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Chapter 1

Introduction

The discovery in 1956 by Hanbury Brown and Twiss of photon bunching in ther-
mal light spurred the rise of quantum optics as a rich field of fundamental re-
search [55]. Although the Hanbury Brown-Twiss effect could be understood en-
tirely in terms of the classical theory of light as electromagnetic waves governed
by Maxwell’s equations, many experiments followed that showed behaviour of
light that was only explainable with the help of quantum theory. According to
quantum theory, an electromagnetic field consists of discrete quanta of energy –
photons – that can be considered as bosonic particles. Depending on the way it
is observed, light can show characteristics of either waves or particle. This wave-
particle duality is one of many counter-intuitive notions of quantum mechanics.
Another one is the concept of superposition – that a system can exist in two
or more distinct states simultaneously. The superposition principle and wave-
particle duality permeates all of quantum mechanics, and not least quantum
optics. Schrödinger [138] voiced some concern over the implications of quan-
tum superposition (and the measurement problem) with his famous cat paradox
where the state of a cat, dead or alive, is in a superposition with that of a weakly
radioactive material – they are entangled, as he coined it. The eventual sponta-
neous decay of a single atom of the material will trigger an intricate device that
leads to instantaneous death of the creature. If unobserved and unperturbed,
the cat itself will thus be in a superposition state of dead and alive. The deeper
significance of the paradox remains a subject of discussion among proponents
of different interpretations of quantum mechanics. Since then, though, the name
“Schrödinger cat” has also come to denote a range of nonclassical states of var-
ious physical systems, with the common quality that they can be considered
superpositions of macroscopically distinct states. A large part of fundamental
research in quantum optics consists of generating new kinds of light display-
ing explicitly nonclassical (i.e. quantum) effects, such as the superposition in a
Schrödinger cat state. Other very important effects that have been demonstrated
include, from the particle point of view, photon anti-bunching [70] and polar-
ization entangled photons [5, 117], and effects more closely related to the wave
description such as field fluctuations below the classical level (squeezing) [143]
and quadrature entanglement [118].
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2 Introduction

Within the last few decades, alongside research into fundamental concepts of
quantum mechanics, quantum optics has also provided an important setting
for the ever-growing field of quantum information processing, where the pe-
culiarities of quantum mechanics is put to practical use in computation and
communication protocols that might outperform classical counterparts. In turn,
the promises of quantum information have provided an impetus for much of
the quantum optics research of recent years, such as the landmark demonstra-
tions of teleportation of quantum states [15, 45]. The traditional description of
quantum information is in terms of qubits, which emphasizes the particle aspect
of light, as photons are natural carriers of a single qubit. However, an alterna-
tive approach is becoming increasingly popular, in which continuous variables
(cv) play the key role for encoding of information [20, 23]. In the case of light,
the continuous variables are typically (although not limited to) the quadratures
of the field, which are more strongly linked to the wave aspect of light. To a
large extent, cv quantum information protocols make use of Gaussian states and
operations, for example in quantum key distribution with coherent states [53]
whose quadrature distributions are Gaussian. The realization that entanglement
of Gaussian states cannot be distilled by Gaussian operations [37, 39, 49], how-
ever, leads to the necessity of non-Gaussian operations such as photon counting
for long-distance communication [21]. Furthermore, it has been shown that uni-
versal quantum computation is possible with a certain type of Schrödinger cat
states as resources – states which are highly non-Gaussian [131].

The work presented in this thesis is a primarily experimental endeavour into
the generation and characterization of pure non-classical and, in particular, non-
Gaussian states. As with many other projects within this field, it has one foot
in the “fundamental research” camp and another in the “applications” camp –
it is a truly fascinating side of modern quantum optics that these two overlap
to such a great extent. The generation of a novel state of light featuring highly
non-classical characteristics, namely a negative probability distribution in phase
space, adds to the already large range of demonstrations of quantum features of
light. This “Schrödinger kitten” state, although not a fully-fledged macroscopic
superposition (a cat), still has some properties in common with its larger siblings.
On the other hand, a longer-term goal of the project is to employ this kitten –
and just as importantly our single photon states – in a quantum information net-
work involving atomic ensembles as quantum memories. Although all-optical
computation schemes have been devised, as mentioned above (also with discrete
variables [71]), it still seems reasonable to assume that future quantum com-
munication networks or computers will need a stationary long-term storage for
quantum information. With that in mind, there is a huge research effort going
into the development of efficient interactions between light and matter, in partic-
ular in the form of individual atoms or larger ensembles. From a technical point
of view, the states we generate are very well suited to interactions with atoms
due to their narrow spectral widths relative to comparable sources of high-purity
non-Gaussian states.

The experimental techniques we have developed could find other applications
in quantum state engineering and control, for example for entanglement distilla-
tion, but they are also fundamentally interesting in the context of wave-particle
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duality. The basic concept is conditional state preparation, where a photon, de-
tected in one mode of a correlated two-mode state, heralds the generation (or
existence) of a certain state in the second mode. This is an idea familiar from
many single photon sources. What is special in our case is that the initial two-
mode state is a continuous wave, as opposed to the more common short pulses.
The discrete detection of a single photon at a random time from this continuous
wave induces the preparation of the conditional state within a temporally local-
ized mode. The state characterization is done by homodyne tomography, which
measures the continuous quadrature variables of the field (wave), but in this case
conditioned on the detection of a photon (particle)! Homodyne measurements
on continuous wave fields are usually analyzed in the frequency domain, but the
conditioning means that we have to go to the time domain, which leads us to
consider the precise temporal “wave packet” extent of the heralded single pho-
ton and kitten states. Previously, conditional state preparation with continuous
waves was performed for Gaussian bright squeezed states [73] and for distilla-
tion of non-Gaussian states [57]; however, these were not conditioned on photon
detections but rather threshold measurements of intensity or amplitude. The
experiments closest to ours are probably those of Foster et al. [41] where homo-
dyne detection of a non-classical continuous field (from a cavity-QED system)
was conditioned on the detection of a photon in part of the field. They observed
non-classical correlations in the recorded photocurrent, but no quantum state
was extracted from the data.

Although the relationship between the wave and the particle description of our
experiment is fascinating, the more philosophical considerations will not play a
major role in this thesis. The main emphasis will be on a precise theoretical mod-
eling of the generated states in Chapter 3, based on the theory of squeezed states
from an optical parametric oscillator and a Gaussian mode reduction formalism;
on the description and characterization of the experimental tools and methods in
Chapter 4; and on a detailed analysis of the obtained data, in particular the full
tomographic state reconstruction and investigations into the temporal state se-
lection in Chapter 5. An introduction to the basics of quantum optical states and
homodyne tomography is given in Chapter 2, while Chapter 6 describes some
extensions of the experiment already carried out and some possible directions
for future investigations.





Chapter 2

Basics

2.1 Quantum state representations

2.1.1 The density matrix

A pure state of a quantum system is represented by its state vector or ket,
|ψ〉, which can be expanded into basis kets of the given Hilbert space: |ψ〉 =
∑k ck |φk〉. The expectation value of any observable of the system represented by
the operator Â acting on the state is 〈Â〉 = 〈ψ| Â |ψ〉. If the Hamiltonian, Ĥ,
of the system is time-independent, the state ket evolves according to |ψ(t)〉 =
Û(t) |ψ(t)〉, with the unitary operator Û(t) = exp(−iĤt/h̄). A system consisting
of several modes A, B, etc. which are in pure states |ψA〉A, |ψB〉B, . . . , is given by
the tensor product of its constituent states, |ψAB···〉 = |ψA〉A ⊗ |ψB〉B ⊗ . . ., often
abbreviated |ψA〉 |ψB〉 . . . or |ψA, ψB, . . .〉. However, a multimode system can also
be in a state which cannot be separated into a product of the constituent states –
then it is entangled.

It is possible that a system is in a statistical mixture (or ensemble) of two or more
pure states, meaning that each state ket |ψi〉 appears with a probability wi. Such
a mixed state cannot be described as a single state ket but requires the density
operator formulation,

ρ̂ = ∑
i

wi |ψi〉〈ψi| .

The fractional populations wi add up to 1. For a pure state |ψ〉, ρ̂ = |ψ〉〈ψ|. In a
basis {|φk〉}, the density operator has a matrix representation

ρ̂ = ∑
m,n

ρmn |φm〉〈φn| ,

ρmn = 〈φm| ρ̂ |φn〉 = ∑
i

wi 〈φm|ψi〉 〈ψi|φn〉 .

The density matrix is Hermitian and normalized to trace 1. The diagonal ele-
ments are ρnn = ∑i wi|〈φn|ψi〉|2 and are thus all non-negative. It will be infinite
for an infinitely dimensional Hilbert space, but otherwise it will in general con-
sist of 2M real parameters for an M-dimensional Hilbert space, but only 2M− 1

5



6 Basics

are independent due to the normalization constraint. The expectation value of
any observable of the system can be obtained from the density matrix as〈

Â
〉

= tr[Âρ̂] = ∑
n,i

wi 〈φn| Â |ψi〉 〈ψi|φn〉 = ∑
i

wi 〈ψi| Â |ψi〉 .

In that sense, the density matrix contains the full information about the given
state. For a multimode system, say ρ̂AB, the density matrix of the mode A is
given by the partial trace over mode B,

ρ̂A = trB[ρ̂AB].

This is really a definition of ρ̂A, but it is sensible (and the unique choice, [113,
§2.4.3]) since it results in correct expectation values of any operator Â acting
only on mode A. The extension of this operator to the multimode Hilbert space
is Â⊗ ÎB, where ÎB is the identity operator on mode B, and trAB[(Â⊗ ÎB)ρ̂AB] =
tr[Âρ̂A]; the expectation values are the same whether using ρ̂AB or ρ̂A. Even if
the multimode system is in a pure state, the individual modes need not be –
if two modes are entangled, the individual modes obtained by tracing over the
other will be mixed states.

Measurements on a quantum system

An observable Â can be diagonalized with eigenvalues λ corresponding to the
possible outcomes of a measurement of Â:

Â = ∑
λ

λΠ̂λ.

Π̂λ is the projector ∑i |φλ,i〉〈φλ,i| onto the space of eigenstates {|φλ,i〉} of Â with
eigenvalue λ (if λ is a nondegenerate eigenvalue, Π̂λ = |φλ〉〈φλ|). After a mea-
surement yielding the outcome λ, the state of the system ρ̂ is transformed ac-
cording to [113, §2.4.2]

ρ̂′ =
Π̂λρ̂Π̂λ

pr(λ)
,

where pr(λ) = tr[ρ̂Π̂λ] is the probability of getting the outcome λ. The pro-
jectors are idempotent, Π̂2

λ = Π̂λ, and mutually orthogonal, Π̂λΠ̂λ′ = 0 for
λ 6= λ′. Thus, subsequent measurements of Â will all give the same result.
Projective measurements are special cases of the more general class of measure-
ments, POVMs (positive operator-valued measure). A POVM is a set {Êm} of
positive operators1 fulfilling the completeness relation ∑m Êm = Î. A positive
operator can be decomposed as Êm = M̂†

m M̂m. When measuring a POVM with
outcome m, the state of the system is transformed as

ρ̂′ =
M̂mρ̂M̂†

m
pr(m)

, (2.1)

1A positive operator Â has 〈ψ| Â |ψ〉 ≥ 0 for any state ket |ψ〉. Equivalently, all eigenvalues
are non-negative (a positive operator is Hermitian and therefore diagonalizable).
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with the probability of obtaining outcome m

pr(m) = tr[M̂mρ̂M̂†
m] = tr[ρ̂Êm].

The elements Êm of a POVM can be projectors, but in general they are not idem-
potent, so subsequent measurements do not necessarily yield the same result.

2.1.2 Quadrature operators of light fields

The description of electromagnetic (or light) fields makes heavy use of the notion
of modes. A mode refers to a single degree of freedom of the electromagnetic
field such as a polarization, spatial, temporal, frequency mode, etc. For a given
mode decomposition, a state of the light field is called single mode if all but one
mode show vacuum statistics of the operators [114]. A state can be single mode
in one decomposition or degree of freedom and multimode in another. A single
mode of the quantized electromagnetic (or light) field is described as a harmonic
oscillator with the Hamiltonian

Ĥ = h̄ω

(
â† â +

1
2

)
, (2.2)

where â† and â are the creation and annihilation operators of field excitations.
The energy eigenstates are denoted |n〉, and consist of n excitations of the mode,
i.e. n photons. They are termed number states or Fock states interchangeably,
while specifically the ground state |0〉 is called the vacuum state. The number
states are orthogonal, 〈m|n〉 = δmn, and it is common and convenient to choose
them as the basis for the infinite-dimensional Hilbert space. For the remainder
of this thesis, all density matrices are written in the number state basis:

ρmn = 〈m| ρ̂ |n〉 .

The diagonal of the density matrix is then the photon number distribution of the
state; pr(n) = ρnn.

The creation and annihilation operators are not Hermitian and are thus not ob-
servables. However, they can be combined in the following way to create the
so-called quadrature operators, which are Hermitian2:

x̂ =
â† + â√

2
, p̂ =

i(â† − â)√
2

.

From the commutation relation [â, â†] = 1, we get [x̂, p̂] = i. The notation x, p
gives reference to the standard position and momentum operators of quantum
mechanics, which obey the same algebra, but also to the position and momen-
tum of a classical harmonic oscillator, while the name ‘quadrature’ refers to the

2Three different normalization conventions are in common use in the definition of the quadra-
ture operators: 1,

√
2, or 2 in the denominator. Our choice of

√
2 gives a reverse transformation

from x̂, p̂ to â†, â with the same normalization factor: â† = (x̂− i p̂)/
√

2, â = (x̂ + i p̂)/
√

2. Further-
more, it corresponds to a choice of h̄ = 1 when comparing with the standard position-momentum
commutator, [x̂, p̂] = ih̄.
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decomposition of an electromagnetic field into two 90◦-out of phase components
(cos and sin). The Hamiltonian in terms of the quadrature operators is also sim-
ilar to the classical harmonic oscillator:

Ĥ =
1
2

h̄ω(x̂2 + p̂2).

Since the quadrature operators do not commute – they are conjugate variables –
they cannot be simultaneously determined. Rather, they must obey Heisenberg’s
uncertainty relation,

Var x Var p ≥ |[x̂, p̂]|
4

=
1
4

. (2.3)

A state fulfilling the equality is called a minimum uncertainty state.

The quadrature operators can be generalized to any rotated superposition of x̂
and p̂,

q̂θ ≡ cos θ x̂ + sin θ p̂ =
â†eiθ + âe−iθ
√

2
.

When we discuss general quadrature observables, we will mostly refer to them
as q-values, rather than x and p, and think of them as values along a real axis
rotated by the phase θ from the x-axis.

The overlap between the eigenstates of the quadrature operators, |x〉, and a state
|ψ〉 is the wave function ψ(x) = 〈x|ψ〉, whose absolute square is the quadrature
probability distribution of the given state. For the general phase quadrature
variable, q̂θ , we write the probability distribution

prθ(q) = |〈qθ |ψ〉|2, (2.4)

or, for a general, possibly mixed state,

prθ(q) = 〈qθ | ρ̂ |qθ〉 = tr[|qθ〉〈qθ | ρ̂]. (2.5)

The wave functions of the harmonic oscillator eigenstates (number states) are
important and useful. For the general rotated quadrature, they are given by
[78, 89]

〈qθ |n〉 =
e−inθ√
2nn!
√

π
Hn(q)e−q2/2, (2.6)

where Hn(q) is the n’th Hermite polynomial. For the vacuum state,

|〈qθ |0〉|2 =
1√
π

e−q2
,

which is a Gaussian with variance 1/2, the minimum allowed.

2.1.3 The Wigner function

The classical harmonic oscillator has well-defined position and momentum, and
its state can be represented as a point in the phase space spanned by the x and
p variables. This is not possible for the quantum harmonic oscillator, due to the
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uncertainties or quantum noise associated with it due to (2.3). The state of a clas-
sical harmonic oscillator can of course also be uncertain to some degree because
of e.g. insufficient knowledge of the system. In that case one could describe the
state by a probability distribution over phase space, P(x, p), giving the probabil-
ity
∫∫

A P(x, p) dxdp of observing the system’s variables within any area A. One
could think of doing the same for the quantum system; however, the minimum
quantum uncertainty imposed by Heisenberg’s relation is fundamentally differ-
ent from any source of uncertainty for a classical system. It will not make sense
to assign a probability of observation to an area in phase space smaller than that
of a 2-D Gaussian distribution with variance 1/2, since a measurement of x with
a precision ∆x would yield an uncertainty in p of at least 1/2∆x.

There are very good reasons, though, for introducing to the quantum theory a
phase space function with some of the same properties as an ordinary probability
distribution. Indeed, the distribution of a state over phase space is not just a
matter of the quantum noise, and it is quite handy to be able to describe and
visualize the state as a phase space distribution. The Wigner function, named
after E. P. Wigner, who introduced it [167], is in many ways similar to a classical
distribution function. It can be defined in several different ways. Originally,

W(x, p) =
1

2π

∫ ∞

−∞
eiyp 〈x− y

2

∣∣ ρ̂
∣∣x + y

2

〉
dy. (2.7)

The Wigner function has a one-to-one correspondence with the density matrix,
hence it contains the full information about the state. It is normalized,∫∫ ∞

−∞
W(x, p) dxdp = 1,

and its marginal distributions are the correct probability distributions for x and
p, ∫ ∞

−∞
W(x, p) dp = pr(x)∫ ∞

−∞
W(x, p) dx = pr(p),

(2.8)

or, in general [13],∫ ∞

−∞
W(q cos θ − p sin θ, q sin θ + p cos θ) dp = prθ(q). (2.9)

These properties of the Wigner function are similar to those of a classical distri-
bution function [20]. Furthermore, the expectation value of an operator Â can
be evaluated from the Wigner function by〈

Â
〉

= tr[ρ̂Â] = 2π
∫∫ ∞

−∞
W(x, p)WA(x, p) dxdp, (2.10)

where WA(x, p) is the Wigner function 1
2π

∫ ∞
−∞ eiyp 〈x− y

2

∣∣ Â
∣∣x + y

2

〉
dy of the op-

erator Â.3 When the operator Â is symmetric in x̂ and p̂, the expectation value
3This formula for calculating expectation values is a special case of the overlap formula [78,

§3.1.2], tr[ÂB̂] = 2π
∫∫ ∞
−∞ WA(x, p)WB(x, p) dxdp.
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formula becomes particularly classical-looking, since the Wigner function of
Â = S(x̂m p̂n) is simply WA(x, p) = xm pn, where S(·) means symmetrization of
the operators in the argument [20]. For example, S(x̂2 p̂) = 1

3 (x̂2 p̂ + x̂ p̂x̂ + p̂x̂2).
This property is called Weyl correspondence.

The key feature that differentiates the Wigner function from a classical distribu-
tion is that it can take negative values. For example, the Wigner function of the
1-photon number state |1〉 is, using (2.6),

W1(x, p) =
1

2π

∫ ∞

−∞
eiyp〈x− y

2

∣∣1〉〈1∣∣x + y
2

〉
dy

=
1

π3/2

∫ ∞

−∞
eiyp(x− y

2 )(x + y
2 ) exp

[
− 1

2 (x− y
2 )2 − 1

2 (x + y
2 )2] dy

=
1
π

e−x2−p2
(2x2 + 2p2 − 1),

which becomes negative within a circle of radius 1/
√

2 around the origin, in
which it is −1/π. This value is also the minimum value the Wigner function
can take, while the maximum is 1/π – another property that distinguishes it
from a proper probability distribution [78, §3.1.2]. Hence, it is called a quasi-
probability distribution. However, it does not really limit our use of the function
as a probability measure, since we cannot assign any probability to a single point
anyway, due to the Heisenberg uncertainty. By integrating the Wigner function
over a Gaussian with variances fulfilling (2.3), such as the vacuum state function,

W0(x, p) =
1
π

e−x2−p2
, (2.11)

the result will always become non-negative [30]. The possibility of negative
Wigner functions is a clearly quantum feature, and the negativity of a state is
often considered as a strong signature of a non-classical state [88]. The first
observation of a negative Wigner function was done by Leibfried et al. [76] for
the motional state of a trapped ion.

Computational formulas using number state basis

It is often quite useful to calculate a state’s density matrix in the number state
representation from a given Wigner function and vice versa. From (2.10), we see
that

ρmn = tr[ρ̂ |n〉 〈m|] = 2π
∫∫ ∞

−∞
W(x, p)Wmn(x, p) dxdp, (2.12)

with
Wmn(x, p) =

1
2π

∫ ∞

−∞
eiyp 〈x− y

2

∣∣m
〉〈

n
∣∣x + y

2

〉
dy.

From Leonhardt [78, §5.2.6], this function is

Wmn(x, p) =
1
π

e−x2−p2
(−1)m(−x + ip)m−n

√
2m−n n!

m!
Lm−n

n (2x2 + 2p2) , m ≥ n

1
π

e−x2−p2
(−1)m(x + ip)n−m

√
2n−m m!

n!
Ln−m

m (2x2 + 2p2) , m < n

(2.13)
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where La
k are generalized Laguerre polynomials. Conversely, from the definition

(2.7), the Wigner function, given a density matrix ρmn, is

W(x, p) =
1

2π

∫ ∞

−∞
eiyp 〈x− y

2

∣∣ (∑
m,n

ρmn |m〉 〈n|
) ∣∣x + y

2

〉
dy

= ∑
m,n

ρmnWmn(x, p).

The value at the origin has a particularly simple expression – it depends only on
the diagonal matrix elements, since Wmn(0, 0) = δmn(−1)m/π:

W(0, 0) =
1
π ∑

n
(−1)nρnn.

This is related to the fact that all off-diagonal density matrix elements contain
phase information about the state, but the phase space origin has no defined
phase.

Characteristic function

Yet another way to represent quantum states, often used in theoretical texts, is
the (Wigner-Weyl) characteristic function. It is defined as [36]

χ(β) =
〈

D̂(−β)
〉

= tr[ρ̂D̂(−β)],

where D̂(α) is the standard displacement operator, D̂(α) = exp(αâ† − α∗ â), and
β = (u + iv)/

√
2, such that

D̂(−β) = exp
(
− u + iv√

2
â† +

u− iv√
2

â
)

= ei(up̂−vx̂).

The density matrix is conversely obtained from the characteristic function by

ρ̂ =
1

2π

∫
χ(β)D̂(β)d2β.

The Wigner function is related simply to the characteristic function by a 2-
dimensional Fourier transform:

W(x, p) =
1

(2π)2

∫∫
ei(vx−up)χ(u, v) dudv.

Multimode states

The characteristic and Wigner functions are readily generalized to multimode
states. The vector and matrix notation from Simon [142], Eisert and Plenio [36]
is introduced; for an N-mode system,

ξ̂ = (x̂1, p̂1, . . . , x̂N , p̂N)T

ξ = (x1, p1, . . . , xN , pN)T

ζ = (u1, v1, . . . , uN , vN)T,



12 Basics

and the block diagonal 2N × 2N matrix (the symplectic matrix)

σ =


0 1
−1 0

. . .

0 1
−1 0

 .

Since the field operators for different modes commute, the symplectic matrix
allows to write all commutation relations of the system as

[ξ̂ j, ξ̂k] = iσjk.

The characteristic function for an N-mode state ρ̂ is written neatly as

χ(ζ) =
〈
eiζTσξ̂

〉
= tr[ρ̂ eiζTσξ̂ ],

with the following Fourier relations with the Wigner function:

W(ξ) =
1

(2π)2N

∫
eiξTσζχ(ζ) d2Nζ,

χ(ζ) =
∫

e−iξTσζW(ξ) d2Nξ.
(2.14)

2.2 Quantum states of light

2.2.1 Gaussian states

A natural classification criteria for optical quantum states is whether they are
Gaussian or not. It turns out that the states most readily available in experiments
are Gaussian, whereas non-Gaussian states take some more effort to produce.
Gaussian states are defined by having a Gaussian characteristic function, or,
equivalently, a Gaussian Wigner function (the Fourier transform of a Gaussian
function is again Gaussian). A Gaussian function is fully determined by its first
and second moments. Hence it can be described using only the quadrature mean
values,

〈
ξ̂ j
〉

= tr[ρ̂ξ̂ j], and the covariances collected in the real, symmetric, and
positive 2N × 2N covariance matrix Γ with elements

Γjk = 2 Re
〈
(ξ̂ j −

〈
ξ̂ j
〉
)(ξ̂k −

〈
ξ̂k
〉
)
〉
.

We will be almost exclusively concerned with states with zero mean values, i.e.
states centred around the origin in phase space. In that case, the covariance
matrix is

Γjk = 2 Re
〈
ξ̂ j ξ̂k

〉
=
〈
ξ̂ j ξ̂k

〉
+
〈
ξ̂ j ξ̂k

〉∗ =
〈
ξ̂ j ξ̂k

〉
+
〈
ξ̂k ξ̂ j

〉
=
〈
{ξ̂ j, ξ̂k}

〉
,

where {ξ̂ j, ξ̂k} is the anti-commutator. The diagonal entries are twice the vari-
ances of the quadratures, while the off-diagonal entries describe correlations or
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covariances between different quadratures and modes (which are zero for uncor-
related modes)4. Hence, the covariance matrix of a vacuum state is the identity
matrix. Heisenberg’s uncertainty relation can be formulated very generally as
Γ + iσ ≥ 0 (the ≥ 0 meaning positive semidefiniteness of the matrix, i.e. all
eigenvalues ≥ 0) [36].

For a covariance matrix Γ, the Wigner function is [20, 142]

W(ξ) =
1

πN
√

det Γ
e−ξT Γ−1ξ , (2.15)

with the corresponding characteristic function (see Appendix A.1)

χ(ζ) = e−
1
4 ζTσT Γσζ . (2.16)

A single mode Gaussian has a covariance matrix

Γ(1) =

(
a c
c b

)
,

but through a rotation of the state in phase space (or a rotated coordinate sys-
tem), it can be brought on the simple form

Γ(1) =

(
a′ 0
0 b′

)
, (2.17)

which then corresponds to a Wigner function with the axes of its elliptical shape
along the x- and p-axes. The uncertainty relation for these parameters is a′b′ ≥ 1.

Coherent states

Within quantum theory, the coherent state, which is defined as the eigenstate of
the annihilation operator, â |α〉 = α |α〉, is the closest thing to a single point in
phase space and hence to the classical harmonic oscillator. It has a number state
expansion given by

|α〉 = e−|α|
2/2

∞

∑
n=0

αn
√

n!
|n〉 , (2.18)

so the photon number distribution is Poissonian with mean and variance |α|2.
The Wigner function is

Wα(x, p) =
1
π

e−(x−xα)2−(p−pα)2
, α =

xα + ipα√
2

,

which is a Gaussian with minimum uncertainty (variance 1/2), equally dis-
tributed in x and p. In fact it is just the vacuum state with the identity matrix
as covariance, displaced to have its center in α = (xα + ipα)/

√
2. No matter how

large the amplitude |α| becomes, the quadrature noise is the same, and so, for
4In several references, f.x. Simon [142], Braunstein and van Loock [20], the covariance matrix

is defined with a factor 1/2 relative to the definition used here.
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classical (large) values of |α|, the noise becomes negligibly small and the state
is the classical phase space point. The time evolution of an initial coherent state
|α(0)〉 is [95]

|α(t)〉 = e−iĤt/h̄ |α(0)〉

= e−iωt(n̂+1/2)e−|α(0)|2/2
∞

∑
n=0

α(0)n
√

n!
|n〉

= e−iωt/2e−|α(0)|2/2
∞

∑
n=0

(α(0)e−iωt)n
√

n!
|n〉

= e−iωt/2∣∣α(0)e−iωt〉,
using that â† â in the Hamiltonian (2.2) is the number operator with n̂ |n〉 = n |n〉.
That means it just evolves into another coherent state of the same amplitude - it
is circling around in the complex phase plane like a classical harmonic oscillator,
keeping the same minimal noise distribution. The coherent state is indeed very
similar to the classical description of light as an oscillating field; therefore, the
coherent state and statistical mixtures thereof are called classical states.

The coherent states form an over-complete basis of the Hilbert space; they are
non-orthogonal, with an overlap of

〈α|β〉 = e−|α|
2/2−|β|2/2+α∗β,

but they are complete, 1
π

∫
|α〉 〈α| d2α = 1, and hence span the entire Hilbert

space, so they can be used to decompose any state:

|ψ〉 =
1
π

∫
|α〉〈α|ψ〉d2α.

More generally, a density operator can be expanded into coherent states as well:

ρ̂ =
∫

P(α) |α〉〈α| d2α.

The distribution function P(α) is called the Glauber-Sudarshan P-representation
or coherent state representation. For a given density matrix, the distribution can
be obtained from

P(α) =
e|α|

2

π2

∫
〈−β| ρ̂ |β〉 e|β|

2
e−βα∗+β∗αd2β.

The P-representation of a coherent state |γ〉 is just the two-dimensional Dirac
delta function, Pγ(α) = δ(2)(α − γ). P(α) is real and normalized to 1 (due to
ρ̂ being Hermitian with trace 1), so if it is otherwise non-negative and not ill-
behaved5 it acts as a probability density distribution. The state represented by
such a P-function is then an ensemble of classical coherent states and hence a
classical state itself. However, the P-representation does not always behave so
nicely; hence it is another example of a quasi-probability distribution. If a state
has a P-function which is ill-behaved or becomes negative, it means that it cannot
be described from a classical point of view as a statistical ensemble of harmonic
oscillators – it is a nonclassical state. This is at least the most common definition
of nonclassicality [95, 139].

5In this context, ill-behaved means more singular than a delta function.
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Figure 2.1: Wigner functions of, from left to right, a coherent state with amplitude α =
−2, a thermal state with mean photon number nth = 1, and a squeezed vacuum state
with squeezing level r = ln 2 (squeezed variance 1/8). The function values have been
multiplied by π, which makes 1 and -1 the maximum and minimum values attainable.
We will be doing this scaling in all plots and graphs throughout the thesis.

Thermal state

The radiation from a black body of temperature T is in a thermal state. This is a
mixed state which must be formulated as a density matrix:

ρ̂th =
1

nth + 1

∞

∑
n=0

(
nth

nth + 1

)n

|n〉〈n| ,

where nth is the mean photon number occupation, related to the temperature
through nth = (exp (h̄ω/kBT)− 1)−1. Black body radiation is a quite classical
phenomenon, and the state can indeed be written as an ensemble of coherent
states [135]:

Pth(α) =
1

πnth
e−|α|

2/nth .

It is actually a Gaussian distribution of the Gaussian coherent states. There is
clearly no phase dependence, so the Wigner function has zero displacement,
and there must be the same uncertainty in x̂ and p̂. From this, and the operator
identity n̂ = (x̂2 + p̂2 − 1)/2, the covariance matrix is seen to be

Γth =

(
1 + 2nth 0

0 1 + 2nth

)
.

Squeezed states

Loosely speaking, squeezed states are coherent states which have had their noise
distribution squeezed, such that one quadrature is less noisy than for the coher-
ent state while the conjugate quadrature is correspondingly more noisy – in the
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ideal case, the uncertainty product is still the minimum allowed6. The Wigner
function is still a 2-D Gaussian, but it has become elongated along some direc-
tion. The possibility of squeezed states of light was discussed in the 1970’s by
Stoler [145] and Yuen [171]. The first experimental demonstration of squeezed
light was carried out in 1985 by Slusher et al. [143] using four-wave mixing in
a beam of Na-atoms inside an optical cavity, and soon after, with better results,
by Wu et al. [169] using an optical parametric oscillator, which soon became the
standard tool for producing highly squeezed light – more on that in §3.3.

The direction in phase space along which the noise is minimal (the squeezing
angle) could possibly be aligned with the general angle of the state in phase
space (the state’s phasor), in which case the amplitude is squeezed while the
phase is anti-squeezed. The opposite will be the case if the squeezing angle is
perpendicular to the state’s phasor. In the case of zero amplitude of the field,
we talk about a squeezed vacuum state, and it makes no sense to distinguish
between amplitude- or phase-squeezing. Quadrature squeezing is a wide sub-
ject area; for the sake of briefness, the discussion will be restricted to squeezed
vacuum. With the squeezing direction along one of the x or p axes in phase
space, the covariance matrix is as in (2.17) with either a′ or b′ less than the vac-
uum/coherent state level of 1. A pure squeezed state is a minimum uncertainty
state with a′ = b′−1 = e2r.

Mathematically, a squeezed vacuum (with arbitrary squeezing angle) can be gen-
erated from vacuum by applying the squeezing operator,

Ŝ(ζ) = exp
(

1
2 ζ(â†)2 − 1

2 ζ∗ â2
)

, (2.19)

with ζ = reiφ, such that a squeezed vacuum state is |ζ〉 = Ŝ(ζ) |0〉 (the ζ here is
not related to the previous ζ, describing phase space variables). The effect of the
squeezing operation is most easily investigated in the Heisenberg picture [20].
The creation and annihilation operators are transformed according to

Ŝ†(ζ)â†Ŝ(ζ) = â† cosh r + âe−iφ sinh r

Ŝ†(ζ)âŜ(ζ) = â cosh r + â†eiφ sinh r,

as is easily shown using the operator identity

eX̂ŶeX̂ = Ŷ + [X̂, Ŷ] +
1
2!

[X̂, [X̂, Ŷ]] + . . . .

From these transformations, the rotated quadrature operator transforms into

q̂S
θ ≡ Ŝ†(ζ)q̂θ Ŝ(ζ) = q̂θ cosh r + q̂φ−θ sinh r.

Now, for the quadrature at the special angle φ/2 and its conjugate at φ/2 + π/2,

q̂S
φ/2 = q̂φ/2(cosh r + sinh r)

q̂S
φ/2+π/2 = q̂φ/2+π/2 cosh r + q̂φ/2−π/2 sinh r = q̂φ/2+π/2(cosh r− sinh r).

6The word squeezing has been used for other effects as well, such as number squeezing. We
will reserve it for quadrature squeezing.
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With an initial vacuum state, the variances of these transformed rotated quadra-
tures are thus

Var qS
φ/2 = Var qφ/2 (cosh r + sinh r)2 =

1
2

e2r

Var qS
φ/2+π/2 = Var qφ/2+π/2 (cosh r− sinh r)2 =

1
2

e−2r,

giving the covariance matrix stated above, after a rotation in phase space of
−φ/2. The corresponding Wigner function, with φ = 0, is

Wsq(x, p) =
1
π

exp
(
− x2

e2r −
p2

e−2r

)
.

This function fulfills all requirements for being a classical probability distribution
– there are no negativities. However, the P-representation does not exist as a
well-behaved function. It is formally expressed as [135, §12.4.4]

Pζ(α) = exp
[

e2r − 1
4

∂2

∂x2 −
1− e−2r

4
∂2

∂p2

]
δ(α),

which is more singular than the delta function. Hence, it cannot be expressed
as an ensemble of coherent states, and by the standard criterium it is a nonclas-
sical state. An example of a squeezed vacuum Wigner function is illustrated in
Figure 2.1, together with a coherent and a thermal state.

The squeezed vacuum state has the following number state expansion [95, §21.5]:

|ζ〉 =
1√

cosh r

∞

∑
n=0

√
n!

(n/2)!

(
eiφ tanh r

2

)n/2

δ
[2]
0n |n〉 . (2.20)

Here we introduced a special notation which will make some formulas in the
next chapter tidier; a modulo-2 Kronecker delta function which we can define

δ
[2]
mn ≡

1 + (−1)m+n

2
,

for integers m and n such that δ
[2]
mn is 1 if both m and n are even or both are odd,

and 0 otherwise. Used as above with one index being either 0 or 1, it will act as
an “odd/even” delta function for the other index. Thus, the squeezed vacuum
state contains only even photon numbers.

Two-mode squeezed state

By combining two squeezed vacuum states with orthogonal squeezing phases,
or by applying the two-mode squeezing operator

Ŝ(2)(ζ) = exp
(

ζ â†
1 â†

2 − ζ∗ â1 â2

)
to a two-mode vacuum |00〉, a two-mode squeezed state is created. This state
is also called an EPR state, since the two modes are entangled in the quadra-
tures (“position” and “momentum”), very much like in the original Einstein–
Podolsky–Rosen-paper [34]. In a properly rotated phase space, the covariance
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matrix of the state is [20]

Γ
(2)
sq =


cosh 2r 0 − sinh 2r 0

0 cosh 2r 0 sinh 2r
− sinh 2r 0 cosh 2r 0

0 sinh 2r 0 cosh 2r


Thus, the individual modes, obtained by tracing over the other mode, are just
thermal states with mean photon number 〈n̂〉 = (〈x̂2〉+ 〈 p̂2〉− 1)/2 = (cosh 2r−
1)/2 = sinh2 r. The entanglement of the two modes is apparent, though, from
the existence of off-diagonal elements in the matrix. While individual mode
quadratures are not squeezed, combinations of the two are:

Var(x1 − x2) = Var(p1 + p2) = e−2r

Var(x1 + x2) = Var(p1 − p2) = e2r.

This continuous variable entanglement is essential for cv quantum information
protocols such as teleportation or dense coding. It was first demonstrated by
Ou et al. [118] using an optical parametric oscillator, and later by Silberhorn
et al. [141] by the Kerr effect in a fiber. Related examples of continuous variable
entanglement are the Stokes (polarization) entanglement of Bowen et al. [17] and
the entanglement between the collective spin states of two macroscopic atomic
ensembles by Julsgaard et al. [65].

2.2.2 Non-Gaussian states

In a quantum optics experiment, Gaussian states are quite hard to “de-Gaussify”.
Most operations that can change a state does not change its Gaussian character.
Such Gaussian operations include those implemented by linear optics (e.g. beam
splitters, phase shifters), squeezing and homodyne detection. In order to de-
Gaussify a state, non-Gaussian operations such as photon counting/detection
is needed. Therefore, fairly few non-Gaussian states have been demonstrated
experimentally so far. A non-Gaussian state will per definition have a non-
Gaussian Wigner function. Moreover, it is likely to have negativities. In fact,
any pure non-Gaussian state will have some negativity of the Wigner function
[88], but for example linear losses will drive the state towards the Gaussian
vacuum state, so the negativities may disappear. For our purpose, the two most
interesting classes of pure non-Gaussian states are the Fock or number states,
and the Schrödinger cat states. We should, however, also mention that a range
of other non-Gaussian optical states have been generated and characterized by
their Wigner functions by the groups in Konstanz (displaced Fock state [90],
two-mode Fock state [6]) and in Florence (single photon added coherent states
[175, 177] and thermal states [173]).

Fock states

The whole concept of photons is of course deeply quantum, so a state of the light
field with a well-defined number of photons (a Fock or number state) is highly
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Figure 2.2: πW(x, p) for the 1-, 2-, and 3-photon Fock states, from left to right. Notice
their alternating negative and positive values in the origin.

nonclassical. This is clear from the fact that the Wigner functions of all Fock
states except the vacuum exhibit negative values. Furthermore, their P-functions
contain derivatives of the delta function, and are thus highly singular and do
not correspond to classical probability distributions. The Wigner functions are,
from (2.13),

Wn(x, p) =
1
π

e−x2−p2
(−1)nL0

n(2x2 + 2p2).

Hence, even-number states have W(0, 0) = 1/π, but for n > 0 they do have
negativities in other regions of phase space.

The complete certainty of the photon number of a Fock state should lead to infi-
nite uncertainty in the operator conjugate to n̂. Although there does not exist a
well-defined phase operator [95, §10.7], it can still be argued that phase is conju-
gate to photon number, so the “uncertainty relation” is satisfied since there is no
phase dependence of the Fock states. This is reflected in their Wigner functions
being rotationally invariant about the origin. Compare this with the coherent
state, whose photon number uncertainty grows with increasing amplitude while
the phase uncertainty decreases.

n = 1 number states, i.e. single photons, have been generated and characterized
in many different ways in a host of different physical systems – for a (quite
incomplete) overview, see e.g. the paper reporting our own single photon source
[104]. However, the first full state characterizations showing negative Wigner
function values were performed in 2001 by Lvovsky et al. [91] for a running
field and in 2002 by Bertet et al. [12] for a cavity field. Recently, the same feat
was accomplished by Ourjoumtsev et al. [121] for a two-photon state. The high
purities of the field states that are needed in order to observe negative Wigner
functions are only attained for a small fraction of the developed single photon
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sources – most sources are characterized by coincidence counting, where the
vacuum part of the field is eliminated.

Schrödinger cat states

The name “Schrödinger cat state” is a somewhat loose term, used in relation
to many quite different quantum systems, each being more or less analogous
to Schrödinger’s original cat paradox and its concept of quantum superposition
of macroscopic objects [138]. Examples are the superposition of spatial states
of a trapped ion [100], multi-particle entangled states [75], and superposition of
flux states in a SQUID [43]. In the context of harmonic oscillators such as light
fields, the “Schrödinger cat” is usually a nickname for the more precisely termed
‘coherent state superposition’ (CSS), which in its standard incarnation is defined
as

|∼./©̈〉 = N (|α〉+ eiβ |−α〉), (2.21)

that is, a superposition of two coherent states of same amplitude but opposite
phase. N is a normalization factor. The special cases where the coherence fac-
tor eiβ is 1 or -1 are called even and odd cats, respectively. The argument for
naming these states Schrödinger cats is that coherent states (especially ones with
large amplitude) are seen as macroscopic, classical entities, and they are distin-
guishable by a macroscopic measurement (homodyne detection) [85].7 Yurke
and Stoler [172] suggested a way to directly generate such a coherent state su-
perposition using a Kerr-like Hamiltonian, but it has not been realized yet. With
the help of cavity-QED interactions with Rydberg atoms, Brune et al. [22] gen-
erated a coherent state superposition, but it was trapped inside the cavity and
could only be indirectly probed via the atoms.

If, instead of the superposition in (2.21), the state was just a statistical mixture
(ensemble) of the two coherent states, its P-representation would be the sum of
the two corresponding delta functions, but since it is a coherent superposition,
it cannot be described by a well-behaved P-function. In Mandel and Wolf [95]
its formal expression is derived; it involves derivatives of the delta function of
infinitely high order! A statistical mixture of the two coherent states would have
a density operator 1

2 |α〉〈α| +
1
2 |−α〉〈−α| and the Wigner function would just

be the sum of the two separate Gaussians. For the coherent superposition, the
density matrix is |∼./©̈〉〈∼./©̈| and contains interference terms between |α〉 and |−α〉.

7A quotation from the amusing satirical review by Bergou and Englert [11]: The original, very
complicated set-up that consisted of a radioactive sample, a Geiger counter, a hammer, a cell of poisonous
gas, etc. – in addition to the cat itself – gradually evolved into arrangements that are considerably simpler
and experimentally more accessible. At the present state of cat evolution it has become reduced to the
superposition of two slightly excited coherent states of opposite phase. The amount of theoretical work
behind this reduction cannot be overestimated!
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Figure 2.3: Examples of Wigner functions for cat states, or coherent state superposition
states. From left to right, odd cat with α = 2, odd cat with α = 1, even cat with
α = 1. The interference fringes between the two coherent state peaks at α and −α
quickly become more pronounced with increasing amplitude.

In the Wigner function, expressed by [48, 112]

W±(x, p) =
1

2± 2e−2α2

(
W0(x−

√
2α, p) + W0(x +

√
2α, p)

± 2W0(x, p) cos(2
√

2pα)
)

,

this is reflected as a wavy pattern with negativities between the two Gaussian
peaks, as seen in Figure 2.3. In the above expression, plus and minus denote even
and odd cat states, respectively, while W0(x, p) is the vacuum Wigner function
(2.11). α is assumed real.

The photon number distribution of a cat state oscillates between odd and even
photon numbers. In particular, for the odd and even cats, their number state
expansions are, using (2.18),

|∼./©̈−〉 = N−(|α〉 − |−α〉) =
1√

sinh|a|2
∞

∑
n=0

δ
[2]
1n

αn
√

n!
|n〉

|∼./©̈+〉 = N+(|α〉+ |−α〉) =
1√

cosh|a|2
∞

∑
n=0

δ
[2]
0n

αn
√

n!
|n〉 ,

(2.22)

that is, the odd cat contains only odd photon number contributions, while there
are only even photon numbers in the even cat.
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2.3 Detecting light

2.3.1 Intensity detection

The essential measurement device in quantum optics is obviously the photode-
tector, converting an optical signal into an electronic signal. In particular photo-
diodes are important, as they are probably the most widely used photodetectors
in experiments. Photodiodes are usually very linear; the generated current is
directly proportional to the incident light power. The proportionality constant
can be expressed as either the responsivity, stated in units of A/W, or as the
quantum efficiency, which is the number of electrons per incident photon. At
near-infrared, good silicon PIN photodiodes have quantum efficiencies in the
90% range, sometimes as high as 99%. With such high efficiencies, an optical
signal can be faithfully converted into an electronic signal, processable by the
subsequent detector circuitry. Very weak fields, however, can not be detected,
since they become covered in the noise of the electronics. Commonly, optical
powers on the order of microwatts is needed to get a decent signal-to-noise ratio.
Very weak fields, at intensity levels which are more conveniently measured in
photons per second than in watts, can be detected using avalanche photo diodes
(APDs) that feature internal gain. When operated with a reverse bias above the
diode breakdown voltage (Geiger mode), each photon absorption event results
in an electron avalanche large enough to be detected. That way, it is actually
possible to observe individual photons with quite good timing precision. Un-
fortunately, the quantum efficiencies of APDs are not quite as high as for stan-
dard photodiodes – usually 60% or below. Furthermore, they are not capable
of distinguishing between events in which one or several photons are absorbed;
such efficient photon number-resolving detectors are in high demand for several
quantum information protocols, but are technically demanding to construct.

An essential aspect of light detection in quantum optics is that of light noise. As
already mentioned, coherent states, which closely describe a laser’s output, have
a Poissonian photon number (intensity) distribution with a variance proportional
to the intensity, Var n = |α|2. This intrinsic intensity noise is called shot noise
and is an effect of the quantized nature of light. The linear scaling of the shot
noise variance with light power is in contrast to that of classical noise or signals,
which are proportional to the field amplitude and thus scale quadratically with
the intensity. This makes it possible to distinguish classical and shot noise in a
laser beam by observing the power scaling. In experiments it is often an essential
necessity to be shot noise limited, that is, getting rid of all classical sources of
noise [7, §8].

2.3.2 Homodyne detection

Since all varieties of photodetectors measure the light intensity and not the field,
phase information is not directly accessible; only through interference of two or
more phase-coherent fields can any knowledge of the phase or phase-dependent
properties of the interfering fields be revealed. A very powerful technique for



2.3 Detecting light 23

â
1

�
lo

â
vac

â
s

â
2

� 50%

i - i
1 2

Figure 2.4: The basic scheme of a homodyne detector. The difference current output of
the detector is proportional to the quadrature variables of the incoming field âs. Non-
ideal detection efficiency is modeled by a fictitious beamsplitter in the signal beam.

phase-sensitive measurement is balanced homodyne detection. Employing two
standard photodiode detectors and interference with an auxiliary beam (the lo-
cal oscillator), it is capable of measuring the quadrature variables qθ at any given
phase of the field under inspection. Not only that; it can do so, even for fields
of vanishingly small intensity, something which – as explained above – is com-
pletely infeasible with normal photodetection. Homodyne detection is a stan-
dard technique in quantum optics and is covered extensively in several textbooks
[7, 78, 135], so the following will be just a brief recapitulation.

First, let us briefly recall how a beamsplitter works. Two incoming modes, â1
and â2, are each transmitted with intensity transmittance T and reflected with
reflectance R = 1 − T. The mode operators are transformed into the output
modes â′1 and â′2 according to(

â′1
â′2

)
=

( √
T

√
1− T

−
√

1− T
√

T

)(
â1

â2

)
,

or, in an equivalent operator description [20],[78, §4.1.2],(
â′1
â′2

)
= B̂†(T)

(
â1

â2

)
B̂(T),

B̂(T) = exp[Θ(â1 â†
2 − â†

1 â2)] with cos Θ =
√

T. (2.23)

In a homodyne detector, the weak signal beam to be measured is mixed on a 50-
50 beamsplitter (T = 1/2) with a comparatively very strong local oscillator beam
(LO), as illustrated in Figure 2.4. The signal beam is described by the operator âs
while the strong LO can be treated classically as |αlo|eiθ with an adjustable phase
relative to the signal. The two modes after the beamsplitter are

â1 =
1√
2

(
|αlo|eiθ + âs

)
,

â2 =
1√
2

(
|αlo|eiθ − âs

)
.

The photocurrents produced in the detectors are proportional to the number of
photons (or the photon flux) in the detected fields:

i1 ∝ n̂1 = â†
1 â1 , i2 ∝ n̂2 = â†

2 â2 .
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By electronically subtracting the two currents, a difference current i− propor-
tional to the quadrature operator at phase θ of the signal field is obtained:

i− = i1 − i2 ∝ â†
1 â1 − â†

2 â2 = |αlo|
(
âse−iθ + â†

s eiθ) =
√

2|αlo|q̂s,θ . (2.24)

The fluctuations of the homodyne signal are proportional to both the local os-
cillator amplitude and the signal field quadrature. With vacuum as the signal
input, the noise is entirely due to the LO, and the variance (noise power) should
scale linearly with the intensity. However, for a constant LO intensity, the noise
variance can also be seen as the level of the quantum fluctuations of the vacuum
test state. If the vacuum is replaced with a different quantum state, the fluctua-
tions of this state relative to the vacuum will be reflected in the total homodyne
noise level. This is exemplified in the classic squeezed vacuum noise trace, which
goes above and belove the vacuum level for varying LO phases. At maximum
squeezing, the noise of the homodyne signal is still high, as determined by the
LO intensity, but it is lower than when a vacuum state is measured.

It is quite important that the two detection arms of the homodyning be balanced.
As can be seen from (2.24), the method hinges on the cancelation of the |α|2 terms
in the difference photocurrent. Any classical noise of the LO will be correlated
in the two arms and will hence cancel out – but only if the balancing is perfect.
If not, the classical noise will “pollute” the quantum noise of the signal beam.

2.3.3 Losses, inefficient detection

Quantum states are fragile creatures which easily degrade through interaction
with the environment. For a light mode, degradation or losses are usually de-
scribed by the beamsplitter model. A field impinging upon a beamsplitter with
transmittance η loses a fraction 1− η of its intensity while getting admixed with
a fraction 1− η of the input from the other port. Even if this input is vacuum, it
has an effect due to its vacuum fluctuations. The homodyne signal in (2.24) will
change to

i− ∝
√

2|αlo|(
√

η q̂s,θ +
√

1− η q̂v),

where v denotes the admixed vacuum mode. Most other sources of loss for the
field, such as absorption in a medium or undetected photons due to an inefficient
detector, can be treated in the same way as the beamsplitter, since they have the
same effect on the homodyne outcome [78, §4.1.4]. An imperfect overlap (mode-
matching) between LO and signal field, quantified by the interference visibility
V enters as a loss that must be modeled by a beamsplitter with transmittance
η = V2 [7].

Later, we will need to know the effect of a beamsplitter on an impinging field
with a specified photon number n. With vacuum in the other input port, the
beamsplitter operator (2.23) transforms the input state |n, 0〉 into [78, §4.1.3]

B̂(η) |n, 0〉 =
n

∑
k=0

√
Bn

k (η) |k, n− k〉 , (2.25)
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where

Bn
k (η) =

(
n
k

)
ηk(1− η)n−k

is exactly the binomial distribution, expressing the probability that out of n in-
distinguishable photons, k are transmitted and n− k are reflected. If the beam-
splitter represents a loss of an incoming signal state ρ̂s = ∑µ,ν ρµν |µ〉〈ν|, the
reflected output mode (v) must be traced over after operation of B̂(η) to obtain
the lossy state ρ̂s(η):

〈m| ρ̂s(η) |n〉 = 〈m| trv[B̂(η) (ρ̂s ⊗ |0〉v〈0|) B̂†(η)] |n〉
= ∑

j
∑
µ,ν

ρµν 〈m, j| B̂(η) |µ, 0〉 〈ν, 0| B̂†(η) |n, j〉

= ∑
j

∑
µ,ν

ρµν

√
Bµ

m(η) v〈j|µ−m〉v
√

Bν
n(η) v〈ν− n| j〉v

= ∑
j

ρm+j,n+j

√
Bm+j

m (η)Bn+j
n (η) .

(2.26)

This transformation is called a generalized Bernoulli transformation.

2.4 Tomographic state reconstruction

2.4.1 Maximum likelihood estimation

An essential problem in experimental science is that of model estimation based
on observational data – given some observation of a system, which model can
best describe the underlying structure of the system? Commonly, one knows or
makes a qualified assumption of a functional relationship between the indepen-
dent and dependent variables of the system; y = f (x1, x2, . . .), where y is the
variable being measured. The model will depend on one or more parameters
s; y = f (x1, x2, . . . ; s), and these parameters should be estimated based on the
observations {yi}. One can calculate the probability pr({yi}|s) for the observed
outcome to have happened, given specified model and parameters. For param-
eter estimation, though, the data is given and the parameters are unknown, in
which case the probability is considered a function of the parameters and is
called the likelihood function:

L(s) ≡ pr({yi}|s).

Intuitively, with no other a priori information than the observed data, the param-
eters of the model that are most likely to be correct are the ones that maximize
the likelihood function. This is the basis of the maximum likelihood method.
The parameters s0 which maximize the likelihood are called the maximum like-
lihood estimator. In fact, the familiar least-squares method of parameter estima-
tion is a special case of maximum likelihood estimation, which is relevant under
the assumption that the measurement outcomes are independent and normally
distributed [130, §15.1].
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If the data samples {yi} are independent and identically distributed, the total
outcome probability is just the product of the probabilities of the individual
samples. Usually the logarithm of the likelihood is used, since the product turns
into a sum, while the location of the maximum is unchanged:

ln L(s) = ln ∏
i

pr(yi|s) = ∑
i

ln pr(yi|s). (2.27)

In standard maximum likelihood estimation, the maximization of the log-likeli-
hood can be carried out in various ways, one of which is the iterative expecta-
tion–maximization algorithm [161]. So far, most quantum state estimations with
maximum likelihood have been done with a variation of this algorithm.

2.4.2 Application to homodyne measurements

We are going to use the maximum likelihood method to estimate which quantum
states of light are produced in our experiment. We can run the state generation a
large number of times under the same experimental conditions, while sampling
a given quadrature variable once for each state by homodyne detection. These
samples will then be independent and identically distributed - a distribution
determined by the density matrix of the state through (2.5). Based on the ob-
served samples, the density matrix (and, along with that, the Wigner function)
can be estimated in various ways, one of which is by maximum likelihood, in
which case the matrix entries play the role as the parameters s. This estimation
is often referred to as quantum state reconstruction. The idea of reconstruct-
ing a 2D-distribution (Wigner function) from observations of its 1D projections
(marginal quadrature distributions) at various angles is similar to that of med-
ical tomographic imaging, which has lend this technique the name homodyne
tomography.

Since the homodyne measurement gives continuous-valued outcomes that have
infinitely small probability of being exactly observed, the results must be binned.
For a density matrix ρ̂ (true or estimated), the probability prθ,j of observing the
quadrature variable q̂θ within the jth bin ]qj; qj+1[ is

prθ,j =
∫ qj+1

qj

prθ(q)dq

=
∫ qj+1

qj

tr[|qθ〉〈qθ | ρ̂] dq

= tr[Π̂θ,jρ̂],

where

Π̂θ,j =
∫ qj+1

qj

|qθ〉〈qθ | dq

is the projection operator for the jth bin. If the bins cover the entire range of q-
values, the probabilities and the projectors for a specific angle add to unity/identity:
∑j prθ,j = 1, ∑j Π̂θ,j = Î. With Nθ,j observations in the jth bin, the likelihood as a
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function of ρ̂ is

ln L(ρ̂) = ln ∏
θ,j

pr
Nθ,j
θ,j

= ∑
θ,j

Nθ,j ln prθ,j .

Here we have assumed a measurement procedure where the quadrature phase
angle is kept constant for a while as the corresponding quadrature variable q̂θ is
being sampled a number of times; afterwards, the LO phase is adjusted to a new
value of θ, and the measurement continues. The ∑θ denotes summation over all
the sampled phase angles. The phase angle plays a somewhat special role in the
maximum likelihood method for homodyne measurements. It is usually not a
random variable but rather has a value under the control of the experimenter8.
It can be set to a fixed value or be scanned continuously; either way, for each
set phase angle there is an entire corresponding quadrature probability distribu-
tion prθ(q) and set of projectors {Π̂j}. In the reconstruction, each phase angle
distribution ought to be weighted by the number of samples obtained at that
phase, Nθ = ∑j Nθ,j. We will see below that this also comes out naturally from
the maximization of the likelihood.

Following [10, 61, 158], we decompose ρ̂ into σ̂†σ̂, where σ̂ is a complex lower
triangular matrix with real diagonal elements. This Cholesky decomposition
ensures that ρ̂ is Hermitian and positive definite. We are seeking the conditions,
under which ln L(ρ̂) is maximal with respect to variations of ρ̂ or, equivalently, σ̂.
Furthermore, the requirement of unity trace of a density matrix adds a constraint
which can be incorporated using the method of Lagrange multipliers; for some
constant λ, the following must hold at maximum likelihood:

∂

∂σ̂
(ln L(ρ̂)− λ(tr ρ̂− 1)) = 0

⇒ ∑
θ,j

Nθ,j

prθ,j

∂

∂σ̂
tr[Π̂θ,jσ̂

†σ̂]− λ
∂

∂σ̂
tr[σ̂†σ̂] = 0.

The matrix derivative of a trace is [124] ∂
∂X tr[AX] = AT. Carrying out the differ-

entiations and transposing the equation gives

∑
θ,j

Nθ,j

prθ,j
Π̂θ,jσ̂

† − λσ̂† = 0

⇒ ∑
θ,j

Nθ,j

prθ,j
Π̂θ,jρ̂ = λρ̂, (2.28)

where we multiplied by σ̂ from the right. To determine λ we take the trace on
both sides of (2.28). The right side becomes λ, while on the left side, tr[Π̂θ,jρ̂] is
nothing else but prθ,j, leaving

λ = ∑
θ,j

Nθ,j = N.

8Some works do make use of phase-randomized data, either intentionally so or out of neces-
sity [91, 101, 176].
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N denotes the total number of samples over all phase angles. Inserting this and
a couple of Nθ’s in (2.28):

∑
θ

Nθ

N ∑
j

Nθ,j

Nθ prθ,j
Π̂θ,jρ̂ = ∑

θ

Nθ

N ∑
j

fθ,j

prθ,j
Π̂θ,jρ̂ = ρ̂,

with fθ,j being the frequency of observations in the jth bin within the θ phase
angle measurement. Denoting the operator on the left hand sides by R̂(ρ̂),

R̂(ρ̂) ≡∑
θ

Nθ

N ∑
j

fθ,j

prθ,j
Π̂θ,j, (2.29)

this extremal equation says that for the maximum likelihood estimator ρ̂0, R̂(ρ̂0)
must be the identity operator. This can indeed also be seen from the definition
of R̂; for a data set { fθ,j}, the distribution which is the most likely must have its
probabilities equal to the measured frequencies in all bins. When this is the case,
R̂ turns into a simple sum of the projection operators, which we earlier assumed
to be the identity.

As outlined in several papers [38, 89, 132], the solution to the extremal equation
R̂(ρ̂0)ρ̂0 = ρ̂0, which can equivalently be written

R̂(ρ̂0)ρ̂0R̂(ρ̂0) = ρ̂0,

can be found by an iterative method closely related to the classical expecta-
tion–maximization algorithm. Starting from an initial guess ρ̂(0), the iteration
continues as

ρ̂(k+1) = R̂(ρ̂(k))ρ̂(k)R̂(ρ̂(k))

followed by normalization to trace 1 for each step. The iteration is supposed to
monotonically increase the likelihood and converge towards the fixed point ρ̂0.
Řeháček et al. [132] demonstrates that this convergence is not always guaran-
teed, but in our experience, with our type of experimental data, the likelihood
is always increased. By studying the operator R̂, we can see qualitatively why
applying it to an estimated ρ̂(k) will generate a new estimate closer to ρ̂0: If ρ̂(k)

over-emphasizes the (θ, j) bin compared to the observation, fθ,j/ prθ,j will be less
than 1, while an under-emphasis will make this fraction larger than 1. Thus,
application of R̂(ρ̂(k)) will change the estimate towards a better balance through
the different weights on the projectors Π̂θ,j.

The density matrix reconstruction is conveniently carried out in the number state
basis, where the matrix representation of the projection operator is

(Π̂θ,j)mn =
∫ qj+1

qj

〈m|qθ〉 〈qθ |n〉 dq,

with 〈m|qθ〉 from (2.6). Since the Hilbert space is infinite, in the reconstruction it
is necessary to truncate it to dimension M + 1 at some maximal photon number
M. To some degree, this truncation limits the objectivity of the reconstruction,
since a choice of M has to be made. It can be chosen large enough, though, that
in practice there is no doubt that all photon numbers contributing to the state
has been included.
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Coming back to the issue of the treatment of the different phase angles under
which the quadratures have been sampled, we see from (2.29) that the iteration
operator consists of a sum of individual operators for each angle, weighted by
the relative number of obtained data points at each angle. Just as expected. An-
other important question is how many different phase angles should be probed?
Only phases between 0 and π must be probed, since the other half-circle of
phases give the same distributions with a sign difference (q̂θ+π = −q̂θ). But if
the quadrature distributions are only sampled for very few phase angles, say
2 or 3, one can easily imagine that features of the Wigner function in between
those phases go unnoticed. The maximum likelihood reconstruction only esti-
mates states that fit well with the observed data. Hence, a sufficient number
of phase angles must be observed in order to increase the azimuthal resolution
of the reconstructed Wigner function. Leonhardt [78] shows that the required
number of phase angles is approximately equal to the dimension of the state,
that is, the highest excited photon number. This was shown for the reconstruc-
tion methods mentioned in the next section, not for maximum likelihood, but
there is no reason to assume that it is fundamentally different for the different
methods. An alternative approach is to use a continuously scanned LO phase
and record each sample as a (θ, qθ) pair. As in Lvovsky [89], the binning in both
θ and q can be made so small that each bin contains only 0 or 1 data point. In
that case, the iteration operator (2.29) becomes

R̂(ρ̂) =
1
N ∑

i

1
pri

Π̂i, (2.30)

where the sum is over all data samples indexed by i.

Finally, another very useful feature of the maximum likelihood method is the
possibility to explicitly include imperfect detection efficiency in the algorithm
[10, 89]. As discussed in §2.3.3, a detector efficiency η can be modeled by trans-
mission through a beamsplitter with transmittance η. To estimate the density
matrix ρ̂η=1 of the state as it was before the deterioration due to non-unity de-
tector efficiency, one could simply reconstruct the detected lossy ρ̂η and sub-
sequently perform the inverse of the Bernoulli transformation (2.26). However,
statistical errors on the low photon number density matrix elements have a ten-
dency to turn into unrealistically large or possibly negative high photon number
elements. This can be avoided by instead incorporating the non-unity efficiency
into the reconstruction algorithm. Thus, the projection operator Π̂θ,j above is
exchanged with an element of a POVM, which, from [10, 89], is

Êθ,j(η) = ∑
m,n,k

√
Bm+k

m (η)Bn+k
n (η)

∫ qj+1

qj

dq 〈n|qθ〉 〈qθ |m〉 |n + k〉〈m + k| , (2.31)

where the summation of m and n runs from 0 to the truncation number M, and
k from 0 to M −max(m, n). This operator now represents a detection event in
the (θ, j) bin by an η-efficiency detector, and the iteration algorithm will directly
reconstruct the state ρ̂η=1 before the detector.
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2.4.3 A short history

The application of maximum likelihood methods to quantum state reconstruc-
tion was developed around 1997 by Hradil [60], Mogilevtsev et al. [98], and Ba-
naszek [8–10]. Before then, a couple of other methods were in use for homodyne
tomography. The very first experimental demonstration of homodyne tomog-
raphy was done by Smithey et al. [144] who also developed the idea based on
the realization by Vogel and Risken [163] of the relationship between homodyne
measurements and the Wigner function. The reconstruction method employed
there consists in basically inverting the Radon transformation (2.9) to construct
the Wigner function directly from observed quadrature distributions. The in-
verse transformation integrates the marginal quadrature distributions with a
kernel function [78]

K(q) =
1
2

∫ ∞

−∞
|ξ| exp(iξq)dξ.

This kernel function is not regular, so for numerical applications a regularization
must be done. A typical choice is to cut off the integration over ξ at some
specific frequency kc. This corresponds to low-pass filtering the shape of the
Wigner function, which is quite undesirable; if kc is chosen too low, sharp radial
features of the Wigner function will be filtered and smoothened, while a high kc
introduces large oscillations in the shape. This problem is clearly demonstrated
in some of our earlier work [105].

Another method introduced by d’Ariano et al. [27] and further developed by
Leonhardt et al. [79] avoids this need for unphysical filtering. Instead of first
calculating the Wigner function, each density matrix element is directly sampled
from the data by

ρmn =
〈〈

1
π

fmn(q)ei(m−n)θ

〉〉
q,θ

,

where the averaging is over the quadrature observations. The fmn(q) are so-
called pattern functions, independent of the data. Instead of the somewhat
arbitrary filtering necessary with the inverse Radon method, this pattern func-
tion technique requires the more physically meaningful truncation of the photon
numbers in the density matrix – just as the maximum likelihood method. The
pattern function do however suffer from another major drawback, namely un-
physical resulting density matrices. Since each matrix element is reconstructed
individually, there is no mechanism which forces the total density matrix to be
normalized. Furthermore, due to statistical errors, small diagonal elements can
even become negative. The maximum likelihood method overcomes these limi-
tations by specifically including the formal constraints on density matrices into
the algorithm and reconstructing the entire matrix as an entity.

See also the reviews by D’Ariano et al. [28] and Lvovsky and Raymer [92] for
more details about quantum state tomography.



Chapter 3

Theory of state generation

In this chapter, a theoretical model describing our experiments with non-Gaussian
state generation will be developed. At first, in §3.1, the theory for photon sub-
traction from a single mode squeezed vacuum will be reviewed, as it provides
some useful insights into the scheme, although it fails to describe the outcomes
of our experiments correctly. The rest of the chapter explores the multimode
output of an OPO, the reduction to two modes (signal and trigger), and the state
resulting from a photon detection, based on the Gaussian state formalism.

3.1 Single mode photon subtracted squeezed vacuum

3.1.1 Number-resolving detector

Schrödinger cat states in the shape of coherent state superpositions have proven
quite difficult to generate experimentally [85]. In a 1997 paper, Dakna et al.
[26] suggested a rather simple procedure for generating states very similar to
Schrödinger cats with small amplitude α (Schrödinger kittens). As sketched in
Figure 3.1, an initial squeezed vacuum state is split into two modes on a tapping
beamsplitter with transmittance T and vacuum on the other input port. If a pho-
ton number-resolving detector in the reflected (trigger) mode records m′ pho-
tons, then the resulting state in the transmitted (signal) mode will be a squeezed
vacuum with m′ photons subtracted. The first experimental demonstration of
this idea was done by Wenger et al. [166], who observed a non-Gaussian state,
which was not pure enough to have negative Wigner function values, though.
In the following, we will calculate the exact form of the output state in a slightly
simpler way than [26], and show that these photon subtracted squeezed vacuum
states (PSSqV) resemble proper kitten states to a quite good approximation.

In the Schrödinger picture, the two-mode state incident on the beamsplitter is

|ψin〉 = |ζ〉s |0〉t ,

31
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Figure 3.1: The simple model of Dakna et al. [26] for the generation of Schrödinger cat-
like states by conditional subtraction of an exact number of photons from a single-mode
squeezed vacuum. The scheme assumes an ideal photon-number resolving detector.

where |ζ〉s with ζ = reiφ is the squeezed vacuum state with (2.20)

|ζ〉s =
1√

cosh r

∞

∑
n=0

√
n!

(n/2)!

(
eiφ tanh r

2

)n/2

δ
[2]
0n |n〉s .

The output state after the beamsplitter is, using (2.25),

|ψbs〉 = B̂(T) |ψin〉

=
∞

∑
µ=0

s〈µ| ζ〉s B̂(T) |µ, 0〉

=
∞

∑
µ=0

µ

∑
n=0

s〈µ| ζ〉s
√

Bµ
n(T) |n, µ− n〉

=
∞

∑
n,m=0

s〈n + m| ζ〉s
√

Bn+m
n (T) |n, m〉 .

The expansion coefficients are explicitly

〈n, m|ψbs〉 = s〈n + m| ζ〉s
√

Bn+m
n (T)

=
1√

cosh r
(n + m)!

( n+m
2 )!
√

n!m!

(
eiφ tanh r

2

) n+m
2 √

Tn(1− T)m δ
[2]
nm .

Now, if the detector in the reflected trigger mode detects m′ photons, the state
is projected onto |m′〉t〈m′|, and the transmitted signal mode collapses into the
conditional photon-subtracted state

|ψm′〉s =
1√

prt(m′)

∞

∑
n=0
〈n, m′|ψbs〉 |n〉s , (3.1)
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Figure 3.2: Wigner functions of photon subtracted squeezed vacuum states. From the
front frame and counter-clockwise, the number of subtracted photons are 1, 1, 2, and 3,
respectively. r = 0.5 for all except the rightmost which has r = 0.1. T = 0.95 for all.

where the normalization factor prt(m′) is the probability of detecting m′ photons
in the trigger mode, given by

prt(m′) =
∞

∑
n=0
|〈n, m′|ψbs〉|2.

We can calculate an expression for this probability (by Mathematica):

prt(m′) =
1

cosh r m′!

(
1− T

T

)m′

(tanh s)m′+δ
[2]
1m′
(
(m′ − δ

[2]
0m′)!!

)2

× 2F1

(
m′+1+δ

[2]
1m′

2 ,
m′+1+δ

[2]
1m′

2 , 1
2 + δ

[2]
1m′ , tanh2 s

)
,

where 2F1 is the hypergeometric function, !! is the double factorial1, and s is a
rescaled squeezing parameter defined by

tanh s = T tanh r.

Figure 3.2 shows the Wigner functions of some examples of the PSSqV states
|ψm′〉s, for m′ = 1, 2 and 3. They are clearly non-Gaussian, and while the 1-
PSSqV states have the look of a simple squeezed volcano, the shapes become
more complex for higher numbers of subtracted photons.

We notice from (3.1) the fairly obvious fact that, with an odd (even) number of
photons detected in the trigger mode, the signal mode consists of a superposi-
tion of only odd (even) Fock states – see Figure 3.3. More interestingly, we can
decompose |ψm′〉s into a superposition of two states opposite in phase space.
Abbreviating

Fn,m′ =
(n + m′)!

( n+m′
2 )!
√

n!
,

υ =

√
eiφ tanh s

2
,

1The double factorial is defined recursively by n!! = n · (n− 2)!! with (−1)!! = 0!! = 1!! = 1.
For example, 7!! = 7 · 5 · 3 · 1. [165]
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Nm′ = (tanh s)m′+δ
[2]
1m′
(
(m′ − δ

[2]
0m′)!!

)2×

2F1

(
m′+1+δ

[2]
1m′

2 ,
m′+1+δ

[2]
1m′

2 , 1
2 + δ

[2]
1m′ , tanh2 s

)
,

(3.1) can be rewritten (skipping the s index)

|ψm′〉 =
1√
Nm′

∞

∑
n=0

Fn,m′υ
n+m′δ

[2]
nm′ |n〉

=
υm′

2
√
Nm′

[
∞

∑
n=0

Fn,m′υ
n |n〉+ (−1)m′

∞

∑
n=0

Fn,m′(−υ)n |n〉
]

≡ υm′

2
√
Nm′

[ ∣∣ψ+
m′
〉
+ (−1)m′ ∣∣ψ−m′〉 ].

This superposition of two distinct states already bears some resemblance with
the odd/even cat states in (2.22). Figure 3.4 shows that the Wigner functions
of these states look somewhat like two weak coherent states opposite in phase
space.

Fidelity

To quantify how close two states are to each other, the fidelity is a useful and
commonly accepted measure [19, 64]. The fidelity between a pure state |ψ1〉 and
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a mixed state ρ̂2 is defined as

F (|ψ1〉 , ρ̂2) ≡ 〈ψ1| ρ̂2 |ψ1〉 = tr[|ψ1〉〈ψ1| ρ̂2]

= 2π
∫∫ ∞

−∞
W1(x, p)W2(x, p)dxdp,

where W1, W2 are the Wigner functions of the two states. F is 1, only if the
two states are identical, and 0 if they are orthogonal. For two pure states,
F (|ψ1〉 , |ψ2〉) = |〈ψ1|ψ2〉|2. For the fidelity (or overlap) between the m′-PSSqV
|ψm′〉 and an odd cat state |∼./©̈−〉 (2.22), we get

F (|ψm′〉 , |∼./©̈−〉) = |〈ψm′ | ∼
./
©̈−〉|2 = 0

if m′ is even, since the m′-PSSqV then has only even photon number components
while the odd cat has only odd. If, on the other hand, m′ is odd,

F (|ψm′〉 , |∼./©̈−〉) =
∣∣∣∣ ∞

∑
n=0
〈ψm′ |n〉 〈n| ∼

./
©̈−〉

∣∣∣∣2

=

∣∣∣∣∣ 1
√
Nm′

√
sinh|α|2

∞

∑
n=0

δ
[2]
m′nFn,m′(υ∗)n+m′ αn

√
n!

∣∣∣∣∣
2

=
|υ|2m′

Nm′ sinh|α|2

∣∣∣∣∣ ∞

∑
n=0

δ
[2]
1n

(n + m′)!(
n+m′

2

)
!n!

(αυ∗)n

∣∣∣∣∣
2

.

(3.2)

For an even cat state, the fidelity is 0 for odd m′; for even m′ it is the same
expression as above, only with cosh|α|2 instead of sinh|α|2, and with δ

[2]
0n instead

of δ
[2]
1n .

In the special case of one subtracted photon, m′ = 1, the fidelity becomes (§A.2)

F (|ψ1〉 , |∼./©̈−〉) =
|α|2

cosh3 s sinh|α|2
exp

(
|α|2 tanh s cos(2 arg α− φ)

)
.

This expression was also obtained by Lund, Jeong et al. [62, 85, 86] for the fidelity
between the odd cat and a squeezed single photon, that is, a single photon state
passed through an ideal squeezer. The reason is of course that the two states,
1-PSSqV (m′ = 1) and squeezed single photon, are equivalent; from [86]

Ŝ(s) |1〉 =
1

sinh s
âŜ(s) |0〉 ,

which shows this equivalency (the sinh s factor just normalizes the photon sub-
tracted state on the right hand side). It is not the same amount of squeezing re-
quired, though, to generate a 1-PSSqV and a squeezed photon state. A 1-PSSqV
generated with a squeezing parameter r and a beamsplitter transmittance of T
corresponds to a single photon squeezed with a parameter s = arctanh(T tanh r).

The fidelities between different m′-PSSqV’s and cat states (odd/even as appro-
priate) are plotted in Figure 3.5 a) as a function of the squeezing parameter r.
For each r, the cat state amplitude α has been optimized to yield the highest
possible fidelity. This optimal α is plotted in Figure 3.5 b). The fidelity is almost
perfect for squeezing parameters below 0.2, but for r & 0.6, it rapidly degrades.
In order to keep the fidelities higher than, say 0.95, the cat amplitude can not get
higher than 1.5 – 2.
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Figure 3.5: For different numbers of detected trigger photons m′, a) shows the maximum
attainable fidelity between a m′-PSSqV with given squeezing parameter r, and any cat
state. b) shows the corresponding amplitudes of the optimal cat state.

3.1.2 Realistic photon detection

The discussion so far has assumed that the trigger detector signalling the sub-
traction of one or more photons from the squeezed field can resolve photon num-
bers perfectly. No such detector exists in reality. As mentioned in §2.3.1, com-
mercially available photon counting detectors (like APDs) cannot distinguish
between one or several photons impinging on it at the same time – they can only
signal whether some photons were absorbed or not. Furthermore, they have a
certain dead time after a detection event, within which they cannot accept new
detections. These kinds of detectors are commonly called on/off detectors, as
opposed to the idealized photon number resolving detectors. Whereas the de-
tection of m photons on a number resolving detector is described theoretically by
the projection onto a number state, |m〉t〈m|, the on/off detector’s on or “click”
event effectively projects the state of the signal mode into a statistical mixture
of 1-PSSqV, 2-PSSqv, 3-PSSqv, etc., and can be modeled by a summation over all
projection operators for m ≥ 1,

Π̂on
t = ∑

m≥1
|m〉t〈m| ,

or, since the projectors are complete,

Π̂on
t = Ît − Π̂off

t = Ît − |0〉t〈0| .

The efficiency of the detector must also be taken into account. Apart from the
quantum efficiency of the APD itself, there will be propagation losses on the
way from the beamsplitter to the detector, yielding a total efficiency ηt for the
reflected photons to be detected. This efficiency can be modeled by a fictitious
beamsplitter before a 100% efficiency detector, or, alternatively, it can be modeled
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by replacing the on- and off-projection operators with POVMs [147]

Êon
t (ηt) = Ît − Êoff

t (ηt), Êoff
t (ηt) =

∞

∑
m=0

(1− ηt)m |m〉t〈m| ,

because (1− ηt)m is the probability that m photons will not be detected. For unit
efficiency, Êoff

t (1) is again |0〉t〈0|, with the convention 00 = 1. The two-mode
state resulting from a click event in the trigger mode is obtained, according to
(2.1), from operating with Êon

t (ηt) on the initial two-mode state after the beam-
splitter2, |ψbs〉〈ψbs|. Tracing over the trigger mode (whereby the POVM element
can be collected on one side of the density matrix, due to cyclic invariance of the
trace) then gives the state of the signal mode:

ρ̂on,s(ηt) =
trt
[
Êon

t (ηt) |ψbs〉〈ψbs|
]

pron

=
trt
[
( Ît −∑m(1− ηt)m |m〉t〈m|) |ψbs〉〈ψbs|

]
trs,t

[
( Ît −∑m(1− ηt)m |m〉t〈m|) |ψbs〉〈ψbs|

]
=

∑m
(
1− (1− ηt)m)

t〈m|ψbs〉〈ψbs|m〉t
1−∑n,m(1− ηt)m 〈n, m|ψbs〉〈ψbs|n, m〉 .

Yet another imperfection in the APD to be considered is the existence of dark
counts; due to thermal noise in the diode, the detector will sometimes give a
click without any impinging photons. Such a dark count gives no information at
all about the state of the trigger mode – the corresponding action on the trigger
mode is just the identity operator; Êdark

t = Ît. The resulting signal state is then
simply the original squeezed vacuum (that has suffered a loss of 1− T from the
beamsplitter):

ρ̂dark,s =
trt
[
Ît |ψbs〉〈ψbs|

]
trs,t

[
Ît |ψbs〉〈ψbs|

] = ∑
m

t〈m|ψbs〉〈ψbs|m〉t .

In the event of a dark count, there might indeed have been photons split off from
the state, but this is no different from just observing the unconditioned signal
state, that is, regardless of whether the trigger detector gives a click or not.

A trigger detector click will be either a genuine photon detection, Êon
t (ηt), or a

dark count, Êdark
t . Hence, an individual signal state conditioned on a click will

be either a PSSqV or a squeezed vacuum state. Following Wenger et al. [166] we
call the fraction of genuine counts the ‘modal purity’ and assign it the symbol
Ξ. The fraction of dark counts is then 1− Ξ and the ensemble averaged density
matrix is

ρ̂on,s(ηt, Ξ) = Ξ ρ̂on,s(ηt) + (1− Ξ) ρ̂dark,s. (3.3)

Dark counts are actually not the only source of false clicks. If any photons
occupying modes other than the trigger mode are detected by the APD, they
will, as well, project the signal mode onto a squeezed vacuum state, and they
can be incorporated into the modal purity Ξ on equal footing with dark counts.
An important aspect of our experiment is to avoid such uncorrelated photons
from reaching the trigger APD.

2Implicitly, the full two-mode operator is Îs ⊗ Êon
t (ηt).



38 Theory of state generation

-0.5

-0.6

-0.7

-0.8

-0.9 ΠWH0, 0L

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.80

0.85

0.90

0.95

1.00

r

T

95 %

90 %

85 %

80 %
75 %

fidelity

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.80

0.85

0.90

0.95

1.00

r

T

aL bL

Figure 3.6: The r- and T-dependence of a) πW(0,0), the value of the negative dip in
the Wigner function of the PSSqV state which is ideally −1, but is reduced when using
an on/off detector, and b) F (|∼./©̈−〉, ρ̂on,s), the fidelity with an odd kitten state with
optimized amplitude. The parameters of the on/off detector are in both plots ηt = 0.1
and ξ = 1. The summation in the POVM for the on/off detector has been truncated at
M = 15.

Effect on the states

The step from an ideal photon number detector to the more realistic on/off
detector model naturally has some consequences for the quality of the generated
PSSqV states. This is clearly exemplified in the value of the negative Wigner
function dip at the origin of phase space, W(0, 0). For 1 subtracted photon (or
3 or 5 or. . . ), the value in the ideal detector case is always −1/π, no matter
what the squeezing parameter r and the beamsplitter transmittance T are. Once
we lose the information about exactly how many photons were reflected off the
beamsplitter, it starts to matter whether there is a high or a low probability of
having more than one photon in the trigger arm. Thus, if the squeezing level is
higher, there will be more photons in the initial field and it is more likely that
two or more will be reflected; the same goes if the beamsplitter transmittance
is relatively low. Then there will be some admixture in the signal state of the
2-PSSqV state which has W(0, 0) = 1/π as seen in Figure 3.2. The dependence
on r and T of W(0, 0) as well as the fidelity with an odd Schrödinger kitten is
sketched in Figure 3.6. Especially the beamsplitter transmittance has a dramatic
effect on both numbers – it clearly has to be kept as close to unity as possible. The
disadvantage of a high transmittance (and low reflectance) is of course to lower
the production rate, since fewer photons are detected by the trigger detector.

T and r are parameters of the initial state preparation scheme that become highly
relevant due to the limited capabilities of the realistic photon detector. The prop-
erties of the trigger detection apparatus itself will also influence the quality of
the generated signal state. While the detector efficiency ηt has a small, though
noticeable, effect, the modal purity Ξ has a quite direct and severe impact on the
quality of the generated state, as shown in Figure 3.7. A low efficiency definitely
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Figure 3.7: The ηt- and Ξ-dependence of a) πW(0, 0), and b) F (|∼./©̈−〉, ρ̂on,s). The
squeezing parameter is r = 0.5 and the beamsplitter transmittance T = 0.95.

means that the production rate will go down, but the quality of the state is only
weakly degraded, at least for realistic values of T and r. It is more likely that
two photons in the trigger arm will give rise to a click, than if there is only one –
hence, the non-unity efficiency leads to relatively higher proportion of 2-PSSqV
states (or higher) in the signal. But as long as the initial probability of having
more than one photon in the trigger arm is kept low, the effect will be only
moderate.

Whereas the three previously discussed parameters T, r, and ηt all serve to mix
the 1-PSSqV state with higher number subtracted states to varying degrees, the
influence of a non-unity modal purity is to admix plain squeezed vacuum with
the amount 1− Ξ. Both fidelity and Wigner function dip will naturally suffer
heavily from that. Finally, there will also be losses in the signal arm. These
will alter the state according to the Bernoulli transformation (2.26) with an ef-
ficiency ηs. In the experimental situation, these signal losses along with dark
counts/uncorrelated clicks are the major limitations to be beaten.

The emphasis given here to the Wigner function value in the origin, W(0, 0),
will continue throughout the thesis – it will be the main figure of merit for our
generated states. There are several good reasons for emphasizing this particular
parameter: Our target states, odd kittens and single photons, both have a large
negativity in the center of phase space; however, experimental imperfections will
quickly reduce the negativity, so it is a very sensitive gauge of the performance of
the experiment. Furthermore, W(0, 0) is easy to calculate and visualize, and is a
parameter commonly encountered in the literature (e.g. [69]). For more complex
states, it might not be the optimal figure of merit, though – the 2-photon state,
for example, has a positive peak in the center which is only weakly affected by
losses, admixture with squeezed vacuum etc.
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3.2 Gaussian formalism

The theory developed so far has assumed an ideal input squeezed state, i.e. a
pure minimum uncertainty state, and furthermore any mentioning of relevant
physical modes such as frequency, temporal, and spatial modes have been ne-
glected. Several illustrative results have been derived, showing the influence on
such an ideal system of different photon detector models and characteristics,
squeezing level, and beamsplitting ratio. However, a more realistic model – in
particular for the input squeezed state – is necessary to properly describe the
experiments. As we will see in §3.3, the OPO output consists of a continuum
of frequency modes with different squeezing levels, so it should in principle be
represented by a multimode density matrix. The insufficiency of single mode
theories were realized by Sasaki and Suzuki [133] and by Mølmer [99], who de-
veloped different formalisms to take account of the multimode character of the
system. The following theory of the state generation scheme is based on the
latter of these works. An essential ingredient of the formalism is the tempo-
ral mode selection (§3.4), which reduces the system to two modes, signal and
trigger, such that a two-mode density matrix suffices to describe it. The states
within these modes will be mixed, even for perfect experimental conditions with
no losses.

Once we depart from the idealized model, the explicit formulation in terms of
number states, as done in the previous sections, becomes rather cumbersome.
It is still possible to perform state simulations using the density matrix; how-
ever, since the state of the system is Gaussian until the de-Gaussifying photon
detection takes place, a Gaussian formalism is actually more appropriate and
more transparent as well. The state is then described simply by its covariance
matrix (there is no displacement in phase space), which can encompass any ini-
tial squeezed vacuum state, not only minimum uncertainty states. The further
steps in the modeling can then go via the characteristic function or the Wigner
function – as they are Fourier transforms of each other, there is no significant
argument for using one or the other. Kim et al. [69] went via the characteristic
function to calculate results for the fidelity and W(0, 0) for kittens prepared with
the on/off detector model. They did not consider non-unity photon detector
efficiency, though. On the other hand, they could get results for non-ideal initial
squeezed states due to the covariance matrix formulation. In the part of parame-
ter space where their theory and that developed in the previous sections overlap,
the two models agree completely. In the theory paper written by Mølmer [99] in
connection with our experimental demonstration of the kitten state preparation
(and in subsequent related works by Nielsen and Mølmer, [107–110]), the Wigner
function is used, and we will do the same in the following.

Very generally, we assume that the trigger and signal modes are in a two-mode
Gaussian state just prior to the click event of the trigger detector. This state can
be the pure squeezed state after a beamsplitter, as obtained from the single mode
theory of the previous section, or it can be a mixed state, for example from our
reduced multimode system. From the covariance matrix Γ of the two modes,
the Wigner function WΓ(ξ) is as in (2.15). We saw before, that to describe in
the density matrix representation the effect of a trigger detection on the signal
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mode, we operate on the state ρ̂Γ with the on-POVM and trace over the trigger
mode:

ρ̂on,s =
trt
[
Êon

t ρ̂Γ

]
trs,t

[
Êon

t ρ̂Γ

] . (3.4)

In the Wigner function representation, this corresponds to integrating over WΓ(ξ)
multiplied by the Wigner function of the on-POVM, cf. (2.10),

Won(xs, ps) =
2π
∫∫

WΓ(ξ)WE(xt, pt) dxtdpt

2π
∫

WΓ(ξ)WE(xt, pt) d4ξ
. (3.5)

With the 100% efficiency on-POVM, Êon
t = Ît− |0〉t〈0|, the operator Wigner func-

tion becomes

WE(xt, pt) =
1

2π
− 1

π
e−x2

t−p2
t . (3.6)

The last term is the vacuum, while the first is the Wigner function of the identity
operator, as obtained directly from (2.7). For the detector with efficiency ηt, the
vacuum part of the Wigner function should be exchanged with the correspond-
ing sum of number state Wigner functions. However, the non-unity efficiency
is more easily included by inserting a fictitious beamsplitter before the detector,
thus altering the covariance matrix, and then use (3.6). Through rotations in
phase space, a two-mode Gaussian state can in general be put on the generic
form

Γ =


a 0 e 0
0 b 0 f
e 0 c 0
0 f 0 d

 .

With these covariance parameters, the numerator and denominator of the condi-
tioned signal state expression (3.5) becomes, using WE from (3.6),

2π
∫∫

WΓ(ξ)WE(xt, pt) dxtdpt =

exp
(
− x2

s
a −

p2
s

b

)
π
√

ab
−

2 exp
(
− (1+c)x2

s
a(1+c)−e2 − (1+d)p2

s
b(1+d)− f 2

)
π
√

(a(1 + c)− e2)(b(1 + d)− f 2)
, (3.7)

pron = 2π
∫

WΓ(ξ)WE(xt, pt) d4ξ = 1− 2√
(1 + c)(1 + d)

. (3.8)

The resulting state is thus the difference of two Gaussian functions, one of which
is the unconditioned signal state obtained by simply tracing over the trigger
mode. Non-unity modal purity Ξ is included, as in (3.3), by admixing with the
unconditioned state:

Won(xs, ps; Ξ) = ΞWon(xs, ps) + (1− Ξ)Wuncond(xs, ps), (3.9)

with

Wuncond(xs, ps) =
exp

(
− x2

s
a −

p2
s

b

)
π
√

ab
. (3.10)
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Sometimes – e.g. in Mølmer [99] – a different model of the photon detection
event is chosen, in which the action on the trigger mode of the density matrix is
not a projection, but rather the subtraction of a single photon, described by the
annihilation operator:

ρ̂on,s =
trt
[
âtρ̂Γ â†

t
]

trs,t
[
âtρ̂Γ â†

t
] . (3.11)

Through some correspondences between application of â and â† to the density
matrix and differentiation of the Wigner function [47], this amounts to a trans-
formation in the Wigner representation of

Won(xs, ps) =
1

pron

∫ 1
2

(
x2

t + p2
t +

1
4

(
∂2

∂x2
t

+
∂2

∂p2
t

)
+ xt

∂

∂xt
+ pt

∂

∂pt
+ 1
)

WΓ(ξ) dxtdpt.

One could start arguing whether this model of the detection process is more
realistic, since photons are indeed absorbed by the detector. However, when
tracing over the trigger mode, it does not really matter what actually happened
to the photons in that mode. In fact, one can easily show (see Appendix A.3)
that this model is equivalent to the projection operator model described above
in the limit of low detector efficiency, ηt → 0. So the projection model is more
general, but for experimentally relevant efficiencies (ηt ≈ 0.1), the two models
produce almost identical predictions.

Example

The modeling of the conditioning process that turns a Gaussian state into a non-
Gaussian state in the signal mode is thus quite simple. Most of the specifics
of a given physical setup is handled prior to the photon detection, while stay-
ing within the Gaussian formalism. We briefly demonstrate how the idealized
system, treated in the previous section using state ket formalism, can be easily
treated in terms of the covariance matrix. With an initial squeezed vacuum state
(not necessarily pure) as input in the signal mode, and vacuum input in the
trigger mode, the covariance matrix before the beamsplitter is

Γi =


2
〈

x̂2
i,s
〉

0 0 0
0 2

〈
p̂2

i,s
〉

0 0
0 0 1 0
0 0 0 1

 .

The beamsplitter transforms the coordinates according to ξ̂ i → ξ̂ = B(T)ξ̂ i with
the unitary matrix

B(T) =


√

T 0
√

1− T 0
0

√
T 0

√
1− T

−
√

1− T 0
√

T 0
0 −

√
1− T 0

√
T

 . (3.12)
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The corresponding covariance matrix transformation is Γi → Γ = B(T)ΓiB(T)T.
The efficiencies of the trigger channel as well as the signal channel are now mod-
eled by a fictitious beamsplitter in the trigger mode with transmittance ηt, and
in the signal mode with ηs. Using a matrix B(ηt) like above on the trigger mode
and an auxiliary vacuum mode, doing the same with B(ηs) on the signal mode,
and then disregarding the auxiliary output modes results in a transformation of
the covariance matrix of

Γ → Γ′ = ηΓη + V,

with the efficiency matrix η = diag(√ηs,
√

ηs,
√

ηt,
√

ηt) and the vacuum contri-
bution matrix V = diag(1− ηs, 1− ηs, 1− ηt, 1− ηt). The final covariance matrix
of the two-mode system just before the trigger detection event is thus

Γ′ = ηB(T)ΓiB(T)Tη + V,

and the signal state conditioned on a click is then obtained from (3.5)-(3.9).

The results of this analysis are exactly the same as those obtained from the state
ket formalism – but this Gaussian approach is somewhat more elegant.

3.3 OPO theory

Since the first experiment showing noise reduction below the vacuum level,
performed by Slusher et al. [143] using four-wave mixing in sodium atoms,
most experiments demonstrating or utilizing squeezed light have employed non-
linear crystals, fibers or waveguides. Nonlinear crystals have a large second-
order susceptibility, χ(2), which permits frequency-mixing between incoming
and outgoing optical fields. One possible effect is spontaneous parametric down-
conversion (SPDC) in which a small part of an incident pump field at frequency
ωp is converted into two fields at ω+ and ω−, with ω+ + ω− = ωp. Apart
from frequency, the down-converted twin fields can be correlated in the spa-
tial, temporal, and polarization degrees of freedom, and SPDC is thus often
used for entangled photon pair production. Furthermore, the two fields will
be quadrature-correlated due to their common dependence on the pump field
phase, so they can be in a two-mode squeezed state. In the case of mode de-
generacy of the two fields, the common mode will be in a normal squeezed
state. We will be employing a degenerate OPO for kitten state generation and
a (frequency) non-degenerate OPO to make single photons. The polarization is
always degenerate, that is, we use Type-I down-conversion.

The Hamiltonian describing the SPDC process is, assuming that the pump field
amplitude β = 〈âωp〉 is large enough to be treated classically [136],

Ĥ =
ih̄g
2

(βe−iωpt â†
+ â†
− − β∗eiωpt â+ â−), (3.13)

where g is the interaction strength. To produce a reasonable amount of squeez-
ing, the product of the interaction strength, which is proportional to the χ(2) and
the length of the crystal, and the pump amplitude should be fairly high. There
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are two quite different ways of running the down-conversion process; either by
pulsed or by continuous-wave (cw) pumping, and each way has its merits.

With pulsed pumping, very high peak powers can be obtained when using pi-
cosecond, or even femtosecond lasers, on the order of several hundred kW. How-
ever, for such short pulses, the crystal must be very short to avoid effects of group
velocity mismatch [122]. The down-converted squeezed light will be ultrashort
pulses as well, and will thus populate a very wide bandwidth. Usual squeezing
levels obtained are around 3 dB noise reduction [50, 122]. These relatively low
levels, as well as the ultrashort pulsed nature itself, limit the usability for many
squeezed light applications. For conditional state engineering as presented in
the previous sections, the pulsed scheme clearly has its justification, since high
squeezing levels are not necessary.

By cw pumping, the pump is a steady state field with powers typically between
a few mW and a few hundred mW – considerably lower than the powers in-
volved in pulsed lasers. However, the problems associated with short pulses are
not present and the nonlinear crystal can be made considerably longer, usually
around a cm. In order to further enhance the interaction strength, the crys-
tal can be placed inside an optical cavity resonant on the down-converted fre-
quency. Such an arrangement is called an optical parametric oscillator (OPO).
The squeezed light generated from an OPO is continuous, with a bandwidth
matching that of the cavity. The best squeezing results so far are obtained from
OPOs; 9 dB below vacuum noise by Takeno et al. [151] using a long traveling-
wave cavity, and -10 dB in a monolithic cavity by Vahlbruch et al. [159]. It should
be noted, that although pulsed pump experiments almost always are single-pass
configurations, Zavatta et al. [174] recently implemented cavity enhancement of
pulsed SPDC using a cavity with a round-trip time equal to the inverse of the
laser repetition rate.

3.3.1 OPO modeling

The following derivation of the OPO’s cavity and output fields is based on the
formalism in Collett and Gardiner [25]. A few more details are given in my
master thesis [105].

Cavity spectrum

We model the cavity as in Figure 3.8. The singly resonant OPO is kept at res-
onance with the down-converted field at ω0 = ωp/2, but not with the pump.
This is possible by having the mirrors transmitting the pump wavelength, but
being highly reflective at the down-converted wavelength - they are assumed to
be perfectly reflecting. One mirror, the output coupler, is transmitting a small
fraction, described by the decay rate γ1. There will inevitably be losses in the
cavity, which are modeled by a fictitious beamsplitter with a decay rate of γ2.
The relation between the decay rates and the output coupler transmittance T1
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Figure 3.8: Schematic model of the OPO. The blue pump is not resonant in the cavity.
A fictitious beamsplitter models the intra-cavity losses.

and intra-cavity (intensity) losses L is

γ1 =
1−
√

1− T1

τcav
≈ T1

2τcav
, γ2 =

1−
√

1−L
τcav

≈ L
2τcav

,

where τcav = lcav/c is the cavity round-trip time, lcav the cavity length, and
the approximations hold for T1,L � 1. The total decay rate γ = γ1 + γ2 is the
HWHM (half-width half-maximum) bandwidth of the approximately Lorentzian
shaped resonances. Around the central resonance at ω0, there is a comb of other
resonances at frequencies separated by an integer times the cavity’s free spectral
range ∆ω = 2πτ−1

cav,

ωn = ω0 + n∆ω.

For an OPO, the field operators in the Hamiltonian (3.13) refers to the intra-
cavity field, which can be separated into the different resonant modes. These
frequency modes are pairwise correlated, the mode at ωn with the one at ω−n,
and the operators â+ and â− refer then to these modes. When considering such
distinct resonance pairs and their correlations, we talk about the non-degenerate
OPO (NDOPO). As opposed to this, the degenerate OPO (DOPO) considers the
description of just the central mode at ω0, in which â+ = â−. The DOPO and
NDOPO are not separate modes of operation of the OPO – there are correlations
in the degenerate and non-degenerate modes at the same time. Rather, since
the different resonances can be distinguished in the subsequent processing and
analysis of the OPO output (for example in a homodyne detector with limited
spectral range), the distinction between DOPO and NDOPO is merely a shift of
emphasis on the different parts of the output. Dunlop et al. [33] have actually
expanded the present theoretical formalism such that it in principle covers the
entire spectrum of the OPO output. However, we choose to keep the DOPO and
NDOPO descriptions separate, keeping the formulas a bit simpler. Furthermore,
we assume that the cavity is exactly on resonance with the central frequency ω0.
The theory in ref. [33] also included finite detuning (although it seems that some
of their results are erroneous).
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3.3.2 DOPO

The field operators are needed in both the time and frequency domains. We use
the symmetric Fourier transform for the relation between the two domains:

â(ω) =
1√
2π

∫ ∞

−∞
eiωt â(t)dt,

â(t) =
1√
2π

∫ ∞

−∞
e−iωt â(ω)dω.

It is useful to change the operators to a frame rotating with the central optical
frequency ω0 by writing ω = ω0 + Ω:

Â(Ω) ≡ â(ω0 + Ω) =
1√
2π

∫ ∞

−∞
eiΩt Â(t)dt,

Â(t) ≡ â(t)eiω0t =
1√
2π

∫ ∞

−∞
e−iΩt Â(Ω)dΩ.

(3.14)

For the daggered operators, the Fourier transform takes Â†(t) F⇐⇒ Â†(−Ω).
The standard time domain commutation relation for the field operators (which
holds for both â and Â operators) is

[Â(t), Â†(t′)] = δ(t− t′),

which in the frequency domain becomes

[Â(Ω), Â†(−Ω′)] = δ(Ω + Ω′).

Assuming the detuning of the cavity resonance from ωp/2 to be zero, the Heisen-
berg picture equation of motion for the intra-cavity field Âc of the degenerate
OPO is, in the rotating frame [25],

dÂc(t)
dt

= εeiφ Â†
c (t)− γÂc(t) +

√
2γ1Âin(t) +

√
2γ2Âvac(t), (3.15)

where ε = g|β| (with units s−1), and φ is the phase offset of the pump field β.
The intra-cavity losses introduce vacuum noise, described by Âvac, and unless
an input field is specifically injected through the output coupler, Âin is also
a vacuum operator. If ε > γ, the cavity mean field builds up faster than it
decays and the leaking field will acquire a coherent amplitude; this condition is
the oscillation threshold. Let |βthr| be the pump amplitude necessary to reach
threshold; g|βthr| = γ. Then there is the following experimentally useful relation
between the various parameters:

ε

γ
=
|β|
|βthr|

=

√
Pp

Pthr
, (3.16)

where the Pp and Pthr denote pump power and pump threshold power, respec-
tively. We are only interested in the sub-threshold behaviour of the OPO, so in
the following, ε < γ can be assumed.
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The output field Â is related to the cavity field through
√

2γ1Âc = Âin + Â. In
frequency space, the solution to the equation of motion for the output field is

Â(Ω) =
1

D(Ω)
[
B1(Ω)Âin(Ω) + C1eiφ Â†

in(−Ω)

+ B2(Ω)Âvac(Ω) + C2eiφ Â†
vac(−Ω)

]
, (3.17)

with the abbreviations

B1(Ω) = γ2
1 − (γ2 − iΩ)2 + ε2,

B2(Ω) = 2
√

γ1γ2(γ− iΩ),

C1 = 2γ1ε,

C2 = 2
√

γ1γ2ε,

D(Ω) = (γ− iΩ)2 − ε2.

The expression for the daggered operator is identical, except of course for the
general exchange Â(Ω) → Â†(−Ω), and then a change of C1 and C2 to their
complex conjugates (a sign change of the pump phase φ).

When calculating the correlations in the output field, most terms vanish, since
for the input vacuum field Âin,〈

Âin(Ω)Âin(Ω′)
〉

=
〈

Â†
in(−Ω)Â†

in(−Ω′)
〉

=
〈

Â†
in(−Ω)Âin(Ω′)

〉
= 0,

while the only non-zero term is the anti-normal ordered〈
Âin(Ω)Â†

in(−Ω′)
〉

=
〈
[Âin(Ω), Â†

in(−Ω′)] + Â†
in(−Ω′)Âin(Ω)

〉
= δ(Ω + Ω′).

The same holds for Âvac. The correlations in the output become〈
Â(Ω)Â(Ω′)

〉
=

B1(Ω)C1 + B2(Ω)C2

D(Ω)D(Ω′)
eiφδ(Ω + Ω′)

= G1(Ω)eiφ δ(Ω + Ω′),〈
Â†(−Ω)Â†(−Ω′)

〉
=

B1(Ω′)C1 + B2(Ω′)C2

D(Ω)D(Ω′)
e−iφδ(Ω + Ω′)

= G1(Ω)e−iφ δ(Ω + Ω′),〈
Â†(−Ω)Â(Ω′)

〉
=

C2
1 + C2

2
D(Ω)D(Ω′)

δ(Ω + Ω′)

= G2(Ω) δ(Ω + Ω′),〈
Â(Ω)Â†(−Ω′)

〉
=

B1(Ω)B1(Ω′) + B2(Ω)B2(Ω′)
D(Ω)D(Ω′)

δ(Ω + Ω′)

= (1 + G2(Ω)) δ(Ω + Ω′),

with the real-valued expressions

G1(Ω) =
2γ1ε(γ2 + Ω2 + ε2)

D(Ω)D(−Ω)
,

G2(Ω) =
4γ1γε2

D(Ω)D(−Ω)
,

D(Ω)D(−Ω) = [(γ− ε)2 + Ω2][(γ + ε)2 + Ω2],
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where Ω′ was set equal to Ω, since the delta-function will not allow any other
values anyway. From this, the time domain correlation functions can be calcu-
lated, using (3.14):〈

Â(t)Â(t′)
〉

=
〈

Â†(t)Â†(t′)
〉∗

=
1

2π

∫∫ ∞

−∞
e−i(Ωt+Ω′t′)〈Â(Ω)Â(Ω′)

〉
dΩdΩ′

=
1

2π

∫ ∞

−∞
e−iΩ(t−t′)G1(Ω)dΩ

=
γ1εeiφ

2

(
e−(γ−ε)|t−t′|

γ− ε
+

e−(γ+ε)|t−t′|

γ + ε

)
,

(3.18)

and similarly 〈
Â†(t)Â(t′)

〉
=
〈

Â(t)Â†(t′)
〉
− δ(t− t′)

=
γ1ε

2

(
e−(γ−ε)|t−t′|

γ− ε
− e−(γ+ε)|t−t′|

γ + ε

)
.

(3.19)

This last expression gives us some additional important information: For t′ = t,
it is just the expectation value of the number operator for the field at time t.
Therefore, we have the (time-independent) photon number of the OPO output
in the degenerate mode:

〈
n̂
〉

=
〈

Â†(t)Â(t)
〉

=
γ1ε2

γ2 − ε2 . (3.20)

Notice the units of inverse time; since the field is not a restricted cavity mode, but
rather a continuously traveling wave, the photon number is actually the number
of photons per unit time (second). Therefore, it is the photon production rate of
the OPO.

Quadrature correlation

Without loss of generality, we can set φ = 0. It will simplify the following expres-
sions for the quadrature correlations, and make the covariance matrix diagonal
(no X̂-P̂ correlation). To keep the notation consistent, we use capital letters for
the rotating frame quadrature operators:〈

X̂(t)X̂(t′)
〉

=
〈

Â(t)Â(t′)
〉
+
〈

Â†(t)Â(t′)
〉
+

1
2

δ(t− t′)

=
1
2

δ(t− t′) +
γ1ε

γ− ε
e−(γ−ε)|t−t′|,〈

P̂(t)P̂(t′)
〉

= −
〈

Â(t)Â(t′)
〉
+
〈

Â†(t)Â(t′)
〉
+

1
2

δ(t− t′)

=
1
2

δ(t− t′)− γ1ε

γ + ε
e−(γ+ε)|t−t′|.

(3.21)

Thus, the output field at a given time is correlated with the same field at earlier
and later times within a range of roughly the inverse cavity bandwidth. The
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δ(t− t′)/2 terms look a little odd, but they are essential to the quantum descrip-
tion of the light field and would not appear in a classical theory. They represent
the vacuum fluctuations which have a constant level of 1/2 in the frequency
domain. In the time-domain it becomes a delta function, meaning that these
vacuum fluctuations are completely independent and uncorrelated. The delta
functions are often gotten rid of by rewriting the operators in normal-ordered
form, denoted by : · :, where all creation operators are moved to the left of
any annihilation operators. In the normal-ordered equivalents of the expressions
above, the commutator [Â(t), Â†(t′)], which gives rise to the delta-function, does
not appear. The relationship between the full correlations above and the normal
ordered ones is 〈

X̂(t)X̂(t′)
〉

=
1
2

δ(t− t′) +
〈
: X̂(t)X̂(t′) :

〉
. (3.22)

Compare this with the similar relation for the standard single mode quadrature
operators:

〈
x̂2〉 =

1
2
〈
(â†)2 + â2 + â† â + ([â, â†] + â† â)

〉
=

1
2

+
〈
: x̂2 :

〉
.

It is clear that the 1/2 and δ(t− t′)/2 terms originating in the commutator is the
vacuum variance, while the normal-ordered correlation is the additional contri-
bution which makes the total variance larger or smaller than for vacuum. In
a covariance between two different modes, the commutator becomes zero and
leaves no vacuum term – the vacuum states in two modes are uncorrelated. We
can write this in a general way, valid for all second-order moments of quadrature
operators ξ̂ j, ξ̂k: 〈

ξ̂ j ξ̂k
〉

= [âj, â†
k ] +

〈
: ξ̂ j ξ̂k :

〉
,

where âj is the mode operator corresponding to the quadrature operator ξ̂ j which
might be time- or frequency-dependent. The normal-ordered second-order mo-
ments become particularly useful when considering the effect of transformations
of the fields on the quadrature correlations. For example, a beamsplitting oper-
ation which transforms X̂(t) → X̂′(t) =

√
TX̂(t) +

√
1− TX̂vac(t) changes the

correlation to〈
X̂′(t)X̂′(t′)

〉
= T

〈
X̂(t)X̂(t′)

〉
+ (1− T)

〈
X̂vac(t)X̂vac(t′)

〉
= T

(1
2

δ(t− t′) +
〈
: X̂(t)X̂(t′) :

〉)
+ (1− T)

1
2

δ(t− t′)

=
1
2

δ(t− t′) + T
〈
: X̂(t)X̂(t′) :

〉
.

We see that it is not necessary to keep track of the additional vacuum mode
when considering second-order moments. It is enough to transform the normal-
ordered moments and add the vacuum term afterwards. If the input to the
second port was not vacuum, a term (1− T)

〈
: X̂2(t)X̂2(t′) :

〉
would be added to

the above expression.

One reason, why the rotating frame operators are so useful, comes from the way
a homodyne detector analyzes the signal field. When the signal is mixed with
the local oscillator at ω0, the optical sidebands at ω0 ±Ω are partly converted
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Figure 3.9: Squeezing and anti-squeezing spectra S(Ω) and temporal correlations Γ(τ)
of the DOPO output. Here, γ1 = γ, meaning no intra-cavity losses. ε = 0 corresponds
to the vacuum state.

into low-frequency components at Ω which are reflected in the photocurrent (as
long as Ω is within the detector’s electronic bandwidth). Thus, the spectrum
of the photocurrent is a direct measurement of the X̂(Ω) and P̂(Ω) operators.
For example, the spectral density (or power spectrum) of the photocurrent, as
measured on a spectrum analyzer, is proportional to the spectral density S(Ω)
of the light field quadrature which is in phase with the LO. This spectral density
corresponds to the variance at different frequencies and is defined by [95, §2.4.1]

Sx(Ω)δ(Ω + Ω′) ≡
〈

X̂(Ω)X̂(Ω′)
〉
,

or, equivalently, by the Wiener-Khintchine theorem, as the Fourier transform of
the auto-correlation function,3

Sx(Ω) =
∫ ∞

−∞

〈
X̂(τ)X̂(0)

〉
eiΩτdτ,

where
〈

X̂(τ)X̂(0)
〉

=
〈

X̂(t)X̂(t′)
〉

for τ = t − t′, since the OPO output field
fluctuations are stationary, and hence only depend on the time difference τ, not
the specific times t and t′. Either way, the spectral densities of the X and P
quadratures for the DOPO output become

Sx(Ω) =
1
2

+
2εγ1

(γ− ε)2 + Ω2 ,

Sp(Ω) =
1
2
− 2εγ1

(γ + ε)2 + Ω2 .
(3.23)

We see that the P quadrature is squeezed below the vacuum level, while X is
anti-squeezed. If γ1 = γ, i.e. no intra-cavity losses, the squeezed state is pure,
since Sx(Ω)Sp(Ω) = 1/4 then. The spectral densities and temporal correlations
are illustrated in Figure 3.9.

3There is no factor of 1/
√

2π missing in this expression; when using the symmetric Fourier
transform for the field operators, Fourier transforms of derived expressions such as the auto-
correlation will not necessarily have the same form.
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3.3.3 NDOPO

For the non-degenerate OPO, we study the two resonance modes separated sym-
metrically n free spectral ranges away from the central frequency, that is, at
ω± = ω0 ± n∆ω, and consider them as separate commuting field modes. We
then introduce the rotating frame operators (two different frames):

Â+(Ω) = â(ω+ + Ω),

Â+(t) = â(t)eiω+t,

Â−(Ω) = â(ω− + Ω),

Â−(t) = â(t)eiω−t.

A homodyne detector with local oscillator frequency ω+ will observe the quadra-
ture operators derived from Â+(Ω), while the fluctuations described by Â−(Ω)
can be observed with a local oscillator at ω−. In most practical settings, the fre-
quency separation 2n∆ω between the resonances will by far exceed the detection
bandwidth of the homodyne detectors, in which case the detectors will not see
the other modes. We use this argument to justify the separation of the field into
two distinct modes; it is not strictly correct, since they have a frequency domain
commutator

[Â+(Ω), Â†
−(−Ω′)] = [â(ω0 + n∆ω + Ω), â†(ω0 − n∆ω −Ω′)]

= δ(2n∆ω + Ω + Ω′),

but it is effectively zero when the detector does not resolve the full range. We
will see that the Ω-sideband of the Â+ mode is correlated with the −Ω-sideband
of the Â− mode, which is no surprise: in a naive photon picture, a photon down-
converted at frequency ω+ + Ω will be accompanied by its twin at the symmetric
frequency ω− −Ω. If the detector bandwidth was wide enough, a homodyne
detector with LO at ω0 would observe squeezing at the n∆ω + Ω sideband.

The equations of motion for the two cavity fields are

dÂc,±(t)
dt

= εeiφ Â†
c,∓(t)− γÂc,±(t) +

√
2γ1Âin,±(t) +

√
2γ2Âvac,±(t).

The solutions in frequency space, propagated to the output fields Â±(Ω), are
very similar to those for the DOPO in (3.17):

Â±(Ω) =
1

D(Ω)
[
B1(Ω)Âin,±(Ω) + C1eiφ Â†

in,∓(−Ω)

+ B2(Ω)Âvac,±(Ω) + C2eiφ Â†
vac,∓(−Ω)

]
.

Using the assumption mentioned above, that the inter-mode commutator is zero,
the correlations in the following output operator combinations vanish:〈

Â±(Ω)Â±(Ω′)
〉

=
〈

Â†
±(−Ω)Â†

±(−Ω′)
〉

=
〈

Â†
±(−Ω)Â∓(Ω′)

〉
=
〈

Â±(Ω)Â†
∓(−Ω′)

〉
= 0.
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The quadrature variances all become〈
X̂±(Ω)X̂±(Ω′)

〉
=
〈

P̂±(Ω)P̂±(Ω′)
〉

=

=
1
2

C2
1 + C2

2 + B1(Ω)B1(−Ω) + B2(Ω)B2(−Ω)
D(Ω)D(−Ω)

δ(Ω + Ω′)

=
(

1
2

+ G2(Ω)
)

δ(Ω + Ω′),

(3.24)

Thus, the fluctuations are larger than for vacuum (when ε > 0) and phase-
insensitive. That means that each of the two output modes are in thermal states
when considered separately. However, there are also correlations between the
two modes:〈

X̂±(Ω)X̂∓(Ω′)
〉

= −
〈

P̂±(Ω)P̂∓(Ω′)
〉

=

=
1
2

(B1(Ω)C1 + B2(Ω)C2)(eiφ + e−iφ)
D(Ω)D(−Ω)

δ(Ω + Ω′)

= cos φ G1(Ω) δ(Ω + Ω′),

(3.25)

and 〈
X̂±(Ω)P̂∓(Ω′)

〉
=
〈

P̂±(Ω)X̂∓(Ω′)
〉

= sin φ G1(Ω) δ(Ω + Ω′).

The cross-correlations become particularly meaningful when considering the
variances of sums and differences of the two modes’ quadratures, where it be-
comes clear that they are in a two-mode squeezed state. For φ = 0,〈(

X̂+(Ω)± X̂−(Ω′)
)2〉 = 2

〈
X̂+(Ω)X̂+(Ω′)

〉
± 2
〈

X̂+(Ω)X̂−(Ω′)
〉

=
(
1 + 2G2(Ω)± 2G1(Ω)

)
δ(Ω + Ω′)

=
(

1± 4γ1ε

(γ∓ ε)2 + Ω2

)
δ(Ω + Ω′),

and oppositely for the P-quadrature:

〈(
P̂+(Ω)± P̂−(Ω′)

)2〉 =
(

1∓ 4γ1ε

(γ± ε)2 + Ω2

)
δ(Ω + Ω′).

The vacuum level is δ(Ω + Ω′), so the X-difference and P-sum are squeezed for
ε > 0, and in the limit of infinite squeezing, ε→ γ, the two modes are entangled
in the original EPR-sense [34].

There is a whole range of these pairwise correlated, spatially degenerate4, but
spectrally separated modes in the OPO output – only limited by the phase
matching bandwidth of the down-conversion process, as will be discussed in
§4.3.1. Lu and Ou [84] pointed out, that all these non-degenerate modes must be
filtered out before reaching a photon detector (APD), if the purpose of the APD
is to detect only photons from the degenerate mode. In contrast to a homodyne

4In the case of type-I down-conversion they are also polarization degenerate. It is possible to
generate entangled beams with orthogonal polarization from type-II down-conversion in OPO’s,
but that requires some additional experimental effort to keep both polarizations resonant in the
cavity - see e.g. [72]
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Figure 3.10: Intensity correlation function of the unfiltered (and unseparated) OPO
output, obtained from time-delay coincidence counting on two APDs. The oscillations
due to beating between the different frequency modes are clearly observed, and they
are well fitted by the theory of refs. [52, 83, 84]. The left inset is a closeup of the central
region. The right inset shows (in orange) the correlations after the implementations
of the filters, such that only the degenerate frequency mode reaches the APDs. The
unfiltered correlations are shown for reference only - the vertical normalization is not
adjusted properly.

detector, a photon detector does basically not discriminate by frequency, so pho-
tons from all the different modes will be detected, but most of them will not
be correlated with the mode of interest5, so in effect they induce “dark counts”
in the detector. The existence of the frequency comb of down-converted modes
can be inferred from a measurement of the intensity auto-correlation of the un-
filtered NDOPO output. Since all modes are born from the same pump field,
they have a fixed phase relationship with each other, which leads to a beating
effect in the total output intensity very similar to a mode-locked laser. This was
discussed by Lu et al. [83], Lu and Ou [84], and the predicted oscillating inten-
sity correlation was observed by Goto et al. [52]. We measured the same kind of
oscillations in our OPO output before implementing any trigger filtering. These
intensity correlations, acquired by coincidence counts on two APDs, are plot-
ted in Figure 3.10. We clearly see the double-sided exponential envelope and
the oscillations in between with a period of exactly the cavity round-trip time
τcav = 2.7 ns. This can be understood if considering that two entangled photons
are born simultaneously, while they will not necessarily leave the OPO at the
same time. Since they can only leave the cavity at a certain time of each round
trip, the coincidence counts will appear in peaks with the spacing τcav. The pat-
tern is partly blurred by the finite resolution tres of the APDs. The fitted curve

5For single photon state generation, this will be one of the non-degenerate modes rather than
the degenerate.
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in the figure is given by

g(τ) = C1

[
C2 + e−2γ|τ|

∞

∑
n=−∞

(
1 +

2|τ − nτcav| ln 2
tres

)
× exp

(
−2|τ − nτcav| ln 2

tres

)]
, (3.26)

which is a slightly rough model obtained in ref. [52] in the limit of low gain,
ε � γ. C1 and C2 are intensity-dependent scaling factors. The best fit to the
data is achieved for tres = 0.55 ns, which is a bit higher than the APD maker’s
specification of 0.35 ns. After implementing the filtering (see §4.3.2), the peaks
disappear, and only a smoothened double-exponential is left, as seen in the inset
of Figure 3.10.

Getting back to the formal description, the quadrature temporal correlations,
which will be used for the conditioned state analysis, are obtained from (3.24)
and (3.25) with φ = 0:〈

X̂±(t)X̂±(t′)
〉

=
〈

P̂±(t)P̂±(t′)
〉

=
1
2

δ(t− t′) +
1

2π

∫ ∞

−∞
e−iΩ(t−t′)G2(Ω)dΩ

=
1
2

δ(t− t′) +
γ1ε

2

(
e−(γ−ε)|t−t′|

γ− ε
− e−(γ+ε)|t−t′|

γ + ε

)
,

(3.27)

〈
X̂±(t)X̂∓(t′)

〉
= −

〈
P̂±(t)P̂∓(t′)

〉
=

1
2π

∫ ∞

−∞
e−iΩ(t−t′)G1(Ω)dΩ

=
γ1ε

2

(
e−(γ−ε)|t−t′|

γ− ε
+

e−(γ+ε)|t−t′|

γ + ε

)
.

(3.28)

With the continuous-time correlation functions in place for the DOPO and ND-
OPO, the next step is to reduce to two modes, which will turn these functions
into simple number-valued entries in the correlation matrix that represents the
observed trigger and signal modes. We will see that there is a freedom in the def-
inition of the signal mode, which should be used to optimize the non-Gaussian
character of the conditioned signal state.

3.4 Photon-subtracted state generation

The following is based on the scheme for producing kitten states from an initial
squeezed vacuum state, that is, the output from the DOPO. The single photon
state generation using the NDOPO is briefly discussed in the end.
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3.4.1 Temporal mode selection

The continuous wave squeezed vacuum generated by a standard OPO is a sta-
tionary field in the sense mentioned before, that the two-time correlation func-
tions only depend on the time difference, and not the absolute time. It makes
perfect sense to describe such a continuous field in the frequency domain, and to
assign a quantum state to individual sidebands. In experiments on cw squeezed
light generation and related cw protocols such as EPR-entanglement and tele-
portation, measurements are usually performed at a given narrow sideband well
within the squeezing bandwidth, but above the possibly noisy low frequencies.
If no other parameters of the system change, the state defined at a sideband does
not change with time. However, when we introduce a time-dependent element
to the state generation, such as a photon detector which clicks at discrete times,
it is no longer entirely useful to consider the field only at individual sidebands.
In the kitten experiment, the detection of a trigger photon at time tc obviously
alters the correlated signal field in the vicinity of this moment of time. The field
is then no longer stationary and a single sideband is not sufficient to describe
the state of the field at the interesting time around tc. Instead of a formulation in
terms of sidebands, we need to utilize the entire spectrum. Alternatively – and
preferably – we can work in the time domain which is more intuitive.

The OPO output field correlations in the last section are defined for a continuum
of temporal modes. We will need to assign a single temporal mode, which our
conditioned quantum state occupies. That is done by selecting a mode function
to integrate over, i.e. we perform a temporal filtering. In sideband measure-
ments, the temporal mode is implicitly chosen as the transform of the spectral
shape of the sideband. In pulsed experiments, the pulse itself is the temporal
mode. We define the filtered field mode operator Âs as

Âs =
∫ ∞

−∞
fs(t)Âs(t)dt.

Âs(t) is the mode operator describing the signal field before the photon detec-
tion, i.e. the OPO output field after beamsplitting into trigger and signal mode,
and other subsequent transformations (primarily additional losses). fs(t) is the
(amplitude) filter function corresponding to the chosen temporal mode. To pre-
serve commutation relations, the filter function must satisfy

∫
| fs(t)|2dt = 1. In

a homodyne detection of the conditioned signal state, the temporal selection can
be done by shaping the local oscillator amplitude according to fs(t). When the
LO is off, the homodyne detector measures nothing. A much easier alternative is
to record the detector output continuously, and subsequently filter the sampled
noise electronically. There is a large freedom in choosing an appropriate tempo-
ral mode, but it is of course sensible to choose one that optimizes the state with
respect to a certain characteristic, such as the fidelity or Wigner function dip size
– this is the temporal equivalent of spatial mode-matching. The importance of
such temporal mode-matching was pointed out by Ou and Kimble [116].

The optimal choice of a filter function for the signal mode is not obvious. Intu-
itively, though, it should be similar to the double-sided exponentially decaying
correlation functions of the OPO output: When the trigger APD clicks, it signals
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the subtraction of a photon in the part of the signal mode which is correlated
with the trigger mode that gives the click. The photon-subtracted state is dis-
tributed over the time of the correlations, which is both in the past and in the
future relative to the time of the trigger click. If we choose a too narrow filter
function, not all of the PSSqV state is included in the mode; if it is too wide,
some of the surrounding non-photon subtracted squeezed vacuum is included,
decreasing the purity of the state. For low gains and no trigger filtering, Nielsen
and Mølmer [110] showed that the double-sided exponential function with same
decay constant as the OPO,

fs(t) =
√

γe−γ|t|,

is in fact the optimal choice. For larger gains, the picture becomes more compli-
cated – they found some optimal mode functions using numerical methods, but
it does not seem possible to find closed analytical expressions.

A temporal mode ft(t) should also be defined for the trigger. In contrast to the
homodyne detector, which measures the signal beam continuously, the trigger
APD detector is highly time selective, so the mode of the trigger is defined by
the detector itself. The timing resolution of commercial APDs is quite good
(∼350 ps specified for the model in our setup). The extent of the correlation
functions are several orders of magnitude longer (∼100 ns in our setup), so the
shape of the trigger mode is not as important as the exact time of the click. It
can be modeled as a delta function or a narrow normalized top-hat function
centred on tc. For both the trigger and signal modes, we will consider only
real mode functions ft(t) and fs(t), which makes sense since the correlation
functions (3.18), (3.19) do not have a time-dependent phase factor. With real
mode functions, the quadrature operators are filtered in the same way as the
mode operators:

X̂s =
∫ ∞

−∞
fs(t)X̂s(t)dt,

and equivalently for the trigger mode and the P quadrature. The filtering of
the fields is a linear operation, so it does not change their Gaussian character.
The covariance matrix built from {X̂s, P̂s, X̂t, P̂t} will then describe the two-mode
state within the given temporal modes just before the trigger detection. One can
take advantage of the normal-ordering of the correlations when calculating the
entries in the covariance matrix. For example, for the Γ11 entry:

Γ11 = 2
〈
(X̂s)2〉 = 2

〈∫
fs(t)X̂s(t)dt

∫
fs(t′)X̂s(t′)dt′

〉
= 2

∫∫
fs(t) fs(t′)

(1
2

δ(t− t′) +
〈
: X̂s(t)X̂s(t′) :

〉)
dtdt′

=
∫

fs(t)2dt + 2
∫∫

fs(t) fs(t′)
〈
: X̂s(t)X̂s(t′) :

〉
dtdt′

= 1 + 2
∫∫

fs(t) fs(t′)
〈
: X̂s(t)X̂s(t′) :

〉
dtdt′.

A covariance term like Γ24 is obtained by filtering once with each of the mode
functions:

Γ24 =
〈
{P̂s, P̂t}

〉
=
∫∫

fs(t) ft(t′)
〈
: {P̂s(t), P̂t(t)} :

〉
dtdt′.
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full OPO output after frequency filtering
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Figure 3.11: Top: The frequency filtering of the trigger mode using empty optical res-
onators. Bottom: The spectral structure of the OPO output (brown) and the two filtering
cavities. The filters have different free spectral ranges in order to filter out more non-
degenerate modes.

3.4.2 Frequency filtering of trigger mode

As mentioned previously, photons arriving at the trigger detector, that are un-
correlated with the signal mode, will effectively be dark counts, leading to a
non-photon subtracted state in the conditioned signal mode. Such are the pho-
tons down-converted into all the non-degenerate frequency modes of the OPO.
In order that only photons from the degenerate mode reaches the APD, all other
modes should be filtered out. This can be done by a serial arrangement of sev-
eral empty cavities that have different free spectral ranges and are all resonant
on the central frequency. Then, frequencies that are not simultaneously resonant
in all the cavities will be filtered out. Hopefully, the degenerate mode is the
only one meeting the resonance criteria. The filtering scheme is illustrated in
Figure 3.11. The filtering cavities also alter the degenerate mode in the trigger
arm, convoluting the field with the temporal response of the cavities. This in
turn alters the correlation functions of the two-mode field, which may change
the optimal temporal mode function for the signal mode.

In order to keep the following calculations reasonably simple, we assume that
there is only one cavity filter, or at least that one cavity dominates the filtering
by having a much narrower bandwidth than the others. In our experiment this
is not really the case, since two cavities have the same bandwidth while the third
is 3 times as wide. The combined action of the filters can be approximated by a
single cavity with a narrower bandwidth, though. Assuming this cavity to have
symmetric input and output coupler, each with a decay rate of κ/2, giving a
total decay rate of κ, the response function of the cavity is κe−κt, so the field Â(t)
entering the cavity will be transformed according to the convolution [99]

Â(t)→ Â′(t) = κ
∫ t

−∞
Â(y)e−κ(t−y)dy + v(t)Âvac(t), (3.29)



58 Theory of state generation

-4 -2 0 2 4
ΓHt-t'L

Gxx no filtering
single filter, Κ = 4Γ

double filter, Κ = 4Γ

single filter, Κ = Γ

double filter, Κ = Γ

Figure 3.12: The normal-ordered correlation function : Γxx(t − t′) :≡
〈

: X̂(t)X̂(t′) :
〉

where either none (brown), one (orange, dark blue), or two (yellow, light blue) of the X̂
operators has been filtered through a cavity. The narrower the filter cavity bandwidth κ
is, the more the correlation functions become smoothed out.

where the last term represents the vacuum component added wherever the in-
coming field is filtered out (the cavity essentially acts as a frequency-dependent
beamsplitter). The details of this vacuum term are irrelevant, since it is not
needed in the normal-ordered formulation. The convolution stops at time t due
to causality – the output field at t cannot depend on the input field at later times.
The filtering is a real transformation (at least when the cavity is not detuned from
resonance), so the quadrature operators transform in the same way. The covari-
ance matrix after the filtering is obtained in a similar manner as we saw for the
temporal mode selection before: The normal-ordered correlation functions in-
volving the trigger mode are convoluted once or twice with the cavity response
function, and the vacuum state covariance matrix with diagonal entries δ(t− t′)
is added.

We can calculate explicit expressions for the normal ordered DOPO output cor-
relation functions as given by (3.21) and (3.22) when filtered either once or twice.
The results for the X quadrature are, for a single filtering (again with the prime
on X̂ denoting a filtered field):

〈
: X̂(t)X̂′(t′) :

〉
= κ

∫ t′

−∞

〈
: X̂(t)X̂(y′) :

〉
e−κ(t′−y′)dy′

=


κγ1ε

(γ− ε)(γ− ε + κ)
e−(γ−ε)(t−t′) , t ≥ t′

κγ1ε

γ− ε− κ

(
2eκ(t−t′)

γ− ε + κ
− e(γ−ε)(t−t′)

γ− ε

)
, t < t′,

(3.30)

and for the double filtering:

〈
: X̂′(t)X̂′(t′) :

〉
= κ2

∫ t

−∞

∫ t′

−∞

〈
: X̂′(y)X̂′(y′) :

〉
e−κ(t+t′−y−y′)dydy′

=
κ2γ1ε

(γ− ε)2 − κ2

(
e−κ|t−t′|

κ
− e−(γ−ε)|t−t′|

γ− ε

)
.

(3.31)



3.4 Photon-subtracted state generation 59

The results for the P quadrature are similar; the functions get a sign change,
and all occurrences of γ − ε should be exchanged with γ + ε. The outcome
of the filtering is to smoothen out the otherwise sharply peaked exponential
correlation function, as illustrated in Figure 3.12. The singly filtered correlation is
particularly interesting: Since the cavity delays the field that is filtered through,
the correlations are shifted to earlier times. That is, when a photon is detected in
the filtered trigger arm, most of the correlated part of the signal arm is already
in the past. With no filtering of the trigger, the correlations are equally in the
past and in the future.

3.4.3 Plugging in

The kitten state generation experiment consists of the following main steps:

1. Generating squeezed vacuum in the OPO.

2. Tapping off a part of the squeezed vacuum on a beamsplitter with high
transmittance.

3. Frequency filtering the tapped-off part, the trigger mode, through a series
of cavities.

4. Detecting trigger photons by a photon counter.

5. Measuring a quadrature of the signal field on a homodyne detector.

6. Temporally filtering the homodyne current to select the part of the signal
field that is correlated with the detected trigger mode.

The measurement is then repeated many times at different local oscillator phases
to build statistics about the quadrature distributions of the conditioned signal
field. The last two steps are applicable for the state characterization we have
performed so far. For application of the kitten state in subsequent quantum
information protocols, it should of course not be measured (destructively) at
once. The theoretical modeling of the photon-subtracted state in the given tem-
poral mode is however the same. In the model, step 6 above comes before the
quadrature measurement in step 5 – we imagine then that the homodyne detec-
tor measures exactly one quadrature value of the field within the selected mode
function.

The theoretical prediction of the outcome of the state generation is obtained
from the final covariance matrix by the method described in §3.2. We summarize
the preceding sections by following the transformation of the covariance matrix
through the outlined steps above. As we have seen, it suffices to transform
the normal-ordered covariance matrix and add the vacuum matrix in the end.
Initially, the covariance matrix is a function of time, or rather of the two-time
difference t− t′.
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1. Output from OPO The initial state of the trigger mode is vacuum, so most
of the normal-ordered covariance matrix will be zero, except the signal mode
sub-matrix which has the diagonal entries given by (3.21) and (3.22):

: Γi
xx(t− t′) : = 2

〈
: X̂(t)X̂(t′) :

〉
,

: Γi
pp(t− t′) : = 2

〈
: P̂(t)P̂(t′) :

〉
,

with the index i for initial variance. The initial matrix is thus

: Γi(t− t′) : =


: Γi

xx(t− t′) : 0 0 0
0 : Γi

pp(t− t′) : 0 0
0 0 0 0
0 0 0 0

 .

2. After beamsplitter The beamsplitter transforms the covariance matrix to
: Γbs(t− t′) : = B : Γi(t− t′) : BT with the beamsplitter matrix (3.12). So far, the
matrix still has a simple expression, so we can write it out (skipping the (t− t′)
parts to make room):

: Γbs(t− t′) : =


T :Γi

xx: 0 −
√

T(1−T) :Γi
xx: 0

0 T :Γi
pp: 0 −

√
T(1−T) :Γi

pp:

−
√

T(1−T) :Γi
xx: 0 (1−T) :Γi

xx: 0

0 −
√

T(1−T) :Γi
pp: 0 (1−T) :Γi

pp:



3. Trigger filtering The frequency filtering of the trigger mode does not affect
the signal mode sub-matrix (the top left 2x2 block). The trigger mode sub-matrix
is filtered twice, while the covariances are filtered only once. We denote the
trigger filtered covariance matrix Γtf(t− t′):

: Γtf
mn(t− t′) : =


: Γbs

mn(t− t′) : , ss
κ2
∫ t
−∞

∫ t′

−∞ : Γbs
mn(y− y′) : e−κ(t+t′−y−y′)dydy′ , tt

κ
∫ t′

−∞ : Γbs
mn(t− y) : e−κ(t′−y)dy , st,

where ss means the signal variances with mn ∈ {11, 22}, tt the trigger variances
with mn ∈ {33, 44}, and st the covariances with mn ∈ {13, 24, 31, 42}. The
explicit expressions are obtained trivially using (3.30) and (3.31).

4+6. Temporal mode selection The two-time correlation matrix : Γtf(t − t′) :
is turned into the temporal mode selected matrix : Γtms : by carrying out the
filtering with the chosen mode functions fs(t) and ft(t), as described in §3.4.1.

Final steps : Γtms : could now be the final correlation matrix describing the
two-mode state just before a trigger click. We are still missing one thing, though
– the losses of the trigger, represented by the efficiency parameter ηt, and of the
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signal, ηs. As noted before, these can be easily implemented by the diagonal
efficiency matrix η = diag(√ηs,

√
ηs,
√

ηt,
√

ηt), so that the final normal-ordered
covariance matrix is

: Γfinal : = η : Γtms : η.

The OPO output coupler decay rate γ1 actually just acts as an additional loss if
it is less than γ, the full decay rate. γ1/γ is the proportion of the cavity field
escaping into the desired output mode – this ratio is called the escape efficiency
ηesc of the OPO. This efficiency term is common for the trigger and signal modes,
and just to slightly clean up the theory it makes sense to get rid of the γ1 symbol
by exchanging it with γ and incorporating ηesc into ηt and ηs.

To get the full covariance matrix, the vacuum noise given by the identity matrix
is added to the normal-ordered matrix:

Γfinal = I + : Γfinal : .

The signal state conditioned on a trigger click is then obtained by plugging the
entries of Γfinal into the formulas (3.5)–(3.8). The effect of dark counts, repre-
sented by the modal purity Ξ, can be included by mixing an amount Ξ of the
conditioned state with an amount 1− Ξ of the unconditioned state (squeezed
vacuum) given by (3.10) with a = Γfinal

11 , b = Γfinal
22 .

3.4.4 Discussion

The model developed here gives different predictions from those of the simple
single mode model in the beginning of the chapter. This is no surprise, since
the squeezed vacuum state produced in the OPO with its frequency-dependent
squeezing and anti-squeezing is somewhat more complicated than the “text-
book” single mode squeezed state. We will take a look at the dependence of
the generated state on the various parameters, and make comparisons with the
single mode theory.

We must choose some temporal mode functions for the trigger and signal modes.
The natural choice for the trigger is a delta-function centred at tc = 0. For
ease of calculation, we choose for the signal the double-exponential function
fs(t) =

√
γse−γs|t|, where we let the decay constant γs be yet another free param-

eter of the model, to allow for at least a rudimentary optimization for high gains.
Following the model recipe given before and using these mode functions, it is
possible (with the aid of Mathematica) to achieve analytic expressions for the
6 different entries in the final covariance matrix, and hence for the conditioned
and unconditioned Wigner functions. The expressions are not particularly illu-
minating, but for completeness they are listed in Appendix §A.5. The analytical
expressions make simulations with varying parameters very fast in Mathemat-
ica.

The first important thing to note is, that the unconditioned squeezed vacuum is
not a minimum uncertainty state, as is case in the single mode theory, where the
squeezing and anti-squeezing levels are just e∓2r/2. The reason is the temporal
mode selection, which mixes different frequency components into the final state,
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Figure 3.14: Fidelity between the kitten
states and real odd cat states, and the am-
plitude of the cat which attains the opti-
mal fidelity for a given ε. Efficiencies ηs
and ηt are set to 1, κ = ∞ (no trigger filter-
ing), and T = 99.9%. For the lower curves
(brown and orange), the mode function
has γs = γ, while for the upper ones
(blue), γs has been optimized dependent
on ε.

such that the squeezing and anti-squeezing spectra in Figure 3.9 are averaged
somewhat out. Figure 3.13 shows the effect. The squeezing and anti-squeezing in
the temporally filtered state are compared to the DC-component of the squeezed
state (Ω = 0) as a function of ε. Both squeezing and anti-squeezing decrease
when the field is filtered, which is clear since the higher frequency sidebands are
closer to the vacuum state. However, the squeezing decreases more rapidly than
the anti-squeezing with increasing pump strength (ε), which means that their
uncertainty product becomes larger than the Heisenberg limit of 1/4. One could
say that the state has become thermalized. From this observation, we already
get a hint that the quality of the photon-subtracted state will degrade for higher
pump levels (since a photon-subtracted thermal state is still a Gaussian thermal
state).

We see this degradation in the following figures. Figure 3.14 shows the obtain-
able fidelities between the generated states and the true odd cat states, as well as
the corresponding amplitudes of the cat states that optimize the fidelities. This
figure can be compared with Figure 3.5 for the single mode theory, although the
squeezing parameter r and the pump parameter ε can not be directly related
to each other. The two sets of curves represent different choices of the mode
function width γs. For the brown/orange curves it is set equal to γ, while for
the blue curves, γs has been optimized for each ε-value.6 The cat amplitudes

6The optimization is done with respect to the Wigner function depth, rather than the fidelity,
since a combined optimization of γs and α is a very slow process. A test run shows that fidelity-
aimed optimization only gives about 1% higher fidelity compared to the Wigner depth-aimed
optimization.
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Figure 3.15: Wigner function values in the origin as a function of a) the mode function
width γs, and b) the trigger filter cavity bandwidth κ, for 4 different pump levels (the
legend is for both graphs). The other parameter values are T = 99.9%, ηs = ηt = 1. In
a), κ = ∞, while in b), γs is optimized for lowest W(0, 0)-value.

obtainable with a reasonable fidelity are more limited than for the single mode
theory. For example, whereas the latter can achieve an α = 2 cat state with a
fidelity of 85%, only 75% is possible with the current model.

Figure 3.15a) and b) shows the influences on the Wigner depth of γs and the
trigger filter bandwidth κ, respectively. It is clear from a) that the mode function
should be chosen carefully; that the state is degraded if the mode is too wide or
too narrow. It is also interesting that the optimal mode function width (marked
by the vertical lines) decreases with increasing ε. An explanation for this is
the decrease of the anti-squeezing bandwidth with higher pump levels – from
(3.23) it is γ− ε, while the squeezed quadrature’s bandwidth is γ + ε. Since the
amount of quadrature phase angles with squeezing is less than the amount with
anti-squeezing, the overall bandwidth of the state will decrease with increasing
ε, although not as fast as γ− ε. It is also obvious from this graph, that higher
pump levels decrease the Wigner function depth. This was not the case in the
single mode theory, where the cat-fidelity decreased but the Wigner depth re-
mained essentially −1/π (for the ∼100% T used here). One might in fact argue
that the disparity between the bandwidths of the squeezed and anti-squeezed
quadratures is the reason for the state degradation; the spectrum of the state is
“pulled apart”, and it becomes impossible for a single mode function to encom-
pass fully the aspects of all the quadratures. Another way of understanding the
degradation for high pump levels is, that it is caused by the increasing density of
temporally neighbouring, uncorrelated “wave packet tents” containing squeezed
vacuum. It is perhaps not quite correct to imagine the continuous squeezed OPO
output as a series of “tents” scattered randomly along the time axis, but it is a
convenient intuitive picture – see Figure 3.16.

While the mode function is an easy subject of optimization in the experiment,
and the pump level can be set at will, the trigger filter bandwidth is a more fixed
parameter once the cavity has been set down in the setup. It is still illustrating,
though, to see its effect on the state, as in Figure 3.15b). There, the mode func-
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Figure 3.16: The stylized picture of the OPO output as consisting of a series of uncor-
related wave packets, each with a length of the inverse OPO bandwidth. For low pump
levels (top), the “tents” are scattered far apart, so a state conditioned on the subtraction
of a trigger photon can be quite pure. For stronger pumps (bottom), the spontaneous
down-conversion happens more frequently, and the wave packets start to have a signifi-
cant overlap, which reduces the purity of the conditioned states.

tion width is optimized in all points of the graph. For a filter bandwidth that
is narrower or a few factors wider than the OPO bandwidth, the state quality
is clearly reduced. The reason for that is the smoothing of the temporal corre-
lation functions caused by the filter cavity, which makes the sharp exponential
mode function a bad choice. Thus, most of the degradation can be avoided by
choosing a more suitable (and complicated) mode function. For the remaining
parameters of the model, T, ηs, ηt, Ξ, their effect on the state is straight-forward:
when they decrease, the state degrades. For ηt, the degradation is only slight,
while for the other three it is severe. ηs- or Ξ- values of roughly 50% leads to
the disappearance of the negative dip in the Wigner function. These two param-
eters, the signal efficiency and the modal purity, are the most important ones to
optimize in the experiment – they simply need to be as high as possible. For T
there is a trade-off, since higher values close to 1 leads to lower production rates.
The value of the optimal pump level, ε, is of course also a trade-off between high
squeezing/kitten amplitude, and high fidelity and Wigner function depth.

3.4.5 Single photon states from NDOPO output

The scheme for producing single photons from the non-degenerate OPO is very
similar to the standard SPDC (pulsed) photon sources: Pairs of photons are gen-
erated by down-conversion into different modes, and detection of a photon in
one mode heralds the existence of its twin photon in the other mode. The photon
pairs are produced at random times, and for such probabilistic sources, there is
always a small risk that two pairs appear instead of one. The result is that the
heralded state sometimes will contain two photons instead of one, which is detri-
mental to protocols for secure quantum communication. To keep the two-photon
contribution down, the pump power must be kept low, which in turn limits the
rate of the photon source. For very low pump levels, the NDOPO single photon
source can be understood in the same way; photon pairs are produced at random
times, but with a long average interval between successive pairs. The detection
of a photon in, say, the ω− mode then heralds the existence of a single photon



3.4 Photon-subtracted state generation 65

within the correlated part of the ω+ mode. The resulting state is very simple
in comparison to the kitten state; it is rotationally invariant in phase space, and
the density matrix consist almost entirely of the 1-photon and vacuum entries
(vacuum due to the inevitable losses), plus perhaps a small 2- and higher photon
number contributions. It would be easy to develop a simple theory to describe
that experiment, but the framework developed in the previous sections for the
DOPO works equally well for the NDOPO, so there is no reason not to use that.

In contrast to the DOPO scheme in §3.4.3, the output of the NDOPO is already in
a two-mode correlated state. The tapping beamsplitter is not part of the single
photon scheme. Instead, the two frequency modes need to be spatially sepa-
rated, since they are co-propagating out of the OPO. They are also polarization
degenerate, so it is not possible to use a polarizing beam splitter, but they can
be separated based on their frequency difference. By letting the first of the fre-
quency filter cavities in the trigger arm be resonant on the ω− frequency, the ω−
mode will be transmitted towards the APDs, while the ω+ mode is reflected, as
long as it is not resonant as well. For the theoretical description, this means that
the ω− mode, as the trigger, is frequency filtered just the same as the trigger
mode in the kitten scheme, while nothing happens to the ω+ mode, which is
directed towards the homodyne detector. Thus, the trigger filtering, temporal
mode selection of signal, and the final steps in the recipe of §3.4.3 apply equally
well here. However, instead of having the Γbs(t− t′) as the preliminary covari-
ance matrix before these steps, it is now the matrix that represents the two-mode
squeezed state directly from the NDOPO:

: Γi,nd(t− t′) : =


: Γi,nd

a : 0 : Γi,nd
c : 0

0 : Γi,nd
a : 0 − : Γi,nd

c :
: Γi,nd

c : 0 : Γi,nd
a : 0

0 − : Γi,nd
c : 0 : Γi,nd

a :

 .

For lack of space, the (t − t′) parts were again left out. The auto- and cross-
correlations are

: Γi,nd
a : ≡ : Γi,nd

a (t− t′) : = 2
〈

: X̂±(t)X̂±(t′) :
〉

= 2
〈

: P̂±(t)P̂±(t′) :
〉
,

: Γi,nd
c : ≡ : Γi,nd

c (t− t′) : = 2
〈

: X̂±(t)X̂∓(t′) :
〉

= −2
〈

: P̂±(t)P̂∓(t′) :
〉
,

as given in (3.27)-(3.28).

While for the DOPO scheme it is appropriate to consider the state conditioned
on a trigger click as a photon-subtracted state, this is not really the case for
the NDOPO scheme. The photon that gives a click in the trigger APD was
never a part of the thermal state of the signal mode, so the signal field has not
lost a photon. Rather, one can say that it has lost its vacuum component; if
there was a photon in the trigger mode, it is apparent that there must also be
photons – whether one or more – in the correlated part of the signal mode.
Thus, the conditioned state is basically the renormalized thermal state without
its vacuum part. We can call it a vacuum-subtracted thermal state, especially if
the contents of higher photon numbers do not warrant the name single photon
state. The photon number distributions are charted in Figure 3.17, where the
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Figure 3.17: Photon number distribution for the vacuum-subtracted thermal state
(NDOPO) and the kitten state (DOPO) for a low and a high(er) pump level. The other
parameters are set to γs = γ, κ = ∞, T = 99.9%, ηs = ηt = 1. Note that the DOPO
output (kitten state) has oscillating numbers, while the NDOPO’s photon numbers are
monotonically decreasing from n = 1.

lack of vacuum is apparent for both the DOPO and the NDOPO originating
states. Whereas the kitten state from the DOPO has very low even-number
contributions (as it should), the vacuum-subtracted thermal state has the same
monotonically decreasing distribution (from n = 1) as a thermal state. Another
thing to note here is, that even a relatively weak pump level of ε = 0.1 still leads
to a noticeable 2-photon contribution of 4%, so to be used as a single photon
source it is really essential to keep the pumping at a minimum. It can not be
lowered too much, though; if the trigger rate becomes too low, the unavoidable
dark counts of the APD might start to become significant and contaminate the
state.

Figure 3.18 highlights some other interesting differences between the vacuum-
subtracted thermal state and the kitten state. The influence of the mode function
width on a) the Wigner function in the origin and b) the 1- and 2-photon con-
tributions to the state are plotted for different pump levels. The a) figure can be
directly compared to the equivalent graph for the kitten state, Figure 3.15a). The
depth of the Wigner function dip decreases much more rapidly with increasing
ε here than for the kitten, and the optimal mode functions have a larger decay
rate than the OPO cavity, where for the kitten state they were smaller. Both
effects can be attributed to the influence of the 2-photon contribution. The 2-
photon number state has W(0, 0) = +1/π, so the increase of this contribution
with higher pump levels means a fast shrinking of the Wigner dip. The kitten
state has very little 2-photon content, so this effect is quite small. The high γs-
values for the optimal mode function is partly explained by the b) figure, which
shows that the 2-photon content decreases for higher γs. The 1-photon part also
decreases, though, and what is not shown here is that most of the remaining
part of the photon number distribution goes to the vacuum, n = 0. This is the
case on both sides of γs = γ: For low γs, the temporal mode function covers
more than just the correlated field, and therefore includes some normal thermal
state which is mostly vacuum. For high γs, the spectrum of the mode function
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Figure 3.18: The dependence on the mode function width γs of a) the πW(0, 0) value
for the vacuum-subtracted thermal state, and b) the 1- and 2-photon components of the
state (brown/orange and blue, respectively), for different values of the pump level ε.
Other parameters are κ = ∞, ηs = ηt = 1.

covers a wider range than the bandwidth of the field, so the vacuum state at
the higher frequencies gets included. These results, that higher pump levels re-
quire a temporally narrower mode function, agree well with the observations of
Nielsen and Mølmer [110]. In any case, the question of the optimal mode func-
tion is not quite as clear as it is for the kitten: Is it better to have a deep Wigner
function, or to have a low 2-photon probability? For a single photon source, the
latter would probably be the answer.





Chapter 4

Experimental methods

4.1 Overview

The setup for the kitten and single photon state generation experiments is out-
lined in Figure 4.1. It is a quite linear setup, so in this section we go briefly
through it step-by-step, from laser to data acquisition. The remaining sections
contain more in-depth descriptions of the important aspects of the experiment.

1. Laser Our main (and only) laser is a home-built titanium sapphire laser
(Ti:Sapph) designed for continuous single-mode operation around the wave-
length range 852 nm - 860 nm. In our earlier experiments we operated at 860 nm,
since the KNbO3 crystals we used at the time were mode-matched at room tem-
perature for this wavelength, while in later experiments we changed to 852 nm.
This is the wavelength of the D2 transition in atomic caesium, the element used
by two other experiments in the Quantop group. It is pumped by a Coherent
Verdi V10 frequency-doubled Nd:YAG laser (532 nm), usually at a power of 9 W.
The Ti:Sapph has many quirks and its output power can vary quite a bit. On a
good day it can give 800 mW, but more often it is around 500-600 mW. An etalon
keeps the lasing single-mode. The laser is prepared for stable frequency locking
via an intra-cavity Brewster plate and a piezo-mounted mirror, but for the exper-
iments described in this thesis we did not use the locking, as the passive stability
was sufficient. When we operate at 852 nm, we do however visually monitor the
fluorescence in a cell of caesium illuminated by a weak branch of the laser, as a
guideline to the correct wavelength. The output beam is transmitted through an
optical isolator to limit the amount of light reflected back into the laser cavity;
too much light will cause it to flip between several longitudinal modes. The laser
was constructed by Lasse Leick, whose thesis contains more details [77].

2. Beam splitting Most of the laser power is used for frequency doubling. Be-
fore the doubling stage, a small part is split off for use in 2-3 auxiliary beams:
the local oscillator, and two beams injected into the OPO, primarily for cav-
ity locking. The local oscillator is transmitted through a mode cleaning cavity

69
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Figure 4.1: Setup for kitten and single photon generation.
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(Fabry-Perot resonator) locked on the side of the resonance. The mode quality
of the uncleaned beam is actually pretty neat already, but the cavity also serves
to keep the LO power constant, irrespectively of drifts in the Ti:Sapph power.

3. Frequency doubling The infrared light is frequency doubled to 426 nm or
430 nm in the process of second harmonic generation (SHG). A moderate-finesse
bow-tie cavity enhances the incident field to several watts, and a temperature
controlled non-linear crystal is positioned in a tight waist between two concave
mirrors of the cavity. All mirrors except the input coupler are high-reflectors
for the IR, but the concave mirror through which the frequency doubled light
escapes has ∼90% transmittance for the blue. The cavity is kept on resonance
with a Pound-Drever-Hall lock [31]. An electro-optic modulator in the main
beam provides a phase modulation at 18 MHz for the Pound-Drever-Hall error
signal which is obtained from the light reflected off the input coupler.

4. OPO The OPO cavity configuration is very similar to that of the SHG; a
non-linear crystal in a tight waist between two concave mirrors of a 4-mirror
bow-tie configuration. The blue light from the SHG is mode-matched to fit the
TEM00 mode of the OPO cavity. The way this is done is detailed later. Whereas
the SHG cavity has one partly transmitting mirror used for the input, the OPO
has a similar mirror used to let the squeezed down-converted light escape from
the cavity. It can be locked on resonance with a Pound-Drever-Hall lock as well,
by injecting one of the auxiliary beams through one of the high-reflector mirrors
in the opposite direction of the down-converted field. That way, this lock beam
will escape the cavity into a different direction than the squeezed light and can
be monitored with an 18 MHz detector. This lock method is preferred in situ-
ations where we are only interested in getting a squeezed vacuum. However,
there will always be a tiny part of the lock beam that is reflected or scattered
from the non-linear crystal into the output mode. This is no problem when mea-
suring sideband squeezing on a homodyne detector, but when employing single
photon detectors it is detrimental, since light from the lock beam will cause
“dark counts”, i.e. clicks in the APD not originating from the down-converted
field. Hence, we have developed other methods to lock the OPO, as well as the
subsequent filter cavities.

5. Tapping beamsplitter A small part of the generated squeezed vacuum is
tapped off and send towards the APD to act as conditioning trigger photons. The
remaining main part of the field goes to the homodyne detector. The tapping off
is done by a half-wave plate (HWP) + polarizing beam splitter (PBS) combination
in order to be able to control the tapping (reflection) ratio.

6. Filtering line The frequency filtering in the trigger arm, which gets rid of
most of the nondegenerate OPO modes, is performed by a series of three empty
cavities and a 0.5 nm interference filter. The interference filter is specified for
transmission of 852 nm light, but by tilting it at an angle with the incident beam
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it can be tuned to 860 nm as well. The first filter cavity is in a bow-tie (traveling
wave) configuration and thus relatively long compared with the following two,
which are of the linear Fabry-Perot (standing wave) type. When they are all
resonant on the central frequency, the degenerate mode is transmitted with a
typical efficiency of 10-15%, while the nondegenerate modes ought to be almost
completely rejected. The variation of free spectral ranges and bandwidths of
the different cavities works towards this end. The common resonance is found
by injecting one of the auxiliary beams into the OPO in the forward direction
through a high-reflector mirror. This seed beam then simulates the mode of the
down-converted light, with the same central frequency, so when all cavities are
resonant on the seed, they will also be set correctly for the down-converted light.
The injected beam (the seed) is blocked when taking measurements.

7. APD The trigger photon detector is a Perkin-Elmer SPCM-AQR-13 (single
photon counting module) which has built in all the electronic circuits necessary
for operation of the APD in Geiger mode. It has a specified quantum efficiency at
852 nm of 44%, a dark count rate of about 100 c/s, a specified timing jitter of 350
ps, and a dead time after a click of about 35 ns. To avoid stray light impinging
on the diode, the module is shielded within a plastic box, a cardboard cover, and
a lightproof cloth, where the latter – apart from the APD module – also covers
the last two filter cavities with only a small opening to allow through the light
coming from the first filter cavity. Due to the careful light shielding, we are able
to run the experiment with full laboratory lighting without seeing an increase in
the count rate. The output of the module is connected to both the oscilloscope
as a trigger and to a pc where the count rate is monitored and used as input for
a cavity locking program.

8. Homodyne detection In the balanced homodyne detection, the signal field
to be probed should be spatially overlapped with the local oscillator (LO) with
near 100% efficiency. The overlapping can be done on a non-polarizing 50/50
beam splitter – which we did for our initial measurements – or on a PBS. After
spatially mixing the two beams on a PBS they are actually not overlapped, since
they are in orthogonal polarizations. By rotating the polarization of each beam
by 45◦ with a half wave plate, each beam will be split 50/50 on a subsequent
PBS – the p-polarized portion will be transmitted while the s-polarized portion
is reflected. In the outputs of this second PBS, the two beams will thus have
the same polarization and can interfere. The two PBS outputs are directed onto
two photodiodes in a balanced detector, where the photocurrents from the two
diodes are subtracted before further electronic amplification. The amplified dif-
ference photocurrent is then sampled by the fast digital oscilloscope conditioned
on the triggering by an APD signal.

9. Shifted beams for photon state generation When running the experiment
with the purpose of generating single photon states, a few changes and addi-
tional elements are needed compared to the kitten setup outlined above. The
different way of splitting the OPO output into a trigger and a signal mode when
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operating in the NDOPO mode was already described in §3.4.5: The two co-
propagating EPR beams are separated on the first filter cavity based on their
frequency difference, so that all of the ω− mode goes towards the APD.

The frequency mode pair chosen is the two nearest neighbours of the degenerate
mode, that is, the modes separated from ω0 by plus/minus one free spectral
range of the OPO cavity. Since their frequencies are shifted from the central
frequency of the main laser, it is also necessary to shift the auxiliary beams’
frequencies to match. In particular the local oscillator must match the signal
mode frequency ω+, but also the seed beam used to align all trigger filtering
cavities should be shifted to ω−. The shifted frequencies are obtained by double
passes through acousto-optical modulators driven at half the OPO free spectral
range frequency.

Apart from these changes to the setup, another important difference to the kitten
experiment is the blue pump power, which should be kept at a minimum to
avoid two-photon contributions, whereas for the kittens the pump should be
sufficiently large to give large state amplitudes.

4.2 Making squeezed vacuum

4.2.1 Second harmonic generation

Most experiments involving squeezed light generation and characterization em-
ploy a frequency doubling stage for the production of the OPO pump, such that
the down-converted squeezed light appears at the same wavelength as the main
laser before doubling. When a certain wavelength of the squeezed light is re-
quired, such as the 852 nm for us, a suitable laser at half the wavelength is often
not available. Another compelling reason for employing the frequency doubling
is the necessity of phase coherence between the local oscillator and the probed
beam in a homodyne detection, in order for them to interfere. This phase coher-
ence is most easily obtained by using the same main laser beam as the source
for both beams.

Phase matching

During the last few years we have tried out different configurations for the SHG.
Most of the time we have used a 10 mm long potassium niobate (KN) crystal as
the nonlinear medium, but at some point we changed to 15 or 20 mm long peri-
odically poled potassium titanyl phosphate (PPKTP). Both kinds of crystals are
positioned in a temperature-controlled brass oven, and the crystal temperature
is tuned to obtain the optimal phase matching condition for the SHG process.
To achieve the full potential of the conversion, the wave vector (or phase) mis-
match between the fundamental (IR) field at ω and the harmonic (blue) field
at 2ω should be zero. If not, a phase shift will accumulate along the length of
the crystal, causing the blue light generated in different regions of the crystal
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to interfere destructively, shifting the energy back into the IR.1 The wave vector
mismatch is

∆k = k2ω − 2kω =
4π(n2ω − nω)

λω
.

Due to the wavelength dependence of the indices of refraction, nω and n2ω,
the phase matching condition ∆k ≈ 0 is usually not fulfilled. However, if the
crystal is birefringent, the index of refraction for one polarization at a certain
wavelength can become equal to the index for the orthogonal polarization at
an entirely different wavelength. So if the fundamental and harmonic fields
have orthogonal polarizations, the phase matching condition can be fulfilled at a
specific wavelength. In non-critical phase matching, which we employ in the KN
crystal, the crystal is cut in a special way so that both fundamental and harmonic
beams propagate together along an optical axis. That way there is no walk-
off between the two polarizations, and the exact phase matching wavelength is
not critically dependent on the incident angle, as is the case in critical angle-
tuned phase matching. On the other hand, the phase matching depends on
the temperature, which should be well controlled and stabilized for the desired
wavelength. At room temperature the KN is phase matched around 860 nm,
while it must be cooled to 5◦C for the 852 nm.

The periodically poled KTP makes use of an entirely different phase matching
method, namely quasi-phase matching, in which the wave vector mismatch is
made up for by a periodical pattern of domains in the crystal with opposite
signs of the nonlinearity. The length of each domain should be equal to the co-
herence length in the crystal, π/∆k – the distance over which a phase difference
of π is accumulated between newly and previously generated blue light. With
the sign inversion of the crystal structure, the blue light generated right inside
the flipped domain will again be in phase with the light generated in the begin-
ning of the previous domain. In effect, the grating pattern imposes additional
momentum to the second harmonic field, with a wave vector −2π/Λ, where Λ is
the grating period (twice the domain length). This additional momentum makes
the overall phase mismatch close to zero. The quasi-phase matching method
gives a lower efficiency of the conversion from fundamental to harmonic than
perfect phase matching, by a factor 2/π [123]. However, the effective nonlinear-
ity of nonlinear crystals is very different depending on the propagation direction
through the crystal, and only certain directions – which might not be the ones
with highest nonlinearity – are viable for standard non-critical phase match-
ing. By quasi phase matching, on the other hand, any propagation direction
can be chosen, so the highest nonlinearity of the given material can be utilized.
The most important feature of quasi-phase matching, though, is that the poling
period can (in principle) be designed for phase matching for any desired wave-
length at a certain temperature. Thus, the PPKTP crystals we purchased from
Raicol Crystals Ltd. were designed for phase matching of 852/426 nm at room
temperature with the same polarization for both fundamental and harmonic,
which is achieved with a grating period of Λ = 4.2 µm. In practice we obtain the

1The wave vector mismatch should only be exactly zero in the case of plane waves. For focused
Gaussian beams, the Boyd-Kleinman theory [18] gives more precise predictions for the optimal
wave vector mismatch, as well as prescriptions for ideal focusing in the crystal.
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Figure 4.2: The latest layout of the second harmonic generation cavity. The curved
mirrors around the crystal has a 100 mm radius of curvature, and the total cavity length
is 375 mm. That gives a waist of 59 µm. The input coupler (lower left mirror) has a
transmittance of 5.7%.

optimal conversion at a temperature of about 45◦ for the operating wavelength
at 852.3 nm.

Theoretical conversion efficiency

An essential parameter in the description of both second harmonic genera-
tion and down-conversion is the single-pass nonlinear conversion efficiency Enl
which quantifies the power conversion from the fundamental to the harmonic
frequencies in a single pass of the crystal:

P2ω = EnlP2
ω.

From Boyd and Kleinman [18], with a Gaussian beam focused in the center of
the crystal, the nonlinear conversion efficiency is determined by

Enl =
16π2d2

effLc

ε0cλωnωn2ω
h(α, L′c, σ)e−(αω+α2ω/2)Lc , (4.1)

where h(α, L′c, σ) is the focusing function

h(α, L′c, σ) =
1

2L′c

∫∫ L′c/2

−L′c/2

exp
[
− α(τ + τ′)− iσ(τ − τ′)

]
(1 + iτ)(1− iτ′)

dτdτ′. (4.2)

The various parameters and variables are described in Table 4.1. The σ parameter
in the focusing function is a scaled wave vector mismatch, and is optimized by
the temperature tuning. For the optimal value of the focusing function, which
is 1.068, the focus parameter L′c, which depends on the waist size w0, should be
5.68. For the 10 mm long KN crystal, the optimal waist is then 14.5 µm, while
for the 15 mm and 20 mm PPKTP crystals, the optimal waists are 20 µm and 23
µm, respectively.

A resonant cavity has a power build-up of the intra-cavity field relative to the
mode-matched injected field by a factor [7]

Pc
ω

Pin
ω

=
T1

(1− r)2 , (4.3)
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α = (αω − α2ω/2)zR

L′c = Lc/zR

σ = ∆k zR

deff The effective nonlinear coefficient for the PPKTP.
Measurements by the manufacturer [4] and Le Targat et al.
[74] suggest a value around 9.5 pm/V.

Lc Crystal length.
λω The fundamental wavelength, 852 nm.

nω, n2ω The refractive index at the fundamental and harmonic
wavelengths, respectively, at room temperature along the
crystal’s z-direction. From Kato and Takaoka [67], they are
nω = 1.84, n2ω = 1.94.

αω, α2ω Linear absorption coefficients. While the infrared absorption
is negligible (αω < .002 cm−1 as judged from cavity
round-trip losses), the absorption at 426 nm is considerable
since it is close to the bandgap edge around 400 nm. We
measure α2ω ≈ 0.2 cm−1, but our measurement was not
extremely precise, and more detailed investigations show a
figure closer to α2ω = 0.1 cm−1 [56].

zR Rayleigh range of the focused beam inside the crystal, related
to the waist size through zR = πw2

0nω/λω.

Table 4.1: Parameters of the Boyd-Kleinman theory for the second harmonic generator
with PPKTP.

where T1 is the input coupler transmittance. r is the round-trip amplitude atten-
uation caused by outcoupling, linear losses L (in the other mirrors and absorp-
tion/reflection in the crystal), and the nonlinear losses from frequency conver-
sion, which is proportional to the power of the cavity field. Hence,

r =
√

1− T1
√

1−L
√

1− Eα=0
nl Pc

ω. (4.4)

The meaning of Eα=0
nl is that for the calculation of the round-trip attenuation, a

modified Enl factor should be used, where αω = α2ω = 0 in (4.1). The reason is
that Boyd and Kleinman consider the effect of absorption upon the amount of
generated second harmonic outside the crystal, and it is clear that it will decrease
for a nonzero α2ω. However, the amount of the fundamental field that is lost to
frequency conversion does not depend on the second harmonic absorption, so
from the perspective of lost fundamental rather than created harmonic field, the
Enl term should not contain the absorption coefficient for the second harmonic.
As for the absorption at the fundamental wavelength it is most conveniently in-
corporated in the overall linear loss term L, since it contributes to the measured
value of these losses2. When αω is small, it hardly makes any difference anyway
whether the absorption is modeled accurately as being distributed throughout

2The intra-cavity losses can e.g. be measured by observing the size of the dip in the reflection
off the scanned cavity [137].
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the length of the crystal, or as just decreasing the average steady state cavity field
amplitude through L. For the same reason we can also neglect αω when calcu-
lating the generated second harmonic power, whereas it is essential to include
α2ω here:

Pout
2ω = Enl(Pc

ω)2 with αω = 0.

Pc
2ω can be obtained numerically from the transcendental equation (4.3), with r

from (4.4).

Performance

The first generation of the SHG was designed by Christian Schori and Jens Lykke
Sørensen in Århus, and it is described in the thesis of the former [137]. It was a
70 cm long bow-tie cavity with the 3x3x10 mm KN crystal positioned between
two 50 mm radius-of-curvature mirrors. This configuration gave a beam waist
size in the center of the crystal of 16 µm. This is a little larger than the optimal
14.5 µm, but due to thermal lensing effects caused by absorption of both IR
and blue light (as described in e.g. Polzik and Kimble [129]), the waist size was
increased to improve cavity stability. The highest output power achieved during
the experiment’s time in the Copenhagen lab was 270 mW (320 mW inside the
cavity) from a 550 mW pump. This result lies several years back, though, and
both the available pump power and the quality of the crystals used degraded
since then. Later we would typically have 150 mW blue from 350-400 mW IR.
Another problem, we had with the KN crystals, was some ugly mode profiles
of the generated blue beam. The crystals were very inhomogeneous, and by
translating the crystal in the transverse directions, the blue mode profile could
form many interesting shapes. A clean TEM00 mode was hard to obtain, though.
When translating the crystal it was also clear that the losses of the IR beam from
either the crystal surface or bulk varied a lot. These annoyances were factors in
the decision to change to a PPKTP crystal for frequency doubling as well (apart
from the use in the OPO).

Initially, when we started using PPKTP in the SHG, we tried to keep the same
cavity configuration as we had used for the KN crystal, although the waist size
of 16 µm was in fact smaller than the ideal size. It soon turned out, though,
that the crystal would get permanent damage after a while of producing high
power blue light. With an input power of 250 mW, it could produce perhaps
130 mW at first, but after a minute or so it would suddenly jump to 105 mW
instead. Later we could see that the losses for the infrared had increased in the
part of the crystal where the beams had passed. This so-called gray tracking is
a well known, but complex phenomenon in KTP [14], [80], [102]. It is highly
intensity dependent, so by making the focusing in the crystal looser we could
reduce the effect substantially. A waist size twice as large as the optimal, for
example, reduces the fundamental intensity by roughly a factor 3 (taking account
of lower nonlinear losses and hence a larger intra-cavity field), while the second
harmonic conversion efficiency suffers a decrease of less than 10%, as estimated
from the above formulas. Promising results of high-efficiency and high-power
second harmonic generation with PPKTP at similar wavelengths using larger-
than-optimal waist sizes had already been achieved by Le Targat et al. [74] and
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Figure 4.3: Frequency doubler performance in its latest incarnation. Generated blue
powers in a) and conversion efficiency in b) versus the mode-matched infrared power.
The curves are theoretical expectations, based on various measured and estimated pa-
rameters, as described in the text.

Villa et al. [162], and recently with a 4 times optimal waist by Lundeman et al.
[87].

The modified SHG cavity has a waist size of 59 µm, the result of changing to
100 mm radius of curvature mirrors and making the cavity shorter (375 mm).
With this much larger waist size, the gray tracking problems have basically dis-
appeared, although some thermal issues still seem to limit the attainable output
power a bit. The expected nonlinear conversion efficiencies for the 20 mm crys-
tal, with two different estimates for the 426 nm absorption coefficient, are then:

α2ω = 0.1 cm−1 α2ω = 0.2 cm−1 α2ω = 0

Enl: 1.76%/W 1.60%/W 1.95%/W

Figure 4.3 shows a measurement of the generated blue power for different pump
powers and the corresponding conversion efficiencies P2ω/Pω. The blue powers
stated are right outside the crystal, inferred from measurements outside the cav-
ity, while the infrared powers are the mode-matched part (mode-matching into
the cavity was 93%). Two curves show the expected performance calculated from
(4.3) and the above Enl values. The linear losses were measured to be L = 0.4%,
but there might be additional infrared absorption in the presence of the blue
light which is not included in that number (see the discussion about BLIIRA in
the following section). The measured performance does not quite live up to the
theoretical expectation. However, the theoretical model contains many param-
eters which are not known very well, and some of them can alter the outcome
quite a bit. For example, increasing the linear loss term L to 0.8% would make
the lower curve fit the data much more nicely. Anyway, the data demonstrate a
reasonably high conversion efficiency, but the amount of blue light attainable is
limited by the available laser power. Another important improvement from the
KN-based SHG is the spatial mode, which is now a pretty, clean TEM00 mode.
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Figure 4.4: Layout of the OPO, as described in the text.

4.2.2 OPO

Design

The OPO cavity has maintained its layout, as shown in Figure 4.4, throughout
the various iterations of the experimental setup. Like the SHG, it was designed
by Christian Schori and Jens Lykke Sørensen. It is 81 cm long, yielding a free
spectral range of 370 MHz. The two concave mirrors M1 and M2 surrounding
the 10 mm long crystal has radii of curvature of 50 mm. Stability of the resonator
mode requires the distance between the concave mirrors to be between 54.5 mm
and 58 mm for PPKTP and 1 mm more for KN with a higher index of refraction
(2.3). The distance is usually adjusted to be in the central part of the stability
range, but not too close to the center since that would lead to frequency degener-
acy of the TEM00 and higher-order spatial modes. The waist size in the position
of the crystal is 15 µm with this configuration, close to the optimal waist sizes
of 16 µm for PPKTP and 14.5 µm for KN. The output coupler M4 has a trans-
mittance of T1 = 12.5% for the infrared (γ1/2π = 3.7 MHz). The M3 mirror is
piezo-mounted for cavity length control.

The blue pump light coming from the SHG should be mode-matched into the
OPO cavity mode. Since the cavity mirrors are transparent for the blue light, no
resonant build-up occurs and the standard mode-matching method of observing
the cavity length-scanned transmission spectrum is not an option. Instead, we
have used two other methods to do this, both involving the operation of the
OPO as a frequency doubler. The schemes are illustrated in Figure 4.5. The
first method, as described in Polzik et al. [128], employs an intermediate cavity
between the SHG and OPO with high-reflectors for blue. Light is coupled into
the cavity via a weakly reflecting beamsplitter. The OPO is made to produce
blue light propagating backwards towards the SHG by pumping IR through M4
in the opposite direction of the squeezed light output. The mode of this beam
then represents the OPO cavity mode. The blue beams from the SHG and the
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a)

b)

Figure 4.5: Blue mode-matching schemes. In a), the SHG and OPO cavities produce
blue light in turns, and are mode-matched individually to the intermediate cavity. In b),
the two cavities are simultaneously producing very weak blue light, propagating in the
same direction. The two beams are then matched by observing their interference after
the OPO.

OPO are then, one at a time, mode-matched to the intermediate cavity with the
result that the SHG and OPO are mode-matched. This method works well but
is somewhat cumbersome. The second method is more direct, but the actual
reason why we changed was to get rid of the intermediate cavity to make room
on the table for a pulse shaping device sitting in a big box (more on this in
§6.1.2). The OPO is pumped with infrared propagating in the forward direction
instead of backward, so that the generated blue light escapes through M2. By
producing blue light in the SHG and OPO simultaneously, the two beams can
be overlapped directly by monitoring their interference behind mirror M2. The
rough alignment can conveniently be done by the naked eye, while the fine
tuning can be carried out by scanning the phase of the infrared pump to the
OPO and observing the interference pattern on a scope. It is important that the
blue power levels are as low as possible while still retaining a visual pattern;
if the blue light from the SHG has a considerable amplitude, the infrared field
in the OPO will undergo phase-sensitive parametric amplification (see page 82),
which will again alter the amplitude of the OPO-produced blue light and make
the mode-matching unreliable. With this method we have achieved up to 96%
mode-matching efficiency.



4.2 Making squeezed vacuum 81

Potassium niobate

When we made the first kitten measurements, the nonlinear crystal was potas-
sium niobate. This type of crystal has an unfortunate property called BLIIRA
(blue light induced infrared absorption), by which the illumination of the crys-
tal by blue light increases the absorption losses for light at infrared wavelengths
[93]. This effect is detrimental to the generation of high purity strongly squeezed
states; for higher losses, the escape efficiency ηesc = T1/(T1 +L) goes down, and
as a consequence so do the amount of squeezing and the state purity. For our
measurement series that were published in ref. [103], the BLIIRA losses were be-
tween 1.0% and 1.5%, depending on the blue power. Without blue light we mea-
sured the total passive intra-cavity losses to be 1.0%. For the combined losses,
the escape efficiency was then 83-86%. The losses also influence the threshold
pump power of the OPO as defined in (3.16). The threshold power Pthr can be
related to the cavity losses and the single-pass conversion factor by [128]

Pthr =
(T + L)2

4Enl
, (4.5)

so higher losses increase the threshold, and therefore decrease the interaction
strength for a given pump power. The crystal had a nonlinearity of Enl =
1.5%/W, yielding a threshold power (for 1.5% BLIIRA) of 375 mW.

PPKTP

For the purpose of making highly nonclassical states with high purity and neg-
ative Wigner functions in the case of non-Gaussian states, a high overall signal
efficiency is needed, as discussed in §3.4.4. There are plenty of potential sources
of loss outside the OPO, so it is a bad start to have only 83% escape efficiency.
Therefore we switched to PPKTP which should be free of the BLIIRA effect.
The first crystal we used was kindly gifted to us by Prof. Furusawa of Tokyo
University. It was a 1x1x10 mm crystal quasi-phase matched for 860 nm fun-
damental wavelength at room temperature. Later we purchased a small stock
of similar crystals, but with a phase matching wavelength of 852 nm. The end
faces are coated with a high quality dual band anti-reflection coating specified
for R < 0.05% @ 852 nm and R < 0.1% @ 426 nm. With the crystal in place in
the cavity, we measure a total intra-cavity loss of 0.4%, which includes crystal
bulk and surface losses and losses at the mirrors (except the output coupler).
With such a low loss, the escape efficiency becomes as much as 97%, a huge
improvement from the KN. Unfortunately, the crystals are not completely free
from additional light-induced losses.

We observe that the intra-cavity losses increase after illumination with the pump
light. The amount of increase depends on the optical power and the duration of
the illumination. Immediately after turning on the pump (about 100 mW) there
is a rapid increase of about 0.1% additional losses during the first second. After-
wards the losses continue rising but at a slower pace. After several minutes they
seem to flatten out at a level of 0.3-0.4% extra. The light induced losses persist
after turning off the light, but they slowly disappear – after 10-20 minutes the
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Figure 4.6: Increased total linear cavity losses due to BLIIRA. In a), 100 mW of blue
light was shone on the crystal for different durations and the losses were recorded
immediately afterwards. In b), different powers were used for a 2 minute duration. The
initial losses in b) were higher than usual because of dirty mirrors.

total losses have recovered to the value before illumination, irrespectively of the
duration of the exposure. The data presented in Figure 4.6 were all measured
at the phase matching temperature. However, due to parametric gain of the IR
probe beam, the reflection dip method for measuring cavity loss is not applicable
while pump light is on. Therefore, the measurements were done by illuminating
the crystal for a set duration and measuring the losses immediately after block-
ing the pump light. We made a check at a temperature far away from phase
matching, where the loss effect was still present (also at the same magnitude) –
here, we confirmed that the losses are basically identical while the blue light is
still on and immediately after turning it off. In the Furusawa group, similar mea-
surements were performed, showing the same characteristics and magnitude of
the effect. They measured all the losses far from the phase matching temper-
ature, so they were able to get a better time-resolved picture. This showed in
greater detail the two different time-scales of the effect that we see hints of: An
initial small ms-scale increase followed by a larger minute-scale increase [152].
We do not have a good understanding of the cause for these effects. They could
be some sort of photo refractive effect or thermal lensing, but we have not yet
made the effort of a detailed study which might reveal some clues about their
nature and possible ways to overcome the extra losses. Due to these additional
light-induced losses, the escape efficiency of the OPO decreases to 94-96%, de-
pending on the pump power level. With these losses, the cavity bandwidth is
just above 4 MHz.

Parametric gain and squeezing

In the day-to-day characterization of the OPO performance, an essential observ-
able parameter is the parametric gain G (or simply gain). This is the phase-
sensitive amplification or deamplification of a degenerate frequency probe (seed)
beam injected into the OPO, caused by the nonlinear interaction with the pump
light. The amount by which the probe intensity is amplified when in-phase with
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the pump, compared to its intensity without pump, is called the gain factor and
is a direct measure of the pump parameter ε of the OPO theory in §3.3. The clas-
sical equation of motion for the cavity field with the probe field |αp|eiφp injected
through a mirror with decay rate γ3 is, cf. (3.15),

α̇c = εα∗c − γαc +
√

2γ3|αp|eiφp .

In steady state, α̇c = 0, the solution to this equation and its complex conjugate is

αc =
√

2γ3

γ
αp

(
cos φp

1− x
+ i

sin φp

1 + x

)
,

with x = ε/γ =
√

P2ω/Pthr. The phase-sensitive power gain relative to the cavity
field with no pump (x = 0) is then

G(φp) =
|αc|2
|αx=0

c |2 =
cos2 φp

(1− x)2 +
sin2 φp

(1 + x)2 , (4.6)

with a maximum value of G ≡ G(0) = 1/(1 − x)2. Thus, by observing the
cavity field leakage through another mirror, ε can be determined. In Figure 4.7,
measured gains for various pump powers are plotted, fitting nicely this function
with a threshold power of 209±1 mW. The corresponding nonlinear conversion
efficiency, from (4.5), is Enl = 2.1%/W, with the measured losses during that
measurement of 0.8%. This value corresponds well with those obtained from
single-pass frequency doubling in the OPO, while the theoretically expected
value is slightly higher: 2.3%/W for α2ω = 0.2 cm−1.

Figure 4.8 shows a trace of some of the best squeezing we have obtained. The
measurement was performed at a sideband frequency of 1.1 MHz by two de-
tectors optimized for shot noise limited detection at this frequency. The signal
was analyzed on a spectrum analyzer in zero span mode (so the axis is time),
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and subsequently the dark noise was subtracted and the level normalized to
the vacuum level. The phase of the local oscillator was scanned to show both
squeezing and anti-squeezing. We see that we obtain a squeezing of about −6.5
dB and an anti-squeezing of 10 dB. The expected performance is given by (3.23),
with the addition of an efficiency factor on the last term (the non-vacuum part)
which is sensitive to losses and inefficiencies. In the measurement of Figure 4.8,
the total efficiency was estimated to be 88%, with contributions from the OPO
escape efficiency, 94%, propagation from OPO to detector, 98%, homodyne visi-
bility, (99%)2, and detector quantum efficiency, 98%. The maximum parametric
gain was measured to be G = 7.5, corresponding to a pump parameter x = 0.63.
Plugging these numbers in, together with Ω/2π = 1.1 MHz gives an expected
squeezing Sp = −7.3 dB and anti-squeezing Sx = 10.7 dB relative to the vacuum
level. The discrepancy of the observed and expected squeezing can be accounted
for by just 2-4% extra unknown losses. The anti-squeezing is also slightly lower
than expected, which is most likely due to a weak detector saturation.

4.3 Trigger system

4.3.1 The number of phase matched OPO modes

The output of the OPO is separated into a trigger and a signal mode, either by
the tapping beamsplitter (for kittens) of by the first filter cavity (for photons).
After the separation, the trigger mode undergoes heavy frequency filtering to
suppress the irrelevant OPO longitudinal modes. To understand why as much
as three cavities plus an interference filter is needed, we can estimate the number
of longitudinal OPO cavity modes that are phase matched for down-conversion
simultaneously. The wave vector mismatch for the down-conversion process is

∆k = k2ω0 − kω+ − kω− −
2π

Λ
,

with ω+ + ω− = 2ω0. From published Sellmeier equations for KTP [67], the
wavelength-dependence of the indices of refraction, n(λ), can be calculated pre-
cisely. By inserting σ = ∆kzR in the Boyd-Kleinman function (4.2) with fixed zR, α

and L′c, the nonlinear interaction strength as a function of the down-conversion
wavelength is obtained. This curve is plotted in Figure 4.9a), which shows a
phase matching bandwidth of 30 nm, corresponding to roughly 30,000 phase
matched cavity modes!

The number of populated cavity modes is somewhat reduced, though, when
taking account of the fact that both wavelengths of a down-converted pair should
be simultaneously resonant in the cavity, as pointed out by Lu and Ou [84]. In
terms of wavelength, the resonance condition for the mth non-degenerate mode
is

(N0 + m)λm = l + Lcn(λm),

where N0 is an integer, l is the cavity length outside the crystal, Lc the crystal
length, and the right hand side is the total optical length of the cavity. N0 is then
the number of degenerate mode wavelengths that fit within the cavity length.
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Figure 4.9: a) The phase matching bandwidth for down-conversion in our PPKTP crystal
is ∼30 nm. h(σ) is the Boyd-Kleinman function, calculated from Sellmeier equations. b)
Due to dispersion in the crystal, the optical cavity length is not the same for high and low
frequency sidebands. Therefore the cavity modes become shifted with respect to their
“twin” mode, and the down-conversion process – which requires energy conservation
– may become suppressed if there is no common resonance for the pair of frequencies
symmetric around ω0. c) The amount of shifting (in MHz) between the mth and −mth
mode (shifted ±m free spectral ranges from the degenerate mode), corresponding to the
difference in b) between ωm and the dashed line. The OPO has a HWHM of 4 MHz, so
on the order of 2000 mode pairs fulfill the double resonance condition.

Using the explicit Sellmeier equations, this relation gives the wavelengths λm
(or frequencies ωm) for each spectral cavity mode m. In order to have efficient
down-conversion into the m/−m mode pair, the difference between their fre-
quency spacing from the degenerate mode should be roughly within a cavity
half-linewidth, as illustrated in Figure 4.9b):

(ωm −ω0)− (ω0 −ω−m) . γ.

This double-resonance condition is fulfilled for a few thousand modes, as the
calculated curve in Figure 4.9c) shows. That is still a very large number of
modes that need to be filtered away.

4.3.2 Filter specifications

The trigger path is outlined in Figure 4.11a) on page 89. For convenience we
name the filter cavities FC1, FC2, FC3, in the order they appear on the path.
Each cavity must be well mode-matched to its neighbours. The mode-matching
is done by injecting a seed beam through the locked OPO. FC1 is mode-matched
to this beam which simulates the mode of the down-converted field. Then, the
length of FC1 is locked and FC2 is mode-matched to the output of FC1, and
the procedure is repeated with FC3. Finally, the output of FC3 is focused onto
the APD, but no mode-matching is necessary there, so we just adjust the beam
position by observing the count rate from the detector. Before the APD is the
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filter length FSR finesse HWHM OPO modes/FSR

FC1 200 mm 1.5 GHz 30 25 MHz 4
FC2 3.7 mm 40 GHz 300 70 MHz 110
FC3 12 mm 12.5 GHz 250 25 MHz 34
IF 0.5 nm (200 GHz) FWHM — covers 550 OPO modes

OPO 810 mm 370 MHz 48 3.9 MHz 1

Table 4.2: Specifications for the three filter cavities, the interference filter, and the OPO
for reference. The numbers for the filters are approximate. The last column, the ratio of
the filter FSR to the OPO FSR is a rough lower estimate of the extinction ratio of OPO
modes for that filter. It is a lower estimate since the OPO modes not necessarily coincide
with the filter resonances.

interference filter (IF) which is tilted to give maximum transmission. The overall
transmission of the entire path is 10-15%. Table 4.2 summarizes the specifications
of the individual filters, and the spectral layout is illustrated in Figure 4.10. The
shortest cavity (FC2) with a free spectral range of 40 GHz has approximately 5
resonances within the bandwidth of the interference filter. To get rid of possible
OPO modes transmitted within those resonances, FC3 has a free spectral range
such that there are no resonance overlaps between FC2 and FC3 within the cov-
erage of the IF. FC1 with its relatively small FSR and wide resonance provides
only a little more filtering, but it is very convenient for separating the photon
pairs when running the single photon experiment – it was originally used for
the demonstration of strong EPR-correlations in twin beams [136]. In theory, the
combination of all four filters should lead to a suppression of the irrelevant OPO
modes strong enough that more than 99.9% of the transmitted light is from the
relevant mode, that is, basically unity modal purity. In practice, there may be
imperfections such as bad mode-matching or unstable locks that do not keep the
cavities on resonance, which could impair the suppression. The mode-matching
to FC1 and FC3 is quite good; above 95%, while to FC2 it is somewhat harder
and we usually have about 80%.

4.3.3 Cavity locking

It is a tricky business to stabilize the lengths of all the cavities in experiments
involving photon counting. The usual method of monitoring the transmission or
reflection of a beam seeded into the cavity and – one way or the other – extracting
an error signal from that does not work. The reason is, that a beam strong
enough to give a clean signal on a normal photodetector invariably will contain
billions of photons. In sideband measurements like homodyning it usually does
not matter, but since the APD is not frequency selective, the lock beam will
completely overshadow the relatively few photons from down-conversion. The
bow-tie cavities improve the situation a bit by allowing a counter-propagating
lock beam, but still there are reflected or scattered photons, especially from the
OPO crystal, that enter into the forward-propagating beam direction. Since such
lock beam photons will cause false clicks if they reach the APD, other methods
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Figure 4.10: Spectral layout of the OPO and filter cavities with their considerably dif-
ferent free spectral ranges, arranged to suppress all other modes than the degenerate
ω0 mode (or ω− for the single photon experiment). Not illustrated is the bandwidth of
the interference filter which covers about 5 FC2 modes. The actual experimental layout
might be a little different from what is shown here, due to uncertainties in the cavity
length measurements.

– or at least an updated variation of the scheme – must be considered. We have
developed two different ways of keeping four cavities in series (OPO + FC’s)
simultaneously locked to resonance; the two are quite similar in terms of the
control but different on the optical table.

Using APD signal

The first locking system, which was used for our published results so far, cir-
cumvents the problem of a too strong auxiliary lock beam by simply using the
down-converted light itself as a lock beam. This light is not detectable on a stan-
dard photodiode, but the APD, whose primary objective is to act as a heralding
trigger, can double as the lock signal detector. The photon count rate is maximal
when all cavities are on resonance; that forms the basis of the error signal. The
idea and implementation (LabView programming) of this scheme is mostly due
to Christian Hettich.

A LabView program running on a standard Windows PC with National Instru-
ments PCI-6221 and PCI-6722 digital acquisition boards reads from two counter
ports and writes to four analog output ports. The inputs are connected to two
APD modules and the outputs to a mirror-mounted piezo in each of the four
cavities; OPO, FC1, FC2, FC3. The sole purpose of the second APD (APD2) is to
aid in the initial simultaneous alignment of all four cavities close to resonance.
Since a single detector generates a common error signal for all cavities, it is not
possible to bring them into lock one after the other – it must be done in one go.
So before turning on the locks, the cavity lengths are scanned at different rates
to search for the resonances. A very weak seed beam – attenuated by many or-
ders of magnitude by neutral density filters – is injected into the OPO, while the
blue pump beam is shut off. Most of the time no light will reach the APD, but
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eventually it will happen that all four cavities are close to resonance at the same
time, letting some light through. With four cavities, two of them with finesses
around 300, this can take forever. Therefore, APD2 is employed to monitor the
transmission of OPO + FC1 + FC2 only. In practice this is done by directing the
reflection from the front mirror of FC3 onto APD2 using a PBS + quarter-wave
plate combination between FC2 and FC3. Thus, at first only a three-fold si-
multaneous resonance must be found. An automated algorithm of the program
narrows the scan ranges down around the voltage regions where it detected the
largest signal. Another four stages of scanning and narrowing down follows,
after which each cavity is supposed to be so close to resonance that the scans
can be turned off and replaced with constant output voltages. Then the locking
part of the program sets in. With the first three cavities locked on the signal from
APD2, the last cavity, FC3, is scanned manually until APD1 sees a signal. The
locking is then transferred to this signal from APD1, and APD2 is not used any-
more. Even with this two-stage resonance search, the procedure is rather slow.
The initial search scan rates are ∼100 Hz for the fastest scanning cavity and 0.05
Hz for the slowest. Because of this, and because the procedure outlined here
does not always converge on a common resonance, it can take a considerable
amount of time to prepare the cavities for the locking stage. See Figure 4.11a)
for an overview of the filter layout on the optical table and Figure 4.11b) for a
diagram of the locking stage of the LabView program. The cavity search routine
is not illustrated.

To derive individual error signals for each cavity, the four output voltages are
modulated slightly with sine waves of different frequencies. For a given cav-
ity, the voltage modulation causes a small modulation of the cavity length and
hence of the light transmission as observed by the APD count rate. A digital
demodulation of the count rate at the same frequency returns an error signal
which has a zero-crossing on the voltage output corresponding to a cavity res-
onance. A proportional-integral loop then adjusts the voltage offset to keep the
error signal close to zero. Since the modulation frequencies are different for the
four cavities, individual error signals can be extracted, unaffected by the mod-
ulation of the other three cavities. The lock provided in this way is fairly weak.
In order to gather enough statistics from the photon counting, the program sam-
ples the counts for 60 ms before processing them in a bunch, giving an update
rate of a mere 17 Hz. This makes the lock incapable of correcting for possible
oscillations faster than ∼8 Hz. Furthermore, to avoid overshooting, the gain of
the PI control must be kept low, meaning that if a cavity somehow falls down
from the resonance, it takes on the order of a second to recover. In practice,
however, this is not a serious limitation to the experiment. As long as there is
no excessive acoustic noise in the lab, all the cavities are quite passively stable.
The most unstable one, the OPO, will remain very close to resonance for several
seconds after turning off the lock. Therefore, the weak stabilization provided by
the APD signal is sufficient for the active long-term locking. The system works
well down to a count rate of 10,000 c/s, and 5,000 c/s is still possible, although
the lock starts to become fragile.

When all cavities are finally locked to resonance using the seed beam, the blue
light is slowly turned on using either an iris or a PBS + half-wave plate com-
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Figure 4.11: Overview of the trigger filtering system. a) The cavity locking stage in the
scheme where APD1 provides the error signal for all for cavity locks. Here, the atten-
uated seed beam is injected into the OPO. When switching to the state generation, the
blue pump light is turned on, after which the seed is blocked. APD2 is used only for
alignment of the cavities on resonance. b) Diagram of the digital control. The length
of each cavity is modulated by different frequencies which are used again for demodu-
lation of the detector signals. These signals can come from either the APD or from the
analog photodetectors (AD). The printed frequencies are only an example – other com-
binations are possible. c) The sequential locking scheme where two shutters alternately
switches strong seed beams on and off, while always keeping the APD shielded from
the strong light. Here the APD only acts as a conditioning trigger detector while the
locking is taken care of by the analog detectors.
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bination. Turning the pump on too fast disturbs the OPO lock, probably due
to the heating of the crystal. With the pump at full strength, the seed beam is
blocked completely, after which the down-converted light acts as the lock beam.
For the kitten state generation, a usual pump level is x = ε/γ ' 0.3 (for a para-
metric gain of G = 2), which gives a photon production rate of 2.5× 106 s−1,
from (3.20). With about 10% total efficiency of the trigger channel, a tapping
beamsplitter reflection ratio of 5% is sufficient for a good locking signal of more
than 10,000 counts per second. In the single photon state experiment, an entire
OPO mode is send to the trigger, with no prior beamsplitting, so the gain can be
much lower (as it should be to avoid excessive 2-photon contributions). A pump
level of only x = 0.05 (G = 1.1) still gives a ∼5,000 c/s count rate.

Sequential locking with strong beam

As will be explained in §4.5, we needed better control of the phase information
obtained during measurements. To this end, the coherent seed beam injection in
the OPO became necessary, which in turn required modifying the locking proce-
dure. Partly inspired by Wakui et al. [164], we implemented a sequential scheme
where a strong seed beam is switched on and off with mechanical shutters, while
the path to the APD is alternately closed and opened as well, to shield the mod-
ule from the harmful light level. Figure 4.11c) shows the important elements of
the altered scheme. A separate LabView program was designed to control the
switching sequence, as well as providing the phase lock. It is described in more
detail in the next section. Running on a second Windows PC equipped with a NI
PCI-6251 board, it outputs TTL digital signals at predefined intervals in a cycle
with a rate of 1-4 Hz. During one cycle, each of the two shutters is opened and
closed once. When the seed beam is on, the locking program is told to actively
control the cavity lengths; when the seed beam is switched off, the active stabi-
lization halts and the output voltages are kept at their last value until the seed
and locking is switched on again. When the seed is fully blocked, the shutter in
front of the APD is opened, and the scope is set to accept trigger signals from the
APD – there is no need to include the dark counts during the period of locking.
Figure 4.12 shows an example of such a sequence, with a period of 330 ms.

The locking program is the same as that used in the previous scheme. But now,
the error signals are not derived from the APD counts but from analog silicon
PIN photodiode detectors monitoring the power level of the strong seed beam.
Three detectors are connected to analog inputs of the NI-DAQ card. The first
one monitors the transmission of the OPO of a second auxiliary beam, injected
in the backwards propagating direction (this beam is switched together with the
other seed beam). The second detector monitors the transmission of FC2, via a
thin glass plate that reflects about 8% towards the photodiode. The third detector
similarly monitors a reflection from a glass plate of the light transmitted through
FC3. With three detectors, the resonance search becomes a little easier than with
only the two APDs used before. The locking itself can also be done with error
signals obtained from different detectors for each cavity (detector 2 for FC1 and
FC2 together), although it is not necessary – the threefold demodulation of the
signal from the final detector is enough. It is convenient, though, to be able to
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cavity locking on
(TTL to other PC)

gain locking on

EOM modulation on
(TTL to function generator)

phase locking on

acquisition ready state
(TTL to scope)

330 ms

Figure 4.12: An example of a shutter sequence and the associated on/off signals sent to
other parts of the experiment. The shutters are switched such that no strong light from
the seed beam reaches the APD. Cavity locking takes place during the periods when
shutter 1 is open (seed beam on), while the scope acquires data during the open time
of shutter 2, when the down-converted photons can cause APD clicks. Gain and phase
locking is explained in §4.5.2. We attempt to stabilize the gain briefly before turning on
the cavity locks, and the EOM modulation should be on before the phase lock will work.

see in realtime, while running measurements, the levels of each detector. If the
total transmission goes down, it is easier to see which cavity is causing problems
than when only monitoring the total transmission on a single noisy APD.

The mechanical shutters were constructed from old hard disk drives. A hole
was drilled through the metal frame and a thin piece of copper was mounted
to the pivot arm. On the pivot arm is a coil of copper wire and underneath
it two permanent magnets. By sending current through the coil in one or the
other direction, it can be made to swing to either of its extreme positions. To
avoid vibrations, pads of Sorbothane dampens the swing in each end. We drive
the shutters with some quite unsophisticated electronic circuits which simply
converts the input 0 V/5 V TTL signal into ±13 V in an op-amp comparator
configuration followed by a buffer amplifier. The HDD coil has a resistance
of only 10 Ω, so to reduce the current drawn, a 75 Ω resistor is inserted in
series in the output of the driver, resulting in 150 mA through the coil. The
current is kept continuously at +150 mA (-150 mA) when the shutter is open
(closed). More complex driver circuits can be built which has a much lower
holding current, while providing a larger switching current for faster switching
[94], [168]. Our simple driver switches the shutter with a delay of several seconds
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after an extended period of being in the same on or off state. In an experimental
run, however, we switch the shutters with short intervals, and then the delay
between the change of the TTL level and the actual switching of the shutter
is considerably shorter. More importantly, the delay is consistent, so it is no
problem to compensate for it by just changing the TTL level earlier. We adjust
the on/off times of the two shutters relative to each other by observing the APD
counts from the seed beam that has been heavily attenuated. When the shutters
are well adjusted, no light slips through to the APD.

4.4 Data acquisition

4.4.1 Homodyne detector

An essential component of the various nonclassical state generation experiments
is the homodyne photodetector. In order to efficiently resolve the intricate details
of quantum optical states in homodyne detection, it has to fulfill several impor-
tant requirements: It must have a quantum efficiency close to unity, it must be
fast enough to detect the high-frequency components of the field, and all clas-
sical noise in the local oscillator should be well canceled in the balancing, such
that the detector is shot noise limited even for LO powers high enough that the
light noise is far above the dark noise of the electronic circuit. Moreover, when
the state occupies a wide band all the way from DC to several MHz, the detector
must perform in the entire range.

In normal sideband measurements of cw light states, such as in ref. [137], two
separate detectors can be used for the two arms, so the difference photocurrent
is obtained by subtracting the two signals after the amplification stage. The bal-
ancing is then done by applying a strong modulation to the LO at the sideband
frequency of interest and adjusting the gain and phase of the two signals until
the modulation is maximally canceled out. This approach is less feasible for the
broadband detection since all frequencies should be well balanced, which can
be difficult to achieve with two separate amplification stages with their possi-
bly different characteristics. Instead, we use a layout where the two diodes are
placed close to each other on the same print board, and their photocurrents are
subtracted immediately afterwards, before the amplification. There is no way of
tuning the two currents with respect to each other, but if the two diodes behave
the same, it is not really necessary. If the quantum efficiencies of the diodes
should be slightly different, it must be compensated for optically by having a
beamsplitting ratio different from 50/50. We have not seen diode asymmetries
that required optical powers that were different within the uncertainty of the
power meter used. The balancing is easily done by just making the DC level
zero with very fine beamsplitter adjustment.

As with several other elements of the setup, there have also been two generations
of the homodyne photodetector. The first generation employed two Hamamatsu
S3883 silicon PIN diodes with quantum efficiencies of 90%. The electronics were
not quite optimal, so the detector response was not flat over the bandwidth of the
generated states. As can be seen from the noise power spectrum in Figure 4.13a),
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Figure 4.13: Spectral characteristics of the homodyne detectors; first generation, a), and
second generation, b). The older detector is just barely fast enough to resolve the ∼4
MHz wide conditioned states, while the newer has an excellently flat performance until
the noise peak at 100 MHz, which is filtered out by the temporal mode function filtering
of the recorded noise. The data in a) were measured on a spectrum analyzer, while those
in b) were obtained by FFT on long traces measured on the scope with a sampling rate
of 250 MS/s. Note that the bandwidths of both detectors are sufficiently narrower than
the OPO free spectral range of 370 MHz, such that the homodyning detects only one
frequency mode of the OPO output.

the 3 dB bandwidth was merely 10 MHz. That of course means that the differ-
ence photocurrent is a filtered representation of the measured light state. A
new and significantly improved detector was developed by Hiroki Takahashi to-
gether with the electrical engineering department. Using faster diodes, faster
amplifiers, and optimized circuit design, this detector achieves an almost flat
spectrum all the way to 50 MHz (Figure 4.13b)). The strong wide peak appear-
ing around 100 MHz is not a cause of worry since these high frequencies are
averaged/filtered out when applying the mode function to the data. The diodes
used are from a special production batch based on Hamamatsu S5971, with a
specified quantum efficiency of 98%. It is difficult to quantify the amount of
classical noise cancelation achieved by especially the new detector. The reason
is the direct diode current subtraction layout that makes the output signal ex-
tremely sensitive to differences in the light power on the two diodes. Hence, due
to detector saturation, it is not possible to block one diode to check the amount
of classical noise without and with balancing (∼100 µW difference saturates the
amplification stage). However, we can still check the power scaling of the light
noise and confirm that it is indeed almost shot noise limited up to LO powers of
several mW, as demonstrated in Figure 4.14.

Regarding the optical side of the homodyne detector, we found that the polariza-
tion homodyning using 2 PBS and a half-wave plate, as described in §4.1, is far
superior to using just a non-polarizing 50/50 beamsplitter in terms of stability
and convenience of beam alignment and power balancing. With the latter, the
angle of incidence on the beamsplitter needed to be precisely adjusted to achieve
the 50/50 ratio, meaning that it was a mess to do a precise balancing and get
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Figure 4.14: Power scaling of the light noise for the old, a), and new, b), homodyne
detectors, at three different frequencies – the optical power is measured before the ho-
modyne beamsplitter. The data are from the same series as those in Figure 4.13. The
plots are log-log, so a shot-noise limited behaviour would be characterized by a linear
trend with a gradient of 1. The new detector is almost fully shot noise limited, while
the older detector apparently has not canceled out all classical noise (which would scale
with a gradient of 2). We did obtain better scaling at other times, though, but the be-
haviour depends a lot on how well the beams are focused on the detector’s diodes. The
fits in a) are only performed on the first five points, since saturation of the detector
obviously limits the noise at higher powers.

a good beam overlap at the same time. During measurements, the balancing
could also drift away and was quite sensitive to acoustic noise. Furthermore,
the overlap of the two beams needed realignment every day. With the polarizer
combination, the angle sensitivity is basically gone, and the balancing (done by
the half-wave plate) and the mode-matching are effectively decoupled. The DC
output level does not fluctuate as much as before, and interference visibilities
as high as 98.5-99% will often remain for more than a week without need for
realignment.

4.4.2 Data sampling

The homodyne output signal is recorded on a 1 GHz LeCroy Wavepro 7100
digital oscilloscope with 48 MB fast memory. A useful and important feature
of this scope is its ability to perform segmented sampling, where it samples
only within a specified interval (including pre-trigger times) around each trigger
event and excludes all the dead time in-between – see Figure 4.15. A sequence of
20,000 of such segments can be recorded in a single combined waveform before
the data needs to be transferred from memory to a file on the hard disk (which
takes a few seconds for a full memory). We usually record intervals of 1 or 2
µs length, so with count rates of 5-20 kc/s, we save between 96% and 99.5%
memory space by using segmenting instead of sampling continuously, making
possible much longer measurement streaks between file storage. We sample at
a rate of 500 MS/s, more than enough to resolve in great detail the variation of
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the homodyne photocurrent caused by the detection of the trigger photon. Each
segment is centered around the trigger time, that is, with 0.5 or 1 µs before and
after the trigger. The temporal width of the conditioned state’s mode function is
only around 100 ns, but the extra space around the trigger allows us to extract the
background squeezed/thermal state as well, by positioning the mode function
far away from the trigger time.

When we employ the locking scheme where shutters switch on and off the strong
beams, we add an extra gating condition to the triggering of the scope. The
LabView program in control of the experimental sequence sends a TTL-high
signal to a second input channel of the scope, whenever the shutter in front of
the APD is open. By using a logic trigger setting, which demands a simultaneous
high value of both this gating signal and the trigger signal from the APD, we
make sure that no dark counts, appearing while the APD is blocked, are counted.

We connect the homodyne detector to the scope via a high-pass filter with a
bandwidth of 10 kHz to get rid of the DC level of the signal. The reason is that
the small drifts in the balanced DC level (which are still present, if at a small scale
with the newer detector) will show up as time-varying features of the measured
states. This is clearly undesirable. The high-pass filter ensures that the drifts in
balancing are removed. Of course it also filters out proper features of the state,
but with the 4 MHz bandwidth of the state, it is a negligible loss.

4.4.3 Extracting quadrature data

Every trigger click heralds the production of a single instance of the state under
investigation. For each instance, a single quadrature measurement is performed
by the homodyne detection, but this measurement is spread out in time to the
extent of the correlation function between trigger and signal mode. To extract
the single quadrature value from the continuously sampled homodyne signal,
the temporal filtering with the relevant mode function must be carried out. In
practice, it is done by constructing a numerical array of the same length as the
segments and with the shape of the selected mode function. This mode function
array is multiplied on each segment, and the sum of the product array is then
the (unnormalized) quadrature value for that segment. Normalization is done
by recording and extracting the vacuum state in exactly the same way, and cal-
culating the variance of the obtained vacuum values. Figure 4.15 also shows this
quadrature extraction procedure.

Some examples of recorded and extracted quadrature data are demonstrated in
Figure 4.16. Three states are depicted; a kitten state, a squeezed vacuum (ob-
tained from kitten state data with a temporal mode function shifted far away),
and a single photon, all shown together with a vacuum sequence trace for ref-
erence. Each sequence consists of 20,000 points obtained with a scanned phase,
calibrated as will be explained in the next section. The phase-dependent quadra-
ture distributions of the squeezed and kitten states are clearly seen, while the
vacuum and photon states are phase-independent. More interesting are the ob-
vious non-Gaussian distributions of the kitten and single photon points, partic-
ularly visible for the kitten with its “white eye” in the center. The reconstruction
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Figure 4.15: Illustration of the segmented homodyne sampling, performed in real time
by the scope, and the subsequent quadrature data extraction from these segments using
the temporal mode filtering. The latter part is done on a PC after the conclusion of the
measurement series.
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Figure 4.16: Examples of sequence traces obtained for three different states; from top
to bottom it is a squeezed vacuum, kitten, and single photon state. The small chunks to
the right of the traces are reference sequences of the vacuum state. The first two, kitten
and squeezed vacuum, are extracted from the same recorded homodyne segments but
with different delays of the mode functions. For the squeezed vacuum, it was moved
so far away from the trigger time that there was no overlap with the temporal extent of
the kitten state. For the squeezed vacuum, the variance is plotted as the brown curve
(moving average of 400 points) together with the vacuum level of 1/2. The minimum
and maximum variances are 0.3 and 1.0, respectively (-2 dB/3 dB). The reason for the
higher density of points at low phase values is the nonlinear scan of the piezo mounted
mirror in the LO path.

of the states from these data will reveal that the regions around 0 are so vacant
that their Wigner functions have negative values - even if it may not appear so
for the photon sequence.

Mode function and segment noise

As discussed previously, the basic shape of the mode function should be the
double-sided exponential corresponding to the OPO decay. For even better
matching, the mode function can be adjusted to take account of the effect of
the trigger filtering and – in the case of the old homodyne detector – the elec-
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tronic detector response. The precise shape is not that critical, though. A wide
range of different mode functions result in very similar states, as will be shown
in §5.2.4. One thing to take care of is the horizontal offset of the mode function.
The trigger TTL pulse from the APD and the homodyne current from the condi-
tioned state do not arrive at the scope simultaneously. After the splitting of the
OPO output field into signal and trigger, the signal field has a relatively short
path length towards the homodyne detector, which also processes the electronic
signal quickly and sends it to the scope. In comparison with that, the trigger has
a rather long optical path, and on top of that, the APD module has a delay of
some tens of ns. As a consequence, the interesting part of the homodyne signal
appears before the trigger time on the scope. This delay must naturally be taken
into account by shifting the mode function correspondingly.

To adjust the mode function prior to doing the quadrature extraction, we calcu-
late a trace from the data which we call the segment noise. This is the point-wise
variance across all segments in the measurement series. More explicitly: Each
segment consists of, say, 1000 points with a mean value around 0. The segment
noise trace is then a 1000 points long list where the 1st point is the variance of
the 1st point of all the many thousand segments; the 2nd point is the variance
of all the 2nd points, and so on. In a single segment there is no clear signa-
ture of the photon-subtracted (or vacuum-subtracted) state. However, by taking
the segment noise trace, we see that there is an increase of the noise variance
in a region close to the trigger, as seen in Figure 4.17. The reason is that the
conditional non-Gaussian states have a higher variance than their corresponding
“background states”. The shape of the variance peak gives an indication of the
correlations between the trigger and the signal fields and can be used as a guide
for determining a suitable mode function – most importantly, it shows quite pre-
cisely the delay between the arrival to the scope of the homodyne and trigger
signals. By taking the variance over all recorded segments, we mix squeezed
and anti-squeezed quadratures (in the case of the DOPO/kitten measurements)
which is perfectly fine when just seeking some input for the choice of mode func-
tion. We can, however, also take the segment noises separately for squeezed and
anti-squeezed quadrature segments. In that case we see that the heights of the
variance peaks, as well as the background levels are different (Figure 4.17a). The
background levels are just the variances of the unconditioned squeezed vacuum
state. The reason why they do not depart much from the vacuum level is the
wide bandwidth of the homodyne detector; the squeezed vacuum state occupies
only a minor region of the detector’s spectrum, and at high frequencies the vari-
ance is equal to the vacuum’s. Since the segment noise trace takes the variance
in single points (basically delta functions in time), each point includes the entire
detector bandwidth and will thus be dominated by the vacuum. In the figure,
a) and b) are from data recorded by the old and slow and the new and faster
homodyne detectors, respectively. While a) is from a kitten measurement with a
pump of x = 0.28, b) is from a single photon measurement where the pump was
much weaker, x = 0.12. This is the main reason for the lower variance peak, but
also the different detector bandwidths has a clear influence. For example, the
background level in b) is basically equal to the vacuum level of 1/2, although,
with the given gain, the variance of the background thermal state is 0.54 at DC.
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Figure 4.17: Segment noise traces of a) a kitten state measurement and b) a single pho-
ton state measurement. The traces show the point-wise noise variance of the recorded
segments, as explained in the text. In a), the light blue points show the variance ob-
tained from a selection of the segments recorded at anti-squeezed quadrature phases,
while the dark blue points are from squeezed quadrature phases. The orange points
uses all recorded segments. For the photon measurement, b), all phases have the same
variance, so there is only one trace. The brown curves show the modeled variances,
which fit well with the data when assuming a detector bandwidth of 25 MHz in a) and
200 MHz in b). The trigger delay is much larger in a) than the usual 30-40 ns due to
some extra delay cables we inserted to try to remove additional ringing that appears
after an APD click - a little bit of which can be seen in b) after the trigger at time 0.

The shapes of the squeezed and anti-squeezed segment noise traces can be the-
oretically modeled from the formalism in §3.4. For each point ti of the segment
noise trace, the signal mode function fs,i(t) should be centered around ti, and
it should have the shape of the impulse response of the homodyne detector –
or some approximation thereof, like a Gaussian, a double-sided exponential, or
a top-hat function with the width of the inverse detector bandwidth. The vari-
ances are obtained by calculating the expectation values

〈
X̂2

s,i
〉
,
〈

P̂2
s,i
〉
, using the

Wigner function obtained in each ti as the weight function. In Figure 4.17, this
modeling was performed, and decent fits were found using a top-hat temporal
mode function 25 ns wide (a ∼25 MHz wide sinc-function in frequency space)
for the kitten with the old detector, and a 3 ns wide top-hat function (∼200 MHz)
for the photon with the new detector.

4.5 Phase information

In a full homodyne state tomography measurement, the phase of the local oscil-
lator relative to the signal field is scanned across a range of at least π radians to
obtain marginal quadrature distributions at the different angles in phase space.
To do a proper state reconstruction, it is necessary to have a way of determining
the phase for each recorded quadrature value. We have taken two significantly
different approaches to this non-trivial experimental challenge, related to the
two different cavity locking methods described in §4.3.3. The phase information
is less important for phase independent states such as photon number states
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than it is for e.g. the kitten state with its marked phase dependence. Thus, while
it is possible to obtain the phase information also for the single photon state –
although not without additional complications for the second method described
below – it is in practice not really necessary; one can just scan the phase arbitrar-
ily and note that there is no change in the quadrature distributions.

4.5.1 Calibrated, continuously-scanned phase

Most of the time during this project, we have taken the approach of continuously
scanning the phase of the local oscillator (by a piezo-mounted mirror) during the
course of a measurement. In principle, then, each recorded quadrature point has
a different phase value from the others. In the subsequent analysis, the points
can then be grouped together in bins of similar phase values, or the point-by-
point maximum likelihood method [89] described in §2.4.2 can be used for the
reconstruction. We obtain the relative phases between the points from a cali-
bration of the relation between the piezo scan output voltage and the measured
phase of a coherent seed beam.

Before the beginning of a measurement, we plan what kind of phase scan we
need. The basis is the number of segments to record in a single measurement
sequence (usually 20,000), and the expected count rate of the trigger APD. These
numbers give the duration of a single sequence, uninterrupted by the writing to
files. For the calibration to work properly, each sequence should be contained
within a single one-directional sweep of the piezo mirror, that is, it should be fin-
ished before the change of direction of the scan. Furthermore, the phase should
be scanned at least by π over one sequence, such that a tomographic reconstruc-
tion can be done on each 20,000-point sequence. A typical piezo scan setting is a
triangular 0.1 Hz sweep from -5 V to 5 V (before further amplification). See Fig-
ure 4.18 for an illustration. The calibration is performed by injecting a weak seed
beam into the OPO, and recording with the homodyne detector its interference
with the LO as the phase is scanned with this setting. The function generator
output is monitored on a second channel of the scope, which is set to trigger at
-4 V and to record until the turning point of the scan. The response of the piezo
transducer is not quite linear, unfortunately, but that just makes a proper cali-
bration that much more important. We record several traces of the interference
and fit each of them to a generalized cosine-function model defined by

y(t) = y0 + C cos(φ0 + ω1t + ω2t2),

that takes account of the nonlinear piezo response that is well modeled by the
parabolic time-dependence of the phase. We then take the average of the fitted
ω1 and ω2 values and use them for the calibrated time-phase relationship.

In the state generation measurements following the calibration, we initiate each
sequence recording at the same point of the piezo sweep, by setting up an addi-
tional trigger constraint on the scope; that the function generator output should
be above a certain value, otherwise it should not accept APD triggers. We take
this value to be a little later than the -4 V trigger point of the calibration mea-
surement, e.g. at -2 V, since the fit might be a little uncertain in the beginning.
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Figure 4.18: The scheme for phase calibration, as described in the text. The brown
(center) trace is the output from the function generator to the piezo amplifier. The
upper data points is a single recording of the interference between the seed beam and
the LO. The phase values above it are obtained from the cosine fit to these points, the
unbroken curve. The points in the bottom show a single 20,000 points sequence of a
kitten state measurement, initiated when the piezo voltage is -2 V.

With the settings mentioned here, there would be 3.5 seconds until the turn
of the sweep, so the count rate should be at least ∼6,000 c/s. Each recorded
segment of the sequence is accompanied by the time of its trigger event. This
time can then be converted into a phase value with the help of the calibrated
time-phase conversion function. Only relative phases within one sequence can
be faithfully determined with this method. We cannot expect that the phase at
the onset of one sequence is the same as that several sweep cycles later. This
can be seen from Figure 4.19, where 21 phase calibration traces recorded at con-
secutive sweeps (i.e. with 10 seconds distance) are plotted. The general shape
of the traces are very similar, but their phase offset drifts somewhat. In fact, a
reasonable phase stability within a single 2-3 second sequence is also not easy
to achieve. Acoustic noise as well as air flow over the optical table can easily
disturb the interferometer. Since we do not make direct measurements of the
phases but only infer them from the calibration, these disturbances must be lim-
ited to a minimum. We did that by covering the entire table in heavy plastic
sheets hanging from the overhead shelf – a very cheap but efficient solution.
Still, all movement in the laboratory has to be very slow to avoid turbulence. As
an example of the achievable phase stability, the average phase value at t = 4 s
calculated from the fits to the 21 traces in Figure 4.19 is (3.88± 0.08)π. Note that
this is the phase relative to at t = 0 s, so it excludes the phase offset drift.

Since we cannot assume all the segments to have the same global phase, we do
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Figure 4.19: 21 consecutive phase calibration traces. Their order is indicated by the
colour, light to dark. The fairly good short-term stability can be seen from the similarity
of the shapes, while the less good longer-term stability gives the drift in phase offset
from trace to trace.

individual tomographic reconstructions for each sequence/file. The resulting
Wigner functions will then be noisy due to the few points measured, and they
will have different directions in phase space. To make an average, all the Wigner
functions must be rotated to have the same direction. There is nothing disputable
about that procedure; it is just a correction for the fact that the irrelevant global
phase drifts over time.

4.5.2 Phase-locked local oscillator

With the installment of the shutter-based cavity locking scheme, we have been
able to take advantage of the injected seed beam for real-time phase measure-
ments. On top of that, we can also lock the phase, such that several conditioned
homodyne measurements can be performed at (roughly) the same angle in phase
space.

Including the seed beam, there are three fields whose phases we must consider:
The seed (φs), the down-converted quantum field (φq), and the local oscillator
(φlo). As usual the global phase is irrelevant and the relative phases between the
fields are interesting. The phase difference that we want to control is φlo − φq,
since that defines the direction in phase space of the homodyne measurement.
We can not directly observe this relative phase between the quantum field and
the LO, though, because the quantum field (in our case at least) does not have a
coherent component and hence does not make an interference pattern with the
LO.3 That is why the seed beam becomes useful, acting as an intermediate phase
reference. First we lock the seed to a fixed relative phase φs − φq = ϕ, to be kept
constant throughout the measurement, and next we monitor the interference of
the seed and LO and extract their relative phase φlo− φs, which through the first

3One could in principle use the variance as a phase indicator in the case of squeezed vacuum
from the OPO. In practice it is a way too weak and noisy signal, though.
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Figure 4.20: Scheme for phase locking with injected seed beam.

lock is equal to φlo − φq − ϕ. The constant ϕ is just a global phase which will be
responsible for the direction of the measured Wigner function in phase space.

The full phase locking scheme is illustrated in Figure 4.20. The locking of the
seed and quantum field phases is done indirectly, via the parametric gain of
the seed beam. The method works only when the injected seed is at the de-
generate frequency, since the parametric gain of non-degenerate frequencies is
phase-invariant. Hence, to make the scheme work for the photon generation
experiment (which we did not try so far), we would need to inject beams of
both the degenerate and the non-degenerate frequencies; the non-degenerate is
necessary for the cavity locking. It is easy to lock the seed beam to a certain
gain. We take out the signal for the lock from the trigger arm, after the tapping
beamsplitter, to avoid additional losses of the signal field. A glass plate reflects
a few percent of the trigger light onto a standard photodetector which thus sees
the phase-dependent gain of the seed beam. We choose an arbitrary gain value
(lower than the maximum gain) as the set point for the lock, and a simple PI
routine in the same LabView program, that also runs the shutter sequence, out-
puts a feedback voltage to a piezo transducer on a mirror in the seed beam path
before the OPO. By locking the seed to a specific gain value, its phase is at the
same time fixed relative to the down-converted field, since both the gain and the
down-converted phase originates from the pump beam’s phase; when the clas-
sical parametric gain is maximum, the seed is in phase with the anti-squeezed
quadrature, and so on. The set point of the gain lock in turn determines the
value of ϕ.

The seed beam follows the path of the squeezed vacuum towards the homo-
dyne detection arrangement. Here it interferes with the LO to give the overlap
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intensity in one arm

Ilo+s = Ilo + Is + 2
√

Ilo Is cos(φlo − φs).

The homodyne detector cannot be used to monitor the interference, since it satu-
rates for the strong seed beam that is required for good signal-to-noise ratios for
the other locks. Instead we have a sensitive photodetector monitoring the leak-
age through a mirror used to steer the beam towards the homodyne detector.
The mirror is highly reflecting – about 99.9% – but the small residual leakage
is enough to give a clear signal. The size of this signal indicates the phase dif-
ference between LO and seed, according to the cosine interference pattern. The
phase φlo − φs is not ambiguously determined, though, from this single num-
ber; a given Ilo+s value corresponds to two different phase values. Furthermore
there is a large uncertainty in the phase around the maximum and minimum of
the interference fringe. To get an unambiguous phase determination, we create
an interference signal shifted 90◦ relative to the original. An EOM in the LO
path before the homodyner modulates the LO phase weakly at Ωlo = 18 kHz,
which in turn causes a modulation of Ilo+s. The interference term of Ilo+s is then
proportional to

cos
[
φlo − φs + M cos(Ωlot)

]
≈ cos(φlo − φs)− sin(φlo − φs)M cos(Ωlot),

where the modulation depth M is assumed small. By demodulating the 18 kHz
component of the interference signal in a lock-in amplifier (i.e. multiplying with
cos(Ωlot), followed by low-pass filtering), we obtain a signal proportional to
− sin(φlo− φs). With this sine, together with the cosine of the DC component, as
inputs to the LabView program, the phase between LO and seed is calculated,
and a PI loop can lock the phase to any desired value through feedback to a
piezo mirror in the LO path. An example of a kitten state recorded with this
phase locking is shown in Figure 4.21.

When the seed beam is continuously on, the phase can be stabilized to within
±2◦. During measurements, the seed must be switched on and off with the
shutter, and the program must keep the output voltages to the two piezo mirrors
constant during the periods without seed (see Figure 4.12 for the sequence). The
lock becomes somewhat more unstable from the switching, and small phase
drifts during the unlocked periods add to the increased phase uncertainty of
roughly ±5◦.

The method outlined here for measuring and locking the phase difference (up
to the global phase ϕ) between the LO and the down-converted field ought to be
further improved for long-term reliability. As it is, it is susceptible to changes of
either the blue pump power or the power of the seed beam. Before locking, the
gain detector is calibrated by blocking the blue light, such that we get the G = 1
level. If the seed power changes or drifts during a measurement, this calibration
no longer holds, and we will lock at a different gain than intended. A change in
the blue power will not disrupt the calibration but will alter the gain dependence
of phase (G(φp) from (4.6)), such that the set gain no longer corresponds to the
same phase φs − φq. Setting a small value of the gain lock point reduces the
effects of blue power drifts, though, since the inverse of the G(φp) function has
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Figure 4.21: Kitten state with fairly high gain, x = 0.46, measured with phase locked
local oscillator in 15◦ intervals. 10,000 points are shown here for each phase setting, and
below each group of points is shown the histogram of the points, that is, the quadrature
distribution. The squeezed phase angles are most sensitive to fluctuations and instabili-
ties of the phase, and small glitches and drifts can be seen there if looking carefully. The
asymmetry of the distributions could be due to some contamination in the signal by a
coherent field – probably originating from the local oscillator.

a smaller x-gradient (blue power dependence) for small G values. Anyhow, for
improved long-term phase stability, the optical powers of the seed and pump
beams should be stabilized.





Chapter 5

Data presentation and analysis

In this chapter we will analyze in detail the data obtained in the kitten state and
single photon state generation experiments.1 I have selected 8 different mea-
surement series to be studied; 6 for the kitten state and 2 for the single photon.
These were selected as representatives of different experimental conditions, and
are each among the best results we have obtained for the given conditions. They
are not in any way particularly “lucky shots”, though, apart from the fact that
they were obtained at times when various experimental imperfections plagu-
ing other series had been diminished. Such imperfections could be fluctuating
phases, too high propagation or intra-cavity losses, detector saturation due to
too tight focusing on the diodes, unstable cavity locking, etc.

5.1 Presentation of the data sets

The 8 representative data series are labeled ks1-6 for the kitten measurements
and sp1-2 for the single photon measurements2. The most important experi-
mental parameters for each series are listed in Table 5.1. These parameters are
the maximal classical parametric gain G (and corresponding pump parameter x),
the transmittance of the tapping beamsplitter T, and the directly assessable effi-
ciency factors. These are the OPO escape efficiency ηesc, propagation efficiency
from OPO to detector ηpr, homodyne beamsplitter overlap (visibility squared)
ηhd, detector quantum efficiency ηqe, and an efficiency factor ηen related to the
electronic noise. The overall signal arm efficiency ηs is the product of these
factors. ηqe and ηen are associated with the detection only and not the state gen-
eration. Hence, for a more true estimation of the generated state, these terms
can be corrected for in the reconstruction procedure. Finally, the size of the data
set is listed as (number of sequences)×(segments per sequence)×(samples per
segment). In all cases the sampling rate was 500 MS/s.

1As before, the vacuum-subtracted thermal states from the NDOPO operation will be referred
to as “single photon states”, although they also contain vacuum and higher photon numbers.

2For local reference: the data set file locations are; ks1: 20060209/cat2; ks2: 20060215/cat1; ks3:
20060907/cat1; ks4: 20060907/cat5; ks5: 20080402/cat4; ks6: 20080402/cat3; sp1: 20061107/sps2;

107
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label G/x ηesc ηpr ηhd ηqe ηen T data size

ks1 2.3/.34 .86 .91 .962 .90 .90 .97 49×20,000×1000
ks2 1.8/.25 .86 .91 .962 .90 .91 .93 50×20,000×1000
ks3 2.8/.40 .95 .96 .972 .90 .96 .95 10×20,000×1000
ks4 1.9/.27 .95 .96 .972 .90 .96 .93 19×20,000×1000
ks5 3.4/.46 .94 .97 .962 .98 .96 .95 (12×5)×10,000×500
ks6 2.0/.29 .95 .97 .962 .98 .91 .95 (12×5)×10,000×500

sp1 2.0/.29 .95 .92 .972 .98 .92 - 9×20,000×1000
sp2 1.3/.12 .95 .92 .972 .98 .92 - 9×20,000×1000

Table 5.1: Experimental parameters for the selected data sets.

The loss/efficiency ηen due to the dark (electronic) noise of the homodyne de-
tector circuitry requires some explanation. This dark noise clearly contaminates
the measured light noise. In standard sideband squeezing measurements, the
noise power (variance of the photocurrent) is observed. Since the light noise and
the electronic noise are uncorrelated, they add in quadrature (assuming both are
normal distributed), so the electronic noise can be directly subtracted from the
overall noise to obtain the noise variance originating from only the light – this
was done for the squeezing trace in Figure 4.8. When measuring the noise am-
plitude instead of the variance, which we do in the time domain detection, the
electronic noise can not so easily be deducted, and it becomes an integral part
of the state statistics. As shown by Appel et al. [3], the effect is equivalent to the
addition of yet another virtual beamsplitter with efficiency (transmittance)

ηen = 1−
〈∆N2

el〉
〈∆N2

vac〉
,

where ∆N2
el and ∆N2

vac are the variances of the recorded electronic (dark) noise
and vacuum noise, respectively. Here, the recorded vacuum noise includes both
the light and electronic noise. This efficiency term can clearly be improved by
increasing the local oscillator optical power and thereby the vacuum variance,
but, as we have seen in §4.4.1, a too high power will lead to detector saturation
and correspondingly decreased efficiency. The noise variance ratio in the for-
mula above can be measured for different frequencies on a spectrum analyzer,
but what really matters is the ratio within the chosen temporal mode function.
Therefore, we always record a sequence of the electronic noise as well as one or
more vacuum sequences, such that we can evaluate this ratio. Different mode
functions will include the spectral components with different weights, so the
ηen values listed in Table 5.1 are only guiding numbers, obtained from a simple
double-sided exponential fs(t) with the decay rate of the OPO (which, by the
way, is γ/2π = 4.6 MHz for ks1 and ks2, and γ/2π = 4.2 MHz for the other
series). The values are also upper estimates only; in the case that some classical
noise is present in the local oscillator, such that the detection is not fully shot
noise limited, the 〈∆N2

vac〉 term will overestimate the actual shot noise variance.

sp2: 20061107/sps3.
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Notes on the measurements

The following are brief comments on the 8 selected measurement series and
explanations of the difference of the parameters in Table 5.1. Pairwise (ks1+2,
ks3+4, ks5+6, sp1+2), they represent basically identical experimental conditions,
with a high gain and a low gain measurement in each case.

• Series ks1-2 used potassium niobate (KN) as the down-conversion crystal,
while the others used PPKTP, giving much better OPO escape efficiencies.

• Series ks1-4 were measured on the old homodyne detector with low quan-
tum efficiency and somewhat slow response, while ks5-6 and sp1-2 used
the new improved detector.

• Series ks5-6 were carried out with the new phase-locked acquisition scheme.
The phase intervals were 15◦ over a range of π radians (12 different an-
gles), and for each phase, 12 data sequences of each 10,000 segments were
recorded. Each segment was made shorter, spanning only 1 µs, since the 2
µs span of the other series were a little excessive.

• The propagation efficiencies of ks1-2 were low because of an unnecessarily
involved path towards the beamsplitter overlap with the local oscillator - a
path which was optimized in later measurements. The low propagation ef-
ficiencies for the single photon series were also due to a long path towards
the homodyne detector. This path was more difficult to make efficient,
since the ω+ signal mode should be reflected on filter cavity 1 first.

• The visibilities of the homodyne beamsplitter overlap are unfortunately all
rather low. Within recent times we have regularly achieved 99% or higher
visibility, but in the measurements we ran with such high visibilities, there
always seemed to be other problems, resulting in non-ideal data.

• The gain values stated for the photon series are the phase sensitive degen-
erate parametric gains, just as for the kitten series. They were measured by
injection of a degenerate frequency probe instead of the usual frequency
shifted probe beam for cavity locking.

Expected Wigner functions

To get a first impression of the kind of states we should expect to see from the
data, theoretical Wigner functions based on the parameters from Table 5.1 are
plotted in Figure 5.1. They are calculated from the formalism in §3.4, with the
simple exponential mode function fs(t) =

√
γe−γ|t| (remembering that this is

not necessarily the optimal choice, especially for high gain levels). Apart from
the parameters already listed, the value of the trigger path efficiency is set to
ηt = 0.1 – it may not have been exactly this number in all the measurements,
but the parameter has only little influence on the outcome, so an approximate
number is fine. Furthermore, the trigger filter bandwidth is set to κ/2π = 12
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Figure 5.1: Theoretically expected Wigner functions for the 8 data series. Front row, left
to right: ks1-4; back row, left to right: ks5-6, sp1-2.

MHz. The model developed in §3.4 assumed just a single Lorentzian frequency
filter with bandwidth κ, but the combination of the three filter cavities with
bandwidths 25/25/75 MHz can be roughly approximated by a single filter with
a bandwidth around 12 MHz.

From the plotted functions we see that we should hardly expect any negativity
from the raw data of ks1 and ks2, due to their low ηesc and ηqe values. From
the other states, however, regions around the origin of negative Wigner function
values should be obtained. The ks3 and ks5 states clearly have a higher ampli-
tude than the other kitten states because of their higher pump levels. For the two
single photon states, ps2 should be a bit more pure than ps1, due to the lower
gain and therefore lower 2-photon contribution.

5.2 State reconstruction

5.2.1 Introductory remarks

We use the iterative maximum likelihood method, described in §2.4.2, to estimate
(reconstruct) the density matrix – and from that, the Wigner function – of the
state underlying the observed quadrature distributions. In all calculations we
truncate the Hilbert space at a maximum photon number M = 15.

Some of the Wigner functions will, for clarity, be presented as contour plots
instead of the 3D surface plots. An example is shown in Figure 5.2, together
with the colour legend. The plotted values are π times the real Wigner function
value. Each contour interval corresponds to a change in πW(x, p) of 0.05. The
plot range is always [-4 ; 4] in x and [-2 ; 2] in p – the same goes for the 3D
surface plots.
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Figure 5.2: Example of a Wigner function contour plot, together with the colour legend.
The plot range goes from -4 to 4 in x and from -2 to 2 in p. The bold contour defines the
zero-crossing around the origin.

5.2.2 Investigations of the reconstruction method

As mentioned previously, the reconstruction procedure can be performed with
each individual phase/quadrature data point (θ, qθ) as input, or the data can be
binned into a 2-dimensional histogram of phase and quadrature before starting
the iteration. For the phase locked measurements, ks5 and ks6, it only makes
sense to use the binned approach, since they are already recorded in phase bins.
The resolution of the quadrature binning, dq, can then be made sufficiently
small to catch the essential shape of the distributions. For the other measure-
ment series with scanned phase, the point-by-point approach is more natural.
It is, however, slow compared to the binned method. For a typical sequence of
20,000 samples, each iteration step of the point-by-point approach requires the
evaluation of 20,000 weighted projectors, (1/ pri)Π̂i, in the expression for the
iteration operator R̂(ρ̂(k)) (2.30). The projectors themselves are fixed for a given
data set, so they are calculated before starting the iteration, but the weight fac-
tors, pri = tr[Π̂iρ̂

(k)], must be evaluated in each step. In contrast, for binned
data with #θ phase bins and #q quadrature bins, only #θ #q weighted projectors,
( fθ,j/ prθ,j)Π̂θ,j, must be evaluated for each R̂(ρ̂(k)) in (2.29). With a reasonable
binning of #θ = 12, dq = 0.1 (#q ∼ 100, depending on the size of the state),
it is on the order of 10 times faster to used binned than single-point data for a
sequence of 20,000 samples. For larger data sets it is even faster – such as ks5
and ks6 where all 60 sequences easily can be lumped together in one big 2D
histogram. Although the data set is larger, the dimensions of the histogram are
the same, so the iteration step time will not increase.

Convergence and binning

For the sake of speed of the reconstruction, the phase-scanned data series should
be binned as well. One can imagine, though, that this binning causes a loss of
information and therefore gives less correct results. Another relevant question is
how many iterations are necessary before the algorithm has converged to a final
estimate of the density matrix. As for the latter, Figure 5.3 plots the change in
the density matrix estimate per iteration step. The distance measure used is the
trace distance [113, §9.2]

δ(ρ̂1, ρ̂2) =
1
2

tr |ρ̂1 − ρ̂2|,
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Figure 5.3: The trace distance between consecutive state
estimates, showing the convergence of the iteration algo-
rithm towards a fixpoint. k is the iteration step number.
The brown, orange and yellow values are from a stan-
dard 20,000-samples sequence; one reconstructed point-
by-point (brown), and the other two with different bin-
nings. The blue values are for a full phase-locked data
set of 600,000 samples, but otherwise in bins similar to
those for the orange points.
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Figure 5.4: Wigner function
contour plots for a single se-
quence of ks4, reconstructed
with a) the point-by-point
procedure, b) the finest bin-
ning from Table 5.2 (48/.1),
and c) the coarsest binning
(6/.5).

where |ρ̂| =
√

ρ̂†ρ̂, and the square-root can be taken as the Cholesky decomposi-
tion. As the number of iterations increase, the change from step to step becomes
smaller and smaller, so the reconstruction converges towards a fixpoint. The
necessary number of iterations apparently do not depend much on the binning
method – for a given 20,000-samples sequence, the plot in Figure 5.3 is essen-
tially the same for the point-by-point and binned data (but remember that the
time per iteration is much longer for the point-by-point approach). The conver-
gence of the reconstruction of a full phase-locked data series is also plotted, and
there is little difference among these different types of data and histograms.

The question of how finely the phase-scanned data should be binned in order
not to lose too much information is addressed in Table 5.2. Here, the same ks4
sequence as before was reconstructed with 12 different binnings, as well as point-
by-point. In each case, the iteration was halted when it reached a breakpoint of
10−5 in the trace distance between consecutive density matrix estimates. The
table shows for each bin setting the trace distance between the density matrix
reconstructed with that setting and the density matrix obtained from the point-
by-point setting, as well as the πW(0, 0) values. The Wigner function values are
almost immune to changes in the phase binning, but is deteriorated a bit for the
large dq = 0.5 quadrature bins. This is not strange, since the origin of phase
space has no phase – the W(0, 0) value depends only on the photon number
distributions, not the off-diagonal density matrix elements containing the phase
information. On the other hand, the trace distance to the point-by-point result
becomes significantly smaller with more phase bins but depends only weakly
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#θ

dq 6 12 24 48

0.5 .161 .089 .052 .041
-.085 -.081 -.082 -.082

0.2 .163 .087 .045 .025
-.136 -.135 -.137 -.138

0.1 .163 .087 .045 .024
-.140 -.140 -.140 -.142

Table 5.2: The effect of different settings for phase- and quadrature binning. A
20,000-samples sequence of ks4 was reconstructed with iterations until a breakpoint of
δ
(
ρ̂(k−1), ρ̂(k)) = 10−5. With the point-by-point method, the estimated Wigner function

has a value in the origin of πW(0, 0) = −.145. For the various bin settings, the corre-
sponding πW(0, 0) value is listed as the second number (negative). The first number of
each entry is the trace distance to the point-by-point estimated state – which we must
assume is the most accurate estimate on basis of the given data.

on the quadrature binning. It is fair to assume that the point-by-point approach
gives the most accurate reconstruction based on the available data, and clearly
the binning in both θ and q must be rather finely meshed in order to make
the binned results very similar to the point-by-point results. We are talking
about minor details, though: Figure 5.4 shows three of the reconstructed Wigner
functions – the point-by-point one, the one obtained with the finest binning in
both θ and q, and the one with the coarsest binning of those in Table 5.2. In
particular the first two are practically impossible to recognize from each other,
while the last one, with the #θ = 6/dq = 0.5 setting, is pretty close as well.
Hence, as a compromise between speed and information, we choose the setting
#θ = 24/dq = 0.2 for most of the following reconstructions.

Initial density matrix

So far, all the iterations have been started with the identity matrix (normalized)
as the initial density matrix estimate ρ̂(0). In fact, the choice of the initial esti-
mator has basically no influence on the outcome of the reconstruction. It seems
to be important, though, to have non-zero elements in the diagonal – otherwise
some numerical errors accumulate, and after some steps, the iteration procedure
becomes unstable (at least for our implementation). It is, for example, impossible
to reach a result with the vacuum state as input, but if all the other diagonal ele-
ments have just a tiny non-zero component, the procedure converges nicely. This
is seen in Figure 5.5 where the convergence from such a vacuum state is plotted
together with that from the identity matrix and from a randomly generated den-
sity matrix with non-zero entries in all the off-diagonal entries as well. The plot
for the vacuum state has a couple of small kinks in the beginning, but otherwise
it is very similar to the other two (and most other possible initial states). Fur-
thermore, the resulting estimated states with the three different ρ̂(0) are basically
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Figure 5.5: Convergence of the reconstruction with three different initial density matrix
estimates. The vacuum state has a value of 10−6 in each diagonal element apart from
the ρ00 which is 1. The sequence was the same as that used in the previous figures.

identical; the maximum trace distance between any pair of the three is 3× 10−6.

Test on artificial data

To further justify the use of the maximum likelihood algorithm and demonstrate
its ability to reconstruct to a high precision an observed quantum state, we per-
form a test on artificially generated quadrature data, where we know a priori the
true state. As the test case, we choose an arbitrary density matrix resulting from
the reconstruction of one of the phase-scanned sequences. The marginal quadra-
ture distributions are calculated for 100 phase angles between 0 and π, and for
each phase angle, a number of simulated data points are generated randomly
according to the relevant distribution. The phase angles are so closely spaced
that they simulate a phase-scanned measurement.

10 short sequences with 20,000 points each and a single long one with 600,000
points are simulated and reconstructed after binning into histograms with either
#θ = 24/dq = 0.2 or #θ = 48/dq = 0.05 and using different iteration breakpoint
settings (the most detailed of these iterations takes a really long time!). The trace
distance to the true state, as well as the πW(0, 0) values are summarized in the
following table, where the numbers given for the 20,000 samples are the mean
of the 10 sequences.

#θ = 24/dq = 0.2 #θ = 48/dq = 0.05
bp = 5× 10−6 bp = 5× 10−7

20,000 samples δ(ρ̂est, ρ̂true) .061 .054
πW(0, 0) -.136 ± .024 -.145 ± .024

600,000 samples δ(ρ̂est, ρ̂true) .037 .022
πW(0, 0) -.128 -.136
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Figure 5.6: Reconstructions of the first 6 of the sequences in the ks1 data set. Their
directions in phase space vary a bit because of drifts in phase between their respective
measurements. To be able to estimate an overall average from the series, the states must
be rotated to have the same direction.

For the true test state, πW(0, 0) = −.138. We see that the agreement naturally
gets better for the improved binning, but just as importantly, that more samples
with better statistics give a more accurate state estimation. This is of course no
big surprise, but it reminds us that a possible mismatch between a reconstructed
and a true state is not necessarily due to the algorithm, but can also come from
the data themselves. The fact that the standard deviation of the Wigner function
value for the 10 short sequences is the same for the detailed and the rough
estimation shows that this uncertainty is inherent in the data – basing a state
estimate on only 20,000 samples introduces more error in the state estimation
than choosing a slightly rougher binning for the reconstruction. Finally, another
testament to the closeness to the true state of the detailed reconstruction of the
600,000 samples sequence is the fact that the difference of their Wigner functions
nowhere in phase space exceeds 0.02 – simply looking at their Wigner functions
it is very hard to see any difference.

It is clear that the iterative maximum likelihood method gives a quite good es-
timate of the observed state. The precision of the reconstructed state is mostly
limited by the number of data samples and the time available for the fairly heavy
numerical algorithm. A finer binning and more iteration steps allow for a better
estimate, but require proportionately longer time.

5.2.3 Full reconstruction with simple exponential mode function

Having established the robustness of the maximum likelihood reconstruction
method, it is time to have a closer look at the recorded data and estimate their
states. For the most direct comparison to the theoretical expectations from Fig-
ure 5.1, we start out with the simple exponentially decaying temporal mode
function with decay rate equal to γ. For the iteration, we use the binned ap-
proach with #θ = 24/dq = 0.2 (for ks5-6, #θ is naturally 12, from the nature of
the data), and halt the iteration at a breakpoint of 5× 10−6.

As explained in §4.5.1, the phase offset is not the same from sequence to se-
quence in the phase-scanned measurements. Therefore they can not immedi-
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ately be reconstructed as one big data set, as is the case for the phase-locked
series. Figure 5.6 shows individual reconstructions of the first 6 out of the 49
sequences of ks1. They are clearly not oriented in the same direction, so to get a
state estimate based on the entire data set, each of the individual reconstructions
must be rotated to have the same angle, such that an average can be taken. This
rotation can be done either before or after the reconstruction. If done before, the
phase values can be shifted by a suitable amount to get the maximum variance
at 0 degrees. If done afterwards, the density matrix elements can be multiplied
with a phase factor corresponding to the angle of the state in phase space. The
fastest way is to rotate first, since the reconstruction then needs to be done, not
many times, but only once on the histogram containing all the data.

In Figure 5.7, Wigner functions of all of the eight reconstructed states are plotted,
together with the theoretical expectations (same as in Figure 5.1). Also shown
are the reconstructed states obtained by shifting the mode function fs(t) away
from the time interval where the trigger and signal modes are correlated. These
results are then the “background states”; squeezed vacuum and thermal states.
When comparing the measured with the expected states, it is first of all clear
that the overall shape and dimensions of the Wigner functions match very well,
both for low gain and high gain kittens and for the photon states. A single
exception is ks5, which is a bit smaller than expected – most likely, the gain has
changed a little from when it was measured to the time of the state generation
measurement, or the G = 3.4 was a bit off. Another detail is that the two
phase-locked states, ks5 and ks6, seem a little wobbly in the phase. They do not
have the smooth rounded shapes that ks1-4 do. This indicates that either a) the
phase fluctuations while locked are too large, or the phase is not determined
precisely enough, or b) 12 different angles in phase space is too little for a high
azimuthal resolution of the reconstructed Wigner function. Whether a) or b) is
the dominant cause needs to be investigated further, but probably a) is the best
guess, since the phase locking system is not yet fine tuned – and on top of that,
not so much care was taken in keeping air flow down in the ks5-6 experiments
as in the others.

Although the general shapes of the measured states are very close to expecta-
tions, the dips of the Wigner functions are not quite as deep as they should be.
This particular feature of the Wigner function is extremely sensitive to losses and
impurities, as we have seen before, so the discrepancy between data and theory
indicates that there are further experimental inefficiencies apart from those al-
ready accounted for. The following table lists the additional efficiency factors
needed in the theoretical models to bring the expected W(0, 0) values on par
with those observed. Another adjustable parameter of the theory that has not
been included yet is the modal purity Ξ. The table also lists the Ξ factor that
would lead to agreement between theory and experiment:

ks1 ks2 ks3 ks4 ks5 ks6 sp1 sp2

extra ηs .96 .92 .95 .93 .80 .86 .90 .90
Ξ .97 .93 .96 .94 .85 .87 .92 .91
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Figure 5.7: Wigner functions for the 8 states. In the first column are the reconstructed
“background states”, that is, squeezed vacuum and thermal state, while the second
column shows the corresponding conditioned states. These should be compared with
the theoretical expectations in the third column. The numbers are the πW(0, 0) values.
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It is hard to say with certainty what the sources of the discrepancies are, and also
whether they are primarily ηs terms or Ξ terms. The latter describes dark counts
and false clicks from uncorrelated photons slipping through the filters. There
is certainly a small amount of dark counts in each measurement, corresponding
to Ξ = 0.98− 0.99, but we do not know for certain whether some unintended
photons manage to make the way through the filters. In theory there should
not be, but there might be some unfortunate cavity mode overlaps, e.g. due to
imperfect mode-matching. It should be possible, in principle, to estimate the
amounts of Ξ versus ηs, since they influence e.g. the segment noise variance
or the Wigner function itself in different ways. The difference is rather small,
however, so it is almost impossible to distinguish between the few percent that
we are talking about – especially due to the uncertainty on other parameters of
the model.

For the worst series, ks5 and ks6, there are a couple of possible sources of the
additional inefficiency: At the time we made those measurements, the EOM
modulating the SHG pump beam for the Pound-Drever-Hall lock was located
before the point, where the beam for the local oscillator is split off. Thus, there
was also a huge 18 MHz modulation on the local oscillator – too large to be
balanced out in the homodyne detection. Most of this classical noise is filtered
out by the temporal filtering, but not all, so the detection was not completely shot
noise limited. Also for the other measurement series, some uncanceled classical
noise could be one cause of additional losses. Another cause could be saturation
of the homodyne detector. Especially for ks5, which is more degraded than ks6,
this is a plausible bet, since the only difference between ks5 and ks6, apart from
the higher gain, was that we increased the power of the local oscillator (as is
reflected in the different ηen factors in Table 5.1).

5.2.4 The choice of mode function

One of the most interesting aspects of the combination of the continuous-wave
light with the discrete-time state conditioning is the localization of the condi-
tioned state – i.e., the question of which signal mode function fs(t) to employ, in
order to extract as much of the state as possible. Something, perhaps more im-
portant than finding the optimal mode function, is to investigate different non-
optimal shapes, and find to what extent they preserve the non-classical prop-
erties of the state. This is particularly important for further processing of the
states, for example for storage in atomic memories, where the local oscillator
might have to be optically shaped before the overlap with the generated state. It
may very well be infeasible to shape it according to an optimal mode function –
with regard to both the optical shaping method and the requirements for pulse
shaping for the memory. It is outside the scope of this work to theoretically
evaluate the optimal function, cf. the discussion in §3.4.1, but in the following
we will study the influence of different mode function choices on the outcome
of the measured and reconstructed states. The benchmark will be the W(0, 0)
value. Because of the focus on this number, the data will be finely binned in the
quadrature (dq = 0.05) and coarsely in the phase (#θ = 6 or 12). The iterations
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Figure 5.8: Wigner function values in the origin, obtained by varying the decay pa-
rameter γs of the simple exponential mode function in the quadrature extraction of a)
ks3 and b) sp2. The curves are theoretical expectations for different parameters, where
the efficiency ηs has been adjusted for the best fit with the data. The orange curves
are the expectations based on the independent estimates of the model parameters used
previously. In a), the lower of the two orange curves, as well as the yellow and blue,
have been corrected for the effect of the slow detector – a reasonable agreement with the
data was found by assuming a Lorentzian spectrum with a half-width of 18 MHz. The
numbers for γ, κ and γs are in units of 2π MHz.

will be halted at a rather early breakpoint of 5× 10−5 to save time – the trade-off
in the Wigner function depth is still rather small at this point.

Variation of the simple exponential mode function

We stay with the simple exponentially decaying mode function that we have
used so far for another little while. But now we vary the decay parameter γs,
and thus the width of the mode function. The modeled dependence of γs on the
Wigner function is given in Figure 3.15a) (DOPO) and Figure 3.18a) (NDOPO)
for unity efficiency. The experimentally obtained dependencies are plotted in
Figure 5.8 for two test series, ks3 and sp2, together with the theoretical predic-
tions for different model parameters. As we saw before, the efficiencies are not
well determined from the independent estimates, so they have been adjusted in
each case to match the data. It is clear that the predictions based on the param-
eters assumed so far (orange curves) do not fit the data very well. The optimal
region for γs is at higher values than expected, so either the OPO bandwidth γ

or the trigger filtering bandwidth κ, or both, seem to be estimated too low. The
yellow and blue curves show two attempts to remedy the situation by adjust-
ing only γ (yellow) or both numbers (blue). They give almost exactly the same
prediction, so there is no clue from here about which is more correct. Actually,
it is most reasonable that κ is wrong, since it is just an estimated number used
to approximate a single Lorentzian frequency filter to the more correct triply
Lorentzian from the three cavities. It is not possible, though, to get a fit to the
data by only adjusting κ – γ must be increased a little as well. The apparently
larger-than-expected OPO bandwidth could be due to a slightly wrong measure-
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Figure 5.9: πW(0, 0) values of the reconstructed ks6 state, obtained for a simple expo-
nential mode function shifted by ts relative to the trigger time.

ment of the output coupler transmittance, or possibly because the light-induced
losses are higher than estimated. In the latter case, it would also explain part of
the discrepancy on the ηs parameter (although for ks3 it is not much off).

As for the optimal width of the mode function, for ks3 it is around γs/2π = 4.9
MHz; for ps2 it is indeed at γs/2π = 4.2 MHz. But the precise choice is a matter
of peanuts – within a range of about 1 MHz, the value of W(0, 0) changes only
on the third decimal. This is comforting knowledge, meaning that there is some
leeway in the selection of mode function.

A note about Figure 5.8a): ks3 was recorded with the old, slow detector, so the
points at high γs values are seemingly better (lower) than expected. The reason
is of course, that the actual mode function becomes a convolution of the selected
digital mode function with the detector response. This can be taken into account
in the theoretical modeling, so the yellow and blue curves, as well as the lower
of the two orange ones, are corrected for a detector with a Lorentzian spectrum
with half-width 18 MHz. The upper orange curve is uncorrected.

Another way to vary the exponential mode function is to change its time offset.
It is quite obvious that the state will degrade when the mode function is moved
away from the time of the trigger click, but it is still interesting to see how much
it degrades. This is done in Figure 5.9 for the ks6 series. The decay rate of the
mode function was chosen as 4.2 MHz, although the optimal is probably a bit
higher, referring to what we saw before. The plot shows that the timing of the
mode function (or shaped local oscillator) is rather critical. A shift of only a few
ns will significantly decrease the quality of the selected state. After a shift of
200 ns, there is basically only squeezed vacuum left. We can also see from the
plot that the trigger delay for this particular series, estimated earlier from the
segment noise variance, is a little bit off – the mode function should be shifted
by 1-2 ns to gain the optimal Wigner function value.

The time shifted plot can also give a hint about the shape of the optimal mode
function, since the procedure of taking a shifted mode function and integrating
over the product of that and the data in a way corresponds to taking a convolu-
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tion of the “real” shape of the state with the shape of the mode function.3 It is a
very resource-expensive way to find the optimal mode function, though, due to
the many data extractions and reconstructions needed.

Other shapes

To test the robustness of the generated states against variation in the mode func-
tion shape, and to possibly find a better match, we try out a number of different
(all real) mode functions. The chosen classes of test functions are the following
(without normalization factors), where B is just a general name for the band-
width parameter:

fs,1(t− tc) = e−B|t−tc|

fs,2(t− tc) =
1
B

e−B|t−tc| − 1
B2

e−B2|t−tc|

fs,3(t− tc) = e−B2(t−tc)2/2

fs,4(t− tc) =

{
1 ,−B−1 ≤ t− tc ≤ B−1

0 , otherwise,

fs,5(t− tc) =

{
1− B|t−tc|

2 ,−2B−1 ≤ t− tc ≤ 2B−1

0 , otherwise,

fs,6(t− tc) = e−B4(t−tc)4/2

(5.1)

fs,1 is just our old simple exponential. fs,2 is a convolution of two exponential
functions with different bandwidths B and B2. To a certain extent, it simulates
the smoothing due to the trigger filter cavities. fs,3 is a Gaussian, also a bit
smoother than the sharp exponential function. fs,4 is a completely square top-
hat function. The triangular fs,5 is a better match than the top-hat to the other
functions, although still having sharp edges. Finally, fs,6 is somewhere between
a square and a Gaussian function.

The low-gain single photon data set sp2 was used as the test case for recon-
struction with the different classes of mode functions. The parameters for each
type of function that give the lowest W(0, 0) value were estimated by brute force
trial-and-error. The optimal function within each class is plotted in Figure 5.10.
The optimal parameters are listed in Table 5.3 together with the resulting Wigner
function value. We see that the smoothened exponential as expected provides
slightly better results than the sharp exponential, but the difference is mini-
mal. Also other functions are very close – the Gaussian and triangular functions
achieve almost the same result, while the “square-Gaussian” is not too bad ei-
ther. The small differences between the functions make sense when calculating
their mode overlaps, which are quite high – see the last column in the table.
The conclusion of this is that the exact shape of the mode function does not
matter much, as long as the overall outline is approximately the same as those
in Figure 5.10. For fine tuning, a smoothened exponential mode function can

3The “real” shape is in quotation marks because there is no definite mode shape for high gains
– only shapes optimized with respect to some parameter, in this case the W(0, 0).
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Figure 5.10: Six different shapes of signal mode function. The bandwidths of each of
them have been optimized for the lowest value of W(0, 0) for the data series sp2. The
best of the six, fs,2(t− tc), is plotted in the right frame as well for comparison.

opt. param. [2π s−1] πW(0, 0) ηrelative overlap

fs,1 B = 4.2 -.227 .990 .998
fs,2 B = 6, B2 = 10 -.238 1 1
fs,3 B = 4.6 -.230 .993 .992
fs,4 B = 3.2 -.082 .863 .915
fs,5 B = 4.0 -.223 .987 .989
fs,6 B = 3.6 -.187 .955 .970

Table 5.3: Optimal parameters of the six different mode functions with respect to the
W(0, 0) value of the reconstructed sp2 state. ηrelative is the additional efficiency fac-
tor needed in the theoretical model to explain the degradation relative to fs,2, the best
among these functions. The last column gives the overlap

∫
fs,n(t− tc) fs,2(t− tc)dt with

fs,2. It should be noted that a range of different choices of the two parameters of fs,2
give essentially the same function and results, e.g. B = 4.6, B2 = 18.

be chosen – there might be other shapes which are even better, but they will
most likely be very similar to this. Finally, this analysis was performed for a low
gain NDOPO measurement, and the picture will probably be changed a little for
some of the higher gains.

5.2.5 Detector compensated reconstruction

We now do a detailed reconstruction of each of the eight series, using the mode
function fs,2 with its parameters optimized in each case for the deepest Wigner
function dip. Furthermore, we incorporate in the reconstruction procedure the
compensation for detector efficiency using the POVM in (2.31). That will show us
the states as they look, coming out of the generation apparatus, independently of
the subsequent characterization apparatus. We do not, however, compensate for
the overlap visibility with the local oscillator, since it is important for the gener-
ated states to be mode-matchable with another beam for subsequent processing.
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Figure 5.11: Wigner functions of the eight states, compensated for the non-unity detector
efficiency. The numbers in parentheses are the πW(0, 0) values.

The propagation efficiency will not be compensated for, either, although part of
the losses occur after the LO matching. Only the two factors directly involved in
the detection, ηqe and ηen, will be included in the compensation. The iteration
algorithm converges quite slowly when using compensation, so the data binning
used is only moderately fine; dq = 0.1 for all series, #θ = 24 for ks1-4 and #θ = 6
for the phase-independent sp1-2 (and naturally #θ = 12 for ks5-6). Although the
trace distance breakpoint is set rather low, at 2× 10−6 (corresponding to about
1000 iterations for ks1-4), the W(0, 0) is still improving at the time the iteration
is halted. The results could thus be improved slightly by running the iteration
for several hours, but the difference is small enough to be insignificant.

The resulting Wigner functions, which must be considered as the optimal that
can be extracted from our data, are plotted as contours in Figure 5.11, and – just
because they look so pretty – as 3D surface plots in Figure 5.12. We see that the
ks1 and ks2 states, even after compensation for the low-efficiency detector, are
of poorer quality than the other kitten states. The main reason is that they were
made with the old KN crystal, while the others used the much better PPKTP.

Fidelity

A parameter that we have neglected a bit throughout this chapter for the sake
of simplicity is the fidelity. We make up for that in Figure 5.13 with cat-state
fidelities of the kitten states in a) and the photon number distribution of the
photon states in b). The kitten-cat fidelities are most easily calculated via the
density matrices,

F = tr
[
|∼./©̈−〉〈∼./©̈−|ρ̂est

]
,

where ρ̂est is the measured and reconstructed state. For the single photon, the
fidelity with the target state, |1〉, is simply the ρ11 component. For sp2 it is
68%, for sp1 only 57%. There is only one reason for the lower fidelity of sp1,
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Figure 5.12: Same Wigner functions as in Figure 5.11, but with the arrangement like in
Figure 5.1 (i.e. ks1-4 in the front row, left to right, and ks5-sp2 in the back row).

and that is the higher gain. As an intended source of single photons, possibly
for quantum communication purposes, the high content of 2-, 3-, and even 4-
photon components of sp1 is much worse than the lower 1-photon fidelity. The
sp2 has a fairly moderate amount of higher photon numbers; only 1.7%. This
clearly exemplifies the need for keeping the gain low – and consequently also
the production rate.

As for the kitten states, it is interesting that for the four PPKTP-based states (ks3-
6), there is a clear pattern of higher gains leading to higher kitten amplitude but
lower maximal fidelities (compare with the gain parameters in Table 5.1). That
is just what was expected from the theory, Figure 3.14. The amplitudes and
fidelities are just somewhat smaller here, due to the experimental inefficiencies.
The graph also shows that it is indeed impossible to obtain grown-up cats from
this simple generation scheme – although ks5 clearly is a lot more squeezed than
ks4, when looking at their Wigner functions, the obtained kitten state amplitude
is only increased by about 40%, and with a 10% lower fidelity. Several proposals
have been made, though, for ways of generating larger kittens [111, 154] or
amplifying existing small kittens [62, 153]. They all involve in some way two or
more simultaneous non-deterministic detection events, so the rate of production
will be dramatically decreased.

Density matrices

It is enlightening as well to take a glance at the reconstructed density matrices
themselves – these are the immediate outputs of the maximum likelihood re-
construction, and they are the basis for the calculation of the Wigner functions.
Figure 5.14 shows the eight density matrices (absolute values, |ρmn|) correspond-
ing to the Wigner functions just presented. To make the figures more clear, only
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Figure 5.13: a) The fidelities between each of the six kitten states and a real odd cat
state |∼./©̈−〉 with amplitude α. The vertical lines indicate the α that gives the highest
fidelity. b) Photon number distribution for the two photon states. The size of the n = 1
component is the fidelity with the intended 1-photon state.

photon numbers up to m = 8 are included, although the reconstructions used a
maximum number of 15. Most of the matrices have essentially vanishing entries
at higher numbers than 8, except the largest states ks3 and ks5 – although the
entries of these two states’ matrices do almost vanish before reaching m = 15.
Also, to reduce clutter, only the lower triangles are shown, since the absolute
values are symmetric about the diagonal anyway. The density matrices of the
single photon states are completely diagonal and therefore offer no more infor-
mation than was already shown in Figure 5.13b). The kitten state matrices are
surely more interesting than those of the single photons, as they have non-zero
elements outside of the diagonal as well. This shows that there are – at least in
part – coherence between the different photon numbers, as opposed to the mix-
tures of sp1 and sp2. However, perhaps the most important feature of the kitten
state matrices is the prominence of the odd photon number contributions in the
diagonal. Apart from the large ρ11 elements, for the PPKTP-based states ks3-6,
the ρ33 elements are also larger than ρ22, and the ρ55’s are almost as large as ρ44.
Indeed it makes sense to call these states “superpositions of odd photon num-
ber states” – a perhaps more precise but also more mundane term than “kitten
states”4. One notices that almost all elements ρmn that have odd m− n – such as
the elements neighbouring the diagonal – are close to zero. This can be seen as
a consequence of the 180◦ rotational symmetry of the Wigner functions, that is,
the states approximately fulfill the relation W(−x,−p) = W(x, p). The Wigner
functions are thus even, and this property, together with the fact that Wmn(x, p)
in (2.13) is odd for m− n being odd, means that the integrand in the expression
(2.12) for ρmn is odd, and so the integral becomes zero. The slight wobbliness of
the ks5 Wigner function shows up as a small non-zero ρ10 element.

4Physical Review Letters prefers mundaneness!
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Figure 5.14: Density matrices in the number state basis (ρmn) for the eight states recon-
structed with detector compensation. All bars show the absolute values of the density
matrix elements, but since the states are rotated with the anti-squeezing direction along
the x-axis, the imaginary parts of all the elements are close to zero, and there are almost
no negative values. The numbers along one of the horizontal axes denote the photon
number, i.e. the index m in ρmn. n is along the other axis.
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5.3 Additional analysis

5.3.1 Error estimation

The estimation of the statistical uncertainties in the reconstructed quantum states
can be done in several different ways:

• Since all of the phase-scanned data series (all but ks5-6) consist of a number
of self-contained tomographic measurements with 20,000 samples each,
these can be considered as separate measurements of the given state if a
reconstruction is performed on each of them individually. Based on these
measurements, a mean value and a standard deviation of the mean can be
calculated for any parameter of the state, such as density matrix elements
or Wigner function values. The mean value should be the same as the
value obtained from the full reconstruction, while the standard deviation
of the mean will be an estimate of the uncertainty in the full reconstruction
including all samples.

• Based on the reconstructed state, a large number of data sets that approx-
imately follow the same distribution as the original data can be Monte
Carlo simulated. The statistical error in these simulated data will then give
a good estimate of the uncertainty in the real data [28, 89].

• In principle, for a sufficiently large number of samples N, the variance of
a maximum likelihood estimator s0 should reach the so-called Cramér-Rao
lower bound on the variance of an unbiased estimator, Var s0 ≥ 1/NF(s0)
[42, 61]. F(s) is the Fisher information, defined as F(s) =

〈
(∂s ln L(s))2〉.

The averaging is over all possible outcomes of the specific observation (e.g.
all possible distributions of quadrature values within the different bins).
Because of this, F(s) depends only on the parameters s and the particular
way in which the observation is carried out, not on the given observa-
tion/data set itself. We have had quite limited success with the calculation
of this Fisher information based uncertainty. The numbers obtained are
usually about a factor two smaller than those obtained by the methods
mentioned above. This in itself does not seem unreasonable, but other fac-
tors make us doubt the validity of these error estimates – at least when
it comes to homodyne measurements. A similar concern was stated by
Lvovsky and Raymer [92].

We will now estimate the statistical errors of the reconstructed states – in partic-
ular their Wigner function values in the origin – based on the first two methods
mentioned. In general, the standard deviations of inferred parameters scale by
1/
√

N, where N is the total number of acquired samples.

Directly from data

For each of the series ks1-4, sp1-2, a full state tomography and reconstruction has
been performed N f times, this number referring to the number of 20,000-point
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Figure 5.15: The estimated 68% confidence intervals of a) a slice through the Wigner
function and b) the density matrix diagonal elements of the reconstructed ks3 state.
The uncertainties are those obtained directly from the data, but corrected for the total
number of data points.

files acquired (the first number in the last column of Table 5.1). Thus, N f values
for πW(0, 0) will be obtained. These will be scattered with a certain standard
deviation

σπW =
√〈

(πW(0, 0)− 〈πW(0, 0)〉)2
〉

,

and the uncertainty of the mean is then

σπW =
σπW√

N f
.

The data of the phase-locked series ks5-6 were acquired in a way that they can
not as easily be considered as a range of separate measurements. We can, how-
ever, separate the 50,000 points acquired at each phase settings into 10 groups
of 5,000 points, and then perform 10 reconstructions, each based on 5,000 points
from each phase setting.

The uncertainties in the Wigner function obtained in this way are then:

ks1 ks2 ks3 ks4 ks5 ks6 sp1 sp2

σπW .028 .025 .034 .017 .010 .010 .023 .017
N f 49 50 10 19 (10) (10) 9 9

σπW .004 .004 .011 .004 .003 .003 .008 .006

As they are obtained from the data, these numbers include not only statistical
errors but also any fluctuations in the experimental conditions that might have
happened within the time of acquisition of each series – although this argument
does not hold for ks5-6. That can perhaps explain why σπW for some series is
twice as large as for others. The σπW for ks5-6 are smaller than the others, simply
because they are based on reconstructions of 60,000 points (12×5,000), while the
others are based on 20,000 points data sets.
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For the data series with the largest uncertainty, ks3, the errors are shown in more
detail in Figure 5.15. In a) a slice of the Wigner function through p = 0 is shown
with the 68% confidence interval at all values (the yellow band), calculated in the
same way as above, that is, with ±0.011 in x = 0. Figure b) shows the density
matrix diagonal elements with error bars, also obtained in the same way. We see
that the errors are really quite small everywhere, so the 200,000 points used in
ks3 is more than enough to give a really good estimate of the measured state.

From simulated data

Based on the reconstructed density matrices of series ks3 and ks6, a number
of artificial data sets of different lengths were simulated (using pseudo-random
numbers and inversion of the cumulative distributions at 24 or 12 different phase
angles, as calculated from the density matrices). The uncertainties are then given
in the same as way as before, but this time they are purely statistical, since all
data are simulated under the same conditions. For ks3, 40 sets of data were
generated, while for ks6 20 sets of data were generated. Each set has a variable
number of points, Ns, distributed equally over the 24 or 12 phase angles. The
following table lists the uncertainties in the reconstructed πW(0, 0) values for
different Ns, as well as the “per-point uncertainty”, σπW

√
Ns, which can then be

used to estimate the uncertainty in the real measurements as σπW
√

Ns/N (N is
again the total number of samples, e.g. 200,000 for ks3 and 600,000 for ks6):

Ns σπW σπW
√

Ns

ks3 20,000 .019 2.66
10,000 .030 2.97
5,000 .039 2.76
2,000 .049 2.18

ks6 20,000 .014 2.04
10,000 .019 1.91
5,000 .032 2.23

The per-point uncertainties are quite similar, irrespectively of the size of the
data sets, as the should be. Taking the largest of the numbers for ks3 and
ks6, the estimated uncertainties in πW(0, 0) for the measured states are then
2.97/

√
200, 000 = .007 for ks3, and 2.23/

√
600, 000 = .003 for ks6. For ks6, this

is the same value as that obtained directly from the data before, while for ks3 it
is a bit lower. As discussed before, this probably reflects changing experimental
conditions during the ks3 measurements, giving an error larger than the purely
statistical error. In any case, these simulations lend support to the error values
from before being fair upper estimates.
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Figure 5.16: The full quadrature distributions (normalized histograms) of the sp1 and
sp2 series together with the best fits to a mixture of 0- to 5-photon states.

5.3.2 Simple curve fitting to single photon data

The photon number distribution of the phase-invariant single photon states can
also be estimated from a simple least-squares fit to the overall experimental dis-
tribution of quadrature values. The function to be fitted should be just a sum of
the quadrature distributions for different number states:

prfit(q) = ∑
n

wn prn(q) = ∑
n

wn|〈q|n〉|2,

with the 〈q|n〉 given in (2.6). The weights wn correspond to the diagonal entries
ρnn of the density matrix, and are the free parameters to be fitted. Figure 5.16
shows the full 180,000 points quadrature distributions of the sp1 and sp2 data
series together with the best least-squares fits to the above function, including
photon numbers up to n = 5. The parameter estimates (up to n = 4) of the
fits are listed in Table 5.4 together with the diagonal entries of the maximum
likelihood density matrices, obtained from a reconstruction without detector ef-
ficiency compensation. The two estimation methods give basically identical re-
sults. It is worth noting, though, that the simple curve fitting does not have the
built-in physical constraints that the maximum likelihood method has. There-
fore, the resulting photon number weights need not add up to one, and they
might even become negative as is the case here for w3 of the sp2 set. The stan-
dard curve fitting is much faster than the iterative maximum likelihood method,
but it is only applicable when the state is rotationally invariant in phase space. If
no such assumption can be made, maximum likelihood (or another tomographic
reconstruction method) must be employed.

5.3.3 Production rates, spectral brightness

One of the big advantages of using cavity-enhanced down-conversion is the
hugely increased spectral brightness relative to pulsed sources. In this context,
we consider the spectral brightness to be the state production rate per MHz
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n

0 1 2 3 4

sp1 wn .2827±.0016 .543±.002 .138±.002 .030±.003 .004±.003
sp1 ρnn .2828 .543 .136 .032 .005

sp2 wn .3678±.0016 .616±.002 .017±.002 -.001±.003 .001±.003
sp2 ρnn .3684 .617 .014 .001 .000

Table 5.4: Estimates of the photon number distribution of the sp1 and sp2 series. wn are
the parameters obtained from a simple curve fitting to the full quadrature distributions,
while ρnn are from the maximum likelihood reconstruction.

bandwidth of the state. This figure becomes relevant for applications that re-
quire narrow bandwidths of the optical fields, such as atomic quantum mem-
ory (see §6.1.1). Pulsed SPDC sources often have production rates comparable
with our system, but their bandwidths are several nanometers, so heavy spectral
filtering would be needed to make them compatible with the atoms, thus com-
promising the production rate. As an example, the photon-subtracted squeezed
vacuum states of Ourjoumtsev et al. [121] are produced at a rate of 4,500 s−1,
and with a Fourier-limited bandwidth of approximately 2 THz, giving a spectral
brightness of about 0.002 s−1/MHz. Slightly lower figures were reported for the
single photon sources of U’Ren et al. [157] and Pittman et al. [127], while Fulco-
nis et al. [44] achieved ∼0.15 s−1/MHz with a photonic crystal fiber based SPDC
source. Higher spectral brightness single photon sources have been realized in
atom-based systems, which are in general much more experimentally involved
than SPDC sources, but offer inherently narrow bandwidths compatible with
atoms. Systems such as single molecules [82], single atoms trapped in an optical
tweezer [29] or cavity [96], or trapped ions [68] all achieved brightness levels of
a few thousand photons per second per MHz. With an ensemble of cold atoms,
Thompson et al. [155] obtained as many as 50,000 s−1/MHz.

The average production rates for our 8 measurement series are stated in Table 5.5
together with the corresponding spectral brightness, based on a FWHM band-
width of the fields of 9 MHz. Furthermore, the count rates expected from the
expression in (3.20) are listed. These values take into account the T, ηesc, and
x values from Table 5.1, together with an estimated trigger arm propagation
efficiency of 14% (which is not necessarily correct for all series), and the APD
quantum efficiency of 44%. We see that our spectral brightness values are 3–7 or-
ders of magnitude larger than pulsed SPDC sources, but a bit lower than atoms
based single photon sources. The experimentally observed rates are comparable
to the expected values, considering the crudeness of these estimates. The ks5 and
ks6 series are exceptions though. The expected rates based on (3.20) assumes a
continuous production, but for the sequenced locking system employed for ks5
and ks6, the APD conditioning is only carried out in a fraction of the total run
time. For some reason, the ks5 rate is even lower than expected, even taking this
into account. I do not have a reasonable explanation for this large discrepancy.
Among the single photon series, sp1 has a quite high production rate, but this is
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average production rate spectral brightness expected rate
[states/sec] [states/sec/MHz BW] [states/sec]

ks1 6200± 400 690 6000
ks2 6800± 300 760 7400
ks3 9400± 400 1040 15000
ks4 7100± 500 790 8800
ks5 1500± 200 170 20500
ks6 1590± 40 180 7200
sp1 91600± 1500 10200 145000
sp2 12900± 1400 1400 23700

Table 5.5: The average rates of conditional state generation in the 8 measurement series,
the corresponding spectral brightness (using a 9 MHz FWHM bandwidth), and the
theoretically expected production rates.
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Figure 5.17: Histogram with 1 µs bin widths over the waiting times between two consec-
utive detector clicks, that is, t(i)

c − t(i−1)
c with the superscript indicating the index of the

given click time tc in the recorded data set. The two data sets, sp1 and sp2, have quite
different rates, but they both follow an exponential curve nicely (the down-conversion is
a Poisson process), apart from the region at low interval lengths where the scope inhibits
trigger events.

of course at the expense of the higher 2-photon contribution.

Figure 5.17 shows two examples of the distribution of the intervals between two
consecutive trigger clicks. The graphs show histograms of these intervals for
the sp1 series with a very high rate, and the sp2 series with a somewhat lower
rate. For the most part, the curves follow nicely exponential decays as a Poisson
process, such as SPDC, should. However, it is apparent that no clicks at all
appear within 3 µs after the preceding click, and only at 6-7 µs intervals does
the histogram reach its natural level, according to the exponential function. The
APD dead time is not the cause for these lacking clicks, since it is only about
35 ns. Rather, the cause must be the scope – the histogram is not based on the
actual clicks, but rather on those clicks that were recorded as trigger events by the
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scope. Due to our settings with 2 µs long segments around each trigger time, we
impose at least a 2 µs delay between subsequent trigger events. The remaining 1-
5 µs minimum delay time must be due to processing time internally in the scope.
In any case, the unrecorded clicks are a reason for why some of the observed
production rates in Table 5.5 are lower than expected. The decay constants of
the exponential fits in Figure 5.17 give directly the true trigger photon rates, i.e.
159,000 s−1 for sp1 and 13,700 s−1 for sp2. Especially for sp1, this brings the rate
much closer to the expected value.





Chapter 6

Outlook

6.1 Time gated state generation

6.1.1 Towards storage in atomic memory

An important goal for quantum information processing is to establish efficient
interfaces between light and atoms. Light is a perfect means of long distance
transportation of quantum states, while atomic systems – either individual atoms
or collective ensembles – in controlled environments are well suited for long-
lived storage of the states. The ability to efficiently exchange quantum states be-
tween light and atoms will therefore allow implementation of quantum networks
with atomic systems as nodes, for example in a quantum repeater [32]. Mem-
ories for light based on atomic ensembles have been demonstrated for example
with the EIT (electromagnetically induced transparency) interaction [81, 125],
with off-resonant QND (quantum non-demolition) measurement and feedback
[66, 140], and other systems – see the review by Hammerer et al. [54]. Mostly
classical coherent pulses have been stored, but recently also the storage and re-
trieval of squeezed light in EIT was demonstrated [2, 59]. Probabilistic storage of
single photons in atomic ensembles has also been carried out in several groups
[24, 35], albeit with low efficiency. Common for these different systems is that
the interaction is driven by a strong classical field. In particular for schemes like
that of Julsgaard et al. [66], the quantum field to be stored is mixed with the
strong driving field (local oscillator) in orthogonal polarizations, and the shape
of the latter determines the temporal mode of the quantum field to be stored.
In order to achieve a successful storage, the quantum field should match this
mode well. The properties of the atomic systems set some limits on the possible
bandwidth of the field – usually it should be on the order of 10 MHz at most
[54].

With atomic storage in mind, the approach to nonclassical state generation using
continuous cavity-enhanced pumping of the nonlinear crystal has some attrac-
tive properties compared with related pulsed sources. Most importantly the nar-
row bandwidth/high spectral brightness, which makes the states immediately
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applicable for interactions with atomic media without need for strong spectral
filtering. Another convenient property is the relative flexibility in the choice of
mode function, as explored in §5.2.4, which, together with the long duration
of the mode functions, makes timing and mode-matching issues fairly relaxed.
There is one disadvantage, though, that comes with the continuous pumping,
and that is the randomness of the arrival time of the heralded states. All other
SPDC-based sources are probabilistic by nature as well, but with pulsed pump-
ing, the arrival time of the heralded states – in case they are generated – is well
defined by the timing of the pulsed laser source. The pulsed local oscillator can
thus be prepared in advance and meet the generated state on the beamsplitter
at the right time. Most of the pulses will not contain a non-Gaussian state, how-
ever, since the heralding trigger detection appears for only a small fraction of the
pulses, so post-selection is necessary. For our continuous source the situation is
similar, but there are some added difficulties, since the trigger click times are
continuously distributed. It means that we do not know in advance at what time
the local oscillator pulses should be prepared. The pulse shaping could be ini-
tiated at the instant of the trigger click, but even then it is problematic to make
the signal field and LO match, since roughly half of the signal field is in the past
relative to the click time. There are at least two conceivable ways to resolve this
problem:

1. Delaying the signal field. In the case that the local oscillator pulse is only
produced whenever a state generation is heralded, it is essential that the signal
state is optically delayed until the LO is ready. Apart from the fact that half
of the temporal extent of the state is ahead of the trigger click (more than half,
in fact, due to the trigger filtering), there will be unavoidable electronic delays
in the APD module, in the optical pulse shaper for the LO (EOM or similar),
in the shaper’s amplifier etc. Figure 4.17b) shows the shortest delay we have
had between the arrival to the scope of the homodyne signal and the trigger;
about 25 ns. The arrival of the signal state on the LO mixing beamsplitter is
of course even earlier. To get a decent mode-matching between the two fields,
the LO pulse should have its front edge at a time ∼ γ−1 before the peak of the
correlations, adding another ∼40 ns (in our case) to the interval during which
the generated state must be kept idle, waiting for the LO to be ready for the
overlapping. That corresponds to a free-space delay line length of at least 20
m, most likely a lot longer. In order to preserve the high purity of our non-
Gaussian, negative Wigner function states, the in- and out-coupling of the light
to/from the delay line, as well as the propagation inside, must have low losses,
which is difficult to achieve for such a long delay. For a long optical delay, fibers
are an obvious choice. A polarization-maintaining fiber is probably needed,
since most applications of the photon or kitten would require a well-defined
polarization. The losses from the in-coupling to the fiber might be a limitation,
though, so free-space delay lines could be an alternative. Pittman et al. [126]
constructed a switchable free-space delay line with a short loop length and a
switchable coupling based on a polarization-rotating Pockels cell in the loop and
a PBS for the coupling. Their losses were quite large, though; 26% per round-
trip of 4 meters length. This length is furthermore way too short to contain our
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narrowband states which have an intensity distribution extent of about 15-30
meters. Some of the losses could be eliminated by using a passive delay line,
such as a folded path between two large mirrors with in-coupling through a
hole in one mirror or a small coupling mirror or prism somewhere in the path
[58]. A group of bachelor students doing a project with our experiment worked
on the implementation of such a Heriott cell. They achieved a delay of 70 ns,
but with quite high losses of 90% [156]. These high losses were mainly due to
the poor mirror quality, especially of the coupling mirror, but their results show
that a delay of the necessary length is feasible. It requires high quality optics,
though, since light is lost on each of the many reflections off the mirrors of the
cell.

2. Time gating the state generation. Although delaying the signal field can
leave enough time for the LO pulse to be generated conditioned on a trigger
click, it does not remove the inherent randomness of the time of arrival of the
combined LO and non-Gaussian state pulse. We have carried out some prelim-
inary experiments to try to remedy this and make the arrival time somewhat
more predictable. The idea is to make the OPO pump beam “semi-pulsed” such
that photons can only be down-converted within predefined time windows. That
way, the temporal gating of the pulsed sources is gained, while the cavity-limited
bandwidth is maintained, at the expense of a lower rate. The LO pulses can then
be prepared independently of whether or not a state is heralded, and therefore
be ready to meet the generated signal state whenever one appears, without the
need to delay the signal state. This, however, requires that the pump pulse is
fairly short, such that the overlap between LO and signal state is good whether
the state has been produced in the beginning or the end of the pump pulse –
the temporal mode function defined by the LO shape cannot be optimal for each
case, but can be optimized to give the best performance on average. The pump
should not be too short either, since that will limit the production rate. A short
pulse will be Fourier broadened, and for components of the pump field lying
away from the central frequency, the down-conversion will be inhibited by the
cavity’s spectral structure. Furthermore, if it is very short – on the order of the
round-trip time – part of the blue light will be at frequencies in between two
non-symmetric cavity resonances. Then, photon pairs will be down-converted
into these modes, which will cause false clicks (“dark counts”) in the trigger
mode.

The point of this proposal is thus to prepare the local oscillator pulses inde-
pendently of the outcome of the state generation, but synchronized with the
OPO pump pulses. Trigger clicks should then be subjected to a gating condi-
tion, such that they will only be accepted if they appear within a certain time
window around the point of the highest down-conversion intensity. The exact
arrival time of the trigger photons has no influence on the shape or timing of
the LO pulse. The same thing could be done without pulsing the OPO pump;
although photons were continuously down-converted, the trigger gating could
be enforced such that only trigger photons arriving at times close to the LO
pulse were counted. However, that would give a larger spread in the temporal
distribution of the heralded states, compared to those obtained with the con-
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fined pump interval, and hence the mode overlap and state quality would be
degraded. Nielsen and Mølmer [108] made a detailed modeling of the pulsed
OPO pump scenario described here and applied it to the case of kitten state
generation, with the W(0, 0) value as the benchmark for state quality. They did
indeed find that for time-gated triggering, short pulses result in deeper Wigner
function dips than cw pumping. The shorter the pulse lengths Tp, the better,
due to tighter confinement and thus better mode overlap (they did not consider
the appearance of false clicks for very short pulses). A shorter gating interval
Tg also improves the state quality, but of course a lower Tg, as well as Tp, will
decrease the trigger probability per pulse/gating window and hence the overall
production rate. It should be noted that Adamyan et al. [1] recently did some de-
tailed calculations regarding the output of NDOPOs with modulated or pulsed
pumping, including results for subsequent photon subtraction.

An important point of the time-gated state generation is that the shape of the
optimal mode function no longer will be symmetrical around the trigger time
(or at least roughly symmetrical). The symmetrical shape, in its basic form the
double-sided exponential decay, stems from the symmetry between the trigger
photon and its twin in the signal mode. It is equally probable that the trigger
photon escapes the OPO before its twin or that it does so afterwards. On the
other hand, the gated generation is independent of the trigger photon timing,
and the optimal mode function will depend on the timing and duration of the
pump pulse and gating window. As stated in [108], for long gating intervals Tg
it is reasonable to assume that the optimal mode function will just be the square
root of the intensity distribution of the down-converted light, which in turn is
the pump field shape zp(t) convoluted with the OPO cavity response:

fs,gated(t− tc) ≈
∫ t−tc

−∞
zp(t′)e−γ(t−tc−t′)dt′. (6.1)

They numerically calculate the mode functions optimized for minimal W(0, 0)
values, and they are indeed very close to the above convolution. The shape
is quite asymmetric: for short pump pulses, the leading edge of the intensity
distribution is roughly determined by the pump pulse shape, while the trailing
edge is the exponential decay of the cavity.

6.1.2 Results of the pumped pulse experiment

So far, we have only carried out a proof-of-principle experiment, showing that
single photon states with negative Wigner functions can be generated with a
pulsed OPO pump and time-gated trigger. We have not made detailed studies
with varying parameters, such as Tp and Tg or the gain x, in order to test the
predictions of ref. [108] regarding kitten states. We also did not use a pulsed
local oscillator, but used the usual digital mode selection.

We chop the blue beam from the SHG into short pulses with a pulse shaper
from BME Bergmann (PCD dpp3.4c). It contains a KD*P double Pockels cell
from Leysop and a circuit for fast switching of the half-wave voltage of about
1.5 kV for 426 nm. With a PBS after the device, the beam can be switched com-
pletely on or off in 6 ns. The PBS we used was not of the best quality, or perhaps
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the polarization of the blue light was not completely pure, so the extinction ra-
tio was only 1-2%. The maximum repetition rate is 200 kHz. The switching of
the Pockels cell is triggered by sending TTL pulses to start and stop ports on
the pulse shaper. We control the pulse length by using the same TTL signal for
both the start and stop, but with a delaying coaxial cable of varying length in
between. Since the blue light is off most of the time, it is not possible to lock the
OPO and filtering cavities on the down-converted light. We therefore used an
early implementation of the sequenced locking, where the lock beam and cav-
ity locking PI-controllers were switched on for 0.8 s, followed by 0.2 s off-time
where trigger events were accepted. There are more difficulties with the phase
information. Since the production rate naturally is a lot lower when the OPO
is only pumped a fraction of the time, it is not so feasible to use the calibrated
phase scanning. The phase locking based on the intermediate gain lock is not
possible at all, as long as the pump is pulsed, because the gain lock requires
steady probe and pump beams. It is possible to make the phase locking work,
by making the pulse shaper alternate between pulsing and being continuously
on, synchronized with the lock beam switching. For the preliminary measure-
ments, though, we just measured the phase-independent single photon state, not
paying attention to the phase. We did not have the mechanical shutters to block
the lock/probe beam at the time, but switched instead the AOMs used for the
frequency shifting. Since the zeroth order of the AOM transmission is blocked
in the double-pass configuration, the beam is completely shut when the AOM
is switched off. The signal for the lock program is then obtained from the APD
count rate.

Pulse testing

At first we studied the intensity distribution of the down-converted light with
different pump pulse lengths. The three pulse shapes tested are well approx-
imated by the functions in Figure 6.1 (with Gaussian error functions on the
edges). We measured on the scope the delay between the TTL pulse sent to the
pulse shaper to initiate the pulse shaping and the click from the APD, and delay
histograms were slowly built up. The maximum blue power was low enough
that there were very rarely two detection events per pulse – for the longest pulse
there were about 10 clicks per second; the pulse repetition rate was 50 kHz.1

Because of the not so good suppression of the pulse shaper + APD, there is a
constant background level, on top of which lie the photons originating from the
shaped part of the pump, as intended. The existence of the background counts is
undesirable for the gated photon generation, but for the pulse shape analysis it is
helpful since it can be used to normalize the three histograms to each other – the
background level depends only on the total time of acquisition, not on the pulse
length (and of course on the blue power, which was the same for the three). The
background level includes dark counts from the APD, but only by about a tenth
of the total level; the dark count rate was 75 c/s, while the total corresponded to
roughly 800 c/s. In Figure 6.2, the delay histograms for the three pulse lengths

1Two clicks from one pulse would not necessarily be recorded due to the APD dead time of
35 ns.
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Figure 6.1: The shapes |zp(t)|2 of the
three different pulses used for pumping
the OPO. They are simple functions ap-
proximating the real pulse shapes – the in-
set shows a scope trace of the 18 ns pulse
in a grid with 5 ns per horizontal box. It is
measured with the fast homodyne detec-
tor (on a single diode), and the oscillations
are due to the resonance peak around 100
MHz seen in Figure 4.13b).
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Figure 6.2: Histograms of the delay be-
tween the blue pulse and the APD click
time (the horizontal offset is somewhat ar-
bitrary, but consistent among the three his-
tograms). All three histograms have been
normalized to a level of 1 of the back-
ground level. Each time bin (point) covers
5 ns. The 18 ns pulse has the smoothest
histogram since it was recorded for the
longest time.

are plotted, normalized to a background level of 1. For longer pulses, the count
histogram for the down-converted light becomes not only wider but also higher.
That is because all three pulses are shorter than the build-up time of the OPO
cavity, so the steady state level is not reached. It can also be understood in fre-
quency space, as discussed above, as the filtering (or suppression) by the OPO
of the part of the down-converted field with frequencies away from the cavity
resonance – a filtering that becomes more severe for shorter and hence spectrally
broader pulses. The acquisition time was limited, so especially the 5 ns pulse
histogram (recorded over half an hour) is quite noisy. The same three histograms
are repeated in Figure 6.3, now with the background level subtracted. Together
with them are plotted theoretically calculated functions for the down-converted
intensity distributions in the trigger mode, which fit well with the data. These
functions, |zdc,t(t)|2, are given by the convolution of the pump field with the
response of the OPO and trigger filter cavities:

zdc,t(t) =
∫ t

−∞
zp(t′)h(t− t′)dt′,

h(t− t′) =
1
γ

e−γ|t−t′| − 1
κ

e−κ|t−t′|.

The cavity response function h(t) is again assuming just a single Lorentzian
trigger filtering with overall bandwidth κ. The parameters used for the OPO and
filter bandwidths here are those that seem reasonable from the analysis in §5.2.4:
γ/2π = 4.6 MHz, κ/2π = 18 MHz. The curves have been scaled vertically to
fit the scaled histograms, and offset horizontally to get the right delays, but all
three curves have been scaled and offset by the same amount, and they fit quite



6.1 Time gated state generation 141

100 150 200 250 300
0

5

10

15

20

100 150 200 250 300
0

1

2

3

4

5

100 150 200 250 300

-0.2

0.0

0.2

0.4

0.6

0.8

Figure 6.3: The histograms from Figure 6.2 with the background level subtracted. From
left to right: 46 ns pulse, 18 ns pulse, 5 ns pulse. The orange curves are theoretical
models for the intensity distribution. They are given by the pulse shapes from Figure 6.1
convoluted with the combined response of the OPO and filter cavities, with γ/2π = 4.6
MHz, κ/2π = 18 MHz. The vertical scaling factor and the horizontal offset are the same
in all three plots.

well to the histograms. We see that the leading edges have durations roughly
equal to the pulse lengths, while the trailing edges are primarily defined by the
OPO lifetime and are basically the same for the three pulse lengths.

Photon state measurement with gating

We carried out the photon generation with homodyne characterization for both
the 46 ns and the 5 ns pulse, but only got reasonable results for the long pulse.
With the short pulse we got slightly non-Gaussian statistics, but far from a nega-
tivity in the Wigner function. A major reason must have been the comparatively
high dark count rate due to the low down-conversion intensity, as seen above.
For the long pulse, we did the measurement in the following way.

With the delay generator that makes the TTL pulses for the pulse generator we
made a Tg = 40 ns long square pulse and sent it to a channel on the scope as
a gating signal for the triggering. For each pump pulse signal there was a cor-
responding gating signal. We adjusted the offset such that it covered the time
interval within which we observed the highest trigger counts in Figure 6.3 (left-
most). The scope was then set to only accept APD click events occurring when
this gating signal was in the high state. The actual trigger for the homodyne
signal acquisition on the scope was not the APD clicks, though, but rather the
gating signal. Therefore, the acquisition was always at a fixed time relative to
the pump pulse and independent of the APD click timing, thus simulating a LO
pulse synchronized with the pump.

We recorded 20,000 segments of homodyne data. The segment noise is extremely
noisy, apparently due to some high frequency noise radiated by the pulse shaper
during the fast switching of the high voltage – a noise that somehow got picked
up by the homodyne detector. The segment noise could therefore not give any
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Figure 6.4: a) The quadrature distribution for the pulsed pump experiment using the
mode function fs,gated(t− tc). The orange curve is the best fit to a sum of the n = 0− 3
number states. The photon number distribution is charted in b), together with that
obtained from using the symmetric exponential mode function fs,1(t− tc).

hints for the mode function shape, apart from the delay. We assume, however,
that the optimal mode function is close to that of (6.1). In this measurement, the
gating interval Tg = 40 ns and the pulse length Tp = 46 ns have similar lengths,
15-18 times the OPO round trip time τ. Referring to the calculations in ref.
[108], the optimal mode function will in this case have some small oscillations
with period τ on top of the overall shape (6.1), but these are small corrections
which will have little effect on the outcome. The trigger filtering should have
little influence on the optimal mode function, since it no longer depends on the
precise timing of the trigger click. In a first approximation, the trigger filtering
just serves to delay the click. Thus, using the mode function fs,gated(t − tc) of
(6.1) with the 46 ns pump pulse zp(t) and an optimized horizontal offset tc, we
extract the quadrature data from the recorded segments. The results are plotted
in Figure 6.4a) together with the best fit to a sum of number states, yielding a
1-photon fidelity of 59.4% with 37.7% vacuum and 2.7% 2-photon content. The
photon number distribution is charted in Figure 6.4 together with that obtained
by using the simple symmetric exponential mode function ( fs,1(t− tc) in (5.1)).
The difference between the results with the two mode functions is not large –
the 1-photon fidelity for fs,1 is 56.2% – but it is still clear that the asymmetric
fs,gated works best. For shorter pump pulses the leading edge is sharper, and the
difference from choice of mode function should be more pronounced.

We have thus demonstrated the possibility of generating non-Gaussian states
with a pulsed OPO pump, a gated trigger condition and a click-time indepen-
dent signal mode function. Further studies should investigate more closely vari-
ations of the pump pulse length and the gating interval length (and perhaps
offset), and how much is gained by the pulsed versus continuous pump when
using the gated trigger. Optimally, the local oscillator should also be temporally
shaped to fit the optimal mode function well. For an atomic memory experi-
ment, there might be restrictions on the shape of the LO. A compromise should
then be found between these restrictions and those imposed by the need for a
high purity of the mode-matched non-Gaussian state. Luckily, the dependence
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on the exact signal mode function shape is not very strong, as we have seen, and
the shape can of course be adjusted by changing the OPO bandwidth, pump
pulse length etc.

6.2 Other paths forward

The advances just mentioned for generation of narrow bandwidth, LO-matched
single photons (and just as well kitten states) increase the feasibility of the stor-
age of these states in an atomic quantum memory. The storage and retrieval
of an externally prepared complex quantum state of light would be a strong
demonstration of the capabilities of the memory. The single photon state could
provide the first test, as its retrieval could be confirmed with just a photon detec-
tor. More challenging would be the full tomography of a stored non-Gaussian
state, since, as we have seen, the dip in the Wigner function vanishes rapidly
with increasing losses.

Apart from these prospects of interaction between the non-Gaussian light states
and atomic quantum memories, other paths for future research within the purely
optical domain lie ahead. These include e.g. generation of more complex non-
Gaussian states, implementation of the states within optical quantum networks
(like teleportation), and application of the developed methods to quantum infor-
mation processing protocols such as distillation of entanglement [21] or to fun-
damental tests of quantum mechanics [46, 106]. Some progress has already been
made within these areas. Especially in the Grangier group at Orsay, several in-
teresting results have been achieved recently. They generated a two-photon state
by conditioning on simultaneous clicks of two APDs in one mode of a two-mode
squeezed state, which of course happens at a very low rate [121]. They subse-
quently used this two-photon state to prepare a special squeezed kitten state,
employing conditional homodyne detection on a part of the two-photon state
[120]. Finally, they were also able to observe an increase in the entanglement
of an originally Gaussian two-mode squeezed state after a coherent subtraction
of one photon from one beam or the other – a process reminiscent of entangle-
ment distillation, although the final state was highly non-Gaussian [119]. These
demonstrations were all done with a pulsed laser source. For a continuously
pumped system like ours, there are some additional parameters to play with in
non-Gaussian state generation schemes. In particular for subtraction of two or
more photons from the initial Gaussian state, the interval between the two clicks
become an important variable of the experiment, which can be optimized for
e.g. large Wigner function negativity, high production rate, or large amplitude
of the superposition state [109, 134, 154]. Recently, Takahashi et al. [148] could
generate even kitten states with varying amplitudes based on variations of this
two-click interval. Surely other sorts of non-Gaussian states will be possible to
produce using the basic tools of squeezers, photon detectors and homodyne de-
tectors. In particular high purity large amplitude cat states will be desirable,
since the availability of these states could lead the way to all-optical quantum
computation with continuous variables [131].
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Quantum teleportation is an essential ingredient in many quantum information
processing protocols. The usefulness of non-Gaussian states such as the kitten
(or cat) states will be greatly increased if a teleporter can use them as input
states for a high-fidelity state teleportation. During my stay at the Furusawa
lab in Tokyo, we did some preliminary tests towards a demonstration of kitten
state teleportation. So far, all cv teleportation experiments have been carried
out at narrow frequency sidebands [16, 45, 51, 63, 150, 170, 178], so they are
not compatible with the time localized/broadband states generated by condi-
tional photon detection, such as the kittens. To be able to teleport such a state,
two essential requirements must be met by the teleporter [160]: A high level of
EPR-entanglement should be available at all frequencies occupied by the input
state, and the classical channel (used to communicate the results of the Bell state
measurement on the input and one of the EPR beams) should work with the
correct electronic phase shift and gain settings throughout the same bandwidth.
In ref. [149], we demonstrated the first of these two points, by observing more
than 3 dB of EPR entanglement within an integrated top-hat temporal mode
function, 0.2 µs long, that is, within an integrated spectral range from DC to 5
MHz (weighted by a sinc-function). These “time-gated” correlations are clearly
seen in Figure 6.5, where a sample of 50 quadrature measurements within con-
secutive top-hat mode functions are shown. Both x and p quadratures were
measured for each of the two EPR beams. While the two x-traces follow each
other neatly, the p-traces are more or less fluctuating oppositely to each other.
Thus, the x-difference and the p-sum of the two modes are squeezed (-3.3 dB
and -3.7 dB, respectively). This entanglement can then be applied to telepor-
tation of broadband states of less than 5 MHz HWHM bandwidth – although
the degree of entanglement should preferably be increased for high fidelity tele-
portation. As for the second requirement, the wideband classical channel, we
build a very preliminary channel, consisting of homodyne detector, amplifier, a
coherent displacement beam modulated by an EOM, and a 99/1 beamsplitter.
The main issue for broadband operation is to obtain the correct phase of the
EOM modulation at all frequencies. In standard sideband measurements, it is
easy to just insert a variable phase shifter, but it is very hard to achieve a correct
phase shift at different frequencies all the way down to DC. An alternative is
therefore to make sure that there is basically no phase shift at all throughout
the classical channel, which can only be achieved if all components have a wide
bandwidth. We were somewhat limited by a slow detector, but could still show
the ability of the channel to cancel up to 14 dB from DC to 500 kHz of a classical
signal imprinted on two EPR beams, via homodyne detection on one beam and
subsequent displacement (through the channel) of the second beam. As of this
writing, the work on the classical channel is still ongoing, but may be close to a
point where teleportation of a kitten or some other time-localized state could be
carried out.

Finally, we can mention a few other relevant theoretical proposals. Regarding
state generation, single photon states can be prepared at a higher rate if the trig-
ger conditioning includes a prior interval of no detections [110]; kitten states
can be purified with the help of conditional homodyne detection [146]; and ar-
bitrary single-mode quantum states can be generated by continuous subtraction
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Figure 6.5: Time-domain EPR correlations. a) x-quadrature and b) p-quadrature mea-
surements of the two EPR beams. Each point is obtained from an integration over a
period of 0.2 µs of the oscilloscope-recorded quadrature data. From [149].

of photons [40]. Photon subtraction can also increase the performance of a tele-
portation protocol [115], and, as a more distantly related protocol, conditional
photon detection also allows for universal quantum computation in a Gaussian
cluster state setting [97]. These were just a few examples of the possible applica-
tions of conditional photon detection in continuous variable systems. Although
several of them are rather infeasible with current technology, the number and
variety of these theoretical proposals – together with the recent experimental ad-
vances – promise further progress in the near future within this area of applied
quantum optics.





Appendix A

Various calculations

A.1 Gaussian integrals

The vector and matrix notation for multimode states as introduced on page 11
is both elegant and quite convenient for calculations. For example, it allows
for easy evaluation of the characteristic function for a Gaussian state given the
Wigner function (2.15)

W(ξ) =
1

πN
√

det Γ
e−ξT Γ−1ξ .

From (2.14), the characteristic function is

χ(ζ) =
∫

e−iξTσζW(ξ) d2Nξ

=
1

πN
√

det Γ

∫
e−iξTσζ−ξT Γ−1ξ d2Nξ.

(A.1)

Since Γ is positive, it can be factorized into square roots (and similarly for its
inverse),

Γ = (Γ
1
2 )T Γ

1
2 , Γ−1 = (Γ−

1
2 )T Γ−

1
2 ,

e.g. by the Cholesky decomposition, where Γ
1
2 is the an upper triangular matrix

[124]. Define now the 2N-dimensional vector

z = Γ−
1
2 (ξ + i

2 Γσζ).

We use this to “complete the square” in the exponent above. Using the symmetry
of Γ,

zTz =
(
ξT + i

2 ζTσT ΓT) (Γ−
1
2 )T Γ−

1
2
(
ξ + i

2 Γσζ
)

= ξT Γ−1ξ + iξTσζ − 1
4 ζTσT Γσζ.

From the general substitution rule for multiple variables,

d2Nz =
∣∣∣∣det

∂z
∂ξ

∣∣∣∣ d2Nξ =
∣∣det Γ−

1
2
∣∣ =

1√
det Γ

.
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The final equality comes from standard rules for determinants. Substituting the
new variable z into (A.1) gives

χ(ζ) =
1

πN
√

det Γ
e−

1
4 ζTσT Γσζ

∫
e−zTz

√
det Γ d2Nz.

The plain 2N-dimensional Gaussian integral is
∫

e−zTzd2Nz =
√

π2N , leaving the
expression (2.16) for the characteristic function:

χ(ζ) = e−
1
4 ζTσT Γσζ .

A.2 Fidelity between 1-PSSqV and odd cat state

For m′ = 1, the fidelity (3.2) becomes

F (|ψ1〉 , |∼./©̈−〉) =
|υ|2

N1 sinh|α|2

∣∣∣∣∣ ∞

∑
n=0

δ
[2]
1n

(n + 1)!( n+1
2

)
!n!

(αυ∗)n

∣∣∣∣∣
2

. (A.2)

N1 is simply

N1 = tanh2 s 2F1

(
3
2 , 3

2 , 3
2 , tanh2 s

)
=

tanh2 s
(1− tanh2 s)3/2

= tanh2 s cosh3 s.

The factorials in (A.2) can be rewritten

(n + 1)!( n+1
2

)
!n!
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(n + 1)n!
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2

( n−1
2

)
!n!

=
2( n−1
2

)
!
.

Since only odd n contribute to the sum (represented by the δ
[2]
1n ), the summation

index can be changed to k with n = 2k + 1. Using |υ|2 = tanh s/2, (A.2) becomes

F (|ψ1〉 , |∼./©̈−〉) =
1
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Writing explicitly α = |α|ei arg α and υ =
√

tanh s/2eiφ/2, the squared exponential
is expanded as∣∣e(αυ∗)2 ∣∣2 = exp

(
|α|2 tanh s

2 (ei(2 arg α−φ) + ei(−2 arg α+φ))
)

= exp
(
|α|2 tanh s cos(2 arg α− φ)

)
,

such that the final expression is

F (|ψ1〉 , |∼./©̈−〉) =
|α|2
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exp

(
|α|2 tanh s cos(2 arg α− φ)

)
. (A.3)
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A.3 Equivalency of two detection models in the low
efficiency limit

We show that the two models (3.4) and (3.11) for the signal state outcome after a
detection event in the trigger mode of the two-mode state ρ̂ are equivalent in the
limit of low trigger detection efficiency ηt. In (3.4), the detection is modeled with
the on-POVM Êon

t (ηt) = Ît −∑m(1− ηt)m |m〉t〈m|, with the signal state outcome

ρ̂on,s =
trt
[
Êon

t (ηt)ρ̂
]

trs,t
[
Êon

t (ηt)ρ̂
] . (A.4)

In (3.11), the detection is simply described by the annihilation operator:

ρ̂on,s =
trt
[
âtρ̂â†

t
]

trs,t
[
âtρ̂â†

t
] . (A.5)

The POVM model is more general, but in the limit ηt → 0, it reduces to the
annihilation operator model. In that limit, (1− ηt)m → 1− ηtm, so the on-POVM
becomes

Êon
t (ηt → 0) = Ît −∑

m

(
|m〉t〈m| − ηtm |m〉t〈m|

)
= ηt ∑

m
m |m〉t〈m| .

The numerator of (A.4) thus becomes

trt
[
Êon

t (ηt → 0)ρ̂
]

= trt
[
ηt ∑

m
m |m〉t〈m| ρ̂

]
= ηt ∑

m
m t〈m| ρ̂|m〉t . (A.6)

On the other hand, the numerator of (A.5) is

trt
[
âtρ̂â†

t
]

= ∑
m

t〈m|âtρ̂â†
t |m〉t = ∑

m
(m + 1) t〈m + 1| ρ̂|m + 1〉t ,

which – apart from the factor ηt – is equal to (A.6). The ηt is taken account of,
though, by the normalization factors in the denominator.

A.4 DOPO temporal correlation functions after filtering
through an optical cavity

Here, we carry out the calculation of (3.30) and (3.31) for the DOPO correlation
function

〈
: X̂(t)X̂(t′) :

〉
with either one or both of the operators filtered through

an optical cavity with the transformation given in (3.29),

X̂(t)→ X̂′(t) = κ
∫ t

−∞
X̂(y)e−κ(t−y)dy + v(t)X̂vac(t).

The normal-ordered correlation function, as given by (3.21) and (3.22) is〈
: X̂(t)X̂(t′) :

〉
=

γ1ε

γ− ε
e−(γ−ε)|t−t′|.
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Single filtering

With just one of the operators filtered through a cavity, such as it appears in
the covariances between signal and trigger mode, the X-quadrature correlation
function becomes

〈
: X̂(t)X̂′(t′) :

〉
=
〈

: X̂(t)
(

κ
∫ t′

−∞
X̂(y)e−κ(t′−y)dy + v(t′)X̂vac(t′)

)
:
〉
.

There are no correlations between the OPO output operator X̂ and the vacuum
X̂vac, so the last term disappears. Furthermore, the integration can be taken
outside the normal ordering and expectation value operations:

〈
: X̂(t)X̂′(t′) :

〉
= κ

∫ t′

−∞

〈
: X̂(t)X̂(y) :

〉
e−κ(t′−y)dy

=
κγ1ε

γ− ε
e−κt′

∫ t′

−∞
e−(γ−ε)|t−y|+κydy.

(A.7)

Calculation of the integral must be separated into the two cases t ≥ t′ and t < t′.
In the first case, t ≥ y, always, so |t− y| = t− y.

for t ≥ t′ :∫ t′

−∞
e−(γ−ε)|t−y|+κydy = e−(γ−ε)t

∫ t′

−∞
e(γ−ε+κ)ydy

= e−(γ−ε)t e(γ−ε+κ)t′

γ− ε + κ

=
e−(γ−ε)(t−t′)eκt′

γ− ε + κ
.

The integral converges since γ− ε > 0 in the sub-threshold regime.

In the case of t < t′, the integral can be split in two:

for t < t′ :∫ t′

−∞
e−(γ−ε)|t−y|+κydy = e−(γ−ε)t

∫ t

−∞
e(γ−ε+κ)ydy + e(γ−ε)t

∫ t′

t
e−(γ−ε−κ)ydy

= e−(γ−ε)t e(γ−ε+κ)t

γ− ε + κ
− e(γ−ε)t e−(γ−ε−κ)t′ − e−(γ−ε−κ)t

γ− ε− κ

=
2(γ− ε)eκt

(γ− ε + κ)(γ− ε− κ)
− e−(γ−ε)(t′−t)eκt′

γ− ε− κ
.

Inserting in (A.7),

〈
: X̂(t)X̂′(t′) :

〉
=


κγ1ε

(γ− ε)(γ− ε + κ)
e−(γ−ε)(t−t′) , t ≥ t′

κγ1ε

γ− ε− κ

(
2e−κ(t′−t)

γ− ε + κ
− e−(γ−ε)(t′−t)

γ− ε

)
, t < t′.
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Double filtering

In the variances of the trigger mode, both quadrature operators are filtered in
the same way. The normal-ordered, double filtered correlation function is

〈
: X̂′(t)X̂′(t′) :

〉
= κ2

∫ t

−∞

∫ t′

−∞

〈
: X̂(y)X̂(y′) :

〉
e−κ(t−y)e−κ(t′−y′)dy′ dy

=
κ2γ1ε

γ− ε
e−κ(t+t′)

∫ t

−∞

∫ t′

−∞
e−(γ−ε)|y−y′|e−κ(y+y′)dy′ dy.

Because of the absolute value in the exponent, it is again useful to begin with
the case t ≥ t′. Then, t ≥ y′ as well, and the integral over y can be separated in
two at y = y′:

for t ≥ t′ :∫ t

−∞

∫ t′

−∞
e−(γ−ε)|y−y′|e−κ(y+y′)dy′ dy

=
∫ t′

−∞

[
e−(γ−ε−κ)y′

∫ y′

−∞
e(γ−ε+κ)ydy + e(γ−ε+κ)y′

∫ t

y′
e−(γ−ε−κ)ydy

]
dy′

=
∫ t′

−∞

[
e2κy′

γ− ε + κ
− e−(γ−ε−κ)te(γ−ε+κ)y′

γ− ε− κ
+

e2κy′

γ− ε− κ

]
dy′

=
γ− ε

κ

e2κt′

(γ− ε)2 − κ2 −
e−(γ−ε)(t−t′)eκ(t+t′)

(γ− ε)2 − κ2 .

For t < t′, the expression is the same, but with t and t′ exchanged, such that
in the end, all exponents are negative. The full expression for the correlation
function thus becomes

〈
: X̂′(t)X̂′(t′) :

〉
=

κ2γ1ε

(γ− ε)2 − κ2

[
e−κ|t−t′|

κ
− e−(γ−ε)|t−t′|

γ− ε

]
.

A.5 Full expressions for the OPO state generation model

The kitten state generation scheme based on the OPO output that was summa-
rized in §3.4.3 has the following parameters:

γ total OPO decay rate
ε pump/gain parameter
T tapping beamsplitter transmittance
κ decay rate of trigger filter cavity
ηs overall efficiency in signal arm
ηt overall efficiency in trigger arm
Ξ modal purity (percentage of true trigger clicks)
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The output coupler decay rate γ1 is rewritten as γ1 = ηescγ, and ηesc is implicitly
incorporated into ηs and ηt.

With the trigger mode function ft(t) = δ(t− tc), and the signal mode function
fs(t) =

√
γse−γs|t−tc|, there is the additional parameter γs (we set tc = 0). Using

Mathematica, full analytical expressions for the entries of the final covariance
matrix Γfinal can be calculated:

Γfinal
11 = 1 + Tηs

4γε(γ− ε + 2γs)
(γ− ε)(γ− ε + γs)2

Γfinal
22 = 1− Tηs

4γε(γ + ε + 2γs)
(γ + ε)(γ + ε + γs)2

Γfinal
33 = 1 + (1− T)ηt

2γεκ

(γ− ε)(γ− ε + κ)

Γfinal
44 = 1− (1− T)ηt

2γεκ

(γ + ε)(γ + ε + κ)

Γfinal
13 = −

√
T(1− T)

√
ηsηt

4γεκ
√

γs(γ− ε + κ + γs)
(γ− ε)(γ− ε + κ)(γ− ε + γs)(κ + γs)

Γfinal
24 =

√
T(1− T)

√
ηsηt

4γεκ
√

γs(γ + ε + κ + γs)
(γ + ε)(γ + ε + κ)(γ + ε + γs)(κ + γs)

.

For the single photon generation using the NDOPO, the entries of the covariance
matrix Γfinal,nd are simple combinations of the ones for the DOPO above. This
can be seen by studying the correlations (3.21) and (3.27)-(3.28). Since there is
no beamsplitter in the single photon scheme, the factors including T must be
eliminated from the expressions for Γfinal. Apart from that, the NDOPO entries
are basically averages of the X and P covariances for the DOPO:

Γfinal,nd
11 = Γfinal,nd

22 =
1
2

(
Γfinal

11 − 1
T

+
Γfinal

22 − 1
T

)
+ 1,

Γfinal,nd
33 = Γfinal,nd

44 =
1
2

(
Γfinal

33 − 1
1− T

+
Γfinal

44 − 1
1− T

)
+ 1,

Γfinal,nd
13 = −Γfinal,nd

24 = −1
2

(
Γfinal

13√
T(1− T)

−
Γfinal

24√
T(1− T)

)
.
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