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Abstract

Quantum sensing represents a significant research direction with Quantum Tech-
nologies, particularly promising in the acoustic frequency regime. This potential
offers a wide range of scientific applications, including the detection of magnetic
fields generated by the brain’s activity, heartbeat, and the measurement of weak
forces such as gravitational wave signals emitted by extreme astronomical events.

A principle challenge in enhancing the sensitivity of current gravitational wave
detectors is managing two competing types of quantum noise; shot noise: which
arises from the uncertainty associated with the arrival of photons, and quantum
backaction noise: which results from the transfer of photon momentum to the
test mass object as radiation pressure during the interaction. These noises, arise
from the quantum nature of light, scale differently with the light power, and dom-
inate at different frequencies. Their broadband reduction requires the injection
of a squeezed vacuum source, with frequency-dependent rotation of the squeezed
quadrature presently accomplished via a complex filter cavity.

This thesis explores an alternative approach for achieving broadband quantum
noise reduction using polarized cesium atoms prepared in a higher energy ground
state, oriented in an effective negative mass reference frame. Conditional reduc-
tion of broadband quantum noise is possible once the EPR entangled states are
detected, with one arm positioned in a negative mass reference frame.

In this thesis, we report on the construction and characterization of an interaction-
enhanced atomic system, consisting of polarized cesium atoms confined with a
2mm*2mm*80mm channel. These atoms are manipulated by a homogeneous,
home-built magnetic coil system with an intrinsic decay of 30Hz, and are uni-
formly probed by a spatially shaped top hat beam. This setup has demonstrated
quantum noise-limited performance and a quantum nondemolition (QND) based
backaction dominance with a quantum cooperativity of approximately 3, across
a wide range of Larmor frequencies. This is evidenced by the observed pondero-
motive squeezing from - 4.9 dB at 1 MHz down to the upper acoustic frequency
at 18 kHz. Additionally, experimental investigations into the virtual frequency
shift of the atomic spin oscillator, facilitated by ponderomotive squeezing, have
been conducted.

At lower acoustic frequencies, the dominance of quantum backaction noise is com-
promised by various classical noise sources and additional atomic spin noise at
nearly DC levels. Experimentally investigating and mitigating these noise sources
have enabled us to maintain the -3 dB squeezing down to 3 kHz, extending to
-1.2 dB slightly below 1 kHz, thus bringing our proof-of-principle experiments
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closer to the gravitational wave bandwidth

The thesis concludes with the discussion of our parallel achievement of ∼ - 7
dB nondegenerate entangled sources, which bridges the gap between the atomic
system and gravitational wave detection, alongside the theoretical predictions
for the broadband quantum noise reduction optimized using the well-calibrated
experimental parameters. Additionally, I will also present our ’last-minute’ pre-
liminary experimental achievement of broadband quantum noise reduction at 50
kHz with the joint measurement of the hybrid systems. This results sets stage
for our ongoing proof-of-principle frequency-dependent entangled source, aimed
at broadband quantum noise reduction in the acoustic frequency regime. Further-
more, the established hybrid system signifies a step towards quantum-enhanced
magnetic sensing and the potential for quantum entanglement and teleportation
with this hybrid entangled light-atomic system.

Abstrakt

Kvantesansning repræsenterer en betydelig forskningsretning inden for kvantete-
knologier, især lovende i det akustiske frekvensområde. Dette potentiale tilbyder
en bred vifte af videnskabelige anvendelser, herunder detektion af magnetfelter
genereret af hjernens aktivitet, hjerteslag og måling af svage kræfter som tyngde-
bølgesignaler udsendt af ekstreme astronomiske begivenheder.
En vigtig udfordring i forbedringen af følsomheden af nuværende tyngdebølgede-
tektorer er håndteringen af to konkurrerende typer kvantestøj; skudstøj: som
opstår fra usikkerheden forbundet med ankomsten af fotoner, og kvantetilbages-
lagsstøj: som skyldes overførslen af fotonmomentum til probesensoren som strålingstryk
under interaktionen. Denne støj, der opstår fra lysets kvantenatur, skalerer
forskelligt med lysets styrke og dominerer ved forskellige frekvenser. Deres bred-
båndsreduktion kræver injektion af en klemt vakuumkilde med frekvensafhængig
rotation af den klemte kvadratur, som i øjeblikket opnås via et 300m langt filter-
hulrum.
Her vil jeg introducere et alternativt teoretisk forslag af E.S. Polzik og F. Ya.
Khalili, i princippet kan vi samtidig opnå reduktion af kvantetilbageslagsstøj
og skudstøj ved hjælp af polariserede cæsiumatomer, der er forberedt i en ef-
fektiv negativ masse referenceramme og opererer i et akustisk frekvensområde.
Den betingede måling af atomar spin oscillator, ved hjælp af krydskorrelationen
iboende i EPR-sammenfiltring, giver mulighed for at realisere forbedret bred-
båndsfølsomhed for tyngdebølgedetektorer.



5

Preface

As I now reach the end of my PhD, I can confidently say that joining QUANTOP
was the best decision I made. I have been incredibly fortunate to be part of this
group, working on challenging yet extremely exciting projects, and meeting many
friendly and intelligent people. Over the past four and a half years, I have received
immeasurable support, and I could not have reached this stage alone. I am really
grateful to a lot of people.
First and foremost, I would like to express my gratitude to Eugene Polzik for
introducing me to the QUANTOP group and for creating such a warm and open
environment. Your constant support and guidance have been invaluable whenever
I needed help. Thank you for trusting us and being patient, allowing our team
to develop and flourish into the wonderful team it is today.
The achievements we have made and will reach soon are incredible. The work
I have presented in this thesis would not be the same without my wonderful
colleagues. Túlio Brito Brasil, I am always amazed by the ’free jazz’ you create
while noise hunting and designing electronics. You are like a magician, with just
a snap of your fingers, the noise is gone. Thank you for always inviting us to have
fun together over the years. Valeriy Novikov, thank you for being such a great
friend. I always enjoy discussing physics and anything else with you, and I am
deeply grateful for your efforts in helping me with my thesis. Ryan Yde, thank
you for being a wonderful colleague. I miss the happy times we worked together
and am very happy you found an exciting new job. Maïmouna Bocoum, you are
a true angel! I am so glad to have worked with you during my PhD, and I always
enjoy our brain eruption sessions. We should automate everything in our setup!
Andrea Grimaldi, our GWD master, thank you for showing me so many amazing
calibration and characterization skills.
Besides my wonder GWD team, I also want to thank jörg Müller for being such
a fantastic mentor, and It has been a privilege to develop my understanding of



6

physics with your guidance. Emil Zeuthen, our best theoretical master, thank
you for always being willing to provide suggestions and advice. I cannot express
enough gratitude for the many hours of discussion and the precious notes you
have shared. I also want to thank Mikhail Balabas, our cell fabrication artist.
Thank you for arriving at the perfect time to help us produce the most valuable
cells for our project. I also want to thank Farid Khalili for helping me truly
understand quantum noise in GWDs. I am very grateful for the invaluable help
I received when I first arrived. Rodrigo Thomas, thank you for introducing me
to the cell lab and guiding me through the first MORS measurement and many
after. Your knowledge and experience have been crucial in pushing our system to
its current state. Michal Parniak, you are one of the most knowledgeable people
I have ever met, and I always learn new skills from you. Rebecca Schmieg,
thank you for being such a great colleague; I learned so much from you when
organizing my experimental work. There are many more QUANTOP members
I would like to thank: Jean-Baptiste Sylvain Béguin, Chao Meng, Wengqiang
Zhen, Heng Yan Wang, Ivan Galinskiy, Peyman Malekzadeh, Alkiviadis Zoumis,
Jacob Thornfeldt Hansen, Sergey Fedorov, Michael Zugenmaier, Nikolaj Aagaard,
Zi Hua Wang, Luiz Couto, and Christian F. Bærentsen. Thank you to all the
amazing QUANTOP members.
Last but not least, I can never thank my parents enough. It is not easy to pursue
a PhD abroad for many years. Thank you for being so supportive and for your
unconditional love and care.



7

List of abbreviations

• Quantum nondemolition (QND)
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Chapter 1
Introduction

1.1 Weak force measurement with interferometer

Figure 1.1: Scheme for measuring a weak force. An external force F pulls the
mirror away from its equilibrium position, causing a displacement δx. This displacement
then modulates the probe light and thus the signal force F can be measured by monitoring
the phase shift of the probe light reflected from the mirror.

The measurement of weak forces remains a cornerstone in contemporary experi-
mental physics. The core of these measurement systems lies a test mass device,
which is coupled to a weak classical force and read out by a coherent optical field,
as shown Fig.1.1. Assuming we would like to measure a weak classical force, de-
noted as F, the procedure begins by allowing it to act on a test object, and then
followed by reading out the displacement of this object caused by the force. It is
critical to minimize all forms of other extraneous information or noise during the
measurement process, which may stem from both the test mass and the light.
Additionally, isolating the system from other classical forces, such as thermal
fluctuations, is essential to ensure that only the intended signal force F instead if
thermal forces are detected. State-of-art laser interferometric gravitational-wave
observatories exemplify the significant advancements in weak force measurement
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technology, enabling us to measure tiny signals that is impossible to measure be-
fore. Specifically, the current generation of the gravitational wave observatories
has reached its sensitivity threshold where the quantum noise in their systems
becomes significant or even dominant across the targeted detection frequency
bandwidth. The origin of this quantum noise is due to particles, such as pho-
tons in the probe light, randomly jumping in and out of empty space (referred
to as vacuum fluctuations), creating background noise that adds uncertainty to
the readout precision of laser-based measurements of the positions of nearly free
test masses [1]. Consequently, reducing the quantum noise in gravitational wave
observatories would enhance their astrophysics detection capabilities, improving
sensitivity to extend their observational range from binary neutron stars to much
heavier binary black holes [2].

The reduction of fundamental quantum noise in gravitational wave observatories
can be achieved through the injection of the ’squeezed’ light. This process can
be visualized by imaging the uncertainty of noise as a balloon, which can be re-
duced by squeezing one side. The concept of squeezing was originated in the late
1970s with theoretical studies by Carlton Caves [3], Vladimir Braginsky, F. Ya.
Khalili [4], and Kip Thorne [5, 6] and one of the first experimental demonstration
in 1986 by H.Jeff Kimble [7]. Two decades later, researchers at the Laser Inter-
ferometer Gravitational-Wave Observatory (LIGO) discovered that the system,
after many improvements, began to be limited by quantum noise. This led to
the consideration of its implementation in the LIGO detector. In 2008, the first
experimental demonstration was achieved at a 40-meter test system [8]. By 2010,
researchers developed a LIGO squeezer and tested it at the real LIGO’s Hanford
interferometer[9], with parallel work conducted at the GEO600 detector in Ger-
many [10]. In 2019, after extensive proof-of-principle testing, squeezing of one
side of light’s quantum noise was routinely applied in the advanced LIGO and
VIRGO during their third observing run (O3) [11]. Squeezed states improved the
sensitivity of signals above 50 Hz by up to 3dB, corresponding to around 40 %
increase in the expected detection rate [12].

However, injecting a simple vacuum squeezed state can not improve the sensi-
tivity across the full frequency range due to the quantum mechanics uncertainty
principle. There is a trade-off when applying squeezing; as one side of ’balloon’
is squeezed, the other side inevitably expands, leading to increased noise in the
laser amplitude and causing more random rumbling of the mirror, known as the
radiation pressure noise, which can evolve into additional quantum noise. More-
over, this noise level is frequency-dependent due to the frequency response of the
test mass mirrors [13]. Optimal quantum noise reduction requires engineering the
squeezed state of the vacuum according to the frequency range of gravitational
waves and the frequency response of the LIGO interferometer. At the end of
2023, during the fourth observing run (O4), frequency-dependent squeezing was
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first applied to gravitational wave detectors. This allowed for the simultaneous
reduction of both the shot noise and quantum radiation pressure noise down to 30
Hz, further increasing the astrophysical detection rate by up to 65% at very low
frequencies [14]. This remarkable frequency-dependent squeezing was achieved
by reflecting the vacuum squeezed state from an additional 300-meter-long filter
cavity with a finesse of 6700 and a full linewidth of 74 Hz.
The aim of this thesis is to introduce an alternative approaches that, instead of
using a very long filtering cavity [15] to match the required cavity linewidth and
compensate for the frequency-dependent rotation of the squeezing ellipse imposed
by the ponderomotive squeezing of the interferometer, utilizes a collective spin
oscillator prepared in a negative mass reference frame. This joint measurement
of both systems with EPR entanglement and atomic ensemble can potentially
perform a similar function and eliminate both the quantum backaction noise
(QBAN) and shot noise (SN) in the gravitational wave detectors.

1.2 Classical nature of light

To understand the influence of quantum noise on gravitational wave detection
systems, it would be better to familiarize ourselves with the mathematical de-
scription of the probe light, its propagation, its interaction with sensing objects
such as movable mirrors, and the recording of its information.

1.2.1 Light propagation

Let’s consider a plane monochromatic linearly polarised light propagating in the
positive direction of the x-axis. This forward propagation field can be described
as a sinusoidal function of a variable β = t − x

c . and can be written in three
equivalent forms, as discussed since page 16 of [16]:

E(β) = E0 cos [ω0β − ϕ0] ≡ Ec cos ω0β + Es sin ω0β ≡ Ee−iω0β + E∗eiω0β

√
2

. (1.1)

All three interpretations can be related by the following transformations:

E0 =
√

E2
c + E2

s =
√

2|E| tan ϕ0 = Es/Ec = arg E , ϕ0 ∈ [0, 2π]

Ec =
E+E∗

√
2 =

√
2 Re[E ] = E0 cos ϕ0 Es =

E−E∗

i
√

2 =
√

2 Im[E ] = E0 sin ϕ0,
E = Ec+Es√

2 = E0√
2eiϕ0 E∗ = Ec−iEs√

2 = E0√
2e−iϕ0 .

(1.2)

The first method, amplitude-phase, is our traditional description. The latter two
interpretations of the electromagnetic field, known as the cosine and sine quadra-
ture amplitudes, and complex amplitudes, are more often applied to analyze wave
propagation. Particularly, the quadrature amplitudes interpretation is frequently
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used in quantum noise calculations within the GW community, especially after
[17] chosen it as the foundation for developing the two-photon formalism for de-
scribing the quantum fluctuations of light. I will demonstrate its convenience in
the following section.

1.2.2 Amplitude and Phase modulation of light

In the previous section, we have seen that in the process of weak force measure-
ment, a signal manifests itself by modulating the reflected light. Therefore, it
is important to understand how the modulation of phase and amplitude hap-
pens during the probe propagation. Let‘s assume a monochromatic carrier field
propagates with frequency ω0, amplitude E0 and initial phase ϕ0 = 0:

Ecarrier(t) = E0 cos(ω0t) = Re[E0e−iw0t]. (1.3)

1.2.3 Amplitude modulation

The modulation of the carrier field amplitude with frequency Ω in the slow os-
cillation regime (i.e., Ω ≪ ω0) can be described as:

EAM (t) = E0(1 + ϵm cos(Ωt + ϕm)) cos(ω0t). (1.4)

Where ϵm ≪ 1 is the modulation depth and ϕm represents the phase relationship
between the carrier and the modulation. More interestingly, in the cosine-sine
quadrature picture, the transformed expression is as follows (this is also the reason
why this cosine quadrature is often referred to as amplitude quadrature):

Ec,AM (t) = E0(1 + ϵm cos(Ωt + ϕm)) and Es,P M (t) = 0. (1.5)

We could also calculate the modulated light spectrum as following :

EAM(t) = Re
[
E0e−iω0t +

E0ϵm

2 e−iϕme−i(ω0+Ω)t +
E0ϵm

2 eiϕme−i(ω0−Ω)t
]

. (1.6)

From Eq. (1.6), the spectrum is discrete and contains three components, the
harmonic at carrier frequency ω0 (light blue arrow) and two small satellites (teal
arrows) at frequencies ω0 ± Ω as shown in Fig.1.2 ( known as modulation side-
bands ). Here, the carrier field as well as two side-bands are represented by
rotating vectors on a complex plane Fig.1.2 (a). The carrier field vector with
length E0 rotates clockwise (Im → Re) with the rate ω0, while the two sidebands
in the frame of carrier field counter-rotate relative to each other at a rate of Ω
as shown in Fig.1.2(c). The sum of these three vectors yields a complex vector,
and its projection on the real axis leads to the amplitude modulated light as in
Fig.1.2(b).
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(a) (b)

(c)

Figure 1.2: Amplitude modulation (AM) of light. Amplitude Modulation (AM)
of light can be visualized using a phasor diagram in the complex plane. In this representa-
tion, the carrier field is depicted by a blue vector arrow rotating clockwise at a rate of ω0.
The modulation sidebands, indicated by teal arrows, have frequencies ω0 ± Ω and rotate
in time clockwise for the upper sideband and counter-clockwise for the lower sideband.
Unlike the sidebands, the carrier (blue arrow) remains stationary in its rotation. The
lower panel, labeled as (c), shows the time evolution of each sideband. These sidebands
interfere with the carrier in such a way that only the amplitude of the resulting field (red
arrow) changes, leaving the phase unaffected. The time dependent electric field strength
of the AM light is plotted in the upper right corner, marked as (b).

1.2.4 Phase modulation

As we discussed in the section on amplitude modulation, the feature of this
modulation on light is to create the modulated side-bands in the spectrum of this
light. Now, let‘s use the same principle and explore phase modulation of a light,
which can be expressed as:

EP M (t) = E0 cos[ω0t + δm cos(Ωt + ϕm)], (1.7)

and in cosine-sine quadrature where the modulation frequency Ω is much smaller
than the carrier frequency ω0:

Ec,P M (t) = E0 cos[δm cos(Ωt + ϕm)] and Es,P M (t) = E0 sin[δm cos(Ωt + ϕm)].
(1.8)
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Especially, in the limit of weak modulation (δm ≪ 1), the above equations can
be approximated (small angle approximation sin(δ) ≈ δ) as :

Ec,P M (t) ≈ E0 and Es,P M (t) ≈ δmE0 cos(Ωt + ϕm). (1.9)

This also explains us why this sine quadrature is usually referred to as phase
quadrature. In order to also get the spectrum of phase modulated light, with
the help of Bassel function [16] and small δm limit, we could obtain a similar
expression as:

EPM(t) = Re
[
E0eiω0t + i

E0δm

2 [ei[(ω0+Ω)t+ϕm] + ei[(ω0−Ω)t−ϕm]]

]
. (1.10)

Again, we are facing the situation in which modulation creates a pair of side-

Tim
e

(a) (b)

(c)

Figure 1.3: Phase modulation(PM) of light. In the case of phase modulation, the
phasor diagram in the complex plane reveals some unique characteristics. Specifically,
the sidebands experience a π

2 phase shift relative to the carrier field. This phase shift is
due to the imaginary unit i present in the modulation term. As a result, the vector sum
of the two sidebands (represented by the teal arrow) influences the orthogonal component
of the carrier field vector (the blue arrow). Consequently, the modulated field (depicted
by the red arrow) has roughly the same magnitude as the carrier field but oscillates faster
or slower depending on the modulation frequency Ω. This behavior is illustrated in panel
(c). Additionally, the time-dependent electric field strength of the phase-modulated (PM)
light is plotted in the upper right corner, labeled as (b).
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bands around the carrier frequency also shown in Fig. 1.3 (c). The difference from
the amplitude modulation case is that these sidebands behave on the complex
plane and always have π

2 phase shift relative to the carrier field (due to the
factor i). Therefore, the sum of all three contributions results in the modulated
oscillation vector that preserves a length close to the carrier field vector, yet
experiences periodic phase shifts at the modulation frequency Ω as in Fig. 1.3
(b). The result of the PM oscillation on the real axis of the complex plane is
presented in Fig. 1.3 (b).

1.3 Quantum nature of light

Figure 1.4: Schematic view of light modulated by mirror motion driven by a
weak force F. The phase of the reflected probe light is modulated by the mechanical
mirror motion, so that the mode of the outgoing field contains two sidebands, involving
all the information about the mirror motion x(ω). The left panel shows spectra repre-
sentation of the initial incident light with carrier frequency ω0, the mirror mechanical
motion x(t) or x(ω), and the encoded phase information of mirror motion on the re-
flected light via the modulation by this mirror motion δϕ(t). Picture adapted from
Farid Khalili (replotted).

As previously mentioned, we explored the classical amplitude and phase modula-
tion of light. This study allows for a deeper understanding of how a classical force
signal is transferred into the probe laser. As illustrated in Fig.1.4, mirror displace-
ment caused by an external force F leads to a phase modulation in the reflected
light field. Notably, this modulation affects only the sine-quadrature, which is
commonly referred to as the ’phase quadrature.’ When analyzing the spectrum of
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the phase-modulated field, we observe two additional sidebands superimposed on
the monochromatic wave with a carrier frequency ωo. These sidebands δϕ mirror
the spectral shape of the mirror’s motion δx, as shown in left panel.
However, we must also account for the quantum nature of our real world. The
electromagnetic field used to record signal information is not immune to quan-
tum noise. This noise can become a dominant factor in our detection frequency
spectrum, impacting the detected signal sensitivity. Consequently, a significant
focus of our work is to understand and find ways to mitigate this quantum noise,
potentially enhancing signal sensitivity.
To thoroughly grasp the effects of quantum noise on weak force signal measure-
ments, an understanding of the probe light field’s quantum dynamics is crucial.
In this section, I present the background on the quantum noise of a probe light,
explore various quantum states of this light, and discuss the formalism utilized
in this thesis. For those interested in a more comprehensive review of quantum
optics and noise, I recommend referring to the page 34-47 of [16].

We can begin by quantizing the probe light field. We focus on an electromagnetic
field that propagates freely along the z-axis. Each spatial position is characterized
by a location vector r⃗ = (x, y, x), in terms of its quantized form, we turn to the
Heisenberg picture. In this representation, the electric field operator Ê(r⃗, t) can
be written as:

Ê(r⃗, t) = u(x, y, z)
∫ +∞

0

dω

2π

√
2π h̄ω

Ac

[
âωe−iωt + â†

ωe+iωt
]

. (1.11)

where âω and â†
ω are the single photon creation and annihilation operators with

a mode of the field at sidebands frequency ω, respectively. A represents the
cross-sectional area of the optical beam; u(x, y, z) describes the spatial mode
shape.

1.3.1 Two photon formalism

We have previously explained that the recorded signal information is encoded as
two phase-modulated upper and lower sidebands added to the probe field’s carrier
frequency, as detailed in [18]. To analyze the influence of quantum noise around
these sideband frequencies, it is advantageous to introduce operators specific
to these frequencies. This approach, used to study the quantum light field in
gravitational wave (GW) interferometers, is known as the ’two-photon formalism’.
The operators for the modulated upper and lower sidebands are defined as follows:

â+ = âω0+Ω, â− = âω0−Ω, (1.12)

with a set of commutation relations [19]:
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[
â+, â′†

+

]
=
[
â−, â′†

−

]
= 2πiδ (Ω − Ω′) , (1.13)

from there in the limit of ωo ≫ Ω, we can define the amplitude quadrature âc

and phase quadrature âs as follows:

âc(Ω) =
â+ + â†

−√
2

⇐⇒ âc(t) =
∫ ∞

−∞

dΩ
2π

â+ + â†
−√

2
e−iΩt,

âs(Ω) =
â+ − â†

−
i
√

2
⇐⇒ âs(t) =

∫ ∞

−∞

dΩ
2π

â+ − â†
−

i
√

2
eiΩt.

(1.14)

they represent coherently create one photon in the lower sidebands and annihilate
one photon in the upper sidebands. The newly defined two-photon quadrature
operators satisfy the following commutation relations in the frequency domain,
assuming we are measuring the photon number flux:[

âc(Ω), â†
s (Ω

′)
]
=
[
â†

c(Ω), âs (Ω′)
]
= 2πiδ (Ω − Ω′) , (1.15)

and all others vanish:

[âc(Ω), âc (Ω′)] =
[
âc(Ω), â†

c (Ω
′)
]
=
[
â†

c(Ω), â†
c (Ω

′)
]

= [âc(Ω), âs (Ω′)] = 0,
(1.16)

such commutations can also be expressed in time domain:

[âc(t), âs (t
′)] = iδ (t − t′) , and [âc(t), âc (t

′)] = [âs(t), âs (t
′)] = 0. (1.17)

The electric field can be rewritten in a form very close to the classical phase-
amplitude quadrature picture, expect it retains the classical terms (Ac, As) and
incorporates the additional quantum noise terms (âc, âs) as follows:

Ê(x, y, z, t) = u(x, y, z)

√
4π h̄ω0

Ac
[(Ac + âc(t)) cos ω0t + (As + âs(t)) sin ω0t] .

(1.18)

1.3.2 Quantum state of light

Now we have defined a quantum Heisenberg operator of the electric field, and
introduced quantum operators of two-photon quadrature. To fully describe the
quantum noise in gravitational wave (GW) interferometers; a prominent example
of weak force measurement. But first, we still need to define the quantum states
of light, and they will help us to understand the magnitude and correlations of
the amplitude and phase fluctuations of the probe light. In the following section,
we will consider vacuum and coherent states of light, and also squeezed and Bi-
particle entangled states. Same as the classical phase and amplitude modulation,

11



all the quantum noise and squeezed states of light will be visualized in phasor
picture.

Vacuum states

We will start with a trivial but important quantum state, vacuum state, denoted
as |0⟩. The quantum state of the travelling wave can be viewed as a quantum
harmonic oscillator. The vacuum state with frequency ω is the ground state of
this oscillator with minimum energy Evac = h̄ω/2. The mean amplitude of the
vacuum state is zero, i.e:

⟨vac|âc(Ω)|vac⟩ = ⟨vac|âs(Ω)|vac⟩ = 0. (1.19)

Despite having a zero mean amplitude, the vacuum state still has noise in its
amplitude and phase quadrature as indicated by the black arrows in Fig.1.5 (a)
in the right plot. The second moments (variance) of quadrature amplitude as
well as their cross-spectral density [20] are equal to: 1 2

⟨âc(Ω) ◦ âc (Ω)⟩ = ⟨âsΩ) ◦ âs (Ω)⟩ =
1
2 and ⟨âc(Ω) ◦ âs (Ω)⟩ = 0. (1.20)

Therefore, Fig.1.5 (a) represents a vacuum state in complex phase picture where
the area of the red circle equals to 1

2 in dimensionless unit with a radius of
1√
2 . This area limits the minimal uncertainty product for canonical conjugate

observable-The Heisenberg uncertainty relation. When considering the most well
known non-commuting observables, position X̂ and momentum P̂ in h̄ unit ;

∆X̂ · ∆P̂ ≥ 1
2

∣∣∣[X̂, P̂ ]
∣∣∣ =

1
2. (1.21)

it is understood that these two observables cannot be measured with arbitrary
precision simultaneously.

1The variance of an arbitrary observable ô(t) in double side power spectrum density:
Var[ô(t)] ≡ (∆ô)2 =

〈
ô2(t)

〉
− ⟨ô(t)⟩2 =

∫∞
−∞

dΩ
2π So(Ω). Normally, the noise sources are an-

alyzed in single side power spectrum density S
+
o (Ω), the connection between these two are

S
+
o (Ω) = 2So(Ω) for Ω ≥ 0.

2〈âi(Ω) ◦ âj

(
Ω′)〉 ≡ 1

2

〈
âi(Ω)âj

(
Ω′)†

+ âj

(
Ω′) âi(Ω)†

〉
≡ 2πSij(Ω)δ

(
Ω − Ω′)

where Sij represents the cross power spectral densities (CPSD) of the corresponding two quadra-
ture amplitudes, which describes how the power of one signal at a particular frequency is corre-
lated with the power of another signal at the same frequency.
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Coherent states

Another important quantum state of light is the coherent state, it can be intro-
duced by shifting the vacuum ground state along one direction by certain distance
α = |α| eiarg(α) in a complex plane. This shift is analogous to a classical effective
force on a oscillator. Such a shift is effected by a displacement operator D̂, and
its action on a ground state |α⟩ can be written as

|α⟩ = D̂[α] |0⟩ = eαâ†−α∗â |0⟩ . (1.22)

It is also an eigenstate of the annihilation operator:

â |α⟩ = α |α⟩ . (1.23)

Since the coherent state can be achieved by superimposing a vacuum states with
a mean values on this corresponding operator. The variance and cross-spectral
density of a coherent state are identical to those of a vacuum state as shown in
Fig1.5 (b). It is worth noting that in the case of a freely propagating monochro-
matic laser with an emission frequency (ωe), which also serves as the carrier
frequency (ω0), only the mode at ω0 will be in a coherent state. while all other
modes will remain in their ground vacuum state.

Squeezed state of light

One more interesting quantum state of light is squeezed state. Comparing with
previous two quantum states with minimal uncertainty and equal noise across
their quadratures, a squeezed state, on the other hand, displays unique charac-
teristics. Specifically, one quadrature can be reduced by a certain factor, while
the other conjugate quadrature is increased by the same factor. Therefore, the
product of these two quadratures still fulfill the Heisenberg uncertainty principle
as presented in Fig.1.5. Squeezed states of light are commonly generated through
the parametric down conversion (PDC) with the Hamiltonian that describes the
creation or annihilation of a two-photon process [16]:

Ĥ = Ĥ0 +
i h̄κ

2
[
â†
+â†

−âp − â+â−â†
p

]
, (1.24)

where âp is the annihilation operator of the pump field and â± correspond to
the two produced sidebands. We commonly assume the pump field is a strong
coherent state that does not get depleted, as a result, one could replace the
pump operator with its coherent amplitude. κ = ρe2iθ is a complex coupling
constant that depends on the crystal second-order susceptibility and experimental
parameters such as pump field amplitude. If we operate the above Hamiltonian to
a field over a time duration t, the annihilation â± for the ±Ω sideband frequencies
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(a) Vacuum state

(b) Coherent state

(c) Bright amplitude squeezed state

Figure 1.5: Quantum vacuum state (a), coherent state (b) and bright phase
squeezed state (c) in phase (ball-stick) and side-bands picture. For all states
their quantum uncertainties are illustrated as circles or a ellipses around their amplitude.
Both the coherent state and bright phase squeezing state possess an amplitude of α. The
side-bands diagram represents one snapshot in time with two upper and lower side-bands
around the carrier frequency ωo, which rotate in opposite directions along the complex
axis.

can be described as following:

Ŝ(ρ, θ)â±Ŝ†(ρ, θ) = â(±,in) cosh ρt + â†
(∓,in)e

2iθ sinh ρt. (1.25)

Where Ŝ(ρ, θ) is the squeeze operator:

Ŝ[ρt, θ] ≡ exp
{

ρt
(
â+â−e−2iθ − â†

+â†
−e2iθ

)}
. (1.26)

Now, by introducing a squeezing factor r = ρt, we can express the generate trans-
formation of the phase-amplitude quadrature operators in terms of the squeeze
operator [16] with the help of Bloch-Messiah reduction [21, 22] :

b̂ =

 b̂c

b̂s

 = Ŝ[r, θ]â = R̂[−θ]Ŝ[r, 0]R̂[θ]â

=

 cos θ sin θ

− sin θ cos θ

 er 0
0 e−r

 cos θ − sin θ

sin θ cos θ

 âc

âs

 .

(1.27)
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From the general transformation, we could know the squeezing at an arbitrary
squeezed angle θ can be understood as a sequence of operations: first, a coun-
terclockwise rotation by θ , followed by squeezing and anti-squeezing of two con-
jugate quadratures, and finally a clockwise rotate back by θ. A bright phase
squeezed state is visualised in Fig.1.5 (c), where the amplitude quadrature âc

is reduced below the level of vacuum noise (indicated by the red dashed circle).
In the sideband phasor picture, the squeezed state corresponds to a spectrum of
correlated sideband pairs with spectrum frequencies ωo ± Ω. These correlations
would allow the two sidebands interfere destructively for the squeezed quadra-
ture and constructively for the anti-squeezed quadrature, introducing additional
quantum noise.
For better illustrating the time evolution of quantum noise, we set the axes to
correspond with the amplitude and phase quadrature operators. As shown in
Fig.1.6 , we focus on an example of a vacuum amplitude squeezed state, achieved
by removing the carrier amplitude at ω0. Two correlated photon side bands are
presented at ±Ω frequency. Each of these sidebands has greater uncertainty com-
pared to the vacuum state but also shows either correlations or anti-correlations,
as depicted by the symbols ’+’ and ’o’ in the upper panel at initial time T = 0.

Similar to the classical phase modulation, the amplitude quadrature of the two
sidebands remain anti-correlated through their evolution. This leads to destruc-
tive interference when summing the two sidebands, which in turn reduces the vari-
ance of the amplotude quandrature‘s quantum noise in single sideband quadra-
ture representation, in contrast, the total quantum noise in phase quadrature
increases.
Interestingly, applying a phase shift to only one sideband (e.g., lower sidebands)
does not disrupt the existing quantum correlation but does alter the squeezed an-
gle of the field‘s overall quantum noise. As shown in the bottom panel of Fig.1.6,
a frequency-dependent squeeze angle ranging from 0 to π/2 can be achieved by
applying a phase transition across the three sidebands frequencies (Ω, 2Ω, 3Ω)
from 0 to π/2 and then to π.

In the absence of losses, the produced squeezing state is normally quantified in
decibels (dBs) that can be directly related to the squeezing factor r in squeezing
operator. This relationship is expressed as follows:

rdB = 10log10e2r ⇐⇒ r = rdB/(20log10e). (1.28)

For instance, a generated squeezed state of 10 dB is equivalent to a squeezed
factor of r = 1.15.
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Figure 1.6: Phasor picture for amplitude (cosine) squeezed vacuum state in a
rotating frame for frequency ω0. In the quantum system, noise manifests differently
in the upper and lower side-bands. The quantum noise rotates clockwise in the upper
sidebands at a frequency of (ωo + Ω). In contrast, it rotates counterclockwise in the
lower side-bands over time. Since we are dealing with a vacuum state, no carrier is
present. The upper and lower sidebands exhibit quantum correlations, which can arise
from processes like the down-conversion. These correlations are indicated by different
symbols: a plus (+) for the amplitude (cosine) quadrature sidebands and a circle (o) for
the phase (sine) quadrature ones at initial time. Importantly, the uncertainty in each of
these side-bands exceeds that of the vacuum state, as shown by a dashed red circle. The
lower panel shows a single side-bands spectrum. Due to the correlation of quantum noise
in two side-bands picture, the quantum noise is squeezed in the amplitude quadrature,
but anti-squeezed in phase quadrature. In the bottom panel, the lower side-bands at
frequencies of (ω0 − Ω), (ω0 − 2Ω), (ω0 − 3Ω) have a phase transition from 0 to π with
respect to the initially amplitude squeezed state. These transitions lead to a rotation of
squeezing ellipse from 0 to π/2 at single side-bands picture.
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Non degenerate two-mode squeezed states of light

When a non-linear crystal is pumped at a frequency of 2ω0, the upper and lower
sidebands around the half pump frequency ω0 are correlated and their sum result
in a squeezed state around this carrier frequency ω0. Parametric down conversion
can also be used to generate entangled states, known as twin beam states, when
operating in a non-degenerate fashion. With the same pump at frequency 2ω0,
an entangled pair consisting of a signal frequency ωs and an idler frequency ωi

is generated and satisfying phase-match condition ωp = 2ω0 = ωs + ωi, as illus-
trated by the energy level diagram in Fig.1.7 (a). The non-degenerate parametric
down-conversion can be characterized by the following Hamiltonian:

Ĥ = Ĥ0 +
i h̄κ

2
{[

â†
s,+â†

i.− + â†
s,−â†

i,+

]
âp − [âs,+âi.− + âs,−âi,+] â

†
p

}
, (1.29)

where the interaction introduces four sidebands at ±Ω around either the signal
or idler carrier frequencies ( ωs and ωi, respectively). As illustrated in Fig.1.7 (b),
we have entanglement between ωs − Ω and ωi + Ω, as well as between ωs + Ω
and ωi − Ω. These four sidebands are denoted as:

âs,± = âs(ωs ± Ω), âi,± = âi(ωi ± Ω). (1.30)

Following a similar approach to the one used for demonstrating the transforma-
tion of sideband operators in the single-mode squeezed state, we can derive the
evolution of the operator for the two modes entangled states.

â(s,±) = â(s±,in) cosh r + â†
(i∓,in)e

2iθ sinh r,

â(i,±) = â(i±,in) cosh r + â†
(s∓,in)e

2iθ sinh r,
(1.31)

with the newly defined two-mode (TM) squeezing operator, which we include for
both positive and negative sidebands:

ŜT M (r, θ) = exp
[
r(âs,+âi,−e−2iθ − â†

s,+â†
i,−e2iθ) + r(âs,−âi,+e−2iθ − â†

s,−â†
i,+e2iθ)

]
.

(1.32)

In terms of amplitude quadrature âc and phase quadrature âs for the signal
and idler fields, we can express the conversion from signal sidebands operator to

quadrature operator as âs,c =
â(s,+)+â†

(s,−)√
2 for the signal amplitude quadrature and

âs,s =
â(s,+)−â†

(s,−)

i
√

2 for the signal phase quadrature, with analogous expressions for
the idler quadrature operators.

We can then calculate the covariance matrix for the quadrature operators
âs,c, âs,s, âi,c, and âi,s to gain a deeper understanding of the correlation among
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these sidebands. The covariance matrix S3 is given by:

S =


Ssc sc Sss sc Sic sc Sis sc

Ssc ss Sss ss Sic ss Sis ss

Ssc ic Sss ic Sic ic Sis ic

Ssc is Sss is Sic is Sis is



=


cosh 2r 0 − cos 2θ sinh 2r sin 2θ sinh 2r

0 cosh 2r sin 2θ sinh 2r − cos 2θ sinh 2r

− cos 2θ sinh 2r sin 2θ sinh 2r cosh 2r 0
sin 2θ sinh 2r − cos 2θ sinh 2r 0 cosh 2r

 .

(1.33)

In the special case when the squeezing angle is chosen to be θ = π/2 , corre-
sponding to the phase squeezing quadrature, the covariance matrix simplifies to
:

S
∣∣∣
θs=π/2

=


cosh 2r 0 sinh 2r 0

0 cosh 2r 0 − sinh 2r

sinh 2r 0 cosh 2r 0
0 − sinh 2r 0 cosh 2r

 . (1.34)

We observe that the quadratures in signal and idler fields are correlated, indi-
cating quantum entanglement, as evidenced by the nonzero off-diagonal terms in
the covariance matrix. These correlations between the entangled pairs enable the
idler’s measurements to serve as estimators, potentially reducing the uncertainty
of the signal measurements, and vice versa. This conditional variance of signal
uncertainty, represented by âs ≡ (âsc, âss), can be derived by using the principle
of conditional probability :

P (âs | âi,ϕ) =
P (âs, âi,ϕ)

P (âi,ϕ)
. (1.35)

For example, assuming the signal is measured at the phase quadrature, the con-
ditional covariance matrix Scond

asas
is then:

Scond
asas

= Sasas −
Sasai,ϕSai,ϕas

Sai,ϕai,ϕ

= R−ϕ

 e−2reff 0
0 e2reff

Rϕ, (1.36)

where Rϕ and R−ϕ are rotation matrices. In this context ( as depicted in middle
panel of Fig.1.7 (c)), the detection of the idler field quadrature at âi,ϕ , which
is described as âi,ϕ = âi,ccosϕ + âi,ssinϕ. This enables us to accurately predict
the signal quadrature at âs,−ϕ = âs,ccosϕ − âs,ssinϕ, through the off-diagonal

3Covariance is a measure of how much two variables vary together: SAB = Cov(Â, B̂) =
1
2
〈
ÂB̂ + B̂Â

〉
−
〈
Â
〉 〈

B̂
〉

. Here, the angle brackets ⟨⟩ denote the quantum mechanical expec-
tation value.
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terms in covariance matrix while not providing any information for âs,π/2−ϕ.
The effective squeezing factor reff is defined as ereff ≡ cosh2r. For significant
squeezing, where reff ≫ 1, the signal field conditional squeezed state exhibits
only 3dB less squeezing compared with a single-mode squeezed state. In Fig.1.7
(d), when ϕ = 0, we could observe the direct correlation or anti-correlation along
these four quadrature operators, as represented by the equations.

S(âs,c±âi,c)/
√

2 = e±2reff , S(âs,s±âi,s)/
√

2 = e∓2reff . (1.37)

Figure 1.7: Phasor representation of two-mode entangled states in a rotating
frame for frequency ω0. (a), the generation of two-mode entangled fields (signal and
idler) through the non-degenerate parametric down conversion. (b), the annihilation of
the pump field with 2ω0 creates two lower energy photons within entangled sidebands
(ωs − Ω and ωi + Ω ) or (ωs + Ω and ωi − Ω ). (c), the mode of each quadrature in
single sidebands picture is symmetric thermal state with the uncertainties ( indicated
by the large red circles) larger than those of the ground vacuum state (indicated by the
small dashed circles). However, given the measured data of the idler quadrature, the
corresponding signal beam quadrature will exhibit conditionally squeezing by a factor of
1/cosh (2r) due to the optimal correlation in two-mode squeezed vacuum. (d), In the
two-mode squeezed state, the amplitude quadratures (ωs,c, ωi,c) are correlated, and the
phase quadratures are anti-correlated (ωs,s, ωi,s), therefore, the joint measurement of two
quadrature modes with properly selected quantum correlations can surpass the limits of
the ground vacuum state.
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1.4 Detecting signal and quantum states

In this section, I will discuss the detection of the encoded phase shifts in the
output optical field, which contains interesting external force signals such as
gravitational wave (GW) along with the quantum noise inherent in the optical
field. A photo-detector is a device employed to sense the optical photons and
converts them into an electrical current, governed by the equation:

i =
eηpd

h̄ω
P = eηpd

(
|α|2 + |α|

(
â + â†

)
+ â†â

)
≈ eηpd

(
|α|2 + |α|δâc

)
.

(1.38)

Considering a high conversion efficiency (ηpd ≈ 1), and since the last term â†â

is significantly smaller than the light amplitude α, (â†â ≪ α), this term can
be omitted. Direct detection with a photodetector allows measurement of the
optical power |α|2 together with the fluctuation δâc in amplitude quadrature of
the same field . However, it cannot measure fluctuations of other quadrature,
such as âs, of the same field.

Figure 1.8: Schematic of direct and homodyne detection of an optical field (a)
a photodetector with imperfect quantum efficiency modelled as a partial beam splitter.
(b) A weak signal field and bright local oscillator field are combined with a 50:50 beam
splitter (BS). The superposed fields at the output of the BS are detected with two
photodetectors and their subtracted photocurrents are sent for further analysis.

Homodyne detection

In order to acquire the phase quadrature (or an arbitrary quadrature) informa-
tion of the optical field, we need to perform a quadrature measurement of this
optical field instead of measuring its power. This can be achieved by using an
interferometric method known as homodyne detection, where the output signal
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field is mixed with a bright local oscillator (LO) on a 50/50 beam splitter with a
relative phase ϕLO. The two outputs from the beam splitter are detected with two
photodiodes, and the resulting photocurrents are subtracted. This subtraction
helps separate the quadrature fluctuation from the steady-state optical power.
In homodyne detection, both the fields in signal arm and LO arm share the same
carrier frequency ω0. We could write the weak signal wave ( the DC amplitude
of signal S

(0)
c,s ≈ 0 ) as:

S(t) = Sc(t) cosω0t + Ss(t) sinω0t, (1.39)

where we assume the signal field contains both the interested force signal Fc,s(t)

and quantum noise δŜc,s(t) in two quadratures for the general case:

Sc,s(t) = Fc,s(t) + δŜc,s(t). (1.40)

And the local oscillator field is given by:

L(t) = Lc(t) cosω0t + Ls(t) sinω0t, (1.41)

with the local oscillator being a bright laser light with field amplitudes L0
c,s(t)

and laser classical noise lc,s(t) (classical amplitude modulation):

Lc,s(t) = L0
c,s(t) + lc,s(t). (1.42)

After the homodyne detection, the resulting two photocurrents i1,2 are pro-
portional to the intensities I1,2 of the two output optical fields, where L0

c,s =

|L0
c cosω0t + L0

s sinω0t|:

i1 ∝ I1 ∝ (L + S)2

2 =
L2

0
2 + |L0|(Fc + lc + δŜc) cos ϕLO

+ |L0|(Fs + ls + δŜs) sin ϕLO + O[F 2
c,s, l2c,s, δŜ2

c,s],

i2 ∝ I2 ∝ (L − S)2

2 =
L2

0
2 − |L0|(Fc − lc + δŜc) cos ϕLO

− |L0|(Fs − ls + δŜs) sin ϕLO + O[F 2
c,s, l2c,s, δŜ2

c,s].

(1.43)

Again we omit the much smaller second-order terms in the balanced homodyne
detection scheme, the differential photocurrent idiff will contain only the force
signal Fc,s(t) and quantum noise δŜc,s of the signal field Ŝc,s(t):

idiff = i1 − i2 ∝ 2|L0|
[
(Fc + δŜc)cosϕLO + (Fs + δŜs)sinϕLO

]
. (1.44)

Thus, a bright LO optical field effectively amplifies the signal and quantum noise
of the weak signal field, enables the readout of either the amplitude or phase
quadrature by tuning the ϕLO. And the classical LO laser noise lc,s(t) does
not contribute to the subtracted photocurrents due to the large common mode
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rejection of the balanced detector. However, due to challenging technical diffi-
culties, such as ultra-low noise LO light phase control system, the gravitational
communities still employ another approach known as DC readout. This method
intentionally offsets the two balanced interferometer arms from the dark fringe
initially, using a small leakage of the bright intracavity laser to carry the signal
information. The main disadvantage of the DC readout is that it cannot remove
the influence of the classical laser noise, which is not a concern for the homodyne
detection scheme [16].

1.5 is there a measurement precision limit further im-
posed by quantum mechanics?

The pursuit of more effective gravitational wave (GW) detection is a key ob-
jective in experimental physics. Current GW observatories, such as LIGO and
Virgo, utilize high-precision laser interferometry as a weak force sensor, achiev-
ing gravitational wave strain sensitivities of 10−21. As shown in Fig.1.9(a), this
approach involves using a coherent laser with wavelength λ0 to detect the dis-
placement of test mass mirrors due to the passing GW. The GW amplitude h(t)
stretches the interferometer by h(t)·L while compressing the other. This results
in a relative change in the lengths of the two arms, consequently, a phase shift
in the interferometer ’s light fields, and this shift converts into a power change
after the combing beam splitter at the output of interferometer [23]:

Pout =
1
2Pin(1 + sin(2δϕ)) ≈ 1

2Pin(1 + sin
(

2π
L

λ0
h(t)

)
). (1.45)

However, the interferometric GW detectors are subject to various noise sources
that limit their further sensitivity improvements, such as seismic noise and elec-
tronic noise. Although these noises can be mitigated through several techniques,
quantum noise that arises due to the Heisenberg uncertainty principle and quan-
tum fluctuations of the probing light, increasingly predominates in the detection
frequency bandwidth of advanced second-generation interferometers. This quan-
tum noise imposes a fundamental limit on the precision of test mass displacement
measurements.

Imprecision Noise (Shot Noise)

After discussing the physical background of quantum states of light, we now ex-
amine how quantum noise affects the detection system and its sensitivity. One
source of quantum noise arises from the inherent uncertainty in arrival times of
photons at the detector. Despite a constant average number of photons per time
interval, these arrivals are subject to statistical fluctuation, characterized by a
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Figure 1.9: Schematic of a conventional Michelson Interferometer. (a) When
the interferometer operates at the dark fringe, the leakage from the dark port carries the
displacement signal of the interferometer. Simultaneously, vacuum noise can enter the
interferometer, driving the test mass mirror as the radiation pressure noise. (b) The strain
sensitivity for a conventional Michelson interferometer encompasses both shot noise (SN:
red dashed curve) and radiation pressure noise (RPN: green dashed curve). Changing
the laser power only shifts the minimum quantum noise along the standard quantum
limit curve but cannot surpass this limit.

Poisson distribution. The root-mean-square (RMS) fluctuation of this distribu-
tion (denoted as

√
N ∝

√
P , the power of light is related to the average amount of

photons), leads to a fractional error in phase measurement, known as imprecision
noise (or shot noise, SN). Notably, this measurement imprecision noise variance is
inversely proportional to the photons count in the detector (optical power) (∝ 1

p)
and is spectrally flat, where the carrier frequency ω0 = 2πc/λ0:

SSN =
h̄c2

2ω0P
. (1.46)

Radiation Pressure (Backaction) Noise

Another significant source of quantum noise involves the fluctuation of photons
transferring their momentum to the test-mass as random radiation pressure forces
(δFRP N = ∝ P ), which induces additional vibration. This radiation pressure
noise scales with the optical power; higher power leads to increased momentum
being transferred to the test-mass, causing it to react and thus induce addi-
tional displacement. This reaction is characterized by its mechanical susceptibil-
ity χm(Ω) = −1/mΩ2 for a free mass object, which acts as a transfer function
from force to displacement. The spectral density of the radiation pressure force
and its consequent impact on the mirror displacement, can be expressed as:

SRPN =
h̄ω0P

m2Ω4c2 . (1.47)
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Figure 1.10: Diagram of shot and radiation pressure noise (a) Shot noise orig-
inates from the uncertainty in the simultaneous arrival of photons, compromising the
phase precision required to distinguish the force signal at the detection quadrature. (b)
Radiation pressure noise results from the random photons bombarding the mirrors. These
induced vibrations of mirror will, in turn, distort the amplitude precision of the measured
force signal.

Here, m is the mass of the test object, and Ω is the frequency of the mechanical
susceptibility, and c is the speed of light. The combined effect of these two
independent quantum noise sources results in total quantum noise that limits the
sensitivity of the detection system:

Stot = SSN + SRPN =
h̄c2

2ω0P
+

h̄ω0P

m2Ω4c2 . (1.48)

These two uncorrelated quantum noise sources can be transferred into the rel-
ative strain h(t) = δL(t)

L in a conventional Michelson interferometer, such as
δL(t)∼10−19

L∼4000 ∼ 10−22 depicted in Fig.1.9 (a) (where the radiation pressure effect
is considered twice for the differential mode of interferometer output [24, 25].
They together establish a lower bound of the total noise at each given optical
power, as shown in Fig.1.9 (b) (blue curves), increasing the light power reduces
the shot noise but enlarges the radiation pressure noise. The minimal noise point
is reached with equal contributions of measurement imprecision and radiation
pressure noise to the total quantum noise. Consequently, there exists an opti-
mal power level for achieving maximum strain sensitivity (minimized quantum
noise) at each frequency, defining the Standard Quantum Limit (SQL) (royal blue
curve). These constraints set a theoretical boundary that classical sensors cannot
surpass, but which quantum sensors aim to overcome. Thus, we can establish
an ultimate lower bound independent of the optical power across the detection
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Parameters for GW configurations
Parameter Notation Value

Mirror mass, kg M 40
Arm length, km L 4
Laser wavelength, nm λp 1064
Optical power in each arm, MW Pc (0.5, 5, 50)
Power transmissivity (input mirror) T (0.014, 0.054)
Effective detector bandwidth, Hz γ (260, 1000)

Table 1.11: Parameters used for modeling the strain sensitivity of the gravitational
wave detector throughout this thesis

bandwidth4.

hSQL =

√
1

L2 SSN +
4

L2 SRPN ≥

√
4 h̄

mΩ2L2 . (1.49)

In tab.1.11, the parameters used to numerically simulate the quantum noise and
strain sensitivity for gravitational wave observatories are shown. These param-
eters were adapted based on a review paper by Khalili [ref] and detuned EPR
entanglement paper [26]. These parameters will be used throughout this the-
sis. In the next chapter, we will explore various quantum techniques designed
to surpass the Standard Quantum Limit (SQL) and achieve quantum-enhanced
detection sensitivity.

1.6 Thesis overview

Before moving to the next chapter on quantum-enhanced measurement, allow me
to present a brief overview of the thesis structure. The aim of this thesis is to
demonstrate broadband quantum noise reduction techniques by combing EPR-
entangled light and an atomic spin oscillator prepared in a negative reference
frame.
This thesis is divided into three parts:

1. Theoretical Background: Introduced in Chapter 1,2, and 3.

2. Experimental Setup and Calibration Techniques: Detailed in Chap-
ter 4, 5, and 6, focusing on the atomic spin system.

3. Hybrid Quantum System and Conclusions: Discussed in Chapter
7 and 8, covering conditional squeezing of entangled light and collective

4SQL will changes to
√

8 h̄
mΩ2L2 with cavities
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atomic spin oscillators, along with numerical simulations of frequency-dependent
squeezed source for the joint measurement of the hybrid system.

In more details:
Chapter 1: Introduces quantum noise, focusing on quantum backaction and
shot noise in laser-based weak force measurements. This chapter discusses how
quantum noise sets the standard quantum limit, which prevents the improvement
of measurement sensitivity, such as in gravitational wave observatories.

Chapter 2: Covers various quantum engineering techniques to reduce quantum
noise, such as variational readout and frequency-dependent squeezed vacuum,
achieved by a detuned filter cavity or utilizing the interferometer as a filter cavity
with detuned EPR-entangled pairs. It also explores how an atomic spin oscilla-
tor prepared in an effective negative mass reference frame can achieve broadband
quantum noise reduction.

Chapter 3: Provides the theoretical background for cesium atoms used to pre-
pare the collective atomic spin oscillator. It introduces the input-output relations
for light-spin interaction and the figure of merit parameter, quantum coopera-
tivity, to quantify the dominance of quantum backaction that will be used for
quantum noise reduction.

Chapter 4: Describes the experimental setup for preparing the spin oscillator.

Chapter 5: Discusses the thorough calibration of the atomic spin system, includ-
ing measurement readout rate, decoherence, atomic thermal noise, and broadband
noise. The spin quantum cooperativity is cross-validated with the observation of
ponderomotive squeezing of the probe light.

Chapter 6: Presents technique improvements and explore additional atomic
alignment responses at ultra-high frequencies, maintaining the dominance of
quantum backaction evidenced by ponderomotive squeezing down to the acoustic
frequency range.

Chapters 7 and 8: Conclude the thesis by demonstrating the theoretical pre-
diction of the frequency-dependent EPR-entangled source, optimized using the
Wiener filter gain within the combined hybrid system. Additionally, future steps
and our very recent experimental achievements are discussed.
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Chapter 2
GWD Quantum Theory

2.1 Quantum noise in GW interferometer

In the previous chapter, we introduced the quantum noise as one of the dominant
noise sources within the GW detection bandwidth, establishing the standard
quantum limit (SQL) prevents further sensitivity improvements. This chapter
aims to theoretically model these quantum noises in two practical GW detector
configurations : the conventional free mass and tuned Fabry-Pérot interferometer.
More importantly, we will explore several quantum-enhanced approaches that can
potentially help us to surpass this standard quantum limit.

2.1.1 I/O relations for simple Michelson Interferometers

We begin by revisiting the simple Michelson interferometer discussed in Fig.1.9
of the previous chapter . Here, we provide a theoretical model to describe the
input-output relationship for a GW detector. The transformation, also known as
the input output relation of a conventional interferometer, can be written in the
general form as [27]: b̂c(Ω)

b̂s(Ω)

 = e2iβm

 1 0
−κ(Ω) 1

 âc(Ω)

âs(Ω)


︸ ︷︷ ︸

Quantum noise

+ eiβm

√
2κ(Ω)

 0
1

 h

hSQL,m︸ ︷︷ ︸
GW signal

,

(2.1)
where âc,s and b̂c,s are the input and output of the amplitude and phase light
quadratures, respectively. The variable h is the gravitational wave strain ampli-
tude, and hm

SQL represents the free mass standard quantum limit (SQL) in terms
of strain sensitivity for a simple Michelson interferometer. When the interfer-
ometer operates in a dark fringe, the gravitational wave signal manifests solely
in the phase quadrature of the output light. The SQL for a simple Michelson is
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expressed as :

hSQL,m =

√
4 h̄

mΩ2L2 , βm = arctan
(2ΩL

c

)
, κ =

4P0ω0
mc2Ω2 . (2.2)

Here, βm is the round-trip phase accumulated on the laser sideband frequency,
and κ denotes the optomechanics coupling factor. This factor is crucial in trans-
ferring vacuum quantum noise in the amplitude quadrature from the dark port
of beam splitter into the interferometer as radiation pressure noise [28], a phe-
nomenon that is predominant at low frequencies and depends on the laser power
P0, mass of the mirrors m and the susceptibility of the end mirrors. Addition-
ally, vacuum fluctuations remain in the phase quadrature of the output field and
limit the GW strain sensitivity as quantum shot noise. The strain sensitivity,
defined as the smallest GW signal that an interferometer can measure across the
detection bandwidth, is determined by the ratio of the total output quantum
noise to the gravitational wave signal transfer function. Assuming the Power
Spectral Density (PSD) of the vacuum noise in a single sideband picture is uni-
tary, i.e., we only consider Gaussian quantum state of light[23], the PSD of the
quantum-noise limited strain sensitivity for a simple Michelson interferometer (
in h normalization [16]) can be expressed as follows (Here, I use κ to represent
the optomechanical coupling factor for a free-mass κ(Ω) and K(Ω) for a tuned
Fabry-Pérot interferometer:

S
m
h =

h2
SQL,m

2

( 1
κ(Ω)

+ κ(Ω)

)
. (2.3)

2.1.2 I/O relations for Fabry –Pérot Michelson

The sensitivity of a gravitational wave detector can be enhanced by increasing the
circulating laser power within the interferometer‘s arms. This can be achieved,
for example, by inserting Fabry-Perot (FP) cavities within the interferometer‘s
arms to significantly boost the circulating power, as presented in Fig.2.1 (a). The
input-output relation for the FP-Michelson (also known as tuned ) interferometer
is very similar to conventional Michelson: b̂c(Ω)

b̂s(Ω)

 = e2iβ

 1 0
−K(Ω) 1


︸ ︷︷ ︸

Quantum noise

 âc(Ω)

âs(Ω)

+ eiβ
√

2K(Ω)

 0
1

 h

hSQL
,

(2.4)
where [29]:

K(Ω) =
16ω0P0

mLc

2γ

Ω2 (Ω2 + γ2)
, γ =

Tc

4L
, β(Ω) = arctan

(
Ω
γ

)
. (2.5)
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Figure 2.1: Comparison of strain sensitivity: conventional Michelson vs.
Fabry-Perot (Tuned) Michelson. (a) By inserting Fabry-Perot (FP) within the in-
terferometer arms, the circulating power can be significantly increased. (b) In the tuned
Michelson interferometer, the signal sensitivity is notably enhanced by the FP cavities
(illustrated by the red curve), compared to the conventional interferometer (shown by
the blue curve). However, this improvement results in an increased standard quantum
limit (SQL) and a reduced detection bandwidth. This reduction is due to the rolling up
of shot noise and radiation pressure noise beyond the cavity bandwidth, affecting both
low and high frequency ranges.

In this context, γ represents the half-width-half-maximum bandwidth of the arm
cavities, β now is the phase accumulated within the arm cavities, and K is the new
optomechanical coupling factor (kimble factor). The incident light, initially with
uncorrelated phase and amplitude noise, has its amplitude noise (âc) impacting
the momentum of the test mass mirror through the off-diagonal term in the
matrix. This noise will later evolves into position noise of the mirror and project
into the phase quadrature (âs) of the output light. In the specific case of phase
quadrature readout out, ϕLO = π/2 , the expression simplifies as follows:

S
h
=

h2
SQL
2 [

1
K(Ω)

+ K(Ω)] ≥ h2
SQL ≡ S

h
SQL. (2.6)

The standard quantum limit is now elevated by a factor of
√

2 compared to the
previous configuration:

hSQL =

√
8 h̄

mΩ2L2 . (2.7)

Fig.2.1 (b) illustrates the resonant enhancement of the strain sensitivity with FP
cavities ( depicted by the red curves) in comparison to the conventional Michelson
interferometer (shown by the blue curves). The shot noise is reduced, but there is
an increased radiation pressure noise due to the enhanced circulating power inside
the arm cavities. However, both the strain sensitivity, and the noises, including
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shot noise and radiation pressure noise, exhibit a significant roll-up beyond the
cavity‘s bandwidth, affecting both the low and very high spectral frequency.

2.1.3 Ponderomotive squeezing due to Quantum back-action

When we consider the impact of the gravitational interferometer on the output
state of light. An interesting reinterpretation emerges regarding the optomechan-
ical transfer matrix as presented in Eq.(2.4). This matrix can be expressed in
terms of the previously defined squeeze and rotation operators, thus the transfer
matrix T can be mathematically represented as [30–32]:

b̂ = T · â = e2iβR[ϕpond]S[rpond]R[θpond]â, (2.8)

e2iβ is the phase accumulated from the interferometer, R remains the rotation
matrix and S is identified as the squeezing matrix ( named as ponderomotive
squeezing). This ponderomotive squeezing is characterized by the factor rpond,
squeezing quadrature angle ϕpond and rotation angle θpond:

erpond =

√
1 +

(
K(Ω)

2

)2
+

K(Ω)

2 , (2.9)

ϕpond =
π

2 + θpond = −1
2 arctan

(
K(Ω)

2

)
− π

4 . (2.10)

Figure 2.2: Generation of quantum correlation induced by the radiation pres-
sure noise. In both the amplitude and phase quadrature of light, uncorrelated shot noise
is present. The quantum back-action effectually transmits amplitude fluctuations of light
to the phase quadrature, where the gravitational wave signal resides, through interacting
with a suspended mirror, thereby generating quantum cross-correlations between these
two quadratures. The ponderomotive squeezing is depicted by the purple noise ellipse,
emerging when two light quadratures are mixed at the output. Both the squeezing fac-
tor and squeezing angle are modified by the frequency-dependent optomechanical factor
K(Ω).

In contrast to the frequency-independent squeezing produced by parametric down
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conversion, the ponderomotive squeezing effect arises from the fluctuating radi-
ation pressure due to the amplitude quantum noise of light on the suspended
test mass mirrors. This interaction subsequently causes additional phase fluc-
tuations through the ponderomotive nonlinearity, as depicted in Fig.2.2. This
additional fluctuation exhibits a frequency-dependent gain ( various degrees of
anti-squeezing for different sideband frequencies ) and rotation, both modified by
the optomechnical coupling factor K(Ω). At higher frequencies, beyond the range
of optomechanics interaction, the output quantum noise in phase quadrature is
only dominated by the vacuum fluctuations. Such ponderomotive squeezing can
be observed when these two quadrature are mixed during the measurements, such
as homodyne detection or in detuned cavities.

This significant aspect of how the quantum backaction noise, resulting in the pon-
deromotive squeezing, plays a crucial role in engineering the quantum noise with
the injection of squeezed state. This rotation also highlights why a frequency-
dependent squeezing injection is important for achieving broadband quantum
noise suppression, instead of just employing a phase-squeezed light in the read-
out port.

2.2 Sub-SQL with the art of quantum noise engineer

2.2.1 Quantum noise cancellation with cross-correlation (varia-
tional readout)

Previously, we have discussed the standard quantum limit (SQL) that exists
due to the independent contributions of shot and back action noise to the total
quantum noise in the phase quadrature of probe light, where the gravitation wave
signal resides, however, if we can smartly engineer these two types of quantum
noise to induce a destructive quantum interference through the cross-correlation.
This strategy might enable us to surpass the standard quantum limit.

S
h
= S

h
SN + S

h
BAN − 2S

h
SN−QBAN corr. (2.11)

One approach involves utilizing the correlation from the ponderomotive effect by
deviating the detection quadrature from the pure phase quadrature (a method
also known as variational readout). The power spectral density of the strain
sensitivity, involving different detection angle, is now written as [16, 33]:

S
h
=

h2
SQL
2 [

1
K(Ω)

+
[K(Ω) − cot ϕLO]2

K(Ω)
]. (2.12)

As illustrated in Fig.2.3, in an ideal losses scenario, detection from the pure phase
quadrature can lead to a narrower strain sensitivity ( as shown in yellow curves).
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More significantly, this approach can lead to detection with reduced quantum
noise, even below the SQL at certain sideband frequencies due to the interference
of the correlated quantum noise.

The variational readout approach can be understood as the mixed homodyne
detection. It enables the original, uncorrelated back-action and shot noise in
the phase quadrature to interfere with the shot noise in amplitude quadrature.
Since both the back-action noise and shot noise in amplitude quadrature stem
from the same noise source, this can result in destructive interference. Despite
the partial loss of gravitational signal, by strategically choosing the detection
spectrum frequency and homodyne angle, one can still enhance the signal strain
sensitivity below SQL as shown in Fig.2.3 (b). Moreover, the reduction in signal
strain can be compensated by employing higher circulating laser power. When

Figure 2.3: Quantum noise reduction with variational readout. (a) Quantum
noise reduction is achieved by mixing the two light quadratures through the homodyne
detection angle ϕLO. (b) In the absence of optical losses, strain sensitivity can surpass
the SQL by strategically selecting the detection homodyne angle, thereby achieving max-
imum strain sensitivity at a specific sideband frequencies (yellow curves) (also known as
post-filtering). When the detection angle angle is optimized for each sideband frequency,
the quantum backaction quantum can potentially be removed completely, leaving the
strain sensitivity only limited by the shot noise in the phase quadrature (blue curve).

the frequency dependent homodyne angle is optimized (where K(Ω) = cot ϕLO),
a lossless variational readout scheme can reduce the total quantum noise below
the SQL across the entire back action dominant regime. The system ‘s limitation
is primarily the residual shot noise in the phase quadrature, as expressed by :

S
h
=

h2
SQL
2 [

1
K(Ω)

]. (2.13)

This approach can be implemented by inserting a post-filter cavity at the interfer-
ometer output. However, the high sensitivity of both correlation and gravitational
wave signal to optical loss makes this variational readout approach technically
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demanding, especially in terms of optical loss management and phase control
precision of the post-filtering cavity. More details are discussed in page 105 of
Khalili’s review paper [30] and page 9 of Valerii’s thesis [33].

2.2.2 Quantum noise reduction with squeezed state injection

From the input-output transformation matrix of GW interferometry, it is clear
that vacuum fluctuations enter the dark port of interferometer, thereby limiting
the signal strain sensitivity due to quantum noise. By replacing the input vacuum
fluctuation with a noise reduced quantum state, such as squeezed vacuum state.
The output quantum noise of light after the interferometer can be effectively
modified or even mitigated with the injection of an appropriate squeezed state.
Assuming we are measuring the phase quadrature of light (ϕLO = π/2), the
quantum noise spectral density can be expressed as follows [30]:

S
h
(Ω) =

h2
SQL

2K(Ω)

[
e−2r (sin ϕsq − K(Ω) cos ϕsq)

2 + e2r (K(Ω) sin ϕsq + cos ϕsq)
2
]

,

(2.14)
where r is the squeezing factor, and ϕsq is the squeezing angle. The strain sen-
sitivity of Fabry-Perot (tuned) gravitational wave interferomter with a squeezed
state injection, as illustrated in Fig.2.4, can be improved significantly. Fig.2.5
illustrates simple schematic representations of quantum noise engineering. For
a squeezed injection angle ϕsq = π/2, there is a reduction in shot noise within
phase quadrature, without actually boosting the circulating power which could
cause heat and deformation in the test mass mirrors. The quantum noise spectral
density under this squeezed angle is now given by:

S
h
=

h2
SQL
2 [

1
K(Ω)

e−2r + K(Ω)e2r]. (2.15)

This squeezed state injection results in a reduced shot noise at high frequencies
while elevated radiation pressure noise at low frequencies, as shown in Fig.2.4 (c,
blue dashed curve). Conversely, selecting a squeezing angle at ϕsq = 0 (tomato
dashed curve) decreases the radiation pressure noise at the expense of the in-
creased shot noise. Both scenarios are equivalent to change the circulating power
inside the interferometer and thus only moving the sensitivity curve along the
tuned SQL curve. An interesting case arises with ϕsq = π/4 (as shown in purple
curve), where both the shot noise and radiation pressure noise increase at very low
and high sideband frequencies. However, the strain sensitivity can be improved
and even surpass the SQL in a narrow band range, thanks to the quantum cor-
relations induced by the injected squeezing light. This happens at frequencies
where the contribution of both quantum noises nearly equalize, allowing efficient
destructively interference.

To achieve a broadband reduction of quantum noise across the detection band-
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Figure 2.4: Strain sensitivity of tuned FP-interferometer with squeezed state
injection at different squeezing angle. (a) The vacuum fluctuation at the interfer-
ometer’s dark port is injected with a vacuum squeezed state, characterized by a fixed
squeezed angle (ϕsq). (b) The squeezing angle can be modified in a frequency dependent
manner through the reflection of a filter cavity. (c) The panel in the bottom illustrates
the quantum noise curves with -10dB (r = 1.15) squeezed vacuum state injection at differ-
ent squeezing angles. Notably, an optimized frequency dependent squeezed angle yields
a broadband sensitivity improvement (depicted in orange curve), and this enhancement
of strain sensitivity below the SQL is marked with orange area.

width, employing a frequency-dependent squeezed state is essential. At high
frequencies, ϕsq = π/2 minimizes the shot noise, while ϕsq = 0 reduces the
radiation pressure noise at low frequencies. The optimized angle for minimal
quantum noise across a broadband frequencies are expressed as [33]:

ϕsq,opt = arccot(−K(Ω)), (2.16)
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Figure 2.5: Engineering quantum noise with various squeezed vacuum state
injections. In the phase quadrature of probe light where harbours the GW signal, a
reduction in shot noise in phase quadrature ( indicated by a blue arrow) is achieved
using a phase squeezed vacuum (ϕsq = π/2). This approach, however, results in anti-
squeezing in the amplitude quadrature (denoted by a enlarged green arrow), consequently
amplifying the back-action noise K(Ω)âc. Conversely, the injection of squeezed state with
ϕsq = 0 leads to the opposite effect. In an optimized frequency dependent squeezing
scenario, a filtering cavity with an optimized phase allow both the shot and back-action
noise to originate from the optical phase quadrature, by intergrating this with phase
squeezed state injection, this scheme can in principle mitigate both shot and back-action
noise at each sideband frequency.

which results in the optimized strain sensitivity with frequency-dependent squeezed
vacuum injection:

S
h
=

h2
SQL
2 [

1
K(Ω)

+ K(Ω)]e−2r. (2.17)

In reality, the frequency dependent squeezing can be achieved by sending the
squeezed vacuum field through filter cavities, also called pre-filtering. There
specifically designed Fabry-Perot cavities, tailored with appropriate bandwidth
and very well-control losses to prevent degradation of squeezing, are made for
this purpose, as detailed in the referenced work [34, 35], the optimal frequency
dependent rotation can be expressed as follows:

ϕopt(Ω) = arccot
[

2δf γf

γ2
f − δ2

f + Ω2

]
, (2.18)

where γf is the bandwidth (HWHM) of the filter cavity and δf is the detuning
of the input quadrature relative to the cavity resonance. The role of the filter
cavity is to substitute the shot noise in amplitude quadrature of light, denoted
as (K(ω)âc) with the corresponding noise from the phase quadrature(K(ω)âs).
Consequently, both the shot noise and radiation pressure noise originate from the
same noise sources (as + K(ω)âs). As demonstrated in the introduction chapter
regarding the frequency dependent squeezed state in the phasor picture, these
rotational effects are attributed to the noise in the carrier field‘s upper and lower
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sidebands, which acquire different phase shifts upon reflecting from a detuned fil-
ter cavity as depicted in Fig.2.6. Subsequently, an optimized frequency-dependent
squeezed state, characterized by tailored cavity bandwidth and detuning, is in-
jected to the dark port of interferometer. This process is instrumental in achieving
the broadband strain sensitivity enhancement, as shown in Fig.2.4 (c).
However, ideal frequency dependent squeezing are not easy to produce. The
requisite number of filter cavities is determined by the detection bandwidth of
gravitational interferometer [30]. The current interferometer bandwidth requires
filter cavities with lengths on the order of 100 meters [36], meanwhile, when the
detector is quantum noise limited over the entire detection band, additional ro-
tations of the squeezing ellipse can appear due to the detuned interferometer
cavity and optical spring resonance. In such scenarios, at least two filter cavities
are required to produce the optimal frequency dependent squeezing angle. Fur-
thermore, considering the vulnerability of squeezed states to the optical losses, it
becomes imperative to minimize these losses with better optics coating and an
ideal spatial mode match of the filter cavity. A good phase noise control system
is also important to reach the target sensitivity improvement [37].

Figure 2.6: Observation of frequency-dependent quadrature rotation arising
from the reflection off a detuned filter cavity. In the two-photon sideband phasor
representation, upper sideband photons at each frequency accumulate distinct phases
due to the reflection from a detuned filter cavity. This accumulation, combined with the
photons in low sideband, results in the frequency-dependent rotation of the squeezing
ellipse.

Moreover, in an ideal scenario where the losses can be effectively managed, the
variational readout method could be employed to fully suppress the quantum
backaction noise. Following this, the injection of phase squeezed vacuum would
be sufficient to attenuate the shot noise, thereby improving the strain sensitivity
to the level depicted by the yellow curve in Fig.2.7. it‘s strain sensitivity can now
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be expressed as [34]:

S
h
=

h2
SQL
2 [

1
K(Ω)

]e−2r. (2.19)

2.2.3 Conditional quantum noise cancellation with detunned EPR
entanglement
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Figure 2.7: Quantum noise reduction with squeezed variational readout and
detuned EPR entanglements scheme. Phase-squeezed vacuum injection paired with
variational readout (yellow curve) can eliminate back-action noise under ideal conditions.
Nondegenerate EPR entangled pairs used for conditional squeezing (green curve) achieve
comparable strain sensitivity improvements, with a 3dB penalty. Traditional frequency-
dependent squeezing (tomato curve), which is twice as effective as the EPR entangled
pairs, is provided for reference. All comparisons are made with an injected squeezing
level of 10dB (r = 1.15).

In 2017, Ma.et al. [29] introduced a different approach to achieve broadband
quantum noise reduction below the SQL without relying on multiple filtering
cavities. Instead of employing additional filter cavities to rotate the squeeze an-
gle, this method uses the gravitational wave interferometer as a filter cavity to
perform the require frequency dependent rotation. In contrast to the deploy-
ment of a single-mode squeezed state, where the center frequency aligns with
the carrier frequency of interferometer, this proposal utilize the EPR entangled
pairs. In this approach, while the signal field resonates with interferometer, the
idler field, on the other hand, is slightly detuned by a few MHz, encountering
a frequency-dependent phase shift contingent upon the relative detuning ∆ and
the bandwidth of the interferometer. As previously discussed, the quantum cor-
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relation within these entangled EPR pairs enables the joint measurement and
can create a conditional squeezing. This mechanism allows for the reduction of
the signal uncertainty ( fluctuations ) by appropriately measuring the quadrature
of the idler beam, and vice versa. The strain sensitivity for the detuned EPR
proposal with optimized conditional measurement (shown in Fig.2.7) (teal curve)
can be expressed as:

S
h
EP R ≈

h2
SQL

2cosh2r
[

1
K(Ω)

+ K(Ω)]. (2.20)

In the scenarios of strong correlation, the improvement factor cosh2r ≈ e2r/2,
exhibits 3dB less than the single-mode squeezed vacuum injection due to the lack
of the correlation between both the upper and lower sidebands of the signal and
idler fields,. This proposal without necessitating of additional filter cavities and
would be even compatible with detuned GW interferometers [38].
However, in practical applications, such scheme achieves sub-optimal suppression,
as the interferometer, functions merely as a single filter cavity and thus does not
yield the perfectly optimal phase for the idler beam across the entire detection
bandwidth. Moreover, this scheme requires two readout channels, which imposes
greater demands on minimizing the output losses in the detection systems. In
2020, two parallel groups successfully demonstrated this concept through the
proof-of-principle experiments employing 1m filter cavities [39, 40]. Their experi-
ments presented the necessary frequency dependent rotation on idler field, and the
quantum noise impacting on the signal field at sub MHz side-band frequency was
successfully mitigated. This reduction is conditional on the appropriate measure-
ment of noise in idler field with additional 3dB penalty as anticipated. However,
they couldn’t adjust the relative weight between the two entangled arms due
to system limitations. Furthermore, they illustrated that selecting suitable idler
detuning could potentially counteract the additional phase shift when the signal
recycling cavity operates in the detuned interferometer configuration. Despite the
inherent 3dB penalty, the relaxing of need for additional expensive filter cavities
make this approach as a highly practical option.

2.3 Quantum noise cancellation with hybrid negative
mass oscillator

In the previous section, we discussed how the quantum noise in the gravita-
tional wave interferometers can be reduced using the quantum correlations in
non-classical states of light, such as frequency-dependent squeezed vacuum or
detuned Einstein-Podolsky-Rosen (EPR) entanglement.
In this section, we will explore a relatively different approach aimed at improving
the GW interferometer sensitivity. This method involves coupling the interferom-
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eter to another quantum system. When the probe light simultaneously interacts
with these new hybrid systems, a exciting new effect can be observed if this new
quantum system is prepared in an effective negative-mass reference frame. It
introduces radiation pressure noise but with an opposite sign relative to the test
mirrors in GW detector. This hybrid setup allows for the suppression of the
quantum back-action noise in the interferometer by reshaping its optomechanical
response through the new reference system. Consequently, this new hybrid ap-
proach can counteract the ponderomotive squeezing effect, which is induced by
light radiation pressure noise, without degrading the detection system‘s response
to the GW signal as the variational readout technique does. Such an enhancement
in sensitivity can be achieved without the necessity for both quantum squeezed
states and filter cavities.
The negative-mass system can be realised by inserting a negative dispersion
medium, either before or after the interferometer. If the optomechanical suscepti-
bility of this negative mass oscillator is precisely aligned with the response transfer
function of light radiation pressure force on the test mass mirrors in the GW de-
tector, but with an opposite sign across the detection frequency band, then the
back-action noise of the two systems can mutually cancel. This can effectively re-
verse the ponder-motive squeezing from the test mass mirrors, leading to so called
backaction free measurement. In this scenario, the original fundamentally non-
commuting quadratures of position and momentum of the text mass mirror, de-
noted by [X(t), P (t)] = i, are replaced by an entangled hybrid system with a com-
muting combination of two variables [X(t) − Xneg(t), P (t) + Pneg(t)] = 0. This
allows for arbitrary precision in measuring the relative position X(t) − Xneg(t)

or momentum P (t) + Pneg(t) of the two system oscillators, as referenced in [41].
In other words, this approach enables a quantum noiseless trajectory of the mean
relative position of the two combined hybrid system at any measurement time t.

X(t) − X(t)neg = X(0) − X(0)neg + t[P (0) + P (0)neg]/m. (2.21)

Therefore, for force signal such as gravitational wave that can disturb the rela-
tive position (X(t) − Xneg(t)) at time t, these hybrid systems, in principle, are
capable of sensing such signals with a precision surpassing the SQL, free from the
constraints of probe induced quantum back-action noise. An exciting aspect of
these hybrid systems is is the possibility of operating two systems remotely, with
atoms placed at a considerable distance from the mechanical system.

One experimental approaches to creating an effective negative mass oscillator
involves interaction with a collective atomic spin oscillator [42], the resonance
frequency of which is tunable via a bias magnetic field. An experiment demon-
strating the reduction of back-action in a membrane cavity optomechanics sys-
tem, oscillating at MHz sideband frequency, was conducted by Muller in 2018
[43]. Furthermore, the proof of EPR entanglement between these two hybrid sys-
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tems is documented in the later paper [44], enabling the prediction of mechanical
membrane system trajectories within the reference frame of the atomic spin os-
cillator, approximately 20% below the standard quantum limit (SQL). Building
upon these findings, Eugene and Khalili proposed the use of this negative mass
atomic ensemble in Gravitational wave (GW) detection systems for achieving
broadband quantum noise reduction across their detection bandwidth [45–47].

The atomic spin ensemble offers several unique features that are particularly ad-
vantageous for optomechanical systems like GW interferometers. In specific sce-
narios, particularly when considering the coupling to the internal state of atomic
spins [48], the dynamics of polarization rotation of probe light, which couples to
the atomic hyperfine or Zeeman spin states, can be precisely modeled using an or-
dinary harmonic oscillator. Both the sign and magnitude of the eigenfrequency of
this effective harmonic oscillator can be adjusted via the orientation and strength
of the bias magnetic field. Additionally, the Faraday rotation measurement of the
spin states with light results in a quantum back-action effect similar to that of a
movable mirror in optomechanics, but with a modifiable sign.
Each spin in atomic ensemble can be described by the total angular momentum
vector h̄×

[
F̂x, F̂y, F̂z

]
. Imagine that this atomic ensemble is optimally pumped

to the highest energy state along the x-axis and is placed in a strong bias magnetic
field B aligned in the same direction. Consequently, the ensemble, consisting of N
atoms, now behaves as a collective macroscopic spin, expressed as Fx =

∑N
i=1 F̂ i

x.
When the energy of this collective spin corresponds to a large positive value,
h̄ΩSFx, where ΩS represents the Larmor precession frequency. Relative weak
excitations from the highest energy state reduce the total energy and can be
effectively modeled using the effective Hamiltonian [49]:

ĤS = h̄ΩSFx − h̄ΩS

2
(
X̂2

S + P̂ 2
S

)
, (2.22)

in this context, the magnitude of the mean longitudinal spin, Fx = |
〈
F̂x

∣∣∣F̂x

〉
|,

is significantly larger than the transverse collective spin components, F̂y and F̂z.
These two transverse components can later be mapped to effective position and
momentum variables of a harmonic oscillator. It is important to note there is a
minus sign associated with the momentum variables:

X̂S =
F̂z√
Fx

, P̂S = − F̂y√
Fx

. (2.23)

With the standard commutation relation
[
X̂S , P̂S

]
= i, these variables corre-

spond to a harmonic oscillator that exhibits a negative frequency, denoted as
−ΩS . Consider a scenario where a linearly polarized probe light, aligned along
the x-axis, interacts with the collective spin. This interaction occurs far from the
atomic resonance frequency, where the absorption of probe light by the atoms is
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almost negligible. In this context, the only effective position, X̂S of the spin oscil-
lator is read out through the Faraday interaction (or QND in our group), a topic
we will elaborate on in the following chapter. In this case, the interaction Hamil-
tonian, which considers only the vector interaction term, can be approximated
as :

ĤQND ≈ h̄gSa1ŜzF̂z = h̄
√

Γsâc
SX̂S , (2.24)

In this equation, gS represents the single atom-photon coupling rate, a1 is the
vector interaction factor of the atomic polarizability, and Ŝz is one of the Stokes
operators of light, which can be re-expressed in terms of the cosine quadrature of
the polarized light âc,S , as Ŝz = âc,S/

√
|Sx|, once the LO phase is properly se-

lected. ΓS is known as the readout rate, which represents the interaction strength
of the light-atom quadrature:

ΓS = g2
Sa2

1SxFx. (2.25)

The interaction described here closely resembles the standard dispersive coupling
between the light and a mechanical object. The input-output relationship for
the QND measurement of the atomic oscillator in the Fourier domain 1 can be
expressed as follows [20, 30, 33, 49, 50] :

 b̂c,S(Ω)

b̂s,S(Ω)

 =

 1 0
ΓSχS(Ω) 1

 âc,S(Ω)

âs,S(Ω)


︸ ︷︷ ︸

Quantum Noise

+
√

ΓSγS

 0 0
ρS(Ω) χS(Ω)

 F̂ X
S

F̂ P
S


︸ ︷︷ ︸

Thermal Noise

, (2.26)

where â(c,s),S denote the cosine and sine quadrature of the incident light, while
b̂(c,s),S represent the corresponding quadrature of the outgoing light. The sub-
script ’S’ in these variables signifies the input-output relationship of light in-
teracting with atomic spins. Additionally, F̂ X

S and F̂ P
S are defined as effective

stochastic Langevin forces, contributing to the system’s dynamics. In this con-
text, it is observed that the atomic spin oscillator exhibits decay phenomena in
both X̂S and P̂S spin quadratures, attributable to the de-excitation of collective
spins. (Unlike optomechanical systems, where the oscillator’s momentum under-
goes decay due to velocity-dependent damping, the atomic system demonstrates
a distinct set of dynamical characteristics.)

1The angular Fourier transform is used as: F(Ω) = 1
2π

∫ +∞
−∞ f(t)eiΩt dt, where F(Ω) repre-

sents the transformation of function f(t) in frequency domain.
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χS(Ω) =
ΩS

Ω2
S − Ω2 − iγSΩ + ( γS

2 )2 , (2.27)

ρS(Ω) =
γS
2 − iΩ

Ω2
S − Ω2 − iγSΩ + ( γS

2 )2 . (2.28)

χS and ρS are the effective spin susceptibilities of the atomic spin system with
γS representing the total spin linewidth.
It‘s important to note that in real experiments, the light-atom interaction is
considerably more complex than this model presents. We will delve into more
detailed aspects of this interaction in next chapter.

2.3.1 Quantum backaction evading with negative mass spin os-
cillator in sequential scheme

Inspired by the experimental demonstration referenced in [43], a hybrid system
employing a negative reference frame can be realized by first allowing the probe
light to interact with the negative mass atomic spin system before its injection
into the main interferometer. This interferometer is used to measure the test
mass mirror‘s displacement, induced by the gravitational wave signal as depicted
in Fig.2.9 (a). The output light from the interferometer is subsequently measured
using homodyne detection. In this configuration, the primary role of the negative
oscillator is to reduce quantum back-action noise, as presented in Fig.2.8, where
the transfer function of quantum backaction is mitigated to |ΓSχS(Ω) − K(Ω)|.
Additionally, injecting phase-squeezed vacuum can further reduce shot noise fluc-
tuations in the phase quadrature. While this scheme shares similarities with the
frequency dependent squeezing using a filter cavity, it differs in its nonlinear
ponderomotive response. In contrast to utilizing the linear, frequency-dependent
phase dispersion in a detuned filter cavity to rotate the light quadratures, together
with the application of quantum squeezed light specifically modifies quantum fluc-
tuations based on the prevailing dominance of either shot noise or back-action
noise. Even yielding analogous outcomes, the atomic ensemble directly impacts
the interferometer’s response to light’s radiation pressure. This modification ac-
tively adjusts or counteracts the ponderomotive squeezing effect originating from
the test mass mirrors of the interferometer.
To demonstrate the fundamental aspects of this hybrid scheme, we initially disre-
gard optical losses in both the atomic spin system and the interferometer. Readers
seeking a more comprehensive analysis of optical losses are referred to [33, 45, 46].
Additionally, the atomic system exhibits unique imperfections, such as intrinsic
damping of the atomic spin oscillator, the quantum noise arising from the imag-
inary part of atomic susceptibility, and spin projection noise associated with the
atom number fluctuations, which results in effective thermal noise. These imper-
fections will be incorporated into our analysis of quantum noise reduction.
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Consider the simplest case of a resonance-tuned interferometer, with the detailed
input-output relationship in an ideal lossless scenario described in section.2.1.2.
In the sequential scheme described in Fig.2.9(a), we have â(c,s),S = b̂(c,s),I , where
S, I represent the spin oscillator and interferometer, respectively. Employing the
input-output relationship for both systems, we deduce the output phase quadra-
ture b̂s,out of light via a homodyne detection after its interaction with the two
systems:

b̂s,out =âs,in + (ΓSχS(Ω) − K(Ω)âc.in

+

[√
K(Ω)

h

hSQL
+
√

ΓSγS(χS(Ω)F̂ P
S + ρS(Ω)F̂ X

S )

]
. (2.29)

After normalizing the quantum noise with respect to the gravitational wave (GW)
strain signal h, we obtain the power spectral density of the strain sensitivity in
the sequential negative mass spin oscillator scheme, which is now written as:

S
h
seq =

h2
SQL
2 [

1
K(Ω)︸ ︷︷ ︸

SN

+
|ΓSχS(Ω) − K(Ω)|2

K(Ω)︸ ︷︷ ︸
QBAN

+
ΓSγS(|χS(Ω)|2 + |ρS(Ω)|2)σth,S

K(Ω)︸ ︷︷ ︸
T N

].

(2.30)

Here, the term γS is the total decoherence rate of atomic oscillator. The resonant
frequency of the atomic spin oscillator ΩS , is commonly known as the Larmor
frequency. In parallel, the optomechanical coupling factor K(Ω) is defined as
4P0ω0
mc2Ω2 for a conventional free mass interferometer and 16ω0P0

mLc
2γ

Ω2(Ω2+γ2) for a tuned
Fabry-Perot interferometer. The power spectral density of the effective thermal
bath, σth,S , is described by σth,S = ⟨F̂ X

S (Ω) ◦ F̂ X
S (Ω‘)⟩ = ⟨F̂ P

S (Ω) ◦ F̂ P
S (Ω‘)⟩ =

(1/2 + nS)δ(Ω − Ω‘). In the limit of narrow spin decoherence γS ≪ ΩS , the
susceptibilities can be approximated as ρS(Ω) ∼ −iχS(Ω). Under this approxi-
mation scenario, the spectral density of the effective thermal bath, arising from
two collective components, can be combined into the single thermal bath, with
the noise spectrum represented as: 2ΓSγS |χS(Ω)2|(nS + 1/2). 2 This approxi-
mation proves effective in the high side-band frequency regime, as demonstrated
in [43, 44]. However, for low frequency applications, such as the quantum noise
reduction in GW interferometers, it would be essential to take into account the
complete susceptibility function.

In Fig.2.9, the quantum noise spectral densities for the hybrid system, compris-

2When only concentrate around the spin resonance (Ω ∼ ΩS), the above susceptibilities
can be further simplified as:

χS(Ω) =
1
2

1
ΩS − Ω − i(γS/2) , ρS(Ω) ∼ −iχS(Ω),

and the absolute squares of these equations follow a Lorentzian function.
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Figure 2.8: Engineering quantum noise with effective negative mass atomic
ensembles. Within the phase quadrature of the output light, the quantum backaction
transfer function is altered by |ΓSχS(Ω)− K(Ω)|. Ideally, when the two susceptibilities
match perfectly such that ΓSχS(Ω) = K(Ω), it becomes possible to maximally mitigate
the quantum backaction noise (or ponderomotive effect). To further reduce quantum
fluctuations in the phase quadrature, one simply needs to introduce phase-squeezed light.
However, the injection of a squeezed state might also amplify the residual quantum
backaction noise due to imperfect matching.

ing a sequential negative mass spin oscillator and a tuned interferometer, are
plotted for two scenarios: without a squeezed state (green curve) and with a 10
dB phase-squeezed vacuum (blue curve). In an ideal setup, where two systems
are perfectly matched, the hybrid system is primarily limited by the light‘s shot
noise, as indicated by the yellow curve. However, imperfect cancellation due to
the Fabry-Perot response instead of a free mass oscillator may compromise the
quantum noise reduction efficiency. Nonetheless, significant quantum backaction
noise cancellation is still observable, even falling below the standard quantum
limit (SQL) at certain side-band frequencies that are unreachable by frequency-
dependent squeezing. Additionally, the introduction of a squeezed state imposes
more stringent matching requirements between the two system, as evidenced by
the amplified quantum noise in the blue curve under the identical parameter con-
ditions.
The strain sensitivity of the hybrid systems, when enhanced by an injection of
phase squeezed state, can be expressed as follows:

S
h
seq =

h2
SQL
2 [

1
K(Ω)

e−2r +
|ΓSχS(Ω) − K(Ω)|2

K(Ω)
e2r +

ΓSγS(|χS(Ω)|2 + |ρS(Ω)|2)σth,S
K(Ω)

].

(2.31)

In reality, the atomic spin oscillator also exhibits intrinsic decay, introducing dis-
sipative coupling via the imaginary part of the susceptibility function, as depicted
by the green solid curve in Fig.2.10 (a). Unlike the high-Q suspension systems
in GW interferometers, where the imaginary contributions are almost negligible,
the imaginary part of atomic susceptibility in our case affects the matching of
the two quantum systems, as shown in Fig.2.10 (b). This mismatch leads to
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Figure 2.9: Quantum noise reduction with negative mass spin oscillator in
sequential scheme. (a) Schematic of the setup for sequential measurement using a
negative mass spin oscillator. (b) Susceptibility of atomic spin oscillator and optome-
chanical coupling factor as a function of Fourier frequency, with the absolute value of
residual difference between the two displayed in the inner plot. (c) The strain sensitivity
of the sequential hybrid system, excluding the atomic intrinsic decay, is shown as the
green (without squeezing injection) and blue (with squeezing injection) curves. For ref-
erence, traditional frequency-dependent squeezing is shown by tomato dashed dot curve.
Meanwhile, the shot noise in phase quadrature of output light, both with and without the
squeezed state injection, is represented by the yellow curves. All comparisons are based
on an injected squeezing level of 10dB (r = 1.15). The atomic decay: γS/2π =0 Hz,
the atomic readout rate : ΓS/2π = 23 kHz, and the Larmor frequency: ΩS/2π = 3 Hz.
Additional detailed parameters for GW interferometer are presented in the table.1.11.
Since this plot, all curves are simulated with a 1000 Hz detector bandwidth.

additional quantum noise, compromising the overall quantum noise reduction, as
illustrated by the blue and green solid curves in Fig.2.10 (c) . The reduction
of strain sensitivity becomes evident when adding a 2 Hz intrinsic decay. Fur-
thermore, including the atomic projection (and thermal) noise further degrades
the performance of the quantum noise reduction in the gravitational wave fre-
quency regime, as evidenced in Fig.2.10 (c). While the quantum back noise from
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Figure 2.10: Quantum noise reduction including the experimental imperfec-
tions. (a) Atomic susceptibilities with Larmor frequency (ΩS = 3 Hz) and intrinsic
decay (γS = 2 Hz). It is observed that the thermal bath, arising from the F̂ X

S and
transferred through the ρS(Ω), exerts a more significant influence (illustrated by the red
curve) on the spin noise above the Larmor frequency compared to the impact of another
thermal bath contribution, χS(Ω) (depicted by the orange curve). (b) This is followed
by the matching of two susceptibilities involving the imaginary part of atomic system,
represented by |Re[ΓsχS(Ω)] − K(Ω) + i · Im[ΓsχS(Ω)]|. (c) Finally, the strain sensi-
tivity is analysed, incorporating experimental imperfections such as finite atomic center
frequency, intrinsic decoherence, and the presence of two atomic thermal baths (ns = 1).

the right wing of the atomic transfer function helps cancel the interferometer‘s
quantum back action, these hybrid system also contends with the extra noise
from two atomic thermal baths, illustrated as non-overlapping red and orange
curves. This additional atomic thermal noise, compromising the overall quan-
tum noise reduction as shown by the blue and green dashed curves, necessitates
careful preparation of the negative atomic system. Fortunately, despite these re-
alistic imperfections, the system can still achieve better sensitivity improvement
compared to ideal frequency dependent squeezing at certain sideband frequencies.
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2.3.2 Quantum backaction evading with negative mass spin os-
cillator in parallel scheme

Figure 2.11: Scheme of broadband quantum noise reduction with conditional
negative mass spin oscillator. This setup separates and injects entangled EPR pairs
into the GWD interferometer and atomic spin oscillators, respectively. The quadrature
of light can be adjusted through the homodyne phase (ϕI) and by using quarter and half-
wave plates on the atomic side. Meanwhile, one can tune the injected phase (ϕS) before
the atomic ensemble to effectively shift the atomic resonance frequency. This approach,
known as the virtual rigidity effect, helps to better match two systems, even when they
have different resonance frequencies.

In the sequential scheme, the hybrid systems would function optimally if both
two systems could simultaneously couple to the same probe light. Given that
the probe interacts with the internal state of atomic spin ensemble, the optical
transition of the cesium atoms enables efficient interaction with a light wave-
length of ≈ 850 nm. However, contemporary GW detector typically operates
at wavelengths like 1064 nm, and even longer wavelengths are planned for fu-
ture interferometers. Fortunately, this apparent wavelength mismatch can be
addressed by utilizing non-degenerated EPR entangled pairs to conduct condi-
tional squeezing measurements, as described in previous section. In the parallel
hybrid system depicted in Fig.7.1, this scheme relies on the high degree of cross-
correlation between the two entangled beams generated by the non-degenerate
parametric-down conversion (PDC) process. This setup can align with the op-
erational wavelength requirements of both the GW detector and atomic optical

47



transition. Each entangled beam interacts with the corresponding subsystem,
allowing for the combined homodyne detection of both output signals with op-
timal weighting. The high cross-correlation mentioned above, enables a reduc-
tion in both the shot noise and quantum backaction noise of the interferometer,
conditioned on the measurement results from the atomic arm. The conceptual
framework for this scheme was initially proposed in [45], with a more compre-
hensive analysis incorporating practical parameters later presented in [46, 47].
Before delving into the total quantum noise of this scheme, let‘s first revisit the
spectral densities of the entangled beams’ variance, along with their non zero
cross-correlations, which can be expressed as follows :

S
[
â(c,I)â(c,I)

]
= S

[
â(s,I)â(s,I)

]
= S

[
â(c,S)â(c,S)

]
= S

[
â(s,S)â(s,S)

]
= cosh 2r,

S
[
â(c,I)â(c,S)

]
= sinh 2r, S

[
â(s,I))â(s,S)

]
= − sinh 2r.

(2.32)
Assuming that both systems are measured at the sine (phase) quadrature of the
output fields b̂(s,I) and b̂(s,S), and considering the input-output relationships for
both the gravitational wave interferometer (GWI) and atomic oscillator, we can
derive the following equations for the combined output signal, as demonstrated
in [30]:

b̂s,I(Ω) + g(Ω)b̂s,S(Ω) =


GW I︷ ︸︸ ︷

âs
I(Ω) − K(Ω)âc

I(Ω) +
√

K(Ω)
h

hSQL


+ g(Ω)

âs
S(Ω) + 2ΓSχS(Ω)âc

S(Ω) +
√

2ΓSγS(χS(Ω)F̂ P
S + ρS(Ω)F̂ X

S )︸ ︷︷ ︸
Atom

 .

(2.33)
With g(Ω) representing the optimal choice of a weighted gain that can be modi-
fied for improved matching. We proceed to calculate the spectral densities of the
interferometer and atomic spin ensembles in shot noise unit, denoted as σI and
σS , respectively. Additionally, σIS corresponds to the cross-spectral density:

σI(Ω) =
[
1 + K2(Ω)

]
cosh 2r,

σS(Ω) =
[
1 + Γ2

S |χS(Ω)|2
]

cosh 2r + ΓSγS(|χS(Ω)|2 + |ρS(Ω)|2)σth,S ,

σIS(Ω) = [1 + K(Ω)ΓSχS(Ω)] sinh 2r.

(2.34)

When the value of g(Ω) =
σ∗

IS
σS(Ω) is selected, we can derive the power spectral

density (PSD) of strain sensitivity for this parallel hybrid system as follows (here
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we need to use the expression cosh2(2r) − sinh2(2r) = 1):

S
h
par(Ω) =

h2
SQL

2K(Ω)

[
σI(Ω) − 2Re(g(Ω)σIS(Ω)) + |g(Ω)|2σS(Ω)

]
=

h2
SQL

2K(Ω)

[
σI(Ω) − |σIS(Ω)|2

σS(Ω)

]

=
h2

SQL

2K(Ω)σS(Ω)


(
1 + K2(Ω)

)1 + Γ2
S |χS(Ω)|2 +

T N︷ ︸︸ ︷
ΓSγS(|χS(Ω)|2 + |ρS(Ω)|2)σth,S cosh 2r


+ |ΓSχS(Ω) − K(Ω)|2︸ ︷︷ ︸

QBAN

sinh2 2r

 .

(2.35)
This formula may initially appear intimidating, but it is crucial to recognize
that our primary goal is to cancel out the quantum backaction noise (QBAN),
while realizing that the atomic thermal noise (TN) will compromise the overall
quantum noise reduction. By simplifying this extensive equation under certain
approximations, we can gain a clearer understanding of this scheme. First, if
we neglect the atomic intrinsic damping term γS and presume that the suscep-
tibilities of both systems perfectly match such that we can completely discard
the quantum backaction noise. Second, if we consider the thermal decoherence
contribution from atomic oscillator as negligible. Under these ideal conditions,
the strain sensitivity of the system can be represented as follows:

S
h
par =

h2
SQL

2cosh2r
[

1
K(Ω)

+ K(Ω)]. (2.36)

In the strong entanglement case, the cosh2r ≈ e2r/2 is only 3 dB less than
that achieved with single mode squeezing injection. This approach could offer a
comparable level of broadband quantum noise suppression to that of frequency
dependent squeezing with optimally detuned EPR entanglement. However, it has
advantages of simpler readout, an easier phase control system (eliminating the
need to stabilize relative detuning in the detuned EPR states [39, 40]), and less
optical losses, since only one arm of the entanglement beams is injected into the
gravitational wave interferometer. Furthermore, while the detuned EPR entan-
glement scheme can only operate as a single frequency-dependent filter cavity,
achieving the full gravitational wave signal frequency band quantum noise reduc-
tion typically requires at least two filter cavities in the detector. These additional
filter cavities are implemented to counterbalance the optical spring effect and ex-
tra phase accumulation operated in the detuned signal recycling cavity configura-
tion [30]. Revisiting the hybrid system in parallel scheme, where the conditional
measurement on atomic arm allows for the engineering of gain and interaction
dynamics, including high order tensor interactions (we will elaborate more in the
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next chapter), this hybrid approach may offer better quantum noise reduction
performance compared to the detund EPR in practical gravitational wave detec-
tion systems. From the perspective of fundamental physics, it is also interesting
to consider the creation of quantum entanglement between a small atomic ensem-
ble to a kilometer-scale gravitational wave interferometer. The spectral density
of conditional broadband quantum reduction scheme, employing more realistic
parameters for an atomic oscillator including the imperfect cancellation due to
the imaginary part and additional atomic thermal noise, is depicted in Fig.2.12.
In the ideal scheme, both the conditional squeezing measurement with a parallel
atomic ensemble (represented by the light blue curve) and the detuned EPR state
achieve the same level of sensitivity improvement, which is indeed 3dB less than
that attained frequency dependent squeezing with filter cavities (tomato curve).
if we closely examine the quantum backaction term in eq.(7.3), it becomes appar-
ent that the matching of two systems is actually the product of the readout rate
ΓS and atomic susceptibility (χS(Ω)) subtracted from a fixed interferometer cou-
pling factor K(Ω) : |ΓS(RE[χS(Ω)] + i × Im[χS(Ω)]) − K(Ω)|. Although this
approach may result in diminished performance at very low spectral frequencies,
one can relax the necessity for a large atomic readout rate (now is around 700
Hz) by increasing the Larmor frequency, for example up to 40Hz in fig.2.12(a),
thereby still achieve substantial quantum noise reduction.
The inclusion of the atomic intrinsic damping γS/2π = 10 Hz begins to degrade
the quantum noise reduction (as shown by the dark purple curve), primarily due
to the imaginary part contribution (illustrated by the red curve in Fig.2.12(b)).
Further incorporation of atomic projection & thermal noise keep degrading the
reduction in quantum noise, as indicated by the light purple curve. However,
despite these degradation, the improvement in strain sensitivity across the detec-
tion bandwidth can still be observable, and the system can maintain performance
below the standard quantum limit (SQL).
Comparing the parallel approach with the negative mass spin oscillator in the
sequential scheme, it‘s interesting to note that even with a less optimal intrin-
sic damping rate, a significantly higher Larmor frequency, and the same atomic
thermal noise, the parallel approach can still achieve superior sensitivity improve-
ment. This might be attributed to the additional weighted gain that allows for
better matching between two systems.
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Figure 2.12: Strain sensitivity with conditional negative mass spin oscillator.
(a) Here we present the optomechanical coupling factor K(Ω), together with the real
and imaginary parts of atomic susceptibility χ(Ω), as functions of the Fourier frequency.
The dynamic responses of two forms of thermal noise ( χS and ρS ) are also presented.
The shaded blue and purple areas illustrate the potential for mutual cancellation of these
two responses. (b) This part illustrates the matching of two susceptibilities in absolute
value. The region shaded in red, where the red curve lies beneath the purple curve,
signifies the mutual cancellation of responses. (c) The optimized strain sensitivity with
conditional measurement of the atomic spin oscillator is shown by the light purple curve,
achieving the same level of sensitivity improvement as the injection of detuned EPR
entanglements (teal curve). The dark purple line highlights how the additional intrinsic
decay compromise the quantum noise reduction as evidenced by the imaginary response
(green curve in (a)), and is further slightly degraded by the atomic thermal noise. In the
context, the Larmor frequency is ΩS/2π = 40 Hz, intrinsic decay: γS/2π = 10 Hz, and
the readout rate is ΓS/2π = 700 Hz.

Additionally, readers seeking a deeper understanding of parameter imperfections,
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such as optical losses and optimal squeezing factors for a given system, are re-
ferred to further detailed discussions in Valeriy‘s PhD thesis [33].

Overcoming the imperfections with the Virtual rigidity

The application of a virtual rigidity shift, which emerges from the destructive
interference between quantum shot noise and backaction noise, can also be em-
ployed to reduce the constraints on the readout rate and ultra-low Larmor fre-
quency. Moreover, this approach has the potential to mitigate the effects of the
imaginary component of susceptibility and atomic thermal noise. We will explore
this in more detail in the following chapter.

2.3.3 Summary

In this chapter, we introduced the concept of quantum noise in gravitational wave
interferometers and reviewed several quantum engineering approaches aimed at
reducing this noise to improve the sensitivity within their operational bandwidth.
Our discussion included analysis of the quantum noise and input-ouput relation-
ships in both conventional free mass and tuned Fabry-Pérot interferometers. We
explored quantum noise reduction techniques such as variational readout, the
injection of squeezing and frequency-dependent squeezing, and utilization of de-
tuned EPR state injection. Additionally, we examined innovative method like the
sequential use of negative mass atomic ensembles and phase-squeezed state in-
jection, as well as conditional squeezing utilizing negative atomic spin oscillators
in a parallel scheme. These approaches collectively represent a comprehensive
approach to enhancing the detection capabilities in the gravitational wave inter-
ferometers.
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Chapter 3
Spin Oscillator Theory

In the previous sections, we have explored various theoretical approaches for re-
ducing quantum noise in gravitational wave detection systems. We have shown
that atomic spin oscillators, when functioning in an effective negative mass do-
main, have the potential to create an innovative hybrid system. Moreover, si-
multaneous measurements of these systems could lead to the creation of EPR
entangled systems, as discussed at the end of the previous chapter, significantly
boosting the sensitivity of gravitational wave detectors. In the upcoming chapter,
we will delve into the theoretical aspects of atomic oscillator, illustrating how such
atomic spin oscillators can be achieved using an ensemble of cesium-133 atoms.

Our focus will be on several critical processes for controlling a collective atomic
spin oscillator: tuning the resonant frequency of the spin oscillator, controlling
its effective mass, analyzing the light-atom interactions, and addressing the ad-
ditional noise, including atomic projection noise and even thermal fluctuations.
Additionally, we will investigate atomic spins with various decay modes (fast and
slow) as they interact with probe light. Finally, we will introduce the theoreti-
cal framework for calibrating a quantum noise-limited spin oscillator, highlighting
potential applications, such as employing virtual frequency shift (virtual rigidity)
to enhance the quantum-noise reduced measurements.

3.1 Cesium atom and Zeeman splitting

In our experiment, we work with the Cesium-133, the only stable isotope of Ce-
sium. Cesium atom is famous for its relatively simple atomic structure, which
includes only one valence electron in its outermost shell, and a melting point
of 28.6 ◦C leads to high vapour density at room temperature. These attributes,
combined with well-developed laser systems, make this neutral atom an attractive
option for room temperature-based atomic experiments, such as atomic magne-
tometry [51, 52], quantum teleportation[53], and quantum memory applications
[54–56]. Additionally, Cesium atoms are also employed as a standard in defin-
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ing current time in atomic clocks[57]. Now, we will briefly review the electronic

Figure 3.1: Cesium and its Zeeman Level Structure. (The transition from 6S1/2
to 6P1/2 is referred to as the D1 line, which is utilized for optical pumping in our experi-
ments. Meanwhile the transition from 6S1/2 to 6P3/2 is known as the D2 line and serves
both as the optical repumping and probe. On the right, we present subsets of the Zeeman
levels. The shaded orange area is the atomic states that we focus on in this thesis. In
the weak of a low bias magnetic field, the Larmor frequency, which describes the energy
difference between each mF level, is also presented. Without optical pumping, the atoms
are equally distributed across the Zeeman levels, indicating an atomic thermal state.

level structure of Cesium. Readers seeking more detailed information are rec-
ommended to Cesium atom D line datasheet [58, 59]. The cesium atom, with
its one valence electron, has a ground state occupying the S1/2 level. Given
that Cesium also possesses a nuclear spin of I = 7/2, the hyperfile interaction
(I ± S) results in two possible ground states, F = {3, 4}, with an energy split of
∆Ehfs = h̄ · vhfs = h̄· 9.193GHz. In the first excited state, where the orbital an-
gular momentum L = 1, the coupling between the orbital and electron spin also
yields two total angular momentum states J = L± S = {1/2, 3/2}. This results
in the splitting of the first excited state into FD1 = {3, 4} and FD2 = {2, 3, 4, 5},
respectively. Consequently, this splitting generates two transitions for the first
excitation: the D1 line from 6S1/2 → 6P1/2 at a wavelength of λ : 894 nm, and
another D2 line transition from 6S1/2 → 6P3/2 at a wavelength of λ : 852.3 nm.
Owing to the substantial energy gap (≈ h̄· 300 THz) between the ground state
and excited state, as depicted in Fig.3.1, all atoms typically reside in the ground
state unless acted by special operations, like optical pumping. Therefore, our
analysis primarily focuses on the dynamics of atoms in the ground state in the
presence of external magnetic fields. When applying an external bias magnetic
field, the nucleus, electronic spins, and the orbital angular momentum, each with
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its own magnetic moment µ, collectively contribute to the total magnetic moment
of the atom. In scenarios where the energy shift caused by the B fields is much
smaller compared to the hyperfine splitting, particularly for the atomic ground
state, the relevant quantum numbers are the total angular momentum F and its
projection mF on the quantization axis. The energy EF ,mF

of a given level is
described by the Breit-Rabi formula [58]:

EF ,mF
= − hvhfs

2(2I + 1) + gIµBmF B ± hvhfs
2

√
1 + 4mF

2I + 1x + x2, (3.1)

Where vhfs is the hyperfine splitting, µB is the Bohr magneton, B indicates the
bias magnetic field strength and gI ≈ 4 × 104 is the nuclear g-factor. The pa-
rameter ’x’ represents the Zeeman splitting strength, normalized to the hyperfine
splitting, and is expressed as:

x =
(gJ − gI)µBB

h̄vhfs
. (3.2)

Here, gJ ≈ 2 denotes the spin-orbit g-factor. In our experiments, we usually
work with an external B field of less than ∼ 10 G, making x∼ 10−3. Therefore,
in this condition the Zeeman splitting strength can be considered as a small
perturbation, we can expand the Zeeman strength equation x around x = 0 up to
second order. Accordingly, the Zeeman level energies for the ground states can
now be described as follows:

EmF = h̄ΩSmF + h̄Ωqzsm2
F . (3.3)

Here, the first order Larmor frequency, denoted as ΩS and the quadratic Zeeman
splitting Ωqzs are expressed as:

ΩS

2π
= vS =

gF µBB

h
,

Ωqzs
2π

= vqzs =
2v2

S
vhfs

.
(3.4)

The hyperfine landé g-factor is

gF =

0.250390 for F = 4,

−0.251194 for F = 3.
(3.5)

The Larmor frequency scales approximately as 350 kHz/G, with variation ranges
from a few Hz up to MHz in our experiments. Considering a scenario where the
atomic processing at 350 kHz corresponding to a 1 Gauss bias magnetic field, one
would observe a quadratic Zeeman splitting of 26 Hz. Due to the sign and slight
difference in gF , the two ground state hyperfine levels F = 3,4 shift oppositely
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with the external magnetic field. Notably, the energy levels of F = 3 manifold
are approximately 0.3% higher than those of F = 4 manifold, These details will
be further presented in the atomic calibration Chapter 5. In our experiments,
the probe laser induces the transition between the ground Zeeman levels, and
assuming our primary focus is the neighboring transitions ∆mF = ±1, where the
splitting behavior is described as follows:

Em+1 − Em

h̄
= ΩS + Ωqzs(1 + 2mF ). (3.6)

It is noteworthy that in the scenario where the quadratic Zeeman splitting sur-
passes the transition decoherence (Ωqzs > γS), the ground state dynamics will
present resolved 2F resonances. This phenomenon can be employed to character-
ize the population distribution of optically pumped spin states.

3.2 Holstein-Primakoff approximation, and effective
oscillator masses

Before delving into the quantum state of the atomic ensemble, allow me to briefly
introduce our atomic setup. In our experiments, illustrated in the schematic
Fig.3.2, Cesium atoms are confined within a vapor cell and placed in a homoge-
neous DC magnetic field aligned along the x -axis. The optical pumping lasers
(pump and repump), with circular polarization, propagating collinearly with the
bias field, prepare the atoms in one of the extreme Zeeman sub levels (mF = ±4).
Consequently, the atomic spins are quantized, aligning either parallel or antipar-
allel to the magnetic field. A linearly polarized probe light, with an input po-
larization angle α relative to the quantization axis (x-axis), travels orthogonally
(along the z axis) to the quantized atomic spins , thereby reading out the trans-
verse components of atomic spin into the polarization states of the light. This
probe light with atomic signal is subsequently detected with the balanced po-
larimetric homodyne detection, where the detection quadrature angle is adjusted
using quarter and half-waveplates.

We aim to theoretically describe the quantum state of atomic ensemble in an
external magnetic field, let us consider an atomic ensemble comprising of N inde-
pendent atoms. The quantum state of this ensemble can be characterized by the
collective spin operator, denoted as F̂ =

∑N
k=1 f̂k, where f̂k represents the spin

of the k-th atom, and F̂ is the total angular momentum of the ensemble spins.
Therefore, a complete angular momentum basis for this collection of N spins can
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Figure 3.2: Illustrative Schematic of the Atomic Setup. The cesium atoms are
situated in a homogeneous bias magnetic field and are optically pumped to the extreme
Zeeman sublevels. This leads to the generation of a macroscopic collective spin oscillator
Fx, precessing around the quantization axis x. The interaction with the spin oscillator
is facilitated by linearly polarized light at the angle α relative to x-axis. The resulting
atomic signal is detected using balanced polarimetry, with the detection quadrature
controlled through a combination of half-wave and quarter-wave plates.

be formulated, as detailed in [49]:

F̂x ≡
∑
N

f̂ (i)
x =

∑
N

∑
m

mÂ(i)
mm,

F̂y ≡
∑
N

f̂ (i)
y =

1
2
∑
N

∑
m

c(F , m)
(
Â
(i)
m+1,m + Â

(i)
m,m+1

)
,

F̂z ≡
∑
N

f̂ (i)
z =

1
2i

∑
N

∑
m

c(F , m)
(
Â
(i)
m+1,m − Â

(i)
m,m+1

)
,

F̂0 ≡
∑
N

f̂
(i)
0 =

∑
N

∑
m

Â(i)
mm,

(3.7)

where the coefficients are given by c (F, m) =
√

F (F + 1) − m(m + 1) , and
the atomic spin operators Â

(i)
a,b = |F , a⟩ ⟨F , b|(i) determine the relative weights of

the atomic coherences in the angular momentum basis. These operators follow
the commutation relations [F̂i, F̂j ] = iF̂k ( where i, j, and k represent Levi-
Civita symbols), exemplified by [F̂y, F̂z ] = iF̂x. In this framework, if we neglect
the additional quadratic Zeeman shift previously mentioned, the energy of the
collective spins, quantized along the x-axis due to the magnetic dipole interaction,
can be written as follows:

ĤB,S/ h̄ = ΩSF̂x. (3.8)

In our experiments, which typically involve a highly polarized spin ensemble with
a total atom number around 1011, these large numbers enable the application of a
technique known as the Holstein-Primakoff approximation [60]. In this approach,
the spin operator aligned along x-axis, F̂x, is treated as a classical variable, such
that Fx ∼

∣∣∣⟨F̂x⟩
∣∣∣ = FN . Conversely, the transverse spin components, F̂z , F̂y,

are considered as quantum variables with zero mean values and second moment
variances, quantified as ∆F̂z = ∆F̂y =

√
|Fx|/2 which are much less than

∣∣∣⟨F̂x⟩
∣∣∣.
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This approximation facilitates the mapping of the spin variables, F̂± = F̂y ± iF̂z

with the above complex commutation relation to bosonic creation and annihila-
tion operators b̂†and b̂ respectively, satisfying the standard simple commutation
relationship [b̂, b̂†] = 1. The transition between these representations are given by
F̂+ ∼

√
Fxb̂ and F̂− ∼

√
Fxb̂†, which presents ’creating’ or ’annihilating’ nearly

a single atom spin from the collective atomic spins along x-axis. Under this
transformation, the original spin component F̂x can be written as :

F̂x = Fx − b̂†b̂

2 . (3.9)

In the regime of low excitations ⟨b̂†b̂⟩ ≪ Fx, we can write the number of bosonic
excitation in the system as:

b̂†b̂ =
F̂−F̂+

Fx
∼

F̂ 2
y + F̂ 2

z

Fx
. (3.10)

When revisiting the energy analysis of the collective spins, the magnetic dipole
(mF = 4) interaction can now be reformulated as:

ĤB,S = h̄ΩSF̂x ∼ h̄ΩSFx − ΩS

2 (X̂2
S + P̂ 2

S). (3.11)

A similar approach can be applied to (mF = −4) spin state. Here, we redefine
the spin variables for both scenarios as follows:

X̂S = F̂z/
√

Fx, P̂S = sgn(±Fx) F̂y/
√

Fx, (3.12)

with the commutation relationship given by [X̂S , P̂S ] = i . The first part in the
above equation represents the spins energy before the excitation. The symbol
± refers to the orientation of the collective spin Fx , either parallel or anti-
parallel to the bias magnetic field, soon we will discuss that these two different
orientations can be treat as a harmonic oscillator with the effective ’positive’
or ’negative’ masses, respectively. This configuration describes the precession of
two transverse components around the direction of the quantization magnetic
field, whether clockwise or counterclockwise, is determined by the orientation
of the collective spin relative to the B field as shown in Fig.3.3. Furthermore,
with closer examination, it becomes evident that the newly defined, approximate
spin variables correspond to the canonical position and momentum operators1

[44, 49, 61]:

X̂S =
b − b†
√

2i
=

F̂+ − F̂−√
2i

, P̂S =
b + b†

√
2

=
F̂+ + F̂−√

2
. (3.13)

This approximation enables us to treat the ensemble‘s collective spin in a bias
1Here we use the normalization from Rodrigo’s thesis, is inverted relative to operators used

in Brain’s thesis
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magnetic field B as a harmonic oscillator. Consequently, the two different inter-
actions, characterized by different effective masses, can be written as follows:

ĤS,B/ h̄ =

−ΩSFx +
ΩS
2 (X̂2

S + P̂ 2
S) for Positive Mass,

ΩSFx − ΩS
2 (X̂2

S + P̂ 2
S) for Negative Mass.

(3.14)

B
Ωs

Δ 

mF=-3mF=-4 mF=-2 mF=3mF=2 mF=4

Δ 

B

Ωs

(a)

(c) (d)

(e) (f)

(b)

Figure 3.3: Positive and negative mass of spin oscillator. In an optimal system
with ideal optical pumping and a quantization axis defined by the external magnetic field
B, all atomic spins are transferred to the extreme Zeeman levels mF = ±4 , which cor-
respond to the minimum (or maximum) ground state energy. Introducing an excitation
transfers a few atoms to adjacent Zeeman level, denoted as the excited state, resulting
in either an increase or decrease in the energy h̄ΩS . This dynamic is analogous to the
dynamic of a harmonic oscillator with the sign of the oscillator‘s effective positive (a)
and negative (b) masses. We present the oscillation of the macroscopic spin oscillator
with both positive and negative masses in the time domain (a,b), along with their driven
responses in the frequency domain (c-f). Although the amplitudes of the oscillations in
the time domain are identical for both configurations, they exhibit π phase shift rela-
tive to each other. Consequently, these phase differences affect both the real (c,d) and
imaginary (e,f) components of atomic susceptibilities, offering a method for the potential
cancellation of one oscillator‘s response in the reference frame of another.

In our experiment, the effective mass of spin system can be selectively determined
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by either adjusting the polarization of circularly polarized pump and re-pump
lasers or by altering the orientation of the bias magnetic field relative to the di-
rection of pump and repump propagation. As depicted in Fig.3.3 , the plots in the
top panel show the slowly decaying oscillations of the positive or negative masses
oscillator over time. Notably, these oscillators exhibit a π phase shift relative to
each other, due to the sign of spin momentum operator P̂S . Furthermore, the
middle (c,d) and bottom (e,f) panels of figure demonstrate the real and imaginary
components of the driven responses of the spin oscillator. The opposite sign of
these responses opens up an opportunity: by using one response (e.g. from the
negative mass) as a reference, it is possible to cancel out the response of another
when they are perfectly matched.

3.3 Stokes operators and its measurement

We now shift our attention from the collective atomic spin to the domain of light
polarization. This is a crucial component for understanding the interaction be-
tween light and atoms. We would like to note that the light polarization domain,
which couples to atomic ensembles through various light polarizations, is distinct
from the quadrature phase and amplitude of a linearly polarized light, as dis-
cussed in the first introduction chapter. Again if we consider a wave propagating
along the z-axis, we may write a general field with arbitrary polarization as:

E⃗ = E⃗xcos(ω0t − kz + ϕx) + E⃗ycos(w0t − kz + ϕy). (3.15)

Here, E⃗x and E⃗y denote the complex amplitudes of wave, each has both the mag-
nitudes and phases. Then, we could separate the phases into an overall phase
of two waves and the relative phase difference between E⃗x and E⃗y expressed as
ϕx − ϕy. We focus primarily on the relative phase and magnitude ratio, as these
parameters help us to specify the light polarization, whether it is linear or circu-
lar. Furthermore, the polarization of a light beam can be effectively visualized
using Stokes vectors on a Poincareé sphere, as depicted in Fig.3.4 and described
by four Stokes parameters:

• S0: The total intensity of the light.

• Sx: The intensity difference between horizontally and vertically polarized
light.

• Sy: The intensity difference between light polarized at +45◦ and −45◦.

• Sz: The intensity difference between right-handed and left-handed circu-
larly polarized light.
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Based on the above stokes vectors, one could quantize the electric fields as follows:

Ê ∼ ex(âx(t)e
−i(ω0t−kz+ϕx)+ â†

x(t)e
i(ω0t−kz+ϕx))+ey(ây(t)e

−i(ω0t−kz+ϕy)+ â†
y(t)e

i(ω0t−kz+ϕy)),
(3.16)

and acquire the stokes operator in quantum regime as shown in Fig.3.4 with a
new quantum Poincaré sphere radius , ⟨Ŝ⟩ =

〈
Ŝ2

0 + 2Ŝ0
〉1/2

:

Ŝo(z, t) =
1
2
(
â†

xâx + â†
yây

)
=

1
2 (n̂x + n̂y) ,

Ŝx(z, t) =
1
2
(
â†

xâx − â†
yây

)
=

1
2 (n̂x − n̂y) ,

Ŝy(z, t) =
1
2
(
â†

xây + â†
yâx

)
=

1
2 (n̂+45 − n̂−45) ,

Ŝz(z, t) =
1
2i
(
â†

xây − â†
yâx

)
=

1
2 (n̂R − n̂L) .

(3.17)

These Stokes operators fulfill the commutation relations similar to the spin an-
gular momentum operators F: [Ŝi, Ŝj ] = iŜk

V

H

(a)

(b) (c)

(d) (e)

Figure 3.4: Illustration of Stokes vectors and their detection. (a) The Stokes
operators on a Poincaré sphere. The small ball at the end of the vector represents
the quantum noise associated with a Stokes vector. (b - e) Schematic of the detection
scheme required to measure each Stokes operator. This figure has been adapted based
on Oestfeldt’s thesis

This definition enables the measurement of light operators through the photon
number difference, which can be easily accessed through a polarized beam split-
ter (PBS) and a balanced photo-detector [62]. For instance, to measure Ŝy, a
half-wave plate is applied to rotate linearly polarized light (initially aligned along
x) by 45◦. Subsequently, the PBS decomposes this beam into x and y polariza-
tions. The resulting photo-currents from each polarization are then subtracted
to obtain the desired measurement. Based on the supplementary details de-
scribed in [45], the measurement of Ŝz and Ŝy operators can be equivalent to
the quadrature measurement of y-polarized light amplified by the amplitude of
light in x-polarization, let us consider a light linearly polarized along the x-axis,
with the classical amplitude Ax replacing the quantum operator âx denoted as
âx = iAx, and â†

x = −iAx , where i represents a π/2 relative phase shift between
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the x and y polarized waves (ϕx − ϕy = π/2)2. In the scenario of far-off resonance
relative to the hyperfine transition, such that the spin oscillator symmetrically
affects the light plus and minus sidebands, we could simplify the two-photon
formalism previously established to the symmetric one-photon formalism. Under
this approximation, the expression for the light operators in the time domain and
in the z and y directions can be reformulated as follows:

Ŝz(z, t) =
1
2i

(
â†

xây − â†
yâx

)
≈ Ax√

2

(
ây + â†

y√
2

)
=

Ax√
2

âc
S ,

Ŝy(z, t) =
1
2
(
â†

xây + â†
yâx

)
≈ Ax√

2

(
ây − â†

y√
2i

)
=

Ax√
2

âs
S ,

(3.18)

where âc
S(t) and âs

S(t) represent the cosine and sine quadrature operators of the
y-polarized light, respectively, with reference to the x-polarization carrier phase,
as we introduced earlier, alongside the commutation relations [âc

S(t), âc
S(t

′)] =

iδ(t − t′). Since the light in y polarization lacks classical DC components, we
can omit the relative minor effect of vacuum noise in x polarization. A more
comprehensive explanation of this detection method and the general framework
that relates the variance of Stokes operators to two-mode quadrature operator
variances can be found in the references [62, 63]. In our experiment, we normally
utilize a linearly polarized probe light. Assuming this probe is linearly polarized
at an angle α relative to the macroscopic spin component Fx, which is defined by
the DC magnetic field. We can redefine the quantum stokes operators in a basis
parallel and perpendicular to the linearly polarized probe field as:

Ŝ0,
Ŝ∥ = Ŝxcos(2α) − Ŝysin(2α),
Ŝ⊥ = Ŝxsin(2α) + Ŝycos(2α),
Ŝz.

(3.19)

Since we assume a perfect linearly polarized light, where all the photons are
linearly polarized along the parallel axis with an average photon number Nphoton:
S∥ ≡ ⟨Ŝ∥⟩ ≈ ⟨Ŝ0⟩ = Nphoton

2 = A2
x

2 , it allows us to treat this operator as a classical
variable Ŝ∥ → S∥. We only need to consider other two quantum stokes operators
Ŝ⊥ and Ŝz with zero mean and quantum fluctuations. Similarly, we can also map
the light stokes operators in the rotated basis to the approximated canonical
phase and amplitude operators[64]:

X̂L = Ŝz/
√

S∥ ≈ âc
S ,

P̂L = −Ŝ⊥/
√

S∥ ≈ âs
S ,[

X̂L(t), P̂L(t
′)
]
= iδ(t − t′).

(3.20)

2This relative phase will add π/2 to the polarization homodyne detection angle.
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3.4 light-atom interaction, QND and high order ten-
sor

Building on collective spin operators and light stokes operators previously de-
fined, we now initiate an analysis of light-atomic dipole interactions within our
experimental framework. The vector Faraday interaction[65], introduced in the
previous chapter in the context of quantum noise reduction via an effective neg-
ative mass oscillator, will be revisited. Now, we will try to expand the effective
interaction Hamiltonian by incorporating the high-order terms due to the fact
that Cesium is not a mere spin-1/2 system.
Consider a scenario where a probe laser propagate through a dilute gas of Cs
atoms, detuned by ∆ relative to the atomic transition F = 4 → F ′ = 5, as de-
picted in Fig.3.1. This probe laser is deliberately detuned far from the atomic
transition to ensure that the dispersive coupling (∝ 1

∆ ), commonly known as the
stark shift [66], is the predominant interaction, while the absorption (∝ 1

∆
2) be-

comes almost negligible. The combination of far-off-resonant weak interaction,
rapid decay of excited states3, and the slow evolution of the ground states, fa-
cilitates the implementation of adiabatic elimination. This method enables the
disregard of transitions from the ground to excited states and ignore populations
in the excited states, as illustrated in Fig.3.3 [a, b]. Consequently, this allow us to
narrow down focus on the coupling between light and ground states of atoms. A
detailed derivation of our system with the adiabatic elimination can be found in
our group’s previous PhD thesis [49, 61], where the extended effective interaction
Hamiltonian for Cesium D2 line structure, F = 4, is expressed in terms of the
collective spin oscillator and light stokes operators:

ĤS,L/ h̄ =gS
(
a0Ŝ0 + a1ŜzF̂z+

2a2
[
Ŝ0
(
3F̂ 2

z − F̂0(F̂0 + 1)
)

/3 − Ŝx

(
F̂ 2

x − F̂ 2
y

)
− Ŝy

(
F̂xF̂y + F̂yF̂x

)])
,

(3.21)
where gS represents a single photon and single atom coupling rate. In the limit
of large probe detuning ∆ ≫ γcs , this coupling rate can be expressed as follows:

gS = − cγcs
8A∆

λ2

2π
. (3.22)

Here γcs is the spontaneous emission rate of excited state, with γcs/2π = 5.22MHz
for D2 line. Additionally, λ denotes the optical wavelength, A refers to the cell
transverse area and c represents the speed of light. The coefficients ai (i = 0, 1,
2) correspond to different types of light-atom interactions: the scalar a0, vector

3The life time of excited state is around 35 ns, contrasted with the ground state’s life time
of several milliseconds, according to[ref] alkali data sheet
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a1, and tensor a2 , respectively.

a0 =
1
4

( 1
1 − ∆35/∆

+
7

1 − ∆45/∆
+ 8

)
−→

∆→∞
4,

a1 =
1

120

( −35
1 − ∆35/∆

− 21
1 − ∆45/∆

+ 176
)

−→
∆→∞

1,

a2 =
1

240

( 5
1 − ∆35/∆

− 21
1 − ∆45/∆

+ 16
)

−→
∆→∞

0.

(3.23)

In this context, ∆35 represents the detuning between the excited states F’= 3
and F’= 5, with a value of ∆35/2π = 452.24 MHz. Similarly, ∆45 is the offset
between F’ = [4,5], with ∆45/2π = 251.09 MHz. Now let’s take a close look at
these light-atom interaction terms. The first term a0 gives a scalar light shift
that is independent on the internal atomic states but only proportional to the
total photon number and light detuning.
The vector term a1, on the other hand, represents the coupling between the light
stokes and collective spin operators, reflecting the electron-dipole interactions
dynamic as depicted in Fig.3.3 (a, b)). This interaction, known as our favorite
Faraday interaction(see [64]), involves the probe light undergoing circular bire-
fringence. This phenomenon entails the rotation of linearly polarized light due
to differential phase shifts arising from distinct refractive indices for two circular
polarization modes. Consequently, the light stokes operator F̂x is rotated around
the z-axis by an amount proportional to the number of atomic spins along the
Fz axis. Additionally, there is back action rotation effect on the spin compo-
nent around the same z-axis can be influenced by the fluctuations in probe light
polarization. Notably, this back action noise is particularly interest to our experi-
ments, as it can contribute to the reduction of quantum backaction noise in other
quantum systems, such as the LIGO interferoemter, thereby enhancing precision
in gravitational wave measurements.

The last terms associated with a2 introduce higher-order couplings that were
not discussed in previous chapter. The physical interpretation of this high-order
terms in the Hamiltonian can be understood through the scattering interactions.
In the context of collective spins with high spin numbers (larger than 1/2), an
interaction resembling light-quadruple effects emerges. This interaction can be
characterized by atoms transitioning from the ground state to a excited state,
and subsequently decaying to a different ground state, as exemplified by multiple
Zeeman levels transitions from mF : 4 → 3 → 2, depicted in Fig.3.3 (a or b).
The tensor polarizability of multilevel atoms during dispersive measurements has
been thoroughly documented in the literature[64, 67–69]. This tensor interaction
can lead to the scattering of elliptically polarized photons as a result of additional
linear birefringence. Simultaneously, these tensor terms contribute to the tensor
dynamic stark shift in neighbouring sub-Zeeman levels, and also plays a role in
the dynamic cooling and broadening of the atomic spin system.
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To achieve a through understanding of the tensor contributions to the interac-
tion dynamics, consider a scenario with ideally linearly polarized probe light and
the redefined light stokes operators Ŝ0, Ŝ∥, Ŝ⊥, Ŝz. In this context, the input
polarization is positioned at an angle α relative to the DC magnetic field ori-
entation, characterized by ⟨Ŝ∥⟩ ≈ ⟨Ŝ0⟩. Consequently, the operators including
the tensor interaction terms can be reformulated. Specifically, Ŝx is recast as
Ŝ∥cos(2α) ∼Ŝ0cos(2α), and a similar relationship applies to Ŝy :∼ Ŝ0sin(2α).
We could rewrite the tensor interaction Hamiltonian as:

Ĥtensor/ h̄ = gS2a2Ŝ0 ·

F̂ 2
z −

[
F̂ 2

x − F̂ 2
y

]
cos(2α)︸ ︷︷ ︸

tensor shift

−
[
F̂xF̂y + F̂yF̂x

]
sin(2α)︸ ︷︷ ︸

tensor cooling/broadening

 .

(3.24)
Upon calculating the expectation values of this Hamiltonian for the collective
spin components along the quantized x-axis, we obtain:

〈
m
∣∣∣F̂ 2

z

∣∣∣m〉 =
F (F + 1) − m2

2 ,〈
m
∣∣∣F̂ 2

x

∣∣∣m〉 = m2,〈
m
∣∣∣F̂ 2

y

∣∣∣m〉 =
F (F + 1) − m2

2 ,〈
m
∣∣∣F̂xF̂y + F̂yF̂x

∣∣∣m〉 = 0.

(3.25)

The detailed calculation is provided page 155 of Jacob sherson’s PhD thesis[70].
As a result, the energy shift for each Zeeman sub level induced by the tensor
interaction terms can be expressed as:

Etensor
m / h̄ = gSa2 · S0 ·

[1 + 3 cos(2α)

2 · m2 − 1 + cos(2α)

2 F (F + 1)
]

. (3.26)

In addition to the Zeeman splitting induced by a bias magnetic field, it becomes
apparent that the light-induced tensor Stark shift also influences the Zeeman
transition frequency, denoted as Ωt:

Ωtensor
2π

=
Em+1 − Em

h̄
=

γcsλ
2
cs

32π

a2
∆

S0
A
(1 + 3 cos 2α) [2m + 1] . (3.27)

The magnitude of the tensor stark shift can be adjusted through various param-
eters, such as the laser power S0, the detuning of probe light ∆, and the input
polarization angle α. Interestingly, this light-induced tensor shift can be zeroed
by selecting the angle at α ∼ 54.7◦. Furthermore, this shift can also be employed
to counterbalance the quadratic Zeeman splitting at higher Larmor frequencies
where the multiple atomic resonances emerge. This approach effectively sim-
plifies the atomic spin to resemble a two-level system, despite the presence of
non-degenerate splitting within Zeeman sublevels [71].
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Although the leftover term (F̂xF̂y + F̂yF̂x) in the tensor interaction doesn’t con-
tribute to an additional light shift, it indicates distinct dynamics on atomic spins.
Considering the atomic spins that are perfectly polarized at F =4, mF = 4, the
transition between mF = [4, 3] acts as an ideal negative mass spin oscillator, the
high-order components (F̂xF̂y + F̂yF̂x) can be approximated as (2m + 1)F̂y =

7F̂y. Consequently, the detailed light-atom interaction Hamiltonian, including
the oscillation, vector, and tensor terms, can be approximately described as fol-
lows:

ĤL,S/ h̄ = ΩSFx − ΩS

2 (X̂2
S + P̂ 2

S) + gS
(
a1ŜzF̂z − 14a2ŜyF̂y

)
. (3.28)

The aforementioned Hamiltonian, excluding the initial spin energy ΩSFx, can
be reformulated based on the previously defined quadrature operators X̂S , P̂S ,
X̂L, P̂L . It is important to note the inclusion of a negative sign in photon-atom
coupling factor gS (3.22) [43] :

ĤL,S/ h̄ = −ΩS

2 (X̂2
S + P̂ 2

S) −
√

ΓS(X̂SX̂L + ϵSP̂SP̂L). (3.29)

Here we introduce the spin vector readout rate ΓS and tensor interaction strength
ϵS for simplicity:

ΓS = g2
Sa2

1S∥Fx,

ϵS = −14a2
a1

cos(2α).
(3.30)

As illustrated in the Eq.(3.30), the strengths of the vector and tensor interactions,
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Figure 3.5: The readout rate and tensor interaction strength as functions of
probe detuning. The blue curve on the left represents the dependency of the vector
readout rate ΓS varying with the probe detuning, used in our experiment, normalized
to the readout rate at a 1 GHz detuning for clear visualization. The orange curve on
the right indicates the tensor interaction strength relative to the vector readout rate at
each corresponding detuning, |ϵS |, over the same detuning range. It’s noteworthy that
the sign of ϵS can be adjusted based on the input polarization angle.

normalized to the vector readout rate as functions of the blue detuning with
respect to the D2 line F = 4 → F ′ = 5 , are shown in Fig.3.5. Moreover, the
sign of the tensor interaction can be controlled by the input polarization angle

66



α, enabling the adjustment of the light-atom interaction from the pure Quantum
Non-Demolition (QND) vector interaction to the dynamic beam splitter (BS:
cooling ) or two-mode squeezing (TMS: anti-damplng ) interaction, which can be
described as follows: [72, 73].

ĤL,S/ h̄ = −
√

ΓS

(1 + ϵS) (âLb̂†
S + â†

Lb̂S)︸ ︷︷ ︸
BS

+(1 − ϵS) (âLb̂S + â†
Lb̂†

S)︸ ︷︷ ︸
T MS

 . (3.31)

These high-order tensor terms are important in some quantum protocols, as they
enable the achievement of quantum teleportation between two remote quantum
systems. Further details on this topic can be found in the study on two atomic
ensembles [53, 74] and spin-membrane entanglement [44, 75].

3.5 Quantum Heisenberg Langevin equation and I/O
relationship

Given the above introduced systems along with their interaction Hamiltonian, we
can now calculate the dynamics of spin oscillator and probe light influenced by
the Hamiltonian. But before we delve into these calculations, we have to acknowl-
edge that in practical experiments, both spins and light fields are unavoidably
coupled to the environment. This interaction can lead to unanticipated ’loss’
of the spin and optical variables. Taking atomic spins as example, various de-
cay mechanism can happen through intrinsic decay like spin-wall collisions, atom
losses to cell stem, atom-atom collision and light power dependent decay due to
the spontaneous emission during the light-atom interaction. These mechanisms
were discussed in detail on page 60 of Hanna’s PhD thesis [72]. The complexity
of properly accounting for all forms of dissipation and modeling associated inter-
actions between the system and its surrounding bath environment is non-trivial.
However, the challenge of dealing such open quantum system can be effectively
addressed by using the quantum Langevin equation. This approach allows us to
concentrate on deriving the target system dynamic under the effect of the envi-
ronmental baths, without the necessity of solving the dynamics of the baths. In
our analysis, the environmental thermal bath acts as an infinite thermal reservoir,
without the temporal memory throughout the dynamic evolution. Such assump-
tion can be mathematically characterized by a zero mean and delta-correlated
noise in time. The Heisenberg equation of motion that describes a system oper-
ator Â in a quantum system as it dissipates to a Markovian reservoir with decay
rate L̂k, and experiences the stochastic driving force of a Langevin source f̂ , can
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be written as (adapted from page 137 of Rodrigo’s PhD thesis [49]):

d
dt

Â =
i

h̄

[
ĤL,S , Â

]
+
∑

k

[
L̂+

k ÂL̂k − 1
2
{

L̂+
k L̂k, Â

}]
+
∑

k

[
f̂ †
[
Â, L̂k

]
−
[
Â, L̂+

k

]
f̂
]

,

(3.32)
where L̂k is the Lindblad operator that represents the decay of a quantum system
into the environment through various channels, indexed by k. This operator
specifies the dynamics of real physical dissipative processes, such as spontaneous
emission or collective spin dephasing [76]. Correspondingly, these decay processes
are associated with their respective Langevin noise forces f̂ . Consequently, we
expect that the spin operators will decay in accordance with the Heisenberg-
Langevin equation [77]:

dÂ

dt
=

i

h̄
[Ĥ, Â] − γ

2 Â +
√

γf̂ . (3.33)

Now, if we start with a simple case including only the scalar and vector interaction
terms, denoted as ∼ gS(Ŝ0 + a1ŜzF̂z), we proceed to calculate the time evolution
of spin dynamics in the following manner (based on the derivation on page 29 of
Rodrigo’s thesis [49]):

d
dt

F̂x = gSŜzF̂y − γS
2 S0F̂x +

√
γf̂F x,

d
dt

F̂y = −gSŜzF̂x − γS
2 S0F̂y +

√
γf̂F y,

d
dt

F̂z = −γS
2 ŜzF̂0 − γS

2 S0F̂z +
√

γf̂F z,

d
dt

F̂0 = 0,

(3.34)

in the regime of QND interactions and assuming the depumping effect of circular
component of probe is negligible, we can disregard the γS/2ŜzF̂0 component. In
this context, the dynamic of each spin operators decay at the identical total de-
coherence rate γS . This total decay rate can be described as γS = γ0 + γop + γpb,
which encapsulates contribution from various sources: the intrinsic decay in the
absence of light γ0, optical pumping effects γop, and probe power broadening γpb,
see further details on page 60 of Hanna thesis [72]. Notably, the decay rate at-
tributable to power broadening is solely dependent on the total probe power Ŝ0
and is inversely proportional to the square of the probe detuning γpb ∼ 1/∆2.
Then we can perform the similar calculations to analyze the probe light opera-
tors. The rapid propagation speed of light allows us to neglect the retardation
effects, thereby leaving out the time derivation d

dt term as discussed in page 29
of Rodrigo’s PhD thesis[49]. Consequently, the evolution of light variables can
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be described as:
d
dz

Ŝx = −gSŜyF̂z,

d
dz

Ŝy = gSŜxF̂z,

d
dz

Ŝz = 0,

d
dz

Ŝ0 = 0.

(3.35)

In this interaction scenario, the decay effects on light operators and their asso-
ciated noise forces are neglected due to minimal absorption. Meanwhile, the de-
tailed equations of motion, incorporating complex higher-order interaction terms,
are elaborated in Brain Julsgaard PhD’s thesis.4.
Considering the above scenario where symmetric decay is present in both canoni-
cal position (X̂S) and momentum (P̂S) operators ( derived from F̂z and F̂y), it is
feasible to formulate these complex equations of motion. Moreover, by applying
the effective quadrature interaction Hamiltonian eq.(3.28), inclusive of the ten-
sor term, together with the introduced rotating wave approximated Heisenberg-
Langevin equations eq.(3.33) , the equation of motion for atomic spin operators
can now be re-expressed in a matrix form5:

d
dt

 X̂S(t)

P̂S(t)

 =

 −γS/2 − ϵSΓS ΩS

−ΩS −γS/2 − ϵSΓS

 X̂S(t)

P̂S(t)


+
√

ΓS

 0 −ϵS

1 0

 X̂L(t)

P̂L(t)

+
√

γS

 F̂ X
S (t)

F̂ P
S (t)

 ,

(3.36)

where F̂ X
S and F̂ P

S are the effective Langevin noise forces. The first matrix on
the right side of the equation indicates the Larmor precession (oscillation) of the
spin operators and their associated decoherence. The decay rate now described
as γS/2 after the Holstein-Primakoff approximation includes the intrinsic decay
of the spin and the broadening effects due to the QND probe power and optical
pumping. The term ϵSΓS denotes the tensor dynamic broadening. The second
matrix corresponds to the vector (or QND) and tensor back-action perturbation
from the light operators. The final terms represent the decay-associated Langevin
force, also referred to as the spin projection and thermal forces. As the integration
along z-axis is reflected by the collective properties of atomic spins, the output
light operator can be acquired from the input variables combined with the terms

4The comprehensive propagation equations for the spin operators can be found in Brian
Julsgaard PhD thesis in page 42. The decoherence aspects can be found on page 27 of Rodrigo
thesis, along with the Quantum noise for Faraday light matter interfaces paper

5Here we assume the tensor term only impacts the spin oscillation and dynamic back action
but not the coupling to thermal baths
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recorded from the atomic spins: X̂out
L (t)

P̂ out
L (t)

 =

 X̂ in
L (t)

P̂ in
L (t)

+
√

ΓS

 0 −ϵS

1 0

 X̂S(t)

P̂S(t)

 . (3.37)

Then we can apply the Fourier transformation: [F( d
dtX̂S(t)) = −iΩX̂S(Ω),

F( d
dt P̂S(t)) = −iΩP̂S(Ω)] to the above equations of motion. The input-output

relationship in frequency domain for spin operators facilitates a more detailed
understanding of the system’s dynamics. For simplicity, P̂ will be used hereafter
instead of P̂ (Ω):
 γS/2 + ϵSΓS − iΩ −ΩS

ΩS γS/2 + ϵSΓS − iΩ

 X̂S

P̂S

 =
√

ΓS

 0 −ϵS

1 0

 X̂in
L

P̂ in
L

+
√

γS

 F̂ X
S

F̂ P
S

.

(3.38)
We are now in a position to represent the matrix in a more compact notation: X̂S

P̂S

 =
√

ΓSLZ

 X̂ in
L

P̂ in
L

+ L√
γS

 F̂ X
S

F̂ P
S

 , (3.39)

In this equation, the matrices within the above formula are defined as follows:

Z =

 0 −ϵS

1 0

 , (3.40)

and the matrix L indicates the spin oscillator dynamics within frequency domain,
and can be written in a more transparent form through susceptibilities χS(Ω)

and ρS(Ω), which describe the response of spin oscillator to the external forces.
6:

L =

 γS/2 + ϵSΓS − iΩ ΩS

−ΩS γS/2 + ϵSΓS − iΩ

−1

=

 ρS(Ω) χS(Ω)

−χS(Ω) ρS(Ω)

 .

(3.41)
The spin susceptibilities χS(Ω) and ρS(Ω) are defined as:

χS(Ω) =
ΩS

Ω2
S − Ω2 − iΩ (γS + 2ΓSϵS) + (γS + 2ΓSϵS)

2 /4
,

ρS(Ω) =
(γS + 2ΓSϵS) /2 − iΩ

Ω2
S − Ω2 − iΩ (γS + 2ΓSϵS) + (γS + 2ΓSϵS)

2 /4
,

(3.42)

6The inverse of a matrix can be calculated based on the following formula:

L =

[
a b

c d

]−1

= 1
ad−bc

[
d c

b a

]
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the total spin linewidth now includes the tensor dynamic broadening, expressed
as γS/2+ ΓSϵS . As shown in eq.(3.39), the matrix L helps to map the input light
noise and atomic thermal/projection noise forces onto the output spin oscillator.
Similarly, we can achieve the equation of motion for light variables within the
frequency domain, reads as: X̂out

L
P̂ out

L

 =[12 + ΓSZLZ]

 X̂ in
L

P̂ in
L

+
√

ΓSγSZL

 F̂ X
S

F̂ P
S


=

12 + ΓS

 −ϵSρS −ϵ2
SχS

χS −ϵSρS

 X̂ in
L

P̂ in
L


+
√

ΓSγS

 ϵSχS −ϵSρS

ρS χS

 F̂ X
S

F̂ P
S

 .

(3.43)

Then, we could incorporate the Stokes operator detection scheme demonstrated
in Fig.3.4 to select the measured Stokes operators or quadrature operators. With
the application of quarter and half wave-plates, we can adjust the polarization
ellipticity, thereby allowing for the mixing of two quadrature operators. The
rotation matrix, indicating the homodyne detection angle ϕ, is defined as follows:

Rϕ =

 cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

 . (3.44)

The detected quadrature operators X̂det
L are now described as follows:

X̂det
L =

 X̂det
L

P̂ det
L

 = Rϕ

 X̂out
L

P̂ out
L

 =

 cos(ϕ)X̂out
L − sin(ϕ)P̂ out

L
sin(ϕ)X̂out

L + cos(ϕ)P̂ out
L

 .

(3.45)
We have successfully derived the final expressions for the equations of motion for
the light and spin oscillators within frequency domain. This includes the input-
output relationship that describes the dynamics of atomic spins are recorded by
the output of light, as well as the Stokes detection mechanism that can facilitate
the interference of two quadrature components. In the coming section, we will
explore a new technique named spin noise spectroscopy (SNS) that can enhance
our understanding of the dynamic of steady-state atomic spins.

3.6 Spin noise spectrum

Given that measurements of spin systems in our experiments are inherently con-
strained by the quantum mechanical uncertainty (3.12) and involve a finite num-
ber of atomic spins, confined with the vapor cell, undergoing stochastic motion (
to maintain the thermal equilibrium of the system ), they inevitably exhibit pro-
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jection fluctuations in the recorded spin signal. Spin noise spectroscopy (SNS)
is a powerful approach to obtaining insights into the dynamics of such spin fluc-
tuations, as outlined in the work [78]. We now turn our attention to analyzing
the power spectral density (PSD) of the detected light quadrature for a better
understanding of spin fluctuations. The PSD of light phase quadrature is given
by the symmetrized correlation function:

S
det
pp δ(Ω − Ω

′
) =

1
2
〈
P̂ det

L (Ω)P̂ det,†
L (Ω′) + P̂ det,†

L (Ω′)P̂ det
L (Ω)

〉
. (3.46)

In this context, the notation ⟨·⟩† denotes the Hermitian conjugate of a quadrature
operator (or complex conjugate transposition in the matrix representation). By
combining the symmetrized power spectral density with the linear matrix equa-
tions of motion for light and spin operators, we can calculate the PSD of detected
light quadrature once the fluctuation of input noise operators are known. For-
tunately, the input light fluctuation and thermal baths can be deduced from the
commutation relations, providing a foundational basis for these calculations:

S
in
XLX†

L
= S

in
PLP†

L
=

1
2δ(Ω − Ω′), (3.47)

S
in
F X

S F X,†
S

= S
in
F P

S F P,†
S

= γS(nS +
1
2 )δ(Ω − Ω′). (3.48)

In this case, nS signifies the effective thermal occupation, which is directly linked
to the degree of spin polarization. This relationship will be further explored
in the subsequent section. The inclusion of the factor 1

2 accounts for the ground
state of spin thermal fluctuations, commonly known as the projection noise. This
term represents the inherent quantum mechanical uncertainty in the spin state,
serving as a fundamental limit to the precision in projective spin measurements
[79]. Hence, we can write down the complete model for the recorded spin oscillator
as follows:

S
det
L,ϕ = 〈

X̂in
L X̂in,†

L

〉︷ ︸︸ ︷(
1 + Γ2

Sϵ2
S |ρS |2 − 2ΓSϵS Re [ρS]

)
sin ϕ2 +

(
ΓS Re [χS] − Γ2

SϵS Re [χSρ∗
S]
)

sin 2ϕ + Γ2
S |χS|2 cos ϕ2 +〈

P̂ in
L P̂ in,†

L

〉︷ ︸︸ ︷(
1 + Γ2

Sϵ2
S |ρS |2 − 2ΓSϵS Re [ρS]

)
cos ϕ2 +

(
−ΓSϵ2

S Im [χS] + Γ2
Sϵ3

S Im [χSρ∗
S]
)

sin 2ϕ + Γ2
Sϵ4|χS|2 sin ϕ2

+ ΓS
(
|ρS|2 + |χS|2

)
γS

(
nS +

1
2

)(
cos2(ϕ) + ϵ2

S sin2(ϕ)
)

︸ ︷︷ ︸〈
F X

S F X,†
S

〉
=
〈

F P
S F P,†

S

〉 .

(3.49)
To understand the preceding complex expression, we can deconstruct the detected
noise spectra into three primary contributions: shot and backaction noise, which
stem from the X quadrature of y-polarized light; shot and back-action noise orig-
inating from the P-quadrature, and spin thermal noise imprinted onto the output
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quadrature. Notably, both the X and P quadrature contributions are influenced
by terms proportional to sin(2ϕ). By carefully selecting the detection angle, it is
possible to induce destructive interference that mitigates the impact of light shot
and quantum backaction noise associated with respective light sources.
An important scenario occurs when the spin oscillator functions within the Quan-
tum Non-Demolition (QND) interaction regime-where the light only measures the
position X of the spin oscillator with ϵS = 0. This constitutes a complete QND
measurement considering a harmonic oscillator with zero oscillation frequency,
and is scheduled for the quantum noise reduction [45]. In this case, the equation
can be simplified to:

S
det
QND,ϕ =

〈
X̂in

L X̂in,†
L

〉︷ ︸︸ ︷
(1) sin ϕ2 + Γ2

S |χS|2 cos ϕ2 + ΓS Re [χS] sin 2ϕ+

〈
P̂ in

L P̂ in,†
L

〉︷ ︸︸ ︷
(1) cos ϕ2

+ ΓS
(
|ρS|2 + |χS|2

)
γS

(
nS +

1
2

)(
cos2(ϕ)

)
︸ ︷︷ ︸〈

F̂ X
S F̂ X,†

S

〉
=
〈

F̂ P
S F̂ P,†

S

〉 .
(3.50)

Simplifying the expression, we are left with the shot noise of light from the
phase quadrature contribution, which is rescaled by cos ϕ2. From the light am-
plitude quadrature, we could observe that both the shot and backaction noise
can interfere via the cross correlation term ΓSRe[χS] sin 2ϕ. By appropriately
selecting the detection angle ϕ, it is possible to achieve noise levels below the
angle-independent shot noise of light, expressed as S

in
XLX†

L
cos ϕ2 + S

in
PLP†

L
sin ϕ2,

thereby enabling light squeezing. Furthermore, this cross-correlation emerges
from the motion of collective spin oscillator, primarily driven by the intensity
fluctuation in the light-induced radiation pressure, as evident from its transfer
through the real part of atomic susceptibility. This phenomenon, also known as
ponderomotive squeezing [80], arising from the light fluctuation induced quantum
cross-correlation, provides a useful tool for calibrating the quantum backaction
noise in our spin systems. When the PSD is normalized to the light shot noise
S

in
PLP†

L
, denoted as 1/2, the expression for the spin noise spectrum with the Quan-

tum Non-Demolition (QND) regime, in terms of shot noise units7, can now be
articulated as follows:

S
det
QND,ϕ/SN =1 +

QBAN︷ ︸︸ ︷
Γ2

S |χS(Ω)|2 cos2(ϕ) +

Correlations︷ ︸︸ ︷
ΓS Re [χS(Ω)] sin(2ϕ)

+

TN︷ ︸︸ ︷
2γSΓS

(
|ρS(Ω)|2 + |χS(Ω)|2

)(
nS +

1
2

)
cos2(ϕ) .

(3.51)

7Although the PSD is normalized to shot noise, it is worth noting the shot noise originates
from two distinct quadratures
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Furthermore, when the detection angle is set at ϕ = 0, such that we are only
monitoring the phase quadrature of light, we can observe the maximum atomic
spin thermal noise and induced quantum backaction noise. The equation now
reads as :

S
det
QND,ϕ→0◦ /SN = 1 +

QBAN︷ ︸︸ ︷
Γ2

S |χS(Ω)|2 +

TN︷ ︸︸ ︷
2γSΓS

(
|ρS(Ω)|2 + |χS(Ω)|2

)(
nS +

1
2

)
.

(3.52)
Now we approach the scenario desirable for canceling quantum noise in gravita-
tional wave detectors, as previously discussed at the end of Chapter Two. The
contributors to the spin noise spectrum, presented in Fig.3.6 (a), from the left to
right, are: the light shot noise from the light phase (P) quadrature ( illustrated by
the blue curve), quantum backaction noise from the light amplitude (X) quadra-
ture (depctied by the purple curve), and atomic spin thermal noise (represented
by the green curve). Considering the proposal of the quantum noise reduction,
only the shot noise (SN) and quantum backaction noise (QBAN) are entangled
with the quantum noise in other interferometer arms via the produced entangled
source. In contrast, the intrinsic atomic thermal fluctuations will incoherently
imprint on the spin noise signal, compromising the quantum noise cancellation.
Consequently, it becomes crucial to introduce a new quantity termed quantum
cooperativity CS

q , which quantifies the dominance of quantum backaction noise
in the spin noise spectrum over spin thermal noise by comparing their ratio.
Assume we only evaluate around the atomic Larmor frequency (Ω ≈ ΩS), with
the spin decoherence being significantly smaller (by an order of magnitude) com-
pared to the atomic resonance (γS ≪ ΩS). In this scenario8, we can make the
following approximation, such that |χS |2 + |ρS |2 ∼ 2|χS |2, then we arrive at the
expression for quantum cooperativity as follows:

CS
q =

SQBAN

STN
=

Γ2
S|χS|2

2ΓSγS
(
|χS|2 + |ρS|2

)
(1/2 + nS)

=
ΓS

4γS(1/2 + nS)
∼ ρσ0L.

(3.53)
We assume a perfect polarized atomic ensemble probed with a large-detuned,
intensely linearly polarized light, and consider a scenario where probe power de-
coherence dominates other decay mechanisms. The total decoherence can be
approximated as probe power broadening γS ∼ γprob, scaling similarly to the
readout rate ΓS . In this case, the quantum cooperativity can be approximately
expressed in terms of absorption cross section σ0 = 3λ2

2π , atomic vapor density ρ

8As previously described, focusing only around the spin resonance (Ω ∼ ΩS), the suscepti-
bilities above can be further simplified to:

χS(Ω) ≈ 1
2

1
ΩS − Ω − i( γS

2 )
,

ρS(Ω) ∼ −iχS(Ω),

Consequently, the absolute squares of these equations follow a Lorentzian function.
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and the length of the vapor cell L (detailed on page 37 of Rodrigo’s thesis [49]).
Therefore, the quantum cooperativity can be enhanced by increasing either the
atomic density or the length of the vapor cell.
As presented in eq.(3.51), a deviation from ϕ = 0 introduces the cross-correlation
term ΓS Re χS(Ω), a proper choice of sin 2ϕ makes the correlation term negative,
facilitating destructive interference between the shot and backaction noise. This
interference manifests as a dispersive feature in spin noise spectrum, illistrated in
Fig.3.6 (b). With sufficiently small atomic thermal noise-as depicted by the down-
scaled green curve, the total detected spin noise drops below the shot noise within
a specific sideband frequency range, thereby producing pondermotive squeezing,
as seen in the purple curve in the same figure. However, finite detection effi-
ciency and optical loss η during the propagation will replace the recorded spin
noise signal with the uncorrelated vacuum noise. This loss inevitably reduces the
measured level of pondermotive squeezing:

S
det
QND
SN ≳ η

S
out
QND,ϕ
SN + (1 − η). (3.54)

In the regime where γS ≪ ΓS , ΩS , the maximal pondermotive squeezing achievable[81],
given an optimized detection phase, can be attainable in terms of quantum coop-
erativity and finite overall detection efficiency. This maximum observable squeez-
ing bound can be approximately by the following expression (adapted from the
expressions described on page 103 of Muller’s PhD [20] and page 22 of Junxing’s
PhD thesis [82]). As indicated by the purple curve in Fig.3.6 (b), the measured
ponder-motive squeezing can closely approach this bound with sufficiently high
quantum cooperativity:

S
det
sq

SN ≳ 1 − η
ΓS

ΓS + 4γS(1/2 + nS)
≳ 1 − η

CS
q

1 + CS
q

. (3.55)
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Figure 3.6: Spin noise spectrum and pondermotive squeezing. The power spec-
trum density of the recorded spin oscillator in shot noise units, is analyzed for detection
angle ϕ = 0 (a) and ϕ = 0.45π (b). The phase quadrature’s shot noise is represented by
the blue curve, while the quantum backaction noise from amplitude quadrature, high-
lighted by the purple area between the total spin noise (the purple curve) and atomic
thermal noise (area below the green curve). Altering the detection angle reduces the ef-
fective thermal noise and the original shot noise from the phase quadrature but introduce
the shot noise from amplitude quadrature, thereby facilitating the interference among
the amplitude shot noise and backaction noise, leading to ponderomtive squeezing, as
illustraed in Fig.(b). In this analysis, the quantum cooperativity Cq is set to 10, with a
readout rate of 12kHz, total decay rate is 0.3 kHz, and an applied thermal occupation of
approximately nS : 0.5.

We have discussed that optimal pondermotive squeezing is attained by selecting
the appropriate detection phase for specific sideband frequencies, which directly
links to the crucial parameter-quantum cooperativity. Therefore, in our experi-
ments, this relation also facilitates a cross-validation method for calibrating the
quantum backaction noise. For readers seeking further details on the maximum
achievable squeezing across various Fourier frequencies, the corresponding detec-
tion phases, and the bandwidth of pondermotive squeezing, we would direct them
to the following literature [83, 84].

3.7 Projection noise and effective thermal occupation

As we just demonstrated, in addition to quantum noise (shot and backaction)
transferred from the light fluctuations, the total spin noise spectrum also in-
cludes atomic thermal noise (shown as the area below the green curve in Fig.3.6).
This additional uncorrelated noise projects onto the entangled light and impacts
its ability to reduce broadband quantum noise as a noise eater. We now revisit
the atomic total noise to explore its origin and provide a method to characterize
this supplementary thermal noise.
First, we review the concept of ’shot noise’ for atom, also known as projection
noise. This entails performing a projective measurement of the transverse compo-
nent of collective atomic spins, with the atomic system’s quantum state initially
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aligned along the longitudinal axis. This projection noise results from the col-
lapse (knowledge lost) of the prepared two-level superposition quantum state in
the transverse basis (comprising ground and excite states) into one of two states
(either ground or excite state) [85]. Assume a simplistic two-level system consist-
ing of N independent electron spins (1/2), the mean measurement outcome will be
binomially distributed, with its variance, indicative of uncertainty, being propor-
tional to

√
N h̄/2 ( assuming h̄ = 1 for simplicity ). However, in the context of

our actual experiments, the cesium atomic ensemble cannot be simply modeled
as two-level systems. The presence of large total angular momentum, coupled
with a nonzero nuclear spin I = 7

2 , complicates the modeling. Preparing atoms
in other hyperfine (or even Zeeman ) manifolds can introduce additional ther-
mal noise during projection measurement, causing the uncertainty of projective
measurement to conform to a complex multinomial distribution. Furthermore,
atoms in a thermal state that remain unpolarized are not sensitive to the probe
light fluctuation of interest. This significantly reduces the quantum backaction,
thereby decreasing the quantum cooperativity that is crucial for our project.
In practice experiments, spin relaxation and dephasing are induced by inevitable
environmental interactions, such as inhomogeneous magnetic fields and collisions
with spins and anti-relaxation coatings. These interactions randomly perturb the
prepared quantum atomic state, resulting in dynamic resembling diffusive spin
behavior driven by random Langevin forces, as detailed in the study on [64].
According to the fluctuation-dissipation theorem in eq.(3.36), this relaxation re-
lated dissipation ’amplifies’ the atomic thermal noise with decoherence rate γS ,
contributing to the overall observed total spin noise.

Figure 3.7: The spin noise spectrum density (a), along with added atomic
thermal noise as function of spin polarization (b). Fig.(a) illustrates the atomic
spin noise signals for atoms with total spin F = 4, depicted in an orange curve for a
thermal state with spin polarization of |P | ∼ 1% and in a red curve for nearly coherent
spin state with |P | ∼ 99%. Fig.(b) reveals that additional spin thermal noise arises due to
large total spin and imperfect spin polarization. In scenarios of perfect spin polarization,
atomic spins exhibit minimal projective atomic noise, characteristic of a pure spin-1/2
system.
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In our experiment, we could apply optical pumping to excite spin electrons among
different electronic levels before or during the probe interaction, eventually trans-
ferring all electrons to one of extreme Zeeman levels. This process can be linked
to creating an effective two-level system, as the simulated spin noise signal with
two different degrees of spin polarization demonstrated in Fig.3.7 (a), where the
orange and red curve represent a nearly atomic thermal state or an ideal coherent
spin state, respectively. A high degree of spin polarization, indicative of the opti-
cal pumping ’s efficiency, helps to mitigate this additional atomic thermal noise.
This optical pumping method enables us to prepare the atomic states that closely
mimic a coherent atomic state, even for large total spins like F =4 in our project.
The relationship between the measured atomic thermal noise and the degree of
atomic spin polarization has been extensively studied on page 55 of Rodrigo PhD
thesis [49] and page 231 of Gorgios PhD thesis [86]. Under the condition that
there are no coherence among atomic spins in the quantization basis, which is
achieved by the spin-exchange collisions or damping of spin via the optical pump-
ing, the atomic ground-state population attains thermal equilibrium, as discussed
on page 47 of Lee’s PhD thesis [87]. This equilibrium can be described by the
Boltzmann distribution, allows us to define the Zeeman level populations accord-
ing to the spin temperature distributions:

ρth(F , m) =
eβm

Z
, (3.56)

where Z =
∑F

m=−F eβm is the partition normalization function, and β = 1/kBTS

incorporates the effective spin temperature TS with Boltzmann constant kB. This
parameter β is linked to another important parameter-spin polarization P , which
quantifies the relative ratio of the mean atomic spin along the prepared quanti-
zation x-axis ( bias magnetic field) to the total atomic spin F, as shown below:

P =
⟨Fx⟩

F
=

1
ZF

F∑
m=−F

meβm,

β = log
(1 + |P |

1 − |P |

)
.

(3.57)

Thus, in a real spin F =4 atomic system, the variance of the transverse compo-
nents and the effective atomic thermal occupation ns, influenced by the atomic
spin polarization, can be expressed as follows (the detailed derivation is provided
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on page 56 of Rodrigo’s PhD thesis) [49]:

〈
F̂ 2

z

〉
=
〈
F̂ 2

y

〉
=

1
4Z

F∑
m=−F

eβm
[
F (F + 1) − m2

]

=


F
4 , for |P | → 1,
F (F+1)

3 , for |P | → 0,

nS =

〈
F̂ 2

z

〉
+
〈
F̂ 2

y

〉
⟨Fx⟩

− 1
2 =

0, for |P | → 1, normalize to F = 4,
17
6 , for |P | → 0, normalize to F = 4.

(3.58)

This conversion is illustrated in Fig.3.7. The plot facilitates an estimation of
the additional atomic thermal noise by calibrating the atomic spin polarization.
The experimental details regarding the preparation of coherent atomic state with
optical pumping will be presented in Chapter 4, further experimentally charac-
terization of spin polarization can be found in Chapter 5.

3.8 Atomic motional average and broadband noise

Our previous investigations concentrated on the internal dynamics of atomic
spins. Nevertheless, practical experiments with atom ensembles in hot vapor
cells reveal the influence of the external factors: such as atom’s relative positions
and their thermal motion-further complicate interactions between light and spins,
thereby influencing the observed spin noise spectrum’s shape. In scenarios where
the probe beam does not entirely cover the vapor cell, and assuming decoherence
is mainly driven by atomic spin relaxation, we temporarily neglect probe intensity
broadening effects. Hence, probe intensity primarily affects light-atom coupling
strength.
During the interaction, the atomic signal, mainly from spin relaxation, originates
from atoms within the probe area for the entire interaction duration. How-
ever, some atoms initially within the probe area contributing to the spin signal
might diffuse out of the beam’s area due to the thermal motion, whereas others,
not initially observed after collisions with the relaxation coating or other atoms,
might re-enter the interaction zone, as depicted in Fig.3.8 (a). These conditions
contribute to the spin noise signal but have shorter coherence times than the
main spin relaxation time, introducing additional broadband atomic responses
as shown in the frequency spectrum domain. This is distinct from the primary
narrowband atomic signal, as illustrated in Fig.3.8 (c).
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Figure 3.8: Numerically simulation of Spin Broadband Noise as detected by
Gaussian and Square Top Hat (TH) Beams. This simulation models a thermal gas
of Cs atoms confined within a 2*2*80mm3 rectangle channel. Within this channel, atoms
can freely move across the cell, experiencing collisions with both the channel walls and
neighbouring atoms. The diffusion mode of thermal atoms is governed by the cell geom-
etry, leading to a scenario where an ideal top hat beam with 100% filling factor yields a
Lorentzian line shape (red curve). In this context, the spin noise decoherence(line-width)
is predominantly affected by spin-spin collisions. An imperfect filling factor introduces
coupling to high-order atomic diffusion modes, resulting in broadband (fast decay) re-
sponses due to the atoms moving in and out of the probe beam (purple curve). Probing
with a Gaussian beam leads to different high-order interactions, manifesting as another
broadband response composed of complex Lorentzian functions with different decoher-
ence rates (teal curve). The Gaussian probe beam has a diameter of 1.8mm, whereas
the square top hat beam, generated from a Super-Gaussian function with order of n =
12, has an equivalent diameter. The signals are rescaled to equalize the narrow band
responses, thereby more effectively illustrating the broadband noise. The numerical sim-
ulation program were implemented using program written by Christian Baerentsen.

Furthermore, the light and collective spin interactions are influenced not only
by atomic thermal motion but also by the optical mode of the probe light. As
Fig.3.8 (c) shows, numerically simulated spin noise spectra reveal variations in
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the shape of the spin noise signal due to the differences in the probe beam profile
and filling factor. The red curve illustrates an interaction with a square top-hat
beam, assuming full illumination where the spin behavior is determined solely
by spin relaxation rate, yielding an exponential decay in time or a lorentzian
function in frequency domain. An imperfect filling factor, approximately 90 %,
introduces additional broadband noise, as shown by the purple curve in Fig.3.8
(a), allowing atoms to move in and out of the probe beam area diffusely or
ballistically, depending on their mean free path relative to the cell cross-section,
Using a standard Gaussian beam further complicates the interaction between
atoms and light by varying the atom-light coupling strength with the atom’s
position relative to the Gaussian beam profile within the cell. This situation,
depicted by the teal curve, with enlarged dark area, results in distinct broadband
noise with a higher amplitude and narrower bandwidth. The hypothesis assumes
thermal atoms average out the light coupling across various diffusion modes,
including our the narrow band spin signal of interest. Overall, given the rapid
decay of these broadband modes compared to the spin readout rate ΓS , which
is significantly smaller under our experimental conditions, this broadband noise
acts as additional uncorrelated spin noise, thereby undermining quantum noise
reduction efforts.

Numerous PhD candidates in our group have contributed to the study of thermal
atom motion during light-spin ensemble interactions.[33, 49, 50, 55, 56, 72, 88].
An intriguing feature, termed ’atomic motional averaging’, arises as the dura-
tion of light-atom interaction increases, helping to mitigate the effect of inho-
mogeneous coupling, such as that introduced by Gaussian probe beam or in-
homogeneous bias-magnetic fields. This method, which averages out the inho-
mogeneous coupling effect, has been shown to enhance the efficiency of writting
single photon into thermal atomic vapors, as discussed in [89, 90].
However, accurately modeling the interaction between light and thermal atomic
ensemble is never trivial. In the work of [91], a theoretically analysis of spin noise
in anti-relaxiation coated cell, accounting for different atomic diffusion modes,
was presented. It demonstrated that the choice between Ballistic flight and
Langevin diffusion modes for modeling thermal atoms depends on the comparison
of the atom’s mean free path with the cell’s cross section. The similar numerical
simulation of atomic responses, both narrow and broadband, to various probe
profiles, are well elaborated in Chapter 9, page 81 of Christian’s thesis in our
group [50]. Here the thermal motion of atoms is simulated via a Monte Carlo
method employing the Euler approach, with atom-atom collisions modeled using
the Langevin stochastic forces and the spin-wall collision assumes resulting in
reversing the direction of the momentum without causing spin decoherence. De-
coherence is attributed solely to atom-atom collisions and is uniformly modeled
during the probe light interactions, adhering to the QND (quantum nondemoli-
tion) input-output relations. Additionally, the readout rate is influenced by the
atoms’ relative position within the probe beam profile.
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Further improvement in our simulations would require us to adjust the probe-
dependent interaction, addressing not just the coupling strength but also spin de-
coherence. Additionally spin-wall (anti-relaxation coating) collision decay should
also be included, as discussed by Shaham et al. (2020) [92], their research pro-
vides a insightful analysis of decay and fluctuation within the Langevin diffusion
formalism, including the case when spins interacts with anti-relaxation coatings
governed by the cell geometry. Their approach enables the decomposition of
light-atomic spin interactions into distinct spin diffusion and wall collision pro-
cesses with multi-modes evolution, allowing the each mode to accumulate different
quantum noise during the light interactions.
Despite the current model’s limitations, the numerical simulation of the spin noise
spectrum, including the atomic thermal motion and varying probe beam profile,
suggests using a collimated top-hat beam that fully covers the interaction cross-
section for minimal atomic broadband noise when probing our collective atomic
spin oscillator within a hot vapor cell. Further details on the experimental setup
of the top-hat beam and analyze of its impact on spin noise will be presented in
Chapter 4 and Chapter 5, respectively.

3.9 Quantum noise engineering with cross-correlation:
virtual rigidity

Until now, we have studied various sources contributing to the observed spin
noise spectrum. These noise components can be in principle characterized by a
crucial parameter: quantum cooperativity (Cq), This parameter represents the
ratio of quantum backaction noise, originated from the light radiation pressure
noise perturbing the spin oscillator, to the atomic intrinsic thermal noise when
the system interacts with environmental thermal baths. We have demonstrated
that in real experiments with hot vapor gas, the external thermal motion of
atoms induces the location-dependent light-atom coupling, thereby generating
additional atomic broadband noise. In the original proposal for the broadband
quantum noise reduction via an effectively negative mass spin oscillator [45],
achieving such noise reduction necessitates a perfect matching of susceptibilities
between the Laser Interferometer Gravitational-Wave Observatory (LIGO) and
the atomic spin oscillator, alongside minimal intrinsic atomic thermal noise. This
requirement imposes a demanding quantum cooperativity value of approximately
100. Additionally, operating the atomic oscillator at ultra-low audio sideband
frequencies-a regime technically challenging to maintain-requires dominance of
the quantum noise due to the increased environmental classical noise at such fre-
quencies.
Based on the above limitations, one may consider tailoring the optical rigidity by
adjusting the dispersive and dissipative coupling to enhance sensitivity in weak
force measurement [93], such as tensor stark shift and cooling within atomic
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systems. However, this adjustment significantly complicates the atomic spin sys-
tem’s dynamics. Fortunately, Emil.e.c.t. [46]] introduces an additional concept-
virtual frequency shift (or rigidity)- that may relax the demanding requirement
on quantum cooperativity and induce an effective frequency shift without com-
plicating light-matter interaction dynamics. The approach of a virtual frequency
shift, initially proposed in the Chapter 4.4 of quantum measurement theory [16],
describing that constructing a cross-correlation between the measurement impres-
sion(shot noise) and quantum backaction noise can modify the dynamic properties
of the quantum probe system, via introducing additional effective rigidity (stiff-
ness). This modification can be applied to surpass the standard quantum limit
(SQL), thereby enhancing sensitivity in devices like spin ensembles or gravitation
wave interferometers.

In the context of the QND measurement of the collective atomic spin oscillator,
we have identified a similar cross-correlation, as discussed in Chapter 3.6. This
correlation facilitates quantum noise cancellation ( ponderomotive squeezing ) in
the spin noise spectrum through engineering of the homodyne detection angle.
To further elucidate this virtual frequency shift and the introduced stiffness, as
we in-depth analysis the spin noise, incorporating the cross-correlation term into
the total quantum noise (TQN) against the spin thermal noise coefficient:

STQN

STN
=

SN︷︸︸︷
1 +

QBAN︷ ︸︸ ︷
Γ2

S |χS(Ω)|2 cos2(ϕ) +

Correlations︷ ︸︸ ︷
ΓS Re [χS(Ω)] sin(2ϕ)

4γSΓS |χS(Ω)|2 cos2(ϕ)︸ ︷︷ ︸
TN

. (3.59)

The simulated noise spectra for the pondermotive squeezing of light across di-
verse polarimetric homodyne phases, alongside their corresponding thermal force
normalized noise curve, are plotted in Fig.3.9. The red dash-dotted line, repre-
senting the detection of phase quadrature of light ϕ = 0 without cross-correlation,
serves as a baseline for comparative analysis. A deviation from this pure phase
quadrature ϕ = 0 towards the amplitude quadrature (ϕ = π/2) introduces a
cross-correlation term, resulting in ponderomotive squeezing. Moreover, normal-
izing the total quantum noise for each detected light quadrature against the re-
spective atomic thermal noise, as illustrated in Fig.3.9 (b), reveals distinct phase-
dependent frequency shifts, evidenced by the shift of dip for each parabolic shape
curve. Compared to the referenced red dash-dotted line, centered around 15 kHz,
we expect to observe a maximal downshift of parabola’s depth is noted in the
light purple curve, with a maximum shift around 3 kHz-indicated by two dashed
vertical lines (orange and red), approximately a quarter of spin readout rate ΓS .
Notably, this shift can be reversed up-shift by altering the sign of the detection
phases (sin 2ϕ).
The concept of this virtual frequency shift, detailed in references [33, 46, 94], can
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Figure 3.9: Ponderomotive squeezing and virtual frequency (virtual rigidity)
shifts across homodyne detection phases. (a) The red dash-dotted line corresponds
to the detection of phase quadrature of light ϕ = 0 with maximum atomic signal. Devi-
ation from the pure phase quadrature ϕ = 0 towards the amplitude quadrature ϕ = π/2
introduces cross-correlation term, resulting in ponderomotive squeezing. The detection
angle varies by π/20 increments. (b) This quantum cross-correlation adjusts the fre-
quency response of the atomic oscillator to the probe light quantum fluctuation, creating
a virtual frequency shift. Compared to the pure phase quadrature detection (as the red
dash-dotted line), a noticeable frequency downshift ( around 3kHz, presented with two
dashed vertical lines (orange and red) and an increased sensitivity of the thermal noise
with a narrow band near the Larmor frequency are observed. It is interesting to note
that deep in force normalization plot does not coincident with the frequency of maximum
pondermotive squeezing. These effects are demonstrated at a fixed center frequency ΩS

of 15 kHz, a readout rate ΓS of 12 kHz (∼ 3mW probe power), a linewidth (FWHM) γS

of 200Hz and a thermal occupation of ns = 0.5.

be understood through the effective frequency response (susceptibility) of spin os-
cillators to the quantum noise across different probe quadrature bases. Assuming
the total quantum noise, including cross-correlation, can be redefined whenever
the detection changes into a new quadrature basis where the shot noise (SN) and
quantum backaction noise (QBAN) remain uncorrelated. Consequently, in this
new detection basis, the effective susceptibility of the spin oscillator to the light
fluctuations is modified, as described by the following equation:

χ−1
eff (Ω) = χ−1

S +
ΓS
2 sin 2ϕ. (3.60)

Here, ΓS
2 sin 2ϕ is the virtual stiffness added by the underlying quantum cross-

correlation. This adjustment yields a new effective oscillator frequency that is
now written as: ΩS,eff = ΩS

√
1 + ΓS

2 sin 2ϕ/ΩS . As we can modify the sign
of this stiffness though the detection phase, such adjustment allows for an ef-
fective shift in atomic response, based on the selected uncorrelated quadrature
basis. Through this mechanism does not substantially modify the spin response
to atomic thermal force noise-the detection angle still rescales the recorded atomic
thermal noise by cos ϕ2. Thus, leveraging quantum correlation enables the engi-
neering of the atomic frequency responses of the spin oscillator to uncorrelated
quantum shot and backaction noise of the probe field.
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Apart from that, we observed the variations in the steepness of the parabolic
curves across different detection phases. The physical meaning of this phe-
nomenon becomes more apparent upon normalizing the spin thermal noise term
against the total recorded spin noise (both quantum noise and atomic thermal
noise) without altering the parameters, as illustrated in Fig.3.10 (a). Here,
the vertical axis represents the proportion of thermal noise within the total
recorded spin noise at each Fourier frequency. The effective shift induced by
cross-correlation can increase the atomic response to external force signals (here
is the thermal forces), via increasing the proportion of atomic thermal noise where
the quantum noise cancellation emerges, thereby improving the signal (thermal
forces) to noise (quantum noise) ratio and enhancing the sensing sensitivity. This
is particularly relevant if the external force signal shares dynamics similar to
thermal Langevin forces, as seen in Mz or My magnetometry [95]. However, it’s
important to note that these sensitivity gains are achieved at the expense of re-
duced bandwidth as shown in Fig.3.9 (b).
Moreover, for effective quantum noise reduction with the atomic spin oscillators,
it is crucial to prepare the system with sufficient large quantum cooperativity,
therefore the influence of atomic thermal noise becomes negligible. Instead of
focusing on the virtual frequency shift occurring below the Larmor frequency,
we now concentrate on the red shaded area depicted in Fig.3.10 (a), particularly
above the atomic Larmor frequency, where this virtual frequency shift also plays
an important role in minimizing thermal noise contributions. This minimiza-
tion occurs in the frequency regime where the constructive interference between
quantum backaction and shot noise arises, allowing the atomic system to operate
with what can be considered as effective enhanced quantum cooperativity. This
phenomenon emphasizes the balance between different noise sources through the
probe detection phases to achieve optimized quantum sensing performance.
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Figure 3.10: Analysis of thermal noise and quantum noise (amplitude and
phase quadrature) contributions across various detection phases. (a) This anal-
ysis examines the proportion of thermal noise within the total spin noise, highlighted by
a dash dotted red curve represents atomic signal detection exclusively at light phase
quadrature. An alteration from the phase quadrature shows increased thermal noise
contributions within a specific frequency band, alongside a decrease above the Larmor
frequency. (b) Examining the ratio of quantum backaction and shot noise from the am-
plitude quadrature to the phase shot noise reveals transitions from backaction dominance
( illustrated by the orange line) to shot noise dominance (depicted by the purple line).
Implementing virtual rigidity mitigates thermal noise while elevating shot noise contri-
butions from the amplitude quadrature, particularly at high frequencies. Additionally,
virtual rigidity facilitates a tunable transition in quantum noise, from backaction domi-
nance to shot noise dominance, below the Larmor frequency, with the option to adjust
the transition bandwidth. The parameters are consistent with those in the preceding
figure.

However, one need to be more cautious when directly utilizing the effectively
increased total quantum noise that arises as we engineer the detection angle.
While virtual rigidity plays a role to reduce the thermal noise fraction, it simul-
taneously introduces shot noise from the amplitude quadrature of light, which
ultimately becomes predominant at higher Fourier frequencies. This introduc-
tion of additional shot noise may compromise the quantum noise reduction effort
at high Fourier frequencies, where the phase quadrature shot noise should domi-
nant. Hence, we calculate the ratio of these two noise contributions and examine
its variation as a function of frequency to better understand and mitigate these
effects.

S
X̂in

L X̂in,†
L

S
P̂ in

L P̂ in,†
L

=
(1) sin ϕ2 + Γ2

S |χS|2 cos ϕ2 + ΓS Re [χS] sin 2ϕ

(1) cos ϕ2 . (3.61)

The findings are plotted in Fig.3.10 (b), where the red curve without the quantum
cross-correlation serves as our benchmark. The orange, teal, and purple vertical
lines present the three transitions through the quantum noise spectrum- from
backaction noise dominance, through equal contributions, to phase shot noise
dominance, respectively. While the virtual rigidity shift reducing the thermal
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noise contribution above the atom resonance frequency in Fig.(a), it also intro-
duces additional shot noise from the orthogonal light amplitude quadrature as
in Fig.(b). This, in turn, may obstructs the third regime, wherein the light shot
noise from phase quadrature ( the gravitational wave signal also encoded into this
quadrature) should predominant the total quantum noise at higher frequencies,
thereby impairing the efficiency of broadband quantum noise cancellation.
Conversely, below the Larmor frequency, virtual rigidity not only facilitates an
adjustment of the ratio for backaction noise and shot noise but also allows for the
fine-tuning of bandwidth (from the back action dominance to shot shot in phase
quadrature dominance) utilizing the detection angle. Notably, in this regime, the
virtual frequency shift plays a crucial role in tailoring the frequency bandwidth
to achieve simultaneous quantum backaction and shot noise reduction. This is
evidenced by the gradually shift of the minimal dips from the Larmor frequency,
as illustrated in Fig.3.10 (b). Meanwhile, this of course comes at the cost of an
increased thermal noise effect, depicted in Fig.3.10(a). Assume the atomic spins
can maintain quantum noise-limited behavior at ultra low frequencies with suffi-
ciently small thermal noise, one could invert the detection phase and unitize the
virtual rigidity up-shift approach to better match the bandwidth of the quantum
backaction to shot noise transition in GWD system.

This section elaborates on the subtle advantages and challenges associated with
the complex virtual frequency shifts, induced by cross-correlation, to modify
frequency responses, enhancing sensitivity within specified bandwidths, and ef-
fectively enhance quantum cooperativity for refined broadband quantum noise
reduction management. Although this approach offers several benefits, it also
encounters notable limitations, including a reduced effective readout rate and a
restricted bandwidth of the sensitivity improvement, emerges only around the
center frequency. The effectiveness of this method depends solely on the real
component of the susceptibility, and the inherent dissipation in measurement
configurations leads to additional noise, undermining this virtual effect. Fur-
thermore, virtual rigidity introduces quantum noise from orthogonal quadrature,
altering the quantum noise ratio across the frequency spectrum. In the extreme
scenarios, this could prevent reaching the tuning point where phase shot noise
prevails, thereby limiting the potential for optimizing broadband quantum noise
reduction strategies.

In this chapter, we have undertaken a thorough analysis of the theory of light
and atomic spin operators, delving into the light-atom interactions, from QND
interaction to more complex higher-order tensor interactions. Our exploration
extended further into the study of the effective atomic masses and analyzing the
spin noise spectrum to understand the dynamics of atomic systems. Furthermore,
we investigated the light ponderomotive squeezing, resulting from quantum cross-
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correlations, alongside investigating the impacts of uncorrelated atomic thermal
noise and fast decay broadband noise in practical experiments that involve atomic
thermal motion. Lastly, we introduced the concept of virtual frequency shift (op-
tical rigidity) and explored its application in release certain experimental con-
straints. Now we finish the theory introduction, let us move on to the experi-
ments.
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Part II

Preparation of atomic spin
oscillator
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Chapter 4
Experimental setup

In this chapter, we explore the detailed experimental setup involving atomic com-
ponents for our project. We describe the fabricated atomic vapor cell designed
specifically for the GWD experiments. Subsequently, we delve into the heater
system, which is crucial for regulating the atomic density without introducing
additional magnetic noise. We also cover the implementation of magnetic shield-
ing alongside a home-designed printed circuit board (PCB) coil system. This
system produces a homogeneous magnetic field, achieving magnetic inhomogene-
ity of less than 0.4‰. This level of precision allows us, for the first time, to observe
the quadratic Zeeman splitting in an 8cm-long atomic vapor cell. Additionally,
we present the generation of a collimated square top hat beam, which facilitates
homogeneous coupling. We conclude this chapter with an overview of the laser
systems applied for the optical pumping.

4.1 Cell fabrication and anti-relaxation coating

In our work, the atomic hot vapour cell is deployed to produce the collective spin
oscillator and to achieve the optimal quantum noise reduction for gravitational
wave detection systems. The selection of cells have to fulfill certain requirements.
such as increased length to enhance the interaction readout rate and quantum
cooperativity under the same condition-owing to the proportionality of Cq to the
length of cell rather than the volume. Higher working temperatures can result in
increased atomic vapor density. It is also crucial to minimize decoherence, as the
imaginary part of the spin’s response will degrade the quantum noise reduction
performance, given that the gravitational wave detectors have negligible dissipa-
tion. Furthermore, the cell’s transmission should be well controlled to protect
the signal and entanglement. With all these prerequisites in mind, we introduce
our specially fabricated vapor cell used in our experiments.

The vapour cells fabricated for our experiment, presented in fig.4.3, feature a
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8cm long rectangle channel with varying cross sections ranging from 1*1 to 5*5
mm2. The channels are placed inside a half-inch glass tube employed as the cell
body. The cesium atoms, in golden color, are contained within the narrow curved
tube called the cell stem, which is glass-blown to the cell body. The micro-holes
among the cell stem, cell body, and the inner rectangle channel allow atoms to
enter the rectangle channel, facilitating interaction with the probe light. The
cell channel, with its rectangle geometry, is designed to minimize the lens effect
during optical pumping. All these parts were made of Borofloat, the rectangle
channel were ordered from Vitrocom. The cell windows on both sides were or-
dered from Foctek company and later were antire-reflective (AR) coated on both
sides by the Company Ferroperm with on average 99.5% transmission and then
degrade 1 % after repolishing them for easier glass blowing 1.
When polarized atomic spins are confined within the cell channel, collisions with
the cell wall surface may lead atoms to be absorbed into the wall surface and expe-
rience local magnetic or electric fluctuating fields produced by the glass molecules.
Consequently, the spins-wall collision interaction can randomize electron and nu-
clear spins, leading to atomic spins depolarization. To mitigate spin-wall col-
lisions, one approach is to introduce high-pressure buffer N2 gas, which causes
atoms to undergo diffusive motion and delays their contact with the wall [96].
In our laboratory, we employ an anti-relaxation coating made with paraffin to
prevent direct interactions between alkali atoms and the walls. [97]. I was for-
tunate to participate in the fabrication of generation O and assist in testing the
performance of some vapor cells, as shown in Fig.4.3. The anti-relaxation coating
for this generation is based on normal AlphaPlus C30+HA from Chevron Phillips
Chemical-CPChem company[56]( the credit for these cell components manage-
ment should go to Rebecca, pg76). Mikhail (our cell fabrication master) prepared
the coating by setting the coating evaporation temperature to approximately 120
∼150 ◦C, then collected the C30+ mixture, which contains over 95% of carbon
chains with at least 30 carbon atoms. The cells for this generation were then de-
posited at significantly higher temperatures, around 320 ∼ 330 ◦C. The mixture
coating enables us to maintain efficient spin coherence time at working temper-
ature up to 60 ◦C, as demonstrated by the cells labeled O7-O21. Details are
provided in tab.4.2. The mixture coating can also be collected at higher evapora-
tion temperature using shorter carbon chains (C20+), which contain unsaturated
hydrocarbons with double bounds between carbon atoms. As described in the
studies on cell generation N and L [97], this coating enables atoms to undergo up
to 10,000 wall collisions without spin depolarization, significantly extending spin
coherence time as much as minutes [98]. However, this particular coating is only
recommended to work at temperature below 30◦C.

1Most components of the cell were ordered by Rebecca
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Figure 4.1: Cesium contained in a vapor glass cell. (a) Photo of our latest
fabricated atomic vapor cell exhibiting different geometries. Each cells features a square
inner channel with different cross-sectional dimensions (varying from 1*1 mm2 to 5*5
mm2). (b) Both the input and output windows are coated with anti-reflective coatings
for 852 nm, optimizing probe transmission. In addition, the entire vapor cell has also
been coated with an anti-relaxation paraffin layer to prevent the atoms losing their spin
polarization. (c) A droplet of cesium in the cell stem serves as an atomic reservoir,
allowing cesium atoms to move in and out of the inner channel through a tiny scratch
hole. All cells were crafted by Mikhail Balabas.

GWD Experiment Cell Characterization
Cell Size [mm3] Coating FWHM [Hz] Trans [%] Density [1016/m3]

L3 5×5×80 C20+ 7 95 3.05±0.04
N12 3×3×80 C20+ 13 91 -
O19 3×3×80 C30+ 28 94.8 3.78±0.04
O21 3×3×80 C30+ 48 95.3 4.80±0.40
O7 2×2×80 C30+ 54 96.7 2.65±0.04
O8 2×2×80 C30+ 32 96.3 2.95±0.11
O12 2×2×80 C30+ 43 95.2 2.77±0.09
O13 2×2×80 C30+ 46 95.4 2.39±0.15
O15 2×2×80 C30+ 35 95.8 2.90±0.10

Table 4.2: Characterized cell parameters that might be relevant for gravitational wave
experiments. C20+ and C30+ represent two different paraffin coatings, C20+ normally
operates below 30◦C, while C30+ is capable of working up to 60◦C. The cells character-
ization was measured together with Ryan, while the characterization of atomic density
were done by Rebecca.schmieg and Issac Caritg
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However, the fabrication process inevitably introduces imperfections, such as ac-
cidental scratches on the windows (a) or condensation of the paraffin coating (b).
Therefore, it is essential to characterize their cell performance before integrating
them into our experiments. This characterization entails assessing the transmis-
sion, optical depth (density) for interaction strength, and measuring T1 and T2
to better understand the mechanisms behind the decoherence. Interested readers
can find further details on the absorption and DC Faraday calibration methods in
Chapter7 of Rebecca’s PhD thesis[56]. Additionally, in our experiments over the
past year, we have occasionally observed a decrease in cell transmission. Using
a high resolution camera, we detected atoms clusters on the cell windows (dark
spots blocking the probe light). Fortunately, we managed to remove these clus-
ters by applying a carefully controlled temperature gradient curing, exceeding 15
◦C, between the cell stem and body.

(c)(a) (b)

Figure 4.3: Cesium contained in a vapour glass cell. (a) Scratched cell windows
observed during the fabrication process. (b) Over-condensation of paraffin wax on the cell
windows (c) After a year of usage, we observed atom clusters and condensation, marked
with red arrows within the channel, leading to a degradation in cell transmission.

4.2 Temperature and Vapor cell density control

To increase the temperature of the atomic system, a high-resistance heating rib-
bon wire, as shown in the Fig.4.4, is utilized. This wire, made from the non-
magnetic material Nickel-Chromium ( ordered from Omega ), is double-folded
and then wrapped around the central aluminum layer. The temperature is reg-
ulated via the current flow, which also minimize the influence of low frequency
classical noise that may be produced from the heater power supply. The entire
magnetic shield is covered with neoprene rubber (depicted as the black cover in
Fig.4.4 (b)) to reduce heat dissipation into the surrounding environment. Con-
sequently, once the equilibrium temperature is reached, the cell can sustain the
working temperature for approximately an hour without the need to reactivate
the heater.
The relationship between the fractional increase in the total atom number-a pa-
rameter of significant interest -and the cell’s working temperature is presented in
Fig.4.4 (c). This relationship is normalized to the atomic density at room tem-
perature, 20 ◦C as a baseline. The graph demonstrates that we can increase the
total number of atoms (and, notably, quantum cooperativity) by a factor of 34 via
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increasing the temperature from 20 ◦C to 60 ◦C. In addition to enhancing atomic

(a)

(b)

(c)

Figure 4.4: Temperature control system. (a) The middle layer is wrapped with
a double-folded Nickel-Chromium heating ribbon wire. (b) The whole setup is then in-
sulated with Neoprene, commonly used in diving suit, to preserve temperature stability
even when the heater is deactivated. This strategy mitigates additional RF noise gener-
ated by the heater. (c) The graph illustrates the fractional increase in the total numbers
of atoms as function of the cell temperature. The reference for comparison is the atom
density at the room temperature, which is approximately 3 × 1016/mm3 at 20 ◦C. It is
noted that the phase transition for cesium atom occurs at 28.5 ◦C.

density by heating the atomic vapor cell, one can also employ the method known
as light-induced atomic desorption (LIDA). This approach temporarily releases
the atoms absorbed by the cell surface and paraffin coating, thereby increasing
the total atom number within a short time [99].
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4.3 Magnetic shield

In order to protect the spin oscillator from environmental perturbations, such as
Earth’s magnetic field and low-frequency noise, we employed 5 layers of magnetic
shielding which can in principle achieve comparable shielding factor to that of
single thick shield [100], consisting of 3 layers of Mu metal together with a layer
of aluminum and iron.
Mu metal, known for its high permeability, is ideal for isolating the DC magnetic
field. The iron layer targets the isolation of acoustic radio frequencies, while Alu-
minum (Al), due to its good conductivity, shields against high radio frequency
influences. Subsequently, the magneto-optical resonance spectroscopy (MORS)
measurements [101] were conducted to quantify the residual magnetic field by
monitoring the atom Larmor frequency, which was identified to be around 270
Hz as presented by blue curve in Fig.4.5. A demagnetization process (discussed
in Hans master thesis, appendix C) [102] was then applied to randomize the
dipoles orientation through the shielding material using a saturated sinusoidal
magnetic field. Gradually decreasing this field further helps in diminishing the
residual magnetic field contribution down to approximately 70 Hz. Considering
the Copenhagen’s earth magnetic field of 0.5 G, our magnetic shielding configura-
tion achieved a shielding factor of ≈ 2000 ∼ 3000. These curves also present the
lowest feasible working larmor frequency achievable with the current shielding
configuration, without additional coil compensation.

Iron

Al

Mu

PCBs

Figure 4.5: Magnetic shield and residual magnetic field. The atomic vapor cell
and coil systems are protected by five layers of magnetic shielding, designed to isolate
the cell from Earth’s magnetic field and classical noise perturbation from environments.
The residual magnetic field are detected through magneto-optical resonance spectroscopy
(MORS) measurements shown by the blue and orange curves. A degaussing approach is
commonly applied to minimize the strength of these residual magnetic fields.
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4.4 PCB and Rectangle coils

Having fabricated anti-relaxation coated vapor cells with substantial optical depth
and a ’quiet’ residual magnetic environment, shielded by our magnetic enclosure,
our next objective is to manipulate the atomic spins within the vapor cell. As
previously outlined in Chapter 3.1, the orientation and strength of the internal
bias magnetic field within the magnetic shield around the cell’s location deter-
mine the spin quantization axis and the resonance frequency of the spin oscillator,
respectively. A collective spin oscillator, encompassing all Cs atoms in the cell
channel, is subject to slight Larmor frequency variations due to inhomogeneous
field strength, leading to additional atomic dephasing and reduced spin intrinsic
lifetime. To mitigate this effect, it is imperative to ensure a uniform magnetic
field across the cell volume, thereby imposing stringent requirements on the bias
magnetic field’s uniformity. In previous PhD work, bias fields were typically ori-
ented along the longitudinal axis of the cylindrical magnetic shield, produced
by a Lee-Whiting configuration as the main coil, and compensated by saddle
or Helmholtz coils, as detailed in [55, 56]. This setup achieved a homogeneous
magnetic field optimized for 1cm-long atomic vapor cells. However, the broad-
band quantum noise reduction project necessitated redesigning the vapor cell to
enhance optical depth and quantum cooperativity Cq, extending the cell length
up to 8cm. This modification requires us to either scaling up the entire previ-
ous shield and coil systems or devising a new magnetic coil system for improved
magnetic homogeneity for a larger volume.

Fortunately, around the same time, Jürgen Appel began investigating alternative
methods for producing the magnetic field, different from the Helmholtz or saddle
coil configurations. He explored the potential of leveraging the current flow in
copper traces on 2D printed circuit boards (PCBs), offering unprecedented de-
sign freedom for much more complex magnetic field distributions. This approach,
optimized through coil design, enables the production of significantly more homo-
geneous magnetic fields with compact coils geometries, fitting within our existing
magnetic shield.
During his time at NBI, Appel developed a script for modeling the magnetic field
generated by surface currents, leading to the fabrication of the first-generation
test coil. This valuable work was further refined by Ryan Yde, with Michael
Zugenmaier’s assistance, tailoring the coil designs towards our specific require-
ments. I later joined the project, collaborating with Ryan to characterize the
performance of the second generation PCB coils, with results demonstrated in
Ryan thesis [103]. We finished the first long cell characterization measurement
within the magnetic shield, although the generated field’s homogeneity ( ∼ 3
‰) was insufficient for resolving the quadratic Zeeman splitting and performing
the atomic state calibration. Recognizing the shield’s influence on field inhomo-
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geneity, Ryan and I shifted our target from achieving a uniform distribution via
the perfect design to obtaining first and second-order parabolic profiles through
optimal current ratios among the coils. This strategy, employing multiple coil
pairs, can produce enhanced magnetic field homogeneity even with the shielding
effects. In the next section, we will delve into the experimental characterization
of our latest coil system generation in more detail.

4.4.1 Magnetic profile and its optimization

The fabricated PCBs coil system can be seen in Fig.4.8 (a), where the front image
shows the Bz coil, our excitation RF coil. Three pairs of bias coils, marked with
white arrows and orthogonal to the RF coil, are spaced at a specific distance
apart. These coils are assembled and mounted on a 3D-printed round holder,
colored red, designed to position the coils at the center of the magnetic shield as
shown in Fig.4.5. The three pairs of bias coils, ordered by their separation from
nearest to farthest, are the linear gradient coil, the convex (or ’cup’) coil, and
concave (or ’cap’) coil, respectively. The distribution of copper traces and the
produced magnetic profile are visible in Fig.4.6. Each coil features a rectangular
aperture serving as the simulation’s inner boundary and is sized to allow the
propagation of optical pumping lasers.
Before introducing the long cell into the coil setup, it is necessary to characterize
the magnetic profile across the transverse axis within the cell’s volume. To achieve
this, a cubic 5*5*5 mm3 cell is installed on a 3D printed cell holder, as seen
in Fig.4.8 (b), and attached to a glass tube. This allows to the longitudinal
movement within the shield while enabling atomic signal detection via colinear
MORS measurement [103], with a constant current of 100mA flowing through
each coil pair. Subsequently, the atomic Larmor frequency is extrapolated by
fitting the signal to a Lorentzian function. Detail calibration procedures are
outlined in chapter 4.2 of Ryan’s thesis and Chapter 7.2 of Christian thesis.
[50, 103], . To optimize the magnetic field homogeneity for an 8 cm long cell,
we monitored the variation of Larmor frequency near the shield center, across a
100mm span. Given the magnetic shield’s influence varies with its distance to
the PCBs, we measured each coil at multiple distances to ascertain the optimal
profile for the designed coils. The finalized magnetic profile, derived from the
optimal coil separation distances for each PCB coil, is presented in the Fig.4.6.
Notably, the difference between the blue and green profiles resulted from flipping
the orientation of the bias magnetic field, employing the mean Larmor frequency
at each position to mitigate the residual magnetic field’s effect along the same
bias-axis.
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Figure 4.6: Bias magnetic fields produced by the final version of PCB coils.
This coil design incorporates concave (cap) and convex (cup) parabolic shapes, along
with a linear gradient coil, to generate the specified magnetic profiles. Measurements
were taken with 100mA of current flowing through each coil, with all coil pairs placed at
their optimal separation distances. The distribution of copper traces, which are crucial
for producing each magnetic field profile, is also presented below. The coil designs were
developed by Ryan.

Coil Profiles Fitted with Polynomial Function
Coil Separation [mm] a0 a1 a2 a3 a4

Cap: 43 38.0 −6.5 · 10−3 −4.9 · 10−4 6.7 · 10−7 4.1 · 10−9

Cup: 39 6.3 −1.1 · 10−3 4.6 · 10−4 2.18 · 10−7 −4.8 · 10−8

Linear: 35 0.0 9.6 · 10−3 2.2 · 10−6 2.8 · 10−7 −1.1 · 10−9

Rectangle: 55 553 −2.5 · 10−3 1.3 · 10−4 4.3 · 10−6 3.5 · 10−7

Table 4.7: Fitted Parameters of Magnetic Inhomogeneity. the measured coil
profiles have been fitted using a fourth-order polynomial function, f(x) = a0 + a1x +
a2x2 + a3x3 + a4x4, to facilitate the estimation of the optimal current ratio to effectively
mitigate the magnetic inhomogeneity.

The optimal separation distances for our PCBs coils have been determined as
follows: 43mm for the concave (’cap’) coil with red traces, 39mm for the convex
(’cup’) coil with blue traces, and 35mm for the linear gradient coil with green
traces. To identify the best combination of currents through each pair, we fitted
the magnetic profiles using a multi-order polynomial function. This approach
allowed us to estimate the linear current ratio essential for minimizing magnetic
inhomogeneity. The results of these fittings are shown in tab.4.7. Using the cap
coil as a reference point, we then adjusted the current ratio of the cup and the
linear gradient coils simultaneously. This process helps us find the configuration
that minimizes the standard deviation of the combined magnetic profile over an
8cm span, thus optimizing field uniformity. The outcomes of these adjustments,
represented as a 2D contour map varying according to the two different coil ratio,
are depicted in Fig.4.8.
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Figure 4.8: PCBs coil system and the optimal current ratio estimation. (a)
A photo of the assembled PCB coil system. (b) A 5*5*5 mm3 cubic cell, serves for
calibrating the magnetic field profile. (c) A 2D counter map illustrates the combined
magnetic field inhomogeneity, quantified by the standard deviation, as a function of
current ratios for the cup and linear gradient coils, (denoted as t1 and t2, respectively).
This map illustrates the improvement in magnetic field uniformity achieved by integrating
all three PCB coils.

Figure 4.9: Magnetic profile achieved through the integration of three printed
circuit board (PCB) coils. The combination of cap and cup coils results in a magnetic
field with linear gradient component, optimized by current ratio t1. This configuration
is then maximally compensated by the linear gradient PCBs coil with ratio t2. By
integrating all three coils, we achieve a magnetic field with a relative standard deviation
around 0.34 ‰. This coils configuration allows the observation of a partially resolved
Magneto-Optical-Resonance-Signal (MORS) at 317 kHz using an 8cm long cell.

Based on the estimated coil current ratios t1 and t2, the improvement in the pro-
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duced magnetic field profile through proper integration of all three pairs of PCBs
coil can be found in Fig.4.9. With the help of all three ’cap’, ’cup’, and ’linear gra-
dient’ coils, we have managed to produce a field with relative homogeneity ( ∼ 0.3
‰), an order of magnitude better than that of our previous generation. Such
field uniformity has, for the first time, allowed us to observe a partially resolved
quadratic Zeeman splitting for the D2 line, F =4 transition, with a linewidth (full
width half maximal) of 27Hz for each peak. Considering the cell (L3) used, with
an intrinsic transverse life time around 7 Hz, this magnetic field only contributes
additional 20Hz to the total spin relaxation time at a 300 kHz larmor procession
frequency. Compared to the probe power broadening of around 150 Hz in our
normal operating configuration, a 20Hz magnetic field contribution is significant
achievement in our lab. At the Larmor frequency of around 10kHz, where we
aim to perform the proof-of-principle experiment, this additional magnetic field
broadening can be maximally reduced to ∼ 2Hz. Given that the splitting between
each peak shown in Fig.4.9 MORS signal scales quadratically with the strength of
the bias magnetic field, but not with the spin decoherence, we should increase the
magnetic field to better resolve the quadratic Zeeman splitting signal. However,
the PCBs coils were originally designed to produce fine tune-able magnetic fields,
not strong field. The limited current to magnetic field conversion efficiency and
non-ideal heat dissipation prevent us from further increasing the atomic Larmor
frequency.
Aiming for improved current-to-field convert efficiency, our colleague Sergey A.
Fedorov camp up with the idea of designing a Rectangle coil, where the size
of the coil is elongated close to the boundary of the inner cylindrical shield.
The designed rectangle coil was then simulated using the open-source coil design
python package bfieldtools [104, 105]. This simulation allowed us to model the
magnetic profile within a simulated magnetic shield close to our real geometry
and determine the estimated optimal separation distance and coil profile. After
fabrication, the coil was installed around our PCB coil, as seen in Fig.4.10 (a),
with the measured profile presented in Fig (c). The discrepancy between the real
and experimentally measured magnetic profiles indicates distortion due to the
magnetic shield (we couldn‘t find the right specification of our magnetic shield).
With the same 100 mA current flowing through the rectangle coil, the larmor
frequency can be shifted up to 550 kHz. By incorporating the PCB ’cap’ coil
with slight optimization of the current ratio as in Fig.4.10 (d), we achieved a
completely resolved atomic spin signal at 1.033 MHz. The additional broaden-
ing due to the magnetic field inhomogeneity is 100 Hz. We also observe a tiny
bump next to the extreme Zeeman level, as depicted in blue area in Fig.4.10 (b),
which we assume is produced by the magnetic inhomogenity, as its height can be
modified through the cap coil current ratio in Fig (d). In the next chapter, we
will elaborate more on the atomic state characterization based on this resolved
MORS signal.
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Figure 4.10: Resolved MORS signal with additional Rectangle coil for oper-
ating the system at high larmor frequency. (a) A photograph of our final assem-
bled coil system. (b) The completely resolved atom MORS signal. (c) The comparison
between the simulated and measurement rectangle coil. (d) The optimization of spin
coherence time and homogeneity bump height with the current ratio. The calibration of
rectangle coil was performed by Sergey A. Fedorov .

4.4.2 Modeling spin dynamics with magnetic Inhomogeneity

To enhance our understanding of the additional tiny bump observed in previous
atomic MORS signals, as well as the atomic motional average limit in our system-
where atoms’ thermal motion averages out the magnetic field’s non-uniformity-
we conducted another numerical simulation. This simulation, described in the
broadband noise section, utilized parameters such as cell temperature and ge-
ometry to close mirror our real experimental conditions. However, this time,
we applied a bias magnetic field with three distinct magnetic profiles, with the
relative standard deviation (RSD) ranging from 0 to 0.8‰( to simulate the sub-
optimal gradient field and the second bump observed in the atomic signal at 23
kHz) and up to 3.5 ‰, as shown in Fig.4.11. We then analysis the simulated
spin noise spectrum to gauge the impact of magnetic inhomogeneity on the spin
signal. The findings, illustrated in Fig..4.11, reveal that the recorded spin noise
signal maintain a clear Lorentzian shape with a decoherence of 54Hz, obtained
under a magnetic profile depicted by the blue curve in the bottom panel. Un-
der this field profile, an additional minor bump is observed at a slight higher
Larmor frequency next to the main atomic signal, attributed to the increased
magnetic field strength on the cell’s left side, where the atom’s thermal motion is
insufficient to average out such a field difference, leading to the separated atomic
resonances-a similar deviation also noted at 1MHz in the resolved MORS atomic
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signal, Fig.4.10 (b), aligning with our numerical simulations in middle plot. The
slight difference in frequency between this deviation and the main signal, along
with a linewidth of (40 Hz)- slightly narrower than the experimental recorded
data- suggests a slightly larger mean free path (MFP) for atoms than in actual
experiment conditions. Enhancing the magnetic field’s homogeneity can narrow
the signal bandwidth and eliminate the inhomogeneity bump, as demonstrated
by the purple curve in the right figure. Conversely, reducing the field uniformity
to 3.5 ‰severely disrupts the coherence of spin signal; in such a case, the atomic
spin’s thermal motion fails to average out the field strength’s gradient, deviating
the signal from a Lorentzian shape. Therefore, for experiments using an 8cm
long cell, maintaining magnetic inhomogeneity below 0.8 ‰is advisable. Consid-
ering the optimized field inhomogenity of 0.34 ‰, the collective spin oscillator
is not limited by our field non-uniformity. This numerical simulation of thermal
atoms elucidates the impact of the magnetic field uniformity on our system’s spin
noise spectrum, offering valuable insights into the homogeneity requirements for
future work with varying vapor cell geometries. Additionally, refining the mean
free path parameter- or atom velocity-changing collision rate-in our simulation
(discussed in the faster decay chapter of Christian thesis)[50] can further align
the simulation with the experimental observations.
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Figure 4.11: Monte-Carlo Simulation of collective thermal atoms experienc-
ing magnetic inhomogeneity. The atomic signal, characterized by a Lorentzian shape
(purple), without the influence of bias field inhomogeneity, is primarily limited by the
atoms’ intrinsic relaxation time. The introduction of an inhomogeneous field, quantified
by the Relative Standard Deviation (RSD), along with the assistance of the thermal
motional average, results in the broadening of the line-width of atomic signal. How-
ever, surpassing a certain threshold of field inhomogeneity leads to the emergence of a
second atomic response. This phenomenon is illustrated by a comparison between the
experimental observed MORS signal in the upper left plot and the numerically simulated
atomic signal in the upper center plot under the identical bias magnetic field (blue curve
in bottom left figure) with 0.8 ‰uniformity, where the second bump in both plots signi-
fies the impact of field inhomogeneity. Increasing the field gradient further (green curve)
up to 3.5 ‰completely exceeds the motional averaging capacity, severely disrupting the
coherent dynamic of atomic spins.
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4.5 Square top hat beam and beam shaper
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Figure 4.12: Top Hat Beam generated from a Top hat beam shaper. This
figure illustrates a top hat beam profile with a size of ∼ 370 mm produced by a beam
shaper in conjunction with a single focusing lens system. The fan angle of the top hat
beam shaper results in a displacement (∼ 20mm) between the ideal top hat profile and
the position of minimal beam waist ω0 . Furthermore, the top hat beam profiles undergo
rapid alternations during propagation, attributable to the diffractive beam shaping and
convergence.

We have demonstrated that an insufficient beam filling factor and inhomogeneous
light-atom coupling can lead to an additional ’fast’ decay in spin dynamics, con-
tributing to the broadband noise observed in the spin noise spectrum. Therefore,
to counteract the influence of this fast decay mode, and given the geometry of
our atomic vapor cell, the atoms are ideally probed by a square top hat beam.
This beam’s intensity profile, resembling a flat square over the interaction cross
section, is similar to the top hat beam implemented in an atom interferometer
as presented in [106] to improve the interference contrast, and can also be em-
ployed to enhance the quality of biomedical microscopy [107]. In experiments,
a flat-top hat beam is obtained by transforming a Gaussian beam from a laser
into a flat-top profile using optical elements. This transformation can be realized
through the refractive beam shaping, such as using Pi shaper [91, 107]; diffractive
beam shaping with a top hat beam shaper from Holor and aspherico company, or
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by merging arrays of smaller beams at the target plane. Each method presents
unique advantages and disadvantages [108]. In our group, considering factors
such as propagation loss, beam uniformity, and the need for compact setup, we
decided to generate the square top hat with a diffractive optics element (DOE):
GTH-4-2.2 beam shaper, with ∼ 99% transmission efficiency, manufactured by
TOPAG Lasertechnik company. This configuration requires us to concentrate
only on the beam alignment, divergence, and precise positioning of the target
top hat beam. As illustrated in Fig.4.12, a collimated Gaussian with a 4mm
diameter ( with a tolerance of ∼ 5% ) is required as the input into this beam
shaper. Subsequently, the produced beam diverges at a constant 2.2 mrad fan
angle. A focal lens (175mm) is utilized to reduce the propagation distance from
infinity down to the focal length, yielding a square top beam with dimensions of
370mm ( 2.2

1000 · f). Due to the fan angle, the top hat beam is not collimated and
rapidly collapses back to a Gaussian beam at the beam waist ω0 position, which
is now positioned after the square top hat beam as shown in Fig.4.12. In practi-
cal applications, a camera is utilized backwards from the beam waist position to
ascertain the optimal position for achieving a uniform top hat beam.
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Figure 4.13: Optical setup for generating a collimated tophat beam. To pro-
duce a collimated top hat beam, we introduce a second lens with a focal length f2 = 100
mm. By adjusting three tunable distances, L1, L2, and L3, we can establish an effective
4f optical system, counteracting this fan angle effect, aligning the optimal top hat beam
closer to the minimal waist, and extending the effective working distance of the colli-
mated top hat beam. In our experimental configuration, the optimal distances between
three optical elements are determined to be 606mm, 296mm, and 567mm, respectively.

Analyzing the recorded images of the top hat beam, it becomes apparent that a
single lens following the beam shaper is not enough for generating a collimated
top hat beam capable of illuminating the whole elongated cell. An initial at-
tempt involved inserting a negative lens at the position of the optimal top hat
beam. This arrangement was intended to compensate for the beam’s fan angle
and relocate the top hat beam closer to the beam waist, thereby, maintaining
a top hat beam over a longer distance with a reduced converging angle (details
on calculating the second focal length are available in the page 71 of Christian
Baerentsen’s thesis [50]. Subsequently, a 4f telescope system can be employed to
adjust the top hat beam size in accordance with varying cell geometries.
Taking into account practical experimental conditions-such as the preference for
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optics placement outside the magnetic shield and the selection of minimal com-
mercially available optics to control the propagation losses-the entire collimation
optical system was simplified to an effective ’4f’ configuration. The setup relies
on the relative distances from the beam shaper to the first optical lens, between
the two focal lenses, and from the last lens to the target top hat beam position.
With the two focal lengths determined, we adjusted three relative distances, to
substitute the original arrangement and achieve a collimated top hat beam with
an adjustable beam size, as depicted in Fig.4.13. Detailed calculations involving
the ABCD ray transfer matrix to determine lens distances based on beam shaper
parameters (input beam diameter and fan angle) and desired top hat beam size
are beyond the scope of this discussion. However, interested readers are recom-
mended to Christian’s thesis Chapter 8.2 [50] for an in-depth exploration. For
more precise positioning of each real optical component and quantifying the top
hat beam aberration due to the selection of lenses, employing Zemax with actual
beam shaper blackbox optics and lens data is recommended [109].
The creation of collimated top hat beam is illustrated in Fig.4.14 , where we mon-
itor the beam’s evolution and their intensity profiles along the horizontal axis by
adjusting the camera position every 10mm. The optimal top hat beam is located
approximately in the center (100-110 mm) of the monitored working distance.
To evaluate the quality of the top hat beam, we fit the observed intensity profile
with a super-Gaussian function:

I(x, y) = AxAy exp
(

−2(x − x0
wrx

)2
)n

exp
(

−2(y − y0
wry

)2
)n

, (4.1)

where the ω(x,y) denotes the 1/e2 radius of the intensity distribution, and the
exponent order n characterizes the beam quality, ranging from a standard Gaus-
sian beam (n = 1) to an ideal square top hat beam (n → ∞). As illustrated in
Fig.4.15, the analysis reveals that, with the aid of the 4f optical system, the top
hat beam’s size can be expanded by approximately a factor of 5 up to around
1.5mm, achieving a fitted super-Gaussian order of n > 5 in both horizontal and
vertical axes. Although slightly convergence is observed during propagation, we
have successfully demonstrated the production of an enlarged collimated top hat
beam that exceeds the cell’s length. When considering the beam size in relative to
the 2*2 mm cross-section of the atomic vapor cell, this achievement significantly
contributes to mitigating the broadband noise.
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Figure 4.14: Collimated top hat beam. Utilizing a properly designed 4f telescope
system allows for optimal compensation of the beam shaper’s fan angle, yielding a colli-
mated top hat beam with a tailored beam size. The figures present a top-hat beam with
a size of approximately 1.6 mm over a working distance of 170 mm. This span effectively
covers the length of the 80mm long atomic vapor cell utilized in our experiment. Notably,
the observed spots and patterns in the intensity profile can be attributed to dust and
camera-related interference.
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Figure 4.15: Collimated Top hat beam analyzed with high order super Gaus-
sian function. Here we focus on the top hat beam photos (on the left) located at the
center working distance (center position of cell), with the goal of evaluating its quality
by fitting to a super-Gaussian profile. Illustrated on the right are the intensity profiles of
this top hat beam along the horizontal (orange curve) and the vertical (blue curve) axes.
Each profile is fitted with super gaussian function characterized by exponent orders n =5
and n = 7, and 1/e2 beam radius of 740 um and 810um, respectively. For comparative
analysis, the corresponding normal Gaussian beams, with identical radius and n =1, are
also presented.

Figure 4.16: Birefringence induced by the top hat beam shaper. The probe
laser, vertical linearly polarized, propagates through the beam sharper. The quality of
the top hat beam’s linear polarization is characterized by monitoring the beam intensity
profile with a polarizer inserted before camera. In the figure (a), a clear birefringence
effect is observed as the intensity can not be attenuated homogeneously. Fortunately, this
birefringent effect can be significantly reduced by aligning the input polarization along
the beam shaper’s off-diagonal axis (as we demonstrated by rotating the beam shaper
by 45 degree in figure (b)). Consequently, the quality of the extinction ratio improves
dramatically, from 800 to 8000, maintaining good linear polarization.

We then try to quantify the birefringence induced by the top hat beam shaper,
we inserted a high extinction-ratio polarizer before the camera and monitor its
maximal attenuation. This characterization is crucial for QND light-atom inter-
actions, which necessitate the use of clean, linearly polarized probe light, as the
ellipticity component can induce additional decoherence and spin thermal noise.
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We observed inhomogeneous attenuation when the input polarization was aligned
either vertically or horizontally with the beam shaper, indicating spatially depen-
dent birefrigence. The degree of polarization ellipticity, inferred by comparing
the maximal transmission to attenuation, was around 800. Fortunately, we can
substantially reduce the effect-by a factor of 10-by aligning the input polarization
along the off-diagonal axis of the beam shaper or by rotating the beam shaper
by 45 degrees as in Fig.4.16. This adjustment significantly improves the quality
of the probe light polarization, making it more suitable for probing the collective
atomic spins.

4.6 Optical pumping and Laser system

We have demonstrated that imperfect atomic spin polarization of the collective
spin oscillator consisting of cesium atoms contributes to additional atomic ther-
mal noise. Therefore, preparing the atomic state closer to a two level system
is essential. In this section, I will introduce the optical pumping laser system
designed to prepare such atomic state for our experiment.
In our experiment, the optical pumping is performed using one or two lasers, de-
pending on practical experimental conditions, which involve balancing the reduc-
tion of atomic thermal noise, pumping power broadening, and classical intensity
noise. To prepare the negative atomic spin oscillator, we aim to accumulate all
atoms eventually in the F =4, mf =4 dark ground state. Therefore, the selection
of optical pumping and repumping transitions within the cesium electronic en-
ergy levels structure is presented in Fig.4.17 (b), where the pump laser is locked
to the D1 line transition from F =4 →F’ = 4 to prepare the atoms to the target
Zeeman level, while the repump laser, recycling the atoms from unused F =3
back to F =4 ground state, is locked to D2 line transition from F =3 → F’ = 3,4
cross over. It is also interesting to mention in section 5.2 of Rodrigo thesis[49],
selecting F’ = 2 might further enhance the maximal achievable spin polarization
using re-pumping only.
To achieve this, the pump and repump laser are generated from Toptica DFB
and DL pro tunable diode lasers installed on a separate breadboard as depicted
in Fig.4.17. Both lasers are frequency-stabilized using the polarization spec-
troscopy method [110–112], differing from frequency stabilization via the satu-
rated absorption spectroscopy [113, 114], where a frequency modulation on the
probe light is required to extrapolate the error signal. The principle of polar-
ization spectroscopy is to induce a frequency dependent circular birefringence
with a circularly polarized pump beam. Linearly polarized light from the same
laser source counter-propagates to measure this birefringence, monitored by a
balanced polarimeter that includes a half-wave plate, a polarizing beam splitter,
and a balanced detector. This setup provides a signal with a dispersive shape,
as illustrated by the red curves in Fig.4.17 (c), corresponding to the derivative

110



of the sub-Doppler line-width of saturated absorption shown as the green curves.
This signal can be used directly as an error signal, sent to a PID locking box (in
our lab we normally use redpitaya) to stabilize the frequency. Furthermore, the
strength and shape of the error signal can be optimized further by adjusting the
pump intensity and the bias magnetic field. [115].
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Figure 4.17: Optical pumping & repumping locking system with polarization
spectroscopy. (a) The optical pumping and repumping lasers, produced by two diode
lasers (Toptica DL pro for 852 nm and DFB for 894 nm), have a tiny fraction split
by a polarizing beam splitter (PBS) for wavelength locking. The main outputs from
both optical paths are combined via a PBS, a polarizer and an acoustic-optic modulator
(AOM), then directed into a polarization-maintaining (PM) fiber for atom pumping.
Within the polarization spectroscopy setup, the locking beam is divided by a PBS into
a linearly polarized probe and a circularly polarized, counter-propagating pump. The
probe beam passes through a beam sampler, where a tiny amount is sent to a single-diode
detector to monitor the atomic saturated absorption, while the remainder is directed to
a PBS and a balanced detector to acquire an error signal. (b) Optical pumping and
repumping energy structure. The pump and repump laser are stabilized at the D1 and
D2 line atomic transitions, while the probe in our experiment is off-resonantly tuned with
a certain detuning ∆ from the D2 line transition. (c) The recorded atomic saturated
absorption signals for each laser (green curve) and the corresponding error signals (red
curve) are also presented.

After stabilizing the optical pumping lasers, both the pump and repump lasers
are combined using a PBS and polarizer, allowing for an adjustable power ratio.
They are then directed through an acoustic-optic modulator (AOM) to switch
between continuous pumping with adjustable power or pulsed configuration. Sub-
sequently, both beams are sent into a polarization-maintaining (PM) fiber, which
is utilized for optical pumping on the atomic setup. Given the 80 mm long cell
used in our experiments, the atomic thermal motion along the elongated longitu-
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Figure 4.18: Optical pumping setup and enlargement of pumping laser with
powell lens. (a) After passing through the PM fiber, the combined pumping & repump-
ing lasers pass through achromatic quarter- and half-wave plates, and are subsequently
enlarged into a 7cm*1mm laser line beam using a Powell lens and telescope system. The
spontaneous emission fluorescence of atoms, observed as the laser scans across the atomic
resonance transitions, facilitates the quantification of both the vapor cell’s full illumina-
tion and the divergence of laser beams.

dinal axis of cell is insufficient. Therefore, it is necessary for both optical pumping
lasers to illuminate the largest possible cross section (for example 2*80 mm2) of
the atomic ensemble. In our atomic setup, as shown in Fig.4.18 (a), the limited
space within the magnetic shield necessitates the use of a telescope system, incor-
porating a cylindrical lens and a Powell lens (line generator). This system create
a diverging, homogeneous laser line with a constant fan angle (3̃0 degree) but a
variable beam width (from 500um to 5 mm), and a second cylindrical lens (c-lens)
to collimate the laser line (here is 1mm*7cm) at the position of the atomic vapor
cell. The alignment of pump light propagation, coinciding with the bias magnetic
field. can influence the quality of spin polarization, as discussed in section 3.3 of
Karsten thesis [55]. In our pumping beam alignment, we normally monitor the
spontaneous emission fluorescence of atoms while scanning the optical pumping
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lasers across the atomic resonant transition. This approach helps to quantify the
illumination cross section (b) and beam collimation, as depicted in Fig (c). This
method also help us analysis the origin of the degradation of atomic signal such
as when the small exchange hole becomes clogged with atoms.
With the experimental setup and preparation outlined above, we are now posi-
tioned to advance to the next chapter, where we will commence the calibration
of the state of the collective spin oscillator.
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Chapter 5
Characterization of atomic spin

oscillator

In this chapter, we introduce the experimental characterization of the prepared
atomic spin oscillator. We will explore methods to extract the effective atomic
thermal occupation from the spin polarization, the readout rate of light-atom
interactions, and the decoherence rate. We will discuss how to quantify the ef-
fective mass of the spin oscillator and strategies to operate the interaction in a
quantum non-demolition (QND) configuration, avoiding tensor effects. Moreover,
we will demonstrate the cross-validation of extrapolated parameters through ob-
served ponderomotive squeezing and the virtual frequency shift induced by its
cross-correlation.

5.1 Calibration of atomic spin polarization, MORS

We have demonstrated that the necessity for atomic ensembles to closely mimic a
two-level system to function effectively as collective spin oscillators. This emula-
tion in our experiment is achieved through optical pumping, a technique detailed
in Section 4.6 of the previous chapter. We now focus on a critical experimental
method for quantifying the performance of optical pumping via the spin po-
larization, which is known as the Magneto Optical Resonance Signal (MORS).
This method, presented in Julsgaard’s work from 2003 [116] , enables the di-
rect extraction of steady-state atomic information such as the decoherence rates
among Zeeman sublevels and their associated atomic population distributions
once equilibrium is reached with certain probe and pumping power. As presented
in Fig.5.1, this MORS process involves applying a continuous RF magnetic field
close to the Zeeman transition energy to induce a coherent displacement in the
collective atomic spin oscillator or more specifically a coherent coupling between
the adjacent magnetic sublevels. Following this, the dynamics of the displaced
spin oscillator’s information are encoded onto the polarization rotation of a far-
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Figure 5.1: Experimental setup for characterizing spin polarization. The
atomic ensemble is positioned inside a magnetic shield, surrounded by bias magnetic
coils, producing the field along the x-axis. Circularly polarized optical pump and re-
pump lasers, co-propagating along the quantization x-axis, prepare the polarized atomic
ensemble. An RF coil, orthogonal to the bias coils, produces an oscillating magnetic field
along the y-axis, driving the atomic spins. The resulting atomic signal is imprinted on
the polarization rotation of the probe light, which is then directed to the polarimetry for
further analysis.

off-resonant, linearly polarized weak probe light through the ensembles’ circular
birefringence. The resultant photo-current is directed into a polarimetry detec-
tion system, then demodulated using a lock-in amplifier synchronized with the
RF signal. This allows us to extract the atomic frequency response to the applied
RF magnetic field that can later be used to extrapolate the atomic population
distribution.
Considering atomic ensembles with N total atoms, this MORS signal spectrum
can be described by the following expression (a brief derivation of the MORS
signal from equation of motion can be found on page 65 of Michael’s thesis ) [88]:

MORS (ΩRF ) = A(N) ·

∣∣∣∣∣∣
F −1∑

m=−F

C(F , m)χ (ΩRF , m) (Pm+1 − Pm)

∣∣∣∣∣∣
2

. (5.1)

Here, A is a signal strength that depends on the total atom number, and C(F , m)

is the Clebsch-Gordan coefficients for cesium atoms, which quantify the proba-
bility of each quantum states in the total angular momentum basis. The atomic
susceptibility function, χ(ΩRF ,m), represents the frequency response of each pair
of Zeeman sub-levels to the applied RF magnetic field. It can be expressed
as a function of the scanning RF frequency, ΩRF , and spin decoherence rate,
γm+1,m, as follows: χ (ΩRF ,m) = gF µBBRF

4 h̄ · 1
(Ωm+1,m−ΩRF )−iγm+1,m

. The last part
in MORS theory is of our interest as it reflects the atomic population distri-
bution within the i-th Zeeman sub-level. As discussed in section 3.7, when the
dynamic of atomic ground state approaches thermal equilibrium and experience
equally decoherence, denoted by γS , the populations of the Zeeman levels can
be modeled according to an effective Boltzmann distribution. This leads us to
a commonly used thermal MORS model with significantly less free parameters,
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which is written as:

MORS(ΩRF ) = A(N) ·

∣∣∣∣∣∣
F −1∑

m=−F

(F (F + 1) − m(m + 1))
(
eβ(m+1) − eβm

)
(ΩS + mΩqzs − ΩRF) − iγS/2

∣∣∣∣∣∣
2

.

(5.2)
For the parameter β, which represents the spin temperature, it is used to estimate
the atom spin polarization P, according to the expression: P = 1

ZF

∑F
m=−F meβm,

which was also presented in Eq.(3.57).
Figure.5.2 compares the recorded atomic signal (blue curve) in the frequency
regime where quadratic Zeeman splitting is resolved, alongside the fitted orange
curves that align with the thermal equilibrium model. With an increase in re-
pump power targeted at the D2 line transition from F = 3 to F’ =4, the atom
populations at F =3 are observed to gradually deplete, as evidenced by a de-
creasing atomic signal at higher response frequencies ( 0.3 ‰) and an increasing
atomic signal at low frequencies, indicating atoms being recycled back to the F
=4 ground state. Concurrently, the re-pumping process assists in enhancing the
spin polarization, which eventually stabilizes at 80%. We also observe additional
peaks next to both F =3 and F =4 response signals. These signals can be at-
tributed to the same Zeeman level but exhibit slightly higher Larmor frequency
due to the magnetic in-homogeneity.
To further increase spin polarization, we incorporate an optical pumping laser, as

depicted in Fig.5.3. In our experiments, we select the optical pumping transition
on the D1 line from F = 4 to F’ = 4 , achieving an improvement in spin polariza-
tion up to 98% while requiring significantly less optical power relative comparing
to the repump laser. However, the pumping laser can also lead to noticeable
power broadening due to spontaneous emission [49], a phenomenon that will be
addressed in subsequent Coherently Induced Faraday rotation (CIFAR) section.
Thus, optimizing atom quantum cooperativity Cq, necessitates a careful balance
between minimizing atomic thermal noise with sufficient spin polarization and
mitigating the broadening effect introduced by optical pumping. Another po-
tential approach to improve this most critical quantum cooperativity (the ratio
between coherent backaction and atomic thermal noise) involves modifying the
pumping transition in the excited state from F’ = 4 to F’ =3. This adjustment,
as presented in page 51 of Rodrigo and page 55 of Hanna thesis [49, 72], results
in significantly less broadening on the coherence of mF = (3, 4) Zeeman tran-
sition. The impact of this modification on atomic spin polarization P and even
light-atom interaction strength- readout rate ΓS , remains an interesting area for
future exploration.
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Figure 5.2: Optimization of the spin polarization with repump laser power.
In the quadratic Zeeman splitting resolved frequency regime, observations show that
atoms are almost equally distributed between the F = 3 and F = 4 hyperfine states at
a repump power of 3 uW. Increasing the σ+ repump power leads to a gradual depletion
of atoms from the F =3 state, effectively recycling them back to the F =4 ground state.
Meanwhile, the process enhances the atomic spin polarization, achieving up to 80% solely
with the re-pump laser.

118



Figure 5.3: Improvement of the spin polarization with optical pumping beam.
Integrating the pumping laser significantly improves atomic spin polarization from 82
% up to 98%. However, the pumping laser directly couples to the Zeeman transition
coherence in the F =4 ground state, inevitably introducing decoherence through the
pump power broadening. This additional effect will be explored in the next CIFAR
section.
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5.2 Calibration of interaction readout rate- CIFAR

After preparing atomic ensembles with high spin polarization, which enables us
to treat the atomic system as collective spin oscillators, our next goal is to pre-
cisely calibrate the light-atom interaction strength. This strength is quantified
by the measurement readout rate, symbolized as ΓS ∝ gS(∆)2SxFx, and is in-
fluenced by the collective spin length, polarized photon number, and the probe
detuning. We introduce an additional calibration technique-known as Coherently
Induced Faraday Rotation (CIFAR) [117], which facilitates the extrapolation of
the spin readout rate ΓS and the spin linewidth γS . This calibration method
allows direct access to the light-atom interaction strength and total spin decay
rate while optimizing key parameters such as probe and optical pumping power,
atomic density, etc. Alongside the previously calibrated spin polarization from
the MORS measurement, these two methods collectively enable us to estimate the
quantum cooperativity parameter, Cq. Our aim is to predominantly prepare the
atomic spin oscillator to be influenced by the light quantum fluctuation-induced
backaction noise, rather than langevin thermal noise, assuming the system oper-
ates within the quantum regime. However, classical noise can often dominate in
practical experiments, making the CIFAR measurement a vital method for cal-
ibrating essential system parameters without operation in the quantum regime.
Further discussion on the couplings of classical noise will be presented in the
following chapter.
The method for quantum cooperativity calibration, as presented in the Appendix

D of Rodrigo’s thesis [49], was conducted by analyzing the increased spin noise
strength, which was dominated by classical backaction noise driven by calibrated
white probe polarization noise as a function of varying modulated white levels.
This method allows for the extraction of quantum cooperativity from the propor-
tionally increased spin noise amplitude. However, it requires accurate knowledge
of both the detection efficiency and the white noise modulation value, which are
challenging to measure experimentally. On the other hand, the CIFAR method
introduced here enables the direct extraction of interaction strength from a dis-
tinct dispersion signal, independent of the accuracy of the detection efficiency and
modulation strength. This CIFAR method is inspired by the Optomechanically-
Induced Transparency (OMIT) method detailed on the page 54 in William’s PhD
thesis [118], a calibration widely utilized in optomechanics community. The core
principle of the CIFAR method is to analyze the induced interference between
two classical drive modulations-both in phase and amplitude- through the spin
oscillator’s frequency responses. This generated interference, akin to ponderomo-
tive squeezing, generates a dispersive signal.
Let us briefly review the CIFAR calibration setup and signal model. As depicted
in Fig.5.4 , the experimental setup employs a strong linearly polarized local oscil-
lator (LO) to interact with atoms, defining the spin readout rate and establishing
the steady state of atomic spins. Meanwhile, a significantly weaker drive beam,
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Figure 5.4: Readout rate calibration with Coherent Induced Faraday Rota-
tion (CIFAR). (a) Diagram of the calibration setup. The probe laser is split into a
strong local oscillator (LO) arm and a weak phase modulation arm. Both lasers are re-
combined at a polarizing beam splitter (PBS) and locked with a relative phase θ. After
interacting with atoms, the combined light is directed into a balanced polarimeter and
demodulated at the same modulation frequency. This modulation is scanned across the
atomic Larmor frequency to acquire CIFAR signals for further analysis. (b) Calibration
of the piezo frequency response G(Ω) in modulation arm. (c) CIFAR signals driven with
the modulation arm at ±45◦ relative to the LO arm. The red and teal curves represent
the Lorentzian and flat atomic responses, respectively, and are used as references to cali-
brate the locking phases. The two mirrored dispersion curves (blue and purple) illustrate
the extrapolated readout rate of 7740 , 8070 Hz, with decay rates of 320 Hz and 310 Hz,
respectively.

experiencing phase modulation G, and overlapping orthogonally with the LO

121



light at a tunable relative phase θ, acts solely as a classical modulation and does
not affect the readout rate. Such phase modulation can be accomplished using
either an Electro-optic modulator (EOM) or Piezoelectric Chips. In our work, we
utilize a high resonant frequency ring pizeo up to 515kHz from thorlabs (PA44LE)
to cover our frequency range of interest. The calibrated piezo (PZT) frequency
response curve is presented in Fig.5.4(b), two shaded areas with relative flat re-
sponse are considered as optional work frequency regime.
The input light phase and amplitude quadratures, with classical phase modula-
tion, are expressed in the frequency domain as: X in

L (Ω)

P in
L (Ω)

 =

 cos θ − sin θ

sin θ cos θ

 0
G(Ω)

 =

 − sin θ

cos θ

G(Ω). (5.3)

Let’s consider the simplest QND interaction configurations, where all tensor dy-
namic contributions previously discussed are neglected. Additionally, we neglect
the atomic thermal baths, as the system is predominantly influenced by classical
polarization modulation: Xdet

L (Ω)

P det
L (Ω)

 =

 cos ϕ − sin ϕ

sin ϕ cos ϕ

 1 0
ΓSχS(Ω) 1

 X in
L (Ω)

P in
L (Ω)

 . (5.4)

Assuming we lock the relative phase θ such that the input light amplitude and
phase polarization quadratures have identical modulation strengths, satisfying
Xin = ±P in = G(Ω). We evaluate the phase quadrature of light (ϕ = π/2) via
the half-wave plate in the balanced detection setup , as shown in Fig. 5.4 (a).
In this configuration, the quarter-wave plate is utilized solely to compensate for
the half wave plate imperfections. As this modulation frequency scans across the
atomic resonance, we can observe and reformulate the signal equation in terms
of the modulation G(Ω) as follows:

P out
L = (1 ± ΓSχS(Ω)G(Ω), (5.5)

from the above signal equation, we notice that the atomic response term with
χS(Ω) is now decoupled from the modulation G(Ω). Based on this, we can
calculate the spectrum of CIFAR signal, normalized to the modulation drive
G(Ω), as shown in the presented Piezo frequency response curve:

CIFAR(Ω) =
∣∣∣P out

L (Ω)/G(Ω)
∣∣∣2 = 1 + Γ2

S |χS(Ω)|2 ± ΓSRe[χS(Ω)]. (5.6)

Therefore, we can acquire the signal without being influenced by the detection
efficiency or the modulation strength G. Similar to the quantum backaction noise
driven by the quantum fluctuation of the probe light’s orthogonal polarization
component, as discussed in Chapter 3, the CIFAR signal contains a constant off-
set, indicating the classical modulation (’1’ after the normalization), a Lorentzian
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function, and a more interesting dispersive term that represents the interference
between the two classical quadratures of light through the motion of the spin
oscillator. This interference can be either destructive or constructive, leading
to two distinct signal bumps that indicates maximum transparency or opaque-
ness, as shown in Fig.5.4 (c). In the limit of high Q and focusing solely around
the atomic resonance frequency, we could apply the simplified spin susceptibility
function χS(Ω) ∼ 1

2(δΩ−i
γS
2 )

(here, δΩ is (ΩS − Ω)). Therefore, with the relative
phase locked at θ = π/4, and the input drive satisfying Xin = −P in = G(Ω),
we have: ∣∣∣P out

L

∣∣∣2 ≈ 1 + ΓS(ΓS − 4δΩ)

γ2
S + 4δΩ2 . (5.7)

After performing a simple derivation with respect to δΩ, one can identify the
frequencies δΩ corresponding to the minimal and maximal CIFAR signals:

δΩmax =
1
4 (ΓS −

√
Γ2

S + γ2
S),

δΩmin =
1
4 (ΓS +

√
Γ2

S + γ2
S),

δΩmax − δΩmin =
1
2

√
Γ2

S + γ2
S ∼ 1

2ΓS .

(5.8)

Therefore, in the limit of ΓS ≫ γS , based on the frequency difference between the
minimal and maximal peaks in CIFAR signal, one can make a reliable estimation
of the interaction readout rate. More accurate readout rates (ΓS) and linewidths
(γS) can be extrapolated from the fitted CIFAR signal.
In Fig.5.4 (c), we present examples of recorded CIFAR signals with varying phase
θ of overlap between the LO and driven beams, where the homodyne detection
phase is set at the phase quadrature. The selection around 40kHz is due to the
flat frequency response, ensuring that the piezo resonance doesn’t significantly
affect the fitting precision. As discussed in the signal model, the accurate readout
rate is acquired when the relative phase is locked at π/2 . Therefore, in our ex-
periments, the target phase is calibrated by identifying the symmetric Lorentzian
(red curve) and flat atomic responses (teal curve), which correspond to the pure
P and X quadratures of of light (A tiny bump in the flat response quadrature
indicates the leftover tensor contribution), while scanning the locking phase. The
correct locking phase for the CIFAR signal is typically in the mid-range( some-
times not precisely π/4 due to instrument imperfections ). one can also flip the
locking phase to acquire a mirrored CIFAR signal. Using the weighted mean of
two CIFAR signals can further enhance the precision of the precision of param-
eters. With the newly introduced CIFAR calibration method that enables us
to efficiently extrapolate the interaction readout rate and decoherence, we can
now explore two examples-optical pumping and probe- that will help us better
optimize the atomic system during the preparation stage. In the MORS section,
we presented that optical pumping can enhance the spin polarization from 82%
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Figure 5.5: Calibrated spin readout rate and linewidth as functions of pump
power. We observe a faster increment in the decay rate compared to the spin readout
rate, indicating a gradual reduction in the classical cooperativity ΓS

γS
. In this experiments,

atoms operated at 39◦ are probed with 1mW detuned by 1.6GHz, the repump laser is
set at 5 mW, and we vary the pump power to quantify its influence on spin readout rate
and decoherence.

up to 98% at the cost of additional pump power broadening. With the CIFAR
calibration, we now acquire more detailed information about the steady-state
spin oscillator under varying pumping power; the results are displayed in Fig.5.5.
In this strong probe (∼ 1mW) power regime, we observe a slight increase in the
spin readout rate with the pumping power, this suggests that the pumping power
attempts to return collective atoms back to the desired spin oscillator state, act-
ing as the repumping beam. However, this increase is not comparable with the
pump power broadening, and it then reaches a plateau, indicating the interaction
is limited by insufficient probe power. On the other hand, we note a continues
increase in pump power broadening, which further decreasing the classic coop-
erativity, denoted as ΓS

γS
. A complete analysis of quantum cooperativity should

also consider the degradation of the atomic thermal noise.

Moreover, we observe a change in the ratio of readout rate to linewidth as we
optimize the probe power during the interaction. It is worth noting that these
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Figure 5.6: Calibrated readout rate and linewidth as functions of probe
power. We observe different scaling behaviors for the readout and decay rate as func-
tions of probe power from the pumping laser. The classical cooperativity ΓS

γS
increases

until the probe power saturates the atoms; after this point, it begins to degrade. These
measurements were performed using a cell with dimensions 3*3*80 mm3 at an operating
temperature of ∼ 23◦C. This trend can also be extrapolated to other cell geometries and
temperatures. The repumping power was carried out with a power of 5 mW, while the
pump was conducted with a power of 50 uW.

experiments were performed with different cells at different times under different
temperature conditions; however, the scaling of the ratio remains constant. We
observe an enhancement in the spin readout rate with increased probe power, ac-
companied by the associated power broadening. Different from the case with the
pump beam, here, we notice a rise in classical cooperativity, reaching a maximum
plateau that represents the saturation of atomic spins during the interaction. Be-
yond this point, further increasing the probe power leads to a slower rise in the
readout rate and begins to degrade this cooperativity. This indicates that there
is an optimal probe power for each experimental condition to achieve maximum
classical cooperativity.
In this section, we only cover the CIFAR calibration in the QND interaction con-
figuration, readers interested into the general CIFAR expression including the
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tensor and broadband contribution calibrations, are recommended to refer to
section 8.2 of Rodrigo’s thesis [49].

5.3 Experimental setup for spin noise measurement

Telescope

LO

Figure 5.7: Setup scheme for spin noise measurement. (a) Probe light frequency
and atomic energy structure. (b) The atomic ensemble is probed by a linearly polarized,
collimated top hat beam, generated from a beam shaper and telescope system. This
beam is detuned by ∆/2π ∼ 1.6 GHz relative to the D2 line F = 4 → F’ = 5 transition,
with the power set at 1 mW. The input polarization, at an angle α with respect to the
quantized magnetic axis, can be adjusted via a half-wave plate. The effective mass of the
spin oscillator can be altered by changing the direction ( σ+ or σ− ) of the circularly
polarized optical pumping beams, or the orientation of the bias magnetic field B. After
interacting with the atoms, the probe light is analysed using a balanced polarimetry,
where the detection phase is selected through a combination of half and quarter wave
plates. (c) Adjusting the detection phase also facilitates the realization of a virtual
frequency shift in the oscillator’s resonant frequency.

With the atomic spin oscillator prepared and the strength of the light-atom in-
teraction optimized, we now concentrate on analyzing the spin noise spectrum.
Before proceeding, it is essential to briefly review the setup for measuring spin
noise. As illustrated in Fig.5.7, the spin oscillator is established through op-
tical pumping of the atomic ensemble into either the highest |F = 4, mF = 4⟩
or the lowest |F = 4, mF = −4⟩ Zeeman sublevels, determining the effective os-
cillator masses, and achieving a spin polarization of 98% as verified by MORS
measurement. The Larmor frequency of the spin oscillator, controlled by the bias
magnetic field strength, is adjustable from MHz down to a few Hz. A linearly po-
larized top hat probe beam, with its preparation detailed in section 4.5, labeled as
LO and set to atomic vapour cell with an optical power of 1 mW, is aligned at an
angle α relative to the magnetic field along the x-axis. This beam interacts with
atoms detuned by ∆/2π from the D2 line 6S1/2, F =4 → 6 S3/2, F’ = 5 transition,
with the detuning set at 1.6 GHz for most analyses in this chapter. Following the
interaction, the probe beam, now carrying information on the spin dynamics, is
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directed into a balanced polarimeter. The phases of detection in the polarimeter
are adjusted via a quarter-wave and a half-wave plates. The recorded photocur-
rent is sent to a low-noise 16-bit vertical resolution analog-to-digital converter
(ADC) with sampling rates up to 125 MS/s (Spectrum M2p5913-x4), enabling
a Fast Fourier Transform (FFT) for further analysis of the captured spin noise
spectrum.

5.4 Calibration of atomic spin broadband noise

Figure 5.8: Spin noise spectra recorded with a square top hat beam. (a) The
measured spin noise spectra of atomic spin oscillator precessing at 1 MHz showing (b)
broadband and (c) narrowband noise contributions. The estimated ratio of the narrow
band to broadband amplitude is 8̃00. These results were obtained using a 1.65*1.65mm2

square top hat beam.

In Section 3.8, we discussed how the thermal motion of atomic spins leads to
spin-locality dependent interaction strength. This dependency varies with the
uniformity of the probe spatial intensity, and sub-optimal filling factors, which
can modify the shape of the recorded spin noise spectrum, introducing additional
broadband noise. In our experiments, this broadband noise can be significantly
reduced by employing a square top hat laser beam for probing atoms.
The result depicted in Fig.5.8 shows the recorded spin noise spectrum using a
1.65*1.65 mm2 square top hat beam, as illustrated in Fig (d). The spectrum was
acquired with the atomic cell operating at 39◦ and precessing at approximately
1 MHz. From the plot, we can distinguish the Zeeman splitting resolved narrow
band spin responses in orange and a broadband noise floor marked in green. The
level of broadband noise is 0.3 in shot noise (SN) units, and the ratio of narrow-
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band to broadband noise is ∼ 800, a substantial enhancement over the results of
about ∼ 100 reported in page 72 of Rodrigo’s thesis [49], which the measurements
were performed with a Gaussian beam. By fitting the broadband noise with the
complex susceptibility function introduced in Chapter 3, we extract a bandwidth
for the broadband contribution of ∼ 150 kHz.
Moreover, we also compare the numerically simulated and experimentally recorded

Figure 5.9: Comparison of numerically simulated (purple curve) and exper-
imentally acquired (tomato curve) spin noise signals The numerically simulated
spin noise signals are re-scaled based on the extrapolated atomic thermal noise shown in
Fig.(b) inner plot. This adjustment yields a good match between the dynamics of the
spin noise in the simulation and the experimental data. The extrapolated linewidth of
the simulated broadband noise is approximately 180 kHz, closely aligning with the 150
kHz measured in the experimental data.

spin noise spectra to quantify our understanding of the theoretical model, as
demonstrated in Fig.5.9. Since our simulation only accounts for the atomic ther-
mal noise without incorporating the quantum backaction noise, the spin noise
depicted in Fig.(a) has been re-scaled based on the constructed atomic thermal
noise from experiments. This reconstruction is linked to the observed pondero-
motive squeezing, which will be elaborated upon in the following ponderomotive
squeezing section. The predicted broadband noise from the simulation closely
matches our observed spin broadband noise in both height and bandwidth, pro-
viding an effective instruction to minimize the broadband contribution with the
right top hat size. It is also worth noting that the broadband noise increases
more at ultra low Larmor frequency as contributions from the negative sideband
frequency can add up to the spin noise spectrum.
Regarding the proposed application of the broadband quantum noise reduction,
since the broadband noise acts as additional uncorrelated spin noise due to the
relatively large decoherence rate, it is crucial that this contribution remains less
than 1 unit of shot noise across our frequency band of interest (30 kHz around the
Larmor frequency), this enabling the entangled light in the atomic reference arm
to assist the joint measurement of the hybrid system in surpassing the standard
quantum limit (SQL) without being overwhelmed by this broadband noise. With
the observed maximum of 0.3 shot noise (SN) contribution, we are now prepared
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to proceed to the next section.

5.5 Spin noise spectra with effective mass

After characterizing the atomic broadband noise, we shift our focus to the most
relevant, quadratically resolved narrow-band spin response at around 1MHz.
Fig.5.10 displays quantum noise measurements in the MHz frequency range,
showcasing the quantum backaction (QBA)-dominated spin response in both the
positive- and negative-mass configurations. Imperfect optical pumping results in
significant populations of levels other than |F = 4, mF = −4⟩ (or |F = 4, mF = 4⟩),
leading to multiple peaks in the Zeeman-splitting-resolved spectrum. This aids
in distinguishing the effective oscillators’ mass. Specifically, we observe two
peaks around Ω/(2π) ≈ 960 kHz, identified as the transitions |mF = ±4⟩ ↔
|mF = ±3⟩ for ΩS1,(a,d), and |mF = ±3⟩ ↔ |mF = ±2⟩ for ΩS2,(b,c) within the
F = 4 hyperfine multiplets. We also notice a third unresolved signal remains at
higher frequency for both cases that are attributed to the magnetic field inho-
mogenity as we discussed in previous Section 4.4.3 . In Fig.5.10 (c), the highest
atomic population at lower energy (frequencies) indicates a spin prepared in the
positive mass configuration, whereas Fig.5.10 (d), represents a negative mass con-
figuration, with the populations prevailing at the highest energy state. Addition-
ally, residual atoms in the |F = 4, mF = ±3⟩ ↔ |F = 4, mF = ±2⟩ transitions
and the third atomic signal at ΩS/(2π) ≈ 1 MHz necessitate an extension of the
model to multiple oscillators. These oscillators’ QBA noise contributions, driven
by the vacuum fluctuations of probe light orthogonal components, can even in-
terfere with each other with varying phases, as each spin oscillator has slightly
different Larmor frequency.

S
det∑/SN = 1 +

QBAN︷ ︸︸ ︷
n=3∑
i=1

eiϕS,i Γ2
S,i |χS,i(Ωi)|2 +

TN︷ ︸︸ ︷
n=3∑
i=1

4γS,iΓS,i |χS,i(Ωi)|2
(

nS,i +
1
2

)
.

(5.9)
Using this multi-oscillator model, we estimate the overall integrated areas of
QBA noise and thermal noise, respectively. We find a quantum cooperativity
Cq = 2.7 ± 0.3 for the positive-mass oscillator, focusing on the largest atomic
signal in Fig.(c). We also extract effective thermal occupation of nS ∼ 0.6 for
this signal, which aligns with the corresponding thermal occupancy of ∼ 0.55
based on Fig.3.7 estimated from the 89% spin polarization measured with high
probe power, as discussed in [94]. The estimated ponderomotive squeezing Ssq =

−4.8 dB based on the quantum cooperativity correlates well with the observed
squeezing in Fig.5.10(e). The negative-mass oscillator exhibits slightly reduced
ponderomotive squeezing, likely due to a sub-optimal current ratio between the
magnetic coils causing additional inhomogeneous broadening and increased spin
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damping rate. These calibration results indicate that the spin oscillator is pri-
marily influenced by the quantum shot noise, backaction and atomic thermal
noise in this frequency regime.

Figure 5.10: Spin noise spectra with effective positive and negative mass
spin oscillators (a,b) The cesium atomic ensemble in our experiments is modeled as a
harmonic oscillator using a 2-level-system approximation. The spin oscillator exhibits an
effective negative mass (or frequency) when the atoms are prepared at mF = 4, and a
single excitation lowers the energy of the atomic state in (b). Conversely, the oscillator
in (a) shows a positive mass when the excitation increases the energy. The recorded
spin noise spectra are processed at 0.96 MHz. In real experiments, the effective mass
is identified in the non-ideal spin polarization within the quadratic Zeeman splitting
resolved regime. By observing the frequency of the second resonant signal ΩS2,(b,c),
which indicates the mF = (−3, −2) or (3, 2) Zeeman sublevels, relative to the main
spin oscillator frequency ΩS,(a,d), one can distinguish between a positive spin oscillator
with the Larmor frequency of largest signal (ΩS1,a) lower than the second resonant peak
(ΩS1,b) (c), or a negative spin oscillator with a higher procession frequency (ΩS1,d)
(d) in the noise spectrum. The observed ponderomotive squeezing in fig.(e,f) for both
configurations indicates that the atomic systems are predominantly influenced by the
quantum backaction noise. The reconstruct atomic thermal noise (TN) and quantum
backaction noise (QBAN), based on the spin noise fit, are also presented in (c, d) for
clearer illustration. In this frequency regime, a third peak, presumably arising from the
magnetic field inhomogeneity, is also observed. The spectra demonstrate readout rates
of ∼3.6 kHz and ∼2.7 kHz for the largest ΓS,1 and second ΓS,2 spin signals, respectively,
with an effective thermal occupation of nS : ≈0.6.
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5.6 Calibration of QND and tensor interaction

As we analyze the measured spin noise spectrum, we aim to utilize the quantum
backaction noise acquired from the light-atomic spin vector Faraday interaction
as a quantum noise ’eater’ to cancel noise in other quantum systems. However,
for real cesium atoms used in our experiments, which have nonzero nuclear spins,
we must also be aware of another tensor alignment interaction. Although it can
be small, this interaction further complicates the light-spin interaction through
linear birefringence, and even involves quantum back-action noise from unwanted
orthogonal components of the probe light, as shown in eq.(??). This can compro-
mise the dominance of Faraday back-action in the atomic system. Therefore, it is
crucial to calibrate the light-atom interaction and choose an appropriate exper-
imental configuration beforehand. In this section, we will explore the influence
of the tensor interaction term on the spin dynamics around the atomic Larmor
frequency and introduce two calibration methods that can minimize these higher-
order terms, ensuring the atoms operate maximally close to the QND interaction
regime.
The measured tensor Stark shift and its induced effects on dynamic broaden-
ing or cooling of the collective spins, as introduced in Section 3.4, are shown in
fig.5.11. These parameters are extracted by fitting the MORS signals at varying
input polarization angles, as exemplified in the inner plots. More specifically, the
light-induced tensor stark shift is derived from the frequency difference between
two fitted atomic resonant signals. after subtracting the Zeeman splitting com-
ponent. Subsequently, this extrapolated energy shift, which results from different
input polarizations, is modeled with the following function:

Ωtensor/2π = A(1 + 3 cos 2α). (5.10)

In particular, this sinusoidal scaling of the input polarization angle enables us
to zero this tensor stark shift by setting this angle to approximately α ∼ 54.7,
as indicated by the dashed horizontal line in purple. The discrepancy between
the fitted tensor shift and the extrapolated shift is primarily due to the imper-
fectly resolved atomic signals around these polarization angles, which increases
the uncertainty of the estimation. Meanwhile, in eq.(??), we introduce the ten-
sor interaction that couples through the spin’s quadrupole transition, potentially
altering the decoherence of the spin dynamic around the Larmor frequency. This
can lead to additional light-atom interaction such as beam-splitter or two-mode
squeezing configuration, affecting the spin decoherence rate as: γS/2+ ϵSΓS . The
tensor term ϵS here scales with the input polarization angles as: ϵS ∝ −A′ cos 2α.
This inverse scaling of the spin decoherence relative to the Stark shift with the
input polarization angle α is also observed in the two bottom plots in Fig.5.11.
The influence of the tensor interaction can also be observed in spin noise mea-

surements at very low Larmor frequencies, where the quadratic Zeeman splitting
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Figure 5.11: Tensor stark shift and broadening as a function of input po-
larization angle. (a) The extracted tensor stark shift from the fitted MORS signal
as a function of the input polarization angle α. Several raw MORS signals are also
presented for clarity.(b,c) Tensor broadening for the large population atomic state and
second-neighbour response as a function of the polarization angle. The probe detuning
is set at 800 MHz for better presenting the tensor effect.

is unresolved. In Fig.5.12 (a), the spin dynamics are monitored at the phase
quadrature (difference between the ± 45 ◦ linear polarizations) of light detected
with a polarimeter controlled solely by a half-waveplate. The recorded spin noise
exhibits a clear modification as the tensor term-quantified by the tensor readout
rate ϵS-varies with the input polarization angle. This effect is attributed to the
additional dynamic quantum back-action noise driven by quantum noise from
the orthogonal light quadrature, as predicted in theoretical model described in
(3.49).
Furthermore, the inclusion of a quarter-wave plate in the detection setup al-
lows for monitoring the orthogonal amplitude (or σ± polarization difference), as
shown in Fig.(c). Here, while the Faraday interaction doesn’t appear, the tensor
contribution can prevail. This difference in amplitude quadrature enables maxi-
mal minimization of the tensor contribution by achieving a flat spin noise signal
through varying the input polarization at lower probe detuning (∼ 800MHz).
It is also noteworthy that, despite the more complex interaction dynamics, the
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tensor alignment term offers new potential to observe enhanced ponderomotive
squeezing of light in Fig (b).

Figure 5.12: Spin noise spectra with tensor effect in the unresolved frequency
regime. At low Larmor frequencies where the quadratic Zeeman splitting is unresolved,
we notice that the width of the acquired spin noise spectra is modified by the tensor
readout rate ϵS via the input polarization angle α. We observe different magnitude of
spin noise signals in light phase quadrature (P̂L,out) (a) as well as different ponderomotive
squeezing (b). This effect is more clear visualized in light amplitude quadrature X̂L,out

(c) where the QND contribution is not presented. Here the probe detuning remains at
1.6 GHz.

5.7 Ponderomotive squeezing- calibration of quantum
cooperatively

When the Larmor frequency is reduced to 130 kHz while all other experimental
conditions remain the same, the quadratic Zeeman splitting becomes negligible,
and the spin ensemble behaves as a single spin oscillator with a significantly en-
hanced spin signal, as presented in Fig.5.13. From the fits of the pure phase
quadrature S

det
QND,P and the quadrature S

det
QND,sq yielding the strongest pondero-

motive squeezing, we extract the essential parameters of the atomic spin dynam-
ics, to prevent the overestimation of model parameters, both the readout rate
and linewidth are set based on the results in CIFAR measurement with 10 %
confinement, while the thermal occupancy remains free. We extracted the read-
out rate ΓS/(2π) = 7.8 kHz and the linewidth γS/(2π) = 0.23 kHz , whereas
the amount of thermal noise, encoded in the thermal occupation nS = 3.7, is
a significantly higher than the value nS ≈ 0.6 measured at ΩS/(2π) ≈ 1 MHz
1. Following this, we estimate the quantum cooperativity Cq ≈ 1.9 with the
corresponded ponderomotive squeezing S

det
sq = −4.0 dB, which matches well with

1Here we use the parameter-thermal occupancy ns to quantify the reduction of pondero-
motive squeezing, therefore, the increased thermal noise is not only due to the imperfect spin
polarization, we will elaborate on more details about several additional sources in the next
chapter.
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the experimentally observed −4.2 dB value and thus validating the agreement
of the theory model. Meanwhile, the calibration of the quantum cooperativ-
ity Cq cross-validated with the measured ponderomotive squeezing enables us
to precisely quantify the amount of the quantum backaction together with the
non-correlated effective thermal noise. This can later be utilized for better per-
formance estimation of the broadband quantum noise reduction.
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Figure 5.13: Quantum noise calibration for spin oscillator at 130 kHz. The
measured spin noise and two largest ponderomotive squeezing curves at 130 kHz Larmor
frequency are fitted with the QND spin noise model. The extracted parameters enable
us to distinguish and reconstruct the amount of quantum backaction noise (colored in
red area) and effective atomic thermal noise (colored in purple) in the total spin noise.
The fitted parameters are: readout rate ΓS/2π : 7.8 kHz , decay rate γS/2π : 0.23 kHz.
The extrapolated quantum cooperativity from the spin noise data is Cq ∼ 1.9 .

5.8 Calibration of virtual frequency shift

We continue characterizing the atomic system, extending into the upper range
of the acoustic frequency regime, with the Larmor frequency approximated at
ΩS/2π ≈ 18 kHz. By fitting the measured spin noise spectrum, we extract crit-
ical parameters of the atomic spin oscillator. The readout rate ΓS/2π : 8.1 kHz,
and the decay rate, γS/2π : 0.21 kHz. These values are still consistent with
the CIFAR calibration results. The extracted thermal occupation, nS : 3.5, is
slightly better than the 120 kHz result. These parameters enable us to estimate
the quantum cooperativity of Cq ≈ 3, corroborated by the observed -5 dB pon-
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deromotive squeezing shown in Fig.5.14 (b). Furthermore, Fig.5.14 (a) presents
both the reconstructed quantum backaction noise and the atomic thermal noise
contributions to the overall spin noise.
As anticipated at the conclusion of Chapter 3, the cross-correlation between shot
noise and quantum backaction can alter the spectrum of the light noise, mim-
icking a probe system with a virtually downshifted resonance frequency. Fol-
lowing the thermal force noise normalization process described in Eq.(3.59), we
extracted the total quantum noise component from the experimental data using
the extrapolated parameters. We then normalize the total quantum noise of the
spin oscillator at 18 kHz to the coefficient of atomic thermal noise, represented
as 4γSΓS |χS |2 cos ϕ2. As depicted in Fig5.14 (c), we observe a frequency shift of
∆ΩS/2π ≤ −2.0kHz in our experimental data. The maximal frequency downshift
occurred at a homodyne phase set to ϕ = π/4, closely matching the predictions
based on the extracted readout rate ∼ ΓS/4. This demonstration supports the
feasibility of a real spin oscillator operating in the few kHz range, employing the
virtual frequency shift method to align with the frequency response of free mass
gravitational wave detectors (GWDs) operating at near-DC frequencies.

Figure 5.14: Calibrating the effective frequency downshift via the virtual
frequency shift. (a) The spin noise spectrum, recorded at 18 kHz, shows the recon-
structed atomic backaction noise ( in red ) and effective thermal noise ( in purple ),
based on the extrapolated quantum cooperativity Cq :∼ 3. (b) Adjusting the homodyne
phase facilitates the generation of maximum ponderomotive squeezing, Ssq ∼ −5 dB (il-
lustrated by the green curve), which aligns well with the predictions from the theoretical
model. The yellow curve represents detection at another phase close to ϕ ∼ −π/4 .
Axes are normalized to the shot noise of light, presented on linear (SN) or decibel scale
(dB). (c) Normalization of the total spin noise to the atomic thermal force coefficient,
as described in eq.(3.59), exhibits the virtual frequency shift of the atomic resonance
frequency ΩS,eff . This effective frequency shift is depicted through the frequency down-
shift of the minimum dip of the thermal force-normalized quantum noise, as shown in
the yellow (∆Ωs/2π ∼ −2.0kHz) and green curves (∆Ωs/2π ∼ −1.2kHz) relative to
the reference red curve. Apart from that, this normalized quantum noise reduces the
vertical offset, indicating an enhancement of sensitivity to the force signal, and increases
the curve steepness, which corresponds to a reduced sensitivity bandwidth. The extract
readout rate is ΓS/2π : 8.1 kHz, and the decay rate is γS/2π : 0.21 kHz . The overall
efficiency is 92%.

We have now completed the experimental calibration of the atomic spin oscillator,
successfully demonstrating an atomic system dominated by quantum back-action
noise. Moving forward, we will continue to reduce the atomic Larmor frequency
and explore its noise performance at significantly lower acoustic frequencies.
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Chapter 6
Towards the gravitation wave

frequency range

Having explored the spin noise spectra in the upper audio band, we have now
shifted the Larmor frequency to the much lower acoustic range, extending to
sub-kHz frequencies. We anticipate observing similar quantum noise-limited spin
responses in this frequency regime. However, in real experiments, the atoms in
this frequency band were overwhelmed by the classical noise environments. To
address these issues, we updated our system and improved the noise performance
of our electronics such as current source, balanced detector, and optical pump-
ing lasers, to minimize their influences at low acoustic band. Additionally, we
detected another atomic response at the near-DC sidebands frequency indepen-
dent of the atomic Larmor frequency, fortunately, we notice such DC atomic
noise scales down much faster than the QND backaction noise, thus we can effec-
tively minimize such noise by carefully choosing the detuning of the probe light
without significantly affecting the quantum backaction noise. These methods en-
abled us to re-observe ponderomotive squeezing as low as approximately 900 Hz
when probing the atoms with a diode laser at 4 GHz detuning. Subsequently, to
better match the atomic system with the entangled light source for our proof-of-
principle experiment, we transitioned the probe light from the diode laser to the
Ti:Sapphire laser. This change initially resulted in significantly higher amplitude
noise that dominated all quantum dynamics. However, through collaboration
with my colleague Alkiviadis Zoumis and Tulio Brito Brasil, we successfully mit-
igated this probe amplitude noise using a homemade active noise eater, thereby
restoring the -3.5 dB ponderomotive squeezing at 5 kHz.

6.1 Reduction of RF current noise

To achieve quantum noise-limited performance down to such a low acoustic Lar-
mor frequency, one experimental improvement involves reducing the current noise
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from the bias coil current supply. Classical current noise around the Larmor fre-
quency can significantly excite the spin oscillators more than the quantum back-
action from vacuum fluctuations. Therefore, after evaluating various current
sources, including the bipolar triplet current source [102], and the MLD203CLN
- Constant Current driver from thorlabs, we selected the low noise laser diode
drive from Koheron, this device characterized by a current noise of 50 pA with
a 40mA output down to 100 Hz, and we powered it with a DC battery. This
configuration allows us to operate an atomic system at an acoustic frequency
without significant influence from current noise, thereby achieving the experi-
mental results that will be presented. In our proof-of-principle experiment, we
hypothesized that overall quantum noise reduction would be more effective in
cells with much less decoherence, such as a 7Hz intrinsic decay rate for a 5mm
cross-section cell. However, such a cell would require substantially higher probe
power to achieve the necessary readout rate, placing more challenging require-
ments on the maintenance of shot noise and magnetic shielding quality. After
careful calibration of spin noise for various atomic vapor cells with our current
experimental setup, we decided on a 2*2 mm2 cross-section cell with an intrinsic
decay rate of 36Hz, which proved to be the optimal candidate for our current
experiment.

6.2 Observation of noise coupling through optical pump-
ing & repumping

During our measurement, to maintain sufficient spin polarization while prob-
ing with a high-power probe, we employed continuous pump and repump lasers.
However, we observed that both the pumping and repumping could influence the
spin noise spectra when the atomic system operates closer to the DC spectrum
frequency, potentially compromising the measured ponderomotive squeezing. As
discussed in Chapter 5.1, the repump laser prepares the collective spin oscilla-
tor with a spin polarization up to 80%. Consequently, we normally operate the
system with a continuous 5 mW repumping laser. When the Larmor frequency
is reduced to the lower acoustic frequency band (≤ 20 kHz), electronic modula-
tion spikes begin to appear around the atomic signal, as presented in Fig.6.1 (c).
These spikes were simultaneously observed in the intensity noise of the previous
diode laser from Toptica DL100, as shown in Fig.6.1 (a), and were confirmed to
originate from the electronic noise in the locking system. Replacing the repump-
ing laser with cleaner DL pro laser, as in Fig.6.1 (b), coupled with an improved
locking system (from redpitaya STEMlab 125-14), allows us to achieve a much
cleaner spectrum around the atomic signal, as demonstrated by the orange curve
in Fig.(d).

Regarding the optical pumping laser, its influence is more complex. On one
hand, we can employ the pumping laser to further improve the spin polarization
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Figure 6.1: Spin noise spectra influenced by repump laser amplitude noise.
At lower acoustic frequencies, repump laser amplitude noise impacts the recorded spin
noise spectra. Classical noise from the Toptica DL100 laser in Fig.(a), attributable to its
noisy control electronics, is evident with identical noise spikes in the spin noise spectrum
as shown in Fig.(c). These noise spikes around the atomic signal disappear when the
repump laser is replaced with the quieter DLpro laser in Fig.(b), equipped with a superior
locking system, as demonstrated in Fig.(d).

up to 98 % and even recycle some atoms back to the Zeeman sub-levels of inter-
ests. On the other hand, as the optical pumping directly couples to the atomic
transitions interacting with the probe light, it introduces additional decoherence
in the spin oscillator. In our experimental conditions, the increase in the deco-
herence rate surpasses the benefits from the larger interaction readout rate, thus
reducing classical cooperativity as previously discussed in the CIFAR calibration
(excluding the reduction of thermal noise). This influence is further evidenced in
the spin noise measurement shown in Fig.6.2, where we observe a reduction in
ponderomotive squeezing around 16 kHz with the pumping laser activated. Ad-
ditionally, from the acquired spin noise, we notice an increment in spin noise as
we approach the DC frequency range, which is even enhanced by the application
of the optical pumping. One presumed origin of this DC noise is attributed to the
intensity noise of the pumping laser; we will elaborate more on this ’DC noise’
and explore the method to minimize its contribution in the following section.

139



Figure 6.2: Spin noise spectra influenced by pump power. The introduction
of repump power results in pump power broadening, which slightly reduces the level of
ponderomotive squeezing, as evidenced by transition from the tomato curve to the green
curve. Additionally, the increased pump power induces additional spin noise near the
DC frequency, observable in both the spin noise ( phase quadrature of light ) and the
ponderomotive squeezing ( mixed light quadrature ). During the measurement, the probe
was set at 1 mW with a detuning of 1.6 GHz, and the repump power was set at 5 mW.

6.3 Observation of atomic DC noise and its minimiza-
tion

As we now target low acoustic frequencies, aiming even for sub-kHz range, we
observe a dramatic reduction in the ponderomotive squeezing level with decreas-
ing of the Larmor frequency, initially disappearing at 10 kHz. In our theory,
such reduction is characterized by a boost of the atomic thermal occupation nS ,
thereby reducing the quantum cooperativity Cq. This additional noise becomes
more apparent as we increase the Larmor frequency up to 40 kHz, as shown in
Fig.6.3. When selecting the ponderomotive squeezing quadrature, we observed
two additional atomic signals centered near DC and twice the Larmor frequency
in the spectrum domain, which are beyond the ponderomotive squeezing fre-
quency band. All these noise contributions accumulate with the reduction of the
Larmor frequency.
In searching for an physical explanation, we hypothesize that the presence of
the nonzero nuclear spin in Cesium atoms requires extending the model beyond
the QND vector interaction with a two-level harmonic oscillator to incorporate
alignment interaction operators ĵ2

x − ĵ2
y , and ĵxĵy + ĵy ĵxas discussed in Eq.(3.24)

in Chapter 3. These extensions can influence the spin oscillators via the tensor
stark shift and tensor dynamic cooling or broadening around the Larmor fre-
quency ΩS . However, upon revisiting the first tensor alignment term, we notice
that this term also affects the spin noise at Ω = 0 and Ω = 2ΩS , as the expec-
tation ⟨mF ,f |ĵ2

x − ĵ2
y |mF ,i⟩ is nonzero when |f − i| = 0, 2. Therefore, we could

explain the observed atomic signal at 2Ω and 0 spectrum frequency with the
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tensor alignment terms. Similar atomic responses have been observed for cesium
vapor operating in Voigt geometry [119], and more detailed theoretical explana-
tions are provided in three papers on spin alignment noise [69, 120, 121]. For our
experiment, we will focus only on the zero frequency component, which we refer
to as "DC noise", as it directly deteriorate the level of our measured ponderomo-
tive squeezing in our interest frequency band.

Figure 6.3: Influence of spin alignment noise beyond Larmor frequency. Be-
yond the vector and tensor interaction centered at Larmor frequency ΩS/2π ∼ 42 kHz
, a second peak emerges at twice the Larmor frequency. Additionally, there is enhanced
noise towards the DC frequency regime, as indicated by the dashed blue area. These two
effects presumably originate from tensor interactions. Axis are normalized to the shot
noise of light on a decibel scale.

Crucially, we find that such DC noise can be strongly suppressed by minimizing
the alignment term, in particular, one can increase the optical detuning ∆ and
benefit from the fast decline of a2 coefficient, which governs the alignment interac-
tion strength without significantly compromising the Faraday (QND) interaction
strength as presented in Fig.6.4(a). A detailed analysis of the integrated areas of
the QND quantum bakcaction noise, the reconstructed atomic thermal noise, and
the DC noise as a function of the probe detuning is shown in Fig.6.4 (a) . The
dramatically reduction of this DC noise enables us to predict the optimal detun-
ing ∆opt for the largest quantum cooperativity based on the equation described
in Eq.(3.53) and even the best ponderomotive squeezing from Eq.(3.55). Such
improvements can be observed through several example trances in Fig.6.4(d). We
then extracted the recorded minimal noise level for each experimental trace and
plotted it as a function of detuning. This nicely matches the predicted pondero-
motive squeezing (light blue curve) derived from the integration of each noise
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areas. The more detailed analysis can be found in paper [94]
It is also interesting to note that the amount of DC noise can be adjusted via
the selection of the detection quadrature. In particular, we observe that this
noise is maximized in the amplitude quadrature of light, thereby having a di-
rect impact on the amount of ponderomotive squeezing. Conversely, this noise is
barely noticeable when observing the phase quadrature of the probe light. With

Figure 6.4: Various contributions to the total spin noise budgets with dif-
ferent probe detunings. (a) Spectra of the light probing the spin ensemble reveal
strong near-DC noise contributions below 20 kHz while the spin oscillator operates at
ΩS/2π ∼ 1 MHz, which in principle leads to reduced measured ponderomotive squeezing
when operating in the acoustic frequency range. This DC-noise contribution decreases
with an increase in the probe light detuning ∆ from 1.6 GHz to 3.2 GHz. (b) Compari-
son of the atomic thermal noise (TN), quantum backaction noise (QBAN), and DC-noise
integrated areas as a function of detuning ∆ . (c) The larmor frequency is then reduced
down to the acoustic frequency band to explore the effect of probe detuning ∆ on the
observed ponderomotive squeezing at ΩS/2π ∼ 3 kHz, where the DC noise now signif-
icantly influences the spin noise budget. At detunings around 3∼3.5 GHz, where the
ratio between QBAN and all uncorrelated noise sources (including DC noise) is maxi-
mized. We observe optimal squeezing Ssq ∼ −3 dB at 3kHz. Error bars represent the
uncertainty of extracted pondermotive squeezing for each detuning value. (d) Illustration
of the recorded spin noise spectra, especially the ponderomotive squeezing quadrature,
optimized with different probe detuning ∆.

the optimization of the probe detuning, we can experimentally observe a max-
imal level of -3 dB ponderomotive squeezing when the spin oscillator operates
at ΩS = 3 kHz, achieved by increasing the detuning from 1.6 to 3 GHz. Fur-
ther increments in detuning, allowing for lower Larmor frequencies, result in -2
dB and -1.3 dB of noise below the shot noise limit at around 2 kHz and 1kHz,
respectively, as demonstrated in the low panels of Fig.6.5 (d, e, and f).
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Figure 6.5: Spin noise spectra recorded at lower audio sideband frequencies.
Panels (a-c) display the spectra of the light phase quadrature; the reconstructed quantum
backaction noise (QBAN) and thermal noise (TN) are represented by the purple dashed
area and the light green area, respectively. Panels (d-f) show detections optimized for
maximal squeezing, corresponding to the experimental conditions described above. The
ponderomotive squeezing level is optimized by adjusting the probe detuning across Lar-
mor frequencies, gradually increasing from ∆/2π = 3 GHz at 3 kHz Larmor frequency
up to ∆/2π = 4 GHz at 1 kHz. Axes are normalized to the shot noise of light, and
represented in either a linear or decibel scales.

6.4 Observation of probe amp noise coupling-diode
and Ti laser

We have developed an negative mass spin oscillator operating within the acoustic
frequency band. We demonstrated quantum backaction-dominated spin noise
with -3.0 dB ponderomotive squeezing using a quiet diode laser as a probe light.
The amplitude noise of probe is depicted by the blue curve in Fig.6.6 (a). For
the proposed broadband quantum noise reduction experiments, it is necessary
to probe the atoms with light that is combined with one of the generated EPR
entangled pairs, as well-demonstrated in the PhD thesis of Valeriy [33] and Tulio
[122] from our group. This process requires both spatial and frequency matching
of the probe light (or local oscillator ) with the entangled arm, necessitating a
switch from the Topitca DL pro diode laser to a titanium-sapphire laser from M
Squared, which is pumped by a 8W 532nm laser from Sprout [20]. One advantage
of the titanium-sapphire laser is its typically superior phase noise performance,
narrow linewidth, and precise wavelength control when locked to a High-Finesse
WS-600 wavemeter. However, its amplitude noise, as illustrated by the orange
curve in Fig.6.6 (b), is significantly worse compared to the diode laser. Even
after adjusting the Ti pump power to shift the relaxation oscillation frequency
up to 800 kHz, a significant noise bump at around 3 kHz, attributed to the
pump noise as also discussed in page 44 of Tulio’s thesis [122]. The presence
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of this 3 kHz amplitude noise bump, along with the increased noise at acoustic
frequencies, can drive the atomic spin oscillator classically, projecting ’classical
backaction’ into the recorded spin noise spectrum, which cannot be cancelled by
the common mode rejection of the balanced detection as shown in Fig.6.6 (d).
We observed that the ponderomotive squeezing is overwhelmed by the presence
of strong amplitude noise.

Figure 6.6: Spin noise spectra influence by the probe amplitude noise. We
observe -3 dB ponderomotive squeezing when a spin oscillator operates at 3 kHz, probed
by a diode laser, as shown in left bottom panel (c), the reduction in squeezing can
attribute to the light intensity noise, as shown in (a), evidenced by the noise spikes
around 800 Hz in both results (panel a and c). When the probe is replaced with a
Ti:sapphire laser to better overlap with the entanglement pair, the light intensity noise
significantly increases, even as the relaxation oscillation spectrum shifts up to 800 kHz.
A noise peak at 3 kHz, due to Ti:sapphire pump laser noise, is observed. This increased
amplitude noise dramatically raises the recorded spin noise spectrum and washes out the
ponderomotive squeezing, as demonstrated in (d).

Furthermore, we observed a even substantial increase in amplitude noise when
sending the local oscillator through a mode cleaner cavity (MCC) to mitigate
the beam pointing effect and facilitate better spatial overlap with the EPR mode
produced by the optical parametric oscillator (OPO) cavity. Unfortunately, this
arrangement also converted these instabilities into the amplitude fluctuations in
the transmitted light as described on page 49 of Valeriy thesis [33]. Consequently,
implementing an active intensity stabilization system in optical path is essential.
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6.5 Reduction of probe amplitude noise coupling with
active noise eater

The implementation of an active noise eater to reduce the effect of amplitude
noise on atomic spins was a collaboration with Tulio Brito Brasil and Alkiviadis
Zoumis. The detailed preparation is well-documented on page 30 to 38 of Alkis’s
master thesis [123]. In our experiment, the intensity fluctuations mentioned above
are maximally compensated via the zero-order scattering efficiency of an acoustic
optic modulator (AOM) [124], where this scattering efficiency is controlled by the
power of the 87 MHz RF drive. Active control is established by the Proportional
Integral Derivative (PID) module in PyRPL using a Red Pitaya STEMlab 125-14
DAC, which was re-modified to produce less noise [125]. This setup facilitates us
to interact with atoms using even more probe power and an enhanced readout
rate, The reduction of light intensity fluctuation is illustrated by the green curve
in Fig.6.7 (a), compared with the yellow curve with the noise eater off, demon-
strating a reduction of at least 20dB in the amplitude noise of 2 mW probe power
within the 10 kHz frequency band and maintaining around 10dB reduction up to
50 kHz.
Interestingly, when the intensity-noise mitigated probe is used to interact with
atoms at a 2 GHz detuning, we observe a clear decrease in the overall spin noise
comparable to the reduction in the light intensity noise, and the original noise
bump that drives oscillator at 3 kHz can be completely removed. This improve-
ment enables us to achieve -3.5 dB ponderomotive squeezing, slightly better than
that recorded with a diode laser. Meanwhile, the noise spikes observed predomi-
nantly below 2 kHz are assumed to arise from amplitude noise introduced by the
acoustic-optics modulator, which necessitates the use of a cleaner RF drive. The
extrapolated effective thermal occupation of 5 also suggests that the squeezing
level could be further improved by reducing more amplitude noise. Overall, the
current experiments provide sufficient results to progress to the next stage and
begin integration with the entangled light source. We also observe that the atomic
response at twice the Larmor frequency ( due to transitions between two Zeeman
sublevels ) is significantly increased with the doubled probe power; this double-
frequency peak could potentially compromise the performance of the broadband
quantum noise above the Larmor frequency.

In this chapter, we have discussed several noise sources that can effect the atomic
responses and thus compromise the measured ponderomotive squeezing in low
acoustic sideband frequency regime. We have presented methods such as probe
detuning, optimization of the optical pumping laser amplitude noise, and noise
eater for probe light, which can help us to maintain the observed level of pon-
deromotive squeezing even when the probe laser transitions from diode laser to a
noisy Ti;sapphire probe laser. Now, with the quantum noise dominant spin oscil-
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lator optimized, we will move to the next exciting chapter where we will integrate
the probe local oscillator with entangled pairs and perform joint measurements.

Figure 6.7: Reduction of classical intensity noise using an active noise eater.
Panel (a) shows the enhanced intensity noise of a Ti laser, represented by the yellow
curve, which is effectively reduced by our homemade active noise eater (green curve).
This significant reduction minimizes the classical amplitude noise that could drive the
spin oscillator, and eliminates the noise peak at 3 kHz. Consequently, this enables -3.5
dB ponderomotive squeezing using a 2 mW probe light. From the analysis, we extract
several parameters, a thermal occupation number nS of 5, a spin readout rate ΓS : 12.0
kHz, and a spin decoherence rate γS : 0.33 kHz. The expected quantum cooperativity
Cq is 1.64, aligning with the observed -3.5 dB squeezing. This data was acquired using
a 2 mW probe light at 2.1 GHz detuning, in collaboration with Alkis and Tulio.
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Part III

Towards broadband quantum
noise reduction with conditional

negative mass spin oscillator
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Chapter 7
Atomic spin oscillator enhanced

conditional frequency dependent
squeezing

In this chapter, we will discuss the generation of enhanced frequency-dependent
squeezed entangled source achieved by a negative mass atomic ensemble. Building
on the previously calibrated atomic system and concurrently calibrated Einstein
Podolsky Rosen (EPR) entangled beams by my colleagues Tulio Brito Brasil, Va-
lerii Novikov and Andrea Grimaldi, we will emulate predictions from our proof-
of-principle experiments. These include the demonstration of the frequency de-
pendent rotation on the phase of one of the entangled pairs and the expected
achievable maximal squeezing when two correlative quadratures are detected and
combined with an optimal wiener filter ’g’.
We will also address several potential limitations of our current experiments and
propose methods to further improve our system, in particularly close to the fre-
quency range where both the gravitational wave signals and quantum noise reside.
Additionally, we will elaborate on some intriguing alternative directions based on
our hybrid quantum system, which combines the atomic spin oscillator operation
in quantum regime with the non-degenerate two-color (852 nm and 1064 nm)
entangled light sources.

7.1 Hybrid atom-entanglement experimental setup

Before exploring the atom-induced, frequency dependent EPR squeezing, let us
first introduce our experimental setup for the hybrid system, as shown in Fig.7.1.
In our experiment, we utilize the Innolight Mephisto ND:YAG laser, emitting at
1064 nm, as one light source for the potential interferometer arm, achieving max-
imally output power of up to 10 W after amplification by a Nufern fiber amplifier
(PSFA-1064-50-10W-2-1). Conversely, the 852 nm laser light is generated by an
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M-Squared Ti:Sapphire ( SolsTiS PSX-R ) with a power up to 2 W. The asso-
ciated relaxation oscillation spectrum and the amplitude noise were discussed in
previous chapter.
The two color EPR entangled vacuum fields are generated using a non-degenerated
optical parametric oscillator (OPO), which includes a custom-designed PPKTP
nonlinear crystal within a bow-tie cavity. The crystal’s design was discussed in
Chapter 5 (page 45) of Tulio’s PhD thesis [122] and Chapter 3 page 38 of va-
leriy’s PhD thesis [33], along with the design of the OPO cavity. The OPO is
pumped by a 473 nm laser from a sum-frequency generation (SFG) and is double-
resonant locked to produce two-color entangled lights. The resulting entangled
photon pairs are spatially separated by a dichroic mirror and merged with their
corresponding Local oscillators (LOs).
An additional frequency-shifted beam, slightly detuned from the 1064 nm carrier
but still within the OPO bandwidth, and the parametrically down-converted 852
nm beam with opposite detuning, co-propagate with the entangled sources. This
arrangement facilitates phase locking relative to the LOs without the pollution of
the vacuum quantum correlation at ultra low acoustic sideband frequency due to
the locking beam, as detailed on page 43 of Valeriy’s thesis [33]. The 1064 nm arm
is detected using standard homodyne detection, with quadrature is adjusted ac-
cordingly. The 852 nm entangled arm is combined with an orthogonally polarized
local oscillator (LO) via a polarizing beam splitter to measure the polarization
stokes quadrature of light. The relative phase is locked at π/2, allowing the LO
to measure the amplitude quadrature of the 852 nm arm.
The combined beam is then shaped by a top hat beam shaper for homogeneous
interaction with the prepared negative mass spin oscillator. A half-wave plate,
set before the atoms at an input polarization angle α, is adjusted specifically to
facilitate only the QND Faraday interaction. The light, carrying the atomic sig-
nal, is then directed to a balanced polarimeter to measure the phase quadrature
of light. During data processing, the two photon currents are summed or sub-
tracted with an optimal filter ’g’ , based on the homodyne detection phase of the
1064 nm arm and sideband frequency Ω. Subsequently, we utilize the Welch’s
method from scipy to perform a fast Fourier transform of the combined power
spectrum density and analyze the quantum correlation.
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 filter g

Figure 7.1: Scheme of negative mass spin oscillator enhanced EPR entan-
glement. The 852 nm and 1064 nm lasers serve as local oscillators and generate the
473 nm pump laser for the nondegenerate optical parametric oscillator (NOPO) via the
sum frequency generator (SFG). The produced two color entangled beams from NOPO
are separated by a dichroic mirror. The 852 nm mode is combined with a filtered local
oscillator from a mode cleaner and is locked with a π/2 phase shift. These two beams
maintain orthogonal polarization relative to each other at the output of a polarizing beam
splitter, then the combined beams are shaped into a top hat beam to homogeneously in-
teract with the atomic ensemble prepared in a negative mass configuration. The light
and atomic interaction is chosen at QND interaction via the input polarization angle α,
and finally detected with a balanced polarimeter. Meanwhile, the 1064 nm entangled
mode is combined with another local oscillator using a beam splitter, where the relative
phase can be adjusted accordingly. The detected two photocurrents from both modes are
then processed with an optimal weight ’g’; the choices for the subtraction or summation
are selected based on the detected 1064 nm quadrature. See text for more details.
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7.1.1 EPR entanglement source
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Figure 7.2: Performance of the measured EPR entangled source. Noise levels
are scaled relative to the combined shot noise of signal and idler fields. From top to
bottom, the curves represent: maximum anti-squeezing (purple curve), thermal noise
with 1064 nm (or 852 nm) one arm only (orange curve), combined shot noise and single
arm shot noise (dark and light blue, respectively), and squeezing with red color and
electronic noise level with teal color. By fitting the above noise traces , we extracted
a common squeezing parameter r of 1.34 and total losses (balanced) of around 86.5% .
These measurements were performed by Valeriy, Tulio, and Andrea.

Now, let us first review the performance of our entangled source. Figure.7.2 illus-
trates the noise spectrum of the combined two-photon current without interacting
with atomic ensemble. These spectra serve as calibrations for assessing the per-
formance of the entangled source. The noise level depicted is normalized to the
combined shot noise (dark blue curve), which is 3 dB above the single-arm shot
noise (light blue curve). The electronic noise is -15 dB relative to the combined
shot noise. Based on the measured -7 dB EPR squeezing and 11 dB antisqueez-
ing, and considering approximately ∼ 5.1 dB of thermal noise from one arm of
EPR source, we estimate a squeezing factor r ≈ 1.34, as introduced in the first
chapter, with a detection efficiency of approximately 86.5% for each arm. In this
measurement, the phase noise associated with the pump gain for the OPO can
be considered negligible as discussed in page 56 of Valeriy’s PhD thesis [33]. It
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is also important to note that for proper quantification of the quantum enhance-
ment with an EPR entangled source, one should compare the combined quantum
noise to the one-arm shot noise level (light blue). Thus, the 3dB penalty can be
accounted for during the sensitivity analysis.

7.1.2 Atomic spin ensemble

We will then revisit the calibrated atomic system. To model the atomic spin
noise as depicted in Fig.7.3, we utilize parameters observed at -5 dB pondermo-
tive squeezing, combined with an effective thermal occupation of nS ≈ 3.5 and
1.5 dB of atomic broadband noise (teal curve). By replacing the input noise from
vacuum with the previously calibrated EPR thermal noise, we emulate the spin
noise driven by one of the EPR pair. As shown in the red curve, this noise is
significantly greater than the observed EPR entangled noise due to the pondero-
motive effect of the spin oscillator. Consequently, it becomes necessary to apply
specific post-processing techniques to accurately present our intriguing frequency-
dependent rotation of the EPR entangled light with the atomic spin oscillator.
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Figure 7.3: Simulation of spin noise with the injection of EPR thermal noise.
Utilizing the calibrated atomic parameters extrapolated from previously measured -5 dB
pondermotive squeezing and a squeezing factor r = 1.34, we predict the spin noise when
the vacuum is replaced with one arm of the entangled pair, represented by red dashed
curve. The original spin noise and -5 dB pondermotive squeezing are depicted in grey.
Additionally, the reconstructive atomic thermal noise and broadband noise, which do not
correlate with the other entangled arm, are shown in purple and teal color, respectively.
The model parameters include a measurement readout rate ΓS of 12kHz, linewidth γS of
200 Hz, atomic thermal occupation nS : 3.5, 1.5 dB of atomic broadband noise with an
overall bandwidth of 150 kHz, and a total measurement efficiency of 86.5%.
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7.2 Theoretical model
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Figure 7.4: EPR correlations as a function of squeezing factor r. The observed
EPR squeezing from the combined entanglements faces a 3 dB penalty due to doubled
shot noise or uncorrelated sidebands associated with each entangled mode of EPR pair,
as depicted by the teal curve. This contrasts with the level of single-mode squeezing,
represented by the blue curve, under the identical squeezing factor r condition. However,
this 3 dB penalty of the combined EPR-correlated quantum noise can be effectively
mitigated, as shown by the orange curve, via the application of an optimized filter gain
g on one arm of the entangled pair, particularly at lower squeezing factor.

Let us elaborate a bit more on the optimal filter gain ’g’. While we do not
currently have a gravitational wave interferometer to directly demonstrate the
broadband quantum noise reduction via the joint measurement of the hybrid sys-
tem, we can reformulate our proof-of-principle experiment in terms of producing
conditional, frequency-dependent EPR squeezing. This process can be analo-
gous to monitoring the quantum noise of EPR-entangled fields reflected from a
detuned filter cavity [29], which selectively reduces quantum backaction noise (
from the amplitude quadrature ) and shot noise ( from the phase quadrature )
while the detuned filter cavity rotates the relative phases of entangled fields. This
frequency-dependent reduction in quantum noise results from the ponderomotive
squeezing effect in atomic spin oscillator, suggesting that the atomic frequency
response, given sufficient optical depth, can both amplify and rotate the quan-
tum noise beyond the merely cavity’s linear phase dispersion. Such pondermotive
effect enables significant quantum noise cancellation at low frequency where the
quantum backaction is predominant. However, our focus currently remains on
the frequency-dependent rotation.
To effectively demonstrate this rotation as a filter cavity, it is crucial to employ
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a Wiener filter gain ’g’ in processing the recorded photocurrents. This filter gain
g(Ω), presented here in frequency domain for clarity, will be applied to the time
domain photon current. By adjusting this weighted gain in the 852 nm arm, we
can maximize the quantum correlation between the two correlated photocurrents.
Considering the high sideband frequency in the absence of additional spin noise
( atomic thermal noise, backaction noise, and broadband noise ) introduced by
atoms, this gain g(Ω), helps mitigate the inherent 3 dB penalty associated with
the conditional squeezing measurements, as shown in Fig.7.4. This approach is
particularly effective when the squeezing factor r is low and also compensates for
varying losses in each arm.
Integrating the atomic spin noise, we proceed to represent the previously intro-
duced spectral densities for the interferometer (1064 nm) and atomic spin ensem-
bles (852 nm), denoted as σI and σS , respectively. The expressions

〈
X̂ in

L X̂ in,†
L

〉
and

〈
P̂ in

L P̂ in,†
L

〉
indicate the input quantum noise for the amplitude and phase

quadratures. Additionally, σIS corresponds to the cross-spectral density between
the two EPR pairs and is influenced by the detection phase. The following cal-
culations have been modified based on the joint measurement discussed at the
end of chapter 3. Assuming the Larmor frequency significantly exceeds the spin
decay term ΩS ≫ γS , the thermal noise component can be simplified with one
susceptibility function χS(Ω) :

σI(Ω) = [sin2 ϕ1064︸ ︷︷ ︸〈
P̂ in

L P̂ in,†
L

〉 + cos2 ϕ1064︸ ︷︷ ︸〈
X̂in

L X̂in,†
L

〉 ] cosh 2r,

σS(Ω) = [ 1︸︷︷︸〈
P̂ in

L P̂ in,†
L

〉+ Γ2
S |χS(Ω)|2︸ ︷︷ ︸〈

X̂in
L X̂in,†

L

〉 ] cosh 2r + 4ΓSγS |χS(Ω)|2(1/2 + nS),

σIS(Ω) = σ∗
SI(Ω) = [sin ϕ1064︸ ︷︷ ︸〈

P̂ in
L P̂ in,†

L

〉+ ΓSχS(Ω) cos ϕ1064︸ ︷︷ ︸〈
X̂in

L X̂in,†
L

〉 ] sinh 2r.

(7.1)

Here the value of filter gain, g(Ω) is strategically selected to minimize the spec-
trum density of the combined noise. This optimization is achieved by taking the
derivative of combined spectrum with respect to g and aligns with the criteria
detailed in [30, 45]:

g(Ω) =
σ∗

IS

σS(Ω)
=

σSI

σS(Ω)
=

[sin ϕ1064 + ΓSχS(Ω)∗ cos ϕ1064] sinh 2r[
1 + Γ2

S |χS(Ω)|2
]

cosh 2r + 4ΓSγS(|χS(Ω)|2)(1/2 + nS)
.

(7.2)
This selected filter gain g(Ω) optimizes the alignment of noise at 852 nm with
the quantum noise at 1064 nm, thereby facilitating the demonstration of fre-
quency dependent rotation of EPR correlations while minimizing the influence of
uncorrelated quantum noise, such as atomic thermal noise (or broadband noise),
particularly in the backaction-dominant frequency band. Incorporating this op-
timized filter gain into the combined photo currents enables us the calculation
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of the power spectral density (PSD) for the joint measurement of the hybrid
light-atomic system, provided that the parameters for each individual system are
known. Additionally, the PSD incorporates separated losses, ηI and ηS , integrat-
ing them into the combined noise spectrum as follows:

Scombined(Ω) = ηIσI(Ω) + ηS |g(Ω)|2σS(Ω)

− √
ηIηSg(Ω)σIS(Ω) − √

ηIηSg(Ω)∗σSI(Ω)

+ (1 − ηI) + |g(Ω)|2(1 − ηS)

= ηIσI(Ω) + ηS |g(Ω)|2σS(Ω)

− 2√
ηIηSRe (g(Ω)σIS(Ω))

+ (1 − ηI) + |g(Ω)|2(1 − ηS),

(7.3)

and the new optimal weight, including the losses, will be expression as:

g(Ω) =

√
ηIηS [sin ϕ1064 + ΓSχS(Ω)∗ cos ϕ1064] sinh 2r

ηS

[(
1 + Γ2

S |χS(Ω)|2
)

cosh 2r + 4ΓSγS(|χS(Ω)|2)(1/2 + nS)
]
+ (1 − ηS)

.

(7.4)
Upon analyzing the spectrum of the combined photo currents, the shifts of the
minimal squeezing observed in noise spectrum across various homodyne phases
at 1064 nm can be attributed to the atomic spins functioning as a detuned filter
cavity that frequency dependently rotating the squeezing angle. In this configu-
ration, the spin oscillator selectively rotates the 852 nm light quadrature across
different sideband frequencies, resulting in a frequency shift of the maximal con-
ditional EPR squeezing.

7.3 Simulations based on current calibrated experi-
ments parameters

Fig.7.5 illustrates how quantum backaction noise in amplitude noise projects into
the light phase quadrature via the pondermotive atomic frequency response. On
the phasor diagram, the small arrow on the dotted circle represents the selection
of the homodyne detection phase. The amplitude quadrature occurs when the
small arrow (local oscillators, LOs) aligns with the large dotted arrow indicating
the carrier of entangled arm, while the phase quadrature is when the small arrow
is orthogonal to the large arrow. The homodyne measurement sums the projection
of quantum noise from the two Ωcarrier ± Ω sidebands onto the LO’s direction.
To observe EPR squeezing, it is necessary to subtract the 852 nm and 1064nm
photo currents when both quantum noise circles along the LO direction, and to
sum the currents when one arm is out of phase (along negative direction) relative
to the aligned LO arm. More details will be presented in the follow section,
combined with specific configurations.
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Figure 7.5: Phasor representation of two-mode entangled states after interac-
tion with an atomic spin oscillator. The stick-dashed circles indicate the entangled
sidebands around carrier frequency marked by corresponding colors, for example, a red
small circle at 852 nm for one negative frequency correlates with a similar red circle
for 1064 nm for the corresponding positive frequency. These small circles represent the
quantum noise in amplitude quadrature of the entangled fields (in phase with carrier
of 852 nm mode), while the small triangles represent the phase quadrature of the same
fields. The small arrows indicate the selected homodyne detection phases: the 852 nm
arm is set at the phase quadrature of light (sum of two ± sidebands), while the quadra-
ture on 1064 nm is adjusted based on the frequency response of the atomic oscillator.
The dispersion, Re[χs(Ω)], and dissipation, Im[χs(Ω)], frequency responses of negative
mass spin oscillator to the quantum noise of probe light are presented as solid and dot-
ted orange curves,respectively; The |χs(Ω)|, reflecting the measured spin noise, is shown
with a transparent orange curve. The ponderomotive squeezing effect of spin oscillator
on the quantum noise in the quadrature sidebands of the 852 arm is also depicted. See
text for more details.

7.3.1 Combined quantum noise with real optimal filter Re(g(Ω))

The ideaa of presenting the frequency-dependent squeezing in this manner was
developed together with Valeriy Novikov. The noise spectrum density of the com-
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bined two simulated photon currents is depicted in Fig.7.6. We adjust only the
relative weight of the two current in the time domain, representing the real part
of the optimal Wiener gain Re(g(Ω)). Initially, we consider a scenario where the
sideband frequency is sufficiently high such that the atomic frequency response
has minimal impact. For simplicity, we also neglect the broadband noise in the
current simulation. The homodyne measurement is set at the phase quadrature
of light, where the real gravitational wave signal would reside. In this high fre-
quency regime, the quantum noise of current GWDs is the light shot noise in the
observed phase quadrature. To reduce this shot noise, the detection phase is set
at π/2, measuring the anti-correlated sidebands. The sum of two signals with
optimized weight results in quantum noise reduction at this frequency rang, as
indicated by the red dash curve, which the combined quantum noise is 6 dBbelow
the one arm 1064 nm shot noise. At low frequencies, combined noise aligns with
the level of one arm’s EPR thermal noise. This is because the influence of un-
correlated quantum noise in 852 nm is mitigated by setting the optimized wiener
gain at g ∼ 0.
Reducing the sideband frequency involves the quantum backaction on the light
due to the interaction with the atomic spin oscillator. At a certain frequency
where only the dispersion effect emerges, the spin oscillator begins accumulating
quantum noise from the amplitude quadrature of light and project it directly
into the phase quadrature with amplification of 1. To simultaneously reduce this
equally existing phase and amplitude noise in the output phase quadrature, we
adjust the homodyne phase for 1064 nm to π/4, and select the wiener gain on
852 arm to optimized the measured quantum noise as shown in Fig.7.5. The com-
bined quantum noise in this configuration now changes to the purple curve, with
the minimal squeezing now shifting to a lower frequency. The slight reduction
in maximal squeezing is due to the uncorrelated atomic thermal or (projection)
noise. Overall, the shift in maximal squeezing can be understood as the atomic
spin effectively rotating the phase of correlated quantum noise at the 852 arm
relative to 1064 nm arm by π/4 at this specific sideband frequency.
Keep reducing the frequency will effectively rotate the phase of correlated quan-
tum noise even further. In reality, the spin oscillator also pondermotively ampli-
fies the quantum fluctuations and projects them onto the light phase quadrature,
but this process also incorporates the imaginary frequency response of spin os-
cillator. In particular when the frequency is near atomic resonance where the
dissipation coupling dominates, adjusting the relative weight Re(g(Ω)) is not
sufficient to cancel quantum noise in this regime as shown by the orange curve
in Fig.7.6. Nevertheless, the observation of tiny squeezing around the Larmor
frequency indicates the atoms can still rotate the quantum noise by nearly π/2.
Moreover, when we scan each homodyne readout angle along with their com-
bined quantum noise, these arrangements enable us to construct a 2D color plot
where we can observe the shift of the minimal squeezing for each detection angle
at different sideband frequencies, effectively presenting our targeting frequency-
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dependent rotation.

Figure 7.6: Spectra of combined quantum noise and demonstration of fre-
quency dependent squeezing angle optimized with real number filter gain
Re[g(Ω)]. Noise levels are scaled relative to the 1064 nm arm shot noise. Upper plot:
Spectra of combined quantum noise for three different readout angles (0, π/4 and π/2) of
1064 nm arm. Each spectrum is combined with the associated optimal filter gain ’g’ for
two correlated photon currents. The maximal noise level of each curve aligns with the one
arm EPR thermal noise, while the anti-squeezing is around 14dB above the shot noise.
Lower plot: Simulated noise spectrum as a function of the readout detection angle at
the 1064 nm arm and its sideband frequency. The frequency-dependent phase transition
of the maximal entanglement squeezing, indicated by the blue area, demonstrates the
frequency dependent rotation of the phase of 852 nm entangled mode due to the atomic
ponderomotive squeezing effect. However, at around 10 kHz near the atomic Lamor
frequency, the quantum noise cannot be fully canceled due to the dominant imaginary
dissipation response of the spin oscillator. The detailed parameters for this simulation
are presented in tab.7.9.
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7.3.2 Combined quantum noise with complex optimal filter g(Ω)

Figure 7.7: Spectra of combined quantum noise and demonstration of fre-
quency dependent squeezing angle with optimized complex filter g(Ω). Noise
levels are scaled relative to the 1064 nm arm shot noise. The plots illustrate how two
photocurrents, when combined with a complex filter gain, effectively minimize the quan-
tum noise across the wide range of the sideband frequencies. This reduction is especially
significant around the atomic Larmor frequency, where the quantum noise is primarily
driven by the imaginary part of the atomic response. By fitting the simulated readout
phase as a function of sideband frequency to a filter cavity expression, the resulting
frequency-dependent squeezing can be seen as the reflection of the squeezed light from
a detuned filter cavity. The rotation presented in this plots can be achieved by means
of a filter cavity with an effective bandwidth of 5 kHz, with the carrier light detuned by
11 kHz from the cavity’s resonant frequency. Moreover, this effective bandwidth can be
further reduced by adjusting the spin readout rate and total spin decoherence rate.
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In revisiting the theory model for optimal gain as in eq.(7.4), we notice that the
optimal wiener gain should be a complex number. Incorporating the imaginary
part into the filter gain ’g’ facilitates the full reduction of quantum noise around
the atomic resonant frequency, as shown in the top plot of Fig.7.7. The result
illustrated in the bottom figure now clearly demonstrates the rotation of the
maximal EPR squeezing, marked with the blue area. This phenomenon is further
analyzed by fitting the read out detection angle as a function of the sideband
frequency, using the introduced detuned filter cavity function:

ϕopt(Ω) = arccot
[

2δf γf

γ2
f − δ2

f + Ω2

]
. (7.5)

Here δf represents the cavity detuning and γf denotes the cavity’s full width half
maximal (FWHM) bandwidth. Interestingly, our analysis reveals that the atomic
spin oscillator effectively functions as detuned squeezing light, reflected from a
filter cavity with 11kHz detuning and a 5 kH bandwidth (FWHM). Though with
our current atomic vapor cell configuration does not yet meet the gravitational
wave observatory’s stringent filter cavity requirement, which typically demands a
50 Hz bandwidth, met by an approximately 300 m long filter cavity with a Finesse
of ≈ 5000 [126] . our hybrid system offers a substantial reduction in physical size.
Additionally, we can effectively address the atomic damping rate by redesigning
the cell geometry, such as using a vapor cell with a increased 5mm cross-section.
Our proposal introduces a completely different approach to implementing the
frequency-dependent quantum noise rotation. In our setup, this effective cavity
detuning in our system can be finely controlled by adjusting the atomic Larmor
frequency via the bias magnetic field, greatly simplifying the technique challenge
of maintaining the probe light detuning relative to a super narrow filter cavity
over long-durations.
Furthermore, exploring the imaginary part of the optimal gain ’g’ in the time
domain indicates the need to apply a frequency-dependent phase shift to compen-
sate the phase lag introduced by the damping of the atomic spin oscillator. This
aspect becomes particularly intriguing when the sideband frequency is slightly
off the atomic resonant frequency, where both the real and imaginary response
manifest, creating complex quantum correlations. Proper manipulation of these
correlation would require heterodyne measurement, which would entail additional
image vacuum costs [127], or synodyne detection, where one could adjust the rel-
ative phase of two frequency sidebands separately [31, 128]. The fully reduction
of these complex quantum correlations will be very interesting to explore in our
future experiments.

162



7.3.3 Combing with broadband atomic noise
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Figure 7.8: Spectra of the simulated frequency dependent squeezing with
atomic broadband noise. Assuming that the two correlated photocurrents are com-
bined with only the real part of the optimal filter, and +1.5 dB of atomic broadband
noise is introduced into the simulation, we observe a upward frequency shift for minimal
squeezing when detection phase is locked at π/2 . This shift results from the uncorrelated
broadband noise deteriorating the EPR entanglement. Additionally, the broadband noise
influences the level of the maximal squeezing in a mixed homodyne quadrature π/4, and
it is barely noticeable close to the amplitude quadrature of light at 0. The squeezing
factor used for simulation is r: 1.34, with a total efficiency of 86.5% .

To better predict with practical experimental conditions, we have incorporated
1.5dB of atomic broadband noise into the combined quantum noise spectrum.
This inclusion allows us to explore its effect on the observed squeezing, in particu-
larly we observe the shot noise dominant at higher frequency is strongly impacted
by the broadband noise, which also compromise the narrow frequency band of the
frequency dependent rotation. At an angle of π/4 , while the broadband noise
influence the level of squeezing, it does not alter the frequency where maximal
squeezing is observed, indicating a consistent rotation angle by the spin oscilla-
tor. This influence is further reduced when approaching atomic resonance, where
the quantum backaction noise predominates over other uncorrelated atomic ther-
mal and broadband noise. Fortunately, the influences of both atomic thermal
noise and broadband noise can be mitigated by employing the virtual frequency
shift, as discussed at the end of the Chapter 3. The reduction of uncorrelated
quantum noise through the application of virtual frequency shift presents another
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Parameters for GW configurations
Parameter Notation Value

EPR squeezing factor r 1.34
losses for 1064 nm ηI 0.86
losses for 852 nm ηS 0.86
Larmor frequency ΩS 10 kHz
Atomic readout rate ΓS 12 kHz
Atomic decay rate γS 200 Hz
Atomic thermal occupation nS 3.5
Atomic broadband noise 1.5 dB
Atomic broadband noise decay rate γbb 150 kHz
Maximal pondermotive squeezing Ssq -5 dB

Table 7.9: Parameters used for modelling frequency dependent EPR squeezing source

interesting avenue for future theoretical and experimental research.
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Chapter 8
Conclusion and Outlook

In this thesis, we have described the presence of the quantum noise in the grav-
itational wave signal regime, which limits the performance of current gravita-
tional wave observatories. We also reviewed several quantum noise engineering
approaches, primarily based on the frequency-dependent phase rotation of the
quantum squeezed states, aimed at achieving broadband quantum noise reduc-
tion across the gravitational wave detection bandwidth. Additionally, we intro-
duced an alternative approach that, instead of using filter cavities, proposes the
preparation of an auxiliary quantum system, such as atomic spins operating in
a negative mass reference frame. This joint measurement of GWDs and atomic
spins opens up the possibility of evading quantum backaction noise [43], which
can be further enhanced with single-mode vacuum squeezed states. To match the
wavelengths of the atomic transition and gravitational observatory, this scheme
is modified to include a parallel measurement using a nondegenerate EPR en-
tangled source as proposed by Eugene and Khalili [45]. This thesis discusses the
experimental preparation and calibration necessary to demonstrate the proof-of-
principle of this concept.
To enhance the light atom interaction strength for better matching with the
frequency responses of GWDs, we redesigned and significantly enlarged the cell
channel to 2*2*80 mm3. This was followed by the implementation of a new bias
coil systems that provide the homogeneous magnetic fields within the interaction
channel area. We also apply a top hat beam to interact homogeneously with
atoms and maximally mitigate the broadband atomic responses. After years of
improvement, we successfully demonstrated -5 dB ponderomotive squeezing of
light, corresponding an observed quantum cooperativity of 3. Meanwhile, af-
ter mitigating additional atomic responses at near-DC sideband frequencies and
applying an active noise eater, we showed that this quantum backaction noise
dominated spin oscillator can maintain squeezing down to sub-kHz. This ob-
served quantum noise limited spin oscillator operates in the gravitional wave sig-
nal regime even when the probe light is transitioned to a more noisy Ti:sappire
laser, setting the stage for incorporation with EPR entangled source.
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Building on the calibrated atomic spin oscillator prepared in a negative mass ref-
erence frame [94] and the produced nondegenerate EPR entanglement [129], we
present numerical simulations demonstrating that these hybrid atom-EPR quan-
tum systems, combined with an optimized weight g, pave the road for generating
a frequency-dependent EPR squeezing source. This development opens up the
opportunity to improve the gravitational wave observatory sensitivity beyond the
standard quantum limit (SQL) over a broadband frequency range.
Beyond enhancing the sensitivity for gravitational wave signals, the presented
hybrid system can also be applied to magnetic field sensing. The entangled 1064
nm arm provides an additional degree of freedom to conditionally reduce the
quantum shot noise and backaction noise of the 852 nm atomic beam when the
spin system functions as an optically pumped magnetometer, as demonstrated in
[130, 131]. Moreover, the atomic ensemble demonstrated here can serve as a long
coherence time quantum memory system [90]. With the entanglement channel
built between the 1064 nm and 852 nm fields, this hybrid system can potentially
enable quantum teleportation between the telecom wavelength and an auxiliary
atomic system. This opens up the possibility of further enhancing the precision of
quantum sensing by extending the coherence lifetime of the sensors, such as opti-
cally levitated nanoparticle [132], operating in 1064 nm arm through a quantum
memory via our auxiliary atomic ensemble [133].
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8.1 Last Minute Experimental Achievement
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Figure 8.1: Spectra of combined quantum noise with the atomic spin oscil-
lator operating at 55 kHz are presented. These curves demonstrate the combined
quantum noise with numerically optimized weight gain g for each homodyne detection
phase at 1064 nm arm. All noise traces are normalized to the 1064 nm shot noise (light
blue curve) while the combined shot noise is 3 dB above (royal blue curve), the measured
EPR squeezing (dark red curve) is 2.5 dB below the one arm shot noise and the thermal
noise noise (sand curve) is around 8 dB above the one arm shot noise. The combined
quantum noise being less than 0 indicates the conditional quantum noise enhancement for
the 1064 nm mode. From the figure, we can clearly observe the shift of minimal quantum
noise for the joint measurement among red, purple, and orange curves, representing the
atomic response frequency dependently rotating the phase of 852 nm entangled field. In
the inner plot, we observe the combined quantum noise falls below the one-arm shot noise
from 5◦ (close to amplitude quadrature) to 90◦ (phase quadrature) homodyne detection
angles, indicating a wide range of quantum noise reduction (or sensitivity improvement).
These measurement was performed with -4 dB ponderomotive squeezing of light with
the spin oscillator and -5.5 dB EPR squeezing without the influence of atoms. Credit for
this work goes to my wonderful GWD team: Valerii Novikov, Maïmouna Bocoum, Tulio
Brasil, Andrea Grimaldi.

Meanwhile, in alignment with the conclusions of this PhD work, our experiments
have yielded a significant achievement by demonstrating the frequency-dependent
phase rotation of the EPR entangled pairs, as shown in Fig.8.1, when the atomic
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spin oscillator operates at 55 kHz with -4dB ponderomotive squeezing and -5.5
dB EPR squeezing including the cell transmission. These preliminary results
are achieved by combining two recorded photo-currents with the numerically op-
timized constant gain g (optimized for one sideband frequency only) for each
1064 nm homodyne phases across the sideband frequency. Then we compute the
power spectral density of the combined signal using Wlech’s method. These re-
sults clearly show the atomic spin ponderomotively ’rotate’ the phase of the 852
nm entanged arm, which is evidenced by the shifts of the maximal quantum cor-
relation in Fourier frequency as we scan the 1064 nm homodyne angle to mimic
the interferometer optomechancis responses.
From the inner plots, the observed quantum noise of the joint system goes below
the 1064 nm shot noise level, indicating the quantum correlation enhancement
once this arm is used in combination with the probe in gravitational wave inter-
ferometer. Though it is still a bit far from the low acoustic frequency range (≤
10 kHz) [134], where the gravitational wave signal resides. At moment, the main
limitation that prevents us from reaching acoustic frequency range is the classi-
cal amplitude noise which originates from the ti: sapphire pump laser intensity
noise. Additionally, low-frequency phase modulation, utilized to lock the laser
wavelength, is also converted into amplitude modulation after mode cleaner that
deteriorates the quantum noise dominant performance of probe light, reducing
the observed atomic ponderomotive squeezing down to -2 dB.
The next improvement involves modifying the noise eater to better attenuate
the amplitude noise and mitigate the phase modulation, with the well controlled
classical noise in this frequency range, we can also explore possible methods to
reduce atomic thermal noise via spin squeezing while maintaining the quantum
backaction noise, which can further improve our quantum cooperativity. Ulti-
mately, once we manage to recover the -4 dB ponderomotive squeezing at this
acoustic band, we will demonstrate the predicted frequency dependent rotation
of the EPR entangled source, resulting in a wide range of quantum sensitivity
enhancements.
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Part IV

Appendix
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Supplementary information

Spin and density operators

In our experiment, the atomic spins are prepared along the quantization axis in
the x-axis, while we probe the transverse component along the z-axis. In this ba-
sis, the relations between the collective spin operators and the density operators
Âm,m are established:
(Here, we provide both the both the collective spin operators and density op-
erators, as the spin operators are more intuitive to understand the interaction
Hamiltonian, while the density operators are more convenient to derive the equa-
tions of motions [49, 50, 61])

F̂x =
∑
m

mÂm,m,

F̂y =
1
2
∑
m

√
F (F + 1) − m(m + 1)

(
Âm+1,m + Âm,m+1

)
,

F̂z =
1
2i

∑
m

√
F (F + 1) − m(m + 1)

(
Âm+1,m − Âm,m+1

)
,

F̂0 =
∑
m

(
Âm,m

)
,

F̂+ =
∑
m

√
F (F + 1) − m(m + 1)

(
Âm+1,m

)
,

F̂− =
∑
m

√
F (F + 1) − m(m + 1)

(
Âm,m+1

)
,

We also provide the high order components, which will be helpful for calculating
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the tensor noise and energy shifts:

F̂ 2
x =

∑
m

m2Amm,

F̂ 2
y =

1
4
(
F̂+F̂+ + F̂−F̂− + F̂+F̂− + F̂−F̂+

)
,

F̂ 2
z = −1

4
(
F̂+F̂+ + F̂−F̂− − F̂+F̂− − F̂−F̂+

)
,

(
F̂ 2

x + F̂ 2
y + F̂ 2

z

)
= F (F + 1),(

F̂ 2
x − F̂ 2

y

)
≈
(
F̂ 2

x − F̂ 2
z

)
≈ F

(
F − 1

2

)
,

F̂yF̂z + F̂zF̂y =
1
2i

∑
m

√
(F − m)(F + m)(F + 1 + m)(F + 1 − m),

×
(
Âm+1,m−1 − Âm−1m+1

)
≈ 0,

F̂xF̂y + F̂yF̂x =
1
2
∑
m

√
F (F + 1) − m(m + 1)(2m + 1)

(
Âm+1,m + Âm,m+1

)
≈sgn(Fx)(2F − 1)F̂y,

F̂xF̂z + F̂zF̂x =
1
2i

∑
m

√
F (F + 1) − m(m + 1)(2m + 1)

(
Âm+1,m − Âm,m+1

)
≈sgn(Fx)(2F − 1)F̂z,

where sgn(Fx) is the sign of Fx. For the work described in this thesis, we nor-
mally work with the ground state of atomic spin F = 4.

Commutations between spin operators

Here we also provide the the commutators between different spin operators that
can be useful when deriving the equations.[

F̂x, F̂y

]
= iF̂z[

F̂x, F̂ 2
−

]
= +

(
F̂xF̂z + F̂zF̂x

)
− i

(
F̂yF̂z + F̂zF̂y

)
[
F̂x, F̂ 2

+

]
= −

(
F̂xF̂z + F̂zF̂x

)
− i

(
F̂yF̂z + F̂zF̂y

)
[
F̂x, F̂ 2

z

]
= −i

(
F̂yF̂z + F̂zF̂y

)
[
F̂y, F̂ 2

−

]
= −i
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Transfer functions of magnetic coils

Figure A1: Impact of classical noise on atomic spin noise spectra due to bias
magnetic noise from noisy current sources. We present the two different current
supplies. For the current source that contains the audio/radio current noise, this noise
subsequently converts to RF magnetic fields that drive the atomic spin oscillator. Con-
sequently, the recorded atomic spin noise is predominantly influenced by classical noise.
We also plot the predicted quantum noise-limited spin noise from previous calibration
used as a reference for comparison.

We have demonstrated that, in order to observe the quantum dynamics of atomic
system, it is crucial to mitigate various sources of classical noise across the fre-
quency band of interest. One of the major sources in our experiments was the
audio current noise from the bias coils’ current supply. As shown in Fig.A1, the
non-ideal DC current supply generates audio current noise, which converts to
ultra-low frequency magnetic fields that excites the atomic spin oscillators and
overwhelm the quantum noise we aim to explore. Therefore, After the upgra-
dation of our current source, we dramatically reduce the level of classical mod-
ulations on atoms, as shown in orange curves in bottom plots. However, the
residual can still drive the atomic spins as the system reaches the lower acous-
tic frequency band. Consequently, a future improvement for the atomic system
would be to design a proper low-pass filter to cut off the current noise and to en-
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gineer the impedance transfer functions, as shown in Fig.A2, of our coil systems
to maximally attenuate the current noise across the acoustic frequency band.
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Figure A2: Impedance transfer functions of the magnetic coils and heater
system. To better quantify the influence of classical current noise in the audio band due
to the coils and heater, we measure the transfer functions of each coil’s impedance with a
locking-in amplifier. Higher impedance in the frequency range indicates minimal current
passing through, which in turn reduces the generation of the audio/radio magnetic fields.
We observed the heater has a relative constant resistance across the frequency band of
interest, as we use the non-magnetic material to heat the system. The purple curve
(Rec coil) shows a significant increase in impedance above 500 Hz, while the blue and
orange curves for other coils attenuate more current noise at much higher frequencies
(≥ 100kHz). Since we typically need to combine both Rec and PCBs coils to produce
a homogeneous magnetic field, it would be more beneficial to apply low-pass filter on
PCBs coils to block noise at audio frequencies.
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