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Abstract

In the electrical representation of biological membranes, the lipid bilayer is often
considered as a simple insulator mostly impermeable to the passage of ions or small
molecules. This view is included in the electrical equivalent of the membrane of
excitable cells, that models the bilayer as a planar capacitor whose capacitance is
independent of the applied electric field. This has been shown not to be true, espe-
cially close to the lipid phase transition, where the compressibility of the membrane
is maxima and electrostrictive forces can change the membrane dimensions signifi-
cantly. Moreover, membrane dimensions change significantly at the transition, and
this, in turn, can change the value of the capacitance. Furthermore, lipid bilayers
show finite permeability to ions, which is also maxima at the transition due to
the enhanced area fluctuation. Biological membranes display lipid melting close to
physiological conditions, making these effects biologically relevant.

In this work, we consider the case of asymmetric membranes which can display
spontaneous polarization in the absence of a field. We describe their behaviour in an
electric field in a thermodynamical framework, writing their Gibbs Free Energy as
a quadratic function of voltage with a linear term proportional to the spontaneous
polarization. Close to the phase transition, we find that the membrane displays
piezoelectric, flexoelectric and thermoelectric behaviour. In particular, the mem-
brane capacitance is a nonlinear function of the applied voltage. Furthermore, in
the presence of spontaneous polarization, our thermodynamical description is able
to explain the outward rectified current-voltage relationship measured on synthetic
lipid bilayers.

Due to the nonlinear dependence of the membrane capacitance and conductance
on voltage and the presence of spontaneous polarization, the traditional equivalent
circuit of the membrane is not an accurate description in physiological conditions.
An updated equivalent circuit of the lipid bilayer is here proposed, which takes
into account the nonlinearities of the membrane and their time dependence. Using
our updated equivalent model, we predict the response of the bilayer to common
voltage experiments, e.g. voltage jumps and impedance spectroscopy. Our results
show that the lipid bilayer alone can display several electrical behavious similar to
those measured for biological membranes and considered to be distinctive features
of protein channels, like outward rectificiation and gating currents. Moreover, the
dynamics of the nonlinearities can account for the inductive impedance at low
frequencies. Finally, our proposed equivalent model is suggested by the structure
and physical properties of the system, and not from empirical analysis of the the
data. Therefore, it has predictive power.

In the experimental part of this work, we find qualitative similarities between
the melting enthalpy and the temperature dependence of the membrane capaci-
tance, as expected from our theory. Measurements of I-V on different geometries,
point in the direction of a flexoelectric mechanism behind current rectification in
lipid bilayers. Finally, we suggest that our updated equivalent circuit should be
included in the interpretation of elctrophyiological data.
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1

Introduction

Biological membranes are one of the most fundamental units in biology. Sur-
rounding every living cell, they basically define the cell from the surrounding
environment. Furthermore, the different organelles inside the cell are also
enclosed in biological membranes. They therefore provide structure and or-
ganization to the cell. In addition to this, they regulate transport processes
acting as a semipermeable wall and enable communication with the environ-
ment [1]. They are mainly constituted by a bimolecular lipid matrix (with a
thickness of about 5-8nm [2]) and proteins which are embedded or attached
to it. In the following we will provide a brief overview on the history of
membranes models and then we will mainly focus on the lipid portion of the
membrane, which is the main subject of the theoretical and experimental
part of this thesis.

1.1 Biological membranes

The first hint of the existence of some sort of envelope surrounding cells
dates back to the end of the 18th century, when in 1773 William Hewson
observed red globules (as the red blood cells were called at the time) under
a microscope and found that they were not globular but rather flat [3],
thus rejecting the idea that they were liquid droplets. It was not until one
century later, however, that a membrane theory started developing. One of
the milestones of this development is the experiment made by Gorter and
Grendel in 1925 [4], by which the bimolecular structure of the lipid bilayer
was postulated for the first time. With the aid of a Langmuir trough, they
spread lipids extracted from red blood cells on a water surface and found that
the surface area of the resulting monolayer was double the area of the intact
cells, within their experimental error. The presence of proteins was suggested
by Danielli and Davson in 1935 based on the observation that the surface
tension of biological membranes was significantly lower than that expected
for the lipid bilayer [5]. They proposed that the lipid bilayer was sandwiched
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1. Introduction

between two layers of adsorbed proteins. The first direct evidence of the
presence of double layer in the membrane, however, arrived only in 1958
thanks to Robertson and the advent of electron microscopy [6].

The most accepted membrane model originates from the so called fluid
mosaic model, proposed by Singer and Nicolson in 1972 [7]. Their model
describes the membrane as essentially a bimolecular fluid made from the
lipid bilayer where integral proteins are immersed and free to diffuse while
peripheral proteins are adsorbed to the surface. While considering in their
model the possibility for lipid-protein interaction, their action was limited to
the very short range and longer range interactions were disregarded, leaving
the membrane as a substantially homogeneous fluid. Protein-lipid interaction
(on a longer range) and lateral heterogeneity have been addressed in the
mattress model by Mouritsen and Bloom [8], in which inhomogeneity results
from the mismatch between the hydrophobic regions of proteins and lipids.

Figure 1.1: Modern view of biological membranes, showing heterogeneous
organization of proteins, lipid of different species and states organized in
domains. Picture taken from [9]

Nowadays biomembranes are believed to be highly heterogeneous and
dynamic structures, where domains enriched in sphingolipids and cholesterol
can be found (rafts) and where lipids and protein interact dynamically [10]
(see Fig. (1.1)).

Lipid composition in membranes can vary greatly depending on the or-
ganism, the tissue and the physiological or growth conditions [11]. Inter-
estingly membrane composition seems to be fairly conserved through same
organs of different species, suggesting a functional role [11]. It has further
been shown that several organisms are able to modify their lipid composition
when their growth conditions (e.g. temperature, pressure) are changed [12].

4



1.2. Lipids

1.2 Lipids

Lipids are the main component of biological membranes1. They are am-
phiphilic molecules, made of a hydrophobic and a hydrophilic part.

In the case of phospholipids (the most abundant lipid species in bio-
logical membranes [11]), the hydrophobic part is constituted by two hydro-
carbon chains which can differ mainly in length (ranging between 12 and
24 carbons) and saturation [2]. The hydrophilic part is made of a nega-
tively charged phosphate group which is linked to an organic compound.
Ester bonds link the two hydrocarbon chains and the phosphate group to
a glycerol backbone. The polar headgroup can differ in size, polarity and
charge of the compound that is linked to the phosphate group. The most
common are the positively charged choline and ethanolamine and the neu-
tral serine and glycerol. The corresponding headgroups are indicated as PC
(phosphatidylcholine), PE (phosphatidylethanolamine) - both zwitterionic,
PS (phosphatidylserine) and PG (phosphatidylglycerol) - both negatively
charged.

Zwitterionic headgroups carry no net charge but they have a net dipole
moment pointing out of the membrane. Due mainly to the inclination of the
headgroup with respect to the plane of the membrane and the presence of
oriented water surrounding the membrane, the net dipole moment of lipids
point towards the interior of the membrane, as confirmed from the measured
surface potential of lipid monolayers of about 300-500 mV [13]. In a planar
symmetric membrane made of zwitterionic lipids, however, the net dipole
moment of the two monolayers cancel each other and the membrane has
no net dipole. Between 10% and 20% of lipids of biological membranes are
charged [2], and charges are often distributed asymmetrically between the
two monolayers [14]. In charged and asymmetric membranes, the membrane
can show a net polarization. The implications of such a polarization will be
investigated in chapter 3.

Due to their amphiphilic nature, lipid molecules display interesting self-
assembling behaviour when placed in solvents. In particular, in polar sol-
vents like water, they tend to assemble in structures which minimize the the
contact of the hydrophobic part with water. Depending on the lipid con-
centration and external parameters like pressure, pH, ion concentration, one
can find them organized in different phases: lamellar, (bilayers, unilamellar
vesicles), micelles, inverse micelles, cubic phase, ... [2]. In the following we
will mainly deal with lipid bilayers.

1The mass ratio between proteins and lipids varies from 0.25 to 4, with a typical value
of 1 [2]. This include the transmembrane domain as well as the extra-membrane domain
of the proteins.
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1. Introduction

1.2.1 Lipid melting

Lipid molecules can be found in different states, which differ mainly on the
configuration of their hydrocarbon chains. The lowest energy state for the
lipid tail is the all trans configuration, where the chains are fully stretched.
Through rotation around the carbon-carbon bond, the hydrocarbon chains
can be found in more convoluted conformations.

Lipid bilayers as a result can exist in different phases, depending on their
lateral and transverse order. At low temperature, for example, one finds
lipids organized in a solid-ordered phase (So, or gel phase). This is charac-
terized by the lipid chains being in an ordered, all-trans configuration, and
the headgroups organized in a triangular lattice (Fig. (1.2),left). At higher
temperatures, the chain order is lost (as also the higher energy configurations
of the hydrocarbon chains become accessible) and the lipids move in the bi-
layer like a two-dimensional liquid (Fig. (1.2),right). This phase is called
liquid-disordered (Ld, or fluid phase). Lipids can be found in other phases,
like the liquid-ordered phase (Lo) where the headgroups have no lateral order
(liquid) while the chains are all stretched (ordered), which is observed for
example in the presence of cholesterol [15], or the ripple phase (Pβ′).

Figure 1.2: Lipid melting transition between a solid-ordered (gel) phase, left,
and a liquid-disordered (fluid) phase, right. Upon melting, both chains and
headgroups lose their order. The fluid phase corresponds to a higher enthalpy
and entropy state. The membrane area increases by about 25%(top) while
the thickness decreases by 16%(bottom) [16]. Picture taken from [9]

The transition from the gel phase to the fluid phase occurs over a wide
temperature range (from -20◦C to up to 60◦C [2]) depending on the lipid
species (in particular, it depends on chain length and saturation, and on
headgroup type [17]). It is accompanied by an increase in enthalpy and
entropy, due mainly to the increase in the number of accessible chain config-
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1.3. Equivalent circuit of the membrane

urations at higher temperature [2].
As illustrated in Fig. (1.2), the lipid phase transition results in a macro-

scopic change in the membrane dimensions. In particular, the thickness is
larger in the gel phase, where the chains are fully stretched, while the area is
minimum (due to the tight packing of the headgroups). For DPPC bilayers
this corresponds to a change in area of 25% and a change in thickness of
−16% from the gel to the fluid phase [16]. The phase transition in lipids
is characterized by other interesting macroscopic properties, which will be
described in the next chapter.

One of the striking properties of biological membrane is that they display
lipid melting a few degrees physiological temperature [18]. This is shown in
Fig. (1.3) for an intact membrane of E.Coli. The heat capacity profile, mea-
sured with differential scanning calorimetry, has a maximum few degrees
below growth temperature, which indicates the presence of a melting tran-
sition. Interestingly, the relative position of the lipid melting with respect
to physiological temperature is conserved in several different organisms [18]
and despite changes in the growth or physiological conditions [2].

Figure 1.3: Heat capacity profile of a native E.Coli membrane. The pink
area shows the lipid melting, as indicated by the heat capacity reaching a
maximum few degrees below body temperature. The blue area shows protein
unfolding. Picture taken from [9], adapted from [18]

1.3 Equivalent circuit of the membrane

Many physiological cell functions are regulated by electric potentials across
the plasma membrane. The most notable of these is probably the initiation

7



1. Introduction

and propagation of the nerve pulse in neurons. Nerve signals are transient
voltage changes (action potentials) traveling along the axons [19]. In general,
the electrical properties of the membrane are studied and understood with
the aid of equivalent circuits. An equivalent circuit is an electrical circuit
whose response to certain electrical perturbation is the same measured for
the membrane.

Figure 1.4: Equivalent circuit of the axon membrane, according to the
Hodgkin and Huxley model [20]. Top: Transmembrane proteins selective
for sodium and potassium open and close allowing the flow on ionic cur-
rents. The lipid bilayers is represented as an inert capacitor. Bottom: The
equivalent circuit is a combination of of time and voltage dependent resistors
and the constant membrane capacitance.

The most widely accepted equivalent circuit of the membrane of excitable
cells is the one proposed by Hodgkin and Huxley in 1952 to describe the
propagation of the action potential in the membrane of the giant squid axon
(measured in 1939 by Cole and Curtis [19]). It is shown in Fig. (1.4) (bot-
tom). In order to describe the current measured across the membrane in
response to voltage perturbations, they considered that the membrane is se-
lectively permeable to sodium and potassium ions and that the permeability
to the two ions have a different voltage and time dependence. At the time of
their model little was known on the structure and composition of the mem-
brane, and the lipid bilayer was mainly viewed an impermeable insulator.
For this reason they assumed the bilayer to behave like a constant capacitor
and ascribed the role of conduction through the membrane to transmem-
brane proteins that can open and close in response to changes in voltage.
According to the circuit of Fig. (1.4) (bottom), the current response, Im,
of the membrane to an applied voltage Ψ, is the sum of the ionic currents
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1.3. Equivalent circuit of the membrane

through the resistors and a capacitive current:

Im = Cm
dΨ

dt
+ gK(Ψ, t)(Ψ− EK) + gNa(Ψ, t)(Ψ− ENa) (1.1)

where the first term is the capacitive current in the assumption of constant
capacitance2. EK and ENa are the resting potentials for potassium and
sodium and gK(Ψ, t) and gNa(Ψ, t) are the time and voltage dependent con-
ductances of the potassium and sodium channel3. The explicit dependence
of the conductances on time and voltage is the core of the Hodgkin and
Huxley model. It is an empirical mathematical model based solely on the in-
spection of the electrical data for the squid axon and as such unlikely to give
information on the molecular mechanism behind the changes in permeability
(as pointed out by the authors in the original paper [20]). Using the cable
equation and , their model describes the propagation of the pulse along the
axon.

Relying on the flow of ions through channels (i.e. currents through re-
sistors) the Hodgkin-Huxley (HH) model is dissipative in nature. This is in
contrast to the experimental finding that no net heat is produced in conjunc-
tion with the pulse [21], which instead is a distinctive feature of an adiabatic
process. Furthermore, being a pure electrical model it cannot explain the
mechanical changes in the axon membranes measured during nerve activ-
ity [22, 23]. These observations led to the proposal of the soliton model by
Heimburg and Jackson [18]. They suggested that the propagation of the
action potential can be explained in terms of a density wave propagating
along the nerve. In particular, they suggested that the membrane undergoes
a phase transition from fluid to gel and back to fluid during the nerve pulse.
Thus, it is an adiabatic process which naturally includes mechanical changes
in the membrane.

In conclusion, the equivalent model of the membrane proposed by Hodgkin
and Huxley assumes that the lipid portion of the membrane behaves as an
inert insulator of constant capacitance and impermeable to the passage of
ions. This is based on the few information available in 1952 on the physical
properties of the lipid bilayer. We note that the assumption of constant ca-
pacitance already breaks down few degrees below physiological temperature,
where lipid melting occurs and the dimensions of the membrane change sig-
nificantly. Moreover, voltage differences of the order of 100 mV across the
membrane are expected to affect the structure of the bilayer and hence its
electrical properties [24]. Despite its clear biological relevance, the behaviour
of lipid bilayers in the presence of voltage is not fully understood.

2It comes from:
Ic =

d(CmΨ)

dt
= Cm

dΨ

dt
+ Ψ

dCm
dt

3we have omitted the contribution to the leak current IL
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1. Introduction

1.4 Objective and outline

The aim of this work is to advance our understanding of the physical proper-
ties of lipid bilayers in the presence of voltage and in proximity of the phase
transition. This is motivated by the observation that lipid melting occurs
close to physiological condition and by the importance (and omnipresence)
of voltage differences across the membrane of many cells. In particular, we
will check (and eventually revise) the assumption of constant capacitance in
the equivalent circuit of the membrane.

We will start by briefly introducing the thermodynamical tools that will
be used throughout the thesis in chapter 2, where the thermodynamical
properties of the phase transition will be introduced. Part I and II are the
theoretical and experimental parts of the works done during my PhD.

In Part I we will study the properties of the membrane in an electric field
in a thermodynamical framework in chapter 3. We will use the finding of
chapter 3 in order to inspect and eventually update the equivalent circuit of
the membrane. It will be discussed in the context of common electrophysio-
logical experiment. This will be done in chapter 4.

Part II is the experimental part of this work. Chapter 5 introduces the
methodology used and in chapter 6 we will test some of the predictions made
on the theoretical part of this thesis. Finally some concluding remarks and
further perspective are outlined in chapter 7
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2

Thermodynamics

In this chapter we will introduce the thermodynamical "tools" which will
be used in the theoretical part of the thesis. Since we are interested in
studying couplings between thermal, electrical and mechanical properties,
thermodynamics provides a general framework which naturally include them
all. In section 2.1 we will introduce the reader to the main features of phase
transitions in lipid membranes.1

The first postulate of the axiomatic foundation of thermodynamics states
the existence of the equilibrium state for a system. An equilibrium state
is a state in which the system is macroscopically completely (and uniquely)
characterized by its extensive variables, e.g. internal energy U , volume v, and
mole numbers of chemical components ni. They are the thermodynamical
coordinates of the system. The minimum number of coordinates needed
to describe the equilibrium state depends on the degrees of freedom of the
system. So, if electrical properties are studied, an extra variable is needed 2.
If the state can be described uniquely by its minimum set of thermodynamical
coordinates and it is time independent, that is called an equilibrium state.

The basic problem of thermodynamics is to determine the new equilib-
rium state of the system that eventually results after removing one (or some)
internal constraint in a closed system. Any other thermodynamical problem
can be considered as a branch of this. It can be solved by assuming the
existence of a function of the extensive variables of the system (U ,v,ni,...)
which is defined for all the equilibrium states. Such a function is called the
entropy, S, and has the property that, in the absence of internal constraints,
the values taken by the extensive variables are those that maximise the en-
tropy (over all the accessible equilibrium states). The entropy function must
further be continuous, differentiable, additive and monotonically increasing

1 We will here follow the axiomatic development of thermodynamics following the
treatment of Callen [25], rather than the chronological one. The two developments are
equivalent.

2 This particular case will be the considered in chapter 3
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2. Thermodynamics

with the internal energy3. It turns out that if one knows the expression
of the entropy in terms of the thermodynamical coordinates of the system,
the problem of thermodynamics can be solved by only using the extremum
principle. For this reason, the relation between the entropy and the ex-
tensive variables is called the fundamental equation and it contains all the
thermodynamical information of the system:

S = S(U, v, ni, ...) (2.1)

Where the dots stand for any thermodynamic variable needed to characterize
the system. If we think of equilibrium states as points in the thermodynamic
configuration space whose coordinates are the extensive variable of the sys-
tem, the fundamental equation defines a surface in the configuration space4.
A curve on that surface defines a quasi static process between two equi-
librium states. If internal constraints are changed, a system will move to
the newly accessible point of the surface which have have a highest entropy
and not inversely, in this sense the process is irreversible. Analogously, re-
versible processes are those between points on the intersection between the
fundamental equation an the isoentropic plane.

The monotonic dependence of the entropy on the internal energy makes
it always possible to invert the fundamental equation and express it in terms
of the internal energy without losing thermodynamical information:

U = U(S, v, ni, ...) (2.2)

Equation 2.1 and 2.2 are thermodynamically equivalent, thus the latter is
also called fundamental equation and it can also be seen as a surface in the
configuration space. As a result, the maximum principle for the entropy is
translated in a minimum principle for the internal energy. The infinitesimal
change in internal energy is given by the differential form of 2.2, which, for
a single component system is given by:

dU =

(
∂U

∂S

)
v,n,...︸ ︷︷ ︸

≡T

dS +

(
∂U

∂v

)
S,n,...︸ ︷︷ ︸

≡−p

dv +

(
∂U

∂n

)
S,v,...︸ ︷︷ ︸

≡µ

dn+ ... (2.3)

where the partial derivative of the internal energy with respect to entropy,
volume, and mole number are called temperature, negative of the pressure

3For completeness, the entropy function here defined must have one more property in
order to coincide with the traditional formulation, namely that it vanishes in the states
for which (∂U/∂S)v,ni,...=0 (at the the zero of temperature). Moreover, the additivity
property implies that the entropy of a simple sistem is homogenous first order function of
the extensive parameters.

4More correctly, it defines an hyperspace, since the coordinates can, and usually are,
more than two. Note that the thermodynamical coordinates, also called natural variables
of the system or generalized coordinates, constitute a set of independent (or orthogonal)
variables.
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and chemical potential. They are intensive quantities, as a consequence of
the energy being an homogeneous first order function and they all depend
on the extensive coordinates of the system:

T = T (S, v, n, ...)

p = p(S, v, n, ...)

µ = µ(S, v, n, ...)

...

(2.4)

Eq. (2.4) are the equations of state of the system. From their definition, it fol-
lows that they define a conservative vector field with corresponding potential
given by the internal energy, and are thus sometimes called thermodynamic
forces. In other words, they are the components of the gradient of the in-
ternal energy with respect to the extensive coordinates, ∇U(S, v, n, ...) =
(T,−p, µ, ...).5 As such, knowledge of all the equations of state is equivalent
to knowledge of the fundamental equation. The intensive variables just in-
troduced are thermodynamically conjugated to the correspondent extensive
variables. From the above considerations it follows that the product of an
extensive coordinates and its conjugated intensive one constitutes a func-
tion of state. Finally, the differential of the intensive variables with respect
to the extensive ones, constitute the Hessian matrix of the internal energy.
From the symmetry of the Hessian, one can determine the Maxwell relations
between coupling coefficients of the intensive variables and the non conju-
gated extensive ones6. Using the definition of the thermodynamic forces, the
differential of the internal energy can be written in the more familiar way:

dU = TdS − pdv + µdn+ · · · (2.5)

Note that Eq. (2.5) formally contains the first and the second law of ther-
modynamics by recognizing in the first term the reversible heat change
(i.e. δQ = TdS) and in the other terms the work done on the system
(δW = −pdV +µdn+· · · ). In this way it can be expressed as dU = δQ+δW .

The fundamental equation introduced so far is defined over its natural
variables, that are the extensive variables. They represent an independent set
of coordinates for the internal energy, which can be changed independently
from outside. The internal constraints of the system, which determine its

5In a more familiar analogy, the intensive thermodynamical variables play to the in-
ternal energy a role that is somewhat analogous to role played by electric field to electric
potential in electrostatics (or forces and mechanical potential in mechanics). The analogy
sounds more familiar because the electric potential is defined on the physical space, while
the internal energy is defined on the more abstract configuration space.

6 The number of Maxwell equations is equal the number of coordinates. Considering
only S,v,n one has: ∂T/∂v = −∂p/∂S , ∂T/∂n = ∂µ/∂S and ∂p/∂n = −∂µ/∂v
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2. Thermodynamics

evolution to new equilibrium states, are also defined on the extensive vari-
ables. If, for instance, one has control on the pressure instead of the volume,
minimizing the internal energy with respect to the volume would not give
information on the new equilibrium state if a change in pressure is applied.
In this example, the energy formulation U(S, v, n, ...) would be inappropriate
for the type of problem. A solution could still be found (because the complete
thermodynamical information is included in the fundamental equation) but it
would turn out to be considerably more complicated than simple application
of the extremum principle7. The power and simplicity of thermodynamics
relies on describing the real system with the appropriate formalism. In other
words, one would need to have an equivalent formulation of the fundamental
equation for each combination of independent variables controlled in experi-
ments. This can be achieved with aid of Legendre transforms. In the example
above, the new equilibrium state could be determined by having a function
with natural variables (S, p, n) which contains the same thermodynamical
content of the internal energy. That function is one of the thermodynamical
potentials, and is called the enthalpy. The minimum of the enthalpy defines
the equilibrium of the systems where (S, p, n) are independently controlled.
The most common thermodynamical potentials are:8

H(S, p, n) = U + pv Enthalpy (2.6)
F (T, v, n) = U − TS Helmholtz Free Energy (2.7)
G(T, p, n) = H − TS = U − pv + TS Gibbs Free Energy (2.8)

In the most common experimental situation of constant temperature and
pressure, the appropriate thermodynamical formulation is represented by the
Gibbs Free Energy. In this formulation, the mimum of the Gibbs free energy
with respect to its coordinates, defines the equilibrium system.

7In other words, one cannot just write the energy as a function of pressure U(S, p, n, ...),
instead of volume, because the extremum principle works only on the natural variables.

8In general, for a system with internal energy dU = TdS+
∑
i xidXi (with xidXi being

any of the k conjugated pair of intensive and extensive variable that describes the system)
instead of the two functions U and H, one will have 2k functions of state in the form:

U +
∑′

xiXi

where the summation is taken over any set of the coordinates and forces.
Equivalently, instead of only the two free energy functions F and G there will be 2k

functions in the form:

U − TS +
∑′

xiXi
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2.1. Phase Transitions

2.1 Phase Transitions

As introduced before, lipid melting in biological membranes occurs few de-
grees below physiological temperature. Interesting macroscopic changes are
related to the lipid transition and will be the main subject of this thesis.

In the following we treat the lipid melting as a two state transition be-
tween a solid-ordered (gel) and a liquid-disordered (fluid) state. The melting
temperature, Tm is defined as the temperature at which the two states are
found with the same probability:

Pfluid(Tm)

Pgel(Tm)
= exp

(
− ∆G

RTm

)
= 1 (2.9)

where R = 8.314J/molK is the molar gas constant and ∆G is the difference
in the Gibbs free energy of the two states, which is zero at the transition:

∆G = Gfluid −Ggel = ∆H0 − Tm∆S0 = 0 or Tm =
∆H0

∆S0
(2.10)

Here ∆H0 and ∆S0 are the enthalpy and the entropy difference between the
fluid and the gel phase. They can be measured using differential scanning
calorimetry (DSC), a technique that allows measurement of the heat capacity
at constant pressure of a sample as a function temperature. Heat capacity
is defined as:

cp ≡
(
∂Q

∂T

)
p

=

(
∂H

∂T

)
p

= T

(
∂S

∂T

)
p

(2.11)

The heat capacity quantifies the amount of heat required to change the tem-
perature of a mole of substance by a certain amount and therefore shows a
peak at the temperature at which the system undergoes a phase transition.
By integrating the heat capacity over the temperature one can determine
the melting enthalpy and entropy. Literature values for DPPC vesicles are
∆H0 = 39kJ/mol and ∆S0 = 124.14J/mol, with a melting temperature
Tm = 314.15K [16]. Calorimetric data give information on the melting
properties in conditions of constant pressure. However, the melting tran-
sition is known to be affected by changes in several parameters like lateral
pressure, hydrostatic pressure [2], voltage [26], lipid composition (e.g. pres-
ence of cholesterol), pH [27, 28], ionic environment [27] and the presence of
proteins, peptides [29], and other chemicals like anesthetics [30] and neu-
rotrasmitters [31]. In other words, anything that affects the free energy
difference of the system is expected to influence the melting transition. In
chapter 3 we will work out the effect of an electric field on the lipid transition.

Treating the lipid melting as a two state transition from a gel to a fluid
state governed by a van’t Hoff law we can write the equilibrium constant
between the two states:

K(T ) = exp

(
−n∆G

RT

)
(2.12)

15



2. Thermodynamics

where n is the cooperative unit size which describes the number of lipids that
melt in a cooperative way (for a DPPC membrane it is about 170). From
the equilibrium constant we can derive the probability to find a lipid in the
fluid state as:

Pfluid(T ) =
K(T )

1 +K(T )
(2.13)

Pfluid(T ) also indicates the molar fraction of lipids in the fluid phase. Ac-
cording to this, the mean enthalpy is given 〈∆H(T )〉 = ∆H0Pfluid(T ). In
a similar way one can express the statistical average of the other extensive
variables (e.g. area and volume).

Susceptibilities and fluctuations According to the definition of the heat
capacity (Eq. (2.11)), and using the expression of the mean enthalpy, it can
be proved that the heat capacity is proportional to the fluctuations in the
enthalpy:

cp =

(
∂〈H〉
∂T

)
p

=
〈H2〉 − 〈H〉2

RT
(2.14)

This means that at the transition, where the heat capacity is at a maximum,
the fluctuations in the enthalpy are also maxima. This does not hold only for
the heat capacity but it is a general result of thermodynamics9, according to
which the thermodynamical susceptibilities of the system are proportional to
the fluctuations of the correspondent extensive variables. A thermodynamic
susceptibility is defined as the derivative of an extensive variable with respect
to the conjugated intensive variables. In the case of volume v and area A, for
example, the thermodynamic susceptibilities are the isothermal volume and
area compressibilities. They are proportional to the fluctuations in volume
and area:

κVT = − 1

〈v〉

(
∂〈v〉
∂p

)
T

=
〈v2〉 − 〈v〉2

〈v〉RT

κAT = − 1

〈A〉

(
∂〈A〉
∂π

)
T

=
〈A2〉 − 〈A〉2

〈A〉RT

(2.15)

where π is the lateral pressure (the intensive variable conjugated to the area
A).

Lipid membranes undergo significant changes in their dimensions upon
melting. In particular, going from the gel to the fluid phase the volume
changes of about 4%, the area of 24% and the thickness of −16% [16].
Changes in volume in lipid bilayers have been found to be proportional to
the changes in enthalpy [16]:

∆v(T ) = γv∆H(T ) (2.16)
9This result can be proved in an equivalent way in the entropy representation, assuming

the entropy is an harmonic function of its extensive coordinates for small fluctuations
around the equilibrium state. For a full derivation see [32]
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2.1. Phase Transitions

where γv = 7.8 ·10−10m3/J is the proportionality coefficient which is practi-
cally the same for different lipid species and composition, including biological
membranes [33]. By using more indirect methods, the same relation has been
found to hold for changes in the area:

∆A(T ) = γA∆H(T ) (2.17)

with proportionality constant γA = 0.89m2/J [16]. Due to the small relative
changes in volume, a similar relation can be assumed for the changes in
thickness.

In a system where area and volume change proportionally to the enthalpy,
the correspondent susceptibility are also expected to be proportional. This
means that the area and volume compressibility are proportional to the heat
capacity.

∆κvT =
γ2
vT

〈v〉
∆cp

∆κAT =
γ2
AT

〈A〉
∆cp

(2.18)

The most striking consequence of Eq. (2.18) is that the elastic constant, being
proportional to the heat capacity, will also exhibit a peak at the phase tran-
sition. This means that at the transition the membrane is more compressible
and small changes in hydrostatic and lateral pressure result in big changes in
volume and area. Another more practical consequence of Eq. (2.18) is that
information of the elastic constant and the geometry of the system can be
inferred from calorimetric experiments.
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3

Polarization effects

In the previous chapters we have seen how the the mechanical properties of
membranes change in proximity of their phase transition and how this, in
turn, can be affected by changes in the intensive thermodynamical variables.
We have also briefly introduced the behaviour of membranes in the presence
of electric fields, though far for the transition. In this chapter we investigate
how the electrical and mechanical properties are coupled in a thermodynam-
ical framework and discuss them in proximity of the phase transition. 1

3.1 Membrane capacitor

Different ions are present at difference concentrations on the two sides of bi-
ological membrane. For instance, the concentration of potassium ions inside
the squid axon is 400 mM and only 20 mM outside. If the membrane is only
permeable for potassium, this results in a voltage difference of about -75
mV between the inside and the outside of the cell once the electrochemical
equilibrium has been reached. In general, most of the cells sustain voltage
differences across their plasma membrane of about ±100 mV. For a mem-
brane which is about 5 nm thick, this would result in an electric field of
about 2·107 V/m.

Because of their bimolecular thickness and low dielectric constant com-
pared to that of the surrounding water (ε ' 4ε0 for lipids while ' 80ε0 for
water), lipid membranes are usually represented as planar capacitors filled
with a dielectric when describing their response to electric fields. The value
of the capacitance is determined by the dielectric constant of the membrane
ε, along with its geometry, according to the familiar formula:

Cm = ε
A

d
, (3.1)

1The theoretical development presented in this chapter has been made in collaboration
with Lars D. Mosgaard
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3. Polarization effects

where the dielectric constant is ε = ε0εr (with ε0 = 8.854 · 10−12F/m the
vacuum permittivity and εr = 2 − 4 the relative permittivity of the mem-
brane), A is the area of the membrane and d is the membrane thickness.
This model implies that the dielectric properties of the lipid membrane are
uniform over the membrane thickness d, or, in other words, that the mem-
brane is an homogeneous and isotropic dielectric and the dielectric constant
ε is indeed constant. This is, however, not the case in practice, since the
dielectric constant changes significantly between the hydrocarbon interior of
the membrane, the polar head group region and the adjacent aqueous phase
(i.e. the diffuse double layer region made by oriented water molecules). Each
of these regions has further a different thickness, and therefore its own capac-
itance and conductance value. The equivalent electrical representation of the
membrane would then contain a series of capacitors normal to the membrane
plane (one for each region). The total capacitance of a series combination of
capacitors cannot be larger than the smallest contribution. Since the small-
est capacitor is the one representing the hydrocarbon interior [34, 35], this
means that practically the entire membrane capacitance arises from the hy-
drocarbon interior, over which the entire voltage drop is assumed to happen.
We will in the following embrace this view, and consider the contribution to
the capacitance from the polar headgroup and the aqueous medium to be
negligible, which is supported by experimental and theoretical evidence and
treat the membrane as an homogeneous dielectric 23.

The membrane capacitance is often quantified by the specific capaci-
tance (capacitance per unit area), which has the advantage of being fairly
constant for different membrane systems and has a value of about cm =
ε/d ' 1µF/cm24 for membranes of different compositions and geometries5.
So much so, that capacitance measurements are often used to make estima-
tions of membrane area, e.g. in experiments on membrane patches.

In this capacitor model the role of the conducting plates is played by
the electrolyte surrounding the membrane (which is assumed to be a perfect
conductor) and the geometry of the capacitor is considered to be constant.
Both are rough approximations, but while the former has been addressed and

2Note, however, that when using the values of the membrane thickness in 3.1 instead
of just the hydrocarbon interior, we are underestimating the membrane capacitance by
a factor of ' 0.8 (assuming a thickness of the hydrocarbon region of ' 3nm [35] and a
thickness in the fluid phase of 3.9nm [16]

3Among the observations on support of this hypothesis there is the experimental agree-
ment between the value of thickness of the hydrocarbon core estimated from 3.1 using the
dielectric constant of bulk hydrocarbons and the one directly measured with X-ray diffrac-
tion. Furthermore, it is supported by the observation that bilayer capacitance is inversely
proportional to the number of carbon in the hydrocarbon chain, and that for a given
hydrocarbon chain the value of the capacitance seems independent on the type of polar
head [36]

4assuming εr = 4 and d = 3.9nm [16]
5In the case of artificial membranes containing solvent the value is usually lower '

0.5µF/cm2.
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3.1. Membrane capacitor

refined in models that study of electrical properties of the membrane [37],
the latter is often considered to be a fairly good description and offhandedly
accepted. According to Eq. (3.1), any change in the dimensions of the mem-
brane can potentially affect its capacitance. We discussed in chapter 2 how
the area and the thickness of lipid bilayers are significantly different in the
gel and in the fluid phase. Considering a 24.6% increase in the area and a
16.3% decrease in thickness from the gel to the fluid phase of DDPC vesi-
cles [16], one expects an increase in the membrane capacitance of about 50%
from the gel to the fluid state. The state of the membrane is not the only
parameter that can influence the value of the capacitance. In the following
we will discuss the validity of the assumption of constant capacitance, in
particular with respect to its dependence on voltage.
When a voltage difference, Ψ6, is present between the two plates of the
membrane capacitor, the ions in solution accumulate on the surface of the
membrane and charge the capacitor. The amount of charge, q, on the mem-
brane surface for a given voltage depends on the value of the capacitance of
the membrane, according to:

q = Cm ·Ψ. (3.2)

The electric field inside and outside a charged capacitor can be calculated us-
ing the superposition principle (see Fig. (3.1))7 The electric field produced by
an homogeneous planar charge distribution (with charge density, σ = q/A) is
uniform, orthogonal to the charged plane (outward for positive charge, and
inward for negative charge) and has a magnitude |E| = q/2Aε, where ε is
the permittivity of the surrounding medium. We see from Fig. (3.1) that the
resulting field for a charged membrane is zero outside and has a magnitude
|E| = σ/ε inside.

Figure 3.1: Electric field of a charged capacitor. Outside the capacitor the
field is zero, while inside is non zero. As a result a voltage difference is
present across it. Picture taken from [38]

6In the following we consider Ψ ≡ −∆V , with ∆V(b−a) = −
∫ b
a
~E · ~dl, ~E being the

electric field.
7Here and in the following, we choose a coordinate system where the z axis has the

direction of the normal vector of the membrane.
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3. Polarization effects

The presence of a dielectric between the plates of the capacitor results
in an electric field which is lower than the one in the case of vacuum by a
factor equal to the relative dielectric constant of the dielectric. The reason
for the decrease lies in the polarization of the dielectric. Once a dielectric
is polarized by an externally applied field, induced or oriented dipoles in
the dielectric create an electric field in the opposite direction which tends to
minimize the free energy, and thus the total field. The extent to which the
applied field is counteracted is an indication of whether a material is a good
or bad insulator. In the case of conductors, the counterbalance is exact and
therefore the total field inside a good conductor is zero. If the dielectric is
homogeneous and isotropic, the field inside the charged capacitor is uniform
and the voltage difference between its plates is given by Ψ = E · d.

Electrostriction When the membrane capacitor is charged, the opposite
charges on its plates will attract each other exerting a mechanical force on
the capacitor, which tends to compress the membrane. This effect is called
electrostriction, and is shown in Fig. (3.2).

The extent to which the membrane is compressed depends on the value
of its elastic constants. As we discussed in chapter 2.1, close to phase tran-
sitions the elastic constants of lipid membranes have a maximum and the
membrane is more compressible. As a result, one expects that even a small
change in voltage would result in significant changes in the dimensions of the
membrane, and therefore in big changes of its capacitance.

Figure 3.2: Electrostriction in a charged capacitor: a voltage Ψ across the
membrane results in a force compressing it to a final state with larger area
and smaller thickness. As a result, the value of the capacitance changes.
Picture taken from [38]

Spontaneous polarization All the above considerations were made hav-
ing in mind a perfectly symmetric membrane. In this case, as anticipated
in chapter 1, the net electric dipoles in the two leaflets of the membrane are
equal but have opposite direction, hence they cancel each other and result
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3.1. Membrane capacitor

in a zero polarization when there is no field applied, and the membrane is
non polar.

Biological membranes, however, are highly asymmetric systems. The
lipid composition of the two leaflets, for instance, is often very different and
one usually finds more negatively charged lipids in the inner leaflet of the
bilayer. Biological membranes contain also peripheral and transmembrane
proteins which can carry both positive and negative charge, and they are also
asymmetrically distributed across the membrane [14]. As a result of these
compositional asymmetries, the membrane can have a net dipole moment
in the absence of an applied field 8. When a membrane with spontaneous
polarization is surrounded by an electrolyte, the free charges in solution
distribute as to cancel the bound polarization charges in the membrane.
As a result, the membrane capacitor in equilibrium can be charged in the
absence of an applied voltage. This is illustrated in Fig. (3.3) (left). In
order to discharge the capacitor, a voltage Ψ = −Ψ0 needs to be applied
(Fig. (3.3), right). We call Ψ0 the offset voltage or offset potential. Note
that in the absence of voltage not only is the membrane charged, but also the
electric field inside the membrane is zero, as a result of the complete bound
charge cancellation from the free ions in solutions. In this respect, the case
of a charged membrane and a polarized one are conceptually different and
one has to be careful to account for both effects correctly in a theoretical
treatment.

Figure 3.3: Left: a polarized membrane capacitor is charged in the absence
of an applied voltage. The electric field is zero everywhere. Right: in order
to discharge the capacitor, a voltage Ψ = −Ψ0 has to be applied. Figure
from [38]

A chemical asymmetry of the two leaflets is not the only mechanism that
can produce spontaneous polarization in the membrane. Another mechanism
is, for example, curvature. In general, any deformation which alters the rel-
ative orientation of dipoles in the two monolayers, can induce spontaneous
polarization. Curvature induced polarization is a concept that was first in-

8We call this dipole moment and the resulting polarization spontaneous, rather than
permanent (as it is sometimes called in literature, e.g. for ferroelectric materials) because
its value can vary in response to changes in the external parameters.
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3. Polarization effects

troduced by Meyer in 1969 in the context of liquid crystals [39], and applied
to biological membranes by Petrov who named it flexoelectricity [40]. Cur-
vature in the membrane induces different lateral pressure in the two mono-
layers, compressing one while expanding the other. The result is that the
polarization (which is dipole moment per unit volume) will be different in
the two leaflets and the membrane has a spontaneous polarization in the
absence of an applied voltage (Fig. (3.4),b-c). Again, the curved membrane
at equilibrium will be charged when surrounded by an electrolyte, and a
voltage Ψ = −Ψ0 needs to be applied to discharge it. (Fig. (3.4),d).

Figure 3.4: Illustration of curvature induced polarization. a: The polariza-
tion of a chemically symmetric membrane in the absence of an electric is
zero when flat. b: Upon bending the relative volume of the two monolayers
change and so does their polarization. The membrane in the absence of a
field has a polarization different from zero (c). The membrane capacitor is
then charged with Ψ = 0. d: In order to discharge the membrane, a voltage
Ψ = −Ψ0 has to be applied. Figure from [38]

We see that flexoelectricity and chemical asymmetry have the same re-
sult and behaviour in terms of membrane polarization and thus we will not
distinguish between the mechanisms in the theoretical treatment. Note,
however, that in general the two phenomena are combined, since biologically
membranes not only have asymmetric composition but are often found in
convoluted curved shapes.
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3.2. Thermodynamics of membranes in electric fields

3.2 Thermodynamics of membranes in electric fields

In this section we will derive the thermodynamical tools with which one can
solve the fundamental problem of thermodynamics for a a membrane in an
electric field i.e. to predict the new state of equilibrium for the closed system
made of a membrane in an electrolyte when some internal constraints are
removed. We will follow the approach of chapter 2, adding an extra ther-
modynamical coordinate to describe the state of the system in the presence
of electric fields. This corresponds to finding the fundamental equation for
the entropy of the system and applying the extremum principle to study the
equilibrium states of the system. We start by writing the internal energy of
the system instead of the entropy, but we have seen already that the two
formulations have identical thermodynamical content.

In the presence of an electric field an extra extensive variable is needed
to fully characterize the thermodynamical state of the system, in addition
to entropy (S), volume (v), and area (A). Particular care must be taken
when choosing the correct extensive variable and conjugated intensive ones
so that they constitute a conjugated pair in the thermodynamical sense. Fur-
thermore, when we consider the membrane capacitor, we expect mechanical
changes to be observed in response to an applied field. In other words, the
hydrophobic interior of the membrane separates the capacitor plates acting
both as a dielectric and compressible material. This type of considerations
were first discussed by Frank in 1955 when studying the thermodynamics
of a fluid in an electric field [41]. He wrote the electrical work done on a
fluid during any reversible and infinitesimal change as dWel = Ed(vD). This
corresponds to having the electric displacement (D) in a volume v, as exten-
sive variable and the electric field (E) as the conjugated intensive one. The
differential form of the fundamental equation takes the form:

dU = TdS − pdv − πdA+ Ed(vD), (3.3)

In his thought experiment, Frank considered an homogeneous and isotropic
fluid contained between the plates of a planar capacitor. In this geometry the
electric displacement and electric field are both normal to the plate surface,
hence vector notation can be dropped.

Eq. (3.3) is the fundamental equation of the system in the presence of a
field. We now want to work out the last term in order to write it explicitly and
make physical predictions. To do this we have to get the aid of electrostatics.

Electric displacement in asymmetric membranes The electric dis-
placement, D, is defined as:

D ≡ ε0E + P (3.4)
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3. Polarization effects

where E is the electric field and P is the polarization (or polarization den-
sity).

When placed in an electric field a dielectric gets polarized, meaning that
it will have a net dipole moment per unit volume, also called polarization.
This can be induced by deformation or orientation, but in both cases the
polarization is a linear function of the field for small field strengths9. In the
case of an isotropic material the induced polarization has the same direction
as the field and can be written as:

Pind = ε0χelE

where χel is the electric susceptibility, which in anisotropic materials is a
tensor taking into account the different polarizability of the material in the
different directions. The material will have a net dipole moment per unit vol-
ume as a consequence of the field. If the field is removed, the net polarization
is also removed.

Let’s now consider the case of an asymmetric membrane. No matter
how the asymmetry has come about (if through curvature or asymmetric
lipid distribution), the result will be the appearance of a net spontaneous
polarization, P0, in the absence of any applied field. If we now apply a field
normal to the membrane, the total polarization can be written as:

P = Pind + P0

= ε0χelE + P0
(3.5)

We see that when the field is zero, the total polarization doesn’t vanish.
Moreover, the magnitude and direction of the spontaneous polarization is
independent of the electric field. Depending on its direction relative to the
applied field the total polarization can be increased or decreased by the
presence of a field. The polarization density is a measure of the surface bound
charges in a dielectric, according to Gauss Law, ∇ · P = −ρb (ρb, volume
density of bound charges in the dielectric). According to its definition, it
follows that the electric displacement is a measure of the free charges in our
system. In the case of an asymmetric membrane, the electric displacement
takes the form:

D = ε0(1 + χel)E + P0

= εE + P0
(3.6)

Where ε is the dielectric constant, ε = ε0(1+χel). We see that in the absence
of an applied field the electric displacement is different from zero. From its
definition combined to Gauss Law, we have that D is a measure of the free
charges in the system:

∇ ·D = ρf or, for planar geometry D =
q

A
(3.7)

9small compared to the dielectric strength of the material, i.e. the maximum electric
field that can be applied to a material without incurring in dielectric breakdown
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3.2. Thermodynamics of membranes in electric fields

where ρf is the volume charge density of free charges. This means that in
the presence of spontaneous polarization there is a net free charge on the
plates of the capacitor. We call this charge q0, offset charge:

D|E=0 = P0 =
q0

A
(3.8)

The offset charge is equal to the bound polarization charge of the membrane,
and therefore it is responsible for screening it and canceling the total field.
As a result the membrane capacitor is charged but there is no net electric
field, nor inside nor outside the membrane.

Gibbs Free Energy with electric fields We started this section by
writing the fundamental equation for the internal energy with respect to the
extensive variables of the system U(S, v,A, vD). We notice, however, that
in experiments on membranes, one usually has control over the intensive
variables, namely temperature T , pressure p, lateral pressure π and electric
field E. In order to get useful informations, the thermodynamical potential
of choice is then the Gibbs Free Energy G(T, p, π,E). The Legendre trans-
forms guarantees that the thermodynamical content of the two formulation
is equivalent. The differential of the Gibbs Free Energy in the presence of a
field is given by:

dG = −SdT + vdp+Adπ − (vD)dE (3.9)

The last term is the electrical contribution, which we will refer to as electrical
free energy, Gel. Knowing the expression of the electric displacement in
terms of the applied field for an asymmetric membrane, we can calculate the
electrical free energy using Eq. (3.6):

Gel = −
∫ E

0
(vD)dE′ = −εv

2
E2 − vP0E (3.10)

where the volume of the lipid membrane was assumed to be constant.
If we assume the membrane to be homogeneous and isotropic, the electric
potential across it can be simply written in terms of the electric field, Ed =
Ψ. This leads to:

Gel = − ε
2

A

d
Ψ2 −AP0Ψ, (3.11)

The prefactor of the first term in the previous expression is equal to
the membrane capacitance and we call it Cm. We further define the offset
voltage as

Ψ0 =
P0d

ε
(3.12)

The offset voltage is the voltage one would need to apply to the membrane
capacitor in order to induce a charge equal to the offset charge, q0. In other
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3. Polarization effects

words, it is the voltage at which one would have D = P0 in the absence of
any spontaneous polarization. Finally, using this definition, we can re-write
the electrical free energy in the following:

Gel = −Cm
2

(Ψ2 + 2Ψ0Ψ)

= −Cm
2

(
(Ψ + Ψ0)2 −Ψ2

0)
)
,

(3.13)

We stress that due to the presence of the screening charge q0, in the presence
of an electrolyte the actual voltage difference across the membrane due to
the spontaneous polarization is zero. This is confirmed by the fact that in
the absence of an applied field, the electrical free energy is zero, i.e. there
is no contribution to the energy from the offset potential. This point will be
clarified in the course of the chapter.10

3.2.1 Electrostriction

We have already anticipated that when a voltage is applied across the mem-
brane capacitor, we expect electrostrictive forces to arise which tend to com-
press the membrane. We now want to quantify this effect. In the absence of
spontaneous polarization the electrical free energy is Gel = −1

2CmΨ2. For
constant voltage and area, the electrostrictive force is given by:

F =
∂Gel
∂d

= −1

2

(
∂Cm
∂d

)
Ψ2 =

1

2

CmΨ2

d
(3.14)

In the case of an asymmetric membrane displaying spontaneous polarization,
one has

F =
∂Gel
∂d

=
1

2

Cm
d

(Ψ2 + 2Ψ0Ψ) (3.15)

The electrostrictive force is therefore a quadratic function of the voltage
and in the case of asymmetric membranes with spontaneous polarization, it
displays an additional linear term proportional to the offset voltage. We see
that when (Ψ2+2Ψ0Ψ) < 0 the force is negative, so applying a voltage whose
magnitude is included in the interval (0,−2Ψ0) will decrease the value of the
capacitance. Assuming that the changes in the thickness are very small
(∆d � d) and that the area stays constant, the change in thickness will
produce a change in the capacitance equal to:

∆Cm = −ε A
d2

∆d (3.16)

10Note that using P0 or Ψ0 is not strictly equivalent, since they involve different assump-
tions on the geometry of the system. The spontaneous polarization is defined as dipole
moment per unit volume. Since we consider the membrane volume to be constant, P0 is
independent of the geometry of the system, unlike Ψ0 which depends on the membrane
thickness. The particular choice of one or the other must follow the specific experimental
conditions considered. Similar considerations apply to the choice of E or Ψ.

30



3.2. Thermodynamics of membranes in electric fields

The change in capacitance is therefore proportional to the change in thick-
ness. We find that if the thickness is linearly proportional to the force, then
the capacitance is also a quadratic function of the voltage with a voltage
offset:

∆Cm ∝ (Ψ2 + 2Ψ0Ψ) (3.17)

Electrostriction has been studied by several authors in both synthetic and
biological membranes [42,43]. A quadratic dependence of the capacitance on
the voltage was for instance found by Alvarez and Latorre in 1978 as shown
in Fig. (3.5).

Figure 3.5: Quadratic voltage dependence of the membrane capacitance in
a black lipid membrane. Solid circles: symmetric membrane made of zwit-
terionic PE in 1 M KCl, Open circles: asymmetric membrane made of PE
and charged PS in 1M KCl, Open squares: same asymmetric membrane in
0.1 M KCl. The relative change in capacitance due to voltage in the range
investigated is below 1%. Picture adapted from [42]

Interestingly, they studied membranes of different composition, symmet-
ric and asymmetric, the latter with one monolayer made of zwitterionic
phosphatidylethanolamine (PE) and the other made of the charged phos-
phatidylserine (PS). They found that in the case of asymmetric membranes
the minimum of capacitance-voltage curve is shifted on the voltage axis.
This is in line with our expectation of a chemically induced spontaneous po-
larization. They found a voltage offset of Ψ0 = 47mV , which is dependent
on the ionic strength. The membranes studied by Alvarez and Latorre had
a capacitance of approximately 300 pF at zero voltage, compared to which
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3. Polarization effects

the change in capacitance shown in figure results very small. Their exper-
iments, however, were carried out far from the phase transition, where the
compressibility of the membrane is low.

3.2.2 Phase transition in the presence of an electric field

As discussed before (and shown in Fig. (3.5)), the effect of electrostriction
and the correspondent change in capacitance with voltage are expected to be
very small in the pure fluid and gel phase, due to the low compressibility of
the membrane. However, close to the phase transition the effect is enhanced
by the increased compressibility of the membrane, and significant changes in
the membrane dimensions are expected to occur even for small changes in
the voltage. Based on this, we now try to answer to the question of whether
voltage could induce a phase transition from a gel to the fluid phase at
constant temperature and to quantify the effect of voltage on the membrane
dimension and capacitance. Following the same approach of chapter 2, we
start by writing the difference in electric Gibbs Free energy between the fluid
and the gel state in the presence of a voltage for an asymmetric membrane:11

∆Gel = Gfluidel −Ggelel = −∆Cm
2

(
Ψ2 + 2Ψ0Ψ

)
, (3.18)

where ∆Cm = Cfm − Cgm is the difference between the capacitance in the
fluid and in the gel state. In Eq. (3.18) we assumed that both the dielectric
constant ε and the offset voltage Ψ0 are the same in the fluid and gel state.
The first assumption was confirmed in experiments on oleic acid (data not
shown). The second one will be discussed later on in the chapter. The
equilibrium constant between the fluid and the gel state is given by:

K(T,Ψ) = exp

(
−n∆G(T,Ψ)

RT

)
(3.19)

where the Gibbs Free energy between gel and fluid state as a function of
both temperature and voltage is given by

∆G = (∆H0 − T∆S0) + ∆Gel (3.20)

One can then calculate the fluid fraction according to Eq. (2.13), using
the equilibrium constant (Eq. (3.19)). We now have all the tools to derive
the effect of voltage on the dimensions of the membrane. Fig. (3.6) shows
the voltage dependence of the area for different temperatures for a DPPC
membrane (values taken from [16]). The same is shown for the capacitance
Cm(T,Ψ) = εA(T,Ψ)/d(T,Ψ). In both cases a voltage offset of Ψ0 = 70mV
was chosen.

11the whole calculation can be made using 3.11.
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Figure 3.6: Membrane area (left) and capacitance (right) as a function of
voltage for five different temperatures close to the melting temperature. The
voltage offset was set to Ψ0 = 70mV . Values from [16].

Figure 3.7: Voltage dependence of the melting temperature (Eq. (3.21)) in
the case of no offset voltage (solid line) and for polarized membrane with
two different voltage offsets Ψ0 = 100mV and Ψ0 = −100mV . The offset
voltage in the fluid and gel phase is assumed to be equal.

At the melting temperature Tm, the Gibbs Free energy between the gel
and the fluid state is zero. From Eq. (3.20) we have:

Tm = Tm,0

(
1 +

∆Gel
∆H0

)
= Tm,0

(
1− ∆Cm

∆H0

(
Ψ2

2
+ Ψ0Ψ

)) (3.21)
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Where Tm,0 is the melting temperature in the absence of applied voltage. We
see the result in Fig. (3.7). In the case of a symmetric membrane (Ψ0 = 0) the
melting temperature is decreasing quadratically with voltage, thus positive
and negative voltage have exactly the same effect on the melting temper-
ature. This was already found by Heimburg [24]. When the membrane is
asymmetric the effect of voltage on the melting temperature depends on the
direction and the magnitude of the offset voltage, so that the same applied
voltage can induce or inhibit a phase transition depending on the value of
Ψ0.

Generalization for Ψ0,f 6= Ψ0,g In the previous derivation we assumed
the voltage offset to be constant in the transition. It is worth reminding that
the voltage offset is given by Ψ0 = P0d/ε. This means that it is linked to the
net dipole moment per unit area (dipole density). We know from monolayers
experiments that the dipole moment in the two state is different [44], and we
expect the same in bilayers. Even if we assume that the dipole moment stays
constant, the area in the gel and fluid phase changes significantly, meaning
that the voltage offset would change as a consequence of dipole dilution going
from the gel to the fluid phase. In the general case, the offset will not be
constant and we call Ψ0,f and Ψ0,g the offset in the fluid and in the gel
phase, respectively. The electrical Gibbs free energy difference between the
two states takes the form:12

∆Gel = −∆Cm
2

(
(Ψ2 + Ψ0,gΨ

)
− CfmΨ(Ψ0,f −Ψ0,g), (3.22)

From this, one can again calculate the effect of voltage on melting tempera-
ture, membrane dimensions and capacitance.

3.2.3 Charge on the membrane capacitor

The total charge on the membrane capacitor in the presence of an applied
field is, according to Eq. (3.7), given by:

q = A ·D = A(εE + P0) = ε
A

d
(Ψ + Ψ0) = Cm(Ψ + Ψ0) (3.23)

We see that the charge is made of two contributions. The first is the familiar
term CmΨ and the second can be written as AP0 = q0 and it is the offset
charge discussed before. The charge can change in response to changes in

12note that one could use 3.11 instead of 3.13. In that case, one could discuss whether
P0 stays constant rather than Ψ0. SInce P0 is independent of the membrane geometry this
corresponds to discussing whether net dipole moment of the membrane changes in the fluid
and the gel phase.
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3.2. Thermodynamics of membranes in electric fields

voltage (Ψ), area (A), curvature (c)13 and temperature (T ):

dq =

(
∂q

∂Ψ

)
A,c,T

dΨ +

(
∂q

∂A

)
Ψ,c,T

dA

+

(
∂q

∂c

)
Ψ,A,T

dc+

(
∂q

∂T

)
Ψ,A,c

dT

(3.24)

Eq. (3.24) assumes that voltage, area, curvature and temperature are all
variables that can be changed independently in experiments. This is not
the case in general. In this framework however, we can write the partial
derivative explicitly using 3.23:

dq =

[
(Ψ + Ψ0)

(
∂Cm
∂Ψ

)
A,c,T

+ Cm + Cm

(
∂Ψ0

∂Ψ

)
A,c,T

]
dΨ

+

[
(Ψ + Ψ0)

(
∂Cm
∂A

)
Ψ,c,T

+ Cm

(
∂Ψ0

∂A

)
Ψ,c,T

]
dA

+

[
(Ψ + Ψ0)

(
∂Cm
∂c

)
Ψ,A,T

+ Cm

(
∂Ψ0

∂c

)
Ψ,A,T

]
dc

+

[
(Ψ + Ψ0)

(
∂Cm
∂T

)
Ψ,A,c

+ Cm

(
∂Ψ0

∂T

)
Ψ,A,c

]
dT

(3.25)

Equivalent relations can be obtained for different sets of free variables, for
example by choosing π instead of A. Each term of Eq. (3.25) contains in-
formation on the coupling between electric (charge dq) and mechanical and
thermal variables. The first term expresses the nonlinearity of the membrane
charge with respect to voltage, the second and third express the electrome-
chanical couplings, namely the fact that the membrane is piezoelectric and
flexoelectric, respectively, and the last defines the thermoelectric behaviour.
In the following we analyse each term. We will discuss experimental sit-
uations where two variable (like, for example, temperature and area) are
coupled and not independent.

Capacitive susceptibility The first term on the right hand side of Eqs.
3.25 describes the change in charge as a response to changes in the applied
voltage. It is the capacitive susceptibility of the membrane Ĉm = (∂q/∂Ψ),
already discussed by Heimburg [24]. In addition to the geometric membrane
capacitance Cm, it includes changes in membrane dimensions and sponta-
neous polarization induced by the voltage. As the changes in area and di-
mension with voltage are maxima in the transition we expect the capacitive
susceptibility to display a maximum in the transition. If we fix curvature

13we assume spherical geometry, hence c=2/R.
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and temperature and let the area change with the voltage, the capacitive
susceptibility has the form:

Ĉm = Cm + (Ψ + Ψ0)

(
∂Cm
∂Ψ

)
c,T

+ Cm

(
∂Ψ0

∂Ψ

)
c,T

(3.26)

In the case where the voltage offset doesn’t change with voltage or with
changes in the dimensions of the membrane, we have:

Ĉm = Cm + (Ψ + Ψ0)

(
∂Cm
∂Ψ

)
c,T

(3.27)

Finally, if the spontaneous polarization is zero for all voltages, we obtain the
expression derived by Heimburg [24]:

Ĉm = Cm + Ψ

(
∂Cm
∂Ψ

)
c,T

(3.28)

Piezoelectricity The second term of 3.25 expresses the change in charge
due to changes in area. The more general response of charge to changes
in dimension is known as piezoelectricity. It means that the charge on a
capacitor can change even when the voltage is kept constant. If in addition
to the voltage, also curvature and temperature are kept constant it is given
by:

dq =

[
(Ψ + Ψ0)

(
∂Cm
∂A

)
Ψ,c,T

+ Cm

(
∂Ψ0

∂A

)
Ψ,c,T

]
dA (3.29)

In the absence of an applied voltage , Ψ = 0, and for small changes in area,
we get:

∆q '

[
Ψ0

(
∂Cm
∂A

)
Ψ,c,T

+ Cm

(
∂Ψ0

∂A

)
Ψ,c,T

]
∆A (3.30)

If the voltage offset is zero for an uncompressed or unstretched membrane,
Ψ0(∆A = 0) = 0, then the total charge on the membrane due to a change
in area is given by:

q(∆A) ' Cm
(
∂Ψ0

∂A

)
Ψ,c,T

∆A or Ψ0(∆A) '
(
∂Ψ0

∂A

)
Ψ,c,T

∆A

(3.31)

Inverse piezoelectricity The inverse piezoelectric effect describes the
change in membrane dimensions as a result of an applied field or a change
in the charge on the capacitor. We start by writing the free energy density
of compression (gA) for a membrane with an applied electric potential:

gA =
1

2
κAT

(
∆A

A0

)2

− Cm
A0

(
Ψ2

2
+ Ψ0Ψ

)
(3.32)
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where the first term is the elastic and the second is the electric free energy
density. At constant Ψ and κAT the equilibrium value for the change in area
∆A from the uncompressed value A0, is the one that minimizes the free
energy density with respect to the area:

∂gA
∂A

=κAT
∆A

A2
0

+
Cm
A0

(
∂Ψ0

∂A

)
Ψ,c,T

Ψ

− 1

A0

(
∂Cm
∂A

)
Ψ,c,T

(
Ψ2

2
+ Ψ0Ψ

)
= 0

(3.33)

Which is given by

∆A(Ψ) =
A0

κAT

[
Cm

(
∂Ψ0

∂A

)
Ψ,c,T

Ψ +

(
∂Cm
∂A

)
Ψ,c,T

(
Ψ2

2
+ Ψ0Ψ

)]
(3.34)

Here the first term term contains the changes of polarization with the
area while the second is linked to the area dependence of the capacitance.
The prefactor contains the area compressibility, hence the changes in area
due to an applied voltage are expected to be maximum at the transition
where the compressibility is maximum.

Flexoelectricity Flexoelectricity is curvature-induced polarization. The
change in charge due to a change in the curvature is given by the third
term of Eq. (3.25), derived in the assumption of constant voltage, area and
temperature. In experiments, however, changes in curvature are coupled to
changes in area, so that one can not control the area independently of the
curvature. We therefore consider the area to be dependent on curvature and
assume that Ψ and T are kept constant:

dq =

[
(Ψ + Ψ0)

(
∂Cm
∂c

)
Ψ,T

+ Cm

(
∂Ψ0

∂c

)
Ψ,T

]
dc (3.35)

In the simplified case where the capacitance is independent of the curva-
ture and the offset voltage is a linear function of curvature (thus its partial
derivative in Eq. (3.35) is constant), we can write the total charge on a
curved membrane which displays flexoelectricity:

q(c) = Cm(Ψ + Ψ0(0)) + Cm

(
∂Ψ0

∂c

)
Ψ,T

· c (3.36)

where the first term on the right hand-side is equal to the charge on the flat
capacitor (c=0). In the case where no voltage is applied to the membrane
and where the spontaneous polarization for the flat capacitor is zero (i.e.
Ψ = 0 and Ψ0(0) = 0), one gets:

q(c) = Cm

(
∂Ψ0

∂c

)
Ψ,T

· c or Ψ0(c) =

(
∂Ψ0

∂c

)
Ψ,T

· c (3.37)
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which states that the offset polarization is proportional to curvature. This is
a special case of Eq. (3.35) and equivalent to the formulation of Petrov [40].
It is valid in the absence of an applied voltage, for a membrane whose capac-
itance is independent of curvature, that has no spontaneous polarization in
the absence of a curvature (so a chemically symmetric membrane), and whose
spontaneous polarization is linearly dependent on curvature. In Petrov’s for-
mulation, the proportionality between curvature and polarization is quanti-
fied by the flexoelectric coefficient, f , which is given by f ≡ ε

(
∂Ψ0
∂c

)
Ψ,T

. He

measured the floexocoefficient and found it to be of the order 1018C, which
corresponds to

(
∂Ψ0
∂c

)
Ψ,T
' 3 · 10−8[V/m].

Inverse flexoelectricity As with the piezoelectric effect, also for flex-
oelectricity there is an inverse effect, which describes the effect by which
curvature can be induced by an applied electric field. We follow the same
approach as for piezoelectricity and start by writing the free energy density
for a curved membrane in the presence of an applied field. Again, we assume
that the capacitance does not depend on curvature.

gc =
1

2
κBc

2 − Cm
A

(
Ψ2

2
+ Ψ0Ψ

)
(3.38)

where the first term is the elastic free energy of bending in the absence
of a spontaneous curvature (κB is the bending modulus). The equilibrium
condition for this system is given by:

∂gc
∂c

= κBc−
Cm
A

(
∂Ψ0

∂c

)
Ψ,T

Ψ = 0 (3.39)

Which is satisfied for

c(Ψ) =
Cm
κBA

(
∂Ψ0

∂c

)
Ψ,T

Ψ (3.40)

the last equation describes the effect by which the membrane bends as a
response to an applied field, also called inverse flexoelectricity. As for the
inverse piezoelectric effect and electrostriction, the magnitude of the me-
chanical response depends on the elastic properties (here, the bending elastic
constant) of the membrane. It is therefore expected to be greatly enhanced
in the transition. The inverse flexoelectric effect was first introduced and
measured by Petrov [45]. In his formalism the voltage induced curvature
takes the form: c(Ψ) = (f/d · κB)Ψ .

Thermoelectricity The last term of Eq. (3.25) describes thermoelec-
tricity, i.e. changes in charge induced by temperature. Let’s consider a
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3.2. Thermodynamics of membranes in electric fields

Figure 3.8: Partial derivative of the capacitance with respect to temperature
at constant curvature and constant voltage assuming an offset voltage of
Ψ0 = 70mV . The value of the voltage was fixed to Ψ = 100mV (solid line)
and Ψ = −100mV (dashed line). Values for DPPC membranes were taken
from [16].

membrane of fixed curvature and at fixed voltage and allow the temperature
to change. The area will not stay constant in general (and especially close
to the transition) but will rather be a function of temperature. We will then
have:

dq =

[
(Ψ + Ψ0)

(
∂Cm
∂T

)
Ψ,c

+ Cm

(
∂Ψ0

∂T

)
Ψ,c

]
dT (3.41)

This is also called Seebeck effect. The magnitude of the response depends
on the temperature dependence of the capacitance and the offset voltage.
We discussed the former and found that the changes in capacitance with
temperature are expected to be large especially close to transition, so that the
first coupling function will display a maximum in the transition. Fig. (3.8)
shows the partial derivative of the membrane capacitance as a function of
temperature for two different values of the offset voltage. The latter will
also be largest at the transition in the case where fluid and gel state have a
different polarization or due to the geometry changes. If we instead consider
a membrane for which the offset voltage is not a function of temperature we
have

dq = (Ψ + Ψ0)

(
∂Cm
∂T

)
Ψ,c

dT (3.42)

If we further assume that the spontaneous polarization is zero, one recovers
the expression by Heimburg [24]. It is expected to have a maximum in the
transition. This will be compared to experimental measurements on a lipid
bilayer patch. The inverse effect is called Peltier effect, and it describes
temperature changes by charging of the membrane.
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3.3 Discussion

In this chapter we provided a thermodynamical framework to describe the
effect of polarization on the properties of lipid membranes. This allowed us
to write the free energy of a polarized membrane as a quadratic function in
the voltage plus a linear term that depends on the spontaneous polarization
of the membrane. In this framework, we could relate the polarization of
the membrane to the charging of a capacitor. For instance, it allowed us to
describe the charging of a membrane by means other than just an electric
field. The lipid membrane capacitor can in fact be charged or discharged by
changes in area, curvature and temperature, as well as voltage. Each of these
mechanisms is strictly related to the presence of a spontaneous polarization
and a transmembrane voltage. Biological membranes are polar structure that
sustain voltage differences of hundreds of mV in physiological conditions, and
changes in such voltages are at the basis of important biological functions
for the cell, most notably the propagation of the nerve pulse [20]. Hence,
it is essential to have a theory that correctly accounts for polarization and
capacitive effects in the presence of electric fields.

In the presence of a spontaneous polarization, applying a voltage to the
membrane capacitor can lead to the release of charges from its plates and
in general the membrane will be charged in the absence of a voltage. As a
result the electrical properties of the lipid bilayers will be affected differently
by positive or negative voltages.

An example of this is the effect of electrostriction on the membrane ca-
pacitor. A quadratic dependence of the capacitance of the membrane on the
voltage due to electrostriction has been observed in experiments by different
authors in artificial [42, 46–48] and biological membranes [43]. We showed
that in the presence of a spontaneous polarization the minimum value of the
capacitance is at a voltage different from zero and equal to the offset voltage
(Fig. (3.6), right). This is in agreement with the experimental results of
Alvarez and Latorre on polar black lipid membranes, in which the polariza-
tion originated from chemical asymmetry of the two monolayers [42]. The
magnitude of the capacitance change in experiments on lipid bilayers is very
small and has led to the widely accepted assumption that the capacitance of
the lipid portion of biological membrane is constant and independent of the
applied voltage. We here showed that this is not the case close the transition,
where the enhanced compressibility of the membrane makes it more suscep-
tible to changes in voltage. Biological membranes display transitions close
to body temperature, therefore capacitive effects are expected to be signif-
icant in physiological conditions. The present treatment of electrostriction
is a generalization of the findings of Heimburg [24] to include membranes
with a spontaneous polarization. Our findings suggest that the capacitive
behaviour in response to a voltage change can vary in magnitude and direc-
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tion depending on the value of P0. An intrinsic polarization of the membrane
in the absence of a field is also a feature that is usually not considered in
the electrical models of the membrane, like the Hodgkin and Huxley model
for the nerve pulse [20], despite the polar nature of biological membranes [14].

The electrostrictive forces on a symmetric and not polarized membrane
tend to compress it to its thinnest state, namely the fluid state. We inves-
tigated the effect of voltage on the melting temperature of a DPPC bilayer
(Fig. (3.7)) and found that it decreases quadratically with the applied volt-
age for symmetric membranes (in agreement with [24]). However, when
assuming the presence of a spontaneous polarization, the linear term in the
expression of the free energy becomes dominant for small voltages (i.e. for
Ψ << Ψ0), which results in a linear increase in the melting temperature for
positive or negative voltages, depending on the direction of the spontaneous
polarization. This is so in either cases of fixed or state dependent voltage
offset. A linear increase of the melting temperature was measured on Black
Lipid Membranes made of DPPA by Antonov [26] in the only experimental
study to our knowledge on the influence of voltage on the phase transition
of membranes. Our findings suggests that the membranes investigated by
Antonov and collaborators were polar. He detected the phase transition by
measuring the membrane conductance at different voltages, using the obser-
vation that the membrane permeability is maximum at the transition. In
the next chapter we will apply the present findings to study the effect of a
spontaneous polarization on the conduction properties of the membrane, and
in particular we will investigate its effect on the current-voltage relationship
measured for lipid membrane patches.

We showed two mechanisms that can result in a spontaneous polariza-
tion in the membrane. The first involves a chemical or physical asymmetry
between the two monolayers. A physical asymmetry could for example be
achieved by having the two monolayers in different physical states. Chemical
asymmetry is widely present and conserved in biological membranes and can
involve an asymmetric distribution of charged and zwitterionic lipids on the
two leaflets. The polarization of each leaflet can be affected by changes in
the surrounding electrolyte in terms of salt concentration, pH, and type of
ions (if monovalent or divalent). This can happen through a direct effect on
the dipole potential (e.g. ion shielding, or biding to the membrane) or by
affecting the state of the membrane [49]. Therefore, changes in those param-
eters or having an asymmetric electrolyte environment on the two sides of
the membrane, can affect the value of the spontaneous polarization. In par-
ticular, ionic strength has been shown to affect the magnitude of the voltage
offset, as shown in Fig. (3.5). In biological membranes, integral proteins or
any adhesive molecule with large dipole moment can contribute to an asym-
metric polarization. One would expect biological membranes to show larger

41



3. Polarization effects

polarization than the one measured for pure lipid bilayers. Depending on
the nature of the asymmetry, the system can display piezoelectric proper-
ties. The other mechanism that can produce a polarization in the membrane
is flexoelectricity which acts by breaking the geometrical symmetry of the
system through curvature. Flexoelectricity was widely studied in theory and
experiments by Petrov who pioneered the field [13, 40, 50]. We here derived
general relations for the flexoelectric and the inverse flexoelectric effect and
showed that in some simple limiting cases, our derivations lead to the same
results of Petrov.

All the findings of this chapter relate to equilibrium properties of the
system. The changes in charge discussed here, however, involve changes in
capacitance and polarization which are not expected to happen instanta-
neously but rather to follow the relaxation dynamics of the membranes. In
the next chapter we will investigate the dynamical behaviour of the capacitive
and polarization effects studied here and will compare it to common exper-
iments performed on artificial and biological membranes. We note already
at this stage, however, that in the simple case case of constant spontaneous
polarization, temperature, and curvature, the expression for the capacitive
current in the case of constant polarization according to Eq. (3.23) is given
by:

Ic(t) =
dq

dt
= Cm

dΨ

dt
+ (Ψ + Ψ0)

dCm
dt

(3.43)

Here the first term is a fast capacitive peak when the voltage change is
instantaneous. The second term is usually completely disregarded in any
model for the interpretation of electrical recordings on the basis of the pre-
sumed independence of the membrane capacitance on the applied voltage.
We will see in the next chapter, that when including the polarization of the
membrane, the second term can give rise to many interesting behaviours.

Due to the piezoelectric effect, a change in the area can lead to a charg-
ing of the membrane according to Eq. (3.29). On the other hand, because
of the inverse piezoelectric effect a change in the applied membrane volt-
age can induce changes in the area. Furthermore, an electric voltage across
the membrane can influence the physical state of the membrane, and this,
in turn, can affect the electrical response of the membrane. These type of
phenomena have been considered to be key players in the electromechanical
mechanism for the nerve pulse propagation proposed by Heimburg and Jack-
son in 2005 [18]. In their model, the nerve pulse is considered to be a density
wave propagating as a local phase change of the membrane from the fluid to
the gel state. Depending on the magnitude of the inverse piezoelectric effect,
a transmembrane voltage could induce area changes and therefore induce a
density wave. The magnitude of the electromechanical couplings is depen-
dent on the elastic constants of the membrane, and is therefore expected to
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be maximum close to the transition.
Finally, we would like to remark that some of the effects derived here

are not very pronounced in lipid bilayers, and their magnitude depends on
the value of the polarization. The shift in melting temperature, for instance,
is around 0.1K for an applied voltage of 200 mV when the voltage offset is
zero while it is double when the voltage offset is around 100mV. Though
the absolute magnitude is still very small, this suggests that in highly polar
systems with large dipole moments, their effect could become significant.
This could be the case for membrane associated proteins bearing large dipole
moments.
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4

Nonlinear dynamic behaviour
in common experiments

With the thermodynamical tools at hand, we have derived a number of in-
teresting equilibrium properties which highlight the intercoupling between
electrical, mechanical and thermal phenomena. They deal with static phe-
nomena, such as the storage of charge in a capacitor. We will now extend
the findings of chapter 3 to describe the dynamical behaviour of membranes,
which includes the time dependence of the charge, i.e. currents . We do this
with respect to experiments that are commonly performed on synthetic and
biological membranes and which go under the name of electrophysiology.1

In a common electrophysiological experiment, the electrical properties of
the membrane are probed by exposing it to an electrical perturbation (in
the form of a time dependent voltage or current change) and the relevant
information is extracted from the measured output. In the following we will
exclusively refer to voltage clamp experiments, in which the perturbation is
in the form of a voltage signal. In this respect, the membrane acts as a sort of
black box standing between a known input (voltage) and the measured out-
put (current). The relevant information is then extracted from the output by
finding an electrical circuit which would show the same or similar response
if exposed to the same perturbation. In circuit theory, however, there is no
uniqueness of solution for this type of problem. Different circuit configura-
tions can behave in the same way under particular conditions [51,52]. This is
a well known fact in material science where techniques like impedance spec-
troscopy are flanked by complementary structural investigations (using for
example, electron microscopy means). These structural information help in
choosing the most appropriate circuit configuration for the specific system.

It is with a voltage clamp experiment, for instance, that Hodgkin and
Huxley first proposed the equivalent circuit of the squid axon membrane, now

1The theoretical development of this chapter has been made in collaboration with Lars
D. Mosgaard.
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4. Nonlinear dynamic behaviour in common experiments

the textbook model for the electrical representation of the membrane [20].
In their model, the role of conduction through the membrane is appointed to
voltage and time dependent resistors representing the different protein chan-
nels, while the lipid bilayer is pictured as a capacitor and hence it accounts
for the energy storage in the membrane.

In this framework, the membrane capacitor is assumed to be constant in
value. The traditional equivalent circuit of the lipid portion of the membrane
is illustrated in Fig. (4.1), where the membrane capacitor is in parallel with a
resistor of constant and infinite value, representing the impermeable nature
of the lipid matrix. This model is in line with what was known at the time
(1952) on the physical properties of the lipid bilayer, namely that they are
impermeable barriers providing insulation to the cell. Detailed and direct
structural information were not yet available (the first electron microscopy
image of a bilayer came about six years after owing to Robertson [6]), yet
the lipidic bimolecular structure of the lipid bilayer had been suggested and
indirectly observed for more than twenty-five years prior to this [4]. In the
following decades our understanding of the bilayer properties has greatly
advanced.

In particular, we have shown in the previous chapter that the assumption
of constant capacitance for the lipid membrane is not met under physiolog-
ical conditions, i.e., for voltage magnitudes of hundreds of mV and close to
the chain melting transition. Furthermore, lipid membranes show finite per-
meability to ions in the form of lipid ion channels [53], so also the assumption
of constant resistance is questionable. In other words, the complementary in-
formation we now have on the physical properties of the lipid bilayer doesn’t
match with the electrical equivalent that is still the circuit of choice for the
interpretation of electrophysiological data. In the following, we aim at up-
dating that model in the light of the findings of the last chapter. We will start
by considering the voltage and time dependence of the circuit elements of 4.1,
and will then predict the response of the membrane to two types of voltage
perturbation commonly performed in experiments: voltage jumps and sinu-
soidal perturbation (in the context of impedance spectroscopy). Finally, we
will compare our results to experimental findings on biological membranes.

Figure 4.1: Lipid bilayers are modeled
as RC circuit. Cm is the capacitance of
the membrane. Rm is the infinite re-
sistance. They are commonly assumed
to be constant.
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4.1. Nonlinearities

4.1 Nonlinearities

4.1.1 Conduction through the membrane

Permeability of lipid bilayers for water [54], small molecules [55] and ions
[56–58] has been observed since the early 70s. It was found to be largest
at the lipid phase transition [56, 57] and to be proportional to the heat
capacity [55, 59]. Ion permeability through the lipid membrane has been
shown to occur in the form of quantized steps in the membrane current
[60, 61], resembling those observed in the presence of protein channels. In
particular, they share similar amplitude and life time as well as the same
distinctive patterns (e.g. quantized current steps, burst, flickering, multi-
step conductances and spikes) [62]. Hence, they are often referred to as lipid
channels (or lipid ion channels).

As for protein channels, the quantized nature of the channel events ob-
served in lipid bilayers suggests the transient formation of pores of fixed
conductance (i.e. geometry) as the underlying conduction mechanism. Ac-
cording to the approach of Nagle and Scott [57], the work required for the
formation of a pore is proportional to the area compressibility of the mem-
brane, therefore the likelihood of finding an open pore is expected to be
small in the pure fluid or gel phase, where the membrane compressibility
is low [16]. As we showed in chapter 2, however, close to the lipid melting
area and volume compressibilities are proportional to the heat capacity and
as the fluctuations in their correspondent extensive variables, they are at a
maximum at the transition [16]. This means that the work needed to create
a pore is minimum at the lipid melting, where the formation of pores can
occur spontaneously as a result of the enhanced area fluctuations.

This scenario has been confirmed in the last four decades by several
studies observing an increase in membrane permeability and the appear-
ance of channel-like events in the membrane current at the phase transi-
tion [55, 56, 59, 61, 63]. In particular, Andersen and collaborators observed
transient permeation events by locally melting Giant Unilamellar Veiscles
using fluorescence microscopy, providing direct evidence of the interplay be-
tween the membrane permeability and its physical state [64]. As a result
of this interplay, any change in the intensive variables that affects the lipid
melting is expected to affect the likelihood of pore formation and hence the
membrane conduction, effectively blocking or gating lipid ion channels de-
pending on whether they inhibit or induce phase transition. This has indeed
been observed with respect to changes in temperature [61], lateral tension,
pH [58], concentration of divalent ions (calcium), presence of anesthetics,
and, of special relevance for the present treatment, voltage [65].

We have described in chapter 3 how a constant voltage across the mem-
brane can affect the state of the membrane due to electrostriction. From a
phenomenological point of view, in the presence of voltage the membrane is
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4. Nonlinear dynamic behaviour in common experiments

compressed and its thickness decreases, hence the likelihood of pore forma-
tion increases 2. Following the approach of Blicher [65], we can write the
free energy of pore formation in the presence of voltage:

∆Gp = ∆Gp,0 + α(Ψ2 + 2Ψ0Ψ) (4.1)

where ∆Gp,0 is the free energy difference between an open and a closed pore
in the absence of voltage and α is a coupling coefficient between voltage and
pore formation. They both depend on the state of the membrane, as a con-
sequence of the proportionality between conduction and the heat capacity. If
we assume that a pore can be found only in two states (open and closed), we
can then write the equilibrium constant, K, between a closed and an open
pore and the probability to find an open pore as:

K = exp

(
−∆Gp
kT

)
and Popen =

K

1 +K
(4.2)

One of the distinctive features of ion channels (in the presence and absence
of proteins) is the quantized nature of their current traces, which means
that a single open channel has a constant conductance, γp, as confirmed in
experiments [65]. The total current through a single channel can then be
written as:

Im = γpPopenΨ (4.3)

A similar expression was used by Blicher and Heimburg in [65], to de-
scribe the outward rectified current-voltage relationship measured on a protein-
free membrane reconstituted at the tip of a glass pipette shown in Fig. (4.2)
(left). Outward (or inward) rectification describes the preferential direction
of ionic currents out (or into) the cell, due to an asymmetric conductance
profile for positive and negative voltage. It is a phenomenon commonly ob-
served in protein channels and explained in terms of asymmetries in the
energy barrier for gating inside the protein, by a transition state model (the
Eyring model) [66, 67]. Interestingly, the simple model outlined above was
shown to better fit experimental data from both synthetic and biological
membrane, as shown in Fig. (4.2) for a lipid bilayer and two TRP channels
in HEK cells [68].

2Note that this is true for any voltage in the absence of spontaneous polarization. In a
polarized membrane, however, there can be a voltage range in which the effect is opposite,
hence applying voltage would discharge the capacitor, increase the thickness and decrease
the likelihood of pore formation.
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Figure 4.2: Left: Current-voltage relationship of a synthetic lipid membrane
made of DMCP:DLPC=10:1. The solid line is a fit to Eq. (4.3), with an
offset voltage of Ψ0 = 110mV . Left inset: Open probability as a function
of voltage. It has a minimum at a voltage Ψ = −Ψ0. Right Inset: Opening
and closing of a lipid channel as a funciton of time at a voltage Ψ = 50mV .
Right: Current-voltage relations of a TRPM8 channel in HEK cells at two
different temperatures (top, adapted from [66]) and of a TRPM5 channel in
HEK cell (bottom, adapted from [67]. Solid lines are fit to Eq. (4.3) [68].

The nonlinear asymmetric I-V curve measured for a lipid bilayer (Fig. (4.2)
(left)) is well fitted by assuming a voltage offset of Ψ0 = 110mV . According
to the capacitor model (Eq. (4.1) -(4.3)) one would expect that a completely
symmetric membrane shows a nonlinear yet symmetric I-V profile. This
means that the membrane studied by Blicher and Heimburg was polar, de-
spite the identical lipid composition of the two monolayers.

As discussed in chapter 3, curvature of the membrane can account for the
presence of spontaneous polarization and hence of a nonzero voltage offset. A
flexoelectric origin of the offset voltage was indeed discussed by the authors
who related it to the applied suction on the glass pipette during membrane
formation (see chapter 5). They suggested that the measured voltage offset
could be explained by the membrane having a radius of curvature which
is compatible with the geometry of the glass pipette. In the experimental
part of this thesis we will further investigate the appearance of asymmetric,
outward rectified current-voltage relationships in chemically symmetric lipid
membranes. It seems clear at this stage, that the conductance of the lipid
bilayer cannot be a priori assumed to be constant. Not only can it be a
nonlinear function of voltage (as shown here), but it is expected to be a
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4. Nonlinear dynamic behaviour in common experiments

function of the state of the membrane [59].

4.1.2 Charge on the membrane capacitor

We saw in section 3.2.3 that, at equilibrium, the charge on the membrane
capacitor is given by:

q = Cm(Ψ + Ψ0) = CmΨ +AP0, (4.4)

where the capacitance, the membrane area and the spontaneous polarization
can all dependent on the applied voltage and on the state of the membrane.
We now want to work out the change in charge on the membrane capacitor
when the voltage is changed from an initial value which can be different from
zero, as it’s usually the case in voltage clamp experiments. We call the initial
value of the voltage Ψh, holding voltage. The charge on the capacitor at the
holding voltage is given by:

q(Ψh) = Cm,hΨh +AhP0,h (4.5)

where Cm,h, Ah, P0,h are the membrane capacitance, area and spontaneous
polarization ad the holding voltage. Note that they can all be functions of
temperature, especially close to the transition, even though we won’t write
the dependence explicitly in the following. The change in charge due to the
change in voltage ∆Ψ = Ψ−Ψh, at equilibrium, is then given by:

∆q = q(Ψ)− q(Ψh) = [Cm(Ψ)Ψ +A(Ψ)P0(Ψ)]− [Cm,hΨh +AhP0,h]

= Cm(Ψ)Ψ− Cm,hΨh + ∆(AP0)(Ψ)
(4.6)

which can be written in a more convenient way using Cm(Ψ) = Cm,h +
∆Cm(Ψ),

∆q(Ψ) = Cm,h∆Ψ + ∆Cm(Ψ)Ψ + ∆(AP0)(Ψ) (4.7)

Here, the first term is the linear part of the charge, the second is the change
in charge due to the nonlinear dependence of the capacitance on voltage
(see Fig. (3.6)) and the last term describes the change in offset charge due
to a voltage induced change in area and/or spontaneous polarization. The
linear part of Eq. (4.7) represents the response of the membrane if no electro-
mechanical couplings were present. One sees that in the linear case, for a
positive change in voltage there is an uptake of charges on the capacitor,
while decreasing the voltage with respect to the holding value results in a re-
lease of charges. This is in line with our intuition. However, in the presence of
electrostrictive and polarization effects, the situation gets more complicated
and whether charges are released or absorbed on the capacitor depends not
only on the sign of ∆Ψ but also on the value of the holding voltage and the
spontaneous polarization. To clarify this, we plotted the nonlinear part of
Eq. (4.7) as a function of the voltage step we call it ∆qnl ≡ ∆q−Cm,h∆Ψ, see

50



4.1. Nonlinearities

Fig. (4.3)), for different holding voltages (left) and for different values of the
polarization (right). In the absence of spontaneous polarization (left panel
of Fig. (4.3)), the nonlinear change in charge is determined by the change
in capacitance, ∆Cm(Ψ). Therefore, when the holding voltage is zero (solid
line, Fig. (4.3)(left)), the change in charge is a nonlinear function of the volt-
age step, and its sign follows the direction of the voltage jump (positive for
positive step and negative for negative step). This is a consequence of the
capacitance having a minimum at Ψ = 0 ( i.e. ∆Cm is always positive when
Ψ0 = 0 and the direction of the charge change is determined by the sign of
the final voltage). We see in Fig. (4.3)(left, dotted line) that when the hold-
ing voltage is Ψh = −100mV , a decrease in voltage (∆Ψ <0) always results
in release of charge from the capacitor. When the voltage is increased from
the holding voltage, however, there is a voltage range in which charges are
released from the capacitor plates. This anomaly is a consequence of the fact
that the membrane capacitance is not in a minimum at the holding voltage.
We saw in Fig. (3.5) that a spontaneous polarization results in a shift of the
capacitance-voltage curve on the voltage axis. This means that the capaci-
tance has a minimum at a voltage different from zero. We therefore expect
similar anomalies in the direction of the charge change when the holding
voltage is zero but the spontaneous polarization is not. This is illustrated
Fig. (4.3)(right), for three different values of the spontaneous polarization
(assuming constant polarization in the gel and in the fluid phase).

Figure 4.3: Nonlinear part of the change in charge ∆qnl ≡ ∆q − Cm,h∆Ψ
from Eq. (4.7) as a function of the the amplitude of the voltage change. Left:
In the case of no spontaneous polarization, for three different values of the
holding voltage. Right: When the holding voltage is zero, for three different
values of the spontaneous polarization. Values of the parameter are for a
DPPC [16], at a temperature of T=214.5K. Cm(T,Ψ) = εA(T,Ψ)/d(T,Ψ),
as derived in chapter 3.
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The above considerations where made at constant temperature. However,
the response of charge to changes in voltage is expected to be greatly affected
by the melting transition.

4.2 Voltage jumps

One common type of voltage-clamp experiment consists in an instantaneous
change in the voltage from a holding voltage Ψh to an end voltage, Ψe, also
called voltage jump.

In the following we calculate the dynamic response to voltage jumps due
to the nonlinearity of the capacitance and conductance. We assume that
the voltage jump is performed at t = 0 and that any change in the applied
voltage is instantaneous.

4.2.1 Ionic currents

We now want to calculate the ionic (or resistive) current response of the
membrane to voltage jumps due to the voltage dependence of the membrane
conductance. We have already discussed how the conduction through the
membrane is affected by the state of the membrane and the voltage applied.
We will assume that the voltage dependence of the membrane conductance
is well approximated by nonlinearity of the current-voltage relationships like
the one shown in Fig. (4.2). In particular, we write the conductance after a
voltage jump from a holding value of Ψh in the following way:

gm(Ψ) = gm,h + ∆gm(Ψ) (4.8)

where gm,h = gm(Ψh) is the conductance of the membrane at the holding
voltage and ∆gm(Ψ) = gm(Ψ)− gm(Ψh) is the change in conductance after
the voltage jump.

As discussed earlier, conduction through the lipid bilayer is proportional
to the heat capacity and hence it follows the magnitude of the membrane
fluctuations. We therefore expect changes in conductance not to happen
instantaneously, but rather to follow the relaxation dynamics of the mem-
brane. We assume that the relaxation behaviour of the membrane is well
described by a single exponential function (as proposed in [69]) and treat the
dynamics of the membrane conductance as a relaxation between two equi-
librium states. We then write the ionic current through the lipid membrane
after a voltage jump as follows:

IΩ(t) = (gm,h + ∆gm(1− e−
t
τ ))Ψe (4.9)

where ∆gm = gm,e − gm,h and τ is the relaxation time of the lipid mem-
branes. It has been shown in theory [69] and experiments [31, 69] that it is
proportional to the heat capacity of the membrane. It is therefore largest
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at the transition, which means that the fluctuations in the extensive vari-
ables are largest and slowest at the lipid melting. It has been found that the
magnitude of the relaxation time spans several orders of magnitude, from
milliseconds to seconds [70] up to a minute [69] in the transition.

The resistive current is plotted in Fig. (4.4) for two voltage steps from a
holding voltage of Ψh=0mV, a positive step of ∆Ψ=100 mV and a negative
one of ∆Ψ=-100 mV.

.

Figure 4.4: A: Voltage jumps at t=0 from a holding voltage of Ψh=0 mV
to an end voltage of Ψe=100mV (black line) and Ψe=-100mV (red line). B:
Ionic current response of the membrane according to Eq. (4.9). Values of the
parameter were: gm,h=1 mS/cm2, ∆gm=10 mS/cm2 [20, 51] and τ=1 ms.
Figure adapted from [71].

4.2.2 Capacitive current

Using Eq. (4.7) we are able to calculate the equilibrium change in charge
on the membrane after a voltage change ∆Ψ = Ψe − Ψh. The nonlinear
part of the change in charge depends on how the capacitance, the area and
the spontaneous polarization of the membrane change with voltage. As for
the membrane conductance we expect these changes follow the relaxation
dynamics of the membrane. Assuming again a single exponential relaxation
for the membrane equilibration, we can write the time dependence of the
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change in charge after a voltage jump can then be written like this:

∆q(t) = Cm,h∆Ψ + (∆CmΨe + ∆(AP0))
(

1− e−
t
τ

)
(4.10)

We can now calculate the capacitive current due to the voltage jump, by
differentiating Eq. (4.10) with respect to time. In the assumption of instan-
taneous voltage change, the linear term in Eq. (4.10) results in a capacitive
spike which is much faster than any other time scale involved. We remove
it by considering only t > 0 and that in experiments it is canceled with
compensatory circuits. The capacitive current is then given by:

Ic(t) =
d

dt
∆q(t) = (∆CmΨe + ∆(AP0))

e−
t
τ

τ
(4.11)

The capacitive current is plotted in Fig. (4.5) in units of [A/mol] 3. The hold-
ing voltage was set to Ψh = −100mV , and current response is shown for two
voltage steps, both positive, ∆Ψ = 40mV and ∆Ψ = 160mV corresponding
to an end voltage of Ψe = −60mV and Ψe = +60mV , respectively.

Panel B shows the capacitive response when no spontaneous polarization
is present. As expected from inspection of Fig. (4.3) depending on the mag-
nitude of the step we observe currents following or not the direction of the
voltage. Panel C shows the current response to the same voltage steps in
the case where the membrane has spontaneous polarization only in the fluid
phase. One can expect capacitive currents of up to 20 µA/cm2 in response
to a voltage step, the actual values depending strongly on the proximity of
the phase transition. At the melting transition the capacitive current can
reach values around 60µA/cm2. We also note that from Eq. (4.11) that the
the amplitude of the current is inversely proportional to the characteristic
relaxation time. We then expect capacitive current originating from the non-
linearity of the membrane to be significant when compared to response of
electrophysiological recordings. Interestingly, they are remarkably similar to
gating currents, which will be discussed in section 4.4.

Once the current through the nonlinear capacitor and the nonlinear re-
sistor of Fig. (4.1) have been calculated, one can write the total membrane
current as the sum of the two:

Im(t) = (gm,h + ∆gm(1− e−
t
τ ))Ψe + (∆CmΨe + ∆(AP0))

e−
t
τ

τ
(4.12)

3mol refers to mole of lipid. Therefore 1 A/mol ' 2/3 nA/cm2, assuming an area per
mole of lipid of A ' 1.5 · 105m2/mol [16]
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Figure 4.5: Capacitive current. (A):Voltage jumps at time t = 0 from
a holding voltage of Ψh = −100mV To an end voltage of Ψe = −60mV
(∆Ψ = 40mV , red) and Ψe = 60mV (∆Ψ = 160mV ,black).(B): Current
response in the case of no polarization. (C:) Capacitive response for a polar
membrane with spontaneous polarization P0,f = 1mC/m2 in the fluid phase
and no polarization in the gel phase. Values used are from DPPC [16].
T = 324.5K and τ = 1ms.

4.3 Impedance spectroscopy

Another common type of experiments used to probe the electrical properties
of biological membranes is impedance spectroscopy. Impedance spectroscopy
consists in measuring the impedance of a system as a function of frequency
(the so called impedance spectrum). This is achieved by applying a low am-
plitude sinusoidal perturbation and measuring the amplitude and the phase
of the current response for different frequencies of the applied voltage. The
membrane impedance, Z, is then calculated as the ratio between the complex
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voltage and current:

Z(ω) ≡ Ψ(ω)

I(ω)
(4.13)

where ω is the frequency of the sinusoidal perturbation.
The working hypothesis of impedance spectroscopy is that the system

under investigation behaves linearly with voltage4. We will in the follow-
ing restrict ourselves to low amplitude voltage perturbations, for which the
membrane can be assumed to respond linearly. In that limit we can linearize
the the equilibrium change in charge and the change in conduction by Taylor
expanding them with respect to voltage. The dynamics of the response can
then be derived using linear response theory.
The linear response of a system to a change in the applied voltage is given
by

α(t) =

∫ t

−∞
Γ(t− t′)Ψ̇dt′ (4.14)

where α is the response function, Ψ̇ = dΨ/dt′ is the rate of change of voltage
and Γ = (∂α/∂Ψ)(t) is the linear transfer function5 that relates the change
in voltage to the response. If the system under investigation is a simple time
dependent capacitor, the response function is the change in charge and the
transfer function is the capacitance. In the case of a simple time dependent
resistor, the response function is the ionic current and the transfer function
is the conductance. One then has:

∆q(t) =

∫ t

−∞
Ĉ(t− t′)Ψ̇dt′ and ∆IΩ(t) =

∫ t

−∞
ĝ(t− t′)Ψ̇dt′ (4.15)

Note that for time and voltage independent conductance and capacitance
(i.e. Ĉ = Cm and ĝ = gm), one obtains the formalism expected from linear
electronics.

4.3.1 Linearized equilibrium response

The voltage dependence of the transfer functions (discussed in section 4.1)
implies that the response is not linear with respect to the perturbation, which
is the working hypothesis of linear response theory. To overcome this, we
consider only small voltage perturbations, for which the membrane can be
assumed to respond linearly. The equilibrium change in ionic current after
a small change of voltage from a holding voltage Ψh can be written as the

4 Therefore the amplitude of the applied perturbation has to be low compared to the
voltage at which the system deviates from linearity.

5which is a function of time and not of voltage
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first order Taylor expansion around the holding voltage:

∆IΩ '
(
∂IΩ

∂Ψ

)
Ψh

∆Ψ =

(
∂(gmΨ)

∂Ψ

)
Ψh

∆Ψ =(
gm,h +

(
∂gm
∂Ψ

)
Ψh

Ψh

)
∆Ψ ≡ (g0 + ∆g0)︸ ︷︷ ︸

ĝ

∆Ψ
(4.16)

where g0 = gm,h. In the same way, the equilibrium change in charge can be
obtained by expanding q(Ψ) (Eq. (4.5)):

∆q '
(
∂q

∂Ψ

)
Ψh

∆Ψ =

(
∂(CmΨ +AP0)

∂Ψ

)
Ψh

∆Ψ =(
Cm,h +

(
∂Cm
∂Ψ

)
Ψh

Ψh +

(
∂AP0

∂Ψ

)
Ψh

)
∆Ψ ≡ (C0 + ∆C0)︸ ︷︷ ︸

Ĉ

∆Ψ
(4.17)

where C0 = Cm,h. Note that g0, ∆g0, C0and ∆C0 they all depend on the
holding voltage and the state of the membrane.

Time dependence of the transfer function We now introduce the time
dependence of both transfer functions ĝ and Ĉ based on the considerations
that after a voltage change the membrane needs to relax into a new equi-
librium state with a characteristic time constant. Assuming again single
exponential relaxation for the equilibration dynamics of the membrane we
have:

ĝ(t− t′) ' g0 + ∆g0(1− e−
t
τ )

Ĉ(t− t′) ' C0 + ∆C0(1− e−
t
τ )

(4.18)

Substituting these expressions in Eq. (4.15)

∆IΩ(t) = g0∆Ψ(t) + ∆g0

∫ t

−∞
(1− e−

(t−t′)
τ )Ψ̇(t′)dt′

∆IC(t) = C0
d∆Ψ(t)

dt
+ ∆C0

d

dt

∫ t

−∞
(1− e−

(t−t′)
τ )Ψ̇(t′)dt′

(4.19)

Impedance spectrum We now have all the tools to calculate the impedance
of the membrane. The expression for the ionic and capacitive currents in the
frequency domain can be obtained by Fourier transforming Eq. (4.19) and
using that the applied voltage is sinusoidal:

∆IΩ(ω) =

(
g0 + ∆g0

1

1 + iωτ

)
Ψ(ω)

∆IC(ω) =

(
iωC0 + ∆C0

iω

1 + iωτ

)
Ψ(ω)

(4.20)
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where V (ω) is the Fourier transform of the applied voltage. The impedance
of the membrane capacitor and conductance is then given by:

ZΩ(ω) =

(
g0 + ∆g0

1

1 + iωτ

)−1

ZC(ω) =

(
iωC0 + ∆C0

iω

1 + iωτ

)−1
(4.21)

Note that for constant conductance (∆g0 = 0) and constant capacitance
(∆C0 = 0), one obtains the classical impedance of a resistor and a capacitor
(the blue semicircle in Fig. (4.1) ).

We can now calculate the impedance of the membrane having the circuit
configuration of Fig. (4.1) in mind 6. We therefore have:

Z(ω) =

(
1

ZΩ
(ω) +

1

ZC(ω)

)−1

=

(
g0 + ∆g0

1

1 + iωτ
+ iωC0 + ∆C0

iω

1 + iωτ

)−1
(4.22)

The impedance spectrum of the membrane is plotted in figure for differ-
ent sets of parameters on a Nyquist plot. As it’s clear from panel A, the
time dependence of the conductance changes has the strongest effect on the
impedance spectrum of the membrane, and it’s responsible for the spiraling
in the Nyquist plot that is commonly associated with inductance. This will
be discussed in section 4.4.

4.4 Discussion

In the present chapter we derived the response of lipid bilayers to voltage
perturbations commonly used in experiments. In such experiments, the lipid
portion of the membrane is often considered to be equivalent to a parallel
RC circuit, like the one in Fig. (4.1). Any behaviour in the measured current
that deviates from that of a standard RC circuit, is commonly ascribed to
other components of the membrane, most notably transmembrane protein
channels. We have here included the voltage and time dependence of the lipid
membrane capacitor and conductance, and showed that they both results in
electrical response of the membrane, that not only deviates from that of a
constant RC circuit, but that interestingly resemble the response of biological
membranes. . Here we discuss some of the similarities.

6The impedance of a parallel combination of electric components is the inverse of the
sum of the inverses of the components impedances
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Figure 4.6: Calculated Nyquist plot of the impedance of a membrane
(Eq. (4.22) for different choices of parameters. A-B, blue: linear membrane,
∆C0 = ∆g0 = 0, green: nonlinear capacitor (∆C0 = 0.5 · C0 and ∆g0 = 0),
red: nonlinear conductance (∆C0 = 0 and ∆g0 = 2 · g0) black: nonlin-
ear membrane (∆C0 = 0.5 · C0 and ∆g0 = 2 · g0). Membrane capacitance is
C0 = 1µF/cm2. Membrane background conductance: g0 = 1mS/cm2 [20,72]
(A) and g0 = 10mS/cm2 (B). C: different values of ∆g0. D: different values
of membrane conductance, g0. τ = 1ms.

4.4.1 Lipid channels and rectification

Since the invention of the patch clamp technique by Neher and Sackmann
[73], the quantized nature of current recordings on membrane patches has
been taken as evidence of the existence of protein channels in the membrane,
which by opening and closing in response to external stimuli, allow and
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selectively control the passage of ions through the otherwise impermeable
membrane. This conclusion relied on the assumption that the lipid bilayer
is an inert and impermeable insulator. A substantial amount of evidence in
the last four decades has proved that this is not true close to the lipid phase
transition. Lipid bilayers show conduction events which are indistinguishable
from the ones measured in the presence of proteins. Lipid channels are
thought to be pores in the lipid membrane that can spontaneously form due
the enhanced fluctuations at the lipid transition. Since voltage can change
the state of the membrane (as we showed in chapter 3), they are expected
to depend on voltage. This has been indeed observed in experiments [65].
In the same work the authors measured an outward rectified current-voltage
relation for a lipid bilayer. Rectification is another distinct feature usually
abscribed to protein channels.

Here showed that by using a simple model for electrostriction which in-
cludes the possibility that the membrane has a spontaneous polarization in
the absence of voltage, we can predict an asymmetric nonlinear dependence
of the membrane current on the voltage which is in perfect agreement with
the experimental data on artificial bilayers and protein containing mem-
branes. Our derivation is very similar to that made by Blicher and Heim-
burg [65]. We speculated on the role of membrane curvature as possible
origin of polarization in the lipid bilayer. This will be further discussed in
the experimental part of this Thesis.

4.4.2 Gating Currents

In their model for the nerve pulse propagation along the giant squid axon [20],
Hodgkin and Huxley first proposed a voltage gating mechanism behind the
functioning of protein ion channels. This was suggested by the steep voltage
dependence of the nerve permeability for potassium and sodium ions. They
concluded that changes in ionic permeability must be related to the move-
ment of polar components in the membrane bearing large charge or dipole
moment. Such voltage sensors were later suggested to lie in the charged
portion of the proteins which, by moving under the effect of an electric field,
effectively opens or closes the channels.

Gating currents (currents related to the movement of the charged "gate"
of proteins) were directly measured for the first time by Armstrong and
Bezanilla only 20 years after their predicition by Hodgkin and Huxley [74].
By lowering the ionic current through the membrane of a squid axon, small
displacement currents could be detected showing a maximum amplitude of 30
µA/cm2 and temporal width of of about 1 ms [75]. In their model, Hodgkin
and Huxley considered the capacitance of the membrane to be constant and
independent of the applied voltage, therefore the potential role of the lipid
bilayer in the measured gating current was not considered.

We have shown in chapter 3 that this is however not the case, especially
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close to the melting transition. Voltage can change the state of the mem-
brane and this can result in nonlinear changes in the membrane capacitance.
We have here shown that the resulting capacitive current can display very
different behaviours depending on the state of the membrane and the value
of the spontaneous polarization (see 4.5). The changes include the maximum
amplitude of the current, its temporal width and the direction of the current
with respect to the applied voltage. The time scale of the electrostrictive
capacitive current calculated here is set by the relaxation time of the mem-
brane, and is therefore separable from the capacitive spike due to the linear
part of the capacitance. We found that in proximity of the transition and
in the absence of spontaneous polarization, the maximum amplitude of the
capacitive current is on the order of 20 µA/cm2, and therefore comparable
to the magnitutude of gating currents. We, however, expect it to be larger in
the transition and to be affected by the presence of spontaneous polarization.

Interestingly, several authors in the 70’s discussed the possibility that
gating currents could originate from the voltage dependence of the mem-
brane capacitance as described here [35, 75, 76]. In his thorough analysis,
Almers examined the potential role of the lipid bilayer in the mechanism be-
hind the measured displacement currents and discarded the hypothesis only
on the grounds of the small magnitude expected, based on the experimental
findings on electrostriction in lipid bilayers available at the time [35]. Non-
linear increase of the capacitance with voltage had indeed been observed, but
mainly on solvent-containing lipid bilayers and ascribed to the movement of
solvent in the membrane [36,46,47,77]. It was therefore thought to be negli-
gible for solvent-free membranes. Almost simultaneously (and using indirect
measurements of the membrane compressibility), Blatt found that capacitive
currents due to electrostriction were of the same order of magnitude as the
gating currents but in the opposite direction [76]. We see that the current
response follows or not the direction of the voltage step depending on the
value of the holding voltage and the spontaneous polarization. We predict
that gating currents and capacitive currents may have the same direction.

We conclude by stressing that with the knowledge we have on the elec-
tromechanical properties of pure lipid bilayers close the phase transition, it
is not possible to a priori exclude a role of the lipid bilayer in the origin
of gating currents. Further experiments and more in depth investigation is
needed.

4.4.3 Membrane Inductance

Limiting ourselves to small voltage perturbations we derived the membrane
response to sinusoidal perturbation and calculated the electrical impedance
of the membrane. We considered only linear changes7 in charge and in ionic

7Note that linear changes have been derived by linearizing the nonlinear membrane
response. We will in the following refer to them as nonlinear changes or nonlinearities.
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current with the voltage, and included the time dependence of such changes
as a relaxation between equilibrium states which follows the dynamics of
the membrane. This allowed us to simulate the impedance spectrum of the
membrane for a set of different parameters (Fig. (4.6)). The blue curve in
panel A of Fig. (4.6) is the impedance spectrum of the membrane when
both ∆g0 and ∆C0 are zero, i.e. when capacitance and conductance are
constant and the membrane is linear. In this case only can the membrane be
represented by the circuit of Fig. (4.1), and in this ideal case the impedance
spectrum is a semicircle in the Nyquist plot as expected for an RC circuit.

Figure 4.7: Left: Impedance spectrum of the squid giant axon measured by
Cole and Baker in a frequency range between 10 KHz and 30 Hz [51]. The
membrane shows inductive behaviour for frequencies below 200 Hz. Figure
adapted from [71]. Right: Tentative equivalent circuit for the impedance
spectrum measured by Cole and Baker. They could fit the experimental data
by assuming an inductance of 0.2 H cm2.

While the nonlinearity of the membrane capacitance has a subtle effect
on the impedance spectrum, and mainly accountable for by considering a
lossy capacitor in parallel with the membrane capacitor, the nonlinear mem-
brane conduction has a more noticeable impact8. In particular it results in
a positive reactance at low frequencies with a distinctive spiraling shape.

8Note that a lossy capacitor (a series combination of a resistor and a capacitor) is
always added to model dielectric dispersion in any real dielectric. It originates from the
observation that in real dielectrics, the phase angle between voltage and current is less
than the ideal 90◦ [78]. As a result, the impedance spectrum of a real dielectric is a
suppressed semicircle in the Nyquist Plot (the centre of the semicircle lies below the real
axis). It is explained by the finite reorientation time of dipoles in the dielectric, due to
friction (hence the resistor in series). Interestingly, in biological membrane the appearance
of lossy capacitor behaviour in the impedance spectrum is linked to gating currents. Here
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Interestingly, very similar impedance spectra were measured for the mem-
brane of the squid giant axon by Cole and collaborators in the 40’s. As shown
in the left panel of Fig. (4.7), the measured impedance shows a positive reac-
tance for frequencies below 200 Hz [51]. A positive reactance in linear circuit
theory is characteristic of an inductance. Cole found that the equivalent cir-
cuit of Fig. (4.7) (right) could explain the experimental data, assuming an
inductance of 0.2 H·cm2. However, lacking any structural evidence of an
inductive element in the membrane, he was reluctant in suggesting any spe-
cific equivalent circuit and finally proposed the one Fig. (4.7) (right) stating
that the choice would be just "dictated by utility , convenience, and personal
belief" [51].

As noted by Cole, an inductive behaviour is not necessarily nor uniquely
explained by the ability of a system to store magnetic energy. Any system
for which the voltage difference is proportional to the rate of change of cur-
rent will show the electrical properties of an inductance [72]. This could
be any process in which the conductance changes with time. Without any
complementary structural information of the system, this is the only infor-
mation that can be extracted from impedance data like those of Fig. (4.7).
On a similar note, Mauro showed that a resistor changing its value from a
low conducting state to a high conducting state with a finite relaxation time
would show an inductive spiraling in the impedance spectrum [79]. This is
the case for the outward rectified membrane considered in our derivation.

Interestingly, among the processes which could account for the spectrum
of Fig. (4.7), Cole discussed several which involve couplings between elec-
trical properties and thermal or mechanical ones, e.g. thermoelectricity and
piezoelectricity [72]. He discarded them based on their expected small magni-
tude. We showed here, however, that lipid bilayers display electromechanical
, as well as thermoelectric properties, whose magnitude becomes significant
close to the phase transition. This was not known at the time, but cannot
be neglected when interpreting electrical data.

Finally, we showed that the inductive behaviour of the membrane impedance
can be accounted for by the voltage induced changes in the lipid bilayer. We
therefore expect the effect to be maximum at the transition where the per-
meability is enhanced and the membrane is more susceptible to changes in
voltage. Since the lipid melting occurs a few degrees below physiological
temperature, the nonlinear changes of capacitance and conductance must be
considered when interpreting electrical data.

The physiological relevance of the dependencies introduced here is con-
firmed by the finding of the previous chapter. We want to stress again that
the the membrane fluctuations and the electromechanical couplings which

we showed that it can originate from the finite relaxation time of voltage induced changes
in capacitance and polarization.
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are responsible for the nonlinearities discussed here, are all maxima at the
phase transition. The proximity of the the lipid melting to the body tempera-
ture in biological membranes, is a strong indications that they all potentially
play a role in physiological conditions
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5

Materials and Methods

5.1 Materials

Lipids: 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dilauroyl-
sn-glycero-3-phosphocholine (DLPC), 1-palmitoyl-2-oleoyl-sn-glycero-3- phos-
phocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine
(POPE), and cholesterol were all purchased from Avanti Polar Lipids (Al-
abaster/AL, US), stored in a freezer at -18 ◦C and used without further
purification.

Electrolyte solutions were made from KCl (Fluka, Switzerland) and NaCl
(VWR, US).The 150mM NaCl and 150mM KCl solutions used in the BLM
setup were buffered with 2 mM HEPES and 1 mM EDTA (both from Sigma-
Aldrich, Germany), pH was adjusted to 7.4. In experiments with the patch
clamp setup the electrolyte solution was made of 150mM KCl, 150mM NaCl
and buffered with 50 mM TRIS (Sigma Aldrich, Germany) to a final pH of
7.6.

All the water used in experiments was purified with a Direct-Q R© Water
Purification System (Merck Millipore, Germany) and had a resistivity >18.1
MΩ·cm. Electrolyte solutions were filtered through a sterile 0.2 µm filter
(Minisart R© Sartorius Stedim Biotech, Germany) to get rid of dust particles
or impurities (this is particularly critical when working with small glass
pipettes).

5.1.1 Sample preparation

Stock solutions of each lipid were prepared by dissolving the lipid powder
in chloroform to a final concentration of 10mM. When not used, stock so-
lutions were stored in the freezer. The different mixtures used throughout
the experiments were obtained by mixing the stock solutions in the desired
molar ratio. After mixing, the samples were aliquoted and dried under a
gentle stream of air and then placed under vacuum for minimum 2-3 hours.
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The dried samples were then resuspended in an organic solvent to different
concentrations depending on the methods used, as explained in the following:

Calorimetry All the lipid mixtures used in the permeability experiments
were first placed in a DSC calorimeter to investigate their thermodynami-
cal properties, namely their heat capacity profile in the melting transition.
Samples were prepared by adding the electrolyte solution to the dried lipid
aliquot to a final concentration of 10 mM. The sample was then shaken in
an ultrasonic cleaner until the solution was uniformly milky, which is typical
for a dispersion of multilamellar vesicles (MLV). Both the MLV and the ref-
erence solution (the buffered electrolyte) were degassed for about 10 minutes
before being inserted in the calorimeter.

Patch pipette setup A 10:1 (mol:mol) mixture of DMPC and DLPC was
used with the patch pipette setup. The dried aliquots were resuspended in
a 4:1 (vol:vol) mixture of hexane and ethanol to a final concentration of 2
mM [80].

BLM setup (Black Lipid Membrane setup) Lipid samples used for exper-
iments with the horizontal BLM setup were dissolved in decane to a final
concentration of 10 mg/mL. The mixture used with this setup consisted of
POPE:POPC=8:2 (mol:mol) for capacitance measurements and a mixture
of DMPC:DLPC:chol= 77.3:7.7:15 (mol:mol:mol) for current measurements.

5.2 Methods

5.2.1 Calorimetry

Differential Scanning Calorimetry (DSC) measures the heat capacity differ-
ence between two cells as a function of temperature. A DSC calorimeter is
made of two cells of tantalum contained in as adiabatic box. A schematic
illustration of the instrument is shown in Fig. (5.1) . In a typical experiment
one cell (the sample cell) is filled with a solution of the molecule investigated
(in our case, MLVs in buffer) and the other (the reference cell) with only the
buffer. The temperature of the cells is changed at a fixed rate (set by the
user) with two Peltier elements whose electric power is adjusted so that the
temperature difference between the cells is zero. The calorimeter measures
he difference in the electric power between the two cells as a function of tem-
perature. In an endothermic process like the melting of lipids from the gel to
the fluid phase, the sample requires more heating power than the reference
in order to increase its temperature by the same amount. Therefore melting
processes are characterised by a peak in the power difference between the
cells.
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Figure 5.1: Illustration of the cells inside a calorimeter. Picture from [2].

The excess heat absorbed (or released), ∆Q can be calculated from the
power ∆P , by integrating it over time t:

∆Q =

∫ t+∆t

t
∆P (t′)dt′ ' ∆P ·∆t

Since the pressure in the cells is kept constant during the whole process,
the molar heat capacity at constant pressure can be easily derived using
Eq. (2.11)):

∆cp =

(
dQ

dT

)
P

'
(

∆Q

dT

)
P

=
∆P

∆T/∆t

where ∆T/∆t is the scan rate. By dividing the raw signal of the calorimeter
by the scan rate one obtains the excess heat capacity as a function of tem-
perature. From the heat capacity profile, the melting enthalpy and entropy
can be obtained by simple integration according to:

∆H0 =

∫ Tf

Tg

∆cpdT

∆S0 =

∫ Tf

Tg

∆cp
T

dT =
∆H0

Tm

Throughout this thesis we used VP-DSC, produced by MicroCal (USA).

5.2.2 Patch Clamp Setup

The dried mixture of 10:1=DMPC:DLPC (mol:mol) was resuspended in a
highly volatile solvent made of 4:1=hexane:ethanol (vol:vol) to a final concen-
tration of 2mM. Synthetic lipid membranes were formed on the tip of a patch-
clamp glass pipette using the droplet method introduced by Hanke [80, 81]
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and illustrated in Fig. (5.2), in which a droplet of the lipid solution is placed
on the outer surface of a vertically standing glass pipette filled with the elec-
trolyte solution (A-C). The tip of the pipette is in contact with the surface
of a beaker containing the same electrolyte solution as the pipette, and as
the droplet flows down the glass surface, it seals the pipette tip with a spon-
taneously formed bilayer (D). The solvent is the allowed to diffuse out of the
bilayer for about 30s before starting the experiments.

Figure 5.2: Schematic illustration of the bilayer formation. Picture from [81].

Glass pipettes were pulled from 1.5 mm/0.84 mm (OD/ID) borosilicate
glass capillaries (Wolrd Precision Instruments, USA) with a vertical PC-10
puller (Narishe Group, Japan) following the two-step procedure explained
in [62]. They were then fire polished using a Narishige MF-900 Microforge,
which created pipette openings of about 10 µm.

Fig. (5.3) shows the configuration of the patch clamp setup used in the
experiments. Electrical recordings were made with an Axopatch 200B patch
clamp amplifier (Molecular Devices, USA). Ag/AgCl electrodes were used
inside the pipette and as ground reference in the bath solution, and mounted
on a cooled capacitor feedback integrating headstage amplifier (CV 203 BU,
Molecular Devices, USA). Current traces were recorded with Clampex 9.2
(Molecular Devices, USA) in the Whole Cell (headstage gain β=1) in voltage
clamp mode and the sampling frequency was 10 kHz. The position of the
pipette with respect to the bath surface was finely adjusted and monitored
with a micromanipulator (model SM1, Luigs and Neumann, Germany) onto
which the headstage was mounted.

5.3 BLM setup

The DMPC:DLPC:chol=77.3:7.7:15 (mol:mol:mol) used for the IV measure-
ment and the POPE:POPC=8:2 (mol:mol) mixture used for the capacitance
measurements on the Black Lipid Membrane setup were both dissolved in de-
cane to a final concentration of 10 mg/mL. Planar lipid bilayers were formed
on a circular aperture in a 25 µm thick Teflon film using a slightly modi-
fied version of the painting method introduced by Mueller et al. [82]. The
original method consists in painting a small volume of the lipid solution on
the hole of a Teflon film separating two chambers filled with an electrolyte
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solution. The membrane is then allowed to thin out for a few minutes until
a bilayer is formed which is in equilibrium with a surrounding annulus made
of the bulk lipid solution (the so called Plateau-Gibbs border), as shown in
Fig. (6.5). More details on the different methods for bilayer formation can
be found [81].

Figure 5.3: Schematic illustration of the patch clamp setup. Picture from [9].

Here we used commercially available horizontal bilayer slides (Ionovation
GmbH, Germany) made of two microchambers (filled with approx 150 µL of
the same electrolyte solution) separated by an horizontal Teflon film. The
upper and lower chambers are connected only through the 120µm aperture
in the film and each has an access port for the electrical connections and for
buffer perfusion. Once a small droplet (' 0.2 µL) of lipid solution is placed
in the upper chamber close to aperture, a bilayer is formed automatically by
a perfusion system (Ionovation Explorer, Ionovation GmbH, Germany). The
membrane formation was monitored with capacitance measurements and was
automatically repeated until the membrane capacitance was stably above a
minimum threshold value of 40 pF.

Current measurements were recorded using an EPC 10 USB patch clamp
amplifier with an integrated AD/DA converter board (HEKA Elektronik,
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Germany), controlled with the Patchmaster software (HEKA Elektronik,
Germany), which was also used for data acquisition and analysis. Ag/AgCl
electrodes inserted in an electrode holder filled with 3M KCl electrolyte were
connected to the electrode ports of the two slide chambers through an agar
bridge and mounted to the headstage of the patch clamp amplifier. The
bilayer slide together with the headstage of the amplifier were contained in
a metal lid which worked as a Faraday cage. Data traces were recorded with
Patchmaster using the Whole Cell voltage clamp mode and sampled at 10
kHz.

The bilayer slides are made of an electrically insulating yet heat con-
ducting material which allowed for temperature control through heat trans-
fer from the heating frame of a temperature control unit (Thermomaster,
Ionovation GmbH, Germany). The unit is connected to a water bath (Haake
K10/DC30, Thermo Fisher Scientific,USA) and the temperature was reg-
ulated by adjusting the volume of water circulating in the heating frame
with a peristaltic pump. The temperature was monitored through a sensor
immersed in the upper chamber.

The bilayer slide was placed on the workstage of a in inverted microscope
(IX70, Olympus,Japan) which allowed for optical monitoring of the bilayer
formation.
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Results

6.1 Temperature dependence of the membrane ca-
pacitance

We have discussed in chapter 3 that lipid membranes can be modeled as a
planar capacitor when dealing with the electrical properties of membranes.
The value of the membrane capacitance depends on the geometry of the
membrane and hence it is state dependent. This means that everything that
can induce a fluid to gel transition will affect the value of the capacitance. As
a result, we expect the membrane capacitance to be affected by e.g. changes
in voltage, lateral pressure and temperature. In chapter 3 we estimated a
relative change of the capacitance of DPPC membranes of about 50% be-
tween the fluid and the gel state, due to the changes in area and thickness.
Here we show experimental results on the temperature dependence of the ca-
pacitance of a black lipid membrane made of a mixture of POPE:POPC=8:2.

Since the largest change in capacitance is expected to occur around the
lipid melting transition, we first used DSC calorimetry to determine the
heat capacity profile of multilamellar vesicles made from the same mixture
following the method described in chapter 5. The two lipids differ only by
the headgroup, ethanolamine and choline, so both are zwitterionic. Fig. (6.1)
(left) shows the heat capacity profile measured during heating (red curve)
and cooling (blue curve). The melting temperature, determined as the tem-
perature at which half of the lipids are melted, is 21.4◦C for the heating
scan and 20.6◦C for the cooling one. The difference in the melting tempera-
ture and in the melting profiles is due to hystheresis. The melting enthalpy,
calculated as the integral of the excess heat capacity, is shown in Fig. (6.1)
(right).
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Figure 6.1: Left: Excess heat capacity profile of POPE:POPC=8:2 mea-
sured with DSC at a scan rate of 5◦C/hr. Heating scan (red), cooling scan
(blue). The electrolyte solution was made of 150mM KCl, pH 7.4. Right:
Melting enthalpy, as calculated by integration of the heat capacity profile.
Heating scan (red), cooling scan (blue).

Lipid bilayers were formed on a Ionovation Explorer, using the method
described in 5, at a temperature above the phase transition. After bilayer
formation, the system was left equilibrating for about 15 minutes, while
monitoring the capacitance until it reached a steady value. Starting from
a temperature of about 33◦C, the system was cooled to a temperature be-
low the melting transition and then heated up again to above the melting
transition. This was made continuously and in cycles, while simultenously
measuring the membrane capacitance. Fig. (6.2) shows three of such cycles.
The capacitance was determined from the current response of the membrane
to a triangular voltage stimulus ramping between 50mV and -50mV at a
rate of dV/dt=0.67 V/s. The current response of a black lipid membrane to
voltage perturbations is the sum of a resistive and a capacitive contribution,
Im = Ir + IC . Assuming that the system behaves linearly for low voltages
(in our case, lower than ±50 mV), the capacitive current can be obtained by
subtracting the current response to the positive ramp from the response to
the negative ramp. The capacitance is then calculated as:

C =
Ic

dV/dt
(6.1)

We want to stress that this method for calculating the capacitance is only
valid under the assumption of constant resistance and capacitance. We will
discuss the validity of this assumption in the voltage range used here in
section 6.3

As shown in Fig. (6.2), the capacitance changes consistently upon melt-
ing, and as expected its value is larger in the fluid phase compared to the gel
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phase. The relative change is of the order of 90%, and is roughly proportional
to the melting enthalpy shown in Fig. (6.1) (right). The temperature range
over which the largest capacitance changes happen is quite different for the
heating and the cooling scan, probably due to hystheresis, and it is roughly
5◦C higher than the melting regime measured with DSC Fig. (6.1). This
mismatch is probably a consequence of the fact that black lipid membranes,
unlike the vesicles used for calorimetry, contain decane which is known to
affect the lipid phase transition [83]. The presence of the solvent annulus
is likely to influence the absolute value of the capacitance (it acts as an
additional capacitor in parallel to the membrane capacitor), and also the
magnitude of the capacitance change, as it will be discussed in section 6.3.

Figure 6.2: Membrane capacitance as a function of temperature for a BLM
made of POPE:POPC=8:2. The bath solution on both sides was made of
150mM KCl, pH 7.4. Cooling and heating scans are indicated with blue and
red markers, respectively. The numbers mark the order of the scans, which
were made in cycles, as follows: Cooling scan 1 → heating scan 1 → cooling
scan 2 → heating scan 2 → cooling scan 3 → heating scan 3.

We see that despite the hystheresis between cooling and heating curves,
each of the two groups of curves share the same features, in terms of shape
and magnitude, with the exception of the first cooling curve. This can be
explained by the membrane not being fully in equilibrium with the solvent
at the beginning of the measurement (see 6.3). Each curve was measured
over a time of 30-40 minutes1. It is then likely that the bilayer was fully

1The heating and cooling rate was controlled manually and therefore could not be kept
exactly constant and equal for all the scans.
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equilibrated after the first scan, as suggested by the reproducibility of the
successive curves. In particular, the curves almost collapse into one for low
temperature, both heating and cooling ones. At higher temperature there is
a large variability in the value of the capacitance. That is probably due to
the limits in the accessible temperature range of the Thermomaster. It was in
fact not possible to efficiently heat the system to higher temperatures without
exceeding the limits set by the manifacturer on the maximum temperature
of the water bath. As it is suggested by the nonzero slope of the cooling
curves 2 and 3 at their highest temperature, it seems that the start of the
cooling scan is inside the melting regime (unlike curve 1 which starts at
higher temperature). It then seems plausible to assume that with a higher
accessible temperature range, the variability in the capacitance value at high
temperatures could be reduced.

Figure 6.3: Left: Relative change in the capacitance of a DPPC membrane,
(Cm(T ) − Cg)/Cg, as expected from the theory. Right: Melting enthalpy
(cooling scan, blue curve) and capacitance (third heating scan, red mark-
ers) as a function of temperature. The two curves have similar shapes and
resemble the theoretical prediction for DPPC.

Previous studies have measured the change in the capacitance upon melt-
ing of black lipid membranes of different composition [77, 84, 85], and found
changes in the same directions as the ones measured here. Here we mea-
sured the capacitance while continuously heating and cooling the system,
which allows for thorough inspection of the transition regime. In particular,
one can see how the capacitance changes are proportional to the enthalpy
changes. Fig. (6.3) shows the temperature dependence of the relative change
in capacitance as expected from the theory for a DPPC membrane and a
comparison between the measured capacitance change from Fig. (6.2) and
the enthalpy curve.
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Finally, we have discussed the thermoelectric effect in chapter 3, by which
the membrane capacitor can be charged or discharged by changes in tem-
perature (Eq. (3.41)). In the absence of spontaneous polarization it is given
by:

dq = Ψ

(
∂Cm
∂T

)
Ψ,c

dT (6.2)

The partial derivative of the capacitance with respect to temperature as
predicted from the theory is plotted in Fig. (6.4) (left). It can be qualitatively
compared to Fig. (6.4) (right) which shows the derivative of the capacitance
with respect to the temperature as calculated from the experimental curve of
Fig. (6.3)(right,red). Both have a maximum in the transition and the latter
can be almost superimposed to the heat capacity.

Figure 6.4: Left: The partial derivative of the membrane capacitance with
respect to temperature at fixed voltage and curvature for a DPPC membrane
(see chapter 3), shows a maximum at the transititon tmperature (Tm =
41◦C). Ψ = 0, Ψ0 = 0 Right: Measured heat capacity (cooling scan, blue
curve) and the derivative of the measured capacitance of Fig. (6.3) (red
markers). Both functions have a maximum at a temperature where the
changes in the correspondent extensive variables are largest.

To conclude this section, the capacitance of the black lipid membrane
shows an increase of about 90% from the gel to the fluid phase. The change
is likely to be due due to a combination of the melting of the lipid bilayer
and consequent change in the membrane geometry, and membrane thinning
due to the movement of the solvent into the annulus. As already discussed
by [84], we suggest that melting is the dominating effect and that the solvent
squeezing out is a side effect prompted by the transition and linked to the di-
creased pressure across the bilayer due to the increased thickness (see section
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6.3). The shape of the capacitance change and its derivative qualitatively
correlate with the enthalpy and the heat capacity measured with DSC and
they are in perfect qualitative agreement with the theoretical predictions of
chapter 3.

6.2 Lipid ion channels and rectification

Motivated by the theoretical analysis of chapter 4 on the occurrence of rec-
tification in the I-V curve of lipid bilayers, we investigated it further in ex-
periments using two different setup: a BLM setup and a patch clamp setup.
According to our analysis and to the results of Blicher [65], outward rectified
current voltage relationship can be observed in pure lipid bilayers recon-
stituted on the tip of glass pipette and can be fully described by a simple
capacitor model which takes into account the nonlinearity of the membrane
capacitance and the presence of a spontaneous polarization in the membrane.
The former effect (and the resulting increase in likelihood of pore formation)
is responsible for the nonlinearity of the I-V curve whereas the latter gives
rise to the distinctive asymmetric current response to positive and negative
voltages that goes under the name of rectification.

Figure 6.5: Left: Schematic drawing of the section of a black lipid membrane
(left). Image of a BLM (centre), with highlighted hole aperture and bilayer
perimeter (right).Right: Illustration of the final step of bilayer formation
on a patch pipette (left). Image of the pipette tip (right).

Rectification can be described by introducing a voltage offset in the ex-
pression of the free energy of pore formation. In bilayers with symmetric
composition, like the ones used by Blicher [65], a voltage offset could, for
instance, be explained on the basis of a curvature induced polarization of
the membrane, as discussed in chapter 3. In patch pipette experiments little
suction is applied to facilitate membrane formation. This, combined to the
small diameter of the pipette tip (between 1-10 µm), was suggested as a
possible origin of the voltage offset of about 100 mV observed. If that is the
case, one would expect a much lower offset in larger membrane patches like
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those used in BLM experiments (see Fig. (6.5)).
With an aperture diameter of about 100 µm, one would expect offset

voltages between 10 and 100 times lower than those on glass pipettes. Pre-
vious permeability studies on BLM seem to confirm this prediction, showing
symmetric nonlinear I-V curves [55] .

We here show a comparative study of I-V currents in black lipid mem-
branes and patch pipettes.

6.2.1 BLM

Black lipid membranes of DMPC:DLPC:Chol=77.3:7.7:15 were formed using
the methods described in chapter 5. We measured the current response of
the membrane as a function of voltage at constant temperature. Voltage
was applied in alternated steps of ±10mV amplitude and 10s duration from
a holding voltage of 0V.

Figure 6.6: Left: Heat capacity profile of DMP:DLPC:chol=77.4:7.7:15,
measured at 5◦C/hr. It shows two maxima at 19.4◦C and 22.6◦C. Buffer
solution is made of 150mM NaCl, pH 7.4. Right: I-V curve for a bilayer
at 30◦ between -150 mV and +150 mV. The membrane broke at 160 mV.
Every data point of the current trace is plotted for each voltage. Black circles
are the average of each 10s long current trace. The dashed line is a fit to
Eq. (4.3). It gives a value of the offset voltage of Ψ0 = 6mV

Fig. (6.6) (right) shows a representative current-voltage relationship mea-
sured at 30◦C. This corresponds to the upper end of the melting transition, as
shown in the heat capacity profile measured with DSC calorimetry, Fig. (6.6)
(left) 2. The dashed line is a fit to Eq. (4.3). Fig. (6.6) (right) shows how the

2Note that the buffer used for DSC measurements is made of NaCl, whereas the one
for the experiments with the BLM is made of KCl. This is not expected to have major
effects, since the salt concentration is the same in the two experiments and the lipids used
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ionic current through the membrane patch changes as a nonlinear but overall
fairly symmetric function of voltage. The best fit gives a value of the offset
voltage of about 6mV. For voltages below ±100mV the current response is
linear and the bilayer has a conductance of about 80pS.

The steep increase in current observed at higher voltages (higher than
±100 mV) corresponds to the appearance of current fluctuations in the cur-
rent trace. An example is shown in Fig. (6.7) (left), for a different bilayer,
at 32◦.

Figure 6.7: Left: Current traces for some values of the applied voltage. The
traces were digitally filtered at 1 kHz Right: I-V curve for a bilayer at 32◦C
in a voltage interval between -100 mV and + 110 mV. Black circles are the
average of the 10 s trace, and error bars are the standard deviation for each
trace. The dashed line is a fit to Eq. (4.3). The resulting offset voltage is
Ψ0 = (−6.0± 0.8)mV.

Current fluctuations appear in the nonlinear regime in the form of well
defined quantized step, burst or increase in the noise. The onset of current
nonlinearity in this membrane occurs at lower voltage (±50 mV) than the
previous one, as shown in the I-V curve ( Fig. 6.7 - right), but the overall
behaviour seems unchanged. Together, the nonlinearity of the I-V and the
appearance of current fluctuations in the nonlinear regime are in line with the
electrostrictive capacitor model for membrane breakdown and pore formation
outlined in chapter 4 and proposed by Blicher and collaborators [65]. In this
framework, the symmetric response of the membrane to positive and negative
voltages results in a small value of the voltage offset3, on the order of 6 mV

are uncharged.
3small compared to the voltage at which the membrane starts to deviate from the linear

behaviour.
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for both membranes showed.
In several instances, the onset of current fluctuations was observed in

conjunction with the membrane (i.e. bilayer + annulus) expanding out-
side the rim of the teflon aperture, as observed by optical microscopy. The
phenomenon resembles the bulging of planar bilayers into cupola-shaped
membranes observed and described by Antonov and collaborators in re-
sponse to excess hydrostatic pressure [86] (a schematic drawing is shown
in Fig. (6.11)d). Similar instabilities were reported by other authors for
lecithin films in the presence of hexadecane as a solvent [87] or, on longer
time scales, in the presence of decane [88]. In our case the hydrostatic pres-
sure was not directly controlled but it is assumed to be constant during the
experiment. It is, however, not guaranteed to be equal on the two sides of
the membrane, hence the slow expansion and bulging could be interpreted
as a long-time response of the system to eventual pressure differences at
the time of membrane formation (see section 6.3). We didn’t investigate
the origin and the mechanism of this phenomenon further but we limited
ourselves to the observation that its occurrence is somehow linked to the
increase in current fluctuations (in the form of quantized steps, burst or just
increased noise). Though some bilayers show nonlinearities in the absence of
this anomaly (like the one in Fig. (6.7)), they do show current fluctuations
in most of the cases in which the membrane is observed to "expand" out of
the rim of the hole.

Figure 6.8: Two
consecutive record-
ings of the
same bilayer of
DMPC:DLPC:chol
=77.3:7.7:15 in the
presence of the
bulging anomaly.
Red marker: first
recording. Black
marker: second
recording. T=30◦.

To rule out that this mechanical instability can alone produce the non-
linearity observed in experiments, i.e. that the conductance increase is more
time dependent rather than voltage dependent, we measured subsequent I-V
curves for the same membrane showing the slow expansion4. They are shown

4This turned out to be a difficult task, because once the membrane bulges out of the
hole rim, it expands fast until it breaks.
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in Fig. (6.8). Current fluctuations and nonlinearity of the I-V showed up in
the first measurement at around 100 mV, when the bilayer had reached the
rim of the aperture. The membrane kept expanding slowly during the second
measurement and eventually broke at 160 mV. As it can be seen in the I-V
curve of the second recording and in the current traces (not shown), for low
voltages the current is a linear function of the voltage even in the presence
of membrane bulging. However, the magnitude of the nonlinearity is larger
in the second measurement. This suggests that the membrane current has
indeed a nonlinear dependence of the voltage, but also that the magnitude
of the effect is greatly influenced by the bulging of the membrane.

Finally, we stress that an expanding or bulging membrane is not an
ideal system for a proper electrical characterization of the lipid bilayer. The
obvious reason is that a time dependent change in the geometry of the system
is an indication that the system is not in mechanical equilibrium. In the light
of the electromechanical couplings discussed in chapter 3, changes in area and
curvature can affect the equilibrium charge on the membrane capacitance and
the dynamic electrical response to voltage perturbation, making it hard to
correctly interpret the current data.

6.2.2 Patch pipette

Lipid bilayers made of DMPC:DLPC=10:1 were reconstituted on the tip
of glass pipettes mounted on a patch clamp setup as described in chapter
5. Different voltages were applied to the membrane using a step protocol
similar to the one used for the BLM setup and the response current was
recorded. The voltage jumped from a holding voltage of 0 V to a final voltage
which, starting from the highest in the explored range, decreased at every
iteration by a constant step. In general, membranes formed on the patch
pipettes were more resistant to voltage than those in BLM and therefore
we could explore a wider voltage range, between -200mV and 200mV. As
described in chapter 5, the pipette tip touches the surface of the electrolyte
bath when the membrane is formed. We then changed the position of the
tip relative to the bath surface and recorded the I-V curves of bilayers at
different depths. A change in the tip position corresponds to a change in
hydrostatic pressure which is proportional to its distance from the air-water
interface. The melting profile of the mixture used is shown in Fig. (6.9)
(left). It has a fairly cooperative transition with a single peak at 22.2◦C.
The temperature during the experiment was 24◦C, which again is at the
upper end of the melting transition. Fig. (6.9) (right) shows two I-V curves
measured on the same bilayer at the surface (open circles) and at a depth of 8
mm (black circles), corresponding to a pressure difference of about 82 Pa. In
the absence of pressure, the current response of the membrane is linear with
the voltage. The I-V curve becomes asymmetric and nonlinear when the tip
is at a depth of 8mm. A fit to Eq. (4.3) (dashed line in Fig. (6.9)) gives a
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Figure 6.9: Left: Heat capacity profile for DMPC:DLPC=10:1 at 5◦C/hr,
showing a peak at 22.2◦C. Buffer solution was 150mM NaCl, 150mM KCl1,
pH 7.6. Right: Two I-V curve for the same bilayer at 24◦ in a voltage
interval between -200 mV and +200 mV. All current points are plotted vs
the voltage. Open circles are the average values of current when the pipette
tip was at the surface. The dashed line is a linear fit (Ψ0 = 0). Solid circles
are the average values of the current measured with the tip at a depth of
8mm. The dashed line is a fit to Eq. (4.3), which gives a voltage offset of
Ψ0 = 160mV .

value of the offset voltage of 160 mV. The distinctive profile of the nonlinear
I-V shown here is commmonly referred to as "outward rectified" due to the
higher conductance for positive voltages than for negative ones5. It is very
similar to the one measured by [65]. Similar curves are often observed in
experiments on different protein channels (like the TRP channels, shown in
Fig. (??)). They are usually interpreted on the basis of a transition state
model (Eyring model) which assumes an energy barrier for the passage of ions
whose position in the membrane (whether in the centre or not) determines
the symmetric or asymmetric nature of the current response. Interestingly,
the capacitor model of chapter 4 is able to fit experimental data for both
the TRP channels and pure lipid bilayers. In the latter case, the capacitor
model was shown to better explain the current response than the Eyring
model (which agrees with the data only in a limited voltage range, as shown
in [62]).

Although the nonlinear curve in Fig. (6.9) (right) is representative of the
asymmetric behaviour of this - and other - membranes, its occurrence was
often transient. This means that different recording measured at the same
depth for the same membrane could show current responses resembling both

5sign convention wants the current going out of the cell to be positive. An outward
rectified channel is therefore a channel that preferentially allows current to flow out of the
cells and opposes higher electrical resistance to currents flowing inside the cell.
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Figure 6.10: Left: Raw current traces in response to the voltage steps.
Right: I-V curve for at 24◦ in a voltage interval between -200 mV and +
200 mV. Black circles are the average of the traces on the left. The dashed
line is a fit to Eq. (4.3). Fit parameters are Ψ0 = (162.41 ± 0.06)mV, γp =
(1.4108± 0.0009) nS, ∆G0 = (9.210± 0.012) kJ/mol and α = (453.8± 0.6)
kJ/mol V2

curves of Fig. (6.9) (right). One reason for this could be the flow of material
inside the pipette and consequent release of pressure. Note that pressure
was not directly controlled nor monitored, so from this stand the results
shown here should not be overinterpreted to quantify the effect of pressure
(or curvature) on the membrane asymmetry. What they do unequivocally
show, however, is that compositionally symmetric bilayers formed on the tip
of glass pipette can show outward rectification. Changing the depth of the
tip in the aqueous buffer increases the likelihood of this occurrence.

While in some instances the increase in conductance was linked to the
appearance of current fluctuations, as for the BLM, in most of the cases the
nonlinearity was due to a voltage dependence of the baseline conductance,
as shown in Fig. (6.10)(left). The red current trace at high positive voltage
(200mV) shows an increased current relaxation time. This behaviour was
observed in several recordings.

6.3 Discussion

6.3.1 Capacitance measurements

Wemeasured the capacitance of a black lipid membrane of POPE:POPC=8:2
as a function of temperature in the phase transition regime. The capacitance
of the membrane was found to be larger in the fluid phase than in the gel
phase and fairly constant far from the transition, as expected from the theory
and in agreement with previous studies by Antonov and collaborators on
hydrogenated egg lecithin (HEL) [84].
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We found that the temperature dependence of the capacitance at the
transition is roughly proportional to the melting enthalpy as measured with
DSC calorimetry (Fig. (6.3),right). This is also expected from the theory,
under the assumption that the BLM can be modeled as a planar capacitor,
due to the proportionality relation between changes in enthalpy and changes
in thickness and area [16] (see chapter 2). As a result, the derivative of the
capacitance with respect to the temperature was found to be qualitatively
similar to the heat capacity profile (Fig. (6.1)), and hence to have a peak at
the transition. The temperature derivative of the measured capacitance was
further found to resemble the partial derivative of the capacitance with re-
spect to temperature at constant curvature and voltage discussed in chapter
3 in the context of the thermoelectric effect. We note that, while the cur-
vature could be considered as constant in our experiment, the same doesn’t
apply to the voltage across the membrane, which, as in any measurement
aimed at giving information on the capacitance, was not fixed during the
measurement. In particular, it was changing between -50mV and 50mV. If
the membrane capacitance is constant with respect to voltage in that range,
then the temperature derivative of the capacitance of (6.1, right) can ef-
fectively be considered as taken at constant voltage. That the membrane
behaves linearly in that voltage range was also the assumption under which
we could use Eq. (6.1) to measure the capacitance in the first place. This
assumption is confirmed by measurments of the current voltage relationship
in BLM which showed no significant voltage offset and linear behaviour for
voltages below 50 mV.

The temperature range in which the changes in the capacitance are
largest is about 6.6◦C higher than the melting range measured with DSC
calorimetry (measured as peak-to-peak distance in Fig. (6.1), right). This
shift in the melting temperature is probably due to the presence of solvent in
the black lipid membrane, as opposed to the vesicles used for DSC which are
solvent free. Decane is mostly present in the annulus surrounding the bilayer
but also in the bilayer region, in the form of microlenses spanning the bilayer
thickness or as a separate phase in the bilayer midplane [83,89,90]. The ca-
pacitance of BLM was found to depend on the type of alkane used as solvent,
mainly due to the dependence of the membrane thickness on the length of the
alkane [87,91]. In other words, longer alkanes like hexadacane were found to
mix almost ideally in the bilayer along the lipid chains (hence not affecting
the thickness significantly), whereas the shorter ones like hexane or decane
were found between the acyl chains of lipids, therefore resulting in an larger
thickness of the bilayer in the presence of short alkanes. This would mean
that the absolute magnitude of the capacitance measured here is lower than
that of solvent free membranes of the same mixture. McIntosh and collabo-
rators studied the effect of different n-alkanes on the melting temperature of
DPPC bilayers. They found that shorter alkanes (n<12) lower the transition
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temperature (of about 4◦C for decane) while longer ones tend to increase it.
In DMPC bilayers the effect of decane is not as pronounced as for DPPC
and goes in the opposite direction [83]. There seems to be a change in the
way the alkane interacts with the lipid when the alkane chain length is more
than four carbons smaller than that of the lipid. POPC and POPE used
here have a mixed tail made of palmitic (16 carbons long) and oleic acid (18
carbons long). They are both more than four carbons longer than decane.
Therefore, one would expect the melting temperature to be lowered in the
presence of solvent, in contrast to our observation. It is unclear at this stage
why the capacitance changes observed here happen at a higher temperature
than that expected from calorimetric measurements. Further investigations
are therefore essential to draw final conclusions. We stress at this point that
the black lipid membrane is a highly heterogeneous system. Although we
are mostly interested in the bilayer portion of the membrane, it is the an-
nulus that controls the equilibrium of the system. Being significantly more
massive than the bilayer, the chemical potential of the components of the
bilayer is determined and constraint by the chemical potential of the annu-
lus, at equilibrium [92]. The annulus, however, can exhibit a complex phase
behaviour and it can be expected that the overall phase behaviour of the
BLM differs from that of lipid suspension used in calorimetry, even when
alkanes are present.

In addition to the the melting temperature and the absolute value of the
capacitance of the BLM, the relative magnitude of the capacitance change
is also likely to be influenced by the presence of the solvent. As pointed
out by Stephen White in his insightful book chapter on the physical nature
of planar bilayer membranes, [92] the black lipid membrane does not form
spontaneously on the film aperture beacuse it "is inherently not an equilib-
rium system - work must be done to create it. There is always a lower free
energy state for the system, which is the bulk solution with no black film;
that is, the films tend toward the broken state." He then continues by an-
alyzing the aspects of the complex equilibrium which makes it possible for
membranes to exist for many hours. In particular, the formation process
(the thinning of the bilayer from the bulk forming solution) is the result of
three driving forces. First, the curved interface formed by the bulk solution
in order to adjust to the rim of the aperture creates a pressure difference
according to Laplace law (lower in the membrane than in the water phase)
which triggers the movement of solvent molecules from the bilayer area to
the annulus (also called Plateau-Gibbs border suction). Thereafter, when
the bilayer thickness is on the order of few hundreds Å, the London-Van
der Waals attraction between the aqueous phases on the two sides of the
membrane exert a hydrostatic pressure which tends to further thin the bi-
layer. The thinning continues until steric repulsion between the lipid acyl
chains inhibit further thinning. The London-Van der Waals pressure is in-
versely proportional to the distance between the aqueous phases (i.e. the
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membrane thickness). In agreement with the analysis of Antonov and collab-
orators [84], we suggest that the change in capacitance is primary produced
by melting of lipid bilayer. The thickness increase from the fluid to the gel
phase results in a decrease in the Van der Waals pressure which, in turn,
triggers the movement of solvent in the bilayer area that further thickens the
membrane. The combined action of these effects could account for the 90%
change in the capacitance observed here. Finally, knowledge of the average
area per mol of lipid, or alternatively, simultaneous measurement of mem-
brane area, would allow for a theoretical estimation of the magnitude of the
effect and quantitative comparison with the experiment.

We reported here the one measurement of consistent and reproducible
capacitance changes over the melting transition, made of three entire cycles.
Other attempts failed for either the rupture of the membrane during the mea-
surement or for the high variability of the capacitance changes in subsequent
scans. We took the almost complete restoration of the capacitance value far
from the transition as indication that the bilayer was fully equilibrated be-
fore the experiment and therefore discarded the measurements giving erratic
values of capacitance at the same temperature in consecutive scans. This
behaviour was observed even though measurements were usually started at
least 15 minutes after membrane formation to allow for bilayer thinning and
always after the capacitance readings were stable for minutes. An attempt of
explanation can be made again with the aid of the studies made by White in
the 70s who studied the time dependence of the membrane capacitance after
formation and found a time constant of about 15 minutes, with capacitance
changing slightly its value even after one hour [48]. This is the time it takes
to the membrane to thin, so to the solvent molecules to diffuse out of the
bilayer. He also found, that in the presence of a constant voltage bias prior
to measurement, the thinning process could be efficiently speeded up [89].
This would explain the first scan in Fig. (6.2) differing from the following
ones on the basis of not perfect equilibration of the bilayer. It also suggests
that equilibration of the system is essential for the reproducibility.

Hystheresis between heating and cooling scans is in line with that mea-
sured by DSC and probably linked to the differences in the heating rate for
the different scans. Keeping the heating and cooling scan constant on a time
scale of about 40 min was a challenging operation and the resulting scan
rate varies between 10 and 30 degrees per hour. At this rate, hystheresis
has to be expected due to the not complete equilibration of the system. At
the high limit of these range the system cannot be assumed to be in thermal
equilibrium and hystheresis plays a role.

To conclude, the measurement confirms the theoretical predictions and
points at a common origin for enthalpy and capacitance changes. Due mainly
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to the presence of solvent, however, the results are mainly of qualitative
nature. One way of separating the capacitance contribution of the solvent
annulus from that of the bilayer is by applying sinusoidal perturbations, since
solvent molecules and lipids have different characteristic frequency. Note
that sinusoidal perturbations would also be well suited for measurements of
voltage dependence capacitance, where the nonlinear behaviour would show
up in the second harmonics of the response [47,93].

6.3.2 Lipid Ion channels and rectification

We here showed that lipid bilayers reconstituted with different techniques
show nonlinear current-voltage relationships and current fluctuations that
are voltage dependent. It is a general observation in experiments that non-
linear I-V curves measured on BLM are symmetric with respect to voltage
whereas those measured on patch pipettes are asymmetric displaying out-
ward rectification (see 6.6(right) compared to 6.9(right)). Both types of
curves can be fitted by the membrane capacitor model outlined in chap-
ter 4, which gives a larger value of the offset voltage in the case of the
patch pipette compared to the BLM. This indicates that the bilayers on the
tip of glass pipettes have a spontaneous polarization whereas those on the
BLM setup have not (or have it much smaller). In chapter 3 we discussed
two possible mechanisms for membrane polarization, namely chemical (and
physical) asymmetry between the two monolayers and geometrical asymme-
try (flexoelectricity). The former can be discarded on the grounds that both
monolayers are made of the same mixture in both setups. The most evident
difference in the two systems is the size of the membrane patch. While the
pipette tips have a diameter of about 10 µm, the aperture in the teflon film
has a diameter which is about 10 times larger than that. We would then
expect that if flexoelectricity plays a role in the membrane polarization, then
it should result in different magnitudes of polarization and offset voltage, as
observed in the experiments.. This is illustrated in Fig. (6.11).

On the left of Fig. (6.11) different scenarios are shown for the black lipid
membrane setup. In the case of a planar membrane (a), no curvature is
present and no polarization is expected (Ψ0 = 0). The maximum curvature
in this setup can be obtained when the radius of curvature of the membrane
is equal to the radius of the aperture (c). All the other scenarios would
lead to a smaller curvature. In particular, case (d) is an illustration of the
bulging phenomenon described earlier. If the the outer edge of the membrane
disconnects from the rim of the hole and the membrane becomes larger,
the resulting curvature would be decreased further. This could happen if
there is enough lipid reservoir surrounding the aperture. In the case of a
membrane with a diameter of 80 µm, the maximum radius of curvature is
40µm. Taking Petrov’s expression for the flexocoefficient, f = Ψ0ε/2c, the
maximum curvature and an offset voltage of Ψ0 '6 mV, one gets a value for
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f of about 3·10−18C for the mixture DMPC:DLPC:chol=77.3:7.7:15.

Figure 6.11: Left: Illustration of four different possible configurations for a
bilayer on a horizontal BLM setup. Red areas represent the solvent annu-
lus. (a): planar bilayer (c=0). (b) Curved bilayer. (c) Maximum possible
curvature for this hole geometry. (d) Bulging membrane. If the membrane
disconnects from the hole the resulting curvature is lower than the other
scenarios. Right: Curved bilayer on the tip of a glass pipette. Due to the
small diameter compared to the hole of the BLM setup, the curvature can
reach higher values.

The case of a patch pipette is illustrated on the right of Fig. (6.11) (right).
Because of the smaller tip diameter one can expect larger curvatures. Again,
the maximum curvature is for a radius of curvature equal to the radius of
the tip, 4µm in the case illustrated here. If we take a voltage offset of
Ψ0 = 160mV , this would give a flexocoefficient of f = 8.5 · 10−18C for the
mixture DMPC:DLPC=10:1.

Note that both numbers are lower estimates, since we considered the
maximum possible curvature for each setup. Interestingly, they are very
close to the values of the flexocoefficient reported in literature for different
membrane composition. Todorov, Petrov and collaborators found f = 4.0 ·
10−18C for bovine brain PS [94], f = 2.6·10−18C for baterial PE [50] and f =
1.8·10−18C for egg PC [95].Their measurements of the flexoelectric coefficient
involve direct measurement of the membrane curvature. Here, we indirectly
estimated the order of magnitude of the curvatures involved. The agreement
of our estimation with the literature values for the value of f , however, points
in the direction of a curvature mechanism behind the electrical asymmetries
measured. Simultaneous curvature and current measurements could allow
for correct and conclusive interpretation of the the electrical asymmetries in
lipid bilayers.
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Conclusions

We have here provided a unified thermodynamical framework which de-
scribes the electrical, electro-mechanical and thermo-electrical behaviours
in the membrane. The biologically relevant case of asymmetric membranes
- with respect to geometry and composition - has been included in our de-
scription by considering their spontaneous polarization in the absence of
a field. In our unified language, spontaneous polarization, electrostriction,
flexoelectricity, piezoelectricity and thermoelectricity can all be related to
the charging of a capacitor, and may then all referred to as polarization ef-
fects. In the case of flexoelectricity, for example, our results agree with the
original development of Petrov in the special case of a membrane which is
fully symmetric in the planar state, whose voltage offset is a linear function
of curvature, at constant temperature and in the absence of an applied volt-
age, showing the generality of our treatment. Similar considerations apply
to the capacitive susceptibility proposed by Heimburg [24]. Therefore it is a
general theory which contains all the different couplings as special cases.

One of the strengths of our approach is that it allowed us to make a
number of prediction on the behaviour of membranes in electric fields that
can be test in experiments. Within our framework, for instance, we pre-
dicted the effect of the state of the membrane on the membrane capaci-
tance. Our prediction was qualitatively confirmed by our experiments on
black lipid membranes. Further experiments using sinusoidal perturbations
and simultaneous measurement of the membrane area are suggested. We fur-
ther predicted how an applied voltage would, in turn, influence the state of
the membrane depending on the spontaneous polarization. On the same line,
we expect the capacitance to change with voltage. Our theoretical results
indicate that these two quantities are affected by the membrane asymmetry,
which should be included in the parameter space and controlled in experi-
ments for a correct interpretation of the data. Both experiments could give
valuable information, especially in the context of the models for the nerve
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pulse propagation.
With the findings of chapter 3 we were able to finally update the tra-

ditional equivalent circuit of the lipid portion of the membrane in order
to include the time and voltage dependence that is expected for the mem-
brane capacitance and conductance close to the melting transition. We used
the new updated circuit to explain and fit existing data and to simulate
the response of the lipid membrane to common voltage perturbations. In
all of these application we found striking similarities between the response
expected from - or measured for - pure lipid bilayers close to the phase tran-
sition and biological membranes. Outward and inward rectified I-V curves,
gating currents, appearance of quantized step in the membrane, are all phe-
nomena that are considered distinctive of protein channels. We measured or
predicted them also for lipid bilayers. This indicates that attention should
be employed when interpreting electrical data from biological membranes. It
also indicates a more active role of the bilayer in the membrane than what
assumed until now. Our hope is that it will encourage the development of
new experimental approaches in the electrical investigation of the membrane.

Finally, we want to stress that our proposed equivalent circuit is not
based on empirical inspection of the electrical response of the membrane,
but it is suggested from our understanding of the structure and the physical
properties of the lipid bilayer. In this sense, it is completely general. From
this comes the predictive power of our formulation. In this lies its beauty
and strength.
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