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Abstract

Optomechanics is a rapidly developing field, exploring the subtleties of the interaction between light and
mechanical oscillators. Thanks to the advances in system design and fabrication, quantum effects have be-
come significant in a range of optomechanical systems. On the mechanical side, mechanical oscillators
consisting of billions of atoms have recently been prepared in the motional ground state, squeezed state,
single excitation (Fock) state and entangled state, which shows the great potential of massive quantum state
preparation and control. By combining mechanical oscillators and qubits, researchers have also achieved
complicated manipulation of mechanical quantum states. On the optical side, through the interaction with
mechanics, ponderomotive squeezing, and optical-optical entanglement have been realized, which demon-
strate the power of optomechanical systems as a quantum media to control optical states.

Apart from preparation of quantum states of light and mechanics, optomechanics provides a platform for
ultra-sensitive displacement and force measurements, which is key in many sensing applications like grav-
itational wave detection and force sensing by magnetic resonance force microscopy (MRFM). A quantum
limited measurement with high signal-to-noise ratio is also a prerequisite for measurement-based quantum
control of mechanical systems, like feedback cooling to the quantum ground state. To realize this measure-
ment, the experimental apparatus needs to enable high detection efficiency and strongmeasurement, simulta-
neously, which is a demanding requirement. Existing optomechanical systems either have strong interaction,
but low detection efficiency or a noisy detection chain, or have high detection efficiency, but cannot sustain
enough optical power to get strong interaction. Combining these two features is so far a unique advantage
of our membrane-in-the-middle system (MIM) with ultra-coherent soft-clamped membrane, which will be
introduced in this thesis. With this system, we have acquired displacement measurement record with record
breaking quality, only 33% above the Heisenberg Limit, a fundamental limit for displacement measurement.
With this high quality measurement record, we achieved the first feedback cooling of a mechanical mode to
its quantum ground state, which integral to other measurement-based quantum control protocols.

High detection efficiency and strongmeasurement is also a key for observing effects of optomechanically
induced quantum correlations. Ultilizing this correlation, we demonstrate the first displacement and force
sensing below the Standard Quantum Limit (SQL), a milestone in quantum metrology, which opens the
gate to the world of sub-SQL sensing. By having two optical fields interacting with the same mechanical
oscillator, we also demonstrate ponderomotive entanglement between the two optical fields, which provides
a entanglement generator compatible with various condensed matter based quantum systems. This is a
necessary building block for optical-microwave entanglement, a useful resource for quantum networks and
the quantum internet, eventually.



Sammenfatning

Optomekanik er et forskningsfelt rivende udvilking, som udforsker spidsfindighederne i vekselvirkningen
mellem lys og mekaniske oscillatorer. Takket være fremskridt i systemdesign og fabrikation, er kvante-
effekter blevet anselige i en række optomekaniske systemer. På mekaniksiden er mekaniske oscillatorer,
bestående af millarder af atomer, for nyligt blevet forberedt i den bevægelsemæssige grundtilstand, klemte
tilstande, enkelt-exciterede (Fock) tilstande og sammenfiltrede tilstande, hvilket viser det store potentiale
for forberedelse og kontrol af massive kvantetilstande. Ved at kombinere mekaniske oscillatorer og kvan-
tebits har forskere ydermere opnået kompliceret håndtering af mekaniske kvantetilstande. På den optiske
side er ponderomotorisk klemning og optisk-optisk sammenfiltring blevet realiseret gennem vekselvirkning
med mekanikken, hvilket demontrerer styrken af optomekaniske systemer som et kvantemedie til kontrol
af optiske tilstande. Udover forberedelse af kvantetilstande af lys og mekanik giver optomekanik en plat-
form for ultrafølsomme målinger af bevægelser og kræfter, hvilket er centralt for mange sensoranvendelser
såsom detektion af tyngdebølger og måling af kræfter med magnetisk resonans kraftmikroskopi. En kvan-
tebegrænset måling med højt signal-til-støj forhold er ligeledes en forudsætning for målingsbaseret kvan-
tekontrol af mekaniske systemer, såsom feedback køling til den kvantemekaniske grundtilstand. Til denne
type målinger er både en høj detektionseffektivitet og målingsstyrke samtidigt påkrævet af måleapparatet,
hvilket er en udfordrende forudsætning. Eksisterende optomekaniske systemer har enten stærk vekselvirkn-
ing, men lav detektionseffektivitet eller støjende detektionskæde, eller en høj detektionseffektivitet, men er
ikke i stand til at opretholde tilstrækkelig høj optisk effekt til at opnå stærk vekselvirkning. Kombinatio-
nen af disse to egenskaber er på nuværende tidspunkt en unik fordel ved vores mebran-i-midten (MIM)
system, med ultrakohærente, blødt-fastspændte membraner, som bliver introduceret i denne afhandling.
Med dette system har vi indsamlet bevægelsesmålingsoptegnelser af banebrydende kvalitet; blot 33% over
Heisenberggrænsen, der sætter en grundlæggende grænse for bevægelsesmålinger. Med denne høj-kvalitets
bevægelsesmålingsoptegnelse har vi som de første opnået feedback-køling af en mekanisk tilstand til sin
kvantemekaniske grundstilstand, hvilket er grundlæggende for andre målingsbaserede kvantemekaniske
kontrolprotokoller. Høj detektionseffektivitet og målingsstyrke er ligeledes essentielt for observation af
effekterne af optomekanisk inducerede kvantekorrelationer. Ved at udnytte disse disse korrelationer har vi
påvist den første måling af bevægelse og kraft under standardkvantegrænsen, en milepæl indenfor kvan-
temetrologi, hvilket åbner dørene til en verden af sub-standardkvantegrænse målinger.Ved at lade to optiske
felter vekselvirke med den samme mekaniske oscillator har vi ydermere påvist ponderomotorisk sammen-
filtring mellem de to optiske felter, hvilket tilvejebringer en generator af sammenfiltring, der er kompatibel
med forskellige faststofbaserede kvantesystemer. Dette er en nødvendig byggesten for optisk-mikrobølge
sammenfiltring, hvilket er en nyttig ressource til kvantenetværk og, med tiden, kvanteinternettet.
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Chapter 1

Introduction

Optomechanics is a field studying the interaction between electromagnetic (EM) fields andmechanical oscil-
lators. This field of research was first established by the pioneers of the Laser Interferometer Gravitational-
Wave Observatory (LIGO) [2, 3], whose aim was to measure gravitational waves, predicted by the theory
of general relativity in 1916 [4]. When a gravitational wave passes through spacetime, the spatial distance
between two points along the propagation direction will experience an oscillation. By measuring the rela-
tive position between two points in space, one can get information about this oscillation, thus confirming
the presence of a gravitational wave.

a b

Figure 1.1: Interferometric measurement of displacement A figure from [5]. a. Michelson interferometer.
b. Cavity optomechanics.

The idea of the measurement performed in LIGO is based on a Michelson interferometer, as shown
in Fig. 1.1 a, where the movement of the mirror changes the phase of the light of the corresponding arm,
and results in intensity change at the output. By detecting this signal, one can infer the displacement of
the movable mirror. However, the effect of gravitational wave is extremely weak. The peak strain caused
by gravitational wave is of the order 10−21 [6], which means one needs to tell a fractional change of only
10−21 of the original distance. Considering the fact that the LIGO interferometer arms are of of length 4 km,
this demands a displacement measurement of accuracy 10−18 m, three orders of magnitudes smaller than
the diameter of a proton. Therefore, a simple minded interferometer is not enough for this purpose. One
of the key steps in improving the sensitivity is to introduce a cavity in each interferometer arm, as shown
in Fig. 1.1 b, which recycles the light and effectively prolongs the arm length. This is the origin of cavity
optomechanics, whose primary goal is precise displacement measurement.

Since we measure displacement by looking at change in phase, and a clean laser outputs a coherent state,
Fig. 1.2 helps understanding a key point of displacement/phase sensitivity. As there is intrinsic uncertainties
in coherent states (represented by the circles), when the phase change caused by displacement is small, the
two uncertainty circles may merge together, preventing the measurement from resolving this phase change.
This noise is usually referred as imprecision noise. If we increase the amplitude of the coherent state, the
uncertainty circles keep the same size as a property of coherent state, the same phase change can result in well
separated uncertainty circles, which allows us to resolve the phase change. As the amplitude of a coherent
state is given by |𝛼| = √𝑁 , where N is the average photon number in the state, the phase resolution is given
by 1/√2𝑁 , following basic geometry. However, the photons carry some momentum. Upon absorption by
or reflection from the object we are measuring, there is momentum transfer to the object, which perturbs the
future time evolution of the position of the object. If there is randomness in the momentum or number of

1
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Figure 1.2: Phase resolution of coherent states The horizontal and vertical axis are dimensionless quadra-
tures. 𝜃 is the phase of the coherent states. A phase shift is applied to test the phase resolution of coherent
states. Here we compare two cases. The red circles represent a coherent state with small amplitude, before
and after the phase shift. The black circles represent a coherent state with large amplitude, before and
after the same phase shift. In the small amplitude case, the circles have some overlap, which limits the
phase resolution. While in the large amplitude case, the circles are separated far apart, which has no
problem resolving the phase shift.

photons, this displacement will be random as well, which prevent us from getting an accurate measurement.
This effect is called backaction, as it is a result of measurement on the object. Unfortunately, a coherent
state has uncertainty in photon number, the standard deviation of which is given by √𝑁 , following Poisson
distribution. This is manifested by the random arrival time of photons on the mirror, usually referred as
shot noise. For a general optical state, in phase space, this uncertainty in particle number can be seen as
the over lap between the Wigner functions of the state under exam and different Fock states. As Fock states
have azimuthal symmetry, the particle number uncertainty only depends on the radial distance between
the state and the origin, and the uncertainty in amplitude quadrature of the state. For a coherent state, the
amplitude uncertainty is a constant, thus the uncertainty only depends on amplitude √𝑁 . Now we can see
a fundamental trade off between backaction noise and imprecision noise, as a function of photon number, as
illustrated in Fig. 1.3. The minimummeasurable displacement is called the Standard Quantum Limit (SQL),
which was first proposed by Braginsky in 1968 [7].

Mathematically, the Standard Quantum Limit equals the zero point fluctuation of the mechanical os-
cillator. Therefore, having an imprecision noise lower than the SQL is a necessary condition to resolve
zero-point motion, and is a sign of the measurement reaching the quantum regime, when the mechanics is
thermalized to a zero-temperature bath. The imprecision noise normalized to the SQL for a measurement
is thus treated as a figure of merit of displacement measurement sensitivity. To improve this sensitivity,
apart from having more photons by using a stronger laser beam, one can also decrease the cavity linewidth
(increases the number of round trips of a photon), decrease the mass of the mechanical oscillator (increases
zero-point fluctuation), decrease the effective mechanical linewidth (increases the peak value of zero-point
motion), and increase detection efficiency (increases signal-to-noise ratio). Over a century of efforts, dis-
placement imprecision noise has been reduced from tens of orders of magnitude above the SQL to the SQL
level and beyond it, as can be seen from a modified figure from Vivishek Sudhir’s thesis (Fig. 1.4). Since
the first system providing imprecision noise beyond the SQL in 2007, the sensitivity follows a Moore’s law
like tendency until 2016. Our system continues this tendency and achieved 10−7 sensitivity [8], thanks to
the membrane-in-the-middle system [9] with ultra-coherent soft-clamped mechanical oscillator [10].

Though optomechanical systemswere initially used for precisionmeasurements, during the development
of the field, scientists realized that mechanical systems also provide a perfect platform to studymassive quan-
tum systems. Usually, quantum systems are tiny and light, from atomic scale such as atoms, ions, molecules
and color centers of diamond, to microscale such as quantum dots and superconducting qubits. Massive
systems, on the other hand, typically behave in a purely classical fashion, as we know from our daily life.
These two worlds behave drastically different. Studying massive quantum systems enables the exploration
of the boundary between these two worlds. As the technology in optomechanics advances, mechanical os-
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Figure 1.3: The Standard Quantum Limit for displacement measurement Imprecision noise is inversely
proportional to optical power, while quantum backaction noise is proportional to it. The Standard Quantum
Limit is the minimum noise introduced by measurement, minimized over optical powers.

cillators from meso- to macroscopic scales has enabled the achievement of remarkable goals in preparing
massive quantum states, such as motional ground state [8, 12, 13, 14], squeezed state [15, 16, 17], Fock
state [18, 19, 20], optical-mechanical entanglement state [21], and mechanical-mechanical entanglement
[22, 23]. By applying the cat state preparation proposal for levitated particles [24] or combining microwave
cat state preparation techniques [25] and quantum acoustics with superconducting qubits [18, 19], one has
the potential of preparing cat states of massive systems with large distance, which is potentially beneficial
for exploring new physics beyond standard quantum mechanics and classical mechanics, like low energy
signatures of quantum gravity [26, 27, 28, 29].

Quantummechanical oscillators also find their usage in quantum information processing. Due to the long
coherence time compared to many condensed matter based qubits, mechanical oscillators have the potential
of acting as quantum memories [30, 31]. Due to orders of magnitudes slower propagation speed of acoustic
waves, as compared to microwaves, mechanical device can serve as delay lines, while undertake quantum
computing tasks as microwave wave guides [32]. Due to the frequency insensitive interaction between EM
wave and mechanical oscillators, electro-opto-mechanical systems are promising candidates for quantum
transducers [33, 34, 35], which are of relevance for the quantum internet [36] involving different frequencies.

In this thesis, we focus on the effects of optomechanical quantum correlation, which is a natural con-
sequence of optomechanical interaction in continuous wave regime. During a measurement, the amplitude
quadrature of the inputting field pushes the movable mirror (quantum backaction), giving it some random
momentum. After a quarter of mechanical period, this random momentum is rotated into displacement, and
influence the phase quadrature of the light. Thus the two quadratures of the light field are correlated. To
make full use of this quantum correlation, one need to have simultaneously high detection efficiency and
strong measurement (in terms of large amount of quantum backaction). This correlation is the mechanism of
ponderomotive squeezing of light, which was observed in various of optomechanical systems [1, 37, 38, 39].
Compared to the optical squeezed states generated by optical parametric oscillators (OPO), ponderomotive
squeezing has the advantage of working at arbitrary wavelengths. Vyatchanin et al. [40] also proposed a
protocol of overcoming the Standard Quantum Limit using this quantum correlation in 1995. Though pro-
posed more than 20 years ago, previous optomechanical systems suffered from either too weak interaction
or too low detection efficiency. The amount of measured quantum correlation was not enough to overcome
the SQL. Our membrane-in-the-middle system with a soft-clamped mechanical oscillator has the unique
feature of satisfying these two demanding conditions simultaneously, which leads to the first experimental
realization of sub-SQL measurement [41], which will be introduced in Chapter 4 of this thesis. If we have
multiple EM fields interacting with the same mechanical oscillator, this quantum correlation can generate
entanglement between different EM fields. This effect was first demonstrated very recently in microwave
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Figure 1.4: Imprecision noise over the last century A modified figure from [11]. The blue star indicates
the sensitivity from our work.

regime [42], and in this thesis, we will introduce the first realization in the optical regime. The low noise
optical detection allows us to demonstrate the entanglement without assumptions on the noise composition
in the detection. The microwave and optical demonstrations of mechanically mediated entanglement pave
the way to microwave-optical entanglement, which could find its role in the quantum internet.

Apart from discussing the achievements of our MIM system, another goals of this thesis are to provide
a systematic derivation of the theories involved in the projects, to faithfully record the design of the experi-
mental apparatus, the calibration and measurement methods, and to document the operations needed during
the experiments. As the thesis is more technical oriented, it may be less self-contained, and may provide
a less thorough review of the field of optomechanics compared to other theses. Moreover, some supple-
mentary information is expected to appear in Massimiliano Rossi’s thesis. However, I hope this thesis will
resolve most of the conceptual, theoretical and technical problems one may encounter when operating an
MIM system with a soft-clamped membrane, and be a good introduction to the projects we have done.

In Chapter 2 of this thesis, we introduce the basic theory of optomechanics and some consequences
related to the projects introduced in this thesis. In Chapter 3, we introduce the general experimental setup,
system characterization techniques and measurement techniques. In Chapter 4, we introduce the theory and
experiment of the first displacement and forcemeasurement beyond the Standard QuantumLimit. In Chapter
5, we introduce the theory and experiment for the first mechanics mediated optical-optical entanglement.
In Chapter 6, we briefly go through the experiment of the first feedback cooling a mechanical mode to its
quantum ground state. In the last chapter, we discuss two outlooks of our membrane-in-the-middle systems
with ultra-coherent soft-clamped membranes.
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Chapter 2

Basic Theory of Cavity Optomechanics

In this chapter we introduce the optomechanical interaction between one optical mode and one mechanical
mode. We begin with quantum harmonic oscillator, then introduce Gaussian optics, and the interaction be-
tween the mechanical mode and the optical mode through radiation pressure force. Followed by introducing
two consequences of the interaction: the Standard Quantum Limit (SQL) and ponderomotive squeezing.
The latter provides a good analogy to both measurement below the SQL and optical-optical entanglement,
which will introduce in later chapters.

2.1 Quantum Harmonic Oscillator
An isolated quantum harmonic oscillator can be described by the Hamiltonian:

�̂� = 𝑘 ̂𝑞2

2 + ̂𝑝2

2𝑚, (2.1)

where ̂𝑞 and ̂𝑝 are position and momentum operators respectively, while 𝑚 is the mass of the oscillator and
𝑘 ≡ 𝑚Ω2

m is the spring constant, where Ωm the angular resonance frequency of the harmonic oscillator. It
is usually more convenient to work with dimensionless position and momentum operators:

�̂� = 1
√2

̂𝑞
𝑥zpf

= 1
√2

( ̂𝑏† + �̂�) (2.2a)

̂𝑃 = 1
√2

̂𝑝
𝑝zpf

= 𝑖
√2

( ̂𝑏† − �̂�) , (2.2b)

where 𝑥zpf = √ℏ/2𝑚Ωm and 𝑝zpf = √ℏ𝑚Ωm/2 are the standard deviation of the zero point motion and zero
point momentum of the oscillator respectively (will be illustrated later), with ℏ the reduced Planck constant,
and ̂𝑏 (�̂�†) is the annihilation (creation) operator. The Hamiltonian can also be written in terms of these
operators

�̂� = ℏΩm
2 (�̂�2 + ̂𝑃 2) = ℏΩm ( ̂𝑏†�̂� + 1

2) = ℏΩm ( ̄𝑛 + 1
2) , (2.3)

where ̄𝑛 is the phonon occupancy of the harmonic oscillator. When the oscillator only couples to thermal
bath, its occupancy is given by thermal occupancy ̄𝑛th = [𝑒ℏΩm/𝑘B𝑇 − 1]−1, with 𝑇 the temperature of the
oscillator.

It is easy to show the commutation relation of the dimensionless operators:

[�̂�, ̂𝑃 ] = 𝑖. (2.4)

As a direct consequence of this commutation relation, the product of standard deviations (𝜎(�̂�) = (⟨�̂�2⟩ − ⟨�̂�⟩2)
1/2)

is given by:
𝜎(�̂�)𝜎( ̂𝑃 ) ≥ 1

2 . (2.5)

Therefore, the product is finite even for 𝑇 = 0. When 𝑇 = 0 and 𝜎(�̂�) = 𝜎( ̂𝑃 ), the standard deviations of
displacement and momentum are given by 𝑥zpf and 𝑝zpf respectively. This kind of uncertainty is referred as
zero point fluctuation.
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2.1.1 Quantum Fluctuation-Dissipation Theorem
In Eqn. 2.3, we mentioned the effect of thermal environment on mechanical Hamiltonian. To describe other
effects of thermal noise we need quantum fluctuation-dissipation theorem (more details can be found in
[43]), which is typically given in the form of power spectral density (PSD).

For a general quantum operator �̂�, the PSD is defined by

𝑆�̂��̂�(Ω) ≡ lim
𝜏→∞

1
𝜏 ⟨�̂�†

𝜏 (Ω)�̂�𝜏 (Ω)⟩, (2.6)

where �̂�𝜏 (Ω) ≡ ∫𝜏/2
−𝜏/2 �̂�(𝑡)𝑒𝑖Ω𝑡𝑑𝑡 is the Fourier transform of the time domain operator �̂�(𝑡) in the time

window −𝜏/2 < 𝑡 < 𝜏/2. The Wiener-Khinchin theorem links the PSD of an operator with stationary
statistics (i.e. the system is in steady state) to its autocorrelations function by

𝑆�̂��̂�(Ω) = ∫
∞

−∞
𝑑𝜏𝑒𝑖Ω𝑡⟨�̂�†(𝑡 + 𝜏)�̂�(𝑡)⟩𝑡=0 = ∫

∞

−∞
𝑑Ω′⟨�̂�†(−Ω)�̂�(Ω′)⟩. (2.7)

Please notice that �̂�†(−Ω) = [�̂�(Ω)]†.
The quantum fluctuation-dissipation theorem states that, in Markovian limit (the thermal bath has no

memory), the power spectral density of the Brownian force, caused by exchanging phonon between the
harmonic oscillator and thermal environment, is given by

𝑆 ̂𝐹 ̂𝐹 (Ω) = 2𝑚ΓmℏΩ ( ̄𝑛(Ω) + 1) (2.8a)
𝑆 ̂𝐹 ̂𝐹 (−Ω) = 2𝑚ΓmℏΩ ̄𝑛(Ω), (2.8b)

where ̄𝑛(Ω) = 1/(𝑒ℏΩ/𝑘B𝑇 − 1) is the thermal phonon occupancy at frequency Ω, and Γm is the rate of
exchanging energy between mechanics and environment, also referred as mechanical linewidth. The asym-
metry between the positive and the negative frequency component can be used as a robust calibration of
thermal occupancy, as

̄𝑛th(Ω) = 𝑆 ̂𝐹 ̂𝐹 (−Ω)
𝑆 ̂𝐹 ̂𝐹 (Ω) − 𝑆 ̂𝐹 ̂𝐹 (−Ω) . (2.9)

Sometimes, the measurement gives symmetrized spectrum ̄𝑆�̂��̂�(Ω) ≡ (𝑆�̂��̂�(Ω) + 𝑆�̂��̂�(−Ω)) /2, like
in the homodyne measurement described in Section 3.6. In this case, the quantum fluctuation-dissipation
theorem gives

̄𝑆 ̂𝐹 ̂𝐹 (Ω) = 𝑚ΓmℏΩ (2 ̄𝑛(Ω) + 1) . (2.10)
One can recover the result of classical fluctuation-dissipation theorem ̄𝑆 ̂𝐹 ̂𝐹 (Ω) = 2Γm𝑚𝑘B𝑇 by taking the
high temperature limit 𝑘B𝑇 ≫ ℏΩ.

2.2 Gaussian Optics
Now we introduce some properties of optics. In this thesis, we are always dealing with Gaussian beans,
which are beams ofmonochromatic electromagnetic fieldwhose transverse electric andmagnetic field profile
is a Gaussian function. As a result, the intensity also has a Gaussian profile. Gaussian optics describes the
effects of optical components, which keeps a Gaussian beam Gaussian.

The mathematical form of the electric field of a Gaussian beam is given by

E(𝑟, 𝑧) = 𝐸0�̂� 𝑤0
𝑤(𝑧)exp (

−𝑟2

𝑤(𝑧)2 ) exp (−𝑖 (𝑘𝑧 + 𝑘 𝑟2

2𝑅(𝑧) + 𝜓(𝑧))) , (2.11)

where 𝐸0 = 𝐸(0, 0) is the field amplitude at the focus, 𝑟 the distance from optical axis (the line 𝑟 = 0), 𝑧
the coordinate on propagating direction, 𝑤(𝑧) the beam width, at which the amplitude drop to 1/𝑒 compared
to optical axis, 𝑤0 the beam waist (the beam width at focus, 𝑧 = 0), 𝑅(𝑧) the radius of curvature of the
wavefront, and 𝜓(𝑧) the Gouy phase. The beam width 𝑤(𝑧) is a function of 𝑧:

𝑤(𝑧) = 𝑤0√1 + (
𝑧

𝑧R )
2
, (2.12)

6



Figure 2.1: Gaussian beam A figure from [44]. The profile of a Gaussian beam around its waist.

where 𝑧R = 𝜋𝑤2
0/𝜆, with 𝜆 the wavelength in the medium, is the Rayleigh range, which quantifies the

focusing length. The radius of curvature of wavefront 𝑅(𝑧) is also a function of 𝑧, which is given by

𝑅(𝑧) = 𝑧 [1 + (
𝑧R
𝑧 )

2

] . (2.13)

It is clear that 𝑅(𝑧) = ∞ at the focus and 𝑧 → ±∞. The Gouy phase 𝜓(𝑧) is related to 𝑧 by

𝜓(𝑧) = arctan (
𝑧

𝑧R ). (2.14)

The divergence angle 𝜃d is defined as

𝜃d ≡ lim
𝑧→∞

arctan (
𝑤(𝑧)

𝑧 ) ≈ 𝜆0
𝜋𝑛𝑤0

, (2.15)

which quantifies how fast the beam width changes with 𝑧. The numerical aperture NA is then defined as

NA = 𝑛 sin 𝜃d = 𝑤0
𝑧R

. (2.16)

It is clear from the expressions of𝑤(𝑧), 𝑅(𝑧) and𝜓(𝑧) that the properties of a freely propagatingGaussian
beam is fixed, when 𝑤0 or 𝑧R and 𝜆 is known. Therefore, a Gaussian beam can be fully described by a
complex beam parameter 𝑞(𝑧), which is defined as

𝑞(𝑧) = 𝑧 +
𝑖𝜋𝑛𝑤2

0
𝜆0

= 𝑧 + 𝑖𝑧R, (2.17)

where 𝑛 is the refractive index of the medium, and 𝜆0 is the wavelength in vacuum. 𝑞(𝑧) can also be written
in a form closer to lens imaging equation:

1
𝑞(𝑧) = 1

𝑅(𝑧) − 𝑖𝜆0
𝜋𝑛𝑤(𝑧)2 , (2.18)

which implies that the propagation of 𝑞(𝑧) can be described by ABCD matrix, also known as ray transfer
matrix.

ABCD matrix analysis is a method to analyze paraxial rays, the rays close to the optical axis. Each
optical elements, including beam travel, interface, lens and mirror, can be described by a 2 × 2 matrix

(
𝐴 𝐵
𝐶 𝐷) . (2.19)
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Any combination of these optical elements can be described by the matrix-multiplication products of all
element matrices. For example the ABCD matrices of propagation in a medium with constant refractive
index, refraction at a curved surface, reflection from a flat mirror, and propagation through a thin lens are
given by

propagation (
1 𝑑
0 1) , interface (

1 0
𝑛1−𝑛2
𝑅𝑛1

𝑛1
𝑛2

) , mirror (
1 0
0 1) , lens

(
1 0

− 1
𝑓 1)

, (2.20)

respectively, where 𝑑 is the propagation distance, 𝑛1 and 𝑛2 are the refractive indices of inputting medium
and outputing medium respectively, 𝑅 is the radius of curvature of the curved surface (𝑅 > 0 for convex
surface, and 𝑅 → ∞ for flat mirror), and 𝑓 is the focal length of the lens (𝑓 > 0 for convex lens). 𝑞(𝑧)
evolves with ABCD matrix as

𝑞f (𝑧) = 𝐴𝑞i(𝑧) + 𝐵
𝐶𝑞i(𝑧) + 𝐷 , (2.21)

where 𝑞i(𝑧) is the complex parameter before the optical element, and 𝑞f (𝑧) after.

2.2.1 Hermite-Gaussian modes
When a cavity is included in an optical path, we might not only encounter Gaussian modes defined above,
but also some higher order Hermite-Gaussian modes, which in general do not have axial symmetry along
the propagating axis. Then the electric fields of these modes is a function of 𝑥, 𝑦 and 𝑧, where 𝑥 and 𝑦 are
coordinates on a plane perpendicular to the propagating axis:

𝐸𝑙,𝑚(𝑥, 𝑦, 𝑧) = 𝐸0
𝑤0

𝑤(𝑧)𝐻𝑙 (
√2𝑥
𝑤(𝑧) )

𝐻𝑚 (
√2𝑦
𝑤(𝑧))

exp (−𝑥2 + 𝑦2

𝑤(𝑧)2 ) exp (−𝑖𝑘(𝑥2 + 𝑦2)
2𝑅(𝑧) ) exp (𝑖𝜓(𝑧)) ,

(2.22)
where 𝐻𝐽 , (𝐽 = 𝑙, 𝑚) is the Hermite polynomial of order 𝐽 . Comparing this expression to Eqn. 2.11, the
only differences are the two Hermite polynomial factors, which introduce nodes on the intensity profile.
Hermite-Gaussian modes are transverse-electro-magnetic modes (TEM modes). With orders, they are typi-
cally referred as TEM𝑙𝑚, where TEM00 is the mode described by Eqn. 2.11. Some of the Hermite-Gaussian
modes are presented in Fig. 2.2.

Figure 2.2: Twelve Hermite-Gaussian modes A figure from [45]. The two-digit numbers identify Hermite-
Gaussian modes. The first digit represents the number of nodes in the horizontal direction, while the
second digit represents that in the vertical direction.
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2.3 Radiation Pressure Interaction in Cavity Optomechanics
We now consider a canonical cavity optomechanical system, where one mirror of a Fabry-Pérot cavity is
movable and attached to a spring, while the other mirror is fixed, as shown in Fig. 2.3. This model can
describe all kinds of cavity optomechanics systems based on radiation pressure interaction, despite their
drastical difference in sizes, designs and working conditions.

X, Y
Xin,L

Yin,L

Xin,R

Yin,R

Γm

κL κR

L q

Xout

Yout

Xin,η

Yin,η

Figure 2.3: Canonical model of cavity optomechanics A Fabre-Pérot cavity with a movable end mirror. In
this thesis, we take the convention that input light is always injected from the left side of the cavity.

When there is no interaction, the Hamiltonian of the system is

�̂�0 = ℏΩm
2 (�̂�2 + ̂𝑃 2) + ℏΩcav ̂𝑎† ̂𝑎, (2.23)

where Ωcav = 2𝜋𝑐/𝜆 = 𝜋𝑐𝒩 /𝐿 is the cavity resonance frequency, where 𝜆 is the wavelength, 𝒩 is the
mode number, and 𝐿 is the unmodified cavity length. ̂𝑎 ( ̂𝑎†) is the annihilation (creation) operator of the
cavity field.

The optomechanical interaction via radiation pressure is based on exchange of momentum between pho-
tons and mechanics. This interaction shifts the position of the movable mirror by 𝑞 from its original equi-
libium position, thus changes the resonance frequency of the cavity to Ωcav(𝑞) = 𝜋𝑐𝒩 /(𝐿 + 𝑞). If 𝑞 ≪ 𝐿
holds, we have a linear relation Ωcav(𝑞) ≈ Ωcav(1 − 𝑞/𝐿). Then the cavity hamiltonian becomes:

�̂�cav = ℏΩcav ̂𝑎† ̂𝑎 (1 − 𝑞
𝐿) = ℏΩcav ̂𝑎† ̂𝑎 − ℏ𝐺𝑞 ̂𝑎† ̂𝑎, (2.24)

where 𝐺 = 𝜕Ωcav
𝜕𝑞 is the optomechanical coupling rate. The second term is the interaction Hamiltonian. One

can rewrite it as

�̂�int = −√2ℏg0 ̂𝑎† ̂𝑎�̂�, (2.25)

where g0 = 𝐺𝑥zpf is the vacuum optomechanical coupling rate.
The intra-cavity optical field decays as it leaks out of the cavity. To support constant intra-cavity field,

we need a driving laser. Suppose the driving laser is injected from the left mirror, one can model the drive
by the Hamiltonian [46]

�̂�drive = 𝑖ℏ√𝜅L (𝛼in ̂𝑎†𝑒−𝑖𝜔𝑡 + 𝑐.𝑐.) , (2.26)

where 𝜅L/2𝜋 = |𝑡L|2/𝜏, with 𝑡L amplitude transmissivity of the left mirror and 𝜏 = 2𝐿/𝑐 the round trip
time of light in cavity, is the coupling rate of cavity field to the field outside the left mirror, 𝜔 is the laser
frequency, 𝑐.𝑐. stands for complex conjugate, and 𝛼in is the laser field amplitude. In principle, this input laser
field amplitude is quantum mechanical, and should be described by an operator ̂𝑎in. However, in practice,
clean laser fields can be well described by coherent states, which, in phase space, is composed of a mean
field amplitude 𝛼in and an uncertainty “bubble” 𝛿 ̂𝑎in given by vacuum fluctuation, i.e. ̂𝑎in = 𝛼in + 𝛿 ̂𝑎in.
When |𝛼in| ≫ √⟨𝛿 ̂𝑎†

in𝛿 ̂𝑎in⟩, i.e. the amplitude of the coherent state is large, we can neglect the effect of
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the fluctuation part, and treat the field classically in Hamiltonian. For majority of optomechanical systems,
including ours, this is a good approximation. Then the total Hamiltonian is given by

�̂� = �̂�0 + �̂�int + �̂�drive. (2.27)

It is convenient to go to the frame rotating with laser drive frequencies 𝜔, in which we have

�̂� = ℏΩm
2 (�̂�2 + ̂𝑃 2) − ℏΔ̃ ̂𝑎† ̂𝑎 − √2ℏg0 ̂𝑎† ̂𝑎�̂� + 𝑖ℏ√𝜅L (𝛼in ̂𝑎† + 𝑐.𝑐.) , (2.28)

where Δ̃ = 𝜔 − Ω̃cav is the cavity detuning when optomechanical interaction is turned off, with Ω̃cav the
cavity frequency with 𝑔0 = 0.

Though the quantum fluctuation of the laser drive was neglected in the Hamiltonian, it may have some
non-negligible effects. Together with effects from optical noise input from the right mirror and thermal
noise acting on the membrane, their time evolutions are given by the Heisenberg-Langevin equations [43]:

̇̂𝑎 = 𝑖
ℏ [�̂�, ̂𝑎] − 𝜅

2 ̂𝑎 − √𝜅L ̂𝑎in,L − √𝜅R ̂𝑎in,R (2.29a)

̇�̂� = 𝑖
ℏ [�̂�, �̂�] (2.29b)

̇̂𝑃 = 𝑖
ℏ [�̂�, ̂𝑃 ] − Γm ̂𝑃 + √2Γm ̂𝑃in, (2.29c)

where ̂𝑎in,𝐿 ( ̂𝑎in,R) is the optical noise operator injecting from left (right) mirror (to unify and simplify the
notation, we drop the “𝛿” in 𝛿 ̂𝑎in,𝐿), and ̂𝑃in is the mechanical momentum noise operator, resulting from the
Brownian thermal force noise described in Subsection 2.1.1, 𝜅𝑅/2𝜋 = |𝑡R|2/𝜏 is the coupling rate of cavity
field to the field outside the right mirror, and 𝜅 = 𝜅L + 𝜅R is the total rate of cavity field coupling to the
field outside, i.e. the cavity linewidth (suppose there is no intra-cavity loss mechanism). Here, rotating wave
approximation is applied for optical fields, where we neglect the effects of terms rotating at around twice of
the laser frequency.

By substituting the Hamiltonian into the Heisenberg-Langevin equations, we have [43]

̇̂𝑎 = − [
𝜅
2 − 𝑖 (Δ̃ + √2𝑔0�̂�)] ̂𝑎 − √𝜅L ̂𝑎in,L − √𝜅R ̂𝑎in,R (2.30a)

̇�̂� = Ωm ̂𝑃 (2.30b)
̇̂𝑃 = −Ωm�̂� − Γm ̂𝑃 + √2Γm ̂𝑃in + √2g0 ̂𝑎† ̂𝑎. (2.30c)

Before discussing quantum effects, as we are interested in fluctuations around equilibrium, it is necessary
to exam the behavior of the equilibrium case under optomechanical interaction via examining the classical
behaviors of these fields. This is done by replacing the field operators with their average values. Then the
equations reads

�̇� = − [
𝜅
2 − 𝑖 (Δ̃ + √2𝑔0⟨𝑄⟩)] 𝛼 − √𝜅L𝛼in (2.31a)

̇⟨𝑄⟩ = Ωm⟨𝑃 ⟩ (2.31b)
̇⟨𝑃 ⟩ = −Ωm⟨𝑄⟩ − Γm⟨𝑃 ⟩ + √2g0 |𝛼|2, (2.31c)

where we have used the fact that vacuum noise injected from the right mirror has zero average amplitude,
and the thermal noise is incoherent, such that ⟨𝑃in⟩ = 0. In the scope of this thesis, we are interested in
steady state solutions. Thus, we set all time derivatives on the left hand side to be zero, and get

0 = − [
𝜅
2 − 𝑖 (Δ̃ + √2𝑔0⟨𝑄⟩)] 𝛼 − √𝜅L𝛼in,L (2.32a)

0 = −Ωm⟨𝑄⟩ + √2g0 |𝛼|2, (2.32b)

where we have used the second equation 0 = Ωm⟨𝑃 ⟩ to eliminate ⟨𝑃 ⟩. Then the steady state solutions of
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the fields are

𝛼ss = √𝜅L
𝜅
2 − 𝑖 (Δ̃ + √2𝑔0⟨𝑄ss⟩)

𝛼in (2.33a)

⟨𝑄ss⟩ =
√2𝑔0|𝛼ss|2

Ωm
. (2.33b)

The optomechanical coupling is evident in this expression, as √2𝑔0⟨𝑄ss⟩ serves as an additional detun-
ing, which is proportional to mechanical displacement. Thus the new detuning at equilibrium Δ = Δ̃ +
√2𝑔0⟨𝑄ss⟩. On the other hand, stronger intra-cavity field also results in a new equilibrium position with
larger mechanical displacement. The consequences of these classical steady state equations will be discussed
in the later sections of this chapter.

Now, we study the quantum behavior by doing some linearization of the interaction Hamiltonian, which
can simplify the problem dramatically. We can rewrite the optical field operators ̂𝑎 in terms of average value
�̄� = √ ̄𝑛cav = √⟨ ̂𝑎† ̂𝑎⟩, which is the square root of the photon number in the cavity mode, and fluctuation
𝛿 ̂𝑎, such that ̂𝑎 = �̄� + 𝛿 ̂𝑎. As |�̄�| ≫ √⟨𝛿 ̂𝑎†𝛿 ̂𝑎⟩ holds in our case, we can neglect the second order term of
𝛿 ̂𝑎, and linearize the interaction Hamiltonian in rotating frame:

�̂� lin
int = −√2ℏg0 �̄� (𝛿 ̂𝑎 + 𝛿 ̂𝑎†) �̂�. (2.34)

Substituting the linearized Hamiltonian into the Heisenberg-Langevin equation, and focusing on the fluctu-
ation part 𝛿 ̂𝑎, we have

𝛿 ̇̂𝑎 = − 𝜅
2 𝛿 ̂𝑎 + 𝑖Δ𝛿 ̂𝑎 + √2𝑔�̂� + √𝜅L ̂𝑎in,L + √𝜅R ̂𝑎in,R (2.35a)

̇�̂� = Ωm ̂𝑃 (2.35b)
̇̂𝑃 = − Ωm�̂� − Γm ̂𝑃 + √2Γm ̂𝑃in + √2g0 ̂𝑎† ̂𝑎. (2.35c)

where 𝑔 = g0 �̄� is the multi-photon optomechanical coupling. Please notice that the detuning is the instanta-
neous detuning at the new equilibrium position Δ in these equations. We notice 𝛿 ̂𝑎 is not an observable. To
get some observable out of this fluctuation, we define optical amplitude quadrature �̂� = (𝛿 ̂𝑎† + 𝛿 ̂𝑎) /√2,
and phase quadrature ̂𝑌 = 𝑖 (𝛿 ̂𝑎† − 𝛿 ̂𝑎) /√2. Then the Heisenberg-Langevin equation reads:

̇�̂� = −𝜅
2 �̂� − Δ ̂𝑌 + √𝜅L�̂�in,L + √𝜅R�̂�in,R (2.36a)

̇̂𝑌 = −𝜅
2

̂𝑌 + Δ�̂� + 2𝑔�̂� + √𝜅L ̂𝑌in,L + √𝜅R ̂𝑌in,R (2.36b)
̇�̂� = Ωm ̂𝑃 (2.36c)
̇̂𝑃 = −Ωm�̂� − Γm ̂𝑃 + √2Γm ̂𝑃in + 2𝑔�̂�, (2.36d)

where �̂�in,L = ( ̂𝑎†
in,L + ̂𝑎in,L) /√2 is the input amplitude noise quadrature, and ̂𝑌in, = 𝑖 ( ̂𝑎†

in,L − ̂𝑎in,L) /√2
is the input phase noise quadrature through the left mirror. Those for the right mirror (labeled with “R”)
are defined similarly. It is clear from this expression that �̂� only couples to phase quadrature. Thus, if the
laser is on resonance with the cavity (Δ = 0), no information about the mechanics is encoded in amplitude
quadrature.

The above equation system can be solved relatively easily in frequency domain, where we write �̂�(Ω) =
∫+∞

−∞ 𝑑𝑡𝑒𝑖Ω𝑡�̂�(𝑡) as the Fourier transform of the corresponding time domain operator, and similarly for other
operators. Then the equation system becomes

−𝑖Ω�̂�(Ω) = − 𝜅
2 �̂�(Ω) − Δ ̂𝑌(Ω) + √𝜅L�̂�in,L(Ω) + √𝜅R�̂�in,R(Ω) (2.37a)

−𝑖Ω ̂𝑌(Ω) = − 𝜅
2

̂𝑌(Ω) + Δ�̂�(Ω) + 2𝑔�̂�(Ω) + √𝜅L ̂𝑌in,L(Ω) + √𝜅R ̂𝑌in,R(Ω) (2.37b)

−𝑖Ω�̂�(Ω) = Ωm ̂𝑃 (Ω) (2.37c)
−𝑖Ω ̂𝑃 (Ω) = − Ωm�̂�(Ω) − Γm ̂𝑃 (Ω) + √2Γm ̂𝑃in(Ω) + 2𝑔�̂�(Ω). (2.37d)
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Eliminating ̂𝑃 (Ω), we have

�̂�(Ω) = 𝜒m(Ω) (√2Γm ̂𝑃in(Ω) + 2𝑔�̂�(Ω)) , (2.38)

where
𝜒m(Ω) = Ωm/((Ω2

m − Ω2) − 𝑖ΓmΩ) (2.39)
is the mechanical susceptibility, which transduces force into displacement of a harmonic resonator (�̂�(Ω) =
𝜒m(Ω) ̂𝐹 (Ω)). In the parenthesis of Eqn. 2.38 is the total noise force acting on the mechanics. The optical
quadratures are given by

(
𝜅
2 − 𝑖Ω) �̂�(Ω) = −Δ ̂𝑌(Ω) + √𝜅L�̂�in,L(Ω) + √𝜅R�̂�in,R(Ω) (2.40a)

(
𝜅
2 − 𝑖Ω) ̂𝑌(Ω) = Δ�̂�(Ω) + √𝜅L ̂𝑌in,L(Ω) + √𝜅R ̂𝑌in,R(Ω) + 2𝑔𝜒m(Ω) (√2Γm ̂𝑃in(Ω) + 2𝑔�̂�(Ω)) .

(2.40b)

Making use of Eqn. 2.38, solving for �̂� and ̂𝑌, we have

�̂�(Ω) = 𝑣(Ω) (√𝜅L ̂𝑌in,L(Ω) + √𝜅R ̂𝑌in,R(Ω) + 2𝑔�̂�(Ω)) + 𝑢(Ω) (√𝜅L�̂�in,L(Ω) + √𝜅R�̂�in,R(Ω)) (2.41a)
̂𝑌(Ω) = 𝑢(Ω) (√𝜅L ̂𝑌in,L(Ω) + √𝜅R ̂𝑌in,R(Ω) + 2𝑔�̂�(Ω)) − 𝑣(Ω) (√𝜅L�̂�in,L(Ω) + √𝜅R�̂�in,R(Ω)) ,

(2.41b)

where

𝑢(Ω) = 𝜅/2 − 𝑖Ω
Δ2 + (𝜅/2 − 𝑖Ω)2 (2.42a)

𝑣(Ω) = −Δ
Δ2 + (𝜅/2 − 𝑖Ω)2 (2.42b)

are the cavity quadratures’ susceptibilities.

2.3.1 Output Optical Field and its Spectrum
So far we have only talked about the dynamics of the intra-cavity field. In practice, it is hard to measure
the intra-cavity field directly. Instead, one usually measures the field which leaks out of the cavity to extract
some information about the intra-cavity field. Let’s say wemeasure the field leaking through the right mirror.
The output quadratures are given by the input-output relation:

�̂�out = −�̂�in,R + √𝜅R�̂� (2.43a)
̂𝑌out = − ̂𝑌in,R + √𝜅R ̂𝑌. (2.43b)

In practice, there will be some optical loss from the cavity to the photodetector, which is usually described
by a less than unity detection efficiency 𝜂. This optical loss will decrease the signal emitted from the cavity,
and replace it with vacuum noise. Taking this into consideration, the output quadratures are given by

�̂�out = √𝜂(−�̂�in,R + √𝜅R�̂�) + √1 − 𝜂�̂�in,𝜂 (2.44a)
̂𝑌out = √𝜂(− ̂𝑌in,R + √𝜅R ̂𝑌) + √1 − 𝜂 ̂𝑌in,𝜂 , (2.44b)

where �̂�in,𝜂 ( ̂𝑌in,𝜂) is the amplitude (phase) noise quadrature of the vacuum getting mixed into the output
signal. Substituting Eqn. 2.41 to the above expression we have:

�̂�out(Ω) = √𝜂𝜅R𝜅L (𝑢(Ω)�̂�in,L(Ω) + 𝑣(Ω) ̂𝑌in,L(Ω)) + √𝜂𝜅R ((𝑢(Ω) − 1/𝜅R)�̂�in,R(Ω) + 𝑣(Ω) ̂𝑌in,R(Ω))
+ 2𝑔√𝜂𝜅R𝑣(Ω)�̂�(Ω) + √1 − 𝜂�̂�in,𝜂(Ω) (2.45a)

̂𝑌out(Ω) = √𝜂𝜅R𝜅L (−𝑣(Ω)�̂�in,L(Ω) + 𝑢(Ω) ̂𝑌in,L(Ω)) + √𝜂𝜅R (−𝑣(Ω)�̂�in,R(Ω) + (𝑢(Ω) − 1/𝜅R) ̂𝑌in,R(Ω))
+ 2𝑔√𝜂𝜅R𝑢(Ω)�̂�(Ω) + √1 − 𝜂 ̂𝑌in,𝜂(Ω). (2.45b)
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If we only want to detect output amplitude quadrature �̂�out , we just need to measure the output beam
with a photodiode. To get information about output phase quadrature ̂𝑌out , one need to exploit interfero-
metric measurement, such as heterodyne and homodyne, to transform phase information to intensity. Then
photodiodes can again be used for the detection. In heterodyne, the output field (referred as signal) is beaten
with a reference field (local oscillator, LO) at a different frequency. While in homodyne, the LO frequency
is the same as the carrier frequency of the signal. In the following, we assume homodyne is performed (a
detailed introduction to homodyne can be found in Section 3.6). Suppose the relative phase between LO
and signal is 𝜃, then the measured quadrature is given by

�̂�𝜃(Ω) = �̂�out(Ω) cos 𝜃 + ̂𝑌out(Ω) sin 𝜃. (2.46)

Suppose our system is in steady state, we can calculate the power spectral density of �̂�𝜃 , and get

̄𝑆�̂�𝜃�̂�𝜃 (Ω) = 1
2 + 𝑓imp(Ω) ̄𝑆�̂��̂�(Ω) + ̄𝑆cor(Ω), (2.47)

where 1/2 is homodyne imprecision due to shot noise, a result of vacuum noises �̂�in and ̂𝑌in of various
of origins beating with LO and signal fields. All the vacuum noise operators have the following statistics:
⟨�̂�†

in,(Ω)�̂�in,(Ω′)⟩ = ⟨ ̂𝑌 †
in,(Ω) ̂𝑌in,(Ω′)⟩ = 1/2 𝛿(Ω−Ω′), ⟨�̂�†

in,(Ω) ̂𝑌in,(Ω′)⟩ = −⟨ ̂𝑌 †
in,(Ω)�̂�in,(Ω′)⟩ = 𝑖/2 𝛿(Ω−

Ω′). In symmetrized spectral, pure imaginary terms vanish. Collecting all surviving terms, we have 1/2 as
in the first term. Imprecision noise serves as a white (frequency independent) background in PSD. If this
background is the dominant noise, the measurement of mechanical displacement can hardly be precise. This
justifies the name “imprecision noise”.

The second term of Eqn. 2.47 reflects the spectrum of the displacement of mechanical oscillator ̄𝑆�̂��̂�,
which is given by

̄𝑆�̂��̂�(Ω) = |𝜒eff (Ω)|2 (2Γqba + 2Γm( ̄𝑛th + 1/2)) , (2.48)
where 𝜒eff (Ω) is the effective mechanical susceptibility, which determines the shape of mechanical noise
spectrum, and Γqba is quantum backaction rate to be defined later. The effective mechanical susceptibility
𝜒eff (Ω) is related to the unmodified one by

𝜒−1
eff (Ω) = 𝜒−1

m (Ω) − 4𝑔2𝑣(Ω), (2.49)

the real and imaginary part of which is given by

Re[𝜒−1
eff (Ω)] = 1

Ωm (
−Ω2 + Ω2

m + 16𝑔2ΔΩm(4Δ2 + 𝜅2 − 4Ω2)
16Δ4 + 8Δ2(𝜅2 − 4Ω2) + (𝜅2 + 4Ω2)2 )

(2.50a)

Im[𝜒−1
eff (Ω)] = − Ω

Ωm (
Γm − 64𝑔2Δ𝜅Ω

16𝜅2Ω2 + (4Δ2 + 𝜅2 − 4Ω2)2 )
. (2.50b)

Comparing to the unmodified susceptibility Re[𝜒−1
m (Ω)] = (−Ω2 + Ω2

m)/Ωm, and Im[𝜒−1
m (Ω)] = −ΓmΩ/Ωm,

the effect of optomechanical interaction can be considered as a modification on mechanical resonance fre-
quency and mechanical linewidth.

𝛿Ωm ≈ 8𝑔2Δ(4Δ2 + 𝜅2 − 4Ω2
m)

16Δ4 + 8Δ2(𝜅2 − 4Ω2
m) + (𝜅2 + 4Ω2

m)2
= Re[−2𝑔2𝑣(Ωm)] (2.51a)

Γopt ≈ − 64𝑔2Δ𝜅Ωm
16𝜅2Ω2

m + (4Δ2 + 𝜅2 − 4Ω2
m)2

= 𝑔2𝜅 (|𝜒c(Ωm)|2 − |𝜒c(−Ωm)|2) , (2.51b)

where
𝜒c(Ω) = 𝑢(Ω) − 𝑖𝑣(Ω) = 1

𝜅/2 − 𝑖(Δ + Ω) (2.52)

is the cavity susceptibility. In the expressions, both of the shifts are frequency dependent, but we evaluate
them at Ωm, which justifies the approximation symbols. Moreover we have used Ω + Ωm ≈ 2Ωm in the
first equation. The former is referred as optical spring effect, while the latter is referred as optical damping
[47]. If the detuning Δ is negative (red detuned), the mechanical resonance frequency is shifted to lower fre-
quency, while mechanical linewidth increases (the oscillator is damped). The opposite happens, if detuning
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is positive. If the interaction is strong enough, it is possible to have zero or negative effective mechanical
linewidth. In this case, the mechanical oscillator experiences a self-oscillation, until higher order recoil
terms (e.g. Duffing nonlinear term [48]) or nonlinear damping terms [49] become significant, and limit the
oscillation amplitude. In the high quality factor limit 𝑄 = Ωeff

m /Γeff
m ≫ 1, the spectrum around mechanical

resonance frequency Ωeff
m can be well approximated by a Lorentzian:

𝜒eff (Ω) ≈ 1
2(Ωeff

m − Ω) − 𝑖Γeff
m

. (2.53)

Therefore, we usually fit the mechanical PSD with a Lorentzian.
The term 2Γm( ̄𝑛th + 1/2) in Eqn. 2.48 represents the intrinsic noise on the mechanical oscillator (ther-

mal noise plus zero point fluctuation). One can get this result by using Eqn. 2.10. The parameter Γqba =
𝑔2𝜅(|𝑢(Ω)|2 + |𝑣(Ω)|2) = 𝑔2𝜅|𝜒c(Ω)|2 in Eqn. 2.48 is the so called quantum backaction rate, which is an
effect of random arrival of photons on the mirror (shot noise). Just like thermal noise, quantum backaction
heats up the mechanical oscillator. For the purpose of measuring the intrinsic motion of the mechanical
oscillator, this is a side effect, which affects the measurement record. That is the reason for the name “back-
action”.

The prefactor before ̄𝑆�̂��̂� in Eqn. 2.47 is the transfer function between displacement and optical quadra-
ture, which has the form

𝑓imp(Ω) = Γmeas
4 Re [𝜁(Ω) − 𝜇(Ω)𝑒−2𝑖𝜃] . (2.54)

The last term of Eqn. 2.47 is the correlation between imprecision and displacement noise

̄𝑆cor(Ω) = −Γmeas
4 (Re[𝜒eff (Ω)]Im[𝜇(Ω)𝑒−2𝑖𝜃] + Im[𝜒eff (Ω)]Re[𝜉(Ω)]) . (2.55)

In the above two equations, we introduced the following definitions:

Γmeas = 𝜂c𝜂 4𝑔2

𝜅 (2.56a)

𝜁(Ω) = 𝜅2 (|𝜒c(Ω)|2 + |𝜒c(−Ω)|2) (2.56b)
𝜇(Ω) = 2𝜅2𝜒c(Ω)𝜒c(−Ω) (2.56c)
𝜉(Ω) = 𝜅2 (|𝜒c(Ω)|2 − |𝜒c(−Ω)|2) , (2.56d)

where Γmeas is the rate one can extract information from the mechanical oscillator, 𝜂c = 𝜅R/𝜅 is the cavity
outcoupling efficiency.

2.4 Bare Cavity
Though we have discussed quite some optomechanics, it is beneficial to step back and have a look at the
behavior of a cavity with fixed mirrors – a bare cavity. To get the dynamics of fields related to a bare cavity,
we set 𝑔 = 0.

We treat the fields classically, then in steady state the intra-cavity field is given by Eqn. 2.33:

𝛼 = √𝜅L
𝜅/2 − 𝑖Δ 𝛼in. (2.57)

Then, from the input-output relation in transmission (setting noise term to be zero, and get 𝛼t = √𝜅R𝛼), the
transmitted field right after the cavity is given by

𝛼t = √𝜅R𝜅L
𝜅/2 − 𝑖Δ 𝛼in. (2.58)

Hence, the transmission power is given by

𝑃t = |𝛼t|2 = 𝜅R𝜅L
𝜅2/4 + Δ2 𝑃in, (2.59)
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where 𝑃in = |𝛼in|2. We can see the transmission power is the input power times a Lorentzian function of
Δ, and 𝜅 is the full-width-half-maximum (FWHM) of the peak. The phase difference between input and
transmitted field caused by cavity is given by

Δ𝜃t = arctan 2Δ
𝜅 . (2.60)

We notice, as Δ changes from −∞ to ∞, the phase shift changes from −𝜋/2 to 𝜋/2. This phase shift can be
used to rotate the phase of the input field, especially when the input is not a rotational-invariant state, for
instance a squeezed state or with some phase or amplitude modulation.

Both intensity and phase responses from a cavity are shown in Fig. 2.4. As cavity length changes, the
resonance frequency will change, which effectively changes the detuning Δ, if the laser frequency stays the
same. If the original detuning is around 0, and the frequency change is small, we can see the transmitted
amplitude does not change with mirror motion to the first order, while the phase shift is sensitive to this
motion. By measuring the phase of the output field, we can infer the mechanical motion. As the phase of
the intra-cavity field has the largest slope at Δ = 0, the transduction 𝑓imp is maximized on cavity resonance,
i.e. at this point, phase measurement is the most sensitive to mechanical motion. Though the transmitted
power depends on 𝜅L and 𝜅R, as their roles are exchangeable in Eqn. 2.59, we cannot tell which one is larger
from transmission field.

Figure 2.4: Cavity response to mechanical motion in transmission A figure from [47]. When the laser is
on resonance with the cavity, the mechanical motion is encoded in phase of the intra-cavity field, but not
in amplitude to the first order.

Similarly, we can get the cavity response in reflection. The only difference in derivation is the input-
output relation. In reflection, it is given by 𝛼r = −𝛼in + √𝜅𝐿𝛼, resulting in reflected field of

𝛼r = (−1 + 𝜅𝐿
𝜅/2 − 𝑖Δ ) 𝛼in, (2.61)

where the factor before 𝛼in is referred as reflection coefficient. Then the reflected power is

𝑃r = |𝛼r|2 =
(

1 +
𝜅2

L
𝜅2/4 + Δ2 − 𝜅𝜅L

𝜅2/4 + Δ2 )
𝑃in = (1 − 𝜅R𝜅L

𝜅2/4 + Δ2 ) 𝑃in = 𝑃in − 𝑃t . (2.62)
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This result is not surprising, as it follows from the conservation of energy. As a function of detuning Δ, the
reflected power is a Lorentzian dip from a constant background given by 𝑃in. The phase shift in reflection
is given by

tan Δ𝜃r = − 4Δ𝜅L
4Δ2 − 𝜅2

L + 𝜅2
R

, (2.63)

where the second order of Δ appears in the denominator. As a consequence, tan Δ𝜃r = 0 for both Δ = −∞
and ∞, which is distinct from the transmission case. We plot the contour traced by the reflection coefficient
as Δ changing from −∞ to ∞ in Fig. 2.5. It is not difficult to prove that the contours are circles, and the
diameters of the circles are given by 2𝜅L/𝜅. When 𝜅L > 𝜅/2, we say the cavity is over coupled in reflection, in
which case, the origin is inside the contour. When 𝜅L = 𝜅/2, the cavity is critically coupled, and the contour
passes through the origin. In this case, the total reflected power can be zero, i.e. the light emitted through
input mirror cancels the directly reflected light perfectly. When 𝜅L < 𝜅/2, the cavity is under coupled, and
the origin lies outside the contour. Thus, reflected field contains information about the relation between the
mirror reflectivities, which is not available in transmission field.
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Figure 2.5: Contour plot of the reflection coefficient For a cavity overcoupled in reflection, the contour of
reflection coefficient encloses the origin. For a cavity critically coupled in reflection, the contour passes
through the origin. While for a cavity undercoupled in reflection, the origin falls out side the contour.

2.5 Static Bistability
Nowwe introduce the movable mirror. Before talking about quantum effects in optomechanics, we start with
two classical phenomena relevant to our experiments. The first one is static bistability, which is introduced in
this section. A more detailed introduction can be found in Bowen and Milburn’s book [43] and Aspelmeyer
et al.’s review [47]. The second one is optomechanically induced transparency, which is covered in the next
section.

Static bistability is a result of equation system Eqn. 2.33. Solving for 𝛼ss, we get

2𝑖𝑔0
2

Ωm
𝛼ss|𝛼ss|2 − (

𝜅
2 − 𝑖Δ̃) 𝛼ss + √𝜅L𝛼in = 0, (2.64)

which is a cubic equation, with three solutions in general. When the third order term is small, this equation
to a large extend recovers the behavior of a bare cavity, who has a Lorentzian lineshape, and there is only one
solution of 𝛼ss. However, when the third order term is significant, for a certain system, usually by having
large 𝛼in, at some detuning, there can be two stable solutions (and one unstable solution). At the same time,
the cavity line shape as we scan detuning through the resonance is no more a Lorentzian.
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Figure 2.6: Bistability A figure from [43]. From top to bottom: normalized intra-cavity photon number
as a function of bare cavity detuning Δ̃ with increasing input powers. The gray region shows the detuning
where bistability exists. The up pointing arrows shows the jump when scanning from blue side to red side
of the cavity, while the down pointing arrows shows the jump when scanning from red side to blue side.

Fig. 2.6 shows the cavity lineshapes with increasing input powers from top to bottom. The tilting of
the cavity lineshape to positive side of Δ̃ is a result of radiation pressure pushing the movable mirror. For
example, if we scan the laser from the red side of the cavity, as the laser frequency gets closer to cavity
resonance, more photons inject into the cavity. These photons push the movable mirror further away from
its original equilibrium position, which leads to a longer cavity with lower frequency. This process decreases
the instantaneous detuning, and results in a slower increase of intra-cavity photon number compared to the
bare cavity case. The argument is similar when scanning from blue side. At some large input power, this
tilting is so large, such that more than one solution appears at some detunings as shown in panel c and d.
The middle solution is unstable, while the strong field (top trace) and weak field solutions (bottom trace)
are stable. This justifies the name bistability. As we scan from the red side, the intra-cavity photon number
will follow the strong field solution, until the turning point labelled by the downward pointing arrow, where
a jump from strong field to weak field solution happens. While for the scan from the blue side, the intra-
cavity photon number will follow the weak field solution, and the jump to strong field solution happens at
the detuning marked by the upward pointing arrow.

The lowest intra-cavity photon number required for the onset of bistability 𝑛max
cav sets an upper bound of

optical power, if we would like to work in linear regime. In another word, even theoretically (regardless of
damaging the system), we cannot increase optomechanical coupling strength 𝑔 by increasing input power to
an arbitrarily large value. In Meystre et al. [50, 47], the authors provided an expression for 𝑛max

cav :

𝑛max
cav = Ωm𝜅

6√3𝑔2
0

= 𝜅𝑚Ω2
m

3√3ℏ𝐺2
. (2.65)

With this intra-cavity photon number, bistability appears at a single critical detuning at Δ̃ = −√3𝜅/2. From
the critical power, if we increase the optical power further, a laser detuning window displaying bistability
will open, the width of which is proportional to the power. When the geometric optomechanical coupling
𝐺 is fixed, narrower cavity linewidth, lower effective mass, and lower mechanical frequency will decrease
this upper bound.

2.6 Optomechanically Induced Transparency
Optomechanically induced transparency (OMIT) is an classical optomechanical analogy of EIT in three level
systems. In OMIT, a strong laser beam serves as the control beam like in EIT, and the frequency of a weak
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tone coherent to the control beam is swept across the mechanical resonance frequency like the probe beam
in EIT. Around the mechanical resonance, there will be a dip in transmitted power, which has a linewidth
determined by Γm, analogical to the forbidden transmission rate in EIT. In this sense, optomechanically
induced transparency is more accurately called optomechanically induced opacity. OMIT was first proposed
in [51], followed by more thorough theoretical analysis in [39] and experimental demonstration in [52]. It
finds its application in frequency dependent phase rotation [53, 54] and increasing bandwidth of a cavity
based system [55]. In our experiment, we use it as a quick calibration of multi-photon optomechanical
coupling 𝑔.

The starting point of the derivation of OMIT is Eqn. 2.41. In our case, we suppose the input field has a
small but classical pure phase modulation 𝑌 𝜙

in , and neglect all quantum noises. Please notice that the noise
operators in Eqn. 2.41 enter the cavity with a frequency dependent phase rotation described by independent
from that described in Eqn. 2.57. When 𝜅 ≫ Ω, the phase rotation in Eqn. 2.41 is negligible, but that in
Eqn. 2.57 is still significant. Therefore we should treat these two effects separately. As a result, the phase
modulation 𝑌 𝜙

in is not simply 𝑌in (here we drop the hat, because the fields are classical). In practice, the
noises are related to 𝑌 𝜙

in by

𝑋in = Δ
√Δ2 + 𝜅2/4

𝑌 𝜙
in (2.66a)

𝑌in = 𝜅/2
√Δ2 + 𝜅2/4

𝑌 𝜙
in . (2.66b)

Substituting these expressions into the classical version of Eqn. 2.41, we have an expression of intra-cavity
field amplitude quadrature caused by the input phase modulation:

𝑋(Ω) =
(

𝑣(Ω) 𝜅/2
√𝜅2/4 + Δ2

+ 𝑢(Ω) Δ
√𝜅2/4 + Δ2 ) √𝜅L𝑌 𝜙

in (Ω)

+ 2𝑔𝑣(Ω)𝜒m(Ω)√2Γm𝑃in + 4𝑔2𝑣(Ω)𝜒m(Ω)𝑋(Ω). (2.67)

The first term is the result of cavity rotation of an input phase modulation, the second term corresponds to
thermal motion of the mechanics, whose contribution is typically negligible in our system, and the third
term corresponds to the mechanical scattered field. Therefore, OMIT is the interference between the input
modulation sideband, and themechanically scattered sideband. Solving for 𝑋(Ω), and using the input-output
relation in transmission, we have

𝑋out(Ω) = √𝜂𝜅R𝑋(Ω) = √𝜂𝜅R𝜅L
𝐶(Ω)

1 − 𝑀(Ω)𝑌 𝜙
in , (2.68)

where
𝐶(Ω) = 𝑣(Ω) 𝜅/2

√𝜅2/4 + Δ2
+ 𝑢(Ω) Δ

√𝜅2/4 + Δ2
(2.69)

is the bare cavity response to the phase modulation signal, and

𝑀(Ω) = 4𝑔2𝑣(Ω)𝜒m(Ω) (2.70)

is the mechanical response. Recall Eqn. 2.49, the definition of effective mechanical susceptibility, we have

1
1 − 𝑀(Ω) = 𝜒eff (Ω)

𝜒m(Ω) . (2.71)

When we detect the output field by a direct detection (as we usually do), we measure the absolute square
of Eqn 2.68. The absolute square of both 𝐶(Ω) and 1/(1−𝑀(Ω)) at several detunings are plotted in Fig. 2.7.
Note that |𝐶(0)|2 = 0, which means at 0 frequency, pure phase modulation has no amplitude component.
The tendency of decreasing amplitude, as Δ decreases corresponds to less phase modulation is rotated to
amplitude by the cavity. When Δ = 0, cavity response is zero everywhere. The peak and dip structure in
|1/(1 − 𝑀(Ω))|2 corresponds to the resonance of 𝜒eff and 𝜒m respectively, as can be seen from Eqn. 2.71.
As a result, the peak has a width of the order of optical damped mechanical linewdith Γeff , while the dip has
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Figure 2.7: Responses as we sweep the frequency of the phase modulation tone OMIT response for 𝜅/2𝜋 =
16 MHz, 𝑔/2𝜋 = 100 kHz, and Γm/2𝜋 = 1.2 mHz. These parameters are close to our experimental conditions.
Colors corresponds to different detunings Δ/2𝜋: blue 3 MHz, orange 6 MHz, pink 10 MHz, and gray 16 MHz.
The left panel shows cavity part of response without the effect of mechanics, while the right panel shows
mechanical part of OMIT.

a width of Γm. Noticing 𝑔 is contained in 1/(1 − 𝑀(Ω)), the linewidth features of mechanical response of
OMIT provide information about multi-photon optomechanical coupling accurately. However, if we would
like to calibrate 𝑔0 = 𝑔/�̄� from OMIT, we need to know intra-cavity photon number well, which requires
knowing 𝜂c accurately, which is typically hard to measure directly in transmission.

As frequency crosses the mechanical resonances, there will be a phase shift, very similar to the case
of a cavity, which is shown in Fig. 2.8. This figure is the argument of the total OMIT response 𝑋out(Ω),
but zoomed in to the vicinity of the mechanical response. We can observe two phase jumps due to OMIT.
Typically these structures aremuch narrower than the cavity response. People has proposed to use this feature
to get frequency dependent squeezed light using OMIT [54], which finds its application in gravitational wave
detectors.
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Figure 2.8: OMIT phase Phase shift of the total OMIT response, zoomed in around the mechanical
frequency. The parameters are the same as Fig. 2.7, and Δ/2𝜋 = 6 MHz

2.7 Sideband Cooling
In quantum fluctuation dissipation theorem, 𝑆 ̂𝐹 ̂𝐹 (−Ω) is proportional to the rate, at which a phonon is
transferred from the noisy environment (bath) to the mechanical resonator, while 𝑆 ̂𝐹 ̂𝐹 (Ω) is proportional
to the rate of the inverse process [43]. This process has its analogy when the mechanics is interacting with
an optical field, the sidebands corresponds to scattering of photons from the carrier frequency. The red
sideband (the sideband with frequency lower than the carrier) is a result of creating a pair of a phonon in the
mechanics at Ωm and a red-shifted photon at frequency 𝜔 − Ωm, where energy is added to the mechanics,
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and heats it up. On the contrary, the blue sideband extracts a phonon from the mechanics, and combines it
with a carrier photon to create a photon at frequency 𝜔 + Ωm, which cools the mechanics down. These two
processes are embedded in the linearized interaction Hamiltonian, when we write �̂� = ( ̂𝑏† + �̂�)/√2:

�̂� lin
int = −ℏ𝑔(𝛿 ̂𝑎† + 𝛿 ̂𝑎)( ̂𝑏† + �̂�) = −ℏ𝑔( ̂𝑎† ̂𝑏† + ̂𝑎†�̂� + ̂𝑎�̂�† + ̂𝑎�̂�), (2.72)

where the first and last terms represent the process of red sideband, while the second and third represent the
process of blue sideband.

Figure 2.9: Cavity enhancement/suppression of mechanical sidebands A figure from [5]. A case of red
detuned laser is shown. The black arrow represents laser, and the Lorentzian curve represents cavity
lineshape.

When the interaction is in free space, the two processes are in balance. However, as the intracavity field
intensity is proportional to |𝜒c(Ω)|2, when the input laser is red-detuned (Δ < 0), a cavity can be used to
enhance the blue sideband (with an intensity scaling factor |𝜒c(Ωm)|2), while suppress the red one (with
a scaling factor |𝜒c(−Ωm)|2), as shown in Fig. 2.9. This introduces a overall cooling of the mechanical
oscillator, with cooling rate Γopt , which is called “dynamic cooling” or sideband cooling. On the contrary, if
the laser is blue-detuned (Δ > 0), the mechanics will be heated up, due to the enhancement of red sideband.
In this case, Γopt is negative. If the interaction is strong enough, such that Γopt + Γm < 0, the mechanical
mode will experience an self-oscillation (infinity amplitude in linear regime). The final amplitude will be
limited by higher order damping terms essentially.

To have a better idea of sideband cooling, let’s suppress the effect of thermal bath by taking Γm = 0.
Then the phonon occupancy of the oscillator is solely determined by the optical settings. Recall Eqn. 2.9,
the occupancy given by photon bath is then

̄𝑛opt = |𝜒c(−Ωm)|2

|𝜒c(Ωm)|2 − |𝜒c(−Ωm)|2 . (2.73)

Notice that this is never strictly 0, contradicting to the intuition when the unbalance between sidebands are
introduced. Intuitively, this unbalance will extract energy from the mechanical oscillator continuously, until
it is at quantum ground state. The reason for the finite occupancy lies in the difference between the ability
of the mechanics to scatter photons to red and blue sidebands. For the red sideband, the ability for the
mechanics to scatter a photon is proportional to ̄𝑛 + 1, while for the blue sideband is ̄𝑛. As ̄𝑛 approaches
0, the unbalancing between ̄𝑛 + 1 and ̄𝑛 will increase, and balance the unbalancing between |𝜒c(−Ωm)|2

and |𝜒c(Ωm)|2, ending up in a finite occupancy. One can imaging, if Ωm ≫ 𝜅, the red sideband can be
suppressed better, and the optimal ̄𝑛opt can be closer to 0. In fact, in this regime, the optimal ̄𝑛opt is given by

̄𝑛min
opt = (

𝜅
4Ωm )

2
. (2.74)

Now we take the coupling to thermal bath into consideration by taking Γm > 0. In weak coupling regime
𝑔 ≪ 𝜅, Γm, the optical bath and thermal bath serve as two independent bathes, competing the effect of each
other. Then the final occupancy is the normalized average of thermal occupancy and optical occupancy
weighted by their own coupling rates Γm and Γopt respectively

̄𝑛 =
Γopt ̄𝑛opt + Γm ̄𝑛th

Γopt + Γm
. (2.75)
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In the limit of Γopt ≫ Γm ̄𝑛th (i.e. large optomechanical coupling), ̄𝑛 recovers ̄𝑛opt . Therefore, ̄𝑛opt is also
referred as backaction limit (the idea of backaction will be illustrated in the next section).

Sideband cooling of a mechanical oscillator is a technique inherited from laser cooling in atomic physics
[13, 56, 57], and it has been used to realize, for the first time, ground state cooling ( ̄𝑛 < 1) of a mechanical
oscillator [12, 13, 58], due to relatively easy requirements of system parameters, like cavity out coupling ef-
ficiency 𝜂c and detection efficiency 𝜂. Moreover, cooling beyond the backaction limit has also been achieved
using squeezed light [59]. Other correlated light can also be used for overcoming this limit (e.g. in [60]).
We will see later in this thesis that sideband cooling also finds its usage when ground state cooling is not the
goal.

2.8 The Standard Quantum Limit
Conventionally, displacement measurement in cavity optomechanics is done under the condition of on res-
onance laser (Δ = 0) and detects phase quadrature of the output field (𝜃 = 𝜋/2). It is not hard to see from
Eqn. 2.54 that, if the ̄𝑆cor is neglected, the conventional measurement gives the largest displacement sensi-
tivity. In this case, 𝑣(Ω) vanishes, 𝜒c = 𝑢(Ω) = 1/(𝜅/2 − 𝑖Ω), and 𝜒eff (Ω) recovers the unmodified 𝜒m(Ω).
The correlation term in Eqn. 2.47 vanishes, and the spectrum reads

̄𝑆�̂�𝜋/2�̂�𝜋/2 (Ω) = 1
2 + 𝜂c𝜂 4𝑔2𝜅

𝜅2/4 + Ω2 |𝜒m(Ω)|2
(

2𝑔2𝜅
𝜅2/4 + Ω2 + 2Γm( ̄𝑛th + 1/2)

)
. (2.76)

This spectrum is normalized to shot noise level. However, to discuss the sensitivity on displacement, we
need to compare the measured spectrum to something directly related to mechanical spectrum ̄𝑆�̂��̂�. Here
we choose the zero-point spectrum ̄𝑆zpf (Ω) = 2|𝜒m(Ω)|2Γm, the mechanical spectrum of zero point motion,
which is simply ̄𝑆�̂��̂� with Γqba = 0 and ̄𝑛th = 0. Then the measured displacement spectrum can be written
as

̄𝑆𝑦𝑦(Ω) ≡
̄𝑆�̂�𝜋/2�̂�𝜋/2 (Ω)
𝑓imp(Ω) = 1

2
1

𝑓imp(Ω) + (
Γqba
Γm

+ ̄𝑛th + 1
2)

̄𝑆zpf (Ω)

= 𝜅2/4 + Ω2

8𝜂c𝜂𝑔2𝜅
+

(
𝑔2𝜅

Γm(𝜅2/4 + Ω2)
+ ̄𝑛th + 1

2)
̄𝑆zpf (Ω)

= 1
8𝜂c𝜂Γm𝐶c

+ 2Γm|𝜒m(Ω)|2𝐶c + 2Γm|𝜒m(Ω)|2
( ̄𝑛th + 1

2) (2.77)

= ̄𝑆imp(Ω) + ̄𝑆qba(Ω) + ̄𝑆th(Ω), (2.78)

where 𝐶c = 𝑔2𝜅/(Γm(𝜅2/4 + Ω2)) is the classical cooperativity, the ratio between backaction rate and me-
chanical linewidth. 𝐶c has the physical meaning of mechanical phonon occupancy generated by quantum
backaction, which is proportional to measurement rate, and can be treated as a measure of measurement
strength. The spectra in the last line are imprecision spectrum, quantum backaction spectrum and the spec-
trum due to intrinsic motion respectively. Imprecision noise and backaction noise sum up to the added noise
by the measurement as ̄𝑆add(Ω) = ̄𝑆imp(Ω) + ̄𝑆qba(Ω). As we change measurement strength, we can see
a fundamental trade off between imprecision and backaction noise [7]. If we minimize the added noise
over 𝐶c, we have the minimum value when 𝐶c = 1/4Γm|𝜒m(Ω)|. Notice that 𝜂c, 𝜂 < 1 will increase the
imprecision level. To get an optimal limit, we take 𝜂c, 𝜂 = 1, and we have

̄𝑆SQL(Ω) ≡ ̄𝑆min
add (Ω) = |𝜒m(Ω)|. (2.79)

This limit is called the Standard Quantum Limit (SQL) for displacement measurement. An interesting fact
to notice is that the peak value of the SQL spectrum ̄𝑆SQL(Ωm) = Γm|𝜒m(Ωm)|2 = ̄𝑆zpf (Ωm)=1/Γm, which
is exactly the same as the spectrum of zero-point fluctuation.

The SQL can also be defined for force sensing. A frequency dependent force can be transduced into
displacement of a mechanical oscillator through mechanical susceptibility by �̂� ̂𝐹 (Ω) = 𝜒m(Ω) ̂𝐹 (Ω). By
measuring this displacement, one can get the information about the force. Here, any intrinsic motion of the
mechanical oscillator degrades the sensitivity to the displacement caused by the force. Therefore, we treat
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it as noise background. Among the intrinsic noise sources, the zero point motion is inevitable. To count for
this, we absorb zero point motion into the definition of the SQL in force sensing [41]:

̄𝑆SQL
̂𝐹 ̂𝐹 = 1

|𝜒m(Ω)| + Γm. (2.80)

This optimal sensitivity can be achieved when 𝐶c = 1/4Γm|𝜒m(Ω)| and bath temperature 𝑇 = 0.

2.9 Ponderomotive Squeezing
Consider the interaction between intra-cavity electromagnetic (EM) field andmechanics as shown in Eqn. 2.36.
The amplitude quadrature of EM field changes the momentum of the mechanics, and this change is rotated
into displacement of the mechanics through the periodic mechanical motion. The change of displacement
in turn, modifies the amplitude quadrature of the intracavity EM field. Thus, the two quadratures of the EM
field are correlated. This correlation is the origin of the quantum correlation between imprecision noise and
quantum backaction as shown in Eqn. 2.55.

In the discussion of the Standard QuantumLimit, we analyzed a case where the quantum correlation term
vanishes. To study the effect of this quantum correlation, we can resume it by having either a homodyne
angle 𝜃 different from 𝜋/2, or a non-zero cavity detuning (Δ ≠ 0), or both. Both of the methods measures
a cavity field quadrature other than phase. In the following discussion, for the purpose of simplicity, let’s
focus on the case of 𝜃 ≠ 𝜋/2, while keep Δ = 0. Then the quantum correlation is given by

̄𝑆cor(Ω) = Γmeas
4 Re[𝜒m(Ω)]𝜇(Ω) sin (2𝜃) = Γmeas

4 Re[𝜒m(Ω)] 2𝜅2

𝜅2/4 + Ω2 sin (2𝜃) (2.81)

At the same time 𝑓imp(Ω) has the form

𝑓imp(Ω) = Γmeas
4

2𝜅2

𝜅2/4 + Ω2 (1 − cos (2𝜃)). (2.82)

From this we can see the effect of 𝜃 on the transduction factor: 𝜃 other than 𝜋/2 degrades 𝑓imp(Ω), making
the sensitivity to mechanical motion worse. When 𝜃 = 0 or 𝜋, the homodyne detects purely amplitude
quadrature, and no mechanical information is left in the measured spectrum. Now the measured spectrum
is given by

̄𝑆�̂�𝜃�̂�𝜃 (Ω) = 1
2 + Γmeas

4
2𝜅2

𝜅2/4 + Ω2 |𝜒m(Ω)|2 (2Γqba + 2Γm( ̄𝑛th + 1/2)) (1 − cos (2𝜃))

+Γmeas
4

2𝜅2

𝜅2/4 + Ω2 Re[𝜒m(Ω)] sin (2𝜃). (2.83)

On mechanical resonance (Ω = Ωm), the quantum correlation ̄𝑆cor(Ω) vanishes, because Re[𝜒m(Ω)] =
Ωm(Ω2

m − Ω2)/((Ω2
m − Ω2)2 + Γ2

mΩ2) = 0. When Ω ≠ Ωm, the quantum correlation can be negative. If at
a frequency the sum of the second and third terms is negative, making the total spectrum smaller than shot
noise level, we say the optical field is squeezed. Because this squeezing comes from interaction of light
with a movable object, it is named ponderomotive squeezing. Fig. 2.10 shows typical squeezing spectra at
different 𝜃’s.

Suppose 𝜃 ∈ (0, 𝜋), ponderomotive squeezing happens, when

Γqba
Γm

+ ̄𝑛th + 1
2 < Ω2 − Ω2

m
2ΓmΩm

cot 𝜃. (2.84)

As Ω ≠ Ωm, there is always a 𝜃 in the above specified interval satisfying the condition. It is the exactly same
case, when 𝜃 ∈ (−𝜋, 0). The homodyne angle for optimal squeezing is given by

tan (2𝜃opt) = Ω2
m − Ω2

2ΓmΩm(Γqba/Γm + ̄𝑛th + 1/2) . (2.85)
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Figure 2.10: Ponderomotive squeezing Typical spectra of ponderomotive squeezing. The blue, orange,
green and red spectra correspond to homodyne angles 𝜃 = 𝜋/2, 0.7𝜋/2, 0.3𝜋/2, 0.1𝜋/2 respectively. The
spectra are in a Fano shape, as a result of quantum correlation. The tall tips are truncated to emphasis
on the squeezing part.

Ponderomotive squeezing was first proposed in [61, 62], and the first experimental realization was
demonstrated in 2013 [37, 38]. In contrast to squeezed light generated by optical parametric oscillators
(OPO), which strongly depends on the material of the oscillator and the optical frequency, ponderomotive
squeezing relies on radiation pressure, an effect available for EM fields at any frequency. This freedom pro-
vides the opportunity for less engineering problem, when developing a squeezer at a new wavelength. This
feature may find its application, for example, in gravitational wave detection [63]. Moreover, ponderomotive
squeezing shares the same principle as measurement beyond the Standard Quantum Limit and optomechan-
ical entanglement of optical fields, which will be discussed in detail in the corresponding chapters. Thus, it
provides a good analogy for understanding these effects.

2.9.1 Squeezing Bound in Toy Model
In general, the lower bound for squeezed spectrum is pretty complicated. Instead, we study the limit where
𝜅 ≫ Ωm, and Δ = 0. In this limit, the measured spectrum is given by

̄𝑆�̂�𝜃�̂�𝜃 (Ω) ≈ 1
2 + 4Γmeas|𝜒m(Ω)|2 (Γqba + Γm( ̄𝑛th + 1/2)) (1 − cos (2𝜃)) + 2ΓmeasRe[𝜒m(Ω)] sin (2𝜃). (2.86)

To simplify the problem, we define quantum cooperativity𝐶q ≡ 4𝑔2/(𝜅𝑖Γm( ̄𝑛th+1/2))) = Γqba/(Γm( ̄𝑛th+1/2)),
the ratio between backaction rate and intrinsic decoherence rate. 𝐶q serves as a figure of merit of strength
of optomechanical interaction. Express Eqn. 2.86 in terms of 𝐶q:

̄𝑆�̂�𝜃�̂�𝜃 (Ω) ≈ 1
2 + 2𝜂c𝜂 [2Γ2

qba|𝜒m(Ω)|2(1 + 1
𝐶q

)(1 − cos (2𝜃)) + ΓqbaRe[𝜒m(Ω)] sin (2𝜃)] . (2.87)

Focus on frequency components off mechanical resonance |Ω2 − Ω2
m| ≫ ΓmΩ, where the correlation term is

significant, and the contribution from mechanical motion is small. We can neglect imaginary part of 𝜒m(Ω),
such that 𝜒m(Ω) ≈ Ωm/(Ω2

m − Ω2), and 𝜒m(Ω) = Re[𝜒m(Ω)]. Thus, the spectrum is a quadratic function of
𝜒m(Ω), and takes the minimum value when

𝜒min
m (Ω) = − sin (2𝜃)

4Γqba(1 + 1/𝐶q)(1 − cos (2𝜃)) , (2.88)
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Figure 2.11: Ponderomotive squeezing at different quantum backaction rates The blue, orange, green and
red spectra correspond to Γqba/2𝜋 = 1, 3, 6, 10 kHz respectively, and the other parameters like homodyne
angles are the same.

and the minimum value is
̄𝑆min
�̂�𝜃�̂�𝜃

(Ω) = 1
2 − 𝜂c𝜂 sin2 (2𝜃)

4(1 + 1/𝐶q)(1 − cos (2𝜃)) . (2.89)

The expression is minimized when 𝜃 → 0:

̄𝑆min
�̂�𝜃�̂�𝜃

(Ω) = 1
2 (1 − 𝜂c𝜂

1 + 1/𝐶q ) = 1
2 (1 − 𝜂meas) , (2.90)

where 𝜂meas = Γmeas/(Γqba + Γm( ̄𝑛th + 1/2)) is the overall measurement efficiency [8], the ratio between
rate of collecting information and total decoherence rate. From this equation, it is clear that to detect more
ponderomotive squeezing, one needs to have simultaneously high detection efficiency and measurement
strength. Suppose there is no upper limit for 𝐶q, infinity squeezing is achievable with 𝜂𝑐𝜂 = 1 and 𝐶q →
∞. In practice, 𝐶q is limited by static bistability. Strong and efficient measurement is a key for all other
experiments discussed in this thesis as well.

In addition to increasing the amount of squeezing, increasing Γqba also has the effect of increasing the
characteristic bandwidth of the squeezed light. This effect can be extracted from Eqn. 2.87. As we increase
Γqba, there is more quantum correlation available for squeezing. Though the mechanical peak grows as a
quadratic function of Γqba, we can always find a frequency away from the mechanical resonance, where the
contribution frommechanical peak is small. In this region, the increased amount of quantum correlation can
influence wider bandwidth of imprecision noise. As a result, we observe broader characteristic bandwidth
of squeezed light, and the squeezed part is pushed further away from the resonance as we increase Γqba, as
shown in Fig. 2.11.
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Chapter 3

Experimental Setup

In this chapter, we introduce the crucial components of the experimental setup, including the cryostat, the
mechanical oscillator, the optomechanical cavity, the homodyne detector and cavity mirrors, together with
their characterizations. In addition, we provide knowledge about feedback control, which is required in
experiments.

3.1 Cryostat

a b c d

window

temperature
sensor

sample holder

cold finger
top part

middle part

Figure 3.1: Cryostat a. The outer shell of cryostat. On the outer shell of the cryostat, there are a pair
of windows for optical access. b. Inside the shell is a radiation shield. c. Inside the shield is the guiding
tube of transfer tube. At the end of the guiding tube is the cold finger, where liquid helium evaporates,
and provides cryogenic temperature. Sample holder is mounted on the cold finger. d. Zoom-in to the cold
finger and sample holder.

Apart from interacting with photons, the mechanical oscillator in an optomechanical system can also
interact with the gas molecules through collisions. In this interaction, the energy stored in the mechanical
motion is dissipated into kinetic energy of the surrounding gas in the form of sound wave, leading to a
broadening of the mechanical linewidth Γm, and results in a additional decoherence channel [64]. This
process is referred as “gas damping”. Our mechanical system is a 2D membrane, which has large cross
section (3 mm × 3 mm) on the vibrating direction and low mass (of the order of 2 ng). This fact makes the
gas damping effect more pronounced. An common approach to reduce gas damping is to put the mechanical
part in vacuum.

As shown in Section 2.3, lower temperature means lower thermal occupancy of the environment, thus
lower thermal decoherence rate Γth = Γm( ̄𝑛th +1/2), which describes the decoherence caused by coupling be-
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tween the mechanics and the thermal environment. Moreover, the intrinsic loss of amorphous materials (e.g.
Si3N4 used for our membranes) decrease as temperature goes down, which further decreases decoherence
rate, mainly due to the suppression of effects of two-level systems [65, 66, 67, 68]. In addition to reducing
thermal decoherence, the thermal motion of the mirror substrates provides a noise background in addition
to shot noise (will be illustrated further in Section 3.7), which effectively increases the imprecision level.
Cryogenic environment can suppress this mirror motion by reducing phonon occupancy, just as cooling the
mechanics. In a word, cryogenic environment is beneficial.

A cryostat is a device providing both vacuum and low temperature environment. Depending on the
working principle, cryostats can be classified into many types. For a wet cryostat, the part intended to be
cooled down is just immersed in cooling agent, such as liquid helium. For a flow cryostat, cooling agent
constantly flows through a tube to cool a part of the cryostat called the cold finger, where typically the sample
is attached. In these two types of cyrostats, continuous consumption of cooling agent is required. If liquid
helium is used (to get a temperature around 4 K), cryogenic experiment could be very expensive. Close cycle
cryostats provide a helium conservation alternative, where a certain amount of liquid helium is recycled in
the system. A compressor is used to compress the evaporated helium back to liquid phase. This operation
introduces strong vibrations to the experimental apparatus, which can be a big issue for precise mechanical
measurement, like in our case.

In practice, we choose a flow cryostat from Janis, as shown in Fig. 3.1. A transfer tube is used to send
liquid helium from a pressurized dewar to the cold finger. The outer shell and the KF flange defines the
vacuum volume, and a turbo pump is used to reduce the vacuum down to 10−5 mbar at the pressure gauge
at room temperature. When the cryostat is at liquid helium temperature, the pressure at the gauge is of the
order 10−6 mbar, due to condensation of gas molecule and slower molecule speed. However, as the gauge is
far away from the sample, and the mechanics is enclosed in a sample holder as shown in Fig. 3.14, the real
pressure at the membrane is not known accurately. At room temperature, we observe strong gas damping
in optomechanical cavity. While at liquid helium temperature, though we do not know the proportion of
gas damping in the total damping effect, the total damping is so small, such that it does not keep us from
achieving the project goals. To reduce the vibration from the turbo pump, we pour a concrete block around
the vacuum pipe coming out of the pump, as shown in Fig. 3.2. Inside the outer shell is a radiation shield,
with optical access as well. When the cryostat is cold, the radiation shield is thermalized to a temperature
significantly lower than room temperature, which provides a cold radiation environment for the sample. This
helps to thermalize the sample to liquid helium temperature. The cold finger and sample holder are made of
copper, in order to maximize the thermal conductivity and, then the thermalization. A temperature sensor is
attached to the cold finger as close to the sample holder as possible to get the information about temperature.

Turbo pump
Concrete block

Figure 3.2: Turbo pump and concrete block The concrete block is used to reduce vibration from the turbo
pump, such that it has less influence on the experimental apparatus.
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3.2 Soft-Clamped Membranes
Our mechanical oscillator is based on a Si3N4 membrane. 𝐶q > 1 is a sign for an optomechanical system
to reach quantum regime. To make 𝐶q large, increasing intra-cavity photon number by increasing the input
power is the most convenient way. However, effects like static bistability limit the amount of optical power
(see Section 2.5). Alternatively, we can try to decrease thermal decoherence rate Γm( ̄𝑛th+1/2). Asmentioned
in the previous section, putting the mechanical system into cryogenic environment directly decreases ̄𝑛th,
and decreases Γm. Both of the effects help achieving large 𝐶q. However, liquid helium temperature is still
not enough to reach the regime of 𝐶q ≫ 1 for a conventional Si3N4 membrane based optomechanical system
[9, 14, 69]. Instead, dilution refrigerators can be used to reduce environment temperature further. However,
this device is extraordinarily expensive. Moreover optical experiments at temperature of the order 10 mK is
not trivial. As the heat conductivity of materials are poor at this temperature, any absorption of photons can
cause dramatic heating. Another way of decreasing thermal decoherence rate is to engineer the mechanical
oscillator, such that Γm is smaller than the conventional design under the same condition. “Soft-clamping” is
a design aiming at this target [10]. With this design, an membrane-based optomechanical system can reach
𝐶q > 1 at liquid helium temperature or even at room temperature.

a b

Figure 3.3: Conventional Si3N4 membranes a. a picture of a conventional square Si3N4 membrane, from
[70]. b. A figure from [5]. The profile of the fundamental mode of a conventional square membrane. The
redder the color indicates more local curvature.

It is beneficial to introduce some basic concepts of mechanical loss of membrane oscillator before we
introduce soft-clamping in detail. Quality factor (𝑄 factor) is a commonly used parameter to characterize
the energy loss rate of a harmonic oscillator. In the case of mechanics, 𝑄 factor is defined as

𝑄 = Ωm
Γm

= 𝑊
Δ𝑊 , (3.1)

where 𝑊 is the energy stored in mechanical motion, while Δ𝑊 is the energy loss per cycle of harmonic
motion. Recall mechanical energy stored in an oscillator decays as 𝐸0𝑒Γm𝑡/2𝜋 . Therefore, 𝑄 factor quantifies
the number of motion cycles a oscillator can oscillates before the energy drop to 1/𝑒 of the original level. For
a membrane mechanical oscillator, most energy is stored in the elongation of the membrane (𝑊elong), while
energy loss is dominant by bending of the membrane (Δ𝑊bend), which leads to mechanical loss through the
imaginary part of Young’s modulus of the material [71].

Now we focus on square Si3N4 membranes. Typically, very high stress is built in the square Si3N4
membrane during the fabrication, this increases 𝑊elong without changing Δ𝑊bend. Thus, the 𝑄 factor of the
modes of a square membrane is boosted compared to the intrinsic value of the material, according to [72, 73]

𝑄−1
mem = (Λ + 𝜋2(𝑁2 + 𝑀2)

4 Λ2)𝑄−1
int , (3.2)

where 𝑄mem is the 𝑄 factor of the square membrane, 𝑄int is the intrinsic 𝑄 factor of Si3N4 [74, 75, 76], 𝑁
and 𝑀 are integer mode indices representing the number of antinodes, and the dimensionless parameter Λ
is given by [73]

Λ = √
𝐸
3�̄�

ℎ
𝑙 , (3.3)

with 𝐸 the Young’s modulus, �̄� the stress, ℎ the thickness, and 𝑙 the length of the mechanical mode. In the
case of a square membrane 𝑙 is simply the edge length of the membrane. The Young’s modulus of Si3N4
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is around 200 GPa, the typical stress in the Si3N4 membrane is up to 1.3 GPa, and the aspect ratio ℎ/𝑙 for a
membrane with edge length of the order of 200 𝜇m (giving Ωm ≈ 1 MHz) and thickness of dozens of nano
meter is extremely small. Therefore Λ ≈ 10−3 is a small number. In this case, 𝑄mem ≫ 𝑄int . This decrease
of dissipation rate is referred as “dissipation dilution”. The term proportional to the second order of Λ in the
dissipation dilution factor corresponds to the sinusoidal motion of the membrane, as indicated by the dashed
line in Fig. 3.3 b, which is inevitable. However, the term proportional to the first order of Λ is a result of
clamping of the membrane to the solid silicon frame. At the edge of the membrane, the mechanics tends to
moving out of the plane to follow the sinusoidal shape, while the clamping tends to keep the mechanics in
plane. This competition results in large curvature at the edge of membrane, which is the dominant source of
mechanical energy loss.

1 mm

a cb

Figure 3.4: Soft-clamped Si3N4 membranes a. a photo of a soft-clamped membrane. b. Zoom in of a.
from COMSOL. c. the defect mode we are interested in, zoomed in around the defect.

With the introduction of soft-clamping, one can reduce by order of magnitude the high curvature at the
clamping point In a soft-clamped membrane, a honeycomb pattern of holes is etched on a Si3N4 membrane,
forming a phononic crystal, as shown in Fig. 3.4. In the middle of the membrane, there is a defect, which
can support mechanical vibrations localized around it. It is one of them the mode of interest in the following
experiments, as shown in Fig. 3.4 c, whose largest vibration amplitude is located at the center of the defect.
The defect modes are not directly clamped to a hard frame. Instead, its shape decays exponentially into
the phononic crystal structure, with negligible amplitude at the membrane edge. Thus this design strongly
suppresses the clamping contribution of the mechanical energy dissipation. In addition, phononic crystal
opens a bandgap, where no whole membrane mode but defect mode exists. Phonons at frequencies falling
in the bandgap are not allowed to propagate in the phononic crystal. Therefore, mechanical energy stored in
the defect mode cannot radiate through the membrane and get lost in the silicon frame. This shielding helps
boosting the 𝑄 factor of the membrane further, and helps isolating the mode of interest from other modes.
The mechanical spectrum of the soft-clamped membrane, used in this thesis, close to the first bandgap, is
shown in Fig. 3.5.

Figure 3.5: Mechanical spectrum close to bandgap the mode around 1.14 MHz is the mode of interest.
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3.2.1 Cryogenic Ringdown

AM

Lock-in

Figure 3.6: Setup of ringdown experiment AM is amplitude modulator, used to excite the membrane, and
lock-in is lock-in amplifier, used for membrane excitation and signal processing. The interference between
the injecting laser and reflected fields from the mirrors and the membrane causes a membrane position
dependent intensity modulation. This is directly detected by a photodiode, and analyzed by a lock-in
amplifier.

Ringdown is a widely used method to extract the 𝑄 factor of a mechanical oscillator, in which the oscil-
lator is firstly excited to a relatively large amplitude compared to the thermal motion, then the excitation is
terminated, and the amplitude of the excited oscillator decays freely. By monitoring the amplitude decreas-
ing, one can extract the 𝑄 factor.

Experimentally, we use the same laser for excitation and readout of the membrane. We tune the laser
to a wavelength, where the cavity mirrors have very low reflectivities (refer to Fig. 3.16). This choice of
wavelength reduces the effect of optical damping to a negligible level, which allows measurement of the
bare mechanical property. Though the reflectivities of the mirrors are low, they still form reflecting surfaces,
which form an interferometer with the reflecting surface of the membrane. In this way, membrane motion
can be transferred into intensity modulation of the output laser from the cavity, which is subsequently directly
detected by a photodiode. The voltage signal from the photodiode is fed to a lock-in amplifier. In general,
the output of a lock-in amplifier at demodulation frequency Ωd, with a low-pass filter ℎ(Ω), is given by (see
Appendix B for more detail)

𝑋 + 𝑖𝑌 = ℎ(ΩS − Ωd) 𝐴S

√2
𝑒𝑖((ΩS−Ωd)𝑡+Φ), (3.4)

where ΩS is the frequency of the signal, 𝐴S is the amplitude of the demodulated signal (different from but
proportional to the amplitude of the signal), and Φ is the phase of the signal. For ringdowm measurement,
we set Ωd = ΩS = Ωm to obtain a DC signal, whose amplitude 𝑅 = √𝑋2 + 𝑌 2 is proportional to the
amplitude of the demodulated signal 𝐴S, which reflects the amplitude of the mechanics.

To excite the membrane, we output a tone from the lock-in amplifier around frequency Ωm, and feed
it to an amplitude modulator. The radiation pressure of the amplitude modulated light insert a sinusoidal
force 𝐹 sin Ωd𝑡 on the mechanical oscillator, with 𝐹 proportional to the light intensity and modulation depth.
Then the equation of motion of the mechanics is given by

̈𝑞 + Γm ̇𝑞 + Ω2
m𝑞 = 𝐹

𝑚 sin Ωd𝑡, (3.5)

the steady state solution of which is

𝑞(𝑡) = 𝐹
𝑚Ωd𝑍m

sin (Ωd𝑡 + 𝜙), (3.6)

where 𝜙 is the phase lag of the mechanics relative to the driving force, and

𝑍m =
√√√
⎷

Γ2
m +

(Ω2
m − Ω2

d)2

Ω2
d

. (3.7)
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Aparently, we need Ω2
m ≈ Ω2

d to excite the mechanics to large amplitude. Larger driving force also corre-
sponds to larger steady state mechanical amplitude.

In practice, the mean power at the output of the amplitude modulator may drift in time, which can cause
undesirable change in lock-in signal. Splitting part of the output light, shining on a photodetector with much
narrower bandwidth than the drive frequency provides information about the mean power, which can be
used to stabilize the output by a PID controller (see Section A.3 for more information).

When the amplitudemodulation drive is turned off, the excitedmechanical mode starts to ringdown. One
way to get the mechanical information is to continuously monitor the mechanical motion in time, and fit the
ringdown time trace with an exponential 𝐴𝑒−𝑡/𝜏c . The fitted time constant 𝜏c = 2𝜋/Γm gives mechanical
linewidth, from which we can get 𝑄 = Ωm/Γm. This continuous monitoring method may be affected by laser
heating and residual optical damping (though cavity linewidth is extremely large), making the result not
accurate. Both of the effects are caused by the presence of probe laser. A straightforward way to eliminate
these potential artifacts is to let the mechanical mode ringdown “in the darkness”, while only send light to
it when needed. This is called stroboscopic ringdown, where we use the amplitude modulator to block the
light most of the time, and let the light through occasionally. The result is “stroboscopic” ringdown time
trace, which can be fitted by an exponential function just as the continuous case.
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Figure 3.7: Ringdown A figure from [8]. Both continuous and stroboscopic results are shown.

In practice, we did ringdown experiment in cryogenic environment at a temperature around 11 K (due
to thermalization issue, this temperature is higher than 4.2 K provided by liquid helium). The results of
continuous and stroboscopic ringdown are shown in Fig. 3.7. The stroboscopic ringdown gives 𝑄 = 1.02 ×
109, and the continuous one gives 𝑄 = 1.03 × 109. The good agreement shows no presence of significant
contribution from laser heating or optical spring. The 𝑄 factor corresponding to Γm/2𝜋 = 1.1 mHz.

3.2.2 Frequency Noise
𝑄 factor determines the energy dissipation rate of the mechanics, which is only one of the decoherence
channels of the mechanical quantum state. Apart from energy dissipation, phase decoherence (dephasing)
can also degrade the mechanical quantum state. Though energy dissipation causes dephasing at a rate of
Γm, which explains partially the dephasing process, process like pure dephasing cannot be characterized
by 𝑄 factor. For mechanical oscillators, dephasing can be a result of thermal fluctuations [77], absorption
and de-absorption of molecules on the oscillator surface [78, 79], diffusion of molecules along the device
[80], and excitation and relaxation of two-level systems on the surface [30, 81, 48]. For high Q mechanical
oscillators, there is evidence showing that the main contribution of dephasing comes from the two-level
systems [30, 48]. To quantify the potential of soft-clamped membranes to be used as quantum memories,
measurement of overall dephasing is necessary. Dephasing process results in phase noise sidebands of the
mechanical carrier frequency, which can be inferred from frequency noise spectrum of the mechanical mode
according to

̄𝑆𝜙𝜙(𝜔) = ̄𝑆𝜔𝜔(𝜔)/𝜔2, (3.8)
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Figure 3.8: Setup of frequency noise measurement PLL stands for phase lock loop.

where 𝜔 = Ω − Ωm is the sideband frequency of the mechanical carrier.
We follow the procedure introduced in Fong et al. [48] tomeasure frequency noise of our device. Though

the experimental setup of frequency noise experiment could, in principle, be the same as ringdown, due
to historical reason, this measurement is conducted with a mirror-membrane-glass interferometer, and the
drive is provided by a piezo, as shown in Fig. 3.8. In this setup, a flat mirror, spacers, the membrane
and a piezo are clamped together. An O ring is put between sample holder and the mirror to protect the
mirror from cracking during the clamping, and provide clamping force to the entire structure, when the top
copper piece is pressed against the piezo. A piece of glass is glued at the opening of this copper piece.
This glass and the mirror form a very low finesse cavity, which gives mechanical motion information as the
ringdown case. This glass also prevents the gas molecules in the cryostat from condensing on the membrane
during cool down. Otherwise, the mechanical property of the membrane may degrade. The laser light first
passes through a half waveplate (HWP) to adjust its polarization, which determines the amount of light
transmitting through the polarizing beam splitter (PBS). Then the transmitted light from the PBS passes
through a quarter waveplate (QWP), which can change the polarization of light from linear to circular. The
reflected light from the mirror interferes with the reflected light from membrane. The membrane motion
thus modulates the intensity of the total reflected light at mechanical frequency. The polarization of the
reflected light carrying mechanical information is changed from circular to linear by the QWP. However,
due to the opposite propagation direction, the polarization is perpendicular to that at the input of the PBS
this time. Then, the light is reflected by the PBS to a photodetector, whose output is input to a phase locked
loop (PLL). The PLL outputs a drive to the Piezo at Ωm to excite the membrane. From the evolution of the
PLL reference frequency, we can extract the information of membrane frequency noise.

Phase
comparator

V Vi o
VCO

Controller

Voltage 
controlled
oscillator
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Figure 3.9: Phase locked loop

A phase locked loop is typically used to excite a resonating system with time dependent resonance fre-
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quency. During the process, the drive frequency follows the resonance frequency tightly with the help of
PLL, which allows us to excite the resonating system always maximally with the same driving power. A
phase locked loop is typically composed of 3 components: a phase comparator, a proportional-integral (PI)
controller (see Subsection 3.4.1 for more detail), and a voltage controlled oscillator (VCO). The phase of the
input signal 𝑉i containing the frequency information of the mechanical oscillator is compared to the phase
of a reference signal 𝑉o. The difference is treated as a error signal of a PI controller, which subsequently
changes the voltage to the VCO to update the frequency of the reference signal. If the frequencies of the input
and reference are different, the phase difference will evolve like (𝜔i − 𝜔r)𝑡, where 𝜔i and 𝜔o are frequencies
of input and reference respectively. Therefore, matching the two phases also matches the frequencies. By
monitoring the time evolution of the reference frequency, we can get directly the information of the fre-
quency noise of the membrane up to the bandwidth of the PLL. In real experiment, the PLL is provided by
a module of a HF2 Zürich Instrument lock-in amplifier, which converts analog input to a digital signal at a
certain sampling rate. To avoid excess noise called aliasing, the bandwidth of the PLL loop should be less
than half of the sampling rate. This is also a general rule for any analog to digital spectrum analysis.

a b

Figure 3.10: Frequency noises of clocks a. b. the measurement setups of the HF2 internal quartz noise
and Rohde&Schwarz spectral analyzer clock noise respectively.

Measurement of frequency noise using PLL only reliably reflects the noise of the input signal, if the noise
of the reference is small compared to the signal. When the opposite happens, we are effectively measuring
the the noise of the reference, which is undesirable. To have an idea of the frequency noise of the internal
clock of HF2 (provided by a quartz, and serves as the reference in PLL), we “measure” the 10 MHz output
of the quietest clock we can find at hand, a GPS disciplined quartz, as shown in Fig. 3.10 a. We conduct
fast Fourier transformation on the time traces of the reference frequency in PLL, and get a frequency noise
spectrum as shown in Fig. 3.11 a. This noise performance is even above the level of membrane at liquid
helium temperature. To find a proper reference clock source (the GPS disciplined quartz is not portable, and
is not placed in our lab), we measured the noise performance of the 10 MHz output of a Rohde&Schwarz
spectral analyzer, by inputting the output to the external clock input of the HF2, and conducting the same
measurement on the GPS disciplined quartz, as shown in Fig. 3.10 b. The result is displayed in Fig. 3.11 a.
It is clear that the noise performance of the spectral analyzer clock is better than that of the internal quartz of
HF2. Actually, the noise performance is also better than that of the membrane at liquid helium temperature
(measured with spectral analyzer clock), as shown in Fig. 3.11 b. Recall Eqn. 3.8, we notice that when the
phase noises are the same, frequency noises at high frequencies are larger than frequency noises at lower
frequencies. This explains the level difference between the spectral analyzer clock in Fig. 3.11 a and b, as
the former is at 10 MHz and the latter is at 700 kHz.

Using the output of the R&S spectral analyzer as the clock of reference, we measured frequency noise
performance of membrane at room temperature and liquid helium temperature, by resonantly driving the
membrane to a large amplitude. The results are shown in Fig. 3.12, which can be divided into three regions
from low frequency to high frequency. The performance from very low frequency to around 0.3 Hz could be
a consequence of energy dissipation related to Γm and a slow drift in time, which has a frequency dependence
of 1/𝑓 2, where 𝑓 is the sideband frequency. However, due to lacking of points (i.e. too short measurement
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Figure 3.11: Frequency noises of clocks a. The frequency noise spectral of the internal quartz of HF2
and the 10 MHz output of a Rohde&Schwarz spectral analyzer. b. The frequency noise of the spectral
analyzer output and the membrane at liquid helium temperature.

time), the conclusion in this region is not certain. In the region from 0.3 Hz to 20 Hz, the frequency noise
has a 1/𝑓 dependence, which is classified as flicker noise. Above 20 Hz, the noise is dominant by some sharp
and broad peaks, whose origin is not clear yet. One suspicion is the pendulum motion of the cold finger, as
the frequency lies in this range. More research is required to exam the potential of soft-clamped membranes
as quantum memory. Indeed, in the quantum trajectory experiment, my colleague Massimiliano Rossi and
David Mason evaluate the phase noise of the membrane, and find negligible decoherence contribution from
pure dephasing [82]. However, this experiment is out of the scope of this thesis.

3.3 Membrane-in-the-Middle Cavity
3.3.1 Optomechanical coupling
Amembrane-in-the-middle (MIM) system is a Fabry-Pérot cavity with a membrane in between two mirrors.
Though the moving part is a membrane, instead of one of the mirrors, this is still a optomechanical system.
The membrane couples to the cavity dispersively, which can be illustrated in a regime where the reflectivity
of the membrane is low. In this case, the standing wave supported by the mirrors is not strongly disturbed by
the membrane. As the material of membrane (Si3N4 in this case) has higher refractive index than vacuum, a
membranemakes the optical path length longer in the cavity compared to a bare cavity case. Consequentially,
the cavity resonance frequency decreases, as shown in Fig. 3.13. However, this frequency shift depends on
the position of the membrane relative to the intensity profile of the intra-cavity mode. When the membrane
is located at the node of the standing wave, effectively photon does not “see” the membrane, and there is no
frequency shift in this case. In the same spirit, the frequency shift is the largest when the membrane is at
anti-node. Recall that optomechanical coupling 𝐺 = 𝜕Ωcav/𝜕𝑞 is position dependent cavity frequency shift.
To get finite first derivative, we need to move away from the node and anti-node. The maximum 𝐺 appears
at the position with the largest slope of intensity, which is also our working point. When the optomechanical
cavity itself does not have any degree of freedom, the relative position of membrane to standing wave can
be tuned by hopping between different free spectra ranges (FSR). A free spectra range is defined as 𝑐/𝑛𝐿,
where 𝑐 is speed of light in vacuum, 𝐿 is the cavity length. The physical meaning of FSR is the frequency
spacing between adjacent cavity modes (i.e. number of anti-nodes differs by 1).

3.3.2 Cavity Assembly
In principle, there are large numbers of ways the mirrors and the membrane are put together. However, a
general rule of thumb is that more tunability leads to less stability. To maximize the stability of the system,
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Figure 3.12: Frequency noises of a soft-clamped membrane The dashed lines are guides to the eyes of
1/𝑓 dependence. The low frequency cut off is determined by the length of the time trace, while the high
frequency cut off is determined by sampling frequency.

we chose a monolithic way of assembling, as shown in Fig. 3.14. An O ring is firstly placed in the groove
in the bottom part of the copper sample holder, then a flat mirror is placed on top of the O ring. The role
of the O ring is to provide clamping force on the mirror, while protecting it from cracking under pressure.
Introducing a rubber ring in the system right beside the mirror may sounds unstable, as it results in a movable
mirror. However, as the frequency of this rubber-mirror system is very low compared to the frequency of the
membrane, this is not problematic in practice. Subsequently, a spacer-membrane-spacer sandwich is placed
on top of the flat mirror, where the first spacer falls in the groove carved in the bottom part. As the spacers
are fabricated from silicon wafers, just like the membrane, the flat surfaces of silicon wafers and the flat
mirror guarantee that the membrane and the flat mirror are parallel. This is crucial for reducing scattering
of photons into undesirable cavity modes, which is a source of cavity internal loss. Then the sandwich is
clamped down by the middle part of the sample holder. At the end of this clamping, the lowest spacer
touches the surface of the bottom part, which stabilizes the system yet further.

The alignment of the top mirror to the defect of the soft-clamped membrane is the key step of cavity
assembly, because the horizontal direction of the cavity mode is defined by the position of the curved mirror,
and the overlapping between the optical and the mechanical modes contributes to 𝑔0. If the cavity TEM00
mode does not fall on the center of the defect, 𝑔0 will suffer. Moreover, if the optical mode is clipped by
any holes on the soft-clamped membrane, light scattering to other modes will happen, and will significantly
broaden the cavity linewidth, thus will decrease 𝜂c. In the alignment process, we first set up the camera
and lens after the cavity, such that a sharp magnified image of the membrane appears on the camera, when
the membrane is illuminated by flash light. Subsequently, by adjusting the orientations of the two mirrors
before the cavity, we adjust the injecting angle and position of the laser such that it is perpendicular to the
flat mirror and passing through the center of the defect on the membrane. Please notice that, curved mirror
is not in the assembly yet. Then we focus the light on the flat mirror, by changing the distance between the
collimation lens and the fiber head. Up to this step, the laser beam defines the optical axis of the cavity. The
rest is to put the curved mirror on the top spacer, move it horizontally to align the center to the laser beam
defined axis, such that the TEM00 mode falls on the center of the defect, and fix its position by clamping
with another O ring and the top part of sample holder. The final image should look like Fig. 3.15. Scanning
the laser through the resonances helps seeing TEM00 mode, and makes alignment easier.
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Figure 3.13: Optomechanical coupling A figure from [83]. Illustration of optomechanical coupling in a
MIM system.

O ring
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Figure 3.14: Membrane-in-the-middle system a. The assembly of membrane-in-the-middle system. b.
The setup of curved mirror and cavity alignment.

The O ring, mirrors, silicon chips and stainless steel screws do not have very good thermal conductivity,
especially at low temperatures. Moreover, the phononic structure of the soft-clamped membrane reduces
the cross section for heat exchange between the defect and the silicon frame. Therefore, the defect mode is
not thermalized to liquid helium temperature, but a temperature around 10 K.

3.3.3 Alignment to cavity mode
An input light beam can only be well coupled to the cavity mode, if the spatial and temporal properties of
the two match. Temporally, the frequency of the injecting laser has to match the cavity resonance frequency
up to an order of cavity linewidth, this part will be taken care of in the next section. Matching of spatial
mode is equivalent to matching the propagating axis and the complex parameter 𝑞(𝑧) of the input beam and
the cavity for Gaussian optics.

As shown in Fig. 3.14 a, the cavity mirrors we use is a flat mirror and a curved mirror with radius 25 mm.
The cavity mode defined by this composition has beam waist at the flat mirror, while the radius of curvature
of the wave front should match that of the curved mirror at its reflecting surface. The thickness of the spacer
contacting flat mirror is 350 𝜇m, the thicknesses of the membrane chip and the top spacer are 500 𝜇m, and
the diameter of the curved mirror is 7 mm. Then the cavity length is 1.6 mm. By plugging 𝑧 = 1.6 mm and

35



Figure 3.15: Camera image of a membrane and a TEM00 mode The yellow lines are guides to the eyes for
the center of the defect.

𝑅(𝑧) = 25 mm into Eqn. 2.13, we get 𝑧R = 6.2 mm. Provided 𝜆 ≈ 800 nm, the cavity mode is uniquely
determined, and the beam waist 𝑤0 = 39 𝜇m (i.e. the light spot size on defect), which is much smaller than
the typical defect size of 210 𝜇𝑚. This hierarchy helps avoiding clipping of cavity mode. If 𝑤0 is comparable
to defect size, even if the mode axis is placed exactly at the centered of the defect, the tail of the Gaussian
profile will still be clipped, and will result in optical loss.

The setup of cavity alignment is show in Fig. 3.14 b. We can design a suitable optical path from fiber to
the cavity to optimally couple the laser to cavity mode, the parameters of which we just figured out. As the
properties of a Gaussian beam depend only on one parameter, if the wavelength is fixed, we can relatively
freely choose the distance between the fiber head and the curved mirror, and the focal length of the lens
after fiber (the collimation lens). We fix the focal length of the collimation lens to be 11 mm. Then the only
adjustable parameter to shape the profile properties of the beam in the system is the distance between the fiber
head and the collimation lens, which can be finely tuned with a collimator without changing optical axis.
The single-mode fiber outputs a Gaussian mode with numerical aperture (NA) specified by the producer.
From this data, and the distance between fiber head and curved mirror, we can calculate the required distance
between fiber head and lens using ABCDmatrix analysis, introduced in Section 2.2, and put the lens roughly
at this distance away from the fiber head.

Apart from shaping the Gaussian profile, another aspect of alignment is to match the propagation axis of
the laser to the optical axis of the cavity. As illustrated in Fig. 2.2, TEM00 (the mode of interest) has the most
confined profile around propagation axis. If the axes do not match, by either finite offset or angle between the
axes, the coupling to TEM00 mode will decrease, and the coupling to higher order Hermite-Gaussian modes
may increase. These modes can be identified from the camera image. Bright high order modes compared
to the fundamental one is a signature of poor alignment. This part of alignment is done with two adjustable
mirrors, as in the case of top mirror alignment. Firstly, the laser is tuned to a wavelength, where the mirrors
have low reflectivity (refer to Fig. 3.16), such that considerable amount of light can transmit through the
cavity. From the image on the camera, one can tell if the beam is straightly passing through the holes on the
sample holder. After this step, we go to a higher reflectivity wavelength, and find the fundamental mode by
fine tuning the wavelength. Due to path length difference, higher order Hermite-Gaussian modes appears
at a different frequency from the fundamental one. We sweep laser frequency across the resonance of the
fundamental mode, such that transmission peaks appear on the photo detector. The alignment is finalized
by maximizing the transmission peaks by adjusting 4 degrees of freedom on the mirrors and 1 degree of
freedom at the collimation lens.
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3.3.4 Looking for the Working Laser Wavelength

Figure 3.16: Cavity mirror coatings Measurements and figure from [46], the same pair of mirrors are used
in this theses. a. Transmissions of cavity mirrors at different wavelengths. The unit ppm stands for parts
per million, i.e. 10−6. b. cavity out-coupling efficiency as a function of wavelength. c. Cavity linewidth of
a 1.7 mm-long bare cavity as a function of wavelength.

Asmentioned in Chapter 2, close to unity cavity out-coupling efficiency 𝜂c and reasonably narrow cavity
linewidth 𝜅 (corresponding to large measurement rate Γmeas) is preferred to be satisfied simultaneously by
our system. For a bare cavity, its linewidth 𝜅 is related to transmission coefficients of the input and output
mirrors by

𝜅
2𝜋 = 𝜅L

2𝜋 + 𝜅R
2𝜋 = 𝑐

2𝐿(|𝑡L|2 + |𝑡R|2). (3.9)

The cavity out-coupling efficiency is given by

𝜂c = 𝜅R
𝜅 = |𝑡R|2

|𝑡L|2 + |𝑡R|2 . (3.10)

Thus, both of the parameters are a function of transmission of the mirrors. As the reflectivity of the mem-
brane is low, thus the modification from a bare cavity case is small, it is not exaggerated to say mirror
coatings determines the performance of the cavity. As coatings are making use of interference to generate
high reflectivities (therefore low transmission), themirror transmissions are always a function of wavelength.
For our mirrors, this dependence is shown in Fig. 3.16 a. We can also calculate 𝜂c and 𝜅 approximately us-
ing mirror coating data. It is clear that there is a trade off between high 𝜂c and high 𝜅 in wavelength. Our
choice is to work around wavelength 𝜆 = 796 nm, where 𝜂c = 0.9 and 𝜅/2𝜋 ≈ 10 MHz for a bare cavity.
This wavelength gives both reasonably high 𝜂c and narrow enough 𝜅 to see strong quantum backaction, and
𝜅 ≫ Ωm to keep us in the so called unresolved-sideband regime.

3.3.5 Transfer Matrix Model
So far, we only considered the effects of a bare cavity. After knowning the rough range of working wave-
length, we need to find optical modes giving good optomechanical couplings.

Though the optomechanical coupling of a membrane-in-the-middle system can be modelled by a moving
end mirror setting. There are some differences between the dispersive coupling and the moving end mir-
ror coupling. The most significant difference is that, in dispersive coupling, system parameters including
vacuum optomechanical coupling rate 𝑔0 is a period function of membrane position relative to the cavity
mirrors [84]. Thus, understanding this dependence is a necessary step for us to find the optimal working
condition. To do so, one need to apply the transfer matrix model (TMM). The following contents in this
subsection are based on Jayich et al. [84], Dumont et al. [85] and William Nielsen’s thesis [46].

The related system parameters are shown in Fig. 3.17, where 𝑡’s and 𝑟’s are amplitude transmission
and reflection coefficient respectively for cavity mirrors and the membrane, 𝐿 stands for the cavity length,
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Figure 3.17: Fields amplitudes and system parameters Right propagating fields are labelled by 𝐴’s, while
left propagating fields are labelled by 𝐵’s. For the consideration of field propagation, the starting point
of intra-cavity fields are labelled by the starting points of the arrows. For instance, the starting point of
field 𝐴1 is at the right surface of the left mirror. As membrane thickness is small compared to the cavity
length, we neglect its thickness in the transfer matrix model.

𝑧m stands for the distance between the membrane and the right mirror. As light only passes through the
mirror substrates once, and the coated surfaces are super polished, we can neglect the mirror optical loss
at the mirrors, such that |𝑡L|2 + |𝑟L|2 = |𝑡R|2 + |𝑟R|2 = 1. Then, these coefficients can be extracted from
mirror transmission in Fig. 3.16. The membrane transmission and reflection coefficients can be calculated
by treating it as a thin dielectric plate, and gives [86, 84]

𝑟m = (𝑛2 − 1) sin (𝑘𝑛𝑑)
2𝑖𝑛 cos (𝑘𝑛𝑑) + (𝑛2 + 1) sin (𝑘𝑛𝑑)

(3.11a)

𝑡m = 2𝑛
2𝑖𝑛 cos (𝑘𝑛𝑑) + (𝑛2 + 1) sin (𝑘𝑛𝑑)

, (3.11b)

where 𝑑 is membrane thickness. Please notice that 𝑛 is in general complex, with the imaginary part de-
scribing absorption of light. For Si3N4, the real part of 𝑛 is around 2.0 [87, 88], and the imaginary part
is negligibly small, even inside a cavity with light passing through large amount of times [46]. As the op-
tomechanical coupling is due to radiation pressure, higher 𝑟m means larger coupling strength. From this
expression, we can see 𝑟m is modulated by membrane thickness due an etalon effect between two surfaces
of the membrane. For our membrane thickness of around 20 nm, the reflectivity increases linearly with
membrane thickness, up to around 50 nm.

Now we have thorough understanding of the system parameters, which allow us to calcualtes the fields
[46]

𝐴1 = 𝑖𝑡L𝐴in + 𝑟m𝐵1𝑒𝑖𝑘(𝐿−𝑧m) (3.12a)
𝐵1 = 𝑟m𝐴1𝑒𝑖𝑘(𝐿−𝑧m) + 𝑖𝑡m𝐵2𝑒𝑖𝑘𝑧m (3.12b)
𝐴2 = 𝑖𝑡m𝐴1𝑒𝑖𝑘(𝐿−𝑧m) + 𝑟m𝐵2𝑒𝑖𝑘𝑧m (3.12c)
𝐵2 = 𝑟R𝐴2𝑒𝑖𝑘𝑧m (3.12d)

𝐵ref l = 𝑟L𝐴in + 𝑖𝑡L𝐵1𝑒𝑖𝑘(𝐿−𝑧m) (3.12e)
𝐴out = 𝑖𝑡R𝐴2𝑒𝑖𝑘𝑧m (3.12f)

Without loss of generality, we can set 𝐴in = 1, and solve for 𝐴𝑗 and 𝐵𝑗 , with 𝑗 = 1, 2 under arbitrary
condition. However, of course, what is of interest is the case close to cavity resonance, and the resonance
condition, in high cavity finesse (𝑟L = 𝑟R = 1) and low membrane absorption limit, can be described by
[84, 46]

|𝑟m| cos (2𝑘res𝑧m) = cos (𝑘res𝐿 + arg (𝑟m)), (3.13)
where 𝑘res is the resonance wavevector, which is related to resonance frequency by Ωres = 𝑘res𝑐, with 𝑐 the
speed of light in vacuum, and arg (𝑟m) ≈ 0. From the left handside, we can see a periodicity in 2𝑘res𝑧m.
To have a better view of this periodicity, we can assume |𝑟m| ≪ 1, which to a large extend holds in our
experimental condition. Under this assumption, the resonance condition is not far from the bare cavity case,
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such that 𝑘res ≈ 𝑘0,n, where 𝑘0,n is the nth cavity resonance without a membrane. Then the expression can
be written as

𝑘res ≈ 1
𝐿|𝑟m| sin (2𝑘0,n𝑧m) + 𝑘0,n, (3.14)

where the modulation of cavity resonance frequency is evident. If we treat 𝑘0,n as a continuous variable,
the argument of the sin function 2𝑘𝑧m has 2𝜋 periodicity, and the resonance frequency shift is shown in
Fig. 3.18. As |𝑟m| increases, the modulated cavity resonance is distorted away from a simple sinusoidal
curve, when membrane is not placed exactly in the center of the cavity [85].

This period in 2𝑘𝑧m space can be understood as follows. The optomechanical coupling is the same if
the ratio of the distance from membrane to the closest standing wave nodes on the left (right) side and the
half wavelength is kept the same. Thus if we change 𝑘 to 𝑘 + 𝑛𝑇𝑘, where n is an interger, and 𝑇𝑘 = 𝜋/𝑧m,
the coupling does not change. To get a 2𝜋 period, we work with 2𝑘𝑧m instead of 𝑇𝑘.

Figure 3.18: Membrane position modulation of cavity resonance frequency A figure from [46]. From top
to bottom, |𝑟m| = {0.1, 0.2, 0.3, 0.4, 0.5}.

Apart from cavity resonance frequency, other important system parameters, such as cavity linewidth 𝜅,
cavity out-coupling efficiency, and vacuum optomechanical coupling rate 𝑔0, are also modulated by mem-
brane position. It is beneficial to have a look at these dependences closely, and acquire a physical intuition.

n1 n2
n1 n2

Figure 3.19: Illustration of subcavities

Cavity linewidth There is no analytical expression for cavity linewidth for an MIM system. However,
we can solve the problem numerically, and make sense out of it by comparing it with the case of a bare
cavity. 𝜅0, the cavity linewidth for a bare cavity, is given by

𝜅0
2𝜋 = |𝑡L|2 + |𝑡R|2

𝜏 = 𝑐(|𝑡L|2 + |𝑡R|2)
2𝐿 , (3.15)

with 𝜏 the cavity round trip time. Themeaning behind this equation is the intra-cavity field gets lost whenever
it reaches cavity mirrors. For one mirror, let’s say the left mirror, the rate of energy loss is given by

𝜅L
2𝜋 = |𝑡L|2

𝜏 , (3.16)

where 1/𝜏 determines the rate of light reaching this mirror, and |𝑡L|2 determines the ratio of energy loss. It
is the same case for the right mirror. When there is a membrane between two mirrors, it divide the cavity
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into two subcavities (illustrated in Fig. 3.19), with energy loss rates

𝜅L
2𝜋 = 𝑐|𝑡L|2

2(𝐿 − 𝑧m) and 𝜅R
2𝜋 = 𝑐|𝑡R|2

2𝑧m
. (3.17)

The total 𝜅 then should be a convex combination of 𝜅L and 𝜅R, with the weight determined by the relative
power circulating in the subcavities (proportional to 𝑛𝑗), which can be modulated by membrane position.

Cavity out-coupling efficiency This is straightforwardly given by rate of field exceeding the right mirror
divided by the total rate of field exceeding the cavity

𝜂c = |𝑡R|2|𝐴2|2

|𝑡L|2|𝐵1|2 + |𝑡R|2|𝐴2|2 . (3.18)

The modulation can again be viewed as a result of distribution of optical power between two sub-cavities.
When more power is concentrated in the right subcavity, more light is exceeding through the right mirror,
and can be collected by the detection chain, thus results in higher 𝜂c.

Vacuum optomechanical coupling rate The optomechanical coupling rate 𝐺 = 𝜕Ωcav
𝜕𝑧m

is simply the first
order derivative of the modulation of cavity resonance frequency. 𝑔0 is then given by 𝐺𝑥zpf . Noticing that
𝑥zpf = √ℏ/2𝑚Ωm is not well known due to unknown effective mass of the mechanical mode, we cannot
determine 𝑔0 accurately from TMM. However, it authentically reflects the tendency as 2𝑘𝑧m changes.

The subcavity picture also provides a physical intuition on the modulation of optomechanical coupling in
2𝑘𝑧m space, which works even when 𝑟m is not small. Recall the moving end mirror model of optomechanics,
where the radiation pressure force is given by

𝐹rad = 2ℏ𝑘 ̄𝑛cav
𝜏 = ℏ𝐺 ̄𝑛cav, (3.19)

which is a straightforward consequence of 𝐹 = 𝜕𝑝/𝜕𝑡, where 𝑝 and 𝑡 are momentum and time respectively. In
this case, all intra-cavity photons contributes to the radiation pressure force, and thus 𝐺. On the contrary, a
membrane in the middle of a cavity experience radiation pressure force from both sides. Moreover, because
of the high cavity finesse, these radiation pressure are caused by approximately the same photons, thus they
are nearly perfectly correlated, and can cancel each other if they are in opposite directions. In this case, the
total radiation pressure force is given by

𝐹rad = 𝐹1 − 𝐹2 = 2ℏ𝑘 (
̄𝑛1

𝜏1
− ̄𝑛2

𝜏2 ) = ℏ𝐺 ̄𝑛cav, (3.20)

where 𝜏1 = 2(𝐿 − 𝑧m)/𝑐 and 𝜏2 = 2𝑧m/𝑐 are round trip times of the subcavities, and ̄𝑛1 and ̄𝑛2 are the
corresponding photon numbers, which sum up to ̄𝑛cav. Therefore, G is given by

𝐺 = 2𝑘 ̄𝑛1/𝜏1 − ̄𝑛2/𝜏2
̄𝑛1 + ̄𝑛2

, (3.21)

which depends on the photon distribution in the subcavities, which is modulated by 2𝑘𝑧m. One can express
this expression in terms of fields calculated before as

𝐺 = 2𝑘(|𝐴1|2 + |𝐵1|2 − |𝐴2|2 − |𝐵2|2)
𝜏1(|𝐴1|2 + |𝐵1|2) + 𝜏2(|𝐴2|2 + |𝐵2|2)

. (3.22)

Notice that the 𝐴𝑗 and 𝐵𝑗 are fluxes, the round trip time is used to convert them to photon numbers, such
that ̄𝑛𝑗 = 𝜏𝑗(|𝐴𝑗|2 + |𝐵𝑗|2).

An example of 2𝑘𝑧m modulated system parameters are shown in Fig. 3.20.

3.3.6 Determining Membrane Position in 2kzm Space
For stability reason, we choose a monolithic design of membrane-in-the-middle cavity. As a consequence,
the position of membrane relative to standing wave, therefore the system parameters cannot be tuned contin-
uously. Instead of changing membrane position continuously by using piezo electrics, we change standing
wave position discretely relative to membrane by hopping between different TEM00 modes.
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Figure 3.20: 2𝑘𝑧m modulation of system parameters The following system parameters are used 𝑇1 =
60 ppm, 𝑇2 = 600 ppm, 𝑧m = 302 𝜇𝑚, 𝐿 = 1.595 mm, 𝑑 = 20 nm, 𝜆 = 796 nm, 𝑚 = 2 ng, Ωm/2𝜋 = 1.137 MHz,
𝑛 = 2.0.

Hopping from one mode to an adjacent one (i.e. changing frequency by one FSR) means changing the
number of nodes in cavity by 1, which is equivalent to changing wave number 𝑘 of the light by 𝜋/𝐿. Thus,
we move our position in 2𝑘𝑧m by 2𝜋𝑧m/𝐿. In another words, in one period in 𝑘 space, we have 𝐿/𝑧m number
of modes. To get an idea of coupling landscape in 2𝑘𝑧m, we need to exam at least 𝐿/𝑧m modes. More than
𝐿/𝑧m modes typically means better coverage on different coupling points. However, if we rewrite the ratio
𝐿/𝑧m in the form of 𝑖𝑛𝑡𝑒𝑔𝑒𝑟1/𝑖𝑛𝑡𝑒𝑔𝑒𝑟2, with the integers 𝑖𝑛𝑡𝑒𝑔𝑒𝑟1 and 𝑖𝑛𝑡𝑒𝑔𝑒𝑟2 relatively prime to each
other. Then 𝑖𝑛𝑡𝑒𝑔𝑒𝑟1 sets a period of modes in 2𝑘𝑧m space by hopping between resonances. Sampling more
modes than this number just results in the same coupling as one of the first 𝑖𝑛𝑡𝑒𝑔𝑒𝑟1 modes. For example,
if 𝐿/𝑧m = 5/2, one can get at most 5 points in 2𝑘𝑧m space by changing laser frequency to hop between
resonances.

To get coupling information, we find typically 7 to 9 adjacent TEM00 modes around the target wave-
length, and record their wavelengths. Comparing these wavelengths to the ones expected by a bare cavity,
we can get the frequency shifts, as shown in Fig. 3.21. In frequency domain, the points fall on a sinusoidal
curve. When represent this frequency domain picture in 𝑘 space, the resonances fall on a modulation curve
with changed order. If 𝑧m = 𝐿/2, the 𝑘 space picture will be a sinusoidal curve as well. The point at largest
slope in 2𝑘𝑧m picture is our working point. Going to zero-coupling point is also helpful for some specific
purposes.

For other system parameters, at the maximum coupling point in our case, 𝜂c increases from 0.90 to 0.95,
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Figure 3.21: Optomechanical coupling of different modes left: in frequency domain, marked as resonance
number; right: in 2𝑘𝑧𝑚 domain.

and 𝜅 increases from around 2𝜋 × 10 MHz to around 15 MHz. The increasing in 𝜂c is beneficial, and the
increasing of 𝜅 is tolerable for our experiments.

3.3.7 Cavity Linewidth Measurement

PM

RF source Oscilloscope

Servo

Figure 3.22: Setup of cavity linewidth measurement PM stands for phase modulator. The blue laser is
used to provide sideband cooling in order to stabilize the system.

Cavity linewidth 𝜅 is a crucial parameter for any optomechanical experiments. An accurate way of
measuring 𝜅 is sideband calibration, where a phase modulation of light at a known frequency is used as an
reference to measure cavity linewidth.

The phase modulation of light is provided by an Electro-optical modulator, which contains some mate-
rial exhibiting electro-optic effect. Suppose the original light field is given by 𝐴𝑒𝑖𝜔𝑡. If we apply a phase
modulation with depth 𝛽 and frequency Ωmod, the modulated field is given by

𝐴 exp (𝑖𝜔𝑡 + 𝑖𝛽 sin (Ωmod𝑡)) . (3.23)

This expression can be expanded using Jacobi-Anger expansion, and reads [89]

𝐴𝑒𝑖𝜔𝑡
(

𝐽0(𝛽) +
∞

∑
𝑛=1

𝐽𝑛(𝛽)𝑒𝑖𝑛Ωmod +
∞

∑
𝑛=1

(−1)𝑛𝐽𝑛(𝛽)𝑒−𝑖𝑛Ωmod
)

, (3.24)

where 𝐽𝑛, 𝑛 ∈ Z is 𝑛th order Bessel’s function of first kind. The first term in bracket determines the residual
amplitude at the original (carrier) frequency, the second term represents sidebands at frequencies 𝑛Ωmod
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higher than the carrier, and the third term represents sidebands at frequencies lower than the carrier, dis-
tributed symmetrically against higher frequency sidebands. If 𝛽 ≪ 1, Eqn. 3.24 can be simplified to

𝐴𝑒𝑖𝜔𝑡 (1 + 𝑖𝛽 sin (Ωmod𝑡)) = 𝐴𝑒𝑖𝜔𝑡
(1 + 𝛽

2 𝑒𝑖Ωmod − 𝛽
2 𝑒−𝑖Ωmod

) , (3.25)

where only a the first order red sideband and the first order blue sideband are important.
When we scan the carrier frequency by more than 2Ωmod, and cross a cavity resonance, we will observe

three Lorentzian peaks in the transmission intensity in frequency domain. We observe these peaks using a
photodiode and an oscilloscope, as shown in Fig. 3.22. As laser scanning to the blue side of the optome-
chanical cavity, the membrane will be excited, which distorts the cavity line shape. To suppress this effect,
we use an auxiliary laser to sideband cool the mechanics during the process. In this way, we have both
cavity response and a reference frequency Ωmod. Then we can extract 𝜅 by fitting the three Lorentzians and
assign a corresponding frequency to these fitted linewidths. An experimental result of sideband calibration
is shown in Fig. 3.23. To reduce the effect of noises, we typically average the linewidth data over 20 to 30
repetitions. This method can measure a 𝜅 ≈ 10 MHz down to 100 kHz precision.

Figure 3.23: Sideband calibration Signal appearing on oscilloscope during sideband calibration of cavity
linewidth, with lorentzian fitting of each peak. The horizontal axis is time, as appears on the oscilloscope.

3.4 Cavity Lock
At working wavelength, cavity mirrors are highly reflective. Only of the order of 0.001% of injecting power
is transmitted through the input mirror. If there is only one mirror, the transmission port will be almost dark.
However, as the two mirrors form a cavity, when the injecting light matches the cavity resonance, the tiny
amount of transmitted light through the first mirror can be captured and accumulate in the cavity, ending up
in a significant intra-cavity field. As this intra-cavity field leaks out the cavity, in transmission, there could
be considerable field. While in reflection, the field leaking out from cavity interferes with the field directly
reflecting off the input mirror destructively, resulting in a weaker reflection field. Thus, keeping the laser
frequency around the cavity resonance frequency is crucial for experiments involving high finesse cavities.

In practice, the relative frequency between laser and cavity resonance is not a constant. Fluctuation
and drifting due to reasons such as mechanical motion of the whole experimental apparatus and thermal
fluctuation can cause undesirable frequency change of either cavity resonance or laser frequency. As the
cavity linewidth is narrow compared to the frequency fluctuation and drifting, we need to do some active
control to cancel these effects. This control is typically implemented in feedback scheme.
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3.4.1 Basics of Feedback Control
Feedback control is a controlling scheme, where the output of a system is “fed back” to the input, in or-
der to modify the system dynamics. This subsection only introduces the ideas and techniques used in our
experiment. For more information, a pedagogic review can be found in Bechhoefer et al. [90].

+ - K(s) G(s)r(s)
e(s) u(s)

y(s)

G(s) H(s)u(s)
y(s)

v(s)
a

b

Figure 3.24: System dynamics in control theory a. Compound system. b. Feedback scheme.

We start with a general description of the dynamics of a linear system, whose state is described by an
n-element vector ⃖⃗𝑥:

̇⃖⃗𝑥 = 𝐴⃖⃗𝑥 + 𝐵 ⃖⃗𝑢 (3.26a)
⃖⃗𝑦 = 𝐶 ⃖⃗𝑥 + 𝐷 ⃖⃗𝑢, (3.26b)

where ⃖⃗𝑢 is the input vector with m elements, and ⃖⃗𝑦 is the output vector with p elements.
Most of the time, it is easier to work in frequency domain. In control theory, this is typically done

through Laplace transformation
ℒ(𝑦(𝑡)) ≡ 𝑦(𝑠) = ∫

∞

0
𝑦(𝑡)𝑒𝑠𝑡𝑑𝑡. (3.27)

If 𝑠 = 𝑖Ω and the lower bound of integration is extended to −∞, Laplace transformation is equivalent to
Fourier transformation. Comparing to Fourier transformation, Laplace transformation has the advantage of
taking initial condition into account. Laplace transformation transforms a differential equation problem into
polynomial problem of parameter s. It is typically hard to access the system state ⃖⃗𝑥 directly, so the ratio
between input and output 𝐺 ≡ ⃖⃗𝑦/⃖⃗𝑢 is widely used for description of the system dynamics. Even it is possible
to access ⃖⃗𝑥, we can just set the corresponding elements in 𝐶 to be zero or one to transfer it to ⃖⃗𝑦. For a
compound system composed of cascaded system as shown in Fig. 3.24 a, the total dynamics is described
by convolution 𝐻 ∗ 𝐺(𝑡) ≡ ∫∞

0 𝐻(𝜏)𝐺(𝑡 − 𝜏)𝑑𝜏, which is simply ℒ(𝐻 ∗ 𝐺(𝑡)) = 𝐻(𝑠)𝐺(𝑠) in frequency
domain, i.e. 𝑣(𝑠) = 𝐻(𝑠)𝐺(𝑠)𝑢(𝑠) (Here we focus on a one-dimension input and output, and drop the arrows
and bold symbols for simplicity).

In a feedback control, a reference signal 𝑟(𝑠) is input to the system, and one would like to have an output
𝑦(𝑠) as close to the reference as possible, i.e. the error signal 𝑒(𝑠) = 𝑟(𝑠) − 𝑦(𝑠) close to zero. The scheme
is a loop, as shown in Fig. 3.24 b, which gives the dynamics

𝑦(𝑠) = 𝐾(𝑠)𝐺(𝑠)𝑒(𝑠). (3.28)

Substituting 𝑒(𝑠) = 𝑟(𝑠) − 𝑦(𝑠), we have

𝑦(𝑠) = 𝐾(𝑠)𝐺(𝑠)
1 + 𝐾(𝑠)𝐺(𝑠) 𝑟(𝑠) = 𝐿(𝑠)

1 + 𝐿(𝑠)𝑟(𝑠), (3.29)

where 𝐿(𝑠) = 𝐾(𝑠)𝐺(𝑠) is the loop gain. The negative sign in the feedback node says when 𝑦(𝑠) > 𝑟(𝑠), the
error is negative. If we have a simple proportional control law as

𝑢(𝑠) = 𝐾p(𝑠)𝑒(𝑠), 𝐾p > 0, (3.30)

we can compensate this error. Similar argument applies for the case where 𝑦(𝑠) < 𝑟(𝑠). When the error is a
constant, we need infinity proportional gain to keep 𝐿(𝑠)/(1+𝐿(𝑠)) = 1. In practice, there is always an upper
bound for the available proportional gain. Then the error will accumulate. When the error is caused by a
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short time perturbation, the proportional control is probably enough to keep the error zero, as in average no
error accumulation happens. To solve the problem of the need of infinity DC gain, we introduce the integral
control:

𝑢(𝑡) = 𝐾i
𝜏 ∫

𝑡

−∞
𝑒(𝑡′)𝑑𝑡′, (3.31)

where 𝜏 of dimension of time is to keep 𝐾i dimensionless. This control law is simply

𝑢(𝑠) = 𝐾i
𝜏𝑠 𝑒(𝑠) (3.32)

in frequency domain. As 𝑠 → 0 the gain 𝐾i/𝜏𝑠 → ∞, which meets the requirement of infinity DC gain. The
cost of infinity DC gain is the dramatic decreasing of gain as frequency increases. Therefore, proportional
and integral controls are typically used simultaneously, to form a PI controller:

𝑢(𝑠) = (𝐾p(𝑠) + 𝐾i
𝜏𝑠 ) 𝑒(𝑠). (3.33)

Another commonly used controller is the differential controller, which count for the case of large ̇𝑒(𝑡). But
for our system, PI controllers are sufficient.

3.4.2 Slope Lock

-2 -1 0 1 2
Ω/κ

Figure 3.25: Transferring jitters in frequency into amplitude

Slope lock is a simple way of locking laser to cavity. When a laser is detuned from the resonance of
the cavity, frequency jitters will be translated to amplitude jitters in the transmitted or reflected light of the
cavity, as shown in Fig. 3.25. The Lorentzian represents the cavity lineshape. When the frequency moves
closer to resonance, we have more transmission (less reflection), and vise versa. By detecting this change of
field amplitude, thus intensity, we can get the information of relative frequency fluctuation between cavity
and laser, and correct it. Notice that the scheme of getting error signal is the same as that to get mechanical
information by detecting field amplitude. If the lock bandwidth is as large as mechanical frequency, me-
chanical information will be wiped out as if it is an error to be corrected. Therefore, there is a low pass filter
to limit the feedback bandwidth.

The setup of slope lock is plotted in the upper half of Fig. 3.22, the part only involving the “blue”
laser. The transmitted laser is directly detected by a photodetector, and the output is fed to a servo, which
is a PI controller. The output of the servo goes to a piezo on the laser cavity, which can tune the laser
frequency by changing the laser cavity length. The intended DC voltage (set point), which corresponds to
the optical power falling on the detector, is the reference signal in control theory. When the input power
to the cavity is stable, this set point corresponds to a unique detuning value on the red side of the cavity
(blue detuning leads to instability). Thus, we can keep the relative frequency between laser and cavity at a
desired frequency. The advantages of slope lock are simple implementation and possibility to lock at large
detunings. However, when approaching resonance, the error signal gets smaller, and can be essentially zero
on resonance. Therefore, if we want to lock the laser on resonance, as what is required for many experiments,
slope lock is not a good choice. Moreover, slope lock cannot tell the difference between frequency jitter and
intensity fluctuation. Therefore, if the input power is fluctuating, the frequency will not be stable.
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3.4.3 Pound-Drever-Hall Lock
To solve the problem of on resonance locking, a common approach is Pound-Drever-Hall (PDH) lock. This
subsection is only a short introduction. Black et al. [91] is a good resource for more detailed information.
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Figure 3.26: Derivative of Lorentzian lineshape

We have noticed that slope lock does not have descent error signal on cavity resonance. However, if we
have a look at the derivative of a Lorentzian around resonance, we can observe a sign difference above and
below the resonance, and a sharp slope. This provides a good error signal. To get this derivative signal,
we modulate the phase of the laser at a known frequency, for example using a phase modulator as shown in
Fig. 3.27. When the demodulation frequency Ωmod < 𝜅, demodulating the reflected/transmitted intensity
signal, we can get an error signal showing the derivative lineshape around DC (as dipicted in Fig. 3.26).
Notice that the mixer will give both sum (at frequency around 2Ωmod) and difference frequency (at around
DC) of LO and signal, the lowpass filter is used to select the low frequency component.

PM

Servo

φ

Lowpass
filter Mixer Phase shifter

RF source

Figure 3.27: PDH setup The beams splitter is a non-polarizing one. The first reflected beam is blocked by
a beam dump, and the reflected beam from the cavity is detected by a photodetector. This arrangement
leads to loss of half of the input power in transmission signal, but this can be easily compensated by
increasing the input power. The advantange of this arrangement is saving precious space before the cavity.

When the modulation frequency Ωmod ≫ 𝜅, error signal in reflection is given by Fig. 3.28, where the
sharp features have characteristic width of 𝜅. In the meanwhile, the error signal in transmission is strongly
suppressed. As the modulation frequency is too large, there is not enough time for sideband light to build up
in and transmit through the cavity. Thus, the phase modulation in transmission is negligible, and we do not
have strong PDH signal. The central feature of the reflected signal at zero frequency is the part of the error
signal we should focus on, if we aiming at locking on resonance, i.e. the set point in PI control. At this point,
the lock is also insensitive to input power. If the set point is deviating from zero, the lock is slightly detuned,
but it cannot go to a detuning beyond ±𝜅/2. When the lock point is detuned, the input power dependence of
lock frequency also recovers.
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Figure 3.28: PDH signal for fast modulation A figure from [91]. The frequency unit is a bit arbitrary. The
actual width of the feature is proportional to the cavity linewidth.

3.5 OMIT

PM

Lock-in

Servo

Figure 3.29: Set up for OMIT A tone from a lock-in amplifier is used to drive the phase modulator. The
photo current from the diode is demodulated by the lock-in amplifier at the same frequency as the drive.

As mentioned in Section 2.6, optomechanically induced transparency can be used to calibrate multi-
photon optomechanical coupling 𝑔 accurately. In this section, we introduce this 𝑔 calibration.

The experimental setup is shown in Fig. 3.29. A strong laser beam is locked to the optomechanical
cavity with a red detuning, which can be accurately measured by comparing locking position and maximum
transmission power, and making use of the Lorentzian cavity response. The transmission of this laser beam
is directly detected by a photodetector. The output of the photodetector is input to a lock-in amplifier, which
generates a tone at the same frequency as the demodulation frequency, to an electro-optical phase modulator
to generate a pair of weak phase modulation sidebands of the input laser beam. As we sweep the phase
modulation frequency, the lock-in amplifier records the OMIT response. From this response, we can extract
𝑔 by fitting.

For the largest power we can input before effects like bistability happens, the OMIT response at the
vicinity of Ωm is shown in Fig. 3.30. Fitting the curve gives 𝑔/2𝜋 = 329 kHz, which corresponds to a
𝐶q = 4𝑔2/(𝜅Γm( ̄𝑛th + 1/2)) = 119 for thermal bath temperature 𝑇 = 11 K. This means our quantum
backaction rate can be 119 times the thermal decoherence rate, which is the record for any optomechanical
systems in optical domain.

We can also estimate the vacuum optomechanical coupling rate 𝑔0 from OMIT response. The DC volt-
age output by the photodetector can be transferred to the optical power falling on the detector 𝑃det by the
conversion gain of the detector (in unit V/W, available from specification and verified by measurement). We
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Figure 3.30: OMIT response with large input power A figure from [8]. The fitting of data gives a
𝑔/2𝜋 = 329 kHz.

take 𝜂c = 0.95 from the transfer matrix model, and plug in the measured detection efficiency from cavity to
photodiode 𝜂d = 0.97, and the intra-cavity optical energy is given by

𝐸cav = 𝑃det
𝜂d𝜂c𝜅 . (3.34)

Then the intra-cavity photon number is calculated to be

̄𝑛cav = 𝐸cav𝜆
2𝜋ℏ𝑐 = 𝑃det𝜆

2𝜋ℏ𝜂d𝜂c𝑐𝜅 . (3.35)

Essentially, the vacuum optomechanical coupling is given by
𝑔0 = 𝑔/√ ̄𝑛cav. (3.36)

Please notice that this value of 𝑔0 is based on assumptions like cavity out-coupling efficiency, which is a
source of uncertainty.

3.6 Balanced Homodyne
Balanced homodyne is a common way of frequency reference measurement, which allows measurement of
arbitrary quadrature, including phase. In homodyne measurement, reference frequency is the same as signal
carrier frequency. Balancing helps removing the effect of common noise between reference and signal. We
implement this measurement in all projects introduced in this thesis.

3.6.1 Theory of Balanced Homodyne
The scheme of balanced homodynemeasurement is shown in Fig. 3.31. For a simple case, the combination of
polarizing beam splitters (PBS) and half waveplate (HWP) can be replaced by a 50:50 non-polarizing beam
splitter. However, it is not easy to find a commercial non-polarizing beam splitter with perfect balancing of
transmission and reflection. As an alternative, we combine signal and local oscillator (LO) with orthogonal
polarization at the first PBS, and subsequently rotate their polarization by 𝜋/4, using the HWP. Thus, the
powers of the signal and LO are split evenly after the second PBS. This approach is effectively the same as a
single non-polarizing beam splitter, but provides more control on the splitting, allowing us to compensating
imperfection of the optics. The optics and diodes are carefully chosen, such that they introduce as low
optical loss as possible. The bottle neck on this part of detection efficiency are the quantum efficiencies of
the diodes, which are around 90%.

Both a single non-polarizing 50:50 beam splitter and the PBS-HWP complex can be described by the
50:50 beam splitter matrix

1
√2 (

1 1
−1 1) . (3.37)
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Figure 3.31: Balanced Homodyne The scheme of balanced homodyne in experiment. PBS refers to
polarizing beam splitter, HWP refers to half waveplate.

We describe the signal and LO with classical fields 𝛼S (1 + 𝑛(𝑡) + 𝑖𝜙(𝑡)) and 𝛼LO𝑒𝑖𝜃 (1 + 𝑛(𝑡) + 𝑖𝜙(𝑡))
respectively, where 𝜃 is the relative phase between signal and LO, and 𝑛(𝑡) and 𝜙(𝑡) are the common classical
amplitude and phase noise respectively. Without loss of generality, we can discard the irrelevant common
phase between the fields to make 𝛼S and 𝛼LO real. Then the fields at photodiodes are given by

𝛼LO

√2
(1 + 𝑛(𝑡) + 𝑖𝜙(𝑡)) 𝑒−𝑖𝜃 ± 𝛼S

√2
(1 + 𝑛(𝑡) + 𝑖𝜙(𝑡)) + ̂𝑎±,vac(𝑡)� (3.38)

where ̂𝑎±,vac is the annihilation operator of vacuum field at photodiode ±. Beating of this vacuum noise with
classical field carrier results in shot noise in spectrum. Here we assumed phase fluctuation 𝜙(𝑡) ≪ 1, thus
𝑒𝑖𝜙(𝑡) ≈ 𝑖𝜙(𝑡). As the vacuum fluctuation is invariant under rotation of phase, the photocurrent spectrum is
completely determined by the classical field amplitude:

√
(1 + 𝑛(𝑡))2 − 𝜙2(𝑡)

2 (𝛼2
LO + 𝛼2

S ± 2𝛼LO𝛼S cos 𝜃) ≈ 1 + 𝑛(𝑡)
√2

√𝛼2
LO + 𝛼2

S ± 2𝛼LO𝛼S cos 𝜃, (3.39)

where the approximation 𝜙(𝑡) ≪ 1 is used again. In this limit, common classical phase noise between
signal and LO does not contribute to the homodyne result. The photocurrent generated by the diodes are
proportional to the field intensity:

𝑖± = 𝑟±
⎛
⎜
⎜
⎝
(1 + 2𝑛(𝑡))

(
𝛼2

LO
2 +

𝛼2
S

2 ± 𝛼LO𝛼S cos 𝜃
)

+ (1 + 𝑛(𝑡)) ̂𝑎±,vac(𝑡)√
𝛼2

LO
2 +

𝛼2
S

2 ± 𝛼LO𝛼S cos 𝜃
⎞
⎟
⎟
⎠

,

(3.40)
where 𝑟± are the responsivity of the diodes, and we have used the fact 𝑛(𝑡) ≪ 1, thus (1 + 𝑛(𝑡))2 ≈ 1 + 2𝑛(𝑡).
The difference current 𝑖 = 𝑖+ −𝑖− is subsequently transferred into voltage by a resistor, and then amplified by
amplifiers. Therefore, the information is encoded in the voltage output of the photodetector. It is composed
of DC and AC parts, where the DC voltage is given by

𝑉DC = (𝑔+ − 𝑔−)
(

𝛼2
LO
2 +

𝛼2
S

2 )
+ (𝑔+ + 𝑔−)𝛼LO𝛼S cos 𝜃, (3.41)

where 𝑔± = 𝑟±𝐺 is the transfer factor from field intensity to voltage, with 𝐺 the electronic gain of the
detector. If we treat 𝑉DC as a function of 𝜃, the first term serves as an offset, which vanishes when 𝑔+ = 𝑔−.
The second term oscillates as 𝜃 changes, as a consequence of interference between LO and signal. The AC
part of the voltage is composed of classical and quantum noises (represented by 𝑛(𝑡) and ̂𝑎±,𝑣𝑎𝑐 respectively).
The spectrum of the voltage noise is given by

̄𝑆𝑉 𝑉 (Ω) = 1
2𝑔+𝑔−(𝛼2

LO + 𝛼2
S) + 1

2(𝑔+ − 𝑔−)𝑉DC + 2𝑉 2
DC

̄𝑆𝑛𝑛(Ω), (3.42)

where we normalize the spectrum to vacuum noise, and take the convention where vacuum noise is 1/2. The
first two terms correspond to shot noise, while the last term corresponds to classical amplitude noise.
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It is clear that when 𝑉DC = 0, the contribution of classical amplitude noise vanishes in the BHD spec-
trum. In this case, neither classical phase noise or amplitude noise contributes to the final result, which is a
desired property of BHD. However, when measuring quadrature other than phase (𝜃 ≠ 𝜋/2), it is necessary
to have finite 𝑉DC. The cancellation of amplitude noise is not perfect anymore. In addition, as 𝑔+ and 𝑔−
are usually slightly different, the finite 𝑉DC will also cause difference in shot noise level. As shot noise
is a commonly used reference, especially when considering squeezing, these effects needs to be carefully
calibrated to make sure the measured “shot noise” is truly shot noise.

3.6.2 Balanced Homodyne Calibration
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Figure 3.32: Balanced Homodyne Calibration The scheme of balanced homodyne calibration.

In the calibration, as shown in Fig. 3.32, we block the signal beam, and introduce a power imbalance 𝛿
between + and − path, such that the field classical amplitudes are given by

(1 + 𝑛(𝑡))𝛼LO,𝑐√(1 ± 𝛿)/2 (3.43)

We adjust 𝛼LO,𝑐 = √𝛼2
LO + 𝛼2

S. As 𝛼LO ≫ 𝛼S, this is a small adjustment. Comparing to Eqn. 3.39, we
notice, when 𝛿 = 2𝛼LO𝛼S cos 𝜃, the two cases are identical, as the DC voltage and spectrum are completely
determined by classical field amplitude. Thus, the voltage noise spectrum is given by

̄𝑆𝑉 𝑉 (Ω) = 1
2𝑔+𝑔−𝛼2

LO,𝑐 + 1
2(𝑔+ − 𝑔−)𝑉DC + 2𝑉 2

DC
̄𝑆𝑛𝑛(Ω), (3.44)

with 𝑉DC = 𝛼2
LO,𝑐((𝑔+ −𝑔−)+(𝑔+ +𝑔−)𝛿)/2. Therefore, we can reproducing all effects in balanced homodyne

with LO alone by adjusting the imbalancing, simulating the power difference caused by interference in BHD.
In this way, we can calibrate the BHD background, without removing the optomechanical cavity from the
signal path. This demonstrates another advantage of the tunability given by the PBS-HWP complex.
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Figure 3.33: Balanced homodyne systematic error The result of BHD calibration for two lasers. The
insert in a is the same function with quadratic part removed.
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In practice, we measure the average value of ̄𝑆𝑉 𝑉 (Ω) over a interesting frequency range as a function of
𝑉DC. The result is shown in Fig. 3.33. We name the two Ti-Saphire lasers used in the experiment A and B.
Laser A is used for reading out the mechanical information, while Laser B is mostly used for cooling and
actuation. Laser A spectrum shows a clear quadratic dependence on 𝑉DC, which is a signature of contribution
from classical amplitude noise. The lowest point of the parabola has a negative offset in 𝑉DC, indicating
𝑔+ > 𝑔−. This contribution is more clear when the quadratic contribution is subtracted from all data points,
as shown in the insert of Fig. 3.33 a. The spectrum of laser B does not show clear quadratic dependence,
inferring low classical noise. The dominating deviation from the shot noise at 𝑉DC = 0 comes from 𝑔+ <
𝑔−. With this calibration result, we claim that the correction of background level is negligible in BHD
experiments when 𝑉DC ∈ (−1 V, 1 V).

3.6.3 Mode Matching of Signal and Local Oscillator
The discussion in Subsection 3.6.1 is based on an assumption that LO and signal share the same optical mode
after combination and polarization rotation. However, in practice, the two modes might be different. Let
𝛼LO,∥ with amplitude √1 − 𝜖𝛼LO representing the overlapped part between LO and signal modes, where 𝜖
is mode mismatch factor. It follows naturally that 𝛼LO,⟂ with amplitude √𝜖𝛼LO is the part of LO orthogonal
to the signal mode. Then the Eqn. 3.38, the field at photodiode, should be rewritten as

𝛼LO,∥

√2
(1 + 𝑛(𝑡) + 𝑖𝜙(𝑡)) 𝑒−𝑖𝜃 ± 𝛼S

√2
(1 + 𝑛(𝑡) + 𝑖𝜙(𝑡)) +

𝛼LO,⟂

√2
(1 + 𝑛(𝑡) + 𝑖𝜙(𝑡)) 𝑒−𝑖𝜃 + ̂𝑎±,vac(𝑡)� (3.45)

As the orthogonal part does not interfere with the signal, the phase of this term has no effect, can be dropped
for simplicity. Then the mode matched coherent amplitude reads

1 + 𝑛(𝑡)
√2

√𝛼2
LO(1 − 𝜖) + 𝛼2

S ± 2√1 − 𝜖𝛼LO𝛼S cos 𝜃, (3.46)

which determines how the signal beam is transferred into photocurrent. In the meanwhile the orthogonal
part reads

(1 + 𝑛(𝑡))𝛼LO√
𝜖
2. (3.47)

Though the orthogonal part does not interfere with the mode matched part, it still contributes to the total
intensity shining on the photodiode, and classical and shot noise. In the case 𝛼S ≪ 𝛼LO,∥ and 𝜖 ≪ 1, we
can see the mode matched coherent amplitude is approximately given by (1 + 𝑛(𝑡))√𝛼2

LO(1 − 𝜖), which is
weaker than the completely mode matched case by multiplying a factor √1 − 𝜖. While the orthogonal part
introduces uncorrelated shot noise with a strength √𝜖. We can see the role of non-zero 𝜖 is exactly the same
as non-unity 𝜂. Therefore, having the modes of LO and signal as close to each other as possible is a crucial
task to optimize detection efficiency.

Interference
amplitude

Center voltage
of fringe

Relative phase

Figure 3.34: Interference fringe from DC output of the photodetector One of the diode is blocked, and
the signal and LO powers are balanced. In this case, visibility is defined as the ratio between the amplitude
of fringe and the center voltage.

The way to check 𝜖 is to block one diode on the balanced homodyne detector, adjust the power of LO
and signal to be the same, and sweep the path length between signal and LO, which changes 𝜃 in Eqn. 3.46.
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From the DC output of the photodetector, we can observe a interference fringe, as illustrated in Fig. 3.34.
The visibility of this fringe is defined by

𝑣𝑖𝑠 ≡ 2√1 − 𝜖𝛼LO𝛼S
𝛼2

LO + 𝛼2
S

= √1 − 𝜖 = 𝑉max − 𝑉min
𝑉max + 𝑉min

, (3.48)

where 𝑉max and 𝑉min are the maximum and minimum voltage of the interference fringe respectively. From
this expression, we can calculate 𝜖, and can add a factor 1 − 𝜖 to the detection efficiency 𝜂. Please notice
that, here, we have used the fact 𝑉DC ∝ 𝛼2

LO + 𝛼2
S at 𝜃 = 𝜋/2, where the LO amplitude is the summation of

mode matched and mismatched part.

Figure 3.35: Mode matching between signal and LO

The idea of mode matching LO and signal is to build a LO optical path mimicking the signal path as
shown in Fig. 3.35. Ideally, the distances between fiber heads and collimations, the distances between col-
limation lens and the lens before the combining PBS (recollimation lens), and the distances between the
recollimation lens and the PBS are the same in LO and signal. The positions of the collimation and recolli-
mation lens are adjustable along the propagation axis, and the collimator complex is place on a translational
stage to adjust its position without messing up alignment too much. These degrees of freedoms help fine
adjust the LO properties. In practice, the signal beam is PDH-locked around working wavelength, and we
change the lens positions, the collimator position and the beam position and orientation (beam walk) to
maximize the visibility. For Laser A, we can achieve a fringe visibility of 98%, and for Laser B 94%.

3.6.4 Path Length Lock
As can be expected from the scheme of homodyne, the stability of the relative phase between LO and signal
is important. If the relative path length changes, there will be a random phase 𝜔Δ𝐿/𝑐 in addition to the de-
sired homodyne angle 𝜃, where 𝜔 is the laser frequency, and Δ𝐿 is the path length fluctuation. In practice,
mechanical vibration of the optical table and mirror mounts, as well as thermal expansion/contraction of
fiber, can result in path length fluctuation. Therefore, stabilizing the relative path length by a lock is neces-
sary. As there are many possible causes of path length fluctuation, it is unfeasible to counteract all of the
sources. The typical approach is introducing a movable element (or an element with changeable refractive
index) in the path of LO, to adjust the optical path length of LO. By feedback controlling the motion of this
element, we can stabilize the relative path length.

The setup of path length lock around the movable part is illustrated in Fig. 3.36. The movable part is a
mirror glued on a piezo. By changing the voltage applied on the piezo, we can tune the mirror position over a
range of the order of 10 𝜇m, corresponding to 10 wavelengths (i.e. 10 resonances). Before injecting into the
fiber leading to LO of BHD, the laser is first reflected to the piezo controlled mirror by a PBS. The quarter
waveplate ensures the reflected light from the mirror can transmit through the PBS. This double-pass setup
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to LO
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Figure 3.36: Path length lock of BHD PBS stands for polarizing beamsplitter, QWP stands for quarter
waveplate. Changing the length of the piezo modifies optical path length of LO, thus changing the relative
phase between LO and signal.
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Figure 3.37: Balanced homodyne fringe a. Excursion in relative phase between signal and LO results in
fluctuation in 𝑉DC, which can be used as error signal for path length lock. b. The derivative of 𝑉DC, for
illustration of jitter lock.

reduces the possible intensity change of LO as the mirror changes its position, due to change of coupling to
fiber.

The homodyne phase is determined by the locking voltage compared to the balanced homodyne inter-
ference fringe, which is shown in Fig. 3.37. As illustrated in Eqn. 3.41 a, the interference fringe has an
offset, when the responsivities of the positive and negative diodes are not the same. With the correction of
the offset, the homodyne angle is given by

cos 𝜃 = 2(𝑉DC − offset)
𝑉pp

, (3.49)

where 𝑉pp is the peak-to-peak voltage in the fringe, and 𝑉DC the DC voltage of the balanced homodyne.
If the relative phase changes due to some undesirable excursion, the DC voltage output from the balanced
homodyne detector will change accordingly, providing a lock error signal in a very similar way to slope
cavity lock (illustrated in Fig. 3.37). Similar to the cavity lock case, this simple lock scheme does not
provide descent error signal around peaks of the fringe, i.e. around 𝜃 = 0 and 𝜋. To lock there, a technique
of providing jitters in path length (therefore voltage to the piezo) can be applied, the mechanism of which is
essentially the same as PDH lock. As shown in Fig. 3.37 b, the jitters result in a derivative of 𝑉DC, which
has the largest slope at the peaks of the fringe. This slope caused signal can then be used as error signal for
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path length lock.

3.7 Thermal Motion of Mirrors
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Figure 3.38: Mirror thermal noise [46, 92] from 0 to 2 MHz. The spectra from red to blue are measured
at cryostat temperature at 300.0 K, 250.0 K, 175.0 K, 100.0 K, 11.9 K and 6.5 K respectively.

In membrane-in-the-middle system, the mechanics is considered to be the membrane. However, the
mechanical motion of the cavity mirrors can also be encoded in the probe light. This coupling is exactly the
conventional optomechanical coupling introduced in Section 2.3. Due to the dramatic mismatching in mode
effective mass between mirror modes and membrane defect modes (a factor of 108), the zero point motion of
mirror modes 𝑥zpf ,mirror = √ℏ/2𝑚mirrorΩmirror are 4 orders of magnitude smaller than that of defect modes.
As a result, though the direct optomechanical coupling of mirror modes is indeed more efficient than the
dispersive coupling of membrane, the vacuum optomechanical coupling rates of mirror modes are much
smaller than those of defect modes at optimal coupling points. This small coupling together with low 𝑄
factor prevent the mirror modes from being an interesting object to study scientifically.

Though not interesting for science, we can still measure the thermal motion of the mirror modes in our
experiments, as they introduce phase modulations. The result is some mechanical spectrum in addition
to the one given by membrane modes, serving as a additional imprecision noise. As the mirror motion
is incoherent with the membrane motion, the light scattered by these mechanical modes cannot interfere.
Moreover, the optomechanical coupling is small for themirror modes, causing almost no correlation between
the quadratures of the light. These two facts make mirror noise a “hard” floor in spectrum, i.e. a lower bound
cannot be overcome by correlations. Therefore, having mirror noise as low as possible, especially lower than
imprecision noise is a crucial task in experiment.

To know the way to avoid mirror motion in spectrum, one needs to know the features of mirror motion
through measurement. My colleague Dr. William Nielsen and Dr. Christoffer Møller assembled a cavity
without membrane using the same mirror as ours, lock laser on resonance with the cavity with PDH lock,
and measure the phase quadrature of the transmitted light using balanced homodyne receiver. The output
of homodyne detector is fed to a DAQ card for spectrum analysis. To get a higher sensitivity to the mir-
ror modes, they move the laser wavelength closer to 850 nm, where the cavity linewidth is narrower. They
repeat the same measurement at different temperatures, to study temperature dependence of the mirror mo-
tion behavior. The results of the measurement from 0 MHz to 2 MHz is shown in Fig. 3.38. The mirror
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modes spectra are not flat, where the peaked structures indicates normal modes of the mirror-sample holder
assembly. Between these sharp features, there are some relatively quite region such as around 0.8 MHz
and 1.05 MHz. These “valleys” are good region to place the defect mode of interest. This can be achieved
by changing the size of the membrane defect. The mirror modes have smaller amplitudes as temperature
decreases. This illustrates the reason to go to cryogenic temperature. In fact, for the pair of cavity mirror
we use, the mirror noise level is one to two orders of magnitude higher than shot noise level at room tem-
perature, which prevents us from doing quantum limited experiment at room temperature, even though the
system parameter can achieve 𝐶q > 1.
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Chapter 4

Mechanical Sensing Below the Standard
Quantum Limit

In Section 2.8, we have seen that the measured noise of a conventional continuous wave interferometric
displacement measurement is subjected to the Standard Quantum Limit (SQL). This limit has its origin in
Heisenberg uncertainty principle and rotation of mechanical noises. Heisenberg uncertainty principle states

𝜎(�̂�)𝜎( ̂𝑃 ) ≥ 1. (4.1)

Recall that �̂� and ̂𝑃 are dimensionless displacement and momentum operators respectively. As a displace-
ment measurement decreases the uncertainty of �̂�, there must be backaction in ̂𝑃 to increase its uncertainty.
As we are monitoring the mechanical oscillator continuously, after a quarter mechanical period, this backac-
tion caused uncertainty in ̂𝑃 rotates into displacement, and is encoded in the signal. Effectively, in this way,
we are trying to measuring a pair of conjugate variables simultaneously. Then Heisenberg uncertainty prin-
ciple inevitably plays a role in the measurement precision. The concept of the Standard Quantum Limit was
first proposed in a pioneer article of LIGO 50 years ago [7]. Out of both interest in fundamentals of quantum
physics and application like gravitational wave detection, scientists put remarkable efforts in approaching
and even overcoming the SQL. The closest approach to date is the one introduced in Section 4.2.

Though one cannot violate Heisenberg uncertainty, for a measurement smarter than the conventional
one, the measurement precision can go beyond the SQL in principle. The first category of methods enabling
measurement below the SQL is to only measure one quadrature of the mechanical oscillator, and decouple
the other. In this way, the measurement is not subjected to Heisenberg uncertainty principle, and thus no
backaction appears in the measurement record. This sort of backaction evading measurements mainly in-
cludes pulsed measurement introduced in Section 7.1, two tone reservoir engineering scheme [93], coupling
to speed of a free mass [94], and coupling to a “negative mass oscillator” provided by atomic ensembles
[95]. So far, backaction evading measurements of the displacement of a mechanical oscillator have only be
demonstrated using reservoir engineering [15, 16, 17, 96] and negative mass [97] approaches. However, all
of these demonstrations suffered from some technical weaknesses, keeping them from overcoming the SQL.
For instance, the two tone demonstrations in microwave regime suffered from excess noise introduced by
amplifiers, making the noise background significantly higher than shot noise [15, 16, 17], the two tone trial
in optical domain suffered from low detection efficiency (thus high imprecision noise) and laser heating [96],
and the negative mass approach suffered from excess noise coming from the atoms, and low 𝐶q’s of atoms
and mechanical oscillator [97]. If these technical challenges are addressed properly, sub-SQL measurement
using backaction evading measurement will still be feasible.

The second category of approaches aiming at overcoming the SQL is making use of quantum correla-
tions between backaction noise and imprecision noise. These methods include inputting a squeezed light as
probe, injecting squeezed vacuum in the dark port of an interferometer [98], and making use of the optome-
chanically induced quantum correlations (i.e. ponderomotive squeezing introduced in Section 2.9) [40].
The former approach has already been implemented in the Advanced LIGO [99, 100], and is planned on
VIRGO. However, the sensitivity is still above the SQL due to classical noise sources like thermal noise of
mirror coating. The second approach is also referred as variational readout, and the simplest way of getting
this correlation is to measure a quadrature other than phase [40]. Recently, a proof of principle experiment

56



was conducted by the Regal group using this approach [101], where they achieved broadband displacement
sensitivity boosting. However, due to too low detection efficiency, their demonstration failed to beat the
SQL.

As will be shown in the first section of this chapter, the key condition for overcoming the SQL using
variational readout is 𝜂meas → 1. In Chapter 3, we introduced the efforts to increase cavity out-coupling
efficiency, the mode matching between signal and LO, and the efficiency of the optics. These give a total
detection efficiency of around 77%. In addition, the ultra-narrow mechanical linewidth makes it easy to
achieve 𝐶q ≫ 1. Being able to satisfy these two conditions simultaneously is a unique feature of our system,
which gives high quality mechanical measurement. The overall measurement efficiency of our system can
reach 𝜂meas = 56%, above the threshold of 45%.

In this chapter, we will introduce the theory of sub-SQL measurement using variational readout, the
performance of our measurement under the condition of continuous wave phase quadrature measurement,
and the first demonstration of sub-SQL measurement.

4.1 Theory
In the discussion in Section 2.8, we forced ourselves in a condition where quantum correlations between
imprecision and backaction noise vanish. However, in practice, this term is a crucial recipe for displacement
and force sensing below the SQL in variational readout approach. To illustrate the idea, we consider a case
the same as the toy model discussed in Subsection 2.9.1, where 𝜅 ≫ Ωm, and Δ = 0. Recall Eqn. 2.77, the
measured displacement noise with correlation is given by:

̄𝑆yy(Ω) = ̄𝑆imp + ̄𝑆qba(Ω) + ̄𝑆th(Ω) + ̄𝑆cor(Ω) (4.2)

= 1
8𝜂𝑐𝜂Γmeas(1 − cos (2𝜃)) + |𝜒m(Ω)|2Γqba + |𝜒m(Ω)|2Γm( ̄𝑛th + 1/2) + Re[𝜒m(Ω)] sin (2𝜃)

2(1 − cos (2𝜃)) .

The displacement measurement sensitivity is below the SQL if the added noise ( ̄𝑆add(Ω) = ̄𝑆𝑦𝑦(Ω)− ̄𝑆th(Ω))
is below ̄𝑆SQL. However, in practice, we measure spectrum with intrinsic noise. It is typical to compare

̄𝑆𝑦𝑦(Ω) and ̄𝑆SQL(Ω) directly. Then the signature of overcoming the SQL is ̄𝑆𝑦𝑦(Ω)/ ̄𝑆SQL(Ω) < 1. As in the
case of ponderomotive squeezing, if the correlation term is negative, it can cancel the effect of backaction
and imprecision noise. This makes it possible to have a better sensitivity than the SQL.
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Figure 4.1: Sub-SQL Mechanical Spectrum A figure from [41]. The horizontal axis is logarithmic with
zero the mechanical resonance frequency.

Fig. 4.1 shows the noise composition of a measured mechanical spectrum and the spectrum when vari-
ational readout is applied. From the figure, we can see several features of variational readout. The quantum
correlations only exist between imprecision and backaction noise, which means the intrinsic noise cannot
be affected by the correlation (as the optimal line never touches the gray part). As intrinsic noise is always

57



above the SQL level in the vicinity of mechanical resonance, sub-SQL sensitivity cannot happen in this
region. However, as the intrinsic noise decreases as second order of 𝜒m(Ω) away from the mechanical res-
onance, while the quantum correlations decrease as the first order, there is always a frequency away from
resonance, such that the only quantum noises are significant, and quantum correlations dominate over the
intrinsic noise. Therefore, sub-SQL sensitivity only exists on the wings of the mechanical peak.

Now let’s explore the parameter requirements for sub-SQL displacement measurement. Following the
frequency argument above, we focus on frequency components where |Ω2 − Ω2

m| ≫ ΓmΩ. Similar to the
process in Subsection 2.9.1, we minimize the ratio ̄𝑆𝑦𝑦(Ω)/ ̄𝑆SQL(Ω) over 𝜒m(Ω) (for the convenience of
discussion, let’s take Ωm < Ω), and have

min
̄𝑆𝑦𝑦(Ω)

̄𝑆SQL(Ω)
= √

1 + 1/𝐶q
𝜂c𝜂

1
2| sin 𝜃| − 1

2 tan 𝜃 = 1
√𝜂meas

1
2| sin 𝜃| − 1

2 tan 𝜃 . (4.3)

The first term is the collection of imprecision noise and mechanical motion, and the second term is the
quantum correlations. When 𝜃 ∈ (0, 𝜋), we have negative correlation, as requested. The minimum value
occurs when

𝜃min = arccos √𝜂meas (4.4)
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Figure 4.2: Minimum Ratio the minimum ratio between ̄𝑆𝑦𝑦(Ω) and ̄𝑆SQL(Ω) at different 𝜂meas’s.

Fig. 4.2 shows the dependence of the ratio in Eqn. 4.3 on both homodyne angle 𝜃 and measurement
efficiency 𝜂meas. The higher 𝜂meas is, the more sensitivity below the SQL can be achieved. There is also a
lower bound of 𝜂meas ≈ 0.45 to observe any sub-SQL sensitivity, despite the choice of 𝜃. This requirement
of high measurement efficiency is exactly what our system can meet.

4.2 QuantumLimited Continuous Field Phase QuadratureMeasure-
ment

The most conventional measurement of mechanical displacement is using a continuous beam on resonance
with the optomechanical cavity, and monitoring the phase quadrature of the light on a homodyne detector.
This measurement gives the best sensitivity of displacement on resonance with the mechanical peak. Before
introducing sub-SQL measurement, we confirm our ability to measure displacement near the SQL in the
conventional way, which is a prerequisite of sub-SQL measurement.

In principle, one laser locked to the cavity with PDH lock is enough for the measurement. In practice,
however, if we only have one laser beam, it is difficult to lock the laser exactly on cavity resonance. Because
any fluctuation to the blue side of the cavity will cause excitation of the mechanics, which decays slowly due
to high 𝑄 factors of the modes. For worse case, instability might happen. Moreover, light scattered from
some low frequency mechanical mode can be very strong, where the mechanical modes are the eigenmodes
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of the whole membrane instead of the defect. These sidebands of the laser carrier can serve as carriers them-
selves, and acquire their own sidebands. In spectrum, these second order sidebands can appear even in band
gap, making the spectrum around the mode of interest noisy. Introducing an auxiliary laser to sideband cool
all mechanical modes is a solution beneficial for solving both locking instability problem and second order
sideband problem. For the latter issue, sideband cooling decreases “carrier” and “sideband” simultaneously,
which is an efficient way of reducing these second order sidebands. However, as the auxiliary laser should
be kept weak to reducing backaction, sideband cooling is usually not enough to suppress all these sidebands.
To further suppress them, we also feedback cool (see Subsection 6.1 for more information) some of the low
frequency mechanical modes providing these second order sidebands, which is effectively reducing carrier
strength.

The experimental setup of this continuous wave conventional measurement is shown in Fig. 4.5. The
auxiliary beam has the orthogonal polarization to that of the probe beam, and it occupies a different TEM00
mode. The orthogonal polarizations allow us to separate the probe and the auxiliary cleanly with a PBS in
transmission. The frequency difference accounts for the imperfections of the polarizing optics, and avoids
cross talk between these lasers. Otherwise, the field leaking through the PBS may appear in the homodyne
spectrum. Just as the probe laser, the auxiliary laser introduces decoherence, which should be taken into
account when calculating total decoherence rate. For this reason, to get high 𝐶q, we need to use as weak
auxiliary laser as possible. When calculating 𝐶q of the probe, decoherence rate caused by the auxiliary laser
should also be added into total decoherence rate in the denominator.
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Figure 4.3: Quantum limited measurement A figure from [8]. a. Measured displacement spectrum of the
defect mode of interest at different 𝐶q’s. b. Zoom-in to the blue sideband of the displacement spectrum
in a log-log plot. c, d, e. total phonon occupancy, 1/16 ̄𝑛tot ̄𝑛imp, and ̄𝑛imp of the spectra in a as a function
of 𝐶q.

Fig. 4.3 presents a result of CW conventional measurement. In this measurement, the cavity linewidth of
the probe 𝜅/2𝜋 = 15.9 MHz. The auxiliary laser has a cavity linewidth of 𝜅aux/2𝜋 = 12.9 MHz, a detuning
of Δaux/2𝜋 = −4.2 MHz, and a 𝐶q,aux = 0.08 when the auxiliary is the only laser beam. The experimental
results of spectra of the mode of interest at different 𝐶q’s are shown in Fig. 4.3 a and b, where b is a zoom-in
of the high frequency side of the peak in a. We change 𝐶q of probe from well below 1 to of the order of
10, by increasing probe laser intensity. As 𝐶q increases, it is clear that the imprecision noise decreases as
expected. In b, we can also see the increase of total phonon occupancy due to stronger backaction at higher
𝐶q. When 𝐶q is large, we can observe some structures on top of imprecision noise. The broader peaks are
due to the mirror modes as introduced in Section 3.7, while the sharp peaks are the residual second order
sidebands discussed above. To get an idea of the quality of the measurement, we can compare the spectral
with that of the Standard Quantum Limit. At a frequency off mechanical resonance, we can find the spectra
approaching the SQL. The closest point on the Lorentzian fit of the mechanical peak is only 35% above the
SQL level, which is the closest ever achieved with conventional displacement measurement. To have a fair
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comparison between the measurement record and a fundamental limit, we also compare with Heisenberg
limit, which is defined as

√16 ̄𝑛qba ̄𝑛imp ≥ 1, (4.5)

where ̄𝑛qba = 𝐶c is the occupancy of quantum backaction induced phonon, and ̄𝑛imp ≡ ̄𝑆imp(Ωm)/2 ̄𝑆zpf (Ωm)
is the imprecision noise occupation. Then according to Eqn. 2.77, the Heisenberg limit can be simplified to

1
√𝜂c𝜂

≥ 1, (4.6)

which is clearly satisfied by any optomechanical system. The physical meaning of Heisenberg limit lies
directly in Heisenbergmicroscope type of experiment: observation of a particle using photonwill perturb the
original state. The stronger the probe is, the more information we can get, but also cause more perturbation
on the system. The information acquired lies in ̄𝑛imp, while the perturbation is described by ̄𝑛qba for the case
of a harmonic oscillator.

In practice, it is not easy to measure ̄𝑛qba directly, the standard benchmark is to use the total occupancy
̄𝑛tot = ̄𝑛qba + ̄𝑛th instead, and the expression reads

√16 ̄𝑛tot ̄𝑛imp = √16 ̄𝑛imp ̄𝑛qba (1 + 1
𝐶q ) = 1

√𝜂c𝜂 √
1 + 1

𝐶q
= 1

√𝜂meas
≥ 1, (4.7)

where 𝐶q is also involved, and the whole expression can be summarized into a function of 𝜂meas. Figure
4.3 c to e show the total phonon occupancy ̄𝑛tot , 1/𝜂meas and ̄𝑛imp at different 𝐶q’s respectively. When 𝐶q is
small, ̄𝑛tot is dominant by thermal occupancy, which is indicated by the dashed line, and ̄𝑛imp is large. As
the 𝐶q increases, ̄𝑛tot starts to be dominant by quantum backaction, and ̄𝑛imp decreases linearly. As a result,
1/𝜂meas approaches 1, the upper bound set by the Heisenberg limit. The highest value in these spectra of
overall measurement efficiency is 𝜂meas = 56%, leading to 1/√𝜂meas = 1.34, which is only 34% above the
Heisenberg limit. Again, this is the record for any displacement measurement to-date.

Figure 4.4: Evolution of conditional state of a mechanical mode A figure from [82]. The trajectory of the
conditional state is stochastic, as indicated by the red line. The variance of the conditional state decays
exponentially, as indicated by the diameter of the circles.

High 𝜂meas is not only helpful for the measurement result approaching some limit, but also plays a signif-
icant role in the state estimation. For a mechanical mode under continuous monitoring, when the measured
information is discarded (i.e. no conditioning), the state can be best described by a thermal state of occu-
pancy ̄𝑛tot centered at (0, 0) in the phase space as shown in Fig. 4.4. When the measurement result is used
to update the mechanical state, it will collapse from the big thermal state to a conditional displaced thermal
state deterministically, while the displacement from the origin is a random vector governed by the stochastic
process of quantum backaction and thermal noise. The final occupancy of this conditional state in the limit
of 𝐶q ≫ 1 is given by [8, 43, 102]

̄𝑛est ≈ 1
2 (√

1
𝜂meas

− 1
)

. (4.8)
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The purity of the state is given by (1 + 2 ̄𝑛est)−1. Thus, the conditional state occupation is a monotonically
decreasing function of 𝜂meas, while the state purity is a monotonically increasing function. When 𝜂meas = 1,
the conditional state is a pure coherent state. This high quality state estimation finds its direct application in
measurement-based quantum control of mechanical motion, which is introduced in Chapter 6.

4.3 Mechanical Sensing Below the Standard Quantum Limit

Probe
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Servo

Homodyne
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Dataxacquisition

LIA

DAQ
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ν
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ν
cal

PM

AM

Cryostat

Servo

Feedback controller

Figure 4.5: Experimental setup of sub-SQLmeasurement In the laser beams, AM stands for a fiber based
amplitude modulator, while PM stands for a phase modulator based on electro-optical effect (an EOM).

The experimental setup for sub-SQL measurement is shown in Fig. 4.5. The probe laser passes through
a phase modulator, before it is splitted into a probe beam with 𝐶q ≫ 1 and the local oscillator. The phase
modulator generates the phase modulation tone needed for system parameter calibration (refer to Subsec-
tion 4.3.1). The probe beam measures the displacement of the membrane, and the probe field transmitted
through the cavity is measured by a balanced homodyne detector, where the probe beam and local oscillator
recombine. An auxiliary laser provides some sideband and feedback cooling to suppress the second order
mechanical sidebands around the mode of interest. A lock-in amplifier has the option of outputting a tone
to the amplitude modulator to generate a coherent force for force sensing experiment (to be introduced in
Subsection 4.3.5). For different cooldowns of the crystat, the parameters of the membrane-in-the-middle
cavity do not stay at exactly the same number, due to some force distribution change in the ensemble during
a thermal cycle from room temperature to liquid Helium temperature and back. Therefore, a full system
characterization is needed at the beginning of each cooldown. In fact, this change may degrade the optome-
chanical coupling by changing the relative position of membrane defect and the cavity mode. If the cavity
mode is too off the center of the defect, we may have to re-align the cavity curved mirror. For the thermal
cycle providing data for measurement sensitivity exceeding the SQL, the cavity linewidth of the maximum
optomechanical coupling mode is 𝜅/2𝜋 = 16.2 MHz, the 𝑄 factor of the membrane is 1.03 × 109 and the
vacuum optomechanical coupling rate from backaction calibration is 𝑔0/2𝜋 = 120.7 Hz (refer to Subsection
4.3.1 for backaction calibration).

Due to the existence of the auxiliary beam and the slightly detuned probe beam, we do not have a me-
chanical peak with linewidth as narrow as Γm/2𝜋 = 1.1 mHz. Instead, we have an optically broadened
mechanical mode with mechanical linewidth Γeff /2𝜋 ≈ 32 Hz, frequency Ωeff /2𝜋 = 1.35 MHz and thermal
occupancy ̄𝑛th ≈ 8. The Standard Quantum Limit for comparison is the one given by this effective mechan-
ical oscillator |𝜒eff (Ω)|. As the detuning of the probe beam is only around 0.12𝜅, the behavior of sub-SQL
measurement does not deviate too much from the one presented in Section 4.1.

In variational readout, we need to measure a quadrature other than phase. To do so, we adjust the relative
phase by changing the position of the movable mirror in the local oscillator path of the balanced homodyne

61



setup, as mentioned in Subsection 3.6.4. The homodyne phase is determined by the locking voltage com-
pared to the balanced homodyne interference fringe. By changing this lock point, we can measure arbitrary
quadrature. In the sub-SQL measurement, slope lock is sufficient, while in the optical entanglement project
will be introduced in the next chapter, the jitter lock also plays a role.

In real experiment, we measured a series of spectra with different homodyne angles. In this way, we
can scan through the optimal homodyne angle, get the phase quadrature measurement for comparison and
study the quadrature angle dependence of the sensitivity improvement. Before presenting the results, we
will introduce several calibration techniques and imperfections in the experiment.

4.3.1 Backaction Calibration
The spectra we measure through homodyne detector are directly fluctuations in voltage, which is propor-
tional to photocurrents of the photodiodes, and directly proportional to quadrature fluctuations in the signal.
However, we need to know the optomechanical coupling information to transfer this phase fluctuation into
an accurate (dimensionless) mechanical displacement for the purpose of comparing to the SQL. Recall that
𝑔0 relates phonon occupancy and frequency shift of the optomechanical cavity according to

⟨𝛿Ω2
cav⟩ = 𝑔2

0(2 ̄𝑛 + 1). (4.9)

Therefore, calibration of 𝑔0 is a necessary step to get phonon occupancy and displacement. Conventional
calibrations include optomechanically induced transparancy (OMIT) [52], measuring optical spring and
damping effects (sideband cooling method), and phase calibration tone [103]. The first twomethods requires
knowing total detection efficiency 𝜂𝑐𝜂 and environment temperature accurately, while the last one requires
knowing environment temperature and the phase modulation depth accurately. Measuring mechanical side-
band asymmetry can serve as a direct calibration of occupancy, but it requires heterodyne detection, because
in homodyne, only symmetrized spectrum is available.

In our system, measuring environment temperature with a thermalmeter is not trivial due to bad thermal-
ization through elements like O rings and mirrors, and determining cavity outcoupling 𝜂𝑐 is not easy either.
To eliminate the dependency of 𝑔0 calibration on these two quantities, we make use of the fact that our
system can reach the regime Γqba ≫ Γth, and develop a novel calibration method by combining calibration
tone and sideband cooling methods.

In the calibration, we apply a very weak probe laser (the laser we are determining 𝑔0 for), whose backac-
tion is small compared to thermal decoherence rate. This signal is detected in phase quadrature at homodyne
detector. At the same time, a strong red detuned auxiliary beam is applied to sideband cool the mechan-
ics close to backaction limit ̄𝑛opt mentioned in Section 2.7. Typically, a series of measurement at different
cooling beam power is conducted, as shown in Fig. 4.6. The plateau level in variance corresponds to ̄𝑛opt .
When the cooling power is maximum, the phonon occupancy of the mechanical mode is so close to ̄𝑛opt ,
such that the fraction of the contribution of intrinsic noise to the total mechanical noise is only around 4%.
Therefore, this method provides a well-defined temperature reference, as ̄𝑛opt only depends on Ωm, 𝜅 and
Δ, which can be directly and accurately measured. In the meanwhile, the low cooling power end provides
a good estimation of thermal occupancy of the bath, the temperature of which is fitted to be 11 ± 2 K. The
optical decoherence rate increases linearly with auxiliary laser power, indicating the absence of classical
noises in the auxiliary laser.

To get the information of 𝑔0, we apply a phase modulation tone common to probe and LO, with a known
phase modulation depth 𝜙 at a frequency Ωcal ≈ Ωm by an electro-optical modulator (EOM), as shown in
Fig. 4.5 without electronic feedback loop. (More information about phase modulation of EOM can be found
in Section A.1.) According to Gorodetksy et al. [103], the phase modulation caused by this calibration tone
is transferred to homodyne signal in the exactly same way as the phase modulation caused by mechanics,
robust against changing in conditions such as homodyne angle, detuning, and probe strength. Then we can
define a transduction factor from phase modulation to variance in voltage

𝐾 =
⟨𝛿𝑉 2⟩QBA

cal

⟨𝛿𝜙2⟩QBA
cal

=
⟨𝛿𝑉 2⟩QBA

cal
𝜙2/2

, (4.10)

where ⟨𝛿𝑉 2⟩QBA
cal is the voltage fluctuation in spectrum caused by the calibration tone. Then the voltage
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Figure 4.6: Backaction calibration A figure from the supplementary information of [8]. a. The sideband
cooling spectrum at different cooling powers. The power increases from right to left. b. c. d. Optical
spring effect, optical damping and spectrum area respectively. e. Noise breakdown of the mechanical
spectrum at largest sideband cooling power, where QBA stands for quantum backaction, TN for thermal
and zero fluctuation noises, and IN for imprecision noise.

variance caused by mechanical motion can be transduced into frequency modulation of cavity according to

⟨𝛿𝑉 2⟩QBA
mech = 𝐾⟨𝛿𝜙2⟩QBA

mech = 𝐾
⟨𝛿Ω2

cav⟩QBA
mech

Ω2
m

=
𝐾2𝑔2

0
Ω2

m
( ̄𝑛opt + 1

2) (4.11)

Substituting Eqn. 4.10 in, we have an expression of 𝑔0:

𝑔0 =
√√√
⎷

⟨𝛿𝑉 2⟩QBA
mech

⟨𝛿𝑉 2⟩QBA
cal

Ω2
m𝜙2/2

2( ̄𝑛opt + 1
2 )

. (4.12)

From this expression, we can see that, when there is uncertainty in EOMcalibration, there will be uncertainty
in the phase modulation depth 𝜙, and 𝑔0 will inhere this uncertainty.

To verify the backaction calibration of 𝑔0, we also conduct OMIT calibration. The former gives 𝑔0/2𝜋 =
(127 ± 2) Hz, and the latter gives 𝑔0/2𝜋 = 129+2

−3 Hz, which match very well within uncertainty. As the
two methods are sensitive to different parameters of the system, the good matching between the results
demonstrate our thorough understanding of our system. Moreover, if there is significant heating of the
mechanics due to absorption (a linear effect with respect to 𝑃aux), it will lead to different results of the two
calibration methods. The absence of this difference rules out significant undesirable heating.

Apart from getting 𝑔0, we can use backaction calibration to convert an arbitrary measured voltage spec-
trum into dimensionless displacement spectrum [103]

̄𝑆𝑦𝑦(Ω) = Ω2
m𝜙2/2

2𝑔2
0⟨𝛿𝑉 2⟩meas

cal

̄𝑆𝑉 𝑉 (Ω), (4.13)

where ⟨𝛿𝑉 2⟩meas
cal is the voltage fluctuation caused by the calibration tone in the measurement run, which can
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in general be different from ⟨𝛿𝑉 2⟩QBA
cal . Substituting Eqn. 4.12 into this expression, we have

̄𝑆𝑦𝑦(Ω) =
⟨𝛿𝑉 2⟩QBA

cal ( ̄𝑛opt + 1/2)

⟨𝛿𝑉 2⟩meas
cal ⟨𝛿𝑉 2⟩QBA

mech

̄𝑆𝑉 𝑉 (Ω). (4.14)

Notice that all parameters in this calibration factor is known with small uncertainty, even the phase modula-
tion depth 𝜙 is cancelled. ̄𝑛opt only depends on 𝜅aux, Δaux and Ωm, which can be measured to high accuracy.
The idea of this calibration is using phase modulation tones as intermediators to compare the measured spec-
trum with a well understood backaction calibration spectrum. This robust calibration finds its application
whenever an accurate comparison to dimensionless displacement related quantity is required, for instance
in phonon occupancy calibration.

To compare the measurement result to the Standard Quantum Limit, one of the most important points is
to guarantee that the comparison is fair. As the SQL is defined in dimensionless mechanical spectrum, the
powerful backaction calibration of arbitrary spectrum to dimensionless mechanical spectrum plays a pivot
role in this experiment. To compare the measured spectrum with the SQL, please recall the SQL is given by
|𝜒eff (Ω)| = √Ωeff /√(Ω2

eff − Ω2)2 + Γ2
eff Ω2, which is fully determined by the mechanical frequency under

optical spring effect and the optically damped mechanical linewidth. These parameters can be extracted
accurately from the fitting of the spectrum. Then the ratio between calibrated dimensionless displacement
spectrum and the SQL is given by

̄𝑆𝑦𝑦(Ω)
̄𝑆SQL(Ω)

=
⟨𝛿𝑉 2⟩QBA

cal ( ̄𝑛opt + 1/2)√(Ω2
eff − Ω2)2 + Γ2

eff Ω2

⟨𝛿𝑉 2⟩meas
cal ⟨𝛿𝑉 2⟩QBA

mech√Ωeff

̄𝑆𝑉 𝑉 (Ω), (4.15)

which only depends on accurately known parameters. Thus this comparison of measured spectrum and the
SQL is robust.

4.3.2 Calibration of Imprecision Noise
In the same way as transducing mechanical mode induced voltage fluctuation into displacement spectrum,
one can also convert the imprecision noise in voltage into effective dimensionless displacement.

⟨𝛿𝑉 2⟩QBA
cal ( ̄𝑛opt + 1/2)

⟨𝛿𝑉 2⟩meas
cal ⟨𝛿𝑉 2⟩QBA

mech

̄𝑆 imp
𝑉 𝑉 (Ω) = ̄𝑆imp(Ω) = 1

2𝑓imp(Ω) . (4.16)

Recall that
𝑓imp(Ω) = 𝜂c𝜂 𝑔2

𝜅 Re [𝜁(Ω) − 𝜇(Ω)𝑒−2𝑖𝜃] , (4.17)

which is a function of 𝜂c𝜂, 𝜃 and Δ, where Δ dependence is hidden in the cavity susceptibility dependent
functions 𝜁(Ω) and 𝜇(Ω). Therefore, a series of converted imprecision noise at different homodyne angles
can provide information about the detuning of the probe. This could be particularly useful when detuning is
small. Typically, the method of measuring detuning is to compare the transmission power at the lock point
𝑃lock with the maximum value when scanning through the cavity resonance 𝑃max:

Δ = 𝜅
2 √1 − 𝑃lock

𝑃max
. (4.18)

When detuning is small, the uncertainties in 𝑃lock and 𝑃max result in large uncertainty in Δ. On the contrary,
the imprecision noise calibration does not suffer from this. Moreover, this calibration also provides ameasure
of the usually hard to access total detection efficiency 𝜂c𝜂.

From the spectra series at different homodyne angles, we extract displacement imprecision, and the
result is shown in Fig. 4.7. If there is no detuning for the probe, the curve should be centered at 𝜃 = 𝜋/2.
The finite red detuning rotates the detected quadrature, and shifts the whole curve to the right. From this
shift, we can extract the detuning Δ ≈ 1.2𝜅. If we change detection efficiency 𝜂c𝜂, the level of calibrated
imprecision noise will shift up or down accordingly. From the vertical position of this curve, we can extract
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Figure 4.7: Calibrated imprecision noise A figure from the supplementary information of [41]. Notice
that the dimension of the imprecision noise spectra is in m2/Hz, which is the dimensionless displacement
in main text multiplied by 2𝑥2

zpf = ℏ/𝑚Ωm.

total detection efficiency 𝜂c𝜂 = 77%. Comparing the fit and data, we can also observe some systematic error
of the measurement, as the data points lie below the fit on the left while above on the right. This systematic
error goes hand in hand with drifts in 𝑔 and Δ, which will be discussed in more detail in Subsection 4.3.3.
As 𝑓imp is a function of 𝑔2, uncertainties in 𝑔 will degrade the reliability of detection efficiency calibration.

4.3.3 Model Fit of Displacement Spectra
Whenever a theoretical model is available, comparing theoretical model to the experimental data is always
a key step when presenting the experiment results. Ideally, all parameters in the theory are available with
low uncertainties through independent measurements, and one can plot independent theoretical predictions
against experimental data. However, in many cases, some parameters have to be determined from the exper-
imental data to be compared to the theory, either due to lacking of independent characterization approach
or parameter fluctuations in experiments. In this case, a model fit of the data is useful. In the sub-SQL dis-
placement measurement, the systematic error in imprecision noise calibration infers the existence of drifts
in experimental conditions during the series of measurement, which makes it necessary to model fit every
spectrum.

During the experiment, we notice the drifting parameter is the probe power, which is a result of polar-
ization drifting of light in fibers. Between different parts of the experiment (e.g. homodyne lock and the
detection part), we use polarization-maintaining (PM) fibers as an optical link. If the input polarization of
the light aligns with one of the two axes of the built-in birefringence in a PM fiber, the cross talk between
orthogonal polarization modes will be strongly suppressed. Consequently, the input polarization will be
maintained in the output of the fiber, as indicated by the name “polarization-maintaining”. However, if the
alignment is not perfect, cross talk still exists, and the output polarization will change with the conditions
of the fiber, such as temperature and stress. As we are using polarizing optics before and after the optome-
chanical cavity to separate probe and auxiliary beams, this polarization drift will be converted into power
fluctuation in the laser beams. In practice, we use a combination of a polarizer and a half waveplate to adjust
the input polarization and maximize optical power before every fiber. During the alignment process, we
observe the transmitted optical power after a polarizing beam splitter, while introduce perturbation on the
fiber, such as heating and bending. The input polarization is adjusted such that smallest change in trans-
mitted power is observed upon perturbation. However, the accuracy of this alignment is limited to a few
degrees, which leaves residual power fluctuation.

The consequence of this power fluctuation is directly changing optomechanical coupling rate 𝑔. In addi-
tion, due to the slightly red detuned PDH lock of the probe, the fluctuation also affects the detuning (recall
that PDH lock is only robust against power fluctuation when locked exactly on resonance). The power fluc-
tuation in LO can also change the homodyne angle 𝜃 slightly. Therefore, in the model fit of displacement
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Figure 4.8: Model fit of spectra A figure from the supplementary information of [41]. a-c. Fitted ho-
modyne angle ̃𝜃, fitted optomechanical coupling strength ̃𝑔 and fitted probe detuning Δ̃ as a function
of homodyne angle (extracted from lock point). d. Four sample spectra and their fits, calibrated into
absolute displacement unit.

spectra, we choose to vary 𝜃, 𝑔 and Δ. The result is shown in Fig. 4.8. We first notice the fitting curves match
the spectra in panel d very well, which demonstrates the explanation power of the theory. The increasing
imprecision level as the measured quadrature approaching amplitude quadrature reflects the reduction of
displacement transduction in balanced homodyne. The strong correlation between fitted detuning Δ̃ and
optomechanical coupling ̃𝑔 confirms the argument of PDH lock. The fitted homodyne angle ̃𝜃 follows ex-
pectation well, indicating low power fluctuation in LO. To compute the SQL, we use the average value of Δ̃
and ̃𝑔. This choice may sound random, but its validity will be illustrated in the following subsection. With
𝑔 from fitting and 𝜂c𝜂 from imprecision noise calibration, we calculate an overall measurement efficiency
𝜂meas = 58%, which is larger than the threshold value of 45%. Thus, sub-SQL sensitivity for displacement
measurement is expected when the detection homodyne angle is optimal.

4.3.4 Sub-SQL Displacement Measurement
Fig. 4.9 presents the measured displacement spectra at around phase quadrature and two quadratures giving
most sub-SQL results above and below the mechanical resonance, and the SQL. Due to the difference in
detuning and coupling strength, the mechanical responses actually have slightly different peak frequencies.
In this plot, we shift the peaks horizontally, such that their peaks align, making it easier to compare with the
SQL. Notice that when Δ, Ωm ≪ 𝜅, quantum correlations on mechanical resonance is negligible, making
the tip of the mechanical peaks a good indicator of Ωeff . The SQL is calculated using the average values of
fitting results Δ̃ and ̃𝑔, as mentioned in the previous subsection. Though the choice of parameters is relatively
random, as the sub-SQL sensitivity only happens at the wings of the mechanical resonance, the difference
in effective mechanical linewidth Γeff does not affect the SQL in this region. This can be understood by
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Figure 4.9: Sub-SQL displacement measurement A figure from [41]. The measured displacement spectra
in absolute displacement unit. The horizontal axis is the frequency relative to mechanical resonance. The
two inserts are the ratio between displacement spectra and SQL around the sub-SQL region.

looking at the expression of SQL

̄𝑆SQL(Ω) = |𝜒eff | = Ωeff

√(Ω2
eff − Ω2)2 + Γ2

eff Ω2
. (4.19)

When |𝛿Ω| ≡ |Ωeff − Ω| ≫ Γeff and Ω ≈ Ωeff , the SQL is approximately given by

̄𝑆SQL(Ω) ≈ 1
2|𝛿Ω| , (4.20)

which is independent of parameters can be influenced by 𝑔 and Δ. Fig. 4.10 plots the SQL at Γeff =
10, 30, 100 Hz. The tails are very insensitive to the choice of the effective mechanical linewdith. Com-
paring the frequency scales in this plot and Fig. 4.9, we can conclude that the choice of parameters in SQL
calculation is reasonable.
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Figure 4.10: The SQL at different Γeff Around mechanical resonance, smaller Γeff leads to larger SQL.
Away from mechanical resonance, the SQLs are the similar at different Γeff .

From Fig. 4.9, it is evident that the blue and green displacement spectra can dive below the SQL on both
sides of the mechanical resonance. The insert shows the ratio between the displacement spectra and the
SQL, with the best sensitivity 1.5 dB below the SQL. The deviation between fit and the spectrum at 𝜃 ≈ 𝜋/3
is probably an effect of mirror noise, as it is asymmetric on the two sides of the mechanical resonance.

The bandwidth of the sensitivity improvement by variational readout is proportional to the backaction
rate of the probe beam, for the exactly the same reason as that for ponderomotive squeezing (see Section
2.9). To demonstrate this dependence, we plot the ratio of displacement spectrum and the SQL as a func-
tion of both frequency and homodyne angles in Fig. 4.11 at three different probe 𝐶q’s. It is evident that
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Figure 4.11: Broadband sub-SQL sensitivity A figure from [41]. a,c,e. measured ratio between displace-
ment spectra and the SQL at 𝐶q = {5.3, 10.2, 20.7} respectively. The black line highlights the contour of
ratio 1. b,d,f. The corresponding independent theoretical prediction.

as 𝐶q increases, the bandwidth of the sensitivity improved region increases as well. The experimental data
matches theoretical prediction well. The relatively large deviation at high 𝐶q is a result of more prominent
mirror noise, which can be inferred from the asymmetric behavior between high frequency and low fre-
quency branches. This study demonstrates one of the easiest way to get broadband sensitivity improvement,
increasing probe power.

In this subsection, the experimental result demonstrates the first displacement measurement overcoming
the Standard Quantum Limit ever achieved.

4.3.5 Sub-SQL Force Measurement
We also demonstrate sub-SQL force sensitivity using the same system. As mentioned in Section 4.1, the
force measurement is based on measurement of force induced displacement. Therefore, the experiment
presented here is essentially the same story as the one for displacement. In force sensing case, if the signal-
to-noise ratio (SNR) of the force sensing in a measurement exploiting variational readout is better than that
given by the SQL, sub-SQL force sensitivity is achieved.

To generate a force to measure, we output a tone from a lock-in amplifier, and input it to the amplitude
modulator. The radiation pressure force from the auxiliary beam then serves as a classical coherent force to
measure. We scan the frequency of this tone through the mechanical resonance, and measure the response
of the mechanical mode using the same homodyne setup as displacement sensing case, and analyze the
AC voltage output from the detector using the lock-in amplifier. We conduct this scanning measurement
twice with two different homodyne angles, where one is 𝜃 ≈ 𝜋/2, and the other is 𝜃 ≈ 4𝜋/5. The latter
corresponds to the best sub-SQL angle. The raw voltage responses are presented in Fig. 4.12 a, as light
lines. The noise in force sensing experiment is given by the displacement noise without driving force,
acquired in a similar way as displacement sensing. The raw voltage background noise spectra are plotted
as dark lines. We can see from the figure that the force responses are parallel to each other, highlighting
the same mechanical susceptibilities in these two cases. The lower response for 𝜃 ≈ 4𝜋/5 case is a result of
less sensitive displacement-to-optical-quadrature convertion factor 𝑓imp(Ω). The same conversion difference
appears in the noise backgrounds, thus it has no effect on the signal-to-noise ratio. The quantum correlations
suppress the displacement noise in the 𝜃 ≈ 4𝜋/5 case, resulting in better signal to noise ratio.

Using the calibration tone technique, we can transduce the force response into displacement (absolute
displacement unit in this case). By further dividing the calibrated displacement by the modulus square of the
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Figure 4.12: sub-SQL force sensing A figure from [41]. a. Raw force response (light lines) and raw
displacement noise background (dark lines). The vertical lines highlights the signal-to-noise ratio of a
sample frequency. b. Calibrated force spectra from a and the SQL for force sensing. c. The ratio between
measured signal-to-noise ratios and the one given by the SQL.

effective mechanical susceptibility in absolute displacement unit 𝑚−2((Ω2
eff −Ω2)2 +Γ2

eff Ω2)−2, we calibrate
the mechanical responses into force spectra, as shown in Fig. 4.12 b. In the same panel, we also plot the
calculated SQL for force sensing, as defined by Eqn. 2.80, but in absolute displacement unit. In this case,
the transduction difference is countered perfectly by the calibration, such that the force spectra of the two
homodyne angles overlap. This level authentically represents the spectrum of the applied force. We can see
that the force noise background (converted from displacement noise background) of the 𝜃 ≈ 4𝜋/5 case can
be below the SQL (converted from the SQL in displacement case) in some frequency range. As the force
signal is the same, and the noise background is below the SQL, the SNR in this range is better than the one
given by the SQL. To illustrate this point more clearly, we plot the ratio between the measured SNR and the
one given by the SQL in Fig. 4.12 c. Clearly, the blue trance can overcome the SQL for force sensing in
some frequency range.

4.4 Conclusion
In this project, we demonstrate the first displacement and force measurement below the Standard Quantum
Limit by exploiting the quantum correlations generated by the optomechanical interaction. This is a remark-
able achievement half a century after the concept was proposed. Apart from the significance in fundamental
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physics, the technique used in our work can be applied to gravitational detectors to enhance the sensitivity
[40], and be used to decrease the final phonon occupancy in feedback cooling [104]. Variational readout is
also compatible to the state of the art force sensing application [105], which can help improving the sensi-
tivity as we have demonstrated. Moreover, as the force sensitivity is governed by the thermal force noise
power spectral density [105]

𝑆𝐹 𝐹 = 4𝑚𝑘B𝑇 Ωm
𝑄 , (4.21)

the low mass (around 7 ng) and high quality factor provided by our soft-clamped membrane help getting
high sensitivity. However, as we have emphasised, the sensitivity improvement in variational readout is off
mechanical resonance, where the force sensitivity is lower than that on resonance. To make full use of the
force sensitivity provided by the mechanical oscillator, we would like to have negative quantum correlations
on mechanical resonance, which are not significant even with detuned probe beam for conventional inter-
ferometric measurement like homodyne and heterodyne. Fortunately, the synodyne detection introduced in
Buchmann et al. [106] can unveil on mechanical resonance quantum correlations. In synodyne detection
the local oscillator should contain two frequency components, one at 𝜔−Ωm, and the other at 𝜔+Ωm. Then
the mechanical information is encoded in DC photocurrent. This has already been realized in microwave
regime by Ockeloen-Korppi et al. [107]. However, due to difficulties like extracting information from DC
photocurrent, synodyne has not been realized in optical regime yet. If we can solve the technical challenges,
the high detection efficiency and large quantum backaction provided by our system can significantly enhance
the force sensitivity on mechanical resonance, even below the Standard Quantum Limit.
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Chapter 5

Optical-Optical Entanglement via
Optomechanical Interaction

Quantum information processing in microwave regime is a rapid developing field, led by the advances of
technology in superconducting qubits. However, propagation of microwave in cables or waveguides is very
lossy, preventing distant quantum computation nodes in microwave regime communicating efficiently, as
required by quantum network. One of the most realistic methods to extend the communication distance
of MW quantum nodes is bi-directional conversion between quantum information in microwave frequency
and optical frequency, preferably telecom frequency, where low loss optical fibers are available. As elec-
tromagnetic (EM) field at any frequency has radiation pressure, optomechanical interaction is insensitive to
the frequency of the EM fields. This fact makes mechanical resonators a good candidate for the quantum
transducer between MW frequency and optical frequency [108], which can convert quantum information
between these two frequencies. In particular, membrane-in-the-middle cavity based system is one of the
most advanced transducers [33, 34], though they still suffer from transducing efficiency and excess noises.
Quantum transducer is still an outstanding goal for the community.

Apart from converting quantum states between microwave and optical frequencies, it is also interesting
to have entanglement between them. By doing entanglement swapping operation on the optical part [109,
110], the distant microwave nodes can be entangled. This entanglement is important quantum information
processing resource. Again, due to the interaction independent from EM frequency, mechanical oscillators
are a good candidate for the purpose. Optomechanical interaction mediated entanglement was first proposed
around 20 years ago [111]. In this chapter, we present a demonstration of mechanics mediated optical-
optical entanglement, a solid step towards the vision of microwave-optical entanglement. Together with
the recent report on mechanics mediated microwave-microwave entanglement [42], we pave the way to the
entanglement between two EM fields at drastically different frequencies. In the microwave experiment, the
entanglement is confined in the fridge [42]. When the entangled field is amplified by the detection chain,
excess thermal noise introduced by the amplifiers destroys the entanglement. Therefore, the entanglement
in the fridge has to be inferred from the room temperature detection record, with careful calibration. In
contrast to its microwave counter part, the optical-optical entanglement demonstrated here survives until the
detector, due to the high detection efficiency and the low noise detection chain in optical domain. Thus no
assumption is needed to conclude the existence of entanglement.

5.1 Theory
In this section, we first introduce the criteria used to determine the existence of entanglement of continuous
variables. Then we will discuss how a mode in these criteria can be extracted from a freely propagating
optical field. Last, we will study how two optical modes can be entangled by optomechanical interaction to
the same mechanical mode.
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5.1.1 Inseparability
An inseparability criterion is usually a necessary condition for a multi-partite quantum state to be separa-
ble. In another words, violation of an inseparability criterion is a clear signature of quantum entanglement.
Through out this thesis, we are dealing with continuous variables (CV). For CVs, typical inseparability cri-
teria are defined with joint EPR type variable �̂�± = �̂�𝐴 ± �̂�𝐵 and ̂𝑌± = �̂�𝐴 ± ̂𝑌𝐵 [112, 113], with �̂�𝑗 and

̂𝑌𝑗 the amplitude and phase quadratures of mode j respectively.
Among the criteria, the first proposed and the most widely used one is DGCZ inseparability criterion

introduced in Duan et al. [112]. The criteria states that a bipartite separable state must satisfy

ℐ =
𝑉 (�̂�+) + 𝑉 ( ̂𝑌−)

2 ≥ 1, (5.1)

where 𝑉 (�̂�) represents the variance of the operator �̂�. To prove the existence of CV entanglement, one
needs to find modes such that ℐ < 1.

5.1.2 Covariance Matrices
Though inseparability criterion indicates the existence of entanglement, the amount of violating the criterion
is not necessarily proportional the amount of entanglement between the two parts of the system. To quantify
the amount of entanglement, one needs an entanglement measure. An entanglement measure is a variable
showing monotonic behavior as a function of amount of entanglement, preferably valid for both pure and
mixed state.

For a Gaussian state, where all its quadratures follow Gaussian statistics, it is straight forward to extract
an entanglement measure from its covariance matrix 𝜎. A covariance matrix is a matrix collecting all the
covariances like

𝜎𝑖𝑗 = 1
2⟨𝑥𝑖𝑥𝑗 + 𝑥𝑗𝑥𝑖⟩ − ⟨𝑥𝑖⟩⟨𝑥𝑗⟩ (5.2)

of a bipartite state, where the vector x = (�̂�𝐴, ̂𝑌𝐴, �̂�𝐵 , ̂𝑌𝐵)
T. This matrix can characterize all features of a

Gaussian bipartite state. We can write the 4 × 4 matrix in a block form with three 2 × 2 matrices as

𝜎 = (
𝛼 𝛾
𝛾𝑇 𝛽) . (5.3)

𝛼 and 𝛽 describes individual subsystems, while 𝛾 describes correlations between them.
Entanglement information can be characterized by a single parameter ̃𝜈− related to the covariance ma-

trix, which is the smaller symplectic eigenvalue of the partial transposed covariance matrix [114]. When
̃𝜈− < 1/2, the quantum state is entangled. Moreover, smaller ̃𝜈− below 1/2 corresponds to larger amount of

entanglement. In this sense, ̃𝜈− is a kind of entanglement measure, which is defined by

̃𝜈− = √
Δ(𝜎) − √Δ(𝜎)2 − 4Det𝜎

2 , (5.4)

where Δ(𝜎) = Det + Det − 2Det. This seemly complicated parameter has the physical meaning related to
minimum value of DGCZ inseparability [115]:

̃𝜈− = min ℐ
2 , (5.5)

where the minimization is over all local operations (such as rotation, squeezing on an individual subsystem).
̃𝜈− as a relatively unconventional entanglement measure is also related to the famous entanglement measure

logarithmic negativity 𝐸𝑁 [116] by 𝐸𝑁 = max[0, −ln(2 ̃𝜈−)].

5.1.3 Optical Modes from Propagating Fields
As shown in the above subsections, both inseparabilityℐ and symplectic eigenvalues of the partial transposed
covariance matrix ̃𝜈− are dimensionless quantities, which infers the quadratures we are dealing with in these
criteria are dimensionless as well. This is true for intracavity and mechanical modes. However, we do not
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have direct access to these modes, but the output optical field. Due to input-output relation ̂𝑎out = − ̂𝑎in +
√𝜅 ̂𝑎, the output field annihilation operator, thus so do amplitude and phase quadratures, has a dimension
√Hz. This indicates that the output field should be treated properly to extract a well-defined optical mode.
In this subsection, we are going to tackle this problem. More details of this discussion can be found in
Zippilli et al. [115].

In general, a freely propagating continuous field ̂𝐸(𝑧, 𝑡) with 𝑧 the coordinator along the propagating axis
and 𝑡 the time, just as our output optical field, can be decomposed into the positive and negative frequency
components ̂𝐸(𝑧, 𝑡) = ̂𝐸+(𝑧, 𝑡) + ̂𝐸−(𝑧, 𝑡). In most of the cases, the interesting bandwidth of quantum
field and the bandwidth of the detection aperture is much smaller than the laser frequency 𝜔, thus we can
approximate the frequency with the laser carrier frequency 𝜔. Then the positive frequency component is
given by

̂𝐸+(𝑧, 𝑡) = 𝑖
√

ℏ𝜔
2𝜖0𝑐𝑆 𝑒𝑖𝑘𝑧 ̂𝑎(𝑡), (5.6)

where 𝜖0 is the vacuum permittivity, 𝑐 is the speed of light in vacuum, 𝑆 is the mode cross section area,
𝑘 = 𝜔/𝑐 is the wave vector at laser frequency, and ̂𝑎(𝑡) is the annihilation operator in time domain with
commutation relation [ ̂𝑎(𝑡), ̂𝑎†(𝑡′)] = 𝛿(𝑡 − 𝑡′).

In practice, measurement only has access to a finite time interval of the continuous field, which defines
a temporal mode. This time interval can be determined by pulsing the measurement beam, pulsing the local
oscillator, cutting off the measurement, or filtering the measured record in post processing. Despite the
physical implementation, all these processes can be described by applying a filter function ℎ𝜏 (𝑡) with time
constant 𝜏 (therefore bandwidth 2𝜋/𝜏) to the field, such that the mode is given by

̄𝑎𝜏 (Ω, 𝑡) = ∫
∞

−∞
𝑒𝑖Ω𝑠ℎ𝜏 (𝑡 − 𝑠) ̂𝑎out(𝑠)𝑑𝑠, (5.7)

with { ̄𝑎𝜏 (Ω, 𝑡)}† = ̄𝑎†
𝜏 (−Ω, 𝑡).This temporal mode should be dimensionless as required by the motivation of

this subsection. Therefore, ℎ𝜏 (𝑡) has the dimension of √Hz, as ̂𝑎out(𝑡) has the dimension √Hz and 𝑑𝑠 has
the dimension second. Moreover, normalization requires

∫
∞

−∞
ℎ2

𝜏 (𝑠)𝑑𝑠 = 1. (5.8)

Alternatively, one can express the filter function in frequency domain

̃𝑎𝜏 (Ω, 𝑡) = ∫
∞

−∞
𝑒−𝑖(Ω′−Ω)𝑡ℎ̃𝜏 (Ω′ − Ω) ̃𝑎(Ω′)𝑑Ω′, (5.9)

where �̃�(Ω′) represents the Fourier transformation of �̂�(𝑠).
An example of filter function ℎ𝜏 (𝑡) is when we turn on the measurement suddenly and completely at time

𝑡 and turn it off suddenly and completely after a duration 𝜏. The filter function is given by

ℎstep
𝜏 (𝑡) = Θ(𝑡) − Θ(𝜏 − 𝑡)

√𝜏
, ℎstep

𝜏 (Ω) = √
2𝜋
𝜏 𝑒𝑖Ω𝜏/2 sin (Ω𝜏/2)

𝜋Ω , (5.10)

where Θ(𝑠) is Heaviside function.
This filter function is also the default window function of a Discrete Fourier Transformation (DFT), a

method commonly used to get spectrum from a discrete string of data. The definition of which is as follows:

𝐹𝑘 =
𝑁−1

∑
𝑛=0

𝑓𝑛𝑒−𝑖2𝜋𝑘𝑛/𝑁 , 𝑘 = 1, 2, 3, ..., 𝑁 − 1 (5.11)

where 𝑓𝑛 is complex number, 𝑛 is “time index” (suppose the data is taken in time domain), 𝑘 is “frequency
index”. As DFT is not applied on an infinity length string, there is a cut off at 𝑁 th data point, represented
by a window function. With the window function, one can extend the sum limit from −∞ to +∞:

𝐹𝑘 =
∞

∑𝑛=−∞
𝑓𝑛𝑒−𝑖2𝜋𝑘𝑛/𝑁 ℎ(𝑁 − 𝑛), 𝑘 = 1, 2, 3, ..., 𝑁 − 1 (5.12)
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where we choose the notation of the window function to be ℎ on purpose. If the number of data points is
large, we can approximate the sum with a integral:

𝐹 (𝑘) = ∫
∞

−∞
𝑒𝑖𝑘𝑡ℎ𝜏 (𝜏 − 𝑡)𝑓 (𝑡)𝑑𝑡, (5.13)

which is exactly the same as Eqn. 5.7. Therefore, DFT of the propagating field defines a filtered optical
mode. By default, this filter has a sudden cut off, which is described by ℎstep

𝜏 (𝑡).
So far, the temporal modes of propagation field is expressed in terms of annihilation operator, which is

not an observable. Similar to the cavity mode case, we can define field quadratures as

�̄�𝜏 (Ω) = 1
√2

({ ̄𝑎𝜏 (Ω, 𝑡)}† + ̄𝑎𝜏 (Ω, 𝑡)) = 1
√2 ( ̄𝑎†

𝜏 (−Ω, 𝑡) + ̄𝑎𝜏 (Ω, 𝑡)) (5.14a)

̄𝑌𝜏 (Ω) = 𝑖
√2

({ ̄𝑎𝜏 (Ω, 𝑡)}† − ̄𝑎𝜏 (Ω, 𝑡)) /√2 = 𝑖
√2 ( ̄𝑎†

𝜏 (−Ω, 𝑡) − ̄𝑎𝜏 (Ω, 𝑡)) /√2, (5.14b)

which can be measured by homodyne detection. It is evident that each temporal mode quadrature contains
two frequency components, one at Ω and the other at −Ω, symmetrically opposite to DC. Each of these
components can be treated as a mode itself. Therefore, a temporal mode quadrature of propagation field
treated here is a composition of two sideband modes.

5.1.4 Three-Mode Optomechanics
Now, it is time to study the physical system. The three-mode model (two optical and one mechanical modes)
is an easy generalization of the two mode version introduced in Section 2.3. The Hamiltonian in the frames
rotating with the input laser frequencies is given by

�̂� = ℏΩm
2 (�̂�2 + ̂𝑃 2) − ∑

𝑗
ℏΔ𝑗 ̂𝑎†

𝑗 ̂𝑎𝑗 − ∑
𝑗

√2ℏg0𝑗 ̂𝑎†
𝑗 ̂𝑎𝑗�̂� + ∑

𝑗
𝑖ℏ√𝜅𝑗,L (𝛼𝑗,in ̂𝑎†

𝑗 + 𝑐.𝑐.) , (5.15)

where 𝑗 = 𝐴, 𝐵, representing optical modes A and B. In general, the vacuum optomechanical coupling rate
g0𝑗 , the cavity coupling rates 𝜅𝑗,L, 𝜅𝑗,R, 𝜅𝑗 are different between mode A and B. Similar to the one optical
mode case, the output fields of laser 𝑗 is given by

�̂�out
𝑗 (Ω) = √𝜂𝑗𝜅𝑗,R𝜅𝑗,L (𝑢𝑗(Ω)�̂�in,L

𝑗 (Ω) + 𝑣𝑗(Ω) ̂𝑌 in,L
𝑗 (Ω)) (5.16a)

+ √𝜂𝑗𝜅𝑗,R ((𝑢𝑗(Ω) − 1/𝜅𝑗,R)�̂�in,R
𝑗 (Ω) + 𝑣𝑗(Ω) ̂𝑌 in,R

𝑗 (Ω)) + 2𝑔√𝜂𝑗𝜅𝑗,R𝑣𝑗(Ω)�̂�(Ω) + √1 − 𝜂𝑗�̂�in,𝜂
𝑗 (Ω)

̂𝑌 out
𝑗 (Ω) = √𝜂𝑗𝜅𝑗,R𝜅𝑗,L (−𝑣𝑗(Ω)�̂�in,L

𝑗 (Ω) + 𝑢(Ω) ̂𝑌 in,L
𝑗 (Ω)) (5.16b)

+ √𝜂𝑗𝜅𝑗,R (−𝑣𝑗(Ω)�̂�in,R
𝑗 (Ω) + (𝑢𝑗(Ω) − 1/𝜅𝑗,R) ̂𝑌 in,R

𝑗 (Ω)) + 2𝑔√𝜂𝑗𝜅𝑗,R𝑢𝑗(Ω)�̂�(Ω) + √1 − 𝜂𝑗 ̂𝑌 in,𝜂
𝑗 (Ω),

where 𝜂𝑗 is the detection efficiency of mode j, �̂�in
𝑗 and ̂𝑌 in

𝑗 are the corresponding vacuum noise operators,
�̂�(Ω) is given by

�̂�(Ω) = 𝜒m(Ω)
(

√2Γm ̂𝑃in(Ω) + ∑
𝑗

2𝑔𝑗�̂�𝑗(Ω)
)

, (5.17)

where �̂�𝑗 is the intracavity amplitude quadrature of mode j, and the cavity quadrature susceptibilities are
defined as

𝑢𝑗(Ω) =
𝜅𝑗 /2 − 𝑖Ω

Δ2
𝑗 + (𝜅𝑗 /2 − 𝑖Ω)2

(5.18a)

𝑣𝑗(Ω) =
−Δ𝑗

Δ2
𝑗 + (𝜅𝑗 /2 − 𝑖Ω)2

. (5.18b)
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The definition of homodyne in two mode case is the same as the one mode one, such that the detected
propagating field is defined as

�̂�𝜃𝑗
𝑗 (Ω) ≡ �̂�out

𝑗 (Ω) cos 𝜃𝑗 + ̂𝑌 out
𝑗 (Ω) sin 𝜃𝑗 (5.19a)

̂𝑌 𝜃𝑗
𝑗 (Ω) = �̂�𝜃𝑗 +𝜋/2

𝑗 (Ω) (5.19b)

Optical Spectral
As discussed in Subsection 5.1.3, DFT defines filtered optical modes; thus we can extract the entanglement
information of the modes by studying their spectra, which directly provide covariances.

The homodyne spectral of the detected fields can be written as

̄𝑆out
�̂�

𝜃𝑗
𝑗 �̂�𝜃𝑘

𝑘
(Ω) = 1

2𝛿𝑗𝑘 + 𝑓 imp
𝑗𝑘 (Ω) ̄𝑆�̂��̂�(Ω) + ̄𝑆cor

𝑗𝑘 (Ω). (5.20)

When 𝑗 = 𝑘, the spectrum represents self correlation within an optical mode; while for 𝑗 ≠ 𝑘, the spectrum
represents the cross correlation between two modes. The delta function 𝛿𝑗𝑘 shows that shot noise only exists
in self correlations. As an analogy to the single optical mode case, the mechanical spectrum is given by

̄𝑆�̂��̂�(Ω) = |𝜒eff |2(Ω) (2Γqba
𝐴 + 2Γqba

𝐵 + 2Γm( ̄𝑛th + 1/2)) , (5.21)

where Γqba
𝑗 = 𝑔2

𝑗 𝜅𝑗(|𝑢𝑗(Ω)|2 + |𝑣𝑗(Ω)|2), and the effective susceptibility is

𝜒−1
eff (Ω) = 𝜒−1

m (Ω) + ∑
𝑗

4𝑔2
𝑗 𝑣𝑗(Ω). (5.22)

The transduction function is given by

𝑓 imp
𝑗𝑘 =

√Γmeas
𝑗 Γmeas

𝑘

4 Re [𝑒−𝑖(𝜃𝑗 −𝜃𝑘)𝜁𝑗𝑘(Ω) − 𝑒−𝑖(𝜃𝑗 +𝜃𝑘)𝜇𝑗𝑘(Ω)] , (5.23)

and the quantum correlation term is given by

̄𝑆cor
𝑗𝑘 (Ω) = −

√Γmeas
𝑗 Γmeas

𝑘

4 (Re [𝜒eff (Ω)] Im [𝑒−𝑖(𝜃𝑗 +𝜃𝑘)𝜇𝑗𝑘(Ω)] + Im [𝜒eff (Ω)] Re [𝑒−𝑖(𝜃𝑗 −𝜃𝑘)𝜉𝑗𝑘(Ω)]) .
(5.24)

The corresponding variables are

Γmeas
𝑗 =

4𝑔2
𝑗

𝜅𝑗
𝜂𝑗𝜂c,𝑗 (5.25a)

𝜁𝑗𝑘(Ω) = 𝜅𝑗𝜅𝑘 (𝜒c,𝑗(Ω)𝜒c,𝑘(Ω)∗ + 𝜒c,𝑗(−Ω)𝜒c,𝑘(−Ω)∗) = 𝜁𝑘𝑗(Ω)∗ (5.25b)
𝜇𝑗𝑘(Ω) = 𝜅𝑗𝜅𝑘 (𝜒c,𝑗(Ω)𝜒c,𝑘(−Ω) + 𝜒c,𝑘(Ω)𝜒c,𝑗(−Ω)) = 𝜇𝑘𝑗(Ω) (5.25c)
𝜉𝑗𝑘(Ω) = 𝜅𝑗𝜅𝑘 (𝜒c,𝑗(Ω)𝜒c,𝑘(Ω)∗ − 𝜒c,𝑗(−Ω)𝜒c,𝑘(−Ω)∗) = 𝜉𝑘𝑗(Ω)∗, (5.25d)

where 𝜒c,𝑗(Ω) = 𝑢𝑗(Ω) − 𝑖𝑣𝑗(Ω) is the cavity field susceptibility, and 𝜂c,𝑗 is the cavity outcoupling of mode
j.

Now we can define the DGCZ inseparability spectrum as

ℐ(Ω) =
̄𝑆�̂�+�̂�+ (Ω) + ̄𝑆 ̂𝑌− ̂𝑌− (Ω)

2 = 1 + 𝑓�̂�ℐ(Ω) ̄𝑆�̂��̂�(Ω) + ℐcor(Ω), (5.26)
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where the EPR variables �̂�±(Ω) = �̂�𝜃𝐴
𝐴 (Ω) ± �̂�𝜃𝐵

𝐵 (Ω) and ̂𝑌±(Ω) = ̂𝑌 𝜃𝐴
𝐴 (Ω) ± ̂𝑌 𝜃𝐵

𝐵 (Ω), and

𝑓�̂�ℐ(Ω) =1
4Re [Γmeas

𝐴 𝜁𝐴𝐴(Ω) + Γmeas
𝐵 𝜁𝐵𝐵(Ω) + 2√Γmeas

𝐴 Γmeas
𝐵 𝜇𝐴𝐵(Ω)𝑒−𝚤2Θ

] , (5.27a)

ℐcor(Ω) = − Im[𝜒eff (Ω)]Re [
Γmeas

𝐴 𝜉𝐴𝐴(Ω) + Γmeas
𝐵 𝜉𝐵𝐵(Ω)

4 ]

+ Re[𝜒eff (Ω)]Im
⎡
⎢
⎢
⎣

√Γmeas
𝐴 Γmeas

𝐵 𝜇𝐴𝐵(Ω)𝑒−𝚤2Θ

2

⎤
⎥
⎥
⎦

, (5.27b)

where Θ = (𝜃𝐴 + 𝜃𝐵)/2. The criterion of entanglement then follows as ℐ(Ω) < 1.

Toy Model
To capture the physical feature of this inseparability spectrum, it is easier to go to the limit where 𝜅𝑗 ≫ Ωm
and on resonance lasers Δ𝑗 = 0 as in Subsection 2.9.1. To simplify the case furthermore, we assume
Γmeas

𝐴 = Γmeas
𝐵 . Then the inseparability is given by

ℐ(Ω) ≈ 1 + 4Γmeas|𝜒m(Ω)|2
(2Γqba

𝐴 + 2Γqba
𝐵 + 2Γm( ̄𝑛th + 1/2)) (1 + cos(2Θ))

−4ΓmeasRe[𝜒m(Ω)] sin(2Θ). (5.28)

This form is highly similar to the squeezing spectrum Eqn. 2.87. Following the derivation in Subsection
2.9.1, it is not hard to show that the lower bound of this inseparability spectrum is

ℐmin(Ω) = 1 − 𝜂tot
meas
2 , (5.29)

where 𝜂tot
meas is the total measurement efficiency 𝜂tot

meas = 2Γmeas/Γdec. The 2 in denominator reflects the fact
that we have two lasers, and the quantum backaction from one appears as an effective thermal noise for the
other. This limits the lower bound of ℐ(Ω) to 1/2. Just like ponderomotive squeezing case, larger Γmeas helps
getting more prominent violation of DGCZ criterion.

We can also evaluate symplectic eigenvalue of partial transposed covariance matrix relatively easily in
toy model, where the covariance matrix is given by

V =

⎛
⎜
⎜
⎜
⎜
⎝

1
2 2ΓmeasRe[𝜒𝑚(Ω)] 0 2ΓmeasRe[𝜒𝑚(Ω)]

2ΓmeasRe[𝜒𝑚(Ω)] 1
2 + 8Γmeas|𝜒𝑚(Ω)|2Γdec 2ΓmeasRe[𝜒𝑚(Ω)] 8Γmeas|𝜒𝑚(Ω)|2Γdec

0 2ΓmeasRe[𝜒𝑚(Ω)] 1
2 2ΓmeasRe[𝜒𝑚(Ω)]

2ΓmeasRe[𝜒𝑚(Ω)] 8Γmeas|𝜒𝑚(Ω)|2Γdec 2ΓmeasRe[𝜒𝑚(Ω)] 1
2 + 8Γmeas|𝜒𝑚(Ω)|2Γdec

⎞
⎟
⎟
⎟
⎟
⎠

, (5.30)

where Γdec = Γqba
𝐴 + Γqba

𝐵 + Γm( ̄𝑛th + 1/2). Then ̃𝜈−(Ω) can be calculated to be

2 ̃𝜈−(Ω) =
√√√
⎷

1 + 16Γmeas|𝜒m(Ω)|2Γdec (
1 −

√
1 + Re[𝜒m(Ω)]2

4|𝜒m(Ω)|4Γ2
dec )

. (5.31)

To ensure significant effect from mechanics, it is reasonable for us to focus the vicinity of Ωm such that
|𝛿m| = |Ωm − Ω| ≪ Ωm. Then the ratio in the inner square root Re[𝜒m(Ω)]2/4|𝜒m(Ω)|4Γ2

dec ≈ 𝛿2
m/Γ2

dec. If
Γdec ≫ |𝛿m|, as can be routinely achieved in our system, we have √1 + 𝛿2

m/Γ2
dec ≈ 1 + 𝛿2

m/(2Γ2
dec). At the

same time, for the same argument as in Subsection 2.9.1, we focus on |𝛿m| ≫ Γm, such that we have the
hierarchy Γm ≪ |𝛿m| ≪ Γdec, we have the approximation 4|𝜒m(Ω)|2 ≈ 1/𝛿2

m. With all these approximations,
̃𝜈−(Ω) can be simplified to

2 ̃𝜈−(Ω) ≈ √1 − 2Γmeas
Γdec

= √1 − 𝜂tot
meas. (5.32)

The fact that ̃𝜈−(Ω) = 0 when 𝜂tot
meas → 1 shows arbitrary amount of entanglement is achievable when the

measurement is highly efficient and strong.
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5.1.5 Physical Interpretations of the Optical-Optical Entanglement
Generally speaking, entanglement is a consequence of quantum correlations. As illustrated in the beginning
of Section 2.9, optomechanical interaction correlates the amplitude and phase quadratures of the intra-cavity
field, which leads to ponderomotive squeezing. The optomechanical entanglement discussed above is a
direct analogy to ponderomotive squeezing. Just in the latter case, the amplitude fluctuation of one field
induced motion will not only modify the phase quadrature of itself, but also the phase quadrature of the
other optical field. In this way, cross correlation is generated between the optical fields.

} }
(XA ,YA) (XB ,YB)

Figure 5.1: Optical modes in frequency domain A figure from [117]. Two mechanical sidebands of
each laser form four initial optical modes, at different frequencies in spectrum. Homodyne measurement
combines a pair of sidebands of one laser into a single optical mode. This work shows the entanglement
between these combined modes, shown in blue and red for laser A and B respectively.

Firstly, let’s summarize the composition of the entangled modes in frequency domain. Figure 5.1 pro-
vides an illustration. Recall Eqn. 5.14, each optical mode we are dealing with contains two sidebands of
a laser frequency, which together gives a pair of amplitude and phase quadrature of the mode of interest.
The two pairs of sideband modes at different laser frequencies are illustrated with blue and red colors re-
spectively. Optomechanical interaction then mediates entanglement between these blue and red compound
modes. Therefore, this interaction is a close analogy to the four-mode squeezing from Kerr non-linearity
[118] but with delayed response function 𝜒m, which is distinct from the resolved-sideband treatment in the
microwave paper [42]. This scenario was first studied in Giovannetti et al. [111], but at DC frequency.
Later, a general case was discussed in Giannini et al. [119, 120].

The intensive mathematical discussion in the theory papers may hide the essential physics behind this
optomechanical entanglement phenomenon. To further interpret this entanglement, we move to a simplified
model. On the basis of the toy model used in Subsection 5.1.4, we further assume a one-sided cavity, where
𝜅𝑗,L = 0 and 𝜅𝑗,R = 𝜅𝑗 . In addition, we assume 𝜅𝐴 = 𝜅𝐵 = 𝜅, then the output fields are given by

�̂�out
𝑗 (Ω) = �̂�in

𝑗 (Ω), (5.33a)

̂𝑌 out
𝑗 (Ω) = ̂𝑌 in

𝑗 (Ω) + 2√Γqba𝜒m(Ω) (√2Γm ̂𝑃in(Ω) + √4Γqba(�̂�in
𝐴 (Ω) + �̂�in

𝐵 (Ω))) . (5.33b)

It is clear that self-correlation exists between amplitude and phase quadratures of the same mode, therefore
we have ponderomotive squeezing in each mode. In this case, the amplitude fluctuation of the other mode
serves as an effective thermal noise, which degrades the ponderomotive squeezing. At the same time, cross-
correlation exists between amplitude quadrature of one mode (let’s say mode A) and phase of the other
(let’s say mode B), and amplitude fluctuation from mode B serves as an effective thermal bath for this cross
correlation. Fig. 5.2 a illustrates this dynamics.

Fig. 5.3 shows diagrams of quadratures in phase spaces of different basis. If we stay at local basis of
cavity as illustrated in the first row of Fig. 5.3, which plot amplitude quadrature of one optical mode against
its own phase quadrature, we can see clearly self-squeezing. However, cross correlation is hidden in this
basis (e.g. correlation between �̂�𝐴 and �̂�𝐵). To get cross-correlations between �̂�𝐴 and �̂�𝐵 , we measure
these two quadratures simultaneously. The same applies for phase quadratures. To compare with DGCZ
inseparability criterion, we can plot �̂�𝐴 against �̂�𝐵 , and ̂𝑌𝐴 against ̂𝑌𝐵 , in the so-called measurement basis,
as shown in the third row of Fig. 5.3. The the variance along the diagonal direction is the variance of sum
of the quadratures, while that along the anti-diagonal direction is the variance of difference. If we measure
straight amplitude and phase quadratures, we do not get any squeezing, as can be expected from an analogy
to one optical mode case. However, if we rotate to the optimal measurement basis, we can see the squeezing
of the “𝑋” sum quadrature variance below vacuum level, while the “𝑌 ” difference quadrature variance at
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Figure 5.2: Dynamics in the Joint Mode Basis. A figure from [117] a, Schematic illustration of the
couplings between the optical quadratures (�̂�𝐴, ̂𝑌𝐴, �̂�𝐵 , ̂𝑌𝐵) and mechanical position/momentum (𝑞, 𝑝).
Each laser generates self-squeezing as well as cross-correlations. b, Schematic illustration of the couplings
after moving to the (non-local) joint basis (�̂�± = �̂�𝐴±�̂�𝐵 , ̂𝑌± = ̂𝑌𝐴± ̂𝑌𝐵). Here, there is only a self-squeezing
of the sum-mode, while the difference-mode remains uncoupled from all system dynamics.

vacuum level, which gives ℐ < 1, indicating entanglement. If we keep rotating the measurement basis, we
will observe breathing of both “𝑋” sum quadrature and “𝑌 ” sum quadrature.

In the spirit of EPR variables, we can also interpret the entanglement in terms of joint quadratures
�̂�± = �̂�𝐴 ± �̂�𝐵 and ̂𝑌± = ̂𝑌𝐴 ± ̂𝑌𝐵 . Similar quadratures can be defined for noise operators and output fields.
Then we can rewrite the dynamics as

�̂�out
+ (Ω) = �̂�in

+ (Ω), (5.34a)
̂𝑌 out
+ (Ω) = ̂𝑌 in

+ (Ω) + 4√Γqba𝜒m(Ω) (√2Γm ̂𝑃in(Ω) + √4Γqba�̂�in
+ (Ω)) , (5.34b)

�̂�out
− (Ω) = �̂�in

− (Ω), (5.34c)
̂𝑌 out
− (Ω) = ̂𝑌 in

− (Ω). (5.34d)

In this expression, only joint sum phase quadratures ̂𝑌 out
+ (Ω) and ̂𝑌 in

+ (Ω) are coupled to the mechanics. This
leads to the ponderomotive squeezing of the joint sum mode. Please notice that this squeezing strength is
twice of that of self-squeezing of individual modes. In the meanwhile, the joint difference mode is com-
pletely decoupled from themechanics. This reproduces the dynamics of EPR variables [95], and is illustrated
in the second row of Fig. 5.3. In the rotated joint basis, �̂�+ has variance below vacuum, while ̂𝑌− has vari-
ance at vacuum level. Then the DGCZ inseparability ℐ = (𝑉 (�̂�+) + 𝑉 ( ̂𝑌−))/2 is clearly below 1, which
demonstrates entanglement. In this way, the entanglement can be understood as ponderomotive squeezing
of a joint mode.

5.2 Experiment
In the previous experiments, only one of the lasers was used formeasuring themechanical motion. In optical-
optical entanglement, the transmitted fields of both of the lasers are detected with balanced homodyne setup,
as shown in Fig. 5.4. To suppress second order mechanical sidebands, the lasers are slightly red detuned,
which requires PDH lock. As we only have one fiber based phase modulator, we exploit the built-in EOMs
of the lasers (see Section A.2 for more information) to apply the required phase modulation for PDH lock.
The fiber based phase modulator is only used for cavity linewith measurement, optomechanically induced
transparency calibration, and a benchmark for calibration tones generated by the laser EOMs. Feedback
cooling is employed to suppress second order mechanical sidebands further, as in previous experiments.
The feedback motional signal comes from Laser B, while the actuation force comes from radiation pressure
of Laser A, through an amplitude modulator. In principle, this intensity modulation will appear in the
homodyne spectrum of Laser A, acquire its own mechanical sidebands, and result in noise peaks in the band
gap. However, in practice, this modulation is weak. Even the amplitude modulation tone itself is hard to be
observed in the spectrum of Laser A, despite its mechanical sidebands. Therefore, the feedback cooling of
low frequency modes is essentially the same as previous experiments.

We use the same membrane, but a slightly longer cavity (1.75 mm long, due to changing the broken
350 𝜇m thick flat mirror spacer to a 500 𝜇m thick one), compared to the previous experiments. As usual, a
full system characterization is conducted to keep track of system parameter change. For the thermal cycle for
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Figure 5.3: Entanglement in Phase Space. A figure from [117]. a, Different phase space portraits of the
system correlations (i.e. different cuts of the 4-dimensional covariance ellipsoid). In all subplots, the black
circle indicates vacuum noise, and the dashed lines indicate the marginal variances along each axis. The
top row is in the (local) cavity quadrature basis, where each system simply exhibits self-squeezing. The
middle row moves to the joint bases, where we see that the difference mode remain in vacuum, while
the sum-mode displays self-squeezing (with a non-zero squeezing angle). We note that the squeezing of
this joint quadrature is stronger than the sub-system self-squeezing. The bottom row corresponds to the
ellipses we are able to directly measure in our system (i.e. simultaneous {�̂�𝐴, �̂�𝐵} or { ̂𝑌𝐴, ̂𝑌𝐵}). b, Similar
noise ellipses as in a, but with a local rotation of the 𝐴,𝐵 subsystems (i.e. 𝜃𝐴 = 𝜃𝐵 ≠ 0). As a result, the
joint-basis ellipses (middle row) are aligned such that we now see 𝑉 (𝑋+) + 𝑉 (𝑌−) will violate the DGCZ
criterion, as indicated by the black arrows. In measurement basis, these variances are extracted from the
diagonal/anti-diagonal variances (bottom row).

entanglement experiment, we haveΩm/2𝜋 = 1.39 MHz, and𝑄 = 1.04×109. To get simultaneously high cav-
ity out-coupling and relatively narrow cavity linewidth, we choose to work with wavelengths around 796 nm
for both of the lasers. Laser A is at a wavelength 796.750 nm, and Laser B at 796.154 nm, corresponding to
maximum coupling points in two adjacent 2kz periods. At these wavelengths, we have 𝜅𝐴/2𝜋 = 13.3 MHz
and 𝜅𝐵/2𝜋 = 12.6 MHz, narrower than previous experiments due to longer cavity. These cavity linewidths
allow us to achieve quantum backaction rates of Γqba

𝐴 /2𝜋 ≈ 1.35 kHz and Γqba
𝐵 /2𝜋 ≈ 0.89 kHz, which are

much larger than the thermal decoherence rate Γm( ̄𝑛th+1/2)/2𝜋 ≈ 0.20 kHz at 10 K, as required by significant
entanglement.

To automize the measurement, we use the PI controller module of RedPitaya for homodyne path length
lock, which also records 𝑉DC of each lock. This voltage record is not influenced by the AC noises, therefore
more accurate than reading from oscilloscope. By utilizing slope lock for most homodyne angles and dither
lock for homodyne angles close to 0 and 𝜋, we can lock the homodyne angles at arbitrary values. Before
each measurement run, we lock the homodyne angles at 0 and 𝜋 to get peak-to-peak voltage. Together with
the locking DC voltage, we can extract homodyne angles accurately. The photocurrents from homodyne
detectors are low-pass filtered to suppress noise aliasing, and subsequently measured by a DAQ card, which
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Figure 5.4: Setup for optical-optical entanglement The transmitted field of the two lasers are measured
simultaneously via two homodyne detectors.

digitizes the voltage signal at a rate 15MSa/s using an analog-to-digital converter (ADC). Unlike in previous
experiments, where the digital signal is directly fast Fourier transformed to get voltage spectrum, the photo
current signals are recorded in the form of 140 chunks of 70-ms-long time traces in entanglement experiment,
where the total measurement time sums up to around 10 s. As bandwidth as narrow as 14 Hz is not required,
and we need more averages of a steady state spectrum, we divide the 70-ms-long time trace further into
9-ms-long chunks in post-processing.
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Figure 5.5: Imprecision displacement noise calibrations A figure from [117]. a. for Laser A. b. for Laser
B.

Though the entanglement only depends on the sum of the homodyne angles of Laser A and Laser B,
for conceptual simplicity, we choose a common basis of the two lasers in experiment, i.e. always having
𝜃𝐴 ≈ 𝜃𝐵 . In an experimental run, we first measure time traces with 𝜃𝐴 ≈ 𝜃𝐵 ≈ Θ, and then the orthogonal
quadrature 𝜃𝐴 + 𝜋/2 ≈ 𝜃𝐵 + 𝜋/2 ≈ Θ + 𝜋/2. After measuring the signal from optomechanical cavity,
we block the signal beams and record shot noise for comparison. (When measure shot noise, path length
lock has to be deactivated. Otherwise, the lock will try to compensate the voltage change by outputing
maximum voltage to the piezo with mirror. The deformation of the piezo will mis-align the beam to the
fiber, and cause a drop in LO power.) We scan the common first homodyne angle Θ from −𝜋/2 to 𝜋/2,
correspondingly the second common homodyne angle from 0 to 𝜋, and get 20 time traces equally spaced in
phase. Applying fast Fourier transformation on each time traces, we can get self-correlation spectra as in
sub-SQL experiment. From the calibration tones in these spectra and imprecision noise, we calibrate total
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detection efficiencies to be 𝜂c
𝐴𝜂𝐴 = 60% and 𝜂c

𝐴𝜂𝐴 = 77%, using the same technique presented in Subsection
4.3.2. We attribute he lower detection efficiency for Laser A to worse homodyne mode matching. The sum
or difference between the time traces of the Laser A and Laser B photocurrents gives the cross correlations.
The Fourier transformation of this sum or difference gives correlation spectra. To count the laser power drift
happening during the measurement as mentioned in Subsection 4.3.3, we fit self and correlation spectra
separately with free parameters optomechanical coupling rate 𝑔𝑗 and detuning Δ𝑗 , where 𝑗 = 𝐴, 𝐵. An
example of spectra in an experimental run is shown in Fig. 5.6, where fit and data match well, showing the
explanation power of the model. The parameters for each experimental run is shown in Fig. 5.7. As all
entanglement results will be compared to shot noise, to determine the existence of entanglement or declare
the amount, the uncertainties in these parameters is not very crucial. In the meanwhile, noise background is
calibrated to be shot noise limited with less than 1% uncertainty (see Subsection 3.6.2).
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Figure 5.6: Spectra and fit A figure from [117]. a,b,c Normalized power spectral density at Θ ≈ 0 for
Laser A, Laser B and cross correlation respectively. In this convention, vacuum noise is 1/2. The shadowed
area in cross correlation PSD corresponds to negative value a,b,c The corresponding PSDs for orthogonal
quadratures.

Now we are ready to calculate inseparability. To get a well-defined temporal optical mode as discussed
in Subsection 5.1.3, we demodulate the time traces at a frequency Ωmod/2𝜋 = 1.1416 MHz with a low-pass
filter with bandwidth 200 Hz. The choice of the demodulation frequency is to maximize the observed en-
tanglement, and the low-pass filter bandwidth is much smaller than the mechanical features of bandwidth
around Γqba

A and Γqba
B , such that the modes do not smear important structures in frequency. From demod-

ulation of time traces of Laser A and B in the first measurement, we get 𝑋Θ
𝑗 quadratures, while from the

second measurement 𝑌 Θ
𝑗 quadratures. Inseparability is simply given by ℐ = 𝑉 (𝑋Θ

𝐴 + 𝑋Θ
𝐵 ) + 𝑉 (𝑌 Θ

𝐴 − 𝑌 Θ
𝐵 ),

which can be calculated straightforwardly. In Fig. 5.8 a, b, we plot 2D histograms of 𝑋Θ
𝑗 quadratures and

𝑌 Θ
𝑗 quadratures for Θ ≈ 0, the measurement displaying the minimum inseparability. In the histogram of

X quadratures, we can see the squeezing below the vacuum noise level in diagonal direction, which repre-
sents the summation of the two quadratures (𝑋Θ

𝐴 + 𝑋Θ
𝐵 )/√2. While in the histogram of Y quadratures, the

variance in diagonal direction shows anti-squeezing. The variance in anti-diagonal directions of both his-
tograms stays at vacuum fluctuation level. This direction represents the difference between the quadratures
(𝑋Θ

𝐴 − 𝑋Θ
𝐵 )/√2. As the two lasers share the same mechanical information, subtraction of the quadratures

cancels the common mechanical information and left only vacuum fluctuation. Noticing that the insepara-
bility is calculated by the summation of the sum of X quadratures and difference bewteen Y quadratures,
inseparability is thus smaller than 1 for Θ ≈ 0, a clear indication of entanglement between two optical
modes. Fig. 5.8 c shows the homodyne angle Θ dependence of the variances and the inseparability. The
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Figure 5.7: Fitted parameters A figure from [117]. a,b fitted optomechanical couplings for Laser A and
B respectively. c,b fitted detunings for Laser A and B respectively. The error bars are a single standard
deviation from the fits. The dashed lines are mean value of the parameters over all measurements.

difference variance, represented by the difference quadrature 𝑌− discussed in Subsection 5.1.5, is always at
vacuum noise level, due to the perfect cancellation of common mechanical noise. While the sum variance
experiences an oscillation, which represents the squeezing of the joint sum quadrature 𝑋+. As we change Θ,
we change the projection axis in the joint basis phase space diagram, and the variance oscillates as a result
of squeezing. Because of constant difference quadrature and an oscillating sum quadrature, the observed
inseparability also oscillates with Θ.

The minimum inseparability from this measurement is ℐ = 0.83, which is significantly below 1. As the
measurement ensembles contain ∼ 104 samples, the statistic error of ℐ is confined to 1% level. Together
with the less than 1% systematic error in vacuum noise calibration, our claim of entanglement has more
than 7 standard deviations significance. This concludes the first observation of optical-optical entanglement
through optomechanical interaction.

To extract the amount of entanglement, we need to reconstruct the covariance matrix using Gaus-
sian homodyne tomography. In the tomography, we measure five pairs of homodyne angles {𝜃𝐴, 𝜃𝐵} =
{0, 0}, {𝜋/2, 𝜋/2}, {0, 𝜋/2}, {𝜋/2, 0}, {𝜋/4, 𝜋/4} (notice that 𝜃𝐴 ≠ 𝜃𝐵 in general). The diagonal entries can
be fully determined by the first two pairs. For the cross correlations, {0, 0} gives ⟨𝑋𝐴𝑋𝐵⟩ and its complex
conjugate, {𝜋/2, 𝜋/2} gives ⟨𝑌𝐴𝑌𝐵⟩ and its complex conjugate, {0, 𝜋/2} gives ⟨𝑋𝐴𝑌𝐵⟩ and its complex con-
jugate, {𝜋/2, 0} gives ⟨𝑌𝐴𝑋𝐵⟩ and its complex conjugate, {𝜋/4, 𝜋/4} gives ⟨𝑋𝐴𝑌𝐴⟩ and ⟨𝑋𝐵𝑌𝐵⟩ and their
complex conjugates. Thus this measurement can fully characterize all co- and self-variances.

The independent entries of the covariance matrix is shown in Fig. 5.9 a, where data and theoretical
prediction match reasonably well. The deviation mainly comes from optical power fluctuation as explained
in the spectra fit. The matrix form of the covariance matrix is shown in Fig. 5.9. From these covariances,
and using Eqn. 5.4, we can calculate the minimum simplectic eigenvalue of partial tranposed covariance
matrix 2 ̃𝜈 = 0.79, corresponding to a logarithmic negativity 𝐸N = 0.35.

5.2.1 Frequency dependent entanglement
In the previous discussion, we ignored the frequency dependence of entanglement by focusing on optical
modes at a certain frequency. However, as can be inferred from, for instance, Eqn. 5.26, entanglement has
frequency dependence, mainly due tomechanical and optical susceptibilities. To study this frequency depen-
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Figure 5.9: Covariance matrix A figure from [117]. a. Measured (black) and predicted (gray) entries of
covariance matrix. b. Measured data in matrix form. The color coding is aimed at emphasis significant
non-zero entries.

dence, we can continue with the demodulation analysis, and sweep the demodulation frequency. However,
this task can be computing resource heavy. Alternatively, we can simply take DFT of the sum and differ-
ence time traces, which is equivalent to the demodulation method in defining optical mode, as illustrated in
Subsection 5.1.3. In the latter case, the filter function ℎ(𝑡) = (Θ(𝑡) − Θ(𝜏 − 𝑡))/√𝜏, where Θ(𝑡) is Heaviside
function, and 𝜏 = 9 ms is the measurement time.

The frequency dependence of entanglement is shown in Fig. 5.10. Panel a shows the spectra of 𝑋𝛩
+ and

𝑌 𝛩
− at Θ ≈ 0, as an example. The average of these spectra gives the inseparability spectrum in panel b. In the

same sub-figure, we also plot 2 ̃𝜈 extracted from experimental data. This quantity highlights a lower bound
of inseparability, as expected. The full model fits in these panels show good match between model and data.
Panel c and d show Θ and frequency dependence of inseparability. As the quantity has a period of 𝜋 in Θ, we
only plot Θ from 𝜋/2 to 𝜋/2. We observe good agreement between theory and experiment in this contour plot.
The asymmetric inseparability between high frequency and low frequency parts in the experimental data is
again a result of mirror noise. We do not explicitly display the dependence of entanglement bandwidth as a
function of optical power, but the case is the same as sub-SQL: entanglement bandwidth is proportional to
optical power.

Notice that the total bandwidth of entanglement is much larger than the demodulation bandwidth used in
frequency independent entanglement study, the covariance matrix in that case does not contain all entangle-
ment information. To quantify the total amount of entanglement achieved in the experiment, we calculate
the entanglement of formation over a bandwidth containing all entanglement feature. The entanglement of
formation has the physical meaning of number of entangled bits (ebits) needed to generate an entangled
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Figure 5.10: Frequency dependent entanglement A figure from [117]. a. normalized power spectral density
of 𝑋𝛩

+ and 𝑌 𝛩
− with Θ ≈ 0. b. Inseparability (green) at Θ ≈ 0 and 2 ̃𝜈 (gray). The solid lines in a and b

are fits to the full model. c,d. Theoretical and experimental contour plots of inseparability respectively.
The frequency axis is relative to the mechanical frequency. The green dashed line in d indicates the slice
displayed in a and b.

state, where one ebit is defined by a maximally entangled two-qubit state (e.g. |Ψ−⟩ = (|01⟩ − |10⟩)/√2).
This quantity is considered as a “proper measure of quantum correlations” [121]. For a symmetric Gaussian
bipartite state, entanglement of formation is defined by [42, 122]

𝐸f = 𝑐+𝑙𝑜𝑔2𝑐+ − 𝑐−𝑙𝑜𝑔2𝑐−, (5.35)

where 𝑐± = (±√𝑅 + 1/√𝑅)
2

/4, with 𝑅 = 2−𝐸N . We integrate 𝐸f in a bandwidth of 30 kHz, and get an
entanglement distribution rate of 753 ebits/s. The choice of the integration bandwidth is aiming at cover-
ing all frequencies showing 2 ̃𝜈 < 1 in spectrum. Though the choice is a bit arbitrary, having a too wide
bandwidth does not influence the result, as 𝐸f in these frequency range is zero.

5.2.2 Entanglement between Highly Non-Degenerate Laser Beams
In the introduction of this chapter, we mentioned that the main selling point of this optical-optical entan-
glement through optomechanical interaction is the EM frequency independence. In the almost degenerate
experiment, we demonstrate entanglement between two fields separated by 0.3 THz in frequency. To further
demonstrate the frequency independence, we repeat the same experiment as shown in Fig. 5.10, but with
Laser A at 912.024 nm (within the wavelength range of TiSaphire laser) and Laser B at 796.750 nm. The
choice of 912 nm is a trade off between reasonably narrow cavity linewidth, high cavity out-coupling effi-
ciency and large separation in laser frequencies. The wavelengths of the two lasers are separated by more
than 120 nm. At 912.024 nm, the cavity linewidth is calibrated to be 𝜅𝐴/2𝜋 = 3.797 MHz, which is com-
parable to mechanical frequency. In this case, toy model does not hold anymore, but the full model is still
valid. This narrow cavity linewidth also decreases the optical power needed to achieve the same backaction
rate dramatically. In this experiment, we keep Γqba

𝐴 ≈ Γqba
𝐵 ≈ 2𝜋 ×1 kHz. The inseparability spectrum of the
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best homodyne angle and reconstructed 2 ̃𝜈 are shown in Fig. 5.11, with the lowest value of 2 ̃𝜈 = 0.92 < 1.
Again, this measurement has a statistic error of around 1%, while systematic error due to deviation of noise
background from vacuum is below 1% even further than the almost degenerate case, due to the low optical
power used. Thus, this entanglement is statistically significant. One may notice that the amount of observed
entanglement is less than the almost degenerate case, mainly due to worse cavity out-coupling efficiency,
as a consequence of mirror coating. Please notice that, the reduced entanglement is at the detector, due to
mixing in uncorrelated vacuum. The intra-cavity entanglement is not degraded significantly. To improve
the detected entanglement at these wavelengths, one can exploit a mirror coating with two optimal reflectiv-
ities at the intended wavelengths. Nevertheless, this experiment demonstrates the EM frequency insensitive
entanglement between EM fields.

5.3 Conclusion
In conclusion, we demonstrated the first optical-optical entanglement via optomechanical interaction. In
contrast to the demonstration in microwave regime, the entanglement survives until the room temperature.
In contrast to the traditional way of generating optical entanglement by optical parametric oscillators, the sys-
tem demonstrating the first optical-optical entanglement [123, 124], mechanical oscillator can be integrated
as a part of hybrid quantum system [18, 19, 32, 125], and can provide a coherent link between microwave
and optical frequencies [33, 126]. By combining the technologies in microwave and optical regimes, we
pave the way to microwave-optical entanglement.
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Chapter 6

Feedback Cooling to Quantum Ground
State

Strong and efficient measurement does not only allow us to overcome the Standard Quantum Limit and
generating entanglement between two lasers, it also enables the first feedback cooling amechanical oscillator
to its quantum ground state, even only when conventional displacement measurement is implemented.

Cooling the mechanical oscillator to its quantum ground state is a prerequisite for many quantum proto-
cols such as mechanical Fork state preparation [18, 20] and mechanical entanglement [22]. The ground state
cooling methods fall in three categories. The first category employs a high frequency mechanical oscillator,
usually in GHz range, and a fridge (for instance a dilution fridge) enabling temperature lower than 100 mK.
This setting allows the mechanics to be cooled down to motional ground state passively [127]. However,
dilution fridge is extremely pricy, and operating optics at such a low temperature is in no way trivial. The
second category exploits sideband cooling introduced in Section 2.7, and ground state cooling using this
approach has been achieved almost 10 years ago [12, 13, 58]. The final occupancy is limited by the back-
action, thus, sideband resolution Ωm ≫ 𝜅 is required to achieve low occupancy, which is hard for many
optomechanical systems. Moreover, if the reflectivities of the cavity mirrors are kept the same, the only
way to decrease 𝜅 is to make the cavity longer, which sacrifices the vacuum optomechanical coupling 𝑔0.
The third category is feedback cooling, which does not require sideband resolution. Feedback cooling of a
mechanical oscillator is a cooling procedure where the measured displacement is treated as error signal, and
a feedback loop is used to cancel the displacement to achieve the goal of cooling the mechanics. Over the
past 20 years, feedback cooling has been implemented on systems from as small as trapped atoms [128] and
ions [129], to larger ones like nano- and micro-particles [130, 131], cantilevers [132, 133], nanomechanical
resonators [134, 135], to as large as test masses of gravitational wave detectors [136, 137]. However, none of
them has reached occupancy smaller than 1, a widely accepted condition for successful ground state cooling.
(In this case, the mechanical mode spend more than half of the time in ground state.) The closest attempt
was described in Wilson et al. [135], where they achieved a final occupancy of 5 phonons. The failure of
reaching ground state can be summarized as too low overall measurement efficiency 𝜂meas. Because the
ultimate limit of feedback cooling is given by the conditional state occupancy ̄𝑛est [43, 102]. As illustrated
in the end of Section 4.2, the high quality measurement provided by our system can solve this problem, by
providing a close-to-zero conditional state occupancy.

6.1 Theory
The scheme of feedback cooling is shown in Fig. 6.1. There are two stochastic forces thermal force 𝐹th
and quantum backaction force 𝐹ba acting on the mechanics. As their roles are the same, we note their
sum as 𝐹bath for simplicity. These forces are transduced into dimensionless mechanical motion 𝑄 through
mechanical susceptibility 𝜒m(Ω). The dimensionless detected motion is described by 𝑦 = 𝑄 + 𝑄imp, where
𝑄imp is the imprecision displacement, as quantum correlation is absent when we detect the optical phase
quadrature. The controller takes 𝑦 as error signal and output a feedback force 𝐹fb(Ω) = ℎfb(Ω)𝑦(Ω) to try
to make 𝑦 = 0, where ℎfb is the transfer function from 𝑦 to feedback force. This function is proportional
to a feedback gain 𝑔fb with dimension Hz (proportional to dimensionless proportional gain), and typically
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Figure 6.1: Scheme of feedback cooling

contains a low-pass/band-pass filter to limit the feedback bandwidth. Then the dynamics of this closed cycle
system is given by

𝑄(Ω) = 𝜒m(Ω)(𝐹bath + ℎfb(Ω)𝑦(Ω)) (6.1a)
𝑦(Ω) = 𝑄(Ω) + 𝑄imp(Ω). (6.1b)

Solving for 𝑄 and 𝑦, we have

𝑄(Ω) = 𝜒m(Ω)
1 − ℎfb(Ω)𝜒m(Ω) (𝐹bath(Ω) + ℎfb(Ω)𝑄imp(Ω)) (6.2a)

𝑦(Ω) =
𝜒m(Ω)𝐹bath(Ω) + 𝑄imp(Ω)

1 − ℎfb(Ω)𝜒m(Ω) . (6.2b)

Comparing this expression of 𝑄 to 𝑄(Ω) = 𝜒m(Ω)𝐹 (Ω), we notice that the feedback process changes the
mechanical susceptibility to an effective one

𝜒fb(Ω) = 𝜒m(Ω)
1 − ℎfb(Ω)𝜒m(Ω) . (6.3)

For some proper choice of ℎfb, this effective susceptibility can be broader and lower than the original one,
which damps the mechanics and cools it down. For example, if we introduce a 𝜋/2 phase delay in the
feedback transfer function, we can have ℎfb(Ω) = −𝑖𝑔fbΓmΩ/Ωm [135], which provides a damping force
inversely proportional to the velocity of the oscillator. As a result, the effective susceptibility will be given
by

𝜒fb(Ω) = Ωm
Ω2

m − Ω2 − 𝑖Γm(1 + 𝑔fb)ΓmΩ
, (6.4)

which is simply mechanical susceptibility with mechanical linewidth (1 + 𝑔fb)Γm, a factor of 1 + 𝑔fb broader
than the case without feedback. In the low gain limit, i.e. ℎfb ≪ 𝐹bath/𝑄imp, this broadening effect is
exactly the same as that the optical damping caused by sideband cooling, which decreases phonon occupancy.
However, increasing gain does not always mean lower occupancy. If we have a look at Eqn. 6.2a, the
imprecision displacement, uncorrelated to the real mechanical motion, will also be transduced into feedback
force, resulting in heating. When ℎfb ≫ 𝐹bath/𝑄imp, this heating could be the dominant source of mechanical
motion, and essentially leads to higher occupancy. In the meanwhile, the detected displacement 𝑦 decreases
monotonically with feedback gain, which can even be below the imprecision level. This effect is called noise
squashing. Cooling the detected spectrum down to imprecision level corresponds to the coolest mechanical
mode.

The phonon occupancy should in principle be calculated based on the variances of displacement and
momentum and their zero point fluctuations

̄𝑛 = 1
2 (⟨𝛿𝑃 2⟩ + ⟨𝛿𝑄2⟩ − 1) , (6.5)
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because the equipartition condition does not hold for feedback cooling in general. However, when the feed-
back bandwidth is limited, the equipartition condition can be considered valid, and we can calculate phonon
occupancy by

̄𝑛 ≈ ∫
∞

0
̄𝑆𝑄𝑄(Ω)𝑑Ω

2𝜋 − 1
2 , (6.6)

which can be inferred from the in loop spectrum ̄𝑆𝑦𝑦(Ω).

6.2 Experiment
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Figure 6.2: Experimental setup for feedback cooling A figure from the supplementary information of [8].

The experimental setup is shown in Fig. 6.2. The optical parameters are the same as those presented in
Section 4.2. The probe laser is locked to the cavity on resonance using a PDH lock setup, and the auxiliary
laser is slope locked to the red side of the cavity. The transmitted probe field is detected by a banlanced
homoyne detector. This output is fed to a data acquisition card for spectral analysis (FFT in this case) and
an FPGA (RedPitaya) for generating feedback cooling signal. We use the built-in IQ module in an open
source software module (PyRPL) to conduct this analysis. The output of the FPGA is input to an amplitude
modulator, which modulates the amplitude of the auxiliary laser. Thus the radiation pressure of this beam
can serve as actuation force in feedback cooling on the membrane.

As can be noticed from Subsection 6.1, the choice of feedback transfer function ℎbf is crucial for the
purpose of feedback cooling. In practice, as we have multiple modes in our system, this choice is even more
subtle. As mentioned in Section 4.2, we need to feedback cool some of the low frequency modes of the
whole membrane in addition to the mode of interest. Therefore, the total transfer function is a summation of
the main transfer function and 8 auxiliary ones, each at a different center frequency. The number of feedback
channel is limited by that available in 3 RedPitayas. In principle, there is no upper bound for this number.
In our case, the transfer function is chosen to be [8]

ℎfb(Ω) = ℎmain(Ω) + ℎaux(Ω) = 𝑔fb𝑒𝑖Ω𝜏−𝑖𝜙
(

ΓfbΩ
Ω2

fb − Ω2 − 𝑖ΓfbΩ)

2

+ ℎaux(Ω), (6.7)

where the main transfer function is generated by demodulation at Ωfb, low-pass filter the demodulated signal
with a forth order low pass filter with bandwidth Γfb, and remodulate the signal. The propagation of RF signal
in cables, the processing time of the FPGA, and the response time of the cavity introduce a time delay 𝜏
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between the feedback force and displacement signal, which introduces a frequency dependent phase 𝑒𝑖Ω𝜏 to
the transfer functions. In the spirit of providing damping force, we choose the demodulation phase 𝜙, such
that the argument of the main filter around mechanical frequency arg (ℎmain(Ωm)) ≈ 𝜋/2. Any total phase
from 0 to 𝜋 leads to cooling of the mechanical mode, while phase from 𝜋 to 2𝜋 leads to excitation. Due
to the existence of time delay, a good phase for cooling the defect mode of interest is always an excitation
phase for some other modes probably outside the band gap. To limit the gain at these frequencies, such
that they do not experience self-oscillation, the low-pass filter in FPGA is necessary. In real experiment, the
bandwidth of this filter is Γfb/2𝜋 = 77.78 kHz. As the filter phase changes dramatically around the resonance
of the band-pass filter, to get a nearly homogeneous feedback phase over the mechanical mode, we choose
the center frequency of the main filter to be Ωfb/2𝜋 = 1.195 MHz, which is higher than the mechanical
frequency Ωm/2𝜋 = 1.14 MHz. The idea of choosing auxiliary filters is the same as the main one.
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Figure 6.3: Fitting of feedback results A figure from the supplementary information of [8]. a. Fitted
feedback gain 𝑔fb, fitted demodulation phase 𝜙, fitted total bath occupancy ̄𝑛tot , and fitted imprecision
occupancy ̄𝑛imp as a function of electronic gain set by the FPGA. b. The detected mechanical spectra and
their fits at different electronic gain. From top to bottom, the electronic gain increases. c. The spectra
and fits at minimum and maximum electronic gain in this series (solid lines), plot together with the fit
inferred real displacement spectra (dashed lines).

The spectra of detected displacement and their fitting during feedback cooling is shown in Fig. 6.3 b,
where spectra with different feedback gains are plot together. When the gain is low, the mechanical spectrum
is sharp and tall, corresponding to large occupancy. As we increase the feedback gain, the mechanical
peak becomes broader, shorter and cooler. The coolest mechanical mode is available when the spectrum
is cooled down to the imprecision level. Increasing feedback gain further, the spectrum goes into squash
regime, corresponding to hotter mechanical mode. The real mechanical spectrum inferred from the fit of
the detected spectrum is displayed in Fig. 6.3 c as dashed lines. In squashing regime, the tails of the real
mechanical motion peak are significantly higher than those of low gain case, due to feeding back uncorrelated
imprecision noise. This illustrates visually the heating in squashing regime. The fitted feedback gain 𝑔fb,
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demodulation phase 𝜙, total bath occupancy ̄𝑛tot , and imprecision occupancy ̄𝑛imp are shown in Fig. 6.3 a,
as a function of electronic gain set by the FPGA. Among which, 𝑔fb is expected to have a linear increasing as
electronic gain increases, whose behavior matches the expectation well. All other parameters are expected
to keep constant as electronic gain changes. They follow the expectation as well. Though we do not check
the phonon occupancy independently using a separate beam, and only infer it from the model, the good
agreement between fitting and experiment provides confidence on the results.
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Figure 6.4: Final occupancy at different𝐶q A figure from [8]. The horizontal axis is the effective mechanical
linewidth, a quantity proportional to feedback gain.

We conduct feedback cooling series at different 𝐶q’s, and the occupancies are shown in Fig. 6.4. All of
the series can reach squashing regime, which results in the “Nike” shapes. The solid lines are independent
theoretical predictions, which match the experimental results well. Generally, the lowest occupancy in one
series decreases as 𝐶q increases, as 𝜂meas increases with 𝐶q. The saturation at high 𝐶q’s is a sign of detection
efficiency becoming the bottle neck of 𝜂meas. The lowest occupancy is ̄𝑛 = 0.29 < 1, which is the first
demonstration of feedback cooling a mechanical oscillator to its quantum ground state. All of the cooling
series goes beyond the sideband cooling limit given by Ωm and 𝜅, demonstrating the distinct mechanism
of feedback and sideband cooling. The filter limit corresponds to the best state estimation provided by our
choice of feedback transfer function. Our result approaches this limit closely. While the optimal estimation
limit corresponds to Eqn. 4.8, where the optimal estimation method is used, which is discussed in detail in
reference [82]. The deviation of our result from this limit shows the room of improvement in engineering
the filter.

This first demonstration of feedback cooling a mechanical oscillator to its quantum ground state opens
the door to various of measurement-based quantum control protocols.
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Chapter 7

Conclusion and Outlook

In this thesis, we introduced a membrane-in-the-middle system with soft-clamped Si3N4 membranes, which
has the unique property of simultaneous satisfaction of strong backaction and high detection efficiency. This
feature enables quantum limited displacement measurement of the membrane motion. Making use of this
clean measurement record, we achieved first feedback cooling of a mechanical resonator to its quantum
ground state. In Chapter 4 and 5, by exploiting the optomechanically induced quantum correlations, we
demonstrated the first displacement and force measurement below the Standard Quantum Limit and the first
mechanically induced entanglement between two optical fields. And although we have achieved a number
of remarkable results, the potential of our system has not been run out yet.

As mentioned in the concluding remarks of the sub-SQL experiment, our system provides a good plat-
form for force sensing, which is compatible with sensitivity enhancing techniques using quantum correla-
tions, like variational readout and synodyne detection. This sensitivity can be further boosted by changing
the defect of our current membrane to a ribbon to reduce mode mass, and put the system into a dilution
refrigerator, which can both improve the mechanical 𝑄 factor and decrease the temperature of thermal envi-
ronment. Due to low thermal conductivity at low temperature and high energy of optical photons, operating
optical experiment is not trivial in a dilfridge [14]. We are currently exploring the performance of soft-
clamped membranes under this condition.

In this chapter, we introduce two main outlooks based on our membrane-in-the-middle system. The
first one is that of a stroboscopic measurement, an alternative backaction evading measurement compared
to variational readout, while the second is entanglement between microwave and optical fields.

7.1 Stroboscopic Measurement
In all the projects discussed before, we used a continuous laser field. We know that a conventional contin-
uous wave conventional measurement of displacement is subjected to the Standard Quantum Limit. How-
ever, from the interaction Hamiltonian of an optomechanical system (Eqn. 2.25), only the position of the
mechanical oscillator is coupled to the optical field. In principle, this interaction can be used as a quantum
non-demolition (QND) measurement [138] of position, where there is no limit in the precision of position
measurement. As position and momentum is a pair of non-commuting variables, measurement of posi-
tion will inevitably increase the uncertainty in momentum, and this momentum uncertainty is rotated into
position uncertainty after a quarter mechanical period. Therefore, for a conventional continuous wave mea-
surement, we are actually trying to measure position and momentum simultaneously [47], which destroys
the QND nature of the interaction.

The key of achieving QND measurement of a mechanical resonator is to measure only one of the me-
chanical quadratures. This idea was first proposed in Thorne et al. and Caves et al. [139, 140]. Only quite
recently were experimental demonstrations of QND measurements on mechanical oscillators realized using
two-tone measurements schemes in the microwave domain [15, 16, 17], and later in the optical domain [96].
A different approach was adapted by the group of Eugene Polzik at our institute, where a ”negative mass”
atomic ensemble was used to realise a QND interaction [97]. QND measurement of a mechanical oscillator
using other schemes has not been demonstrated yet.

The conceptually easiest scheme is stroboscopic measurement [141], where a pulsed probe with repeti-
tion rate 2Ωm and the length of each pulse much shorter than the mechanical period is used for reading out

91



t

T

p

x

p

x

p

x

p

x

p

x

Figure 7.1: Idea of stroboscopic measurement The phase space evolution is shown in lower half of the
figure.

the mechanical displacement. The scheme is illustrated in Fig. 7.1. Before the arrival of the first pulse, the
average displacement of the mechanical oscillator is located at the equilibrium position with an uncertainty
given by thermal noise sphere (refer to Fig. 4.4). At the moment of the arrival of the first pulse, the center
of the mechanical state collapses to a random position in the phase space, with a probability distribution
governed by the thermal sphere. The initial variances of position and momentum of this conditional state
depends on the strength of the pulse. If the pulse is very weak, the uncertainties are roughly given by the
thermal noise. The interaction between the first pulse and the mechanics transfers a momentum 𝑝 to the
mechanics. We assume that the coherence time of the mechanical oscillator is much longer than a mechan-
ical period 𝑇 , (thanks to the ultra-narrow mechanical linewidth, our system is deeply in this regime). After
half of the mechanical period, the mechanics oscillates to a position with the same magnitude but opposite
sign as the initial position, and the momentum also switches the sign. Then the second pulse decreases the
total momentum by the same amount as the increase from the first pulse. After another half of a period,
the mechanical state rotates back to the original position, and a new cycle starts. In this scheme, every time
when a pulse arrives, the magnitude of the displacement is the same. By demodulating the signal at Ωm, we
can be sensitive to the magnitude of displacement only, and see no influence from momentum. Thus, this
QND measurement is also called a backaction evading measurement, as backaction comes in the form of
random momentum. Notice that quantum backaction still exists in this scheme, but the probe is “blind” to
it. When the measured variance of displacement is below 𝑥2

zpf , we get an conditional squeezed mechanical
state. Stroboscopic measurement can be used to both prepare and verify this squeezing, which has been
demonstrated in atomic ensembles [142]. However, this has not beem demonstrated on mechanical oscil-
lators yet. One of the key challenges is to have stroboscopic measurement rate exceeding the decoherence
rate. The large 𝐶q and high detection efficiency provided by our system gives us a chance to satisfying this
demanding condition.

We have tried to implement this stroboscopic measurement scheme using a fiber based amplitude mod-
ulator to generate pulses, and use a lock-in amplifier to acquire the signal. The result is shown in Fig. 7.2,
where the filtered shape comes from the low-pass filter in the lock-in amplification. We notice there is some
amount of backaction evasion happening at the resonance of the mechanical peak around 1.189 MHz, which
proves the validity of the scheme. (The frequency of this mechanical mode is different from the one used
in other projects, because this is a different membrane.) However, the more noticeable feature is the dense
peaks in the stroboscopic spectrum, which make the spectrum too noisy for useful application.

After some intensive investigation, we found that these peaks are mechanical sidebands acquired by
optical sidebands of the pulse sequence. When we modulate the intensity of the probe laser, depending on
the pulse shape, there will be not only optical sidebands at frequency ±Ωmod, there will also be sidebands
at ±𝑛Ωmod, where 𝑛 is an integer. The carrier at laser frequency and all these sidebands acquire their own
mechanical sidebands, which appear around the demodulation frequency, resulting in these sharp peaks. We
refer this phenomenon as “optical aliasing”.

To solve this “optical aliasing”, a membrane with bandgap at 𝑛Ωm, where 𝑛 is odd, will be helpful, which
cleans up the main noise peak contributor.
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Figure 7.2: Result of stroboscopic measurement The spectrum of stroboscopic measurement (red) against
the spectrum of continuous wave measurement (blue) and continuous wave shot noise (gray). The me-
chanical peak is centered around 1.189 MHz, highlighted by the gap between the mechanical spectra and
the shot noise spectrum.

7.2 Optomechanical Interaction Induced Entanglement between Mi-
crowave and Optical Fields

Quantum internet requires high quality local quantum computation at individual nodes and high efficient dis-
tribution of quantum information among numerous distant nodes [36]. However, since no existing platform
of quantum computing can satisfy these two requirements simultaneously, researchers have turned their at-
tention to finding hybrid solutions to the problem. Among the candidates of quantum computation platforms,
superconducting qubit is one of the leading choices, due to the fast operation and scalability. However, the
high loss rate of microwave propagating in coaxial cables makes quantum information in microwave regime
hard to be distributed to distant nodes [143]. Transducing quantum information from microwave to optical
frequency, especially telecom frequencies, is a solution to this problem, as optical fields can propagate in
free space or fiber with very low loss.

In Chapter 5, wementioned that mechanical systems can couple microwave and optical fields with signif-
icant strength simultaneously, which gives mechanical systems the potential to link the drastically different
frequency regimes. We introduced optomechanical coupling in the optical domain in detail in this thesis,
and only briefly touched upon the coupling between mechanics and microwave fields, which plays an equally
important role in a quantum transducer. There are mainly two categories of mechanics-microwave coupling.
One employs piezo-electric materials based optomechanical crystals [35], where mechanical frequency typ-
ically matches that of microwaves, and can be directly coupled to superconducting qubits [18, 19, 32]. In
the other category, the mechanics is a part of an LC resonator, whose resonance frequency changes with
mechanical motion [21, 33, 144, 145]. The mechanical frequency in this category is typically orders of mag-
nitudes lower than that of microwave. Among various ways of coupling, the most common design has the
mechanical oscillator being a part of a capacitor. Suppose the capacitor can be approximated by a parallel
plate capacitor, and one of the plates is the mechanical oscillator. In this scenario, the capacitance is given
by

𝐶 = 𝜖𝐴
𝑑 + Δ𝑑 , (7.1)

where 𝜖 is the dielectric permittivity, 𝐴 is the area of the parallel plate, 𝑑 is the equilibrium distance between
two plates, and Δ𝑑 is the displacement due to mechanical motion. Then the resonance frequency of the LC
circuit is

Ωe = 1
√𝐿𝐶

= √
𝑑 + Δ𝑑

𝜖𝐿𝐴 ≈ √
𝑑

𝜖𝐿𝐴 (1 + Δ𝑑
2𝑑 ) , (7.2)

where the last approximation is under the assumption 𝑑 ≫ Δ𝑑. Comparing this expression to Ωcav ≈
Ωcav(1 − 𝑞/𝐿) for optical optomechanical cavity, we find the two cases are equivalent. Having the LC circuit
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being a microwave cavity in mind, we can define the annihilation operator for intra-cavity microwave field
̂𝑐, and the Hamiltonian of the microwave-mechanical system is given by

�̂� = ℏΩe ̂𝑐† ̂𝑐 + ℏΩm ̂𝑏†�̂� + ℏ𝐺e ̂𝑐† ̂𝑐, (7.3)

where 𝐺e = 𝜕Ωe
𝜕𝑑 . This is exactly the same as the Hamiltonian in optical case. In practice the assumption

of parallel plate capacitor does not always hold. However, this Hamiltonian is still valid, but with modified
electro-mechanical coupling 𝐺e. Thus we can treat the microwave part of a transducer just as the optical part
theoretically, and the derivation of microwave-optics entanglement just follows the one presented in Section
5.1.

Figure 7.3: Sketch of the opto-electro-mechanics A figure from [33]. The microwave part of the membrane
is metallized to enhance the electro-mechanical coupling.

As the optical part of our system is based on membrane-in-the-middle system, it is natural for us to
adopt the opto-electro-mechanical design from Andrews et al. [33], as shown in Fig. 7.3. In this design a
mechanical mode couples to an optical cavity and an LC circuit simultaneously, with a node in the middle
to ensure maximum coupling for both parties. The microwave side of the membrane is metallized by a
material (for instance Niobium), which is able to be thermalized well below its superconducting critical
temperature in dilfridge. In the work by Andrews et al., the mechanical oscillator is a standard Si3N4 square
membrane, which does not have the advantages of soft-clamped devices. To adapt soft-clamping into the
node-in-the-middle requirement, we fabricate double defect membrane as shown in Fig. 7.4 [146]. The
coupling between the localized modes of the two defects raises the degeneracy, and results in two normal
modes with two defects moving in and out of phase. Due to the coupling, these modes are also separated in
frequency space. With one defect coupled to optical cavity and the other coupled to microwave cavity, we
can achieve simultaneous coupling while preserve ultra-coherent mechanical motion. With this system, we
can apply similar operation as in Chapter 5, to entangle microwave and optical fields. Of course, in reality,
before we can achieve this outstanding goal, we need to overcome technical challenges such as operating
a high-finesse optical cavity at dilfridge temperature, operating optics close to a superconducting circuit,
getting descent microwave-mechanical coupling, getting a low-loss microwave cavity etc. The path towards
a quantum enabled electro-mechanical system, based on soft-clamped mechanical oscillators, is currently
being pursued by a PhD student in our group, Yannick Seis.

If we can achieve entanglement between microwave and optical fields, the next step is trying to conduct
entanglement swapping between two nodes composed of two opto-electro-mechanical transducers. After a
successful operation, distant quantum nodes in microwave regime can be entangled. The scheme is depicted
in Fig. 7.5, where a Hong-Ou-Mandel like interferometer is the key element for the swapping operation
[110, 147, 148, 149]. This entanglement swapping is for continuous variables, which has the advantage of
deterministic operation [147] over the probabilistic swapping for discrete variables. This advantage helps
relaxing the requirements on the quantum memory, which is used to store the quantum states while waiting
for success of other operations [150]. The ultra-coherent mechanical oscillator has the potential to be used
as a memory as well. As a trade off, continuous variable entanglement swapping is sensitive to optical loss,
because loss mixes in uncorrelated vacuum. This disadvantage, however, is controllable by using telecom
wavelength [151]. Another drawback for continuous variable is the compatibility to common quantum com-
puting platforms. We know most quantum computors are based on discrete quantum variables, especially

94



Figure 7.4: Double defect membrane A figure from [5]. Top panel: a picture of a soft-clamped double
defect membrane, zoomed in around the defects. Middle and bottom panel: measured in phase and out
of phase normal modes. The blue and red color represent different direction of displacements.

superconducting qubits, the primary motivator for quantum transducers. However, though a bit tedious,
continuous variable schemes can be compatible with discrete variables, as entanglement swapping between
continuous and discrete variables is feasible [152].
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Figure 7.5: Sketch of entanglement swapping With two MIM based optical-microwave entangler, one can
entangle two distant quantum nodes in microwave regime, by an entanglement swap operation on optical
parts.
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Appendix A

Electro Optic Components

A.1 Electro-Optic Phase Modulators
An electro-optic phase modulator (EOM) is a device modulating the phase of the input light via electro-
optic (Pockels) effect. For a material with electro-optic effect, when voltage is applied on the material,
its refractive index will change, thus the phase of the light passing through changes due to longer optical
path length 𝜙 = 2𝜋𝛿𝐿/𝜆. When the applied voltage is periodic, the light is phase modulated. Suppose the
original light field is given by 𝐴𝑒𝑖𝜔𝑡. If we apply a phase modulation with depth 𝛽 and frequency Ωmod, the
modulated field is given by

𝐴 exp (𝑖𝜔𝑡 + 𝑖𝛽 sin (Ωmod𝑡)) . (A.1)
This expression can be expanded using Jacobi-Anger expansion, and reads [89]

𝐴𝑒𝑖𝜔𝑡
(

𝐽0(𝛽) +
∞

∑
𝑛=1

𝐽𝑛(𝛽)𝑒𝑖𝑛Ωmod +
∞

∑
𝑛=1

(−1)𝑛𝐽𝑛(𝛽)𝑒−𝑖𝑛Ωmod
)

, (A.2)

where 𝐽𝑛, 𝑛 ∈ Z is 𝑛th order Bessel’s function of first kind. The first term in bracket determines the residual
amplitude at the original (carrier) frequency, the second term represents sidebands at frequencies 𝑛Ωmod
higher than the carrier, and the third term represents sidebands at frequencies lower than the carrier, dis-
tributed symmetrically against higher frequency sidebands.

A.1.1 Calibration
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Figure A.1: Sideband calibration of 𝑉𝜋 An example of sidebands in a sideband calibration of 𝑉𝜋 . In this
example, the peak with green fitted line is the carrier, while the right most peak belongs to the adjacent
sweeping period. In this special case, due to large modulation depth, second order sidebands are visible.
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When using EOMs, it is important to know the phase modulation depth 𝛽. Typically, this value is linearly
proportional to the applied voltage as 𝛽 = 𝑔EOM𝑉mod, where 𝑔EOM is the transition gain from voltage to
phase. The voltage giving 𝛽 = 𝜋 is usually referred as 𝑉𝜋 , which is one of the most important parameters
of an EOM. This value is expected to be given in the specification sheet of the device at a certain frequency
and wavelength. However, 𝑉𝜋 is usually not a constant at all frequencies. Thus calibrating 𝑉𝜋 at the needed
frequency is necessary. The idea of 𝑉𝜋 calibration lies in Eqn. A.2. When 𝛽 = 𝜋, we have the power ratio
between one of the first order sidebands to the carrier to be

|𝐽1(𝜋)|2

|𝐽0(𝜋)|2 ≈ 0.875. (A.3)

Figure A.2: Power ratio between the first sideband and the carrier The horizontal coordinate of the
intersection between the ratio at 𝑉𝜋 line and the fitting line indicates 𝑉𝜋 of the EOM.

For frequency significantly larger than cavity linewidth Ωmod ≫ 𝜅, we apply the same technique as
sideband calibration of cavity linewidth described in Subsection 3.3.7. FromOMIT described in Section 2.6,
we notice that pure phase modulation does not appear in amplitude quadrature when there is no imbalance
between the phase modulation sidebands, due to interference between the red and blue sidebands. However,
in this case (Ωmod ≫ 𝜅), when one sideband or the carrier is swept through the cavity, the influence from
other frequency components is strongly suppressed by the cavity. Therefore, each frequency component can
be treated as an independent laser tone. As a result, the area below each Lorentzian peak is proportional to the
power of the tone. One of the sweeping time trace on oscilloscope is shown in Fig. A.1. We conduct sideband
calibration experiment at differentmodulation voltages, and plot the power ratio between one of the first order
sidebands to the carrier as in Fig. A.2. We fit the data with function |𝐽1(𝑔EOM𝑉mod)|2/|𝐽0(𝑔EOM𝑉mod)|2,
where 𝑔EOM is the free parameter. Then 𝑉𝜋 = 𝜋/𝑔EOM.

When the modulation frequency is small Ωmod ≪ 𝜅, or even just comparable to 𝜅, the sideband way of
calibrating 𝑉𝜋 does not work anymore, because the sidebands will merge together, making a Lorentzian fit
not possible. Moreover, the argument of independent sidebands is not valid anymore. In this case, we apply
a phase modulation tone as what we usually do for calibration, lock the carrier on resonance with a cavity,
and measure the modulation tone using balanced homodyne detector at phase quadrature. In spectrum, it is
hard to get DC component, as what we can do in the sideband calibration case, instead, we make use of the
fact that |𝐽1(𝛽)|2 is not a monotonic function of 𝛽. Then we can get an idea of 𝛽 by just looking at the area
below the first order sideband

𝐴 ∝ |𝐽1(𝑔EOM𝑉mod)|2. (A.4)
The transduction may be suppressed by cavity, by homodyne locking away from phase quadrature, changed
by locking the laser not exactly on resonance with the cavity, but this proportional relation does not change.
We take a series of spectra with different modulation voltage, with the maximum voltage as large as possible,
such that the second order sideband is strong enough to decrease the increasing tendency of the first order
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sideband. The experimental results and fit are shown in Fig. A.3. Notice the decreasing slope for large
voltage data, which helps locating the horizontal position of the fitting curve. From this fit we can extract
𝑉𝜋 at the modulation frequency.

Figure A.3: Area of the first order sideband The horizontal coordinate of the first intersection between
the ratio at 𝑉𝜋 line and the fitting line indicates 𝑉𝜋 of the EOM.

During calibration of 𝑉𝜋 , one should pay attention to the wavelength dependence as well. As EOM
modulates phase through changing optical length, even though the modulation may provide the same change
of optical path length, different optical wavelength also changes phase modulation, as 𝜙 = 2𝜋𝛿𝐿/𝜆.

A.2 Laser Electro Optic Phase Modulators
In optical-optical entanglement experiment, we used the built-in EOMs in lasers for PDH lock and calibration
tone. Unlike the fiber based EOM introduced in previous section, this built-in EOM of laser is an intra-cavity
Pockels cell. Voltage applied on the EOM effectively change the optical path length of the laser cavity, which
selects the laser frequency, thus the modulation is in frequency instead of phase.

For frequency modulation, a detailed introduction can be found in [153]. Here we give a brief review.
For a frequency modulated signal, the instant frequency is given by

Ω𝑖 = 𝜔 + 𝑔FM𝑉mod cos (Ωmod𝑡), (A.5)

where 𝑔FM is the device gain from voltage to frequency, and without loss of generality, we choose 𝑐𝑜𝑠 with
zero initial phase. 𝑔FM𝑉mod determines the amplitude of the frequency modulation (how far the frequency
swing around the carrier frequency), which is independent from Ωmod. As the frequency is not a constant,
the instant phase of the signal should be expressed as an integration

𝜔𝑡 + 𝑔FM𝑉mod ∫
𝑡

0
cos (Ωmod𝑡′)𝑑𝑡′ = 𝜔𝑡 + 𝑔FM𝑉mod

Ωmod
sin (Ωmod𝑡). (A.6)

Comparing this expression to the instant phase of phase modulation 𝜔𝑡 + 𝑔EOM𝑉mod sin (Ωmod𝑡), we notice
that frequency modulation has the same effect as phase modulation, except the 1/Ωmod dependence of phase
modulation amplitude. Thus we can see frequency modulation tone at Ωmod, and can use this modulation
for PDH lock.

A.2.1 Calibration
Just as in the case of fiber based EOM, we need to calibrate 𝑔FM for laser EOMs. As the Pockels cells need
much higher voltage than we can apply to reach 𝑉𝜋 at a frequency around Ωm, we cannot use the calibration
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methods as in the fiber based EOM case. Instead, we compare the modulation tones generated by the fiber
based EOM and the laser EOMs at almost the same frequency in homodyne spectrum, and use the 𝑉𝜋 for
the fiber EOM as a benchmark. Then the extracted 𝑉𝜋 for the EOM in Laser B is shown in Fig. A.4. 𝑉𝜋 of
laser EOM has a clear proportional dependence on Ωmod, as indicated by the 1/Ωmod dependence in phase
modulation depth. By fitting these data points with a proportional function, we can get the tendency of 𝑉𝜋
as a function of frequency. Due to the uncertainties in the response of the Pockels cell, to get the exact 𝑉𝜋
at a certain frequency, we need to measure 𝑉𝜋 at that frequency.

Figure A.4: 𝑉𝜋 of Laser B EOM There is a linear dependence between 𝑉𝜋 and modulation frequency for
laser EOM.

Please notice the large values of 𝑉𝜋’s, as a consequence, we cannot apply frequency modulation at too
high frequency, if we still want reasonable modulation depth. Therefore, for PDH lock, we only use modu-
lation frequency close to 𝜅, and need an amplifier from the output of PI controller. With the worry seeing
the effect of PDH modulation tone in spectrum (e.g. second order mechanical sidebands), we compare the
spectra with laser EOM locked with a modulation frequency comparable to 𝜅, and with fiber EOM locked
with a modulation frequency much larger than 𝜅. The spectra have no difference.

A.3 Electro-Optic Amplitude Modulators
Combining an electro-opitc phase modulator and a Mach-Zehnder interferometer, one can modulate ampli-
tude of a light beam. The amplitude modulator used in our experiment belongs to this category.

φ

Figure A.5: Mach-Zehnder Interferometer The phase difference between the two arms can cause intensity
unbalance between two output ports.

AMach-Zehnder interferometer is composed of two beam splitters (BS). The first one splits a beam, and
the two arms recombines at the second one. In one of the arms, there could be a phase shifter changing the
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relative phase between the two arms. Then upon recombination, the powers in the two output ports changes
according to the phase shift. Suppose we have a classical field in one of the input port, while the input of
the other port is vacuum (|𝜓⟩ = (𝛼, 0)𝑇 ). Then after the first BS, the state becomes

1
√2 (

1 1
1 −1) (

𝛼
0) = 𝛼

√2 (
1
1) . (A.7)

The phase shifter has the effect as

(
1 0
0 𝑒𝑖𝜙)

𝛼
√2 (

1
1) = 𝛼

√2 (
1

𝑒𝑖𝜙) . (A.8)

When the two arms are recombined at the second BS, we have

1
√2 (

1 1
1 −1)

𝛼
√2 (

1
𝑒𝑖𝜙) = 𝛼

2 (
1 + 𝑒𝑖𝜙

1 − 𝑒𝑖𝜙) . (A.9)

Then the output powers at the two output ports are given by

|𝛼|2

4 (1 + 𝑒𝑖𝜙)(1 + 𝑒−𝑖𝜙) = |𝛼|2

2 (1 + cos 𝜙) (A.10a)

|𝛼|2

4 (1 − 𝑒𝑖𝜙)(1 − 𝑒−𝑖𝜙) = |𝛼|2

2 (1 − cos 𝜙) (A.10b)

respectively. Notice that by changing 𝜙 from 0 to 𝜋, we can turn the output power from completely on to
completely off. Modulating the phase, we can modulate the output amplitude.
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Figure A.6: Amplitude modulator Figures from [154]. a. The sketch of the amplitude modulator used in
our experiment. b. Optical output power of the amplitude modulator as a function of modulation voltage.
𝑉0 is an offset due to difference in arm lengths.

In our experiment, we use an amplitude modulator provided by Jenoptik. The sketch of the design is
shown in Fig. A.6 a, where the waveguides are made of electro-optic materials. There are electrodes on
both arms of the Mach-Zehnder interferometer, and the voltage on the arms are opposite. This “push-pull”
design doubles the phase difference between the two arms upon the same modulation voltage. Nevertheless,
the operation principle is still the same.

The output of the amplitude modulator is one of the output ports of the Mach-Zehnder interferometer.
The output power as a function of modulation voltage is shown in Fig. A.6 b, and is governed by [154]

𝑃 = 𝑃min + 𝑃max − 𝑃min
2 (1 + cos (

𝜋(𝑉 − 𝑉0)
𝑉𝜋 )) , (A.11)

where 𝑃min and 𝑃max are the minimum andmaximum powers of the interference. Ideally, 𝑃min = 0, however,
in practice, there is always finite 𝑃min due to imperfect mode matching between the two arms and deviation
of the beam splitter splitting ratio from 50 ∶ 50. 𝑉0 is a voltage offset caused by unequal optical path length
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between the arms when the applied voltage is zero. In practice, 𝑉0 drifts as temperature changes. This drift is
more dramatic when the input optical power is large. As a result, if the phase modulation is less than 2𝜋, the
amplitude modulation depth will drift with 𝑉0. For instance, if the initial 𝑉0 = 0, and we apply a modulation
voltage 𝑉 = 𝑉𝜋 , we will observe full amplitude modulation depth. If the offset drifts to 𝑉0 = 𝑉𝜋 /2, the
modulation depth drops to 1/2. Therefore, to keep the amplitude modulation depth a constant, we need to
stabilize the offset 𝑉0.

A.3.1 Offset Lock

AM

Servo

Figure A.7: Setup for amplitude modulator offset lock The beam splitter direct part of the laser beam to
a photodetector, the output of which provides error signal for the amplitude modulator offset lock.

As shown in Fig. A.7, to lock the offset of the amplitude modulator, we split the optical power before
the optomechanical cavity, and detected the splitted light by a photodetector. The DC output of this pho-
todetector is input to a servo, which is used as a PI controller. The servo outputs an additional close to DC
voltage to the amplitude modulator to compensate any drift in 𝑉0.

In this lock, error signal is the difference between measured DC voltage and the set point, similar to
the slope homodyne path length lock as mentioned in Subsection 3.6.4. Consequently, it is hard to have a
set point very close to 𝑃max or 𝑃min. Moreover, as we would like the lock to be stable even during ringup
in ringdown experiment, the bandwidth of this lock is kept very low. After all, the usual drift happens at
minute time scale. If we enlarge the bandwidth of the lock, this setup can also be used as an amplitude noise
eater, which can reduce the amplitude noise in the laser beam.

A.4 Acousto-Optic Modulators
Acousto-optic modulators (AOM) are a commonly used electro-optic components used in optical exper-
iment, which are typically used for amplitude modulation, frequency shift, and tunable wavelength filter
[155]. Though we do not use AOMs in any of the projects introduced in this thesis, we used it for hetero-
dyne measurements in membrane interferometer and mechanical performance test in dilution refrigerator to
shift the LO/signal frequency and generate pulses. Therefore, it is beneficial to introduce this device here.
This introduction is based on a detailed material provided by AA Opto Electronic [155].

The basic structure of an AOM is a crystal with a piezo attached to one end and an acoustic wave absorber
on the other end. Driving the piezo at a certain frequency results in acoustic wave traveling through the
crystal and, being absorbed by the absorber. When the absorption is nearly perfect, we can consider the
acoustic wave as a traveling wave. This kind of acoustic wave is longitudinal wave in material density,
therefore the refractive index of the crystal is modulated. This change of refractive index then scatters the
laser beam passing through the crystal through the so called Brillouin scattering. To satisfy conservation of
momentum and energy, the scattering should satisfy

⃖⃗𝑘f = ⃖⃗𝑘i + 𝑁⃖⃗𝑘a (A.12a)
𝜔f = 𝜔i + 𝑁𝜔a, (A.12b)

where ⃖⃗𝑘f , ⃖⃗𝑘i and ⃖⃗𝑘a are the wave vectors of the scattered optical beam, the incident optical beam and the
acoustic wave respectively. The 𝜔’s are the corresponding angular frequencies. 𝑁 is an integer number
(could be negative) governing the order of scattering.
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a b

Figure A.8: Regimes of AOM operation Figures from [155]. The yellow rectangles represent the piezo
used to generate acoustic wave in the crystal, and black grating represents acoustic wave. a. Raman-Nath
regime, the laser beam incidents nearly normal to the propagation direction of acoustic wave, and there
are diffracted beams on both sides of the carrier. b. Bragg regime, the laser beam incidents at an angle
close to Bragg angle of the acoustic wave. Only one diffraction beam is visible.

There are two working regimes of AOMs. The first one is called Raman-Nath regime, as shown in
Fig A.8 a, where the incident laser beam is almost perpendicular to the sound wave propagating direction.
In this regime, the laser beam experience a modulation of refractive index due to the acoustic wave, and
get phase modulated just as EOM. The “sidebands” appear both above and below the original frequency,
and the amplitudes are governed by Bessel’s function of the first kind. However, due to the requirement
of conservation of momentum, these sidebands do not share the same spacial mode as the carrier, but are
diffracted away as shown in the figure. Then the frequency shifts can also be understood as Doppler shifts
with respect to the acoustic wave.

The second regime is referred as Bragg regime, shown in Fig. A.8 b. In this regime, the incident angle
of the laser beam roughly matches Bragg’s law, with the lattice spacing given by acoustic wavelength:

2Λ sin 𝜃 = 𝑁𝜆 = 𝑁𝜆0
𝑛 , (A.13)

where Λ, 𝜆 and 𝜆0 are the wavelength of the acoustic wave, the optical field in crystal and the optical field in
vacuum respectively. 𝑛 is the refractive index, and 𝜃 is the angle between the incident beam and the normal
vector of the crystal surface. In this case, only one diffracted beam is significant, others are suppressed by
destructive interference. The frequency of this diffracted beam is given by 𝜔i ± 𝜔a, where the sign depends
on the incident angle and the propagating direction of acoustic wave. In the case of Fig. A.9 a, the acoustic
wave is propagating “upward”, and the projection of the wave vector of the incident laser on the propagating
direction of the acoustic wave is “against” ⃖⃗𝑘a. Then the frequency of the diffracted beam is Doppler shifted
“up” to 𝜔i + 𝜔a. When the incident wave vector has a component “along” the acoustic wave, i.e. negative
𝜃, as shown in Fig. A.9 b, the diffracted beam will have a frequency 𝜔i − 𝜔a.

a b

θ
ωi

ωi

ωi+ωa

-θ
ωi

ωi

ωi-ωa

Figure A.9: Diffracted beam frequency in Bragg regime The black arrow indicates the propagation direc-
tion of the acoustic wave. a,b. show the cases of two optical beam incident angles and their corresponding
scattered optical frequencies.

Consider a case with perfectly matched Bragg’s law, the power of the diffracted beam compared to the
total incident optical power is given by [155]

𝐼1
𝐼 = sin2

(√
𝜋2

2𝜆2
0

𝑀2
𝐿
𝐻 𝑃

)
, (A.14)
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where 𝑀2 is the figure of merit of the crystal material, 𝐿 as shown in the figures is the width of the acoustic
wave field, 𝐻 is the height of the field, and 𝑃 is the power of radio frequency (RF) drive. 𝐿 is proportional
to the interaction strength between the optical field and acoustic field, thus the crystal cannot to be too thin
for the sake of diffraction efficiency. 𝐻 together with 𝐿 governs the cross section of the acousto-active part
of the crystal, which is proportional to the required RF driving power for a certain acoustic wave intensity.
The dependence on sin2 indicates that the efficiency is not a monotonic function of RF power, as shown in
Fig. A.10, whose consequence will be discussed later. In experiment, to maximize the power of a diffracted
beam, we usually set up the system in Bragg regime.

Figure A.10: Ideal AOM efficiency as a function of driving power A figure from [155]. There is a maximum
diffraction efficiency as the RF power varies.

A.4.1 AOM setup for Ringdown Experiment
From Eqn. A.14, one might think the diffraction efficiency can be up to unity if the AOM is driven at optimal
RF power. However, Bragg’s law is derived from a plane wave, but in practice, we typically deal with
Gaussian beams. If the wavefront of the Gaussian beam in the AOM is not flat, the diffraction efficiency
will inevitably drop. Therefore, we would like to put the beam waist at the center of the AOM for high
efficiency. However, even if the beam waist is at the center of the AOM, the finite beam width will also harm
the plane wave treatment. Moreover, the finite width of the acoustic wave also results in curved wavefront at
some places cross the crystal, resulting in further decrease of efficiency. As a result, the typical maximum
diffraction efficiency is around 80%. Placing the beam waist at the center of the AOM and having a wider
waist help getting a better efficiency (closer to plane wave at the waist, and smaller wavefront curvature).

However, diffraction efficiency is not the only parameter we should optimize. If we are using AOM for
amplitude modulation, the pulse rise time is a crucial parameter, which is the time for the pulse to change
from 10% of the total intensity to 90%. This paramter determines how sharp the pulse edge is, and typically
we would like the rising time to be short. This quantity is simply the time for the acoustic wave passing
through the laser beam. For a Gaussian it is defined by

𝑇r = 0.64 𝐷
𝑣a

, (A.15)

where D is the beam diameter, and 𝑣a is the acoustic speed. In this case, we again need to put the beam waist
in the AOM, but a tightly focused beam is preferred. Therefore, there is a trade off between efficiency and
rise time. One should design the optical path according to the requirement.

Here, we discuss the AOM setup for amplitude modulation in ringdown experiment as an example to see
the key points of designing the setup when using AOMs. We make use of the spacial separation between
the zeroth order and first order diffracted beams to separate them, and couple the first order beam to a fiber,
while block the zeroth order beam. As the diffraction angle is typically small, the fiber collimator should
be reasonably far from the AOM (of the order 30 cm) to ensure good separation. The RF to acoustic power
transduction efficiency for AOMs are usually optimized in the range from 40 MHz to 80 MHz. Therefore,
the RF sources we use to drive the AOMs should have frequencies in this range. However, when do inter-
ferometric detection, the beat tone between local oscillator at the original frequency and the beam passed
through AOM at the shifted frequency is also in this range, but the bandwidth of our detector is typically
not as large. To solve the problem, we employ two AOMs instead of one, and arrange them such that one
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Figure A.11: AOM setup for ringdown measurement The zeroth order beams are blocked. Notice the
first AOM shifts the frequency down, while the second shifts the frequency up. The switch from the RF
source to the second AOM is used pulse generation.

AOM shifts frequency up while the other shifts down, then the net frequency shift can be controlled by
tuning the relative frequency 𝛿𝜔 between the RF sources. When 𝛿𝜔 = 0, the beam net frequency shift is
zero, and the interferometric detection is homodyne. In this case, it is also possible to use just one AOM in
a bi-passing setup, where the first order beam is reflected right back, after passing through the AOM again,
been separated from the incident beam using a combination of PBS and quarter waveplate, similar to the
homodyne path length lock (Subsection 3.6.4). By sending a RF tone at Ωm to the switch, we can generate
pulses to excite the mechanics.

AOMs typically need quite high RF driving powers (of the order 1 W to 5 W). Amplification of the
RF drive is necessary. To reduce the amplification noise, a typical amplification chain is composed of a
low noise pre-amplifier and a high power amplifier. If the total amplification exceeds the required value, an
attenuator can be placed between the two amplifiers. This is better than putting it before the pre-amplifier
or directly reducing drive power in terms of noise performance.

A.4.2 Effects of Noise of RF Source
For quantum measurements, we would like our optical fields to be shot noise limited. However, even though
the incident light is shot noise limited, when passing through an AOM driven by an noisy RF source, the
diffracted light will be noisy in both amplitude and phase quadratures. From Eqn. A.12ab, it is clear that
phase noise of the RF drive leads to frequency noise of acoustic wave, thus ends up in frequency/phase noise
of light. The only way to reduce optical phase noise is to use a clean RF drive.

The source of amplitude noise of a light beam diffracted by an AOM is more complicated. Both am-
plitude and phase noise of the RF source play a role. If the RF power is not at the optimal value, any
amplitude noise in RF power will result in efficiency fluctuation of the first order diffraction, as can be seen
from Fig. A.10. This efficiency change leads to amplitude fluctuation in the diffracted light. Therefore, it
is crucial to drive the AOM at an RF power giving maximum diffraction efficiency, where the flat response
suppresses the effect of amplitude noise. The optimal driving power can be determined from the power of
the diffracted beam. On the other hand, if there is phase noise in the RF drive, this phase noise will cause
frequency fluctuation of the acoustic wave, thus fluctuation in the acoustic wavelength, momentum and wave
vector. From Eqn. A.13, fluctuating Λ results in fluctuating Bragg angle. However, the incident angle is
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Figure A.12: Conservation of momentum in Brillouin scattering ⃖⃗𝑘f0 and ⃖⃗𝑘a0 represent the momenta of
the scattered light and the acoustic wave, when the Bragg’s criterion is satisfied. ⃖⃗𝑘f and ⃖⃗𝑘a represent the
corresponding momenta when the wave vector of the acoustic wave is longer than the “Bragg” value. 𝜃i
and 𝜃f represent the incident angle and the scattered angle when the acoustic wave vector is “too long”.
Apparently, the two angles are not equal in this case.

fixed, mismatching the Bragg criterion due to Bragg angle fluctuation leads to lower diffraction efficiency.
Moreover, the mismatching between incident angle and Bragg angle leads to change in the diffraction an-
gle of the incident beam (as a result of conservation of momentum, illustrated in Fig. A.12) [155], which
mis-aligns the coupling to optical fiber, and results in optical amplitude fluctuation after the fiber (pointing
noise). Optically, the pointing noise can be reduced by having the fiber coupler closer to the AOM, but this
will decrease the separation between the original and diffracted beams. Therefore, optimization in RF drive
is required to decrease it further.

a b

Figure A.13: Amplitude noise related to AOM a,b. Optical amplitude noises when driving an AOM with
an Agilent AWG and Rohde&Schwarz spectral analyzer clocked DDS board. The common low frequency
noise is relaxation oscillation noise of the Ti-Sapphire laser.

The effect of amplitude noise of RF drive can easily be suppressed below the shot noise level by using
optimal driving power for most of the available RF sources. The effect of phase noise, however, strongly
depends on the phase noise performance of the RF source. To test the effect, we set up an AOM similar to
what is shown in Fig. A.11, but with only one AOM, and directly detect the optical fields before the AOM, the
first order diffracted beam after the AOM, and also the first order diffracted beam after a fiber. The spectrum
of the first measurement provides information of the original laser noise, the second provides information
about the noise given by Bragg angle fluctuation, while the last measurement also includes the effect of
pointing noise. To have a fair comparison, we compensate the optical power difference by recording the DC
output of the photodetector, and scaling the measured spectra. The results are shown in Fig. A.13. When
we are driving the AOM with an Agilent AWG (Fig. A.13 a), we can clearly observe the increased noise
by Bragg angle fluctuation (green) and pointing noise (red). When the drive is changed to a quiet source,
in this case, a DDS board with clock from a Rohde&Schwarz spectral analyzer (Fig. A.13), the amplitude
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noise even after the fiber is the same as the original noise.
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Appendix B

Lock-in Amplification

VRcos(ΩRt)
VScos(ΩSt+Φ)

Mixer LPF
X

Figure B.1: Block diagram of demodulation

A signal usually contains multiple frequency components, but not all of them are of interest. Lock-in
amplification is a data processingmethod to extract the frequency component of interest, and suppress noises
at other frequencies.

The idea of lock-in amplification is based on frequency demodulation. Supposing we would like to
extract a frequency component at ΩS from a time dependent signal, we can write this component as 𝑉S(𝑡)
cos (ΩS𝑡 + Φ(𝑡)), where the amplitude and phase varies at very slow rate (Notice that all measured signals
can only be real instead of complex). In a demodulation process, this signal is mixed with a reference tone
𝑉R cos (ΩR𝑡). The effect of a mixer is multiplying these two inputs, and give

𝑉m = 𝑉S(𝑡) cos (ΩS𝑡 + Φ(𝑡))𝑉R cos (ΩR𝑡). (B.1)

Recall the trigonometric identity

cos (𝐴 + 𝐵) = cos 𝐴 cos 𝐵 − sin 𝐴 sin 𝐵, (B.2)

thus we have
cos 𝐴 cos 𝐵 = cos (𝐴 + 𝐵) + cos (𝐴 − 𝐵)

2 . (B.3)

Then we can rewrite the output signal from the mixer as

𝑉m = 𝑉S(𝑡)𝑉R
2 (cos ((ΩS + ΩR)𝑡 + Φ(𝑡)) + cos ((ΩS − ΩR)𝑡 + Φ(𝑡))) , (B.4)

which contains two frequency components, one at ΩS + ΩR, and the other at ΩS − ΩR. The low pass filter
filters out the ΩS + ΩR component and leaves ΩS − ΩR component, if the filter bandwidth is higher than the
difference frequency. Then we have

𝑉out = 𝑉S(𝑡)𝑉R
2 cos ((ΩS − ΩR)𝑡 + Φ(𝑡)). (B.5)

Ideally, after the demodulation, the only time dependence comes from the fluctuation of 𝑉S(𝑡) and Φ(𝑡), if
what we want to study is their dynamics, not the boring oscillation at ΩS − ΩR. Then we should choose
ΩR = ΩS, and the demodulated signal is a very slowly changing value

𝑉out(𝑡) = 𝑉S(𝑡)𝑉R
2 cos Φ(𝑡). (B.6)
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In this case, we cannot distinguish changes in signal amplitude 𝑉S(𝑡) from those in phase Φ(𝑡).

Figure B.2: Signal processing in a lock-in amplifier

To solve the problem, we need two demodulators 𝜋/2 out of phase, as shown in Fig. B.2, to reconstruct
both phase and amplitude information of the input signal. The output of the mixer with 𝑉R sin (ΩR𝑡) input
is given by

𝑉m = 𝑉S(𝑡) cos (ΩS𝑡 + Φ(𝑡))𝑉R sin (ΩR𝑡). (B.7)
Noticing that

sin (𝐴 + 𝐵) = sin 𝐴 cos 𝐵 + cos 𝐴 sin 𝐵, (B.8)
we have

cos 𝐴 sin 𝐵 = sin (𝐴 + 𝐵) − sin (𝐴 − 𝐵)
2 . (B.9)

Thus the demodulation output of this branch reads

𝑉out,sin(𝑡) = 𝑉S(𝑡)𝑉R
2 sin Φ(𝑡). (B.10)

By multiplying this expression with imaginary unit 𝑖, and summing it with the output of the other branch,
we can reconstruct the complex expression of the input signal

𝑉out = 𝑉S(𝑡)𝑉R
2 (cos Φ(𝑡) + 𝑖 sin Φ(𝑡)). (B.11)

By changing the coordinate from Cartesian to polar, we have

𝑉out(𝑡) = 𝑉S(𝑡)𝑉R
2 𝑒𝑖Φ(𝑡). (B.12)

It is evident that the amplitude of the processed signal is proportional to the that of the original signal, and
the phase is directly given by the original signal. The low-pass filter rejects additional noises, and also limits
the bandwidth of fluctuations in one can observe in the original signal.
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Appendix C

Possibility of determining Cavity
Out-coupling Efficiency in Reflection

Cavity out-coupling efficiency 𝜂c is an important parameter as it contributes to the total detection efficiency
of the system. As mentioned in Section 2.4, transmission signal cannot provide information about relation
between 𝜅L and 𝜅R. In the experiments presented in this thesis, we only apply homodyne measurement in
transmission, therefore we cannot determine 𝜂c by measurement. Instead, we estimate 𝜂c from the mirror
coating data and transfer matrix model, as explained in Subsection 3.3.4. This estimation only works well
when the parameters of the system are well known, which fails in some circumstances, making direct mea-
surement of 𝜂c beneficial. For instance, in the highly non-degenerate optical-optical entanglement presented
Subsection 5.2.2, the mirror coatings are not well known beyond 900 nm. Of course, one can disassemble
an MIM cavity to measure the coating performance. However, as cavity assembly is time consuming and
risky for the membrane, a non-invasive method is preferred.

As indicated by Section 2.4, to get the information of cavity out-coupling, we need to work in reflection,
and make use of phase referenced measurement to acquire phase and amplitude information simultaneously,
which allows us to reconstruct reflection coefficient. Here we consider a more realistic case by introducing
intra-cavity loss rate 𝜅i and non-unity mode matching between cavity and inputting laser field described by
1 − 𝜖 as in Subsection 3.6.3, such that the amplitude of the mode matched part between cavity and input
field is given by 𝛼in,∥, whose amplitude is √1 − 𝜖𝛼in. Similarly, the non-mode matched part 𝛼in,⟂ has the
amplitude √𝜖𝛼in. Then the mode matched and not mode matched (classical) reflected fields are given by

𝛼r,∥ = (−1 + 𝜅L
𝜅/2 − 𝑖Δ ) 𝛼in,∥ (C.1a)

𝛼r,⟂ = −𝛼in,⟂, (C.1b)

with
|𝛼in,∥ + 𝛼in,⟂|2 = (1 − 𝜖)𝑃in + 𝜖𝑃in = 𝑃in, (C.2)

where we have used the fact that the fields are orthogonal, such that the product 𝛼in,∥𝛼in,⟂ = 0. Then the
total power of the reflected beam reads

𝑃r = |𝛼r,∥ + 𝛼r,⟂|2 = |(−1 + 𝜅L
𝜅/2 − 𝑖Δ ) 𝛼in,∥ − 𝛼in,⟂|

2

= [(1 − (𝜅R + 𝜅i)𝜅L
𝜅2/4 + Δ2 ) (1 − 𝜖) + 𝜖] 𝑃in

= (1 − (1 − 𝜖) (𝜅R + 𝜅i)𝜅L
𝜅2/4 + Δ2 ) 𝑃in, (C.3)

where we have used 𝜅 = 𝜅L +𝜅R +𝜅i and the orthogonal argument. Comparing this expression to Eqn. 2.62,
we can see the two cases share the same background level 𝑃in, but when there is mode mismatch, the depth
of the Lorentzian dip is only 1−𝜖 of the perfect mode matching case. Thus, even when the cavity is critically
coupled, the reflection dip does not go to zero.
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Figure C.1: Setup for 𝜂c measurement The PBS and quarter waveplate separate the reflected beam from
the cavity from the input beam. A pair of acousto-optical modulators (AOMs) shift the frequency of local
oscillator (see Appendix A.4 for more information), as required by heterodyne measurement. Only a single
diode is needed in this case, the other port of the final combination non-polarizing beam splitter is blocked
by a beam dump. Part of the reflected light from cavity can be splitted to a photo diode, to provide
information on resonance dip.

Without phase information, it is still not enough to determine 𝜂c. To get phase information, we need
phase reference measurement like homodyne and heterodyne. The optical power at DC for homodyne mea-
surement is given by (without loss of generality, suppose 𝛼LO is real)

1
2(𝛼2

LO + |𝛼r,∥|2 + |𝛼r,⟂|2 + 2𝛼LO|𝛼r,∥| cos (𝜃p + 𝜃c)), (C.4)

where we assume the LO is perfectly mode matched with 𝛼r,∥. 𝜃p and 𝜃c are the phase difference between
LO and signal due to path length difference and cavity response respectively. For simplicity, we can write
the sum as 𝜃 = 𝜃p + 𝜃c. Notice that, if we write this oscillating signal in the form of complex number, the
phase is not given by 𝜃, but by

arctan
(

2𝛼LO|𝛼r,∥| sin 𝜃
𝛼2

LO + |𝛼r,∥|2 + |𝛼r,⟂|2 + 2𝛼LO|𝛼r,∥| cos 𝜃 )
, (C.5)

which is complicated to extract 𝜃.
Alternatively, if we use heterodyne detection, the signal is given by

1
2(𝛼2

LO + |𝛼r,∥|2 + |𝛼r,⟂|2 + 2𝛼LO|𝛼r,∥| cos (Ωmod𝑡 + 𝜃)), (C.6)

where the term containing phase is at frequency of Ωmod, the frequency difference between LO and input
light. By feeding this signal to a lock-in amplifier (see Appendix B) with demodulation frequency Ωmod, we
can eliminate the complication from DC terms, and get a demodulated signal

𝑉out(𝑡) =
𝑉R𝛼LO|𝛼r,∥(𝑡)|

2 𝑒𝑖𝜃(𝑡) = 𝑉R𝛼LO
2 (−1 + 𝜅L

𝜅/2 − 𝑖Δ ) √1 − 𝜖𝛼in𝑒𝑖𝜃p , (C.7)

where the constant 𝑉R is the amplitude of the local oscillator in the lock-in amplifier. As we always treat the
far off-resonance value as the background value, we can normalize this output by dividing 𝑉R𝛼LO

2 √1 − 𝜖𝛼in,
and the normalized output is simply

𝑉n(𝑡) = (−1 + 𝜅L
𝜅/2 − 𝑖Δ ) 𝑒𝑖𝜃p , (C.8)

111



which is the same as the reflection coefficient discussed in Section 2.4, apart from a global phase 𝜃p. Thus,
the contour is given by Fig. 2.5 up to a rotation, the angle of which can be identified by the opening of the
contour, and cancelled by a rotation. From this data, we can extract cavity output-coupling efficiency, as
intended.

The experimental setup of this measurement is shown in Fig. C.1. AOMs are used to shift the frequency
of the local oscillator, such that the beat note of the signal and LO is not at DC. The PBS and quarter
waveplate combination directs the reflected field from the cavity to the heterodyne detector. We use a 50:50
non-polarizing beams splitter to combine LO and signal, and only detect one of the output ports. This
simple setup reduces the signal-to-noise ratio to half. However, this is a classical measurement, thus we are
not that sensitive to detection efficiency. The heterodyne path length lock is used to stabilize the relative
phase between LO and signal, which is optional. If we would like to get a proper error signal for the lock,
we need to demodulate the signal from the photodiode to near DC. The output of the lock-in amplifier can
serve as the error signal without additional treatment. Alternatively, we can let the heterodyne free run, and
sweep the laser wavelength across the cavity resonance fast enough, such that during this time, the phase
difference caused by path length fluctuation is negligible. If it is required, a BS can be insert before the
heterodyne BS, to guide the beam to a detector, which provides information about reflection dip free from
potential mode matching issue between LO and reflected signal, as shown in the dashed lines in Fig. C.1.

A key difference in mode matching in this setup from homodyne in transmission is that we need to
optimize the mode matching between LO and 𝛼r,∥, the part of the reflected signal mode matched with cavity
mode. If the mode matching is not perfect, the interference between the LO and 𝛼r,⟂, the non-mode-matched
part of the signal beam, will make Eqn. C.7 no longer valid. Instead the amplitude will be modified a bit,
and more importantly, the phase will not longer be 𝜃p + 𝜃c. Suppose the mode matching between LO and
𝛼r,∥ is 𝜄∥, and that between LO and 𝛼r,⟂ is 𝜄⟂ (𝜄∥ + 𝜄⟂ ≤ 1, as there can be LO part not matching any reflected
signal components). Then the amplitudes of 𝛼LO,∥ and 𝛼LO,⟂ are given by √𝜄∥𝛼LO and √𝜄⟂𝛼LO respectively,
and the heterodyne signal reads

1
2(𝛼2

LO,∥ + 𝛼2
LO,⟂ + (1 − 𝜄∥ − 𝜄⟂)𝛼2

LO + |𝛼r,∥|2 + |𝛼r,⟂|2

+2𝛼LO,∥|𝛼r,∥| cos (Ωmod𝑡 + 𝜃p + 𝜃c) + 2𝛼LO,⟂|𝛼r,⟂| cos (Ωmod𝑡 + 𝜃p)), (C.9)

where (1 − 𝜄∥ − 𝜄⟂)𝛼2
LO is the part of LO not mode matching with either of the reflected field. Subsequently,

the output of the lock-in amplifier is

𝑉out(𝑡) = 𝑉R
2 𝑒𝑖𝜃p(𝑡) (𝛼LO,⟂|𝛼r,⟂| + 𝛼LO,∥|𝛼r,∥|𝑒𝑖𝜃c)

= 𝑉R𝛼LO𝛼in(𝑡)
2 𝑒𝑖𝜃p(𝑡)

(−√𝜖𝜄⟂ + √(1 − 𝜖)𝜄∥ (−1 + 𝜅L
𝜅/2 − 𝑖Δ )) . (C.10)

To normalize this signal, we divide the expression by 𝑉R𝛼LO𝛼in(𝑡)
2 (√𝜖𝜄⟂ + √(1 − 𝜖)𝜄∥), and get

𝑉n(𝑡) =
⎛
⎜
⎜
⎝
−1 + 1

1 + √
𝜖

1−𝜖
𝜄⟂
𝜄∥

𝜅L
𝜅/2 − 𝑖Δ

⎞
⎟
⎟
⎠

𝑒𝑖𝜃p . (C.11)

Then the phase of this signal is given by

𝜃p + arctan
(

√(1 − 𝜖)𝜄∥ sin 𝜃c

−√𝜖𝜄⟂ + √(1 − 𝜖)𝜄∥ cos 𝜃c )
, (C.12)

which is closer to 𝜃p + 𝜃c, when the ratio 𝜄⟂/𝜄∥ is closer to 0. Thus, optimizing 𝜄∥ is crucial. To do this,
instead of modulating path length to change relative phase between LO and signal, one can try to change
phase by sweeping laser through the cavity resonance, or insert a phase modulator in the cavity. However,
neither of the methods is easy to implement.

As there could always be some mode mismatch, we study the behavior of reflection coefficient in this
case. Figure C.2 shows the contour of Eqn. C.11 when the mode matching between LO and 𝛼r,∥ is not unity.
The contours are again circles, similar to Fig. 2.5. However, the diameters are given by

𝑑 = 1
1 + √

𝜖
1−𝜖

𝜄⟂
𝜄∥

𝜅L
𝜅/2 = 2𝜂c

1 + √
𝜖

1−𝜖
𝜄⟂
𝜄∥

, (C.13)

112



Out[ ]=

- 1.0 - 0.5 0.0 0.5 1.0
- 1.0

- 0.5

0.0

0.5

1.0

Im

R
e

100:0

70:30

50:50

30:70

Out[ ]=

- 1.0 - 0.5 0.0 0.5 1.0
- 1.0

- 0.5

0.0

0.5

1.0

Im

R
e

100:0

70:30

50:50

30:70

a b

κL:(κ-κL)

Figure C.2: Reflection coefficient with non-unitymodematching In both panels, 𝜖 = 0.2, the ratios between
𝜅L and 𝜅 − 𝜅L for different curves are shown in the legend. a. 𝜄∥ = 0.5, 𝜄⟂ = 0.1. b. 𝜄∥ = 0.3, 𝜄⟂ = 0.5.

where 𝜂c = 2𝜅L/𝜅 is cavity out-coupling in reflection. The same applies in the following of this chapter.
Therefore, 𝜂𝑐 , 𝜖 and 𝜄⟂/𝜄∥ all influences the size of the contour. Moreover, the shapes are all circles, which
prevent us from getting each contribution from a shape distortion. Thus, this method alone is not sufficient to
determine 𝜂c, in the case of non-unity LO-cavity mode matching. However, as finite 𝜖 and 𝜄⟂ only decrease
the size of the contour, if the contour encloses the origin, the cavity has to be over-coupled to reflection.
This estimation can be more accurate with improved mode matching for probe-cavity and LO-signal.

One may wondering if getting the reflection dip by direct detection simulataneously with the heterodyne
helps, as the reflection is free from mode matching between LO and reflected signal issue. To study this, we
can write the normalized Eqn. 2.62 as

𝑃r,n = 1 − (1 − 𝜖)4𝜂c(1 − 𝜂c)
1 + 4Δ2/𝜅2 , (C.14)

where Δ2/𝜅2 is the self-changing parameter when we sweep through cavity resonance, which does not pro-
vide any information about the depth of the dip, mode matching or cavity out-coupling efficiency. Thus the
reflection dip depth depends on 𝜖 and 𝜂c. Together with Eqn. C.13, we have 2 equations and 3 unknowns,
which is insufficient for solving for 𝜂c. To get more equations, one can change laser wavelength to a different
cavity mode, where 𝜂c is significantly different, but the wavelength is not too far from the original one. In
this case, we can roughly treat 𝜖 and 𝜄⟂/𝜄∥ as constants. By conducting the same measurements, we will have
4 equations and 4 unknowns, which allows us to estimate the 𝜂c in the first case.
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