure probability 1� P
g

(right axis).

every time but with non-perfect fidelity, which will limit the number of possible swap

levels in the repeater.

8.3 Repeater software

As previosuly mentioned, we include the possibility of combining the single-photon

scheme with initial purification in the repeater. We will, however, only consider two

scenarious. First, we assume that each repeater station only contains two qubits and

initial purification can therefore not take place. Second, we assume that each repeater

station contains 4 qubits, which makes initial purification possible. The modest number

of qubits is considered to reflect what is obtainable with realistic resources. The extra

qubits could also be used to simply enhance the rate of entanglement generation by

increasing the number of tries pr. entanglement generation attempt. Note that we will

assume the latter approach to be the case for repeaters based on the two-photon scheme.

We make a detailed analysis of the various errors that limit the fidelity for both the single-

photon and the two-photon detection schemes including dark counts of the detectors

(see App. F for details). As a result, we find that the purification protocol of Ref. [14]

e↵ectively corrects for the errors in the single-photon scheme and we assume that this

is used for the initial purification. This protocol relies on a CNOT operation, which we

assume is made with one of the three gates described in Sec. 8.2. In the purification
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Figure 8.7: Rate of entangelment generation for the two-photon scheme and the one-
photon scheme with target fidelity F � 0.95 and F � 0.99 with/without purification.
The rate is plotted against 1 � ⌘ where ⌘ is the total detection e�ciency. We have
neglected dark counts and assumed that the CNOT gate is deterministic and have
perfect fidelity. The rate has been estimated as described in Sec. 8.4. Furthermore we
have assumed that each repeater station contains 4 qubits, which are either used for

purification or to increase the rate of the entanglement generation.

scheme, two parties are assumed to share two entangled states. They each perform a

CNOT operation on their qubits and subsequently measure the state of the target qubits

of the CNOTs. If they obtain the same measurement outcome, they keep the control

pair and otherwise they discard it. The purification can either be done in a cascaded

manner where two pairs with the same fidelity are always combined or in a pumping

scheme, where the fidelity of a single pair is pumped by combining it with pairs of lower

fidelity. We will assume that a pumping scheme is used since this requires less qubits

pr. repeater station.

The e↵ect of combining the single-photon scheme with initial purification is shown in

Fig. 8.7, where the purification is asssumed to be performed with a deterministic gate

with perfect fidelity. If high fidelity pairs are desired for e.g. a repeater with many swap

levels, entanglement purification can increase the rate of the entanglement generation.

We also consider the optimal use of repeater stations. For 2n + 1 repeater stations, one

can either use all stations in a single repeater with n swap levels or one can construct

a number of parallel repeaters with less swap levels. Increasing the number of swap

levels, decreases the fiber losses in the elementary links and thus increases the rate of

entanglement generation. If, however, the length of the elementary links is already small,

such that e.g. imperfect SPD detection dominates the rate, then increasing the number

of swap levels does not lead to any improvement. It would instead be advantageous
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Figure 8.8: Secret key rate pr repeater station (r
secret

/station) plotted against the
distribution distance for a repeater with n = 1, 2 and 3 swap levels. The secret key
rate was calculated as described in Sec. 8.5 with the assumptions summarized in Table
8.3. The repeaters were assumed to use the two-photon scheme with gate 2 and a

cooperativity of 100.

to use the extra repeater stations to make another repeater with less swap levels. To

treat this in our analysis of the repeater, we consider the distribution rate pr repeater

station instead of simply the distribution rate. Fig. 8.8 shows how the optimal number

of swap level changes with distance while considering the rate pr. repeater station. Note

that Fig. 8.8 shows the so-called secret key rate pr station plotted against the distance.

The secret key rate is basically the distribution rate times a secret key fraction, which

depends on the fidelity of the distributed pair. We will describe this in more detail in

section Sec. 8.5.

In most repeater schemes, the qubits in a repeater station are assumed to be operated

more or less simultaneously with half of the qubits being used to each side such that

entanglement attempts in all the elementary links are done simultaneously. We refer

to this as a parallel repeater. We, however, also consider another sequential way of

operating the qubits, where all qubits in a station are first used to make entanglement

in one elementary link. After this has been obtained, all but one qubit are then used

to make entanglement in the other neighboring link. This is referred to as a sequential

repeater. The advantage of the sequential repeater is that the rate of the lowest level

in the repeater, the entanglement generation, is increased. This comes at the cost of

a waiting time between entanglement attempts in neighboring links. Fig. 8.9 shows

that whether the sequential repeater has higher secret key rate than a parallel repeater

depends on the number of qubits pr repeater station.
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Figure 8.9: Secret key rate pr repeater station (r
secret

/station) plotted against the
distribution distance (Distance) for a parallel repeater with 2 (4) qubits pr station (p,2
(4)) and a sequential repeater with 2 (4) qubits pr station (s,2 (4)). The secret key
rate was calculated as described in Sec. 8.5 with the assumptions summarized in Table
8.3. Both repeaters were assumed to use the two-photon scheme with gate 2 and a

cooperativity of 100. Both repeaters were assumed to have 3 swap levels.

8.4 Rate analysis

We wil now analyse the rate of entanglement distribution for the di↵erent repeater

softwares considered in the previous sections. The total rate of the repeater are set by the

average time of entanglement creation, initial purification and entanglement swapping.

Assuming that entanglement generation has a success probability P
0

, we estimate the

average time ⌧pair,l;m it takes to generate l entangled pairs in one elementary link using

m qubits, which can be operated in parallel, as

⌧pair,l;m = Zl;m(P
0

)(L
0

/c+ ⌧local). (8.4)

Here c is the speed of light in the fibers and ⌧local is the time of local operations such

as initialization of the qubits. The factor Zl;m(P
0

) can be thought of as the average

number of coin tosses needed to get at least l tails if each toss is performed with m coins

simultaneously, and the probability of tail is P
0

for each coin [138]. It is furthermore

assumed that coins showing tail after a toss are kept and only the coins showing head are

tossed again until l tails are obtained. In the repeater context, the coins are entanglement

generation attempts and tail is successful entanglement generation. The time it takes

per ”toss” is L
0

/c+ ⌧local. The expressions for Zl;m(P
0

) is given in App. F.3.
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After creating a number of entangled pairs in an elementary link of the repeater, they

may be combined to create a purified pair of higher fidelity. As previously mentioned,

we assume an entanglement pumping scheme since this requirs less resources than e.g.

a cascading scheme. Let Ppur(F0

, F
0

) denote the success probability of the purification

operation, which depends on the fidelity of the two initial pairs (F
0

) and the fidelity

of the CNOT gate used in the purification operation. Note that Ppur also contains the

success probability of the CNOT gate used in the purification. We estimate the average

time ⌧pur1, it takes to make one purified pair from two intial pairs of fidelity F
0

, using

m qubits in parallel in the entanglement generation step, as

⌧pur,1 =
⌧pair,2;m + ⌧pur
Ppur(F0

, F
0

)
, (8.5)

where ⌧pur ⇠ L
0

/c+⌧c is the time of the purification operation. Here ⌧c is the time of the

CNOT operation and L
0

/c is the communication time between the two repeater stations

sharing the entangled pairs. To further pump the entanglement of the purified pair, a

new entangled pair is subsequently created using m� 1 qubits operated in parallel. The

average time it takes to make j rounds of purification is thus estimated as

⌧pur,j =
⌧pur,j�1

+ ⌧pair,1:m�1

Ppur(Fj�1

, F
0

)
, (8.6)

with ⌧pur,0 = ⌧pair,2;m. Here Fj�1

is the fidelity of the purified pair after j�1 purifications.

The total rate of a repeater, consisting both of purification and entanglement swapping,

depends on the specific repeater software. We will first consider the case of both a

parallel and sequential repeater operated with deterministic gates and afterwards the

same situations with probabilistic gates.

8.4.1 Deterministic gates

For a parallel repeater with n swap levels and deterministic gates, we first estimate the

average time it takes to generate 2n purified pairs, i.e. a purified pair in each elementary

link. We assume that each pair is purified j times such that the time to generate one

purified pair is

⌧pur,j =
Z
2;m(P

0

)(L
0

/c+ ⌧local)

Ppur(F0

, F
0

) · · ·Ppur(Fj�1

, F
0

)

+
j�1

X

i=0

⌧pur
Ppur(Fi, F0

) · · ·Ppur(Fj�1

, F
0

)

+
j�1

X

i=1

Z
1;m�1

(P
0

)(L
0

/c+ ⌧local)

Ppur(Fi, F0

) · · ·Ppur(Fj�1

, F
0

)
, (8.7)
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where we have solved the recurrence in Eq. (8.6). We now wish to estimate the total

time, ⌧link,2n it takes to make a purified in every elementary link, i.e. the time it takes

to make 2n pairs. A lower limit of ⌧link,2n is simply ⌧pur,j but this is clearly a very

crude estimate if the purification have a limited success probability. We therefore make

another estimate of the average time by treating ⌧pur,j as consisting of 2j independent

binomial events with probabilities

P
1

=
Ppur(F0

, F
0

) · · ·Ppur(Fj�1

, F
0

)

Z
2;m(P

0

)
(8.8)

P (i)
2

= Ppur(Fi, F0

) · · ·Ppur(Fj�1

, F
0

) (8.9)

P (i)
3

=
Ppur(Fi, F0

) · · ·Ppur(Fj�1

, F
0

)

Z
1;m�1

(P
0

)
. (8.10)

We then estimate the average time, ⌧link,2n it takes to make 2n purified pairs as

⌧link,2n = Z
2

n

;2

n(P
1

)(L
0

/c+ ⌧local)

+
j�1

X

i=0

Z
2

n,2n(P
(i)
2

)⌧pur

+
j�1

X

i=1

Z
2

n,2n(P
(i)
3

)(L
0

/c+ ⌧local). (8.11)

Eq. (8.11) is a better estimate for the average time than ⌧pur,j in the limit of small

success probabilities. However, it overestimates the average distribution time when the

purification has a large success probability. How much it overestimates depends on n

and j. Comparing ⌧pur,j to Eq. (8.11) we find that for n  5 and j  2 there is a

factor . 2 between the two estimates, in the limit of large success probability for the

purification operation. As we describe below we never consider more than 5 swap levels

in our optimization and since we have a limited number of qubits pr. repeater station,

we will never have to consider more than 2 rounds of purification. We can therefore use

the estimate for ⌧link,2n given in Eq. (8.11).

To get the average time it takes to distribute one entangled pair over the total distance,

Ltot, of the repeater, we need to add the time of the entanglement swapping, ⌧swap,nd to

⌧link,2n . We estimate ⌧swap,nd as

⌧swap,nd = (2n � 1)L
0

/c+ n⌧c, (8.12)

where the first term is the time of the classical communication and ⌧c is the time of the

CNOT operation involved in the swap procedure. The average distribution rate, of a

parallel repeater with determinsitic gates, is thus rp,d = 1/(⌧link,2n + /⌧swap,nd).
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For a sequential repeater with deterministic gates we estimate the time it takes to

generate purified pairs in all 2n pairs as

⌧ (s)link,2nd =
�

⌧link,2n�1

�

m!2m +
�

⌧link,2n�1

�

m!2m�1

. (8.13)

Here we have indicated that the number of qubits, which can be operated in parallel

is 2m for the first 2n�1 pairs and 2m � 1 for the next 2n�1 pair compared to the

parallel repeater, where only m qubits can be used in all 2n pairs. Note, that we have

assumed that first entanglement is established in half of the links and only when this

is completed, entanglement is created in the remaning half of the links. This is clearly

not the fastest way of operating the repeater but it gives an upper limit of the average

distribution time. The entanglement swapping of the sequential repeater is exactly the

same as for the parallel repeater and the average total rate, of the sequential repeater

with deterministic gates, is thus rs,d = 1/(⌧ (s)link,2n + tswap,nd).

8.4.2 Probabilistic gates

To estimate the total, average distribution time of a parallel repeater with n swap levels

and probabilistic gates, we will again treat ⌧pur,j as consisting of 2j independent binomial

events, as we did for the deterministic gates. The time it takes to make a single swap

can be estimated as

⌧swap,1p =
Z
2;2

(P
1

)(L
0

/c+ ⌧local)

Pswap
+

L
0

/c

Pswap
+

⌧c
Pswap

+
j�1

X

i=0

Z
2;2

(P (i)
2

)⌧pur
Pswap

+
j
X

i=1

Z
2;2

(P (i)
3

)(L
0

/c+ ⌧local)

Pswap
, (8.14)

where Pswap is the probability of the swap operation, i.e. the probability of the CNOT

gate. Eq. (8.14) can be iterated such that the average time it takes to make n swap
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levels is estimated as

⌧swap,np =
Z̃n;1(Pswap, P1

)(L
0

/c+ ⌧local)

Pswap

+
n
X

i=1

Z̃ 0
n;i(Pswap, Pswap)(2i�1L

0

/c+ ⌧c)

Pswap

+
j�1

X

i=0

Z̃n;1(Pswap, P
(i)
2

)⌧pur
Pswap

+
j�1

X

i=1

Z̃n;1(Pswap, P
(i)
3

)(L
0

/c+ ⌧local)

Pswap
, (8.15)

where

Z̃(

0
)

n;i(Pswap, P ) = Z
2;2

 

Pswap

Z̃(

0
)

n�1;i(Pswap, P )

!

, (8.16)

Z̃i;i(Pswap, P ) = Z
2;2

(P ) (8.17)

Z̃ 0
i;i(Pswap, P ) = 1. (8.18)

The average, rate of a parallel repeater with probabilistic gates and n swap levels is then

rp,p = 1/⌧swap,np. Note that for Pswap ⇡ 1 and P
0

⌧ 1, Eq. (8.15) underestimates the

average distribution rate with a factor that increases with the number of swap levels, n.

However, for n  5, we find that this factor is . 2.

The operation of a sequential repeater with probabilistic gates is not straightforward

since it is unclear how the sequential generation of entanglement should take place after

a failed swap operation. We therefore choose to assume that initially, entanglement

is generated in all 2n links sequentially. When this is completed the first round of

entanglement swapping is performed. If a swap fails, entanglement is restored in a

parallel manner, i.e. the sequential operation is only employed in the initial generation

of entanglement. Furthermore, we assume that the swap operations of a swap level is

only initiated when all swap operations in the subsequent level have been successfull.

The average time, it takes for all swap operations in the first level to succeed, is then
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estimated as

⌧ (s)swap,1p =
2

n�1

X

i=0

P 2

n�1�i
swap (1� Pswap)

i
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✓
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, (8.19)

where �i,0 is a delta function. Eq. (8.19) can be generalized such that the time it takes

to perform the l’th swap level is

⌧ (s)swap,lp =
2

n�l

X

i=0

P 2

n�l�i
swap (1� Pswap)

i

"
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The total rate of a sequential repeater with probabilistic gates and n swap levels can

then be estimated as rs,p = 1/(⌧ (s)link,2n + ⌧ (s)swap,1p + · · ·+ ⌧ (s)swap,np).

8.5 Secret key rate

We imagine that the distributed entanglement is used to generate a secret key between

two parties referred to as Alice and Bob. There exist various quantum key distribution

schemes [8, 9, 13, 139] but the general idea is that Alice and Bob can elliminate the
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information that an eavesdropper can contain about the key by measuring on their

qubits and compairing results. We will assume that a six-state version of the BB84

protocol described in Ref. [139] is used to generate the secret key. This protocol consists

of three steps:

1. Alice and Bob are assumed to have N qubit pairs, which have been distributed in

a quantum channel. They can now choose to measure their qubits in one of three

measurement bases. They pick a basis according to some probability distribution

and measure the state of their qubits. This produces a binary string for both Alice

and Bob, which is referred to as a raw key.

2. Alice and Bob now compares their choice of basis for all the measurements. If

they had the same basis, they keep the information while they discard it if they

measured in di↵erent bases. This step is referred to as the shifting of the raw key.

3. Finally Alice and Bob estimate the information that some eavesdropper could

possible contain about their key. This is done by choosing a random sample of 2k

bits from their raw key and compare the bits in order to estimate the error rate in

the quantum channel. In the presence of errors, they seek to correct for them and

erase the information that the eaves dropper could have obtained. This process

is refereed to as privacy amplification [13]. By doing this they can end up with a

completely secure key of smaller length (< 2k), if the errors are not to big.

For the six-state protocol, the secret key rate, rsecret can be defined as

rsecret = rdistpshiftfsecret, (8.21)

where rdist is the distribution rate of the entangled pairs, pshift is the probability that

Alice and Bob chooses the same measurement basis and fsecret is the secret key fraction,

which depends on the fidelity of the distributed pairs. Without loss of generality we can

assume that the distributed pairs are Werner states of the form

⇢AB = F |�+ih�+|+ 1� F

3

⇣

|��ih��|

+| +ih +|+ | �ih �|
⌘

. (8.22)

For such states, it is shown in Ref. [13] that the secret key fraction in the six-state

protocol can be estimated in the limit of inifinitely long raw keys to be

fsecret = 1� h(✏)� ✏+ (1� ✏)h

✓

1� 3✏/2

1� ✏

◆

, (8.23)
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Figure 8.10: Secret key fraction (f
secret

) as a function of the error 1 � F . For
1� F & 13% it is no longer possible to extract a secret key from the raw keys.

where ✏ = 2(1 � F )/3 and h(p) = �plog
2

(p) � (1� p)log
2

(1� p) is the binary entropy.

The expression for fsecret given in Eq. (8.23) is valid in the limit of perfect shifting

and privacy amplification, which we assume is the case. Futhermore, we assume an

assymmetric version of the six state protocol, where one basis is used almost all the

time such that pshift ⇡ 1 [13]. Fig. 8.10 shows how the secret key fraction depends on

the fidelity of the distributed pairs. It is seen that high fidelity pairs are required in

order to have a non-vanishing secret key fraction. On the other hand, the distribution

rate rdist will in general decrease in order to increase the fidelity of the distributed pair

and the optimal secret key rate is thus obtained as a trade o↵ between fsecret and rdist.

8.6 Numerical optimization

We have numerical optimimized the secret key rate pr repeater station in order to

find the optimal entanglement generation scheme, CNOT gate and repeater software

for a given distance. The secret key rate depends on some experimental parameters

such as the e�ciency of single photon detectors, dark count rate etc. The values of

these parameters are assumed fixed and are thus not part of the optimization. All the

experimental parameters are shown in Table 8.3 togehter with the values assumed in the

optimizations. The free parameters in the optimization are the number of swap levels,

the number of purifications and whether is is a parallel or sequential repeater. In the

optimizations, we calculate the secret key rate on a grid of all these parameters and

pick the combination giving the highest rate. Fig. 8.11 shows a specific example where
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Parameter Value Description
� 2⇡ · 6 MHz Spontaneous emission rate of atoms. This enters

in the probability of emitting a photon in the
entanglement generation schemes (see Eq. (8.2))
and in the gate time of gate 1 and 2.

⌘d 50% Detection e�ciency of SPD detectors. This en-
ters in the total detection e�ciency ⌘ in the en-
tanglement geneation schemes since ⌘ = ⌘d⌘f .
It also determines the fidelity of gate 1. Ine�-
cient outcoupling of light from the cavities can
be included in ⌘d.

Latt 22 km Attenuation length of the fibers. The total
transmission probability over a length L is as-
sumed to be ⌘f = e�L/L

att . We have assumed
losses for telecom wavelengths.

⌧local 10 µs Time of local qubit operations
rdark 25 Hz Dark count rate of SPD detectors. We include

dark counts in the entanglement generation step
but not in the gate operations since the gate
operations are assumed to be fast.

c 2 · 105 km/s Reduced speed of light in the transmission fibers
[18].

Table 8.3: Experimental parameters which influence the rate and fidelity of the re-
peaters. The second column gives the values used in all optimizations.

the combination of the single photon scheme with gate 2 is investigated for a parallel

repeater and a cooperativity of 100. The number of swap levels and purifications, giving

the highest rate for a specific distance, can be directly read o↵ from the figure. The

same calculations are then done for a sequential repeater with the same combination

and finally the performance of the sequential repeater and the parallel repeater are

compared in order to find the highest rate for this specific combination. This is done

for all combinations of entanglement generation schemes and CNOT gates. The optimal

measurement time, T , and excitation probability, ✏, in the entanglement generation

schemes are found for each grid point using a built-in numerical optimization in the

program MATLAB1. The key parameter, determining the performance of the CNOT

gates, is the cooperativity as described in Sec. 8.2. We therefore run optimizations for

cooperativities C 2 [10; 1000] and distances between 100 km and 1000 km. Finally

the optimizations are performed both for 2 qubits pr repeater station and 4 qubits pr.

repeater station.

1see http://www.mathworks.se/help/matlab/ref/fminsearch.html

http://www.mathworks.se/help/matlab/ref/fminsearch.html
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Figure 8.11: Secret key rate pr repeater station (r
secret

/station) plotted against the
distribution distance (Distance) for a parallel repeater based on the single photon gen-
eration scheme and gate 2. The cooperativity was assumed to be 100 and we assumed
4 qubits pr. repeater station. The optimal number of swap levels (n) and purification
rounds (j) for a given distance can be directly read o↵ the plot as the combination
giving the highest rate. Note that because the gate fidelity is limited, situations with

j = 2 and n = 3, j = 1 are shown since they result in to low a secret key rate.

We model the e↵ect of non-perfect gates (gate 2 and 3), as depolarizing channels such

that the output of a gate operation on a set S of two qubits is

⇢̃ = FUS⇢U
†
S +

1� F

4
(Tr {⇢}S ⌦ 1S) , (8.24)

where F is the fidelity of the gate described by unitary US , 1S is the identity matrix of

the set and Tr{. . .}S is the trace over the set. ⇢ is the initial density matrix. We use

Eq. (8.24) to propagate the density matrix from the entanglement generation (see App.

F) through the steps of initial purification and entanglement swapping and calculate the

average fidelity of the distributed pairs. To calculate the secret key fraction, we treat

the distributed pairs as Werner states as described in Sec. 8.5.

The result of the optimizations are shown in Figs. 8.12-8.13.
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Figure 8.13: Optimal secret key rate pr. repeater station (r
secret

) plotted against the
cooperativity for various combinations of entanglement generation schemes and CNOT
gates assuming a distribution distance of 1000 km. (a) is for 2 qubits pr repeater station

while (b) is for 4 qubits pr repeater station.

Figure 8.12: Optimal secret key rate pr. repeater station (r
secret

) plotted against the
distribution distance (Distance) for various combinations of entanglement generation
schemes and CNOT gates assuming a cooperativity of 100. (a) is for 2 qubits pr repeater

station while (b) is for 4 qubits pr repeater station.

It is clear from Fig 8.12, which assumed a cooperativity of 100, that a repeater based

on gate 3 is simply not able to distribute entanglement over large distances for realisitc

cooperativities. Repeaters based on gate 3 also does not show on Fig. 8.13, which

assumes a distance of 1000 km since their distribution rate is to low. In general, a

repeater based on the two-photon scheme and gate 1 achieves the highest distribution

rate for a broad range of cooperativities and distances. This reflects the fact that the

secret key rate favours distribution of high-fidelity pairs since these gives the highest

secret fraction (see Fig. 8.10). It is also apparent from Fig 8.13 that while repeaters

based on gate 2 need cooperativities above 100 for a distance of 1000 km, repeaters
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based on gate 1 are able to function with much lower cooperativities around 30 � 40.

This is because the gate fidelity of gate 1 is unity, which allows for a higher number of

swap levels.

It is important to stress that the rate plotted in Figs. 8.12-8.13, is the secret key rate pr

repeater station. The true distribution rate can thus be obtained by multiplying with the

number of repeater stations. The number of repeater stations should, however, not be

lower than what is dictated by the optimal number of swap levels. For a repeater based

on the two photon scheme and gate 2 we find a distribution rate of 20 Hz over 1000 km

for 32 repeater stations and a cooperativity of 1000. For a more modest cooperativity

of 100 the optimal combination is the two-photon scheme combined with gate 1, which

achives a rate of 1.5 Hz over 1000 km using 32 repeater stations. Here we have assumed

2 qubits pr. repeater station.

8.7 Conclusion and discussion

In conclusion, we have performed a detailed analysis of quantum repeaters based on

single emitters in optical cavitites. We have shown that the gate schemes described

in Ref. [106] and Chap. 6 can enable fast secret key rates over large distances by

improving the gate performance from the detrimental 1/
p
C scaling, which naively would

be the case for cavity based quantum gates. Especially, the heralded gate described

in Chap. 6 could fascilitate high secret key rates even for limited cooperativities (<

100). Furthermore, we have performed a numerical optimization of the general repeater

architecture for cooperativites 2 [10; 1000] and distances 2 [100; 1000] km allowing for

initial purification and both parallel and sequentially operated repeaters. We optimized

the secret key rate pr. repeater station to find the optimal number of swap levels and

considered scenarios with both 2 and 4 qubits pr. repeater station. The secret key rate

was calculated assuming a cryptograhy scheme based on the six state protocol decribed

in Ref. [14]. Finally, we have compared the performance of entanglement generation

schemes based on single photon detection and two photon detection. We found that

the two photon scheme in general leads to higher secret key rates for realistic detection

e�ciencies. It should be noted that we have assumed fiber transmission losses for telecom

wavelengths, which may require wavelength conversion techniques [140]. Any ine�ceint

conversion could be incorporated in the detection e�ciency ⌘d.

For a cooperativity of 1000 and 2 qubits pr. repeater station, we found that a secret key

rate of 20 Hz fo a distance of 1000 km using 32 repeater station. This was achieved for

a repeater based on the two-photon detection scheme and the heralded gate described

in Chap. 7. This should be compared to the rate obtainable with repeaters based
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on atomic ensembles. In Ref. [17] an e�cent repeater based on atomic ensembles are

described, which achieves one of the highest distribution rates for repeaters based on

atomic ensembles [18]. The fidelity of the distributed pair and the distribution rate are

derived in Ref. [17] for a repeater with four swap levels corresponding to 16 repeater

stations. Based on this we find that the secret key rate of this repeater at a distance of

1000 km assuming SPD e�ciencies of 90% and otherwise similar assumptions about fiber

losses etc., is ⇠ 0.03 Hz. We have assumed an optimistic, basic repetition rate of 100

MHz and memory e�ciencies of 90%. This shows that repeaters based on single emitters

in cavitites are very promising candidates for realizing e�cent quantum repeaters with

rates exceeding those obtainable with atomic ensembles. Note that this conclusion was

also reached in Ref. [128], which considered quantum repeaters based on trapped ions.

In Ref. [128], the entanglement swapping was, however assumed to work perfectly using

techniques demonstrated with ion traps. Our work shows that the conclusions holds

even for non-ideal, cavity based quantum gates.



Chapter 9

Summary and outlook

Quantum technology has the potential to revolutionize many aspects of todays high-

technological society. It remains, however, a great challenge to find suitable quantum

systems, which can be the basic building blocks of this new technology. Such quantum

systems need to have an excellent level of control and to be robust against noise from the

surrounding enviroment. Furthermore, they need to be scalable in order for quantum

technology to be truely interesting.

In this thesis, I have presented the joint work of me and my collaborators on some of

the problems in the development of quantum technology. Our hope is that our contribu-

tions to the field, described in this thesis, can help bringing quantum technology closer

to reality and enable a better undstanding of the requirements for e�cient quantum in-

formation processing. One of our main focus points has been quantum repeaters for long

distance entanglement distribution. We have investigated both the basic constituents

and the general architecture of quantum repeaters in order to describe the main limita-

tions and possible ways of overcoming them. We have considered two types of generic

repeaters, namely a hybrid repeater with fast local processing and a repeater based on

single emitters in optical cavitites. Furthermore, we have considered the constituents of

repeaters based on atomic ensembles.

The hybrid repeater tries to combine the best of two worlds using single photon detection

to generate entanglement and storing the information in continous variables. Continous

variables have shown promosing potential in quantum information processing [141, 142]

and the distribution of entanglement in this form is thus of interest. Recently, there

have been proposals for error-correcting codes implemented with cat states [143], which

could be combined with, e.g. the swapping procedure described in our work, to facilitate

fast entanglement distribution. In our work, we show that growing cat states locally en-

hances the distribution rate significantly but the growth procedure we describe is still

133
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time consuming. E�cient and fast methods of growing cat states would be a powerful

resource for quantum technology based on continous variabels. To this end, systems

based on single atoms in nanocavities, similar to the system we considered for imple-

menting heralded quantum gates, could be considered. The strong coupling of light

obtainable with nanocavities, combined with e�cient atomic detection, is an attractive

system to consider. The possibility of heralded gates with error-detection could perhaps

also enable the generation of high quality cat states by, e.g. employing error correction.

In our work on room temperature atomic memories and single photon sources, we have

introduced the concept of motional averaging. We have shown how this can be applied

to a specific system of microcells with Cs-atoms and the first proof-of-principle experi-

ments towards realizing our scheme has already been conducted in the group of Eugene

Polzik at the Niels Bohr Institute. The scalable nature of our scheme makes it inter-

esting for applications such as DLCZ-like repeaters with spatial multiplexing [18] and

photonic quantum simulators [125]. Repeaters based on atomic ensembles are limited by

imperfections such as ine�cient write and readout e�ciencies but the relatively simple

setups may lead to the first realizations of actual quantum repeaters.

Finally, we have considered quantum repeaters based on single emitters in optical cav-

ities. Such repeaters have previously been considered and expected to obtain higher

distribution rates than repeaters based on atomic ensembles [128]. While various en-

tanglement generation schemes have been proposed, it has been unclear which scheme

obtained the highest distribution rate under given experimental circumstances. We have

presented a scheme for optimizing the secret key rate pr. repeater station, which finds

the optimal repeater architecture for a given cooperativity of the optical cavitites, de-

tection e�ciency, distribution distance etc. Furthermore, we have implemented realistic

gates for obtaining entanglement swapping and intial purification. Our work can thus

be a guide for how to construct the optimal quantum repeater given a certain quality

of the experimental constituents. Furthermore, our work shows that the heralded gates,

that we have proposed, can enable fast entanglement distribution over large distances

even for limited cooperativities.

Our work on heralded quantum gates could also be an important contribution to the field

of fault-tolerant quantum computing. The fault tolerant threshold for such detectable

errors may be much higher than for undetectable errors, which require more advanced

error correcting procedures [144–146]. The gates, that we propose, show that it is

possible to detect errors using highly e�cient atomic detection but once an error is

detected the qubit register has to be initialized. It would be interesting if our heralded

gates could be combined with error correction such that the errors were not only detected

but also corrected. Finally, the concept of heralded gate operations could be applied to
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other systems in order to fascilitate high-fidelity gates even with non-ideal experimental

systems.

A final focus point of our work, presented in this thesis, has been on enhancing the

stability of atomic clocks. By developing an adaptive measurement strategy, we have

shown that it is possible to obtain near-Heisenberg limited atomic clocks even under the

assumption of a realistic source of decoherence. Our work thus establish that entan-

glement can be a useful resource for metrology in order to push beyond the standard

quantum limit. There are, however, a number of more practical limitations to the stabil-

ity of current experimental clocks for which our scheme would be relevant. These need

to be adressed before one would benefit from our adaptive scheme. Currently many

optical clocks are limited by the Dick noise, which needs to be surpressed below the

quantum noise of the atoms before it makes sense to consider our scheme. Our work on

operating atomic clocks based on several atomic ensembles could, however, be applied

in e.g present ion clocks in order to increase the stability without having to increase the

number of ions in the clocks.



Appendix A

Hybrid Repeater

In this appendix, we give the details of the growth procedure and the connection step of

the altered repeater protocol described in Chap. 3. Furthermore, we present the details

of the target state used to calculate the fidelity of the swapped state. Finally, we present

the details of our numerical fidelity fits used in the optimization of the repeater.

A.1 Growth of cat states

In this section, we describe how the growth procedure transforms the Wigner function

of the input states. In general, we write the Wigner function as

Wm(x, p) =
2

m+1

X

i=0

2

m+1

X

j=0

wijx
ipje�(x2

+p2). (A.1)

For a one photon state we have m = 0 and the matrix containing wij is

w =

0

B

B

@

� 1

⇡ 0 2

⇡

0 0 0
2

⇡ 0 0

1

C

C

A

. (A.2)

The e↵ect of the growth procedure in this representation is to change the size and

elements of the matrixw along with the upper limit of the summations. The combination

of two states of the form in Eq. (A.1) with variables x, p and x0, p0 on a balanced beam

splitter is described by the transformations

x ! 1p
2

�

x+ x0
�

, p ! 1p
2

�

p+ p0
�

x0 ! 1p
2

�

x� x0
�

, p0 ! 1p
2

�

p� p0
�

.
(A.3)
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Thus, the state before the X̂ measurement is

W 0
m+1

(x, p, x0, p0) =Wm

✓

x+ x0p
2

,
p+ p0p

2

◆

⇥

Wm

✓

x� x0p
2

,
p� p0p

2

◆

. (A.4)

Using the identity (a+b)i =
Pi

s

�

i
s

�

asbi�s and collecting powers of x and p, we can write

W 0
m+1

in the form:

W 0
m+1

(x, p, x0, p0) =
2

m+1

X

{i,i0}=0

2

m+1

X

{j,j0}=0

i+i0
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s
max
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◆

(�1)i
0�s0x0i+i0�kxk

j+j0
X

l=0

t
max

X
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✓

j

l � t0

◆✓

j0
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◆

(�1)j
0�t0p0j+j0�lpl

e�(x2

+x02
+p2+p02)wijwi0j0 , (A.5)

where

s
min

= max(0, k � i), s
max

= min(i0, k),

t
min

= max(0, l � j), t
max

= min(j0, l).
(A.6)

The unnormalized average output after measuring x0 2 [��,�] is found by integrating

over momentum and position

1
Z

�1

dp0
�

Z

��

dx0W 0
m+1

(x, p, x0, p0). (A.7)

After carrying out the integrals, we can write the unnormalized state after the growth

procedure as

W̃m+1

(x, p) =
2

m+2

X

k=0

2

m+2

X

l=0

w̃klx
kple�(x2

+p2), (A.8)

with

w̃kl =
2

m+1

X

{i,i0}=0

2

m+1

X

{j,j0}=0

2�(i+i0+j+j0)/2(�1)i+i0+j+j0�k�l

wijwi0j0
ii0
k (�)jj

0

l (1), (A.9)
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and

ii
0

k (t) =

8

>

<

>
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0 if r < 0,
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�

i
k�s0

��

i0

s0
�

t
R

�t

dxe�x2

xr if 0 < r,
(A.10)

where r = i+ i0�k and
P

=
Ps0=s

max

s0=s
min

. We have thus found a simple description for the

Wigner function after a step of the growth procedure as function of the input Wigner

function. To find the state after m steps, we start with the matrix in Eq. (A.2) and

iterate (A.9) m times.

A.2 Connection of cat states

Here we describe the connection step in terms of Wigner functions. The state before the

two asymmetric beam splitters with reflectivity r in the connection step is the product

of the Wigner functions generated in step one of the repeater and two vacuum states

Wm(x, p)Wm(y, q)Wvac(x
0, p0)Wvac(y

0, q0). (A.11)

Here Wm(�,�) has the form (A.1) and Wvac(x, p) =
1

⇡e
� 1

2

(x2

+p2).

The modes described by (x, x0, p, p0) are on the left (location A) and the modes (y, y0, q, q0)

on the right (location B), (see Fig. 3.2(ii)). Before the central station it is only necessary

to focus on the modes described by (x, x0, p, p0). Parameterizing sin(✓r) =
p
r, the action

of the first beam splitter is

x ! cos(✓r)x+ sin(✓r)x
0,

x0 ! cos(✓r)x
0 � sin(✓r)x, (A.12)

and the corresponding transformations on the momentum variables. This results in the

state

Wa1(x, x
0, p, p0) =

Wm(cos(✓r)x+ sin(✓r)x
0, cos(✓r)p+ sin(✓r)p

0)⇥
Wvac(cos(✓r)x

0 � sin(✓r)x, cos(✓r)p
0 � sin(✓r)p). (A.13)

An additional beam splitter describing losses in the optical fibers mixes x0 and p0 with

the vacuum mode described by x00 and p00. We parameterize the loss by
p
⌘ = cos(✓l).

x0 ! cos(✓l)x
0 + sin(✓l)x

00,

x00 ! cos(✓l)x
00 � sin(✓l)x

0, (A.14)
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and the corresponding transformations on the momentum variables. The number of

photons, that are lost, is not known and consequently, we trace over x00 and y00. This

produces the unnormalized state:

Wa2(x, x
0, p, p0) =

1
Z

�1

dx00
1
Z

�1

dy00

Wa1(x, cos(✓l)x
0+ sin(✓l)x

00, p, cos(✓l)p
0+ sin(✓l)p

00)⇥
Wvac(cos(✓l)x

00� sin(✓l)x
0, cos(✓l)p

00� sin(✓l)p
0). (A.15)

The modes described by (y, y0, q, q0) is brought to the central beam splitter in the same

manner producing the state Wb2(y, y0, q, q0). The action of the central beam splitter is

x0 ! x0 + y0p
2

, y0 ! x0 � y0p
2

, (A.16)

and the corresponding transformations on the momentum variables. Assuming that one

output mode only contains vacuum and the other contains anything but vacuum, the

subsequent state is projected onto

Wvac(y
0, q0)(1�Wvac(x

0, p0)) (A.17)

Consequently, the state in the quantum memories after the connection is

Wab(x, y, p, q) =
1

N

1
Z

�1

dx0
1
Z

�1

dy0
1
Z

�1

dp0
1
Z

�1
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0, q0)(1�Wvac(x
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Wa2(x, (x
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p
2, p, (p0 + q0)/

p
2)⇥

Wb2(y, (x
0 � y0)/

p
2, q, (q0 � p0)/

p
2), (A.18)

where N is the normalization constant. After the integration, the resulting Wigner

function can be written in the form

Wab(x, y, q, p) =

2

m+1

X

{s,t,k,l}=0

wstklx
kplysqte�x2�p2�y2�q2 . (A.19)

This can be seen by writingWa2 andWb2 in the form of (A.8) and evaluating the integrals

using the identity (a + b)i =
Pi

s=0

�

i
s

�

aibi�s as in App. A.1. The expression for wstkl

is rather lengthy and we shall not reproduce it here. It can, however, be implemented

numerically and thus provide an e�cient description of the connection step.
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A.3 Target state of swapping

Here we outline the calculations leading to Eq. (3.19) and give the expressions for the

constants that appear in that equation.

We consider the swapping of two states of the type | mi given in (3.14). The state

before the swap is thus

| miab| mia0b0 /(c
1

|0mi|1mi+ e
1

|1mi|0mi)ab⇥
(c

2

|0mi|1mi+ e
2

|1mi|0mi)a0b0 , (A.20)

where c
1

= c
2

= e
1

= e
2

= 1. For generality, we keep the coe�cients named c
1

, c
2

and e
1

, e
2

since it will be important to consider e
1,2, c1,2 6= 1 in order to describe later

swapping stages. We imagine combining modes b and a0 on a balanced beamsplitter.

Using the approximations (3.16), (3.17), we have the following transformations up to

constants of 1/N±
µ
m

and 1/N±
µ̃
m

on the right-hand side
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p
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2µmib)|0ia0

+ (|
p
2µmia0+|-

p
2µmia0)|0ib (A.21)
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p
2ia0 . (A.24)

The squeezing operators Ŝ(2)bŜ(2)a0 should multiply the expressions on the right-hand

side but we omit these for simplicity. Going to the wave function picture, assuming

that cos(
p
2µmp0) ⇡ cos(

p
2µ̃mp0), sin(

p
2µmp0) ⇡ sin(

p
2µ̃mp0), and that (1+ e�2µ2

m) ⇡
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(1� e�2µ̃2

m), we get the transformations

|1mib|1mia0 ! �2cos(
p
2µmp0)e�p02�x2

(A.25)

|0mib|0mia0 ! 2cos(
p
2µmp0)e�p02�x2

(A.26)

|1mib|0mia0 ! �i(e�
p
2x(µ

m

�µ̃
m

) + e
p
2x(µ

m

�µ̃
m

))⇥
e�

1

2

(µ
m

�µ̃
m

)

2

sin(
p
2µmp0)e�p02�x2

(A.27)

|0mib|1mia0 ! i(e�
p
2x(µ

m

�µ̃
m

) + e
p
2x(µ

m

�µ̃
m

))⇥
e�

1

2

(µ
m

�µ̃
m

)

2

sin(
p
2µmp0)e�p02�x2

. (A.28)

Here p0 is the momentum variable of mode a0 and x is the position variable of mode b.

We now perform the X̂ measurement on mode b and the P̂ measurement on mode a0

and assume that we get outcomes p0
0

and x
0

. The unnormalized state after the swapping

is

e
1

c
2

A0|0mia|0mib0 � e
2

c
1

A0|1mia|1mib0
+ c

1

c
2

C|1mia|0mib0 + e
1

e
2

C⇤|0mia|1mib0 , (A.29)

with

A0 = 2cos(
p
2µmp0

0

) (A.30)

C 0 = i(e�
p
2x

0

(µ
m

�µ̃
m

) + e
p
2x

0

(µ
m

�µ̃
m

))⇥
e�

1

2

(µ
m

�µ̃
m

)

2

sin(
p
2µmp0

0

). (A.31)

Whenever ei = c⇤i , this state contains one ebit of entanglement and can be written as:

A|0mia|0mib0 �A⇤|1mia|1mib0+
C|1mia|0mib0 + C⇤|0mia|1mib0 , (A.32)

with

A = c⇤
1

c
2

2cos(
p
2µmp0

0

) (A.33)

C = c
1

c
2

i(e�
p
2x

0

(µ
m

�µ̃
m

) + e
p
2x

0

(µ
m

�µ̃
m

))⇥
e�

1

2

(µ
m

�µ̃
m

)

2

sin(
p
2µmp0

0

). (A.34)

Swapping two states of the form in Eq.(A.32) with coe�cients A
1

, C
1

and A
2

, C
2

respec-

tively, it can be shown within the same approximations leading to Eq. (A.32) that the
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swapped state will also be of the form:

A|0mi|0mi �A⇤|1mi|1mi+
C|1mi|0mi+ C⇤|0mi|1mi, (A.35)

with coe�cients

A =
h

Acos(
p
2µmp0

0

) + Bsin(
p
2µmp0

0

)
i

C =
h

Ccos(
p
2µmp0

0

) + Dsin(
p
2µmp0

0

)
i

(A.36)

with p0
0

again being the outcome of the P̂ measurement. The coe�cients A,B,C and D

depend on the measurement outcome of the X̂ measurement in the relevant swap and in

the previous swap levels as well as the P̂ measurement in the previous swap levels (see

Eq (A.33)). In the simulation of the repeater, we replace
p
2µmp0

0

! ✓p and optimize

the fidelity between the swapped state and the target state with respect to ✓p. Note

that regardless of this, we always calculate the fidelity with a pure state containing one

ebit of entanglement.

A.4 Parameters of fidelity fits

In this section, we list the parameters of the fidelity fits shown in Tab. 3.1 of the article.

The matrices below contain the constants ãn,m-h̃n,m. The first entry in a matrix is for
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n = 0,m = 1 and so fourth.

a =

0

B

B

B

B

B

B

B

@

0 0 0

0 0 0

�2.19 �5.39 �6.81

�9.75 �14.6 �20.1

�15.6 �26.1 �39.9

1

C

C

C

C

C

C

C

A

b =

0

B

B

B

B

B

B

B

@

0.90 0.91 0.95

1.40 1.53 1.65

2.25 3.08 3.40

3.69 4.92 5.83

4.26 6.46 8.54

1

C

C

C

C

C

C

C

A

c =

0

B

B

B

B

B

B

B

@

0.0063 1.0 4.7

0.223 1.50 5.08

0.460 2.59 6.26

1.56 3.73 8.77

2.02 6.68 16.1

1

C

C

C

C

C

C

C

A

· 10�3

d =

0

B

B

B

B

B

B

B

@

15.0 24.2 92.0

13.1 23.1 93.8

12.3 21.6 94.5

10.2 21.0 92.6

9.47 19.0 83.8

1

C

C

C

C

C

C

C

A

e =

0

B

B

B

B

B

B

B

@

� � �
�466 �8.90 · 10�7 0.993

0.969 �2.71 · 10�6 0.979

1.32 �1.93 · 10�5 0.954

0.824 �1.74 · 10�4 0.905

1

C

C

C

C

C

C

C

A

f =

0

B

B

B

B

B

B

B

@

� � �
0.351 5.39 0.411 · 10�3

0.324 5.32 0.792 · 10�3

�0.592 4.58 3.81 · 10�3

�0.411 3.60 5.30 · 10�3

1

C

C

C

C

C

C

C

A

g =

0

B

B

B

B

B

B

B

@

� � �
468 0.985 �

�0.969 0.951 �
�0.636 0.893 �
�0.260 0.799 �

1

C

C

C

C

C

C

C

A

h =

0

B

B

B

B

B

B

B

@

� � �
0.350 �2.80 · 10�3 �
0.324 1.98 · 10�3 �
�2.45 3.78 · 10�3 �
�4.24 7.20 · 10�3 �

1

C

C

C

C

C

C

C

A

Matrices e � h show that the state’s swap performance increases for large values of m

and matrices a� d show that the fidelity drops as a function of r and ~�. The fact that

ãn,m  0 reflects that the fits are made for Pconnect ⌧ 1.

The numerical vectors of the constants ĩn-k̃n and l̃m are

i =
⇣

1 0.938 0.811 0.618 0.413
⌘

j =
⇣

0 �0.460 �1.61 �3.14 �3.64
⌘

· 10�3

k =
⇣

0 0.0323 0.104 0.207 0.275
⌘

l =
⇣

0.0112 0.0222 0.00542
⌘

.

Vectors i� k show that the output fidelity drops as a function of n and vector l shows

that as m increases, the states gets more robust to the swapping procedure.



Appendix B

Near Heisenberg limited atomic

clocks

B.1 Limit of the Ramsey time

In this appendix, we describe the upper limit of the Ramsey time’s dependence on the

number of steps (l) in our numerical simulations of the atomic clocks. As described in

the Sec. 4.4.3, this upper limit is due to the finite probability of a phase jump occuring

that either results in a fringe hop or is large enough to spoil the measurement strategy.

For a simulation running for a time ⌧ = lT , we have l samples of the accumulated phase

of the LO during the Ramsey time T . Assuming that these samples have an independent

Gaussian probability distribution with zero mean 1, the probability of all of these phases

to be less than a critical value (a) is

P ( a) =

✓

1� erfc

✓

ap
2�

◆◆l

(B.1)

where the variance of the distribution � depends on �T . For large l, and as a function

of �, this probability will drop abruptly from ⇠ 1 to ⇠ 0 around a certain � = �max.

Defining �max to be the position where P ( a) = 1/2, we find that

1/2 =

✓

1� erfc

✓

ap
2�max

◆◆l

. (B.2)

1This will be the case for white noise and is approximately true for 1/f noise when the LO is locked
to the atoms
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Solving this equation gives

�max ⇡ a
p

ln(2/⇡) + 2 ln(l)� 2 ln(ln 2)� ln(ln(2/⇡) + 2 ln(l)� 2 ln(ln 2))
, (B.3)

where we have expanded to first order in z = (1 � 2�1/l) ⇠ ln(2)/l. It is seen that the

breakdown (�max) has a weak (logarithmic) dependence on l. Solving equation (B.2)

with the lhs. being equal to 0.95 and 0.05 we find that P ( a) drops from 0.95 to

0.05 within a window of ⇠ 2�max/ ln(l). Hence for large l, the errors will appear very

abruptly in the simulations.



Appendix C

E�cient atomic clocks

In this appendix, we describe the intermediate phase corrections, which allow our pro-

tocol of locking the LO to several ensembles, described in Chap. 5, to be e↵ective for

small N . Furthermore, we describe the final phase correction, which we apply in order

to reduce the required time of our simulations. Finally, we discuss the upper limits of

the Ramsey time for white and 1/f noise.

C.1 Phase corrections

The Ramsey sequence, and the subsequent estimate of the drifted phase of the LO

relative to an ensemble of atoms, is described in the Sec. 5.2. Eqs. (5.1) - (5.3) describes

the frequency o↵set of the LO (�!(t)) between time tk�1 = (k�1)T and tk = kT when the

LO is locked to two ensembles. We will now generalize this formalism to the case where

the LO is locked to m ensembles. Assuming that the j’th ensemble is operated with

Ramsey time Tj = nj�1T
1

, 1the frequency o↵set of the LO between time tk�1 = (k�1)T
1

and tk = kT
1

is

�!(t) = �!
0

(t) + �!
1

(ts
1

) + �!
2

(ts
2

n) + . . .+ �!m(ts
m

nm�1), (C.1)

where �!
0

(tk) is the frequency fluctuations of the unlocked LO and �!m(ts
j

nj�1

) is the

sum of the frequency corrections applied up to time ts
j

nj�1

from the j’th ensemble2.

Note that the index sjnj�1 should be read as sj times nj�1, describing the exponential

increase in the Ramsey time each time an additional ensemble is used. The iterative

1n is an integer describing how many times the Ramsey time can be increased for each added ensemble
2s

j

is found by rounding (k�1)/nj�1 down to the nearest integer

146
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equation for �!j(ts
j

nj�1

) is

�!j(ts
j

nj�1

) = �!j(t
(s

j

�1)nj�1

)� ↵��ej (ts
j

nj�1

)/Tj , (C.2)

where ��ej (ts
j

nj�1

) is the estimated phase from the j’th ensemble at time ts
j

nj�1

and

↵ sets the strength of the feedback loop3. ↵ determines how long time the clock needs

to run before the LO is e↵ectively locked by the feedbacks4. In Sec. 5.2, we assumed

that T
2

� T
1

such that the feedback of the first ensemble had e↵ectively locked the

LO before the measurement of the second ensemble. In the general setup of locking the

LO to m ensembles, this corresponds to assuming that n � 1. We will now show how

we can apply a phase correction in the measurement of the j’th ensemble such that we

can relax this assumption. The phase correction will compensate for the fact that the

information from the last measurements on the first (j�1) ensembles has not been fully

exploited by the feedback loops before the measurement on the j’th ensemble. Note

that we assume that the phase correction is only applied to the measurement and not

to the LO.

The phase of the LO relative to the j’th ensemble, just before the measurement at time

ts
j

nj�1

, is

�j
s
j

nj�1

=
nj�1

X

s=1

�s+(s
j

�1)nj�1

� �correct j
s
j

nj�1

, (C.3)

where �s+(s
j

�1)nj�1

=
R T

1

0

�!(ts+(s
j

�1)nj�1

� t0)dt0 and �correct j
s
j

nj�1

is the phase correction

applied in the measurement of the j’th ensemble at time ts
j

nj�1

. Using Eq. (C.1)-(C.2)

we can write

�j
s
j

nj�1

=
nj�1

X

s=1

(��s+(s
j

�1)nj�1

� ↵
s�1

X

s0=1

�e1
s0+(s

j

�1)nj�1

)� ↵
nj�2

X

s=2

s�1

X

s0=1

��e2
s0n+(s

j

�1)nj�1

� . . .

�↵
n
X

s=2

s�1

X

s0=1

��
e
j�1

s0nj�1

+(s
j

�1)nj�1

� �correct j
s
j

nj�1

, (C.4)

where ��s+(s
j

�1)nj�1

is the accumulated phase between time t
(s

j

�1)nj�1

+s�1

and t
(s

j

�1)nj�1

+s

due to the frequency fluctuations of the unlocked LO and the feedback corrections ap-

plied up to time t
(s

j

�1)nj�1

. For simplicity, we have replaced the time dependence by an

index such that ��ei
s0ni�1

+(s
j

�1)nj�1

is the phase estimate from the i’th ensemble at time

ts0ni�1

+(s
j

�1)nj�1

. To fully exploit all information from the measurements on the first

(j�1) ensembles between time t
(s

j

�1)nj�1

and ts
j

nj�1

, we choose a phase correction of

3For now we assume equal strengths for all feedback loops
4The LO is locked after a time ⇠ T

j

/↵
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�correct j
s
j

nj�1

= �correctj,1 + �correctj,2 + . . .+ �correctj,j�1

, where

�correctj,i =
nj�i

X

s=1

"

(1� ↵)n
j�i�s��ei

sni�1

+(s
j

�1)nj�1

+↵
s�1

X

s0=1

(1� ↵)n
j�i�s��ei

s0ni�1

+(s
j

�1)nj�1

#

. (C.5)

Here we assume that when two or more ensembles are to be read out at the same instant

in time, ensembles with a shorter Ramsey time are measured before the ones with longer

Ramsey times such that the results from these measurements can be used as a correction

for the ensembles with a longer Ramsey time. For this choice of �correct j
s
j

nj�1

, the phase of

the LO relative to ensemble j is

�j
s
j

nj�1

=
nj�1

X

s=1

�s+(s
j

�1)nj�1

�
nj�1

X

s=1

��e1
s+(s

j

�1)nj�1

�
nj�2

X

s=1

��e2
sn+(s

j

�1)nj�1

� . . .

�
n
X

s=1

��
e
j�1

snj�1

+(s
j

�1)nj�1

, (C.6)

where �s+(s
j

�1)nj�1

=
R T

1

0

�!(ts+(s
j

�1)nj�1

� t0)dt0 is the accumulated phase of the LO

relative to the atoms in the first ensemble between times ts�1+(s
j

�1)nj�1

and ts+(s
j

�1)nj�1

. According to Eq. (C.6), �j
s
j

nj�1

is e↵ectively the accumulated errors between the esti-

mated phases and the actual phases for the (j�1)’th ensemble between times t
(s

j

�1)nj�1

and ts
j

nj�1

5. �j
s
j

nj�1

is thus the accumulated phase of the LO between time t
(s

j

�1)nj�1

and ts
j

nj�1

minus the phase change already measured by the first j � 1 ensembles, i.e.

it does not require further running time to incorporate the information acquired in the

first measurements. As opposed to the feedback loop, which corrects for e.g. frequency

drifts by changing the frequency of the LO, the phase corrections directly correct the

phase. This phase locking ensures a more rapid convergence, which is important when

we want to apply the LO to the subsequent ensembles. With the phase corrections

�correct j
s
j

nj�1

, we can therefore relax the assumption of n � 1. Since the noise of the LO

is white after stabilizing it to the first ensemble, the subsequent frequency corrections

from the other ensembles could be replaced with merely phase corrections of the LO,

which would simplify the above procedure by removing the need for phase corrections in

the measurements. We have however chosen to consider frequency corrections to keep a

consistent treatment of the feedback in all stages.

In our simulations, we are simulating a clock with a LO locked to m ensembles running

for a long but finite time. Similar to our description of the phase corrections �correct j
s
j

nj�1

5this is seen by considering Eq. (C.6) for j = 1, 2, . . .)
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above, there will be some remaining information from the last measurements, which

have not been fully exploited by the feedback loops when our simulation stops. In our

simulations, we therefore include an additional phase correction �correct

final

to the LO after

the final measurement. In principle, the influence of the last few measurements could

also have been reduced by running the simulation for a longer time but by doing the

phase correction, we reduce the required simulation time. With the phase correction

the mean frequency o↵set of the LO (!̄(⌧)), after running the clock for a total time of

⌧ = lT
1

, is

!̄(⌧) =
1

⌧

l
X

s

�s � �correct

final

, (C.7)

where �s=
R T

1

0

�!(ts � t0)dt0 is the phase of the LO relative to the atoms at time ts and

�correct

final

is the final phase correction of the LO. Using Eq. (C.1)-(C.2) and assuming that

the j’th ensemble is operated with Ramsey time Tj = nj�1T
1

, we can write !̄(⌧) as:

!̄(⌧) =
1

⌧

"

l
X

s=1

(��0s � ↵
s�1

X

s0=1

�e1s0 )� ↵

l/n
X

s=1

s�1

X

s0=1

��e2s0n � . . .

�↵
l/nm�1

X

s=1

s�1

X

s0=1

��em
s0nm�1

� �correct

final

#

(C.8)

where ��0s is the accumulated phase between time ts�1

and ts due to the frequency

fluctuations of the unlocked LO and ��
e
j

s0nj�1

is the estimated phase from the j’th en-

semble at time ts0nj�1

. We find that the ideal performance is reached with �correct

final

=

�correct
final,1 + �correct

final,2 + . . .+ �correct
final,m where

�correct
final,j =

l/nj�1

X

s=1

"

(1� ↵)l/n
j�1�s��

e
j

snj�1

+ ↵
s�1

X

s0=1

(1� ↵)l/n
j�1�s��

e
j

s0nj�1

#

. (C.9)

With this phase correction, the mean frequency o↵set is

!̄(⌧) =
1

⌧

2

4

l/nm�1

X

s=1

�̃snm�1 � ��̃e1
snm�1

� ��̃e2
snm�1

� . . .� ��̃em
snm�1

3

5 , (C.10)

where �̃snm�1 =
Pnm�1

s0=1

�
(s�1)nm�1

+s0 =
Pnm�1

i=1

R T
1

0

�!(ts0+(s
j

�1)nm�1 � t0)dt0 is the

sum of the accumulated phases of the LO relative to the first ensemble between time

ts0�1+(s
j

�1)nm�1 and ts0+(s
j

�1)nm�1 and ��̃
e
j

snm�1

=
Pnm�j

s0=1

��
e
j

s0nj�1

+(s�1)nm�j

is the sum

of the estimated phases from the j’th ensemble at times ts0nj�1

+(s�1)nm�1

. Using Eq.
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(C.6) we can write

!̄(⌧) =
1

⌧

2

4

l/nm�1

X

s=1

�̃m
s � �ems

3

5 (C.11)

=
1

l/nm�1

2

4

l/nm�1

X

s=1

�̃m
s � �ems
Tm

3

5 , (C.12)

where Tm is the Ramsey time of the m’th ensemble, �̃m
s is the accumulated phase of

the stabilized LO relative to the atoms in the m’th ensemble at time tsnm�1 and �ems is

the estimate of that phase. Eq. (C.12) shows that the final phase correction e↵ectively

incorporate the remaining information from the measurements that has not yet been

exploited by the feedback loop. Thus the mean frequency o↵set simply depends on how

well we estimate the phase of the m’th ensemble and this last measurement is e↵ectively

a measurement of the accumulated errors of the phase estimates in the previous (m� 1)

ensembles. We use Eq. (C.12) to determine the stability of the clock, which is given by

��(⌧) = h(�!̄(⌧)/!)2i1/2.

C.2 Limit of the free evolution time

Here we discuss how to determine the upper limit of the Ramsey time for the scheme

described in Chap. 5 and thereby the minimum number of atoms Nmin required in each

ensemble in order for the scheme to work. In Sec. 5.3, we show that the minimum

number of atoms required in each ensemble, in order to increase the Ramsey time by a

factor of a at each level of our protocol, is

Nmin ⇠ a/�, (C.13)

where � parameterize the maximal Ramsey time Tmax for a LO subject to white noise.

Note that, equivivalently, � is the maximal width of the distribution of phase jumps

allowed, i.e. �2��,max = �. The requirement expressed in Eq. (C.13) ensures that when

we increase the Ramsey time of the next ensemble by a factor of a compared to the

Ramsey time of the previous ensemble we still keep �2�� . �2��,max for the noise seen by

the next ensemble. Note that Nmin is found by setting a = 2.

To determine �, we simulate an atomic clock with only a single ensemble of N = 105

atoms and a LO subject to white noise characterized by a strength �. Furthermore, to

determine �
1

(see Eq. 5.11) for a LO subject to 1/f noise, we do a similar simulation

but with a 1/f noise spectrum of the LO i.e. S(f) = �2/f , where S(f) denotes the noise

spectrum and f is frequency. Note that we define the noise spectrum as S(f)�(f +f 0) =
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h�!(f)�!(f 0)i, where �!(f) is the Fourier transform of the frequency fluctuations �!(t)

of the LO. S(f) is thus the frequency noise spectrum. In the simulations, we do not

simulate the full quantum evolution of the atomic state as we do for the simulations

presented in Secs. 5.3 and 5.5. Instead, we approximate the probability distributions

of Ĵx,y,z with Gaussian distributions as in Sec. 4.4.3. This Gaussian approximation is

legitimate since N � 1. Furthermore, it is desirable for white noise in the unlocked LO

to have a weak feedback strength ↵ since a strong feedback increases the width of the

phase noise for the locked LO. For white noise in the unlocked LO we therefore simulate

the limit where ↵ ⌧ 1 such that the phases are uncorrelated. For 1/f noise, we use a

feedback strength of ↵ = 0.5 since a stronger feedback is desirable to lock the LO more

rapidly. The high number of atoms ensures that when we increase the Ramsey time T

of the clock, we see the onset of the phase jumps as an abrupt break down, which is

not blurred by the atomic noise in our phase estimates. In our simulations, the clock is

running for a time ⌧ = 106T , i.e. for l = 106 steps of T 6. The onset of the break down

will in principle have a weak (logarithmic) dependence on the number of steps that we

simulate, which we do not expect to change our results significantly (see App.B.1). Fig.

C.1 shows the result of our simulations.

Figure C.1: Stability as a function of the Ramsey time (�T ) for (a) white noise and
(b) 1/f noise in the LO. The plots were made with N = 105. • is the adaptive protocol
of described in Chap. 4 and ⌅ is the conventional Ramsey protocol. The adaptive
protocol allows for �T ⇠ 0.3 and 0.2 for white and 1/f - noise respectively while the

conventional protocol only allows for �T ⇠ 0.1 for both white and 1/f noise.

The adaptive protocol that we have used is that described in Chap. 4 since the modified

adaptive protocol described in Sec. 5.4 will lead to similar results for large atom numbers,

where the break down is most apparent, but is harder to simulate. Fig. C.1 shows that

the conventional protocol allows for � ⇠ 0.1 for white noise and �
1

⇠ 0.1 for 1/f noise

in the unlocked LO while the adaptive protocol allows for � ⇠ 0.3 and �
1

⇠ 0.2. With

6For 1/f noise we average over 100 independent runs with 104 steps of T .
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a = 2 in Eq. (C.13), the minimum number of atoms required for the protocol of locking

to several ensembles to work is thus Nmin = 20 for conventional Ramsey strategy while

the adaptive strategy can extend the applicability down to Nmin = 7 atoms. We expect

� of the modified adaptive protocol described in Sec. 5.4 to be identical since it also

relies on the rotation of the atomic state to resolve phases between ±⇡. In our numerical

simulations of the modified protocol, we have therefore set � ⇠ 0.3 and �
1

⇠ 0.2 for

1/f noise. Note that in our simulations of the full protocol of locking an atomic clock

to several atomic ensembles, we still include the possibility of disruptive phase jumps.

However, imposing the limits on � (�
1

) identified from Fig. C.1 for all steps in the

protocol ensures that we do not see any significant e↵ect of them. The probability to

have disruptive phase jumps for the duration of the simulations is simply negligible, i.e,

the probability for phase jumps large enough to spoil the feedback strategy in a Ramsey

sequence is well below 10�6.



Appendix D

Heralded quantum gates

In order to confirm our results from perturbation theory described in Chap. 6, we have

numerically integrated the full Master equation, defined by the Hamiltonian in Eq. (5.1)

and the Lindblad operators, L̂j 2 {L̂
0

, L̂g, L̂f , L̂1

, L̂
2

},

d

dt
⇢(t) = � i

~ [Ĥ, ⇢(t)] +
X

j

1

2

h

2L̂j⇢(t)L̂
†
j � ⇢(t)L̂†

jL̂j � L̂†
jL̂j⇢(t)

i

(D.1)

We used the QuTiP 2 package [147], for Python, to set up the problem and used its

12th-order numerical integration algorithm to find the solution ⇢(t) as a time series.

Then, we used the routines of the same package to analyze the results.

For each time series ⇢(t), we determined the gate time t
gate

, the success probability

P
success

, and the fidelity F . We picked | 
0

i
12

= 1p
2

�|0i + |1i�
1

⌦ 1p
2

�|0i + |1i�
2

as the

initial state of the two qubits, |gi for the control atom, and zero photons in the cavity.

Starting from here, we let the system evolve under the Master equation Eq.(D.1), and

determined Pg(t), the conditional state ⇢g(t) and F (t) as a function of time:

Pg(t) = Tr
h

⇢(t)|gihg|
i

,

⇢g(t) =
|gihg|⇢(t)|gihg|

Pg(t)
,
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where Tr
c, c

is the partial trace operation over the control atom and the cavity, and

| �
1

,�2
t i is the target state transformed with two single qubit z-rotations:
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where Ûk(�k) = exp [i|1ikh1|k�k] is the z-rotation of qubit k (= 1, 2) by the angle �k.

From these time series, we determined the gate time t
gate

by finding the timepoint where

F (t) is maximal,

t
gate

= argmax
t

F (t)

The fidelity and the success probability of the gate is then defined as F = F (t
gate

),

P
success

= Pg(tgate).

Plots of Fig. D.1 show the gate time (t
gate

) and the success probability (P
success

) as

a function of C, for �g = 0, � = 0.1, ⌦ 2 {0.1, 0.05, 0.025}. The detunings, �E

and �e were choosen to be close to their optimal value, determined from the adiabatic

theory, and numerically optimized to result in identical e↵ective |gi ! |fi transition

rates �
0

= �
1

= �
2

for the qubit sectors |00i, |01i, |11i. The rates �j were found

by numerically diagonalizing the master equation for the qubit sectors separately, and

finding the eigenvalue with the smallest (but non-zero) absolute real part. This numerical

optimization yielded the maximal fidelity. The symbols correspond to the numerical

result, whereas the solid lines show the theoretical values. The agreement of the results

confirm the validity of the adiabatic theory.

Figure D.1: Gate time (left) and failure probability (right) as a function of cooper-
ativity (C) for �/ = 0.1, �

g

= 0, and ⌦/ = 0.1, 0.05, 0.025 (denoted by the symbols
“+”, “o”, “x” respectively. We used a gradual ramping up of ⌦(t) = ⌦

�

1� e�t/tramp
�

with tramp = 10/�.

Fig. D.2 shows the conditional infidelity of the gate as a function of C for the same choice

of parameters. The fidelity is limited by non-adiabatic e↵ects, which can be surpressed

by decreasing ⌦. Adiabatically ramping down ⌦ at the end of the gate could also improve

the adiabaticity but, for simplicity, we have not included this. The simulation confirms

that using ⌦/ = 0.025 is enough to push the (conditional) infidelity of the gate below

10�6 even for low cooperativity, such as C = 5.
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Figure D.2: Conditional infidelity of the gate as a function of cooperativity (C) for
�/ = 0.1, �

g

= 0, and ⌦/ = 0.1, 0.05, 0.025 (denoted by the symbols “x”, “o”, “+”
respectively. The shaded region (at ⇠ 10�6) shows the limit of numerical accuracy. We

used a gradual ramping up of ⌦(t) = ⌦
�

1� e�t/tramp
�

with tramp = 10/�.

We repeated the above analysis for the two-photon-driving Hamiltonian in Eq. (6.23).

We chose � = �g = �f = 0.1, ⌦ = �

E2

8C1/4

, and ⌦
MW

= 4�C1/4, and choose �E and �e

detunings again close to their adiabatic optimum, but numerically optimized them with

the same procedure as previously. Plots of Fig. D.3 show the gate time and the success

probability as a function of C for three di↵erent values of �E2

2 {5, 10, 20}. Symbols

indicate the numerical results while solid lines show the theoretical values. Fig. D.4

Figure D.3: Gate time (left) and failure probability (right) as a function of cooper-
ativity (C) for � = �

g

= �
f

= 0.1, ⌦ = �E2

8C1/4 , ⌦MW = 4�C1/4, �
E2/ = 5, 10, 20

(denoted by the symbols “x”, “+”, “o” respectively.

shows the conditional infidelity of the two-photon-driven gate as a function of C for the

same choice of parameters. With this result, we confirm that by increasing �E2

, but

keeping the e↵ective driving strength ⌦
e↵

= ⌦

MW

⌦

2�

E2

(= 0.025 here) constant, we can

lower the infidelity error to an arbitrary small level. For high C, we do see some small
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non-adiabatic e↵ects, which we do not fully understand but they can be surpressed even

further by decreasing ⌦.

Figure D.4: Conditional infidelity of the gate as a function of cooperativity (C) for
� = �

g

= �
f

= 0.1, ⌦ = �E2

8C1/4 , ⌦MW = 4�C1/4, �
E2/ = 5, 10, 20 (denoted by the

symbols “x”, “+”, “o” respectively.



Appendix E

Room temperature single photon

sources and quantum memories

In this appendix, we give the expressions for A(t), Bj(t), and Cj(t) with the extra

couplings present for a realization with 133Cs atoms (see Fig. E.1). We find that

A(t) = �(
1

/2 + i�cav) +
1

4

N
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45
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, (E.3)

where the detunings are defined in Fig. E.1 with �̃ = � + 2⇡ · 9.2 GHz and we have

defined the functions

fj(�, k, t) =
e2ikzj(t) � 1

�/2� i(� � kv(j)z (t))
� 1� e�2ikz

j

(t)

�/2� i(� + kv(j)z (t))
(E.4)

f̃j(�, kq, kc, t) =
ei(kq�k

c

)z
j

(t) � e�i(k
c

+k
q

)z
j

(t)

��/2 + i(� + kcv
(j)
z (t))

+
e�i(k

q

�k
c

)z
j

(t) � ei(kc+k
q

)z
j

(t)

��/2 + i(� � kcv
(j)
z (t))

. (E.5)

Here kc (kq) is the wavenumber of the classical (quantum) field. The couplings are

defined such that

• g(j)
4↵ (t) is the coupling between the states |F = 4,mF = 4i and |F 0 = ↵,mF 0 = 3i

• g(j)
4↵0(t) is the coupling between the states |F = 4,mF = 4i and |F 0 = ↵,mF 0 = 5i

157
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• ⌦(j)
3↵0(t) is the coupling between the states |F = 3,mF = 3i and |F 0 = ↵,mF 0 = 3i

• ⌦(j)
4↵0(t) is the coupling between the states |F = 4,mF = 4i and |F 0 = ↵,mF 0 = 4i,

where the xy dependence of the couplings is implicit. Note that we have allowed for the

cavity to be detuned from the the quantum field with a detuning of �cav in Eq. (E.1).

This detuning should be chosen such that it elliminates the phases from the coupling

terms in Eq. (E.1), which would otherwise have a detrimental e↵ect on the readout

e�ciency. We have assumed that this is case in all our numerical simulations.

Figure E.1: The relevant level structure in 133Cs for the readout process. The cou-
plings of the classical (quantum) field are denoted ⌦ (g).



Appendix F

Optimization of repeater

structures based on optical

cavities

In this appendix, we present a detailed error analysis of both the single-photon and

two-photon entanglement generation scheme, considered in Chap. 8. Furthermore, we

present the details of the calculation of the factors Zl:m introduced in Sec. 8.4

F.1 Error analysis of the single-photon scheme

The setup of the single-photon scheme is described in Sec. 8.1. The single photon

detectors are assumed to have a dark count probability of Pdark and an e�ciency of ⌘d

while the transmission e�ciency of the fibers is denoted ⌘f . As described in Sec. 8.1,

the probability of an emitter to go from the excited state, |ei to the ground state |1i is
Pphot while the excitation probability is ✏2. The scheme is conditioned on a single click

at the central station and depending on which detector gave the click, a single qubit

rotation can be employed such that ideally the state | +i is created. Going through all

the possibilities of obtaining a single click at the central station, we find that the density

matrix following a single click, and possible subsequent single qubit rotations, is

⇢
1click = F

1

| +ih +|+ ↵
1

|�+ih�+|+ ↵
1

|��ih��|+ �
1

| �ih �|
+↵̃

1

|00ih00|+ �̃
1

|11ih11|, (F.1)
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with coe�cients
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. (F.2)

Here we have assumed that with probability ✏2(1 � Pphot), an emitter is excited but

spontaneously decay to the ground states instead of emitting a cavity photon. Further-

more, we have assumed that the decay rates to the two ground states are equal such

that the emitter ends up in 1

2

(|0ih0|+ |1ih1|). Note that the detectors are not assumed
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to be number resolving. P
1click is the total success probability, which is

P
1click = 2⌘d⌘fPphot✏

2(1� Pphot✏
2)(1� Pdark)

+(2⌘f⌘d � ⌘2f⌘
2

d)P
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4
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+2(1� ⌘d⌘f )
2P 2
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4Pdark(1� Pdark)

+4(1� ⌘d⌘f )Pphot✏
2(1� ✏2Pphot)Pdark(1� Pdark). (F.3)

Assuming Pdark ⌧ 1, the dominant error is where both qubits are excited but only a

single click is detected at the central station. This leaves the qubits in the state |11ih11|
and this error is e�ciently detected by the purification scheme described in Ref. [14].

F.2 Error analysis of the two-photon scheme

For the two photon scheme described in Sec. 8.1, we condition on a click in two detectors

and once again we assume that appropriate single qubit rotations are employed depend-

ing on which detector combination clicked such that ideally the state | +i is created.

We find that the density matrix describing the qubit state after a successful event is

⇢
2click = F

2

| +ih +|+ ↵
2

|�+ih�+|+ ↵
2

|��ih��|+ �
2

| �ih �|, (F.4)
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where we have defined
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The success probability P
2click is

P
2click = (1� Pdark)
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(F.6)

As in the single-photon scheme, we have not assumed number resolving detectors and

we have assumed that with probability (1 � Pphot), an emitter spontaneously decay to

one of the ground states resulting in the state 1

2

(|0ih0|+ |1ih1|).
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F.3 Coin tosses

In this section, we outline how to calculate the factors Zl:m(p) introduced in Sec. 8.4.

We follow the lines of Ref. [138] where similar factors are derived. Assuming that we

toss m coins simultaneously in every attempt, we ask how many attempts we need in

order to get at least l tails, assuming that each coin have a probability of p to show

tails. Coins showing tail after a toss are kept and only the coins showing head are tossed

again until l tails are obtained. The expression for Zm;m(p) is already derived in Ref.

[138] and their result is stated below

Zm;m =
m
X

k=1

✓

m

k

◆

(�1)k+1

1� (1� p)k
. (F.7)

For Zl;m where l 6= m, we only need to find expressions for Z
1;m with m = 1, 2, 3, 4,

Z
2;m with m = 3, 4 and Z

3;4

since we have a maximum of 4 qubits pr. repeater station.

For Z
2;3

, we have that
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(k + l)[q3)k�1pq2][(q2)l�1p2], (F.8)

where q = 1 � p. The first term in Eq. (F.8) describes the situations where three tails

are obtained in a single toss after a given number of tosses, where all coins showed head.

We will refer tosses where all coins show tail as failed tosses. The second term describes

the situation where we get two tails in the same toss after a given number of failed

tosses. The third and fourth terms are where we get a single tail after a given number of

failed tosses. The coin showing tail is then kept and the two remaning coins are tossed

until we obtain another tail (third term) or two tails simultaneously (fourth term). The

geometric series in Eq. (F.8) can be solved to give

Z
2;3

=
5� (7� 3p)

(2� p)p(3 + (p� 3)p)
⇡ 5

6

1

p
, (F.9)

where the approximate expression is for p ⌧ 1. Note that the factor of 5

6

corresponds

to a simple picture where it on average takes 1

3

1

p attempts to get the first ’tail’ using

3 coins and 1

2

1

p attempts to get the second using the remaining 2 coins. In a similar



Appendix F. Optimization of repeater structures 164

manner, we find that

Z
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1
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⇡ 1

2p
(F.10)
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Z
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�13 + p(33 + p(22p� 6p2 � 37))

(p� 2)p(3 + (p� 3)p)(2 + (p� 2)p)
⇡ 13

12p
. (F.14)

Here the approximate expressions are all for p ⌧ 1 and they correspond to the ex-

pressions one would get using simple pictures similar to the one described above in the

discussion of Z
2;3

.
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