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Resumé
af Jonas Søgaard Juul

Mange biologiske, sociale og kunstigt fremstillede systemer består af flere inter-
agerende dele. Nogle gange er interaktionerne mellem de mindre dele årsag til
makroskopiske fænomener. Fra stamceller som sammen skaber et levedygtigt foster,
til sociale interaktioner som muliggør spredningen af sygdomme, udviser grupper
af interagerende enkeltdele opførsel, som er vigtig at forstå. I denne afhandling
bruges analytiske, numeriske og statistiske metoder til at studere opførslen af syste-
mer som består af mange forbundne elementer. Afhandlingen er delt op i tre dele.

I første del studeres grupper af koblede, oscillerende stamceller i musefostre.
Stamcellepopulationen skaber det komplekse mønster af forstadier til rygradsknogler,
somitter, i mus. Vi udvikler en matematisk teori for en mekanisme, som for nyligt
blev foreslået at stå bag timingen og skaleringen af somitter. Ved hjælp af teorien
finder vi hidtil ukendte forbindelser mellem vigtige variable i det biologiske system.
Vi viser endvidere, at de observerede værdier for disse variable er konsistente med
den foreslåede mekanisme. Herefter gør vi brug af teorien til at foreslå en række
eksperimenter, som muliggør falsificering af somitskaleringsmekanismen. Vi viser
også hvordan eksperimentelt observerede fasebølger kan kontrolleres. Denne kon-
trol vil kunne bruges til at teste, om bølgerne er nødvendige for timingen af somit-
skabelse, hvilket er en udbredt hypotese i forskningsfeltet.

I anden del af afhandlingen studeres spredningsprocesser i netværk. I den første
artikel studerer vi en model af kompleks smitte med synergieffekter. Ved at kom-
binere analytiske og numeriske analyser opdager vi, at synergieffekterne kan mulig-
gøre eller umuliggøre smitte af netværksenheder med bestemte egenskaber. I et
andet projekt undersøger vi hvordan antiestablishmentindivider kan påvirke ud-
bredelsen af to produkter i befolkninger. Modellen er inspireret af nylige antiestab-
lishmentudfald af valg og folkeafstemninger. I modellen kan en lille gruppe med
antiestablishmentholdninger forårsage, at et ellers upopulært produkt ender med
at blive det mest udbredte i befolkningen. Vi argumenterer desuden for, hvorfor
dette er muligt i modellen. Endelig undersøger vi udbredelsen af muterede syg-
domme i befolkninger. Den Spanske Syge er et eksempel på en muteret sygdom.
Vi udleder en skaleringslov for alvorligheden af muterede sygdomme og finder ev-
idens for dens rigtighed i simuleringer og data fra memespredning på Facebook.

I den sidste del af afhandlingen studeres mønstre i telekommunikation mellem
mennesker. Først undersøger vi korrelationer mellem narcissistiske personlighed-
stræk og social opførsel. Vi finder korrelationer mellem narcissistisk personlighedss-
core og antallet af forskellige mennesker, forsøgsdeltagere er i kontakt med. Vi
finder også, at personers interaktionsfrekvens korrelerer med deres score i narcis-
sistisk beundring. Observationerne er konsistente med nogle eksisterende psykolo-
giske hypoteser vedrørende folk med narcissistisk grandiositets adfærd. Til sidst un-
dersøger vi kommunikationsmønstre efter terrorangreb i adskillige Vesteuropæiske
lande. Selvom både mandlige og kvindelige forsøgsdeltagere ændrer adfærd efter
angrebene finder vi signifikante forskelle i graden af adfærdsændringer for mænd
og kvinder.
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Abstract
Synchronisation, shocks and contagion in a connected world

by Jonas Søgaard Juul

Biological, engineered and social systems often consist of many interacting parts.
Sometimes the interactions between these smaller components give rise to macro-
scopic behavior. From stem cells joining their efforts to create a fetus capable of
living, to social interactions allowing diseases to spread, interacting populations on
many different scales exhibit dynamics that are important to study and understand.
In this dissertation, numerical, analytical, and statistical methods are used to study
the dynamics of systems consisting of interacting components. The thesis contains
three parts.

In Part I, a system of coupled oscillating stem cells in mouse embryos is studied.
The stem cells create the complex spatial pattern of vertebrae precursors – somites
– in mice. We develop a theoretical framework for a recently proposed mechanism
for the size and timing of somite creation. We use the theory to establish previously
unknown relations between key variables in the biological system, and show that
the experimental values of these variables are consistent with the proposed mecha-
nism. We also suggest experiments capable of falsifying the proposed mechanism.
In another study, we show how to control experimentally observed phase waves.
This method could be used as a means of testing whether these waves are critical to
the timing of somites, which is a widespread hypothesis in the field.

In Part II, we study the impact of contagion in networked populations. Firstly,
we consider a model of complex contagion with synergy. Combining analytical and
numerical analyses, we find that the synergistic effects determine which nodes can
be infected and which cannot. Secondly, in another study, we examine the impact of
anti-establishment nodes in a model of complex contagion describing the spread of
two competing products. The model is inspired by recent anti-establishment out-
comes in elections and referendums. We find that a very small number of anti-
establishment nodes can cause an otherwise insignificant product to become the
most adopted at equilibrium. We also argue why a few nodes can have such a con-
siderable influence. Finally, we study what impact mutant contagion, such as the
1918 Spanish flu, has in structured populations. We analytically derive a scaling law
for this impact in infinite-dimensional networks. We find that numerical analyses
and existing empirical results for meme-spreading on Facebook support this law.

In Part III of this dissertation, telecommunication in human populations is stud-
ied. In one paper, we examine correlations between narcissistic personality traits
and social behaviour. We find correlations between the number of social contacts
nodes have and their narcissistic scores. We also find evidence of homophily in so-
called narcissistic admiration. The observations are in agreement with some existing
hypotheses regarding the psychology of grandiose narcissists. In the final paper, we
examine telecommunication patterns following terror attacks in several Western Eu-
ropean cities. We find that, although both females and males change behaviour fol-
lowing terror attacks, there are significant gender differences between the changes
of behaviour.
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Chapter 1

Introduction

1.1 Foreword

Nothing in our universe is completely isolated; everything is connected. For the
past three years, I have had the great privilege of exploring many wonders of our
connected world. The projects I have worked on deal with interacting systems of
very different nature: From particular processes carried out by stem cells in devel-
opmental biology, to idealised contagion in abstract models of connected individ-
uals. The projects also make use of very different methods. In some cases, I seek
to answer questions using calculations and simulations. Other projects are entirely
data-driven.

The diversity in projects is partially due to this work being funded by three dif-
ferent grants. The grants had very different scopes, and each provided one-third of
the funding of this doctoral work. But the heterogeneity in topics also illustrates the
fantastic importance of understanding how interactions of individual agents shape
the world around us. Interactions are simply present in systems of all scales; big or
small; biological, engineered, or social. Some interactions are of great importance,
while others are nothing but noise.

I have enjoyed spending three years of my life exploring this connected world. I
hope that this dissertation will succeed in conveying both the scientific importance
of studying connected systems and my own fascination with the topic.

1.2 The purpose and content of this dissertation

Seven research articles constitute the backbone of this dissertation. These manuscripts
were written during my Ph.D., and for each of the articles, I made important contri-
butions to the presented research. I elaborate on these contributions in the coauthor-
ship statements submitted with this dissertation.

The publications contain all of my most important academic achievements and
are good representations of what I have spent my time on as a doctoral student.
For this reason, I have written this dissertation as a synopsis of manuscripts and
publications that are integrated parts of this dissertation. I present the papers as
they were published or submitted.

The dissertation consists of 3 parts. Each part contains a number of chapters.
Each chapter presents one of the manuscripts I have written during my Ph.D. The
most important content of each chapter is the publication (and its corresponding
Supplementary Information). In addition to a copy of the publication, each chapter
contains: 1) an introductory section which motivates why the topic is interesting;
2) an introduction to the state-of-the-art, scientific context, and the objective of the
manuscript; 3) a recap of the results of the manuscript. In addition to these sections,
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some chapters contain a section commenting on work published after the publica-
tion came out.

The final chapter in each of the three parts ends with a section containing con-
clusions and perspectives for further research.

1.3 The structure of this dissertation

Each of the three parts consists of two or three articles that are related to each other in
that they study the same system or data, concern related phenomena, or use similar
methods.

Part I of the dissertation contains two papers that both concern the mechanism
behind the timing and scaling of vertebrae precursors in mice. Chapter 2 gives an in-
troduction to the biological system and presents my theoretical work on the somite-
formation mechanism and how recent experimental results motivate this work. Chap-
ter 3 introduces fundamentals in the theory of coupled oscillators. After this, I
present my work on controlling phase waves in somite formation using external
periodic forcing. Chapter 3 wraps up Part I with conclusions for both papers and
perspectives for further research.

Part II of the dissertation contains three papers on contagion in networks. Chap-
ter 4 introduces the concept of networks and three common ways of creating syn-
thetic networks. The chapter also introduces simple contagion and complex conta-
gion. These concepts are all necessary to present to understand the three papers in
Part II. The rest of the chapter concerns models of contagion with synergistic effects.
The publication at the end of Chapter 4 studies a deterministic model of synergistic
complex contagion. Chapter 5 studies the formation of anti-establishment majorities
in the light of complex contagion. Chapter 4 covers most of the prerequisites for un-
derstanding this piece of work. For this reason, the Chapter 5 primarily motivates
why anti-establishment majorities are essential to study. Chapter 5 also introduces
recent work on anti-establishment majorities. The final paper in Part II concerns
the impact of mutant contagion. First, Chapter 6 presents some examples of mutant
contagion and why such contagions are important. Then, existing work on diffusion
paths and a simple model of mutations are introduced. The last thing to be pre-
sented before proceeding to the paper is recent experimental results that support the
theoretical results derived in the article. A section with conclusions and scientific
outlook completes Part II.

Part III of the dissertation presents two publications focusing on patterns in
telecommunication data. Chapter 7 studies correlations between telecommunica-
tion patterns and scores on the Narcissistic Admiration and Rivalry Questionnaire.
First, the chapter motivates why telecommunication data can be used as a means
of studying human behavior. Following this, I briefly introduce the modern per-
ception of narcissism and the concept of homophily. The chapter concludes with
a summary of our results and a copy of the most recent manuscript version. (The
manuscript is still in preparation). Chapter 8 presents a study of gender differences
in behavior change following terror attacks. The chapter starts with a motivation
for understanding how terror attacks impact the general population. Following this,
the literature on the topic is introduced. In doing this, I mention the objectives of the
presented publication. The chapter ends with a section containing conclusions and
perspectives for further research concerning our projects on patterns in telecommu-
nication.
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Part I

Somite formation in mice
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Chapter 2

Phase-gradient encoding in somite
formation: Theory and predictions

The moment of conception sparks an intricate process of biological self-organization.
In ever-increasing numbers, cells coordinate efforts to make an inanimate collection
of biological building blocks into a living organism. At the same time as the fetus is
growing, the complexity of the organism is developed. From the vulnerable organs
to the protecting structure of the skeleton; from the global network of nerves to the
delicateness of the heart valve, a living organism is created from the interplay of
mindless biological entities.

That the complexity of living organisms arise from microscopic interacting in-
gredients is a fascinating fact of nature. With nobody overseeing the whole process,
the collection of cells smoothly go about their business. Each cell can only sense and
affect a tiny fraction of its cocreators but nonetheless the development runs on time
like a clockwork. Not only are inevitable errors efficiently mitigated or corrected.
The sequence at which each feature of the fetus is created is predictable and regular.

Considering the predictability of the result of seemingly tumultuous microscopic
interactions of inanimate cells, the metaphor for biological development running
like a clockwork is appealing. Could it be that such a clockwork exists, responsible
for cueing stem cells to differentiate at exactly the right time? Or could it be that
different subprocesses were controlled by clocks of their own, and interactions of
these clocks were responsible for the predictable order of developmental events?

Clocks have been discovered in practically every corner of living organisms (Stro-
gatz, 2004). Interactions between clocks are common too. From long oscillations of
female menstrual cycles (McClintock, 1971), to daily variations in body tempera-
ture (Aschoff, 1965), and fast oscillations of protein regulatory circuits (Bar-Or et al.,
2000; Geva-Zatorsky et al., 2006), the oscillations have diverse functions and char-
acteristics. Many of these oscillatory behaviors are due to clocks residing in the
organism itself, possibly being kept on a tight schedule through interactions with its
immediate environment (Woller et al., 2016; Aschoff, 1965; Strogatz, 2004; Hardin,
Hall, and Rosbash, 1990; Dibner, Schibler, and Albrecht, 2010). The zeitgeber which
provides a signal the clock can synchronise to could be in the form of periodic en-
vironmental cues such as the day-night cycle (Weitzman et al., 1982; Aschoff, 1965;
Hardin, Hall, and Rosbash, 1990), or other oscillating inputs such as feeding and
fasting (Woller et al., 2016). Instead of asking “Do clocks exist in biological develop-
ment?”, one should rather ask “How many clocks exist in biological development?”; “How
is the timing of clocks translated into timely formation of patterns and organs?”; “How do
different clocks keep in lockstep with each other?”, and “Can we control the developmental
clocks, and, thereby, developmental processes?”

Enter physicists. Many of the above questions have to do with the dynamics
of interacting oscillators. As we shall see in Chapter 3, such interactions can give
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rise to fascinating behavior even in the simplest of settings. Exploring the link be-
tween biological interactions and observed behavior constitutes an overwhelming
landscape of open questions. One strategy to explore this landscape is reduction-
ism. By making simplifying assumptions on the system of interest, one can hope
to find minimal requirements for specific dynamic behavior to occur. Simplification
also has the added benefit of making numerical and analytical treatment simpler.

A stunning example of interplay between timing and pattern formation takes
place in the presomitic mesoderm (PSM) in developing embryos. Across species, hun-
dreds of stem cells act like clocks ticking at different speeds. The joint oscillations of
these stem cells give rise to waves running across the PSM. Although the stem cells
all beat with different frequencies, new waves occur with a fixed period. Rhyth-
mically travelling across the stem cell population, the waves appear to control the
formation of the vertebrae themselves.

How does a group of oscillators with diverse frequencies give rise to travelling
waves with a fixed period, and how can such waves facilitate the creation of the
complex pattern of vertebrae? These questions are still open, and they are at the
core of my work on somitogenesis. In this and the following chapter, I present my
results concerning these coupled oscillations, waves, and patterns. The end goal of
this research is to understand and manipulate the travelling waves and the spatial
pattern of segments created in the PSM.

2.1 Somite formation in developing embryos

2.1.1 A quick introduction to somite formation

In all vertebrates, the developmental machinery must cause the creation of a spec-
ified number of vertebrae. The precursors of vertebrae are called somites, and the
creation of somites is called somitogenesis. Different vertebrates have different num-
bers of vertebrae. For example, humans have 33, mice have 65, and for snakes the
number can exceed 300 (Gomez et al., 2008; Tam, 1981; Theiler et al., 1972). While the
biological details can vary between different species (Soroldoni et al., 2014), somites
are formed in the developing embryo, while the embryo is growing.

Figure 2.1 shows where the PSM is located in developing mouse and zebrafish
embryos. It lies between the tailbud of the embryo and the created somite segments,
which will later constitute the backbone of the animal. The tailbud region of the PSM
is called the posterior PSM, while the part near the somite front is called the anterior
PSM (Soroldoni et al., 2014). The PSM consists of stem cells, huddled together in a 3-
dimensional elongated configuration. While the embryo is growing, the PSM length
changes. It is shortened from the anterior, as groups of stem cells form new somites,
differentiating with a fixed species-dependent period. It also gets longer as new
stem cells get added in the posterior PSM. Whether the shortening or elongation is
happening faster depends on the stage of development. The growth rate eventually
comes to a halt. Hence, by the end of somitogenesis, the PSM only shortens.

The systematic differentiation of stem cells create the intricate pattern of verte-
brae in vertebrates. But how do the right number of stem cells differentiate at the
right time? What signals to individual stem cells that the time is right? And is this
signal external and global, or internal to the cells and communicated between neigh-
bours? Or some third option? Several frameworks accounting for this signalling and
decision making have been put forward in the last half-century. I will touch upon the
most important ones later in this chapter. Before proceeding to these frameworks,
however, it is worth dwelling at one stunning experimental observation.
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FIGURE 2.1: Illustration of the presomitic mesoderm (PSM) in
two different vertebrate embryos. The PSM is an elongated, 3-
dimensional population of stem cells. The PSM closest to the tailbud
is called the posterior PSM. The opposite end is the anterior PSM.
The arrows show borders between somites that have already been
formed by PSM cells differentiating in a coordinated manner. Figure

from (Saga and Takeda, 2001).

Across species, from chicks to mice and zebrafish, waves of gene expression have
been found to travel the presomitic mesoderm from posterior to anterior (Oates,
Morelli, and Ares, 2012; Palmeirim et al., 1997; Soroldoni et al., 2014; Lauschke et al.,
2013; Cotterell, Robert-Moreno, and Sharpe, 2015). The waves are created by the
timing of gene-expression oscillations in hundreds of cells. In each of these single
stem cells, several genes oscillate – in mice, oscillations have been found in several
different pathways (Tsiairis and Aulehla, 2016), e.g. Notch, Wnt and FGF (Özbudak
and Pourquié, 2008). Somehow, cells coordinate their oscillations to form waves.
Moreover, the arrest of the waves in the anterior PSM consistently correlates with
somite formation – across species!

The correlation between the arrival of waves and somite formation, of course,
does not imply a causal relation. The waves could be nothing but a byproduct of the
real mechanism leading to somite formation. Nonetheless, the waves could provide
the signal needed for the stem cells to differentiate at the right time and in the correct
numbers. As we shall see, some experimental studies have reported evidence that
the waves do have central roles to play in some species. The picture gets compli-
cated by a number of experimental results showing how the machinery responsible
for the timely somite formation depends on the species in question. The following
section introduces these complications, a classical model for the somite-formation
mechanism, and comments on some of the most recently reported experimental re-
sults contradicting the clock-and-wavefront model.

2.1.2 Mechanisms for somite formation

How the stem cells in the presomitic mesoderm successfully differentiate into somites
at the right time and in the correct numbers is an intriguing question. In this section,
I introduce the classical clock-and-wavefront model. This model has been extremely
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influential, and only recently have experimental observations made it clear that al-
ternative models are needed. Following the introduction of this classical model, I
will mention recent experimental results on zebrafish and chicks, indicating that the
real picture is more complicated than the model suggests.

The clock-and-wavefront model

The clock-and-wavefront model was proposed by Cooke and Zeeman in 1976 to
account for the mechanism controlling the number of repeated segments during an-
imal morphogensis (Cooke and Zeeman, 1976). Somitogenesis was one of the sys-
tems they wanted the model to describe. Somites are formed in the anterior PSM
and are discrete segments formed by groups of cells. Any theory describing somite
formation therefore must address 2 points: 1) the when; 2) the where. How do groups
of stem cells differentiate together? How does this only happen in the anterior part
of the PSM?

Cooke and Zeeman solved the two points using a clock and a wavefront, respec-
tively. The central idea is that all cells can monitor time using some internal clock.
At the same time, they can be advised of their spatial position by a “wavefront”,
meaning environmental cues.

Cells get added in the posterior PSM. They then gradually move towards the
anterior following the addition of more cells in the posterior, and tissue shortening
in the anterior. Eventually, cells enter a region of the PSM where they receive a sig-
nal. Once they have received this signal, they differentiate at a specified time – in
synchrony with surrounding cells. In the original paper, Cooke and Zeeman only
described this mechanism qualitatively. They did not suggest what would consti-
tute the clocks, nor did they provide information about the nature of the wavefront
providing spatial cues.

Since Cooke and Zeeman proposed the model, many studies have focused on un-
covering the nature of the clock and wavefront. Oscillations have been found in sev-
eral pathways, and models for the molecular clocks have been constructed (Özbu-
dak and Pourquié, 2008; Aulehla and Herrmann, 2004; Horikawa et al., 2006; Lewis,
2003; Jensen et al., 2010; Mengel et al., 2010; Monk, 2003; Pedersen, Jensen, and Kr-
ishna, 2011). Moreover, morphogen gradients have been found to span the PSM,
constituting plausible candidates for the wavefront mechanism (Dubrulle, McGrew,
and Pourquié, 2001; Aulehla et al., 2003; Aulehla and Herrmann, 2004; Aulehla et
al., 2008; Dunty et al., 2008). In other words, as cells move toward the anterior PSM,
some surrounding chemicals change their concentration gradually. The concentra-
tion of these chemicals can consequently inform cells about their spatial position.

Although the existence of morphogen gradients and cellular clocks seem encour-
aging, experiments have repeatedly reported results that seem to be in contradic-
tion with the clock-and-wavefront model (Packard Jr and Jacobson, 1976; Aoyama
and Asamoto, 1988; Stern et al., 1988; Lauschke et al., 2013; Soroldoni et al., 2014;
Cotterell, Robert-Moreno, and Sharpe, 2015). This has caused the model to be re-
formulated and reanalysed several times, bearing witness to the popularity of the
model (Schnell and Maini, 2000; Baker, Schnell, and Maini, 2006b; Baker, Schnell,
and Maini, 2006a; Murray, Maini, and Baker, 2011; Baker, Schnell, and Maini, 2008;
Dubrulle and Pourquié, 2002; Pourquié, 2004).

Two of the most prominent examples of observations contradicting the clock-
and-wavefront model were published very recently. The two cases concern the
somite formation mechanism in zebrafish and chicks, respectively. In zebrafish, a
study reported the time-scale of genetic oscillations to be insufficient to account for
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the periodicity of segmentation (Soroldoni et al., 2014). The rate of tissue shortening
and a gradual change in the PSM phase profile contribute to the period of segmen-
tation too. This is much more complicated than the process being controlled by just
a single clock in combination with spatial cues.

In chicks, a thorough theoretical and experimental analysis recently concluded
that a range of experiments supported a model based on a local reaction-diffusion
mechanism over the clock-and-wavefront model (Cotterell, Robert-Moreno, and Sharpe,
2015). The authors did not rule out that global morphogen gradients could be neces-
sary in somitogenesis. Nonetheless, the study suggested that a clock-and-wavefront
mechanism was insufficient to account for the outcomes of several experiments.

These recent results illustrate the striking diversity in observations for different
species. Recent observations in mice add to this diversity. For mice, however, no
theoretical framework accompanied the experimental observations. A simple theo-
retical framework describing the empirical results is what I have sought to formulate
and explore. The following section introduces the recent empirical observations re-
garding the somite-formation mechanism in mice.

2.1.3 Evidence of phase-gradient encoding in mice

Above, I mentioned recent experimental and theoretical results regarding the somite-
formation mechanisms in chicks and zebrafish. The research I have conducted on
this topic concerns the somite-formation mechanism in mice. My interest in this
topic was sparked by fascinating observations reported in the paper “Scaling of em-
bryonic patterning based on phase-gradient encoding” published Nature in 2013 by
Lauschke et al (Lauschke et al., 2013).

In a captivating study, Lauschke et al. examined how somite size is regulated
during PSM growth. Previous studies had found that number and proportions
of somites remained constant even under experimental manipulations of embryo
size (Pourquié, 2004; Gregor et al., 2005; Tam, 1981; Brown et al., 2006). In other
words, if the embryo was reduced in size, the segments became proportionally
smaller, but otherwise resembled what observations in embryos of normal size. This
ability to scale somite size during different growth conditions is intimately con-
nected to one of the major questions presented earlier in this chapter: How is the
number of cells that choose to differentiate and form a somite controlled?

To illuminate this scaling mechanism, the authors designed a novel experimen-
tal model. They made ex-vivo (quasi) single-layer cultures of stem cells consisting
of stem-cells from the tailbud of mouse PSMs. These monolayer cultures they called
mPSMs (monolayer PSMs). After an initial growth phase, they found that these
mPSMs formed segments similar to the somites developed in the mouse PSM. The
experimental model allowed them to study the scaling in detail, including how vari-
ations in external conditions affected the segment size.

Using a fluorescence to highlight oscillatory gene expression, Lauschke et al.
found that waves of gene expression travelled the mPSMs. The cellular oscillators
giving rise to these waves oscillated with frequencies similar to what is observed in
real embryos. In the posterior, the oscillation period was similar to the segmentation
period: approximately T0 = 130 min. The period then increased linearly toward
the anterior, the anteriormost cells oscillating with a period around 25%-30% longer
than in the posterior.

At the arrest of the travelling waves at the segmentation front, new segments
formed. This observation was even stable as the mPSM changed in size, and as ex-
ternal temperature was varied. Observing the travelling waves allowed the authors
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FIGURE 2.2: Illustration of the phase-gradient encoding reported by
Lauschke et al. At somite formation, the total phase difference across
the PSM is 2π. The cells containing the anterior-most 21% of this
phase will constitute the newly formed somite. This mechanism per-

sists for different PSM lengths. Figure from (Lauschke et al., 2013).

to make an extraordinary finding. For different temperatures, and unaffected by
mPSM length, exactly one wave spanned the mPSM when a new somite formed. In other
words, as one wave hit the anterior mPSM and a new somite formed, a new wave
was always setting out from the posterior part of the mPSM.

Furthermore, the cells differentiating into the somite consistently accounted for
the 21% anterior-most phase in the PSM. The authors concluded that these two key
numbers, the 2π of phase difference spanning the PSM (equivalent of 1 wave) and
the 21% of phase deciding the width of the somite, could be how somites scale across
the growth of the PSM in mice. Figure 2.2 illustrates this proposed scaling mecha-
nism. The reported phase-gradient encoding as a means of somite scaling is dif-
ferent from what mechanisms reported in connection to somite formation in both
chicks and zebrafish (Soroldoni et al., 2014; Cotterell, Robert-Moreno, and Sharpe,
2015). Several details about the proposed mechanism remained unanswered after
the publication of this paper. 4 of such questions are

1. Why 21% and 2π? What is the connection between these numbers?

2. If a new somite forms when 2π of phase spans the PSM, will the resulting
somite always consist of cells accounting for the 21% anterior-most phase? Or
can this “phase width” be altered?

3. Are there other observable consequences of the proposed scaling mechanism
by phase-gradient encoding?

4. If the global phase differences are causing somites to form, cells must have
access to this global information. What mediates this information?

The first 3 of these questions are the topic of my research presented in this chapter.
The results are published in the paper “Constraints on somite formation in develop-
ing embryos”, published in Journal of the Royal Society Interface (Juul, Jensen, and
Krishna, 2019). They constitute a demystification of fundamental figures in the pro-
posed mechanism of phase-encoded scaling and a set of predictions that follow from
the proposed mechanism. Question 4 is better answered experimentally. Nonethe-
less, we comment on this question toward the end of the paper. In Section 2.3, I
shall recapitulate recent work related to this question and repeat the argument from
the article in this context. In the following section, I convey the main results of our
paper.
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2.2 Our results: Connecting key figures in phase-gradient
encoding and providing predictions

In the paper “Constraints on somite formation in developing embryos”, published in
Journal of the Royal Society Interface (Juul, Jensen, and Krishna, 2019), Sandeep Kr-
ishna, Mogens H. Jensen and I study a simple model of the mPSM. We ignore spatial
dimensions orthogonal to the anteroposterior axis, thereby reducing the mathemat-
ical system to a single dimension. We suppose that cells lie along this axis and that
their periods and oscillation phases resemble what observations in experiments in
PSMs and mPSMs. Specifically, we make oscillation periods increase linearly from
posterior (x = 0) to anterior (x = 1), T(x) = T0(1 + xλ). The PSM also changes in
size; new cells are added in the posterior end, and cells are removed in chunks in
the anterior end (mimicking somite formation). We assume that somite formation
happens with period Ts, and pay special interest to the case Ts = T0, as this captures
experimental observations.

Using the simple model, we provide a mathematical argument that the assump-
tions above (all following from experimental observations) lead to a connection be-
tween period gradient, phase width, which we denote φ̃, and phase difference across
the PSM at somite formation. This connection is summarised in the formula,

φ̃ = 2πk
λ

1 + λ
. (2.1)

If Ts = T0, k = 1. We show that experimental observations are in agreement with
this relation even if we assume only 5% error on the measurements. This connection
answers the 1st of the questions posed in the previous section.

Because phase-gradient encoding connects physical somite size to the phases of
cellular oscillators, we make an effort to calculate expressions for the stable “phase
profile” of the PSM under different growth conditions. The phase profile is the dis-
tribution of phases from posterior to anterior. We manage to do this for two essential
cases: 1) When the PSM grows as quickly as it is shortened (“constant length”); 2)
When the PSM does not grow at all. The latter case corresponds to the experiments
of Lauschke et al. We find that any monotonously increasing period gradient leads
to a concave phase profile in the former case. We find that with the parameters re-
ported by Lauschke et al., the phase profile in the latter case is almost linear (slightly
convex). We argue that this, too, is in agreement with experimental observations.
Seeking to understand the biological impact of phase-profile shape, we argue that
concavity of the phase profile can reduce the impact of erroneous phase decoding
on the physical pattern of somites.

We also use our insight on phase profiles for PSMs with “constant length” to de-
rive relations between the period gradient, physical somite size, and maximal phase
difference over the PSM. In particular, we find that if exactly 2π spans the PSM
at somite formation, the fraction of cells that constitute the next somite is approxi-
mately described by λ/2. These claims can all be tested explicitly, and answer the
3rd question of the previous section.

Lastly, having found the connection between phase width and period gradient,
Eq. (2.1), we propose changing the phase width by perturbing the period gradient.
Specifically, we suggest perturbing the periods of all cells by a constant amount of
ξT0, ξ ∈ R. We provide explicit formulas for the phase width as a function of pertur-
bation size, φ̃(ξ), and convert this relation into physical somite size for the particular
cases of constant length and no growth. We find that increasing the period of all cells
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causes both phase width and spatial somite width to decrease. These results answer
the 2nd of the questions posed in the previous section.

2.3 Recent work and how this relates to our results

Our results are part of an ongoing effort to understand the mechanism behind somite
formation and scaling. After having derived our results, we were made aware of ex-
periments that had possibly already tested some of our predicitions. Recent studies
have also illuminated how the differentiation mechanism might work in the mouse
PSM. In this paragraph I comment on these related studies.

Possible contradiction between experiments

One of our main results is that the proposed phase-encoding mechanism couples the
somite width to the oscillation periods in the PSM. We showed that increasing all
oscillation periods by a constant amount of ξT0 would decrease phase width. In the
cases of constant length and no growth, we concluded that this perturbation would
also reduce physical somite width. In a striking coincidence, similar experiments
have been carried out and published in (Harima et al., 2013).

Harima et al. reduced the oscillation period of Hes7, a cyclic gene that has been
studied meticulously in relation to somitogenesis in mice. They sped up these oscil-
lations by modifying the Hes7 gene; specifically they reduced the number of intron,
thereby affecting the amount of delay in the oscillation. The experiments were car-
ried out in mice, and they found that the modification made segments smaller in
size and larger in number. This finding is exciting because we concluded that the
proposed phase-encoding mechanism should cause segments to become larger if the
oscillation period were reduced.

It thus seems that the experimental results of Harima et al. could contradict the
findings of Lauschke et al. Before this can be concluded with certainty, however,
we must be positive that the assumptions of our calculations are not broken in the
experiment carried out by Harima et al. The experiment did not quantify differences
across space in the PSM. Hence, we do not know whether a phase difference of 2π
occupied the PSM at somite formation or whether 21% of this turned into the next
somite. We also do not know the growth rate of the PSM, or whether the period
was changed uniformly over the whole PSM. It could be that the period gradient
changed shape as a consequence of the experimental procedure. The only period
that is quantified is the average period in the PSM. In addition to these reservations,
it is not clear that results in in vitro mPSMs translate directly to in vivo results from
actual mouse embryos. Thus, it is not clear that we can falsify the proposed phase-
encoding mechanism from the results presented by Harima et al. On a brighter note,
the results indicate that it might be possible to carry out the experiments we propose
and directly test the phase-encoding mechanism in vivo.

Interacting clocks: Experiments and models

If the global phase distribution in part controls somite formation, cells must have
access to system-level information about the phase distribution. The exact nature
of such information mediation remains unknown, but recent experiments have in-
dicated that this mediation could come down to interacting cellular clocks. In this
section, I briefly introduce these latest results, a theoretical study supporting the
possibility of such a mechanism. I will end the section by commenting on how these
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new findings relate to our results and the phase-encoding mechanism proposed by
Lauschke et al.

As mentioned previously in this chapter, oscillations exist in several pathways
in mouse-PSM cells. Among these, the most prominent pathways are the FGF, Wnt,
and Notch pathways (Özbudak and Pourquié, 2008). Lauschke et al. (Lauschke et al.,
2013) and other related studies have mostly studied waves produced by oscillations
in the Notch pathway (Aulehla et al., 2008; Tsiairis and Aulehla, 2016; Bulusu et al.,
2017; Delaune et al., 2012; Masamizu et al., 2006). In an innovative study, Sonnen
et al. studied the interaction between the Wnt and Notch signalling by visualising
and manipulating oscillations in these two pathways (Sonnen et al., 2018; Sonnen
and Aulehla, 2014). Their findings were striking. While the oscillations in the two
pathways were out of phase in the posterior PSM, oscillations beat in synchrony in
the anterior PSM. If the authors manipulated oscillation phases such that the two
pathways oscillated out of phase in the whole PSM, segmentation was impaired! In
other words, the phase difference between two clocks seemed to control the timing
of somite formation.

The finding of Sonnen et al. that the phase difference between two biological
clocks could control somite patterning raises the following question. What kinds
of coupled clocks significantly change their oscillatory behavior depending on their
phase difference? Given some “output variable” in one of two coupled gene net-
works, what kinds of networks make the magnitude of this output depend on the
phase difference between the two gene networks? Beauxpeux & François identified
several classes of coupled, oscillating gene networks that could cause such varia-
tion in output variables depending on phase differences (Beaupeux and François,
2016). These networks show “shocks” for certain phase-differences and their exis-
tence demonstrates that coupled-clocks phase encoding is a plausible mechanism
for somite formation in mice.

One might also ask: How do these recent result directly relate to the theoret-
ical framework we developed? For the phase-encoding mechanism proposed by
Lauschke et al. to work, every oscillator must be able to compare their Notch-
oscillation phase to the posteriormost oscillator. If this is not the case, somite for-
mation happening when the total phase difference over the PSM is 2π cannot be
guaranteed. The mechanism of phase encoding by interacting clocks provides a way
for single cells to gain information about the global phase distribution in this way.

Suppose the Wnt oscillations were synchronised or nearly synchronised for all
cells. Also, suppose that the phase differences between Notch and Wnt oscillations
in the posteriormost cell were fixed (as reported by Sonnen et al.). A cell comparing
its Notch-oscillation phase to its Wnt-oscillation phase would effectively be compar-
ing its Notch-oscillation phase to the Notch-oscillation of the posteriormost PSM cell.
Interestingly, such nearly-synchronised Wnt oscillations are exactly what the experi-
ments by Sonnen et al. uncovered in the Wnt pathways. While waves of Notch oscil-
lations travelled across the PSM, the Wnt oscillations came in nearly-synchronised
pulses. Hence, the coupling between oscillators in the Notch and Wnt pathways
provide not only a mechanism for initiation of somite formation. It also provides a
way for somites to scale according to the 21% rule put forward by Lauschke et al.

2.4 Paper: Constraints on somite formation in developing
embryos
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Segment formation in vertebrate embryos is a stunning example of biological
self-organization. Here, we present an idealized framework, in which we
treat the presomitic mesoderm (PSM) as a one-dimensional line of oscil-
lators. We use the framework to derive constraints that connect the size of
somites, and the timing of their formation, to the growth of the PSM and
the gradient of the somitogenesis clock period across the PSM. Our analysis
recapitulates the observations made recently in ex vivo cultures of mouse
PSM cells, and makes predictions for how perturbations, such as increased
Wnt levels, would alter somite widths. Finally, our analysis makes testable
predictions for the shape of the phase profile and somite widths at different
stages of PSM growth. In particular, we show that the phase profile is
robustly concave when the PSM length is steady and slightly convex in an
important special case when it is decreasing exponentially. In both cases,
the phase profile scales with the PSM length; in the latter case, it scales dyna-
mically. This has important consequences for the velocity of the waves that
traverse the PSM and trigger somite formation, as well as the effect of errors
in phase measurement on somite widths.

1. Introduction
A particularly striking example of biological self-organization is that of
segmental patterning in vertebrate embryos. During somitogenesis in vertebrate
species, somite segments, the precursors of vertebrae, form periodically as the
embryo elongates. In mice, chick and zebrafish embryos, cells in the presomitic
mesoderm (PSM) behave like a population of coupled oscillators. Expression of
many genes oscillate in each cell, and cells coordinate their oscillations such that
kinematic waves of gene expression travel from the posterior end of the PSM to
the anterior. The arrival of each wave at the anterior end is correlated with the
formation of a new somite [1–4]. In this paper, we investigate the constraints
that connect these waves to the somite width and the gradient of oscillation
periods across the PSM.

Several genes are known to oscillate in the PSM of vertebrates, most impor-
tantly those in the Notch, Wnt and FGF pathways [5]. The period of oscillations
often depends on the position of the cell along the antero-posterior axis. There is
a region in the tail bud where all cells oscillate synchronously with a time
period characteristic of the species, which can range from ≈30 min for zebrafish
to ≈2 h in mice. The oscillations slow down as one moves from the posterior
end of the PSM (right after the tail bud) to the anterior end [1,4,6]. In mice,
this ‘period gradient’ is linear—see [4], who find that the posterior-most cells
oscillate with a period ≈130 min, linearly increasing to 25–30% higher for the
anterior-most cells.

As mentioned earlier, examining how the oscillations develop over time
revealed travelling kinematic waves of gene expression that move from pos-
terior to anterior. For instance, Lauschke et al. [4] report that the position of

© 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.

14Chapter 2. Phase-gradient encoding in somite formation: Theory and predictions



peak levels of LuVeLu, a Notch signalling reporter, moves
from posterior to anterior in ex vivo cultures of mouse PSM
cells (so-called mPSMs), with a velocity that depends on
the length of the mPSM [4]. Similar waves are observed in
a reporter for the oscillating gene her1 in zebrafish [3]. An
important difference between these species is that in zebra-
fish, several waves can simultaneously co-habit the PSM
[3], whereas experiments on mPSMs have found maximally
one wave existing at a time [4]. However, in both cases, as
well as in other species, the formation of the next somite is
coincident with the arrival of a wave at the anterior end, in
the vicinity of the previous somite. The mechanism that trig-
gers the formation of a new somite is still a matter for debate.
It was thought for years to be the classic clock and wavefront
model [7], but this theory has recently been challenged. Cotter-
ell et al. [8] combine theory and experiments to suggest that, in
chick embryos, formation of new somites might be caused by a
reaction–diffusion mechanism in the anterior PSM that inter-
acts with the oncoming wave, while Sonnen et al. [9] suggest
that interactions between two different oscillating pathways
may be what triggers somite formation in mice.

Regardless of themechanism, some interestingobservations
have been made about the periodicity of somite formation
and scaling of the somite widths. In mPSMs, the formation
of a new somite was found to occur when 2π of phase (i.e.
one full wave) was spanning the PSM. That is, when a wave
reached the anterior end, and a new somite formed, the next
wave was just setting out from the posterior end. Furthermore,
each new somite consisted of the anterior-most cells that
contained 21% of the total phase difference across the PSM,
irrespective of the length of the PSM at that time [4]. Although
many different aspects of the coupled oscillating cells in the
PSM have been investigated theoretically, ranging from
models of global wave patterns and morphogen gradients,
to models of the underlying biological clocks and the effect
of couplings on defect-free patterning [8,10–20], nothing is
known about the measurable consequences of such phenomen-
ological observations about the phase of the cells in the PSM. In
the present paper, this is what we seek to illuminate. A second
goal of our work is to understand the interplay between such
oscillations (and travelling waves) and the growth of the PSM.
Across species, the PSM is known to elongate at the posterior
end as the tail bud extends. The length of the PSM is determined
byacombinationof this growth at the posterior end, and shrink-
age at the anterior end as new somites are formed. During
somitogenesis, the PSM length typically initially increases,
then may remain steady for a duration and finally decreases
(indicating an eventual decrease in the growth rate at the pos-
terior end). We examine how the period gradient, growth of
the PSM and shrinkage due to somite formation combine to
affect the phases of oscillating cells, and what quantitative con-
straints this places on the somite widths and the timing of their
formation.

The rest of the paper is structured as follows. In §2, we
introduce our model and key assumptions. In §3.1, we
show that the period gradient, the total phase difference
across the PSM at somite formation, the growth rate of the
PSM and the width of the new somite cannot be independent
of each other. We explicitly derive the mathematical con-
straint that connects these quantities and, in §3.1.1, show
that experimental measurements from mPSMs match this
constraint. Section 3.2 calculates the phase profile across the
PSM in the specific situation where the PSM length is in

steady state, i.e. it is shortened by somite formation at the
same rate as it grows at the posterior end, and §3.3 calculates
the constraints on somite widths that exist in a PSM with
steady-state length. Our analysis provides explicit predictions
for how the phase of a cell should depend on the antero-
posterior location of that cell in wild-type embryos that
abide by these constraints (§3.2), and for the expected
change in somite widths in an experiment that would perturb
the period gradient (§3.4). Finally, we examine the case where
PSM growth is arrested, similar to the end of somitogenesis,
and make predictions for how somite widths and the PSM
length change with time in this case (§3.5). Section 4 discusses
the experimental predictions stemming from our analysis and
speculates on the implications for somitogenesis.

2. Theoretical framework for analysing the phase
of the oscillating cells in the presomitic
mesoderm

We focus on the phase of the oscillation in cells rather than
the full waveform of gene expression levels. That is, we
associate with each cell a single dynamical variable taking
values between 0 and 2π representing the phase of the
somitogenesis clock in that cell, and a time period that sets
the rate of change of the phase. In doing so, we make the
implicit assumption that varying the time period simply
scales the oscillation waveform without changing its shape
otherwise. This seems to be consistent with experimental
data (e.g. see fig. 2 in [3]) and is what allows us to character-
ize each cell by a single variable, its phase, and a single
parameter, its time period, that controls how quickly the
phase changes. Furthermore, we simplify the PSM into a
one-dimensional line of cells since the spatial periodicity in
somite formation is along the posterior–anterior axis.

Thus, the system we consider (figure 1) consists of a one-
dimensional line of cells, each associated with a phase and a
time period, pictorially represented by a clock face with the
clock hand showing the current value of the phase. As
observed in embryos, new oscillators are frequently added
at the posterior end of the PSM and, when a new somite is
formed, oscillators are removed from the anterior end of the
PSM. Thus, we allow cells to be added to the posterior end
periodically every Tg time units (1/Tg is thus the PSM
growth rate),1 and removed from the anterior end whenever
a somite is formed. The evolution of the phase of each cell
depends only on the time period of that cell, which in turn
depends only on the location of the cell on the line. Thus,
the period of a cell may change as addition or removal of
cells changes the relative distance of the cell from the
posterior end of the line. Travelling waves can occur in this
set-up. For instance, if the periods of all cells were identical,
but the phases initially decreased progressively from 2π at
the posterior (left) end to 0 at the anterior (right) end, then
over time one would observe that the location of phase 2π
(or 0) would move from left to right, corresponding to a tra-
velling wave moving from posterior to anterior (figure 1). In
this purely illustrative scenario, the speed of the wave would
depend only on the initial phase differences between adjacent
cells but, in general, the periods may be different for different
cells, in which case the speed of the wave would depend on
the period gradient as well as the phase differences.
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2.1. Key assumptions
We make the following assumptions regarding the phases
and periods that characterize the oscillations of each cell:

(A) Cells oscillate with a time period T0(1 + xλ), where x is
the location of the cell relative to the posterior end, nor-
malized to the total length of the PSM (thus x∈ [0, 1]),
and T0 is a species-dependent base time period.

(B) A new cell that is added to the posterior end, whenever
the PSM grows, is assigned a phase identical to its
immediate neighbour, the cell that was until then the
posterior-most PSM cell. Subsequently, of course, the
phases may start to differ as the two cells will have
different time periods.

Assumption (A) posits a linearly increasing period gradi-
ent, similar to observations in mPSMs [4], as discussed

earlier. In §3.2, we show that our key results hold for any
increasing period gradient, but for now we assume that
the period gradient is linearly increasing. Assumption (A)
also implicitly assumes that as new cells are added and
removed, due to growth and somite formation, the morpho-
gen gradient determining the periods is quickly reset in such
a way that the new posterior and anterior ends retain their
periods, T0 and (1 + λ)T0, respectively. This is justified by
observations in real embryos and ex vivo cell cultures in
mice: in embryos, the time period of somite formation,
which also coincides with the time period of the posterior-
most cell, is found to be stable at ≈2 h between days 8 and
13.5, during which time more than 60 somites are formed
[21]. In ex vivo experiments, the posterior period has been
found to be stable at ≈130 min while the tissue was shorten-
ing periodically, and other cells slowed down their
oscillations as they moved towards the anterior of the
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Figure 1. Illustration of the idealized PSM. (a) Discrete system. The PSM is approximated as a finite number of oscillators on a line. The phase of each oscillator
changes according to a position-dependent oscillation period T(x). The posterior-most cell is located at x = 0, while the anterior-most cell is at x = 1. The relative
position of an oscillator changes as cells are gradually added to the posterior (with period Tg), and removed (with period Ts) in chunks from the anterior end. As time
progresses, each cell effectively moves toward the anterior; the three insets show, as a function of time, the relative position, oscillation period and change of phase
per time of a cell which is initially located at the posterior-most position. (b) The same as in (a), but in a PSM where the relative position x does not take a finite
number of discrete values, but is taken to be continuous x∈ [0, 1]. This approximation is justified when the number of cells in the PSM is large. (Online version in
colour.)
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colony, ending up with periods of length ≈170 min [6] when
they were located at the anterior end of the PSM. Note that,
when a new somite is formed, this implies that the period
gradient (in real length units) becomes steeper. If the
phase differences between oscillators in such a resetting
were not altered too much, then such a steepening of the gra-
dient should result in slower travelling waves in the smaller
PSM. This matches experimental observations [4]. Assump-
tion (B) seems reasonable given that cells in the tailbud
and the posterior end of the PSM show stable synchronized
oscillations.

Note that we do not explicitly include inter-cellular coup-
ling between the phases of the adjacent cells. However, we do
implicitly take into account the effects that coupling would
have on the time periods of cells because we use the empiri-
cally observed time period gradient. For a line of coupled
oscillators, the time period of each oscillator will be deter-
mined both by external factors (e.g. morphogen gradients)
that affect the natural (uncoupled) time period, as well as
the coupling to adjacent oscillators. A sufficiently strong
coupling between adjacent oscillators in a one-dimensional
line can lead to complete synchronization of all the oscillators
even if they had substantially different uncoupled time
periods. Since the oscillators do not synchronize their oscil-
lations, the coupling must be relatively weak to allow the
time period to vary across the PSM. Nevertheless, even a
weak coupling might modify the observed time period gradi-
ent from that produced by the morphogen gradient alone. We
therefore proceed with the assumption that such a weak
coupling would have little effect on the dynamics of the
phases of the cells beyond modifying the period gradient
from that produced by the morphogen gradients alone, and
perhaps also mitigating the effects of noise on the phases.
Hence, for our purpose it is sufficient to include the coupling
only implicitly by using the empirically observed period
gradient.

With the assumptions mentioned above, we will attempt
to obtain and study phase profiles ϕ(x) that are in steady
state. By steady state, we do not mean that ϕ(x) is time
independent, but rather that ϕ(x) is the same, modulo 2π,
at corresponding times between somite formation (for
example, right before, or right after, a somite forms). This
means that the phase profile exhibits what has been
termed ‘dynamical scaling’ in the literature [22], i.e. as the
PSM changes in length the pattern of oscillations across it
scales correspondingly. We will impose the constraint that
new somites are formed from the cells that contain the
anterior-most ~f of phase. We shall refer to ~f as the phase
width of the somite. This constraint, and the scaling of
ϕ(x) with PSM length, are the key observations of recent
experiments [4], the consequences of which we set out
to explore.

3. Results
3.1. The period gradient constrains the somite width

and vice versa
Let ϕ(t, x) denote the phase of a cell at time t and location x,
where x∈ [0, 1] is the distance from the posterior end, nor-
malized by the PSM length. Let Δϕ(t)≡ ϕ(t, x = 1)− ϕ(t, x = 0)
denote the total phase difference across the PSM at time t.

Assumptions (A) and (B) imply that between somite for-
mations Δϕ(t) increases linearly in time:

Df(t) ¼ Fbefore � ~fþ 2pl
T0(1þ l)

t, (3:1)

where we assume the previous somite formed at time t = 0
and left a total phase difference of Fbefore � ~f across the
PSM just after somite formation (~f is the phase width of
the somite, described previously, and Φbefore is the total
phase difference across the PSM before the somite is
formed). If the phase profile is in steady state just before
every somite formation event, it follows that Δϕ(nTs) is
equal to the same constant, Φbefore, for any integer value of
n. Therefore, it must be that the total increase in Δϕ between
somite formations must exactly match ~f, i.e.:

~f ¼ 2pTs

T0

l

1þ l
, (3:2)

where Ts is the time at which the next somite forms. Because
we are considering a steady state, the phase of the anterior-
most cell of the PSM must also be the same (modulo 2π)
before each somite formation. Therefore, Ts must be a mul-
tiple of T0, and we obtain

~f ¼ 2pk
l

1þ l
, (3:3)

where k is a positive integer. Thus, assuming steady state
implies that the slope of the period gradient, λ, and the
phase-width of the somite, ~f, cannot be independent. Note
that here we only assume that Δϕ is in ‘steady state’—this
does not necessarily imply that the PSM length is a constant
before each somite formation. Assuming that the length is a
constant imposes additional constraints. Note also that the
PSM growth rate does not appear in equation (3.3). Its role
emerges in determining the width (as opposed to the phase
width) of somites. Both these issues will be explored in §3.2.

3.1.1. Comparison with data
In themouse PSM, the period gradient has beenmeasured in [6]
along with the phase width of the newly formed somites [4].
They find that λ≈ 0.275, ~f ¼ 0:21 � 2p and Ts = T0 = 130 min.
All numbers are not provided with experimental error bars
in [4], but even with as low as 5% error, using λ = 0.275
in equation (3.3) gives ~fpredicted ¼ 0:216 � 2p+ 0:008p, while
using ~f ¼ 0:21 � 2p in equation (3.3) gives λpredicted = 0.266 ±
0.017. Either way, the experimental observations are consistent
with equation (3.3).

3.2. When presomitic mesoderm length is constant
steady-state phase profile is concave in shape

As mentioned, equation (3.3) does not assume that the length
of the PSM right before (or after) each somite formation is a
constant. Adding the assumption that the PSM length is
also in steady state allows us to calculate not just Δϕ but
also the entire steady-state phase profile, which we will
denote ϕss(x). Electronic supplementary material, sections 1
and 2 show this calculation both for the continuum limit,
where the number of cells in the PSM is assumed to be infi-
nite, and for the discrete case where the number of cells is
finite.

Figure 2 shows the steady-state phase profile obtained
from our calculations when Ts = T0, λ = 0.266, ~f ¼ 0:21 � 2p,
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PSM lengths just after somite formation are N = 7 (cross sym-
bols), 14 (plus symbols) and 70 cells (filled circles), and Tg is
chosen such that we obtain maximum PSM lengths of N(1 +
1/7). These parameters, based on the observations of [4]
result in a phase profile with a concave shape. The curve is
concave both immediately before and after somite formation,
since somite formation amounts to removing the anterior-
most part of the pre somite-formation curve, and ‘stretching’
the remaining part to cover the full interval [0, 1], neither of
which changes the concavity.

When N is large enough, the phase profile is indistin-
guishable for different N, which means that the PSM
exhibits scaling—the entire somitogenesis pattern scales
with the real length of the embryo but does not change in
structure otherwise. The calculation for large N also matches

our continuum calculation for a PSM with infinitely many
oscillators, which is shown by the continuous line in figure
2 (see figure 1b for a schematic for the continuous approxi-
mation of the PSM).

A testable prediction from our model is that the steady-
state phase profile is not linear, but concave in shape. This
has consequences for the speed of the travelling waves and
reduces the influence of errors in differentiation decisions
on somite size, which we will return to in the Discussion.
The concave shape is in fact a robust feature of the steady-
state phase profile whenever the PSM length is in steady
state, the growth rate is constant and the time period of
cells T(x) is an increasing (linear or nonlinear) function of x.
We demonstrate this in the next section.

3.2.1. Concavity is a robust property of the steady-state phase
profile for any increasing period gradient

That the steady-state phase profile must be concave in shape
for any increasing T(x), can be seen from the following
general argument.

Suppose that the PSM consists of a very large number of
cells, so we can use the continuous variable x∈ [0, 1] to
describe a cell’s position relative to the posterior (at x = 0)
and the anterior end (at x = 1). Let T(x) be the period gradient
of the PSM, and let this be increasing from posterior to
anterior. Suppose that one cell has initial position x0,first = x*,
and another has initial position x0;second ¼ x� þ e, where 0≤
x� , 1; and 0 , e� 1. Let us assume t = 0 to be immediately
after somite formation, and let the phase difference between
the two cells at this time be dfe ¼ f(x)� f(xþ e) . 0. We
now examine how the phase difference between these cells
changes between t = 0, and the time following the next
somite formation at t = Ts. The change in phase difference
between the two cells in this time period is

Dfe(t ¼ Ts) ¼
ðTs

0

2p
T(t, x�)

dt�
ðTs

0

2p
T(t, x� þ e)

dt: (3:4)

Now, since e� 1, we expand the fraction in the final integral2

1
T(t, x� þ e)

� 1
T(t, x�)

� e
1

(T(t, x�))2
@T(t, x�)
@x(t)

� �
L0
L(t) , (3:5)

where L0 is the length of the PSM at t = 0, and L(t) is the
length of the PSM at time t≥ 0. Inserting this expression in
equation (3.4) yields

Dfe(t ¼ Ts) ¼ e

ðTs

0

1

(T(t, x�))2
@T(t, x�)
@x(t)

� �
L0
L(t) dt: (3:6)

Since T(x) is increasing and positive, and since L(t) is positive
and increasing between successive somite formations,
Dfe . 0. This means that the phase difference between the
two cells increases between the two successive somite for-
mations. The phase difference is the same after the somite
formation at t = Ts, and because the PSM length is in steady
state, the difference in position between the two cells is still
ε after the somite formation at t = Ts. The convexity or concav-
ity of the phase profile is determined by the second
derivative—a decreasing, concave function has a negative
second derivative, while the second derivative is positive for
a decreasing, convex function. An alternative formulation of
this is that a decreasing, concave function decreases faster at
larger values of the variable it is plotted against, while a
decreasing, convex function decreases slower for larger

0

7 cells
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70 cells
continuous solution

6
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 (x
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Figure 2. Steady-state phase profile of a PSM of constant length, ϕss(x). The
black curve shows the steady-state phase profile in the continuum limit (cal-
culated from equation (16) in electronic supplementary material, section S2),
when we choose Ts = T0, λ = 0.266, Φbefore = 2π and ~f and Tg are chosen
such that the length of the PSM varies in a sawtooth manner as follows:
L(t) ¼ L0(1þ (t mod T0)=(7T0)). Note that due to the freedom to choose
units of time and length, ϕss(x) will not depend on what specific values
we choose for T0 and L0. Also plotted are the steady-state phase profiles cal-
culated for PSMs consisting of a finite number of cells; symbols correspond
to PSM lengths after somite formation, N = 7 (cross symbols), 14 (plus symbols)
and 70 cells (filled circles). These profiles are calculated for the case where
Ts = T0, λ = 0.266 and Tg and ~f are chosen such that the PSM length
varies in a sawtooth manner as NðtÞ ¼ N þ t=Tg

� �
mod N=7. We numeri-

cally approximate the phase profiles the discrete calculation of electronic
supplementary material, section 1 would produce for these parameters, by
simulating a discrete PSM with length varying as above and updating the
phases of each oscillator in time according to equation (7) in electronic
supplementary material, section S1, until steady-state is achieved. Here, Φbefore

is determined by the remaining parameters, and as seen in the plots, converges
to the value obtained in the continuum calculation when N becomes large. Note
the concave shape of all the phase profiles plotted. In section B1 and electronic
supplementary material, section 6, we show analytically that this concave shape
is robust to changes in parameter values and holds for all increasing period
gradients, linear or nonlinear. (Online version in colour.)
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values of the variable. We shall use this formulation to show
generality of the phase profile concavity.

The phase profile gradient between the cells at their initial
position is dfe=e, and the phase profile gradient between the
cells at their final position is (dfþ Dfe)=e. Calculating the
ratio yields

(dfe þ Dfe)=e
dfe=e

¼ 1þ Dfe

dfe

. 1: (3:7)

From this, we conclude that the steady-state phase profile
decreases faster as x is increased; or equivalently, the
steady-state phase profile is concave.

3.3. Constraint on phase differences when presomitic
mesoderm length is constant

Now that we have calculated ϕss(x) we can ask what is the
phase difference across the PSM in this state. Following
exactly the same argument as in §3.1, it must be true that
~f ¼ 2pkl=(1þ l). However, in this case, we can also derive
the actual width of the somite, i.e. the number of cells
removed from the anterior end, which must equal the
number of cells added between somite formations, Ts/Tg.
Since the steady-state phase profile scales with respect to
the PSM length right after somite formation, N, it is of interest
to calculate the fractional width of the somites β≡ Ts/(NTg)
(i.e. β is defined as the width of the somite divided by the
length of the PSM just after somite formation). Just before
somite formation, this fractional width must satisfy:

fss 1� b

1þ b

� �
� fss(1) ¼ ~f ¼ 2pk

l

1þ l
: (3:8)

Similar to equation (3.3), this is a constraint between the frac-
tional somite width β, the period gradient and the parameters
that determine ϕss(x), namely, Ts, T0, Φbefore and ~f. See elec-
tronic supplementary material, section 5 for more details on
how the phase width, ~f, can be converted to the fractional
width of the somite, β, using this constraint.

Figure 3 shows a heat map of this constraint, derived from
our continuum calculation, when Ts = T0 and ~f ¼ 0:21 � 2p.
The colours show the value of Φbefore that satisfy the con-
straint equation (3.8) for different values of β and λ. This
heat map is another prediction of our analysis. Qualitative
features that should be experimentally observable include
the following: the phase difference between posterior and
anterior right before somite formation, Φbefore, (i) decreases
with somite size β (for fixed λ), (ii) increases with λ (for
fixed β) and (iii) the line β≈ λ/2 corresponds to the special
case Φbefore = 2π. Prediction (iii) suggests that any change in
the period gradient in the mPSM ex vivo cultures should
result in exactly the same change in the fractional width of
the somites. Moreover, our calculations predict that this
linear relationship depends on there being exactly one wave
spanning the PSM at a time. If the system exhibited multiple
waves, say Φbefore = 4π corresponding to two waves, then the
relationship between β and λ would be nonlinear.

3.4. Variation of somite width caused by perturbing the
period gradient

Assuming that the general constraint of equation (3.3) holds
in embryos that are perturbed in various ways, our frame-
work makes specific predictions for the effect of such

perturbations. A perturbation that could be feasible to
implement experimentally, for instance, by affecting the
Wnt or FGF gradient in the PSM, would be to change the
period of all cells by the same additive amount ξT0. Equation
(3.3) would then become

~f(j) ¼ 2pk
l

1þ lþ j
: (3:9)

In figure 4a, we show how the somite phase width varies
with ξ, assuming all other parameters remain the same. Using
our analytical calculation in the continuum limit of a PSM of
constant length, we can convert the predicted phase width of
somites to an actual fractional width (as described above and
in electronic supplementary material, section S5). The result is
shown in figure 4b. Thus, we predict that increasing (decreas-
ing) the period of the cells in this manner would decrease
(increase) both the phase width and actual width of the
somites. Generally, the fractional width of somites, β, will be
a non-increasing function of ξ whenever the steady-state
phase of cells decreases from posterior to anterior.

3.5. Physical somite size and convexity of phase profile
in presomitic mesoderms with no growth

Finally, we consider a case where after the system has reached
the steady-state described above, new cells stop being added
to the posterior part of the PSM but cells continue to be cut
off from the anterior end when new somites are formed.
This approximates the very end of somitogenesis (although
there the rate of addition of new cells decreases continuously
over time rather than falling abruptly to zero). When no new
cells are added to the PSM, but the phase across the PSM is in
steady-state, we find (see electronic supplementary material,
section S3) that the length of the PSM of course decreases
with time, shrinking by a constant multiplicative factor after
each somite formation, which results in an exponential
decrease of PSM length with time.3 Nevertheless, our calcu-
lations (see electronic supplementary material, section S3)
show that the phase profile can attain a steady state. This
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Figure 3. Heat map of logarithm of the total phase difference across the
PSM just before somite formation, Φbefore, in steady-state phase profiles
when the PSM length is constant, as given by the analytical continuum cal-
culation of the constraint equation (3.8). The phase difference is 2π on a line
β≈ λ/2. (Online version in colour.)
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analytically calculated steady-state profile is plotted in figure
5a (dots), and is much closer to linear, as opposed to the con-
cave shape obtained in the case of a steady-state PSM length.
In fact, it is very slightly convex.4 This almost-linear phase pro-
file also scales with the PSM length in the continuum limit.

Also in this case, we can examine the consequence of
perturbing all periods in the PSM by a fixed amount ξT0.
Electronic supplementary material, section S4 shows the cal-
culation of the new somite widths caused by this
perturbation, and figure 5b plots these as a function of ξ.
We find that the width decreases as the periods get longer,
similar to what we found in the case of constant PSM
length. The exponential decrease of PSM length with time
and the shift to an almost-linear phase profile are both testa-
ble predictions of our model.

4. Discussion
The experimental observation in [4] that the total phase
difference across ex vivo mPSMs is 2π and that 21% of this

phase constitutes the next somite, independent of PSM size,
is a curious one. It is not obvious what the consequences of
this may be for somites, and even more unclear why it
would be necessary or useful (if indeed it is either) for mice
embryos to develop in this way. Our work here shows that
this observation directly results in a constraint that connects
the width of somites and the period gradient across the
PSM during somitogenesis. The constraint applies to what
we term the phase-width of the somite, while in the particular
case where we assume a steady-state PSM length an
additional constraint applies to the actual width of the
somite. This constraint influences the shape of the phase
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Figure 4. Effect of perturbations on somite widths. Assuming Ts = T0, and
that the constraint expressed in equation (3.3) holds under perturbation of
periods in the PSM, we predict that perturbing all periods by an additive
amount ξT0 will alter somite width. (a) The phase width of somites
(small dots) will decrease with ξ, and is described by equation (3.9).
(b) In a PSM of constant length, phase width can be mapped to the
actual spatial width of the somite using the continuum solution plotted in
figure 2. We find that this spatial width also decreases with ξ as shown
by the big dots. (Online version in colour.)
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Figure 5. Steady-state phase profile for a PSM that does not grow, but is
shortened periodically by removing the anterior-most 0.21 · 2π of phase
when the total phase difference between anterior and posterior is 2π. The
period gradient is linear with λ = 0.266. (a) The points show the steady
state phase profile just after somite formation, and a straight line between
the end points is shown for comparison. The profile is close to linear and is
convex rather than concave in shape. (b) Assuming a perturbation of all
periods by an additive amount ξT0, we plot the actual somite width as a
function of perturbation size. The physical size decreases as periods get
longer. (Online version in colour.)
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profile. For a PSMwith steady-state length, we predict that the
phase profile will be concave, while a PSM with no growth
would have an almost linear (slightly convex) phase profile.

The shape of the phase profile is important for at least two
reasons. The first is that it affects how travelling waves develop
over time—for a concave profile, the waves slow down as they
approach the anterior end, while for a convex profile they
speed up. The experiments of Lauschke et al. are in ex vivo cul-
tures where there is no growth. Our calculations for the no-
growth scenario predict an almost linear phase profile,
which would predict that the waves propagate with close to
constant velocity. This is in fact what [4] observe. By contrast,
slowing down of waves, corresponding to a concave profile, is
visible in kymographs from zebrafish experiments [3]. The
shape of the phase profile thus has a significant effect on the
timing of somite formation, and would therefore be worth
measuring in more quantitative detail in future experiments.

The second reason is reducing the effect of errors in somite
formation. Recent experiments have found that gene-expression
noise increases from posterior to anterior [19] in zebrafish. If
some error were present in the phase width of formed
somites (suppose that the phase width in one instance was
0.23 · 2π instead of 0.21 · 2π), then the steepness of the phase
profile would determine the effect of such errors on the
spatial pattern. If the phase profile were steep in the anterior,
phase width would change quickly with spatial location, and
forming a somite with this slightly increased phase width
would alter the physical size of the formed somite very
little. Hence, a steep phase profile in the anterior PSM
diminishes errors in the physical size of somites. A concave
phase profile gets steeper towards the anterior end of the
PSM, i.e. the phase difference between neighbouring cells
increases from posterior towards the anterior. The opposite
is true for a convex phase profile which flattens out toward
the anterior end. These considerations suggest that if somite
formation depends on a measurement of phases of the
cells, and if, as is likely, these measurements are error-
prone, then one should observe smaller errors in the somite
widths when the PSM length is steady, compared to later in
somitogenesis when it is decreasing.

The constraint of equation (3.3) also has predictable conse-
quences for perturbation experiments, which might be
experimentally tractable. One study reduced the number of
introns in the Hes7 gene, resulting in more rapid oscillations
[24]. They observed shorter segments, i.e. the opposite behav-
iour of what we expect from our calculations in §3.4 based on
the experiments in mouse ex vivo cultures [4]. So it seems that
the two experiments contradict each other. The experiment of
[24] did not, however, measure the phase difference across the
PSM. So, it would be useful to determine whether the assump-
tion of constant phase difference is violated in this case. It
would be interesting to study when perturbations of this
sort break the assumption of constant difference and when
they do not. If perturbations that do not break the assumption
can be found, they would provide a very useful tool to control
somite width in a precise and predictable manner.

Another type of perturbation that may be feasible exper-
imentally is to alter the steepness of the period gradient by
suitably altering the expression of themorphogen that controls
the time period of the somitogenesis clock. InmPSMs, if such a
perturbation still results in a steady state with a single wave
spanning the PSM at any time, then we predict the change
in fractional somitewidth should be close to half the fractional

change in the slope of the period gradient (figure 3). Conver-
sely, if the number of waves spanning the PSM increases under
this perturbation, thenwe predict the relationship between the
change in the fractional somite width and the change in the
slope of the period gradient would become nonlinear.

Our analysis begs the question of how the embryo main-
tains the constant phase difference across the entire PSM just
before each somite formation. Does the embryo ‘know’ that
the peak of a travelling wave has reached the anterior end,
and send a ‘signal’ to the posterior end to start a new wave?
Or is the information transmitted in the other direction, such
that the onset of a new peak at the posterior end ‘causes’ the tra-
velling wave to reach the other end at the same time? A third
possibility is that this is simply a non-causative correlation
caused by some other constraint in the system. We speculate
that inter-cellular coupling between the phases of the oscillating
cells could be responsible for this behaviour. However, as men-
tioned before, inter-cellular coupling cannot be too strong or
else the cells would start to synchronize despite their intrinsi-
cally different time periods, and this has not been observed. It
would be interesting to study what kinds of weak coupling in
a one-dimensional line of oscillators with varying time periods
could produce travelling waves that are constrained in such a
manner. The framework we have introduced here (or the
approach of Ares et al. [25], whose model includes coupling
which produces synchronized oscillations across the PSM)
could be easily extended for this purpose.

These lines of thought also have implications for the
mechanisms of somite formation. The well-known clock
and wavefront model assumes that somites form when an
oscillating cell moves into a sub-threshold region of an exist-
ing morphogen gradient that is tied to the growing posterior
end of the PSM. Such a model does not necessarily need tra-
velling waves of gene expression, but one could postulate
that somites form when the peak of the travelling wave hits
some low threshold of the morphogen gradient. Cotterell
et al. [8] suggest instead that the somite forms due to reaction–
diffusion events in the vicinity of the previous somite when
the oncoming travelling wave interacts with a gradient of
molecules whose source is the previous somite. It is not
clear if there is a simple way to connect such events with
the formation of a new wave peak at the posterior end. In
both cases, somite formation would be triggered by events
at the anterior end and would need some additional mechan-
ism to constrain the total phase difference across the PSM.
Recently, a third mechanism has been proposed in mice:
Sonnen et al. [9] reported that Wnt and Notch pathways oscil-
late out-of-phase in cells in the posterior PSM, and in-phase
in cells at the segmentation front. They found that the Wnt
pathway does not have slow waves travelling periodically
from posterior to anterior like the Notch pathway does.
Instead, fast-travelling, pulse-like waves were reported [9],
which indicates that the Wnt clocks are (nearly) synchronized
across the PSM. Thus, with one clock oscillating with fre-
quency dependent on the spatial position of the cell, while
the other clock is synchronized (or nearly synchronized) for
all cells across the PSM, measuring the phase difference
between the two clocks of a single cell would be equivalent
to measuring the phase difference between the Notch clock
of the posterior-most cell, and the Notch clock of the cell in
question, somewhere else in the PSM. This could serve as a
signal to trigger somite formation directly dependent on a
measurement of the total phase difference across the PSM, a
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mechanism similar to what was reported by Lauschke et al.
[4] and whose consequences we have studied in this paper.
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Endnotes
1Our framework allows Tg to vary in time, as it often does during
somitogenesis. However, in this paper, we will examine cases
where Tg is assumed to be constant.
2See electronic supplementary material, section S6.1 for more details.
3This is consistent with observations in [23] which show that the rate
of decrease of PSM length slows down over time in the latter part of
somitogenesis, although the data are not precise enough to determine
whether the slow down is exponential or not. We note that this pre-
dicted exponential decrease could also be inferred directly from
scaling arguments, if one assumes that even in this decreasing
phase of somitogenesis the embryo pattern scales with embryo
size. However, our calculation provides additional information on
exactly how the exponential rate depends on the period gradient
(or equivalently the phase width). For λ = 0.266, Φbefore = 2π and
~f ¼ 0:21 � 2p, we find the multiplicative factor to be ≈0.77.
4See electronic supplementary material, section S6.2 for more on this
convexity.
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1 Phase profile in a PSM consisting of a finite number of cells

In this section, we will calculate phase profiles for a system, in which a finite number of oscillators are placed
on line. We assume that new oscillators are added at the left end of the line with time intervals Tg = mL/T0,
with mL ∈ N, T0 > 0, and that the rightmost mR ∈ N oscillators are removed with time intervals Ts = T0

(it is straight forward to substitute another value of Ts in our analysis). Here, T0 is the time period of
the oscillator at the left end of the line, corresponding to the posterior end of the PSM. For simplicity, we
furthermore consider the case mL = mR = m, corresponding to a line in steady state: In a time interval
T0, it grows as much as it is shortened. The system is illustrated in Fig. 1 in the main text. If we choose
t = 0 to coincide with the addition of an oscillator at the left end of the line, and removal of m oscillators
at the rightmost part of the line, and assume that the line consists of N oscillators at t = 0, the number of
oscillators on the line is given by

L(t) = N +

(⌊
t

Tg

⌋
mod m

)
. (1)

Because the line of oscillators changes its length with time, each oscillator will also change its position on the
line, relative to the left end (the time dependent position of an oscillator starting on the leftmost position on
the line is shown on the leftmost plot, Fig. 1 A in the main text. Because new oscillators are added on the left
end of the line, an oscillator effectively moves one position to the right each time a new oscillator is added.
Likewise, every time m oscillators are removed from the right end of the line, each oscillator, remaining on
the line, effectively moves to the right relative to the length of the line. To formulate an expression for the
relative position of an oscillator on the line, let us first consider the case where no oscillators are removed on
the right hand side. The line only grows, and it does this by the addition of oscillators on the leftmost end
of the line. In this case, no matter the length of the line, the number of oscillators to the right of oscillator
i is constant. Assuming that the line initially had length L(0) = N , and that the initial position of the
oscillator was 0 ≤ i0 ≤ N − 1, we can exploit this fixed distance to the rightmost end of the line in writing

∗jonas.juul@nbi.ku.dk
†sandeep@ncbs.res.in
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down an expression for the relative position of the oscillator at time t,

xonly growth(t) =
L(t)− (N − i0)

L(t)− 1
. (2)

In the above expression, the numerator is an integer, which isN−i0 smaller than the total number of oscillator
on the line. Dividing by the total length (minus 1) yields a number in the interval [0, 1], the relative position
of the oscillator. When including periodic removal of oscillator from the right, the expression for the relative
position of an oscillator becomes

xi(t) =
L(t)−

[
N −

(
i0 +

⌊
t
T0

⌋
m
)]

L(t)− 1
. (3)

This expression is similar to Eq. (2), except for the term that is added to i0 in the numerator. This term,⌊
t
T0

⌋
m accounts for the removal of m oscillators in time intervals of length T0. This is taken into account

because every time oscillators are removed to the right of oscillator i, its distance to the rightmost end of
the line changes, and this is what we use to calculate xi(t).

With the above definitions, we are almost ready to calculate steady state phase profiles. First, however,
we must define how oscillation periods change as a function of position on the line of oscillators.

We will assume that oscillation period increases linearly from T (x = 0) = T0 at the posterior end (leftmost
end of the line, where new oscillators are added) to T (x = 1) = (1 + λ)T0 at the anterior end (rightmost
end of the line, where oscillators are removed from). This assumption is based on experimental observations
in mouse mPSMs, as discussed in the main text. λ has been determined to be between 0.25 and 0.30
experimentally. Furthermore, we assume that newly added oscillators have initial phase identical to that of
the oscillator which occupied the leftmost point on the line until the moment when this new oscillator was
added. We implement this assumption by defining the period of oscillators having negative spatial positions
to have a period and initial phase identical to that of the oscillator on the position x = 0 (still referred to
as the leftmost oscillator, even though oscillators can now take negative spatial positions, corresponding to
oscillators that have not been added to the line yet). Thus, the period distribution is,

T (x) =

{
T0(1 + λx) , if x ≥ 0,

T0 , if x < 0.
(4)

This allows us to write down the phase of oscillator i at time t,

φi(t) = φi(t = 0) +

∫ t

0

2π

T (t′)
dt′ (5)

= φi(t = 0) +

∫ tintro

0

2π

T0
dt′ +

∫ t

tintro

2π

T (t′)
dt′ (6)

= 2π(1 +
tintro

T0
) +

∫ t

tintro

2π

T (t′)
dt′, (7)

where tintro is the time at which the oscillator is introduced at the leftmost end of the line. We can calculate
the steady state phase distribution of a line of minimum length N , given Tg = m/T0. We can do this, by
identifying N oscillators that will take positions 0, 1, . . . , N − 1 at some point, right after oscillators are
removed from the rightmost end of the line. First, we notice that all oscillators that end up at the rightmost
position, N − 1 immediately after removal of oscillators, must previously have taken positions N − 1−mn,
n ∈ N, at corresponding times. One oscillator, which has negative position, but satisfies this, is an oscillator
with position N − 1 − dN/mem. If this oscillator starts at position N − 1 − dN/mem at time t = 0, it
will arrive at position N − 1 at time dN/meT0 immediately after oscillator removal. Another oscillator with
initial position N − 1 to the left of the initial position stated above will occupy position 0 at the time the
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oscillator mentioned above occupies position N . Hence, by calculating the phase at time dN/meT0 for all
oscillators with initial positions x0 ∈ {−dN/mem−1,−dN/mem, . . . , N −1−dN/mem]}, we can calculate
the steady state phase distribution of the line of N oscillators. Without loss of generality, we assume that
the leftmost oscillator of the line has phase 2π at time t = 0, and denote the time at which an oscillator is
introduced at the line, tintro = −x0Tg = |x0|Tg. Using Eq. (7),

φ(

⌈
N

m

⌉
T0) = 2π(1 +

tintro

T0
) +

∫ dN/meT0

tintro

2π

T (t′)
dt′ (8)

= 2π(1 +
tintro

T0
) +

∫ dtintro/T0eT0

tintro

2π

T (t′)
dt′

+

∫ dN/meT0

dtintro/T0eT0

2π

T (t′)
dt′. (9)

Here we split the last two integrals to make all upper boundaries coincide with oscillator removal. We
now convert all integrals to sums over the positions the oscillator takes in each time interval, and insert
tintro = |x0|Tg. The formula for the phase then becomes

φ(

⌈
N

m

⌉
T0) = 2π(1 +

|x0|Tg
T0

)

+

pmax−1∑

p=0

2πTg

T
(

p
N+(|x0| mod m)+p−1

)

+

cmax−1∑

c=1

m−1∑

p=0

2πTg

T
(
pmax+p+m(c−1)

N+p−1

) , (10)

where we have defined pmax = m − (|x0| mod m), which is the position an oscillator with initial condition
x0 takes on the line, immediately after oscillators are removed for the first time following its addition to
the line, and cmax = dN/me − dtintro/T0e, which is the number of oscillator removals that an oscillator with
initial condition x0 experiences after being added to the line before t = dN/meT0 is reached. In the last
term, the first sum takes oscillator removals into account, while the second sum ensures that all m positions
an oscillator takes between oscillator removals are counted.

2 Phase profile in a continuous PSM

In this section, we extend our methods from the previous section to lines of infinitely many oscillators. We
will use this method to solve two different example problems. We consider a line of infinitely many oscillators.
Oscillators are constantly added on the left end of the line, and a fraction of the line length is removed from
the rightmost end of the line in time intervals of T0. For simplicity, we assume that the length of the line
grows linearly between removal of oscillators, and hence, between removals, the length of the oscillator line
we define L(t) = L0(1 + βt/T0), where βL0 is the difference between the maximum and minimum lengths
of the PSM. If we now assume that oscillators are removed at times t = nT0 (this amounts to assuming
Ts = T0; once again, it is straight forward to replace this value of Ts with another), n ∈ N, and that this
removal restores the length of the oscillator line to the length it had at t = 0, the length is described by

L(t) = L0

(
1 +

β

T0
(t mod T0)

)
. (11)

As was the case in our discrete description of the line of oscillators, the position of each oscillator relative
to the length of the line, effectively moves right as new oscillators are added at the left end of the line. To
express the position of an oscillator as a function of time, we again exploit the fact that the distance between
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the rightmost point of the line, and an oscillator is constant between removals of oscillators. We write down
the relative position of an oscillator as a function of time in the same way as we did in the previous section.
First, if no oscillators are removed from the right end of the line, the relative position of an oscillator which
had position x0L0 (0 ≤ x0 ≤ 1) at t = 0, is

xonly growth(t) =
L(t)− (1− x0)L0

L(t)
. (12)

Taking removal of oscillators into account means that x0 → x0 + β bt/T0c, since each point moves βL0 right
every time βL0 is removed from the line from the rightmost end. Therefore,

x(t) =
1 + β

T0
(t mod T0)− (1− x0 − β

⌊
t
T0

⌋
)

1 + β
T0

(t mod T0)
. (13)

Positions on the line have values x ∈ [0, 1]. With the same reasoning as in the previous section, for a steady
state phase profile, if an oscillator ends up in position x = 1 at time t = nT0, n ∈ N, it has occupied the same
positions as all oscillators that ended up at x = 1 at t = n−T0, n− ≤ n − 1. From this follows that these
oscillators were added to the line of oscillators at corresponding times between two removals of oscillators.
We can characterise such oscillators by the negative position they held at the final oscillator removal before
they were added to the line. If the oscillator is added to the line at time 0 ≤ tintro ≤ T0, this negative
position is xstart = −βtintro/T0.

If an oscillator ends up at position x = 1 at a time t = nT0, this negative position is

xstart = 1−
⌈

1

β

⌉
β. (14)

That is, given the period gradient in Eq. (4), and that a newly added oscillator has the same phase as the
oscillator to its immediate right, all oscillators that end up at x = 1 at a time t = nT0 were added to the
leftmost end of the line at time tintro = −xstartT0/β, with phase φintro = φ0 + tintro2π/T0, where φ0 is the
phase of the leftmost oscillator of the line right after a removal of oscillators at the right hand end of the
line.

We can write down the phase of an oscillator, starting at any position x0, at any time after it is added
to the line,

φ(t) = φintro +

∫ t

tintro

2π

T (x(t′))
dt′. (15)

With this formula we can calculate the phase at time t, for specific initial conditions x(t = 0) = x0. Using
this, we can get the steady state phase profile as it looks immediately after oscillator removal, if we calculate
φ(t) for a set of initial condition that occupies x ∈ [0, 1] at a time t = nT0. An interval of initial conditions
that satisfies this is x0 ∈ [−d1/βeβ, 1−d1/βeβ]. The right boundary of this interval, we already concluded
will end up at position x = 1. It will arrive at position x = 1 at time t = d1/βeT0, and will eventually be
removed from the position at t = (d1/βe+1)T0. The lower boundary of the interval is exactly L0 to the left of
this point, and hence will be at position x = 0, when the rightmost oscillator of the interval arrives at x = 1.
This reasoning is similar to the one we used in the discrete case. For this reason, we calculate φ(t = d1/βeT0)
for all initial conditions in the mentioned interval, which gives us the phase profile as a function of initial
conditions, x0, right after oscillator removal at time t = d1/βeT0, φ(x0, t = d1/βeT0). From this, we obtain
the steady state phase profile after oscillator removal φ(x) by replacing x0 → x− d1/βeβ.

For our convenience, we will split the contribution to the phase of the oscillator in question into four
parts: 1) The initial phase; 2) Phase acquired before the oscillator is added to the line; 3) Phase that the
oscillator acquires after being added to the line, but before the first oscillator removal happens after this; 4)
Phase that is acquired at later times. Assuming that all oscillators with negative initial position have initial
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phase 2π, the phase of an oscillator with position x(t = 0) = x0 ≤ 0 can then be expressed,

φ(d1/βeT0) = 2π +

∫ tintro

0

2π

T0
dt′ +

∫ dtintro/T0eT0

tintro

2π

T (t′)
dt′

+

∫ d1/βeT0

dtintro/T0eT0

2π

T (t′)
dt′. (16)

In this expression, the ith term corresponds to the ith contribution stated above. We will solve the three
integrals one by one. The first integral has no explicit time dependence and the solutions is

∫ tintro

0

2π

T0
dt′ =

2π

T0
tintro. (17)

To solve the second integral, we must know T (t′). To know this, we need to know the position of the
oscillator as a function of time. We can use the rescaling arguments given above, and write the position for
tintro ≤ t′ ≤ dtintro/T0eT0 as

x(t′) =
L(t′)−

(
L(tintro)
L0

− 0
)

L(t′)
. (18)

The last oscillator removal prior to tintro happens at btintro/T0cT0, and the first oscillator removal following
tintro happens at dtintro/T0eT0. For this reason, L(tintro) = L0(1 + (tintro−btintro/T0cT0)β/T0), and L(t′) =
L0(1 + (t′ − btintro/T0cT0)β/T0). Inserting this in the expression above, we get

x(t′) =

β
T0

(t′ − tintro)

1 + β
T0

(
t′ −

⌊
tintro
T0

⌋
T0

) . (19)

We can insert this in the expression for the period as a function of position in Eq. (4), and insert in the
second integral above. We get

∫ dtintro/T0eT0

tintro

2π

T (t′)
dt′ =

∫ dtintro/T0eT0

tintro

2π

T0

(
1 + λ

β
T0

(t′−tintro)

1+ β
T0

(
t′−
⌊
tintro
T0

⌋
T0

)
)dt′ (20)

=
2π

β(1 + λ)




β

T0

(⌈
tintro

T0

⌉
T0 − tintro

)
+

(
1 + β

⌊
tintro

T0

⌋
− β

T0
C

)
ln



C +

⌈
tintro
T0

⌉
T0

C + tintro





 (21)

with

C = T0




1− β
⌊
tintro
T0

⌋
− λβ

T0
tintro

β(1 + λ)


 . (22)

Having solved this integral, we now turn to the last integral in the expression of the phase at time d1/βeT0.
The final integral represents the phase that the oscillator acquires after the first oscillator removal. This time
interval is an integer number of periods of the leftmost oscillator. The number of periods that the leftmost
oscillator goes through before the time t = d1/βeT0 is reached, we denote cmax = d1/βe − dtintro/T0e. From
this insight, we can write the integral as a sum cmax integrals over time intervals of length T0. This is
expressed as follows,

∫ d1/βeT0

dtintro/T0eT0

2π

T (t′)
dt′ =

cmax−1∑

c=0

∫ T0

0

2π

T (t′ +
⌈
tintro
T0

⌉
T0 + cT0)

dt′ (23)
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To solve this we once again need to know the length of the line at the time at which the integrand is

evaluated. In t′+
⌈
tintro
T0

⌉
T0 + cT0 the final two terms are both integer powers of T0. Since L(t) = L(t+ jT0),

j ∈ N, we know that L(t′ +
⌈
tintro
T0

⌉
T0 + cT0) = L(t′). To write down the position of the oscillator at time

t′ +
⌈
tintro
T0

⌉
T0 + cT0, we need to know the position of the oscillator at time

⌈
tintro
T0

⌉
T0 + cT0. After each full

time interval T0, the line is restored to length L0, and all oscillators have moved βL0 to the right. For this

reason, at time
⌈
tintro
T0

⌉
T0 + cT0, an oscillator with initial condition x0 has position x(

⌈
tintro
T0

⌉
T0 + cT0) =

x0 + dtintro/T0eβ + cβ. We can use these pieces of information to express the position of the oscillator at

time t′ +
⌈
tintro
T0

⌉
T0 + cT0 as follows

x

(
t′ +

⌈
tintro

T0

⌉
T0 + cT0

)
=
L(t′ +

⌈
tintro
T0

⌉
T0 + cT0)− L0

(
1− x

(⌈
tintro
T0

⌉
T0 + cT0

))

L
(
t′ +

⌈
tintro
T0

⌉
T0 + cT0

) (24)

=

β
T0
t′ + x0 +

⌈
tintro
T0

⌉
β + cβ

1 + β
T0
t′

. (25)

This, we can insert into Eq. (4) to get the oscillator period at the time in question. The final integral then
becomes

∫ d1/βeT0

dtintro/T0eT0

2π

T (t′)
dt′ =

cmax−1∑

c=0

∫ T0

0

2π

T0

(
1 + λ

β
T0
t′+x0+

⌈
tintro
T0

⌉
β+cβ

1+ β
T0
t′

)dt′ (26)

=
2π

β(1 + λ)

cmax−1∑

c=0

{
β + (1−Kβ) ln

(
K + 1

K

)}
, (27)

where

K =
1 + λ

(
x0 +

⌈
tintro
T0

⌉
β + cβ

)

β(1 + λ)
. (28)

The steady-state phase profile is obtained by adding all 4 contributions, and this is the black curved plotted
in Fig. 2 in the main text.

3 Phase profile in a PSM that does not grow

In the previous sections we analyzed a line of oscillators that grows as much as it is shortened in one posterior
period. We now turn to another important special case: A line in which there is no growth, only oscillator
removal. In this case, the length of the line is conserved between oscillator removals, and an oscillator
does not change its position relative to line length between oscillator removals. We will assume that 1) the
phase difference between the two ends of the line is Φbefore at oscillator removal (Inserting Φbefore = 2π is
the special case of mouse mPSMs with no growth); 2) That a phase profile is rescaled to line length but
otherwise identical (mod 2π) at oscillator removal; 3) That oscillation period increases linearly along the line
like above; 4) That Ts = T0 (once again, it is straight forward to substitute this assumption with another
value of Ts; 5) That the φ̃ rightmost phase is removed at oscillator removal – this means that a certain
fraction of the line length 1− xc is removed from the right end of the line at oscillator removal (that is, the
oscillator with position xc ∈ (0, 1) before oscillator removal has position x = 1 after oscillator removal). In
assumption 5), the value of φ̃ is intimately connected to the period-profile on the line; we will be using the
experimentally observed value φ̃ = 0.21 · 2π. With these assumption we will estimate the phase profile over
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the line and determine xc, or equivalently the fraction of the oscillator population that is removed at each
oscillator removal 1− xc.

Assumption 5) above means that an oscillator which has position xxc just before oscillator removal will
have position x until next time oscillators are removed. The oscillator changes its phase δφ(x) = 2πT0/T (x)
between these two consecutive oscillator removals. But because the leftmost oscillator acquires 2π of phase
between consecutive oscillator removals, and the phase profile is in steady state, φ(x, t = nT0) = 2π+φ(x, t =
(n + 1)T0), n ∈ N. These insights make us capable of writing down the following equation for the phase of
the oscillator on position x just before oscillator removal

2π + φ(x) = φ(xxc) + δφ(x). (29)

In accordance with the assumptions above, we, without loss of generality, take the phase in the line endpoints
to be φ(x = 0) = Φbefore and φ(x = 1) = 0 just before oscillator removal. We now work towards an expressions
that will allow us to determine the phase in infinitely many different points, and determine xc under our
above assumptions. Evaluating Eq. (29) in x = xnc yields

2π + φ(xnc ) = φ(xn+1
c ) + δφ(xnc ) (30)

⇒ φ(xn+1
c ) = 2π + φ(xnc )− δφ(xnc ) (31)

This is a recursive relation. Given a period distribution, which in this case is T (x) = T0(1 + λx), we can
use this to determine xc such that Φbefore and 0 are the phases of the endpoints of the line (these are
specific to our example biological system and could be chosen differently if wanted). We can now insert
δφ(x) = 2πT0/(1 + λx), and reduce the expression in Eq. (31) to obtain the recursive relation

φ(xn+1
c ) = φ(xnc ) + 2π

λxnc
1 + λxnc

. (32)

Using φ(x0
c) = φ(1) = 0, and the recursive relation above, the phase at any point xmc can be calculated

φ(xmc ) =
m−1∑

n=0

2π
λxnc

1 + λxnc
. (33)

Taking the limit m→∞, we know limm→∞ φ(xmc ) = φ(0) = Φbefore, and this gives us

lim
m→∞

φ(xmc ) = lim
m→∞

m−1∑

n=0

2π
λxnc

1 + λxnc
= Φbefore (34)

This is an equation in xc, which is nontrivial to solve analytically. Numerically, we evaluate the sum to e.g.
n = 550 for different values of xc. For Φ = 2π, we find that xc = 0.767622 solves the equation. A bound for
the error on this evaluation can be found by the following estimation

∞∑

i=550

xic
1
λ + xic

<

∞∑

i=0

xic −
550−1∑

i=0

xic (35)

=
1

1− xc
−

550−1∑

i=0

xic, (36)

where we used that xic + 1/λ > 1, and
∑∞
i=0 x

i
c = 1/(1− xc). This yields an error on the evaluation smaller

than 10−15.
Having estimated xc = 0.767622, we now know the fraction of oscillators that are removed periodically,

1−xc = 0.232378, and can plug xc = 0.767622 into Eq. (33) to obtain the steady state phase in any point xmc ,
m ∈ N. In the previous sections, we plotted phase profiles after oscillator removal, and not before oscillator
removal like here. The steady state phase profile after oscillator removal is obtained by replacing x→ x/xc
for the evaluated points, and removing the point x = 1. This is plotted in Fig. 5A in the main text.
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4 Changing somite width in a PSM that does not grow

In the previous section, we determined the somite width in a PSM that does not grow. This we did for a
specific value of λ. In this section, we imagine perturbing the period gradient such that every oscillator has
its period altered by an additive amount ξT0. So the new period distribution is T (x, ξ) = T0(1+xλ+ ξ). We
assume that a somite is formed once every posterior period, and we assume that the phase width of the somite
is equal to the phase difference that occurs between posterior and anterior in one posterior period. Lastly,
we assume that the phase difference between anterior and posterior is 2π at the time of somite formation,
and that somites form with period Ts = T0. It is straight forward to substitute the assumed values of Φbefore

and Ts with other values.
Eq. (29) is still valid, except that we now have an additional variable,

2π + φ(x) = φ(xxc) + δφ(x, ξ). (37)

δφ(x, ξ) is equal to the difference that occurs between posterior and anterior in one posterior period, and is
given by

δφ(x, ξ) =

(
1− T0(1 + ξ)

T0(1 + λx+ ξ)

)
2π (38)

= 2π
λx

1 + λx+ ξ
. (39)

We now proceed as we did in the previous section. Inserting φ(xnc ) recursively gives us the equation

φ(xn+1
c ) = φ(xnc ) + 2π

λxnc
1 + λxnc + ξ

. (40)

If we use φ(x0
c) = 0, we can calculate

φ(xmc ) =

m−1∑

n=0

2π
λxnc

1 + λxnc + ξ
, (41)

and with this, we can demand that the posteriormost oscillator has phase Φbefore at somite formation,

lim
m→∞

φ(xmc ) = lim
m→∞

m−1∑

n=0

2π
λxnc

1 + λxnc + ξ
= Φbefore. (42)

So for a given ξ, the corresponding xc satisfies the equation

∞∑

n=0

2π
λxnc

1 + λxnc + ξ
= Φbefore. (43)

We evaluate the first 550 terms of this sum, for Φbefore = 2π, and use this to find the xc that satisfies
Eq. (43). The error on this evaluation is estimated as we did in the previous section,

∞∑

i=550

xic
1+ξ
λ + xic

<

∞∑

i=0

xic −
550−1∑

i=0

xic (44)

=
1

1− xc
−

550−1∑

i=0

xic. (45)

This holds if (1 + ξ)/λ > 1. This is definitely true for ξ ∈ [−0.5, 1], which is the range that we plot xc(ξ) for
in Fig.5B in the main text. In the main text we refer to xc(ξ) as the physical somite width.
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5 Physical somite width as a function of period perturbation size

The calculation in Supplementary Section 2 gave us the phase profile in a steady-state PSM whose maximal
length is βL0 longer than its minimal length L0. In this calculation, we have not assumed a specific Φbefore.
For different choices of β and λ, we get different values for the phase difference Φbefore, and phase width
φ̃. This lets us examine how perturbing the period for all cells in the PSM by an amount ξT0 changes the
physical somite width. We will do this with the following approach

1. Choose a parameter β,

2. Try different input values of λ, and find the value that corresponds to the wanted Φbefore, e.g. Φbefore =
2π,

3. Calculate what value of ξ, corresponds to the determined value of λ.

The first two steps in this approach are straight forward to carry out, using the analytical expression for
the phase profile in a steady-state PSM in the continuum limit. We only need to figure out how to convert
a chosen λ-parameter to a ξ-value. First, we note that if oscillators are removed once every posterior period
(assuming Ts = T0, other values for Ts are easy to plug in to the calculations), the phase width of a somite
in a PSM with posterior period Tmin and anterior period Tmax is given by,

φ̃ =

∫ Tmin

0

2π

Tmin
dt−

∫ Tmin

0

2π

Tmax
dt (46)

= 2π

(
1− Tmin

Tmax

)
. (47)

So the phase width is not determined by the difference between the posterior and anterior periods, but by the
ratio between the posterior and anterior periods. We will now take advantage of our theoretical framework
from Section 2 of this supplementary file. In our framework, we can choose any value for the difference in
periods over the PSM, λ, we like. However, suppose that we know that only a single value λ = λ0 := 0.21/0.79
corresponds to the period gradient in the PSMs observed in an unperturbed experiment. Suppose all other
values of λ correspond to the period gradient in experiments where an additive perturbation ξT0 affects all
cells in the PSM. In the rest of this section, this is what we will assume. By assuming this, we will provide
a formula for matching the chosen λ to a unique value of the perturbation size, ξ, given λ0.

For a chosen parameter λ, the ratio between periods in the simulation is

Tmin

Tmax
=

1

1 + λ
=: fsim. (48)

As described above, we now assume that any Tmin from our simulations can be written Tmin = T0(1 + ξ),
and likewise for Tmax = T0(1 + λ0 + ξ). If we demand that the observed ratio between periods fsim is equal
to the ratio between these perturbed periods, we get

1 + ξ

1 + λ0 + ξ
= fsim =

1

1 + λ
. (49)

Solving for ξ gives us

ξ =
λ0 − λ
λ

. (50)

This formula lets us match the λ-value, which ensures the wanted Φbefore for a chosen β, with a ξ-value. We
plot matching β and ξ-values for Φbefore = 2π in Fig. 4B in the main text.
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6 Phase profile shape and somite size for different growth condi-
tions

In the previous sections, we have examined somite size, and phase profiles in the absence of growth in PSMs,
and in PSMs with steady-state length. We found that while the phase profile was convex in the absence of
growth, it was concave in PSMs with steady-state lengths. We also found that the physical somite size was
larger in PSMs that do not grow. In this section, we will use perturbation theory to argue

• For any T (x), x ∈ [0, 1], which is an increasing function of x, and PSM that has steady-state length,
the corresponding steady-state phase distribution is concave.

• How the steady-state phase distribution could become convex, if the PSM does not have steady-state
length.

6.1 Concave phase profiles if PSM length is in steady state

First, we examine the phase profile in a PSM in steady state. Suppose that the PSM consists of a larger
number of cells. We use the continuous variable x ∈ [0, 1] to describe the position of each cell relative to
the posterior end (at x = 0) and the anterior end (at x = 1). Let T (x) be the period gradient of the
PSM, and let this be increasing from posterior to anterior. Suppose that two cells have initial positions
x(t = 0)first := x0,first equal to x0 = x∗, and x0,second = x∗ + ε, where 0 ≤ x∗ < 1, and 0 < ε � 1. Let us
assume t = 0 to be immediately after somite formation, and let the phase difference between the two cells be
δφε = φ(x)− φ(x+ ε) > 0. We now examine how the phase difference between these cells changes between
t = 0, and just after the following somite formation at t = Ts. The change in phase difference between the
two cells in this time period is

∆φε(t = Ts) =

∫ Ts

0

2π

T (t, x∗)
dt−

∫ Ts

0

2π

T (t, x∗ + ε)
dt. (51)

Now, since ε� 1, we expand the fraction

1

T (t, x∗ + ε)
=

1

T (t, x∗)
− ε 1

(T (t, x∗))2

∂T (t, x0)

∂x0

∣∣∣∣
x0=x∗

+O(ε2), (52)

≈ 1

T (t, x∗)
− ε 1

(T (t, x∗))2

(
∂T (t, x0)

∂x(t)

∂x(t)

∂x0

) ∣∣∣∣
x0=x∗

, (53)

=
1

T (t, x∗)
− ε 1

(T (t, x∗))2

(
∂T (t, x0)

∂x(t)

) ∣∣∣∣
x0=x∗

L0

L(t)
. (54)

(55)

Here we used Eq. (12) to calculate ∂x(t)/∂x0. Inserting this expression in Eq. (51) yields,

∆φε(t = Ts) = ε

∫ Ts

0

1

(T (t, x∗))2

(
∂T (t, x0)

∂x(t)

) ∣∣∣∣
x0=x∗

L0

L(t)
dt (56)

Since T (x) is increasing and positive, and since L(t) is positive and increasing between somite formation,
∆φε > 0. This means that the phase difference between the two cells increases between the two somite
formations. The phase difference is the same after the somite formation at t = T0, and because the PSM
length is in steady state, the difference in position between the two cells is still ε at t = T0. We can determine
whether the phase profile is convex or concave by comparing whether the phase profile is decreasing more
quickly at positions that are more posterior or more anterior . This tells us whether the phase profile is
convex or concave because a decreasing, concave function has a negative second derivative, while the second
derivative is positive for a decreasing, convex function (See Fig. 1S in this Supplementary file). The phase
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x

φ(x) ∂2φ(x)

∂2x
< 0

∂2φ(x)

∂2x
> 0

Figure 1S: Illustration of decreasing functions that are concave (red), and convex (blue). The concave
function has a negative second derivative, while the convex function has a positive second derivative.

profile gradient between the cells at their initial position is δφε/ε, and the phase profile gradient between
the cells at their final position is (δφ+ ∆φε)/ε. Calculating the ratio yields

δφε+∆φε
ε
δφε
ε

= 1 +
∆φε
δφε

> 1. (57)

From this we conclude that the steady-state phase profile decreases faster as x is increased. Or equivalently:
the steady-state phase profile is concave.

6.2 Convex phase profile with T (x) linear, increasing

In the previous subsection we found that the phase difference between two cells increases between somite
formation if T (x) is an increasing function. This was expressed in Eq. (51). With this in mind, one may
wonder how one can obtain a convex phase profile with an increasing period profile T (x), as we found in the
case of no growth. The answer lies in the shortening of the PSM: Even though the phase difference between
two cells increases between somite formations, the somite formation itself causes the difference in position of
the cells to grow relative to the length of the PSM. This may influence the ratio between the phase profile
gradients greatly.

Let us return to the case of a PSM with period-profile T (x) = T0(1 + xλ), that does not grow. We can
evaluate Eq. (51) in this case,

∆φε(t = T0) = ε
2πλ

(1 + λx0)2
. (58)

If two cells were a distance ε apart from each other before somite formation, and if xc is the length of the
PSM after somite formation, the distance between the same cells after the somite formation will be ε/xc
relative to the new PSM length. Taking this into account, we can now calculate the ratio between the phase
profile gradient between two cells at two consecutive somite formation events, as we did in the previous
subsection,

δφε+∆φε
ε/xc
δφε
ε

= xc

(
1 + ε

2πλ

δφε(1 + λx0)2

)
(59)
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if xc, and ε/δφε are sufficiently small, this may be less than 1, resulting in a convex phase profile. This is
the case for the phase profile plotted in Fig. 5A in the main text.
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Chapter 3

Controlling phase waves in
developing embryos using
entrainment

In diverse species of vertebrates such as chicks, zebrafish, and mice, the arrest of
phase waves of gene expression has been found to coincide with somite forma-
tion (Oates, Morelli, and Ares, 2012; Palmeirim et al., 1997; Soroldoni et al., 2014;
Lauschke et al., 2013; Cotterell, Robert-Moreno, and Sharpe, 2015). The generality of
this correlation is striking, but it is still not clear whether there is a causal relationship
between the travelling phase waves and somite formation. If scholars could control
phase waves from the lab, such causality might be studied systematically. In collab-
oration with Professors Sandeep Krishna and Mogens H. Jensen, I examined how
to achieve control of phase waves by entraining the cellular oscillators to a single
external periodic signal. In addition to the proof-of-concept of phase-wave control,
we examined how recent observations in space-less entrainment studies could be
extended to spatial systems of coupled oscillators such as the PSM.

The proposed method of phase-wave control builds on the theory of Arnol’d
tongues. I will introduce Arnol’d tongues in the following section. In Section 3.2,
I summarise our findings. Following this, the research article is presented. The fi-
nal section of the chapter concludes Part I of the dissertation and suggests possible
directions for further research.

3.1 Entrainment of oscillators

In February 1665, more than 350 years ago, the inventor of the pendulum clock,
Christiaan Huygens, wrote a letter to his father (Bennett et al., 2002; Strogatz, 2004).
In this letter, Huygens beautifully describes a new dynamical phenomenon he has
observed. Strogatz quotes the letter as follows (Strogatz, 2004),

“Being obliged to stay in my room for several days and also occupied in making
observations on my two newly made clocks, I have noticed an admirable effect
which no one could have ever thought of. It is that these two clocks hanging next
to one another separated by one or two feet keep an agreement so exact that the
pendulums always oscillate together without variation. After admiring this for a
while, I finally figured out that it occurs through a kind of sympathy: mixing up
the swings of the pendulums, I have found that within a half hour they always
return to consonance and remain so constantly afterwards for as long as I let
them go. I then separated them, hanging one at the end of the room and the other
fifteen feet away, and noticed that in a day there was five seconds difference
between them. Consequently their earlier agreement must in my opinion have
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been caused by an imperceptible agitation of the air produced by the motion of
the pendulums. The clocks are always shut in their boxes, weighing a total of less
than 100 pounds. When in consonance, the pendulums do not oscillate parallel
to one another, but instead they approach and separate in opposite directions.”

The scientific discovery described in this beautiful tale will be at the center of this
chapter.

Huygens observed that two pendulum clocks synchronise their oscillations if
they hang close enough to each other. While he attributed this synchronisation
to “imperceptible agitation of the air produced by the motion of the pendulums”,
experiments later found that the material from which the clocks hung mediated
it (Czolczynski et al., 2011). In the letter, Huygens interestingly recounts that in-
creasing the separation between the clocks would hinder the synchronisation. If we
imagine describing this separation as a parameter of Huygens’s experiments, this
is an important observation of the mathematical properties of synchronising clocks.
Only for certain choices of parameters do the clocks synchronise.

In this chapter, I will be interested in such synchronisation between clocks. I
shall always be in complete control of one of the clocks; this clock affects the other
clock, and sometimes this makes the second clock synchronise to the oscillations
of the controlled clock. In cases where one of the clocks is controlled externally, I
will refer to the synchronisation as entrainment of the uncontrolled clock, and the set
of parameters leading to entrainment are referred to as Arnol’d tongues (Pikovsky,
Rosenblum, and Kurths, 2003). The point of the chapter is not to understand why
synchronisation occurs but rather understand the properties of the phenomenon of
synchronisation. The first step down this road is introducing Arnol’d tongues.

3.1.1 Entrainment and Arnol’d tongues

Entrainment is a fascinating topic, and many wonderful mathematical phenomena
occur when oscillators interact. Many of these phenomena can be understood in
the light of Arnol’d tongues. In this section, I introduce some of the mathematical
properties that are tied to these parameter regions of synchronisation.

Suppose we are interested in entraining some clock to a beat under our control.
I will call the clock we do not control the “internal oscillator”, as this clock will be
ticking inside PSM cells in the specific setting of the following paper. The clock we
do control I shall refer to as the “external oscillator”. External indicates that it is not
an integrated part of the system in question. If the internal oscillator has a natural
frequency ω, how can we entrain the oscillation to an external beat with frequency
Ω instead?

As Huygens described to his father, only some parameters will result in the
clocks beating in sync. Huygens found that the separation of the clocks mattered.
This separation I shall refer to as the coupling strength, K ≥ 0. If K = 0, the two os-
cillators are entirely independent of each other. Increasing K increases the coupling,
similar to hanging the pendulum clocks closer and closer to each other in Huygens’s
experiment. Another important parameter in the struggle to entrain the internal
clock is the similarity in frequencies of the two clocks, Ω, and ω. The intuition is as
follows: if ω and Ω are nearly identical, a small coupling between the oscillators will
suffice to entrain the internal clock successfully. If ω and Ω are very different from
each other, the coupling must be sizable for synchronicity to occur. In a diagram with
the external-frequency parameter on the horizontal axis and the coupling strength
on the vertical axis, this makes the region of entrainment widen with increasing K.
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FIGURE 3.1: A finite number of Arnol’d tongues (coloured) plotted
for the circle map. In the p : q Arnol’d tongue, the external oscillator
makes p revolutions in the same time as the internal makes q revolu-
tions. An Arnol’d tongue exists for any two integers p, q. At K = 1,
tongues start to overlap. Red and green colors show examples of such
overlapping regions. The figure was originally published in (Jensen,
Bak, and Bohr, 1984); this colored version appeared in (Heltberg et al.,

2016).

Figure 3.1 illustrates this widening. From a single point at K = 0, because only
identical frequencies ω = Ω will allow the two oscillators to beat in synchrony if
there is no coupling between the oscillators, to wider regions for increasing K. This
widening looks similar to that of a tongue from tip to anchor. Therefore this region
of entrainment is affectionately known as an Arnol’d tongue.

In the above example, the external frequency was close to the internal frequency,
Ω ≈ ω, which caused the internal oscillator to locksteps with the external forcing.
Interestingly, the frequencies do not need to be almost identical for such lockstep to
occur. If the external frequency is approximately half that of the internal, 2Ω ≈ ω,
the internal oscillator can be entrained to the external signal too. In this case, the
external oscillator would make two revolutions in the same amount of time as the
internal oscillator makes one. Similar to above, for K = 0 only if 2Ω = ω exactly,
will the two oscillators be oscillating together. Increasing the coupling K makes the
region of entrainment expand, giving the region its tongue-like shape.

In fact, the internal oscillator can get entrained to perform q oscillations in the
same time span as the external oscillator makes p, for any integers p, q. The corre-
sponding Arnol’d tongues vary in shape and width, but they all exist side-by-side
in the parameter plane. Figure 3.1 illustrates this for a classic oscillator model called
the “circle map” (Jensen, Bak, and Bohr, 1983; Bak et al., 1984; Bohr, Bak, and Jensen,
1984; Martin and Martienssen, 1986; Cvitanovic, Shraiman, and Söderberg, 1985;
Feigenbaum, Kadanoff, and Shenker, 1982).

Arnol’d tongues are parameter regions of entrainment, but there is more to them
than that. The properties of Arnol’d tongues are integral to the work I present in
this chapter, and thus I will dedicate two subsections to these. The first subsection
introduces phenomena that arise when one explores an Arnol’d tongue vertically
by gradually increasing the coupling strength, K. The second subsection introduces
Arnol’d-tongue properties characteristic of the horizontal axis inside a tongue.
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FIGURE 3.2: Illustration of the anatomy of the region of an 8 : 13
Arnol’d tongue at high external forcing. The Arnol’d tongue bends
left in this case. Starting from the bottom right corner and proceeding
left and upwards, lines labeled by integers, say n, are encountered.
After crossing such a line, it takes n times as long for the system to re-
turn to its initial configuration. That is, instead of the system repeat-
ing itself every time one oscillator makes 8 revolutions and the other
makes 13, it now takes 8n and 13n oscillations for it to do so. Dotted
lines show neighbouring tongues intruding on the 8 : 13 tongue. For
high enough forcing, chaos becomes possible. This is visible in the
top left corner of the figure. The figure was originally published in

(Glazier et al., 1986).

“Vertical” properties of Arnol’d tongues

Suppose we affect an oscillator with an external beat with parameters (Ω, K). Sup-
pose the set of parameters (Ω, K) are located in the bottom of the p : q Arnol’d
tongue and therefore causes p : q entrainment. We now gradually increase K and
change the Ω in such a way that we move upwards in the Arnol’d tongue. What
would we find? For a while, p : q entrainment would be the only stable solution
for the internal oscillator under our external influence. Eventually, this solution
transitions into more complicated periodic states. One such transition is period-
doubling, after which the internal oscillator goes on for twice as long before it repeats
itself (Strogatz, 2018). More complicated transitions could result in the internal oscil-
lator taking other multiples of its original period before repeating itself. Eventually,
as K is increased, chaotic dynamics can occur. Figure 3.2 illustrates these transitions.

The many transitions mentioned in the previous paragraph are present inside a
single Arnol’d tongue. Increasing K further, makes other exciting parameter regions
come to exist: Regions of overlapping Arnol’d tongues. When Arnol’d tongues
meet, the corresponding stable solutions may coexist, or one may turn unstable.
These regions of overlapping tongues have recently generated significant interest
in another oscillating biological system, namely the nF-κB system (nuclear factor
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FIGURE 3.3: Anatomy of an Arnol’d tongue for low external forcing.
T is the period of the zeitgeber, and τ is the period of the affected
oscillator. From left to right in the tongue, the phase between the syn-
chronised external and internal oscillations changes. At the leftmost
border, the oscillation of the internal oscillator precedes that of the
external oscillator by 6 hours. At the opposite edge, the converse is
true. The figure was originally published in (Bordyugov et al., 2015).

κB) (Heltberg et al., 2016). Oscillations in the nF-κB system are associated with in-
flammatory responses (Jensen and Krishna, 2012). In this system, coexisting peri-
odic solutions were reported. The study suggested that noise could kick the system
between these stable solutions, thereby varying protein levels in the cells. This sug-
gested mechanism has since been extended to the chaotic regime (Heltberg, Krishna,
and Jensen, 2019). The authors proposed that control of genes downstream of the nF-
κB system could be achieved by forcing the oscillating system into Arnold-tongue
regions containing chaos or multiple stable solutions.

“Horizontal” properties of Arnol’d tongues

If an Arnol’d tongue is explored “horizontally”, by varying the external frequency Ω
and keeping K sufficiently low, rather than vertically, bifurcations do not take place.
In the letter to his father, Huygens mentions that his synchronised pendulum clocks
oscillate out-of-phase with each other. As one fixes K and varies Ω, one finds that the
phase difference between the internal and external oscillator changes. Such changes
in phase difference happen even as synchrony between the oscillators persists. This
detuning is illustrated in Figure 3.3. The figure shows an Arnol’d tongue for a sys-
tem of “Kuramoto” oscillators with an internal period of 24 hours (Bordyugov et al.,
2015; Kuramoto, 2003; Acebrón et al., 2005). On one boundary of the tongue, the
oscillation of the external signal precedes that of the internal by 6 hours. On the
other boundary of the tongue, the internal oscillation precedes that of the external
oscillation by 6 hours. In total, the phase difference between oscillators varies with
phase π across the tongue.
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3.2 Our results: Entraining phase waves

In the paper “Entrainment as a means of controlling phase waves in populations
of coupled oscillators”, published in Physical Review E, (Juul, Krishna, and Jensen,
2018), we simulate various entrainment experiments applied to coupled cells on a
line. The cells on a line mimick cellular oscillators in the presomitic mesoderm.
In each cell, we keep track of the concentrations of 4 different proteins. For this
reason, the whole system is described by 4n ordinary, coupled differential equations
(n being the number of cells on the line). For the particular choice of parameters, the
protein concentrations oscillate with a linear period gradient similar to that seen in
the mouse. The oscillations of neighbouring cells are coupled, and this coupling can
cause cells with identical parameters to synchronise.

We first affect all cells on the line with a single, external periodic forcing. We
show that the forcing parameters can be chosen such that all cells entrain to the
external signal in a 1 : 1 manner. Thus, all 1 : 1 Arnol’d tongues overlap for some
(Ω, K) despite all oscillators having different natural frequencies. The key point of
this simulation is as follows. Because all cells have slightly different frequencies than
their neighbours do, all the 1 : 1 Arnold tongues are slightly displaced compared to
each other. The parameters that entrain all oscillators correspond to the rightmost
part of the 1 : 1 Arnold tongue for the fastest oscillator and the leftmost for the
slowest. Hence the phase difference between the external signal and the oscillators
will change systematically from left to right on the line – phase waves! In other
words, by applying an external periodic signal, we create phase waves that are under
our control.

Having shown that we can control phase waves using entrainment, we move
on to investigate the region of overlapping Arnol’d tongues for cells on a line. We
simulate a system of cells – all with the same internal frequency – and apply the
same external periodic signal to all cells. Choosing parameters (K, Tforce) that lie
in the overlapping region between the 3 : 1 and 2 : 1, we show that multiple stable
oscillatory solutions can coexist. This is true even when the coupling between neigh-
bouring cells would make pairs of cells synchronise their oscillations if no external
force were applied. The observed coexistence of oscillatory solutions persists for as
long as we run our simulations.

3.3 Paper: Entrainment as a means of controlling phase waves
in populations of coupled oscillators
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We explore waves and entrainment in a model of coupled oscillators, inspired from the cellular oscillators in
the presomitic mesoderm (PSM) of mice. The internal clock in each cell is based on a negative feedback loop
which couples to the clocks of neighboring cells through a Notch mechanism. We investigate how a morphogen
gradient in the mesoderm, which affects the period of oscillating cells, gives rise to phase waves traveling from
the posterior to the anterior part of the PSM. We show that the phase waves can be entrained by an external
periodic variation in this morphogen and also observe that multiple oscillatory solutions can coexist in the cell
population. Together, these provide a way to potentially control phase waves and thereby manipulate somite
patterning in embryos, based on entrainment properties of coupled nonlinear oscillators.

DOI: 10.1103/PhysRevE.98.062412

I. INTRODUCTION

Biological oscillators are ubiquitous in a wide range of
systems from the molecular level up to macroscopic scales
and play a fundamental role in how living systems function.
These include ultradian biological clocks (period less than
24 h) that affect tumor growth [1–5] or vertebrae precursors in
the vertebrate embryo [6–15] and the circadian clocks (period
of approximately 24 h) that coordinate rhythms in mammalian
physiology to the day-night cycle [16–18].

A natural task is to investigate ways to control the oscil-
lations. Dynamical systems theory tells us that an oscillator
can be entrained if it is driven by an external, periodic signal
[19–23]. If the external periodic signal is characterized by a
period Tforce and a “strength” Kforce, then certain combinations
of the parameters (Tforce,Kforce ) will successfully entrain the
oscillator to have the period Tforce or a rational multiple of this:
TforceP/Q with P and Q being positive integers. The region
of this parameter space in which the oscillator is entrained
and oscillates with period TforceP/Q is referred to in the
dynamical systems literature as a P :Q Arnold tongue [24].

Entrainment of biological oscillators has been studied in
several biological cases [25–34], with well-known, crucial
functions such as the coordination of various rhythms to the
day-night cycle. One biological process where oscillators are
of fundamental importance is somitogenesis, the formation of
vertebrae precursors in vertebrate embryos. In the vertebrate
embryo, somites, the precursors of vertebrae, are periodically
formed in the presomitic mesoderm (PSM) [35]. The PSM
consists of a population of interacting stem cells [36], which
we will refer to as PSM cells. Geometrically, the PSM can
be described by an anteroposterior axis, where somites form
in the anterior PSM and new PSM cells are continuously

*sandeep@ncbs.res.in
†mhjensen@nbi.dk

added in the posterior PSM [37]. Each PSM cell is an ultra-
dian oscillator [38], exhibiting rhythmic pulsations in several
pathways until it arrives at the anterior end of the PSM where
it eventually becomes part of a newly formed somite.

Somitogenesis has been studied in great detail in particular
in zebrafish, chicks, and mice. The exact mechanism behind
somite formation is not known. Cooke and Zeeman [8] devel-
oped a famous framework, the “Clock and Wavefront Model,”
in which oscillating cells (“clocks”) encounter a wavefront
which moves from the anterior to the posterior PSM, thereby
causing the cells to form somites. This mechanism depends on
global morphogen gradients and has recently been challenged
in theoretical and experimental studies which suggest, instead,
mechanisms based on local reaction-diffusion behavior [39]
or on interactions between several intracellular clocks [40].
Although the somite formation mechanism remains elusive,
waves of protein expression have been observed to travel
through the population of somite precursor cells from the pos-
terior to the anterior PSM, and in all three species, the arrest
of these waves in the anteriormost PSM has been found to
coincide with the formation of a new somite [41–43]. Hence,
we hypothesize that controlling the wave pattern, which is
intimately linked to the individual cellular oscillators, may
lead to controlling the spatial pattern of somites.

Recently, experiments have concluded that presomitic
mesoderm cells in mice can be entrained [44] by external
periodic variations in pathway modulators, and for this rea-
son, theoretical studies of observable phenomena related to
the entrainment of coupled, oscillating cells are important.
Especially, studies focusing on the control of phase waves
should be encouraged. In this paper, we take a previously
proposed minimal model for the internal clock in PSM cells
and add a coupling to achieve a limit cycle oscillator that is
coupled to the oscillators in neighboring cells. We show that
imposing a linear morphogen gradient gives rise to period and
amplitude gradients across the PSM that are similar to what is
observed experimentally. We then simulate an experiment in
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which the morphogen concentration is varied periodically in
each cell in the PSM and find that this can entrain the traveling
phase waves, thereby providing control over the wave pattern.
Finally, we study entrainment of cell populations consisting
of cells with similar natural frequencies. This corresponds to
populations of cells that originate from the same position in
the PSM. We find that when the external entraining signal
forces the cellular oscillators into a region of overlapping
Arnold tongues, multiple oscillatory solutions coexist. This
generalizes a recent observation of coexisting oscillatory solu-
tions in the NF-κB system [45]. In our case unlike the NF-κB
case, cells are coupled in space, and thus coupled cells may
be entrained to different limit cycles, which might manifest in
the spatial pattern of somites.

The remainder of this paper is structured as follows: In
Sec. II we describe our model of coupled PSM cells and
their oscillatory behavior. In Sec. III we present our results
in three subsections: in Sec. III A we show that a gradient of
Wnt3a in this model leads to period and amplitude gradients
in the PSM, resulting in traveling phase waves; in Sec. III B
we vary the Wnt3a level in each PSM cell periodically and
thereby entrain the traveling phase waves; Sec. III C deals with
entrained populations of similar cells leading to coexisting
oscillatory solutions. In Sec. IV we discuss the validity and
implications of our results.

II. MODEL OF COUPLED, OSCILLATING CELLS

We aim to obtain a limit cycle oscillator with a parameter
corresponding to the level of a morphogen gradient across
the PSM, which we can use to study the possible effects
of entrainment of oscillating cell populations. The internal
clock in each cell is modeled by a negative feedback loop
involving Axin2, β-catenin, and Axin2 messenger RNA, as
was suggested in Refs. [14,46,47]. Several experiments have
concluded that PSM cells coordinate their oscillations with
their neighbors, and that Notch is the key in the coupling
mechanism between cells in the PSM [11,13,48,49]. For this
reason, we couple cells through the concentration of Notch
in neighboring cells. It is unknown what mediates the cross
talk between the Wnt pathway (the internal clock in our
model) and the Notch pathway. We choose glycogen synthase
kinase-3beta (GSK3β) in this model because experiments
have indicated that GSK3β can bind to, and phosphorylate,
Notch in other biological systems [50,51] and is involved
in a destruction complex [52,53] along with β-catenin and
Axin1 (which is functionally equivalent to Axin2 [54]). Thus,
a coupling of cells via Notch interaction with GSK3β is
biologically plausible.

Our model of interacting cells [Fig. 1(a)] is formulated in
terms of a set of delay differential equations. For each cell, we
keep track of the concentration of β-catenin, Axin2 mRNA,
Axin2, and Notch, abbreviated B, Am, A, and N , respec-
tively. GSK3β enters effectively into our description via a
parameter Gtot that sets the total amount of GSK3β, summing
its concentration in free form and as part of the destruction
complex. We assume that the Notch level which affects a
given cell is dependent on the combined level of the Notch
concentrations of the neighboring cells,

∑
j Nj . Recently it

was found that a time delay in the coupling between cells

can ensure defect-free patterning [55]. We incorporate such a
delay in the production terms of Notch. The model then takes
the form

dBi

dt
= S − λGt

KBAG

BiAi

1 + Ni

KNG
+ Ai

KAG

, (1)

dAm,i

dt
= ctsAB2

i − Am,i

τAm

, (2)

dAi

dt
= ctlAAm,i − νLtot

Ai

cb[AL]+ν

cf [AL]
+ Ai

, (3)

dNi

dt
= p0 + αkn

kn + Ii (t − τ )n
− εGtot

KNG

Ni

1 + Ai

KAG
+ Ni

KNG

,

(4)

where i is an index that labels the cells. In the Notch equation,
Ii (x) is a coupling function given by

Ii (x) =
⎧⎨
⎩

Ni−1(x) + Ni+1(x) if 1 < i < N,

2Ni+1(x) if i = 1,

2Ni−1(x) if i = N.

(5)

τ is the delay in cell-to-cell signaling, p0 a basic production
rate, and p0 + α is the maximal production rate.

All values of the parameters are listed in Table I. ν is the
parameter which is proportional to the Wnt3a level of the cell
[47]. In Fig. 1(b) the period of two coupled cells is plotted as
a function of ν. This is the only parameter which we allow to
vary from cell to cell. In each simulation, we will state the ν

distribution for the particular study of interest. In Fig. 1(c) we
show the time to synchronization of two cells with identical
parameters and random initial conditions, as a function of the
delay τ . The cells synchronize only for an interval of large τ

values. For the remaining τ values, the cells tend to oscillate
completely out of phase with each other. We choose τ = 25
min for all cells in all simulations since experiments have
shown that Notch helps synchronize the oscillations of cells
[11,13,48,49].

Geometrically, we will approximate the PSM to be a line of
cells, each connected only to two neighbors on either side of it.
It has been observed that there is a gradient of Wnt3a over
the PSM [14,42]. This correlates with the gradient of the
oscillation period in the PSM. In our model, the ν parameter is
proportional to the Wnt3a level in the cell [47]. Hence, we will
simulate a presomitic mesoderm using a gradient in ν, going
from high ν in the posterior PSM to low ν in the anterior PSM
[Fig. 1(d)].

Experimentally, the period has been found to increase lin-
early from posterior (with period around 130 min) to anterior
[42], the period being approximately 25%–30% longer in the
anterior than in the posterior. The period in our model (1)–(4)
is shorter [Fig. 1(b)], but since this model is derived from a
larger model [47], which did have the correct period length,
this seems to be a result of losing delay when simplifying
from eight to three differential equations for the core clock.
Hence, we do not consider this to be of importance. From our
simulations, we find that a ν gradient decreasing linearly from
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FIG. 1. Basic characteristics of our model of interacting PSM cells. (a) Schematic of the components and interactions in our model.
The internal clock is based on the Axin2-β-catenin negative feedback loop, and neighboring cells are coupled with a delay τ through their
Notch levels. Notch is phosphorylated by GSK3β internally in the cell. (b) The period of two coupled cells as a function of the parameter
ν in Eqs. (1)–(5) [with N = 2, making I1(t − τ ) = 2N2(t − τ ) and I2(t − τ ) = 2N1(t − τ )], which is proportional to the Wnt3a level in the
cells. (c) The time before synchronization of two coupled cells with identical parameters and initial conditions drawn uniformly at random
from the interval [0, 10] nM for all variables. Each data point is averaged over 20 simulations. If cells failed to synchronize in any one of
these simulations, the data point was defined as 0 (“No sync”). The plot shows that the delay needs to be in a specific range for the cells
to synchronize. (d) Implementation of the model when simulating a PSM. Cells are placed on a line and couple to their nearest neighbors.
Outermost cells have only a single spatial neighbor. As a boundary condition, we let the outermost cells couple to two copies of this neighbor.
A linear Wnt3a gradient is placed over the line: posterior cells have a higher Wnt3a level than anterior cells. (e) Phase wave resulting from
simulation of the model implemented as shown in (d), with the anterior period being ≈30% longer than the posterior period. Waves travel
from posterior to anterior, with the amplitude of the Notch expression growing towards the anterior. This is in agreement with experimental
observations [42].

posterior to anterior,

νi = νposterior + (νanterior − νposterior )
i − 1

N − 1
, (6)

with νposterior = 2.500 min−1 to νanterior = 2.125 min−1

creates a gradient in the period with the correct

fractional difference between posterior and anterior. A
simulation with this type of ν gradient, and all initial
protein concentrations equal to 2 nM, yields phase
waves going from posterior to anterior [Fig. 1(e)]. In the
following section, we will examine these waves in more
detail.
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TABLE I. Parameters for the model of coupled PSM cells. The first two parameters, KAG and S, were chosen to be realistic values, from
Jensen et al. [47,56]. The next three, ctsA, ctlA, and τAm, were chosen to be the estimated values of Jensen et al. [47]. KNG was chosen to be one
third of the size of KAG, and λGtot and εGtot to have the same magnitude as KNG. p0 and α were chosen to be 0.5 nM min−1 each such that
the maximal production rate of Notch is 1 nM min−1. The three parameters cf [AL], cb[AL], and Ltot were chosen such that terms in Eqs. (1)–(4)
had the same values as in the original model [47]. The next three parameters were chosen from parameter scans: ν (which is proportional to
the Wnt3a level in the simulated cell) such that the period difference between posterior and anterior is ∼30% [Fig. 1(b)], and k and τ such
that two coupled cells with the same parameters synchronize. When reducing the single-cell model from eight variables [47] to three variables
[38], the final parameter, KBAG, was given in terms of several parameters from the larger model. The value of the parameter was chosen such
that the known realistic values of its constituents were used. The value of one of its constituents (called cb,C) was determined such that two
coupled cells with the same parameters synchronized their oscillations.

Parameter Process Default value

KAG Dissociation constant of G and A into the complex [GA] 6 nM
S Constant source of β-catenin 0.4 nM min−1

ctsA Transcription of Axin2 gene 0.7 nM−1 min−1

ctlA Translation of Axin2 mRNA 0.7 min−1

τAm Average lifetime of Axin2 mRNA 40 min
KNG Dissociation constant of [NG] and N, G 2 nM
Gtot ε Total G level times constant 2 nM min−1

Gtotλ Total G level times constant 2 nM min−1

α Constant in numerator of coupling term 0.5 nM min−1

p0 Constant production rate of Notch 0.5 nM min−1

n Hill coefficient 1
cf [AL] Binding of A to L 250 nM−1 min−1

cb[AL] Dissociation of [AL] into A and L 2 min−1

Ltot Total L level 2.8 nM
ν Degradation of Axin2 in [AL] complex (Wnt level included) 2.125–2.500 min−1

τ Delay in cell-cell coupling 1 nM min−1

k Constant in denominator of coupling term 2 nM
KBAG Dissociation constant of [BAG] and B, A, G 2.48 nM2

III. RESULTS

A. Traveling phase waves along the PSM
in the absence of external forcing

We first explore the phase waves that can travel along the
PSM in our model. The spatial implementation of the coupling
between cells [Eqs. (1)–(4)] is shown in Fig. 1(d) (posterior
being the leftmost part of the line). All cells are assigned
the same parameter values except that the ν parameter is
varied as described above. All cells are given the same initial
conditions by setting all initial concentrations to 2 nM. In
Fig. 1(e) we show that phase waves appear in the system after
an initial transient period. Similar traveling waves have also
been observed previously in Ref. [57], which differs from our
model in two ways: it implements the PSM as a continuous
line rather than a discrete set of cells as in our model and
focuses on phase oscillators rather than limit-cycle oscillators.

In our model, after a transient period, cell trajectories lie
on limit cycles. These are shown in Figs. 2(a) and 2(b). We
see that the amplitude of oscillations in the variables N and
A becomes larger the more anterior a cell is located. Experi-
mentally, Notch oscillations have been reported to increase in
amplitude in a similar way [42].

In Fig. 2(c) the oscillations in Notch concentrations of all
cells are plotted as a function of time. A phase wave travels
from posterior to anterior and grows in amplitude as it travels
in this direction. In Fig. 2(d) the periods of the cells are
shown. The estimated periods are average values for each cell
over 200 min of simulation. The period grows approximately

linearly from posterior to anterior. The anteriormost period
is approximately 30% longer than the posteriormost period.
Because period depends on position, the phases of the cellular
oscillators drift apart, resulting in the number of waves travel-
ing the PSM increasing with time. The number of waves can
be adjusted by either “cutting off” cells in the anterior (somite
formation) or adding new cells in the posterior (PSM growth).
This we examine in a forthcoming publication. Here we focus
on the possibility of entraining these waves.

B. Entraining wave patterns in a simulated PSM
by external periodic forcing

As mentioned in Sec. I, the arrest of phase waves in the
presomitic mesoderm has been found to coincide with somite
formation. Controlling the phase waves might thus provide a
way to control the somite patterning. In this section, we
investigate one way of obtaining such control, namely, by
entrainment of all PSM oscillators to an external, periodic sig-
nal. The external, periodic signal we imagine to be imposed,
not by something in the biological system itself, but by an
outside observer, who actively wants to affect the oscillating
population.

The cells are perturbed by an external periodic variation of
the ν parameter (Wnt3a concentration)

ν → ν

[
1 + Kforce sin

(
2π

Tforce
t

)]
. (7)
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(a) (b)

(c) (d)

FIG. 2. Oscillations and traveling phase waves in a PSM with a Wnt3a gradient in the absence of external periodic forcing. Simulations of
20 cells on a line with a linear gradient in ν as described in Fig. 1 and all concentrations equal to 2 nM as initial conditions. (a, b) Plot of limit
cycles for all cells. Cells located closer to the posterior end are plotted with a darker color, and those closer to the anterior end with a lighter
color. The amplitude in oscillations in variables N and A increase the closer a cell is to the anterior PSM. Experimentally, the amplitude of
Notch oscillations is reported to increase from posterior to anterior [42]. (c) Visualization of phase wave traveling from posterior to anterior.
The amplitude in N increases from posterior to anterior. (d) Periods of PSM cells. Anterior cells have approximately 30% longer periods than
posterior cells. The difference in period means that the wave pattern is not stable: the phase of the oscillators drifts apart.

Depending on the period (Tforce) and the amplitude (Kforce),
the oscillations of a cell may synchronize to those of the exter-
nal signal. As described above, the interval of external periods
Tforce that can entrain an oscillator to a period identical to
that of an external signal is named the 1:1 Arnold tongue. We
obtain 1:1 Arnold tongues in Fig. 3 for cells at three different
positions, characterized by different values for the ν parame-
ter. The leftmost Arnold tongue is for cells from the posterior
PSM (ν = 2.500 min−1), the middle Arnold tongue is for
cells from the middle of the PSM (ν = 2.3125 min−1), and
the rightmost Arnold tongue is for cells from the anterior
PSM (ν = 2.125 min−1). We obtained the Arnold tongues
by simulating five cells on a line under the influence of each
parameter pair (Tforce,Kforce) for 9000 min of simulations. If
the oscillations of the cells were synchronized at the end of
the simulation (if no neighboring cells had average periods,
over the last 6000 min, which deviated more than 1 min),
and if their period were identical to that of the external signal
(defined as a period Tcells for which |Tforce − Tcells| < 0.02 min
and Tcells/Tforce < 1.01), a 1:1 Arnold tongue was associated
with the parameter pair.

The phase difference with which the cell oscillator will
be entrained to the external signal depends on the position
of parameters (Tforce,Kforce ) within the Arnold tongue [23].

For an entrained cell oscillation, we measure the minimal
distance between peaks of N (from any cell of the PSM)
and peaks of ν, (tpeakν − tpeakN )/Tforce, and plot the results
as a colormap in Fig. 3(a), overlaid on top of the previously
obtained Arnold tongues. Positive values correspond to the
external force peaking first.

In Fig. 3 the three Arnold tongues overlap at
(Tforce,Kforce ) = (34 min, 0.035). Hence, an external Wnt3a
oscillation with these parameter values may entrain all cells
in the PSM. Furthermore, with this choice of parameters, the
Notch level N in posterior cells peaks before the external
signal, and peaks after the external signal in anterior cells.
Hence, a phase wave will travel the PSM from posterior
to anterior. In Figs. 3(b) and 3(c) the limit cycles of the
entrained PSM cells are shown. In this case, the amplitude of
N, A, and B decrease in amplitude from posterior to anterior.
In Fig. 3(d) the Notch oscillations are shown as a function
of time. Phase waves travel from posterior to anterior with
decreasing amplitude. In Fig. 3(e) the periods of the cells
(averaged over 1000 min of simulation) are plotted. All cells
have similar periods, and hence the phases of the oscillators
do not drift apart. Through an external periodic variation of
Wnt3a we have thus shown it is possible to obtain “external”
control of the phase waves in the PSM.
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(a)

(b) (c)

(e)

FIG. 3. Entrainment of traveling phase waves in the presence of external periodic forcing. (a) 1:1 Arnold tongues for cells originating
from three different positions in the PSM: posterior, halfway between posterior and anterior, and anterior. The colormap indicates the value
of (tpeakν − tpeakN )/Tforce. Positive values indicate that the Notch levels of cells peak after the external forcing signal. In the overlap between
the three tongues, posterior cells peak before the external signal and the anterior cells peak after the external signal. Hence, a wave of maxima
may travel the PSM from posterior to anterior. (b–e) A PSM, with a linear ν gradient as given by Eq. (6), under the additional influence of
an external periodic forcing, as given by Eq. (7), with (Tforce, Kforce ) = (34 min, 0.035). This parameter pair lies in the overlap between the
three tongues in panel (a). (b, c) Limit cycles for each cell in the PSM under influence of the external periodic forcing. Compared to Fig. 2,
the amplitude of oscillations now varies with cell position for both A and B and N . Interestingly, the amplitude is now greatest in all variables
for posterior cells, not anterior cells as in Fig. 2. (d) Notch expression N of all cells as a function of time. Phase waves travel from posterior
to anterior, with oscillations decreasing in amplitude with distance from the posterior end. (e) Period of cell oscillations in the phase wave of
inset (d). All cells oscillate with, on average, identical period.

C. Coexisting limit cycles in PSM cells perturbed
by a single external periodic signal

Properties of oscillating cells originating from similar parts
of the PSM have been studied experimentally [42,49]. In these
studies it was reported that the phase gradient in monolayer
PSMs (an ex vivo culture of PSM cells that recapitulates
patterning and segment scaling in the mouse PSM) decides the
width of formed somites, and that mixed cells are capable of
synchronizing their oscillations. In this section, we investigate
the effects of a wide range of forcing parameters on cells
originating from identical parts of the PSM.

We position cells on a line with the same ν parameter (i.e.,
we no longer have a gradient), corresponding to positions in
the central part of the PSM, and vary ν periodically according

to Eq. (7). To quantify whether the cell population is entrained
to this external signal or not, we measure the difference
between the period of the stable oscillations of the Notch
concentration of the cell populations and the period of the
external signal. We do this for different values of the parame-
ters (Tforce,Kforce ). The results are plotted in Fig. 4(a); colored
areas in the parameter space indicate the entrainment of the
oscillations of the cell population in Arnold tongues corre-
sponding to the fraction P/Q equal to 4, 3, 2, 3/2, 1, 2/3,
and 1/2. In Fig. 4(b) the oscillations of all cells are plotted
along with the external forcing. All cells are entrained to the
external signal.

In Fig. 4(c) the external period is approximately twice the
period of the cells, which shows that the cell population has
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(a)

(b)

(d) (e) (f)

(c)

FIG. 4. Coexistence of limit cycles induced by an external periodic forcing in the absence of a period gradient. (a) Colormap showing the
ratio of the period of a population of synchronized cells (originating from the central part of the PSM) to Tforce, the period by which the ν

level of the cells is varied. Distinct Arnold tongue structures of entrainment are clearly visible. White areas correspond to sets of parameters
in which cells in the population were not synchronized after a very long time (9000 min). These areas are visible at the overlap of tongues
where complex phenomena such as chaos can exist, and at the edge of the tongues where the convergence to entrainment is very slow. (b)
Under the influence of an external periodic variation of the ν parameter (Wnt3a level) according to Eq. (7) with (Tforce, Kforce ) = (35 min, 0.06)
(parameter pair lies in the 1:1 tongue), 11 cells on a line synchronized their oscillations. In the simulation, all cells had ν = 2.3125 min−1. The
external forcing with which we multiply ν is plotted by a dashed red line. (c) Oscillations of all 11 synchronized cells with forcing parameters
(Tforce, Kforce ) = (68 min, 0.08). The forcing is shown in dashed red. Interestingly, the cells have undergone a period doubling: the maxima of
the peaks alternate with double period. (d–f) Cell population under identical periodic forcing with parameters that lie between the 3:1 and 2:1
tongues, (Tforce,Kforce ) = (12.5 min, 0.07). (d) Kymograph showing three cells entrained to one frequency or amplitude corresponding to the
2:1 tongue (blue square), and eight cells with another corresponding to the 3:1 tongue (red square). (e) Plot of Notch time series for two cells
marked with squares in panel (d). Cells are entrained to different frequencies. (f) Three-dimensional projection of limit cycles that the cells
can be entrained to.

undergone what is termed in the nonlinear dynamics literature
as a “period doubling” [58]. Interestingly, this seems to be
a general feature of the oscillations in the 1:2 tongue in our
model.

Next, we investigate the behavior for parameters in the
white spaces of the overlapping Arnold tongue regions in
Fig. 4(a). Coexisting limit cycles in such overlapping Arnold

tongues are known to exist in spin-torque oscillators affected
by an injected alternating current [59] and were recently found
in a system of NF-κB cells [45]. In Figs. 4(d)–4(f) we plot re-
sults obtained by performing simulations identical to the ones
we performed above but with the parameters (Tforce,Kforce ) =
(12.5 min, 0.07), lying between the 2:1 and 3:1 Arnold
tongues. We find that two limit cycles coexist and predict that
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an experiment examining the response of a PSM cell popula-
tion, taken from a single PSM location, to periodic external
driving may find part of the population oscillating with one
frequency while other parts oscillate with the other frequency.

From a dynamical systems perspective, the coexistence of
limit cycles in certain areas in parameter space means that
some bifurcation takes place on the boundary of such areas.
In the sine circle map, it has previously been determined that
such bifurcations are heteroclinic [60]. In the present system,
however, we find that when crossing from the region in which
only the 2:1-limit cycle exists, into the region in which the
2:1-limit cycle coexists with the 3:1-limit cycle, the latter
limit cycle appears “out of the blue,” with a finite period and
amplitude. Together with the fact that we did not find any fixed
points appearing or disappearing or changing in stability, this
suggests that the bifurcation is a saddle-node bifurcation of
cycles [58]. This is similar to what was observed in Ref. [59].
We observed coexisting limit cycles in the overlapping region
between the 4:1 and 3:1 Arnold tongues as well.

IV. DISCUSSION

Locally interacting oscillating cells is a topic of funda-
mental interest and has been widely studied from biological,
physical, and mathematical viewpoints both with and without
time delays in the coupling [57,61,62]. In this paper, we use
a simple limit cycle oscillator model to investigate the conse-
quences of an external periodic variation of a morphogen gra-
dient on a population of coupled oscillating presomitic meso-
derm cells. While traveling phase waves on a line of coupled
nonlinear oscillators have been well studied, to our knowledge
our result that these waves can be entrained by an external
periodic forcing has not been reported before. We also showed
that in the context of the presomitic mesoderm such external
forcing can lead to the coexistence of different limit cycles
in coupled cell populations. This is to be expected due to the
existence of overlapping Arnold tongues in our coupled oscil-
lator model but is a feature that has not been observed exper-
imentally during somitogenesis. Together, our results suggest
powerful ways of controlling the spatial and temporal pat-
terning process during somitogenesis by the relatively simple
means of controlling the morphogen gradients that determine
the frequency of the cellular oscillators. Such means to control
the oscillations would be useful both for understanding the
nonlinearities of the somitogenesis “clock” as well as the
properties of the inter-cellular coupling between PSM cells.

The model we use is based on a core, negative feedback
loop in the canonical Wnt pathway, and a Notch coupling
between neighboring cells. The cross talk between these
pathways occurs in our model via GSK3β. This remains an
assumption, albeit a plausible one because experimentally
GSK3β has been found to bind and phosphorylate Notch in
other systems [50,51].

The Wnt oscillator is known to interact with the Notch
pathway, which is known to be instrumental in coupling of
cells, and this provided us a concrete way to model both
the intracellular clock as well as the intercellular coupling.
However, while the Wnt pathway does show oscillations, it
has not been proven to be the driving clock of the PSM
cells. Several other negative feedback loops exist in various
somitogenesis-related pathways. It is quite possible that one
of these is the main clock driving somitogenesis, as well as
the oscillations in other pathways. Despite this we believe our
results still provide strong “proof of principle” that external
periodic variation can be used to entrain phase waves and
thereby provide control of somite patterning, because syn-
chronization, entrainment, and coexistence of multiple oscil-
latory modes are deep and fundamental properties of coupled
oscillators that do not depend much on specific details of the
oscillators [24]. Thus, we expect that even if another clock is
the one driving somitogenesis, we would obtain qualitiatively
similar results.

We believe our results are important for understanding the
control of oscillating cell populations. We provided numerical
evidence that coupled limit cycle oscillators under the influ-
ence of an external periodic force might have multiple coex-
isting stable limit cycles. This too depends on fundamental
properties of limit cycle oscillators, and hence we expect such
coexisting oscillating states to be achievable in a broad range
of locally coupled, oscillating systems.

Generally, when frequencies of oscillators are proportional
to spatial position along some axis, as is the case in the
PSM [49], the 1:1 Arnold tongues of the cells will occupy
different areas in the parameter space (Tforce,Kforce ) of an
external, periodic change in any parameter which the periods
of the cells depend on. This makes control of the phase
waves via entrainment possible. In the PSM, it would be very
interesting to find a parameter that could be used to control
the phase waves in vivo, because this would allow a direct
and dynamic control of the spatial patterns formed during
somitogenesis.
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3.4 Conclusions of Part I and perspectives for further research

We have derived concrete constraints on somitogenesis in mice, assuming that the
formation and scaling happens by phase-gradient encoding. In particular, we pro-
posed experiments that should alter the width of somites. These could be used to
falsify the proposed phase-gradient encoding. Recent experiments in mice seem to
have qualitatively different outcomes than would be expected, given a mechanism
based on phase-gradient encoding. These experiments, however, cannot yet fal-
sify the phase-gradient mechanism; first, system variables such as the exact period-
gradient perturbation and the phase profile need to be known for the experiments.

We also showed that phase waves could be entrained by external variation of
morphogen levels. Because the phase variation across an Arnol’d tongue is π, such
entrainment cannot lead to a full wave occupying the PSM. Hence, we can only
hope to use the entrainment to test whether a phase difference of 2π is necessary for
somite formation to occur.

There are several interesting possibilities for future research. One obvious direc-
tion is the experimental realisation of our proposed experiments. It is already possi-
ble to entrain and alter oscillation periods in PSM cells. Detailed tests of the phase-
encoding mechanisms, like the ones we suggest in our papers, have the potential
to increase our understanding of somite formation in mice considerably. Theoreti-
cally, there are open questions too. We provided analytical results for two special
cases: a PSM of constant length, and a PSM with no growth. Studying the cases of
shrinking PSMs with growth and PSMs of increasing length would be interesting.
What happens in these cases? Does the phase profile change gradually? Perhaps
the phase width must change as the PSM is shortened? Our calculations found two
different steady-state phase profiles for constant length and no growth, so exploring
the intermediate cases seems worthwhile. A possible way to approach this would
be formulating the problem as an eigenvalue problem. If the growth and somite
formation can be expressed as an operator S , and the phase-profile as a function
(or vector) φ(x), demanding that φ(x) is only rescaled after each somite formation
would be looking for solutions to the eigenvalue problem

Sφ = σφ. (3.1)

Here σ is an eigenvalue of S and the amount the PSM is shortened or elongated
following a full iteration of growth and somite formation. Expressing solutions φ as
a function of growth conditions could be very interesting.

Other interesting future directions are mentioned in the paper presented in Chap-
ter 2. We argued that a concave phase profile would serve as a way to reduce the
influence that errors in the phase width have on physical somite width. A detailed
numerical investigation of this influence could be exciting. It would also be interest-
ing to investigate in more detail the role of coupling between PSM cells. A coupling
is not needed in order for phase waves to travel the PSM, so perhaps the only func-
tion this coupling has is limiting the influence that inevitable noise has on oscillation
phases. A very strong coupling might make cells synchronise, and a very weak cou-
pling would not provide any protection against noise. So what is the sweet spot of
coupling strength, and does this have any implications that can further increase our
understanding of the somite-formation mechanism?
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Chapter 4

Synergistic effects in threshold
models on networks

On a summer day in June, 2010, a mysterious piece of software was discovered (An-
derson, 2012; Nakashima and Warrick, 2012; Karnouskos, 2011; Keizer, 2010). The
software, “Stuxnet”, actively spread indiscriminately between computers via the
operating system Microsoft Windows. When the software reached a computer in
charge of specific industrial processes, it released a load designed to destroy this
industrial hardware. The computer virus is widely believed to be a military cy-
berweapon developed to exploit the interconnected nature of computers to target
Iranian nuclear facilities.

The worst power outage in US history occurred on November 9 1965 (Vassell,
1990). A malfunction in a safety device caused current sent from the Niagara Falls
to be momentarily redirected from its planned path. This single malfunction started
a cascade of safety switches being turned on in the power network. Each switch dis-
connected another part of the US Northeast power system, causing the whole system
to become fragmented into a collection of isolated islands in a matter of minutes. 30
million people lost power following that single malfunctioning safety device (Stro-
gatz, 2004).

This second part of my dissertation concerns spreading processes in networks.
Such spreading processes range from harmful ones, as illustrated by the two exam-
ples above, to sought-after contagion such as viral spreading of online content. This
chapter introduces different classes of spreading processes in Section 4.2. Before this,
however, I introduce the concept of networks and 3 standard models of networks. A
key feature of networks is their generality in Section 4.1. From the foodwebs sum-
marising the complex ecological interactions in nature to terrorist networks, pro-
fessional networks, and social media, the concept of networks is used to describe
an astonishingly diverse set of topics. The goal of the following two sections is to
illustrate how a general mathematical framework can capture this diversity.

Following these preliminaries, and the introduction of contagion in Section 4.2,
three scientific articles are presented in this part of the dissertation. The present
chapter introduces a paper concerning synergistic effects in spreading processes.
The topic of Chapter 5 is a paper studying how anti-establishment majorities can
be created from spreading processes in networks. And finally, Chapter 6 introduces
an article examining the impact of mutant contagion in networks.

Before introducing the scientific work I have done on contagion in networks,
however, it is instructive to ask the following question.
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4.1 Why networks?

Natural, social, and engineered systems often consist of interacting entities. Some-
times, effectively, all of these entities interact with each other, like chemicals in a
container that is continuously shaken. In other cases, the possible interactions be-
tween constituents are more limited. From Copenhagen Central Station, one can
take a direct train to Hamburg while there are no direct trains to Rome. Sometimes
the interactions that are effectively possible are even different from those that are
possible in principle. A Ph.D. student could send an email to a professor she never
met. Alas, she would probably be more likely to get a reply if she asked a mutual
acquaintance, her supervisor, to send the email instead.

The topology of connections in systems of interacting parts can impact how effi-
ciently biological systems function, how quickly people travel, and how successfully
messages are shared between people. The concept of Networks has turned out to be
a powerful abstraction to study this impact. Networks have their roots in the math-
ematical discipline of graph theory, dating back to 1735 when Leonard Euler solved
the famous “Seven Bridges of Königsberg” problem (Sachs, Stiebitz, and Wilson,
1988). Graph theory studies the mathematical properties of graphs, which are sets of
vertices pairwisely connected to each other by edges. In network theory, graphs are
referred to as Networks, vertices as nodes, and edges as links. I shall use these names
interchangeably and often refer to linked nodes as neighbours.

Although networks have been used in a wide range of disciplines since the 1930s (Moreno,
Whitin, and Jennings, 1932; Moreno and Jennings, 1938; Price, 1976; Granovetter,
1977) (especially within sociology), an explosion of papers on networks emerged
around the end of the last century. Often, two articles are attributed igniting this
interest: One by Duncan J. Watts and Steven H. Strogatz (Watts and Strogatz, 1998)
and the other by Albert-László Barabási and Réka Albert (Barabási and Albert, 1999).
Both works used network formulations to investigate the structural properties of
connected structures. Watts and Strogatz created networks with high “clustering”
(tendency for neighbours to link to the same nodes) and low average path length
between pairs of nodes. These properties were found to be present in networked
systems from biology and technology (Watts and Strogatz, 1998). High clustering
and low average path length had also been reported to characterise some social sys-
tems. In particular, these properties seemed to be present in the human global social
network, which famously has “6 degrees of separation” between strangers (Travers
and Milgram, 1977) even though friends tend to share friends.

Barabási and Albert studied which rules for link creation might lead to node con-
nectivities following power laws. Such power laws in the probability distribution of
node connectivities seemed to be present in many different natural and engineered
systems, and in particular in the world-wide-web (Barabási and Albert, 1999).

And the rest is history. Since the publication of these two seminal articles, a
plethora of papers on the structure and dynamics of networks have emerged. From
biology (Milo et al., 2002; Shen-Orr et al., 2002; Maslov and Sneppen, 2002; Alon,
2007; Jeong et al., 2000; Barabási and Oltvai, 2004; Bassett et al., 2011; Lynall et al.,
2010), to computer science (Liben-Nowell and Kleinberg, 2007; Leskovec, Kleinberg,
and Faloutsos, 2007; Kleinberg, 2000; Ugander et al., 2012; Grover and Leskovec,
2016; Leskovec and Faloutsos, 2006), finance (Battiston et al., 2012; Cont, Moussa,
and Santos, 2010; Acemoglu, Özdaglar, and Tahbaz-Salehi, 2015; Allen and Babus,
2009; Amini, Cont, and Minca, 2016), and computational social science (Goel et
al., 2015; Goel, Watts, and Goldstein, 2012; Stewart et al., 2019; Aral, Muchnik,
and Sundararajan, 2009; Vosoughi, Roy, and Aral, 2018; Aral and Walker, 2012;
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Leskovec, Adamic, and Huberman, 2007; Sekara, Stopczynski, and Lehmann, 2016);
from papers investigating structural properties such as groups of highly intercon-
nected nodes (“communities”) (Blondel et al., 2008; Rosvall and Bergstrom, 2008;
Ahn, Bagrow, and Lehmann, 2010; Girvan and Newman, 2002; Newman, 2006;
Newman and Girvan, 2004; Clauset, Newman, and Moore, 2004; Schaub et al.,
2017), to investigating the impact of failures or epidemics on networks (Rosvall et
al., 2014; Pastor-Satorras et al., 2015; Pastor-Satorras and Vespignani, 2001b; New-
man, 2002b; Callaway et al., 2000; Ash and Newth, 2007; Brummitt, D’Souza, and
Leicht, 2012; Buldyrev et al., 2010; Cohen et al., 2000; Lambiotte, Tabourier, and Del-
venne, 2013), networks have found applications in many fields and been useful in
answering many different kinds of questions.

4.1.1 Basic mathematical formulation of networks

Depending on the attributes of the nodes and links in the system in question, differ-
ent network representations can be utilized. In the classic representation, nodes and
links are static in time. In the very simplest case, all links are weighted equally –
either a link is there, or it is not. Together the nodes and links form a network, which
can be represented by matrices such as the adjacency matrix, A. For a network con-
sisting of the set of nodes V and links E , the entries of the adjacency matrix are given
by

Aij =

{
1 if (i, j) ∈ E ,
0 otherwise.

(4.1)

If all edges are bidirectional, that is, if A is symmetric, the network is undirected. In
this part of my dissertation, networks will always be undirected and of the form
described in Eq. (4.1).

The simplicity of network representations, such as the adjacency matrix in Eq. (4.1),
is convenient. In many cases, more detailed information about the links and nodes is
necessary to include. A simple extension is to allow links to carry different weights,
in which case the network is weighted. In a social network, the weight of a link could
indicate the average weekly number of social interactions between the pair of nodes
in question. If one is studying a network consisting of cities connected by modes of
transportation, information about which mode of transportation connects each city
would probably be useful. One way of including such information is to let the net-
work consist of different “layers”. Edges in the first layer could then represent bus
routes, edges in the second layer train connections, etc. Multilayer networks can be
used to include such information (Kivelä et al., 2014; De Domenico et al., 2013). In
some cases, when nodes interact could be important. In a network depicting sexual
contacts, for example, a node getting infected with a sexually transmitted disease
can only pass this disease on to future sexual partners. In this case, the sequence
of interactions matters and one might represent the system with Temporal networks
where edges are timestamped (Holme and Saramäki, 2012). One could also be in-
terested in including connections beyond pairwise interactions. Scientific collabora-
tions, for example, do not exclusively happen between pairs of researchers – often
several people coauthor papers together. Such higher-order network structures can
be represented using simplicial complexes or a hypergraph formalism, or other future
frameworks (Benson, Gleich, and Leskovec, 2016; Chodrow, 2019; Young et al., 2017;
Lambiotte, Rosvall, and Scholtes, 2019; Ghoshal et al., 2009). All of these more ad-
vanced representations are currently very active areas of research and have found
interesting applications (Saumell-Mendiola, Serrano, and Boguná, 2012; Pilosof et
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al., 2017; De Domenico et al., 2016; De Domenico et al., 2015a; De Domenico et al.,
2015b; Rocha, Liljeros, and Holme, 2011; Kovanen et al., 2011; Bazzi et al., 2016; Lam-
biotte, Tabourier, and Delvenne, 2013; Masuda and Lambiotte, 2016; Neuhäuser,
Mellor, and Lambiotte, 2019; Paranjape, Benson, and Leskovec, 2017; Yin et al., 2017;
Benson, Gleich, and Lim, 2017; Iacopini et al., 2019).

4.1.2 Models of networks

In the following three chapters, a recurring theme will be investigations into how
network structure affects the severeness of contagion spreading in populations. One
network feature which is particularly popular to study is the degree distribution. The
degree of a node in an undirected network is the number of links the nodes has.
Consequently, the degree distribution, P(k), expresses the probability that a node
chosen uniformly at random has degree k.

Empirical network structures can be quite complicated, involving degree cor-
relations, community structure, complicated degree distributions, etc. (Ugander et
al., 2011; Myers et al., 2014; Traud, Mucha, and Porter, 2012; Jesus, Schwartz, and
Lehmann, 2009; Meunier et al., 2009; Osat, Radicchi, and Papadopoulos, 2019; Boc-
caletti et al., 2006; Newman, 2001; Girvan and Newman, 2002; Eriksen et al., 2003;
Mislove et al., 2008). The structure of every empirical network is a result of the
rules under which the network was created. To understand which rules can lead to
which network structures, one can create synthetic networks. This is done by impos-
ing some regulations as to how nodes and links are created in a network. Networks
are then created by simulating these rules. Many methods exist for creating such
synthetic networks, each with its own merits (Barabási and Albert, 1999; Overgoor,
Benson, and Ugander, 2019; Callaway et al., 2001; Ozik, Hunt, and Ott, 2004; New-
man, Strogatz, and Watts, 2001; Young et al., 2017; Chodrow, 2019; Fosdick et al.,
2018; Caldarelli et al., 2002; Ergün and Rodgers, 2002; Juul and Joyner, 2018; Watts,
1999; Newman, 2009; Catanzaro, Boguná, and Pastor-Satorras, 2005; Watts and Stro-
gatz, 1998; Erdős and Rényi, 1960; Bollobás and Riordan, 2003; Ross, Strandkvist,
and Fontana, 2019b; Ross, Strandkvist, and Fontana, 2019a). Synthetic networks
can also be useful in investigating how network structure influences dynamical pro-
cesses in populations. For example, how network structure affects how widespread
a particular disease gets in a population. In the research articles I will introduce in
the following three chapters, I will make use of 3 kinds of synthetic networks. I will
introduce these classes of synthetic networks, and some of their properties below.

Erdős–Rényi networks

One of the simplest kinds of synthetic networks are Erdős–Rényi networks. N-node
Erdős–Rényi networks can be created in two different ways. In the first way of creat-
ing Erdős–Rényi networks, one defines: 1) the number of nodes the network has, N;
2) the number of links the network has, m. The Erdős–Rényi network is then created
by choosing m pairs of nodes uniformly at random. Only these pairs of nodes are
linked in the Erdős–Rényi network. This type of Erdős–Rényi network is usually
referred to as G(N, m). When choosing pairs of nodes, one needs to specify whether
nodes are allowed to link to themselves or not and whether the same pair of nodes
can be chosen twice. A common choice is to prohibit both of these things happening,
thereby making a network that is simple.

Another way of making an Erdős–Rényi network is to – instead of specifying the
number of links, m – choose a probability p with which each possible link exists.
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Erdős–Rényi Configuration–model Small–world

FIGURE 4.1: Illustration of the creation of three kinds of synthetic net-
works. The leftmost column illustrates the creation of Erdős–Rényi
networks. Any link exists with a probability p. The middle column
illustrates the creation of configuration-model networks. First, a de-
gree sequence is defined, and nodes with an equivalent number of
link stubs are created. Then, pairs of stubs are matched uniformly at
random. The rightmost column illustrates the creation of Newman-
Watts small-world networks. First, a lattice is created. Then, each
node gets linked to another node with probability p. For each link,

the target node is chosen uniformly at random.

To create this G(N, p) network, one then independently draws a number between
0 and 1 uniformly at random for each pair of nodes. The link exists if the random
number comes out smaller or equal to p. This rule is illustrated in the top-left panel
of Figure 4.1. The bottom-left panel illustrates what an Erdős–Rényi network might
look like.

Erdős–Rényi networks are also called “Poisson random graphs” or “Bernoulli
random graphs” (Newman, 2018). These names refer to their degree distributions,
which are binomial since each edge is created independently with equal probability.
In the limit of large N and small p, the degree distribution is Poissonian with mean
〈k〉 = (N − 1)p.

Erdős–Rényi networks are simple to make, and their structural properties are
known in great detail (Newman, 2018). Unfortunately, empirical networks rarely
have Poissonian degree distributions. This realization was what drove Barabási and
Albert to work on problems related to networks at the end of the previous mille-
nium (Barabási and Albert, 1999). The Erdős–Rényi networks remain popular null-
models nonetheless. In my work, I will consistently use the G(N, p) formulation to
create them.

Configuration-model networks

Another class of synthetic, random networks are configuration-model networks.
To create configuration-model networks with N nodes, one needs to define a de-
gree sequence {kn}N

n=1 for the network. The network is then drawn uniformly-at-
random from the space of networks with this given degree sequence (Bollobás, 1980;
Newman, 2018; Fosdick et al., 2018). Configuration-model networks are especially
popular as degree-preserving statistical null-models, and their structural properties
have been thoroughly investigated (Newman, Strogatz, and Watts, 2001; Molloy and
Reed, 1998; Molloy and Reed, 1995). Configuration models also exist for networks
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with more complicated attributes, including temporal networks and networks with
higher-order interactions (Holme and Saramäki, 2012; Holme, 2005; Karsai et al.,
2011; Young et al., 2017; Chodrow, 2019). It is important to state that configuration-
model networks are not just one thing. As argued in a recent paper by Fosdick et al.,
the way of drawing networks from the space of networks with the degree sequence
in question should depend on the application one has in mind (Fosdick et al., 2018).
This is particularly important if the networks are meant to constitute a statistical
null-model.

In my work, all configuration-model networks are created in the same way. The
configuration-model networks have not been systematically used as statistical null-
models, but rather a convenient way of creating random networks with a given de-
gree sequence. Therefore the subtleties of choosing the correct degree-preserving
synthetic network are not relevant to my work.

Given a degree sequence, {kn}N
n=1, I create a network as follows. I create N nodes,

and give node n kn “half-edges” or “stubs” for every n between 1 and N. Pairs of
stubs are then matched uniformly at random. If the sum of degrees is even, this pro-
cedure creates a network with the wanted degree sequence. In the created network,
nodes may link to themselves, and parallel edges may occur. The frequency of these
self-loops and parallel edges declines as N gets large. The creation of configuration-
model networks is illustrated in the middle column of Figure 4.1.

Small-world networks

The third kind of synthetic network I have used in my research is a kind of small-
world network. As previously mentioned, small-world networks were first intro-
duced by Watts and Strogatz in a seminal paper approximately 20 years ago. To
understand the fuzz about small-world networks, it might be helpful to recall the
legend of “6 degrees of separation”. In social networks, contacts tend to cluster:
Many of your friends are also friends of your friends, and most of your friends
probably live near you. In this light, the statement that you are only 6 or fewer
social interactions from any person on earth might seem surprising.

Nonetheless, experiments have found that only a few intermediate steps (typ-
ically 4-6) are required for a person B to receive a package from another person
A (Travers and Milgram, 1977; Milgram, 1967; Backstrom et al., 2012). This is true
even if A and B live far apart, and if the person A is selected randomly among citi-
zens of a particular city. This raises a question: How can the average shortest social
distance between people be this small if social connections cluster together?

Watts and Strogatz came up with a way of creating networks with high clustering
and low average shortest distance. To create a small-world network consisting of N
nodes, they first created a regular lattice. The lattice could, in principle, be repeated
geometrical arrangement of nodes and edges, like the squares on a chessboard or
the circular pattern depicted in the top-right panel of Figure 4.1. In a regular lattice,
every node has the same degree. Watts and Strogatz then rewired each link inde-
pendently with some probability p, moving one end of the link to a node chosen
uniformly at random. If p = 0, the lattice persisted. If p = 1, the network would
be much more random. Intermediate p preserved some lattice structure, but short-
cuts connected far-apart nodes. For such intermediate p, Watts and Strogatz found
that the resulting network had high clustering and low average shortest distance
between nodes.

The small-world properties of high clustering and low average shortest distances
have turned up in many places, including the human brain, the world wide web, and
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many others (Bassett and Bullmore, 2006; Adamic, 1999; Amaral et al., 2000). The
properties of small-world networks have been studied continuously since Watts and
Strogatz published their famous paper (Kleinberg, 2000; Latora and Marchiori, 2001;
Barahona and Pecora, 2002; Santos, Rodrigues, and Pacheco, 2005; Lü, Chen, and
Zhou, 2011; Xia, Fan, and Hill, 2010), and it remains a very influential piece of work.
I will be creating small-world networks in a slightly different way than what Watts
and Strogatz did originally. As is the case in the original model, I will start with a
regular lattice. For each node in the lattice, I will then insert a new link to another
node chosen randomly and uniformly with chance p. Newman and Watts (New-
man and Watts, 1999) introduced this way of making small-world networks, and the
method has the lovely property that the lattice structure remains unbroken in the fi-
nal network. This property was mathematically convenient for Newman and Watts,
and this convenience is why I will create small-world networks like this in Chapter
6.

4.2 Contagion in networks

Contagion is a concept that originated in epidemiology but is now used for any-
thing that can spread between peers in a network. Examples of contagion include
bank defaults (Cont, Moussa, and Santos, 2010; Haldane and May, 2011; Acemoglu,
Özdaglar, and Tahbaz-Salehi, 2015), misinformation (Vosoughi, Roy, and Aral, 2018;
Del Vicario et al., 2016), power failures (Brummitt, D’Souza, and Leicht, 2012; Buldyrev
et al., 2010; Carreras et al., 2002), rumours (Banerjee et al., 2019; Banerjee et al., 2014;
Jackson, Malladi, and McAdams, 2018; Shah and Zaman, 2011; Shah and Zaman,
2016; Shah and Zaman, 2012), innovations and other products (Mellor et al., 2015;
Krapivsky, Redner, and Volovik, 2011; Rogers, 2010; Rogers, 1976; Mahajan, 2010;
Hagerstrand, 1968; Hinz et al., 2011; Aral, Muchnik, and Sundararajan, 2013; Chin,
Eckles, and Ugander, 2018; Iyer and Adamic, 2018), social behavior (Aral and Nico-
laides, 2017; Crandall, 1988; Centola and Macy, 2007; Guilbeault, Becker, and Cen-
tola, 2018a; Centola, 2010), and communicable diseases (Pastor-Satorras et al., 2015;
Keeling and Rohani, 2011; Lloyd-Smith et al., 2009; Anderson and May, 1992; Hay-
don et al., 2003; Fennell and Gleeson, 2019; Sanz et al., 2014; Salehi et al., 2015).
Contagion is one of many dynamical processes that are studied on networks. One of
the main reasons for doing this is to understand the impact of network properties on
different aspects of contagion (Porter and Gleeson, 2016). The underlying network
can for example influence how infectious a disease needs to be in order to spread
widely (Boguná, Pastor-Satorras, and Vespignani, 2003; Eguiluz and Klemm, 2002;
Pastor-Satorras and Vespignani, 2002; Pastor-Satorras et al., 2015) and which vac-
cination strategies are effective (Holme, 2004; Rushmore et al., 2014; Salathé et al.,
2010; Miller and Hyman, 2007). In addition to network topology, nodes with spe-
cial properties can also have an impact on dynamical processes on networks (Mellor
et al., 2015; Klamser et al., 2017; Juul and Porter, 2019). One example of such nodes
with special properties are “luddites” – nodes that oppose the spread of innova-
tions (Mellor et al., 2015).

My primary interest has been studying how widespread contagions get under
different conditions. These conditions include different models for the spreading
process, different underlying network structures, and including different kinds of
nodes in the network. I have also been interested in how the number of nodes that
are infectious at the beginning of time (“the seed”) influences the impact of conta-
gion. The projects I introduce in the following 3 chapters deal with two overarching
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kinds of contagion: “Simple contagion” and ”complex contagion”. In the following
subsections, I introduce these two kinds of contagion.

4.2.1 Simple contagion

In simple contagion, a single contact between a susceptible and an infectious person
is enough for the disease to be transmitted (Porter and Gleeson, 2016). Examples of
simple contagion include spreading diseases.

The most prominent models of simple contagion are probably the so-called com-
partmental models (Pastor-Satorras et al., 2015). In such models, a person can be
in different compartmental “states”. Depending on the contagion dynamics, tran-
sitions between states can occur. Examples of such states could be “Susceptible”
and “Infectious”. A node in the susceptible state could then transition into the in-
fectious state with some rate nIλSI where nI is the number of infectious neighbours
the susceptible node has. These rules define the Susceptible-Infected model (SI model).
More complicated compartmental models also exist. For example, if nodes in the
infectious state have a chance of transitioning back into the susceptible state with
some rate of λIS, the resulting model is the Susceptible-Infected-Susceptible model (SIS
model). If instead, infectious nodes are allowed to transition into a new, “recovered”
state with a rate λIR, the model is the Susceptible-Infected-Recovered model (SIR model).

It is difficult to overstate the influence these compartmental models have had.
Since their introduction near the beginning of the last century (Kermack and McK-
endrick, 1927), countless variants of compartmental models have come to exist, with
applications to a wide range of problems (Pastor-Satorras et al., 2015; Mellor et al.,
2015; Eilersen and Sneppen, 2019; Jensen, Uekermann, and Sneppen, 2019; Jensen
et al., 2019; Shulgin, Stone, and Agur, 1998; Beretta and Takeuchi, 1995; Stopczynski,
Pentland, and Lehmann, 2015; Miller, 2009; Kiss, Miller, Simon, et al., 2017; Volken-
ing et al., 2018; Pastor-Satorras and Vespignani, 2001a; Watts et al., 2005; Dodds and
Watts, 2004; Dodds and Watts, 2005; Pérez-Reche et al., 2011). Often models of sim-
ple contagion are formulated in terms of coupled, ordinary differential equations. In
this case the underlying network is implicitly assumed to be “complete” – links exist
between all nodes.

4.2.2 Complex contagion

A different kind of contagion is complex contagion. Complex contagions spread as
a result of social reinforcement. In other words, instead of a single contact with an
infectious person being sufficient to pass the contagion, multiple exposures could
be necessary. Experimental evidence of complex contagion has been observed in
Twitter retweets and other social-media dynamics (Mønsted et al., 2017; Ugander
et al., 2012), innovation diffusion (Bandiera and Rasul, 2006; Oster and Thornton,
2012; Banerjee et al., 2013; Karsai et al., 2014) and social-media growth, and is a very
active research topic in the social sciences (Centola and Macy, 2007; Weng, Menczer,
and Ahn, 2013; Lehmann and Ahn, 2018; Ternovski and Yasseri, 2019).

The article “The strength of weak ties” (Granovetter, 1977) was arguably a histor-
ical milestone in the study of contagion in social systems. In this paper, Granovetter
explored the effect of social network structure on diffusion of influence. Follow-
ing this, Granovetter introduced a model of complex contagion, a so-called “thresh-
old model” (Granovetter, 1978). A similar model was later introduced by Duncan
Watts (Watts, 2002). This Watts Threshold Model (WTM) was mathematically well-
defined, and Watts computed several interesting quantities for the model. These
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FIGURE 4.2: Illustration of the Watts Threshold Model (WTM). For
each node, a threshold, φ, is drawn from some probability distribu-
tion. These thresholds are the grey numbers in the figure. Nodes
can be either active (red) or inactive (black). A nodes turns active
if Eq. (4.2) is satisfied. Here, nodes are updated synchronously, and
time is discrete. Time progresses from left to right. One node has a

negative threshold and acts as a seed.

included conditions under which the contagion would cascade through the under-
lying network. The papers of this and the following chapter investigate modified
versions of the WTM. For this reason, I introduce the WTM formally below.

The Watts Threshold Model

In the WTM, nodes can be in either of two states, 0 or 1. I shall refer to these states as
inactive and active, respectively. The dynamics are monotonic: An inactive node can
turn active, but the reverse is not possible. How prone a node is to becoming active
depends on its threshold, φ. Typically, these thresholds are drawn independently
from some probability distribution f (φ). A node turns active if the fraction of its
neighbours that are active is at least equal to its threshold. If n is the number of
active neighbours a node of degree k has, this condition can be expressed as

ΞWTM := n/k ≥ φ. (4.2)

I shall refer to the function ΞWTM = n/k as the “peer-pressure function” of the WTM.
After the creation of a network, and assignment of thresholds, simulations of the
WTM typically proceed in the following way. First, some fraction of the nodes is
chosen as seed – active at the beginning of the simulation. This choice of seed nodes
can either be done explicitly by drawing a number of nodes randomly. It can also be
done by letting thresholds take negative values; if a node has φ ≤ 0, Eq. (4.2) will
be satisfied even for n = 0, and so the node is a seed. With seeds chosen, the states
of nodes need to be updated as time progresses. The updating can, for example,
be done for all node states simultaneously before proceeding to the next time step
and repeating. This procedure is referred to as synchronous update in discrete time.
Other choices include updating nodes one at a time instead of synchronously or
updating only some randomly chosen nodes. When working with the WTM, I will
be updating node states synchronously, and in discrete time steps. The updating
continues until no more nodes can become active. Thus, the dynamics of the WTM
are completely deterministic once seed nodes have been chosen and thresholds been
drawn.

The WTM is a popular model for complex contagion. Many extensions of the
model have been studied. These include extensions where nodes become active with
some delay τ after they fulfill Eq.(4.2) (Oh and Porter, 2018), and ones where nodes
influence their neighbours more if they have many active neighbours (Melnik et al.,
2013). They also include ones in which the activation criterium of Eq. (4.2) is entirely
based on the number of active neighbours a node has, rather than what fraction of its



62 Chapter 4. Synergistic effects in threshold models on networks

neighbours are active (Centola and Macy, 2007; Centola, Eguíluz, and Macy, 2007).
A large number of studies have focused on calculating the fraction of nodes that are
active at the end of spreading (Gleeson, 2008; Gleeson and Cahalane, 2007; Gleeson,
2011; Melnik et al., 2011; Hackett, Melnik, and Gleeson, 2011; Melnik et al., 2013; Fen-
nell and Gleeson, 2019; Hurd and Gleeson, 2013). Such analytical results can provide
a deeper understanding of phenomena seen in numerical investigations of threshold
models on networks. In both of my research articles concerning threshold models
on networks, I develop analytical approximations for the fraction of k-degree nodes
that are active at discrete time step t. The first of these papers studies a modification
of the WTM including synergistic interaction. This model was inspired by models
of synergistic interactions in simple contagion. The following section introduces this
prior work on synergistic contagion.

4.3 Synergistic contagion in networks

In typical models of spreading processes, each infectious neighbour influences a sus-
ceptible node equally. For example, for compartmental models, the rate with which
susceptible nodes become infected is linear in the number of infectious neighbours
λSIn. Similarly, in the WTM, the lefthand side of Eq. (4.2) is linear in the number
of infectious neighbours too. When the increase in influence is instead nonlinear in
n, the joint effort of infectious nodes is synergistic. If the influence of n infectious
nodes is smaller than it would be under a linear model, the synergy is interfering.
Conversely, if the impact of n infectious nodes is larger, the synergy is constructive.

Pérez-Reche et al. (Pérez-Reche et al., 2011) were the first to introduce synergis-
tic effects in spreading processes. They based their model on the SIR model and
suggested two different ways in which synergy could be incorporated. The first,
they named r-synergy. r is short for recipient. In this case, the rate with which each
infectious neighbour infects a susceptible node is

max (0, α + β(nr(t)− 1)) . (4.3)

Here, nr(t) is the number of infectious neighbours the susceptible node has at time
t, α is a baseline rate, and β is a parameter describing the synergy. If a susceptible
node has only a single infectious neighbour, nr = 1, and no synergy is taking place
between infectious neighbours. If the susceptible node has several infectious neigh-
bours, the rate is increased or diminished depending on the sign of β. If β > 0, the
rate increases compared to the synergy-free case, and the synergy is constructive; if
β < 0, the synergy is interfering. For β = 0, the synergistic model reduces to the
regular SIR model.

The second kind of synergy Pérez-Reche suggested, they called d-synergy. The d
is short for “donor”. In this case, an infectious node successfully infects a susceptible
neighbour with rate

max (0, α + β(nd(t)− 1)) . (4.4)

Here, nd(t) is the number of infectious neighbours of the infectious node. As was
the case for r-synergy, β > 0 corresponds to constructive synergy, β < 0 corresponds
to interfering synergy, and for β = 0 the model reduces to the ordinary SIR model.
Figure 4.3 illustrates the two kinds of synergy.

Pérez-Reche et al. incorporated synergistic interaction because of experimen-
tal evidence that synergy could be present among colonizing bacterial and fungal
pathogens and in the growth of tumors (Pérez-Reche et al., 2011). They found that,
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FIGURE 4.3: Illustration of the model of the models of synergistic con-
tagion from (Pérez-Reche et al., 2011). The lefthand panel illustrates
r-synergy. In this case, the rate with which a susceptible node gets in-
fected by each of its infectious neighbours gets boosted by an amount
proportional to the number of infectious neighbours the susceptible
node has. The righthand panel illustrates d-synergy. In this case, the
rate with which an infectious node infects neighbouring susceptible
nodes gets boosted by an amount proportional to the number of infec-
tious neighbours the infectious node has. Figure from (Pérez-Reche

et al., 2011).

depending on the value of β, the spreading process would show “exploitative” or
“explorative” behavior. Exploitative behavior is characterised by the pathogen in-
vading many hosts, efficiently filling the space between infectious hosts. Explorative
behavior is characterised by the pathogen spreading widely but infecting only a few
hosts in the process.

Following the first model of synergistic spreading, several papers have exam-
ined details of synergy in spreading processes (Broder-Rodgers, Pérez-Reche, and
Taraskin, 2015; Taraskin and Pérez-Reche, 2019; Taraskin and Pérez-Reche, 2013;
Ogura, Mei, and Sugimoto, 2019). These studies have yielded further insights into
the details of various aspects of synergistic spreading. These insights range from
describing bifurcations to examining the impact of underlying spatial topology. All
studies build upon compartmental models as the original paper by Pérez-Reche et
al. did.

Synergy seems to be a phenomenon very related to social reinforcement, though.
From this perspective, it seems natural to study models of complex contagion that
include synergistic effects. With Mason A. Porter, I formulated synergistic versions
of the Watts Threshold Model and studied how synergy effects affected cascades
on different network topologies. In addition to being the first model of complex
contagion incorporating synergy, it is also the first model of deterministic synergistic
spreading. This makes the model particularly suited for analytical studies – most
existing models relied primarily on numerical results.

4.4 Our results: Bifurcations caused by synergy

In the paper “Synergistic effects in threshold models on networks”, published in
Chaos (Juul and Porter, 2018), Mason A. Porter and I define two synergistic peer-
pressure functions, Ξ(n, β). These function take two arguments: n, which is the



64 Chapter 4. Synergistic effects in threshold models on networks

number of active neighbours a nodes has, and β, a synergy parameter similar to the
one used by Pérez-Reche et al. The peer-pressure functions both satisfy

Ξ(n, β) =





= 0, if n = 0,
> n, if β > 0 and n ≥ 2,
= n, if β = 0 or n = 1,
= 0, if β < 0 and n ≥ 2.

(4.5)

This formally expresses that 1) No peer-pressure exists if no neighbours are active;
2) synergy is only present if more than 1 neighbour is infectious; 3) Synergy is con-
structive if β > 0, interfering if β < 0, and nonexistent if β = 0.

Although the two peer-pressure functions are different, we find that they give
rise to qualitatively similar behavior. In particular, we find that nodes of degree k
can only be activated if β is above some critical value. We also find that the fraction
of degree-k nodes that are active at equilibrium increases in discrete steps at certain
β values. We argue that these discrete jumps are caused by bifurcations taking place
at these β values.

If β is just above the critical β value that makes it possible for degree-k nodes to
get activated, the degree-k node can only get activated if all (that is k) of its neigh-
bours are active. Similarly, there is a larger value of β, above which degree-k nodes
can get activated either if k or k− 1 neighbours are active. As β gets larger and larger,
fewer active neighbours are needed to activate degree-k nodes. For this reason, the
final fraction of active degree-k nodes increases in sudden jumps at the bifurcation
points in β. We show how to find the bifurcation points analytically for any syner-
gistic peer-pressure function Ξ(n, β). We also argue that identical bifurcation points
will be present in all peer-pressure functions that are continuous and non-decreasing
in β.

We successfully write down an analytical approximation for the fraction of degree-
k nodes that are active at time step t. This approximation describes simulations well
when the model is realised on synthetic networks. It also works well when the model
is simulated on an empirical network of condensed-matter theory collaborations, but
breaks down when a Facebook subgraph is used as the underlying network. The ap-
proximation is built on the assumption that neighbours of a node are connected only
rarely. We show that the Facebook subgraph probably breaks this assumption to a
larger degree than any of the other networks used in the study.

4.5 Paper: Synergistic effects in threshold models on net-
works
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Network structure can have a significant impact on the propagation of diseases, memes, and

information on social networks. Different types of spreading processes (and other dynamical

processes) are affected by network architecture in different ways, and it is important to develop

tractable models of spreading processes on networks to explore such issues. In this paper, we

incorporate the idea of synergy into a two-state (“active” or “passive”) threshold model of social

influence on networks. Our model’s update rule is deterministic, and the influence of each meme-

carrying (i.e., active) neighbor can—depending on a parameter—either be enhanced or inhibited by

an amount that depends on the number of active neighbors of a node. Such a synergistic system

models social behavior in which the willingness to adopt either accelerates or saturates in a way

that depends on the number of neighbors who have adopted that behavior. We illustrate that our

model’s synergy parameter has a crucial effect on system dynamics, as it determines whether

degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on

both random-graph models and networks constructed from empirical data. Using a heterogeneous

mean-field approximation, which we derive under the assumption that a network is locally tree-

like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated

for many networks and for a broad family of synergistic models. Published by AIP Publishing.
https://doi.org/10.1063/1.5017962

Models of cascading processes on networks yield insights

into a large variety of processes, ranging from the spread

of information and memes in social networks to propa-

gating failures in infrastructure and bank networks.
1–9

In

the context of social networks, it is very popular to study

models of social influence based on overcoming individu-

als’ stubbornness thresholds with peer pressure or influ-

ence.
1–3,10–14

Most such models consider peer pressure

only from nearest neighbors, but it is also important to

explore the influence of nodes beyond nearest neighbors

(e.g., in the context of the “three degrees of influence”

that has been reported in some studies).15 If the combined

influence from several nodes is different than the sum of

the influences from individual nodes, synergy is taking

place, and such synergistic effects can exert a major influ-

ence on spreading processes on networks. For example,

in some systems, the amount of influence per person

applying peer pressure may depend on the number of

people who are applying peer pressure, and our goal in

this paper is to incorporate such ideas into a threshold

model of social influence in an analytically tractable way.

In our synergistic model, we examine social behavior in

which the willingness to adopt either accelerates or satu-

rates in a way that depends on the number of neighbors

who have adopted some behavior. We illustrate that a

synergy parameter can have a crucial effect on system

dynamics (e.g., by determining whether degree-k nodes

are possible or impossible to activate). We also develop

an analytical approximation (in the form of a heteroge-

neous mean-field theory) that is effective at forecasting

both the temporal development of cascades and the sizes

of cascades in many networks.

I. INTRODUCTION

Examining the spread of opinions, actions, memes,

information, and misinformation in a population has received

intense scrutiny in sociology, economics, computer science,

physics, and many other fields.1,2,4,6–8,10–24 Such phenom-

ena—including the spread of defaults of banks, norms in

populations, and products or new practices in populations—

are often modeled as contagion processes that spread from

node to node in a network,25–27 in analogy with the spread of

infectious diseases in a population.

In addition to modeling spreading processes themselves,

it is important to consider the effect of network structure on

contagions.1,4,5,28 For example, network architecture can

have a significant impact on phenomena such as the peak

size and temporal development of outbreaks.5,14,26,29–35

In the study of contagions, many studies suppose that

some small fraction of the nodes is infected initially, and

they examine when a meme or disease can spread widely in

a network.4,31 When many nodes have adopted the meme (or

become infected, in the context of a disease), it is said that a

cascade has occurred.11,23 A cascade can either be good or

bad: a game developer may dream about his/her app becom-

ing viral, but bank defaults due to systemic risk is a source

a)Electronic mail: jonas.juul@nbi.ku.dk
b)Electronic mail: mason@math.ucla.edu
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of fear and dread in the financial sector. Seemingly viral

spread of misinformation was also a prominent aspect of the

2016 U.S. presidential campaigns and election.

In applications ranging from finance25 to meme spreading

on Twitter,36 researchers are very interested in trying to iden-

tify what causes cascading behavior on networks.23 In one

prominent family of models, known as threshold models,
nodes survey their neighborhoods and adopt a meme (i.e.,

change their state) if sufficiently many of their neighboring

nodes have already adopted this meme.2,4,10,11,31 In most such

models (and in most compartmental models), nodes are influ-

enced only by their immediate neighbors, but in many situa-

tions (e.g., including social media such as Facebook and

LinkedIn), individuals are able to observe actions by individu-

als beyond those to whom they are connected directly by an

edge. [In fact, the sizes of the observable neighborhoods are

different in different media (e.g., Facebook versus LinkedIn),

and this can have profound effects on user experience, com-

pany algorithms, and more.37] In such situations, synergistic
effects can occur, as a node can be influenced by multiple

nodes at the same time, and the combined influence differs

from the sum of the individual influences. Synergistic effects

can either increase or decrease the chance that a node will

adopt a meme. The aim of our paper is to construct an analyti-

cally tractable threshold model that incorporates synergistic

effects into spreading processes on networks. We show that

synergy has important effects on system dynamics, and we

illustrate our model’s spreading dynamics on several different

networks.

Synergistic effects can contribute to the dynamics of

spreading processes in a diverse variety of contexts.

Examples include the spread of behavior,38 the transmission

of pathogens,39 and the spread of new opportunities for farm

activities among vineyards that form a wine route together.40

Other phenomena with synergistic effects include the classi-

cal psychological “sidewalk experiment” with people staring

up at the sky,41 increased value from the merging of compa-

nies (see, e.g., Ref. 42), and “learning” of delinquent and

criminal behavior.43

A few years ago, P�erez-Reche et al.44 introduced a simple

model of synergistic spreading by augmenting a compartmen-

tal model for a biological contagion, and they examined its

dynamics on a square lattice in two dimensions. Their model

was based on the standard susceptible–infectious–removed

(SIR) model,4,5 in which an infectious (I) node infects a sus-
ceptible (S) neighbor at a constant rate rSI¼ a. In this SIR

model, an infectious node is infectious for a time s before it

switches states to removed (R) (or “recovered”, if one is less

fatalistic), and then it can never become susceptible or infec-

tious again. P�erez-Reche et al. generalized this SIR model so

that rSI includes not only the parameter a but also a synergy

term rsyn ¼ bmi, where mi is the number of nodes that contrib-

ute to the synergy when updating node i. They used a linear

form of synergy: rSI ¼ maxfaþ rsyn; 0g ¼ maxfaþ bmi; 0g.
For b< 0, the synergy is interfering, as synergy decreases the

chance that node i becomes infectious; for b > 0, the synergy

is constructive, as synergy increases the chance that node i
becomes infectious. For b ¼ 0, the model in Ref. 44 reduces

to the standard SIR model; there is no synergy.

P�erez-Reche et al. defined two types of synergistic

dynamics: (1) r-synergy, in which miþ 1 is the total number

of infectious nearest neighbors that simultaneously attempt

to infect a focal susceptible node i; and (2) d-synergy, in

which mi is the number of infectious nodes that are adjacent

to the infectious nearest neighbor that is attempting to infect

the susceptible node i. In their simulations, only the node at

the center of the square grid is infectious at time t¼ 0; all

other nodes start in the susceptible state. An important fea-

ture that P�erez-Reche et al. illustrated is that the value of the

synergy parameter can affect whether an infectious host can

infect more than one node.

Several papers have built on Ref. 44 and produced addi-

tional insights on synergistic spreading dynamics on net-

works.45–48 To our knowledge, all previous studies

considered update rules for node states that include stochas-

ticity, and most of them examined spreading on lattices

rather than on more general network structures. To facilitate

analytical treatment of problems and to help isolate the

effects of novel features in a model, it is often convenient to

use deterministic update rules,4 so we will do this in our

exploration of synergistic effects. Specifically, we examine a

two-state deterministic model in the form of a linear thresh-

old model2,10,11 in which a node can be either active or inac-
tive. In the context of social contagions, “inactive” nodes are

susceptible, and “active” nodes are infected. Upon becoming

active, a node remains active forever. This facilitates analyti-

cal treatment, which we will use to shed light on synergistic

spreading processes on networks. We focus on what P�erez-

Reche et al.44 called “r-synergy” (which includes only

nearest-neighbor interactions), although our approach can be

generalized for models with next-nearest-neighbor interac-

tions (what P�erez-Reche et al. called “d-synergy”). It can

also be generalized to incorporate interactions in even larger

neighborhoods.

The rest of our paper is organized as follows. In Secs.

II–IV, respectively, we introduce our models for synergistic

spreading on networks, examine this model on two empirical

networks, and develop an analytical approximation to

describe the fraction of active nodes with degree k and

threshold / in a network as a function of time. We also dem-

onstrate that we expect certain values of a synergy parameter

in the models to lead to abrupt changes in the dynamics. In

Sec. V, we study synergistic spreading processes on several

families of random networks. In Secs. V A and V B, we sim-

ulate synergistic spreading on 3-regular and Erd}os–R�enyi

(ER) random networks and compare our analytical approxi-

mation to the simulated spreading processes. In Sec. V C, we

simulate synergistic spreading on networks that we construct

using a configuration model with degree distributions from

two empirical networks. We conclude in Sec. VI.

II. SYNERGISTIC THRESHOLD MODELS

Probably the most popular type of deterministic model

of meme spreading is threshold models of social influ-

ence.1,2,4,8,10–12,14 In the simplest type of threshold model,

which is a generalization of bootstrap percolation,49,50 one

chooses a threshold /i for each node independently from a
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probability distribution f(/) at time t¼ 0 (in traditional boot-

strap percolation, all nodes have the same threshold), and a

node becomes “active” (i.e., it adopts the meme) if the frac-

tion of its neighbors (or, in some variants, the number of its

neighbors) that are active is at least this threshold. In the so-

called Watts threshold model (WTM),11 one considers the

fraction of active neighbors. An inactive node i with degree

k, threshold /i, and number ni of active neighbors becomes

active when it is updated if and only if ni/ki�/i. Because of

the simplicity of basic threshold models, one can derive ana-

lytical approximations for cascade conditions in a variety of

settings and in various extensions of the model.12,31,34,51–53

We seek to develop a synergistic threshold model. We

focus on r-synergy and hence on nearest-neighbor interac-

tions. (It is also worth thinking about models with d-synergy,

but we leave this for future work.) We examine networks

that consist of unweighted, undirected N-node graphs. At

each point in time, a node can be in one of two states: inac-
tive (S0) or active (S1). Inactive nodes exert no influence on

their neighbors, and active nodes exert some amount of influ-

ence on their neighbors. The total amount of influence

exerted by all neighbors of a node i gives the peer pressure
experienced by node i. Each node i has a stubbornness

threshold /i drawn from a distribution f(/) at time t¼ 0. We

also activate a seed set of nodes at t¼ 0. In all of our simula-

tions, the seed consists of a single node chosen uniformly at

random. Whenever we consider updating node i (which we

do in discrete time with synchronous updating), it becomes

active if and only if the peer pressure on it is at least /i.

We now construct a response function F(ni, ki, /i, b)

that depends on the number ni of node i’s active neighbors,

its degree ki, its threshold /i, and a global synergy parameter

b that we will explain below. The response function, a non-

decreasing function of ni, encodes when a node switches

from the inactive state to the active one.32 One can use such

a response function to describe numerous models of binary-

state dynamics, such as bond and site percolation and the

WTM.31 We express the response function using a peer-

pressure function N(ni, b) by writing

Fðni; ki;/i; bÞ ¼ 0 ; if Nðni; bÞ < /iki ;
1 ; otherwise :

�
(1)

We want to incorporate synergistic effects into N(ni, b).

With inspiration from P�erez-Reche et al.,44 we require that

Nðni; bÞ
¼ 0 ; if ni ¼ 0 ;
> ni ; if b > 0 and ni � 2 ;
¼ ni ; if b ¼ 0 or ni ¼ 1 ;
< ni ; if b < 0 and ni � 2 :

8>><
>>:

(2)

The first line of (2) encodes the requirement that the peer

pressure experienced by a node is 0 if it does not have any

active neighbors. From the second line, we see that for a pos-

itive synergy parameter b > 0 with ni� 2 active neighbors,

the peer pressure experience by node i is larger than that in

the WTM. This, therefore, amounts to a “constructive syn-

ergy.” The third line encodes the fact that our synergistic

model reduces to the WTM either when the synergy

parameter b ¼ 0 or when the number of active neighbors is

ni¼ 1. (Similarly, the synergistic SIR model of P�erez-Reche

et al.44 reduces to the standard SIR model for b ¼ 0.) From

the last line, we see that for a negative synergy parameter

b< 0 and ni� 2 active neighbors, the peer pressure experi-

enced by node i is smaller than that in the WTM. This, there-

fore, amounts to “interfering synergy.”

We consider the following two peer-pressure functions

that satisfy these requirements:

Nmultiplicative ¼ ð1þ bÞni�1ni ; (3)

Npower ¼ n1þb
i : (4)

Naturally, these are not the only two functions that sat-

isfy the requirements in Eq. (2). Additionally, in Sec. V A,

we will argue that any synergistic peer-pressure function that

is non-decreasing and continuous in the synergy parameter b
exhibits the same qualitative behavior as these two functions,

in the sense of experiencing the same types of bifurcations.

If a node is vulnerable (i.e., it can be activated by a sin-

gle active neighbor), it remains vulnerable if one introduces

synergy using Eq. (3) or Eq. (4). Moreover, no non-

vulnerable node can become vulnerable as a result of the

synergy introduced using Eq. (3) or Eq. (4). We seek to

examine when synergy effects, as encapsulated by the

parameter b, change the number of active neighbors that can

activate a degree-k node. That is, we seek to examine when

synergy can assist or hinder the spread of a meme through a

network. Let us calculate when a specific change like this

occurs. Suppose that a node i with degree ki can be activated

when there are at least mi active neighbors for b ¼ 0. We

wish to determine the values of b for which li active neigh-

bors are sufficient to activate node i. For the power synergy

model (4), we calculate

ðliÞ1þb � /iki; (5)

) b � ln ð/ikiÞ
ln ðliÞ � 1 : (6)

For the multiplicative synergy model (3), we obtain

b � /iki

li

� �1=ðli�1Þ
: (7)

More generally, except for mi¼ 1 or li¼ 1 (by construction,

nodes cannot become vulnerable or stop being vulnerable

due to synergistic effects), we can solve for the value at

which any li 2N active neighbors can activate a node with

degree ki and threshold /i, given the synergy parameter b.

We thereby examine how synergy alters the difficulty of acti-

vating nodes.

When we initiate our simulations with only a single

node as a seed, there is a risk that this seed is surrounded—

or is part of a small number of vulnerable nodes that are sur-

rounded—by non-vulnerable nodes. Because such situations

arise from the choice of threshold distribution f(/) rather

than from synergistic effects, we discard such simulations

throughout this paper.
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III. SYNERGY IN TWO EMPIRICAL NETWORKS

We start by examining the synergistic threshold model

with power synergy (4) on the network of condensed-matter

physics paper coauthorships from Ref. 54. (This network is

available at https://snap.stanford.edu/data/.) In this network,

a node represents an author, and there is an undirected edge

between nodes i and j if the authors coauthored at least 1

paper. We suppose for simplicity that all nodes have a

threshold of /¼ 1/10.

We show the results of our simulations in Fig. 1. We use

power synergy (4), and we show results for interfering syn-

ergy (with b¼ –0.80) in panel (a) and constructive synergy

(with b¼ 0.15) in panel (b). Data points correspond to the

mean fraction of degree-k nodes that are active at each time

step. Among our simulations, we include only realizations in

which the meme activates at least 0.5% of the nodes in the

network. For each degree, a smaller or equal fraction of

nodes is activated for interfering synergy than for construc-

tive synergy. In panel (b), we show the k¼ 2 curve from

panel (a) for comparison. We see that it takes longer for the

meme to spread in the network for interfering synergy than

for constructive synergy.

We now examine our synergistic threshold model on

another empirical network, the NORTHWESTERN25 network

from the FACEBOOK100 data set.55 This data set consists of the

complete set of people and friendships of 100 different U.S.

universities from one day in autumn 2005. NORTHWESTERN25

is the data for Northwestern University. We show results of

our numerical simulations on the largest connected compo-

nent of this network in Fig. 2. We suppose that all nodes have

a threshold of /¼ 1/33, and we again examine power synergy

with interfering synergy (with b¼ –0.80) in panel (a) and

constructive synergy (with b ¼ 0.15) in panel (b). For

FIG. 1. Example behavior of the synergistic threshold model with power

synergy (4) using (a) interfering synergy (with b¼ –0.80) and (b) construc-

tive synergy (with b ¼ 0.15). In panel (b), we show part of the curve for

k¼ 2 from the case of interfering synergy for comparison. Because we

choose the seed active node uniformly at random, there is a chance that only

the seed is activated, and we do not take such runs into consideration. For

the interfering synergy plot, only the seed was activated in 94 of our 110

runs; for constructive synergy, this occurred in 31 of 110 runs. For the simu-

lations in this figure, we run the synergistic threshold model on the

condensed-matter physics coauthor network from Ref. 54, and the threshold

for each node is /¼ 1/10. For each degree, a smaller or equal fraction of

nodes becomes active for interfering synergy than for constructive synergy.

It also takes longer for the meme to spread in the network for interfering

synergy than it does for constructive synergy.

FIG. 2. Example behavior of the synergistic threshold model with power syn-

ergy (4) using (a) interfering synergy (with b¼ –0.80) and (b) constructive

synergy (with b ¼ 0.15). In panel (b), we show the curve for k¼ 13 for the

case of interfering synergy for comparison. Because we choose the seed active

node uniformly at random, there is a chance that only the seed is activated, and

we do not take such runs into consideration. For the interfering synergy plot,

only the seed was activated in 30 of 110 runs; for constructive synergy, this

occurred in 24 of 110 runs. For the simulations in this figure, we run the syner-

gistic threshold model on the NORTHWESTERN25 network from the

FACEBOOK100 data set,55 and the threshold for each node is /¼ 1/33. For each

degree, a smaller or equal fraction of nodes becomes active for interfering syn-

ergy than for constructive synergy. It also takes longer for the meme to spread

in the network for interfering synergy than it does for constructive synergy.
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comparison, we include the curve for degree k¼ 13 for con-

structive synergy among our plots for interfering synergy. We

again see that it takes longer for the meme to spread in the

network for interfering synergy than it does for constructive

synergy and that, for each degree, a smaller or equal fraction

of nodes is activated for interfering synergy than for construc-

tive synergy.

IV. ANALYTICAL APPROXIMATION OF THE NUMBER
OF ACTIVE NODES VERSUS TIME

We now develop an analytical approximation that

describes the fraction of active nodes in a network as a func-

tion of time, given a peer-pressure function, degree distribu-

tion, and threshold distribution. This approximation is a

heterogeneous mean-field approximation,56 and it assumes

that neighbors of a node are independent of each other. In our

derivation, we assume that networks are locally tree-like,4,57

which treats such pairs of neighbors as independent (because,

in the approximation, they are not adjacent to each other).

Recall that we employ synchronous updating in our sim-

ulations. Because our update rule is deterministic, synchro-

nous updating and asynchronous updating yield the same

final (i.e., steady state) fraction of active nodes.58 At time

t¼ 0, we activate one seed node of the N total nodes. For our

theoretical analysis, this entails that the expected initially

active fraction of nodes with degree k and threshold / is

w/
k ¼ 1=N for all choices of k and /.59 See Refs. 32 and 60

for a discussion of the effects on cascade size of using a sin-

gle active node (as opposed to a specified fraction of active

nodes) as a seed for the WTM, and see Ref. 61 for a recent

discussion of issues regarding synchronous versus asynchro-

nous updating (where asynchronous updating, such as

through a Gillespie algorithm, is meant to model continuous-

time dynamics) for dynamical processes on networks.

To calculate the fraction q/
k ðnþ 1Þ of active nodes with

degree k and threshold / at time nþ 1, we write the recur-

sive formula (as in, e.g., Refs. 32, 34, and 60)

q/
k ðnþ 1Þ ¼ w/

k þ ð1� w/
k Þ
Xk

j¼0

Bk
j ð �qk

/ðnÞÞFðj; k;/; bÞ ;

(8)

where �q/
k ðnÞ is the probability that a neighbor (chosen uni-

formly at random) of a uniformly-randomly chosen inactive

node with degree k and threshold / is active at time n, and

Bk
j ðpÞ ¼

k
j

� �
pjð1� pÞk�j : (9)

The first term in Eq. (8) is the fraction of nodes that are

active at time t¼ 0. The second term represents the nodes

that are activated at a later time. The factor 1� w/
k is present

because these nodes are not part of the seed, the sum encom-

passes the probabilities that a degree-k node can have

0, 1,…, k active neighbors at time n, and the response func-

tion F(j, k, /, b) encodes when an inactive node becomes

active when its state is updated. The sum of the two terms in

Eq. (8) gives the fraction of nodes with degree k and thresh-

old / that are active at time nþ 1. We write �q/
k ðnÞ as a func-

tion of q/0
k0 ðnÞ, the probability that, for a given inactive node,

a neighbor with degree k0 and threshold /0 is active at time

n. This probability is

�q/
k ðnÞ ¼

P
k0;/0 P ðk;/Þ; ðk0;/0Þ

� �
q/0

k0 ðnÞP
k0;/0 P ðk;/Þ; ðk0;/0Þ

� � ; (10)

where Pððk;/Þ; ðk0;/0ÞÞ is the probability that a node with

degree k and threshold / is adjacent to a node with degree k0

and threshold /0. For an inactive node, the probability that a

neighboring node with degree k and threshold / is active is

q/
k ðnþ 1Þ ¼ w/

k þ ð1� w/
k Þ
Xk�1

j¼0

Bk�1
j ð �qk

/ðnÞÞFðj; k;/; bÞ :

(11)

The only difference between Eq. (11) and Eq. (8) stems

from the fact that the degree-k neighbor that we consider in

(11) has a maximum of k – 1 active neighbors if it is adjacent

to at least one inactive node. In these equations, we have

assumed that each neighbor of node i is independent of the

others, because (as indicated above) we are assuming that

the network is locally tree-like.4,57 We also assume that all

nodes with degree k and threshold / have the same dynam-

ics, so our approach constitutes a heterogeneous mean-field

approximation.56

V. SYNERGY IN SYNTHETIC NETWORKS

To illustrate our theoretical results, we examine syner-

gistic spreading in several families of random graphs. For

each family of networks, we draw a new network from the

ensemble (which is a probability distribution on graphs) for

each simulation of a synergistic threshold model. For all net-

works except Erd}os–R�enyi (ER) networks, we specify a

degree distribution p(k). We use this to determine a degree

for each of 10 000 nodes, and we then connect these nodes to

each other using a configuration model (connecting ends of

edges to each other uniformly at random).62

A. Synergy in 3-regular configuration-model networks

We first examine 3-regular random networks, in which

every node has degree 3, which we construct by matching

stubs (i.e., ends of edges) uniformly at random. We study

how synergy affects meme spreading on these networks by

examining several values of the parameter b for both multi-

plicative and power synergy. In our numerical simulations,

we suppose that a fraction p0¼ 0.8 of the nodes have thresh-

old / ¼ 0.32< 1/3 and that a fraction 1 – p0¼ 0.2 of the

nodes have threshold / ¼ 1. Although our numerical simu-

lations illustrate a rather specific scenario, having only two

types of nodes facilitates a detailed investigation of the frac-

tion of active nodes of each type as a function of b and time.

Our particular choice of p0 ensures that there is a large frac-

tion of vulnerable nodes, but it is otherwise arbitrary. It is

also worthwhile to do numerical explorations for a wide
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variety of threshold distributions, but we leave those for

future work.

We choose a single node uniformly at random as a seed

and update nodes synchronously at each discrete time step. We

stop the simulations when we reach steady state (i.e., when no

more nodes can eventually activate). In Fig. 3, we consider

multiplicative synergy and plot the steady-state active fractions

of high-threshold and low-threshold nodes as a function of the

synergy parameter b. Each data point is a mean over 10 realiza-

tions of the spreading process. For each realization, we create a

new 3-regular configuration-model network.

When b surpasses the values 0 and 0.5, the final fraction

of active nodes with threshold / ¼ 1 increases dramatically.

We can see this from Eqs. (7) and (1). For b< 0, it is not

possible to satisfy /iki � ð1þ bÞni�1ni, because ni� ki. For

b 2 [0, 0.5), the relation /iki � ð1þ bÞni�1ni holds only for

ni¼ ki. In this case, nodes with / ¼ 1 can be activated, but

they are never able to help activate a neighbor (unless they

are part of the seed set of active nodes), as all of their neigh-

bors are necessarily already active once they have been acti-

vated. For b � 0.5, the relation /iki � ð1þ bÞni�1ni holds

for ni¼ ki and ni¼ ki – 1. In this case, nodes with / ¼ 1 can

be activated even when they still have an inactive neighbor.

Hence, nodes with / ¼ 1 can help spread the meme, result-

ing in more active nodes with both / ¼ 1 and / ¼ 0.32

than what occurs for b< 0.5. Rephrasing these observations,

bifurcations occur at special values of b (which are b ¼ 0

and b ¼ 0.5 in this example) for the multiplicative peer-

pressure function (3), and we calculate the bifurcation points

by solving N(ni, b)¼ ki/i for ni 2 {2,…, ki} (where we

exclude ni¼ 1 because it corresponds to a vulnerable node,

which by design, is vulnerable for any value of b). Such val-

ues of b exist for any non-decreasing peer-pressure function

N(ni, b) that is continuous in b. For different peer-pressure

functions, the value of b that makes it possible for a specific

number of active neighbors to activate a specific node can

differ, but there is some value of b for each function. Hence,

in this sense, all continuous, non-decreasing synergistic

peer-pressure functions behave in qualitatively the same

way. By contrast, the peer-pressure function N ¼ n
1þjbj
i is

not non-decreasing. This function is similar to Npower, but

with b! jbj. For this peer-pressure function, we do not

obtain the leftmost step that we observe in Fig. 3, so this

choice entails different qualitative behavior than what we

observe with Npower.

In Figs. 4(a) and 4(b), we show how the meme spreads

for b ¼ 0.4999 and b ¼ 0.5001, respectively. Each data

point is a mean over 100 realizations of the spreading pro-

cess. For each realization, we create a new 3-regular configu-

ration-model network.

For any response function, such as ones that use the

peer-pressure functions (3) or (4), one can compute when

ni� ki nodes can activate a node with threshold /i by solving

the equation N(ni, b)¼/iki. Therefore, different response

FIG. 3. Steady-state fraction of active nodes in 3-regular random networks

of 10 000 nodes for our synergistic threshold model with the multiplicative

synergistic peer-pressure function (3). A fraction p0¼ 0.8 of the nodes have

threshold /¼ 0.32< 1/3, and a fraction 1 – p0¼ 0.2 of the nodes have

threshold / ¼ 1. Each data point is a mean of 10 realizations of the syner-

gistic threshold model on 10 different 3-regular random networks, which we

create using a configuration model. For each value of b, we construct 10 net-

works. (In doing these simulations, we discarded two total realizations due

to the choice of seed node; the contagion did not spread enough in those

cases.).

FIG. 4. Active fraction of nodes as a function of time for our synergistic

threshold model with peer-pressure function (3) with constructive synergy in

3-regular random networks of 10 000 nodes. A fraction p0¼ 0.8 of the nodes

have threshold / ¼ 0:32 < 1=3, and a fraction 1 – p0¼ 0.2 have threshold

/ ¼ 1. In panel (a), the synergy parameter is b ¼ 0.4999; in panel (b), it is

b ¼ 0.5001. In each panel, each data point is a mean over 100 realizations

of the threshold model. We observe good agreement between the analytical

approximation (8) and our simulations. (In these simulations, we did not

need to discard any realizations due to the choice of seed node.) For each

realization, we create a 3-regular random network using a configuration

model. The sets of 100 networks are different in the two panels.
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functions can have sudden increases in the steady-state frac-

tion of active nodes at critical values of b for the same rea-

son: at these values of b, it becomes possible for some nodes

to be activated with fewer active neighbors than is the case

for smaller values of b. Although these critical values of b
can differ for different response functions, our two synergis-

tic response functions exhibit qualitatively similar behavior,

so we henceforth use only the response function that is speci-

fied by the power peer-pressure function (4).

B. Synergy in Erd}os–R�enyi networks

We now simulate the spread of memes with power syn-

ergy (i.e., using the peer-pressure function (4)) on ER net-

works. Specifically, we use GðN; pÞ networks, where N is the

number of nodes and p is the probability that there is an edge

between a pair of nodes. The expected mean degree of such

an ER network is z¼ p(N – 1)� pN. First, we consider ER

networks with expected mean degree z¼ 3, and we then con-

sider ER networks with expected mean degree z¼ 8. In both

cases, all nodes are assigned the same threshold /¼ 1/7. In

our simulations, we use N¼ 10 000. These networks do not

in general consist of a single component, and this is espe-

cially relevant for z¼ 3. However, components other than

the largest connected component (LCC) are so small that if

the seed node is part of one of these small components, the

total number of activated nodes is so small that such a simu-

lation is one that we discard. We also confirm with computa-

tions that the LCC is very large even for z¼ 3. For example,

in one set of 100 realizations of ER networks with N¼ 10

000 nodes and expected mean degree z¼ 3, the mean size of

the LCC is 9409.61 6 4.99 nodes, and the mean size of the

second-largest component is 4.07 6 0.95 nodes.

1. Expected Mean Degree z 5 3

We use our analytical approximation (8) to find the

expected steady-state active fraction of nodes as a function of

their degree and the synergy parameter b for the response

function with power peer-pressure function (4). We plot these

quantities in Fig. 5. In Fig. 6, we plot the time series of the

fraction of active nodes when the synergy parameter is

b¼ –0.93, for which our model predicts different steady-state

active fractions for nodes with degrees 1, 2, 3, and 8. We

observe very good agreement between our simulations and the

analytical approximation (8) for these four node degrees.

2. Expected Mean Degree z 5 8

We now examine ER networks with expected mean

degree z¼ 8. We simulate synergistic spreading with the

power peer-pressure function (4) with a parameter value of

b¼ –0.835. We choose this value of b so that the steady-

state fraction of active nodes is different for nodes with dif-

ferent degrees. In Fig. 7, we show the fraction of active

nodes as a function of time, and we observe good agree-

ment between our computations and our analytical approxi-

mation (8).

C. Synergy on networks with degree distributions
from empirical data

We now simulate the spread of synergistic memes on

two networks with degree distributions from empirical data.

In Sec. V C 1, we consider random networks created using a

configuration model with a degree distribution determined

by the degree sequence of the network of coauthorships in

condensed-matter physics papers54 that we examined in Sec.

III. This network has a mean degree of z� 8. In Sec. V C 2,

we simulate the spread of synergistic memes on

configuration-model networks with a degree distribution

from the degree sequence of the NORTHWESTERN25 network

FIG. 5. Steady-state active fraction of degree-k nodes as a function of the

synergy parameter b for a meme that spreads on ER networks with expected

mean degree z¼ 3, homogeneous threshold /¼ 1/7, and a response function

with the power peer-pressure function (4). Using Eq. (6), our analytical

approximation (8) gives abrupt jumps that agree well with our numerical

calculations (see Fig. 6).

FIG. 6. Active fraction of nodes of degrees 1, 2, 3, and 8 as a function of time

for synergistic spreading with the power peer-pressure function (4) in ER net-

works with interfing synergy b¼ –0.93, expected mean degree z¼ 3, and

homogeneous threshold / ¼ 1/7. Each data point is a mean over 31 realiza-

tions of the spreading process. Our analytical approximation (8) of the tempo-

ral activation of nodes of degrees 1, 2, 3, and 8 agrees very well with the

results of our simulations. We obtain good matches for all node degrees that

we examined in this way. We construct a new random ER network for each

realization. (In doing these simulations, we discarded nine realizations due to

the choice of seed node; the contagion did not spread enough in those cases.).
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from the FACEBOOK100 data set.55,63 This Facebook network

has a mean degree of z� 92. For each realization, we create

a new 10 000-node network using a configuration model and

degree sequences drawn from the associated degree

distribution.

1. Condensed-matter physics collaboration network

We draw the degree of each of the 10 000 nodes from

the degree distribution of the condensed-matter physics col-

laboration network,54 and we place edges using a configura-

tion model. In Fig. 8, we plot the fraction of active nodes of

degree k as a function of time. We average over nine simula-

tions (we discarded one simulation because there was insuffi-

cient spreading from the seed node) of the spreading of a

meme with the power synergy peer-pressure function (4) on

these networks. For each of these realizations, we create a

new random network using a configuration model.

As in Sec. III, we use the peer-pressure function (4) and

a homogeneous threshold /¼ 1/10 for our simulations. We

first consider interfering synergy with b¼ –0.85, which

makes it impossible to activate any node whose degree is 16

or larger. Our analytical approximation gives good agree-

ment with our numerical simulations. In Fig. 9, we examine

the effect of constructive synergy with the peer-pressure

function (4). In this case, we use b ¼ 0.20 and /¼ 1/7. For

all node degrees that we checked, the steady-state active

fractions from our analytical predictions and numerical sim-

ulations are indistinguishable. However, in our analytical

approximation, the active fraction increases earlier than what

we observe in our simulations.

2. A Facebook network

We simulate the spread of synergistic memes on

configuration-model networks that we construct using the

degree sequence of the NORTHWESTERN25 network from the

FACEBOOK100 data set.55 The network has a mean degree of

z� 92, a minimum degree of d¼ 1, and a maximum degree

of d¼ 2105. We assign all nodes a degree from a degree dis-

tribution based on the degree sequence of the

NORTHWESTERN25 network, and we again create edges using a

configuration model. We suppose that each node has a

FIG. 7. Fraction of active degree-k nodes as a function of time for our syner-

gistic threshold model with power peer-pressure function (4) and interfering

synergy b¼ –0.835 for ER networks with expected mean degree z¼ 8. Each

node has a threshold of /¼ 1/7. We average our numerical computations

over 31 realizations of the dynamics. We observe a good match between our

numerical computations and our analytical approximation, although there is

a slight discrepancy for nodes with k¼ 1. (In doing these simulations, we

discarded nine realizations due to the choice of seed node; the contagion did

not spread enough in those cases.).

FIG. 8. Fraction of active nodes with degrees 1, 2, 3, 8, 13, and 14 as a func-

tion of time for our synergistic threshold model with power peer-pressure

function (4) and interfering synergy b¼ –0.85 in configuration-model net-

works with a degree distribution determined from the degree sequence of the

condensed-matter theory collaboration network from Ref. 54. Each node has

a threshold of /¼ 1/10. We average the results over nine realizations of the

dynamics, and we create a new configuration-model network for each reali-

zation. We observe good agreement between our analytical approximation

and our numerical simulations. (In doing these simulations, we discarded

one realization due to the choice of seed node; the contagion did not spread

enough in that case.).

FIG. 9. Fraction of active nodes with degrees 1, 2, 3, 8, 13, and 14 as a func-

tion of time for our synergistic threshold model with power peer-pressure

function (4) and constructive synergy b ¼ 0.20 in configuration-model net-

works with a degree distribution determined from the degree sequence of the

condensed-matter theory collaboration network from Ref. 54. Each node has

a threshold of /¼ 1/7. We average the results over 10 realizations of the

dynamics, and we create a new configuration-model network for each reali-

zation. In our analytical approximation, the fraction of active nodes

increases slightly earlier than what we observe in our numerical simulations,

but the resulting steady-state fractions of active nodes are visually indistin-

guishable. (In these simulations, we did not need to discard any realizations

due to the choice of seed node.).
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threshold of /¼ 1/33. In Fig. 10, we plot the fraction of

active degree-k nodes as a function of time. As in our other

simulations, each realization is a different draw of one of

these configuration-model networks. We show results for

both interfering synergy (with power peer-pressure function

(4) and b¼ –0.05) and constructive synergy (with b¼ 0.15

and peer-pressure function (4)). For this family of networks,

our analytical approximation departs from our numerical

simulations for both the steady-state fractions of active nodes

and the times at which the active fractions of degree-k nodes

saturate. Additionally, our analytical approximation suggests

that interfering synergy slows down the spreading process

much more than is actually the case in our simulations.

Our analytical approximation assumes that we are con-

sidering dynamics on a locally tree-like network, although

such methodology can yield results that produce

“unreasonably” effective matches between theory and com-

putations (e.g., of the locations of phase transitions) even in

many situations in which the hypotheses used to derive the

theoretical approximations do not hold.57 Melnik et al.57 dis-

cussed various reasons why a tree-based theory may not pro-

vide a good description of the actual dynamics on a network

(for a given dynamical system, such as a particular type of

spreading process). For the FACEBOOK100 networks, they

found for several spreading processes (including the WTM)

that simulations with a homogeneous threshold distribution

yield different results than what one obtains from a tree-

based theory. (In our work, we usually use a homogenous

threshold.) In contrast, they found for a Gaussian distribution

of thresholds that WTM simulations with a seed consisting

of all nodes with /< 0 yields results that are well-described

by their tree-based approximation. In Ref. 57, all nodes with

/< 0 were active at the beginning of simulations, because

nodes with /< 0 are activated by any nonnegative fraction

of active neighbors.60 In our case, however, when using this

threshold distribution, we obtain different results in simula-

tions versus analytical approximations of cascades.

Two properties that may provide some indication of the

effectiveness of tree-based theories for studying dynamical

processes on a network are the mean geodesic (i.e., shortest)

path length between nodes and the mean local clustering

coefficient of the network. Although this is not something

that is required mathematically (as there are counterexam-

ples, such as a star graph), we expect that a “typical” tree-

like network—in the extreme case, consider an ensemble of

networks drawn uniformly at random from the set of all trees

with a given number of nodes—to have larger mean geodesic

path lengths than networks of the same size that are not tree-

like. One also expects a locally-tree-like network to have a

smaller mean local clustering coefficient than a network with

the same number of nodes that is not locally tree-like.

Averaging the mean geodesic path length between nodes in a

set of 10 randomizations (based on a configuration model, as

described above) of the NORTHWESTERN25 network yields

2.510 6 0.007, which is somewhat smaller than in the origi-

nal network and is much smaller than any other random net-

work in our study (see Table I). Averaging the local

clustering coefficient for the same 10 networks yields

0.02828 6 0.00109, which is reasonably small but is much

larger than for any other random network that we examine in

this paper. This suggests that the randomized

NORTHWESTERN25 networks are less tree-like than our other

random networks. Additionally, the mean local clustering

coefficient and the mean geodesic path length in the original

NORTHWESTERN25 and condensed-matter collaboration net-

works are larger than those of the randomized networks that

we construct from those networks. Unsurprisingly,

FIG. 10. Simulations of synergistic spreading on 10 000-node networks

with a degree distribution determined from the degree sequence of the

NORTHWESTERN25 network from the FACEBOOK100 data set.55 The nodes have

a homogeneous threshold of /¼ 1/33. (a) We examine interfering synergy

(with power synergy (4) and b¼ –0.05) and plot the fraction of active nodes

with degrees 1, 2, 3, and 4 as a function of time. All nodes with degree k� 5

exhibit similar behavior to those with the plotted degrees, and the final frac-

tions of activated nodes are between 0.79 and 0.88. The time until the cas-

cade occurs is very different in our analytical approximation (8) and

numerical simulations, and there are also discrepancies in the steady-state

fraction of active nodes between our analytics and numerics. We average

our results over 51 realizations. (In doing these simulations, we discarded

149 realizations due to the choice of seed node; the contagion did not spread

enough in those cases.) (b) We examine constructive synergy (with power

synergy (4) and b ¼ 0.15) and plot the fraction of active nodes with degrees

1, 2, 3, and 4 as a function of time. All nodes with degree k� 5 eventually

have fractions of active nodes that are larger than 0.92. For this case as well,

the time until the cascade occurs is very different in our analytical approxi-

mation (8) and our numerical simulations, and there are also discrepancies

in the steady-state fraction of active nodes between our analytics and

numerics. We average our results over 53 realizations. (In doing these simu-

lations, we discarded 147 realizations due to the choice of seed node; the

contagion did not spread enough in those cases.).
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randomization considerably decreases the value of the mean

local clustering coefficients, especially for the condensed-

matter collaboration network.

VI. CONCLUSIONS

It is important to study when diseases, information,

memes, or other things (e.g., misinformation or “alternative

facts”) spread to a large number of nodes in a network.4,15

For example, prior studies have suggested that some organ-

isms and tumors spread via synergistic effects64,65 and that

synergistic effects can also be important for the spread of

information on networks,35 the spread of behavior in online

social networks,38 the transmission of pathogens,39 and the

spread of opportunities among vineyards on wine routes.40

In the present paper, we developed a deterministic

threshold model with synergistic spreading, and we illus-

trated that constructive synergy speeds up the spreading pro-

cess and that interfering synergy slows down the spreading

process. Using both computations and a heterogeneous

mean-field approximation (which assumes that a network is

locally tree-like), we investigated the fraction of nodes,

resolved by degree and as a function of a synergy parameter,

that are activated for two empirical networks and several

families of random graphs. We illustrated that the synergy

functions (3) and (4) lead to critical values of a synergy

parameter b, and we showed that such values also arise for

any peer-pressure function that is continuous and non-

decreasing in b. We found for non-vulnerable nodes with a

specified degree k that there exist k – 1 critical synergy

parameter values that indicate when a node is activated by at

least m 2 {2, 3,…, k} active neighbors. In all cases, we

observed that constructive synergy speeds up the spreading

process and that interfering synergy slows down the spread-

ing process.

Investigating the influence of synergistic effects on

spreading processes on networks is a promising area of

study. It is an important feature to consider when studying

the spread of information (and misinformation) on social net-

works,35 the dynamics of certain biological organisms, and

social processes in which the propensity for state changes

either saturates or increases with the number of individuals

who are trying to influence others in a network. It has inter-

esting effects on spreading behavior in various types of net-

works, such as lattices35 and modular networks,47 and it can

affect whether or not it is possible for certain nodes to adopt

a certain meme or behavior.

In the future, it will be interesting to consider synergistic

spreading processes—with both deterministic and stochastic

update rules—on other types of networks, such as multilayer

networks,66–68 temporal networks,69 and adaptive

networks.70
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Chapter 5

How a minority group of
individuals can lead to an
anti-establishment majority

On Friday, June 24, 2016 Britons and the rest of the world woke up to some startling
news. The day before, the British people had voted to leave the European Union.
“Brexit” was to become a reality. Approximately 5 months later, the final result of
the 2016 presidential election was equally astonishing. Donald Trump beat Hillary
Clinton despite her being a clear favorite in many influential organizations analysing
and providing polls (FiveThirtyEight 2016 final forecast; RealClearPolitics 2016 final
forecast).

In both the British referendum and the American presidential elections, the vic-
tors were seen as being in opposition to an establishment. A British publisher of
news formulated this anti-establishment nature of the victors of the referendum as
follows (Watts, 2018),

“...at the 2016 referendum Leave was bolstered by its image as an anti-
establishment crusade, while Remain was hindered by the perception
that it was the campaign of the government and business elite.”

Joe Watts, Political Editor, The Independent (2018)

Bernie Sanders, one of the runner-ups for the Democratic nomination and a promi-
nent political opponent of Donald Trump, said in his post-election statement (Levin
et al., 2016),

“Donald Trump tapped into the anger of a declining middle class that is
sick and tired of establishment economics, establishment politics and the
establishment media.”

Bernie Sanders, US senator (2016)

If these statements are to be trusted, it would seem that people voted against an
establishment in both the UK referendum and the 2016 US presidential election.
Indeed, in both cases, anti-establishment opinions appear to have spread to large
fractions of the populations (Hobolt, 2016; Oliver and Rahn, 2016).

It seems paradoxical if every person voting for the victors should be inherently
anti-establishment. So did a smaller fraction of the population successfully spread
their anti-establishment opinions to a substantial fraction of the population? This
question immediately leads one to ask whether such spreading is likely to happen.
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Another relevant question seems to be whether such spreading would be likely
to happen happen on a large enough scale to allow for an anti-establishment out-
come of an election or referendum. With Mason A. Porter, I examined whether a
few anti-establishment nodes could change which of two spreading products would
get the most widespread in a population. The central idea of this work was incorpo-
rating anti-establishment nodes into the WTM.

5.1 Anti-establishment nodes in network dynamics

That some nodes actively oppose to align with a majority is not a new idea. Such
nodes have previously been incorporated into mathematical models of human be-
havior, and empirical studies have reported manifestations of anticonformity in var-
ious forms. Examples include motivations to share political rumours (Petersen, Os-
mundsen, and Arceneaux, 2018) and how expert statements and data are misinter-
preted to align with the beliefs group members (Guilbeault, Becker, and Centola,
2018b; Jamieson and Hardy, 2014).

In the literature, anti-establishment traits are often referred to by other names
such as anti-conformism or contrarianism. The models incorporating anti-establishment
behavior have very different scopes. Galam and collaborators have been particularly
interested in such models, using them to investigate phenomena such as “hung elec-
tions” (where no political party can form a majority of legislators) or describe how
outcomes of debates are influenced by stubbornness or inflexibility (Galam, 1986;
Galam, 2004; Galam and Jacobs, 2007; Galam, 2016; Galam and Cheon, 2019; Ja-
cobs and Galam, 2019). These works rarely study the effect of underlying network
structures.

Other studies have examined the impact of anticonformists in relation to fashion
cycles and advertising in duopoly markets. It has also been examined how such
nodes change the dynamics of well-known models (Nyczka, Sznajd-Weron, and
Cisło, 2012; Nyczka and Sznajd-Weron, 2013; Khalil and Toral, 2019; Sznajd-Weron
and Weron, 2003). In these studies, models are typically simulated on only a single
kind of network. A rare instance of a study incorporating nodes similar to anticon-
formists and systematically investigating the effect of network topology is (Mellor
et al., 2015). They incorporated “luddites” into a compartmental model of innova-
tion spreading. The luddites would choose to reject an innovation all together with
a probability proportional to the adoption rate of the innovation in the node’s neigh-
bourhood. Simulating their model on Erdős–Rényi networks, complete networks,
and one-dimensional lattices, they showed that luddites could cause fast-spreading
innovations to spread less far in the long run. Slow spreading made innovations
more likely to spread far.

5.1.1 Touboul’s model of hipsters

In a preprint first published in 2014, Jonathan Touboul investigated the effect of
anti-conformism in a spin-glass model (Touboul, 2014). In the model, agents can
be in either of two states. Most agents are conformists and prefer to align with the
majority. The remaining agents are anti-conformists that prefer to misalign with the
majority. Agent i observes the states of other agents with some delay τij, and assigns
that state a weight Jij. The parameters τij and Jij are assigned from some distributions
and independently drawn from these for each node.
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Touboul referred to the anti-establishment nodes as hipsters and showed that a
phase transition exists beyond which the hipsters end up looking the same. In other
words, although all hipsters prefer to misalign with other agents, all of these anti-
conformists end up synchronising with each other. In this way, they all successfully
misalign with the majority but still end up looking identical to many other nodes.
In a recent update to this preprint, the bifurcations of the model are investigated in
greater detail (Touboul, 2019).

5.2 Our results: How a minority group of individuals can
lead to an antiestablishment majority

In the paper, “Hipsters on networks: How a minority group of individuals can lead
to an antiestablishment majority” published in Physical Review E (Juul and Porter,
2019), Mason A. Porter and I study a variant of the WTM. In this model, we assume
that nodes are either conformists or hipsters. An adjustable fraction of the popula-
tion pHip is chosen uniformly at random to be hipsters. Two different products are
spreading in the population. A node adopts one of the products if the fraction of its
neighbours that have adopted any product is larger than or equal to its threshold φ.
As in the WTM, thresholds are drawn independently from a distribution f (φ).

If a node adopts a product, it must specify which of the two possible products
it would like to adopt. Conformists adopt whichever product is the most adopted
among their neighbours at the preceding time step t− 1. Hipsters instead adopt the
product, which is least adopted in the total population at some previous time step
t− τ. τ can serve as a time delay. If τ = 1, hipsters know the distribution of products
at the preceding time step, and there is no time delay. If τ ≥ 2, their knowledge is
outdated.

In the paper, we ask 3 questions: “1) How does a large fraction of a population
decide to choose something different from the established standard?; 2) How can a
small fraction of individuals spread their anti-establishment opinions to a majority
(or at least a very large minority) of the rest of a population?; 3) Can we capture
these ideas using a simple mathematical model of a spreading process on a net-
work?” (Juul and Porter, 2019). To answer these questions, we need to have a well-
defined “established standard”. We get this by only letting one of the two products,
product A, be adopted at the beginning of simulations. In this way, as long as only
conformists adopt products, only product A spreads in the network. The other prod-
uct, product B, is only introduced when the first hipster adopts a product. The model
proceeds in discrete time steps; every node is updated synchronously in each time
step.

Simulating our model on several classes of networks, we are interested in the
average outcome over many simulations. We find that a tiny fraction of hipsters can
make the two products equally widespread at equilibrium. In synthetic networks,
we find the smallest fraction of the population that needs to be hipsters for the two
products to be equally prevalent at equilibrium to be strikingly small. The fraction
is as low as 0.06 in one type of network, and below 0.10 in all cases. The needed frac-
tion of hipsters is higher when the model is simulated on an empirical network of
Facebook friendships. Depending on τ, we find that the final fraction of product-A
and product-B adopters depend non-monotonously on pHip. We analytically ap-
proximate these adoption fractions and obtain good agreement for low fractions of
hipsters. We also show that the findings are insensitive to seed size for some values
of the delay, τ, and more sensitive for other values of τ.
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We are mainly interested in the dynamics for low pHip and investigate these in
more depth analytically. Using a recursive argument, we argue that the reason why
few hipsters can impact the popularity of the two products so much is rooted in
adoption paths. If a hipster is located close to the seed of product A adopters, it
will effectively influence a large part of the population to adopt product B. This
is the case because the down-stream conformist neighbours of the hipster will adopt
the same product as the hipster did: product B. The conformist neighbours of this
product-B adopting conformist will then adopt product B too. In this way, a cascade
of product-B adoption is started by the rare event of a hipster being located close
to the seed. These extraordinary events drive the expected fraction of product-B
adopters up, even for small values of pHip. This makes a minority group of individ-
uals capable of leading to an anti-establishment majority. The recursive calculation
used in this calculation is in good agreement with simulations. The paper constitutes
the following section, which concludes the present chapter.

5.3 Paper: How a minority group of individuals can lead to
an anti-establishment majority
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The spread of opinions, memes, diseases, and “alternative facts” in a population depends both on the details of
the spreading process and on the structure of the social and communication networks on which they spread. One
feature that can change spreading dynamics substantially is heterogeneous behavior among different types of in-
dividuals in a social network. In this paper, we explore how antiestablishment nodes (e.g., hipsters) influence the
spreading dynamics of two competing products. We consider a model in which spreading follows a deterministic
rule for updating node states (which indicate which product has been adopted) in which an adjustable probability
pHip of the nodes in a network are hipsters, who choose to adopt the product that they believe is the less popular
of the two. The remaining nodes are conformists, who choose which product to adopt by considering which prod-
ucts their immediate neighbors have adopted. We simulate our model on both synthetic and real networks, and
we show that the hipsters have a major effect on the final fraction of people who adopt each product: even when
only one of the two products exists at the beginning of the simulations, a small fraction of hipsters in a network
can still cause the other product to eventually become the more popular one. To account for this behavior, we
construct an approximation for the steady-state adoption fractions of the products on k-regular trees in the limit
of few hipsters. Additionally, our simulations demonstrate that a time delay τ in the knowledge of the product
distribution in a population, as compared to immediate knowledge of product adoption among nearest neighbors,
can have a large effect on the final distribution of product adoptions. Using a local-tree approximation, we derive
an analytical estimate of the spreading of products and obtain good agreement if a sufficiently small fraction of
the population consists of hipsters. In all networks, we find that either of the two products can become the more
popular one at steady state, depending on the fraction of hipsters in the network and on the amount of delay in
the knowledge of the product distribution. Our simple model and analysis may help shed light on the road to
success for antiestablishment choices in elections, as such success—and qualitative differences in final outcomes
between competing products, political candidates, and so on—can arise rather generically in our model from a
small number of antiestablishment individuals and ordinary processes of social influence on normal individuals.

DOI: 10.1103/PhysRevE.99.022313

I. INTRODUCTION

The study of spreading phenomena on networks has re-
ceived considerable attention in many disciplines, including
sociology, economics, physics, biology, computer science,
mathematics, and others [1–18]. In analogy with the spread of
infectious diseases in populations of susceptible individuals,
the spread of social phenomena (such as opinions, actions,
memes, information, misinformation, and alternative facts) is
often viewed as a contagion process that spreads through a
network’s nodes, which are connected to each other via one or
more types of edges. The nodes can represent entities such
as people or institutions [19–21] (or other things); and the
edges can represent physical proximity, communication chan-

*jonas.juul@nbi.ku.dk
†mason@math.ucla.edu

nels, sociological interactions (e.g., different types of relation-
ships), or something else. An important goal of many studies
of the spread of social contagions is the identification of
criteria that determine when the phenomenon that is spreading
reaches a large fraction of a population or subpopulation [1,2].

Scholars have used various approaches for studying conta-
gions on networks. These include game theory [7], statistical
physics [10], agent-based models [22], and systems of cou-
pled differential equations or stochastic processes [2,23–27].
The temporal dynamics and peak size of an outbreak are
influenced both by the specific model of a contagion and by
the structure of the network on which it spreads [12,20,25,27–
34]. A key idea is to examine when a disease or idea—perhaps
one that initially is present in a small fraction of nodes—can
become widespread in a network. When a large fraction of
a population or subpopulation becomes infected (or adopts
an idea), one says that a cascade has occurred. Cascading
phenomena have been studied in a wide variety of systems,
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ranging from financial networks [21] to social media like
Twitter [35]. For example, a failing financial institution can
cause a cascade of failures of numerous other financial insti-
tutions, a tweet can result in a cascade of tweets that promotes
the opinion of the original tweeter (perhaps influenced by the
actions of “bot” or sockpuppet accounts [17]), and widely
spread alternative facts can influence the opinions of a large
population of voters [36]. Notwithstanding these dystopian
examples, cascading behavior can be beneficial, neutral, or
harmful.

Models of cascading behavior on networks can have either
stochastic or deterministic state-update rules, and the update
rules in most models only consider nodes that are adjacent to
a focal node. One example of models that traditionally have
deterministic update rules is threshold models for social con-
tagions. The simplest example is the Watts threshold model
(WTM) [5,6,9], a type of bootstrap percolation [37], in which
each node is assigned a threshold from some distribution.
When considering a node for updating, if the fraction of its
neighbors that are adopters is at least as large as its threshold,
it too becomes an adopter. There are numerous variants and
generalizations of the WTM, including ones with adoption
thresholds that are based on the number (rather than the
fraction) of neighbors who are adopters [12,38], ones with
multiple adoption stages [25], ones with “synergy” from other
nearby adopters [27], and ones with timers in addition to
adoption thresholds [39].

Efforts to develop mathematical models for the spread of
products or innovations date at least as far back as the 1960s.
Rogers [40] gave a qualitative description (as a sigmoidal
shape) of the number of adopters as a function of time.
Bass [41] developed a model for the adoption of innovations
that was inspired by models for biological contagions. Bass’s
model results in sigmoidal-shaped adoption curves, and it has
been generalized in various ways [42–45]. More recent studies
have considered models in which agents of different types can
have significant effects on the final distributions of products or
innovations in a population. For example, Gordon et al. [46]
showed that temporal cycles of adoption can occur if some
nodes are allowed to regret adopting an innovation while other
(“contrarian”) nodes resist adopting innovations. References
[47,48] found rich behavior (including chaotic dynamics) in
a social contagion model that incorporates an aversion to
complete conformity.

Contrarian agents, a key aspect of the present paper, have
been incorporated into various types of models of opinion
dynamics and hierarchy formation. In the 1980s, Galam [49]
illustrated a hierarchical mechanism that allows a minority
community to elect its preferred candidate instead of that of
the majority. Galam and collaborators have also examined
the effects of contrarian [50] and stubborn [51,52] agents
on opinion dynamics (though typically without any network
structure). Nyczka et al. [53] and Nyczka and Sznajd-Weron
[54] studied various opinion models (e.g., q-voter mod-
els) on a complete graph to highlight an important distinc-
tion between two types of nonconformity—anticonformity
and independence—that have distinct implications for social
dynamics. Khalil and Toral [55] incorporated contrarians
into a noisy voter model, and they illustrated that a few
contrarians can substantially alter the dynamics of the model.

Apriasz et al. [56] examined an opinion model that includes
“snobs,” who conform to nodes in their own community but
anticonform to nodes in others, to examine how the density of
connections between two communities can affect phenomena
such as fashion cycles. One can also consider contrarian
individuals in the context of economic markets, such as in
work by Sznajd-Weron and Weron [57], who studied an Ising
model on a rectangular lattice to model advertising in duopoly
markets. More recent work related to contrarian agents, in
addition to [46–48], includes that of Mellor et al. [58], who
examined a population in which nodes can either adopt a
product or become “luddites,” who oppose the spread of
innovation. They found that luddites greatly limit adoption
if the adoption rate is high but not if it is low. Gambaro
and Crokidakis [59] illustrated that contrarian agents can be
a source of disorder in opinion dynamics, and Ferrara and
collaborators have investigated how individual social-media
accounts controlled by bots can exert a considerable influence
on political elections and social cascades [17,60,61].

Anticonformity can manifest in a variety of ways in so-
ciety. For example, it has been reported that partisan bias
can result in some groups of individuals misinterpreting data
and explanations of experts (e.g., with respect to the issue of
climate change), in conflict with the intended message, such
that it fits with the personal beliefs of the group [62,63]. In a
recent example about information spreading, Petersen et al.
[64] provided psychological assessment of motivations to
share hostile political rumors (e.g., in the form of “fake news”)
among citizens of democratic societies, concluding that such
rumors are often shared by individuals because they believe it
can mobilize their audience against a disliked establishment
(rather than because they think that these rumors are true).

In the present paper, we examine the influence of antiestab-
lishment nodes, such as hipsters, on spreading processes in a
social network. Individuals who specifically prefer something
other than the established standard in society have manifested
in several ways over the last decade. They include members
of antiestablishment movements in Western Europe and the
United States of America, who have hugely impacted the
geopolitical landscape, to the curious style of hipsters in
cities throughout the world. In some cases, such as the 2016
“Brexit” vote [65] and the 2016 American presidential elec-
tion [66], antiestablishment opinions appear to have spread to
so many people that they exerted a major influence on political
outcomes. In this paper, we ask the following questions: (1)
How does a large fraction of a population decide to choose
something different from the established standard? (2) How
can a small fraction of individuals spread their antiestab-
lishment opinions to a majority (or at least to a very large
minority) of the rest of a population? (3) Can we capture
these ideas using a simple mathematical model of a spreading
process on a network?

A few years ago, a statistical-physics approach was used
to examine how anticonformists (i.e., hipsters) who make
decisions that differ from that of a majority, perhaps in an
attempt to stand out from the crowd, may all end up “looking
the same” [67] (wearing the same clothes, buying the same
products, having the same opinions, and so on). This study
observed that the dynamics of a population was influenced
greatly by delays in the knowledge of hipsters and by how
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Hipster
Network
nodes

Conformist
(active neighbors)

Products at time Products at time
(active nodes in network)

FIG. 1. Illustration of our model of a threshold-based social contagion with hipsters. A node is a hipster with probability pHip, and it is a
conformist with probability 1 − pHip. If at least a fraction φi of the neighbors of node i are active (as indicated by the red coloring) at discrete
time step t − 1, the node activates and adopts a product at time step t (for t � 1). We then need to consider which products have been adopted
by node i’s neighbors and the relative popularity of different products in the whole network. If node i is a conformist, it adopts the product
that is more popular among its active neighbors at time t − 1. However, if node i is a hipster, it adopts the product that is less popular among
the active nodes in the network at time step t − τ (where τ ∈ N). For both node types, a tie results in a node choosing one of the two products
(blue versus purple) with equal probability.

large a fraction of the population are hipsters. In the model in
[67], individuals interact with their environments and switch
between two states with a probability that depends on this en-
vironment and on whether an individual is a conformist (pre-
ferring to be aligned with its environment) or a hipster (prefer-
ring to be opposite to its environment). The model has a phase
transition that determines whether or not hipsters ultimately
attain the same state. Touboul [67] referred to the anticon-
formists with delayed knowledge as “hipsters.” Because the
model that we introduce in this study includes anticonformists
with delayed knowledge of the global product distribution,
we adopt this terminology. However, our approach, focus, and
type of model—which builds on threshold models for social
contagions—are rather different from those in [67].

We will explore how anticonformists (i.e., hipsters) affect
the spreading of competing products in a network by gener-
alizing the WTM to a network with two types of nodes—
hipsters and conformists—who respond differently to adop-
tions. Conformists prefer to adopt the product (or meme,
opinion, message, etc.) that is more popular among their active
neighbors at time t − 1. Hipsters, however, prefer to adopt
the product that is the less popular of the two products in the
whole network at some previous time t − τ . Their choice to
adopt a product uses the same adoption condition as that of
the conformists. This is a strong assumption, and we make
it partly for simplicity (as it allows us to build from the
WTM) and partly because it reflects a scenario in which
an anticonformist may more actively rebel on an issue that
is sufficiently established in its neighborhood in a network.
In our model, both conformists and hipsters first choose to
buy some product or form an opinion, and then they choose
which one to adopt. In their study of the effect of luddites,
Mellor et al. [58] assumed that the probability of a node
becoming a luddite is proportional to the rate of change in
the density of adopters of its neighbors. This resembles our
choice that a node’s neighborhood influences whether or not
it elects to adopt a product, but it differs from our choice
that each of our nodes is either inherently a conformist or
inherently a hipster. The delay τ in our model encodes the
fact that knowledge about the total population is not instantly
available; instead, it is collected over some time before it is

available. See Gleeson et al. [68] for a model (without network
structure) that illustrates another type of competition between
local information (in the form of a social-media feed) and
global information (in the form of a bestseller list).

The rest of our paper is organized as follows. In Sec. II,
we introduce our model for the spreading of two competing
products on networks under the influence of hipster nodes. In
Sec. III, we examine our model on a Facebook network. In
Sec. IV, we develop an analytical approximation to describe
the time-dependent fractions of nodes that adopt the products
(where each adopter chooses one of the two competing prod-
ucts) as a function of their degree k and an adoption threshold
φ. In Sec. V, we examine our model on several classes of
empirical networks and investigate the final fractions of nodes
that adopt the products as a function of the time delay τ

and the hipster probability pHip. In Sec. VI, we explain the
observed behavior in the limit of few hipsters, and we obtain
an approximation for the fraction of nodes that adopt the
products as a function of the number of hipsters. We conclude
and discuss our results in Sec. VII.

II. A THRESHOLD MODEL WITH HIPSTERS

Threshold models of social influence are a popular type of
spreading process to study on networks [1,2,6]. To set up a
simple example of a threshold model, consider a network with
N nodes, and suppose that each node i has an independently
assigned threshold φi that we draw from a distribution f (φ).
We also suppose that a node can be in one of two states:
active or inactive. An active node has adopted a product (or
meme, opinion, etc.) that is spreading in a population, and an
inactive node has not adopted the product. (We will use the
term “product” from now on.) Once a node becomes active, it
stays active forever. The threshold of a node determines how
difficult it is to activate that node, so one can construe a node’s
threshold value as its stubbornness level. Node i becomes
active if a peer pressure, which in the WTM is equal to the
fraction of active nodes among i’s neighbors, is greater than
or equal to its threshold φi .

We seek to develop a model for competing products that
spread in a population that includes hipsters. Therefore, in our
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model, each node i has a value Hi ∈ {0, 1}, such that Hi =
0 indicates that node i is a conformist and Hi = 1 indicates
that node i is a hipster. We update nodes synchronously. At
each discrete time t � 1, we assume that conformists know
the distribution of products among their immediate neighbors
at the previous time step t ′ = t − 1, whereas hipsters know
the distribution of products in the total population at an earlier
time step tτ = t − τ (where τ ∈ N). The first updating step
occurs at t = 1. If t − τ < 0, we let tτ = 0.

A node chooses to adopt a specific product in two steps.
First, the node must become active, which occurs if suffi-
ciently many of its neighbors are active. If the fraction of
neighbors that are active at time t − 1 is at least as large as
the node’s threshold, it becomes active at time t . If node i

becomes active, it immediately adopts one of two possible
products. If Hi = 0, node i is a conformist and thus adopts
the product that is more popular among its active neighbors
at time step t − 1. However, if Hi = 1, node i is a hipster
and thus adopts the product that is less popular in the total
population at time tτ = t − τ . For both values of Hi , a tie
results in the node choosing one of the two products with
equal probability. Each node can adopt only a single product,
and once it has adopted a product, it never switches to the
other product or becomes inactive. To keep track of the
product distribution, we associate a variable Si with each node
i. If Si = 0, node i is inactive; if Si = 1, node i has adopted
product A; and if Si = 2, node i has adopted product B. We
summarize our model and the decision process in Fig. 1 and its
caption. See [79] for a PYTHON script to simulate our model.

At t = 0, we activate a single node with product A, and we
introduce product B when the first hipster chooses to adopt
a product. In principle, it is possible to generalize our model
to consider arbitrarily many products spreading on a network,
but we consider only the case of two products for simplicity.

Although it may seem somewhat artificial that the con-
formists in our model use only local information to decide
which product to adopt, whereas the hipsters use only global
information, it is both convenient and illustrative (because
the WTM has been studied so meticulously) to generalize
the WTM model by adding one specific feature. This is also
appropriate for exploring the competition between local and
global forms of influence. We examine our hipster model
both on synthetic networks and on empirical social networks.
Our main goal is to examine whether (and when) a small
probability pHip of hipster nodes can lead to a majority of a
network’s nodes adopting a product that is less popular than
another product at the beginning of a spreading process. We
find that the fraction of nodes that adopt the less popular of
our two products depends in an interesting way on the delay
τ in the hipsters’ knowledge of the product distribution in the
total population.

III. SIMULATION OF OUR MODEL
ON A FACEBOOK NETWORK

We start by simulating our model on the NORTHWEST-
ERN25 network from the FACEBOOK100 data set [69]. This
network consists of the friendship relationships on Facebook
at Northwestern University on one day in autumn 2005. The
network has 10 537 nodes, a mean degree of 〈k〉 ≈ 92, and

FIG. 2. Example of the behavior of our hipster threshold model
on a Facebook network for delay values τ = {1, 4} for (a) a hipster
probability of pHip = 0.04 and (b) a hipster probability of pHip =
0.30. In each panel, we show the fraction of nodes in the network
that are adopters of each of the two products as a function of time.
In panel (a), the curves from the two different values of τ are almost
indistinguishable from each other. In panel (b), the adoption fractions
of the two products are clearly different when we use different delays
(τ = 1 and τ = 4). For τ = 1, the final fractions that are adopters
of products A and B are approximately equal. However, for τ = 4,
product B becomes more popular than product A. For both panels,
each data point is a mean over 200 simulations on the same network
(the NORTHWESTERN25 network of the FACEBOOK100 data set [69]),
where we choose seed nodes and hipster nodes uniformly at random
for each of the simulations.

a maximum degree of kmax = 2105. We assign a threshold
of φ = 1/33 to each node. In addition to this threshold, we
independently assign each node a value Hi ∈ {0, 1} with some
hipster probability pHip to be Hi = 1. Therefore, different
simulations of our model with a specified hipster probability
do not in general have the same number of hipster nodes. We
examine our model with two different time delays and two
different values for the probability of hipsters in the network.
We consider τ = {1, 4} and pHip = {0.04, 0.30}, and we con-
duct simulations for the four combinations of these parameter
choices.
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For each parameter pair, we choose a single node uniformly
at random and suppose that it has adopted product A at time
t = 0. This node acts as a seed for the spreading process on
the network. We introduce another product, labeled B, when
the first hipster node is activated. Thus, product B will never
be adopted by any node if the network has no hipsters, and
product A has a head start when product B is adopted for
the first time. We stop our simulations after the dynamics
reaches a steady state, in which no further adoptions occur.
At each time step, we track the fraction of the nodes that
are adopters of each of the two products. We conduct 200
simulations—each with a seed chosen uniformly at random,
with new hipster nodes for each simulation—and, at each time
step t, we average the fraction of nodes that are adopters of
each product over these 200 simulations. We show the results
of these simulations in Fig. 2.

In Fig. 2(a), we plot the fraction of nodes in the adopted
state for each of the products at time t for simulations in
which the hipster probability is 0.04. For these parameters,

the curves are indistinguishable for the two values of the
delay time τ . A much larger fraction of nodes adopts product
A than product B. In Fig. 2(b), we show the corresponding
curves for simulations in which the hipster probability is
0.30. The results for different delay times τ are now clearly
distinguishable. For τ = 1, the fraction of nodes that have
adopted the two products are approximately equal; for τ = 4,
however, the fraction of nodes that have adopted product B is
much larger than the fraction that have adopted product A.

IV. ANALYSIS

We approximate the temporal spreading of products on
a network using a pair approximation (as in [25,27,32,70])
that relies on the hypothesis that the network is locally tree-
like [71,72]. Let ρ

(φ,k)
λ (t ) denote the density of nodes with

threshold φ and degree k that are in the adopted state, for
a product λ ∈ {A,B}, at time step t . We write the recursion
relation

ρ
(φ,k)
λ (t + 1) = ρ

(φ,k)
λ (t ) + [

1 − ρ
(φ,k)
λ (t )
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where q̄
(φ,k)
β (t ) is the probability that a neighbor, chosen uniformly at random, of an inactive node with threshold φ and degree k is

active and has adopted product β ∈ {A,B}; the “response function” F (k, k′, φ) = 1 if k′/k � φ and F (k, k′, φ) = 0 otherwise;
�(x) is the step function (it equals 1 for x > 0, it equals 1/2 for x = 0, and it equals 0 otherwise); and

Bk
l (p) =

(
k

l

)
pl (1 − p)k−l (2)

is the binomial function for probability p. The product over β �= λ in Eq. (1) is in fact a product over a single value (so we did
not need to use the product symbol), but one must take a product over all values of β except for λ in a model with three or more
competing products. In this more general case, it is also necessary to take the sums over β over a larger set of products (and to
replace the step function in the product with a more complicated function).

We write q̄
(φ,k)
k (t ) as a function of q

(φ′,k′ )
i (t ), the probability that, for a given inactive node, a neighbor with degree k′ and

threshold φ′ is active at time step t . This probability is given by
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λ (t )∑
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, (3)

where P ((k, φ), (k′, φ′)) is the probability that a node with degree k and threshold φ is adjacent to a node with degree k′ and
threshold φ′. Given an active node, the probability that a particular neighbor with degree k and threshold φ is active is
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TABLE I. Summary statistics of the discarded realizations of our hipster threshold model on each network family (or individual network,
for NORTHWESTERN25). The second column gives the total number of discarded realizations. In it, we sum the instances from all parameter
values, because the values of τ and pHip do not influence the fraction of nodes that activate in a given realization. We show the mean fraction
of nodes that are active at steady state for discarded realizations and the standard deviation of this mean. For all networks, the mean fraction
of active nodes is much smaller than the threshold fraction of 0.10, below which we discard realizations. For each choice of parameter values
and network, we keep 200 realizations for our samples.

Network Number of discarded realizations Mean Standard deviation of the mean

5-regular configuration model 36 0.0001 0.0000
3-regular configuration model 1843 0.0002 0.0001
Erdős–Rényi [G(N,p)] 52214 0.0072 0.0010
NORTHWESTERN25 35171 0.0001 0.0001

The only difference between Eq. (4) and Eq. (1) stems from
the following: in Eq. (1), we consider any degree-k node;
however, in Eq. (4), we consider a degree-k neighbor of an
inactive node. The latter has a maximum of k − 1 active
neighbors, which is therefore the maximum value of the index
of the first sum in Eq. (4). In these equations, we have assumed
that each neighbor of node i is independent of the others, so
we are assuming that this process is occurring on a locally
treelike network [2,71]. However, the Facebook network that
we used in Sec. III has a large local clustering coefficient [69],
so it is not locally treelike.

V. HIPSTER THRESHOLD MODEL
ON SYNTHETIC NETWORKS

We now test our analytical approximations of Sec. IV
by simulating our model on various synthetic networks with
N = 10 000 nodes. We assign each node i a threshold φi

from some probability distribution f (φ), which we specify
in the following subsections. We also independently assign
each node i a value Hi ∈ {0, 1} to determine if it is a hipster.
As before, pHip denotes the probability of being assigned the
hipster value Hi = 1.

As with our simulations on the Facebook network in
Sec. III, we select a single node uniformly at random to have
adopted product A at time t = 0. This node is the seed of the
spreading process. There is a risk that the chosen seed node
is located in a neighborhood of very few vulnerable nodes. (A
node that can be activated by a single active neighbor is known
as a “vulnerable” node [9].) With such a seed, few nodes are
activated in that realization of the dynamical process, and we
do not observe a cascade of adoptions (in which many nodes
adopt a product).

To focus on situations in which many nodes adopt (either of
the products), we consider only realizations in which at least
some minimal fraction of nodes eventually adopt a product.
We take this minimal threshold to be 0.10. (Another way to
examine situations with a lot of spreading is through “cluster
seeding” [29], in which one considers initial conditions in
which some node and all of its neighbors start out as adopters.)
In Table I, we indicate the number of discarded realizations,
the mean fraction of adopting nodes in these simulations, and
the standard deviation of this number of adopters for several
types of networks. The threshold 0.10 is much larger than
the mean fraction of adopters in discarded realizations, and
it is much smaller than the fraction of adopting nodes in

realizations that we keep. Therefore, this choice of threshold
entails a clear separation between realizations with cascades
of adoption and those without such cascades. In many of our
networks, the number of discarded simulations (in which there
are few adoptions) is very large, consistent with the empirical
study of Goel et al. [73].

A. 5-regular configuration-model networks

We consider configuration-model networks [74] in which
every node has degree 5. As described in [74,75], we match
stubs (i.e., ends of edges) uniformly at random. We suppose
that each node has a threshold of φi = 0.19 with probabil-
ity p0 = 0.8 and a threshold of φi = 0.8 with probability
1 − p0 = 0.2. Therefore, on average, 80% of the nodes are
vulnerable, and 20% of the nodes can adopt only when 4
or more of their nearest neighbors are adopters. We select
these parameter values because this choice entails that some
nodes are vulnerable, whereas other nodes need to have two
or more active neighbors to adopt a product; and it ensures
that a cascade of product adoptions occurs in most of our
simulations.

We examine our hipster threshold model on the networks
for time delays τ ∈ {1, 2, 3, 4, 5, 6} and hipster probabilities
of pHip ∈ [0, 1] (in increments of 0.01). For each parameter
pair (τ, pHip), we simulate our model on 200 different net-
works. We independently draw the specific sets of networks
for different parameter values, so in general they are not the
same networks. For each realization, we stop the simulations
after the distribution of product adoptions reaches a steady
state, and we track the adoption fractions of the two competing
products. From these values, we calculate the mean fraction
of nodes that adopt each product over the 200 realizations and
the corresponding standard deviations of the means. We plot
these values in Fig. 3.

For all hipster delay times τ , the steady-state fraction
ρB,tot (t → ∞) of nodes that are adopters of product B in-
creases rapidly for small pHip. For τ = 1 [see Fig. 3(a)], the
hipsters have access to information without any delays, and
their behavior leads to a balancing of the adoptions of products
A and B. If a sufficiently large fraction of the nodes are
hipsters, the mean final fraction of nodes that are adopters of
one product is almost indistinguishable from the other. This
occurs for pHip � 0.09.

In all examined cases, ρB,tot (t → ∞) approximately
equals ρA,tot (t → ∞) (i.e., the steady-state fraction of nodes
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FIG. 3. Distribution of products at steady state for 10 000-node 5-regular configuration-model networks. The different panels give results
of simulations of our hipster threshold model with different delay times τ for the hipster nodes. For each value of τ , we consider hipster
probabilities pHip ∈ [0, 1] in increments of 0.01. For each (pHip, τ ) parameter pair, we simulate the hipster threshold model on 200 different
networks that we construct using a configuration model (in which we connect stubs uniformly at random). The nodes have a threshold of
φ = 0.19 with probability p0 = 0.8 and threshold of φ = 0.8 with probability 1 − p0 = 0.2. For each simulation, we activate a single node,
chosen uniformly at random, with product A at time t = 0. We stop each simulation when product adoptions are no longer occurring. We plot
the mean fraction of nodes that adopt products A and B in the 200 realizations and the corresponding standard deviations of the means. [For
each (τ, pHip) parameter pair, we independently construct 200 networks, and we also independently determine the initial condition for each
network.] For all values of τ , the fraction of nodes that are adopters of product B at steady state increases rapidly with pHip for small pHip,
reaching 0.5 at pHip ≈ 0.09. For τ = 1, which we show in panel (a), hipsters have information about the product distribution in the network
without any delay, and the steady-state fractions of nodes that adopt products A and B are almost indistinguishable for pHip � 0.09. For larger
values of τ , which we show in panels (b)–(f), the steady-state fraction of nodes that adopt each product varies for pHip � 0.09. The steady-state
fraction of nodes that adopt product B is larger than that for product A for an interval of pHip values whose left end is at about pHip ≈ 0.09.
For τ ∈ {2, 3} [see panels (b) and (c)], we also observe that more nodes adopt product B for large values of pHip. The height of the peak in
the fraction of product-B adopters above pHip ≈ 0.09 increases with τ , reaching a value above 0.80 for τ = 6 [see panel (f)]. We also plot
our analytically estimated product-adoption fractions from Eq. (1). Our analytical approximation matches the behavior well for small values
of pHip and large values of pHip. Between these extremes, however, our approximation has jumps in the steady-state adoption fractions of
products; these discontinuities do not arise in our numerical computations.
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that are adopters of product A) for pHip ≈ 0.09. For τ � 2
[see Figs. 3(b)–3(f)] and pHip � 0.09, there exists an interval
of pHip values in which ρB,tot (t → ∞) > ρA,tot (t → ∞). This
interval is larger for larger values of τ , and the peak of
ρB,tot (t → ∞) in this interval grows with τ , taking a value
above 0.8 for τ = 6 [see Fig. 3(f)]. In other words, the fraction
of hipsters must be larger than about 0.09 for product B to be
adopted by a larger fraction of the population than product A

at steady state.
For τ = 2 [see Fig. 3(b)], we observe another (and wider)

pHip interval (specifically, at about [0.35,0.69]) in which prod-
uct B beats product A. For pHip � 0.69, product A dominates.
Hence, for τ = 2, product B dominates in two pHip intervals,
and product A dominates in three pHip intervals. However,
τ = 3 [see Fig. 3(c)] results in two intervals of dominance for
each product. Product B is the more-popular product at steady
state in hipster-probability intervals starting at pHip ≈ 0.09
and pHip ≈ 0.69. Our simulations with τ � 4 result in a single
pHip interval in which product B is more popular than product
A at steady state. From the standard deviations, we see that
different realizations with the same parameter values can yield
rather different results.

Our analytical approximation and numerical computations
match well for small and large pHip. However, our approxima-
tion includes jumps in the fraction of adopters for each of the
products, and we do not observe such discontinuities in our
simulations. The mean fraction of nodes that adopt a product
in the discarded realizations is 0.0001, which is much less than
the threshold of 0.10.

B. 3-regular configuration-model networks

We now examine our hipster threshold model on 3-regular
configuration-model networks. Suppose that a probability
p0 = 0.8 of the nodes have a threshold of φ = 0.3 and that
the remaining probability 1 − p0 = 0.2 of the nodes have
a threshold of φ = 0.65. We perform simulations as in the
5-regular configuration-model networks (see Sec. V A) and
show our results in Fig. 4.

Our results on 3-regular configuration-model networks
differ from those on 5-regular configuration-model networks
in several ways. One interesting result is that the fractions
that adopt products A and B are very similar for τ = 2 [see
Fig. 4(b)] and pHip ∈ [0.06, 0.93]. Additionally, for all exam-
ined τ � 3 [see Figs. 4(c)–4(f)], the ρB,tot (t → ∞) curve on
3-regular networks has one more maximum as a function of
the hipster probability than the corresponding curve on the
5-regular configuration-model networks.

On 3-regular configuration-model networks with τ � 2,
we observe that ρB,tot (t → ∞) first becomes larger than
ρA,tot (t → ∞) at about pHip ≈ 0.06, which is lower than
the hipster probability that we observed for the analogous
result for 5-regular configuration-model networks. As we
show in Fig. 5, this transition sometimes changes with seed
size, depending on the value of the delay τ . For τ = 2, the
transition occurs at the same probability when we seed more
nodes with product A; however, for the larger delay value
τ = 6, the transition moves towards larger probabilities for
progressively larger sets of seed nodes who adopt product A.
When the seed size is 1, we observe in Fig. 4 that the height

of the first peak is lower when we simulate our model on
3-regular configuration-model networks than was the case for
5-regular configuration-model networks. For large pHip, the
more-popular product at steady state is the same for τ = {3, 4}
[see Figs. 4(c) and 4(d)] as it is for the same delay times on the
5-regular configuration-model networks, while it is opposite
to that on the 5-regular configuration-model networks for
τ = {5, 6} [see Figs. 4(e) and 4(f)]. For many parameter pairs,
the standard deviations of the outcomes are large, indicating
that realizations with identical parameters can yield very
different outcomes.

Our analytical approximation and numerical simulations
match well for pHip � 0.05. However, for values of pHip

that are larger than about 0.05, our analytical approximation
again has jumps that we do not observe in computations. Our
analytical approximation also does not match the fraction of
nodes that adopt each product for pHip = 1 as well as it did on
5-regular configuration-model networks. This may be because
3-regular configuration-model networks have a higher edge
density than 5-regular configuration-model networks, so the
former depart rather significantly from satisfying a local-tree
hypothesis (on which our analytical approximation relies).
The mean fraction of nodes that adopt a product in the
discarded realizations is 0.0002, which is much less than the
threshold of 0.10.

C. Erdős–Rényi networks

We now examine our hipster threshold model on Erdős–
Rényi (ER) networks. Specifically, we examine G(N,p)
graphs, in which one specifies the total number N of nodes,
and each pair of nodes is linked independently with probabil-
ity p. We choose the expected mean degree of the networks
to be z = 5 (so the probability of an edge between any two
nodes is p = z/N ) to match the mean degree of the 5-regular
configuration-model networks that we examined in Sec. V A.

We assign the same threshold φi = φ∗ = 0.2 to each node.
With this threshold, all nodes with degree k � 5 are vulnera-
ble. We again consider pHip ∈ [0, 1] (in increments of 0.01)
and τ ∈ {1, 2, 3, 4, 5, 6}. For each parameter pair (τ, pHip),
we simulate the dynamics on 200 different networks, stop
the simulations after reaching a steady state, track the final
fractions of nodes that are adopters of each of the products,
and calculate the corresponding mean and standard deviation
of the mean from these data. As in prior simulations, we use
a different set of 200 networks for each parameter value. We
plot our results in Fig. 6.

As with our simulations on 5-regular and 3-regular
configuration-model networks, the absence of time delay
(i.e., τ = 1) in the information possessed by hipsters re-
sults in ρB,tot (t → ∞) being almost indistinguishable from
ρA,tot (t → ∞) [see Fig. 6(a)]. For all examined values of
τ , we observe that ρB,tot (t → ∞) again increases rapidly
for small values of pHip. For pHip ≈ 0.07, we observe that
ρA,tot (t → ∞) and ρB,tot (t → ∞) have similar steady-state
fractions, although one can also observe rather interesting
dynamics. For large values of pHip, the same product becomes
the more-popular one at steady state as with the 3-regular
configuration-model networks for delay times τ = {4, 5, 6}
[see Figs. 6(d)–6(f)], but product A is the more-popular one
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FIG. 4. Distribution of products at steady state for 10 000-node 3-regular configuration-model networks. The different panels give results
of simulations of our hipster threshold model with different delay times τ for the hipster nodes. For each value of τ , we consider hipster
probabilities pHip ∈ [0, 1] in increments of 0.01. For each (pHip, τ ) parameter pair, we simulate the model on 200 different networks that we
construct using a configuration model (in which we connect stubs uniformly at random). The nodes have a threshold of φ = 0.3 with probability
p0 = 0.8 and threshold of φ = 0.65 with probability 1 − p0 = 0.2. For each simulation, we activate a single node, chosen uniformly at random,
with product A at time t = 0. We stop each simulation when product adoptions are no longer occurring. We plot the mean steady-state fraction
of nodes that adopt products A and B in the 200 realizations and the corresponding standard deviations of the means. [For each (τ, pHip)
parameter pair, we independently construct 200 networks, and we also independently determine the initial condition for each network.] For
all values of τ , the steady-state fraction of nodes that adopt product B increases rapidly with pHip for small pHip, reaching 0.5 at pHip ≈ 0.06.
For τ = 1, which we show in panel (a), hipsters have information about the product distribution in the network without any delay, and the
steady-state fractions of nodes that adopt products A and B are almost indistinguishable for pHip � 0.06. For τ = 2, which we show in (b),
the fractions of nodes that adopt the two products are similar (though one can see some interesting dynamics) until pHip ≈ 0.93, above which
product B is the more-popular product. For larger values of τ [see panels (c)–(f)], the fraction of nodes that adopt each product varies for
pHip � 0.05. The height of the peak, which occurs at pHip ≈ 0.08, of the node fraction that adopts product B increases with τ , reaching a value
of over 0.6 for τ = 6 [see panel (f)]. For all time delays τ � 2 [see panels (b)–(f)], the maximum steady-state fraction that adopts product B

does not take place at pHip values near 0.08; instead, it occurs for much larger values of pHip. We also plot our analytically estimated fractions
of product adoption from Eq. (1). Our approximation matches well with our computations for small values of pHip. For pHip � 0.06, however,
our approximation does not do well. Our analytical solution includes jumps in the steady-state adoption fractions of the products, but these do
not arise in our numerical simulations.
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FIG. 5. Distribution of products at steady state for 10 000-node
3-regular configuration-model networks with different seed sizes,
where all seed nodes adopt product A. We show the distribution
of products for delays of (a) τ = 2 and (b) τ = 6. With τ = 2, the
adoption fraction is indistinguishable for the different seed sizes. For
τ = 6, our results vary for different seed sizes, but the qualitative
behavior is consistent across all cases: the steady-state fraction of
nodes that adopt product B increases rapidly with pHip, and equal
fractions adopt products A and B at a value of pHip that increases
slowly with seed size. For seed sets with 10 to 25 nodes, equal
fractions of nodes adopt the two products at pHip ≈ 0.07. For a
seed set with 150 nodes, equal fractions adopt the two products at
pHip ≈ 0.13.

for τ = 3 [see Fig. 6(c)]. We generally observe large standard
deviations of the outcomes of realizations with given parame-
ter values. The mean fraction of nodes that adopt a product in
the discarded realizations is 0.0072. This is larger than what
we observed for 3-regular and 5-regular configuration-model
networks, but it is still much smaller than the threshold of
0.10.

Our analytical approximation and numerical simulations
once again match well for small values of pHip (specifically,
for pHip � 0.07). For larger values of pHip, our analytical ap-
proximation has jumps in the fraction that adopt each product;

we again do not observe this phenomenon in our simula-
tions. One possibility, which we suggested in our discussion
of 3-regular configuration-model networks in Sec. V B, is
whether our analytical approximation is running into prob-
lems because we are considering networks that are not locally
treelike (although similar approximations are known to be
effective for many networks that are not locally treelike [71]).
Additionally, note that the mean local clustering coefficient
for our ER networks with z = 5 is 0.00058 ± 0.00018, so
our networks have very few 3-cycles. If we ignore which
product is adopted and pretend that the two products are the
same, we recover the usual WTM model; the present paper
uses an analytical approximation that is known to work in
that situation [31]. Our own recent work has demonstrated
that this type of analytical approximation is also effective for
a WTM augmented with “synergistic” social influence from
nodes other than nearest neighbors [27], so the incorporation
of different types of nodes (rather than the lack of a locally
treelike network structure) appears to be the likely cause of
the breakdown of the approximation, especially given that
our approximation becomes worse as we increase the hipster
probability pHip.

D. The NORTHWESTERN25 Facebook network

In Sec. V B, we showed simulations of our hipster thresh-
old model model on the NORTHWESTERN25 network from the
FACEBOOK100 data set for two choices of the (pHip, τ ) pa-
rameter pair. We now examine our model on the NORTHWEST-
ERN25 network more systematically by considering more
initial conditions and a wider variety of parameter values.
Suppose that each node has a threshold of φ∗ = 1/33. In each
of our simulations, we use a single node, chosen uniformly at
random, as a seed at t = 0 and consider τ ∈ {1, 2, 3, 4, 5, 6}
and pHip ∈ [0, 1.0] (in increments of 0.01).

In Fig. 7, we show the mean fraction of nodes that are
adopters of products A and B at steady state. For each choice
of parameters, we choose a set of 200 initial conditions, and
we calculate means over these simulations. The most striking
difference between these plots compared to those for our
model on synthetic networks in previous sections is that now
it takes more hipsters to obtain equal steady-state fractions
of adopters of the two products. In the NORTHWESTERN25
network, the fractions that adopt the two products become
equal when roughly one fifth of the nodes are hipsters. We
also observe that the height of the first peak of ρB,tot (t → ∞)
increases with τ , as was also the case in the synthetic networks
that we examined, and the standard deviations are once again
large for most parameter pairs. The mean fraction of nodes
that adopt a product in the discarded realizations is 0.0001,
which again is much less than the threshold of 0.10.

VI. MAJOR IMPACT OF A FEW INDIVIDUALS:
APPROXIMATION ON k-REGULAR TREES

In Sec. V, we observed that even just a few hipster nodes
can cause product B to become the more-popular product
at steady state, but we have not yet explored how this phe-
nomenon can occur. In this section, we argue why even just
a few antiestablishment nodes can have a major impact on
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FIG. 6. Distribution of products at steady state for 10 000-node Erdős–Rényi networks with an expected mean degree of z = 5. The
different panels give results of simulations of our hipster threshold model with different delay times τ for the hipster nodes. For each value
of τ , we consider hipster probabilities pHip ∈ [0, 1] in increments of 0.01. For each (τ, pHip) parameter pair, we simulate the model on 200
different networks and initial conditions. Each node has a threshold of φ = 0.2. For each simulation, we activate a single node, chosen
uniformly at random, with product A at time t = 0. We stop each simulation when product adoptions are no longer occurring. We plot the
mean steady-state fraction of nodes that adopt products A and B in the 200 realizations and the corresponding standard deviations of the
means. [For each (τ, pHip) parameter pair, we independently construct 200 networks, and we also independently determine the initial condition
for each network.] For all values of τ , the fraction of nodes that adopt product B increases rapidly with pHip for small pHip, reaching 0.5
at pHip ≈ 0.07. For τ = 1, which we show in panel (a), hipsters have information about the product distribution in the network without any
delay, and the steady-state fractions of nodes that adopt products A and B are almost indistinguishable for pHip � 0.07. For larger values of
τ [see panels (b)–(f)], the steady-state fraction of nodes that adopt each product varies for pHip � 0.07. For all τ � 3 [see panels (c)–(f)] the
fraction of nodes that adopt product B is largest for a small interval of pHip around pHip ≈ 0.10. For τ � 4 [see panels (d)–(f)], we observe an
additional, large-pHip interval in which a majority of the nodes adopt product B. We also plot our analytically estimated fractions of product
adoption from Eq. (1). Our analytical curves and numerical simulations match well for small values of pHip. For larger hipster probabilities,
however, our analytical approximation is not accurate. For τ = 5 [see panel (e)], it predicts incorrectly that product A is the more-popular
product at steady state for large values of pHip. Our analytical results also include jumps in the steady-state adoption fractions of products that
are not present in our numerical simulations.
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FIG. 7. Distribution of products at steady state for the NORTHWESTERN25 network from the FACEBOOK100 data set. The different panels
give results of simulations of our hipster threshold model with different delay times τ for the hipster nodes. For each value of τ , we consider
hipster probabilities pHip ∈ [0, 1] in increments of 0.01. For each (τ, pHip) parameter pair, we simulate the hipster threshold model on the
NORTHWESTERN25 network with 200 choices for the seed node, chosen uniformly at random, which adopts product A at t = 0. We use a
different set of 200 nodes for different parameter values. Each node has a threshold of φ = 1/33. We plot the mean fractions of nodes that are
adopters of products A and B at steady state in the 200 realizations and the corresponding standard deviations of the means. For all values of
τ , the steady-state fraction of nodes that adopt product B increases rapidly with pHip for small pHip, reaching 0.5 at pHip ≈ 0.2 for τ � 3 [see
panels (c)–(f)] and for larger values of pHip for τ � 2 [see panels (a) and (b)]. For τ = 1, which we show in panel (a), hipsters have information
about the product distribution in the network without any delay, and the steady-state fractions of nodes that adopt products A and B are very
similar for pHip � 0.3. For larger values of τ [see panels (b)–(f)], the fraction of nodes that adopt each product varies nonmonotonically for
pHip � 0.2. For τ � 3 [see panels (c)–(f)], the fraction of nodes that adopt product B is largest for a small interval of pHip around pHip ≈ 0.3.
This is the single peak in the adoption of product B in the mean over these simulations. For τ = 2 [see panel (b)], product B is the more-popular
product for large values of pHip. For τ � 2 [see panels (b)–(f)], product B is the more-popular product for a pHip interval starting at pHip ≈ 0.20.
The length of this interval increases with τ , and both the hipster probability that produces the peak fraction in this interval and (especially) the
value of the peak fraction increase with τ . For τ = 6 [see panel (f)], the maximum fraction of nodes that adopt product B is about 0.90.
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FIG. 8. (a) A line graph in which the leftmost node is the only
seed. (It adopts product A.) If all nodes are vulnerable and exactly
one node is a hipster, all nodes to the hipster’s right eventually adopt
product B. (b) A 3-regular tree in which the central node is the only
seed. (It adopts product A.) If the tree has a single hipster, all nodes
that are descendants of the hipster eventually adopt product B.

steady-state adoptions in our model. From studying this mech-
anism, we expect that some similar qualitative phenomena
occur in many other models, including ones with stochastic
update rules.

To understand why even a few hipster nodes can dramat-
ically increase the number of product-B adopters at steady
state, we first consider a line of N nodes, which we number
from one end to the other with the labels 0, 1, 2, . . . , N − 1.
Each node is adjacent to its immediate neighbors, with 2
neighbors each, except for nodes 0 and N − 1 (which each
have degree 1). For the sake of the argument, we assume
that all nodes are vulnerable and that there is no delay in
information (so that τ = 1). We also suppose that node 0 is
the only seed, so it has adopted product A at time t = 0 [see
Fig. 8(a)]. If there are no hipsters in the line, all nodes in
this scenario eventually adopt product A. If, by contrast, a
single node i is a hipster, then all nodes j � i eventually adopt
product B. Therefore, if each node has the same independent
probability of being a hipster, the expected steady-state frac-
tion of product-B adopters approaches 1/2 as N → ∞. In
this case, the presence of a single hipster node increases the
expected steady-state fraction of nodes that adopt product B

from 0 nodes to half of the nodes. The main idea is that early
adopters can influence later adopters in a way that depends on
the adoption paths that are available [39]. Moreover, although
the expected steady-state fraction of product-B adopters is
1/2, a single simulation of the model is equally likely to result
in any number of product-B adopters, because each node is
equally likely to be the hipster. This may be a reason why
we observe large standard deviations in different realizations
of our model on the various types of networks. For more
complicated network topologies, although it is no longer true
in general that different steady-state fractions of product-
B adopters are equally probable, the steady-state adoption

fraction in a given simulation depends significantly on where
hipsters are located in a network.

With this simple example in mind, we now turn to a more
difficult example: a k-regular tree of vulnerable nodes in
which the central node (which we label as node 0) is the only
seed [see Fig. 8(b)]. As usual, the seed has adopted product
A. As in the above example on a line graph, if a certain node
is a hipster, it will force the nodes that follow it in an adoption
path to adopt product B, rather than product A. We can divide
the tree into hierarchical “levels.” The central node is 0, and
it is adjacent to k nodes in level 1. Each node in level 1 is
adjacent to k − 1 nodes in level 2, each node in level 2 is
adjacent to k − 1 nodes in level 3, and so on. Hence, level
l � 1 includes nl = k(k − 1)l−1 nodes, and all nodes except
those in the last level (which have degree 1) have degree k.
Such a k-regular tree with L levels has N = 1 + ∑L

l=1 k(k −
1)l−1 nodes. In the limit of infinitely many levels, a k-regular
tree is a Bethe lattice.

Suppose that there is a single hipster in the network. By
construction, we can view any hipster as the root in a rooted
tree. We can then make the following approximation. If all
nodes have an equal, independent probability of being a
hipster, the probability for there to be a hipster in level l is
equal to the fraction of nodes (nl/N ) that are in that level. If
a hipster is present in level l, all nodes in an adoption path
after that hipster (i.e., all of its descendants) eventually adopt
product B. Because level l has nl nodes, a single hipster in
level nl causes 1/nl of the nodes in later levels (l′ � l + 1) to
adopt product B. Therefore, one can approximate the expected
steady-state fraction of product-B adopters as

ρ̄B (nHip = 1) ≈
L∑

s=1

ns

N

1

ns

[
1

N

L∑
l=s

k(k − 1)l−1

]

= 1

N2

L∑
s=1

L∑
l=s

k(k − 1)l−1 . (5)

For a spreading process on a network, one can construct a
dissemination tree, which describes how a contagion spreads
through the network [39]. For a k-regular tree with only
vulnerable nodes, the dissemination tree is the same k-regular
tree, except that all edges are directed from the center towards
the periphery. The above analysis indicates that the fraction
of nodes that a single hipster can cause to adopt product
B is related to the properties of a dissemination tree. For
dissemination trees with a progressively larger number of
mean descendants per node, we expect a progressively larger
fraction of nodes in an associated network to adopt product B

when a single hipster is present in the network. Equation (5)
illustrates that, for a given network, increasing the number of
hierarchical levels in a dissemination tree tends to result in a
larger number of product-B adopters from a single hipster.

To obtain a naive estimate of the fraction of product-B
adopters as a function of nHip when nHip � N , we multiply
Eq. (5) by nHip/N , thereby assuming that adding a second
hipster to the network leads to as many product-B adopters as
the number that resulted from the original hipster [76]. How-
ever, the second hipster may be a descendant of the existing
hipster, such that it does not lead to any additional product-B
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adoptions. To account for this, we develop a recursive formula
that takes this possibility into account.

Imagine adding hipsters to a network one at a time (allow-
ing the possibility of choosing the same node multiple times
when attempting to add hipsters). We seek to approximate
the expected fraction of product-B adopters at steady state
in a network with nHip hipsters as a function of the expected
fraction of product-B adopters at steady state in a network
with nHip − 1 hipsters. Let Pdesc denote the probability that
the additional hipster is a descendant of another hipster in the
network. Adding a hipster has two possible outcomes: (1) the
hipster is a descendant of another hipster, such that it does not
yield additional product-B adopters; or (2) the hipster is not a
descendant of another hipster, so on average it yields another
ρ̄B (nHip = 1) fraction of product-B adopters at steady state.
We summarize this reasoning in the formula

ρ̄B (nHip) ≈ ρ̄B (nHip − 1)Pdesc

+ [
ρ̄B (nHip − 1) + ρ̄B (nHip = 1)

]
(1 − Pdesc) .

(6)

In a k-regular tree with sufficiently few hipsters, all descen-
dants of a hipster are product-B adopters at steady state, so
the probability that the nth hipster descends from one of the
previous n − 1 hipsters equals the expected fraction of nodes
that are product-B adopters at steady state in a network with
nHip = n − 1 hipsters. We thus insert Pdesc = ρ̄B (nHip − 1)
into Eq. (6) to obtain

ρ̄B (nHip) ≈ ρ̄B (nHip−1) + [
1−ρ̄B (nHip − 1)

]
ρ̄B (nHip = 1) .

(7)

In Fig. 9, we compare the analytical expression in Eq. (7) to
computations using 3-regular and 5-regular trees. Our analyt-
ical approximation is a good match for our simulations when
nHip/N is small. For larger nHip/N , Eq. (7) overestimates the
steady-state fraction of nodes that adopt product B. Hipsters
need not always adopt product B; with more hipsters, it
becomes increasingly likely that product B is not always the
less-popular product.

Our analysis has several interesting consequences. For ex-
ample, it yields some understanding of how the delay τ affects
the steady-state adoption fractions of each product. To illumi-
nate the impact of τ , it is helpful to consider the following sit-
uation. Suppose that, because of hipsters, product B becomes
more popular than product A at some point during a simula-
tion of our model. A delay of τ � 2 postpones this time, at
which hipsters start adopting product A rather than product
B, so we expect hipsters who adopt product A to have fewer
descendants than if τ = 1. This provides an argument for why
the height of the peak of the fraction of product-B adopters
as a function of pHip increases with the delay, and it sheds
some light on the effects of the delay. If there is no delay
(i.e., τ = 1) and there are many hipsters, then hipsters tend
to balance the popularities of the two products, leading to
roughly equal fractions of the two products at steady state (as
we saw in our simulations on all networks in Sec. V).

FIG. 9. Fraction of nodes in k-regular trees with L levels that are
adopters of product B at steady state. We show results for 3-regular
trees with 9 levels (and hence with N = 1534 nodes in total) and
for 5-regular trees with 5 levels (and hence with N = 1706 nodes
in total). We plot the recursive approximation from Eq. (7) and
show our simulation results, averaged over 100 realizations, for the
steady-state fraction of nodes that adopt product B as a function of
the fraction nHip/N (with nHip ∈ {0, 1, . . . , 150}) of hipsters in the
network. As expected, our approximation is good for nHip � N .

Our analysis also improves our understanding of how
various changes to our hipster model can affect steady-state
results. For example, suppose that we use a stochastic updat-
ing rule instead of a deterministic one. Although the above
analysis does not rely on the deterministic nature of our
updating rule, it does indicate that adoption order is important,
and anything that changes the adoption order (such as using a
stochastic update rule or updating node states asynchronously
instead of synchronously) may change the outcome of simu-
lations [77]. However, from our analysis, we do expect some
features of our results to be robust even with different update
rules and update orders. For example, for either stochastic
update rules or asynchronous updating, we expect an increase
in the number of steady-state product-B adopters with increas-
ing pHip for small values of pHip, followed by a decrease (or
stall) in the number of steady-state product-B adopters when
enough hipsters are present in a network (as some of them will
now adopt product A). However, the rate at which the steady-
state fraction of product-B adopters increases with pHip for
small pHip is likely to be influenced by stochastic update rules
and asynchronous updating. For instance, suppose that we use
the same rules for product selection but that we employ an
asynchronous updating process in which, during each time
step, we select a node uniformly at random to update; we
repeat this selection process some number of times during
the same time step; and we then advance time by one step.
We then continue with this process in our simulations until
no further spreading occurs. In this case, every node in a
network can potentially adopt a product even in the first time
step, and the process tends to spread at a different rate—it
can be either faster or slower—than in synchronous updating.
Because the hipsters are distributed uniformly at random

022313-14

94
Chapter 5. How a minority group of individuals can lead to an anti-establishment

majority



HIPSTERS ON NETWORKS: HOW A MINORITY GROUP OF … PHYSICAL REVIEW E 99, 022313 (2019)

and the rules governing product choice are the same as in
our original model, changing the number of adopters during
each time step can directly affect hipsters, as their product
choice is time-dependent. (Other nodes are affected indirectly,
as they can experience a different product distribution in
their neighborhoods.) Consequently, a faster initial spreading
would increase early product-B adoption for a delay τ � 2,
as all hipsters are guaranteed to choose product B for time
steps t � τ . To test this, we simulate the spreading of products
on 5-regular configuration-model networks with τ = 2 and a
single product-A adopter as a seed. We use the asynchronous
updating procedure that we just described above. Averaging
our results over 100 realizations [which we determine as in
Fig. 3(b)], we find that the steady-state product-B adoption
fraction increases faster as we increase pHip for small values
of pHip than what was the case for synchronous updating [see
Fig. 3(b)]. As we expected, we also find that the product-B
steady-state adoption fraction decreases as we increase pHip

for larger values of pHip. More generally, different update
mechanisms and update orders can yield different dissemina-
tion trees, which describe how a contagion spreads through a
network [39]. This can, in turn, impact steady-state product
popularities.

Another aspect that tends to alter a dissemination tree is
changes in the threshold distribution of nodes in a network.
For example, with a threshold distribution in which all nodes
are vulnerable, a spreading process can reach a steady state
very quickly, and there are then few hierarchical levels in
the associated dissemination tree. By contrast, a threshold
distribution for which a network starts with fewer vulnerable
nodes may take longer to reach a steady state, and one
thus expects more levels in an associated dissemination tree.
From our analysis, we see that this in turn can increase the
steady-state adoption fraction of product B for small values
of pHip. Performing simulations on 5-regular configuration
model networks with τ = 2 [as in Fig. 3(b)] and 150 seed
nodes with probabilities p0 = 1.00, p0 = 0.90, and p0 =
0.80 supports this intuition. When we examine small values
of pHip, the steady-state fraction of product-B adopters in-
creases slightly more slowly for larger values of p0 as we
increase pHip.

For some network families, we expect networks with dif-
ferent numbers of nodes to have different fractions of product-
B adopters at steady state. To illustrate this point, we again
consider line networks and k-regular trees. For a line network
with a single hipster and a seed node that adopts product A

at one end, the expected steady-state fraction of product-B
adopters is roughly 1/2 for a line with any number of nodes.
However, adding another level to a k-regular tree with a single
seed node that adopts product A affects the expected steady-
state fraction of product-B adopters. For example, a 3-regular
tree with 3 levels (and hence with 10 nodes in total) has
an expected steady-state fraction ρ̄B = 15/100 of product-B
adopters, whereas a 3-regular tree with 4 levels (and hence
with 22 nodes in total) has ρ̄B = 1/10. This difference occurs
because adding another level to the 3-regular tree increases
the fraction of nodes that are leaves. Therefore, the randomly
distributed hipsters have fewer descendants on average in
a dissemination tree, decreasing the expected fraction of

product-B adopters at steady state. In simulations on regular
configuration-model networks with 103 nodes (using several
values of τ for 3-regular networks and τ = 3 for 5-regular
ones) for small values of pHip, we observe the same fast
increase in steady-state product-B adopters as we increase
pHip that we observed previously for these networks with
104 nodes (see, e.g., Fig. 4). However, for large values of
pHip, the steady-state product-B adopter fraction can differ
substantially in simulations on networks with 103 nodes and
104 nodes. More generally, our analysis demonstrates that the
number of nodes in a network can affect steady-state product
distributions. Even taking seed-size scaling into consideration
(see [70]), dissemination trees can still change, potentially
affecting qualitative steady-state results.

Changing the way that nodes choose which product to
adopt can also drastically influence simulation outcomes. For
example, consider a modification of our model in which a
hipster that becomes active at time step t adopts the product
that is less popular among its neighbors at time t − τ . Further-
more, suppose that two competing products are spreading in
a k-regular tree in which the central node is the only seed. As
usual, the seed has adopted product A. When we constructed
our approximation (7) for the steady-state distribution of prod-
ucts in the limit of few hipsters, we assumed that every hipster
adopts product B. In the modified hipster model in our current
discussion, this approximation may be very bad. Hipsters
who descend from other hipsters may adopt product A. We
thus expect the product-B steady-state adoption fraction to
increase more slowly with pHip for small pHip if a hipster
adopts the product that is less popular among its neighbors,
rather than the less-popular product among all active nodes
in a network. Performing simulations of the modified hipster
model on 5-regular configuration-model networks with p0 =
0.80 vulnerable-node probability, τ = 1, and a single seed
node [as in Fig. 3(a)] for pHip � 0.14, we find that a smaller
(or equal, for pHip = 0) steady-state fraction of nodes adopts
product B than in our observations for our focal hipster model.

VII. CONCLUSIONS

It is important to study what makes information, opinions,
diseases, memes, products, misinformation, alternative facts,
and other things that originate in a small subpopulation spread
to a large fraction of nodes in a network. Such scenarios can
arise in the adoption of products and the spreading of memes,
and they can also occur in antiestablishment behavior, which
can significantly impact the geopolitical landscape.

We developed a threshold model to examine the impact
of anticonformists (so-called “hipsters”) on the spreading of
two competing products (one of which, labeled B, is not
adopted by any node at the beginning of our simulations).
We examined our hipster threshold model on various types
of networks, and we considered different probabilities of the
hipster nodes and different amounts of time delay in the global
information that the hipsters possess. In the absence of a time
delay, we found that hipsters tend to balance the adoption
of the two competing products. For all other delay values
and all examined types of networks, we observed that the
steady-state fraction of nodes that adopt product B (i.e., the
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product that would not be adopted in the absence of hipsters)
grows rapidly with the probability of hipsters. Surprisingly,
for all of our networks, we needed only a small probability
of hipsters to observe many situations in which product B is
comparably popular, or even more popular, than product A

at steady state. In our simulations on a variety of synthetic
networks, we found that it is often sufficient for fewer than
10% of the nodes to be hipsters for product B to become
at least as widespread as product A (the only product that
has any adopters at time t = 0). For the NORTHWESTERN25
Facebook network, roughly 20% of the nodes need be hipsters
for product B to be as widespread as product A at steady state.

Using a line network and k-regular trees, we illustrated
why the fraction of nodes that adopt product B increases
rapidly for small values of pHip. On these networks, we
obtained good agreement between simulations and an
approximation of the steady-state fraction of nodes that adopt
product B in the limit of few hipsters. From our analytical
approximation in the few-hipster regime, we observed that
the steady-state product-B adoption fraction increases with
the distance between the seed node and other nodes. This
gives some insight into why there is a much slower increase in
product-B adopters for the spreading process on the Facebook
network than in the examined synthetic networks, as the
former has a smaller mean geodesic (i.e., shortest) path length
than our synthetic networks. It also suggests that different
realizations with identical parameter values may result in
very different steady-state adoption fractions, given that we
use random processes to choose hipsters and seed nodes. One
consequence of such sensitivity to initial conditions is large
standard deviations in the mean steady-state adoption fraction
of each product, which is what we observed in most cases. The
same mechanistic insight suggests that a larger delay τ results
in more hipsters adopting product B early in a simulation,
and each of these early adopters influences the product choice
of later adopters. We believe that postponing the time at
which hipsters choose product A instead of product B is the
main reason that a progressively larger delay τ results in a
progressively larger peak of the expected product-B adoption
fraction as a function pHip. Finally, the mechanistic insight
from our approximation in the few-hipster limit also helps
illustrate that the properties—such as threshold distributions,
the number of nodes in a network, and update rules—of an
update rule or network that affect dissemination trees (which
describe how a contagion spreads through a network) can
affect observations at steady state, although some qualitative
observations should be robust under such variations.

Our hipster threshold model exhibits a variety of fascinat-
ing dynamics on different types of networks. For example,
when there is a delay in global information (i.e., τ � 2) and
the hipster probability pHip is large, we observed nontrivial
characteristics in the number of intervals of hipster probabili-
ties for which a given product is more popular at steady state.
The quality of the match between our pair approximation and
numerical simulations also depends both on network structure
and on the hipster probability. For example, our approxima-
tion was effective for small values of pHip, and it correctly
produced a fast increase in product-B adopters with increasing
values of small pHip; it did reasonably well for large values
of pHip for 5-regular configuration-model networks (except

for abrupt jumps that are not present in the simulations);
it achieved mixed results for 3-regular configuration-model
networks (although it yielded the correct result for the more-
popular product at steady state for pHip ≈ 1 in all but one
instance); and it was ineffective for Erdős–Rényi networks
(where it was incorrect about which product is more popular
at steady state for pHip ≈ 1 in roughly half of the cases).

When there is a delay (i.e., τ � 2) in the global adoption
information that is available to hipsters, we also found that
the steady-state fraction of nodes that adopt a product varies
nonmonotonically with the probability of hipsters. For some
delay values, this steady-state fraction peaks for multiple,
disparate values of the probability of hipsters; for other delay
values, however, there is only a single peak. This behavior
also depends on the network type on which spreading occurs.
If there is no delay in the global adoption information that is
available to hipsters (i.e., τ = 1), we found that the steady-
state fraction of nodes that adopt product B first increases
rapidly with pHip and then stabilizes, such that approximately
half of the nodes adopt each product.

In summary, in our hipster model, even when only one
of two products is adopted when spreading begins, small
probabilities of antiestablishment nodes can lead to a com-
petitor product being adopted by a majority in a population.
Our simple model and numerical experiments may help shed
light on the road to success for antiestablishment choices in
elections and competition between products, as such success
(and qualitative differences in final outcomes between com-
peting products, political candidates, and so on) can arise
rather generically from a small number of antiestablishment
individuals and ordinary processes of social influence on
normal individuals. In our model, the hipsters always choose
to adopt the product that is less popular at time step t − τ . If
all hipsters regard product A as the established choice at all
time steps—regardless of the actual distribution of adopted
products—the steady-state adoption fractions of product B

become even larger, and the antiestablishment choice (which
is product B, in our example) becomes even more successful
than what we observed in our simulations. This more extreme
situation may be relevant in elections in which the conception
of who is part of the establishment may not change during
weeks of campaigning and polls that forecast which candidate
will win and take office.

In future work, it would be interesting to study our hipster
model in more detail, including investigating whether the frac-
tion of hipsters is connected to any notion of criticality, and
to extend the model in various ways. Generalizations of our
model may be helpful for studying the impact of antiestablish-
ment hubs, such as alt-right broadcasting services or alt-right
Twitter accounts with many followers. Understanding what
makes a large population of voters vulnerable to the views
of a few antiestablishment nodes may help guard populations
from manipulation and fake information during elections and
other scenarios.
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Chapter 6

Scaling law for the impact of
mutant contagion

In the classic child game “Chinese whispers”, also known as “Telephone”, a word or
a phrase is slowly spreading among participants. The participants first form a line.
One person then chooses a phrase, which she whispers to the ear of the next person
in the line. This person then repeats the phrase to the next in line, who then shares
it with the next in line, etc. In this way, the phrase slowly makes its way through the
whole group of participants. The person who is told the phrase last loudly repeats
the phrase as he was told it. The phrase the last person proclaims is usually very
different from what was whispered by the first person in line. The message mutated
as it travelled.

The mutation of messages is not confined to the world of child games. As illus-
trated by Hans Christian Andersen in the fairytale “No doubt about it!” (Andersen,
2004; Andersen, 2004), rumours can mutate as they spread. In this fairytale, a little
feather comes out as a hen plucks herself with her beak. She jokingly tells her neigh-
bour on the roost that she removed the feather to improve her looks. The neighbour
tells the story to another hen, who then passes the tale on, etc. By the next morning,
the innocent joke about removing a feather to look good has turned into a tragedy.
The story now goes

“Five hens (...) have plucked out all their feathers to show which of them
had grown leanest for love of the cock, and then they all pecked at each
other till the blood ran down and they fell down dead (...)”

Hans Christian Andersen, excerpt from “No doubt about it!”

Perhaps the most critical kind of mutation in spreading processes happens in
communicable diseases. During the summer of 1918, a flu spread across the world,
like so many times before. From the Americas to the trenches of Western Europe,
people fell ill with the contagious disease. Evidence from Scandinavian cities (An-
dreasen, Viboud, and Simonsen, 2008) shows that the disease spread quickly because
the population was to a good approximation fully susceptible. A substantial num-
ber of people succumbed to the illness. By the end of the summer, it looked like the
disease had released its grip on urban populations in Scandinavia. Then it took off.

After a quiet period following the summer wave, a new wave of influenza hit
the world. Compared to the summer wave, the case-fatality rate in Copenhagen
increased about one order of magnitude. Although investigations suggest that the
first wave provided some immunity to the more lethal second wave, the epidemic
successfully spread widely in populated areas. After this lethal wave, another fol-
lowed during the winter of 1919. Although 24% of the influenza-related excess hos-
pitalizations in Copenhagen happened during the summer of 1918, less than 5% of
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FIGURE 6.1: The impact of influenzas in Copenhagen, 1911-1919. The
top figure shows the number of medically-attended influenza cases
plotted in numbers per 10, 000 citizens as a function of time. Three
peaks stand out – the summer, autumn, and winter waves of the
Spanish flu. Similar peaks are visible in the middle panel, plotting
the number of influenza hospitalisations per 10, 000 citizens. The bot-
tom panel plots the number of respiratory deaths. Peaks are only vis-
ible for the autumn and winter waves. A less deadly strain of flu was
spreading during the summer. Figures from (Andreasen, Viboud, and

Simonsen, 2008).

the corresponding deaths happened in this period. For every 20 influenza-related
deaths during these first 3 waves of the “Spanish” flu, about 19 happened during
the last two waves (Andreasen, Viboud, and Simonsen, 2008). Figure 6.1 illustrates
these astonishing statistics.

The more lethal version of the 1918 flu came to exist because the influenza mu-
tated as it travelled through the global human contact network. How widespread
a mutated form of a spreading disease will get is not obvious. For the Spanish flu,
the second and third waves would have been effectively contained had the summer
wave spread to every susceptible person. The chance of the mutation happening
after most of the world was immune probably depends on the details of the conta-
gion. The details could be the properties of the human contact network, the rate of
mutation, and the rate with which the flu spreads.

Likewise, Telephone is a great ice breaker because the underlying network topol-
ogy, a line, makes the message extremely vulnerable to distortions. If the game were
instead played by making the first person whisper the same phrase to every other
participant, message mutations would probably be less frequent. So how prevalent
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FIGURE 6.2: Two examples of studies focusing on the number of
adopters/infected cases. Lefthand panel plots the adoption of an in-
novation as a function of time. The adoptions follow s-shaped curves.
Righthand panel shows the number of daily new Zika infections in
countries in the Americas as a function of time. This amounts to plot-
ting the derivative of curves like the ones in the lefthand panel. Fig-
ures first published in (Rogers, 2010) (left) and (Zhang et al., 2017)

(right).

should we expect the next Spanish flu to get? Is it likely to become a worldwide pan-
demic with more than 50 million fatalities? Or will most such mutant contagions die
out quickly? If the disease does get widespread, how likely is it to infect 500 million
people instead of 50 million people? The paper of the present chapter quantifies the
impact of very contagious mutant contagion in different network structures. Com-
puting this impact is complicated by the need for knowing not only the number of
people that get infected, but also who infects whom. We need to quantify the diffu-
sion paths.

6.1 Epidemic trees and the structure of diffusion

When studying the spread of contagion, scholars typically focus on quantifying the
number of nodes that get infected. In many ways, this is a natural choice. The number
of people infected with a disease can give some idea about what impact the disease
will have on society — both economic and human. For companies, the number of
adopters of an innovation is proportional to the revenue the company will make.
What is more, it is much easier to collect data on who is infected or who bought a
product compared to, for example, who infected whom. Figure 6.2 shows two fig-
ures from the contagion literature. One figure is from a classic paper on innovation
diffusion; the other is from a recent article studying the spread of the Zika virus in
the Americas. Both figures quantify the number of people “infected” by the conta-
gion as a function of time. The leftmost panel plots the number of infected people
directly, while the rightmost panel quantifies the number of newly infected cases per
day as a function of time.

In some cases, knowing only the number of infected cases is not sufficient. Who
infected who is essential to know if causality plays a vital role in the system of in-
terest. When studying mutant contagion, causality is imperative: only people influ-
enced by the “Patient Zero” of the mutated strain will eventually carry the mutant
disease. We can think about the contagion making a kind of family tree as it spreads;
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a) Contagion spreading on contact network
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FIGURE 6.3: Epidemic trees and their relation to the impact of mutant
contagion. The top panel shows a network (black nodes and links) in
which contagion is spreading (red nodes and directed links). Time
progresses from left to right. The middle panel plots the Epidemic
tree of the contagion. In the top row, the seed is plotted. In the second
row, the children of the seed are plotted. In the third row, the children
of the children are plotted, etc. In the bottom panel, the contagion
mutates as node B gets infected. Node B and all of its descendants
will get this mutated variant of the contagion. Figure from (Juul and

Strogatz, 2019).

a distant ancestor of every infected node is the first person to catch the disease. That
person can be thought of as having a number of children: the people infected di-
rectly by this eldest. These children have offspring of their own, and these children
are descendants of the first person to catch the disease. Figure 6.3 illustrates such
a family tree and its importance in relation to mutant contagion. We will refer to
this family tree as the “epidemic tree”. This term is inspired from an epidemiological
study of causality in the UK foot-and-mouth outbreak in 2001 (Haydon et al., 2003).

Although most studies focus on the total number of nodes infected by a conta-
gion, Epidemic trees have been considered in some cases. However, this literature is
scattered, and the number of names used to refer to Epidemic trees illustrates this.
These names include adoption paths (Juul and Porter, 2019), dissemination trees (Oh
and Porter, 2018; Liben-Nowell and Kleinberg, 2008), spreading patterns (Liu et
al., 2015; Jang et al., 2018), patterns of information diffusion (Chierichetti, Liben-
Nowell, and Kleinberg, 2011), causal trees of disease transmission (Vázquez, 2004),
diffusion structure patterns (Zhang et al., 2016), the network structure of diffusion
processes (Goel, Watts, and Goldstein, 2012), structure of diffusion (Golub and Jack-
son, 2010), the structure of information cascades (Cheng et al., 2014), information
spreading trees (Wang et al., 2011), cascade scructure (Anderson et al., 2015) and the
structure of diffusion events (Goel et al., 2015). Most studies focusing on Epidemic
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trees do so out of academic interest and do not mention any applications.
Arguably one of the two the most influential papers on Epidemic trees is a re-

cent paper by Goel et al. called “The structural virality of online diffusion” (Goel
et al., 2015). This is also the one paper that most directly puts forward a possible
application of Epidemic trees. In this paper, the authors define a measure they call
“structural virality”, which they report can measure to what degree the diffusion
on a network can be described as “viral”. If the measure takes a large value, the
Epidemic tree is deep and broad, reminiscent of what one might find for a com-
municable disease spreading in a network. If the measure takes a small value, the
Epidemic tree is more similar to what one would see if a few “broadcasters” were
responsible for the spreading. The structural-virality measure is equal to the average
distance between pairs of nodes in the epidemic tree,

ν(T) =
1

|T|(|T| − 1) ∑
i,j∈T

d(i, j), (6.1)

where T denotes the Epidemic tree and d(i, j) is the shortest path (graph geodesic)
between nodes i and j in T. This is a normalized version of the “Wiener index” in
graph theory (Goel et al., 2015). Goel et al. analyze roughly a billion Epidemic trees
of retweet cascades on Twitter and find that the large cascades have considerably
diverse structural virality. So far, no study has suggested a coupling between mutant
contagion and Epidemic trees.

6.2 Mutations

Mutations are central to evolutionary biology. There are many aspects to study about
mutations. In this section, I will limit myself to mentioning works that are directly
relevant to the research article of Section 6.4. I will first mention a theoretical model
introduced by Udny Yule at the beginning of the previous century (Yule, 1925). Next,
I go through some fascinating experimental results on mutations in meme spreading
on Facebook. These empirical findings support the existence and relevance of the
scaling law we derived in our paper.

6.2.1 The Yule process

The Yule process is a simple model of a biological system. The process contains
two ingredients: replication and mutation. The Yule process starts with just a single
cell and describes its development into a diverse population of cells. Each cell has
the same probability of dividing next. When a division happens, there is a risk of
errors occurring. The likelihood of giving birth to a mutant copy is given by m.
Consequently, the probability of a division being error-free is 1−m.

The main reason to study the Yule process is to understand the diversity of bio-
logical systems. Depending on the chosen parameters, how many cell variants are
present at large times, and how widespread is each of these variants? In the article
I coauthor with Steven H. Strogatz, we are interested in situations where mutations
are rare. In this case, m/(1−m) � 1, and the probability of each mutant constitut-
ing a fraction c of the total population at very large times approaches

P(c) =
1

c(c− 1)
. (6.2)
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The Yule process has been used to model diversity in several biological systems
including bacteria (Mandelbrot, 1974), structures of phylogenetic trees (Steel and
McKenzie, 2001; Scott et al., 2019), and protein structures (Koonin, Wolf, and Karev,
2002; Qian, Luscombe, and Gerstein, 2001).

6.2.2 Empirical study of meme spreading on Facebook

Before proceeding to describe the results of our paper, it is worthwhile to understand
some recent fascinating results concerning meme spreading on Facebook. In the pa-
per “Information Evolution in Social Networks”, Adamic et al. presented a thorough
study of how memes spread and mutate on Facebook (Adamic et al., 2016). They
studied thousands of memes on Facebook. To share a meme, a person would have
to copy and paste the text before sharing it. Sometimes, the person would choose to
edit the text before resharing, thereby giving rise to a new variant of the meme. In
this way, a mutant version of the meme could be born.

The memes studied by Adamic et al. were pretty diverse. Some memes would
mutate often, and some only rarely. Examples of memes with high mutation rates
included memes that specifically asked the person sharing the meme to edit it, e.g. 1

“it s national book week the rules grab the closest book to you go to page
56 copy the 5th sentence as your status don t mention the book post these
rules as part of your status”

The M2 meme from (Adamic et al., 2016).

Other memes would change more rarely. The part of the study directly relevant to
our research is the frequency with which different variants of the same meme oc-
curred on Facebook. Adamic et al. found that, just as in biological processes, some
mutant variants of memes would become very widespread, whereas others would
only be shared a limited number of times. The left-hand panel of Figure 6.4 shows
their findings. The color of the curves indicate the mutation rate of the memes. Fit-
ting power-laws to the tails of the curves, they found that the power-law exponents
were distributed around −2. Specifically, a Kolmogorov-Smirnov test confirmed
that the data was consistent with a power-law fit with exponents 2.01 ± 0.15 for
121 of the 123 memes with more than 105 different variants. When they extended
the analysis to the 435 memes with more than 104 different variants, the exponents
came out 1.99± 0.21. The histogram of these exponents is shown as the inset in the
lefthand panel of Figure 6.4. The authors note that this analysis primarily entails
memes with a low mutation rate.

That the power-law exponents come out close to −2 for memes with low muta-
tion rates is captivating. This is exactly what Eq. (6.2) shows happens for the Yule
process. Adamic et al. therefore investigated whether the Yule process could model
the meme spreading. The right-hand panel of Figure 6.4 shows simulations of the
Yule process, and the similarity to the empirical results are apparent. They also car-
ried out other tests and found that the Yule process was a good approximation in
these cases.

It is indeed interesting that the Yule process can model the mutating memes on
Facebook. It seems strange, however, that a stochastic process with no underlying
network structure is a good model for the spreading and mutation happening on
a complicated network such as the Facebook graph. Is this some universality at

1Note that punctuation was removed as part of the study.
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FIGURE 6.4: The lefthand panel shows the popularity of different
variants of memes spreading on Facebook. (Adamic et al., 2016)
found that popularity of variants of rarely mutating memes had
power-law tails with exponent of approximately −2 (see inset). The
righthand panel shows power laws obtained from simulations of the

Yule process. Figure from (Adamic et al., 2016).

work? Does network structure simply not matter? These are some of the questions
we ended up answering in the paper presented in this chapter.

6.3 Our results: A scaling law for the impact of mutant con-
tagion

In the paper “Scaling law for the impact of mutant contagion”, which we have sub-
mitted and is available as a preprint online (Juul and Strogatz, 2019), Steven H. Stro-
gatz and I quantify the impact of mutant contagions spreading in various networks.
We do this by studying a simple model of contagion in networks analytically and
with simulations.

In the model, we assume that nodes can be either susceptible or infected and that
only a single node starts infectious. After the seed is chosen, we assume that a single
node gets infected at a time – two nodes never get infected at exactly the same time.
In our model, any link between a susceptible and an infectious node is equally likely
to be the next link the contagion traverses. We keep track of who gets infected by
whom, and in our simulations, we stop the spreading after a specified number of
nodes are infected. In most cases, we specify this number of nodes to be equal to the
total number of nodes in the network.

From the obtained data of who infected whom, we construct an epidemic tree.
If a mutation were to happen as a random node in the network got infected, every
node downstream of that random node would get the mutant contagion. We call the
nodes downstream of a node A descendants of node A. For each simulation, we count
the number of descendants of every node and compile a histogram of the number
of nodes that had n descendants. We then average these histograms over many
simulations to obtain an average descendant distribution. The descendant distribution
for the contagion realised on some network is a probability distribution expressing
the probability that a node chosen uniformly-at-random from the infected nodes
will end up having d descendants. If mutations happen at nodes chosen uniformly
at random, the descendant distribution quantifies the probability that d nodes will
get infected with the mutant contagion.
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We find that on several kinds of networks, the descendant distribution declines
proportional to d−2 for large d. We analytically calculate the descendant distribu-
tions for the contagion spreading on complete networks, Erdős–Rényi networks,
configuration-model networks, and small-world networks. For all networks, we
obtain functions of the form B( f (d, p), 2), where B(x, y) is the beta function. f (d, p)
is some function of the parameters used to create the networks, p, and the number
of descendants, d. f (d, p) is non-decreasing in d. These beta functions all approach
d−2 for large d, as our simulations indicated.

Using our analytical calculation we argue that the descendant distribution will
have the form B( f (d, p), 2) for the contagion spreading on any infinite-dimensional
network. Consequently, we predict the probability that a mutant version of a spread-
ing entity infects d people to decline proportional to d−2 on any effectively infinite-
dimensional network. We show that previously published data on meme spreading
on Facebook agrees with our prediction. We also simulate our spreading process
on subgraphs of Twitter and Facebook and find that the descendant distributions
indeed decline according to the predicted scaling law. Finally, we show that the
descendant distribution for the contagion spreading on a 2D square grid does not
follow the scaling law we derived for infinite-dimensional networks.
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Contagion, broadly construed, refers to anything that can spread infectiously

from peer to peer1–5. Examples include communicable diseases6–10, rumors11,

misinformation12, ideas13, innovations14–16, bank failures17, and electrical black-

outs18. Sometimes, as in the 1918 Spanish flu epidemic19, a contagion mutates

as it propagates. Here, using a simple mathematical model, we quantify the

downstream impact of a contagion that mutates exactly once as it travels. As-

suming that this mutation occurs at a random node in the contact network,

we calculate the distribution of the number of “descendants,” d, downstream

from the initial “Patient Zero” mutant. We find that the tail of the distribution

decays as d−2 for complete graphs, random graphs, small-world networks and

other infinite-dimensional networks. This prediction agrees with the observed

statistics of memes propagating and mutating on Facebook20, and is expected

to hold universally for other effectively infinite-dimensional networks, such as

the global human contact network. In a wider context, our approach suggests

a possible starting point for a mesoscopic theory of contagion. Such a theory

would focus on the paths traced by a spreading contagion, thereby furnishing

an intermediate level of description between that of individual nodes and the

total infected population. For every discipline concerned with contagion and

its prevention, we anticipate that contagion pathways hold valuable lessons,

given their role as the conduits through which single mutations, innovations, or

failures can sweep through a network as a whole.

When a contagion spreads, it propagates from one or more “parent” nodes to a num-

ber of “descendant” nodes. Enumerating the descendants in all the paths stemming from a

parent can reveal important and useful information. In particular, suppose the contagion

mutates into a more pernicious form at some point along its travels. Then counting its

descendants would tell us how many nodes will be confronted by this nastier strain. A

mutation event of this sort occurred in 1918, and gave rise to the Spanish flu epidemic that

killed millions of people worldwide19. Similar (but less consequential) mutations happen

online when users modify memes to make them funnier or stickier before sharing them with

their peers20.

To quantify the impact of such mutations, consider a simplified model of contagion in

2
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which each node is either susceptible or permanently infected (Fig. 1). As the contagion

spreads (Fig. 1(a)), we record which nodes caught it from which, and plot the resulting

paths of infection as an epidemic tree (Fig. 1(b)). Then we count how many nodes would be

affected by a mutation occurring at a random “Patient Zero” node. In the example shown

in Fig. 1(c), the mutant infection occurs at node B and is passed along to the two nodes

below it. Of course, if the mutation had occurred elsewhere, it could have produced either

more descendants (e.g., three descendants, had the mutation occurred at A) or fewer (zero

descendants, had it occurred at C). Thus, the natural statistical quantity to study is the

distribution of the number of descendants, aggregated over all possible Patient Zero nodes.

In one sense, the dynamics assumed here are trivial: one node after another gets infected

until no susceptibles remain. But what is far from trivial are the descendant distributions

implied by this model, as they depend on the network’s structure. To learn what to expect,

we first compute descendant distributions numerically from Monte Carlo simulations. For

a given random realization of the contagion process on a given network, like the one shown

in Fig. 1(b), we count the number of descendants of each node and compile a histogram.

This histogram, however, merely gives the descendant distribution for one realization of the

dynamics. To extract a more robust statistical measurement, we average over the random

location of the initially infected seed node, as well as the random decisions of whom to infect

at each step, to obtain an average descendant distribution.

Figure 2 shows the average descendant distribution for the simplest possible network

structure: a complete graph, in which each node is connected to all the others. The down-

ward slope of the plot indicates that many nodes have few descendants, and a few nodes

have many descendants. Of course, the seed O has every other node as its descendant, as

an artifact of the assumed initial conditions. Its corresponding data point in Fig. 2 lies off

the curve for this reason.

The most striking feature of the descendant distribution in Fig. 2 is its apparent power-

law decay for d � 1. To explain this scaling law intuitively, recall that one way of getting

power-law distributions is through rich-get-richer effects21–24, and observe:

(i) If node i infected node j, the ancestors of j will be i and all the ancestors of i.

(ii) A node i can acquire a new descendant j if it passes the infection on to j, or if one of

its descendants passes the infection on to j.

3
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a) Contagion spreading on contact network

A

B

O C

t = 0
B

A O C

t = 1
B

A O C

t = 2

A

B

O C

t = 8

b) Epidemic tree

O

t = 0

O

B

t = 1

O

B C

t = 2

O

B C A

t = 8

c) Rare mutation at node B

O

t = 0

O

B

t = 1

O

B C

t = 2

O

B C A

t = 8

FIG. 1. Simple model of contagion spreading on a network and its corresponding

epidemic tree. Black filled circles denote susceptible nodes; red filled circles, infected nodes;

red open circles, nodes infected by a mutant strain of the infection. a) Starting with a single

infected seed O at time t = 0, another node gets infected at random at the next time step. Any

edge between an infected node and a susceptible node has an equal chance of being the next edge

over which the contagion spreads. We keep track of which nodes transmitted and received the

infection at every time step, until ultimately every node is infected. b) The epidemic tree shows

who infected whom in the contagion process depicted in a). We draw this tree with the seed on

top. The nodes that the seed infected are drawn in the second layer, and so on. A descendant of

node i is defined as any node that directly or indirectly received the infection from node i. Such a

descendant node j can be reached by starting at node i and following a sequence of directed edges

downward through the epidemic tree until the path ends at j. c) If a mutant infection occurs

at some node (B, in the example shown here), that node passes the mutated strain on to all its

descendants (two descendants, in this example).
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FIG. 2. Descendant distribution for the contagion process on a complete graph. We

simulated the simple contagion model on complete graphs of N = 104 nodes, and averaged the

resulting descendant distributions over 103 realizations of the random contagion process, each of

which started with a single seed node. Filled circles show the numerically computed distribution of

the number, d, of descendants of each node in the network. This distribution quantifies the impact

that a mutant infection would have on the rest of the population, had it started at a random

“Patient Zero” node. The dashed line shows the analytical result (1). For large values of d, the

descendant distribution declines proportional to d−2.

The first point means that our model contagion process is equivalent to a network that grows

by node copying25. The second point suggests that the probability of a node acquiring more

descendants should grow, loosely speaking, in proportion to the number of descendants it

already has, thereby making the rich richer.

To sharpen this intuition, we calculate the descendant distribution Pd analytically for

some exactly solvable networks (for derivations, see Supplementary Sections 2, 3, 4, and 5).

First, for a complete graph in the limit N →∞, we find

Pd =
1

(d+ 2)(d+ 1)
. (1)

Figure 2 shows that this result agrees well with our simulation data. Likewise, for several

5
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FIG. 3. Descendant distributions for the simple contagion process on random networks.

We simulated the simple contagion process on z-regular configuration models and Erdős–Rényi

(ER) networks of N = 104 nodes. The descendant distributions have been rescaled to collapse

on the analytical solution (2). This rescaling involved adding x̃(z) = (z − 1)/(z − 2) to d, and

multiplying Pd by x̃(z)−1, the inverse of the scaling factor of Pd (see Supplementary Section 3).

classes of random networks, the descendant distributions can be derived in the limit of

infinite network size. We obtain the infinite-N solution

Pd =
z − 1

z − 2
B

(
z − 1

z − 2
+ d, 2

)
, (2)

where B(a, b) denotes the beta function and z is the average degree. Figure 3 shows the

simulation results for z-regular configuration models and Erdős–Rényi random graphs of size

N = 104. When plotted in a manner suggested by equation (2), the simulation data for the

different random networks collapse onto a single curve (Fig. 3), consistent with the analytical

approximation. Finally, for a small-world network created by inserting random shortcuts

in a ring lattice, with probability p of connecting a node with a node chosen uniformly at

random26, the analytical solution (Supplementary Section 4 and Extended Data Fig. 1) is

Pd =
2p+ 1

2p
B

(
2p+ 1

2p
+ d, 2

)
. (3)
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FIG. 4. Descendant distributions of a contagion process simulated on real networks. We

ran simulations of the contagion process on two empirical undirected networks (see Supplementary

Section 6): one with N = 81, 306 nodes consisting of the combined edges of 973 Twitter ego-

networks27; and another with N = 13, 866 nodes consisting of Facebook pages of athletes28, in

which edges indicate mutual likes among them. In both cases, we started the contagion at a

random seed node, and let exactly 2, 000 nodes get infected. Then we stopped the spreading,

obtained the descendant distribution for the realization, and started a new simulation with a seed

chosen uniformly at random. The descendant distributions shown here are averaged over 103 such

simulations. The tail of the distribution declines with an exponent close to −2.

Remarkably, all the descendant distributions we have calculated so far turn out to decay

asymptotically according to the same power law:

Pd ∝ d−2 (4)

for d � 1. Further analysis (Supplementary Section 5) indicates that this inverse-square

scaling follows from a property that the complete graph shares with the random networks:

they all become infinite dimensional as N → ∞. On this basis, we expect that the same

d−2 scaling should hold for other infinite-dimensional networks, but not for one-dimensional

7
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chains, two-dimensional grids, three-dimensional lattices, or other networks whose dimen-

sionality remains finite as the number of nodes tends to infinity. Simulations of the model

contagion on two-dimensional square grids support this prediction: descendant distributions

deviate significantly from the d−2 scaling (Extended Data Fig. 2).

Conveniently, many real-world networks are effectively infinite dimensional. Consider the

social network Facebook, which as of June 2019 had more than 2.4 billion active users. In

a fascinating study, Adamic et al.20 examined memes spreading from friend to friend on

the Facebook social graph. Typically, memes would propagate from one user to another

without being altered, but occasionally a user would change the content of the meme before

resharing it. This would make a new variant of the meme, which would then spread on the

network along with previously existing copies. Adamic et al.20 examined the frequency of

different variants of rarely-changing memes, and found that the frequency distribution of

the most widely shared variants followed an inverse-square law. Specifically, they found the

exponent to be −2.01± 0.15. This exponent matched the prediction of a mean-field model

(the Yule process), but it remained unclear why a model without any underlying network

structure could account for the exponent obtained from the actual Facebook network.

Our work suggests that the observed exponent of −2 is a consequence of the approximate

infinite-dimensionality of the Facebook network. Indeed, when we simulate our simple con-

tagion process on sub-networks of Facebook or Twitter, an approximate power-law tail with

a slope close to −2 emerges (Fig. 4 and Supplementary Section 6).

Our analysis can be viewed as a step toward a mesoscopic theory of contagion, in which

infection pathways and epidemic trees would play the leading role, operating at a scale in

between the local level of individual nodes and the global level of the entire network. To

clarify these distinctions, consider the transition to a giant component in a susceptible-

infected-removed model of contagion on a network10. Above the transition, there exists a

giant infected component of size proportional to N . Such macroscopic phenomena have been

extensively and fruitfully studied in the literature on network contagion1,5,10. But sizes of

giant components and other macroscopic quantities lump all infected nodes together, and

thus discard information about which nodes infected which. Such causal information is

retained in epidemic trees, which show the pathways of contagion.

In this letter we have shown one way that epidemic trees can be used: they allow us

to calculate descendant distributions, which quantify the impact of a mutant contagion

8
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occurring at a random place in the network. Our finding that the distribution has a universal

d−2 tail (for infinite-dimensional networks) means that the expected size of a mutant infected

component is of size comparable to logN for N � 1. This size is intermediate in a precise

sense; it is large compared to the O(1) scale of individual nodes, but small compared to the

O(N) scale of giant infected components and the network itself. Note, however, that the

variance of the mutant infected component size also diverges as N → ∞. Hence the mean

and variance do not adequately summarize the overall distribution, underscoring that one

should rely only on the descendant distribution itself, as calculated here.

We expect that notions like contagion pathways, epidemic trees, and descendant distri-

butions are just the beginning of a mesoscopic theory of contagion. Much remains to be

discovered about the geometry and statistics of these and other quantities, both empirically

for real contagions, and theoretically for a wide range of infection dynamics and network

structures. Understanding this middle ground might also have practical benefits for the con-

trol of contagion processes, in contexts ranging from vaccination strategies for communicable

diseases to methods for combating the spread of misinformation on social media.

Code availability

All scripts necessary to reproduce the simulated results are available at

https://sid.erda.dk/wsgi-bin/ls.py?share id=F8JmKmQryb.
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Extended Data Fig. 1. Descendant distributions of a contagion process on Newman-

Watts small-world networks. The networks are created by starting out with a ring in which

every node is connected to its two nearest neighbors, and then connecting each node with prob-

ability p to another node chosen uniformly at random26. The resulting descendant distributions,

plotted here for networks of size N = 104 nodes, show the same universal behavior discussed in

the main text: the distribution Pd decays in proportion to d−2 for large d, followed by a finite-size

cutoff. We simulate the system for two values of p and plot the resulting descendant distributions

Pd along with the analytical approximation (3) derived in Supplementary Section 4.
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Extended Data Fig. 2. Descendant distributions of a contagion process on two-

dimensional square grids with periodic boundary conditions. The networks consist of

N = 992 nodes, and 103 random realizations of the spreading process were simulated. Because the

underlying network is two-dimensional rather than infinite-dimensional, the resulting descendant

distributions do not show the scaling law discussed in the main text: the distribution Pd does not

decay in proportion to d−2 for large d.

12

6.4. Paper: Scaling law for the impact of mutant contagion 119



Supplementary Information:

Scaling law for the impact of mutant contagion

Jonas S. Juul∗

Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100-DK, Denmark

and

Center for Applied Mathematics, Cornell University, Ithaca, New York 14853, USA

Steven H. Strogatz †

Center for Applied Mathematics, Cornell University, Ithaca, New York 14853, USA

(Dated: October 3, 2019)

∗ jonas.juul@nbi.ku.dk
† strogatz@cornell.edu (corresponding author)

1

120 Chapter 6. Scaling law for the impact of mutant contagion



I. PRIOR WORK ON CONTAGION PATHS AND EPIDEMIC TREES

The contagion paths and epidemic trees constructed in Fig. 1 in the main text have

been studied previously in diverse disciplines. They have been called adoption paths15,

dissemination trees29,30, spreading patterns31, causal trees of disease transmission32, diffusion

structure patterns33, the structure of diffusion events34, and epidemic trees35. We adopt the

latter term, which comes from epidemiology, with a single caveat: Generally the graph of

the propagation paths for a contagion need not be a directed tree; in the case of a complex

contagion36, where each child node has two or more parents, the graph could be a directed

graph with no cycles. But for the simple contagions studied in this paper, where each child

is assumed to have only one parent, the graph of the propagation paths is always a tree.

In the following sections, we show the details of our calculations of descendant distribu-

tions on complete graphs, configuration models, Erdős–Rényi random networks, small-world

networks, and infinite-dimensional networks in general. In each case, we assume a simplified

model of contagion dynamics in which each node is in one of two states: susceptible, or

permanently infected and infectious, as described in the main text. The final section of

the Supplementary Information contains information about the maximum-likelihood fit we

performed on the descendant distributions for the spreading process on empirical networks.

II. COMPLETE GRAPH

In this section, we calculate the descendant distribution for a complete graph of N nodes,

with N � 1.

Suppose that nodes are infected one at a time, and that the descendant distribution

after t nodes have been infected is given by Pd,t. We wish to calculate the equilibrium

distribution of descendants, Pd := limt→∞ Pd,t. To do this, it is helpful to use language from

network growth37. When a new node is infected, a number of already-infected nodes will

gain this node as a descendant in the epidemic tree. If, say, 14 nodes acquire this node as

a descendant, let us refer to this as introducing 14 descendants in the epidemic tree and

then distributing these 14 descendants among the infected nodes. With this terminology in

place, we proceed with the calculation.

First, because any edge that connects a susceptible and infected node is equally likely to

2
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be the next edge over which the infection is transmitted, and because the graph is complete,

the expected fraction of newly introduced descendants that nodes with d descendants get is

(d+ 1)Pd,t∑
d(d+ 1)Pd,t

=
(d+ 1)Pd,t
(mt + 1)

, (S1)

where

mt :=
∑

d

dPd,t (S2)

is the mean number of descendants in the epidemic tree at time t. The numerator in Eq. (S1)

expresses point (ii) in the main text, and the denominator is a normalisation factor. Next,

to go from the expected fraction in Eq. (S1) to the expected number of new descendants that

a node with d descendants gets in the following time step, we must multiply the expected

fraction (S1) by the total expected number of new descendants, aggregated over nodes with

any number of descendants, that are added during the time step.

To find this total, we observe that every infected node has equal probability of being the

next to pass on the infection, and there are t infected nodes at time t. Thus the probability

that nodes with d descendants will get a new descendant is (d + 1)Pd,t/t. Summing over

all d then gives us the expected fraction of the infected nodes in total that will get a new

descendant in the following time step; multiplying by t gives us the corresponding expected

number. This argument tells us, then, that

t
∑

d

(d+ 1)Pd,t
t

= mt + 1 (S3)

is the expected number of infected nodes, in total, that will get a new descendant in the

following time step. Note that the underlying network did not influence this last part of the

calculation.

By combining Eqs. (S1) and (S3) we find that, for the complete graph, the expected

number of new descendants that a node with d descendants gets in time step t is

(d+ 1)Pd,t
(mt + 1)

(mt + 1) = (d+ 1)Pd,t. (S4)

This result leads us to the following master equation, which expresses the expected gain and

loss of nodes with d descendants between time steps t and t+ 1:

(t+ 1)Pd,t+1 − tPd,t =





1− P0,t for d = 0,

dPd−1,t − (d+ 1)Pd,t for d ≥ 1.
(S5)
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The case d = 0 is different from other values of d since the newly infected node will have

no descendants when it is added to the epidemic tree, thereby making the gain term in the

master equation equal to 1. An equilibrium distribution must satisfy Pd,t = Pd,t+1 =: Pd.

Applying this condition and solving for Pd, we get:

P0 =
1

2
, Pd =

d

d+ 2
Pd−1. (S6)

From this we conclude that the distribution of the expected number of descendants on the

complete graph is

Pd =
d!

(d+ 2)!
=

1

(d+ 2)(d+ 1)
. (S7)

As mentioned in the main text, keeping track of descendants can be mapped to growing a

network by node copying25. For the complete graph, this mapping means that equation (S7)

is identical to the formula for the in-degree distribution calculated by Krapivsky & Redner25.

In their paper on network growth with node copying, Krapivsky & Redner derive geometrical

properties of the grown networks. We refer the interested reader to the paper, and continue

with calculating descendant distributions below.

III. CONFIGURATION MODEL AND ERDŐS–RÉNYI RANDOM NETWORKS

In this section, we turn to two classes of random networks: configuration-model networks,

and Erdős–Rényi random graphs.

In the configuration model that we consider, each of N nodes has a certain number of

“half edges” (or “stubs”) sticking out of it, with the number of stubs being chosen at random

from a prescribed degree distribution. The network is then generated by connecting pairs

of stubs, chosen uniformly at random from the list of all stubs, to make the full edges of the

resulting network.

The Erdős–Rényi networks are constructed by considering each pair of nodes indepen-

dently and, with probability p, connecting that pair with an undirected edge.

To understand Fig. 3 shown in the main text, we now calculate the descendant distribution

for these random networks, using the same method as in the previous section. At time steps

t ≥ 1, an infected node with degree k has at least one infected neighbor (its “parent”). If

the infected node (denoted I ), or one of its descendants, infects a neighbor, then I loses

one edge over which it could infect another node. By doing this, however, it gets a new

4
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descendant, which might have a number of edges connecting it to susceptible nodes. If we

assume that every one of the k − 1 edges that could connect an infectious degree-k node

with a susceptible node has equal probability of doing so (equal to 1 in the infinite-network

limit), and if we assume that this probability is the same for every infected node, then an

infected node has on average (z − 2)d+ (z − 1) edges which could connect it to susceptible

nodes. Here z is the mean degree of the network.

So the mean number of new descendants that a node with d descendants gets when a

new node is infected is
[(z − 2)d+ z − 1]Pd,t

(z − 2)mt + z − 1
(mt + 1) . (S8)

Using this result, we can write down a master equation as we did when calculating the

descendant distribution for the spreading process on the complete graph, and solve for a

steady-state descendant distribution Pd, in the limit of infinite network size. After some

algebra (see Supplementary Section V for details), we find that

Pd =





z−2
2z−3 for d = 0,

z−2
2z−3

[
B
(
z−1
z−2 , 2

)]−1
B
(
z−1
z−2 + d, 2

)
for d ≥ 1.

(S9)

Here B(a, b) is the beta function, which declines as a−b as a → ∞ for fixed b. In our case,

this means

Pd ∝ B

(
z − 1

z − 2
+ d, 2

)
,

∝ d−2,

(S10)

for d � 1. By invoking identities for the beta function, we can rewrite the expression (S9)

for the descendant distribution as

Pd =
z − 1

z − 2
B

(
z − 1

z − 2
+ d, 2

)
, (S11)

which is the expression we list in the main text. Figure 3 in the main text collapses the

simulated data on the curve B(d̃, 2), where

d̃ := x̃(z) + d =
z − 1

z − 2
+ d. (S12)

Given a simulated data point (d, Pd), this collapse is made by plotting the data point at

(d+ x̃(z), [x̃(z)]−1 Pd) instead.
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IV. A RING AND A SMALL-WORLD NETWORK

The networks of the previous section are related to each other, in that edges between

nodes are created according to a random procedure. They all show the inverse-square

scaling mentioned in the main text: Pd ∝ d−2 for large d.

On the other hand, some non-random graphs do not have this limiting behavior. If we

consider the spreading process taking place on a ring, in which every node has only two

neighbours, one to its left and one to its right, we can write down the expected distribution

of number of descendants immediately. Starting from only a single seed, in each time step

there will be exactly one possibility for the process to spread on the right hand side of

the seed, and one possibility to spread on the left hand side. The resulting distribution of

descendants in a ring consisting of N nodes is

Pd = N
N∑

L=0

[
Θ (d ≤ L− 1)PL + Θ (d ≤ N − L+ 1)PL

]
, (S13)

where N is a normalization constant, Θ(x) is the Heaviside function equal to 1 if x ≥ 0 and

0 otherwise, and PL is the probability of the contagion process spreading exactly L times to

the left along the periphery of the ring, given by

PL =

(
N

L

)(
1

2

)N
. (S14)

One natural question to ask is then: How random does a network have to be to show the

limiting behavior Pd ∝ d−2 we observed in the previous sections? In the rest of this section

we analytically estimate the descendant distribution for the contagion process on small-world

networks. Specifically, the small-world networks are Watts-Newman small-world networks

in which all nodes are connected to their two immediate neighbours on a ring lattice, and

each node gets a shortcut to a neighbour chosen uniformly at random with probability p.

First, we must estimate the expected number of new descendants that a node with d

descendants gets when a node gets infected. If the underlying network was simply a ring

and no shortcuts had been added, every node would have equal chance of getting new

descendants. This changes when the shortcuts are inserted: For each descendant a node has,

the chance that one of its descendants has a shortcut increases. If the infection traverses

such a shortcut link successfully, it can spread both to the right and to the left in this newly

discovered part of the network. Hence, two more boundaries between infectious nodes and

6
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susceptible nodes have been created, and every node that has descendants on this boundary

now has a higher chance of getting more descendants. This effect alters the expected number

of descendants received by a node with d descendants when a new node gets infected. The

expected number now becomes

Pd,t(1 + 2p(d+ 1))

1 + 2p(mt + 1)
(mt + 1). (S15)

Here the first term represents the shortcut-independent probability that every node has to

get a new descendant, and the terms that are proportional to p correspond to the increased

probability of getting new descendants that nodes get via shortcuts. With this, we can

write down the master equation as in the two sections above. After some algebra (see

Supplementary Section V below for details), we find

Pd =





2p
1+4p

for d = 0,

2p
1+4p

[
B
(

2p+1
2p
, 2
)]−1

B
(

2p+1
2p

+ d, 2
)

for d ≥ 0.
(S16)

For large d, this analytical solution declines as

Pd ∝ B

(
2p+ 1

2p
+ d, 2

)
, (S17)

∝ d−2. (S18)

In Extended Data Fig. 1, we see that the analytical solution indeed is in qualitative agree-

ment with the simulations.

V. UNIVERSAL BEHAVIOR AND WHEN IT BREAKS DOWN

We have studied the descendant distributions for simple contagion on different networks:

complete graphs, configuration-model networks, Erdős–Rényi networks, and small-world

networks. On all of these networks, we have discovered a striking universality: The distri-

butions decline as a power law with exponent −2 for large d. A natural question to ask is,

then, what unifies these graphs: When does the universality exist, and when does it break

down?

One thing that is true for all the graphs we have studied is that the probability of getting

more descendants is linearly proportional to the number of descendants the node already has.

7
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In other words, the expected number of descendants received by a node with d descendants,

when a new node gets infected, is of the form

Pd,t (c+ fd)∑
d Pd,t (c+ fd)

(mt + 1) =
Pd,t (c+ fd)

c+ fmt

(mt + 1) , (S19)

for c, f > 0. We will now show that this, and mt →∞ as t →∞, is sufficient to make the

resulting distribution of the number of descendants decline as the power law with exponent

−2 for large d. The condition mt →∞ is true for all the classes of random graphs we have

examined, since the fewer edges compared to the complete graph decreases the interface

between susceptible and infectious nodes. This makes the probability of nodes with many

descendants getting additional descendants increase compared to the spreading process on

the complete graph. Because mt diverges for the complete graph, mt also diverges for the

random graph in question by the comparison test. As mt → ∞, the right hand side of

equation (S19) approaches Pd,t(d/f + d). With this, we get the master equation,

(t+ 1)Pd,t+1 − tPd,t =





1− Pd cf for d = 0,[
Pd−1,t

(
c

f
+ d− 1

)

−Pd,t
(
c

f
+ d

)] for d ≥ 1.
(S20)

Looking for steady-state solutions Pd,t+1 = Pd,t =: Pd, we obtain

P0 =
f

f + c
, Pd =

c/f − 1 + d

1 + c/f + d
Pd−1, (S21)

where the expression for Pd is valid for d ≥ 1. Denoting c/f − 1 =: α, we can use the

recursive nature of the expression to rewrite Pd as follows:

Pd = P0

d∏

λ=1

α + λ

α + 2 + λ

= P0
Γ(α + 3)Γ(α + d+ 1)

Γ(α + 1)Γ(α + 3 + d)
. (S22)

If we increase the terms of the fraction by a factor of Γ(2), and use the relation between

gamma functions and beta functions, Γ(x)Γ(y)/Γ(x+ y) = B(x, y), we get

Pd =
f

f + c
[B(α + 1, 2)]−1B(α + d+ 1, 2), (S23)

=
c

f
B

(
c

f
+ d, 2

)
. (S24)
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The final step was made by inserting the value of α and evaluating B(c/f, 2) = f 2/[c(c+f)].

The asymptotic behavior for large d is

Pd ∝ (c/f + d)−2

∝ d−2. (S25)

Therefore, if the probability of getting more descendants increases linearly with the number

of descendants a node already has, the descendant distribution will decline as d−2 for large d.

If we interpret the number of descendants an infected node has as a volume, and the interface

separating infectious and susceptible nodes as a surface area, the descendant distribution

will show the observed universality if the surface area and the volume increase equally fast

(proportional to d); in other words, if the graph is infinite dimensional.

VI. EMPIRICAL NETWORKS AND MAXIMUM-LIKELIHOOD FIT

The two empirical networks discussed in the main text were obtained from the SNAP

database38. For the Twitter network, we converted all directed edges into undirected ones,

not allowing parallel edges. To estimate the power-law exponent of the tail of the distribu-

tions, we used a maximum-likelihood method to fit a power-law to the data for d ∈ [100, 1900]

(not including the extreme data points caused by the choice of having a single seed). We used

the approximate expression for the maximum-likelihood power-law exponent α̂ for binned

data39

α̂ ≈ 1 + n

[
n∑

i=1

ln
di

dmin − 1/2

]−1
, (S26)

and checked that direct numerical evaluation gave a similar result. In this formula, n is the

total number of data points, di is the ith data point, and dmin is the smallest value for the

data (in this case, 100). We estimated the standard error on α̂ by using the corresponding

formula,

σα̂ =
1√

n

[
ζ′′(α̂,dmin)
ζ(α̂,dmin)

−
(
ζ′(α̂,dmin)
ζ(α̂,dmin)

)2]
, (S27)
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where prime indicates differentiation with respect to the first variable. For both networks

we obtained α̂ ≈ 2.04± 0.01.
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6.5 Conclusions of Part II and perspectives for further re-
search

We have studied two extensions of the Watts Threshold Model and the impact of
mutant variants of simple contagion spreading in various networks. For the WTM
with synergistic effects, we found that the synergy could make it possible or impos-
sible to activate degree-k nodes. Synergy could also decrease the number of active
neighbours needed to activate nodes with degree k. We provided explicit formu-
las for these bifurcation points and an analytical approximation that described the
fraction of active degree-k nodes as a function of time. This approximation worked
well for all networks but broke down when the model was simulated on a Facebook
subgraph. We argued that this was caused by the network being less locally tree-like.

For the WTM with anti-establishment nodes, we found that anti-establishment
nodes constituting tiny fractions of the population could cause an otherwise insignif-
icant product to become adopted by a majority of the network at equilibrium. We
found this tiny fraction to be smaller than 10% in every synthetic network we chose.
We argued that the large impact of the anti-establishment nodes was due to adop-
tion paths. The small chance that a hipster having many descendants drives up the
expected number of product-B adopters.

Finally, we found that the impact of mutant contagion follows a probability dis-
tribution B( f (d, p), 2) for all infinite dimensional networks. In particular, the tail of
the distribution declines proportional to d−2. We assumed that the contagion was
simple, mutated rarely, and that the mutation did not impact the rate of infection.
We also argued that this will hold for any effectively infinite-dimensional network.
Two examples of such effectively infinite-dimensional networks are the global hu-
man contact network and Facebook. We argued that evidence of this scaling law
for the impact of mutant contagion was previously observed in meme-spreading on
Facebook. We also showed that the impact of mutant contagion in a 2-dimensional
network did not follow the same scaling law.

There are several promising directions for future research. The model of syner-
gistic spreading we provided was based on the so-called r-synergy. One could create
similar models of d-synergy and investigate what effect such donor synergy would
have on spreading dynamics. An educated guess on the results would be that bi-
furcations, similar to the ones we uncovered, would be present in the d-synergistic
threshold models. Another direction would be to further analyse the models by sim-
ulating them on other types of networks: multi-layer networks, temporal networks,
or modular networks.

By including hipsters in the WTM, we wanted to investigate the formation of
anti-establishment majorities. It is not clear, however, that opinion dynamics seen
in elections are well-approximated by threshold models of complex contagion. It
might be that citizens continuously update their opinions as time progresses. Hence,
including hipster nodes in other dynamical models could inform us more about how
such anti-establishment majorities in elections come to be. One class of models that
would be an obvious choice for such implementation of hipsters is voter models. A
recent study suggested doing this (Kureh and Porter, 2019).

The most promising directions, however, I think come from the final paper I pre-
sented in this part of the dissertation. Epidemic trees have not been studied in detail,
and therefore much work needs to be done. First, the impact of mutant contagion
in finite-dimensional networks has not been understood yet. Is there a scaling law
in 2 dimensions, similar to the one found for inifinite dimensions? How about other
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finite dimensions? Finite dimensions are common in biological systems, and hence
this research track could be of great importance.

It would also be interesting to study what impact mutant contagions would have,
if the mutations altered traits of the contagion. What if the mutation changed the
rate of infection? In our study, we assumed that the contagion could be described as
an SI model. What if the contagion were instead described by an SIR model? How
would choices of the rates of infection and removal affect the dynamics? And what if
mutations caused the contagion to be more lethal and increased the rate of removal?
Finally, we have only suggested one application of epidemic trees. Perhaps epidemic
trees have other applications, waiting to be uncovered.
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Chapter 7

Investigating homophily and
network centrality among
narcissists using
telecommunication data

7.1 A day in the life

Darkness still covered the land when the alarm went off. Still half asleep, Bob fum-
bled for his phone, eventually succeeding in stopping the screaming of the device.
After dragging himself to the kitchen to make his morning cup of coffee, he turned
on the radio via the sound system controller app and made a bowl of cereal. With
a steaming cup of coffee and a bowl of breakfast, he quickly browsed through the
latest online news before heading out for his daily commute to work.

While the landscape drifted past outside the train cabin, Bob listened to his
favourite podcast. While the host gave exceedingly detailed descriptions of the con-
sistency, color, and flavour of the soup he was making, Bob made the day’s first
attempt to empty his email inbox. Finally at work, Bob found his desk exactly as
he left it. While trading the mug from the day before for a new one full of coffee,
he found the time to reply to a text message from a sick coworker while the coffee
machine was buzzing away.

Bob, being an enthusiastic worker, resisted the siren song of the little bump in
his right pocket for most of the day. A few exceptions to this were his occasional
visits to the coffee machine or the bathroom. During these short intermissions of an
otherwise busy day, he found the time to “like” pictures and status updates on social
media.

On his train ride home, he called his old mother. She told him everything about
the most recent football transfers in the Premier League, and how a courier had
delivered a package to her neighbour earlier that day. Back in his apartment, he
brought his microwaved meal with him to the living room. Accompanied by the
shrinking mountain of noodles, he streamed the night’s international football game.
After a spectacular goal, he called his mother again. She assured him that the player
leaving for a competing club at the end of the season would be tough for his old
club.

Having turned off the connection between phone and television, Bob went to
bed. The last thing he did before going to sleep was setting the alarm for the next
morning.
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7.2 Using telecommunication data to study humans

As the made-up day of Bob illustrates, phones are part of almost every minute of
modern lives. Before Bob goes to sleep, he sets the alarm. The first thing he does in
the morning is to turn it off. He uses his phone to read the news and connect to his
stereo. He uses his phone for leisure and for work. Even his coffee and bathroom
breaks can be inferred from when he uses his phone.

His phone is also a means of communicating with his social contacts. He calls his
mom and replies to text messages from sick colleagues using the same device. As a
football team scores, he calls his mom in excitement.

Because phones are such integrated parts of our lives, they might be good can-
didates for tools through which we can understand human behavior. Instead of
giving people questionnaires about their eating, sleeping, and social habits, smart-
phone usage can provide data with a resolution of mere seconds. If we can develop
the right measures and successfully filter signal from noise, the data holds almost
unfathomable research potential.

During my Ph.D. I have worked with two different telecommunication data sets.
With an interdisciplinary team of scientists, I have investigated human behavior in
two very different situations. I have studied patterns in social connections aggre-
gated over a long time interval and behavioral change following a sudden pertur-
bation to the social system – in the form of a terror attack. In both projects, I have
examined how differences among individuals influence emerging behavioral pat-
terns. In the study on behavioral change following terror attacks, we compare the
behavior of participants of different genders. In the other project, we investigate
whether people with high scores on a specific personality trait tend to connect to
other people with high scores on this same trait.

This third part of the dissertation is structured as follows. The present chapter
introduces our research on the statistics of social ties of narcissists. The manuscript
constitutes Section 7.6. Before proceeding to this section, however, I will introduce
the concept of narcissism and give a brief introduction to homophily – one of the
main things analysed in our manuscript. In the next chapter, Chapter 8, I present
our manuscript on behavioral patterns following attacks. Chapter 8 also briefly mo-
tivates why we should study the behavior of populations following terror attacks
and mentions prior results on such behavioral patterns.

7.3 Narcissism

Disposition-based behavior explanations have long been used in psychology (Ajzen,
2005). One way of describing dispositions is through personality traits. Among the
many personality traits, humans can have, narcissism is perhaps the most infamous.
This status of narcissism is perhaps most visible in narcissism being part of ancient
mythology. According to the legend, Narcissus, a character from Greek mythology,
fell in love with his own image. At the present day, the relevance of narcissism
is illustrated by psychologists having public discussions about whether the current
president of the United States suffers from “Narcissistic personality disorder” (Bar-
ber, 2016). But what does narcissism mean, and how is it quantified? This is an
interesting question, the answer to which is currently under intense scrutiny.

The modern perception views narcissists as having “an overarching goal of main-
taining a grandiose self”. Half a decade ago, a group of psychologists suggested that
a “grandiose self” is created by two mechanisms: narcissistic admiration (ADM) and
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rivalry (RIV) (Back et al., 2013). They designed a questionnaire to test for rivalry.
This Narcissistic Admiration and Rivalry Questionnaire (NARQ) contains 18 items.
9 of these items are related to the admiration dimension, whereas the remaining 9
items probe the rivalry dimension. Participants answer each question with an inte-
ger ranging from 1 to 6. 1 means “not agree at all”; 6 means ”agree completely”. The
18 items are listed in (Back et al., 2013), and I repeat them here to give a sense of the
psychological phenomenon of narcissism.

The 9 items related to Narcissistic Admiration are (quote from (Back et al., 2013)),

1. I am great.

2. I will someday be famous.

3. I deserve to be seen as a great personality.

4. I show others how special I am.

5. I enjoy my successes very much.

6. Being a very special person gives me a lot of strength.

7. Most of the time I am able to draw people’s attention to myself in conversa-
tions.

8. I manage to be the center of attention with my outstanding contributions.

9. Mostly, I am very adept at dealing with other people.

The first three probe a facet of ADM called “grandiosity”. The next three test for
“uniqueness”. The final three questions test for the facet “charmingness”.

The other narcissistic dimension is Narcissistic Rivalry. The 9 items to Narcissis-
tic Rivalry are (quote from (Back et al., 2013)),

1. Most people won’t achieve anything.

2. Other people are worth nothing.

3. Most people are somehow losers.

4. I secretly take pleasure in the failure of my rivals.

5. I want my rivals to fail.

6. I enjoy it when another person is inferior to me.

7. I react annoyed if another person steals the show from me.

8. I often get annoyed when I am criticized.

9. I can barely stand it if another person is at the center of events.

Here the first 3 test a facet “devaluation”. The middle 3 probe for a facet “supremacy”.
The final 3 probe for “aggressiveness”.

Because this splitting of narcissism into 2 dimensions was done so recently, much
remains unknown concerning the correlation between narcissistic personality traits
and social behavior. The manuscript presented in this chapter investigates homophily
in narcissism, network centrality in narcissism, and the duration of social connec-
tions for narcissists. By doing this, we test current hypotheses in personality psy-
chology.
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Black Hispanic White Other
Black 506 32 69 26

Hispanic 23 308 114 38
White 26 46 599 68
Other 10 14 47 32

TABLE 7.1: Table of partner race. Couples from (Catania et al., 1992).
Presented in a table after (Mollison and Denis, 1995; Newman, 2003b).

Recent research reported that certain personality traits, like empathy, correlate
with centrality in some social networks (Morelli et al., 2017). Narcissists view them-
selves as special and deserving of being at the center of attention. Whether narcis-
sists actually do receive more attention than others remains an open question. This
is the motivation for investigating network centrality in narcissism.

Another hypothesis in the existing narcissism literature is related to the popu-
larity of narcissists over time. It was suggested that popularity decreases over time,
but is high in short-term relationships (Grosz et al., 2015; Back, Küfner, and Leckelt,
2018). By measuring how the frequency of long and short-term friendships in social
networks correlate with ADM and RIV scores, we can test these hypotheses.

The final thing we set out to investigate – homophily – has a long history in
the social sciences. I dedicate the following subsection to introduce this concept of
homophily.

7.4 Homophily

Homophily is the tendency to form links to nodes with similar traits as oneself. One
classic example of such homophily is in the choice of partner. Table 7.1 illustrates the
race and ethnicity of each partner in couples participating in a health study (Catania
et al., 1992). In each row, the diagonal entry takes the largest value. This indicates a
high frequency of same-race or same-ethnicity couples – it indicates homophily!

Homophily is studied in many different systems. One particularly relevant study
to quote here is the one by Møllgaard et al. (Mollgaard et al., 2016). Using the same
dataset as we will be studying, they investigated homophily in “the Big Five” per-
sonality traits and social variables. These social variables were, e.g., consumption of
alcohol and whether people smoked. They found homophily in social variables like
gender, alcohol consumption, and smoking. In contrast, they found no evidence of
homophily in any of the Big Five personality traits.

(Lee et al., 2017) recently reported that homophily in social networks influences
the creation of perception biases such as filter bubbles and majority illusions. In
another recent study, (Karimi et al., 2018) showed that homophily could make it
more difficult for minorities to get influential in social networks.

Whether homophily exists in narcissism is interesting because there is no the-
oretical consensus on the topic. On the one hand, dominant narcissistic behavior
might be best paired with more submissive personality traits (Orford, 1986). This
would lead to homophily being absent in narcissism. On the other hand, one study
reported that narcissists perceive it as difficult to find other people with greatness
comparable of their own (Foster and Campbell, 2007). This longing could cause nar-
cissists to frequently connect to other narcissists, thereby giving rise to homophily
in narcissism.
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In the past, psychologists did carry out a few studies on homophily in narcis-
sism. One study asked participants to rate the attractiveness of hypothetical part-
ners for short-term or long-term relationships. This study found homophily in both
dimensions of narcissism (Grosz et al., 2015). Other studies have found homophily
in grandiose narcissism in pairs of best friends and romantic couples (Lavner et al.,
2016; Maaß et al., 2016). However, no one studied homophily in narcissism on a
large scale with real-time social-network data.

In our paper, we will measure homophily in large social networks. In network
science, homophily is often referred to as assortative mixing (Newman, 2002a; New-
man and Girvan, 2003; Newman, 2003a; Newman, 2003b; Newman, 2018). Assor-
tative mixing can be computed in different ways. The main idea in such quantifi-
cations is estimating how scores of linked nodes correlate with each other. If this
correlation is larger than should be expected, if scores were distributed randomly
among network nodes, homophily is present in the scores.

The way we will measure homophily in the article presented by the end of this
chapter was first done by (Mollgaard et al., 2016). They generalised the intraclass
correlation coefficient to take network structure into account. They expressed their
homophily measure as a fraction,

r =
t2

s2 . (7.1)

Here t2 computes the correlation and s2 takes into account the variation in the trait
score. For a network with link weights wij, the mathematical expressions for t2 and
s2 used to compute homophily in trait scores {xi} are

t2 =
∑i>j wij(xi − x̄)(xj − x̄)

∑i>j 2wij
, (7.2)

s2 =
∑i>j wij

(
(xi − x̄)2 + (xj − x̄)2)

∑i>j 2wij
. (7.3)

The x̄ is an expected value of the trait score which takes link weight into account ,

x̄ =
∑i>j wij(xi + xj)

∑i>j 2wij
. (7.4)

In the following section, I present the results we obtained when studying homophily,
link duration, and network centrality in relation to narcissism trait scores in our
telecommunication data.

7.5 Our results: Correlations between narcissism scores and
social behavior

The manuscript of the present chapter is still in preparation and entitled “Investigat-
ing Homophily, Network Centrality, and Social-Connection Duration of Grandiose
Narcissists: Narcissistic Admiration and Rivalry in Big Data Social Networks”. I
coauthor this manuscript with psychologists and computational scientists.

In the study, we analyse behavioral patterns of narcissists using a data set of
telecommunication and physical proximity between undergraduate students. All
participants filled out questionnaires. Among the questions on these questionnaires
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were the 18 NARQ questions listed in Section 7.6. We count the number of interac-
tions between each pair of students. Interactions can take place via text messages,
calls, and physical proximity, and we use these to create social networks, which we
then analyse.

In the networks, we assign weights to social interactions using a social-amplification
parameter α ∈ R. When α = 0 the social network we create does not take into ac-
count the number of interactions between students – if a pair of students had any
interaction, we create a link between them with weight 1. This makes the adjacency
matrix of the form expressed by Eq. (4.1). When α = 1, the link weight between a
pair of nodes is precisely proportional to the number of interactions between them.
Whereas α = 0 did not take the frequency of interactions into account in assigning
link weights, choosing α = 2 amplifies the number of social interactions. In this
case, the social network only effectively contains links between the very strongest-
interacting dyads. The intermediate values of α interpolate between these extremes.

When investigating correlations between behavior and ADM scores, we find ev-
idence for homophily in ADM when only the most active links are considered (high
α). We see this in the networks created using text-message data and physical prox-
imity. We also find that ADM scores correlate with the number of different people
participants are in touch with via text messages and calls.

Psychologically the homophily in ADM can be understood as people high in
ADM seeking to par up with others “signalling greatness”, in agreement with one
hypothesis in the field. The high degree centrality in networks where all contacts are
weighted equally could indicate that people high in ADM like being at the center of
attention and successfully attract attention from others.

For RIV, we do not find any evidence of homophily. This could make sense psy-
chologically, with high RIV scores indicating a tendency for these people to rival.
For the RIV analysis, we find a mismatch between outgoing and ingoing commu-
nication for high social amplification in the text-message networks. Our analysis
indicates that high RIV scores correlate with a high volume of outgoing communica-
tion. Psychologically, this aligns with the hypothesis that, although people with high
RIV scores would like to be at the center of attention (and thus seek out attention),
they do not attract it from others.

We do not find evidence that the duration of social connections correlate with
any of the narcissism scores.

7.6 Paper: Investigating Homophily, Network Centrality, and
Social Connnection Duration of Grandiose Narcissists



NARCISSISM IN BIG DATA SOCIAL NETWORKS 1

In preparation:

Investigating Homophily, Network Centrality, and Social

Connnection Duration of Grandiose Narcissists: Narcissistic

Admiration and Rivalry in Big Data Social Networks

Ingo Zettler1, Jonas S. Juul2, Mitja D. Back3, Jochen E. Gebauer4, Albrecht C. P. Küfner5,

Jesper Dammeyer6, Sune Lehmann Jørgensen7, and Joachim Mathiesen8

1 Department of Psychology, University of Copenhagen, ingo.zettler@psy.ku.dk

2 Niels Bohr Institute, University of Copenhagen, jonas.juul@nbi.ku.dk

3 Department of Psychology, University of Münster, mitja.back@wwu.de

4 Mannheim Centre for European Social Research, University of Mannheim, and

Department of Psychology, University of Copenhagen, mail@jochengebauer.info

5 Department of Psychology, University of Münster, albrecht.kuefner@uni-muenster.de

6 Department of Psychology, University of Copenhagen, jesper.dammeyer@psy.ku.dk

7 Department of Applied Mathematics and Computer Science,

Technical University of Denmark, sljo@dtu.dk

8 Niels Bohr Institute, University of Copenhagen, mathies@nbi.ku.dk 

Author Notes:

Correspondence concerning this manuscript should be directed to Ingo Zettler, 

Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, 1353 

København K, Denmark. Fon: +45 35324850, e-mail: ingo.zettler@psy.ku.dk 

7.6. Paper: Investigating Homophily, Network Centrality, and Social Connnection
Duration of Grandiose Narcissists

143



NARCISSISM IN BIG DATA SOCIAL NETWORKS 2

Investigating Homophily, Network Centrality, and Social Connection Duration of

Grandiose Narcissists: Narcissistic Admiration and Rivalry in Big Data Social Networks

The construct of narcissism has attracted attention from researchers, practitioners, and 

laypeople alike. From a subclinical personality psychology perspective, “narcissism is a 

multifaceted personality trait encompassing individual differences in feelings of grandiosity 

and entitlement, and in striving for attention and superiority” (Back & Morf, 2019, p. X). On 

the most general level, people high in narcissism can be characterized by strong feelings that 

they are grandiose, unique, and entitled to deserve special. Under this umbrella—that is, 

people high in narcissism share these feelings—three aspects (or manifestations) of narcissism

can be distinguished: agentic, antagonistic, and neurotic narcissism (Back, 2018; see also 

Crowe, Lynam, Campbell, & Miller, 2019).

Whereas neurotic narcissism mainly refers to one’s need to get positive feedback from 

others, we herein focus on the aspects of Narcissistic Admiration (ADM; representing agentic 

narcissism) and Rivalry (RIV; representing antagonistic narcissism; Back, 2018). ADM and 

RIV refer to different social strategies how people high in narcissism aim to maintain their 

self-view of being grandiose: ADM captures “the tendency to approach social admiration by 

means of self-promotion” via striving for uniqueness or charmingness, for instance. RIV, by 

contrast, captures “the tendency to prevent social failure by means of self-defense” (both 

Back et al., 2013, p. 1015) via striving for supremacy or aggressiveness, for instance.

By linking people’s levels in ADM and RIV to Big Data derived from three 

smartphone activities indicating social interactions between people—sending/receiving text 

messages, making/receiving phone calls, and scanned Bluetooth connections indicating spatial

proximity—we herein investigate three research questions. First, is there homophily in ADM 

and RIV? That is, do people with similar levels in ADM and RIV, respectively, interact more 
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often with each other as compared to people with less similar levels in ADM and RIV, 

respectively? Second, are certain levels in ADM and RIV related to network centrality? That 

is, do people with certain levels in ADM or RIV hold central positions in social networks? 

Finally, are certain levels in ADM or RIV related to the duration of social connections 

between people? That is, do people with certain levels in ADM or RIV tend to have unusually 

brief or long connections with others? Although all research questions are tested from an 

exploratory point of view (because the data already existed when we started developing the 

research questions), we sketch the theoretical background concerning each research question 

in the following.

Narcissistic Admiration and Rivalry

According to the Narcissistic Admiration and Rivalry Concept (NARC; Back, 2018; 

Back et al., 2013), ADM and RIV capture different motivational and behavioral dynamics on 

how people high in narcissism seek to maintain their self-view of being grandiose. 

Specifically, people high in ADM are typically driven by assertive self-enhancement and can 

accordingly be characterized by feelings and behavior that boost their ego such as having 

grandiose fantasies, striving for uniqueness, and being charming and winning when 

interacting with others. People high in RIV, by contrast, are typically driven by antagonistic 

self-protection and can accordingly be characterized by feelings and behavior that protect 

their ego such as striving for supremacy over others, and being aggressive and devaluating 

when interacting with others. 

The idea of the NARC to disentangle ADM and RIV has been supported by several 

studies. For instance, Lange, Crusius, and Hagemeyer (2016) found that both ADM and RIV 

are related to envy, but that ADM is rather related to benign, whereas RIV is rather related to 

malicious envy. In a similar vein, Zeigler-Hill et al. (2019) found that both ADM and RIV 

indicate people’s pursuit of status, but whereas high levels in ADM indicate a use of 
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dominance- or prestige-based strategies to seek status, high levels in RIV indicate a use of 

dominance-based strategies only. Further, Wurst et al. (2017) found that short-term romantic 

appeal of narcissists can primarily be linked to ADM, whereas long-term romantic problems 

of narcissists can primarily be linked to RIV. And as a final example, Benson, Jeschke, 

Jordan, Bruner, and Arnocky (2019) found that people high in ADM tend to show self-

enhancing group affiliation (e.g., higher levels of social identity following ingroup success), 

whereas people high in RIV tend to show self-protective group devaluation (e.g., higher 

likelihood to expel group members following ingroup failure). 

Overall, although the NARC was introduced relatively recently (Back et al., 2013), the

so far accumulated evidence strongly points at the importance to differentiate between ADM 

and RIV. Both ADM and RIV refer to people’s inclination towards a grandiose self-view, 

explaining why correlations between these two narcissism aspects typically range around .30 

and .50 (Back, 2018). But whereas people high in ADM can be characterized by a more 

charming and assertive manner in order to seek self-promotion in particular, people high in 

RIV can be characterized by a more aggressive and devaluating manner in order to seek self-

defense in particular. Next, we speculate how ADM and RIV might be linked to homophily, 

network centrality, and the duration of social connections. 

Homophily

Homophily occurs if people with similar characteristics are more likely to be socially 

connected with each other as compared to people with less similar characteristics. Stated 

briefly, the main idea behind homophily—reflecting the idiom that birds of feather flock 

together—is that people who connect with each other (e.g., friends, romantic partners) share 

similar characteristics because similarity matches one’s need for a shared understanding and 

breeds liking (e.g., Byrne, 1971; Klohnen & Mendelsohn, 1998; McPherson, Smith-Lovin, & 

Cook, 2001). Importantly, it is theorized that homophily can occur as a blend of people’s 
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tendency to form social relations with similar others (i.e., social selection) as well as of 

people’s tendency to become similar to others with whom they have social relations (i.e., 

social influence; De Klepper, Sleebos, Van de Bunt, & Agneessens, 2010; Kandel, 1978).

Several studies have investigated the occurrence of homophily, covering very different

both characteristics and types of social relations. Concerning the former, sociodemographic 

factors (e.g., age, gender, height, weight), behavioural patterns (e.g., drinking, exercising, 

smoking), attitudes and worldviews (e.g., about politics and religion), as well as personality 

traits (e.g., the Big Five) have been considered. Concerning the latter, homophily has been 

investigated with regard to, e.g., intimate partners (often referred to as assortative mating; 

e.g., Luo, 2017), best friends (e.g., Giletta et al., 2011), rather closed school or military groups

(e.g., Ilmarinen, Lönnqvist, & Paunonen, 2016), large social networks (e.g., Ahmed, Jaidka, &

Cho, 2018), or even owner-dog dyads (Turcsán, Range, Virányi, Miklósi, & Kubinyi, 2012). 

Summarizing the vast amount of findings on homophily rather roughly, it seems that it

is particularly pronounced in sociodemographic factors, followed by behavioural patterns. 

Homophily has also been observed relatively consistently, although weaker, with regard to 

attitudes and worldviews, whereas results concerning personality traits are rather mixed (e.g., 

DeLay, Laursen, Kiuru, Salmela-Aro, & Nurmi, 2013; Lee, Ashton, Pozzebon, Visser, 

Bourdage, & Ogunfowora, 2009; Møllgaard et al., 2016; Rushton & Bons, 2005; Wu, 

Stillwell, Schwartz, & Kosinski, 2017). 

Narcissism and Homophily

Narcissism is a particularly fascinating personality trait with regard to homophily, 

because two opposing theoretical ideas have been put forward. On the one hand, research on 

interpersonal complementarity suggests that friendly-dominant behaviors are complementary 

with friendly-submissive behaviors (Orford, 1986). Thus, narcissists whose striving for 

dominance is expressed in a friendly manner may particularly affiliate with people high on 

7.6. Paper: Investigating Homophily, Network Centrality, and Social Connnection
Duration of Grandiose Narcissists

147



NARCISSISM IN BIG DATA SOCIAL NETWORKS 6

submissiveness, i.e., non-narcissists. Correspondingly, this line of theorizing suggests that 

complementarity rather than homophily governs the social relations of (friendly) narcissists. 

On the other hand, research on narcissists’ feelings of greatness suggests that 

narcissists often bemoan that they cannot find others on a par with their own greatness 

(Campbell & Foster, 2007). Consequently, they may be particularly interested in affiliating 

with others who, too, broadcast a sense of greatness. Correspondingly, this line of theorizing 

suggests that homophily might govern the social relations of (grandiose) narcissists.

A few studies have studied homophily with regard to narcissism, so far. Grosz, Dufner,

Back, and Denissen (2015), for instance, investigated whether homophily in ADM and RIV 

occurs in potential and actual intimate partners. In a vignette-study about the attractiveness of 

a fictitious partner for a short- (one-night stand) or long-term committed relationship, they 

found homophily for both narcissism aspects. That is, people high in ADM tend to find people

high in ADM more attractive, and people high in RIV tend to find people high in RIV more 

attractive (although much less so with regard to a long-term committed relationship, which we

will discuss later). These homophily effects for ADM and RIV could be replicated in a second

study with heterosexual couples, although for RIV the effects did not reach the threshold for 

statistical significance (arguably due to the relatively low sample size of N = 91 couples). In a 

similar vein, Lamkin, Campbell, van Dellen, & Miller (2015) found some support for 

homophily in grandiose narcissism in a sample of undergraduate couples. Also focusing on 

overall grandiose narcissism (i.e., not differentiating between agentic and antagonistic 

aspects), but considering best friends’ dyads, Maaß, Lämmle, Bensch, and Ziegler (2016) 

found support for homophily in narcissism as well. Overall, findings across these and other 

(e.g., Lavner, Lamkin, Miller, Campbell, & Karney, 2016) studies suggest a small, but existent

occurrence of homophily among grandiose narcissists. 
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Importantly, however, to the best of our knowledge no study to date has investigated 

homophily among narcissists—differentiating between ADM and RIV—in large social 

networks, and thus not focusing on close social relations (e.g., intimate partners, best friends) 

only. As stated above, we test for homophily in ADM and RIV in a large social network from 

an exploratory point of view. Considering previous theorizing and results, though, one might 

not expect to find homophily in RIV, because people high in this narcissism aspect can be 

characterized by devaluating others, which is arguably at odds with other narcissists’ 

(including those high in RIV) aim to maintain a grandiose self-view. Concerning ADM, it 

seems more difficult to state a clear expectation. On the one hand, the evidence so far 

indicates a relatively consistent support for (few) homophily in narcissism, which might apply

to ADM in social networks, too. The reasoning behind this could be that people high in ADM 

signal a sense of greatness and believe that only great others are on par with them—and 

because the self-view of being great is signaled in a rather positive, charming way towards 

others (as compared to RIV), people high in ADM might feel especially connected to each 

other. On the other hand, people high in ADM strive for uniqueness (even though in a 

charming way) and might thus particularly connect with others who do not share—and, in 

turn, question—such feelings of uniqueness, but who welcome that narcissists’ self-view of 

being grandiose is expressed in a socially positive way. From this perspective, there might be 

no homophily in ADM. 

Narcissism and Network Centrality

Grandiose narcissists (in both ADM and RIV) can be characterized by the self-view of 

being special and great. This self-view results in a desire to be and feelings of being entitled 

to be in the center of attention, as reflected in typical narcissism items such as “I manage to be

the center of attention with my outstanding contributions”, “I can barely stand it if another 

person is at the center of events” (both Back et al., 2013), or “I hate being the center of 
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attention” (reverse-coded; Jones & Paulhus, 2014). Surprisingly, though, whether narcissists 

actually happen to be in the center of attention (in terms of social networks) has hardly been 

investigated, so far. That is, it is an open question whether narcissists’ desire matches reality.

Indirect evidence about whether narcissists might happen to be in the center of social 

networks can be derived from the large body of research on narcissists’ popularity. In this 

regard, several studies have shown that narcissists are well-liked by others at zero and short-

term acquaintance, but that this popularity decreases over time. Moreover, Back, Küfner, and 

Leckelt (2018) recently summarized the current evidence on the (early) impressions of 

grandiose narcissists, again illustrating the importance to distinguish between agentic and 

antagonistic aspects of narcissism: Whereas agentic narcissism is typically evaluated 

positively and thus increasing popularity, antagonistic narcissism is typically evaluated 

negatively and thus decreasing popularity. 

Combining this evidence with the conceptualization of ADM and RIV, one might 

speculate that people high in ADM hold network centrality: They strive for social admiration 

by others, and their social strategies to reach this aim typically go along with increased 

popularity. Together, this should result in that people high in ADM are approached by more 

people (given their popularity) as well as that they approach more people (given their desire 

for social admiration), and, thus, network centrality overall. Concerning RIV, one might—

again—consider different links. Specifically, people high in RIV might not desire to be in the 

center of attention so strongly (although they do not think that somebody else would deserve 

it) and their aggressive, devaluating manner in dealing with others might lead to social 

conflicts and less popularity overall. Consequently, it seems unlikely that people high in RIV 

are approached by many others; we can only speculate about whether they actively approach 

many others—they might do it in order to devaluate them or they might refrain from it in 

order to avoid their ego be threatened by social exposure.
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Narcissism and Duration of Social Connections

As already mentioned, research on the popularity of narcissism strongly suggests that 

narcissists are popular at zero and short-term acquaintance, but that this popularity decreases 

over time (Back et al., 2018), including that narcissists are considered to be a less attractive 

partner in the long run (Grosz et al., 2015). Studies relying on the NARC also suggest that the

short-term popularity is rather driven by ADM, whereas the continuingly decreasing 

popularity is rather driven by RIV. Based on these findings, we finally investigate whether 

people’s levels in ADM or RIV are related to unusually brief or long social connections. In 

this regard, one might wonder whether narcissists have rather brief social connections with 

others overall, because people in social networks might turn away from narcissists once their 

egotistic self-views are (too) clearly reflected in behavior. Such a pattern might occur with 

RIV in particular, because this aspect goes along with less socially behavior. To put it bluntly: 

It appears unlikely that many people in a social network tend to continue having social 

connections with people high in RIV, if they are being aggressively devaluated over time. 

Concerning ADM, it seems more difficult to state clearer expectations. It might be that others 

turn away from people high in ADM, too, but it might as well be that people high in ADM are

able to maintain their social relations normally, because they do not repel others that actively. 

At the same time, people high in ADM (as well as in RIV) might also turn to other people 

from time to time, simply because they might strive to get social admiration from (additional) 

others (ADM) and because they might aim to devaluate (additional) others, respectively.   

The Present Investigation

Overall, we link people’s levels in ADM and RIV to (1) homophily, (2) network 

centrality, and (3) duration of social connections, derived from Big Data across three modes 

of communication (text messages, calls, spatial proximity) in a large social network. In so 

doing, we are fully in line with recent narcissism research, consistently corroborating the 
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importance to distinguish between agentic and antagonistic narcissism aspects. We further 

crucially contribute to the literature by making use of Big Data from a large social network, as

compared to the vast majority of studies focusing on homophily or popularity of narcissists 

with regard to romantic partners (e.g., Wurst et al., 2018)), best friend-dyads (e.g., Maaß et 

al., 2016), or smaller groups (e.g., Leckelt et al., 2015). 

Open Science Statement

As described in the Methods section in more detail, we investigate our research 

questions using a data set that was collected from September 2013 onwards. Before the start 

of the data collection, no hypotheses concerning narcissism in general or ADM and RIV in 

particular were stated. The research questions were developed at the end of the year 2018, 

after all data had been collected already. Although the research questions were derived from 

previous literature and although no analyses involving ADM and RIV had been conducted 

before finalizing the research questions, we thus conducted all analyses from an exploratory 

point of view.

On the Open Science Framework (OSF), we provide the full list of the administered 

questionnaires, the analysis script (in Python), and results from additional analyses. We do not

provide the data set used for the analyses, though, because this would make it possible to 

identify participants. Specifically, the Bluetooth information (see below) would allow to 

locate participants at a certain time, e.g., facilitating to locate their place of living. 

Methods

Procedure and Participants

Data for this investigation stem from the SensibleDTU experiment. This experiment 

ran from 2013 to 2017 as part of the Social Fabric project (https://sodas.ku.dk/projects/social-

fabric/), a collaborative project of two Danish universities (the Technical University of 

Denmark, DTU; the University of Copenhagen, UCPH). Participants of the SensibleDTU 
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experiment were 730 DTU first-year bachelor students from the natural and technical 

sciences. Each participant received a smartphone at the beginning of the academic year 2013-

2014. The smartphones came with an app that collected information about participants’ 

smartphone activities. Relevant for our study, the app registered how many text messages a 

participant sent or received to other participants, how many phone calls a participant made to 

or received from other participants, as well as when two smartphones from the participant 

pool showed a Bluetooth connection.

For this investigation, we use the same dataset as in Møllgard et al. (2016) that 

includes questionnaire responses and smartphone activities from 659 students (76% male, 

mean age = 21.5, SD = 2.8 years). This dataset only includes participants for which 

smartphone activities could be recorded for a minimum of three months and for which a 

minimum amount of communication activities could be recorded. Specifically, Møllgard et al.

required for each participant to be included that min. 950 text messages, 170 calls, and 200 

hours of Bluetooth interactions were recorded. These thresholds were based on the average 

communication activities that could be observed for one person in a three-month period in the

SensibleDTU data. For the sample used herein (as well as in Møllgard et al.), smartphone 

activities could be retrieved for 530 days on average starting on September 1st 2013.

Prior to receiving a smartphone, participants completed an online questionnaire, 

including demographic items as well as the Narcissistic Admiration and Rivalry 

Questionnaire (Back et al., 2013).1 Table 1 in the OSF provides an overview of all measures 

included in the online questionnaire. The Danish Data Protection Agency provided ethical 

1 Participants were also asked to fill out three follow-up surveys. For the current 

investigation, we use questionnaire data from the first measurement occasion only, (1) 

because this allows to more clearly test whether ADM and RIV affect homophily and network

centrality, and (2) because high drop-out rates of the follow-up questionnaires hamper 

investigating bidirectional or change-oriented patterns nonetheless.
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approval for the SensibleDTU experiment (reference number: 2012-41-0664), and each 

participant provided informed consent before both filling out the questionnaire and receiving 

the smartphone. 

Dataset 

Several studies across fields have already used data from the SensibleDTU experiment

(e.g., Mønsted, Møllgaard, & Mathiesen, 2018; Sekara, Stopczynski, & Lehmann, 2016; 

Stopczynski et al., 2014). Notably, none of those studies reported any results on narcissism. 

Fortunately, though, one study investigated homophily (regarding demographics, behaviors, 

attitudes, and basic personality traits, but not regarding narcissism; Møllgard et al., 2016). We 

could thus adopt that study’s data analytic strategy for the analyses concerning homophily. 

None study using this dataset linked personality characteristics to network centrality or the 

social connection duration, though. 

Measures

Narcissistic admiration and rivalry. Narcissistic admiration and rivalry were 

measured via the 18-item Narcissistic Admiration and Rivalry Questionnaire (NARQ, Back et

al., 2013), including the 9-item Narcissistic Admiration (ADM) and the 9-item Narcissistic 

Rivalry (RIV) subscales. Sample items are “I am great” (ADM) and “Most people are 

somehow losers” (RIV). Participants responded on a 6-point Likert scale ranging from 1 (not 

agree at all) to 6 (agree completely). The NARQ was translated from English into Danish for 

the SensibleDTU experiment. For ADM, the mean in our sample is 3.31 (SD = 0.78), and for 

RIV, the mean is 2.16 (SD = 0.70). The intercorrelation between ADM and RIV was r = .33 

(CI: [0.27,0.40])  and, thus, similar to the intercorrelation found in previous studies (Back, 

2018).

In the light of the empirical and theoretical—both ADM and RIV are aspects of 

grandiose narcissism—overlap, previous research has discussed the implications of using 
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either the ‘pure’ measures of ADM and RIV or estimates controlling for the shared variance 

between them (e.g., Leckelt, Richter, Wetzel, & Back, 2019). More precisely, when the pure—

i.e., non-residualized—measures are used, both measures represent people’s levels in 

maintaining a grandiose self, complemented by individual differences in doing so via agentic 

narcissistic self-presentation in the ADM scale, and complemented by individual differences 

in doing so via antagonistic narcissistic self-defense in the RIV scale, respectively. By 

contrast, when the residualized measures are used—i.e., when each of the measures ADM and

RIV is controlled for the shared variance between ADM and RIV—, the measures particularly

reflect individual differences in the different social strategies to maintain a grandiose self: 

agentic narcissistic self-presentation (ADM) and antagonistic narcissistic self-defense (RIV), 

respectively. Herein, we deem it more important to focus on the different social strategies, 

because all homophily, network centrality, and social interaction duration theoretically refer to

how people with different levels of narcissism approach and are approached by others. 

Consequently, in the main document, we present the analyses for the ADM and RIV estimates

controlled for the shared variance between them. To do so, we rely on the residulization 

method (see Paulhus & John, 1998); that is, predicting ADM by RIV and using the residual 

for the following analyses, and vice versa. On the OSF, we present the analyses using the pure

(non-residualized) measures of ADM and RIV.

Homophily.

Interactions between participants. In order to measure homophily (as well as network 

centrality and social interaction duration), we use the same three indicators of interactions 

between participants as Møllgard et al. (2016). Specifically, interactions between participants 

were assessed via text messages, phone calls, and spatial proximity. Text messages refer to the

number of texts exchanged via short message service sent to/received from other participants 

(average number of text messages sent/received 247, SD = 557, range 1-7,734). Phone calls 
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refer to the number of phone calls made to/received from other participants (average number 

of phone calls made/received 53, SD = 89, range 1-1,029).2 Finally, spatial proximity refers to 

scanned Bluetooth connections. Specifically, each smartphone scanned every five minutes 

through the Bluetooth ports for smartphones belonging to other participants. The strength of 

the Bluetooth signal scanned is subsequently converted to a measure of proximity. Note that 

one cannot determine who “approached” whom via the proximity data (that is, there are no 

senders or recipients for these data). In line with Møllgard et al., we treat the data and 

resulting networks from the three interaction indicators separately, and simply refer to them as

SMS, call, and Bluetooth data or network in the following. Generally, any interaction between

a participant and a person outside the participant pool is not considered for the analyses. 

Measuring homophily in networks created using the social-amplification parameter α. 

Based on the interactions between participants, we measure homophily using the homophily 

measure introduced by Møllgaard et al. (2016). To measure homophily, we first need to 

convert the raw data into a social network. To this end, we use a tunable link weight α, to 

which we refer to as the social-amplification parameter. Whereas the social-amplification 

parameter was briefly—and with a focus on the statistical details—introduced by Møllgaard 

et al. (2016) already, we provide a more detailed introduction in the following. 

The social-amplification parameter controls how interactions with different strengths 

are weighted. Specifically, people in the network can interact more or less strongly with each 

other (e.g., Participant A might have exchanged 100 text messages with Participant B, but 

only 20 with Participant C). Now, each edge in the network—i.e., interaction between two 

people i and j—gets some weight, wij(α), and to which degree this weight mirrors the different

strengths of the interactions is tunable via the social-amplification parameter α.3 

2 We could not assess the number of text messages and phone calls exchanged via 

third-party apps (e.g., Facebook, Skype, Telegram, WhatsApp) 
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Measuring homophily in the SMS and call networks. For the SMS and call networks, 

the following weight is assigned to the edge describing communication going from participant

i to participant j,

wij (α )=nij
α
/∑

i , j

❑nij
α .

In this formula, nij
❑

 is the observed number of text messages (or calls respectively) 

going from participant i to participant j over the course of the study. α  is the tunable 

social-amplification parameter that can take any value, but we will only consider positive 

values herein. Depending on the value of α , relations between people of different strengths

dominate the homophily analysis. Specifically, a large value of α  increases the weight of 

the strongest links compared to the weight of weaker ones. In such an analysis (with a large 

value of α), measuring homophily in the resulting network represents measuring homophily 

between the strongest connected individuals in the network (i.e., dyads that exchanged many 

text messages with each other or that had many phone calls with each other, respectively), and

practically ignoring weaker ties (dyads who hardly interacted with each other). In an analysis 

with a low, positive value of α , by contrast, weights of strong and weak ties are considered

similarly. Thus, measuring homophily in the resulting network represents measuring 

3 Other measures of homophily have been used in the literature (e.g., Maaß et al., 

2016; Schönbrodt, Humberg, & Nestler, 2018; Van Zalk, Nestler, Geukes, Hutteman, & Back, 

2019). For our data and research questions, though, the measure of homophily as introduced 

by Møllgaard et al. (2016) is particularly suited. The main reasons are that (a) this measure 

represents a homophily measure for an entire network at once—and, e.g., not only considers 

homophily with regard to a few explicitly stated interaction partners such as one’s three best 

friends. Further, the measure is tunable with regard to how to weigh interactions (social 

relations) of different strengths, allowing to investigate homophily at different intensity levels 

of social interactions.
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homophily between all people, while to some degree disregarding the strength of the tie 

between the people in question. If α  equals unity (i.e., 1), the weight of a link between two

people is exactly proportional to the frequency of the interaction between them. Figure 1 

illustrates the social amplification parameter with the example of the actual data from the call 

network, and Table 1 summarizes how to interpret values of the social-amplification 

parameter.

 

Figure 1. Illustration of the social-amplification parameter α via the actual data from 

the call network. In panel a) and b) we show the call network for the 50% most strongly 

connected participants (i.e., those 50% dyads of participants that called each other more often 

than the other 50% of the dyads). In panel a), the links all have the same weight with α=0

. Consequently, it does not matter whether people have called each other, say, 60 or 600 times,

each edge is considered equally. In panel b), α is set to 2, so that only a few—namely, the 

strongest—links dominate the network (we have colored the links according to weight such 

that the darkest links have the largest weights). In panel c), we consider the average weight 

for the 10 strongest links for all participants in the study. Before doing the average, the links 

have been ranked according to weight such that in the plot, the links with the largest weights 

are leftmost (having the lowest rank). Again, when α=0 , the 10 links have the same 

weight, and for α=2 , the link with the largest weight dominates over the others.
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Table 1

Interpretation of Values of the Social-amplification parameter ( α )

Social-amplification
parameter (α)

Interpretation Fictitious example 
(referring to the call network)

Implications for homophily measure

α=0 very small All links with any activity carry 
equal weight in the analysis.

Dyads that called each other 10 times 
get the same weight as dyads that called
each other 100 times.

Reflects whether homophily is present
when all interactions are considered 
equally.

α=1 intermediate All links carry weight exactly 
proportional to observed activity.

Dyads that called each other 10 times 
get a weight being 10% of the weight of
dyads that called each other 100 times.

Reflects whether homophily is present
when the network mirrors exactly the 
actually observed frequency of social 
interactions between people.

α=2 very large Links with much activity carry 
disproportionally larger weights 
than links with no or little activity. 
Effectively, only the strongest links
are considered in the analyses.

Dyads that called each other very often 
(say, more than 100 times) get a 
disproportionally large weight; dyads 
that called each other less often get a 
disproportionally small or even 
effectively no weight at all. 

Reflects whether homophily is present
at dyads having many social 
interactions. 
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Estimating homophily in the Bluetooth data. The Bluetooth data are different than the 

SMS and call data in that they consist not of a number of timestamps indicating when 

messages or calls were received by participant i. Instead, the data consist of a number of 

Bluetooth scans, separated by time intervals Δt . For each scan, all devices registered by 

the phone of the user are saved together with the time of the scan, and a parameter indicating 

the distance between the two devices. If two consecutive scan register the same device within 

a distance of 3 meters, we assume that the two users have spent the full Δt  in proximity of 

each other. We define T ij as the total amount of time user i and j spent together over the 

course of the data collection according to this definition, and create the proximity network by 

assigning the link between nodes (i.e., participants) the weight

wij (α )=T ij
α
/∑

i , j

❑T ij
α .

Besides not being able to differentiate between sender and receiver, however, the 

proximity data can be interpreted similarly than the text message and the call network. 

Using α, Møllgaard et al. (2016; Figure 4) also reported the correlations between the 

three different networks. They observed that the SMS and call networks correlated around .

70-.80 across all levels of α (with a peak at rather small levels of α, < .5). Further, the 

correlation between the SMS and Bluetooth networks and the correlation between the call and

Bluetooth networks were very similar to each other. However, these correlations were much 

smaller than the correlation between the SMS and call networks. Specifically, for 

SMS/Bluetooth and call/Bluetooth, the correlations increased from around .10 at low levels of

α (0) to around .50 at levels of α of around .7. Then, the correlations dropped gradually (up to 

α = 2) to around .30. Overall, the SMS and call networks might thus be considered as 

relatively similarly to each other, whereas the Bluetooth network is a bit more different, 

especially at lower levels of α.
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Testing for significance of homophily. As described above, for each network—SMS, 

call, and Bluetooth—we can get a homophily measure for the entire sample, depending on 

how interactions with different strengths between participants are weighted. We then check 

for the significance of the homophily measure by comparing it to the measure of simulated 

null models. Specifically, we simulate null models in which the network structure is kept—

i.e., that the overall number and kind of interactions remains the same—, but the participants 

shuffle node positions (i.e., with whom they interact how often) randomly on the network. We

then test if the homophily measure on the original network (for any of the tunable α) is more 

extreme than the typical measure obtained from the simulated networks (i.e., the networks 

with randomly assigned network positions to people). An illustration of how homophily is 

tested in the analyses is presented in Figure 2. 

Figure 2. Illustration of testing for the significance of homophily in the data (see text 

for details). 
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At the top of Figure 2, one can see that the observed communication network consists 

of an integer number of interactions between people. For the SMS and call data the direction 

of each interaction is known, and this is indicated by a directed arrow in the figure (in the 

drawn example, the orange node initiated interaction with the red node 3 times). From these 

raw data, we create a network for the analyses by specifying link weights wij using the known 

interactions, and a chosen value of the social-amplification parameter α. With the resulting 

network, we can compute the actual value for the homophily measure of the observed 

network. To get a null-distribution for the homophily measure, we take the network created 

using the chosen value of the social-amplification parameter, and shuffle participants’ ADM 

and RIV scores, respectively, among the nodes (one could shuffle participants based on any 

characteristic, of course). In other words, we keep the nodes and links fixed, but redistribute 

the ADM or RIV scores between the nodes. Computing the homophily measure for this 

network and distribution of participants’ ADM or RIV yields one out of the 104 homophily 

measures that we use for the null distribution. We thus save the resulting homophily measure, 

shuffle the participants’ ADM or RIV scores again, compute the new homophily measure, and

repeat this process until all 104 measures that make up the computed null distribution are 

obtained. The null distribution serves as a null hypothesis: It indicates the frequency with 

which different values would be obtained, if the ADM and RIV scores were randomly 

distributed among the people in the social network. The null hypothesis is thus ‘there is no 

more homophily than if the ADM or RIV scores were randomly distributed’. If the actually 

observed (‘real’) homophily measure is sufficiently extreme relative to the random scores, we 

reject the null hypothesis that there is no homophily in the network.
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Network Centrality. In order to investigate network centrality, we use a simple 

measure for centrality: the degree of the node. This measure is usually referred to as ”degree 

centrality”, and in the SMS and call network, two degrees exist for each node: in-degree 

(receiving text messages and phone calls, respectively) and out-degree (sending text messages

and calling others, respectively). Given link weights wij (α ) , the alpha-dependent in-degree 

of node i is d i
recipient ( α )=∑

j

❑w ji (α )  and the alpha-dependent out-degree of node i is

di
sender ( α )=∑

j

❑wij (α ) . To assess whether degree centrality correlates with scores in ADM 

or RIV, we define the following measure

rd
X ( α )=∑

i
(s i−ś )d i

X (α ) .

In this formula, X can be replaced by either ”sender” or ”recipient” depending on 

which kind of degree we use, s i  is the respective ADM or RIV score of node i, and ś  is 

the average ADM or RIV score of the participants. A link will contribute positively to the sum

if the focal node (i.e., target participant in question) has an ADM or RIV score above the 

average ADM or RIV score in the population and vice versa. Replacing X by ”sender” makes 

the focal node the node initiating the communication, and replacing X by ”recipient” makes 

the focal node the node that is being contacted by others. For the proximity network, we do 

not know which node initiates the proximity, and therefore d i
sender ( α )=d i

recipient (α ) , and 

consequently rd
sender (α )=rd

recipient (α )  in for the proximity network.

Social interaction duration. In order to assess whether a specific ADM or RIV score 

correlates with having social interactions with shorter or longer duration, we measure the 

average in-link duration of each node. For the SMS and call networks, we define the duration 

of a link from node i to node j as being the length of the time interval between message 
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number nij /4  and message (call) number 3nij /4 . The first number rounded up, and the 

second down to the nearest integer. We denote the average in-link duration for node i as t i , 

and define the following measure to assess whether average in-link duration correlates with 

ADM or RIV scores,

τ=∑
i

(si−ś ) t i .

Results

Homophily.

Figure 3 shows the results concerning homophily in ADM and RIV in the three 

different networks (SMS, call, and Bluetooth), depending on different values of the tunable 

social-amplification parameter α. In each plot, there is a full, colored curve as well as a 

colored area with three different shades. The full, colored curve indicates the actual value for 

the homophily measure, and the shaded areas indicate commonly chosen confidence intervals 

derived from the null distribution of the 104 homophily estimates. The darkest shade of the 

marked area indicates the 68% of the null distribution closest to the median of the null-

distribution. These are the “least extreme” values of the null distribution. The two darkest 

shades cover the 95% least extreme values, and all three shades cover the 99% least extreme 

values of the null distribution. Practically speaking, the estimate for homophily is significant 

when the full colored curve is above or beyond (i.e., “outside”) the three shades on a p < .01 

level, and on a p < .05 level when it is outside the middle shaded area. 
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Figure 3. Homophily estimate (r) as a function of the social-amplification parameter α.

Concerning Narcissistic Admiration, Figure 3 shows that people generally tend to 

exchange more text messages with similar than dissimilar others, and that this is particularly 

pronounced when interactions between people are weighted in line with their strengths 

(around α = 1) or when only edges with many interactions are considered (i.e., further 

increasing α values). Further, there is evidence that people interact more often with others 

having similar ADM-levels as themselves in the Bluetooth network, again particularly when α

is 1 or higher. By contrast, there is no indication of homophily in the call network whatsoever.
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Overall, data from the SMS and Bluetooth network support that there is homophily for ADM, 

especially when weak links between people are disregarded or neglected.

Concerning RIV, there is again no indication of homophily in the call network. 

Further, but contrary to the results concerning ADM, there is also no indication of homophily 

in either the SMS or proximity network. Concerning the latter, though, when dyads who show

a high level of proximity are considered in particular (α-levels of around 1.5 or higher), 

homophily tends to get closer to the threshold of p < .05. Overall, there is strong indication for

homophily of ADM in the SMS and the proximity network, but not in the call network. Also, 

there is no observed homophily concerning RIV across the networks.

Network Centrality

With regard to network centrality, Figure 4 shows the correlations between the ADM 

and RIV scores and in-degree centrality in the SMS and call networks (i.e., receiving text 

messages and phone calls), as well as the centrality in the proximity network (in which one 

cannot distinguish between in- and out-degree centrality), depending on the social-

amplification parameter α . 
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Figure 4. Correlation between in-degree centrality (in the SMS and call networks) as 

well as centrality (in the Bluetooth network) and ADM and RIV scores for networks 

depending on the social-amplification parameter α . 

As can be seen in Figure 4, in-degree centrality correlates more with ADM than would

be expected for a population with randomly distributed ADM scores in both the SMS and the 

call network with low values of α . With increasing values of α, this effect vanishes in both

networks. That is, when all—including less frequently occuring—interactions between people

are considered, those with higher levels in ADM receive more text messages and calls by 

others (than expected by chance). Concerning, RIV, there is no indication of a correlation with
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in-degree centrality in the call network (irrespective of α), whereas there is an indication that 

RIV scores correlate negatively with the number of text messages received for an intermediate

range of values of the social-amplification parameter (α between approx. 0.5 and 1.5). 

Concerning the proximity network, there is no indication of network centrality for either 

ADM or RIV, irrespective of how links are weighted. Thus, people with particular ADM or 

RIV-levels are not more often in physical proximity with others, irrespective of whether dyads

with weak links are in- or excluded in the analyses. 

Next, Figure 5 shows the results for out-degree centrality, i.e., sending text messages 

and calling others, respectively. 

Figure 5. Correlation between out-degree centrality and ADM and RIV scores for 

networks depending on the social-amplification parameter α . 

The plots in Figure 5 strongly indicate that out-degree correlates positively with ADM 

scores in both the SMS and the call network with low values of α . That is, if dyads are 

weighted equally (i.e., no matter how many calls or text messages were sent across these 
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dyads), high out-degree correlates with high ADM scores. With increasing levels of α, though,

these effects vanish. In other words, people with higher levels in ADM tend to send text 

messages to a larger number of people as well as call a larger number of people than would be

expected by chance if and only if all interactions between people are considered and weighted

equally, thus independent of frequency.

With regard to RIV, there is indication in both the SMS and the call network that for 

increasing values of α (starting around ≈ 1.5) out-degree positively correlates more with RIV 

scores than would be expected at random. That is, when weak links between people are 

neglected, RIV scores correlate positively with the number of text messages sent and calls 

made to other people. In the call network, this finding falls even on the border of p < .01 at 

high values of α.

Overall, the results concerning network centrality indicate that both in- and out-degree

centrality correlate with ADM in both the SMS and the call network for low values of α. More

practically, people with high levels in ADM tend to receive and send more text messages to 

others as well as receive from and make more phone calls to others when all interactions are 

considered equally, independent of frequency. Concerning RIV, the pattern is more mixed: For

in-degree centrality, there is no effect in the call network, but around α ≈ 1.5, people with 

higher values in RIV tend to receive less text messages. For out-degree centrality, though, 

people high in RIV send more text messages to others and make more phone calls to others, 

again when weak ties are neglected. There is no indication that specific levels in ADM or RIV

are related to specific levels in proximity between people whatsoever. 

Social interaction duration

Finally, Figure 6 shows the results concerning the correlation between ADM and RIV 

scores and social interaction duration. That is, the question is whether specific scores in ADM 
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or RIV are related to a specific duration of an interaction between people. Vertical black lines 

are actual τ -values—i.e., the actual average duration of an interaction between two people 

in the corresponding network—, and the histograms indicate null distributions consisting of 

104 τ -values obtained by redistributing ADM or RIV scores uniformly at random. Again, 

we indicate how large a fraction of the null distribution takes more extreme values than the 

observed, actual value as the p-value, and color the more extreme values with grey. As can be 

seen in Figure 6, there is no indication that specific levels in ADM are linked to a particularly 

brief or long time of interaction with others (p = .21 in the SMS, p = .22 in the call network, 

and p = .06 in the Bluetooth network). In other words, the actually observed values 

concerning the link duration of people with specific levels in ADM is not more extreme than 

could be expected from the null distribution. The same—null—finding applies to levels of 

RIV in the call (p = .23) and Bluetooth (p = .37) networks: Specific levels in RIV are not 

related to a specific link duration between people. On the other hand, there is indication in the 

SMS network that people with higher levels in RIV send to and receive from people a higher 

number of text messages over a longer time period. 
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Figure 6. Correlation between in-link duration and ADM and RIV scores. The vertical 

black line indicates the actual value of the measure τ , and the histograms are 104 values 

obtained by distributing the ADM and RIV scores uniformly at random among the network 

nodes. The grey area marks the values more extreme than the actual observed τ value, and 

the p value is the fraction of histogram values that are located in the grey area.

General Discussion
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The personality construct of narcissism has been linked to various outcomes for 

individuals, groups, and societies. Correspondingly, research has for a long time accumulated 

knowledge on the structure and core components of narcissism (e.g., Crowe et al., 2019). 

Currently, it is well accepted that three aspects of narcissism can be distinguished: Next to 

neurotic narcissism, this is agentic and antagonistic narcissism. For these, the respective 

subscales of the NARC (Back, 2018)—Narcissistic Admiration (ADM) representing agentic 

narcissism and Narcissistic Rivalry (RIV) representing antagonistic narcissism—are well-

established operationalizations. 

Whereas research on Narcissism in general and on ADM and RIV in particular has 

been flourishing recently, the current investigation contributes to the literature by linking 

people’s levels in ADM and RIV to social outcomes in a freshmen population followed for 

some months. Specifically, via deriving Big Data from three modes of communication—

namely, text messages, calls, and spatial proximity—, we investigated whether ADM and/or 

RIV are linked to homophily, network centrality, and the duration of social connections. 

Overall, results indicated some links between ADM and/or RIV to homophily, network

centrality, and the duration of social connections. Importantly, though, such links appeared not

across all networks consistently. For instance, we found support for homophily of ADM in the

SMS and the proximity network, but we found neither an indication for homophily 

concerning ADM in the call network, nor for homophily concerning RIV at all. Relatedly, we 

found both in- and out-degree centrality for both ADM and RIV. Again, however, results were

neither fully consistent across the narcissism aspects, nor across the three networks. With 

regard to the duration of social connections, results were more consistent such that we 

observed hardly any support for the idea that ADM or RIV are linked to the duration of social 

networks; with the exception that people with higher levels in RIV send to and receive from 

people a higher number of text messages over a longer time period. 
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Strengths and Limitations

Our study has several strengths and limitations. From a conceptual perspective, a main

strength is that we linked the timely, but already widely supported aspects of ADM and RIV 

to “objective” Big Data. That is, we linked people’s self-reports in ADM and RIV to observed,

and thus clearly objectively measurable behavior (e.g., how many calls a person makes). In 

the Big Data, we were even able to use data from three modes of communication (SMS, call, 

proximity), allowing to test whether any observed finding generalizes across the modes of 

communication. Finally, we targeted the analyzing methods to the research questions and data

and hand, thereby overcoming limitations from previous methods. In particular, we provided a

more detailed introduction of the social-amplification parameter α  (which has been 

introduced by Mollgard et al., 2016) which allows to investigate homophily and network 

centrality while considering (or rather: weighing) different strengths of social interactions 

differently. We believe that the social amplification parameter provides a strong contribution 

to the (psychological) literature, given that homophily has typically been investigated by 

focusing on a small number of well-defined dyads only (e.g., best friends dyads; e.g., Maaß et

al., 2016).

On the other hand, two limitations of our investigation deserve attention. First, our 

sample was rather specific (mostly male freshmen from a Technical University), which might 

not automatically show a generalizable variety in terms of ADM and RIV, and, even more, 

communication patterns. Second, we had to focus on homophily, network centrality, and the 

duration of social interaction within the sample. However, it might be that some participants 

showed homophily or network centrality outside the university setting. In concert, both 

limitations suggest aiming to replicate our investigation with a more diverse sample: 

concerning both the composition of the sample and the different social networks in which a 

person can show homophily and network centrality. 
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Conclusion

This study sheds light on some aspects concerning narcissists, with regard to agentic 

and antagonistic narcissism. Concerning ADM, we found that people’s levels can be linked to 

homophily, namely in the SMS and Bluetooth network – in particular, when only strong links 

(i.e., a high social amplification parameter) are considered. So, agentic narcissists tend to 

interact more strongly with each other (via SMS) and to show higher levels of proximity. We 

further found that, when all interactions are considered equally (i.e., low social amplification 

parameter), agentic narcissists tend to receive and send more text messages to others as well 

as receive from and make more phone calls to others. These findings can be explained by 

previous theorizing suggesting that narcissists tend to believe to par up with others who also 

signal greatness (i.e., homophily) as well as that agentic narcissists not only want to be the 

center of attention, but also attract attention by others (arguably due to their attractive, 

charming manner). Concerning RIV, we found no strong signs of homophily, which fits to the 

idea that these people are antagonistic (and do not want to pair up with a specific kind of 

others). Concerning network centrality, we found that at around α ≈ 1.5, people with higher 

values in RIV tend to receive less text messages. Further, we found that people high in RIV 

send more text messages to others and make more phone calls to others (when weak ties are 

neglected). Together, these findings are in line with the idea that people high in RIV seek for 

attention (due to the underlying narcissistic theme), but have to actively aim for it, because. 

their antagonistic manner makes it less likely that others actively aim to communicate with 

them. Clearly, future research might pick up these findings and further illuminate how ADM 

and RIV are different aspects of narcissism. More generally, this study illustrates how linking 

established personality constructs to objective Big Data is a fruitful path for increasing our 

understanding of human behavior. 
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Chapter 8

Gender-specific behavior change
following terror attacks

“Acts of terrorism constitute one of the most serious violations of the universal
values of human dignity, freedom, equality and solidarity, and enjoyment of
human rights and fundamental freedoms on which the Union is founded. They
also represent one of the most serious attacks on democracy and the rule of law,
principles which are common to the Member States and on which the Union is
based.”

— European Parliament and Council of the European Union, 2017

Terrorist attacks constitute severe threats against civilians and societies. The quote
opening this chapter illustrates the seriousness with which the European Union
treats this threat. Although authorities take the threat seriously, terror attacks fre-
quently happen in Europe and the rest of the world. In the period from 1950 to 2004,
11, 245 terror events took place in Western European countries (Engene, 2007). Fig-
ure 8.1 illustrates the frequency of these terror attacks as a function of time. We do
not find evidence that the duration of social connections correlate with any of the
narcissism scores.

In their definition of terrorist offences, the European Parliament and Council of
the European Union list 3 aims (Parliament and European Union, 2017). If an offence
is committed with any of these aims, it qualifies as a terrorist offence. These aims
(quoted from (Parliament and European Union, 2017)) are,

1. seriously intimidating a population;

2. unduly compelling a government or an international organisation to perform
or abstain from performing any act;

3. seriously destabilising or destroying the fundamental political, constitutional,
economic or social structures of a country or an international organisation.

The first of these aims is very interesting. While some consequences of an attack,
such as fatalities, injuries, and material costs, are easy to quantify, the impact the
attack has on the general population is more challenging to compute. In fact, how
the broader population reacts to terror attacks remains an open question. In collabo-
ration with psychologists at the University of Copenhagen, computational scientists
at the Technical University Denmark and Department of Social Sciences, University
of Copenhagen, and Joachim Mathiesen at the Niels Bohr Institute, I have sought to
quantify how terror attacks affect the behavior of citizens in Western Europe.



182 Chapter 8. Gender-specific behavior change following terror attacks

FIGURE 8.1: The frequency of terror attacks in 18 Western European
countries as a function of time. Figure from (Engene, 2007).

8.1 Previous work on behavior following terror attacks

Many of the existing studies on the impact of terror attacks on the broader pop-
ulation rely on data collected following the event. Two questionnaire-based stud-
ies investigated, among other things, the impact that living in Israeli areas with
high exposure to terror attacks has on behavior and emotions (Oppenheimer, Villa,
and Apter, 2011; Korn and Zukerman, 2011). The participants with high expo-
sure to terror events perceived themselves as more cautious, one study concluded,
while the other found the participants to show a higher degree of avoidance be-
havior. One of these studies, a self-report study focusing on adolescents, found
a higher degree of terror-related stress responses among females and news con-
sumers (Oppenheimer, Villa, and Apter, 2011). Gender differences were reported
in other questionnaire-based studies with Israeli participants, too. These include in-
creased self-reported risk-taking behavior among men frequently exposed to terror-
ism (Pat-Horenczyk et al., 2007) and increased depressive and post-traumatic symp-
toms among women (Solomon, Gelkopf, and Bleich, 2005).

Some psychological studies have focussed on the impact of the 9/11 attacks in
New York City, 2001. In a nationwide online survey, one team of researchers found
some demographic factors to correlate with psychological outcomes (Silver et al.,
2002). The authors found that, among other things, high levels of symptoms of post-
traumatic stress were associated with being female and with having pre-attack diag-
nosed depression or anxiety. Another study reported that after single events, such
as the 9/11 attack, stress-symptom frequency returns to ordinary levels after only a
short period of time (Schlenger, 2005).

Some studies have examined the behavioral impact of terror attacks using objec-
tive data or real-time data. One study found that the use of the New York subway
decreased when the terror-alert level was increased (Montes, 2006). Another study
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reported that the number of fatal traffic accidents in Israel fell shortly after terror
attacks, and spiked 3 days following terror attacks (Stecklov and Goldstein, 2004).
Lastly, telecommunication data following a bombing was part of a broader study on
behavior following large-scale emergencies (Bagrow, Wang, and Barabási, 2011). In
this study, the authors reported an increase in call volume for female participants.
In addition to these examples, objective real-time data have been used to study be-
havior patterns following natural disasters (Bengtsson et al., 2011; Lu, Bengtsson,
and Holme, 2012) and other emergencies such as disasters involving crowds of peo-
ple (Helbing, Johansson, and Al-Abideen, 2007; Johansson et al., 2008). The objective
of our study was to use objective, real-time data to systematically study behavioral
patterns following several terror attacks. In particular, we aimed to test whether
gender differences were present in our data. We also wanted to develop a statistical
methodology well-suited for testing for gender differences and which went beyond
binning data and analysing only the volume of telecommunication events.

8.2 Our results: Gender differences in behavior change fol-
lowing terror attacks

In the paper “Gender-specific behavior following terror attacks”, which we have
submitted but not yet received any comments on, we analyse telecommunication
of citizens following terror attacks. We do this with three different aims in mind,
1) To understand whether the telecommunication patterns are significantly different
following attacks, compared to days with no attacks; 2) To examine whether some
groups of citizens behave differently following terror attacks; 3) If groups do indeed
behave differently, to tell if these differences are consistent with differences observed
on ordinary days, or if the differences are magnified following terror attacks. Specif-
ically, we investigate gender differences, as some evidence of such differences was
reported in previous studies.

Focussing on 6 different terror attacks carried out in Western Europe in the pe-
riod 2015-2017, we examine telecommunication patterns of citizens living in the af-
fected cities. We compare the communication patterns in the first 24 hours following
an attack with the average behavior on 8 comparable weekdays before the attack.
Our analysis goes beyond analysing call volume. Instead, we measure the deviation
of the telecommunication timing from the characteristic diurnal communication pat-
terns on ordinary days. We find that the communication patterns of both males and
females are significantly different following terror attacks, as compared to regular
days. We also find that differences in communication patterns between males and
females are greater following the attack than would be expected if the gender labels
carried no information. Furthermore, we find that the observed gender differences
are significantly elevated following the terror attacks as compared to ordinary days.

8.3 Paper: Gender-specific behavior change following terror
attacks
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Abstract

Terrorists use violence in pursuit of political goals. While terror often has severe consequences for

victims, it remains an open question how terror attacks affect the general population. We study

the behavioral response of citizens of cities affected by 7 different terror attacks. We compare

real-time mobile communication patterns in the first 24 hours following a terror attack to the

corresponding patterns on days with no terror attack. On ordinary days, the group of female and

male participants have different activity patterns. Following a terror attack, however, we observe a

significant increase of the gender differences. Knowledge about citizens’ behavior response patterns

following terror attacks may have important implications for the public response during and after

an attack.

∗ jonas.juul@nbi.ku.dk
† mathies@nbi.dk

1

184 Chapter 8. Gender-specific behavior change following terror attacks



I. INTRODUCTION

Terror attacks affect all parts of the world and are often carried out in attempts to com-

municate political messages or to dictate a political change [1, 2]. The European Parliament

and Council of the European Union defines an offence as terror if it has one of three aims;

the first of these is “seriously intimidating a population” [3]. While the direct consequences

of an attack are easily quantified in terms of human casualties or material damage, the impli-

cations for the populations more broadly remains an open question. Of particular interest is

how terror attacks impact the behavior of citizens. How do people react? Do people signif-

icantly change their behavior? If they do, is this change in behavior similar for all citizens,

or are particular groups of individuals especially susceptible? Knowledge on such questions

is sparse, yet valuable in making informed decisions about public response following terror

attacks.

Previous studies have shown that exposure to terror increases the level of psychological

stress as well as the frequency of disorders such as post traumatic stress, anxiety, and de-

pression. For example, in the month following the 9/11 attacks, 12% of the U.S. population

experienced significant distress, about 30% reported symptoms of anxiety and 27% reported

that they avoided situations that reminded them of 9/11 [4]. Exposure to terror through

media or from knowing a victim also results in higher levels of avoidance behavior, a sub-

jective feeling of insecurity, emotional distress, as well as changes of daily routines such as

the choice of transportation [5, 6]. Whereas repeated exposure is known to be a physical

health risk [7], studies have shown that for isolated events, the frequency of stress symptoms

quickly return to normal levels – for instance among citizens in New York City following

the 9/11 terror attacks [8]. Individual differences, and to some extent gender differences,

have been reported to be factors in the response to terror [9–13]. For example, in a survey

study women expressed symptoms of posttraumatic stress and depression more frequently

than men [14]. Women’s likelihood of developing posttraumatic stress symptoms were six

times higher than those for men. It has also been reported that continuous threat of a terror

attack promotes risk taking behaviors in men [13].

Objective real-time data have been used to analyze behavior patterns following e.g. nat-

ural disasters [15, 16], emergencies [17], and crowd disasters [17–19]. Whereas objective

data have been used in studies on the frequency and size of terror attacks [20, 21] and

2
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structural properties of operational networks [22, 23], systematic studies on the behavioral

impact of terror typically have relied on post-terror and self-report data. Consequently,

quantitative studies of terror-related behavioral changes are much needed [24]. In fact, the

use of objective data to understand peoples response is limited to a few studies, for example

in observations of correlations between the terror alert level and the number of people using

public transportation [25], in observations of an increase of fatal traffic accidents in the days

following a terror attack [26], and the behavioral response to a bombing with several injured

and no fatalities [17]. In the latter case, the authors found that females were more likely

to make a call following the emergency, than expected on normal days. Here, we analyze

behavior patterns in telecommunication following several recent terror attacks throughout

Europe. We rigorously test for gender differences in the behavioral response to terror attacks

and explicitly compare with ordinary days with no terror attacks.

II. RESULTS

Our study uses data on telecommunication activity following 7 terror attacks in 6 different

cities: Paris, Nice, Berlin, London(×2), Stockholm, and Barcelona. The attacks were carried

out in the period November 14, 2015 - August 17, 2017, and although the attacks varied in

size, all attacks resulted in several casualties (see Material and Methods). Figure 1 shows

that following a terror attack the activity deviates significantly from the normal diurnal

rhythm [27, 28] (see Supplementary Section SII). In our analysis, we focus on the deviation in

the 24 hour window following terror attacks. We calculate the cumulative telecommunication

activities for the female and male population separately, with notation CF (t) and CM(t),

where the subscripts F and M refer to females and males, respectively. We normalize the

cumulative activity such that for both populations, CF/M(0h) = 0 and CF/M(24h) = 1.

We compute the area ∆FM between the two curves, CF (t) and CM(t), and use this area

to quantify the difference in behavior change (See Materials & Methods for details on our

statistical analysis). Figure 2 shows an example of the activity on an ordinary day (panel A)

and on a day following a terror attack (panel C). The corresponding cumulative activities are

shown in panels B and D. Note that in Fig. 2A, the telecommunication activity of females

is higher. Averaging over all participants in our study, we find that females in general are

18% more active than the male participants (see Supplementary Section SII). However, the

3
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FIG. 1. Normalized communication activity at the day of the terror attack and the

three consecutive days. The activity of the genders are normalized separately by their respective

mean activities over 8 background weeks. The colored area under the curves shows the increased

activity relative to the background weeks.

normalized cumulative activity (Fig. 2B) shows that the only difference between the diurnal

rhythm of the genders is the volume of the activity. Following a terror attack, however, the

response of the female participants is significantly different to that of the males as illustrated

in Fig. 2D and quantified by the area between the normalized cumulative activities.

Following each terror attack, we probe the difference between the gender specific commu-

nication patterns by computing the area ∆FM . We compare this area with a null distribution

computed in the following way. First, we split the total population of both genders in two

groups chosen at random: one group, F̃ , which has a number of individuals equal to the

number of females in the original population and a group M̃ , consisting of the remaining

individuals. Note that these two groups will contain a mix of both genders. Second, we

compute an area ∆F̃ M̃ between the normalized cumulative activities of the two new groups

using the same 24 hour window following an attack. Repeating the process of randomly
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FIG. 2. Comparison of gender activities following an attack and in a representative

background week. A) Example of activities on normal days and C) activity following a terror

attack. For our analysis, we consider a Tmax = 24hrs window. B) To quantify behavior differences

between two groups of people, we use the area between normalized cumulative diurnal curves of

telecommunication. On normal days, our measure detects no difference in the relative gender

activities, however, D) following an attack, we see a pronounced difference marked by the area

∆αβ. See Materials and Methods for technical details of how the measure can be computed from

raw telecommunication data.

splitting our population 105 times, we estimate the null distribution of ∆F̃ M̃ .

We now test if the communication patterns of the female and male participants are

significantly different on the day of the attack by computing the probability p to ob-

serve an equally or more extreme value than the empirically computed value ∆MF , i.e.

p =Prob(∆F̃ M̃ ≥ ∆FM). Figure 3 shows the null distribution and corresponding values of

p. Combining the measurements over all the cities (see Material and Methods) leaves that

the gender-specific patterns are different with a combined p value of less than 10−5.

Although the analysis above shows that the difference in behavior patterns is larger in the

5

188 Chapter 8. Gender-specific behavior change following terror attacks



Stockholm

Paris

Nice

London2

London1

Berlin

Barcelona

0 1 2 3 4
ΔF~M~ mean(ΔF~M~)

Percentile
0.5
0.75
0.95
0.995

FIG. 3. Gender differences in telecommunication on days of terror attacks. Empirically

observed gender difference in telecommunication following terror attacks (black circles) plotted

relative to computed null distributions (violin plot) for all cities. The null-distributions were

computed by randomly shuffling individuals between our two gender groups and measuring the

difference in behavior of the new groups. Note that the true empirical values of the gender difference

all lie beyond the 0.75 percentile of the null-distribution.

gender specific group than in randomly sampled groups, we cannot yet rule out that such a

difference could be observed on ordinary days too. We therefore perform an additional test

where we compare the behavior difference on the day of attack with the difference in the

background weeks. Again, we quantify the behavior change by comparing ∆MF to a null

distribution of ∆M̃F̃ . Instead of shuffling gender labels (within the day of the attack), we

now randomly choose a recorded activity of the individuals from the 8 background weeks.

Like above, we keep the sizes of the populations fixed, i.e. |M | = |M̃ | and |F | = |F̃ |.
We now compute a null distribution by replacing the 24 hour communication pattern of

individuals with a randomly selected communication log (from a person of same gender) in

one of the 8 background weeks. In this way, we keep the gender fixed, but the activity on

the day of the terror is replaced by one from the background weeks. We finally quantify the

difference in communication behavior by the area between the normalized cumulative diurnal

telecommunication curves. We repeat this procedure 105 times to get a null distribution of

differences between males and females communication activity on ordinary days.

We can now test if the differences between female and male communication patterns

6
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FIG. 4. Amplified gender differences in behavior following terror attacks. Empirically

observed gender difference in telecommunication following terror attacks (black circles) plotted rel-

ative to computed null-distributions (violin plot) for all cities. The null-distributions were created

by computing the difference in telecommunication between groups of randomly selected males and

randomly selected females on days with no terror. The random population of males (females)

consisted of telecommunication logs drawn uniformly-at-random from the activity of all males (fe-

males) during the 8 background weeks. Note that the true empirical values of the gender difference

all lie beyond the median of the null-distribution. The probability of getting a set of empirical

values this or more extreme on days with no terror is approximately two in a thousand.

are more extreme on the day of the attack compared to ordinary days. To this end we

compute the probability to observe an equally or more extreme value than the empirical

∆MF . Figure 4 shows our results. We find that, for all cities, this probability is smaller than

50%. Combining these probabilities yields a chance of getting a set of probabilities at least

as extreme as these equal to p ≈ 0.002.

III. DISCUSSION

Terror attacks take place around the world and it is important to understand how the

general population reacts. Using real-time GPS and telecommunication data from 17, 000

people, we systematically studied behavior following 7 different terror attacks in Western

European countries. In particular, we studied the behavioral change of the groups of females

7
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and males in each city on the day of the attack as compared to ordinary days. We found

that the telecommunication of both males and females spiked following all terror attacks.

These spikes were significant deviations from normal telecommunication behavior.

One might expect that a sizable disturbance of a population, such as a terror attack,

might cause the distribution of calls of females and males to become more similar than they

would be otherwise. Juxtaposing the behavior of the two genders following terror attacks,

we found significant differences in the behavioral change of the two genders compared to a

group where gender labels are assigned randomly. The differences between the groups of

males and females after the attacks, were large even when correcting for differences on ordi-

nary background days. It is an open question what causes the observed gender differences in

behavior following terror attacks. From a psychological perspective, differences in personal-

ity characteristics for males and females could be relevant. Previously reported differences

between women and men in personality characteristics include scores in Emotionality and

Honesty-Humility (for a recent meta-analysis, see for example [29]). In this light, it would

be interesting to test whether the gender differences we observe can be attributed more

directly to personality traits known to differ between genders. It is important to qualify the

point that these results were obtained for the aggregated behavior of females and males.

The uncovered gender differences on the aggregate level do not imply that every female and

every male act significantly different from each other. The aggregated communication could

be influenced by “extreme” individuals. If this is the case, such extremes seem to be present

systematically in the different cities. Furthermore, systematic studies of the variance in

behavior patterns inside each group would be worthwhile to conduct.

Finally, future research should examine whether there are any cultural or regional dif-

ferences in the behavioral response to terror attacks. In our analysis, we found significant

gender differences in behavioral change following terror attacks supported by the analysis

presented in Figure 4. This figure also shows that although the difference in behavioral

change is generally large, the empirical values for the two London attacks lie almost exactly

at the null-distribution median. This begs the question whether London is different or if

this is just random coincidence. If London is different, is this difference rooted in history,

culture, geography, the nature of the attacks or some other variable? Knowledge on how

terror attacks impact the general population is important in formulating a public response

to such offenses, and we hope in this regard that our study will inspire further work on this

8

8.3. Paper: Gender-specific behavior change following terror attacks 191



City Time of attack No. Fatalities/No. Injured No. People in data

Paris (FR) 00:58, November 14, 2015 137/368 [30] 2523

Nice (FR) 10:30 pm, July 14 2016 86/201 [31] 237

Berlin (DE) 8:02 pm, December 19 2016 12/56 [31] 2295

London (UK) 2:40 pm, March 22 2017 6/50 [32] 5415

Stockholm (SE) 2:53 pm, April 7, 2017 5/14 [32] 741

London (UK) 10:06 pm, June 3 2017 11/48 [32] 5131

Barcelona (ES) 4:54 pm, August 17 2017 15/131 [32] 688

TABLE I. Details about the terror attacks included in the study and the data concern-

ing each attack.

topic.

IV. MATERIALS AND METHODS

A. Experimental design

We analyse behavioral change following 7 terror attacks carried out in different European

countries. Details of the different attacks are listed in Table I including city name, time of

the attack, the number of casualties and injured, and the number of people included in our

data set. We monitor the behavior difference using telecommunication data on the week of

the attack and compare it with 8 background weeks leading up to the terror attacks. For

each background week, we consider the same 24-hour interval as we do following a terror

attack. The 8 weeks used as background for each attack are listed in Table II.

B. Data description

We used a dataset of phone-app usage and GPS records collected by a global mobile

phone and electronic company between 2015 and 2017. We considered 7 terror attacks, and

selected ∼ 17, 000 users who lived in the same city where an attack occurred at the time it

happened. Specifically, we selected users whose most visited location in the period under

study (see Table II) is within a bounding box around the city where the attack happened (see

9
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City First background week Monday Last background week Sunday

Paris (FR) September 14, 2015 November 22, 2015

Nice (FR) May 19, 2016 July 17, 2016

Berlin (DE) October 24, 2016 December 18, 2016

London (UK) January 25, 2017 March 21, 2017

Stockholm (SE) February 10, 2017 April 6, 2017

London (UK) April 7, 2017 June 2, 2017

Barcelona (ES) June 22, 2017 August 16, 2017

TABLE II. Details about background weeks used in the analysis.

Supplementary Table S1). We considered the usage of applications the company categorized

as “Communication”. About 60% of events in this category concern the usage of 5 Android

apps: Phone, Messaging, WhatsApp Messenger, Facebook, Gmail and Facebook Messenger.

Users are aged between 18 and 80 years old, with an average age of 36 years. About 42%

of the users are female. Written consent in electronic form has been obtained for all study

participants.

C. Statistical methods

1. Measure from telecommunication data

In the following we formally define the measure – the area between normalized cumulative

diurnal curves of telecommunication – we are use in our analyses. In a given time interval,

[0, tmax], individual participants, γ, initiate Nγ communication events at times {ti,γ}Nγ

i=1. We

define the activity function A(γ)(t) of an individual in terms of the point process

A(γ)(t) =

Nγ∑

i=1

δ(t− ti,γ), (1)

where δ(x) is the Dirac delta function. The activity function of a population X is the sum

of individual activity functions,

AX(t) =
∑

γ∈X
A(γ)(t). (2)

10
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For each population activity function AX(t), we define the corresponding normalized cumu-

lative activity function

CX(t) =

∫ t
0
AX(t′)dt′

∫ tmax

0
AX(t′)dt′

. (3)

where the denominator is the total number of initiated communication events in our popula-

tion, NX =
∑

γ∈X Nγ, and thus CX(t) is equal to the fraction of communication events that

were initiated before the time t. To assess the differences in communication patterns for two

populations X and Y in a time interval [0, tmax], we compare how communication events

are distributed over the time interval for the two populations. Specifically, we calculate the

area between the cumulative activity functions for the two populations,

∆XY =

∫ tmax

0

|CX(t)− CY (t)| dt. (4)

In this study, the length of the time interval, tmax, is fixed to be 24 hours. On a normal day,

females, in our population, are on average 18% more active than males. Fig. 2A illustrates

this; similar curves are shown for the all cities included in this study in Supplementary Figure

1. The measure, defined in Eq. (4), has a number of attractive features. It is not sensitive to

the imbalance in gender activities and allows us to quantify changes to the diurnal rhythm.

Moreover, our measure does not require any artificial binning of data and is not particularly

sensitive to the chosen time interval.

Combining the results to probe for gender differences. In our analysis, we obtain probabil-

ities for the random occurrence of gender differences of the same size as observed following

the terror attacks. If the null hypothesis, that there are no enhanced gender differences,

were true, these probabilities would be uniformly sampled on the interval [0, 1]. We test this

as follows. If X1, X2, . . . , Xn are stochastic variables drawn from a uniform distribution, the

random variables

Yi = −2 ln(Xi), (5)

are independent and identically distributed according to the chi-square distribution with 2

degrees of freedom. The sum of these variables

T =
n∑

i=1

Yi, (6)

is distributed according to the chi-square distribution with 2n degrees of freedom. To test

whether our obtained probabilities support the hypothesis that the gender differences are

11
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Barcelona Berlin London1 London2 Nice Paris Stockholm

Fig 3 0.01312 0.02543 0.10505 0.06394 0.10809 0.03104 0.00233

Fig 4 0.00862 0.06071 0.44336 0.45604 0.07581 0.15288 0.21411

TABLE III. Fraction of null distributions more or equally extreme as empirical values

in Figs. 3 and 4. The fraction of null distributions depicted in Figs. 3 and 4 that lie beyond the

corresponding empirically observed values. We subtract each of these values from 1 and plug them

into Eq. (5) and then (6) to calculate a combined probability using Eq. (7).

not larger than should be expected from ordinary days, we calculate this T value using

Equations (5) and (6). We then calculate the area under the chi-square distribution with

2n degrees of freedom, at values larger than T ,

pcombined =

∫ ∞

T

χ2
2n(x)dx. (7)

This integral is equal to the chance of getting the set of probabilities if X1, X2, . . . , Xn were

drawn from a uniform distribution.

2. p-values used in calculating probability of observing behavior differences randomly

The distributions depicted in Figures 4 and 3 give us two sets of p-values. In each case, we

used the method described above to estimate the probability that the empirically observed

measure values would be obtained if the values were results of statistical fluctuations. The

p-values are shown in Tab. III. Combining these p-values give the combined probabilities

listed in the main text.
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city min lat max lat min lon max lon

Berlin 52.369276 52.650018 13.091432 13.754525

Nice 43.646275 43.758400 7.178630 7.338724

Barcelona 41.310933 41.465339 2.058793 2.244023

London 51.325628 51.672014 -0.472381 0.268712

Stockholm 59.298186 59.371545 17.945337 18.154841

Copenhagen 55.5531 55.8175 12.2607 12.7043

Paris 48.7106 48.9991 2.0641 2.6463

TABLE S1. Bounding boxes used to select individuals living in the cities under study. The table

reports the minimum and maximum values of the latitude and longitude.

SUPPLEMENTARY MATERIALS

SI. GEOGRAPHY OF THE CITIES UNDER STUDY.

We selected individuals whose most visited locations during the period under study (see

Table II) is located within the city where the attack happened. The bounding boxes char-

acterizing each city are described in Table S1.

SII. DIURNAL COMMUNICATION ON ORDINARY DAYS

The populations of males and females show distinct diurnal communication patterns in all

of the cities we include in our analysis. Fig S1 shows these curves for all background weeks

used in our study. The curves are almost identical for all background weeks, indicating that

averaging over the weeks yields a good estimate of the diurnal activity. Females communicate

on average 18% more than males but normalizing their activity yield indistinguishable curves.

These normalized curves are shown in Fig. 1 of the main text.

SIII. SIGNIFICANCE OF PEAKS FOLLOWING TERROR ATTACKS

Figure 1 shows that a terror attack is followed by a spike in telecommunication activity

for both genders for all cities in our study. In order to assess the significance of the spikes in
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FIG. S1. Illustration of diurnal communication patterns during ordinary days. Data for all back-

ground week are plotted in dashed lines. The mean activity for each gender is plotted with full

lines. On average, females communicate 18% more than men.

the communication, we compare with a null model in the following way. We first compute

a null-distribution of the area between normalized cumulative diurnal telecommunication

curves by bootstrapping. The null-distribution quantifies natural variation to the diurnal

pattern. More specifically, in a population of for example n males, we create a set of

individual activities on ordinary days {A(p)}p∈M where M is the subset of males in our

population and each element is a 24 hour sequence of communication events, see Eq. (2).

This set has 8n elements, one for each person and for each of the 8 background weeks. We

draw n random elements from {A(p)}p∈M (allowing for repeated draws of the same element)

corresponding to n activity functions, from which we get a single background cumulative

activity function using Eqs. (2) and (3). We then choose one of the 8 ordinary days, i, and

calculate the area between the cumulative activity functions for the male population at day

i, and the cumulative activity function for the n randomly picked individuals. By repeating

this procedure 105 times for each background week i, we obtain 8 null distributions of areas.
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City Gender Combined

Nice Male 2.91 · 10−19

London2 Female 1.88 · 10−5

London2 Male 7.59 · 10−6

London1 Female 7.08 · 10−20

London1 Male 1.07 · 10−36

TABLE S2. Combined p-values for peaks following terror attacks (peaks illustrated in Fig. 1). All

combinations of attack and gender that are not listed had p-values indistinguishable from 0.

Then, we test the alternatives (a) and (b), by computing the probability to observe

the empirical communication activity measured on the day of the attack during any of

the background weeks. We obtain these empirical values by calculating the area between

the cumulative activity function of the male population on the day of the attack, and the

cumulative activity function of the male population on each of the ordinary days. The

percentage of the measure-value null distribution of week i that is larger than or equal to

the empirical value for week i represents the probability that the empirical value is a result

of random noise. These 8 probabilities can be combined into a single p-value, expressing

the likelihood of getting the 8 probabilities given that the telecommunication was unaffected

compared to ordinary days (see Materials & Methods). For all cities and both genders, we

find that the probability associated to alternative (a) is less than 1.88 · 10−5, revealing that

the telecommunication observed in the 24 hours following the terror attacks is unlikely to

be observed on ordinary days (see Table S2).

The least significant peak is the one exhibited by females after the second London attack.

For this population, we obtained the p-values 0.99988, 0.8216, 0.89666, 0.9994, and 0.99502.

Combining these in the way described in “Materials & Methods” yields the single p-value

1.88·10−5. Other than this population, only 4 populations did not have every p-value smaller

than 10−5. The combined p-values for these are all below 10−5 (best estimate is listed in

Table S2).
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8.4 Conclusions and perspectives for further research

In this third part of my dissertation, I have presented two manuscripts. In the first
of these manuscripts, we examined the connection between narcissistic scores and
behavior using telecommunication data of a population of undergraduate students.
We found that narcissistic-admiration scores correlated with both in and out-degree
in text-message and call networks where all links carried equal weights. Contrary
to this, narcissistic-rivalry scores only correlated with out-degree in networks as-
signing the strongest interactions disproportionately large weights. We also found
homophily in narcissistic admiration in networks of the strongest text-message and
proximity interactions. These observations are in line with existing psychological
hypotheses portraying narcissists as being attention-seeking, but only narcissists
with high ADM to be successful in attracting attention from others.

In the second manuscript, we examined behavior patterns following terror at-
tacks. We studied the behavior of females and males separately and found that
the telecommunication of both populations spiked following the attacks. Although
these spikes were significant deviations from the normal behavior, we also found
the behavior patterns of the two populations to be significantly different from each
other. The difference was even greater than would be expected based on ordinary-
day behavior.

There are exciting directions to pursue in relation to both projects. The data set
used in the narcissism study only included data for undergraduate students. It
would be interesting and important to replicate our study using a more represen-
tative population sample. Another interesting point to raise concerning this project
is the problem of missing links. We could only analyse communication that took
place within the sample. However, we should expect a large fraction of the actual
communication to occur between participants and people that are not part of the
study. How this skews our results, we currently do not know. In the future, it would
be essential to understand these skewing effects.

For the second project, understanding the presence of gender differences is im-
perative. Are the observed differences due to differences in personality between
males and females in our population? If so, which personality traits can account for
the behavioral differences? To examine this, large-scale experiments combining psy-
chological profiling and collection of telecommunication data would be necessary to
carry out.

A simpler research direction would be to investigate individual behavior pat-
terns instead of the aggregated behavior of all females or all males. It is possible that
the observed gender differences are largely due to extreme individuals dominating
the aggregated behavior. If this is the case, these extreme individuals are system-
atically present in the different cities experiencing terror attacks. Alas, it would be
interesting to examine whether gender could be reliably predicted using behavior
patterns following terror attacks.

Lastly, investigating how the change of behavior following terror attacks de-
pends on, e.g., the culture of participants, previous exposure to attacks, or the nature
of terror attacks would be an exciting direction for future research. In our analysis,
the change of behavior took different magnitudes in different cities. In particular,
the citizens of London showed no gender differences in behavior change following
terror attacks. Understanding whether this is a mere coincidence, or whether popu-
lations do react differently to such hostile strikes is important.
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